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ABSTRACT

The estimation of the directions of arrival (DOAs) of incoming waves for a passive
antenna array has long been an important topic in array signal processing. Mean-
while, the estimation of the MIMO channel between a transmit antenna array and
a receive antenna array is a key problem in wireless communications. In many
recent works on these array processing tasks, people consider millimeter waves
(mmWaves) due to their potential to offer more bandwidth than the already highly
occupied lower-frequency bands. However, new challenges like strong path loss
at the high frequencies of mmWaves arise. To compensate for the path loss, large
arrays, or massive MIMO, are used to get large beamforming gain. It is practical due
to the small sizes of mmWave antennas. When large arrays are used, it is important
to develop efficient estimation algorithms with low computational and hardware
complexity.

The main contribution of this thesis is to propose low-complexity DOA and channel
estimation methods that are especially effective for large arrays. To achieve low
complexity, three main aspects are explored: beamspace methods, hybrid analog
and digital processing, and distributed algorithms. First, a new beamspace method,
convolutional beamspace (CBS), is proposed for DOA estimation based on passive
arrays. In CBS, the array output is spatially filtered, followed by uniform decimation
(downsampling) to achieve dimensionality reduction. No DOA ambiguity occurs
since the filter output is represented only by the passband sources. CBS enjoys
the advantages of classical beamspace such as lower computational complexity,
increased parallelism of subband processing, and improved resolution threshold for
DOA estimation. Moreover, unlike classical beamspace methods, it allows root-
MUSIC and ESPRIT to be performed directly for uniform linear arrays without
additional preparation since the Vandermonde structure is preserved under the CBS
transformation. The method produces more accurate DOA estimates than classical
beamspace, and for correlated sources, better estimates than element-space.

The idea of hybrid analog and digital processing is then incorporated into CBS, lead-
ing to hybrid CBS for DOA estimation. In hybrid processing, an analog combiner is
used to reduce the number of radio frequency (RF) chains and thus hardware com-
plexity. Also for lowering hardware cost, the analog combiner is designed as a phase
shifter network with unit-modulus entries. It is shown that any general (arbitrary
coefficient) CBS filter can be implemented despite the unit-modulus constraints.
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Moreover, a new scheme of CBS is proposed based on nonuniform decimation and
difference coarray method. This allows us to identify more sources than RF chains.
The retained samples correspond to the sensor locations of a virtual sparse array,
dilated by an integer factor, which results in larger coarray aperture and thus better
estimation performance. Besides, with the use of random or deterministic filter
delays that vary with snapshots, a new method is proposed to decorrelate sources
for the coarray method to work.

Next, a 2-dimensional (2-D) hybrid CBS method is developed for mmWave MIMO
channel estimation. Since mmWave channel estimation problems can be formulated
as 2-D direction-of-departure (DOD) and DOA estimation, benefits of CBS such
as low complexity are applicable here. The receiver operation is again filtering
followed by decimation. A key novelty is the use of a proper counterpart of CBS
at the transmitter—expansion (upsampling) followed by filtering—to reduce RF
chains. The expansion and decimation can be either uniform or nonuniform. The
nonuniform scheme is used with 2-D coarray method and requires fewer RF chains
to achieve the same estimation performance as the uniform scheme. A method
based on the introduction of filter delays is also proposed to decorrelate path gains,
which is crucial to the success of coarray methods. It is shown that given fixed pilot
overhead, 2-D hybrid CBS can yield more accurate channel estimates than previous
methods.

Finally, distributed (decentralized) algorithms for array signal processing are stud-
ied. With the potential of reducing computation and communication complexity,
distributed estimation of covariance, and distributed principal component analysis
have been introduced and studied in the signal processing community in recent
years. Applications in array processing have been also indicated in some detail.
In this thesis, distributed algorithms are further developed for several well-known
methods for DOA estimation and beamforming. New distributed algorithms are
proposed for DOA estimation methods like root-MUSIC, total least squares ES-
PRIT, and FOCUSS. Other contributions include distributed design of the Capon
beamformer from data, distributed implementation of the spatial smoothing method
for coherent sources, and distributed realization of CBS. The proposed algorithms
are fully distributed since average consensus (AC) is used to avoid the need for
a fusion center. The algorithms are based on a finite-time version of AC which
converges to the exact solution in a finite number of iterations. This enables the
proposed distributed algorithms to achieve the same performance as the centralized
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counterparts, as demonstrated by simulations.
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′
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C h a p t e r 1

INTRODUCTION

Antenna arrays have long been used for spatial sampling of incoming waves in many
applications, such as radar, sonar, seismology, and communications [8]. The use of
antenna arrays facilitates the design of algorithms for many important problems in
signal processing, including direction-of-arrival (DOA) estimation and beamform-
ing. Recently, large antenna arrays, or massive MIMO, have received much attention
in wireless communications, such as in 5G cellular communications and beyond 5G
[9]. In 5G and beyond, people consider millimeter waves (mmWaves) due to their
potential to offer more bandwidth than the lower-frequency bands, which are already
highly occupied. However, there are also new challenges, such as strong path loss at
the high frequencies of mmWaves [10]. To compensate for the path loss, large arrays
are used, which are practical due to the small sizes of mmWave antennas, to get
large beamforming gain [11]. When large arrays are used, it is important to design
efficient estimation algorithms with low computational and hardware complexity.

The use of beamforming prior to DOA estimation, referred to as beamspace process-
ing [8, 12–15], can help computational complexity reduction. Given an 𝑁-sensor
uniform linear array (ULA) with output x ∈ C𝑁 , the idea of beamspace is to compute
a transformation y = Tx ∈ C𝐵, where 𝐵 < 𝑁 , and estimate the DOAs based on
y using, e.g., subspace methods. Due to dimensionality reduction (𝐵 < 𝑁), the
𝐵 × 𝐵 covariance of y has smaller size than that of x. Thus, the complexity of the
eigenspace computation𝑂 (𝐵3), is much smaller than𝑂 (𝑁3), which is the complex-
ity when using element-space (estimation based on x). If T is properly designed,
the DOAs which fall outside a chosen beam or subband are attenuated by T, so there
are typically much fewer DOAs represented by y, compared to x. We can use a bank
of transformations {T𝑖}, which can be operated in parallel, to cover the DOAs in all
subbands. Besides low computation and parallelism, beamspace methods tend to
have higher DOA resolution [8, 16, 17] and smaller bias [2] than the element-space
method. However, in classical beamspace methods, y is no longer represented by a
Vandermonde matrix as x is, so elaborate steps have to be taken to do standard DOA
estimation methods including root multiple signal classification (root-MUSIC) [2]
and estimation of signal parameters via rotational invariance techniques (ESPRIT)
[18].
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To reduce hardware complexity for large mmWave arrays, a new line of research
topics has emerged, where people design hybrid analog and digital transceivers
[4, 5, 9, 11, 19]. The use of analog precoder at the transmitter and analog combiner
at the receiver can achieve dimensionality reduction. Hence, fewer radio frequency
(RF) chains are required, which reduces hardware cost and power consumption.
The analog precoder and combiner are typically designed as networks of phase
shifters, so they should have unit-modulus entries. Such constraints lead to new
design problems to solve. Meanwhile, the sparse nature of an mmWave MIMO
channel due to limited scattering allows it to be modeled by a few paths, each
with a direction of departure (DOD) at the transmitter and DOA at the receiver [11].
Hence, the classical DOA estimation problem has also gained renewed interests since
techniques for 1-dimensional (1-D) DOA estimation may be extended to mmWave
MIMO channel estimation.

Traditionally, DOA estimation and beamforming algorithms require data collection
and centralized computation at a fusion center. However, following the pioneering
work in [7], distributed (decentralized) algorithms for DOA estimation and beam-
forming have gained more research interest. In these algorithms, the sensor array is
partitioned into subarrays. The data in each subarray is available only to the proces-
sor in that subarray, and between the processors there is some minimal exchange of
intermediate results, in order to implement an average consensus [20–22]. Based on
such local computations and limited data exchange between processors, we do usual
array processing tasks like DOA estimation and beamforming. Thus, such arrays
work without the help of a central processor or fusion center. The communication
and computation bottleneck that can occur for large arrays with a central processor
is thus mitigated in these distributed systems.

With the aforementioned backgrounds, the main theme of this thesis is to design
DOA and channel estimation methods particularly useful to large arrays, and the
main contributions are summarized as follows:

1. Beamspace DOA estimation: We propose a beamspace method, called con-
volutional beamspace (CBS) [23, 24], for DOA estimation based on passive
arrays. The array output is processed by spatial filtering followed by uniform
decimation (downsampling). It achieves all the same advantages as classical
beamspace methods [2, 18], including lower computational complexity, in-
creased parallelism of subband processing, and smaller bias. Moreover, unlike
classical beamspace, it allows root-MUSIC [25, 26] and ESPRIT [27] to be
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performed directly for ULAs without additional preparation since the Vander-
monde structure is preserved under the CBS transformation. It can also yield
smaller estimation errors for correlated sources compared to element-space.

2. Hybrid mmWave MIMO channel estimation: We propose hybrid convolutional
beamspace [28, 29] for mmWave MIMO channel estimation. The method is
obtained by realizing the original CBS [23] by a hybrid analog and digital
implementation [30, 31] to reduce hardware cost, and extending it to the 2-
dimensional (2-D) MIMO case. We design a proper counterpart of CBS at
the transmitter: uniform expansion (upsampling) followed by spatial filtering.
Besides, we propose a new scheme of CBS where nonuniform expansion and
decimation are used with difference coarray method [32] to further reduce the
number of required RF chains to achieve the same estimation performance. We
show that the proposed CBS precoder and combiner with any filter coefficients
can be implemented in a hybrid way under the unit-modulus constraints of
phase shifters. Hybrid CBS yields smaller estimation errors than previous
channel estimation methods [4, 19] when having the same pilot overhead.

3. Distributed array processing: We propose distributed algorithms for a num-
ber of well-known methods for DOA estimation and beamforming [33, 34].
We develop distributed algorithms for DOA estimation methods such as root-
MUSIC [26] and total least squares (TLS) ESPRIT [27] (known to be more
accurate than least squares (LS) ESPRIT [35]). We derive distributed ver-
sions of the Capon beamformer [36] and focal underdetermined system solver
(FOCUSS) method [37, 38] for sparse-solver based DOA estimation. We
also develop distributed realizations of convolutional beamspace [23]. Fi-
nally, we propose a distributed algorithm for spatial smoothing [39], which is
a technique used for DOA estimation when there are coherent or correlated
sources.

Chapter outline: The passive array output model is reviewed in Sec. 1.1. Then,
the millimeter-wave MIMO channel model is reviewed in Sec. 1.2. The use of
beamspace methods for hybrid analog and digital processing is introduced in Sec.
1.3. The model for distributed array processing is presented in Sec. 1.4. The scope
and outline of the thesis is given in Sec. 1.5. Finally, the notations used in this thesis
are defined in Sec. 1.6, and a list of acronyms are given in Sec. 1.7.
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Figure 1.1: Model of a passive array receiving plane waves from 𝐷 monochromatic
far-field sources with wavelength 𝜆 and DOAs 𝜃𝑖. Filled circles represent antennas,
and crosses represent empty space.

1.1 Passive Array Output Model
We consider a passive linear array of 𝑁 antennas (or sensors) as shown in Fig.
1.1. There are 𝐷 monochromatic sources emitting electromagnetic waves with
wavelength 𝜆. These sources are assumed to be in the far field [8] so that the waves
received by the array can be well approximated by plane waves. We assume all
the sources and the array lie in a plane, and that all the sources are on one side of
the array. By definition, the direction of arrival (DOA) 𝜃𝑖 ∈ [−𝜋/2, 𝜋/2) of each
source 𝑖 is measured from the normal to the line of array, 𝑖 = 1, . . . , 𝐷. The antenna
locations are on a uniform grid with unit spacing 𝑑. That is, the antenna locations
are 𝑛𝑙𝑑 for integers 𝑛𝑙 , 𝑙 = 0, . . . , 𝑁 − 1. Without loss of generality, we assume
𝑛0 = 0. Then, the array output can be expressed as [8]

x = [𝑥(0) 𝑥(1) · · · 𝑥(𝑁 − 1)]𝑇 = Ac + e, (1.1)

where c contains source amplitudes 𝑐𝑖, e contains additive noise terms, and the array
manifold matrix

A = [a(𝜔1) a(𝜔2) · · · a(𝜔𝐷)] (1.2)

with 𝜔𝑖 = 2𝜋𝑑 sin 𝜃𝑖/𝜆 and the steering vector

a(𝜔) = [1 𝑒 𝑗𝜔𝑛1 𝑒 𝑗𝜔𝑛2 · · · 𝑒 𝑗𝜔𝑛𝑁−1]𝑇 (1.3)

for any real number 𝜔. If 𝑑 > 𝜆/2, then there exist multiple DOAs that give the
same array output, so there is DOA ambiguity [8]. Thus, in this thesis, we assume
the classical antenna spacing 𝑑 = 𝜆/2 is used. In this case,

𝜔𝑖 = 𝜋 sin 𝜃𝑖 ∈ [−𝜋, 𝜋). (1.4)
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In this thesis, we also call 𝜔𝑖 a DOA since there is one-to-one correspondence
between 𝜔𝑖 and 𝜃𝑖. We assume the source amplitudes and noise are random such
that E[c] = 0, E[e] = 0, E[ee𝐻] = 𝜎2

𝑒 I, and E[ce𝐻] = 0. Then, our goal is
to estimate the DOAs 𝜔𝑖 based on a finite number, say 𝐾 , of independent and
identically distributed snapshots of the array output

x[𝑘] = Ac[𝑘] + e[𝑘], 𝑘 = 1, . . . , 𝐾. (1.5)

In this model, the DOAs are assumed fixed during the measurements of the 𝐾
snapshots.

1.1.1 Difference Coarray
For any linear array N = {𝑛𝑙} with antenna locations 𝑛𝑙 , 𝑙 = 0, . . . , 𝑁 − 1, its
difference coarray C is defined as [32]

C = {𝑛𝑘 − 𝑛𝑙 | 0 ≤ 𝑘, 𝑙 ≤ 𝑁 − 1}. (1.6)

In other words, C contains the differences between all pairs of the antenna locations.
In the (difference) coarray method [32], second-order statistics of the array output
of N is used to construct a virtual signal on C. This can potentially increase the
number of identifiable DOAs if N is a well-designed sparse array like nested array
[32], coprime array [40], or minimum redundancy array (MRA) [3]. The idea of
coarrays will be incorporated into the CBS scheme where nonuniform decimation
is used.

1.2 Millimeter-Wave MIMO Channel Model
We consider an mmWave MIMO transceiver system as shown in Fig. 1.2. The
transmit array is assumed to be an 𝑁t-antenna ULA, and the receive array is an
𝑁r-antenna ULA. There are two phases of the transceiver operation: a training
phase and a transmission (communication) phase. In this thesis, we focus on
channel estimation, which is done in the training phase. The MIMO channel will
be estimated based on the received array outputs due to a finite number of training
blocks sent from the transmitter. Due to limited scattering, the 𝑁r × 𝑁t mmWave
narrowband MIMO channel matrix can be modeled by [5, 11, 19]

H𝛼,𝑘 =

𝐷∑︁
𝑖=1

𝛼𝑘,𝑖a𝑁r (𝜔r,𝑖)a𝐻𝑁t
(𝜔t,𝑖) = ArD𝛼,𝑘A𝐻

t , (1.7)

where A𝑝 = [a𝑁𝑝
(𝜔𝑝,1) · · · a𝑁𝑝

(𝜔𝑝,𝐷)], 𝑝 ∈ {t, r},

a𝑁 (𝜔) = [1 𝑒 𝑗𝜔 𝑒 𝑗2𝜔 · · · 𝑒 𝑗 (𝑁−1)𝜔]𝑇 (1.8)
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Figure 1.2: Model of an mmWave MIMO channel due to a few paths with DODs
𝜃t,𝑖 and DOAs 𝜃r,𝑖.

for any real number 𝜔 and positive integer 𝑁 , and D𝛼,𝑘 = diag(𝛼𝑘,1, . . . , 𝛼𝑘,𝐷).
Here, 𝑘 is the training block index. In this channel model, 𝐷 denotes the number of
paths, and 𝛼𝑘,𝑖, 𝜔t,𝑖, and 𝜔r,𝑖 are the path gain, direction of departure (DOD), and
direction of arrival (DOA) for the 𝑖th path, respectively. As in Sec. 1.1, the classical
antenna spacing 𝜆/2 is assumed, where 𝜆 is the signal wavelength. Then, each DOD
or DOA 𝜔𝑝,𝑖 = 𝜋 sin 𝜃𝑝,𝑖 ∈ [−𝜋, 𝜋), where 𝜃𝑝,𝑖 ∈ [−𝜋/2, 𝜋/2) is the physical DOD
or DOA measured from the normal to the line of transmit or receive array. We
assume that the DODs and DOAs remain the same throughout the training process,
and that the path gains 𝛼𝑘,𝑖 vary from block to block. The model (1.7) indicates
that estimation of the channel can be achieved by 2-D DOD and DOA estimation
followed by path gain estimation.

1.3 Beamspace Methods for Hybrid Analog and Digital Processing
We consider a hybrid analog and digital processing model [11] of an mmWave
passive array for DOA estimation as shown in Fig. 1.3. The output of the 𝑁-antenna
receive ULA is first processed by an analog combiner, resulting in an �̄�-dimensional
output, where �̄� ≪ 𝑁 typically. It is then passed through �̄� analog-to-digital RF
chains and processed by a digital combiner. Thus, the hybrid combiner output is

v = FdFax = FdFaAc + FdFae, (1.9)

where x is as defined in (1.1) with the ULA assumption, i.e., 𝑛𝑙 = 𝑙. Finally, we
can do whatever digital processing is needed to estimate the DOAs after the digital
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Figure 1.3: Hybrid analog and digital processing model of an mmWave passive
array for DOA estimation.

combiner. In this hybrid model, the goal of the analog combiner is to achieve
dimensionality reduction so that we need only a small number �̄� of RF chains
for a large number of 𝑁 antennas. With fewer RF chains, we reduce hardware
cost and power consumption. Also, in this implementation, the analog combiner
is effectively a beamspace processing matrix as in classical beamspace methods
[2, 8, 18]. The combiner has unit-modulus entries since it is implemented by phase
shifter networks to reduce hardware cost [11]. Thus, the main problem here is how to
design the analog combiner under unit-modulus constraints in order to obtain good
DOA estimates. In this thesis, we propose a new beamspace method, convolutional
beamspace (CBS), in Chapter 2. Then we show how to design analog and digital
combiners based on it in Chapter 3, where the method is named hybrid CBS.

Then, we consider a hybrid analog and digital processing model of an mmWave
MIMO transceiver system [11] as shown in Fig. 1.4. The receiver structure is the
same as in Fig. 1.3, except that 𝑁 and �̄� are replaced by 𝑁r and �̄�r, respectively,
to denote “receiver.” The analog and digital building blocks of the transmitter
are reversely ordered compared to the receiver. In particular, at each time instant,
a training vector is processed by a digital precoder. The digital precoder output
vector, composed of �̄�t digital symbols, is then passed through �̄�t digital-to-analog
RF chains. Then the output is processed by an analog precoder which generates the
transmitted signals for the 𝑁t-antenna transmit ULA. Again, �̄�t ≪ 𝑁t typically, so
we need only a small number �̄�t of RF chains for a large number of 𝑁t antennas. If
we let S𝑘 denote the 𝑘th training block, which contains multiple training vectors as
its columns, then the 𝑘th received block will be

Y𝑘 = Fr,dFr,aH𝛼,𝑘F𝐻t,aF𝐻t,dS𝑘 + Fr,dFr,aE𝑘 , (1.10)
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Figure 1.4: Hybrid analog and digital processing model of an mmWave MIMO
transceiver.

where the channel matrix H𝛼,𝑘 is defined in (1.7), and E𝑘 is additive white noise
such that E[E𝑘 ] = 0 and E[vec(E𝑘 )vec𝐻 (E𝑙)] = 𝜎2

e 𝛿𝑘𝑙I for all 𝑘 and 𝑙. The analog
precoder and analog combiner similarly have unit-modulus entries as they are phase
shifter networks [11]. Thus, the main problem becomes how to design the analog
precoder and analog combiner under unit-modulus constraints in order to obtain
good channel estimates. With the model (1.7), estimation of the channel pertains to
estimation of the DODs and DOAs (and path gains, which can be estimated after we
obtain DOD and DOA estimates, as shown in Sec. 4.4.3). In this thesis, we extend
the proposed hybrid CBS to this 2-D case and show how to design analog processors
based on it, as explained in Chapter 4. The digital precoder and digital combiner
in general can be any matrices as they are in the digital domain. They are there
for generality, but for channel estimation with CBS, we later set them to be identity
matrices (see Chapter 4). In the transmission phase, they are often optimized for
other things, such as maximizing rate or minimizing MSE [11, 41].

1.4 Distributed Algorithms for Array Signal Processing
Beamspace methods and hybrid processing are used to reduce computational and
hardware complexity for large arrays in Sec. 1.3, where we assume that a central
processor can get the entire array data and do any computation. In another research
area of this thesis, we consider distributed array processing algorithms so that a
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Figure 1.5: Schematic of distributed array processing. The 𝑁-sensor linear array is
divided into 𝑃 subarrays. The sensor data from subarray 𝑝 is directly available only
to processor 𝑝, corresponding to node 𝑝 in a communication network modeled by
an undirected graph G. Between the processors there is some minimal exchange of
intermediate results, in order to implement an average consensus.

communication or computation bottleneck that may occur when there is a central
processor can be avoided [42]. The system model is shown in Fig. 1.5. This is a
network composed of 𝑃 nodes, each of which is a 𝑄-sensor linear subarray [7, 35].
For ease of presentation, we assume that each subarray has the same number of
sensors, but many of the proposed distributed algorithms in this thesis can be
readily extended to subarrays with different numbers of sensors. The sensor data
from subarray 𝑝 is directly available only to a local processor at node 𝑝. Between
the processors there is some minimal exchange of intermediate results, in order
to implement an average consensus (AC) [20–22]. The goal of AC methods is to
compute in a distributed way the average of some values stored across the network.
The communication network is modeled by an undirected graph G = (V, E), where
V is the set of the 𝑃 nodes, and E is the set of edges. Each node represents a subarray
and the edges represent the communication links. If there is an edge between two
nodes, then two-way communication is allowed between these nodes (for AC and so
forth). The 𝑃 subarrays, which do not have overlapping sensors, collectively form a
linear array with 𝑁 = 𝑃𝑄 sensors. That is, all the subarrays are on the same vertical
positions. Assume all the subarrays are located not too far away, and they receive
the same set of 𝐷 source amplitudes as explained in Sec. 1.1. Then similar to (1.1),
the array output is

x = [x𝑇0 x𝑇1 · · · x𝑇𝑃−1]
𝑇 = Ac + e, (1.11)

where x𝑝 ∈ C𝑄 is the output of the 𝑝th subarray, 𝑝 = 0, . . . , 𝑃 − 1. Then, our main
goal is to design distributed algorithms where local processing of x𝑝 is done at each
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subarray 𝑝, and there is some minimal exchange of intermediate results derived from
x𝑝 between the 𝑃 local processors. With these distributed algorithms, we should
achieve usual array processing tasks, including DOA estimation and beamforming,
as shown in Chapter 6.

1.5 Scope and Outline of the Thesis
In this thesis, low-complexity DOA and channel estimation methods particularly
useful to large arrays are developed. To this end, three main approaches are taken:
beamspace methods, hybrid analog and digital processing, and distributed algo-
rithms. First, a new beamspace DOA estimation method, convolutional beamspace
(CBS), is proposed in Chapter 2. Its hybrid analog and digital implementation,
named hybrid CBS, is developed in Chapter 3. A 2-D extension of hybrid CBS to
mmWave MIMO channel estimation is then presented in Chapter 4. The MSE per-
formance and Cramér–Rao bound (CRB) [43, 44] of 1-D CBS for DOA estimation is
analyzed theoretically in Chapter 5. Distributed algorithms for several well-known
DOA estimation and beamforming methods are proposed in Chapter 6.

1.5.1 Basics of Convolutional Beamspace for DOA Estimation (Chapter 2)
In Chapter 2, a new beamspace method called convolutional beamspace (CBS) is
introduced. It enjoys the advantages of classical beamspace such as lower com-
putational complexity, increased parallelism of subband processing, and improved
resolution threshold for DOA estimation. Furthermore, unlike classical beamspace
methods, it allows root-MUSIC and ESPRIT to be performed directly for ULAs with-
out additional preparation since the Vandermonde structure and the shift-invariance
are preserved under the CBS transformation. The computational benefits of the pro-
posed methods are quantified and demonstrated. Unlike classical beamspace, CBS
is based on the use of filtering with a finite-impulse-response (FIR) filter 𝐻 (𝑧), fol-
lowed by uniform downsampling (decimation) to achieve dimensionality reduction.
For large arrays, which are becoming increasingly important [9, 45], the filter can
be proportionately longer, offering very effective attenuation of stopband sources.
Thus, the filter output is represented only by passband sources, and the uniform
decimation after filtering does not cause DOA ambiguity. CBS produces more ac-
curate DOA estimates than classical beamspace, and for correlated sources it often
produces better estimates than element-space as well. Some variants of CBS are
also proposed, including CBS using infinite-impulse-response (IIR) filters [46] and
Capon-CBS [47]. An IIR filter often requires a much lower order than an FIR filter
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for the same set of magnitude response specifications. Hence, the computational
complexity of IIR-CBS can be smaller than FIR-CBS. In Capon-CBS, the filter is
designed to be a sliding Capon beamformer. Such design takes input statistics into
account, so it can do a better job of suppressing the sources that fall in the stopband.
Thus, Capon-CBS can offer higher DOA resolution and smaller estimation errors
than CBS in some cases.

1.5.2 Hybrid Convolutional Beamspace for DOA Estimation (Chapter 3)
The CBS method proposed in Chapter 2 is implemented fully in the digital domain.
Such implementation requires that one RF chain per antenna be used. A hybrid
analog and digital implementation of CBS is developed in Chapter 3, in order to
reduce the required number of RF chains. The analog combiner achieves dimen-
sionality reduction so that fewer RF chains than the number of antennas are needed.
This lowers hardware cost and power consumption. As mentioned earlier, the ana-
log combiner is often implemented by phase shifters with unit-modulus entries. A
standard digital filter typically does not have constant-modulus coefficients, so the
resulting beamspace matrix of CBS cannot be directly implemented in the analog
domain. Interestingly, according to [48], any complex vector can be expressed
as a linear combination of two vectors with unit-modulus entries. With this, it is
shown that any CBS filter coefficients can be implemented under the unit-modulus
constraint. Besides CBS based on uniform decimation, a new scheme of CBS us-
ing nonuniform decimation is proposed. Then the difference coarray method [32]
allows the estimation of more sources than RF chains (not achievable by classical
beamspace [2] or uniform hybrid CBS). The retained samples correspond to the sen-
sor locations of a virtual sparse array, dilated by an integer factor 𝑀 , which results
in 𝑀 times larger coarray aperture (than when there is no dilation). The aperture
of an array is the difference between its extreme elements, and a larger aperture
typically gives better estimation performance [49, 50]. The virtual sparse array can
be based on commonly used sparse arrays such as the nested array [32], coprime
array [40], and minimum redundancy array (MRA) [3]. Their difference coarrays
have large ULA segments and can be used to get good DOA estimates. Given a fixed
number of RF chains, the nonuniform scheme can achieve large array aperture and
thus better estimation performance than uniform scheme. Or, nonuniform scheme
requires fewer RF chains to achieve the same estimation performance. Finally, with
the use of random or deterministic filter delays that vary with snapshots, a new
method is proposed to decorrelate sources for the coarray method to work.
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1.5.3 Hybrid Convolutional Beamspace for mmWave MIMO Channel Esti-
mation (Chapter 4)

The hybrid CBS method presented in Chapter 3 is for receive array only. An
extension to both transmit and receive arrays is given in Chapter 4, i.e., hybrid CBS
for mmWave MIMO channel estimation. As elaborated in Sec. 1.2, an mmWave
MIMO channel can be modeled by a few paths with DODs at the transmitter and
DOAs at the receiver. Thus, an mmWave MIMO channel estimation problem can
be formulated as a 2-D DOD and DOA estimation problem (followed by path gain
estimation). In Chapter 4, a hybrid CBS method is proposed to this 2-D estimation
problem. One main novelty is the development of an appropriate counterpart of
CBS at the transmitter, an expander (upsampler) followed by a filter, as opposed
to a filter followed by a decimator (downsampler) at the receiver. The designed
hybrid CBS can reduce the number of RF chains at the transmitter, just like at the
receiver. Moreover, unlike classical beamspace, the 2-D Vandermonde structure due
to transmit and receive ULAs is preserved, so standard 2-D angle estimation methods
like 2-D unitary ESPRIT [51] can be readily used. Similar to the decimation at the
receiver, the expansion at the transmitter can be uniform or nonuniform. Given a
fixed number of RF chains, 2-D coarray method [5] can be used in the nonuniform
scheme to estimate more sources than the uniform scheme. More importantly,
the nonuniform scheme can yield larger array apertures and thus better estimation
performance than the uniform scheme. Like in Chapter 3, the proposed CBS
precoder and combiner with any filter coefficients can be implemented in a hybrid
way under the unit-modulus constraints of phase shifters. Also, a new method is
proposed to decorrelate path gains for the coarray method to work.

1.5.4 Theoretical Analysis of 1-D Convolutional Beamspace (Chapter 5)
In Chapter 5, theoretical analysis of 1-D CBS for DOA estimation is given. The
analysis is applicable to both the digital CBS in Chapter 2 and hybrid CBS in
Chapter 3 since they perform the same. In particular, the MSE performance of CBS
is analyzed when MUSIC [52] or root-MUSIC [26] is used for DOA estimation.
The error variance is derived from the asymptotic probability distribution of the
eigenvectors of an average finite-snapshot covariance matrix. Meanwhile, the bias
due to the filtered stopband sources is given by a first-order perturbation analysis.
Advantages of CBS mentioned in Chapters 2 and 3 are confirmed by the MSE
analysis. Moreover, the Cramér–Rao bound (CRB) [43, 44] for CBS is also derived.
Conventionally, the CRB is a lower bound for unbiased estimators. A lower bound
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on the variances of the biased CBS estimator is obtained and shown to be typically
well approximated by the classical CRB for unbiased estimators. Two forms of CRB
expressions are derived, and they offer different insights as explained in Chapter 5.
All the results also apply to element-space since element-space is a special case of
CBS. Finally, the theoretical results are verified by simulations.

1.5.5 Distributed Algorithms for Array Signal Processing (Chapter 6)
Although there are several inspiring previous papers [7, 35, 42, 53] on distributed
algorithms for array processing, distributed algorithms have not yet been reported for
a number of well-known methods for DOA estimation and beamforming. In Chapter
6, distributed algorithms for DOA estimation methods such as root-MUSIC [26],
and total least squares (TLS) ESPRIT which is known to be more accurate than
LS-ESPRIT [35], are developed. Distributed versions of the Capon beamformer
[36] and the well-known FOCUSS method [37, 38] for sparse-solver based DOA
estimation are also derived. Besides, distributed algorithms for CBS are proposed. It
is shown that distributed DOA estimation algorithms, including root-MUSIC, TLS-
ESPRIT, and FOCUSS, can be applied either directly to the original array domain,
i.e., element-space, or in series with a beamspace method like CBS. A distributed
algorithm is also proposed for spatial smoothing [39], which is a technique used for
DOA estimation when there are coherent or correlated sources. All the proposed
algorithms are fully distributed in that a fusion center is not required. The novelties of
the proposed algorithms mainly lie in finding a way to implementing the algorithm so
that all the data exchange among subarrays can be realized using average consensus
(AC). There are two families of AC methods, asymptotic convergence [20] and
the recently introduced finite-time convergence methods [21, 22]. Asymptotic AC
is used for the distributed DOA estimation algorithms in previous works [7, 35,
42, 53]. In these methods, one uses only finite but sufficiently many iterations
to approximate asymptotic behaviors, so additional estimation errors arise from
the use of asymptotic AC. By contrast, finite-time AC offers exact convergence
in a finite number of iterations, so no additional estimation errors are introduced.
Hence, finite-time AC is used in this thesis, and this is why the proposed distributed
algorithms can achieve the same performance as the centralized counterparts.

1.6 Notations
The notations used in this thesis are defined in this section. The imaginary unit
is given by 𝑗 =

√
−1. Boldfaced capital letters denote matrices, and boldfaced
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lowercase letters are reserved for column vectors. For a vector v, we use [v]𝑖,
∥v∥2 and ∥v∥∞ to denote its 𝑖th entry, 𝐿2-norm, and 𝐿∞-norm, respectively. The
subscript 2 is sometimes omitted for 𝐿2-norm. For a matrix A, we use [A]𝑖,𝑘 and
[A]:,𝑘 to indicate its (𝑖, 𝑘)-entry and 𝑘th column, respectively. We also use ∥A∥ to
denote its spectral norm, i.e., maximum singular value, ∥A∥𝐹 its Frobenius norm,
and ∥A∥1,2 =

∑
𝑚

√︁∑
𝑛 | [A]𝑚,𝑛 |2. We use A𝑇 , A𝐻 , and A+ to denote its transpose,

conjugate transpose, and pseudoinverse, respectively. Also, A∗ is the element-wise
complex conjugate of A. The vectorization of a matrix A = [a1 a2 · · · a𝑁 ] is
defined as

vec(A) = vec( [a1 a2 · · · a𝑁 ]) =


a1

a2
...

a𝑁


. (1.12)

The Kronecker product, Khatri–Rao product, and Hadamard product of two matrices
A and B are denoted by A⊗B, A⊙B, and A◦B, respectively. For any two Hermitian
symmetric matrices A and B, we use A ⪰ B and B ⪯ A to denote that A − B is
positive semidefinite. For square matrices A1, . . . ,A𝑛, we use diag(A1, . . . ,A𝑛) to
denote the block diagonal matrix having A1, . . . ,A𝑛 in the diagonal. For a matrix
A with full column rank, the matrices

𝚷A = A(A𝐻A)−1A, (1.13)

𝚷⊥
A = I − A(A𝐻A)−1A𝐻 (1.14)

denote the orthogonal projections onto the column space of A and onto the null
space of A𝐻 , respectively.

The 𝑖th standard basis vector for the 𝑘-dimensional space is denoted by δ (𝑘)
𝑖

. We
use I𝑛 to denote the 𝑛× 𝑛 identity matrix, and 0𝑚×𝑛 or O𝑚,𝑛 to denote the 𝑚 × 𝑛 zero
matrix (the subscripts 𝑚 and 𝑛 may be dropped if the dimensions are clear from the
context), and E[·] is the expectation operator. For a setS, |S| denotes its cardinality.
Finally, 𝛿𝑖𝑘 denotes the Kronecker delta, i.e., 𝛿𝑖𝑘 = 1 if 𝑖 = 𝑘 and 𝛿𝑖𝑘 = 0 if 𝑖 ≠ 𝑘 ,
and we also define 𝛿(𝑛) = 𝛿𝑛0.

1.7 List of Acronyms
Acronyms used in this thesis are listed below for easy reference.

• 1-D: 1-dimensional
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• 2-D: 2-dimensional

• CBS: convolutional beamspace

• CRB: Cramér–Rao bound

• DFT: discrete Fourier transform

• DOA: direction of arrival

• DOD: direction of departure

• ESPRIT: estimation of signal parameters via rotational invariance techniques

• EVD: eigenvalue decomposition

• FFT: fast Fourier transform

• FIR: finite implulse response

• FOCUSS: focal underdetermined system solver

• IIR: infinite implulse response

• MIMO: multiple input multiple output

• mmWave: millimeter wave

• MRA: minimum redundancy array

• MSE: mean square error

• MUSIC: multiple signal classification

• RF: radio frequency

• RMSE: root mean square error

• ULA: uniform linear array

• URA: uniform rectangular array
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C h a p t e r 2

BASICS OF CONVOLUTIONAL BEAMSPACE FOR DOA
ESTIMATION

2.1 Introduction
In array signal processing, the use of beamforming prior to high-resolution es-
timation of directions of arrival (DOA), referred to as beamspace processing, is
well-known in the literature [8, 12–15], and continues to be of current research
interest [19, 54, 55]. Given an 𝑁-sensor array with output x ∈ C𝑁 , the idea of
beamspace is to compute a transformation y = Tx ∈ C𝐵, where 𝐵 < 𝑁 , and esti-
mate the DOAs using y. For example, the covariance of y can be estimated from
its snapshots, and its signal and noise eigenspaces are analyzed to perform DOA
estimation as in MUSIC [52], root-MUSIC [26], or ESPRIT [27].

One of the major advantages of beamspace processing is complexity reduction. Due
to dimensionality reduction (𝐵 < 𝑁), the 𝐵 × 𝐵 covariance of y has smaller size
than that of x. So the complexity of the eigenspace computation 𝑂 (𝐵3), is much
smaller than 𝑂 (𝑁3), which is the complexity when using element-space (T = I)
directly. If T is carefully chosen, then the DOAs which fall outside a chosen
subband in [−𝜋/2, 𝜋/2) are attenuated by T, so there are typically much fewer
DOAs represented by y, compared to x. One often uses a bank of transformations
{T𝑖}, which can be operated in parallel, to cover all DOAs in [−𝜋/2, 𝜋/2).

Besides low computation and parallelism, there are other advantages for beamspace.
Beamspace methods tend to have smaller SNR threshold for resolution of closely
spaced sources [8, 16, 17]. Beamspace estimates typically have smaller bias (and
about the same mean square error) when compared with element-space estimates
[2].

However, to successfully perform root-MUSIC after the classical beamspace trans-
formation, one has to take elaborate steps [2]. Specifically, rows of T are chosen to
be columns of the DFT matrix, producing beams exhibiting common out-of-band
nulls. These nulls result in spurious roots outside the subband, independent of the
true in-band DOAs. The spurious roots need to be factored out to reduce the degree
of the polynomial to be rooted so as to lower the complexity. Moreover, this method
suffers from numerical sensitivity issues [2] for even moderately large array size 𝑁 ,
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such as 𝑁 = 48. Similarly, classical beamspace transformation also compromises
the shift-invariance structure required by ESPRIT. One has to choose T to have
the same shift-invariance structure so that the lost shift-invariance structure can be
restored with a modified ESPRIT algorithm [18].

2.1.1 Contributions of This Chapter
In this chapter, we introduce a new approach called the convolutional beamspace
(CBS) approach. It enjoys the advantages of classical beamspace such as lower com-
putational complexity, increased parallelism of subband processing, and improved
resolution threshold for DOA estimation. Furthermore, unlike classical beamspace
methods, it allows root-MUSIC and ESPRIT to be performed directly for uniform
linear arrays (ULAs) without additional preparation since the Vandermonde struc-
ture and the shift-invariance are preserved under the CBS transformation. The
computational benefits of the proposed methods are quantified and demonstrated
throughout.

Unlike classical beamspace, CBS is based on the use of filtering with a finite-
impulse-response (FIR) filter𝐻 (𝑧) followed by uniform downsampling (decimation)
by an appropriate integer 𝑀 . For large arrays, which are becoming increasingly
important [9, 45], the filter can be proportionately longer, offering very effective
attenuation of out-of-band DOAs. CBS produces more accurate DOA estimates than
classical beamspace, and for correlated sources it often produces better estimates
than element-space as well. Crucial to the CBS method is the extraction of a
steady-state component from the convolutional layer, as we shall see.

We also provide a basic approximate error analysis of the CBS method, based
on error analysis for MUSIC [56] (Sec. 2.2.6). For uncorrelated sources, the
error variance of CBS estimates is shown to be close to that of the element-space.
However, for correlated sources, CBS can be significantly better. These conclusions
are also verified with simulations. Note that a more rigorous error analysis will be
given in Chapter 5.

The CBS method in Sec. 2.2 is for the ULA, but we show in Sec. 2.3 that it can be
extended to sparse arrays by appealing to the difference coarray of the original array.
Difference coarrays of sparse arrays such as the MRA [3], nested array [32], coprime
array [40], and their generalizations [57, 58] contain a large ULA segment. Since
the autocorrelation of measured data can be estimated for all lags on the coarray,
one can perform FIR filtering of the correlation supported on the ULA part of the
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coarray to produce a convenient CBS. This coarray CBS offers great computational
reduction. The advantage of sparse arrays, namely the ability to identify 𝑂 (𝑁2)
uncorrelated sources with 𝑁 sensors [32, 40], can be harnessed even while taking
advantage of the benefits of the CBS transformation.

We also show how CBS ideas can be used in the context of sparse signal repre-
sentation with dictionaries. The use of sparse representation techniques for DOA
estimation has been studied in [59] where a dictionary of steering vectors (corre-
sponding to a dense grid of potential DOAs) is used to represent the array output.
The sparse solution to this representation problem reveals the DOAs. We show how
this problem can be simplified computationally by use of CBS techniques. Besides
its significant computational advantage, the method also produces more accurate
DOA estimates. Since only the filter responses 𝐻 (𝑒 𝑗𝜔𝑘 ) at the discrete frequencies
on the dictionary grid are relevant at the convolutional layer, we also address the
interesting problem of designing discrete-frequency FIR filters for CBS dictionar-
ies. Eigen-based methods such as MUSIC and dictionary-based sparse recovery
methods are both well-known DOA estimation algorithms in the literature. In this
chapter, we show that CBS can be applied to both methods, and to coarray based
methods.

Besides, a new variant of CBS, called Capon-CBS, is proposed. The idea is to design
the CBS filter to be a sliding Capon beamformer. Such design takes input statistics
into account, so it can do a better job of suppressing the sources that fall in the
stopband. Capon-CBS can offer higher probability of resolution and smaller mean
square error for DOA estimation, as demonstrated in the simulations. Moreover,
like traditional CBS, Capon-CBS also has the advantage of low computational
complexity.

Finally, we introduce another variant of CBS which uses infinite-impulse-response
(IIR) instead of FIR filters in the convolutional layer. In CBS, the sources falling
in the stopband are assumed to be sufficiently attenuated so that we can identify
the passband DOAs. An IIR filter often requires a much lower order for the same
set of magnitude response specifications. Hence, the computational complexity of
IIR-CBS can be smaller than FIR-CBS. Moreover, IIR-CBS can even give smaller
DOA estimation errors than FIR-CBS because the longer FIR filter length means
shorter steady-state filter output length, which leads to larger estimation errors. The
advantages of IIR-CBS are verified by numerical examples.
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2.1.2 Related Past Work
The use of convolution (digital filtering) prior to frequency estimation for time-
domain sum-of-sinusoids was introduced many years ago by Silverstein, et al. [60],
and studied in detail in [61]. But these methods, and many of the details in [61], are
not directly applicable to spatial arrays. The purpose of this chapter is to develop
the appropriate formulation for spatial arrays, and provide several extensions, such
as extensions to coarrays and to dictionary methods.

In [62], an alternating low-rank decomposition (ALRD) approach is proposed.
Each row of the beamspace transformation matrix T contains a basis vector to
be optimized. A constrained optimization problem based on Capon’s minimum-
variance criterion is tackled by alternately solving for the basis vectors and the
beamforming weight vector using the recursive least squares (RLS) method. A
modified-ALRD (MALRD) scheme [62], where only a single basis vector is used,
is also proposed to reduce computational complexity. In the MALRD scheme, the
transformation matrix T is equivalent to doing convolution followed by uniform
decimation. However, CBS differs from MALRD in that only CBS uses the idea
of digital filtering so that standard filter design methods such as the minimax or
equiripple method, the window method, and so on [63], can be applied. Moreover,
only CBS exploits the Vandermonde structure of the convolutional steady state so
that root-MUSIC and ESPRIT can be applied directly. Also note that MALRD is a
special case of the joint iterative optimization (JIO) algorithms [64, 65]. Besides the
uniform decimation used in MALRD, non-uniform decimation is also considered in
[65]. But to preserve the Vandermonde structure of ULAs so that root-MUSIC and
ESPRIT can be readily applied after decimation, we always use uniform decimation
for CBS in this chapter. (Nonuniform decimation, which should be used with
difference coarray method [32], is considered in Chapter 3.) Moreover, we will
show by simulation (Fig. 2.7) that there is no loss of performance in using uniform
decimation since it achieves the same error variance as not doing decimation (i.e.,
keeping all samples) does.

Chapter outline: The basic idea of CBS for ULAs is introduced in Sec. 2.2,
and details of dimension reduction using uniform decimation, noise whitening in
the reduced space using Nyquist filter design, computational complexity and error
analysis are also presented. The extension to sparse arrays based on difference
coarrays is addressed in Sec. 2.3. CBS for dictionary-based sparse signal recovery
is then discussed in Sec. 2.4. Capon-CBS is introduced in Sec. 2.5. CBS based
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on IIR filters is proposed in Sec. 2.6. Simulations are also given in Secs. 2.2, 2.3,
2.4, 2.5, and 2.6 to demonstrate the performance of the new methods. Sec. 2.7
concludes the chapter.

2.2 Convolutional Beamspace for Uniform Linear Arrays
We consider an 𝑁-sensor ULA with sensor spacing 𝜆/2, and monochromatic plane
waves of wavelength 𝜆 arriving from 𝐷 directions. As explained in Sec. 1.1, the
array output equation is

x = Ac + e, (2.1)

where c contains source amplitudes 𝑐𝑖, e contains additive noise terms, and

A = [a𝑁 (𝜔1) a𝑁 (𝜔2) · · · a𝑁 (𝜔𝐷)] (2.2)

with a𝑁 (𝜔) = [1 𝑒 𝑗𝜔 𝑒 𝑗2𝜔 · · · 𝑒 𝑗 (𝑁−1)𝜔]𝑇 , so that A is a Vandermonde matrix.
Here 𝜔 = 𝜋 sin 𝜃, with DOA 𝜃 ∈ [−𝜋/2, 𝜋/2) measured from the normal to the line
of array. We assume E[c] = 0, E[e] = 0, E[ee𝐻] = 𝜎2

𝑒 I, and E[ce𝐻] = 0.

The main results of this section are as follows. In Sec. 2.2.1, we show that the
convolutional steady state of the CBS output bears the same structure as the ULA
output (2.1), as shown in (2.9). In Sec. 2.2.2, we show how to use uniform
decimation to reduce computational complexity. The decimated output (2.14) still
has the Vandermonde structure of the ULA output (2.1). Hence, root-MUSIC and
ESPRIT can be directly applied to the decimated covariance (2.19) without further
adjustment, as explained in Sec. 2.2.3. In Sec. 2.2.4, it is shown that by choosing
the filter used in CBS to be a spectral factor of Nyquist filters as in (2.25), we can
whiten the noise term after decimation. Then, the computational complexity of
CBS is compared to various methods in the literature in Sec. 2.2.5, and a basic
approximate error analysis is given in Sec. 2.2.6. Finally, simulations are presented
in Sec. 2.2.7.

2.2.1 The Convolutional Steady State
Let 𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 be the output of the 𝑁-sensor ULA. We convolve this
sequence with an FIR filter with transfer function

𝐻 (𝑧) =
𝐿−1∑︁
𝑛=0

ℎ(𝑛)𝑧−𝑛 (2.3)
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with 𝐿 < 𝑁 to get the possibly nonzero output samples 𝑦(𝑛), 0 ≤ 𝑛 ≤ 𝑁 + 𝐿 − 2.
Of these, only

𝑦(𝐿 − 1), 𝑦(𝐿), · · · , 𝑦(𝑁 − 1) (2.4)

involve all the 𝐿 filter coefficients, and can be considered steady state output samples:

y ≜


𝑦(𝐿 − 1)
𝑦(𝐿)
...

𝑦(𝑁 − 1)


= H


𝑥(0)
𝑥(1)
...

𝑥(𝑁 − 1)


= Hx, (2.5)

where H is a (𝑁 − 𝐿 + 1) × 𝑁 banded Toeplitz matrix:

H =


ℎ(𝐿 − 1) · · · ℎ(0) 0 · · · 0

0 ℎ(𝐿 − 1) · · · ℎ(0) · · · 0
...

...
. . .

...
. . .

...

0 0 · · · ℎ(𝐿 − 1) · · · ℎ(0)


. (2.6)

For example, 𝑦(𝐿 − 2) does not contain ℎ(𝐿 − 1) (as 𝑥(−1) = 0) and 𝑦(𝑁) does not
contain ℎ(0) (as 𝑥(𝑁) = 0). So these are not part of the steady state output (2.5).
The steady state samples y are obtained by sliding the reversed weights ℎ(𝑘) from
left to right uniformly, as shown in Fig. 2.1. We call y the convolutional beamspace
signal. In contrast, in classical beamspace y = Tx, T is a fat 𝐵 × 𝑁 matrix, but
without any Toeplitz structure. For instance, a popular choice is to let T contain 𝐵
consecutive rows of the 𝑁 ×𝑁 DFT matrix [2]. As we shall see, the banded Toeplitz
structure of H is essential to obtain a Vandermonde structure in y.

Now assume we have a signal arriving from DOA 𝜃 so that 𝑥(𝑛) = 𝑒 𝑗𝜔𝑛, 0 ≤ 𝑛 ≤
𝑁 −1 (up to some scale, which we ignore), where 𝜔 = 𝜋 sin 𝜃. Then from the steady
state equation (2.5), ignoring noise, we have

y = 𝑒 𝑗 (𝐿−1)𝜔𝐻 (𝑒 𝑗𝜔)
[
1 𝑒 𝑗𝜔 · · · 𝑒 𝑗 (𝑁−𝐿)𝜔

]𝑇
, (2.7)

where 𝐻 (𝑧) =
∑𝐿−1
𝑛=0 ℎ(𝑛)𝑧−𝑛. So the CBS signal y in response to a single

DOA is a Vandermonde vector just like the array output vector x = a𝑁 (𝜔) =

[1 𝑒 𝑗𝜔 𝑒 𝑗2𝜔 · · · 𝑒 𝑗 (𝑁−1)𝜔]𝑇 . Moreover, y is scaled by the filter frequency response
𝐻 (𝑒 𝑗𝜔). Thus if there are𝐷 sources with DOAs𝜔𝑘 , then since 𝑥(𝑛) = ∑𝐷

𝑘=1 𝑐𝑘𝑒
𝑗𝜔𝑘𝑛,

we have

y =

𝐷∑︁
𝑘=1

𝑐𝑘𝑒
𝑗 (𝐿−1)𝜔𝑘𝐻 (𝑒 𝑗𝜔𝑘 )a𝑁−𝐿+1(𝜔𝑘 ) + He. (2.8)
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h(3) h(2) h(1) h(0)

x(0) x(1) x(2) x(3) x(4) x(5)

h(0)h(3) h(2) h(1)

h(0)h(3) h(2) h(1)

y(3)

y(4)

y(5)

L =  4 taps

N =  6 sensors

Figure 2.1: The steady state CBS signal y = [𝑦(3) 𝑦(4) 𝑦(5)]𝑇 generated by sliding
the weights ℎ(𝑘) over the sensors.

The arriving signals with DOAs 𝜔𝑘 are therefore filtered by the response 𝐻 (𝑒 𝑗𝜔).
Thus the array equation (2.1) is replaced with

y = A𝐿d + He, (2.9)

where A𝐿 is a Vandermonde matrix obtained from A by keeping the first 𝑁 − 𝐿 + 1
rows, and d has elements 𝑑𝑘 = 𝑐𝑘𝑒 𝑗 (𝐿−1)𝜔𝑘𝐻 (𝑒 𝑗𝜔𝑘 ). While the development is valid
for any ULA, for large arrays (large 𝑁), which are getting more attention recently
[5, 9, 11], we can make 𝐿 large and design a sharp-cutoff filter with good stopband.
Assuming signals in the stopband are not too strong so that y contains only those
DOAs that fall in the passband of 𝐻 (𝑒 𝑗𝜔), we have

y ≈ A𝐿,0d0 + He. (2.10)

Here A𝐿,0 has 𝐷0 columns of A𝐿 corresponding to the 𝐷0 sources that fall in the
passband of 𝐻 (𝑒 𝑗𝜔), and d0 has the corresponding 𝐷0 rows of d. Fig. 2.2 shows
a typical filter response, with two out of six DOAs falling in the passband. Since
𝜔 = 𝜋 sin 𝜃, the DOA range −𝜋/2 ≤ 𝜃 < 𝜋/2 corresponds to −𝜋 ≤ 𝜔 < 𝜋; it can
equivalently be taken as 0 ≤ 𝜔 < 2𝜋, as 𝐻 (𝑒 𝑗𝜔) has period 2𝜋. The FIR filter 𝐻 (𝑧)
can be designed by any standard method such as the minimax or equiripple method,
the window method, and so on [63]. If the filter does not have sharp cutoff, it is likely
that a DOA falls in the transition band, which requires more careful consideration.

Note that we can process the array output 𝑥(𝑛) with an entire filter bank 𝐻𝑖 (𝑒 𝑗𝜔), 0 ≤
𝑖 ≤ 𝑀 − 1 to cover the full DOA range 0 ≤ 𝜔 < 2𝜋, as in Fig. 2.3. The outputs of
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w
p0-p

Filter response

DOAs

𝐻 𝑒#$

Figure 2.2: Typical magnitude response |𝐻 (𝑒 𝑗𝜔) |, and example of DOA locations
(red arrows). Two of the six DOAs are in the passband.

filters can be processed in parallel to estimate all 𝐷 DOAs. The DOA estimation
procedure would be to first estimate the number of DOAs 𝐷0 from y, and identify
these 𝐷0 DOAs using standard methods. Since the filter output y is represented in
terms of the Vandermonde matrix A𝐿 just like the original array output x, we can use
root-MUSIC or ESPRIT without any further adjustment or processing to the data.
This is an advantage of the proposed CBS method compared to classical beamspace
methods, for which root-MUSIC requires some preprocessing [2] (due to loss of
Vandermonde structure), and so does ESPRIT [18] (due to loss of shift-invariance).
The method, as presented, works best for large ULAs, but can be extended to sparse
arrays with relatively few sensor elements, as we shall see in Sec. 2.3.

w
2p

H0 H1 H2 H0HM-1

2p /M

0

…

Figure 2.3: Typical beamspace filter bank (magnitude responses).

2.2.2 Decimating the Filter Output
In classical beamspace methods, the complexity advantage is obtained because
𝐵 ≪ 𝑁 . However, for CBS described in the Sec. 2.2.1, 𝑁 − 𝐿 + 1 ≈ 𝑁 since
𝐿 ≪ 𝑁 in practice. To achieve the complexity reduction of beamspace methods,
we simply decimate 𝑦(𝑛) with a uniform downsampler. Since the passband of
𝐻 (𝑧) has width ≈ 2𝜋/𝑀 (Fig. 2.3), we can decimate 𝑦(𝑛) by the integer 𝑀 . For
larger arrays, 𝐿 can be large, and the filters can be designed with sharp cutoff
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and good stopband attenuation to minimize aliasing due to decimation [66]. Let
𝑣(𝑛) = 𝑦(𝑛 + 𝐿 − 1) so that y = [𝑣(0) 𝑣(1) · · · 𝑣(𝑁 − 𝐿)]𝑇 . Define the decimated
version 𝑣0(𝑛) = 𝑣(𝑀𝑛). The vector y is then replaced by the decimated vector
v̄0 = [𝑣(0) 𝑣(𝑀) · · · 𝑣(𝐽0𝑀)]𝑇 , where 𝐽0 = ⌈(𝑁 − 𝐿 + 1)/𝑀⌉. We can estimate the
𝐽0 × 𝐽0 covariance of v̄0 from snapshots and estimate the 𝐷0 DOAs in the passband,
if 𝐷0 < 𝐽0. The complexity of eigenspace computation is now

𝑂 (𝐽3
0 ) ≪ 𝑂 (𝑁3). (2.11)

One might think that decimation leads to “waste” of hard-earned data, but we can
make good use of essentially all data while estimating a 𝐽 × 𝐽 covariance, where
𝐽 = ⌊(𝑁 − 𝐿 + 1)/𝑀⌋. Consider shifted versions 𝑣(𝑛 + 𝑙) for 0 ≤ 𝑙 ≤ 𝑀 − 1
and define their decimated versions 𝑣𝑙 (𝑛) = 𝑣(𝑀𝑛 + 𝑙). These are the polyphase
components of 𝑣(𝑛) [66]. Let v𝑙 = [𝑣𝑙 (0) 𝑣𝑙 (1) · · · 𝑣𝑙 (𝐽 − 1)]𝑇 , that is,

v𝑙 = [𝑣(𝑙) 𝑣(𝑙 + 𝑀) · · · 𝑣(𝑙 + (𝐽 − 1)𝑀) ]𝑇 . (2.12)

We will estimate 𝐽 × 𝐽 covariances of v𝑙 and average over all 𝑙 to obtain a “coherent”
estimate of the 𝐽 × 𝐽 covariance of decimated CBS data. Note that we took the floor
function of 𝐽 to accommodate the shorter polyphase components.

Remark: We use uniform decimation [67, Sec. II] in the basic form of CBS in this
chapter, whereas nonuniform decimation will be also considered in Chapter 3. See
Sec. 3.2 for more details.

2.2.3 Decimated Covariance and DOA Estimation
In the following, we develop the decimated covariance matrix. Let

D𝑙 = [δ𝑙 δ𝑙+𝑀 . . . δ𝑙+(𝐽−1)𝑀]𝑇 (2.13)

be a decimation matrix, where δ𝑙 is the 𝑙th standard basis vector for the (𝑁 − 𝐿 + 1)-
dimensional space. Then we can write v𝑙 = D𝑙y. From (2.9) we have v𝑙 = D𝑙y =

D𝑙A𝐿d + D𝑙He. It can be verified that this simplifies to

v𝑙 = Adecd𝑙 + D𝑙He, (2.14)

where

Adec = [a𝐽 (𝑀𝜔1) a𝐽 (𝑀𝜔2) · · · a𝐽 (𝑀𝜔𝐷)] (2.15)

with

d𝑙 =
[
𝑐1𝑒

𝑗 (𝐿−1+𝑙)𝜔1𝐻 (𝑒 𝑗𝜔1) · · · 𝑐𝐷𝑒 𝑗 (𝐿−1+𝑙)𝜔𝐷𝐻 (𝑒 𝑗𝜔𝐷 )
]𝑇
.
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Thus with R𝑑𝑙 = E[d𝑙d𝐻𝑙 ], the covariance of v𝑙 is

R𝑣𝑙 = E[v𝑙v𝐻𝑙 ] = AdecR𝑑𝑙A𝐻
dec + 𝜎

2
𝑒D𝑙HH𝐻D𝐻

𝑙 . (2.16)

It can be verified that the “decimated” matrix

Gdec ≜ D𝑙HH𝐻D𝑙 (2.17)

is independent of 𝑙 (see Sec. 2.2.4 for details), so

R𝑣𝑙 = AdecR𝑑𝑙A𝐻
dec + 𝜎

2
𝑒Gdec. (2.18)

The dependency of the first term of (2.18) on 𝑙 can be averaged out:

Rave =
1
𝑀

𝑀−1∑︁
𝑙=0

R𝑣𝑙 = AdecR̆𝑑A𝐻
dec + 𝜎

2
𝑒Gdec, (2.19)

where R̆𝑑 is R𝑑𝑙 averaged over 𝑙. In practice, we estimate R𝑣𝑙 from snapshots for
each 𝑙, and then estimate Rave. This is the estimated 𝐽 × 𝐽 covariance to be used for
estimating DOAs in the filter passband. Since v𝑙 for all 𝑙 are used, all the 𝑁 − 𝐿 + 1
components of the CBS signal y are exploited (if 𝑁 − 𝐿 + 1 is a multiple of 𝑀),
and no data is wasted. In (2.19), the Vandermonde structure is preserved, so we can
directly use root-MUSIC. ESPRIT is also applicable as shift invariance is retained.

Note that since the columns of Adec are a𝐽 (𝑀𝜔𝑖) rather than a𝐽 (𝜔𝑖), we can only
estimate 𝑀𝜔𝑖 mod 2𝜋, or equivalently

𝜔𝑖 + 2𝜋𝑠𝑖/𝑀, (2.20)

where the integers 𝑠𝑖 are unknown, creating ambiguity. But since𝜔𝑖 are known to be
in the passband of𝐻 (𝑒 𝑗𝜔) which has width 2𝜋/𝑀 , the ambiguities 𝑠𝑖 can be resolved
because for each DOA, there is only one integer 𝑠𝑖 such that𝜔𝑖+2𝜋𝑠𝑖/𝑀 is within the
passband. We will show by simulation the effectiveness of this decimation method,
as it achieves almost the same performance as that obtained when we do eigenspace
computation directly on y, which is of much higher complexity 𝑂 (𝑁3).

Remark: One merit of (2.19) is that the decimated signals are combined “coher-
ently.” Note that the 𝑖th diagonal element of R̆𝑑 is

[R̆𝑑]𝑖𝑖 =
1
𝑀

𝑀−1∑︁
𝑙=0

E[|𝑐𝑖𝑒 𝑗 (𝐿−1+𝑙)𝜔𝑖𝐻 (𝑒 𝑗𝜔𝑖 ) |2] (2.21)

=
1
𝑀

𝑀−1∑︁
𝑙=0

𝑝𝑖 |𝐻 (𝑒 𝑗𝜔𝑖 ) |2 = 𝑝𝑖 |𝐻 (𝑒 𝑗𝜔𝑖 ) |2, (2.22)
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where 𝑝𝑖 = E[|𝑐𝑖 |2] is the power of the 𝑖th source. This explains the “coherent”
property of the method as the signal powers [R̆𝑑𝑙 ]𝑖𝑖 = 𝑝𝑖 |𝐻 (𝑒 𝑗𝜔𝑖 ) |2 ≥ 0, ∀ 𝑙 are
combined coherently. Actually, when the sources are uncorrelated, R̆𝑑𝑙 is the same
diagonal matrix for all 𝑙 so that R̆𝑑 = R̆𝑑𝑙 for all 𝑙, and Rave in (2.19) is exactly
equal to R𝑣𝑙 in (2.18) for all 𝑙. Ideally, if we have the exact autocorrelation matrices
R𝑣𝑙 , then there is no need to do this average to obtain the same matrix. However,
in practice, we only have estimates of R𝑣𝑙 from snapshots, so this average is helpful
to performance. We will show by simulation that this coherent method outperforms
the method using only one polyphase component v0. We will also see that it is
also better than the noncoherent method, which just computes the average of DOA
estimates obtained separately from eigenspace method using each v𝑙 .

2.2.4 Spectral Factors of Nyquist Filters to Whiten Noise
The undecimated output of convolution (2.9) has covariance Ryy = A𝐿R𝑑A𝐻

𝐿
+𝜎2

𝑒G,
where R𝑑 = E[dd𝐻] and G = HH𝐻 is Hermitian and Toeplitz with first row
[𝑔(0) 𝑔∗(1) 𝑔∗(2) · · · 𝑔∗(𝑁 − 𝐿)], where

𝑔(𝑘) =
∑︁
𝑛

ℎ(𝑛)ℎ∗(𝑛 − 𝑘) (2.23)

is the deterministic autocorrelation of ℎ(𝑛). The noise term 𝜎2
𝑒G cannot be a

diagonal matrix unless the filter has the trivial form 𝐻 (𝑧) = 𝑐𝑧−𝑛0 [66]. But the
decimated output (2.14) has covariance (2.18) for all 𝑙. It can be verified that
Gdec = D𝑙HH𝐻D𝑙 is 𝐽 × 𝐽 Hermitian and Toeplitz with first row

[𝑔(0) 𝑔∗(𝑀) 𝑔∗(2𝑀) · · · 𝑔∗((𝐽 − 1)𝑀)], (2.24)

which is independent of 𝑙. Thus, whereas G is the autocorrelation matrix of ℎ(𝑛),
the matrix Gdec is constructed from the decimated autocorrelation 𝑔(𝑀𝑘), and does
not depend on 𝑙. So the corresponding noise term can be whitened by making
Gdec = I, or equivalently

𝑔(𝑀𝑘) = 𝛿(𝑘), (2.25)

where 𝑔(𝑘) is as in (2.23). Eq. (2.25) is called the Nyquist(𝑀) property of 𝑔(𝑘).
Since |𝐻 (𝑒 𝑗𝜔) |2 is the Fourier transform of 𝑔(𝑘), we say that𝐻 (𝑧) is a spectral factor
of the Nyquist(𝑀) filter |𝐻 (𝑒 𝑗𝜔) |2. In short, by designing the FIR filter 𝐻 (𝑧) to be
a spectral factor of an FIR Nyquist(𝑀) filter 𝐺 (𝑧) with 𝐺 (𝑒 𝑗𝜔) ≥ 0, we can ensure
that the noise terms in the decimated versions 𝑣(𝑀𝑛 + 𝑙) are white for all 𝑙. So Rave
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becomes Rave = AdecR̆𝑑A𝐻
dec +𝜎

2
𝑒 I where Adec is as in (2.15). This makes it easy to

find the noise eigenspace by computing eigenvectors of Rave, which is what we do in
simulations. Spectral factors of Nyquist filters arise in digital communications [68]
and in filter bank theory [66]. There are many ways to design such filters [69–72].
In fact, any filter 𝐻𝑘 (𝑒 𝑗𝜔) in an orthonormal (equivalently paraunitary) filter bank
is automatically a spectral factor of a Nyquist filter [66]. Many examples of good
FIR designs with this property can be found in the literature [66, 70, 73–76]. In fact,
if 𝐻 (𝑒 𝑗𝜔) is a “good” filter with total passband width ≈ 2𝜋/𝑀 and ripples properly
constrained, this Nyquist property (2.25) is approximately satisfied, that is,∑︁

𝑛≠0
|𝑔(𝑀𝑛) | ≪ 𝑔(0) (nearly-Nyquist property). (2.26)

For simplicity, this is what we use in simulations.

In classical beamspace transformation y = Tx, the orthogonality condition TT𝐻 = I
is normally imposed [77]. The Nyquist condition (2.25) is analogous to this because
we are imposing Gdec = TT𝐻 = I, where T = D𝑙H.

2.2.5 Computational Complexity
The computational complexity of CBS is compared to various methods in the
literature in Table 2.1. For element-space root-MUSIC and ESPRIT, the complexity
is dominated by the eigenvalue decomposition of the 𝑁 × 𝑁 covariance of the
array output x defined in (2.1). The complexity is 𝑂 (𝑁3). For element-space
MUSIC, an additional𝑂 (𝐺𝑁2) is required to compute the MUSIC spectrum 𝑃(𝜔) =
(a𝐻
𝑁
(𝜔)EnE𝐻

n a𝑁 (𝜔))−1, where En is the noise subspace, and 𝐺 is the number of
grid points used for grid search of 𝜔. For classical beamspace, the complexity is
dominated by the eigenvalue decomposition of the 𝐵 × 𝐵 covariance of y = Tx,
where T is a 𝐵 × 𝑁 beamspace transformation matrix. The complexity is 𝑂 (𝐵3).
Similarly, classical beamspace MUSIC requires an additional 𝑂 (𝐺𝐵2) to compute
the MUSIC spectrum. For CBS, the complexity is dominated by the eigenvalue
decomposition of the covariance (2.19) for the decimated signals. Assuming the
filter length 𝐿 ≪ 𝑁 so that (𝑁 − 𝐿 + 1)/𝑀 ≈ 𝑁/𝑀 , the complexity is 𝑂 ((𝑁/𝑀)3),
where 𝑀 is the decimation ratio. Similarly, CBS MUSIC requires an additional
𝑂 (𝐺 (𝑁/𝑀)2) to compute the MUSIC spectrum. In Table 2.1, we give an example
of typical numbers by setting 𝑁 = 100, 𝐺 = 200, 𝑀 = 4, and 𝐵 = 𝑁/𝑀 = 25. Note
that CBS and classical beamspace have the same complexity, which is much smaller
than that of element-space. A direct comparison of running time for each algorithm
is also presented in Table 2.2.
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Table 2.1: Comparison of computational complexity

Algorithm Complexity Typical numbers
Element-space MUSIC [52] 𝑂 (𝑁3 + 𝐺𝑁2) 3 × 106

Element-space root-MUSIC [26] 𝑂 (𝑁3) 106

Element-space ESPRIT [27] 𝑂 (𝑁3) 106

Classical beamspace MUSIC [16] 𝑂 (𝐵3 + 𝐺𝐵2) 1.41 × 105

Classical beamspace root-MUSIC [2] 𝑂 (𝐵3) 1.56 × 104

Classical beamspace ESPRIT [18] 𝑂 (𝐵3) 1.56 × 104

CBS MUSIC [this chapter] 𝑂 ((𝑁/𝑀)3 + 𝐺 (𝑁/𝑀)2) 1.41 × 105

CBS root-MUSIC [this chapter] 𝑂 ((𝑁/𝑀)3) 1.56 × 104

CBS ESPRIT [this chapter] 𝑂 ((𝑁/𝑀)3) 1.56 × 104

For all expressions listed in Table 2.1, we include complexity only for computations
after the covariance matrices have been estimated using snapshots. For ALRD-
RLS and MALRD-RLS [62], the snapshots are used in the RLS algorithm, but
no covariance is estimated explicitly. Hence, we do not include ALRD-RLS and
MALRD-RLS in Table 2.1, but we list their total complexity here: 𝑂 (𝐺𝐾 (�̄�𝐼2+�̄�2))
for ALRD-RLS and 𝑂 (𝐺𝐾 (𝐼2 + �̄�2)) for MALRD-RLS, where 𝐼 is the length of
the basis vectors contained in the �̄� × 𝑁 beamspace transformation matrix T, 𝐾 is
the number of snapshots, and 𝐺 is the number of grid points used for grid search
of 𝜔. Note that we use the notation �̄� as it may be different from 𝐵 for other
algorithms. To compare ALRD-RLS and MALRD-RLS with other algorithms, we
need to include complexity for estimating the covariance also. For instance, for
classical beamspace root-MUSIC, the complexity of y = Tx for 𝐾 snapshots, where
T is a 𝐵 × 𝑁 matrix, is either 𝑂 (𝐾𝑁𝐵), or 𝑂 (𝐾𝑁 log2 𝑁) if rows of T are chosen
to be columns of the DFT matrix so that the FFT algorithm can be used. Estimating
the 𝐵 × 𝐵 covariance of y using 𝐾 snapshots then requires 𝑂 (𝐾𝐵2) computation.
Thus, the total complexity is 𝑂 (𝐵3 + 𝐾𝐵2 + 𝐾𝑁 min(𝐵, log2 𝑁)). But from this
expression, it is more tricky to obtain typical numbers as in Table 2.1 because the
constant factors of each term in the big-O notation are hidden.

2.2.6 Error Analysis
Now we analyze the performance of CBS with decimation. This is only an ap-
proximate analysis of the mean square error (MSE) of the DOA estimates, but it
provides insights. A more rigorous analysis will be given in Chapter 5. We assume
MUSIC or root-MUSIC is used to estimate DOAs. According to [26, 56], MUSIC
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and root-MUSIC achieve the same MSE performance asymptotically. Let �̂�𝑖 be
the estimate of the 𝑖th DOA 𝜔𝑖, 1 ≤ 𝑖 ≤ 𝐷. When MUSIC or root-MUSIC is
performed on an 𝑁-sensor ULA with 𝐾 snapshots in element-space, the estimate �̂�𝑖
is asymptotically (for large 𝐾 and 𝑁) unbiased and has variance [26, 56]

varelm(�̂�𝑖) =
6𝜎2

𝑒

𝐾𝑁3 [R
−1
cc ]𝑖𝑖, (2.27)

where Rcc = E[cc𝐻] is the autocorrelation of the source amplitudes. In particular,
if the sources are uncorrelated with powers 𝜎2

𝑖
, then we have

varelm(�̂�𝑖) =
6𝜎2

𝑒

𝐾𝑁3𝜎2
𝑖

. (2.28)

For simplicity, consider CBS with decimation using only one polyphase component,
and suppose the decimation ratio 𝑀 is a divisor of (𝑁 − 𝐿 + 1), so

𝐽 = (𝑁 − 𝐿 + 1)/𝑀 (2.29)

is an integer. Suppose the filter 𝐻 (𝑒 𝑗𝜔) satisfies the nearly-Nyquist property (2.26)
so that G𝑑𝑒𝑐 ≈ I. Let 𝐻 (𝑒 𝑗𝜔) be a good filter with passband [−𝜋/𝑀, 𝜋/𝑀], i.e.,

|𝐻 (𝑒 𝑗𝜔) |2 ≈
{
𝑀, |𝜔| < 𝜋/𝑀
0, otherwise

(2.30)

so that it has unit energy. For CBS with decimation, since the columns of A𝑑𝑒𝑐 are
a𝐽 (𝑀𝜔𝑖) rather than a𝐽 (𝜔𝑖), so in view of (2.18), for an in-band DOA 𝜔𝑖 (DOA in
the passband of the filter),

varCBS(𝑀�̂�𝑖) ≈
6𝜎2

𝑒

𝐾𝐽3 |𝐻 (𝑒 𝑗𝜔𝑖 ) |2𝜎2
𝑖

. (2.31)

Using (2.29), (2.30), and the fact that var(𝑐𝑥) = 𝑐2var(𝑥) for any constant 𝑐 > 0 and
random variable 𝑥, we therefore obtain

varCBS(�̂�𝑖) ≈
6𝜎2

𝑒

𝐾 (𝑁 − 𝐿 + 1)3𝜎2
𝑖

. (2.32)

Moreover, if the filter length 𝐿 ≪ 𝑁 ,

varCBS(�̂�𝑖) ≈
6𝜎2

𝑒

𝐾𝑁3𝜎2
𝑖

= var𝑒𝑙𝑚 (�̂�𝑖). (2.33)

Thus, the error variance of CBS is approximately independent of the decimation
ratio𝑀 and equal to that of element-space. Hence, one may want to choose a large𝑀
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to lower computational complexity. However, there is some price to be paid for this
advantage. Since the number of identifiable sources is limited by 𝐽 = (𝑁−𝐿+1)/𝑀 ,
large 𝑀 means fewer sources can be identified in the passband. Secondly, since a
large 𝑀 implies that the filter has narrower pass and transition bands, the stop band
attenuation degrades for large 𝑀 (for fixed filter length 𝐿).

The above analysis is valid as long as all the in-band sources are uncorrelated.
Whether an in-band source is correlated with an out-of-band source (source in
the stopband) or not does not matter. This also suggests how CBS can improve
performance over element-space. For illustration, consider an example where there
is one in-band source with power 1 and one out-of-band source with power 𝑃o, with
correlation coefficient 0 < 𝜌 < 1. Hence,

Rcc =

[
1 𝜌

√
𝑃o

𝜌
√
𝑃o 𝑃o

]
(2.34)

and

R−1
cc =

1
(1 − 𝜌2)𝑃o

[
𝑃o −𝜌

√
𝑃o

−𝜌
√
𝑃o 1

]
, (2.35)

so it can be derived from (2.27) that

varelm(�̂�1) =
6𝜎2

𝑒

𝐾𝑁3(1 − 𝜌2)
. (2.36)

The error variance for element-space gets larger as 𝜌 gets larger, but is independent of
the out-of-band power 𝑃o. By contrast, for CBS, as long as the out-of-band source is
attenuated enough by the filter so that the in-band source is the only effective source
after filtering, then it is as if there is only the first source, or its effective Rcc,CBS is
a 1 × 1 matrix Rcc,CBS = 1. Hence, setting 𝜎2

1 = 1 in (2.33), we obtain

varCBS(�̂�1) ≈
6𝜎2

𝑒

𝐾𝑁3 < var𝑒𝑙𝑚 (�̂�1). (2.37)

It is important to note that this does not contradict the analysis for beamspace
MUSIC in [77, 78] because therein the signal subspace dimension in the beamspace
is assumed to be the same as that in the element-space, but for CBS, signal subspace
dimension after filtering can be smaller. That is, in [77, 78], all sources, including
those in the stopband if any, still have to be estimated in the beamspace, while in
our case we only have to estimate in-band ones. Besides, (2.37) does not contradict
the fact that the beamspace Cramér–Rao bound (CRB) cannot be smaller than the
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element-space CRB [78] because the gap between the error variance of a practical
algorithm and the CRB can differ in different situations. The foregoing example
shows that CBS can improve MUSIC MSE performance in some cases when there
are correlated sources.

Remark: A more rigorous analysis will have error variance expressions involving
the filter coefficients ℎ(𝑛) or frequency response 𝐻 (𝑒 𝑗𝜔). The filtered out-of-band
sources contribute to error terms that perturb the eigenvectors of the covariance
matrix. Such an error term is not white and may be correlated with in-band sources.
This makes a rigorous analysis complicated, and we will present it in Chapter 5.
From a practical point of view, observe that if 𝐻 (𝑒 𝑗𝜔) is designed to have good
stopband attenuation, then the error term due to filtered out-of-band sources is much
smaller than the white noise term, and the analyses in this subsection can be good
approximations.

2.2.7 Simulations
In all simulation examples in this section, we assume the number of DOAs is
unknown. For CBS, the number of in-band DOAs 𝐷0 has to estimated. For
element-space, the number of all DOAs 𝐷 has to estimated. For CBS method
to estimate 𝐷0, we plot the distribution of eigenvalues of the covariance Rave in
descending order in log scale, and the most convex point (maximum of the second
difference) of the curve is regarded as the first noise subspace eigenvalue. Then, the
number of eigenvalues larger than this is the estimated 𝐷0. For element-space to
estimate 𝐷, the same method is used, with Rave replaced by the covariance of the
original array output x. See Fig. 2.4(a)-(b) for a numerical demonstration (details
of this plot will be described below). To compare with CBS using a filter 𝐻 (𝑧), for
element-space, we just consider DOA estimates in the passband of 𝐻 (𝑧) and ignore
those in the stopband. The number of in-band DOAs obtained in this way is also
viewed as the estimate of 𝐷0 for element-space.

Whenever we mention root mean square errors (RMSE) in detected in-band source
angles, we refer to averaging square errors measured in 𝜔 over all in-band DOAs
and over those Monte Carlo runs that obtain the correct number of in-band DOAs.
Similarly, since the stochastic Cramér–Rao bounds (CRBs) [44] depend on DOAs,
we have averaged over in-band DOAs in the plots. Noise variance 𝜎2

𝑒 = 1 is used. If
not specified particularly, the following settings are used for each example. First, all
sources are uncorrelated with equal powers 𝑝𝑘 = 1. Second, the coherent method
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Figure 2.4: Performance of CBS and element-space when there are many out-of-
band DOAs. (a) Typical eigenvalue distribution for CBS. (b) Typical eigenvalue
distribution for element-space. (c) Probability of resolution.

(2.19) is used for CBS with decimation. Third, 𝐻 (𝑧) is designed to be lowpass
using the Parks-McClellan algorithm [63], with passband edge 𝜋/2𝑀 and stopband
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edge 3𝜋/2𝑀 . Here their average 𝜋/𝑀 is viewed as the filter cutoff, and 𝑀 is the
decimation ratio. These Parks-McClellan filters satisfy (2.26).

Probability of resolution. We first consider a scenario where there are many out-
of-band DOAs. In this case, CBS is especially advantageous over element-space
in terms of probability of resolution. Consider a ULA with 𝑁 = 99 sensors.
The filter length is 𝐿 = 16, and the decimation ratio is 𝑀 = 4. There are two
in-band DOAs, which are at angles 𝜃 = −5◦, 5◦. We vary the number of out-of-
band DOAs �̄�, while they are uniformly placed in the range 𝜔 ∈ [0.5𝜋, 0.98𝜋],
i.e., 𝜔 = 0.5𝜋, 0.5𝜋 + 𝛿, 0.5𝜋 + 2𝛿, . . . , 0.98𝜋 with 𝛿 = 0.48𝜋/(�̄� − 1). (Recall
𝜔 = 𝜋 sin 𝜃.) Fig. 2.4(c) shows the probability of resolving the correct number
of in-band DOAs using the method of finding the most convex point of eigenvalue
distribution. Typical eigenvalue distributions for a Monte Carlo run are shown in
Fig. 2.4(a)-(b) when there are 5 out-of-band DOAs. Note that 2 and 7 eigenvalues
are regarded as signals for CBS and element-space, respectively, corresponding to
the number of in-band DOAs and all DOAs. Covariance estimates are obtained by
using 100 snapshots, and we average 1000 Monte Carlo runs to get the plot. As
expected, for CBS, the number of out-of-band DOAs does not affect the probability
of resolution, which is always 1 in this example, because they are attenuated by
the filter. Even when the number of out-of-band DOAs is greater than the number
of sensors 𝑁 = 99, CBS can still recover the in-band DOAs with probability one.
But for element-space, the probability of resolution decreases significantly as the
number of out-of-band DOAs increases.
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Figure 2.5: Responses of typical filters used for the example in Fig. 2.6.

Estimation errors. We now compare the estimation errors of classical beamspace
[2], MALRD-RLS [62], CBS, and element-space. Consider a ULA with 𝑁 = 96
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Figure 2.6: RMSE of classical beamspace, MALRD-RLS, CBS, and element-space.
(a) RMSE for uncorrelated sources. (b) RMSE for in-band sources correlated with
out-of-band sources. (c) RMSE for correlated in-band sources.

sensors receiving 6 sources at angles −3◦, 1.5◦, 3◦, 40◦, 60◦, and 80◦. The filter
length is 𝐿 = 25, and the decimation ratio 𝑀 is varied. Filter responses for some 𝑀



35

are shown in Fig. 2.5. For all filters used, there are three sources in the passband
(−3◦, 1.5◦ and 3◦) and three in the stopband (40◦, 60◦, and 80◦). All sources are
first assumed uncorrelated. For MALRD-RLS, the parameters (as mentioned in the
last paragraph of Sec. 2.2.5) are reasonably chosen as per [62]. Specifically, we set
𝐼 = 12, �̄� = 𝑁/𝐼, and the forgetting factor 𝛼 = 0.998 as in [62]. The number of
grid points for grid search of 𝜔 is chosen as 𝐺 = 1000 to keep a balance between
performance and complexity. For MALRD-RLS, the number of DOAs and their
locations are estimated together based on the output power spectrum 𝑃(𝜔) [62]. We
declare that there is a source at �̄� if 𝑃(�̄�) is a local maximum with prominence
greater than 0.4 (with the spectrum normalized to have a maximum value 1), where
prominence is defined as in findpeaks of MATLAB®. In all cases experimented
except MALRD-RLS, the probability of resolving the correct number of in-band
DOAs is always 1, so it is not plotted. MALRD-RLS failed to resolve only once
in 500 trials, so the probability of success is nearly unity as well. We turn to
study the RMSE in detected in-band source angles using root-MUSIC, for various
values of 1/𝑀 (filter cutoff normalized by 𝜋), as shown in Fig. 2.6(a). Covariance
estimates are obtained by using 200 snapshots, and 500 Monte Carlo runs are used.
Note that, for MALRD-RLS and element-space, the notion of filter cutoff is not
relevant, so their plots are constant. CBS outperforms classical beamspace [2], the
poor performance of the latter being consistent with numerical sensitivity issues
mentioned in [2] as the number of “beams” 𝐵 (i.e., passband width in our notion)
increases. CBS also outperforms MALRD-RLS. Note that element-space performs
slightly better, and that the RMSE is almost independent of 𝑀 for CBS, consistent
with (2.28) and (2.32). Fig. 2.6(b) shows the performance when there are in-band
sources correlated with out-of-band sources: sources 𝑛 and 𝑛 + 3 have a correlation
coefficient 𝜌 = 0.85 for 𝑛 = 1, 2, 3. In this case, CBS outperforms element-space
significantly (without spatial smoothing), consistent with (2.37). Again, this does not
contradict [77, 78] as we explained for (2.37). Note that we also show the RMSE of
element-space using spatial smoothing [39]. We divide the array into 6 overlapping
subarrays of size 91: {1, . . . , 91}, {2, . . . , 92}, . . . , {6, . . . , 96}, and then do spatial
smoothing. Although spatial smoothing can achieve performance improvement
for correlated sources, only CBS can achieve both performance improvement and
complexity reduction (see Table 2.2). This is because spatial smoothing does not do
dimensionality reduction (unlike CBS). Stochastic (element-space) CRBs [44] are
also shown in Fig. 2.6(a)-(b). While both CBS and element-space come close to
the CRB for uncorrelated sources, only CBS comes close to the CRB for correlated
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sources. CBS fills in the gap between element-space (without spatial smoothing)
and CRB for correlated sources. The running time per Monte Carlo run for each
algorithm in Fig. 2.6(b) is shown in Table 2.2. The computational complexity of
CBS is comparable to that of classical beamspace and more than 10 times lower
than that of element-space (with or without spatial smoothing). Running time of
MALRD-RLS depends on the number of grid points 𝐺 for grid search of 𝜔. As
mentioned before, we have chosen 𝐺 = 1000, and the complexity of MALRD-RLS
is the highest. This choice of𝐺 was necessary to obtain the reasonable performances
shown in Fig. 2.6. On the other hand, performances cannot be significantly improved
by a larger 𝐺. For instance, the RMSE for Fig. 2.6(a) would change from 0.0023
only to 0.0021 if 𝐺 is changed from 1000 to 10000, but the complexity gets much
higher. Finally, we consider the case when there are in-band correlated sources in
Fig. 2.6(c). Here, sources 1 and 2 are correlated with 𝜌 = 0.85 and all others
are uncorrelated. CBS again outperforms classical beamspace and MALRD-RLS.
Although CBS does not outperform element-space as in Fig. 2.6(b), it is only
slightly worse than element-space, and both of them are reasonably close to the
CRB.

Table 2.2: Running time per Monte Carlo run for Fig. 2.6(b) when 𝑀 = 4 for
beamspace methods

Algorithm Running time (sec.)
Classical beamspace 0.00385
MALRD-RLS 0.272
CBS 0.00835
Element-space 0.0840
Element-space with spatial smoothing 0.0945

Truncation versus decimation. Next, we show that decimating the filter output is
indeed an effective method. To this end, we compare CBS with decimation (2.19),
CBS with truncation, and element-space. “CBS with truncation” means we keep
only the first 𝑁𝑏𝑠 ≤ 𝑁−𝐿+1 samples of the filter output, 𝑣(0), 𝑣(1), . . . , 𝑣(𝑁𝑏𝑠−1).
Consider a ULA with 𝑁 = 99 sensors receiving 2 in-band sources at angles −5◦, 5◦,
and 1 out-of-band source at angle 40◦. The filter length is 𝐿 = 16, and the decimation
ratio is 𝑀 = 4. Fig. 2.7 shows the RMSE in detected in-band source angles using
root-MUSIC. Covariance estimates are obtained by using 100 snapshots, and 500
Monte Carlo runs are used. As expected, for the truncated CBS, RMSE decreases
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as 𝑁𝑏𝑠 increases. Remarkably, the RMSE at 𝑁𝑏𝑠 = 84, corresponding to keeping all
the steady-state samples of the filter output, is about the same as the RMSE of CBS
with decimation by 𝑀 = 4. Moreover, CBS with decimation gives a RMSE almost
the same as element-space, as suggested by (2.33). So in the decimation method,
the only loss is due to discarding the transient part of the filter output, which is
insignificant if 𝐿 ≪ 𝑁 . Hence, decimation reduces the complexity of eigenspace
computation by a factor of 𝑂 (𝑀3) without compromising the RMSE performance!
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Figure 2.7: RMSE of truncated CBS, decimated CBS, and element-space.
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Coherent versus noncoherent. Finally we compare the coherent method (2.19)
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with the noncoherent method, and with the method which uses only one polyphase
component. Consider a ULA with 𝑁 = 99 sensors. The filter length is 𝐿 = 16, and
the decimation ratio is 𝑀 = 12. Two in-band sources are at angles 𝜃 = −0.5◦, 0.5◦,
and 30 out-of-band sources are uniformly placed in the range 𝜔 ∈ [0.5𝜋, 0.98𝜋].
Fig. 2.8 shows the RMSE in detected in-band source angles using root-MUSIC.
Covariance estimates are obtained by using 100 snapshots, and 5000 Monte Carlo
runs are used. Indeed, the RMSE of the coherent method is slightly smaller than
that of the noncoherent method, and is much smaller than that of using only one
polyphase component.

2.3 Convolutional Beamspace for Sparse Arrays
In this section, we show that CBS can be also applied to sparse arrays. In Sec.
2.3.1, the idea of difference coarrays for sparse arrays is reviewed. In Sec. 2.3.2, we
show how to do CBS in the coarray domain, as depicted in (2.44) or (2.45). In Sec.
2.3.3, we show that we can again use uniform decimation to reduce computational
complexity, and the decimated output (2.48) still has the Vandermonde structure
of the ULA output. Hence, root-MUSIC and ESPRIT can be directly applied
to the filtered and decimated coarray output without further adjustment. A brief
discussion of computational complexity is given in Sec. 2.3.4. Finally, simulations
are presented in Sec. 2.3.5.

Consider linear arrays for which the sensor locations are at 𝑛𝜆/2 where 𝑛 ∈ N =

{𝑛0, 𝑛1, · · · , 𝑛𝑁−1}. The integer set N defines the array. For a ULA, we have
N = {0, 1, 2, · · · , 𝑁 − 1}. More generally N can be a sparse array like the nested
array [32], coprime array [40], or minimum redundancy array (MRA) [3]. One
advantage of sparse arrays over ULAs is that it is possible to estimate 𝑂 (𝑁2) DOAs
using an 𝑁-sensor sparse array [32].

Let 𝑥(𝑛𝑖), 0 ≤ 𝑖 ≤ 𝑁 − 1 be the array output. One can still use a filter ℎ(𝑖)
to perform a “convolution” as before, that is, 𝑦(𝑚) =

∑
𝑖 𝑥(𝑛𝑖)ℎ(𝑚 − 𝑖). But this

is not useful because the array output in response to a single DOA has the form
𝑥(𝑛𝑖) = 𝑐𝑒 𝑗𝜔𝑛𝑖 ≠ 𝑒 𝑗𝜔𝑖 (except for a ULA). So the vector x = [𝑥(𝑛0) · · · 𝑥(𝑛𝑁−1)]
is not Vandermonde, and Eqs. (2.7) and (2.8) are not true. So a filtering effect like
𝐻 (𝑒 𝑗𝜔𝑘 )a𝑁−𝐿+1(𝜔𝑘 ) cannot be achieved in this way. But we will have better luck
working in the difference coarray domain. This is similar in principle to the idea in
[1] for classical beamspace.
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2.3.1 Difference Coarrays
With the array output

𝑥(𝑛𝑖) =
𝐷∑︁
𝑘=1

𝑐𝑘𝑒
𝑗𝜔𝑘𝑛𝑖 + 𝑒(𝑛𝑖), 𝑛𝑖 ∈ N , (2.38)

the cross-correlation between outputs of sensors 𝑛𝑖 and 𝑛𝑚 is

E[𝑥(𝑛𝑖)𝑥∗(𝑛𝑚)] =
𝐷∑︁
𝑘=1

𝐷∑︁
𝑙=1

E[𝑐𝑘𝑐∗𝑙 ]𝑒
𝑗 (𝜔𝑘𝑛𝑖−𝜔𝑙𝑛𝑚) + 𝜎2

𝑒 𝛿(𝑛𝑖 − 𝑛𝑚) (2.39)

under standard statistical assumptions mentioned in Sec. 2.2. For zero-mean
uncorrelated sources, E[𝑐𝑘𝑐∗𝑙 ] = 𝑝𝑘𝛿(𝑘 − 𝑙), where 𝑝𝑘 = E[|𝑐𝑘 |2] is the power of
the 𝑘th source. So

𝑅(𝑛𝑖 − 𝑛𝑚) ≜ E[𝑥(𝑛𝑖)𝑥∗(𝑛𝑚)]

=

𝐷∑︁
𝑘=1

𝑝𝑘𝑒
𝑗𝜔𝑘 (𝑛𝑖−𝑛𝑚) + 𝜎2

𝑒 𝛿(𝑛𝑖 − 𝑛𝑚),

which depends only on the difference 𝑛𝑖 − 𝑛𝑚 between sensor locations, hence the
notation 𝑅(𝑛𝑖 − 𝑛𝑚). The difference coarray C of the array N = {𝑛𝑖} is the set of all
possible differences 𝑛𝑖−𝑛𝑚 between sensor locations. By estimating E[𝑥(𝑛𝑖)𝑥∗(𝑛𝑚)]
using snapshot averages, we can estimate

𝑅(𝑙) =
𝐷∑︁
𝑘=1

𝑝𝑘𝑒
𝑗𝜔𝑘 𝑙 + 𝜎2

𝑒 𝛿(𝑙) (2.40)

for all 𝑙 ∈ C. The difference coarray is symmetric in the sense that if 𝑙 ∈ C, then
−𝑙 ∈ C. Let the largest element in C be 𝑍 , and let𝑈 be the largest integer such that
the uniform region −(𝑈 − 1) ≤ 𝑙 ≤ 𝑈 − 1 is in C. Then −(𝑈 − 1) ≤ 𝑙 ≤ 𝑈 − 1
is called the central ULA segment of the difference coarray. If 𝑈 < 𝑍 , the region
𝑈 ≤ 𝑙 ≤ 𝑍 − 1 contains some integers which do not belong in C, called holes in the
coarray, and in particular 𝑈 is a hole. Note that for an array with hole-free coarray
(like the nested array), the coarray itself is the central ULA segment. Since (2.40)
can be estimated for all 𝑙 ∈ C, we can in particular estimate 𝑅(𝑙) over the central
ULA segment −(𝑈 − 1) ≤ 𝑙 ≤ 𝑈 − 1, and define a Hermitian Toeplitz matrix

R =


𝑅(0) 𝑅∗(1) · · · 𝑅∗(𝑈 − 1)
𝑅(1) 𝑅(0) · · · 𝑅∗(𝑈 − 2)
...

...
. . .

...

𝑅(𝑈 − 1) 𝑅(𝑈 − 2) · · · 𝑅(0)


. (2.41)
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All elements of the matrix can be estimated by averaging 𝑥(𝑛𝑖)𝑥∗(𝑛𝑚) over snapshots,
and over all 𝑛𝑖, 𝑛𝑚 that produce identical difference 𝑙 = 𝑛𝑖 − 𝑛𝑚. This estimate of R
was denoted as R̃ in [79]. By computing the noise eigenspace of R̃ we can estimate
the DOAs 𝜔𝑘 using standard methods such as MUSIC. In general, R̃ may fail to
be positive definite because it is a finite snapshot estimate. But it is shown in [79]
that if we order its eigenvalues in terms of their absolute values and define the noise
subspace accordingly, this always works.

2.3.2 Convolutional Beamspace in the Coarray Domain
Consider an FIR filter 𝐺 (𝑧) = 𝐻 (𝑧)𝐻∗(1/𝑧∗) where 𝐻 (𝑧) = ∑𝐿−1

𝑛=0 ℎ(𝑛)𝑧−𝑛 so that
𝐺 (𝑒 𝑗𝜔) = |𝐻 (𝑒 𝑗𝜔) |2 ≥ 0. We have

𝐺 (𝑧) =
𝐿−1∑︁

𝑘=−𝐿+1
𝑔(𝑘)𝑧−𝑘 , (2.42)

where 𝑔(𝑘) = ∑
𝑛 ℎ(𝑛)ℎ∗(𝑛 − 𝑘) and 𝑔(𝑘) = 𝑔∗(−𝑘). Assume 𝐿 < 𝑈 and define the

finite duration signal

𝑅(𝑢) (𝑙) =

𝑅(𝑙), −(𝑈 − 1) ≤ 𝑙 ≤ 𝑈 − 1

0, otherwise
, (2.43)

where 𝑅(𝑙) is as in (2.40). This is 𝑅(𝑙) restricted to the central ULA portion of the
coarray, hence the superscript “(𝑢)”. Now consider the convolution

𝑅0(𝑛) =
𝑈−1∑︁

𝑙=−(𝑈−1)
𝑅(𝑢) (𝑙)𝑔(𝑛 − 𝑙), (2.44)

which can be nonzero in −(𝑈 + 𝐿 − 2) ≤ 𝑛 ≤ 𝑈 + 𝐿 − 2. In the restricted range
S = {𝑛 | −(𝑈 − 𝐿) ≤ 𝑛 ≤ 𝑈 − 𝐿}, we have

𝑅0(−(𝑈 − 𝐿))
𝑅0(−(𝑈 − 𝐿 − 1))

...

𝑅0(𝑈 − 𝐿)

︸                    ︷︷                    ︸
r0

= Gco


𝑅(−(𝑈 − 1))
𝑅(−(𝑈 − 2))

...

𝑅(𝑈 − 1)

︸             ︷︷             ︸
r

, (2.45)

where Gco is the banded Toeplitz matrix

𝑔(𝐿 − 1) · · · 𝑔(−(𝐿 − 1)) 0 · · · 0

0 . . .
. . .

. . .
...

...
. . . 0

0 · · · 0 𝑔(𝐿 − 1) · · · 𝑔(−(𝐿 − 1))
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of size (2(𝑈 − 𝐿) + 1) × (2𝑈 − 1). Thus, all the 2𝐿 − 1 filter coefficients 𝑔(𝑘) are
involved in the computation of 𝑅0(𝑛) in 𝑛 ∈ S, so that r0 in (2.45) defines the steady
state portion of the output. We refer to r0 as the coarray convolutional beamspace
signal generated from the ULA segment r of the coarray. In this steady state, we
can readily verify that

𝑅0(𝑛) =
𝐷∑︁
𝑘=1

𝑝𝑘𝐺 (𝑒 𝑗𝜔𝑘 )𝑒 𝑗𝜔𝑘𝑛 + 𝜎2
𝑒 𝑔(𝑛), 𝑛 ∈ S. (2.46)

Since 𝑝𝑘𝐺 (𝑒 𝑗𝜔) ≥ 0, the quantity 𝑅0(𝑛) in (2.46) resembles the autocorrelation of
a sum of sinusoids buried in noise with autocorrelation 𝜎2

𝑒 𝑔(𝑛), and in particular
𝑅0(𝑛) = 𝑅∗

0(−𝑛). The DOA𝜔𝑘 is filtered by𝐺 (𝑒 𝑗𝜔𝑘 ), so if𝐺 (𝑒 𝑗𝜔) is a good lowpass
filter with passband width ≈ 2𝜋/𝑀, then

𝑅0(𝑛) ≈
𝐷0∑︁
𝑘=1

𝑝𝑘𝐺 (𝑒 𝑗𝜔𝑘 )𝑒 𝑗𝜔𝑘𝑛 + 𝜎2
𝑒 𝑔(𝑛), 𝑛 ∈ S, (2.47)

where 𝐷0 is the number of sources falling within the passband of the filter 𝐺 (𝑒 𝑗𝜔).

In summary, the DOAs in a narrow subband can be isolated by this coarray filtering.
Restricting the filtering to the ULA portion of the coarray (as in (2.43)) and con-
sidering only the outputs in the steady state S, we ensure the exact relation (2.46).
Since the filter, by design, satisfies 𝐺 (𝑒 𝑗𝜔) ≥ 0, (2.46) is still a valid autocorrela-
tion truncated to S. Since the steady state domain S still looks like a ULA (i.e.,
(2.46) has the Vandermonde structure with respect to 𝑛 ∈ S), we can directly apply
root-MUSIC or ESPRIT without any additional steps. As 𝑈 is typically as large as
𝑂 (𝑁2), we can design a sharp-cutoff filter with good stopband attenuation by using
a relatively long filter length 𝐿.

2.3.3 Decimating in the Coarray Domain
Since the filter𝐺 (𝑒 𝑗𝜔) has passband width≈ 2𝜋/𝑀 , we can work with the uniformly
decimated version

𝑅0(𝑀𝑛) =
𝐷∑︁
𝑘=1

𝑝𝑘𝐺 (𝑒 𝑗𝜔𝑘 )𝑒 𝑗𝑀𝜔𝑘𝑛 + 𝜎2
𝑒 𝑔(𝑀𝑛) (2.48)

with 𝑛 restricted such that 𝑀𝑛 ∈ S. Decimation achieves the dimensionality reduc-
tion needed to reduce the computational complexity in the subbands, such reduction
being an integral part of any beamspace processing. If 𝐺 (𝑒 𝑗𝜔) is Nyquist(𝑀), then
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𝑔(𝑀𝑛) = 𝛿(𝑛) and

𝑅0(𝑀𝑛) =
𝐷∑︁
𝑘=1

𝑝𝑘𝐺 (𝑒 𝑗𝜔𝑘 )𝑒 𝑗𝑀𝜔𝑘𝑛 + 𝜎2
𝑒 𝛿(𝑛)

≈
𝐷0∑︁
𝑘=1

𝑝𝑘𝐺 (𝑒 𝑗𝜔𝑘 )𝑒 𝑗𝑀𝜔𝑘𝑛 + 𝜎2
𝑒 𝛿(𝑛). (2.49)

Since the noise term has 𝛿(𝑛) and 𝑝𝑘𝐺 (𝑒 𝑗𝜔𝑘 ) ≥ 0, Eq. (2.49) represents the
autocorrelation of a sum of sinusoids buried in white noise. We now define a 𝑞 × 𝑞
Hermitian Toeplitz matrix (where 𝑞 is the largest integer with (𝑞 − 1)𝑀 ∈ S):

𝑅0(0) 𝑅∗
0(𝑀) · · · 𝑅∗

0((𝑞 − 1)𝑀)
𝑅0(𝑀) 𝑅0(0) · · · 𝑅∗

0((𝑞 − 2)𝑀)
...

...
. . .

...

𝑅0((𝑞 − 1)𝑀) 𝑅0((𝑞 − 2)𝑀) · · · 𝑅0(0)


.

Its eigendecomposition reveals the noise subspace from which the frequencies 𝑀𝜔𝑘
(mod 2𝜋) can be identified (when 𝐷0 < 𝑞). From these we can identify 𝜔𝑘 without
ambiguity as before, by using the fact that only those 𝜔𝑘 that are in the passband
of 𝐺 (𝑒 𝑗𝜔) contribute significantly to 𝑅0(𝑛). Again, for finite snapshots, we order
eigenvalues in terms of their absolute values to define noise subspace [79].

As before, instead of using one filter 𝐺 (𝑒 𝑗𝜔) ≥ 0, we can use a filter bank
𝐺𝑖 (𝑒 𝑗𝜔), 0 ≤ 𝑖 ≤ 𝑀 − 1 with filter responses covering the range 0 ≤ 𝜔 < 2𝜋
as in Fig. 2.3. We now constrain 𝐺𝑖 (𝑒 𝑗𝜔) to be Nyquist(𝑀) with 𝐺𝑖 (𝑒 𝑗𝜔) ≥ 0.
Using these we obtain the decimated coarray CBS signals 𝑅𝑖 (𝑀𝑛), 0 ≤ 𝑖 ≤ 𝑀 − 1.
Analysis of the 𝑖th signal 𝑅𝑖 (𝑀𝑛) reveals the 𝐷𝑖 DOAs falling into the 𝑖th subband.
The union of these DOAs gives the set of all 𝐷 DOAs.

2.3.4 Computational Complexity
The computational advantage of CBS for sparse arrays is similar to CBS for ULAs.
With −(𝑈−1) ≤ 𝑙 ≤ 𝑈−1 being the central ULA segment of the difference coarray,
the complexity of eigenspace computation for CBS is 𝑂 ((𝑈/𝑀)3), which is much
smaller than 𝑂 (𝑈3), the complexity of eigenspace computation for element-space.
(Here, we work in the coarray domain for both CBS and element-space. So, in
this section element-space means “coarray domain without filtering.”) A direct
comparison of running time for CBS, element-space, and classical beamspace is
also presented in Table 2.3.
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Table 2.3: Running time per Monte Carlo Run for coarray based CBS for sparse
arrays (Fig. 2.9) when there are 80 out-of-band DOAs

Algorithm Running time (sec.)
CBS ESPRIT 0.00646
Element-space ESPRIT 0.0447
Classical beamspace root-MUSIC 0.0109
Classical beamspace ESPRIT 0.00796

2.3.5 Simulations
We consider an example where the number of in-band DOAs is greater than the
number of sensors, which is a scenario that makes sparse arrays stand out. A
two-level nested array [32] with each level having 12 sensors is considered, a total
of 24 sensors. CBS ESPRIT is compared with element-space ESPRIT, classical
beamspace root-MUSIC [2], and classical beamspace ESPRIT [18]. We follow the
procedure in [1] to do classical beamspace in the coarray domain. The covariance
in the beamspace is computed by TRT𝐻 , where T is the beamspace transformation
matrix, and R is defined in (2.41). For CBS, a Parks-McClellan filter 𝐻 (𝑧) of length
𝐿 = 16 and with cutoff 𝜋/𝑀 is used, where 𝑀 = 4 is the decimation ratio. So the
filter 𝐺 (𝑧) in (2.42) has length 31. There are 25 in-band DOAs, uniformly placed
in the range 𝜔 ∈ [−0.2𝜋, 0.2𝜋]. We vary the number of out-of-band DOAs, while
they are uniformly placed in 𝜔 ∈ [0.5𝜋, 0.98𝜋]. Covariance estimates are obtained
by using 1000 snapshots, and 5000 Monte Carlo runs are used. The number of
DOAs is assumed unknown and estimated based on the distribution of eigenvalues
of the covariance (see Fig. 2.4). Fig. 2.9(a) shows the probability of resolving the
correct number of in-band DOAs. CBS consistently offers a larger probability of
resolution than element-space and classical beamspace root-MUSIC and ESPRIT,
as the number of out-of-band DOAs varies. Moreover, as shown in Fig. 2.9(b), CBS
has the smallest average of absolute values of bias in detected in-band source angles.
Finally, Fig. 2.9(c) shows that compared to element-space and classical beamspace
ESPRIT, CBS has similar RMSE in detected in-band source angles when there are
fewer out-of-band DOAs. But, CBS has significantly smaller RMSE when there are
more out-of-band DOAs. Note that classical beamspace root-MUSIC always has
zero probability of resolution due to numerical sensitivity issues [2] as we have a
large coarray size 𝑈 = 156; so we do not plot its bias and RMSE in Fig. 2.9(b)-(c).
The running time per Monte Carlo run for each algorithm is shown in Table 2.3. The
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Figure 2.9: Performance of CBS in coarray domain, and element-space in coarray
domain for sparse arrays using ESPRIT. The classical beamspace method in the
coarray domain [1] is also compared using both root-MUSIC and ESPRIT. (a)
Probability of resolution. (b) Average absolute bias. (c) RMSE.

computational complexity of CBS is a little lower than that of classical beamspace
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and about 7 times lower than that of element-space. This example shows that for the
typical scenario of resolving more sources than sensors using sparse arrays, many
benefits of CBS can still be realized. Also, according to our simulations, ESPRIT
typically yields better estimates for CBS in the coarray domain than root-MUSIC.

2.4 Convolutional Beamspace and Sparse Recovery
In this section, we show that CBS can also be used in conjunction with sparse
signal recovery. In Sec. 2.4.1, we show how to integrate CBS into the basic
single-snapshot sparse recovery problem, as depicted in Problem (2.56). In Sec.
2.4.2, we show that we can again use uniform decimation to reduce computational
complexity as in Problem (2.58). In Sec. 2.4.3, the multiple-snapshot version is
also presented, as depicted in Problem (2.60) (without decimation) and Problem
(2.61) (with decimation). The comparison of computational complexity between
CBS and element-space is summarized in Sec. 2.4.4. As only the filter responses
at discrete frequencies on the dictionary grid are relevant, the problem of designing
discrete-frequency FIR filters is addressed in Sec. 2.4.5. Finally, some remarks are
given in Sec. 2.4.6, and simulations are presented in Sec. 2.4.7.

Sparse signal representation techniques for DOA estimation have been studied in
the literature [59]. In this context, a dictionary D of steering vectors a(𝜔𝑖) on a
grid of potential DOAs {𝜔𝑖}𝑑𝑖=1 is considered, and the goal is to find a sparse signal
q = [𝑞1 𝑞2 · · · 𝑞𝑑]𝑇 that well represents the ULA output x:

x = [a𝑁 (𝜔1) a𝑁 (𝜔2) · · · a𝑁 (𝜔𝑑)]︸                                  ︷︷                                  ︸
dictionary D

q + e, (2.50)

where the error term e should be “small.” The number of dictionary atoms 𝑑 is
typically much larger than 𝐷, the number of sources. A popular technique to obtain
the sparse vector q is the Lasso method [80] that solves the following problem:

min
q∈C𝑑

∥q∥1 (2.51a)

subject to ∥x − Dq∥2
2 ≤ 𝛽, (2.51b)

where 𝛽 > 0 is a parameter. The 𝑙1-norm objective (2.51a) serves as a surrogate
for sparsity, and the 𝑙2-norm constraint (2.51b) limits the search space to where the
noise term is small.
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2.4.1 Convolutional Beamspace and Dictionaries
As in (2.5), we convolve the sequence 𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 with an FIR filter
ℎ(𝑛), 0 ≤ 𝑛 ≤ 𝐿 − 1 with 𝐿 < 𝑁, and extract the steady state samples:

y = Hx. (2.52)

As in (2.7), the response to a single DOA is (ignoring noise)

y = Ha𝑁 (𝜔) = 𝑒 𝑗 (𝐿−1)𝜔𝐻 (𝑒 𝑗𝜔)a𝑁−𝐿+1(𝜔). (2.53)

Thus, (2.50) and (2.52) yield

y = [a𝑁−𝐿+1(𝜔1) · · · a𝑁−𝐿+1(𝜔𝑑)] 𝚲ℎq + He, (2.54)

where 𝚲ℎ is a diagonal matrix with 𝑖th diagonal element [𝚲ℎ]𝑖𝑖 = 𝑒 𝑗 (𝐿−1)𝜔𝑖𝐻 (𝑒 𝑗𝜔𝑖 ).
In other words, the diagonal elements are the frequency responses of ℎ(𝑛) eval-
uated at the dictionary frequencies (with some phase shift). If 𝐻 (𝑒 𝑗𝜔) is a good
narrowband lowpass filter, then

y ≈
[
a𝑁−𝐿+1(𝜔1) · · · a𝑁−𝐿+1(𝜔𝑑0)

]︸                                    ︷︷                                    ︸
dictionary D𝐿

q0 + He, (2.55)

where 𝜔1, 𝜔2, . . . , 𝜔𝑑0 are the frequencies within the passband of 𝐻 (𝑒 𝑗𝜔), and
q0 ∈ C𝑑0 is a significantly shorter vector than q. Thus, a Lasso problem can be
formulated for the CBS signal y as

min
q0∈C𝑑0

∥q0∥1 (2.56a)

subject to ∥y − D𝐿q0∥2
2 ≤ 𝛽. (2.56b)

Here, the original dictionary D in (2.51b) is replaced by the dictionary D𝐿 for CBS.

2.4.2 Decimation for Dictionaries
To reduce computational complexity by dimensionality reduction, we decimate the
CBS signal y by 𝑀 if 𝐻 (𝑒 𝑗𝜔) is a good filter with passband width ≈ 2𝜋/𝑀 . Let
𝑣(𝑛) = 𝑦(𝑛 + 𝐿 − 1) so that y = [𝑣(0) 𝑣(1) · · · 𝑣(𝑁 − 𝐿)]𝑇 . Let 𝑣0(𝑛) = 𝑣(𝑀𝑛)
and v0 = [𝑣0(0) 𝑣0(1) · · · 𝑣0(𝐽0 − 1)]𝑇 , where 𝐽0 = ⌈(𝑁 − 𝐿 + 1)/𝑀⌉, so the
decimated version

v0 = [𝑣(0) 𝑣(𝑀) · · · 𝑣((𝐽0 − 1)𝑀) ]𝑇 . (2.57)



47

Then, we obtain the complexity-reduced problem

min
q0∈C𝑑0

∥q0∥1 (2.58a)

subject to ∥v0 − D𝐿,0q0∥2
2 ≤ 𝛽, (2.58b)

where D𝐿,0 is the matrix obtained by retaining the rows 0, 𝑀, . . . , (𝐽0 − 1)𝑀 of D𝐿 .

2.4.3 Multiple Snapshots for Dictionaries
The previous formulation is for a single snapshot. For multiple snapshots, we
adopt the ℓ1-SVD method proposed in [59]. Suppose we have 𝐾 snapshots, X =

[x(1) x(2) · · · x(𝐾)]. To reduce dimensionality, we take the SVD X = U𝚺V𝐻 and
retain a 𝑁 × 𝑘 matrix containing most of the signal power: XSV = U𝚺J𝑘 = XVJ𝑘 ,
where J𝑘 = [I𝑘 0]𝑇 . We often take 𝑘 < 𝐾 to be roughly the number of sources, and
the original formulation of the ℓ1-SVD method is then [59]

min
Q∈C𝑑×𝑘

∥Q∥1,2 (2.59a)

subject to ∥XSV − DQ∥2
𝐹 ≤ 𝛽, (2.59b)

where ∥Q∥1,2 =
∑
𝑚

√︁∑
𝑛 | [Q]𝑚,𝑛 |2. That is, the ℓ2-norm across singular vector

samples is first computed for each spatial index, and then the ℓ1-norm is computed
across spatial samples for sparsity.

CBS can also be applied to the multiple snapshot scheme based on the ℓ1-SVD
method. We first convolve the spatial samples of each snapshot with a filter ℎ(𝑛) of
length 𝐿 and extract the steady state samples: Y = HX, similar to (2.52). Then, we
take the SVD Y = U𝑌𝚺𝑌V𝐻

𝑌
and retain a (𝑁 − 𝐿 + 1) × 𝑘0 matrix containing most

of the signal power: YSV = U𝑌𝚺𝑌J𝑘0 = YV𝑌J𝑘0 . A multiple-snapshot version of
Problem (2.56) can then be formulated as

min
Q0∈C𝑑0×𝑘0

∥Q0∥1,2 (2.60a)

subject to ∥YSV − D𝐿Q0∥2
𝐹 ≤ 𝛽. (2.60b)

Likewise, a decimated version can be considered. Let V0 = [v0(1) v0(2) · · · v0(𝐾)]
be the multiple-snapshot counterpart of (2.57). Then, we take the SVD V0 =

U𝑉𝚺𝑉V𝐻
𝑉

and retain a 𝐽0 × 𝑘0 matrix containing most of the signal power: VSV =

U𝑉𝚺𝑉J𝑘0 = V0V𝑉J𝑘0 . Then, a multiple-snapshot version of Problem (2.58) can be
formulated as

min
Q0∈C𝑑0×𝑘0

∥Q0∥1,2 (2.61a)

subject to ∥VSV − D𝐿,0Q0∥2
𝐹 ≤ 𝛽. (2.61b)
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Problem (2.61) is expected to yield better performance than Problem (2.59) because
fewer DOAs are to be recovered in (2.61). This is indeed the case as we shall see in
simulations (Sec. 2.4.7).

2.4.4 Computational Complexity
An important advantage of CBS is reduced computational complexity. The compar-
ison of computational complexity between CBS and element-space is summarized in
Table 2.4. Assume that the filter 𝐻 (𝑒 𝑗𝜔) used in CBS has passband width ≈ 2𝜋/𝑀 ,
and that the dictionary grid𝜔𝑖 is a uniform grid of frequencies in [0, 2𝜋). Then, 𝑑 in
Problem (2.51) and 𝑑0 in Problems (2.56) and (2.58) are related by 𝑑0 ≈ 𝑑/𝑀 . That
is, the number of optimization variables of CBS is only 1/𝑀 of that of element-space
for the single-snapshot case.

Table 2.4: Comparison of computational complexity of sparse recovery methods

Algorithm Number of optimization variables
Element-space (single snapshot) 𝑑

Element-space ℓ1-SVD (multiple-snapshot) 𝑑𝑘

CBS (single snapshot) 𝑑0 ≈ 𝑑/𝑀
CBS ℓ1-SVD (multiple-snapshot) 𝑑0𝑘0 ≈ 𝑑𝑘/𝑀2

Next, consider the multiple-snapshot case. According to [59], to get adequate
performance, we have to take 𝑘 to be roughly the number of sources 𝐷 in Problem
(2.59). As only the 𝐷0 sources in the passband are effective after filtering, we can
take 𝑘0 ≈ 𝐷0 in Problem (2.60). If the sources are roughly uniformly distributed,
then 𝐷0 ≈ 𝐷/𝑀 , so 𝑘0 ≈ 𝐷/𝑀 . Then, 𝑑𝑘 in Problem (2.59) and 𝑑0𝑘0 in Problems
(2.60) and (2.61) are related by 𝑑0𝑘0 ≈ 𝑑𝑘/𝑀2. That is, the number of optimization
variables of CBS is only 1/𝑀2 of that of element-space for the multiple-snapshot
case using the ℓ1-SVD method. This can be a very significant complexity reduction.
A direct comparison of running time for CBS and element-space is also presented
in Table 2.5.

2.4.5 Filters Designed for Dictionaries
An interesting question that arises for CBS dictionaries is how to design the filter
𝐻 (𝑒 𝑗𝜔). One can directly adopt standard methods such as the Parks-McClellan
algorithm, the window method, and so on [63], but these standard filters are designed
to be optimal or sub-optimal over continuous frequencies 𝜔. The fact that only the
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response 𝐻 (𝑒 𝑗𝜔𝑖 ) at the discrete frequencies 𝜔𝑖, 𝑖 = 1, . . . , 𝑑 are relevant to CBS
dictionaries, as in (2.54), can be leveraged to design better filters for dictionaries.

Consider a Type I [63, 66] linear-phase FIR filter ℎ(𝑛), 0 ≤ 𝑛 ≤ 𝐿 − 1 such that 𝐿
is odd and that ℎ(𝑛) is even symmetric, i.e., ℎ(𝐿 − 1 − 𝑛) = ℎ(𝑛). Type I is just
for illustration, and other types of linear-phase FIR filters can be designed similarly.
It can be shown that 𝐻 (𝑒 𝑗𝜔) = 𝑒− 𝑗𝜔

𝐿−1
2 𝐴(𝜔), where 𝐴(𝜔) =

∑𝑀
𝑚=0 𝑏𝑚 cos(𝑚𝜔)

where 𝑀 = (𝐿 − 1)/2, 𝑏0 = ℎ(𝑀), and 𝑏𝑚 = 2ℎ(𝑀 − 𝑚) otherwise. Note that
|𝐴(𝜔) | is the magnitude response. Then, a standard minimax filter design problem
can be formulated as [63]

min
ℎ( 𝐿−1

2 ),...,ℎ(𝐿−1)
max

𝜔∈Ω𝑝∪Ω𝑠

|𝑊 (𝜔) (𝐴(𝜔) − 𝐴𝑑 (𝜔)) | , (2.62)

where Ω𝑝 is the passband, Ω𝑠 is the stopband,

𝐴𝑑 (𝜔) =
{

1, 𝜔 ∈ Ω𝑝

0, 𝜔 ∈ Ω𝑠

(2.63)

is the desired magnitude response, and𝑊 (𝜔) is a weighting function such that

𝑊 (𝜔) =
{

1, 𝜔 ∈ Ω𝑝

𝜆, 𝜔 ∈ Ω𝑠

(2.64)

for some design parameter 𝜆 > 0. Note that 𝑊 (𝜔) (𝐴(𝜔) − 𝐴𝑑 (𝜔)) is affine in the
variables ℎ( 𝐿−1

2 ), . . . , ℎ(𝐿 − 1), and that the absolute function is a convex function.
Hence, since the composition of a convex function with an affine mapping is still
convex, |𝑊 (𝜔) (𝐴(𝜔) − 𝐴𝑑 (𝜔)) | is convex. Moreover, the pointwise supremum of a
collection of convex functions is still convex, so we conclude that Problem (2.62) is
a convex problem. Traditionally, the passband Ω𝑝 and stopband Ω𝑠 are continuous.
However, as described earlier, only the frequency response 𝐻 (𝑒 𝑗𝜔𝑖 ) at the discrete
frequency grid {𝜔𝑖}𝑑𝑖=1 are relevant, so instead of (2.62), we can consider

min
ℎ( 𝐿−1

2 ),...,ℎ(𝐿−1)
max

𝜔∈Ω′
𝑝∪Ω′

𝑠

|𝑊 (𝜔) (𝐴(𝜔) − 𝐴𝑑 (𝜔)) | , (2.65)

where Ω′
𝑝 = {𝜔𝑖, 1 ≤ 𝑖 ≤ 𝑑 | 𝜔𝑖 ∈ Ω𝑝} and Ω′

𝑠 = {𝜔𝑖, 1 ≤ 𝑖 ≤ 𝑑 | 𝜔𝑖 ∈ Ω𝑠}. We
may also choose a sparser frequency grid (e.g., only include even 𝑖’s) for Problem
(2.65) to obtain a potentially better filter. See Fig. 2.11(a) for an example. Problem
(2.65) can be readily solved by any numerical convex program solver such as CVX
[81]. Such a filter should have a better response than a standard filter in the literature
(e.g., firpm of MATLAB®) over the discrete frequencies 𝜔1, . . . , 𝜔𝑑 .
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2.4.6 Remarks
1) The choice of the grid of potential DOAs {𝜔𝑖}𝑑𝑖=1 is in the designer’s hands.
One way is to choose a uniform grid in 𝜔. Another is to choose a grid uniform
in the physical DOA 𝜃. Recall that 𝜔 = 𝜋 sin 𝜃. Hence, the second way leads
to a nonuniform grid in 𝜔, with denser points in high-frequency part and sparser
points in low-frequency part. It is hard to say which type, uniform or nonuniform,
is better because it depends on the actual locations of the DOAs. Yet, if the DOAs
are expected to be uniformly distributed over the physical angle 𝜃, it makes sense
to choose the nonuniform type. An interesting observation is that the type of the
grid also affects the result of filter design. For example, suppose we want to design
a lowpass filter 𝐻 (𝑒 𝑗𝜔). If we choose the nonuniform type of grid, with denser
points in high-frequency part, then the resulting filter will have better attenuation
for the high-frequency stopband. That is, the density of the grid points induces a
weighting effect across different frequency bands. See Fig. 2.12 for a numerical
demonstration.

2) Instead of using a filter 𝐻 (𝑒 𝑗𝜔), we can use a filter bank 𝐻𝑖 (𝑒 𝑗𝜔), 0 ≤ 𝑖 ≤ 𝑀 − 1
to cover the full range 0 ≤ 𝜔 < 2𝜋 as in Fig. 2.3. Using these, we obtain the
CBS signals y𝑖, 0 ≤ 𝑖 ≤ 𝑀 − 1. Solving an optimization problem as in (2.56) for
each y𝑖 in parallel reveals the 𝐷𝑖 DOAs falling into the 𝑖th subband. The union of
these DOAs gives the set of all 𝐷 DOAs. Similar idea can be applied to Problems
(2.58), (2.60), and (2.61). Note that here we do not confine each filter 𝐻𝑖 (𝑒 𝑗𝜔) to
be a spectral factor of a Nyquist filter as we did for subspace-based methods such
as MUSIC because the property that the noise is white is not used in sparse signal
recovery.

3) One method for selecting the parameter 𝛽 in the sparse recovery problems (e.g.,
Problem (2.51)) was proposed in [59]. The method is based on estimating the
variance of the left hand side of the constraint (e.g., ∥x − Dq∥2

2 in (2.51b)). It was
originally proposed for element-space, but we can extend the method to CBS. In the
simulations, we will follow this method to choose 𝛽.

2.4.7 Simulations
Unlike in subspace-based methods such as MUSIC, where we estimate the number
of DOAs and their locations separately, for dictionaries, we estimate them together.
Specifically, for element-space, after getting the optimal solution Q̂ for Problem
(2.59), we plot the dictionary power spectrum 𝑃(𝜔𝑖) =

∑
𝑛 |Q̂𝑖𝑛 |2 for 1 ≤ 𝑖 ≤ 𝑑.
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Figure 2.10: Performance of CBS and element-space dictionaries when there are
many out-of-band DOAs. (a) Probability of resolution. (b) Typical dictionary power
spectrum of CBS. (c) Typical dictionary power spectrum of element-space.

Then, we declare that there is a source at 𝜔𝑖 if there is a peak (local maximum)
that is larger than a particular threshold: 𝑃(𝜔𝑖) ≥ 𝜖 . The same method is used for
CBS. See Fig. 2.10(a)-(b) for an example (described below). In all examples, we
use 𝜆 = 1 in (2.64).
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We first compare the most complexity-reduced version of CBS (2.61) with the
element-space (2.59) under multiple snapshots. Consider a ULA with 𝑁 = 99
sensors. First assume a Parks-McClellan filter 𝐻 (𝑧) of length 𝐿 = 16 and with
cutoff 𝜋/𝑀 is used, where 𝑀 = 4 is the decimation ratio. A dictionary of 200 points
uniform in 𝜔 is used. There are two in-band DOAs at angles −0.573◦ and 0.573◦,
which are exactly on the grid of the dictionary for simplicity. We vary the number of
out-of-band DOAs, while they are uniformly placed in the range 𝜔 ∈ [0.5𝜋, 0.98𝜋].
The reduced dimension for the ℓ1-SVD method in (2.59) and (2.61) is chosen as
𝑘 = 𝑘0 = 3. The peak threshold 𝜖 = 0.1 is used (with the spectrum normalized
to have a maximum value 1). We choose 𝛽 = 641.7 in (2.59b) and 𝛽 = 221.7
in (2.61b) according to the method in [59], as described in Remark 3 above. Fig.
2.10(a) shows the probability of resolving the correct number of in-band DOAs. We
use 𝐾 = 100 snapshots and 100 Monte Carlo runs to get the plot. As the number of
out-of-band DOAs increases, the probability of resolution decreases significantly for
element-space, while the probability of resolution is always one for CBS due to good
stopband attenuation. Note that there is a trade-off between the performance and
the reduced dimension 𝑘 for the ℓ1-SVD method for element-space. A large 𝑘 can
lead to better performance, but it requires higher computational complexity. Typical
dictionary power spectra of CBS and element-space for a Monte Carlo run with
10 out-of-band DOAs are shown in Fig. 2.10(b)-(c). For CBS, only the passband
part is plotted. The two in-band DOAs are clearly distinguished by CBS, but they
cannot be resolved by element-space. The running time per Monte Carlo run for
CBS and element-space is shown in Table 2.5. The computational complexity of
CBS is about 9 times lower than that of element-space.

Table 2.5: Running time per Monte Carlo run for dictionary methods (Fig. 2.10)
when there are 10 out-of-band DOAs

Algorithm Running time (sec.)
CBS 0.458
Element-space 4.13

Next, the impact of a well-designed minimax-discrete type filter described in Sec.
2.4.5 (instead of the Parks-McClellan filter) is studied. Consider a ULA with 𝑁 = 99
sensors. Problem (2.61) is to be solved again. A dictionary of 200 points uniform in
𝜔 is used. We compare lowpass FIR filters with length 𝐿 = 16 designed using the
Parks-McClellan algorithm [63] and our minimax-discrete optimization problem
(2.65). The passband is Ω𝑝 = [0, 0.1𝜋], and the stopband is Ω𝑠 = [0.4𝜋, 𝜋]. For
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Figure 2.11: Performance of minimax-discrete and Parks-McClellan filters for CBS
dictionaries when there are powerful out-of-band sources. (a) Filter responses. (b)
Probability of resolution. (c) RMSE.

the filter design problem (2.65), we use a grid of 50 points uniform in 𝜔, which
is sparser than the dictionary grid. Two in-band DOAs are at angles −0.6◦, 0.6◦
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with equal powers 𝑝𝑘 = 1, and 10 out-of-band DOAs are uniformly placed in the
range 𝜔 ∈ [0.5𝜋, 0.98𝜋] with varying equal powers. Here all the DOAs are not on
the dictionary grid, in contrast to the previous example. The decimation ratio is
𝑀 = 4. The reduced dimension for the ℓ1-SVD method is chosen as 𝑘0 = 2. The
same peak threshold 𝜖 = 0.1 is used, and we choose 𝛽 = 1338 in (2.61b) according
to the method in [59], as described in Remark 3 in Sec. 2.4.6. In Fig. 2.11(a),
the magnitude responses of the filters are plotted. Although the minimax-discrete
type filter is optimized only over a discrete grid, it has better attenuation over the
whole continuous stopband. We experimentally found that if we use a grid of 200
rather than 50 points for filter design, the resulting minimax-discrete filter is almost
the same as the Park-McClellan filter. This is expected because the denser the grid,
the closer the discrete type to the continuous type. Due to the better stopband
attenuation, as we vary the power of the out-of-band sources, the minimax-discrete
filter has larger probability of resolving the correct number of in-band DOAs and
smaller RMSE in detected in-band source angles, as shown in Fig. 2.11(b)-(c).
Here we use 𝐾 = 100 snapshots and 100 Monte Carlo runs. Due to the powerful
out-of-band DOAs, element-space always has zero probability of resolution, so is
not plotted in Fig. 2.11. For smaller out-of-band source power in Fig. 2.11(c),
the minimum possible RMSE (≈ 10−3), which is the distance between each true
DOA and the closest grid point, is achieved. This example shows that designing
discrete-frequency filters specifically for CBS dictionaries makes a difference.
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Figure 2.12: Responses of minimax-discrete filters designed based on different types
of grids.

Finally, Fig. 2.12 shows how the design result of minimax-discrete type filers
is affected by the type of grid. The filter length is 𝐿 = 16. The passband is
Ω𝑝 = [0, 0.1𝜋], and the stopband is Ω𝑠 = [0.4𝜋, 𝜋]. Grids of 50 points uniform in
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𝜔 and uniform in 𝜃 are compared. Due to the denser grid points in high frequencies,
the latter has a better attenuation in the high-frequency range at the expense of a
worse response around the transition band. Hence, if there are powerful out-of-band
sources far from the transition band, the latter is better, but if they are near the
transition band, the former is better.

2.5 Sliding-Capon Based Convolutional Beamspace
In this section, we propose a new method to design the CBS FIR filter 𝐻 (𝑧) based
on the technique of Capon beamforming [36]. In Sec. 2.2, the filter was designed
by standard methods such as the equiripple method or the window method [63].
These methods yield a reasonably well-behaved lowpass filter, and sources falling
in the stopband are assumed to be sufficiently attenuated, so we can identify the
passband DOAs. However, such a filter was not designed by taking input statistics
into account. In this section, we show that by designing the filter as a sliding
(convolutional) Capon beamformer, the sources that fall in the stopband can be better
suppressed, as they are treated as “interference” in the Capon method. This new
method is called Capon-CBS. DOA estimation using subspace methods following
Capon-CBS performs better than those using traditional CBS. Capon preprocessing
was done earlier in the context of atomic norm minimization [82], but our focus
here is convolutional Capon preprocessing.

Unlike in beamforming where we have an assumed look direction 𝜔0, in DOA
estimation under CBS, we require a flat passband in which the DOAs of interest are
located as shown in Sec. 2.2. However, the Capon beamformer typically does not
yield a flat passband in the neighborhood of 𝜔0. To make the passband look like a
conventional flat passband, we can use a robust Capon beamforming method [83–
85]. In this section, we use the method in [83]. Even with the robust method, the
overall computational complexity of Capon-CBS is still much lower than element-
space. Capon-CBS can offer higher probability of resolution and smaller mean
square error for DOA estimation, compared to traditional CBS.

The outline of this section is as follows. The design of the CBS filter based
on a sliding Capon beamformer is introduced in Sec. 2.5.1. The use of robust
Capon beamforming and the detailed steps of Capon-CBS for DOA estimation are
elaborated in Sec. 2.5.2. Simulations in Sec. 2.5.3 demonstrate the performance of
Capon-CBS.
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2.5.1 Sliding Capon Beamformer for CBS
In traditional beamforming, we consider the array output

x = 𝑐0a𝑁 (𝜔0) + u, (2.66)

where u = Ac+e is the interference plus noise. The quantity𝜔0 represents the “look
direction,” i.e., the direction in which we want to point the beam, 𝑐0 is the amplitude
of the signal coming from that direction, and A, c, e are as defined in (2.1). The
output of the beamformer can be expressed as h𝐻x, where h = [ℎ(0) · · · ℎ(𝑁 − 1)]
is a complex weighting vector. The output signal-to-interference-plus-noise ratio
(SINR) of the beamformer is defined as

SINR =
E[|𝑐0h𝐻a𝑁 (𝜔0) |2]

E[|h𝐻u|2]
=
𝑝0 |h𝐻a𝑁 (𝜔0) |2

h𝐻Ruuh
, (2.67)

where 𝑝0 = E[|𝑐0 |2] and Ruu = E[uu𝐻]. When the signal is uncorrelated with the
interference, the Capon beamformer [36], which is the solution to the optimization
problem

min
h

h𝐻Rxxh

subject to h𝐻a𝑁 (𝜔0) = 1, (2.68)

maximizes the SINR, where Rxx = E[xx𝐻]. The solution to this problem is given
by

h =
R−1

xx a𝑁 (𝜔0)
a𝐻
𝑁
(𝜔0)R−1

xx a𝑁 (𝜔0)
. (2.69)

In practice, Rxx is replaced by its estimate R̂xx =
∑𝐾
𝑘=1 x[𝑘]x𝐻 [𝑘]/𝐾 , where 𝐾 is

the number of snapshots.

Now consider Fig. 2.13(a) where we have an 𝑁-sensor array, with an 𝐿-tap beam-
former, with 𝐿 < 𝑁 . Assume that the taps are chosen as in the optimal Capon [36]
beamformer for the first 𝐿 sensors. Now, if we shift the taps to the right as shown in
Fig. 2.13(b), then this continues to be the optimal beamformer for the next 𝐿 sensors,
provided the 𝐿×𝐿 covariance matrix for the first 𝐿 sensor outputs is the same as that
for the second 𝐿 sensor outputs. This happens if there is spatial wide sense station-
arity (WSS) in the sensor output signals. So, as the taps slide along from extreme
left to extreme right as in Fig. 2.13, the outputs 𝑦(𝐿 − 1), 𝑦(𝐿), . . . , 𝑦(𝑁 − 1) can
be regarded as optimal beamformer outputs, generated from successive subarrays of
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Figure 2.13: (a)-(c) An 𝑁-sensor array with an 𝐿-sensor sliding beamformer.

the original array. The spatial WSS property is achieved under the usual assumption
that all the sources 𝑐𝑖 are uncorrelated because in this case,

Rxx =

𝐷∑︁
𝑖=0

𝑝𝑖a𝑁 (𝜔𝑖)a𝐻𝑁 (𝜔𝑖) + 𝜎2
𝑒 I (2.70)

is a Toeplitz matrix, where 𝑝𝑖 = E[|𝑐𝑖 |2].

Now we compare the sliding beamformer in Fig. 2.13 with the convolution stage of
CBS (2.5) or Fig. 2.1. The two systems are the same except that the taps in one are
reversed and conjugated with respect to the other. So in the CBS stage, if we choose
the filter coefficients to be the reverse-conjugates of the 𝐿-tap Capon beamformer,
then the CBS signals 𝑦(𝑛) are optimal beamformer outputs and furthermore belong
in the “passband” of the beamformer! The CBS stage designed in this way will be
called sliding Capon-CBS or just Capon-CBS.

In traditional CBS (Sec. 2.2), the filter 𝐻 (𝑧) was designed as a standard (say, a
Parks-McClellan) lowpass filter. Sources falling in the stopband are assumed to be
sufficiently attenuated, so we can identify the passband DOAs. But the filter was
not designed by taking input statistics into account. The Capon-CBS filter above is
designed based on data, so it should do a better job of suppressing the sources that
fall in the stopband, as they are treated as “interference” in the Capon method.
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2.5.2 Capon-CBS for DOA Estimation
The sliding Capon beamformer produces the 𝑁 − 𝐿 + 1 samples 𝑦(𝑛) in (2.5). We
can use these to perform DOA estimation similar to Sec. 2.2, or we can perform a
second stage of beamforming using these 𝑦(𝑛). In this section, we focus on DOA
estimation. Unlike for beamforming where we have an assumed look direction 𝜔0,
for DOA estimation following the CBS stage, we require a flat passband in which
the DOAs of interest are located. Yet the Capon beamformer (2.69) typically does
not yield a flat passband in the neighborhood of 𝜔0, although |𝐻 (𝑒 𝑗𝜔0) | = 1. To
make the passband look like a conventional flat passband, we can adopt any robust
Capon beamforming method [83–85] so that |𝐻 (𝑒 𝑗𝜔) | ≈ 1 for all 𝜔 in the passband.
Here we use the method in [83] so that instead of (2.68) (with 𝑁 replaced by 𝐿), the
𝐿-tap robust beamformer is the solution to the problem

min
h

h𝐻Rxxh

subject to Re{h𝐻a} ≥ 1 ∀a ∈ E, (2.71)

where Re denotes the real part, and E is an 𝐿-dimensional ellipsoid that covers the
range of values of a𝐿 (𝜔) in the passband. It is shown in [83] that this problem
can be solved by Lagrange multiplier methods, and the computational complexity
is still 𝑂 (𝐿3), the same as that for computing the Capon beamformer. This is
important because one significant advantage of CBS over element-space is the
lower computational complexity, which should not be compromised. We will show
by simulations that this advantage is still preserved when the robust beamforming
method in [83] is used.

For purposes of computation [83], the beamformer will be expressed explicitly in
terms of real and imaginary components: [Re{h𝑇 } Im{h𝑇 }]𝑇 ≜ h̃ where h =

[ℎ∗(𝐿 − 1) ℎ∗(𝐿 − 2) · · · ℎ∗(0)]𝑇 . In summary, Capon-CBS design for DOA
estimation involves the following steps:

1. Design the CBS filter coefficients h̃ as the solution to

min
h̃

h̃𝐻R̃𝐿h̃

subject to Re{h̃𝐻a} ≥ 1 ∀a ∈ E, (2.72)

where R̃𝐿 =
∑𝑁−𝐿
𝑖=0 E [̃x𝐿,𝑖x̃𝐻𝐿,𝑖]/(𝑁 − 𝐿 + 1) and x̃𝐿,𝑖 = [Re{x𝑇

𝐿,𝑖
} Im{x𝑇

𝐿,𝑖
}]𝑇

with x𝐿,𝑖 = [𝑥(𝑖) 𝑥(𝑖 + 1) · · · 𝑥(𝑖 + 𝐿 − 1)]𝑇 .
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2. Obtain the filtered and decimated outputs v𝑙 of the Capon-CBS stage, as
defined in (2.14).

3. Use Rave in (2.19) to do root-MUSIC or ESPRIT.

In (2.72), the ellipsoid E can be designed from 𝑟 equally spaced samples of the array
response in the passband [83]. Assume the passband of 𝐻 (𝑒 𝑗𝜔) is (−𝜋/2𝑀, 𝜋/2𝑀).
Let �̄�𝑖 = −𝜋/2𝑀 + 𝜋𝑖/(𝑟 − 1)𝑀 , 𝑖 = 0, . . . , 𝑟 − 1. Then we choose

E = {P1/2u + c | ∥u∥ ≤ 1}, (2.73)

where c =
∑𝑟−1
𝑖=0 ã(�̄�𝑖)/𝑟, P′ =

∑𝑟−1
𝑖=0 (ã(�̄�𝑖) − c) (ã(�̄�𝑖) − c)𝐻 , and P = 𝛼P′ with

𝛼 = max
𝑖

(ã(�̄�𝑖) − c)𝐻 (P′)+(ã(�̄�𝑖) − c), (2.74)

and ã(𝜔) = [Re{a𝑇
𝐿
(𝜔)} Im{a𝑇

𝐿
(𝜔)}]𝑇 . Here (·)+ denotes the pseudoinverse.

2.5.3 Simulations
We compare Capon-CBS for DOA estimation with element-space, and traditional
CBS. Consider a ULA with 𝑁 = 99 sensors. There are 6 in-band DOAs, at
𝜃 = −5◦,−3◦,−1◦, 1◦, 3◦, 5◦. There are 10 uniformly spaced out-of-band DOAs at
𝜔 = 0.5𝜋, 0.5𝜋 + 𝛿, 0.5𝜋 + 2𝛿, . . . , 0.98𝜋 with 𝛿 = 0.48𝜋/9. Each in-band source
has power 1, the noise variance is 𝜎2

𝑒 = 1, and the out-of-band sources have equal
powers, but varying through the experiment. All sources are uncorrelated. The
filter length is 𝐿 = 8, and the decimation ratio is 𝑀 = 4. The Capon-CBS filter
is designed using (2.72) and (2.73) with 𝑟 = 10, while for traditional CBS, 𝐻 (𝑧)
is designed to be a lowpass Parks-McClellan filter [63], with passband edge 𝜋/2𝑀
and stopband edge 3𝜋/2𝑀 . Fig. 2.14(a) shows that the Capon-CBS filter indeed
has a flat passband while suppressing the out-of-band sources. Using the Capon-
CBS output, we perform DOA estimation using root-MUSIC. Covariance estimates
are obtained by using 100 snapshots, and we average 1000 Monte Carlo runs to
get the plots. The number of DOAs is assumed unknown and estimated based
on the distribution of eigenvalues of the covariance (see Fig. 2.4). As shown in
Fig. 2.14(b), the probability of resolution of element-space and traditional CBS
drops to zero as out-of-band source power increases, but that of Capon-CBS is unity
throughout (it starts to decrease only after the power gets larger than about 45 dB,
which is uncommonly large). Fig. 2.14(c) shows root mean square error (RMSE),
obtained by averaging square errors measured in 𝜔 over all in-band DOAs and over
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Figure 2.14: Performance of CBS and element-space methods when there are strong
out-of-band sources. (a) Filter responses when the out-of-band source power is 15
dB. (b) Probability of resolution. (c) RMSE in DOA estimation.

those Monte Carlo runs that obtain the correct number of in-band DOAs. For smaller
out-of-band source power, both CBS methods have similar RMSE, but the RMSE of
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traditional CBS gets larger for middle out-of-band source power (10 – 15 dB). For
larger out-of-band source power, we cannot plot element-space and traditional CBS
because they have zero probability of resolution, but Capon-CBS still has reasonably
good RMSE. In this example, CBS cannot beat element-space in terms of RMSE
since the sources are uncorrelated [23]. The running time per Monte Carlo run
for element-space, traditional CBS, and Capon-CBS is 0.054, 0.0026, and 0.0048
seconds, respectively. Both CBS methods have an order of magnitude reduction in
complexity.
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Figure 2.15: Performance of CBS and element-space methods when there are
correlated sources. (a) Filter responses when SNR is 0 dB. (b) RMSE in DOA
estimation.

In the second example, we consider correlated sources. Although the spatial WSS
property may not be satisfied in this case, we can still follow the proposed steps of
Capon-CBS. All parameters not mentioned here are the same as the first example.
There are 2 in-band DOAs at angles 𝜃 = 0◦, 5◦, and the 10 out-of-band DOAs are the
same as in the first example. Each in-band source has power 1, and each out-of-band
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source has power 15 dB. Each pair of the 12 sources have correlation coefficient
0.6, except that the two in-band sources are uncorrelated. The number of DOAs is
assumed known. Fig. 2.15(a) shows that the Capon-CBS filter has better stopband
attenuation than traditional CBS. Capon-CBS filters keep a balance between atten-
uating interference and noise, which is the benefit of design based on data. We then
consider DOA estimation using root-MUSIC, with the number of DOAs assumed
known. Fig. 2.15(b) shows that the RMSE of Capon-CBS is significantly smaller
than element-space and traditional CBS. The constant gap between element-space
and Capon-CBS is because the in-band sources are correlated with the out-of-band
sources. This correlation makes the RMSE of element-space larger as we saw in
Sec. 2.2, but Capon-CBS can effectively null all the out-of-band sources, so the
RMSE of Capon-CBS remains small as if there are no correlated sources. This
example shows the clear advantage of Capon-CBS even when there are correlated
sources.

2.6 Convolutional Beamspace Using IIR Filters
In Sec. 2.2, CBS uses a spatial finite-impulse-response (FIR) filter 𝐻 (𝑧) to restrict
the ULA output to an angular sector. The “CBS trick” is to retain only the steady-
state part of the output, whereby the Vandermonde structure is preserved. Uniform
decimation is then used for dimensionality and complexity reduction, after which
we can readily estimate DOAs using subspace methods.

A natural question is whether we can use infinite-impulse-response (IIR) filters
instead of FIR. We explore this in this section. While the idea of using IIR filters
instead of FIR might seem minor, there are some nontrivial details as we shall see.
Also, IIR filtering has not been widely used in array processing in the past. With
large arrays becoming more prevalent today [9, 45], perhaps the time has come
for more widespread use of IIR methods. They are certainly very promising for
CBS-based DOA estimation as we shall see.

In CBS, even for large arrays the FIR filter length 𝐿 has to be small compared to the
number of sensors 𝑁 . The reason is that the MSE of DOA estimates is approximately
proportional to (𝑁 − 𝐿 + 1)−3 as shown in (2.32). (This is because the effective
output length is 𝑁 − 𝐿 + 1 after discarding the transient samples.) So FIR-CBS has
larger estimation errors as 𝐿 gets closer to 𝑁 . On the other hand, with small 𝐿 we
cannot produce very sharp transition bands. This is where IIR filters help. They
not only produce beamspace filters with sharper transition bands, they are also more
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economic than FIR filters (i.e., a much smaller filter order is required). That is,
IIR-CBS has lower computational complexity. Furthermore, IIR-CBS can achieve
smaller DOA estimation errors than FIR-CBS. This is because the region where the
transient component of IIR filters is significant is typically smaller than the transient
duration in the FIR case as we shall see. These advantages of IIR-CBS will be
verified by numerical examples.

In the following, the new method IIR-CBS is introduced in Sec. 2.6.1. Then, Sec.
2.6.2 demonstrates the advantage of IIR-CBS using simulations.

2.6.1 CBS Using IIR Filters
As explained in Sec. 2.2.1, in traditional CBS, the ULA output 𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1
is filtered with an FIR filter 𝐻 (𝑧) = ∑𝐿−1

𝑛=0 ℎ(𝑛)𝑧−𝑛 to obtain the output 𝑦(𝑛). That
is, the 𝑧-transform of 𝑦(𝑛) can be computed as [63]

𝑌 (𝑧) = 𝐻 (𝑧)𝑋 (𝑧), (2.75)

where 𝑋 (𝑧) = ∑𝑁−1
𝑛=0 𝑥(𝑛)𝑧−𝑛. Here 𝐿 < 𝑁 and we retain only the steady-state part

y = [𝑦(𝐿 − 1) 𝑦(𝐿) · · · 𝑦(𝑁 − 1)]𝑇 , so that y is still represented by a Vandermonde
matrix A𝐿 as in (2.9). In this section, we propose to use an IIR filter

𝐻 (𝑧) = 𝑃(𝑧)
𝐷 (𝑧) =

∞∑︁
𝑛=0

ℎ(𝑛)𝑧−𝑛 (2.76)

in (2.75), where 𝑃(𝑧) and 𝐷 (𝑧) are degree-𝑅 polynomials in 𝑧−1. The motivation
is that an IIR filter often requires a much lower order for the same set of magnitude
response specifications [66]. This can lead to lower computational complexity and
better DOA estimation performance, as we shall see later. The filter 𝐻 (𝑧) can be
designed as any standard IIR filter such as a (discrete-time) Chebyshev filter or
elliptic filter [63, 66]. In the traditional FIR-CBS, there are only a finite number
𝐿 − 1 of transient output samples 𝑦(0), . . . , 𝑦(𝐿 − 2) before reaching steady state,
so we simply discard these samples in order to preserve the Vandermonde structure
of the ULA. Now in IIR-CBS, since the filter is infinitely long, strictly speaking,
there is no steady state. However, typically |ℎ(𝑛) | decays as 𝑛 increases. Suppose it
decays to a negligible level after 𝑛 ≥ 𝐿I. Then we can similarly discard the 𝐿I − 1
output samples 𝑦(0), . . . , 𝑦(𝐿I − 2) and define y = [𝑦(𝐿I − 1) 𝑦(𝐿I) · · · 𝑦(𝑁 − 1)]𝑇

as the IIR-CBS output signal. Then the Vandermonde structure is approximately
preserved because for 𝐿I − 1 ≤ 𝑛 ≤ 𝑁 − 1, we have

𝑦(𝑛) =
𝐷∑︁
𝑖=1

𝑐𝑖𝐻 (𝑒 𝑗𝜔𝑖 )𝑒 𝑗𝜔𝑖𝑛 + 𝑞(𝑛) +
𝑛∑︁
𝑘=0

ℎ(𝑘)𝑒(𝑛 − 𝑘), (2.77)
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where 𝑞(𝑛) = ∑∞
𝑘=𝑛+1 ℎ(𝑘)

∑𝐷
𝑖=1 𝑐𝑖𝑒

𝑗𝜔𝑖 (𝑛−𝑘) is negligible. Thus, ignoring the noise
term, we have

y ≈ A𝐿Id′, (2.78)

where d′ has elements 𝑑′
𝑘
= 𝑐𝑘𝑒

𝑗 (𝐿I−1)𝜔𝑘𝐻 (𝑒 𝑗𝜔𝑘 ). This is similar to (2.9). Hence,
we can decimate y and estimate DOAs based on the average covariance Rave of the
decimated outputs using standard methods like root-MUSIC.

Now we compare the computational complexity of IIR-CBS and FIR-CBS. Suppose
root-MUSIC is used to estimate DOAs. Then we need to do filtering, eigenvalue
decomposition of Rave, and root-finding. Given 𝐾 snapshots of the 𝑁-sensor ULA
output, Table 2.6 shows the total complexity for IIR-CBS with filter order 𝑅 and for
FIR-CBS with filter length 𝐿. In the expressions in Table 2.6, the first term (𝐾𝑁𝑅
or 𝐾𝑁𝐿) is the filtering complexity, and the second term is the eigendecomposition
complexity. The complexity for root-finding is 𝑂 (𝑛2 log 𝑛) [86], where 𝑛 = (𝑁 −
𝐿I + 1)/𝑀 for IIR-CBS and 𝑛 = (𝑁 − 𝐿 + 1)/𝑀 for FIR-CBS, so it is ignored in
the big-O notation. As mentioned earlier, an IIR filter often requires a much lower
order, i.e.,

𝑅 ≪ 𝐿, (2.79)

for the same set of magnitude response specifications [66]. Hence, the complexity
of IIR-CBS is typically much smaller than that of FIR-CBS, especially for large
arrays (large 𝑁), which are becoming increasingly important [9, 45]. In Table 2.6,
we also show numerical values by setting the parameters as in Examples 1 and 2 in
Sec. 2.6.2. In both examples, 𝐾 = 500, 𝑁 = 99, 𝑅 = 5, and 𝑀 = 4. In Example 1,
𝐿I = 12 and 𝐿 = 20. In Example 2, 𝐿I = 16 and 𝐿 = 56. The numbers are computed
exactly from the expressions in Table 2.6 without considering the hidden constant
factors in the big-O notation. IIR-CBS indeed has much smaller complexity. In
Sec. 2.6.2, we show that with less complexity, IIR-CBS can achieve similar or even
better DOA estimation performance than FIR-CBS.

Table 2.6: Complexity of IIR-CBS and FIR-CBS

Complexity Example 1 Example 2

IIR-CBS 𝑂

(
𝐾𝑁𝑅 +

( 𝑁−𝐿I+1
𝑀

)3
)

258,148 256,761

FIR-CBS 𝑂

(
𝐾𝑁𝐿 +

(
𝑁−𝐿+1
𝑀

)3
)

998,000 2,773,331
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IIR-CBS is particularly advantageous over FIR-CBS when we want to design a filter
with a narrow transition band. This reduces the probability of a DOA appearing
in the transition band, so it is of practical interest. An FIR filter requires a very
large filter length 𝐿 to have good stopband attenuation in this case, which means
the effective filter output length 𝑁 − 𝐿 + 1 will be small. Since the MSE of DOA
estimates is approximately proportional to (𝑁 − 𝐿 + 1)−3 as shown in (2.32), FIR-
CBS will suffer large estimation error. By contrast, an IIR filter requires a relatively
small order 𝑅, and we can also choose a reasonably small 𝐿I to get good estimation
performance. Such advantage will be verified by a numerical example in Sec. 2.6.2.
The nonlinear phase response of IIR filters does not have a significant effect on
the MSE of DOA estimates because the MSE mainly depends on the power of the
source but not phase of the source amplitude (see Sec. 2.2.6).

Remark 1: The IIR filter𝐻 (𝑧) = 𝑃(𝑧)/𝐷 (𝑧) can be implemented with 𝑅multipliers,
as explained below. A wide family of IIR filters, including Butterworth, Chebyshev,
and elliptic filters, can be represented as

𝐻 (𝑧) = [𝐴0(𝑧) + 𝐴1(𝑧)]/2, (2.80)

where 𝐴0(𝑧) and 𝐴1(𝑧) are stable unit-magnitude allpass filters [66, 87, 88], and
their orders 𝑟0 and 𝑟1 satisfy 𝑟0 + 𝑟1 = 𝑅. Moreover, if the filter order 𝑅 of 𝐻 (𝑧)
is odd, then 𝐴0(𝑧) and 𝐴1(𝑧) have real coefficients. Since a real coefficient allpass
filter with order 𝑟 can be implemented with 𝑟 multipliers [66], we can implement
(2.80) with 𝑅 multipliers. We always use an odd 𝑅 in this section.

Remark 2: In Sec. 2.2.4, it was shown that the noise term after filtering and
decimation can be whitened if 𝐻 (𝑧) is a spectral factor of a Nyquist(𝑀) filter 𝐺 (𝑧)
(i.e., the impulse response of 𝐺 (𝑧) satisfies 𝑔(𝑀𝑛) = 𝛿(𝑛) where 𝐺 (𝑧) is such that
𝐺 (𝑒 𝑗𝜔) = |𝐻 (𝑒 𝑗𝜔) |2). This makes it easy to find the noise eigenspace by computing
eigenvectors of Rave, which is what we do in simulations. We can also design an
IIR filter 𝐻 (𝑧) to be a spectral factor of an IIR Nyquist(𝑀) filter to whiten the
noise. There are many ways to design such filters [48, 89–91]. But in many cases, if
𝐻 (𝑧) is a “good” IIR filter with total passband width ≈ 2𝜋/𝑀 and ripples properly
constrained, this Nyquist property is approximately satisfied, that is,

max
𝑛≠0

|𝑔(𝑀𝑛) | ≪ 𝑔(0) (nearly-Nyquist property). (2.81)

For simplicity, this is what we use in simulations.
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Figure 2.16: Performance of IIR-CBS using Chebyshev (type 2) filter for various
𝐿I, FIR-CBS using Nyquist-equiripple filter for various 𝐿, and element-space. The
IIR filter order is fixed at 𝑅 = 5. (a) Responses of IIR and FIR filters used. The
transition band for each filter is𝜔 ∈ [0.125𝜋, 0.375𝜋]. (b) RMSE of DOA estimates
as we vary 𝐿 for FIR-CBS (or 𝐿I for IIR-CBS). Element-space CRB is also plotted.

2.6.2 Simulations
Example 1: We compare IIR-CBS for DOA estimation with FIR-CBS and element-
space (i.e., directly using x to estimate DOAs). Consider a ULA with 𝑁 = 99
sensors. There are 3 in-band (passband) sources with DOAs 𝜃 = −5◦, 0◦, 5◦, and 3
out-of-band (stopband) sources with DOAs 𝜃 = 40◦, 60◦, 80◦. Each in-band source
has power 0 dB, each out-of-band source has power 20 dB, and the noise variance is
𝜎2
𝑒 = 5 dB. Sources 𝑛 and 𝑛 + 3 have a correlation coefficient 𝜌 = 0.9 for 𝑛 = 1, 2, 3.

The decimation ratio is 𝑀 = 4. For IIR-CBS, 𝐻 (𝑧) is designed to be a lowpass
Chebyshev (type 2) filter with order 𝑅 = 5. For this filter, max𝑛≠0 |𝑔(𝑀𝑛) | ≈
0.001𝑔(0), so it indeed satisfies the nearly-Nyquist property (2.81). For FIR-CBS,



67

𝐻 (𝑧) is designed to be a spectral factor of a lowpass Nyquist-equiripple filter [71].
The transition band for each filter is 𝜔 ∈ [0.125𝜋, 0.375𝜋]. The parameter 𝐿I

for IIR-CBS and the FIR filter length 𝐿 are varied in this experiment. Magnitude
responses of the IIR filter and FIR filters with some typical lengths 𝐿 used are shown
in Fig. 2.16(a). The stopband attenuation of the IIR filter with order 5 is as good
as that of the FIR filter with length 20. The stopband attenuation of the FIR filter
with a shorter length, e.g. 8, is not so good. Then we perform DOA estimation
using root-MUSIC. The number of DOAs is assumed known. Covariance estimates
are obtained by using 500 snapshots, and we average 500 Monte Carlo runs to get
the plot. Fig. 2.16(b) shows root mean square error (RMSE) obtained by averaging
square errors measured in 𝜔 over all in-band DOAs, as we vary 𝐿 or 𝐿I. For
IIR-CBS, there is an optimal 𝐿I, 12 in this case, that gives the smallest RMSE.
When 𝐿I is too small, RMSE increases because the first few samples suffer from
a significant transient effect due to the typically large |ℎ(𝑛) | for small 𝑛. When 𝐿I

is too large, RMSE increases because we discard too many filter output samples
and the effective output length 𝑁 − 𝐿I + 1 is too small. For FIR-CBS, there is
also an optimal 𝐿, 20 in this case, that gives the smallest RMSE. When 𝐿 is too
small, RMSE increases because the filter stopband attenuation is not good enough
to suppress the out-of-band sources. When 𝐿 is too large, RMSE increases because
the effective filter output length is small. In this example, the RMSE of IIR-CBS
is a lower bound for the RMSE of FIR-CBS. Moreover, for each simulation point
when 𝐿I = 𝐿 ≥ 12, the computational complexity of IIR-CBS is smaller than that
of FIR-CBS. That is, IIR-CBS is better in terms of both complexity and estimation
performance. Meanwhile, when 𝐿I and 𝐿 are properly chosen, the RMSEs of both
IIR-CBS and FIR-CBS are smaller than element-space and close to the element-
space Cramér–Rao bound (CRB) [56] (i.e., CRB based on the original array output
x). Element-space typically has larger errors for correlated sources as shown in Sec.
2.2. Even though element-space CRB cannot be larger than beamspace CRB, it is
possible for element-space MSE to be larger than beamspace MSE (see Sec. 2.2.6).

Example 2: We consider an example where CBS filters have a narrow transition
band, 𝜔 ∈ [0.225𝜋, 0.275𝜋]. All simulation parameters are the same as in the
first example unless mentioned otherwise. For IIR-CBS, 𝐻 (𝑧) is designed to be a
lowpass elliptic filter with order 𝑅 = 5. For this filter, max𝑛≠0 |𝑔(𝑀𝑛) | ≈ 0.04𝑔(0),
so it satisfies (2.81). For FIR-CBS, 𝐻 (𝑧) is designed to be a Parks-McClellan filter
[63]. Magnitude responses of the IIR and FIR filters used are shown in Fig. 2.17(a).
The stopband attenuation of the IIR filter with order 5 is as good as that of the FIR
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Figure 2.17: Performance of IIR-CBS using elliptic filter, FIR-CBS using Parks-
McClellan filter, classical beamspace, and element-space. The IIR filter order is
fixed at 𝑅 = 5. (a) Responses of IIR and FIR filters used. A narrow transition band
𝜔 ∈ [0.225𝜋, 0.275𝜋] is used for each filter. (b) RMSE of DOA estimates as we
vary SNR. The IIR and FIR filters in (a) are used. We set 𝐿I = 16 for the IIR filter.
Element-space CRB is also plotted. (c) RMSE of DOA estimates as we vary 𝐿 for
FIR-CBS (or 𝐿I for IIR-CBS).

filter with length 56. IIR-CBS can thus obtain significant complexity reduction.
Then we perform DOA estimation using root-MUSIC. Fig. 2.17(b) shows RMSE
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of in-band DOA estimates for CBS using the IIR and FIR filters in Fig. 2.17(a) and
element-space, as we vary SNR (= 1/𝜎2

𝑒 ). We set 𝐿I = 16 for the IIR filter. Here we
also show the RMSE of classical beamspace using a 99×25 DFT matrix beamformer
[2]. (Note that 25 ≈ 99/𝑀 .) The poor performance of classical beamspace is due
to numerical sensitivity issues for a moderately large 𝑁 as mentioned in [2]. RMSE
of FIR-CBS is relatively large because the large 𝐿 = 56 means the effective filter
output length 𝑁 −𝐿+1 is small. However, the RMSE of IIR-CBS is the smallest and
close to the element-space CRB. The gap between the IIR-CBS RMSE and CRB
gets a bit larger as SNR increases because the fixed error term 𝑞(𝑛) in (2.77) does
not depend on the noise. This example shows the benefit of introducing IIR filters in
CBS because FIR-CBS does not work better than element-space, but IIR-CBS does.
In fact, FIR-CBS has larger RMSE than IIR-CBS for a wide range of 𝐿. We vary 𝐿
or 𝐿I in Fig. 2.17(c) while fixing 𝜎2

𝑒 = 5 dB. Since we want a narrow transition band
in this example, a much larger length 𝐿 is required for the FIR filter to have enough
stopband attenuation to suppress the out-of-band sources, but a large 𝐿 results in a
small effective filter output length and large RMSE. By contrast, an IIR filter needs
only a small order to have enough stopband attenuation, so it is possible to get much
smaller RMSE.
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Figure 2.18: Magnitude of impulse responses of the Chebyshev filter in Fig. 2.16(a)
and elliptic filter in Fig. 2.17(a).

Finally, Fig. 2.18 shows the impulse responses of the Chebyshev filter in Fig.
2.16(a) and elliptic filter in Fig. 2.17(a). The impulse response of the Chebyshev
filter decays faster than that of the elliptic filter. This explains why the optimal
𝐿I = 12 in Fig. 2.16(b) is smaller than the optimal 𝐿I = 16 in Fig. 2.17(c). We can
discard less output samples for the Chebyshev filter.
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2.7 Concluding Remarks
In this chapter, we introduce the convolutional beamspace (CBS) as an alternative to
classical beamspace methods of array processing. While enjoying the computational
advantages of classical beamspace, CBS also allows the direct use of root-MUSIC
and ESPRIT without any complicated preprocessing. A simple error analysis shows
that CBS can have better estimation performance when the sources are correlated.
We also develop CBS methods for coarrays of sparse arrays, and for dictionary based
methods which use dictionaries of steering vectors to obtain sparse representations
of array data. Due to dimension reduction and effective filtering of out-of-band
sources, many advantages are obtained across all these frameworks, such as lower
computational complexity, better DOA estimates, and improved resolution. We also
propose a new method to design the CBS filter based on a sliding (convolutional)
Capon beamformer. Compared to traditional CBS, the Capon-CBS filter is designed
based on data, so it can better suppress the sources that fall in the stopband. We
show by simulations that Capon-CBS can offer higher probability of resolution and
smaller RMSE for DOA estimation. Besides, a new variant of CBS using IIR filters
is introduced. Since an IIR filter typically requires a much lower order for the same
set of magnitude response specifications, smaller complexity and better estimation
performance can be obtained compared to FIR-CBS, as verified in simulations. The
last numerical example for IIR-CBS shows how an optimal 𝐿I, which controls the
number of discarded filter output samples, is related to the filter impulse response.
A topic for future investigation would be to find a more systematic way to choose
𝐿I.

For FIR-CBS, we can consider nonlinear phase filters instead of linear phase filters
like Parks-McClellan in order to decrease the filter order for comparable magnitude
response. Moreover, in this chapter, we consider CBS with dictionary methods,
which are grid-based methods and suffer from off-grid errors. Thus, one may also
want to consider CBS with gridless sparse recovery methods such as atomic norm
minimization method [92]. Atomic norm minimization method suffers from high
computational complexity, so it will be beneficial to use CBS with it.
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C h a p t e r 3

HYBRID CONVOLUTIONAL BEAMSPACE FOR DOA
ESTIMATION

3.1 Introduction
In recent years, array signal processing for millimeter waves (mmWaves) has be-
come an important topic [5, 9–11, 19, 93, 94]. A prominent application is in
mmWave MIMO systems in 5G [10, 11]. A main reason for considering mmWaves
is the potential to offer more bandwidth than the highly occupied lower-frequency
microwave bands, but there are also new challenges, such as strong path loss at the
high frequencies of mmWaves [10]. To tackle this, large arrays are used, which are
practical due to the small sizes of mmWave antennas, to get large beamforming gain
[11]. However, the high power consumption of mixed signal components prevents
the use of one RF chain per antenna and purely digital signal processing for large
mmWave arrays. Instead, many have proposed to use hybrid analog and digital
processing. Given a large receive uniform linear array (ULA), the output is first
processed by an analog combiner. The combiner gives a lower-dimensional output,
which is then passed through a smaller number of RF chains [11]. Digital processing
is finally done on the lower-dimensional RF chain output to achieve the required
task like direction-of-arrival (DOA) estimation or MIMO channel estimation. Such
dimensionality reduction can lower hardware complexity and power consumption
due to reduced number of RF chains. In this chapter, we consider particularly DOA
estimation. For this application, the analog combiner is also called a beamspace
matrix [2, 18]. Its lower-dimensional output contains information only about DOAs
in a particular beam or passband.

To reduce hardware cost, the analog combiner is often implemented by a phase
shifter network [11]. Such implementation imposes the constraint that all the
entries of the analog processing matrix should have unit modulus (i.e., unit absolute
value). In classical beamspace methods [2, 18], the combiners are designed as DFT
beamformers. DFT beamformers have unit-modulus entries, so they can be directly
applied in the hybrid architecture as in [4, 19]. However, only 13 dB attenuation
is obtained at the first sidelobe, and the poorly-attenuated stopband sources can
cause large estimation errors. Other standard digital filters like Parks-McClellan
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filters [63] can be used to achieve larger stopband attenuation. This motivates us to
propose a new hybrid beamspace method based on digital filters.

In this chapter, we propose to use the idea of convolutional beamspace (CBS)
described in Chapter 2 to design the hybrid analog and digital processors for passive
arrays, so we call the method hybrid CBS. CBS is a beamspace DOA estimation
method which achieves advantages including complexity reduction, higher DOA
resolution, and smaller bias, just as classical beamspace methods do [2, 8, 17, 18].
In CBS, the beamspace matrix is a banded Toeplitz matrix, so the processing is
equivalent to convolving the array output with a digital filter. After filtering, the
output is represented only by sources falling in the passband, so we can decimate
(downsample) the output without causing DOA ambiguities. It is such decimation
that contributes to significant complexity reduction and that makes CBS appealing
for mmWave arrays. With CBS, only a small number of RF chains is needed even
for large arrays.

Two decimation schemes will be explained in this chapter: uniform decimation and
nonuniform decimation. Uniform decimation is used in traditional CBS in Chapter
2, while nonuniform decimation is proposed in this chapter. Given any input 𝑥(𝑛), a
uniform decimator [67, Sec. II] gives output 𝑦(𝑛) = 𝑥(𝑀𝑛), where 𝑀 is a positive
integer called decimation ratio. In the new nonuniform scheme, the decimator
output samples 𝑦(𝑖) correspond to the sensor locations {�̃�𝑖} of a standard sparse
(nonuniform) array, dilated by an integer factor 𝑀 , i.e., 𝑦(𝑖) = 𝑥(𝑀�̃�𝑖). We will use
the phrase “virtual sparse array” to refer to this array since it is not a physical array.
This virtual sparse array can be based on commonly used sparse arrays such as the
nested array [32], coprime array [40], and minimum redundancy array (MRA) [3].
The nonuniformly decimated output is viewed as the output of the virtual dilated
sparse array in response to the sources which fall in the passband of the CBS filter.
Hence, we can use its difference coarray [32] to increase the number of identifiable
sources. The details of the coarray method are explained in Sec. 3.2.2. Since
the sparse array is dilated by 𝑀 times, we get a central sparse ULA segment with
adjacent element spacing 𝑀 in the difference coarray. Despite the 𝑀-sparsity, we
show that by using a CBS filter with passband width 2𝜋/𝑀 , the DOAs can still be
estimated without ambiguities.

As mentioned earlier, the analog combiner is often implemented by phase shifters
with unit-modulus entries. A standard digital filter typically does not have constant-
modulus coefficients, so the resulting beamspace matrix of CBS cannot be directly
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implemented in the analog domain. To tackle the constant-modulus constraints,
we use an important result [48] that any complex vector v can be expressed as
a linear combination of two vectors with unit-modulus entries. To be precise,
there exist complex numbers 𝑎1 and 𝑎2 and complex vectors v1 and v2 satisfying
| [v1]𝑖 | = | [v2]𝑖 | = 1 for all 𝑖 such that v = 𝑎1v1 + 𝑎2v2. It is even possible to let
𝑎1 = 𝑎2. A key fact is that two vectors with unit-modulus entries are sufficient. It is
not necessary to include more than two.

The main contributions of this chapter include the following:

• We propose a new hybrid DOA estimation method, called hybrid convolutional
beamspace (CBS), for mmWave receive arrays. The combiner is designed to
be an FIR filter followed by a decimator (downsampler). This decimation
reduces dimension a lot, so we can process the combiner output with a small
number of RF chains even for a large array.

• A new scheme of CBS is proposed based on nonuniform decimation and coar-
ray method, which allows the estimation of more sources than RF chains (not
achievable by classical beamspace [2] or uniform hybrid CBS). The retained
samples correspond to the sensor locations of a virtual sparse array, dilated
by an integer factor 𝑀 , which results in 𝑀 times larger coarray aperture (than
when there is no dilation). The aperture of an array is the difference between
its extreme elements, and a larger aperture often gives better estimation perfor-
mance [49, 50]. Given a fixed number of RF chains, the nonuniform scheme
can achieve large array aperture and thus better estimation performance than
uniform scheme. Or, nonuniform scheme requires fewer RF chains to achieve
the same estimation performance.

• We show how to implement CBS in a hybrid architecture with an analog phase
shifter network. In particular, any CBS filter coefficients can be implemented
despite the unit-modulus constraint. Moreover, the required number of RF
chains is as small as the dimension of the decimated CBS output (as opposed
to [48, 95], using twice the number of RF chains). As no approximation is
involved in this hybrid analog and digital realization of CBS, no performance
loss is incurred for DOA estimation. Similarly, hybrid CBS inherits all the
advantages of the traditional purely digital CBS.

• A new method for decorrelating sources is proposed based on designing the
CBS filters for different snapshots to be different delayed versions of a proto-
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type filter. Since the filters are delayed versions, they have the same magnitude
response. The method can be used for both uniform CBS and nonuniform
CBS, but it is more crucial to the latter because we assume uncorrelated
sources when deriving coarray methods. The delays are chosen to be ran-
dom or deterministic. We typically achieve similar estimation performance for
both, so deterministic delays are recommended as they are easier to implement
in the analog processors.

• We derive the Cramér–Rao bound (CRB) [43] for DOA estimates based on the
output of any beamspace processor for a passive array. Since CBS is a special
case of beamspace methods, we can apply the CRB result and compare to
MSE performance via numerical examples. The CRBs of different beamspace
methods can also be used to compare their fundamental limits.

• We propose hybrid Capon-CBS. As a variant of CBS, Capon-CBS described
in Sec. 2.5 is composed of two stages. In the first stage, we design the CBS
filter based on the idea of Capon beamforming [36]. The resulting Capon-
CBS filter can better suppress stopband sources because input statistics are
taken into account. In the second stage, we simply implement the obtained
Capon-CBS filter as in traditional CBS. Hence, the purpose here is to show
how to realize the first stage in a hybrid analog and digital architecture with RF
chain constraints. The main idea is to use nonuniformly decimated samples
and work in the coarray domain, in order to obtain an expression for the
Capon-CBS filter’s coefficients.

With all the details explained above, we now emphasize that the relevance of
mmWaves to the proposed method appears in the following aspects. First, large
arrays are often implemented for mmWaves [11], and large arrays allow us to use
a large enough filter length to design a good CBS filter. Second, mmWave arrays
often require hybrid processing to reduce hardware complexity, and hybrid CBS is
a hybrid method which can achieve the same performance as its digital counterpart.
Finally, we usually use few RF chains for mmWave arrays to lower hardware cost
and power consumption, and the new scheme of hybrid CBS using nonuniform
decimation and coarray method enables us to identify more sources than the number
of RF chains. The exact value of the mmWave source frequency or wavelength 𝜆
is not crucial since we typically design the antenna unit spacing as 𝜆/2 [40], which
makes the array output independent of 𝜆 (see Sec. 1.1).
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Nonuniformly decimating a convolution output also appears in [5], but their design
is not for filtering but for decorrelating sources. Without the filtering effect, the
dilation factor 𝑀 cannot be applied. Thus, the effective aperture of our coarray
is 𝑀 times larger than that of [5]. In hybrid CBS with nonuniform decimation, it
is the aperture of the virtual dilated sparse array, i.e., sampling grid aperture, that
determines the performance. Hence, our method yields higher DOA resolution and
smaller estimation errors than methods like [5], as we shall see in simulations (Figs.
3.5 and 3.6). Meanwhile, we note that the effective aperture can never be larger
than the aperture of the original large physical ULA. The method in [5] is for 2-
dimensional (2-D) mmWave MIMO channel estimation, whereas we only consider
1-dimensional DOA estimation in this chapter. We can also extend hybrid CBS to
the 2-D case, which can be found in Chapter 4. However, the 1-D version is much
easier to read and understand, and is important for readers interested only in passive
sensing (i.e., passive DOA estimation). This is the motivation for this chapter.

Chapter outline: The details of hybrid CBS for passive arrays are given in Sec. 3.2,
and CBS with uniform decimation and with nonuniform decimation are both intro-
duced. We show how to implement them in a hybrid analog and digital architecture
in Sec. 3.3. The new method for decorrelating sources based on filter delays in
CBS is presented in Sec. 3.4. In Sec. 3.5, we derive the CRB for DOA estimates
based on any beamspace-processed passive array output. Then, in Sec. 3.6, we
show numerical examples for hybrid CBS and compare the MSE performance to
the CRB. We then introduce hybrid Capon-CBS for passive arrays and show some
numerical examples in Sec. 3.7. Finally, the conclusion is given in Sec. 3.8.

3.2 Hybrid CBS for Passive Arrays
In this section, we introduce the mathematical models of the two schemes, uniform
and nonuniform decimation, of hybrid CBS. Their hybrid implementations will be
explained in Sec. 3.3. In the following, the system model of CBS in Sec. 2.2 is
reviewed for easy reference. We consider an 𝑁-sensor passive ULA with sensor
spacing 𝜆/2. The array receives 𝐷 monochromatic plane waves of wavelength 𝜆
with DOAs 𝜃𝑖 ∈ [−𝜋/2, 𝜋/2) measured from the normal to the line of array. Hence,
the array output is

x = [𝑥(0) 𝑥(1) · · · 𝑥(𝑁 − 1)]𝑇 = Ac + e, (3.1)
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where c contains source amplitudes 𝑐𝑖, and e is additive noise. Here, A =

[a𝑁 (𝜔1) a𝑁 (𝜔2) · · · a𝑁 (𝜔𝐷)] is the array manifold matrix, where

a𝑁 (𝜔) = [1 𝑒 𝑗𝜔 𝑒 𝑗2𝜔 · · · 𝑒 𝑗 (𝑁−1)𝜔]𝑇 (3.2)

and 𝜔𝑖 = 𝜋 sin 𝜃𝑖. We assume E[c] = 0, E[|𝑐𝑖 |2] = 𝑝𝑖, E[e] = 0, E[ee𝐻] = 𝜎2
e I, and

E[ce𝐻] = 0.

In CBS, the ULA output 𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 is convolved with an FIR filter
𝐻 (𝑧) = ∑𝐿−1

𝑛=0 ℎ(𝑛)𝑧−𝑛 to obtain the output 𝑦(𝑛), where 𝐿 < 𝑁 . Then the steady-
state samples are collected in a vector

y ≜ [𝑦(𝐿 − 1) 𝑦(𝐿) · · · 𝑦(𝑁 − 1)]𝑇 = Hx

= A𝐿d + He, (3.3)

where

H =



ℎ(𝐿 − 1) · · · ℎ(0) 0 · · · 0
0 ℎ(𝐿 − 1) · · · ℎ(0) · · · 0
...

...
. . .

...
. . .

...

0 0 · · · ℎ(𝐿 − 1) · · · ℎ(0)


(3.4)

is a (𝑁 − 𝐿 + 1) × 𝑁 banded Toeplitz matrix,

A𝐿 = [a𝑁−𝐿+1(𝜔1) · · · a𝑁−𝐿+1(𝜔𝐷)], (3.5)

and d has entries

[d]𝑖 = 𝑐𝑖𝑒 𝑗 (𝐿−1)𝜔𝑖𝐻 (𝑒 𝑗𝜔𝑖 ). (3.6)

To further reduce computational complexity, we decimate y before computing co-
variance and subspace methods. In the following, for easy reference, we first review
CBS with uniform decimation, which is first presented in Sec. 2.2. Then we will
propose a new form of CBS used with nonuniform decimation. With the review of
uniform CBS, it will be easier to compare the two decimation schemes.

3.2.1 CBS With Uniform Decimation
Note from (3.6) that the source amplitudes 𝑐𝑖 are filtered by the frequency response
𝐻 (𝑒 𝑗𝜔𝑖 ). We assume signals in the filter stopband are well attenuated so that y
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contains only in-band DOAs, i.e., those DOAs appearing in the passband of 𝐻 (𝑒 𝑗𝜔).
Without loss of generality, assume 𝜔1, . . . , 𝜔𝐷0 are in-band DOAs. Then,

y ≈ A𝐿,0dIB + He, (3.7)

where A𝐿,0 has the first 𝐷0 columns of A𝐿 , and dIB has the first 𝐷0 entries of d.
Due to this filtering effect, we can decimate y without causing ambiguity. Let

𝑦s(𝑛) = 𝑦(𝑛 + 𝐿 − 1) (3.8)

denote the steady-state filter output so that

y = [𝑦s(0) 𝑦s(1) · · · 𝑦s(𝑁 − 𝐿)]𝑇 . (3.9)

Then in particular, if 𝐻 (𝑒 𝑗𝜔) has passband width 2𝜋/𝑀 for some integer 𝑀 , we can
uniformly decimate 𝑦𝑠 (𝑛) by 𝑀 and obtain

𝑣𝑙 (𝑛) = 𝑦𝑠 (𝑀𝑛 + 𝑙) (3.10)

for 𝑙 = 0, 1, . . . , 𝑀 − 1. These are the 𝑀 polyphase components of 𝑦𝑠 (𝑛) [66]. For
easier presentation later, we can write in the equivalent vector form

v𝑙 = D𝑙y = Adecd𝑙 + D𝑙He ≈ Adec,0d𝑙,IB + D𝑙He, (3.11)

where

D𝑙 = [δ (𝑁−𝐿+1)
𝑙

δ (𝑁−𝐿+1)
𝑙+𝑀 . . . δ (𝑁−𝐿+1)

𝑙+(�̄�−1)𝑀]
𝑇 (3.12)

is a decimation matrix, Adec = [a�̄� (𝑀𝜔1) · · · a�̄� (𝑀𝜔𝐷)],

�̄� = (𝑁 − 𝐿 + 1)/𝑀 (3.13)

(assumed an integer for simplicity), d𝑙 has entries [d𝑙]𝑖 = 𝑐𝑖𝑒
𝑗 (𝐿−1+𝑙)𝜔𝑖𝐻 (𝑒 𝑗𝜔𝑖 ),

Adec,0 has the first 𝐷0 columns of Adec, and d𝑙,IB has the first 𝐷0 entries of d𝑙 .
According to (3.11), each v𝑙 resembles an output of a virtual �̄�-sensor ULA due to
DOAs 𝑀𝜔𝑖. This ULA is called virtual because it is not a physical array. We will
estimate only the 𝐷0 passband DOAs based on v𝑙 . We assume 𝐷0 < �̄� for MUSIC
to identify DOAs without ambiguity [52]. Then we can estimate DOAs based on
the covariance

R𝑣𝑙 = E[v𝑙v𝐻𝑙 ] = AdecR𝑑𝑙A𝐻
dec + 𝜎

2
e Gdec (3.14)
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for a particular 𝑙, say 𝑙 = 0. Here Gdec ≜ D𝑙HH𝐻D𝑙 is independent of 𝑙, and
R𝑑𝑙 = E[d𝑙d𝐻𝑙 ]. As in Sec. 2.2.4, one can show that Gdec is Hermitian Toeplitz with
[Gdec]𝑚,𝑙 = 𝑔(𝑀 (𝑚 − 𝑙)), where

𝑔(𝑘) =
∑︁
𝑛

ℎ(𝑛)ℎ∗(𝑛 − 𝑘) (3.15)

is the deterministic autocorrelation of ℎ(𝑛). The noise term can be whitened if the
CBS filter 𝐻 (𝑧) is chosen as a spectral factor of a Nyquist(𝑀) filter, which makes
𝑔(𝑀𝑘) = 𝛿(𝑘) for all integers 𝑘 and thus Gdec = I. When there is no constraint on
the number of RF chains or when all processing is done in the digital domain, we
can obtain all v𝑙 and estimate DOAs based on

Rave =
1
𝑀

𝑀−1∑︁
𝑙=0

R𝑣𝑙 = AdecR̆𝑑A𝐻
dec + 𝜎

2
e I, (3.16)

where R̆𝑑 is R𝑑𝑙 averaged over 𝑙. Note that Adec has columns a�̄� (𝑀𝜔𝑖), so initially
we can only identify 𝑀𝜔𝑖 mod 2𝜋, causing ambiguities. However, since 𝜔𝑖 are
known to be in the passband of 𝐻 (𝑒 𝑗𝜔) which has width 2𝜋/𝑀 , the ambiguities can
be resolved. In practice, we estimate the DOAs based on a finite-snapshot average

R̂ave =
1
𝐾𝑀

𝐾∑︁
𝑘=1

𝑀−1∑︁
𝑙=0

v𝑙 [𝑘]v𝐻𝑙 [𝑘], (3.17)

where 𝑘 is the snapshot index. Then we can estimate DOAs using root-MUSIC [26]
or ESPRIT [27] with computational complexity 𝑂 (�̄�3) ≪ 𝑂 (𝑁3).

As explained in Fig. 2.3, we can process the array output 𝑥(𝑛) with an entire filter
bank 𝐻 (𝑖) (𝑒 𝑗𝜔), 0 ≤ 𝑖 ≤ 𝑀 − 1 to cover the full DOA range −𝜋 ≤ 𝜔 < 𝜋. This
allows us to estimate all the DOAs if they are not known a priori to be located
in a specific sector. This method of filter banks can also be used for CBS with
nonuniform decimation proposed in Sec. 3.2.2.

3.2.2 CBS With Nonuniform Decimation
To reduce the required number of RF chains, which equals the number of decimated
output samples, and thus lower hardware complexity, we can consider nonuniform
decimation. That is, instead of uniform decimation as in (3.10), we nonuniformly
decimate the steady-state filter output to obtain

𝑣(𝑖) = 𝑦𝑠 (𝑛𝑖) (3.18)
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where those 𝑛𝑖’s are nonuniformly spaced. Again, for easier presentation later, we
write in the equivalent vector form

v = Dy = DHx, (3.19)

where

D = [δ (𝑁−𝐿+1)
𝑛0 δ (𝑁−𝐿+1)

𝑛1 . . . δ (𝑁−𝐿+1)
𝑛�̄�−1

]𝑇 . (3.20)

In particular, we choose the sampling grid

𝑛𝑖 = �̃�𝑖𝑀, 0 ≤ 𝑖 ≤ �̄� − 1, (3.21)

where 𝑀 is some positive integer, and the integer set N = {�̃�0, . . . , �̃��̄�−1} corre-
sponds to the sensor locations of some standard sparse array like a nested array
[32], coprime array [40], or minimum redundancy array (MRA) [3]. Without loss
of generality, let �̃�0 = 0. The locations of the decimated output samples correspond
to a dilated sparse array. For example, we consider a ULA with 𝑁 = 24 sensors
and CBS filter length 𝐿 = 6, and after decimation, we retain �̄� = 5 samples corre-
sponding to a 5-sensor MRA N = {�̃�0, . . . , �̃�4} = {0, 1, 4, 7, 9} dilated by 𝑀 = 2.
Thus, the outputs of the CBS filter that are retained correspond to a dilated MRA
N𝑀 = {𝑀�̃�0, . . . , 𝑀�̃�4} = {0, 2, 8, 14, 18}, with the use of the 5 × 19 decimation
matrix

D =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


.

See Fig. 3.1(a)-(c) for demonstration. As we shall see, the use of 𝑀 allows us
to obtain a virtual sparse array dilated by 𝑀 times, so its difference coarray [79]
will contain a sparse ULA with sensor spacing 𝑀 . Normally, such a sparse ULA
creates DOA ambiguity, but it is not a problem for us because y is represented
only by passband DOAs. The benefit of introducing 𝑀 is that larger array aperture
can yield smaller estimation errors and higher resolution, which will be verified by
simulations in Sec. 3.6.

With the proposed nonuniform decimation, we can derive that

v = Asd + DHe, (3.22)
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(a)

Figure 3.1: An example of nonuniform decimation for hybrid CBS. Filled circles
represent sensors, and crosses represent empty space. (a) The physical ULA with
𝑁 = 24 sensors. (b) A 5-sensor MRA N = {�̃�0, . . . , �̃�4} = {0, 1, 4, 7, 9}. (c) The
dilated 5-sensor MRA N𝑀 = {𝑀�̃�0, . . . , 𝑀�̃��̄�−1} = {0, 2, 8, 14, 18}, where 𝑀 = 2.
(d) The difference coarray C of the 5-sensor MRAN . (Only the nonnegative portion
is shown because coarrays are symmetric.) Note that C is a ULA here. (e) The
difference coarray C𝑀 of the dilated 5-sensor MRA N𝑀 . Note that C𝑀 is a sparse
ULA of sensor spacing 𝑀 = 2, and it is equivalent to C dilated by 𝑀 .

where

As = [as(𝑀𝜔1) · · · as(𝑀𝜔𝐷)] (3.23)

with as(𝜔) = [1 𝑒 𝑗𝜔�̃�1 𝑒 𝑗𝜔�̃�2 · · · 𝑒 𝑗𝜔�̃��̄�−1]𝑇 , and d is defined in (3.6). In other words,
v corresponds to the output of a sparse arrayN with sensor locations {�̃�0, . . . , �̃��̄�−1}
due to the filtered sources with amplitudes [d]𝑖 and DOAs 𝑀𝜔𝑖. Equivalently, v
can be viewed as the output of a dilated sparse array N𝑀 = {𝑀�̃�0, . . . , 𝑀�̃��̄�−1}
due to the DOAs 𝜔𝑖. We use virtual sparse array and virtual dilated sparse array
to refer to the arrays N and N𝑀 since they are not physical arrays. Then, the
difference coarray method for sparse arrays [79] can be applied to estimate more
than �̄� sources, in fact 𝑂 (�̄�2) sources in principle. This is in contrast to the case
of uniform decimation, where the number of identifiable sources is at most �̄� − 1,
where �̄� is the number of RF chains.

The difference coarray C of the sparse array N = {�̃�𝑖} is the set of all possible
differences �̃�𝑚 − �̃�𝑙 between sensor locations. As shown in the example in Fig.
3.1(d), the coarray of a well-designed sparse array like MRA typically contains
a large ULA segment. Then in coarray method [79], we use the second-order
statistics of the sparse array output to create a virtual signal on the coarray. Then
better performance can be obtained by estimating DOAs using the signal on the
large ULA segment of the coarray. In the proposed method, we do not have a
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physical nonuniform sparse array. Instead, we create a virtual sparse array output v
by nonuniformly decimating the filter output y. Then we apply coarray method to
the nonuniformly decimated output v as explained in the following.

The covariance matrix of the nonuniformly decimated CBS output v is

Rvv = AsRddA𝐻
s + 𝜎2

e DHH𝐻D𝐻 . (3.24)

Here, we assume the sources are uncorrelated so that Rdd = E[dd𝐻] is diagonal.
(If sources are correlated, we can use the method for decorrelating sources in Sec.
3.4.) Hence, we have the (𝑚, 𝑙)-entry

[Rvv]𝑚,𝑙 =
𝐷∑︁
𝑖=1

𝑝′𝑖𝑒
𝑗𝑀𝜔𝑖 (�̃�𝑚−�̃�𝑙) + 𝜎2

e 𝑔(𝑀 (�̃�𝑚 − �̃�𝑙)), (3.25)

where 𝑝′
𝑖
= 𝑝𝑖 |𝐻 (𝑒 𝑗𝜔𝑖 ) |2, and 𝑔(𝑘) is as in (3.15). Again, we let 𝐻 (𝑧) be a spectral

factor of a Nyquist(𝑀) filter so that 𝑔(𝑀𝑘) = 𝛿(𝑘). Now (3.25) depends only on
the difference �̃�𝑚 − �̃�𝑙 between the virtual sensor locations, so we can write

𝑅𝑀 (�̃�𝑚 − �̃�𝑙) ≜ [Rvv]𝑚,𝑙 (3.26)

=

𝐷∑︁
𝑖=1

𝑝′𝑖𝑒
𝑗𝑀𝜔𝑖 (�̃�𝑚−�̃�𝑙) + 𝜎2

e 𝛿(�̃�𝑚 − �̃�𝑙) (3.27)

≈
𝐷0∑︁
𝑖=1

𝑝′𝑖𝑒
𝑗𝑀𝜔𝑖 (�̃�𝑚−�̃�𝑙) + 𝜎2

e 𝛿(�̃�𝑚 − �̃�𝑙), (3.28)

where we again assume that only the first 𝐷0 sources fall in the passband of 𝐻 (𝑒 𝑗𝜔).
Then, by estimating 𝑅𝑀 (�̃�𝑚 − �̃�𝑙) = E[[v]𝑚 [v]∗𝑙 ] using snapshot averages over all
�̃�𝑚, �̃�𝑙 that produce identical difference 𝑘 = �̃�𝑚 − �̃�𝑙 , we can estimate

𝑅𝑀 (𝑘) ≈
𝐷0∑︁
𝑖=1

𝑝′𝑖𝑒
𝑗𝑀𝜔𝑖𝑘 + 𝜎2

e 𝛿(𝑘), (3.29)

for all 𝑘 ∈ C, where C is the difference coarray of the array N = {�̃�𝑖}. Note that
𝑅𝑀 (𝑘) resembles a single snapshot of the output of the array C due to the 𝐷0 DOAs
𝑀𝜔𝑖. Equivalently, 𝑅𝑀 (𝑘) can be viewed as a single-snapshot output of the arrayC𝑀
due to the 𝐷0 DOAs 𝜔𝑖, where C𝑀 is obtained by dilating C by 𝑀 (i.e., 𝑘 ∈ C if and
only if 𝑀𝑘 ∈ C𝑀), as shown in Fig. 3.1(e). In fact, C𝑀 is the difference coarray of
the virtual dilated sparse array N𝑀 . To estimate the DOAs using subspace methods,
we apply the method in [79], which is an improved way of doing spatial smoothing
with lower computational complexity. The difference coarray is symmetric in the



82

sense that if 𝑘 ∈ C, then −𝑘 ∈ C. Let𝑈 be the largest integer such that the uniform
region −(𝑈 − 1) ≤ 𝑘 ≤ 𝑈 − 1 is in C. Then −(𝑈 − 1) ≤ 𝑘 ≤ 𝑈 − 1 is called the
central ULA segment of the difference coarray. Correspondingly, we have a central
sparse ULA segment {𝑀𝑘 | −(𝑈 −1) ≤ 𝑘 ≤ 𝑈 −1} in the dilated coarray C𝑀 . This
𝑀 times larger aperture can lead to higher DOA resolution and smaller estimation
errors, as we shall see in Sec. 3.6. For many sparse arrays, including nested arrays,
coprime arrays, and MRAs, 𝑈 = 𝑂 (�̄�2), where �̄� is the number of sensors of the
sparse array (i.e., number of RF chains). We then define a Hermitian Toeplitz matrix

R =


𝑅𝑀 (0) 𝑅∗

𝑀
(1) · · · 𝑅∗

𝑀
(𝑈 − 1)

𝑅𝑀 (1) 𝑅𝑀 (0) · · · 𝑅∗
𝑀
(𝑈 − 2)

...
...

. . .
...

𝑅𝑀 (𝑈 − 1) 𝑅𝑀 (𝑈 − 2) · · · 𝑅𝑀 (0)


. (3.30)

All elements 𝑅𝑀 (𝑘) of the matrix can be estimated by averaging [v]𝑚 [v]∗𝑙 over
snapshots, and over all �̃�𝑚, �̃�𝑙 that produce identical difference 𝑘 = �̃�𝑚 − �̃�𝑙 . Let
R̃ denote the estimated matrix. Then, the DOAs can be estimated using subspace
methods if we order the eigenvalues of R̃ in terms of their absolute values and find the
signal and noise subspaces accordingly [79]. In theory, as many as𝑈 − 1 = 𝑂 (�̄�2)
DOAs can be identified using MUSIC [52] or ESPRIT [27]. Compared to the
uniform scheme (where decimated output corresponds to a sparse ULA with spacing
𝑀) in Sec. 3.2.1, the nonuniform scheme can achieve the same effective array
aperture based on the dilated coarray C𝑀 . Thus, nonuniform scheme requires
fewer RF chains and thus lower hardware complexity to achieve the same estimation
performance. Or, nonuniform scheme gives larger effective array aperture and better
estimation performance than uniform scheme given a fixed number of RF chains.

Similar to the case of uniform decimation in Sec. 3.2.1, because of the presence of
𝑀𝜔𝑖 in (3.29), initially we can only identify 𝑀𝜔𝑖 mod 2𝜋, causing ambiguities. Yet
we know that after filtering, we only have 𝜔𝑖 in the passband of 𝐻 (𝑒 𝑗𝜔) which has
width 2𝜋/𝑀 , so the ambiguities can be resolved. This shows that the filtering effect
of CBS is crucial for the proposed nonuniform decimation scheme to work. Because
of the presence of 𝑀 > 1 in 𝑛𝑖 = �̃�𝑖𝑀 and the sparsity of the virtual sparse array
N = {�̃�0, . . . , �̃��̄�−1}, we can make �̄� ≪ 𝑁 . In other words, it is practical to use a
small number �̄� of RF chains even for a large number 𝑁 of antennas. Moreover, we
can still estimate 𝑂 (�̄�2) DOAs.
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3.3 Hybrid Analog and Digital Implementation of CBS
As described in the introduction (Sec. 3.1), to avoid large hardware cost, a hybrid
of analog and digital processing is used for mmWave arrays. In particular, we
implement the beamspace matrix of CBS in the analog domain, and the resulting
lower-dimensional output is passed through a smaller number �̄� of RF chains.
Since the analog combiner is realized by a phase shifter network, each entry of
the beamspace matrix should have unit modulus. However, a standard digital filter
typically does not have constant-modulus coefficients. To overcome this issue, we
use an important result that any complex vector v can be expressed as a linear
combination of two vectors with unit-modulus entries:

Lemma 3.1 ([48, 96]) For any complex vector v ∈ C𝑛, there exist complex numbers
𝑎1 and 𝑎2 and complex vectors v1 ∈ C𝑛 and v2 ∈ C𝑛 whose entries 𝑣1,𝑖 and 𝑣2,𝑖

satisfy |𝑣1,𝑖 | = |𝑣2,𝑖 | = 1 for all 𝑖 such that

v = 𝑎1v1 + 𝑎2v2. (3.31)

In particular, to satisfy (3.31), we can choose

𝑎1 = 𝑎2 = ∥v∥∞/2, (3.32)

𝑣1,𝑖 = 𝑒
𝑗 (arg(𝑣𝑖)+cos−1 ( |𝑣𝑖 |/∥v∥∞)) , (3.33)

𝑣2,𝑖 = 𝑒
𝑗 (arg(𝑣𝑖)−cos−1 ( |𝑣𝑖 |/∥v∥∞)) (3.34)

for all 𝑖, where 𝑣𝑖 is the 𝑖th entry of v.

Proof: It can be directly verified that v = 𝑎1v1 + 𝑎2v2 given (3.32), (3.33), and
(3.34).

Remark: It is not necessary to choose 𝑎1 = 𝑎2 to satisfy (3.31). However, it is
advantageous to do so in terms of hardware implementation, as we shall explain.
The merit of this lemma is that, just two vectors v1, v2 are sufficient. There is no
need to consider the linear combination of more than two vectors.

We first illustrate the implementation of CBS with nonuniform decimation, as shown
in Fig. 3.2. Consider an arbitrary CBS filter ℎ(𝑛), 0 ≤ 𝑛 ≤ 𝐿 − 1 and its vector
form h = [ℎ(𝐿 − 1) ℎ(𝐿 − 2) · · · ℎ(0)]𝑇 . According to Lemma 3.1, there exist
𝑎1, 𝑎2 ∈ C and h1, h2 ∈ C𝐿 whose entries are unit-modulus such that

h = 𝑎1h1 + 𝑎2h2. (3.35)
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Figure 3.2: System model of hybrid CBS for DOA estimation based on passive
arrays. The analog combiner can only have unit-magnitude multipliers.

Hence, for the operation v = DHx in (3.19), the overall combiner F can be written
as

F = DH = H̃H, (3.36)

where

H̃ =


𝑎1 𝑎2 0 0 · · · 0 0
0 0 𝑎1 𝑎2 · · · 0 0
...

...
. . .

0 0 0 0 · · · 𝑎1 𝑎2


∈ C�̄�×2�̄� , (3.37)

H = [h(0)
1 h(0)

2 h(𝑛1)
1 h(𝑛1)

2 · · · h(𝑛�̄�−1)
1 h(𝑛�̄�−1)

2 ]𝑇 (3.38)

with h(𝑘)
𝑚 = [01×𝑘 h𝑇𝑚 01×(𝑁−𝐿−𝑘)]𝑇 for 𝑚 = 1, 2 and nonnegative integers 𝑘 . Since

h1 and h2 have unit modulus entries (thanks to Lemma 3.1), we can implement H
with 2�̄�𝐿 phase shifting operations and 2�̄� (𝐿 − 1) additions. In general, 𝑎1 ≠ 𝑎2,
and they do not have the same modulus. Thus, we cannot implement H̃ with phase
shifters. Instead, we can do analog-to-digital conversion on Hx and implement H̃
in the digital domain so that the analog combiner Fa = H and the digital combiner
Fd = H̃. Such implementation requires 2�̄� RF chains. Alternatively, if we choose
𝑎1 = 𝑎2 as in (3.32), then

H̃ = 𝑎1B, (3.39)
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where

B =


1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...
...

. . .

0 0 0 0 · · · 1 1


∈ C�̄�×2�̄� (3.40)

can be implemented with �̄� additions in the analog domain. The constant scalar
𝑎1 can be implemented in the digital domain. Or, it may be even ignored because
the performance of most DOA estimation methods such as MUSIC [52] or ESPRIT
[27] is not affected by scaling the array output vector by a constant. In summary,
the analog combiner is designed as

Fa = BH, (3.41)

realized with 2�̄�𝐿 phase shifting operations, and we need only �̄� RF chains to
process the combiner output. This is half of the number of RF chains required for
|𝑎1 | ≠ |𝑎2 |. The digital combiner is designed as Fd = 𝑎1I or Fd = I (i.e., no digital
combiner). All of the remaining steps for coarray method and subspace algorithms
described in Sec. 3.2.2 can then be realized since any digital processing can be done
after we acquire the vector v in the digital domain.

For CBS with uniform decimation (3.11), we can implement v𝑙 = D𝑙Hx in the same
way as we do for the nonuniform case v = DHx. In fact, the former can be viewed
as a special case of the latter if we let the virtual sensor locations 𝑛𝑖 = 𝑖𝑀 . Thus, we
need �̄� = (𝑁 − 𝐿 + 1)/𝑀 RF chains. In Sec. 3.2.1, it is shown that we can average
over R𝑣𝑙 from all polyphase components v𝑙 to get a better covariance estimate when
we work purely in the digital domain. However, in hybrid CBS, if we have only
�̄� RF chains, then we can do analog-to-digital conversion for only one polyphase
component, say v0, at each time instant. Hence, we will estimate DOAs based on
the covariance R𝑣0 . Although the other polyphase components are discarded, the
resulting estimation performance is still close to the ideal benchmark, element-space
(i.e., no beamspace processing) without RF chain constraint, as demonstrated in Sec.
3.6.

3.4 Filters With Delays for Decorrelating Sources in CBS
In this section, we propose a new method for decorrelating sources based on CBS
filters with delays. In all derivations so far, the banded Toeplitz matrix H is assumed
fixed for all 𝐾 snapshots of the array output x[𝑘], i.e., y[𝑘] = Hx[𝑘] for 𝑘 =
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1, . . . , 𝐾 . However, we can also use different banded Toeplitz matrices for different
snapshots. That is,

y[𝑘] = H𝑘x[𝑘], (3.42)

where H𝑘 is the (𝑁 − 𝐿 + 1) × 𝑁 banded Toeplitz matrix:

ℎ𝑘 (𝐿 − 1) · · · ℎ𝑘 (0) 0 · · · 0
0 ℎ𝑘 (𝐿 − 1) · · · ℎ𝑘 (0) · · · 0
...

...
. . .

...
. . .

...

0 0 · · · ℎ𝑘 (𝐿 − 1) · · · ℎ𝑘 (0)


for 𝑘 = 1, . . . , 𝐾 . In the following, we show that if we design ℎ𝑘 (𝑛) to be different
delayed versions of a prototype filter ℎ(𝑛), the sources 𝑐𝑖 can to some degree be
decorrelated (if they were correlated, to begin with). This technique can be used
for both CBS with uniform decimation (Sec. 3.2.1) and CBS with nonuniform dec-
imation (Sec. 3.2.2), but it is particularly important to the latter because we assume
uncorrelated sources when deriving coarrays methods. Thus, we will illustrate the
idea with nonuniform decimation.

We design the filter ℎ𝑘 (𝑛) for the 𝑘th snapshot as a delayed version of some prototype
filter ℎ(𝑛) with length 𝐿′ < 𝐿. Let 𝑞𝑘 ∈ [0, 𝐿 − 𝐿′] denote the delay. Then the filter
𝐻𝑘 (𝑧) =

∑𝐿−1
𝑛=0 ℎ𝑘 (𝑛)𝑧−𝑛 is related to the prototype by

𝐻𝑘 (𝑧) = 𝐻 (𝑧)𝑧−𝑞𝑘 , (3.43)

where 𝐻 (𝑧) =
∑𝐿′−1
𝑛=0 ℎ(𝑛)𝑧−𝑛. Note that each filter ℎ𝑘 (𝑛) only has at most 𝐿′

nonzero coefficients. Now replacing H by H𝑘 in (3.19), we have

v[𝑘] = DH𝑘x[𝑘] = Asd[𝑘] + DH𝑘e[𝑘], (3.44)

where As is defined in (3.23), and d[𝑘] has entries

[d[𝑘]]𝑖 = 𝑐𝑖 [𝑘]𝑒 𝑗 (𝐿−1)𝜔𝑖𝐻𝑘 (𝑒 𝑗𝜔𝑖 ) (3.45)

= 𝑐𝑖 [𝑘]𝑒 𝑗 (𝐿−1)𝜔𝑖𝐻 (𝑒 𝑗𝜔𝑖 )𝑒− 𝑗𝜔𝑖𝑞𝑘 . (3.46)

Here 𝑐𝑖 [𝑘] is the 𝑖th source amplitude in the 𝑘th snapshot. Thus,

Rvv = E[v[𝑘]v𝐻 [𝑘]] (3.47)

= AsRddA𝐻
s + 𝜎2

e E[DH𝑘H𝐻
𝑘 D𝐻], (3.48)
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where Rdd = E[d[𝑘]d𝐻 [𝑘]]. We can show that in (3.48), E[DH𝑘H𝐻
𝑘

D𝐻] =

DHH𝐻D𝐻 regardless of the delay 𝑞𝑘 , where H is as defined in (3.4) with the
understanding that ℎ(𝑛) = 0 for 𝑛 = 𝐿′, . . . , 𝐿 − 1. Thus, the noise term can be
whitened as in (3.24) if the CBS filter 𝐻 (𝑧) is a spectral factor of a Nyquist(𝑀)
filter. Meanwhile,

[Rdd]𝑖,𝑙 = E[𝑐𝑖 [𝑘]𝑐∗𝑙 [𝑘]]𝑒
𝑗 (𝐿−1) (𝜔𝑖−𝜔𝑙)𝐻 (𝑒 𝑗𝜔𝑖 )𝐻∗(𝑒 𝑗𝜔𝑙 ) E[𝑒− 𝑗 (𝜔𝑖−𝜔𝑙)𝑞𝑘 ] . (3.49)

3.4.1 Case of Random Delays
Suppose 𝑞𝑘 are independent and identically distributed (i.i.d.) with probability mass
function 𝑓 (𝑞). Since the discrete-time Fourier transform of 𝑓 (𝑞) is

𝐹 (𝑒 𝑗𝜔) =
𝐿−𝐿′∑︁
𝑞=0

𝑓 (𝑞)𝑒− 𝑗𝜔𝑞 = E[𝑒− 𝑗𝜔𝑞𝑘 ], (3.50)

we have that

E[𝑒− 𝑗 (𝜔𝑖−𝜔𝑙)𝑞𝑘 ] = 𝐹 (𝑒 𝑗 (𝜔𝑖−𝜔𝑙)). (3.51)

Thus, by designing 𝐹 (𝑒 𝑗𝜔) as a lowpass filter and assuming all the DOAs 𝜔𝑖 are
not too close to one another (so that 𝜔𝑖 − 𝜔𝑙 is in the passband), we can make
E[𝑒− 𝑗 (𝜔𝑖−𝜔𝑙)𝑞𝑘 ] ≈ 0 for all 𝑖 ≠ 𝑙. This further makes Rdd approximately diagonal.
That is, the sources are decorrelated. This technique allows us to use the coarray
method as in Sec. 3.2.2 even when the source amplitudes 𝑐𝑖 are correlated. Standard
windows with nonnegative coefficients, such as rectangular, Hann, and Hamming
windows [63], can be used to design 𝑓 (𝑞).

We note that the factor 𝐻 (𝑒 𝑗𝜔𝑖 )𝐻∗(𝑒 𝑗𝜔𝑙 ) is still present in (3.49), so the filtering
effect of traditional CBS on the DOAs is achieved by designing 𝐻 (𝑒 𝑗𝜔) to be a
standard lowpass filter. The effective filter lengths of ℎ(𝑛) and 𝑓 (𝑞) are 𝐿′ and
𝐿 − 𝐿′ + 1, respectively. Hence, there is a tradeoff between the filtering effect on the
DOAs and the decorrelating effect on the sources when we choose 𝐿′ given a fixed
𝐿. Here is where another advantage of large arrays comes in: for large arrays (large
𝑁), we can choose a large 𝐿 and design the system to have both good filtering ability
and good decorrelating ability. We also note that 𝐹 (𝑒 𝑗𝜔) can be designed to have a
narrower passband than 𝐻 (𝑒 𝑗𝜔). In this way, correlated passband sources (passband
in terms of 𝐻 (𝑒 𝑗𝜔)) can still be decorrelated. By contrast, traditional CBS in Sec.
2.2 can only handle correlation between passband and stopband sources, but suffers
if two passband sources are correlated.
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3.4.2 Case of Deterministic Delays
In deriving (3.49) and (3.51), we have assumed that the delays 𝑞𝑘 are random and
i.i.d. with probability mass function 𝑓 (𝑞). Instead of random delays, we can also
use deterministic delays. In practice, we use 𝐾 snapshots to estimate Rvv and obtain

R̂vv =
1
𝐾

𝐾∑︁
𝑘=1

v[𝑘]v𝐻 [𝑘] . (3.52)

We let 𝑓 (𝑞) denote the number of snapshots with delay 𝑞, divided by 𝐾 , i.e.,

𝑓 (𝑞) = 1
𝐾

���{1 ≤ 𝑘 ≤ 𝐾 | 𝑞𝑘 = 𝑞
}���. (3.53)

The discrete-time Fourier transform of 𝑓 (𝑞) is given by

𝐹 (𝑒 𝑗𝜔) =
𝐿−𝐿′∑︁
𝑞=0

𝑓 (𝑞)𝑒− 𝑗𝜔𝑞 = 1
𝐾

𝐾∑︁
𝑘=1

𝑒− 𝑗𝜔𝑞𝑘 , (3.54)

which can be viewed as an empirical counterpart of (3.50). Then using (3.44) and
(3.52), we can obtain

E[R̂vv] = As E[R̂dd]A𝐻
s + 𝜎2

e DHH𝐻D𝐻 , (3.55)

where

E[R̂dd] =
1
𝐾

𝐾∑︁
𝑘=1

E[d[𝑘]d𝐻 [𝑘]] . (3.56)

In view of (3.46) and (3.54), E[R̂dd] has entries

[E[R̂dd]]𝑖,𝑙 = E[𝑐𝑖 [𝑘]𝑐∗𝑙 [𝑘]]𝑒
𝑗 (𝐿−1) (𝜔𝑖−𝜔𝑙)𝐻 (𝑒 𝑗𝜔𝑖 )𝐻∗(𝑒 𝑗𝜔𝑙 )

· 𝐹 (𝑒 𝑗 (𝜔𝑖−𝜔𝑙)). (3.57)

Hence, by designing 𝑓 (𝑞) and thus 𝐹 (𝑒 𝑗𝜔) to approximate the desired lowpass filter
𝐹 (𝑒 𝑗𝜔), we can similarly make 𝐹 (𝑒 𝑗 (𝜔𝑖−𝜔𝑙)) ≈ 0 for all 𝑖 ≠ 𝑙. This further makes
E[R̂dd] approximately diagonal and decorrelates the sources. There is a simple
way to designing 𝑓 (𝑞) to approximate the probability mass function 𝑓 (𝑞). We
consider the cumulative distribution function 𝑓c(𝑞) =

∑𝑞

𝑖=−∞ 𝑓 (𝑖). Then out of the
𝐾 snapshots, we use

𝑟 ( 𝑓c(𝑞)𝐾)) − 𝑟 ( 𝑓c(𝑞 − 1)𝐾) (3.58)

snapshots with delays 𝑞, where 𝑟 (𝑥) rounds 𝑥 to the nearest integer. With this choice,
one can verify that the total number of snapshots is indeed 𝐾 . In the simulations
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later, we will compare the performance of random delays with deterministic delays
designed in this way. It is found that the two types of delays result in similar DOA
estimation errors. Hence, deterministic delays are more recommended since they
are easier to implement than random delays in the analog combiner.

3.5 Cramér–Rao Bound Based on Beamspace Outputs
In this section, we derive the Cramér–Rao Bound (CRB) [43] for the DOA estimates
based on the beamspace output

v = W𝐻x (3.59)

under the stochastic model [44, 49, 50]. Here x is the ULA output in (3.1), and W
is any fixed beamspace matrix with full column rank. We assume that the sources
are known to be uncorrelated a priori, and we have 𝐾 snapshots.

Theorem 3.1 The CRB for the DOAs ω = [𝜔1 · · · 𝜔𝐷]𝑇 based on the beamspace
output v in (3.59) is

CRB(ω) = 1
𝐾

(
G𝐻𝚷⊥

𝚫G
)−1

, (3.60)

where 𝚷⊥
𝚫 = I − 𝚫(𝚫𝐻𝚫)−1𝚫𝐻 ,

G =

(
V𝑇 ⊗ V

)1/2 ( ¤A∗ ⊙ (AP) + (AP)∗ ⊙ ¤A
)
, (3.61)

𝚫 =

(
V𝑇 ⊗ V

)1/2
[A∗ ⊙ A vec(I)] , (3.62)

V = W(W𝐻RxxW)−1W𝐻 . (3.63)

Here ¤A = [ ¤a𝑁 (𝜔1) · · · ¤a𝑁 (𝜔𝐷)] with ¤a𝑁 (𝜔) = d
d𝜔a𝑁 (𝜔) and P = diag(𝑝1, . . . , 𝑝𝐷).

Also, we assume Rxx = E[xx𝐻] is positive definite so that V exists, and that (V𝑇 ⊗V)
is positive semidefinite. Then (V𝑇 ⊗ V)1/2 denotes its positive semidefinite square
root.

Proof: The parameter vector for the uncorrelated model is

α =
[
[𝜔𝑖]𝐷𝑖=1 [𝑝𝑖]𝐷𝑖=1 𝜎2

e
]𝑇

=
[
ω𝑇 [𝑝𝑖]𝐷𝑖=1 𝜎2

e
]𝑇
. (3.64)

The Fisher information matrix I (α) for the model can be derived as [49]

I (α) = 𝐾
[
𝜕rvv
𝜕α

]𝐻 (
R𝑇

vv ⊗ Rvv
)−1 𝜕rvv

𝜕α
, (3.65)
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where rvv = vec(Rvv), Rvv = E[vv𝐻] = W𝐻RxxW, and 𝜕rvv
𝜕α is the Jacobian matrix

with entries [
𝜕rvv
𝜕α

]
𝑖,𝑘

=
𝜕 [rvv]𝑖
𝜕 [α]𝑘

. (3.66)

Using the identities vec(ABC) = (C𝑇 ⊗ A)vec(B), (AC ⊗ BD) = (A ⊗ B) (C ⊗ D),
and (E ⊗ F)−1 = (E−1 ⊗ F−1) for any matrices A, B, . . . , F with proper dimensions
(and E, F invertible), we can derive that

I (α) = 𝐾
[
𝜕rxx
𝜕α

]𝐻 (
V𝑇 ⊗ V

) 𝜕rxx
𝜕α

, (3.67)

where rxx = vec(Rxx), and V is defined in (3.63). The detailed expression of the
Jacobian matrix 𝜕rxx

𝜕α can be obtained by directly computing the derivatives in its
definition. We note that the CRB for α is the inverse of I (α), but we are interested
only in the CRB for ω. Thus, following derivations similar to those in [49, 50], we
can use block-wise matrix inversion to obtain (3.60), (3.61), and (3.62).

The uniformly and nonuniformly decimated CBS outputs are special cases of the
model (3.59). For example, for the nonuniformly decimated CBS output (3.19), we
let W = H𝐻D𝐻 . Hence, we can use Theorem 3.1 to compare the MSE performance
of the proposed algorithm with the CRB via numerical examples in the following.

3.6 Simulations for Hybrid CBS
In this section, we study the performance of the proposed hybrid CBS for passive
arrays via numerical examples. In all the examples, we assume that the number of
DOAs is known for element-space methods, and that the number of in-band DOAs
is known for CBS. To compare with CBS using a filter 𝐻 (𝑧), for element-space,
we just consider DOA estimates in the passband of 𝐻 (𝑧) and ignore those in the
stopband. Whenever we mention root mean square errors (RMSEs) in detected
in-band source angles, we refer to averaging square errors measured in 𝜔 over all
in-band DOAs and over those Monte Carlo runs that obtain the correct number
of in-band DOAs (as element-space can get a wrong number of in-band DOAs).
CBS filters are designed to be lowpass filters with passband edge (1 − 𝛽)𝜋/𝑀 and
stopband edge (1 + 𝛽)𝜋/𝑀 , where 𝑀 is the decimation ratio, and 𝛽 is the roll-off
factor which determines the transition bandwidth. If not mentioned otherwise, all
sources 𝑐𝑖 have the same power, and the SNR is defined as the ratio of the power of
an in-band source to the noise power 𝜎2

e .

Example 1 (Hybrid CBS with uniform decimation): We consider a ULA with
𝑁 = 96 sensors receiving 2 passband sources at angles 𝜃 = −2◦, 2◦, and 2 stopband
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Figure 3.3: Example 1. RMSE of DOA estimates of classical beamspace [2],
element-space truncation, hybrid CBS with uniform decimation, and ideal element-
space without RF chain constraint. Except ideal element-space, all the other methods
can be realized with 9 RF chains in the hybrid model. The ideal element-space CRB
based on 𝑁-sensor ULA output and hybrid CBS CRB computed from Theorem 3.1
are also shown.

sources at angles 𝜃 = 40◦, 60◦. The decimation ratio is 𝑀 = 8 for hybrid CBS
with uniform decimation. The CBS filter is designed to be a spectral factor of a
lowpass Nyquist(𝑀)-equiripple filter [71] with length 𝐿 = 25 and roll-off factor
𝛽 = 0.5. Thus, the number of RF chains is only �̄� = (𝑁 − 𝐿 + 1)/𝑀 = 9. The
DOAs are estimated using root-MUSIC [26]. Covariance estimates are obtained
by using 500 snapshots, and we average 500 Monte Carlo runs to get Fig. 3.3.
The RMSEs of DOA estimates of hybrid CBS are much smaller than classical
beamspace [2]. Classical beamspace can be directly applied in the analog domain
since its beamspace matrix is a submatrix of a DFT matrix with constant-modulus
entries. The poor performance of classical beamspace is due to the numerical
sensitivity issues mentioned in [2]. Just for reference, we also show the RMSE
when only the first �̄� sensors are used and all other sensors are discarded (element-
space truncation). In this case there is no analog combiner, and the outputs of the
�̄� sensors are processed in the digital domain. Even in this extreme case we see
that the performance is better than classical beamspace, but hybrid CBS is much
better. Finally, we compare to ideal element-space without RF chain constraint,
where the 𝑁-sensor ULA output can be processed fully in the digital domain. This
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requires impractically high hardware cost and just serves as an ideal benchmark. It
is quite striking that the RMSE of hybrid CBS is close to this ideal case. We also
plot the ideal element-space CRB [44] based on 𝑁-sensor ULA output and hybrid
CBS CRB computed from Theorem 3.1. The RMSE of each method is close to its
CRB. This is not surprising since MUSIC and root-MUSIC are statistically efficient
for sufficiently large arrays [26, 56].
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Figure 3.4: Example 2. RMSE and CRB for DOA estimates of hybrid CBS with
uniform or nonuniform decimation.

Example 2 (Uniform decimation vs. nonuniform decimation for hybrid CBS): Next,
we compare nonuniform decimation (CBS coarray method) to uniform decimation
for hybrid CBS. We consider a ULA with 𝑁 = 108 sensors receiving 3 passband
sources at angles 𝜃 = −2◦, 0◦, 1.5◦, and 2 stopband sources at angles 𝜃 = 40◦, 60◦.
The decimation ratio is 𝑀 = 4. The CBS filter is designed to be a spectral factor of
a lowpass Nyquist(𝑀)-equiripple filter [71] with length 𝐿 = 16 and roll-off factor
𝛽 = 0.5. For CBS coarray method, we do nonuniform decimation after filtering and
retain samples at 𝑛𝑖 = �̃�𝑖𝑀 , 0 ≤ 𝑖 ≤ 7, where {�̃�𝑖} are the sensor locations of an
8-sensor restricted MRA [3]. For a fair comparison, we retain only 8 samples at
𝑛𝑖 = 𝑖𝑀 , 0 ≤ 𝑖 ≤ 7 for uniform decimation. Hence, each method can be realized
with �̄� = 8 RF chains in the hybrid model. The DOAs are estimated using root-
MUSIC. Covariance estimates are obtained by using 1000 snapshots, and we average
500 Monte Carlo runs to get Fig. 3.4. The CRB for each method, which can be
computed from Theorem 3.1, is also plotted. The RMSE and CRB for nonuniform
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CBS is much smaller than the RMSE and CRB for uniform CBS, respectively.
Nonuniform CBS has smaller estimation errors because the coarray aperture of the
MRA is larger than the ULA aperture of uniform CBS. The large errors of uniform
CBS here is due to the very closely spaced DOAs. Uniform CBS can still be a good
method in other cases, e.g., in Example 1.

-20 -15 -10 -5 0 5 10
SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or

Coarray RMSE
Coarray CRB
CBS coarray RMSE
CBS coarray CRB

Figure 3.5: Example 3. RMSE and CRB for DOA estimates of direct coarray method
in element-space and hybrid CBS coarray method. For CBS coarray method, we do
nonuniform decimation after filtering and retain samples at 𝑛𝑖 = �̃�𝑖𝑀 , 0 ≤ 𝑖 ≤ 7,
where 𝑀 = 4 and {�̃�𝑖} are the sensor locations of an 8-sensor restricted MRA
[3]. For direct coarray method, we do nonuniform decimation in element-space and
retain samples at �̃�𝑖, 0 ≤ 𝑖 ≤ 7. Thus, each method can be realized with 8 RF chains
in the hybrid model.

Example 3 (Hybrid CBS coarray method vs. direct coarray method (both with
nonuniform decimation)): Next we again consider hybrid CBS with nonuniform
decimation and coarray method. There are 4 passband sources at angles 𝜃 =

−6◦,−2◦, 3◦, 7◦, and 2 stopband sources at angles 𝜃 = 40◦, 60◦. All the other
simulation parameters are the same as in Example 2. For comparison, we also
show the performance of direct coarray method in element-space. That is, we
do nonuniform decimation in element-space and retain samples at �̃�𝑖, 0 ≤ 𝑖 ≤
7, where {�̃�𝑖} are the sensor locations of an 8-sensor restricted MRA [3]. This
nonuniform decimation in element-space (compared to beamspace after filtering)
also appears in [5]. Hence, each method can be realized with �̄� = 8 RF chains in the
hybrid model. In Fig. 3.5, the RMSE and CRB (computed from Theorem 3.1) for
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Figure 3.6: Example 3. RMSE and CRB for DOA estimates of hybrid CBS coarray
method and direct coarray method in element-space as we vary the DOA difference.
The decimation schemes of the two methods are the same as in Fig. 3.5.

CBS coarray method is much smaller than the RMSE and CRB for direct coarray
method, respectively. CBS has smaller estimation errors because the effective
coarray aperture is 𝑀 = 4 times larger. Notice that the RMSE, but not the CRB
saturates as SNR increases. Next, we consider this same example except that the
SNR is fixed at 0 dB and that there are only two passband sources at angles −𝜃0, 𝜃0.
RMSEs and CRBs for DOA estimates versus the DOA difference 2𝜃0 are plotted
for hybrid CBS coarray method and direct coarray method in Fig. 3.6. Here we
can see that as the two DOAs get closer, the significant increase in RMSE or CRB
of direct coarray method happens earlier than those of CBS coarray method. In
other words, CBS coarray method also achieves higher DOA resolution than direct
coarray method.

Example 4 (Hybrid CBS with different nonuniform decimation schemes, 16 passband
DOAs, 8 RF chains): In Fig. 3.7, we compare hybrid CBS coarray method with
different nonuniform decimation schemes. Here we retain samples at 𝑛𝑖 = �̃�𝑖𝑀 ,
0 ≤ 𝑖 ≤ 7, where 𝑀 = 4 and {�̃�𝑖} are the sensor locations of either an 8-sensor
nested array [32] with 4 sensors in each layer or an 8-sensor restricted MRA [3].
Each decimation scheme can be realized with �̄� = 8 RF chains. The difference
coarrays of the two sparse arrays are −19 ≤ 𝑘 ≤ 19 and −23 ≤ 𝑘 ≤ 23, respectively.
We consider a ULA with 𝑁 = 117 sensors receiving 16 passband sources at angles
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Figure 3.7: Example 4. (16 passband DOAs, 8 RF chains) RMSE and CRB for DOA
estimates of hybrid CBS coarray method with nonuniform decimation corresponding
to an 8-sensor nested array with 4 sensors in each layer and an 8-sensor MRA.

𝜔 = −0.2𝜋 + 𝑖Δ, 𝑖 = 0, 1, . . . , 15, where Δ = 0.4𝜋/15 and no stopband sources.
(Recall that𝜔 = 𝜋 sin 𝜃.) The CBS filter is designed to be a lowpass Parks-McClellan
filter [63] with length 𝐿 = 25 and roll-off factor 𝛽 = 0.2. The Parks-McClellan
filter is approximately a spectral factor of a Nyquist(𝑀) filter [23], so we treat the
noise after filtering as white noise and apply root-MUSIC as usual. We again use
1000 snapshots and 500 Monte Carlo runs. From the simulation results, we observe
that the RMSE and CRB for the MRA are smaller than the RMSE and CRB for the
nested array, respectively. This is because the coarray aperture of the MRA is larger
than that of the nested array. Although the RMSE and CRB tend to saturate with
SNR (as also observed in [49, 50]), we can identify 16 passband DOAs, more than
the number �̄� = 8 of RF chains. This is not possible for classical beamspace or
hybrid CBS with uniform decimation. The direct coarray method in element-space
(as defined in Fig. 3.5) is not shown in this example since it cannot resolve those
closely spaced DOAs. This is because its coarray aperture is too small without
dilation.

Example 5 (Hybrid CBS with different nonuniform decimation schemes, 64 DOAs
in 4 subbands, 8 RF chains): Next, we consider the same settings as in Example 4
except that there are 64 DOAs 𝜔 = −0.2𝜋 + 𝑖Δ + 2𝑙𝜋/𝑀 (taken modulo 2𝜋 to make
each 𝜔 ∈ [−𝜋, 𝜋)), 0 ≤ 𝑖 ≤ 15, 0 ≤ 𝑙 ≤ 3, where Δ = 0.4𝜋/15. We use a bank of 4
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Figure 3.8: Example 5. (64 DOAs in 4 subbands, 8 RF chains) RMSE for DOA
estimates of hybrid CBS coarray method with nonuniform decimation.

filters and 4× 1000 snapshots to estimate the DOAs in the 4 subbands. As shown in
Fig. 3.8, we can identify these 64 DOAs using 8 RF chains. In fact, the RMSE of
the DOA estimates for each array in Fig. 3.8 is almost the same as that in Fig. 3.7.
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Figure 3.9: Example 6. (10 correlated passband sources, 8 or 9 RF chains) RMSE
for DOA estimates of hybrid CBS coarray method with nonuniform decimation and
filter delays for decorrelating sources.
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Example 6 (Decorrelation method for hybrid CBS with nonuniform decimation, 10
correlated passband sources, 8 RF chains): Finally, we verify the effectiveness of
the decorrelation method proposed in Sec. 3.4. We consider a ULA with 𝑁 = 132
sensors receiving 10 passband sources at angles 𝜔 = −0.125𝜋 + 𝑖Δ, 𝑖 = 0, 1, . . . , 9,
where Δ = 0.25𝜋/9, and 2 stopband sources at angles 𝜃 = 40◦, 60◦. Passband
sources 𝑖 and 𝑖+5 have a correlation coefficient 𝜌 = 0.9 for 𝑖 = 0, . . . , 4. Hybrid CBS
coarray method with nonuniform decimation is used. We retain samples at 𝑛𝑖 = �̃�𝑖𝑀 ,
where𝑀 = 4 and {�̃�𝑖} are the sensor locations of either a 9-sensor restricted MRA or
an 8-sensor restricted MRA [3]. We assume that at most 9 RF chains can be used, so
each decimation scheme can be implemented. The CBS prototype filter is designed
to be a lowpass Parks-McClellan filter [63] with length 𝐿′ = 16 and roll-off factor
𝛽 = 0.5. For the 8-sensor MRA scheme, we introduce random delays 𝑞𝑘 uniformly
distributed over [0, 𝑄], where 𝑄 = 24. That is, the decorrelation filter 𝑓 (𝑞) in
(3.50) is a rectangular window with length 𝐿 − 𝐿′ + 1 = 25. For comparison, we
also introduce deterministic delays to approximate the uniform distribution. Since
an 8-sensor MRA has aperture 𝐴 = 23 (i.e., the last sensor location �̃�7 = 23), the
parameters are consistent as 𝐴𝑀+𝑄+𝐿′ = 23×4+24+16 = 𝑁 . For the 9-sensor MRA
scheme, there is no room for introducing delays (i.e., decorrelation cannot be applied)
because a 9-sensor MRA has aperture 𝐴 = 29 so that 𝐴𝑀 + 𝐿′ = 29 × 4 + 16 = 𝑁 .
The DOAs are estimated using root-MUSIC with 𝐾 = 1000 snapshots, and we
average 500 Monte Carlo runs to get Fig. 3.9. The 9-sensor MRA scheme has
large RMSE because the coarray method fails when sources are correlated. The
8-sensor MRA scheme with random delays performs similarly to 8-sensor MRA
scheme with deterministic delays, and they are much better than the 9-sensor MRA
scheme. Thus, deterministic delays are more recommended since they are easier to
implement than random delays in the analog combiner.

3.7 Hybrid Capon-CBS for Passive Arrays
In Sec. 2.5, a variant of CBS called Capon-CBS is proposed. The method consists
of two stages. In the first stage, we design the CBS filter based on the idea of Capon
beamforming [36]. The resulting Capon-CBS filter can do a better job of sup-
pressing out-of-band sources because input statistics are taken into account. Hence,
Capon-CBS is especially useful when there are powerful out-of-band sources that
are correlated with in-band sources. In the second stage, we simply implement the
Capon-CBS filter obtained earlier as in traditional CBS. Thus, the hybrid imple-
mentation described in Sec. 3.3 can be readily applied for the second stage. In this
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section, we therefore focus on the realization of the first stage (design stage) in the
hybrid analog and digital architecture with RF chain constraints.

We consider again the ULA output x as in (3.1) and aim to design a CBS filter ℎ(𝑛)
of length 𝐿. As explained in Sec. 2.5, for purposes of computation, the Capon-
CBS filter will be expressed explicitly in terms of real and imaginary components:
[Re{h𝑇 } Im{h𝑇 }]𝑇 ≜ h̃ where h = [ℎ∗(𝐿 − 1) ℎ∗(𝐿 − 2) · · · ℎ∗(0)]𝑇 . Then, the
CBS filter coefficient vector h̃ is obtained from the solution to

min
h̃

h̃𝐻R̃𝐿h̃

subject to Re{h̃𝐻a} ≥ 1 ∀a ∈ E, (3.68)

where

R̃𝐿 =
1

𝑁 − 𝐿 + 1

𝑁−𝐿∑︁
𝑖=0

E [̃x𝐿,𝑖x̃𝐻𝐿,𝑖], (3.69)

x̃𝐿,𝑖 = [Re{x𝑇𝐿,𝑖} Im{x𝑇𝐿,𝑖}]𝑇 (3.70)

with x𝐿,𝑖 = [𝑥(𝑖) 𝑥(𝑖 + 1) · · · 𝑥(𝑖 + 𝐿 − 1)]𝑇 , and E is a 2𝐿-dimensional ellipsoid
that covers the range of values of ã𝐿 (𝜔) = [Re{a𝑇

𝐿
(𝜔)} Im{a𝑇

𝐿
(𝜔)}]𝑇 for 𝜔 in the

passband. Given R̃𝐿 and E, the problem can be solved by Lagrange multiplier
methods as shown in [83]. Hence, the problem that remains is how to obtain R̃𝐿 (or
its surrogate) in the hybrid analog and digital architecture, where typically we have
only �̄� ≪ 𝑁 RF chains, and the size of R̃𝐿 is 2𝐿 × 2𝐿 often with 𝐿 > �̄� . In this
case, we are unable to compute R̃𝐿 in the digital domain after the �̄� RF chains since
we cannot get the complete array output x needed to construct each x𝐿,𝑖.

To solve this problem, we propose to compute a surrogate of R̃𝐿 by nonuniformly
decimating x and using the coarray method. We consider the integer set N =

{𝑛0, 𝑛1, . . . , 𝑛�̄�−1} corresponding to the sensor locations of some standard sparse
array. Then we nonuniformly decimate x and retain

x̄ = [𝑥(0) 𝑥(𝑛1) · · · 𝑥(𝑛�̄�−1)]𝑇 = Ac + ē, (3.71)

where

A = [ā(𝜔1) · · · ā(𝜔𝐷)] (3.72)

with ā(𝜔) = [1 𝑒 𝑗𝜔𝑛1 𝑒 𝑗𝜔𝑛2 · · · 𝑒 𝑗𝜔𝑛�̄�−1]𝑇 , and ē = [𝑒(0) 𝑒(𝑛1) · · · 𝑒(𝑛�̄�−1)]𝑇

consists of the corresponding decimated noise samples. To proceed further, we
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again assume the sources 𝑐𝑖 are uncorrelated so that the coarray method can work.
(If sources are correlated, we can use the method for decorrelating sources in Sec.
3.4.) The decimated samples in x̄ can be passed through the �̄� RF chains. Hence,
in the digital domain, we can compute

𝑅(𝑛𝑚 − 𝑛𝑙) ≜ E[𝑥(𝑛𝑚)𝑥∗(𝑛𝑙)] (3.73)

=

𝐷∑︁
𝑖=1

𝑝𝑖𝑒
𝑗𝜔𝑖 (𝑛𝑚−𝑛𝑙) + 𝜎2

e 𝛿(𝑛𝑚 − 𝑛𝑙), (3.74)

which depends only on the difference 𝑛𝑚 − 𝑛𝑙 between the virtual sensor locations,
hence the notation 𝑅(𝑛𝑚 − 𝑛𝑙). Let C be the difference coarray of the array N .
By averaging 𝑥(𝑛𝑚)𝑥∗(𝑛𝑙) over snapshots, and over all 𝑛𝑚, 𝑛𝑙 that produce identical
difference 𝑘 = 𝑛𝑚 − 𝑛𝑙 , we can estimate

𝑅(𝑘) =
𝐷∑︁
𝑖=1

𝑝𝑖𝑒
𝑗𝜔𝑖𝑘 + 𝜎2

e 𝛿(𝑘), (3.75)

for all 𝑘 ∈ C, and particularly for all 𝑘 in the central ULA segment, say, −(𝑈 − 1) ≤
𝑘 ≤ 𝑈 − 1. Note that 𝑅(𝑘) resembles a single snapshot of the output of the array C
due to the 𝐷 DOAs 𝜔𝑖. Hence, as a surrogate of R̃𝐿 , we define

R̃′
𝐿 =

1
2𝑈 − 𝐿

𝑈−𝐿∑︁
𝑖=−𝑈+1

r̃𝐿,𝑖r𝐻𝐿,𝑖, (3.76)

r̃𝐿,𝑖 = [Re{r𝑇𝐿,𝑖} Im{r𝑇𝐿,𝑖}]𝑇 (3.77)

with r𝐿,𝑖 = [𝑅(𝑖) 𝑅(𝑖 + 1) · · · 𝑅(𝑖 + 𝐿 − 1)]𝑇 . We assume that 2𝑈 − 𝐿 ≥ 2𝐿 so that
R̃′
𝐿

can be positive definite, which is required by the method in [83]. The inequality
can be satisfied easily since 𝑈 = 𝑂 (�̄�2). Then we can solve the problem (3.68)
with R̃𝐿 replaced by R̃′

𝐿
and obtain the Capon-CBS filter ℎ(𝑛) in the digital domain.

The unit-modulus coefficients ℎ1(𝑛) and ℎ2(𝑛) such that 𝑎1ℎ1(𝑛) + 𝑎2ℎ2(𝑛) = ℎ(𝑛)
for some 𝑎1, 𝑎2 ∈ C are then found by Lemma 3.1 in Sec. 3.3 and sent back to the
analog domain to implement the phase shifters in the second stage of doing CBS
filtering.

Remark 1) The application of nonuniform decimation and coarray method in the
Capon-CBS design stage is similar to that in the filtering stage described in Sec.
3.2.2. However, the main difference is the decimation ratio 𝑀 , as we can see by
comparing (3.75) to (3.29). In the context of (3.29), there is filtering followed by
decimation. In the context of (3.75), there is no filtering yet because it is precisely
the filter which is being designed here. Thus, there cannot be decimation and we
have to use undecimated information to design the Capon-CBS filter.
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Remark 2) The definition of R̃′
𝐿

in (3.76) follows the spatial smoothing method in
[32] and consists of fourth-order statistics of the sources. To mimic the second-order
statistics in (3.69), one may consider the improved spatial smoothing method in [79].
However, the matrix constructed from the method in [79] is generally not positive
semidefinite under finite snapshots. This does not matter in terms of finding signal
and noise subspaces in [79], but it does not make sense for us to minimize h̃𝐻R̃′

𝐿
h̃ if

R̃′
𝐿

has negative eigenvalues. This is why we choose the method in [32]. Moreover,
whether we use second-order statistics or fourth-order statistics is not vital since in
either way, the resulting Capon-CBS filter will tend to put zeros at the locations
of stopband DOAs. The intuition is that R̃′

𝐿
is like a squared covariance [32].

The eigenvectors of such covariance matrix can be classified into two groups, one
corresponding to passband DOAs (signal subspace) and the other corresponding to
stopband DOAs plus noise (interference-plus-noise subspace). Squaring the matrix
does not alter the eigenvectors, while the eigenvalues are squared. Thus, the goal of
the optimization problem is still to suppress the stopband DOAs plus noise, though
with a slightly modified weighting function.

3.7.1 Simulations
Now we give a numerical example to compare hybrid Capon-CBS with hybrid CBS.
We consider a ULA with 𝑁 = 49 sensors receiving 2 passband sources at angles
𝜃 = 0◦, 5◦, and 4 stopband sources at angles 𝜔 = 0.3𝜋 + 𝑖Δ, 𝑖 = 0, 1, 2, 3, where
Δ = 0.68𝜋/3. Each in-band source has power 0 dB, and each out-of-band source
has power 10 dB. Each pair of the 6 sources has a correlation coefficient 𝜌 = 0.5,
except that the 2 in-band sources are uncorrelated. The CBS filter is designed to be
either a lowpass Parks-McClellan filter [63] with roll-off factor 𝛽 = 0.5 or a Capon
filter. The filter length is 𝐿 = 8. In the first stage of Capon-CBS design (filter design
stage), we do nonuniform decimation and retain samples at 𝑛𝑖, 0 ≤ 𝑖 ≤ 7, where
{𝑛𝑖} are the sensor locations of an 8-sensor restricted MRA [3]. To decorrelate
sources, we introduce deterministic delays 𝑞𝑘 to approximate a uniform distribution
over [0, 𝑄], where 𝑄 = 25. The ellipsoid E in (3.68) is designed in the same way
as in Sec. 2.5. In the second stage of CBS filtering (filter implementation stage),
we do uniform decimation with ratio 𝑀 = 4. We assume that there are only �̄� = 8
RF chains, so only 8 uniform samples are retained. The DOAs are estimated using
root-MUSIC. We use 1000 snapshots and 500 Monte Carlo runs. As shown in Fig.
3.10(a), if the SNR is not too low, Capon-CBS can yield a smaller RMSE of DOA
estimates. This is because the Capon-CBS filter can better suppress the powerful
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Figure 3.10: Performance of hybrid CBS using a Parks-McClellan filter and Capon-
CBS. (a) RMSE of DOA estimates. (b) Filter responses when SNR is 0 dB.

out-of-band sources that are correlated with in-band sources, as depicted in Fig.
3.10(b) when SNR is 0 dB. The Capon-CBS filter almost puts zeros at the locations
of the stopband DOAs. Hybrid Capon-CBS has a large error at very low SNR since
the filter obtained is far from the ideal Capon filter due to large noise. By contrast,
the Parks-McClellan filter of hybrid CBS is predefined and not affected by noise.

3.8 Concluding Remarks
In this chapter, hybrid CBS is proposed for mmWave passive arrays. Using the fact
that any complex vector can be written as a linear combination of two vectors with
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unit-modulus entries, we show that any general CBS filter can be implemented. Two
decimation schemes are shown: uniform decimation and nonuniform decimation.
Uniform decimation is used in traditional CBS (Chapter 2), while nonuniform
decimation is proposed in this chapter. In the new scheme, we use the coarray
method to estimate𝑂 (�̄�2) DOAs with �̄� RF chains. Moreover, the retained samples
correspond to the sensor locations of a virtual sparse array, dilated by an integer
factor 𝑀 . This leads to 𝑀 times larger coarray aperture and thus smaller estimation
errors, as shown in simulations. We also propose a new decorrelation method by
using random or deterministic filter delays. The two types of delays yield similar
estimation performance, so we recommend deterministic delays as they are easier to
implement in analog processors. Besides, we derive the CRB for any beamspace-
processed passive array output. We also show how to realize the design stage of
Capon-CBS filter in the hybrid mode based on nonuniform decimation. We have
verified the performance of the proposed methods via simulations.

To deal with the unit-modulus constraints of analog processors, we write each CBS
filter coefficient as a linear combination of two unit-modulus numbers, so we need
twice the number of phase shifters. Instead, we can consider using deep learning
to optimize the analog processor coefficients or the filter coefficients under the
unit-modulus constraints without increasing phase shifters. These problems are
nonconvex and difficult to solve using classical techniques. Machine learning offers
a new way to solving them.
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C h a p t e r 4

HYBRID CONVOLUTIONAL BEAMSPACE FOR MMWAVE
MIMO CHANNEL ESTIMATION

4.1 Introduction
Array processing for millimeter wave (mmWave) signals has been a popular topic
in recent years [4–6, 9–11, 19, 41, 93, 94, 97, 98]. A main reason for considering
mmWaves is the potential to offer more bandwidth than the highly occupied lower-
frequency microwave bands, but there are also new challenges, such as strong path
loss at the high frequencies of mmWaves [10]. To compensate for the path loss, large
arrays are used, which are practical due to the small sizes of mmWave antennas, to
get large beamforming gain [11]. This makes it impractical to implement one RF
chain per antenna in view of hardware complexity. Instead, many have proposed to
use hybrid analog and digital processing.

In Chapter 3, DOA estimation based on mmWave passive arrays is studied. In this
chapter, we consider mmWave MIMO channel estimation problem [11]. In a hybrid
transceiver design, the transmitter has a digital precoder and an analog precoder, and
the receiver has an analog combiner and a digital combiner, as shown in Fig. 4.1 (see
Sec. 4.2). The analog precoder and combiner constitute an important part of the
design. They serve as dimension reducers so that we can use fewer RF chains than
the number of antennas. Meanwhile, they should be designed in a way such that we
can get good channel estimates from the combiner output. In the literature, there are
two typical analog designs [48]. One is based on switches so that the precoder and
combiner are selection matrices with entries 1’s and 0’s. The other is based on phase
shifters so that the precoder and combiner are matrices with unit-modulus entries.
(The unit-modulus constraint is assumed in many papers [4, 6, 11, 19, 97] but not
necessary as some hybrid processors allow gain control [99].) Phase shifter design
in general gives better performance than switch design since all antenna outputs can
be used simultaneously [48]. Thus, we consider phase shifter design in this chapter.

The sparse nature of an mmWave MIMO channel due to limited scattering allows
it to be modeled by a few paths, each with a direction of departure (DOD) at the
transmitter and direction of arrival (DOA) at the receiver [11]. Hence, channel
estimation can be realized by the estimation of 2-dimensional (2-D) angles DODs
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and DOAs followed by path gain estimation, and techniques for 1-dimensional (1-
D) DOA estimation may be extended to mmWave MIMO channel estimation. In
general, there are two phases in mmWave MIMO channel estimation, the initial
beam training phase and the beam tracking phase [100]. In this chapter, we focus on
the beam training phase, where we use training data to obtain initial DOD and DOA
estimates (whereas the generally time-varying DODs and DOAs should be estimated,
or tracked, in the beam tracking phase). To fulfill the unit-modulus constraint, in
many papers [4, 6, 11, 19, 97], the columns of the analog precoder and rows of
the combiner are designed to be of the form of a steering vector. A hierarchical
multi-resolution beamforming codebook is used with compressed sensing in [11].
However, it is a grid-based method, so the DOD and DOA resolution and estimation
performance are limited by the density of grid points. To get good performance,
we need a dense grid, which requires high computational complexity. Another
hierarchical beam search method based on joint subarray and deactivation codebook
design [101] is proposed in [6] and shown to require smaller pilot overhead than the
method in [11], but it is still a grid-based method. In [4, 19, 97], the analog precoder
and combiner are particularly designed as DFT beamformers, and DODs and DOAs
are then estimated by high-resolution subspace methods, such as MUltiple SIgnal
Classification (MUSIC) [19] and Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) [4, 97]. MUSIC is also a grid-based method, so
the performance of [19] is limited by the density of grid points. In [97], although
the analog precoder has DFT columns, the digital precoder is designed such that the
overall precoder is equivalent to a selection matrix with entries 1’s and 0’s. Thus, it
behaves more like the switch design. ESPRIT is a gridless method which uses the
rotational invariance [27] of a uniform linear array (ULA) output to estimate DOAs.
DFT beamformers do not preserve this rotational invariance, so elaborate steps are
taken in [4] to rebuild a similar invariance.

To make high-resolution gridless subspace methods readily applicable to the com-
biner output, we propose to use the idea of convolutional beamspace (CBS) described
in Chapter 2 to design the hybrid precoder and combiner. CBS is a beamspace DOA
estimation method originally proposed for passive arrays with purely digital im-
plementation. In CBS, the received array output is first spatially filtered by a
finite-impulse-response (FIR) filter. Then uniform decimation [67, Sec. II] (also
called downsampling) is used to reduce dimension. As mathematically defined in
(4.10), a uniform decimator keeps one sample every 𝑀r samples, where 𝑀r is a posi-
tive integer called decimation ratio. The decimation does not cause DOA ambiguity
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since the filter output is represented only by passband sources. The advantages of
CBS include complexity reduction, higher DOA resolution, and smaller bias.

In this chapter, motivated by the digital CBS combiner in Chapter 2 and hybrid
CBS combiner in Chapter 3, we design hybrid precoder and combiner for mmWave
MIMO channels so that the 2-D Vandermonde structure is preserved at the combiner
output. Then, high-resolution gridless subspace methods like 2-D unitary ESPRIT
[51] can be used without additional processing. In contrast to decimation, we use
expansion [67, Sec. II] (also called upsampling) in the precoder. As defined in
(4.12), a uniform expander inserts 𝑀t − 1 zero-valued samples between each pair of
adjacent input samples, where 𝑀t is a positive integer called expansion ratio. An
expander is typically used with a filter to do interpolation [67, Sec. II]. Besides
the uniform scheme, a new scheme using nonuniform decimation and expansion, as
mathematically defined in (4.20) and (4.21), is also proposed. The new scheme will
be used with (difference) coarray method [32]. Details about coarrays are explained
in Sec. 4.4.2. For a standard sparse array, like a minimum redundancy array (MRA)
[3], nested array [32], or coprime array [40], its coarray has a large central ULA
segment, so we can get better DOA estimates.

The main contributions of this chapter are as follows:

• We propose a new hybrid precoding (and combining) and channel estimation
method, called 2-D hybrid convolutional beamspace (CBS), for mmWave
MIMO transceivers. The precoder is designed as an expander (upsampler)
followed by an FIR filter (the two together also called an interpolator [67,
Sec. II]). Such expansion allows us to use a small number of RF chains
to generate the transmitted signals for a large number of antennas. The
combiner is designed as an FIR filter followed by a decimator (downsampler).
Such decimation greatly reduces dimension, so the combiner output can be
processed by a small number of RF chains despite a large number of receive
antennas.

• We propose the first precoding scheme, where uniform expansion and decima-
tion are used. Let 𝑀t and 𝑀r denote the transmit expansion ratio and receive
decimation ratio, and �̄�t and �̄�r denote number of transmit and receive RF
chains, respectively. Then we show that the received block will resemble
one obtained from a pair of virtual (not physical) �̄�t-antenna transmit sparse
ULA with antenna spacing 𝑀t (measured in multiples of half-wavelength),
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and virtual �̄�r-antenna receive sparse ULA with antenna spacing 𝑀r. There
is no DOD/DOA ambiguity as only in-band paths are present after filtering,
so high-resolution subspace methods like 2-D unitary ESPRIT [51] can be
readily used to estimate 𝑂 (�̄�t�̄�r) pairs of DODs and DOAs. Moreover, the
effective transmit and receive array apertures are 𝑀t and 𝑀r times larger. The
aperture of a linear array is the difference between its extreme elements, and
a larger aperture can give better estimation performance [49, 50].

• We propose the second precoding scheme, where nonuniform expansion and
decimation are used. For the expander, the output samples at sample locations
�̃�t,𝑖𝑀t equal the input samples at sample locations 𝑖, 0 ≤ 𝑖 ≤ �̄�t − 1. For the
decimator, the output samples at sample locations 𝑖 equal the input samples
at sample locations �̃�r,𝑖𝑀r, 0 ≤ 𝑖 ≤ �̄�r − 1. (See (4.18), (4.20), and (4.21).)
Here each N𝑝 = {�̃�𝑝,0, . . . , �̃�𝑝,�̄�𝑝−1}, 𝑝 ∈ {t, r}, is the set of antenna locations
of a virtual (not physical) standard sparse array. Thus, the expansion and
decimation correspond to standard sparse arrays dilated by 𝑀𝑝 times. Then,
we show that such nonuniform decimation output resembles a sparse array
output, so by applying the 2-D coarray method [5], we can theoretically
estimate as many as 𝑂 (�̄�2

t �̄�
2
r ) pairs of DODs and DOAs using methods

like 2-D unitary ESPRIT [51]. More importantly, given a fixed number of
RF chains, the nonuniform scheme yields larger array apertures and thus
better estimation performance than the uniform scheme. Besides, because
of the dilation factors 𝑀t and 𝑀r, we get larger effective coarray apertures
(compared to a system not using dilation) and thus higher DOD and DOA
resolution and smaller estimation errors.

• We show that the proposed CBS precoder and combiner with any filter coeffi-
cients can be implemented in a hybrid way under the unit-modulus constraints
of phase shifters. Moreover, the required number of transmit RF chains equals
the number of transmitted symbols in a training vector, and the number of
receive RF chains we need equals the dimension of the decimated CBS output.
In other words, no additional cost in terms of RF chains is incurred by the
unit-modulus constraints (unlike in [48, 95], using twice the number of RF
chains).

• We show that hybrid CBS yields smaller estimation errors than other non-
beam-search methods like DFT beamspace MUSIC [19] and DFT beamspace
ESPRIT [4] when having the same pilot overhead. Also, since hybrid CBS can
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be used with high-resolution gridless subspace methods, it requires smaller
pilot overhead to achieve the same estimation error as grid-based beam search
methods such as hierarchical beam search [6].

• We propose a method for decorrelating path gains. We design the CBS filters
for different snapshots as different delayed versions of a prototype filter. Then,
the effective correlations between a pair of path gains will be proportional to
the 2-D discrete-time Fourier transform of the joint probability distribution
of the transmit and receive filter delays. Thus, by designing that Fourier
transform to be a 2-D lowpass filter, we can decorrelate the path gains. The
method is particularly useful for CBS with nonuniform decimation because
uncorrelated path gains are needed to apply coarray method.

There are two stages of a hybrid MIMO channel estimation method. Stage 1
is hybrid precoding and combining. Stage 2 is channel estimation based on the
combiner output. Our main focus is that if stage 1 is designed as proposed, we can
use gridless subspace methods (and with coarray method for nonuniform scheme) to
get good estimates in stage 2. Such good estimates can be also obtained if one uses
other 2-D angle estimation methods, such as state-of-the-art compressed sensing
methods like expectation-maximization-based turbo compressed sensing [102] or
successive-linear-approximation variational Bayesian inference [103]. However,
we will not show simulations particularly for these compressed sensing methods.
Instead, we show that hybrid CBS in stage 1 with subspace method in stage 2
performs better than classical beamspace in stage 1 with subspace method in stage
2. This is sufficient to see the merit of hybrid CBS. Also, we compare to hierarchical
beam search [6] since like CBS, the design of stage 1 is also a key part of the method.

The proposed method is especially suitable for massive MIMO or large arrays,
which are getting popular recently [9, 11], because we can design good CBS filters
with large enough filter lengths. Also, in conventional array processing, the 𝑀𝑝-
sparsity can cause DOD and DOA ambiguity. However, in our case, only in-band
paths remain after CBS filtering. Thus, by designing the transmit and receive CBS
filters to have passband widths 2𝜋/𝑀t and 2𝜋/𝑀r, the ambiguity can be resolved. By
contrast, in [5], nonuniformly decimating a convolution output is also considered, but
their design is for decorrelating the path gains instead of for filtering the DODs and
DOAs. Without filtering, they cannot use the dilation factors𝑀𝑝 to increase effective
coarray aperture and get better estimation performance. The good performance of
our method will be shown in simulations (Sec. 4.8).
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Chapter outline: The model of mmWave MIMO transceiver systems is presented
in Sec. 4.2. Then, 2-D hybrid CBS with uniform decimation and expansion is
proposed for mmWave MIMO channel estimation in Sec. 4.3, and 2-D hybrid
CBS with nonuniform decimation and expansion is proposed in Sec. 4.4. Their
hybrid analog and digital implementation is shown in Sec. 4.5. Time complexity
is analyzed in Sec. 4.6, where we compare 2-D hybrid CBS with previous methods
in terms of pilot overhead. The new method for decorrelating path gains based on
filter delays in 2-D hybrid CBS is presented in Sec. 4.7. Numerical examples for
2-D hybrid CBS are shown in Sec. 4.8. Finally, the conclusion is given in Sec. 4.9.

Figure 4.1: System model of hybrid CBS for mmWave MIMO channel estimation.
The analog precoder and analog combiner can only have unit-magnitude multipliers.
Typically, 𝑁t ≫ �̄�t and 𝑁r ≫ �̄�r.

4.2 Model of mmWave MIMO Transceiver Systems
We consider an mmWave MIMO transceiver system as shown in Fig. 4.1. At the
receiver, the output of the 𝑁r-antenna receive ULA is first processed by an analog
combiner, resulting in a �̄�r-dimensional output, where �̄�r ≪ 𝑁r typically. It is then
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passed through �̄�r analog-to-digital RF chains, and finally DOA estimation is done
in the digital domain. The analog and digital building blocks of the transmitter
are reversely ordered compared to the receiver. In particular, �̄�t digital symbols
are passed through �̄�t digital-to-analog RF chains. Then the output is processed
by an analog precoder which generates the transmitted signals for the 𝑁t-antenna
transmit ULA. Again, �̄�t ≪ 𝑁t typically. The analog precoder and analog combiner
have unit-modulus entries since they are implemented by phase shifter networks.
The digital precoder and digital combiner in general can be any matrices as they
are in the digital domain. They are there for generality, but for channel estimation
problem, we later set them to be identity matrices. As explained in Sec. 1.2, the
𝑁r × 𝑁t mmWave narrowband MIMO channel matrix can be modeled by [5, 11, 19]

H𝛼,𝑘 =

𝐷∑︁
𝑖=1

𝛼𝑘,𝑖a𝑁r (𝜔r,𝑖)a𝐻𝑁t
(𝜔t,𝑖) = ArD𝛼,𝑘A𝐻

t , (4.1)

where A𝑝 = [a𝑁𝑝
(𝜔𝑝,1) · · · a𝑁𝑝

(𝜔𝑝,𝐷)], 𝑝 ∈ {t, r},

a𝑁 (𝜔) = [1 𝑒 𝑗𝜔 𝑒 𝑗2𝜔 · · · 𝑒 𝑗 (𝑁−1)𝜔]𝑇 (4.2)

for any real number 𝜔 and positive integer 𝑁 , and D𝛼,𝑘 = diag(𝛼𝑘,1, . . . , 𝛼𝑘,𝐷).
Here, 𝑘 is the training block index. In this channel model, 𝐷 denotes the number of
paths, and 𝛼𝑘,𝑖, 𝜔t,𝑖, and 𝜔r,𝑖 are the path gain, direction of departure (DOD), and
direction of arrival (DOA) for the 𝑖th path, respectively. Also, each DOD or DOA
𝜔𝑝,𝑖 = 𝜋 sin 𝜃𝑝,𝑖 ∈ [−𝜋, 𝜋), where 𝜃𝑝,𝑖 ∈ [−𝜋/2, 𝜋/2) is the physical DOD or DOA
measured from the normal to the line of array. We assume that the DODs and DOAs
remain the same throughout the training process, and that the path gains 𝛼𝑘,𝑖 vary
from block to block independently such that E[𝛼𝑘,𝑚] = 0 and

E[𝛼𝑘,𝑚𝛼∗𝑖,𝑙] = 𝜌𝑚,𝑙𝛿𝑘𝑖 (4.3)

for all 𝑖, 𝑘, 𝑙, and 𝑚. In general, the gains of different paths can be correlated so that
𝜌𝑚,𝑙 ≠ 0 for some 𝑚 ≠ 𝑙.

To estimate the MIMO channel, we transmit 𝐾 training blocks S𝑘 , each of which
is composed of �̄�t training vectors s𝑘,𝑖 for 𝑖 = 1, . . . , �̄�t and 𝑘 = 1, . . . , 𝐾 . In
particular, we design the training blocks to be [11]

S𝑘 = [s𝑘,1 s𝑘,2 · · · s𝑘,�̄�t] = 𝜎sI�̄�t (4.4)

for all 𝑘 . The receive array output is perturbed by additive white noise E𝑘 with
E[E𝑘 ] = 0 and E[vec(E𝑘 )vec𝐻 (E𝑙)] = 𝜎2

e 𝛿𝑘𝑙I for all 𝑘 and 𝑙. The noise is
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also assumed to be uncorrelated with the path gains. In the following, we first
consider CBS with uniform decimation (and expansion) and then with nonuniform
decimation.

4.3 2-D Hybrid CBS With Uniform Decimation and Expansion
The CBS method described in Chapter 3 is for passive arrays. We now extend the
method to both transmit and receive arrays for mmWave MIMO channel estimation.
In this section, we design an mmWave MIMO transceiver using CBS with uniform
decimation and expansion. The receive combiner is designed in a similar way to
CBS for passive arrays in Chapter 3, while the transmit precoder is designed as
the Hermitian transpose of a receive combiner. We consider FIR filters 𝐻𝑝 (𝑧) =∑𝐿𝑝−1
𝑛=0 ℎ𝑝 (𝑛)𝑧−𝑛 of length 𝐿𝑝, where 𝑝 ∈ {t, r} refers to the transmitter and receiver,

respectively. Then we define (𝑁𝑝 − 𝐿𝑝 + 1) × 𝑁𝑝 banded Toeplitz matrices H𝑝 as
in (2.6) in traditional CBS. That is, H𝑝 have entries

[H𝑝]𝑖,𝑘 = ℎ𝑝 (𝐿𝑝 − 1 + 𝑖 − 𝑘), (4.5)

where we assume ℎ𝑝 (𝑛) = 0 for 𝑛 < 0 or 𝑛 ≥ 𝐿𝑝. Then, we consider uniform
decimation matrices

D𝑝 = [δ (𝑁𝑝−𝐿𝑝+1)
0 δ

(𝑁𝑝−𝐿𝑝+1)
𝑀𝑝

. . . δ
(𝑁𝑝−𝐿𝑝+1)
(�̄�𝑝−1)𝑀𝑝

]𝑇 , (4.6)

where �̄�𝑝 = ⌈(𝑁𝑝 − 𝐿𝑝 + 1)/𝑀𝑝⌉, 𝑝 ∈ {t, r}. Here 𝑀t and 𝑀r are the expansion
ratio for the transmitter and decimation ratio for the receiver, respectively.

Now we design the overall precoder to be

F𝐻t = H𝐻
t D𝐻

t ∈ C𝑁t×�̄�t (4.7)

and the overall combiner to be

Fr = DrHr ∈ C�̄�r×𝑁r . (4.8)

We only consider the overall precoder F𝐻t and combiner Fr here, and the factorization
into analog and digital parts for hybrid implementation will be explained in Sec.
4.5. Then, the 𝑘th received block is

Y𝑘 = DrHrH𝛼,𝑘H𝐻
t D𝐻

t S𝑘 + DrHrE𝑘 ∈ C�̄�r×�̄�t , (4.9)

where E𝑘 is the additive noise as defined in Sec. 4.2. We can observe that there is
Hermitian-symmetry between the transmitter and receiver. That is, we define the
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overall precoder to be like the Hermitian transpose of a combiner as in (4.7). Since
S𝑘 is (a constant multiple of) identity, each column of S𝑘 produces a shifted version
of the filter as beamformer. These shifts are rendered uniform due to our definition
of Dt. Also, it is good to understand the operation in terms of basic building blocks
of digital signal processing. By definition, the overall combiner is equivalent to
the filter ℎr(𝑛) followed by a uniform decimator, as in Fig. 4.2. In Fig. 4.2, 𝑥(𝑛),
0 ≤ 𝑛 ≤ 𝑁r − 1 is the receive array output, and 𝑥1(𝑛) is the filter output, given input
𝑥(𝑛). The uniform decimator [67, Sec. II] is defined by

𝑦(𝑛) = 𝑥1(𝑀r𝑛) (4.10)

for all integers 𝑛. For the precoder, if we consider any input s = [𝑠(0) 𝑠(1) · · · 𝑠(�̄�t−
1)]𝑇 and output u = [𝑢(0) 𝑢(1) · · · 𝑢(𝑁t − 1)]𝑇 such that

u = F𝐻t s, (4.11)

we can show that the operation is equivalent to a uniform expander followed by the
filter ℎ∗t (𝐿t − 1− 𝑛), as in Fig. 4.3. The uniform expander [67, Sec. II] is defined by

𝑠1(𝑛) =
∞∑︁

𝑖=−∞
𝑠(𝑖)𝛿(𝑛 − 𝑖𝑀t). (4.12)

That is, 𝑠1(𝑛) is obtained by inserting 𝑀t − 1 zeros between every pair of adjacent
samples of 𝑠(𝑛). The overall operation in Fig. 4.3 is also called linear interpolation
[66]. Now using (4.1) and (4.4), and remembering that H𝑝, 𝑝 ∈ {t, r} are as in (4.5),
we can show that (4.9) simplifies to

Y𝑘 = ArD̃𝑘A
𝐻

t + DrHrE𝑘 , (4.13)

where

A𝑝 = [a�̄�𝑝
(𝑀𝑝𝜔𝑝,1) · · · a�̄�𝑝

(𝑀𝑝𝜔𝑝,𝐷)] (4.14)

with a𝑁 (𝜔) as defined in (4.2), and D̃𝑘 is diagonal with

[D̃𝑘 ]𝑖,𝑖 = 𝜎s𝛼𝑘,𝑖𝐻r(𝑒 𝑗𝜔r,𝑖 )𝑒 𝑗𝜔r,𝑖 (𝐿r−1)𝐻∗
t (𝑒 𝑗𝜔t,𝑖 )𝑒− 𝑗𝜔t,𝑖 (𝐿t−1) . (4.15)

Hence, Y𝑘 can be viewed as though it is a received block obtained from a pair of
virtual �̄�t-antenna transmit ULA and virtual �̄�r-antenna receive ULA due to paths
with filtered gains 𝛼𝑘,𝑖𝐻r(𝑒 𝑗𝜔𝑟 ,𝑖 )𝐻∗

t (𝑒 𝑗𝜔𝑡 ,𝑖 ) (ignoring the unimportant phase shifts),
DODs 𝑀t𝜔t,𝑖, and DOAs 𝑀r𝜔r,𝑖. The two ULAs are called virtual because they are
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Filter
ℎ! 𝑛

Decimator
𝑀!

𝑥 𝑛 𝑥" 𝑛 𝑦 𝑛

Figure 4.2: Equivalence of the overall uniform CBS combiner to a filter followed
by a uniform decimator.

Expander
𝑀"

Filter
ℎ"∗ 𝐿" − 1 − 𝑛

𝑠 𝑛 𝑠* 𝑛 𝑢 𝑛

Figure 4.3: Equivalence of the overall uniform CBS precoder to a uniform expander
followed by a filter.

not physical arrays. For large transmit and receive ULAs (large 𝑁t and 𝑁r), which
are getting popular recently [5, 9, 11], we can make 𝐿t and 𝐿r large and design
sharp-cutoff filters with good stopband.

Just like the 1-D case of passive arrays, the presence of 𝑀𝑝 in (4.14) implies that
initially we can only identify 𝑀𝑝𝜔𝑝,𝑖 mod 2𝜋, causing ambiguities. However, since
only those 𝜔𝑝,𝑖 in the passbands of 𝐻𝑝 (𝑒 𝑗𝜔) which have width 2𝜋/𝑀𝑝, 𝑝 ∈ {t, r}
will remain, the ambiguities can be resolved (see (2.20)). Without loss of generality,
we assume that the first 𝐷0 paths are in-band paths. An in-band path is a path whose
DOD is in the passband of 𝐻t(𝑒 𝑗𝜔), and whose DOA is in the passband of 𝐻r(𝑒 𝑗𝜔).
A path that is not an in-band path will be called an out-of-band path. Then we have

Y𝑘 ≈ Ar,IBD̃𝑘,IBA𝐻

t,IB + DrHrE𝑘 , (4.16)

where A𝑝,IB has the first 𝐷0 columns of A𝑝, and D̃𝑘,IB is the top left 𝐷0 × 𝐷0

subblock of D̃𝑘 .

We note that Y𝑘 also resembles a received block obtained from a pair of virtual
�̄�t-antenna transmit sparse ULA (with antenna spacing 𝑀t) and virtual �̄�r-antenna
receive sparse ULA (with antenna spacing 𝑀r) due to DODs 𝜔t,𝑖 and DOAs 𝜔r,𝑖.
This𝑀t and𝑀r times dilation yields larger effective array apertures at the transmitter
and receiver and thus better estimation performance, as we shall see in simulations.
The noise term can be whitened by letting the CBS filter 𝐻r(𝑧) be a spectral factor
of a Nyquist(𝑀r) filter. (See Sec. 4.4.2 for more details.) The DODs and DOAs
can be estimated from (4.16) using standard methods like 2-D unitary ESPRIT [51],
and at most min(�̄�t(�̄�r − 1), �̄�r(�̄�t − 1)) paths can be identified. Also like the 1-D
case of passive arrays, we can process the training blocks with two entire filter banks
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𝐻
(𝑖𝑝)
𝑝 (𝑒 𝑗𝜔), 0 ≤ 𝑖𝑝 ≤ 𝑀𝑝 − 1 to cover the full DOD and DOA ranges −𝜋 ≤ 𝜔𝑝 < 𝜋,

𝑝 ∈ {t, r}, similar to Fig. 2.3. This allows us to estimate all the DODs and DOAs
if they are not known a priori to be located in specific sectors. This method of
filter banks can also be used for CBS with nonuniform decimation and expansion
proposed in Sec. 4.4.

4.4 2-D Hybrid CBS With Nonuniform Decimation and Expansion
In this section, we introduce an mmWave MIMO transceiver using CBS with nonuni-
form decimation and expansion. The new method is a 2-D extension to 1-D hybrid
CBS with nonuniform decimation in Sec. 3.2.2. Given a fixed number of RF chains,
this yields larger array apertures and thus better estimation performance than the
uniform scheme in Sec. 4.3, as we shall explain. Several relevant arrays will appear
in this section. We list them here for easy reference:

1. Physical (large) transmit ULA and receive ULA

2. Virtual transmit sparse array Nt = {�̃�t,𝑖} and receive sparse array Nr = {�̃�r,𝑖}

3. Virtual transmit dilated sparse array Nt,𝑀t = {�̃�t,𝑖𝑀t} and receive dilated
sparse array Nr,𝑀r = {�̃�r,𝑖𝑀r}

4. Virtual transmit coarray Ct = {𝑘 − 𝑙 | 𝑘, 𝑙 ∈ Nt} and receive coarray Cr =

{𝑘 − 𝑙 | 𝑘, 𝑙 ∈ Nr}

5. Virtual transmit dilated coarray Ct,𝑀t = {𝑘 − 𝑙 | 𝑘, 𝑙 ∈ Nt,𝑀t} and receive
dilated coarray Cr,𝑀r = {𝑘 − 𝑙 | 𝑘, 𝑙 ∈ Nr,𝑀r}

Items 2 and 3 are explained Sec. 4.4.1, and Items 4 and 5 are explained Sec. 4.4.2.

4.4.1 Nonuniform Decimation and Expansion
In the definitions (4.7) and (4.8) of the overall precoder and combiner, instead of
uniform decimation matrices, we can also consider nonuniform decimation matrices

D𝑝 = [δ (𝑁𝑝−𝐿𝑝+1)
𝑛𝑝,0 δ

(𝑁𝑝−𝐿𝑝+1)
𝑛𝑝,1 . . . δ

(𝑁𝑝−𝐿𝑝+1)
𝑛𝑝,�̄�𝑝−1

]𝑇 , (4.17)

𝑝 ∈ {t, r}. In particular, we choose

𝑛𝑝,𝑖 = �̃�𝑝,𝑖𝑀𝑝, (4.18)

where 𝑀𝑝 are some positive integers, and the integer sets

N𝑝 = {�̃�𝑝,0, . . . , �̃�𝑝,�̄�𝑝−1} (4.19)
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correspond to the antenna locations of some standard sparse arrays. Without loss
of generality, let 𝑛𝑝,0 = 0. In the following, we will show that by introducing 𝑀𝑝,
we can get a pair of virtual transmit and receive sparse arrays, dilated by 𝑀t and 𝑀r

times, respectively. Hence, there will be central sparse ULA segments with antenna
spacings 𝑀𝑝 in their difference coarrays [79]. (Details for coarrays are explained
in Sec. 4.4.2.) These 𝑀𝑝 times larger coarray apertures will give better DOD and
DOA estimation performance, which will be observed in numerical examples in Sec.
4.8. Conventionally, the 𝑀𝑝-sparsity can create DOD and DOA ambiguity, but we
can resolve it because only in-band paths remain after CBS filtering, as explained
in Sec. 4.3. Note that coarray method need not be considered in uniform scheme,
because the combiner output there resembles a ULA output instead of sparse array
output.

Filter
ℎ! 𝑛

Decimator
𝑛!,#

𝑥 𝑛 𝑥$ 𝑛 𝑦 𝑛

Figure 4.4: Equivalence of the overall nonuniform CBS combiner to a filter followed
by a nonuniform combiner.

Expander
𝑛",$

Filter
ℎ"∗ 𝐿" − 1 − 𝑛

𝑠 𝑛 𝑠+ 𝑛 𝑢 𝑛

Figure 4.5: Equivalence of the overall nonuniform CBS precoder to a nonuniform
expander followed by a filter.

Just like the uniform case, with the relevant matrices defined as in (4.7), (4.8), and
(4.17), the overall combiner is equivalent to the filter ℎr(𝑛) followed by a nonuniform
decimator, as in Fig. 4.4. The nonuniform decimator is defined by

𝑦(𝑖) = 𝑥1(𝑛r,𝑖) (4.20)

for all integers 𝑖. For the precoder, we can show that the operation (4.11) is equivalent
to a nonuniform expander followed by the filter ℎ∗t (𝐿t − 1 − 𝑛), as in Fig. 4.5. The
nonuniform expander is defined by

𝑠1(𝑛) =
∞∑︁

𝑖=−∞
𝑠(𝑖)𝛿(𝑛 − 𝑛t,𝑖). (4.21)

That is, 𝑠1(𝑛t,𝑖) = 𝑠(𝑖), and 𝑠1(𝑛) is zero otherwise. For instance, at the transmitter,
we consider a ULA with 𝑁t = 17 antennas and CBS filter length 𝐿t = 5, and
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Figure 4.6: An example of nonuniform decimation for 2-D hybrid CBS. The 2-D
arrays shown are virtual (not physical) and represent the sample locations we get
if we consider the received block as a sum of 2-D complex sinusoids (see (4.28)).
Filled circles represent antennas (sample locations), and crosses represent empty
space. The array sizes are relatively small here just for ease of presentation. (a) A
2-D rectangular array N (2) = {(�̃�t,𝑖t , �̃�r,𝑖r) | �̃�t,𝑖t ∈ Nt, �̃�r,𝑖r ∈ Nr} constructed from a
4-antenna transmit MRA Nt = {�̃�t,0, . . . , �̃�t,3} = {0, 1, 4, 6} and a 3-antenna receive
MRA Nr = {�̃�r,0, . . . , �̃�t,2} = {0, 1, 3}. (b) The 2-D difference coarray C (2) of the
2-D rectangular array N (2) . (Only the nonnegative portion, i.e., quadrant I, is shown
because coarrays are symmetric.) Note that C (2) is a URA here. (c) The dilated
rectangular arrayN (2)

𝑀t,𝑀r
= {(�̃�′t,𝑖t , �̃�

′
r,𝑖r) | �̃�

′
t,𝑖t ∈ Nt,𝑀t , �̃�

′
r,𝑖r ∈ Nr,𝑀r} constructed from

the dilated 4-antenna transmit MRANt,𝑀t = {𝑀t�̃�t,0, . . . , 𝑀t�̃�t,3} = {0, 2, 8, 12} and
the dilated 3-antenna receive MRA Nr,𝑀r = {𝑀r�̃�r,0, . . . , 𝑀r�̃�r,2} = {0, 2, 6}, where
𝑀t = 𝑀r = 2. (d) The 2-D difference coarray C (2)

𝑀t,𝑀r
of the dilated rectangular array

N (2)
𝑀t,𝑀r

. Note that C (2)
𝑀t,𝑀r

is a sparse URA of antenna spacings (𝑀t, 𝑀r) = (2, 2),
and it is equivalent to C (2) dilated by 𝑀t and 𝑀r in the two directions.

�̄�t = 4 samples are expanded to locations corresponding to a 4-antenna MRA
Nt = {�̃�t,0, . . . , �̃�t,3} = {0, 1, 4, 6} dilated by 𝑀t = 2. In this case, we have the 4×13
expansion matrix

D𝑇

t =


1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1



𝑇

(4.22)

so that the expanded samples correspond to the dilated 4-antenna MRA Nt,𝑀t =

{𝑀t�̃�t,0, . . . , 𝑀t�̃�t,3} = {0, 2, 8, 12}. Meanwhile, at the receiver, we consider a ULA
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with 𝑁r = 11 antennas and CBS filter length 𝐿r = 5, and we do decimation to retain
�̄�r = 3 samples corresponding to a 3-antenna MRA Nr = {�̃�r,0, . . . , �̃�r,2} = {0, 1, 3}
dilated by 𝑀r = 2. In this case, we have the 3 × 7 decimation matrix

Dr =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

 (4.23)

so that the decimated samples correspond to the dilated 3-antenna MRA Nr,𝑀r =

{𝑀r�̃�r,0, . . . , 𝑀r�̃�r,2} = {0, 2, 6}. See Fig. 4.6 for demonstration and visualization.
The 2-D arrays shown in Fig. 4.6 are constructed from 1-D transmit and receive
arrays. The physical meaning of these 2-D arrays will be explained in Sec. 4.4.2.
The array sizes are relatively small in the above example just for ease of presentation.

Applying the nonuniform decimation matrices (4.17), we obtain the 𝑘th received
block

Y𝑘 = DrHrH𝛼,𝑘H𝐻
t D𝐻

t S𝑘 + DrHrE𝑘 ∈ C�̄�r×�̄�t . (4.24)

Again, as S𝑘 is identity, each column of S𝑘 produces a shifted version of the filter as
beamformer, but these shifts are now rendered nonuniform. Using (4.1) and (4.5),
we can show that this simplifies to

Y𝑘 = ArD̃𝑘A
𝐻

t + DrHrE𝑘 , (4.25)

where

A𝑝 = [ā𝑝 (𝑀𝑝𝜔𝑝,1) · · · ā𝑝 (𝑀𝑝𝜔𝑝,𝐷)] (4.26)

with ā𝑝 (𝜔) = [1 𝑒 𝑗𝜔�̃�𝑝,1 𝑒 𝑗𝜔�̃�𝑝,2 · · · 𝑒 𝑗𝜔�̃�𝑝,�̄�𝑝−1]𝑇 , 𝑝 ∈ {t, r}, and D̃𝑘 is diagonal
with diagonal entries as in (4.15). From (4.25), we see that Y𝑘 can be viewed as a
received block obtained from a pair of virtual transmit sparse array Nt and receive
sparse array Nr (Item 2 in the beginning of this section) due to paths with filtered
gains𝛼𝑘,𝑖𝐻r(𝑒 𝑗𝜔𝑟 ,𝑖 )𝐻∗

t (𝑒 𝑗𝜔𝑡 ,𝑖 ) (ignoring the unimportant phase shifts), DODs𝑀t𝜔t,𝑖,
and DOAs 𝑀r𝜔r,𝑖. We note that ambiguity due to 𝑀𝑝 can be resolved as explained
in Sec. 4.3. Equivalently, Y𝑘 resembles a received block obtained from a pair
of virtual transmit dilated sparse array Nt,𝑀t and receive dilated sparse array Nr,𝑀r

(Item 3 in the beginning of this section) due to DODs 𝜔t,𝑖 and DOAs 𝜔r,𝑖. Notice
that the two dilated sparse arrays merely represent the spatial coordinates in the
beamspace domain where RF chains are deployed.
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4.4.2 Coarray Method
The (difference) coarray method [32] can be used to estimate the DODs and DOAs in
our nonuniform scheme. In the coarray method, second-order statistics of received
data on a sparse array N is used to construct a signal on its corray C = {𝑘 − 𝑙 |
𝑘, 𝑙 ∈ N}. The aperture of C, which equals the aperture of N , can be much larger
than |N |, so typically, C has a large central ULA segment. In fact, the size of the
central ULA segment is often as large as 𝑂 ( |N |2). Thus, we can get more accurate
DOD and DOA estimates, which is the main advantage of our nonuniform scheme.
Though not our main focus, another benefit is that the number of identifiable paths
is increased.

In particular, the 2-D coarray method [5] is applied. To begin with, we consider the
vectorized received block

y𝑘 = vec(Y𝑘 ) = (A∗
t ⊙ Ar)d̃𝑘 + e𝑘 ∈ C�̄�t�̄�r , (4.27)

where e𝑘 = vec(DrHrE𝑘 ) and d̃𝑘 has entries [d̃𝑘 ]𝑖 = [D̃𝑘 ]𝑖,𝑖. To aid understanding
of the method overall, we note that y𝑘 has entries (ignoring noise)

[y𝑘 ] 𝑙 = [Y𝑘 ]𝑖𝑟 ,𝑖𝑡 =
𝐷∑︁
𝑖=1

[d̃𝑘 ]𝑖𝑒 𝑗 (−𝑀t𝜔t,𝑖 �̃�t,𝑖t+𝑀r𝜔r,𝑖 �̃�r,𝑖r )

≜ 𝑦𝑘,𝑀t,𝑀r (�̃�t,𝑖t , �̃�r,𝑖r) (4.28)

with 𝑙 = �̄�r𝑖t + 𝑖r for 0 ≤ 𝑖t < �̄�t and 0 ≤ 𝑖r < �̄�r. Here, 𝑦𝑘,𝑀t,𝑀r (�̃�t,𝑖t , �̃�r,𝑖r) is the
sum of 𝐷 complex sinusoids with 2-D frequencies [−𝑀t𝜔t,𝑖 𝑀r𝜔r,𝑖]𝑇 , and we have
those samples evaluated at the locations of the 2-D sparse rectangular array

N (2) = {(�̃�t,𝑖t , �̃�r,𝑖r) | �̃�t,𝑖t ∈ Nt, �̃�r,𝑖r ∈ Nr}. (4.29)

See Fig. 4.6(a) for an example. Equivalently, we can view 𝑦𝑘,𝑀t,𝑀r (�̃�t,𝑖t , �̃�r,𝑖r) as the
sum of complex sinusoids with 2-D frequencies [−𝜔t,𝑖 𝜔r,𝑖]𝑇 , and we have those
samples evaluated at the locations of the dilated sparse rectangular array

N (2)
𝑀t,𝑀r

= {(�̃�′t,𝑖t , �̃�
′
r,𝑖r) | �̃�

′
t,𝑖t ∈ Nt,𝑀t , �̃�

′
r,𝑖r ∈ Nr,𝑀r}.

See Fig. 4.6(c) for an example. Then we compute the covariance

R𝑦 = E[y𝑘y𝐻𝑘 ] = (A∗
t ⊙ Ar)R̃𝑑 (A

∗
t ⊙ Ar)𝐻 + Re, (4.30)

where R̃𝑑 = E[d̃𝑘 d̃𝐻𝑘 ] has entries

[R̃𝑑]𝑚,𝑙 = 𝜎2
s 𝜌𝑚,𝑙𝐻r(𝑒 𝑗𝜔r,𝑚)𝐻∗

r (𝑒 𝑗𝜔r,𝑙 )𝑒 𝑗 (𝜔r,𝑚−𝜔r,𝑙) (𝐿r−1)

· 𝐻∗
t (𝑒 𝑗𝜔t,𝑚)𝐻t(𝑒 𝑗𝜔t,𝑙 )𝑒 𝑗 (𝜔t,𝑙−𝜔t,𝑚) (𝐿t−1) (4.31)
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and

Re = E[e𝑘e𝐻𝑘 ] = diag(Re,Re, . . . ,Re) ∈ C�̄�t�̄�r×�̄�t�̄�r (4.32)

with

Re = 𝜎
2
e DrHrH𝐻

r D𝐻

r ∈ C�̄�r×�̄�r . (4.33)

We can show that Re has entries

[Re]𝑚,𝑙 = 𝜎2
e 𝑔r((�̃�r,𝑚 − �̃�r,𝑙)𝑀r), (4.34)

where

𝑔r(𝑘) =
∑︁
𝑛

ℎr(𝑛)ℎ∗r (𝑛 − 𝑘) (4.35)

is the deterministic autocorrelation of ℎr(𝑛). Again, we can whiten the noise term
by letting the CBS filter 𝐻r(𝑧) be a spectral factor of a Nyquist(𝑀r) filter (see Sec.
2.2.4). This makes 𝑔r(𝑀r𝑘) = 𝛿(𝑘) for all integers 𝑘 and thus Re = 𝜎2

e I. Now we
assume the path gains are uncorrelated so that 𝜌𝑚,𝑙 = 0 for all 𝑚 ≠ 𝑙 in (4.3). (If
path gains are correlated, we can use the decorrelation method of Sec. 4.7.) This
implies that R̃𝑑 is diagonal.

Then we can consider the vectorization

r𝑦 ≜ vec(R𝑦) = (At ⊙ A∗
r ⊙ A∗

t ⊙ Ar)d̃ + 𝜎2
e vec(I�̄�t�̄�r), (4.36)

where d̃ has entries [d̃]𝑖 = [R̃𝑑]𝑖,𝑖. This kind of Khatri–Rao product of 4 manifold
matrices often appears when we vectorize the covariance of a 2-D measurement,
e.g., as in [104]. Considering the 𝑖1th, 𝑖2th, 𝑖3th, and 𝑖4th rows of At, A∗

r , A∗
t , and

Ar, respectively in the Khatri–Rao product, we have that

[r𝑦] 𝑙 =
𝐷∑︁
𝑖=1

[d̃]𝑖𝑒 𝑗 [𝑀t𝜔t,𝑖 (�̃�t,𝑖1−�̃�t,𝑖3 )+𝑀r𝜔r,𝑖 (�̃�r,𝑖4−�̃�r,𝑖2 )] + 𝜎2
e [I�̄�t�̄�r] �̄�r𝑖1+𝑖2,�̄�r𝑖3+𝑖4 (4.37)

with

𝑙 = �̄�r(�̄�t(�̄�r𝑖1 + 𝑖2) + 𝑖3) + 𝑖4 (4.38)

= �̄�r�̄�t(�̄�r𝑖1 + 𝑖2) + (�̄�r𝑖3 + 𝑖4) (4.39)

for 0 ≤ 𝑖1, 𝑖3 < �̄�t and 0 ≤ 𝑖2, 𝑖4 < �̄�r. We observe that [I�̄�t�̄�r] �̄�r𝑖1+𝑖2,�̄�r𝑖3+𝑖4 is
nonzero only if

�̄�r𝑖1 + 𝑖2 = �̄�r𝑖3 + 𝑖4 ⇔ 𝑖1 = 𝑖3, 𝑖2 = 𝑖4. (4.40)
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Thus, we can rewrite (4.37) as

[r𝑦] 𝑙 =
𝐷∑︁
𝑖=1

[d̃]𝑖𝑒 𝑗 [𝑀t𝜔t,𝑖 (�̃�t,𝑖1−�̃�t,𝑖3 )+𝑀r𝜔r,𝑖 (�̃�r,𝑖4−�̃�r,𝑖2 )]

+ 𝜎2
e 𝛿(�̃�t,𝑖1 − �̃�t,𝑖3)𝛿(�̃�r,𝑖4 − �̃�r,𝑖2) (4.41)

≜ 𝑅𝑀t,𝑀r (�̃�t,𝑖1 − �̃�t,𝑖3 , �̃�r,𝑖4 − �̃�r,𝑖2) (4.42)

since it depends only on the differences �̃�t,𝑖1 − �̃�t,𝑖3 between the virtual transmit
antenna locations and the differences �̃�r,𝑖4 − �̃�r,𝑖2 between the virtual receive antenna
locations. Suppose the coarrays C𝑝 (Item 4 in the beginning of this section) have
central ULA segments −(𝑈𝑝 − 1) ≤ 𝑘 𝑝 ≤ 𝑈𝑝 − 1, 𝑝 ∈ {t, r}. Then in practice, we
can estimate

𝑅𝑀t,𝑀r (𝑘 t, 𝑘r) =
𝐷∑︁
𝑖=1

[d̃]𝑖𝑒 𝑗 (𝑀t𝜔t,𝑖𝑘 t+𝑀r𝜔r,𝑖𝑘r) + 𝜎2
e 𝛿(𝑘 t)𝛿(𝑘r) (4.43)

for all 𝑘 t ∈ Ct and 𝑘r ∈ Cr by averaging [r𝑦] 𝑙 (with 𝑙 as in (4.38)) over snapshots, and
over all �̃�t,𝑖1 − �̃�t,𝑖3 and �̃�r,𝑖4 − �̃�r,𝑖2 that produce identical differences 𝑘 t = �̃�t,𝑖1 − �̃�t,𝑖3

and 𝑘r = �̃�r,𝑖4 − �̃�r,𝑖2 , respectively. We can see the connection between (4.43) and
(4.28). To be precise, 𝑅𝑀t,𝑀r (𝑘 t, 𝑘r) can be regarded as a 2-D correlation function of
the sum of complex sinusoids with 2-D frequencies [𝑀t𝜔t,𝑖 𝑀r𝜔r,𝑖]𝑇 , and we have
those samples evaluated at the locations of the 2-D coarray

C (2) = {(𝑘 t, 𝑘r) | 𝑘 t ∈ Ct, 𝑘r ∈ Cr}. (4.44)

See Fig. 4.6(b) for an example. Equivalently, we can view 𝑅𝑀t,𝑀r (𝑘 t, 𝑘r) as a 2-D
correlation function 𝑅(𝑘′t, 𝑘′r) of the sum of complex sinusoids with 2-D frequencies
[𝜔t,𝑖 𝜔r,𝑖]𝑇 , and we have those samples evaluated at the locations of the 2-D dilated
coarray

C (2)
𝑀t,𝑀r

= {(𝑘′t, 𝑘′r) | 𝑘′t ∈ Ct,𝑀t , 𝑘
′
r ∈ Cr,𝑀r}, (4.45)

where C𝑝,𝑀 are as in Item 5 in the beginning of this section, 𝑝 ∈ {t, r}. That is,

𝑅𝑀t,𝑀r (𝑘 t, 𝑘r) = 𝑅(𝑀t𝑘 t, 𝑀r𝑘r), (4.46)

where

𝑅(𝑘′t, 𝑘′r) =
𝐷∑︁
𝑖=1

[d̃]𝑖𝑒 𝑗 (𝜔t,𝑖𝑘
′
t+𝜔r,𝑖𝑘

′
r) + 𝜎2

e 𝛿(𝑘′t)𝛿(𝑘′r). (4.47)

See Fig. 4.6(d) for an example. When N𝑝, 𝑝 ∈ {t, r} are standard sparse arrays like
MRAs [3], nested arrays [32], or coprime arrays [40], C (2) will have a large central
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uniform rectangular array (URA) segment {(𝑘 t, 𝑘r) | −(𝑈𝑝 −1) ≤ 𝑘 𝑝 ≤ 𝑈𝑝 −1, 𝑝 ∈
{t, r}} with 𝑈𝑝 = 𝑂 (�̄�2

𝑝). Likewise, C (2)
𝑀t,𝑀r

will have a large central sparse URA
segment {(𝑀t𝑘 t, 𝑀r𝑘r) | −(𝑈𝑝 − 1) ≤ 𝑘 𝑝 ≤ 𝑈𝑝 − 1, 𝑝 ∈ {t, r}}. This 𝑀t ×𝑀r times
dilation of aperture can enhance the estimation performance, which we shall see in
simulations.

From the estimates 𝑅𝑀t,𝑀r (𝑘 t, 𝑘r), we can let

[r̃𝑦] (𝑘 t+𝑈t−1) (2𝑈r−1)+𝑘r+𝑈r−1 = 𝑅𝑀t,𝑀r (𝑘 t, 𝑘r) (4.48)

for −(𝑈𝑝 − 1) ≤ 𝑘 𝑝 ≤ 𝑈𝑝 − 1, 𝑝 ∈ {t, r} and construct

r̃𝑦 = (Ãt ⊙ Ãr)d̃ + q ∈ C(2𝑈t−1) (2𝑈r−1) , (4.49)

where

Ã𝑝 = [ã𝑝 (𝑀𝑝𝜔𝑝,1) · · · ã𝑝 (𝑀𝑝𝜔𝑝,𝐷)] (4.50)

with

ã𝑝 (𝜔) = [𝑒− 𝑗𝜔(𝑈𝑝−1) · · · 𝑒− 𝑗𝜔 1 𝑒 𝑗𝜔 · · · 𝑒 𝑗𝜔(𝑈𝑝−1)]𝑇 (4.51)

for 𝑝 ∈ {t, r} and q = [01×𝑤 𝜎2
e 01×𝑤]𝑇 with 𝑤 = ((2𝑈t − 1) (2𝑈r − 1) − 1)/2. By

comparing (4.49) to (4.27), we see that r̃𝑦 resembles a vectorized received block
obtained from a pair of (2𝑈t − 1)-antenna transmit ULA and (2𝑈r − 1)-antenna
receive ULA due to DODs 𝑀t𝜔t,𝑖 and DOAs 𝑀r𝜔r,𝑖. In the above derivations, we
offer an intuitive way of understanding the construction of the 2-D coarray signal
(4.49) via the 2-D correlation function (4.43). This viewpoint is different from [5],
where a 2-D coarray signal is constructed only via applying selection matrices. Our
derivation above provides a different insight about the construction and physical
meaning of (4.49).

Since we only have a single time block (snapshot) r̃𝑦, to estimate the DODs and
DOAs using subspace methods, we apply the method in [5], which is the 2-D
extension to the improved spatial smoothing method in [79]. We consider row
selection matrices

J𝑝,𝑖𝑝 = [0𝑈𝑝×(𝑈𝑝−𝑖𝑝) I𝑈𝑝
0𝑈𝑝×(𝑖𝑝−1)] (4.52)

and let

x𝑖t,𝑖r = (Jt,𝑖t ⊗ Jr,𝑖r)r̃𝑦 (4.53)
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for 1 ≤ 𝑖𝑝 ≤ 𝑈𝑝, 𝑝 ∈ {t, r}. Then we can show that the spatially smoothed matrix

Yss ≜ [x1,1 x1,2 · · · x1,𝑈r x2,1 · · · x𝑈t,𝑈r]𝑇 (4.54)

= (A′
t ⊙ A′

r)R̃𝑑 (A′
t ⊙ A′

r)𝐻 + 𝜎2
e I𝑈t𝑈r , (4.55)

where R̃𝑑 is diagonal with [R̃𝑑]𝑖,𝑖 = [d̃]𝑖, and

A′
𝑝 = [a𝑈𝑝

(𝑀𝑝𝜔𝑝,1) · · · a𝑈𝑝
(𝑀𝑝𝜔𝑝,𝐷)] (4.56)

with a𝑁 (𝜔) as defined in (4.2). Again, if we assume that the first 𝐷0 paths are
in-band paths, we obtain

Yss ≈ (A′
t,IB ⊙ A′

r,IB)R̃𝑑,IB(A′
t,IB ⊙ A′

r,IB)
𝐻 + 𝜎2

e I𝑈t𝑈r ,

where A′
𝑝,IB has the first𝐷0 columns of A′

𝑝, and R̃𝑑,IB is the top left𝐷0×𝐷0 subblock
of R̃𝑑 . We note that Yss can be viewed as the covariance of vectorized received
blocks obtained from a pair of 𝑈t-antenna transmit ULA and 𝑈r-antenna receive
ULA due to DODs 𝑀t𝜔t,𝑖 and DOAs 𝑀r𝜔r,𝑖, and buried in white noise. (Again,
ambiguity due to 𝑀𝑝 can be resolved as explained in Sec. 4.3.) Equivalently, Yss is
like the covariance of vectorized received blocks obtained from a pair of𝑈t-antenna
transmit sparse ULA (with antenna spacing 𝑀t) and𝑈r-antenna receive sparse ULA
(with antenna spacing 𝑀r) due to DODs 𝜔t,𝑖 and DOAs 𝜔r,𝑖. Hence, the effective
array apertures are enlarged by 𝑀t and 𝑀r times. Then, standard methods like
2-D unitary ESPRIT [51] can be readily used to estimate the DODs and DOAs.
At most min(𝑈t(𝑈r − 1),𝑈r(𝑈t − 1)) paths can be identified using 2-D unitary
ESPRIT [51]. Thus, 𝑂 (𝑈t𝑈r) = 𝑂 (�̄�2

t �̄�
2
r ) paths can be estimated theoretically.

However, we are not aiming to estimate a very large number of DODs and DOAs
here. Given a fixed number of RF chains and decimation ratio, the coarray aperture
of nonuniform scheme can be much larger than the array aperture of uniform scheme
(i.e., 𝑈𝑝 ≫ �̄�𝑝). Thus, the main benefit is that we can get higher DOD and DOA
resolution and smaller estimation errors, as we shall see in simulations (Fig. 4.9).
Moreover, this can be achieved for a significant number of paths with only a small
number of RF chains.

Note that in (4.24), D𝑝H𝑝, 𝑝 ∈ {t, r}, are matrices obtained from nonuniformly
decimating the rows of banded Toeplitz matrices. Such way of designing the
precoder and combiner also appears in [5], but therein the coefficients ℎ𝑝 (𝑛) in H𝑝

are not designed for filtering DODs and DOAs but for decorrelating path gains.
Hence, they can only choose 𝑛𝑝,𝑖 = �̃�𝑝,𝑖 (i.e., 𝑀𝑝 = 1) for the expanded and
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decimated samples. Otherwise, there will be DOD and DOA ambiguities. We can
therefore achieve 𝑀𝑝 times larger effective aperture of the virtual sparse arrays than
[5] given a fixed number of RF chains. This leads to smaller estimation errors, as
shown in simulations (Sec. 4.8).

4.4.3 Channel Matrix Estimation
As described in the end of Sec. 4.3, to cover the full DOD and DOA ranges, we use a
transmit filter bank with 𝑀t filters and a receive filter bank with 𝑀r filters, 𝑝 ∈ {t, r}.
For each pair of the transmit and receive filters, (4.27) can be approximated by

y𝑘 = (A∗
t ⊙ Ar)d̃𝑘 + e𝑘 (4.57)

≈ (A∗
t,IB ⊙ Ar,IB)d̃𝑘,IB + e𝑘 (4.58)

where A𝑝,IB has the columns of A𝑝 corresponding to the 𝐷0 in-band DODs (or
DOAs), and d̃𝑘,IB has the corresponding entries of d̃𝑘 . After we obtain the in-band
DOD and DOA estimates, we can construct estimated At,IB and Ar,IB and find the
least-squares estimates [19] of the in-band path gains d̃𝑘,IB based on (4.58) as long as
𝐷0 < �̄�t�̄�r. After obtaining the DODs, DOAs, and path gains for in-band paths for
all pairs of the transmit and receive filters, we can estimate the channel matrix H𝛼,𝑘

via (4.1). Hence, if the DODs and DOAs are not known to be in some subbands a
priori, the total number of training blocks required is 𝑀t𝑀r𝐾 to estimate the channel
matrix, where 𝐾 is the number of training blocks used for each pair of the transmit
and receive filters.

4.5 Hybrid Analog and Digital Implementation of 2-D CBS
In the following, we describe the hybrid analog and digital implementation of CBS
for mmWave MIMO channel estimation. We first consider the implementation of
the receiver, while the transmitter for the mmWave MIMO system can be designed
similarly since the precoder is the Hermitian transpose of a combiner. As shown in
Fig. 4.1, the analog precoder F𝐻t,a and analog combiner Fr,a are realized by phase
shifter networks, so each entry of the matrices should have unit modulus. However,
a digital filter that is properly designed does not have constant-modulus coefficients.
To deal with this issue, we use the important result from [48, 96] as given in Lemma
3.1 in Sec. 3.3.

We first illustrate the implementation of CBS with nonuniform decimation and
expansion. Consider CBS transmit and receive filters ℎ𝑝 (𝑛), 0 ≤ 𝑛 ≤ 𝐿𝑝 − 1 and
their vector forms h𝑝 = [ℎ𝑝 (𝐿𝑝 − 1) ℎ𝑝 (𝐿𝑝 − 2) · · · ℎ𝑝 (0)], 𝑝 ∈ {t, r}. According
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Figure 4.7: Detailed implementation of hybrid CBS for mmWave MIMO channel
estimation. The digital precoder and digital combiner in Fig. 4.1 are not shown here
as we design them to be identities. Typically, 𝑁t ≫ �̄�t and 𝑁r ≫ �̄�r.

to Lemma 3.1, there exist 𝑎𝑝,1, 𝑎𝑝,2 ∈ C and h𝑝,1, h𝑝,2 ∈ C𝐿𝑝 whose entries are
unit-modulus such that

h𝑝 = 𝑎𝑝,1h𝑝,1 + 𝑎𝑝,2h𝑝,2. (4.59)

Hence, in (4.24), the overall precoder F𝐻t and overall combiner Fr will satisfy

F𝑝 = D𝑝H𝑝 = H̃𝑝H𝑝 ∈ C�̄�𝑝×𝑁𝑝 , (4.60)

where

H̃𝑝 =


𝑎𝑝,1 𝑎𝑝,2 0 0 · · · 0 0

0 0 𝑎𝑝,1 𝑎𝑝,2 · · · 0 0
...

...
. . .

0 0 0 0 · · · 𝑎𝑝,1 𝑎𝑝,2


(4.61)
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are �̄�𝑝 × 2�̄�𝑝 matrices, and

H𝑝 = [h(0)
𝑝,1 h(0)

𝑝,2 h(𝑛𝑝,1)
𝑝,1 h(𝑛𝑝,1)

𝑝,2 · · · h
(𝑛𝑝,�̄�𝑝−1)
𝑝,1 h

(𝑛𝑝,�̄�𝑝−1)
𝑝,2 ]𝑇

with h(𝑘)
𝑝,𝑚 = [01×𝑘 h𝑇𝑝,𝑚 01×(𝑁𝑝−𝐿𝑝−𝑘)]𝑇 for 𝑝 ∈ {t, r}, 𝑚 = 1, 2, and nonnegative

integers 𝑘 . We can implement H𝑝 with 2�̄�𝑝𝐿𝑝 phase shifting operations because
all the entries of h𝑝,1 and h𝑝,2 have unit modulus. For the general case where
|𝑎𝑝,1 | ≠ |𝑎𝑝,2 |, the decomposition F𝑝 = H̃𝑝H𝑝 implies that we require 2�̄�t and 2�̄�r

RF chains at the transmitter and receiver. Alternatively, if we choose 𝑎𝑝,1 = 𝑎𝑝,2,
then

H̃𝑝 = 𝑎𝑝,1B𝑝, (4.62)

where

B𝑝 = diag( [1 1], [1 1], . . . , [1 1]) ∈ C�̄�𝑝×2�̄�𝑝 (4.63)

for 𝑝 ∈ {t, r}. We observe that B𝐻
t and Br can be implemented with �̄�t (1-to-2)

splitters and with �̄�r adders, respectively, in the analog domain (see Fig. 4.7). The
constant scalars 𝑎𝑝,1 can be implemented in the digital precoder and combiner. Or,
we may get rid of 𝑎𝑝,1 completely because the performance of standard methods
like 2-D unitary ESPRIT [51] does not change when the received block is scaled by
a constant. In summary, as shown in Fig. 4.7, the analog precoder is designed as

F𝐻t,a = H𝐻

t B𝐻
t ∈ C𝑁t×�̄�t , (4.64)

realized with 2�̄�t𝐿t phase shifting operations, and the analog combiner is designed
as

Fr,a = BrHr ∈ C�̄�r×𝑁r , (4.65)

realized with 2�̄�r𝐿r phase shifting operations, and we need only �̄�t and �̄�r RF
chains at the transmitter and receiver, respectively. That is, the number of transmit
RF chains equals the number of transmitted symbols in a training vector, and the
number of receive RF chains equals the dimension of the decimated CBS output.
This means that no additional cost in terms of RF chains is incurred despite the
unit-modulus constraints (unlike in [48, 95], using twice the number of RF chains).
The digital precoder is designed as F𝐻t,d = 𝑎∗t,1I or F𝐻t,d = I. The digital combiner
is designed as Fr,d = 𝑎r,1I or Fr,d = I. After the digital combiner, the remaining
steps for the 2-D coarray method described in Sec. 4.4.2 can then be realized in the
digital domain.



125

For CBS with uniform decimation and expansion (4.9), we can implement the
precoder (4.7) and combiner (4.8) in the same way as we do for the nonuniform
case. This is because we can regard the uniform decimation matrices (4.6) as special
cases of (4.17) by letting the virtual antenna locations 𝑛𝑝,𝑖 = 𝑖𝑀𝑝, 𝑝 ∈ {t, r}. Thus,
we need �̄�t = (𝑁t−𝐿t+1)/𝑀t RF chains at the transmitter and �̄�r = (𝑁r−𝐿r+1)/𝑀r

RF chains at the receiver.

4.6 Time Complexity Analysis
We now examine the time complexity of the proposed 2-D hybrid CBS. Here, time
complexity translates into pilot overhead, which is the number of measurements
required in training phase for channel estimation. Due to the large arrays used in
mmWave MIMO transceivers, channel estimation can be a time-consuming task.
Thus, it is interesting to compare our method with previous methods in terms of
pilot overhaed. Suppose the DODs and DOAs are not known to be in some subbands
a priori. Then, to cover the full DOD and DOA ranges, we use a transmit filter bank
with 𝑀t filters and a receive filter bank with 𝑀r filters if the filters have passband
widths 2𝜋/𝑀𝑝, 𝑝 ∈ {t, r}. For each pair of transmit and receive filters, we need 𝐾
training blocks S𝑘 , 1 ≤ 𝑘 ≤ 𝐾 as shown in (4.4), where each block consists of �̄�t

training vectors. Thus, the total number of measurements required by hybrid CBS
is

𝑁CBS = 𝑀t𝑀r�̄�t𝐾. (4.66)

This number is the same as the number of measurements required by the classical
DFT beamspace MUSIC [19] or DFT beamspace ESPRIT [4]. This is because to
cover the full DOD and DOA ranges, the two methods similarly require a set of
𝑀t DFT beamformers at the transmitter and a set of 𝑀r DFT beamformers at the
receiver. That is,

𝑁DFT-MUSIC = 𝑁DFT-ESPRIT = 𝑀t𝑀r�̄�t𝐾. (4.67)

Thus, for a fair comparison between hybrid CBS and these previous methods, we
can choose the same parameters so as to compare estimation performance while
fixing pilot overhead.

Another type of channel estimation methods is based on beam search, such as the
sequential beam search [6] and hierarchical beam search [6] methods. (We compare
to the hierarchical beam search in [6] instead of the hierarchical beam search in [11]
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since the former is shown in [6] to have smaller pilot overhead.) The number of
measurements required by sequential beam search (i.e., exhaustive search) is

𝑁SS = 𝐾os,t𝐾os,r𝑁t𝑁r, (4.68)

where 𝐾os,𝑝 are the oversampling factors1 such that the transmit and receive code-
books consists of 𝐾os,𝑝𝑁𝑝, 𝑝 ∈ {t, r}, steering vectors with evenly sampled angles
in the DOD and DOA ranges 𝜔 ∈ [−𝜋, 𝜋). The number of measurements required
by hierarchical beam search [6] is

𝑁HS = 𝐷

[ (
log𝑀hf

(𝑁t) + log𝑀hf
(𝑁r) − 2𝑖LY

)
𝑀hf + 𝑀2𝑖LY

hf + 𝐾os,t𝐾os,r

]
, (4.69)

where 𝐷 is the number of paths, 𝑀hf is the hierarchical factor, and 𝑖LY is the
initial layer index [6]. For a fair comparison between hybrid CBS and the beam
search methods, we choose to design them to have similar estimation errors and then
compare the pilot overhead. Since the beam search methods are grid-based methods,
the estimation error comes from two sources, on-grid error due to incorrect beam
found and off-grid error due to angles not on grid points. In this chapter, we design
the system parameters so that assuming zero on-grid error, the off-grid error of the
beam search methods is the same as the error of hybrid CBS. This guarantees that
CBS has an error at least as small as the total error of the beam search methods. That
is, the RMSE of CBS is a lower bound for those of beam search methods, as shown
in Fig. 4.16(a). To evaluate the off-grid error, we assume the DODs and DOAs
are uniformly distributed over the full range 𝜔 ∈ [−𝜋, 𝜋). Then, the errors will be
uniformly distributed in (−𝜋/(𝐾os,𝑝𝑁𝑝), 𝜋/(𝐾os,𝑝𝑁𝑝)), and the error variances are
𝜋2/(3𝐾2

os,𝑝𝑁
2
𝑝), 𝑝 ∈ {t, r}. Hence, if the RMSE of DOD and DOA estimates of

hybrid CBS is 𝜖 , we shall design

𝐾os,𝑝 =
𝜋

√
3𝜖𝑁𝑝

. (4.70)

In this way, the MSE of hybrid CBS is at least as small as the two beam search
methods. As we will show in Sec. 4.8.2, with this setting, hybrid CBS requires
smaller pilot overhead than the beam search methods.

Note that for each method mentioned in this section, since �̄�r RF chains can be
simultaneously used at the receiver to combine the received array data, the number
of time instants required equals the number of measurements divided by �̄�r, as
explained in [11].

1It is assumed that 𝐾os,t = 𝐾os,r in [6].
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4.7 Filters With Delays for Decorrelating Path Gains in 2-D CBS
We propose a new method for decorrelating path gains in the mmWave MIMO
system. The new method, a 2-D extension to the decorrelation method in Sec. 3.4,
is based on CBS filters with delays. In all the derivations in Secs. 4.3 and 4.4,
the banded Toeplitz matrices Ht and Hr are assumed fixed for all received blocks
Y𝑘 , e.g., in (4.24). However, we can also use different banded Toeplitz matrices for
different time blocks. That is,

Y𝑘 = DrHr,𝑘H𝛼,𝑘H𝐻
t,𝑘D

𝐻

t S𝑘 + DrHr,𝑘E𝑘 , (4.71)

where H𝑝,𝑘 are (𝑁𝑝 − 𝐿𝑝 + 1) × 𝑁𝑝 banded Toeplitz matrices with entries

[H𝑝,𝑘 ]𝑖,𝑙 = ℎ𝑝,𝑘 (𝐿𝑝 − 1 + 𝑖 − 𝑙), (4.72)

for 𝑝 ∈ {t, r} and 𝑘 = 1, . . . , 𝐾 . In the following, we show that if we design ℎ𝑝,𝑘 (𝑛)
to be different delayed versions of some prototype filters ℎ𝑝 (𝑛), the path gains
𝛼𝑘,𝑖 can to some extent be decorrelated (if they were correlated in the beginning).
The decorrelation method is applicable to both uniform decimation (Sec. 4.3) and
nonuniform decimation (Sec. 4.4) schemes. However, it is more important to
the latter scheme because we assume uncorrelated path gains when using coarray
methods. Hence, the method will be illustrated through the nonuniform decimation
scheme.

We design the filters ℎ𝑝,𝑘 (𝑛) for the 𝑘th snapshot as delayed versions of some
prototype filters ℎ𝑝 (𝑛) with length 𝐿′𝑝 < 𝐿𝑝, 𝑝 ∈ {t, r}. Let 𝑞𝑝,𝑘 ∈ [0, 𝐿𝑝 − 𝐿′𝑝]
denote the delays. Then the filters 𝐻𝑝,𝑘 (𝑧) =

∑𝐿𝑝−1
𝑛=0 ℎ𝑝,𝑘 (𝑛)𝑧−𝑛 are related to the

prototypes by

𝐻𝑝,𝑘 (𝑧) = 𝐻𝑝 (𝑧)𝑧−𝑞𝑝,𝑘 , (4.73)

where 𝐻𝑝 (𝑧) =
∑𝐿′𝑝−1
𝑛=0 ℎ𝑝 (𝑛)𝑧−𝑛. Note that each filter ℎ𝑝,𝑘 (𝑛) only has at most 𝐿′𝑝

nonzero coefficients. With such designed H𝑝,𝑘 , we still have (4.25) but the diagonal
matrix D̃𝑘 now has elements

[D̃𝑘 ]𝑖,𝑖 = 𝜎s𝛼𝑘,𝑖𝐻r,𝑘 (𝑒 𝑗𝜔r,𝑖 )𝑒 𝑗𝜔r,𝑖 (𝐿r−1)𝐻∗
t,𝑘 (𝑒

𝑗𝜔t,𝑖 )𝑒− 𝑗𝜔t,𝑖 (𝐿t−1) . (4.74)

Thus, we will also have (4.30), while R̃𝑑 = E[d̃𝑘 d̃𝐻𝑘 ] has entries

[R̃𝑑]𝑚,𝑙 = 𝜎2
s 𝜌𝑚,𝑙𝑢𝑚,𝑙𝑒

𝑗 (𝜔t,𝑙−𝜔t,𝑚) (𝐿t−1)𝑒 𝑗 (𝜔r,𝑚−𝜔r,𝑙) (𝐿r−1) ,
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where

𝑢𝑚,𝑙 = E[𝐻∗
t,𝑘 (𝑒

𝑗𝜔t,𝑚)𝐻t,𝑘 (𝑒 𝑗𝜔t,𝑙 )𝐻r,𝑘 (𝑒 𝑗𝜔r,𝑚)𝐻∗
r,𝑘 (𝑒

𝑗𝜔r,𝑙 )]
= 𝐻∗

t (𝑒 𝑗𝜔t,𝑚)𝐻t(𝑒 𝑗𝜔t,𝑙 )𝐻r(𝑒 𝑗𝜔r,𝑚)𝐻∗
r (𝑒 𝑗𝜔r,𝑙 )

· E[𝑒 𝑗 (𝜔t,𝑚−𝜔t,𝑙)𝑞t,𝑘𝑒− 𝑗 (𝜔r,𝑚−𝜔r,𝑙)𝑞r,𝑘 ] . (4.75)

4.7.1 Case of Random Delays
Suppose the delays (𝑞t,𝑘 , 𝑞r,𝑘 ) are independent and identically distributed (i.i.d.)
with joint probability mass function 𝑓 (𝑞t, 𝑞r). Since the 2-D discrete-time Fourier
transform of 𝑓 (𝑞t, 𝑞r) is

𝐹 (𝑒 𝑗𝜔t , 𝑒 𝑗𝜔r) =
𝐿t−𝐿′t∑︁
𝑞t=0

𝐿r−𝐿′r∑︁
𝑞r=0

𝑓 (𝑞t, 𝑞r)𝑒− 𝑗𝜔t𝑞t𝑒− 𝑗𝜔r𝑞r

= E[𝑒− 𝑗𝜔t𝑞t,𝑘𝑒− 𝑗𝜔r𝑞r,𝑘 ], (4.76)

we have that

E[𝑒 𝑗 (𝜔t,𝑚−𝜔t,𝑙)𝑞t,𝑘𝑒− 𝑗 (𝜔r,𝑚−𝜔r,𝑙)𝑞r,𝑘 ] = 𝐹 (𝑒 𝑗 (𝜔t,𝑙−𝜔t,𝑚) , 𝑒 𝑗 (𝜔r,𝑚−𝜔r,𝑙)). (4.77)

Now we design 𝐹 (𝑒 𝑗𝜔t , 𝑒 𝑗𝜔r) as a 2-D lowpass filter. Then assuming that there is
not a pair of paths with both DODs close to each other and DOAs close to each
other (so that (𝜔t,𝑙 −𝜔t,𝑚, 𝜔r,𝑚 −𝜔r,𝑙) is in the passband), we can make 𝑢𝑚,𝑙 ≈ 0 for
all 𝑚 ≠ 𝑙. This, in turn, leads to an approximately diagonal R̃𝑑 . In other words, the
path gains are decorrelated. With this method, the 2-D coarray method described
in Sec. 4.4.2 can even be applied when the path gains 𝛼𝑘,𝑖 are correlated, i.e.,
𝜌𝑚,𝑙 ≠ 0 for some 𝑚 ≠ 𝑙. For simplicity, we can design the transmit filter delays to
be independent of the receive filter delays. In this case, the joint probability mass
function 𝑓 (𝑞t, 𝑞r) = 𝑓t(𝑞t) 𝑓r(𝑞r) and its discrete-time Fourier transform

𝐹 (𝑒 𝑗𝜔t , 𝑒 𝑗𝜔r) = 𝐹t(𝑒 𝑗𝜔t)𝐹r(𝑒 𝑗𝜔r) (4.78)

are both separable, where

𝐹𝑝 (𝑒 𝑗𝜔) =
𝐿𝑝−𝐿′𝑝∑︁
𝑞=0

𝑓𝑝 (𝑞)𝑒− 𝑗𝜔𝑞 = E[𝑒− 𝑗𝜔𝑞𝑝,𝑘 ] (4.79)

for 𝑝 ∈ {t, r}. Hence, we can use 1-D lowpass filters 𝐹t(𝑒 𝑗𝜔) and 𝐹r(𝑒 𝑗𝜔) to construct
a 2-D lowpass filter. In some cases, introducing delays for either the transmit CBS
filters or receive CBS filters is sufficient to decorrelate the path gains, but we can
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also do it at both sides. Some simulation examples regarding such comparison will
be shown in Sec. 4.8. We will also see (Example 7) that if we have rough initial
estimates of the DODs and DOAs, we can design or redesign the probability mass
function of the delays to get better decorrelating ability. The introduction of the filter
delays does not ruin the traditional CBS filtering effect on DODs and DOAs. We
can still realize it by designing 𝐻t(𝑒 𝑗𝜔) and 𝐻r(𝑒 𝑗𝜔) to be standard lowpass filters.
However, there is a tradeoff between the CBS filtering effect and the decorrelating
effect on the path gains when we choose 𝐿′𝑝 given a fixed 𝐿𝑝 because the effective
filter lengths of ℎ𝑝 (𝑛) and 𝑓𝑝 (𝑞) are 𝐿′𝑝 and 𝐿𝑝 − 𝐿′𝑝 + 1, respectively. Still, for
large arrays (large 𝑁𝑝), which are getting popular recently [9, 11], a large enough
𝐿𝑝 can be used so that reasonably good filtering ability and decorrelating ability can
be both obtained.

In [5], a method based on decimating rows to obtain submatrices of banded Toeplitz
(SBT) random matrices is also proposed to decorrelate the path gains. However,
instead of introducing random delays, the coefficients ℎ𝑝,𝑘 (𝑛), 𝑝 ∈ {t, r}, are them-
selves chosen randomly with Rademacher distribution. Such design cannot result
in a filtering effect for the DODs and DOAs, which is essential for our decima-
tion scheme (𝑛𝑝,𝑖 = �̃�𝑝,𝑖𝑀𝑝, 𝑀𝑝 > 1) to work without causing DOD and DOA
ambiguities.

4.7.2 Case of Deterministic Delays
In the above derivations, we have assumed that the delays (𝑞t,𝑘 , 𝑞r,𝑘 ) are random and
i.i.d. with joint probability mass function 𝑓 (𝑞t, 𝑞r). Instead of random delays, it is
also possible to consider deterministic delays. In practice, we use 𝐾 time blocks to
obtain the estimated covariance

R̂𝑦 =
1
𝐾

𝐾∑︁
𝑘=1

y𝑘y𝐻𝑘 , (4.80)

where y𝑘 is as in (4.27). We let 𝑓 (𝑞t, 𝑞r) denote the number of time blocks with
transmit and receive filter delays 𝑞t and 𝑞r, divided by 𝐾 , i.e.,

𝑓 (𝑞t, 𝑞r) =
1
𝐾

���{1 ≤ 𝑘 ≤ 𝐾 | 𝑞t,𝑘 = 𝑞t, 𝑞r,𝑘 = 𝑞r
}���. (4.81)
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The 2-D discrete-time Fourier transform of 𝑓 (𝑞t, 𝑞r) is

𝐹 (𝑒 𝑗𝜔t , 𝑒 𝑗𝜔r) =
𝐿t−𝐿′t∑︁
𝑞t=0

𝐿r−𝐿′r∑︁
𝑞r=0

𝑓 (𝑞t, 𝑞r)𝑒− 𝑗𝜔t𝑞t𝑒− 𝑗𝜔r𝑞r

=
1
𝐾

𝐾∑︁
𝑘=1

𝑒− 𝑗𝜔t𝑞t,𝑘𝑒− 𝑗𝜔r𝑞r,𝑘 , (4.82)

which represents an empirical counterpart of (4.76). Then similar to (4.30), we have

E[R̂𝑦] = (A∗
t ⊙ Ar) E

[̂̃R𝑑

]
(A∗

t ⊙ Ar)𝐻 + Re, (4.83)

where

E
[̂̃R𝑑

]
=

1
𝐾

𝐾∑︁
𝑘=1

E[d̃𝑘 d̃𝐻𝑘 ] (4.84)

with [d̃𝑘 ]𝑖 = [D̃𝑘 ]𝑖,𝑖 defined in (4.74). Then with (4.82), we can derive that E
[̂̃R𝑑

]
has entries [

E
[̂̃R𝑑

] ]
𝑖,𝑙
= 𝜎2

s 𝜌𝑖,𝑙 �̂�𝑖,𝑙𝑒
𝑗 [(𝜔t,𝑙−𝜔t,𝑖) (𝐿t−1)+(𝜔r,𝑖−𝜔r,𝑙) (𝐿r−1)] ,

where

�̂�𝑖,𝑙 = 𝐻
∗
t (𝑒 𝑗𝜔t,𝑖 )𝐻t(𝑒 𝑗𝜔t,𝑙 )𝐻r(𝑒 𝑗𝜔r,𝑖 )𝐻∗

r (𝑒 𝑗𝜔r,𝑙 )𝐹 (𝑒 𝑗 (𝜔t,𝑙−𝜔t,𝑖) , 𝑒 𝑗 (𝜔r,𝑖−𝜔r,𝑙)). (4.85)

Hence, if we design 𝑓 (𝑞t, 𝑞r) so that 𝐹 (𝑒 𝑗𝜔t , 𝑒 𝑗𝜔r) can approximate the desired low-
pass filter 𝐹 (𝑒 𝑗𝜔t , 𝑒 𝑗𝜔r), it is again possible to achieve 𝐹 (𝑒 𝑗 (𝜔t,𝑙−𝜔t,𝑖) , 𝑒 𝑗 (𝜔r,𝑖−𝜔r,𝑙)) ≈ 0
for all 𝑖 ≠ 𝑙, assuming (𝜔t,𝑙 − 𝜔t,𝑚, 𝜔r,𝑚 − 𝜔r,𝑙) is not in the passband. An almost
diagonal E

[̂̃R𝑑

]
is then obtained, which means the path gains are decorrelated.

We will see that using either random delays or deterministic delays give us similar
estimation performance in simulations (Sec. 4.8). Thus, deterministic delays can
be a better choice as they are easier to implement than random delays within the
analog precoder and combiner.

4.8 Simulations
In this section, we study the performance of the proposed hybrid CBS for mmWave
MIMO channel estimation via numerical examples. Estimation errors and time
complexity are considered in Secs. 4.8.1 and 4.8.2, respectively. In the following
examples, we assume the number of paths is known for element-space methods,
while the number of in-band paths is known for CBS. To compare with CBS, for
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element-space, we consider DOA and DOD estimates of only those paths that are
in-band paths with respect to CBS. The root mean square errors (RMSEs) in detected
in-band source angles shown in this section are obtained by averaging square errors
measured in 𝜔 over all in-band paths and over those Monte Carlo runs which yield
the correct number of in-band paths (since element-space may yield a wrong number
of in-band paths). That is, the RMSE of DODs (𝑝 = t) or DOAs (𝑝 = r) is defined
as

𝜖𝑝 =

[
1

𝑁mc𝐷0

𝑁mc∑︁
𝑙=1

𝐷0∑︁
𝑖=1

(�̂�𝑝,𝑖 (𝑙) − 𝜔𝑝,𝑖 (𝑙))2
]1/2

, (4.86)

where 𝜔𝑝,𝑖 (𝑙) is the 𝑖th DOD or DOA in the 𝑙th Monte Carlo run, �̂�𝑝,𝑖 (𝑙) is the
estimate of 𝜔𝑝,𝑖 (𝑙), 𝐷0 is the number of in-band paths, and 𝑁mc is the number of
Monte Carlo runs yielding correct number of in-band paths. We design CBS transmit
and receive filters as lowpass Parks-McClellan filters [23, 63] with passband edges
(1 − 𝛽)𝜋/𝑀𝑝 and stopband edges (1 + 𝛽)𝜋/𝑀𝑝, where 𝑀𝑝 are the expansion and
decimation ratios, 𝑝 ∈ {t, r}, and 𝛽 is the roll-off factor which determines transition
bandwidths. Covariance estimates are obtained by using 𝐾 = 100 time blocks, and
we average 500 Monte Carlo runs to get each plot. If not otherwise mentioned, all
path gains 𝛼𝑘,𝑖 have the same power, and we define the SNR to be the ratio of the
power of an in-band path to the noise power 𝜎2

e .

4.8.1 Estimation performance comparison
Example 1 (2-D Hybrid CBS with uniform decimation and expansion): We consider
a pair of transmit and receive ULAs with 𝑁t = 𝑁r = 96 antennas. There are 2
in-band paths with DODs 𝜃t = −4◦, 3◦ and DOAs 𝜃r = −3◦, 4◦, and 2 out-of-band
paths with DODs 𝜃t = 40◦, 60◦ and DOAs 𝜃r = 45◦, 65◦. The expansion and
decimation ratios are 𝑀t = 𝑀r = 8. The CBS transmit and receive filters have
length 𝐿t = 𝐿r = 25 and roll-off factor 𝛽 = 0.5. Thus, the numbers of RF chains are
𝑁𝑝 = (𝑁𝑝 − 𝐿𝑝 + 1)/𝑀𝑝 = 9, 𝑝 ∈ {t, r}. The DODs and DOAs are estimated using
2-D unitary ESPRIT [51]. As shown in Fig. 4.8, the average RMSE of DOD and
DOA estimates of hybrid CBS is compared to 2-D classical DFT beamspace (BS)
MUSIC [19]. Classical BS is directly applicable to the analog domain because a
submatrix of a DFT matrix with constant-modulus entries is used as its BS matrix.
We use either 100 × 100 or 1000 × 1000 2-D MUSIC grid points for the passband
angles. With the first grid, classical BS MUSIC has larger RMSE than hybrid CBS
since the performance is limited by the density of grid points. With the denser grid,
classical BS MUSIC achieves smaller RMSE than hybrid CBS at lower SNRs (but
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vice versa at higher SNRs). However, the denser grid takes much higher computation
and time complexity. The running time per Monte Carlo run of hybrid CBS is 0.058
seconds, which is smaller than and much smaller than those of classical BS MUSIC
with 100 × 100 and 1000 × 1000 grid points, namely, 0.13 and 7.6 seconds. Just
for reference, we also show the average RMSE when only the first �̄�𝑝 antennas are
used, 𝑝 ∈ {t, r}, and all other antennas are discarded (element-space truncation).
In this case there are no analog precoder and combiner. Since not all antennas
are effectively used, element-space truncation has the worst performance in this
example.
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Figure 4.8: Average RMSE of DOD and DOA estimates of element-space truncation,
classical beamspace (BS) MUSIC, and hybrid CBS with uniform decimation (and
expansion). Except classical BS, 2-D unitary ESPRIT is used to estimate DODs
and DOAs. Each method can be realized with 9 transmit and 9 receive RF chains in
the hybrid model.

In the remaining examples, we study 2-D hybrid CBS with nonuniform decimation
and expansion, applied with coarray method. The expansion and decimation ratios
are 𝑀t = 𝑀r = 4. The nonuniform decimation matrices D𝑝 in (4.17) are chosen
with 𝑛𝑝,𝑖 = �̃�𝑝,𝑖𝑀𝑝, 0 ≤ 𝑖 ≤ 𝑁MRA − 1, where {�̃�𝑝,𝑖} are the antenna locations of
𝑁MRA-antenna restricted MRAs [3], 𝑝 ∈ {t, r}. DODs and DOAs are estimated
using 2-D unitary ESPRIT [51].

Example 2 (Uniform decimation vs. nonuniform decimation for hybrid CBS): We
first compare nonuniform decimation (CBS coarray method) to uniform decimation
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for hybrid CBS. We consider a pair of transmit and receive ULAs with 𝑁t = 𝑁r = 52
antennas. There are 7 in-band paths with DODs 𝜔t = −0.125𝜋 + 𝑖Δ and DOAs
𝜔r = −0.125𝜋 + 𝑖Δ, 𝑖 = 0, 1, . . . , 6, where Δ = 0.25𝜋/6 and 2 out-of-band paths
with DODs 𝜃t = 40◦, 60◦ and DOAs 𝜃r = 45◦, 65◦. (Recall that 𝜔 = 𝜋 sin 𝜃.) The
CBS transmit and receive filters have length 𝐿t = 𝐿r = 16 and roll-off factor 𝛽 = 0.5.
For CBS coarray method, the nonuniform expansion and decimation correspond to
MRAs with 𝑁MRA = 5 antennas. For a fair comparison, we retain only 5 samples
at 𝑛𝑖 = 𝑖𝑀𝑝, 0 ≤ 𝑖 ≤ 4 for uniform expansion and decimation. We also compare to
the classical DFT beamspace ESPRIT [4], with 5 DFT beams used at each of the
precoder and combiner. Hence, each method can be realized with �̄�t = 5 transmit
and �̄�r = 5 receive RF chains. In Fig. 4.9, the RMSEs of DODs and DOAs for
nonuniform CBS are the smallest, while uniform CBS and DFT beamspace ESPRIT
have similar performance. Nonuniform CBS has smaller estimation errors since the
coarray aperture of the MRA is larger than the ULA aperture of uniform CBS. The
large errors of uniform CBS is because the DODs and DOAs are too closely spaced.
Uniform CBS can still be a good method in other scenarios, as we saw in Example
1.
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Figure 4.9: RMSE of DOD and DOA estimates of hybrid CBS with uniform or
nonuniform decimation and classical DFT beamspace (BS) ESPRIT [4].

Example 3 (2-D Hybrid CBS coarray method vs. direct coarray method (both
with nonuniform decimation and expansion)): We consider a pair of transmit and
receive ULAs with 𝑁t = 𝑁r = 108 antennas. There are 3 in-band paths with DODs
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𝜃t = −7◦,−2◦, 3◦ and DOAs 𝜃r = −4◦, 1◦, 6◦, and 2 out-of-band paths with DODs
𝜃t = 40◦, 60◦ and DOAs 𝜃r = 45◦, 65◦. For CBS coarray method, the nonuniform
expansion and decimation correspond to MRAs with 𝑁MRA = 8 antennas. The CBS
transmit and receive filters have length 𝐿t = 𝐿r = 16 and roll-off factor 𝛽 = 0.5.
For comparison, we show the performance of the direct coarray method in element-
space. That is, we do nonuniform expansion and decimation in element-space at the
transmitter and receiver, respectively, corresponding to samples at �̃�𝑝,𝑖, 0 ≤ 𝑖 ≤ 7,
where {�̃�𝑝,𝑖} are the antenna locations of an 8-antenna restricted MRA [3], 𝑝 ∈ {t, r}.
Thus, each method can be realized with 8 transmit and 8 receive RF chains in the
hybrid model. As shown in Fig. 4.10, the RMSEs of DODs and DOAs of CBS
coarray method are much smaller than those of the direct coarray method. This
is because CBS has an effective 2-D coarray aperture that is 4 × 4 times larger
(since CBS has dilation factors 𝑀t = 𝑀r = 4, but direct coarray method does not).
Also, for each method the RMSE of DODs is similar to that of DOAs since similar
parameters are used for the transmitter and receiver.
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Figure 4.10: RMSE of DOD and DOA estimates of direct coarray method in element-
space and hybrid CBS coarray method. For CBS coarray method, the nonuniform
decimation matrices D𝑝 in (4.17) are chosen with 𝑛𝑝,𝑖 = �̃�𝑝,𝑖𝑀𝑝, 0 ≤ 𝑖 ≤ 7, where
𝑀𝑝 = 4 and {�̃�𝑝,𝑖} are the antenna locations of an 8-antenna restricted MRA [3],
𝑝 ∈ {t, r}. For direct coarray method, we do nonuniform expansion and decimation
in element-space at the transmitter and receiver, respectively, corresponding to
samples at �̃�𝑝,𝑖, 0 ≤ 𝑖 ≤ 7. Thus, each method can be realized with 8 transmit and 8
receive RF chains in the hybrid model.
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Example 4 (2-D Hybrid CBS coarray method with nonuniform decimation, 12 in-
band paths, 5 RF chains): Now we show the effectiveness of hybrid CBS coarray
method by an extreme case with many paths. Suppose we have a pair of transmit and
receive ULAs with 𝑁t = 𝑁r = 61 antennas. There are 12 in-band paths with DODs
𝜔t = −0.2𝜋 + 𝑖Δ and DOAs 𝜔r = −0.2𝜋 + 𝑖Δ, 𝑖 = 0, 1, . . . , 11, where Δ = 0.4𝜋/11
and no out-of-band paths. For the decimation and expansion, MRAs with 𝑁MRA = 5
antennas are used. The CBS transmit and receive filters have length 𝐿t = 𝐿r = 25
and roll-off factor 𝛽 = 0.2. As shown in Fig. 4.11, reasonably good RMSEs of
DODs and DOAs can still be obtained. The RMSEs tend to saturate with SNR as
coarray method is used [49, 50], but we can identify 12 in-band paths, more than
the number �̄�𝑝 = 5 of RF chains. Moreover, if we use two filter banks (each with
𝑀𝑝 = 4 filters, 𝑝 ∈ {t, r}) as described in the end of Sec. 4.3, then we may identify
the paths falling in the other 𝑀t𝑀r − 1 = 15 combinations of transmit and receive
filter passbands. Thus, much more paths can be identified. The direct coarray
method as in Example 3 is not shown in Fig. 4.11 since it cannot identify those
closely spaced DODs and DOAs.
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Figure 4.11: (12 in-band paths, 5 RF chains) RMSE of DOD and DOA estimates of
hybrid CBS coarray method with nonuniform decimation.

Example 5 (Decorrelation method for 2-D hybrid CBS with nonuniform decimation
and expansion): Next, we verify the effectiveness of the decorrelation method
proposed in Sec. 4.7. We consider a pair of transmit and receive ULAs with
𝑁t = 𝑁r = 71 antennas. There are 2 in-band paths with DODs 𝜃t = −7◦, 3◦ and



136

DOAs 𝜃r = −4◦, 6◦, and 2 out-of-band paths with DODs 𝜃t = 40◦, 60◦ and DOAs
𝜃r = 45◦, 65◦. Each pair of the 4 path gains have a correlation coefficient 𝜌 = 0.4.
For CBS coarray method, the nonuniform expansion and decimation corresponds
to MRAs with 𝑁MRA = 5 antennas dilated by 𝑀𝑝 = 4 times, 𝑝 ∈ {t, r}. The CBS
transmit and receive prototype filters have length 𝐿′t = 𝐿′r = 16 and roll-off factor
𝛽 = 0.5. To decorrelate the path gains, we introduce deterministic receive filter
delays 𝑞r,𝑘 to approximate the uniform distribution over [0, 𝑄], where 𝑄 = 19.
That is, the decorrelation filter 𝑓r(𝑞) in (4.78) is a rectangular window with length
𝐿r − 𝐿′r + 1 = 20. Since a 5-antenna MRA has aperture 𝐴 = 9 (i.e., the last sensor
location �̃�r,4 = 9), the parameters are consistent as 𝐴𝑀r+𝑄+𝐿′r = 9×4+19+16 = 𝑁r.
For comparison, we consider the random SBT precoding method [5], which can
also decorrelate path gains. Like hybrid CBS, the random SBT precoding method
is designed to be realized with �̄�t = 5 transmit and �̄�r = 5 receive RF chains
in the hybrid model. The submatrices of banded Toeplitz random matrices at the
transmitter and receiver are obtained by keeping rows �̃�𝑝,𝑖, 1 ≤ 𝑖 ≤ 5, corresponding
to the antenna locations of a 5-antenna MRA, 𝑝 ∈ {t, r}. As shown in Fig. 4.12, the
RMSEs of DODs and DOAs of CBS coarray method are much smaller than those of
the random SBT precoding method. CBS has smaller estimation errors because the
effective 2-D coarray aperture is 𝑀t𝑀r = 4 × 4 times larger. Also, for each method
the RMSE of DODs is again similar to that of DOAs since similar parameters are
used for the transmitter and receiver.

Example 6 (Random or deterministic filter delays at the transmitter, or receiver, or
both, for the decorrelation method): Now we compare the performance of the pro-
posed decorrelation method with several combinations of random or deterministic
filter delays at the transmitter and receiver. All the simulation parameters are the
same as Example 5, except that there are 6 in-band paths with DODs𝜔t = −0.1𝜋+𝑖Δ
and DOAs𝜔r = −0.12𝜋+𝑖Δ, 𝑖 = 0, 1, . . . , 5, whereΔ = 0.22𝜋/5. The 2 out-of-band
paths are the same as before, and each pair of the 8 path gains have a correlation
coefficient 𝜌 = 0.4. As shown in Fig. 4.13(a), for all SNRs, the average RMSEs
of DODs and DOAs are almost the same for either random or deterministic delay
at either the transmitter or receiver. Implementing the delays at the transmitter
or receiver do not matter because of the similar parameters on both sides. When
deterministic delays yield similar performance to random delays, we recommend
deterministic ones as they are easier to implement in the analog precoder and com-
biner. Yet we also see that using independent random delays at both the transmitter
and receiver results in slightly smaller average RMSE. This is due to the effect of
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Figure 4.12: RMSE of DOD and DOA estimates of the random SBT precoding
method [5] and hybrid CBS coarray method with nonuniform decimation and ran-
dom filter delays. Each method can be realized with 5 transmit and 5 receive RF
chains in the hybrid model.

the product 𝐹t(𝑒 𝑗𝜔t)𝐹r(𝑒 𝑗𝜔r) in (4.78). That is, the decorrelating ability is doubled.
Similar results are obtained in Fig. 4.13(b) when we fix the SNR to be 0 dB and vary
the correlation coefficient 𝜌. We note that in this example, considering either of the
transmitter and receiver has only �̄�𝑝 = 5 RF chains, we already achieve quite high
DOA resolution when resolving those 6 in-band paths with closely spaced DOAs.

Example 7 (Filter delays with different probability mass functions for the decorrela-
tion method): We compare the performance of the proposed decorrelation method
with random receive filter delays with different probability mass functions: a nor-
malized rectangular window, Hann window, or Hamming window [63]. All the
simulation parameters are the same as Example 6, except that there are 2 in-band
paths with DODs 𝜃t = −7◦, 3◦ and DOAs 𝜃r = −4◦, 6◦, and each pair of the 4
(in-band and out-of-band) path gains have a correlation coefficient 𝜌 = 0.9. As
shown in Fig. 4.14(a), at higher SNR regime, the average RMSE of DODs and
DOAs of the Hamming window is slightly smaller than that of the Hann window,
which is, in turn, slightly smaller than that of the rectangular window. This can
be understood if we consider the magnitude responses of the used windows in Fig.
4.14(b). Here the difference of the 2 in-band DOAs measured in 𝜔 is also plotted.
At this frequency, the attenuation of the Hamming window is larger than that of
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Figure 4.13: Average RMSE of DOD and DOA estimates of hybrid CBS coarray
method with nonuniform decimation. To decorrelate the path gains, we introduce
random or deterministic delays for the CBS filters at the transmitter (Tx), or receiver
(Rx), or both. (a) RMSE as SNR varies. (b) RMSE as correlation coefficient varies.

the Hann window, which is, in turn, larger than that of the rectangular window.
This determines the decorrelating ability due to the receive filter delays. Hence,
in practice, if we have rough initial estimates of DODs and DOAs, we can design
or redesign the probability mass function of the delays to get better decorrelating
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Figure 4.14: Performance of hybrid CBS coarray method with nonuniform decima-
tion and random filter delays at the receiver. The probability mass function of the
delay is a normalized rectangular, Hann, or Hamming window. (a) Average RMSE
of DOD and DOA estimates. (b) Magnitude responses of the used windows. The
difference of the 2 in-band DOAs is indicated by the dashed vertical line.

ability.

Example 8 (Estimation errors of channel matrix): In all previous examples, we
only show estimation errors of DODs and DOAs, but not of the channel matrix.
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Figure 4.15: NMSE of channel matrix estimates of DFT beamspace (BS) ESPRIT
[4], direct coarray method in element-space, and hybrid CBS coarray method. The
expansion and decimation schemes are the same as in Fig. 4.10. For DFT BS
ESPRIT and CBS coarray method, the total number of training blocks is 𝑀t𝑀r𝐾 =

4 · 4 · 100 = 1600. For direct coarray method, the number of training blocks is
𝐾 = 100 or 𝐾 = 1600.

In general, smaller estimation errors of DODs and DOAs correspond to smaller
estimation errors of the channel matrix. However, for completeness, we now show
an example for estimation errors of channel matrix. We consider direct coarray
method in element-space and hybrid CBS coarray method as in Example 3. We also
compare to DFT beamspace ESPRIT [4]. There are 3 in-band paths with DODs
𝜃t = −7◦, 2.5◦, 3◦ and DOAs 𝜃r = −4◦, 5.5◦, 6◦, and 2 out-of-band paths with DODs
𝜃t = 35◦, 75◦ and DOAs 𝜃r = 75◦,−30◦. All the other simulation parameters are the
same as in Example 3. As explained in Sec. 4.4.3, for CBS coarray method (and
DFT beamspace ESPRIT), if the DODs and DOAs are not known to be in some
subbands a priori, we need a total of 𝑀t𝑀r𝐾 = 4 · 4 · 100 = 1600 training blocks
to estimate the channel matrix, where 𝐾 is the number of training blocks used for
each pair of the transmit and receive filters. Thus, for direct coarray method, we
consider both 𝐾 = 100 and 𝐾 = 1600 time blocks, where the latter case gives a fair
comparison. As shown in Fig. 4.15, the normalized mean square errors (NMSEs)
(as defined in [19]) of the channel matrix of CBS coarray method are smaller than
those of the direct coarray method, even with 𝐾 = 1600. DFT beamspace ESPRIT
performs the worst as it fails to resolve the closely spaced DODs and DOAs.
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4.8.2 Time Complexity Comparison
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Figure 4.16: Time complexity comparison between hybrid CBS, sequential beam
search [6], and hierarchical beam search [6]. (a) Average RMSE of DOD and DOA
estimates. The lower bound for beam search methods is due to off-grid error as
explained in Sec. 4.6. (b) Number of measurements.

We now compare the time complexity of hybrid CBS with other methods. As
explained in Sec. 4.6, since the number of time blocks is chosen to be the same
for non-beam-search methods like hybrid CBS, DFT beamspace MUSIC [19], and
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DFT beamspace ESPRIT [4] in Sec. 4.8.1, they all have the same pilot overhead,
as in (4.66) and (4.67). Thus, the results in Sec. 4.8.1 show that hybrid CBS has
smaller estimation errors than the other methods when pilot overhead is fixed. To
compare with beam search methods, as elaborated in Sec. 4.6, we design system
parameters in a way such that RMSE of hybrid CBS is at least as small as beam
search methods. To this end, we first do simulations for hybrid CBS and obtain the
average RMSE of DOD and DOA estimates as in Fig. 4.16(a). In this example, we
vary the number 𝐾 of training blocks while fixing the SNR to be 0 dB. There are
only 3 in-band paths with DODs 𝜃t = −7◦,−2◦, 3◦ and DOAs 𝜃r = −4◦, 1◦, 6◦. All
the other simulation parameters are the same as in Example 3. Then we use (4.70) to
compute the corresponding oversampling factors 𝐾os,𝑝, 𝑝 ∈ {t, r}, for beam search
methods. With such 𝐾os,𝑝, the RMSE of hybrid CBS equals the off-grid error of
beam search methods, and is a lower bound for their RMSEs, as plotted in Fig.
4.16(a). Then, we can evaluate the pilot overhead of sequential beam search [6]
and hierarchical beam search [6] using (4.68) and (4.69), respectively. The other
parameters are chosen as 𝑀hf = 𝑖LY = 2 as in [6]. As shown in Fig. 4.16(b), hybrid
CBS requires the smallest number of measurements.

4.9 Concluding Remarks
In this chapter, 2-D hybrid CBS is proposed for mmWave MIMO channel estima-
tion. High-resolution gridless subspace methods like 2-D unitary ESPRIT can be
readily applied to the combiner output without additional preparation since CBS
preserves the Vandermonde structure of a ULA output. The transmitter precoder is
designed as an expander followed by a CBS filter, whereas the receiver combiner
is designed as a CBS filter followed by a decimator. We propose two decimation
and expansion schemes: uniform and nonuniform. In the latter scheme, the ex-
pansion and decimation are nonuniform, corresponding to antenna locations of a
virtual transmit dilated sparse array and receive dilated sparse array. Thus, we can
use the 2-D coarray method to increase the number of identifiable paths. More
interestingly, it is possible to get better DOD and DOA estimation performance due
to the larger array aperture resulting from the dilation and sparse array structure.
This can be done for quite a few paths with a limited number of RF chains. Besides,
a method for decorrelating the path gains is proposed. The method is based on
introducing CBS filter delays which vary with time blocks. With the method, we
can apply 2-D coarray methods even for correlated path gains. One can get better
decorrelating ability by designing the probability distribution of the delays. By sim-
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ulations, we show that hybrid CBS yields smaller estimation errors than previous
non-beam-search methods such as DFT beamspace MUSIC and DFT beamspace
ESPRIT when having the same pilot overhead. Also, hybrid CBS requires smaller
pilot overhead to achieve the same estimation error as beam search methods such as
hierarchical beam search.

Recently, a new technology, reconfigurable intelligent surface (RIS) [86, 105], has
been proposed by many to solve the issue of sensitivity to blockages for mmWave
communications. With RIS, channel estimation is challenging because RIS is
passive without active RF chains or computational power, and the number of RIS
elements is often large. Hence, it is important to design low-complexity algorithms
for RIS-aided mmWave MIMO channel estimation. It is particularly promising to
adapt hybrid CBS to the RIS framework since hybrid CBS has low complexity and
good estimation performance.
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C h a p t e r 5

THEORETICAL ANALYSIS OF 1-D CONVOLUTIONAL
BEAMSPACE

5.1 Introduction
As proposed in Chapter 2, convolutional beamspace (CBS) is a beamspace method
for direction-of-arrival (DOA) estimation. Given an 𝑁-sensor uniform linear array
(ULA) output x, traditionally one does beamspace processing by computing y = Tx
and estimating DOAs based on y instead of x. Here y has length less than 𝑁 ,
so there is reduction in computational complexity. Besides, beamspace methods
usually enjoy higher DOA resolution and smaller bias compared to element-space
methods (which estimate DOAs directly using x) [2, 8, 16, 17]. For CBS, T is
a banded Toeplitz matrix so that it is equivalent to filtering the array output. In
Chapter 2, uniform decimation (downsampling) on y is further proposed to achieve
significant complexity reduction. More precisely, we compute the average of the
covariance matrices of all polyphase components [66] of y, and DOAs can be
estimated based on the eigenvalue decomposition of the average covariance. The
idea of using FIR filtering in beamspace methods is also proposed in [106], but the
detailed development of how we use the filter output to estimate DOAs only appears
in this thesis and in our papers [23, 24].

This chapter aims to study MSE performance of the CBS method. Besides low
computation and compatibility with root-MUSIC and ESPRIT, CBS also offers
performance advantage over element-space in some scenarios. While CBS and
element-space have similar DOA estimation errors for uncorrelated sources, the
estimation error of CBS can be significantly smaller than that of element-space
when there are correlated sources. This benefit of CBS is demonstrated in Chapter
2 mainly through numerical examples, while theoretical MSE analysis is given only
for limited simple cases. Moreover, some details are bypassed in the analysis in
Chapter 2, so the results are only approximations. One main goal of this chapter is
thus to develop a rigorous and more accurate analysis for the MSE performance of
CBS.

The foundations for the analysis of MSE performance for MUSIC and root-MUSIC
were laid many decades ago in the classic papers [26, 56]. We extend the analysis
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to CBS in this chapter. According to the results in [26, 56], MUSIC and root-
MUSIC asymptotically have the same MSE in element-space, and we will show
that it is also true for CBS. Compared to element-space, we have to tackle two
additional complications in CBS. First, the different polyphase components of y
are not independent, so it is more difficult to derive the asymptotic probability
distribution of the eigenvectors of the average finite-snapshot covariance matrix.
In the traditional asymptotic theory for principal component analysis [107], only
independent observations are considered. This is directly applicable to element-
space, but some modifications are required to adapt it to CBS. Second, the filter
output y is represented only by the sources in the filter passband since we assume
the attenuated stopband sources, if any, can be neglected, as shown in Chapter 2.
This leads to an additional error term that should be analyzed. As we shall see, the
effect of these filtered stopband sources is a bias, and it can be analyzed separately
from the variance term. A first-order perturbation analysis is adopted. Furthermore,
this bias term (squared) is often much smaller than the variance term if the CBS
filter has reasonably good stopband attenuation and if the stopband source power is
not very large.

In addition, the Cramér–Rao Bound (CRB) [43, 44, 108] for CBS is also derived
in this chapter. Conventionally, the CRB offers a lower bound on the variances of
unbiased estimates of parameters. As explained earlier, CBS yields biased DOA
estimates if there are stopband sources. A modified form of CRB for a biased
estimator of a scalar parameter is given in [109]. In our case, a biased estimator
of a vector of parameters, i.e., DOAs, is considered, and we show that it can be
viewed as an unbiased estimator for some transformation of the parameters. Hence,
we can use the CRB for transformation of parameters [43] to get a modified form of
lower bound on the variances of CBS DOA estimates. This bound depends on the
Jacobian matrix of the transformation and can be numerically computed. Moreover,
assuming the stopband sources are reasonably attenuated, the modified bound can
be well approximated by the original CRB for unbiased estimates. We study the
CRB under the stochastic model [44, 49], where the source amplitudes are assumed
random. We derive two forms of CRB expressions. Form 1 is in the same style as
the CRB in [49]. Although it is not the focus of this chapter, Form 1 can yield a CRB
even when the noise is non-white with a singular covariance. On the other hand,
Form 2 is in the same style as the CRB in [44] and offers some important insight.
For example, the CRB for a DOA is approximately inversely proportional to its SNR
and approximately independent of source powers of other DOAs. A necessary and
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sufficient condition for the CBS CRB to exist is also given. Although the main goal
of this chapter is to study the MSE and CRB for CBS, all the results also apply to
element-space because element-space can be viewed as a special case of CBS.

Chapter outline: The basics of convolutional beamspace (CBS) are reviewed in
Sec. 5.2, and notions for aiding later analysis are also presented. MSE for CBS
is analyzed theoretically in Sec. 5.3. Cramér–Rao Bound (CRB) for CBS is then
derived in Sec. 5.4. In particular, two forms of CRB expressions are proposed in
Sec. 5.4.1 and Sec. 5.4.2. Numerical examples are shown in Sec. 5.5 to verify
the theory. Finally, Sec. 5.6 concludes the chapter. Appendices 5.A, 5.B, and 5.C
contain detailed proofs of the results.

5.2 Convolutional Beamspace
We consider an 𝑁-sensor ULA with sensor spacing 𝜆/2, and assume 𝐷 monochro-
matic plane waves of wavelength 𝜆 impinging on the array with DOAs 𝜃𝑖 ∈
[−𝜋/2, 𝜋/2) measured from the normal to the line of array. The array output is
thus

x = Ac + e, (5.1)

where c contains source amplitudes 𝑐𝑖, and e is additive noise. The array manifold
A = [a𝑁 (𝜔1) a𝑁 (𝜔2) · · · a𝑁 (𝜔𝐷)], where 𝜔𝑖 = 𝜋 sin 𝜃𝑖 and

a𝑁 (𝜔) = [1 𝑒 𝑗𝜔 𝑒 𝑗2𝜔 · · · 𝑒 𝑗 (𝑁−1)𝜔]𝑇 (5.2)

for any positive integer 𝑁 . The stochastic (also known as unconditional) model [44]
is considered. That is, we assume c is a circularly-symmetric complex Gaussian ran-
dom vector with covariance P, which can be non-diagonal if sources are correlated.
The noise e is assumed circularly-symmetric complex Gaussian with covariance 𝑝eI
and uncorrelated with the sources. To apply subspace methods like MUSIC [52] or
root-MUSIC [26], we compute the array output covariance

Rxx ≜ E[xx𝐻] = APA𝐻 + 𝑝eI. (5.3)

Then the DOAs𝜔𝑖 can be estimated by finding the signal and noise subspaces, which
are spanned by appropriate subsets of eigenvectors of Rxx.

In Chapter 2, a new beamspace method, called convolutional beamspace (CBS) is
proposed. In CBS, the ULA output 𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 is convolved with an FIR
filter 𝐻 (𝑧) = ∑𝐿−1

𝑛=0 ℎ(𝑛)𝑧−𝑛 to obtain the output 𝑦(𝑛), where 𝐿 < 𝑁 . Discarding the
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transient samples 𝑦(0), . . . , 𝑦(𝐿 − 2), we then collect the steady-state samples in a
vector

y ≜ [𝑦(𝐿 − 1) 𝑦(𝐿) · · · 𝑦(𝑁 − 1)]𝑇 = Hx

= A𝐿d + He, (5.4)

where

H =



ℎ(𝐿 − 1) · · · ℎ(0) 0 · · · 0
0 ℎ(𝐿 − 1) · · · ℎ(0) · · · 0
...

...
. . .

...
. . .

...

0 0 · · · ℎ(𝐿 − 1) · · · ℎ(0)


is a (𝑁 − 𝐿 + 1) × 𝑁 banded Toeplitz matrix,

A𝐿 = [a𝑁−𝐿+1(𝜔1) · · · a𝑁−𝐿+1(𝜔𝐷)], (5.5)

and d = D𝐻c with

D𝐻 = diag(𝐻 (𝑒 𝑗𝜔1)𝑒 𝑗𝜔1 (𝐿−1) , . . . , 𝐻 (𝑒 𝑗𝜔𝐷 )𝑒 𝑗𝜔𝐷 (𝐿−1)). (5.6)

Like the original array output x, the CBS output y is represented in terms of a
Vandermonde matrix, i.e., A𝐿 . Hence, we can compute the covariance

Ryy = A𝐿RddA𝐻
𝐿 + 𝑝eHH𝐻 , (5.7)

where

Rdd = E[dd𝐻] = D𝐻PD𝐻
𝐻 , (5.8)

and estimate DOAs using root-MUSIC or ESPRIT without any further adjustment
or processing to the data. Note from (5.6) that the source amplitudes 𝑐𝑖 are filtered
by the frequency response 𝐻 (𝑒 𝑗𝜔𝑖 ). We assume signals in the filter stopband
are well attenuated, so y contains only those DOAs that fall in the passband of
𝐻 (𝑒 𝑗𝜔). Without loss of generality, assume 𝜔1, . . . , 𝜔𝐷0 are in the passband. Then,
y ≈ A𝐿,0d0 + He, where A𝐿,0 has the first 𝐷0 columns of A𝐿 , and d0 has the first
𝐷0 entries of d.

Since y contains only passband sources, we can decimate y without causing ambigu-
ity. This gives us complexity reduction, which is an integral part of any beamspace
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method. In particular, if 𝐻 (𝑒 𝑗𝜔) has passband width 2𝜋/𝑀 for some integer 𝑀 , we
can decimate y by 𝑀 and obtain

v𝑙 = D𝑙y = Adecd𝑙 + D𝑙He ≈ Adec,0d𝑙,0 + D𝑙He, (5.9)

where

D𝑙 =

[
δ (𝑁−𝐿+1)
𝑙

δ (𝑁−𝐿+1)
𝑙+𝑀 . . . δ (𝑁−𝐿+1)

𝑙+(𝐽−1)𝑀

]𝑇
(5.10)

is a decimation matrix, Adec = [a𝐽 (𝑀𝜔1) · · · a𝐽 (𝑀𝜔𝐷)], 𝐽 = (𝑁 − 𝐿 + 1)/𝑀
(assumed an integer for simplicity), d𝑙 has entries

[d𝑙]𝑖 = 𝑐𝑖𝑒 𝑗 (𝐿−1+𝑙)𝜔𝑖𝐻 (𝑒 𝑗𝜔𝑖 ), (5.11)

Adec,0 has the first 𝐷0 columns of Adec, and d𝑙,0 has the first 𝐷0 entries of d𝑙 . In
(5.9), 𝑙 can take values 0, . . . , 𝑀−1, corresponding to the 𝑀 polyphase components
[66] of y. We will estimate only the 𝐷0 passband DOAs based on v𝑙 . We assume
𝐷0 < 𝐽 for MUSIC to identify DOAs without ambiguity [52]. To avoid wasting
data, we compute the average covariance

Rave =
1
𝑀

𝑀−1∑︁
𝑙=0

R𝑣𝑙 = AdecR̆𝑑A𝐻
dec + 𝑝eGdec, (5.12)

where R̆𝑑 is R𝑑𝑙 = E[d𝑙d𝐻𝑙 ] averaged over 𝑙 (polyphase index),

R𝑣𝑙 = E[v𝑙v𝐻𝑙 ] = AdecR𝑑𝑙A𝐻
dec + 𝑝eGdec, (5.13)

and Gdec ≜ D𝑙HH𝐻D𝑙 is independent of 𝑙. To aid our later analysis, we express

Rave = Adec,0R̆𝑑,0A𝐻
dec,0 + 𝛿R + 𝑝eGdec, (5.14)

where the covariance perturbation

𝛿R = AdecR̆𝑑A𝐻
dec − Adec,0R̆𝑑,0A𝐻

dec,0 (5.15)

contains the auto-covariance of stopband sources and the cross-covariance between
passband and stopband sources. This covariance perturbation is due to the filtered
stopband sources, so we assume ∥𝛿R∥ is small. In (5.15), R̆𝑑,0 is R𝑑𝑙,0 = E[d𝑙,0d𝐻

𝑙,0]
averaged over 𝑙. We assume that the CBS filter is a spectral factor of a Nyquist(𝑀)
filter so that Gdec = I (see Sec. 2.2.4). That is, the noise after filtering and
decimation remains white. Then we compute the eigenvalue decomposition

Rave = Es𝚲sE𝐻
s + En𝚲nE𝐻

n , (5.16)
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where Es = [e1 · · · e𝐷0] and En = [e𝐷0+1 · · · e𝐽] contain the signal and noise eigen-
vectors respectively, and 𝚲s = diag(𝜆1, . . . , 𝜆𝐷0) and 𝚲n = diag(𝜆𝐷0+1, . . . , 𝜆𝐽)
contain the corresponding eigenvalues in descending order. Note that only the first
𝐷0 eigenvalues are assumed dominant and correspond to signals. Then we can
estimate the passband DOAs using MUSIC [52] or root-MUSIC [26]. Considering
MUSIC as an example, we evaluate the MUSIC spectrum

𝑃(𝜔) = (a𝐻𝐽 (𝑀𝜔)EnE𝐻
n a𝐽 (𝑀𝜔))−1 (5.17)

on a dense grid of potential DOAs and identify local maxima as the estimates of
𝑀𝜔𝑖 mod 2𝜋, or equivalently 𝜔𝑖 +2𝜋𝑠𝑖/𝑀 for some integers 𝑠𝑖. Since 𝜔𝑖 are known
to be in the passband of 𝐻 (𝑒 𝑗𝜔) which has width 2𝜋/𝑀 , the ambiguities 𝑠𝑖 can be
resolved. In practice, we use a finite number, say 𝐾 , of independent snapshots to
estimate the covariance matrix (5.12). That is, we compute noise subspace estimate
Ên based on

R̂ave =
1
𝐾𝑀

𝑀−1∑︁
𝑙=0

𝐾∑︁
𝑘=1

v𝑙 [𝑘]v𝐻𝑙 [𝑘] (5.18)

and then evaluate the MUSIC spectrum (5.17).

5.3 MSE Analysis for CBS
The goal of this section is to derive the MSE performance when we use MUSIC [52]
or root-MUSIC [26] to estimate DOAs based on (5.18). In Chapter 2, comparison
of MSE performance between CBS and element-space is given mainly based on
numerical examples, and theoretical analysis of CBS MSE is given only for limited
simple cases in an approximated way. In the following, we present a rigorous and
more accurate MSE analysis for CBS. The results are derived based on the asymp-
totic eigenvector distribution of covariance. Also, we assume that the stopband
attenuation of the CBS filter is large enough so that the filtered stopband sources
can be dealt with first-order perturbation analysis.

MSE of DOA estimates for element-space is analyzed for MUSIC in [56] and for
root-MUSIC in [26], and these papers have remained the foundation for such anal-
ysis for many years. Here we extend this analysis to CBS. In fact, the probability
distributions of DOA estimation errors and thus MSEs in element-space are asymp-
totically the same for MUSIC and root-MUSIC. We will show that these are also
true for CBS. Compared to element-space analysis, there are two complications we
should deal with for CBS. First, v𝑙 [𝑘] is not independent of v𝑚 [𝑘] for 𝑙 ≠ 𝑚, which
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makes the derivation of the distribution of the eigenvectors of (5.18) more difficult.
Independent observations are assumed in the traditional asymptotic theory for prin-
cipal component analysis [107], which is naturally applicable to element-space. We
modify the method so that it can be used for CBS. Second, the presence of 𝛿R due
to the filtered stopband sources is an additional source of estimation errors. We will
show that the effect of the filtered stopband sources is a bias and can be analyzed
separately from the variance term as we use a first-order perturbation analysis. To
this end, we define Ryy,0 = Ryy

��
𝛿R=O and

Rave,0 = Rave
��
𝛿R=O = Es,0𝚲s,0E𝐻

s,0 + En,0𝚲n,0E𝐻
n,0 (5.19)

to be the covariance matrices when 𝛿R is set to be zero (equivalently, when
the stopband sources are nulled), where Es,0 = [e1,0 · · · e𝐷0,0] and En,0 =

[e𝐷0+1,0 · · · e𝐽,0] contain the signal and noise eigenvectors respectively, and
𝚲s,0 = diag(𝜆1,0, . . . , 𝜆𝐷0,0) and 𝚲n,0 = diag(𝜆𝐷0+1,0, . . . , 𝜆𝐽,0) = 𝑝eI contain the
corresponding eigenvalues in the diagonals. Here we only have 𝐷0 signal eigen-
vectors because the 𝐷 − 𝐷0 stopband sources are null. According to the theory of
perturbation of Hermitian matrices [110, 111], the signal eigenvectors of Rave are

e𝑙 = e𝑙,0 +
𝐽∑︁
𝑟=1
𝑟≠𝑙

e𝐻
𝑟,0𝛿Re𝑙,0
𝜆𝑙,0 − 𝜆𝑟,0

e𝑟,0, 𝑙 = 1, . . . , 𝐷0 (5.20)

if ∥𝛿R∥ is small compared to the norm of the first term in (5.14). Here we assume
the signal eigenvalues are distinct so that the denominators 𝜆𝑙,0 − 𝜆𝑟,0 ≠ 0. This
is true with probability one if the DOAs 𝜔𝑖 are randomly distributed with some
continuous probability distribution.

In the following, we first present a lemma for the distribution of the signal eigenvec-
tors ê𝑙,0 of the 𝐾-snapshot estimate R̂ave,0 when we null the stopband sources. This
can be viewed as a generalized version of its element-space counterpart, Lemma 3.1
in [56].

Lemma 5.1 The signal eigenvectors ê𝑙,0 of R̂ave,0 are asymptotically (for large 𝐾)
jointly complex Gaussian with means e𝑙,0, covariances

E[(ê𝑙,0 − e𝑙,0) (ê𝑟,0 − e𝑟,0)𝐻] =
𝐽∑︁
𝑖=1
𝑖≠𝑙

𝐽∑︁
𝑘=1
𝑘≠𝑟

tr
(
R̃(𝑟,𝑙)

yy (R̃(𝑘,𝑖)
yy )𝐻

)
𝐾𝑀2(𝜆𝑙,0 − 𝜆𝑖,0) (𝜆𝑟,0 − 𝜆𝑘,0)

e𝑖,0e𝐻𝑘,0 (5.21)
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and relation matrices

E[(ê𝑙,0 − e𝑙,0) (ê𝑟,0 − e𝑟,0)𝑇 ] =
𝐽∑︁
𝑖=1
𝑖≠𝑙

𝐽∑︁
𝑘=1
𝑘≠𝑟

tr
(
R̃(𝑘,𝑙)

yy (R̃(𝑟,𝑖)
yy )𝐻

)
𝐾𝑀2(𝜆𝑙,0 − 𝜆𝑖,0) (𝜆𝑟,0 − 𝜆𝑘,0)

e𝑖,0e𝑇𝑘,0 (5.22)

for 1 ≤ 𝑙, 𝑟 ≤ 𝐷0, where R̃(𝑝,𝑞)
yy ∈ C𝑀×𝑀 for 1 ≤ 𝑝, 𝑞 ≤ 𝐽 are submatrices of

R̃yy = (E𝐻
0 ⊗ I𝑀)Ryy,0(E0 ⊗ I𝑀) (5.23)

≜


R̃(1,1)

yy · · · R̃(1,𝐽)
yy

...
. . .

...

R̃(𝐽,1)
yy · · · R̃(𝐽,𝐽)

yy

 . (5.24)

Here E0 = [Es,0 En,0] contains the eigenvectors in (5.19).

Proof: See Appendix 5.A.

Note that although the signals and noise are circularly-symmetric complex Gaus-
sian, the eigenvector estimates ê𝑙,0 are not in general circularly symmetric since
the relation matrices can be nonzero. Our expressions of covariance and relation
matrices reduce to those in [56] if we set 𝐿 = 1, the CBS filter 𝐻 (𝑧) = 1, the
decimation ratio 𝑀 = 1, and 𝐵𝑖 = 0 (since all sources are in the “passband”). In
this case, considering (5.19), we can simplify (5.23) as

R̃yy = E𝐻
0 Ryy,0E0 = E𝐻

0 Rave,0E0 = 𝚲0, (5.25)

where 𝚲0 = diag(𝚲s,0,𝚲n,0). Hence, we obtain the covariances

E[(ê𝑙,0 − e𝑙,0) (ê𝑟,0 − e𝑟,0)𝐻] =
𝐽∑︁
𝑖=1
𝑖≠𝑙

𝜆𝑙,0𝜆𝑖,0

𝐾 (𝜆𝑙,0 − 𝜆𝑖,0)2 e𝑖,0e𝐻𝑖,0 · 𝛿𝑙𝑟 (5.26)

and relation matrices

E[(ê𝑙,0 − e𝑙,0) (ê𝑟,0 − e𝑟,0)𝑇 ] =
−𝜆𝑙,0𝜆𝑟,0

𝐾 (𝜆𝑙,0 − 𝜆𝑟,0)2 e𝑟,0e𝑇𝑙,0(1 − 𝛿𝑙𝑟). (5.27)

These element-space expressions are much simpler than the CBS ones because
R̃yy is diagonal for element-space. Also, as mentioned earlier, CBS eigenvector
estimates ê𝑙,0 are generally not circularly-symmetric complex Gaussian. However,
for element-space, they are circularly-symmetric complex Gaussian since E[(ê𝑙,0 −
e𝑙,0) (ê𝑙,0 − e𝑙,0)𝑇 ] = 0.

Next, using Lemma 5.1 and (5.20), we can derive the distribution of the DOA
estimation errors �̂�𝑖 − 𝜔𝑖 as follows.
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Theorem 5.1 The CBS DOA estimation errors �̂�𝑖 −𝜔𝑖 for passband sources, when
either MUSIC or root-MUSIC is used with (5.18), are asymptotically (for large 𝐾)
jointly Gaussian distributed with means 𝐵𝑖 and cross-correlations

E[(�̂�𝑖 − 𝜔𝑖) (�̂�𝑘 − 𝜔𝑘 )] = 𝐵𝑖𝐵𝑘 +
1

2𝐾𝑀2𝑔(�̃�𝑖)𝑔(�̃�𝑘 )
Re

{
𝐷0∑︁
𝑙=1

𝐷0∑︁
𝑟=1

e𝐻𝑙,0a𝐽 (�̃�𝑖)a𝐻𝐽 (�̃�𝑘 )e𝑟,0 ¤a𝐻𝐽 (�̃�𝑖)En,0B𝑙𝑟E𝐻
n,0 ¤a𝐽 (�̃�𝑘 )

+
𝐷0∑︁
𝑙=1

𝐷0∑︁
𝑟=1

e𝐻𝑙,0a𝐽 (�̃�𝑖)a𝑇𝐽 (�̃�𝑘 )e∗𝑟,0 ¤a
𝐻
𝐽 (�̃�𝑖)En,0C𝑙𝑟E𝑇n,0 ¤a

∗
𝐽 (�̃�𝑘 )

}
for 1 ≤ 𝑖, 𝑘 ≤ 𝐷0, where �̃�𝑖 = 𝑀𝜔𝑖,

𝐵𝑖 =
Re

{
a𝐻
𝐽
(�̃�𝑖)

∑𝐷0
𝑙=1

(
e𝑙,0𝛿e𝐻𝑙 + 𝛿e𝑙e𝐻𝑙,0

)
¤a𝐽 (�̃�𝑖)

}
𝑀𝑔(�̃�𝑖)

, (5.28)

𝛿e𝑙 =
𝐽∑︁
𝑟=1
𝑟≠𝑙

e𝐻
𝑟,0𝛿Re𝑙,0
𝜆𝑙,0 − 𝜆𝑟,0

e𝑟,0, 𝑙 = 1, . . . , 𝐷0, (5.29)

¤a𝐽 (𝜔) = d
d𝜔a𝐽 (𝜔), 𝑔(𝜔) = ¤a𝐻

𝐽
(𝜔)En,0E𝐻

n,0 ¤a𝐽 (𝜔), B𝑙𝑟 and C𝑙𝑟 are (𝐽−𝐷0)×(𝐽−𝐷0)
matrices with entries

[B𝑙𝑟]𝑚,𝑛 =
tr

(
R̃(𝑟,𝑙)

yy (R̃(𝐷0+𝑛,𝐷0+𝑚)
yy )𝐻

)
𝑀2(𝜆𝑙,0 − 𝑝e) (𝜆𝑟,0 − 𝑝e)

(5.30)

and

[C𝑙𝑟]𝑚,𝑛 =
tr

(
R̃(𝐷0+𝑛,𝑙)

yy (R̃(𝑟,𝐷0+𝑚)
yy )𝐻

)
𝑀2(𝜆𝑙,0 − 𝑝e) (𝜆𝑟,0 − 𝑝e)

(5.31)

for 1 ≤ 𝑚, 𝑛 ≤ 𝐽 − 𝐷0, 1 ≤ 𝑙, 𝑟 ≤ 𝐷0, and R̃(𝑝,𝑞)
yy , 1 ≤ 𝑝, 𝑞 ≤ 𝐽 are as defined in

(5.24).

Proof: See Appendix 5.B.

In particular, the MSEs E[(�̂�𝑖 − 𝜔𝑖)2] of the passband DOAs can be obtained by
letting 𝑘 = 𝑖 in Theorem 5.1:

E[(�̂�𝑖 − 𝜔𝑖)2] = 𝐵2
𝑖 +𝑉𝑖, (5.32)

where

𝑉𝑖 =
1

2𝐾𝑀2𝑔2(�̃�𝑖)
Re

{ 𝐷0∑︁
𝑙=1

𝐷0∑︁
𝑟=1

e𝐻𝑙,0a𝐽 (�̃�𝑖)a𝐻𝐽 (�̃�𝑖)e𝑟,0 ¤a𝐻𝐽 (�̃�𝑖)En,0B𝑙𝑟E𝐻
n,0 ¤a𝐽 (�̃�𝑖)

+
𝐷0∑︁
𝑙=1

𝐷0∑︁
𝑟=1

e𝐻𝑙,0a𝐽 (�̃�𝑖)a𝑇𝐽 (�̃�𝑖)e∗𝑟,0 ¤a
𝐻
𝐽 (�̃�𝑖)En,0C𝑙𝑟E𝑇n,0 ¤a

∗
𝐽 (�̃�𝑖)

}
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for 𝑖 = 1, . . . , 𝐷0. As mentioned earlier, since v𝑙 [𝑘] is not independent of v𝑚 [𝑘]
for 𝑙 ≠ 𝑚 in (5.18), it is more difficult to analyze CBS MSE. One can see such
complications through the 𝑀 × 𝑀 matrices R̃(𝑝,𝑞)

yy appearing in (5.30) and (5.31).
On the other hand, the presence of the filtered stopband sources simply results in a
bias 𝐵𝑖 in the DOA estimates. Thus, the MSE is given in the form of a bias-variance
decomposition. As we shall see in the simulations (Fig. 5.4), the bias term is
typically much smaller than the variance term if the CBS filter is properly designed
with good stopband attenuation and if the stopband sources are not too powerful.
Hence, we may ignore the bias term in many practical cases. Due to the complicated
MSE expression, it is not easy to get further insight. However, we will present more
insight based on the CRB expressions in Sec. 5.4.

Our MSE expression can be viewed as a generalized version of the element-space
MSE expression in [56]. Our expression reduces to that in [56] if we set 𝐿 = 1, the
CBS filter 𝐻 (𝑧) = 1, the decimation ratio 𝑀 = 1, and 𝐵𝑖 = 0. Then again we have
R̃yy = 𝚲0 as in (5.25) and thus

B𝑙𝑟 =
𝜆𝑙,0𝑝eI

(𝜆𝑙,0 − 𝑝e)2 𝛿𝑙𝑟 (5.33)

and C𝑙𝑟 = O for all 𝑙, 𝑟. This is why we can get the much more simplified expression
for element-space MSE

E[(�̂�𝑖 − 𝜔𝑖)2] = 1
2𝐾𝑔(𝜔𝑖)

𝐷∑︁
𝑙=1

𝜆𝑙,0𝑝e

(𝜆𝑙,0 − 𝑝e)2 |e
𝐻
𝑙,0a𝐽 (𝜔𝑖) |2 (5.34)

given in [56]. Although it is known that CBS CRB cannot be smaller than element-
space CRB [23, 78], it is still unclear whether CBS MSE can be smaller than
element-space MSE for uncorrelated sources because of the complicated MSE
expression for CBS. For correlated sources, CBS MSE can be much smaller than
element-space MSE (see Fig. 5.5(b)).

5.4 Cramér–Rao Bound for CBS
In this section, we derive the Cramér–Rao bound (CRB) [43] for the DOA estimates
based on the CBS output y in (5.4), under the stochastic model [44, 49]. The
CRB offers a lower bound on the variances of unbiased estimates of parameters.
However, as shown in Sec. 5.3, CBS yields biased DOA estimates if there are
stopband sources. Hence, some extra care will be taken in order to derive the CRB
for biased estimators [43]. We shall derive two forms of CRB expressions. Form
1 is in the same style as the CRB in [49]. It is derived from inverting the Fisher
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information matrix [43], and a necessary and sufficient condition for the existence
of the CRB is naturally obtained in this process. Although it is not the focus of this
chapter, Form 1 also yields a CRB even when the noise is non-white with a singular
covariance. Meanwhile, Form 2 is in the same style as the CRB in [44] and offers
some additional insight as shown later.

The probability model for stochastic CRB [44, 49] based on 𝐾 snapshots of CBS
outputs is 

y[1]
y[2]
...

y[𝐾]


∼ CN

©«
0,


Ryy O · · · O
O Ryy · · · O
...

...
. . .

...

O O · · · Ryy


ª®®®®®¬
, (5.35)

where Ryy is as in (5.7). The parameter vector for this probability model is

α =

[
[𝜔𝑖]𝐷𝑖=1 [𝑝𝑖]𝐷𝑖=1 [𝑃(r)

𝑖𝑘
]𝑖>𝑘 [𝑃(i)

𝑖𝑘
]𝑖>𝑘 𝑝e

]𝑇
, (5.36)

where 𝑝𝑖 is the 𝑖th diagonal entry of P, and 𝑃(r)
𝑖𝑘

and 𝑃(i)
𝑖𝑘

are the real and imaginary
parts of the (𝑖, 𝑘)-entry of P, respectively. Thus, there are 𝐷+𝐷2+1 real parameters,
among which only the 𝐷 parameters ω = [𝜔1 · · · 𝜔𝐷]𝑇 are of interest.

For any unbiased estimator α̂ with E[α̂] = α, the CRB is given by [43]

CRBunb(α) = [I (α)]−1, (5.37)

where I (α) is the Fisher information matrix for the model, such that the covariance
of the estimator

cov(α̂) ⪰ CRBunb(α). (5.38)

As shown in Sec. 5.3, however, CBS yields biased estimates ω̂0 for the in-band
(passband) DOAs ω0 = [𝜔1 · · · 𝜔𝐷0]𝑇 if there are out-of-band (stopband) sources.
A modified form of CRB for a biased estimator of a scalar parameter is given in [109].
To derive a bound for the biased vector estimator ω̂0, we consider its expectation
E[ω̂0]. It must be some function of the model parameters α, say, E[ω̂0] = ψ(α).
Then ω̂0 can be viewed as an unbiased estimator for the transformation ψ(·) of the
parameter vector α. Hence, assuming ψ(α) is differentiable, we can use the CRB
for transformations [43] to obtain a lower bound on the covariance of the biased
estimate ω̂0:

cov(ω̂0) ⪰
𝜕ψ(α)
𝜕α

CRBunb(α)
(
𝜕ψ(α)
𝜕α

)𝑇
, (5.39)
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where CRBunb(α) is defined in (5.37), and 𝜕ψ
𝜕α is the Jacobian matrix with entries[

𝜕ψ

𝜕α

]
𝑖,𝑘

=
𝜕 [ψ]𝑖
𝜕 [α]𝑘

=

{
1 + 𝜕𝐵𝑖

𝜕 [α]𝑖 , 𝑖 = 𝑘
𝜕𝐵𝑖
𝜕 [α]𝑘 , 𝑖 ≠ 𝑘

. (5.40)

Here 𝐵𝑖 are the biases defined in (5.28). Although the derivatives 𝜕𝐵𝑖
𝜕 [α]𝑘 can be

analytically computed from (5.28), the results will be lengthy due to the complicated
dependence of e𝑙,0 and 𝜆𝑙,0 on [α]𝑘 . Thus, we omit the tedious derivations, which
may not give much insight. In this chapter, we only compute the derivatives
numerically in the example of Fig. 5.4. Moreover, these derivatives 𝜕𝐵𝑖

𝜕 [α]𝑘 are
typically small since the covariance perturbation 𝛿R due to the filtered stopband
sources is small. Thus,

𝜕ψ(α)
𝜕α

≈
[
I O𝐷0,𝐷−𝐷0+𝐷2+1

]
(5.41)

so that we have

cov(ω̂0) ⪰
𝜕ψ(α)
𝜕α

CRBunb(α)
(
𝜕ψ(α)
𝜕α

)𝑇
(5.42)

≈ CRBunb(ω0), (5.43)

where CRBunb(ω0) is the top left 𝐷0 × 𝐷0 block of CRBunb(α). Note that (5.43) is
precisely the CRB for CBS if there are no stopband sources so that ω̂0 is unbiased.
If stopband sources exist, as we shall see in simulations (Fig. 5.4), usually (5.43)
also gives a good lower bound. It does not make a big difference to consider (5.42)
unless the out-of-band source power is extremely large. In the following, we focus
on the ω-block CRBunb(ω), i.e., the top left 𝐷 × 𝐷 block of CRBunb(α) because
it leads to more elegant and insightful expressions. Once we have CRBunb(ω), we
can immediately obtain CRBunb(ω0) as a submatrix. Then in particular, we have
that the variance

var(�̂�𝑖) ≥ [CRBunb(ω0)]𝑖,𝑖 (5.44)

for each in-band DOA estimate �̂�𝑖. Now we are ready to derive Form 1 of the CRB
by investigating the Fisher information matrix I (α).

5.4.1 Form 1
The (𝑖, 𝑘)-entry of the Fisher information matrix I (α) for the model (5.35) can be
derived as [49]

[I (α)]𝑖,𝑘 = 𝐾
𝜕r𝐻yy

𝜕 [α]𝑖

(
R𝑇

yy ⊗ Ryy
)−1 𝜕ryy

𝜕 [α]𝑘
, (5.45)
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where ryy = vec(Ryy). Separating the parameters of interest from the other param-
eters, we have

I (α) = 𝐾
[

G𝐻G G𝐻𝚫1

𝚫𝐻1 G 𝚫𝐻1 𝚫1

]
, (5.46)

where

G =

(
R𝑇

yy ⊗ Ryy
)− 1

2
[
𝜕ryy

𝜕 [α]1
· · ·

𝜕ryy

𝜕 [α]𝐷

]
, (5.47)

𝚫1 =

(
R𝑇

yy ⊗ Ryy
)− 1

2
[

𝜕ryy

𝜕 [α]𝐷+1
· · ·

𝜕ryy

𝜕 [α]𝐷+𝐷2+1

]
. (5.48)

Here we assume Ryy is positive definite so that (R𝑇
yy ⊗ Ryy) is also positive definite.

Then (R𝑇
yy ⊗Ryy)−1/2 denotes the inverse of its positive definite square root. For the

CRB (5.37) to exist, we require I (α) to be invertible, so we obtain the following
theorem.

Theorem 5.2 The CRB (5.37) exists if and only if

M =
[
M1 (A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻) vec(HH𝐻)

]
(5.49)

has full column rank, where

M1 = ¤A∗
𝐿 ⊙ (A𝐿D𝐻PD∗

𝐻) + (A𝐿D𝐻PD∗
𝐻)∗ ⊙ ¤A𝐿 , (5.50)

and

¤A𝐿 = [ ¤a𝑁−𝐿+1(𝜔1) · · · ¤a𝑁−𝐿+1(𝜔𝐷)] (5.51)

with ¤a𝑁−𝐿+1(𝜔) = d
d𝜔a𝑁−𝐿+1(𝜔).

Proof: See Appendix 5.C.

Theorem 5.2 offers a necessary and sufficient condition for the CRB to exist. Since
M has (𝑁 − 𝐿 + 1)2 rows and 𝐷 +𝐷2 + 1 columns, it can have full column rank only
if 𝐷 < 𝑁 − 𝐿 + 1. In [49], a similar condition for the existence of the element-space
CRB is given assuming sources are known to be uncorrelated. In the following, we
assume that M indeed has full column rank. Now using the ideas of block matrix
inversion and Schur complements [49], we can show that (5.37) and (5.46) imply
that

CRBunb(ω) =
1
𝐾

(
G𝐻𝚷⊥

𝚫1
G

)−1
, (5.52)
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where 𝚷⊥
𝚫1

= I − 𝚫1(𝚫𝐻1 𝚫1)−1𝚫𝐻1 denotes the orthogonal projection onto the null
space of 𝚫𝐻1 . Computing the above derivatives and simplifying the results, we can
obtain the CRB as follows.

Theorem 5.3 If there are no stopband sources, the CRB for the DOAs ω for CBS is

CRBunb(ω) =
1
𝐾

(
G𝐻𝚷⊥

𝚫G
)−1

, (5.53)

where

G =

(
R𝑇

yy ⊗ Ryy
)− 1

2 ( ¤A∗
𝐿 ⊙ (A𝐿D𝐻PD∗

𝐻) + (A𝐿D𝐻PD∗
𝐻)∗ ⊙ ¤A𝐿

)
, (5.54)

𝚫 =

(
R𝑇

yy ⊗ Ryy
)− 1

2 [
(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻) vec(HH𝐻)

]
. (5.55)

Here A𝐿 , D𝐻 , and ¤A𝐿 are as defined in (5.5), (5.6), and (5.51). If stopband sources
exist, (5.53) is an approximate bound.

Remark 1) Suppose there are stopband sources so that the CBS DOA estimator is
biased. Then the exact CRB (5.42) can be computed from (5.40), (5.37), and (5.46)
with G as in (5.54) and 𝚫1 as in (5.141). In this chapter, we only numerically
compute the derivatives in the Jacobian matrix in the example of Fig. 5.4.

Remark 2) By slightly modifying the proof of Theorem 5.3, one can verify that if the
noise covariance is 𝑝eRe instead of 𝑝eI for any Re known a priori, then the CRB
is as in (5.53)–(5.55) except that HH𝐻 is replaced by HReH𝐻 in (5.55). It is valid
even when Re is singular. This result for a singular noise covariance cannot be
obtained using Form 2 in Sec. 5.4.2.

Proof of Theorem 5.3: See Appendix 5.C.

The CRB in Theorem 5.3 serves as a good reference for determining how well CBS
performs in practice. In Sec. 5.5, we will show that the MSE performance of CBS
is close to the CRB in many cases. Besides, since element-space can be viewed as
a special case of CBS, we can obtain the following corollary.

Corollary 5.1 The CRB for the DOAs ω for element-space is

CRBelm(ω) =
1
𝐾

(
G𝐻𝚷⊥

𝚫G
)−1

, (5.56)
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where

G =

(
R𝑇

xx ⊗ Rxx
)− 1

2 ( ¤A∗ ⊙ (AP) + (AP)∗ ⊙ ¤A
)
, (5.57)

𝚫 =

(
R𝑇

xx ⊗ Rxx
)− 1

2 [A∗ ⊗ A vec(I)] . (5.58)

Here

¤A = [ ¤a𝑁 (𝜔1) · · · ¤a𝑁 (𝜔𝐷)] (5.59)

with ¤a𝑁 (𝜔) = d
d𝜔a𝑁 (𝜔).

Remark: Similar to Remark 2 for Theorem 5.3, if the noise covariance is 𝑝eRe

instead of 𝑝eI for any Re known a priori, then the CRB is as in (5.56)–(5.58) except
that I is replaced by Re in (5.58). It is valid even when Re is singular.

Proof of Corollary 5.1: This corollary is obtained by setting the filter length 𝐿 = 1
and CBS filter 𝐻 (𝑧) = 1 in Theorem 5.3.

Note that although Theorem 5.3 for CBS applies only to ULAs, Corollary 5.1
applies to any linear arrays. One can verify that our proof under the special case
of element-space is valid for sparse arrays. It is valid even when the sources are
correlated.

In [49, 50], different expressions of element-space CRBs are also derived, but
uncorrelated sources are assumed therein. It is important to consider correlated
sources because CBS is especially advantageous over element-space in this case.
Yet, to compare with previous works, we also consider uncorrelated sources in
the following. When the sources are known to be uncorrelated a priori, i.e., P =

diag(𝑝1, . . . , 𝑝𝐷), the parameter vector becomes

α =
[
[𝜔𝑖]𝐷𝑖=1 [𝑝𝑖]𝐷𝑖=1 𝑝e

]𝑇 (5.60)

instead of (5.36), and the CRB for CBS can be derived as follows.

Theorem 5.4 Suppose the sources are known to be uncorrelated a priori. Then if
there are no stopband sources, the CRB for the DOAs ω for CBS is

CRBunc
unb(ω) =

1
𝐾

(
G𝐻𝚷⊥

𝚫unc
G

)−1
, (5.61)

where G is as in (5.54) and

𝚫unc =
(
R𝑇

yy ⊗ Ryy
)− 1

2 [
(A𝐿D𝐻)∗ ⊙ (A𝐿D𝐻) vec(HH𝐻)

]
. (5.62)
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The CRB (5.61) exists if and only if

Munc =
[
M1 (A𝐿D𝐻)∗ ⊙ (A𝐿D𝐻) vec(HH𝐻)

]
(5.63)

has full column rank, where M1 is as in (5.50). If stopband sources exist, (5.61) is
an approximate bound.

Proof: The proof is similar to that of Theorem 5.2 and Theorem 5.3.

Again, element-space can be viewed as a special case of CBS, so we obtain the
following corollary.

Corollary 5.2 When the sources are known to be uncorrelated a priori, the CRB
for the DOAs ω for element-space is

CRBunc
elm(ω) =

1
𝐾

(
G𝐻𝚷⊥

𝚫unc
G

)−1
, (5.64)

where G is as in (5.57) and

𝚫unc =
(
R𝑇

xx ⊗ Rxx
)− 1

2 [A∗ ⊙ A vec(I)] . (5.65)

Proof: This corollary is obtained by setting the filter length 𝐿 = 1 and CBS filter
𝐻 (𝑧) = 1 in Theorem 5.4.

One can check that (5.64) is equivalent to the CRB expressions in [49, 50]. Besides,
comparing Theorem 5.4 to Theorem 5.3 and Corollary 5.2 to Corollary 5.1, we
observe that the only difference in the CRB expressions is the substitution of a
Khatri–Rao product for a Kronecker product in the expression for 𝚫. Therefore,
𝚫unc is a submatrix of 𝚫, obtained by selecting proper columns of 𝚫. This allows us
to formally establish the following result. This essentially follows the intuition that
additional prior knowledge can only decrease the CRB.

Fact 5.1 Suppose the sources are uncorrelated. Then the CRB for the DOAs ω
for CBS when the information of the uncorrelatedness of the sources is unknown a
priori is not smaller than that when this information is known a priori:

CRBunb(ω)
��
P=diag(𝑝1,...,𝑝𝐷) ⪰ CRBunc

unb(ω). (5.66)

Similarly, it is true for element-space:

CRBelm(ω)
��
P=diag(𝑝1,...,𝑝𝐷) ⪰ CRBunc

elm(ω). (5.67)
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Proof: Since 𝚫unc is a submatrix of 𝚫, obtained by selecting proper columns of 𝚫
(for both CBS and element-space), we have 𝚷⊥

𝚫 ⪯ 𝚷⊥
𝚫unc

. Hence, (G𝐻𝚷⊥
𝚫G)−1 ⪰

(G𝐻𝚷⊥
𝚫unc

G)−1, which completes the proof.

Fact 5.1 shows that the CRB cannot be larger if more prior information is given,
which is not surprising. We will verify this theorem by simulations (Fig. 5.6).

5.4.2 Form 2
Now we get back to our correlated model with the parameter vector (5.36). In
[44], an alternative form of element-space stochastic CRB different from Corollary
5.1 is derived for any linear array under two added assumptions. First, assume the
manifold matrix A has full column rank. Second, assume the number of sources
𝐷 < 𝑁 , the number of sensors. In the case of a ULA, since A is Vandermonde, the
second assumption implies the first one. Hence, for CBS CRB based on the filter
output y, if we assume 𝐷 < 𝑁 − 𝐿 + 1, then we can derive a second form of CRB
using results in [44]. Note that this same assumption is required for Form 1 to be
valid. In the following, we assume this inequality is satisfied. Since the model in
[44] only applies to white noise, a noise-whitening transformation is used to obtain
the following theorem.

Theorem 5.5 If there are no stopband sources, the CRB for the DOAs ω for CBS is

CRBunb(ω) =
𝑝e
2𝐾

[
Re{S1 ◦ S∗

2}
]−1

, (5.68)

where

S1 = PA𝐻H𝐻R−1
yy HAP, (5.69)

S2 = ¤A𝐻W𝐻𝚷⊥
WAW ¤A (5.70)

with ¤A as defined in (5.59) and

W = (HH𝐻)−1/2H. (5.71)

Like in Theorem 5.3, (5.68) is precisely the CRB for CBS if there are no stopband
sources. If stopband sources exist, it is an approximate bound. An exact bound can
be computed as in Remark 1 of Theorem 5.3.

Remark: This noise-whitening method (5.72) requires a nonsingular noise co-
variance, i.e., HH𝐻 in the case of CBS. By definition we assume ℎ(0) ≠ 0 and
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ℎ(𝐿 − 1) ≠ 0 so that 𝐿 is the filter length. This implies that the banded Toeplitz
matrix H has full row rank, so HH𝐻 is positive definite, and W is well defined. This
is also why we cannot obtain a Form-2 CRB if the noise covariance is 𝑝eRe instead
of 𝑝eI for any singular Re known a priori (but we can obtain a Form-1 CRB as in
Remark 2 for Theorem 5.3).

Proof of Theorem 5.5: Consider the noise-whitening transformation

z = (HH𝐻)−1/2y. (5.72)

Since this transformation is invertible, the CRB based on z is the same as the CRB
based on y. We can show that the covariance of z is given by

Rzz = AzPA𝐻
z + 𝑝eI, (5.73)

where Az = WA is the equivalent manifold for z, and W is defined in (5.71). Since
(5.73) has the same form as the element-space model in [44], we can apply the CRB
expression therein and obtain (5.68), with

S1 = PA𝐻
z R−1

zz AzP (5.74)

and S2 as in (5.70). Using (5.71) and (5.72), we can show that (5.74) is equivalent
to (5.69).

Note that if 𝐷 < 𝑁 − 𝐿 + 1, one can verify that the RHS of (5.53) indeed equals
the RHS of (5.68). The detailed derivations are lengthy and omitted here, but the
main idea is to start from computing the block matrix inversion (𝚫𝐻𝚫)−1 in (5.53),
to express quantities in terms of signal and noise subspaces, and to simplify things
using properties of the Kronecker product and Khatri–Rao product. Then, one can
finally obtain (5.68). In this process, we need 𝐷 < 𝑁 − 𝐿 + 1 to guarantee the noise
subspace to have a nonzero dimension.

Theorem 5.5 offers a second form of CRB for CBS. Some additional insight can be
obtained from Form 2. To this end, we first show an approximation as follows.

Fact 5.2 Let 𝚷H𝐻 = H𝐻 (HH𝐻)−1H denote the orthogonal projection onto the
column space of H𝐻 . Assume𝑝e(A𝐻𝚷H𝐻A)−1/2P−1(A𝐻𝚷H𝐻A)−1/2

 ≪ 1. (5.75)

Then the CRB (5.68) can be approximated by

CRBunb(ω) ≈
𝑝e
2𝐾

[
Re{P ◦ S∗

2}
]−1

, (5.76)

where S2 is as in (5.70).
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Remark: The insight to be gained from this fact will be clear from Corollaries 5.3
and 5.4 below.

Proof of Fact 5.2: To prove this fact, we only have to show that S1 ≈ P under
the assumption (5.75). Consider (5.73) and (5.74). Applying the matrix inversion
lemma [112], we have

R−1
zz = 𝑝−1

e I − 𝑝−2
e Az(P−1 + 𝑝−1

e A𝐻
z Az)−1A𝐻

z

= 𝑝−1
e I − 𝑝−1

e Az(A𝐻
z Az)−

1
2 (S + I)−1(A𝐻

z Az)−
1
2 A𝐻

z ,

where

S = 𝑝e(A𝐻
z Az)−

1
2 P−1(A𝐻

z Az)−
1
2 (5.77)

= 𝑝e(A𝐻𝚷H𝐻A)−1/2P−1(A𝐻𝚷H𝐻A)−1/2. (5.78)

Now since ∥S∥ ≪ 1 due to (5.75), we have (S + I)−1 ≈ I − S. Thus,

S1 = PA𝐻
z R−1

zz AzP (5.79)

≈ 𝑝−1
e PA𝐻

z AzP − 𝑝−1
e PA𝐻

z Az(A𝐻
z Az)−

1
2 (A𝐻

z Az)−
1
2 A𝐻

z AzP

+ 𝑝−1
e PA𝐻

z Az(A𝐻
z Az)−

1
2 S(A𝐻

z Az)−
1
2 A𝐻

z AzP (5.80)

= 𝑝−1
e PA𝐻

z AzP − 𝑝−1
e PA𝐻

z AzP + P (5.81)

= P, (5.82)

where we have used (5.77) to obtain (5.81). This completes the proof.

The assumption (5.75) is satisfied in practical CBS and element-space systems with
large arrays. To understand why it is the case, note that the LHS of (5.75) is less
than or equal to ∥𝑝eP−1∥ · ∥(A𝐻𝚷H𝐻A)−1∥. If the number of sensors 𝑁 is large
and if the DOAs are not very close to one another, then typically A𝐻A ≈ 𝑁I. That
is, the columns of A are approximately orthogonal. Meanwhile, according to our
numerical experiments, 𝚷H𝐻A ≈ A for properly designed CBS filter. Together, we
have ∥(A𝐻𝚷H𝐻A)−1∥ ≈ 𝑁−1. Moreover, we assume that the SNR is not very small
and that the correlation coefficients between the sources are not close to 1, so that
∥𝑝eP−1∥ ≪ 𝑁 . Hence, we finally obtain (5.75). Numerical values for the LHS of
(5.75) will be given in the example of Fig. 5.3.

The fact that 𝚷H𝐻A ≈ A for properly designed CBS filter is expectable to some
extent. In [78], it is shown that the CRB based on y = Tx for any beamspace
matrix T is larger than or equal to the element-space CRB, and that 𝚷T𝐻A = A
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is a necessary condition for the beamspace CRB to equal the element-space CRB.
Thus, it is not surprising that the well-performing method CBS leads to 𝚷H𝐻A ≈ A.
This means that all steering vectors roughly lie in the column space of H𝐻 , so no
significant signal information is lost.

Having proved Fact 5.2 and discussed the practical side of the assumption (5.75),
we now derive the following corollary relating CRB to source powers.

Corollary 5.3 Suppose the assumption in Fact 5.2 holds so that we have (5.76).
Also assume the correlation coefficient of each pair of sources is fixed. Then the
CRB for a DOA is approximately inversely proportional to its own source power and
approximately independent of the source powers of the other DOAs. This is true for
both CBS and element-space.

Proof: We can express the source covariance P as

P = D𝑝R𝜌D𝑝, (5.83)

where D𝑝 = diag(√𝑝1, . . . ,
√
𝑝𝐷), and the correlation coefficient matrix R𝜌 has

entries [R𝜌]𝑖,𝑘 = E[𝑐𝑖𝑐∗𝑘 ]/
√
𝑝𝑖𝑝𝑘 . Hence, (5.76) implies

CRBunb(ω) ≈
𝑝e
2𝐾

[
Re{D𝑝R𝜌D𝑝 ◦ S∗

2}
]−1

, (5.84)

=
𝑝e
2𝐾

D−1
𝑝

[
Re{R𝜌 ◦ S∗

2}
]−1 D−1

𝑝 . (5.85)

Thus, the CRB for the 𝑖th DOA is

CRBunb(𝜔𝑖) ≈
𝑝e

2𝐾𝑝𝑖

[ [
Re{R𝜌 ◦ S∗

2}
]−1

]
𝑖,𝑖
, (5.86)

which is inversely proportional to 𝑝𝑖 and independent of 𝑝𝑘 for all 𝑘 ≠ 𝑖. This is
also true for element-space since CBS reduces to element-space if we set the filter
length 𝐿 = 1 and CBS filter 𝐻 (𝑧) = 1.

Corollary 5.3 shows that the CRB for a DOA almost does not depend on the power of
another DOA. In particular, the CBS CRB for in-band DOAs is almost independent
of out-of-band source powers. That is, a more powerful out-of-band jammer does
not impose a larger lower bound on MSE of in-band DOA estimates. As we shall
see in simulations (Fig. 5.3), CBS can yield an in-band MSE almost independent
of the out-of-band source powers as long as the filter stopband attenuation is large
enough to sufficiently attenuate the stopband sources.

Another corollary relating CRB to noise power can be obtained from Fact 5.2 as
stated below.
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Corollary 5.4 Suppose the assumption in Fact 5.2 holds so that we have (5.76).
Then the CRB for a DOA is approximately proportional to the noise power 𝑝e. This
is true for both CBS and element-space.

Proof: It is immediately proved by (5.76).

Corollary 5.3 and Corollary 5.4 together imply that the CRB of a DOA 𝜔𝑖 is
approximately inversely proportional to its own SNR 𝑝𝑖/𝑝e. This will be verified
by simulations (Fig. 5.5). Note that the two corollaries may not be easily proved by
directly using the CRB expression in Theorem 5.3 or Theorem 5.5. Even Theorem
5.5 does not immediately lead to Corollary 5.4 because S1 in (5.68) depends on 𝑝e.
In this sense, Fact 5.2 is an important result which gives much more insight.

5.5 Simulations
In the following numerical examples, we assume the number of DOAs is known.
To compare with CBS using a filter 𝐻 (𝑧), for element-space, we just consider DOA
estimates in the passband of 𝐻 (𝑧) and ignore those in the stopband. Whenever
we mention mean square errors (MSEs) or root mean square errors (RMSEs) in
detected in-band source angles, we refer to averaging square errors measured in 𝜔
over all in-band DOAs. Similarly, since the stochastic CRBs [44] differ for different
DOAs, we average the variance bounds over all in-band DOAs. The theoretical
MSEs of CBS and element-space are computed from (5.32) and (5.34), respectively.
Unless otherwise stated, the CBS and element-space CRBs are computed from
(5.53) and (5.56), respectively. Note that (5.53) is precisely the CRB for CBS only
if there are no stopband sources so that the in-band DOA estimates are unbiased.
If stopband sources exist, (5.53) is approximately a lower bound on the variance
of DOA estimates of CBS due to (5.43). The exact lower bound (5.42) for the
biased CBS estimator will be compared to the approximate bound in Fig. 5.4. The
CBS filter 𝐻 (𝑧) is designed to be a spectral factor of a lowpass Nyquist-equiripple
filter [71], with passband edge 𝜋/2𝑀 and stopband edge 3𝜋/2𝑀 , where 𝑀 is the
decimation ratio.

In Fig. 5.1, we compare RMSEs of DOA estimates and CRBs for CBS with
various filter length 𝐿, and for element-space. The RMSEs based on Monte Carlo
simulation and based on our theoretical analysis in Sec. 5.3 are both shown for
comparison. We consider a ULA with 𝑁 = 99 sensors receiving 6 sources at angles
𝜃 = −5◦, 0◦, 5◦, 40◦, 60◦, and 80◦. All sources have power 1. Sources 𝑛 and 𝑛 + 3
have a correlation coefficient 𝜌 = 0.9 for 𝑛 = 1, 2, 3. For CBS, the decimation
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Figure 5.1: Simulated RMSE, theoretical RMSE, and CRB for CBS with various
filter length 𝐿, and for element-space.
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Figure 5.2: Magnitude responses of the Nyquist-equiripple filters used for CBS with
several typical values of filter length 𝐿.

ratio is 𝑀 = 4. Hence, the three sources at −5◦, 0◦ and 5◦ are in the passband,
and the others are in the stopband. Noise variance is 𝑝e = 1. Root-MUSIC is used
to estimate DOAs. Covariance estimates are obtained by using 500 snapshots, and
500 Monte Carlo runs are used. Several observations can be made from Fig. 5.1.
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First, the theoretical RMSE curves almost coincide with simulated RMSE curves for
both CBS and element-space. This verifies our MSE analysis in Sec. 5.3. Second,
the CBS CRB is always larger than the element-space CRB. This is consistent with
the known fact that beamspace CRB cannot be smaller than element-space CRB
[78]. However, the RMSE of CBS is uniformly smaller than that of element-space
in this example. That is, CBS offers a practical algorithm with RMSE approaching
the CRB when there are correlated sources, while there is a large gap between
RMSE and CRB for element-space. Finally, there is an optimal filter length such
that the RMSE of CBS is minimized. If the filter length is too small, the stopband
attenuation is not good enough (see Fig. 5.2), and the filtered stopband sources
contribute to a large bias 𝐵𝑖 as defined in (5.28). If the filter length is too large,
we need to discard many transient samples in the filter output (since we retain only
steady-state samples). This leads to a larger RMSE. By plotting a RMSE curve as
a function of the filter length using our analysis in Sec. 5.3, we can determine the
optimal filter length. However, we also note that the dependence of CBS RMSE
on the filter length 𝐿 is not very significant. For a wide range of values of 𝐿, CBS
is better than element-space, so it is not a difficult task to choose 𝐿 in practice.
Magnitude responses of the Nyquist-equiripple filters used for CBS with several
typical values of filter length 𝐿 are shown in Fig. 5.2. These filters indeed have
equiripple stopband attenuation. Besides, we obtain better stopband attenuation as
the filter length increases.

In Fig. 5.3, we compare RMSEs of DOA estimates and CRBs for CBS and element-
space as we vary the out-of-band source power. The filter length is now fixed at
𝐿 = 16, and all the other simulation parameters are the same as in the example of
Fig. 5.1. We do not use the optimal value 𝐿 = 12 as in Fig. 5.1 because it was
obtained when the out-of-band source power is 0 dB. We need a larger filter length
to get better stopband attenuation to deal with larger out-of-band source power.
According to Fig. 5.3, both the CBS CRB and element-space CRB almost do not
depend on the out-of-band source power, as implied by Corollary 5.3. To obtain this
corollary, we need the assumption (5.75) in Fact 5.2 to be valid. This is indeed the
case since the LHS of (5.75) gradually decreases from 0.112 to 0.0627 as the out-
of-band source power increases from 0 dB to 30 dB. Besides, just like in Fig. 5.1,
the CBS CRB is larger than the element-space CRB. However, the RMSE of CBS is
smaller than that of element-space if the out-of-band source power is not too large.
To better understand how the MSE and CRB of CBS change with the out-of-band
source power, in Fig. 5.4, we show the simulated MSE, theoretical MSE 𝐵2

𝑖
+ 𝑉𝑖
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Figure 5.3: Simulated RMSE, theoretical RMSE, and CRB for element-space and
CBS as the out-of-band source power varies.
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Figure 5.4: Simulated MSE, theoretical MSE, theoretical variance, theoretical
squared bias, CRB for unbiased estimate (5.43), and the exact variance bound
(5.42) for biased estimate for CBS as the out-of-band source power varies.

(as defined in (5.32)), theoretical variance 𝑉𝑖, theoretical squared bias 𝐵2
𝑖
, CRB for

unbiased estimate (5.43), and the exact variance bound (5.42) for biased estimate
for CBS. As long as the out-of-band source power is not extremely large, say, not
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greater than 20 dB in this example, our theoretical expression gives a good estimate
of the true MSE. If the out-of-band source power is extremely large, our assumption
that the covariance perturbation 𝛿R in (5.15) due to the filtered stopband sources is
small will be invalid. Thus, there is a larger difference between theoretical MSE and
simulated MSE. Another observation is that the theoretical squared bias is much
smaller than the theoretical variance for out-of-band source power not greater than
10 dB. Hence, we may ignore the bias term in the MSE analysis if the passband and
stopband sources have similar powers. Finally, as mentioned in the beginning of this
section, the CBS CRB in each previous plot is approximately a lower bound on the
variance of DOA estimate due to (5.43). Here we compare the exact lower bound
(5.42) for the biased CBS estimator with the approximate bound. The exact CRB
(5.42) is computed from (5.40), (5.37), and (5.46) with G as in (5.54) and 𝚫1 as in
(5.141), and the derivatives in the Jacobian matrix are computed numerically. We
see that the approximate bound is similar to the exact bound if the out-of-band source
power is not greater than 20 dB. Hence, (5.43) gives a good lower bound as long as
the out-of-band source is not too strong compared to the stopband attenuation of the
CBS filter.

In Fig. 5.5, we compare RMSEs of DOA estimates and CRBs for CBS and element-
space as we vary the SNR. We consider the same three passband sources and three
stopband sources as in the example of Fig. 5.1. All sources have power 1. The
SNR is thus 1/𝑝e, where the noise power 𝑝e is varied. Sources 𝑛 and 𝑛 + 3 have a
correlation coefficient 𝜌 for 𝑛 = 1, 2, 3. All the other simulation parameters are the
same as before. In Fig. 5.5(a), we consider 𝜌 = 0, i.e., the uncorrelated case. When
the SNR is greater than -20 dB, both CBS and element-space RMSEs approach
the CRBs, and the two systems have similar performance. For the extremely low
SNR regime, the simulated RMSEs deviate from the theoretical RMSEs. This
can be expected because our analysis is asymptotic. It is not a serious issue since
the analysis already works well for an SNR as low as -20 dB. In Fig. 5.5(b), we
consider 𝜌 = 0.9. In this correlated case, CBS RMSE still approaches its CRB, but
element-space RMSE does not. CBS RMSE is significantly smaller than element-
space RMSE. In these two subfigures, the theoretical RMSE curves again almost
coincide with simulated RMSE curves for both CBS and element-space. Moreover,
both CBS and element-space CRBs look linear in the log-log plots, and the CRBs
decrease by a factor of 10 as SNR increases by 20 dB. That is, the CRBs for MSE
is inversely proportional to the SNR. This verifies the result of Corollary 5.4. We
note that in the example of Fig. 5.5(b), the in-band sources are correlated only with
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Figure 5.5: Simulated RMSE, theoretical RMSE, and CRB for element-space and
CBS as the SNR varies. Sources 𝑛 and 𝑛 + 3 have a correlation coefficient 𝜌 for
𝑛 = 1, 2, 3. (a) 𝜌 = 0. (b) 𝜌 = 0.9.

out-of-band sources. CBS is especially advantageous over element-space in this
setting. If in-band sources are correlated with one another, then element-space can
be better than CBS, as shown in Fig. 2.6.

As mentioned in the beginning of this section, in all the previous examples, the CBS
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Figure 5.6: CRB for CBS as the SNR varies. The uncorrelatedness of the sources
are assumed either unknown or known a priori.

and element-space CRBs are computed from (5.53) and (5.56), respectively. That
is, the correlations 𝑃𝑖𝑘 between sources are assumed unknown as in (5.36). When
all the sources are uncorrelated, we can also assume that the uncorrelatedness is
known a priori. Under this assumption, we have obtained the CBS and element-
space CRBs in (5.61) and (5.64), respectively. To compare the two cases, we
consider again the example of Fig. 5.5(a) and compute the CBS CRB assuming
either unknown or known uncorrelatedness. The results are shown in Fig. 5.6.
The CRB assuming known uncorrelatedness is smaller than the CRB assuming
unknown uncorrelatedness, which is consistent with Fact 5.1. Interestingly, the
difference between them is very small, so this prior information is not so influential.

5.6 Concluding Remarks
The MSE performance and Cramér–Rao bound (CRB) for convolutional beamspace
(CBS) are analyzed in this chapter. Theoretical expressions of MSE are derived
assuming that MUSIC or root-MUSIC is used to estimate DOAs. (The performance
is the same for both.) The bias of the CBS estimator, though negligible in some cases,
is given via a first-order perturbation analysis. To obtain the variance of the CBS
estimator, we develop an approach to derive the asymptotic probability distribution
of the eigenvectors of the average finite-snapshot covariance matrices of dependent
random vectors. This approach can be useful to other applications because previous
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results are only for independent random vectors. As for CRB, we offer two forms of
expressions. Form 1 is derived directly from the Fisher information matrix. Form 2
is derived via a noise-whitening approach and offers further insight. In particular,
the CRB for a DOA is approximately inversely proportional to its own source power
and approximately independent of the source powers of the other DOAs. Also, the
CRB for a DOA is approximately proportional to the noise power. These results
are also true for element-space and to the best of our knowledge, have not been
theoretically established in previous works. Extensive numerical examples are also
given, which verify the theoretical results.

Appendices
5.A Proof of Lemma 5.1
Consider the 𝐾-snapshot estimate R̂ave,0 = R̂ave

��
𝛿R=O with stopband sources nulled,

where R̂ave is defined in (5.18). We have

E[R̂ave,0] = Rave,0 = Adec,0R̆𝑑,0A𝐻
dec,0 + 𝑝eGdec (5.87)

and

𝐾2𝑀2 E
[
[R̂ave,0]𝑖,𝑝 [R̂ave,0]∗𝑔,ℎ

]
= E

[ 𝐾∑︁
𝑘=1

𝑀−1∑︁
𝑙=0

[v𝑙 [𝑘]]𝑖 [v𝑙 [𝑘]]∗𝑝
𝐾∑︁
𝑛=1

𝑀−1∑︁
𝑚=0

[v𝑚 [𝑛]]∗𝑔 [v𝑚 [𝑛]]ℎ
]

= E
[ 𝐾∑︁
𝑘=1

𝑀−1∑︁
𝑙=0

𝑀−1∑︁
𝑚=0

[v𝑙 [𝑘]]𝑖 [v𝑙 [𝑘]]∗𝑝 [v𝑚 [𝑘]]∗𝑔 [v𝑚 [𝑘]]ℎ

+
𝐾∑︁
𝑘=1

∑︁
𝑛≠𝑘

𝑀−1∑︁
𝑙=0

𝑀−1∑︁
𝑚=0

[v𝑙 [𝑘]]𝑖 [v𝑙 [𝑘]]∗𝑝 [v𝑚 [𝑛]]∗𝑔 [v𝑚 [𝑛]]ℎ
]

= E
[
𝐾

𝑀−1∑︁
𝑙=0

𝑀−1∑︁
𝑚=0

[v𝑙]𝑖 [v𝑙]∗𝑝 [v𝑚]∗𝑔 [v𝑚]ℎ

+ 𝐾 (𝐾 − 1)𝑀2 [Rave,0]𝑖,𝑝 [Rave,0]∗𝑔,ℎ
]

(5.88)

for 0 ≤ 𝑖, 𝑝, 𝑔, ℎ ≤ 𝐽 − 1. Since the entries of v𝑙 for all 𝑙 are circularly-symmetric
complex Gaussian, using Wick’s theorem (or Isserlis’ theorem) [113, 114], we have

E
[
[v𝑙]𝑖 [v𝑙]∗𝑝 [v𝑚]∗𝑔 [v𝑚]ℎ

]
= E

[
[v𝑙]𝑖 [v𝑙]∗𝑝

]
E

[
[v𝑚]∗𝑔 [v𝑚]ℎ

]
+ E

[
[v𝑙]𝑖 [v𝑚]∗𝑔

]
E

[
[v𝑙]∗𝑝 [v𝑚]ℎ

]
.
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Hence, we can obtain the covariance

E
[
( [R̂ave,0]𝑖,𝑝 − [Rave,0]𝑖,𝑝) ( [R̂ave,0]𝑔,ℎ − [Rave,0]𝑔,ℎ)∗

]
=

1
𝐾𝑀2

𝑀−1∑︁
𝑙=0

𝑀−1∑︁
𝑚=0

E
[
[v𝑙]𝑖 [v𝑚]∗𝑔

]
E

[
[v𝑙]∗𝑝 [v𝑚]ℎ

]
(5.89)

=
1

𝐾𝑀2 tr
(
R(𝑖,𝑔)

yy (R(𝑝,ℎ)
yy )𝐻

)
, (5.90)

where R(𝑖,𝑔)
yy ∈ C𝑀×𝑀 are submatrices of

Ryy,0 = Ryy
��
𝛿R=O ≜


R(1,1)

yy · · · R(1,𝐽)
yy

...
. . .

...

R(𝐽,1)
yy · · · R(𝐽,𝐽)

yy

 . (5.91)

Throughout the above derivations, we implicitly assume the stopband sources have
been nulled.

Then consider (5.19) and let E0 = [Es,0 En,0] and 𝚲0 = diag(𝚲s,0,𝚲n,0). Define

U = 𝐾1/2(E𝐻
0 R̂ave,0E0 − 𝚲0). (5.92)

Based on the multivariate central limit theorem and (5.90), we can derive that U is
asymptotically (for large 𝐾) complex Gaussian with mean zero and covariance

E
[
[U]𝑖,𝑝 [U]∗𝑔,ℎ

]
=

1
𝑀2 tr

(
R̃(𝑖,𝑔)

yy (R̃(𝑝,ℎ)
yy )𝐻

)
, (5.93)

where R̃(𝑖,𝑔)
yy are as defined in (5.24). Let

V = 𝐾−1/2U + 𝚲0 = E𝐻
0 R̂ave,0E0 (5.94)

and suppose that

V = QDVQ𝐻 (5.95)

is the eigenvalue decomposition of V with eigenvalues in descending order. We
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partition U and Q into

U =



𝑢11 𝑢12 · · · 𝑢1𝐷0 u𝑇1e
𝑢21 𝑢22 · · · 𝑢2𝐷0 u𝑇2e
...

...
. . .

...
...

𝑢𝐷01 𝑢𝐷02 · · · 𝑢𝐷0𝐷0 u𝑇
𝐷0e

ue1 ue2 · · · ue𝐷0 Uee


, (5.96)

Q =



𝑞11 𝑞12 · · · 𝑞1𝐷0 q𝑇1e
𝑞21 𝑞22 · · · 𝑞2𝐷0 q𝑇2e
...

...
. . .

...
...

𝑞𝐷01 𝑞𝐷02 · · · 𝑞𝐷0𝐷0 q𝑇
𝐷0e

qe1 qe2 · · · qe𝐷0 Qee


, (5.97)

where Uee,Qee ∈ C(𝐽−𝐷0)×(𝐽−𝐷0) and u𝑖e, ue𝑖, q𝑖e, qe𝑖 ∈ C𝐽−𝐷0 , 𝑖 = 1, . . . , 𝐷0.
Following the derivations in [107], we can show that asymptotically (for large
𝐾), 𝐾1/2(𝑞𝑙𝑙 − 1) converges stochastically to 0, and the limiting distributions of
𝐾1/2𝑞𝑖𝑙 and 𝐾1/2qe𝑙 are the same as the limiting distributions of 𝑢∗

𝑙𝑖
/(𝜆𝑙,0 −𝜆𝑖,0) and

u∗
𝑙e/(𝜆𝑙,0 − 𝑝e), 1 ≤ 𝑖, 𝑙 ≤ 𝐷0, 𝑖 ≠ 𝑙. Using (5.94) and (5.95), we obtain

R̂ave,0 = (E0Q)DV(E0Q)𝐻 , (5.98)

which is the eigendecomposition of R̂ave,0. Hence, asymptotically, the signal eigen-
vector estimates are

ê𝑙,0 = E0 [Q]:,𝑙 (5.99)

= e𝑙,0 + 𝐾−1/2
[ 𝐷0∑︁
𝑖=1
𝑖≠𝑙

[U]∗
𝑙,𝑖

𝜆𝑙,0 − 𝜆𝑖,0
e𝑖,0 +

En,0u∗
𝑙e

𝜆𝑙,0 − 𝑝e

]
(5.100)

= e𝑙,0 + 𝐾−1/2
𝐽∑︁
𝑖=1
𝑖≠𝑙

[U]∗
𝑙,𝑖

𝜆𝑙,0 − 𝜆𝑖,0
e𝑖,0, (5.101)

𝑙 = 1, . . . , 𝐷0. Using (5.93) and (5.101), we obtain the statement of the lemma.
To obtain the relation matrices, we have also used the fact that U is Hermitian
symmetric.

5.B Proof of Theorem 5.1
Following the idea (Eq. (B.2a)) of [56], asymptotically (for large 𝐾), the DOA
estimates �̂�𝑖 of MUSIC based on (5.18) satisfy

�̂�𝑖 − 𝜔𝑖 ≈
−Re{a𝐻

𝐽
(�̃�𝑖)ÊnÊ𝐻

n ¤a𝐽 (�̃�𝑖)}
𝑀 ¤a𝐻

𝐽
(�̃�𝑖)EnE𝐻

n ¤a𝐽 (�̃�𝑖)
, (5.102)
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where �̃�𝑖 = 𝑀𝜔𝑖, ¤a𝐽 (𝜔) = d
d𝜔a𝐽 (𝜔), and the terms neglected in the approximation

are𝑂 (1/𝐾). Besides, according to [26], root-MUSIC has the same asymptotic error
expression (5.102). Then in view of (5.20), for small ∥𝛿R∥,

¤a𝐻𝐽 (�̃�𝑖)EnE𝐻
n ¤a𝐽 (�̃�𝑖) = ¤a𝐻𝐽 (�̃�𝑖) (I − EsE𝐻

s ) ¤a𝐽 (�̃�𝑖) (5.103)

≈ ¤a𝐻𝐽 (�̃�𝑖) (I − Es,0E𝐻
s,0) ¤a𝐽 (�̃�𝑖) (5.104)

= ¤a𝐻𝐽 (�̃�𝑖)En,0E𝐻
n,0 ¤a𝐽 (�̃�𝑖), (5.105)

where the terms neglected in the approximation are 𝑂 (∥𝛿R∥). Thus,

�̂�𝑖 − 𝜔𝑖 ≈ −Re{a𝐻𝐽 (�̃�𝑖)ÊnÊ𝐻
n ¤a𝐽 (�̃�𝑖)}/(𝑀𝑔(�̃�𝑖)), (5.106)

where 𝑔(𝜔) = ¤a𝐻
𝐽
(𝜔)En,0E𝐻

n,0 ¤a𝐽 (𝜔). Besides,

ÊnÊ𝐻
n = I − ÊsÊ𝐻

s (5.107)

≈ I − Ês,0Ê𝐻
s,0 −

𝐷0∑︁
𝑙=1

(
e𝑙,0𝛿e𝐻𝑙 + 𝛿e𝑙e𝐻𝑙,0

)
(5.108)

= Ên,0Ê𝐻
n,0 −

𝐷0∑︁
𝑙=1

(
e𝑙,0𝛿e𝐻𝑙 + 𝛿e𝑙e𝐻𝑙,0

)
, (5.109)

where the terms neglected in the approximation are 𝑂 (∥𝛿R∥2), and 𝛿e𝑙 is defined
in (5.29). Hence, for large 𝐾 and small ∥𝛿R∥,

�̂�𝑖 − 𝜔𝑖 = 𝐵𝑖 −
Re{a𝐻

𝐽
(�̃�𝑖)Ên,0Ê𝐻

n,0 ¤a𝐽 (�̃�𝑖)}
𝑀𝑔(�̃�𝑖)

, (5.110)

where 𝐵𝑖 is defined in (5.28). Next, in view of (5.101), we can write Ês,0 = Es,0 + �̂�,
where ∥�̂�∥ = 𝑂 (𝐾−1/2). Therefore, since a𝐽 (�̃�𝑖) lies in the signal subspace, we
have

a𝐻𝐽 (�̃�𝑖)Ên,0Ê𝐻
n,0 = a𝐻𝐽 (�̃�𝑖)Es,0E𝐻

s,0Ên,0Ê𝐻
n,0 (5.111)

= a𝐻𝐽 (�̃�𝑖)Es,0(Es,0 − Ês,0)𝐻Ên,0Ê𝐻
n,0 (5.112)

= −a𝐻𝐽 (�̃�𝑖)Es,0�̂�
𝐻 (I − Ês,0Ê𝐻

s,0), (5.113)

where we used the fact that Ê𝐻
s,0Ên,0 = O to obtain (5.112). Replacing Ês,0 by

Es,0 + �̂� and neglecting 𝑂 (1/𝐾) terms, we obtain

a𝐻𝐽 (�̃�𝑖)Ên,0Ê𝐻
n,0 ≈ −a𝐻𝐽 (�̃�𝑖)Es,0�̂�

𝐻 (I − Es,0E𝐻
s,0) (5.114)

= −a𝐻𝐽 (�̃�𝑖)Es,0�̂�
𝐻En,0E𝐻

n,0 (5.115)

= −a𝐻𝐽 (�̃�𝑖)Es,0Ê𝐻
s,0En,0E𝐻

n,0, (5.116)
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where we used the fact that E𝐻
s,0En,0 = O to obtain the last equality. Substituting

this into (5.110), we have

�̂�𝑖 − 𝜔𝑖 = 𝐵𝑖 + 𝑅𝑖, (5.117)

where

𝑅𝑖 =
Re{a𝐻

𝐽
(�̃�𝑖)Es,0Ê𝐻

s,0En,0E𝐻
n,0 ¤a𝐽 (�̃�𝑖)}

𝑀𝑔(�̃�𝑖)
. (5.118)

Here we see that the DOA estimation errors �̂�𝑖 −𝜔𝑖 are asymptotically (for large 𝐾)
jointly Gaussian since the signal eigenvector estimates in Ês,0 are jointly complex
Gaussian due to Lemma 5.1. Note that E

[
𝑅𝑖

]
= 0 because E

[
Ê𝐻

s,0En,0
]
= E𝐻

s,0En,0 =

O, so E[�̂�𝑖 − 𝜔𝑖] = 𝐵𝑖. Moreover,

E[(�̂�𝑖 − 𝜔𝑖) (�̂�𝑘 − 𝜔𝑘 )] = 𝐵𝑖𝐵𝑘 + 𝐵𝑖 E
[
𝑅𝑘

]
+ E

[
𝑅𝑖

]
𝐵𝑘 + E

[
𝑅𝑖𝑅𝑘

]
(5.119)

= 𝐵𝑖𝐵𝑘 + E
[
𝑅𝑖𝑅𝑘

]
, (5.120)

where

E
[
𝑅𝑖𝑅𝑘

]
= E

[Re{a𝐻
𝐽
(�̃�𝑖)

∑𝐷0
𝑙=1 e𝑙,0ê𝐻

𝑙,0En,0E𝐻
n,0 ¤a𝐽 (�̃�𝑖)}

𝑀𝑔(�̃�𝑖)

·
Re{a𝐻

𝐽
(�̃�𝑘 )

∑𝐷0
𝑟=1 e𝑟,0ê𝐻

𝑟,0En,0E𝐻
n,0 ¤a𝐽 (�̃�𝑘 )}

𝑀𝑔(�̃�𝑘 )

]
.

Using the fact that Re{𝑢}Re{𝑣} = Re{𝑢𝑣 + 𝑢𝑣∗}/2 for any 𝑢, 𝑣 ∈ C, we obtain

E
[
𝑅𝑖𝑅𝑘

]
=

Re{𝛾1 + 𝛾2}
2𝑀2𝑔(�̃�𝑖)𝑔(�̃�𝑘 )

, (5.121)

where

𝛾1 =

𝐷0∑︁
𝑙=1

𝐷0∑︁
𝑟=1

[
e𝐻𝑙,0a𝐽 (�̃�𝑖)a𝐻𝐽 (�̃�𝑘 )e𝑟,0 ¤a𝐻𝐽 (�̃�𝑖)

· En,0E𝐻
n,0 E

[
ê𝑙,0ê𝐻𝑟,0

]
En,0E𝐻

n,0 ¤a𝐽 (�̃�𝑘 )
]

(5.122)

and

𝛾2 =

𝐷0∑︁
𝑙=1

𝐷0∑︁
𝑟=1

[
e𝐻𝑙,0a𝐽 (�̃�𝑖)a𝑇𝐽 (�̃�𝑘 )e∗𝑟,0 ¤a

𝐻
𝐽 (�̃�𝑖)

· En,0E𝐻
n,0 E

[
ê𝑙,0ê𝑇𝑟,0

]
E∗

n,0E𝑇n,0 ¤a
∗
𝐽 (�̃�𝑘 )

]
. (5.123)

Using (5.21) and noting that E𝐻
n,0e𝑖,0 = 0 for 𝑖 = 1, . . . , 𝐷0 and En,0E𝐻

n,0e𝑖,0 = e𝑖,0 for
𝑖 = 𝐷0 + 1, . . . , 𝐽, we obtain

En,0E𝐻
n,0 E

[
ê𝑙,0ê𝐻𝑟,0

]
En,0E𝐻

n,0 = En,0B𝑙𝑟E𝐻
n,0/𝐾, (5.124)



176

where B𝑙𝑟 are as defined in (5.30). Similarly, using (5.22), we obtain

En,0E𝐻
n,0 E

[
ê𝑙,0ê𝑇𝑟,0

]
E∗

n,0E𝑇n,0 = En,0C𝑙𝑟E𝑇n,0/𝐾, (5.125)

where C𝑙𝑟 are as defined in (5.31). Using (5.120)–(5.125), we finally derive the
expressions for covariance in the theorem statement.

5.C Proof of Theorems 5.2 and 5.3
In view of (5.47), (5.48), and (5.52), we need to compute the derivative of ryy with
respect to each parameter in α. According to (5.6)–(5.8), we have that

ryy = vec(Ryy) (5.126)

= vec
( 𝐷∑︁
𝑖=1

𝐷∑︁
𝑘=1

𝑃𝑖,𝑘b(𝜔𝑖)b𝐻 (𝜔𝑘 ) + 𝑝eHH𝐻

)
(5.127)

=

𝐷∑︁
𝑖=1

𝐷∑︁
𝑘=1

𝑃𝑖,𝑘b∗(𝜔𝑘 ) ⊗ b(𝜔𝑖) + 𝑝evec(HH𝐻) (5.128)

=

𝐷∑︁
𝑖=1

𝑝𝑖b∗(𝜔𝑖) ⊗ b(𝜔𝑖) + 𝑝evec(HH𝐻)

+
∑︁
𝑖>𝑘

𝑃
(r)
𝑖𝑘

[b∗(𝜔𝑘 ) ⊗ b(𝜔𝑖) + b∗(𝜔𝑖) ⊗ b(𝜔𝑘 )]

+
∑︁
𝑖>𝑘

𝑗𝑃
(i)
𝑖𝑘

[b∗(𝜔𝑘 ) ⊗ b(𝜔𝑖) − b∗(𝜔𝑖) ⊗ b(𝜔𝑘 )] , (5.129)

where b(𝜔𝑖) = 𝐻 (𝑒 𝑗𝜔𝑖 )𝑒 𝑗𝜔𝑖 (𝐿−1)a𝑁−𝐿+1(𝜔𝑖) for each 𝑖. We used the fact that P is
Hermitian symmetric to obtain (5.129). Using (5.128), we can derive that[

𝜕ryy

𝜕𝜔1
· · ·

𝜕ryy

𝜕𝜔𝐷

]
= ¤A∗

𝐿 ⊙ (A𝐿D𝐻PD∗
𝐻) + (A𝐿D𝐻PD∗

𝐻)∗ ⊙ ¤A𝐿 , (5.130)

where ¤A𝐿 is as in (5.51), and that

𝜕ryy

𝜕𝑝e
= vec(HH𝐻). (5.131)

Using (5.129), we can derive that

𝜕ryy

𝜕𝑝𝑖
= b∗(𝜔𝑖) ⊗ b(𝜔𝑖) (5.132)

= [(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻)]:,(𝑖−1)𝐷+𝑖 (5.133)
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for 𝑖 = 1, . . . , 𝐷 and

𝜕ryy

𝜕𝑃
(r)
𝑖𝑘

= b∗(𝜔𝑘 ) ⊗ b(𝜔𝑖) + b∗(𝜔𝑖) ⊗ b(𝜔𝑘 ) (5.134)

= [(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻)]:,(𝑘−1)𝐷+𝑖

+ [(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻)]:,(𝑖−1)𝐷+𝑘 (5.135)
𝜕ryy

𝜕𝑃
(i)
𝑖𝑘

= 𝑗b∗(𝜔𝑘 ) ⊗ b(𝜔𝑖) − 𝑗b∗(𝜔𝑖) ⊗ b(𝜔𝑘 ) (5.136)

= 𝑗 [(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻)]:,(𝑘−1)𝐷+𝑖

− 𝑗 [(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻)]:,(𝑖−1)𝐷+𝑘 (5.137)

for 𝑖 > 𝑘 . Hence, there exists a matrix T ∈ C𝐷2×𝐷2 such that
[
𝜕ryy

𝜕𝑝𝑖

]𝐷
𝑖=1

[
𝜕ryy

𝜕𝑃
(r)
𝑖𝑘

]
𝑖>𝑘

[
𝜕ryy

𝜕𝑃
(i)
𝑖𝑘

]
𝑖>𝑘

 = [(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻)]T (5.138)

holds. More precisely, [T]:,𝑖 = δ
(𝐷2)
(𝑖−1)𝐷+𝑖 for 𝑖 = 1, . . . , 𝐷, and the column of T

corresponding to 𝜕ryy

𝜕𝑃
(r)
𝑖𝑘

, 𝜕ryy

𝜕𝑃
(i)
𝑖𝑘

are

δ (𝐷
2)

(𝑘−1)𝐷+𝑖 + δ
(𝐷2)
(𝑖−1)𝐷+𝑘 , 𝑗δ

(𝐷2)
(𝑘−1)𝐷+𝑖 − 𝑗δ (𝐷

2)
(𝑖−1)𝐷+𝑘 , (5.139)

respectively, for 𝑖 > 𝑘 . One can check that T is invertible. In view of (5.46), the
CRB (5.37) exists if and only if [G 𝚫1] has full column rank. This proves Theorem
5.2 when we substitute (5.130), (5.131), and (5.138) into (5.47) and (5.48) and note
that (R𝑇

yy ⊗ Ryy)−1/2 and T are invertible. Besides, (5.52) becomes

CRBunb(ω) =
1
𝐾

(
G𝐻𝚷⊥

𝚫1
G

)−1
, (5.140)

where G is as in (5.54), and

𝚫1 =

(
R𝑇

yy ⊗ Ryy
)− 1

2 [
[(A𝐿D𝐻)∗ ⊗ (A𝐿D𝐻)]T vec(HH𝐻)

]
. (5.141)

We finally obtain (5.53) by noting that 𝚷⊥
𝚫1

= 𝚷⊥
𝚫 since T is invertible and does not

alter the column space.
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C h a p t e r 6

DISTRIBUTED ALGORITHMS FOR ARRAY SIGNAL
PROCESSING

6.1 Introduction
Beamforming and direction-of-arrival (DOA) estimation are two important areas
of sensor array processing [8, 26, 27, 36, 52]. Popular algorithms include the
Capon method for beamforming [36] and MUSIC [52], root-MUSIC [26], ESPRIT
[27], and FOCUSS [37, 38] for DOA estimation. Traditionally, these algorithms
require data collection and centralized computation at a fusion center. However,
following the pioneering work of Scaglione, et al. [7], distributed algorithms for
DOA estimation and beamforming have gained more research interest. In these
algorithms, the sensor array is partitioned into subarrays. The data in subarray
𝑖 is available only to the processor in that subarray, and between the processors
there is some minimal exchange of intermediate results, in order to implement an
average consensus. Based on such local computations and limited data exchange
between processors, the goal is to perform usual array processing tasks such as DOA
estimation and beamforming. Thus, such arrays work without the help of a central
processor or fusion center. The communication bottleneck that is present in the case
of large arrays with a central processor is thus mitigated in these decentralized (or
distributed) systems. A detailed discussion of the relevance and advantages of such
distributed processors can be found in [42] and references therein.

An excellent overview of distributed implementations of principal component meth-
ods is presented in [42], with a mention of applications in array processing as well.
In the above papers for distributed array processing, a network gossiping protocol
called average consensus (AC) [20–22] is extensively used as a backbone algorithm
to avoid the need of fusion centers. AC is a method for computing the average of
some values stored at all the subarrays. Subspace-based methods for DOA esti-
mation, including MUSIC [52], root-MUSIC [26], and ESPRIT [27], require the
computation of the eigenvalue decomposition (EVD) of the covariance matrix of
the array output. To compute the EVD in a fully distributed manner, a distributed
power method is proposed in [7]. In [35], Suleiman, et al. propose a distributed
algorithm for ESPRIT based on least-squares estimates (LS-ESPRIT), although the
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total least squares (TLS) ESPRIT is not considered. All the above are AC-based
methods and apply to any network structure. Bertrand, et al. [115] propose a
non-AC-based method that uses an alternating optimization procedure to estimate
covariance matrix eigenvectors. The communication cost is reduced by sending ar-
ray data projected onto lower dimensional subspaces. However, this method applies
only to fully connected networks or networks with a tree topology. Using a similar
idea, a distributed DOA estimation method which applies only to fully connected
networks is presented in [116]. Partially distributed algorithms for MUSIC and
root-MUSIC are introduced in earlier literature [117] and [118], but fusion centers
are still required therein. We focus on AC-based methods in this chapter as it applies
to any network structure. The main goal of this chapter is to show how to use the
distributed power method and AC to implement several important array processing
algorithms, but not to compare different kinds of distributed eigenvector estimation
methods or AC methods.

Importantly, there are two families of AC methods, asymptotic convergence [20]
and the recently introduced finite-time convergence methods [21, 22]. Asymptotic
AC is used for the distributed DOA estimation algorithms in previous works [7, 35,
42, 53]. In these methods, one uses only finite but sufficiently many iterations to
approximate asymptotic behaviors, so additional estimation errors arise from the
use of asymptotic AC. This kind of error is analyzed in [53] for distributed LS-
ESPRIT. By contrast, finite-time AC offers exact convergence in a finite number of
iterations, so no additional estimation errors are introduced. Hence, we choose to
use finite-time AC in this chapter, and this is why our distributed algorithms can
achieve the same performance as the centralized counterparts. Finite-time AC can
be applied without any limitations, so they are readily applicable to the previous
works [7, 35, 42, 53] as well. Exact convergence is guaranteed in finite iterations
as long as the subarray network is connected [21]. The finite-time AC methods
[21, 22] are based on the idea of linear graph filters. When we are allowed to use a
large enough filter order, i.e., a sufficient number of AC iterations, these finite-time
AC methods already yield zero MSE due to exact convergence. We consider this
scenario in this chapter. If one wants to use fewer iterations while sacrificing some
MSE, a new finite-time AC method [119] may be considered. The new method
extends the idea to nonlinear graph filters and designs filter coefficients using a
learning framework of graph convolutional neural networks.

Although there are several inspiring papers on distributed algorithms for array
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processing, distributed algorithms have not yet been reported for a number of well-
known methods for DOA estimation and beamforming. In this chapter, we develop
distributed algorithms for DOA estimation methods such as root-MUSIC, and total
least squares (TLS) ESPRIT which is known to be more accurate than LS-ESPRIT
[35]. We also derive distributed versions of the Capon beamformer and the well-
known FOCUSS method for sparse-solver based DOA estimation. The above DOA
estimation methods are classical methods, and we only consider these. More recent
methods like grid-based Lasso [59] and grid-less atomic norm minimization [120]
are left as future work. Besides, beamspace processing is a well-known technique in
array processing [2, 8, 12, 14–19, 23, 24, 55], and in Sec. 6.4, we propose distributed
algorithms for the convolutional beamspace (CBS) method introduced in Chapter 2.
We will show that distributed DOA estimation algorithms, including root-MUSIC,
TLS-ESPRIT, and FOCUSS, can be applied either directly to the original array
domain, called element-space, or in series with a beamspace method like CBS. We
also propose a distributed algorithm for spatial smoothing [39], which is a technique
used for DOA estimation when there are coherent or correlated sources.

All the proposed algorithms are fully distributed in that a fusion center is not required.
The novelties of the proposed algorithms mainly lie in finding a way to implementing
the algorithm so that all the data exchange among subarrays can be realized using
AC. This is achieved by transforming problems at hand into steps where computing
the average of some values across the network is the only step that involves data
exchange among subarrays. In particular, we often transform the problems into
a series of linear operations on the involved distributed variables, such as array
outputs and signal eigenvectors. For instance, in Capon beamforming, it would not
be easy if one tries to compute the inverse of the covariance matrix directly when
the array output is distributed. The novelty of our distributed Capon beamforming
is to propose to use the conjugate gradient method [121] to replace the inversion
of the covariance matrix with linear operations on array outputs. Likewise, only
linear operations on array outputs are needed in distributed FOCUSS. As another
example, in root-MUSIC, it would not be easy if one tries to explicitly compute
ÊsÊ𝐻

s when the eigenvectors are distributed, where the columns of Ês are the
estimates of the signal eigenvectors. The novelty of our distributed root-MUSIC
is to propose to avoid explicit computation of ÊsÊ𝐻

s and use the Aberth method
[122] for rooting polynomials in root-MUSIC to ensure that only linear operations
on signal eigenvectors are involved. That is, many of the algorithms in their original
form require operations other than weighted averages of the involved data, and we
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show how to transform those operations into a series of weighted averages. In order
to put the new methods in the right context, this chapter includes short reviews of
all important techniques which form the backbone of the new methods. Moreover,
the existing and new, centralized and distributed methods are presented in a unified
framework. In this sense the chapter is self contained and has some tutorial value
as well.

…N sensors

…Processor
0

data exchange

Processor
1

Processor
P – 1

Subarray 0 Subarray 1 Subarray P – 1 

Figure 6.1: Schematic of distributed array processing. The 𝑁-sensor linear array is
divided into 𝑃 subarrays. The sensor data from subarray 𝑝 is directly available only
to processor 𝑝, corresponding to node 𝑝 in a communication network modeled by
an undirected graph G. Between the processors there is some minimal exchange of
intermediate results, in order to implement an average consensus.

The system model used throughout this chapter is shown in Fig. 6.1. This is
a network composed of 𝑃 nodes, each of which is a 𝑄-sensor linear subarray
[7, 35]. For ease of presentation, we assume that each subarray has the same
number of sensors, but many algorithms in this chapter can be readily extended
to subarrays with different numbers of sensors. The sensor data from subarray 𝑝
is directly available only to a local processor at node 𝑝. Between the processors
there is some minimal exchange of intermediate results, in order to implement an
average consensus. The communication network is modeled by an undirected graph
G = (V, E), where V is the set of the 𝑃 nodes, and E is the set of edges. Each node
represents a set of sensors and the edges represent the communication links. If there
is an edge between two nodes, then two way communication is allowed between
these nodes (for average consensus and so forth). The 𝑃 subarrays, which do not
have overlapping sensors, collectively form a linear array with 𝑁 = 𝑃𝑄 sensors.
That is, all the subarrays are on the same vertical positions. As in Sec. 1.1, the
unit sensor spacing is 𝜆/2, and monochromatic plane waves of wavelength 𝜆 arrive
from 𝐷 directions. Assume all the subarrays are located not too far away, and they
receive the same set of source amplitudes. Let x𝑝 ∈ C𝑄 be the output of the 𝑝th
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subarray. Then the array output is

x = [x𝑇0 x𝑇1 · · · x𝑇𝑃−1]
𝑇 = Ac + e, (6.1)

where c contains source amplitudes 𝑐𝑖, e contains additive noise terms, and A =

[a𝑁 (𝜔1) a𝑁 (𝜔2) · · · a𝑁 (𝜔𝐷)] with

a𝑁 (𝜔) = [𝑒 𝑗𝜔𝑧0 𝑒 𝑗𝜔𝑧1 · · · 𝑒 𝑗𝜔𝑧𝑁−1]𝑇 . (6.2)

Here 𝑧𝑖 ∈ Z is the 𝑖th sensor location. Without loss of generality, assume 𝑧0 = 0.
In (6.2), 𝜔 = 𝜋 sin 𝜃, with DOA 𝜃 ∈ [−𝜋/2, 𝜋/2) measured from the normal to the
line of array. We assume E[c] = 0, E[|𝑐𝑖 |2] = 𝑝𝑖, E[e] = 0, E[ee𝐻] = 𝜎2

𝑒 I, and
E[ce𝐻] = 0. In this chapter, we consider in general non-uniform linear arrays, but
some of the proposed algorithms only apply to uniform linear arrays (ULAs), and
we will mention it whenever it is the case.

Chapter outline: The distributed power method and average consensus are reviewed
in Sec. 6.2. The proposed distributed algorithms for Capon beamforming, root-
MUSIC, TLS-ESPRIT, and FOCUSS are introduced in Sec. 6.3. Then distributed
convolutional beamspace methods, along with a variation called the “robust Capon
beamspace filter” are introduced in Sec. 6.4. Distributed spatial smoothing is
described in Sec. 6.5. Finally, Sec. 6.6 concludes the chapter.

6.2 Review of Distributed Power Method and Average Consensus
In this section, the distributed power method [7] and average consensus (AC) [20–
22] are reviewed. The distributed power method is the first step for subspace-based
DOA estimation algorithms as it estimates the eigenvectors of the covariance matrix
of the array output. AC is a backbone subroutine for the distributed power method
and other algorithms proposed in this chapter.

Subspace-based methods for DOA estimation, including MUSIC [52], root-MUSIC
[26], and ESPRIT [27], require the computation of the eigenvalue decomposition
(EVD) of the covariance matrix Rxx of the array output x. In practice, we use 𝐾
snapshots to get the covariance estimate

R̂xx =
1
𝐾

𝐾∑︁
𝑘=1

x[𝑘]x𝐻 [𝑘] . (6.3)

To compute the EVD of R̂xx in a fully distributed manner, a distributed power
method was proposed in [7]. The method uses average consensus (AC) [20–22] as
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a subroutine to compute the average of some values stored at all the subarrays. For
average consensus, one can use methods which have either asymptotic convergence
[20] or finite-time convergence [21, 22]. We propose to use finite-time AC in this
chapter since it offers exact convergence in a finite number of iterations. A numerical
example in Sec. 6.3.1 also shows that finite-time AC performs better than asymptotic
AC. As shown below, as long as G is a connected graph, exact convergence can be
achieved in at most 𝑃 − 1 iterations [21].

6.2.1 Average Consensus
The aim of AC is to compute the average of some initial scalar values 𝑢𝑝 (0) stored
at nodes 𝑝 = 0, . . . , 𝑃 − 1. Nodes communicate with their neighbors and update
their values through distributed linear iterations of the form

𝑢𝑝 (𝑡 + 1) = 𝑊𝑝𝑝 (𝑡)𝑢𝑝 (𝑡) +
∑︁
𝑖∈N𝑝

𝑊𝑝𝑖 (𝑡)𝑢𝑖 (𝑡), (6.4)

where𝑊𝑝𝑖 (𝑡) is the weight on 𝑢𝑖 (𝑡) at node 𝑝 for iteration 𝑡, andN𝑝 = {𝑖 | {𝑝, 𝑖} ∈ E}
is the set of neighbors of node 𝑝. The weights𝑊𝑝𝑖 (𝑡) are in general complex-valued
and time-varying, though they are restricted to be time independent in some papers
[7, 20]. We can write (6.4) in the vector form

u(𝑡 + 1) = W(𝑡)u(𝑡). (6.5)

The goal of finite-time AC is to achieve

u(𝐼ac) = 11𝑇u(0)/𝑃 (6.6)

after a finite number of iterations 𝐼ac, while the goal of asymptotic AC is to achieve
lim𝑡→∞ u(𝑡) = 11𝑇u(0)/𝑃. We propose to use finite-time AC in this chapter. In
[21], it was shown that if G is a connected graph, then there exist weight matrices
W(0), . . . ,W(𝐼ac − 1) with 𝐼ac ≤ 𝑃 − 1 such that (6.6) holds. Such weights are not
unique, but one way to get a feasible solution is to start from the Laplacian L of
G. Suppose the distinct eigenvalues of L are 𝜆1, . . . , 𝜆𝑅, where 𝑅 ≤ 𝑃. Since G is
connected, L must have the simple eigenvalue 0 [123]. Without loss of generality,
assume 𝜆𝑅 = 0. It is shown in [21] that if we take

W(0) = (−1)𝑅−1

𝜆1𝜆2 · · · 𝜆𝑅−1
(L − 𝜆1I) (6.7)

and

W(𝑡) = L − 𝜆𝑡+1I (6.8)

for 𝑡 = 1, . . . , 𝑅 − 2, the iteration (6.5) converges after 𝐼ac = 𝑅 − 1 ≤ 𝑃 − 1 steps.
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6.2.2 Distributed Power Method
Now we summarize the distributed power method [7]. We first consider the deriva-
tion of the first eigenvector of R̂xx. Let e1(0) ∈ C𝑁 be an initial random vector.
Suppose all eigenvalues are distinct. Then the power iterations [124]

e1(𝑛 + 1) = R̂xxe1(𝑛) (6.9)

will converge to the first eigenvector as 𝑛→ ∞. Let

e1(𝑛) = [e𝑇1,0(𝑛) e𝑇1,1(𝑛) · · · e𝑇1,𝑃−1(𝑛)]
𝑇 (6.10)

with each e1,𝑝 (𝑛) ∈ C𝑄 stored locally at node 𝑝. Using (6.1) and (6.3), we can
rewrite (6.9) as

e1(𝑛 + 1) = 1
𝐾

𝐾∑︁
𝑘=1

x[𝑘]
𝑃−1∑︁
𝑝=0

x𝐻𝑝 [𝑘]e1,𝑝 (𝑛) (6.11)

=
𝑃

𝐾

𝐾∑︁
𝑘=1

x[𝑘] AC𝑝 (x𝐻𝑝 [𝑘]e1,𝑝 (𝑛)), (6.12)

where AC𝑝 (𝑢𝑝) denotes the average consensus of the scalar values 𝑢𝑝 with enough
iterations so that the output is the exact average of 𝑢𝑝’s. Hence, by first computing
𝑏[𝑘] = AC𝑝 (x𝐻𝑝 [𝑘]e1,𝑝 (𝑛)), node 𝑝 can locally compute

e1,𝑝 (𝑛 + 1) = 𝑃

𝐾

𝐾∑︁
𝑘=1

x𝑝 [𝑘]𝑏[𝑘] . (6.13)

Note that here we use the notation 𝑏[𝑘] instead of 𝑏𝑝 [𝑘] because each node obtains
a copy of the exact average, but one should understand that node 𝑝 is using its own
copy of 𝑏[𝑘] to compute (6.13). Suppose we run (6.9) for 𝐼pm iterations. Then
we do normalization ê1 = e1(𝐼pm)/∥e1(𝐼pm)∥ to obtain our final estimate ê1 of the
normalized first eigenvector. The norm ∥e1(𝐼pm)∥ can also be computed via AC
since

∥e1(𝐼pm)∥2 = 𝑃 · AC𝑝 (e𝐻1,𝑝 (𝐼pm)e1,𝑝 (𝐼pm)). (6.14)

To derive the 𝑞th eigenvector ê𝑞 of R̂xx, we note that ê𝑞 is the eigenvector correspond-
ing to the largest eigenvalue of (I − ∑𝑞−1

𝑖=1 ê𝑖 ê𝐻𝑖 )R̂xx, where ê𝑖 is the 𝑖th eigenvector
of R̂xx. Thus, it can be obtained by running the power iterations

e𝑞 (𝑛 + 1) =
(
I −

𝑞−1∑︁
𝑖=1

ê𝑖 ê𝐻𝑖

)
R̂xxe𝑞 (𝑛). (6.15)
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Note that ē𝑞 (𝑛) ≜ R̂xxe𝑞 (𝑛) can be computed in a manner similar to (6.12). Then,

e𝑞 (𝑛 + 1) = ē𝑞 (𝑛) − 𝑃
𝑞−1∑︁
𝑖=1

ê𝑖 AC𝑝 (ê𝐻𝑖,𝑝 ē𝑞,𝑝 (𝑛)), (6.16)

where ê𝑖,𝑝, ē𝑞,𝑝 (𝑛) ∈ C𝑄 are subvectors of ê𝑖 and ē𝑞 (𝑛), respectively, corresponding
to node 𝑝. Hence, by first computing 𝑓𝑖,𝑞 = AC𝑝 (ê𝐻𝑖,𝑝 ē𝑞,𝑝 (𝑛)), node 𝑝 can locally
compute

e𝑞,𝑝 (𝑛 + 1) = ē𝑞,𝑝 (𝑛) − 𝑃
𝑞−1∑︁
𝑖=1

ê𝑖,𝑝 𝑓𝑖,𝑞, (6.17)

which is the subvector of e𝑞 (𝑛 + 1) corresponding to node 𝑝. Finally, after 𝐼pm

iterations, we do normalization ê𝑞 = e𝑞 (𝐼pm)/∥e𝑞 (𝐼pm)∥ to obtain our final estimate
ê𝑞 of the normalized 𝑞th eigenvector. The norm ∥e𝑞 (𝐼pm)∥ can be computed in a
manner similar to (6.14). The total communication cost per edge for estimating 𝐷
eigenvectors is 𝑂 (𝐷 (𝐷 + 𝐾)𝐼ac𝐼pm) ≈ 𝑂 (𝐷𝐾𝐼ac𝐼pm) if 𝐷 ≪ 𝐾 . The cost is mainly
dominated by computing ē𝑞 (𝑛) and (6.16). For comparison, the communication cost
of the method in [115] applied to a fully connected network is𝑂 (𝐷𝐾𝐼ao), where 𝐼ao

is the number of iterations for alternating optimization. When the distributed power
method is applied to a fully connected network, 𝐼ac = 1, so the communication
cost is 𝑂 (𝐷𝐾𝐼pm). The communication costs of the two methods have the same
dependence on 𝐷 and 𝐾 . We use distributed power method in this chapter as it
applies to any network structure.

The existence of ê𝑖, 𝑖 < 𝑞 in (6.15) implies that we can start the power iterations
for ê𝑞 only after the first 𝑞 − 1 eigenvectors are obtained. That is, the eigenvectors
are updated sequentially. Alternatively, we can replace each ê𝑖 by e𝑖 (𝑛 + 1), so the
power iterations for all eigenvectors can be done in parallel. This can reduce time
complexity. However, the modified method typically requires more iterations to
compute each eigenvector, as shown later in Fig. 6.5. The total computational and
communication costs are thus increased. Hence, we use only the original method in
all other examples in this chapter.

6.3 Distributed DOA Estimation and Beamforming
In this section, we propose distributed algorithms for Capon beamforming [36], root-
MUSIC [26], ESPRIT [27] based on total least-squares estimates (TLS-ESPRIT),
and FOCUSS [37, 38]. (Note that LS-ESPRIT has been reported [35] and analyzed
[53].) The distributed DOA estimation algorithms, including root-MUSIC, TLS-
ESPRIT, and FOCUSS, can be applied either directly to element-space or in series
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with a beamspace method, such as CBS presented in Sec. 6.4. In the following,
we first show how to do distributed Capon beamforming in Sec. 6.3.1. Distributed
root-MUSIC, ESPRIT, and FOCUSS are presented in Secs. 6.3.2, 6.3.3, and 6.3.4,
respectively. FOCUSS is a method to obtain sparse solutions to underdetermined
equations, so distributed FOCUSS has applications much broader than distributed
DOA estimation. The communication, computation, and storage costs of the pro-
posed distributed methods are compared to centralized methods in Sec. 6.3.5.

6.3.1 Distributed Capon Beamforming
In traditional beamforming, we consider a linear array output

x = 𝑐0a𝑁 (𝜔0) + u, (6.18)

where u = Ac+e is the interference plus noise. The quantity𝜔0 represents the “look
direction,” i.e., the direction in which we want to point the beam, 𝑐0 is the amplitude
of the signal coming from that direction, and A, c, e are as defined in (6.1), with
𝜔1, . . . , 𝜔𝐷 representing 𝐷 interferer directions. The output of the beamformer can
be expressed as

𝑧BF = h𝐻x, (6.19)

where h = [ℎ(0) · · · ℎ(𝑁 − 1)]𝑇 is a complex weighting vector. The output signal-
to-interference-plus-noise ratio (SINR) of the beamformer is defined as

SINR =
E[|𝑐0h𝐻a𝑁 (𝜔0) |2]

E[|h𝐻u|2]
=
𝑝0 |h𝐻a𝑁 (𝜔0) |2

h𝐻Ruuh
, (6.20)

where 𝑝0 = E[|𝑐0 |2] and Ruu = E[uu𝐻]. When the signal is uncorrelated with the
interference, the Capon beamformer [8, 36], which is the solution to the optimization
problem

min
h

h𝐻Rxxh

subject to h𝐻a𝑁 (𝜔0) = 1, (6.21)

maximizes the SINR, where Rxx = E[xx𝐻]. The solution to this problem is given
by

h = 𝑐 · R−1
xx a𝑁 (𝜔0), (6.22)

where 𝑐 = 1/(a𝐻
𝑁
(𝜔0)R−1

xx a𝑁 (𝜔0)). In practice, Rxx is replaced by its estimate R̂xx

as in (6.3).
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Algorithm 1 Conjugate gradient method
1: r0 = a𝑁 (𝜔0)
2: p0 = r0
3: w0 = 0
4: for 𝑖 = 0 to 𝑁 − 1 do
5: 𝛼𝑖 = (r𝐻

𝑖
r𝑖)/(p𝐻𝑖 R̂xxp𝑖)

6: w𝑖+1 = w𝑖 + 𝛼𝑖p𝑖
7: r𝑖+1 = r𝑖 − 𝛼𝑖R̂xxp𝑖
8: if ∥r𝑖+1∥2 < 𝜖 then
9: break ⊲ End iteration if residual approaches zero

10: end if
11: 𝛽𝑖 = (r𝐻

𝑖+1r𝑖+1)/(r𝐻𝑖 r𝑖)
12: p𝑖+1 = r𝑖+1 + 𝛽𝑖p𝑖
13: end for
14: return w𝑖+1

Now we show how to compute the Capon beamformer in our distributed setting,
where the array output x = [x𝑇0 x𝑇1 · · · x

𝑇
𝑃−1]

𝑇 with x𝑝 ∈ C𝑄 stored locally at node 𝑝.
The crucial step is to compute the inverse of the covariance estimate (6.3) appearing
in (6.22). Instead of directly computing this inverse, we propose to use the conjugate
gradient (CG) method [121] to compute

w = R̂−1
xx a𝑁 (𝜔0). (6.23)

Equivalently, we want to solve the system of linear equations

R̂xxw = a𝑁 (𝜔0), (6.24)

where R̂xx = R̂𝐻
xx is assumed to be positive definite (it is generally true if 𝐾 ≥ 𝑁).

The CG method is a method for solving a set of positive definite linear equations
[125]. Hence, (6.24) can be solved by the CG method, which is summarized as a
pseudocode in Algorithm 1 shown in the table. In the CG method, we construct a
set of vectors p0, . . . , p𝑁−1 that form a basis for C𝑁 and are mutually conjugate with
respect to R̂xx, i.e., p𝐻

𝑖
R̂xxp𝑘 = 0 for all 𝑖 ≠ 𝑘 . Then the final solution w can be

expressed as

w =

𝑁−1∑︁
𝑖=0

𝛼𝑖p𝑖 (6.25)

for some 𝛼𝑖. The basis vectors p𝑖 and coefficients 𝛼𝑖 are obtained iteratively as in
Algorithm 1. The quantity w𝑖+1 =

∑𝑖
𝑘=0 𝛼𝑘p𝑘 is the partial solution in iteration

𝑖 + 1, and r𝑖+1 = a𝑁 (𝜔0) − R̂xxw𝑖+1 is the corresponding residual. Line 9 serves as a
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checkpoint for ending the CG iterations. If the residual r𝑖+1 = 0, the CG iterations
should be terminated. In practice, we check if ∥r𝑖+1∥2 < 𝜖 for some small positive 𝜖 .
For more details of the CG method, one may refer to [121]. The key point of using
the CG method here is that R̂xx appears only in the linear operation q𝑖 = R̂xxp𝑖 in
Lines 5 and 7. This can be computed using AC in a way similar to (6.12).

Algorithm 2 Distributed design of Capon beamformer
1: r0 = a𝑁 (𝜔0)
2: 𝑎0 = r𝐻0 r0
3: p0 = r0
4: w0 = 0
5: for 𝑖 = 0 to 𝑁 − 1 do
6: for 𝑘 = 1 to 𝐾 do
7: 𝑡 [𝑘] = 𝑃 · AC𝑝 (x𝐻𝑝 [𝑘]p𝑖,𝑝)
8: end for
9: for 𝑝 = 0 to 𝑃 − 1 do

10: q𝑖,𝑝 = 1
𝐾

∑𝐾
𝑘=1 x𝑝 [𝑘]𝑡 [𝑘] ⊲ Compute q𝑖 = R̂xxp𝑖

11: end for
12: 𝑏𝑖 = 𝑃 · AC𝑝 (p𝐻𝑖,𝑝q𝑖,𝑝)
13: 𝛼𝑖 = 𝑎𝑖/𝑏𝑖
14: for 𝑝 = 0 to 𝑃 − 1 do
15: w𝑖+1,𝑝 = w𝑖,𝑝 + 𝛼𝑖p𝑖,𝑝
16: r𝑖+1,𝑝 = r𝑖,𝑝 − 𝛼𝑖q𝑖,𝑝
17: end for
18: 𝑎𝑖+1 = 𝑃 · AC𝑝 (r𝐻𝑖+1,𝑝r𝑖+1,𝑝)
19: if 𝑎𝑖+1 < 𝜖 then
20: break ⊲ End iteration if residual approaches zero
21: end if
22: 𝛽𝑖 = 𝑎𝑖+1/𝑎𝑖
23: for 𝑝 = 0 to 𝑃 − 1 do
24: p𝑖+1,𝑝 = r𝑖+1,𝑝 + 𝛽𝑖p𝑖,𝑝
25: end for
26: end for
27: return w𝑖+1

The proposed distributed Capon beamforming based on CG method is presented in
Algorithm 2 shown in the table. It is essentially using the CG method to solve (6.24)
and making the algorithm distributed. Some new variables are defined in Algorithm
2 so that some partial results can be reused. Throughout the algorithm, the vectors
p𝑖,𝑝, q𝑖,𝑝, r𝑖,𝑝,w𝑖,𝑝 ∈ C𝑄 are subvectors of p𝑖, q𝑖, r𝑖,w𝑖 ∈ C𝑁 , respectively, corre-
sponding to node 𝑝, and are accessible only to node 𝑝. Moreover, the computations
in Lines 10, 15, 16, and 24 are done locally at each node in parallel. AC appears
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in the algorithm in three places, Lines 7, 12, and 18. The inner products in the AC
arguments are also computed locally at node 𝑝 in parallel. Line 7 is the dominant
operation for communication, leading to 𝑂 (𝐾𝑁𝐼ac) communication cost per edge,
where 𝐼ac is the number of AC iterations. After computing the Capon beamformer
(6.22) using Algorithm 2, we simply have to apply the beamformer as in (6.19).
This can be also done using AC since

𝑧BF = 𝑃 · AC𝑝 (h𝐻𝑝 x𝑝). (6.26)

Here h𝑝 ∈ C𝑄 is the subvector of h corresponding to node 𝑝.

Our idea of using the CG method to compute the inverse of the covariance matrix
can be applied to situations other than Capon beamforming. It can be used for any
problem that requires the inversion of an array output covariance. For example, we
can derive a distributed algorithm for the method of space-time adaptive processing
(STAP) for MIMO radar systems proposed in [126].

A numerical example is next given to demonstrate the effectiveness of the proposed
distributed Capon beamforming. We consider the network as in [35] composed of
𝑃 = 6 nodes, and the neighboring sets are

N0 = {1, 2},N1 = {0, 2},N2 = {0, 1, 3},
N3 = {2, 4, 5},N4 = {3, 5},N5 = {3, 4}. (6.27)

For this network, using the finite-time AC method in [21], we can achieve exact
convergence in 3 iterations. This is because, in this case, the Laplacian L has 𝑅 = 4
distinct values. The weight matrix W(𝑡) of each iteration can be found using (6.7)
and (6.8). We compare this finite-time AC method with the asymptotic AC method
using the optimal symmetric weight matrix proposed in [20]. Each node is a ULA
with 𝑄 = 2 sensors and they together form a 12-sensor ULA. The signal of interest
is at angle 𝜃 = 5◦, which is assumed known. There are 5 interfering sources with
DOAs 𝜔 = 0.5𝜋, 0.62𝜋, 0.74𝜋, 0.86𝜋, and 0.98𝜋. (Recall 𝜔 = 𝜋 sin 𝜃.) All sources
are uncorrelated with power 1. The noise variance is 𝜎2

𝑒 = 1. Output SINRs for
various number of iterations for asymptotic AC are shown in Fig. 6.2(a). It does
not make sense to consider the SINRs of finite-time AC before it reaches exact
convergence with a sufficient finite number of iterations, so we just fix it to be that
number, 3 in this example. We use 500 snapshots and average 2000 Monte Carlo
runs to get the plot. Indeed, finite-time AC converges much faster than asymptotic
AC. Although asymptotic AC gets SINRs similar to finite-time AC also in some of
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Figure 6.2: Distributed Capon beamforming with asymptotic AC and finite-time
AC methods. The number of iterations for finite-time AC is fixed at 3. (a) Output
SINR. (b) Typical beamformer responses.

the small numbers of iterations, we cannot know which iterations yield larger SINRs
if we do not know the ground truth, so in practice we still have to use a large enough
number of iterations for asymptotic AC, like 20 in this example. Hence, we propose
to use finite-time AC in our distributed algorithms. Note that the centralized Capon
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beamformer yields exactly the same SINR as the finite-time AC method, so it is not
plotted. Typical beamformer responses are also shown in Fig. 6.2(b). The beam
pattern of asymptotic AC gradually converges to that of finite-time AC as iterations
progress.

6.3.2 Distributed MUSIC and Root-MUSIC
In algorithms such as MUSIC [52] and root-MUSIC [26], we first compute the EVD
of the covariance matrix Rxx of the array output x and obtain

Rxx = Es𝚲sE𝐻
s + En𝚲nE𝐻

n , (6.28)

where Es = [e1 · · · e𝐷] and En = [e𝐷+1 · · · e𝑁 ] contain the signal and noise eigen-
vectors respectively with e𝐻

𝑘
e𝑚 = 𝛿[𝑘 − 𝑚], and 𝚲s and 𝚲n are diagonal matrices

containing the corresponding eigenvalues. In the MUSIC algorithm, we evaluate
the MUSIC spectrum

𝑃(𝜔) = (a𝐻𝑁 (𝜔)EnE𝐻
n a𝑁 (𝜔))−1 (6.29)

on a dense grid of potential DOAs and identify local maxima as the DOA estimates.
This is because theoretically, if 𝜔 is a true DOA, then the steering vector a𝑁 (𝜔) is
orthogonal to noise subspace En, i.e., a𝐻

𝑁
(𝜔)EnE𝐻

n a𝑁 (𝜔) = 0. The converse (i.e.,
if a𝐻

𝑁
(𝜔)EnE𝐻

n a𝑁 (𝜔) = 0, then 𝜔 is a true DOA) is also true for a ULA (given the
number of sources 𝐷 < 𝑁), but not true in general for a non-ULA [56, 127, 128].
Our focus here is the development of distributed algorithms. We will see that these
algorithms are insensitive to whether the array is uniform or not, and we do not
focus on well-known identifiability issues here. In practice, Rxx and e𝑖 are replaced
by their finite-snapshot estimates R̂xx and ê𝑖 respectively.

Root-MUSIC is a variation of the MUSIC algorithm. It avoids the evaluation of
MUSIC spectrum on a dense grid by computing the roots of a polynomial, thereby
improving accuracy, and reducing complexity. Thus, instead of finding local maxima
of 𝑃(𝜔), we find roots 𝜌𝑖 of the polynomial

𝑓 (𝑧) = a𝑇
𝑁
(𝑧)ÊnÊ𝐻

n a𝑁 (𝑧), (6.30)

where a
𝑁
(𝑧) = 𝑧𝑧𝑁−1 [1 𝑧−𝑧1 · · · 𝑧−𝑧𝑁−1]𝑇 and a𝑁 (𝑧) = [1 𝑧𝑧1 · · · 𝑧𝑧𝑁−1]𝑇 (with 𝑧𝑖

denoting sensor locations as before). This polynomial is obtained by replacing 𝑒 𝑗𝜔

with 𝑧 in 𝑃−1(𝜔) and then multiplying it with 𝑧𝑧𝑁−1 . The DOAs 𝜔𝑖 are obtained
from the arguments of 𝜌𝑖.
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Now we show how to do MUSIC and root-MUSIC in our distributed setting. In this
case, the eigenvector estimates are obtained using the distributed power method in
Sec. 6.2, and the results are ê𝑖 = [ê𝑇

𝑖,0 · · · ê
𝑇
𝑖,𝑃−1]

𝑇 with ê𝑖,𝑝 only known to node 𝑝.
Then the MUSIC spectrum can be evaluated as

𝑃(𝜔) =
(

𝑁∑︁
𝑖=𝐷+1

���𝑃 · AC𝑝 (ê𝐻𝑖,𝑝a𝑁,𝑝 (𝜔))
���2)−1

, (6.31)

where a𝑁,𝑝 (𝜔) ∈ C𝑄 is the subvector of a𝑁 (𝜔) corresponding to node 𝑝. Alterna-
tively, since Ê ≜ [Ês Ên] is a unitary matrix so that ÊsÊ𝐻

s + ÊnÊ𝐻
n = I, we also

have

𝑃(𝜔) = (a𝐻𝑁 (𝜔) (I − ÊsÊ𝐻
s )a𝑁 (𝜔))−1 (6.32)

= (𝑁 − a𝐻𝑁 (𝜔)ÊsÊ𝐻
s a𝑁 (𝜔))−1 (6.33)

=

(
𝑁 −

𝐷∑︁
𝑖=1

���𝑃 · AC𝑝 (ê𝐻𝑖,𝑝a𝑁,𝑝 (𝜔))
���2)−1

. (6.34)

Typically, (6.34) is advantageous over (6.31) in terms of computation and communi-
cation among nodes because dominant eigenvectors ê1, . . . , ê𝐷 are obtained first by
the distributed power method, unless 𝐷 is almost as large as 𝑁 . The communication
cost per edge for evaluating 𝑃(𝜔) using (6.34) is𝑂 (𝐷𝐺𝐼ac), where𝐺 is the number
of grid points used for 𝜔.

For distributed root-MUSIC, we can similarly consider either (6.30) or

𝑓 (𝑧) = 𝑁𝑧𝑧𝑁−1 − a𝑇
𝑁
(𝑧)ÊsÊ𝐻

s a𝑁 (𝑧). (6.35)

In the following, we use the form in (6.35) to derive our distributed algorithm because
it is easier to obtain Ês than Ên. A similar algorithm can be derived for (6.30). To
understand the crucial step that is required here, consider Ês = [Ê𝑇s,0 · · · Ê

𝑇
s,𝑃−1]

𝑇 ,
where Ês,𝑝 ∈ C𝑄×𝐷 contains the local subvectors of eigenvectors for node 𝑝. To
explicitly compute all entries of ÊsÊ𝐻

s , we need to compute Ês,𝑝Ê𝐻
s,𝑞 for each pair

of 𝑝 and 𝑞. This cannot be done without a fusion center or sharing data among all
nodes. Instead of explicitly computing ÊsÊ𝐻

s , we propose to use the Aberth method
[122] as our polynomial-rooting algorithm and show that the method can be done
in a distributed way based on AC. Given a polynomial 𝑓 (𝑧) of degree 𝑛, the Aberth
method is an algorithm that finds all roots simultaneously by the iteration

𝑧𝑖+1,𝑘 = 𝑧𝑖,𝑘 −

𝑓 ′(𝑧𝑖,𝑘 )
𝑓 (𝑧𝑖,𝑘 )

−
𝑛∑︁
𝑙=1
𝑙≠𝑘

1
𝑧𝑖,𝑘 − 𝑧𝑖,𝑙


−1

(6.36)
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Algorithm 3 Distributed root-MUSIC
1: Randomly initialize 𝑧0,1, . . . , 𝑧0,2𝑧𝑁−1

2: for 𝑖 = 0 to 𝐼max do
3: for 𝑘 = 1 to 2𝑧𝑁−1 do
4: u = 𝑃 · AC𝑝 (Ê𝐻

s,𝑝a𝑁,𝑝 (𝑧𝑖,𝑘 ))
5: u = 𝑃 · AC𝑝 (Ê𝑇s,𝑝a𝑁,𝑝 (𝑧𝑖,𝑘 ))
6: v = 𝑃 · AC𝑝 (Ê𝐻

s,𝑝b𝑁,𝑝 (𝑧𝑖,𝑘 ))
7: v = 𝑃 · AC𝑝 (Ê𝑇s,𝑝b𝑁,𝑝 (𝑧𝑖,𝑘 ))
8: 𝑠 = 𝑁𝑧

𝑧𝑁−1
𝑖,𝑘

− u𝑇u
9: 𝑡 = 𝑁𝑧𝑁−1𝑧

𝑧𝑁−1−1
𝑖,𝑘

− v𝑇u − u𝑇v
10: 𝑧𝑖+1,𝑘 = 𝑧𝑖,𝑘 − [𝑡/𝑠 − ∑

𝑙≠𝑘 (1/(𝑧𝑖,𝑘 − 𝑧𝑖,𝑙))]−1

11: end for
12: if

∑
𝑘 |𝑧𝑖+1,𝑘 − 𝑧𝑖,𝑘 |2 < 𝜖 then

13: break ⊲ End iteration if all roots converge
14: end if
15: end for
16: return 𝑧𝑖+1,1, . . . , 𝑧𝑖+1,2𝑧𝑁−1

for 𝑘 = 1, . . . , 𝑛. Here 𝑧𝑖,𝑘 stands for the 𝑘th root in the 𝑖th iteration, and 𝑓 ′(𝑧𝑖,𝑘 ) is
the first derivative of 𝑓 (𝑧) evaluated at 𝑧 = 𝑧𝑖,𝑘 . The key point of using the Aberth
method is that Ês appears only in 𝑓 ′(𝑧𝑖,𝑘 ) and 𝑓 (𝑧𝑖,𝑘 ), and we can show that dis-
tributed computation of these can be done using AC. After plugging (6.35) into (6.36)
and some derivations, we can realize distributed root-MUSIC as summarized in Al-
gorithm 3 shown in the table. In this algorithm, a𝑁,𝑝 (𝑧), a𝑁,𝑝 (𝑧), b𝑁,𝑝 (𝑧), b𝑁,𝑝 (𝑧) ∈
C𝑄 are subvectors of a𝑁 (𝑧), a𝑁 (𝑧),

d
d𝑧a𝑁 (𝑧), and d

d𝑧a𝑁 (𝑧), respectively, correspond-
ing to node 𝑝. The vectors a𝑁,𝑝 (𝑧𝑖,𝑘 ), a

𝑁,𝑝
(𝑧𝑖,𝑘 ), b𝑁,𝑝 (𝑧𝑖,𝑘 ), b

𝑁,𝑝
(𝑧𝑖,𝑘 ) can be

evaluated at node 𝑝 because each 𝑧𝑖,𝑘 is known to all nodes. The matrix multipli-
cations in the four AC arguments are computed locally at node 𝑝 in parallel. The
iterative algorithm stops either when all roots converge, i.e.,∑︁

𝑘

|𝑧𝑖+1,𝑘 − 𝑧𝑖,𝑘 |2 < 𝜖 (6.37)

for some small positive 𝜖 , or when a predefined maximum number of iterations 𝐼max

is reached. The total communication cost per edge is 𝑂 (𝑧𝑁−1𝐷𝐼ac𝐼ab), where 𝐼ab is
the number of Aberth iterations. A numerical example is given in Sec. 6.4.4.

The Aberth method works even for non-distinct roots [122]. One scenario that
hinders convergence is when the roots are symmetrically positioned in the complex
plane with respect to some line, and the initial guess of the roots makes them
also symmetrically placed with respect to the line. However, this happens with
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probability zero in our case due to two reasons. First, the actual roots resulting
from a finite number of snapshots of the array output are not symmetrical with
probability one. Second, we initialize the roots randomly with some continuous
probability distribution, so they are not symmetrical with probability one. Hence,
essentially it will always converge in our case.

6.3.3 Distributed ESPRIT
ESPRIT [27] is another commonly used subspace-based DOA estimation algorithm.
For ESPRIT, we assume that each node is a 𝑄-sensor ULA with the same sensor
spacing 𝜆/2, but the displacements between the subarrays are unknown, so the
entire array can be non-uniform. This array setting follows [35]. In [35], ESPRIT
based on least-squares estimates (LS-ESPRIT) was shown to be realizable in this
distributed setting. It is well-known that total least-squares (TLS) ESPRIT produces
more accurate estimates than LS-ESPRIT [129]. In this subsection, we will show
that distributed TLS-ESPRIT can also be done, and we will present distributed
LS-ESPRIT and TLS-ESPRIT in a unified framework.

In ESPRIT, we require two groups of sensors with a shift invariance between them.
Here we define the first group to be the first 𝑄 − 1 sensors of each node and the
second group to be the last 𝑄 − 1 sensors of each node. Hence, the shift invariance
is the unit sensor spacing 𝜆/2. Equivalently, consider the selection matrices

J̄1 = [I𝑄−1 0𝑄−1] (6.38)

and

J̄2 = [0𝑄−1 I𝑄−1], (6.39)

where 0𝑄−1 is the (𝑄 − 1) × 1 zero vector. Moreover, let

J𝑙 = I𝑃 ⊗ J̄𝑙 (6.40)

for 𝑙 = 1, 2, where ⊗ denotes the Kronecker product. Then in ESPRIT, we have
to select the rows of signal eigenvectors Ês corresponding to each group, i.e.,
Ê𝑙 = J𝑙Ês for 𝑙 = 1, 2. Ideally, Ê1 and Ê2 have the same column space if we have
infinite snapshots. In practice, we find the LS or TLS solution [27] to Ê1𝚿 = Ê2.
The LS solution is

𝚿LS = (Ê𝐻
1 Ê1)−1(Ê𝐻

1 Ê2). (6.41)
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Then the DOA estimates of LS-ESPRIT are [27]

�̂�LS,𝑘 = arg(𝜆𝑘 (𝚿LS)), (6.42)

the argument of the 𝑘th eigenvalue of 𝚿LS. To compute the TLS solution, we
consider

F =

[
F1,1 F1,2

F2,1 F2,2

]
, (6.43)

where F𝑙,𝑚 = Ê𝐻
𝑙

Ê𝑚 for 𝑙 = 1, 2 and 𝑚 = 1, 2, and compute its EVD

F = ĒΛ̄Ē𝐻 , (6.44)

with the eigenvalues in descending order. Then we decompose the matrix Ē ∈
C2𝐷×2𝐷 into 𝐷 × 𝐷 submatrices, i.e.,

Ē =

[
Ē1,1 Ē1,2

Ē2,1 Ē2,2

]
. (6.45)

The TLS solution is then

𝚿TLS = −Ē1,2Ē−1
2,2, (6.46)

and the DOA estimates of TLS-ESPRIT are

�̂�TLS,𝑘 = arg(𝜆𝑘 (𝚿TLS)). (6.47)

Now we show how to do ESPRIT in our distributed setting. In [35], the authors
showed how to do this for LS-ESPRIT. We now give a unified derivation for dis-
tributed ESPRIT, which works whether it is LS- or TLS-ESPRIT. For 𝑙 = 1, 2 and
𝑚 = 1, 2, we have

[Ê𝐻
𝑙 Ê𝑚]𝑖,𝑘 =

𝑃−1∑︁
𝑝=0

(J̄𝑙 ê𝑖,𝑝)𝐻 (J̄𝑚 ê𝑘,𝑝) (6.48)

= 𝑃 · AC𝑝 ((J̄𝑙 ê𝑖,𝑝)𝐻 (J̄𝑚 ê𝑘,𝑝)) (6.49)

for each (𝑖, 𝑘)-entry. Again, ê𝑖 = [ê𝑇
𝑖,0 · · · ê

𝑇
𝑖,𝑃−1]

𝑇 is the 𝑖th eigenvector with ê𝑖,𝑝 ∈
C𝑄 being the subvector corresponding to node 𝑝. Thus, (J̄𝑙 ê𝑖,𝑝)𝐻 (J̄𝑚 ê𝑘,𝑝) can be
computed locally at node 𝑝. Then with AC, each node can obtain the entire matrix
F. Hence for LS-ESPRIT, we can compute

𝚿LS = F−1
1,1F1,2 (6.50)
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and then (6.42) locally at each node. Likewise, for TLS-ESPRIT, (6.44) through
(6.47) can also be realized locally at each node. This leads to an increase in the total
computational complexity since all the nodes are performing the same operations.
An alternative would be for one node to do the computations and then send the
final DOA estimates to the other nodes. This is a tradeoff between computation
and communication. The communication cost per edge for both LS-ESPRIT and
TLS-ESPRIT is 𝑂 (𝐷2𝐼ac), though TLS-ESPRIT has twice communication cost of
LS-ESPRIT because TLS-ESPRIT requires the entire matrix F while LS-ESPRIT
requires only F1,1 and F1,2. This is a tradeoff for getting better DOA estimates with
TLS-ESPRIT.
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Figure 6.3: RMSE of DOA estimates using distributed LS-ESPRIT, distributed
TLS-ESPRIT, and centralized TLS-ESPRIT.

A numerical example is given next to demonstrate the effectiveness of the proposed
distributed TLS-ESPRIT. We consider the same network (6.27) and use the finite-
time AC method with 3 iterations as explained in Sec. 6.3.1. We compare distributed
TLS-ESPRIT with distributed LS-ESPRIT [35] and centralized TLS-ESPRIT [27].
Here the distributed power method shown in Sec. 6.2 is used to estimate eigenvectors
of the array output covariance for distributed TLS-ESPRIT and distributed LS-
ESPRIT, whereas ideal EVD of the covariance is assumed for centralized TLS-
ESPRIT. The sensor locations of the 𝑝th node are 15𝑝, 15𝑝+1, . . . , 15𝑝+9, so each
node is a ULA with 𝑄 = 10 sensors, and there are 60 sensors in total. Note that the
entire array is not a ULA. The displacement 15 between the subarrays is arbitrary
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and assumed unknown. There are 6 DOAs at angles 𝜃 = −5◦,−3◦ − 1◦, . . . , 5◦.
The sources are uncorrelated with power −5 dB. The noise variance is 𝜎2

𝑒 = 1.
We assume the number of DOAs is known. The number of power iterations is
𝐼pm = 5. Root mean square errors (RMSEs) of DOA estimates for various number
of snapshots are shown in Fig. 6.3. In this chapter, whenever we mention RMSEs
in detected source angles, we refer to averaging square errors measured in 𝜔 over all
involved DOAs. We average 5000 Monte Carlo runs to get the plot. As expected, the
RMSE of distributed TLS-ESPRIT is smaller than that of distributed LS-ESPRIT.
The RMSE of centralized TLS-ESPRIT is even smaller at 40 snapshots because ideal
EVD is used for it. However for 50 or more snapshots, distributed TLS-ESPRIT
using only 5 power iterations performs almost the same as centralized TLS-ESPRIT.

6.3.4 Distributed FOCUSS
The FOCUSS algorithm [37, 38] for finding sparse solutions to an underdetermined
system can also be used to estimate DOAs. We first briefly review the centralized
FOCUSS for the case of multiple measurement vectors [38], or multiple snapshots
in our language. To use FOCUSS for DOA estimation, a dictionary D of steering
vectors a𝑁 (�̄�𝑖) on a dense grid of potential DOAs {�̄�𝑖}𝑑𝑖=1 is considered, and the
goal is to find sparse signals Q = [q(1) q(2) · · · q(𝐾)] that well represent the 𝐾
snapshots of array output

X = [a𝑁 (�̄�1) a𝑁 (�̄�2) · · · a𝑁 (�̄�𝑑)]︸                                  ︷︷                                  ︸
dictionary D

Q + E. (6.51)

Here X = [x(1) x(2) · · · x(𝐾)] and E = [e(1) e(2) · · · e(𝐾)] are the 𝐾 snapshots
of array outputs and noise, respectively. The number of grid points 𝑑 is typically
much larger than 𝐷, the number of sources. If 𝐷 is not too large [38] (the exact
bound depending on 𝑁 and 𝐾), there exists a solution to (6.51) such that q(𝑘) has
a common sparse pattern across all snapshots. The locations of nonzero entries of
q(𝑘) reveal the DOAs, and the values represent the source amplitudes. FOCUSS is
an iterative algorithm for solving such a problem. It is initialized with

Q0 = D+X. (6.52)

Then we iterate

W𝑛+1 = diag(∥q𝑛,1∥1−𝑝/2, . . . , ∥q𝑛,𝑑 ∥1−𝑝/2) (6.53)

Q𝑛+1 = W𝑛+1(DW𝑛+1)+X (6.54)
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for 𝑛 = 0, 1, . . . , until convergence. Here q𝑇
𝑛,𝑖

is the 𝑖th row of Q𝑛, and 𝑝 ∈ [0, 1]
is a parameter to be chosen so that the solution aims to minimize the ℓ𝑝 diversity
measure [38], i.e., the ℓ𝑝 pseudo-norm of the vector whose elements are the ℓ2 norms
of the rows of Q.

Now we show how to do FOCUSS in our distributed setting, where

X = [X𝑇
0 X𝑇

1 · · ·X𝑇
𝑃−1]

𝑇 (6.55)

with X𝑝 ∈ C𝑄×𝐾 stored locally at node 𝑝. Let B0 = D+ = [B0,0 · · ·B0,𝑃−1] with
each B0,𝑝 ∈ C𝑑×𝑄 . Since the dictionary D is known to all nodes, B0,𝑝 can also be
obtained at node 𝑝. Hence, (6.52) can be computed from

Q0 = 𝑃 · AC𝑝 (B0,𝑝X𝑝). (6.56)

Let B𝑛+1 = W𝑛+1(DW𝑛+1)+ = [B𝑛+1,0 · · ·B𝑛+1,𝑃−1] with each B𝑛+1,𝑝 ∈ C𝑑×𝑄 . Then
(6.54) can be computed from

Q𝑛+1 = 𝑃 · AC𝑝 (B𝑛+1,𝑝X𝑝). (6.57)

Since each Q𝑛+1 is the result of AC, it is known to all nodes, so (6.53) can also
be formed at each node. Thus, each B𝑛+1,𝑝 can indeed be obtained at node 𝑝.
The fact that only linear operations on array outputs are involved in the iterations
makes FOCUSS readily realizable using AC. As in distributed ESPRIT, computing
(DW𝑛+1)+ at all the nodes leads to an increase in the total computational complexity
since they are performing the same operations. An alternative would be for one
node to do the computations and then send the results to the other nodes. This is
a tradeoff between computation and communication. The communication cost per
edge is 𝑂 (𝑑𝐾𝐼ac𝐼fo), where 𝐼fo is the number of FOCUSS iterations. A numerical
example is given in Sec. 6.4.4.

Distributed FOCUSS evidently has broader applications than DOA estimation. It
can be used for any problem that requires a sparse solution to an underdetermined
system [38].

6.3.5 Communication, Computation, and Storage
We now compare the communication costs of the proposed distributed algorithms
and centralized algorithms. Using the results in Sec. 6.2.2 for distributed power
method and in this section for the DOA estimation methods, the communication
costs per edge for the various distributed algorithms are summarized in Table 6.1.
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Table 6.1: Communication costs of distributed and centralized DOA estimation
methods

Algorithm Communication cost Typical numbers
Distributed MUSIC 𝑂 (𝐷𝐾𝐼ac𝐼pm + 𝐷𝐺𝐼ac) 3000
Distributed root-MUSIC 𝑂 (𝐷𝐾𝐼ac𝐼pm + 𝑧𝑁−1𝐷𝐼ac𝐼ab) 8940
Distributed TLS-ESPRIT 𝑂 (𝐷𝐾𝐼ac𝐼pm + 𝐷2𝐼ac) 1812
Distributed FOCUSS 𝑂 (𝑑𝐾𝐼ac𝐼fo) 9 × 105

All centralized methods 𝑂 (𝐾𝑁) 12000

For a ULA, 𝑧𝑁−1 = 𝑁 − 1. Typically, the number of DOAs 𝐷 is much smaller
than either of the number of grid points 𝐺 used for 𝜔 in MUSIC, number of
sensors 𝑁 , number of snapshots 𝐾 , and number of grid points 𝑑 used for 𝜔 in
FOCUSS. How we choose the numbers of iterations 𝐼pm, 𝐼ab, and 𝐼fo depends on the
particular DOA problem settings, but empirically we need a relatively small 𝐼pm.
Also, according to Sec. 6.2.1, 𝐼ac < 𝑃, and the exact number of 𝐼ac depends on the
network structure. Hence, the communication cost of TLS-ESPRIT is typically the
smallest. That is, TLS-ESPRIT is the DOA estimation method particularly suitable
for distributed implementations. On the other hand, to implement any centralized
DOA estimation method, each node always sends the raw data to a fusion center to
do centralized computation. Thus, the communication cost of any centralized DOA
estimation method is the same. Given 𝐾 snapshots of the array output x, the total
communication cost across the sensor network is 𝑂 (𝐾𝑁𝑇), where 𝑇 is the average
distance between each node and the fusion center. The distance between two nodes
is the number of edges in a shortest path connecting them. In other words, we have
assumed that an efficient routing protocol is used so that each node can send its raw
data to the fusion center via a shortest path. In this case, the average communication
cost per edge for any centralized algorithm is 𝑂 (𝐾𝑁𝑇/|E|). Since we assume the
network is a connected graph, 𝑂 (1) ≤ 𝑇 ≤ 𝑂 (𝑃) and 𝑂 (𝑃) ≤ |E| ≤ 𝑂 (𝑃2). The
possible range of the average communication cost per edge is thus𝑂 (𝐾𝑁𝑃𝑟), where
−2 ≤ 𝑟 ≤ 0. Hence, whether the communication cost of a distributed algorithm
is smaller than the average communication cost of a centralized one depends on
the values of the parameters and on the connectivity of the network. Distributed
algorithms are typically more advantageous given larger arrays or more snapshots,
especially for distributed TLS-ESPRIT.

Besides the average communication cost per edge, another important metric is the
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maximum communication cost among all the edges because it can determine the
existence of a communication bottleneck. Unless the network is almost fully con-
nected, the maximum communication cost for any centralized algorithm is typically
close to𝑂 (𝐾𝑁), due to an edge nearby the fusion center. By contrast, the maximum
communication costs of the distributed algorithms follow the same expressions in
Table 6.1 because each edge has the same communication cost. Therefore, dis-
tributed algorithms are more likely to be better than centralized ones in terms of
maximum communication costs, which can determine a communication bottle-
neck. For comparison, the maximum communication cost of centralized methods
is also listed in Table 6.1. Also, we give an example of typical numbers by setting
𝑃 = 6, 𝑄 = 20, 𝐷 = 2, 𝐾 = 100, 𝑑 = 𝐺 = 200, 𝐼ac = 𝐼pm = 3, 𝐼ab = 10, 𝐼fo = 15,
and 𝑧𝑁−1 = 119. The numbers of iterations are set according to empirical results.
We see that distributed TLS-ESPRIT has the smallest communication cost. All the
distributed algorithms have smaller costs than centralized ones, except distributed
FOCUSS. The large communication cost of FOCUSS is mainly due to the factor 𝑑𝐾
in the expression. Unless there is some other prior information (e.g., DOAs known
to be in some range so that a smaller 𝑑 can be used), distributed FOCUSS would
not be advantageous in terms of communication cost. The numbers in Table 6.1 are
typical when we assume the number of sources 𝐷 ≪ 𝑁 . The small-𝐷 assumption
is also made in the literature [115] to show the advantage in communication costs
for distributed methods. However, even when this assumption does not hold so that
distributed methods do not lower communication costs, other issues can still prevent
the use of centralized methods in the first place, as explained in the following.

In the proposed distributed algorithms, the local computation cost at a node depends
on the amount of local array data and the number of its neighbors, but not directly
on the size of the network. Take TLS-ESPRIT as an example. The computational
complexity of (6.49) locally at node 𝑖 is 𝑂 (𝐷2𝑄 + 𝐷2𝐼ac |N𝑖 |), where |N𝑖 | is the
number of its neighbors. Besides, each node only has to store its local array
data and AC weights for each edge between each neighbor and itself. It is unlike
centralized systems where the fusion center has to store the array data collected from
all the nodes to do centralized computation. Therefore, the proposed distributed
systems should scale better than centralized systems with fusion centers, as the
sensor network expands. The requirement of local storage space and computation
power that grow with the network size makes it very challenging to implement
centralized algorithms for large networks.
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In summary, we have the following key observations.

1. TLS-ESPRIT typically has the smallest communication cost among the pro-
posed distributed algorithms.

2. There are two ways to measure communication cost: average communication
cost per edge and maximum communication cost among all the edges. The
maximum communication cost can determine a communication bottleneck,
so it is more important for the system to be scalable. The two measures do
not make a difference for distributed algorithms, but centralized algorithms
have larger maximum communication cost than average communication cost.
Hence, distributed algorithms are more likely to be better than centralized
ones in terms of maximum communication costs.

3. In the proposed distributed algorithms, the local computation and storage at a
node depend on the amount of local array data and the number of its neighbors,
but not directly on the network size. Thus, these distributed systems should
scale better than centralized systems.

6.4 Distributed Convolutional Beamspace
In this section, we propose distributed algorithms for the convolutional beamspace
(CBS) method introduced in Sec. 2.2, and for its variant Capon-CBS presented in
Sec. 2.5. Given an 𝑁-sensor array with output x ∈ C𝑁 , the idea of beamspace
is to compute a transformation y = Tx ∈ C𝐵, where 𝐵 < 𝑁 , and estimate DOA
using y. (For clarity, DOA estimation using x directly is called element-space
method.) With a properly designed T, the DOAs falling outside a chosen subband
are attenuated, and we focus on estimating only the DOAs in the subband. A bank
of transformations {T𝑖} can be operated in parallel to cover all subbands. One major
advantage of beamspace processing is the lowered complexity due to dimensionality
reduction (𝐵 < 𝑁). Beamspace methods also tend to have smaller SNR threshold
for resolution of closely spaced sources [8, 16, 17] and smaller bias [2, 23].

Classical beamspace methods compromise the Vandermonde structure in the output
of a uniform linear array (ULA), so elaborate steps have to be taken to apply root-
MUSIC [2] or ESPRIT [18]. By contrast, CBS methods allow root-MUSIC and
ESPRIT to be performed directly for ULAs without additional preparation since
the Vandermonde structure is preserved. This is achieved by convolving the ULA
output with an FIR filter 𝐻 (𝑧). In traditional CBS (Sec. 2.2), the filter 𝐻 (𝑧) was
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predefined as a standard lowpass filter, such as the Parks-McClellan filter [63]. But
the filter was not designed by taking input statistics into account. In Capon-CBS
(Sec. 2.5), the filter is designed based on data using the idea of Capon beamforming,
so it should do a better job of suppressing the sources falling in the stopband, as
they are treated as interference in the Capon method.

The CBS methods have two stages. Stage 1 is the convolutional beamspace (CBS)
stage, where the ULA output is convolved with an FIR filter 𝐻 (𝑧). Stage 2 is the
DOA estimation stage. The filter in Stage 1 needs to have a flat passband, and it is
a standard lowpass filter in traditional CBS or the robust Capon beamspace filter in
Capon-CBS. The robust Capon beamspace filter is based on the robust version [83]
of Capon beamformer, as proposed in Sec. 2.5 to get a flat passband. Distributed
implementation of the CBS filter, i.e., distributed convolution, is introduced in Sec.
6.4.1. Distributed design of the robust Capon beamspace filter is presented in Sec.
6.4.2. The DOA estimation algorithms proposed in Sec. 6.3 can be used in Stage
2 to form an overall distributed system together with the Stage 1 methods in Secs.
6.4.1 and 6.4.2. This distributed DOA estimation in Stage 2 is presented in Sec.
6.4.3. Numerical examples are given in Sec. 6.4.4.

6.4.1 Distributed Implementation of the CBS Filter
Convolutional beamspace (CBS) methods as in Chapter 2 are used for ULAs. That
is, we assume the sensor locations 𝑧𝑖 = 𝑖 in (6.2). We convolve the 𝑁-sensor ULA
output sequence 𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 with an FIR filter

𝐻 (𝑧) =
𝐿−1∑︁
𝑛=0

ℎ(𝑛)𝑧−𝑛 (6.58)

with length 𝐿 < 𝑁 and retain steady state output samples:

y ≜ [𝑦(𝐿 − 1) 𝑦(𝐿) · · · 𝑦(𝑁 − 1)]𝑇

= H[𝑥(0) 𝑥(1) · · · 𝑥(𝑁 − 1)]𝑇 = Hx, (6.59)

where H is a (𝑁 − 𝐿 +1) ×𝑁 banded Toeplitz matrix with first row [ℎ(𝐿 −1) ℎ(𝐿 −
2) · · · ℎ(0) 0 · · · 0] and first column [ℎ(𝐿 − 1) 0 · · · 0]𝑇 . As in Sec. 2.2, one can
show that

y = A𝐿d + He, (6.60)

where A𝐿 is a Vandermonde matrix obtained from A (defined in (6.1), (6.2)), by
keeping the first 𝑁 − 𝐿 + 1 rows, and d has elements 𝑑𝑘 = 𝑐𝑘𝑒 𝑗 (𝐿−1)𝜔𝑘𝐻 (𝑒 𝑗𝜔𝑘 ). The
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arriving signals with DOAs 𝜔𝑘 are thus filtered by the response 𝐻 (𝑒 𝑗𝜔). The filter
is designed as a standard lowpass filter such as the Parks-McClellan filter [63] in
traditional CBS (Sec. 2.2), and as a Capon beamspace filter in Capon-CBS (Sec.
2.5). The design of the Capon beamspace filter will be discussed in Sec. 6.4.2.
Assuming signals in the stopband are well attenuated so that y contains only those
DOAs that fall in the passband of 𝐻 (𝑒 𝑗𝜔), we have y ≈ A𝐿,0d̄0 +He. Here A𝐿,0 has
𝐷0 columns of A𝐿 corresponding to the 𝐷0 sources that fall in the passband, and d̄0

has the corresponding 𝐷0 rows of d.

To achieve complexity reduction in CBS, we decimate 𝑦(𝑛) with a uniform down-
sampler. If the passband of 𝐻 (𝑧) has width ≈ 2𝜋/𝑀 , we can decimate 𝑦(𝑛) by the
integer 𝑀 . Let 𝑣(𝑛) = 𝑦(𝑛 + 𝐿 − 1) so that y = [𝑣(0) 𝑣(1) · · · 𝑣(𝑁 − 𝐿)]𝑇 . Then
we take the polyphase components of 𝑣(𝑛) [66]. That is, we define

v𝑙 = [𝑣(𝑙) 𝑣(𝑙 + 𝑀) · · · 𝑣(𝑙 + (𝐽 − 1)𝑀) ]𝑇 , (6.61)

for 𝑙 = 0, . . . , 𝑀 − 1, where 𝐽 = ⌊(𝑁 − 𝐿 + 1)/𝑀⌋. As in Sec. 2.2, it can then be
verified that [23]

v𝑙 = Adecd𝑙 + D𝑙He, (6.62)

where

Adec = [a𝐽 (𝑀𝜔1) a𝐽 (𝑀𝜔2) · · · a𝐽 (𝑀𝜔𝐷)] , (6.63)

d𝑙 has elements 𝑑𝑙,𝑘 = 𝑐𝑘𝑒 𝑗 (𝐿−1+𝑙)𝜔𝑘𝐻 (𝑒 𝑗𝜔𝑘 ) and D𝑙 = [δ𝑙 δ𝑙+𝑀 · · · δ𝑙+(𝐽−1)𝑀]𝑇 is
a decimation matrix, with δ𝑙 being the 𝑙th standard basis vector for the (𝑁 − 𝐿 + 1)-
dimensional space. The noise term D𝑙He can be whitened by making D𝑙HH𝐻D𝐻

𝑙
=

I. This is achieved by choosing 𝐻 (𝑧) as a spectral factor of a Nyquist(𝑀) filter as
shown in Sec. 2.2.4. Since v𝑙 is represented in terms of the Vandermonde matrix
Adec just like the original ULA output x, standard DOA estimation methods such as
root-MUSIC or ESPRIT can be directly applied. Details will be shown in Sec. 6.4.3.
The columns of Adec are a𝐽 (𝑀𝜔𝑘 ) rather than a𝐽 (𝜔𝑘 ), so 𝜔𝑘 can be determined
only up to 𝑀𝜔𝑘 mod 2𝜋, creating ambiguity. But since 𝜔𝑘 are known to be in the
passband of 𝐻 (𝑒 𝑗𝜔) which has width 2𝜋/𝑀 , the ambiguity can be resolved.

Now we show how to implement the convolution (6.59) in the CBS stage in our
distributed setting. Once we can do this, there is no difficulty in doing decimation.
We make the following assumptions to simplify our distributed algorithm.
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• Assumption 1: The CBS filter has order 𝐿 − 1 ≤ 𝑄. Since CBS is typically
used for large arrays (large 𝑁), this assumption is reasonable.

• Assumption 2: There is an edge between each pair of adjacent nodes 𝑝 − 1
and 𝑝.

The method described in the following applies to CBS using any kinds of filters,
including Capon-CBS. With y and H defined as in (6.59), let y0 ∈ C𝑄−𝐿+1 and
y𝑝 ∈ C𝑄 , 𝑝 = 1 . . . , 𝑃 − 1 so that y = [y𝑇0 y𝑇1 · · · y𝑇

𝑃−1]
𝑇 . Since 𝐿 − 1 ≤ 𝑄, we have

H =



H0,0 0 · · · 0
H1,0 H1,1 0 · · · ...

0 H2,1 H2,2
. . .

...
. . .

. . .
. . .

0
0 · · · 0 H𝑃−1,𝑃−2 H𝑃−1,𝑃−1


. (6.64)

Here H0,0 is a (𝑄 − 𝐿 + 1) × 𝑄 Toeplitz matrix with first row [ℎ(𝐿 − 1) ℎ(𝐿 −
2) · · · ℎ(0) 0 · · · 0] and first column [ℎ(𝐿 − 1) 0 · · · 0]𝑇 . Besides,

H𝑝,𝑝−1 =


0

ℎ(𝐿 − 1) ℎ(𝐿 − 2) · · · ℎ(1)
0 ℎ(𝐿 − 1) · · · ℎ(2)
...

. . .
. . .

...

0 · · · 0 ℎ(𝐿 − 1)
0 0


are 𝑄 × 𝑄 Toeplitz matrices, and H𝑝,𝑝 are 𝑄 × 𝑄 Toeplitz matrices with first row
[ℎ(0) 0 · · · 0] and first column [ℎ(0) ℎ(1) · · · ℎ(𝐿−1) 0 · · · 0]𝑇 , for 𝑝 = 1, . . . , 𝑃−1.
Thus, we have y0 = H0,0x0, which can be computed locally at node 0. Besides,
since 𝐿 − 1 ≤ 𝑄, we have

y𝑝 = H𝑝,𝑝−1x𝑝−1 + H𝑝,𝑝x𝑝, (6.65)

which can be computed locally at node 𝑝 once node 𝑝−1 sends the last 𝐿−1 entries
of x𝑝−1, i.e., 𝑥(𝑝𝑄 − 𝐿 + 1), . . . , 𝑥(𝑝𝑄 − 1), to node 𝑝, for 𝑝 = 1, . . . , 𝑃 − 1. This
can be done without using AC because we assume that there is an edge between
nodes 𝑝 − 1 and 𝑝. The communication cost per edge is 𝑂 (𝐾𝐿), where 𝐾 is the
number of snapshots.
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If no assumption is made on the filter length 𝐿, then in the most general case, we
can compute

𝑦(𝑖 + 𝐿 − 1) = h𝑇𝑖 x = AC𝑝 (h𝑇𝑖,𝑝x𝑝), (6.66)

where h𝑇
𝑖

is the 𝑖th row of H, and h𝑖,𝑝 ∈ C𝑄 is the subvector of h𝑖 corresponding to
node 𝑝, for 𝑖 = 0, . . . , 𝑁 − 𝐿. The communication cost per edge is𝑂 (𝐾 (𝑁 − 𝐿)𝐼ac).

6.4.2 Distributed Design of the Capon-CBS Filter
In Sec. 2.2, the CBS filter is a standard lowpass filter, such as the Parks-McClellan
filter. In this case we simply assume all nodes have the filter coefficients available.
It is beneficial to replace such a standard filter with a data-dependent filter based on
the idea of Capon beamforming, as explained in Sec. 2.5. Among all the unknown
DOAs, those falling in the stopband are treated as interferers (or jammers). We call
this the Capon-CBS filter. This is nothing but a sliding Capon beamspace generator.
This will provide optimal attenuation of the stopband signals.

Note that the output of this Capon-CBS filter will be used to estimate the DOAs in
its passband. Thus, unlike in traditional beamforming applications, this Capon-CBS
filter should be designed to have a flat passband. Since the traditional Capon filter
does not yield a flat passband around 𝜔0 although 𝐻 (𝑒 𝑗𝜔0) = 1, we will use the
robust Capon beamforming method reported in [83]. This is a method to ensure
that 𝐻 (𝑒 𝑗𝜔) ≈ 1 in a specified passband range, while at the same time optimally
rejecting the interferers in the stopband. We call this CBS filter the robust Capon
beamspace filter. For purposes of computation [83], this filter will be expressed
explicitly in terms of real and imaginary components: [Re{h𝑇 } Im{h𝑇 }]𝑇 ≜ h̃
where h = [ℎ∗(𝐿 − 1) ℎ∗(𝐿 − 2) · · · ℎ∗(0)]𝑇 . The CBS filter coefficients h̃ are
designed as a robust Capon beamspace generator, which is the solution to

min
h̃

h̃𝑇 R̃𝐿h̃

subject to h̃𝑇a ≥ 1 ∀a ∈ E, (6.67)

where

R̃𝐿 =
1

𝑁 − 𝐿 + 1

𝑁−𝐿∑︁
𝑖=0

E [̃x𝐿,𝑖x̃𝑇𝐿,𝑖] (6.68)

with x̃𝐿,𝑖 = [Re{x𝑇
𝐿,𝑖
} Im{x𝑇

𝐿,𝑖
}]𝑇 and

x𝐿,𝑖 = [𝑥(𝑖) 𝑥(𝑖 + 1) · · · 𝑥(𝑖 + 𝐿 − 1)]𝑇 . (6.69)
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Here, E is an 2𝐿-dimensional ellipsoid that covers the range of values of ã𝐿 (𝜔) =
[Re{a𝐿 (𝜔)𝑇 } Im{a𝐿 (𝜔)𝑇 }]𝑇 in the passband. The low-complexity algorithm given
in [83] can be used to solve the problem.

Now we show how to compute h̃ in our distributed setting. We make the same
Assumptions 1 and 2 as in Sec. 6.4.1 to simplify the algorithm. Then, with 𝐾
snapshots, we estimate

̂̃R𝐿 =
1

𝐾 (𝑁 − 𝐿 + 1)

𝐾∑︁
𝑘=1

𝑁−𝐿∑︁
𝑖=0

x̃𝐿,𝑖 [𝑘]x̃𝑇𝐿,𝑖 [𝑘] (6.70)

=
𝑃

𝑁 − 𝐿 + 1
AC𝑝 (R̃𝐿,𝑝), (6.71)

where

R̃𝐿,0 =
1
𝐾

𝐾∑︁
𝑘=1

𝑄−𝐿∑︁
𝑖=0

x̃𝐿,𝑖 [𝑘]x̃𝑇𝐿,𝑖 [𝑘] (6.72)

and

R̃𝐿,𝑝 =
1
𝐾

𝐾∑︁
𝑘=1

(𝑝+1)𝑄−𝐿∑︁
𝑖=𝑝𝑄−𝐿+1

x̃𝐿,𝑖 [𝑘]x̃𝑇𝐿,𝑖 [𝑘] (6.73)

for 𝑝 = 1, . . . , 𝑃−1. Considering (6.69), we see that (6.72) can be computed locally
at node 0 since it involves only 𝑥(0), . . . , 𝑥(𝑄 − 1). To compute (6.73), since it
involves 𝑥(𝑝𝑄 − 𝐿 + 1), . . . , 𝑥((𝑝 + 1)𝑄 − 1), node 𝑝 − 1 has to send the 𝐿 − 1
samples 𝑥(𝑝𝑄 − 𝐿 + 1), . . . , 𝑥(𝑝𝑄 − 1) to node 𝑝. Then (6.73) can be computed
at node 𝑝. Note that these samples to be sent are exactly the same as those we
need to send for the distributed implementation of the CBS filter. In other words,
there is no additional communication cost for the “convolution” part of CBS if we
already did the “Capon design” of Capon-CBS. After each node obtains ̂̃R𝐿 via AC
in (6.71), the problem (6.67) can be solved locally at each node using the method in
[83]. The total communication cost per edge for the design of the Capon-CBS filter
is 𝑂 (𝐾𝐿 + 𝐿2𝐼ac), where 𝐼ac is the number of AC iterations.

6.4.3 Distributed DOA Estimation in Stage 2
For subspace-based methods such as MUSIC, root-MUSIC, and ESPRIT, we esti-
mate the average of the 𝐽 × 𝐽 covariances of all the polyphase components

R̂ave =
1
𝐾𝑀

𝐾∑︁
𝑘=1

𝑀−1∑︁
𝑙=0

v𝑙 [𝑘]v𝐻𝑙 [𝑘], (6.74)
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where the polyphase components v𝑙 are defined in (6.61). Then we only have to
compute the signal and noise eigenvectors of (6.74), and the remaining steps just
follow Secs. 6.3.2 and 6.3.3. Note that (6.74) is similar to (6.3). The elements
of each vector v𝑙 are distributed among the 𝑃 nodes in exactly the same way that
the elements of x were distributed in (6.3). The eigenvectors of R̂ave can therefore
be computed exactly as we computed eigenvectors of R̂xx in Sec. 6.2.2. From
these the DOAs can be estimated unambiguously as described in Sec. 2.2. The
summation over 𝑙 in (6.74) leads to an increase in communication cost compared to
element-space, but CBS offers a smaller computational complexity. It is a tradeoff
between computation and communication.

FOCUSS introduced in Sec. 6.3.4 can also be used to estimate the DOAs in Stage 2.
How we use FOCUSS with CBS is similar to the formulation of the Lasso problem
with CBS, described in Sec. 2.4. We just replace D and X in (6.52) and (6.54) by
D𝐿,0 = [a𝐽 (𝑀�̄�1) a𝐽 (𝑀�̄�2) · · · a𝐽 (𝑀�̄�𝑑0)] and V0 = D0HX, respectively. Here D0

is the decimation matrix as in (6.62), and {�̄�1, . . . , �̄�𝑑0} is the grid of frequencies
within the passband of 𝐻 (𝑒 𝑗𝜔). If the grid is uniform, 𝑑0 ≈ 𝑑/𝑀 . Note that since
the passband width is 2𝜋/𝑀 , the arguments 𝑀�̄�𝑘 span a range of 2𝜋. The rows
of V0 are distributed among the 𝑃 nodes in the same way that the rows of X were
distributed in (6.55). Hence, the FOCUSS iterations can be done using AC in a
similar way. Significant reduction in computational complexity is obtained due to
the smaller size of the dictionary D𝐿,0. Moreover, the communication cost per edge
is 𝑂 (𝑑0𝐾𝐼ac𝐼fo), smaller than 𝑂 (𝑑𝐾𝐼ac𝐼fo) for the element-space FOCUSS. Thus,
among the distributed DOA estimation methods, FOCUSS gets more benefits when
used with CBS.

6.4.4 Simulations
We now present numerical examples to demonstrate the effectiveness of the proposed
distributed CBS methods together with distributed DOA estimation algorithms in
Sec. 6.3. We again consider the same network (6.27) with 𝑃 = 6, and use the
finite-time average consensus (AC) method with 3 iterations as explained in Sec.
6.3.1. The noise variance is 𝜎2

𝑒 = 1.

Example 1: Distributed root-MUSIC with distributed CBS. We show the DOA es-
timation performance of distributed root-MUSIC when it is used together with dis-
tributed CBS (both traditional and Capon). The results are also compared to element-
space and the centralized counterparts. Again, the distributed power method is used
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Figure 6.4: Distributed root-MUSIC and centralized root-MUSIC for element-
space, traditional CBS, and Capon-CBS. (a) RMSE of in-band DOA estimates. (b)
Typical filter responses. The distributed and centralized algorithms result in the
same filter for each system, so only one curve is plotted for each system.

to estimate eigenvectors of the array output covariance for distributed algorithms,
whereas ideal EVD is assumed for centralized algorithms. Each node is a ULA
with 𝑄 = 8 sensors and they together form a 48-sensor ULA. For CBS methods,
the filter length is 𝐿 = 9, and the decimation ratio is 𝑀 = 4. The traditional CBS
filter is designed to be a lowpass Parks-McClellan filter [63], with passband edge
𝜋/2𝑀 and stopband edge 3𝜋/2𝑀 . The Capon-CBS filter is the solution to Problem
(6.67) with E designed as in Sec. 2.5 using 𝑟 = 10 equally spaced samples of the
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array response in the passband. Note that the two assumptions 𝐿 − 1 ≤ 𝑄 and that
there is an edge between each pair of adjacent nodes 𝑝 − 1 and 𝑝 are satisfied, so
the distributed CBS methods with lower communication costs can be used for both
traditional and Capon CBS. There are 2 in-band sources (sources in the passband)
with power −5 dB and DOAs 𝜃 = −5◦, 5◦. There are 3 out-of-band sources (sources
in the stopband) with power 15 dB and DOAs 𝜔 = 0.5𝜋, 0.74𝜋, 0.98𝜋. Each pair of
the 5 sources has correlation coefficient 0.6, except that the two in-band sources are
uncorrelated. We assume the number of DOAs is known. RMSEs of in-band DOA
estimates for various number of power iterations are shown in Fig. 6.4(a). We use
100 snapshots and average 2000 Monte Carlo runs to get the plot. With only a few
power iterations, all distributed algorithms converge to the centralized counterparts.
Given enough number of power iterations, distributed traditional CBS and Capon-
CBS perform significantly better than element-space. As shown in Sec. 2.5, in
this harsh environment with powerful out-of-band sources correlated with in-band
ones, centralized Capon-CBS has even smaller RMSE than centralized traditional
CBS. This behavior is also true for distributed counterparts here. Fig. 6.4(b) also
shows that the Capon-CBS filter indeed has a flat passband while suppressing the
out-of-band sources. Capon-CBS filters keep a balance between attenuating inter-
ference and noise, which is the benefit of design based on data. The distributed
and centralized algorithms result in the same filter for each of the two systems,
traditional CBS and Capon-CBS, so only one curve is plotted for each system.

The results in Fig. 6.4 are obtained when we estimate eigenvectors of the array output
covariance using the traditional distributed power method [7], where eigenvectors
are updated sequentially (method 1). As mentioned in the end of Sec. 6.2.2, we
can also update the eigenvectors in parallel (method 2). For the same example,
we compare the two distributed power methods in Fig. 6.5. We see that method
2 requires more iterations than method 1 to compute each eigenvector. This can
be expected because we do not use the finally converged results of the first 𝑞 − 1
eigenvectors to update the 𝑞th eigenvector in method 2. Thus, we choose to use
method 1 in all other examples in this chapter.

Example 2: Distributed FOCUSS with distributed CBS. Next we show the DOA
estimation performance of distributed FOCUSS when it is used together with dis-
tributed CBS. The results are also compared to element-space and the centralized
counterparts. For FOCUSS, the number of DOAs and their locations are estimated
together. Specifically, after getting the estimate Q̂ in (6.51), we plot the FOCUSS
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Figure 6.5: RMSE of in-band DOA estimates for distributed root-MUSIC using
the two distributed power methods. Method 1 is the traditional power method [7],
where eigenvectors are updated sequentially. Method 2 is a modified version where
all eigenvectors are updated in parallel.

spectrum 𝑃(�̄�𝑖) =
∑
𝑛 |Q̂𝑖𝑛 |2 for 1 ≤ 𝑖 ≤ 𝑑. Then, we declare that there is a source

at �̄�𝑖 if there is a peak (local maximum) that is larger than a particular threshold:
𝑃(�̄�𝑖) ≥ 𝜖fo. Here we use 𝜖fo = 0.1 (with the spectrum normalized to have a
maximum value 1). Each node is a ULA with 𝑄 = 16 sensors and they together
form a 96-sensor ULA. For CBS, the decimation ratio is 𝑀 = 4, and the filter is de-
signed to be a lowpass Parks-McClellan filter [63] of length 𝐿 = 17, with passband
edge 𝜋/2𝑀 and stopband edge 3𝜋/2𝑀 . A grid of 𝑑 = 200 points uniform in 𝜔 is
used for the potential DOAs. There are 2 in-band sources with power 1 and DOAs
𝜃 = −0.573◦, 0.573◦. There are 10 out-of-band sources with identical power (which
is varied in the experiment), with DOAs 𝜔 = 0.5𝜋, 0.5𝜋 + 𝛿, 0.5𝜋 + 2𝛿, . . . , 0.98𝜋
with 𝛿 = 0.48𝜋/9. The in-band DOAs are exactly on the grid for simplicity. All
sources are uncorrelated. Support recovery accuracy (SRC) of in-band DOAs for
various out-of-band source powers are shown in Fig. 6.6(a). The SRC is defined
as the probability of recovering the two and only two DOAs in the passband and
without errors among all Monte Carlo runs. We use 100 snapshots and 2000 Monte
Carlo runs to get the plot. CBS can tolerate more powerful out-of-band sources
than element-space. More importantly, since distributed and centralized algorithms
perform exactly the same for each of the two systems (i.e., element space and CBS),
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Figure 6.6: Distributed FOCUSS and centralized FOCUSS for element-space and
CBS. (a) Support recovery accuracy (SRC) of in-band DOAs. Both distributed and
centralized algorithms have the same SRC for each system, so only one curve is
plotted for each system. (b)-(c) Typical FOCUSS spectra of element-space and CBS
when the out-of-band source power is 15 dB.

only one curve is plotted for each system. That is, the proposed distributed FOCUSS
yields exactly the same solution as centralized FOCUSS. Typical FOCUSS spectra
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of element-space and CBS for a Monte Carlo run are shown in Fig. 6.6(b)-(c). For
CBS, only the passband part is plotted. The two in-band sources can clearly be
resolved with CBS FOCUSS, but not with element-space FOCUSS. In the latter the
out-of-band sources are too powerful to allow the in-band sources to be resolved.

6.5 Distributed Spatial Smoothing
In this section, we propose distributed algorithms for spatial smoothing [39]. Spatial
smoothing is a technique used for DOA estimation when there are coherent or
correlated sources. Consider a ULA output x as in (6.1), which has covariance

Rxx = ARccA𝐻 + 𝜎2
𝑒 I, (6.75)

where Rcc = E[cc𝐻]. When there are coherent sources, the rank of Rcc and hence
the rank of ARccA𝐻 will be less than the number of sources 𝐷. Therefore, the signal
subspace, i.e., the column space of A, cannot be fully identified from the EVD of
Rxx. To overcome this, one computes the spatially smoothed covariance

Rss =
1
𝐿ss

𝐿ss−1∑︁
𝑖=0

E[xss,𝑖x𝐻ss,𝑖], (6.76)

where 𝐿ss is a parameter and

xss,𝑖 = [𝑥(𝑖) 𝑥(𝑖 + 1) · · · 𝑥(𝑖 + 𝑁 − 𝐿ss)]𝑇 . (6.77)

It can be shown [39] that the reduced rank due to coherent sources can be fully
restored back to 𝐷 based on this spatial smoothing if 𝐿ss ≥ 𝐷. Thus, more accurate
DOA estimates can be obtained by applying subspace-based methods to Rss, for at
most 𝑁 − 𝐿𝑠𝑠 sources [39]. With this method we can therefore identify 𝐷 ≤ 𝑁/2
sources. Empirically, spatial smoothing also helps when sources are correlated but
not necessarily coherent [130].

We now show how to do spatial smoothing in our distributed setting. The task here
is to estimate the eigenvectors of R̂ss instead of R̂xx obtained from 𝐾 snapshots and
then estimate DOAs using, e.g., root-MUSIC. One may notice that both distributed
design of the Capon-CBS filter and spatial smoothing involve the average of subarray
covariance matrices. More precisely, R̃𝐿 in (6.68) and Rss in (6.76) are exactly the
same if 𝐿 = 𝑁−𝐿ss+1 and x̃𝐿,𝑖 is replaced by x𝐿,𝑖. So actually, the method for dealing
with R̃𝐿 can be used to deal with Rss if the assumptions (a) (𝑁 − 𝐿ss+1) −1 ≤ 𝑄 (b)
that there is an edge between each pair of adjacent nodes 𝑝 − 1 and 𝑝, are satisfied.
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Algorithm 4 Distributed power iteration of spatial smoothing
1: for 𝑖 = 0 to 𝐿ss − 1 do
2: for 𝑘 = 1 to 𝐾 do
3: 𝑡𝑖 [𝑘] = 𝑃 · AC𝑝 (x𝐻ss,𝑖,𝑝 [𝑘]e1,𝑖,𝑝 (𝑛))
4: end for
5: for 𝑝 = 0 to 𝑃 − 1 do
6: q𝑖,𝑝 = 1

𝐾

∑𝐾
𝑘=1 xss,𝑖,𝑝 [𝑘]𝑡𝑖 [𝑘]

7: end for
8: end for
9: for 𝑚 = 0 to 𝐿 − 1 do

10: for 𝑝 = 0 to 𝑃 − 1 do
11: 𝑠𝑚,𝑝 =

1
𝐿ss

∑
𝑖:𝑝𝑄≤𝑖+𝑚<(𝑝+1)𝑄 [q𝑖]𝑚

12: end for
13: [e1(𝑛 + 1)]𝑚 = 𝑃 · AC𝑝 (𝑠𝑚,𝑝)
14: end for
15: return e1(𝑛 + 1)

In this case, R̂ss can be computed via average consensus in a manner similar to
(6.71). Then the eigenvectors of R̂ss can be computed locally at each node.

Case of unrestricted 𝐿ss. If no assumption is made on 𝐿ss, then we can modify the
distributed power method in Sec. 6.2.2 to realize spatial smoothing. If we can show
how to compute the power iterations

e1(𝑛 + 1) = R̂sse1(𝑛) (6.78)

for the first eigenvector e1, then the remaining steps follow the same way as in Sec.
6.2.2. The main idea is to clarify what computations can be done locally at each node
𝑝. The detailed procedure is presented in Algorithm 4 shown in the table. The vector
xss,𝑖,𝑝 is the subvector of xss,𝑖 ∈ C𝑁−𝐿ss+1 stored at node 𝑝, and its length can vary
from 0 to 𝑁 − 𝐿ss + 1 for different 𝑖 or 𝑝. Then, the vector e1,𝑖,𝑝 (𝑛) is the subvector
of e1(𝑛) with entries corresponding to xss,𝑖,𝑝. The inner products x𝐻ss,𝑖,𝑝 [𝑘]e1,𝑖,𝑝 are
computed locally at node 𝑝 in parallel. The computations in Lines 6 and 11 are also
done locally at each node in parallel. Finally, q𝑖 = [q𝑇

𝑖,0 · · · q
𝑇
𝑖,𝑃−1]

𝑇 , and the notations
[q𝑖]𝑚 and [e1(𝑛)]𝑚 mean the 𝑚th entry of q𝑖 and e1(𝑛), respectively. AC appears
in Algorithm 4 in two places, Lines 3 and 13. Line 3 is the dominant operation
for communication, so the total communication cost per edge for estimating 𝐷

eigenvectors is 𝑂 (𝐷𝐾𝐿ss𝐼ac𝐼pm). This is 𝐿ss times the cost of the basic distributed
power method in Sec. 6.2.2. This is a tradeoff for getting better DOA estimates
when there are coherent or correlated sources and when (𝑁 − 𝐿ss + 1) − 1 > 𝑄.
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Figure 6.7: RMSE of DOA estimates with and without spatial smoothing using
distributed root-MUSIC and centralized root-MUSIC.

A numerical example is given to demonstrate the effectiveness of the proposed
distributed spatial smoothing. We consider the same network (6.27) and use the
finite-time AC method with 3 iterations as explained in Sec. 6.3.1. We show
the DOA estimation performance of distributed spatial smoothing used with root-
MUSIC. Again, the distributed power method is used to estimate eigenvectors of the
covariance for distributed algorithms, whereas ideal EVD is assumed for centralized
algorithms. Each node is a ULA with 𝑄 = 16 sensors and they together form a 96-
sensor ULA. There are 6 DOAs at angles 𝜃 = −10◦,−6◦,−2◦, . . . , 10◦. All sources
have power 1, and each pair of sources have the same correlation coefficient 𝜌. The
noise variance is 𝜎2

𝑒 = 1. The parameter 𝐿ss = 17 is used for spatial smoothing.
The assumption (𝑁 − 𝐿ss + 1) − 1 ≤ 𝑄 is not satisfied, so Algorithm 4 is used.
We assume the number of DOAs is known. The number of power iterations is
𝐼pm = 5. RMSEs of DOA estimates for various 𝜌 are shown in Fig. 6.7. We use 500
snapshots and average 2000 Monte Carlo runs to get the plot. Spatial smoothing
improves performance significantly, especially for the distributed case. Except for
the coherent case (𝜌 = 1), RMSE of distributed spatial smoothing is almost the same
as that of centralized spatial smoothing, though we use a small 𝐼pm = 5. When there
is no spatial smoothing, or when 𝜌 = 1, the distributed algorithm has larger RMSE
than the centralized one because the covariance is closer to being rank-deficient, so
errors due to finite 𝐼pm are magnified.
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6.6 Concluding Remarks
In this chapter, we propose distributed algorithms for several DOA estimation and
beamforming methods, including spatial smoothing methods and the convolutional
beamspace methods introduced in previous chapters. These algorithms are truly
distributed in that a fusion center is not required. The novelties of the proposed
algorithms lie in transforming problems at hand into steps where computing the
average of some values across the network is the only step that involves data exchange
among subarrays. Using average consensus with finite-time exact convergence as
a subroutine, these distributed algorithms can achieve the same performance as
centralized algorithms in just a few iterations. The effectiveness of the distributed
algorithms is verified through simulations.

In the future, one can consider developing distributed algorithms for the difference
coarray method [32] for sparse arrays. It is possible that some sparse arrays can
facilitate the design of distributed coarray method, whereas others can cause dif-
ficulties. Hence, the sensor locations of the sparse arrays may need to be jointly
designed.
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C h a p t e r 7

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we proposed a new beamspace method, convolutional beamspace
(CBS). CBS is especially suitable for large arrays since it achieves DOA and channel
estimation with low complexity. We presented the basic digital CBS for DOA
estimation based on passive arrays in Chapter 2. We further developed the hybrid
(analog and digital) CBS for DOA estimation based on passive arrays in Chapter 3.
Then we proposed hybrid CBS for mmWave MIMO channel estimation in Chapter
4. We analyzed the MSE performance and derived the Cramér–Rao bound of CBS
for DOA estimation in Chapter 5. As another line of research on array processing
algorithms with low computation and communication complexity, we developed
distributed algorithms for several well-known DOA estimation and beamforming
methods in Chapter 6.

In addition to the results presented in this thesis, there are several related array
processing topics worth studying in the future:

1. CBS with gridless sparse recovery methods: In the discussions about CBS
in this thesis, we focus on beamspace processing followed by subspace DOA
estimation methods. However, the DOAs can also be estimated from the
CBS output using sparse recovery methods, such as dictionary methods as in
Sec. 2.4. Dictionary methods are grid-based methods and suffer from off-
grid errors, so one may want to consider CBS with gridless sparse recovery
methods such as atomic norm minimization method [92]. Atomic norm
minimization method suffers from high computational complexity, so the use
of CBS should be beneficial.

2. CBS for beamforming: In the CBS method for passive arrays, there are two
stages. In stage 1, we do filtering and decimation. In stage 2, we only do DOA
estimation in this thesis. We have considered designing the filter based on the
idea of Capon beamforming [36, 83] in stage 1, leading to the Capon-CBS
method. In the future, we can also consider beamforming in stage 2. Besides
low complexity, there can be other advantages. When we decimate the CBS
filter output by 𝑀 , we can get 𝑀 polyphase components [66]. Hence, higher
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signal to interference-plus-noise ratio (SINR) can be potentially obtained by
taking a weighted average of the beamformer outputs resulting from the 𝑀
polyphase components. The design of the weights is thus an interesting
optimization problem.

3. Reconfigurable intelligent surfaces for mmWave MIMO channels: Besides
severe path loss, mmWave communications are also faced with the challenge
of sensitivity to blockages. Many propose to use a new technology, reconfig-
urable intelligent surface (RIS) [86, 105], to solve the issue. An RIS can be
installed on large flat surfaces like buildings to reflect RF energy around ob-
stacles. It consists of an array of passive reflecting elements. Each reflecting
element can independently impose the required phase shift on the incoming
signal so that the overall reflected signal can be reconfigured to propagate
toward the desired directions. To make good use of such RIS-aided com-
munication systems, many methods require channel state information. Thus,
channel estimation is a crucial step. This channel estimation is challenging
because the RIS is passive without active RF chains or computational power,
and the number of RIS elements is often large. Hence, it is important to
design practical algorithms with low hardware and computational complexity
for RIS-aided mmWave MIMO channel estimation. In particular, it is promis-
ing to adapt hybrid CBS to the RIS framework since hybrid CBS has low
complexity and good estimation performance.

4. Machine learning for array processing and communications: The use of ma-
chine learning for classical array processing tasks has gained more attention
recently [131, 132]. Classical methods based on theoretical modeling and
derivations typically perform well or even the best if the modeling is perfect.
In contrast, when there is model mismatch such as array imperfections, ma-
chine learning-based methods can perform better since they are data-driven.
To combine the benefits of both methods, one may consider using general
system architectures as in classical designs while tuning relevant parameters
with machine learning. For instance, machine learning, particularly deep
neural networks, can be used to optimize the analog and digital precoder and
combiner coefficients in mmWave MIMO communication systems, or the fil-
ter coefficients of CBS. These problems are nonconvex and difficult to solve
using classical techniques. Machine learning opens up a new possibility of
solving them.
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5. Applications in autonomous vehicles: As an emerging technology, autonomous
vehicles have attracted much research attention recently. To achieve the self-
driving ability, a huge amount of data should be communicated among vehicles
and between vehicles and the infrastructure. Thus, mmWave communications,
which can offer large bandwidths, will be likely considered [133]. Again, to
overcome the severe path loss of mmWaves, large antenna arrays will be
used to get large beamforming gain. To steer the beams towards the target
directions, the DOAs of the targets have to be estimated first. Besides DOA
estimation, the estimation of other parameters such as range and Doppler fre-
quency can also be relevant [134]. Hence, it is interesting to explore how to
design low-complexity and high-resolution beamspace methods like hybrid
CBS in this high-dimensional estimation framework.
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