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ABSTRACT

Quantum error correction is a method to reduce the effective error rate on quantum
computers so that they can be used to carry out useful computation. In this thesis,
we study two main problems: decoding quantum low-density parity-check codes
and using erasure qubits to implement error correction protocols.

In the first part of this thesis, we focus on quantum low-density parity-check codes,
which are a promising approach to reducing the spacetime overhead associated with
error correction. We show that certain families of codes with constant rate and
linear distance can be decoded efficiently. In particular, we propose a linear-time
algorithm that will correct any error affecting at most a constant fraction of the
qubits.

We also analyze the setting where the measurement outcomes given to the decoder
can be corrupted. In this more realistic scenario, the decoder is shown to have
the single-shot property. Using one round of noisy syndrome data, it can output a
correction that is close to the data error as long as at most a constant fraction of
the data qubits and syndrome bits are flipped. As a consequence, the decoder can
operate under a stochastic noise model where errors occur with sufficiently small
but constant probability.

In the second part of the thesis, we analyze quantum error-correcting codes imple-
mented using erasure qubits. The idea behind erasure qubits is to bias the noise into
a form where likely locations of errors are known, for example, by converting the
dominant noise source into detectable leakage from the computational subspace.
We provide a formalism for simulating and decoding stabilizer circuits with era-
sures, erasure checks, and resets. Using this formalism, we study the performance
of Floquet codes and show that the benefits of knowing error locations outweigh the
cost of extra noise due to erasure checks.

Lastly, we optimize erasure check schedules in the context of the surface code.
By performing simulations with one, two, or four erasure checks per syndrome
extraction round, we find different error parameter regimes where it is optimal to
use each schedule. Additionally, we provide a simplified way of decoding erasure
circuits suitable for circuits with infrequent erasure checks.
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C h a p t e r 1

INTRODUCTION

Quantum computing brings the promise of solving many computational tasks faster
than our current classical computers. Feynman originally envisioned the ability to
simulate quantum systems efficiently [1], which would have applications for scien-
tific discovery and industrial research. Since then, quantum algorithms have been
developed which provide speedups for search problems, optimization, cryptanalysis,
and other tasks [2]. This list would likely grow once we are able to test new ideas
on actual large-scale quantum computers.

Building a quantum computer has been a challenging endeavor for the last 40 years.
The main difficulty is that quantum systems are very fragile. The very properties that
enable quantum speedups such as superposition and entanglement make the system
susceptible to decoherence from outside noise. Such unintended interactions with
the environment during a computation would disturb the internal state of the device,
resulting in an erroneous output. Our inability to completely isolate a quantum
computer from the environment means that errors are likely to occur during any
large computation, casting doubt on the whole concept of quantum advantage. For
example, factoring RSA-2048 requires around 109 operations [3], compared to an
optimistic error rate of 10−4.

Fortunately, quantum information can be protected using error correction. The key
idea is to redundantly encode the state of interest, called the logical state, in a larger
quantum system. When the encoding is chosen well, the logical information is
not stored in any individual component but is spread throughout the entire system.
Therefore, the likely noise events, where only a few components of the physical
system fail, do not corrupt the logical state; the redundancies allow us to detect and
correct these errors. Only when many components simultaneously fail does the state
become irrecoverable. The probability of such a logical error is much smaller than
the error rate of any individual physical component. Thus, quantum error correction
effectively decreases the error rate affecting a system. Furthermore, the logical error
rate decreases with the system size provided the physical error rate is sufficiently
small. This allows us to carry out larger quantum computations not by improving
the quality of qubits but by increasing their quantity.
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Nevertheless, quantum error correction comes with costs, including having to im-
plement more complicated protocols, additional classical processing, and space and
time overhead. Therefore, there are many considerations when designing quantum
error correction protocols and choosing the right one to use on a given system. We
elaborate on these concepts in the following sections of this chapter (Sections 1.1
to 1.4), which will provide enough background to understand the contributions of
this thesis, outlined in Section 1.5. In Section 1.6, we describe some of the remaining
challenges in the field.

1.1 Quantum code properties
A quantum error-correcting code is a subspace of the 𝑛-qubit Hilbert space C ⊆(
C2)⊗𝑛. Implicitly, there is a unitary map 𝑈 :

(
C2)⊗𝑘 → C specifying how a

𝑘-qubit logical Hilbert space we wish to protect is encoded in the larger 𝑛-qubit
Hilbert space. We refer to 𝑘 as the dimension of the code and 𝑛 as the blocklength.
The rate 𝑘/𝑛 characterizes the redundancy of the encoding. The smallest weight of
a nontrivial logical operator—one that maps a code state of C to another—is called
the distance. It is a measure of how resilient the code is to noise, as a code of
distance 𝑑 can correct any error affecting at most ⌊(𝑑 − 1)/2⌋ qubits. The code C
is said to have parameters [[𝑛, 𝑘, 𝑑]]. For a fixed blocklength 𝑛, we generally want
to use a code with as large dimension and distance as possible. However, these two
conditions are in tension with each other because having a larger codespace makes
it more likely to have low-weight logical operators. Nevertheless, it is possible to
have code families of increasing blocklengths with the best possible dimension and
distance scalings, 𝑘, 𝑑 = Θ(𝑛). In this case, we say that the codes are asymptotically
good.

When using a code, we need a way to determine when we are in the codespace
and when an error has occurred. In contrast to the classical setting, this cannot be
done by measuring individual qubits, as that would reveal too much information
about the state and destroy its quantum correlations. Instead, more course-grained
information is needed. In this thesis, we mostly focus on the class of stabilizer
codes, where C is the simultaneous +1-eigenspace of an abelian subgroup 𝑆 of the
𝑛-qubit Pauli group called the stabilizer group. For such codes, membership in C is
checked by measuring a generating set of stabilizers. The classical outcomes, called
the syndrome, is trivial in the absence of errors.
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The locality of the stabilizer generators is an important property of the code because
measurements supported on fewer qubits are generally easier to perform in practice.
Additionally, the process of measuring a check can spread errors within the support
of that check. For fault-tolerance purposes (see Section 1.2), it is desirable to keep
the check weights minimal. A low-density parity-check (LDPC) code is a code
family with bounded-weight stabilizer generators.

Topological codes have the further property that qubits can be placed in Euclidean
space such that stabilizer generators are geometrically local. This limitation is
natural for platforms such as superconducting circuits where the qubits are at fixed
locations in space and interactions couple nearby qubits. An example of a topological
code is the surface code [4], which has been well studied and is a leading candidate
for experimental implementation. Unfortunately, topological codes have limited
parameters. Bravyi, Poulin, and Terhal proved that the parameters of any 𝐷-
dimensional topological code satisfy 𝑘𝑑2/(𝐷−1) = 𝑂 (𝑛).

On the other hand, general LDPC codes have no such limitation. Table 1.1 provides a
summary of major developments in achievable parameters for quantum LDPC codes.
In particular, the expander lifted product codes [5], quantum Tanner codes [6],
and DHLV codes [7] show that good quantum LDPC codes exist. These three
constructions involve placing qubits on an expanding complex and choosing checks
according to small classical codes satisfying certain robustness properties. The
intuition is that the features like the rate and distance of the local code are amplified
via the expansion to those of the global code.

Code Year Dimension 𝒌 Distance 𝒅

Surface code [4] 1997 1 Θ(
√
𝑛)

Hypergraph product codes [8] 2009 Θ(𝑛) Θ(
√
𝑛)

Fibre bundle codes [9] 2020 Θ̃(𝑛3/5) Ω̃(𝑛3/5)
Lifted product codes [10] 2020 Θ̃(𝑛𝛼) Ω̃(𝑛1−𝛼/2)
Balanced product codes [11] 2020 Θ(𝑛4/5) Ω(𝑛3/5)
Expander lifted product codes [5] 2021 Θ(𝑛) Θ(𝑛)
Quantum Tanner codes [6] 2022 Θ(𝑛) Θ(𝑛)
DHLV codes [7] 2022 Θ(𝑛) Θ(𝑛)

Table 1.1: Major developments in the history of quantum LDPC codes. In the lifted
product construction, 𝛼 ∈ [0, 1) may be chosen arbitrarily.
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1.2 Fault-tolerant operations
Specifying a code is only the first step to suppressing error rates. When we im-
plement a code, the protocol should be fault tolerant, meaning that it is robust to
errors that can occur at every elementary operation. For example, compared to the
phenomenological noise model where errors occur between measurements, circuit-
level noise may corrupt data and ancilla qubits during the syndrome extraction cycle.
The resulting errors may spread to other qubits before the end of the measurement
round. Circuit-level noise is equivalent to a more complicated phenomenological
noise model with correlations, although it may not be optimal to analyze it in this
way.

When using error correction, computation must be fault tolerant as well. For ex-
ample, logical operations cannot be implemented by first unencoding the state,
performing the physical operation, and then encoding again. Otherwise, the state
could be corrupted while it is unprotected. Instead, operations must be performed
on the encoded state so that it retains its protection. One generic method of realizing
fault-tolerant operations is through transversal gates, where the logical gate is im-
plemented via physical gates that each have support on at most one qubit from each
code block. Then, errors cannot spread within a code block. However, transversal
gates cannot implement a universal gate set [12], so they must be supplemented
with other methods such as code switching [13], lattice surgery [14], or magic state
injection [15].

To keep the computation fault tolerant, we can intersperse error correction steps
between logical operations. The soundness of the whole process is guaranteed by
various threshold theorems as long as each step is fault tolerant [16, 17]. Alter-
natively, a circuit which only consist of stabilizer operations can be analyzed as a
whole by mapping it to a simpler structure like another code or a graph [18–20].

1.3 Decoders
So far, we have discussed properties of error-correcting codes and fault-tolerant
protocols without specifying how to actually correct errors. In practice, we need
to return the state to the codespace when errors occur (or at least keep track of the
necessary corrections). This is the decoding problem. For phenomenological Pauli
noise affecting stabilizer codes, the syndrome tells us which stabilizer generators
commute or anticommute with the error. In the more general circuit-level noise
setting, information about errors that occurred during the quantum process is also
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inferred from the measurement outcomes. In either case, a classical decoding
algorithm can use this classical information to output a recovery operator 𝑓 . We say
that the decoder succeeds if applying 𝑓 to the corrupted state takes us back to the
original code state.

A fast decoder is crucial for achieving large-scale error-corrected computation. If the
decoder cannot process syndrome data as fast as it is generated, a so-called backlog
problem will occur [21]. In essence, we need to know the decoder’s correction before
implementing non-Clifford logical gates, but an increasing amount of syndrome data
will be generated before each successive operation as the decoder is running. This
would result in an exponential time complexity of the computation.

Decoding is generically computationally difficult. For stabilizer codes under phe-
nomenological noise, it is NP-complete [22, 23] or even #P-complete [24], depend-
ing on the formulation of the problem. But this does not preclude the existence of
efficient decoders for specific codes. Indeed, many codes have efficient decoders,
and a code must have one for it to be practically relevant.

When evaluating the performance of decoders, it is important to specify the noise
model. For adversarial noise, the decoder must be able to handle the worst-case
error below a certain weight, usually a constant fraction of the distance. Alterna-
tively, stochastic noise models define a distribution for how errors occur, e.g., one
approximating the noise on a real device, and the decoder should be able to correct
the error with high probability. A decoder that performs well in one scenario may
not do as well in the other. This is because in the stochastic setting, the decoder
might not succeed on certain small errors as long as those errors occur with small
probability, whereas in the adversarial setting, the decoder might not have to decode
linear-weight errors that would be typical in the stochastic case. Only for linear-
distance codes would the ability to decode in the adversarial case automatically
imply the ability to decode in the stochastic case.

1.4 Overhead of quantum error correction
Implementing an error-corrected computation requires more resources than if the
same computation was done at the physical level. The redundancy of the encoding
requires extra qubits, and the time complexity of the algorithm may be increased
as logical operations can be slower than physical ones. At a basic level, the space
overhead of using an [[𝑛, 𝑘, 𝑑]] code isΘ(𝑛/𝑘), assuming a linear number of ancilla
qubits to perform stabilizer measurements and computation. But what code size is
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needed to achieve the the required error suppression for a given computation? This
question is addressed by several threshold theorems [16, 25, 26]. Roughly, they
state that if the physical error rate 𝑝 is below some fixed threshold value 𝑝∗, an ideal
circuit with 𝑛 qubits, time complexity 𝑡, and 𝑣 error locations can be simulated to 𝜀
accuracy with noisy operations using𝑂 (𝑛 polylog(𝑣/𝜀)) qubits and time complexity
𝑂 (𝑡 polylog(𝑣/𝜀)).

The threshold 𝑝∗ is an important value that depends on the code family and decoder
used. We want to design codes with as large threshold as possible because that
is the error rate below which quantum error correction is useful. Once the error
rate is below threshold, larger quantum computations can be achieved by scaling
the system up instead of improving the physical error rate. The threshold depends
heavily on the noise model considered. For example, the phenomenological noise
threshold is typically an order of magnitude higher than the more realistic circuit-
level noise threshold. Moreover, the noise on an actual device is not characterized
by a single parameter. Instead, there will be many error rates corresponding to the
different physical noise processes, which may be tuned individually. In this case,
the threshold value should be replaced with a surface in the high-dimensional space
of error parameters. If the true error parameters are in the region bounded by the
surface, logical errors may be suppressed arbitrarily by increasing the system size.

Additionally, some hardware platforms have noise that is either naturally or en-
gineered to be biased toward one type of error. This is beneficial because codes
may be designed to take advantage of such a noise model. For example, Clifford-
deformed surface codes have higher thresholds when the ratio of Pauli 𝑍 to 𝑋 errors
is high [27, 28]. Another type of noise bias is one where the dominant error type
is erasures. Erasure errors occur when the system leaks out of the computational
subspace defining the qubit, and it is possible to learn this information. They more
benign than Pauli errors because we know which qubits have been corrupted, and
codes can generally tolerate more noise when it is erasure-biased.

Below the threshold, improvements can also be made to the polylogarithmic space
and time overhead of error correction. The early threshold theorems assumed code
families based on repeated concatenation of a small code. With the developments
in quantum LDPC codes, contant-rate codes with polynomially scaling distance
allow for constant space overhead [29]. This result relies on several assumptions,
including the ability to measure geometrically nonlocal stabilizers and an efficient
decoder.



7

The decoder also plays a role in the time overhead of error correction. In addition
to the extra classical processing time, the decoder could also determine the number
of error correction rounds that are needed between logical operations. For example,
decoders for the surface code require Ω(𝑑) rounds of syndrome data between lattice
surgery operations in the presence of syndrome errors [14]. In general, if a decoder
requires perfect syndrome information as input, time or space overhead would
be incurred through repeated measurements [30] or implementing a more robust
measurement scheme [31, 32]. In contrast, some codes permit single-shot quantum
error correction [33]. A single-shot decoder can use faulty syndrome data from a
single round of measurements to output a correction that is close to the original
code state. Logical operations can then be performed, even in the presence of these
small residual errors. Thus, additional time overhead would not be incurred due to
extra syndrome measurement rounds.

1.5 Contributions
In this thesis, we tackle the problem of reducing the cost of quantum error correction
using two main approaches. In Part I, we propose and analyze a decoder for a family
of asymptotically good quantum LDPC codes. Our results further validate LDPC
codes as a way of reducing the spacetime overhead of error correction. Part II
focuses on erasure-biased noise as a general way of increasing the threshold. We
analyze protocols involving erasure qubits and quantify the gain from the ability to
detect erasure errors.

1.5.1 Decoding good quantum LDPC codes
With the discovery of good quantum LDPC codes, a natural question concerns their
efficient decodability. In Chapter 2, we provide a decoder for a family of quantum
Tanner codes [6]. The decoder is a local greedy algorithm. At each step, it operates
on a small set of qubits within the support of a stabilizer generator to decreases
what we call the global potential, a cost function that serves as a proxy for the
syndrome weight. A critical ingredient in the success of the decoder is expansion
in the underlying complex defining the code. Expansion ensures that the decoder
never gets stuck because there will always be some group of errors that caused many
neighboring syndromes; correcting those qubits will decrease the global potential.
We show that the decoder successfully corrects any error affecting up to a linear
number of qubits and runs in linear time. As an immediate consequence, the decoder
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can also work in the stochastic setting where each qubit is corrupted independently
with sufficiently small constant probability.

Next, we consider decoding quantum Tanner codes in the presence of measurement
errors. In Chapter 3, we analyze the mismatch decomposition decoder of Leverrier
and Zémor [34] and show that it has the single-shot property. This decoder operates
in essentially the same way as the potential-based decoder above, only using a
different cost function called the mismatch. In fact, the corrections obtained at
each step using the potential or mismatch may be mapped to each other, so the
results of this chapter will also apply to the potential-based decoder. The idea is
that the expansion of the complex guarantees many possible correction sets that
would decrease the mismatch in the absence of syndrome noise. If a small number
of syndrome bits are incorrect, there will still be valid operations that decrease
the noisy mismatch computed by the decoder. Therefore, if a sufficiently small
constant fraction of qubits are corrupted, and in addition, a constant fraction of the
measurement outcomes are incorrect, the decoder can output a correction that is close
to the codespace. In a stochastic setting where data and syndrome errors occur with
sufficiently small probability, the decoder is able to maintain quantum information
for up to an exponential number of measurement and correction rounds. Notably,
this also holds under circuit-level noise as it can be mapped to phenomenological
noise with small correlations.

The results of Part I of the thesis help establish quantum LDPC codes as a way to
achieve fault-tolerant quantum computation with low overhead. Gottesman showed
that constant-rate, polynomial-distance codes allow for error correction with con-
stant space overhead [29]. In Chapter 3, we further show that a parallel version of the
mismatch decomposition decoder, where local corrections are found simultaneously
for a constant number of iterations, also has the single-shot property. This means that
only one round of syndrome measurements is needed between logical operations,
and the resulting data can be classical processed in constant time. Consequently,
given the ability to perform parallel logical operations, we can also achieve constant
time overhead of error correction using quantum Tanner codes.

1.5.2 Erasure qubits
While the results of Part I pertain to the cost of quantum error correction in the
asymptotic regime, Part II focuses on reaching the threshold so that error correction
may be used. As mentioned in Section 1.4, erasure-biased noise typically results
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in higher thresholds. Such an error model would be accurate for physical systems
whose errors are dominated by detectable leakage or qubit loss. In other platforms,
it is possible to use a small encoding to convert the dominant error source into
erasures. Our motivation comes from superconducting qubits where the most likely
error is amplitude damping—decay from the |1⟩ state to the |0⟩ state. Under the
two-qubit dual-rail encoding

��0̄〉 = |01⟩,
��1̄〉 = |10⟩, amplitude damping on either

physical qubit will take the state to |00⟩, which can be detected without disturbing
the computational subspace.

In Chapter 4, we introduce a formalism for analyzing circuits with erasure qubits. In
an erasure circuit, we must include locations where erasures can occur and explicit
erasure check and reset operations in addition to the standard circuit components. We
then express the resulting decoding problem of finding the most likely error affecting
the circuit as a matching problem on a hypergraph. Using this formalism, we analyze
Floquet codes implemented with erasure qubits. A Floquet code is a type of quantum
error-correcting code that encodes logical information in a dynamically evolving
codespace [35]. It is relevant for us because the physical 𝑍𝑍 measurement that
could implement an erasure check on a single dual-rail qubit would also implement
a logical 𝑍𝑍 measurement on two erasure qubits when acting on one physical qubit
from each dual-rail pair. Such operations, along with single-qubit rotations within
the computational subspace, suffice to implement Floquet codes on dual-rail erasure
qubits. In our work, we simulate Floquet codes under circuit-level Pauli and erasure
noise, mapping out the threshold surface. Our analysis shows that erasure qubits can
significantly outperform standard qubits. That is, the benefit of knowing likely error
locations outweighs the cost of extra noise incurred by performing erasure checks.

In Chapter 5, we continue the study of erasure qubits by optimizing the frequency
of erasure checks. We implement the surface code with one, two, or four erasure
checks per syndrome extraction round and find that the optimal frequency depends
on the error parameters. As the erasure bias increases, it becomes advantageous to
perform more frequent erasure checks to gain precise information about the location
of erasure errors. Conversely, for noise with low erasure bias, it is better to use less
frequent erasure checks to reduce the extra noise introduced. In an intermediate
regime, the optimal frequency is two erasure checks per round. For schedules with
infrequent erasure checks, the decoder from the previous chapter becomes inefficient
due to erasure events causing large correlated errors. Instead, we propose a new
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decoding method that makes use of a simplified error model. This decoder is more
efficient than the previous one and often outperforms it as well.

Overall, we demonstrate that quantum error correction protocols benefit by taking
advantage of erasure-biased noise. Erasure qubits are not only a promising way
to reach the threshold in the near term, but could also be the basis of large-scale
quantum architectures in the future.

1.6 Outlook
Quantum error correction is a tool to bridge the gap between the physical error rates
on experimental devices and the logical error rates needed to perform large-scale
quantum computation. Building this bridge requires progress from both experiment
and theory. As we are starting to see demonstrations of gain from quantum error
correction [36–39], improvements in the quality and quantity of qubits will facilitate
larger error-corrected quantum computation. Furthermore, finer control of quantum
systems would expand the set of basic operations and allow for better quantum codes
to be used.

On the other hand, theoretical developments can ease the burden of improving
experiments. In the near term where devices are operating close to the threshold,
optimizations can have substantial impact. Exploiting bias, such as the use of erasure
qubits, is a promising approach. We might also design codes that take advantage
of the specific capabilities of different platforms, for example, by using the fusion-
based quantum computation formalism for photonic quantum computers [40]. This
would reduce the overhead by compiling an encoded quantum computation directly
to the native operations on the hardware being used.

In the longer term, I believe LDPC codes to be viable path to achieving fault-tolerant
quantum computation with low overhead. However, because much of the interest in
LDPC codes have stemmed from the recent developments, many challenges remain
for them to be practically useful. A lot of initial progress, including the work in
this thesis, has focused on asymptotic scalings without regard to the constants in a
code’s check weight, rate, and distance or a decoder’s performance guarantee and
time complexity. Finding code families that have good finite-size performance is
crucial. There is also the difficulty of implementing the nonlocal checks needed to
surpass the Bravyi-Poulin-Terhal bound. To address this problem, several ideas for
different hardware platforms have been proposed [41–43]. Finally, a major challenge
is how logical gates can be implemented efficiently in LDPC codes. Ideally, different
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logical qubits should be addressable in parallel, but the different logical operators
can have overlapping support in a high-rate code block. Solving all these issues is
necessary to reap the benefits of quantum LDPC codes.

Overall, quantum error correction has seen remarkable progress in recent years with
many novel ideas. I hope that the contributions in this thesis will be helpful in our
quest to building a full-scale quantum computer.
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C h a p t e r 2

AN EFFICIENT DECODER FOR A LINEAR DISTANCE
QUANTUM LDPC CODE

Recent developments have shown the existence of quantum low-density parity check
(qLDPC) codes with constant rate and linear distance. A natural question concerns
the efficient decodability of these codes. In this paper, we present a linear time
decoder for the recent quantum Tanner codes construction of asymptotically good
qLDPC codes, which can correct all errors of weight up to a constant fraction of the
blocklength. Our decoder is an iterative algorithm which searches for corrections
within constant-sized regions. At each step, the corrections are found by reducing a
locally defined and efficiently computable cost function which serves as a proxy for
the weight of the remaining error.

2.1 Introduction
Quantum error correcting codes with constant-sized check operators, known as quan-
tum low-density parity check (qLDPC) codes, have myriad applications in computer
science and quantum information. Indeed, almost all leading contenders [1, 2] for
experimentally realizable fault-tolerant quantum memories are qLDPC codes. With
more stringent requirements on their parameters, qLDPC codes can be used to
achieve constant overhead fault-tolerant quantum computation as shown by Gottes-
man [3]. On the more theoretical side, qLDPC codes are believed to have connec-
tions to the quantum probabilistically checkable proofs (qPCP) conjecture [4].

A qLDPC code of blocklength 𝑛 is said to be good when it encodes Θ(𝑛) logical
qubits and detects all errors up to weight Θ(𝑛). For many years such codes have
proven elusive, with an apparent distance “barrier” of around

√
𝑛. It is natural to

wonder if there is some fundamental limitation that prevents us from achieving the a
priori best possible distance ofΘ(𝑛). However, a sequence of recent constructions of
qLDPC codes with steadily improving code parameters [5–7] have culminated in the
construction of asymptotically good qLDPC codes by Panteleev and Kalachev [8].
Alternative constructions of good qLDPC codes have since been given by Leverrier
and Zémor [9] and conjectured by Lin and Hsieh [10].
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With the proven existence of good qLDPC codes, a natural next step is to better
understand their properties. For fault-tolerance purposes, a fast decoder is a ne-
cessity, so an important question is whether these codes can be efficiently decoded.
Previously known efficient decoders [11–15] were limited by the parameters of the
underlying qLDPC code. To date, the best efficient decoder corrects against all
errors of weight up to Θ(

√
𝑛 log 𝑛) [13]. The existence of good qLDPC codes opens

the possibility for a decoder that corrects all errors of weight up to Θ(𝑛).

In this paper, we focus on the quantum Tanner codes construction of Leverrier
and Zémor [9]. Quantum Tanner codes were inspired by the original construction
of good qLDPC codes of Panteleev and Kalachev [8], as well as by the classical
locally testable codes of Dinur et al. [16], serving as an intermediary between the
two constructions. They can also be seen as a natural quantum generalization of
classical Tanner codes [17]. A classical Tanner code is defined by placing bits on the
edges of an expanding graph, with non-trivial checks defining local codes placed
at the vertices. The codewords are the strings whose local views at each vertex
belong to the codespace of the local code. A quantum Tanner code is a Calderbank-
Shor-Steane (CSS) [18, 19] code defined by two classical Tanner codes stitched
together using a two-dimensional expanding complex. For particular choices of
the local checks and expanding complex, this construction has been shown to yield
an asymptotically good family of qLDPC codes. We show that this construction
can also yield an asymptotically good family of qLDPC codes which are efficiently
decodable for errors of weight up to a constant fraction of the distance.

Our decoder is inspired by the small-set-flip [11] decoding algorithm for hypergraph
product codes based on expanding graphs. Small-set-flip is an iterative algorithm,
where at every step, small sets of qubits are flipped to decrease the syndrome weight.
The candidate sets to flip are contained within the supports of individual stabilizer
generators. A critical ingredient in the success of the small-set-flip decoder is the
presence of expansion in the underlying geometric complex. Since the geometric
complex defining quantum Tanner codes has a similar notion of expansion, one
might expect that analogous ideas may work for decoding quantum Tanner codes.

In our decoder, we define a “local potential function” on each local view which
measures the distance of the error from the local codespace. The decoder reduces
the sum of these potential functions by applying a constant-sized correction within
some local view at each step. In the proof of correctness, we proceed by tracking the
minimum weight correction according to each local view, and then use this data to
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show that a flip-set with the required properties must exist when the error is not too
large. As a required step in the proof, we also strengthen the robustness parameters
of the random classical codes used in the quantum Tanner code construction.

Our main result is stated below:

Theorem (Informal version of Theorems 12 and 13). There exists a family of
asymptotically good quantum Tanner codes such that our decoder successfully
corrects all errors of weight up to Θ(𝑛) and runs in time 𝑂 (𝑛).

The remainder of the paper is organized as follows. In Section 2.2 we provide a brief
technical introduction to the quantum Tanner codes construction of asymptotically
good qLDPC codes. There we present a terse, but self-contained, description of
all the ingredients necessary to follow the rest of the paper. In Section 2.3 we
formally define the decoding problem and present the overview of our decoder for
the quantum Tanner codes. We also work out basic properties and consequences of
our decoder in this section. Section 2.4 contains the technical bulk of the paper, and
presents the main proof of the correctness of the decoder. Finally, in Section 2.5 we
provide a summary of our results and conclude with some open problems. We also
include a technical appendix detailing the existence of the dual tensor codes with
sufficiently high robustness parameter (Δ3/2+𝜀) necessary for the proof.

2.2 Quantum Tanner codes
In this section, we review some coding theory background and summarize the
construction of quantum Tanner codes by Leverrier and Zémor [9].

2.2.1 Classical linear codes
In this subsection we quickly review the necessary classical coding background. A
classical linear code is a 𝑘-dimensional subspace 𝐶 ⊆ F𝑛2, which is often specified
by a parity check matrix 𝐻 ∈ F(𝑛−𝑘)×𝑛2 such that 𝐶 = ker𝐻. Equivalently, the code
can also be specified as the column space of a generator matrix 𝐺 ∈ F𝑛×𝑘2 , such that
𝐶 = col𝐺. The parameter 𝑛 is called the blocklength of the code. The number
of encoded bits is 𝑘 and 𝜌 = 𝑘/𝑛 is the rate of the code. The number of errors
that the code can correct is determined by the distance of 𝐶, which is given by the
minimum Hamming weight of a nonzero codeword: 𝑑 = min𝑥∈𝐶\{0} |𝑥 |. Sometimes,
we consider the relative distance 𝛿 = 𝑑/𝑛. We say that such a code has parameters
[𝑛, 𝑘, 𝑑].



20

Given a 𝐷-regular (multi)graph G = (𝑉, 𝐸) and a code 𝐶0 of blocklength 𝐷, we
can define the classical Tanner code 𝐶 = 𝑇 (G, 𝐶0) as follows. The bits of 𝐶 are
placed on the edges of G, so it is a code of length 𝑛 = |𝐸 |. For 𝑥 ∈ F𝐸2 , define
the local view of 𝑥 at a vertex 𝑣 ∈ 𝑉 to be 𝑥 |𝐸 (𝑣) , which is the restriction of 𝑥 to
𝐸 (𝑣), the set of edges incident to 𝑣. Then the codewords of 𝐶 are those 𝑥 ∈ F𝐸2
such that 𝑥 |𝐸 (𝑣) ∈ 𝐶0 for every 𝑣 ∈ 𝑉 , where we choose some way of identifying
every edge-neighborhood of a vertex with the bits of the local code 𝐶0. If 𝐻0 is the
parity check matrix of 𝐶0, then the parity check matrix of 𝐶 will have rows which
are equal to a row of 𝐻0 on an edge-neighborhood of a vertex and extended to be
zero everywhere else. In the Tanner code construction, the code 𝐶0 is often called
the local, or base, code.

The dual of a classical linear code 𝐶, denoted 𝐶⊥, is the subspace of all vectors
orthogonal to the codewords of 𝐶; that is,

𝐶⊥ = {𝑦 ∈ F𝑛2 : ∀𝑥 ∈ 𝐶, ⟨𝑥, 𝑦⟩ = 0} , (2.1)

where the inner product is taken modulo 2. If we have two classical codes 𝐶𝐴 =

ker𝐻𝐴 ⊆ F𝑛2 and 𝐶𝐵 = ker𝐻𝐵 ⊆ F𝑛2, we can consider their tensor code and dual
tensor code.

Definition 1 (Tensor and Dual Tensor Codes). The tensor code of 𝐶𝐴 and 𝐶𝐵 is the
usual tensor product 𝐶𝐴 ⊗ 𝐶𝐵 ⊆ F𝑛2 ⊗ F

𝑛
2. We can naturally interpret F𝑛2 ⊗ F

𝑛
2 as the

set of binary 𝑛 × 𝑛 matrices, and in this view, 𝐶𝐴 ⊗ 𝐶𝐵 is identified with the set of
matrices 𝑋 such that every column of 𝑋 is a codeword of 𝐶𝐴 and every row of 𝑋 is
a codeword of 𝐶𝐵.

The dual tensor code of𝐶𝐴 and𝐶𝐵 is (𝐶⊥
𝐴
⊗𝐶⊥

𝐵
)⊥ ⊆ F𝑛2⊗F

𝑛
2, which can equivalently

be expressed as (𝐶⊥
𝐴
⊗ 𝐶⊥

𝐵
)⊥ = 𝐶𝐴 ⊗ F𝑛2 + F

𝑛
2 ⊗ 𝐶𝐵. Codewords of the dual tensor

code are precisely the set of matrices 𝑋 such that 𝐻𝐴𝑋𝐻
T
𝐵
= 0.

Note that if𝐶𝐴 is a [𝑛𝐴, 𝑘𝐴, 𝑑𝐴] code and𝐶𝐵 is a [𝑛𝐵, 𝑘𝐵, 𝑑𝐵] code, then their tensor
code is a [𝑛𝐴𝑛𝐵, 𝑘𝐴𝑘𝐵, 𝑑𝐴𝑑𝐵] code. Their dual tensor code is a [𝑛𝐴𝑛𝐵, 𝑛𝐴𝑘𝐵+𝑛𝐵𝑘𝐴−
𝑘𝐴𝑘𝐵,min(𝑑𝐴, 𝑑𝐵)] code. Moreover, we have 𝐶𝐴 ⊗ 𝐶𝐵 ⊆ (𝐶⊥𝐴 ⊗ 𝐶

⊥
𝐵
)⊥.

2.2.2 Quantum CSS codes
A quantum stabilizer code is a subspace C ⊆

(
C2)⊗𝑛 that is the +1-eigenspace of an

abelian subgroup 𝑆 of the 𝑛-qubit Pauli group. If 𝑆 can be generated by stabilizers
that are products of 𝑋 operators and stabilizers that are products of 𝑍 operators, we
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say that C is a CSS code. In this case, we can associate with C two classical codes
C𝑋 = ker𝐻𝑋 and C𝑍 = ker𝐻𝑍 ⊆ F𝑛2, where the rows of 𝐻𝑋 (resp. 𝐻𝑍 ) specify the 𝑋
(resp. 𝑍) type stabilizer generators. The property that 𝑋 and 𝑍 generators commute
translates to the condition 𝐻𝑋𝐻T

𝑍
= 0, or equivalently C⊥

𝑍
⊆ C𝑋 .

We can state the code parameters of a CSS code in terms of its underlying classical
codes: if C𝑋 (resp. C𝑍 ) has 𝑘𝑋 (resp. 𝑘𝑍 ) encoded bits, then the number of encoded
qubits is 𝑘 = 𝑘𝑋 +𝑘𝑍−𝑛. The distance of the CSS code is given by 𝑑 = min{𝑑𝑋 , 𝑑𝑍 },
where

𝑑𝑋 = min
𝑥∈C𝑍\C⊥𝑋

|𝑥 | , 𝑑𝑍 = min
𝑥∈C𝑋\C⊥𝑍

|𝑥 | . (2.2)

We say that such a quantum code has parameters [[𝑛, 𝑘, 𝑑]]. A family of quantum
codes is called asymptotically good (or simply good) if the rate 𝜌 = 𝑘/𝑛 and the
relative distance 𝛿 = 𝑑/𝑛 are bounded below by a non-zero constant. The code
family is said to be low-density parity check (LDPC) if it can be defined with
stabilizer generators that have at most constant weight, with each qubit being in the
support of at most a constant number of generators. This is the case if each row and
column of 𝐻𝑋 and 𝐻𝑍 have at most constant weight.

2.2.3 Left-Right Cayley complexes
Let 𝐺 be a finite group with a symmetric generating set 𝐴, i.e., 𝐴 = 𝐴−1. The left1
Cayley graph Cay(𝐴, 𝐺) is the graph with vertex set 𝐺 and edge set {(𝑔, 𝑎𝑔) : 𝑔 ∈
𝐺, 𝑎 ∈ 𝐴}. Let 𝐴 and 𝐵 be two symmetric generating for 𝐺 of size |𝐴| = |𝐵 | = Δ.
The generating sets 𝐴 and 𝐵 are said to satisfy the Total No-Conjugacy condition
(TNC) [16] if we have 𝑎𝑔 ≠ 𝑔𝑏 for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, and 𝑔 ∈ 𝐺.

Given a group 𝐺 and two symmetric generating sets 𝐴 and 𝐵 satisfying TNC,
we define their double-covered left-right Cayley complex Cay2(𝐴, 𝐺, 𝐵) as the 2-
dimensional complex consisting of:

1. Vertices 𝑉 = 𝑉0 ⊔ 𝑉1 = 𝐺 × {0} ⊔ 𝐺 × {1}. There are a total of |𝑉 | = 2|𝐺 |
vertices, with |𝑉0 | = |𝑉1 | = |𝐺 |.

2. Edges 𝐸 = 𝐸𝐴 ⊔ 𝐸𝐵, where

𝐸𝐴 = {((𝑔, 0), (𝑎𝑔, 1)) : 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴} , (2.3)

𝐸𝐵 = {((𝑔, 0), (𝑔𝑏, 1)) : 𝑔 ∈ 𝐺, 𝑏 ∈ 𝐵} . (2.4)

1There is also the notion of a right Cayley graph Cay(𝐺, 𝐴) where the generator set acts on the
right, with edges {(𝑔, 𝑔𝑎) : 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴}.
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𝑣 𝑎1

𝑏1

𝑎2
𝑎3

𝑏2

𝑏3

𝑏1 𝑏2 𝑏3

𝑎1

𝑎2

𝑎3

Figure 2.1: The local view of a vertex 𝑣 and its identification with the set 𝐴 × 𝐵.
Considering the “book” defined by the edge 𝑏1 picks out a column, 𝐴× 𝑏1 (dashed).
Specifying entries of 𝐴 × 𝐵 picks out specific faces (red, blue) of the local view,
which can be regarded as entries of the corresponding matrix.

Note that 𝐴-type edges are defined by a left-action of the generators, while
that 𝐵-type edges are defined by a right-action of the generators. There are a
total of 2Δ|𝐺 | edges, with |𝐸𝐴 | = |𝐸𝐵 | = Δ|𝐺 |.

3. Squares 𝑄 defined by quadruplets of vertices:

𝑄 = {{(𝑔, 0), (𝑎𝑔, 1), (𝑔𝑏, 1), (𝑎𝑔𝑏, 0)} : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑔 ∈ 𝐺} . (2.5)

There are a total of |𝑄 | = Δ2 |𝐺 |/2 squares.

Note that the graph defined by (𝑉, 𝐸𝐴) is precisely the double cover of the left
Cayley graph Cay(𝐴, 𝐺), and the graph defined by (𝑉, 𝐸𝐵) is the double cover the
right Cayley graph Cay(𝐺, 𝐵). The full 1-skeleton of Cay2(𝐴, 𝐺, 𝐵) is a bipartite
graph G∪ = (𝑉, 𝐸).

By TNC, each square is guaranteed to have 4 distinct vertices, so the graph G∪ is a
simple 2Δ-regular graph. There are Δ2 squares incident to a given vertex, and the
set of faces incident to a given vertex can be naturally identified with the set 𝐴 × 𝐵.
Figure 2.1 illustrates the faces incident to a given vertex in the left-right Cayley
complex.

Based on the structure of the graph G∪, each face 𝑞 ∈ 𝑄 can be naturally identified
with its diagonal connecting its corners in 𝑉0. Through this identification, we can
define a graph G□

0 capturing the incidence structure of faces in the complex. The
graph G□

0 = (𝑉0, 𝑄) is defined with vertex set𝑉0 = 𝐺 × {0}, where 𝑞 ∈ 𝑄 is present
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𝑣 ∈ 𝑉1𝑣′ ∈ 𝑉0

lr

lr

lr

lr
lr
lr
lr

𝑋0

𝑋2

𝑋4

𝑋6

𝑋0

𝑋1

𝑋5

𝑋6

𝑋1

𝑋2

𝑋3

𝑋6

𝑍1

𝑍3

𝑍5

𝑍0

𝑍3

𝑍6

𝑍1

𝑍4

𝑍6

𝑍1

𝑍2

𝑍3

𝑍6

Figure 2.2: The restriction of checks to the faces incident to an edge (𝑣′, 𝑣) ∈ G∪.
The columns on the left indicate the various nontrivial restrictions of 𝑍 stabilizers
from the 𝑣′ local view, which are codewords of𝐶𝐴. The columns on the right indicate
the various 𝑋 stabilizer restrictions from the 𝑣 local view, which are codewords of
𝐶⊥
𝐴

.

as an edge (𝑣, 𝑣′) in G□
0 if and only if 𝑣 and 𝑣′ appear as opposite 𝑉0-corners of the

square 𝑞. Likewise, each face 𝑞 ∈ 𝑄 can be identified with its diagonal connecting
its corners in 𝑉1. This similarly defines a graph G□

1 = (𝑉1, 𝑄). Note that G□
0 and

G□
1 are Δ2-regular multigraphs.

2.2.4 Quantum Tanner codes construction
We now describe the construction of quantum Tanner codes from [9]. The con-
struction is dependent on the choice of a double-covered left-right Cayley complex
Cay2(𝐴, 𝐺, 𝐵) with generating sets of size |𝐴| = |𝐵| = Δ satisfying TNC. It is
also dependent on fixed classical codes 𝐶𝐴, 𝐶𝐵 of blocklength Δ, which define local
codes 𝐶0 = 𝐶𝐴 ⊗ 𝐶𝐵 and 𝐶1 = 𝐶⊥

𝐴
⊗ 𝐶⊥

𝐵
.

Given the data above, a quantum Tanner code C is then defined as the CSS code
specified by the two classical Tanner codes C𝑍 = 𝑇 (G□

0 , 𝐶
⊥
0 ) and C𝑋 = 𝑇 (G□

1 , 𝐶
⊥
1 ).

More explicitly, qubits are placed on the squares of the left-right Cayley complex,
and the 𝑍 (resp. 𝑋) type stabilizer generators are codewords of the local code
𝐶𝐴 ⊗ 𝐶𝐵 (resp. 𝐶⊥

𝐴
⊗ 𝐶⊥

𝐵
) on the Δ2 squares incident to each vertex 𝑣 ∈ 𝑉0 (resp.

𝑣 ∈ 𝑉1). The incidence structure of the left-right Cayley complex ensures that the
𝑋 and 𝑍 stabilizers commute (see Figure 2.2).

Note that C is a qLDPC code: each stabilizer generator acts on a subset of the local
view𝑄(𝑣) of Δ2 qubits, and each qubit is acted on only by the stabilizers in the local
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views of its four corners. It is proven in [9] that for certain choices of the left-right
Cayley complex and local codes, this construction yields a good family of quantum
codes:

Theorem 2 (Theorem 16 of [9]). Fix 𝜀 ∈ (0, 1/2), 𝜌 ∈ (0, 1/2), and 𝛿 ∈ (0, 1/2)
with 𝛿 < ℎ−1(𝜌), where ℎ(𝑥) = −𝑥 log2 𝑥 − (1 − 𝑥) log2(1 − 𝑥) is the binary
entropy function. For some Δ sufficiently large, there exist classical codes 𝐶𝐴, 𝐶𝐵
of blocklength Δ, rates 𝜌 and 1 − 𝜌, respectively, and relative distances at least
𝛿, as well as an infinite family of left-right Cayley complexes Cay2(𝐴, 𝐺, 𝐵) with
|𝐺 | → ∞ and symmetric generating sets 𝐴, 𝐵 of size |𝐴| = |𝐵 | = Δ satisfying TNC,
such that the quantum Tanner code defined above has parameters

[[𝑛 = |𝑄 |, 𝑘 ≥ (1 − 2𝜌)2𝑛, 𝑑 ≥ 𝛿

4Δ3/2+𝜀 𝑛]] .

2.2.5 Expanding Cayley complex and robust local codes
In this subsection, we specify the technical properties of the Cayley complex and
local codes that are used in the construction of good quantum Tanner codes described
previously.

For a 𝐷-regular graph G = (𝑉, 𝐸), the largest eigenvalue of its adjacency matrix
is 𝜆1 = 𝐷, and we let 𝜆(G) = 𝜆2 denote its second largest eigenvalue. The value
of 𝜆(G) is related to the expansion properties of the graph, as seen in the expander
mixing lemma below. For subsets 𝑆, 𝑇 ⊆ 𝑉 , let 𝐸 (𝑆, 𝑇) be the multiset of edges
between 𝑆 and 𝑇 , where edges in 𝑆 ∩ 𝑇 are counted twice. We have the following:

Theorem 3 (Expander mixing lemma). For a 𝐷-regular graph G = (𝑉, 𝐸) and
subsets 𝑆, 𝑇 ⊆ 𝑉 ,

|𝐸 (𝑆, 𝑇) | ≤ 𝐷

|𝑉 | |𝑆 | |𝑇 | + 𝜆(G)
√︁
|𝑆 | |𝑇 | . (2.6)

The groups𝐺 and generating sets 𝐴, 𝐵 in Theorem 2 are chosen so that the resulting
left-right Cayley complex has good expansion.

Lemma 4 (Claim 6.7 of [16]). Let 𝑞 be an odd prime power and 𝐺 = PSL2(𝑞𝑖).
There exist two symmetric generating sets 𝐴, 𝐵 of size |𝐴| = |𝐵 | = Δ = 𝑞 + 1 and
satisfying TNC such that the resulting Cayley graphs Cay(𝐴, 𝐺),Cay(𝐺, 𝐵) are
Ramanujan, i.e., have second largest eigenvalue 𝜆2 ≤ 2

√
Δ.

For 𝐺, 𝐴, 𝐵 as above, it can be shown [9] that the relevant graphs in the quantum
Tanner codes construction have the parameters specified in Table 2.1.
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Graph Degree Number of vertices Second eigenvalue
G∪ 2Δ 2|𝐺 | = |𝑉0 | + |𝑉1 | ≤ 4

√
Δ

G□
0 Δ2 |𝐺 | = |𝑉0 | ≤ 4Δ
G□

1 Δ2 |𝐺 | = |𝑉1 | ≤ 4Δ

Table 2.1: Graph parameters

The classical codes used in the construction of quantum Tanner codes are required
to satisfy a robustness property of their dual tensor code, introduced in [9].

Definition 5 (𝑤-Robustness). Let 𝐶𝐴, 𝐶𝐵 ⊆ F𝑛2 be classical codes with distances 𝑑𝐴
and 𝑑𝐵, respectively. We say that the dual tensor code 𝐶𝐴𝐵 = 𝐶𝐴 ⊗ F𝑛2 + F

𝑛
2 ⊗ 𝐶𝐵

is 𝑤-robust if every codeword 𝑋 ∈ 𝐶𝐴𝐵 with |𝑋 | ≤ 𝑤 is supported on the union of
at most |𝑋 |/𝑑𝐴 non-zero columns and |𝑋 |/𝑑𝐵 non-zero rows. That is, there exist
rows 𝐴′ with |𝐴′| ≥ 𝑛 − |𝑋 |/𝑑𝐵 and columns 𝐵′ with |𝐵′| ≥ 𝑛 − |𝑋 |/𝑑𝐴 such that
𝑋 |𝐴′×𝐵′ = 0.

If the dual tensor code of 𝐶𝐴 and 𝐶𝐵 is 𝑤-robust, then their tensor code satisfies a
property similar to robust testability defined in [20].

Proposition 6 (Proposition 6 of [9]). Let 𝐶𝐴, 𝐶𝐵 ⊆ F𝑛2 be classical codes with
distances 𝑑𝐴 and 𝑑𝐵, respectively, such that their dual tensor code is 𝑤-robust for
𝑤 ≤ 𝑑𝐴𝑑𝐵/2. Then

𝑑 (𝑥, 𝐶𝐴 ⊗ 𝐶𝐵) ≤
3
2

(
𝑑 (𝑥, 𝐶𝐴 ⊗ F𝑛2) + 𝑑 (𝑥, F

𝑛
2 ⊗ 𝐶𝐵)

)
(2.7)

whenever 𝑑 (𝑥, 𝐶𝐴 ⊗ F𝑛2) + 𝑑 (𝑥, F
𝑛
2 ⊗ 𝐶𝐵) ≤ 𝑤.

In Appendix 2.A, we prove Theorem 7 below, which shows that for sufficiently large
blocklengths, there exist dual tensor codes of sufficiently large robustness.

Theorem 7. Fix constants 𝜀 ∈ (0, 1/28), 𝜌 ∈ (0, 1/2), and 𝛿 ∈ (0, 1/2) such that
𝛿 < ℎ−1(𝜌), where ℎ(𝑥) is the binary entropy function. For all sufficiently large Δ,
there exist classical codes 𝐶𝐴, 𝐶𝐵 of length Δ and rates 𝜌𝐴 = 𝜌 and 𝜌𝐵 = 1− 𝜌 such
that such that both the dual tensor code of 𝐶𝐴 and 𝐶𝐵 and the dual tensor code of
𝐶⊥
𝐴

and 𝐶⊥
𝐵

are Δ3/2+𝜀-robust and have distances at least 𝛿Δ.

With these ingredients, we can describe the construction in Theorem 2 in more
detail. We first choose a prime power 𝑞 = Δ − 1 sufficiently large such that we can
use Theorem 7 to find 𝐶𝐴, 𝐶𝐵 with robustness parameter Δ3/2−𝜀. Then the infinite
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family of left-right Cayley complexes is defined using 𝐺 = PSL2(𝑞𝑖) for increasing
values of 𝑖 and 𝐴, 𝐵 as in Lemma 4. Note that the sizes of the groups satisfy
|𝐺 | = 1

2𝑞
𝑖 (𝑞2𝑖 − 1) → ∞.

We remark that in [9], a version of Theorem 7 was shown for robustness parameter
Δ3/2−𝜀, but in the proof of correctness of our decoder, a larger parameter Δ3/2+𝜀

is needed. Because the proof of Theorem 2 given in [9] is valid even for negative
values of 𝜀, the existence of dual tensor codes with higher robustness implies a larger
distance of the code itself, 𝑑 ≥ 𝛿

4Δ3/2−𝜀 𝑛. At the same time, the larger robustness
parameter eliminates the need for resistance to puncturing required in [9], thus
simplifying the overall description of the quantum Tanner code.

2.3 Decoding algorithm
In this section, we give a description of our decoder for quantum Tanner codes. The
quantum Tanner codes we consider are those described in the previous section with
distance 𝑑 ≥ 𝛿

4Δ3/2−𝜀 𝑛, constructed using classical dual tensor codes of robustness
Δ3/2+𝜀 as the local codes. In the decoding problem, an unknown (Pauli) error is
applied to the code. We may only extract the syndrome of the error by measuring
stabilizers, and based on the syndrome, apply corrections. We succeed in decoding
if the correction we applied is equal to the error, up to a stabilizer (which has no
effect on the codespace). Because quantum Tanner codes are CSS codes, it suffices
to consider 𝑋 and 𝑍 errors separately. If we have an algorithm to correct for errors
that are purely a product of 𝑋 operators and another one for a product of 𝑍 operators,
a general error will be corrected after running both algorithms. Furthermore, since
the code is symmetric between 𝑋 and 𝑍 , we just consider the problem of correcting
𝑍 errors.

Definition 8 (Decoding Problem). Let 𝑒 ∈ F𝑄2 be a 𝑍 error. Given the syndrome
𝜎 = 𝐻𝑋𝑒 as input, the task of the decoding problem is to output a correction 𝑓 ∈ F𝑄2
such that 𝑒 − 𝑓 ∈ C⊥

𝑍
.

Our decoder is similar in flavor to the small-set-flip decoder used on certain hyper-
graph product codes [11]. Small-set-flip is an iterative decoder, where in each step
the decoder tries to decrease the syndrome weight by looking for corrections within
the support of a 𝑍 generator. If the initial error weight is less than the code distance,
then such a correction can always be found, and this implies that the decoder can
successfully errors of weight less than a constant fraction of the code distance [11].
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In our case, the syndrome weight is not a very well-defined concept due to the
presence of the local codes. Because the 𝑋 stabilizers are generated by local tensor
codes 𝐶1 = 𝐶⊥

𝐴
⊗ 𝐶⊥

𝐵
, defining the Hamming weight of the syndrome involves

choosing a basis for 𝐶1. Unfortunately, there is no canonical choice of basis, and
different choices will give different Hamming weights of a given error. We address
this issue by introducing the concept of a potential function. Recall that an element
𝑥 ∈ F𝑄2 is a codeword of C𝑋 = 𝑇 (G□

1 , 𝐶
⊥
1 ) if and only if every local view 𝑥 |𝑄(𝑣) ,

𝑣 ∈ 𝑉1 is a codeword of 𝐶⊥1 . We define the potential by the distance of the local
view to the codespace, which can be inferred from the syndrome. More formally,
we have the following definition:

Definition 9 (Local and Global Potential Functions). Let 𝑒 ∈ F𝑄2 be an error. Define
the local potential at a vertex 𝑣 ∈ 𝑉1 by the Hamming distance

𝑈𝑣 (𝑒) = 𝑑
(
𝑒 |𝑄(𝑣) , 𝐶⊥1

)
. (2.8)

The global potential is defined as

𝑈 (𝑒) =
∑︁
𝑣∈𝑉1

𝑈𝑣 (𝑒) . (2.9)

The local potential is the minimum weight of a correction that is needed to take the
local view of the error (or corrupted codeword) back into the local codespace 𝐶⊥1 .
Thus, it is a quantity that can be computed just from the syndrome. We will abuse
notation and also write 𝑈𝑣 (𝜎) = 𝑈𝑣 (𝑒) and 𝑈 (𝜎) = 𝑈 (𝑒). Note that in absence
of a local code, in other words a local code where the codewords are the vectors of
even Hamming weight, the local potential is simply either 0 or 1 depending on if the
constraint is satisfied, so it coincides with the Hamming weight of the syndrome.

Our decoding algorithm (Algorithm 2.1) runs by looking for bits to flip in local
views that will decrease the global potential.

We will show that Algorithm 2.1 succeeds in the decoding problem if the initial
error has weight at most a constant fraction of code distance; that is, it can correct
all errors up to some linear weight. The main difficulty of the proof is in showing
that there always exists a vector 𝑧 that decreases the global potential when flipped.
This is captured in the following theorem, which we prove in the next section.

Theorem 10. Let 𝑒 ∈ F𝑄2 be an error of weight |𝑒 | ≤ 𝛿𝑛/6Δ3/2−𝜀 with syndrome
𝜎 = 𝐻𝑋𝑒. Then there exists 𝑣 ∈ 𝑉0 ∪ 𝑉1 and some 𝑧 ∈ F𝑄2 supported on the local
view 𝑄(𝑣), such that𝑈 (𝜎 + 𝐻𝑋 𝑧) < 𝑈 (𝜎).
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Algorithm 2.1 Decoder for quantum Tanner codes
Input: A syndrome 𝜎 = 𝐻𝑋𝑒 ∈ F|𝑉1 | dim𝐶1

2 of an error 𝑒 ∈ F𝑄2 .
Output: A correction 𝑓 ∈ F𝑄2 for 𝑒.
𝑓 ← 0
𝑈 ← 𝑈 (𝜎)
while𝑈 > 0 do

Look for a vector 𝑧 ∈ F𝑄2 supported on a local view 𝑄(𝑣), 𝑣 ∈ 𝑉0 ∪ 𝑉1 such
that𝑈 (𝜎 + 𝐻𝑋 𝑧) < 𝑈

𝑓 ← 𝑓 + 𝑧
𝜎 ← 𝜎 + 𝐻𝑋 𝑧
𝑈 ← 𝑈 (𝜎)

end while
return 𝑓

From this property, we can show that the algorithm will output a valid correction.
We do this by proving a statement that applies to a more general class of small-set-
flip type decoders based on a potential function. The proof follows the same idea as
that of Lemma 10 in [11].

Lemma 11. Let 𝛼 < 1, 𝑠, 𝑐 be constants. Let C be an [[𝑛, 𝑘, 𝑑]] quantum CSS
code defined by the classical codes C𝑋 ,C𝑍 ⊆ F𝑛2. Let 𝑈 : F𝑛2 → Z≥0 be a (global)
potential function that is constant on cosets of C𝑋 , satisfies 𝑈 (𝑒) = 0 if and only
if 𝑒 ∈ C𝑋 , and 𝑈 (𝑒) ≤ 𝑠 |𝑒 | for all 𝑒 ∈ F𝑛2. Suppose we have an iterative decoder
that, given the syndrome of a non-zero 𝑍 error of weight less than 𝛼𝑑, can decrease
the potential by applying an 𝑋 operator of weight at most 𝑐. Then the decoder can
successfully correct errors of weight less than 𝛼𝑑/(1 + 𝑠𝑐).

Proof. Let 𝑥′ = 𝑥 + 𝑒 ∈ F𝑛2 be a corrupted codeword with 𝑥 ∈ C𝑋 and error 𝑒 of
weight |𝑒 | < 𝛼𝑑

1+𝑠𝑐 . The decoder outputs a sequence of corrections 0 = 𝑓0, 𝑓1, 𝑓2, . . .

such that the resulting errors 𝑒𝑖 = 𝑒+ 𝑓𝑖 satisfy |𝑒𝑖+1−𝑒𝑖 | ≤ 𝑐 and𝑈 (𝑒𝑖)−𝑈 (𝑒𝑖+1) ≥ 1
for all 𝑖. Suppose we have decoded up to step 𝑗 . Then

|𝑒 𝑗 | ≤ |𝑒0 | + |𝑒1 − 𝑒0 | + · · · + |𝑒 𝑗 − 𝑒 𝑗−1 | (2.10)

≤ |𝑒 | + 𝑐 + · · · + 𝑐 (2.11)

≤ |𝑒 | + 𝑐(𝑈 (𝑒0) −𝑈 (𝑒1)) + · · · + 𝑐(𝑈 (𝑒 𝑗−1) −𝑈 (𝑒 𝑗 )) (2.12)

= |𝑒 | + 𝑐(𝑈 (𝑒0) −𝑈 (𝑒 𝑗 )) (2.13)

≤ (1 + 𝑠𝑐) |𝑒 | (2.14)

< 𝛼𝑑 . (2.15)
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So either 𝑈 (𝑒 𝑗 ) = 0, or the decoder can find the next correction 𝑓 𝑗+1 to produce
𝑒 𝑗+1. Eventually, the decoder will output 𝑒𝐽 such that 𝑈 (𝑒𝐽) = 0. In other words,
𝑒𝐽 ∈ C𝑋 . But since |𝑒𝐽 | < 𝛼𝑑 < 𝑑, it must be in C⊥

𝑍
, and we have decoded to the

correct codeword.

We can now state our main theorems.

Theorem 12. Fix 𝜀 ∈ (0, 1/28), 𝜌 ∈ (0, 1/2), and 𝛿 ∈ (0, 1/2) with 𝛿 < ℎ−1(𝜌),
where ℎ(𝑥) is the binary entropy function. For some Δ sufficiently large, there is an
infinite family of quantum Tanner codes with parameters

[[𝑛, 𝑘 ≥ (1 − 2𝜌)2𝑛, 𝑑 ≥ 𝛿

4Δ3/2−𝜀 𝑛]]

with 𝑛→∞, such that for each 𝑛, Algorithm 2.1 can correct all errors of weight

|𝑒 | ≤ 𝛿𝑛

6Δ3/2−𝜀 (1 + 2Δ2)
. (2.16)

Proof. The infinite family of quantum Tanner codes is as described in Section 2.2
(with distance parameter from the improved robustness of the classical local codes).
To prove the decodable distance, consider the parameters in Lemma 11. Every bit
in an error can at most increase the local potentials of the two incident 𝑉1 vertices
by one each. This implies the bound 𝑈 (𝑒) ≤ 2|𝑒 |, so we can take 𝑠 = 2. Since
at each step, the algorithm flips sets within a local view, we set 𝑐 = Δ2. From
Theorem 10, the decoder can reduce the global potential when the error has weight
up to 𝛼𝑑 = 𝛿𝑛/6Δ3/2−𝜀. The theorem then follows from Lemma 11.

Theorem 13. Algorithm 2.1 runs in time 𝑂 (𝑛).

Proof. To compute the global potential𝑈, we must compute 𝑂 (𝑛) local potentials.
Each local potential is a function of the constant-sized local view and can be
computed in 𝑂 (1) time by enumerating vectors supported in the local view. At
the same time, we can store the best candidate correction for the local view. Thus,
the initialization runs in time 𝑂 (𝑛).

In each iteration, we apply corrections in a constant-sized region, so only a constant
number of local views and candidate corrections need to be updated for the syndrome
and local potentials by the LDPC property. Each iteration of the algorithm runs in a
constant amount of time, and there can be at most 𝑂 (𝑛) iterations. Hence, the total
runtime of Algorithm 2.1 is 𝑂 (𝑛).



30

The correctness of the decoding algorithm implies a form of soundness for the
quantum code. This notion is a related to local testability but weaker because it only
applies to errors of sufficiently small weight.

Corollary 14 (Soundness). If 𝑒 is an error that is correctable using Algorithm 2.1,
then𝑈 (𝑒) ≥ Δ−2𝑑 (𝑒,C⊥

𝑍
).

Proof. Using Algorithm 2.1, 𝑒 can be corrected to a codeword of C⊥
𝑍

in at most
𝑈 (𝑒) steps. In each step, at most Δ2 bits are flipped. Therefore, we have 𝑑 (𝑒,C⊥

𝑍
) ≤

Δ2𝑈 (𝑒).

Corollary 15 (Threshold). Let 𝑒 ∈ F𝑛2 be a random error with each entry indepen-
dently and identically distributed such that 𝑒𝑖 = 1 with probability 𝑝 and 𝑒𝑖 = 0
with probability 1 − 𝑝. Under this model, the probability that Algorithm 2.1 fails
to return a correction 𝑓 such that 𝑒 + 𝑓 ∈ C⊥

𝑍
is 𝑂 (𝑒−𝑎𝑛), with 𝑎 > 0, so long as

𝑝 < 𝑝∗, where

𝑝∗ ≡ 𝛿

6Δ3/2−𝜀 (1 + 2Δ2)
(2.17)

is a lower bound for the accuracy threshold under independent bit and phase flip
noise.

Proof. By Theorem 12, the decoder is guaranteed to succeed as long as |𝑒 | ≤ 𝑛𝑝∗.
The Hamming weight of 𝑒 is distributed as a Binomial random variable which
concentrates around the mean 𝑛𝑝. For 𝑝∗ > 𝑝, we can use Hoeffding’s inequality
to bound the probability that |𝑒 | > 𝑛𝑝∗ as

Pr ( |𝑒 | > 𝑛𝑝∗) < 𝑒−2𝑛(𝑝∗−𝑝)2 , (2.18)

which completes the proof.

2.4 Proof of Theorem 10
Before beginning the proof of Theorem 10, we first elaborate on some conventions
and notation. In the remainder of the paper we will adopt the convention that a
vector 𝑥 ∈ F𝑄2 is treated equivalently as the subset of𝑄 indicated by the vector. This
allows us to write expressions such as 𝑥 ∪ 𝑦 ∈ F𝑄2 to denote the vector defined by
the union of 𝑥, 𝑦 ⊆ 𝑄.

We will often need to consider the restriction of a vector 𝑥 ∈ F𝑄2 to the set of faces
𝑄(𝑣) incident to some vertex 𝑣 ∈ 𝑉 . This is called the local view of 𝑥 at 𝑣. In a
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convenient abuse of notation, we will equivalently consider local views as elements
of F𝑄(𝑣)2 , or as elements of F𝑄2 with support on 𝑄(𝑣). For simplicity of notation, we
write local views at 𝑣 ∈ 𝑉 with a subscript 𝑣, for example 𝑥𝑣 = 𝑥 |𝑄(𝑣) .

By the TNC condition, 𝑄(𝑣) is in bĳection with 𝐴 × 𝐵 so that each local view
naturally defines a Δ × Δ matrix, i.e., 𝑥𝑣 ∈ FΔ×Δ2 . We will label the faces of 𝑄(𝑣)
by pairs of vertices 𝑣1, 𝑣2, where 𝑣1 is connected to 𝑣 by an edge in 𝐴, and 𝑣2 to 𝑣
by an edge in 𝐵. In this case, we denote the unique face defined by these vertices
by [𝑣1, 𝑣2] ∈ 𝑄(𝑣) and we say that 𝑣1 is a row vertex for 𝑣, and that 𝑣2 is a column
vertex. We will use the notation 𝑥𝑣 [𝑣1, 𝑣2] to denote the entry of 𝑥𝑣 specified by
the face [𝑣1, 𝑣2]. Likewise, we will adopt the notation 𝑥𝑣 [𝑣1, ·] to denote the row of
𝑥𝑣 indexed by the row vertex 𝑣1, and similarly 𝑥𝑣 [·, 𝑣2] to denote the column of 𝑥𝑣
indexed by 𝑣2. Given neighboring vertices 𝑣 ∈ 𝑉0 and 𝑣′ ∈ 𝑉1, the shared row (resp.
column) of the local views 𝑥𝑣 and 𝑥𝑣′ can be equivalently denoted by either 𝑥𝑣 [𝑣′, ·]
or 𝑥𝑣′ [𝑣, ·] (resp. 𝑥𝑣 [·, 𝑣′] or 𝑥𝑣′ [·, 𝑣]).

Let us now define the notion of a local minimum weight correction and other
associated objects.

Definition 16. Let 𝑒 ∈ F𝑄2 be a 𝑍 error. For each vertex 𝑣 ∈ 𝑉1, we define 𝑐𝑣 (𝑒) as a
closest codeword in𝐶⊥1 to the local view 𝑒𝑣. If there are multiple closest codewords,
then we may fix an arbitrary one.

For each vertex 𝑣 ∈ 𝑉1, let 𝑅+𝑣 (𝑒) = 𝑒𝑣 − 𝑐𝑣 (𝑒) ⊆ 𝑄(𝑣). Then we call 𝑅+𝑣 (𝑒) the
local minimum weight correction at the vertex 𝑣. We will denote the collection of
all local minimum weight corrections by R(𝑒) = {𝑅+𝑣 (𝑒)}𝑣∈𝑉1 . We will also define
the total correction

𝑅(𝑒) =
⋃
R(𝑒) =

⋃
𝑣∈𝑉1

𝑅+𝑣 (𝑒) . (2.19)

Note that the local potential at 𝑣 is given by

𝑈𝑣 (𝑒) = 𝑑
(
𝑒𝑣, 𝐶

⊥
1
)
= |𝑒𝑣 − 𝑐𝑣 (𝑒) | = |𝑅+𝑣 (𝑒) | , (2.20)

and our goal is to reduce the global potential 𝑈 (𝑒) = ∑
𝑣∈𝑉1 𝑈𝑣 (𝑒) at every step of

the decoding. When the error 𝑒 is understood, we will often simply write 𝑐𝑣, 𝑅+𝑣 ,
and 𝑅 for short.
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We can now proceed with the proof of Theorem 10, which we split into three cases:

1. In the first case, we consider whether flipping single qubits can decrease the
total potential. If this is not the case, it will introduce extra structure in the
set 𝑅.

2. In the second case, we ask if 𝑅 has high overlap with a codeword of 𝐶⊥1 in a
𝑉1 local view. If so, it will allow us to flip a set of qubits that together can
decrease the total potential.

3. The third and most complicated case is the one complementary to the first
two, where no single qubit flip can decrease the total potential, and where 𝑅
has low overlap with all local codewords. The intuition here is that 𝑅 cannot
be a very large set, so every𝑉1 local view of the error is close to the local code.
Because the error “looks like” a codeword, we are able to apply reasoning
similar to the local minimality argument in the proof of the distance of the
code. In essence, the expansion of the graph allows us to find a special 𝑉0

vertex whose local view contains a flip-set to decrease the total potential.

2.4.1 Proof of Cases 1 and 2
In this subsection, we prove Theorem 10 for the first two cases listed above. The
terminology and definitions established in this subsection will also be crucial to the
proof of case 3. To consider the first case, we define the concept of a metastable
configuration.

Definition 17. Let 𝑒 ∈ F𝑄2 be an error. We say that 𝑒 is metastable if flipping any
one qubit 𝑞 ∈ 𝑄 does not decrease the global potential. We also say that R(𝑒)
and 𝑅(𝑒) are metastable if they are obtained from a metastable error 𝑒. Note that
while we only define and use metastability for an error 𝑒 and its configuration of
local minimum weight corrections, the property of metastability is really a property
intrinsic to the underlying syndrome 𝜎.

Note that case 1 pertains precisely to the case when the error 𝑒 is not metastable. If 𝑒
is not metastable then there exists some 𝑞 ∈ 𝑄 which decreases the global potential
and Theorem 10 follows. Therefore, in the remainder of this section we consider
the case that 𝑒 (and hence 𝑅) is metastable.
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𝑅
𝑒
𝑌

Figure 2.3: Subsets of G□
1 indicating 𝑒, 𝑅, and elements of 𝑌 . In the diagram 𝐶⊥1 is

the repetition code (codewords 00000 and 11111). Note that the red edges without
an arrow are in 𝑦, the red edges with an arrow are in 𝑅 ∩ 𝑒, and the undecorated
black edges are just the remaining edges in G□

1 .

Definition 18. Let 𝑒 ∈ F𝑄2 be an error, and let R = {𝑅+𝑣 (𝑒)}𝑣∈𝑉1 be a set of local
minimum weight corrections for 𝑒. We say that R is disjoint if 𝑅+𝑣 (𝑒) ∩ 𝑅+𝑣′ (𝑒) = ∅
for all 𝑣 ≠ 𝑣′.

When R is a disjoint set of corrections, we can think of it as a directed subgraph of
G□

1 by viewing each 𝑅+𝑣 as the set of outgoing edges from 𝑣 (see Figure 2.3). The
local view 𝑅𝑣 is then the set of all edges, incoming or outgoing, incident to 𝑣 in this
directed graph. Note that in this case, the set R completely defines the underlying
directed graph. Conversely, given the directed subgraph, we may uniquely recover
R by taking 𝑅+𝑣 (𝑒) as the set of outgoing edges at each vertex. Therefore we will
identify a disjoint R with the directed subgraph it defines in the following. We can
likewise identify the set of total corrections 𝑅 with the undirected graph underlying
R.

Note that R will always be disjoint when 𝑒 is a metastable error (otherwise flipping
a shared qubit will lower the global potential by 2). For a metastable error, flipping
a qubit 𝑞 = (𝑣, 𝑣′) ∈ 𝑅+𝑣 , which is a directed edge from 𝑣 to 𝑣′, decreases 𝑈𝑣 by
one and increases 𝑈𝑣′ by one. We first prove a lemma which shows that metastable
errors are somewhat rigid under additional bit-flips.

Lemma 19 (𝑅-flipping). Let R(𝑒) be a directed subgraph of G□
1 corresponding

to a set of local minimum weight corrections for a metastable error 𝑒. Suppose
furthermore that for some subset 𝑅̂ ⊆ 𝑅(𝑒), flipping all qubits of 𝑅̂ does not
decrease the global potential. Consider the error 𝑒 + 𝑅̂. Then a valid configuration
R(𝑒 + 𝑅̂) of locally minimum weight corrections for 𝑒 + 𝑅̂ is obtained from R(𝑒) by
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reversing the directions of all edges in 𝑅̂. Moreover, the nearest codewords 𝑐𝑣 at
each vertex remains unchanged, i.e.,

𝑐𝑣 (𝑒) = 𝑒𝑣 + 𝑅+𝑣 (𝑒) = (𝑒 + 𝑅̂)𝑣 + 𝑅+𝑣 (𝑒 + 𝑅̂) = 𝑐𝑣 (𝑒 + 𝑅̂) . (2.21)

Proof. Consider any 𝑣 ∈ 𝑉1. By definition, each 𝑅+𝑣 (𝑒) is a minimum weight
correction to the local code at 𝑣, so 𝑐𝑣 (𝑒) = 𝑒𝑣 + 𝑅+𝑣 (𝑒) and 𝑈𝑣 (𝑒) = |𝑅+𝑣 (𝑒) |. Now
suppose we flip all qubits in 𝑅̂. In the local view of 𝑣, we have

𝑐𝑣 (𝑒) = 𝑒𝑣 + 𝑅̂ ∩𝑄(𝑣) + 𝑅+𝑣 (𝑒) + 𝑅̂ ∩𝑄(𝑣) (2.22)

= (𝑒 + 𝑅̂)𝑣 + 𝑅+𝑣 (𝑒) + 𝑅̂ ∩ 𝑅+𝑣 (𝑒) + 𝑅̂ ∩ 𝑅−𝑣 (𝑒) , (2.23)

where we define 𝑅−𝑣 (𝑒) = 𝑅𝑣 (𝑒)\𝑅+𝑣 (𝑒). Note that 𝑅−𝑣 (𝑒) can be thought of as the
set of incoming edges at 𝑣 in the directed graph defined by R(𝑒). Therefore, we can
bound the weight of the new minimal weight correction for vertex 𝑣 by

𝑈𝑣 (𝑒 + 𝑅̂) ≤ |𝑅+𝑣 (𝑒) + 𝑅̂ ∩ 𝑅+𝑣 (𝑒) + 𝑅̂ ∩ 𝑅−𝑣 (𝑒) | (2.24)

= |𝑅+𝑣 (𝑒) + 𝑅̂ ∩ 𝑅+𝑣 (𝑒) | + |𝑅̂ ∩ 𝑅−𝑣 (𝑒) | (2.25)

= 𝑈𝑣 (𝑒) − |𝑅̂ ∩ 𝑅+𝑣 (𝑒) | + |𝑅̂ ∩ 𝑅−𝑣 (𝑒) | , (2.26)

where the first line follows from equation (2.23) and the second from the disjointness
of the sets 𝑅+𝑣 (𝑒) and 𝑅−𝑣 (𝑒). Note that if equality holds in equation (2.24), then a
valid minimum weight correction for (𝑒 + 𝑅̂)𝑣 is given by

𝑅+𝑣 (𝑒 + 𝑅̂) = 𝑅+𝑣 (𝑒) + 𝑅̂ ∩ 𝑅+𝑣 (𝑒) + 𝑅̂ ∩ 𝑅−𝑣 (𝑒) . (2.27)

The set 𝑅+𝑣 (𝑒 + 𝑅̂) above is obtained from 𝑅+𝑣 (𝑒) by removing all outgoing edges in
𝑅̂ and changing all incoming edges in 𝑅̂ to outgoing edges. Also note that in this
case the nearest codeword remains 𝑐𝑣 (𝑒).

Summing inequality (2.24) for all 𝑣 ∈ 𝑉1 gives a bound on the global potential as

𝑈 (𝑒 + 𝑅̂) ≤
∑︁
𝑣∈𝑉1

𝑈𝑣 (𝑒) −
∑︁
𝑣∈𝑉1

|𝑅̂ ∩ 𝑅+𝑣 (𝑒) | +
∑︁
𝑣∈𝑉1

|𝑅̂ ∩ 𝑅−𝑣 (𝑒) | (2.28)

= 𝑈 (𝑒) − |𝑅̂ ∩ 𝑅(𝑒) | + |𝑅̂ ∩ 𝑅(𝑒) | (2.29)

= 𝑈 (𝑒) , (2.30)

where in the second line we have used the fact that 𝑅(𝑒) =
⊔
𝑣∈𝑉1 𝑅

+
𝑣 (𝑒) =⊔

𝑣∈𝑉1 𝑅
−
𝑣 (𝑒) by metastability. By the assumption of the lemma, 𝑈 (𝑒 + 𝑅̂) ≥ 𝑈 (𝑒).

This means inequality (2.24) must hold with equality for all 𝑣 ∈ 𝑉1. Hence, we have
proven that R(𝑒 + 𝑅̂) can be taken as R(𝑒), but with the directions of edges in 𝑅̂
reversed.
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Remark 20. In the scenario of the 𝑅-flipping lemma, while the error 𝑒 + 𝑅̂ may not
be metastable itself, the set R(𝑒 + 𝑅̂) as defined as in the lemma is still disjoint. This
new set is a valid correction in the sense that each 𝑅+𝑣 (𝑒+ 𝑅̂) gives a minimum weight
correction to the local code — correcting the error (𝑒 + 𝑅̂)𝑣 to 𝑐𝑣 (𝑒 + 𝑅̂) = 𝑐𝑣 (𝑒) —
at every 𝑣 ∈ 𝑉1. Note that the set of total corrections remains invariant in this case,
i.e., 𝑅(𝑒) = 𝑅(𝑒 + 𝑅̂).

In the second case, we assume that 𝑅 has high overlap with a codeword of 𝐶⊥1 . We
formalize this property below.

Definition 21 (Low Overlap). The set 𝑅 is said to have the low-overlap property at
𝑣 ∈ 𝑉1 if for all codewords 𝑐 ∈ 𝐶⊥1 , we have |𝑅𝑣 ∩ 𝑐 | ≤ |𝑐 |/2. We will say that the
set 𝑅 has the low-overlap property if it has the low-overlap property at every 𝑣 ∈ 𝑉1.

Before formally proving case 2, let us first provide some rough intuition. When the
low-overlap property is not satisfied, there exists some codeword 𝑐 ∈ 𝐶⊥1 at some
vertex 𝑣 ∈ 𝑉1 which has large agreement with 𝑅𝑣. Using the 𝑅-flipping Lemma 19,
we may assume without loss of generality that 𝑅+𝑣 = 0. Now imagine flipping the set
𝑅𝑣 ∩ 𝑐. Since 𝑅+𝑣 = 0, every edge in 𝑅𝑣 belongs to a local correction neighboring 𝑣.
Flipping 𝑅𝑣 ∩ 𝑐 will therefore lower the local potential at each of these neighbors by
1. It will also raise the local potential at 𝑣, which was zero before. However, since
𝑅𝑣 has large overlap with 𝑐 it is actually more efficient to apply the correction 𝑐\𝑅𝑣
instead of 𝑅𝑣 ∩ 𝑐. In this case, the local error is pushed out of the neighborhood of
its original nearest codeword 𝑐𝑣 (𝑒) and into the neighborhood of 𝑐𝑣 (𝑒) + 𝑐 instead.
The local potential at 𝑣 is therefore raised by an amount less than 𝑅𝑣 ∩ 𝑐, which
results in an overall lowering of the global potential. Figure 2.4 illustrates the proof
technique.

Lemma 22. Let 𝑅 be metastable. If 𝑅 does not have the low-overlap property,
then there exists 𝑣 ∈ 𝑉1 and a subset 𝑓 ⊆ 𝑄(𝑣) such that flipping the qubits of 𝑓
decreases the total potential.

Proof. Suppose that 𝑅 is metastable and does not have the low-overlap property.
Then there exists some 𝑣 ∈ 𝑉1 and some 𝑐 ∈ 𝐶⊥1 \ {0} such that |𝑅𝑣 (𝑒) ∩ 𝑐 | > |𝑐 |/2.
Let 𝑒′ = 𝑒 + 𝑅+𝑣 (𝑒). If 𝑈 (𝑒′) < 𝑈 (𝑒) then we are done. Otherwise 𝑈 (𝑒′) = 𝑈 (𝑒),
and by the 𝑅-flipping Lemma 19, we may take 𝑅(𝑒′) = 𝑅(𝑒) with 𝑅+𝑣 (𝑒′) = 0.

Consider now flipping the additional set of qubits 𝑓 ′ = 𝑅𝑣 (𝑒′) ∩ 𝑐 to obtain the
error 𝑒′′ = 𝑒′ + 𝑓 ′. For each 𝑞 = (𝑣′, 𝑣) ∈ 𝑓 ′, we have 𝑞 ∈ 𝑅+

𝑣′ (𝑒′), so that
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Figure 2.4: Flipping bits to decrease the global potential in case 2. The changes
in local potentials after flipping the edges (𝑣, 𝑣2), (𝑣, 𝑣4) (left to center) and then
flipping (𝑣, 𝑣1), (𝑣, 𝑣2), (𝑣, 𝑣6) (center to right) in the graph G□

1 are shown. The
local potentials at 𝑣 are indicated within the shaded circles. Potential differences
relative to the first configuration are indicated for the neighboring vertices.

|𝑅+
𝑣′ (𝑒′′) | = |𝑅+𝑣′ (𝑒′) | − 1. This is the new value of the local potential at 𝑣′. Since

we had 𝑈𝑣 (𝑒′) ≡ |𝑅+𝑣 (𝑒′) | = 0, the change in the global potential is given by
𝑈 (𝑒′′) −𝑈 (𝑒′) = 𝑈𝑣 (𝑒′′) − | 𝑓 ′|.

Since 𝑒′𝑣 ∈ 𝐶⊥1 , a valid correction for 𝑒′′𝑣 is given by 𝑓 ′+𝑐, where 𝑐 is the high-overlap
codeword from earlier. This correction has weight | 𝑓 ′+𝑐 | = |𝑅𝑣 (𝑒)∩𝑐+𝑐 | < |𝑐 |/2 <
|𝑅𝑣 (𝑒)∩𝑐 | = | 𝑓 ′|. Therefore𝑈𝑣 (𝑒′′)−| 𝑓 ′| < 0, and we have𝑈 (𝑒′′) < 𝑈 (𝑒′) = 𝑈 (𝑒).
Our desired flip-set is therefore 𝑓 = 𝑅+𝑣 (𝑒) + 𝑅𝑣 (𝑒) ∩ 𝑐.

2.4.2 Proof of Case 3
The preceding subsection proves Theorem 10 in the cases when 𝑅 is not metastable,
or when 𝑅 is metastable but does not have the low-overlap property. In what
follows, we consider the remaining case where 𝑅 is both metastable and has the
low-overlap property. We summarize our key list of assumptions for this case below
for convenience.

Assumption 23. Let 𝑒 ∈ F𝑄2 be a 𝑍 error of weight |𝑒 | ≤ 𝛿𝑛/6Δ3/2−𝜀. We assume
that 𝑒 is a reduced error, i.e., it is the minimum weight element of the coset 𝑒 + C⊥

𝑍
.

We assume that 𝑒 is a metastable error, and that its set of local minimum weight
corrections 𝑅(𝑒) satisfies the low-overlap property 21. Finally, we also require
that the underlying quantum Tanner code be defined using dual tensor codes of
sufficiently large robustness, i.e., with robustness parameter Δ3/2+𝜀′ for some 𝜀′ > 0.
Throughout the rest of the proof, we fix any 𝜀 < 𝜀′.
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The proof of case 3 proceeds in two general steps. In the first step, we show using
the expansion of the underlying graphs that, given an error 𝑒 of sufficiently low
weight, there always exists a special vertex 𝑣0 ∈ 𝑉0 with the property that 𝑣0 “sees”
many non-trivial codewords of 𝐶𝐴 and 𝐶𝐵 amongst its shared local views with the
minimum weight corrections on neighboring vertices.

The second step of the proof proceeds to analyze the local view at the vertex 𝑣0

described above. We show that due to the pattern of its many shared codewords, it
is either the case that 𝑅𝑣0 ⊂ 𝑄(𝑣0) is sufficiently large to contain a flip-set which
reduces the potential, or else it is small enough that 𝑒𝑣0 has many columns and
rows which are close to non-trivial codewords of 𝐶𝐴 and 𝐶𝐵. In the latter case,
the robustness of the underlying dual tensor code then implies that 𝑒𝑣0 must have
sufficient overlap with a 𝑍-stabilizer that the addition of this stabilizer will reduce
the weight of 𝑒. Since we began without loss of generality with a reduced error 𝑒,
this leads to a contradiction.

2.4.2.1 Existence of 𝑣0 ∈ 𝑉0

In the first part of the analysis of the third case, we proceed in a manner parallel to
the proof of Theorem 1 in [9]. The goal is to show that for an error 𝑒 with weight
|𝑒 | ≤ 𝛿𝑛/6Δ3/2−𝜀, there always exists a vertex 𝑣0 ∈ 𝑉0 whose local view contains
many columns and rows which are close to non-trivial codewords of 𝐶𝐴 and 𝐶𝐵.
Aside from some differences in definitions, the proofs and results of this subsection
are equivalent to their counterparts in [9].

Since our goal is to find a vertex 𝑣0 ∈ 𝑉0 whose local view has many rows and
columns close non-trivial codewords, we first parametrize the vertices of 𝑉1 with
non-trivial nearest codewords. This is captured by the set 𝑌 below.

Definition 24. Let 𝑒 ∈ F𝑄2 be an error and let R = {𝑅+𝑣 (𝑒)}𝑣∈𝑉1 be a set of local
minimum weight corrections. We define the set of non-trivially corrected vertices
𝑌 ⊆ 𝑉1 as

𝑌 = {𝑣 ∈ 𝑉1 | 𝑅+𝑣 ≠ 𝑒𝑣} . (2.31)

That is, a vertex 𝑣 is in 𝑌 if and only if the result of applying the locally minimum
weight correction at 𝑣 results in a non-trivial codeword, i.e., 𝑐𝑣 = 𝑒𝑣 + 𝑅+𝑣 ≠ 0.

To work with the vertex set𝑌 , it will also be convenient to define an edgewise version
of the condition 𝑅+𝑣 ≠ 𝑒𝑣. To that end, we introduce the set 𝑦 of “residual errors.”
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Given an error 𝑒 ∈ F𝑄2 , the elements of 𝑦 are all of the elements of 𝑒 which have no
overlap with the set of minimum weight corrections 𝑅(𝑒) (see Figure 2.3).

Definition 25. Let 𝑒 ∈ F𝑄2 be an error and let R = {𝑅+𝑣 (𝑒)}𝑣∈𝑉1 be a set of
local minimum weight corrections. The set of “residual” errors is defined by
𝑦 = 𝑒\𝑅 ∈ F𝑄2 , i.e., 𝑦 labels the set of errors which are not in any of the local
minimum weight corrections.

The edges of G□
1 indexed by 𝑦 define a subgraph of G□

1 which we will call 𝐺□
1,𝑦.

This subgraph is closely related to the set 𝑌 . It is straightforward to see that every
vertex of G□

1,𝑦 must belong to 𝑌 . Conversely, the low-overlap property implies that
each vertex of 𝑌 must be incident to many edges in G□

1,𝑦. This means that 𝑌 is
precisely the vertex set of G□

1,𝑦 and moreover G□
1,𝑦 must have large minimum degree.

This discussion is formalized below by Lemmas 26 and 27.

Lemma 26. Let (𝑣, 𝑣′) ∈ 𝑦 be an edge in G□
1,𝑦. Then both 𝑣 and 𝑣′ are elements of

𝑌 .

Proof. By definition, the edge (𝑣, 𝑣′) ∈ 𝑦 is an element of 𝑒 but not of 𝑅. Therefore
(𝑣, 𝑣′) is an element of 𝑒𝑣 (and likewise, of 𝑒𝑣′) but not an element of 𝑅+𝑣 (and
likewise, 𝑅+

𝑣′). It follows that 𝑒𝑣 ≠ 𝑅+𝑣 and 𝑒𝑣′ ≠ 𝑅+𝑣′ .

Lemma 27. Every vertex 𝑣 ∈ 𝑌 is incident to at least 𝛿Δ/2 edges in 𝑦. In particular,
the subgraph G□

1,𝑦 has vertex set equal to 𝑌 and minimum degree at least 𝛿Δ/2.

Proof. Let 𝑣 ∈ 𝑌 , and consider 𝑒𝑣 ∪ 𝑅𝑣. We have 𝑐𝑣 ⊆ 𝑒𝑣 ∪ 𝑅𝑣 since

𝑐𝑣 = 𝑒𝑣 + 𝑅+𝑣 ⊆ 𝑒𝑣 ∪ 𝑅+𝑣 ⊆ 𝑒𝑣 ∪ 𝑅𝑣 . (2.32)

Next we decompose

𝑒𝑣 ∪ 𝑅𝑣 = (𝑒𝑣\𝑅𝑣) ⊔ 𝑅𝑣 , (2.33)

so that

|𝑐𝑣 | = | (𝑒𝑣 ∪ 𝑅𝑣) ∩ 𝑐𝑣 | (2.34)

= | (𝑒𝑣\𝑅𝑣) ∩ 𝑐𝑣 | + |𝑅𝑣 ∩ 𝑐𝑣 | (2.35)

≤ |(𝑒𝑣\𝑅𝑣) ∩ 𝑐𝑣 | + |𝑐𝑣 |/2 . (2.36)
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The first equality follows from the fact that 𝑐𝑣 ⊆ 𝑒𝑣∪𝑅𝑣, the second equality follows
from (2.33) and the fact that Hamming weights are additive over disjoint unions.
The last inequality follows from the low-overlap property. Therefore, we have

deg𝐺□
1,𝑦
(𝑣) = |𝑦𝑣 | (2.37)

= |𝑒𝑣\𝑅𝑣 | (2.38)

≥ |(𝑒𝑣\𝑅𝑣) ∩ 𝑐𝑣 | (2.39)

≥ |𝑐𝑣 |/2 (2.40)

≥ 𝛿Δ/2 , (2.41)

where the last line follows from the minimum distance of 𝐶⊥1 , i.e., 𝛿Δ, and the fact
that 𝑐𝑣 ≠ 0 since 𝑣 ∈ 𝑌 .

Each vertex 𝑣 of G□
1,𝑦 has a non-trivial nearest codeword 𝑐𝑣 ∈ 𝐶⊥1 . To ensure that the

individual columns and rows of 𝑐𝑣 are themselves close to non-trivial codewords of
𝐶𝐴 and𝐶𝐵, we appeal to the robustness of the dual tensor code𝐶⊥1 . Since robustness
only applies to codewords of weight at most Δ3/2+𝜀, we first define the concept of
a normal vertex. Roughly speaking, a vertex is considered normal precisely when
robustness can be applied to its nearest codeword.

Definition 28. Let us define a normal vertex of 𝑌 as a vertex with degree at most
1
2Δ

3/2+𝜀 in G□
1,𝑦. A vertex of 𝑌 which is not normal is called exceptional. We denote

the subsets of normal and exceptional vertices as 𝑌𝑛 and 𝑌𝑒, respectively.

Since G□
1,𝑦 has large minimum degree, the expansion of G□

1 now ensures that as long
as G□

1,𝑦 has sufficiently few edges, it must contain many normal vertices. Note that
Lemma 29 is the only place where the assumption on the weight of |𝑒 | (and hence
|𝑦 |) is explicitly used.

Lemma 29. Suppose that |𝑦 | ≤ 𝛿𝑛/6Δ3/2−𝜀 = 𝛿Δ1/2+𝜀 |𝑉1 |/12. Then the fraction of
exceptional vertices in 𝑌𝑒 ⊆ 𝑌 is bounded above as

|𝑌𝑒 |
|𝑌 | ≤

576
Δ1+2𝜀 . (2.42)

Proof. By Lemma 27, the minimnum degree of G□
1,𝑦 is at least 1

2𝛿Δ. This implies
that

|𝑌 | ≤ 2
𝛿Δ

2|𝑦 | ≤ |𝑉1 |
3Δ1/2−𝜀 . (2.43)
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Applying the Expander Mixing Lemma to 𝐸 (𝑌𝑒, 𝑌 ) in G□
1 , we get

|𝐸 (𝑌𝑒, 𝑌 ) | ≤
Δ2

|𝑉1 |
|𝑌 | |𝑌𝑒 | + 4Δ

√︁
|𝑌𝑒 | |𝑌 | (2.44)

≤ 1
3
Δ3/2+𝜀 |𝑌𝑒 | + 4Δ

√︁
|𝑌𝑒 | |𝑌 | . (2.45)

By definition of 𝑌𝑒, it holds that |𝐸 (𝑌𝑒, 𝑌 ) | ≥ 1
2Δ

3/2+𝜀 |𝑌𝑒 |. Combining the inequali-
ties, it follows that

|𝑌𝑒 |
|𝑌 | ≤

576
Δ1+2𝜀 . (2.46)

Using the robustness of 𝐶⊥1 and the low-overlap property, we can now show that
each column and row of 𝑐𝑣 for 𝑣 ∈ 𝑌𝑛 is indeed close to a codeword of 𝐶𝐴 and 𝐶𝐵.

Lemma 30. Let 𝑣 ∈ 𝑌𝑛 be a normal vertex. Then every column (resp. row) of 𝑐𝑣 is
distance at most Δ1/2+𝜀/𝛿 from a codeword in𝐶𝐴 (resp. 𝐶𝐵). Moreover, 𝑐𝑣 contains
at least one row or column which is close to a non-zero codeword of 𝐶𝐴 or 𝐶𝐵.

Proof. By assumption of 𝑣 being a normal vertex, we know that |𝑦𝑣 | = |𝑒𝑣\𝑅𝑣 | ≤
1
2Δ

3/2+𝜀. From inequality (2.36), we see that

1
2
|𝑐𝑣 | ≤ |(𝑒𝑣\𝑅𝑣) ∩ 𝑐𝑣 | ≤ |𝑒𝑣\𝑅𝑣 | ≤

1
2
Δ3/2+𝜀 . (2.47)

By the robustness of the dual tensor code 𝐶⊥1 , it follows that the support of 𝑐𝑣 is
concentrated on the union of at most |𝑐𝑣 |/𝛿Δ ≤ Δ1/2+𝜀/𝛿 non-zero columns and
rows. Using Lemma 45, we conclude that there exists a decomposition 𝑐𝑣 = c + r,
where c ∈ 𝐶𝐴 ⊗ F𝐵2 is supported on at most Δ1/2+𝜀/𝛿 non-zero columns, and where
r ∈ F𝐴2 ⊗ 𝐶𝐵 is supported on at most Δ1/2+𝜀/𝛿 non-zero rows. In particular, this
implies that each column (resp. row) of 𝑐𝑣 is distance at most Δ1/2+𝜀/𝛿 from a
codeword of 𝐶𝐴 (resp. 𝐶𝐵). Since 𝑐𝑣 is non-zero by definition of 𝑌 , it follows
at least one of c or r is non-zero, so that at least one column or row is close to a
non-zero codeword.

Now we are in a position to start the search for our special vertex 𝑣0 ∈ 𝑉0. To that
end, we define our analog of “heavy” edges in [9], which we call “dense” edges.
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𝑣 ∈ 𝑌𝑛𝑣′ ∈ 𝑊

𝑦

𝑅

𝑐𝑣 [·, 𝑣′] ≈ 𝑐𝐴

Figure 2.5: The faces incident to a dense edge (𝑣, 𝑣′) connecting 𝑣′ ∈ 𝑊 to a normal
vertex 𝑣 ∈ 𝑌𝑛. Note that 𝑐𝑣 [·, 𝑣′] is close to a 𝐶𝐴 codeword.

Definition 31 (Dense Edges). Let 𝐸𝑦 ⊆ 𝐸 (G∪) be the edges in G∪ which are
incident to some square in 𝑦. We say that an edge (𝑣, 𝑣′) ∈ 𝐸𝑦, where 𝑣 ∈ 𝑉1 and
𝑣′ ∈ 𝑉0, is dense if it is incident to at least 𝛿Δ − Δ1/2+𝜀/𝛿 squares of 𝑐𝑣.

We then define the vertex set𝑊 ⊆ 𝑉0 to be the set of all vertices incident to a normal
vertex 𝑣 ∈ 𝑌𝑛 through a dense edge.

From the perspective of a vertex 𝑣′ ∈ 𝑉0, only individual columns and rows of its
neighboring nearest codewords 𝑐𝑣 are visible. Dense edges are precisely the edges
through which 𝑣′ expects to see non-trivial codewords of 𝐶𝐴 or 𝐶𝐵. The set𝑊 ⊆ 𝑉1

defined above can therefore be thought of as the set of “candidate” 𝑣0’s. We will
identify a vertex of 𝑊 with a linear number of dense edges but a sublinear number
of exceptional neighbors in 𝑌𝑒. Such a vertex will allows us to utilize the robustness
properties of the local codes.

We first show that each 𝑣′ ∈ 𝑊 must have many neighbors in 𝑌 (see Figure 2.5).

Lemma 32. The degree in 𝐸𝑦 of any 𝑣′ ∈ 𝑊 is at least 1
2𝛿Δ−Δ

1/2+𝜀/𝛿. In particular,
every 𝑣′ ∈ 𝑊 is adjacent to at least 1

2𝛿Δ − Δ
1/2+𝜀/𝛿 vertices in 𝑌 .

Proof. Let 𝑣′ ∈ 𝑊 . By assumption, there exists a dense edge (𝑣, 𝑣′) connecting 𝑣′

to a normal vertex 𝑣 ∈ 𝑌𝑛. Let us assume without loss of generality that (𝑣, 𝑣′) is a
𝐵-edge so that 𝑐𝑣 [·, 𝑣′] defines a column of 𝑐𝑣.

Note that the degree of 𝑣′ in 𝐸𝑦 is lower bounded by the weight of the corresponding
column in 𝑦𝑣, i.e., deg𝐸𝑦

(𝑣′) ≥ |𝑦𝑣 [·, 𝑣′] |.

Let 𝑐𝐴 ∈ 𝐶𝐴 denote the codeword closest to 𝑐𝑣 [·, 𝑣′]. Since (𝑣, 𝑣′) is dense, it
follows from Lemma 30 that 𝑐𝐴 is non-zero. We can form the matrix which is zero
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everywhere except on the 𝑣′-column, where it is equal to 𝑐𝐴. Note that this matrix
will be a codeword of𝐶⊥1 , and that the low-overlap property applied to this codeword
implies that |𝑅𝑣 [·, 𝑣′] ∩ 𝑐𝐴 | ≤ |𝑐𝐴 |/2.

Then we have

|𝑐𝐴 | = |𝑐𝑣 [·, 𝑣′] ∩ 𝑐𝐴 | + |𝑐𝐴\𝑐𝑣 [·, 𝑣′] | (2.48)

≤ |𝑐𝑣 [·, 𝑣′] ∩ 𝑐𝐴 | + Δ1/2+𝜀/𝛿 (2.49)

≤ |𝑦𝑣 [·, 𝑣′] ∩ 𝑐𝐴 | + |𝑅𝑣 [·, 𝑣′] ∩ 𝑐𝐴 | + Δ1/2+𝜀/𝛿 (2.50)

≤ |𝑦𝑣 [·, 𝑣′] | + |𝑐𝐴 |/2 + Δ1/2+𝜀/𝛿 , (2.51)

where the second line follows from Lemma 30, the third line from the fact that
𝑐𝑣 ⊆ 𝑦𝑣 ∪ 𝑅𝑣, and the last line from the low-overlap property. This gives us

𝛿Δ/2 ≤ |𝑐𝐴 |/2 ≤ |𝑦𝑣 [·, 𝑣′] | + Δ1/2+𝜀/𝛿 . (2.52)

Therefore we have

deg𝐸𝑦
(𝑣′) ≥ |𝑦𝑣 [·, 𝑣′] | ≥

1
2
𝛿Δ − Δ1/2+𝜀/𝛿 . (2.53)

Lemma 26 now ensures that each 𝑣′ ∈ 𝑊 is adjacent to at least 1
2𝛿Δ − Δ1/2+𝜀/𝛿

elements of 𝑌 .

Knowing that each 𝑣′ ∈ 𝑊 has many neighbors in 𝑌 , the expansion of G∪ implies
that the number of vertices in𝑊 must be small compared to 𝑌 .

Lemma 33. For Δ large enough, the set𝑊 satisfies the bound

|𝑊 | ≤ 81
𝛿2Δ
|𝑌 | . (2.54)

Proof. Using Lemma 32, we know that each vertex in 𝑊 is adjacent to at least
1
2𝛿Δ − Δ

1/2+𝜀/𝛿 vertices in 𝑌 . Therefore we can bound the edges in G∪ between 𝑌
and𝑊 by

|𝐸G∪ (𝑌,𝑊) | ≥
(
1
2
𝛿Δ − Δ1/2+𝜀

𝛿

)
|𝑊 | = 1

2
𝛿Δ

(
1 − 2

𝛿2Δ1/2−𝜀

)
|𝑊 | . (2.55)

Applying the Expander Mixing Lemma, we have

|𝐸G∪ (𝑌,𝑊) | ≤
Δ

|𝑉1 |
|𝑌 | |𝑊 | + 4Δ1/2√︁|𝑌 | |𝑊 | . (2.56)
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From equation (2.43), we have

|𝑌 | ≤ |𝑉1 |
3Δ1/2−𝜀 . (2.57)

Combining these inequalities, we end up with

1
2
𝛿Δ

(
1 − 2

𝛿2Δ1/2−𝜀

)
|𝑊 | ≤ Δ

|𝑉1 |
|𝑌 | |𝑊 | + 4Δ1/2√︁|𝑌 | |𝑊 | (2.58)

≤ 1
3
Δ1/2+𝜀 |𝑊 | + 4Δ1/2√︁|𝑌 | |𝑊 | , (2.59)

or equivalently,

1
8
𝛿Δ1/2

(
1 − 2

𝛿2Δ1/2−𝜀 −
2

3𝛿Δ1/2−𝜀

)
≤

√︄
|𝑌 |
|𝑊 | . (2.60)

Taking Δ sufficiently large so that

1 − 2
𝛿2Δ1/2−𝜀 −

2
3𝛿Δ1/2−𝜀 ≥

8
9
, (2.61)

we end up with the desired bound.

We expect each 𝑣 ∈ 𝑌𝑛 to be incident to at least one dense edge by virtue of having
a column or row close to a non-trivial codeword. This means that the total number
of dense edges is at least on the order of |𝑌𝑛 |. Lemma 33 in turn suggests that the
number of dense edges is large relative to |𝑊 |. This implies that the average vertex
in 𝑊 should be incident to a large number of dense edges. This is formalized by
Lemma 34 and Corollary 35 below.

Lemma 34. Let D denote the set of dense edges incident to 𝑊 . Then the average
degree of𝑊 in D is bounded by

|D|
|𝑊 | ≥ 2𝛼Δ (2.62)

for some constant 𝛼 > 0.2

Proof. First, note that every 𝑣 ∈ 𝑌𝑛 is incident to at least one dense edge, which is
then by definition in D. To see this, consider 𝑐𝑣, which is non-zero by definition
of 𝑌 . It follows from Lemma 30 that 𝑐𝑣 contains at least one column or row which
is close to a non-zero codeword of 𝐶𝐴 or 𝐶𝐵, which in turn implies that column or

2Note that we may choose 𝛼 to be anything smaller than 𝛿2/192 by taking Δ sufficiently large.
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row must have weight at least 𝛿Δ − Δ1/2+𝜀/𝛿. By definition, such a column or row
is defined by some edge (𝑣, 𝑣′) ∈ G∪, which is then a dense edge incident to 𝑣.

Since each dense edge has at most one endpoint in𝑌𝑛, it follows the above discussion
that |D| ≥ |𝑌𝑛 | = |𝑌 | − |𝑌𝑒 |. From Lemmas 29 and 33, it follows that

|𝑌 | − |𝑌𝑒 | ≥
(
1 − 576

Δ1+2𝜀

)
|𝑌 | ≥ Δ𝛿2

81

(
1 − 576

Δ1+2𝜀

)
|𝑊 | . (2.63)

Therefore we get

|D|
|𝑊 | ≥

𝛿2

81

(
1 − 576

Δ1+2𝜀

)
Δ ≡ 2𝛼Δ . (2.64)

Corollary 35. At least an 𝛼/2 fraction of the vertices in 𝑊 are incident to at least
𝛼Δ dense edges.

Proof. Let 𝜂 be the fraction of vertices in 𝑊 with dense degree greater than 𝛼Δ.
The maximum degree of any vertex in G∪ is 2Δ, so it follows that

2𝛼Δ ≤ |D||𝑊 | ≤ 2Δ𝜂 + (1 − 𝜂)𝛼Δ . (2.65)

Therefore we have 𝜂 ≥ 𝛼/(2 − 𝛼) ≥ 𝛼/2.

We have now shown that there exists a subset of vertices in 𝑊 incident to many
dense edges. We must now show that within this subset, there exists vertices which
are not adjacent to many exceptional vertices in 𝑌𝑒. We expect this to be the case
since the number of exceptional vertices is small relative to the number of normal
vertices. To proceed, we bound the number of edges shared between 𝑊 and 𝑌𝑒 in
Lemma 36 below.

Lemma 36. The total number of edges in G∪ between 𝑊 and 𝑌𝑒 is bounded above
by

|𝐸G∪ (𝑊,𝑌𝑒) | ≤ 193Δ1/2−𝜀 |𝑊 | . (2.66)

Proof. Using the Expander Mixing Lemma, we get

|𝐸G∪ (𝑊,𝑌𝑒) | ≤
Δ

|𝑉1 |
|𝑌𝑒 | |𝑊 | + 4

√
Δ
√︁
|𝑌𝑒 | |𝑊 | . (2.67)
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Using Lemma 29 and inequality (2.43), this becomes

|𝐸G∪ (𝑊,𝑌𝑒) | ≤
576
|𝑉1 |Δ2𝜀 |𝑌 | |𝑊 | + 96Δ−𝜀

√︁
|𝑌 | |𝑊 | (2.68)

≤ 192
Δ1/2+𝜀 |𝑊 | + 96Δ−𝜀

√︁
|𝑌 | |𝑊 | . (2.69)

As noted in the proof of Lemma 34, each vertex of 𝑌𝑛 is incident to at least one
vertex in 𝑊 . Since each vertex of 𝑊 has degree 2Δ, it follows that |𝑌𝑛 | ≤ 2Δ|𝑊 |.
Choosing Δ sufficiently large that

576
Δ1+2𝜀 ≤

1
2
, (2.70)

it follows from Lemma 29 that |𝑌𝑛 | = |𝑌 | − |𝑌𝑒 | ≥ |𝑌 |/2, so that |𝑌 | ≤ 4Δ|𝑊 |.
Combining these bounds, we obtain

|𝐸G∪ (𝑊,𝑌𝑒) | ≤
192

Δ1/2+𝜀 |𝑊 | + 96Δ−𝜀
√︁
|𝑌 | |𝑊 | (2.71)

≤ 192
Δ1/2+𝜀 |𝑊 | + 192Δ1/2−𝜀 |𝑊 | (2.72)

= 192
(
1 + 1

Δ

)
Δ1/2−𝜀 |𝑊 | (2.73)

≤ 193Δ1/2−𝜀 |𝑊 | . (2.74)

Putting everything together, we can finally show the existence of the special vertex
𝑣0, as formalized by Corollary 37.

Corollary 37. At least an 𝛼/4 fraction of the vertices of𝑊:

1. are incident to at least 𝛼Δ dense edges, and

2. are adjacent to at most (772/𝛼)Δ1/2−𝜀 ≡ 𝛽Δ1/2−𝜀 vertices of 𝑌𝑒.

In particular, at least one such vertex exists since 𝛼 > 0.

Proof. Let 𝑊1 be the subset of vertices in 𝑊 satisfying condition 1, and let 𝑊2 be
the subset of vertices in 𝑊 not satisfying condition 2. Since each vertex of 𝑊2 is
adjacent to more than (772/𝛼)Δ1/2−𝜀 vertices of 𝑌𝑒, we get

|𝑊2 | · (772/𝛼)Δ1/2−𝜀 ≤ |𝐸G∪ (𝑊,𝑌𝑒) | ≤ 193Δ1/2−𝜀 |𝑊 | , (2.75)
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which implies that |𝑊2 | ≤ (𝛼/4) |𝑊 |. Therefore the set of vertices satisfying both
condition 1 and 2 is bounded below by

|𝑊1\𝑊2 | ≥ |𝑊1 | − |𝑊2 | ≥ 𝛼 |𝑊 |/2 − 𝛼 |𝑊 |/4 = 𝛼 |𝑊 |/4 . (2.76)

2.4.2.2 The local view at 𝑣0

Let 𝑣0 ∈ 𝑊 be a vertex satisfying the conditions of Corollary 37. In this subsection,
we analyze the structure of 𝑦 and 𝑅 from the perspective of 𝑣0 ∈ 𝑉0. Let 𝑦0, 𝑒0, and
𝑅0 denote the local views of 𝑦, 𝑒, and 𝑅 at the vertex 𝑣0.

We will write [𝑣, 𝑣′] ∈ 𝑄(𝑣0) to denote the face anchored at 𝑣0 with neighboring
𝑉1 vertices 𝑣 and 𝑣′, with the implicit convention that unprimed vertices 𝑣 denote
row vertices, and primed vertices 𝑣′ denote column vertices. We will also write
𝑁 (𝑣0) ⊆ 𝑉1 to denote the set of all neighbors of 𝑣0 in G∪, and 𝑁𝑟 (𝑣0) and 𝑁𝑐 (𝑣0)
to denote the set of row and column vertex neighbors, respectively.

We first show a key result regarding the structure of 𝑦0 and 𝑅0. As a consequence
of metastability, the edges of 𝑅0 must complement the edges of 𝑦0 to complete
codewords on either columns or rows shared with neighboring local views (see
equation 2.77). This allows us to split 𝑅0 into disjoint parts depending on whether
columns or rows are corrected.

Lemma 38. We can write 𝑅0 = 𝑅col ⊔ 𝑅row, where we have

𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] = 𝑐𝑣 [𝑣0, ·] , and 𝑦0 [·, 𝑣′] ⊔ 𝑅col [·, 𝑣′] = 𝑐𝑣′ [·, 𝑣0] ,
(2.77)

for all 𝑣 ∈ 𝑁𝑟 (𝑣0) and 𝑣′ ∈ 𝑁𝑐 (𝑣0).

Proof. Let 𝑞 = [𝑣, 𝑣′] ∈ 𝑅0. Since 𝑅 is metastable, it follows that 𝑞 belongs to
exactly one of 𝑅+𝑣 or 𝑅+

𝑣′ . Suppose without loss of generality that 𝑞 ∈ 𝑅+𝑣 . Since
𝑒𝑣 + 𝑅+𝑣 = 𝑐𝑣, it follows that 𝑞 ∈ 𝑐𝑣 if and only if 𝑞 ∉ 𝑒. Likewise, since 𝑞 ∉ 𝑅+

𝑣′ ,
it follows that 𝑞 ∈ 𝑐𝑣′ if and only if 𝑞 ∈ 𝑒. It follows that 𝑞 must be an element of
exactly one of 𝑐𝑣 or 𝑐𝑣′ .

Let 𝑅row ⊆ 𝑅0 denote the collection of all 𝑞 ∈ 𝑅0 which belong to 𝑐𝑣 for some row
vertex 𝑣. Likewise, let 𝑅col ⊆ 𝑅0 denote the collection of all 𝑞 ∈ 𝑅0 which belong
to 𝑐𝑣′ for some column vertex 𝑣′. Then by the preceding discussion we have

𝑅0 = 𝑅row ⊔ 𝑅col . (2.78)
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Next, we show equation (2.77). We focus on the row case, with the column case
being analogous. Note that we have

𝑦0 [𝑣, ·] = 𝑒𝑣 [𝑣0, ·]\𝑅𝑣 [𝑣0, ·] (2.79)

⊆ 𝑒𝑣 [𝑣0, ·]\𝑅+𝑣 [𝑣0, ·] (2.80)

⊆ 𝑒𝑣 [𝑣0, ·] + 𝑅+𝑣 [𝑣0, ·] (2.81)

= 𝑐𝑣 [𝑣0, ·] . (2.82)

Also, we have 𝑅row [𝑣, ·] ⊆ 𝑐𝑣 [𝑣0, ·] by definition. This implies that

𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] ⊆ 𝑐𝑣 [𝑣0, ·] . (2.83)

Conversely, we have

𝑐𝑣 [𝑣0, ·] = 𝑒𝑣 [𝑣0, ·] + 𝑅+𝑣 [𝑣0, ·] (2.84)

⊆ 𝑒𝑣 [𝑣0, ·] ∪ 𝑅𝑣 [𝑣0, ·] (2.85)

= 𝑦𝑣 [𝑣0, ·] ⊔ 𝑅𝑣 [𝑣0, ·] (2.86)

= 𝑦0 [𝑣, ·] ⊔ 𝑅0 [𝑣, ·] . (2.87)

Since all elements of 𝑅0 belonging to 𝑐𝑣 are by definition in 𝑅row, it follows that we
have

𝑐𝑣 [𝑣0, ·] ⊆ 𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] . (2.88)

It therefore follows that

𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] = 𝑐𝑣 [𝑣0, ·] , and 𝑦0 [·, 𝑣′] ⊔ 𝑅col [·, 𝑣′] = 𝑐𝑣′ [·, 𝑣0] ,
(2.89)

which hold for all 𝑣 ∈ 𝑁𝑟 (𝑣0) and 𝑣′ ∈ 𝑁𝑐 (𝑣0).

Corollary 39. Let [𝑣, 𝑣′] ∈ 𝑄(𝑣0). If 𝑣 ∉ 𝑌 then 𝑅row [𝑣, ·] = 0. Likewise, if 𝑣′ ∉ 𝑌
then 𝑅col [·, 𝑣′] = 0.

Proof. We work with the row vertex 𝑣, with the column case being identical.
Suppose that 𝑣 ∉ 𝑌 . Then by definition, the closest codeword to 𝑒𝑣 at 𝑣 is the trivial
codeword 𝑐𝑣 = 0. Evaluating equation (2.77) at the row defined by edge (𝑣0, 𝑣), we
have

𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] = 𝑐𝑣 [𝑣0, ·] = 0 , (2.90)

which implies that 𝑅row [𝑣, ·] = 0.



48

Let us now provide some intuition for the remainder of the proof. The decomposition
shown in Lemma 38 allows us to consider two separate scenarios:

1. First, imagine that 𝑅0 has high weight relative to 𝑦0. Then Lemma 38 suggests
that the columns and rows of 𝑅0 are close to codewords of 𝐶𝐴 and 𝐶𝐵. An
argument similar to the one used in the proof of case 2 would seem to suggest
that there exists some subset of 𝑅0 which would decrease the global potential
when flipped.

2. Alternatively, consider the scenario where 𝑅0 has low weight relative to 𝑦0.
In this case, 𝑦0 is close to 𝑒0, and Lemma 38 now implies that the columns
and rows of 𝑒0 are close to codewords of 𝐶𝐴 and 𝐶𝐵. The robustness of the
dual tensor code 𝐶⊥1 suggests that we can find a codeword 𝑐0 ∈ 𝐶𝐴 ⊗ 𝐶𝐵, i.e.,
a 𝑍-stabilizer, which has high overlap with 𝑒0. But this is in contradiction
with the fact that 𝑒 was assumed to be a reduced error.

Given the discussion above, we will finish the proof as follows: Suppose that no
subset of 𝑄(𝑣0) decreases the global potential when flipped. We will show that this
necessarily implies that 𝑅0 has sufficiently low weight (as formalized by Lemma 41)
that the argument outlined in scenario 2 can be carried out. Specifically, we will
show that there exists some 𝑐0 ∈ 𝐶𝐴 ⊗ 𝐶𝐵 such that |𝑒 + 𝑐0 | < |𝑒 |, contradicting the
fact that 𝑒 is reduced.

To proceed, we will need to analyze the value of the potential on a new configuration
of errors, one obtained from 𝑒 by flipping all the qubits of 𝑒 ∩ 𝑅0. The utility
of this new error configuration 𝑒 comes from the fact that the rows of 𝑅row and
columns of 𝑅col are exactly equal to the local minimum weight corrections for 𝑒 (see
equation 2.91), giving us better control over the potential.

Let 𝑒 = 𝑒 + 𝑒 ∩ 𝑅0 = 𝑒\𝑅0. We first show that some key quantities remain
unchanged in this new error configuration. Since 𝑒 is obtained from 𝑒 by flipping
a subset of 𝑅 without decreasing the global potential, the 𝑅-flipping Lemma 19
implies that the new total correction 𝑅̃ ≡ 𝑅(𝑒) will be equal to the old one, i.e.,
𝑅̃ = 𝑅(𝑒) = 𝑅(𝑒). This implies that the vector of residual errors 𝑦 likewise stays
invariant, i.e., 𝑦̃ = 𝑦(𝑒) = 𝑒\𝑅̃ = 𝑒\𝑅(𝑒) = 𝑦(𝑒). The situation after flipping 𝑅0 ∩ 𝑒
is illustrated in Figure 2.6 and summarized by Lemma 40.

Lemma 40. Suppose that no subset of 𝑄(𝑣0) decreases the global potential when
flipped. Let 𝑒 = 𝑒\𝑅0 denote the configuration of errors obtained after flipping
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𝑌𝑒 𝑌𝑛 𝑌 𝑐

𝑌𝑒

𝑌𝑛

𝑌 𝑐

𝑒0 = 𝑦̃0 = 𝑦0 𝑅row

𝑅col

Figure 2.6: The 𝑣0 local view after flipping 𝑅0 ∩ 𝑒. The various regions indicate the
possible supports of the labeled quantities.

all the elements of 𝑅0 ∩ 𝑒. In this new error configuration, we may take the local
minimum weight corrections to be as given by the 𝑅-flipping Lemma 19. Specifically,
we have 𝑅̃ = 𝑅 and 𝑦̃ ≡ 𝑒\𝑅̃ = 𝑒\𝑅 = 𝑦. Moreover, we have 𝑒0 = 𝑦0, and

𝑅row [𝑣, ·] = 𝑅̃+𝑣 [𝑣0, ·] , and 𝑅col [·, 𝑣′] = 𝑅̃+𝑣′ [·, 𝑣0] , (2.91)

for all [𝑣, 𝑣′] ∈ 𝑄(𝑣0).

Proof. The fact that we may take 𝑅̃ = 𝑅 follows directly from the 𝑅-flipping
Lemma 19, which ensures that the original and updated local minimum weight
correction sets differ only by the orientations of edges. It follows that we also have

𝑦 = 𝑒\𝑅 = (𝑒\𝑅0)\𝑅 = 𝑒\𝑅̃ = 𝑦̃ . (2.92)

Note that since 𝑒 ∩ 𝑅0 = ∅, it also follows that 𝑦̃0 = 𝑒0.

Now, let 𝑣 be a neighbor of 𝑣0, and suppose without loss of generality that it is a row
vertex. By the 𝑅-flipping Lemma 19, the nearest codeword 𝑐𝑣 remains unchanged
after flipping 𝑅0 ∩ 𝑒. In particular, we must have

𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] = 𝑐𝑣 [𝑣0, ·] = 𝑒0 [𝑣, ·] + 𝑅̃+𝑣 [𝑣0, ·] = 𝑦0 [𝑣, ·] ⊔ 𝑅̃+𝑣 [𝑣0, ·] ,
(2.93)

where the first equality follows from Lemma 38, the second from the invariance of the
codeword 𝑐𝑣, and the last from the facts that 𝑒0 = 𝑦̃0 = 𝑦0 and 𝑒0 [𝑣, ·] ∩ 𝑅̃+𝑣 [𝑣0, ·] ⊆
𝑒0 [𝑣, ·] ∩ 𝑅̃0 [𝑣, ·] = ∅. It follows that we must have 𝑅row [𝑣,·] = 𝑅̃+𝑣 [𝑣0, ·].
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Since the rows (resp. columns) of 𝑅row (resp. 𝑅col) are equal to the local minimum
weight corrections (for 𝑒) on neighboring vertices, we expect that 𝑅0 cannot be
too large. Otherwise, 𝑅0 would have enough overlap with the neighboring local
minimum weight corrections that subsets of it can start lowering the potential.
Therefore the fact that no subset of 𝑅0 can lower the potential implicitly places a
bound on its size. This is formalized by Lemma 41 below.

Lemma 41. Suppose that no subset of𝑄(𝑣0) decreases the global potential𝑈 when
flipped. Then we have

|𝑅0 | ≤
3Δ3/2+𝜀

𝛿
(2.94)

for sufficiently large Δ.

Proof. Consider the error configuration 𝑒 = 𝑒\𝑅0. By assumption we have 𝑈 (𝑒) =
𝑈 (𝑒). Using Lemma 40, we have 𝑒0 = 𝑦̃0 = 𝑦0 and 𝑅̃0 = 𝑅0.

Let 𝑣 be, without loss of generality, a row vertex. Since we have 𝑅row [𝑣, ·] =

𝑅̃+𝑣 [𝑣0, ·], it follows that flipping 𝑅row [𝑣, ·] decreases the local potential 𝑈𝑣 (𝑒) by
|𝑅row [𝑣, ·] |, i.e.,

𝑈𝑣 (𝑒 + 𝑅row [𝑣, ·]) = 𝑈𝑣 (𝑒) − |𝑅row [𝑣, ·] | . (2.95)

Now, suppose that 𝑣 ∈ 𝑌𝑛. Let 𝑐𝐵 be the closest codeword of 𝐶𝐵 to 𝑐𝑣 [𝑣0, ·]. Then

𝑈𝑣 (𝑒 + 𝑦0 [𝑣, ·]) = 𝑈𝑣 (𝑒 + 𝑅row [𝑣, ·] + 𝑐𝑣 [𝑣0, ·]) (2.96)

≤ 𝑈𝑣 (𝑒 + 𝑅row [𝑣, ·] + 𝑐𝐵) +
Δ1/2+𝜀

𝛿
(2.97)

= 𝑈𝑣 (𝑒 + 𝑅row [𝑣, ·]) +
Δ1/2+𝜀

𝛿
(2.98)

= 𝑈𝑣 (𝑒) − |𝑅row [𝑣, ·] | +
Δ1/2+𝜀

𝛿
, (2.99)

where the first equality follows from the fact that

𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] = 𝑦0 [𝑣, ·] + 𝑅row [𝑣, ·] = 𝑐𝑣 [𝑣0, ·] . (2.100)

The second line follows from Lemma 30, and the third line follows from the fact
that 𝑈𝑣 (𝑒 + 𝑐) = 𝑈𝑣 (𝑒) for any 𝑐 ∈ 𝐶⊥1 . The last line is just equation (2.95). Note
that an analogous version of inequality (2.99) also holds for column vertices.

Consider now the global potential 𝑈 (𝑒 + 𝑦0). Note that it follows from Lemma 26
that 𝑦0 will have empty intersection with the local view of any 𝑣 not in 𝑌 , so that
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only the local potentials associated with vertices of 𝑌 can be affected by flipping
𝑦0. We will bound the potential by explicitly separating out the contributions of the
exceptional vertices in 𝑌𝑒 over which we have little control. Let us write 𝛽 ≡ 772/𝛼
for the constant appearing in Corollary 37. Then we can bound the change in the
potential by

0 ≤ 𝑈 (𝑒 + 𝑦0) −𝑈 (𝑒) (2.101)

=
∑︁

𝑣∈𝑁 (𝑣0)∩𝑌
(𝑈𝑣 (𝑒 + 𝑦0) −𝑈𝑣 (𝑒)) (2.102)

≤
∑︁

𝑣∈𝑁 (𝑣0)∩𝑌𝑛

(𝑈𝑣 (𝑒 + 𝑦0) −𝑈𝑣 (𝑒)) + 𝛽Δ3/2−𝜀 , (2.103)

where the first inequality follows from the assumption that no subset of 𝑄(𝑣0)
decreases the global potential when flipped, the second line from the fact that only
the local views associated with vertices of 𝑁 (𝑣0) ∩𝑌 are affected by flipping 𝑦0, and
the last line removes the contributions resulting from the vertices in𝑌𝑒. The 𝛽Δ3/2−𝜀

term in the last line comes from the fact that there are at most 𝛽Δ1/2−𝜀 vertices of
𝑁 (𝑣0) ∩𝑌𝑒 as a result of Corollary 37, each of which can increase the weight of the
potential by at most Δ.

Splitting the sum above into row and column parts and applying inequality (2.99),
we get

∑︁
𝑣∈𝑁 (𝑣0)∩𝑌𝑛

(𝑈𝑣 (𝑒 + 𝑦0) −𝑈𝑣 (𝑒)) (2.104)

=
∑︁

𝑣∈𝑁𝑟 (𝑣0)∩𝑌𝑛

(𝑈𝑣 (𝑒 + 𝑦0 [𝑣, ·]) −𝑈𝑣 (𝑒)) +
∑︁

𝑣′∈𝑁𝑐 (𝑣0)∩𝑌𝑛

(𝑈𝑣′ (𝑒 + 𝑦0 [·, 𝑣′]) −𝑈𝑣′ (𝑒))

(2.105)

≤
∑︁

𝑣∈𝑁𝑟 (𝑣0)∩𝑌𝑛

(
−|𝑅row [𝑣, ·] | +

Δ1/2+𝜀

𝛿

)
+

∑︁
𝑣′∈𝑁𝑐 (𝑣0)∩𝑌𝑛

(
−|𝑅col [·, 𝑣′] | +

Δ1/2+𝜀

𝛿

)
(2.106)

≤ −
∑︁

𝑣∈𝑁𝑟 (𝑣0)∩𝑌𝑛

|𝑅row [𝑣, ·] | −
∑︁

𝑣′∈𝑁𝑐 (𝑣0)∩𝑌𝑛

|𝑅col [·, 𝑣′] | +
2Δ3/2+𝜀

𝛿
. (2.107)

By Corollary 39, it follows that the rows of 𝑅row (and columns of 𝑅col, respectively)
are zero if the indexing vertex is not in 𝑌 . It follows that we have∑︁

𝑣∈𝑁𝑟 (𝑣0)∩𝑌𝑛

|𝑅row [𝑣, ·] | =
∑︁

𝑣∈𝑁𝑟 (𝑣0)\𝑌𝑒

|𝑅row [𝑣, ·] | ≥ |𝑅row | − 𝛽Δ3/2−𝜀 , (2.108)
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and likewise∑︁
𝑣′∈𝑁𝑐 (𝑣0)∩𝑌𝑛

|𝑅col [·, 𝑣′] | =
∑︁

𝑣′∈𝑁𝑐 (𝑣0)\𝑌𝑒

|𝑅col [·, 𝑣′] | ≥ |𝑅col | − 𝛽Δ3/2−𝜀 , (2.109)

where the 𝛽Δ3/2−𝜀 correction term again comes from the vertices in 𝑌𝑒 over which
we have no control. Altogether, we have

0 ≤ −|𝑅row | − |𝑅col | +
2Δ3/2+𝜀

𝛿
+ 3𝛽Δ3/2−𝜀 . (2.110)

Taking Δ sufficiently large so that Δ2𝜀 ≥ 3𝛿𝛽, we finally get

|𝑅0 | ≤
3Δ3/2+𝜀

𝛿
. (2.111)

Lemma 41 shows that 𝑅0 is small. This now allows us to follow the remaining steps
outlined in scenario 2 above to complete the proof of Theorem 10.

Corollary 42. Suppose that no subset of 𝑄(𝑣0) decreases the global potential 𝑈
when flipped. Then we have

𝑑 (𝑦0, 𝐶𝐴 ⊗ FΔ2 ) + 𝑑 (𝑦0, F
Δ
2 ⊗ 𝐶𝐵) ≤

10Δ3/2+𝜀

𝛿
(2.112)

for sufficiently large Δ.

Proof. Consider the distance of 𝑦0 to the row codespace F𝐴2 ⊗ 𝐶𝐵 (with the column
case being identical). From equation (2.77), we have

𝑦0 [𝑣, ·] + 𝑅row [𝑣, ·] = 𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] = 𝑐𝑣 [𝑣0, ·] . (2.113)

If 𝑣 ∉ 𝑌 then Corollary 39 implies that each of the terms above is zero. If 𝑣 ∈ 𝑌𝑛,
then Lemma 30 implies that

𝑑 (𝑦0 [𝑣, ·] + 𝑅row [𝑣, ·], 𝐶𝐵) = 𝑑 (𝑐𝑣 [𝑣0, ·], 𝐶𝐵) ≤
Δ1/2+𝜀

𝛿
. (2.114)

Summing over all rows, and accounting for the exceptional vertices 𝑣 ∈ 𝑌𝑒, we get

𝑑 (𝑦0 + 𝑅row, F
𝐴
2 ⊗ 𝐶𝐵) ≤

Δ3/2+𝜀

𝛿
+ 𝛽Δ3/2−𝜀 , (2.115)
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where the Δ3/2+𝜀 term comes from the non-exceptional vertices and the Δ3/2−𝜀 term
from the exceptional vertices. Since

|𝑅row | ≤ |𝑅0 | ≤
3Δ3/2+𝜀

𝛿
(2.116)

by Lemma 41, it follows that we have

𝑑 (𝑦0, F
𝐴
2 ⊗ 𝐶𝐵) ≤

4Δ3/2+𝜀

𝛿
+ 𝛽Δ3/2−𝜀 ≤ 5Δ3/2+𝜀

𝛿
, (2.117)

where the last inequality follows from the fact that we took Δ large enough so that
Δ2𝜀 ≥ 3𝛽𝛿 in Lemma 41.

Corollary 43. Suppose no subset of 𝑄(𝑣0) decreases the global potential 𝑈 when
flipped. Then the local view 𝑦0 has weight

|𝑦0 | ≥
1
4
𝛼𝛿Δ2 (2.118)

for sufficiently large Δ.

Proof. From Corollary 37 it follows that 𝑣0 is adjacent to either ≥ (𝛼Δ− 𝛽Δ1/2−𝜀)/2
normal row vertices 𝑣 ∈ 𝑁𝑟 (𝑣0) ∩𝑌𝑛 or ≥ (𝛼Δ− 𝛽Δ1/2−𝜀)/2 normal column vertices
𝑣′ ∈ 𝑁𝑐 (𝑣0)∩𝑌𝑛 through dense edges. Suppose without loss of generality that it is the
former. Then by definition of dense edges, it follows that |𝑐𝑣 [𝑣0, ·] | ≥ 𝛿Δ−Δ1/2+𝜀/𝛿
for each of these vertices.

Summing the first equation in (2.77) over all row vertices 𝑣, we get

|𝑦0 | + |𝑅row | =
∑︁

𝑣∈𝑁𝑟 (𝑣0)
|𝑦0 [𝑣, ·] ⊔ 𝑅row [𝑣, ·] | (2.119)

=
∑︁

𝑣∈𝑁𝑟 (𝑣0)
|𝑐𝑣 [𝑣0, ·] | (2.120)

≥ (𝛼Δ − 𝛽Δ1/2−𝜀) (𝛿Δ − Δ1/2+𝜀/𝛿)/2 , (2.121)

where the last inequality follows from the preceding discussion. Choosing Δ suffi-
ciently large so that

(𝛼Δ − 𝛽Δ1/2−𝜀) (𝛿Δ − Δ1/2+𝜀𝛿) ≥ 2
3
𝛼𝛿Δ2 (2.122)

and applying Lemma 41, we get

|𝑦0 | ≥
1
3
𝛼𝛿Δ2 − 3Δ3/2+𝜀

𝛿
. (2.123)
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This implies that

|𝑦0 | ≥
1
4
𝛼𝛿Δ2 , (2.124)

again for sufficiently large Δ.

Finally, we are now in a position to complete the proof of Theorem 10.

Theorem 10. Since the code 𝐶⊥1 is chosen to be Δ3/2+𝜀′ robust for 𝜀′ > 𝜀, it follows
from Corollary 42 and Proposition 6 that there exists some 𝑐0 ∈ 𝐶𝐴 ⊗ 𝐶𝐵 such that
|𝑦0 − 𝑐0 | ≤ 15Δ3/2+𝜀/𝛿, which holds so long as Δ is chosen large enough so that
𝛿Δ𝜀

′ ≥ 10Δ𝜀. Applying Lemma 41, this implies that

|𝑒0 + 𝑐0 | = |𝑦0 + 𝑒0 ∩ 𝑅0 + 𝑐0 | ≤ |𝑦0 + 𝑐0 | + |𝑅0 ∩ 𝑒0 | ≤
18Δ3/2+𝜀

𝛿
. (2.125)

Since we have |𝑒0 | ≥ |𝑦0 | ≥ (𝛼𝛿/4)Δ2, it follows that we have |𝑒0 + 𝑐0 | < |𝑒0 |
whenever

72
𝛼𝛿2 < Δ1/2−𝜀 . (2.126)

This contradicts the fact that 𝑒 was chosen to be a reduced error.

2.5 Discussion and conclusion
In this paper, we have shown the existence of a provably correct decoder for the recent
quantum Tanner codes construction of asymptotically good qLDPC codes. Our
decoder has runtime linear in the code blocklength, and provably corrects all errors
with weight up to a constant fraction of the distance (and hence the blocklength).
A key idea behind the decoder is the introduction of a global potential function
which measures the stability of the error against locally defined corrections. Our
decoder proceeds operationally in a manner similar to the small-set-flip decoder for
quantum expander codes [11], checking candidate subsets defined within the local
views of the code to see if the global potential function can be reduced at each step.
We prove that such a reduction is always possible for sufficiently low weight errors,
which we use to show that the decoder successfully corrects all errors of weight
|𝑒 | ≲ 𝛿𝑛/Δ7/2−𝜀. The existence of our decoder implies a notion of soundness for the
quantum Tanner codes construction (see Corollary 14). It also implies an accuracy
threshold against stochastic noise (see Corollary 15).

An important part of our proof for the correctness of the decoder involves showing
the existence of dual tensor codes of larger robustness (Δ3/2+𝜀) than was established
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in [9]. This result also gives a constant factor improvement in the distance of
the code. In addition, it leads to a simplification in the construction of quantum
Tanner codes in that the dual tensor codes are no longer required to be resistant to
puncturing.

A number of open problems remain at this point. One major problem is the time
complexity of the decoder. While the runtime of the decoder is linear in the
blocklength, there are constant prefactors on the order of 2Δ2 arising from the need
to check all subsets of theΔ2-sized local views. This renders the decoder impractical
in reality. Part of the problem stems from the inherently large check weights (Δ2)
of the quantum Tanner codes construction. A natural follow-up problem therefore
is to look for ways to reduce the absolute runtime of the decoder, for example by
reducing the check weights of the underlying code construction.

Another problem is related to the decoding of the asymptotically good qLDPC codes
by Panteleev and Kalachev [8]. While the quantum Tanner codes construction is in
many ways similar to the codes by Panteleev and Kalachev, we do not currently know
how to efficiently decode the Panteleev-Kalachev code. It would be interesting to
see if our current decoder can be modified to work for the Panteleev-Kalachev code.
A related – and more generic – problem is the existence of efficient decoders for
good qLDPC codes constructed by the balanced product construction [7] in general,
especially with the presence of non-trivial local codes.

Our current decoder requires the checking of local views belonging to vertices of
both 𝑉0 and 𝑉1. This is in contrast to the small-set-flip decoder, which only requires
checking the supports of generators of a single type. It may be possible that a tighter
analysis (for example, using a stronger version of the low-overlap property, or more
robust local codes) may allow us to eliminate the need to check both vertex types. A
better understanding of the candidate flip-sets in general may be useful, especially
towards the problem of lowering the runtime mentioned earlier.
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2.A Existence of dual tensor codes with sufficiently high robustness
In this appendix, we show the existence of dual tensor codes with sufficiently
high robustness, which we require as a component of the quantum Tanner codes
construction in order to prove correctness of our decoder. We will use the following
notation throughout this section. Given codes 𝐶𝐴 and 𝐶𝐵 defined by parity check
matrices 𝐻𝐴 and 𝐻𝐵, we denote their dual tensor code (𝐶⊥

𝐴
⊗𝐶⊥

𝐵
)⊥ by𝐶𝐴𝐵 for short,

with the dependence on 𝐶𝐴, 𝐶𝐵 being implicit.

We first recall the definition of a 𝑤-robust dual tensor code as defined in [9].

Definition 5 (𝑤-Robustness). Let 𝐶𝐴, 𝐶𝐵 ⊆ F𝑛2 be classical codes with distances 𝑑𝐴
and 𝑑𝐵, respectively. We say that the dual tensor code 𝐶𝐴𝐵 = 𝐶𝐴 ⊗ F𝑛2 + F

𝑛
2 ⊗ 𝐶𝐵

is 𝑤-robust if every codeword 𝑋 ∈ 𝐶𝐴𝐵 with |𝑋 | ≤ 𝑤 is supported on the union of
at most |𝑋 |/𝑑𝐴 non-zero columns and |𝑋 |/𝑑𝐵 non-zero rows. That is, there exist
rows 𝐴′ with |𝐴′| ≥ 𝑛 − |𝑋 |/𝑑𝐵 and columns 𝐵′ with |𝐵′| ≥ 𝑛 − |𝑋 |/𝑑𝐴 such that
𝑋 |𝐴′×𝐵′ = 0.

Definition 44 (Sufficiently Robust). We say that 𝐶𝐴𝐵 is sufficiently robust if there
exists some 𝜀 > 0 such that 𝐶𝐴𝐵 is Δ3/2+𝜀-robust.

When a codeword of a dual tensor code is supported on few columns and rows, it
has a decomposition into column and row codewords respecting this support.

Lemma 45. Let 𝐶𝐴 and 𝐶𝐵 be classical codes of distance at least 𝑑 and 𝐶 =

𝐶𝐴 ⊗ F𝐵2 + F
𝐴
2 ⊗ 𝐶𝐵 be the dual tensor code. Suppose 𝑋 ∈ 𝐶 is supported on the

union of 𝛼 non-zero rows and 𝛽 non-zero columns, with 𝛼, 𝛽 < 𝑑. Then 𝑋 can be
written as 𝑋 = r + c where r ∈ F𝐴2 ⊗ 𝐶𝐵 is supported on at most 𝛼 non-zero rows
and c ∈ 𝐶𝐴 ⊗ F𝐵2 is supported on at most 𝛽 non-zero columns.

Proof. Let 𝐴′ be the rows and 𝐵′ be the columns that 𝑋 is supported on. We
have 𝛼 = |𝐴′| and 𝛽 = |𝐵′|. Let 𝐶𝐴′ , 𝐶𝐵′ be the projections of 𝐶𝐴 and 𝐶𝐵 onto
the complements 𝐴′ and 𝐵′, respectively. Because |𝐴′|, |𝐵′| < 𝑑, the projections
𝐶𝐴 → 𝐶𝐴′ and 𝐶𝐵 → 𝐶𝐵′ are isomorphisms, and hence so is the projection
𝐶𝐴 ⊗ 𝐶𝐵 → 𝐶𝐴′ ⊗ 𝐶𝐵′ .
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Let 𝑋 = r + c be any decomposition where r ∈ F𝐴2 ⊗ 𝐶𝐵 and c ∈ 𝐶𝐴 ⊗ F𝐵2 . By
assumption, we have 𝑋 |𝐴′×𝐵′ = 0, so we have that r|𝐴′×𝐵′ = c|𝐴′×𝐵′ . It follows
that this quantity is in 𝐶𝐴′ ⊗ 𝐶𝐵′ . By the isomorphism above, there exists a unique
𝑌 ∈ 𝐶𝐴 ⊗ 𝐶𝐵 such that 𝑌 |𝐴′×𝐵′ = r|𝐴′×𝐵′ = c|𝐴′×𝐵′ . Again due to the isomorphism
above, we actually know that 𝑌 is equal to r on the rows indexed by 𝐴′, and also that
𝑌 is equal to c on the columns indexed by 𝐵′. Therefore, 𝑋 = (r + 𝑌 ) + (c + 𝑌 ) is
the desired decomposition with (r + 𝑌 ) |𝐴′×𝐵 = 0 and (c + 𝑌 ) |𝐴×𝐵′ = 0.

We use a probabilistic argument to show that randomly chosen dual tensor codes
will be sufficiently robust with high probability. There are several ways to randomly
choose a classical code, which we make use of in different parts of the proof. We
first show that these distributions are almost the same.

2.A.1 Lemmas about random codes
In this subsection, we collect some basic results about various ensembles of random
codes. The main utility of these results is in the proof of Theorem 57, where we must
consider random ensembles of punctured codes. While the majority of the results
in this appendix are more conveniently shown using ensembles of codes obtained
from random parity check matrices, it is much simpler to perform puncturing on
codes defined using generator matrices. The results proven in this subsection will
allow us to freely switch between the various closely related ensembles of random
codes so that we may use the most convenient ensemble at each step.

Let 𝐶1, 𝐶2, 𝐶3 be random classical codes of length Δ chosen from three different
ensembles:

1. Let 𝐻 ∼ U
(
F
(1−𝜌)Δ×Δ
2

)
be a uniformly random parity check matrix and let

𝐶1 = ker𝐻.

2. Let 𝐺 ∼ U
(
F
Δ×𝜌Δ
2

)
be a uniformly random generator matrix and let 𝐶2 =

col𝐻.

3. Let S = {𝐶 ⊆ FΔ2 : 𝐶 is a 𝜌Δ-dimensional subspace} and let 𝐶3 ∼ U(S) be
a uniformly random 𝜌Δ-dimensional subspace.

Lemma 46. For a fixed 𝐶 ∈ S, we have

Pr(𝐶1 = 𝐶 | rank𝐻 = (1 − 𝜌)Δ) = Pr(𝐶2 = 𝐶 | rank𝐺 = 𝜌Δ) = Pr(𝐶3 = 𝐶) .
(2.127)
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Proof. We first prove that Pr(𝐶1 = 𝐶 | rank𝐻 = (1 − 𝜌)Δ) = Pr(𝐶3 = 𝐶). Since
𝐶3 is drawn from a uniform distribution, it is sufficient to show that given two
𝜌Δ-dimensional subspaces 𝐶′, 𝐶′′ ∈ S, we have

Pr(𝐶1 = 𝐶′ | rank𝐻 = (1 − 𝜌)Δ) = Pr(𝐶1 = 𝐶′′ | rank𝐻 = (1 − 𝜌)Δ) . (2.128)

Equivalently, we show that the number of full rank matrices 𝐻 with ker𝐻 = 𝐶′ is
the same as the number with ker𝐻 = 𝐶′′. Let

H1 = {𝐻 ∈ F(1−𝜌)Δ×Δ2 : rank𝐻 = (1 − 𝜌)Δ, ker𝐻 = 𝐶′} , (2.129)

H2 = {𝐻 ∈ F(1−𝜌)Δ×Δ2 : rank𝐻 = (1 − 𝜌)Δ, ker𝐻 = 𝐶′′} . (2.130)

Because𝐶′ and𝐶′′ have the same dimension, there is an invertible matrix 𝐴 ∈ FΔ×Δ2
such that 𝐴𝐶′ = 𝐶′′. Consider the bĳective linear map

𝑓 : F(1−𝜌)Δ×Δ2 → F(1−𝜌)Δ×Δ2 , (2.131)

𝐻 ↦→ 𝐻𝐴−1 . (2.132)

Now if ker𝐻 = 𝐶′, then for any 𝑥 ∈ 𝐶′′, we have

𝑓 (𝐻)𝑥 = 𝐻𝐴−1𝑥 = 0 (2.133)

since 𝐴−1𝑥 ∈ 𝐶′. Thus, 𝑓 restricts to a bĳection betweenH1 andH2.

The other equality is shown similarly. We prove that the two sets

G1 = {𝐺 ∈ FΔ×𝜌Δ2 : rank𝐺 = 𝜌Δ, col𝐺 = 𝐶′} (2.134)

G2 = {𝐺 ∈ FΔ×𝜌Δ2 : rank𝐺 = 𝜌Δ, col𝐺 = 𝐶′′} (2.135)

have the same cardinality. Define

𝑔 : FΔ×𝜌Δ2 → FΔ×𝜌Δ2 , (2.136)

𝐺 ↦→ 𝐴𝐺 . (2.137)

Suppose 𝐺 ∈ G1. For any 𝑦 ∈ 𝐶2, we have 𝐴−1𝑦 ∈ 𝐶1, so let 𝑥 ∈ F𝜌Δ2 be such that
𝐺𝑥 = 𝐴−1𝑦. Then

𝑔(𝐺)𝑥 = 𝐴𝐺𝑥 = 𝐴𝐴−1𝑦 = 𝑦 . (2.138)

This shows that 𝑔(𝐺) ∈ G2, and so 𝑔 is a bĳection between G1 and G2.

Lemma 47. The probability that 𝐻 or 𝐺 is not full rank is exponentially small:

Pr(rank𝐻 ≠ (1 − 𝜌)Δ) ≤ 2−𝜌Δ and Pr(rank𝐺 ≠ 𝜌Δ) ≤ 2−(1−𝜌)Δ . (2.139)
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Proof. Let the columns of 𝐺 be 𝑔1, 𝑔2, . . . , 𝑔𝜌Δ. If 𝐺 is not full rank, there must be
a non-trivial subset of the columns that sums to zero. Thus, a union bound gives

Pr(rank𝐺 ≠ 𝜌Δ) = Pr

(∑︁
𝑖∈𝑆

𝑔𝑖 = 0 for some nonempty subset 𝑆 ⊆ [𝜌Δ]
)

(2.140)

≤
∑︁

∅≠𝑆⊆[𝜌Δ]
Pr

(∑︁
𝑖∈𝑆

𝑔𝑖 = 0

)
(2.141)

≤ 2𝜌Δ2−Δ (2.142)

= 2−(1−𝜌)Δ . (2.143)

The same argument shows that Pr(rank𝐻 ≠ (1 − 𝜌)Δ) ≤ 2−𝜌Δ.

The above two lemmas imply that statements about random codes do not depend
much on which distribution the codes are chosen from.

Corollary 48. LetV denote the set of all subspaces of FΔ2 . Then the total variation
distance 𝛿𝑇𝑉 (Pr𝐶𝑖

, Pr𝐶 𝑗
) between the distributions of𝐶𝑖 and𝐶 𝑗 is bounded above by

𝛿𝑇𝑉 (Pr𝐶𝑖
, Pr𝐶 𝑗

) ≡ 1
2

∑︁
𝐶∈V

�� Pr
𝐶𝑖

(𝐶𝑖 = 𝐶) − Pr
𝐶 𝑗

(𝐶 𝑗 = 𝐶)
�� ≤ 2−Ω(Δ) (2.144)

for 𝑖, 𝑗 ∈ {1, 2, 3}.

Proof. Let us compare the distributions of 𝐶1 and 𝐶3. Note that 𝐶3 is uniformly
random on S and zero onV\S. Therefore we can write

𝛿𝑇𝑉 (Pr𝐶1 , Pr𝐶3) =
1
2

∑︁
𝐶∈V

�� Pr
𝐶1
(𝐶1 = 𝐶) − Pr

𝐶3
(𝐶3 = 𝐶)

�� (2.145)

=
1
2

∑︁
𝐶∈S

�� Pr
𝐶1
(𝐶1 = 𝐶) − Pr

𝐶3
(𝐶3 = 𝐶)

�� + 1
2

∑︁
𝐶∈V\S

Pr
𝐶1
(𝐶1 = 𝐶)

(2.146)

=
1
2

∑︁
𝐶∈S

�� Pr
𝐶1
(𝐶1 = 𝐶) − Pr

𝐶3
(𝐶3 = 𝐶)

�� + 1
2

Pr
𝐶1
(dim𝐶1 ≠ 𝜌Δ)

(2.147)

≤ 1
2

∑︁
𝐶∈S

�� Pr
𝐶1
(𝐶1 = 𝐶) − Pr

𝐶3
(𝐶3 = 𝐶)

�� + 1
2
· 2−𝜌Δ , (2.148)
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where the last inequality follows by Lemma 47. For𝐶 ∈ S, the previous two lemmas
imply that

Pr
𝐶1
(𝐶1 = 𝐶) = Pr

𝐻
(𝐶1 = 𝐶 | rank𝐻 = (1 − 𝜌)Δ) · Pr

𝐻
(rank𝐻 = (1 − 𝜌)Δ) (2.149)

≥ Pr
𝐶3
(𝐶3 = 𝐶) (1 − 2−𝜌Δ) . (2.150)

It follows that∑︁
𝐶∈S

�� Pr
𝐶1
(𝐶1 = 𝐶) − Pr

𝐶3
(𝐶3 = 𝐶)

�� ≤ ∑︁
𝐶∈S

Pr
𝐶3
(𝐶3 = 𝐶)2−𝜌Δ = 2−𝜌Δ . (2.151)

It follows that we have

𝛿𝑇𝑉 (Pr𝐶1 , Pr𝐶3) ≤ 2−𝜌Δ . (2.152)

The same argument holds when comparing 𝐶2 and 𝐶3, with the upper bound
2−(1−𝜌)Δ.

Note that the total variation distance can equivalently be given by

𝛿𝑇𝑉 (Pr𝐶𝑖
, Pr𝐶 𝑗

) = sup
𝐴⊆V

�� Pr
𝐶𝑖

(𝐶𝑖 ∈ 𝐴) − Pr
𝐶 𝑗

(𝐶 𝑗 ∈ 𝐴)
�� . (2.153)

The most common way we will apply Corollary 48 is in terms of joint probability
distributions. For independent random variables, the total variation distance satisfies

𝛿𝑇𝑉 (Pr𝐶𝑖 ,𝐶 𝑗
, Pr𝐶𝑖 ,𝐶𝑘

) ≤ 𝛿𝑇𝑉 (Pr𝐶 𝑗
, Pr𝐶𝑘

) . (2.154)

This allows us to freely switch between the various joint distributions, up to an
exponentially small overhead.

2.A.2 Random codes are sufficiently robust
Throughout this section, we will use the notation Θ̃( 𝑓 (𝑥)) to denoteΘ( 𝑓 (𝑥) log 𝑓 (𝑥)).
For 𝑎 ∈ (0, 1), we have the following asymptotic bound for the binomial coefficients
which we will use frequently: (

𝑛

𝑛𝑎

)
= 2Θ̃(𝑛

𝑎) . (2.155)

Note that equation (2.155) follows from the bound [21]

1
𝑛 + 1

2𝑛ℎ(𝑘/𝑛) ≤
(
𝑛

𝑘

)
≤ 2𝑛ℎ(𝑘/𝑛) (2.156)
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after some basic algebra. Here, ℎ(𝑥) denotes the binary entropy function.

The goal of this section is to show that randomly chosen dual tensor codes will
be sufficiently robust with high probability. Towards this goal, it will be more
convenient to work with a condition which is proxy for 𝑤-robustness, one which we
will call sparse robustness (and its associated punctured version). In all that follows
we will fix some small but otherwise arbitrary constant 𝜀 > 0. All definitions below
are technically made with reference to some chosen 𝜀, but we will suppress the
dependence out of brevity.

Definition 49 (Low-Weight and Sparse). We will say that a matrix 𝑋 ∈ FΔ×Δ2 is
low-weight if |𝑋 | ≤ Δ3/2+𝜀. We will say that 𝑋 is sparse if each row and column of
𝑋 has weight at most Δ1/2+2𝜀.

Note that low-weight and sparse above are closely related but distinct notions.
Neither implies the other. We ultimately want to show robustness against low-
weight codewords, and we do so by first showing robustness against sparse matrices.

Definition 50 (Sparse Robustness and Puncturing). Let 𝐶𝐴𝐵 be a dual tensor code
with distance 𝑑 ≥ 𝛿Δ. We say that 𝐶𝐴𝐵 is sparse robust if 𝐶𝐴𝐵 does not contain any
non-zero sparse codewords.

Let𝐶𝐴 ⊆ F𝐴2 be a code and let 𝐴′ ⊆ 𝐴. We say that the code𝐶𝐴′ ⊆ F𝐴
′

2 is a punctured
code obtained from𝐶𝐴 if the codewords of𝐶𝐴′ are precisely those obtained from𝐶𝐴

by removing all entries in 𝐴′ = 𝐴\𝐴′. In this case, we also say that 𝐶𝐴′ is obtained
from 𝐶𝐴 by puncturing on 𝐴′. Note that a generator matrix for 𝐶𝐴′ is obtained from
a generator matrix for 𝐶𝐴 by removing the entries supported on 𝐴′.

Let P denote the set of all codes𝐶𝐴′𝐵′ obtained from𝐶𝐴𝐵 by puncturing 𝐴 and 𝐵 on
Δ1−𝜀 coordinates (note that |𝐴′| = |𝐵′| = Δ − Δ1−𝜀 in this case). We say that 𝐶𝐴𝐵 is
sparse robust with respect to puncturing (SRP) if every 𝐶𝐴′𝐵′ ∈ P is sparse robust.

The connection between 𝑤-robustness and sparse robustness is formalized in the
lemma below.

Lemma 51. Let 𝐶𝐴𝐵 be a dual tensor code with distance 𝑑 = 𝛿Δ. For sufficiently
large Δ, if 𝐶𝐴𝐵 is sparse robust with respect to puncturing then it is Δ3/2+𝜀/2-robust.
In particular, 𝐶𝐴𝐵 is sufficiently robust.

Proof. Let 𝐶𝐴𝐵 be sparse robust with respect to puncturing. Let 𝑋 ∈ 𝐶𝐴𝐵 be a
codeword of weight |𝑋 | ≤ Δ3/2+𝜀/2. From Lemma 30 of [9], if 𝑋 is supported on the
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union of at most 𝑑/2 = 𝛿Δ/2 rows and columns, then it is supported on the union of
|𝑋 |/𝑑 rows and columns. Therefore, it suffices to show that 𝑋 is supported on the
union of at most 𝛿Δ/2 non-zero rows and columns.

Since |𝑋 | ≤ Δ3/2+𝜀/2, it can have at most Δ1−𝜀 rows or columns which are of weight
greater than Δ1/2+3𝜀/2. By removing these high-weight rows and columns, it follows
that there exists some puncturing sets 𝐴′, 𝐵′ of size Δ1−𝜀 such that 𝑋 punctured on
those coordinates has all columns and rows with weight at most Δ1/2+3𝜀/2. The idea
now is to show that the punctured matrix 𝑋′ is sparse, so that it must vanish by
the sparse robustness of the punctured code 𝐶𝐴′𝐵′ . The sparsity of 𝑋′ is slightly
complicated by the fact that it is a matrix of size Δ′ = Δ − Δ1−𝜀 < Δ. To account
for the smaller size of Δ′, let us choose Δ to be sufficiently large so that Δ′ ≥ Δ/2.
Then we have

Δ1/2+3𝜀/2 ≤ (2Δ′)1/2+3𝜀/2 ≤ (Δ′)1/2+2𝜀 , (2.157)

where the last inequality holds as long as we choose Δ large enough so that 4 ≤
𝜀 log2 Δ. It follows that for sufficiently large Δ, the rows and columns of 𝑋′ have at
most (Δ′)1/2+2𝜀 entries, so the punctured matrix 𝑋′ is sparse. Since 𝐶𝐴′𝐵′ is sparse
robust by assumption, it follows that 𝑋′ = 0. Therefore 𝑋 must have been supported
on its punctured rows and columns, of which there are 𝑂 (Δ1−𝜀). This will be less
than 𝑑/2 = 𝛿Δ/2 for sufficiently large Δ, and the result follows.

We will therefore proceed by first showing that a randomly chosen dual tensor code
will be sparse robust with high probability, and then use this fact to show that
random dual tensor codes are sparse robust with respect to puncturing—and hence
sufficiently robust—with high probability.

For a dual tensor code 𝐶𝐴𝐵 with distance 𝑑 ≥ 𝛿Δ, we are automatically guaranteed
that there are no non-zero sparse codewords supported on fewer than 𝛿Δ non-zero
rows and columns.

Lemma 52. Let 𝐶𝐴𝐵 be a dual tensor code with distance 𝑑 ≥ 𝛿Δ. Let 𝛾 ∈ (0, 1)
be some constant. For Δ sufficiently large, the dual tensor code 𝐶𝐴𝐵 contains no
non-zero sparse codewords which are supported on the union of ≤ 𝛾𝛿Δ non-zero
rows and ≤ 𝛾𝛿Δ non-zero columns.

Proof. Suppose that 𝑋 ∈ 𝐶𝐴𝐵 is sparse and is supported on a union of at most 𝛿Δ
non-zero rows and columns. By Lemma 45, there exists a decomposition 𝑋 = r + c



63

where c ∈ 𝐶𝐴 ⊗ F𝐵2 and r ∈ F𝐴2 ⊗𝐶𝐵 such that c has ≤ 𝛾𝛿Δ non-zero columns, each
of which is a codeword for 𝐶𝐴, and r has ≤ 𝛾𝛿Δ non-zero rows, each of which is a
codeword for 𝐶𝐵. Since 𝑋 is sparse, it follows that each column of c has weight

|c[·, 𝑖] | ≤ 𝛾𝛿Δ + Δ1/2+2𝜀 . (2.158)

Choosing Δ large enough so that Δ1/2+2𝜀 < (1 − 𝛾)𝛿Δ, we get

|c[·, 𝑖] | < 𝛿Δ (2.159)

so that c[·, 𝑖] = 0. Since this holds for every column, it follows that c is the zero
codeword. The same logic applies to r.

It follows that to show a random 𝐶𝐴𝐵 is sparse robust, it suffices to show that it
cannot contain any sparse codewords with more than 𝛿Δ/2 non-zero columns and
more than 𝛿Δ/2 non-zero rows.

Theorem 53 (Sparse Robustness). Fix constants3 𝜌𝐴, 𝜌𝐵 ∈ (0, 1), 𝜀 ∈ (0, 1/14),
and 𝛿 ∈ (0, 1).

Let 𝐻𝐴 ∈ F(1−𝜌𝐴)Δ×Δ2 and 𝐻𝐵 ∈ F(1−𝜌𝐵)Δ×Δ2 be uniformly random binary check
matrices defining codes 𝐶𝐴 and 𝐶𝐵, respectively. Then the probability that 𝐶𝐴𝐵 has
distance 𝑑 ≥ 𝛿Δ and is not sparse robust is bounded above by

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SR and 𝑑 ≥ 𝛿Δ) ≤ 2−Θ(Δ
3/2−2𝜀) . (2.160)

To prove Theorem 53 we first begin with some setup. Let us define X ⊆ FΔ×Δ2 as
the set of all sparse matrices with more than 𝛿Δ/2 non-zero rows and columns, i.e.,

X = {𝑋 ∈ FΔ×Δ2 | 𝑋 is sparse

and has > 𝛿Δ/2 non-zero rows and > 𝛿Δ/2 non-zero columns} . (2.161)

We first bound the number of high and low rank matrices in X.

Lemma 54. Let 𝑏 ∈ (0, 1/2) and let

X1 = {𝑋 ∈ X | rank(𝑋) ≤ Δ1/2+𝑏} , (2.162)

X2 = X\X1 = {𝑋 ∈ X | rank(𝑋) > Δ1/2+𝑏} . (2.163)

3Note that we are only interested in the upper bound on the probability here, so we do not restrict
the values of the 𝜌𝐴, 𝜌𝐵, and 𝛿. With particular choices of 𝜌𝐴, 𝜌𝐵, and 𝛿, this result implies that
sparse robust codes exist by the Gilbert–Varshamov Bound.
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Then we have the cardinality bounds4

|X1 | ≤ 2Θ̃(Δ
1+2𝜀+𝑏) and |X2 | ≤ 2Θ̃(Δ

3/2+2𝜀) . (2.164)

Proof. We begin with the proof of the high rank case. Since the overwhelming
majority of matrices in X are expected to be high rank, we simply bound the total
number of matrices in X as a whole. Since each matrix in X is sparse, it can have
weight at most Δ3/2+2𝜀. We can therefore bound |X| by the total number of matrices
of such weight, given by

|X| ≤
Δ3/2+2𝜀∑︁
𝑗=0

(
Δ2

𝑗

)
≤ Δ3/2+2𝜀

(
Δ2

Δ3/2+2𝜀

)
= 2Θ̃(Δ

3/2+2𝜀) . (2.165)

Now we bound the low rank case. Let us see how many ways we can build some
𝑋 ∈ X1 with rank 𝑋 = 𝑁 . We first fix a basis for the row space of 𝑋 . Since 𝑋 is
sparse, each basis vector can be chosen in at most

Δ1/2+2𝜀∑︁
𝑗=1

(
Δ

𝑗

)
≤ Δ1/2+2𝜀

(
Δ

Δ1/2+2𝜀

)
= 2Θ̃(Δ

1/2+2𝜀) (2.166)

ways. There are 𝑁 basis vectors, so there are at most(
2Θ̃(Δ

1/2+2𝜀)
)𝑁

= 2Θ̃(𝑁Δ
1/2+2𝜀) (2.167)

possible (ordered) bases for the row space of 𝑋 . We can place these basis vectors
into the rows of the matrix 𝑋 in at most(

Δ

𝑁

)
≤

(
Δ

Δ1/2+𝑏

)
= 2Θ̃(Δ

1/2+𝑏) (2.168)

ways. Having fixed a row space basis, each of the remaining rows must be a
linear combination of these basis vectors. By row reduction, let {𝑣1, . . . , 𝑣𝑁 } be
another basis for the row space of 𝑋 such that each 𝑣𝑖 has a 1 in some column 𝑐𝑖
in which every other 𝑣 𝑗 is 0. Now, every row of 𝑋 is also a linear combination of
{𝑣1, . . . , 𝑣𝑁 }. If the basis vector 𝑣𝑖 appears in the linear combination defining a row
𝑟 𝑗 , then (𝑟 𝑗 )𝑐𝑖 = 1. However, by column sparsity, (𝑟 𝑗 )𝑐𝑖 = 1 can only be true for at
most Δ1/2+2𝜀 values of 𝑗 . There are therefore at most

Δ1/2+2𝜀∑︁
𝑗=0

(
Δ

𝑗

)
≤ Δ1/2+2𝜀

(
Δ

Δ1/2+2𝜀

)
= 2Θ̃(Δ

1/2+2𝜀) (2.169)

4Note that these bounds only make use of the sparsity condition, and not the restriction on the
number of rows and columns.
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ways to choose the rows which contain a given 𝑣𝑖 in its linear combination. Making
this choice for each 𝑣𝑖, it follows that there are at most(

2Θ̃(Δ
1/2+2𝜀)

)𝑁
= 2Θ̃(𝑁Δ

1/2+2𝜀) (2.170)

ways to fill out the remaining rows of the matrix, since we have chosen the subset
of {𝑣1, . . . , 𝑣𝑁 } in the linear combination defining every row of 𝑋 . Combining
everything, and summing over the rank 𝑁 , it follows that there can be at most

Δ1/2+𝑏∑︁
𝑁=1

2Θ̃(𝑁Δ
1/2+2𝜀)2Θ̃(Δ

1/2+𝑏)2Θ̃(𝑁Δ
1/2+2𝜀) ≤ Δ1/2+𝑏 · 2Θ̃(Δ1+2𝜀+𝑏) = 2Θ̃(Δ

1+2𝜀+𝑏) (2.171)

distinct matrices in X1.

For low-rank matrices 𝑋 ∈ X1, we want to show that 𝐻𝐴𝑋 is also likely to have low
rank. This uses the following lemma:

Lemma 55. Let 𝑌 ∈ FΔ×Δ′2 be a matrix of rank 𝑀 and let 𝐻 ∈ F(1−𝜌)Δ×Δ2 be chosen
uniformly at random. Then for any 𝐾 ,

Pr
𝐻
(rank(𝐻𝑌 ) = 𝐾) ≤

(
𝑀

𝐾

)
2−((1−𝜌)Δ−𝐾) (𝑀−𝐾) . (2.172)

Proof. Let 𝑦1, . . . , 𝑦𝑀 be linearly independent columns of 𝑌 . If rank(𝐻𝑌 ) = 𝐾 ,
then {𝐻𝑦1, . . . , 𝐻𝑦𝑀} must span a 𝐾-dimensional subspace of F(1−𝜌)Δ2 . In other
words, there is a 𝐾-element subset 𝑆 ⊆ [𝑀] such that 𝑉𝑆 ≡ span{𝐻𝑦 𝑗 } 𝑗∈𝑆 is 𝐾-
dimensional and 𝐻𝑦𝑖 ∈ 𝑉𝑆 for all 𝑖 ∈ [𝑀]. Let S denote the set of all 𝐾-element
subsets of [𝑀]. We have

Pr
𝐻
(rank(𝐻𝑌 ) = 𝐾) (2.173)

=Pr
𝐻
(∃𝑆 ∈ S such that dim𝑉𝑆 = 𝐾 and 𝐻𝑦𝑖 ∈ 𝑉𝑆 for all 𝑖 ∈ [𝑀]) (2.174)

≤
∑︁
𝑆∈S

Pr
𝐻
(dim𝑉𝑆 = 𝐾 and 𝐻𝑦𝑖 ∈ 𝑉𝑆 for all 𝑖 ∈ [𝑀]) (2.175)

≤
∑︁
𝑆∈S

Pr
𝐻
(𝐻𝑦𝑖 ∈ 𝑉𝑆 for all 𝑖 ∈ [𝑀] | dim𝑉𝑆 = 𝐾) (2.176)

=
∑︁
𝑆∈S

∏
𝑖∈[𝑀]

Pr
𝐻
(𝐻𝑦𝑖 ∈ 𝑉𝑆 | dim𝑉𝑆 = 𝐾) . (2.177)

Now, consider some fixed 𝑆 in the latter sum. If 𝑖 ∈ 𝑆, then 𝐻𝑦𝑖 ∈ 𝑉𝑆 is guaranteed.
Otherwise, because the 𝑦𝑖 are independent, the 𝐻𝑦𝑖 are independently mapped to
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uniformly random vectors in F(1−𝜌)Δ2 , and each of them lands in the fixed subspace
𝑉𝑆 with probability 2−((1−𝜌)Δ−𝐾) . Thus,

Pr
𝐻
(rank(𝐻𝑌 ) = 𝐾) ≤

(
𝑀

𝐾

) (
2−((1−𝜌)Δ−𝐾)

)𝑀−𝐾
. (2.178)

We will also need the following fact about the rank of sparse matrices, which first
appears in [9].

Lemma 56 (Corollary 25 of [9]). Let𝐶𝐴 be an error-correcting code with minimum
distance 𝑑𝐴 ≥ 𝛿Δ. Let 𝐻𝐴 be its parity check matrix. Let 𝑋 ∈ FΔ×Δ2 be a matrix such
that all columns are of weight at most Δ1/2+2𝜀, and such that 𝑋 has more than 𝛿Δ/2
non-zero rows. Then for Δ sufficiently large, we have rank(𝐻𝐴𝑋) ≥ (𝛿/2)Δ1/2−2𝜀.

Proof. This follows directly from the proofs of Lemma 24 and Corollary 25 in [9]
with the appropriate modifications of the relevant parameters.

Now we are ready to prove Theorem 53.

Proof of Theorem 53. It follows from Lemma 52 that a dual tensor code 𝐶𝐴𝐵 with
distance 𝑑 ≥ 𝛿Δ is sparse robust if and only if it contains no element of X. Taking
a union bound over X, we can write

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SR and 𝑑 ≥ 𝛿Δ) ≤
∑︁
𝑋∈X

Pr
𝐻𝐴,𝐻𝐵

(𝑋 ∈ 𝐶𝐴𝐵 and 𝑑 ≥ 𝛿Δ) (2.179)

=
∑︁
𝑋∈X

Pr
𝐻𝐴,𝐻𝐵

(𝐻𝐴𝑋𝐻
T
𝐵 = 0 and 𝑑 ≥ 𝛿Δ) ,

(2.180)

where the last line follows from the definition of the dual tensor code. To proceed,
we decompose the sum according to the rank of 𝐻𝐴𝑋 . It follows from Lemma 55
(with 𝐾 = 0) that for any matrix 𝑌 with rank(𝑌 ) = 𝑀 , the probability over 𝐻𝐵 that
𝑌𝐻T

𝐵
= 0 is bounded above by 2−(1−𝜌𝐵)Δ𝑀 . Applying this fact by taking 𝑌 = 𝐻𝐴𝑋 ,

we get
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𝑋∈X

Pr
𝐻𝐴,𝐻𝐵

(𝐻𝐴𝑋𝐻
T
𝐵 = 0 and 𝑑 ≥ 𝛿Δ) (2.181)

≤
∑︁
𝑋∈X

Pr
𝐻𝐴,𝐻𝐵

(𝐻𝐴𝑋𝐻
T
𝐵 = 0 and 𝑑𝐴 ≥ 𝛿Δ) (2.182)

=
∑︁
𝑋∈X

rank(X)∑︁
𝑀=0

[
Pr

𝐻𝐴,𝐻𝐵

(𝐻𝐴𝑋𝐻
T
𝐵 = 0 | rank(𝐻𝐴𝑋) = 𝑀 and 𝑑𝐴 ≥ 𝛿Δ)

× Pr
𝐻𝐴,𝐻𝐵

(rank(𝐻𝐴𝑋) = 𝑀 and 𝑑𝐴 ≥ 𝛿Δ)
]

(2.183)

≤
∑︁
𝑋∈X

rank(𝑋)∑︁
𝑀=0

2−(1−𝜌𝐵)Δ𝑀 Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀 and 𝑑𝐴 ≥ 𝛿Δ) . (2.184)

We can bound the inner sum using Lemma 56. Note that any 𝑋 ∈ X satisfies the
hypotheses of Lemma 56. Therefore we get

rank(𝑋)∑︁
𝑀=0

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀 and 𝑑𝐴 ≥ 𝛿Δ)2−(1−𝜌𝐵)Δ𝑀 (2.185)

=

rank(𝑋)∑︁
𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀 and 𝑑𝐴 ≥ 𝛿Δ)2−(1−𝜌𝐵)Δ𝑀 (2.186)

≤
rank(𝑋)∑︁

𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀)2−(1−𝜌𝐵)Δ𝑀 , (2.187)

where we drop the distance condition in the last line since it has now played its part
in allowing the application of Lemma 56.

We will now bound the total probability in two stages by splitting the outer sum (see
Lemma 54) into a low rank part X1 ⊆ X (where rank 𝑋 ≤ Δ1/2+𝑏) and a high rank
part X2 ⊆ X (where rank 𝑋 > Δ1/2+𝑏), with 𝑏 ∈ (2𝜀, 3𝜀), to get∑︁

𝑋∈X

rank(𝑋)∑︁
𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀)2−(1−𝜌𝐵)Δ𝑀 (2.188)

=
∑︁
𝑋∈X1

rank(𝑋)∑︁
𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀)2−(1−𝜌𝐵)Δ𝑀︸                                                              ︷︷                                                              ︸
≡𝑃1

(2.189)

+
∑︁
𝑋∈X2

rank(𝑋)∑︁
𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀)2−(1−𝜌𝐵)Δ𝑀︸                                                              ︷︷                                                              ︸
≡𝑃2

. (2.190)
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Bound for 𝑃1. We can bound the low rank part 𝑃1 using the cardinality bound for
|X1 | in Lemma 54. We get

𝑃1 =
∑︁
𝑋∈X1

rank(𝑋)∑︁
𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀)2−(1−𝜌𝐵)Δ𝑀 (2.191)

≤
∑︁
𝑋∈X1

2−(1−𝜌𝐵)Δ·(𝛿/2)Δ
1/2−2𝜀

(2.192)

= |X1 | · 2−Θ(Δ
3/2−2𝜀) (2.193)

≤ 2Θ̃(Δ
1+2𝜀+𝑏)2−Θ(Δ

3/2−2𝜀) (2.194)

= 2−Θ(Δ
3/2−2𝜀) . (2.195)

The second line follows by bounding the inner sum using its largest term. The last
line follows due to the fact that 4𝜀 + 𝑏 < 7𝜀 < 1/2, so that Δ3/2−2𝜀 asymptotically
dominates Δ1+2𝜀+𝑏.

Bound for 𝑃2. To bound the expression 𝑃2, we will assume without loss of generality
that 𝜌𝐵 ≤ 𝜌𝐴. If this is not the case, we can switch the roles of𝐶𝐴 and𝐶𝐵 by applying
the current argument to the transposed code 𝐶𝐵𝐴, noting that the set X is invariant
under transpose. Writing 𝑁 = rank(𝑋), we can bound the inner sum of 𝑃2 as

rank(𝑋)∑︁
𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀)2−(1−𝜌𝐵)Δ𝑀 (2.196)

≤
min(𝑁,(1−𝜌𝐴)Δ)∑︁

𝑀=0

(
𝑁

𝑀

)
2−((1−𝜌𝐴)Δ−𝑀) (𝑁−𝑀)2−(1−𝜌𝐵)Δ𝑀 (2.197)

≤𝐿
min(𝑁,(1−𝜌𝐴)Δ)∑︁

𝑀=0

(
𝑁

𝑀

)
(2−(1−𝜌𝐴)Δ)𝑁−𝑀 (2−(1−𝜌𝐵)Δ)𝑀 (2.198)

≤𝐿 (2−(1−𝜌𝐴)Δ + 2−(1−𝜌𝐵)Δ)𝑁 (2.199)

≤𝐿2𝑁2−(1−𝜌𝐴)Δ𝑁 , (2.200)

where we apply Lemma 55 in the second line and also extend the limits of summation
down to 𝑀 = 0 for convenience. We write

𝐿 = max
0≤𝑀≤min(𝑁,(1−𝜌𝐴)Δ)

(
2(𝑁−𝑀)𝑀

)
, (2.201)

which we extract from the sum in the third line above. We apply the binomial
theorem in going to the fourth line, and the last line follows from the assumption
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that 𝜌𝐵 ≤ 𝜌𝐴. To bound the remaining expression, we split into a two cases
depending on the sizes of (1 − 𝜌𝐴)Δ and 𝑁 .

1. If we have 𝑁 ≤ 2(1 − 𝜌𝐴)Δ, then 𝐿 = 2𝑁2/4 ≤ 2(1−𝜌𝐴)Δ𝑁/2 and we have

𝐿2𝑁2−(1−𝜌𝐴)Δ𝑁 ≤ 2(1−𝜌𝐴)Δ𝑁/2+𝑁−(1−𝜌𝐴)Δ𝑁 (2.202)

= 2−(1/2) (1−𝜌𝐴)Δ𝑁+𝑁 (2.203)

= 2−Θ(Δ𝑁) . (2.204)

2. If 𝑁 > 2(1 − 𝜌𝐴)Δ, then 𝐿 = 2(1−𝜌𝐴)Δ(𝑁−(1−𝜌𝐴)Δ) and we have

𝐿2𝑁2−(1−𝜌𝐴)Δ𝑁 = 2(1−𝜌𝐴)Δ𝑁−((1−𝜌𝐴)Δ)
2+𝑁−(1−𝜌𝐴)Δ𝑁 (2.205)

= 2−(1−𝜌𝐴)
2Δ2+𝑁 (2.206)

= 2−Θ(Δ
2) . (2.207)

Since 𝑁 = rank(𝑋) > Δ1/2+𝑏, it follows that we have

rank(𝑋)∑︁
𝑀=(𝛿/2)Δ1/2−2𝜀

Pr
𝐻𝐴

(rank(𝐻𝐴𝑋) = 𝑀)2−(1−𝜌𝐵)Δ𝑀 = 2−Ω(Δ
3/2+𝑏) (2.208)

in both cases. Bounding |X2 | using Lemma 54, we finally get

𝑃2 ≤ |X2 |2−Ω(Δ
3/2+𝑏) ≤ 2Θ̃(Δ

3/2+2𝜀)2−Ω(Δ
3/2+𝑏) = 2−Ω(Δ

3/2+𝑏) , (2.209)

where the last equation follows from the fact that we chose 2𝜀 < 𝑏, so that Δ3/2+𝑏

asymptotically dominates over Δ3/2+2𝜀.

Altogether, combining the bounds for 𝑃1 and 𝑃2, it follows that

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SR and 𝑑 ≥ 𝛿Δ) ≤ 𝑃1 + 𝑃2 ≤ 2−Θ(Δ
3/2−2𝜀) + 2−Ω(Δ

3/2+2𝜀) (2.210)

= 2−Θ(Δ
3/2−2𝜀) . (2.211)

Theorem 53 shows that random dual tensor codes are sparse robust with high
probability. We now proceed to use this result to show that random dual tensor
codes are also sparse robust with respect to puncturing with high probability. The
main result of this section is the following theorem.
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Theorem 57 (Sparse Robustness with respect to Puncturing). Fix constants 𝜌𝐴, 𝜌𝐵 ∈
(0, 1), 𝜀 ∈ (0, 1/14), and 𝛿 ∈ (0, 1/2) with 𝛿 < min(ℎ−1(𝜌𝐴), ℎ−1(𝜌𝐵)), where ℎ(𝑥)
is the binary entropy function.

Let 𝐻𝐴 ∈ F(1−𝜌𝐴)Δ×Δ2 and 𝐻𝐵 ∈ F(1−𝜌𝐵)Δ×Δ2 be uniformly random binary check
matrices defining codes 𝐶𝐴 and 𝐶𝐵, respectively. Then 𝐶𝐴𝐵 has distance 𝑑 ≥ 𝛿Δ
and is sparse robust with respect to puncturing with high probability. More precisely,
we have

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is SRP and 𝑑 ≥ 𝛿Δ) ≥ 1 − 2−Ω(Δ) . (2.212)

In particular, it follows from Lemma 51 that random dual tensor codes have distance
𝑑 ≥ 𝛿Δ and are sufficiently robust with high probability.

Proof. We have

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is SRP and 𝑑 ≥ 𝛿Δ) = 1 − Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SRP or 𝑑 < 𝛿Δ) .

(2.213)

We will upper bound the latter probability. For 𝛿 < min(ℎ−1(𝜌𝐴), ℎ−1(𝜌𝐵)),
the Gilbert-Varshamov bound implies that randomly chosen parity check matri-
ces 𝐻𝐴, 𝐻𝐵 will define codes with minimum distances 𝑑 = min(𝑑𝐴, 𝑑𝐵) ≥ 𝛿Δ with
probability 1 − 2−Ω(Δ) . Taking a union bound, we have

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SRP or 𝑑 < 𝛿Δ) ≤ Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SRP and 𝑑 ≥ 𝛿Δ)

+ Pr
𝐻𝐴,𝐻𝐵

(𝑑 < 𝛿Δ) (2.214)

= Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SRP and 𝑑 ≥ 𝛿Δ) + 2−Ω(Δ) .

(2.215)

LetA′ and B′ be the set of all coordinates obtained from 𝐴 and 𝐵 by puncturing on
a subset of size Δ1−𝜀. Note that 𝐶𝐴𝐵 will fail to be SRP if and only if there exists
some 𝐴′ ∈ A′ and 𝐵′ ∈ B′ such that the punctured code 𝐶𝐴′𝐵′ is not SR. We can
therefore take a union bound over A′ and B′ to get

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SRP and 𝑑 ≥ 𝛿Δ) ≤
∑︁
𝐴′∈A′
𝐵′∈B′

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴′𝐵′ is not SR and 𝑑 ≥ 𝛿Δ) .

(2.216)
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To handle the puncturing, it is more convenient to take the random codes over
uniformly chosen generator matrices. To that end, we can apply Corollary 48 to get

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴′𝐵′ is not SR and 𝑑 ≥ 𝛿Δ) ≤ Pr
𝐺𝐴,𝐺𝐵

(𝐶𝐴′𝐵′ is not SR and 𝑑 ≥ 𝛿Δ) + 2−Ω(Δ) ,

(2.217)

where the latter probability is over codes defined by randomly chosen generator ma-
trices (of the appropriate sizes). Since 𝐺𝐴 and 𝐺𝐵 are chosen uniformly randomly,
it follows that the the generator matrices for their punctured codes 𝐺𝐴′ and 𝐺𝐵′ are
also chosen uniformly randomly. Since we only puncture on a sublinear number of
entries, the distance 𝑑′ of the punctured code is guaranteed to be above, say 0.9𝛿Δ,
for sufficiently large Δ. Therefore we have

Pr
𝐺𝐴,𝐺𝐵

(𝐶𝐴′𝐵′ is not SR and 𝑑 ≥ 𝛿Δ) (2.218)

≤ Pr
𝐺𝐴,𝐺𝐵

(𝐶𝐴′𝐵′ is not SR and 𝑑′ ≥ 0.9𝛿Δ) (2.219)

= Pr
𝐺𝐴′ ,𝐺𝐵′

(𝐶𝐴′𝐵′ is not SR and 𝑑′ ≥ 0.9𝛿Δ) (2.220)

≤ Pr
𝐻𝐴′ ,𝐻𝐵′

(𝐶𝐴′𝐵′ is not SR and 𝑑′ ≥ 0.9𝛿Δ) + 2−Ω(Δ) , (2.221)

where in the last line we apply Corollary 48 once again to return to the distribution
over uniform check matrices 𝐻𝐴′ and 𝐻𝐵′ . We can now apply Theorem 53 with our
chosen parameters5 to conclude that

Pr
𝐻𝐴′ ,𝐻𝐵′

(𝐶𝐴′𝐵′ is not SR and 𝑑′ ≥ 0.9𝛿Δ) ≤ 2−Θ(Δ
3/2−2𝜀) . (2.222)

It remains to bound the sizes of A′ and B′. There are at most(
Δ

Δ1−𝜀

)
= 2Θ̃(Δ

1−𝜀) (2.223)

ways to puncture Δ1−𝜀 coordinates of 𝐴 (or 𝐵). Therefore we get |A′| · |B′| =
2Θ̃(Δ1−𝜀) . Returning to (2.216), we have the following bound of

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SRP and 𝑑 ≥ 𝛿Δ) ≤ |A′| · |B′| · (2−Θ(Δ3/2−2𝜀) + 2−Ω(Δ))

(2.224)

= 2Θ̃(Δ
1−𝜀)2−Ω(Δ) (2.225)

= 2−Ω(Δ) . (2.226)

5Note that the blocklength of the punctured code is proportional to Δ′ = Δ − Δ1−𝜀 . Since the
leading order behavior is unchanged, we have Θ(Δ3/2−2𝜀) = Θ((Δ′)3/2−2𝜀).
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Therefore

Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is SRP and 𝑑 ≥ 𝛿Δ) = 1 − Pr
𝐻𝐴,𝐻𝐵

(𝐶𝐴𝐵 is not SRP or 𝑑 < 𝛿Δ) (2.227)

≥ 1 − 2−Ω(Δ) . (2.228)

and the result follows.

Theorem 7 follows easily from Theorem 53 and Lemma 51.

Theorem 7. Fix constants 𝜀 ∈ (0, 1/28), 𝜌 ∈ (0, 1/2), and 𝛿 ∈ (0, 1/2) such that
𝛿 < ℎ−1(𝜌), where ℎ(𝑥) is the binary entropy function. For all sufficiently large Δ,
there exist classical codes 𝐶𝐴, 𝐶𝐵 of length Δ and rates 𝜌𝐴 = 𝜌 and 𝜌𝐵 = 1− 𝜌 such
that such that both the dual tensor code of 𝐶𝐴 and 𝐶𝐵 and the dual tensor code of
𝐶⊥
𝐴

and 𝐶⊥
𝐵

are Δ3/2+𝜀-robust and have distances at least 𝛿Δ.

Proof. Let 𝐶𝐴 be a uniformly random classical code of length Δ and rate 𝜌. That
is, 𝐶𝐴 is a uniformly random 𝜌Δ-dimensional subspace of FΔ2 . Similarly, let 𝐶𝐵 be
a random (1 − 𝜌)Δ-dimensional subspace of FΔ2 . By Theorem 53 and Lemma 51,
we have

Pr
𝐶𝐴,𝐶𝐵

(𝐶𝐴𝐵 is not Δ3/2+𝜀-robust or 𝑑 < 𝛿Δ) ≤ 2−Ω(Δ) , (2.229)

where we also use Corollary 48 to switch from the distribution defined by random
parity check matrices to one defined by random subspaces. Since 𝐶⊥

𝐴
and 𝐶⊥

𝐵
are

also uniformly random subspaces of FΔ2 of dimensions (1−𝜌)Δ and 𝜌Δ, respectively,
we also have

Pr
𝐶𝐴,𝐶𝐵

(𝐶𝐴⊥𝐵⊥ is not Δ3/2+𝜀-robust or 𝑑⊥ < 𝛿Δ) ≤ 2−Ω(Δ) , (2.230)

where 𝐶𝐴⊥𝐵⊥ is the dual tensor code of 𝐶⊥
𝐴

and 𝐶⊥
𝐵

and 𝑑⊥ is the distance of 𝐶𝐴⊥𝐵⊥ .
Therefore,

Pr
𝐶𝐴,𝐶𝐵

(𝐶𝐴𝐵 and 𝐶𝐴⊥𝐵⊥ are Δ3/2+𝜀-robust and 𝑑, 𝑑⊥ ≥ 𝛿Δ) ≥ 1 − 2−Ω(Δ) , (2.231)

so for sufficiently large Δ, there exist 𝐶𝐴, 𝐶𝐵 satisfying the conditions. Note that
we require 𝜀 < 1/28 in the theorem because the SRP parameter of up to 1/14 in
Theorem 53 is halved in Lemma 51.

We remark that we did not give the tightest bounds in the section because in the
proof of our decoder, we only needed dual tensor codes with Δ3/2+𝜀-robustness for
any 𝜀 > 0. By more carefully tracking the exponents throughout the argument, it is
possible to show the existence of Δ3/2+𝜀-robust dual tensor codes for any 𝜀 < 1/6.
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C h a p t e r 3

SINGLE-SHOT DECODING OF GOOD QUANTUM LDPC
CODES

Quantum Tanner codes constitute a family of quantum low-density parity-check
(LDPC) codes with good parameters, i.e., constant encoding rate and relative dis-
tance. In this article, we prove that quantum Tanner codes also facilitate single-shot
quantum error correction (QEC) of adversarial noise, where one measurement round
(consisting of constant-weight parity checks) suffices to perform reliable QEC even
in the presence of measurement errors. We establish this result for both the sequential
and parallel decoding algorithms introduced by Leverrier and Zémor. Furthermore,
we show that in order to suppress errors over multiple repeated rounds of QEC,
it suffices to run the parallel decoding algorithm for constant time in each round.
Combined with good code parameters, the resulting constant-time overhead of QEC
and robustness to (possibly time-correlated) adversarial noise make quantum Tanner
codes alluring from the perspective of quantum fault-tolerant protocols.

3.1 Introduction
Quantum error correcting (QEC) codes [1, 2] are the backbone of quantum fault-
tolerant protocols needed to reliably operate scalable quantum computers. Due to
their simplicity, stabilizer codes [3], which can be realized by measuring a set of
commuting Pauli operators known as parity checks, have received much attention.
From the perspective of fault tolerance, it might be desirable to further require
that qubits are placed on some lattice and to restrict parity checks to be constant-
weight and geometrically local. However, such topological QEC codes, which
include the toric code [4, 5] and the color code [6–8] as examples, have limited
code parameters [9–11]. To avoid these limitations, one can drop the assumption
about geometric locality of parity checks (while still maintaining the assumption
about their constant weight) to obtain a more general family of QEC codes known
as quantum low-density parity-check (QLDPC) codes; see Ref. [12] for a recent
review. Importantly, QLDPC codes can have essentially optimal parameters, as
shown by recent breakthrough results [13–16], culminating in the construction of
(asymptotically) good QLDPC codes whose encoding rates and relative distances
are constant [17]. A key component of the construction of asymptotically good
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QLDPC codes is the presence of “product-expanding” local codes. Since then, a
few alternative constructions of good QLDPC codes have been proposed [18, 19].

Good parameters alone are not enough for QEC codes to be interesting beyond the
theoretical realm. In order to be practically relevant and useful, QEC codes need
computationally efficient decoding algorithms which process the error syndrome and
identify errors afflicting the encoded information. Importantly, decoding algorithms
need to operate at least at the speed at which quantum fault-tolerant protocols are
being implemented; otherwise, the error syndrome will keep accumulating and one
will suffer from the so-called backlog problem [20]. Recently, a few computationally
efficient (and provably correct) decoding algorithms have been developed for good
QLDPC codes [19, 21, 22], assuming access to the noiseless error syndrome.

To extract the error syndrome, one usually implements appropriate quantum circuits
composed of basic quantum operations, such as state preparation, entangling gates
and measurements. Unfortunately, these basic operations are imperfect and, for
that reason, the assumption about the noiseless error syndrome is unrealistic. In
particular, practical QEC codes and decoding algorithms should exhibit robustness to
measurement errors. Arguably, one of the simplest ways to achieve such robustness
involves repeating measurements until a reliable account of the error syndrome is
obtained [5, 23]. However, this approach incurs significant time overhead since the
number of repetitions needed in general grows with the code distance.

An alternative to repeated measurement rounds of the error syndrome was introduced
in the form of single-shot QEC by Bombín [24]. The basic idea behind single-shot
QEC is to carefully select a code for which the decoding problem has sufficient
structure to reliably infer qubit errors even with imperfect syndrome measurements.
The strength of this approach is that significantly fewer measurements are necessary
for codes that admit single-shot decoding compared to the simple strategy of repeated
measurements.

Single-shot QEC can be considered either for stochastic or adversarial noise. In
the stochastic case, one is interested in noise that afflicts a (randomly selected)
constant fraction of qubits. Additional structure may be needed for both the noise
and the code, since the expected weight of the errors can be far beyond the code
distance. Examples of such structure include sufficiently high expansion in the
associated factor graphs, e.g., quantum expander codes [25]; or the presence of
geometrically local redundancies among constant-weight parity checks, e.g., the 3D
subsystem toric code [26, 27] and the gauge color code [28]. In the adversarial
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case, as considered by Campbell [29], one can realize single-shot QEC for any code
by measuring a carefully chosen set of parity checks; similar ideas of exploiting
a redundant set of parity checks to simultaneously handle measurement and qubit
errors were also explored in Refs. [30–32]. The limitation of this approach is that,
even when starting with a QLDPC code, the parity checks needed for single-shot
QEC may have weight growing with code length, which makes it less appealing
from the perspective of quantum fault-tolerant protocols.

We remark that while stochastic noise and adversarial noise models are generally
incomparable, the distinction fades for asymptotically good QEC codes. Since
these codes, by definition, have constant relative distance, they have the ability to
correct arbitrary errors of weight up to a constant fraction of the number of qubits.
In particular, stochastic noise with sufficiently low rate is correctable with high
probability. Since in the rest of the paper we focus on good QLDPC codes, it
suffices to consider the case of adversarial noise.

3.1.1 Main results
In this article, we focus on a class of asymptotically good QLDPC codes called quan-
tum Tanner codes [18]. They admit computationally efficient decoding algorithms,
such as the sequential and parallel mismatch decomposition algorithms introduced
in Ref. [33] and the potential-based decoder introduced in Ref. [22]. The problem
of decoding quantum Tanner codes has so far been considered only in the scenario
with noiseless error syndrome. Here, we study the performance of the aforemen-
tioned sequential and parallel mismatch decomposition decoders in the presence of
measurement errors. We show that the decoders are single-shot, under the following
definition. For a more detailed discussion of single-shot decoding, see Section 3.3.

Suppose a data error 𝑒 occurs on the qubits. Let 𝜎 be the (ideal) syndrome corre-
sponding to the data error. Suppose that the measured syndrome is corrupted by
measurement error 𝐷. With access to the noisy syndrome 𝜎̃ = 𝜎 + 𝐷 as input, the
decoder tries to output a correction 𝑓 close to the data error.

Definition 58 (Informal Statement of Definition 67). A decoder is said to be (𝛼, 𝛽)-
single-shot if, for sufficiently low-weight errors, the correction 𝑓 returned on input
𝜎̃ satisfies |𝑒 + 𝑓 |𝑅 ≤ 𝛼 |𝑒 |𝑅 + 𝛽 |𝐷 |, where |𝑒 |𝑅 is the stabilizer-reduced weight of 𝑒,
i.e., the weight of the smallest error equivalent to 𝑒 up to the addition of stabilizers.
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In other words, using a single round of noisy syndrome measurement, the decoder
finds and applies the correction 𝑓 , resulting in the residual error 𝑒 + 𝑓 of weight
below 𝛼 |𝑒 |𝑅 + 𝛽 |𝐷 |. Let 𝑛 be the number of physical qubits of the quantum Tanner
code. Our main theorems are as follows.

Theorem 59 (Informal Statement of Theorem 89). There exists a constant 𝛽 such
that the sequential decoder (Algorithm 3.1) is (𝛼 = 0, 𝛽)-single-shot.

Theorem 60 (Informal Statement of Theorem 92). There exists a constant 𝛽 such
that for all 𝛼 > 0, the 𝑂 (log(1/𝛼))-iteration parallel decoder (Algorithm 3.3) is
(𝛼, 𝛽)-single-shot. In particular, for 𝑂 (log 𝑛) iterations of parallel decoding one
obtains 𝛼 = 0.

We further consider the situation where multiple rounds of qubit error, noisy syn-
drome measurement, and decoding occur. We show that under mild assumptions
on the weights of qubit and measurement errors, repeated applications of an (𝛼, 𝛽)-
single-shot decoder will keep the residual error weight bounded. Specifically, con-
sider the case where an initial error (𝑒1, 𝐷1) is partially corrected by the decoder,
leaving a residual error 𝑒′1. A new error (𝑒2, 𝐷2) is then applied on top of the existing
residual error, giving total error (𝑒′1+𝑒2, 𝐷2). The decoder attempts to correct using
a new round of syndrome measurements (without using the syndromes of previous
rounds), leaving residue 𝑒′2. This process is repeated for multiple rounds. Then we
have the following.

Theorem 61 (Informal Statement of Theorem 69). Consider an (𝛼, 𝛽)-single-shot
decoder and multiple rounds of errors (𝑒𝑖, 𝐷𝑖) for 𝑖 = 1, · · · , 𝑀 . For any 𝑐 > 0,
there exists a constant 𝐶∗ > 0 such that if max( |𝑒𝑖 |, |𝐷𝑖 |) ≤ 𝐶∗𝑛 for all 𝑖, then the
final residual error 𝑒′

𝑀
satisfies |𝑒′

𝑀
|𝑅 ≤ 𝑐𝑛.

A direct implication of this result is that for the parallel decoder (Algorithm 3.3), a
constant number of iterations suffices to keep the residual error weight bounded at
each round. This process can be repeated essentially indefinitely until ideal error
correction is required, at which point the 𝑂 (log 𝑛)-iteration parallel decoder can be
used. For more details, see the discussion at the end of Section 3.3.3.

The rest of this paper is organized as follows. In Section 3.2, we provide the
necessary background on quantum Tanner codes. For more detailed explanations,
see Refs. [18] and [33]. In Section 3.3, we describe the decoding problem for
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quantum (CSS) codes under measurement noise, and discuss the notion of single-
shot decoding. We then define (𝛼, 𝛽)-single-shot decoding and derive general
consequences of this definition under multiple rounds of error and decoding. The
main result of this section is the proof of Theorem 69. Section 3.4 forms the bulk
of the paper. There, we review the sequential and parallel decoders from Ref. [33]
and prove that the decoders are single-shot in Theorems 89 and 92. Finally, we end
with some discussions in Section 3.5.

3.2 Quantum Tanner codes
3.2.1 Classical codes
A classical binary linear code is a subspace𝐶 ⊆ F𝑛2. We refer to 𝑛 as the block length
of the code. The number of encoded bits (also referred to as the code dimension) is
given by 𝑘 = dim𝐶 and the rate of the code is 𝑅 = 𝑘/𝑛. The distance of𝐶 is defined
as 𝑑 = min𝑥∈𝐶\{0} |𝑥 |, where | · | is the Hamming weight of a vector and where 0
denotes the zero vector. A code with distance 𝑑 can protect against any unknown
error of weight less than 𝑑/2. Often, it is useful to specify a code 𝐶 via a parity
check matrix 𝐻. By definition, 𝐶 = ker𝐻.

The dual code of a code 𝐶 is defined as 𝐶⊥ = {𝑥 ∈ F𝑛2 : ⟨𝑥, 𝑦⟩ = 0 ∀𝑦 ∈ 𝐶}. The
tensor product code of two codes 𝐶𝐴 ⊆ F𝐴2 , 𝐶𝐵 ⊆ F

𝐵
2 is 𝐶𝐴 ⊗𝐶𝐵 ⊆ F𝐴×𝐵2 , where the

codewords can be thought of as matrices such that every column is a codeword of
𝐶𝐴 and every row is a codeword of 𝐶𝐵. The dual tensor code of 𝐶𝐴 and 𝐶𝐵, denoted
by 𝐶𝐴 ⊞ 𝐶𝐵, is defined as

𝐶𝐴 ⊞ 𝐶𝐵 ≡
(
𝐶⊥𝐴 ⊗ 𝐶

⊥
𝐵

)⊥
= 𝐶𝐴 ⊗ F𝐵2 + F

𝐴
2 ⊗ 𝐶𝐵 ⊆ F

𝐴×𝐵
2 .

A parity check matrix for 𝐶𝐴 ⊞ 𝐶𝐵 is 𝐻𝐴 ⊗ 𝐻𝐵, where 𝐻𝐴 and 𝐻𝐵 are the parity
check matrices of 𝐶𝐴 and 𝐶𝐵, respectively.

The dual tensor codes we use are required to satisfy the following robustness condi-
tion.

Definition 62. The code 𝐶𝐴 ⊞ 𝐶𝐵 is said to be 𝜅-product-expanding if any 𝑥 ∈
𝐶𝐴 ⊞ 𝐶𝐵 can be expressed as 𝑐 + 𝑟 , with 𝑐 ∈ 𝐶𝐴 ⊗ F𝐵2 and 𝑟 ∈ F𝐴2 ⊗ 𝐶𝐵 such that

𝜅

(
1
|𝐴| ∥𝑐∥𝐴 +

1
|𝐵 | ∥𝑟 ∥𝐵

)
≤ 1
|𝐴| |𝐵| |𝑥 | . (3.1)

Here, ∥𝑐∥𝐴 denotes the number of non-zero columns in 𝑐 and ∥𝑟 ∥𝐵 denotes the
number of non-zero rows in 𝑟. When it is clear from context, we will drop the
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subscripts on the norms. The notion of product-expansion was introduced by
Panteleev and Kalachev [17]. It is equivalent to robust testability of tensor product
codes [34] and agreement testability [35], and also implies another notion called
𝑤-robustness of dual tensor codes [18]. It has been proven that random codes are
product-expanding with high probability [19, 36].

Theorem 63 (Theorem 1 in Ref. [36]). Let 𝜌 ∈ (0, 1). For anyΔ, let𝐶𝐴 be a random
code of dimension ⌈𝜌Δ⌉ and 𝐶𝐵 be a random code of dimension ⌈(1 − 𝜌)Δ⌉. There
exists a constant 𝜅 such that both 𝐶𝐴 ⊞ 𝐶𝐵 and 𝐶⊥

𝐴
⊞ 𝐶⊥

𝐵
are 𝜅-product-expanding

with probability approaching 1 as Δ→∞.

3.2.2 Quantum codes
An 𝑛-qubit quantum code is a subspace C of an 𝑛-qubit Hilbert space, i.e., C ⊆(
C2)⊗𝑛. We are interested in stabilizer codes, which are codes that can be expressed

as the simultaneous +1-eigenspace of an abelian subgroup S of the 𝑛-qubit Pauli
group satisfying −𝐼 ∉ S. If S can be generated by two sets S𝑋 and S𝑍 comprising,
respectively, Pauli 𝑋-type and 𝑍-type operators, then we refer to the corresponding
stabilizer code as a Calderbank-Shor-Steane (CSS) code [37, 38]. By ignoring the
phase factors for such 𝑋-type and 𝑍-type operators, we can identify them with their
supports as vectors in F𝑛2.

For any CSS code stabilized by S = ⟨S𝑋 ,S𝑍⟩, we can define two 𝑛-bit classical
codes 𝐶𝑋 = ker𝐻𝑋 and 𝐶𝑍 = ker𝐻𝑍 , where each row in 𝐻𝑋 and 𝐻𝑍 is the support
of a stabilizer generator in S𝑋 and S𝑍 , respectively. The dimension of a CSS code is
𝑘 = 𝑘𝑋+𝑘𝑍−𝑛, where 𝑘𝑋 and 𝑘𝑍 are the dimensions of𝐶𝑋 and𝐶𝑍 , respectively. The
distance is 𝑑 = min(𝑑𝑋 , 𝑑𝑍 ), where 𝑑𝑋 = min𝑥∈𝐶𝑍\𝐶⊥𝑋 |𝑥 | and 𝑑𝑍 = min𝑥∈𝐶𝑋\𝐶⊥𝑍 |𝑥 |.
A quantum code of distance 𝑑 can protect against any unknown error of weight less
than 𝑑/2. A quantum code C ⊆ (C2)⊗𝑛 of dimension 𝑘 and distance 𝑑 is said to be
an [[𝑛, 𝑘, 𝑑]] code. A family of CSS codes is said to be low-density parity-check
(LDPC) if 𝐻𝑋 and 𝐻𝑍 are sparse, i.e., have at most a constant number of non-zero
entries in every column and row.

3.2.3 Quantum Tanner code construction
We now describe the construction of quantum Tanner codes. The code is placed on
a geometric object called the left-right Cayley complex. Let 𝐺 be a finite group and
𝐴 = 𝐴−1, 𝐵 = 𝐵−1 be two symmetric generating sets of 𝐺. The left-right Cayley
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Figure 3.1: The local structure of the left-right Cayley complex around a vertex
labelled by 𝑔 ∈ 𝐺. The incident faces 𝑄(𝑣) has a natural bĳection with 𝐴 × 𝐵. As
examples, the red and blue faces in the complex are mapped to the squares of the
same colors in the matrix given by 𝐴 × 𝐵.

complex Cay2(𝐴, 𝐺, 𝐵) is a two-dimensional object with vertices 𝑉 , edges 𝐸 , and
faces 𝑄 defined as follows:

• 𝑉 = 𝑉00 ⊔𝑉01 ⊔𝑉10 ⊔𝑉11, where 𝑉𝑖 𝑗 = 𝐺 × {(𝑖, 𝑗)} for 𝑖, 𝑗 ∈ {0, 1} ,

• 𝐸 = 𝐸𝐴 ⊔𝐸𝐵, where 𝐸𝐴 = {{(𝑔, 𝑖0), (𝑎𝑔, 𝑖1)} : 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴, 𝑖 ∈ {0, 1}} and
𝐸𝐵 = {{(𝑔, 0 𝑗), (𝑔𝑏, 1 𝑗)} : 𝑔 ∈ 𝐺, 𝑏 ∈ 𝐵, 𝑗 ∈ {0, 1}} ,

• 𝑄 = {{(𝑔, 00), (𝑎𝑔, 01), (𝑔𝑏, 10), (𝑎𝑔𝑏, 11)} : 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .

Let 𝑄(𝑣) denote the set of faces incident to a given vertex 𝑣. Each face incident to
𝑣 can be obtained by choosing an 𝐴-type edge and a 𝐵-type edge incident to 𝑣 and
completing them into a square. Therefore, 𝑄(𝑣) is in bĳection with the set 𝐴 × 𝐵,
and can be thought of as a matrix with rows indexed by 𝐴 and columns indexed by
𝐵 (Figure 3.1). Similarly, the set of faces incident to a given 𝐴-edge is in bĳection
with 𝐵 and the set of faces incident to a given 𝐵-edge is in bĳection with 𝐴.

Consider the usual Cayley graph Cay(𝐴, 𝐺) with the vertex set 𝐺 and the edge
set {{𝑔, 𝑎𝑔} : 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴}. Ignoring the 𝐵 edges from the complex, we have
that (𝑉, 𝐸𝐴) is the disjoint union of two copies of the bipartite cover of Cay(𝐴, 𝐺).
Similarly, (𝑉, 𝐸𝐵) is the disjoint union of two copies of the bipartite cover of
Cay(𝐺, 𝐵).1 We say that a Δ-regular graph is Ramanujan if the second largest
eigenvalue of its adjacency matrix is at most 2

√
Δ − 1, and we will consider left-

right Cayley complexes with component Cayley graphs Cay(𝐴, 𝐺) and Cay(𝐺, 𝐵)
1We denote the Cayley graph with left group action by Cay(𝐴, 𝐺) and the Cayley graph with

right group action by Cay(𝐺, 𝐵). Note that the right Cayley graph Cay(𝐺, 𝐵) with edges {𝑔, 𝑔𝑏} is
isomorphic to the left Cayley graph Cay(𝐵, 𝐺) by mapping every 𝑔 to 𝑔−1.
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Figure 3.2: An example of a stabilizer generator with local codes 𝐶𝐴 = span{111}
and 𝐶𝐵 = span{110, 011}. The codeword 𝑥 = 111 ⊗ 110 ∈ 𝐶𝐴 ⊗ 𝐶𝐵 has support
as shown on the right. Identifying that matrix with the faces incident to a 𝑉0 vertex
gives an 𝑋-type stabilizer generator.

that are Ramanujan. Explicitly, Ramanujan Cayley graphs can be obtained by taking
𝐺 = PSL2(𝑞𝑖), where 𝑞 is an odd prime power and 𝐴, 𝐵 are (appropriately chosen)
symmetric generating sets of constant size Δ = |𝐴| = |𝐵 | = 𝑞 + 1 [35].

Quantum Tanner codes are CSS codes defined by placing qubits on the faces of a
left-right Cayley complex. We fix two classical codes, 𝐶𝐴 of length |𝐴| and 𝐶𝐵 of
length |𝐵 |, which are used to define a pair of local codes providing the parity checks
of the quantum code. An 𝑋-type stabilizer generator is defined as a codeword from
a generating set of 𝐶0 = 𝐶𝐴 ⊗ 𝐶𝐵, with support on the faces incident to a given
vertex in 𝑉0 = 𝑉00 ∪ 𝑉11. More precisely, there is an 𝑋-type stabilizer generator
𝑠(𝑥, 𝑣) for every generator 𝑥 ∈ 𝐶𝐴 ⊗ 𝐶𝐵 and every vertex 𝑣 ∈ 𝑉0. Identifying 𝑄(𝑣)
with 𝐴 × 𝐵 using the bĳection explained earlier, the support of 𝑠(𝑥, 𝑣) is the subset
of 𝑄(𝑣) defined by the support of 𝑥; see Figure 3.2 for an illustration. Similarly,
the 𝑍-type stabilizers are generated by codewords of 𝐶1 = 𝐶⊥

𝐴
⊗ 𝐶⊥

𝐵
on the faces

incident to vertices of 𝑉1 = 𝑉01 ∪𝑉10. The fact that 𝑋 and 𝑍 parity checks commute
is because 𝑋 and 𝑍 generators are either disjoint or overlap on the faces incident
to a single edge. On this set of faces, isomorphic to either 𝐵 or 𝐴, the supports of
the 𝑋 and 𝑍 operators are codewords of either 𝐶𝐵 and 𝐶⊥

𝐵
, respectively, or 𝐶𝐴 and

𝐶⊥
𝐴

, respectively. It is clear that a family of quantum Tanner codes is QLDPC if the
degrees of the component Cayley graphs are bounded.

Leverrier and Zémor showed that quantum Tanner codes defined on expanding
left-right Cayley complexes using product-expanding local codes have good param-
eters [18, 33].
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Theorem 64 (Theorem 1 in Ref. [33]). Let 𝜌, 𝑑𝑟 , 𝜅 ∈ (0, 1) and Δ be a sufficiently
large constant. Let 𝐶𝐴, 𝐶𝐵 ⊆ FΔ2 be classical codes of rates 𝜌 and (1 − 𝜌), re-
spectively, such that the distances of 𝐶𝐴, 𝐶𝐵, 𝐶⊥𝐴 , 𝐶

⊥
𝐵

are all at least 𝑑𝑟Δ, and such
that 𝐶𝐴 ⊞ 𝐶𝐵 and 𝐶⊥

𝐴
⊞ 𝐶⊥

𝐵
are both 𝜅-product-expanding. Using a family of Δ-

regular Ramanujan Cayley graphs Cay(𝐴, 𝐺) and Cay(𝐺, 𝐵), define the left-right
Cayley complex Cay2(𝐴, 𝐺, 𝐵). Then the quantum Tanner codes defined using the
components above have parameters[[

𝑛, 𝑘 ≥ (1 − 2𝜌)2𝑛, 𝑑 ≥ 𝑑2
𝑟 𝜅

2

256Δ
𝑛

]]
. (3.2)

3.3 Single-shot decoding
3.3.1 Decoding CSS codes
Let us now formally define the decoding problem for quantum (CSS) codes. After
we encode logical information in a quantum code, errors will occur on the physical
system. We are interested in how to “undo” these errors and, subsequently, recover
the original logical state. Specifically, consider a logical state |𝜓⟩ of a stabilizer code
C. A Pauli error 𝐸 occurs, and we gain information about the error by measuring
a set of stabilizer generators {𝑆𝑖}. This gives a syndrome 𝜎, a bit string whose
values 𝜎𝑖 correspond to the eigenvalues (−1)𝜎𝑖 of the stabilizers measured. Thus,
𝜎𝑖 = 0 whenever 𝑆𝑖 commutes with 𝐸 and 𝜎𝑖 = 1 when it anticommutes. The task
of decoding is to use 𝜎 to determine a correction 𝐹̂ such that 𝐹̂𝐸 |𝜓⟩ = |𝜓⟩. In
other words, 𝐹̂𝐸 should be a stabilizer of the code. When C is a CSS code, we can
express the problem as follows.

Definition 65. Let C be a CSS code specified by two parity check matrices 𝐻𝑋 ∈
F𝑟𝑋×𝑛2 and 𝐻𝑍 ∈ F𝑟𝑍×𝑛2 . Let 𝑒 = (𝑒𝑋 , 𝑒𝑍 ) ∈ F2𝑛

2 be an error with corresponding
syndrome 𝜎 = (𝜎𝑋 , 𝜎𝑍 ) ∈ F𝑟𝑍+𝑟𝑋2 , where 𝜎𝑍 = 𝐻𝑋𝑒𝑍 and 𝜎𝑋 = 𝐻𝑍𝑒𝑋 . Given
input 𝜎, the task of decoding is to find corrections 𝑓 = ( 𝑓𝑋 , 𝑓𝑍 ) ∈ F2𝑛

2 such that
𝑒𝑋 + 𝑓𝑋 ∈ 𝐶⊥𝑋 and 𝑒𝑍 + 𝑓𝑍 ∈ 𝐶⊥𝑍 .

In the definition above, we associate the bit string 𝑒 = (𝑒𝑋 , 𝑒𝑍 ) with the Pauli errors
𝐸 = 𝐸𝑋𝐸𝑍 where 𝐸𝑋 and 𝐸𝑍 are Pauli 𝑋 and 𝑍 operators with support 𝑒𝑋 and 𝑒𝑍 ,
respectively (ignoring phase information). The correction 𝑓 is similarly associated
with a Pauli operator 𝐹̂.

We note that for CSS codes, the decoding problem can be split into two separate
problems for the 𝑋 and 𝑍 codes that can be solved independently. For quantum
Tanner codes in particular, there is symmetry between the 𝑋 and 𝑍 codes, as can be
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seen by switching𝑉0 and𝑉1 labels and switching 𝐶𝐴, 𝐶𝐵 with 𝐶⊥
𝐴
, 𝐶⊥

𝐵
. Therefore, it

suffices to give an algorithm for decoding one type of error. In the remainder of the
paper, we will consider solely the case where 𝑋-errors occur, with 𝑍-errors treated
analogously. For convenience, we will often drop subscripts, for example writing 𝑒
for 𝑒𝑋 or 𝐻 for 𝐻𝑍 .

The above discussion assumes that the ideal syndrome is accessible to the decoder.
Let us now consider the case when the syndrome measurements are unreliable,
motivated by the fact that the quantum circuits implementing the parity checks
are necessarily imperfect. Suppose that the ideal syndrome 𝜎𝑋 of an error 𝑒𝑋 is
corrupted by measurement error 𝐷𝑋 , so that the actual noisy syndrome readout is
𝜎̃𝑋 = 𝜎𝑋 + 𝐷𝑋 . A naive decoding of the syndrome 𝜎̃𝑋 may result in a correction
𝑓𝑋 which does not bring the state back to the code space, i.e., 𝑒𝑋 + 𝑓𝑋 ∉ 𝐶⊥

𝑋
.

Furthermore, there may be no guarantee that 𝑒𝑋 + 𝑓𝑋 is close to 𝐶⊥
𝑋

.

One of the standard procedures to account for measurement errors is to repeatedly
measure the stabilizer generators in order to gain enough confidence in their mea-
surement outcomes [5, 23]. This will incur large time overhead. Alternatively,
syndrome measurements can be performed fault-tolerantly by preparing special an-
cilla qubit states offline [39, 40]. This will incur large qubit overhead. It would be
ideal if we could avoid both overheads at the same time.

3.3.2 Single-shot decoding
Bombín [24] introduced single-shot decoders as an alternative approach. These
decoders take in a noisy syndrome as input and, even in the presence of syndrome
noise, return a correction that can be used to reduce the data error. Most likely, there
will be some resulting residual error, but its weight is bounded by some function of
the syndrome noise. In more detail, the single-shot property posits that it suffices
to perform 𝑂 (𝑛) parity check measurements (in the context of QLDPC codes, one
further requires constant weight of measured parity checks), and, using only these
measurement outcomes, one can perform reliable QEC that keeps the residual noise
at bay.

In our analysis, we need the following definition.

Definition 66. Let C be an 𝑛-qubit CSS code and 𝑒 ∈ F𝑛2 be a Pauli 𝑋 error. The
stabilizer-reduced weight |𝑒 |𝑅 of 𝑒 is defined as the weight of the smallest error
equivalent to 𝑒 up to the addition of stabilizers of C, i.e., |𝑒 |𝑅 = min𝑒′∈𝐶⊥

𝑋
|𝑒 + 𝑒′|.

The stabilizer-reduced weight of a Pauli 𝑍 error is defined analogously.
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The stabilizer-reduced weight of an error is a convenient theoretical measure of
how detrimental the error really is. Note that since stabilizers do not change the
code state, errors are only well-defined up to the addition of stabilizers. As such,
any bound on the performance of the decoder is unambiguously defined using
the stabilizer-reduced weight, which can be significantly smaller than the original
weight.

Since we focus on asymptotically good QLDPC codes, it is enough to consider
single-shot decoding for adversarial noise. Campbell [29] captures adversarial
single-shot decoding as follows. Let both the data error 𝑒 and the syndrome noise
𝐷 be sufficiently small. A decoder is single-shot if it outputs a correction such
that the weight of the residual error is bounded by a polynomial of |𝐷 |. In this
work, we would like to consider constant-time decoding using the parallel decoder
(Algorithm 3.3) for quantum Tanner codes. This setting does not directly fit into the
previous definition since the residual error could depend on |𝑒 | in addition to |𝐷 |.
To allow for nontrivial dependence on |𝑒 |, we give the following definition, which
is relevant for asymptotically good codes where the residual error size is at most
linear in |𝑒 | and |𝐷 |.

Definition 67. Let C be a CSS code specified by parity check matrices 𝐻𝑋 ∈ F𝑟𝑋×𝑛2
and 𝐻𝑍 ∈ F𝑟𝑍×𝑛2 . Let 𝑒 = (𝑒𝑋 , 𝑒𝑍 ) ∈ F2𝑛

2 be a data error, 𝐷 = (𝐷𝑋 , 𝐷𝑍 ) ∈ F𝑟𝑍+𝑟𝑋2 be
a syndrome error, and 𝜎̃ = (𝜎̃𝑋 , 𝜎̃𝑍 ) ∈ F𝑟𝑍+𝑟𝑋2 be the corresponding noisy syndrome,
where 𝜎̃𝑋 = 𝐻𝑍𝑒𝑋 +𝐷𝑋 and 𝜎̃𝑍 = 𝐻𝑋𝑒𝑍 +𝐷𝑍 . A decoder for C is (𝛼, 𝛽)-single-shot
if there exist constants 𝐴, 𝐵, 𝐶 such that, for 𝑃 ∈ {𝑋, 𝑍}, whenever

𝐴|𝑒𝑃 |𝑅 + 𝐵 |𝐷𝑃 | ≤ 𝐶𝑛, (3.3)

the decoder finds a correction 𝑓𝑃 ∈ F𝑛2 from given input 𝜎̃𝑃 such that

|𝑒𝑃 + 𝑓𝑃 |𝑅 ≤ 𝛼 |𝑒𝑃 | + 𝛽 |𝐷𝑃 | . (3.4)

This definition, combined with Theorems 89 and 92 below, gives the following
results for the sequential and parallel decoders of the quantum Tanner codes.

Theorem 68 (Summary). There exist constants 𝐴, 𝐵, 𝐶, 𝛽 > 0 (dependent on the
parameters of the quantum Tanner code) such that if 𝐴|𝑒 |𝑅 + 𝐵 |𝐷 | ≤ 𝐶𝑛, then the
following conditions hold:

1. The sequential decoder (Algorithm 3.1) is (𝛼 = 0, 𝛽)-single-shot.
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2. The parallel decoder (Algorithm 3.3) with 𝑘-iterations is (𝛼 = 2−Ω(𝑘) , 𝛽)-
single-shot.

Note that the runtime of the sequential decoder is 𝑂 (𝑛), and each iteration of the
parallel decoder is constant time. For the parallel decoder, 𝛼 decreases exponentially
with the number of parallel decoding iterations 𝑘 , and the results of this section will
hold when 𝑘 is a sufficiently large constant. It suffices to take 𝑘 = 𝑂 (log 𝑛) for
𝛼 = 0 in the parallel decoder.

Finally, we remark that we may increase the robustness to measurement errors and
improve the overall performance of single-shot decoding by leveraging redundancies
among parity checks, similar to the ideas explored in Refs. [30–32]. We can
apply this approach to quantum Tanner codes without compromising their QLDPC
structure, which is a crucial difference between our setting and the aforementioned
works. Specifically, stabilizer generators of quantum Tanner codes are supported
on local neighborhoods, defined by the local codes 𝐶0 and 𝐶1. We may apply the
technique of adding redundancy to each set of local checks separately. Since the
local codes are of length Δ2, any redundant check in a fixed local neighborhood will
not have weight more than Δ2, which is comparable to the weight of the original
checks.

3.3.3 Multiple rounds of decoding
In this section, we discuss what happens after multiple rounds of errors, noisy
measurements, and decoding. We show that under the assumptions of Definition 67,
there exists a variety of noise models such that, as long as the overall noise level is
sufficiently small, the encoded quantum information will persist for an exponential
number of rounds.

The results proven in this section hold for any decoder that can solve the single-
shot decoding problem under Definition 67. More precisely, we assume that if the
decoder is given the noisy syndrome from data error 𝑒 ∈ F𝑛2 and syndrome error
𝐷 ∈ F𝑟𝑍2 satisfying

𝐴|𝑒 |𝑅 + 𝐵|𝐷 | ≤ 𝐶𝑛 , (3.5)

then it outputs a correction 𝑓 such that the residual error satisfies

|𝑒 + 𝑓 |𝑅 ≤ 𝛼 |𝑒 | + 𝛽 |𝐷 | . (3.6)

We will assume that 𝛽 is constant and that 𝛼 is a parameter in the decoder that can
be made arbitrarily small. For our analysis, we let 𝑅, 𝑆 be constants such that
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𝑅 ≤ (1 − 𝛼)𝐶
2𝐴

and 𝑆 ≤ (1 − 𝛼)𝐶
2 (𝛽𝐴 + (1 − 𝛼)𝐵) . (3.7)

We prove that as long as the data and syndrome errors in each round are sufficiently
small, the total error can be kept small indefinitely.

Theorem 69. Consider errors (𝑒𝑖, 𝐷𝑖) that occur on rounds 𝑖 = 1, 2, · · · , with
decoding in between each round using new syndrome measurements (i.e., without
using the previous syndromes). If the errors satisfy |𝑒𝑖 | ≤ 𝑅𝑛 and |𝐷𝑖 | ≤ 𝑆𝑛 for
every round 𝑖, then the residual error 𝑒′

𝑖
after each round 𝑖 satisfies

|𝑒′𝑖 |𝑅 ≤
𝛼𝑅 + 𝛽𝑆

1 − 𝛼 𝑛 . (3.8)

Proof. Initially, 𝑒′0 = 0, which satisfies the bound. Suppose after round 𝑖 − 1, the
residual error 𝑒′

𝑖−1 satisfies (3.8). The new total error is 𝑒′
𝑖−1 + 𝑒𝑖, and we have

𝐴|𝑒′𝑖−1 + 𝑒𝑖 |𝑅 + 𝐵 |𝐷𝑖 | ≤ 𝐴|𝑒
′
𝑖−1 |𝑅 + 𝐴|𝑒𝑖 | + 𝐵 |𝐷𝑖 | (3.9)

≤ 𝐴𝛼𝑅 + 𝛽𝑆
1 − 𝛼 𝑛 + 𝐴𝑅𝑛 + 𝐵𝑆𝑛 (3.10)

≤ 𝐶𝑛 , (3.11)

where the last inequality follows since

𝐴
𝑅 + 𝛽𝑆
1 − 𝛼 + 𝐵𝑆 ≤ 𝐶 (3.12)

for 𝑅 and 𝑆 satisfying (3.7).Therefore, the decoder returns a correction 𝑓 with
residual error

|𝑒′𝑖 |𝑅 ≤ 𝛼 |𝑒′𝑖−1 + 𝑒𝑖 |𝑅 + 𝛽 |𝐷𝑖 | (3.13)

≤ 𝛼 |𝑒′𝑖−1 |𝑅 + 𝛼 |𝑒𝑖 | + 𝛽 |𝐷𝑖 | (3.14)

≤ 𝛼𝛼𝑅 + 𝛽𝑆
1 − 𝛼 𝑛 + 𝛼𝑅𝑛 + 𝛽𝑆𝑛 (3.15)

=
𝛼𝑅 + 𝛽𝑆

1 − 𝛼 𝑛 , (3.16)

where the third inequality uses the inductive hypothesis.

From this result, we can immediately analyze the stochastic setting in which large
errors are unlikely.



88

Corollary 70. Let {(𝑒𝑖, 𝐷𝑖)}𝑀𝑖=1 be randomly distributed data and syndrome errors
(with possible correlations) such that

Pr( |𝑒𝑖 | > 𝑅𝑛) ≤ 𝑒−𝑎𝑛, and Pr( |𝐷𝑖 | > 𝑆𝑛) ≤ 𝑒−𝑏𝑛 , (3.17)

for constants 𝑎, 𝑏 > 0. Suppose the decoder is run after each round of errors using
new syndrome measurements (i.e., without using the syndromes of previous rounds).
Then the final residual error 𝑒′

𝑀
satisfies

Pr
(
|𝑒′𝑀 |𝑅 >

𝛼𝑅 + 𝛽𝑆
1 − 𝛼 𝑛

)
≤ 𝑀 (𝑒−𝑎𝑛 + 𝑒−𝑏𝑛) . (3.18)

Proof. This follows immediately from Theorem 69 after using a union bound on the
probability of a large data or syndrome error at every round.

As a sample application of Corollary 70, we analyze the case of 𝑝-bounded noise [25,
41], although any model of errors with sufficiently suppressed tails will give the
same conclusions.

Definition 71 (𝑝-bounded noise). Let 𝑝 ∈ [0, 1). Let 𝐴 be a set and let 2𝐴 be its
power set. We say that a probability distribution 𝐸 : 2𝐴 → [0, 1] is 𝑝-bounded if
for any 𝐵 ⊆ 𝐴 we have ∑︁

𝐵′⊇𝐵
𝐸 (𝐵′) ≤ 𝑝 |𝐵 | . (3.19)

Corollary 72. Let {(𝑒𝑖, 𝐷𝑖)}𝑀𝑖=1 be data and syndrome errors where each of the
marginal distributions of 𝑒𝑖 and 𝐷𝑖 are 𝑝- and 𝑞-bounded, respectively. Suppose
the decoder is run after each round of errors using a new round of syndrome
measurements (without using the syndromes of previous rounds). Then, the final
residual error 𝑒′

𝑀
satisfies

Pr
(
|𝑒′𝑀 |𝑅 >

𝛼𝑅 + 𝛽𝑆
1 − 𝛼 𝑛

)
≤ 𝑀

(
𝑒−𝑛 ln(2−𝐻 (𝑅) 𝑝−𝑅) + 𝑒−𝑛 ln(2− 𝜚𝐻 (𝑆/𝜚)𝑞−𝑆)

)
, (3.20)

where 𝐻 (𝜏) = −𝜏 log2 𝜏 − (1 − 𝜏) log2(1 − 𝜏) is the binary entropy function, and
𝜚 = 𝑟𝑍/𝑛.

Proof. Let us first upper bound Pr( |𝑒𝑖 | > 𝑅𝑛). We have

Pr( |𝑒𝑖 | > 𝑅𝑛) =
∑︁
|𝑒 |>𝑅𝑛

Pr(𝑒𝑖 = 𝑒) ≤
∑︁
|𝑒 |=𝑅𝑛

Pr(𝑒𝑖 ⊃ 𝑒) ≤
∑︁
|𝑒 |=𝑅𝑛

𝑝 |𝑒 | ≤
(
𝑛

𝑅𝑛

)
𝑝𝑅𝑛 ,

(3.21)
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where the last inequality follows by 𝑝-boundedness. Using the binary entropy bound
for the binomial coefficient, we then have

Pr( |𝑒𝑖 | > 𝑅𝑛) ≤
(
𝑛

𝑅𝑛

)
𝑝𝑅𝑛 ≤ 2𝑛𝐻 (𝑅) 𝑝𝑅𝑛 = 𝑒−𝑛 ln(2−𝐻 (𝑅) 𝑝−𝑅) . (3.22)

Similarly, we have

Pr( |𝐷𝑖 | > 𝑆𝑛) ≤ 𝑒−𝑛 ln(2− 𝜚𝐻 (𝑆/𝜚)𝑞−𝑆) . (3.23)

Applying Corollary 70 gives the result.

In particular, there exist thresholds (𝑝∗, 𝑞∗) = (2−𝐻 (𝑅)/𝑅, 2−𝜚𝐻 (𝑆/𝜚)/𝑆) below which
errors are kept under control for an exponential number of rounds of single-shot
QEC with high probability.

Finally, we comment on the last round of QEC. In a typical setting of fault tolerance,
we choose to measure logical qubits in the computational basis, which for a CSS code
can be accomplished by measuring each physical qubit (also in the computational
basis). We then apply one final round of QEC, where the 𝑍-stabilizer eigenvalues
are inferred by multiplying the 𝑍-measurement outcomes from those qubits in the
stabilizer supports. Note that in this final round, any measurement error can be
treated as an 𝑋 data error immediately before the measurement. We run the decoder
with 𝛼 sufficiently small so that by the guarantee on the decoder, |𝑒 + 𝑓 |𝑅 = 0,
i.e., we completely correct the error. We can then infer the logical information
by combining the corrected single-qubit 𝑍-measurement outcomes making up the
𝑍-logical operators. Therefore, fault tolerance may be achieved by using a faster
(e.g., constant-time) decoder with larger 𝛼 value in the middle of the computation,
and only applying the full decoder (e.g., logarithmic-time) with 𝛼 = 0 at the end of
the computation.

3.4 Proofs of single-shot decoding of quantum Tanner codes
3.4.1 Decoding algorithms
We consider the decoding problem for quantum Tanner codes with parameters as in
Theorem 64. We first provide an overview of how the decoder works. As before, we
will work exclusively with 𝑋-type errors, with 𝑍-errors being analogous. Suppose
that the code state experiences data error 𝑒, and the measurements experience
syndrome error 𝐷. The decoder is consequently given as input the noisy syndrome
𝜎̃ = 𝜎 + 𝐷 = 𝐻𝑍𝑒 + 𝐷. Due to the structure of the code, the global syndrome 𝜎̃
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can equivalently be viewed as a set of noisy local syndromes {𝜎̃𝑣}𝑣∈𝑉1 , where 𝜎̃𝑣
denotes the restriction of 𝜎̃ to the checks associated with the local code𝐶⊥1 at vertex
𝑣. At each 𝑉1 vertex, the decoder computes a minimal weight correction 𝜀𝑣 ⊆ 𝑄(𝑣)
based on the local syndrome 𝜎̃𝑣, i.e,

𝜀𝑣 = argmin{|𝑦 | : 𝑦 ⊆ 𝑄(𝑣), 𝜎𝑣 (𝑦) = 𝜎̃𝑣} . (3.24)

Note that this is a completely local operation which can be done without considera-
tion of the syndrome state of the other vertices. Each square 𝑞 ∈ 𝑄 contains two 𝑉1

vertices, say 𝑣 ∈ 𝑉01 and 𝑣′ ∈ 𝑉10. These two vertices are each associated with their
own local corrections, 𝜀𝑣 and 𝜀𝑣′ , which may disagree on whether there is an error
on 𝑞. If there is no disagreement on any square 𝑞 ∈ 𝑄, then a global correction
𝑓 ∈ F𝑄2 can be unambiguously defined by

𝑓 =
⊔
𝑣∈𝑉01

𝜀𝑣 =
⊔
𝑣′∈𝑉10

𝜀𝑣′ . (3.25)

However, this will usually not be the case. The disagreement between the different
candidate local corrections is captured by a “noisy mismatch vector” defined as

𝑍̃ =
∑︁
𝑣∈𝑉1

𝜀𝑣 . (3.26)

The goal of the main part of the algorithm is to reduce the size of 𝑍̃ by successively
updating the best local corrections on the 𝑉1 vertices. For example, it is possible
that for a given 𝑣 ∈ 𝑉1, replacing 𝜀𝑣 with 𝜀𝑣 + 𝑥 for some 𝑥 ∈ 𝐶⊥1 in (3.26)
would significantly decrease |𝑍̃ |. In general, we attempt to decompose 𝑍̃ by adding
codewords 𝑥 ∈ 𝐶⊥1 on local views 𝑄(𝑣) of vertices 𝑣 ∈ 𝑉 .2 We keep track of the
decomposition process through quantities 𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1 ⊆ F𝑄2 , which are initially
0 and updated as follows. Suppose 𝑥 = 𝑐 + 𝑟 is supported on a 𝑉𝑖 𝑗 local view
(𝑖, 𝑗 ∈ {0, 1}), where 𝑐 ∈ 𝐶𝐴 ⊗ F𝐵2 and 𝑟 ∈ F𝐴2 ⊗ 𝐶𝐵. Then we add 𝑐 to 𝐶̂ 𝑗 and 𝑟 to
𝑅̂𝑖. The interpretation is that 𝐶̂1+ 𝑅̂0 is the total change made to the local corrections
𝜀𝑣 from the 𝑉01 vertices, and 𝐶̂0 + 𝑅̂1 is the total change made to those from the
𝑉10 vertices. Therefore, at the end of the procedure, we output a guess for the error,
which from the perspective of the 𝑉01 vertices is

𝑓 =
∑︁
𝑣∈𝑉01

𝜀𝑣 + 𝐶̂1 + 𝑅̂0 . (3.27)

2In the presence of measurement errors, a full decomposition of 𝑍̃ into local codewords may not
be possible. See Definition 76 and related comments before and after.
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The algorithm can run either sequentially (Algorithm 3.1) or in parallel (Algo-
rithm 3.3), with the corresponding 𝑍̃ decomposition subroutines presented in Algo-
rithm 3.2 and Algorithm 3.4, respectively.

Algorithm 3.1 Sequential decoder for quantum Tanner codes with parameter 𝜀
Input: A noisy syndrome 𝜎̃ arising from data error 𝑒 and syndrome error 𝐷.
Output: A correction 𝑓 that approximates 𝑒.

1: 𝜀𝑣 ← argmin{|𝑦 | : 𝑦 ⊆ 𝑄(𝑣), 𝜎𝑣 (𝑦) = 𝜎̃𝑣} (or 𝜀𝑣 ← 0 if no such 𝑦 exists) for
all 𝑣 ∈ 𝑉1

2: 𝑍̃ ← ∑
𝑣∈𝑉1 𝜀𝑣

3: (𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1) ← Mismatch𝜀 (𝑍̃)
4: 𝑓 ← ∑

𝑣∈𝑉01 𝜀𝑣 + 𝐶̂1 + 𝑅̂0
5: return 𝑓

Algorithm 3.2 Sequential mismatch decomposition with parameter 𝜀
Input: A vector 𝑍 ∈ F𝑄2 .
Output: A collection (𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1) ≡ Mismatch𝜀 (𝑍).

1: Set 𝐶̂0 = 𝐶̂1 = 𝑅̂0 = 𝑅̂1 = 0 and 𝑍̂ = 𝑍 .
2: while 𝑍̂ ≠ 0 do
3: if ∃𝑣 ∈ 𝑉𝑖 𝑗 and 0 ≠ 𝑥𝑣 ∈ 𝐶⊥1 in 𝑄(𝑣) such that |𝑍̂ | − |𝑍̂ + 𝑥𝑣 | ≥ (1 − 𝜀) |𝑥𝑣 |

then
4: Find 𝑟𝑣 ∈ F𝐴2 ⊗ 𝐶𝐵 and 𝑐𝑣 ∈ 𝐶𝐴 ⊗ F𝐵2 such that ∥𝑐𝑣 ∥ + ∥𝑟𝑣 ∥ is minimal

among all 𝑐𝑣, 𝑟𝑣 such that 𝑟𝑣 + 𝑐𝑣 = 𝑥𝑣
5: 𝐶̂ 𝑗 ← 𝐶̂ 𝑗 + 𝑐𝑣
6: 𝑅̂𝑖 ← 𝑅̂𝑖 + 𝑟𝑣
7: 𝑍̂ ← 𝑍̂ + 𝑐𝑣 + 𝑟𝑣
8: else
9: return (𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1)

10: end if
11: end while
12: return (𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1)
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Algorithm 3.3 Parallel decoder for quantum Tanner codes with 𝑘 iterations
Input: A noisy syndrome 𝜎̃ from a data error 𝑒 and syndrome error 𝐷, and an
integer 𝑘 > 0.
Output: A correction 𝑓 that approximates 𝑒.

1: parallel for each 𝑣 ∈ 𝑉1 do
2: 𝜀𝑣 ← argmin{|𝑦 | : 𝑦 ∈ 𝑄(𝑣), 𝜎𝑣 (𝑦) = 𝜎̃𝑣} (or 𝜀𝑣 ← 0 if no such 𝑦 exists)
3: 𝑍̃ ← ∑

𝑣∈𝑉1 𝜀𝑣

4: 𝑓 ← ∑
𝑣∈𝑉01 𝜀𝑣

5: end parallel for each
6: (𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1) ← ParMismatch(𝑘) (𝑍̃)
7: 𝑓 ← 𝑓 + 𝐶̂1 + 𝑅̂0 // update 𝑓 in parallel for each vertex 𝑣 ∈ 𝑉01
8: return 𝑓

Algorithm 3.4 Parallel mismatch decomposition procedure with 𝑘 iterations
Input: A vector 𝑍 ∈ F𝑄2 and integer 𝑘 > 0.
Output: A collection (𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1) ≡ ParMismatch(𝑘) (𝑍).

1: Set 𝐶̂0 = 𝐶̂1 = 𝑅̂0 = 𝑅̂1 = 0 and 𝑍̂ = 𝑍 .
2: repeat 𝑘 times
3: for (𝑖, 𝑗) ∈ {0, 1}2 do
4: parallel for each 𝑣 ∈ 𝑉𝑖 𝑗 do
5: if there exists 0 ≠ 𝑥𝑣 ∈ 𝐶⊥1 in 𝑄(𝑣) such that |𝑍̂ | − |𝑍̂ + 𝑥𝑣 | ≥ |𝑥𝑣 |/2

then
6: Choose 𝑥𝑣 such that |𝑥𝑣 | maximal among all possible choices
7: Find 𝑟𝑣 ∈ F𝐴2 ⊗ 𝐶𝐵 and 𝑐𝑣 ∈ 𝐶𝐴 ⊗ F𝐵2 such that ∥𝑐𝑣 ∥ + ∥𝑟𝑣 ∥ is

minimal among all 𝑐𝑣, 𝑟𝑣 such that 𝑟𝑣 + 𝑐𝑣 = 𝑥𝑣
8: 𝐶̂ 𝑗 ← 𝐶̂ 𝑗 + 𝑐𝑣
9: 𝑅̂𝑖 ← 𝑅̂𝑖 + 𝑟𝑣

10: 𝑍̂ ← 𝑍̂ + 𝑐𝑣 + 𝑟𝑣
11: end if
12: end parallel for each
13: end for
14: end repeat
15: return (𝐶̂0, 𝐶̂1, 𝑅̂0, 𝑅̂1)

These algorithms were analyzed in the scenario with perfect measurement outcomes
in Ref. [33], giving the following results:

Theorem 73 (Theorem 13 in Ref. [33]). Let 𝜀 ∈ (0, 1). Suppose Algorithm 3.1 with
parameter 𝜀 is given as input the noiseless syndrome 𝜎 = 𝐻𝑍𝑒 of an error 𝑒 ∈ F𝑄2
of weight

|𝑒 | ≤ 1
211 min

(
𝜀3

16
, 𝜅

)
(1 − 𝜀)𝑑2

𝑟 𝜅
2 𝑛

Δ
. (3.28)
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Then it will output a correction 𝑓 such that 𝑒 + 𝑓 ∈ 𝐶⊥
𝑋

in time 𝑂 (𝑛).

Theorem 74 (Theorem 20 in Ref. [33]). Let 𝜀 ∈ (0, 1/6). Suppose Algorithm 3.3
is given as input the noiseless syndrome 𝜎 = 𝐻𝑍𝑒 of an error 𝑒 ∈ F𝑄2 of weight

|𝑒 | ≤ 1
212 min

(
𝜀3

16
, 𝜅

)
𝑑2
𝑟 𝜅

2 𝑛

Δ
. (3.29)

Then it will output a correction 𝑓 such that 𝑒 + 𝑓 ∈ 𝐶⊥
𝑋

in time 𝑂 (log 𝑛).

In the next sections, we will consider what happens when the decoders are given a
syndrome with possible errors.

3.4.2 Proof preliminaries
We first give a summary of the main ideas of the proof. The key idea of the proof is
to bound the reduction in the weight of the noisy mismatch vector 𝑍̃ through each
step of the algorithm, and to show that when the weight of 𝑍̃ is reduced, the weight
of the residual error is also subsequently reduced. There is a technical challenge to
this idea however: there is no direct relation between the weight of 𝑍̃ and the error
weight.

To bridge these two objects, we define the notion of an ideal mismatch vector 𝑍
(see Eq. (3.32) below), which is equal to 𝑍̃ when there is no measurement noise.
Since the mismatch 𝑍 only captures the portion of the error which cannot be
removed using independent local corrections, we must first “pre-process” the error
by making any possible local corrections (see Eq. (3.34) below). This establishes a
direct connection between 𝑍 and the “pre-processed” error 𝑒0 (see Lemma 79) and
our analysis will be built upon this connection.

We show that if 𝑍 is decomposable into local corrections by Algorithm 3.2, then
most of these correction sets will also reduce the weight of 𝑍̃ (Lemma 85). This in
turn allows us to relate the weights of 𝑍 and 𝑍̃ . Finally, we show that if the qubit
and measurement error weights are bounded, the ideal mismatch vector 𝑍 always
admits the desired decomposition into local correction sets (Lemma 87). These
lemmas allow us prove our main result (Theorem 89): as the weight of 𝑍̃ decreases
throughout the steps of the algorithm, the residual error weight must also decrease.
The analysis of the parallel decoder then builds upon this bound, with the additional
requirement of showing that the decomposition of 𝑍 into local corrections must be
essentially disjoint (Lemma 90).
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In the remainder of this section, we set up notation and provide some preliminary
results used in the proofs of Theorems 89 and 92. We first define quantities relating
to the states of the decoders. Given the local structure of the quantum Tanner codes,
it will be more convenient to bound the size of the syndrome noise in terms of its
vertex support.

Definition 75. Given a quantum Tanner code and a syndrome noise 𝐷, let us define
𝐷𝑣 to be the restriction of 𝐷 to the set of stabilizer generators associated with
vertex 𝑣. We define the vertex support of 𝐷 to be the set of all vertices such that
𝐷𝑣 ≠ 0. We denote the size of the vertex support by |𝐷 |𝑉 . Note that we have
Δ−2 |𝐷 | ≤ 𝑟−1 |𝐷 | ≤ |𝐷 |𝑉 ≤ |𝐷 |, where 𝑟 is the number of stabilizer generators
associated with the local code.

Given the noisy syndrome 𝜎̃ = 𝐻𝑍𝑒 + 𝐷, let 𝜎̃𝑣 denote the restriction of 𝜎̃ to the
checks associated with the vertex 𝑣. For each vertex 𝑣 ∈ 𝑉1, the decoder finds a
locally minimal correction 𝜀𝑣 such that 𝜎𝑣 (𝜀𝑣) = 𝜎̃𝑣 . In the event that no local
correction 𝜀𝑣 exists for 𝜎̃𝑣, we may define 𝜎̃𝑣 arbitrarily. In our case, we will simply
define 𝜀𝑣 = 0 by convention. If 𝜀𝑣 is the locally minimal correction associated with
the noiseless syndrome 𝜎𝑣, then we can decompose 𝜀𝑣 into “noiseless” and “noisy”
parts as

𝜀𝑣 = 𝜀𝑣 + 𝜀𝑣 (𝐷) , (3.30)

where 𝜀𝑣 (𝐷) is defined by 𝜀𝑣 (𝐷) = 𝜀𝑣 − 𝜀𝑣. Note that 𝜀𝑣 (𝐷) will be non-zero only
when 𝐷 has non-zero support on 𝑣.

The full noisy mismatch vector initialized by the decoder is given by

𝑍̃ =
∑︁
𝑣∈𝑉1

𝜀𝑣 =
∑︁
𝑣∈𝑉1

(𝜀𝑣 + 𝜀𝑣 (𝐷)) . (3.31)

It will likewise be convenient to split the mismatch into a noiseless and a noisy part,
defined by

𝑍 =
∑︁
𝑣∈𝑉1

𝜀𝑣 and 𝑍𝑁 =
∑︁
𝑣∈𝑉1

𝜀𝑣 (𝐷) , (3.32)

so that 𝑍̃ = 𝑍 + 𝑍𝑁 . We will also need the restrictions of these vectors onto the
vertices of 𝑉01, which we define as

𝑍̃01 =
∑︁
𝑣∈𝑉01

𝜀𝑣, 𝑍01 =
∑︁
𝑣∈𝑉01

𝜀𝑣, and 𝑍01
𝑁 =

∑︁
𝑣∈𝑉01

𝜀𝑣 (𝐷) . (3.33)



95

The key idea of the proof is to pre-process the error using 𝑍̃01, and apply the local
corrections 𝑥𝑣 step by step. Specifically, we define the initial pre-processed error
𝑒0, and the “noiseless” pre-processed error 𝑒0, by

𝑒0 = 𝑒 + 𝑍̃01 = 𝑒 +
∑︁
𝑣∈𝑉01

𝜀𝑣 , (3.34)

𝑒0 = 𝑒 + 𝑍01 = 𝑒0 + 𝑍01
𝑁 . (3.35)

For the purpose of our proof, we consider the vector 𝑒0 as the initial error state of
the algorithm, and 𝑍̃0 = 𝑍̃ as the initial mismatch. Note that in practice it does
not matter at what point in the decoding procedure the set 𝑍̃01 is flipped. The
pre-processing is only introduced as a convenience in our proof in order to relate
the weight of 𝑒 to the weight of 𝑍 . The original algorithms considered in Ref. [33]
involve a “post-processing” step instead, where 𝑍̃01 is applied at the very end rather
than the beginning. Since the sets of qubits flipped are ultimately the same in either
case, the results here hold without modification.

The core loop of the decoding algorithm finds, at each step 𝑖, some local codeword
𝑥𝑖 = 𝑟𝑖 + 𝑐𝑖 ⊆ 𝑄(𝑣𝑖) such that

|𝑍̃𝑖−1 | − |𝑍̃𝑖−1 + 𝑥𝑖 | ≥ (1 − 𝜀) |𝑥𝑖 |. (3.36)

Having found a codeword which satisfies (3.36), we update the error and the mis-
match vectors by

𝑒𝑖 = 𝑒𝑖−1 + 𝑓𝑖, and 𝑍̃𝑖 = 𝑍̃𝑖−1 + 𝑥𝑖 , (3.37)

where the flip-set 𝑓𝑖 ⊆ 𝑄(𝑣𝑖) is defined by

𝑓𝑖 =



0 𝑣𝑖 ∈ 𝑉10 ,

𝑥𝑖 𝑣𝑖 ∈ 𝑉01 ,

𝑐𝑖 𝑣𝑖 ∈ 𝑉11 ,

𝑟𝑖 𝑣𝑖 ∈ 𝑉00 .

(3.38)

Likewise, we can define the associated “noiseless” error and mismatch at each step
by

𝑒𝑖 = 𝑒𝑖−1 + 𝑓𝑖 = 𝑒𝑖 + 𝑍01
𝑁 , and 𝑍𝑖 = 𝑍𝑖−1 + 𝑥𝑖 = 𝑍̃𝑖 + 𝑍𝑁 . (3.39)

Note that 𝑍𝑁 and 𝑍01
𝑁

are determined entirely by the syndrome noise 𝐷 and initial
error 𝑒, and are constant through the decoding process.
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In the presence of measurement errors, it is no longer true that the noisy mismatch
𝑍̃ can be decomposed into a sum of local codewords.3 As such, some care must be
taken in characterizing what exactly we mean by a “mismatch.” This is captured by
the definition below.

Definition 76. A mismatch vector is any 𝑍 ∈ F𝑄2 that can be decomposed as
𝑍 = 𝐶0 + 𝐶1 + 𝑅0 + 𝑅1, where

𝐶 𝑗 =
∑︁
𝑣∈𝑉

𝑗 𝑗

𝑐𝑣 and 𝑅𝑖 =
∑︁
𝑣∈𝑉

𝑖𝑖

𝑟𝑣 (3.40)

are the sum of local column codewords 𝑐𝑣 ∈ 𝐶𝐴⊗F𝐵2 and row codewords 𝑟𝑣 ∈ F𝐴2 ⊗𝐶𝐵
on 𝑄(𝑣), i.e., a mismatch vector is an element in the span of local codewords 𝐶⊥1 .
Here, we define 𝑖 = 1 − 𝑖 for convenience.

The division of 𝑍 into local codewords of the form (𝐶0, 𝐶1, 𝑅0, 𝑅1) is called a decom-
position of 𝑍 . Any given mismatch vector 𝑍 may have many distinct decompositions.
Given any decomposition, we define its weight by

wt(𝐶0, 𝐶1, 𝑅0, 𝑅1) = ∥𝐶0∥ + ∥𝐶1∥ + ∥𝑅0∥ + ∥𝑅1∥, (3.41)

where ∥𝐶𝑖∥ and ∥𝑅𝑖∥ denote the number of non-zero columns and rows, respectively,
present in 𝐶𝑖 and 𝑅𝑖. Note that the weight is well-defined since distinct local
codewords 𝑐𝑣 ⊆ 𝐶𝑖 and 𝑟𝑣 ⊆ 𝑅𝑖 are disjoint. We then define the norm of a mismatch
to be

∥𝑍 ∥ = min
(𝐶0,𝐶1,𝑅0,𝑅1)

𝑍=𝐶0+𝐶1+𝑅0+𝑅1

wt(𝐶0, 𝐶1, 𝑅0, 𝑅1). (3.42)

Decompositions such that wt(𝐶0, 𝐶1, 𝑅0, 𝑅1) = ∥𝑍 ∥ are called minimal weight
decompositions for 𝑍 .

Note that technically the vector 𝑍̃ which we call the noisy mismatch vector is not a
mismatch vector at all as defined by Definition 76. Nevertheless, we will continue
to call 𝑍̃ the noisy mismatch since there is little chance of confusion. The noiseless
part 𝑍 is a genuine mismatch vector by definition. The properties of the noiseless
mismatch 𝑍 are characterized by the following lemma from Ref. [33].

3In the case of perfect syndrome measurements, we have

𝑍 =
∑︁
𝑣∈𝑉1

𝜀𝑣 =
∑︁
𝑣∈𝑉1

(𝑒𝑣 + 𝑟𝑣 + 𝑐𝑣) =
∑︁
𝑣∈𝑉1

(𝑟𝑣 + 𝑐𝑣),

where 𝑟𝑣+𝑐𝑣 is the codeword that the local error is corrected to: 𝑒𝑣+𝜀𝑣 = 𝑟𝑣+𝑐𝑣 . This decomposition
no longer holds in the presence of imperfect measurements.
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Lemma 77 (Lemma 17 in Ref. [33]). Let 𝑒 ∈ F𝑄2 be an error and let 𝜀𝑣 be a local
minimal correction for 𝑒𝑣 at every vertex 𝑣 ∈ 𝑉1. Let

𝑍 =
∑︁
𝑣∈𝑉1

𝜀𝑣 . (3.43)

Then 𝑍 is a mismatch vector which satisfies

|𝑍 | ≤ 4|𝑒 |𝑅, and ∥𝑍 ∥ ≤ 4
𝜅Δ
|𝑒 |𝑅 . (3.44)

The main purpose of pre-processing in our proof is that the noiseless pre-processed
error 𝑒0 and the noiseless mismatch 𝑍0 can be easily related through the following
property.

Definition 78. Let 𝑒 ∈ F𝑄2 be an error. We say that the error is 𝑉𝑖 𝑗 -weighted if
𝜎𝑣 (𝑒) = 0 for all 𝑣 ∈ 𝑉𝑖 𝑗 . Given a 𝑉𝑖 𝑗 -weighted error 𝑒, we say that a mismatch
vector 𝑍 is associated with 𝑒 if 𝜎𝑣 (𝑍) = 𝜎𝑣 (𝑒) for all 𝑣 ∈ 𝑉𝑖 𝑗 .

Lemma 79. The quantity 𝑒0 is a 𝑉10-weighted error and 𝑍0 = 𝑍 is a mismatch
vector associated with 𝑒0.

Proof. First, we show that 𝑍 is a mismatch vector. Note that 𝑍 is the sum of local
minimal corrections 𝜀𝑣 to the error 𝑒, i.e.,

𝑍 =
∑︁
𝑣∈𝑉1

𝜀𝑣 , (3.45)

where for each vertex 𝑣 ∈ 𝑉1 we have 𝑒𝑣 = 𝜀𝑣 + 𝑥𝑣 for some 𝑥𝑣 ∈ 𝐶⊥1 . Therefore

𝑍 =
∑︁
𝑣∈𝑉1

(𝑒𝑣 + 𝑥𝑣) =
∑︁
𝑣∈𝑉1

𝑥𝑣 , (3.46)

where the 𝑒𝑣 terms cancel since each face occurs exactly twice in the sum above.
Next, we show that 𝑒0 is 𝑉10-weighted. We have

𝑒0 = 𝑒 + 𝑍01 = 𝑒 +
∑︁
𝑣∈𝑉01

𝜀𝑣 . (3.47)

Note that the terms in the latter sum are disjoint for distinct vertices 𝑣, 𝑣′ ∈ 𝑉01. It
follows that the restriction of 𝑒0 to a vertex 𝑣 ∈ 𝑉01 is given by

(𝑒0)𝑣 = 𝑒𝑣 + 𝜀𝑣 = 𝑥𝑣 , (3.48)
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which has zero syndrome. Finally we show that 𝑍 is associated with 𝑒0. The
restriction of 𝑒0 to a vertex 𝑣 ∈ 𝑉10 is given by

(𝑒0)𝑣 = 𝑒𝑣 +𝑄(𝑣) ∩
∑︁
𝑢∈𝑉01

𝜀𝑢 . (3.49)

Likewise, the restriction of 𝑍 to 𝑣 ∈ 𝑉10 is given by

𝑍𝑣 = 𝜀𝑣 +𝑄(𝑣) ∩
∑︁
𝑢∈𝑉01

𝜀𝑢 . (3.50)

It follows that

𝜎𝑣 (𝑍) = 𝜎𝑣 (𝜀𝑣) + 𝜎𝑣

(
𝑄(𝑣) ∩

∑︁
𝑢∈𝑉01

𝜀𝑢

)
= 𝜎𝑣 (𝑒𝑣) + 𝜎𝑣

(
𝑄(𝑣) ∩

∑︁
𝑢∈𝑉01

𝜀𝑢

)
= 𝜎𝑣 (𝑒0) ,

(3.51)

which shows that 𝑍 is associated with 𝑒0.

The notion of 𝑒𝑖 being a 𝑉10-weighted error is invariant as the decoder proceeds,
i.e., if 𝑒𝑖 is initially 𝑉10-weighted then it remains so. Moreover, if 𝑍 was initially a
mismatch associated with 𝑒0 then 𝑍𝑖 remains associated with 𝑒𝑖 throughout all steps
𝑖 of the decoder.

Lemma 80. Let 𝑍 be a weighted mismatch vector associated with a 𝑉10-weighted
error 𝑒. Let 𝑥 = 𝑐 + 𝑟 ⊆ 𝑄(𝑣) be a codeword of 𝐶⊥1 , with 𝑣 ∈ 𝑉𝑖 𝑗 . Define

𝑓 =



0, 𝑣 ∈ 𝑉10 ,

𝑥, 𝑣 ∈ 𝑉01 ,

𝑐, 𝑣 ∈ 𝑉11 ,

𝑟, 𝑣 ∈ 𝑉00 ,

(3.52)

to be the associated flip set. Then 𝑒 + 𝑓 is again a 𝑉10-weighted error and 𝑍 + 𝑥 is
an associated mismatch vector.

Proof. It is clear that 𝑍 + 𝑥 is a mismatch vector since 𝑍 was one and we add a
single 𝐶⊥1 codeword.

We first show that 𝑒 + 𝑓 remains 𝑉10-weighted. Clearly 𝑒 + 𝑓 is 𝑉10-weighted if
𝑣 ∈ 𝑉10 or 𝑣 ∈ 𝑉01 since we either add nothing, or a local codeword to a 𝑉01 vertex.
Now suppose that 𝑣 ∈ 𝑉00 so that 𝑓 = 𝑟 . We can decompose 𝑟 into 𝑟 = 𝑟1 + · · · + 𝑟𝑘 ,
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where each 𝑟𝑖 is a local codeword supported on a single row, which we can assume
to be indexed by the edge (𝑣, 𝑢𝑖) for some 𝑢𝑖 ∈ 𝑉01. The syndrome of 𝑒 + 𝑟 on a
vertex 𝑢 ∈ 𝑉01 is therefore given by

𝜎𝑢 (𝑒 + 𝑓 ) =

𝜎𝑢 (𝑒) 𝑢 ≠ 𝑢𝑖 for all 𝑖,

𝜎𝑢 (𝑒 + 𝑟𝑖) 𝑢 = 𝑢𝑖 for some 𝑖.
(3.53)

In either case, we have 𝜎𝑢 (𝑒 + 𝑓 ) = 0 so that 𝑒 + 𝑓 is 𝑉10-weighted. The case where
𝑣 ∈ 𝑉11 is analogous, taking 𝑓 = 𝑐 and making a similar decomposition.

Finally, we show that 𝑍 + 𝑥 is associated with 𝑒 + 𝑓 . Let us write

𝑍 =
∑︁
𝑢∈𝑉10

𝜀𝑢, (3.54)

where 𝜎𝑢 (𝑍) = 𝜎𝑢 (𝑒) for all 𝑢 ∈ 𝑉10. If 𝑣 ∈ 𝑉10 then there is nothing to show since
all syndromes are unchanged. If 𝑣 ∈ 𝑉01 then define

𝜀′𝑢 = 𝜀𝑢 +𝑄(𝑢) ∩ 𝑥 (3.55)

so that

𝑍 + 𝑥 =
∑︁
𝑢∈𝑉10

𝜀′𝑢 . (3.56)

Since (𝑒 + 𝑥)𝑢 = 𝑒𝑢 +𝑄(𝑢) ∩ 𝑥, we see that 𝜀′𝑢 has the same syndrome as (𝑒 + 𝑓 )𝑢.

Lastly, suppose 𝑣 ∈ 𝑉00, with the 𝑉11 case being analogous. Let 𝑓 = 𝑟. Note that
𝜀′𝑢 = 𝜀𝑢 and (𝑒 + 𝑟)𝑢 = 𝑒𝑢 for all 𝑢 ∈ 𝑉10 not adjacent to 𝑣. Therefore it suffices to
consider 𝑢 ∈ 𝑁 (𝑣). In this case,𝑄(𝑢) ∩ 𝑐 is just the column of 𝑐 labeled by the edge
(𝑢, 𝑣) and so 𝑄(𝑢) ∩ 𝑐 is a local codeword. Therefore 𝜎𝑢 (𝑐) = 0. It follows that

𝜎𝑢 (𝜀′𝑢) = 𝜎𝑢 (𝜀𝑢) + 𝜎𝑢 (𝑥) = 𝜎𝑢 (𝑒) + 𝜎𝑢 (𝑟) + 𝜎𝑢 (𝑐) = 𝜎𝑢 (𝑒) + 𝜎𝑢 (𝑟) = 𝜎𝑢 (𝑒 + 𝑟)
(3.57)

for all 𝑢 ∈ 𝑁 (𝑣). Therefore 𝜎𝑢 (𝑍 + 𝑥) = 𝜎𝑢 (𝑒 + 𝑓 ) for all 𝑢 ∈ 𝑉10 and so 𝑍 + 𝑥 is
associated with 𝑒 + 𝑓 .

Lemma 79 and Lemma 80 show that 𝑍𝑖 is a mismatch vector associated with the
𝑉10-weighted error 𝑒𝑖 for all 𝑖. We further cite the following lemma from Ref. [33],
which gives a sufficient condition for the existence of good local corrections. This
is the key to proving that in the noiseless case, the sequential and parallel decoders
converge.
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Definition 81. Let 𝑍 be a mismatch vector and let 𝑍 = 𝐶0 + 𝐶1 + 𝑅0 + 𝑅1 be a
minimal decomposition for 𝑍 . We say that a vertex 𝑣 ∈ 𝑉𝑖 𝑗 is active with respect
this decomposition if 𝑄(𝑣) ∩ (𝑅𝑖 + 𝐶 𝑗 ) ≠ 0.

Theorem 82 (Theorem 12 in Ref. [33]). Fix 𝛿 ∈ (0, 1). Let 𝑍 be a non-zero
mismatch vector. If for all 𝑖, 𝑗 ∈ {0, 1}, the set of active vertices 𝑆𝑖 𝑗 ⊆ 𝑉𝑖 𝑗 for a
minimal decomposition of 𝑍 satisfies

|𝑆𝑖 𝑗 | ≤
1

212 𝑑
2
𝑟 𝛿

3𝜅 |𝑉00 | , (3.58)

where 𝑑𝑟 denotes the relative distance of the local code, then there exists a non-zero
𝑥 ⊆ 𝑄(𝑣) for some 𝑣 ∈ 𝑉𝑖 𝑗 that is a 𝐶⊥1 codeword such that

|𝑍 | − |𝑍 + 𝑥 | ≥ (1 − 𝛿) |𝑥 | . (3.59)

3.4.3 Sequential decoder
To begin analyzing the sequential decoder with noisy input, the natural question
to ask is that if the ideal mismatch 𝑍 can be decomposed by Algorithm 3.2 into
F = {𝑥𝑖}𝑡𝑖=1, how well do these local corrections 𝑥𝑖 decompose the noisy mismatch
𝑍̃ = 𝑍 + 𝑍𝑁? The following two lemmas address this question.

Definition 83. Let 𝑍 be a mismatch vector. We say that 𝑍 is 𝛿-decomposable if
Algorithm 3.2 successfully returns a decomposition of 𝑍 when run with parameter
𝛿, i.e., if Algorithm 3.2 halts with state 𝑍̂ = 0.

Lemma 84. Let 𝑍 be an 𝛿-decomposable mismatch and let F = {𝑥𝑖}𝑡𝑖=1 denote the
codewords returned by Algorithm 3.2 run with input 𝑍 and parameter 𝛿. Then

(1 − 𝛿)
𝑡∑︁
𝑖=1
|𝑥𝑖 | ≤ |𝑍 | ≤

𝑡∑︁
𝑖=1
|𝑥𝑖 | . (3.60)

Proof. Let

𝑍𝑘 = 𝑍 −
𝑘∑︁
𝑖=1

𝑥𝑖 , (3.61)

with 𝑍 = 𝑍0. Note that since Algorithm 3.2 completely decomposes 𝑍 , we have
𝑍𝑡 = 0 and

𝑍 =

𝑡∑︁
𝑖=1

𝑥𝑖 . (3.62)
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For the decomposition with parameter 𝛿, we have |𝑍𝑖−1 | − |𝑍𝑖 | ≥ (1 − 𝛿) |𝑥𝑖 | and
therefore

|𝑍 | ≥ (1 − 𝛿)
𝑡∑︁
𝑖=1
|𝑥𝑖 | . (3.63)

Together, we get the bounds

(1 − 𝛿)
𝑡∑︁
𝑖=1
|𝑥𝑖 | ≤ |𝑍 | ≤

𝑡∑︁
𝑖=1
|𝑥𝑖 | . (3.64)

Lemma 85. Let 𝑍 be a mismatch vector and let 𝑍𝑁 ∈ F𝑄2 be any vector. Let
𝑍̃ = 𝑍 + 𝑍𝑁 . Suppose that 𝑍 is 𝛿-decomposable with decomposition F = {𝑥𝑖}𝑡𝑖=1.
Let

F ∗ = {𝑥 ∈ F : |𝑍̃ | − |𝑍̃ + 𝑥 | ≥ (1 − 𝜀) |𝑥 |} . (3.65)

Then ∑︁
𝑥∈F ∗
|𝑥 | ≥ 𝑐1 |𝑍 | − 𝑐2 |𝑍𝑁 | (3.66)

for constants

𝑐1 =
𝜀 − 2𝛿
𝜀(1 − 𝛿) and 𝑐2 =

2
𝜀
. (3.67)

In particular, if F ∗ = ∅, then 𝑐1 |𝑍 | ≤ 𝑐2 |𝑍𝑁 |.

Proof. This proof follows the idea of Lemma 5.1 in Ref. [42]. Given any set 𝑦 ∈ F𝑄2 ,
we have

|𝑍̃ | − |𝑍̃ + 𝑦 | = |𝑍̃ | − (|𝑍̃ | + |𝑦 | − 2|𝑍̃ ∩ 𝑦 |) = 2|𝑍̃ ∩ 𝑦 | − |𝑦 | . (3.68)

For all 𝑦 ∈ F \ F ∗, we have

|𝑍̃ ∩ 𝑦 | = 1
2
( |𝑦 | + |𝑍̃ | − |𝑍̃ + 𝑦 |) <

(
1 − 𝜀

2

)
|𝑦 | . (3.69)

Define 𝑇 =
∑
𝑥∈F |𝑍̃ ∩ 𝑥 |. We then have

𝑇 =
∑︁
𝑥∈F ∗
|𝑍̃ ∩ 𝑥 | +

∑︁
𝑦∈F \F ∗

|𝑍̃ ∩ 𝑦 | (3.70)

<
∑︁
𝑥∈F ∗
|𝑥 | +

(
1 − 𝜀

2

) ∑︁
𝑦∈F \F ∗

|𝑦 | (3.71)

=
𝜀

2

∑︁
𝑥∈F ∗
|𝑥 | +

(
1 − 𝜀

2

) ∑︁
𝑦∈F
|𝑦 | (3.72)

≤ 𝜀
2

∑︁
𝑥∈F ∗
|𝑥 | + 2 − 𝜀

2(1 − 𝛿) |𝑍 | , (3.73)
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where the last inequality follows from Lemma 84. On the other hand, we also have

𝑇 ≥ |𝑍̃ ∩
∑︁
𝑥∈F

𝑥 | = |𝑍̃ ∩ 𝑍 | (3.74)

= |𝑍 | − |𝑍 ∩ 𝑍𝑁 | ≥ |𝑍 | − |𝑍𝑁 | . (3.75)

Combining these two inequalities, we get

𝜀

2

∑︁
𝑥∈F ∗
|𝑥 | + 2 − 𝜀

2(1 − 𝛿) |𝑍 | ≥ |𝑍 | − |𝑍𝑁 |, (3.76)

or equivalently ∑︁
𝑥∈F ∗
|𝑥 | ≥ 𝜀 − 2𝛿

𝜀(1 − 𝛿) |𝑍 | −
2
𝜀
|𝑍𝑁 |, (3.77)

as desired.

Note that Lemma 85 will set an implicit bound of 𝛿 < 1/2 since we require 𝜀−2𝛿 > 0
for the bound (3.66) to be non-trivial.

Suppose now that the noisy mismatch vector 𝑍̃ is given as input to Algorithm 3.1
with parameter 𝜀, which terminates after𝑇 iterations. Let us denote the residual error
by 𝑒𝑇 and its associated mismatch by 𝑍̃𝑇 = 𝑍𝑇 + 𝑍𝑁 . If 𝑍𝑇 is 𝛿-decomposable, then
Lemma 85 implies that |𝑍𝑇 | = 𝑂 (𝑍𝑁 ). Namely, the sequential decoder terminates
only when the mismatch noise 𝑍𝑁 becomes significant. In the following lemma, we
further relate the weight of the noiseless residual error 𝑒𝑇 with |𝑍𝑇 |.

Lemma 86 (Mismatch Correctness and Soundness). Let 𝑒 be a 𝑉10-weighted error
and let 𝑍 be an associated mismatch vector. Suppose that 𝑍 is 𝛿-decomposable and
that

|𝑒 |𝑅 +
1

𝜅(1 − 𝛿) |𝑍 | < 𝑑 . (3.78)

Then we have

|𝑍 | ≥ (1 − 𝛿)𝜅 |𝑒 |𝑅 . (3.79)

Proof. Let F = {𝑥𝑖}𝑡𝑖=1 denote the decomposition returned for 𝑍 by Algorithm 3.2
with parameter 𝛿. Each 𝑥𝑖 is supported on the local view of some vertex 𝑣𝑖 and has
the further decomposition into column and row codewords as 𝑥𝑖 = 𝑐𝑖 + 𝑟𝑖.
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First, we prove that 𝑒 � 𝐶̂1 + 𝑅̂0, where � denotes equivalence up to stabilizers. Let
𝑒0 = 𝑒 and define 𝑒𝑖 = 𝑒𝑖−1 + 𝑓𝑖 where

𝑓𝑖 =



0, 𝑣 ∈ 𝑉10 ,

𝑥𝑖, 𝑣 ∈ 𝑉01 ,

𝑐𝑖, 𝑣 ∈ 𝑉11 ,

𝑟𝑖, 𝑣 ∈ 𝑉00 .

(3.80)

Note that by construction we have

𝑒𝑡 = 𝑒0 + 𝐶̂1 + 𝑅̂0. (3.81)

By Lemma 80, the errors 𝑒𝑖 are all 𝑉10-weighted, and the vector 𝑍𝑘 = 𝑍 +
∑𝑘
𝑖=1 𝑥𝑖 is

a mismatch vector associated with 𝑒𝑖 at each step. It follows by the 𝑉10-weighting
of 𝑒𝑡 that

∀𝑣 ∈ 𝑉01 : 𝜎𝑣 (𝑒𝑡) = 0. (3.82)

Since 𝑍𝑡 = 0, it follows by the association of 𝑍𝑡 and 𝑒𝑡 that

∀𝑣 ∈ 𝑉10 : 𝜎𝑣 (𝑒𝑡) = 𝜎𝑣 (𝑍𝑡) = 0. (3.83)

It follows that 𝑒𝑡 has zero syndrome. It remains to show that 𝑒𝑡 is a stabilizer, which
we can do by bounding its weight. For each flip-set 𝑓𝑖, we have

| 𝑓𝑖 | ≤ |𝑟𝑖 | + |𝑐𝑖 | ≤ Δ(∥𝑟𝑖∥ + ∥𝑐𝑖∥) ≤ |𝑥𝑖 |/𝜅 , (3.84)

where we use the robustness of the local code in the last inequality. Using Lemma 84,
we then have

|𝑍 | ≥ (1 − 𝛿)
𝑡∑︁
𝑖=1
|𝑥𝑖 | ≥ (1 − 𝛿)𝜅

𝑡∑︁
𝑖=1
| 𝑓𝑖 |. (3.85)

It follows that

|𝑒𝑡 |𝑅 =

�����𝑒 + 𝑡∑︁
𝑖=1

𝑓𝑖

�����
𝑅

≤ |𝑒 |𝑅 +
𝑡∑︁
𝑖=1
| 𝑓𝑖 | ≤ |𝑒 |𝑅 +

1
𝜅(1 − 𝛿) |𝑍 | < 𝑑. (3.86)

Therefore 𝑒𝑡 � 0 and hence 𝑒 � 𝐶̂1 + 𝑅̂0. Finally, we have

|𝑒 |𝑅 =
��𝐶̂1 + 𝑅̂0

��
𝑅
≤

��𝐶̂1 + 𝑅̂0
�� ≤ 𝑡∑︁

𝑖=1
| 𝑓𝑖 | ≤

1
𝜅(1 − 𝛿) |𝑍 |. (3.87)
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Now we show that, without surprise, 𝑍𝑇 is 𝛿-decomposable. Let us define the
constants

𝐴𝜀 =
24

𝜅Δ(1 − 𝜀) , 𝐵𝜀 =
3Δ

𝜅(1 − 𝜀) , and 𝐶𝛿 =
1

212 𝑑
2
𝑟 𝛿

3𝜅Δ−2 . (3.88)

For the purposes of the parallel decoder, it will be convenient to consider a gener-
alized mismatch decomposition procedure which initially starts the decomposition
with some weight parameter 𝜀 and then switches to some other parameter 𝜀′ part-
way through (see Lemma 90). We state the generalized result below in Lemma 87,
although we will only need the special case where 𝜀 = 𝜀′ for the analysis of the
sequential decoder.

Lemma 87. Let 𝑒 be an error and 𝐷 a syndrome noise. Let 𝑍̃ ≡ 𝑍 + 𝑍𝑁 denote the
initial noisy mismatch vector assigned to 𝑒 and 𝐷.

Let 𝜀, 𝜀′ ∈ (0, 1) be constants such that 𝜀′ ≤ 𝜀. Consider a modified Algorithm 3.2
which takes input 𝑍̃ and runs with parameter 𝜀 for the first 𝑡 steps and then switches
to parameter 𝜀′ until it halts at step 𝑇 ≥ 𝑡. Let 𝑍̃𝑇 ≡ 𝑍𝑇 + 𝑍𝑁 denote the final output
of this process.

If 𝐴𝜀 |𝑒 |𝑅 + 𝐵𝜀 |𝐷 |𝑉 ≤ 𝐶𝛿𝑛, then 𝑍𝑇 is 𝛿-decomposable.

Proof. Consider the process of running the modified Algorithm 3.2 with input 𝑍̃ and
parameter 𝜀 for 𝑡 steps, and then switching the parameter to 𝜀′ until the algorithm
finally halts at step 𝑇 . Let {𝑥1, . . . , 𝑥𝑡} be local codewords obtained with parameter
𝜀, and {𝑥𝑡+1, . . . , 𝑥𝑇 } the codewords obtained with parameter 𝜀′. Denoting 𝑍̃𝑖 the
mismatch vector at iteration 𝑖, we have

|𝑍̃𝑖−1 | − |𝑍̃𝑖 | ≥

(1 − 𝜀) |𝑥𝑖 |, 𝑖 ∈ {1, . . . , 𝑡} ,

(1 − 𝜀′) |𝑥𝑖 |, 𝑖 ∈ {𝑡 + 1, . . . , 𝑇} .
(3.89)

We wish to show that 𝑍𝑇 is 𝛿-decomposable. Suppose that Algorithm 3.2 returns
local codewords {𝑦1, . . . , 𝑦𝐾} when given input 𝑍𝑇 with parameter 𝛿. Let 𝑆𝑇+𝑘,𝑖 𝑗
denote a set of active vertices in 𝑉𝑖 𝑗 for the mismatch

𝑍𝑇+𝑘 ≡ 𝑍𝑇 +
𝑘∑︁
ℓ=1

𝑦ℓ . (3.90)

For all 𝑘 ∈ [𝐾], we have

|𝑆𝑇+𝑘,𝑖 𝑗 | ≤ ∥𝑍𝑇+𝑘 ∥ ≤ ∥𝑍 ∥ +
𝑇∑︁
𝑖=1
∥𝑥𝑖∥ +

𝑘∑︁
ℓ=1
∥𝑦ℓ∥ , (3.91)
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where the first inequality holds since there exists at least one non-zero row or column
for each active vertex. By robustness of the local code, we have 𝜅Δ∥𝑥𝑖∥ ≤ |𝑥𝑖 |.
Continuing the chain of inequalities, we have

(3.91) ≤ ∥𝑍 ∥ + 1
𝜅Δ

𝑇∑︁
𝑖=1
|𝑥𝑖 | +

1
𝜅Δ

𝑘∑︁
ℓ=1
|𝑦ℓ | (3.92)

≤ ∥𝑍 ∥ + 1
𝜅Δ

𝑇∑︁
𝑖=1
|𝑥𝑖 | +

1
𝜅Δ(1 − 𝛿) |𝑍𝑇 | , (3.93)

where the first inequality follows by robustness and the second by the fact that
|𝑍𝑇+ℓ−1 | − |𝑍𝑇+ℓ−1 + 𝑦ℓ | ≥ (1 − 𝛿) |𝑦ℓ |. Using inequality (3.89), we get

|𝑍𝑇 | =
�����𝑍 + 𝑇∑︁

𝑖=1
𝑥𝑖

����� ≤ |𝑍 | + 𝑇∑︁
𝑖=1
|𝑥𝑖 | ≤ |𝑍 | +

1
1 − 𝜀

(
|𝑍̃ | − |𝑍̃𝑡 |

)
+ 1

1 − 𝜀′
(
|𝑍̃𝑡 | − |𝑍̃𝑇 |

)
.

(3.94)

Since 𝜀′ ≤ 𝜀, it follows that

|𝑍𝑇 | ≤ |𝑍 | +
1

1 − 𝜀 |𝑍̃ |. (3.95)

Inserting (3.95) into (3.93), we get

|𝑆𝑇+𝑘,𝑖 𝑗 | ≤ ∥𝑍 ∥ +
1

𝜅Δ(1 − 𝛿) |𝑍 | +
1

𝜅Δ(1 − 𝜀)

(
2 − 𝛿
1 − 𝛿

)
|𝑍̃ | (3.96)

≤ ∥𝑍 ∥ + 1
𝜅Δ(1 − 𝛿) |𝑍 | +

1
𝜅Δ(1 − 𝜀)

(
2 − 𝛿
1 − 𝛿

)
( |𝑍 | + |𝑍𝑁 |) (3.97)

≤ 4
𝜅Δ
|𝑒 |𝑅 +

4
𝜅Δ(1 − 𝛿) |𝑒 |𝑅 +

1
𝜅Δ(1 − 𝜀)

(
2 − 𝛿
1 − 𝛿

)
(4|𝑒 |𝑅 + Δ2 |𝐷 |𝑉 ) ,

(3.98)

where the last inequality follows by applying Lemma 77, together with the fact that
𝜀𝑣 (𝐷) can be non-zero only when 𝑣 is in the support of 𝐷 and hence

|𝑍𝑁 | =
�����∑︁
𝑣∈𝑉1

𝜀𝑣 (𝐷)
����� ≤ ∑︁

𝑣∈𝑉1

|𝜀𝑣 (𝐷) | ≤ |𝐷 |𝑉 max
𝑣∈𝑉1
|𝜀𝑣 (𝐷) | ≤ |𝐷 |𝑉Δ2. (3.99)

Simplifying, we finally get

|𝑆𝑇+𝑘,𝑖 𝑗 | ≤
4
𝜅Δ

(
2 − 𝛿
1 − 𝛿

) (
2 − 𝜀
1 − 𝜀

)
|𝑒 |𝑅 +

Δ

𝜅(1 − 𝜀)

(
2 − 𝛿
1 − 𝛿

)
|𝐷 |𝑉 (3.100)

≤ 12
𝜅Δ

(
2

1 − 𝜀

)
|𝑒 |𝑅 +

3Δ
𝜅(1 − 𝜀) |𝐷 |𝑉 (3.101)

≡ 𝐴𝜀 |𝑒 |𝑅 + 𝐵𝜀 |𝐷 |𝑉 , (3.102)
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where we use the fact that (2 − 𝛿)/(1 − 𝛿) ≤ 3 for 𝛿 ∈ (0, 1/2). It follows that if
we have 𝐴𝜀 |𝑒 |𝑅 + 𝐵𝜀 |𝐷 |𝑉 ≤ 𝐶𝛿𝑛, then the active vertex condition of Theorem 82
is always satisfied so that Algorithm 3.2 must be able to completely decompose
𝑍𝑇 .

It remains for us to check that (3.78) in Lemma 86 holds.

Lemma 88. Assume the hypotheses of Lemma 87, and furthermore that

𝐴𝜀 |𝑒 |𝑅 + 𝐵𝜀 |𝐷 |𝑉 ≤
𝑑

Δ
. (3.103)

Then

|𝑍𝑇 | ≥ (1 − 𝛿)𝜅 |𝑒𝑇 |𝑅 . (3.104)

Proof. By Lemmas 79 and 80, the error 𝑒𝑇 is 𝑉10-weighted and 𝑍𝑇 is an associated
mismatch vector. Applying Lemma 86, it suffices to prove

|𝑒𝑇 |𝑅 +
1

𝜅(1 − 𝛿) |𝑍𝑇 | < 𝑑 . (3.105)

We have

|𝑒𝑇 |𝑅 =

�����𝑒0 +
𝑇∑︁
𝑖=1

𝑓𝑖

�����
𝑅

≤ |𝑒0 |𝑅 +
𝑇∑︁
𝑖=1
| 𝑓𝑖 | ≤ |𝑒0 |𝑅 +

1
𝜅

𝑇∑︁
𝑖=1
|𝑥𝑖 | ≤ |𝑒0 |𝑅 +

1
𝜅(1 − 𝜀) |𝑍̃ |,

(3.106)

where the second inequality follows from (3.84). We then get

|𝑒𝑇 |𝑅 +
1

𝜅(1 − 𝛿) |𝑍𝑇 | ≤ |𝑒0 |𝑅 +
1

𝜅(1 − 𝜀) |𝑍̃ | +
1

𝜅(1 − 𝛿) |𝑍𝑇 | (3.107)

≤ |𝑒0 |𝑅 +
1

𝜅(1 − 𝜀) |𝑍̃ | +
1

𝜅(1 − 𝛿)

(
|𝑍 | + 1

1 − 𝜀 |𝑍̃ |
)

(3.108)

= |𝑒0 |𝑅 +
1

𝜅(1 − 𝛿) |𝑍 | +
1

𝜅(1 − 𝜀)

(
1 + 1

1 − 𝛿

)
|𝑍̃ | , (3.109)

where we use (3.95) in the second inequality. Next, we may assume without loss of
generality that 𝑒 is a reduced error. Then we have

|𝑒0 |𝑅 = |𝑒0 + 𝑍01
𝑁 |𝑅 =

��𝑒 + ∑︁
𝑣∈𝑉01

𝜀𝑣
��
𝑅
≤ |𝑒 | +

∑︁
𝑣∈𝑉01

|𝑒𝑣 | = 2|𝑒 | = 2|𝑒 |𝑅 , (3.110)
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where we use the fact that 𝜀𝑣 are minimum weight corrections in the inequality
above and the fact that 𝑒𝑢 ∩ 𝑒𝑣 = ∅ for distinct vertices 𝑢, 𝑣 ∈ 𝑉01 in the second last
equality. Following the same steps as from (3.96) to (3.98), we therefore get

|𝑒𝑇 |𝑅 +
1

𝜅(1 − 𝛿) |𝑍𝑇 | ≤ 2|𝑒 |𝑅 +
4

𝜅(1 − 𝛿) |𝑒 |𝑅

+ 1
𝜅(1 − 𝜀)

(
1 + 1

1 − 𝛿

)
(4|𝑒 |𝑅 + Δ2 |𝐷 |𝑉 ) (3.111)

≤
[
2 + 4

𝜅(1 − 𝜀)

(
1 + 2 − 𝜀

1 − 𝛿

)]
|𝑒 |𝑅 + Δ𝐵𝜀 |𝐷 |𝑉 . (3.112)

We can simplify the inequality above by noting that 𝜅 ≤ 𝑑𝑟 ≤ 1 [36]. Then we have

2 + 4
𝜅(1 − 𝜀)

(
1 + 2 − 𝜀

1 − 𝛿

)
=

1
𝜅

[
2𝜅 + 4

1 − 𝜀

(
1 + 2 − 𝜀

1 − 𝛿

)]
(3.113)

≤ 1
𝜅

[
4 + 4

1 − 𝜀

(
1 + 2 − 𝜀

1 − 𝛿

)]
(3.114)

=
4
𝜅

(
2 − 𝛿
1 − 𝛿

) (
2 − 𝜀
1 − 𝜀

)
(3.115)

≤ 24
𝜅(1 − 𝜀) = Δ𝐴𝜀 . (3.116)

Therefore it suffices to require

𝐴𝜀 |𝑒 |𝑅 + 𝐵𝜀 |𝐷 |𝑉 ≤
𝑑

Δ
(3.117)

in order that inequality (3.105) holds.

Combining the inequalities, we obtain the main result for sequential decoder.

Theorem 89 (Main Theorem for the Sequential Decoder). Let 𝑒 be an error and let
𝐷 be a syndrome error. Suppose that

𝐴𝜀 |𝑒 |𝑅 + 𝐵𝜀 |𝐷 |𝑉 ≤ min (𝐶𝛿𝑛, 𝑑/Δ) . (3.118)

Let 𝜎̃ = 𝜎(𝑒) + 𝐷. Then Algorithm 3.1 with input 𝜎̃ and parameter 𝜀 will output a
correction 𝑓 satisfying

|𝑒 + 𝑓 |𝑅 ≤
(
1 + 2𝑐2

𝜅𝑐1

)
Δ2 |𝐷 |𝑉 . (3.119)

Proof. Suppose that Algorithm 3.1 with parameter 𝜀 terminates after 𝑇 steps with
output 𝑓 . Let 𝑍𝑇 denote the state of the mismatch after the algorithm terminates.
By Lemma 87, 𝑍𝑇 is 𝛿-decomposable. This allows us to apply Lemma 85, giving

0 ≥ 𝑐1 |𝑍𝑇 | − 𝑐2 |𝑍𝑁 | , (3.120)
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since the set F ∗ must be empty when Algorithm 3.1 with parameter 𝜀 terminates.
By Lemma 88, we get

|𝑍𝑇 | ≥ (1 − 𝛿)𝜅 |𝑒𝑇 |𝑅 . (3.121)

But we know

|𝑒𝑇 |𝑅 = |𝑒𝑇 + 𝑍01
𝑁 |𝑅 ≥ |𝑒𝑇 |𝑅 − |𝑍

01
𝑁 |𝑅 ≥ |𝑒𝑇 |𝑅 − Δ

2 |𝐷 |𝑉 . (3.122)

Combining the inequalities (3.120), (3.121), and (3.122) finally gives

|𝑒 + 𝑓 |𝑅 = |𝑒𝑇 |𝑅 (3.123)

≤ |𝑒𝑇 |𝑅 + Δ2 |𝐷 |𝑉 (3.124)

≤ 1
(1 − 𝛿)𝜅 |𝑍𝑇 | + Δ

2 |𝐷 |𝑉 (3.125)

≤ 𝑐2

𝑐1(1 − 𝛿)𝜅
|𝑍𝑁 | + Δ2 |𝐷 |𝑉 (3.126)

≤
(
1 + 𝑐2

𝑐1(1 − 𝛿)𝜅

)
Δ2 |𝐷 |𝑉 . (3.127)

Note that the restriction 𝛿 < 1/2, as required by Lemma 85, implies that (1− 𝛿)−1 ≤
2.

This completes our proof of the main theorem for the sequential decoder.

3.4.4 Parallel decoder
The key idea in analyzing the parallel decoder is to compare the performance of one
iteration of parallel decoding to that of a full execution of the sequential decoder.
Our convention in this section will be that superscript indices will denote the parallel
decoding iteration (always with parameter 1/2), while subscript indices will denote
the sequential decoding iteration. For example, 𝑍̃ (𝑘)

𝑗
denotes the mismatch obtained

after 𝑘 iterations of parallel decoding and then 𝑗 iterations of sequential decoding.

For convenience, we will fix some parameters in this section. Throughout, we will
take 𝜀 = 1/2 for the parallel decoder. We will write 𝐴 = 𝐴𝜀=1/2 and 𝐵 = 𝐵𝜀=1/2.

Lemma 90. Let 𝜀′ ∈ (0, 1/6). Let 𝑍̃ (𝑘) denote the current state of the (noisy)
mismatch vector. Let 𝑍̃ (𝑘)

𝑇
denote the residual mismatch after running the sequential

decoder with input 𝑍̃ (𝑘) and parameter 𝜀′. Then after one iteration of parallel
decoding, the weight of the mismatch is reduced by at least

|𝑍̃ (𝑘) | − |𝑍̃ (𝑘+1) | ≥ 1
16
(1 − 6𝜀′)

(
|𝑍̃ (𝑘) | − |𝑍̃ (𝑘)

𝑇
|
)
. (3.128)
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Proof. The proof closely follows the ideas of Lemma 18 in Ref. [33]. For ease
of notation we write 𝑍̃ (𝑘) as 𝑍̃ throughout this proof. Suppose that Algorithm 3.2
runs with input 𝑍̃ and parameter 𝜀′ returns local codewords {𝑥𝑖}𝑇𝑖=1 and residual
mismatch 𝑍̃𝑇 . Therefore we can write

𝑍̃ =

𝑇∑︁
𝑖=1

𝑥𝑖 + 𝑍̃𝑇 . (3.129)

We will analyze the overlap among the sets 𝑥𝑖, and argue that the parallel decoder’s
output will intersect non-trivially with the sequential decoder’s output. Let us define
the sets

𝑥′𝑖 =
(
𝑍̃ ∩ 𝑥𝑖

)
\
⋃
𝑗<𝑖

𝑥 𝑗 . (3.130)

Note that the sets 𝑥′
𝑖
are disjoint, and that they satisfy

𝑇⋃
𝑖=1
𝑥′𝑖 = 𝑍̃ ∩

𝑇⋃
𝑖=1
𝑥𝑖 ⊇ 𝑍̃ ∩

𝑇∑︁
𝑖=1

𝑥𝑖 , (3.131)

which implies�����𝑍̃ \ 𝑇⋃
𝑖=1
𝑥′𝑖

����� ≤
�����𝑍̃ \

(
𝑍̃ ∩

𝑇∑︁
𝑖=1

𝑥𝑖

)����� =
�����𝑍̃ \ 𝑇∑︁

𝑖=1
𝑥𝑖

����� ≤
�����𝑍̃ + 𝑇∑︁

𝑖=1
𝑥𝑖

����� = |𝑍̃𝑇 | . (3.132)

Next, we define the set of “good” indices 𝐺 ⊆ [𝑇] such that 𝑖 ∈ 𝐺 if and only if

|𝑥′𝑖 | ≥
(
1 − 3

2
𝜀′

)
|𝑥𝑖 | . (3.133)

Let 𝐵 = [𝑇] \𝐺 denote the remaining set of “bad” indices. For each 𝑗 ∈ [𝑇], let us
define

𝑍̃′𝑗 = 𝑍̃ \
⋃
𝑖≤ 𝑗

𝑥′𝑖 = 𝑍̃
′
𝑗−1 \ 𝑥

′
𝑗 . (3.134)

We wish to bound the difference between 𝑍̃ 𝑗 and 𝑍̃′
𝑗
. Let us denote this difference

by

𝐴 𝑗 = 𝑍̃ 𝑗 \ 𝑍̃′𝑗 . (3.135)

To bound the size of 𝐴 𝑗 , we examine how the size of 𝑍̃ changes as we update it by
adding codewords 𝑥 𝑗 . Since the 𝑥 𝑗 ’s were obtained by running the decoder with
parameter 𝜀′, it follows that

|𝑍̃ 𝑗−1 ∩ 𝑥 𝑗 | ≥ (1 − 𝜀′/2) |𝑥 𝑗 | . (3.136)
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𝑍̃ 𝑗−1 𝑥 𝑗

II

I
III

IV

V

Figure 3.3: Reference for sets involved in proof of Lemma 90. The regions indicated
are: II∪ IV = 𝑍̃′

𝑗−1, I∪ III = 𝐴 𝑗−1, II = 𝑍̃′
𝑗
, IV = 𝑥′

𝑗
, III∪ IV = 𝑍̃ 𝑗−1∩𝑥 𝑗 , I∪V = 𝐴 𝑗 ,

and I ∪ II ∪ V = 𝑍̃ 𝑗 .

Referring to Figure 3.3, we have 𝐴 𝑗 \ 𝐴 𝑗−1 = 𝑥 𝑗 \ 𝑍̃ 𝑗−1, and hence

|𝐴 𝑗 \ 𝐴 𝑗−1 | = |𝑥 𝑗 \ 𝑍̃ 𝑗−1 | = |𝑥 𝑗 | − |𝑥 𝑗 ∩ 𝑍̃ 𝑗−1 | ≤ |𝑥 𝑗 | −
(
1 − 𝜀

′

2

)
|𝑥 𝑗 | =

𝜀′

2
|𝑥 𝑗 | .

(3.137)

We also have

(𝐴 𝑗−1 \ 𝐴 𝑗 ) ⊔ 𝑥′𝑗 = 𝑍̃ 𝑗−1 ∩ 𝑥 𝑗 , (3.138)

corresponding to the unions of regions III and IV in Figure 3.3. If 𝑗 ∈ 𝐵 is a “bad”
index, then we have

|𝐴 𝑗−1 \ 𝐴 𝑗 | +
(
1 − 3

2
𝜀′

)
|𝑥 𝑗 | > |𝐴 𝑗−1 \ 𝐴 𝑗 | + |𝑥′𝑗 | = |𝑍̃ 𝑗−1 ∩ 𝑥 𝑗 | ≥

(
1 − 𝜀

′

2

)
|𝑥 𝑗 | ,

(3.139)

where the first inequality follows from the fact that 𝑗 ∈ 𝐵 and the last from the
decoding condition with parameter 𝜀′. It follows that

|𝐴 𝑗−1 \ 𝐴 𝑗 | ≥ 𝜀′|𝑥 𝑗 |, (3.140)

and hence

|𝐴 𝑗−1 | − |𝐴 𝑗 | = |𝐴 𝑗−1 \ 𝐴 𝑗 | − |𝐴 𝑗 \ 𝐴 𝑗−1 | ≥ 𝜀′|𝑥 𝑗 | −
𝜀′

2
|𝑥 𝑗 | =

𝜀′

2
|𝑥 𝑗 | , (3.141)

where we use inequalities (3.137) and (3.140) above. It follows that we have
|𝐴 𝑗 | − |𝐴 𝑗−1 | ≤ 𝜀′|𝑥 𝑗 |/2, ∀ 𝑗 ∈ 𝐺 ,

|𝐴 𝑗 | − |𝐴 𝑗−1 | ≤ −𝜀′|𝑥 𝑗 |/2, ∀ 𝑗 ∈ 𝐵 .
(3.142)
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Summing the inequalities above, we get

0 ≤ |𝐴𝑇 | − |𝐴0 | =
𝑇∑︁
𝑗=1

(
|𝐴 𝑗 | − |𝐴 𝑗−1 |

)
≤ 𝜀

′

2
©­«
∑︁
𝑗∈𝐺
|𝑥 𝑗 | −

∑︁
𝑗∈𝐵
|𝑥 𝑗 |ª®¬ , (3.143)

where |𝐴0 | = 0 by definition. Therefore∑︁
𝑗∈𝐵
|𝑥 𝑗 | ≤

∑︁
𝑗∈𝐺
|𝑥 𝑗 | . (3.144)

We have∑︁
𝑗∈𝐵
|𝑥′𝑗 | ≤

(
1 − 3

2
𝜀′

) ∑︁
𝑗∈𝐵
|𝑥 𝑗 | ≤

(
1 − 3

2
𝜀′

) ∑︁
𝑗∈𝐺
|𝑥 𝑗 | ≤

∑︁
𝑗∈𝐺
|𝑥′𝑗 | , (3.145)

and hence

|𝑍̃ | − |𝑍̃𝑇 | ≤

������ 𝑇⋃𝑗=1
𝑥′𝑗

������ = 𝑇∑︁
𝑗=1
|𝑥′𝑗 | =

∑︁
𝑗∈𝐵
|𝑥′𝑗 | +

∑︁
𝑗∈𝐺
|𝑥′𝑗 | ≤ 2

∑︁
𝑗∈𝐺
|𝑥′𝑗 | . (3.146)

Now, consider the iteration of parallel decoding beginning with input 𝑍̃ ≡ 𝑍̃ (𝑘) . Let
𝑢 ∈ F𝑄2 denote the set of all qubits which have been acted on by the parallel decoder,
i.e.,

𝑢 =
⋃
𝑧𝑣∈F

𝑧𝑣 , (3.147)

where F = {𝑧𝑣} is the collection of all local codewords found by the decoder in the
current iteration. We now prove that for all 𝑗 ∈ 𝐺, we have |𝑥 𝑗 ∩𝑢 | ≥ 𝑐 |𝑥 𝑗 | for some
constant 𝑐 > 0.

Fix some 𝑥 𝑗 and let 𝑣 denote its anchoring vertex. Let us write 𝑦 = |𝑥′
𝑗
∩ 𝑢 |. First,

let us show that we must have

|𝑥′𝑗 \ 𝑢 | <
3
4
|𝑥 𝑗 | . (3.148)

Suppose otherwise. Then let 𝑧𝑣 denote the codeword (possibly zero) that the parallel
decoder assigns to vertex 𝑣. Note that we have 𝑧𝑣 ⊆ 𝑢 by definition, as well as

|𝑍 | − |𝑍 + 𝑧𝑣 | ≥
1
2
|𝑧𝑣 | , (3.149)

where 𝑍 denotes the current state of the noisy mismatch in the parallel decoder.
By definition of 𝑢 as the execution support of the decoder, the qubits of 𝑥′

𝑗
\ 𝑢 are
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untouched by the algorithm. Therefore, since 𝑥′
𝑗
⊆ 𝑍̃ , it follows that 𝑥′

𝑗
\ 𝑢 ⊆ 𝑍 and

𝑥′
𝑗
\ 𝑢 ⊆ 𝑍 + 𝑧𝑣. Therefore we have

𝑥′𝑗 \ 𝑢 = 𝑥′𝑗 \ 𝑢 ∩ (𝑍 + 𝑧𝑣) ⊆ 𝑥 𝑗 ∩ (𝑍 + 𝑧𝑣) . (3.150)

The addition of 𝑥 𝑗 to 𝑍 + 𝑧𝑣 therefore removes at least |𝑥′
𝑗
\ 𝑢 | ≥ 3

4 |𝑥 𝑗 | qubits from
𝑍 . Consequently, the addition of 𝑥 𝑗 to 𝑍 + 𝑧𝑣 can add at most |𝑥 𝑗 |/4 qubits, so that

|𝑍 + 𝑧𝑣 | − |𝑍 + 𝑧𝑣 + 𝑥 𝑗 | ≥
1
2
|𝑥 𝑗 | . (3.151)

Adding this inequality to (3.149), we get

|𝑍 | − |𝑍 + 𝑧𝑣 + 𝑥 𝑗 | ≥
1
2
( |𝑥 𝑗 | + |𝑧𝑣 |) ≥

1
2
|𝑧𝑣 + 𝑥 𝑗 | . (3.152)

Similar to the argument above, the addition of 𝑥 𝑗 to 𝑧𝑣 adds at least |𝑥 𝑗 \ 𝑧𝑣 | ≥
|𝑥′
𝑗
\ 𝑢 | ≥ 3|𝑥 𝑗 |/4 qubits, and hence removes at most |𝑥 𝑗 |/4 qubits. Therefore

|𝑧𝑣 + 𝑥 𝑗 | − |𝑧𝑣 | ≥
1
2
|𝑥 𝑗 | . (3.153)

Since |𝑧𝑣 + 𝑥 𝑗 | > |𝑧𝑣 |, this contradicts the assumption that 𝑧𝑣 is the local codeword
selected by the decoder, since the decoder will choose to maximize the Hamming
weight of its local codewords. It follows that we have established the inequality

|𝑥′𝑗 \ 𝑢 | <
3
4
|𝑥 𝑗 | . (3.154)

This then implies that for all 𝑗 ∈ 𝐺, we have

|𝑥′𝑗 ∩ 𝑢 | > |𝑥′𝑗 | −
3
4
|𝑥 𝑗 | ≥

(
1 − 3

2
𝜀′

)
|𝑥 𝑗 | −

3
4
|𝑥 𝑗 | =

(
1
4
− 3

2
𝜀′

)
|𝑥 𝑗 | . (3.155)

Since the 𝑥′
𝑗

are disjoint, we get

|𝑢 | ≥
∑︁
𝑗∈𝐺
|𝑥′𝑗 ∩ 𝑢 | (3.156)

>

(
1
4
− 3

2
𝜀′

) ∑︁
𝑗∈𝐺
|𝑥 𝑗 | (3.157)

≥
(
1
4
− 3

2
𝜀′

) ∑︁
𝑗∈𝐺
|𝑥′𝑗 | (3.158)

≥ 1
8
(1 − 6𝜀′)

(
|𝑍̃ | − |𝑍̃𝑇 |

)
, (3.159)
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where the last inequality follows from (3.146). Finally, by the decoding crite-
rion (3.149), the total decrease in mismatch weight is

|𝑍̃ (𝑘) | − |𝑍̃ (𝑘+1) | ≥ 1
2

∑︁
𝑧𝑣∈F
|𝑧𝑣 | ≥

1
2
|𝑢 | ≥ 1

16
(1 − 6𝜀′)

(
|𝑍̃ (𝑘) | − |𝑍̃ (𝑘)

𝑇
|
)
, (3.160)

where we restore the superscript (𝑘) in this last inequality for clarity.

Now, as in the sequential case, we bound the weight of the residual mismatch by the
weight of measurement noise.

Lemma 91. Let 𝑒 be an error and 𝐷 be a syndrome noise. Let 𝑍̃ be the initial
mismatch vector assigned to 𝑒 and 𝐷. Let 𝑍̃ (𝑘) denote the state of the mismatch
vector after 𝑘 iterations of parallel decoding. Let 𝑍̃ (𝑘)

𝑇
denote the residual mismatch

vector obtained by running the sequential decoder with input 𝑍̃ (𝑘) and parameter
𝜀′.

Suppose that 𝐴|𝑒 |𝑅 + 𝐵 |𝐷 |𝑉 ≤ 𝐶𝛿𝑛. Then for all 𝑘 ∈ N+ we have

|𝑍̃ (𝑘)
𝑇
| ≤

(
1 + 2(1 − 𝛿)

𝜀′ − 2𝛿

)
Δ2 |𝐷 |𝑉 ≡ (1 + 𝜁)Δ2 |𝐷 |𝑉 . (3.161)

Proof. Suppose that F = {𝑥𝑖}𝐾𝑖=1 are the codewords which have been found by the
parallel decoder after 𝑘 iterations. Note that we can equivalently consider the same
sequence to be obtained by running the sequential decoder with parameter 1/2, i.e.,
we can consider 𝑍̃ (𝑘) to be a state of the mismatch after 𝐾 iterations of sequential
decoding with parameter 1/2. It follows that 𝑍̃ (𝑘)

𝑇
is a mismatch obtained by first

running the sequential decoder with input 𝑍̃ and parameter 1/2 for 𝐾 iterations, and
then switching to parameter 𝜀′ for the remaining iterations.

Applying Lemma 87 with 𝜀 = 1/2, our assumptions on |𝑒 |𝑅 and |𝐷 |𝑉 imply that
𝑍
(𝑘)
𝑇

is 𝛿-decomposable. Next, applying Lemma 85 (with 𝜀′ as 𝜀), it follows that

|𝑍 (𝑘)
𝑇
| ≤ 2(1 − 𝛿)

𝜀′ − 2𝛿
|𝑍𝑁 | . (3.162)

We then have

|𝑍̃ (𝑘)
𝑇
| = |𝑍 (𝑘)

𝑇
+ 𝑍𝑁 | (3.163)

≤ |𝑍 (𝑘)
𝑇
| + |𝑍𝑁 | (3.164)

≤
(
1 + 2(1 − 𝛿)

𝜀′ − 2𝛿

)
|𝑍𝑁 | (3.165)

≤
(
1 + 2(1 − 𝛿)

𝜀′ − 2𝛿

)
Δ2 |𝐷 |𝑉 . (3.166)
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For simplicity, we take 𝜀′ = 3𝛿 in the following theorem. Note that this sets an
upper bound on 𝛿 so that 𝛿 < 1/18.

Theorem 92 (Main Theorem for the Parallel Decoder). Let 𝑒 be an error and 𝐷 be
a syndrome error. Let 𝑍̃ be the initial (noisy) mismatch associated with 𝑒 and 𝐷.
Assume that

𝐴|𝑒 |𝑅 + 𝐵 |𝐷 |𝑉 ≤ min (𝐶𝛿𝑛, 𝑑/Δ) . (3.167)

Then after 𝑘 iterations of parallel decoding, the decoder returns a correction 𝑓 (𝑘)

such that

|𝑒 + 𝑓 (𝑘) |𝑅 ≤ 𝛼𝑘 |𝑒 |𝑅 + 𝛽 |𝐷 |𝑉 , (3.168)

where

𝛼𝑘 =
24
5𝜅
(1 − 𝛾)𝑘 , 𝛽 =

6
𝜅𝛿

Δ2, and 𝛾 = (1 − 18𝛿)/16 . (3.169)

Proof. Applying Lemmas 90 and 91, it follows that the mismatch after 𝑘 iterations
of parallel decoding is bounded above as

|𝑍̃ (𝑘) | ≤ (1 − 𝛾) |𝑍̃ (𝑘−1) | + 𝛾(1 + 𝜁)Δ2 |𝐷 |𝑉 . (3.170)

Summing this inequality over 𝑘 gives

|𝑍̃ (𝑘) | ≤ (1 − 𝛾)𝑘 |𝑍̃ | + 𝛾(1 + 𝜁)Δ2 |𝐷 |𝑉
(
1 + (1 − 𝛾) + (1 − 𝛾)2 + . . . + (1 − 𝛾)𝑘−1

)
(3.171)

≤ (1 − 𝛾)𝑘 |𝑍̃ | + (1 + 𝜁)Δ2 |𝐷 |𝑉 . (3.172)

Next, let 𝑒(𝑘) denote the state of the error after 𝑘 iterations of parallel decoding. Let
𝑒
(𝑘)
𝑇

denote the state of the error after 𝑇 additional iterations of sequential decoding
with parameter 𝜀′. Let us write

𝑒
(𝑘)
𝑇

= 𝑒(𝑘) +
𝑇∑︁
𝑖=1

𝑓𝑖, (3.173)

where { 𝑓𝑖}𝑇𝑖=1 are the associated flip-sets with parameter 𝜀′. It follows from
Lemma 80 that 𝑒(𝑘)

𝑇
is 𝑉10-weighted with associated mismatch 𝑍 (𝑘)

𝑇
. Lemma 88

then implies that

|𝑒(𝑘)
𝑇
|𝑅 ≤

1
(1 − 𝛿)𝜅 |𝑍

(𝑘)
𝑇
| ≤ 𝜁

(1 − 𝛿)𝜅 |𝑍𝑁 | ≤
𝜁

(1 − 𝛿)𝜅Δ
2 |𝐷 |𝑉 . (3.174)
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It remains to bound the weight of |𝑒(𝑘) |𝑅. We have

|𝑒(𝑘) |𝑅 ≤ |𝑒(𝑘) |𝑅 + Δ2 |𝐷 |𝑉 (3.175)

≤
�����𝑒(𝑘)𝑇 + 𝑇∑︁

𝑖=1
𝑓𝑖

�����
𝑅

+ Δ2 |𝐷 |𝑉 (3.176)

≤ |𝑒(𝑘)
𝑇
|𝑅 +

𝑇∑︁
𝑖=1
| 𝑓𝑖 | + Δ2 |𝐷 |𝑉 (3.177)

≤ 𝜁

(1 − 𝛿)𝜅Δ
2 |𝐷 |𝑉 +

1
𝜅

𝑇∑︁
𝑖=1
|𝑥𝑖 | + Δ2 |𝐷 |𝑉 (3.178)

≤
(
1 + 𝜁

(1 − 𝛿)𝜅

)
Δ2 |𝐷 |𝑉 +

1
(1 − 𝜀′)𝜅

(
|𝑍̃ (𝑘) | − |𝑍̃ (𝑘)

𝑇
|
)

(3.179)

≤
(
1 + 𝜁

(1 − 𝛿)𝜅

)
Δ2 |𝐷 |𝑉 +

1
(1 − 𝜀′)𝜅 |𝑍̃

(𝑘) | (3.180)

≤
(
1 + 𝜁

(1 − 𝛿)𝜅

)
Δ2 |𝐷 |𝑉 +

1 + 𝜁
(1 − 𝜀′)𝜅Δ

2 |𝐷 |𝑉 +
(1 − 𝛾)𝑘
(1 − 𝜀′)𝜅 |𝑍̃ | . (3.181)

In the above, the first inequality (3.175) follows from (3.122). Inequality (3.178) fol-
lows from (3.174) and the 𝜅-product-expansion of the local code. Inequality (3.179)
follows from the fact that each local codeword 𝑥𝑖 satisfies the decoding condition
with parameter 𝜀′. Finally, inequality (3.181) follows from (3.172).

Using the fact that |𝑍̃ | ≤ 4|𝑒 |𝑅 + Δ2 |𝐷 |𝑉 , we can rewrite the inequality above in
terms of |𝑒 |𝑅 and |𝐷 |𝑉 following the same steps used in (3.96) to (3.98). This gives
us

|𝑒(𝑘) |𝑅 ≤
(
1 + 𝜁

(1 − 𝛿)𝜅 +
1 + 𝜁
(1 − 𝜀′)𝜅 +

(1 − 𝛾)𝑘
(1 − 𝜀′)𝜅

)
Δ2 |𝐷 |𝑉 +

4(1 − 𝛾)𝑘
(1 − 𝜀′)𝜅 |𝑒 |𝑅 .

(3.182)

Finally, setting 𝜀′ = 3𝛿, and using the fact that 𝜅 ≤ 1 [36], we can relax the inequality
above slightly to get 4/((1 − 𝜀′)𝜅) ≤ 24/(5𝜅), as well as

1 + 𝜁

(1 − 𝛿)𝜅 +
1 + 𝜁
(1 − 𝜀′)𝜅 +

(1 − 𝛾)𝑘
(1 − 𝜀′)𝜅 ≤

1
𝜅

(
1 + 2

𝛿
+ 2 − 𝛿

1 − 3𝛿
· 1
𝛿
+ 1

1 − 3𝛿

)
(3.183)

≤ 1
𝜅

(
1 + 2

𝛿
+ 2

1 − 3𝛿
· 1
𝛿

)
(3.184)

≤ 6
𝜅𝛿
, (3.185)

which holds for 𝛿 ∈ (0, 1/18).
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3.5 Discussion
In our article, we have shown that quantum Tanner codes admit single-shot QEC.
Given information from a single round of noisy measurements, the mismatch de-
composition decoder [33] is able to output a correction that is close to the data error
that occurred. For a variety of noise models, including adversarial or stochastic
noise, the single-shot decoder is able to maintain the encoded quantum information
for up to an exponential number of correction rounds. The parallelized version
of the decoder can be run in constant time while keeping the residual error small.
During readout, a logarithmic number of iterations suffices to recover the logical
information.

One may also ask about the possibility of single-shot QEC with other decoders for
good QLDPC codes. Due to the close connection between the decoders analyzed
here and the potential-based decoder for quantum Tanner codes in Ref. [22] (for
example, the ability to map between candidate flip sets for both types of decoders),
a corollary of the proofs presented here is that the potential-based decoder also has
the single-shot property. Likewise, under the mapping of errors shown in Ref. [21],
the decoders considered here are applicable to the original good QLDPC codes by
Panteleev and Kalachev [17]. Our analysis does not straightforwardly carry over to
the code and decoder proposed in Ref. [19], and it remains to be seen whether that
construction also admits single-shot decoding.

We further remark that all known constructions of asymptotically good QLDPC
codes admit a property called small-set (co)boundary expansion [43], which in
the case of quantum Tanner codes, was used to prove the No Low-Energy Trivial
States (NLTS) conjecture (see Property 1 of reference [44]). Small-set (co)boundary
expansion is also equivalent to the notion of soundness [45], which lower bounds the
syndrome weight by some function of reduced error weight. Indeed, soundness is
a strong indication of single-shot decodability. Similarly, quantum locally testable
codes [46–50] admit analogous soundness properties, although decoders for such
codes are unexplored. Note that in our proof, what we needed was a notion of
soundness for the mismatch vector (see Lemma 86), which is distinct from the usual
notion of soundness for the syndrome. The weight of the mismatch is in general
incomparable to the weight of the syndrome, so the precise relation between these
two definitions of soundness is not well understood.

In conclusion, our results can be viewed as a step toward making general QLDPC
codes more practical. While many challenges still remain, there have been promising
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developments in this direction [41, 51–53]. We believe that quantum LDPC codes,
similar to classical LDPC codes, will constitute the gold standard for future quan-
tum telecommunication technologies and form the backbone of resource-efficient
quantum fault-tolerant protocols.
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C h a p t e r 4

FAULT-TOLERANT QUANTUM ARCHITECTURES BASED ON
ERASURE QUBITS

The overhead of quantum error correction (QEC) poses a major bottleneck for re-
alizing fault-tolerant computation. To reduce this overhead, we exploit the idea of
erasure qubits, relying on an efficient conversion of the dominant noise into era-
sures at known locations. We start by introducing a formalism for QEC schemes
with erasure qubits and express the corresponding decoding problem as a matching
problem. Then, we propose and optimize QEC schemes based on erasure qubits
and the recently-introduced Floquet codes. Our schemes are well-suited for super-
conducting circuits, being compatible with planar layouts. We numerically estimate
the memory thresholds for the circuit noise model that includes spreading (via en-
tangling operations) and imperfect detection of erasures. Our results demonstrate
that, despite being slightly more complex, QEC schemes based on erasure qubits
can significantly outperform standard approaches.

4.1 Introduction
Quantum error correction (QEC) and fault-tolerant protocols [1–3] can benefit
significantly from an ingenious design of qubits with tailored, often hardware-
dependent, noise structure. For instance, a bosonic cat qubit [4–8] exhibits biased
Pauli noise. Such noise can be readily exploited, e.g., by an appropriate variant of
the surface code [9–15], resulting in greatly increased QEC thresholds and reduced
qubit overheads of the associated QEC protocols.

Recently, another type of qubit, often referred to as an erasure qubit, has received
significant attention. Several theoretical proposals have described how the era-
sure qubit can be straightforwardly realized with, e.g., neutral atoms [16], trapped
ions [17] or superconducting circuits [18–20], as well as several promising proof-of-
principle experimental demonstrations [21–25]. The idea behind the erasure qubit is
to engineer a qubit in such a way that its dominant noise is detectable erasures [26].
Importantly, the knowledge of locations of erasures can be efficiently leveraged by
QEC protocols (that may be based on the surface code) and decoding algorithms,
leading to high QEC thresholds and an improved subthreshold scaling of the logical
error rate [27–29].
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For QEC protocols to benefit from erasure qubits, the following requirements have
to be satisfied: (i) a large erasure bias, defined as the ratio of the probability of
an erasure to the probability of any other residual error within the computational
subspace, (ii) an implementation of standard quantum circuit operations, including
state preparation, unitary gates and readout, in a way that preserves an erasure bias,
and (iii) the ability to perform an erasure check capable of reliably detecting erasures
without introducing additional errors within the computational subspace. Thus, it
appears that approaches based on erasure qubits, compared to the standard ones,
are more challenging to implement. However, while there is an additional cost
associated with, e.g., a careful design of the erasure check, once these additional
building blocks are available, then new possibilities for optimized QEC protocols
and fault-tolerant architectures open up.

In this article, we address the question of designing fault-tolerant architectures that
are optimized for and make full use of erasure qubits. We start by introducing a
formalism for QEC protocols with erasure qubits and express the corresponding
decoding problem as the hypergraph matching problem. This, in turn, allows us
to design decoding algorithms, which, in many relevant scenarios, may be based
on the matching algorithm [15, 30]. We then focus on fault-tolerant architectures
and find that erasure qubits are particularly suitable for a recently-introduced family
of QEC codes, Floquet codes [31, 32]. In particular, in one realization of erasure
qubits via the dual-rail encoding [33], the minimal set of quantum circuit operations
necessary to implement Floquet codes consists of state preparation, readout, single-
qubit gates and erasure checks (which also play the role of entangling operations).
We discuss possible physical implementations of erasure checks in the context of
superconducting circuits. To benchmark our scheme, we numerically estimate the
memory thresholds of Floquet codes against circuit noise comprising erasures, Pauli
errors and measurement errors (for readout and erasure checks). Lastly, we analyze
further optimizations of Floquet codes that lead to the reduced qubit overhead, as
well as find the smallest Floquet codes with distance two and four, which require,
respectively, 4 and 16 qubits.

4.2 QEC protocols with erasure qubits
Analyzing QEC protocols with erasure qubits poses some challenges. First, mod-
elling each erasure qubit may require at least a three-level system. Second, quantum
circuit operations might, in principle, introduce correlated coherent errors in the
presence of erasures. Consequently, there seems to be little hope for efficient sim-
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ulation methods akin to the ones used for stabilizer circuits [34, 35]. In addition,
decoding algorithms do not typically consider erasures and their spread.

In this section, we describe how making certain simplifying assumptions allows us to
efficiently decode and simulate QEC protocols with erasure qubits; see Appendix 4.A
for a detailed description of our formalism. In particular, we phrase the decoding
problem as the hypergraph matching problem.

We emphasize that our formalism and numerical simulations go beyond the paradigm
of erasure qubits. Namely, they can be used for QEC schemes with leakage, allowing
us to quantify the potential gains from the ability to detect leakage [36–38].

4.2.1 Setting the formalism
To describe QEC protocols, we use quantum circuits that consist of the following
standard single-qubit (1Q) and two-qubit (2Q) operations: (i) 1Q state preparation
(of eigenstates of Pauli operators), (ii) 1Q readout (in any Pauli basis), (iii) 1Q
Clifford gates, and (iv) 2Q controlled-Pauli 𝐶𝑃 gates, where 𝑃 ∈ {𝑋,𝑌, 𝑍}, as well
as the additional operations: (v) 1Q erasure checks, (vi) 1Q reset (of the erasure
qubit), (vii) 2Q projective measurements of Pauli 𝑃𝑃 operators. We refer to such
circuits as erasure circuits. In contrast, stabilizer circuits consist only of operations
(i)-(iv) and (vii). An example of an erasure circuit is presented in Fig. 4.1.

(a) . . . 𝑃 EC∗ . . .

|+⟩ • EC∗ • 𝑋

. . . EC∗ 𝑃 . . .

(b) . . . E 𝑃 E EC∗ E . . .

|+⟩ E • E EC∗ E • E 𝑋

. . . E EC∗ E 𝑃 E . . .

Figure 4.1: An example of an erasure circuit. (a) An erasure circuit consists of
standard operations, such as state preparation, readout and controlled-Pauli gates, as
well as erasure checks with reset (denoted by EC∗). (b) The same quantum circuit
with all possible erasure locations (denoted by E) explicitly inserted. This circuit is
used in the ancilla scheme for Floquet codes.

To simulate QEC protocols, we first need to explicitly include all the erasure lo-
cations (where erasures may happen) into erasure circuits and then replace each
ideal operation (i)-(vii) by its noisy counterpart. We realize the latter by following
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a standard procedure of adding appropriate Pauli noise P after each operation and
adding bit-flip noiseN to each outcome (for readout, erasure checks and projective
measurements), as depicted in Table 4.1. To realize the former, we choose to insert
one erasure location on each wire between each two consecutive operations (i)-(vii);
see Fig. 4.1(b) for an illustration. The noise strengths could be arbitrary at every
location, however, for the purposes of our analysis, we describe the noise by three
parameters: 𝑒, the erasure rate; 𝑝, the Pauli error rate; and 𝑞, the classical bit-flip
noise rate.

operation ideal simulated

state
preparation

|𝜓⟩ |𝜓⟩ P
(

3
2 𝑝

)
readout 𝑃 EC 𝑃

N(𝑞)

N (𝑞)
erasure
check with
reset

EC∗ EC R P(𝑝)

N (𝑞)
entangling
gate 𝐺 𝐺 P(𝑝)

projective
measure-
ment

Π𝑃𝑃 Π𝑃𝑃 P(𝑝)

N (𝑞)

Table 4.1: Mapping of an ideal circuit to a simulated circuit. Note that erasures
occur at the locations in between ideal operations; see Fig. 4.1(b). For concreteness,
we chooseP(𝑝) to be the 1Q or 2Q depolarizing channel (determined by its support)
with error rate 𝑝, and N(𝑞) to be the binary symmetric channel (that flips the
measurement outcome) with error rate 𝑞. In general, P and N can represent
arbitrary Pauli and binary channels.

In contrast to standard QEC protocols, with erasure qubits not only do we have
Pauli noise that affects quantum circuits but also erasures. Erasures are probabilistic
processes happening at erasure locations and taking the state from the computational
subspace to some orthogonal subspace, which we refer to as the erasure subspace.
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Furthermore, erasures can spread (probabilistically) via 2Q operations. We envision
the following two scenarios.

• Erasure-erasure spread: an erasure spreads to another erasure.

• Erasure-Pauli spread: an erasure spreads to a Pauli error.

One concrete realization of the erasure-Pauli spread, which we refer to as the erasure-
depolarization spread, is when an erasure spreads to either Pauli 𝑋 , or 𝑌 , or 𝑍 , each
with probability 1/4. In other words, any qubit affected by an erasure causes full
depolarization of any other qubit that is involved in the same 2Q operation. In the
rest of the article we focus on the erasure-depolarization spread.

The key part of QEC protocols with erasure qubits is the ability to detect erasures.
Erasure detection can be achieved by either readout or erasure checks. Each erasure
check performs a nondestructive measurement that distinguishes the states in the
computational and erasure subspaces. For simplicity, in our numerical simulations
in Sec. 4.4 and Sec. 4.5.1 we assume that each erasure check is immediately followed
by reset of the erasure qubit that reinitializes it in the computational subspace (and
do not include an erasure location in between the erasure check and reset). We
envision the following two scenarios.

• Conditional (active) reset that depends on the outcome of the erasure check
(and possibly other previous erasure checks).

• Unconditional (passive) reset that is independent of any erasure check out-
come.

For concreteness, in either case we assume that the erasure qubit is reinitialized in
the maximally mixed state in the computational subspace. We further assume that
reset acts trivially on the computational subspace. In the rest of the article we focus
on unconditional reset.

We emphasize that in our formalism we assume that the operations (i)-(vii) do not
create coherences between the computational and erasure subspaces. This, in turn,
allows us to efficiently sample from erasure circuits; see Sec. 4.2.3 for details. Also,
our assumption about the erasure-depolarization spread allows us to push erasures
through entangling operations and model entangling operations as always acting on
the computational subspace. We leverage this observation to express the decoding
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problem for erasure circuits as the hypergraph matching problem; see Sec. 4.2.2 for
details.

Our approach generalizes straightforwardly to leakage simulations as long as there
are no coherences between the computational and leakage subspaces (regardless of
the number of leaked levels), the only difference being the lack of erasure check
operations; see Fig. 4.6(b)(e) and Fig. 4.15. When there are coherences, the simu-
lation may become less efficient because we might not be able to use the stabilizer
formalism to describe the relevant states.

4.2.2 Decoding problem for erasure circuits
Let us first describe the decoding problem for stabilizer circuits. In addition to the
stabilizer circuit, we also need to specify a distribution of Pauli errors that are placed
at spacetime locations between operations of the circuit and a set of detectors {𝑉𝑖}.
By definition, a detector is a product of measurement outcomes in the circuit that
is deterministic in the absence of errors and gives information about possible errors
when triggered. The stabilizer circuit may describe the implementation of, e.g., a
stabilizer code, where detectors are products of consecutive stabilizer measurements,
or a Floquet code, where detectors are more complicated. Given detectors which are
triggered after running the circuit, the decoding problem is to find a Pauli recovery
which undoes the errors that occurred.

The decoding problem for stabilizer circuits can be phrased as a hypergraph matching
problem. This formulation is particularly useful when the distribution of Pauli
errors is either equal to or approximated by a product distribution of binary random
variables, often referred to as error mechanisms. By definition, an error mechanism
is a pair (𝑃𝑖, 𝑝𝑖) such that the Pauli error 𝑃𝑖 is inserted at specified spacetime
locations in the circuit with probability 𝑝𝑖. When 𝑃𝑖 occurs, it causes a subset
of detectors T𝑖 ⊆ {𝑉𝑖} to be triggered. If we then define a weighted hypergraph
𝐻 = ({𝑉𝑖}, {T𝑖}), where each hyperedge T𝑖 has weight 𝑤(T𝑖) = log((1 − 𝑝𝑖)/𝑝𝑖),
then the problem of finding the most likely error triggering a subset of detectors is
equivalent to the minimum-weight hypergraph matching problem on 𝐻, i.e., for a
given subset of vertices 𝜈 ⊆ {𝑉𝑖}, find a subset of hyperedges 𝜏 ⊆ {T𝑖} with lowest
total weight

∑
T∈𝜏 𝑤(T ), such that

⊕
T∈𝜏 T = 𝜈, where ⊕ denotes the symmetric

difference of sets. The recovery operator is the product of all Pauli errors (propagated
to the end of the circuit) that correspond to the hyperedges in 𝜏.
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The decoding problem for erasure circuits is still to find a Pauli recovery. This
time, in addition to the triggered detectors, we also have erasure check outcomes. In
what follows, we describe a mapping of erasure circuits to stabilizer circuits, where
erasures are converted into independent Pauli error mechanisms. This mapping, in
turn, allows us to phrase the decoding problem for erasure circuits as a hypergraph
matching problem.

(a) . . .

𝐺1

. . .

𝑞 R E E . . .

𝐺𝑟
E R

. . . . . .

(b) . . .
𝐺1

F1 . . .

𝑞 . . .

𝐺𝑟
F𝑟+1

. . . F𝑟 . . .

Figure 4.2: Converting an erasure circuit to a stabilizer circuit. (a) A segment 𝑠
of the qubit 𝑞 in the erasure circuit 𝐶𝐸 with entangling operations 𝐺𝑖 and erasure
locations E. (b) A stabilizer circuit 𝐶 with spacetime locations F𝑖. By placing
spacetime correlated Pauli errors at F𝑖 with appropriate probabilities, 𝐶 becomes
equivalent to 𝐶𝐸 ; see Algorithm 4.1 for details.

We decompose the erasure circuit 𝐶𝐸 into segments. By definition, a segment 𝑠 is
the worldline of a single qubit 𝑞 between two consecutive reset operations 1; see
Fig. 4.2(a) for an illustration. We also define the entangling operations of 𝑠 as those
with nontrivial support on 𝑠 and the spacetime locations associated with 𝑠 as those
immediately following the entangling operations of 𝑠. To map 𝐶𝐸 to a stabilizer
circuit with independent Pauli error mechanisms, we modify each segment 𝑠 of
𝐶𝐸 by removing the erasure checks and reset operations in 𝑠 and add appropriate
error mechanisms at the locations associated with 𝑠. This mapping is guaranteed by
Lemma 93.

Lemma 93. Let 𝑠 be a segment of an erasure circuit 𝐶𝐸 . Given the outcomes
®𝑑 of erasure checks in 𝑠, the distribution of errors introduced by erasures in 𝑠

is equivalent to a distribution of spacetime correlated Pauli errors P that can be
described by independent error mechanisms {(𝑃𝑖, 𝑗 , 𝑝𝑖)}.

Proof. The proof proceeds in three steps. First, we find the distribution of Pauli er-
rors caused by erasures in the segment. This distribution can be described by disjoint

1For brevity, we also refer to state preparation and readout as reset operations.
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events which are correlated depolarizing channels applied at different spacetime lo-
cations in 𝐶𝐸 , caused by the erasure-depolarization spread. Second, we show that
this distribution can also be described by a product of independent events which
are spacetime correlated depolarizing channels. Third, we decompose each of these
spacetime correlated depolarizing channels into independent error mechanisms.

We start by introducing some notation. Let 𝐺𝑖 be the 𝑖-th entangling operation in
𝑠 and F𝑖 be the spacetime location associated with 𝑠 placed after 𝐺𝑖 defined via
suppF𝑖 = supp𝐺𝑖 \ {𝑞}, where 𝑖 ∈ {1, . . . , 𝑟} and 𝑞 labels the qubit identified with
𝑠; see Fig. 4.2. For convenience, we use 𝐺0 and 𝐺𝑟+1 to denote the first and second
reset operations in 𝑠, and define F𝑟+1 to be the location at 𝑞 after the second reset.
In the case when 𝐺𝑖 is a 2Q projective measurement, we imagine the classical bit
containing the outcome to be a qubit and F𝑖 to include that qubit. We also define

F𝑖 =
𝑟+1⋃
𝑗=𝑖

F𝑗 . (4.1)

We want to find the distribution of Pauli errors P caused by erasures in 𝑠. Let 𝐴𝑖
be the event that it was first erased at any location in between 𝐺𝑖−1 and 𝐺𝑖, where
𝑖 ∈ {1, . . . , 𝑟 + 1}. When 𝐴𝑖 occurs, it causes all qubits connected to 𝑞 through
subsequent entangling operations to be fully depolarized, i.e., fully depolarizing
channels are added at spacetime locations F𝑖. Note that {𝐴𝑖} are disjoint events.
Given the erasure check outcomes ®𝑑 (whose probability distribution depends on the
erasure probabilities and the false positive and negative detection rates of the erasure
checks in the segment 𝑠), we can calculate the posterior probabilities

𝑎𝑖 = Pr
(
𝐴𝑖

��� ®𝑑) . (4.2)

We then obtain the distribution of Pauli errors P by sampling disjoint events with
probability 𝑎𝑖 and inserting fully depolarizing channels at F𝑖 whenever the corre-
sponding event is sampled.

In the description of P, we have disjoint events rather than independent ones. To
obtain the desired description, we show that P can also be obtained by sampling
𝑟 + 1 independent events {𝐵𝑖}, where 𝐵𝑖 is defined as a binary random variable with
probability

𝑏𝑖 = 𝑎𝑖

𝑖−1∏
𝑗=1
(1 − 𝑏 𝑗 )−1 , (4.3)
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and placing fully depolarizing channels at spacetime locations F𝑖 whenever 𝐵𝑖 is
sampled. To do that, observe that for 𝑖 < 𝑗 a composition of fully depolarizing
channels at F𝑖 and F𝑗 is equivalent to the fully depolarizing channels at F𝑖, since
F𝑖 ⊇ F𝑗 . Therefore, fully depolarizing channels are placed exclusively at F𝑖 iff we
sample 𝐵𝑖 but no other 𝐵 𝑗 for 𝑗 < 𝑖, which happens with probability

𝑏𝑖

𝑖−1∏
𝑗=1
(1 − 𝑏 𝑗 ) = 𝑎𝑖 = Pr

(
𝐴𝑖

��� ®𝑑) . (4.4)

Finally, we further decompose the depolarizing channels resulting from the events

{𝐵𝑖} into independent error mechanisms. Namely, for each 𝐵𝑖 we introduce 4
���F𝑖 ��� − 1

error mechanisms, each corresponding to a different nontrivial Pauli error 𝑃𝑖, 𝑗 that
can be placed at spacetime locations F𝑖 with probability

𝑝𝑖 =
1
2 −

1
2 (1 − 𝑏𝑖)

21−2|F𝑖 |
. (4.5)

The resulting product distribution of independent error mechanisms {(𝑃𝑖, 𝑗 , 𝑝𝑖)} is
equivalent to P. To show that, we use the same reasoning as in Claim 1 of Ref. [39].
The analysis there considered Pauli errors on𝑚 qubits which occur at the same time,
but the only necessary ingredient is that the set of possible errors under composition
forms a group isomorphic to Z2𝑚

2 which is true in our case with 𝑚 = |F𝑖 |. This
concludes the proof.

For the reader’s convenience, we recap the conversion of an erasure circuit into a
stabilizer circuit with independent error mechanisms in Algorithm 4.1.

We finish this subsection with a few remarks.

• Depolarizing noise can be decomposed into independent error mechanisms [39].
For arbitrary Pauli channels an exact decomposition may not exist, but one
may use an approximate one [40].

• In many scenarios, e.g., the surface code or Floquet codes, the distribution of
Pauli errors can be further approximated by a product of independent error
mechanisms that trigger at most two detectors. Consequently, the decoding
problem reduces to the graph matching problem, which is efficiently solv-
able [41].
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Algorithm 4.1 Conversion of an erasure circuit to a stabilizer circuit with indepen-
dent error mechanisms
Input:
erasure circuit 𝐶𝐸 , erasure check outcomes ®𝑑
Output:
stabilizer circuit 𝐶, error mechanisms {(𝑃𝑖, 𝑗 , 𝑝𝑖)}

1: 𝑆 ← {segments in 𝐶𝐸 }
2: for each 𝑠 ∈ 𝑆 do
3: {F𝑖} ← spacetime locations associated with 𝑠
4: for each 𝑖 do
5: 𝑎𝑖 ← Pr

(
𝐴𝑖

��� ®𝑑)
6: 𝑏𝑖 ← 𝑎𝑖

∏𝑖−1
𝑗=1(1 − 𝑏 𝑗 )−1

7: 𝑝𝑖 ← 1
2 −

1
2 (1 − 𝑏𝑖)

21−2|F𝑖 |

8: for each nontrivial Pauli error 𝑃𝑖, 𝑗 at F𝑖 do
9: include error mechanism (𝑃𝑖, 𝑗 , 𝑝𝑖)

10: end for each
11: end for each
12: end for each
13: 𝐶 ← 𝐶𝐸 with deleted erasure checks and reset
14: return 𝐶, {(𝑃𝑖, 𝑗 , 𝑝𝑖)}

• The number of error mechanisms added for each segment 𝑠 in Algorithm 4.1
is exponential in the length of 𝑠. If reset operations occur at constant time
intervals in the erasure circuit 𝐶𝐸 , then the total number of added error
mechanisms is proportional to the size of 𝐶𝐸 .

• If reset operations occur between every entangling operation in the erasure
circuit (as is the case in our numerical simulations), then the resulting error
mechanisms are not time correlated and can simply be described by depolar-
izing channels; see Appendix 4.B.

• For simplicity, we focused on the scenario of the erasure-depolarization
spread. The analysis for the deterministic erasure-erasure spread is simi-
lar. However, the probability of erasure between entangling operations may
need to be conditioned on many erasure check outcomes, not just within one
segment.

4.2.3 Sampling erasure circuits
We envision two ways of sampling from an erasure circuit for simulation purposes. In
the first method, we use one bit of information per qubit to represent its erasure state.
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This allows us to efficiently simulate erasures, erasure checks and reset operations
by sampling from the correct probabilities and updating this classical data. For
the qubits in the computational subspace, we keep track of the stabilizers and
update them after standard stabilizer circuit operations using the Gottesman-Knill
theorem [34, 35]. When a qubit is erased, we randomize measurement outcomes
involving it and depolarize qubits that interact with it through entangling operations.

Alternatively, we may simulate the circuit by first sampling all erasure check de-
tection events. Conditioned on the results, we then use the results of Sec. 4.2.2 to
obtain stabilizer circuits that we can sample from. Each independent error mecha-
nism in the resulting circuit can be simulated by adding a classical bit that determines
whether or not the corresponding error is applied. However, this is often unneces-
sary because if the Pauli errors occur at the same time (as is the case for us; see
Appendix 4.B), it can be simulated by depolarizing channels. The advantage of this
approach is that after obtaining the erasure detection events, the same circuit can be
used for sampling and decoding.

4.3 Scalable architecture with erasure qubits
In this section, we describe how a realization of erasure qubits via the dual-rail en-
coding naturally leads to a fault-tolerant architecture based on Floquet codes (which
we briefly overview). Our approach is particularly well-suited for superconducting
circuits. We also discuss possible hardware implementations of physical operations
needed to realize Floquet codes.

4.3.1 From erasure qubits to Floquet codes
One of the simplest ways to realize the erasure qubit is via the dual-rail encoding���0〉 ↦→ |01⟩ ,

���1〉 ↦→ |10⟩ , (4.6)

which is particularly well-suited for superconducting circuits. Namely, the dominant
noise for this quantum computing platform is the amplitude damping noise [42, 43]
that describes the energy relaxation from the excited state |1⟩ to the ground state
|0⟩. A single amplitude damping event can be detected as it maps any state of the
erasure qubit to the state |00⟩ which is orthogonal to the computational subspace
span{|01⟩ , |10⟩}. Consequently, the effective noise afflicting the qubit is dominated
by detectable erasures. We remark that a few recent experiments demonstrated the
erasure qubit via the dual-rail encoding using either two transmons [24] or two 3D
cavities [23, 25].
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Figure 4.3: A planar layout of erasure qubits realized via the dual-rail encoding.
Projective measurements of Pauli 𝑍𝑖1𝑍𝑖2 and 𝑍𝑖1𝑍 𝑗1 operators implement, respec-
tively, an erasure check for the erasure qubit 𝑖 and a Pauli 𝑍𝑖𝑍 𝑗 measurement on the
computational subspace of two erasure qubits 𝑖 and 𝑗 . This layout is well-suited for
Floquet codes, benefiting from their low qubit connectivity. The erasure qubit can
be realized by two coupled transmons, the erasure check via an LC element [18] and
the projective measurement via a single transmon; see Appendix 4.C.

Observe that a projective measurement of a Pauli 𝑍𝑖1𝑍𝑖2 operator, where 𝑖1 and 𝑖2
label two qubits forming the erasure qubit 𝑖 via the dual-rail encoding, is sufficient
to implement an erasure check; see Fig. 4.3. Namely, a +1 measurement outcome
implies that the state is outside the computational subspace span{|01⟩ , |10⟩}, and
the erasure qubit has suffered from an erasure. However, a projective measurement
of a Pauli 𝑍𝑖1𝑍 𝑗1 (or 𝑍𝑖2𝑍 𝑗2) operator supported on qubits from two different era-
sure qubits 𝑖 and 𝑗 implements a Pauli 𝑍𝑖𝑍 𝑗 measurement on their computational
subspace. Therefore, the ability to perform projective measurements of Pauli 𝑍𝑍
operators, together with single-qubit Hadamard 𝐻 and phase 𝑆 gates on the compu-
tational subspace, is sufficient to implement erasure checks and Pauli 𝑋𝑋 , 𝑌𝑌 , 𝑍𝑍
measurements on the computational subspace. This, in turn, allows us to implement
Floquet codes with erasure qubits (where we implicitly assume the capability of
single-qubit state preparation and readout in the computational basis); see Fig. 4.3
for an illustration.

4.3.2 Floquet codes
The first and arguably simplest example of Floquet codes is the honeycomb code [31,
32], which is defined on a hexagonal lattice with either periodic or open boundary
conditions. The honeycomb code is realized by placing qubits on the vertices 𝑉
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round measure
𝑡 ≡ 0 𝑋 𝑋

𝑡 ≡ 1 𝑍 𝑍

𝑡 ≡ 2 𝑋 𝑋

𝑡 ≡ 3 𝑍 𝑍

𝑡 ≡ 4 𝑋 𝑋

𝑡 ≡ 5 𝑍 𝑍

Figure 4.4: A (graph-based) Floquet code can be defined on a hexagonal lattice with
periodic boundary conditions. The code is realized via a sequence of measurements
of two-qubit Pauli operators (depicted as red, blue and green edges) on neighboring
qubits (gray dots). A sequence of measurements described in the table gives rise to
the CSS honeycomb code.

and measuring two-qubit Pauli operators associated with the edges 𝐸 in a specified
sequence. Namely, Pauli 𝑋𝑋 , 𝑌𝑌 and 𝑍𝑍 operators are associated with red, blue
and green edges, respectively, and are measured at a round 𝑡 mod 3 = 0, 1, 2.

One way to generalize the honeycomb code, which we refer to as a graph-based
Floquet code, is by defining a QEC code based on a connected graph 𝐺 = (𝑉, 𝐸).
We require that the vertices 𝑉 are three-valent and the edges 𝐸 are three-colorable,
i.e., the edges split into three sets, 𝐸 = 𝐸0 ⊔ 𝐸1 ⊔ 𝐸2, and no two different edges
from 𝐸𝑖 are incident. We place qubits on the vertices𝑉 and consider a measurement
sequence of period three, where at a round 𝑡 mod 3 = 0, 1, 2 we measure Pauli 𝑋𝑋 ,
𝑌𝑌 and 𝑍𝑍 operators associated with edges in 𝐸0, 𝐸1 and 𝐸2, respectively. The
definition of graph-based Floquet codes is motivated by the possibility of having
a native implementation of two-qubit Pauli measurements with erasure qubits; it
also guarantees low qubit connectivity. We remark that our exhaustive search in
Sec. 4.5.1 finds the the smallest graph-based Floquet codes with distance two and
four.

We can also consider a CSS version of graph-based Floquet codes, defined using
a period-six measurement sequence; see Fig. 4.4 for an illustration of the CSS
honeycomb code [44]. In what follows, we mostly focus on CSS Floquet codes, as
they outperform the non-CSS counterparts; see Sec. 4.4.
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So far, we have only discussed examples of Floquet codes without defining them.
The foundational idea behind Floquet codes is that logical information is encoded in
a dynamically evolving codespace. Consequently, a Floquet code C can be defined
by a sequence of measurements roundsM0,M1, . . . , where each roundM𝑖 consists
of a set of commuting Pauli operators. From that perspective, Floquet codes are
synonymous with a sequence of code switchings [45–50] or dynamic automorphism
codes [51]. Note that the operators fromM𝑖 andM 𝑗 may not commute for 𝑖 ≠ 𝑗 . In
each round, the codespace is stabilized by an instantaneous stabilizer group (ISG)S𝑖,
which is an abelian subgroup of the Pauli group not containing −𝐼. Measuring new
operators inM𝑖 takes the previous codespace with ISG S𝑖−1 into a new codespace
stabilized by S𝑖. The new ISG S𝑖 is generated by M𝑖 along with all elements of
S𝑖−1 that commute with the new measurements. We remark that stabilizer [52] and
subsystem [53] codes correspond to Floquet codes with a measurement sequence of
period one and two, respectively.

We can specify the code parameters of a Floquet code C as follows. The ISG S𝑖 can
be viewed as a stabilizer code with 𝑘𝑖 ≥ 0 logical qubits. The sequence 𝑘0, 𝑘1, . . . is
nonincreasing, and therefore becomes a constant after some number of measurement
rounds. We thus define the number of logical qubits of C to be 𝑘C = lim𝑖→∞ 𝑘𝑖.
The distance of C should be defined as the circuit distance, i.e., the smallest number
of spacetime faults that are undetectable yet cause a logical operator to be applied,
which depends on the details of the syndrome extraction circuit. For simplicity, we
instead consider the distance to be the minimum distance of the stabilizer code from
any ISG (which provides an upper bound on the circuit distance) 2.

4.3.3 Implementation of erasure checks and Pauli 𝑍𝑍 measurements
Floquet codes with erasure qubits crucially rely on three operations, erasure checks,
single-qubit gates on the computational subspace and projective measurements of
Pauli 𝑍𝑍 operators. Since an erasure check is an extra operation that is not typically
considered (on top of state preparation, entangling gates and Pauli measurements), it
constitutes an additional hurdle to overcome. We mentioned that for erasure qubits
via the dual-rail superconducting encoding erasure checks may, in principle, be
realized by a projective measurement of the Pauli operator 𝑍𝑍 , but this is simplistic.
Instead, there are efforts to design erasure checks in an optimized way, for instance,
by symmetrically coupling a readout resonator to two transmons [18].

2Note that the families of Floquet codes considered in Sec. 4.4 have a growing circuit distance
which is proportional to the distance. Such scaling of the circuit distance does not hold in general.
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Dual rail 1 Dual rail 2

Figure 4.5: Scheme for a parity measurement of two dual-rail qubits, which are
composed of transmons T1, T2 and T3, T4, respectively. The ancilla transmon T5
is coupled to T2 and T3. In this hardware-efficient construction, the utilization of a
coupler is avoided by using T5 for measurement without reducing the efficiency of
the procedure. A parity measurement could be realized by modulating the coupler
energy gap at the frequency of the dual-rail qubit’s gap.

Surprisingly, for dual-rail qubits projective measurements of Pauli 𝑍𝑍 operators
might be efficiently and swiftly realized using a single transmon almost without
paying the price for the transmon’s low (compared to the dual-rail qubit’s) coherence
and amplitude damping time 𝑇1. We propose to do so by incorporating the ideas
from the cavity dual-rail architecture [19].

Concretely, the parity measurement could be realized by coupling a single trans-
mon (which will be used as an ancilla) to two dual-rail qubits and modulating the
flux on the transmon parametrically in resonance with the gaps of the dual-rail
qubits; see Fig. 4.5. Such a modulation realizes the following effective interaction
𝑔𝑚
2 𝑎
†
5𝑎5

(
𝑍1 + 𝑍2

)
, where 𝑔𝑚 is the interaction strength, 𝑎5 is the ladder operator

for the ancilla transmon and 𝑍𝑖 denotes Pauli 𝑍 operator on the computational sub-
space of the 𝑖-th dual-rail qubit. Since the transmon is only coupled to 𝑍1 + 𝑍2,
manipulating the ground and second excited states of the ancilla transmon allows
for a robust parity measurement. This method is resilient not only to the phase
noise of the ancilla transmon but also to the amplitude damping noise. Assuming
that the coherence of the dual rail reaches a few milliseconds [24], the main source
of noise in this scheme is expected to be measurement idling dephasing and gate
control noise, which both should be less than 10−4; see Appendix 4.C for details.
By employing this scheme, we can directly implement the projective measurement
of Pauli 𝑍𝑍 operators required for Floquet codes.
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4.4 Numerical simulations for Floquet codes
We now describe the results of our numerical simulations of Floquet codes with
erasure qubits. Our simulations were performed using the second method of sam-
pling described in Sec. 4.2.3. After sampling erasure check detection events, we
used the Python package Stim [54] to sample from the resulting stabilizer circuits.
For each sample, Stim outputs detectors that are violated along with the final value
of a given logical operator and decomposes noise into error mechanisms that set
off at most two detectors. Thus, we decode using the method outlined in Sec. 4.2.2
by inputting this decoding graph along with the samples to the minimum-weight
perfect matching decoder PyMatching [55]. The decoder reports an error if after
decoding, the value of the logical operator is different than when initialized. For
a distance 𝑑 code, we calculate 𝑝𝐿 , the logical error rate per 3𝑑 rounds. For more
details of the simulation, see Appendix 4.D.

Our main numerical results are presented in Fig. 4.6. We simulate two ways
of implementing the measurements of the CSS honeycomb code: (i) the ancilla
scheme using an ancilla qubit and two-qubit entangling gates as depicted in Fig. 4.1
and (ii) the 2Q entangling measurement (EM) scheme as described Sec. 4.3.3. In
both scenarios we perform either erasure checks with reset or readout after each
entangling operation. We probe the (𝑒, 𝑝, 𝑞) phase space to determine the threshold
surface and find the correctable region where errors can be suppressed arbitrarily
by increasing the code distance.

We remark that depending on the noise parameters it may be optimal to perform
erasure checks less frequently than after every entangling operation. Although we
have not simulated all possible erasure check schedules, we find an upper bound
for their thresholds by simulating the scheme with ideal erasure checks and reset.
In particular, the light blue and orange regions in Fig. 4.6(b)(e) represent potential
gains of the correctable region that may be achieved by optimizing the erasure
check schedules. Alternatively, the solid lines could be brought closer to the ideal
bound (dashed lines) by simultaneously performing the erasure measurement with
the entangling operation and improving the reset procedure.

In Fig. 4.7, we show how the logical error rate 𝑝𝐿 is suppressed by increasing code
distance for error rates below threshold in the ancilla and EM schemes. We choose
𝑒, 𝑝 and 𝑞 to be in the correctable region for the erasure scheme from Fig. 4.6.
These values are also comparable with the experimentally measured erasure and
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(a)

(c)

(e)

(d)

(b)

(f)
Figure 4.6: Simulations of the CSS honeycomb code realized via the (a)-(c) ancilla
and (d)-(f) EM schemes. (a)(d) The threshold surface in the (𝑒, 𝑝, 𝑞) phase space,
where 𝑒, 𝑝 and 𝑞 are the erasure, Pauli and measurement error rates, respectively.
(b)(e) Cross sections of the threshold surface for different values of 𝑞 (solid lines).
The dashed lines correspond to the scheme with erasure checks and reset that cause
no additional errors, bounding the performance of any erasure scheme. The dashed-
dotted lines correspond to the standard scheme with no erasure checks and ideal
reset (also interpreted as the code’s performance under leakage). Erasure schemes
can operate in a region (blue) where the standard scheme cannot. Since erasure
checks and reset cause additional errors, for a low erasure bias there is a region
(orange), where the standard scheme may be better. (c)(f) We find the thresholds by
plotting the logical error rate 𝑝𝐿 for distance-𝑑 codes as a function of 𝑝 or 𝑒, and
fitting a finite-size scaling ansatz; see Appendix 4.D.
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residual error rates of 0.4% and 0.01% per single-qubit gate, and the false positive
and negative erasure detection rates of around 1% [24].

(a) (b)

Figure 4.7: Subthreshold scaling of the logical error rate 𝑝𝐿 with distance 𝑑 for
the (a) ancilla and (b) EM schemes. We compare the results when checking for
erasures after every entangling operation (solid), without performing any erasure
checks (dashed-dotted), and in an ideal case where erasure checks introduce no
errors (dashed), which gives an lower bound on the achievable 𝑝𝐿 . For a high
erasure bias (blue), we obtain better suppression and scaling of 𝑝𝐿 by performing
the erasure scheme; for a low erasure bias (orange), the standard scheme is better.

In Fig. 4.8, we present several optimizations where we find the threshold for the
ancilla and EM schemes under erasure-biased noise characterized by a single pa-
rameter 𝑥 = 𝑞 = 𝑒 = 10𝑝. We consider two layouts: (i) the standard embedding of
the hexagonal lattice on a torus as in Fig. 4.4(a) and (ii) the qubit-efficient layout
achieving the same distance by “twisting” the torus as in Fig. 4.9(f). This qubit-
efficient layout, suggested in Refs. [32, 56], is the optimal layout on a torus for a
given distance and uses 25% fewer qubits than the standard layout [57]. Although
the logical error rate 𝑝𝐿 at the threshold is lower for the standard layout, at low
physical error rates, where the scaling of 𝑝𝐿 is determined by the distance, it is
preferential to use the compact layout as it achieves a higher distance for a given
number of physical qubits. We also simulate the performance of the original hon-
eycomb code with the compact layout and find that its threshold is lower than that
of the CSS honeycomb code. This can be explained by the fact that the detectors
are products of 6 measurement outcomes in the CSS honeycomb code compared to
products of 12 measurement outcomes in the original honeycomb code. Therefore,
the CSS version is more robust against measurement errors.
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(a) (b)

Figure 4.8: Comparison of the thresholds for the (a) ancilla and (b) EM schemes.
We assume erasure-biased noise with a single parameter 𝑥 = 𝑞 = 𝑒 = 10𝑝. For
the CSS honeycomb code, the standard (solid) and compact (dashed) layouts give
the same threshold, with the latter having higher logical error rate 𝑝𝐿 for the same
distance 𝑑. The original honeycomb code (dashed-dotted) with the compact layout
exhibits a lower threshold.

4.5 Smallest Floquet codes
Having analyzed families of Floquet codes on the torus, one may ask what the
smallest possible (graph-based) Floquet codes are. In this section, we find the
previously unknown codes with distance two and four and analyze their performance
in terms of the logical error rate. We also describe a connection between Floquet
codes and two-manifolds.

4.5.1 Searching for smallest Floquet codes
Because we are considering erasures, distance-two codes may allow us to correct
up to one erasure. The smallest 3-regular graphs are the complete graph 𝐾4, the
complete bipartite graph 𝐾3,3, and the prism graph 𝑌3. Each of these graphs has
exactly one 3-edge-coloring (up to isomorphism), so they define valid Floquet codes.
The codes all have distance two, and they encode either one or two logical qubits.
We depict them in Fig. 4.9(a)-(c). We remark that compared to the [[16, 4, 2]]
hyperbolic code defined on the Bolza surface [58], the [[6, 2, 2]] codes defined on
𝐾3,3 and 𝑌3 have better encoding rates at the same distance.

For Floquet codes that can correct one unknown error, we consider distance-four
codes. Previously, the smallest known Floquet code with distance four was the
[[18, 2, 4]] code using the twisted embedding of the hexagonal lattice on a torus [32,
56]; see Fig. 4.9(f). We ran an exhaustive search through all 3-edge-colorings of
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(a) (b) (c) (d)

(e) (f)

code Σ 𝑛 𝑘 𝑑

(a) RP2 4 1 2
(b) T2 6 2 2
(c) K 6 2 2
(d) RP2 16 1 4
(e) RP2 18 1 4
(f) T2 18 2 4

Figure 4.9: The smallest (graph-based) Floquet codes with distance two and four.
Qubits are depicted as gray dots. For each code illustrated in (a)-(f), we specify a
manifold Σ used to embed its associated graph, as well as its code parameters 𝑛, 𝑘
and 𝑑. Here, T2, RP2, and K denote a torus, a real projective plane, and a Klein
bottle, respectively.

3-regular graphs up to 18 vertices and found two additional distance-four codes with
16 and 18 qubits. These codes both encode one logical qubit; see Fig. 4.9(d)(e).

We also simulate the performance of the [[16, 1, 4]] code, presenting the results for
the ancilla and EM schemes in Fig. 4.10. To find the pseudothresholds, we compare
the logical error rate 𝑝𝐿 of the code against an unprotected qubit that undergoes the
same noise and is affected by four depolarizing channels, two with error rate 𝑝 and
two with error rate 3𝑒/4, at every step. In the EM scheme, there are single error
mechanisms that can corrupt two qubits along a logical operator, which halves the
circuit distance compared to the distance of the stabilizer code of any ISG. This can
be seen from the subthreshold scaling, as the the slopes of the solid and dashed lines
are the same for low error rates. This phenomenon does not occur for the ancilla
scheme.

4.5.2 Interpretation through manifolds
It turns out that one can interpret any graph-based Floquet code as arising from
a tessellation of some closed two-manifold (with the tessellation forming a two-
dimensional color code lattice [59, 60]). By definition, a two-dimensional color
code lattice is 3-valent and its faces are 3-colorable, i.e., faces are colored with three
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(a) (b)

Figure 4.10: Finding the pseudothreshold of the [[16, 1, 4]] code in the (a) ancilla and
(b) EM schemes. We assume erasure-biased noise with 𝑞 = 𝑒 = 𝑥 and 𝑝 = 𝛼𝑥 where
𝑥 and 𝛼 are parameters. The dashed lines represent error rates of an unprotected
qubit experiencing the same noise while idling for the same amount of time.

colors and any two neighboring faces sharing an edge have different colors. The
following lemma guarantees the relation between Floquet codes and two-manifolds.

Lemma 94. Any finite connected 3-regular graph𝐺 = (𝑉, 𝐸) with a 3-edge-coloring
𝐸 = 𝐸0 ⊔ 𝐸1 ⊔ 𝐸2 can be embedded in a closed two-manifold Σ with 3-colorable
faces, whose coloring is induced by the edge coloring.

Proof. By removing all edges in 𝐸𝑖, we obtain a disjoint union of cycles. Let 𝐹𝑖
denote the collection of these cycles. Consider filling in these cycles so that they
are homeomorphic to disks. The boundaries of the disks are edges of the graph, and
each edge in 𝐺 is part of exactly two cycles. By gluing disks together along an edge
when they share the same edge in 𝐺, we obtain a closed manifold Σ on which 𝐺
has a natural embedding. The faces of Σ are 𝐹 = 𝐹0 ⊔ 𝐹1 ⊔ 𝐹2 and their coloring is
induced by the coloring of the edges of 𝐺, i.e., any face in 𝐹𝑖 has color 𝑖. Note that
since each 𝑖-colored edge is part of faces colored 𝑗 and 𝑘 , with 𝑖, 𝑗 , 𝑘 all distinct,
any two neighboring faces of Σ have different colors (both distinct from 𝑖).

The parameters of the Floquet code associated with the graph 𝐺 can be related to
the Σ-embedding of 𝐺. Let us define the shrunk lattice of color 𝑖 to be the graph
𝐺𝑖 = (𝐹𝑖, 𝐸𝑖), where an edge 𝑒 ∈ 𝐸𝑖 connecting 𝑣 to 𝑤 in the original graph 𝐺 now
connects the two 𝑖-colored faces that 𝑣 and 𝑤 are on. The graph 𝐺𝑖 also has an
embedding in Σ, which is obtained from the embedding of 𝐺 by “shrinking” the 𝑖-
colored faces to a point and extending the 𝑖-colored edges. Similarly to Ref. [31], we
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find that at every round 𝑖 of the evolution of the Floquet code, the ISG is equivalent
to the toric code on the Σ-embedding of 𝐺𝑖. Thus, the number of encoded qubits is

𝑘 = dim𝐻1(Σ;Z2) = 2 − 𝜒 (4.7)

=


2𝑔, orientable Σ of genus 𝑔,

𝑔, nonorientable Σ of demigenus 𝑔,
(4.8)

where 𝐻1(Σ;Z2) is the first homology group of the two-manifold Σ with Z2 co-
efficients and 𝜒 is the Euler characteristic of Σ. Furthermore, the distance of the
Floquet code at round 𝑖 is the smaller of twice the length of the shortest noncon-
tractible cycle of 𝐺𝑖 and the length of the shortest noncontractible cycle in the dual
graph 𝐺∗

𝑖
. Since the dual graph 𝐺∗

𝑖
is bipartite, the distance is even.

4.6 Discussion
In our article, we designed and optimized fault-tolerant quantum architectures based
on erasure qubits. While our analysis has focused on Floquet codes, we also
envision making use of other QEC codes, such as the surface code and quantum low-
density parity-check codes [61]. The surface code, similarly to graph-based Floquet
codes, can be realized with planar layouts of qubits and projective measurements
of Pauli 𝑋𝑋 and 𝑍𝑍 operators between neighboring qubits [39, 62]; quantum
low-density parity-check codes are generally incompatible with planar layouts, but,
in principle, can be realized with, e.g., superconducting circuits [63] and neutral
atoms [64]. Irrespective of the QEC codes used, we expect the corresponding
quantum architectures to benefit from erasure qubits and significantly outperform
standard approaches.

Our analysis and numerical simulations relied on certain simplifying assumptions,
including the erasure-depolarization spread, noise rates that are uniform through
the circuit, and frequent erasure checks followed by unconditional reset. However,
similar analysis can be fine-tuned for specific architectures, making it more realistic
and potentially further improving the performance of QEC protocols. For instance,
if erasures spread to Pauli 𝑍 errors, then one may be able to design clever syndrome
extraction circuits that suppress the error propagation. One may adjust the noise
rate at each spacetime location depending on the execution time of quantum circuit
operations; see Appendix 4.B for an illustrative example. Also, one may choose to
perform less frequent erasure checks (to reduce the time overhead associated with
their implementation) and conditional reset operations (to reduce the effect of false
negative erasure detections).
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Lastly, our formalism for QEC protocols with erasure qubits and phrasing the
corresponding decoding problem as the hypergraph matching problem constitute the
first step toward systematic development and optimization of decoding algorithms.
Such efforts, in turn, will further solidify the claim that erasure qubits are an attractive
building block for fault-tolerant quantum architectures.
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4.A Formal description of QEC protocols with erasure qubits
We can make the discussion about QEC protocols with erasure qubits more precise.
Formally, each wire represents an erasure qubit and it suffices to model it as a three-
level system with an orthonormal basis |0⟩, |1⟩ and |2⟩, where the states |0⟩ and
|1⟩ span the computational subspace H𝑐 ≃ C⊗2 and the state |2⟩ spans the erasure
subspace H𝑒 ≃ C. Let Π𝑎 and Π𝑎,𝑏, where 𝑎, 𝑏 ∈ {𝑐, 𝑒}, denote the projectors
onto H𝑎 and H𝑎 ⊗ H𝑏, respectively. Similarly, we define Π±

𝑃
and Π±

𝑃𝑃
, where

𝑃 ∈ {𝑋,𝑌, 𝑍}, to be the projectors onto the (±1)-eigenspaces of the Pauli 𝑃 and
𝑃𝑃 operators, respectively. We write 𝐺𝑎,𝑏 to capture that the operator 𝐺 acts on
H𝑎 ⊗ H𝑏.

In Sec. 4.2.1 we assumed that none of the operations (i)-(vii) can create a superpo-
sition of states in the computational and erasure subspaces of erasure qubits. Given
our assumption of the erasure-depolarization spread, i.e., an erasure causes full de-
polarization of other qubit that is involved in the same 2Q operation, we obtain that
the operations (i)-(vii) have a block-diagonal structure and act on the Hilbert spaces
associated with erasure qubits as follows.

(i) 1Q state preparation of a state |𝜓⟩ ∈ H𝑐 in the computational subspace of the
erasure qubit.

(ii) 1Q readout measures a Pauli 𝑃 operator, but if the state is erased, then it gives
a random outcome, i.e., it performs the two-outcome positive operator-valued
measure (POVM) with Π+

𝑃
+ 1

2Π𝑒 and Π−
𝑃
+ 1

2Π𝑒.

(iii) 1Q gate𝐺 acts on the computational subspace of the erasure qubit, i.e.,𝐺𝑐⊕ 𝐼𝑒.
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(iv) 2Q gate 𝐺 acts on the computational subspace of the two erasure qubits
and fully depolarizes the other qubit if one qubit is erased, i.e., it applies a
quantum channel with Kraus operators 𝐾𝑃,𝑄 = 1

4𝐺𝑐,𝑐 ⊕ 𝑃𝑐,𝑒 ⊕ 𝑄𝑒,𝑐 ⊕ 𝐼𝑒,𝑒 for
all 𝑃,𝑄 ∈ {𝐼, 𝑋,𝑌 , 𝑍}.

(v) 1Q erasure check performs the two-outcome measurement with projectors Π𝑐
and Π𝑒.

(vi) 1Q reset acts trivially on the computational subspace and reinitializes an
erased state as the maximally mixed state in the computational subspace, i.e.,
it applies a quantum channel with Kraus operators 𝐾0 = Π𝑐, 𝐾1 = 1√

2
|0⟩⟨2|

and 𝐾2 = 1√
2
|1⟩⟨2|.

(vii) 2Q projective measurement measures a Pauli 𝑃𝑃 operator, but if either qubit
is erased, then it gives a random outcome and fully depolarizes the other qubit,
i.e., it performs the two-outcome POVM with Π+

𝑃𝑃
+ 1

2 (Π𝑒,𝑐 +Π𝑐,𝑒 +Π𝑒,𝑒) and
Π−
𝑃𝑃
+ 1

2 (Π𝑒,𝑐 +Π𝑐,𝑒 +Π𝑒,𝑒) followed by an application of a quantum channel
with Kraus operators𝐾𝑃,𝑄 = 1

4 𝐼𝑐,𝑐⊕𝑃𝑐,𝑒⊕𝑄𝑒,𝑐⊕𝐼𝑒,𝑒 for all𝑃,𝑄 ∈ {𝐼, 𝑋,𝑌 , 𝑍}.

4.B Examples of the edge-weight calculation and erasure rate adjustment

(a) R E1
𝐺

E2 EC R
. . . . . .

(b)
𝐺 P(𝑏′1)

P(𝑏′2)

. . . . . .

Figure 4.11: An example of mapping an erasure circuit to a stabilizer circuit. (a) A
segment of an erasure circuit. (b) An equivalent stabilizer circuit.

We present an example of how to decode erasures by converting a segment of an
erasure circuit into a stabilizer circuit. Consider the segment in Fig. 4.11(a), where
each erasure location has probability 𝑒 and the erasure check outcome is flipped
with probability 𝑞. The erasure detection event EC has distribution

Pr(EC = 1) = [1 − (1 − 𝑒)2] (1 − 𝑞) + (1 − 𝑒)2𝑞 , (4.9)

Pr(EC = 0) = 1 − Pr(EC = 1) . (4.10)

Conditioned on EC, the probabilities that the qubit was first erased at E1 or E2 are
respectively

𝑎1 =
𝑒(1 − 𝑞)

Pr(EC = 1) , 𝑎2 =
(1 − 𝑒)𝑒(1 − 𝑞)

Pr(EC = 1) , (4.11)
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if 𝐷 = 1, and

𝑎1 =
𝑒𝑞

Pr(EC = 0) , 𝑎2 =
(1 − 𝑒)𝑒𝑞

Pr(EC = 0) , (4.12)

if EC = 0. If the qubit was first erased at E1, it would depolarize the second qubit
after the entangling gate. Furthermore, the qubit itself would become maximally
mixed after the reset operation. Thus, both qubits become fully depolarized. If the
qubit was first erased at E2, only that qubit would become depolarized from the
reset. By the proof of Lemma 93, the segment is equivalent to the stabilizer circuit
in Fig. 4.11(b) with error probabilities

𝑏′1 =
15
16
𝑎1, 𝑏′2 =

3
4

𝑎2

1 − 𝑎1
. (4.13)

To adjust erasure rates at different spacetime locations depending on the execution
time of quantum circuit operations (and thereby making numerical simulations
more realistic) we can use the following simple heuristic. Let 𝑇𝐸 be the erasure time
(which for the erasure qubit via the dual-rail encoding corresponds to the amplitude
damping time𝑇1). Let E be an erasure location in between two consecutive quantum
operations 𝐴 and 𝐵 with the execution time 𝑇𝐴 and 𝑇𝐵, respectively. We can then
set the erasure rate associated with E to be

𝑒 = (𝑎𝑇𝐴 + 𝑏𝑇𝐵)/𝑇𝐸 , (4.14)

where 𝑎, 𝑏 ∈ [0, 1] are appropriately chosen. In particular, in the middle of the
segment 𝑠 we may set 𝑎 = 𝑏 = 0.5; if 𝐴 or 𝐵 correspond to one of the endpoint of
𝑠, then we set 𝑎 or 𝑏 to be 1. We also remark that adjusting 𝑎 and 𝑏 for erasure
locations adjacent to erasure checks allows us to effectively adjust the false positive
and negative erasure detection rates.

4.C Parity measurement of two dual-rail qubits
Here, we outline our scheme for parity measurement of two dual-rail qubits that uti-
lizes a single transmon for measurement. The proposed scheme is based on Fig. 4.5.
The dual-rail qubits are encoded in transmons T1, T2 and T3, T4, respectively, while
the interaction is generated by the coupler T5 within the T2, T5, T3 system.

Each dual-rail qubit consists of two tunable transmons, brought to resonance as
in Refs. [18, 24], while the single tunable transmon T5 realizes the parity mea-
surement. The reason why we can employ such a hybrid construction combining
high-coherence dual-rail qubits and a low-coherence transmon is that most of the
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noise on the ancilla transmon commutes with the interaction, and thereby does not
propagate in leading order to the dual-rail qubits as in Ref. [65]. Part of the noise that
does propagate is addressed by the dual-rail qubit’s built-in decoupling mechanism.

Furthermore, this construction shares similarities with the cavity setup described in
Ref. [19]. However, the interaction can be significantly faster than the cavity system
since it is not limited by the Purcell effect, which is an important limitation on the
rate for high-coherence cavities in a hybrid construction.

The interaction is generated by the second order 𝑍𝑍 coupling between T5 and T1
and T5 and T3 in the following way. Starting with the Hamiltonian

𝐻 =

5∑︁
𝑖=1

𝜔𝑖𝑎
†
𝑖
𝑎𝑖 +

𝛼

2
𝑎
†
𝑖
𝑎
†
𝑖
𝑎𝑖𝑎𝑖 + (4.15)

𝑔𝐷𝑅1

(
𝑎
†
1𝑎2 + ℎ.𝑐.

)
+ 𝑔𝐷𝑅2

(
𝑎
†
3𝑎4 + ℎ.𝑐.

)
+

𝑔

(
𝑎
†
2𝑎5 + 𝑎†5𝑎3 + ℎ.𝑐.

)
,

where 𝜔𝑖 is the frequency of the transmon T𝑖, 𝛼 is the nonlinearity, 𝑔𝐷𝑅𝑖 is the
capacitive coupling between two transmons of the 𝑖-th dual-rail qubit and 𝑔 is the
capacitive coupling between the ancilla transmon T5 and either T2 or T3.

In the limit of large detunings, Δ1 = 𝜔5−𝜔2, Δ2 = 𝜔5−𝜔3, when𝜔2 = 𝜔1,𝜔4 = 𝜔3

and Δ𝑖 ≫ 𝛼, 𝑔, the coupling between T5 and the rest of the system reduces to

𝑔
(1)
𝑧𝑧 𝑎

†
5𝑎5𝑎

†
2𝑎2 + 𝑔(2)𝑧𝑧 𝑎†5𝑎5𝑎

†
3𝑎3, (4.16)

when 𝑔𝑖𝑧𝑧 =
𝑔2

Δ2
𝑖

𝛼. This Hamiltonian becomes

𝐻 =
𝑔𝐷𝑅1

2
𝑋1 +

𝑔𝐷𝑅2

2
𝑋2 + 𝑎†5𝑎5

(
𝑔
(1)
𝑧𝑧 𝑍1 + 𝑔(2)𝑧𝑧 𝑍2

)
. (4.17)

Here, 𝑍𝑖 and 𝑋𝑖 are Pauli operators of the 𝑖-th dual-rail qubit defined in the standard
way for the computational basis states |0⟩ and |1⟩, as defined in Eq. (4.6). In
principle the interaction terms are off resonance and thus could be neglected unless
𝑔
(𝑖)
𝑧𝑧 is modulated at the dual-rail qubit frequency 𝑔𝐷𝑅𝑖.

The 𝑍𝑍 coupling term 𝑔
(𝑖)
𝑧𝑧 could be modulated by a parametric drive of the detuning

resulting in 𝑔𝑖𝑧𝑧 =
𝑔2

(Δ𝑖+𝛿 cosΩ𝑡)2𝛼 ≈
𝑔2

Δ2
𝑖

𝛼 − 2 𝑔
2

Δ2
𝑖

𝛼 𝛿
Δ𝑖

cosΩ𝑡. Thus, by modulating
the coupler frequency, and thus the detuning between the coupler and the dual
rails, it is possible to realize an effective Hamiltonian 𝑔𝑚

2 𝑎
†
5𝑎5𝑍1 or 𝑔𝑚

2 𝑎
†
5𝑎5𝑍2.

Moreover, by modulating at both frequencies it is possible to realize a Hamiltonian



149
𝑔𝑚
2 𝑎
†
5𝑎5(𝑍1 + 𝑍2). By adding local terms this Hamiltonian could be written as

𝐻𝑝 =
𝑔𝑚
2 | 𝑓 ⟩⟨ 𝑓 | (𝑍1 + 𝑍2), where | 𝑓 ⟩ denotes the transmon’s second excited state.

This is exactly what is needed to implement the 𝑍𝑍 gate proposed in Ref. [19].
Here, however, we only aim to use this term to implement a parity measurement,
simplifying the scheme and resulting in higher fidelity.

4.C.1 Parity measurement scheme
We propose to conduct the parity measurement via the ground state |𝑔⟩ and the
second excited state | 𝑓 ⟩ manifold, enabling us to detect amplitude damping of the
transmon by measuring the first excited state |𝑒⟩. The protocol starts with the state

|𝑔 + 𝑓 ⟩|𝛼0̄0̄ + 𝛽1̄0̄ + 𝛾0̄1̄ + 𝛿1̄1̄⟩, (4.18)

where the basis state of the dual-rail qubit is defined as in Eq. (4.6). By setting the
total time so that 𝑔2 𝑡 = 𝜋 the unitary 𝑒𝑖𝐻𝑝𝑡 propagates the state to

|𝑔 + 𝑓 ⟩|𝛼0̄0̄ + 𝛿1̄1̄⟩ + |𝑔 − 𝑓 ⟩|𝛽1̄0̄ + 𝛾0̄1̄⟩, (4.19)

which, followed by measuring the operator |𝑔 + 𝑓 ⟩⟨𝑔 + 𝑓 | − |𝑔 − 𝑓 ⟩⟨𝑔 − 𝑓 |, realizes
the parity measurement. The main advantage of this scheme is that amplitude
damping is heralded, and the phase noise of the transmon does not propagate to
the dual-rail qubits because the coupling term 𝑎

†
5𝑎5 commutes with the noise term.

Thus, the transmon’s phase noise only affects the measurement error, benefiting
from a large threshold, as discussed in Ref. [65]. This property of the measurement
scheme allows for the utilization of a low-coherence single transmon and does not
necessitate the use of a dual-rail qubit as an ancilla or a coupler, which would have
slowed down the protocol considerably.

The parity measurement itself is slower by a factor of 2 than the regular 𝑍𝑍 term
between two transmons and the gate should be realized twice, once for each dual
rail. The gate itself could be achieved at around 80 ns as shown in Fig. 4.13. The
dephasing due to the dual-rail qubit would be of the order of ∼ 2× 80 ns

2.5 ms ∼ 3× 10−5

for each parity measurement, for the Markovian case and down to the 10−9 level
for the non Markovian one, where the estimation of the 2.5 ms coherence time is
based on results in Ref. [24]. Thus, the main source of dephasing would be the
erasure measurements. The erasure measurement takes a similar amount of time
as a regular measurement, which could be performed in less than 100 ns [66] or
even below 50 ns [67], which is comparable to the gate time. Thus, we anticipate
that the measurement induced dephasing will be the main source of noise in this
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Figure 4.12: Error terms that restrict the accuracy of the parity measurements are
illustrated. The level structure of the dual-rail qubit is depicted in each column
based on the ancilla transmon state, which can be either |𝑔⟩, |𝑒⟩, or | 𝑓 ⟩. When
inducing a transition between the states |01 + 10⟩ and |01 − 10⟩ by modulating the
detuning, unwanted couplings, highlighted in red, will cause leakage and constrain
the gate fidelity.

scheme and should be of the order of 10−4 [24]. Since the erasure measurement
could, in principle, be realized in parallel with the gate implementation, the erasure
measurement may not incur an additional cost in terms of fidelity. Therefore, the
blue solid line should coincide with the blue dashed line in Fig. 4.6(e).

The low transmon’s coherence will only limit the measurement fidelity to the level
of ∼ 160 ns

𝑇2
∼ 0.5%, where 160 ns is the parity measurement time, which is not

a real limitation as measurement fidelities are already limited to that level due
measurement errors.

The gate speed will be limited by the off-resonant error terms which will cause
leakage at the end of the gate. These transitions are shown in Fig. 4.12. As these
transitions are detuned by 𝜔𝑇−𝑔𝐷𝑅

2 , where 𝜔𝑇 is the transmon frequency and 𝑔𝐷𝑅 is
the dual-rail gap, the error terms are approximately 8

((𝜔𝑇−𝑔𝐷𝑅)𝑇𝑔)4
[68]. Assuming

we target a fidelity of around 10−4 the gate time should be of the order of 40 ns.

We numerically validate the analytical estimate of the parity check fidelity, as shown
in Fig. 4.13. We employed a one-parameter pulse shape for the detuning modulation
envelope, given by cos(𝑡𝜔)

(
1 −

(
1 − sin

(
𝜋𝑡
Tt

) )𝑚 )𝑚, where 𝑇 is an optimization pa-
rameter and we set 𝑚 = 6. Using this configuration, a fidelity of 10−3 was achieved.
By increasing the number of optimization parameters, both the fidelity and the pulse
time are expected to improve considerably.
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Figure 4.13: Simulation of one half of a parity check, i.e., a state-dependent 2𝜋
rotation of the dual-rail qubit conditioned on the state of the coupler. The simulation
is done for a GHz detuning between the dual-rail qubit and the ancilla, coupling
of 270 MHz and the dual-rail coupling of 145 MHz. The figure shows oscillations
between | 𝑓 ⟩

��0̄ + 1̄
〉

(yellow) to | 𝑓 ⟩
��0̄ − 1̄

〉
(blue) and back, the final state acquires a

𝜋 phase with respect to the inital state.

4.D Details of numerical simulations
We present more details on how the simulations were performed. For a given circuit,
the state is initialized as the eigenstate of a chosen logical operator, and an error
is reported if the logical operator is decoded to the wrong value at the end of the
simulation 3. Because we are interested in threshold values, we assume perfect
initialization and a noiseless final measurement. We run the simulation for 9𝑑
noisy measurement rounds for 𝑑 = 4, 8, 12, 16, 20 to obtain 𝑝′

𝐿
, and then report the

normalized error rate per 3𝑑 rounds calculated via 𝑝𝐿 = 1
2 (1−(1−2𝑝′

𝐿
)1/3) ≈ 𝑝′

𝐿
/3.

The logical error rate 𝑝𝐿 is calculated as the average over at least 1000 circuit
realizations (from a given pattern of erasure check detection events), where each
circuit realization is sampled 200 times.

The threshold surfaces in Fig. 4.6 are obtained by sweeping an error parameter
(usually 𝑝, but sometimes 𝑞 or 𝑒 for points where 𝑝 = 0) in the neighborhood of
a suspected threshold point in the (𝑒, 𝑝, 𝑞) phase space. The threshold value is
estimated by fitting the universal scaling ansatz for critical points of phase transi-
tions [69, 70]. That is, around the threshold, we assume the form

𝑝𝐿 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (4.20)
3Because Floquet codes encode two logical qubits, the word error rate is four times the values

presented if we assume independent 𝑋 and 𝑍 failure probabilities. The thresholds will remain the
same.
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for the scaled variable
𝑥 = (𝑦 − 𝑦∗)𝑑𝛼 , (4.21)

where 𝑝𝐿 is the logical error rate, 𝑦 ∈ {𝑒, 𝑝, 𝑞} is the swept error variable, and
𝑎, 𝑏, 𝑐, 𝑦∗, 𝛼 are fitting parameters; see Fig. 4.14 for example calculations. In
Fig. 4.15, we present additional cross sections of the threshold surfaces from Fig. 4.6.

(a) (b)

Figure 4.14: Rescaled data for the sample threshold calculations in Fig. 4.6 based
on Eqs. (4.20) and (4.21), where 𝑦 = 𝑝 is the swept variable. (a) Sample calculation
for the ancilla scheme threshold, giving 𝑦∗ = 9.1×10−4, 𝛼 = 0.97, and the quadratic
𝑝𝐿 = 570𝑦2 + 7.9𝑦 + 0.034. (b) Sample calculation for the EM scheme threshold,
giving 𝑦∗ = 1.8 × 10−3, 𝛼 = 0.99, and the quadratic 𝑝𝐿 = 210𝑦2 + 4.2𝑦 + 0.042

(a) (b)

Figure 4.15: Cross sections of the threshold surfaces from Fig. 4.6 for different
values of 𝑞 (solid lines) for the (a) ancilla and (b) EM schemes. The dashed
lines correspond to the scheme with erasure checks and reset that do not introduce
additional errors, bounding the performance of any erasure scheme. The dashed-
dotted lines correspond to the standard scheme with no erasure checks and ideal
reset (which can also be interpreted as the code’s performance under leakage).
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C h a p t e r 5

OPTIMIZING QUANTUM ERROR CORRECTION PROTOCOLS
WITH ERASURE QUBITS

This chapter is temporarily redacted.
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