
Bootstrapping the Gross-Neveu-Yukawa Archipelago and

Skydiving Algorithm

Thesis by

Aike Liu

In Partial Fulfillment of the Requirements for the

degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2024

Defended on May 13, 2024

ii

© 2024

Aike Liu
ORCID: 0009-0009-8509-4635

All rights reserved

iii

Acknowledgements

I am profoundly grateful to a number of people whose support has been indis-

pensable in my journey of completing my PhD.

Firstly, I owe my deepest gratitude to my advisor, Dr. David Simmons-Duffin,

whose guidance, patience, profound expertise, and broad knowledge base laid

the cornerstone of my graduate research, as well as my future career. There

are tons of moments throughout the years when I was overwhelmed by doubts

of my projects, research interest, and future career, and it was only because of

his encouragement that I was able to continue my PhD studies. His insights

and innovative ideas greatly enriched my experience and his support has been

a vital component in my growth as a researcher. Furthermore, his mentorship

extended beyond academic guidance, providing me with invaluable advice on

career choices and research opportunities. He is always open to questions and

discussions, and I am constantly amazed by how considerate and understand-

ing a person could be. I am immensely thankful for his generosity in sharing

his knowledge and experience and his genuine care.

I would also like to thank my amazing collaborators: Dr. Rajeev Erramilli,

Dr. Luca Iliesiu, Dr. Petr Kravchuk, Dr. David Poland, Dr. Ning Su,

and Dr. Balt C. van Rees. Their perspectives, expertise and innovations

were invaluable, and our discussions always led to better clarity and improved

results. The exchange of ideas and the collective tackling of complex problems

were profoundly enriching experiences that I will carry forward into my future

career.

My thanks extends to the Simons Collaboration on the Nonperturbative Boot-

strap which David introduced me to. Through the summer schools and the

winter annual conferences of our collaboration, I have built connections and

friendships with many brilliant researchers working at the frontier of my field.

Our meetings are always fruitful while most enjoyable.

iv

I want to express my gratitude to all the members of the theoretical physics

group with special thanks to Dr. Hirosi Ooguri, Dr. Anton Kapustin, and Dr.

David Hsieh for serving on my candidacy and thesis committees. And a special

note of thanks goes to Carol Silberstein, our administrative assistant, whose

kindness and considerations have always created a welcoming and supportive

environment.

I am deeply thankful to all my peer students and postdocs in the theory

group, especially my officemate, Jaeha Lee, and my friend since undergraduate,

Yufeng Du, for their unwavering support throughout the years. PhD is a long

and most of the time, stressful period, and I could not have completed my PhD

without my friends. Their wholehearted care and generosity strengthened my

resolve and capacity to persevere through challenges.

Lastly, but most importantly, I would like to thank my parents. It has been

almost nine years since I left home and started my studies in a foreign land,

but the physical distance has never been an obstacle in our family. We are

always close and there are thousands of evenings when we chatted for hours till

midnight. Their unconditional love and encouragement, have not only shaped

my career but also sustained me through the ups and downs of my life. I am

eternally grateful for their belief in me and dedicated support.

Completing this journey would not have been possible without the contribu-

tions and support of each one of these individuals. I am deeply thankful to

everyone who played a part in making this achievement possible.

v

Abstract

The goal of the conformal bootstrap is to solve conformal field theories (CFTs)

by imposing physical constraints including symmetries and unitarity. It has

been a powerful tool to rigorously constrain CFT data, especially for strongly-

coupled theories where traditional perturbative methods fail. Based solely

on unitarity, symmetry, and assumptions about the spectrum of scaling di-

mensions, the bootstrap method has produced stringent bounds on critical

exponents of several universality classes describing real-world statistical and

quantum phase transitions.

The numerical bootstrap method combines the physical constraints with con-

vex optimization. Specifically, the physics problems are converted into semidef-

inite programs and solved numerically. Such methods have led to precise and

rigorous predictions on critical exponents of condensed-matter systems, such

as 3d Ising models and the O(N) models. In my first research project, we per-

form a bootstrap analysis of a mixed system of four-point functions of bosonic

and fermionic operators in parity-preserving 3d CFTs with O(N) global sym-

metry. Our results provide rigorous bounds on scaling dimensions and OPE

coefficients of the O(N) symmetric Gross-Neveu-Yukawa (GNY) fixed-points,

constraining these theories to live in isolated islands in the space of CFT data.

We delivered the bounds on the critical points with N = 1, 2, 4, and 8 which

have applications to phase transitions in condensed matter systems. We were

also able to demonstrate the existence of the supercurrent when supersymme-

try emerges at N = 1 without prior assumptions of the symmetry.

On the other hand, as we progress towards larger systems to study and to

obtain more precise bounds on various CFTs, the limits on computational re-

sources cannot be overlooked. To tackle the numerical challenges and improve

efficiency, my second research project studies families of semidefinite programs

(SDPs) that depend nonlinearly on a small number of “external” parameters.

vi

Such families appear universally in numerical bootstrap computations. The

traditional method for finding an optimal point in parameter space works by

first solving an SDP with fixed external parameters, then moving to a new

point in parameter space and repeating the process. Instead, we unify solving

the SDP and moving in parameter space in a single algorithm that we call “sky-

diving”. We test skydiving on some representative problems in the conformal

bootstrap, finding significant speedups compared to traditional methods.

vii

Published Content and

Contributions

[1] A. Liu, D. Simmons-Duffin, N. Su and B. C. van Rees,

“Skydiving to Bootstrap Islands,” [arXiv:2307.13046 [hep-th]].

https://arxiv.org/abs/2307.13046

Contributions:

• Identified the theoretical physical constraints on the Gross-Neveu-

Yukawa (GNY) theory at criticality.

• Programmed these constraints in Haskell and ran the semidefinite

program (SDP) solver on high performance computing clusters to

locate the theory in a multi-dimensional parameter space.

[2] R. S. Erramilli, L. V. Iliesiu, P. Kravchuk, A. Liu, D. Poland and

D. Simmons-Duffin,

“The Gross-Neveu-Yukawa archipelago,”

Journal of High Energy Physics, Volume 2023, article number 36, (2023),

JHEP 02, 036 (2023),

doi:10.1007/JHEP02(2023)036, [arXiv:2210.02492 [hep-th]].

https://link.springer.com/article/10.1007/JHEP02(2023)036

Contributions:

• Studied families of semidefinite programs (SDPs) that depend nonlin-

early on a small number of “external” parameters, a typical problem

in numerical bootstrap computations.

• Designed an algorithm named ”skydiving” which unifies solving the

SDP and optimizing in parameter space.

• Implemented the new algorithm in C++ and wrote a Haskell interface

to test the solver on real physical. problems.

https://arxiv.org/abs/2307.13046
https://link.springer.com/article/10.1007/JHEP02(2023)036

viii

Table of Contents

Acknowledgements . iii
Abstract . v
Published Content and Contributions vii
Table of Contents . viii
Chapter I: Introduction . 1
Chapter II: The Gross-Neveu-Yukawa Archipelago 7

2.1 Introduction . 7
2.2 Theoretical background and spectrum assumptions 12
2.3 Numerical setup . 24
2.4 Results . 42
2.5 Discussion . 47
2.6 Appendix . 49

Chapter III: Skydiving to Bootstrap Islands 60
3.1 Introduction . 60
3.2 Non-linear semidefinite programming problems 63
3.3 Skydiving algorithm . 73
3.4 Implementation . 87
3.5 Example runs . 90
3.6 Conclusions and future directions 104

Bibliography . 107

1

Chapter 1

Introduction

Among quantum field theories (QFTs), conformal field theories (CFTs) the

theories that are invariant under the conformal group. While the familiar con-

cept of Poincaré group, the symmetry group of relativistic field theory in flat

space, leaves the flat space metric ηµν = diag(−,+,+,+) invariant, conformal

group consists of spacetime transformations that preserve angles, but not nec-

essarily distances. In terms of the spacetime metric, we are requiring that the

transformation preserves the metric up to a scaling factor,

g′µν(x
′)→ Λ(x)gµν .

The motivations of studying conformal symmetry come from various of fields

of physics. First of all, CFTs are the end points of renormalization flows of

QFTs and hence, studying CFTs amounts to studying the definition of QFTs.

They appear in real-world condensed matter systems as CFTs describe critical

points where a continuous phase transition occurs. This gives us the power to

show the power law decay of correlation functions and predict the correlation

length that can be confirmed by experiments. Finally, they draw attentions

in the realm of holography and quantum gravity thanks to the AdS/CFT

correspondence.

Thanks to the fact that the conformal field theories have more symmetry than

standard QFTs, a new set of methods, the conformal bootstrap, was devel-

oped to solve the space of CFTs relying purely on mathematical consistency

conditions. One of the primary merits of CFT bootstrap is that the method

is non-perturbative compared to traditional QFT calculations. Hence, we are

2

able to give rigorous bounds on strongly coupled CFTs where the perturbation

theory losses its accuracy.

Let us now briefly describe what a CFT consists of and how to characterize

it. The operators in a CFT can be classified into two categories, the primary

operators and their descendants. The primary operators are irreducible repre-

sentations of the conformal group SO(d+ 1, 1). They are be labelled by their

characters, the scaling dimension ∆, and the spin `. The descendants can be

obtained by acting derivatives on the primary operators.

primaries: O∆,`, descendants: (∂µ1 ...∂µk) (O∆,`)

Given this relation, we can limit our attention to the properties of the pri-

mary operators in a certain theory. Furthermore, if we study the two-point

and three-point correlation functions of the primary operators, we observe the

following forms:

〈Oi(x1)Oj(x2)〉 ∼ 1

|x1 − x2|2∆O
,

〈Oi(x1)Oj(x2)Ok(x3)〉 =
∑

a∈spin comb.

λaijkTa,ijk(x1, x2, x3),

where the T functions are known mathematical function. The variables in

these expressions are the scaling dimensions ∆O and the coefficients, which we

call the operator product expansion (OPE) coefficients, λaijk. As any higher-

point correlation functions can be expanded as sums of products of the two-

point and three-point correlation functions, once the set of {∆O, λijk} are

fixed, all the correlation functions in this CFT is known. Therefore, the aim

of identifying CFT is nailed down to identify this set of parameters {∆O, λijk}
of the primary operators, which we call the CFT data.

So how can we solve, or at least bound, these parameters for a CFT? To

begin with, the most basic requirement we can impose is unitarity, requiring

that all the states in a physical CFT have to have positive norm. From these

constraints on two types of descendants, |P |O〉|2, |P 2|O〉|2 ≥ 0, we have

∆ ≥ d− 2 + ` for ` ≥ 1 ,

∆ ≥ d− 1

2
for ` = 1/2 ,

∆ ≥ d− 2

2
for ` = 0 .

3

But we can do much better. The major source of power of the conformal

bootstrap comes from the four-point function and crossing symmetry,

〈Oi(x1)Oj(x2)|Ok(x3)Ol(x4)〉 = ±〈Ok(x3)Oj(x2)|Oi(x1)Ol(x4)〉, (1.1)

which is the associative properties of the operator product expansion,

Just as the two-point and three-point functions are constrained by the confor-

mal symmetry to have almost fixed forms, so are the four-point functions,

〈Oi(x1)Oj(x2)Ok(x3)Ol(x4)〉 =
∑
I

gIijkl(u, v)TI,ijkl(x1, x2, x3, x4),

except that now the coefficients in front of the T functions are no longer a

number, but a function gIijkl(u, v) of the cross-ratios

u =
|x1 − x2||x3 − x4|
|x1 − x3||x2 − x4

, v =
|x1 − x2||x3 − x4|
|x2 − x3||x1 − x4

.

These functions g’s are also known functions of the cross-ratios and the CFT

data {∆O, λijk}. Hence, the crossing equation 1.1 puts constraints on our CFT

data. The rest of conformal bootstrap is to employ various methods to find out

which sets of {∆O, λijk} obey these constraints and which ones are excluded.

It is not surprising that such system of variables and constraints can be gigantic

and very difficult to solve by hand in general. There have been extensive

analytic results in 2D and some in 4D thanks to the algebraic properties of

the primary operators in the particular dimensions. But in odd dimensions, the

most powerful tool comes from numerical methods and convex optimizations.

Numerical bootstrap[13, 5, 19, 20], is a specific application of the conformal

bootstrap approach which formulates the physical constraint as a semidefinite

program (SDP) and utilizes numerical convex optimization techniques to solve

the SDP. The idea can be outlined pictorially. After applying OPE to the

crossing equation, we obtain some constraints in the following form:∑
O∆,`

λ2
OF(∆,`)(u, v) = 0

4

where F is some linear combinations of the g(u, v) functions. If we think of

the F ’s as vectors and since the coefficient are all non-negative, the sum can

only be zero if the vectors are distributed in certain ways. The two scenarios

in the figure correspond to the cases when the constraint can be satisfied and

when it cannot.

The task of the semidefinite program is to find a functional α, or a hyperplane

in the figure, to prove that the constraint can never be satisfied no matter

what values of λ’s take and hence the CFT which {∆O, λijk} encodes is ruled

out.

The scale of a typical SDP in numerical bootstrap is large, especially when we

want to use more and more crossing equations of various operators to study

more complex theories and to obtain more precise results. Specifically, SDP

solver SDPB [1, 2] was implemented to tackle the large-scale bootstrap problems

specifically. Furthermore, accompanying softwares were developed to compute

conformal blocks of both scalar and spinning operators efficiently[16, 17, 15,

18]. And advanced algorithms including the Delaunay search and “cutting

surface” OPE search algorithms developed in [10]. allow us to explore a multi-

dimensional subspace of CFTs {∆O, λijk}.

Thanks for the advanced computational methods, the numerical conformal

bootstrap has led to abundant new results in the last decade. These include

precise determinations of critical exponents of the 3d critical Ising model [3, 4,

5, 1, 6, 7] which describes liquid-vapor transitions and uniaxial magnets, and

the O(N) models [8, 9, 6] — in particular the O(2) model [10] which describes

the superfluid transition in 4He, and the O(3) model [11] which describes

classical Heisenberg ferromagnets.

In Chapter 2, we extended the methods listed above to study the 3d O(N)-

symmetric Gross-Neveu-Yukawa (GNY) model. This is the first bootstrap

project exploring a scalar-fermion system. We used the formalisms developed

5

in [14, 15] and the conformal block computation algorithms developed and im-

plemented in blocks 3d [16, 17, 15, 18]. We also implemented several Haskell

libraries (described in appendix 2.6.1) to efficiently and robustly set up sys-

tems of mixed correlators and compute the resulting bounds. We explored the

space of external scaling dimensions and external OPE coefficients using the

Delaunay search and “cutting surface” OPE search algorithms developed in

[10]. We delivered the rigorous bounds on the critical points with N = 1, 2, 4,

and 8 with 3 to 5 significant digits. At the special case N = 1 where the model

processes an emergent supersymmetry, we were also able to demonstrate the

existence of the supercurrent without prior assumptions of the symmetry.

On the other hand, as the numerical toolbox enable us to study ever larger

systems of crossing equations to obtain more precise bounds on various CFTs,

they pose new numerical challenges. For example, the dimension of the matrix

variables we have to solve in a SDP grows from O(103) to O(106) and the

physical parameter (scaling dimensions or OPE coefficients) space we have

to search over grows from dim= 1 to dim= 8. If we simply combine the

exiting Delaunay search algorithm with SDPB, we encounter the common

curse of dimensionality and the computational resources needed soon become

intractable even for high performance clusters. In order to bound the space

of CFT data to higher precision, we must find efficient numerical methods to

search over the physical parameters and solve the SDPs.

The second phase of my graduate research focused on developing such a

method, which we call the skydiving algorithm, as will be elaborated on in

Chapter 3. We integrated the idea of the navigator function of [12] into the

solver SDPB. A navigator function is a continuous function of the physical pa-

rameter of the CFTs we wish to explore. It assigns a number to any point

in the parameter space that indicates whether it is allowed or ruled out by

the constraints of the target CFTs. However, the original navigator function

requires solving O(2# of parameters) many SDPs which is very costly. Instead,

we implemented our algorithm so that the navigator function information can

be used efficiently without calculating it in details. At the end of this project

we achieved greater than 80% improvement in efficiency compared to previous

methods.

The main body of this thesis is divided into two chapters, devoted to the

two projects mentioned above respectively. Each chapter consists of a more

6

detailed introduction to the background and the state of the art. Then the

methods and results will be presented.

7

Chapter 2

The Gross-Neveu-Yukawa

Archipelago

2.1 Introduction

The conformal bootstrap [21, 22, 23] has emerged as a powerful tool to rigor-

ously1 constrain CFT data of strongly-coupled fixed points. Based solely on

unitarity, symmetry, and assumptions about gaps in the spectrum of scaling di-

mensions, the bootstrap has produced stringent bounds on critical exponents

of several universality classes describing real-world statistical and quantum

phase transitions. These include the 3d critical Ising model [3, 4, 5, 1, 6, 7]

which describes liquid-vapor transitions and uniaxial magnets, and the O(N)

models [8, 9, 6] — in particular the O(2) model [10] which describes the su-

perfluid transition in 4He, and the O(3) model [11] which describes classical

Heisenberg ferromagnets.

The Ising and O(N) models are perhaps the simplest 3d universality classes

that can be reached via a renormalization group (RG) flow from a scalar

theory. In this work, we focus on perhaps the simplest 3d universality class

involving fermions: the O(N)-symmetric Gross-Neveu-Yukawa (GNY) model.

The GNY model contains N Majorana fermions ψi transforming in the vector

representation of O(N), interacting with an O(N)-singlet pseudoscalar φ [24].

1Throughout this paper, when stating that our bootstrap results are rigorous we mean
that they do not rely on any unstated assumptions about QFTs. However, the bounds
are not completely rigorous in the mathematical sense since they rely on some technical
assumptions about our search algorithms (for example, over OPE space).

8

The Lagrangian is2

LGNY = −1

2
(∂φ)2 − i1

2
ψi/∂ψi −

1

2
m2φ2 − λ

4
φ4 − ig

2
φψiψi. (2.1)

This theory has a critical value of m2 below which φ spontaneously gets a

nonzero vacuum expectation value (VEV), giving a mass to ψi and, conse-

quently, breaking parity. Above the critical value of m2, the VEV of φ vanishes,

parity is preserved, and the fermions are massless. At the critical value of m2,

this theory is expected to flow to a CFT with a single relevant parity-even

O(N)-singlet scalar operator ε ∼ φ2.

Beyond serving as one of the simplest models of scalar-fermion interactions

in quantum field theory, the GNY universality classes have been proposed

to describe a variety of quantum phase transitions in condensed matter sys-

tems with emergent Lorentz symmetry. For example, this model and some

of its variations have been proposed to describe phase transitions in graphene

(using N = 8) [26, 27, 28, 29], time-reversal symmetry breaking in d-wave su-

perconductors (also for N = 8) [30, 31], and time-reversal-symmetry breaking

transition of edge-modes in topological superconductors (for several low values

of N) [32]. For the special case N = 1, the GNY critical point is expected to

exhibit emergent supersymmetry at the transition [33].

The GNY models have been studied previously with the conformal bootstrap

in [25, 34]. Those works performed a bootstrap analysis of a single four-point

correlator of fermionic operators 〈ψiψjψkψl〉.3 The resulting bounds exhibited

a sequence of kinks on the boundary of the space of allowed CFT data, which

showed good agreement with perturbative estimates of the scaling dimensions

of the GNY critical points (such as the ε [35, 36, 37, 38, 39, 29, 40, 41] and

large-N expansions [42, 43, 44, 45, 46, 25, 39, 47, 48]). However, bootstrapping

the four-fermion correlator was not enough to constrain the GNY theories to

lie within isolated islands.

In this work we expand this study to include a mixed system of scalar and

fermionic operators, characterized by their representations under parity and

2Here we are following the conventions in appendix A of [25] and contracting the indices
of the two components of the Majorana fermions by ψiψi = Ωαβψi,αψi,β . Note that ψiψi is
parity-odd — hence the Yukawa term φψiψi preserves parity, since φ is a pesudoscalar.

3To be more precise, in [25] no global symmetry was assumed, while [34] considered
external fermions that transformed in the vector representation of an O(N) global symmetry
as in the GNY theories.

9

∆ψ ∆σ ∆ε ηψ ηφ ν−1

N = 2
nmax = 18,∆σ′ > 2.5 1.0672(25) 0.657(13) 1.74(4) 0.134(5) 0.313(25) 1.26(4)
nmax = 18,∆σ′ > 3 1.06861(12) 0.6500(12) 1.725(7) 0.13722(24) 0.3000(23) 1.275(7)
ε-exp w/DREG3 [41] 1.07(2) 0.6467(21) 1.724(15) 0.1400(39) 0.2934(42) 1.276(15)
Monte Carlo [49] 1.068(3) 0.655(5) 1.81(3) 0.136(5) 0.31(1) 1.19(3)
N = 4
nmax = 18,∆σ′ > 3 1.04356(16) 0.7578(15) 1.899(10) 0.08712(32) 0.5155(30) 1.101(10)
ε-exp w/DREG3 [41] 1.051(6) 0.744(6) 1.886(33) 0.102(12) 0.487(12) 1.114(33)
Monte Carlo* [50] − 0.755(15) 1.876(13) − 0.51(3) 1.124(13)
N = 8
nmax = 18,∆σ′ > 3 1.02119(5) 0.8665(13) 2.002(12) 0.04238(11) 0.7329(27) 0.998(12)
ε-exp w/DREG3 [41] 1.022(6) 0.852(8) 2.007(27) 0.043(12) 0.704(15) 0.993(27)
Monte Carlo* [51] 1.025(10) 0.79(1) 2.0(1) 0.05(2) 0.59(2) 1.0(1)

Table 2.1: A summary of the bootstrap estimates obtained in this paper for
the three external operator that we study. Error bars in bold are rigorous.1

We compare these result to those obtained from the ε-expansion and previous
Monte Carlo studies. Methods denoted by * indicate that they study the
closely related chiral Ising fixed point as opposed to the model studied in
this work. The ε-expansion work [41] relies on the DREG3 prescription to
analytically continue spinors away from d = 4.

the global O(N) symmetry. We focus on the critical points with N = 1, 2, 4,

and 8, which capture the experimentally-relevant transitions described above

and are outside the perturbative control of the large-N expansion. The four-

point functions we analyze include all combinations allowed by the symmetries

of ψi (the lowest dimension fermion in the vector representation of O(N)),

σ ∼ φ (the lowest dimension, parity-odd, O(N) singlet scalar), and ε ∼ φ2

(the lowest dimension, parity-even, O(N) singlet scalar). We refer to σ, ψi,

and ε as “external operators” (as opposed to the “internal operators” that

appear in their OPEs). By simultaneously imposing crossing symmetry and

unitarity for all four-point functions of external operators, we show that each

GNY critical point lies within an isolated island that severely constrains its

low-lying scaling dimensions.

Our bounds on the scaling dimensions of σ, ψi, and ε for the theories with

N = 2, 4, and 8 are illustrated in figures 2.1 and 2.2, and we give a numerical

summary in Table 2.1. Results for the N = 1 theory using similar methods are

shown later in Figure 2.8. For all values of N , our results are close to perturba-

tive estimates from resummations of the ε-expansion. For N = 8, the large-N

estimates are also close to the island that we find. Monte Carlo estimates for

some of the scaling dimensions are also available for N = 2, 4, 8 [49, 55, 51];

10

N  8

N  4

N  2

N  1

Large-N

ε-expansion

1.00 1.02 1.04 1.06 1.08 1.10

Δψ
0.5

0.6

0.7

0.8

0.9

1.0
Δσ

The O(N) Gross-Neveu-Yukawa Archipelago

1.0211 1.0212 1.0213

Δψ0.865

0.866

0.867

0.868
Δσ

N  8

1.0434 1.0436 1.0438

Δψ
0.756

0.757

0.758

0.759

Δσ

N  4

1.0685 1.0687

Δψ
0.648

0.649

0.65

0.651

Δσ

N  2

Figure 2.1: A compilation of our N = 2, 4, 8 islands at nmax = 18, projected
onto the (∆ψ,∆σ) plane, compared against the perturbative estimates in the
large-N expansion (represented by the dotted blue curve), Borel-resummations
of the (4−ε)-expansion [41] (represented by the orange boxes), and the location
of theN = 1 island from theN = 1 supersymmetric Ising bootstrap [52, 53, 54]
(represented by the x).

these results, while close to our islands, have error bars that, in most cases,

are disallowed by the rigorous bounds obtained from the bootstrap (see sec-

tion 2.4). In all cases, our work presents a significant jump in the precision of

scaling dimension determinations.

An important subtlety is that there are in fact two different GNY models

that are often confused in the literature, having the same number of fermions

but different global symmetry groups. In addition to the O(N) GNY models

discussed above, there are also “chiral” GNY models that possess anO(N/2)2o
Z2 global symmetry. These models, sometimes referred to as being in the

“chiral Ising” universality class, are nearly degenerate with the O(N) GNY

models for the most common low-lying operators, being only distinguishable

at high perturbative order. The Monte Carlo estimates mentioned above at

11

N  8

N  4

N  2

N  1

Large-N

ε-expansion

σ-ϵ Bootstrap, Δσ'>3

0.5 0.6 0.7 0.8 0.9

Δσ
1.4

1.6

1.8

2.0

2.2
Δϵ

The O(N) Gross-Neveu-Yukawa Archipelago

0.865 0.866 0.867 0.868

Δσ
1.99

2.

2.01

Δϵ

N  8

0.756 0.758 0.76

Δσ
1.89

1.9

1.91
Δϵ

N  4

0.648 0.65 0.652

Δσ
1.715

1.72

1.725

1.73

1.735
Δϵ

N  2

Figure 2.2: A compilation of our N = 2, 4, 8 islands at nmax = 18, projected
onto the (∆σ,∆ε) plane, compared against the perturbative estimates in the
large-N expansion (represented by the dotted blue curve), Borel-resummations
of the (4−ε)-expansion [41] (represented by the orange boxes), and the location
of theN = 1 island from theN = 1 supersymmetric Ising bootstrap [52, 53, 54]
(represented by the x). We also superpose the general σ-ε bootstrap bounds
with the assumption ∆σ′ > 3 from [53].

N = 4, 8 are believed to fall in this class. However, due to the expected

near-degeneracy, we posit that our bootstrap results for the leading operators

also provide good (albeit non-rigorous) estimates of the scaling dimensions in

the O(N/2)2 o Z2 GNY models. In this work we review some of the existing

perturbative estimates for scaling dimensions in both models and provide a

number of new ones that will be useful in our bootstrap study. We will also do

our best to differentiate which of the two critical models is known to describe

various phase transitions discussed in the condensed matter literature.

Another interesting case is the N = 1 GNY model which, as previously men-

tioned, is believed to have emergent supersymmetry at criticality. The island

that we find with mild assumptions about gaps in various sectors of this model,

shown later in Figure 2.8, is fully consistent with this picture. Without mak-

ing any assumptions about supersymmetry in the bootstrap setup, we find:

12

(i) The island lies right on a line along which the low-lying scaling dimensions

are related due to supersymmetry, ∆ε = ∆ψ + 1
2

= ∆σ + 1. (ii) The lowest

dimension operator with spin-3/2 is very close to the unitarity bound across

the entire island, suggesting the existence of (at least) an approximate super-

current for any theory that lies within it. (iii) The N = 1 super-Ising CFT,

whose scaling dimensions have been tightly constrained in previous bootstrap

studies by a priori assuming supersymmetry, can also be seen to live right at

a tip of the island. These computations provide a nice consistency check of

our implementation and suggest that there are no non-supersymmetric fixed

points at N = 1 (consistent with our gap assumptions).

Our work is a culmination of a series of developments in the numerical boot-

strap that extend practical limits to allow studies of a wider set of 3d CFTs.

To set up the crossing equations, we used the formalisms developed in [14, 15]

and the conformal block computation algorithms developed and implemented

in blocks 3d [16, 17, 15, 18]. We also implemented several Haskell libraries

(described in appendix 2.6.1) to efficiently and robustly set up systems of

mixed correlators and compute the resulting bounds. We explored the space

of external scaling dimensions and external OPE coefficients using the Delau-

nay search and “cutting surface” OPE search algorithms developed in [10].

Finally, we solved large-scale SDPs using the solver SDPB [1, 2]. We hope

that these technologies can be used to place comparable constraints on more

complicated 3d CFTs with fermionic degrees of freedom, including extensions

of the GNY models with different global symmetries or Chern-Simons matter

theories whose monopole operators carry half-integer spin.

The structure of this paper is as follows. In section 2.2, we give theoretical

background, including details about the perturbative expansions of the GNY

models. We also discuss the gap assumptions that we impose as well as the

differences between theO(N) GNY models and theO(N/2)2oZ2 GNY models.

In section 2.3, we discuss the numerical setup of our bootstrap problem; the

reader interested solely in results for the GNY model can continue straight to

the next section. There, in section 2.4 we discuss the main results of the paper

and show a series of bounds on scaling dimensions of the low-lying operators

in the theory. We discuss possible future directions in section 2.5.

2.2 Theoretical background and spectrum assumptions

13

Operator Parity O(N) ∆ at large N . ∆ in ε-exp.

ψi + V 1 + 4
3π2N

+ 896
27π4N2 + #

N3 + . . . 3
2
− N+5

2(N+6)
ε+ . . .

ψ′i ∼ φ2ψi + V 3 + 100
3π2N

+ . . . -

χi ∼ φ3ψi − V 4 + 292
3π2N

+ . . . -

σ ∼ φ − S 1− 32
3π2N

+
32(304−27π2)

27π4N2 + . . . 1− 3
N+6

ε+ . . .

ε ∼ φ2 + S 2 + 32
3π2N

− 64(632+27π2)
27π4N2 + . . . 2 +

√
N2+132N+36−N−30

6(N+6)
ε+ . . .

σ′ ∼ φ3 − S 3 + 64
π2N
− 128(770−9π2)

9π4N2 + . . . 3 +
√
N2+132N+36−N−30

6(N+6)
ε+ . . .

ε′ ∼ φ4 + S 4 + 448
3π2N

− 256(3520−81π2)
27π4N2 + . . . -

φk (−1)k S k + 16(3k−5)k
3π2N

− #
N2 + . . . -

σT ∼ ψ(iψj) − T 2 + 32
3π2N

+ 4096
27π4N2 + . . . -

Jµφ2∂µ∂
2φ − A 8 + . . . -

Table 2.2: Large-N [42, 43, 44, 45, 46, 25, 39, 47, 48] and ε-expansion estimates
[35, 36, 37, 38, 39, 29, 40, 41] for the scaling dimensions in the GNY model.
The results for ∆ψ′ and ∆χ are new and derived in appendix 2.6.2. The
numerators denoted by # indicate known expressions that have been omitted
here for concision. ∆ψ has a positive correction at O(1/N3) that can be found
in [44] and ∆φk has a negative correction (for k > 1) at O(1/N2) that can be
found in [47].

2.2.1 Large-N and ε-expansion

Since we need a baseline expectation for the scaling dimensions of the external

operators σ, ψi, ε, and we must also impose gaps for some low-lying internal

operators, we collect the leading estimates for scaling dimensions of the O(N)

GNY model obtained from the large-N expansion and the ε-expansion in Table

2.2. In addition to the known perturbative results, we give new calculations of

the leading correction at large-N for ∆ψ′i
and ∆χi in appendix 2.6.2. Some of

these scaling dimensions have been computed to higher order, primarily in the

context of the closely related O(N/2)2 o Z2 GNY models (discussed further

below). However, the results for the leading scaling dimensions ∆ψ,∆σ,∆ε

are degenerate between the O(N) theory and the O(N/2)2 o Z2 theory up to

3-loop order. For large-N estimates see [42, 43, 44, 45, 46, 25, 39, 47, 48],

for ε-expansion estimates see [35, 36, 37, 38, 39, 29, 40, 41], or see [39] for a

two-sided Pade expansion in the 2 + ε and 4− ε expansion. We will primarily

compare our results to the 4-loop ε-expansion resummations performed in [41],

done using a computation scheme that is believed to be applicable to the O(N)

GNY models.

14

2.2.2 The N = 1 theory and emergent supersymmetry

We also get additional information for our gap assumptions from the N = 1

case which is of interest by itself. This fixed point is expected to exhibit

emergent supersymmetry in the IR and, while this has not been rigorously

checked, there have been numerous perturbative tests of this proposal. The

basic argument relies on the N = 1 critical point having a single relevant

singlet scalar in the IR. That is, we expect that only a single coupling — the

mass m — needs to be tuned in (2.1) to m = m∗(g, λ) in order to reach the

O(1) GNY IR fixed point, and the same fixed point is reached regardless of the

values of g and λ. On the other hand, for N = 1 and λ = g2/2, the interaction

in (2.1) is explicitly N = 1 supersymmetric. After tuning the scalar mass to

the critical point the RG flow will preserve N = 1 supersymmetry.4 Since, as

all other critical RG flows of (2.1), it terminates at the O(1) GNY CFT, this

implies that this CFT has N = 1 supersymmetry. This argument has been

more concretely probed by observing the expected supermultiplet relations

∆ε = ∆ψ + 1/2 = ∆σ + 1 between the ε-expansion results for ∆σ, ∆ψ, and

∆ε obtained at four loop order [40]. These relations were also probed using a

2-sided Padé approximation in the 2 + ε and 4− ε expansions [39].

The emergence of supersymmetry was also probed non-perturbatively with the

conformal bootstrap in [34], where, without explicitly imposing supersymmety,

a kink was seen close to the line relating ∆ψ = ∆σ + 1/2 when imposing the

appropriate bound for ∆σ′ . Nevertheless, since the CFT associated to the

O(1) GNY critical point has no theoretical guarantee to live at the kink and

since the location of the kink in [34] changed heavily with the imposed gap on

∆σ′ , it is interesting to try to constrain the fixed point to lie within an island

through which the line ∆ε = ∆ψ + 1/2 = ∆σ + 1 would pass. In this paper

we will indeed find such a bound by making some mild assumptions about

the gaps in the various sectors of the theory, providing additional evidence for

supersymmetry in N = 1 case; see section 2.4 for details.

By using assuming N = 1 supersymmetry for several scaling dimensions and

4This is slightly more subtle than the Lagrangian (2.1) being supersymmetric. Depend-
ing on the sign of the scalar mass term, we have either a phase with spontaneously broken
supersymmetry and a massless goldstino, or a phase with spontaneously broken time-reversal
symmetry and a mass gap. Supersymmetry is spontaneously broken in the 〈φ〉 = 0 phase
because the fermion remains massless while the scalar gets a mass. The RG flow is not
supersymmetric in this case, and so it is important to tune the effective scalar mass to zero
to obtain a time-reversal invariant and supersymmetric IR theory.

15

OPE coefficients and using a mixed system of scalar operators [52, 53, 54] found

highly accurate estimates for the CFT data in the N = 1 super-Ising critical

theory, the fixed point to which it was suggested that the O(1) GNY model

flows in the IR. For instance, the scaling dimension of ∆σ was found to be [54],

∆σ = 0.5844435(83), from which the scaling dimensions of ∆ε and ∆ψ can also

be found. By imposing relations between scaling dimensions within the same

supermultiplet, [54] also found accurate estimates for the scaling dimensions

of ∆ψ′ = 3.3869(25), ∆χ = 4.88, ∆ε′ = 3.8869(25), and ∆σ′ = 2.8869(25). We

will use these results to inform our gap assumptions for other values of N as

we describe below.

2.2.3 Gap assumptions at N = 1, 2, 4, 8

We now discuss what gaps we can reasonably assume in the spectrum when

trying to find islands for the GNY fixed points. Given the abundance of

evidence in favor of supersymmetry for N = 1 it will be convenient to assume

it when studying the theories with other values of N . Specifically, we can

combine the highly accurate superconformal bootstrap results for the scaling

dimensions of N = 1 theory with the results from the large-N expansion in

a two-sided Padé approximation as shown in figures 2.3 and 2.4. This allows

us to better estimate the scaling dimensions of the various low-lying operators

in the theory and to better assess what gap assumptions we can make in the

various sectors of the theory for the other values of N that we study. We want

to stress that while these approximations are by no means rigorous, we only

use them to motivate our gap assumptions. Given the gap assumptions, which

we state explicitly below, our bounds are rigorous.

The plots in figures 2.3 and 2.4, together with the ε-expansion and other large-

N results, lead us to make the following gap assumptions:

• Since ε, σ and ψi will serve as the external operators in our bootstrap

search, we will not make any assumption about their scaling dimensions.

• We assume that ε is the only relevant neutral scalar operator in the

theory. Consequently, we will assume ∆ε′ > 3. This assumption is

substantiated by the Padé approximation obtained in the bottom-right

plot in Figure 2.3 as well as by ε-expansion estimates.

16

Large-N
[2,1]

1 2 4 8 16
N

0.5

1.0

1.5

2.0

2.5

3.0
Δσ

Large-N
[2,1]
[1,2]

1 2 4 8 16
N

0.5

1.0

1.5

2.0

2.5

3.0
Δϵ

Large-N
[2,1]
[1,2]

1 2 4 8 16
N

2.5

3.0

3.5

4.0
Δσ'

Large-N
[2,1]
[1,2]

1 2 4 8 16
N

3.5

4.0

4.5

5.0
Δϵ'

Figure 2.3: Two sided-Padé approximation for the scaling dimensions of low-
lying scalars, singlets under the O(N) global symmetry. The results are found
using the results for the N = 1 super-Ising model and the large-N estimates
for the GNY models.

• Motivated by the large-N equation of motion which removes the operator

ψiψi from the spectrum of primaries, it will also be useful to impose

bounds on ∆σ′ . The Padé approximation for this scaling dimension is

shown in the bottom-left plot of figure 2.3. It suggests that this operator

is always irrelevant for N ≥ 2. For most of our plots we will make the

assumption of irrelevance ∆σ′ > 3, but for N = 2 we will also study the

more conservative assumption ∆σ′ > 2.5.

• For operators that are not part of the spectrum for N = 1, such as

17

Large-N

[3,1]
[2,2]
[1,3]

1 2 4 8 16
N

1.1

1.2

1.3

1.4

1.5
Δψ

Large-N

[1,1]

1 2 4 8 16
N

3.0

3.5

4.0

4.5
Δψ'

Large-N

[1,1]

1 2 4 8 16
N

4.5

5.0

5.5

6.0
Δχ

Figure 2.4: Two sided-Padé approximation for the scaling dimensions of low-
lying fermionic operators, in the vector representation of the O(N) global
symmetry.

σT , we can no longer rely on the two-sided Padé approximations and

will instead use the estimates from the large-N expansion as well as the

past bootstrap results [34], which showed a kink in the (∆ψ,∆σT) at the

expected location for the GNY critical point. There it was found that

∆σT > 2 for all N which, emboldened by the large-N estimates, we will

take to be our gap value in this sector.

• We will also assume gaps for the low-lying fermionic operators. In par-

ticular, due to the equation of motion /∂ψi = −gφψi,5 χi has a larger

5In mean field theory one would have χi ∝ φψi. However, the equation of motion shows

18

scaling dimension than could be näıvely expected. We will conservatively

assume that ∆χ > 3.5. This assumption is well within the expectations

from the two-sided Padé interpolation that is shown in the lower-right

plot of figure 2.4, which in fact estimates that ∆χ > 4 for all N ≥ 1.

• We will also assume ∆ψ′ > 2, based on the two-sided Padé approximation

shown in the lower-left plot of figure 2.4.

• For the computations at N = 1 we will use a similar set of gap assump-

tions, taking ∆σ′ > 2.5, ∆ε′ > 3, ∆ψ′ > 2, and ∆χ > 3.5.

• We also assume in all cases a small twist gap of 10−6 to improve nu-

merical stability of the semidefinite programming algorithm. That is,

we assume that all operators except the identity, the stress tensor, and

the conserved O(N) current have twist at least 10−6 higher than allowed

by the unitarity bound. This a safe assumption because, based on the

existing estimates of the scaling dimensions of σ and ψ, we expect the

smallest twists to be on the order of 10−2 or more above the unitarity

bound [56, 57].

Let us briefly comment on another interpretation of these gaps and why some of

them may be helpful for isolating the GNY model. One can consider nonlocal

deformations of the GNY fixed point, obtained by coupling its low-dimension

operators to generalized free fields. Similar nonlocal deformations of the GNY

models were discussed in [58] and are generalizations of the description of

the long-range Ising model developed in [59, 60, 61], e.g. one can couple ψ

to a generalized free field χGFF of dimension ∼ 3 − ∆ψ ≈ 2 and potentially

flow to a nearby nonlocal fixed point. Our gap ∆χ > 3.5 then excludes any

such nearby solution to the bootstrap equations. Similarly, one could couple

σ to a generalized free field σGFF of dimension ∼ 3 − ∆σ ≈ 2.2 − 2.4. Our

gaps ∆σ′ > 2.5 or 3 similarly exclude these possible solutions. One could also

consider nonlocal deformations involving the ε, σT , or /∂ψ operators, which

would also be excluded by our gap assumptions. It would be interesting to

give a more systematic study of the nonlocal fixed points (and their dualities)

that could be reached by deforming the GNY models.

that φψi is removed from the primary spectrum, and therefore χi in interacting theory is
expected to have a larger scaling dimension.

19

2.2.4 A distinction between two GNY fixed points

Before diving into the detailed analysis of the condensed matter applications

of the O(N) GNY model in (2.1), we would like to compare this model to

another theory, referred to in the literature as the “chiral” GNY model, which

possesses an O(N/2)2oZ2 symmetry. The distinction between the two models

and physical examples of each universality class is not always clearly described

in the literature. Below we shall show that while the two models flow to

different fixed points, many scaling dimensions and OPE coefficients at the

two fixed points agree up to a high order in a perturbative expansion. To

make the distinction clear, we will henceforth refer to the two theories by their

global symmetry groups.6

In the O(N/2)2oZ2 GNY model there are two species of two-component Majo-

rana fermions, ψLi and ψRi , such that each species has N/2 flavor components.

Both species have a Yukawa coupling to a pseudoscalar φ, but with opposite

signs:

LO(N/2)2oZ2 GNY = −1

2
(∂φ)2 − i1

2
ψAi /∂ψ

A
i −

1

2
m2φ2 − λ

4
φ4 − ig

2
φ(ψLi ψ

L
i − ψRi ψRi)

(not what we study) . (2.2)

Here i = 1 . . . N
2

and A = L,R. Each species of fermion has its own O(N/2)

symmetry. Additionally, there is a discrete Z2 “chiral” symmetry of ψLi ↔ ψRi ,

φ→ −φ which exchanges the fermion species. Note that this symmetry is not

really chiral in (2+1)d since there is no notion of “left” or “right” fermions.7 In

total, the flavor symmetry is O(N/2)2oZ2. When the fermions spontaneously

generate mass due to φ getting a VEV, they preserve a parity and a time-

reversal symmetry but break the Z2 symmetry. The Z2 symmetry breaking

of this theory is characteristic of the so-called chiral Ising universality classes,

and it has been studied extensively [36, 29, 39, 64, 65, 66, 67, 68, 55, 69, 70,

42, 71, 72, 73, 44, 43, 74, 47, 35, 75, 76, 40, 41, 50, 51].

6In discussing the related gauged QED3-GN(Y) theories, there is some literature which

describes a similar distinction with different nomenclature. The
SU(Nf)×U(1)top

ZNf
o ZC2 -

symmetric case is referred to as QED3-GN(Y)+ and the
(SU(Nf/2)2×U(1)b×U(1)top)oZe

2

ZNf
oZC2 -

symmetric case as QED3-GN(Y)− [62, 63]. As far as we are aware, the analogous notation
has not been used regularly in the gauge-free GN(Y) theories.

7It is worth noting that the chiral symmetry is indeed related to the spacetime chiral
symmetry of a (3+1)d fermionic theory with 4-component fermions. This connection is laid
out explicitly in appendix 2.6.3.

20

At the critical value of m2 perturbative calculations show that the model

(2.2) should also be described by a CFT whose scaling dimensions precisely

agree at low perturbative orders with that of the critical model (2.1). Due to

this seeming coincidence of the perturbative estimates of the CFT data, the

distinction between the O(N) GNY universality class and the O(N/2)2 o Z2

GNY a.k.a. chiral Ising universality class has been unresolved.8 We will

now clarify this ambiguity and show that the two models are distinct when

computing observables to higher perturbative orders.

Let us thus compare the two models in the large-N expansion. To compute

correlators in the two models, we consider the Feynman diagrams with the

leading order propagators of φ and ψi (or ψL,Ri) denoted by

O(N) GNY: 〈ψi(x)ψj(y)〉 = δij ,

O(N/2)2 o Z2 GNY: 〈ψLi (x)ψLj (y)〉 = δij , 〈ψRi (x)ψRj (y)〉 = δij ,

In both: 〈φ(x)φ(y)〉 = . (2.3)

The only relevant interactions in the two models are of the form φψψ and

φ(ψ LψL − ψ RψR), respectively, and corrections to the two-point function of

φk are given by fermion loops whose vertices involve such interactions. Since

in a fermionic loop, both the fermions ψL and ψR can always propagate, the

only distinction between the large-N Feynman diagrams of the two models can

come from fermionic loops with an odd number of vertices. In the O(N/2)2oZ2

GNY fixed point, the contribution of such loops is always vanishing since for

each loop in which L fermions propagate, there is a loop in which R fermions

propagate that has the opposite sign,

+ = 0 .
(2.4)

This cancellation is due to the presence of the chiral Z2 symmetry under

which the field φ is charged. In the O(N) model, however, such loops are

not guaranteed to vanish when the odd number k of fermions propagating

8In fact it has been stated that the two models can be related through a field redefinition
of ψL and ψR [27]. However, while that redefinition makes the Yukawa interaction terms in
(2.2) to be the same as in (2.1), the fermionic kinetic terms then differ.

21

through the loop is k ≥ 5.9 This leads to a five-point point function for the

pseudoscalar φ

〈φ(x1)φ(x2)φ(x3)φ(x4)φ(x5)〉 = , (2.5)

that can be explicitly checked to be non-zero at order 1/N3/2.10 Such higher k-

point functions of pseudoscalars are in principle non-zero in 3d CFTs due to the

existence of parity-odd k-point structures for k ≥ 5 [14]. On the other hand,

due to (2.4) the five-point point function of φ in the O(N/2)2oZ2 GNY models

vanishes. While this already proves that the fixed points in the two models

are distinguishable, we would like to see how these differences are manifest in

more commonly discussed observables such as the scaling dimensions of ψi, φ,

or φ2. For this we simply have to find the leading diagram that includes such

loops with an odd number of fermion vertices. For instance, we find

∆φ ⊃
φ(x) φ(y)

∼ 1

N3
, (2.6)

where we show an example diagram (rather than all the diagrams) contribut-

ing to the leading order at which the distinction between the two theories is

present.

Consequently, even in these low-lying scaling dimensions the two models are

different at a fairly high order in 1/N . We can similarly determine the large-

N expansion for all the other various operators in the O(N/2)2 o Z2 GNY

theory. Since these calculations require a lengthy discussion of the irreducible

representation of O(N/2)2 o Z2 — which is not the symmetry for the theory

we rigorously constrain in this paper using the bootstrap method — we discuss

these calculations in appendix 2.6.3.

9For k = 3 such loops can explicitly be shown to vanish due to Tr(/x12/x23/x31) = 0.
Alternatively one can use the fact that the three-point function of pseudo-scalars in 3d is
always vanishing to arrive at the same conclusion.

10We have checked this numerically, in momentum space, for fixed external momenta.

22

Similar logic shows that the models differ only at high order in the ε-expansion.

For instance, it was noted in [40] for the O(N/2)2 oZ2 GNY model at 4-loop

order that the ε-expansion, continued to N = 1, is inconsistent with the ex-

pected emergence of supersymmetry; the authors of [40] found that manually

adding a 5-fermion loop diagram contribution restored the superscaling rela-

tion. As in the large-N expansion, in the O(N/2)2oZ2 GNY model, loops with

an odd number of propagating fermions have vanishing contributions owing to

the sign difference in the Yukawa coupling between fermion species. Con-

versely, these odd-fermion loops should be generically nonzero for the O(N)

theory starting at loops with 5-fermions (such as (2.5)). Such a prescription

of adding back diagrams with an odd-number of propagating fermions can in

principle be used when computing the scaling dimension of any operator in

the theory and was named DREG3 by the authors of [40]. Since the scaling

dimensions are only affected at high loop order, the differences between the

estimates of {∆ψ,∆σ,∆ε} for the two models are very small (. 3× 10−6) for

all values of N that we consider.11 Nevertheless, when comparing our results

to those from the ε-expansion we will use the estimates from [41], which rely

on the DREG3 prescription.

Materially for this paper, we see it fit to compare this work’s results with pre-

vious results for the chiral Ising universality class, since the scaling dimensions

are expected to be close to those of the O(N) GNY models even at low values

of N . Nevertheless, our bounds will not be able to rigorously constrain the

chiral Ising GNY models. Rigorous bounds for these models, in which the

O(N/2)2 o Z2 global symmetry would be explicitly implemented in the boot-

strap equations, represent a separate target for the bootstrap to be studied in

the future.

2.2.5 Condensed matter applications

As mentioned in the introduction, the universality class of the GNY model is

used to describe a variety of quantum phase transitions in condensed matter

systems. In this subsection we will list some of the proposals in the literature.

Since there can be confusion regarding the two universality classes associated

to the O(N) GNY critical point and the O(N/2)2 oZ2 GNY critical point, we

will revisit this point for each quantum phase transition.

11We thank Michael Scherer for providing us with explicit calculations of the differences
in the ε-expansion at four loop order.

23

D-wave superconductors [30, 31]: In [30], the possible quantum criti-

cal points in d-wave superconductors were classified according to their order

parameter in an effort to describe anomalous behavior in cuprate supercon-

ductors. The two transitions relevant to the discussion in this paper are the

transition to dx2−y2 +is pairing which is described by the universality class with

symmetry O(4)2 o Z2 (the chiral GNY model for N = 8) and the transition

to dx2−y2 + idxy pairing which can be seen to correspond to the universality

class with symmetry O(8) (the non-chiral N = 8 GNY model). As shown

in [30], these are the only two transitions that have a nodal quasiparticle mo-

mentum distribution curve with a width proportional to kBT . The additional

requirement that the superconductor exhibits negligible scattering along the

(1, 0) and (0, 1) directions uniquely isolates the transition dx2−y2 + idxy which

thus underpins the importance of the O(8) GNY model for phase transitions

in such superconductors.

Chern insulators, and topological superconductors [33]: There are

more systems like the d-wave superconductors which have come into focus

in the condensed matter community in recent years, which all possess the

common factor of time-reversal symmetry breaking (TRSB). TRSB has been

known to the condensed matter community for decades, and systems with

a broken time-reversal symmetry are known to have the integer quantum

anomalous Hall effect. Prototypical examples of these systems include the

Haldane model (a Chern insulator in Cartan symmetry class A) [77]. The

O(N)-symmetric critical point represents a phase transition between the time-

reversal-preserving class DIII and the time-reversal-breaking class D, which in

the case N = 1 is discussed in [33]. More specifically, the universality class

of the O(1) GNY model is expected to describe a quantum phase transition,

with emergent supersymmetry, at the boundary of a topological supercon-

ductor where the superconducting Majorana edge modes begin to gap out.

Phases associated to this transition are expected to be found for a thin film of

superfluid He3-B.

In general, it is understood that the cases N > 1 also should have the same

phase transition between symmetry classes DIII and D, though we are not

aware of any proposed experimental design for empirical observation.12

12The notion of an interaction spontaneously modifying topological order is a matter of
great interest, as it is believed that interactions break the class D free fermion classification
of the topological invariant from Z to Z16 [78]. In other words, the topological invariants of

24

Graphene [26, 27, 28, 29]: The distinction between theO(N) andO(N/2)2o
Z2 theories is also apparent in the case of graphene lattices. In [27] the au-

thors exhaustively enumerated the various order parameters that are expected

to exist in graphene lattice theories. It’s understood that the chiral Ising

universality class, with symmetry O(N/2)2 o Z2, describes the semimetal to

charge density wave insulator transition on a honeycomb lattice [26]; specif-

ically for N = 8 it describes a theory of spinful fermions and for N = 4 it

describes spinless fermions. In these two cases, time-reversal symmetry is pre-

served, but the fermions are gapped out, leading to an insulating phase. The

corresponding time-reversal-breaking O(N) case is also expected to exist, but

with a different order parameter which does break time-reversal symmetry.

2.3 Numerical setup

2.3.1 SDP formulation of general crossing equations

The system of crossing equations that we study in this paper is fairly compli-

cated: it involves many correlation functions, several of which involve opera-

tors with non-trivial spin and/or flavor charges. On top of it, we are working

with fermions and need to keep track of lots of minus signs associated with

permutations. As a result, rewriting our system of equations in an SDP form

suitable for numerical analysis is a rather non-trivial task and is especially

prone to human error.

Motivated by this, and also with a view towards future applications, we devel-

oped a computer code bootstrap-bounds (see appendix 2.6.1) which handles

most of the bookkeeping associated with passing from physically-transparent

crossing equations to the SDP form. In this section we describe the basic al-

gorithm that it uses, in the context of a general conformal bootstrap problem.

Let us consider a general conformal bootstrap problem for a set of external

primary operators O1, · · · ,On. We allow these operators to have arbitrary

spins and flavor symmetry representations, and package their dependence on

space-time coordinates and the various polarization indices into an abstract

argument p, i.e. we write Oi(pi). In particular we assume that the action of

all known symmetries on Oi is expressed in terms of the action on pi. For

the O(N)-symmetric, time-reversal-breaking theories should have topological order defined
by ν = N mod 16, since there is an adiabatic way to get from a nontrivial invariant with
ν = 16 to a trivial invariant with ν = 0. However, this procedure requires breaking the
O(N) symmetry while deforming the theory from the two topological phases.

25

simplicity, we assume that all operators can be chosen to be Hermitian in

Lorentzian signature (as is the case in our setup),

(Oi(pi))† = Oi(pi). (2.7)

Furthermore, we introduce the notation O∆,ρ for the primary operators that

can appear in the OPE of Oi but are not among the Oi, with ∆ denoting the

scaling dimension, and ρ all the other quantum numbers (such as spin, flavor

symmetry representation, space parity, etc.).

First, we consider the three-point functions. We will need the following two

types,

〈Oi(p1)Oj(p2)Ok(p3)〉 and 〈Oi(p1)Oj(p2)O∆,ρ(p3)〉. (2.8)

Let us focus on the former. It can be written as

〈Oi(p1)Oj(p2)Ok(p3)〉 =
∑
a

laijkQa,ijk(p1,p2,p3), (2.9)

where Qa,ijk(p1,p2,p3) is some basis of three-point tensor structures which we

are free to choose. Intuitively, this statement is clear, but it turns out we need

to formalize this a little in order to have a well-defined algorithm. Formally,

choosing a basis of Qa,ijk amounts to the following:

• For any choice of the ordered triple i, j, k and the index a, specify a

function Qa,ijk in three variables p1,p2,p3, which is invariant under all

the available symmetries when transformed with the quantum numbers of

Oi at p1, of Oj at p2, and of Ok at p3.

Note that the order of the arguments p1,p2,p3 is fixed: for a function, we

know what is the first, what is the second, and what is the third argument.

This means that for fixed i, j, k the functions Qa,ijk, Qa,jik, Qa,kji, · · · all re-

quire separate choices. But of course, the corresponding physical correlation

functions

〈Oi(p1)Oj(p2)Ok(p3)〉, 〈Oj(p1)Oi(p2)Ok(p3)〉, 〈Ok(p1)Oj(p2)Oi(p3)〉, · · ·
(2.10)

are all related to each other in the obvious way (taking into the account

fermionic permutation signs), and this induces a relation between the cor-

responding OPE coefficients laijk, l
a
jik, l

a
kji, · · · . We then demand, as is always

26

possible to do, that the functions Qa,ijk are chosen so that the OPE coefficients

laijk are functions of the unordered triple (i, j, k). In other words, so that

laijk = lajik = lakji = · · · . (2.11)

In terms of Qa,ijk this means

Qa,ijk(p1,p2,p3) = ±Qa,jik(p2,p1,p3) = · · · , (2.12)

where ± account for fermionic permutation signs. Since these signs are in-

cluded here, (2.11) is true even when some Oi are fermions. This choice of

Qa,ijk is provided to the algorithm by the user; in this way, the algorithm does

not have to know about the permutation properties of the operators, and can

reason in terms of the simple coefficients laijk. Furthermore, we require Qa,ijk

to be chosen so that laijk ∈ R, which is again always possible to ensure.

Next we consider the three-point functions

〈Oi(p1)Oj(p2)O∆,ρ(p3)〉, (2.13)

where the convention is the same. Concretely, we write

〈Oi(p1)Oj(p2)O∆,ρ(p3)〉 =
∑
a

laij;∆,ρQa,ij;∆,ρ. (2.14)

Now we only have to worry about the ordering in the pair i, j: we agree to

always keep the generic operator O∆,ρ at p3.13 So in this case we need to

provide only two structures for each pair i, j: Qa,ij;∆,ρ and Qa,ji;∆,ρ. We again

choose them in a way such that

laij;∆,ρ = laji;∆,ρ ∈ R. (2.15)

The above convention allows us to interface the general conformal block code

blocks 3d [18] from our algorithm. In order to produce a conformal block

for the four-point function 〈Oi(p1)Oj(p2)Ok(p3)Ol(p4)〉 for the exchange of

O∆,ρ,
14 this code requires the user to specify the three-point structures for

〈Oi(p1)Oj(p2)O∆,j(p3)〉 and 〈Ol(p1)Ok(p2)O∆,j(p3)〉. (2.16)

13Recall that we have agreed not to use the label O∆,ρ for any of the Oi.
14The code blocks 3d can only compute the 3d conformal blocks; the flavor structure is

then added by an additional layer of code.

27

Our algorithm can simply look up the functions Qa,ij;∆,ρ and Qb,lk;∆,ρ and pass

them to blocks 3d.

As a result of our conventions, the expansion of the four-point function be-

comes

〈Oi(p1)Oj(p2)Ok(p3)Ol(p4)〉 =
∑
∆,ρ

′∑
a,b

laij;∆,ρl
b
kl;∆,ρGab,ijkl,∆,ρ(p1, · · ·p4),

(2.17)

where Gab,ijkl,∆,ρ is the block returned by blocks 3d, and
∑′

∆,ρ =
∑

∆,ρ +
∑

n

denotes the sum over O∆,ρ appearing in Oi ×Oj OPE plus the sum over the

On appearing in the same OPE.

The above describes the conventions for the three-point functions, but we also

need to specify the crossing equations. Any crossing equation involves only

one four-point function, expanded in different channels. For a given four-point

function 〈Oi(p1)Oj(p2)Ok(p3)Ol(p4)〉, there are at most 3 distinct channels,

depending on which operator out of Oj,Ok,Ol we take the OPE of Oi with.

In any case, an equality of two channels in a four-point function takes the form

〈Oi(p1)Oj(p2)|Ok(p3)Ol(p4)〉 ± 〈Ok(p3)Oj(p2)|Oi(p1)Ol(p4)〉 = 0, (2.18)

where we used | to separate the groups of operators between which we take

the OPE. The ± sign is chosen based on the statistics of the operators. Note

that

〈Oj(p1)Oi(p2)|Ok(p3)Ol(p4)〉 ± 〈Ok(p3)Oj(p1)|Oi(p2)Ol(p4)〉 = 0 (2.19)

expresses the same equality. We will use the convention in which we order

operators in such a way that the two terms in the crossing equation differ by

swapping the operators at p1 and p3, like in (2.18). We choose some complete

and independent set of crossing equations, written in this convention.

We can expand each four-point function in a basis of four-point tensor struc-

tures,

〈Oi(p1)Oj(p2)|Ok(p3)Ol(p4)〉 =
∑
I

gIijkl(z, z)TI,ijkl(p1,p2,p3,p4), (2.20)

〈Ok(p1)Oj(p2)|Oi(p3)Ol(p4)〉 =
∑
I

gIkjil(z, z)TI,kjil(p1,p2,p3,p4). (2.21)

28

The conformal block expansions take the form

gIijkl(z, z) =
∑
∆,ρ

′∑
a,b

laij;∆,ρl
b
kl;∆,ρG

I
ab,ijkl,∆,ρ(z, z), (2.22)

gIkjil(z, z) =
∑
∆,ρ

′∑
a,b

lakj;∆,ρl
b
il;∆,ρG

I
ab,ijkl,∆,ρ(z, z), (2.23)

where G denotes the blocks computed by blocks 3d.

Again, we have a choice to make for the functions TI,ijkl. We don’t constrain

it in any particular way. However, since the functions above differ only by the

order of operators, we must have

TI,kjil(p3,p2,p1,p4) =
∑
J

MJ
I TJ,ijkl(p1,p2,p3,p4) (2.24)

for some matrix MJ
I (which depends on the choice of i, j, k, l). The crossing

equation then takes the form

gIijkl(z, z)±
∑
J

M I
Jg

J
kjil(1− z, 1− z) = 0. (2.25)

The appearance of 1−z is due to our convention for the crossing equation and

the choice of cross-ratios.

We can furthermore expand the crossing equations (2.25) in a power series

around z = z = 1
2
. In general, not all the Taylor coefficients are going to

be linearly-independent [14, 79, 80]. We therefore choose some independent

set, with a cut-off nmax on the order. We then introduce a combined label I

which runs over all crossing equations, all four-point tensor structures I and

the independent Taylor coefficients up to the cutoff nmax. We write ĝIijkl for

the contribution of the four point function OPE channel 〈OiOj|OkOl〉, in this

specific ordering of indices, to the scalar crossing equation labeled by I.15 For

example, if I corresponds to I = 0 and the (z − 1
2
)m(z − 1

2
)n term in the

equation (2.25), then we have

ĝIijkl =
1

m!n!
∂mz ∂

n
z g

0
ijkl(z, z)

∣∣∣
z=z= 1

2

, (2.26)

ĝIkjil =
(−1)m+n

m!n!

∑
J

M0
J∂

m
z ∂

n
z g

J
kjil(z, z)

∣∣∣
z=z= 1

2

, (2.27)

15Note that for some orderings of ijkl it might be that ĝIijkl vanishes for all I due to
the choice of the crossing equations. Furthermore, some four-point functions vanish by
symmetry and the corresponding ĝIijkl are also 0.

29

with all other ĝI··· vanishing. With this notation, the full set of crossing equa-

tions takes the form

∀ I :
∑
ijkl

ĝIijkl = 0, (2.28)

where we sum over all choices of ijkl. Ultimately, the coefficients ĝIijkl are

provided to the algorithm by the user. In our implementation the user pro-

vides the equations (2.25) and the list of Taylor coefficients that need to be

considered, from which the code reads off the ĝIijkl.

We can extend this notation in the obvious way to G, so that

ĝIijkl =
∑
∆,ρ

′∑
a,b

laij;∆,ρl
b
kl;∆,ρĜ

I
ab,ijkl,∆,ρ. (2.29)

This leads to the following expansion of the crossing equations,

0 =
∑
ijkl

∑
∆,ρ

′∑
a,b

laij;∆,ρl
b
kl;∆,ρĜ

I
ab,ijkl,∆,ρ. (2.30)

We now consider three types of contributions to (2.30)

Generic contributions We start with the contributions of generic operators

O∆,ρ. After imposing a cut-off on the spin of O∆,ρ there are finitely many

distinct ρ appearing in (2.30). We call such ρ “operator channels.” To each

operator channel we associate the set

Iρ = {(a, (i, j))|Qa,ij;∆,ρ 6= 0}, (2.31)

where (i, j) denotes an unordered pair. In other words, the elements of Iρ
label the OPE coefficients laij;∆,ρ which are allowed by symmetries.

We now introduce the PSD matrix (P∆,ρ)
αβ with α, β ∈ Iρ

(P∆,ρ)
αβ =

∑
degeneracies

laij;∆,ρl
b
kl;∆,ρ � 0, (2.32)

where α = (a, (i, j)), β = (b, (k, l)), and we sum over all the contributions with

given ∆, ρ (accounting for possible degeneracies in the spectrum). Similarly,

we introduce

(ĜI∆,ρ)αβ =
1

2

(
ĜI
ab,ijkl,∆,ρ + ĜI

ba,klij,∆,ρ

)
+ permutations of (ij) and (kl),

(2.33)

30

with the same α, β as above.

With this notation and using (2.11), the contribution of generic operators to

the crossing equations is

0 =
∑
ρ

∑
∆

Tr
(
P∆,ρĜI∆,ρ

)
+ · · · . (2.34)

External contributions We now focus on the contribution to the crossing

equations of Oi themselves. We define the index set

E = {(a, (i, j, k))|Qa,ijk 6= 0}, (2.35)

where (i, j, k) denotes unordered triples. That is, E labels the OPE coefficients

laijk which are not forced to be 0 by symmetries. We now define the rank-1

PSD matrix, assuming no degeneracies among the quantum numbers of Oi,

(Pext)αβ ≡ laijnl
b
klm, (2.36)

where α = (a, (i, j, n)) and β = (b, (k, l,m)).

We define the symmetric matrix ĜIext by the requirement that the contribution

of the external operators to the crossing equation (2.30) is (recall (2.11))

0 = Tr
(
PextĜIext

)
+ · · · . (2.37)

The matrix ĜIext has a straightforward expression in terms of ĜI
ab,ijkl,∆,ρ which

is however awkward to describe.

Special operators There are sometimes special exchanged operators such

as the stress-tensor T µν or the identity operator 1. These operators contribute

to the crossing equations as

0 = ĜI + · · · , (2.38)

where ĜI is determined by the special block for the given operator. It may

or may not depend on parameters such at OPE coefficients or some scaling

dimensions. For example, for the identity operator the contribution

0 = ĜI1 + · · · (2.39)

is completely fixed by the normalization of two-point functions of Oi.

31

Final crossing equation The final crossing equation then takes the form

0 = ĜI1 + Tr
(
PextĜIext

)
+
∑
ρ

∑
∆

Tr
(
P∆,ρĜI∆,ρ

)
, (2.40)

and potentially additional contributions from T or other special operators.

Here, Pext,P∆,ρ � 0. So, for example, in a feasibility study we look for func-

tionals FI such that ∑
I

FIĜI1 = 1, (2.41)∑
I

FIĜIext � 0, (2.42)∑
I

FIĜI∆,ρ � 0. (2.43)

Crucially, these conditions can be formed automatically once the user provides

the three-point structures Q and the crossing equations in the form (2.25).

2.3.2 Three-point functions

Returning to the bootstrap problem for the GNY model, each local primary

operator is characterized by the scaling dimension and three other quantum

numbers, namely, spin j, space parity P , and an O(N) irreducible representa-

tion µ.16 We consider the mixed system of the lowest dimension operators ψ,

ε and σ, where their quantum numbers (j, P, µ) are

σ : (0, odd, •) (2.44)

ε : (0, even, •) (2.45)

ψ : (1
2
, even,). (2.46)

When N = 1, the global symmetry becomes O(1) = Z2. Since the non-trivial

element sends ψ → −ψ and φ→ φ, it coincides with (−1)F and should not be

considered as a separate global symmetry. Hence, in this case the operators

are labeled by (j, P) only.17 Consequently, there are no flavor structures to

consider. There is a corresponding reduction in the number of equations and

OPE channels.

16Note that the parity makes sense both for integer and half-integer j (we use the trans-
formation defined in [14]), although for the latter the notions of “even” and “odd” parities
can be exchanged by redefinition of the parity transformation by (−1)F . This allows us to
choose the parity for one fermionic operator at will, so we choose ψ to be parity-even.

17In our discussion, which is valid for generic N , one can take • → • and → • while
all other representations are omitted.

32

The crossing equations under study involve the following set of four point

functions

{〈ψψψψ〉, 〈εεεε〉, 〈σσσσ〉, 〈ψψεε〉, 〈ψψσσ〉, 〈σεψψ〉, 〈σσεε〉}. (2.47)

The conformal block expansions of these correlation functions involve OPEs

between all combinations of ψ, ε, σ.

We list the tensor structures appearing in relevant three-point functions in

Table 2.3 and Table 2.4. We choose to represent the conformal structures in

the SO(3)r basis following the convention in [15, 18],18 and we define the O(N)

flavor structures as follows,

T •,•• = 1, (2.48)

T i,j = δij, (2.49)

T
ij,(kl)

=
1

2

(
δikδjl + δilδjk

)
− 1

N
δijδkl, (2.50)

T
ij,[kl]

=
1

2

(
δikδjl − δilδjk

)
. (2.51)

Some conformal structures might disappear for low spin of the exchanged

operator O. The selection rule is that |j12, j123〉 is present in 〈O1O2O〉 if

j12 ∈ j1 ⊗ j2 and j123 ∈ j12 ⊗ l, where j1 and j2 are the spins of O1 and

O2. In practice, to obtain the conformal structures, we did calculations in the

q-basis [14] and then converted them to the SO(3)r basis as discussed in [18].

Tensor structures for three external operators are obtained from those in ta-

bles 2.3 and 2.4 by restricting O to the relevant special case. The only excep-

tion is the structure for 〈ψψσ〉 which we take to be −|1, 1〉 (differs by a factor

of −1 from table 2.4).

Our choice of the tensor structure basis ensures the equality of the following

OPE coefficients, as required by the algorithm in section 2.3.1:

λψψσ = λψσψ = λσψψ, (2.52)

λψψε = λψεψ = λεψψ, (2.53)

λσσε = λσεσ = λεσσ, (2.54)

and similarly lψσO = lσψO etc. A slight difference from 2.3.1 is that the OPE

coefficients for our structures are purely imaginary if they involve fermionic

operators. This difference is accounted for in the software.

33

OPE O ∈ (l, P, µ) 〈OaObOc〉 Structures
σ × σ

(l ∈ 2Z, even, •) 〈σσO〉 |0, l〉
ε× ε 〈εεO〉

σ × ε (l ∈ 2Z, odd, •) 〈σεO〉 |0, l〉
〈εσO〉 (−1)l|0, l〉

σ × ψ
(l ∈ Z + 1

2
, even,)

〈σψiOj〉 (−1)l+
1
2 δij|1

2
, l + 1

2
〉

〈ψiσOj〉 δij|1
2
, l − 1

2
〉

(l ∈ Z + 1
2
, odd,)

〈σψiOj〉 (−1)l−
1
2 δij|1

2
, l − 1

2
〉

〈ψiσOj〉 δij|1
2
, l + 1

2
〉

ε× ψ
(l ∈ Z + 1

2
, even,)

〈εψiOj〉 (−1)l−
1
2 δij|1

2
, l − 1

2
〉

〈ψiεOj〉 δij|1
2
, l + 1

2
〉

(l ∈ 2Z + 1
2
, odd,)

〈εψiOj〉 (−1)l+
1
2 δij|1

2
, l + 1

2
〉

〈ψiεOj〉 δij|1
2
, l − 1

2
〉

Table 2.3: Tensor structures appearing in the OPEs of mixed scalar-fermion
operators.

OPE O ∈ (l, P, µ) 〈ψiψjOa〉 Structures

ψ × ψ

(l ∈ 2Z, even, µ ∈ {•, })
T ijaµ |0, l〉
T ijaµ |1, l〉

(l ∈ 2Z + 1, even, µ =)
T ijaµ |0, l〉
T ijaµ |1, l〉

(l ∈ 2Z, odd, µ ∈ {•, }) T ijaµ (
√
l + 1|1, l + 1〉 −

√
l|1, l − 1〉)

(l ∈ 2Z + 1, odd, µ ∈ {•, }) T ijaµ (
√
l + 1|1, l − 1〉+

√
l|1, l + 1〉)

(l ∈ (2Z)≥2, odd, µ =) T ijaµ (
√
l + 1|1, l − 1〉+

√
l|1, l + 1〉)

(l ∈ 2Z + 1, odd, µ =) T ijaµ (
√
l + 1|1, l + 1〉 −

√
l|1, l − 1〉)

Table 2.4: Tensor structures appearing in the OPE of the fermionic operators.

The stress-tensor T and the conserved O(N) current J transform with (l, P, µ)

equal to (2, even, •) and (1, even,). Their OPE coefficients are constrained

18In [18] it was called the SO(3) basis.

34

by Ward identities as

f 1
σσT̂

= −
√

3

2

∆σ

4π
√
CT

, f 1
εεT̂

= −
√

3

2

∆ε

4π
√
CT

, (2.55)

f 1
ψψT̂

= i

√
3

4π

∆ψ√
CT

, f 2
ψψT̂

= −i 3

4
√

2π

1√
CT

, (2.56)

f 1
ψψĴ

= i
1√
2π

1√
CJ

, f 2
ψψĴ

not constrained, (2.57)

where T̂ = C
−1

2
T T and Ĵ = C

−1
2

J J are canonically normalized in the conventions

of [15, 18], which are

〈T̂ T̂ 〉 =
H2

12

X5
12

, 〈Ĵ [ij]Ĵ [kl]〉 =
1

2

(
δikδjl − δilδjk

) H12

X3
12

. (2.58)

In practice, the Ward identity for J does not affect the numerics because it

only gives an interpretation of an OPE coefficient in terms of CJ . The Ward

identity for T doesn’t affect the numerics unless a gap above T is assumed.

As explained in section 2.2.3, we do assume a gap of 10−6 above T . However,

since this gap is small, it is likely that imposing the T Ward identity doesn’t

have a significant effect on our results.

2.3.3 Four-point functions and crossing equations

We now study the four-point functions of our mixed system. Following the

procedures outlined by (2.18), (2.20), and (2.21), we construct the four-point

tensor structures TI,ijkl and find the crossing equations in the form of (2.25).

In general, one single four-point structure is the product of a flavor and a con-

formal structure. The full structure should be invariant under kinematic per-

mutations, which is the group that preserves all conformal cross-ratios formed

by the coordinates of the four operators. We refer to [14] for the details on

this group.

When the four operators are identical, ρ1 = ρ2 = ρ3 = ρ4 and the kinematic

permutation group is Z2 × Z2 = {e, (12)(34), (13)(24), (14)(23)}. The irre-

ducible representations of Z2×Z2 can be labelled by (++), (−−), (+−), (−+)

where the signs stand for the eigenvalues under (12)(34) and (13)(24) respec-

tively. On the other hand, for four-point functions with two pairs of identical

operators the kinematic permutation group is Z2. For example, if ρ1 = ρ2 and

ρ3 = ρ4 then the kinematic permutation group is just Z2 = {e, (12)(34)}. The

irreducible representations of Z2 can be labelled simply by + and −.

35

To ensure that the full structure is invariant under the kinematic permutations,

the flavor and conformal structures should transform in the same irrep of the

kinematic permutation group.

There are two additional requirements for the four-point tensor structures.

Firstly, the structures must have space parity consistent with the parity of the

operators in the four-point function. And secondly, they must have definite

parity under the transformation z ↔ z, which we refer to as the t-parity

transformation.19 This is needed to simplify the corresponding symmetry of

the coefficient functions g(z, z), see [14].

2.3.3.1 〈ψψψψ〉

We first consider the four point function of four fermions

〈ψiψjψkψl〉 =
∑
I,a

tI T
ijkl
a gI,aψψψψ(z, z), (2.59)

where Ta stands for the flavor structures and tI for the conformal structures.

It participates in the crossing equations of the form

〈ψψ|ψψ〉 = −〈ψψ|ψψ〉, (2.60)

understood in the sense of equation (2.18).

There are three possible flavor structures for 〈ψiψjψkψl〉, namely δijδkl, δikδjl,

and δilδjk. They all are invariant under the kinematic permutation group

Z2 × Z2, i.e. are all in the (++) representation. For future convenience, we

define the following linear combinations of these structures,

T ijkl+ = δijδkl + δilδjk, T ijkl3 = δikδjl, T ijkl− = δijδkl − δilδjk. (2.61)

We also notice that under crossing symmetry permutation (13), T+ and T3 are

symmetric while T− is anti-symmetric.

In order to construct the conformal structures, we use the q-basis defined

in [14]. We look for conformal structures that are Z2 × Z2 invariant, parity-

19Not to be confused with time reversal.

36

even, and have definite parity under the t-parity transformation:20

〈↑↑↑↑〉± = 〈↑↑↑↑〉 ± 〈↓↓↓↓〉, (2.62)

〈↑↑↓↓〉+ = 〈↑↑↓↓〉+ 〈↓↓↑↑〉, (2.63)

〈↑↓↑↓〉+ = 〈↑↓↑↓〉+ 〈↓↑↓↑〉, (2.64)

〈↓↑↑↓〉+ = 〈↓↑↑↓〉+ 〈↑↓↓↑〉. (2.65)

Here ± denotes the t-parity, which acts on the individual fermionic spins by

[↑]→ i[↓] and [↓]→ i[↑]. We use ↑ to denote +1
2

and ↓ to denote −1
2
.

From the results of [14] we can determine the phase factor picked up by the

conformal structures under crossing symmetry21

(13) : 〈q1q2q3q4〉 → (−1)q1+q2+q3−q4〈q3q2q1q4〉. (2.66)

Multiplied by the extra factor of (−1) coming from the fermion exchange, we

find that all the conformal structures are invariant under the (13) permutation.

Combining conformal and flavor structures, we form the following two sets of

linear combinations that are crossing-symmetric and crossing-antisymmetric

respectively,

symmetric: g〈↑↑↑↑〉±,T+
, g〈↑↑↓↓〉+,T+

+ g〈↓↑↑↓〉+,T+
, g〈↑↓↑↓〉+,T+

, (2.67)

g〈↑↑↑↑〉±,T3
, g〈↑↑↓↓〉+,T3

+ g〈↓↑↑↓〉+,T3
, g〈↑↓↑↓〉+,T3

, (2.68)

g〈↑↑↓↓〉+,T− − g〈↓↑↑↓〉+,T− , (2.69)

anti-symmetric: g〈↑↑↓↓〉+,T+
− g〈↓↑↑↓〉+,T+

, (2.70)

g〈↑↑↓↓〉+,T3
− g〈↓↑↑↓〉+,T3

, (2.71)

g〈↑↑↑↑〉±,T− , g〈↑↑↓↓〉+,T− + g〈↓↑↑↓〉+,T− , g〈↑↓↑↓〉+,T− , (2.72)

where we used the simplified notation

gI,a ≡ gI,aψψψψ. (2.73)

The above functions satisfy crossing equations with the sign determined by

whether they fall in the “symmetric” or “anti-symmetric” category above.

20This example has been worked out in detail in [14] and [18].
21Equation (4.44) in [14] assumes ρ1 = ρ3 and includes an extra (−1) for fermionic

permutations. The general result (2.66) can be derived from appendix B of [14].

37

For example, we have

g〈↑↑↑↑〉−,T+
(z, z) = g〈↑↑↑↑〉−,T+

(1− z, 1− z), (2.74)

while

g〈↑↑↓↓〉+,T+
(z, z)− g〈↓↑↑↓〉+,T+

(z, z)

= −
(
g〈↑↑↓↓〉+,T+

(1− z, 1− z)− g〈↓↑↑↓〉+,T+
(1− z, 1− z)

)
. (2.75)

When Taylor-expanding these equations, one should keep in mind the t-parity

of the conformal structures which determines the parity of the above functions

under z ↔ z.

Finally, the crossing equations for g〈↑↑↑↑〉+,Ta(z, z) at z = z are redundant with

other crossing equations and should not be imposed in order to avoid numerical

instabilities (see appendix A of [14]). In practice this is done by requiring that

n > 0 derivatives are taken in the direction orthogonal to z = z for this

structure.

2.3.3.2 〈ψψσσ〉 and 〈ψψεε〉

Mixed four-point functions containing both σ and ψ give rise to two crossing

channels in the sense of (2.18),

〈σσ|ψψ〉 = 〈ψσ|σψ〉, (2.76)

〈ψσ|ψσ〉 = −〈ψσ|ψσ〉. (2.77)

We expand each ordering of the four point function as

〈σσψiψj〉 =
∑
I,a

tI T
ij
a g

I,a
σσψψ(z, z),

〈ψiσσψj〉 =
∑
I,a

tI T
ij
a g

I,a
ψσσψ(z, z),

〈ψiσψjσ〉 =
∑
I,a

tI T
ij
a g

I,a
ψσψσ(z, z). (2.78)

We are slightly abusing the notation since the conformal structures are dif-

ferent for each of the three orderings (since different operators are inserted at

different points xi).

Only one flavor structure T ija = δij exists for each of these four-point functions,

and it is kinematic-symmetric. It is also mapped to itself under the crossing

38

permutation (13). Hence, we will ignore the flavor structure in the following

discussion. Furthermore, since the products σσ and εε have the same parity,

the analysis below is the same for the correlation functions 〈ψψσσ〉 and 〈ψψεε〉
. We will focus on the correlator 〈ψψσσ〉 for concreteness.

The two parity-even conformal structures for the ordering 〈σσψψ〉 are [0, 0, 1
2
, 1

2
]

and [0, 0, -1
2
, -1

2
], and similar expressions apply for the other two orderings.

These structures are automatically kinematically symmetric. We will simplify

the notation and write them as [↑↑] and [↓↓] for each of the orderings (i.e.

omitting the 0 charges), and define the structures with definite t-parity as

[↑↑]± = [↑↑]∓ [↓↓]. (2.79)

Applying (2.66) and factors from fermion permutations, we find that con-

formal structures with the same label are mapped into each other under the

(13) permutation. Hence, we can form crossing-symmetric and anti-symmetric

combinations as

symmetric: gσσψψ
[↑↑]± + gψσσψ

[↑↑]± , gψσψσ
[↑↑]± , (2.80)

anitsymmetric: gσσψψ[↑↑]± − g
ψσσψ

[↑↑]± . (2.81)

The convention for the crossing equations is the same as in the previous sub-

section. This time, there are no redundancies between the crossing equations.

2.3.3.3 〈σεψψ〉

The independent crossing equations in this case are

〈σε|ψψ〉 = 〈ψε|σψ〉, (2.82)

〈ψσ|ψε〉 = −〈ψσ|ψε〉. (2.83)

Similar to the case above, we have a trivial flavor structure that can be ignored.

However, the overall parity 〈σεψψ〉 is now odd and so a separate analysis of

the conformal structures is required.

For all of the orderings of the operators, the parity-odd conformal structures

are [↑↓] and [↓↑], using the same notation as in the previous subsection. There

is no kinematic symmetry to consider. To form structures with definite t-

parity, we write

[↑↓]± = [↑↓]∓ [↓↑] = ∓[↓↑]±. (2.84)

39

Applying (2.66) and taking into account the factors from fermion permuta-

tion, we can form the crossing-symmetric and crossing-antisymmetric linear

combinations as before,

symmetric: gσεψψ
[↑↓]± − g

ψεσψ

[↑↓]± , gψσψε
[↑↓]+ , (2.85)

anitsymmetric: gσεψψ
[↑↓]± + gψεσψ

[↑↓]± , gψσψε
[↑↓]− . (2.86)

A slight subtlety in this case is that the structure [↑↓]± for 〈ψσψε〉 ordering

is mapped by (13), up to a phase, to [↓↑]±, and so we need to use (2.84) to

reduce it back to the [↑↓]± basis.

2.3.3.4 Scalar four-point functions

Since both flavor and conformal structures are trivial, it is a straightforward

exercise to form crossing-symmetric and crossing-antisymmetric functions,

symmetric: gσσσσ, gεεεε, gσεσε, gσσεε + gεσσε, (2.87)

anitsymmetric: gσσεε − gεσσε. (2.88)

The t-parity of all these functions is +1.

In total, we end up with 38 crossing equations for N ≥ 2 and 28 equations for

N = 1.

2.3.4 Numerical computations

After setting up the crossing equations and OPE channels, our workflow is au-

tomated by softwares described in appendix 2.6.1 to search for the functionals

FI to satisfy (2.41–2.43).

The space of CFT data that we searched over is 6-dimensional, but is better

understood as two separate searches done together. We have three scaling

dimensions and three OPE coefficient ratios that we search over; the latter

is done by a cutting-surface search algorithm, and the former is done by a

Delaunay mesh search algorithm. We will now briefly go over these search

algorithms.

2.3.4.1 OPE scan

As noted in [6], by including assumptions of OPE coefficient ratios in our

bootstrap computations, the allowed region in the space of scaling dimensions

40

can be improved at the cost of also having to search over those OPE coefficient

ratios. To that end, we employ the algorithm described in [10] to include

constraints imposed by the OPE coefficients involving the only the external

operators, λext. The non-vanishing OPE coefficients are

~λext =


λψψσ

λψψε

λσσε

λεεε

 . (2.89)

With (2.42), we require that the contribution of external scalar OPE coeffi-

cients to the crossing equation has a definite sign after applying the functional,

independent of the values of those coefficients.∑
I

FIĜIext � 0 ⇒
∑
I

Tr
(
MextFIĜIext

)
≥ 0. (2.90)

However, (2.42) is strong enough that the conclusion above stands for any

matrix with the decomposition Mext = A†A. We, on the other hand, are

only interested in the case Mext = Pext = ~λext~λ
T
ext, which is a rank-1 matrix.

Therefore, we instead look for functionals FI’s that satisfy

~λText

(∑
I

FIĜIext

)
~λext ≥ 0 (2.91)

for each [λext] ∈ RP3 (independent of the magnitude or sign of the vector),

along with (2.41) and (2.43). A point in the dimensional space (∆ψ,∆σ,∆ε)

is ruled out if such FI’s exist for all [λext], and is allowed otherwise. Hence,

by scanning over the OPE space, we obtain a union of allowed regions in

dimension space, each permitted by some OPE direction:⋃
[λext]∈RP3

Dλext . (2.92)

Note that this union of allowed regions is contained in the allowed region

obtained by imposing the stronger (2.42), as this is the special case when

imposing the condition that Mext is rank-1. We should note that for more

than one OPE coefficient ratio, the cutting surface algorithm is non-rigorous

[10].

For each point in the dimension that the cutting surface algorithm doesn’t

exclude, it outputs a direction in the OPE space that could not be excluded

41

by our constraints. Combined over all the allowed points in the dimension

space, this produces a list of OPE coefficient ratios with a relatively small

variance. We report the full range of values of the OPE coefficient ratios that

we found in our searches in section 2.4 as estimates of the real ratios. It

should be noted however that these estimates are not rigorous. In particular,

we cannot exclude a systematic error that could arise from the way the cutting

surface algorithm samples the OPE ratios. Similarly, the error bars are not

rigorous.

2.3.4.2 Delaunay mesh search

The islands that we show were computed by the Delaunay mesh search al-

gorithm; we will refer for details on the algorithm to the original paper [10].

However, in order to properly interpret how we have chosen to represent our

results, we will provide a brief qualitative review of this method.

The principle of the algorithm is to divide the search space into a suitable

simplicial complex, known as a Delaunay mesh, where each vertex is a point

that has already been computed as being allowed or disallowed. A simplex

that has entirely allowed or disallowed vertices is assumed to be completely

on the interior or exterior of our island. If a simplex has both an allowed and

disallowed vertex, then the simplex is deemed to be on the boundary of the

island; we can think of the volume of the simplex as the region of uncertainty

between allowed and disallowed. This implied boundary can be further refined

by computing the feasibility of the point at the simplex’s centroid.22 Thus,

with each iteration we get an increasingly refined mesh.

After a search has finished, we can determine the island’s boundary in one of

two ways. The first is to take the centroids of the boundary simplicies and

compute their convex hull. This method produces fairly smooth islands, but

whose bounds are not strictly rigorous. The second, more conservative, ap-

proach is to take the convex hull of all boundary simplices, which is equivalent

to taking the convex hull of all vertices that neighbor allowed vertices. This

includes the interiors of all boundary simplices into our island so we can be

sure that the area outside this hull is strictly disallowed by our bootstrap con-

22The Delaunay search algorithm selects the centroid, which is also the mean of the
vertices, as the next point to be computed in the numerical bootstrap [10]. Interpreting the
simplex as the uncertain region of the boundary, the centroid is the mean of that uncertain
region.

42

straints, up to assumptions of convexity. Thus, the latter method produces

islands and bounds that are rigorous. However, it should be noted that the

latter method’s islands tend to be more jagged than islands computed with the

centroid method given the same set of points. This distinction is heightened

when working with relatively small numbers of points computed. In this work,

we have opted to take the more conservative approach.

2.4 Results

In this section, we present the results of our numerical bootstrap computations

for various values of N . While the space of CFT data that we searched over is

6-dimensional (as discussed in section 2.3), in most cases, we have projected

the results into the planes (∆ψ,∆σ) and (∆σ,∆ε) for ease of visualization.

We first discuss the bounds obtained for N = 2, 4, and 8 and compare them

with the existing studies from ε-expansions (after Borel resummation) and

from Monte Carlo simulations [41, 49, 50, 51]. We then focus on the N = 1

theory and discuss how our results, without assuming supersymmetry a priori,

are strong evidence for the emergence of supersymmetry in the IR in the N = 1

critical GNY model.

2.4.1 N = 2, 4, and 8

ForN = 2 at nmax = 18 we can report rigorous estimates of our external scaling

dimensions of ∆ψ = 1.06861(12), ∆σ = 0.6500(12), ∆ε = 1.725(7), given the

assumptions as discussed in section 2.2.3 of ∆ε′ > 3, ∆σ′ > 3, ∆σT > 2, ∆ψ′ >

2, ∆χ > 3.5. Figure 2.5 shows the allowed regions23 after projections to the

(∆σ, ∆ε) and (∆ψ, ∆σ) planes. As shown in the (∆σ, ∆ε)-plane, the bootstrap

results exclude the reported error bars from earlier Monte Carlo studies from

[49]; as can be seen in both plots, the bootstrap results also marginally exclude

the reported error bars from the ε-expansion results after Borel resummation

[41]. For both studies, the bootstrap results improve the precision of some of

these estimates by orders of magnitude.

23Readers familiar with bootstrap results may be concerned as to the jagged nature of
the islands reported. The nmax = 18 computations are very computationally expensive, so
we only have a relatively small number of allowed points in each island. However, because
we have a lot of information as to the disallowed points from lower nmax, and because the
precision of these islands are still improved, we have elected to report the superficially more
jagged islands as they represent our best results. We have taken pains to ensure that these
results are rigorous, as outlined in section 2.3.4.2.

43

ε-expansion
Monte Carlo

1.04 1.05 1.06 1.07 1.08 1.09 1.10

Δψ
0.64

0.65

0.66

0.67

0.68
Δσ

1.0684 1.0686 1.0688
0.648

0.649

0.65

0.651

ε-expansion
Monte Carlo

0.640 0.645 0.650 0.655 0.660

Δσ
1.70

1.72

1.74

1.76

1.78

1.80

1.82

1.84
Δϵ

Figure 2.5: The allowed region for the N = 2 critical GNY model when
imposing that ∆σ′ > 3 computed at nmax = 18, projected to the (∆σ, ∆ε)
and (∆ψ, ∆σ) planes. This should be compared to the Borel re-summed result
obtained from the ε-expansion [41] (shown in orange) and with the Monte
Carlo results from [49] (shown in purple).

ε-expansion
Monte Carlo

1.030 1.035 1.040 1.045 1.050 1.055 1.060

Δψ

0.74

0.75

0.76

0.77

0.78
Δσ

1.0434 1.0436 1.0438
0.756

0.757

0.758

0.759
ε-expansion
Monte Carlo

0.74 0.75 0.76 0.77 0.78

Δσ
1.84

1.86

1.88

1.90

1.92

1.94

Δϵ

Figure 2.6: The allowed region for the N = 4 critical GNY model when
imposing that ∆σ′ > 3 computed at nmax = 18, projected to the (∆ψ, ∆σ)
and (∆σ, ∆ε) planes. This should be compared to the Borel re-summed result
obtained from the ε-expansion [41] obtained using the DREG3 regularization
scheme (shown in orange) and with the Monte Carlo results from [50] (shown
in purple). Results for ∆ψ are not available from the Monte Carlo study cited.

44

ε-expansion
Monte Carlo

1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04Δψ

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
Δσ

1.021 1.0212 1.0214
0.864

0.865

0.866

0.867

0.868

0.869
ε-expansion
Monte Carlo

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94Δσ

1.90

1.95

2.00

2.05

2.10

Δϵ

0.865 0.867 0.869
1.99

1.995

2.

2.005

2.01

2.015

Figure 2.7: The allowed region for the N = 8 critical GNY model when
imposing that ∆σ′ > 3 computed at nmax = 18, projected to the (∆σ, ∆ε)
and (∆ψ, ∆σ) planes. This should be compared to the Borel re-summed result
obtained from the ε-expansion [41], once again obtained using the DREG3

regularization scheme (and shown in orange), and with the Monte Carlo results
from [51] (shown in purple).

We also report (nonrigorous) estimates at N = 2 at nmax = 1424 of the OPE

coefficient ratios of
λψψσ
λσσψ

= 0.5087(10),
λψψε
λσσψ

= 0.2392(6), and λεεε
λσσψ

= 1.629(13).

Note that these estimates are nonrigorous as discussed in section 2.3.4.1; for

the reader’s convenience they are also reported in Table 2.5.

As noted in section 2.2.3, the assumption of ∆σ′ > 3 for N = 2 is perhaps

at risk of being too strong because of the N = 1 value which violates this

assumption. We note that despite this assumption we are still able to find fea-

sible points. Moreover, the two-sided Padé interpolations shown in figure 2.3

support this assumption, so we think this gap is justified. In future work we

plan to study the CFT data in the σ′ sector more rigorously using the naviga-

tor method [12]. For now, we report our estimates using both ∆σ′ > 3 as well

as the more conservative assumption of ∆σ′ > 2.5 in tables 2.1 and 2.5.

For N = 4 at nmax = 18, we can report rigorous estimates of our external

scaling dimensions of ∆ψ = 1.04356(16), ∆σ = 0.7578(15), ∆ε = 1.899(10),

given the assumptions as discussed in section 2.2.3 of ∆ε′ > 3, ∆σ′ > 3, ∆σT >

24We report our nmax = 14 estimates because we ran out of computing resources while
computing nmax = 18. While we have enough data to feel confident in our rigorous scaling
dimension estimates, we deferred to our lower nmax results for the OPE coefficient ratio
estimates.

45

2, ∆ψ′ > 2, ∆χ > 3.5. Figure 2.6 shows the allowed regions after projections.

In this case, the ε-expansion estimates [41] are excluded by the conformal

bootstrap.25 On the other hand, the existing Monte Carlo results [50] give no

estimates on ∆ψ, and the reported error bars are excluded by the conformal

bootstrap in the (∆σ, ∆ε) plane. A subtlety to be noticed is that the MC

estimates shown in the plots were obtained based on the O(2)2 o Z2 “chiral”

GNY model as discussed in section 2.2.4, whose CFT data for {∆ψ,∆σ,∆ε}
is expected to be slightly different from that of the O(4) GNY model that we

implemented in the conformal bootstrap.

We can also report estimates at N = 4 of OPE coefficient ratios of
λψψσ
λσσψ

=

0.4386(6),
λψψε
λσσψ

= 0.15530(19), and λεεε
λσσψ

= 1.682(18). Note that these esti-

mates are nonrigorous as discussed in section 2.3.4.1; for the reader’s conve-

nience they are also reported in Table 2.5.

For N = 8 and nmax = 18, we can report rigorous estimates of our external

scaling dimensions of ∆ψ = 1.02119(5), ∆σ = 0.8665(13), ∆ε = 2.002(12),

given the assumptions as discussed in section 2.2.3 of ∆ε′ > 3, ∆σ′ > 3, ∆σT >

2, ∆ψ′ > 2, ∆χ > 3.5. Figure 2.7 shows the allowed regions after projections.

The reported error bars for the ∆σ estimates of the ε-expansion [41] and the

Monte Carlo results [51] are excluded by the conformal bootstrap, while the

other estimates show good agreement. Precision is considerably improved for

all scaling dimensions, especially for ∆ψ. It should be noted again, the MC

estimates were obtained by studying the chiral theory, discussed in section

2.2.4.

We can also report estimates at N = 8 of OPE coefficient ratios of
λψψσ
λσσψ

=

0.3322(8),
λψψε
λσσψ

= 0.08082(12), and λεεε
λσσψ

= 1.71(4). Note that these estimates

are nonrigorous as discussed in section 2.3.4.1; for the reader’s convenience

they are also reported in Table 2.5.

2.4.2 N = 1 and emergent supersymmetry

We also computed islands at nmax = 6, 10 for the N = 1 case, shown in

Figure 2.8. Shown also in the plot is the expected relation between scaling

dimensions for an N = 1 SCFT; our three external operators are expected to

all be in a supermultiplet with each other. We can see that the very tip of

25It’s worth noting that the ε-expansion results encounter a pole for N ' 2 which appears
to distort some of their resummations [41].

46

∆ψ ∆σ ∆ε λψψσ/λσσε λψψε/λσσε λεεε/λσσε
N = 2
nmax = 18,∆σ′ > 2.5 1.0672(25) 0.657(13) 1.74(4) 0.5071(15) 0.2347(35) 1.636(17)
nmax = 14,∆σ′ > 3 1.06860(16) 0.6498(14) 1.724(8) 0.5087(10) 0.2392(6) 1.629(13)
nmax = 18,∆σ′ > 3 1.06861(12) 0.6500(12) 1.725(7) − − −
N = 4
nmax = 18,∆σ′ > 3 1.04356(16) 0.7578(15) 1.899(10) 0.4386(6) 0.15530(19) 1.682(18)
N = 8
nmax = 18,∆σ′ > 3 1.02119(5) 0.8665(13) 2.002(12) 0.3322(8) 0.08082(12) 1.71(4)

Table 2.5: A summary of the results of this work with estimates of all six search
parameters, compiled here for the reader’s convenience. We do not report
the nmax = 18 OPE coefficient ratio estimates, as we did not have sufficient
statistics. Note that we have reported the scaling dimension estimates as only
scaling dimensions, and we have only included this work’s results. For critical
exponents and comparisons, see Table 2.1.

the island indeed is consistent with the assumption of supersymmetry. There

is a long tail, however, which seems to get cut away as nmax is increased. The

intersection of the tip of the island with the supersymmetric line is very narrow,

and at nmax = 10 we can report a rigorous estimate of ∆σ of 0.58444(8), which

is both completely consistent though roughly an order of magnitude less precise

than the nmax = 30 superconformal bootstrap results reported in [54].26

One advantage of our mixed fermion bootstrap setup is that we now have

access to half-integer spin exchange channels. In this case, the parity-odd

` = 3/2 channel would be expected to have a supercurrent at the unitarity

bound of ∆ = 2.5 if the solution to crossing corresponds to a supersymmetric

CFT. We can therefore investigate whether a given solution to crossing in our

N = 1 island must have supersymmetry by imposing gaps in the supercurrent

channel and seeing what the upper bound of that gap is. If the feasibility of

a solution to crossing is sensitive to this gap assumption, we can say that in

that solution there must be a low-lying operator in that spectrum.

Specifically, we can perform a binary search in the supercurrent gap to find

precisely what is the upper bound of the scaling dimension of the leading

operator in that channel. Scanning along an axis of our nmax = 10 island,

which goes from the tip through the center (shown in Figure 2.9), we find

that for the entire scan ∆SC < 2.54. In particular, at the tip of the island

26While the nmax values reported here are quite different, we should note that the system
of crossing equations studied in [54] has only 4 crossing equations while our N = 1 system
has 28.

47

Δσ=Δψ-
1
2

nmax=6
nmax=10

1.065 1.070 1.075 1.080 1.085 1.090 1.095

Δψ
0.55

0.60

0.65

0.70
Δσ

Δϵ=Δ
σ+
1

nmax=6
nmax=10

0.55 0.60 0.65 0.70

Δσ

1.5

1.6

1.7

1.8

1.9

2.0
Δϵ

Figure 2.8: The allowed region for the N = 1 critical GNY model when
imposing that ∆σ′ > 2.5, projected to the (∆ψ, ∆σ) and (∆σ, ∆ε) planes.
The solid lines capture the expected relation between scaling dimensions in
an N = 1 SCFT. The tip intersects with the supersymmetric constraint on
scaling dimensions, though note that due to the projection and visualization
method (described in section 2.3.4.2) that the extent of that intersection is
exaggerated, as the line and island are actually in 3-dimensional space. We
separately computed a binary search along the supersymmetric line in all three
external dimensions and found a rigorous estimate of ∆σ′ = 0.58444(8). This
agrees exactly with those found for the N = 1 super-Ising model in [54].

(corresponding to the N = 1 super-Ising model), the upper bound drops to

∆SC < 2.5003219. This implies that any CFT with these parameters must be,

to a high degree of precision, supersymmetric.27

2.5 Discussion

In this work we have obtained the first rigorous and precise islands for the

conformal data of the 3d O(N) Gross-Neveu-Yukawa fixed points from the

conformal bootstrap. Much like the 3d Ising and O(N) vector models, these

theories appear to be readily amenable to bootstrap methods. In particular,

we have shown that one can obtain small islands in the parameter space of

CFT data after studying the crossing relations for the operators {ψ, σ, ε} and

27We also did a preliminary exploration of how the bound on lowest spin-3/2 operator
changes as a function of the gap in ∆σ′ . As this gap is increased towards the value that it
takes in theN = 1 super-critical Ising model, we saw that the upper-bound on the dimension
of the spin-3/2 operator becomes even stronger, as the right part of the plot (the tail of the
island) shrinks away.

48

Δϵ=Δ
σ+
1

nmax=6
nmax=10

SUSY Ising

0.55 0.60 0.65 0.70

Δσ

1.5

1.6

1.7

1.8

1.9

2.0
Δϵ

SUSY Ising

1.55 1.60 1.65 1.70 Δϵ
2.50

2.51

2.52

2.53

2.54

2.55

ΔSC

Figure 2.9: On the right we show the upper-bound at nmax = 10 on the
scaling dimension of the lowest spin-3/2 operator as a function of ∆ε obtained
along an axis of the N = 1 island when imposing ∆σ′ > 2.5. The axis was
selected such that it interpolates between the location of the N = 1 super-
Ising model as determined in previous literature [52, 53, 54] and the center
of the nmax = 10 island. We show this axis projected into (∆σ,∆ε) space in
orange in the figure on the left. We see that all points along this axis are
forced to have a spin-3/2 operator that is close to the unitarity bound, where
such operator becomes a supercurrent. The red circle in the plot on the right
gives the location of the critical N = 1 super-ising model as determined from
the N = 1 superconformal bootstrap [54].

imposing gaps in the spectrum which isolate the leading scalar and spin-1/2

operators. The gaps we have chosen are motivated by perturbative calculations

in the large-N and ε-expansions. They can also be viewed as being necessary

in order to exclude potential nearby nonlocal fixed points obtained by coupling

the leading operators in the GNY theories to generalized free fields. In the

χ and σ′ sectors the gaps can be viewed as imposing a consequence of the

equations of motion for the fundamental fields. We saw a particular sensitivity

of our results to the gap in ∆σ′ , and establishing its irrelevance down to N = 2

appears to be an important open problem. In future work we plan to study

the allowed values of this gap more rigorously using navigator methods [12]

and use the results to further improve our islands.

In the present study, we focused on the O(N)-invariant GNY theories with

N = 1, 2, 4, 8, but it is clear that the results can be extended to any N . In

the case of N = 1, the fixed point is believed to have emergent 3d N = 1 su-

49

persymmetry. If one assumes supersymmetry then one can perform a precise

bootstrap of this model using only external scalar fields as was demonstrated

in [54]. If one does not assume supersymmetry, then we have seen in the

present work that the numerical bootstrap with external fermions still forces

the solution to be approximately supersymmetric, requiring a spin-3/2 “su-

percurrent” operator in the spectrum that is near the unitarity bound.

In this paper we also highlighted the distinction between the O(N) GNY fixed

points and the O(N/2)2 o Z2 GNY fixed points. For the leading operators

{ψ, σ, ε}, differences in their scaling dimensions only show up at 4-loop order

in the ε and large-N expansions and they are expected to be extremely close

to each other. On the other hand, the models have more significant differences

in other parts of the spectrum, e.g. in the number of conserved currents and

spectrum of fermion bilinear operators. In the future it will be interesting to

study the O(N/2)2oZ2 GNY fixed points using numerical bootstrap methods

and see if we can clearly resolve the difference between these models. It will

additionally be interesting to study bounds on OPE coefficients and central

charges in both models. These fixed points can also readily be generalized

to models with multiple scalar fields, e.g. the chiral-XY and chiral-Heisenberg

GNY fixed points, which will also be interesting targets for the bootstrap.

Our work was the first significant application of the new software tool blocks 3d [18],

which enables systematic and efficient calculations of 3d conformal blocks with

arbitary spinning operators. Along with it, we have developed an extensi-

ble and modular software stack, as described in appendix 2.6.1. The success

of our study makes it clear that this approach can be used in other studies

of interest, e.g. mixed correlators containing various combinations of scalars,

fermions, currents, and stress tensors. We hope that future systematic studies

of the bootstrap constraints for such correlators will lead to the discovery of

exciting new islands in the vast ocean of possible CFTs.

2.6 Appendix

2.6.1 Software

For this work, we implemented and used several software packages, which we

briefly describe in this appendix.28 We indicate with a “?” the packages that

were newly written for this work. Other packages have been re-used (and in

28Note: many of these packages are works in progress, and their names and APIs are
subject to change.

50

some cases modified) from other projects. The profusion of libraries is because

we have made an effort to split them up into an orthogonal set of features.

• SDPB (https://github.com/davidsd/sdpb): a C++ program for solv-

ing semidefinite programs [1, 2].

• blocks 3d (https://gitlab.com/bootstrapcollaboration/blocks_3d):

a C++ program for computing spinning conformal blocks in 3d [15, 18].

• scalar blocks (https://gitlab.com/bootstrapcollaboration/scalar_

blocks): a C++ program for computing scalar conformal blocks in gen-

eral d.

• hyperion (https://github.com/davidsd/hyperion): a Haskell frame-

work for concurrent computations on an HPC cluster.

• hyperion-bootstrap (https://gitlab.com/davidsd/hyperion-bootstrap):

A Haskell library for computing numerical bootstrap bounds on an HPC

cluster using hyperion.

• sdpb-haskell (https://gitlab.com/davidsd/sdpb-haskell): A Haskell

interface to SDPB.

? bootstrap-build (https://gitlab.com/davidsd/bootstrap-build):

A Haskell “build system” for building objects and their dependencies.

• bootstrap-math (https://gitlab.com/davidsd/bootstrap-math): A

Haskell math library containing datatypes and algorithms useful for

bootstrap computations.

? blocks-core (https://gitlab.com/davidsd/blocks-core): Core Haskell

datatypes and functions for conformal blocks in bootstrap computations.

? blocks-3d (https://gitlab.com/davidsd/blocks-3d): A Haskell in-

terface to the C++ program blocks 3d, built on blocks-core.

? scalar-blocks (https://gitlab.com/davidsd/scalar-blocks): A Haskell

interface to the C++ program scalar blocks, built on blocks-core.

? bootstrap-bounds (https://gitlab.com/davidsd/bootstrap-bounds):

A Haskell library for setting up crossing equations using information

https://github.com/davidsd/sdpb
https://gitlab.com/bootstrapcollaboration/blocks_3d
https://gitlab.com/bootstrapcollaboration/scalar_blocks
https://gitlab.com/bootstrapcollaboration/scalar_blocks
https://github.com/davidsd/hyperion
https://gitlab.com/davidsd/hyperion-bootstrap
https://gitlab.com/davidsd/sdpb-haskell
https://gitlab.com/davidsd/bootstrap-build
https://gitlab.com/davidsd/bootstrap-math
https://gitlab.com/davidsd/blocks-core
https://gitlab.com/davidsd/blocks-3d
https://gitlab.com/davidsd/scalar-blocks
https://gitlab.com/davidsd/bootstrap-bounds

51

about three- and four-point structures. This library implements the al-

gorithm described in section 2.3.

• quadratic-net (https://gitlab.com/davidsd/quadratic-net): A search

algorithm for solving non-convex quadratic constraints in low numbers

of dimensions, used in the OPE scan algorithm of [10].

? scalars-3d (https://gitlab.com/davidsd/scalars-3d): An imple-

mentation of several bootstrap bounds on scalar theories in 3d, using

the libraries listed here.

? fermions-3d (https://gitlab.com/davidsd/fermions-3d): An im-

plementation of several bootstrap bounds on GNY models in 3d, using

the libraries listed here. This is the main “umbrella” package for the

computations in this work.

2.6.2 ∆χ and ∆ψ′ at large N

To better isolate the O(N) GNY-model using the conformal bootstrap it is

useful to get a better estimate for the scaling dimension of various operators

in the theory, especially for those that are involved in the equation of motion

or in the new fermionic channels that are involved in a fermionic-scalar OPE.

In particular, we would like to compute the 1/N correction to the dimen-

sion of the fermionic operators φ2ψi (the lowest dimensional operator above

ψi) and φ3ψi (the lowest dimensional primary in its parity sector and O(N)

representation). We will determine these scaling dimension by extracting the

logarithmic divergence coefficient in the propagator of the more generic opera-

tor Oi = φkψi. The bare dimension of this operator is ∆φkψi = k+1+O(1/N).

We will follow a similar logic to that used to determine the dimension of φk in

appendix B of [25].

Up to order 1/N , this propagator (in the concrete, but generalizable, example

https://gitlab.com/davidsd/quadratic-net
https://gitlab.com/davidsd/scalars-3d
https://gitlab.com/davidsd/fermions-3d

52

with k = 2) is given by the following diagrams:

DOi(p) = Oi(p) Oi(−p) + k


+



+
k(k − 1)

2




+ + k




.

(2.93)

The first diagram gives the leading bare propagator. The next two sub-

leading terms (i.e. the one proportional to k and the one proportional to

k(k − 1)/2) capture the anomalous dimension of φk, which was found to

be δφk = 1
N

16k(3k−5)
3π2 [25]. The next term yields the 1/N correction to the

fermionic propagator and gives the contribution of the anomalous dimension

of the fermionic field, δψi = 1
N

4
3π2 . Finally, the last term is a new diagram

which yields a correction kη to the anomalous dimension. Thus, the scaling

dimension of the operator is given by,

∆φkψi = k + 1 + δφk + δψi + kη . (2.94)

To determine η we note that in the special case when k = 1, following from the

equations of motion, the operator Oi is a descendant and therefore, ∆φψi = 1+

∆ψi . This implies that the logarithmic divergences for the following diagrams

should cancel each other:
+


+




= 0 log Λ + . . . ,

(2.95)

53

from which we conclude that η = −δφ = 32
3π2N

. Consequently, we find:

∆φkψi = k + 1 +
1

N

(
16k(3k − 5)

3π2
+

4

3π2
+

32k

3π2

)
= k + 1 +

48k(k − 1) + 4

3π2N
+O

(
1

N2

)
.

(2.96)

In particular, we find

∆ψ′i
= 3 +

100

3π2N
+O

(
1

N2

)
, (2.97)

∆χi = 4 +
292

3π2N
+O

(
1

N2

)
. (2.98)

2.6.3 More on the differences between the O(N) and O(N/2)2 o Z2

GNY models

2.6.3.1 2- vs 4-component

We will note that in the literature sometimes authors will describe the theories

discussed in this paper using the language of 4-component fermions as opposed

to the natively 3-dimensional 2-component language which we use in this pa-

per. This is especially true in the case of 4 − ε calculations. A Lagrangian

may look like

Lχ = −1

2
(∂φ)2 − iΨi/∂Ψi −

1

2
m2φ2 − λ

4
φ4 − igφΨiΨi, (2.99)

where Ψi are 4-component Dirac spinors29 and i = 1 . . . N4, N4 ≡ N/4. No-

tably, the Lagrangian has an additional discrete “chiral” symmetry of Ψi →
γ5Ψi, φ → −φ, inhereted from the four-dimensional theory.30 Models of this

form have been studied extensively to understand the chiral Ising universal-

ity class, which for N = 4, 8 (i.e. N4 = 1, 2) describe spinless/spinful critical

points for the semimetal-to-CDW transition in graphene. The critical points

describe breaking of the symmetry while preserving time-reversal symmetry

[41, 40].

To make the distinction between this theory more clear from the theory that is

the focus of our paper, it is helpful to consider decomposing our 4-component

Dirac spinors into 2-component Majorana spinors. In a suitably convenient

29Here we define Ψi ≡ Ψ†i γ̃
0, where γ̃0 is defined in 2.100. The Clifford algebra satisfies

{γ̃µ, γ̃ν} = 2ηµν , just like the 2×2 gamma matrices defined in [25] that we use in this paper.
30We denote the “chiral” symmetry in quotes as there is no inherent spacetime notion of

chirality in three (or indeed, any odd number of) dimensions. This symmetry amounts to
an internal flavor symmetry of the fermions.

54

4× 4 basis of the gamma matrices, such as the following defined in [63, 81] in

terms of the 2× 2 γµ we have used throughout this paper (defined in [25]), we

have:

γ̃µ =

(
γµ 0

0 −γµ

)
, µ = 0, 1, 2; γ̃3 =

(
0 −i
i 0

)
. (2.100)

We should note that the γ̃3 will not play a role in the 3d theory; thus this

gamma matrix basis reduces to a block-diagonal form in 3d. Therefore, the

4-component spinors can be broken down into 2-component spinors as

Ψi =

(
ψLi

ψRi

)
=

(
ψi

ψi+N4

)
. (2.101)

We get

Lχ = −1

2
(∂φ)2 − iψi/∂ψi −

1

2
m2φ2 − λ

4
φ4 − igφ(ψ

L

i ψ
L
i − ψ

R

i ψ
R
i). (2.102)

(This can be further decomposed into the requisite Majorana spinors without

significant difference in form, save for the index i going from 1 to 2N4.) In

this form, we see that we have two distinct fermion species with opposite

signs on their Yukawa couplings; the chiral symmetry becomes ψLi ↔ ψRi ,

φ → −φ. We can see that, if there are N Majorana fermions total, the

symmetry of this Lagrangian is O(N/2)2oZ2, where Z2 is the chiral symmetry.

For completeness, we will note that the 4-component spinor notation for the

fermion bilinear which appears in (2.1) is iΨiγ
3γ5Ψi.

2.6.3.2 Irreps of O(N/2)2 o Z2

In the next subsection we will classify the various low-lying primary operators

of the O(N/2)2 oZ2 GNY theory. To attempt such a classification, we should

first discuss the irreps of O(N/2)2 o Z2. We will start with a more general

discussion. Given a compact simple Lie group G, let H = (G×G) oZ2. The

group H is generated by (gL, gR) ∈ G × G, together with an element s such

that s2 = 1 and

s(gL, gR) = (gR, gL)s. (2.103)

For each irrep ρ of H, we can consider its restriction to G×G. The irreps of

G×G have the form ρ1�ρ2 where ρ1, ρ2 are irreps of G. The symbol � means

55

we take a tensor product as vector spaces, but not as G representations. The

first G acts on the left-tensor factor and the second G acts on the right tensor

factor.

Suppose the restriction of ρ contains the G×G irrep ρ1�ρ2. That is, we have

a G×G homomorphism

φ ∈ HomG×G(ρ1 � ρ2, ρ). (2.104)

Now consider φ′ : ρ2 � ρ1 → ρ given by

φ′(v2 ⊗ v1) ≡ sφ(v1 ⊗ v2), (2.105)

where sφ(v1 ⊗ v2) denotes the action of s ∈ H on the vector φ(v1 ⊗ v2) ∈ ρ.

We have

φ′((gL, gR)(v2 ⊗ v1)) = φ′(gLv2 ⊗ gRv1)

= sφ(gRv1 ⊗ gLv2)

= s(gR, gL)φ(v1 ⊗ v2)

= (gL, gR)φ′(v2 ⊗ v1), (2.106)

so we see that φ′ is a G×G homomorphism from ρ2 � ρ1 to ρ:

φ′ : HomG×G(ρ2 � ρ1, ρ). (2.107)

We have two cases to consider.

• Suppose that ρ1, ρ2 are distinct. Clearly φ(ρ1 � ρ2) + φ′(ρ2 � ρ1) is an

H-invariant subspace of ρ, and thus must be all of ρ. Since each of φ, φ′

is a G×G isomorphism onto its image, this furnishes an isomorphism

ρ ∼= (ρ1 � ρ2)⊕ (ρ2 � ρ1) (2.108)

as G×G representations. Furthermore, the two summands are swapped

by the action of s. We denote the corresponding H-representation by

ρ = 〈ρ1, ρ2〉.

• Suppose that ρ1 = ρ2. In this case, we claim that ρ± = (φ ± φ′)(ρ1 �

ρ1) are H-invariant subspaces of ρ. Clearly they are G × G-invariant

subspaces. To prove they are also H-invariant, note that

s(φ± φ′)(u⊗ v) = s(φ(u⊗ v)± sφ(v ⊗ u))

= sφ(u⊗ v)± φ(v ⊗ u)

= ±(φ± φ′)(v ⊗ u) ∈ ρ±. (2.109)

56

By irreducibility, one of the ρ± must be all of ρ, and the other must

vanish. When ρ = ρ+ or ρ = ρ−, we denote the H-representation by

〈ρ1, ρ1〉±. A basis of 〈ρ1, ρ1〉± is given by u⊗ v with u, v ∈ ρ1, with the

s-action

s(u⊗ v) = ±v ⊗ u. (2.110)

Below, when listing the perturbative estimates for the scaling dimensions for

some of the low-lying operators in the theory we will be interested in ρi ∈
{•, , , } which corresponds to the singlet, vector, symmetric traceless

tensor and antisymmetric representations.

2.6.3.3 Large-N computations in the O(N/2)2 o Z2 GNY model

As explained in section 2.2.4, the large-N Feynman diagrams in the O(N)

GNY model andO(N/2)2oZ2 GNY model only differ by diagrams that contain

fermionic loops with five or more fermion propagators. For instance, in the

GNY model we have that

∆ψi ⊃
ψi(x) ψi(y)

∼ 1

N4
,

∆φ2 ⊃

φ2(x) φ2(y)

∼ 1

N3
, (2.111)

where we have again listed examples of diagrams (rather than all the diagrams)

contributing to the leading non-vanishing order. As explained in section 2.2,

these diagrams cancel in the O(N/2)2oZ2 GNY models. More generally, since

such loops only contribute at higher order we see that at leading order

∆
O(N)
Oρ = ∆

O(N/2)2oZ2

O〈ρ,•〉 +O

(
1

N3

)
, (2.112)

where O can represent an operator with any spin and parity representation,

ρ can be one of the { , , } irreps of O(N) or O(N/2), and we have

57

added the O(N) and O(N/2)2 o Z2 superscripts to differentiate between the

two models.

If ρ = •, then we have to consider the O(N/2)2 o Z2 irreps 〈•, •〉±. For op-

erators that have the same representation under parity as under the chiral

Z2, their scaling dimensions match that of the operator with the same parity

in the O(N) GNY model for low enough order in the large-N expansion: for

instance, ∆
O(N/2)2oZ2
σ〈•,•〉−

≈ ∆
O(N)
σ and ∆

O(N/2)2oZ2

ε〈•,•〉+ ≈ ∆
O(N)
ε . If that is not the

case, a more elaborate analysis is needed. For example, consider the opera-

tor σ〈•,•〉+ ∼ ψ L
i ψ

L
i + ψ R

i ψ
R
i .31 The diagrams contributing to the two-point

function of this operator are precisely the same as those contributing to the

two-point function of σ〈 ,•〉. The fact that the O(N/2) indices are con-

tracted differently does not matter at low enough order when computing the

scaling dimension of the operator and only affects the overall normalization of

the two-point function. Therefore, we find that

∆O(N)
σ ≈ ∆O(N/2)2oZ2

σ〈 ,•〉
≈ ∆O(N/2)2oZ2

σ〈•,•〉+
. (2.113)

This approximate relation between the scaling dimensions in the singlet sector

and those in the 〈 , •〉 irrep can be extended to the parity even sector.

For instance, consider the operator εσ ∼ φψ(iψj) in the O(N) model and

the operators ε〈 ,•〉 ∼ φψ(i
L,RψL,Rj) and ε〈•,•〉− ∼ φ(ψ L

i ψ
L
i + ψ R

i ψ
R
i) in the

O(N/2)2 oZ2 model. Once again the large-N Feynman diagrams of the above

operators are identical and we find

∆O(N)
ε ≈ ∆O(N/2)2oZ2

ε〈 ,•〉
≈ ∆O(N/2)2oZ2

ε〈•,•〉−
. (2.114)

Next, we discuss some of the operators in the O(N/2)2 o Z2 model whose

scaling dimensions are not found among operators in the O(N) model even at

leading order in the large-N expansion. One example of such an operator is

σ〈 , 〉+ ∼ ψ L
i ψ

R
j +ψ R

i ψ
L
j . The two-point function of such an operator up to

31This is in a different irrep than φ itself which as mentioned above lies in 〈•, •〉−, but
transforms in the same way under parity.

58

Operator Spin Parity Global irrep. ∆ at large N GNY op.

ψ〈 ,•〉 ∼ ψL,Ri
1
2

+ 〈 , •〉 1 + 4
3π2N

+ . . . ψ

ψ′〈 ,•〉 ∼ φ2ψL,Ri
1
2

+ 〈 , •〉 3 + 100
3π2N

+ . . . ψ′

χ〈 ,•〉 ∼ φ3ψi
1
2

− 〈 , •〉 4 + 292
3π2N

+ . . . χ

σ〈•,•〉− ∼ φ 0 − 〈•, •〉− 1− 32
3π2N

+ . . . σ•

ε〈•,•〉+ ∼ φ2 0 + 〈•, •〉+ 2 + 32
3π2N

+ . . . ε•

σ′〈•,•〉− ∼ φ3 0 − 〈•, •〉− 3 + 64
π2N

+ . . . σ′•
ε′〈•,•〉+ ∼ φ4 0 + 〈•, •〉+ 4 + 448

3π2N
+ . . . ε′•

φk 0 (−1)k 〈•, •〉(−1)k k + 16k(3k−5)
3π2N

+ . . . φk

σ〈 ,•〉 ∼ ψL,R(i ψL,Rj) 0 − 〈 , •〉 2 + 32
3π2N

+ . . . σ

σ〈•,•〉+ ∼ ψi
LψLi + ψi

RψRi 0 − 〈•, •〉+ 2 + 32
3π2N

+ . . . σ

σ〈 , 〉+ ∼ ψ L
i ψ

R
j + ψ R

i ψ
L
j 0 − 〈 , 〉+ 2− 16

3π2N
+ . . . −

σ
〈 ,•〉

∼ jµ
〈 ,•〉

φ2∂µ∂
2φ 0 − 〈 , •〉 8 + . . . σ

jµ
〈 ,•〉

∼ ψ L,R
[i γµψL,Rj] 1 + 〈 , •〉 2 jµ

jµ〈 , 〉− ∼ ψ L
i γ

µψRj − ψ R
i γ

µψLj 1 + 〈 , 〉− 2 + 16
3π2N

+ . . . −

Table 2.6: Estimates for the large-N scaling dimensions at the O(N/2)2 o
Z2 GNY critical point. The last column shows which scaling dimensions in
the O(N) GNY critical point match the dimensions of some operator in the
O(N/2)2 o Z2 GNY critical point at low orders in the large-N expansion.

order O(1/N2) is given by

Dσ〈 , 〉+
(0, x) = + + +

+O

(
1

N2

)
. (2.115)

To extract the anomalous dimension of the operator, we need to read-off the

coefficient of the logarithmic divergence in (2.115) for the last three diagrams

δσ〈 , 〉+
= 2δψ − ηvertex which are responsible for the 1/N correction. The

first two diagrams contribute the same amount since δψ = δψL = δψR , while

the last diagram was computed in appendix B of [25] in order to compute the

anomalous dimension δε in the O(N) model. The calculation is almost

identical to there, the only difference is that the last diagram in (2.115) has

the opposite sign due to the difference in sign between the Yukawa coupling

of ψL and ψR. Therefore,

∆σ〈 , 〉+
= 2 + δσ〈 , 〉+

= 2− 16

3π2

1

N
+O

(
1

N2

)
. (2.116)

59

Similarly, we see that the diagrams needed to compute the scaling dimension

of ε〈 , 〉− ∼ φ(ψ L
i ψ

R
j +ψ R

i ψ
L
j) and ε〈 , 〉+ ∼ σ+(ψ L

i ψ
R
j +ψ R

i ψ
L
j) from the

O(N/2)2 o Z2 model are not among those found in the O(N) model.

Both the O(N) GNY and O(N/2)2oZ2 GNY models have conserved spin-one

currents, with the O(N) model having jµ ∼ ψ[iγ
µψj] in the antisymmetric

irrep of O(N) and jµ
〈 ,•〉

∼ ψ L,R
[i γµψL,Rj] in the antisymmetric representation of

each O(N/2) subgroup. However, to further distinguish the two models and to

ensure that the O(N/2)2oZ2 does not have a symmetry enhancement in the IR

to a Lie group with a greater number of generators, we can compute the anoma-

lous dimension of the bifundamental current jµ〈 , 〉− ∼ ψ L
i γ

µψRj − ψ R
i γ

µψLj .

The computation for the anomalous dimension of this spin-1 operator follows

from the computation which shows that the conserved current jµ
〈 ,•〉

has no

anomalous dimension. Specifically,

δjµ
〈 ,•〉

= 0 = 2δψ + η̃vertex , δjµ
〈 , 〉−

= 2δψ − η̃vertex , (2.117)

from which it follows that

∆jµ
〈 , 〉−

= 2 +
16

3π2

1

N
+O

(
1

N2

)
. (2.118)

To summarize, while operators in the O(N) GNY model have associated oper-

ators in the O(N/2)2 o Z2 GNY model that have the same scaling dimension

at low orders in the large-N expansion, the reverse is not true. We review all

discussed large-N estimates in the O(N/2)2 o Z2 model in Table 2.6.

60

Chapter 3

Skydiving to Bootstrap Islands

3.1 Introduction

The numerical conformal bootstrap (see [19, 20] for recent reviews) has re-

vealed that small sets of crossing equations can encode detailed information

about a CFT. But how does this information scale as we study more crossing

equations? Unfortunately, larger systems of crossing equations pose new nu-

merical challenges. More equations depend on more parameters — for example

the scaling dimensions and OPE coefficients of “external” operators entering

the given correlators.1 In order to build exclusion plots in the space of CFT

data, we must find efficient ways to search over these parameters.

The navigator function of [12] is a useful tool for this problem. It provides

a notion of “height” on the space of CFT data. By following the navigator

function to its minima, we can find allowed points in this space. In this work,

we propose an efficient method for using the navigator function without com-

puting it in detail. Our approach is analogous to skydiving onto a landscape

instead of walking across it.

Let us recall the idea behind the navigator function in more detail. Numerical

bootstrap problems depend on a parameter space P that can include external

scaling dimensions, gap assumptions, OPE coefficients, etc. There exists a

binary function on P , indicating whether or not a point p ∈ P is consistent

1We refer to an operator as “external” if it appears in a four-point correlator in a
given bootstrap problem. For example, when bootstrapping 〈O1O2O3O4〉, the operators
O1,O2,O3,O4 are all “external.” We refer to their scaling dimensions and the OPE co-
efficients among them as “external” dimensions and OPE coefficients. By contrast, an
“internal” operator is one that appears in OPEs of the external operators, but is not itself
external.

61

with crossing symmetry. In practice, this function is computed by solving a

semidefinite program (SDP) [13, 5, 1]. If a so-called “dual” solution of the

SDP exists, the point is inconsistent with crossing symmetry, and we deem

it infeasible. If no “dual” solution exists, the point may be consistent with

crossing symmetry, and we deem it feasible. The ultimate goal is to carve

away all the infeasible points until only a small feasible region remains, thus

determining the possible values of the physical parameters with an accuracy

given by the size of the feasible region.

The navigator function of [12] replaces this binary function (feasible vs. in-

feasible) with a real-valued function that is positive for infeasible points and

negative for feasible points. Crucially, the navigator function is continuous

and locally differentiable, and its gradient provides information about where

to navigate in P . For example, a simple numerical minimization algorithm can

be used to navigate towards a feasible point. It is also easy to find a feasible

point with, say, the largest value of a given coordinate in P . As discussed in

[12], this is a straightforward equality-constrained optimization problem.

The searches discussed in [12] involve two steps for each point p ∈ P . First,

one computes the navigator function N (p) and its gradient ∇N (p) by solving

an SDP to high precision. Then, one uses these values to determine a step

p→ p+δp in P . If we denote the internal variables of the SDP solver as ξ, this

two-step process changes ξ and p in an alternating fashion. This is suboptimal,

in particular because the optimal ξ variables are solved from scratch for each

p (and the usual SDP algorithms do not allow for efficient warm-starting from

a previous solution). Instead, it is much more natural to update both p and ξ

simultaneously at every step, which is what we do in this work.

Beginning with initial values of the solver variables ξ and external parameters

p, we compute a simultaneous step in both variables, and follow it to a new

value of ξ and p. As the optimization continues, we converge simultaneously

to an optimal value of ξ that solves the SDP and the desired value of p that

optimizes some user-defined criterion. Thus, finding an optimal point in P
space occurs over a comparable time scale to the solution of a single SDP. This

is a substantial speedup over traditional approaches, which typically require

solving tens, hundreds, or even thousands of auxiliary SDPs, see figure 3.1.

For fixed p, the space of allowed ξ is convex, and thus ξ can be optimized

deterministically using interior point methods. However, once we allow p to

62

Figure 3.1: A comparison of (1) repeatedly computing the navigator function
vs. (2) skydiving. Here, the variable µ measures the distance to a solution of
an SDP. The SDP is solved when µ → 0. The vector p = (p1, p2) represents
external parameters. The traditional navigator approach solves an SDP for
each p, beginning at large µ and converging along the dashed vertical lines
towards µ = 0 each time. Meanwhile, skydiving moves in p and µ simultane-
ously, following the solid black curve.

vary, our optimization problem is no longer convex (though violations of con-

vexity occur in a relatively small number of dimensions). We therefore find

ourselves in the less-familiar world of non-convex constrained optimization, or

more precisely non-linear semidefinite programming. In this work, we focus

on families of SDPs that arise in typical conformal bootstrap problems — in

particular families of Polynomial Matrix Problems (PMPs) [1] depending on

a small number of parameters. We find solution methods for these problems

that work effectively in many examples, including ways to mitigate issues like

stalling described below. Although our strategy shows promising results in

the examples we have considered, we cannot claim it to be optimal or univer-

sally applicable. Continuing to explore and develop other strategies remains

an interesting problem for future research.

This paper is organized as follows. In section 3.2, we review the framework

of semidefinite programming and explain how to incorporate external param-

eters. In section 3.3, we introduce the skydiving algorithm for solving families

of SDPs. We discuss details of our implementation of skydiving in section 3.4.

In section 3.5, we present examples of applying skydiving to various bootstrap

63

problems, including the 3d Ising model and 3d O(3) model, comparing with

previous methods. Finally, we conclude in section 3.6 with a discussion of

some current limitations and potential improvements to skydiving, and possi-

ble future applications.

3.2 Non-linear semidefinite programming problems

3.2.1 Review of semidefinite programming

3.2.1.1 Problem formulation

Using the methods of [13, 5], a numerical conformal bootstrap problem can be

formulated as a semidefinite program (SDP). Let us briefly review the solution

procedure used by the semidefinite program solver SDPB [1, 2]. Following the

notation of [1], an SDP takes the form:

maximize bTy over y ∈ Rn, Y ∈ SK

such that Y � 0 and

By + Tr(A∗Y) = c

(dual), (3.1)

where SK denotes the space of symmetric matrices of size K. Here c ∈ RP is

a vector, B ∈ (Rn)P is a rectangular matrix, and A∗ = (A1, . . . , AP) ∈ (SK)P

is a vector of matrices. The program (3.1) is called the dual program. The

corresponding primal program is:

minimize cTx over x ∈ RP

such that X(x) := xTA∗ � 0 and

BTx = b

(primal), (3.2)

where xTA∗ ≡
∑P

p=1 xpAp ∈ SK .

A vector x is called primal feasible if the conditions in (3.2) are satisfied, even

if optimality is not necessarily achieved. Similarly, a pair (y, Y) is dual feasible

if it obeys the conditions in (3.1), without necessarily achieving optimality.

The duality gap is the difference between the primal and dual objectives:

D(x, y) := cTx− bTy . (3.3)

Positive semidefiniteness of X and Y implies that the duality gap is nonnega-

tive when x is primal feasible and (y, Y) is dual feasible:

D(x, y) = Tr((xTA∗)Y) = Tr(XY) ≥ 0 , (3.4)

64

Let us denote the values at optimality of the primal and dual problems by

(x∗, X∗) and (y∗, Y∗), respectively. It is a standard result that, for a generic

SDP, the duality gap vanishes :

cTx∗ = bTy∗ (3.5)

This, in turn, implies the complementarity condition:

X∗Y∗ = 0, (3.6)

which follows from Tr(X∗Y∗) = 0 and positive semidefiniteness of X∗ and Y∗.

3.2.1.2 Solution algorithm

In SDPB, SDPs are solved using a primal-dual interior point algorithm. This

algorithm solves both the primal and dual problems simultaneously and ap-

proaches optimality from the interior of the cone of positive semidefinite ma-

trices, meaning X, Y � 0 at every step. An efficient way to describe the

algorithm is via the Lagrange function

L(x, y,X, Y) = cTx+ bTy − xTBy + Tr((X − xTA∗)Y)− µ log detX, (3.7)

where µ is a parameter multiplying a logarithmic barrier function − log detX

that is meant to help X stay within the cone of positive semidefinite matrices.

The stationarity equations of this Lagrange function with respect to x, y,

and Y yield the primal and dual feasibility conditions, while stationarity with

respect to X yields:

XY = µI, (3.8)

which is a finite-µ version of the complementarity condition (3.6).

The central path is the µ-dependent line of stationary points of the Lagrange

function (3.7). The solution to the original SDP is obtained by taking µ ↓ 0

along the central path. A standard Newton step (dx, dX, dy, dY) towards this

central path can be computed by solving the linearized equations:2

2As explained in [1], the natural way to solve these equations leads to an update dY
that is not manifestly symmetric. In practice Y is therefore updated with the symmetrized
version of the dY computed from the Newton step equations. This will be left implicit in
our notation.

65

dxTA∗ − dX = xTA∗ −X

BTdx = b−BTx

Bdy + Tr(A∗dY) = c−By − Tr(A∗Y)

dX Y +XdY = R := µI −XY. (3.9)

These are solved in practice with the following procedure. First one solves the

linear system:(
S B

BT 0

)(
x+ dx

y + dy

)
=

(
By − c+ Tr(A∗Y) + µTr(A∗X

−1)

b

)
, (3.10)

and then one can compute the updates:

dX = (xT + dxT)A∗ −X

dY = X−1(R− dXY). (3.11)

Here the matrix S is defined element-wise as Sij = Tr(AiX
−1AjY). It is easily

verified that this procedure is a simple rewriting of the system (3.9). One

important problem is however that this linear system (generically) becomes

singular at optimality. First of all, X and Y become singular because XY = 0

and X, Y � 0, and S becomes singular because xTSx = Tr(XY) = 0. In

practice, the singularity of the linear system at optimality can cause serious

numerical instabilities near optimality.

The finite-µ version of the problem has the advantage that X and Y are (again,

generically) strictly positive definite even at optimality, since they now obey

equation (3.8). This makes the Newton steps towards the modified comple-

mentarity condition (3.8) well-defined. But of course we would be solving the

wrong problem if we kept µ fixed throughout the run. In practice one therefore

gradually decreases µ. At every step one estimates a ‘current’ value of µ as

µest = Tr(XY)/ dim(X), (3.12)

and then one takes the above Newton step with

µ← βµest, (3.13)

with β ∈ (0, 1) chosen by the user; a typical value is 0.3. In this way, one

obtains a trajectory where each step is aimed towards an ever lower point

along the central path.

66

The Newton step itself is not guaranteed to maintain positivity of the matrices

X and Y . In practice one therefore chooses an update

(X, x)← (X, x) + αP (dX, dx),

(Y, y)← (Y, y) + αD(dY, dy), (3.14)

where αP and αD are chosen in (0, 1] to ensure that X and Y (and therefore

also S) remain inside the cone of positive semidefinite matrices.

The essential balance of this algorithm arises from the desire to decrease µ

quickly while maintaining reasonable αP and αD. If αP and αD are too close

to zero, then progress slows to a crawl. This can happen if the barrier function

does not sufficiently punish points near the boundary of the cone. This issue

can be mitigated by increasing µ, which here means choosing β closer to 1.

However, then we will descend more slowly along the central path. A judicious

choice of β at each step is therefore essential for success of the algorithm.

3.2.1.3 Corrector step

For any step length between 0 and 1, the Newton step is guaranteed to decrease

the error in the linear equality constraints, but not necessarily in the non-

linear equation (3.8). SDPB tries to mitigate this issue by applying a predictor-

corrector trick [82] which works as follows.

One first computes the initial “predictor” step (dxp, dyp, dXp, dYp) as discussed

above. If one were to simply take this step, the residue R := µI −XY would

become −dXpdYp, whereas we would like it to be zero. To improve this state

of affairs somewhat, we compute another “corrector” step (dxc, dyc, dXc, dYc)

which is obtained by replacing the residue R in the last equation in (3.9) by

R→ µcI −XY − dXpdYp (3.15)

and keeping the other equations the same. Then one updates the original

variables with the corrector step, using the step length choice discussed above.

Notice that in (3.15) we allowed for a new value µc; SDPB’s choice of µc is

modeled on that of SDPA [83, 84, 85] and can be found in detail in [1].

We note that it is comparatively cheap to compute the corrector step once

the predictor step has been computed. This is because both computations

reuse the same matrices S and Q = BTS−1B, whose formation and Cholesky

factorization are the most expensive operations in the solver.

67

3.2.1.4 Aside: iterated corrector step

SDPB, following SDPA, simply takes one predictor-corrector step for each iter-

ation of the algorithm. We however found that it might be more efficient to

repeat the corrector step multiple times, even for standard SDPB runs.

Considering a general setup where we search for the stationary point of a

function L(x), if we write the standard Newton step (with unit step length for

simplicity) as:

xk+1 = xk −H−1
xx (xk) · ∇xL(xk) (3.16)

then the added corrector step would simply be:

xk+2 = xk+1 −H−1
xx (xk) · ∇xL(xk+1) , (3.17)

which importantly “recycles” the old Hessian matrix. Repeating the corrector

step multiple times (using H−1
xx (xk) for every step) is therefore akin to simple

gradient descent, and we can at best expect linear convergence as opposed

to the superlinear convergence of proper Newton steps. But computation-

ally speaking it might very well be worthwhile if the computation of H−1
xx is

expensive, which happens to be the case for our SDPs.

After some experimentation we found that significant speedups could indeed be

obtained using an iterative-corrector algorithm for SDPB. We propose a minimal

modification of the SDPB algorithm as outlined in algorithm 1. Each update

(dx, dy, dX, dY) is now computed in two stages: the first stage is the usual

predictor step and the second stage is to compute the corrector step iteratively

with some general convergence criterion and a limit on the maximum number

of steps.

We have explored two types of convergence criterion. The first strategy uses

the residue R. We consider a solution to be converging if R continues to

decrease with each iteration. The second strategy uses the step length pa-

rameters min(αP , αD) as an indicator of convergence. As long as min(αP , αD)

is increasing, we consider the solution to be converging. Both the residue R

and the step length parameters can function as convergence criteria, but the

former has lower computational cost.

In general, we have observed that the iterative corrector steps converge effi-

ciently when the initial point ξ0 is sufficiently close to the true solution for a

68

Algorithm 1: The iterative corrector step. PredictorStep,
CorrectorStep: standard Interior Point Method subroutines.

Input ξ0 = (x0, y0, X0, Y0);
Compute dξp ← PredictorStep(R);
Initialize dξc = dξp;
while (convergence criterion) & (it ≤ MAX) do

Store dξc ← dξc;
Rc ← µcI −X0Y0 − dXcdYc ;
Update dξc ← CorrectorStep(Rc) ;
it ← it +1;

end
return dξc;

fixed µ. We have observed linear convergence in actual SDPB runs, in agree-

ment with the above general analysis. It is worth mentioning that there is

potential to enhance efficiency by reducing µc during each iterative step.3 We

leave the problems of analyzing the convergence rate with varying µ, estab-

lishing criteria for how fast to decrease µ, and determining when to stop the

corrector iterations for future work.

3.2.2 Semidefinite programs with parameters

As described in the introduction, besides the internal SDP variables

ξ := (x, y,X, Y), (3.18)

the problems of interest depend on additional external parameters p taking

values in a parameter space P . We will assume that the vector of matrices A∗

does not depend on p, as is adequate for most conformal bootstrap problems,

but the other ingredients in the SDP do depend on p:

(b, c, B) → (b(p), c(p), B(p)). (3.19)

We furthermore assume that this dependence on p is smooth. Note that this

does not imply that the objectives are smooth; see [12] for an example where

the objective is not C2, even though the inputs are C∞.

We consider two types of optimization problems over P . For fixed p, let us

denote the optimal value of ξ by ξ∗(p). We furthermore define the objective

3We have done some preliminary exploration in this direction. In experiments, it was
sometimes possible to decrease the duality gap from 10−15 to 10−30 using only corrector
iterations (without ever recomputing the Hessian).

69

at optimality by

obj(p) := cT (p)x∗(p) = bT (p)y∗(p). (3.20)

The first type of problem is a simple minimization:

minimize obj(p) over p ∈ P . (3.21)

The second type is a constrained optimization with a linear objective:

maximize vTp over p ∈ P

such that obj(p) ≤ 0 . (3.22)

Both types of problem arise naturally in the navigator approach to the con-

formal bootstrap [12]. The first type is used to find a (primal) feasible point

in P or, in bootstrap terminology, a point inside a bootstrap “island”. (For

this application, the algorithm can actually terminate as soon as a point with

obj(p) < 0 is found.) The second type is used to map out the extremal points

of bootstrap islands, and consequently provide rigorous upper or lower bounds

on the parameters in P . For this application, it suffices to consider only linear

functions vTp on P , but the formalism we discuss can straightforwardly be

adapted to non-linear objectives.

Both types of problem fall into the category of non-linear semidefinite pro-

grams, where one optimizes a function f(p, x) subject to a positive semidefi-

niteness constraint X(p, x) � 0, with X(·, ·) a non-affine function. The funda-

mentals of such programs were analyzed in 1997 [86]. To date several solution

methods have been proposed, see for example [87, 88], and we are aware of

one publicly available solver [89]. A survey of existing numerical methods can

be found in [90].

Compared to a general non-linear SDP, our case is special for two reasons.

First, our SDPs have additional equality constraints BT (p)x = b(p), which

implies the existence of free variables y on the dual side. Second, our function

X(·, ·) is non-linear only in the p variables and typically there are significantly

fewer of these (about 10-20) than the dimension of x (a few thousand). The

numerical experiments reported in this work only pertain to these “mildly

non-linear” semidefinite programs.

70

3.2.2.1 Lagrange function and Newton step

To set up an interior point method for a parameter-dependent SDP, it is nat-

ural to start from the same Lagrange function (3.7) as before, now viewed as

a function of both p and ξ:

Lµ(ξ, p) = cT (p)x+bT (p)y−xTB(p)y+Tr((X−xTA∗)Y)−µ log detX , (3.23)

The Newton steps stemming from this function (at finite µ) are easily obtained,

but differ slightly for the two types of problem discussed above. The first type

just needs stationarity of the Lagrange function:

∇ξLµ = 0 and ∇pLµ = 0, (3.24)

and the step is therefore computed from:

Hppδp+Hpξδξ = −∇pLµ

Hξpδp+Hξξδξ = −∇ξLµ. (3.25)

Here, Hpp, Hpξ, Hξp, Hξξ denote schematically the components of the Hessian

matrix of second derivatives of the Lagrange function.

An important difference compared to the fixed-p case is that the steps pro-

duced by (3.25) are no longer guaranteed to step towards a minimum of the

Lagrangian. Indeed, suppose we have solved the internal component of the

problem and therefore ∇ξLµ = 0. Then we can eliminate dξ to find:

δLµ = −1

2
δpT

(
Hpp −HpxH

−1
xxHxp

)
δp+ (3.26)

In this case, we are guaranteed to make progress in the right direction if:

Hpp −HpxH
−1
xxHxp � 0. (3.27)

However, this constraint is not automatically satisfied, since we do not assume

any particular structure for the hessian and gradient in P space. If (3.27) is

not satisfied, then the näıve Newton step might aim for a local saddle point

or maximum rather than a minimum. A common method for dealing with

this problem is to replace the non-positive-definite (reduced) Hessian (3.27)

with a positive-definite one. We will outline our procedure for performing this

replacement in section 3.3.

71

For the second type of problem, we would like to reach a point with:

∇ξLµ = 0 and λv = ∇pLµ and Lµ = 0 and λ > 0, (3.28)

where λ is a (scalar) Lagrange multiplier, whose sign is constrained by de-

manding that we maximize vTp subject to Lµ ≤ 0. In [12] it was proposed to

take the following step:

1

2
(δpHppδp+ δpHpξδξ + δξHξpδp+ δξHξξδξ) +

(∇pLµ)T δp+ (∇ξLµ)T δξ = −Lµ,

Hξpδp+Hξξδξ = −∇ξLµ,

Hppδp+Hpξδξ = −∇pLµ + λv. (3.29)

The quadratic term on the first line is not present in a regular Newton step.

We added it because it is expected to give a more accurate step at negligi-

ble computational cost (since it amounts to solving only a single quadratic

equation).

It is again useful to consider the case ∇ξLµ = 0 and eliminate δξ. The first

equation in (3.29) then becomes:

1

2
δp
(
Hpp −HpξH

−1
ξξ Hξp

)
δp+ (∇pLµ)T δp = −Lµ. (3.30)

The step will always head towards a zero of this quadratic model. (If there

is no zero in sight, i.e., if the solution to the quadratic equation (3.30) in

δp is complex, then we extremize instead by taking its real part.) The other

equations can be combined to give:

λ vT δp =
1

2
δpT

(
Hpp −HpξH

−1
ξξ Hξp

)
δp− Lµ. (3.31)

Now suppose Lµ were negative. Then we should make progress towards max-

imizing the objective, so we would like to have vT δp > 0. But the right-hand

side of the above equation is only guaranteed to be positive if:

Hpp −HpξH
−1
ξξ Hξp � 0 , (3.32)

which is the same constraint we found for the first type of problem. To avoid

stepping in an incorrect direction, we should therefore once again modify this

matrix to ensure its positivity.

72

3.2.2.2 Newton steps and stalling

The above equations lead naturally to an interior-point algorithm based on

Newton’s method. As in the usual algorithm, we first estimate µest = Tr(XY)/ dim(X)

and set the target µ → βµest. Then we substitute this value of µ to compute

a Newton-like step (δξ, δp) from equations (3.25) or (3.29). We then update

ξ ← ξ + αδξ, p← p+ αδp, (3.33)

where α = min(αP , αD) for dp.

In our initial investigations, we implemented essentially this algorithm (al-

though we estimated Hpp − HpξH
−1
ξξ Hξp with a BFGS approach). Unfortu-

nately, it did not perform as well as we hoped. The main issue we encountered

was that of stalling. Concretely we found that, in the course of running the

algorithm, αP and αD eventually become too small to produce a meaningful

step in parameter space.

As we discussed briefly at the end of section 3.2.1, small values of αP and/or

αD indicate that the näıve Newton step brings X and/or Y far outside the cone

of positive semidefinite matrices. This in turn means that the barrier function

−µ log det(X) in (3.23) is not sufficiently strong to steer the step towards the

interior of the positive cone. It is therefore natural to try to recover from

stalling by increasing µ. Although we found that acceptable step sizes can

indeed be obtained in that way, doing so is clearly disadvantageous because

we would ultimately like to send µ→ 0.

These results highlight a basic tension in this algorithm (and in fact in the

use of barrier methods more generally). If one decreases µ too quickly, one

ends up in a stalled situation with infinitesimal step length, and one needs to

backtrack by increasing µ. One can avoid hitting the boundary of the cone

by decreasing µ more slowly, but then progress towards the objective might

be slow. Although we cannot offer a first-principles derivation of the optimal

way to decrease µ and move in parameter space, in the following we provide a

somewhat different algorithm that works well in practice.

Finally let us note that the stalling phenomenon is well-known in other scenar-

ios beyond ours. For example it can occur in standard runs of SDPB where β is

chosen too close to 0 so that µ is decreased too quickly. Stalling can also occur

in warm-starting, where one starts SDPB from a checkpoint or even an optimal

73

solution of an already completed run with similar parameters. In both cases,

the problem can be solved in principle by increasing µ, but often at significant

computational cost.

3.3 Skydiving algorithm

Our main algorithm was developed through trial and error while exploring

several representative numerical conformal bootstrap problems. Its principal

advantage is that it appears to resolve the stalling problems that plagued näıve

implementations of the combined Newton step (3.33).

Let us first introduce some terminology which we illustrate in figure 3.2.

We define the central section ξ∗µ(p) as the optimal point in ξ-space for a given

(p, µ). In figure 3.2, the central section is a two-dimensional plane. To avoid

clutter, we show it with three solid black lines indicating the intersection of

the central section with the three fixed-µ surfaces. A physicist might say that

ξ is “on-shell” along the central section, as it satisfies the stationary condition

∇ξLµ = 0, while p and µ are fixed.

Moving along the central section, we can furthermore optimize over p, still

keeping µ fixed. Let the optimal value of p at fixed µ be p∗µ. The values

(ξ∗µ(p∗µ), p∗µ) then trace out a 1-dimensional curve in (ξ, p)-space as a function

of µ that we call the global central path. The global central path is shown in

figure 3.2 as the black curve interpolating through the fixed µ surfaces. The

optimal point, in both p- and ξ-space, is reached by sending µ ↓ 0 along the

global central path.

It is also useful to consider a standard primal-dual interior point (PDIP) run

in the context of figure 3.2. This would correspond to holding p fixed and

moving along the shaded straight vertical plane. The intersection of this plane

with the central section is conventionally called the “central path” in the SDP

literature. In our context, we call it a “local central path”.

The most important conceptual feature of our algorithm is that it prioritizes

proximity to the central section, in the sense that it generically only changes

p and µ if the current value ξµ(p) is sufficiently close to ξ∗µ(p). The algorithm

therefore incorporates two types of steps: the first are so-called centering steps

where p and µ are held fixed and ξ is updated to approach the central section.

The second type are full Newton steps, where the aim is to update both ξ and

p. These Newton steps are more delicate, both because they are sensitive to

74

Figure 3.2: Visualization of central section ξµ(p), optimal solution of standard
PDIP run ξ(pfix) and global central path ξ∗µ(p∗µ). A contour map is sketched for
the Lagrangian Lµ(ξ, p) for different values of µ. The usual fixed-p SDPB solves
the problem on the shaded vertical surface, while the skydiving algorithm
prioritizes finding the global central path, shown as a curved path traveling
through the horizontal surfaces.

the non-linearity in P and because µ cannot be decreased too quickly. To avoid

stalling, we therefore introduce a new scanning technique that we describe in

the next subsection.

As we outlined in the introduction, the original navigator approach of [12]

solves an SDP all the way to optimality, so µ ↓ 0, before deciding which step

to take in P . With the skydiving approach we instead work at finite µ. The

larger we take µ, however, the more our picture of the navigator function over

P risks being distorted. This implies that our steps in the parameter space risk

becoming meaningless if we work at very large µ. For this reason we do not

immediately start stepping around in P . Instead, we initiate our algorithm

with a single standard run of the primal-dual interior point (PDIP) algorithm

described in the previous section, updating both ξ and µ until the duality gap

is sufficiently small (but not zero). Only then do we enter the main component

of the algorithm.

The broad-strokes algorithm is sketched in algorithm 2. In words, while the

solution has not converged, we first follow the standard PDIP algorithm to

update ξ until µest = Tr(XY)/dim(X) has decreased enough. On the first

75

Algorithm 2: Skydiving.

initialize (ξ, p);
while not converged do

while duality gap > dgthr do
update ξ using PDIP step

end
while ||XY − µI =: R ||max > Rthr do

update ξ using centering step
end
update (ξ, p) from scanning step

end

iteration this typically takes 100-200 PDIP steps, whereas in later iterations

the duality gap tends to stay below dgthr. We then enter the second while

loop where ξ is updated by a few centering steps until R is small enough. At

the end of this loop, ξµ(p) is brought sufficiently close to ξ∗µ(p) so that we

declare ourselves to (effectively) be at ξ∗µ(p). Finally, we take a scanning step

to update both p and ξ.

Of course proximity to the global central path also requires that ξ be both

primal and dual feasible, i.e. that the linear equality constraints in (3.2) and

(3.1) are satisfied. In practice, these constraints are usually obeyed once R�
1. The reason is that often the solver can take a centering step with step

length 1 — i.e. a full Newton step. A full Newton step will exactly solve the

primal and dual equality constraints, since they are linear equations. Further

centering steps will then stay on the primal and dual feasible locus.4

We now elaborate more on the centering step, deferring details of the scanning

step to the next subsection. A centering step is the same as a PDIP step

except that β is set to 1 so the target value of µ is the same as µest. Of course

µest can vary slightly from one centering step to the next, due to the non-

linearity of the problem, but we found these changes to be immaterial. In our

implementation of centering steps, we adapt the iterative corrector procedure

described in section 3.2.1.4. In particular, we choose the convergence criterion

4If, for some reason, R happened to be small without solving the primal dual constraints
(for example due to warm-starting with a checkpoint with small R), then R will typically
become large again in subsequent iterations if they still don’t solve the primal dual con-
straints. Therefore testing R � 1 usually suffices. A more robust implementation might
test the primal and dual constraints as well.

76

in Algorithm 1 to be

convergence criterion = (||R||max > Rthr) & (||R||max is decreasing) . (3.34)

Here, Rthr is the same parameter as in algorithm 2. A typical value for the

maximum number of corrector iterations MAX is 5.

Figure 3.3 shows an example skydiving run for the 3d Ising mixed correlator

problem described below in section 3.5.1. This is a one-dimensional search over

p = ∆σ, with fixed ∆ε and λσσε/λεεε. The figure compares the skydiving path

(connected lines) with the global central path (individual dots) in the (duality

gap)-p plane. (The global central path is obtained by solving equation (3.23)

at fixed µ.) We see that, despite early fluctuations in the skydiving path, it

in general follows the global central path and eventually converges to it. We

observed in experiments that without centering steps, the skydiving path often

predicts wrong steps in p so that it deviates from the global central path and

eventually stalls.

log ()

Skydiving path

Global central path

Figure 3.3: An illustration of the proximity between the solver path (ξ, p, µ)
and the global central path (ξ∗µ(p∗µ), p∗µ, µ) in the (duality gap)-p plane for a 3d
Ising mixed correlator problem. The reader might be surprised at the rather
erratic behavior of the global central path when log(duality gap) > −8. This is
due to the unforgiving nature of the navigator function itself for this problem.
As we show below in Figure 3.5 it sometimes has two local minima and also
contains a nearly flat region.

77

3.3.1 Scanning

As described above, once a target value of µ has been set we can solve the

linearized equations to obtain a step (dξ, dp). But is this a good step or are we

aiming “too low” and putting ourselves at risk of stalling? Balancing efficiency

and robustness, the scanning algorithm serves to find a good step towards the

lowest reasonable target value of µ. During scanning, we use the step length

α := min(αP , αD) (3.35)

as a proxy for whether a step is good or not. The procedure is as follows:

1. As in the PDIP algorithm, the solver begins by choosing a reduction

factor βmin. We calculate a step (dξ, dp) and the corresponding α based

on the target value

µ = βminµest. (3.36)

We accept this step if α is big enough, that is if α > αthr max for some

user-defined αthr max.

2. If α is not big enough, we gradually increase β with step size ∆β up to

a value βmax (which is typically 1). In other words we use targets:

µi = βiµest, βmin ≤ β1 < β2 < . . . ≤ βmax, (3.37)

to compute the i’th step (dξi, dpi). Again, we accept a step as soon as

α > αthr max. Note that the computation of these steps is cheap because

we can recycle the S and Q matrices, just as in the predictor-corrector

step.

3. If no step is big enough even after reaching βmax, we decide to tolerate

a smaller but not yet problematic step size. To do so, we store the

best step during the search (which does not necessarily occur at βmax),

and accept it if the corresponding αbest is bigger than some user-defined

parameter αthr min. Clearly, this part of the algorithm is only used if

αthr min < αthr max.

4. If α is still too small, that is, αbest < αthr min, then we are at risk of

stalling. Based on our experiments, this situation do not occur often, but

when it does, we need a recovery mechanism. Our recovery subroutine

foregoes the update on p and instead opts for a PDIP step with β =

78

βclimbing > 1 that only updates ξ. Another attempt to update p will be

made in the next round. In practice, we typically set βclimbing = 2.

This scanning procedure is outlined in algorithm 3.5

Algorithm 3: The scanning step to compute dξ and dp.

β ← βmin;
αbest = 0;
while β < βmax do

compute (dξ, dp) from Newton step with target µ = βµest;
α← α(dξ);
if α > αthr max then

return step (α dξ, α dp);
end
if α > αbest then

dξbest ← dξ;
αbest ← α;

end
β ← β + ∆β;

end
if αbest > αthr min then

return step (αbestdξbest, αbestdpbest);
end
compute dξ using PDIP step with β = βclimbing;
return step (dξ, dp = 0);

Naively, the gradient ∇pL and Hessian Hpp can be computed with finite dif-

ferences. However, this is particularly expensive for the Hessian, which in an

n-dimensional parameter space P would require computing (b(p), c(p), B(p))

for a constellation of n(n+ 1)/2 points around the actual value of p.6 In prac-

tice, we therefore use the BFGS algorithm discussed below to approximate the

Hessian.

Note that the algorithm above currently does not tread “carefully” in the pa-

rameter space P , and it is possible for it to wander into problematic regions

5If the computed step length α is less than 1 then the step returned by this algorithm
would bring us exactly to the point where a primal or dual matrix becomes singular. The
issues this may cause are avoided by applying the same step length reduction calculations
as in standard SDPB [1].

6By a “constellation”, we mean a collection of SDPs at several nearby points {p0, p0 +
εe1, . . . , p0 + εen} where ei is a basis-vector in the i-th direction and ε is a small parameter.

79

and/or exhibit runaway behavior. One way to remedy runaway behavior would

be to include a line search along the computed step (dξ, dp). Another possi-

bility is to introduce a bounding box in P-space. In our experiments, these

improvements were not needed, but they might be necessary in future compu-

tations.

As with any non-convex optimization, our algorithm is not guaranteed to

converge. For example, the algorithm might never find a suitable step and

continue to increase µ. In this case, centering steps would still take us toward

the central section. However, as we explained before, at large µ we would not

have a reliable picture of the navigator function, and any calculated step could

be meaningless. A practical way to address this issue is to introduce an upper

limit on the duality gap, beyond which the solver will no longer increase µ.

The PDIP step in algorithm 3 includes a single corrector step, just like the

scanning step discussed above. A similar corrector step is implemented when-

ever H−1
ξξ was used, for example for H−1

ξξ ∇pL. The iterated corrector procedure

described in section 3.2.1.4 is invoked during centering steps only.

Finally, let us note that αthr max should not be set to 1 (typically we set it to

0.6). The reason is that when the algorithm is very close to the global central

path (at finite µ), it would simply compute that the step (dξ, dp) ≈ 0 if it

chooses β = 1 and then take an infinitesimal step with step size α = 1. Of

course there are many ways to avoid such trivial stalling behavior, but choosing

αthr max strictly below 1 works well in practice. By choosing αthr max closer to

1, we encourage the algorithm to stay closer to the global central path.

80

3.3.2 Modified BFGS algorithm

For the Newton step in the scanning iterations, we need various gradients and

Hessians with respect to p. This requires us to compute the p-dependence of

the input data b, c, and B, as exemplified by the computation of ∇pL, which

we recall is given by:

dpT∇pL = dcTx+ dbTy − xTdBy . (3.38)

We currently estimate dB, db, and dc using finite differences, which is costly

but acceptable. However, to compute Hpp

dpTHppdp = d2cTx+ d2bTy − xTd2By , (3.39)

the cost becomes even less favorable as it scales quadratically with n, the

dimension of P . We therefore use a BFGS-type approximation to avoid direct

computation of Hpp. In this subsection, we explain the details.

3.3.2.1 Review of standard BFGS

The core idea behind the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm is to estimate the Hessian matrix using information about the gradient.

To briefly review the procedure, let us consider the optimization of a non-linear

function f(x). A (quasi-)Newton method gives a sequence of points xk, and

at each point we have a gradient ∇f(xk). Let us construct the differences

sk = xk − xk−1 ,

yk = ∇f(xk)−∇f(xk−1) . (3.40)

The pair (s, y) is insufficient to determine the hessian matrix H. Instead, we

have a vectorial equation that constrains H:

Hs = y . (3.41)

This is called the secant equation; it would be exact for infinitesimal step size.

BFGS now opts to update a previous estimate Hk−1 by a linear combination

of yky
T
k and sks

T
k , with coefficients determined such that the secant equation

holds. This produces

Hk+1 = Hk +
yky

T
k

yTk sk
− Hksks

T
kH

T
k

sTkH
ksk

. (3.42)

With this estimate the new step is sk+1 = −H−1
k ∇f(xk). (In practice, one can

directly calculate an update for the inverse Hessian, see for example [91], but

for our purposes this difference is unimportant.)

81

3.3.2.2 A BFGS-type update for the Hessian

The main difference between our setup and the standard BFGS setup is that

we need to estimate only one block of the Hessian matrix. Consider two points

(ξ1, p1) and (ξ2, p2) and suppose we know ∇pL(ξ1, p1) and ∇pL(ξ2, p2), the full

secant equation reads:(
Hξξ Hξp

Hpξ Hpp

)(
p2 − p1

ξ2 − ξ1

)
=

(
∇pL(ξ2, p2)−∇pL(p1, ξ1)

∇ξL(ξ2, p2)−∇ξL(p1, ξ1)

)
. (3.43)

Given that we can easily compute Hξξ, as well as Hξp and Hpξ using (3.38),

only Hpp needs to be estimated, and there are two natural ways of doing so.

Estimating Hpp directly In the first method, we write a separate secant

equation forHpp and use it to calculate a BFGS update. Such a secant equation

must be of the form:

Hpp · (p2 − p1) = ∇pL(ξA, p2)−∇pL(ξA, p1) , (3.44)

where A can be either 1 or 2, but it is essential that ξA is the same for both

gradients. Indeed, in the limit where (ξ2, p2) and (ξ1, p1) are infinitesimally

close, say with a distance ε, picking ξ2 for the first gradient and ξ1 for the second

gradient leads to an error of order ε on the right-hand side, and therefore an

error of order 1 for the estimate of Hpp. In contrast, the distinction between

A being either 1 or 2 is one order higher in ε. So to implement this method we

need to compute either ∇pL(p2, ξ1) or ∇pL(p1, ξ2), which can be done using

the gradient formula (3.38).

Eliminating components A second method is to use our exact knowledge

of Hξp and Hξξ to eliminate the irrelevant components from equation (3.43).

We then get:

Npp · (p2 − p1) = −∇pL(ξ2, p2) +∇pL(ξ1, p1) +HpξH
−1
ξξ (∇ξL(ξ2, p2)−∇ξL(ξ1, p1)) ,

(3.45)

where we introduced:

Npp = Hpp −HpξH
−1
ξξ Hξp . (3.46)

and on the right-hand side of equation (3.45) we are omitting the dependence

on (ξ, p) of the Hessian components because these give rise to subleading ef-

fects.

82

We can now view equation (3.45) as a separate secant equation, and use a

BFGS update for Npp directly from this equation. This is almost consistent,

but one wrinkle needs to be ironed out: over the course of the algorithm we

are actually minimizing slightly different Lagrangians because µ is decreasing!

Re-instating this µ-dependence produces:

Npp·(p2−p1) = −∇pL(ξ2, p2)+∇pL(ξ1, p1)+HpξH
−1
ξξ (∇ξL(p2, ξ2, µA)−∇ξL(p1, ξ1, µA)) ,

(3.47)

where we ignored the µ-dependence in Hξξ which again gives rise to higher-

order effects. (We recall that ∇pL does not explicitly depend on µ, which is

also why the previous method did not have this wrinkle.) We now need to

choose a reference value µA. To find an efficient value it is worth looking at

the specifics of our algorithm to see which gradients are known. Let us take

ξ1, ξ2 to be the values obtained after the centering iterations. Supposing that

these iterations succeeded perfectly, we can write:

∇ξL(ξ1, p1, µ
est
1) = 0 , (3.48)

∇ξL(ξ2, p2, µ
est
2) = 0 , (3.49)

where we recall that µest = Tr(XY)/dim(X) is the estimated value of µ at a

point ξ. Furthermore, in the course of the algorithm we had to compute all

the gradients that appear on the right-hand side of the Newton step. Among

these we have ∇pL(ξ1, p1) and ∇pL(ξ2, p2), but also ∇ξL(ξ1, p1, µ2) for some

target value µ2 determined in the scanning step. The Lagrangian is however

linear in µ, so using (3.48) we can immediately find one more gradient:

∇ξL(ξ1, p1, µ
est
2) =

µ1 − µest
2

µ1 − µ2

∇ξL(ξ1, p1, µ2) . (3.50)

The fraction on the right-hand side, in turn, is roughly equal to the step length

α1:
µ1 − µest

2

µ1 − µ2

≈ α1 , (3.51)

since both sides indicate (at a linearized level) how much progress was made

towards the target µ2 starting from (ξ1, p1). It therefore makes the most sense

to evaluate the secant equation for µest
2 , where we obtain:

Npp · (p2−p1) ≈ −∇pL(ξ2, p2)+∇pL(ξ1, p1)−αHpξH
−1
ξξ ∇ξL(p1, ξ1, µ2) (3.52)

and all the gradients on the right-hand side are known. The BFGS update for

Npp based on this secant equation is the algorithm currently implemented in

our code.

83

We stress that this update procedure is technically only applicable if the cen-

tering steps are complete, in the sense that any residuals in (3.48) translate

directly into a mismatch of the update. Our core algorithm, however, does not

require this: the scanning step is OK even if the centering steps are reduced

or completely omitted.

3.3.2.3 Ensuring positivity of the Hessian

As discussed in section 3.2.2.1, positivity of Npp = Hpp − HpξH
−1
ξξ Hξp would

guarantee progress toward optimality.7 However, positivity is not a-priori

guaranteed, and we need a strategy to ensure it. In our implementation, we

choose to update our approximation to Npp (using the BFGS-type update

discussed above) only when the new Npp would be positive. If positivity would

be violated, we continue using the old (non-updated) Hessian.

The user can initialize the Hessian either by specifying it explicitly or using

the default value

Ndefault
pp = −HpξH

−1
ξξ Hξp . (3.53)

This default value generally has the advantage of being similar in scale to the

exact Npp.

3.3.3 Shifting the Lagrange function

We need a further modification of our algorithm for the second type of opti-

mization (3.22), which searches for an extremal point of the feasible region in

parameter space P . In such a search, the goal is to find a point where the

navigator function vanishes :

lim
µ↓0

Lµ = 0 . (3.54)

A natural question is: how should we interpret this equation at finite µ? In

other words, when we work at µ > 0, what is our best guess for the zero locus

given by equation (3.54)? For simplicity, in (3.28) and (3.29), we used the

simplest finite-µ version of this equation, namely Lµ = 0. However, this is not

necessarily the best choice.

7This also provides an argument in favor of using the second method for estimating the
Hessian of the previous subsubsection. Namely, if we were to augment our scanning steps
with a line search then the we can use the standard Wolfe termination conditions. At the
moment this line search is not yet implemented.

84

For the following discussion it is useful to suppose that we are “on-shell” in

the ξ variables, so we evaluate the Lagrangian at ξ∗µ(p). Let us introduce the

corresponding on-shell navigator function:

Nµ(p) := Lµ(ξ∗µ(p), p) = cTx∗µ − µ log detX∗µ , (3.55)

where the second equality holds because the terms multiplying y and Y in

equation (3.7) vanish on-shell. In this language, we are interested in the

locus N0(p) = 0. As explained for example in [12], one generically finds

that limµ↓0 µ log detX∗µ = 0 as well (even though X∗µ becomes singular) so

N0(p) = cTx∗0 which also equals bTy∗0 because the duality gap vanishes.

0.518148 0.51815 0.518153
p

0.002

0.004

0.006

0.008

0.010

0.012

Nμ(p)

μ = e-8

μ = e-10

μ = e-12

μ = 0

Figure 3.4: The function Nµ(p) in a representative example for various values
of µ. For µ = 0 there exist two zeroes at the indicated points, but for the
other values of µ shown here the functions are everywhere positive.

In figure 3.4 we show Nµ(p) in a one-dimensional example for a few different

values of µ. (The problem here is that of the three-dimensional Ising model,

which is representative of more general conformal bootstrap problems. The

parameter p is ∆σ.8) The black line is N0(p) and, as can be seen in more

detail in figure 3.5, there is actually a small negative region, and therefore

there exist two points where N0(p) = 0. At higher values of µ, however, there

are no points with Nµ(p) = 0 at all. Therefore it seems inadvisable to aim for

Nµ(p) = 0 as a proxy for N0(p) = 0.

8Specifically, the problem is same as the problem in section 3.5.1 except we fixed ∆ε =
1.412625, arctan(λεεε/λσσε) = 0.9692606 and used the GFF navigator at Λ = 19. Here we
simply use this one parameter example as a demonstration.

85

We can improve this state of affairs by working with the primal and dual

objectives. Since ξ∗µ(p) is optimal at finite µ, it is in particular feasible, which

leads immediately to the inequalities:

bTy∗µ < bTy∗0 = cTx∗0 < cTx∗µ, (3.56)

for each µ > 0. We can see this explicitly in figure 3.5. More importantly, we

should notice that the vertical axis is zoomed in by a factor 250 compared to

figure 3.4 so the primal and dual objective at finite µ provide a much more

accurate estimate of N0(p)!

0.518148 0.51815 0.518153
p

-0.00008

-0.00006

-0.00004

-0.00002

0.00002

0.00004

μ = e-8

μ = e-10

μ = e-12

μ = 0

Figure 3.5: We shaded the region allowed by the bound of equation (3.56) for
various values of µ. The black line agrees with the function N0(p) shown in
figure 3.4 and, as it should be, lies in between the bounds for each value of µ.
Notice that the vertical axis is zoomed in a factor 250 compared to figure 3.4.

Altogether it therefore makes sense to simply replace the condition Lµ = 0 in

equation (3.29) with an expression of the form:

Ñµ(p) := (1− γ) c(p)Tx∗µ + γ b(p)Ty∗µ = 0 (3.57)

for some parameter γ ∈ [0, 1]. Solving this equation should bring us much

closer to the locus with N0(p) = 0 already at finite µ, and of course for µ = 0

the conditions are equivalent. Using the expression for the duality gap at finite

µ

cTx∗µ − bTy∗µ = µ dim(X) , (3.58)

we can rewrite the constraint as,

Ñµ(p) = c(p)Tx∗µ − γ µ dim(X) = 0 . (3.59)

86

Generalizing from this on-shell analysis to an off-shell implementation where

µ = βµest, we find the function

L̃µ(ξ, p) := c(p)Tx− γ µest dim(X) (3.60)

We claim that L̃µ = 0 provides a better finite-µ approximation for the bound-

ary of the bootstrap island. Finally, comparing L̃µ(ξ, p) with the original

Lagrangian (3.23), we have

L̃µ(ξ, p) = Lµ(ξ, p)− γ µ dim(X) + µ log detX + linear errors. (3.61)

Aside from the negligible linear errors from solving for the SDP constraints,

L̃µ(ξ, p) contains a constant shift −γ µ dim(X), and an X-dependent shift

µ log detX. We emphasize that both shifts are taken purely to locate the

zero locus effectively and they do not affect the first two constraints on the

gradients in (3.28). We reiterate the full set of constraints here:9

∇ξLµ = 0 and λv = ∇pLµ and L̃µ = 0 and λ > 0. (3.62)

9In the code, this choice is equivalent to specifying the options
--navigatorWithLogDetX False and --gradientWithLogDetX True

87

3.4 Implementation

3.4.1 Software

We implemented the skydiving algorithm as an open source C++ program

called skydive. The code is based on SDPB and inherits most of SDPB’s options.

The program skydive works on a specific SDP and performs the computation

in the body of the first while loop (the main loop) of algorithm 2. The input

of skydive is the SDP at p, a checkpoint ξ, a constellation (see footnote 6)

of SDPs used to compute the gradient, and various options that control the

behavior of the computation. The program performs one iteration of the main

loop and gives the following output: a step dp in the external parameter space,

a checkpoint for a new ξ, a gradient of the Lagrangian and a BFGS-updated

Hessian.

To set up the full computation, we use external “driver” programs to drive

the main loop of algorithm 2 and call skydive. The external programs set

up the bootstrap problem, produce SDPs, call skydive, update p and other

parameters, and iterate the main loop until optimality is reached.

The source code of our software is available online:

• The C++ solver skydive:

https://github.com/davidsd/sdpb/tree/skydiving release.

• The Mathematica framework simpleboot, which can drive the main

loop:

https://gitlab.com/bootstrapcollaboration/simpleboot.

• A Haskell package dynamical-sdp which can also drive the main loop:

https://gitlab.com/davidsd/dynamical-sdp.

Two of the present authors (AL and NS) conducted a mini-course on numerical

bootstrap methods at the Perimeter Institute in April 2023, which included

tutorials on skydiving and associated software tools. The materials from the

mini-course can be found online at the following locations

• Mini course details:

https://events.perimeterinstitute.ca/event/45/.

• Slides and tutorial code:

https://gitlab.com/AikeLiu/Bootstrap-Mini-Course.

https://github.com/davidsd/sdpb/tree/skydiving_release
https://gitlab.com/bootstrapcollaboration/simpleboot
https://gitlab.com/davidsd/dynamical-sdp
https://events.perimeterinstitute.ca/event/45/
https://gitlab.com/AikeLiu/Bootstrap-Mini-Course

88

3.4.2 skydive options

In this section, we describe the input parameters of the skydive program and

their relation to the algorithm presented in section 3.3.

• newSdpDirs: Specifies the path containing a “constellation” of SDP files

that surround the SDP corresponding to the current value of p. These

files are required to compute the derivatives of the Lagrangian L(ξ, p)

(using finite differences), including ∇pLµ, Hpξ, and possibly Hpp (de-

pending on whether the BFGS algorithm is used). The SDP files should

be named plus i, minus i, and sum i j, where 0 ≤ i < j < dim(p).

• externalParamInfinitestimal: The step size ε in p-space between

each SDP in the constellation and the current center SDP. For exam-

ple, if the center SDP is computed at ~p, then plus 0 corresponds to the

SDP computed at ~p+ ε~e0, minus 0 corresponds to the SDP computed at

~p− ε~e0, and sum 0 1 corresponds to the SDP computed at ~p+ ε~e0 + ε~e1,

where ~ei are basis vectors.

• numExternalParams: dim(p), the dimension of the parameter space.

• totalIterationCount: The total number of PDIP iterations computed

in previous skydiving runs. This option does not affect the actual run,

but can be useful for bookkeeping.

• dualityGapUpperLimit: dgthr in algorithm 2. If the initial duality gap

(either from a checkpoint or from primal/dual initial matrices) is larger

than dualityGapUpperLimit, skydive will run PDIP until the duality

gap becomes smaller than dualityGapUpperLimit.

• centeringRThreshold: Rthr in algorithm 2. skydive will run centering

steps at a fixed p until ||R||max ≤ centeringRThreshold.

• finiteDualityGapTarget: This option can be used to find the optimal

solution at a chosen value of µ > 0, either to minimize the finite µ

navigator function or to extremize p on the finite µ navigator function.

• Parameters of β-scanning, as described in section 3.3.1:

– betaScanMin, betaScanMax, betaScanStep: βmin, βmax, and ∆β in

the scanning routine.

89

– stepMaxThreshold: αthr max, the threshold to decide whether to

accept the step in items 1 and 2.

– stepMinThreshold: αthr min, the threshold to decide whether to

execute item 3.

– betaClimbing: βclimbing, decides which higher µ the solver should

attempt (climb up to) to find dξ in item 4.

– maxClimbingSteps: how many times can the solver climb before

executing ξ → ξ + dξ in item 4.

• Parameters of the modified BFGS algorithm.

– useExactHessian: A boolean value indicating whether to use the

full Newton method or the modified BFGS algorithm which does

not require the exact values of the Hessian matrix Hpp. If this value

is False, then the following parameters are required.

– prevGradientBFGS, prevExternalStep, prevHessianBFGS: These

three parameters correspond to∇pL(ξ1, p1)−αHpξH
−1
ξξ ∇ξL(p1, ξ1, µ2),

p2−p1 and Npp in section 3.3.2.2, respectively. If prevHessianBFGS

is not specified, skydive will use Ndefault
pp in (3.53) as the default

Hessian.

• Parameters when extremizing p in a given direction.

– findBoundaryDirection: If this option is not specified, the pro-

gram is set to minimize the navigator function in the space of (ξ, p).

Otherwise, this option should be a vector v in p-space and then the

program will maximize vTp.

In practice, if the initial point is far away from the feasible region,

it is useful to start from the minimization mode to move to the de-

sired region and turn on findBoundaryDirection only after dual

objective turns negative.

– findBoundaryObjThreshold: A threshold parameter that termi-

nates the program when N (p) ≤ findBoundaryObjThreshold.

– primalDualObjWeight: The weight parameter γ ∈ [0, 1] of sec-

tion 3.3.3. Aside from the possible shift of µ log detX term (deter-

mined by navigatorWithLogDetX), if γ = 0, the navigator function

90

matches with the primal objective, and if γ = 1, the navigator func-

tion matches with the dual objective.

– navigatorWithLogDetX: A boolean value indicating whether the

navigator function is computed with the µ log detX term. This

option determines whether we aim at Lµ = 0 or L̃µ = 0 during

Newton’s steps as described in section 3.3.3.

– gradientWithLogDetX: A boolean value indicating whether the

gradient of the navigator function is computed with the µ log detX

term. This option determines whether we aim at ∇pLµ = 0 or

∇pNµ = 0 during Newton’s steps as described in section 3.3.3,

where Nµ is defined defined as (3.55).

3.5 Example runs

In this section, we showcase the performance of the skydiving algorithm applied

to the 3d Ising Model and the 3d O(3) Model.10

In Table 3.1, we specify the values of the skydive parameters that were com-

mon throughout the example runs. We provide the values of centeringRThreshold

and dualityGapUpperLimit in the subsections below. Some further comments

on parameters will be provided in section 3.5.3.

externalParamInfinitestimal 10−40

betaScanMin 0.1
betaScanMax 1.01
betaScanStep 0.1
stepMinThreshold 0.1
stepMaxThreshold 0.6
maxClimbing 1
betaClimbing 1.5
primalDualObjWeight 0.2
gradientWithLogDetX True
navigatorWithLogDetX False

Table 3.1: skydive parameters common for all example runs.

10Some of the runs in this section used older versions of the skydiving algorithm that are
slightly different from the one presented in previous sections. However, these differences are
immaterial to the results presented here.

91

3.5.1 3d Ising island

We tested our algorithm on the 3d Ising model mixed bootstrap problem of

[5], using four-point functions of the lowest-dimension Z2-odd operator σ and

Z2-even operator ε. The space P consists of three parameters: the scaling

dimensions ∆σ and ∆ε, together with the ratio of OPE coefficients λσσε/λεεε.

In the notation of [5, 12] the navigator setup can be summarized as follows:

parameters: p = (∆σ,∆ε, x = λσσε/λεεε),

SDP objective: N (p) := max ~α · ~V (+)
∆=0,`=0,

conditions: ~α · ((1, x) · ~V (θ) · (1, x)) ≥ 0,

~α · ~V (+)
∆,`=0 ≥ 0 for ∆ ≥ 3,

~α · ~V (−)
∆,`=0 ≥ 0 for ∆ ≥ 3,

~α · ~V (+)
∆,` ≥ 0 for ∆ ≥ ∆unitary and ` = 2, 4, . . . ,

~α · ~V (−)
∆,` ≥ 0 for ∆ ≥ ∆unitary and ` = 1, 2, . . . ,

~α ·MΣ = 1, (3.63)

where

~V (θ) = ~V
(+)

∆ε,0
+ ~V

(−)
∆σ ,0
⊗

(
1 0

0 0

)
. (3.64)

Here ~V (+) and ~V (−) are the Z2-even and Z2-odd crossing vectors introduced

in [5] and MΣ imposes a normalization corresponding to the Σ-navigator de-

scribed in [12].11 All these conditions depend non-linearly on the parameters

p, which is implicit in our notation. A point p ∈ P is excluded if the objective

is positive and all the conditions are met.

With this setup we performed three runs of the skydiving algorithm, with the

following goals:

runs 1 and 3: max ∆σ such that N (p) ≤ 0

run 2: minN (p) (3.65)

Note that for runs 1 and 3 we aim for the rightmost tip of the Ising island

and not the larger “continent” where ∆σ is unbounded. The minimization of

N (p) for run 2 is less physically relevant, but it might be a good predictor for

the true values of the Ising CFT data as discussed in [12].

11The specific choice of the vector does not affect the boundary of the feasible region and
has minimal impact on the numerical results.

92

The details of each run are presented in table 3.2. The most important quali-

tative difference between runs 1 and 3 is that the former was done at bootstrap

derivative order Λ = 19 and the latter at Λ = 35.12 We terminated the runs

when the first 12 digits of each component of pfinal stabilized.

run 1 2 3
initial point p1 p2 p3

goal max ∆σ min navigator max ∆σ

precision 448 448 768
Λ 19 19 35
κ 14 14 32
spins S19 S19 S35

Initial Hessian Hinit none none
dualityGapUpperLimit for 1st SDP 10−3 10−6 10−15

dualityGapUpperLimit for the rest 10−3 none none
centeringRThreshold 10−10 10−10 10−10

final point p1,final p2,final p3,final

total number of skydive calls: dξ, dp 236 170 133
total number of PDIP iterations: dξ 580 411 601
total number of Newton steps 816 581 734

Table 3.2: Individual parameter setup for example runs on 3d Ising model
mixed bootstrap problem and the corresponding results. See the main text for
the explanation of several the entries.

The symbols in the table correspond to the following values. First, the initial

points for each run were

p1 = (0.515, 1.4, 0.5)

p2 = (0.51814, 1.4121, 0.686)

p3 = (0.5181496477062039, 1.4126328939948094, 0.6863837285229739) ,

for reasons explained below, the initial Hessian for the first run was

Hinit = diag(111.7955564168356, 1.184293042423152, 0.8299842690871352) ,

(3.66)

and the spin sets SΛ correspond to

S19 = {0, ..., 26} ∪ {49, 50}

S35 = {0, ..., 44} ∪ {47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 80} .
(3.67)

12See [9] for the definition of the parameter Λ.

93

As for the results, in the first run we found that ∆σ is maximized at

p1,final = (0.518193035759, 1.41299963388, 0.686124688310) ,

in the second run that the navigator function is minimized at

p2,final = (0.518134931547, 1.41244135167, 0.686615119182) ,

and in the third run with Λ = 35 that ∆σ is maximized at

p3,final = (0.518151700083, 1.41264851228, 0.686376348482) . (3.68)

(a) (b)

Figure 3.6: The path of a skydiving run 1 in Table 3.2. On the left, the path
in the three-dimensional parameter space. On the right, the distance to the
final point as a function of the number of skydive steps.

Let us offer some further comments on the setup for run 1. Here the initial

point p1 was deliberately chosen to lie rather far from the physically inter-

esting region. In fact, with the standard navigator setup of [12] we were

unable to make any run starting at p1 converge to the Ising island. With

our new algorithm, however, this turned out to be possible (and subsequently

we could maximize ∆σ). It did unfortunately still require some trial and er-

ror. For example, we chose the initial Hessian matrix to be as in equation

(3.66) — but we expect that similar initial values will also work. We also

set dualityGapUpperLimit to 10−3 throughout the run in order to prevent

it from increasing µ and diverting to the continent in the initial stages. Al-

together these tweaks might be useful in the future, where we would like to

better control the behavior of the algorithm as it steps around in P .

94

Let us now discuss the progression of the skydiving algorithm during run 1.

As indicated in Table 3.2, run 1 took 236 calls to skydive to converge. In

figures 3.6a, 3.6b, 3.7 and 3.8 we plot various quantities as a function of the

number of steps. For brevity, we do not include plots for the other two runs.

They were qualitatively similar, up to one exception that we discuss below.

Let us first discuss convergence. Figure 3.6a shows the path taken in the

three-dimensional parameter space. The distance to the final point is shown

in Figure 3.6b. Finally, Figure 3.7 shows how the duality gap decreases to

zero.13

For the first 100 iterations or so we observe slow but steady movement towards

the Ising island in P , whereas the duality gap stays essentially flat. During

this time, the algorithm would have frequently preferred to take a climbing

step (with β > 1) but it is not allowed to do so because the duality gap has

reached our set dualityGapUpperLimit of 10−3. It therefore settles instead

for a full (dξ, dp) step, even though the corresponding step length α is very

small. We stress that this is exactly the desired behavior at this stage, since

the bigger steps in P do not aid convergence toward the Ising island. It is this

initial part that is atypical compared to the other two runs.

After about the 100th iteration, things accelerate. The duality gap begins to

decrease and we observe approximate linear convergence. At about the 200th

skydive call we observe an increase in the duality gap for several steps. This

is the stalling recovery mechanism at work, where the algorithm chose β > 1

to ensure a reasonable step size. In the very last stage, we finally observe

(slightly) superlinear convergence. Together, these figures vividly illustrate

how the different subroutines described in section 3.3 work cooperatively in a

complete run of the skydiving algorithm.

The dramatic improvement of the computational cost of our algorithm over

a standard navigator function run is visualized in Figure 3.8. To understand

it, we should first note that using skydive does not seem to require a much

larger number of steps dp than the standard navigator approach of [12]. For

example, a problem like our run 2 (navigator minimization over 3 parameters at

13After we finished computations for those plots, we discovered a small bug in our code:
during the scanning step, the code used the value of the navigator function at β = 1 to solve
for the boundary, but in fact it should use the extrapolated value at the scanned β. After
fixing this bug, typical runs had about 5% fewer iterations than the ones presented in this
paper.

95

50 100 150 200

-15

-10

-5

0

log10(duality gap)

of skydive calls

Figure 3.7: Duality gap in each skydive call during run 1 in table 3.2 which
maximizes ∆σ from point p1 at Λ = 19.

Λ = 19) would typically have required about 100 steps ([12], figure 22) whereas

it took us 173 steps (see Table 3.2). Therefore, to compare the algorithms it

is meaningful to just compare the computational cost of obtaining a single dp,

i.e., of a single call to skydive.

The costliest operation in our algorithm is the inversion of the Hessian Hξξ to

produce an update dξ. In Figure 3.8 we plot the number of dξ’s computed for

each call to skydive during run 1. In the first iteration, we begin with a stan-

dard PDIP run to bring the duality gap below dualityGapUpperLimit, which

takes about 200 Hessian inversions. Afterwards, we however only compute dξ

a handful of times for each step dp. More precisely, we compute dξ once for

each of the (typically 2 or 3) centering steps, plus once more in conjunction

with dp in the scanning step. In the traditional navigator approach, on the

other hand, an entire SDP was solved to optimality before calculating dp. This

would mean that the new algorithm reduces about 200 Hessian inversions to

just 2 or 3!

The final rows in Table 3.2 show that the same speedup was realized for the

other two runs. If we take run 2 as an example: the standard navigator

approach would need about 2 · 104 Hessian inversions (200 steps dξ for each of

the 100 steps dp) whereas we reached the same optimal point with only 581

such operations (3% as many).

96

178

1 100 200
0

2

4

6

8

10

of skydive calls

It
er
at
io
ns

Figure 3.8: The number of Newton iterations spent in each skydive call for
the skydiving run of p1. For each call one Newton iteration is necessary for
the scanning step, and the remaining Newton iterations are due to scanning
steps or, as in the first skydive call, standard PDIP steps used to lower the
duality gap.

3.5.1.1 Computational resources

In this section we give more details on the computational resources used for

run 1. We performed the computation on a computer with 40 CPU cores.14

The computation uses simpleboot in high efficiency mode, where all heavy

computations are done in C++ programs [92]. Within one iteration of the

main loop of Algorithm 2, the heavy computations are: (1) computation of

convolved conformal blocks (using the scalar blocks mod program); (2) cre-

ation of the files defining SDPs (using the sdp2input mod program); (3) run-

ning the skydive program. Other than these three C++ programs, the rest

costs a negligible amount of time.

During each iteration, there are 12 scalar blocks mod calls and 4 sdp2input mod

calls (corresponding to 4 SDPs). The precision of both programs was set to 448

binary digits. To efficiently use the 40 cores, we launched batches of 6 calls of

scalar blocks mod simultaneously and each call had 7 OpenMP threads. Af-

ter 12 scalar blocks mod calls were finished, we launched 4 sdp2input mod

calls simultaneously and each call had 10 MPI ranks. We found this is the

optimal scheme to produce the SDPs. Finally, skydive was launched with 40

MPI ranks. The total computation from p1 took 13696 seconds, that is, less

than four hours, among which 40% is spent on scalar blocks mod, 30% on

sdp2input mod, 30% on skydive.

14The computer is a node with Intel(R) Xeon(R) Gold 6148 2.40GHz CPU on the Sym-
metry cluster of the Perimeter Institute. We thank the Perimeter Institute for the compu-
tational resources.

97

If we look at the cost of the skydive calls alone, on average 48% of the time

was spent on reading and writing data from and to disk. Furthermore, we

found that CPU efficiency of the total computation is 31% , i.e., 69% of the

time the CPUs were idle.

We would like to emphasize that, in this run, we have already carefully op-

timized the SDP-generating part of the run. However, the total time spent

running skydive is still less than the time spent on generating the SDPs.

Thanks to the skydiving algorithm, solving many different SDPs is no longer

the bottleneck of this bootstrap computation!

3.5.2 O(3) tiptop search

In this section, we describe an application of skydiving to the 3d critical O(3)

model. A previous bootstrap exploration of this model [93] studied correlation

functions of three scalar operators (v, s, t) with lowest dimension in the vector,

scalar, and traceless symmetric tensor representations of O(3), respectively.

Stability of the O(3) model under RG flow depends on the scaling dimension

of the lowest-dimension scalar t4 in the rank-4 tensor representation of O(3).

If ∆t4 < 3, then the O(3) fixed point is unstable.

The authors of [93] obtained an upper bound on ∆t4 only slightly less than

3, thereby rigorously demonstrating instability of the O(3) model. That com-

putation was however very costly. It involved sampling many points in an

8-dimensional parameter space P . Furthermore, the proximity of the best

upper bound to 3 made the search rather delicate. It is therefore an ideal

example to test whether skydiving can be more efficient.

98

The bootstrap problem from [93] is as follows:

parameters: p =

(
∆v,∆s,∆t,∆t4 ,

λvtv
λvvs

,
λtts
λvvs

,
λttt
λvvs

,
λsss
λvvs

)
,

SDP objective: ~α · V ([0,+])
∆=0,`=0,

goal: maximize ∆t4 while SDP objective ≤ 0

conditions: ~α · ((1, λvtv, λtts, λttt, λsss) · ~V (θ) · (1, λvtv, λtts, λttt, λsss)) ≥ 0,

~α · V [1,−]
∆,`=0 ≥ 0 for ∆ ≥ 3,

~α · V [4,+]
∆,`=0 ≥ 0 for ∆ ≥ ∆t4 ,

~α · V [2,+]
∆,`=0 ≥ 0 for ∆ ≥ 3,

~α · V [0,+]
∆,`=0 ≥ 0 for ∆ ≥ 3,

~α · V EMT
∆=3,`=2 ≥ 0,

~α · V R ≥ 0 for ∆ ≥ ∆unitary + δ and all other R and spins `.

(3.69)

Here ~V (θ) represents the crossing vector that has the external operators (v, s, t)

appearing as an intermediate operator, δ is a small twist gap set to 10−7, and

V R denotes the crossing vector for the representation R. The representations

appearing in this setup are

[1,−], [4,+], [2,+], [2,−], [3,+], [3,−], [4,+] ,

where the notation [n,±] refers to the O(3) rank n traceless symmetric tensor

with O(3) parity ±. V EMT represents the crossing vector for the stress tensor,

using OPE coefficient ratios determined by the Ward identity.15

The only modification between the setup of (3.69) and ours is that we switched

from feasibility mode to navigator mode. The problem is then exactly anal-

ogous to the Ising case of the previous subsection: we define N (p) as the

maximum of the SDP objective and, after imposing an suitable normalization

~α·MΣ = 1, we slightly reformulate the goal as maximizing ∆t4 while N (p) ≤ 0.

We conducted three skydive runs at Λ = 19, each starting from a different

initial point. The parameters and performance statistics are summarized in

table 3.3. Again, the symbols in the table correspond to the following values.

15The specific details of all the crossing vectors may depend on conventions. In practice,
we used the autoboot [94] package to generate these crossing vectors.

99

First, the initial points for each run were

p1 = (0.518957, 1.59539, 1.2097, 2.97757, 3.0461, 2.4233, 3.98997, 0.557463)

p2 = (0.52, 1.6, 1.21, 3, 3, 2.5, 4, 0.5)

p3 = (0.517, 1.6, 1.21, 3, 3, 2.5, 4, 0.5)

All three runs reached the optimum point:

pfinal = (0.519124, 1.59715, 1.21049, 2.99985, 3.04764, 2.42518, 3.99318, 0.560976),

(3.70)

from which we in particular conclude that

∆t4 . 2.99985 , (3.71)

and therefore the O(3) model is unstable.16

run 1 2 3
initial point p1 p2 p3

dualityGapUpperLimit for 1st SDP 0.0001 0.001 0.001
dualityGapUpperLimit for the rest none 0.001 0.001
centeringRThreshold 10−10 10−40 10−10

total number of skydive calls: dξ, dp 254 401 515
total number of PDIP iterations: dξ 577 1446 1058
total number of Newton steps 831 1847 1573

Table 3.3: Skydiving computations of the O(3) tiptop search starting from
different initial points at Λ = 19. The initial points pi are given in the main
text.

Again, let us provide more details on run 1 as an example.

In figure 3.9, we illustrate how the duality gap changes in each skydive iter-

ation. Here we see several climbing phases in order to avoid stalling.

In figure 3.10, the number of updates dξ conducted in each skydive call is

shown. These iterations include the pure PDIP steps in the initial skydive call

to reduce µ < dualityGapUpperLimit, the centering steps which are PDIPs

at β = 1, and the full step updating both (ξ, p). As we stressed before, these

were computationally the most costly steps because of the required Cholesky

16Note that this upper bound is weaker than the one in [93]. This is because we have
used fewer derivatives (Λ = 19) as opposed to Λ = 35 in [93].

100

50 100 150 200 250
SDPs

-15

-10

-5

log10(duality gap)

of skydive calls

Figure 3.9: Duality gap in each skydive call during run 1 in table 3.3 which
maximizes ∆t4 from point p1 at Λ = 19.

factorization to invert the Hessian matrix Hξξ as mentioned in section 3.2.1.

Once again we managed to realize a drastic reduction in the number of such

iterations, thereby mitigating the bottleneck in standard SDPB computations.

We also observe the typical behaviors of skydiving runs: the algorithm spends

significantly many PDIP steps in the first skydive call (208 in this example),

and then the algorithm only requires a few iterations per call.

208

1 100 200
0

5

10

15

20

of skydive calls

It
er
at
io
ns

Figure 3.10: The number of Newton iterations spent in each skydive call

for the skydiving run 1.

We can compare results above with the (navigator + SDPB) method. A

navigator computation of the same problem was performed starting from:

(0.51902209, 1.59623576, 1.20998, 2.988, 3.04429644, 2.42004559, 3.98537291, 0.55365625).

which is in between p1 and pfinal. This computation took 227 navigator func-

tion calls (so steps dp), which is again entirely in the same ballpark as the

number of skydive calls. However, here one would normally require 240 PDIP

101

(Newton) iterations to update ξ in between updates of p. We therefore once

again find a significant speedup.

As an aside we note that we managed to find some improvement in the stan-

dard navigator method through the use of warmstarting: at a point pk we save

a checkpoint about midway through the SDPB run, and then at point pk+1 we

restart SDPB from this checkpoint rather than completely un-initialized. Nor-

mally such warmstarting would quickly result in stalling, but we managed to

find a climbing routine (inspired by the scanning subroutine of skydive, in

particular item 4 on page 77, to recover from such stalling). After implement-

ing the required modifications in SDPB17 we were able to reduce the number of

PDIP steps from 240 to about 60 on average.

We also compared the performance of the skydiving algorithm with the tiptop

algorithm of [93]. In a specific tiptop run at Λ = 19 18, the total number of

Newton steps is about 143,910 19. The skydiving run from p1 has the number

of iterations that are 173 times smaller! Also, the result from the skydiving

run is almost exactly on the highest feasible value of ∆t4 , whereas the tiptop

algorithm bisects the ∆t4 until reaching a certain resolution.

3.5.3 Usage tips and current limitations

As we have alluded in previous sections, some of our parameters, dualityGapUpperLimit,

centeringRThreshold, and the initial hessian Hinit to start the BFGS algo-

rithm, affect the efficiency and the rate of success of skydiving runs and their

preferred values depend closely on specific bootstrap problems and initial con-

ditions. In this section, we will elaborate more on their roles during a run and

offer some tips on how to choose them. We will also mention some current

limitations of the algorithm

17https://github.com/suning-git/sdpb/tree/sdpb2.4.0_midck_stallingrecover.
18This computation was done during the project of [93], but was not reported in the

paper.
19The tiptop algorithm scanned about 1,755 points in the space of (∆v,∆s,∆t,∆t4).

Feasibility at each point is determined by the cutting surface algorithm. On average, the
cutting surface algorithm scans 41 points in the space of OPE coefficients, and each point
corresponds to an SDP in feasibility mode, whose computation requires about 2 Newtonian
steps.

https://github.com/suning-git/sdpb/tree/sdpb2.4.0_midck_stallingrecover

102

3.5.3.1 Running off in parameter space

Let us first discuss the importance of dualityGapUpperLimit and how it

prevents the algorithm from leaving the region of interest in parameter space.

We will use duality gap and µ interchangeably in this section as they are

proportional to each other according to (3.58).

As we mentioned in the beginning of section 3.3, when the duality gap (or

µ) is large, the Lagrangian is not a reliable approximation to the navigator

function, and we must avoid taking steps in parameter space until the duality

gap falls below dualityGapUpperLimit. However, during the scanning steps

discussed in section 3.3.1, it is possible for the duality gap to increase again,

and potentially move back above dualityGapUpperLimit. Should we continue

to impose dualityGapUpperLimit during scanning to prevent this?

The parameter space of a bootstrap problem can contain multiple isolated

feasible regions — either compact regions (islands), or unbounded regions

(continents). In a feasible region, the navigator function N (p) is non-positive.

An island will contain at least one local minimum of N (p). The existence of

multiple isolated feasible regions implies the non-convexity of the navigator

function. Often, we want to restrict our attention to an island as we did

in the previous subsections, but the non-convexity implies that the steps in

parameter space P can run off to a different region. The navigator method

can mitigate this issue by penalizing the N (p) > 0 region.

By contrast, the finite-µ Lagrangian makes running-off behaviors more trou-

blesome for a few reasons:

1. The finite-µ navigator generally starts large and gradually decreases.

Unlike for the navigator function, there is no simple criterion likeN (p) ≥
0 for penalizing an unwanted region.

2. At large µ, the Lagrangian is smoother and barriers between different

local regions are lower, so it is easier for the solver to walk from one

region to another.

3. If the finite-µ Lagrangian is too different from the navigator function,

the solver can be attracted to a region that is different from the target

region at µ = 0, and it may not be able to escape when µ gets smaller.

103

We found that continuing to impose dualityGapUpperLimit can help avoid

these complications.

If the initial point is sufficiently close to the island, we observed that a good

choice of dualityGapUpperLimit for the first skydive call is the value of the

duality gap when the relative gap is O(1)20:

|primal objective− dual objective|
min(|primal objective|, |dual objective|)

∼ O(1). (3.72)

In the second and third run in table 3.3, for example, we found that it is

necessary to impose dualityGapUpperLimit on all skydive iterations. The

initial points p2 and p3 are significantly far from the island and a constant

dualityGapUpperLimit prevents the solver from moving towards the “conti-

nent”.

Another subtlety is that sometimes usingNdefault
pp of (3.53) as the initial Hessian

can be problematic. In the Ising example, we observed that for the run from p1,

if we use Ndefault
pp as the initial Hessian, the solver makes a bad step towards the

continent, even though the gradient points towards the island. Most likely the

problem is caused by off-diagonal elements in Ndefault
pp . We solved this problem

by using the initial Hessian (3.66), which is the diagonal piece of Ndefault
pp at

p1.

3.5.3.2 Failure of centering

Our algorithm 2 assumes that the centering procedure in section 3.3 can bring

ξµ(p) sufficiently close to the central section ξ∗µ(p). In practice, this means

that we assume that we are able to reduce Rerr := ||R||max to arbitrarily small

values at any fixed finite µ.

However, in certain semidefinite programs it is not possible to find an optimal

solution at finite µ. One important class of examples is when primal or dual

feasible points lie exactly on the boundary of the cone of positive semidefinite

matrices rather than in its interior. This is a violation of the so-called Slater

condition, which demands the existence of at least one feasible point which is

strictly positive definite. The logarithmic barrier function introduced above

is then infinite at every feasible point and consequently the central path does

20Notice that this choice is problem dependent that might require users to launch some
test run to find a good dualityGapUpperLimit

104

not really exist. The standard primal-dual interior point algorithm is then

no longer guaranteed to work, although it might still perform well enough in

practice.

In bootstrap studies, violation of the Slater condition happens occasionally on

the dual side, when some components of the functionals must be exactly zero

in order to satisfy the positivity conditions. In the course of an SDPB run, this

typically corresponds to the failure to obtain dual feasible “jumps;” instead

the dual error reduces gradually to 0 as Y becomes increasingly singular.

Returning to the context of centering steps, Rerr is a measure of how correctly

the constraint XY = µI is being solved and it is impossible to make Rerr zero

at finite µ if there is no non-singular Y satisfying the dual constraints. Hence,

failing to satisfy the Slater condition manifests itself as a non-convergent Rerr

in our algorithm.

The current skydiving algorithm does not include a solution to this problematic

situation. To avoid it, the user may have to modify their SDP, perhaps by

discarding crossing equations by hand so that the Slater condition is satisfied.

Another option is to bypass centering steps by setting centeringRThreshold

to a large value. Finding a general strategy to cope with this scenario remains

a problem for future research.

3.6 Conclusions and future directions

The core idea of skydiving is simple: combine optimization of a SDP with

optimization over the external parameters that it depends on. In theory, this

simply requires us to treat the Lagrange function of the SDP as a function

of both internal variables ξ and external parameters p. We have found that

this idea can work in practice, as long as we supplement it with a few crucial

techniques to avoid stalling: (1) centering iterations to stay close to the central

section, (2) β-scan to carefully decide how to change µ, (3) climbing in µ

to recover from stalling when necessary. Furthermore, we found an efficient

method for avoiding expensive computations of the Hessian in p-space using

a BFGS-type update. These techniques are implemented in the open-source

C++ program skydive.

Our tests of skydive on various conformal bootstrap problems show promis-

ing results. In some cases, the time spent towards solving an SDP is shorter

than the time spent generating the SDP (by constructing matrices of confor-

105

mal blocks and writing them to disk). In these cases, the bottleneck of the

bootstrap computation is no longer in optimization and in the future we need

to pursue other avenues for improving performance.

While skydive has already proved practically useful, it represents only an

initial attempt in the direction of combined internal-external optimization.

There are several possibilities for further enhancements, some of which we

outline below.

The idea of iterating the corrector step has proven valuable to improve con-

vergence at small computational cost. It would be interesting to use this idea

in ordinary SDP solutions, as well as to use it to solve (3.25) with fixed dp.21

We expect that this could make it relatively cheap to move along the local

central path.

In skydiving, there is a basic dilemma: at higher values of µ, the solver can

take larger steps in dξ (since the X, Y matrices are not close to degeneracy),

but the prediction for p becomes less accurate (due to the large-µ navigator

function being a poor approximation to the true µ = 0 navigator function).

Meanwhile, the opposite holds for lower values of µ. In our current algorithm,

we seek a balance between these competing effects using the “β-scan” and

“climbing” techniques. However, if it becomes relatively inexpensive to move

along the local central path, it might be appealing to implement a strategy

where the solver computes the step dp at lower µ but executes the step at

higher µ. A natural measure of the accuracy of the navigator function could

be the relative duality gap

|primal objective− dual objective|
min(|primal objective|, |dual objective|)

, (3.73)

while a natural criterion for determining whether µ is large enough could come

from testing the step length.

Our current implementation separates control of the main loop and the compu-

tations inside the loop between the external “driver” programs and skydive.

While this implementation is suitable for experimentation, it suffers from high

21In our skydive program, we have actually implemented corrector iterations for solving
(3.25) with fixed dp. However, this requires saving the Schur complement from the previous
SDP and loading it into the new SDP. In the current implementation, this data is processed
as text, resulting in slow read/write operations. We find it to be inefficient in practice, but
it can certainly be improved in the future.

106

I/O costs, due to the need to repeatedly generate new SDP files and write

them to disk in the driver, and load them from disk in skydive. In the future,

it would be desirable to develop an integrated program that executes the full

algorithm.

A more ambitious goal is to extrapolate bootstrap computations from lower

to higher derivative order.22 As the derivative order increases, the data spec-

ifying the SDP (b, B, and c) will increase in dimension discontinuously. An

important challenge will be to compute an appropriate dξ to account for this

discontinuous change.

22This idea was made to work for the spinless modular bootstrap in [95].

107

Bibliography

[1] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal

Bootstrap, JHEP 06 (2015) 174, [1502.02033].

[2] W. Landry and D. Simmons-Duffin, Scaling the semidefinite program

solver SDPB, 1909.09745.

[3] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin

and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap,

Phys. Rev. D86 (2012) 025022, [1203.6064].

[4] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin

and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap

II. c-Minimization and Precise Critical Exponents, J. Stat. Phys. 157

(2014) 869, [1403.4545].

[5] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed

Correlators in the 3D Ising Model, JHEP 11 (2014) 109, [1406.4858].

[6] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands

in the Ising and O(N) models, JHEP 08 (2016) 036, [1603.04436].

[7] D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d

Ising CFT, JHEP 03 (2017) 086, [1612.08471].

[8] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N)

vector models, JHEP 1406 (2014) 091, [1307.6856].

[9] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the

O(N) Archipelago, JHEP 11 (2015) 106, [1504.07997].

[10] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su

et al., Carving out OPE space and precise O(2) model critical exponents,

JHEP 06 (2020) 142, [1912.03324].

http://dx.doi.org/10.1007/JHEP06(2015)174
https://arxiv.org/abs/1502.02033
https://arxiv.org/abs/1909.09745
http://dx.doi.org/10.1103/PhysRevD.86.025022
https://arxiv.org/abs/1203.6064
http://dx.doi.org/10.1007/s10955-014-1042-7
http://dx.doi.org/10.1007/s10955-014-1042-7
https://arxiv.org/abs/1403.4545
http://dx.doi.org/10.1007/JHEP11(2014)109
https://arxiv.org/abs/1406.4858
http://dx.doi.org/10.1007/JHEP08(2016)036
https://arxiv.org/abs/1603.04436
http://dx.doi.org/10.1007/JHEP03(2017)086
https://arxiv.org/abs/1612.08471
http://dx.doi.org/10.1007/JHEP06(2014)091
https://arxiv.org/abs/1307.6856
http://dx.doi.org/10.1007/JHEP11(2015)106
https://arxiv.org/abs/1504.07997
http://dx.doi.org/10.1007/JHEP06(2020)142
https://arxiv.org/abs/1912.03324

108

[11] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su

et al., Bootstrapping Heisenberg magnets and their cubic instability,

Phys. Rev. D 104 (2021) 105013, [2011.14647].

[12] M. Reehorst, S. Rychkov, D. Simmons-Duffin, B. Sirois, N. Su and

B. van Rees, Navigator Function for the Conformal Bootstrap, SciPost

Phys. 11 (2021) 072, [2104.09518].

[13] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of

4D CFTs, JHEP 05 (2012) 110, [1109.5176].

[14] P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators,

JHEP 02 (2018) 096, [1612.08987].

[15] R. S. Erramilli, L. V. Iliesiu and P. Kravchuk, Recursion relation for

general 3d blocks, JHEP 12 (2019) 116, [1907.11247].

[16] P. Kravchuk, Casimir recursion relations for general conformal blocks,

JHEP 02 (2018) 011, [1709.05347].

[17] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Harmonic Analysis

and Mean Field Theory, JHEP 10 (2019) 217, [1809.05111].

[18] R. S. Erramilli, L. V. Iliesiu, P. Kravchuk, W. Landry, D. Poland and

D. Simmons-Duffin, blocks 3d: software for general 3d conformal blocks,

JHEP 11 (2021) 006, [2011.01959].

[19] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory,

numerical techniques, and applications, Reviews of Modern Physics 91

(jan, 2019) .

[20] D. Poland and D. Simmons-Duffin, Snowmass white paper: The

numerical conformal bootstrap, 2022.

[21] A. M. Polyakov, Nonhamiltonian approach to conformal quantum field

theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23–42.

[22] S. Ferrara, A. F. Grillo and R. Gatto, Tensor representations of

conformal algebra and conformally covariant operator product expansion,

Annals Phys. 76 (1973) 161–188.

http://dx.doi.org/10.1103/PhysRevD.104.105013
https://arxiv.org/abs/2011.14647
http://dx.doi.org/10.21468/SciPostPhys.11.3.072
http://dx.doi.org/10.21468/SciPostPhys.11.3.072
https://arxiv.org/abs/2104.09518
http://dx.doi.org/10.1007/JHEP05(2012)110
https://arxiv.org/abs/1109.5176
http://dx.doi.org/10.1007/JHEP02(2018)096
https://arxiv.org/abs/1612.08987
http://dx.doi.org/10.1007/JHEP12(2019)116
https://arxiv.org/abs/1907.11247
http://dx.doi.org/10.1007/JHEP02(2018)011
https://arxiv.org/abs/1709.05347
http://dx.doi.org/10.1007/JHEP10(2019)217
https://arxiv.org/abs/1809.05111
http://dx.doi.org/10.1007/JHEP11(2021)006
https://arxiv.org/abs/2011.01959
http://dx.doi.org/10.1103/revmodphys.91.015002
http://dx.doi.org/10.1103/revmodphys.91.015002
http://dx.doi.org/10.1016/0003-4916(73)90446-6

109

[23] G. Mack, Duality in Quantum Field Theory, Nucl.Phys. B118 (1977)

445.

[24] D. J. Gross and A. Neveu, Dynamical Symmetry Breaking in

Asymptotically Free Field Theories, Phys. Rev. D10 (1974) 3235.

[25] L. Iliesiu, F. Kos, D. Poland, S. S. Pufu, D. Simmons-Duffin and

R. Yacoby, Bootstrapping 3D Fermions, JHEP 03 (2016) 120,

[1508.00012].

[26] I. F. Herbut, Interactions and phase transitions on graphene’s

honeycomb lattice, Phys. Rev. Lett. 97 (2006) 146401,

[cond-mat/0606195].

[27] I. F. Herbut, V. Juricic and B. Roy, Theory of interacting electrons on

the honeycomb lattice, Phys. Rev. B 79 (2009) 085116, [0811.0610].

[28] I. F. Herbut, V. Juricic and O. Vafek, Relativistic Mott criticality in

graphene, Phys. Rev. B80 (2009) 075432, [0904.1019].

[29] L. N. Mihaila, N. Zerf, B. Ihrig, I. F. Herbut and M. M. Scherer,

Gross-Neveu-Yukawa model at three loops and Ising critical behavior of

Dirac systems, Phys. Rev. B 96 (2017) 165133, [1703.08801].

[30] M. Vojta, Y. Zhang and S. Sachdev, Quantum Phase Transitions in

d-Wave Superconductors, Phys. Rev. Lett. 85 (2000) 4940–4943.

[31] M. Vojta, Quantum phase transitions, Reports on Progress in Physics

66 (2003) 2069.

[32] L. Ziegler, E. Tirrito, M. Lewenstein, S. Hands and A. Bermudez,

Large-N Chern insulators: Lattice field theory and quantum simulation

approaches to correlation effects in the quantum anomalous Hall effect,

Annals Phys. 439 (2022) 168763, [2111.04485].

[33] T. Grover, D. Sheng and A. Vishwanath, Emergent Space-Time

Supersymmetry at the Boundary of a Topological Phase, Science 344

(2014) 280–283, [1301.7449].

[34] L. Iliesiu, F. Kos, D. Poland, S. S. Pufu and D. Simmons-Duffin,

Bootstrapping 3D Fermions with Global Symmetries, JHEP 01 (2018)

036, [1705.03484].

http://dx.doi.org/10.1016/0550-3213(77)90238-3
http://dx.doi.org/10.1016/0550-3213(77)90238-3
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1007/JHEP03(2016)120
https://arxiv.org/abs/1508.00012
http://dx.doi.org/10.1103/PhysRevLett.97.146401
https://arxiv.org/abs/cond-mat/0606195
http://dx.doi.org/10.1103/PhysRevB.79.085116
https://arxiv.org/abs/0811.0610
http://dx.doi.org/10.1103/PhysRevB.80.075432
https://arxiv.org/abs/0904.1019
http://dx.doi.org/10.1103/PhysRevB.96.165133
https://arxiv.org/abs/1703.08801
http://dx.doi.org/10.1103/PhysRevLett.85.4940
http://dx.doi.org/10.1016/j.aop.2022.168763
https://arxiv.org/abs/2111.04485
http://dx.doi.org/10.1126/science.1248253
http://dx.doi.org/10.1126/science.1248253
https://arxiv.org/abs/1301.7449
http://dx.doi.org/10.1007/JHEP01(2018)036
http://dx.doi.org/10.1007/JHEP01(2018)036
https://arxiv.org/abs/1705.03484

110

[35] J. A. Gracey, Three loop calculations in the O(N) Gross-Neveu model,

Nucl. Phys. B341 (1990) 403–418.

[36] B. Rosenstein, H.-L. Yu and A. Kovner, Critical exponents of new

universality classes, Phys. Lett. B314 (1993) 381–386.

[37] N. Zerf, C.-H. Lin and J. Maciejko, Superconducting quantum criticality

of topological surface states at three loops, Phys. Rev. B94 (2016)

205106, [1605.09423].

[38] J. A. Gracey, T. Luthe and Y. Schroder, Four loop renormalization of

the Gross-Neveu model, Phys. Rev. D94 (2016) 125028, [1609.05071].

[39] L. Fei, S. Giombi, I. R. Klebanov and G. Tarnopolsky, Yukawa CFTs

and Emergent Supersymmetry, PTEP 2016 (2016) 12C105,

[1607.05316].

[40] N. Zerf, L. N. Mihaila, P. Marquard, I. F. Herbut and M. M. Scherer,

Four-loop critical exponents for the Gross-Neveu-Yukawa models, Phys.

Rev. D 96 (2017) 096010, [1709.05057].

[41] B. Ihrig, L. N. Mihaila and M. M. Scherer, Critical behavior of Dirac

fermions from perturbative renormalization, Phys. Rev. B 98 (2018)

125109, [1806.04977].

[42] J. A. Gracey, Anomalous mass dimension at O(1/N**2) in the O(N)

Gross-Neveu model, Phys. Lett. B 297 (1992) 293–297.

[43] S. E. Derkachov, N. A. Kivel, A. S. Stepanenko and A. N. Vasiliev, On

calculation in 1/n expansions of critical exponents in the Gross-Neveu

model with the conformal technique, hep-th/9302034.

[44] J. A. Gracey, Computation of critical exponent eta at O(1/N**3) in the

four Fermi model in arbitrary dimensions, Int. J. Mod. Phys. A 9 (1994)

727–744, [hep-th/9306107].

[45] A. C. Petkou, Operator product expansions and consistency relations in

a O(N) invariant fermionic CFT for 2 < d < 4, Phys.Lett. B389 (1996)

18–28, [hep-th/9602054].

[46] M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit:

A Review, Phys.Rept. 385 (2003) 69–228, [hep-th/0306133].

http://dx.doi.org/10.1016/0550-3213(90)90186-H
http://dx.doi.org/10.1016/0370-2693(93)91253-J
http://dx.doi.org/10.1103/PhysRevB.94.205106
http://dx.doi.org/10.1103/PhysRevB.94.205106
https://arxiv.org/abs/1605.09423
http://dx.doi.org/10.1103/PhysRevD.94.125028
https://arxiv.org/abs/1609.05071
http://dx.doi.org/10.1093/ptep/ptw120
https://arxiv.org/abs/1607.05316
http://dx.doi.org/10.1103/PhysRevD.96.096010
http://dx.doi.org/10.1103/PhysRevD.96.096010
https://arxiv.org/abs/1709.05057
http://dx.doi.org/10.1103/PhysRevB.98.125109
http://dx.doi.org/10.1103/PhysRevB.98.125109
https://arxiv.org/abs/1806.04977
http://dx.doi.org/10.1016/0370-2693(92)91265-B
https://arxiv.org/abs/hep-th/9302034
http://dx.doi.org/10.1142/S0217751X94000340
http://dx.doi.org/10.1142/S0217751X94000340
https://arxiv.org/abs/hep-th/9306107
http://dx.doi.org/10.1016/S0370-2693(96)01227-0
http://dx.doi.org/10.1016/S0370-2693(96)01227-0
https://arxiv.org/abs/hep-th/9602054
http://dx.doi.org/10.1016/S0370-1573(03)00263-1
https://arxiv.org/abs/hep-th/0306133

111

[47] A. N. Manashov and M. Strohmaier, Correction exponents in the

Gross–Neveu–Yukawa model at 1/N2, Eur. Phys. J. C 78 (2018) 454,

[1711.02493].

[48] J. A. Gracey, Fermion bilinear operator critical exponents at O(1/N2) in

the QED-Gross-Neveu universality class, Phys. Rev. D 98 (2018)

085012, [1808.07697].

[49] S. M. Tabatabaei, A.-R. Negari, J. Maciejko and A. Vaezi, Chiral Ising

Gross-Neveu Criticality of a Single Dirac Cone: A Quantum

Monte Carlo Study, Phys. Rev. Lett.

bfseries 128 (2022) 225701, [2112.09209].

[50] E. Huffman and S. Chandrasekharan, Fermion-bag inspired Hamiltonian

lattice field theory for fermionic quantum criticality, Phys. Rev. D 101

(2020) 074501, [1912.12823].

[51] Y. Liu, W. Wang, K. Sun and Z. Y. Meng, Designer Monte Carlo

simulation for the Gross-Neveu-Yukawa transition, Phys. Rev. B 101

(2020) 064308, [1910.07430].

[52] J. Rong and N. Su, Bootstrapping the minimal N = 1 superconformal

field theory in three dimensions, JHEP 06 (2021) 154, [1807.04434].

[53] A. Atanasov, A. Hillman and D. Poland, Bootstrapping the Minimal 3D

SCFT, JHEP 11 (2018) 140, [1807.05702].

[54] A. Atanasov, A. Hillman, D. Poland, J. Rong and N. Su, Precision

Bootstrap for the N = 1 Super-Ising Model, JHEP 08 (2022) 136,

[2201.02206].

[55] E. Huffman and S. Chandrasekharan, Fermion bag approach to

Hamiltonian lattice field theories in continuous time, Phys. Rev. D 96

(2017) 114502, [1709.03578].

[56] A. L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The

Analytic Bootstrap and AdS Superhorizon Locality, JHEP 1312 (2013)

004, [1212.3616].

[57] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large

Spin, JHEP 1311 (2013) 140, [1212.4103].

http://dx.doi.org/10.1140/epjc/s10052-018-5902-1
https://arxiv.org/abs/1711.02493
http://dx.doi.org/10.1103/PhysRevD.98.085012
http://dx.doi.org/10.1103/PhysRevD.98.085012
https://arxiv.org/abs/1808.07697
http://dx.doi.org/10.1103/PhysRevLett.128.225701
http://dx.doi.org/10.1103/PhysRevLett.128.225701
https://arxiv.org/abs/2112.09209
http://dx.doi.org/10.1103/PhysRevD.101.074501
http://dx.doi.org/10.1103/PhysRevD.101.074501
https://arxiv.org/abs/1912.12823
http://dx.doi.org/10.1103/PhysRevB.101.064308
http://dx.doi.org/10.1103/PhysRevB.101.064308
https://arxiv.org/abs/1910.07430
http://dx.doi.org/10.1007/JHEP06(2021)154
https://arxiv.org/abs/1807.04434
http://dx.doi.org/10.1007/JHEP11(2018)140
https://arxiv.org/abs/1807.05702
http://dx.doi.org/10.1007/JHEP08(2022)136
https://arxiv.org/abs/2201.02206
http://dx.doi.org/10.1103/PhysRevD.96.114502
http://dx.doi.org/10.1103/PhysRevD.96.114502
https://arxiv.org/abs/1709.03578
http://dx.doi.org/10.1007/JHEP12(2013)004
http://dx.doi.org/10.1007/JHEP12(2013)004
https://arxiv.org/abs/1212.3616
http://dx.doi.org/10.1007/JHEP11(2013)140
https://arxiv.org/abs/1212.4103

112

[58] N. Chai, S. Chakraborty, M. Goykhman and R. Sinha, Long-range

fermions and critical dualities, JHEP 01 (2022) 172, [2110.00020].

[59] C. Behan, L. Rastelli, S. Rychkov and B. Zan, Long-range critical

exponents near the short-range crossover, Phys. Rev. Lett. 118 (2017)

241601, [1703.03430].

[60] C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the

long-range to short-range crossover and an infrared duality, J. Phys. A

50 (2017) 354002, [1703.05325].

[61] C. Behan, Bootstrapping the long-range Ising model in three dimensions,

J. Phys. A 52 (2019) 075401, [1810.07199].

[62] S. Benvenuti and H. Khachatryan, QED’s in 2+1 dimensions: complex

fixed points and dualities, 1812.01544.

[63] R. Boyack, A. Rayyan and J. Maciejko, Deconfined criticality in the

QED3 Gross-Neveu-Yukawa model: The 1/N expansion revisited, Phys.

Rev. B 99 (2019) 195135, [1812.02720].

[64] L. Janssen and I. F. Herbut, Antiferromagnetic critical point on

graphene’s honeycomb lattice: A functional renormalization group

approach, Phys. Rev. B 89 (2014) 205403, [1402.6277].

[65] G. P. Vacca and L. Zambelli, Multimeson Yukawa interactions at

criticality, Phys. Rev. D 91 (2015) 125003, [1503.09136].

[66] S. Chandrasekharan and A. Li, Quantum critical behavior in three

dimensional lattice Gross-Neveu models, Phys. Rev. D 88 (2013)

021701, [1304.7761].

[67] L. Wang, P. Corboz and M. Troyer, Fermionic Quantum Critical Point

of Spinless Fermions on a Honeycomb Lattice, New J. Phys. 16 (2014)

103008, [1407.0029].

[68] Z.-X. Li, Y.-F. Jiang and H. Yao, Fermion-sign-free

Majarana-quantum-Monte-Carlo studies of quantum critical phenomena

of Dirac fermions in two dimensions, New J. Phys. 17 (2015) 085003,

[1411.7383].

http://dx.doi.org/10.1007/JHEP01(2022)172
https://arxiv.org/abs/2110.00020
http://dx.doi.org/10.1103/PhysRevLett.118.241601
http://dx.doi.org/10.1103/PhysRevLett.118.241601
https://arxiv.org/abs/1703.03430
http://dx.doi.org/10.1088/1751-8121/aa8099
http://dx.doi.org/10.1088/1751-8121/aa8099
https://arxiv.org/abs/1703.05325
http://dx.doi.org/10.1088/1751-8121/aafd1b
https://arxiv.org/abs/1810.07199
https://arxiv.org/abs/1812.01544
http://dx.doi.org/10.1103/PhysRevB.99.195135
http://dx.doi.org/10.1103/PhysRevB.99.195135
https://arxiv.org/abs/1812.02720
http://dx.doi.org/10.1103/PhysRevB.89.205403
https://arxiv.org/abs/1402.6277
http://dx.doi.org/10.1103/PhysRevD.91.125003
https://arxiv.org/abs/1503.09136
http://dx.doi.org/10.1103/PhysRevD.88.021701
http://dx.doi.org/10.1103/PhysRevD.88.021701
https://arxiv.org/abs/1304.7761
http://dx.doi.org/10.1088/1367-2630/16/10/103008
http://dx.doi.org/10.1088/1367-2630/16/10/103008
https://arxiv.org/abs/1407.0029
http://dx.doi.org/10.1088/1367-2630/17/8/085003
https://arxiv.org/abs/1411.7383

113

[69] S. Hesselmann and S. Wessel, Thermal Ising transitions in the vicinity

of two-dimensional quantum critical points, Phys. Rev. B 93 (2016)

155157, [1602.02096].

[70] J. A. Gracey, Calculation of exponent eta to O(1/N**2) in the O(N)

Gross-Neveu model, Int. J. Mod. Phys. A 6 (1991) 395–408.

[71] A. N. Vasiliev, S. E. Derkachov, N. A. Kivel and A. S. Stepanenko, The

1/n expansion in the Gross-Neveu model: Conformal bootstrap

calculation of the index eta in order 1/n**3, Theor. Math. Phys. 94

(1993) 127–136.

[72] A. N. Vasiliev and A. S. Stepanenko, The 1/n expansion in the

Gross-Neveu model: Conformal bootstrap calculation of the exponent

1/nu to the order 1/n**2, Theor. Math. Phys. 97 (1993) 1349–1354.

[73] J. A. Gracey, Computation of Beta-prime (g(c)) at O(1/N**2) in the

O(N) Gross-Neveu model in arbitrary dimensions, Int. J. Mod. Phys. A

9 (1994) 567–590, [hep-th/9306106].

[74] J. A. Gracey, Critical exponent ω in the Gross-Neveu-Yukawa model at

O(1/N), Phys. Rev. D 96 (2017) 065015, [1707.05275].

[75] J. A. Gracey, Computation of the three loop Beta function of the O(N)

Gross-Neveu model in minimal subtraction, Nucl. Phys. B 367 (1991)

657–674.

[76] C. Luperini and P. Rossi, Three loop Beta function(s) and effective

potential in the Gross-Neveu model, Annals Phys. 212 (1991) 371–401.

[77] F. D. M. Haldane, Model for a Quantum Hall Effect without Landau

Levels: Condensed-Matter Realization of the ’Parity Anomaly’, Phys.

Rev. Lett. 61 (1988) 2015–2018.

[78] M. A. Metlitski, L. Fidkowski, X. Chen and A. Vishwanath, Interaction

effects on 3d topological superconductors: surface topological order from

vortex condensation, the 16 fold way and fermionic kramers doublets,

arXiv preprint arXiv:1406.3032 (2014) .

[79] A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin,

The 3d Stress-Tensor Bootstrap, JHEP 02 (2018) 164, [1708.05718].

http://dx.doi.org/10.1103/PhysRevB.93.155157
http://dx.doi.org/10.1103/PhysRevB.93.155157
https://arxiv.org/abs/1602.02096
http://dx.doi.org/10.1142/S0217751X91000241
http://dx.doi.org/10.1007/BF01019324
http://dx.doi.org/10.1007/BF01019324
http://dx.doi.org/10.1007/BF01015764
http://dx.doi.org/10.1142/S0217751X94000285
http://dx.doi.org/10.1142/S0217751X94000285
https://arxiv.org/abs/hep-th/9306106
http://dx.doi.org/10.1103/PhysRevD.96.065015
https://arxiv.org/abs/1707.05275
http://dx.doi.org/10.1016/0550-3213(91)90012-M
http://dx.doi.org/10.1016/0550-3213(91)90012-M
http://dx.doi.org/10.1016/0003-4916(91)90120-W
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1007/JHEP02(2018)164
https://arxiv.org/abs/1708.05718

114

[80] A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the

space of 3D CFTs with a continuous global symmetry, JHEP 05 (2019)

098, [1705.04278].

[81] K.-i. Kubota and H. Terao, Dynamical symmetry breaking in QED(3)

from the Wilson RG point of view, Prog. Theor. Phys. 105 (2001)

809–825, [hep-ph/0101073].

[82] S. Mehrotra, On the implementation of a primal-dual interior point

method, SIAM Journal on Optimization 2 (1992) 575–601,

[https://doi.org/10.1137/0802028].

[83] M. Yamashita, K. Fujisawa and M. Kojima, Implementation and

evaluation of sdpa 6.0 (semidefinite programming algorithm 6.0),

Optimization Methods and Software 18 (2003) 491–505.

[84] M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda,

K. Kobayashi et al., A high-performance software package for

semidefinite programs: Sdpa 7, Tokyo, Japan (2010) .

[85] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata and

M. Nakata, Latest developments in the sdpa family for solving large-scale

sdps, Handbook on semidefinite, conic and polynomial optimization

(2012) 687–713.

[86] A. Shapiro, First and second order analysis of nonlinear semidefinite

programs, Mathematical programming 77 (1997) 301–320.

[87] F. Leibfritz and E. Mostafa, An interior point constrained trust region

method for a special class of nonlinear semidefinite programming

problems, SIAM Journal on Optimization 12 (2002) 1048–1074.

[88] R. Correa, A global algorithm for nonlinear semidefinite programming,

SIAM Journal on optimization 15 (2004) 303–318.

[89] M. Kočvara and M. Stingl, Pennon: A code for convex nonlinear and

semidefinite programming, Optimization methods and software 18 (2003)

317–333.

[90] H. Yamashita and H. Yabe, A survey of numerical methods for

nonlinear semidefinite programming, Journal of the Operations Research

Society of Japan 58 (2015) 24–60.

http://dx.doi.org/10.1007/JHEP05(2019)098
http://dx.doi.org/10.1007/JHEP05(2019)098
https://arxiv.org/abs/1705.04278
http://dx.doi.org/10.1143/PTP.105.809
http://dx.doi.org/10.1143/PTP.105.809
https://arxiv.org/abs/hep-ph/0101073
http://dx.doi.org/10.1137/0802028
https://arxiv.org/abs/https://doi.org/10.1137/0802028

115

[91] Wikipedia contributors, Broyden–fletcher–goldfarb–shanno algorithm —

Wikipedia, the free encyclopedia, 2023.

[92] N. Su, The Hybrid Bootstrap, 2202.07607.

[93] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su

et al., Bootstrapping heisenberg magnets and their cubic instability,

Phys. Rev. D 104 (Nov, 2021) 105013.

[94] M. Go and Y. Tachikawa, autoboot: A generator of bootstrap equations

with global symmetry, JHEP 06 (2019) 084, [1903.10522].

[95] N. Afkhami-Jeddi, T. Hartman and A. Tajdini, Fast Conformal

Bootstrap and Constraints on 3d Gravity, JHEP 05 (2019) 087,

[1903.06272].

https://arxiv.org/abs/2202.07607
http://dx.doi.org/10.1103/PhysRevD.104.105013
http://dx.doi.org/10.1007/JHEP06(2019)084
https://arxiv.org/abs/1903.10522
http://dx.doi.org/10.1007/JHEP05(2019)087
https://arxiv.org/abs/1903.06272

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	Introduction
	The Gross-Neveu-Yukawa Archipelago
	Introduction
	Theoretical background and spectrum assumptions
	Numerical setup
	Results
	Discussion
	Appendix

	Skydiving to Bootstrap Islands
	Introduction
	Non-linear semidefinite programming problems
	Skydiving algorithm
	Implementation
	Example runs
	Conclusions and future directions

	Bibliography

