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ABSTRACT

This thesis studies operator learning from a statistical perspective. Operator
learning uses observed data to estimate mappings between infinite-dimensional
spaces. It does so at the conceptually continuum level, leading to discretization-
independent machine learning methods when implemented in practice. Al-
though this framework shows promise for physical model acceleration and
discovery, the mathematical theory of operator learning lags behind its empir-
ical success. Motivated by scientific computing and inverse problems where
the available data are often scarce, this thesis develops scalable algorithms for
operator learning and theoretical insights into their data efficiency.

The thesis begins by introducing a convergent operator learning algorithm that
is implementable on a computer with controlled complexity. The method is
based on linear combinations of function-valued random features, enjoys effi-
cient training via convex optimization, and accurately approximates nonlinear
solution operators of parametric partial differential equations. A statistical
analysis derives state-of-the-art error bounds for the method and establishes
its robustness to errors stemming from noisy observations and model mis-
specification. Next, the thesis tackles fundamental statistical questions about
how problem structure, data quality, and prior information influence learning
accuracy. Specializing to a linear setting, a sharp Bayesian nonparametric
analysis shows that continuum linear operators, such as the integration or
differentiation of spatially varying functions, are provably learnable from noisy
input-output pairs. The theory reveals that smoothing operators are easier
to learn than unbounded ones and that training with rough or high-frequency
input data improves sample complexity. When only specific linear functionals
of the operator’s output are the primary quantities of interest, the final part of
the thesis proves that the smoothness of the functionals determines whether
learning directly from these finite-dimensional observations carries a statistical
advantage over plug-in estimators based on learning the entire operator. To
validate the findings beyond linear problems, the thesis develops practical deep
operator learning architectures for nonlinear mappings that send functions to
vectors, or vice versa, and shows their corresponding universal approximation
properties. Altogether, this thesis advances the reliability and efficiency of
operator learning for continuum problems in the physical and data sciences.
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C h a p t e r 1

THESIS INTRODUCTION

This thesis develops scalable data-driven methods for solving continuum prob-
lems, establishes theoretical guarantees on the reliability and robustness of these
methods, and applies the methods in the physical and data sciences. It does so
by combining mathematical analysis with domain-specific insight in a statistical
operator learning framework. Operator learning lifts machine learning princi-
ples originally built for the task of function estimation from finite-dimensional
data to the task of operator estimation from infinite-dimensional data. It is
beginning to influence fields such as scientific computing, engineering, and
imaging, where continuum objects play a central role. For instance, operator
learning tools are starting to be adopted as fast surrogates for high fidelity par-
tial differential equation solvers (e.g., for seismic waves [275]) or as data-driven
components for larger and more complex systems (e.g., weather models [215]).
More generally, it displays potential for accelerating and discovering complex
physical models and solving previously intractable problems.

The foundations of operator learning are typically motivated from an ap-
proximation theory [153] or numerical linear algebra [41] perspective. These
perspectives are founded on the principles of numerical analysis, which studies
continuum physical models and their discretized approximations when sim-
ulated on computers. At the infinite-dimensional level, such problems are
formulated using the language of functional analysis. The restriction of the
underlying function spaces that contain the phenomena of interest to appropri-
ate finite-dimensional approximation subspaces informs the design of accurate
numerical methods such as the classical finite element method. These classical
methods are problem-specific, yet are interpretable due to the physical struc-
ture encoded by the underlying mathematical model. They assume noise-free
initial data, boundary conditions, and source terms. Theoretical results study
convergence as the number of degrees of freedom of the approximation tends to
infinity. Much of the research on operator learning approximations of contin-
uum physical models parallels this numerical analysis landscape. For instance,
the training data are noiseless and generated from a well-posed mathematical
model. The theory often focuses on convergence guarantees as the number of
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degrees of freedom of the operator learning architecture—i.e., the number of
free parameters—increases.

On the other hand, statistical learning theory works under the assumption that
the observed data are samples from an unknown joint probability distribution.
In the supervised learning setting, the finite samples of data consist of inputs
and corresponding labeled outputs. The goal of statistical learning is to
build a model from these data that accurately describes the underlying input-
output relationship on average with respect to the unknown joint distribution.
Theoretical work in the field centers on rates of estimation as the sample size,
i.e., the number of data points, grows. The difficulty of such problems is
often exacerbated by the high or infinite dimensionality of the data. Unlike in
numerical analysis, there may not exist a ground truth mathematical model
relating inputs to outputs in the statistical learning setting. Even if there is such
a true model, it could be corrupted by complicated noise processes. Both schools
of thought ultimately seek to make accurate predictions about interesting
phenomena in computationally efficient ways given certain information about
the problem.

This thesis belongs somewhere in between the statistical learning and numerical
analysis viewpoints—although it is more closely aligned with statistical learning
theory. As in numerical analysis, the present work always assumes the existence
of an underlying continuum map that relates the infinite-dimensional input
space to the infinite-dimensional output space. It also prescribes a random
noise model on the observed outputs to represent measurement errors, as in
statistical learning. This mathematical setup has close similarities to Bayesian
inverse problems [253]. These inverse problems take the form

y = G(u) + η , (1.1)

where G is the true forward operator, u is an infinite-dimensional input pa-
rameter, and η represents noise. The Bayesian approach to statistical inverse
problems models both u and η as random variables. The goal is to find the
distribution of u given the observation y. In contrast, operator learning solves
the completely different problem of finding G from many realizations of the pair
(u, y) in (1.1). Nonetheless, one of the key technical strategies of this thesis
is to reformulate such supervised operator learning problems into Bayesian
inverse problems of the form (1.1) (with a different forward map to account for
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the task of estimating G). This enables the thesis to exploit the rich history
of advances in statistical and Bayesian inverse problems and quantify the
uncertainty inherent in the inference procedure.

As in statistical learning, the primary theoretical focus of the thesis is on
sample complexity, which is the amount of training data required to achieve a
desired accuracy level. Deep understanding of sample complexity has enormous
practical consequences. For example, due to high computational or experimental
burden, scientific data is not as abundant as data in the information sciences.
Data generation is often too expensive or too time consuming. To make
the most out of the limited quantities of data available, the study of sample
complexity is essential. The thesis uncovers powerful theoretical insights into
how to improve sample complexity for certain operator learning algorithms
and also develops new algorithms that are provably sample-efficient.

Model misspecification is another recurring theme of the thesis. Since the
ground truth operator G is usually partially or fully unknown, it is unlikely
that G will belong to the chosen data-driven model class used to approximate
it. This effect is typically quantified by a regularity or smoothness mismatch
between the true G and elements of the model class. Hence, it is desirable to
design and work with operator learning methods that are robust and stable to
such model misspecification errors. The thesis studies this question for both
linear and nonlinear problems.

This introductory chapter continues with a discussion on the need for continuum
learning algorithms in Section 1.1 and how operator learning addresses this
need in Section 1.2. Section 1.3 details the major contributions of the present
work, while Section 1.4 outlines the organization of the thesis.

1.1 Continuum Algorithms for Continuum Problems

The challenge of inferring or approximating infinite-dimensional objects from
finite amounts of information is ubiquitous in science, engineering, medicine, and
beyond. Classically, this challenge is usually due to prediction or downstream
tasks that arise from a well-defined mathematical model. Such tasks, which
include inversion, control, optimization, and uncertainty propagation, are
then tackled with mature numerical methods that have been developed over
several decades. These methods are tailored to the specific type of underlying
continuum model, typically an ordinary, partial, or stochastic differential
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equation, and require domain-specific expertise to fully exploit their power.

In contrast, due to the ongoing revolution in the data and information sciences,
there is increasing interest in using machine learning methods for these complex
scientific tasks that overcome deficiencies stemming from imperfect knowledge
of the mathematical model or from the existing numerical methods themselves
(e.g., high dimensionality and high computational cost). For example, data-
driven techniques are being applied in problems that range from discovering
new closure relations in climate models [273] to accelerating the design of novel
materials [24]. Black-box machine learning tools are extremely flexible and
come with fully fledged software libraries, which supports their user-friendliness
and spurs widespread adoption. However, the character of scientific data differs
substantially from data in the computer sciences, which is the area where
machine learning has thus far exhibited the most success. Indeed, the physical
world is naturally modeled with infinite-dimensional continuum quantities, for
example, temperature or pressure fields of a fluid. Such objects are spatially
and temporally varying functions that have intrinsic smoothness properties,
long-range correlations, and span multiple scales. The mathematical models
that underpin natural phenomena are highly structured and interpretable.
Continuum data may also be heterogeneous, partially observed, and represented
in several different forms (e.g., in finite element, Fourier, or wavelet bases).
However, by using off-the-shelf machine learning tools that treat discretizations
of these data at face-value—purely as finite-dimensional vectors—researchers
are inadvertently throwing away continuum information that is crucial for
making accurate inferences. In response, this thesis tackles the design and
analysis of machine learning algorithms that are tailor-made for scientific data
and, more generally, other types of continuum data and models.

The general philosophy of designing algorithms at the continuum level has
been successful across mathematical disciplines. In optimization problems con-
strained by partial differential equations, there is the “optimize-then-discretize”
principle [127] which uses ideas from variational analysis to perform optimiza-
tion in infinite dimensions and only discretizes the result at implementation
time. In applied probability, there are continuum Markov chain Monte Carlo
(MCMC) algorithms for sampling probability distributions supported on infinite-
dimensional function spaces [68]. The speed of convergence of these continuum
MCMC methods does not degenerate under mesh refinement [121]. This
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makes them more practical for large-scale problems. The Bayesian formula-
tion of inverse problems on Banach spaces provides another example of the
philosophy [253]. Here, an infinite-dimensional version of Bayes’ rule leads
to well-defined posterior measures that solve the infinite-dimensional inverse
problem and can be sampled in a computationally scalable manner with the
continuum MCMC algorithms previously discussed. There is also work along
similar lines that extends numerical linear algebra routines for finite-dimensional
vectors and matrices to new ones for infinite-dimensional functions and lin-
ear operators [262, 261]. For example, the work of Townsend and Trefethen
[262] generalizes standard QR, LU, and Cholesky factorizations of matrices
to analogous factorizations for compact linear operators acting on function
spaces. Special care is taken so that the discretization of these continuum
algorithms does not pollute the expected infinite-dimensional behavior [67]. All
such methods inherit particular dimension-independent properties that make
them more robust, more computationally efficient, and possibly more accurate.
Operator learning, described in the next section, brings this powerful way of
thinking to the realm of machine learning. The work in the present thesis may
be understood within this general “machine-learn-then-discretize” framework.

1.2 Supervised Operator Learning

Recognizing the need for new mathematical development of learning algorithms
that are tailor-made for continuum problems, researchers established the oper-
ator learning paradigm to build data-driven models that map between infinite-
dimensional input and output spaces. An operator is an input-output relation-
ship such that each input and corresponding output are infinite-dimensional
objects. For example, the mapping from the current temperature in a room to
the temperature one hour later is an operator. This is because temperature
at a fixed time is a function characterized by its values at an uncountably
infinite number of spatial locations. A more concrete example of an operator is
the mapping G : (a, f) 7→ u from coefficient function a and source term f to
solution function u governed by the elliptic partial differential equation

−∇ · (a∇u) = f (1.2)

equipped with appropriate boundary conditions. The thesis returns to this
example in Chapter 2.

Although operator learning represents a great conceptual advance in data
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science, infinite-dimensional quantities must always be discretized when rep-
resented on a computer or in real experiments. What distinguishes operator
learning from traditional machine learning architectures that operate on high-
dimensional discretized vectors is that in the continuum limit of infinite resolu-
tion, operator learning architectures have a well-defined and consistent meaning.
They capture the fundamental continuum structure of the problem and not ar-
tifacts due to the particular choice of discretization. For a fixed set of trainable
parameters, operator learning methods by design produce consistent results
given any finite-dimensional discretization of the formally infinite-dimensional
data. That is, they are inherently dimension- and discretization-independent.
In practice, this means that when trained at one resolution or discretization,
the learned operator can be transferred to any other resolution or discretization
without the need for re-training. This property endows such methods with
significant potential for discovering new scientific laws from diverse sources of
real-world data.

The present work focuses primarily on supervised operator learning, which
concerns the training of models to fit infinite-dimensional input-output pairs of
labeled data. However, just as supervised learning is a subset of the whole field
of machine learning, the operator learning framework extends to many more
classes of problems, including some that are discussed in Chapter 6. Moreover,
although the theory in Chapters 3, 4, and 5 is formulated within the setting of
quite general infinite-dimensional spaces, the thesis is primarily motivated by
operators of interest that map between spaces of spatially varying functions.
Indeed, all of the numerical experiments in this work come from continuum
science and engineering problems that are of this form.

To this end, supervised operator learning assumes that N random pairs of
functional data {(un, yn)}Nn=1 are available. The inputs {un}Nn=1 ⊂ U from
input space U might be functions x 7→ un(x) of some spatial variable x ∈ D.
The observed outputs

yn = G(un) + ηn (1.3)

are possibly noisy evaluations of some unknown ground truth operator G at the
input function un. These could be functions x′ 7→ yn(x

′), on a possibly different
spatial domain D′, belonging to output function space Y . Given these data, the
goal is to estimate the operator G : U → Y. Although various reconstruction
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procedures exist for this task, by far the most common involves solving the
empirical risk minimization problem

min
Ψ∈H

{
1

N

N∑
n=1

ℓ
(
yn,Ψ(un)

)
+ R(Ψ)

}
(1.4)

for some loss function ℓ : Y ×Y → R that quantifies the data misfit. Here H is
a user-defined hypothesis space of operators mapping U to Y and R : H → R is
a regularization functional that ameliorates the ill-posedness of learning from a
finite number samples.1 For the function-valued regression problems considered
in this thesis, common choices for the loss function ℓ(·, ·) include those derived
from the squared L2(D′) norm, the L2(D′) norm itself, the squared H1(D′)

norm, and relative versions of these choices. The L1(D′) norm is also a good
option if the output functions are discontinuous in some way.

A recurring theme in this thesis is the tradeoff between bias and variance
that occurs when adjusting the size of the set H (equivalently, adjusting
the approximation power of a parametric model by changing the number of
learnable parameters). Making H bigger reduces the bias error, but in general
increases the variance. One must carefully balance the size of H , the strength
of regularization R, and other errors—such as those due to discretization—in
order to obtain optimal statistical guarantees on learning accuracy.

The accuracy of the trained model that solves (1.4) can be assessed in many
different ways. The most common metric is the expected loss (i.e., expected
risk) over the training distribution. Under an independent and identically
distributed statistical model for the training data {(un, yn)}Nn=1, this involves
replacing the N -term average in (1.4) with the full expectation over the joint
law of the pair (u1, y1). Other notions of error include the worst-case error over
compact sets of inputs, excess risk, and out-of-distribution expected loss. By
working in a statistical learning framework, this thesis develops average-case
convergence guarantees that are valid for the latter two accuracy metrics.

This section concludes by contextualizing the present thesis with other work in
the literature. Several practically implementable operator learning architectures
were developed concurrently [4, 34, 173, 181, 203, 207, 274]. These include
the DeepONet [181], which generalizes and makes practical the main idea

1A precise definition of all the involved quantities U , Y, G, H , R, and ℓ requires a
technical functional-analytic setup that is deferred until Chapter 2 and beyond.
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of Chen and Chen [59], PCA-Net [34], and the function-valued random features
method that is developed in this thesis [203]. These models were followed by
neural operators [154, 173], which lift the structure of finite-dimensional neural
networks to the infinite-dimensional function space setting, and in particular
the Fourier Neural Operator [172]. A related line of research aiming to more
closely align model reduction with operator learning is the work on deep
learning-based reduced order models [44, 100, 101, 102]; some of these studies
also derive approximation guarantees. Details for and comparisons among these
architectures are given in [153, Section 3]. At a high-level, each architecture
represents a different choice of the hypothesis set H in (1.4). There are fewer
studies on the effect of changing the regularization functional R or the loss
function ℓ, but these quantities are just as important as H .

Apart from the random features method, what the preceding architectures—
collectively called “neural operators” in this section—share is a deep learning
backbone. The approximation theory of such neural operators is fairly well
developed by now [125, 130, 150, 152, 154, 158, 159, 160, 163]. It includes
qualitative universal approximation, i.e., density, results as well as quantita-
tive parameter complexity bounds, that is, the number of model parameters
required to achieve accuracy ε. The paper [163] reveals a “curse of parametric
complexity” in which the parameter complexity required to approximate general
Lipschitz continuous operators is shown to be exponential in powers of ε−1.
This exponentially large parameter complexity aligns with the findings of older
work [191] and suggests that efficient neural operator learning is impossible
without further assumptions. If enough regularity is assumed, however, the
curse is lifted. For example, this thesis shows that operators belonging to
reproducing kernel Hilbert spaces are efficient to approximate. It is also known
that linear or holomorphic target operators enjoy efficient algebraic approxima-
tion rates [3, 125]. However, what rates are possible for sets of operators “in
between” holomorphic and Lipschitz ones is still an open question.

Some of the simplest operators are linear ones. There is a substantial body of
work in this setting ranging from the learning of general linear operators [76, 135,
196, 251] to estimating Koopman operators [151], conditional mean embeddings
of probability distributions [118, 142, 247, 259], and Green’s functions of specific
linear PDEs [40, 42, 111, 239]. The linear setting allows for thorough and
sharp statistical analysis that leads to fundamental insights about the data
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efficiency of operator learning in terms of problem structure and the quality of
continuum data [40, 76, 130]. For this reason, a large fraction of the present
thesis is devoted to learning linear operators and linear functionals. Although
these mappings form a relatively small subset of all possible operators, they
nonetheless cover a wide range of practical applications and physical phenomena.
The linear setting is especially interesting from a theoretical viewpoint because
it enables tight error bounds and convergence rates. As a byproduct, theorems
of this type are usually valid for infinitely many problems specified by certain
regularity assumptions on the linear maps. In contrast, theoretical analysis
of nonlinear problems is often undertaken on a case-by-case basis [204, 205].
The insights gained from such specialized study are impressive, but generally
are not as widely applicable as insights obtained from linear analysis, such as
those in this thesis.

Regardless, there are some noteworthy results for nonlinear functionals and
operators. In terms of sample complexity, which provides the training dataset
size required to obtain ε accuracy, most of the existing theory depends on
kernel methods, either in a reproducing kernel Hilbert space framework [52,
162] or via local averaging (e.g., kernel smoothers) [97, 210]. Indeed, the paper
[209] performs nonlinear operator learning in the encoder–decoder paradigm,
where the input and output spaces are represented by truncated orthonormal
bases and the finite-dimensional coefficient-to-coefficient mapping is performed
with a kernel smoother. The kernel smoother is then approximated with
random Fourier features [221]. A similar idea is undertaken from a Gaussian
process perspective [25], building upon more classical work on operator-valued
kernels [52, 136]. Turning toward deep learning, error bounds are obtained for
encoder–decoder neural operators such as DeepONet and PCA-Net in [178].
These results imply a “curse of sample complexity”, i.e., exponentially large
sample sizes, for learning general Lipschitz operators. Similar to the parameter
complexity case, when enough regularity is assumed on the nonlinear operators
of interest, as expressed through weighted tensor product structure, operator
holomorphy, or analyticity, for example, minimax lower bounds return to much
better algebraic rates with respect to sample size [5, 52, 133, 132]. Moreover,
there exist both constructive and nonconstructive estimators that achieve these
algebraic convergence rates for operator learning [3, 52, 162].

The mathematically oriented review articles by Boullé and Townsend [41] and
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Kovachki, Lanthaler, and Stuart [153] contain more exhaustive literature reviews
on the subject of operator learning. Additionally, the individual chapters in
the present thesis provide more targeted exposition of closely related work. It
should now be clear that growing evidence from the literature suggests that
operator learning is emerging as a powerful tool to accelerate model-centric
tasks in science and engineering or to discover unknown physical laws from
experimental data. Nonetheless, the mathematical theory of operator learning
is still relatively incomplete, which limits its impact. This thesis fills in some
of the remaining gaps.

1.3 Thesis Contributions

By blending ideas from Bayesian inference, statistical inverse problems, and
high-dimensional probability, this thesis develops new infinite-dimensional
machine learning algorithms and analysis for continuum problems and datasets.
Of central interest is the subtle interplay between the underlying problem
structure, prior knowledge of such structure, and the amount of training data
required to learn an accurate model. The next four subsections describe the
major contributions of the work.

1.3.1 Regression With Function-Valued Random Features

Originally published in SIAM J. Sci. Comput., Vol. 43, No. 5, pp. A3212–A3243
(2021), Chapter 2 proposes a randomized algorithm for learning nonlinear
operators mapping between infinite-dimensional spaces of functions. The
model consists of a linear combination of M random operators (i.e., the random
features). The proposed function-valued random features algorithm involves
learning the coefficients of this linear expansion. For a suitable training
objective function, this is a finite-dimensional convex, quadratic optimization
problem that is scalable to high data dimensions and large sample sizes. This
contrasts with more complicated deep learning methods that are plagued by
nonconvex training routines. Moreover, Result 2.8, summarized in the next
display, provides further insight.

Equivalence to a Finite-Rank Operator-Valued Kernel Method

The supervised training procedure for function-valued random features
is equivalent to ridge regression over a reproducing kernel Hilbert space
of operators spanned by the M random features.
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Equivalently, this result implies that the method may be interpreted as approxi-
mating the Gaussian process prior distribution (i.e., operator-valued covariance
kernel) in a function-valued Gaussian process regression method [52, 228].

Function-valued random feature regression departs from traditional function-
valued (also known as vector-valued) Gaussian process regression in two funda-
mental ways. First, function-valued random features significantly improve the
computational complexity (time and memory) of full vector-valued Gaussian
process regression. This is accomplished by the low-rank (i.e., rank at most
M) random feature approximation of the infinite-rank prior covariance and
simple linear algebra identities. The result is a relatively small M ×M matrix
inversion for random features, while the full Gaussian process kernel method
requires inversion of an enormous Ndout ×Ndout matrix in practice, where dout
is the dimension of the discretized output function space (which conceptually
should be infinite) and N is the sample size. The latter inversion is basically
impossible (at least computationally) in a true function space setting unless
the kernel has some sort of trivial structure.

For the second point of departure, function-valued random features explicitly
model (spatial) correlations in the output function space. This is of fundamental
importance in the operator learning context because any random infinite-
dimensional output function must necessarily have nonzero cross correlations
to be a well-defined element of the ambient function space (which is always
a Hilbert space). Mathematically, this is equivalent to the requirement that
the prior covariance operator be trace-class. Full vector-valued Gaussian
process regression typically assumes isotropic covariance kernels that are a
scalar multiple of the identity operator. However, the identity operator is not
trace-class in infinite dimensions. This undesirable choice is often made because
unlike in the scalar kernel regression setting, there are no canonical operator-
valued kernels. Until now, they have been defined on a case-by-case basis and
usually involve some diagonal (e.g., identity) or rank-one Kronecker structure
to make exact posterior inference possible. The proposed methodology is able
to alleviate these issues with randomization and efficient convex optimization.

The final major contribution of Chapter 2 is the design of practically imple-
mentable random feature maps for parametric partial differential equation prob-
lems. These maps include the so-called Fourier Space Random Features (2.34),
which define random operators by way of Fourier series coefficients and helps
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to inspire the now widely adopted Fourier Neural Operator architecture. The
chapter also introduces the now widely used viscous Burgers’ equation bench-
mark problem and demonstrates the excellent performance of Fourier Space
Random Features on this operator learning benchmark.

1.3.2 Complete Error Analysis of Function-Valued Random Features

Chapter 3 develops the theoretical foundations of the function-valued random
features method. Originally published in Adv. Neural Inf. Process. Syst.,
Vol. 36, pp. 71834–71861 (2023), the chapter proves strong statistical consistency
and quantitative convergence rates for the algorithm. In the well-specified
model setting, Theorem 3.9 gives the sharpest parameter complexity error
bound for random features to date, even in the scalar regression setting (also
see Table 3.1). The next display states this result informally.

State-of-the-Art Parameter Complexity for Random Features

For a dataset of size N , only M ≃
√
N random features suffice to

guarantee that the squared generalization error of the trained function-
valued random features method is O(N−1/2) with high probability.

The theoretical analysis—which goes far beyond mere existence proofs—stands
out from related work in the literature because it unifies all sources of error
from the trained random feature model: approximation (number of features),
estimation (finite sample size), optimization, noisy measurements, model mis-
specification, and discretization of the continuum data. As a result, the
function-valued random features method is the first provably convergent opera-
tor learning algorithm for nonlinear problems that is actually implementable on
a computer with controlled complexity.

The main technical contributions of Chapter 3 revolve around a novel empirical
risk (i.e., training error) bound for the algorithm. In particular, the chapter
obtains an O(1) high probability bound on the norm ∥α̂∥M of the trained
random feature model’s coefficients α̂ ∈ RM (Corollary 3.17). To do this,
the analysis develops a novel recursive self-bounding argument that avoids
logarithmic factors appearing in previous works. The rest of the proofs use
Bernstein’s inequality in Hilbert spaces (with careful truncations) and empirical
process theory to control the generalization error. This approach avoids the
suboptimal matrix concentration inequalities that all other papers use to derive
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statistical guarantees for random feature regression and may prove useful in
the analysis of other learning algorithms beyond random features.

1.3.3 Sample Complexity Analysis of Linear Operator Learning

Before the results in this thesis were established, several basic questions re-
mained open: can unbounded operators such as differentiation of spatially
varying functions be rigorously learned, and if so, how much data is required?
Can robustness to data distribution shifts be guaranteed? How should a trained
operator’s accuracy be assessed? These problems are technically challenging,
even in the linear setting. Resolving them is paramount before even considering
the additional complexity that nonlinear operators bring. Chapter 4 attempts
to close these major theoretical gaps in the setting of learning a self-adjoint
linear operator on an infinite-dimensional Hilbert space.

Originally published in SIAM/ASA J. Uncertain. Quantif., Vol. 11, No. 2,
pp. 480–513 (2023), the chapter performs a theoretical analysis of Bayesian
nonparametric posterior estimators of unknown linear operators. The theory
leads to three fundamental principles that reveal the types of linear operators,
types of training data, and types of distribution shift that improve sample
complexity (Subsection 4.1.2). The next display summarizes these findings.

Fundamental Principles of Linear Operator Learning

(i) Smoothing operators are easier to learn than nonsmoothing ones.

(ii) Rougher training input functions improve data efficiency.

(iii) Test error improves whenever the input test distribution is sup-
ported on smoother input functions.

These principles have interesting implications. For instance, Item (i) suggests
that compact operators that smooth input functions—such as integration
operators—require less data to accurately learn than do unbounded operators
that amplify perturbations in input functions—such as differential operators.
Figure 1.1 illustrates the effect of Item (ii) in the context of a data completion
problem from electrical impedance tomography (Subsection 4.1.3). It shows
that training a linear estimator on input functions with a lot of high-frequency
content (equivalently, rougher functions with less regularity) is more accurate
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(a) True linear operator (b) Estimate from rough data (c) Estimate from smooth data

Figure 1.1: Bayesian linear regression of the imaginary part of the Dirichlet-to-
Neumann map in Fourier basis coordinates arising from electrical impedance tomog-
raphy on the disk (Subsection 4.1.3). The true linear operator is shown in Figure 1.1a.
The reconstruction from noisy input-output data with a Bayesian posterior mean
estimator is more accurate when the training input functions are rough (Figure 1.1b)
than when the input functions are smooth (Figure 1.1c).

than training it on input functions that are too smooth. This is a statement
about the quality of the continuum training data. Similar insights are also
revealed in the work of Boullé and Townsend [42], albeit in a less explicit
form. Moreover, the fact that test error improves with smoother covariate
shifts, as stated in Item (iii), suggests that claims about the generalization
accuracy of operator learning algorithms should always be qualified with the
properties of the test distribution. Altogether, these insights provide useful
practical guidance to users of operator learning, especially in data-scarce
regimes or scenarios where the data generation procedure is controlled by the
user. They further give qualitative theoretical validity to equation discovery
methods [45]. The principles, verified in the linear case by the theory and
numerics in Chapter 4, have also been observed in nonlinear problems [75, 282].

The proof approach in Chapter 4 relies on a reduction to an infinite sequence
statistical regression model under white noise. This reduction is accomplished by
assuming prior knowledge of the unknown operator’s eigenvectors, so that only
its eigenvalue sequence must be estimated. Thus, the use of problem structure
here reduces the complexity of the inference task. The chapter’s corresponding
Bayesian inverse problems-style analysis of the random sequence space model
is likely of independent interest to the nonparametric statistics community.
Working with Gaussian process priors, the chapter proves convergence rates in
the infinite data limit for the Bayesian posterior eigenvalue estimator under
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multiple data distribution assumptions, as well as individual lower bounds.
Figure 4.3 and Corollary 4.18 verify the sharpness of the results both numerically
and theoretically, respectively. The sharp analysis also allows for a precise
characterization of smoothness misspecification with respect to the Gaussian
prior. Indeed, Figures 4.1c and 4.3 reveal that undersmoothing priors may lead
to estimators that do not converge at all, while oversmoothing priors always
lead to convergence, albeit at a possibly arbitrarily slow rate.

In addition to the main statistical guarantees from Section 4.3, the key technical
contributions of Chapter 4 also include new upper and lower bounds on the
generalization gap between test and train errors (leading to slow rates that
appear to be optimal; see Theorem 4.24 and Figure 4.3) and probabilistic tech-
niques to control infinite sums of dependent subexponential random variables
(Lemmas C.5 and C.6) and ways to lower bound such sums (see the proofs of
Theorems 4.17 and 4.24). These results may be of independent interest as well.

1.3.4 Operator Learning for Parameter-to-Observable Maps

Available as the preprint arXiv:2402.06031 cs.LG (2024), Chapter 5 of this
thesis addresses the challenging setting in which the underlying continuum
operator might only be accessible from finite-dimensional and possibly indirect
quantity of interest measurements of its output. To facilitate a precise theo-
retical development, the chapter formulates this problem as the data-driven
estimation of a factorized linear functional

f = q ◦ L , (1.5)

where q is another linear functional that represents a scalar quantity of interest
and L is a linear operator between Hilbert spaces. The objective is to determine
the best training procedure for estimating f . To this end, the analysis in
the chapter establishes sample complexity bounds for two different Bayesian
estimators of f , each corresponding to a distinct training data access model.

The first estimator, end-to-end (EE), is based on direct supervised learning of f
itself. Here, the training data consist of input functions and noisy scalar-valued
labels corresponding to f evaluated at these input functions. This setting is
natural whenever the observed data is acquired from real experiments in a
laboratory, for example. The second estimator, full-field (FF), is based on
Bayesian linear regression of the operator L as in Chapter 4 and use of the
compositional structure of the target functional f (1.5). This method also

https://arxiv.org/abs/2402.06031
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requires prior knowledge of the action of q on any new input function. Here,
the training data consist of input functions and noisy function-valued labels
corresponding to L evaluated at the inputs. Once an auxiliary estimator L̂ for
L is built from these data, the final (FF) plug-in estimator for f is given by
the composition q ◦ L̂. The required full-field continuum training dataset may
be difficult (or even impossible) to acquire for some problems. However, once
the auxiliary estimator L̂ is obtained, it is much more versatile than the (EE)
estimator because it can be used to predict quantities of interest different from
q or be deployed in other downstream tasks.

The main theoretical result of the chapter (Corollary 5.15) shows that the
regularity of the quantity of interest map q determines the regimes in which one
of the two estimators has a statistical advantage over the other with respect to
sample complexity. This insight is summarized by the next display.

Use of Domain Knowledge Can Be Statistically Beneficial

If the quantity of interest map q is sufficiently smooth, then the (FF) plug-
in estimator of f based on continuum data and domain-specific knowledge
is more data-efficient than the purely data-driven (EE) estimator.

This result suggests that prior domain-specific knowledge of problem structure
(i.e., the compositional form of f and the exact form of q) can quantitatively
improve the data efficiency of operator learning algorithms. If the map q

is instead unbounded with regularity below a certain threshold, then the
opposite conclusion holds—end-to-end learning is statistically advantageous.
How much of a statistical advantage one estimator has over the other intricately
depends on the regularity properties of the full operator L and the data
distributions (Figure 5.2). Subsection 5.4.3.2 provides more detailed discussion.

To obtain the preceding results, the chapter develops new theoretical analysis
of Bayesian nonparametric regression of linear functionals that may be of inde-
pendent interest. The main novelty is the bias error bound in Proposition D.12,
which dominates the total test error and relies on a delicate conditioning argu-
ment along with clever matrix perturbation identities. This bound is especially
novel because it accommodates smoothness misspecification from the Gaussian
prior. Results in related work are not as robust and typically require some
notion of well specification to hold. Due to the kernel trick, the main (EE)
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result for learning linear functionals, Theorem D.1, implies new convergence
rates for Gaussian process regression of scalar-valued nonlinear functions as a
special case. The other technical contributions of the chapter involve building
upon the stability results for infinite sums of dependent subexponential random
variables from Chapter 4 and using these in the more challenging setting of
linear functional regression, which involves non-commuting and non-diagonal
empirical covariance operators.

The other major contributions of Chapter 5 revolve around the design and
implementation of practical operator learning architectures that have a finite-
dimensional Euclidean input space, output space, or both. Existing neural
operators only accommodate function-to-function maps. To go beyond this
limitation, the chapter proposes linear functional and linear decoder layers that
map functions to vectors and vectors to functions, respectively. Appending
these new layers near the beginning or end of standard neural operators leads
to expressive nonlinear neural mappings and Fourier Neural Mappings that can
learn function-to-vector, vector-to-function, and vector-to-vector parameter-to-
observable maps in a unified way while provably preserving universal approxima-
tion properties. These architectures are especially well suited for applications
that involve a finite number of input parameters or observed outputs, such
as design optimization or inverse problems, respectively. Composite linear
functionals of the form q ◦ L arising from the chapter’s main theoretical contri-
butions are a special case of the general nonlinear function-to-vector setting
here. Three numerical experiments involving environmental science, aerody-
namics, and materials modeling applications demonstrate that the new Fourier
Neural Mappings architectures qualitatively validate intuition from the linear
theory and empirically outperform standard finite-dimensional neural networks
that do not access any continuum data or continuum problem structure.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 proposes the
function-valued random features method and demonstrates its performance on
two parametric partial differential equation benchmark problems. A theoretical
analysis develops statistical guarantees for the function-valued random features
method in Chapter 3. The results include the strong consistency of the
methodology as well as convergence rates. Chapter 4 shifts the focus of the
thesis to linear problems. It develops the fundamental principles of learning



18

linear operators from noisy data. Chapter 5 goes further by additionally
studying quantity of interest functionals composed with linear operators and
statistical tradeoffs that arise in this more realistic setting. This chapter also
develops and implements new universal neural operator architectures that
can accommodate finite-dimensional vector inputs or outputs, or both, which
greatly expands the applicability of operator learning. The thesis concludes in
Chapter 6 with a research summary and an outlook toward future developments.

The chapters in this thesis are adapted from research papers that target several
different audiences across applied and computational mathematics, statistics,
machine learning, and engineering. Thus, each chapter is self-contained and
equipped with its own notation.
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C h a p t e r 2

OPERATOR LEARNING WITH FUNCTION-VALUED
RANDOM FEATURES

This chapter is adapted from the following publications:

[1] Nicholas H. Nelsen and Andrew M. Stuart. “Operator learning using
random features: a tool for scientific computing”. SIAM Review, accepted
for SIGEST section (2024).

[2] Nicholas H. Nelsen and Andrew M. Stuart. “The random feature model
for input-output maps between Banach spaces”. SIAM Journal on Scien-
tific Computing 43.5 (2021), A3212–A3243. doi: 10.1137/20M133957X.

Operator learning is the subject that centers on the data-driven approximation
of maps between infinite-dimensional spaces. It is emerging as a powerful tool
to complement traditional scientific computing, which is often concerned with
operators mapping between spaces of functions. Building on classical random
features for scalar-valued regression, this chapter introduces the function-valued
random features method as an operator learning architecture that is practical for
nonlinear problems yet is structured enough to facilitate efficient training. At
its core, the proposed approach builds a linear combination of random operators.
This turns out to be a low-rank approximation of an operator-valued kernel
ridge regression algorithm, and hence the method also has strong connections
to Gaussian process regression. The chapter designs function-valued random
features that are tailored to the structure of two nonlinear operator learning
benchmark problems arising from parametric partial differential equations.
Numerical results demonstrate the scalability, discretization invariance, and
transferability of the function-valued random features method.

2.1 Introduction

The random feature model, an architecture for the data-driven approximation
of maps between finite-dimensional spaces, was formalized in [221, 222, 223],
building on earlier precursors in [21, 200, 271]. The goal of this chapter is to
extend the random feature model to a methodology for the data-driven ap-
proximation of maps between infinite-dimensional spaces. Canonical examples

https://doi.org/10.1137/20M133957X
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of such maps include the semigroup generated by a time-dependent partial
differential equation (PDE) mapping the initial condition (an input parameter)
to the solution at a later time and the operator mapping a coefficient function
(an input parameter) appearing in a PDE to its solution. Obtaining efficient
and potentially low-dimensional representations of PDE solution maps is not
only conceptually interesting, but also practically useful. Many applications in
science and engineering require repeated evaluations of a complex and expensive
forward model for different configurations of a system parameter. The model
often represents a discretized PDE and the parameter, serving as input to the
model, often represents a high-dimensional discretized quantity such as an
initial condition or uncertain coefficient field. These outer loop applications
commonly arise in inverse problems or uncertainty quantification tasks that
involve control, optimization, or inference [218]. Full order forward models
do not perform well in such many-query contexts, either due to excessive
computational cost (requiring the most powerful high performance computing
architectures) or slow evaluation time (unacceptable in real-time contexts such
as on-the-fly optimal control). In contrast to that of the big data regime that
dominates computer vision and other technological fields, only a relatively small
amount of high-resolution data can be generated from computer simulations or
physical experiments in scientific applications. Fast approximate solvers built
from this limited available data that can efficiently and accurately emulate the
full order model would be highly advantageous.

In this work, we demonstrate that the random feature model holds considerable
potential for such a purpose. Resembling [181, 274] and the contemporaneous
work in [34, 150, 173, 207], we present a methodology for true function space
learning of black-box input-output maps between a Banach space and separable
Hilbert space. We formulate the approximation problem as supervised learning
in infinite dimensions and show that the natural hypothesis space is a repro-
ducing kernel Hilbert space associated with an operator-valued kernel. For a
suitable loss functional, training the random feature model is equivalent to
solving a finite-dimensional convex optimization problem. As a consequence of
our careful construction of the method as mapping between Banach spaces, the
resulting emulator naturally scales favorably with respect to the high input and
output dimensions arising in practical, discretized applications; furthermore,
it is shown to achieve small relative test error for two model problems arising
from approximation of a semigroup and of the solution map corresponding to
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an elliptic PDE exhibiting parametric dependence on a coefficient function.

2.1.1 Related Work

In recent years, two different lines of research have emerged that address
PDE approximation problems with machine learning techniques. The first
perspective takes a more traditional approach akin to point collocation methods
from the field of numerical analysis. Here, the goal is to use a deep neural
network (NN) to solve a prescribed initial boundary value problem with as
high accuracy as possible. Given a point cloud in a spatio-temporal domain
D as input data, the prevailing approach first directly parametrizes the PDE
solution field as a NN and then optimizes the NN parameters by minimizing the
PDE residual with respect to (w.r.t.) some loss functional (see [225, 245, 92]
and the references therein). To clarify, the object approximated with this novel
method is a low-dimensional input-output map D → R, i.e., the real-valued
function that solves the PDE. This approach is mesh-free by definition but
highly intrusive as it requires full knowledge of the specified PDE. Any change
to the original formulation of the initial boundary value problem or related
PDE problem parameters necessitates an (expensive) re-training of the NN
solution. We do not explore this first approach any further in this chapter.

The second direction is arguably more ambitious: use a NN as an emulator for
the infinite-dimensional mapping between an input parameter and the PDE
solution itself or a functional of the solution, i.e., a quantity of interest; the
latter is widely prevalent in uncertainty quantification problems. We emphasize
that the object approximated in this setting, unlike in the aforementioned first
approach, is an input-output map X → Y, i.e., the PDE solution operator,
where X and Y are infinite-dimensional Banach spaces; this map is generally
nonlinear. For an approximation-theoretic treatment of parametric PDEs
in general, we refer the reader to the article of Cohen and DeVore [63]. In
applications, the solution operator is represented by a discretized forward model
RK → RK , where K is the mesh size, and hence represents a high-dimensional
object. It is this second line of research that inspires our work.

Of course, there are many approaches to forward model reduction that do not
explicitly involve machine learning ideas. The reduced basis method (see [20,
29, 82] and the references therein) is a classical idea based on constructing an
empirical basis from data snapshots and solving a cheaper variational problem;
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it is still widely used in practice due to computationally efficient offline-online
decompositions that eliminate dependence on the full order degrees of freedom.
Recently, machine learning extensions to the reduced basis methodology, of
both intrusive (e.g., projection-based reduced order models) and nonintrusive
(e.g., model-free data only) type, have further improved the applicability
of these methods [61, 103, 126, 165, 72]. However, the input-output maps
considered in these works involve high dimension in only one of the input or
output space, not both. Other popular surrogate modeling techniques include
Gaussian processes [228], polynomial chaos expansions [248], and radial basis
functions [270]; yet, these are only practically suitable for problems with input
space of low to moderate dimension. Classical numerical methods for PDEs
may also represent the forward model RK → RK , albeit implicitly in the form
a computer code (e.g., finite element, finite difference, finite volume methods).
However, the approximation error is sensitive to K and repeated evaluations
of this forward model often becomes cost prohibitive due to poor scaling with
input dimension K.

Instead, deep NNs have been identified as strong candidate surrogate models
for parametric PDE problems due to their empirical ability to emulate high-
dimensional nonlinear functions with minimal evaluation cost once trained.
Early work in the use of NNs to learn the solution operator, or vector field,
defining ODEs and time-dependent PDEs, may be found in the 1990s [59,
115, 233]. There are now more theoretical justifications for NNs breaking the
curse of dimensionality [150, 157, 91], leading to increased interest in PDE
applications [4, 105, 211, 241]. A suite of work on data-driven discretizations
of PDEs has surfaced that allow for identification of the governing model [19,
36, 179, 214, 252, 264]; however, we note that only the operators appearing in
the equation itself are approximated with these approaches, not the solution
operator of the PDE. More in line with our focus in this chapter, architectures
based on deep convolutional NNs have proven quite successful for learning
elliptic PDE solution maps (for example, see [265, 272, 283], which take an
image-to-image regression approach). Other NNs have been used in similar
elliptic problems for quantity of interest prediction [140], error estimation [58],
or unsupervised learning [168]. Yet in all the approaches above, the architectures
and resulting error are dependent on the mesh resolution. To circumvent this
issue, the surrogate map must be well-defined on function space and independent
of any finite-dimensional realization of the map that arises from discretization.
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This is not a new idea (see [59, 234] or for functional data analysis, [136, 192]).
The aforementioned reduced basis method is an example, as is the method
of Chkifa, Cohen, DeVore, and Schwab [62] and Cohen and DeVore [63], which
approximates the solution map with sparse Taylor polynomials and is proved
to achieve optimal convergence rates in idealized settings. However, it is only
recently that machine learning methods have been explicitly designed to operate
in an infinite-dimensional setting, and there is little work in this direction [34,
173]. Here we propose the function-valued random features method as another
such model.

The random feature model (RFM) [221, 222, 223], detailed in Section 2.2.3, is
in some sense the simplest possible machine learning model; it may be viewed
as an ensemble average of randomly parametrized functions: an expansion in a
randomized basis. These random features could be defined, for example, by
randomizing the internal parameters of a NN. Compared to NN emulators with
enormous learnable parameter counts (e.g., O(105) to O(107), see [94, 96, 168])
and methods that are intrusive or lead to nontrivial implementations [62, 165,
72], the RFM is one of the simplest models to formulate and train (often O(104)

parameters, or fewer, suffice). The theory of the RFM for real-valued outputs
is well developed, partly due to its close connection to kernel methods [17, 51,
134, 221, 270] and Gaussian processes [200, 271], and includes generalization
rates and dimension-free estimates [91, 222, 255]. A quadrature viewpoint
on the RFM provides further insight and leads to Monte Carlo sampling
ideas [17]; we remark on this further in Section 2.2.3. As in modern deep
learning practice, the RFM has also been shown to perform best when the
model is over-parametrized [27]. In a similar high-dimensional setting of
relevance in this chapter, Griebel and Rieger [117] and Kempf, Wendland,
and Rieger [139] theoretically investigated nonparametric kernel regression for
parametric PDEs with real-valued solution map outputs. The specific random
Fourier feature approach of Rahimi and Recht [221] was generalized by Brault,
Heinonen, and Buc [43] to the finite-dimensional matrix-valued kernel setting
with vector-valued random Fourier features. However, most of these works
require explicit knowledge of the kernel itself. Here our viewpoint is to work
directly with random features as the basis for a standalone method, choosing
them for their properties and noting that they implicitly define a kernel,
but not working directly with this kernel; furthermore, our work considers
both infinite-dimensional input and output spaces, not just one or the other.
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A key idea underlying our approach is to formulate the proposed random
features algorithm on infinite-dimensional space and only then discretize. This
philosophy in algorithm development has been instructive in a number of areas
in scientific computing, such as optimization [127] and the development of
Markov chain Monte Carlo methodology [68]. It has recently been promoted as
a way of designing and analyzing algorithms within machine learning [120, 89,
236, 87, 88], and our work may be understood within this general framework.

2.1.2 Contributions

Our primary contributions in this chapter are now listed.

1. We develop the random feature model, directly formulated on the
function space level, for learning input-output maps between Banach
spaces purely from data. As a method for parametric PDEs, the
methodology is nonintrusive but also has the additional advantage that
it may be used in settings where only data is available and no model is
known.

2. We show that our proposed method is more computationally tractable
to both train and evaluate than standard kernel methods in infinite
dimensions. Furthermore, we show that the method is equivalent to
operator-valued kernel ridge regression performed in a finite-dimensional
space spanned by random features.

3. We apply our methodology to learn the semigroup defined by the solution
operator for viscous Burgers’ equation and the coefficient-to-solution
operator for the Darcy flow equation.

4. We demonstrate in several numerical experiments two mesh-independent
approximation properties that are built into the proposed methodology:
invariance of relative error to mesh resolution and evaluation ability on
any mesh resolution.

The remainder of this chapter is structured as follows. In Section 2.2, we
communicate the mathematical framework required to work with the random
feature model in infinite dimensions, identify an appropriate approximation
space, and explain the training procedure. We introduce two instantiations of
random feature maps that target physical science applications in Section 2.3 and
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detail the corresponding numerical results for these applications in Section 2.4.
We conclude in Section 2.5 with discussion and future work.

2.2 Methodology

In this work, the overarching problem of interest is the approximation of a
map F † : X → Y , where X and Y are infinite-dimensional spaces of real-valued
functions defined on some bounded open subset of Rd, and F † is defined by
a 7→ F †(a) := u, where u is the solution of a (possibly time-dependent) PDE
and a is an input function required to make the problem well-posed. Our
proposed approach for this approximation, constructing a surrogate map F

for the true map F †, is data-driven, nonintrusive, and based on least squares.
Least-squares-based methods are integral to the random feature methodology
as proposed in low dimensions [221, 222] and generalized here to the infinite-
dimensional setting; they have also been shown to work well in other algorithms
for high-dimensional numerical approximation [33, 65, 83]. Within the broader
scope of reduced order modeling techniques [29], the approach we adopt in this
chapter falls within the class of data-fit emulators. In its essence, our method
interpolates the solution manifold

M = {u ∈ Y : u = F †(a) and a ∈ X} . (2.1)

The solution map F †, as the inverse of a differential operator, is often smoothing
and admits a notion of compactness, i.e., the output space compactly embeds
into the input space. Then, the idea is that M should have some compact,
low-dimensional structure (intrinsic dimension). However, actually finding a
model F that exploits this structure despite the high dimensionality of the
truth map F † is quite difficult. Further, the effectiveness of many model
reduction techniques, such as those based on the reduced basis method, are
dependent on inherent properties of the map F † itself (e.g., analyticity), which
in turn may influence the decay rate of the Kolmogorov width of the manifold
M [63]. While such subtleties of approximation theory are crucial to developing
rigorous theory and provably convergent algorithms, we choose to work in the
nonintrusive setting where knowledge of the map F † and its associated PDE are
only obtained through measurement data, and hence detailed characterizations
such as those aforementioned are essentially unavailable. Thus, we emphasize
that our proposed operator learning methodology is applicable to general
continuum problems with function space data, not just to PDEs.
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The remainder of this section introduces the mathematical preliminaries for our
methodology. With the goal of operator approximation in mind, in Section 2.2.1
we formulate a supervised learning problem in an infinite-dimensional setting.
We provide the necessary background on reproducing kernel Hilbert spaces
in Section 2.2.2 and then define the RFM in Section 2.2.3. In Section 2.2.4, we
describe the optimization principle which leads to algorithms for the RFM and
an example problem in which X and Y are one-dimensional vector spaces.

2.2.1 Problem Formulation

Let X and Y be real Banach spaces and F † : X → Y be a (possibly nonlinear)
map. It is natural to frame the approximation of F † as a supervised learning
problem. Suppose we are given training data in the form of input-output
pairs {(ai, yi)}ni=1 ⊂ X × Y, where ai ∼ ν i.i.d., ν is a probability measure
supported on X , and yi = F †(ai) ∼ F †

♯ ν with, potentially, noise added to the
evaluations of F †(·). In the examples in this chapter, the noise is viewed as
resulting from model error (the PDE does not perfectly represent the physics)
or from discretization error (in approximating the PDE); situations in which
the data acquisition process is inherently noisy can also be envisioned but are
not studied here. We aim to build a parametric reconstruction of the true
map F † from the data, that is, construct a model F : X × P → Y and find
α† ∈ P ⊆ Rm such that F (·, α†) ≈ F † are close as maps from X to Y in some
suitable sense. The natural number m here denotes the total number of model
parameters. The standard approach to determine parameters in supervised
learning is to first define a loss functional ℓ : Y × Y → R≥0 and then minimize
the expected risk,

min
α∈P

Ea∼ν
[
ℓ
(
F †(a), F (a, α)

)]
. (2.2)

With only the data {(ai, yi)}ni=1 at our disposal, we approximate problem (2.2)
by replacing ν with the empirical measure ν(n) := 1

n

∑n
j=1 δaj , which leads to

the empirical risk minimization problem

min
α∈P

1

n

n∑
j=1

ℓ
(
yj, F (aj, α)

)
. (2.3)

The hope is that given minimizer α(n) of (2.3) and α† of (2.2), F (·, α(n)) well
approximates F (·, α†), that is, the learned model generalizes well; these ideas
may be made rigorous with results from statistical learning theory [123]. Solving
the problem (2.3) is called training the model F . Once trained, the model is
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then validated on a new set of i.i.d. input-output pairs previously unseen during
the training process. This testing phase indicates how well F approximates F †.
From here on out, we assume that (Y , ⟨·, ·⟩Y , ∥·∥Y) is a real separable Hilbert
space and focus on the squared loss

ℓ(y, y′) :=
1

2
∥y − y′∥2Y . (2.4)

We stress that our entire formulation is in an infinite-dimensional setting and
we will remain in this setting throughout the chapter; as such, the random
feature methodology we propose will inherit desirable discretization-invariant
properties, to be observed in the numerical experiments of Section 2.4.

Notation 2.1 (expectation). For a Borel measurable map G : U → V between
two Banach spaces U and V and a probability measure π supported on U , we
denote the expectation of G under π by

Eu∼π
[
G(u)

]
=

∫
U
G(u)π(du) ∈ V (2.5)

in the sense of Bochner integration [74, Section A.2]. We will drop the domain
of integration in situations where no confusion is caused by doing so.

2.2.2 Operator-Valued Reproducing Kernels

The RFM is naturally formulated in a reproducing kernel Hilbert space (RKHS)
setting, as our exposition will demonstrate in Section 2.2.3. However, the usual
RKHS theory is concerned with real-valued functions [14, 31, 70, 270]. Our
setting, with the output space Y a separable Hilbert space, requires several
ideas that generalize the real-valued case. We now outline these ideas with a
review of operator-valued kernels; parts of the presentation that follow may be
found in the references [17, 55, 192, 201].

We first consider the special case Y := R for ease of exposition. A real RKHS is
a Hilbert space (H, ⟨·, ·⟩H, ∥·∥H) comprised of real-valued functions f : X → R
such that the pointwise evaluation functional f 7→ f(a) is bounded for every
a ∈ X . It then follows that there exists a unique, symmetric, positive definite
kernel function k : X × X → R such that for every a ∈ X , k(·, a) ∈ H and the
reproducing kernel property f(a) = ⟨k(·, a), f⟩H holds. These two properties
are often taken as the definition of a RKHS. The converse direction is also true:
every symmetric, positive definite kernel defines a unique RKHS [14].
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We now introduce the needed generalization of the reproducing property to
the case of arbitrary real Hilbert spaces Y, as this result will motivate the
construction of the RFM. Kernels in this setting are now operator-valued.

Definition 2.2 (operator-valued kernel). Let X be a real Banach space and Y
a real separable Hilbert space. An operator-valued kernel is a map

k : X × X → L(Y) , (2.6)

where L(Y) denotes the Banach space of all bounded linear operators on Y,
such that its adjoint satisfies k(a, a′)∗ = k(a′, a) for all a, a′ ∈ X and for every
N ∈ N,

N∑
i=1

N∑
j=1

⟨yi, k(ai, aj)yj⟩Y ≥ 0 (2.7)

for all pairs {(ai, yi)}Ni=1 ⊂ X × Y .

Paralleling the development for the real-valued case, an operator-valued kernel
k also uniquely (up to isomorphism) determines an associated real RKHS
Hk = Hk(X ;Y). Now, choosing a probability measure ν supported on X , we
define a kernel integral operator Tk associated to k by

Tk : L
2
ν(X ;Y) → L2

ν(X ;Y)

F 7→ TkF :=

∫
k(·, a′)F (a′)ν(da′) ,

(2.8)

which is nonnegative, self-adjoint, and compact (provided k(a, a) ∈ L(Y) is
compact for all a ∈ X [55]). Let us further assume that all conditions needed
for T 1/2

k to be an isometry from L2
ν into Hk are satisfied, i.e., Hk = Im(T

1/2
k ).

Generalizing the standard Mercer theory (see, e.g., [17, 31]), we may write the
RKHS inner product as

⟨F,G⟩Hk
= ⟨F, T−1

k G⟩L2
ν

for all F,G ∈ Hk . (2.9)

Note that while (2.9) appears to depend on the measure ν on X , the RKHS
Hk is itself determined by the kernel without any reference to a measure [70,
Chapter 3, Theorem 4]. With the inner product now explicit, we may directly
deduce a reproducing property. A fully rigorous justification of the methodology
is outside the scope of this chapter; however, we perform formal computations
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which provide intuition underpinning the methodology. To this end we fix
a ∈ X and y ∈ Y . Then

⟨k(·, a)y, T−1
k F ⟩L2

ν
=

∫ 〈
k(a′, a)y, (T−1

k F )(a′)
〉
Y ν(da

′)

=

∫ 〈
y, k(a, a′)(T−1

k F )(a′)
〉
Y ν(da

′)

=
〈
y,

∫
k(a, a′)(T−1

k F )(a′) ν(da′)
〉
Y

= ⟨y, F (a)⟩Y ,

by using Definition 2.2 of operator-valued kernel and the fact that k(·, a)y ∈
Hk [55]. So, we deduce the following.

Result 2.3 (reproducing property for operator-valued kernels). Let F ∈ Hk

be given. Then for every a ∈ X and y ∈ Y, it holds that

⟨y, F (a)⟩Y = ⟨k(·, a)y, F ⟩Hk
. (2.10)

This identity, paired with a special choice of k, is the basis of the RFM in our
abstract infinite-dimensional setting.

2.2.3 Random Feature Model

One could approach the approximation of target map F † : X → Y from the
perspective of kernel methods. However, it is generally a difficult task to
explicitly design operator-valued kernels of the form (2.6) since the spaces X
and Y may be of different regularity, for example. Example constructions of
operator-valued kernels studied in the literature include those taking value as
diagonal operators, multiplication operators, or composition operators [136,
192], but these all involve some simple generalization of scalar-valued kernels.
Instead, the RFM allows one to implicitly work with operator-valued kernels
through the use of a random feature map φ : X × Θ → Y and a probability
measure µ supported on Banach space Θ. The map φ is assumed to be square
integrable w.r.t. the product measure ν × µ, i.e., φ ∈ L2

ν×µ(X ×Θ;Y), where
ν is the (sometimes a modeling choice at our discretion, sometimes unknown)
data distribution on X . Together, (φ, µ) form a random feature pair. With
this setup in place, we now describe the connection between random features
and kernels; to this end, recall the following standard notation.

Notation 2.4 (outer product). Given a Hilbert space (H, ⟨·, ·⟩, ∥·∥), the outer
product a⊗ b ∈ L(H,H) is defined by (a⊗ b)c = ⟨b, c⟩a for any a, b, c ∈ H.
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Given the pair (φ, µ), consider maps kµ : X × X → L(Y) of the form

kµ(a, a
′) :=

∫
φ(a; θ)⊗ φ(a′; θ)µ(dθ) . (2.11)

Such representations need not be unique; different pairs (φ, µ) may induce the
same kernel k = kµ in (2.11). Since kµ may readily be shown to be an operator-
valued kernel via definition 2.2, it defines a unique real RKHS Hkµ ⊂ L2

ν(X ;Y).
Our approximation theory will be based on this space or finite-dimensional
approximations thereof. We now perform a purely formal but instructive
calculation, following from application of the reproducing property (2.10) to
operator-valued kernels of the form (2.11). Doing so leads to an integral
representation of any F ∈ Hkµ : for all a ∈ X and y ∈ Y ,

⟨y, F (a)⟩Y = ⟨kµ(·, a)y, F ⟩Hkµ
=
〈∫

⟨φ(a; θ), y⟩Y φ(·; θ)µ(dθ), F
〉
Hkµ

=

∫
⟨φ(a; θ), y⟩Y⟨φ(·; θ), F ⟩Hkµ

µ(dθ)

=

∫
cF (θ)⟨y, φ(a; θ)⟩Y µ(dθ)

=
〈
y,

∫
cF (θ)φ(a; θ)µ(dθ)

〉
Y
,

where the coefficient function cF : Θ → R is defined by

cF (θ) := ⟨φ(·; θ), F ⟩Hkµ
. (2.12)

Since Y is a Hilbert space, the above holding for all y ∈ Y implies the integral
representation

F =

∫
cF (θ)φ(·; θ)µ(dθ) . (2.13)

The formal expression (2.12) for cF (θ) needs careful interpretation (provided
in Appendix A.2). For instance, if φ(·; θ) is a realization of a Gaussian process
as in Example 2.9, then φ(·; θ) /∈ Hkµ with probability one; indeed, in this
case cF is defined only as an L2

µ(Θ;R) limit. Nonetheless, the RKHS may be
completely characterized by this integral representation. Define the map

A : L2
µ(Θ;R) → L2

ν(X ;Y)

c 7→ Ac :=
∫
c(θ)φ(·; θ)µ(dθ) .

(2.14)

The map A may be shown to be a bounded linear operator that is a particular
square root of Tkµ (Appendix A.2). We have the following result whose proof,
provided in Appendix A.1, is a straightforward generalization of the real-valued
case given by Bach [17, Section 2.2].
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Result 2.5 (infinite-dimensional RKHS). Under the assumption that φ ∈
L2
ν×µ(X ×Θ;Y), the RKHS defined by the kernel kµ in (2.11) is precisely

Hkµ = Im(A) =

{∫
c(θ)φ(·; θ)µ(dθ) : c ∈ L2

µ(Θ;R)
}
. (2.15)

We stress that the integral representation of mappings in RKHS (2.15) is not
unique since A is not injective in general. However, the particular choice c = cF

(2.12) in representation (2.13) does enjoy a sense of uniqueness as described in
Appendix A.2. In particular, the L2

µ(Θ;R) norm of cF equals the Hkµ norm
of F . The formula (2.15) suggests that Hkµ , which is built from (φ, µ) and
completely determined by coefficient functionals c ∈ L2

µ(Θ;R), is a natural
nonparametric class of operators to perform approximation with. However, the
actual implementation of estimators based on the model class Hkµ is known
to incur an enormous computational cost without further assumptions on the
structure of (φ, µ), as we discuss later in this section. Instead, we next adopt a
parametric approximation to this full RKHS approach.

A central role in what follows is the approximation of measure µ by the empirical
measure

µ(m) :=
1

m

m∑
j=1

δθj , where θj
i.i.d.∼ µ . (2.16)

Given this, define k(m) := kµ(m) to be the empirical approximation to kµ:

k(m)(a, a′) = Eθ∼µ(m)[
φ(a; θ)⊗ φ(a′; θ)

]
=

1

m

m∑
j=1

φ(a; θj)⊗ φ(a′; θj) . (2.17)

Then we let Hk(m) be the unique RKHS induced by the kernel k(m); note
that k(m) and hence Hk(m) are themselves random variables. The following
characterization of Hk(m) is proved in Appendix A.1.

Result 2.6 (finite-dimensional RKHS). Assume that φ ∈ L2
ν×µ(X ×Θ;Y) and

that the random features {φ(·; θj)}mj=1 are linearly independent in L2
ν(X ;Y).

Then the RKHS Hk(m) is equal to the linear span of {φj := φ(·; θj)}mj=1.

Applying a simple Monte Carlo sampling approach to elements in RKHS (2.15)
by replacing probability measure µ by empirical measure µ(m) gives, for c ∈ L2

µ,

1

m

m∑
j=1

c(θj)φ(·; θj) ≈
∫
c(θ)φ(·; θ)µ(dθ) . (2.18)
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This approximation achieves the Monte Carlo rate O(m−1/2) in expectation
and, by virtue of Result 2.6, is in Hk(m) . However, in the setting of this
work, the Monte Carlo approach does not give rise to a practical method for
learning a target map F † ∈ Hkµ because F †, kµ, and Hkµ are all unknown;
only the random feature pair (φ, µ) is assumed to be given. Hence one cannot
apply (2.12) (or (A.7)) to evaluate c = cF † in (2.18). Furthermore, in realistic
settings it may be that F † ̸∈ Hkµ , which leads to an additional smoothness
misspecification gap not accounted for by the Monte Carlo method. To sidestep
these difficulties, the RFM adopts a data-driven optimization approach to
determine a different approximation to F †, also from the space Hk(m) . We now
define the RFM.

Definition 2.7 (RFM). Given probability spaces (X ,B(X ), ν) and (Θ,B(Θ), µ)

with X and Θ being real finite- or infinite-dimensional Banach spaces, real
separable Hilbert space Y , and φ ∈ L2

ν×µ(X ×Θ;Y), the random feature model
is the parametric map

Fm : X × Rm → Y

(a;α) 7→ Fm(a;α) :=
1

m

m∑
j=1

αjφ(a; θj) , where θj
i.i.d.∼ µ .

(2.19)

We use the Borel σ-algebras B(X ) and B(Θ) to define the probability spaces
in the preceding definition. Our goal with the RFM is to choose parameters
α ∈ Rm so as to approximate mappings F † ∈ Hkµ (in the ideal setting) by
mappings Fm(·;α) ∈ Hk(m) . The RFM is itself a random variable and may be
viewed as a spectral method since the randomized basis φ(·; θ) in the linear
expansion (2.19) is defined on all of X ν-a.e. Determining the coefficient vector
α from data obviates the difficulties associated with the oracle Monte Carlo
approach since the method only requires knowledge of the pair (φ, µ) and
knowledge of sample input-output pairs from target operator F †.

As written, (2.19) is incredibly simple. The operator Fm is nonlinear in its
input a but linear in its coefficient parameters α. In practice, the linearity w.r.t.
the RFM parameters is broken by also learning hyperparameters that appear
in the pair (φ, µ) [85]. Moreover, similar to operator learning architectures
such as neural operators [154] and Fourier neural operators [172], the RFM
is a nonlinear approximation. This means that the output Fm(a;α) of the
RFM belongs to a nonlinear manifold in Y (cp. Equation 2.1) instead of a
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fixed linear subspace of Y. In contrast, methods such as PCA-Net [34] and
DeepONet [181] are restricted to such fixed linear spaces, which may limit their
approximation power for specific classes of problems. More theory is required
to quantitatively separate these two classes of approximation methods.

Overall, it is clear that the choice of random feature map and measure pair
(φ, µ) will determine the quality of approximation. Most papers deploying
these methods, including [43, 221, 222], take a kernel-oriented perspective by
first choosing a kernel and then finding a random feature map to estimate this
kernel. Our perspective, more aligned with [223, 255], is the opposite in that
we allow the choice of random feature map φ to implicitly define the kernel
via the formula (2.11) instead of picking the kernel first. This methodology
also has implications for numerics: the kernel never explicitly appears in any
computations, which leads to memory and other cost savings. It does, however,
leave open the question of characterizing the universality [255] of such kernels
and the RKHS Hkµ of mappings from X to Y that underlies the approximation
method; this is an important avenue for future work.

The close connection to kernels explains the origins of the RFM in the machine
learning literature. Moreover, the RFM may also be interpreted in the context
of neural networks [200, 255, 271]. To see this explicitly, consider the setting
where X and Y are both equal to the Euclidean space R and choose φ to be a
family of hidden neurons φNN(a; θ) := σ(θ(1) · a+ θ(2)). A single hidden layer
NN would seek to find {(αj, θj)}mj=1 in R× R2 so that

1

m

m∑
j=1

αjφNN(·; θj) (2.20)

matches the given training data {(ai, yi)}ni=1 ⊂ X × Y. More generally, and
in arbitrary Euclidean spaces, one may allow φNN(·; θ) to be any deep NN.
However, while the RFM has the same form as (2.20), there is a difference in
the training : the θj are drawn i.i.d. from a probability measure and then fixed,
and only the αj are chosen to fit the training data. This connection is quite
profound: given any deep NN with randomly initialized parameters θ, studies
of the lazy training regime and neural tangent kernel [51, 134] suggest that
adopting a RFM approach and optimizing over only α is quite natural, as it
is observed that in this regime the internal NN parameters do not stray far
from their random initialization during gradient descent while the last layer of
parameters {αj}mj=1 adapt considerably.
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Once the feature parameters {θj}mj=1 are chosen at random and fixed, training
the RFM Fm only requires optimizing over α ∈ Rm which, due to linearity of
Fm in α, is a straightforward task to which we now turn our attention.

2.2.4 Optimization

One of the most attractive characteristics of the RFM is its training procedure.
With the L2-type loss (2.4) as in standard regression settings, optimizing the
coefficients of the RFM with respect to the empirical risk (2.3) is a convex
optimization problem, requiring only the solution of a finite-dimensional system
of linear equations; the convexity also suggests the possibility of appending
convex constraints (such as linear inequalities), although we do not pursue
this here. Further, the kernels kµ or k(m) are not required anywhere in the
algorithm. We emphasize the simplicity of the underlying optimization tasks
as they suggest the possibility of numerical implementation of the RFM into
complicated black-box computer codes. This is in contrast with most other
supervised operator learning methods, which are trained with variants of
stochastic gradient descent. Such a training strategy leads to nonconvexity
that is notoriously difficult to study both computationally and theoretically.

We now proceed to show that a regularized version of the optimization prob-
lem (2.3)–(2.4) arises naturally from approximation of a nonparametric re-
gression problem defined over the RKHS Hkµ . To this end, recall the super-
vised learning formulation in Section 2.2.1. Given n i.i.d. input-output pairs
{(ai, yi = F †(ai))}ni=1 ⊂ X × Y as data, with the ai drawn from (possibly un-
known) probability measure ν on X , the objective is to find an approximation
F̂ to the map F †. Let Hkµ be the hypothesis space and kµ its operator-valued
reproducing kernel of the form (2.11). The most straightforward learning algo-
rithm in this RKHS setting is kernel ridge regression, also known as penalized
least squares. This method produces a nonparametric model by finding a
minimizer F̂ of

min
F∈Hkµ

{ n∑
j=1

1

2

∥∥yj − F (aj)
∥∥2
Y +

λ

2

∥∥F∥∥2Hkµ

}
, (2.21)

where λ ≥ 0 is a penalty parameter. By the representer theorem for operator-
valued kernels [192, Theorems 2 and 4], the minimizer has the form

F̂ =
n∑
j=1

kµ(·, aj)βj (2.22)
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for some functions {βj}nj=1 ⊂ Y. In practice, finding these n functions in
the output space requires solving a block linear operator equation. For the
high-dimensional PDE problems we consider in this work, solving such an
equation may become prohibitively expensive from both operation count and
memory required. A few workarounds were proposed in [136] such as certain
diagonalizations, but these rely on simplifying assumptions that are somewhat
limiting. More fundamentally, the representation of the solution in (2.22)
requires knowledge of the kernel kµ; in our setting we assume access only to
the random feature pair (φ, µ) which defines kµ and not kµ itself.

We thus explain how to make progress with this problem given knowledge only
of random features. Recall the empirical kernel given by (2.17), the RKHS
Hk(m) , and Result 2.6. The following result, proved in Appendix A.1, shows that
a RFM hypothesis class with a penalized least squares empirical loss function in
optimization problem (2.3)–(2.4) is equivalent to kernel ridge regression (2.21)
restricted to Hk(m) .

Result 2.8 (random feature ridge regression is equivalent to a kernel method).
Assume that φ ∈ L2

ν×µ(X ×Θ;Y) and that the random features {φ(·; θj)}mj=1

are linearly independent in L2
ν(X ;Y). Fix λ ≥ 0. Let α̂ ∈ Rm be the unique

minimum norm solution of the following problem:

min
α∈Rm

{ n∑
j=1

1

2

∥∥∥∥yj − 1

m

m∑
ℓ=1

αℓφ(aj; θℓ)

∥∥∥∥2
Y
+

λ

2m
∥α∥22

}
. (2.23)

Then the RFM defined by this choice α = α̂ satisfies

Fm(·; α̂) = argmin
F∈H

k(m)

{ n∑
j=1

1

2

∥∥yj − F (aj)
∥∥2
Y +

λ

2

∥∥F∥∥2H
k(m)

}
. (2.24)

Solving the convex, quadratic problem (2.23) trains the RFM. The first-order
condition for a global minimizer leads to the normal equations

m∑
j=1

(
1

m

n∑
i=1

〈
φ(ai; θl), φ(ai; θj)

〉
Y + λδlj

)
α̂j =

n∑
i=1

〈
φ(ai; θl), yi

〉
Y (2.25)

for each l ∈ {1, . . . ,m}, where δlj = 1 if l = j and equals zero otherwise. This
is an m-by-m linear system of equations for α̂ ∈ Rm that is standard to solve.
In the case λ = 0, the minimum norm solution may be written in terms of a
pseudoinverse operator [182, Section 6.11].
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Equation (2.25) reveals that the trained RFM Fm(·; α̂) is a linear function of the
labeled output data {yi}ni=1. This property is undesirable from the perspective
of statistical optimality. Indeed, it is known that any estimator that is linear in
the output training data is minimax suboptimal for certain classes of problems
[256, Theorem 1, Section 4.1, p. 6]. However, any adaptation of the feature
pair (φ, µ) to the training data will break this property and potentially restore
optimality. For example, choosing λ or hyperparameters appearing in (φ, µ)

based on a cross validation procedure would make the RF pair data-dependent
as desired [85]. This is typically done in practice.

Example 2.9 (Brownian bridge). We now provide a one-dimensional instan-
tiation of the RFM to illustrate the methodology. Take the input space as
X := (0, 1), output space Y := R, input space measure ν := Unif(0, 1), and
random parameter space Θ := R∞. Denote the input by a = x ∈ X . Then,
consider the random feature map φ : (0, 1)×R∞ → R defined by the Brownian
bridge

φ(x; θ) :=
∑
j∈N

θ(j)(jπ)−1
√
2 sin(jπx) , where θ(j)

i.i.d.∼ N (0, 1) , (2.26)

θ := {θ(j)}j∈N, and µ := N (0, 1)×N (0, 1)× · · · . For any realization of θ ∼ µ,
the function φ(·; θ) is a Brownian motion constrained to zero at x = 0 and
x = 1. The induced kernel kµ : (0, 1)× (0, 1) → R is then simply the covariance
function of this stochastic process:

kµ(x, x
′) = Eθ∼µ

[
φ(x; θ)φ(x′; θ)

]
= min{x, x′} − xx′ . (2.27)

Note that kµ is the Green’s function for the negative Laplacian on (0, 1) with
Dirichlet boundary conditions. Using this fact, we may explicitly characterize
the associated RKHS Hkµ as follows. First, we have

Tkµf =

∫ 1

0

kµ(·, y)f(y) dy =
(
− d2

dx2

)−1

f , (2.28)

where the negative Laplacian has domain H2((0, 1);R)∩H1
0 ((0, 1);R). Viewing

Tkµ as an operator from L2((0, 1);R) into itself, from (2.9) we conclude, upon
integration by parts, that

⟨f, g⟩Hkµ
= ⟨f, T−1

kµ
g⟩L2 =

〈 df
dx
,
dg

dx

〉
L2

= ⟨f, g⟩H1
0

for all f, g ∈ Hkµ .

(2.29)
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(c) m = 5000
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(d) m = ∞

Figure 2.1: Brownian bridge RFM for one-dimensional input-output spaces with n =
32 training points fixed and λ = 0 (Example 2.9): as m → ∞, the RFM approaches
the nonparametric interpolant given by the representer theorem (Figure 2.1d), which
in this case is a piecewise linear approximation of the true function (an element of
RKHS Hkµ = H1

0 , shown in red). Blue lines denote the trained model evaluated on
test data points and black circles denote evaluation at training points.

Note that the last identity does indeed define an inner product on H1
0 .

By this formal argument we identify the RKHS Hkµ as the Sobolev space
H1

0 ((0, 1);R). Furthermore, Brownian bridge may be viewed as the Gaussian
measure N (0, Tkµ). Approximation using the RFM with the Brownian bridge
random features is illustrated in Figure 2.1. Since kµ(·, x) is a piecewise linear
function, a kernel interpolation or regression method will produce a piecewise
linear approximation. Indeed, the figure indicates that the RFM with n train-
ing points fixed approaches the optimal piecewise linear kernel interpolant as
m→ ∞ (see [91] for a related theoretical result).

The Brownian bridge example 2.9 illuminates a more fundamental idea. For
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this low-dimensional problem, an expansion in a deterministic Fourier sine
basis would be more natural. But if we do not have a natural, computable
orthonormal basis, then randomness provides a useful alternative representation;
notice that the random features each include random combinations of the
deterministic Fourier sine basis in this example. For the more complex problems
that we study numerically in the next two sections, we lack knowledge of
good, computable bases for general maps in infinite dimensions. The RFM
approach exploits randomness to explore, implicitly discover the structure
of, and represent, such maps. Thus we now turn away from this example of
real-valued maps defined on a subset of the real line and instead consider the
use of random features to represent maps between spaces of functions.

2.3 Application to PDE Solution Operators

In this section, we design the random feature maps φ : X×Θ → Y and measures
µ for the RFM approximation of two particular PDE parameter-to-solution
maps: the evolution semigroup of viscous Burgers’ equation in Section 2.3.1
and the coefficient-to-solution operator for the Darcy problem in Section 2.3.2.
It is well known to kernel method practitioners that the choice of kernel (which
in this work follows from the choice of (φ, µ)) plays a central role in the quality
of the function reconstruction. While our method is purely data-driven and
requires no knowledge of the governing PDE, we take the view that any prior
knowledge can, and should, be introduced into the design of (φ, µ). However,
the question of how to automatically determine good random feature pairs
for a particular problem or dataset, inducing data-adapted kernels, is open.
A preliminary strategy is provided by Dunbar, Mutic, and Nelsen [85]. The
maps φ that we choose to employ are nonlinear in both arguments. We also
detail the probability measure ν on the input space X for each of the two PDE
applications; this choice is crucial because while we desire the trained RFM to
transfer to arbitrary out-of-distribution inputs from X , we can in general only
expect the learned map to perform well when restricted to inputs statistically
similar to those sampled from ν.

2.3.1 Burgers’ Equation: Formulation

Viscous Burgers’ equation in one spatial dimension is representative of the
advection-dominated PDE problem class in some regimes; these time-dependent
equations are not conservation laws due to the presence of small dissipative
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terms, but nonlinear transport still plays a central role in the evolution of
solutions. The initial value problem we consider is

∂u

∂t
+

∂

∂x

(
u2

2

)
− ε

∂2u

∂x2
= f in (0,∞)× (0, 1) ,

u(·, 0) = u(·, 1) , ∂u

∂x
(·, 0) = ∂u

∂x
(·, 1) in (0,∞) ,

u(0, ·) = a in (0, 1) ,

(2.30)

where ε > 0 is the viscosity (i.e., diffusion coefficient) and we have imposed
periodic boundary conditions. The initial condition a serves as the input and
is drawn according to a Gaussian measure defined by

a ∼ ν := N (0, C) (2.31)

with Matérn-like covariance operator [86, 187]

C := τ 2α−d(−∆+ τ 2 Id)−α , (2.32)

where d = 1 and the negative Laplacian −∆ is defined over T1 = [0, 1]per and
restricted to functions which integrate to zero over T1. The hyperparameter
τ ≥ 0 is an inverse length scale and α > 1/2 controls the regularity of the
draw. Such a are almost surely Hölder and Sobolev regular with exponent up
to α− 1/2 [74, Theorem 12, p. 338], so in particular a ∈ X := L2(T1;R). Then
for all ε > 0, the unique global solution u(t, ·) to (2.30) is real analytic for all
t > 0 [141, Theorem 1.1]. Hence, setting the output space to be Y := Hs(T1;R)
for any s > 0, we may define the solution map

F † : L2 → Hs

a 7→ F †(a) := ΨT (a) = u(T, ·) ,
(2.33)

where {Ψt}t>0 forms the solution operator semigroup for (2.30) and we fix the
final time t = T > 0. The map F † is smoothing and nonlinear.

We now describe a random feature map for use in the RFM (2.19) that we
call Fourier space random features. Let F denote the Fourier transform over
spatial domain T1 and define φ : X ×Θ → Y by

φ(a; θ) := σ
(
F−1(χFaFθ)

)
, (2.34)

where σ(·), the ELU function defined below, is defined as a mapping on R
and applied pointwise to functions. Viewing Θ ⊆ L2(T1;R), the randomness
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enters through θ ∼ µ := N (0, C ′) with C ′ the same covariance operator as
in (2.32) but with potentially different inverse length scale and regularity, and
the wavenumber filter function χ : Z → R≥0 is

χ(k) := σχ(2π|k|δ) , where σχ(r) := max
{
0,min{2r, (r+1/2)−β}

}
, (2.35)

where δ, β > 0. The map φ(·; θ) essentially performs a filtered random convolu-
tion with the initial condition. Figure 2.2a illustrates a sample input and output
from φ. Although simply hand-tuned for performance and not optimized, the
filter χ is designed to shuffle energy in low to medium wavenumbers and cut off
high wavenumbers (see Figure 2.2b), reflecting our prior knowledge of solutions
to (2.30).

We choose the activation function σ in (2.34) to be the exponential linear unit

ELU(r) :=

{
r , r ≥ 0

er − 1 , r < 0 .
(2.36)

The ELU function has successfully been used as activation in other machine
learning frameworks for related nonlinear PDE problems [165, 213, 214]. We
also find ELU to perform better in the RFM framework over several other
choices including ReLU(·), tanh(·), sigmoid(·), sin(·), SELU(·), and softplus(·).
Note that the pointwise evaluation of ELU in (2.34) will be well defined, by
Sobolev embedding, for s > 1/2 sufficiently large in the definition of Y = Hs.
Since the solution operator maps into Hs for any s > 0, this does not constrain
the method.

2.3.2 Darcy Flow: Formulation

Divergence form elliptic equations [109] arise in a variety of applications, in
particular, the groundwater flow in a porous medium governed by Darcy’s
law [26]. This linear elliptic boundary value problem reads{

−∇ · (a∇u) = f in D ,

u = 0 on ∂D ,
(2.37)

where D is a bounded open subset in Rd, f represents sources and sinks of
fluid, a the permeability of the porous medium, and u the piezometric head;
all three functions map D into R and, in addition, a is strictly positive almost
everywhere in D. We work in a setting where f is fixed and consider the
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Figure 2.2: Random feature map construction for Burgers’ equation: Figure 2.2a
displays a representative input-output pair for the random feature φ(·; θ), θ ∼ µ (2.34),
while Figure 2.2b shows the filter k 7→ χ(k) for δ = 0.0025 and β = 4 (2.35).

input-output map defined by a 7→ u. The measure ν on a is a high contrast
level set prior constructed as the pushforward of a Gaussian measure:

a ∼ ν := ψ♯N (0, C) . (2.38)

Here ψ : R → R is a threshold function defined by

ψ(r) := a+1(0,∞)(r) + a−1(−∞,0)(r) , where 0 < a− ≤ a+ <∞ , (2.39)

applied pointwise to functions, and the covariance operator C is given in (2.32)
with d = 2 and homogeneous Neumann boundary conditions on −∆. That is,
the resulting coefficient a almost surely takes only two values (a+ or a−) and,
as the zero level set of a Gaussian random field, exhibits random geometry in
the physical domain D. It follows that a ∈ L∞(D;R≥0) almost surely. Further,
the size of the contrast ratio a+/a− measures the scale separation of this elliptic
problem and hence controls the difficulty of reconstruction [32]. See Figure 2.3a
for a representative sample.

Given f ∈ L2(D;R), the standard Lax-Milgram theory may be applied to
show that for coefficient a ∈ X := L∞(D;R≥0), there exists a unique weak
solution u ∈ Y := H1

0 (D;R) for (2.37) (see, e.g., Evans [93]). Thus, we define
the ground truth solution map

F † : L∞ → H1
0

a 7→ F †(a) := u .
(2.40)
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Although the PDE (2.37) is linear, the solution map F † is nonlinear.

We now describe the chosen random feature map for this problem, which we
call predictor-corrector random features. Define φ : X ×Θ → Y by φ(a; θ) := p1

such that

−∆p0 =
f

a
+ σγ(θ1) and (2.41a)

−∆p1 =
f

a
+ σγ(θ2) +∇(log a) · ∇p0 , (2.41b)

where the boundary conditions are homogeneous Dirichlet, θ = (θ1, θ2) ∼ µ :=

µ′ × µ′ are two Gaussian random fields each drawn from µ′ := N (0, C ′), f is
the source term in (2.37), and γ = (s+, s−, δ) are parameters for a thresholded
sigmoid σγ : R → R given by

r 7→ σγ(r) :=
s+ − s−

1 + e−r/δ
+ s− (2.42)

and extended as a Nemytskii operator when applied to θ1(·) or θ2(·). We view
Θ ⊆ L2(D;R)×L2(D;R). In practice, since ∇a is not well-defined when drawn
from the level set measure, we replace a with aε, where aε := v(1) is a smoothed
version of a obtained by evolving the following linear heat equation for one
time unit: 

∂v

∂t
= η∆v in (0, 1)×D ,

n · ∇v = 0 on (0, 1)× ∂D ,

v(0) = a in D ,

(2.43)

where n is the outward unit normal vector to ∂D. An example of the response
φ(a; θ) to a piecewise constant input a ∼ ν is shown in Figure 2.3 for some
θ ∼ µ.

We remark that by removing the two random terms involving θ1 and θ2 in (2.41),
we obtain a remarkably accurate surrogate model for the PDE. This observation
is representative of a more general iterative method, a predictor-corrector type
iteration, for solving the Darcy equation (2.37), whose convergence depends on
the size of a. The map φ is essentially a random perturbation of a single step
of this iterative method: Equation (2.41a) makes a coarse prediction of the
output, then (2.41b) improves this prediction with a correction term derived
from expanding the original PDE. This choice of φ falls within an ensemble
viewpoint that the RFM may be used to improve pre-existing surrogate models
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(a) a ∼ ν (b) φ(a; θ) , where θ ∼ µ

Figure 2.3: Random feature map construction for Darcy flow: Figure 2.3a displays
a representative input draw a with τ = 3, α = 2 and a+ = 12, a− = 3; Figure 2.3b
shows the output random feature φ(a; θ) (Equation 2.41) taking the coefficient a as
input. Here, f ≡ 1, τ ′ = 7.5, α′ = 2, s+ = 1/a+, s− = −1/a−, and δ = 0.15.

by taking φ(·; θ) to be an existing emulator, but randomized in a principled
way through θ ∼ µ.

For this particular example, we are cognizant of the facts that the random
feature map φ requires full knowledge of the Darcy equation and a naïve
evaluation of φ may be as expensive as solving the original PDE, which is
itself a linear PDE; however, we believe that the ideas underlying the random
features used here are intuitive and suggestive of what is possible in other
applications areas. For example, RFMs may be applied on larger domains
with simple geometries, viewed as supersets of the physical domain of interest,
enabling the use of efficient algorithms such as the fast Fourier transform
(FFT) even though these may not be available on the original problem, either
because the operator to be inverted is spatially inhomogeneous or because of
the complicated geometry of the physical domain.

2.4 Numerical Experiments

We now assess the performance of our proposed methodology on the approxima-
tion of operators F † : X → Y presented in Section 2.3. Practical implementation
of the approach on a computer necessitates discretization of the input-output
function spaces X and Y . Hence in the numerical experiments that follow, all
infinite-dimensional objects such as the training data, evaluations of random
feature maps, and random fields are discretized on an equispaced mesh with
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K grid points to take advantage of the O(K logK) computational speed of
the FFT. The simple choice of equispaced points does not limit the proposed
approach, as our formulation of the RFM on function space allows the method
to be implemented numerically with any choice of spatial discretization. Such
a numerical discretization procedure leads to the problem of high- but finite-
dimensional approximation of discretized target operators mapping RK to RK

by similarly discretized RFMs. However, we emphasize the fact that K is
allowed to vary, and we study the properties of the discretized RFM as K
varies, noting that since the RFM is defined conceptually on function space
in Section 2.2 without reference to discretization, its discretized numerical
realization has approximation quality consistent with the infinite-dimensional
limit K → ∞. This implies that the same trained model can be deployed
across the entire hierarchy of finite-dimensional spaces RK parametrized by
K ∈ N without the need to be re-trained, provided that K is sufficiently large.
Thus in this section, our notation does not make explicit the dependence of the
discretized RFM or target operators on mesh size K. We demonstrate these
claimed properties numerically.1

The input functions and our chosen random feature maps (2.34) and (2.41)
require i.i.d. draws of Gaussian random fields to be fully defined. We efficiently
sample these fields by truncating a Karhunen–Loéve expansion and employing
fast summation of the eigenfunctions with FFT. More precisely, on a mesh of
size K, denote by g(·) a numerical approximation of a Gaussian random field
on domain D = (0, 1)d, d = 1, 2:

g =
∑
k∈ZK

ξk
√
λkϕk ≈

∑
k′∈Zd≥0

ξk′
√
λk′ϕk′ ∼ N (0, C) , (2.44)

where {ξj} ∼ N (0, 1) i.i.d. and ZK ⊂ Z≥0 is a truncated one-dimensional
lattice of cardinality K ordered such that {λj} is nonincreasing. The pairs
(λk′ , ϕk′) are found by solving the eigenvalue problem Cϕk′ = λk′ϕk′ for non-
negative, symmetric, trace-class operator C (2.32). Concretely, these solutions

1The datasets are available at doi.org/10.22002/55tdh-hda68. The code used to produce
the numerical results and figures in this chapter is available at

https://github.com/nickhnelsen/random-features-banach .

https://doi.org/10.22002/55tdh-hda68
https://github.com/nickhnelsen/random-features-banach
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are given by

ϕk′(x) =


√
2 cos(k′1πx1) cos(k

′
2πx2), k′1 or k′2 = 0,

2 cos(k′1πx1) cos(k
′
2πx2), otherwise,

, and (2.45a)

λk′ = τ 2α−2(π2|k′|2 + τ 2)−α (2.45b)

for homogeneous Neumann boundary conditions when d = 2, k′ = (k′1, k
′
2) ∈

Z2
≥0\{0}, x = (x1, x2) ∈ (0, 1)2, and given by

ϕ2j(x) =
√
2 cos(2πjx) , ϕ2j−1(x) =

√
2 sin(2πjx) , ϕ0(x) = 1 , (2.46a)

λ2j = λ2j−1 = τ 2α−1(4π2j2 + τ 2)−α , λ0 = τ−1 (2.46b)

for periodic boundary conditions when d = 1, j ∈ Z>0, and x ∈ (0, 1). In both
cases, we enforce that g integrate to zero over D by manually setting to zero
the Fourier coefficient corresponding to multi-index k′ = 0. We use such g in
all experiments that follow. Additionally, the k and k′ used in this section to
denote wavenumber indices should not be confused with our previous notation
for kernels.

With the discretization and data generation setup now well-defined, and the
pairs (φ, µ) given in Section 2.3, the last algorithmic step is to train the RFM
by solving (2.25) and then test its performance. For a fixed number of random
features m, we only train and test a single realization of the RFM, viewed as a
random variable itself. In each instance m is varied in the experiments that
follow, the draws {θj}mj=1 are re-sampled i.i.d. from µ. To measure the distance
between the trained RFM Fm(·; α̂) and the ground truth map F †, we employ
the approximate expected relative test error

en′,m :=
1

n′

n′∑
j=1

∥F †(a′j)− Fm(a
′
j; α̂)∥L2

∥F †(a′j)∥L2

≈ Ea′∼ν
[∥F †(a′)− Fm(a

′; α̂)∥L2

∥F †(a′)∥L2

]
,

(2.47)
where the {a′j}n

′
j=1 are drawn i.i.d. from ν and n′ denotes the number of input-

output pairs used for testing. All L2(D;R) norms on the physical domain
are numerically approximated by composite trapezoid rule quadrature. Since
Y ⊂ L2 for both the PDE solution operators (2.33) and (2.40), we also perform
all required inner products during training in L2 rather than in Y ; this results
in smaller relative test error en′,m.
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2.4.1 Burgers’ Equation: Experiment

We generate a high-resolution dataset of input-output pairs by solving Burgers’
equation (2.30) on an equispaced periodic mesh of size K = 1025 (identifying
the first mesh point with the last) with random initial conditions sampled from
ν = N (0, C) using (2.44), where C is given by (2.32) with parameter choices
τ = 7 and α = 2.5. The full order solver is a FFT-based pseudospectral method
for spatial discretization [99] and a fourth-order Runge-Kutta integrating factor
time-stepping scheme for time discretization [138]. All data represented on
mesh sizes K < 1025 used in both training and testing phases are subsampled
from this original dataset, and hence we consider numerical realizations of F †

(2.33) up to R1025 → R1025. We fix n = 512 training and n′ = 4000 testing
pairs unless otherwise noted, and also fix the viscosity to ε = 10−2 in all
experiments. Lowering ε leads to smaller length scale solutions and more
difficult reconstruction; more data (higher n) and features (higher m) or a
more expressive choice of (φ, µ) would be required to achieve comparable error
levels due to the slow decaying Kolmogorov width of the solution map. For
simplicity, we set the forcing f ≡ 0, although nonzero forcing could lead to
other interesting solution maps such as f 7→ u(T, ·). It is easy to check that
the solution will have zero mean for all time and a steady state of zero. Hence,
we choose T ≤ 2 to ensure that the solution is far enough away from steady
state. For the random feature map (2.34), we fix the hyperparameters α′ = 2,
τ ′ = 5, δ = 0.0025, and β = 4. The map itself is evaluated efficiently with the
FFT and requires no other tools to be discretized. RFM hyperparameters were
hand-tuned but not optimized. We find that regularization during training had
a negligible effect for this problem, so the RFM is trained with λ = 0 by solving
the normal equations (2.25) with the pseudoinverse to deliver the minimum
norm least squares solution; we use the truncated singular value decomposition
(SVD) implementation in Python’s scipy.linalg.pinv2 for this purpose.

Our experiments study the RFM approximation to the viscous Burgers’ equation
evolution operator semigroup (2.33). As a visual aid for the high-dimensional
problem at hand, Figure 2.4 shows a representative sample input and output
along with a trained RFM test prediction. To determine whether the RFM has
actually learned the correct evolution operator, we test the semigroup property
of the map; [274] pursues closely related work also in a Fourier space setting.
Denote the (j − 1)-fold composition of a function G with itself by Gj. Then,
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Figure 2.4: Representative input-output test sample for the Burgers’ equation solution
map F † := Ψ1: Here, n = 512, m = 1024, and K = 1025. Figure 2.4a shows a sample
input, output (truth), and trained RFM prediction (test), while Figure 2.4b displays
the pointwise error. The relative L2 error for this single prediction is 0.0146.

Table 2.1: Expected relative error en′,m for time upscaling with the learned RFM
operator semigroup for Burgers’ equation: Here, n′ = 4000, m = 1024, n = 512, and
K = 129. The RFM is trained on data from the evolution operator ΨT=0.5, and then
tested on input-output samples generated from ΨjT , where j = 2, 3, 4, by repeated
composition of the learned model. The increase in error is small even after three
compositions, reflecting excellent out-of-distribution performance.

Train on: T = 0.5 Test on: 2T = 1.0 3T = 1.5 4T = 2.0

0.0360 0.0407 0.0528 0.0788

with u(0, ·) = a, we have

(ΨT ◦ · · · ◦ΨT )(a) = Ψj
T (a) = ΨjT (a) = u(jT, ·) (2.48)

by definition. We train the RFM on input-output pairs from the map ΨT

with T := 0.5 to obtain F̂ := Fm(·; α̂). Then, it should follow from (2.48)
that F̂ j ≈ ΨjT , that is, each application of F̂ should evolve the solution T

time units. We test this semigroup approximation by learning the map F̂

and then comparing F̂ j on n′ = 4000 fixed inputs to outputs from each of
the operators ΨjT , with j ∈ {1, 2, 3, 4} (the solutions at time T , 2T , 3T , 4T ).
The results are presented in Table 2.1 for a fixed mesh size K = 129. We
observe that the composed RFM map F̂ j accurately captures ΨjT , though
this accuracy deteriorates as j increases due to error propagation in time
as is common with any traditional integrator. However, even after three
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compositions corresponding to 1.5 time units past the training time T = 0.5,
the relative error only increases by around 0.04. It is remarkable that the
RFM learns time evolution without explicitly time-stepping the PDE (2.30)
itself. Such a procedure is coined time upscaling in the PDE context and in
some sense breaks the CFL stability barrier [80]. Table 2.1 is evidence that the
RFM has excellent out-of-distribution performance: although only trained on
inputs a ∼ ν, the model outputs accurate predictions given new input samples
ΨjT (a) ∼ (ΨjT )♯ν.

We next study the ability of the RFM to transfer its learned coefficients α̂ ob-
tained from training on mesh size K to different mesh resolutions K ′ in fig. 2.5a.
We fix T := 1 from here on and observe that the lowest test error occurs when
K = K ′, that is, when the train and test resolutions are identical; this behavior
was also observed in the contemporaneous work [173]. At very low resolutions,
such as K = 17 here, the test error is dominated by discretization error which
can become quite large; for example, resolving conceptually infinite-dimensional
objects such as the Fourier space-based feature map in (2.34) or the L2 norms in
(2.47) with only 17 grid points gives bad accuracy. But outside this regime, the
errors are essentially constant across resolution regardless of the training resolu-
tion K, indicating that the RFM learns its optimal coefficients independently of
the resolution and hence generalizes well to any desired mesh size. In fact, the
trained model could be deployed on different discretizations of the domain D
(e.g., various choices of finite elements, graph-based/particle methods), not just
with different mesh sizes. Practically speaking, this means that high-resolution
training sets can be subsampled to smaller mesh sizes K (yet still large enough
to avoid large discretization error) for faster training, leading to a trained
model with nearly the same accuracy at all higher resolutions.

The smallest expected relative test error achieved by the RFM is 0.0303 for the
configuration detailed in Figure 2.5b. This excellent performance is encouraging
because the error we report is of the same order of magnitude as that reported
by Li et al. [172, Section 5.1] for the same Burgers’ solution operator that we
study, but with slightly different problem parameter choices. We emphasize
that the neural operator methods in that work are based on deep learning,
which involves training neural networks by solving a nonconvex optimization
problem with stochastic gradient descent, while our random feature methods
have orders of magnitude fewer trainable parameters that are easily optimized
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Figure 2.5: Expected relative test error of a trained RFM for the Burgers’ evolution
operator F † = Ψ1 with n′ = 4000 test pairs: Figure 2.5a displays the invariance
of test error w.r.t. training and testing on different resolutions for m = 1024 and
n = 512 fixed; the RFM can train and test on different mesh sizes without loss
of accuracy. Figure 2.5b shows the decay of the test error for resolution K = 129
fixed as a function of m and n; the error follows the O(m−1/2) Monte Carlo rate
remarkably well. The smallest error achieved is 0.0303 for n = 1000 and m = 1024.

through convex optimization. In Figure 2.5b, we see that for large enough n,
the error empirically follows the O(m−1/2) parameter complexity bound that is
suggested by Monte Carlo intuition, as discussed in Section 2.2.3. The figure
also indicates a delicate dependence of m as a function of n, in particular, n
must increase with m as is expected from parametric estimation. A detailed
account of the dependence ofm on n required to achieve a certain error tolerance
for the RFM is given in the next chapter [162]. We also refer the interested
reader to [52] for a sharp statistical analysis in a related setting.

Finally, Figure 2.6 demonstrates the invariance of the expected relative test
error to the mesh resolution used for training and testing. This result is a
consequence of framing the RFM on function space; other machine-learning-
based surrogate methods defined in finite dimensions exhibit an increase in
test error as mesh resolution is increased (see [34, Section 4] for a numerical
account of this phenomenon). The first panel, Figure 2.6a, shows the error as
a function of mesh resolution for three values of m. For very low resolution,
the error varies slightly but then flattens out to a constant value as K → ∞.
The second panel, Figure 2.6b, indicates that the learned coefficient α(K) for
each K converges to some α(∞) as K → ∞, again reflecting the design of the
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Figure 2.6: Results of a trained RFM for the Burgers’ equation evolution operator
F † = Ψ1: Here, n = 512 training and n′ = 4000 testing pairs were used. Figure 2.6a
shows resolution-invariant test error for various m. Figure 2.6b displays the relative
error of the learned coefficient α w.r.t. the coefficient learned on the highest mesh
size (K = 1025).

RFM as a mapping between infinite-dimensional spaces.

2.4.2 Darcy Flow: Experiment

In this section, we consider Darcy flow on the physical domain D := (0, 1)2,
the unit square. We generate a high-resolution dataset of input-output pairs
for F † (2.40) by solving (2.37) on an equispaced 257 × 257 mesh (size K =

2572) using a second-order finite difference scheme. All mesh sizes K < 2572

are subsampled from this original dataset and hence we consider numerical
realizations of F † up to R66049 → R66049. We denote resolution by r such that
K = r2. We fix n = 128 training and n′ = 1000 testing pairs unless otherwise
noted. The input data are drawn from the level set measure ν (2.38) with τ = 3

and α = 2 fixed. We choose a+ = 12 and a− = 3 in all experiments that follow
and hence the contrast ratio a+/a− = 4 is fixed. The source is fixed to f ≡ 1,
the constant function. We evaluate the predictor-corrector random features
φ (2.41) using an FFT-based fast Poisson solver corresponding to an underlying
second-order finite difference stencil at a cost of O(K logK) per solve. The
smoothed coefficient aε in the definition of φ is obtained by solving (2.43) with
time step 0.03 and diffusion constant η = 10−4; with centered second-order
finite differences, this incurs 34 time steps and hence a cost O(34K). We fix
the hyperparameters α′ = 2, τ ′ = 7.5, s+ = 1/12, s− = −1/3, and δ = 0.15
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(a) Truth (b) Approximation

(c) Input (d) Pointwise Error

Figure 2.7: Representative input-output test sample for the Darcy flow solution
map: Here, n = 256, m = 350, and K = 2572. Figure 2.7c shows a sample input,
Figure 2.7a the resulting output (truth), Figure 2.7b a trained RFM prediction, and
Figure 2.7d the pointwise error. The relative L2 error for this single prediction is
0.0122.

for the map φ. Unlike in Section 2.4.1, we find via grid search on λ that
regularization during training does improve the reconstruction of the Darcy
flow solution operator and hence we train with λ := 10−8 fixed. We remark
that, for simplicity, the above hyperparameters were not systematically and
jointly optimized; as a consequence the RFM performance has the capacity to
improve beyond the results in this section.

Darcy flow is characterized by the geometry of the high contrast coefficients
a ∼ ν. As seen in Figure 2.7, the solution inherits the steep interfaces of the
input. However, we see that a trained RFM with predictor-corrector random
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features (2.41) captures these interfaces well, albeit with slight smoothing; the
error concentrates on the location of the interface. The effect of increasingm and
n on the test error is shown in Figure 2.8b. Here, the error appears to saturate
more than was observed for the Burgers’ equation problem (Figure 2.5b) and
does not follow the O(m−1/2) rate. This is likely due to fixing λ to be constant
instead of scaling it with m. It is also possible that the Darcy flow solution map
does not belong to the RKHS Hkµ , leading to an additional misspecification
error. However, the smallest test error achieved for the best performing RFM
configuration is 0.0381, which is on the same scale as the error reported in
competing neural operator methods [34, 173] for the same Darcy flow setup.

The RFM is able to be successfully trained and tested on different resolutions
for Darcy flow. Figure 2.8a shows that, again, for low resolutions, the smallest
relative test error is achieved when the train and test resolutions are identical
(here, for r = 17). However, when the resolution is increased away from this
low resolution regime, the relative test error slightly increases then approaches
a constant value, reflecting the function space design of the method. Training
the RFM on a high-resolution mesh poses no issues when transferring to lower
or higher resolutions for model evaluation, and it achieves consistent error for
test resolutions sufficiently large (i.e., r ≥ 33, the regime where discretization
error starts to become negligible). Additionally, the RFM basis functions
{φ(·; θj)}mj=1 are defined without any dependence on the training data unlike
in other competing approaches based on similar shallow linear approximations,
such as the reduced basis method or the PCA-Net method in [34]. Consequently,
our RFM may be directly evaluated on any desired mesh resolution once trained
(“super-resolution”), whereas those aforementioned approaches require some
form of interpolation to transfer between different mesh sizes [34, Section 4.3].

In Figure 2.9, we again confirm that our method is invariant to the refinement
of the mesh and improves with more random features. While the difference at
low resolutions is more pronounced than that observed for Burgers’ equation,
our results for Darcy flow still suggest that the expected relative test error
converges to a constant value as resolution increases; an estimate of this rate
of convergence is seen in Figure 2.9b, where we plot the relative error of the
learned parameter α(r) at resolution r w.r.t. the parameter learned at the
highest resolution trained, which was r = 129. Although we do not observe the
limiting error following the Monte Carlo rate in m, which suggests that the
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Figure 2.8: Expected relative test error of a trained RFM for Darcy flow with
n′ = 1000 test pairs: Figure 2.8a displays the invariance of test error w.r.t. training
and testing on different resolutions for m = 512 and n = 256 fixed; the RFM can
train and test on different mesh sizes without significant loss of accuracy. Figure 2.8b
shows the decay of the test error for resolution r = 33 fixed as a function of m and n;
the smallest error achieved is 0.0381 for n = 500 and m = 512.

RKHS Hkµ induced by the choice of φ may not be expressive enough (e.g., not
universal [255]), the numerical results make clear that our method nonetheless
performs well as an operator approximator.

2.5 Conclusion

This chapter introduces a random feature methodology for the data-driven
estimation of operators mapping between infinite-dimensional Banach spaces.
It may be interpreted as a low-rank approximation to operator-valued kernel
ridge regression. Training the function-valued random features only requires
solving a quadratic optimization problem for an m-dimensional coefficient
vector. The conceptually infinite-dimensional algorithm is nonintrusive and
results in a scalable method that is consistent with the continuum limit,
robust to discretization, and highly flexible in practical use cases. Numerical
experiments confirm these benefits in scientific machine learning applications
involving two nonlinear forward operators arising from PDEs. Backed by
tractable training routines and theoretical guarantees, operator learning with
the function-valued random features method displays considerable potential for
accelerating many-query computational tasks and for discovering new models
from high-dimensional experimental data in science and engineering.
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Figure 2.9: Results of a trained RFM for Darcy flow: Here, n = 128 training and
n′ = 1000 testing pairs were used. Figure 2.9a demonstrates resolution-invariant
test error for various m, while Figure 2.9b displays the relative error of the learned
coefficient α(r) at resolution r w.r.t. the coefficient learned on the highest resolution
(r = 129).

Going beyond this chapter, several directions for future research remain open.
It is of interest to characterize the quality of the operator RKHS spaces induced
by random feature pairs and whether practical problem classes actually belong
to these spaces. This would be both mathematically interesting and highly
desirable as it would help guide algorithmic development. Also of importance
is the question of how to automatically adapt function-valued random features
to data instead of manually constructing them. Some possibilities along this
line of work include the Bayesian estimation of hyperparameters [85], as is
frequently used in Gaussian process regression, or more general hierarchical
learning of the random feature pair (φ, µ) itself. In tandem, there is a need for a
mature function-valued random features software library that includes efficient
linear solvers and GPU implementations, benchmark problems, and robust
hyperparameter optimizers. These advances will further enable the random
features method to learn from real-world data and solve challenging forward
and inverse problems from the physical sciences, such as climate modeling and
material modeling, with controlled computational complexity.
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C h a p t e r 3

ERROR BOUNDS FOR FUNCTION-VALUED RANDOM
FEATURES

This chapter is adapted from the following publication:

[1] Samuel Lanthaler and Nicholas H. Nelsen. “Error bounds for learning
with vector-valued random features”. In: Advances in Neural Information
Processing Systems (spotlight paper). Ed. by A. Oh, T. Neumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine. Vol. 36. Curran
Associates, Inc., 2023, pp. 71834–71861. url: https://proceedings.
neurips.cc/paper_files/paper/2023/hash/e34d908241aef40440e
61d2a27715424-Abstract-Conference.html.

This chapter provides a comprehensive error analysis of learning with vector-
valued random features (RF). The theory is developed for RF ridge regression
in a fully general infinite-dimensional input-output setting—which in particular
includes function-valued RFs—but nonetheless applies to and improves existing
finite-dimensional analyses. In contrast to comparable work in the literature,
the approach proposed here relies on a direct analysis of the underlying risk
functional and completely avoids the explicit RF ridge regression solution
formula in terms of random matrices. This removes the need for suboptimal
matrix concentration inequalities. The main results established in this chapter
include strong consistency of vector-valued RF estimators under model misspec-
ification and minimax optimal convergence rates in the well-specified setting.
The parameter complexity (number of random features) and sample complexity
(number of labeled data) required to achieve such rates are comparable with
Monte Carlo intuition and free from logarithmic factors for the first time.

3.1 Introduction

Supervised learning of an unknown mapping G : X → Y is a core task in
machine learning. The random feature model (RFM), proposed in [221, 223],
combines randomization with optimization to accomplish this task. The RFM
is based on a linear expansion with respect to a randomized basis, the random
features. The coefficients in this RF expansion are optimized to fit the given
data of input-output pairs. For popular loss functions, such as the square

https://proceedings.neurips.cc/paper_files/paper/2023/hash/e34d908241aef40440e61d2a27715424-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e34d908241aef40440e61d2a27715424-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e34d908241aef40440e61d2a27715424-Abstract-Conference.html
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loss, the RFM leads to a convex optimization problem which can be solved
efficiently and reliably.

The RFM provides a scalable approximation of an underlying kernel method
[221, 223]. While the former is based on an expansion in M random features
φ( · ; θ1), . . . , φ( · ; θM ), the corresponding kernel method relies on an expansion
in values of a positive definite kernel function K( · , u1), . . . , K( · , uN) on a
dataset of size N . Kernel methods are conceptually appealing, theoretically
sound, and have attracted considerable interest [14, 52, 240]. However, they
require the storage, manipulation, and often inversion of the kernel matrix K

with entries K(ui, uj). The size of K scales quadratically in the number of
samples N , which can be prohibitive for large datasets. When the underlying
input-output map is vector-valued with dim(Y) = p, the often significant com-
putational cost of kernel methods is further exacerbated by the fact that each
entry K(ui, uj) of K is, in general, a p-by-p matrix. Hence, the size of K scales
quadratically in both N and p. This severely limits the applicability of kernel
methods to problems with high-dimensional, or indeed infinite-dimensional,
output space. In contrast, learning with RF only requires storage of RF matri-
ces whose size is quadratic in the number of features M . When M ≪ Np, this
implies substantial computational savings, with the most extreme case being
the infinite-dimensional setting in which p = ∞.

In the context of operator learning, the underlying target mapping is an operator
G : X → Y with infinite-dimensional input and output spaces. Such operators
appear naturally in scientific computing and often arise as solution maps of
an underlying partial differential equation. Operator learning has attracted
considerable interest, e.g., [34, 111, 126, 172, 181], and in this context, the RFM
serves as an alternative to neural network-based methods with considerable
potential for a sound theoretical basis. Indeed, an extension of the RFM to
this infinite-dimensional setting is proposed and implemented in the previous
chapter [202, 203]. Although the results show promise, a mathematical analysis
of this approach including error bounds and rates of convergence has so far
been outstanding.

Related Work. Several papers have derived error bounds for learning with
RF. Early work on the RFM [223] proceeded by direct inspection of the risk
functional, demonstrating that M ≃ N random features suffice to achieve
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a squared error O(1/
√
N) for RF ridge regression (RR). This result was

considerably improved in [235], where
√
N logN random features were shown to

be sufficient to achieve the same squared error. This improvement in parameter
complexity is based on the explicit RF RR solution formula, combined with
extensive use of matrix analysis and matrix concentration inequalities. Similar
analysis in [170] sharpens the parameter complexity to

√
N log dλK random

features. Here dλK is the number of effective degrees of freedom [17, 52], with λ
the RR regularization parameter and K the kernel matrix. In this context, we
also mention related analysis in [17]. In all these works, the squared error in
terms of sample size N match the minimax optimal rates for kernel RR derived
in [52]. Going beyond the above error bounds, [17, 170, 235] also derive fast
rates under additional assumptions on the underlying data distribution and/or
with improved RF sampling schemes.

Many works also study the interpolatory (M ≃ N) or overparametrized (M ≫
N) regimes in the scalar output setting [60, 91, 107, 122, 190]. However, when
p = dim(Y) ≫ 1 or p = ∞, such regimes may no longer be relevant. This is
because the kernel matrix K now has size Np-by-Np, and it is possible that
the number of random features M satisfies M ≪ Np even though M ≫ N .
In this case, high-dimensional vector-valued learning naturally operates in the
underparametrized regime.

In the area of operator learning for scientific problems, approximation results
are common [64, 81, 125, 114, 152, 160, 78, 241] but statistical guarantees are
lacking, the main exceptions being [42, 76, 135, 196, 239, 251] in the linear
operator setting and [52] in the nonlinear setting. The RFM also has potential
for such nonlinear problems. Indeed, vector-valued random Fourier features
have been studied before [43, 193]. However, theory is only provided for kernel
approximation, not generalization guarantees.

To summarize, while previous analyses have provided considerable insight into
the generalization properties of the RFM, they have almost exclusively focused
on the scalar-valued setting. Given the paucity of theoretical work beyond
this setting, it is a priori unclear whether similar estimates continue to hold
when the RFM is applied to infinite-dimensional vector-valued mappings. This
includes the function-valued random features method from Chapter 2.
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Table 3.1: A summary of available error estimates for the RFM, with regularization
parameter λ, output space Y, and number of random features M . (†): the truth is
assumed to be written as G(u) = Eθ[α⋆(θ)φ(u; θ)] with restrictive almost sure bound
|α⋆(θ)| ≤ R to avoid explicit regularization.

Paper Approach λ dim(Y) M Squared Error

Rahimi & Recht [223] “kitchen sinks” n/a (†) 1 N R/
√
N

Rudi & Rosasco [235] matrix concen. 1/
√
N 1

√
N log(N) 1/

√
N

Li et al. [170] matrix concen. 1/
√
N 1

√
N log(dλK) 1/

√
N

This work “kitchen sinks” 1/
√
N ∞

√
N 1/

√
N

Contributions. The primary purpose of the present chapter is to extend
earlier results on learning with random features to the vector-valued setting.
The theory developed in this work unifies sources of error stemming from
approximation, generalization, misspecification, and noisy observations. We
focus on training via ridge regression with the square loss. Our results differ
from existing work not only in the scope of applicability, but also in the strategy
employed to derive our results. Similar to [223], we do not rely on the explicit
random feature ridge regression solution (RF-RR) formula, which is specific to
the square loss. One main benefit of this approach is that it entirely avoids
the use of matrix concentration inequalities, thereby making the extension
to an infinite-dimensional vector-valued setting straightforward. Our main
contributions are now listed (see also Table 3.1).

(C1) Given N training samples, we prove that M ≃
√
N random features

and regularization strength λ ≃ 1/
√
N is enough to guarantee that the

squared error is O(1/
√
N), provided that the target operator belongs

to a specific reproducing kernel Hilbert space (Theorem 3.9);

(C2) we establish that the vector-valued RF-RR estimator is strongly consis-
tent (Theorem 3.12);

(C3) under additional regularity assumptions, we derive rates of convergence
even when the target operator does not belong to the specific reproducing
kernel Hilbert space (Theorem 3.14);

(C4) we demonstrate that the approach of Rahimi and Recht [223] can be
used to derive state-of-the-art rates for the RFM which, for the first
time, are free from logarithmic factors.
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Outline. The remainder of this chapter is organized as follows. We set up
the ridge regression problem in Section 3.2. The main results are stated in
Section 3.3 and their proofs are sketched in Section 3.4. Section 3.5 provides a
simulation study and Section 3.6 gives concluding remarks. Detailed proofs
are deferred to Appendix B.

3.2 Preliminaries

We now set up our vector-valued learning framework by introducing notational
conventions, reviewing random features, and formulating the ridge regression
problem.

Notation. Let (Ω,F ,P) be a sufficiently rich probability space on which all
random variables in this chapter are defined. Let X be the input space, Y the
output space, and Θ a set. We consistently use u to denote elements of X and θ
for RF parameters in Θ. The set of probability measures supported on a set Q
is denoted by P(Q). We write expectation (in the sense of Bochner integration)
with respect to u ∼ ν ∈ P(X ) as Eu[ · ] and similarly for θ ∼ µ ∈ P(Θ).
Independent and identically distributed (i.i.d.) samples u1, . . . , uN from ν will
be denoted by {un} ∼ ν⊗N and similarly for {θm} ∼ µ⊗M . We write a ≃ b

to mean that there exists a constant C ≥ 1 such that C−1b ≤ a ≤ Cb and
similarly for the one-sided inequalities a ≲ b and a ≳ b.

Random Features and Reproducing Kernel Hilbert Spaces. Random
features are defined by a pair (φ, µ), where φ : X × Θ → Y and µ ∈ P(Θ).
Fixing θ ∼ µ defines a map φ( · ; θ) : X → Y . Considering linear combinations
of such maps leads to the following definition.

Definition 3.1 (random feature model). The map Φ( · ;α, {θm}), which we
denote by Φ( · ;α) : X → Y , given by

u 7→ Φ(u;α) :=
1

M

M∑
m=1

αmφ(u; θm) (3.1)

is a random feature model (RFM) with coefficients α ∈ RM and fixed realizations
{θm} ∼ µ⊗M .

Associated to the pair (φ, µ) is a reproducing kernel Hilbert space (RKHS)
H of maps from X to Y [203, Section 2.3]. Under mild assumptions (see
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Appendix B.2) assumed in our main results, it holds that

H =
{
G ∈ L2

ν(X ;Y)
∣∣G = Eθ∼µ[α(θ)φ( · ; θ)] and α ∈ L2

µ(Θ;R)
}

(3.2)

with RKHS norm ∥G∥H = minα ∥α∥L2
µ
, where α ranges over all decompositions

of G of the form in (3.2). A minimizer αH of this problem always exists [17,
Section 2.2]. We use this fact to identify any G ∈ H with its minimizing
αH ∈ L2

µ(Θ;R) without further comment.

Random Feature Ridge Regression. Let P ∈ P(X × Y) be the joint
data distribution. The goal of RF-RR is to estimate an underlying operator
G : X → Y from finitely many i.i.d. input-output pairs {(un, yn)}Nn=1 ∼ P⊗N ,
where typically the yn are noisy transformations of the point values G(un). To
describe RF-RR, we first make some definitions.

Definition 3.2 (empirical risk). Writing Y = {yn} for the collection of observed
output data and fixing a regularization parameter λ > 0, the regularized Y -
empirical risk of α ∈ RM is given by1

Rλ
N(α;Y ) :=

1

N

N∑
n=1

∥yn − Φ(un;α)∥2Y + λ∥α∥2M , where (3.3a)

∥α∥2M :=
1

M

M∑
m=1

|αm|2 (3.3b)

is a scaled Euclidean norm on RM . The regularized G-empirical risk , Rλ
N (α;G),

is defined analogously with G(un) in place of yn. In the absence of regularization,
i.e., λ = 0, these expressions define the Y -empirical risk and G-empirical risk ,
denoted by RN(α;Y ) and RN(α;G), respectively.

RF-RR is the minimization problem minα∈RM Rλ
N (α;Y ). The minimizer, which

we denote by α̂, is referred to as trained coefficients and Φ( · ; α̂) the trained
RFM. For M and N sufficiently large and λ > 0 sufficiently small, we expect
the trained RFM to well approximate G. This intuition is made precise by
quantitative error bounds and statistical performance guarantees in the next
section.

1Note that λ in (3.3) is equal to N−1 times the regularization parameter from Chapter 2,
which is denoted by the same symbol λ.
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3.3 Main Results

The main result of this chapter is an abstract bound on the population squared
error (Section 3.3.2). From this widely applicable theorem, several more
specialized results are deduced. These include consistency (Section 3.3.3) and
convergence rates (Section 3.3.4) of the RF-RR estimator trained on noisy data.
The assumptions under which this theory is developed are provided next in
Section 3.3.1.

3.3.1 Assumptions

Throughout this chapter, we assume that the input space X is a Polish space
and the output space Y is a real separable Hilbert space. These are common
assumptions in learning theory [52]. We view X and Y as measurable spaces
equipped with their respective Borel σ-algebras.

Next, we make the following minimal assumptions on the random feature pair
(φ, µ).

Assumption 3.3 (random feature regularity). Let ν ∈ P(X ) be the input dis-
tribution and (Θ,Σ, µ) be a probability space. The random feature map φ : X ×
Θ → Y and the probability measure µ ∈ P(Θ) are such that (i) φ is measurable;
(ii) φ is uniformly bounded; in fact, ∥φ∥L∞ := ess sup(u,θ)∼ν⊗µ ∥φ(u; θ)∥Y ≤ 1;
and (iii) the RKHS H corresponding to (φ, µ) is separable.

The boundedness assumption on φ is shared in general theoretical analyses of
RF [170, 223, 235]; the unit bound can always be ensured by a simple rescaling.
We work in a general misspecified setting.

Assumption 3.4 (misspecification). There exist ρ ∈ L∞
ν (X ;Y) and GH ∈ H

such that the operator G : X → Y satisfies the decomposition G = ρ+ GH.

Since Assumption 3.3 implies that H ⊂ L∞
ν (X ;Y), any G = GH + ρ as in

Assumption 3.4 is automatically bounded in the sense that G ∈ L∞
ν (X ;Y).

Conversely, any G ∈ L∞
ν (X ;Y) allows such a decomposition. We interpret ρ as

a residual from the operator GH belonging to the RKHS. It may be prescribed
by the problem, as we will see later in the context of discretization errors in
operator learning (Example 3.11), or be arbitrary, as is customary in learning
theory when the only information about G is that it is bounded.
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Our main goal is to recover G from i.i.d. data {(un, yn)} arising from the
following statistical model.

Assumption 3.5 (joint data distribution). The joint distribution P ∈ P(X ×
Y) of the random variable (u, y) ∼ P is given by u ∼ ν with ν ∈ P(X ) and
y = G(u) + η. Here, G satisfies Assumption 3.4. The additive noise η is
a random variable in Y that is conditionally centered, E[η |u] = 0, and is
subexponential: ∥η∥ψ1(Y) <∞; see (B.7) for the definition of ∥ · ∥ψ1(Y).

Assumption 3.5 implies that G(u) = E[y |u]. In contrast to related work [17,
170, 223], we allow for unbounded input-dependent noise. In particular, our
results also hold for bounded or subgaussian noise, as well as multiplicative
noise (e.g., η = ξG(u) with E[ξ |u] = 0 and ∥ξ∥ψ1(R) <∞).

3.3.2 General Error Bound

For any G, define the G-population risk functional or G-population squared
error by

R(α;G) := Eu∼ν∥G(u)− Φ(u;α, {θm})∥2Y for α ∈ RM . (3.4)

The main result of this chapter establishes an upper bound for this quantity
that holds with high probability, provided that the number of random features
and number of data pairs are large enough.

Theorem 3.6 (G-population squared error bound). Suppose that G = ρ+ GH

satisfies Assumption 3.4. Fix a failure probability δ ∈ (0, 1), regularization
strength λ ∈ (0, 1), and sample size N . Let {θm} ∼ µ⊗M be the M random
feature parameters and {(un, yn)} ∼ P⊗N be the data according to Assump-
tion 3.5. For Φ the RFM (3.1) satisfying Assumption 3.3, let α̂ ∈ RM be
the minimizer of the regularized Y -empirical risk Rλ

N( · ;Y ) given by (3.3). If
M ≥ λ−1 log(32/δ) and N ≥ λ−2 log(16/δ), then

Eu∼ν∥G(u)− Φ(u; α̂, {θm})∥2Y ≤ 79e3/2
(
∥G∥2L∞

ν
+ 2β(ρ, λ,GH, η)

)
λ (3.5)

with probability at least 1− δ, where

β(ρ, λ,GH, η) := 328∥GH∥2H + 2023e3∥η∥2ψ1(Y) + 8λ−1 Eu∼ν∥ρ(u)∥2Y + 18λ∥ρ∥2L∞
ν

(3.6)
is a function of ρ, λ, GH, and the law of the noise variable η.
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The main elements of the proof of Theorem 3.6 will be explained in Section 3.4.

Remark 3.7 (excess risk). We note that other work [170, 223, 235] often
focuses on bounding the excess risk Ê := E (Φ( · ; α̂))− infGH∈H E (GH), where
E (F ) := E ∥y − F (u)∥2Y = Eu∼ν ∥G(u)− F (u)∥2Y + E ∥η∥2Y . In particular, this
bias-variance decomposition implies that Ê ≤ Eu∼ν∥G(u) − Φ(u; α̂)∥2Y . Thus,
Theorem 3.6 also gives a corresponding bound on the excess risk Ê .

Remark 3.8 (the factor β). In the well-specified setting, that is, G−GH = ρ ≡ 0,
the factor β in Theorem (3.6) satisfies the uniform bound

β(ρ, λ,GH, η) ≤ B := 328∥G∥2H + 2023e3∥η∥2ψ1(Y) . (3.7)

In particular, the constant B does not depend on λ in this case. Otherwise,
β in general depends on λ. We can characterize this dependence precisely if
it is known that G ∈ L∞

ν (X ;Y). In this case, Assumption 3.4 is satisfied with
ρ := G − GH for any GH ∈ H. Choosing GH = Gϑ|ϑ=λ as in Appendix B.2
(which is optimal in the sense described there) and a short calculation deliver
the bound

β(ρ, λ,GH, η) ≲ λ−1λmin(r,1) = λ−(1−r)+ (3.8)

if G additionally satisfies a particular r-th-order regularity condition (see
Lemma B.8 for the details). Here, a+ := max(a, 0) for any a ∈ R. Thus,
β is uniformly bounded if G ∈ H (r ≥ 1) and grows algebraically as a power of
λ−1 otherwise (0 ≤ r < 1).

Consequences. The general error bound (3.5) in Theorem 3.6 has several
implications for vector-valued learning with the RFM. First, it immediately
implies a rate of convergence if G ∈ H.

Theorem 3.9 (well-specified). Instantiate the hypotheses and notation of
Theorem 3.6. Suppose that ρ ≡ 0 so that G ∈ H (3.2). If M ≥ λ−1 log(32/δ)

and N ≥ λ−2 log(16/δ), then

Eu∼ν∥G(u)− Φ(u; α̂)∥2Y ≤ 79e3/2
(
∥G∥2L∞

ν
+ 2B

)
λ ≲ λ (3.9)

with probability at least 1− δ, where the constant B ≥ 0 is defined by (3.7).

Given a number of samples N , Theorem 3.9 shows that RF-RR with regulariza-
tion λ ≃ 1/

√
N and number of features M ≳

√
N leads to a population squared
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error of size 1/
√
N with high probability. This result should be compared to

the previous state-of-the-art convergence rates in the literature for RF-RR with
i.i.d. sampled features [17, 170, 223, 235]. See Table 3.1, which indicates that
our analysis gives the lowest parameter complexity to date. We emphasize that
such a convergence rate rests on the assumption that G ∈ H. This corresponds
to a compatibility condition between G and the pair (φ, µ), i.e., the random
feature map φ and the probability measure µ, which determine the RKHS H.
Designing suitable φ and µ for a given operator G remains an open problem.
For an explanation of the poor parameter complexity in Rahimi and Recht’s
original paper [223], see the work of Sun, Gilbert, and Tewari [254, Appendix
E].

Theorem 3.6 also implies convergence of R(α̂;G) when G ̸∈ H, as we will see
in Sections 3.3.3 and 3.3.4. But first, the next corollary shows that the same
general bound (3.5) also holds for the GH-population squared error R(α̂;GH),
up to enlarged constant factors. The proof is given in Appendix B.3.

Corollary 3.10 (GH-population squared error bound). Instantiate the hypothe-
ses and notation of Theorem 3.6. If M ≥ λ−1 log(32/δ) and N ≥ λ−2 log(16/δ),
then there exists an absolute constant C > 1 such that with probability at least
1− δ, it holds that

Eu∼ν∥GH(u)− Φ(u; α̂)∥2Y ≤ C
(
∥G∥2L∞

ν
+ 2β(ρ, λ,GH, η)

)
λ . (3.10)

Although our main goal is to learn G from noisy data, there are settings instead
in which the learning of GH ∈ H as in Corollary 3.10 is of primary interest, but
only values of some approximation G ∈ L∞

ν (X ;Y) are available. The following
example illustrates this.

Example 3.11 (numerical discretization error). One practically relevant setting
to which Corollary 3.10 applies arises when training a RFM from functional
data generated by a numerical approximation G = G∆ of some underlying
operator GH ∈ H. Here ∆ > 0 represents a numerical parameter, such as the
grid resolution when approximating the solution operator of a partial differential
equation. In this setting, ρ = G∆ − GH is nonzero and it is crucial to include
the discretization error in the analysis, which we define as ε∆ := ∥ρ∥2L∞

ν
=

∥G∆ − GH∥2L∞
ν

. Assume η ≡ 0, so that α̂ minimizes Rλ
N( · ;Y ) = Rλ

N( · ;G∆).
Using Corollary 3.10, it follows that for M and N sufficiently large,

Eu∼ν∥GH(u)− Φ(u; α̂)∥2Y ≲ λ∥GH∥2H + ε∆ (3.11)



65

with high probability. Thus, as suggested by intuition, in addition to the
error contribution that is present when training on perfect data (the first term
on the right-hand side), there is an additional discretization error of size ε∆.
We also see that the performance of RF-RR is stable with respect to such
discretization errors stemming from the training data. Actually obtaining
a rate of convergence would require problem-specific information about the
particular numerical solver and discretization scheme that are used.

3.3.3 Statistical Consistency

We now return to the objective of recovering G from data. In particular, suppose
that G ̸∈ H; the RKHS, viewed as a hypothesis class, is misspecified. Our
analysis demonstrates that statistical guarantees for RF-RR are still possible
in this setting.

To this end, assume that G ∈ L∞
ν (X ;Y). It follows that Assumption 3.4 is

satisfied with ρ := G − GH and GH ∈ H being any element of the RKHS.
Applying Theorem 3.6 and minimizing over GH yields

Eu∼ν∥G(u)−Φ(u; α̂)∥2Y ≲ λ+ inf
GH∈H

{
Eu∼ν∥G(u)−GH(u)∥2Y +λ∥GH∥2H

}
(3.12)

with probability at least 1− δ if M ≳ λ−1 log(2/δ) and N ≳ λ−2 log(2/δ). To
obtain (3.12), we enlarged constants and used the bound ∥ρ∥2L∞

ν
≲ ∥G∥2L∞

ν
+

∥GH∥2L∞
ν

in (3.6).

If G is in the L2
ν-closure of H, then with high probability, the population

squared error on the left-hand side of (3.12) converges to zero as λ → 0 (by
application of Lemma B.7 to the second term on the right). This is a statement
about the (weak) statistical consistency of the trained RF-RR estimator; it can
be upgraded to an almost sure statement, as expressed precisely in the next
main result.

Theorem 3.12 (strong consistency). Suppose that G ∈ L∞
ν (X ;Y) belongs to

the L2
ν(X ;Y)-closure of H (3.2). Let {λk}k∈N ⊂ (0, 1) be a sequence of positive

regularization parameters such that
∑

k∈N λk < ∞. For Φ the RFM (3.1)
satisfying Assumption 3.3 and for each k, let α̂(k) ∈ RMk be the trained RFM
coefficients that minimize the regularized Y -empirical risk Rλk

Nk
( · ;Y ) given by

(3.3) with Mk ≃ λ−1
k log(2/λk) i.i.d. random features and Nk ≃ λ−2

k log(2/λk)

i.i.d. data pairs under Assumption 3.5. It holds true that

lim
k→∞

Eu∼ν∥G(u)− Φ(u; α̂(k))∥2Y = 0 with probability one. (3.13)
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The proof relies on a standard Borel–Cantelli argument. See Appendix B.3 for
the details.

Remark 3.13 (universal RKHS). The assumption that G belongs to the L2
ν-

closure of the RKHS H is automatically satisfied if H is dense in L2
ν(X ;Y).

This is equivalent to its kernel being universal [53, 56]. In this case, the trained
RFM is a strongly consistent estimator of any G ∈ L∞

ν . However, we are
unaware of any practical characterizations of universality of the kernel in terms
of its corresponding random feature pair (φ, µ) for the vector-valued setting
studied here.

3.3.4 Convergence Rates

The previous subsection establishes convergence guarantees without any rates.
We now establish quantitative bounds. Throughout what follows, we denote
by K : L2

ν(X ;Y) → L2
ν(X ;Y) the integral operator (B.16) corresponding to the

operator-valued kernel function of the RKHS H (see Appendix B.2).

Theorem 3.14 (slow rates under misspecification). Suppose that G ∈ L∞
ν (X ;Y)

and that Assumption 3.5 holds. Additionally, assume that G ∈ Im(Kr/2) for
some r > 0, where K is the integral operator corresponding to the kernel
of RKHS H (3.2). Fix δ ∈ (0, 1) and λ ∈ (0, 1). For Φ the RFM (3.1)
satisfying Assumption 3.3, let α̂ ∈ RM minimize Rλ

N( · ;Y ) given by (3.3). If
M ≥ λ−1 log(32/δ) and N ≥ λ−2 log(16/δ), then with probability at least 1− δ

it holds that
Eu∼ν∥G(u)− Φ(u; α̂)∥2Y ≲ λmin(r,1) . (3.14)

The implied constant in (3.14) depends only on ∥G∥L∞
ν

and ∥η∥ψ1(Y).

Theorem 3.14 provides a quantitative convergence rate as λ → 0. For r ≥ 1,
i.e., when G ∈ H, we recover the linear convergence rate of order λ from
Theorem 3.9. The assumption that G ∈ Im(Kr/2) can be viewed as a “fractional
regularity” assumption on the underlying operator; indeed, in specific settings
it corresponds to a fractional (Sobolev) regularity of the underlying function.
In general, it appears difficult to check this condition in practice, which is one
limitation of our result.

A quantitative analog to the almost sure statement of Theorem 3.12 also holds.
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Theorem 3.6
R(α̂;G) R(α̂;G) ≤ Rλ

N(α̂;G) +
[
R(α̂;G)− RN(α̂;G)

]

Proposition 3.16: ∃β s.t. w.h.p.,
λ∥α̂∥2M ≤ Rλ

N(α̂;G) ≤ βλ
Proposition 3.22: given t := β from 3.16, bounds

R(α̂;G)− RN(α̂;G)

Lemma 3.18
Rλ
N(α

⋆;GH)

Lemma 3.20
2
N

∑N
n=1 ∥ρ(un)∥2

Lemma 3.21
2
N

∑N
n=1⟨−ηn,Φ(un;α⋆)⟩

Lemma B.12 + Lemma B.13
sup∥α∥2M≤1

∣∣∣ 2N ∑N
n=1⟨ηn,Φ(un;α)⟩

∣∣∣

Lemma B.14 + Lemma B.15: for any t, bounds
sup∥α∥2M≤t|R(α;G)− RN(α;G)|

Figure 3.1: Flow chart illustrating the proof of Theorem 3.6.

Corollary 3.15 (strong convergence rate). Instantiate the hypotheses and
notation of Theorem 3.12. Assume in addition that G ∈ Im(Kr/2) for some
r > 0. Let {λk}k∈N ⊂ (0, 1) be a sequence of positive regularization parameters
such that

∑
k∈N λk < ∞. For each k, let α̂(k) ∈ RMk be the trained RFM

coefficients with Mk ≃ λ−1
k log(2/λk) and Nk ≃ λ−2

k log(2/λk). It holds true
that

lim sup
k→∞

(
Eu∼ν∥G(u)− Φ(u; α̂(k))∥2Y

λ
min(r,1)
k

)
<∞ with probability one. (3.15)

Short proofs of both Theorem 3.14 and Corollary 3.15 may be found in Ap-
pendix B.3.

3.4 Proof Outline for the Main Theorem

Our main results are all derived from Theorem 3.6, whose proof, schematically
illustrated in Figure 3.1, we now outline. Following [223], we break the proof
into several steps that arise from the error decomposition

R(α̂;G) = RN(α̂;G) +
[
R(α̂;G)− RN(α̂;G)

]
. (3.16)

Section 3.4.1 estimates the first term on the right-hand side of (3.16) while
Section 3.4.2 estimates the second.

3.4.1 Bounding the Regularized Empirical Risk

The main technical contribution of this work is a tight bound on the G-empirical
risk RN(α̂;G) for the trained RFM. The analysis involves controlling several
sources of error and careful truncation arguments to avoid unnecessarily strong
assumptions on the problem. The result is the following.
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Proposition 3.16 (regularized G-empirical risk bound). Let Assumptions
3.3 and 3.5 hold. Suppose that G = ρ + GH satisfies Assumption 3.4. Fix
δ ∈ (0, 1), λ ∈ (0, 1), M ∈ N, and N ∈ N. Let α̂ ∈ RM be the minimizer of the
regularized Y -empirical risk Rλ

N( · ;Y ) given by (3.3). If M ≥ λ−1 log(16/δ)

and N ≥ λ−2 log(8/δ), then

Rλ
N(α̂;G) ≤ λβ(ρ, λ,GH, η) (3.17)

with probability at least 1− δ, where the multiplicative factor β(ρ, λ,GH, η) is
given by (3.6).

Since λ∥α̂∥2M ≤ Rλ
N (α̂;G), the next corollary controlling the norm (3.3) of α̂ is

immediate. It plays a crucial role in developing an upper bound for the second
term on the right side of (3.16).

Corollary 3.17 (trained RFM norm bound). Instantiate the hypotheses and
notation of Proposition 3.16. Fix δ ∈ (0, 1) and λ ∈ (0, 1). If M ≥ λ−1 log(16/δ)

and N ≥ λ−2 log(8/δ), then

α̂ ∈ Aβ :=
{
α ∈ RM

∣∣ ∥α∥2M ≤ β
}

(3.18)

with probability at least 1− δ. The radius β := β(ρ, λ,GH, η) of the norm bound
is given by (3.6).

The core elements of the proof of Proposition 3.16 are provided in the next
few subsections, with the full argument in Appendix B.4.1. The main idea is
to upper bound the G-empirical risk by its regularized counterpart and then
decompose the latter into several (coupled) error contributions.

To do this, first fix any α ∈ RM . It holds that

Rλ
N(α;Y ) = Rλ

N(α;G) +
2

N

N∑
n=1

⟨ηn,G(un)− Φ(un;α)⟩Y +
1

N

N∑
n=1

∥ηn∥2Y (3.19)

because Y is a Hilbert space and yn = G(un)+ηn. Using this, a short calculation
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shows that

Rλ
N(α̂;G) =

[
Rλ
N(α̂;Y )− Rλ

N(α;Y )
]
+ Rλ

N(α;G)

+
2

N

N∑
n=1

⟨ηn,Φ(un; α̂)− Φ(un;α)⟩Y

≤ Rλ
N(α;G) +

2

N

N∑
n=1

⟨−ηn,Φ(un;α)⟩Y +
2

N

N∑
n=1

⟨ηn,Φ(un; α̂)⟩Y .

(3.20)

In the final line, we used the fact that α̂ minimizes Rλ
N( · ;Y ). Since α ∈ RM

is arbitrary, we have the freedom to choose α so that the first term is small
(see Section 3.4.1.1 and 3.4.1.2). With α fixed, the second term averages to
zero by our assumptions on the noise, and hence, we expect it to be small with
high probability (see Section 3.4.1.3).

The third term in (3.20) exhibits high correlation between the noise ηn and the
trained RFM coefficients α̂, making it more difficult to estimate. To control
this last term, we first note that it is homogeneous in ∥α̂∥M , which can be
used to derive an upper bound in terms of a supremum over the unit ball with
respect to ∥ · ∥M . The resulting expression is then bounded with empirical
process techniques (see Appendix B.4.1.3). For the complete details of the
required argument we refer the reader to Appendix B.4.1.

In the remainder of this subsection, we estimate the first two terms on the
right-hand side of (3.20). Using the fact that G = ρ+ GH, the first term can
be split into two contributions,

Rλ
N(α;G) ≤ 2Rλ

N(α;GH) +
2

N

N∑
n=1

∥ρ(un)∥2Y . (3.21)

These contributions to the first term in (3.20) are bounded in Section 3.4.1.1
and 3.4.1.2. The second term in (3.20) is controlled in Section 3.4.1.3.

3.4.1.1 Bounding the Approximation Error

We begin with the term Rλ
N(α;GH), which may be viewed as an empirical

approximation error due to α being arbitrary. Its only dependence on the data
is through {un} in (3.3). Intuitively, this term should behave like its population
counterpart. It is then natural to choose a Monte Carlo approximation αm =
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αH(θm) for α, where αH ∈ L2
µ(Θ;R) is identified with GH as in (3.2). However,

our intuition that λ∥α∥2M should concentrate around λ∥αH∥2L2
µ

fails because it
is generally not possible to control the tail of the random variable |αH(θ)|2. We
next show that this problem can be overcome by a carefully tuned truncation
argument combined with Bernstein’s inequality.

Lemma 3.18 (construction of approximator). Suppose that GH := G ∈ H. Fix
δ ∈ (0, 1), λ > 0, N ∈ N, and M ∈ N. Let {θm} ∼ µ⊗M and {un} ∼ ν⊗N .
Define α⋆ ∈ RM componentwise by

α⋆m := αH(θm)1{|αH(θm)|≤T} , where T :=
√
λ−1 Eθ∼µ |αH(θ)|2 (3.22)

and GH = Eθ∼µ[αH(θ)φ( · ; θ)] with ∥GH∥2H = Eθ∼µ|αH(θ)|2. If M ≥ λ−1 log(4/δ),
then with probability at least 1− δ in the random feature parameters θ1, . . . , θM ,
it holds that

Rλ
N(α

⋆;GH) ≤ 81λ∥GH∥2H. (3.23)

Appendix B.4.1.1 provides the proof.

Remark 3.19 (well-specified and noise-free). Lemma 3.18 gives a O(λ) bound
on the regularized GH-empirical risk of a RFM trained on well-specified and
noise-free i.i.d. data {un,GH(un)}.

3.4.1.2 Bounding the Misspecification Error

The second contribution to (3.21) is easily bounded by Bernstein’s inequality
because ρ ∈ L∞

ν . We refer the reader to Appendix B.4.1.2 for the detailed
proof.

Lemma 3.20 (concentration of misspecification error). Let ρ be as in Assump-
tion 3.4. Fix δ ∈ (0, 1). With probability at least 1− δ, it holds that

2

N

N∑
n=1

∥ρ(un)∥2Y ≤ 4Eu∼ν∥ρ(u)∥2Y +
9∥ρ∥2L∞

ν
log(2/δ)

N
. (3.24)

3.4.1.3 Bounding the Noise Error

The second term on the right-hand side of (3.20) is a zero-mean error contribu-
tion due to the noise corrupting the output training data. By the fact that η
is subexponential (Assumption 3.5), Bernstein’s inequality delivers exponential
concentration. The proof details are in Appendix B.4.1.3.
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Lemma 3.21 (concentration of noise error cross term). Let Assumptions 3.3
and 3.5 hold. Fix α ∈ RM , {θm} ∼ µ⊗M , and δ ∈ (0, 1). With probability at
least 1− δ, it holds that

2

N

N∑
n=1

⟨−ηn,Φ(un;α)⟩Y ≤ 16e3/2∥η1∥ψ1(Y)∥α∥M
√

log(2/δ)

N
. (3.25)

Appendix B.4.1.3 also details the techniques used to upper bound the third
and final term in (3.20).

3.4.2 Bounding the Generalization Gap

Having bounded the empirical risk with approximation arguments, it remains
to control the estimation error R(α̂;G)−RN (α̂;G) due to finite data in (3.16).
We call this the generalization gap: the difference between the population test
error and its empirical version. If α̂ satisfies ∥α̂∥2M ≤ t for some t > 0, then one
can upper bound the generalization gap by its supremum over this set. The
main challenge is to show existence of a (sufficiently small) t that satisfies this
inequality. This is handled by Corollary 3.17. As summarized in the following
proposition, the resulting supremum of the empirical process defined by the
generalization gap is shown to be of size N−1/2 with high probability.

Proposition 3.22 (uniform bound on the generalization gap). Let Assumption
3.3 hold. Suppose G satisfies Assumption 3.4. Let {θm} ∼ µ⊗M for the RFM Φ

given by (3.1). Fix δ ∈ (0, 1). For i.i.d. input samples {un} ∼ ν⊗N , define the
random variable

Eβ
(
{un}, {θm}

)
:= sup

α∈Aβ

∣∣∣∣ 1N
N∑
n=1

∥G(un)− Φ(un;α)∥2Y − Eu∥G(u)− Φ(u;α)∥2Y
∣∣∣∣ ,

(3.26)
where Aβ := {α′ ∈ RM | ∥α′∥2M ≤ β} and the deterministic radius β =

β(ρ, λ,GH, η) is given in (3.6) with G as above. If N ≥ log(1/δ), then with
probability at least 1− δ it holds that

Eβ
(
{un}, {θm}

)
≤ 32e3/2

(
∥G∥2L∞

ν
+ β(ρ, λ,GH, η)

)√6 log(2/δ)

N
. (3.27)

The proof of Proposition 3.22 is given in Appendix B.4.2. The argument
is composed of two steps. The first is to show that Eβ | {θm} concentrates
around its (conditional) expectation (Lemma B.14). This follows easily using
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Figure 3.2: Squared test error of trained RFM for learning the Burgers’ equation
solution operator. All shaded bands denote two empirical standard deviations from
the empirical mean of the error computed over 10 different models, each with i.i.d.
sampling of the features and training data indices.

the boundedness of the summands. The second step is to upper bound the
expectation of Eβ | {θm} (Lemma B.15). This is achieved by exploiting the
Hilbert space structure of the Y-square loss and the linearity of the RFM with
respect to its coefficients.

3.4.3 Combining the Bounds

Since we now have control over the G-empirical risk and the generalization gap,
the G-population risk is also under control by (3.16). The proof of Theorem 3.6
follows by putting together the pieces (Appendix B.3).

3.5 Numerical Experiment

To study how our theory holds up in practice, we numerically implement the
vector-valued RF-RR algorithm on a benchmark operator learning dataset2.
The data {(un,G(un))}Nn=1 is noise-free, the {un} are i.i.d. Gaussian random
fields, and G : L2(T;R) → L2(T;R) is a nonlinear operator defined as the time
one flow map of the viscous Burgers’ equation on the torus T. Appendix B.5
provides more details about the problem setting and the choice of random
feature pair (φ, µ).

Figure 3.2a shows the decay of the relative squared test error as M increases
2The code is available at

https://github.com/nickhnelsen/error-bounds-for-vvRF .

https://github.com/nickhnelsen/error-bounds-for-vvRF
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(with λ ≃ 1/M) for fixed N . The error closely follows the rate O(M−1) until
it begins to saturate at larger M . This is due to either G not belonging to
the RKHS of (φ, µ) or the finite data error dominating. As implied by our
theory, the error does not depend on the discretized output dimension p <∞.
Figure 3.2b displays similar behavior as N is varied (now with λ ≃ 1/

√
N and

fixed M). Overall, the observed parameter and sample complexity reasonably
validate our theoretical insights.

3.6 Conclusion

This chapter establishes several fundamental results for learning with infinite-
dimensional vector-valued random features; these include strong consistency
and explicit convergence rates. When the underlying mapping belongs to the
RKHS, the rates obtained in this work match minimax optimal rates in the
number of samples N , requiring only a number of random features M ≃

√
N .

Despite being derived in a very general setting, to the best of our knowledge,
this provides the sharpest parameter complexity in M , which is free from
logarithmic factors for the first time.

There are several interesting directions for future work. These include deriving
fast rates for function-valued random features, relaxing the boundedness assump-
tion on the features and the true mapping, and accommodating heavier-tailed
or white noise distributions. Obtaining fast rates would require a sharpen-
ing of several estimates, and in particular, replacing the global Rademacher
complexity-type estimate, implicit in our work, by its local counterpart. As
our approach does not make use of an explicit solution formula, which is only
available for a square loss, this might pave the way for improved rates for other
loss functions, such as a general Lp-loss. We leave such potential extensions of
the present approach for future research.
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C h a p t e r 4

LEARNING LINEAR OPERATORS FROM NOISY DATA

This chapter is adapted from the following publication:

[1] Maarten V. de Hoop, Nikola B. Kovachki, Nicholas H. Nelsen, and
Andrew M. Stuart. “Convergence rates for learning linear operators from
noisy data”. SIAM/ASA Journal on Uncertainty Quantification 11.2
(2023), pp. 480–513. doi: 10.1137/21M1442942.

This chapter studies the learning of linear operators between infinite-dimensional
Hilbert spaces. The training data comprises pairs of random input vectors in
a Hilbert space and their noisy images under an unknown self-adjoint linear
operator. Assuming that the operator is diagonalizable in a known basis, this
work solves the equivalent inverse problem of estimating the operator’s eigen-
values given the data. Adopting a Bayesian approach, the theoretical analysis
establishes posterior contraction rates in the infinite data limit with Gaussian
priors that are not directly linked to the forward map of the inverse problem.
The main results also include learning-theoretic generalization error guarantees
for a wide range of distribution shifts. These convergence rates quantify the
effects of data smoothness and true eigenvalue decay or growth, for compact or
unbounded operators, respectively, on sample complexity. Numerical evidence
supports the theory in diagonal and non-diagonal settings.

4.1 Introduction

The supervised learning of operators between Hilbert spaces provides a natural
framework for the acceleration of scientific computation and discovery. This
framework can lead to fast surrogate models that approximate expensive
existing models or to the discovery of new models that are consistent with
observed data when no first principles model exists. To develop some of the
fundamental principles of operator learning, this chapter concerns (Bayesian)
nonparametric linear regression under random design. Although the previous
chapter obtains quite general error bounds for a class of nonlinear operator
learning problems, the restriction to linear problems in the present chapter
allows for a much sharper theoretical analysis.

https://doi.org/10.1137/21M1442942
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To this end, let H be a real infinite-dimensional Hilbert space and L be an
unknown—possibly unbounded and in general densely defined on H—self-
adjoint linear operator from its domain in H into H itself. We study the
following linear operator learning problem.

Main Problem. Let {xn} ⊂ H be random design vectors and {ξn} be
noise vectors. Given the training data pairs {(xn, yn)}Nn=1 with sample size
N ∈ N, where

yn = Lxn + γξn for n ∈ {1, . . . , N} and γ > 0 , (4.1)

find an estimator L(N) of L that is accurate when evaluated outside of the
samples {xn}.

The estimation of L from the data (4.1) is generally an ill-posed linear inverse
problem [79]. In principle, the chosen reconstruction procedure should be
consistent: the estimator L(N) converges to the true L as N → ∞. The rate
of this convergence is equivalent to the sample complexity of the estimator,
which determines the efficiency of statistical estimation. The sample complexity
N(ε) ∈ N is the number of samples required for the estimator to achieve an
error less than a fixed tolerance ε > 0. It quantifies the difficulty of Main
Problem.

In modern scientific machine learning problems where operator learning is
used, the demand on data from different operator learning architectures often
outpaces the availability of computational or experimental resources needed to
generate the data. Ideally, theoretical analysis of sample complexity should
reveal guidelines for how to reduce the requisite data volume. To that end, the
broad purpose of this chapter is to provide an answer to the question:

What factors can reduce sample size requirements for linear operator learning?

Our goal is not to develop a practical procedure to regress linear operators
between infinite-dimensional vector spaces. Various methods already exist
for that purpose, including those based on (functional) principal component
analysis (PCA) [34, 69, 128]. Instead, we aim to strengthen the rather sparse
but slowly growing theoretical foundations of operator learning.

We overview our approach to solve Main Problem in Section 4.1.1. We sum-
marize one of our main convergence results in Section 4.1.2. In Section 4.1.3,
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we illustrate examples to which our theory applies. Section 4.1.4 surveys work
related to ours. The primary contributions of this chapter and its organization
are given in Sections 4.1.5 and 4.1.6, respectively.

4.1.1 Key Ideas

In this subsection, we communicate the key ideas of our methodology at an
informal level and distinguish our approach from similar ones in the literature.

4.1.1.1 Operator Learning as an Inverse Problem

We cast Main Problem as a Bayesian inverse problem with a linear operator as
the unknown object to be inferred from data. Suppose the input training data
{xn} from (4.1) are independent and identically distributed (i.i.d.) according to
a (potentially unknown) centered probability measure ν on H with finite second
moment. Let Λ: H → H be the covariance operator of ν with orthonormal
eigenbasis {ϕk}. Let the {ξn} be i.i.d. N (0, IdH) Gaussian white noise processes
independent of {xn}. Writing Y = (y1, . . . , yN), X = (x1, . . . , xN), and Ξ =

(ξ1, . . . , ξN) yields the concatenated data model

Y = KXL+ γΞ . (4.2)

The forward operator of this inverse problem is KX : T 7→ (Tx1, . . . , TxN).
Under a Gaussian prior L ∼ N (0,Σ), the solution is the Gaussian posterior
L | (X, Y ). For a fixed orthonormal basis {φj} of H, it will be convenient to
identify (4.2) with the countable inverse problem

yjn =
∞∑
k=1

xknLjk + γξjn for j ∈ N and n ∈ {1, . . . , N} , (4.3)

where ξjn
i.i.d.∼ N (0, 1), xkn = ⟨ϕk, xn⟩H , and Ljk = ⟨φj, Lϕk⟩H . See Sec-

tion 4.2.2.2 for details.

4.1.1.2 Comparison to Nonparametric Inverse Problems

In contrast, most theoretical studies of Bayesian inverse problems concern the
estimation of a vector f ∈ H1 from data

Y ′ = Kf +N−1/2ξ , where ξ ∼ N (0, IdH2) (4.4)

and K : H1 → H2 is a known bounded linear operator between Hilbert spaces
H1 and H2. This is a signal in white noise model. Under a prior on f ,
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the asymptotic behavior of the posterior f |Y ′ as the noise tends to zero
(N → ∞) is of primary interest. Many analyses of (4.4) consider the singular
value decomposition (SVD) of K [10, 11, 57, 147, 230]. Projecting f into its
coordinates {fk} in the basis of right singular vectors {ϕ′

k} of K and writing
{Y ′

j } for observations of the stochastic process Y ′ on the basis of left singular
vectors of K yields

Y ′
j = κjfj +N−1/2ξj for j ∈ N , (4.5)

where the {ξj} are i.i.d. N (0, 1) and {κj} are the singular values of K. Obtain-
ing a sequence space model of this form is always possible if K is a compact
operator [57, Section 1.2].

Some notable differences between the traditional inverse problem (4.4) and the
operator learning inverse problem (4.2) are evident. Equation (4.2) is directly
tied to (functional) regression, while (4.4) is not. The unknown f is a vector
while L is an unknown operator. A more major distinction is that K in (4.4)
is deterministic and arbitrary, while KX in (4.2) is a random forward map
defined by point evaluations. Their sequence space representations also differ.
Equation (4.5) is diagonal with a singly-indexed unknown {fj}, while (4.3) is
non-diagonal (because the SVD of KX was not invoked) with a doubly-indexed
unknown {Ljk}. Thus, our work deviates significantly from existing studies.

4.1.1.3 Diagonalization Leads to Eigenvalue Learning

The technical core of this chapter concerns the sequence space representation
(4.3) of Main Problem in the ideal setting that a diagonalization of L is known.

Assumption 4.1 (diagonalizing eigenbasis given for L). The unknown linear
operator L from Main Problem is diagonalized in the known orthonormal basis
{φj}j∈N ⊂ H.

Under this assumption and denoting the eigenvalues of L by {lj}, Equation (4.3)
simplifies to

yjn = ⟨φj, xn⟩H lj + γξjn for j ∈ N and n ∈ {1, . . . , N} . (4.6)

In general, the random coefficient ⟨φj, xn⟩H depends on every {xkn}k∈N from
(4.3). To summarize, under Assumption 4.1 we obtain a white noise sequence
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space regression model with correlated random coefficients. Inference of the
full operator is reduced to only that of its eigenvalue sequence. Equation (4.6)
is at the heart of our analysis of linear operator learning. The convergence
results we establish for this model may also be of independent interest.

Our proof techniques in this diagonal setting closely follow those in the paper
[147], which studies posterior contraction for (4.5) in a simultaneously diago-
nalizable Bayesian setting. However, our work exhibits some crucial differences
with [147] which we now summarize.

(D1) (forward map) The coefficients {⟨φj, xn⟩H} in our problem (4.6) are
random variables (r.v.s), while in [147] the singular values {κj} in the
problem (4.5) are fixed by K. Also, the law of {⟨φj, xn⟩H} may not be
known in practice; only the samples {xn} may be given.

(D2) (link condition) Unlike in [147], our prior covariance operator Σ is not
linked to the SVD of the forward map KX . That is, we do not assume
simultaneous diagonalizability.

(D3) (prior support) The Gaussian prior we induce on {lj} is supported on a
(potentially) much larger sequence space in the scale Hs (relative to
{φj}, with s ∈ R),1 instead of just the space ℓ2(N;R) (relative to {ϕ′

k})
charged by the prior on {fj} in [147].

(D4) (reconstruction norm) Solution convergence for (4.6) is in H−s norms
relative to {φj}, while only the ℓ2(N;R) norm relative to {ϕ′

k} (i.e., H1

norm) is considered in [147].

These differences deserve further elaboration.

Item (D1). If xn ∈ H almost surely (a.s.), then ⟨φj, xn⟩H → 0 a.s. as
j → ∞ in (4.6), just as κj → 0 if K in (4.4) is compact. However, we later
observe that our KX is not compact.

1The Sobolev-like sequence Hilbert spaces Hs = Hs(N;R) are defined for s ∈ R by

Hs(N;R) :=
{
v : N → R

∣∣ ∞∑
j=1

j2s|vj |2 < ∞
}
.

They are equipped with the natural {js}-weighted ℓ2(N;R) inner product and norm. We
will usually interpret these spaces as defining a smoothness scale [119, Section 2] of vectors
relative to the orthonormal basis {φj} of H.
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Item (D2). The authors in [147] assume that the eigenbasis of the prior
covariance of f is precisely {ϕ′

k}, the right singular vectors of K in (4.4). This
direct link condition between the prior and K ensures that the implied prior
(and posterior) on {fj} is an infinite product measure. Our analysis of (4.6)
still induces an infinite product prior on {lj} without using the SVD of the
forward operator KX . Instead, we make mild assumptions that only weakly
link KX to the prior covariance operator Σ. See (4.7) for a relevant smoothness
condition.

Item (D3). The reason we work with a sequence prior having support on
sets larger than ℓ2 is to include unbounded operators (with eigenvalues |lj| → ∞
as j → ∞) in the analysis.2

Item (D4). Only the H1 estimation error is considered in [147] because
the unknown quantity is a vector f ∈ H1. Since our unknown is an operator, we
also consider the prediction error [48] on new test inputs (see Section 4.2.2.5).
This relates to the H−s norms in (D4).

4.1.2 Main Result

Here and in the sequel, we assume that there is some fixed ground truth
operator that underlies the observed output data.

Assumption 4.2 (true linear operator). The data Y , observed as {yjn} in
(4.6), is generated according to (4.2) for a fixed self-adjoint linear operator
L = L† with eigenvalues {l†j}.

Under (4.6), we study the performance of the posterior {lj} | (X, Y ) (and related
point estimators) for estimating the true {l†j} in the limit of infinite data. The
following concrete theorem is representative of more general convergence results
established later in the chapter.

Theorem 4.3 (asymptotic convergence rate with Gaussian design). Suppose
that Assumptions 4.1 and 4.2 hold with {l†j} ∈ Hs for some s ∈ R. Let
ν = N (0,Λ) be a Gaussian measure satisfying

c−1
1 j−2α ≤ ⟨φj,Λφj⟩H ≤ c1j

−2α for all sufficiently large j ∈ N (4.7)
2Note, however, that unbounded operators with continuous spectra [67] are beyond the

scope of this chapter.
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for some c1 ≥ 1 and α > 1/2. Let
⊗∞

j=1 N (0, σ2
j ) be the prior on {lj} in (4.6)

with variances {σ2
j} satisfying c−1

2 j−2p ≤ σ2
j ≤ c2j

−2p for all sufficiently large
j ∈ N for some c2 ≥ 1 and p ∈ R. Denote by PDN the posterior distribution
for {lj} arising from the observed data DN := (X, Y ). Fix α′ ∈ [0, α+ 1/2). If
min(α, α′)+min(p−1/2, s) > 0, then there exists a constant C > 0, independent
of the sample size N , such that

EDN E{l(N)
i }∞i=1∼P

DN

∞∑
j=1

j−2α′∣∣l†j − l
(N)
j

∣∣2 ≤ CN−
(
α′+min(p−1/2,s)

α+p

)
(4.8)

for all sufficiently large N . The first expectation in (4.8) is over the joint law
of DN .

Equation (4.8) shows that, on average, posterior sample eigenvalue estimates
converge in H−α′ to the true eigenvalues of L† in the infinite data limit. The
hypothesis (4.7), which controls the regularity of the data {xn}, is immediately
satisfied if, e.g., Λ is a Matérn-like covariance operator with eigenvectors {φj}.
Theorem 4.3, whose proof is in Appendix C.1, is a consequence of Theorem 4.16,
which is valid for a much larger class of input data measures.

Nonetheless, Theorem 4.3 nearly tells the whole story. The convergence rate
exponent in (4.8) shows that the regularity of the ground truth, data, and
prior each have an influence on sample complexity. Figure 4.1 summarizes this
complex relationship. The figure, and this chapter more generally, reveals three
fundamental principles of (linear) operator learning:

(P1) (smoothness of outputs) The ground truth operator becomes statistically
more efficient to learn whenever the smoothness of its (noise-free) outputs
increases. Moreover, as the degree of smoothing of the operator increases,
sample complexity improves.

(P2) (smoothness of inputs) Decreasing the smoothness of input training data
improves sample complexity (in norms that do not depend on the
training distribution itself).3

(P3) (distribution shift) As the smoothness of samples from the input test distri-
bution increases, average out-of-distribution prediction error improves.

3If the norm used to measure error depends on the training data distribution, this may
no longer be true. For example, in-distribution error (train and test on the same distribution)
would correspond in Theorem 4.3 to setting α′ = α (see Section 4.2.2.5). In this case,
increasing α would improve sample complexity.
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Figure 4.1: Fundamental principles of linear operator learning. The theoretical
convergence rate exponents (from Theorem 4.18) corresponding to unbounded
(−∆, s < −2.5), bounded (Id, s < −1/2), and compact ((−∆)−1, s < 1.5) true
operators are displayed (see Principle (P1) and Section 4.4.1). With p = s + 1/2,
Figure 4.1a (α′ = 4.5) and Figure 4.1b (α = 4.5) illustrate the effects that varying
input training data and test data smoothness have on convergence rates, respectively
(Principles (P2) and (P3)). Figure 4.1c shows that learning the unbounded “inverse
map” −∆ (with α = α′ = 4.5) is always harder than learning the compact “forward
map” (−∆)−1 (with α = α′ = 2.5) as the shift z = p− s− 1/2 in prior regularity is
varied (Section 4.1.4).

Below, we discuss how the Principles (P1) to (P3) manifest in Theorem 4.3
and Figure 4.1.

Item (P1). In Theorem 4.3, the left side of (4.8) is equivalent to the
expected prediction error over some input test distribution (see Section 4.2.2.5
for details). Increasing α′ increases the regularity of test samples. Assuming for
simplicity that s = p− 1/2, the convergence rate in (4.8) is N−(α′+s)/(α+s+1/2)

as N → ∞. Thus, besides large α′, it is beneficial to have large regularity
exponents α′ + s of the operator’s evaluation on sampled test inputs or large
regularity exponents s of the true operator’s eigenvalues. Indeed, Figures 4.1a
to 4.1c suggest that unbounded operators (whose eigenvalues grow without
bound) are more difficult to learn than bounded (eigenvalues remain bounded)
or compact ones (eigenvalues decay to zero).

Item (P2). Training inputs with low smoothness are favorable. This is
quantified in Theorem 4.3 by decreasing α, which means that the {xn} become
“rougher” (Figure 4.1a).

Item (P3). Figure 4.1b illustrates that increasing α′ in Theorem 4.3
improves the error.

We reinforce items (P1) to (P3) throughout the rest of the chapter.
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4.1.3 Examples

Although quite a strong assumption, the known diagonalization from Assump-
tion 4.1 is still realizable in practice. For instance, there may be prior knowledge
that the data covariance operator commutes with the true operator (and hence
shares the same eigenbasis) or that the true operator obeys known physical
principles (e.g., commutes with translation or rotation operators). Regarding
the latter, in [220] the authors infer the eigenvalues of a differential operator
closure for an advection–diffusion model from indirect observations. As in [263],
the operator could be known up to some uncertain parameter. This is the case
for several smoothing forward operators that define commonly studied linear
inverse problems, including the severely ill-posed inverse boundary problem for
the Helmholtz equation with unknown wavenumber parameter [11, Section 5]
or the inverse heat equation with unknown scalar diffusivity parameter [263,
Section 6.1]. In both references, the eigenbases are already known. Thus, our
learning theory applies to these uncertain operators: taking s and p large
enough in (4.8) yields prediction error rates of convergence as close to N−1 as
desired.

More concretely, the theory in this chapter may be applied directly to the
following examples.

4.1.3.1 Blind Deconvolution

Periodic deconvolution on the d-dimensional torus Td is a linear inverse problem
that arises frequently in the imaging sciences. The goal is to recover a periodic
signal f : Td → C from noisy measurements

y = µ ∗ f + η , where µ ∗ f :=

∫
Td
f(· − t)µ(dt) and η is noise,

of its convolution with a filter µ. The filter may be identified with a periodic
signal or more generally with a signed measure [263, Section 6.2]. However, µ is
sometimes unknown; this leads to blind or semi-blind deconvolution. One path
forward is to first estimate the smoothing operator Kµ : f 7→ µ ∗ f from many
random (f, y) pairs under the given model. By the known translation-invariance
of the problem, Kµ is diagonalized in the complex Fourier basis. Inference is
then reduced to estimating the Fourier coefficients {µj} of µ, which are the
eigenvalues of Kµ. Since {µj} ∈ Hs for some s ∈ R, Theorem 4.3 provides a
convergence rate.
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4.1.3.2 Radial Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a non-invasive imaging procedure
that is used in medical, industrial, and geophysical applications [199]. Ab-
stractly, EIT concerns the following severely ill-posed nonlinear inverse problem.
Let D ⊂ R2 be the unit disk and let σ : D → R>0 be the strictly positive elec-
trical conductivity of a medium. With electric potential u : D → R governed
by the elliptic partial differential equation (PDE)

−∇ · (σ∇u) = 0 in D ,

the goal is to reconstruct the unknown conductivity σ in D from voltage and
current boundary measurements of u. These are modeled (to infinite precision)
by the linear operators

Λσ : u|∂D 7→ σ
∂u

∂n

∣∣∣
∂D

or Rσ : σ
∂u

∂n

∣∣∣
∂D

7→ u|∂D ,

where ∂/∂n is the outward normal derivative. In practical EIT, either Λσ or Rσ

must be recovered from finite data. One way to solve this data completion step
[47] involves making random boundary measurements and employing operator
learning (4.1). If σ is radial, then Λσ and Rσ are diagonalized in the complex
Fourier basis over ∂D = T1 [199, Section 13.1]. In this case, the theory in this
chapter immediately applies to learn the eigenvalues of both operators.

4.1.4 Related Work

A natural setting to apply operator learning is one in which the ambient Hilbert
space H comprises real-valued functions over a domain D ⊂ Rd. For example,
there is an emerging body of work focused on learning surrogates for forward,
typically nonlinear, solution operators of PDEs [4, 34, 150, 154, 181, 203, 207,
241]. In the context of dynamical systems, there is literature focused on learning
the Koopman operator or its generator, both linear operators, from time series
data [45, 108, 143, 144, 214]. There also is interest in speeding up (Bayesian)
inversion techniques with forward surrogates [154] and in directly learning
regularizers for inversion [12, 15] (or even entire regularized inverse solution
operators [16, 66, 77]). However, more theory is needed to quantify the difficulty
of learning forward versus inverse operators that arise in these contexts. Some
sharp theory already exists for nonlinear operator learning. For example, the
authors of [52, 229] establish optimal convergence rates for direct and inverse
least squares regression problems with both infinite-dimensional input and
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output spaces under the condition that point evaluation is a Hilbert–Schmidt
operator. However, this condition never holds when H is infinite-dimensional
in our linear operator setting (4.1).

We now highlight three subfields that are closely linked to our statistical
framework.

Linear Operator Learning. The study of linear function-to-function models
within functional data analysis (FDA) [227] is well established [69, 128, 231, 268].
Much of this work concerns the setting H = L2((0, 1);R) and linear models
based on kernel integral operators under colored noise. Operator estimation is
then reduced to learning the kernel, usually in a reproducing kernel Hilbert
space (RKHS) framework. Linear operator learning has also been considered
in machine learning [1], particularly in the context of conditional expectation
operators [195] and conditional mean embeddings [118, 142, 247]. The authors
of [128, 231] study functional linear regression with a spectral operator estimator.
This allows them to obtain consistency of the prediction error assuming only
boundedness of the true operator [128], rather than compactness as assumed in
much of the FDA literature. Convergence rates are established in [231]. While
unbounded operators are not considered in these two works, their approaches
could likely be modified to handle them. Relatedly, the authors of [257]
and [42] share our motivations. The former establishes sample complexities
for learning Schatten-class compact operators (motivated by inverse problem
solution operators) while the latter for learning compact operators associated
to Green’s functions of elliptic PDEs (motivated by PDE discovery). Our
theory also treats these types of operators but goes further by proving sample
complexities for the direct learning of unbounded operators, which are of primary
interest in these papers (the inverse operator in the former and the partial
differential operator in the latter).

Inverse Operator Learning. The direct learning of solution operators of
inverse problems is currently a popular research area, catalyzed by the success
of deep neural networks [15, 46, 77, 94]. However, theoretical analysis in this
area is lacking. One difficulty is the interplay between the ill-posedness of the
learning and ill-posedness of the inverse problem itself. For a compact operator
T , our diagonal theory suggests that learning L = T under model (4.1) is easier
than learning the unbounded inverse operator L = T−1 under the same model
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(Figure 4.1c). Although less common than the former, the latter setting could
arise from noisy differentiation of time series in PDE system identification,
for example. One limitation of our theory is that it does not account for
errors-in-covariates that distinguishes true inverse operator learning, where (a
regularized version of) T−1 must be estimated only from noisy forward map
samples (4.1) with L = T . Total least squares [113] is one solution approach
in finite dimensions. The infinite-dimensional setting was considered in [38]
but with non-Bayesian methods. Regardless, inverse operator learning in this
challenging setting is an important area for future research.

Bayesian Nonparametric Statistics. Although the theoretical analysis
of inverse problems with linear operator unknowns is largely absent from
the Bayesian nonparametrics literature (see Sections 4.1.1.2 and 4.1.1.3), this
literature still has some similarities with Equations (4.1) and (4.2). Many
works go beyond [147] by deriving posterior contraction rates for problem (4.4)
without assuming simultaneous diagonalizability of the prior covariance and
the forward operator. In [230], the author studies linear inverse problems in
a non-conjugate setting. However, knowledge of the forward map’s SVD is
used heavily in the analysis even though the prior is (in one case) represented
in a non-SVD basis (one comprised of finite linear combinations of singular
vectors). These ideas are generalized in [119] to priors linked to smoothness
scales instead of the SVD. For Gaussian priors not linked to the SVD, new
methods were introduced in [198] that yield optimal posterior performance for
X-ray transform inverse problems. These techniques were refined for general
linear inverse problems in [112]. However, the previous two papers focus on
semiparametric inference (i.e., linear functionals) instead of full nonparametric
reconstruction (our main interest). The closest work to ours is [263]. There, the
author studies a linear inverse problem in which the forward map is only known
up to an uncertain parameter θ. Given a noisy observation of θ in addition
to data of the form (4.4), the author analyzes a Bayesian joint reconstruction
procedure. Other papers that use Gaussian priors not linked to the SVD
include [8, 9, 145]. While notable, all of these works mentioned do not help
us extend the results in this chapter for (4.6) to non-diagonal linear operator
learning (4.3) because our framework already avoids the SVD from the start ;
see Item (D2) in Section 4.1.1.3. Removing Assumption 4.1 while preserving
sharp rates will likely require new ideas; see Section 4.5. Last, although the
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three papers [2, 39, 197] develop powerful new methods, these methods are
specific to the particular nonlinear inverse problem studied. In contrast, the
aim of this chapter is to develop widely applicable theoretical insights into
operator learning. We view [2, 39, 197] as being more relevant to follow-up
work in the area of nonlinear inverse operator learning.

4.1.5 Contributions

This chapter provides a unified framework for the supervised learning of com-
pact, bounded, and unbounded linear operators. The analysis is performed in
the ideal situation that the eigenvectors of the true operator are known. Thus,
much like the work in [147] on Bayesian posterior contraction for linear inverse
problems, our results give a theoretical roadmap for linear operator learning.
Although we do not explicitly learn solution maps of inverse problems from
noisy data, our theory provides insight into the difficulty of learning operators
defined by both forward and inverse problems. Our primary contributions are
now listed:

(C1) we formulate linear operator learning as a nonparametric Bayesian
inverse problem with a linear operator as the unknown quantity, gen-
eralizing the work of Knapik, van der Vaart, and van Zanten [147] to
operators;

(C2) under a known eigenbasis assumption, in the large sample limit we prove
convergence of the full posterior eigenvalues to the truth by deriving
in-expectation and high probability upper and lower bounds for the
generalization error under distribution shift;

(C3) we establish analogous convergence rate guarantees for the posterior
mean eigenvalues with respect to learning-theoretic notions of excess
risk and generalization gap;

(C4) we present numerical results for learning compact, bounded, and un-
bounded operators arising from canonical linear PDEs in a diagonal
setting, which directly support the theory, and in a non-diagonal setting,
which support conjecture that our theoretical insights remain valid
beyond the confines of the theory.
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A consequence of these contributions are the theoretical principles (P1) to (P3)
(visualized in Figure 4.1). Although only proved for linear operators, these
may still inform state-of-the-art nonlinear operator learning techniques used in
practice [34, 154, 181, 207]. Indeed, the influence of output space smoothness
on sample complexity, reflecting (P1), has been observed in neural operators
[75, 152, 160]. Item (P2) implies that training on Gaussian random field
data with the commonly chosen squared exponential covariance (leading to
infinitely smooth samples) is actually statistically disadvantageous. Regarding
robustness of models under distribution shift, (P2) and (P3) suggest that it
may be misleading to only report prediction errors on test data with the same
smoothness as the training data. Further exploration of these and related issues
is crucial to guide the development of operator learning as an emerging field.

4.1.6 Outline

The remainder of the chapter is organized as follows. Contribution (C1)
(summarized in Section 4.1.1) is described in Section 4.2, where we give a
full functional-analytic problem setup and characterize the posterior. Our
main theoretical results, items (C2) and (C3), are presented and discussed in
Section 4.3. Numerical experiments (C4) that illustrate, support, and extend
beyond the theory are provided in Section 4.4. Concluding remarks follow
in Section 4.5. Appendix C.1 is devoted to proofs of the main results, with
supporting lemmas in Appendix C.2. Remaining proofs of auxiliary results are
located in Appendix C.3.

4.2 Setup

After overviewing some notation in Section 4.2.1, we detail our Bayesian
inverse problems approach to (4.1) in Section 4.2.2. Section 4.2.3 gives an
optimization perspective and defines expected risk and generalization gap in
the infinite-dimensional setting.

4.2.1 Preliminaries

We now detail the conventions used in this chapter.

Linear Spaces. Let (H, ⟨·, ·⟩, ∥·∥) from Section 4.1 be a real, separable,
infinite-dimensional Hilbert space. For any self-adjoint positive definite linear
operatorA onH, we defineA−1/2 by functional calculus, ⟨·, ·⟩A := ⟨A−1/2·, A−1/2·⟩,
and ∥·∥A := ∥A−1/2· ∥. The set L(H1;H2) is the space of bounded linear op-
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erators mapping Hilbert spaces H1 into H2, and when H1 = H2 = H, we
write L(H). The separable Hilbert space of Hilbert–Schmidt operators from
H1 to H2 is denoted by HS(H1;H2) with inner product ⟨·, ·⟩HS(H1;H2). When
H1 = H2 = H, we write (HS(H), ⟨·, ·⟩HS, ∥·∥HS). For any a ∈ H2 and b ∈ H1,
the map a⊗H1 b ∈ HS(H1;H2) denotes the outer product (a⊗H1 b)c := ⟨b, c⟩H1a

for any c ∈ H1. We use the shorthand a ⊗ b ∈ HS(H) when H1 = H2 = H.
For a possibly unbounded linear operator T on H, we denote its domain by
the subspace D(T ) ⊆ H. The identity map on H is written as Id ∈ L(H).

Probability. We primarily consider centered Borel probability measures Π

on H with finite second moment Eh∼Π∥h∥2 <∞. Such a Π has a covariance
operator Cov[Π] := Eh∼Π[h ⊗ h] in L(H) that is symmetric, nonnegative,
and trace-class. This leads to the Karhunen–Loève (KL) expansion h =∑∞

j=1 θjξjψj ∼ Π [250]. The {ξj} are zero mean, unit variance, pairwise
uncorrelated real r.v.s on a complete probability space denoted by (Ω,F ,P).
The {ψj} are the eigenvectors of Cov[Π], extended to form an orthonormal basis
of H, and {θ2j} are its nonnegative eigenvalues. If Π is a Gaussian measure,
then the {ξj} are i.i.d. N (0, 1) [253]. When appropriate, expectations are
taken in the sense of Bochner integration. We use E with no additional scripts
to denote an average over all sources of randomness. We implicitly justify
the exchange of expectation and infinite summation with the Fubini–Tonelli
theorem.

Notation. For real p and q, we write p∧q := min(p, q) and p∨q := max(p, q).
For two nonnegative real sequences {an} and {bn}, we write an ≃ bn if {an/bn}
is bounded away from zero and infinity and an ≲ bn if there exists C > 0

such that an/bn ≤ C for all n. We use computer science asymptotic notation.
This means that we write an = O(bn) as n → ∞ if lim supn→∞ an/bn < ∞,
an = Ω(bn) as n→ ∞ if bn = O(an), an = Θ(bn) as n→ ∞ if both an = O(bn)

and an = Ω(bn), and an = o(bn) as n→ ∞ if limn→∞ an/bn = 0. We sometimes
use an ≍ bn as convenient shorthand for an = Θ(bn) and an ≪ bn for an = o(bn).

4.2.2 Bayesian Inference

In this subsection, we continue the development of operator learning as an
inverse problem. We adopt the following conventions. Define DN to be the
collection of all the data, DN := (X, Y ). We equip the N -fold product space HN
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with the inner product ⟨U, V ⟩HN = 1
N

∑N
n=1⟨un, vn⟩ for any U = (u1, . . . , uN)

and V = (v1, . . . , vN) ∈ HN . This makes HN a Hilbert space. For any
symmetric positive definite C ∈ L(H), define HC := Im(C1/2) ⊆ H. Equipped
with the inner product ⟨·, ·⟩C, the set HC is a Hilbert space.

4.2.2.1 Weighted Hilbert–Schmidt Operators

Thus far we have not specified the space to which the self-adjoint operator
L : D(L) ⊆ H → H in Main Problem belongs. Since L may not be bounded
on H, the ideal Hilbert space HS(H) is not sufficient. Instead, we consider
particular Lebesgue–Bochner spaces. Let ν ′ be a centered Borel probability
measure on a sufficiently large space containing H with bounded covariance
Λ′ := Cov[ν ′] ∈ L(H). Then L2

ν′(H;H) is defined as the set of all Borel
measurable maps F : H → H such that ∥F∥L2

ν′ (H;H) := (Ex∼ν′∥F (x)∥2)1/2 is
finite. Linearity gives additional structure. For any linear T : D(T ) ⊆ H → H,
the identity ⟨v, Tu⟩ = tr(Tu⊗ v) for all u ∈ D(T ) and v ∈ H yields

Ex∼ν′∥Tx∥2 = tr
(
TΛ′1/2(TΛ′1/2)∗) = ∥TΛ′1/2∥2HS = ∥T∥2HS(HΛ′ ;H) . (4.9)

By (4.9), linear maps with finite L2
ν′ Bochner norm can be identified with

weighted Hilbert–Schmidt operators. This is useful, as the next fact (proved in
Appendix C.3) demonstrates.

Fact 4.4 (weighted Hilbert–Schmidt spaces). Suppose there is a symmetric
positive definite linear operator K ∈ L(H) that satisfies K−1/2 ∈ HS(HΛ′ ;H),
where Λ′ = Cov[ν ′]. Then ν ′(HK) = 1. Additionally, if T ∈ HS(HK;H), then
Ex∼ν′∥Tx∥2 <∞.

For K satisfying the hypotheses of Fact 4.4, the fact suggests that HS(HK;H) is
a natural Hilbert space for L to belong to. Defining D(L) := {h ∈ H : Lh ∈ H}
(the usual domain for many self-adjoint operators), Fact 4.4 also implies that
ν ′(D(L)) = 1. Identifying such a valid K requires some a priori knowledge
about the unknown L. For example, later in Subsection 3.1 we show how to
choose a K “smoothing enough” so that L ∈ HS(HK;H). For now, to make
sense of the remainder of Section 4.2 we assume that the following condition
holds.
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Condition 4.5 (existence of K). There exists a symmetric positive definite
linear operator K ∈ L(H) such that {K−1/2Λ1/2,K−1/2Λ′1/2} ⊂ HS(H) and
L† ∈ HS(HK;H).

Our use of weighted Hilbert–Schmidt spaces is closely related to the notion
of Π measurable linear operators for a probability measure Π, which is a
common way to work with unbounded operators; see [104, 186] and [147,
Sections 3–4]. If K is compact, the weighted norm is weak in the sense that
HS(HK;H) ⊃ L(H) ⊃ HS(H) [104, Section 2.2]. However, if L is already
Hilbert–Schmidt on H, then the choice K = Id ∈ L(H) in Condition 4.5 is
valid (if Λ′ is trace-class).

4.2.2.2 Data Model

Recall the statistical model Y = KXL+ γΞ (4.2) from Section 4.1.1.1. We now
give further details about each component in this data model.

Forward Map. The input data X ∼ ν⊗N in HN defines the linear forward
map KX . We enforce that the Borel probability measure ν has finite second
moment. Hence, its covariance Λ ∈ L(H) is symmetric, nonnegative, and
trace-class on H. We take Λ to be strictly positive definite for simplicity. For K
as in Condition 4.5 and for any Z ∈ HN

K (the N -fold product of HK), we define
the forward map KZ ∈ L(HS(HK;H);HN) by T 7→ KZT := (Tz1, . . . , T zN).
Fact 4.6, proved in Appendix C.3, addresses the compactness of this map.

Fact 4.6 (non-compact). If Z ∈ HN
K \ {0}, then KZ ∈ L(HS(HK;H);HN) is

not compact.

Noise. Define π := N (0, Id). Since Id ∈ L(H) is not trace-class on H,
the white noise ξ ∼ π is not a proper random element in H. It is instead
defined as the H-indexed centered Gaussian process ξ := {ξh : h ∈ H} with
covariance function (h, h′) 7→ E[ξhξh′ ] = ⟨h, h′⟩ [147, Section 2]. For γ > 0,
the noise is then γΞ, where Ξ ∼ π⊗N is assumed independent of X and
L. Finally, we interpret Y in (4.2) as N independent stochastic processes
Yn := {⟨yn, h⟩ : h ∈ H} for n ∈ {1, . . . , N}, such that for h ∈ H, it holds that
⟨yn, h⟩ |X,L ∼ N (⟨Lxn, h⟩, γ2∥h∥2). Observing Y entrywise on the indices
{φj} leads to (4.3). The case of general Cov[π] = Γ ∈ L(H) may be handled by
pre-whitening the data (4.2) [10, Section 1]; see also the related Corollary 4.19.
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Prior. We assume that L ∼ µ is a priori Gaussian, where µ := N (0,Σ)

is conjugate to the likelihood, and independent of X and Ξ. Since we view
the r.v. L : D(L) ⊆ H → H as a densely defined operator, the sense in
which µ is a proper Gaussian measure requires some care. Specifically, we
take Σ ∈ L(HS(HK;H)) to be symmetric, positive definite, and trace-class
on HS(HK;H) ⊇ HS(H), but not necessarily trace-class on HS(H). Here
K ensures that the support of µ is large enough to encompass unbounded
operators on H.

Posterior. Recall that the realized data Y is given by (4.2) with L = L†

under Assumption 4.2. Since Ξ, X, and L are a priori independent, the
posterior for L given Y and X, denoted by µDN , is the same as that obtained
when L is conditioned on Y with X fixed, a.s.; see [74, Theorems 32, 13, and
37] for more justification. The Bayesian inverse problem (4.2) is linear and
Gaussian. Thus, the posterior is also a Gaussian on HS(HK;H) and is denoted
by

µDN = N (L̄(N),Σ(N)) . (4.10)

The posterior mean is L̄(N) = EL∼µDN L ∈ HS(HK;H). The posterior covari-
ance operator is Σ(N) ∈ L(HS(HK;H)). Explicit formulas for both are known
even in this infinite-dimensional setting [147, 166, 186]. We link (4.10) to our
diagonal formulation in the next three subsections.

4.2.2.3 Diagonalization

Recall the scalar sequence space model yjn = ⟨φj, xn⟩lj + γξjn for j ∈ N and
n ∈ {1, . . . , N} (4.6).4 This model arises from the matrix sequence problem
(4.3) under Assumption 4.1 by noting that Ljk = ⟨φj, Lϕk⟩ = lj⟨φj, ϕk⟩ because
L is self-adjoint. The {ϕk} are the orthonormal eigenvectors of Λ = Cov[ν]. For
each n, the {xkn = ⟨ϕk, xn⟩}k∈N are pairwise uncorrelated r.v.s by KL expansion.
If L and Λ commute, then {ϕk = φk} can be taken as the eigenbasis for L. For
each n, the scalar model’s coefficients {⟨φj, xn⟩} are pairwise uncorrelated in
this case. However, in general L and Λ do not commute, so the coefficients are

4In the absence of noise {γξjn}, determination of {lj = l†j} is trivial: the diagonalizable
structure arising from Assumption 4.1 means that {l†j} may be recovered from a single input-
output pair, say (x1, L

†x1). However, our non-diagonal simulation studies in Section 4.4.2
will demonstrate the relevance of our theory beyond Assumption 4.1. In this setting,
determination of {l†j} is no longer trivial in the noise-free case.



92

correlated. For n ∈ {1, . . . , N}, it is useful to write these as

gjn := ⟨φj, xn⟩ =
∞∑
k=1

⟨φj, ϕk⟩xkn and ϑ2
j := Var[gj1] = ⟨φj,Λφj⟩ (4.11)

for j ∈ N. Our proofs use some independence-agnostic methods to deal with
the dependent, correlated family {gjn}j∈N. Nonetheless, {gjn}Nn=1 is still i.i.d.
for fixed j and E[gjngjn′ ] = 0 for n ̸= n′.

4.2.2.4 Posterior Characterization

For two sequences {ajn} and {bjn}, we henceforth use the averaging nota-
tion ajbj

(N)
:= 1

N

∑N
n=1 ajnbjn. For (4.6), we assume a prior {lj} ∼ µseq :=⊗∞

j=1N (0, σ2
j ). We will identify L ∼ µ with l := {lj} ∼ µseq in Section 4.2.2.5.

Under this product prior, (4.6) decouples (i.e., {lj} |DN = {lj |DN}) into an
infinite number of random scalar Bayesian inverse problems that are equivalent
to the full infinite-dimensional problem (4.2). By completing the square [253,
Example. 6.23], we obtain the following Gaussian posterior.

Fact 4.7 (posterior). The law of {lj} |DN is µDNseq =
⊗∞

j=1N (l̄
(N)
j , (σ

(N)
j )2),

where

l̄
(N)
j =

Nγ−2σ2
j yjgj

(N)

1 +Nγ−2σ2
j gjgj

(N)
and

(
σ
(N)
j

)2
=

σ2
j

1 +Nγ−2σ2
j gjgj

(N)
(4.12)

for each j ∈ N.

4.2.2.5 Bayesian Test Error

The true L† is naturally approximated by the posterior mean estimator l̄(N) :=

{l̄(N)
j } and the posterior sample estimator l(N) := {l(N)

j } ∼ µDNseq . Defining the
linear bijection B : {lj} 7→∑∞

j=1 ljφj ⊗ φj, it follows that the actual posterior
µDN (4.10) on L is the pushforward of µDNseq under B, that is, L(N) ∼ µDN =

B♯µ
DN
seq = N (L̄(N),Σ(N)).

Recall the measure ν ′ from Section 4.2.2.1 that has bounded covariance Λ′ ∈
L(H) (e.g., Λ′ = Id is allowed). Assume Λ′ has an orthonormal eigenbasis
{ϕ′

k} of H. We now view ν ′ as an arbitrary test data distribution that we are
interested in predictions on. A useful representation of the weighted norm
(4.9) is T 7→ Ex∼ν′∥Tx∥2 =∑j,k λk(Λ

′)⟨φj, Tϕ′
k⟩2, where {λk(Λ′)} denotes the
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eigenvalues of Λ′. In our setting, L is diagonal in {φj} which leads to

∥L∥2L2
ν′ (H;H) =

∞∑
i=1

ϑ′2
i l

2
i , where ϑ′2

j :=
∞∑
k=1

λk(Λ
′)⟨φj, ϕ′

k⟩2 = ⟨φj,Λ′φj⟩

(4.13)
for j ∈ N. We can now define a notion of test error (i.e., prediction or
“generalization” error).

Definition 4.8 (test error: posterior). The test error of the posterior sample
estimator is

EDN EL(N)∼µDN ∥∥L†−L(N)
∥∥2
L2
ν′ (H;H)

= EDN El(N)∼µDNseq

∞∑
j=1

ϑ′2
j

∣∣l†j − l
(N)
j

∣∣2 . (4.14)

The outer expectation is with respect to the data, and the inner expectation
is with respect to the Bayesian posterior. The definition of test error for the
posterior mean is similar.

Definition 4.9 (test error: mean). The test error of the posterior mean
estimator is

EDN
∥∥L† − L̄(N)

∥∥2
L2
ν′ (H;H)

= EDN
∞∑
j=1

ϑ′2
j

∣∣l†j − l̄
(N)
j

∣∣2 . (4.15)

We say that (4.14) or (4.15) tests in-distribution if ν ′ = ν and out-of-distribution
or under distribution shift otherwise. If Λ′ = Id, then the L2

ν′ Bochner norm
equals the familiar unweighted HS(H) norm. In Section 4.3, we study the
N → ∞ asymptotics of Equations (4.14) and (4.15).

4.2.3 Statistical Learning

We briefly adopt a statistical learning theory perspective to complement the
Bayesian approach of Section 4.2.2. Let P denote the joint distribution on (x, y)

implied by y = L†x + γξ, where x ∼ ν and ξ ∼ π = N (0, Id) independently.
The data in (4.1) is then (xn, yn) ∼ P i.i.d., n ∈ {1, . . . , N}. Since regression
is our focus, it is natural to work with the square loss function on H. Then
E(x,y)∼P 1

2
∥y − Lx∥2 and 1

N

∑N
n=1

1
2
∥yn − Lxn∥2 define the expected risk and

empirical risk for L, respectively. However, these expressions are not well-
defined because infinite-dimensional H implies ∥y∥ = ∥ξ∥ = ∞ a.s. [253,
Remark 3.8]. Inspired by the negative log likelihood of µDN as in [12, 205], we
re-define the risks as follows.
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Definition 4.10 (expected risk). Given L, the expected risk ( or population
risk) is

R∞(L) := E(x,y)∼P[1
2
∥Lx∥2 − ⟨y, Lx⟩

]
. (4.16)

Definition 4.11 (empirical risk). Given L, the empirical risk is

RN(L) :=
1

N

N∑
n=1

[
1
2
∥Lxn∥2 −⟨yn, Lxn⟩

]
= 1

2
∥KXL∥2HN −⟨Y,KXL⟩HN , (4.17)

and the regularized empirical risk is

RN,W (L) := RN(L) +
1
2N

∥W−1/2L∥2HS(HK;H) , (4.18)

where W ∈ L(HS(HK;H)) is symmetric positive definite and K is as in Condi-
tion 4.5.

Equations (4.16) and (4.17) are well-defined because the “infinite constants”
1
2
∥y∥2 and 1

2
∥yn∥2 from the original risk expressions are subtracted away and

the linear cross terms ⟨y, Lx⟩ and ⟨yn, Lxn⟩, viewed as actions under stochastic
processes (see Section 4.2.2.2), are finite a.s. .

The role of risk is to quantify the accuracy of a hypothesis L. By the in-
dependence of x and ξ plus the stochastic process definition of π in Sec-
tion 4.2.2.2, E(x,y)∼P⟨y, Lx⟩ = Ex∼ν⟨L†x, Lx⟩ so that R∞(L) = 1

2
Ex∼ν∥L†x−

Lx∥2 − 1
2
Ex∼ν∥L†x∥2. Thus, the infimum of R∞ is achieved at the regression

function [52] E[y |x = ·] = L† ∈ HS(HK;H). Minimizers of the empirical risk
over the RKHS hypothesis class L = Im(W 1/2) are point estimates of the true
L† (but we do not require L† ∈ L ). Our focus is the minimizer L̂(N,W ) of the
convex functional (4.18) over L . It may be identified as the posterior mean
L̄(N) from (4.10) whenever γ2W equals the prior covariance Σ [73]. We enforce
this and write L̂(N,W ) ≡ L̄(N). To quantify the performance of L̄(N), we employ
the following notions of error from statistical learning.

Definition 4.12 (excess risk). The excess risk of the posterior mean is defined
by

EN := 2R∞(L̄(N))− 2R∞(L†) = Ex∼ν∥L†x− L̄(N)x∥2 . (4.19)

The excess risk is always nonnegative and provides a notion of consistency
for L̄(N). In Section 4.3.5, we control (4.19) either in expectation, EDN EN ,
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or with high probability over the input training samples, EY |X EN . The last
expectation is over the noise only, under (4.2).

Next, we define the generalization gap. It can take any sign and, as the
difference between test and training errors, controls the amount of “overfitting”
that L̄(N) can exhibit.

Definition 4.13 (generalization gap). The generalization gap of the posterior
mean is

GN := R∞(L̄(N))−RN(L̄
(N)) . (4.20)

Equation (4.20) may be written in terms of L† instead of y (see Equation (C.4)
in the proof of Theorem 4.24). In Section 4.3.6, we bound the expected
generalization gap EDN |GN |.

4.3 Convergence Rates

We are now ready to study the sample complexity of the posterior estimator
(4.12) with respect to the notions of error defined in Sections 4.2.2.5 and 4.2.3.
In Section 4.3.1, we list and interpret our main assumptions. In Section 4.3.2,
under fourth moment conditions we establish asymptotic convergence rates
of both the posterior sample and mean estimators and related lower bounds.
Posterior contraction is discussed in Section 4.3.3. Analogous high probability
results are developed in Section 4.3.4 for subgaussian design. Last, both
upper and lower bounds are established in expectation for the excess risk and
generalization gap in Sections 4.3.5 and 4.3.6. We collect all of the proofs in
Appendix C.1.

4.3.1 Main Assumptions

In the setting of the sequence model (4.6), our convergence theory for diagonal
linear operator learning is primarily developed under five assumptions.

Assumption 4.14 (eigenvalue learning assumptions). The following conditions
hold true.

(A1) (diagonal true operator) Assumptions 4.1 and 4.2 hold, so that L† =∑∞
j=1 l

†
jφj ⊗ φj.

(A2) (smoothness of true operator) The true eigenvalues satisfy l† := {l†j} ∈ Hs

for some s ∈ R.
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(A3) (smoothness of prior) The prior variance sequence {σ2
j} that appears in

µseq =
⊗∞

j=1 N (0, σ2
j ) satisfies

σ2
j = Θ(j−2p) as j → ∞ for some p ∈ R . (4.21)

(A4) (smoothness of data) The trace-class covariance operator Λ ∈ L(H) of
the input training data distribution ν satisfies

ϑ2
j = ⟨φj,Λφj⟩ = Θ(j−2α) as j → ∞ for some α > 1/2 . (4.22)

The input test data distribution ν ′ is a centered Borel probability measure
with a bounded covariance operator Λ′ ∈ L(H) that satisfies

ϑ′2
j = ⟨φj,Λ′φj⟩ = Θ(j−2α′

) as j → ∞ for some α′ ≥ 0 . (4.23)

(A5) (smoothness range) It holds that (α∧α′)+s > 0 and (α∧α′)+(p−1/2) > 0.

These assumptions are interpreted as follows.

Item (A1). The diagonalization allows us to identify L† with its eigen-
values l†. The domain D(L†) := {h ∈ H : ∥L†h∥2 =

∑∞
j=1|l†j |2⟨φj, h⟩2 < ∞}

ensures that L† is self-adjoint on H.

Item (A2). The regularity condition l† ∈ Hs implicitly determines the
sense in which the series expansion for L† in (A1) converges. If s ≥ 0, then
L† ∈ HS(H). Otherwise, there exists K ∈ L(H) such that L† ∈ HS(HK;H).
For example, define Ks′ :=

∑
j κ

2
jφj⊗φj with κ2j = j2s

′ . Then ∥L†∥HS(HKs′
;H) =

∥l†∥Hs′ , so L† converges in HS(HKs′ ;H) for any s′ ≤ s < 0.

Item (A3). The exponent p ∈ R in (4.21) adjusts the regularity of prior
draws l ∼ µseq: l ∈ Hs′ a.s. for every s′ < p − 1/2. The choice p = s + 1/2

thus gives the closest match to the true regularity of l† ∈ Hs. Relating back to
Section 4.2.2.2, the full prior is µ = B♯µseq = N (0,Σ). With, e.g., K = Ks′ as
above, Σ then satisfies Σφi ⊗ φj = κ2jσ

2
j δijφi ⊗ φj for all i and j.

Item (A4). Equations (4.22) and (4.23) reflect algebraic spectral decay
of the input data covariance operators with respect to the eigenbasis {φj} of
L†. This provides a weak link between the data distributions and the prior;
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Figure 4.2: Example of exact power law spectral decay (4.22) when Λ is not diago-
nalized by {φj}; see the discussion in Item (A4).

see Item (D2). Although sharp bounds such as Equations (4.22) and (4.23)
may be difficult to verify when Λ or Λ′ is not diagonalized in {φj}, Figure 4.2
provides strong numerical evidence that exact power law decay can still exist in
this setting. Indeed, in this figure we choose Λ = Λ(α̃) such that its eigenpairs
{(λ2k, ϕk)} satisfy λ2k = 152α̃−1((kπ)2 + 225)−α̃ = Θ(k−2α̃) with α̃ ∈ R and z 7→
ϕk(z) =

√
2 sin(kπz). We choose output basis z 7→ φj(z) =

√
2 cos((j − 1

2
)πz).

Both {ϕk} and {φj} are orthonormal bases of H = L2((0, 1);R). One can show
that ϑ2

j = ⟨φj,Λ(α̃)φj⟩ =
∑∞

k=1 64π
−2λ2kk

2(4(j(j − 1)− k2) + 1)−2. For select
j ≤ 221, we sum the first 221 terms of this series to approximately compute
the {ϑ2

j}. Figure 4.2a shows that ϑ2
j decays asymptotically as a power law

(with magenta lines being linear least square fits) for various α̃ (saturating near
2α̃ = 4). Figure 4.2b suggests that Λ satisfies Assumption (A4) with α = α̃∧ 2.

Item (A5). The first inequality in (A5) ensures that L† has finite L2
ν

and L2
ν′ Bochner norms (4.13). In particular, ν(D(L†)) = ν ′(D(L†)) = 1.5 The

second inequality ensures that the prior covariance Σ is trace-class on both
HS(HΛ;H) and HS(HΛ′ ;H). This means L ∼ µ = N (0,Σ) has finite L2

ν and
L2
ν′ Bochner norms a.s. . It follows that the latter two assertions also hold for

the posterior µDN = N (L̄(N),Σ(N)), a.s. with respect to DN .
5Notice that we do not invoke the K-weighted Hilbert–Schmidt formulation from Sec-

tions 4.2.2.1 and 4.2.2.2 in Assumption 4.14. Such abstraction is unnecessary for our
straightforward diagonal approach (Item (A1)). In particular, the scalar sequence space
model (4.6) is well-defined without reference to any K. However, work going beyond diagonal
operators may need to use HS(HK;H) spaces, with K satisfying Condition 4.5.
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4.3.2 Expectation Bounds

To develop error bounds in expectation, we only require mild polynomial
moment conditions on the input training data measure ν.

Assumption 4.15 (expectation: training data). The training data distri-
bution ν is a centered Borel probability measure on H with KL expansion
x =

∑∞
k=1 λkζkϕk ∼ ν. The eigenvalues {λ2k} of Cov[ν] = Λ are ordered to be

nonincreasing, and the zero mean and unit variance r.v.s {ζk} are independent,
have finite fourth moments, and satisfy E[ζ4j ] = O(1) as j → ∞. In particular,
Ex∼ν∥x∥4 < ∞. Last, the r.v.s {gjgj(N)}j,N∈N, defined in Section 4.2.2.4 as
gjgj

(N) = 1
N

∑N
n=1⟨φj, xn⟩2, satisfy lim supN→∞ E[(gjgj(N))−4] ≲ ⟨φj,Λφj⟩−4

for all j ∈ N.

Henceforth, it is useful to define the parametrized sequences {JN}N∈N and
{ρN}N∈N by

JN(α, p) :=
⌊
N

1
2(α+p)

⌋
and

ρN(α, α
′, p) :=


N−
(
1−α+1/2−α′

α+p

)
, if α′ < α+ 1/2 ,

N−1 logN , if α′ = α + 1/2 ,

N−1 , if α′ > α+ 1/2 ,

(4.24)

respectively, for N ∈ N. Notice that JN → ∞ (if α+ p > 0) and ρN = Ω(N−1)

as N → ∞. Our main result gives asymptotic convergence rates of the test
errors from Section 4.2.2.5.

Theorem 4.16 (expectation: upper bound). Let the ground truth L†, prior
µ on L, training data distribution ν, and test data distribution ν ′ satisfy
Assumptions 4.14 and 4.15. Let ρN = ρN(α, α

′, p) in (4.24) with α, α′, and p
as in Assumption 4.14. Denote by µDN the posterior distribution (4.10) for L
arising from the observed data DN = (X, Y ) in (4.2). Then

EDN EL(N)∼µDN ∥∥L† − L(N)
∥∥2
L2
ν′ (H;H)

= O
(
ρN
)
+ o
(
N

−
(
α′+s
α+p

))
as N → ∞ ,

(4.25)
where the constants in this upper bound depend on L† or, equivalently, on l†.
Furthermore,

sup
∥l†∥Hs≲1

EDN EL(N)∼µDN ∥∥L†−L(N)
∥∥2
L2
ν′ (H;H)

= O
(
ρN+N

−
(
α′+s
α+p

))
as N → ∞ .

(4.26)
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Both assertions also hold for the test error (4.15) of the posterior mean L̄(N).

Theorem 4.16 has the same implications as Theorem 4.3, namely, Principles
(P1) to (P3). The effect of distribution shift (P3) in (4.25) is apparent: increas-
ing α′ always improves the sample complexity (until the rate N−1 is achieved).
We note that the three smoothness cases in the ρN term from (4.25) are similar
to those in functional linear regression [48]. The “matching” prior smoothness
choice p = s+ 1/2 leads to asymptotically balanced contributions from both
error terms in (4.26). The rate is then N−(2α′+2s)/(1+2α+2s) if α′ < α + 1/2

(which for α′ = α is minimax optimal [57, 145, 147]) or N−1 (up to logarithms)
if α′ ≥ α + 1/2. Principles (P1) and (P2) are evident: as s decreases (L†

becomes “less compact” and possibly unbounded) and α increases (the {xn}
become smoother), the rates degrade. Figure 4.1 visualizes these rates in various
settings. Last, we note that the rate of convergence in (4.25) can be strictly
faster when L† is fixed as opposed to when L† is varying for the worst-case
error (4.26). Our interest is mainly in individual bounds (i.e., fixed L†) because
these are more useful in practice.

Next, we provide a lower bound corresponding to a given L†, equivalently, l†.

Theorem 4.17 (expectation: lower bound). Let the hypotheses of Theorem 4.16
be satisfied. Let JN = JN(α, p) in (4.24) with α and p as in Assumption 4.14.
Then for any positive sequence {τn} such that τn → 0 and nτn → ∞ as n→ ∞,
the posterior mean test error satisfies

EDN
∥∥L† − L̄(N)

∥∥2
L2
ν′ (H;H)

= Ω

(
τNρN +

∑
j>JN

j−2α′|l†j |2
)

as N → ∞ . (4.27)

The same assertion holds for the test error (4.14) of the full posterior µDN , but
without {τn}.

The tail series term in (4.27) is closely related to the lower bound in [160,
Theorem 3.4] for nonlinear operator learning because both involve the spectral
decay of the covariance operator of the pushforward measure L†

♯ν
′. Since this

tail term is order N−(α′+s)/(α+p)o(1) by (C.6) in Lemma C.1, the lower bound
(4.27) “matches” the corresponding terms in the individual upper bound (4.25)
up to o(1) factors. But without further conditions on l† (and hence knowledge
about the o(1) factors), the bounds are not guaranteed to be sharp in the
over-smoothing prior regime p > s + 1/2. The rates do match (up to τN
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in (4.27) for L̄(N), but τN is under control) for under-smoothing priors with
p ≤ s+ 1/2 because the ρN terms in both Theorems 4.16 and 4.17 dominate.
The {τn} factor is likely an artifact of our proof technique. By choosing l† such
that |l†j | = J−s

N δj−1,JN in (4.27), Theorem 4.17 also implies that (4.26) is truly
sharp.

So far, we have assumed that l† ∈ Hs for some s. However, this does not
preclude the possibility that l† ∈ Hs′ for another s′ > s. For example, the
previous theorems account for operators with analytic spectral smoothness (see
Section 4.1.3): l†j ≍ exp(−c1jc2) for c1 and c2 > 0 (here l† ∈ Hs for every s ∈ R).
Nevertheless, many scientific problems are naturally distinguished by regularly
varying eigenvalues. These behave like a power law up to a slowly varying
function S : R≥0 → R≥0 [37] (this means that S(λx)/S(x) → 1 as x→ ∞ for
every λ > 0; examples include logarithms or functions with positive limit).
The following sharp convergence result concerns posterior sample estimates
of regularly varying true eigenvalues. Similar may be proved for the posterior
mean, but the upper and lower bounds must be considered separately as in
Theorems 4.16 and 4.17. The implications are the same.

Theorem 4.18 (asymptotically sharp bound for regularly varying eigenvalues).
Let the hypotheses of Theorem 4.16 be satisfied, but instead of (A2), let L† be
such that |l†j | = Θ(j−1/2−sS(j)) as j → ∞ for some slowly varying function S

at infinity. Let JN = JN(α, p) in (4.24). Then

EDN EL(N)∼µDN ∥∥L†−L(N)
∥∥2
L2
ν′ (H;H)

= Θ
(
ρN+N

−
(
α′+s
α+p

)
S2(JN)

)
as N → ∞ .

(4.28)

Although we have thus far restricted our attention to the Gaussian white
noise model (4.2), the next corollary shows that our theory remains valid for
smoother Gaussian noise.

Corollary 4.19 (colored noise). Suppose that the Gaussian distribution of the
{ξn} determining the data Y in (4.2) is not necessarily white, but is instead
given by π = N (0,Γ), where Γ ∈ L(H) is symmetric positive definite with
eigenbasis {φj} shared with L† and eigenvalues λj(Γ) = Θ(j−2β) as j → ∞
for some β ≥ 0. Let µDNseq be given by (4.12) except with each γ2 replaced
by γ2λj(Γ). Let the hypotheses of Theorems 4.16 to 4.18 hold, respectively,
except let ρN = ρN(α − β, α′, p), JN = JN(α − β, p), and instead of (A5), let
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min(α−β, α′)+min(p−1/2, s) > 0. Then the results of Theorems 4.16 to 4.18
remain valid, respectively, if in each display of Equations (4.25) to (4.28) every
instance of α is replaced by α− β.

The corollary follows from the hypothesis that Γ and L† commute. Indeed, pre-
whitening the new output data gives Γ−1/2yn = L†Γ−1/2xn + γN (0, Id), which
our existing theory can handle. This result implies that larger β (smoother
noise) improves convergence rates because the input data smoothness has
effectively been reduced from α to α− β (see Principle (P2)).

4.3.3 Posterior Contraction

The performance of Bayesian procedures is often quantified by the rate of
contraction of the posterior around the true data-generating parameter as
N → ∞. In the setting of operator learning, we follow [8, 11, 145, 147] and
consider finding a positive sequence εN → 0 such that for any positive sequence
MN → ∞, it holds that

EDN µDN
(
{L : ∥L† − L∥L2

ν′ (H;H) ≥MNεN}
)
→ 0 as N → ∞ . (4.29)

We say that εN is a contraction rate of the posterior µDN with respect to the
L2
ν′(H;H) Bochner norm. By Chebyshev’s inequality, (MnεN)

−2 times the
posterior test error (4.14) is an upper bound for the left-hand side of (4.29).
Thus, the limit in (4.29) holds true if (4.14) is O(ε2N) as N → ∞. The next
corollary is then a consequence of Theorem 4.16.

Corollary 4.20 (posterior contraction). Let the hypotheses of Theorem 4.16
be satisfied. Then any sequence {εN}N∈N such that ε2N is of the order of the
right-hand side of (4.25) as N → ∞ is a contraction rate of µDN with respect
to the L2

ν′(H;H) Bochner norm.

We deduce that the inverse problem (4.2) for linear operator learning is moder-
ately ill-posed in the sense of [10, Section 4] under Assumptions 4.14 and 4.15
because ε2N follows a power law (4.25). Since µDN is Gaussian, (4.14) admits a
decomposition into three terms: the squared estimation bias, estimation vari-
ance, and posterior spread (i.e., the trace of Σ(N)) [10, Section 1.1]. Inspection
of the proof of Theorem 4.16 shows that the second term on the right of (4.25)
is the contribution from the squared estimation bias, while the first is from
both the estimation variance and posterior spread (C.1). Interpretations are
similar for the remaining theorems.
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4.3.4 High Probability Bounds

A stronger assumption on the input data distribution is needed to obtain
concentration bounds. It includes Gaussian measures as a special case.

Assumption 4.21 (high probability: training data). The training data dis-
tribution ν is a centered Borel probability measure on H with KL expansion
x =

∑∞
k=1 λkζkϕk ∼ ν. The eigenvalues {λ2k} of Cov[ν] = Λ are ordered to be

nonincreasing, and the zero mean and unit variance r.v.s {ζk} are independent
σ2
ν-subgaussian for some absolute constant σν ≥ 1. In particular, ν is a strict

subgaussian measure with trace-class covariance operator proxy Λ.6

The next result holds with exceptionally high probability over the subgaussian
design X ∼ ν⊗N .

Theorem 4.22 (high probability: upper and lower bounds). Let the ground
truth L†, prior µ on L, training data distribution ν, and test data distribution
ν ′ satisfy Assumptions 4.14 and 4.21. Let JN = JN (α, p) and ρN = ρN (α, α

′, p)

in (4.24) with α, α′, and p as in Assumption 4.14. Denote by µDN the posterior
distribution (4.10) for L arising from the observed data DN = (X, Y ) in (4.2).
Then there exist two constants c1 > 0 and c2 ∈ (0, 1/2) such that, as N → ∞,
it holds that

EY |X EL(N)∼µDN ∥∥L† − L(N)
∥∥2
L2
ν′ (H;H)

= O
(
ρN
)
+ o
(
N

−
(
α′+s
α+p

))
(4.30)

with probability at least 1− c1 exp(−c2N) over X ∼ ν⊗N and

EY |X EL(N)∼µDN ∥∥L† − L(N)
∥∥2
L2
ν′ (H;H)

= Ω
(
ρN +

∑
j>JN

j−2α′|l†j |2
)

(4.31)

with probability at least 1− c1 exp(−c2N) over X ∼ ν⊗N . Both assertions
remain valid if the inner expectations are removed and L(N) is replaced by the
posterior mean L̄(N).

We explicitly see that the probability of failure for Theorem 4.22 is exponentially
small in the sample size. The implications of this theorem are the same as
those of Theorem 4.16. The corresponding lower bounds are analogous to the
in-expectation results from Theorem 4.17.

6A centered real-valued r.v. Z is σ2-subgaussian, denoted by Z ∈ SG(σ2), if E exp(tZ) ≤
exp(σ2t2/2) for all t ∈ R [267]. On a Hilbert space (H, ⟨·, ·⟩), a centered H-valued r.v. x is
subgaussian with respect to trace-class covariance operator proxy Q ∈ L(H), denoted by
x ∈ SG(Q), if there exists q ≥ 0 such that E exp(⟨h, x⟩) ≤ exp(q2⟨h,Qh⟩/2) for all h ∈ H
[13]. It is strictly subgaussian if Q ≼ cE[x⊗ x] for some c > 0.



103

4.3.5 Excess Risk

In the previous two subsections, we bounded the test error (4.14) from above
and below. It follows that corresponding bounds for the excess risk EN (4.19)
may be obtained by specializing to the in-distribution case ν ′ = ν for the
posterior mean (so α′ = α).

Corollary 4.23 (expected excess risk: upper and lower bounds). Let the
hypotheses of Theorems 4.16 and 4.17 be satisfied. Then the expected excess
risk EDN EN satisfies the bounds

EDN Ex∼ν∥L†x− L̄(N)x∥2 = O
(
N−(α+p−1/2

α+p ))+ o
(
N−(α+sα+p)

)
as N → ∞ ,

(4.32)
and for any positive sequence {τn} such that τn → 0 and nτn → ∞ as n→ ∞,
it holds that

EDN Ex∼ν∥L†x− L̄(N)x∥2 = Ω
(
τNN

−(α+p−1/2
α+p ) +

∑
j>JN

j−2α|l†j |2
)

as N → ∞ .

(4.33)

Corollary 4.23 is proved as a consequence of Theorems 4.16 and 4.17. A similar
result may be established for EY |X EN by using Theorem 4.22. We omit the
details for brevity. It is also interesting that fast rates for the excess risk (i.e.,
faster than N−1/2 [188]) are attained by the posterior mean eigenvalue estimator
in certain regimes. The usual statistical learning techniques based on bounding
suprema of empirical processes typically yield slow N−1/2 rates or worse [257].
Our results are sharper because we use explicit diagonal calculations.

4.3.6 Generalization Gap

Last, we estimate the generalization gap (4.20) in L1
P(Ω;R).

Theorem 4.24 (expected generalization gap: upper and lower bounds). Let
the hypotheses of Theorem 4.16 be satisfied. Then for GN as in (4.20), it holds
that

EDN |GN | = O
(
N−( 1

2
∧α+p−1/2

α+p )) as N → ∞ . (4.34)

Additionally, for any positive sequence {τn} such that τn → 0 and n1/2τn → ∞
as n→ ∞,

EDN |GN | = Ω
(
τNN

−(α+p−1/2
α+p )) as N → ∞ (4.35)

if (α + s)/(α + p) ≥ 2. Otherwise, the previous assertion (4.35) remains valid
provided that p < 1 + α + 2s and τn ≫ n−1/2 ∨ n−(1+α+2s−p)/(2α+2p) as n→ ∞.
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We see that the expected generalization gap decays at least as fast as the
standard Monte Carlo parametric rate N−1/2 if α+ p ≥ 1. Otherwise, it decays
at a slower rate that is arbitrarily slow as α + p approaches 1/2 from above.
The lower bound only matches the latter contribution.

4.4 Numerical Experiments

We now instantiate our operator learning framework numerically, both according
to the theory (Section 4.4.1) and beyond (Section 4.4.2). For clarity, we only
implement the posterior mean estimator L̄(N). Our conceptually infinite-
dimensional problem must be carefully discretized to avoid obscuring the
theoretical infinite-dimensional behavior [6, Section 1.2]. We use spectral
truncation [6, 9] to finite-dimensionalize infinite sequence spaces. For v =

{vj} ∈ R∞, its truncation is v(J) := {vj}j≤J ∈ RJ for J ∈ N “Fourier” modes.
We use the relative expected squared L2

ν′ Bochner norm as a numerical error
metric, i.e.,

EDN Ex∼ν′∥L†x− L̄(N)x∥2
Ex∼ν′∥L†x∥2

=
EDN

∑∞
j=1 ϑ

′2
j

∣∣l†j − l̄
(N)
j

∣∣2∑∞
k=1 ϑ

′2
k |l†k|2

. (4.36)

4.4.1 Within the Theory

We now confirm the theoretical results of this chapter with simulation studies.
Define A : D(A) ⊂ H → H by h 7→ Ah := −∆h with domain D(A) :=

H1
0 (I;R) ∩H2(I;R), where I := (0, 1), H := L2(I;R), and ∆ is the Laplacian

(i.e., second derivative). We consider truths L† = A, Id, and A−1 corresponding
to unbounded, bounded, and compact self-adjoint operators on H, respectively.
The map A is diagonalized in the orthonormal basis {φj} of H given by
z 7→ φj(z) =

√
2 sin(jπz). This is the output space basis used henceforth.

Then L† = A, Id, and A−1 have eigenvalue sequences l† = {(jπ)2}, {1}, and
{(jπ)−2} ∈ Hs for any s < s⋆, where s⋆ = −5/2,−1/2, and 3/2, respectively.
These eigenvalues are regularly varying (with S ≡ 1) as in Theorem 4.18.

We work in the Gaussian setting of Theorem 4.3. We choose Matérn-like
covariances

Λ = τ 2α−1
1 (A+ τ 21 Id)

−α and Λ′ = τ 2α
′−1

2 (A+ τ 22 Id)
−α′

(4.37)

for ν and ν ′. Here {τi}i=1,2 are inverse length scales. Draws from ν (resp. ν ′)
are in Hs′ for all s′ < α− 1/2 (resp. s′ < α′ − 1/2). Notice that L†, Λ, and Λ′

are simultaneously diagonalizable in {ϕj ≡ φj}. The eigenvalues are λj(Λ) =
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Table 4.1: Matching test measure. Theoretical vs. experimental (in parentheses)
convergence rate exponents r in O(N−r) of the relative expected squared L2

ν(H;H)
in-distribution error (i.e., the scaled excess risk EDN EN ).

L† {Operator Class} Rough Prior Matching Prior Smooth Prior

A {Unbounded} 0.714 (0.714) 0.800 (0.809) 0.615 (0.616)
Id {Bounded} 0.867 (0.865) 0.889 (0.889) 0.762 (0.762)
A−1{Compact} 0.913 (0.913) 0.923 (0.920) 0.828 (0.830)

ϑ2
j = τ 2α−1

1 ((jπ)2 + τ 21 )
−α ≍ j−2α and similarly for λj(Λ′) = ϑ′2

j ≍ j−2α′ . These
satisfy Assumption (A4). We directly define the prior covariance Σ in sequence
space according to Assumption (A3), choosing σ2

j := τ 2p−1
3 ((jπ)2+τ 23 )

−p ≍ j−2p

for τ3 > 0. We enforce Assumption (A5) for the values of α, α′, and p.

An independent random dataset DN (as in (4.6)) is generated for each sample
size N ∈ N to construct l̄(N). For each N , this is repeated 250, 500, or
1000 times for L† = A, Id, and A−1, respectively, to approximate the outer
expectation in (4.36) by sample averages. Convergence rates are produced by
linear least square fits to the logarithm of computed errors. We fix the noise
scale to be γ = 10−1, 10−3, and 10−5 for L† = A, Id, and A−1, respectively.

4.4.1.1 In-Distribution

We set α = α′ = 4.5 (in-distribution), τ1 = τ2 = 15, τ3 = 1, and define the prior
smoothness p = p(L†) = 1/2+ s⋆(L†)+ z, where z = −0.75, 0, or 0.75 is a fixed
shift to replicate rough, matching, or smooth priors, respectively. Sequences
are discretized by keeping up to J = 216 = 65, 536 Fourier modes. The sample
size is N ∈ {24, 25, . . . , 214}. Table 4.1 empirically verifies our sharp theoretical
predictions from Theorem 4.18 for EDN EN . The convergence as N increases is
visualized in Figure 4.4d for the smooth prior case.

Moving on to study the rates of convergence of EDN EN and EDN |GN | for
unbounded L† = A in more detail, we now use N -dependent spectral truncation.
For each N , we only take Fourier modes from the set {j ∈ N : j ≤ cJN}, where
c > 0 is a tunable constant and JN := N1/(2α+2p) ≪ N . This approach is
justified because it is more stable numerically and the results in Section 4.3
remain valid with this N -dependent truncation. Contributions from the tail set
{j ∈ N : j > cJN} are of equal order or negligible, asymptotically, relative to
those from the truncated set (Appendix C.1). Figure 4.3 shows results with N
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Table 4.2: Distribution shift. Theoretical vs. experimental (in parentheses) con-
vergence rate exponents r in O(N−r) of the relative expected squared L2

ν(H;H)
out-of-distribution error (4.36) for rougher and smoother test measures.

Rougher Test Measure: α′ = 4 < α = 4.5 Smoother Test Measure: α′ = 5.25 > α = 4.5

L† Rough Prior Matching Prior Smooth Prior Rough Prior Matching Prior Smooth Prior

A 0.429 (0.428) 0.600 (0.607) 0.462 (0.462) 1.000 (0.992) 1.000 (0.996) 0.846 (0.849)
Id 0.733 (0.734) 0.778 (0.788) 0.667 (0.667) 1.000 (0.986) 1.000 (0.979) 0.905 (0.905)
A−1 0.826 (0.837) 0.846 (0.861) 0.759 (0.764) 1.000 (0.981) 1.000 (0.975) 0.931 (0.926)

up to 221 and c such that cJ221 ≈ 214 (maximal truncation level). The influence
of discretization manifests itself through γ. For EDN EN , the under-smoothing
prior region (z < 0) is relatively insensitive to γ and the rate exponents closely
match (4.32). But in the over-smoothing prior region z > 0 for large γ, the rates
begin to deviate from the theory because large constants mask the theoretical
asymptotic behavior in this finite sample regime. Similarly, for finite N , the
noise scale can alter the correct behavior of the competing terms in the bound
(4.34) for EDN |GN |. For small γ, terms O(N−1/2) have large hidden constants
that obscure terms ≫ N−1/2 for small z < 0 (Figure 4.3c). For large γ, this
behavior is reversed (Figure 4.3d).

4.4.1.2 Out-of-Distribution

We now vary α′ to simulate distribution shift. With J = 216 and τ2 = 15,
our results in Table 4.2 show near perfect agreement with Theorem 4.18 for
out-of-distribution regimes on both sides of the boundary case α′ = α+ 1/2.
In the matching prior setting (z = 0), Figures 4.4a to 4.4c show the decay of
the test error (4.36) with N . The magenta lines are least square fits and the
shaded regions denote one standard deviation from the mean with respect to
resampling DN . The excellent numerical fits verify our assertions.

4.4.2 Beyond the Theory

In this subsection, we consider truths L† ∈ HS(HK;H) (with K satisfying
Condition 4.5) that are not necessarily diagonalized by {φj}. So, the infinite
matrix L† := {L†jk} from (4.3) must be estimated instead of l†. Recall that
Λ has eigenpairs {(λ2k, ϕk)}. By Fact 4.4, L† ∈ HS(HΛ;H) so the expansion
L† =

∑
i,j(λjL

†
ij)φi ⊗HΛ

(λjϕj) =
∑

i,j L
†
ijφi ⊗ ϕj always exists and is unique.

Yet, we have no theory for posterior estimators of L†. To derive the posterior
mean, we notice that the inverse problem for L |DN decouples along rows of
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Figure 4.3: The numerical influence of data noise variance γ2 for L† = A. For two
distinct γ2 values, Figures 4.3a and 4.3b show convergence rate exponents for EDN EN
vs. z, with z = p+ 2 being the prior smoothness shift parameter, while Figures 4.3c
and 4.3d display rates for EDN |GN | vs. z. Throughout, the solid magenta “Theory”
curves denote the theoretical upper bound rate exponents, and the shaded regions
denote one standard deviation from the mean rate exponent computed from 250
repetitions of the numerical experiment.
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Figure 4.4: Within the theory. Figures 4.4a to 4.4c are such that z = 0 (matching
p = s⋆ + 1/2) and the test measures ν ′ are either equal to (α′ = α), rougher than
(α′ < α), or smoother than (α′ > α) the training measure ν. For fixed L†, the
same L̄(N) achieves smaller relative error (4.36) as α′ increases, that is, when testing
against smoother input functions. In all cases, the observed rates closely match the
theoretical ones (see Tables 4.1 and 4.2). Figure 4.4d (corresponding to Table 4.1
column four) shows that convergence improves with increased operator smoothing
(the logarithmic vertical axis is rescaled to ease comparison of the slopes).
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L = {Ljk}, which are denoted by Lj: for j ∈ N. We assume a Gaussian prior
Lj: ∼ N (0,Σj), where Σj = diag({σ2

jk}k∈N) is diagonal for simplicity. Thus
(Lj:)k = Ljk ∼ N (0, σ2

jk). By deriving the normal equations, we obtain for j, k,
and ℓ ∈ N the posterior mean

L̄
(N)
j: =

(
A(N) + γ2

N
Σ−1
j

)−1
b
(N)
j , where A

(N)
ℓk := xℓxk

(N) and(
b
(N)
j

)
ℓ
:= yjxℓ

(N) .
(4.38)

We use the same covariances (4.37) diagonalized in the Fourier sine input basis
{ϕj}, but now use the Volterra cosine output basis {φj} as in Figure 4.2, where
z 7→ φj(z) :=

√
2 cos((j − 1

2
)πz). Define the divergence form elliptic operator

Aa : D(Aa) ⊂ H → H by h 7→ Aah := −∇ · (a∇h), where D(Aa) = D(A) is as
before and z 7→ a(z) := exp(−3z) is a smooth coefficient function. We learn
(via L̄(N)) unbounded, bounded, and compact self-adjoint operators L† = Aa, Id,
and A−1

a , respectively. For each of the three L†, we pick prior variance sequences
σ2
jk = σ2

jk(L
†) given by

σ2
jk(L

†) :=


(jk)−(z−2)

( 1+(k/j)2

1+(j−k)2
)2
, if L† = Aa ,

(jk)−z
( k+k/j
1+j+(j−k)2

)2
, if L† = Id ,

(jk)−(z+2)
( 1+j/k
1+(j−k)2

)2
, if L† = A−1

a .

(4.39)

These priors ensure that L matches the exact asymptotic behavior (as j → ∞,
k → ∞, and j = k → ∞) of L† when z = 0. Our simulation setup follows
Section 4.4.1, except now with J = 212, N up to 214, and only 100 Monte Carlo
repetitions. Although Aa is not diagonal in φj ̸= ϕj (each L† is dense) and
the posterior mean estimator is now a doubly-indexed sequence, our results in
Figure 4.5 support the same conclusions previously asserted.

4.5 Conclusion

This chapter concerns the supervised learning of linear operators between
Hilbert spaces. Learning is framed as a Bayesian inverse problem with a linear
operator as the unknown quantity. Working in the best-case scenario of known
eigenvectors, the analysis establishes convergence rates in the infinite data limit.
The main results reveal useful theoretical insights about operator learning,
including what types of operators are harder to learn than others, what types
of training data lead to reduced sample complexity, and how distribution shift
affects error. The work opens up the following directions for future research.
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Figure 4.5: Beyond the theory. Analogous to Figure 4.4 except with the non-diagonal
elliptic operator Aa.

Extensions in Diagonal Setting. One immediate extension of our diagonal
approach involves generalizing it from self-adjoint operators with known eigen-
vectors to non-self-adjoint operators with known singular vectors. Another
involves taking the simultaneous large data and small noise limit under both
well-specified and misspecified likelihoods. Although our approach requires
Gaussian conjugacy, Gaussian priors are not suitable for all problems. Recent
work using non-conjugate priors may prove useful in our setting [119, 145, 230,
263]. To exploit the Bayesian posterior beyond just theoretical contraction
performance, exploration of uncertainty quantification via credible sets is also
of interest.
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Beyond Diagonal Operators. In the linear setting, it is desirable to remove
the known eigenbasis assumption but retain rates of convergence. The proof of
Fact 4.6 in Appendix C.3 implies that the SVD of the random forward map
KX in (4.2) is determined by functional PCA of X. Thus, the SVD approach
in Section 4.1.1.2 and [147] could be used to recover the doubly-indexed infinite
matrix coordinates of the true operator in the (random) SVD basis. Another
approach is to directly study the non-diagonal problem (4.3) as in Section 4.4.2.
Nonlinear operators also deserve attention, as the experimental results in
[75] demonstrate. Central to their statistical analysis will be the modern
architectures (beyond kernel methods [52, 229]) that parametrize the unknown
operators and their inherent problem-dependent structure.
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C h a p t e r 5

AN OPERATOR LEARNING PERSPECTIVE ON
PARAMETER-TO-OBSERVABLE MAPS

This chapter is adapted from the following preprint:

[1] Daniel Zhengyu Huang, Nicholas H. Nelsen, and Margaret Trautner. “An
operator learning perspective on parameter-to-observable maps”. preprint
arXiv:2402.06031 cs.LG (2024). doi: 10.48550/arXiv.2402.06031.

Computationally efficient surrogates for parametrized physical models play
a crucial role in science and engineering. Operator learning provides data-
driven surrogates for such models that map between function spaces. However,
instead of full-field measurements, often the available data are only finite-
dimensional parametrizations of model inputs or finite observables of model
outputs. Building on Fourier Neural Operators, this chapter introduces the
Fourier Neural Mappings (FNMs) framework that is able to accommodate
such finite-dimensional vector inputs or outputs. The work develops universal
approximation theorems for the method. Moreover, in many applications the
underlying parameter-to-observable (PtO) map is defined implicitly through
an infinite-dimensional operator, such as the solution operator of a partial
differential equation. A natural question is whether it is more data-efficient
to learn the PtO map end-to-end or to first learn the solution operator and
subsequently compute the observable from the full-field solution. A theoretical
analysis of Bayesian nonparametric regression of linear functionals, which is of
independent interest, suggests that the end-to-end approach can actually have
worse sample complexity in some regimes. Going beyond the theory, numerical
results for the FNM approximation of three nonlinear PtO maps demonstrate
the benefits of the operator learning perspective that this chapter adopts.

5.1 Introduction

Operator learning has emerged as a methodology that enables the machine
learning of maps between spaces of functions. Many surrogate modeling tasks
in areas such as uncertainty quantification, inverse problems, and design opti-
mization involve a map between function spaces, such as the solution operator

https://doi.org/10.48550/arXiv.2402.06031
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of a partial differential equation (PDE). However, the primary quantities of
interest (QoI) in these tasks are usually just a finite number of design parame-
ters or output observables. This may be because full-field data, such as initial
conditions, boundary conditions, and solutions of PDEs, are not accessible
from measurements or are too expensive to acquire. The prevailing approach
then involves emulating the parameter-to-observable (PtO) map instead of the
underlying solution map between function spaces. Yet, it is natural to wonder
if the success of operator learning in the function-to-function setting can be
brought to bear in this more realistic setting where inputs or outputs may
necessarily be finite-dimensional vectors. To this end, the present chapter intro-
duces Fourier Neural Mappings (FNMs) as a way to extend operator learning
architectures such as the Fourier Neural Operator (FNO) to finite-dimensional
input and output spaces in a manner that is compatible with the underlying
operator between infinite-dimensional spaces. The admissible types of FNM
models considered in this work are visualized in Figure 5.1.

Nevertheless, it is possible to accommodate finite-dimensional inputs or outputs
through other means. For instance, one could lift a finite-dimensional input
vector to a function by expanding in predetermined basis functions, apply
traditional operator learning architectures to the full-field function space data,
and then directly compute a known finite-dimensional QoI from the output
function. In contrast, the end-to-end FNM approach in this work is fully
data-driven and operates directly on finite-dimensional vector data without
the need for pre- and postprocessing. A natural question is whether one of
these two approaches achieves better accuracy than the other when the goal
is to predict certain QoIs. In the present chapter, we address this important
question both from a theoretical and a numerical perspective. Indeed, it
has been empirically observed in various nonlinear problems ranging from
electronic structure calculations [260] to metamaterial design [24] that data-
driven methods that predict the full-field response of a system are superior to
end-to-end approaches for the same downstream tasks or QoIs. The analysis in
this chapter takes the first steps toward a rigorous theoretical understanding
of these empirical findings. The theory adapts the techniques developed in the
previous chapter to this more challenging setting.

Throughout the chapter, we refer to learning a function-valued map as full-field
learning. Given such a learned map, various known QoIs may be directly
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Finite Vector U Y Observable

Operator QoI

V2V

V2F

F2V

F2F

Figure 5.1: Illustration of the factorization of an underlying PtO map into a QoI and
an operator between function spaces. Also shown are the four variants of input and
output representations considered in this work. Here, U is an input function space
and Y is an intermediate function space.

computed from the output of the map. On the other hand, we refer to the
direct estimation of the map from an input to the observed QoI as end-to-end
learning. This terminology distinguishes between output spaces. When either
the input or output is finite- and the other is infinite-dimensional, we label it
as “vector-to-function” (V2F) or “function-to-vector" (F2V), respectively, to
avoid ambiguity. The abbreviations V2V and F2F for “vector-to-vector” and
“function-to-function” are analogous.

5.1.1 Contributions

In this chapter, we make the following contributions.

(C1) We introduce FNMs as a function space architecture that is able to
accommodate finite-dimensional vector inputs, outputs, or both.

(C2) We prove universal approximation theorems for FNMs.

(C3) We establish convergence rates for Bayesian nonparametric regression
of linear functionals under smoothness misspecification; as a byproduct
of this analysis, we prove that full-field learning of linear functionals
that are factorized into the composition of a linear QoI and a linear
operator enjoys better sample complexity than end-to-end estimators in
certain regimes.

(C4) We perform numerical experiments with FNMs in three examples—an
advection–diffusion equation, flow over an airfoil, and an elliptic homog-
enization problem—that show empirical evidence that the theoretical
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linear intuition from Contribution (C3) remains valid for nonlinear
maps.

Next, we provide an overview of related work in the literature in Subsection
5.1.2. Subsection 5.1.3 contains relevant notation, and Subsection 5.1.4 gives
an outline of the remainder of the chapter.

5.1.2 Related Work

Several works have established neural operators as a viable tool for scientific
machine learning. The general neural operator formalism is described in
[154] and contains several subclasses including DeepONet [181], graph neural
operator [173, 174], and FNO [172]. These architectures allow for function
data evaluated at different grid points or resolutions to be used with the same
model. In particular, the FNO is primarily parametrized in Fourier space. It
exploits the fact that the Fourier basis spans L2 on the torus and uses the
efficient Fast Fourier Transform (FFT) algorithm for computations. The idea of
parametrizing operators in Fourier space is explored in earlier works as well [203,
214]. The FNO has been shown to be applicable both to domains other than the
torus and to nonuniform meshes [171, 176]. These neural operators have been
used in various areas of application, including climate modeling [156], fracture
mechanics [116], and catheter design [281]. In several of these applications,
neural operators have been implemented with finite-dimensional vector inputs
or outputs by using constant functions as replacements for finite vectors, which
is theoretically justified by statements of universal approximation [35], or by
using other hand-designed maps. However, learning a constant function as
a representation for a constant is arguably unnatural and computationally
wasteful; it is desirable to substitute a more suitable architecture. The present
chapter develops FNMs that extend neural operators to this important setting
while retaining desirable universal approximation properties.

The theory of neural operators—and scientific machine learning more broadly—
generally falls into three tiers. In the first tier, universal approximation
results [59, 71, 129, 90] use classical approximation theory to guarantee that
the architecture is capable of representing maps from within a class of interest
to any desired accuracy. Some of the proofs of these results contain constructive
arguments, but the corresponding architectures are usually not as empirically
effective as those that solely come with existence results. Examples of con-
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structive arguments for operator approximation are contained in [124], which
constructs ReLU neural networks, and [40], which uses randomized numerical
linear algebra to sketch Green’s functions for linear elliptic PDEs. Each of
these works also comes equipped with convergence rates with respect to model
size and data size, respectively; these rates form the second tier of operator
learning theory. Many papers in this tier prove bounds on the required model
size, i.e., parameter complexity [81, 125, 152, 158, 161, 163, 178, 180, 242].
Some are able to obtain sample complexity bounds, although most results
are restricted to linear or kernelized settings [52, 76, 135, 162, 169, 196, 239,
251]. The third tier of theory describes the likelihood of actually obtaining an
accurate approximation through optimization. While some results along these
lines exist for linear models, linear maps, and constructive operators [162, 164],
they are absent for the class of neural operators optimized through variants of
stochastic gradient descent (SGD). This is the class that has proven empirically
most effective in applications thus far and is the class used in this work.

To provide theoretical intuition for nonlinear settings, this chapter establishes
convergence rates in the tractable setting of learning a linear functional—
the PtO map—from noisy data. The setting of functional linear regression
has a long history in statistics [48, 54, 149, 231, 278]. A zoo of different
estimators exist, e.g., those based on reproducing kernel Hilbert space (RKHS)
methods, principal component analysis, and wavelets. We target the frequentist
convergence properties of a linear Gaussian posterior estimator that arises from
reinterpreting the regression task as a Bayesian inverse problem. Apart from
the previous chapter [76], the closest work to ours is [175]. There, the authors
derive posterior contraction rates for Bayesian functional linear regression with
Gaussian priors. However, their main results are only sharp if the prior is
correctly specified to match the regularity of the true linear functional. Our
work goes beyond this by proving sharp high-probability error bounds for out-
of-distribution prediction error under very general smoothness misspecification.
However, to do so we require that the prior and data covariance operators
commute, which is a limitation of our theory. Another relevant work is [49], in
which the authors make minimal assumptions on the prior and data covariances
but still make the well-specified assumption that the truth belongs to the
RKHS of the prior. They also require a data-dependent scaling of the prior.
Similarly, [216] obtains convergence guarantees for Bayesian nonparametric
regression of functions with Gaussian process priors in the misspecified setting.
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However, their work only considers a squared exponential covariance structure
and requires a careful rescaling of the prior to deal with the smoothness
misspecification. Our work holds for the larger class of misspecified Matérn-like
Gaussian priors and delivers rates without rescaling the prior distribution.

Beyond linear functionals, recent work proposes and analyzes a kernelized
deep learning method for nonlinear functionals [243]. The idea of such neural
functionals, a subclass of the FNMs proposed in this work, is not new. One
appearance is in the context of a function space discriminator for generative
adversarial networks [224]. However, that work uses only a single bounded
linear functional that is appended to the output of a FNO and is parametrized
by a standard neural network. This is a special case of our FNMs for F2V
maps. Another paper that shares similar ideas to the present chapter is [280].
There, the authors also formulate a V2V neural network approach that maps
through a latent 1D function space. However, their encoder and decoder maps
are prescribed by hand-picked basis functions, while for FNMs the encoder and
decoder maps are learned from data.

In this chapter, three illustrative applications are highlighted. The first ap-
plication is an advection–diffusion model where the input is a velocity field
and the output is the state at a fixed future time. This problem is considered
a benchmark for scientific machine learning [258]. Some theoretical approxi-
mation rates for it have been developed for DeepONet in the F2F setting [81].
The second application centers on the compressible flow over an airfoil, i.e.,
an airplane wing cross section. This experiment is explored for FNO in [171]
and used as a shape optimization example in the F2F setting for DeepONet
in [244] and for reduced basis networks in [206]. Several other related works
devise V2V-based neural network approaches and novel training strategies for
this aerodynamics problem [183, 184, 185, 194]. The third application involves
learning the homogenized elasticity coefficient for a multiscale elliptic PDE.
This example is explored in detail for FNO in [35] and for other constitutive
laws in [177]. For the Darcy flow—or scalar coefficient—setting of this equation,
other work has adopted the F2F setting to efficiently compute QoIs [277]. For
each of these applications, we compare the generalization error performance
of all four F2F, F2V, V2F, and V2V variants of FNMs as well as standard
fully-connected neural networks.
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5.1.3 Notation

The set of continuous linear operators from a Banach space U to a Banach
space V is denoted by L(U ;V), and if U = V, then we write L(V). For a
separable Hilbert space (H, ⟨·, ·⟩, ∥ · ∥), the outer product operator a⊗b ∈ L(H)

is defined by (a ⊗ b)c := ⟨b, c⟩a for any elements a, b, and c of H. Let
(Ω,F ,P) be a probability space that is sufficiently rich to support all random
variables that appear in this chapter. All expectations are interpreted as
Bochner integrals. For a probability measure Π supported on H with two finite
moments, we denote by Cov(Π) = Eu∼Π[(u − Eu) ⊗ (u − Eu)] ∈ L(H) its
covariance operator. Independent and identically distributed (i.i.d.) random
variables X1, X2, . . . , Xn from Π are denoted by {Xi}ni=1 ∼ Π⊗n. For two
random variables X and Z, the conditional expectation notation EZ |X [ · ]
denotes integration with respect to the law of Z |X. For N ∈ N, we write
[N ] := {1, 2, . . . , N}. For two nonnegative real sequences {an}n∈N and {bn}n∈N,
we write an ≲ bn if there exists c > 0 such that an ≤ cbn for all n ∈ N and
an ≃ bn if both an ≲ bn and bn ≲ an. To denote asymptotic equivalence,
we write an ≍ bn as n → ∞ if there exist c ≥ 1 and n0 ∈ N such that
c−1bn ≤ an ≤ cbn for all n ≥ n0. The Sobolev-like sequence Hilbert spaces
Hs = Hs(N,R) are defined for s ∈ R by Hs := {v : N → R | ∑∞

j=1 j
2s|vj|2 <∞}.

We write Td for the d-dimensional unit torus [0, 1]dper.

5.1.4 Outline

The remainder of this article is organized as follows. We define the architecture
of FNMs as a slight adjustment of FNOs in Section 5.2 (Contribution (C1))
and confirm that FNMs retain desirable properties of FNOs such as universal
approximation in Section 5.3 (Contribution (C2)). In Section 5.4, we analyze
end-to-end and full-field learning of linear functionals to establish a theoretical
foundation that underlies the data volume requirements of the two approaches
(Contribution (C3)). Going beyond the theory, Section 5.5 provides numerical
experiments that compare end-to-end and full-field learning with FNMs with
both finite- and infinite-dimensional input space representations for predicting
QoIs in several nonlinear PDE problems (Contribution (C4)). Concluding
remarks are given in Section 5.6. Appendix D.1 contains additional theorems
related to Section 5.4. All proofs are provided in Appendices D.2 and D.3.
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5.2 Neural Mappings for Finite-Dimensional Vector Data

In this section, we recall the FNO architecture (Subsection 5.2.1) and describe
modifications of it to form FNMs (Subsection 5.2.2).

5.2.1 A Review of Neural Operators

Let U = U(D;Rdu) and Y = Y(D;Rdy) be Banach function spaces over Eu-
clidean domain D ⊂ Rd. Finite-dimensional fully-connected neural networks
are repeated compositions of affine mappings alternating with pointwise non-
linearities. To extend this framework to the infinite-dimensional function space
setting, depth T neural operators from U to Y take the form

Ψ(NO)(u) :=
(
Q ◦ LT ◦ LT−1 ◦ · · · ◦ L1 ◦ S

)
(u) for all u ∈ U , (5.1)

where S is a pointwise-defined local lifting operator, Q is a pointwise-defined
local projection operator, and for each t ∈ [T ], the layer Lt is a nonlinear
map between function spaces that is the composition of a local (and usually
nonlinear) operator with a nonlocal affine kernel integral operator [154].

The Fourier Neural Operator (FNO) is a specific instance of the class of neural
operators (5.1) where, for t ∈ [T ], the form of the layer Lt : {v : Td → Rdt−1} →
{v : Td → Rdt} is given by

v 7→ Lt(v) =
{
σt
(
Wtv(x) + (Ktv)(x) + bt(x)

)}
x∈Td

. (5.2)

In (5.2), Wt ∈ Rdt×dt−1 is a weight matrix, bt : Td → Rdt is a bias function, and
Kt is a convolution operator given, for v : Td → Rdt−1 and any x ∈ Td, by the
expression

(Ktv)(x) =

{∑
k∈Zd

(
dt−1∑
j=1

(P
(k)
t )ℓj⟨ψk, vj⟩L2(Td;C)

)
ψk(x)

}
ℓ∈[dt]

∈ Rdt . (5.3)

In the preceding display, the ψk = e2πi⟨k, · ⟩Rd are the complex Fourier basis
elements of L2(Td;C) and P (k)

t ∈ Cdt×dt−1 are the learnable parameters of the
integral operator Kt for each k ∈ Zd. The functions σt : R → R are nonlinear
activations that act pointwise when applied to vectors. Additional details of
more general versions and computational implementations of the FNO may be
found in [152, 154, 171].

Though the internal FNO layers {Lt} in (5.2) and (5.3) are defined on the
periodic domain Td, it is possible to apply the FNO to other domains D ⊂ Rd.
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To do this, introduce an operator E : {h : D → Rd0} → {h : Td → Rd0} that
maps to functions on Td and replace S in (5.1) with E ◦ S. Similarly, let
R : {h : Td → RdT } → {h : D → RdT } be an operator that maps back to
functions on the desired domain D and replace Q in (5.1) with Q ◦R. These
modifications to the lifting and projecting components yield the final FNO
architecture

Ψ(FNO) = Q ◦R ◦ LT ◦ LT−1 ◦ · · · ◦ L1 ◦ E ◦ S . (5.4)

In practice, the map E is usually represented by zero padding the input domain
and R by restricting to the output domain of interest.

5.2.2 The Neural Mappings Framework

The neural operator architecture described in Section 5.2.1 only accepts inputs,
outputs, and intermediate states that are elements of function spaces. Finite-
dimensional vector inputs, outputs, and states are not directly compatible
with neural operators. We propose neural mappings, which lift this restriction
through two fundamental building blocks. The first, linear functional layers,
map from function space to finite dimensions. The second, linear decoder
layers, map from finite dimensions to function space. We combine these two
building blocks with standard iterative neural operator layers to form several
classes of nonlinear and function space consistent architectures.

Instating the neural operator notation from Section 5.2.1, we define a lin-
ear functional layer G : {h : D → RdT−1} → RdT and a linear decoder layer
D : Rd0 → {h : D → Rd1} to be maps of the form

h 7→ G h :=

∫
D
κ(x)h(x) dx , where κ : D → RdT×dT−1 , and

z 7→ Dz := κ(·)z , where κ : D → Rd1×d0 ,

(5.5)

respectively. The linear functional layer G takes a vector-valued function h

and integrates it against a fixed matrix-valued function κ to produce a finite
vector output. In duality to G , the linear decoder layer D takes as input a
finite vector z and multiplies it by a fixed matrix-valued function κ to produce
an output function. The functions κ are the sole learnable parameters of these
two layers.

Although G and D may be incorporated into general neural operators (5.1), we
will specialize our method to the FNO. In anticipation of this periodic setting,
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we view G as a Fourier linear functional layer by replacing D in (5.5) by the
torus Td and using Fourier series to expand G as

h 7→ G h =

{∑
k∈Zd

(
dT−1∑
j=1

P
(k)
ℓj ⟨ψk, hj⟩L2(Td;C)

)}
ℓ∈[dT ]

∈ RdT , (5.6)

where we recall that {ψk} is the Fourier basis of L2(Td;C). In (5.6), the entries
of the matrices {P (k)} ⊂ CdT×dT−1 correspond to the Fourier coefficients of the
function κ in (5.5). Similar calculations show that, on the torus Td, the linear
decoder D takes the form

z 7→ Dz =

{∑
k∈Zd

(
P (k)z

)
j
ψk

}
j∈[d1]

, where P (k) ∈ Cd1×d0 . (5.7)

Just like for the FNO kernel integral layers (5.3), the expressions (5.6) and
(5.7) are efficiently implemented and learned in Fourier space.

We are now able to define the general FNMs architecture.

Definition 5.1 (Fourier Neural Mappings). Let Q : RdT → Rdy and S : Rdu →
Rd0 be finite-dimensional maps. For {Lt} defined as in (5.4) and G and D

defined as in (5.6) and (5.7), let

Ψ(FNM) := Q ◦ G ◦ LT−1 ◦ · · · ◦ L2 ◦ D ◦ S . (5.8)

be the base level map. The Fourier Neural Mappings architecture is comprised
of the following four main models that are obtained by modifying the base
map:

(M-V2V) vector-to-vector (V2V): Ψ(FNM) in (5.8) as written, thus mapping finite
vector inputs to finite vector outputs;

(M-V2F) vector-to-function (V2F): Ψ(FNM) with operator G in (5.8) replaced by
R ◦ LT , where R and LT are as in (5.4) and (5.2), respectively,
and Q in (5.8) now viewed as a pointwise-defined operator acting on
vector-valued functions;

(M-F2V) function-to-vector (F2V): Ψ(FNM) with operator D in (5.8) replaced by
L1 ◦ E , where L1 and E are as in (5.2) and (5.4), respectively, and
S in (5.8) now viewed as a pointwise-defined operator acting on
vector-valued functions;
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(M-F2F) function-to-function (F2F): Ψ(FNM) with modifications (M-V2F) and (M-
F2V), thus the resulting architecture is the standard FNO Ψ(FNO) (5.4).1

When the (M-F2V) FNM is of primary interest, we sometimes call this archi-
tecture Fourier Neural Functionals. Similarly, we may also call the (M-V2F)
FNM a Fourier Neural Decoder.

5.3 Universal Approximation Theory for Fourier Neural Mappings

In this section, we establish universal approximation theorems for FNMs; this
is a confirmation that the architectures maintain this desirable property of
neural operators. The results are stated for the cases of the F2V and V2F
architectures; the case of V2V trivially follows. Similar results also hold for
general neural mappings by invoking the appropriate universal approximation
theorems for general neural operators from [152, Section 9.3] and for the
topology induced by Lebesgue–Bochner norms, i.e., average error with respect
to a probability measure supported on the input space. For more details
regarding these extensions, see [154, Theorems 11–14, Section 9.3, pp. 55–57]
and [152, pp. 12–14 and Theorem 18]. Our proofs, which are collected in
Appendix D.2, use arguments based on constant functions that are similar to
those used to prove universal approximation theorems at the level of operators.

The approximation theory in this section relies on the following assumption.

Assumption 5.2 (activation function). All nonlinear layers {Lt}Tt=1 from
(5.2) have the same non-polynomial and globally Lipschitz activation function
σ ∈ C∞(R;R).

We note that in practice, the final Fourier layer activation function is often set
to be the identity. Moreover, the bias functions bt in Lt are typically chosen to
be constant functions. The universal approximation theory does not distinguish
these differences. Additionally, to align with the existing theory developed in
[152], our existence proofs rely on a reduction to the setting that

(i) the channel dimension dt is constant across all layers, say dt = dv ∈ N
for all t ∈ [T ], and

(ii) the maps S and Q in (5.8) are linear and act pointwise on functions.
1Notice that yet another function-to-function FNM architecture is possible by exchanging

the roles of G and D in (5.8); this is a nonlinear Fourier neural autoencoder.
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These conditions are certainly special cases of nonconstant channel dimension
and nonlinear lifting and projection maps, respectively. Hence, the forthcoming
universality properties still hold for more sophisticated architectures that
deviate from conditions (i) and (ii), such as those used in Section 5.5 in this
chapter.

Our first result delivers a universal approximation result for Fourier Neural
Functionals, i.e., the F2V setting. Appendix D.2.2 contains the proof.

Theorem 5.3 (universal approximation: function-to-vector mappings). Let
s ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
U = Hs(D;Rdu). Let Ψ† : U → Rdy be a continuous mapping. Let K ⊂ U be
compact in U . Under Assumption 5.2, for any ε > 0, there exist Fourier Neural
Functionals Ψ: U → Rdy of the form (5.8) with modification (M-F2V) such
that

sup
u∈K

∥∥Ψ†(u)−Ψ(u)
∥∥
Rdy < ε . (5.9)

The approximation theorem for the Fourier Neural Decoder, i.e., the V2F case,
is analogous.

Theorem 5.4 (universal approximation: vector-to-function mappings). Let
t ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
Y = H t(D;Rdy). Let Ψ† : Rdu → Y be a continuous mapping. Let Z ⊂ Rdu be
compact. Under Assumption 5.2, for any ε > 0, there exists a Fourier Neural
Decoder Ψ: Rdu → Y of the form (5.8) with modification (M-V2F) such that

sup
z∈Z

∥∥Ψ†(z)−Ψ(z)
∥∥
Y < ε . (5.10)

The proof may also be found in Appendix D.2.2. While perhaps not surprising,
the results in Theorems 5.3 and 5.4 nonetheless show that the proposed FNM
architectures are sensible for the tasks of approximating continuous function-
to-vector or vector-to-function mappings.

5.4 Statistical Theory for Regression of Linear Functionals

The previous two sections propose and justify a general nonlinear framework
for approximating PtO maps with finite-dimensional input or output spaces.
Although universality properties of the proposed architectures are established,
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the efficiency of statistically estimating the underlying PtO map from a finite
dataset remains to be addressed. Such sample complexity results are crucial
to understand the expected performance of learning algorithms in scenarios
where experimental or computational resources for data generation are limited.
However, it is an open challenge to develop such a theory in the general
nonlinear setting previously considered.

To still shed some light on this issue, we provide a detailed theoretical analysis of
learning a linear PtO map f that admits a factorization into a linear functional
q, the QoI, composed with a self-adjoint linear operator L, the forward map.
To set the stage, let (H, ⟨·, ·⟩, ∥ · ∥) be an infinite-dimensional real separable
Hilbert space. We view the PtO map f = q ◦ L : H → R as a linear functional
on H. Hence, the input space is always infinite-dimensional in this section.
Let ν be the data-generating Borel probability measure on the input space H.
Here and in the sequel, suppose that

Eu∼ν u = 0 and Σ := Cov(ν) =
∞∑
j=1

σjφj ⊗ φj (5.11)

for some orthonormal basis {φj}j∈N of H and eigenvalue sequence {σj}j∈N ⊂
R≥0, and that N i.i.d. input data samples {un}Nn=1 ∼ ν⊗N are available. We
consider two different supervised learning approaches (visualized in Figure 5.1
as F2V and F2F) that correspond to the given labeled output data {yn}Nn=1

being either noise-perturbed versions of

(EE) (end-to-end learning) the entire PtO map f applied to the input data, or

(FF) (full-field learning) the forward map L applied to the input data. Moreover,
in this latter case the linear functional q is assumed to be known.

In both cases, the primary goal is to estimate f given certain input-output data
pairs. Notice that in the (EE) approach, the responses are scalar-valued, while
for the (FF) approach the responses are function-valued.2 In some cases, the
problem itself specifies the approach that can be used. For example, in physical
experiments, it is often impossible to experimentally acquire the full output
of L. Instead, only a finite number of possibly indirect measurements are

2Although the Hilbert space H is general and not necessarily comprised of functions, we
still refer to its elements as “functions” to avoid confusion caused by attempts to distinguish
between finite-dimensional Euclidean vectors and general infinite-dimensional vectors.
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available, which represent the QoI q in the (EE) framework. Even if the data
generation procedure is algorithmic, the cost of generating full-field data may
be much higher than simply measuring finite-dimensional QoIs. Nevertheless,
for a large class of forward maps L and continuous QoIs q, we demonstrate
that (FF) is more data-efficient than (EE) in this linear setup; see insights (I1)
and (I2) and Figure 5.2 for more details.

To this end, Subsection 5.4.1 sets up the framework for statistical error analysis
of learning general linear functionals on H with a particular Bayesian posterior
estimator; this is the end-to-end setting. Subsection 5.4.2 then continues the
setup for the setting of factorized linear functionals in the full-field learning
setting. Subsection 5.4.3 contains the main results. Here, two theorems
provide convergence rates for the end-to-end and full-field settings, respectively.
In particular, the end-to-end result may be of independent interest to the
functional data analysis and Bayesian nonparametric statistics communities.
The theorems are followed by a discussion and a corollary that rigorously
compares the data efficiency of end-to-end versus full-field learning of factorized
linear functionals.

5.4.1 End-to-End Learning

Consider a general linear functional f : H → R. Working in a nonparametric
functional regression framework, we adopt a linear Gaussian posterior mean
estimator that is obtained by conditioning a Gaussian process prior on the
training dataset under the access model (EE). Our primary concern is the
development of large sample convergence rates for the average squared pre-
diction error of the estimator with respect to some test distribution ν ′. We
allow ν ′ to be different from the input training distribution ν; that is, our
error bounds hold out-of-distribution or under covariate shift. We describe our
statistical model and Bayesian inference approach in Subsection 5.4.1.1. In
Subsection 5.4.1.2, we list and interpret the main assumptions that underlie
the theory.

5.4.1.1 Setup and Estimator

We adopt a Bayesian inverse problems perspective on the linear functional
regression task. To simplify the analysis, suppose that f ∈ H∗ is continuous
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on H.3 As a mild abuse of notation, we use the same symbol f for both the
linear functional itself and its Riesz representer. We thus view f as an element
of H in all that follows.

Next, for noise level γ > 0 and for n ∈ [N ], we consider the statistical model

yn = ⟨f, un⟩+ γξn , where un
i.i.d.∼ ν and ξn

i.i.d.∼ N (0, 1) . (5.12)

We get to observe yn and un, but not the noise ξn. Concatenate the data and
noise as U = {un}Nn=1, Y = {yn}Nn=1, and Ξ = {ξn}Nn=1. This allows (5.12) to
be recast as the linear inverse problem of finding f from inputs U and outputs

Y = SNf + γΞ , (5.13)

where SN : H → RN is the (random) sampling operator h 7→ {⟨h, un⟩}Nn=1.

Proceeding with the Bayesian approach, we endow f with a Gaussian prior
distribution f ∼ N (0,Λ). Here Λ ∈ L(H) is a trace-class covariance operator
on H. The advantage of working with the preceding linear Gaussian model is
that the posterior distribution for f is also a Gaussian measure supported on
H with closed form expressions for its mean and covariance. To this end, let

Σ̂ :=
S∗
NSN
N

=
1

N

N∑
n=1

un ⊗ un (5.14)

denote the empirical covariance operator of the input distribution ν. Ad-
ditionally, suppose that U , Ξ, and f are independent as random variables.
Although the randomness of the operator SN is a slight deviation from the
usual Bayesian setting, application of [147, Proposition 3.1, pp. 2630–2631]
and [74, Theorems 32, 13, and 37] still imply that the posterior distribution
obtained by conditioning f on the training dataset (U, Y ) is given by

f | (U, Y ) ∼ N (f̄ (N),Λ(N)), where f̄ (N) = ANY (5.15)

and the operator AN : RN → H and posterior covariance Λ(N) ∈ L(H) satisfy

AN := γ−2Λ(N)S∗
N and Λ(N) =

γ2

N
Λ1/2

(
Λ1/2Σ̂Λ1/2 +

γ2

N
IdH

)−1

Λ1/2 .

(5.16)
3It is possible to handle unbounded linear functionals f using the weighted Hilbert–

Schmidt approach from [76, Section 2.2] or the framework of measurable linear functionals
from [147, Section 3 and 5], possibly at the expense of stronger assumptions on the data and
prior covariances.
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We take a frequentist consistency perspective by assuming there exists a fixed
ground truth f † ∈ H that generates the data Y in (5.13). Abusing notation by
using the same symbol for Y , this means that we observe the output response
data4

Y = SNf
† + γΞ . (5.17)

Our estimator of f † is then taken to be the posterior mean f̄ (N) = ANY from
(5.15) with Y as in (5.17). However, this particular estimator is chosen to
simplify the exposition. As explained in Remark 5.14, the analysis remains
valid if the full posterior distribution N (f̄ (N),Λ(N)) from (5.15) is used to
estimate f † instead of just its mean. Posterior contraction rates also follow as
a consequence.

Instead of measuring the quality of our estimate of f † in the H-norm, we
consider a weaker weighted norm induced by the average squared prediction
error of the estimator. This is more common in statistical learning than in
statistical inverse problems. To this end, let ν ′ be a centered Borel probability
measure supported on a sufficiently large space containing H. We are interested
in the out-of-distribution test squared error of f̄ (N) with respect to ν ′, which is
given by

Eu′∼ν′
∣∣⟨f †, u′⟩ − ⟨f̄ (N), u′⟩

∣∣2 = ∥∥Cov(ν ′)1/2(f † − f̄ (N))
∥∥2 . (5.18)

The derivation of this identity is explained in Appendix D.3.2. Equation (5.18)
is equivalent to the squared L2

ν′(H;R) Bochner norm error between the func-
tionals.

Finally, we explain how our posterior mean estimator relates to standard
regularized least squares minimizers from machine learning.

Remark 5.5 (equivalence to regularized empirical risk minimization). Under
the setting described in this section, the posterior mean is equivalent to a
generalized-Tikhonov regularized least squares estimator. See [76, Section 2.3]
and [147, pp. 3631–2632] for more details and relations to RKHS methods.
This connects the Bayesian approach taken here back to traditional supervised
learning frameworks.

4The actual noise process Ξ in the observed data (5.17) need not match the assumed
Gaussian likelihood model implied by (5.12). Indeed, the main results in Subsection 5.4.3
remain valid for any centered square integrable random vector with isotropic covariance.
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5.4.1.2 Assumptions

We work under three primary assumptions that involve the data, the prior,
and the truth. The first assumption concerns the covariance operators that
characterize the end-to-end learning framework (EE).

Assumption 5.6 (end-to-end learning: data and prior). Instate the setup and
hypotheses developed in Subsection 5.4.1.1. The following hold true.

(A1) (simultaneous diagonalization) The covariance operator Σ = Cov(ν) of input
training data distribution ν satisfies (5.11). The covariance operators
Σ′ := Cov(ν ′) of the input test data distribution ν ′ and Λ of the prior are
diagonalized in the eigenbasis {φj}j∈N of Σ and have the representations

Σ′ =
∞∑
j=1

σ′
jφj ⊗ φj and Λ =

∞∑
j=1

λjφj ⊗ φj . (5.19)

(A2) (data decay) For some α > 1
2

and α′ ≥ 0, the eigenvalues of Σ and Σ′

satisfy

σj ≍ j−2α as j → ∞ and σ′
j ≲ j−2α′

as j → ∞ . (5.20)

(A3) (prior decay) For some p > 1
2
, the eigenvalues of Λ satisfy

λj ≍ j−2p as j → ∞ . (5.21)

Although in traditional linear inverse problems the simultaneous diagonalizabil-
ity (A1) of the normal operator and the prior covariance is considered a strong
assumption [8, 230], in the linear functional regression setting here we interpret
this condition more mildly. Indeed, Σ and Λ only commute in the infinite data
limit. The actual normal operator corresponding to the inverse problem (5.17)
is S∗

NSN/N = Σ̂ which does not commute with Λ in general for any finite N .
Moreover, it is often the case—especially for operator learning-based surrogate
models—that the data generation procedure is controlled by the practitioner.
In this case, it is simple to choose the data and prior covariance operators to
have the same eigenfunctions. For example, Matérn-like Gaussian measures
with different regularity exponents and lengthscales are a common choice for
the data measure in operator learning and for the prior measure in Bayesian
inverse problems; it is natural to assume their covariances share the same



129

eigenbasis. However, the assumption that Σ′ and Λ have the same eigenbasis is
stronger because the test distribution ν ′ may be outside of the user’s control
and differ substantially from the training distribution in some applications.
Going beyond this assumption is an important future direction. Finally, the
power law eigenvalue decay conditions (A2) and (A3) are standard in learning
theory and help to facilitate explicit convergence rates.

The previous assumption provides fine-grained control of the second moments of
the data and prior distributions. Next, we impose a slightly strong assumption
about the tails of the Karhunen–Loève (KL) expansion of the training data
distribution ν (5.11) in order to obtain high probability error bounds.

Assumption 5.7 (strongly-subgaussian training data). The input training data
distribution ν is a centered Borel probability measure on H with KL expansion

u =
∞∑
j=1

√
σjzjφj ∼ ν , (5.22)

where the eigenvalues {σj}j∈N of Cov(ν) = Σ are nonincreasing and the {zj}j∈N
are zero mean, unit variance, independent random variables that satisfy5

m := sup
j∈N

∥zj∥ψ2 = sup
j∈N

(
sup
ℓ≥1

ℓ−1/2
(
E|zj|ℓ

)1/ℓ)
<∞ . (5.23)

Equation (5.23) in Assumption 5.7 implies that the training data distribution
ν (5.11) is subgaussian in a relatively strong sense. This enables the use of
exponential concentration inequalities in the proofs of forthcoming results.
We further insist that the KL expansion coefficients {zj}j∈N (5.22) are an
independent family in order to align with a similar assumption made for full-
field learning in the next subsection. However, the following remark explains
how this undesirable independence condition can be eliminated for end-to-end
learning at the expense of worse tail bounds.

Remark 5.8 (independence of the KL coefficients). The requirement of inde-
pendence of the KL expansion coefficients {zj}j∈N (5.22), while commonly found
in the literature [23, 131], is undesirable because it excludes many interesting
statistical models. This condition is only used in Lemma D.25, which shows

5See Appendix D.3.1 for the definition of subgaussian random variables and their norms
∥ · ∥ψ2

.
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that a particular event has high probability. This lemma requires a strong no-
tion of subgaussianity (D.56); the assumed independence of the KL coefficients
suffices to satisfy this condition. However, we show in Lemma D.26 that the
requirement of independence can be replaced by the condition that the {zj}j∈N
are pairwise uncorrelated. At the cost of a lower probability for the event of
interest, this improvement extends the applicability of our end-to-end learning
theory. For example, using the kernel trick, the main theoretical results of this
chapter imply convergence rates for Gaussian process regression of scalar-valued
nonlinear functions as a special case.

Last, we require a regularity assumption on the true linear functional f † in
order to derive convergence rates.

Assumption 5.9 (regularity of ground truth linear functional). For each
j ∈ N, denote by f †

j = ⟨f †, φj⟩ the coefficients of f †. For some s ≥ 0, it holds
that

∥∥f †∥∥2
Hs :=

∞∑
j=1

j2s|f †
j |2 <∞ . (5.24)

Additionally, α + s > 1, where α is as in (5.20).

Notice that Assumption 5.9 implies that f † ∈ H∗ is a continuous linear
functional on H because s ≥ 0 and hence the coefficients of f † belong to
ℓ2(N;R). The regularity constraint linking α with s is a technical condition
that ensures a certain event has vanishing probability in the large sample limit
(see Lemma D.20); it may be possible to weaken this constraint with alternative
proof techniques. Regardless, this condition is not hard to satisfy.

5.4.2 Full-Field Learning

In this subsection, we provide the additional assumptions and framework
required for the setting in which the true linear PtO map f † is factorized as
f † = q† ◦ L†, where the QoI q† is a linear functional on H and L† is a self-
adjoint linear operator on H. We allow q† or L† to potentially be unbounded
with respect to the topology of H. With the full-field learning data access
model (FF), we fully observe noisy versions of the function-valued output
of L† at the training input functions. We adopt a Bayesian posterior mean
estimator L̄(N) for L† based on these data. The final estimator of the true
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linear functional f † is obtained by composing q† with the learned operator
L̄(N). Subsection 5.4.2.1 contains the setup, while Subsection 5.4.2.2 contains
the assumptions we invoke and gives examples of some QoIs that satisfy these
assumptions.

5.4.2.1 Setup and Estimator

Our full-field training data observations are given by

Yn = L†un + ηn , where un
i.i.d.∼ ν and ηn

i.i.d.∼ N (0, IdH) (5.25)

for n ∈ [N ]. Equation (5.25) should be interpreted in a weak sense, i.e., as
H-indexed stochastic processes, because ηn ̸∈ H almost surely [76, Section
2.2.2., p. 11]. Without loss of generality, we assume a unit noise level because
this does not affect the asymptotic results. To make the analysis tractable,
we work in the setting that L† is diagonalized in the eigenbasis {φj}j∈N of Σ
from (5.11). Thus, we write

L† =
∞∑
j=1

l†jφj ⊗ φj (5.26)

and develop an estimator for the eigenvalue sequence l† = {l†j}j∈N. Details
about the domain of L† and the topology in which (5.26) converges may be
found in the previous chapter [76].

Our Bayesian approach follows [76] by modeling the eigenvalue sequence l†

with an independent Gaussian prior lj ∼ N (0, µj) on each eigenvalue. Write
Υ = {Yn}Nn=1 and U = {un}Nn=1 and assume that l = {lj}n∈N, Υ, and U are
independent. Then [76, Fact 2.4, p. 12] furnishes the posterior distribution

l | (U,Υ) ∼
∞⊗
j=1

N
(
l̄
(N)
j , c

(N)
j

)
. (5.27)

In (5.27), {l̄(N)
j }j∈N are the posterior mean eigenvalues and {c(N)

j }j∈N are the
posterior variances. The plug-in estimator for f † = q† ◦ L† is then given by

q† ◦ L̄(N) , where L̄(N) :=
∞∑
j=1

l̄
(N)
j φj ⊗ φj . (5.28)

The precise formulas for the mean and variance in (5.27) are given in [76,
Equation (2.4), p. 12]. As in Subsection 5.4.1, we are interested in the out-of-
distribution test squared error of the estimator q† ◦ L̄(N) with respect to input
test measure ν ′.
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5.4.2.2 Assumptions

We now collect the main assumptions for the full-field learning approach; these
are primarily drawn from the previous chapter [76, Assumption 3.1, pp. 14–15].

Assumption 5.10 (full-field learning: main assumptions). Instate the setup
and hypotheses of Subsection 5.4.2.1. The following hold true.

(A-I) The input distributions ν and ν ′ and their covariance operators Σ and
Σ′ satisfy Assumptions (A1) and (A2).6 Moreover, ν satisfies Assump-
tion 5.7.

(A-II) The eigenvalues l† of the operator L† in (5.26) satisfy l† ∈ Hβ for some
β ∈ R.

(A-III) The prior lj ∼ N (0, µj) has variances satisfying µj ≍ j−2β−1 as j → ∞.

(A-IV) The QoI q† satisfies |q†(φj)|2 ≲ j−2r−1 as j → ∞ for some r ∈ R such
that min(α, α′ + r + 1/2) + β > 0, where α and α′ are as in (A-I).

(A-V) The PtO map q† ◦ L† is continuous, i.e.,
∑∞

j=1|q†(φj)|2|l†j |2 <∞.

The conditions in Assumption 5.10 have similar interpretations to those in
Subsection 5.4.1.2 and [76, Assumption 3.1, pp. 14–15]. For simplicity, in
(A-III) we have already chosen the optimal prior smoothness exponent β + 1/2.
The condition α′ + r+1/2+ β > 0 in (A-IV) ensures that the PtO map q† ◦L†

has finite L2
ν′(H;R) Bochner norm; thus, the test error is well-defined. The

continuity of the PtO map enforced by (A-V) aligns with the (EE) setting. The
power law decay of the coefficients of q† in (A-IV) allows for a sharp convergence
analysis. Several common, concrete linear QoIs satisfy this condition, as the
next remark demonstrates.

Remark 5.11 (examples of linear QoIs). Several simple QoIs q† satisfy the
power law decay in (A-IV). Let H = L2((0, 1);R), which has orthonormal
basis x 7→ φj(x) =

√
2 sin(jπx) for each j ∈ N. For convenience, denote

q†j := q†(φj).
6Inspection of the proof of [76, Theorem 3.9, pp. 18–19] shows that the high probability

upper bound (Equation 3.10) there remains valid if it is assumed that σ′
j is only bounded

above asymptotically by j−2α′
and not necessarily from below.
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• (mean on an interval) The map q† : h 7→
∫ 1

0
h(x) dx = ⟨1, h⟩L2((0,1)) is

continuous and has Riesz representer 1 : x 7→ 1. The coefficients of q†

satisfy

|q†j |2 =
∣∣∣∣√2(1− cos(jπ))

jπ

∣∣∣∣2 = 81{j odd}

j2π2
≲ j−2 .

Hence, r = 1/2 is a valid decay exponent in Assumption (A-IV).

• (point evaluation) The map q† : h 7→ h(x0) for a fixed x0 ∈ (0, 1) is not
continuous on H. It holds that

|q†j |2 = 2|sin(2πjx0)|2 ≲ 1

and hence r = −1/2 is a valid decay exponent in (A-IV).

• (point evaluation of derivative) The map q† : h 7→ (dh/dx)(x0) for a fixed
x0 ∈ (0, 1) is not continuous on H. Its coefficients satisfy

|q†j |2 = 8π2j2|cos(2πjx0)|2 ≲ j2

and hence r = −3/2 is a valid decay exponent. This QoI is not smooth.

5.4.3 Main Results

Building upon the setup from the previous two subsections, this subsection
establishes convergence rates for end-to-end learning in Theorem 5.12 and full-
field learning in Theorem 5.13. Both results are stated for the expectation of the
out-of-distribution test error (5.18) conditioned on the input data U . Intuitively,
this averages out the noise in the data. The two theorems are interpreted in
Subsection 5.4.3.1. This discussion is followed by Subsection 5.4.3.2, which
directly compares the end-to-end and full-field methods in Corollary 5.15.

The first theorem describes convergence rates in the end-to-end learning setting.

Theorem 5.12 (end-to-end learning: optimized convergence rate). Let the
input training data distribution ν, the test data distribution ν ′, and the Gaussian
prior N (0,Λ) satisfy Assumptions 5.6 and 5.7. Let the ground truth linear
functional f † ∈ Hs satisfy Assumption 5.9 with s > 0. Let α and α′ be as
in (5.20) and p = s+ 1/2 be as in (5.21). Then there exists c ∈ (0, 1/4) and
N0 ≥ 1 such that for any N ≥ N0, the mean f̄ (N) of the Gaussian posterior
distribution (5.15) arising from the N pairs of observed training data (U, Y ) in
(5.17) satisfies the error bound

EY |U Eu′∼ν′
∣∣⟨f †, u′⟩ − ⟨f̄ (N), u′⟩

∣∣2 ≲ (1 + ∥f †∥2Hs

)
ε2N (5.29)
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with probability at least 1− 2 exp(−cNmin(1, α+s−1
α+s+1/2

)) over U ∼ ν⊗N , where

ε2N =


N−
(

2α′+2s
1+2α+2s

)
, if α′ < α+ 1/2 ,

N−1 log 2N , if α′ = α + 1/2 ,

N−1 , if α′ > α+ 1/2 .

(5.30)

The constants c, N0, and the implied constant in (5.29) do not depend on N

or f †.

Appendix D.1 contains a more general version of the preceding theorem that
is valid for any p > 1/2 (Theorem D.1). The assertion of this version is
optimized for the choice p = s + 1/2 made in Theorem 5.12. The proof of
Theorem D.1, from which Theorem 5.12 follows immediately, may be found in
Appendix D.3.2. Appendix D.1 also includes an expectation bound instead of
the high probability bound in Theorem 5.12; the consequences are the same.

The second main theorem in this subsection describes the expected squared
error in the QoI after learning an approximate forward map from full-field data.

Theorem 5.13 (full-field learning: convergence rate for power law QoI). Let
the input training data distribution ν, the test data distribution ν ′, the true
forward map L†, and the QoI q† satisfy Assumption 5.10. Let α and α′ be as
in (5.20) and β and r be as in (A-II) and (A-IV). Then there exist constants
c > 0 and C > 0 such that for all sufficiently large N , the plug-in estimator
q† ◦ L̄(N) in (5.28) based on the Gaussian posterior distribution (5.27) arising
from the N pairs of observed full-field training data (U,Υ) in (5.25) satisfies
the error bound

EΥ |U Eu′∼ν′
∣∣q†(L†u′)− q†(L̄(N)u′)

∣∣2 ≲ ε2N (5.31)

with probability at least 1− Ce−cN over U ∼ ν⊗N , where

ε2N :=


N−
(

1+2α′+2β+2r
1+2α+2β

)
, if α′ + r < α ,

N−1 logN , if α′ + r = α ,

N−1 , if α′ + r > α .

(5.32)

The constants c, C, and the implied constant in (5.31) do not depend on N .

Appendix D.1 also contains a similar convergence result for QoIs with an
assumed Sobolev-like regularity instead of power law regularity. Proofs of both
this result and Theorem 5.13 are collected in Appendix D.3.3.
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5.4.3.1 Discussion

The proof of Theorem 5.12 is based on a bias–variance decomposition argument
that is detailed in Appendix D.3.2. Notice that the error bound in the theorem
is uniform over Hs–balls because the implied constant in the inequality (5.29)
does not depend on f †. The probability that the bound fails to hold decays
to zero faster than any power law as a function of the sample size N because
α + s − 1 > 0 by hypothesis. The convergence rate (5.29) depends on the
three smoothness exponents α, α′, and s. The consequences are the same as
those identified in [76, Section 3] because the error bound takes the same form.
Indeed, rougher training data points {un}Nn=1 (smaller α), smoother test data
points u′ ∼ ν ′ (larger α′), and smoother target functionals f † (larger s) all
serve to reduce the test error (up to saturation).

Moreover, the optimal choice of p made in Theorem 5.12 depends on the
regularity exponent s of the ground truth f †, which is unknown. However,
there exist more sophisticated estimators that adapt to the unknown regularity
and achieve the optimal convergence rate [7, 146]. Nonetheless, the fact that
we are even able to choose p = s+ 1/2 in the first place is one of the novelties
of our result. Most existing theoretical work on functional linear regression
requires some constraint linking the regularity p of the prior to the regularity s
of f †. The most common assumption corresponds to the well-specified setting
[49, 175, 278, 279], which means that f † belongs to the RKHS Im(Λ1/2) ⊂ H

of the prior N (0,Λ). In terms of coefficients, this is equivalent to assuming
that

∑∞
j=1 λ

−1
j |f †

j |2 ≲ ∥f †∥2Hp < ∞ because λj ≍ j−2p. However, we only
have that f † ∈ Hs. With the optimal choice p = s + 1/2, it is possible that
f † ̸∈ Hp = Hs+1/2. Our theory allows for such RKHS misspecification. In the
full-field learning setting, similar notions of robustness to misspecification are
guaranteed by the error bounds in [76].

The consequences of Theorem 5.13 for full-field learning are similar to those of
Theorem 5.12 for end-to-end learning with regard to the smoothness exponents
that define the estimation problem. However, Theorem 5.13 is only valid for
QoIs q† with asymptotic power law decay of the form |q†(φj)|2 ≲ j−2r−1 as
j → ∞. While many QoIs in practice satisfy this condition, it still corresponds
to a relatively small set within the class of all linear functionals. For example,
if the asymptotic power law decay condition holds, then {q†(φj)}j∈N ∈ Hr−ε

for every ε > 0. It is natural to wonder whether Theorem 5.13 remains valid
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if q† is only assumed to satisfy such a Sobolev-like regularity condition. To
this end, Theorem D.3 in Appendix D.1 generalizes Theorem 5.13 to all of Hr,
but at the expense of a worse convergence rate where r in (5.32) is replaced by
r − 1/2.

To conclude the discussion, we remark on more general estimators based on
full posterior distributions.

Remark 5.14 (posterior contraction rates). First consider the (EE) setting.
With minor modifications, the more general Theorem D.1, and hence also Theo-
rem 5.12, remains valid for the posterior sample estimator f (N) ∼ N (f̄ (N),Λ(N))

instead of its mean. To see this, note that the KL expansion of the poste-
rior (5.15) yields

Ef (N)∼N (f̄ (N),Λ(N))
∥∥(Σ′)1/2(f † − f (N))

∥∥2 =∥∥(Σ′)1/2(f † − f̄ (N))
∥∥2

+ tr
(
(Σ′)1/2Λ(N)(Σ′)1/2

)
.

(5.33)

Theorem D.1 bounds the conditional expectation of the first term on the right-
hand side of the preceding equality. We see that the only new error term that the
full posterior introduces is the second term, the posterior spread. But the end
of Subsection D.3.2.1 explains that the posterior spread may be upper bounded
by a constant times the rate ε2N from Theorem D.1. Thus, the end-to-end error
bounds (D.1) and (5.29) remain valid for the posterior sample estimator f (N)

at the expense of enlarged constant factors. Posterior contraction rates then
follow from a standard Chebyshev inequality argument [76, Section 3.3, p. 18].
Similar results may be deduced for the full-field setting (FF) because the error
analysis for the forward map in [76, Section 3.4] already takes into account the
full posterior distribution (5.27).

5.4.3.2 Sample Complexity Comparison

To conclude Subsection 5.4.3, we provide a detailed comparison of the end-to-
end (EE) and full-field (FF) PtO map learning approaches to provide intuition
about their statistical performance. Focusing on the specific setting of QoIs
with power law coefficient decay and in-distribution test error, the following
corollary is a consequence of Theorem 5.12 and Theorem 5.13. A short proof
is provided in Appendix D.3.4.
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Corollary 5.15 (sample complexity comparison). Instate the notation and
assertions in Assumptions 5.6, 5.7, and (A-III). Suppose that the training
and test distribution covariances have equivalent smoothness, i.e., α′ = α. Let
the underlying true PtO map f † have the factorization f † = q† ◦ L†, where
|q†(φj)|2 ≲ j−2r−1 as j → ∞ and L† is as in (5.26) with eigenvalues l† ∈ Hβ.
If β + r + 1/2 > 0, α + β + r > 1/2, and α + β > 0, then there exist
constants c > 0 and C > 0 such that for all sufficiently large N , the following
holds on an event with probability at least 1− C exp(−cNmin(1,

α+β+r−1/2
1+α+β+r

)) over
U = {un}Nn=1 ∼ ν⊗N . The (EE) posterior mean estimator f̄ (N) in (5.15) (with
p := β + r + 1 in (A3)) trained on end-to-end data (U, Y ) satisfies

EY |U Eu∼ν
∣∣q†(L†u)− ⟨f̄ (N), u⟩

∣∣2 ≲ N−
(
1− 1

2+2α+2β+2r

)
. (5.34)

On the other hand, the (FF) plug-in estimator q† ◦ L̄(N) in (5.28) trained on
full-field data (U,Υ) satisfies

EΥ |U Eu∼ν
∣∣q†(L†u)− q†(L̄(N)u)

∣∣2 ≲

N−
(
1− −2r

1+2α+2β

)
, if r < 0 ,

N−1 logN , if r = 0 ,

N−1 , if r > 0 .

(5.35)

Several interesting insights may be deduced from the convergence rates (5.34)
and (5.35). Since a common set of assumptions have been identified in the
statement of Corollary 5.15, these rates may be directly compared to assess
whether the (EE) or (FF) approach is more accurate or, equivalently, more data-
efficient, than the other (up to the sharpness of the upper bounds). First, we
note that the squared generalization error of (EE) in (5.34) has a nonparametric
convergence rate N−(1−δ) that is always slower than the parametric estimation
rate N−1 by a polynomial factor N δ (where δ > 0). On the other hand, if
r ≥ 0, then (FF) achieves the fast parametric rate N−1 (up to a log factor
if r = 0); this always beats (EE) in the regime r ≥ 0. This regime has an
interesting interpretation because the QoI is continuous if r > 0. These types
of QoIs appear naturally in scientific applications.

To study the regime r < 0, let

ρEE(r) := 1− 1

2 + 2α + 2β + 2r
and ρFF(r) := 1− 2max(−r, 0)

1 + 2α + 2β
(5.36)

for r ̸= 0 denote the convergence rate exponents of the end-to-end and full-field
estimators, respectively (ignoring the log factor when r = 0 in (5.35)). A larger
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Figure 5.2: (EE) vs. (FF) convergence rate exponents (5.36) as a function of QoI
decay exponent r. Larger exponents imply faster convergence rates. As the curves
gets lighter, α+ β, an indicator of the smoothness of the problem, increases. The
vertical dashed line corresponds to r = −1/2, which is the transition point where
(EE) and (FF) have the same rate and the onset of power law decay for the QoI
coefficients begins.

exponent implies faster convergence and better sample complexity. A simple
algebraic factorization shows that ρEE(r) = ρFF(r) = ρ at the points

(r0, ρ0) =

(
−1 + 2α + 2β

2
, 0

)
and (r1, ρ1) =

(
−1

2
,

2α + 2β

1 + 2α + 2β

)
.

By the concavity of r 7→ ρEE(r) in the range [r0, r1] and affine structure of
r 7→ ρFF(r), we deduce the following two insights:

(I1) ((EE) is better for rough QoIs) ρEE(r) > ρFF(r) for r0 < r < −1/2 and

(I2) ((FF) is better for smooth QoIs) ρEE(r) < ρFF(r) for r > −1/2.

The inequalities in (I1) and (I2) suggest that the (FF) approach is advantageous
when the QoI is smooth and the (EE) approach is advantageous when the
QoI is rough. However, definitive conclusions would require lower bounds.
An example of a rough QoI is q† : h 7→ (dh/dx)(x0), which returns a point
evaluation of the first derivative of a univariate function (see the last item
in Remark 5.11). Direct application of such a rough QoI to a function is an
ill-posed operation (e.g., amplifies perturbations in the function). This may
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partially explain why (EE) is preferable in this case, as the (EE) estimator
does not require the evaluation of q† while (FF) does. We plot the functions
ρEE and ρFF in Figure 5.2, which visualizes the main insights (I1) and (I2) from
the preceding discussion.

5.5 Numerical Experiments

We now perform numerical experiments with the proposed FNM architectures.7

These experiments have two main purposes. The first is to numerically imple-
ment and compare the various FNM models on several PtO maps of practical
interest; the second is to qualitatively validate the theory developed in the
chapter. We focus on nontrivial nonlinear problems with finite-dimensional
observables that define the QoI maps. Although our linear theory from Sec-
tion 5.4 does not apply to such nonlinear problems, we still observe qualitative
validation of the main implications of the linear analysis. That is, for smooth
enough QoIs, full-field learning is at least as data-efficient as end-to-end learn-
ing. Unlike the theory, however, our numerical results distinguish the two
approaches only by constant factors and not by the actual convergence rates.

The continuum FNM architectures from Section 5.2 are implemented numeri-
cally by replacing all forward and inverse Fourier series calculations with their
Discrete Fourier Transform counterparts. This enables fast summation of the
series (5.3), (5.6), and (5.7) with the FFT. The inner products in these formulas
are also computed with the FFT. In particular, the FFT performs Fourier
space operations in the set {k ∈ Zd : ∥k∥ℓ∞([d];Z) ≤ K} rather than over all
k ∈ Zd.8 In this case, we say that the FNM architecture has K modes. This is
analogous to the mode truncation used in standard FNO layers (see, e.g., [172]).
Additionally, since we work with real vector-valued functions, conjugate sym-
metry of the Fourier coefficients may be exploited to write the Fourier linear
functional (5.6) and decoder (5.7) layers only in terms of the real part of the
coefficients appearing in the summands. We also make a minor modification
to the F2V and V2V FNMs. Since the discrete implementation of G in (5.6)
requires discarding the higher frequencies in the input function, we define an

7The datasets are available at doi.org/10.22002/r5ga1-55d06. The code used to produce
the numerical results and figures in this chapter is available at

https://github.com/nickhnelsen/fourier-neural-mappings .

8In all numerical experiments to follow, d = 1 or d = 2.

https://doi.org/10.22002/r5ga1-55d06
https://github.com/nickhnelsen/fourier-neural-mappings
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auxiliary map W : h 7→
∫
Td NN(h(x)) dx that makes use of all frequencies. Here

NN( · ) is a one hidden layer fully-connected neural network (NN). Then we
replace G in Definition 5.1 by the concatenated operator (G ,W )⊤.

Given a dataset of input-output pairs {(un, ỹn)}Nn=1, we train a FNM Ψθ

taking one of the forms given in Definition 5.1 (with the modifications from
the preceding discussion) in a supervised manner by minimizing the average
relative error

1

N

N∑
n=1

∥ỹn −Ψθ(un)∥
∥ỹn∥

(5.37)

or the average absolute squared error

1

N

N∑
n=1

∥ỹn −Ψθ(un)∥2 (5.38)

over the FNM’s tunable parameters θ using mini-batch SGD with the ADAM
optimizer. The choice of the loss function is dependent on the underlying
problem. Moreover, the norm in the preceding displays are inferred from the
space that the ỹn takes values in (i.e., finite-dimensional or infinite-dimensional
output spaces). To avoid numerical instability in our actual computations, we
add 10−6 to the denominator of the ratio in (5.37).

The numerical experiments are organized as follows. In Subsection 5.5.1,
we extract the first four polynomial moments from the solution of a velocity-
parametrized 2D advection–diffusion equation. Next, Subsection 5.5.2 considers
the flow over an airfoil modeled by the steady compressible Euler equation.
The PtO map sends the shape of the airfoil to the resultant drag and lift force
vector. Last, we study an elliptic homogenization problem parametrized by
material microstructure in Subsection 5.5.3. Here, the QoI returns the effective
tensor of the material.

5.5.1 Moments of an Advection–Diffusion Model

Our first model problem concerns a canonical advection–diffusion PDE in two
spatial dimensions. This equation often arises in the environmental sciences
and is useful for modeling the spread of passive tracers (e.g., contaminants,
pollutants, aerosols), especially when the driving velocity field is coupled to
another PDE such as the Navier–Stokes equation. Our setup is as follows. Let
D = (0, 1)2 be the spatial domain and n denote the unit inward normal vector
to D. For a prescribed time-independent velocity field v : D → R2, the state
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ϕ : D × R>0 → R solves

∂tϕ+∇ · (vϕ)− 0.05∆ϕ = g in D × R>0 ,

n · ∇ϕ = 0 on ∂D × R>0 ,

ϕ = 0 on D × {0} .
(5.39)

The time-independent source term g is a smoothed impulse located at x0 :=
(0.2, 0.5)⊤ and is defined for x ∈ D by

g(x) :=
5

2π(50)−2
exp

(
−∥x− x0∥2R2

2(50)−2

)
.

We associate our input parameter with the velocity field v appearing in (5.39).
Our parametrization takes the form

v = (u, 0)⊤ , where u(x1, x2) = 3 +

dKL∑
j=1

√
τjzjej(x1) (5.40)

for all x = (x1, x2) ∈ D. Note that u is constant in the vertical x2 direction.
The eigenvalues {τj}j∈N and eigenfunctions {ej}j∈N correspond to the Mercer
decomposition of a kernel obtained by restricting a Matérn covariance function
over R to (0, 1) ⊂ R. The covariance function has smoothness exponent 1.5

and lengthscale 0.25 [228]. We choose

zj
i.i.d.∼ Uniform([−1, 1]) for all j ∈ [dKL] .

Thus, up to normalization constants, the velocity field (5.40) is the (truncated)
KL expansion of a subgaussian stochastic process. We take the input to either be
the full x1-velocity field u : D → R or the i.i.d. realizations z := (z1, . . . , zdKL

)⊤

of the random variables that affinely parametrize u.

Define the nonlinear QoI map q† : L4(D;R) → R4 as follows. First, for any
h ∈ L2(D;R), let

m̄(h) :=

∫
D
h(x) dx and s̄(h) :=

(∫
D
|h(x)− m̄(h)|2 dx

)1/2

(5.41)

denote the mean and variance of the pushforward of the uniform distribution
on D = (0, 1)2 under h, respectively. Then q† = (q†1, q

†
2, q

†
3, q

†
4)

⊤ is given by

h 7→ q†(h) :=


m̄(h)

s̄(h)

s̄(h)−3
∫
D

(
h(x)− m̄(h)

)3
dx

−3 + s̄(h)−4
∫
D

∣∣h(x)− m̄(h)
∣∣4 dx

 . (5.42)
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Velocity Profile Input State Output

(a) dKL = 2

(b) dKL = 20

(c) dKL = 1000

Figure 5.3: Visualization of the velocity-to-state map for the advection–diffusion
model. Rows denote the dimension of the KL expansion of the velocity profile and
columns display representative input and output fields.

Hence, q†1 is the mean, q†2 the standard deviation, q†3 the skewness, and q†4 the
excess kurtosis. Our goal is to build FNM surrogates for the PtO map that
sends the input representation (either the full velocity field or its finite number
of i.i.d. coefficients) to the QoI values of the state ϕ at final time t = 3/4 (see
Figure 5.3). Therefore, we train FNMs to approximate each of the following
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ground truth maps:

Ψ†
F2F : u 7→ ϕ

∣∣
t=3/4

,

Ψ†
F2V : u 7→ q†

(
ϕ
∣∣
t=3/4

)
,

Ψ†
V2F : z 7→ ϕ

∣∣
t=3/4

, and

Ψ†
V2V : z 7→ q†

(
ϕ
∣∣
t=3/4

)
.

The training data is obtained by solving (5.39) with a second-order Lagrange
finite element method on a mesh of size 32× 32 and Euler time step 0.01. For
each dKL ∈ {2, 20, 1000}, we generate 104 i.i.d. data pairs for training, 1500
pairs for computing the test error (which is (5.37) over the 1500 test pairs
instead of over the N training pairs), and 500 pairs for validation. All FNM
models with 2D spatial input or output functions use 12 modes per dimension
and a channel width of 32. For the V2V-FNM, we use a 1D latent function
space with 12 modes and channel width of 96. We compare all FNM models to
a standard fully-connected NN with three layers and constant hidden width
2048. These architecture settings were selected based on a hyperparameter
search over the validation dataset for dKL = 1000 that mimics the parameter
complexity experiments in [35, 159]. The models are trained on the relative
loss (5.37) for 500 epochs in L2 output space norm for functions and Euclidean
norm for vectors. The optimizer settings include a minibatch size of 20, weight
decay of 10−4, and an initial learning rate of 10−3 which is halved every 100

epochs. We train 5 i.i.d. realizations of the models for various values of N and
dKL and report the results in Figure 5.4.

Figure 5.4 reveals several interesting trends. In general, training models to
emulate the advection–diffusion PtO map with finite-dimensional vectors as
input is more difficult than adopting function space input variants of the
problem. The difficulty is further exacerbated as the dimension of the input
vector (here, dKL) increases. We hypothesis that this gap in performance
would reduce if the vector input models received the weighted KL coefficients
{√τjzj} as input instead of the i.i.d. sequence {zj}. This way the model would
have access to decay information and hence an ordering of the coefficients.
The standard finite-dimensional NN performs poorly across all KL expansion
dimensions. The training of the NN is also quite erratic, as evidenced by the
large green shaded regions indicating large variance over multiple training runs.
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Figure 5.4: Empirical sample complexity of FNM and NN architectures for the
advection–diffusion PtO map (note that Figure 5.4a has a different vertical axis
range). The shaded regions denote two standard deviations away from the mean of
the test error over 5 realizations of the random training dataset indices, batch indices
during SGD, and model parameter initializations.

The output space seems to play less of a role than the input space. Indeed, the
F2F and F2V FNMs with function space inputs generally achieve the lowest
test error regardless of N and dKL. The full-field F2F method slightly out
performs the end-to-end F2V method by a small constant factor (except for
when dKL = 2). Since q† is a smoothing QoI due to its integral definition, this
observation aligns with the theoretical insights from Subsection 5.4.3.2. The
fast convergence of some of the FNM models, especially for the low-dimensional
cases dKL = 2 and dKL = 20, could potentially be explained by the lack of noise
in the data, the smoothness of the QoIs, and the nonconvexity of the training
procedure. When dKL = 1000, the problem is essentially infinite-dimensional.
The function space input FNMs (F2F and F2V) exhibit a nonparametric decay
of test error as expected.

5.5.2 Aerodynamic Force Exerted on an Airfoil

Consider the following steady compressible Euler equation applied to an airfoil
problem (see Figure 5.5), as introduced in [171]:

∇ · (ρv) = 0 ,

∇ · (ρvv⊤ + p IdR2) = 0 ,

∇ ·
(
(E + p)v

)
= 0 .

(5.43)

Here ρ is the fluid density, v is the velocity vector, p is the pressure, and E is the
total energy. Equation (5.43) is equipped with the following far-field boundary
conditions: ρ∞ = 1, p∞ = 1, M∞ = 0.8, and AoA = 0, where M∞ is the Mach
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Figure 5.5: Flow over an airfoil. From left to right: visualization of the cubic design
element and different airfoil configurations, guided by the displacement field of the
control nodes; a close-up view of the C-grid surrounding the airfoil; the physical
domain discretized by the C-grid.

number and AoA is the angle of attack. This setup indicates that the flow
condition is in the transonic regime. Additionally, the no-penetration condition
v · n = 0 is imposed at the airfoil, where n represents the inward-pointing
normal vector to the airfoil. Additional mathematical details about the setup
may be found in [183, 184, 185, 194].

In this context, we are interested in solving the aforementioned 2D Euler
equation to predict the drag and lift performance of different airfoil shapes.
Building fast yet accurate surrogates for this task facilities aerodynamic shape
optimization [206, 244] for various design goals, such as maximizing the lift to
drag ratio [171]. The drag and lift QoIs, which only depend on the pressure on
the airfoil, are given by the force vector

(Drag, Lift)⊤ =

∮
A
pn ds ∈ R2 . (5.44)

Here A denotes the closed curve defined by the union of the upper and lower
surfaces of the airfoil. Different airfoil shapes are generated following the design
element approach [95] (Figure 5.5). The initial NACA-0012 shape is embedded
into a “cubic” design element featuring eight control nodes, and the initial shape
is morphed to a different one following the displacement field of the control
nodes of the design element. The displacements of control nodes are restricted
to the vertical direction only. Consequently, the intrinsic dimension of the
input is seven, as displacing all nodes in the vertical direction by a constant
value does not change the shape of the airfoil.

To generate the training data, we used the traditional second-order finite
volume method with the implicit backward Euler time integrator. The process
begins by generating a new airfoil shape. Subsequently, a C-grid mesh [249]



146

𝒟
𝑢 = 𝜙!: 			𝜉 → 𝑥(𝜉) Ψ"#"

$ 𝑢 = 𝑝 ∘ 𝜙!: 			𝜉 → 𝑝(𝜙! 𝜉 )

Figure 5.6: Flow over an airfoil. The 1D (bottom) and 2D (top) latent spaces are
illustrated at the center; the input functions u( · ) encoding the irregular physical
domains, are shown on the left; and the output functions p ◦ u representing the
pressure field on the irregular physical domains, are depicted on the right.

consisting of 221× 51 quadrilateral elements is created around the airfoil with
adaptation near the airfoil. In total, we generated 2000 training data and 400

test data with the vertical displacements of each control node being sampled
from a uniform distribution Uniform([−0.05, 0.05]).

Next, we will define the operator learning problem (see Figure 5.6). In the 2D
setting, we aim to learn the entire pressure field. Let Da represent the irregular
physical domain parametrized by a, indicating the shape of the airfoil. The
domain Da is discretized by a structured C-grid [249]. We introduce a latent
space D = [0, 1]2 and the deformation map ϕa : ξ → x(ξ) between D and Da.
Here the deformation map has an analytical format and maps the uniform grid
in D to the C-grid in Da. Subsequently, we formulate the operator learning
problem in the latent space as

Ψ†
F2F : ϕa → p ◦ ϕa . (5.45)

In the preceding display, the deformation map ϕa is a function defined in
D, and p ◦ ϕa represents the pressure function defined in D. As mentioned
previously, both lift and drag depend solely on the pressure distribution over
the airfoil. Hence, we can alternatively formulate the learning problem in a 1D
setting by focusing solely on learning the pressure distribution over the airfoil.
We construct a one-dimensional latent space D = [0, 1] and also denote the
deformation map as ϕa : ξ → x(ξ) mapping from D to the shape of the airfoil.
The corresponding operator learning problem in this 1D setting has the same
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Figure 5.7: Flow over an airfoil. Comparative analysis of data size versus relative
test error for the FNM and NN approaches. The shaded regions denote two standard
deviations away from the mean of the test error over 5 realizations of the batch
indices during SGD and model parameter initializations.

form as (5.45). The ground truth maps Ψ†
F2V, Ψ†

V2F, and Ψ†
V2V are defined

similarly, mapping either the deformation function ϕa or the 7-dimensional
control node vector input to the pressure function or the QoI (5.44) itself. We
use all four variants of the FNM architectures and a finite-dimensional NN to
approximate these maps from data.

For each sample size N , five i.i.d. realizations of the models are trained on the
relative loss (5.37) for 2000 epochs in L2 output space norm for functions and
Euclidean norm for vectors. All FNM models use 4 hidden layers, 12 modes
per dimension, and a channel width of 128. We compare these models to a
standard fully-connected NN with four layers and a hidden width of 128. In the
case of FNM models, we observe that learning in the 1D setting consistently
outperforms the 2D setting across all sizes of training data. Therefore, we
only present results for the 1D setting. Moreover, this set of architectural
hyperparameters with a large channel width of 128 in general outperforms
other hyperparameter settings. Figure 5.7 reveals several trends. As the data
volume N increases, all error curves decay at an algebraic rate that is slightly



148

faster than N−1/2. This may be due to the small sample sizes considered (under
2000 data pairs) or, especially since the training data is noise-free, could be
evidence of a data-driven “superconvergence” effect similar to that observed
for QoI computations in adjoint methods for PDEs [110]. Overall, emulating
PtO maps by training models with finite-dimensional vectors as both input
and output (V2V and NN) is more challenging for this problem than adopting
function space variants (F2F, F2V, V2F). The standard finite-dimensional NN
performs similarly to V2V.

5.5.3 Effective Tensor for a Multiscale Elliptic Equation

This example considers an equation that arises in elasticity in computational
solid mechanics and relates the material properties on small scales to the
effective property on a larger scale: homogenization. Consider the linear
multiscale elliptic equation on a bounded domain D ⊂ R2 given by

−∇ · (Aϵ∇uϵ) = g in D ,

uϵ = 0 on ∂D .
(5.46)

Here Aϵ is given by x 7→ Aϵ(x) = A
(
x
ϵ

)
for some A : T2 → R2×2

sym,≻0 which
is 1-periodic and positive definite. The source term is g. This equation
contains fine-scale dependence through Aϵ, which may be computationally
expensive to evaluate without taking advantage of periodicity. The method of
homogenization allows for elimination of the small scales in this manner and
yields the homogenized equation

−∇ ·
(
A∇u

)
= g in D ,

u = 0 on ∂D ,
(5.47)

where A is given by

A =

∫
T2

(
A(y) + A(y)∇χ(y)⊤

)
dy (5.48)

and χ : T2 → R2 solves the cell problem

−∇ ·
(
(∇χ)A

)
= ∇ · A in T2 , (5.49)∫

T2

χ(y) dy = 0 and χ is 1-periodic . (5.50)

For 0 < ϵ≪ 1, the solution uϵ of (5.46) is approximated by the solution u of
(5.47). The error between the solutions converges to zero as ϵ→ 0 [30, 217].
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25 Parameters:
• 5 Voronoi cell
centers

• 3 A DoF per
cell

Vector z Function A Function χ

A ∈ R2×2
sym,≻0

Vector A
Cell Problem Eqn. (5.48)

Figure 5.8: Diagram showing the homogenization experiment ground truth maps.
The function A is parametrized by a finite vector z. The quantity of interest A (5.48)
is computed from both the material function A and the solution χ to the cell problem
(5.49). Note that both A and χ are functions on the torus T2.

The bottleneck step in obtaining the effective tensor A, which is our QoI, is
solving the cell problem (5.49). Learning the solution map A 7→ χ in (5.49)
corresponds to the F2F setting and is explored in detail in [35]. Alternately,
one could learn the effective tensor A directly using the F2V-FNM architecture
to approximate A 7→ A. Furthermore, though A is a function from T2 to
R2×2

sym,≻0, in certain cases it may have an exact finite vector parametrization.
One example of this case is finite piecewise-constant Voronoi tessellations; A
takes constant values on a fixed number of cells, and the cell centers uniquely
determine the Voronoi geometry. Denoting these parameters as z ∈ Rdu for
appropriate du ∈ N, one could also learn the V2F map z → χ or the V2V
map z → A. In this experiment, we compare the error in the QoI A using
all four methods. A visualization of the possible maps is shown in Figure 5.8.
Since our example is defined in two spatial dimensions, the five Voronoi cell
centers have two components each. The symmetry of A yields three degrees
of freedom (DoF) on each Voronoi cell. Altogether, this yields 25 parameters
that comprise the finite-dimensional vector input.

For training, we use the absolute squared loss in (5.38) with the H1 norm
for function output and Frobenius norm for vector output. Test error is also
evaluated using these metrics. Data are generated with a finite element solver
using the method described in [35]; both A and χ are interpolated to a 128×128

grid, and the Voronoi geometry is randomly generated for each sample. The
test set size is 500. Each map uses hyperparameters obtained via a grid search.
For F2F, F2V, V2F, and V2V, the number of modes are 18, 12, 12, and 18, and
the channel widths are 64, 96, 96, and 64, respectively. The fully-connected
NN used as a comparison has a channel width of 576 and 2 hidden layers.
As a consequence, all methods have a fixed model size of modes times width
equaling 1152.
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Figure 5.9: Elliptic homogenization problem. Absolute A error in the Frobenius norm
versus data size for the FNM and NN architectures. The shaded regions denote two
standard deviations away from the mean of the test error over 5 realizations of batch
indices during SGD and model parameter initializations.

The results for the homogenization experiment in Figure 5.9 reinforce the
theoretical intuition from Section 5.4 that learning with finite-dimensional
vector data results in higher error than learning with functional data. Both
the F2F and the F2V models approximately track the N−1/2 rate, where N
is the number of training data. On the other hand, the V2V model and NN
model fail to attain this rate and saturate at the same level of roughly 10%

error. The V2F map does achieve a slightly faster error decay rate than the
V2V architecture for large enough sample sizes N , but it does not approach
the N−1/2 rate obtained by the F2F and F2V models. These convergence
rate differences occur when there is a difference in input dimension. On the
other hand, for a difference in output dimension, while both the F2F and
F2V models reach roughly the same convergence rate, the F2V error remains
an order of magnitude higher than the F2F error. We remark that when
measuring performance with relative test error instead, the qualitative behavior
of Figure 5.9 remains the same.
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5.6 Conclusion

This chapter proposes the Fourier Neural Mappings (FNMs) framework as an
operator learning method for approximating parameter-to-observable (PtO)
maps with finite-dimensional vector inputs or outputs, or both. Universal
approximation theorems demonstrate that FNMs are well suited for this task.
Of central interest is the setting in which the PtO map factorizes into a
vector-valued quantity of interest (QoI) map composed with a forward operator
mapping between two function spaces. For this setting, the chapter introduces
the end-to-end (EE) and full-field (FF) learning approaches. The (EE) approach
directly estimates the PtO map from its own input-output pairs, while the
(FF) approach estimates the forward map first and then plugs this estimator
into the QoI. The main theoretical results of the chapter establish sample
complexity bounds for Bayesian nonparametric regression of linear functionals
with the (EE) and (FF) methods. The analysis reveals useful insights into how
the smoothness of the QoI influences data efficiency. In particular, (FF) is
superior to (EE) for smooth QoIs in this setting. The situation reverses for
QoIs of low regularity. Finally, the chapter implements the FNM architectures
for three nonlinear problems arising from environmental science, aerodynamics,
and materials modeling. The numerical results support the linear theory and
extend beyond it by revealing the supremacy of function space representations
of the input space over analogous finite-dimensional vector parametrizations.

Several avenues for future work remain open. One way to understand the data
efficiency of the (EE) and (FF) learning approaches beyond the specific Bayesian
linear estimators that this chapter analyzes would involve the development
of fundamental lower bounds. Besides a few recent works [5, 135, 158, 163,
169], there has been little attention on minimax lower bounds and (statistical)
optimality for operator learning. The statistical theory in the present chapter
fixes an infinite-dimensional input space and studies the influence of the output
space (being either one-dimensional or infinite-dimensional). The derivation of
similar insights to those in Subsection 5.4.3.2 for PtO map learning with vector-
to-function estimators could help explain the strong influence of the input space
observed in the numerical experiments from Section 5.5. The scalar input and
infinite-dimensional output case is partially addressed by [232]. Furthermore,
it remains to be seen whether the theory developed in the present chapter for
the linear functional setting can extend to certain classes of nonlinear maps
and QoIs, perhaps by linearizing the maps in an appropriate manner. For a
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specific nonlinear map, relevant work in [238] studies the approximation of
nonsmooth QoIs. On the practical side, it is of interest to further explore
architectural improvements for the various FNMs and in particular whether
the latent function space introduced by the vector-to-vector FNM (M-V2V)
can actually lead to improved performance over standard finite-dimensional
neural networks.
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C h a p t e r 6

THESIS CONCLUSION

Operator learning concerns the training of data-driven models that map be-
tween infinite-dimensional input and output spaces instead of spaces of finite-
dimensional vectors. As a result, these continuum architectures are not sensitive
to the discretization chosen at implementation time. An emerging paradigm,
operator learning has the potential to enhance and accelerate scientific com-
putation and discovery. This thesis studies statistical aspects of supervised
learning for operators mapping between spaces of spatially-varying functions.

In Chapter 2, the thesis proposes the function-valued random features method
for scalable nonlinear operator learning. Numerical experiments verify the
computational efficiency and discretization invariance of the methodology in
parametric partial differential equation examples. Chapter 3 provides an
analysis of function-valued random feature regression with square loss. The
theoretical results include statistical consistency guarantees and some of the
sharpest convergence rates for random features to date. Going beyond universal
approximation existence theorems, the theory developed in this chapter is
appealing because it holds for a continuum algorithm that can actually be
trained and implemented on a computer, as done in Chapter 2. Next, Chapter 4
frames the supervised learning of a linear operator between Hilbert spaces as a
Bayesian inverse problem with a random forward map. The resulting analysis of
this inverse problem establishes posterior contraction rates and generalization
error bounds in the large data limit. These results provide practical insights
into how to improve the sample complexity of linear operator learning. For
the task of predicting finite-dimensional observables from the output state of
some continuum system operator, Chapter 5 theoretically explores the relative
difficulty of full-field linear operator learning versus end-to-end learning of
the desired quantities of interest. Additionally, this chapter devises function
space-consistent neural operator architectures for universally approximating
nonlinear function-to-vector and vector-to-function mappings. Throughout the
thesis, numerical evidence supports the theoretical findings and demonstrates
the practical utility of the proposed operator learning algorithms.
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The present chapter concludes this thesis by summarizing the main contributions
in Section 6.1 and providing fruitful directions for future developments in the
field of operator learning in Section 6.2.

6.1 Summary of Contributions

This thesis tackles the challenge of theoretically uncovering how problem
structure, data quality, and prior information affect the generalization error of
operator learning algorithms. The thesis also develops new algorithms that both
realize the theory and go beyond it. This section reviews both the algorithmic
and analytical contributions of the thesis.

6.1.1 Algorithms

This thesis develops theoretically justified operator learning algorithms that
scalably and accurately approximate nonlinear mappings.

Chapter 2 proposes the use of function-valued random features to learn nonlinear
operators mapping between infinite-dimensional Banach spaces of functions.
It shows that the method is a parametric, finite-rank approximation of a full-
rank operator-valued kernel or Gaussian process regression method. Due to
efficient convex optimization, the function-valued random features method has a
manageable offline training cost that is substantially cheaper than the offline cost
for full-rank function-valued kernel regression. The proposed algorithm further
enables the modeling of fully general output space correlations, while existing
kernel methods are still unable to do so. When implemented on a computer, the
conceptually infinite-dimensional random features algorithm is consistent with
the continuum limit, robust to the particular choice of discretization, and highly
transferrable in practice. The chapter further designs problem-adapted Fourier
Space Random Feature maps with cheap online evaluation cost, which makes
the algorithm well suited for the task of speeding up otherwise prohibitively
expensive many-query problems.

Chapter 5 identifies the need for operator learning architectures that are able
to handle finite-dimensional vectors as inputs or outputs. This need arises
when input functions are parametrized in a low-dimensional way, such as in
design optimization problems, or when state measurements of an underlying
continuum system are limited in resolution or involve indirect quantities. The
chapter introduces the neural mappings framework for supervised learning in
such scenarios, with a focus on the particular Fourier Neural Mappings class
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that builds upon the existing Fourier Neural Operator architecture. The pro-
posed methodology is a mathematically principled, fully data-driven approach
that does not require explicit knowledge about the finite-dimensional input
parametrization, output quantity of interest map, or the underlying continuum
system operator. New functional encoder layers map functions to vectors in
a discretization-invariant way. Similarly, linear decoder layers consistently
map vectors to functions. Fourier Neural Mappings inherit all of the benefits
of the original Fourier Neural Operator, including universal approximation
properties and fast forward passes through the network. Numerical results
support the linear insights developed later in Chapter 5 and extend beyond
them by revealing that continuum representations of the input space are su-
perior to finite-dimensional vector representations, especially for a material
homogenization problem.

6.1.2 Analysis

The theoretical analysis in this thesis is united by how smoothness, model
misspecification, and prior domain knowledge influence the data efficiency
of operator learning. Additionally, both Chapters 4 and 5 contribute to the
development of principled uncertainty quantification for linear operator learning
through Bayesian inference methodology and analysis.

Chapter 3 develops state-of-the-art parameter complexity bounds for random
feature ridge regression. It focuses on model error due to smoothness misspecifi-
cation, leading to strong asymptotic consistency theorems for the methodology
and non-asymptotic error bounds robust to misspecification that hold with
high probability. Although the high-level proof approach based on decomposing
the squared test error into the training error plus the generalization gap is a
classical idea, the analysis develops several novel techniques that sharpen the
argument and lead to tighter rates. These include the self-bounding argument
leading to a high probability bound on the norm of the trained random feature
model’s coefficients and empirical process bounds that do not require vector
contraction results for Rademacher complexity.

Chapter 4 uncovers novel theoretical principles about how the smoothness of
the problem, smoothness of the training data, and smoothness of the test data
affect the sample complexity of linear operator learning. These principles have
implications for the optimal acquisition of training data, the robustness of
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learned models under data distribution shifts, and how the accuracy of such
models should be evaluated. The theory is applied to answer several basic
questions in the field. For example, the chapter shows that self-adjoint linear
operators involving differentiation or integration of functions can be learned
from noisy data pairs and bounds how much data is required to do so. The core
of the analysis centers on new statistical guarantees for a white noise sequence
space regression model with correlated random coefficients and smoothness
misspecification from the prior distribution. Along the way, the chapter proves
technical lemmas that are applicable to sums of dependent subexponential
random variables. These independently interesting results lead to concentration
bounds for random series and are of wide applicability, as demonstrated by
their use in both Chapters 4 and 5. The lower bounds in expectation are also
of interest both in terms of the proof technique and their potential applicability
to other statistical problems.

Chapter 5 provides a new Bayesian functional linear regression analysis that
remains valid when the nonparametric model class is misspecified, i.e., the
smoothness implied by the prior distribution and the smoothness of the ground
truth functional do not match. This result is of independent interest, owing
to a refined bias bound in the underlying bias–variance decomposition. Going
further, the theory establishes a sample complexity comparison between end-
to-end and full-field learning of composite linear parameter-to-observable maps
of the form f = q ◦ L. Specifically, the chapter analyzes the sample complexity
of (i) directly regressing f from paired data, and (ii) a plug-in estimator based
on exact knowledge of q plus regressing only the operator L. The full-field
approach (ii) delivers a more accurate estimate of f than approach (i) does,
provided that the quantity of interest functional q is smooth enough. In this
case, prior knowledge of continuum problem structure gives a quantitative
statistical advantage over purely data-driven end-to-end learning. This result
gives theoretical validity to empirical observations made about the benefits
of full-field learning in various fields. The chapter also proves new universal
approximation theorems for the Fourier Neural Mappings architectures, giving
the nonlinear numerical experiments in Chapter 5 some theoretical grounding.

6.2 Outlook

Although the new field of operator learning has witnessed rapid growth in
recent times, the bulk of the research has centered on surrogate modeling of
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partial differential equation solution operators in one, two, or three spatial
dimensions and possibly one time dimension. This is understandable, as
such continuum physical models are ubiquitous in science and engineering.
However, more challenging problems include those with much higher state space
dimensions. These include the high-dimensional settings of quantum many-body
problems, reinforcement learning, mathematical finance, and filtering and data
assimilation. Also, solution operators of high- or infinite-dimensional partial
differential equations appear in physics, e.g., Schrödinger or quantum field
equations [18], and in control theory, e.g., Hamilton–Jacobi equations or mean
field games [50]. Numerical solvers for these problems are still in their infancy.
It is of interest to probe the limits of operator learning for such applications.
Beyond ordinary, partial, and stochastic differential equation models, there
are entirely different classes of problems in other fields that are underexplored
and may benefit from an operator learning perspective. For example, there are
diverse datasets in biology [276], medicine [237], finance [269], and the social
sciences [22] that deserve a proper infinite-dimensional treatment.

The present thesis studies supervised operator learning problems. However, the
framework of performing machine learning in infinite dimensions is much more
general than this. One can envision unsupervised [12], semi-supervised [137],
active [167], and online operator learning [226] from potentially diverse sources
of noisy and incomplete data. For instance, in the unsupervised setting, only
unlabeled data are available. One canonical problem of this type is covariance
estimation [106]. Here, the unlabeled dataset consists of centered random
functions x 7→ un(x) sampled from an unknown probability measure µ, that is,

un ∼ µ for n = 1, . . . , N . (6.1)

Given these data, the goal is to estimate the unknown covariance function

(x, x′) 7→ Eu∼µ
[
u(x)u(x′)

]
(6.2)

or its operator representation on a suitable function space. One may also be
interested in estimating specific functionals of the covariance operator and not
the entire operator itself [148]. This problem is typically addressed from a
nonparametric statistics perspective. It would be interesting to apply (deep)
operator learning ideas here too.

Alternatively, the observed data might only consist of noisy, indirect, and
sparse measurements of a continuum system, as is common in inverse problems.
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Here, the only accessible data are the labeled outputs. The inputs that give
rise to the labels are unknown. The inverse problem is to infer the (possible
range of) inputs that produce the observed output quantity. Some inverse
problems are even more challenging, such as blind deconvolution [28]. Given a
blurry image y : D → R, the goal of blind deconvolution is to recover both the
underlying clean image function u : D → R and the convolution filter kernel
function κ : D → R from y subject to the assumed statistical model

y =

∫
D
κ(· − x)u(x) dx+ η , (6.3)

where η represents a random noise process. That is, the solution to blind
deconvolution is the convolution operator itself as well as the unknown clean
image u. Sometimes an optional collection of labels {yn}Nn=1 is also provided in
addition to y, where each label yn corresponds to a true image un according
to (6.3). This data access model suggests that an indirect form of operator
learning could be applicable. It is clear that inverse problems pose new
opportunities for operator learning methods because traditional algorithms for
solving inverse problems are not always reliable or accurate due to inherent
ill-posedness issues. Most existing machine learning research in this area studies
the learning of regularization operators for inverse problems [15]. However,
this line of work does not learn the entire inversion map itself. An operator
learning approach may prove to be useful in this challenging setting.

One of the main theoretical findings in the present thesis is that the continuum
qualities of the infinite-dimensional training data quantitatively impact statisti-
cal performance of operator learning algorithms. Building on this insight, future
development of active learning or optimal data acquisition strategies applicable
in infinite dimensions would serve to boost the effectiveness of operator learn-
ing in challenging limited data scenarios. Moreover, a collective community
shift away from random training data generation and toward greedy or more
principled data generation strategies that exploit problem-specific structure
is highly desirable and sorely needed to address difficult problems currently
considered to be out of reach. Altogether, the methodological and theoretical
contributions of this thesis serve to improve the robustness, reliability, and
efficiency of continuum machine learning algorithms and help lay the foundation
for future advances in the emerging field of operator learning.
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A p p e n d i x A

APPENDIX TO CHAPTER 2

This appendix collects the proofs of the results appearing in the main body
of Chapter 2: Operator Learning With Function-Valued Random Features
(Appendix A.1). In Appendix A.2, it also provides further insight into the
uniqueness of the integral representation of operators in the reproducing kernel
Hilbert space induced by random features.

A.1 Proofs of Results

We begin by proving the integral characterization of the operator RKHS.

Proof of Result 2.5. Fix a ∈ X and y ∈ Y . Then, we note that

kµ(·, a)y =

∫
⟨φ(a; θ), y⟩Yφ(·; θ)µ(dθ) = A⟨φ(a; ·), y⟩Y ∈ Im(A) (A.1)

since ⟨φ(a; ·), y⟩Y ∈ L2
µ(Θ;R) by the Cauchy–Schwarz inequality.

Now we show that Im(A) admits a reproducing property of the form (2.10).
First, note that A can be viewed as a bijection between its coimage and image
spaces, and we denote this bijection by

Ã : ker(A)⊥ → Im(A) . (A.2)

For any F and G ∈ Im(A), define the candidate RKHS inner product ⟨·, ·⟩ by

⟨F,G⟩ :=
〈
Ã−1F, Ã−1G

〉
L2
µ(Θ;R) . (A.3)

This is indeed a valid inner product since Ã is invertible. Note that for any
q ∈ ker(A), it holds that

〈
q, ⟨φ(a; ·), y⟩Y

〉
L2
µ(Θ;R) =

∫
q(θ)⟨φ(a; θ), y⟩Y µ(dθ)

=
〈∫

q(θ)φ(a; θ)µ(dθ), y
〉
Y

= 0
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so that ⟨φ(a; ·), y⟩Y ∈ ker(A)⊥. Then for any F ∈ Im(A), we compute

⟨kµ(·, a)y, F ⟩ =
〈
⟨φ(a; ·), y⟩Y , Ã−1F

〉
L2
µ(Θ;R)

=

∫
⟨φ(a; θ), y⟩Y(Ã−1F )(θ)µ(dθ)

=
〈∫

(Ã−1F )(θ)φ(a; θ)µ(dθ), y
〉
Y

=
〈
y, (AÃ−1F )(a)

〉
Y

= ⟨y, F (a)⟩Y ,

which gives exactly (2.10) if our candidate inner product is defined to be the
RKHS inner product. Since F ∈ Im(A) is arbitrary, this and (A.1) together
imply that Im(A) = Hkµ is the RKHS induced by kµ as shown in [70, 136].

The characterization of the finite-dimensional operator RKHS follows as a
corollary.

Proof of Result 2.6. Since L2
µ(m)(Θ;R) is isomorphic to Rm, we can consider

the map A : Rm → L2
ν(X ;Y) defined in (2.14) and use Result 2.5 to conclude

that

Hk(m) = Im(A) =

{
1

m

m∑
j=1

cjφ(·; θj) : c ∈ Rm

}
= span{φj}mj=1 (A.4)

since the {φj}mj=1 are assumed linearly independent.

Finally, we prove that function-valued random feature ridge regression is
equivalent to an operator-valued kernel method (equivalently, function-valued
Gaussian process regression).

Proof of Result 2.8. Recall from Result 2.6 that the RKHS Hk(m) comprises
the linear span of the {φj := φ(·; θj)}mj=1. Hence φj ∈ Hk(m) , and note that by
the reproducing kernel property (2.10), for any F ∈ Hk(m) , a ∈ X , and y ∈ Y ,

⟨y, F (a)⟩Y =
〈
k(m)(·, a)y, F

〉
H
k(m)

=
1

m

m∑
j=1

⟨φj(a), y⟩Y⟨φj, F ⟩H
k(m)

=

〈
y,

1

m

m∑
j=1

⟨φj, F ⟩H
k(m)

φj(a)

〉
Y
.
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Since this is true for all y ∈ Y , we deduce that

F =
1

m

m∑
j=1

αjφj , where αj = ⟨φj, F ⟩H
k(m)

. (A.5)

As the {φj}mj=1 are assumed linearly independent, we deduce that the represen-
tation (A.5) is unique.

Finally, we calculate the RKHS norm of any such F in terms of α:

∥F∥2H
k(m)

= ⟨F, F ⟩H
k(m)

=

〈
1

m

m∑
j=1

αjφj, F

〉
H
k(m)

=
1

m

m∑
j=1

αj⟨φj, F ⟩H
k(m)

=
1

m

m∑
j=1

α2
j .

Substituting this into (2.24), we obtain the desired equivalence with (2.23).

A.2 Further Remarks on the Integral Representation of RKHS

We recall the linear operator A (2.14) from Section 2.2.3. In this appendix, we
clarify the meaning of Equation (2.12) and show that A is a square root of Tkµ .
Similar discussion is provided by Bach [17, Sec. 2] for the special case Y = R.

By the assumption φ ∈ L2
ν×µ(X × Θ;Y) and Cauchy–Schwarz inequality, it

holds that
A ∈ L

(
L2
µ(Θ;R);L2

ν(X ;Y)
)
. (A.6)

Now let F ∈ Im(A) = Hkµ . We have F = Ac for some c ∈ L2
µ. But since ker(A)

is closed, L2
µ = ker(A)⊕ ker(A)⊥. Hence, there exist unique qF ∈ ker(A) and

cF ∈ ker(A)⊥ such that c = qF + cF . Using the notation in Equation (A.2), we
have cF = Ã−1F by definition of Ã. The reproducing property in the proof A.1
produced the representation F = AcF ; in fact, the similar calculation leading
to (2.12) in Section 2.2.3 also identified the unique cF , there defined formally
by θ 7→ cF (θ) = ⟨φ(·; θ), F ⟩Hkµ

. Indeed,

⟨cF , q⟩L2
µ(Θ;R) =

∫
⟨φ(·; θ), F ⟩Hkµ

q(θ)µ(dθ)

=
〈∫

q(θ)φ(·; θ)µ(dθ), F
〉
Hkµ

= 0
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for any q ∈ ker(A). Hence cF ∈ ker(A)⊥, and we interpret (2.12) as formal
notation for the unique element Ã−1F ∈ ker(A)⊥. Using the formula (A.3)
and orthogonality, we also obtain the following useful characterization of the
RKHS norm:

∥F∥2Hkµ
=
∥∥Ã−1F

∥∥2
L2
µ
= ∥cF∥2L2

µ
= min

c∈CF
∥c∥2L2

µ
, (A.7)

where CF := {c ∈ L2
µ(Θ;R) : Ac = F}.

Finally, we show that AA∗ = Tkµ . This means that the RKHS is equal
to the image of two different square roots of integral operator Tkµ , namely,
Hkµ = Im(T

1/2
kµ

) = Im(A). First, for any F ∈ L2
ν(X ;Y) and c ∈ L2

µ(Θ;R), it
holds that

⟨F,Ac⟩L2
ν
=
〈
F,

∫
c(θ)φ(·; θ)µ(dθ)

〉
L2
ν

=

∫
c(θ)⟨F, φ(·; θ)⟩L2

ν
µ(dθ)

=
〈∫

⟨F (a′), φ(a′; ·)⟩Y ν(da′), c
〉
L2
µ

by the Fubini–Tonelli theorem. So, we deduce that the adjoint of A is

A∗ : L2
ν(X ;Y) → L2

µ(Θ;R)

F 7→ A∗F :=

∫
⟨F (a′), φ(a′; ·)⟩Y ν(da′) ,

(A.8)

which is bounded because A is bounded. For any F ∈ L2
ν(X ;Y), we compute

AA∗F =

∫
Θ

(A∗F )(θ)φ(·; θ)µ(dθ)

=

∫
Θ

∫
X
⟨F (a′), φ(a′; θ)⟩Y φ(·; θ)ν(da′)µ(dθ)

=

∫
X

(∫
Θ

φ(·; θ)⊗ φ(a′; θ)µ(dθ)

)
F (a′)ν(da′)

= TkµF ,

again by Fubini–Tonelli, as desired. This concludes the appendix.
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A p p e n d i x B

APPENDIX TO CHAPTER 3

This appendix is the companion to Chapter 3: Error Bounds for Function-
Valued Random Features and is organized as follows. Appendix B.1 collects
several useful concentration inequalities and facts about subexponential random
variables. Appendix B.2 provides a reproducing kernel Hilbert space approach
to misspecification error in regression problems. Appendix B.3 collects the
proofs of the mains results in Chapter 3, while Appendix B.4 gives the detailed
proofs of all the required technical results. Finally, Appendix B.5 describes the
numerical experiment from Section 3.5 in more detail.

B.1 Concentration of Measure

In this appendix, we recall two classical results from [219] that estimate the
difference between empirical averages and true averages of random vectors
taking values in Banach spaces. These are then specialized to the setting of
subexponential random variables, which play a major role in this chapter. To
set the notation, we use Pr to denote probability with respect to the underlying
probability space.

The first result is a vector-valued Bernstein concentration inequality with various
applications to problems posed in infinite-dimensional Hilbert spaces [52, 189,
235]. It is used throughout this work.

Theorem B.1 (vector-valued Bernstein inequality in Hilbert space). Let Z be
an H-valued random variable, where (H, ⟨·, ·⟩, ∥ · ∥) is a separable Hilbert space.
Suppose there exist positive numbers b > 0 and σ > 0 such that

E∥Z − EZ∥p ≤ 1

2
p!σ2bp−2 for all p ≥ 2 . (B.1)

For any δ ∈ (0, 1) and N ∈ N, denoting by {Zn}Nn=1 a sequence of N i.i.d.
copies of Z, it holds that

Pr

{∥∥∥∥ 1

N

N∑
n=1

Zn − EZ
∥∥∥∥ ≤ 2b log(2/δ)

N
+

√
2σ2 log(2/δ)

N

}
≥ 1− δ . (B.2)
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Proof. The result is a direct consequence of [219, Corollary 1, p. 144] in the
i.i.d. Hilbert space setting. In this case, it holds for any t > 0 that

Pr
{
∥SN − ESN∥ ≥ t

}
≤ 2 exp

(
− N2t2

2Nσ2 + 2Ntb

)
= 2 exp

(
− Nt2

2σ2 + 2bt

)
,

where Sn := 1
N

∑N
n=1 Zn. Setting the right-hand side equal to δ, solving a

quadratic equation for t = t(δ), and using the inequality
√
a+ b ≤ √

a+
√
b to

bound t(δ) from above leads to (B.2).

The most common use case of Bernstein’s inequality is in the following bounded
setting.

Lemma B.2. Let Z be a (potentially) uncentered random variable such that

∥Z∥ ≤ c almost surely and E∥Z − EZ∥2 ≤ v2 (B.3)

for some c > 0 and v > 0. Then Z satisfies Bernstein’s moment condition (B.1)
with b = 2c and σ = v. If EZ = 0, then taking b = c suffices.

Proof. It holds that ∥Z−EZ∥ ≤ ∥Z∥+E∥Z∥ ≤ 2c almost surely. We compute

E∥Z − EZ∥p = E[∥Z − EZ∥2∥Z − EZ∥p−2] ≤ E∥Z − EZ∥2(2c)p−2

≤ v2(2c)p−2 ≤ 1

2
p!v2(2c)p−2

because 1 ≤ p!/2 for all p ≥ 2. The centered improvement is trivial.

The second classic result we present is a one-sided Bernstein-type tail bound in
a general Banach space. We invoke this theorem to control the tails of suprema
of empirical processes.

Theorem B.3 (vector-valued Bernstein inequality in Banach space). Let Z
be a Z-valued random variable, where (Z, ∥ · ∥) is a separable Banach space.
Suppose there exist positive numbers b > 0 and σ > 0 such that

E∥Z − EZ∥p ≤ 1

2
p!σ2bp−2 for all p ≥ 2 . (B.4)

For any δ ∈ (0, 1) and N ∈ N, denoting by {Zn}Nn=1 a sequence of N i.i.d.
copies of Z, it holds that

Pr

{∥∥∥∥ 1

N

N∑
n=1

Zn

∥∥∥∥− E
∥∥∥∥ 1

N

N∑
n=1

Zn

∥∥∥∥ ≤ 2b log(1/δ)

N
+

√
2σ2 log(1/δ)

N

}
≥ 1− δ .

(B.5)
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Proof. The assertion is [219, Corollary 1, p. 144] in the i.i.d. Banach space
setting (hence only convergence of norms in (B.5) instead of strong convergence).
It is proved the same way as Theorem B.1.

In Theorem B.3, a random variable Z satisfying the Bernstein moment condi-
tion (B.4) is subexponential in the sense that ∥Z − EZ∥ is subexponential on
R, i.e., exhibits exponential tail decay. Recall that for a real-valued random
variable Z, its subexponential norm may be defined by

∥Z∥ψ1
:= sup

p∈[1,∞)

(E|Z|p)1/p
p

. (B.6)

See [266, Section 2.7] for equivalent definitions. We say that Z is subexponential
if its subexponential norm is finite. Following [196, Section 4.3, pp. 19–20], for
a random variable Z with values in a Banach space (Z, ∥ · ∥Z) we define

∥Z∥ψ1(Z) :=
∥∥∥Z∥Z∥∥ψ1

= sup
p∈[1,∞)

(E∥Z∥pZ)1/p
p

(B.7)

as its subexponential norm. It is known that a random variable has finite
subexponential norm if and only if it satisfies the Bernstein moment condi-
tion (B.4) [see, e.g., 196, Appendix A.2]. Next, we give explicit constants in
the Bernstein moment condition that depend on the subexponential norm.

Proposition B.4 (subexponential implies Bernstein moment condition). Let
Z be a (Z, ∥ · ∥)-valued subexponential random variable, that is, ∥Z∥ψ1(Z) <∞.
Then Z satisfies

E∥Z − EZ∥p ≤ 1

2
p!σ2bp−2 for all p ≥ 2 , (B.8)

where
σ2 := 4e

√
E∥Z − EZ∥2∥Z∥ψ1(Z) and b := 4e∥Z∥ψ1(Z) . (B.9)

Proof. By the Cauchy–Schwarz inequality,

E∥Z−EZ∥p = E[∥Z−EZ∥∥Z−EZ∥p−1] ≤ ∥Z−EZ∥L2
P
(E∥Z−EZ∥2p−2)1/2 .

The inequality |a+b|q ≤ 2q−1(|a|q+|b|q), Jensen’s inequality, and ∥Z∥ψ1(Z) <∞
show that

E∥Z − EZ∥2p−2 ≤ 22p−2 E∥Z∥2p−2 ≤ 22p−2(2p− 2)2p−2∥Z∥2p−2
ψ1(Z) .
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Next, Stirling’s approximation (q/e)q ≤ q! and q! = q(q − 1)! ≥ 2(q − 1)! for
q ≥ 2 yields

E∥Z − EZ∥p ≤ 22p−2∥Z − EZ∥L2
P
(p− 1)p−1∥Z∥p−1

ψ1(Z)

≤ (p!/2)∥Z − EZ∥L2
P
22p−2ep−1∥Z∥p−1

ψ1(Z) .

Rearranging the exponents to fit the Bernstein moment condition form com-
pletes the proof.

This leads to the following corollary, which is useful in the setting that the
variance E∥Z − EZ∥2Z = ∥Z − EZ∥2

L2
P(Ω;Z)

of random variable Z is not small
or hard to compute.

Corollary B.5 (subexponential tail bound in Banach space). Fix N ∈ N. Let
{Zn}Nn=1 be i.i.d. random variables with values in a separable Banach space
(Z, ∥ · ∥). Suppose that ∥Z1∥ψ1(Z) <∞. Let SN := 1

N

∑N
n=1 Zn. Fix δ ∈ (0, 1).

With probability at least 1− δ, it holds that∥∥SN∥∥− E
∥∥SN∥∥ ≤ 8e∥Z1∥ψ1(Z) log(1/δ)

N

+

√
8e∥Z1 − EZ1∥L2

P(Ω;Z)∥Z1∥ψ1(Z) log(1/δ)

N
.

(B.10)

In particular, if N ≥ log(1/δ), then with probability at least 1− δ it holds that

∥∥SN∥∥− E
∥∥SN∥∥ ≤

√
64e3∥Z1∥2ψ1(Z) log(1/δ)

N
. (B.11)

Proof. Apply Proposition B.4 to Theorem B.3 to obtain the first assertion. For
the second assertion, first note that E∥Z1 − EZ1∥2 ≤ 4E∥Z1∥2 (by triangle
inequality and using (a + b)2 ≤ 2(a2 + b2)) and ∥Z1∥2ψ1(Z) ≥ E∥Z1∥2/4 (by
(B.7)). Since N ≥ log(1/δ), we have log(1/δ)/N ≤

√
log(1/δ)/N . Combining

these facts, it follows that the right-hand side of (B.10) is bounded above by√
64e2∥Z1∥2ψ1(Z) log(1/δ)

N
+

√
32e∥Z1∥2ψ1(Z) log(1/δ)

N

≤

√
64(2e2 + e)∥Z1∥2ψ1(Z) log(1/δ)

N
.

We used
√
a+

√
b ≤

√
2(a+ b) on the right. Noting that 2e2+e ≤ e3 completes

the proof.
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Comparing this result to a similar result [189, Proposition 7(i), pp. 4–5, the
i.i.d. case], we note that (B.10) in Corollary B.5 is sharper in the sense that the
constant in the N−1/2 term depends on the variance of the summands instead
of just its subexponential norm (which can be much larger than the variance).

B.2 Misspecification Error With RKHS Methods

Let K : X × X → L(Y) be an operator-valued kernel [203] corresponding to
a separable1 RKHS H of functions mapping X to Y. Here, L(Y) denotes
the set of bounded linear operators from Y into itself. In this appendix, we
present a general analysis based on [246] for the approximation of elements
in L2

ν(X ;Y) by elements in the RKHS H. This problem is relevant to our
learning theory framework whenever the true data-generating map does not
belong to the RKHS (3.2) associated to the given random feature pair (φ, µ).
Specializing to this setting, suppose that (φ, µ) satisfy Assumption 3.3. Let
K : (u, u′) 7→ Eθ∼µ[φ(u; θ) ⊗Y φ(u′; θ)] be the corresponding limit random
feature kernel. It holds that K(u, u) is trace-class for each u ∈ X ν-almost
surely because

tr(K(u, u)) = Eθ tr(φ(u; θ)⊗Y φ(u; θ)) = Eθ∥φ(u; θ)∥2Y ≤ ∥φ∥2L∞ <∞ (B.12)

by the Fubini–Tonelli theorem. It follows from [55, Proposition 4.8, p. 394]
that H is compactly embedded into L2

ν(X ;Y) because

Eu∼ν∥K(u, u)∥L(Y) ≤ Eu∼ν tr(K(u, u)) ≤ ∥φ∥2L∞ <∞ . (B.13)

We denote the canonical embedding by ι : H ↪→ L2
ν(X ;Y). Now let G ∈

L2
ν(X ;Y) be an arbitrary operator. We consider an approximation Gϑ to G

defined by
Gϑ := argmin

F∈H

{
∥G − ιF∥2L2

ν
+ ϑ∥F∥2H

}
. (B.14)

This operator has a simple representation.

Lemma B.6. There exists a unique solution Gϑ to (B.14) given by

Gϑ = (ι∗ι+ ϑ Id)−1ι∗G . (B.15)
1The assumption of separability of the RKHS could be removed if additional conditions

are placed on its kernel that would imply separability, the most relevant being continuity-type
assumptions. In the case Y = R, it is known that existence of a Borel measurable feature
map for the kernel suffices for separability of its RKHS [212], which is much weaker than
continuity. However, we are unaware of similar results for general Y.
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Proof. The result is a consequence of convex optimization on Hilbert spaces
and the fact that ι is a bounded linear operator.

The adjoint of the inclusion map, ι∗ : L2
ν(X ;Y) → H, is given by the vector-

valued reproducing kernel property as the (Bochner) integral operator

F 7→ ι∗F = Eu∼ν [K( · , u)F (u)] . (B.16)

Since ι is compact, so is K := ιι∗ ∈ L(L2
ν(X ;Y)). The action of K is the same

as that of the integral operator ι∗ above. Since K is also symmetric, the spectral
theorem yields the operator norm convergent expansion K =

∑
j λjej ⊗L2(ν) ej .

The sequence {λj} ⊂ R≥0 is a nonincreasing rearrangement of the eigenvalues
of K and {ej} is its corresponding eigenbasis.

Now define the regularized RKHS approximation error

AG(ϑ) := inf
F∈H

{
∥G − ιF∥2L2

ν
+ ϑ∥F∥2H

}
(B.17)

which is parametrized by G ∈ L2
ν(X ;Y). We have the following convergence

result for this error.

Lemma B.7 (convergence of regularized RKHS approximation error). Suppose
that G is in the L2

ν-closure of H. Under the prevailing assumptions of this
appendix, it holds that

lim
ϑ→0

AG(ϑ) = 0 . (B.18)

Proof. By Lemma B.6 and the Woodbury identity [208, Theorem 1], it holds
that

ιGϑ = ι(ι∗ι + ϑ IdH)
−1ι∗G = K(K + ϑ IdL2

ν
)−1G = (K + ϑ IdL2

ν
)−1KG .

The second equality holds by simultaneous diagonalization. Writing G in the
eigenbasis of K yields

G − ιGϑ =
[
IdL2

ν
−(K + ϑ IdL2

ν
)−1K

]
G =

∑
j∈N

ϑ

λj + ϑ
⟨ej,G⟩L2

ν
ej .

Similarly, using the norm isometry between L2
ν and the RKHS [see, e.g., 55,

pp. 403–404] we obtain

∥Gϑ∥2H = ∥K−1/2ιGϑ∥2L2
ν
= ∥K1/2(K+ϑ IdL2

ν
)−1G∥2L2

ν
=
∑
j∈N

( √
λj

λj + ϑ

)2

⟨ej,G⟩2L2
ν
.
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Since the infimum in (B.17) is attained at Gϑ (B.14), we deduce that

AG(ϑ) = ∥G − ιGϑ∥2L2
ν
+ ϑ∥Gϑ∥2H

=
∑
j∈N

ϑ2

(λj + ϑ)2
⟨ej,G⟩2L2

ν
+
∑
j∈N

ϑλj
(λj + ϑ)2

⟨ej,G⟩2L2
ν

=
∑
j∈N

( ϑ

λj + ϑ

)
⟨ej,G⟩2L2

ν
.

Using ϑ/(λj + ϑ) ≤ 1 for each j ∈ N and G ∈ HL2
ν (the L2

ν-closure of H), it
follows that

AG(ϑ) =
∑

{j∈N |λj ̸=0}

( ϑ

λj + ϑ

)
⟨ej,G⟩2L2

ν
→ 0 as ϑ→ 0 (B.19)

by dominated convergence.

The rate of convergence of AG to zero can be quantified under an additional
regularity assumption.

Lemma B.8 (convergence rate under Hölder source condition). Suppose G ∈
Im(Kr/2) for some r ≥ 0. Then for any ϑ > 0, it holds under the prevailing
assumptions of this appendix that

AG(ϑ) ≤ ∥K−r/2G∥2L2
ν(X ;Y) ×

ϑr, if r ∈ [0, 1] ,

ϑ∥K∥r−1
L(L2

ν)
, if r > 1 .

(B.20)

Proof. The proof closely follows the argument of Smale and Zhou [246, Theorem
4, p. 295]. By hypothesis, there exists FG ∈ L2

ν(X ;Y) such that G = Kr/2FG.
Then

AG(ϑ) =
∑
j∈N

ϑλrj
λj + ϑ

⟨ej, FG⟩2L2
ν
≤
(
sup
j∈N

ϑλrj
λj + ϑ

)
∥FG∥2L2

ν
.

For any j ∈ N, the argument of the supremum equals

ϑλrj
λj + ϑ

=
( λj
λj + ϑ

)( λj
λj + ϑ

)r−1 ϑ

(λj + ϑ)1−r
= ϑr

( λj
λj + ϑ

)r( ϑ

λj + ϑ

)1−r
.

This is bounded above by ϑr for all j ∈ N if r ≥ 0 and r ≤ 1. Otherwise, r > 1

and
ϑλrj
λj + ϑ

= ϑλr−1
j

( λj
λj + ϑ

)
≤ ϑλr−1

j .

Taking the supremum over j ∈ N completes the proof.
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In Lemma B.8, G satisfies G ∈ H if r ≥ 1, and the rate of convergence of AG(ϑ)

is at least as fast as O(ϑ) as ϑ→ 0. When r ∈ [0, 1), then G /∈ H and the rate
becomes slower than linear in ϑ.

B.3 Proofs for Section 3.3

In this appendix, we prove Theorem 3.6 and its main consequences.

Proof of Theorem 3.6. Under the hypotheses, (3.17) in Proposition 3.16 holds
with probability at least 1 − δ provided that M ≥ λ−1 log(16/δ) and N ≥
λ−2 log(8/δ). That is, RN(α̂;G) ≤ Rλ

N(α̂;G) ≤ βλ, where β = β(ρ, λ,GH, η)

is given by (3.6). In particular, α̂ ∈ Aβ (3.18) on the same event (by Corol-
lary 3.17). It follows that, on this event,

R(α̂;G)− RN(α̂;G) ≤ sup
α∈Aβ

∣∣RN(α;G)− R(α;G)
∣∣ .

Application of Proposition 3.22 shows that the right-hand side of the above
display is bounded above by

32
√
6e3/2

(
∥G∥2L∞

ν
+ ∥φ∥2L∞β(ρ, λ,GH, η)

)
λ ≤

79e3/2
(
∥G∥2L∞

ν
+ ∥φ∥2L∞β(ρ, λ,GH, η)

)
λ

with probability at least 1− δ because N ≥ λ−2 log(8/δ) ≥ log(2/δ). Recalling
(3.16), using 1 ≤ 79e3/2, and applying a union bound completes the proof.

Proof of Corollary 3.10. Since G = ρ+ GH, we compute

R(α̂;GH) =
∥∥GH − Φ( · ; α̂)

∥∥2
L2
ν
=
∥∥−ρ+ [G − Φ( · ; α̂)]

∥∥2
L2
ν

≤ 2∥ρ∥2L2
ν
+ 2∥G − Φ( · ; α̂)∥2L2

ν

= 2Eu∼ν∥ρ(u)∥2Y + 2R(α̂;G) .

By (3.5) and (3.6), we see that the term E∥ρ(u)∥2Y also appears in the upper
bound for R(α̂;G). Collecting like terms and enlarging constants proves the
assertion.

Proof of Theorem 3.12. For k ∈ N and δ ∈ (0, 1), the trained RFM satisfies
∥G − Φ( · ; α̂(k))∥L2

ν
≤ csk for some deterministic constant c > 0, where the

sequence sk → 0 as k → ∞ is given by the right-hand side of (3.12) with
λ = λk for each k ∈ N (by Lemma B.7). This inequality holds with probability
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at least 1− δ if M ≳ λ−1
k log(2/δ) and N ≳ λ−2

k log(2/δ) by Theorem 3.6. Now
choose δ = λk. Then∑

k∈N

Pr
{
∥G − Φ( · ; α̂(k))∥L2

ν
> csk

}
≤
∑
k∈N

λk <∞ .

The first Borel–Cantelli lemma establishes that there exists an N-valued random
variable k0 such that ∥G − Φ( · ; α̂(k))∥L2

ν
≤ csk for all k > k0 almost surely.

This implies the desired result.

Proof of Theorem 3.14. Application of Theorem 3.6 leads to the high proba-
bility bound (3.12) by the same argument from Section 3.3.3. Using that λ ≲ 1

and Lemma B.8 proves the assertion.

Proof of Corollary 3.15. Apply Theorem 3.14 to get a high probability bound.
Choose λ = λk = δ. Then the proof follows that of Theorem 3.12 except with
{sk} replaced by {λmin(r,1)/2

k }.

B.4 Proofs for Section 3.4

This appendix provides proofs of the error bounds for the regularized empirical
risk (Appendix B.4.1) and the generalization gap (Appendix B.4.2).

B.4.1 Proofs for Subsection 3.4.1: Bounding the Regularized Em-
pirical Risk

We now prove Proposition 3.16. Supporting results used in the proof appear
after the argument in the subsequent subsections (Appendix B.4.1.1, B.4.1.2,
and B.4.1.3).

Proof of Proposition 3.16. Our starting point is (3.20). We first note by lin-
earity that

2

N

N∑
n=1

⟨ηn,Φ(un; α̂)⟩Y = ∥α̂∥M
(

2

N

N∑
n=1

〈
ηn,Φ(un; α̂/∥α̂∥M)

〉
Y

)

≤ ∥α̂∥M
(
2 sup
α′∈A1

∣∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α′)⟩Y
∣∣∣∣∣
)
,
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where A1 =
{
α′ ∈ RM

∣∣ ∥α′∥2M ≤ 1
}
, provided that ∥α̂∥M > 0. Otherwise, the

inequality in the above display holds trivially. Next, we define

t :=
1

M

M∑
m=1

|α̂m|2 = ∥α̂∥2M , (B.21)

AλN,M := Rλ
N(α;G) +

2

N

N∑
n=1

⟨−ηn,Φ(un;α)⟩Y , and (B.22)

cN,M :=

(
2 sup
α′∈A1

∣∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α′)⟩Y
∣∣∣∣∣
)2

. (B.23)

The inequality in (3.20) and the arithmetic-mean–geometric-mean inequality
imply that

λt ≤ Rλ
N(α̂;G) ≤ AλN,M +

√
cN,M t ≤ AλN,M +

1

2
λ−1cN,M +

1

2
λt . (B.24)

Subtracting λt/2 from both sides and multiplying through by 2λ−1 yields

t ≤ 2λ−1AλN,M + λ−2cN,M . (B.25)

Substituting (B.25) back into the rightmost side of (B.24) gives

Rλ
N(α̂;G) ≤ 2AλN,M + λ−1cN,M . (B.26)

All of the above calculations hold with probability one. To complete our
estimate of Rλ

N(α̂;G), it remains to upper bound the AλN,M (B.22) and cN,M

(B.23) terms. We begin with the latter.

Lemmas B.12 and B.13 (with t = 1) and (B.7) show that

√
cN,M ≤ 4∥η∥ψ1(Y)∥φ∥L∞√

N
+ 16e3/2∥η∥ψ1(Y)∥φ∥L∞

√
log(1/δ)

N

≤ 16e3/2∥η∥ψ1(Y)∥φ∥L∞

√
6 log(2/δ)

N

(B.27)

with probability at least 1 − δ if N ≥ log(2/δ) ≥ log(1/δ). We used the
inequalities 4 ≤ 16e3/2,

√
a +

√
b ≤

√
2(a+ b), and 1 ≤ 2 log(2/δ) to get to

the last line.

Continuing, we bound AλN,M . It has several error contributions originating from
two terms. The first term in (B.22) is Rλ

N(α;G), where α ∈ RM is arbitrary.
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By Assumption 3.4, G = ρ+ GH so that

Rλ
N(α;G) ≤ λ∥α∥2M + 2RN(α;GH) +

2

N

N∑
n=1

∥ρ(un)∥2Y

≤ 2Rλ
N(α;GH) +

2

N

N∑
n=1

∥ρ(un)∥2Y .
(B.28)

By Lemma 3.20, it holds with probability at least 1− δ that

2

N

N∑
n=1

∥ρ(un)∥2Y ≤ 4Eu∥ρ(u)∥2Y +
9∥ρ∥2L∞

ν
log(2/δ)

N
. (B.29)

Next, we bound the first term on the right-hand side in (B.28). Since GH ∈ H,
there exists αH ∈ L2

µ(Θ;R) such that

GH = Eθ∼µ
[
αH(θ)φ( · ; θ)

]
and ∥GH∥2H = Eθ∼µ|αH(θ)|2 .

With αH as in the above display, choose once and for all α ≡ α⋆ ∈ RM as in
(3.22). By Lemma 3.18,

2Rλ
N(α

⋆;GH) ≤ 162λ∥GH∥2H (B.30)

with probability at least 1− δ if M ≥ λ−1 log(4/δ). On the same event,

∥α⋆∥2M ≤ Eθ |αH(θ)|2
(
1 +

2 log(2/δ)

λM
+

√
2 log(2/δ)

λM

)
≤ 5Eθ |αH(θ)|2

= 5∥GH∥2H

by Lemma B.11. This fact and Lemma 3.21 (with α ≡ α⋆ as in Equation 3.22)
shows that the second and final term in AλN,M (B.22) satisfies, with probability
at least 1− δ, the upper bound

2

N

N∑
n=1

⟨−ηn,Φ(un;α⋆)⟩Y ≤ 40e3/2∥GH∥H∥η∥ψ1(Y)∥φ∥L∞

√
log(2/δ)

N
. (B.31)

Combining the estimates (B.27), (B.28), (B.29), (B.30), and (B.31), recalling
(B.26), and invoking the union bound, we deduce that if N ≥ λ−2 log(2/δ),
then

Rλ
N(α̂;G) ≤ C0λ+ 8Eu∼ν∥ρ(u)∥2Y + 18∥ρ∥2L∞

ν
λ2



200

with probability at least 1− 4δ, where

C0 := 324∥GH∥2H + 80e3/2∥η∥ψ1(Y)∥φ∥L∞∥GH∥H + 1536e3∥η∥2ψ1(Y)∥φ∥2L∞

≤ (324 + 4)∥GH∥2H + 1936e3∥η∥2ψ1(Y)∥φ∥2L∞ .

In the last line, we used Young’s inequality with ε = 1/8, that is, ab ≤
εa2/2 + b2/(2ε) with a = 80e3/2∥η∥ψ1(Y)∥φ∥L∞ and b = ∥GH∥H. This proves
the asserted upper bound.

B.4.1.1 Proofs for Subsection 3.4.1.1: Bounding the
Approximation Error

Given a function α ∈ L2
µ(Θ;R), we denote its cut-off at level T > 0 by

θ 7→ α≤T (θ) := α(θ)1{|α(θ)|≤T} . (B.32)

This subsection is devoted to the proof of Lemma 3.18, which is based on the
following three lemmas.

Lemma B.9. Suppose G ∈ H belongs to the RKHS H. Let α ∈ L2
µ(Θ;R)

be such that G = Eθ[α(θ)φ( · ; θ)]. Let u1, . . . , uN ∼ ν be i.i.d. samples and
νN = 1

N

∑N
n=1 δun be the corresponding empirical measure. Then almost surely,

∥∥G − Eθ[α≤T (θ)φ( · ; θ)]
∥∥2
L2
νN

≤ ∥φ∥2L∞(Eθ |α(θ)|2)2
T 2

for all T > 0 . (B.33)

Proof. Fix u ∈ X and define α>T := α− α≤T . The claim follows from

∥G(u)− Eθ[α≤T (θ)φ(u; θ)]∥2Y = ∥Eθ[α>T (θ)φ(u; θ)]∥2Y ≤ ∥φ∥2L∞(Eθ |α>T (θ)|)2

and the observation that Eθ |α>T (θ)| ≤ Eθ |α(θ)|2/T .

The previous lemma controls the error incurred by truncating the coefficient
function of elements in the RKHS. The next lemma provides a bound on sample
average approximations of these truncations.

Lemma B.10. Let u1, . . . , uN ∼ ν be i.i.d. samples and let νN = 1
N

∑N
n=1 δun

denote the corresponding empirical measure. For α ∈ L2
µ(Θ;R), let Z = Z(θ)

be the L2
νN
(X ;Y)-valued random variable defined for θ ∼ µ by

Z = α≤T (θ)φ( · ; θ) . (B.34)
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If Z1, . . . , ZM are M i.i.d. copies of Z, then it holds with probability at least
1− δ that∥∥∥∥∥ 1

M

M∑
m=1

Zm − EZ

∥∥∥∥∥
2

L2
νN

≤ 32T 2∥φ∥2L∞ log2(2/δ)

M2
+
4∥φ∥2L∞ log(2/δ)Eθ |α(θ)|2

M
.

(B.35)

Proof. By boundedness of |α≤T | ≤ T , we have the trivial uniform upper bound
∥Zm∥L2

νN
≤ T∥φ∥L∞ for each m. The variance is bounded above as

σ2 := E ∥Z − EZ∥2L2
νN

≤ E ∥Z∥2L2
νN

≤ ∥φ∥2L∞ Eθ |α(θ)|2 .

By Lemma B.2 and Theorem B.1, it holds with probability at least 1− δ that∥∥∥∥∥ 1

M

M∑
m=1

Zm − EZ

∥∥∥∥∥
L2
νN

≤ 4T∥φ∥L∞ log(2/δ)

M
+

√
2σ2 log(2/δ)

M
.

Squaring both sides and substitution of the above bound on σ2 yields the
claimed estimate.

The third lemma below develops a high probability bound on the empirical
approximation of the RKHS norm of truncated elements in the RKHS.

Lemma B.11. Let α ∈ L2
µ(Θ;R) and {θm} ∼ µ⊗M . With probability at least

1− δ, it holds that

1

M

M∑
m=1

|α≤T (θm)|2 ≤ Eθ |α(θ)|2 +
4T 2 log(2/δ)

M
+

√
2T 2 Eθ |α(θ)|2 log(2/δ)

M
.

(B.36)

Proof. We apply Bernstein’s inequality (B.2) to the random variable Z(θ) :=
|α≤T (θ)|2 with θ ∼ µ and M ∈ N i.i.d. copies Z1, . . . , ZM of Z defined by
Zm = Z(θm) for each m. We note that |Z| ≤ T 2 by definition. The variance of
Z satisfies the upper bound

σ2 := E|Z − EZ|2 ≤ E|Z|2 = Eθ |α≤T (θ)|4 ≤ T 2 Eθ |α(θ)|2 .

It follows from Lemma B.2 and Theorem B.1 that

1

m

M∑
m=1

Zm ≤ EZ +
4T 2 log(2/δ)

M
+

√
2σ2 log(2/δ)

M
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with probability at least 1− δ. This in turn implies that

1

M

M∑
m=1

|α≤T (θm)|2 ≤ Eθ |α(θ)|2] +
4T 2 log(2/δ)

M
+

√
2T 2 E |α(θ)|2 log(2/δ)

M

with at least the same probability. This is the claim.

We are now in a position to prove Lemma 3.18.

Proof of Lemma 3.18. Write T := T (λ) and α := αH. Next, define α≤T ∈
L2
µ(Θ;R) by

θ 7→ α≤T (θ) := α(θ)1{|α(θ)|≤T} =

α(θ), if |α(θ)| ≤ T ,

0, otherwise .

We define α>T := α1{|α|>T} similarly, so that α ≡ α≤T + α>T holds true.
Then for θ1, . . . , θM , we have α⋆ ∈ RM given by α⋆m = α≤T (θm) for each
m ∈ {1, . . . ,M}. We claim that Rλ

N (α
⋆;G) ≤ (74∥φ∥2L∞ +7)λEθ |αH(θ)|2 with

high probability, which implies the asserted bound (3.23). To see this, we make
the error decomposition

Rλ
N(α

⋆;G) = 1

N

N∑
n=1

∥∥∥∥∥G(un)− 1

M

M∑
m=1

α≤T (θm)φ(un; θm)

∥∥∥∥∥
2

Y

+
λ

M

M∑
m=1

|α≤T (θm)|2

(B.37)

≤ 2

N

N∑
n=1

∥G(un)− Eθ[α≤T (θ)φ(un; θ)]∥2Y (I)

+
2

N

N∑
n=1

∥∥∥∥∥ 1

M

M∑
m=1

α≤T (θm)φ(un; θm)− Eθ[α≤T (θ)φ(un; θ)]

∥∥∥∥∥
2

Y

(II)

+
λ

M

M∑
m=1

|α≤T (θm)|2 . (III)

Each of the three terms (I)–(III) is estimated as follows.

By Lemma B.9, we can bound

(I) ≤ 2∥φ∥2L∞(Eθ |α(θ)|2)2
T 2

= 2λ∥φ∥2L∞ Eθ |α(θ)|2 .
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Lemma B.10 delivers the bound

(II) ≤ 64T 2∥φ∥2L∞ log(2/δ)2

M2
+

8∥φ∥2L∞ log(2/δ)Eθ |α(θ)|2
M

= λEθ |α(θ)|2
(
64∥φ∥2L∞ log(2/δ)2

λ2M2
+

8∥φ∥2L∞ log(2/δ)

λM

)
with probability at least 1− δ.

Last, Lemma B.11 yields

(III) ≤ λE |α(θ)|2 + 4λT 2 log(2/δ)

M
+ λ

√
2T 2 E |α(θ)|2 log(2/δ)

M

= λEθ |α(θ)|2
(
1 +

4 log(2/δ)

λM
+

√
2 log(2/δ)

λM

)
with probability at least 1− δ.

Combining the three estimates, it follows that if

log(2/δ)

λM
≤ 1 ,

then
Rλ
N(α

⋆;GH) = Rλ
N(α

⋆;G) ≤ (74∥φ∥2L∞ + 7)λEθ |αH(θ)|2

with probability at least 1 − 2δ. We used the fact that
√
2 ≤ 2. This is the

claimed upper bound.

B.4.1.2 Proof for Subsection 3.4.1.2: Bounding the
Misspecification Error

Recall that ρ ∈ L∞
ν under Assumption 3.4. We now prove Lemma 3.20.

Proof of Lemma 3.20. Let Z1 = ∥ρ(u1)∥2Y , which is uncentered. Almost surely,
Z1 ≤ ∥ρ∥2L∞

ν
and

E|Z1 − EZ1|2 ≤ EZ2
1 = Eu∼ν∥ρ(u)∥4Y ≤ ∥ρ∥2L∞

ν
Eu∼ν∥ρ(u)∥2Y .

Thus with probability at least 1− δ, Corollary B.2 and Theorem B.1 provide
the bound

1

N

N∑
n=1

∥ρ(un)∥2Y ≤ Eu∥ρ(u)∥2Y +
4∥ρ∥2L∞

ν
log(2

δ
)

N
+

√
2Eu∥ρ(u)∥2Y∥ρ∥2L∞

ν
log(2

δ
)

N

≤ 2Eu∥ρ(u)∥2Y +
9
2
∥ρ∥2L∞

ν
log(2/δ)

N
.
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To get the last inequality, we used the arithmetic-mean–geometric-mean in-
equality

√
ab ≤ (a+ b)/2 to obtain√(

2Eu∥ρ(u)∥2Y
)(
∥ρ∥2L∞

ν
log(2/δ)/N

)
≤ Eu∥ρ(u)∥2Y +

1
2
∥ρ∥2L∞

ν
log(2/δ)

N
.

Multiplying the penultimate chain of inequalities through by two completes
the proof.

B.4.1.3 Proofs for Subsection 3.4.1.3: Bounding the Noise Error

This subsection provides proofs for the lemmas used to control the error
stemming from i.i.d. noise corrupting the output data as in Assumption 3.5.
The estimates themselves could be improved by using (B.10) instead of (B.11)
and by tracking the noise variance E∥η∥2Y instead of bounding it above by
4∥η∥2ψ1(Y). This would be relevant in settings where the noise is small or tends
to zero with the sample size. We defer such considerations to future work.

Proof of Lemma 3.21. Define Zn(α) := ⟨−ηn,Φ(un;α)⟩Y for each n. Condi-
tioned on {θm}, it holds that Zn is an i.i.d. copy of Z1. By the assumption
E[η1 |u1] = 0, we have

EZ1(α) = E(u1,η1)[⟨−η1,Φ(u1;α)⟩Y ]
= Eu1∼ν [E[⟨−η1,Φ(u1;α)⟩Y |u1]]
= Eu1∼ν [⟨−E[η1 |u1],Φ(u1;α)⟩Y ]
= 0 .

(B.38)

Next, we compute that

|Z1(α)| ≤ ∥η1∥Y∥Φ(u1;α)∥Y ≤ ∥η1∥Y∥α∥M∥φ∥L∞

by two applications of the Cauchy–Schwarz inequality, one in Y and the other
in RM . We deduce that ∥Z1(α)∥ψ1 ≤ ∥η1∥ψ1(Y)∥α∥M∥φ∥L∞ , conditioned on
{θm}. Proposition B.4, Theorem B.1 (Bernstein’s inequality), and a similar
argument to that in the proof of Corollary B.5 deliver the asserted bound.

The next two lemmas are used in the proof of Proposition 3.16 to control the
third and final term in (3.20).
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Lemma B.12 (linear empirical process: concentration). Fix t > 0 and δ ∈
(0, 1). Define

Zt := sup
α∈At

∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α)⟩Y
∣∣∣∣ , where At :=

{
α ∈ RM

∣∣ ∥α∥2M ≤ t
}
.

(B.39)
If N ≥ log(1/δ), then conditioned on the realizations {θm} in the family Φ it
holds that

Zt ≤ E{(un,ηn)}[Zt] + 8e3/2∥η1∥ψ1(Y)∥φ∥L∞

√
log(1/δ)

N

√
t (B.40)

with probability at least 1− δ.

Proof. For any α ∈ At, we compute

|⟨η1,Φ(u1;α)⟩Y | =
∣∣∣∣ 1M

M∑
m=1

αm⟨η1, φ(u1; θm)⟩Y
∣∣∣∣

≤
(

1

M

M∑
m=1

|αm|2
)1/2(

1

M

M∑
m=1

⟨η1, φ(u1; θm)⟩2Y
)1/2

≤
√
t

(
∥η1∥2Y

1

M

M∑
m=1

∥φ(u1; θm)∥2Y
)1/2

.

We used the Cauchy–Schwarz inequality twice. By the boundedness of φ, the
above display gives∥∥⟨η1,Φ(u1; · )⟩∥∥ψ1(C(At;R))

=
∥∥∥ sup
α∈At

∣∣⟨η1,Φ(u1;α)⟩Y∣∣∥∥∥
ψ1

≤ ∥η1∥ψ1(Y)∥φ∥L∞
√
t .

The i.i.d. random variables ⟨ηn,Φ(un; · )⟩Y : α 7→ ⟨ηn,Φ(un;α)⟩Y (conditional
on {θm}) are linear and hence continuous. Application of (B.11) in Corollary B.5
to ⟨ηn,Φ(un; · )⟩Y taking value in the separable Banach space C(At;R) of
continuous functions from compact set At ⊂ RM into R, equipped with the
supremum norm, completes the proof.

The previous lemma gives a concentration bound for the linear empirical process
and the next lemma estimates its expectation.

Lemma B.13 (linear empirical process: expectation). Fix t > 0. Define At

as in Lemma B.12. Then

E{(un,ηn)} sup
α∈At

∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α)⟩Y
∣∣∣∣ ≤ ∥η1∥L2

P(Ω;Y)∥φ∥L∞
√
N

√
t . (B.41)
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Proof. For any α ∈ At, the Cauchy–Schwarz inequality in RM delivers the
bound∣∣∣∣ 1N

N∑
n=1

⟨ηn,Φ(un;α)⟩Y
∣∣∣∣ = ∣∣∣∣ 1M

M∑
m=1

αm
1

N

N∑
n=1

⟨ηn, φ(un; θm)⟩Y
∣∣∣∣

≤
∥∥{αm}Mm=1

∥∥
M

(
1

M

M∑
m=1

[
1

N

N∑
n=1

⟨ηn, φ(un; θm)⟩Y
]2)1/2

.

Let the left-hand side of (B.41) be denoted by Ξt. We next note that

E{(un,ηn)}
[
⟨ηn, φ(un; θm)⟩Y

]
= Eun∼ν

[
E
[
⟨ηn, φ(un; θm)⟩Y |un

]]
= Eun∼ν [⟨E[ηn |un], φ(un; θm)⟩Y ]
= 0 .

Using the independence of (un, ηn) and (un′ , ηn′) for any two indices n ̸= n′,
together with the above observation, we thus obtain

E{(un,ηn)}
[
⟨ηn, φ(un; θm)⟩Y ⟨ηn′ , φ(un′ ; θm)⟩Y

]
= E(un,ηn)

[
⟨ηn, φ(un; θm)⟩Y

]
E(un′ ,ηn′ )

[
⟨ηn′ , φ(un′ ; θm)⟩Y

]
= 0 .

This implies that

Ξt ≤
√
t

N
E{(un,ηn)}

√√√√ 1

M

M∑
m=1

N∑
n,n′=1

⟨ηn, φ(un; θm)⟩Y ⟨ηn′ , φ(un′ ; θm)⟩Y

≤
√
t

N

√√√√ 1

M

M∑
m=1

N∑
n,n′=1

E{(un,ηn)}
[
⟨ηn, φ(un; θm)⟩Y ⟨ηn′ , φ(un′ ; θm)⟩Y

]

=

√
t√
N

√√√√ 1

M

M∑
m=1

E(u1,η1)

〈
η1, φ(u1; θm)

〉2
Y

≤
√
t√
N
∥η1∥L2

P(Ω;Y)∥φ∥L∞ .

We used Jensen’s inequality in the second line, independence and the zero-mean
property of the summands in the third line, and the Cauchy–Schwarz inequality
in Y in the final line.
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B.4.2 Proofs for Subsection 3.4.2: Bounding the Generalization Gap

This subsection upper bounds the generalization gap with suprema techniques.
We begin with the following empirical process concentration inequality. It gives
uniform control on the difference between the empirical and population risk
functionals. The process, as a function of its index α, is quadratic because the
RFM Φ( · ;α) is linear in α.

Lemma B.14 (quadratic empirical process: concentration). Fix t > 0 and
δ ∈ (0, 1). Define

Zt := sup
α∈At

∣∣RN(α;G)− R(α;G)
∣∣ (B.42)

= sup
α∈At

∣∣∣∣ 1N
N∑
n=1

∥G(un)− Φ(un;α)∥2Y − Eu∼ν∥G(u)− Φ(u;α)∥2Y
∣∣∣∣ , (B.43)

where
At :=

{
α ∈ RM

∣∣ ∥α∥2M ≤ t
}
. (B.44)

If N ≥ log(1/δ), then conditioned on the realizations {θm} in the family Φ, it
holds that

Zt ≤ E{un}[Zt] + 32e3/2(∥G∥2L∞
ν
+ ∥φ∥2L∞t)

√
log(1/δ)

N
(B.45)

with probability at least 1− δ.

Proof. For any α ∈ At and n ∈ {1, . . . , N}, let

Xn(t, α) := ∥G(un)− Φ(un;α)∥2Y − Eu∼ν∥G(u)− Φ(u;α)∥2Y .

We compute

|X1(t, α)| ≤ 2∥G(u1)∥2Y + 2Eu∼ν∥G(u)∥2Y + 2∥Φ(u1;α)∥2Y + 2Eu∼ν∥Φ(u;α)∥2Y
≤ 4∥G∥2L∞

ν
+ 4∥φ∥2L∞t .

We used the fact that for any u ∈ X ν-almost surely, ∥Φ(u;α)∥2Y ≤ t∥φ∥2L∞ on
the set At (by the Cauchy–Schwarz inequality). This implies that∥∥X1(t, · )

∥∥
ψ1(C(At;R))

=
∥∥∥ sup
α∈At

|X1(t, α)|
∥∥∥
ψ1

≤ 4∥G∥2L∞
ν
+ 4∥φ∥2L∞t .

The Xn(t, · ) do indeed belong to C(At;R) almost surely, as they can be written
as a sum of affine and quadratic forms on RM in the α variable. Application
of (B.11) in Corollary B.5 (taking the separable Banach space to be C(At;R)
equipped with the supremum norm) completes the proof.
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Since the supremum concentrates around its mean, it remains to show that its
mean is small as a function of the sample size. The next lemma does this with
Rademacher symmetrization.

Lemma B.15 (quadratic empirical process: expectation). Fix t > 0. Define
Zt as in Lemma B.14. Conditioned on the realizations {θm} in the family Φ, it
holds that

E{un}[Zt] ≤
4∥G∥2L∞

ν√
N

+
4∥φ∥2L∞√

N
t . (B.46)

Proof. By Giné–Zinn symmetrization [see, e.g., 267, Section 4.2, Proposition
4.11, pp. 107–108],

E{un}[Zt] ≤ 2E sup
α∈At

∣∣∣∣ 1N
N∑
n=1

εn∥G(un)− Φ(un;α)∥2Y
∣∣∣∣ , where

εn
i.i.d.∼ Unif

(
{+1,−1}

)
,

because the original summands (conditioned on {θm}) are independent. The
expectation on the right is interpreted as the conditional expectation given
{θm} (i.e., E{un},{εn} over the data and Rademacher variables only). The right-
hand side is the Rademacher complexity of the RF model class composed with
the square loss. Expanding the square, it is bounded above by

2E{un},{εn}

∣∣∣∣ 1N
N∑
n=1

εn∥G(un)∥2Y
∣∣∣∣ (I)

+ 4E{un},{εn} sup
α∈At

∣∣∣∣ 1N
N∑
n=1

εn⟨G(un),Φ(un;α)⟩Y
∣∣∣∣ (II)

+ 2E{un},{εn} sup
α∈At

∣∣∣∣ 1N
N∑
n=1

εn∥Φ(un;α)∥2Y
∣∣∣∣ . (III)

We now estimate each term. The first term (I) satisfies the standard Monte
Carlo bound

(I) ≤ 2

(
E
∣∣∣∣ 1N

N∑
n=1

εn∥G(un)∥2Y
∣∣∣∣2
)1/2

=
2√
N

(
1

N

N∑
n=1

E∥G(un)∥4Y

)1/2

≤
2∥G∥2L∞

ν√
N

.
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For the second term (II), we begin by estimating the empirical average on the
set At as∣∣∣∣ 1N

N∑
n=1

εn⟨G(un),Φ(un;α)⟩Y
∣∣∣∣ = ∣∣∣∣ 1M

M∑
m=1

αm

(
1

N

N∑
n=1

εn⟨G(un), φ(un; θm)⟩Y
)∣∣∣∣

≤
√
t

(
1

M

M∑
m=1

∣∣∣∣ 1N
N∑
n=1

εn⟨G(un), φ(un; θm)⟩Y
∣∣∣∣2)1/2

by the Cauchy–Schwarz inequality in RM . We deduce by Jensen’s inequality
and independence that (II) is less than or equal to

4
√
t

N

(
1

M

M∑
m=1

N∑
n,n′=1

E[εnεn′ ]E{un}
[
⟨G(un), φ(un; θm)⟩Y⟨G(un′), φ(un′ ; θm)⟩Y

])1/2

=
4
√
t

N

(
1

M

M∑
m=1

N∑
n=1

Eu∼ν⟨G(u), φ(u; θm)⟩2Y
)1/2

.

A final application of the Cauchy–Schwarz inequality in Y in the last line
shows that the second term (II) is bounded above by 4

√
t∥G∥L∞

ν
∥φ∥L∞/

√
N .

By Young’s inequality ab ≤ a2/2 + b2/2, we further bound

4∥G∥L∞
ν
∥φ∥L∞

√
t√

N
=

(
2∥G∥L∞

ν

N1/4

)(
2∥φ∥L∞

√
t

N1/4

)
≤

2∥G∥2L∞
ν√

N
+

2∥φ∥2L∞t√
N

.

The third term (III) is estimated in a similar manner. Expanding the empirical
average on At yields∣∣∣∣ 1N

N∑
n=1

εn∥Φ(un;α)∥2Y
∣∣∣∣ = ∣∣∣∣ 1M

M∑
m=1

αm

(
1

M

M∑
m′=1

αm′β
(N)
m,m′

)∣∣∣∣, where

β
(N)
m,m′ =

1

N

N∑
n=1

εn⟨φ(un; θm), φ(un; θm′)⟩Y .

The first equality in the above display satisfies the upper bound

√
t

(
1

M

M∑
m=1

∣∣∣∣ 1M
M∑

m′=1

αm′β
(N)
m,m′

∣∣∣∣2)1/2

≤
√
t

(
1

M

M∑
m=1

t

[
1

M

M∑
m′=1

∣∣β(N)
m,m′

∣∣2])1/2

=
t

N

√√√√ 1

M2

M∑
m,m′=1

∣∣∣∣ N∑
n=1

εn⟨φ(un; θm), φ(un; θm′)⟩Y
∣∣∣∣2
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by two applications of the Cauchy–Schwarz inequality in RM . Finally, we
deduce that

(III) ≤ 2t

N

√√√√ 1

M2

M∑
m,m′=1

N∑
n=1

E{un}
〈
φ(un; θm), φ(un; θm′)

〉2
Y

≤ 2t√
N

√√√√ 1

M2

M∑
m,m′=1

Eu
[
∥φ(u; θm)∥2Y∥φ(u; θm′)∥2Y

]
≤ 2t∥φ∥2L∞√

N

by Jensen’s inequality, the fact that E[εnεn′ ] = δn,n′ , and the Cauchy–Schwarz
inequality in Y .

Combining the three estimates completes the proof.

The proof of the main generalization gap bound (3.27) is now immediate.

Proof of Proposition 3.22. Lemma B.14 and B.15 (applied with t = β) show
that

Eβ({un}, {θm}) ≤
4(∥G∥2L∞

ν
+ ∥φ∥2L∞β)√
N

+ 32e3/2(∥G∥2L∞
ν
+ ∥φ∥2L∞β)

√
log(1/δ)

N
(B.47)

with conditional probability (over {θm}) at least 1− δ if N ≥ log(1/δ). Since δ
does not depend on {θm}, we deduce by the tower rule of conditional expectation
that the event implied by (B.47) has P-probability at least 1− δ as well. Using
the inequalities 4 ≤ 32e3/2 and

√
a+

√
b ≤

√
2(a+ b) shows that the expression

in (B.47) is bounded above by

32e3/2
(
∥G∥2L∞

ν
+ ∥φ∥2L∞β

)√2(1 + log(1/δ))

N
.

Application of the inequality 1 ≤ 2 log(2/δ), valid for δ ∈ (0, 1), implies (3.27)
as asserted.

B.5 Numerical Experiment Details

In this appendix, we detail the setup of the numerical experiment from Sec-
tion 3.5 and provide additional visualization of the function-valued RFM’s
discretization-independence in Figure B.1. All code used to produce the nu-
merical results and figures in this chapter are available at
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https://github.com/nickhnelsen/error-bounds-for-vvRF .

A RFM with M features is trained on N input-output pairs {(un,G(un))}Nn=1

according to the vector-valued RF-RR algorithm. The ground truth map
G : L2(T;R) → L2(T;R) is a nonlinear operator defined by u(0)(·) 7→ u(·, 1),
where u = {u(x, t)}x,t solves the partial differential equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 10−1∂

2u

∂x2
, (x, t) ∈ T× (0,∞) ,

with initial condition u(·, 0) = u(0) ∈ L2(T;R). Here, T ≃ (0, 2π)per is the 1D
torus which comes with periodic boundary conditions. The initial conditions
un ∼ ν are sampled i.i.d. from a centered Matérn-like Gaussian process
according to [154, Section 6.3, p. 32].

The random features are defined in a similar way to the Fourier Space RFs
introduced by Nelsen and Stuart [203, Section 3.1, p. 15]:

φ(u(0); θ) = 2.6 · ELU
(
F−1{1(|k|≤kmax)χk · (Fu(0))k · (Fθ)k}k∈Z

)
and θ ∼ µ ,

where µ is also a centered Matérn Gaussian measure with covariance operator
1.82(− d2

dx2
+ 152 Id)−3. In the above display, F maps a function to its Fourier

series coefficients, and F−1 expresses a Fourier coefficient sequence as a function
expanded in the Fourier basis. The filter χ is given by [203, Eqn. 3.6, p. 15]
with δ = 0.32 and β = 0.1. We take kmax = 64. The feature map φ lifts the
notion of hidden neuron in neural network architectures to function space.

In Figures 3.2 and B.1, the quantity represented on the vertical axis is an
empirical approximation to the relative Bochner squared error:

1
N ′

∑N ′

n=1∥G(u′n)− Φ(u′n; α̂, {θm})∥2L2

1
N ′

∑N ′

n=1∥G(u′n)∥2L2

≈ Eu∼ν∥G(u)− Φ(u; α̂, {θm})∥2L2

Eu∼ν∥G(u)∥2L2

=
R(α̂;G)
R(0;G) .

(B.48)

In (B.48), N ′ = 500 is the size of the test set {(u′n,G(u′n))}N
′

n=1, where {u′n}N
′

n=1 ∼
ν⊗N

′ is disjoint from the training input set {un}Nn=1. The input and output
spaces are discretized on the same p-point equally spaced grid in (0, 2π). Thus,
the discretized version of any input or output function belonging to X = Y =

L2(T;R) may be identified with an element of Rp. In Figures 3.2a and B.1a,

https://github.com/nickhnelsen/error-bounds-for-vvRF
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(a) Varying M,λ, p for fixed N = 1548.
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(b) Varying N,λ, p for fixed M = 104.

Figure B.1: Squared test error—which empirically approximates the population
risk R(α̂;G)—versus discretized output space dimension p, where G is the Burgers’
equation solution operator (Appendix B.5).

the regularization factor is chosen as λ = 7 · 10−4/M and as λ = 3 · 10−6/
√
N

in Figures 3.2b and B.1b.

A priori, it is not clear whether this operator learning benchmark satisfies our
theoretical assumptions because we cannot verify that the Burgers’ solution
operator belongs to the RKHS of (φ, µ) (or the range of some power of the RKHS
kernel integral operator). At a more technical level, the feature map φ uses an
unbounded activation function (ELU, the exponential linear unit), while our
theory is only developed for bounded RFs (Assumption 3.3). Nevertheless, the
empirically obtained parameter and sample complexity in Figure 3.2 reasonably
fit the main result of our well-specified theory (Theorem 3.9).
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A p p e n d i x C

APPENDIX TO CHAPTER 4

This appendix collects all the proofs for Chapter 4: Learning Linear Operators
From Noisy Data. The proofs for the main theorems appearing in Section 4.3
are given in Appendix C.1. Appendix C.2 states and proves key technical
results used in the arguments. Finally, Appendix C.3 proves auxiliary results
appearing in the main exposition of Chapter 4.

C.1 Proofs of Main Results

In this appendix, we provide proofs of the theorems from the main body of the
chapter, in order of appearance. We begin with Theorem 4.3.

Proof of Theorem 4.3. Theorem 4.3 is a special case of Theorem 4.16 in the
case α′ < α + 1/2 in ρN(α, α′, p) (4.24). It remains to show that the Gaussian
measure ν = N (0,Λ) satisfies Assumption 4.15. The KL expansion coefficients
certainly satisfy the fourth moment condition. The final condition on {gjgj(N)}
is verified by Lemma C.7 because {gjn}Nn=1 ∼ N (0, ϑ2

j)
⊗N .

C.1.1 Proofs for Subsection 4.3.2

Under Assumptions 4.14 and 4.15, we calculate from Equations (4.12) and (4.13)
that EY |X EL(N)∼µDN ∥L† − L(N)∥2

L2
ν′ (H;H)

= I1 + I2 + I3 for N ∈ N, where

I1 =
∞∑
j=1

ϑ′2
j |l†j |2

(1 +Nγ−2σ2
j gjgj

(N))2
, I2 =

∞∑
j=1

Nϑ′2
j γ

−2σ4
j gjgj

(N)

(1 +Nγ−2σ2
j gjgj

(N))2
, (C.1a)

I3 =
∞∑
j=1

ϑ′2
j σ

2
j

1 +Nγ−2σ2
j gjgj

(N)
. (C.1b)

This is the test error averaged only over the posterior and noise distributions,
keeping the random design X fixed. The posterior mean test error (4.15) is
given by E[I1 + I2] only. Recall from Assumption 4.14 that ϑ′2

j (4.23) decays
as j−2α′ (determining the test distribution ν ′) and σ2

j (4.21) decays (or grows)
as j−2p (determining the prior on L). The three series depend on X = {xn}
through the correlated r.v.s {gjn = ⟨φj, xn⟩} (4.11). These are mean zero with
variance ϑ2

j (4.22) decaying as j−2α. The truth is l† ∈ Hs, as in item (A2). All
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of the following proofs involve estimating the three random series (C.1), which
converge P-a.s. by Item (A5) in Assumption 4.14 (and by Lemma C.3 for I2).
For convenience, we set u := 2(α+ p) > 1 and write gjgj(N) =: ϑ2

jZ
(N)
j . Thus,

EZ(N)
j = 1. We also set γ ≡ 1 without loss of generality.

Proof of Theorem 4.16. We split each of the three series (C.1) into sums over
two disjoint index sets {j ∈ N : j ≤ N1/u} and {j ∈ N : j > N1/u}. We denote
such sums by I≤

i and I>i , respectively, for each i ∈ {1, 2, 3}. We must estimate
their expectations over X ∼ ν⊗N to prove the assertion (4.25). Notice that
Nj−u ≃ 1 +Nj−u whenever j ≤ N1/u.

Beginning with E I2, its partial sum E I≤
2 satisfies

E
∑

j≤N1/u

Nϑ′2
j σ

4
j gjgj

(N)

(1 +Nσ2
j gjgj

(N))2
≤

∑
j≤N1/u

ϑ′2
j E
[
(gjgj

(N))−1
]

N

≲
∑

j≤N1/u

ϑ′2
j ϑ

−2
j

N
≍

∑
j≤N1/u

j−2(α′+p)

1 +Nj−u

as N → ∞. We used Assumption 4.15 and Lyapunov’s inequality to bound
the negative moment. By applying (C.8b) in Lemma C.2 (with t = 2(α′ + p),
v = 1, and condition t > 1 satisfied by item (A5)) to the last sum, we deduce
that E I≤

2 = O(ρN). The tail series satisfies

E I>2 ≤
∑

j>N1/u

Nϑ′2
j σ

4
j E
[
ϑ2
jZ

(N)
j ] ≍ N

∑
j>N1/u

j−2(α′+α+2p) ≍ N−
(
1−α+1/2−α′

α+p

)
as N → ∞ by (C.8a) in Lemma C.2 (applied with t = 2(α′ + α+ 2p) > 1 by
Item (A5)). This is always the same order as, or negligible compared to, the
upper bound on E I≤

2 .

By the same argument used for E I≤
2 (bounding its denominator by one and us-

ing Assumption 4.15 plus Lyapunov’s inequality), we deduce that E I≤
3 = O(ρN )

also. The tail E I>3 is bounded above by
∑

j>N1/u ϑ′2
j σ

2
j ≍ ∑

j>N1/u j−2(α′+p).
This sum is the same order as the bound on E I>2 by (C.8a) in Lemma C.2
(with t = 2(α′ + p) > 1 by Item (A5)).

Last, again by Assumption 4.15 and Lyapunov’s inequality, E I≤
1 is bounded

above by∑
j≤N

1
u

ϑ′2
j |l†j |2 E

[
(gjgj

(N))−2
]

(Nσ2
j )

2
≲
∑
j≤N

1
u

ϑ′2
j |l†j |2(ϑ2

j)
−2

(Nσ2
j )

2
≍
∑
j≤N

1
u

j−2α′ |l†j |2
(1 +Nj−u)2

(C.2)
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as N → ∞. Application of (C.7) in Lemma C.1 (with ξ = l†, t = 2α′, q = s,
v = 2, and t ≥ −2q satisfied by Item (A5)) shows that this last sum is
o(N−(α′+s)/(α+p)) if (α′ + s)/(α + p) < 2 or Θ(N−2) otherwise. The tail sum
matches this bound in the first case and is strictly smaller otherwise because
E I>1 ≤∑j>N1/u ϑ′2

j |l†j |2 ≍
∑

j>N1/u j−2α′ |l†j |2 (apply (C.6) in Lemma C.1 with
ξ = l†, t = 2α′ and q = s). All together, we deduce that E I2 and E I3 have
the same upper bound ρN ≫ N−2. This implies (4.25). The uniform bound
over ∥l†∥Hs ≲ 1 follows from the first assertion in [147, Lemma 8.1] (this turns
the little-o into a big-O as claimed). The final assertion follows because the
posterior mean test error only corresponds to I1 and I2.

Proof of Theorem 4.17. The proof proceeds by developing lower bounds on
each of the three series (C.1), using the same disjoint index sets approach in
the proof of Theorem 4.16. For E I3, since r 7→ (1 + ar)−1 is convex on [0,∞)

for all a ≥ 0, Jensen’s inequality yields

E
∞∑
j=1

ϑ′2
j σ

2
j

1 +Nσ2
j gjgj

(N)
≥

∞∑
j=1

ϑ′2
j σ

2
j

1 +Nσ2
j E[ϑ2

jZ
(N)
j ]

≍
∞∑
j=1

j−2(α′+p)

1 +Nj−u
(C.3)

as N → ∞. The last sum is Θ(ρN) by (C.8b) in Lemma C.2 (with t =

2(α′ + p) > 1 by (A5) and v = 1).

Next, E I2 ≥ E I≤
2 by nonnegativity. For any positive τN → 0, define the

events A(N)
j :=

{
ω ∈ Ω : Z

(N)
j (ω) ≥ τN

}
for every j and N ∈ N. The law of

total expectation yields

E I≤
2 =

∑
j≤N1/u

Nϑ′2
j σ

4
jϑ

2
j E

[
Z

(N)
j

(1 +Nσ2
jϑ

2
jZ

(N)
j )2

∣∣∣∣A(N)
j

]
P
(
A

(N)
j

)
+
∑

j≤N1/u

Nϑ′2
j σ

4
jϑ

2
j E

[
Z

(N)
j

(1 +Nσ2
jϑ

2
jZ

(N)
j )2

∣∣∣∣ (A(N)
j

)c]P(A(N)
j

)c
.

The second term in the above display is nonnegative, so we obtain

E I≤
2 ≥

∑
j≤N1/u

τNNϑ
′2
j σ

4
jϑ

2
j E
[
(1 +Nσ2

jϑ
2
jZ

(N)
j )−2

∣∣A(N)
j

]
P
(
A

(N)
j

)
≥

∑
j≤N1/u

τNNϑ
′2
j σ

4
jϑ

2
j P
(
A

(N)
j

)(
1 +Nσ2

jϑ
2
j E
[
Z

(N)
j

∣∣A(N)
j

])2
=

∑
j≤N1/u

τNNϑ
′2
j σ

4
jϑ

2
j P
(
A

(N)
j

)3(
P
(
A

(N)
j

)
+Nσ2

jϑ
2
j E
[
1
A

(N)
j
Z

(N)
j

])2 .
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We applied conditional Jensen’s inequality to yield the second inequality because
r 7→ (1 + ar)−2 is convex on [0,∞) for any a ≥ 0. Next, Markov’s inequality
plus Assumption 4.15 gives

sup
j≥1

P
(
A

(N)
j

)c
= sup

j≥1
P
{
(Z

(N)
j )−1 > τ−1

N

}
≤ sup

j≥1
τN E

[
(Z

(N)
j )−1

]
→ 0 as N → ∞ .

This implies infj≥1 P(A(N)
j ) → 1 as N → ∞. Using this and the facts

E[1AZ(N)
j ] ≤ E[Z(N)

j ] = 1 and P(A) ≤ 1 for any A ∈ F and applying
1 +Nj−u ≃ Nj−u for j ≤ N1/u twice yields

E I≤
2 ≳

∑
j≤N1/u

τNNϑ
′2
j σ

4
jϑ

2
j P
(
A

(N)
j

)3
(1 +Nσ2

jϑ
2
j)

2
≳ τN

∑
j≤N1/u

j−2(α′+p)

1 +Nj−u
as N → ∞ .

Comparing to (C.3), we deduce E I2 = Ω(τNρN). This is negligible relative to
E I3 = Ω(ρN).

Last, by Jensen’s inequality, we lower bound E I1 by the rightmost sum in (C.2),
which is always Ω(N−2) (if l† ̸= 0), plus the tail of the same sum, which gives
the second term in (4.27) by (C.6) in Lemma C.1 (with ξ = l†, t = 2α′, q = s,
and v = 2). The Ω(N−2) contribution from the first sum is dominated by
both ρN = Ω(N−1) and τNρN if τN ≫ N−1. Therefore, the posterior sample
test error (4.14) enjoys the asserted rate, while the posterior mean test error
E[I1 + I2] only admits the bound (4.27) with the τN factor as claimed.

Proof of Theorem 4.18. The ρN term (corresponding to I2 and I3 in (C.1))
in the assertion (4.28) follows from Theorems 4.16 and 4.17 for the posterior
sample estimator. It remains to obtain the second term in (4.28). Following
the argument from the proof of Theorem 4.16, E I≤

1 is asymptotically bounded
above by the last sum in (C.2). Now given |l†j | ≍ j−1/2−sS(j), by the full
version of [147, Lemma 8.2] (applied with ξ = l†, t = −2α′, v = 2, q = s,
S = S, and t > −2q by item (A5)), this sum has exact order the second term
in (4.28) if (α′ + s)/(α+ p) < 2 and is negligible relative to ρN otherwise. The
tail E I>1 is always bounded above by the second term in (4.28) by the proof
of [147, Lemma 8.2]. After an application of Jensen’s inequality, the argument
leading to a matching lower bound for E I1 is the same as the one above.
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C.1.2 Proof for Subsection 4.3.4

We follow Appendix C.1.1 by letting u := 2(α + p) > 1, gjgj(N) =: ϑ2
jZ

(N)
j ,

and γ ≡ 1, but instead of Assumption 4.15 we now enforce Assumption 4.21,
which defines our Λ-subgaussian data. This yields gjn = ⟨φj, xn⟩ ∈ SG(σ2

νϑ
2
j).

Henceforth, let SE(v2, a) denote the set of real subexponential (SE) r.v.s with
parameters (v, a) ∈ R2

≥0. The inclusion X ∈ SE(v2, a) is characterized by the
moment generating function (MGF) bound E exp(θ(X − EX)) ≤ exp(v2θ2/2)

for all |θ| < 1/a [267]. Using [266, Lemma 2.7.6] gives g2jn/ϑ2
j ∈ SE(c2σ4

ν , cσ
2
ν)

for an absolute constant c > 0. By independence, Z(N)
j ∈ SE(c2σ4

ν/N, cσ
2
ν/N)

[267, Section 2.1.3]. The following proof relies on SE concentration from
Appendix C.2.

Proof of Theorem 4.22. We prove the upper and lower concentration bounds
separately.

Upper Bound. Fix δ ∈ (0, 1 ∧ cσ2
ν) and define Nδ− := (1− δ)N . We follow

the disjoint index sets approach from Theorem 4.16, except now we sum over
{j ∈ N : j ≤ N

1/u

δ− } and {j ∈ N : j > N
1/u

δ− }. Denote these sums by I≤,δ
i and

I>,δi , respectively (C.1). We first bound

I≤,δ
1 ≤

∑
j≤N1/u

δ−

ϑ′2
j |l†j |2

(1 +Nδ−σ
2
jϑ

2
j)

2
≍

∑
j≤N1/u

δ−

j−2α′|l†j |2
(1 +Nδ−j−u)2

as N → ∞

with probability (w.p.) at least 1−N
1/u

δ− exp(−Nδ2/(2c2σ4
ν)) by Lemma C.4

(with n = N , X(N)
j = Z

(N)
j , v = a = cσ2

ν , J = ⌊N1/u

δ− ⌋, and the lower tail only).
The remaining bounds for I1 (including the almost sure bound for I>,δ1 ) are
the same as those in the proof of Theorem 4.16, except with N replaced by
Nδ− . This gives the second term in (4.30).

Following the arguments in the proof of Theorem 4.16 for E I≤
2 and by a

similar application of Lemma C.4, we deduce that I≤,δ
2 = O(ρNδ− ) w.p. at

least 1−N
1/u

δ− exp(−Nδ2/(2c2σ4
ν)). For the infinite tail series I>,δ2 , bounding

its denominator by one yields

I>,δ2 ≤
∑

j>N
1/u

δ−

Nϑ′2
j ϑ

2
jσ

4
jZ

(N)
j ≲ N(1 + δ)

∑
j>N

1/u

δ−

j−2(α′+α+2p) as N → ∞

w.p. at least 1−exp(−Nδ2/(2c2σ4
ν)). The second inequality is from Lemma C.6

(with n = N , X(N)
j = Z

(N)
j , v = a = cσ2

ν , {wj = ϑ′2
j ϑ

2
jσ

4
j}, and the upper tail
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only), where {ϑ′2
j ϑ

2
jσ

4
j} is in ℓ1 because α′ + α + 2p > 1 by item (A5). We

deduce I>,δ2 = O((1 + δ)/(1− δ)N
−(1−(α+1/2−α′)/(α+p))
δ− ) by the same argument

used for E I>2 in the proof of Theorem 4.16.

Along similar lines as the proof of Theorem 4.16, the posterior covariance term
I≤,δ
3 has the same order as I≤,δ

2 with the same probability (by Lemma C.4).
The tail I>,δ3 is bounded above a.s. by the first case in ρNδ− (4.24) as N → ∞.
Since a+b(1+δ)/(1−δ) ≲ (1+δ)/(1−δ) for any a, b > 0, we deduce I2+I3 has
order the first term in (4.30) after choosing δ sufficiently small. The asserted
total probability follows by combining the individual event probabilities with
the union bound and the fact that there exists c1(δ) > 0 and 0 < c3 < c′ :=

1/(2c2σ4
ν) with c2 = c3δ

2 such that supn≳1 n
1/u exp(−(c′ − c3)nδ

2) < c1(δ). The
assertion about the upper bound for L̄(N) follows by ignoring I3.

Lower Bound. Since 1 + δ ∈ (1, 2) is bounded, we do not track this factor
in what follows. The proof proceeds by splitting all series at the critical index
JN = ⌊N1/u⌋ (since (1 + δ)N ≃ N) as in Theorem 4.16. By nonnegativity, we
lower bound the error (C.1) by I>1 + I≤

2 + I≤
3 . The tail term I>1 is bounded

below by the second term in (4.31) with high probability by Lemma C.4 and
Equation (C.6) in Lemma C.1. The remaining calculations showing that I≤

2

and I≤
3 are Ω(ρN) with high probability follow directly from Lemma C.4 and

Equation (C.8b) in Lemma C.2 and are omitted. For L̄(N), the only variance
contribution is from I≤

2 ; its lower bound (1− δ)ρN has a small pre-factor 1− δ.
Combining the individual event probabilities as was done for the upper bound
completes the proof of Theorem 4.22.

C.1.3 Proof for Subsection 4.3.6

This subsection proves Theorem 4.24 by bounding the generalization gap
GN (4.20), which only involves in-distribution notions of error. We work in
the setting of Appendix C.1.1, letting u := 2(α + p) > 1 and γ ≡ 1 and
enforcing Assumptions 4.14 and 4.15. Then, the L1

P(Ω;R) norm of GN satisfies
EDN |GN | = EDN |J1 + J2 + J3|, where

1

2

∞∑
j=1

(ϑ2
j−gjgj(N))

∣∣l̄(N)
j −l†j

∣∣2, 1

2

∞∑
j=1

(gjgj
(N)−ϑ2

j)|l†j |2,
∞∑
j=1

gjξj
(N)
l̄
(N)
j (C.4)

define J1, J2, and J3, respectively. In (C.4), the r.v.s {ξjn} from (4.6) are i.i.d.
N (0, 1). Using the explicit form (4.12) of the posterior mean {l̄(N)

j }, we find
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that EDN |GN | equals

E

∣∣∣∣∣12
∞∑
j=1

(ϑ2
j−gjgj(N))

|l†j |2 +Nσ4
j gjgj

(N)

(1 +Nσ2
j gjgj

(N))2
+J2+

∞∑
j=1

(gjξj
(N)

)2 + l†jgjgj
(N)gjξj

(N)

N−1σ−2
j + gjgj

(N)

∣∣∣∣∣ .
(C.5)

The following proof and Lemma C.3 imply the convergence of (C.4) P-a.s. and
(C.5).

Proof of Theorem 4.24. We prove the upper and lower bounds on EDN |GN |
separately.

Upper Bound. By the triangle inequality, (C.5) is bounded above by five
terms Gi for i ∈ {1, . . . , 5}. Here, {G1, G2} corresponds to E|J1|, G3 to E|J2|,
and {G4, G5} to E|J3|.

By triangle and Jensen’s inequality, G3 = E|J2| ≤ 1
2

∑∞
j=1|l†j |2(Var[gjgj(N)])1/2.

Independence of {xn} yields Var[gjgj
(N)] ≤ 1

N
Ex∼ν⟨φj, x⟩4. Using Equa-

tion (4.11) and Assumption 4.15 ({ζj} are zero mean, unit variance, and inde-
pendent), Ex∼ν⟨φj, x⟩4 ≃

∑
k c

4
jk E ζ4k +

∑
k′ ̸=k c

2
jkc

2
jk′ , where cjk := ⟨Λ1/2φj, ϕk⟩.

The second term is bounded above by a constant times (
∑

k c
2
jk)

2 = ϑ4
j

and so is the first term (using lim supj→∞ E ζ4j < ∞ and ℓ2 ⊂ ℓ4). Thus,
G3 ≲ ∥L†∥2L2

ν(H;H)N
−1/2.

Using the disjoint index sets approach from the proof of Theorem 4.16, G≤
1 is

bounded above by 1
2

∑
j≤N1/u(Nσ2

j )
−2|l†j |2 E[|ϑ2

j − gjgj
(N)|(gjgj(N))−2]. By the

Cauchy–Schwarz inequality and Assumption 4.15, the expectation on the right
is bounded above by (Var[gjgj

(N)])1/2ϑ−4
j for sufficiently large N . It follows

that G≤
1 is of the order N−1/2 times the rightmost sum in (C.2) with α′ = α,

which all together is o(N−1/2). This contribution is negligible relative to G3.
A similar argument shows that the tail sum G>

1 is never bigger than G≤
1 .

The other term associated with J1, which is G2, satisfies

G≤
2 ≤ 1

2

∑
j≤N1/u

N−1 E[|ϑ2
j−gjgj(N)|(gjgj(N))−1] = O

(
N− 1

2N−
(
1− 1

u

))
= o(N−1/2)

(since u > 1) by an argument similar to the one used for G1. The Cauchy–
Schwarz inequality and the variance bound used for G1 yields

G>
2 ≤ 1

2

∑
j>N1/u

Nσ4
j E[|ϑ2

j − gjgj
(N)| gjgj(N)] ≲ N−1/2

∑
j>N1/u

Nσ4
jϑ

4
j .
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The last sum is asymptotic to N−1/2
∑

j>N1/u Nj−2u as N → ∞, which is the
same order as G≤

2 by (C.8a) in Lemma C.2 (with t = 2u > 1). Thus, G2 is also
negligible relative to G3.

Moving on to G4 from E|J3|, we first average out the noise {ξjn} to obtain

G4 = E
∞∑
j=1

(gjξj
(N)

)2

N−1σ−2
j + gjgj

(N)
= EX

∞∑
j=1

Nσ2
j E

Y |X[(gjξj(N)
)2
]

1 +Nσ2
j gjgj

(N)

= EX
∞∑
j=1

σ2
j gjgj

(N)

1 +Nσ2
j gjgj

(N)
.

Since the map r 7→ r(1 + ar)−1 is concave on [0,∞) for all a ≥ 0, Jensen’s
inequality yieldsG4 ≲

∑∞
j=1 j

−u/(1+Nj−u) = O(N−(α+p−1/2)/(α+p)) asN → ∞
by (C.8b) in Lemma C.2 (with t = u > 1 and v = 1, satisfying the first case).

Last, Jensen’s inequality applied to the entire series G5 from E|J3| yields

G5 ≤
(
EX EY |X

∣∣∣∣∣
∞∑
j=1

Nσ2
j l

†
jgjgj

(N)gjξj
(N)

1 +Nσ2
j gjgj

(N)

∣∣∣∣∣
2 )1/2

=

(
EX

∞∑
j=1

N |l†j |2σ4
j (gjgj

(N))3

(1 +Nσ2
j gjgj

(N))2

)1/2

because

EY |X [(gjξj
(N)

)(gj′ξj′
(N)

)] =
1

N2

∑
n,n′≤N

gjngj′n′ E[ξjnξj′n′ ] =
δjj′

N

(
1

N

N∑
n=1

gjngj′n

)
for any j and j′ ∈ N. Thus,

G5 ≤

√√√√ ∞∑
j=1

N−1|l†j |2ϑ2
j = ∥L†∥2L2

ν(H;H)N
−1/2 .

Comparing each {Gi}i=1,...,5, we conclude that EDN |GN | = O(N−1/2 +G4) as
N → ∞ as asserted.

Lower Bound. By the triangle inequality,

EDN |GN | ≥ E|J3 + J2| − E|J1| ≥ |EJ3 + EJ2| − E|J1| = |EJ3| − E|J1| .

We first develop a lower bound on |EJ3|, which equals G4 by the zero mean
property of the {ξjn}. By an argument similar to the one used to lower bound
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E I2 in the proof of Theorem 4.17,

|EJ3| ≳ τN
∑

j≤N1/u

j−u

1 +Nj−u
= Ω

(
τNN

−(1−1/u)
)

as N → ∞

for any positive τN → 0. This is the asserted lower bound in (4.35). To
conclude the proof, we claim that the upper bounds previously developed for
E|J1| (i.e., for G1 and G2) are asymptotically negligible relative to τNN−(1−1/u)

under the hypotheses. Enforcing τN ≫ N−1/2 ensures that this is true for
the G2 bound. By (C.2), if (α + s)/(α + p) ≥ 2, then the G1 contribu-
tion is N−1/2N−2 ≪ τNN

−(1−1/u). Otherwise, G1 is strictly smaller than
N−1/2N−(α+s)/(α+p). This term is negligible relative to the |EJ3| contribution
if τN ≫ N−(1+α+2s−p)/(2α+2p) → 0, which requires p < 1 + α + 2s as assumed
in the hypotheses.

C.2 Supporting Lemmas

This appendix provides technical lemmas that are used repeatedly in the
chapter. The first two results, which are variations of [147, Lemmas 8.1–8.2],
develop sharp asymptotics for certain series that arise from µDNseq in (4.12).

Lemma C.1 (series asymptotics: Sobolev regularity). Let q ∈ R, t ≥ −2q,
u > 0, and v ≥ 0. Then for every ξ ∈ Hq(N;R), it holds that

∑
j>N1/u

j−tξ2j
(1 +Nj−u)v

≃
∑

j>N1/u

j−tξ2j ≤ N−( t+2q
u )
( ∑
j>N1/u

j2qξ2j

)
(C.6)

for all N ∈ N. Additionally, for every fixed ξ ∈ Hq(N;R), it holds that

∑
j≤N1/u

j−tξ2j
(1 +Nj−u)v

=

o
(
N−( t+2q

u )) , if (t+ 2q)/u < v ,

N−v ∥ξ∥2H(uv−t)/2

(
1 + o(1)

)
, if (t+ 2q)/u ≥ v

(C.7)
as N → ∞. The previous assertion (C.7) remains valid for the full infinite
series.

Proof. The claims follow from [147, Lemma 8.1, p. 2653] and its proof therein.
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Lemma C.2 (series asymptotics: sharp). Let t > 1, u > 0, and v ≥ 0. Then
as N → ∞,∑

j>N1/u

j−t

(1 +Nj−u)v
≃

∑
j>N1/u

j−t = Θ
(
N−( t−1

u )) and (C.8a)

∞∑
j=1

j−t

(1 +Nj−u)v
≍

∑
j≤N1/u

j−t

(1 +Nj−u)v
=


Θ(N−( t−1

u )) , if (t− 1)/u < v ,

Θ(N−v logN) , if (t− 1)/u = v ,

Θ(N−v) , if (t− 1)/u > v .

(C.8b)

Proof. The claims follow from [147, pp. 2654–2655]. Choose the slowly varying
function used there to be identically constant, q = −1/2, and use the fact that∑J

j=1 1/j ≍ log J as J → ∞.

The next lemma justifies the a.s. convergence of various random series in our
proofs.

Lemma C.3 (almost sure convergence of series). Let {Xj}j≥1 be a sequence
of (possibly dependent) real r.v.s. If

∑∞
j=1 E|Xj| <∞, then

J∑
j=1

Xj
a.s.−−→

∞∑
j=1

Xj as J → ∞ . (C.9)

Proof. An application of the monotone convergence theorem shows that the
random series

∑
j|Xj| converges almost surely.

We now turn to some useful concentration inequalities for subexponential r.v.s.

Lemma C.4 (subexponential: union). For n ∈ N, let {X(n)
j }j≥1 be a (possibly

dependent) family of unit mean SE(v2/n, a/n) r.v.s. Fix δ ∈ (0,min(1, v2/a))

and J ∈ N. Then with probability at least 1− 2J exp(−nδ2/(2v2)), it holds that
(1− δ) ≤ X

(n)
j ≤ (1 + δ) for all j ≤ J .

Proof. The result follows from application of the union bound to [267, Propo-
sition 2.9].

To develop tighter concentration for subexponential series, we need the next
two lemmas. The first result may be of independent interest.
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Lemma C.5 (subexponential: closure under addition). Let J ∈ N. If
{Xj}j=1,...,J are (possibly dependent) real-valued r.v.s such that Xj ∈ SE(v2j , aj)

for every j ∈ {1, . . . , J}, then

J∑
j=1

Xj ∈ SE

(( J∑
j=1

vj

)2

,

( J∑
j=1

vj

)
max
1≤i≤J

ai
vi

)
. (C.10)

Proof. Defining the centered r.v. Yj := Xj − EXj for each j ∈ {1, . . . , J}, we
estimate

E exp

(
θ

J∑
j=1

Yj

)
= E

J∏
j=1

exp(θYj) ≤
J∏
j=1

(
E exp(θYjpj)

)1/pj
≤

J∏
j=1

(
exp(v2j θ

2p2j/2)
)1/pj

= exp

(( J∑
j=1

vj

)2

θ2/2

)
.

We used the generalized Hölder’s inequality to yield the first inequality with∑J
i=1 1/pi = 1 and pi := v−1

i

∑J
j=1 vj. The SE MGF bound applied for

each j ∈ {1, . . . , J} yields the second inequality, which is valid for all |θ| <
mini≤J(piai)

−1 = (maxi≤J piai)
−1 as asserted.

Lemma C.6 (subexponential: series). For n ∈ N, let {X(n)
j }j≥1 be a (possibly

dependent) family of nonnegative unit mean SE(v2/n, a/n) r.v.s. Let w ∈
ℓ1(N;R) be nonnegative. Fix δ ∈ (0,min(1, v2/a)). Then with probability at
least 1− 2 exp(−nδ2/(2v2)), it holds that

(1− δ)
∞∑
j=1

wj ≤
∞∑
j=1

wjX
(n)
j ≤ (1 + δ)

∞∑
j=1

wj . (C.11)

Proof. For any J ∈ N, define YJ :=
∑

j≤J wjX
(n)
j . It follows from Lemma C.5

that YJ ∈ SE(v
2

n
∥{wj}j≤J∥21, an∥{wj}j≤J∥1). Since

∑∞
j=1 E|wjX

(n)
j | =∑∞

j=1wj <

∞ holds by hypothesis, we deduce that YJ → Y∞ as J → ∞ P-a.s. by mono-
tone convergence (Lemma C.3). Fatou’s lemma applied to the YJ SE MGF
bound yields Y∞ ∈ SE(v

2

n
∥w∥2ℓ1 , an∥w∥ℓ1). Thus, the fact that EY∞ = ∥w∥ℓ1

and the SE tail bound (Lemma C.4) establish that P
{
|Y∞−EY∞| ≤ EY∞ δ

}
≥

1− 2 exp(−nδ2/(2v2)) for all δ ∈ (0,min(1, v2/a)) as asserted.
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Our last result, specific to Gaussian design, is used in the proof of Theorem 4.3.

Lemma C.7 (chi-square moments). Let W ∼ χ2(n) be a chi-square r.v. with
n ∈ N degrees of freedom. Then for any q > −n/2, E[W q] = 2q Γ(q+n/2)

Γ(n/2)
, where

Γ is Euler’s gamma function.

Proof. A direct calculation with the PDF of χ2(n) yields the q-th noncentral
moment in closed form.

C.3 Proofs of Auxiliary Results

In this appendix, we prove the facts asserted in Section 4.2.2.

Proof of Fact 4.4. By (4.9), K−1/2 ∈ HS(HΛ′ ;H) if and only if Ex∼ν′∥x∥2K <∞.
Hence, ν ′(HK) = 1 as claimed. For the second claim, for any orthonormal basis
{ψj} of H we compute

∥TΛ′1/2∥2HS =
∑
i,j

⟨ψi, T (K1/2K−1/2)Λ′1/2ψj⟩2

=
∑
i,j

⟨(TK1/2)∗ψi,K−1/2Λ′1/2ψj⟩2 .

Applying the Cauchy–Schwarz inequality to the rightmost equality yields the
upper bound ∥(TK1/2)∗∥2HS∥K−1/2Λ′1/2∥2HS. This is finite by hypothesis. So, we
deduce Ex∼ν′∥Tx∥2 <∞.

Proof of Fact 4.6. ForN ∈ N, let Z = (z1, . . . , zN ) ∈ HN
K \{0}. By definition of

KZ , the map K∗
ZKZ ∈ L(HS(HK;H)) acts as the right multiplication operator

T 7→ TC(N)
K , where C(N)

K = 1
N

∑N
n=1 zn ⊗HK zn ∈ L(HK) \ {0} is the empirical

covariance of Z on HK. Thus, K∗
ZKZ = IdH ⊗ C(N)

K is a tensor product operator
on H ⊗ HK. But IdH ∈ L(H) is not compact on H. By [155, Corollary 1],
K∗
ZKZ is not compact. Thus, KZ is not compact either.
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A p p e n d i x D

APPENDIX TO CHAPTER 5

This appendix is the companion to Chapter 5: Operator Learning for Parameter-
to-Observable Maps. Appendix D.1 states additional sample complexity results
that complement those in the main body of the chapter. Detailed proofs for the
approximation theory and statistical theory established by Sections 5.3 and 5.4
are provided in Appendices D.2 and D.3, respectively.

D.1 Additional Variants of the Sample Complexity Theorems

This appendix contains two additional theorems that are more general than
their counterparts in Section 5.4 of the main text. While the main theorems as
presented in Subsection 5.4.3 are sufficient to convey the primary message of
that part of this chapter, we present the extra theorems here for completeness,
as the results may be of independent interest.

First, we state the general convergence theorem for the end-to-end posterior
mean estimator f̄ (N) from (5.15). The result is valid for any choice of prior
covariance operator eigenvalue decay exponent p > 1/2. The proof is in
Appendix D.3.2.

Theorem D.1 (end-to-end learning: general convergence rate). Let the input
training data distribution ν, the test data distribution ν ′, and the Gaussian
prior N (0,Λ) satisfy Assumptions 5.6 and 5.7. Let the ground truth linear
functional f † ∈ Hs satisfy Assumption 5.9. Let α, α′, and p be as in (5.20) and
(5.21). Then there exists c ∈ (0, 1/4) and N0 ≥ 1 such that for any N ≥ N0,
the mean f̄ (N) of the Gaussian posterior distribution (5.15) arising from the N
pairs of observed training data (U, Y ) in (5.17) satisfies the error bound

EY |U Eu′∼ν′
∣∣⟨f †, u′⟩ − ⟨f̄ (N), u′⟩

∣∣2 ≲ (1 + ∥f †∥2Hs

)
ε2N (D.1)

with probability at least 1− 2 exp(−cNmin(1,α+s−1
α+p

)) over U ∼ ν⊗N , where

ε2N :=


N−min

(
α′+s
α+p

, 1−α+1/2−α′
α+p

)
, if α′ < α+ 1/2 ,

max
(
N−
(
α′+s
α+p

)
, N−1 log 2N

)
, if α′ = α + 1/2 ,

N−min
(
α′+s
α+p

, 1
)
, if α′ > α+ 1/2 .

(D.2)
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The constants c, N0, and the implied constant in (D.1) do not depend on N or
f †.

Theorem D.1 immediately implies an expectation bound for the test error,
which we state now as a corollary and prove later in Appendix D.3.2.4.

Corollary D.2 (end-to-end learning: expectation bound). Instate the hy-
potheses and notation of Theorem D.1. Then there exists N⋆ ≥ 1 such that
for any N ≥ N⋆, the mean f̄ (N) of the Gaussian posterior distribution (5.15)
arising from the N pairs of observed training data (U, Y ) in (5.17) satisfies the
expected error bound

E
[
Eu′∼ν′

∣∣⟨f †, u′⟩ − ⟨f̄ (N), u′⟩
∣∣2] ≲ (1 + ∥f †∥2Hs

)
ε2N , (D.3)

where ε2N is as in (D.2). The constant N⋆ and the implied constant in (D.3)
do not depend on N or f †.

The second extra theorem develops convergence rates for the full-field learning
plug-in estimator under a Sobolev regularity condition on the underlying QoI.

Theorem D.3 (full-field learning: convergence rate for Sobolev QoI). Let the
input training data distribution ν, the test data distribution ν ′, the true forward
map L†, and the QoI q† satisfy Assumption 5.10, but instead of (A-IV), suppose
that {q†(φj)}j∈N ∈ Hr for some r ∈ R. Let α and α′ be as in (5.20) and β be
as in (A-II). If min(α, α′ + r) + β > 0, then there exist constants c > 0 and
C > 0 such that for all sufficiently large N , the plug-in estimator q† ◦ L̄(N)

in (5.28) based on the Gaussian posterior distribution (5.27) arising from the
N pairs of observed full-field training data (U,Υ) in (5.25) satisfies the error
bound

EΥ |U Eu′∼ν′
∣∣q†(L†u′)− q†(L̄(N)u′)

∣∣2 ≲ ε2N (D.4)

with probability at least 1− Ce−cN over U ∼ ν⊗N , where

ε2N :=


N−
(

2α′+2β+2r
1+2α+2β

)
, if α′ + r < α+ 1/2 ,

N−1 logN , if α′ + r = α + 1/2 ,

N−1 , if α′ + r > α+ 1/2 .

(D.5)

The constants c, C, and the implied constant in (D.4) do not depend on N .
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The proof is found in Appendix D.3.3. The convergence rate (D.5) should
be compared to the rate (5.32) from Theorem 5.13. Theorem D.3 covers
a larger class of QoIs than does Theorem 5.13 due to the generality of the
Sobolev regularity condition. Nonetheless, Theorem D.3 is not sharp when
q† decays asymptotically like a power law, as discussed in Subsection 5.4.3.1.
It is straightforward to derive comparison results like Corollary 5.15 for the
Sobolev QoI setting here, both for in-distribution and out-of-distribution test
errors. Similar to Corollary D.2, expectation bounds are also readily derived
from Theorem D.3. We refrain from doing so for the sake of brevity.

D.2 Proofs for Section 5.3

This appendix begins with some universal approximation results for neural
operators before establishing similar universal approximation results for neural
mappings (i.e., neural functionals and decoders).

D.2.1 Supporting Approximation Results for Neural Operators

We need the following two lemmas that are simple generalizations of the
universal approximation theorem for FNOs [152, Theorem 9, p. 9] to the
setting where only one of the input or output domain is the torus. These
results may be extracted from the proof of [152, Theorem 9, p. 9].

Lemma D.4 (universal approximation for FNO: periodic output domain).
Let Assumption 5.2 hold. Let s ≥ 0 and s′ ≥ 0, D ⊂ Rd be an open Lipschitz
domain such that D ⊂ (0, 1)d, and U = Hs(D;Rdu). Let Y = Hs′(Td;Rdy) and
G : U → Y be a continuous operator. There exists a continuous linear extension
operator E : U → Hs(Td;Rdu) such that (Eu)|D = u for all u ∈ U . Moreover,
let K ⊂ U be compact in U . For any ε > 0, there exists a Fourier Neural
Operator Ψ: Hs(Td;Rdu) → Y of the form (5.4) (with E = Id, R = Id, and
items (i) and (ii) both holding true) such that

sup
u∈K

∥G(u)−Ψ(Eu)∥Y < ε . (D.6)

The next lemma is analogous to the previous one and deals with periodic input
domains.

Lemma D.5 (universal approximation for FNO: periodic input domain). Let
Assumption 5.2 hold. Let s ≥ 0 and s′ ≥ 0, D ⊂ Rd be an open Lipschitz
domain such that D ⊂ (0, 1)d, and U = Hs(Td;Rdu). Let Y = Hs′(D;Rdy) and
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G : U → Y be a continuous operator. Denote by R ∈ L(Hs′(Td;Rdy);Y) the
restriction operator y 7→ y|D. Let K ⊂ U be compact in U . For any ε > 0,
there exists a Fourier Neural Operator Ψ: U → Hs′(Td;Rdy) of the form (5.4)
(with E = Id, R = Id, and items (i) and (ii) both holding true) such that

sup
u∈K

∥G(u)−RΨ(u)∥Y < ε . (D.7)

D.2.2 Universal Approximation Proofs

The remainder of this appendix provides proofs of the main universal ap-
proximation theorems found in Section 5.3 for the proposed FNM family of
architectures. We begin with the F2V FNF architecture.

Theorem 5.3 (universal approximation: function-to-vector mappings). Let
s ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
U = Hs(D;Rdu). Let Ψ† : U → Rdy be a continuous mapping. Let K ⊂ U be
compact in U . Under Assumption 5.2, for any ε > 0, there exist Fourier Neural
Functionals Ψ: U → Rdy of the form (5.8) with modification (M-F2V) such
that

sup
u∈K

∥∥Ψ†(u)−Ψ(u)
∥∥
Rdy < ε . (5.9)

Proof. Let Y := L2(Td;Rdy) and 1 : x 7→ 1 be the constant function on Td.
We first convert the function-to-vector mapping Ψ† to the function-to-function
operator G† : U → Y defined by u 7→ Ψ†(u)1. We then establish the existence
of a FNO that approximates G†. Finally, from this FNO we construct a FNF
that approximates Ψ†. To this end, fix ε′ > 0. By the continuity of Ψ†, there
exists δ > 0 such that ∥u1−u2∥U < δ implies ∥Ψ†(u1)−Ψ†(u2)∥Rdy < ε′. Then

∥G†(u1)− G†(u2)∥2Y =

∫
Td
∥Ψ†(u1)1(x)−Ψ†(u2)1(x)∥2Rdy dx

= |Td|∥Ψ†(u1)−Ψ†(u2)∥2Rdy
< (ε′)2 .

We used the fact that |Td| = 1 for the identification Td ≡ (0, 1)dper. This shows
the continuity of G† : U → Y . By the universal approximation theorem for FNOs
(Lemma D.4, applied with s = s, s′ = 0, dy = dy, and G = G†), there exists a
continuous linear operator E : U → Hs(Td;Rdu) and a FNO G : Hs(Td;Rdu) →
Y of the form (5.4) (with R = Id, E = Id, and items (i) and (ii) both holding



229

true) such that

sup
u∈K

∥G†(u)− G(Eu)∥Y < ε .

To complete the proof, we construct a FNF by appending a specific linear layer
to the output of G ◦E. To this end, let P : Y → Rdy be the averaging operator

u 7→ Pu :=

∫
Td
u(x) dx .

Clearly P is linear. It is continuous on Y because

∥Pu∥Rdy ≤
∫
Td
∥u(x)∥Rdy1(x) dx ≤ ∥u∥Y

by the triangle and Cauchy–Schwarz inequalities. Now define Ψ := (P ◦ G ◦
E) : U → Rdy . This map has the representation

Ψ = P ◦ Q̃ ◦ F ◦ S̃ ◦ E

for some local linear operators Q̃ (identified with Q̃ ∈ Rdy×dv for channel
dimension dv) and S̃ (identified with S̃ ∈ Rdv×du), and where F denotes the
repeated composition of all nonlinear FNO layers of the form Lt as in (5.2). We
claim that Ψ belongs to the FNF class, i.e., (5.8) with modification (M-F2V).
To see this, choose Q = IRdy ∈ Rdy×dy and S = IRdu ∈ Rdu×du (which we
identify with IdU ∈ L(U)). Let E := (S̃ ◦ E) : U → Hs(Td;Rdv). Define the
linear functional layer G := (P ◦ Q̃) : L2(Td;Rdv) → Rdy which has the kernel
linear functional representation

u 7→ G u =

∫
Td
κ(x)u(x) dx , where x 7→ κ(x) := 1(x)Q̃ ∈ Rdy×dv

as in (5.5). Thus,

Ψ = P ◦ Q̃ ◦ F ◦ S̃ ◦ E
= IRdy ◦ (P ◦ Q̃) ◦ F ◦ (S̃ ◦ E) ◦ IdU

= Q ◦ G ◦ F ◦ E ◦ S

as claimed. Finally, using the fact that P (z1) = z for any z ∈ Rdy , it holds
that

sup
u∈K

∥Ψ†(u)−Ψ(u)∥Rdy = sup
u∈K

∥PG†(u)− PG(Eu)∥Rdy ≤ sup
u∈K

∥G†(u)− G(Eu)∥Y .

The rightmost expression is less than ε and hence (5.9) holds.
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The universality proof for the vector-to-function Fourier Neural Decoder (FND)
architecture follows similar arguments.

Theorem 5.4 (universal approximation: vector-to-function mappings). Let
t ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
Y = H t(D;Rdy). Let Ψ† : Rdu → Y be a continuous mapping. Let Z ⊂ Rdu be
compact. Under Assumption 5.2, for any ε > 0, there exists a Fourier Neural
Decoder Ψ: Rdu → Y of the form (5.8) with modification (M-V2F) such that

sup
z∈Z

∥∥Ψ†(z)−Ψ(z)
∥∥
Y < ε . (5.10)

Proof. Let U := L2(Td;Rdu) and 1 : Td → R be the constant function x 7→ 1.
Define the map L : Rdu → U by z 7→ z1. Clearly L is linear. To see that it is
continuous, we compute

∥Lz∥2U =

∫
Td
∥z1(x)∥2Rdu dx = |Td|∥z∥2Rdu = ∥z∥2Rdu . (D.8)

Thus, L is injective with ∥L∥L(Rdu ;U) = 1. Choose K := LZ = {Lz : z ∈ Z} ⊂ U ,
which is compact in U because continuous functions map compact sets to
compact sets. Define G† : K → Y by Lz 7→ Ψ†(z). First, we show that G† is
continuous. Fix ε′ > 0. By the continuity of Ψ†, there exists δ > 0 such that if
∥Lz1 − Lz2∥U = ∥z1 − z2∥Rdu < δ, then ∥Ψ†(z1)−Ψ†(z2)∥Y < ε′. Thus for any
u1 = Lz1 ∈ K and u2 = Lz2 ∈ K with ∥u1 − u2∥U < δ, we have

∥G†(u1)− G†(u2)∥Y = ∥Ψ†(z1)−Ψ†(z2)∥Y < ε′ .

It follows that G† : K → Y is continuous. By the Dugundji extension theo-
rem [84], there exists a continuous operator G̃† : U → Y such that G̃†(u) =

G†(u) for every u ∈ K. By the universal approximation theorem for FNOs
(Lemma D.5, applied with s = 0, s′ = t, du = du, and G = G̃†), there exists
a FNO G : U → H t(Td;Rdy) of the form (5.4) (with R = Id, E = Id, and
items (i) and (ii) both holding true) such that

sup
u∈K

∥G̃†(u)−RG(u)∥Y = sup
u∈K

∥G†(u)−RG(u)∥Y < ε .

In the preceding display, R ∈ L(H t(Td;Rdy);Y) denotes the restriction operator
y 7→ y|D. Now define the map Ψ := (R ◦ G ◦ L) : Rdu → Y. This map has the
representation

Ψ = R ◦ Q̃ ◦ F ◦ S̃ ◦ L
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for some local linear operators Q̃ (identified with Q̃ ∈ Rdy×dv for channel
dimension dv) and S̃ (identified with S̃ ∈ Rdv×du), and where F denotes the
repeated composition of all nonlinear FNO layers of the form Lt as in (5.2).
We claim that Ψ is of the FND form, i.e., (5.8) with modification (M-V2F).
To see this, choose Q = IRdy ∈ Rdy×dy (which we identify with IdY ∈ L(Y))
and S = IRdu ∈ Rdu×du . Let R := (R ◦ Q̃) : H t(Td;Rdv) → Y . Define the linear
decoder layer D := (S̃ ◦ L) : Rdu → L2(Td;Rdv) which has the kernel function
product representation

z 7→ Dz = κ(·)z , where x 7→ κ(x) := 1(x)S̃ ∈ Rdv×du

as in (5.5). Thus,

ψ = R ◦ Q̃ ◦ F ◦ S̃ ◦ L
= IdY ◦(R ◦ Q̃) ◦ F ◦ (S̃ ◦ L) ◦ IRdu
= Q ◦ R ◦ F ◦ D ◦ S

as claimed. Finally, by the injectivity of L implied by (D.8), any u′ ∈ K has
the representation u′ = Lz′ for some unique z′ ∈ Z ⊂ Rdu . It follows that

sup
u∈K

∥G†(u)−RG(u)∥Y ≥ ∥G†(u′)−RG(u′)∥Y = ∥Ψ†(z′)−Ψ(z′)∥Y .

This implies the asserted result (5.10).

D.3 Proofs for Section 5.4

This appendix contains the lengthy arguments that underlie the statistical
learning theory for regression of linear functionals from Section 5.4. We begin by
recalling convenient properties of subgaussian and subexponential probability
distributions in Appendix D.3.1. Appendix D.3.2 contains proofs of the main
(EE) results from Section 5.4.3. In particular, it develops a new bias–variance
analysis of the linear functional regression problem in a Bayesian nonparametric
setting that may be of independent interest. Proofs for the full-field learning
approach (Subsection 5.4.2) to factorized linear functionals are provided in
Appendix D.3.3. The sample complexity comparison corollary is proved in
Appendix D.3.4. Technical lemmas used throughout the analysis are collected
in Appendix D.3.5.
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D.3.1 Subgaussian and Subexponential Distributions

This appendix reviews the concept of subgaussian and subexponential random
variables. These play a central role in the analysis leading to the high probability
error bounds in Section 5.4.3.

Definition D.6 (subgaussian). A real-valued random variable X is said to
be subgaussian [266, Section 2.5] if for some σ > 0 it satisfies the moment
generating function bound

E eλ(X−EX) ≤ eλ
2σ2/2 for all λ ∈ R . (D.9)

We write X ∈ SG(σ2) when (D.9) holds and define the subgaussian norm of X
by

∥X∥ψ2
:= sup

p∈[1,∞)

(
E|X|p

)1/p
√
p

. (D.10)

It is known that X is subgaussian if and only if ∥X∥ψ2 < ∞. However, we
often require random variables with heavier tails.

Definition D.7 (subexponential). A real-valued random variable Z is said to
be subexponential [266, Section 2.7] if for some v > 0 and b > 0 it satisfies the
moment generating function bound

E eλ(Z−EZ) ≤ eλ
2v2/2 for all |λ| ≤ 1

b
. (D.11)

In contrast to the subgaussian case, the moment generating function of a
subexponential random variable need only exist in a neighborhood of the origin
instead of everywhere on the real line. We write Z ∈ SE(v2, α) when (D.11)
holds and define subexponential norm by

∥Z∥ψ1
:= sup

p∈[1,∞)

(
E|Z|p

)1/p
p

. (D.12)

It is known that X is subgaussian if and only if Z = X2 is subexponential. In
fact, we have the following estimate relating the two norms.

Lemma D.8 (squared subgaussian). Let X be a real-valued random variable.
Then ∥∥X∥∥2

ψ2
≤
∥∥X2

∥∥
ψ1

≤ 2
∥∥X∥∥2

ψ2
. (D.13)
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Proof. We compute

∥∥X2
∥∥
ψ1

= sup
p∈[1,∞)

(
E|X|2p

)1/p
p

= 2 sup
p∈[1,∞)

(
E|X|2p

)1/2p(E|X|2p
)1/2p

√
2p
√
2p

= 2

(
sup

p∈[1,∞)

(
E|X|2p

)1/2p
√
2p

)2

≤ 2

(
sup

2p∈[1,∞)

(
E|X|2p

)1/2p
√
2p

)2

.

The final term inside parentheses on the right-hand side equals the subgaussian
norm (upon replacing 2p with p). This is the asserted upper bound. The lower
bound follows from the inequality (E|X|2p)1/2 ≥ E|X|p.

D.3.2 Proofs for End-to-End Learning of General Linear Functionals

The goal of this appendix is to prove Theorem D.1 (which implies Theorem 5.12).
This theorem provides a high probability convergence rate in terms of the sample
size N for the out-of-distribution test error

Eu′∼ν′
∣∣⟨f †, u′⟩ − ⟨f̄ (N), u′⟩

∣∣2 = ∥∥(Σ′)1/2(f † − f̄ (N))
∥∥2 (D.14)

conditioned on the covariates U . The equality in (D.14) is due to linearity
and the fact that |⟨f †, u′⟩ − ⟨f̄ (N), u′⟩|2 = ⟨f † − f̄ (N), (u′ ⊗ u′)(f † − f̄ (N))⟩. For
notational convenience in the proofs, we write

RN := EY |U∥∥(Σ′)1/2(f † − f̄ (N))
∥∥2 = E

[∥∥(Σ′)1/2(f † − f̄ (N))
∥∥2 ∣∣u1, . . . , uN] .

(D.15)
The argument behind the proof of Theorem D.1 follows a classical bias–variance
decomposition. We now state this decomposition in the following lemma.

Lemma D.9 (bias–variance decomposition). Instate the setting of Subsection
5.4.1.1. The test error (D.15) satisfies the decomposition RN = BN + VN ,
where

BN :=
∥∥(Σ′)1/2(IdH −ANSN)f †∥∥2 and (D.16a)

VN := γ2 E
[∥∥(Σ′)1/2ANΞ

∥∥2 ∣∣U] . (D.16b)

Proof. Denote ∥ · ∥ν′ := ∥(Σ′)1/2 · ∥. Let mN := EY |U [f̄ (N)]. Expanding
EY |U∥f †− f̄ (N)∥2ν′ = EY |U∥(f †−mN )+ (mN − f̄ (N))∥2ν′ shows that RN equals

∥f † −mN∥2ν′ + 2EY |U〈f † −mN ,Σ
′(mN − f̄ (N))

〉
+ EY |U∥mN − f̄ (N)∥2ν′ .
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By linearity, the middle term equals zero. Recalling that f̄ (N) = ANY from
(5.15) and Y = SNf

† + γΞ from (5.17), the fact Ξ is centered implies that
mN = ANSNf

†. Thus, we recover BN (D.16a) as the first term in the preceding
display. Similarly, mN − f̄ (N) = −AN(γΞ) so that VN (D.16b) equals the last
term.

The main proof novelty lies in the bound for the bias BN , which relies on a
careful conditioning argument and clever matrix identities. The analysis begins
by estimating the variance VN in Appendix D.3.2.1. The bias is studied in
Appendix D.3.2.2. Finally, the bounds are combined to prove Theorem D.1 in
Appendix D.3.2.3 and Corollary D.2 in Appendix D.3.2.4.

D.3.2.1 Bounding the Variance

We focus on controlling the variance term (D.16b) first because it is easier to
estimate than the bias. Our goal is to prove the following.

Proposition D.10 (variance upper bound). Under Assumptions 5.6 and 5.7,
there exists c ∈ (0, 1) and N0 ≥ 1 (depending only on ν, ν ′, Λ, and γ2) such
that for all N ≥ N0, it holds that the variance term VN in (D.16b) satisfies the
estimate

VN ≤ 2
∞∑
j=1

σ′
jλj

1 +Nγ−2σjλj
≲


N

−
(
1−α+1/2−α′

α+p

)
, if α′ < α+ 1/2 ,

N−1 log 2N , if α′ = α + 1/2 ,

N−1 , if α′ > α+ 1/2

(D.17)

with probability at least 1− e−cN .

The expression for the variance upper bound in Proposition D.10 is in precisely
the same form as that found in [76, Equation (A.1b), p. 24]. We derive
quantitative convergence rates for VN under the assumption of power law decay
of the eigenvalues of the data and prior covariance operators. However, other
types such as exponential decay [11] or convex eigenvalues [54] are also possible
and interesting.

To prove the proposition, we require some preparatory results. First, notice
that

E
[∥∥(Σ′)1/2ANΞ

∥∥2 ∣∣U] = Eg∼N (0,IdRN )
∥∥(Σ′)1/2ANg

∥∥2 = tr
(
(Σ′)1/2ANA

∗
N(Σ

′)1/2
)
.
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Now using the fact that Σ̂ = S∗
NSN/N from (5.14) and defining

Ĉ := Λ1/2Σ̂Λ1/2 , (D.18)

we see that

ANA
∗
N =

1

N

[
Λ1/2

(
Ĉ +

γ2

N
IdH

)−1

Ĉ
(
Ĉ +

γ2

N
IdH

)−1

Λ1/2

]
.

Next, define

µ := γ2/N > 0 and Ĉµ := Ĉ + µ IdH . (D.19)

By the cyclic property of the trace,

VN = µ tr
(
Λ1/2Σ′Λ1/2Ĉ−1

µ ĈĈ−1
µ

)
= µ tr

(
[Ĉ−1/2
µ Λ1/2Σ′Λ1/2Ĉ−1/2

µ ][Ĉ−1/2
µ ĈĈ−1/2

µ ]
)

≤ µ tr
(
Ĉ−1/2
µ Λ1/2Σ′Λ1/2Ĉ−1/2

µ

)∥∥Ĉ−1/2
µ ĈĈ−1/2

µ

∥∥
L(H)

≤ µ tr
(
Ĉ−1/2
µ Λ1/2Σ′Λ1/2Ĉ−1/2

µ

)
.

The first inequality is due to tr(AB) ≤ tr(A)∥B∥L(H), which holds for any
symmetric positive-semidefinite trace-class A and any bounded B; this follows
from the von Neumann trace inequality. The second inequality follows from
the simultaneous diagonalizability of the factors in the triple product inside
the operator norm and the fact that λ/(λ+ µ) ≤ 1 for any eigenvalue λ of Ĉ.
Now define

C ′ := Λ1/2Σ′Λ1/2 , C := Λ1/2ΣΛ1/2 , and Cµ := C + µ IdH . (D.20)

Lemma D.27 (with A = Ĉ, B = C, and λ = µ) shows that VN is bounded above
by

µ tr
(
C ′Ĉ−1

µ

)
= µ tr

(
C ′C−1/2

µ

(
IdH −C−1/2

µ (C − Ĉ)C−1/2
µ

)−1C−1/2
µ

)
= µ tr

([
C−1/2
µ C ′C−1/2

µ

](
IdH −C−1/2

µ (C − Ĉ)C−1/2
µ

)−1
)

≤ µ tr
(
C−1/2
µ C ′C−1/2

µ

)∥∥(IdH −C−1/2
µ (C − Ĉ)C−1/2

µ

)−1∥∥
L(H)

.

(D.21)

The final inequality is again due to von Neumann’s trace inequality. To
bound the operator norm in the preceding display, we apply a Neumann series
argument.
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Lemma D.11 (Neumann series bound). Let µ = γ2/N . There exists c ∈ (0, 1)

and N0 ≥ 1 such that for any N ≥ N0, it holds that∥∥∥(IdH −C−1/2
µ (C − Ĉ)C−1/2

µ

)−1
∥∥∥
L(H)

≤ 2 (D.22)

with probability at least 1− e−cN .

Proof. By Lemma D.25, the event (D.55) holds with probability at least 1−e−cN
for any N ≥ N0. On this event, we can invoke the Neumann series expansion(

IdH −C−1/2
µ (C − Ĉ)C−1/2

µ

)−1

=
∞∑
k=0

(
C−1/2
µ (C − Ĉ)C−1/2

µ

)k
.

This delivers the operator norm bound∥∥∥(IdH −C−1/2
µ (C − Ĉ)C−1/2

µ

)−1
∥∥∥
L(H)

≤
∞∑
k=0

∥∥∥(C−1/2
µ (Ĉ − C)C−1/2

µ

)k∥∥∥
L(H)

≤
∞∑
k=0

∥∥C−1/2
µ (Ĉ − C)C−1/2

µ

∥∥k
L(H)

≤
∞∑
k=0

(
1

2

)k
by (D.55). The fact that

∑∞
k=0(1/2)

k = (1 − 1/2)−1 = 2 completes the
proof.

We may now prove Proposition D.10.

Proof of Proposition D.10. Combining (D.21) and Lemma D.11 (with c and
N0 as in the hypotheses there) shows that

VN ≤ 2µ tr
(
C−1/2
µ C ′C−1/2

µ

)
= 2

∞∑
j=1

µσ′
jλj

µ+ σjλj
= 2

∞∑
j=1

σ′
jλj

1 +Nγ−2σjλj
(D.23)

with probability at least 1−e−cN if N ≥ N0. We used the assumed simultaneous
diagonalizability of the prior and data covariance operators. Since σ′

j ≲ j−2α′ ,
σj ≍ j−2α, and λj ≍ j−2p, all as j → ∞, under Assumption 5.6, there exists
j0 ∈ N (independent of N) such that the rightmost expression in (D.23) is
bounded above by∑

j≤j0

σ′
jλj

1 +Nγ−2σjλj
+
∑
j>j0

j−2(α′+p)

1 +Nj−2(α+p)
≲
γ2

N

∑
j≤j0

σ′
j

σj
+

∞∑
j=1

j−2(α′+p)

1 +Nj−2(α+p)

≲
∞∑
j=1

j−2(α′+p)

1 +Nj−2(α+p)
.
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The last inequality in the preceding display follows from the fact that 1 +N ≤
2N and an argument similar to the one used in the proof of Lemma D.24. The
proof is complete after an application of Lemma D.23 (with t = 2(α′ + p) > 1,
u = 2(α + p) > 0, and v = 1) yields the rightmost expression in (D.17).

The proof of Proposition D.10 also justifies the claim made in Remark 5.14.
Indeed, the second term on the right-hand side of the equality (5.33) is the pos-
terior spread with respect to the weighted norm (5.18). Equation (D.21) upper
bounds the posterior spread, which in turn upper bounds the variance (D.16b)
in the bias–variance decomposition of (5.18). Thus, the variance and the
posterior spread have the same upper bound.

D.3.2.2 Bounding the Bias

Recall from (D.16a) that the bias term is given by

BN =
∥∥(Σ′)1/2(IdH −ANSN)f †∥∥2 .

In this appendix, we establish the following upper bound on BN .

Proposition D.12 (bias upper bound). Let Assumptions 5.6, 5.7, and 5.9
hold. Let the bias BN be as in (D.16a). There exists c0 > 8, c ∈ (0, 1/4), and
N0 ≥ 1 (all independent of N and f †) such that for any N ≥ N0, it holds that

BN ≤ 2
∞∑
j=1

σ′
j|f †

j |2(
1 +Nγ−2σjλj

)2 + c0
∥∥f †∥∥2

Hs

∞∑
j=1

σ′
jλj

1 +Nγ−2σjλj
(D.24)

with probability at least 1 − 2 exp(−cNmin(1,α+s−1
α+p

)). On the same event, the
variance bound (D.17) also holds true.

This bias bound is interesting because the second term in (D.24) is the same
as the upper bound on the variance VN in (D.17) (up to constant factors
depending on ∥f †∥Hs). Thus, as long as f † is nonzero and not too small in
norm, the total test error of the posterior mean estimator (i.e., the sum of bias
and variance) is essentially dominated by the bias. Moreover, the hypotheses
of Proposition D.12 do not require the true linear functional f † to belong to
the reproducing kernel Hilbert space of the prior N (0,Λ) (i.e., we allow for∑∞

j=1 λ
−1
j |f †

j |2 = ∞). This is a significant advantage of our approach over
related work; see Subsection 5.4.3.1 for related discussion.
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The proof of Proposition D.12 is very lengthy. We break up the argument
into several lemmas and steps. To set the stage, we instate the notation and
definitions from Appendix D.3.2.1, in particular, the objects Ĉ from (D.18), µ
and Ĉµ from (D.19), and C ′, C, and Cµ from (D.20). We also use the shorthand
notation

T̂ := C−1/2
µ (C − Ĉ)C−1/2

µ and M̂ := (IdH −T̂ )−1 (D.25)

for two random operators that appear frequently in the sequel.

We begin our analysis with a useful random series representation of the bias.

Lemma D.13 (bias: series). Under Assumption 5.6, BN satisfies the identity

BN = µ2

∞∑
k=1

σ′
kλk

σkλk + µ

∣∣∣∣∣
∞∑
j=1

f †
j λ

−1/2
j

(σjλj + µ)1/2
⟨φk, M̂φj⟩

∣∣∣∣∣
2

. (D.26)

Proof. By (5.14) and (5.16), we observe that

ANSN = Λ1/2Ĉ−1
µ Λ1/2Σ̂

and hence

ANSNf
† =

∞∑
j=1

Λ1/2Ĉ−1
µ Λ1/2Σ̂f †

jφj =
∞∑
j=1

Λ1/2Ĉ−1
µ Ĉf †

j λ
−1/2
j φj .

We used the diagonalization of Λ =
∑

j λjφj ⊗φj in the last equality. Noticing
that

IdH −Ĉ−1
µ Ĉ = Ĉ−1

µ Ĉµ − Ĉ−1
µ Ĉ = µĈ−1

µ ,

we have the chain of equalities

f † − ANSNf
† =

∞∑
j=1

(
f †
j λ

−1/2
j Λ1/2φj − f †

j λ
−1/2
j Λ1/2Ĉ−1

µ Ĉφj
)

=
∞∑
j=1

f †
j λ

−1/2
j Λ1/2(IdH −Ĉ−1

µ Ĉ)φj

= µ

∞∑
j=1

f †
j λ

−1/2
j Λ1/2Ĉ−1

µ φj .

Recalling M̂ from (D.25) and using the identity (D.58) from Lemma D.27 gives

Ĉ−1
µ = C−1/2

µ

(
IdH −C−1/2

µ (C − Ĉ)C−1/2
µ

)−1C−1/2
µ = C−1/2

µ M̂C−1/2
µ .
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Next, we expand in the shared orthonormal eigenbasis {φj} of Λ and Σ to
obtain

(Σ′)1/2(IdH −ANSN)f † = µ
∞∑
j=1

f †
j λ

−1/2
j

(σjλj + µ)1/2
(Σ′)1/2Λ1/2C−1/2

µ M̂φj

= µ

∞∑
j=1

f †
j λ

−1/2
j

(σjλj + µ)1/2

∞∑
k=1

⟨φk, (Σ′)1/2Λ1/2C−1/2
µ M̂φj⟩φk

= µ
∞∑
j=1

f †
j λ

−1/2
j

(σjλj + µ)1/2

∞∑
k=1

(σ′
k)

1/2λ
1/2
k

(σkλk + µ)1/2
⟨φk, M̂φj⟩φk .

By continuity of the inner product,

〈
(Σ′)1/2(IdH −ANSN)f †, φi

〉
= µ

∞∑
j=1

f †
j λ

−1/2
j

(σjλj + µ)1/2
(σ′

i)
1/2λ

1/2
i

(σiλi + µ)1/2
⟨φi, M̂φj⟩

= µ
(σ′

i)
1/2λ

1/2
i

(σiλi + µ)1/2

∞∑
j=1

f †
j λ

−1/2
j

(σjλj + µ)1/2
⟨φi, M̂φj⟩ .

Summing the square of the preceding display over all i ∈ N completes the
proof.

Next, we note by direct calculation that M̂ from (D.25) satisfies the key identity

M̂ = IdH +M̂T̂ .

Thus, the right-hand side of the display (D.26) in Lemma D.13 is bounded
above by

2µ2

∞∑
k=1

σ′
kλk

σkλk + µ

∣∣∣∣∣
∞∑
j=1

|f †
j |λ−1/2

j

(σjλj + µ)1/2
∣∣⟨φk, φj⟩∣∣

∣∣∣∣∣
2

+ 2µ2

∞∑
k=1

σ′
kλk

σkλk + µ

∣∣∣∣∣
∞∑
j=1

|f †
j |λ−1/2

j

(σjλj + µ)1/2
∣∣⟨φk, M̂ T̂φj⟩

∣∣∣∣∣∣∣
2

= 2µ2

∞∑
k=1

σ′
k|f †

k |2
(σkλk + µ)2︸ ︷︷ ︸
=:BN

+2µ2

∞∑
k=1

σ′
kλk

σkλk + µ

∣∣∣∣∣
∞∑
j=1

|f †
j |λ−1/2

j

(σjλj + µ)1/2
∣∣⟨φk, M̂ T̂φj⟩

∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
=:B̂N

.

(D.27)

We used the fact that the {φj} are orthonormal to obtain the equality. The first
term BN is the standard bias term one would expect from a simultaneously
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diagonalizable linear inverse problem [76, 147]. The second term B̂N is a
residual due to finite data. This is the term that we focus on estimating.

To this end, let E be the event from (D.55):

E =
{∥∥T̂∥∥L(H)

≤ 1/2
}
. (D.28)

Fix ε > 0 to be determined later. Define another event

E0 :=
{
B̂N ≤ ε

}
. (D.29)

Let the intersection E0 ∩ E be our “good” event. On this event, our variance
and bias bounds will hold simultaneously. For our results to be meaningful, we
must show that E0 ∩ E has high probability. Since P(E0 |E) = 1− P(Ec

0 |E), we
have

P(E0 ∩ E) = P(E0 |E)P(E)
= P(E)− P(Ec

0 |E)P(E)
= P(E)− P(Ec

0 ∩ E) .

(D.30)

Thus, to lower bound the probability of E0 ∩ E, it suffices to upper bound

P(Ec
0 ∩ E) = P

(
{B̂N > ε} ∩ E

)
.

On the event E, it holds that ∥M̂∥L(H) ≤ 2 by (D.22). This, the symmetry of
M̂ , and the Cauchy–Schwarz inequality imply that

B̂N ≤ 2µ2

∞∑
k=1

σ′
kλk

σkλk + µ

∣∣∣∣∣
∞∑
j=1

|f †
j |λ−1/2

j

(σjλj + µ)1/2
∥∥M̂φk

∥∥∥∥T̂φj∥∥
∣∣∣∣∣
2

≤ 8

∣∣∣∣∣
∞∑
j=1

µ1/2|f †
j |λ−1/2

j

(σjλj + µ)1/2
∥∥T̂φj∥∥

∣∣∣∣∣
2

︸ ︷︷ ︸
=:(IN )2

∞∑
k=1

µσ′
kλk

σkλk + µ

on the event E. Notice that in the last line of the preceding display, the factor
(IN )2 is multiplying our high probability upper bound (D.17) on VN . Hence, for
the contribution from B̂N to be negligible relative to the upper bound on VN ,
it suffices to show that IN ≲ 1 for all sufficiently large N with high probability.
Indeed, for some τ > 0 to be determined later, choose

ε := 8τ 2
∞∑
k=1

µσ′
kλk

σkλk + µ
> 0 (D.31)
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in the definition (D.29) of E0. Then the monotonicity of probability measure
(i.e., if A1 ⊆ A2, then P(A1) ≤ P(A2)) implies that

P(Ec
0 ∩ E) ≤ P({IN > τ} ∩ E) ≤ P{IN > τ} . (D.32)

In the rest of the argument, we develop an upper tail bound for the random
series IN to control the rightmost expression in (D.32). To ease the notation,
we write

IN =
∞∑
j=1

sj
∥∥T̂φj∥∥ , where sj :=

µ1/2|f †
j |λ−1/2

j

(σjλj + µ)1/2
. (D.33)

Our strategy is to show that:1

Step 1. the individual summands of IN are subexponential random variables,

Step 2. the entire random series IN is subexponential, and

Step 3. the entire random series IN has a fast tail decay.

We now proceed with this three step proof procedure.

Step 1. Recalling the definition of T̂ from (D.25), we see by the symmetry
of C−1/2

µ and Λ1/2 that

−T̂ = C−1/2
µ (Ĉ − C)C−1/2

µ

= C−1/2
µ

1

N

N∑
n=1

(
Λ1/2un ⊗ Λ1/2un − E

[
Λ1/2u1 ⊗ Λ1/2u1

])
C−1/2
µ

=
1

N

N∑
n=1

(
vn ⊗ vn − E[v1 ⊗ v1]

)
, where vn := C−1/2

µ Λ1/2un

and {un}Nn=1 ∼ ν⊗N . Thus, it holds that

−T̂φj =
1

N

N∑
n=1

ζjn , where ζjn := ⟨vn, φj⟩vn − E
[
⟨v1, φj⟩v1

]
. (D.34)

That is, T̂φj is a sum of i.i.d. random vectors in the Hilbert space H. To show
that the scalar random variables ∥T̂φj∥ are subexponential, we first need to
control the subexponential norm of the ∥ζjn∥. The next lemma accomplishes
this task.

1Appendix D.3.1 reviews subgaussian and subexponential random variables.
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Lemma D.14 (moments). Under Assumption 5.6 and 5.7, for every j it holds
that

E∥ζj1∥ℓ ≤
(
4em2ρj

√
tr
(
C−1
µ C

))ℓ
ℓ! for all ℓ ∈ {2, 3, . . .} , (D.35)

where m ≥ 0 is as in (5.23) and

ρj :=

√
σjλj

µ+ σjλj
. (D.36)

Proof. Fix an integer ℓ ≥ 2. The inequality |a + b|ℓ ≤ 2ℓ−1(|a|ℓ + |b|ℓ) shows
that

E∥ζj1∥ℓ ≤ 2ℓ−1
(
E∥⟨v1, φj⟩v1∥ℓ + ∥E[⟨v1, φj⟩v1]∥ℓ

)
≤ 2ℓ E∥⟨v1, φj⟩v1∥ℓ .

The second line is due to Jensen’s inequality. Let u be an i.i.d. copy of u1 ∼ ν,
so that v := C−1/2

µ Λ1/2u is an i.i.d. copy of v1. By Assumption 5.7 and the
assumption (A1) that Λ and Σ share the orthonormal eigenbasis {φj}, it holds
that

v =
∞∑
j=1

ρjzjφj , where ρj =

√
σjλj

µ+ σjλj
≥ 0 .

Thus, ⟨v, φj⟩ = ρjzj and E∥⟨v1, φj⟩v1∥ℓ = E∥⟨v, φj⟩v∥ℓ equals

ρℓj E
[
|zj|ℓ∥v∥ℓ

]
= ρℓj E

[
|zj|ℓ

(
∥v∥2

)ℓ/2]
= ρℓj E

[
|zj|ℓ

(
∞∑
k=1

ρ2kz
2
k

)ℓ/2]

= ρℓj E

∣∣∣∣∣
∞∑
k=1

ρ2kz
2
j z

2
k

∣∣∣∣∣
ℓ/2

.

The triangle inequality in the Banach space Lℓ/2P (Ω;R) (since ℓ ≥ 2) and the
Cauchy–Schwarz inequality yields∥∥∥∥∥

∞∑
k=1

ρ2kz
2
j z

2
k

∥∥∥∥∥
L
ℓ/2
P

≤
∞∑
k=1

ρ2k
∥∥z2j z2k∥∥Lℓ/2P

=
∞∑
k=1

ρ2k

(
E
[
|zj|ℓ|zk|ℓ

])2/ℓ
≤

∞∑
k=1

ρ2k
(
E|zj|2ℓ

)1/ℓ(E|zk|2ℓ)1/ℓ .
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By the definition (D.12) of the subexponential norm, Lemma D.8, and (5.23),
we have

∞∑
k=1

ρ2k
(
E|zj|2ℓ

)1/ℓ(E|zk|2ℓ)1/ℓ ≤ ∞∑
k=1

ρ2k
(
ℓ∥z2j ∥ψ1

)(
ℓ∥z2k∥ψ1

)
≤

∞∑
k=1

ρ2k
(
2ℓ∥zj∥2ψ2

)(
2ℓ∥zk∥2ψ2

)
≤ 4ℓ2m4

∞∑
k=1

σkλk
µ+ σkλk

.

Taking the ℓ/2-th power and putting together the pieces, we deduce that

E∥ζj1∥ℓ ≤ (2ρj)
ℓ

(
2m2

√
tr
(
C−1
µ C

))ℓ
ℓℓ .

Recalling from Stirling’s formula that (ℓ/e)ℓ ≤ ℓ! completes the proof.

We need the following proposition that relies heavily on [219, Theorem 1, p.
144].

Proposition D.15 (Hilbert space norm of independent sums). Let {Xn}∞n=1

be a sequence of independent centered random vectors with values in a separable
Hilbert space (X , ⟨·, ·⟩, ∥ · ∥). Let N ∈ N be arbitrary. If the Bernstein moment
condition

N∑
n=1

E∥Xn∥ℓ ≤
1

2
ℓ!σ2bℓ−2 for all ℓ ∈ {2, 3, . . .} (D.37)

holds for some σ > 0 and b > 0, then the partial sums SN :=
∑N

n=1Xn satisfy
the subexponential condition ∥SN∥ ∈ SE(2σ2, 2b), that is,

E eλ(∥SN∥−E∥SN∥) ≤ eλ
2σ2

for all |λ| ≤ 1

2b
. (D.38)

Proof. Since X is a separable Banach space, [219, Theorem 1, p. 144] shows
that

E e|λ|(∥SN∥−E∥SN∥) ≤ exp

(
N∑
n=1

E
[
e|λ|∥Xn−EXn∥ − 1− |λ|∥Xn − EXn∥

])
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for all λ ∈ R. Under the Bernstein moment condition (D.37), we compute
using the Taylor expansion of the exponential function that

N∑
n=1

E
[
e|λ|∥Xn−EXn∥ − 1− |λ|∥Xn − EXn∥

]
=

∞∑
ℓ=2

N∑
n=1

|λ|ℓ E∥Xn − EXn∥ℓ
ℓ!

≤ 1

2
λ2σ2

∞∑
ℓ=2

(
|λ|b
)ℓ−2

=
λ2σ2

2(1− |λ|b)
≤ λ2σ2

provided that |λ|b ≤ 1/2. Thus, it holds that

E e|λ|(∥SN∥−E∥SN∥) ≤ eλ
2σ2

for all |λ| ≤ 1/(2b) .

For ∥SN∥ to be subexponential, by the definition (D.11) we also need to show
that

E e−|λ|(∥SN∥−E∥SN∥) ≤ eλ
2σ2

for all |λ| ≤ 1/(2b) .

But since ∥SN∥ ≥ 0 a.s., the one-sided Bernstein moment generating function
bound [267, Proposition 2.14, Equation (2.22a), p. 31] applied to −∥SN∥ yields

E e−|λ|(∥SN∥−E∥SN∥) ≤ eλ
2 E∥SN∥2/2 for all |λ| <∞ .

It remains to bound E∥SN∥2 in terms of σ2. Using the facts that EXn = 0

and X is a Hilbert space yield

E∥SN∥2 =
N∑
n=1

N∑
n′=1

E⟨Xn, Xn′⟩ =
N∑
n=1

E∥Xn∥2 ≤ σ2 .

We used the Bernstein moment condition (D.37) with ℓ = 2 to obtain the
final inequality. Noting that |λ| <∞ implies |λ| ≤ 1/(2b) and that σ2/2 ≤ σ2

completes the proof.

We are now in a position to prove the following lemma about the empirical
sums.

Lemma D.16 (norm of empirical sum is subexponential). Fix j ∈ N. Let

ςj := 8em2ρj

√
tr
(
C−1
µ C

)
(D.39)

with ρj as in (D.36). Under Assumptions 5.6 and 5.7, it holds that∥∥T̂φj∥∥ ∈ SE

(
2ς2j
N
,
2ςj
N

)
. (D.40)
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Proof. For fixed j, the independence of the {ζjn}Nn=1 and Lemma D.14 imply
that

N∑
n=1

E∥ζjn∥ℓ = N E∥ζj1∥ℓ ≤ 2

(
N

2

)(
4em2ρj

√
tr
(
C−1
µ C

))ℓ
ℓ!

≤ N

2
ℓ!ςℓj

=
1

2
ℓ!
(
Nς2j

)
ςℓ−2
j

for any ℓ ∈ {2, 3, . . .} (using 2 ≤ 2ℓ to get to the second line). Recalling from
(D.34) that E ζj1 = 0, Proposition D.15 applied with σ2 = Nς2j and b = ςj in
(D.37) yields

E eNλ(∥T̂φj∥−E∥T̂φj∥) ≤ eλ
2Nς2j for all |λ| ≤ 1

2ςj
.

Replacing λ with λ/N and recalling Definition D.7 gives the asserted result.

Step 2. The ℓ1(N) := ℓ1(N;R) norm of the nonnegative sequence {sjςj}j∈N
plays a central role in the analysis to follow. To this end, denote

w(N) := {w(N)
j }j∈N , where w

(N)
j := sjςj for all j ∈ N . (D.41)

We now upper bound the deterministic series ∥w(N)∥ℓ1(N).

Lemma D.17 (deterministic series convergence rate). Under Assumption 5.6
and 5.9, it holds that

1

N

∥∥w(N)
∥∥2
ℓ1(N) ≲

∥∥f †∥∥2
Hs ×


N−
(
α+s−1
α+p

)
, if α+s−1/2

α+p
< 2 ,

N−
(
1+

α+p−1/2
α+p

)
log 2N , if α+s−1/2

α+p
= 2 ,

N−
(
1+

α+p−1/2
α+p

)
, if α+s−1/2

α+p
> 2

(D.42)

for all N ∈ N.

Proof. Recalling the definitions of {sj}j∈N (D.33) and {ςj}j∈N (D.39), we have

∥∥w(N)
∥∥
ℓ1(N) =

∞∑
j=1

sjςj = 8em2
√
tr
(
C−1
µ C

) ∞∑
j=1

µ1/2|f †
j |σ1/2

j

µ+ σjλj

≃ N1/2
√
tr
(
C−1
µ C

) ∞∑
j=1

|f †
j |σ1/2

j

1 +Nσjλj
.
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The preceding display, the asymptotics of {σj}j∈N and {λj}j∈N from Assump-
tion 5.6, and the Cauchy–Schwarz inequality imply that

1

N

∥∥w(N)
∥∥2
ℓ1(N) ≲

∥∥f †∥∥2
Hs tr

(
C−1
µ C

) 1

N2
+ tr

(
C−1
µ C

)∣∣∣∣∣
∞∑
j=1

|f †
j |j−α

1 +Nj−2(α+p)

∣∣∣∣∣
2

.

By Lemma D.24, it holds that tr(C−1
µ C) ≃ N1/(2(α+p)) because µ = γ2/N (D.19).

The series factor in the second term in the preceding display satisfies the
estimate ∣∣∣∣∣

∞∑
j=1

|f †
j |j−α

1 +Nj−2(α+p)

∣∣∣∣∣
2

≤
∥∥f †∥∥2

Hs

∞∑
j=1

j−2(α+s)

(1 +Nj−2(α+p))2

by the Cauchy–Schwarz inequality. The rightmost series converges (because
2(α+s) > 2 > 1 by the last assertion of Assumption 5.9) and is bounded above
by a constant (independent of N) times

N−
(
α+s−1/2
α+p

)
, if α+s−1/2

α+p
< 2 ,

N−2 log 2N , if α+s−1/2
α+p

= 2 ,

N−2 , if α+s−1/2
α+p

> 2

by Lemma D.23 (applied with t = 2(α + s) > 1, u = 2(α + p) > 1 > 0, and
v = 2). Bounding N−2 above by the preceding display and multiplying this
bound by the N1/(2(α+p)) trace bound completes the proof.

Combining the previous results with those of [76, Appendix B, pp. 30–31]
establishes that the entire series IN (D.33) is a real-valued subexponential
random variable.

Lemma D.18 (random series: subexponential). Let Assumptions 5.6, 5.7,
and 5.9 be satisfied and IN be defined as in (D.33). It holds that

IN ∈ SE

(
2

N

∥∥w(N)
∥∥2
ℓ1(N),

2

N

∥∥w(N)
∥∥
ℓ1(N)

)
for all N ∈ N . (D.43)

Proof. Fix N ∈ N. A change of variables in Definition D.7 of subexponen-
tial and Lemma D.16 imply that sj∥T̂φj∥ ∈ SE(2s2j ς

2
j /N, 2sjςj/N) for any

j. For any J ∈ N, let I(J)
N :=

∑J
j=1 sj∥T̂φj∥. Even though the summands
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{sj∥T̂φj∥}j∈N are a dependent sequence of random variables, [76, Lemma B.5,
p. 30] shows that

I(J)
N ∈ SE

(
2

N

∣∣∣∣ J∑
j=1

sjςj

∣∣∣∣2, 2N
J∑
j=1

sjςj

)
.

Next, Jensen’s inequality yields the bound
∞∑
j=1

E
[
sj∥T̂φj∥

]
≤

∞∑
j=1

sj

√
E∥T̂φj∥2 .

For fixed j ∈ N, we compute

E
∥∥T̂φj∥∥2 = 1

N2

N∑
n=1

N∑
n′=1

E⟨ζjn, ζjn′⟩ = 1

N
E∥ζj1∥2

≤ 2

N

(
4em2ρj

√
tr(C−1

µ C)
)2

=
ς2j
2N

.

In the preceding display, we used orthogonality, independence, and the Bernstein
moment condition (D.35) (Lemma D.14 applied with ℓ = 2). Thus,

∞∑
j=1

E
[
sj
∥∥T̂φj∥∥] ≤ 1√

2N

∞∑
j=1

sjςj . (D.44)

Since the right-hand side of (D.44) is finite by Lemma D.17, a monotone
convergence argument [76, Lemma B.3, p. 30] shows that

P
{
lim
J→∞

I(J)
N = IN

}
= 1 .

Using this almost sure convergence and again recalling Definition D.7, it holds
that

E exp
(
λ(IN − E IN)

)
= E lim

J→∞
exp
(
λ
(
I(J)
N − E I(J)

N

))
≤ lim inf

J→∞
E exp

(
λ
(
I(J)
N − E I(J)

N

))
≤ lim inf

J→∞
exp

(
λ2

2

2

N

∣∣∣∣ J∑
j=1

sjςj

∣∣∣∣2)
= exp

(λ2
2

2

N

∥∥w(N)
∥∥2
ℓ1(N)

)
for all |λ| ≤ ( 2

N
∥w(N)∥ℓ1)−1 because 2

N

∑J
j=1w

(N)
j ≤ 2

N
∥w(N)∥ℓ1 for any J ∈ N.

In the preceding display, the first line is due to the identity E limJ I(J)
N =
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limJ E I(J)
N (which follows from monotone convergence), the second due to

Fatou’s lemma, and the third due to the fact that I(J)
N is subexponential (hence

(D.11) holds). Therefore, the entire random series IN satisfies Definition D.7
and the proof is complete.

Step 3. A consequence of the previous lemma is a strong tail decay bound
for IN .

Lemma D.19 (random series: tail bound). Let Assumptions 5.6, 5.7, and 5.9
be satisfied and IN be defined as in (D.33). For any N ∈ N, it holds that

P
{
IN ≥ ∥w(N)∥ℓ1(N)√

2N
+ t

}
≤ exp

(
− Nt2

4∥w(N)∥2ℓ1(N)

)
(D.45)

for all 0 ≤ t ≤ ∥w(N)∥ℓ1(N).

Proof. By Lemma D.18 and [267, Proposition 2.9, p. 26], it holds that

P{IN ≥ E IN + t} ≤ exp

(
− Nt2

4∥w(N)∥2ℓ1(N)

)
for all 0 ≤ t ≤

∥∥w(N)
∥∥
ℓ1(N) .

By the Fubini–Tonelli theorem and (D.44), we obtain

E IN =
∞∑
j=1

E
[
sj
∥∥T̂φj∥∥] ≤ ∥w(N)∥ℓ1(N)√

2N
.

The assertion (D.45) follows from the monotonicity of probability measure.

The previous lemma implies a high probability uniform upper bound on IN .

Lemma D.20 (random series: uniform bound). Let Assumptions 5.6, 5.7,
and 5.9 be satisfied and IN be defined as in (D.33). There exists c0 > 1 and
c ∈ (0, 1/4), both independent of N and f †, such that

P
{
IN ≥ c0∥f †∥Hs

}
≤ exp

(
−cNmin

(
1,α+s−1

α+p

))
for all N ∈ N . (D.46)

Proof. Let t := min(∥f †∥Hs , ∥w(N)∥ℓ1). Clearly 0 ≤ t ≤ ∥w(N)∥ℓ1 . Also,
t ≤ ∥f †∥Hs so that monotonicity of probability measure yields

P
{
IN ≥ ∥w(N)∥ℓ1√

2N
+ ∥f †∥Hs

}
≤ P

{
IN ≥ ∥w(N)∥ℓ1√

2N
+ t

}
≤ exp

(
−N min

(
∥f †∥2Hs , ∥w(N)∥2ℓ1

)
4∥w(N)∥2ℓ1

)

=

e
−N∥f†∥2Hs/(4∥w

(N)∥2
ℓ1
), if ∥w(N)∥ℓ1 ≥ ∥f †∥Hs ,

e−N/4, if ∥w(N)∥ℓ1 < ∥f †∥Hs .
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The second inequality is due to Lemma D.19. Next, we upper bound the
probability in the first case ∥w(N)∥ℓ1 ≥ ∥f †∥Hs by bounding N−1∥w(N)∥2ℓ1 from
above. To do so, let δ := (α+ p− 1

2
)/(α+ p). Then δ > 0 because α+ p > 1/2

by Assumption 5.6. Clearly N−δ ≤ 1. Since x 7→ log 2x is slowly varying,
limN→∞N−δ log 2N = 0. Hence, supN∈NN

−δ log 2N <∞. Lemma D.17 then
yields

1

N

∥∥w(N)
∥∥2
ℓ1
≲ ∥f †∥2Hs ×


N−
(
α+s−1
α+p

)
, if α+s−1/2

α+p
< 2 ,

N−1
(
N−δ log 2N

)
, if α+s−1/2

α+p
= 2 ,

N−1N−δ , if α+s−1/2
α+p

> 2

≲ ∥f †∥2Hs ×

N
−
(
α+s−1
α+p

)
, if α+s−1/2

α+p
< 2 ,

N−1 , if α+s−1/2
α+p

≥ 2

≤ ∥f †∥2Hs N
−min

(
1,α+s−1

α+p

)
for all N ∈ N. It follows that there exists c′ > 0 such that

exp

(
− N∥f †∥2Hs

4∥w(N)∥2ℓ1

)
= exp

(
− ∥f †∥2Hs

4∥w(N)∥2ℓ1/N

)
≤ exp

(
−c′Nmin

(
1,α+s−1

α+p

)
/4
)
.

For the second case ∥w(N)∥ℓ1 < ∥f †∥Hs , taking the minimum yields the bound

e−N/4 ≤ exp
(
−Nmin

(
1,α+s−1

α+p

)
/4
)
.

Writing c := min(1, c′)/4 ∈ (0, 1/4), it follows that

max
(
e−N∥f†∥2Hs/(4∥w

(N)∥2
ℓ1
), e−N/4

)
≤ exp

(
−cNmin

(
1,α+s−1

α+p

))
for all N ∈ N. The right-hand side of the preceding display is thus an upper
bound to P{IN ≥ ∥w(N)∥ℓ1/

√
2N + ∥f †∥Hs}. To complete the proof, notice

that ∥w(N)∥ℓ1(N)/
√
2N ≤ (c′/2)∥f †∥HsN−min(1,(α+s−1)/(α+p))/2 ≤ (c′/2)∥f †∥Hs

because α+ s > 1 by Assumption 5.9. By monotonicity of probability measure,
this implies the asserted result (D.46) with c0 := 1 + c′/2.

This completes Step 1., Step 2., and Step 3. With a uniform upper bound
on IN in hand from the previous lemma, the claimed bound on the bias in
Proposition D.12 follows easily. The details are provided in the following proof.
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Proof of Proposition D.12. Recalling the event E0 from (D.29) with ε as in
(D.31), choose τ = c′∥f †∥Hs with c′ > 1 equal to the constant c0 in the
hypotheses of Lemma D.20. On the good event E0 ∩ E from (D.29) and (D.28),
it holds by (D.27) that BN ≤ BN + ε which is precisely the claimed upper
bound (D.24) with c0 := 8(c′)2. It remains to lower bound the probability of
E0 ∩ E. By (D.30) and (D.32), it holds that

P(E0 ∩ E) = P(E)− P(Ec
0 ∩ E) ≥ P(E)− P(IN > c′∥f †∥Hs) .

By hypothesis, the assertion of Lemma D.25 (i.e., that P(E) ≥ 1− e−c1N for
some c1 ∈ (0, 1)) holds true provided that N ≥ N0 with N0 ≥ 1 defined in
(D.54). Combining this with Lemma D.20 shows that, for all N ≥ N0, the
good set satisfies

P(E0 ∩ E) ≥ 1− e−c1N − exp
(
−c2Nmin

(
1,α+s−1

α+p

))
≥ 1− 2 exp

(
−cNmin

(
1,α+s−1

α+p

))
for some c2 ∈ (0, 1/4). We defined c := min(c1, c2) ∈ (0, 1/4) in the last line
of the preceding display. To complete the proof, notice that if E0 ∩ E occurs,
then E also occurs. But the variance bound (D.17) also holds true on E (as
shown in the proof of Proposition D.10). This proves the final assertion of the
proposition.

D.3.2.3 Proof of Theorem D.1

Combining the bias and variance bounds leads to the main theoretical result
for end-to-end learning, Theorem D.1, which we now prove.

Theorem D.1 (end-to-end learning: general convergence rate). Let the input
training data distribution ν, the test data distribution ν ′, and the Gaussian
prior N (0,Λ) satisfy Assumptions 5.6 and 5.7. Let the ground truth linear
functional f † ∈ Hs satisfy Assumption 5.9. Let α, α′, and p be as in (5.20) and
(5.21). Then there exists c ∈ (0, 1/4) and N0 ≥ 1 such that for any N ≥ N0,
the mean f̄ (N) of the Gaussian posterior distribution (5.15) arising from the N
pairs of observed training data (U, Y ) in (5.17) satisfies the error bound

EY |U Eu′∼ν′
∣∣⟨f †, u′⟩ − ⟨f̄ (N), u′⟩

∣∣2 ≲ (1 + ∥f †∥2Hs

)
ε2N (D.1)
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with probability at least 1− 2 exp(−cNmin(1,α+s−1
α+p

)) over U ∼ ν⊗N , where

ε2N :=


N−min

(
α′+s
α+p

, 1−α+1/2−α′
α+p

)
, if α′ < α+ 1/2 ,

max
(
N−
(
α′+s
α+p

)
, N−1 log 2N

)
, if α′ = α + 1/2 ,

N−min
(
α′+s
α+p

, 1
)
, if α′ > α+ 1/2 .

(D.2)

The constants c, N0, and the implied constant in (D.1) do not depend on N or
f †.

Proof. Combining Propositions D.10 and D.12 shows that, for all N ≥ N0, the
out-of-distribution test error (D.15) satisfies the upper bound

RN ≤ 2
∞∑
j=1

σ′
j|f †

j |2(
1 +Nγ−2σjλj

)2 +
(
2 + c0

∥∥f †∥∥2
Hs

) ∞∑
j=1

σ′
jλj

1 +Nγ−2σjλj
(D.47)

with the asserted probability. The second term converges at the rate specified
by the rightmost expression in (D.17). We focus on controlling the first term
in the upper bound (D.47). Using the asymptotics of {σ′

j}j∈N, {σj}j∈N, and
{λj}j∈N from Assumption 5.6, there exists j0 ∈ N (independent of N and f †)
such that
∞∑
j=1

σ′
j|f †

j |2(
1 +Nγ−2σjλj

)2 ≲
∑
j≤j0

σ′
j|f †

j |2(
1 +Nγ−2σjλj

)2 +
∑
j>j0

j−2α′|f †
j |2(

1 +Nj−2(α+p)
)2

≲
γ4

N2

∑
j≤j0

(
j−2sσ′

jσ
−2
j λ−2

j

)
j2s|f †

j |2 +
∞∑
j=1

j−2α′ |f †
j |2(

1 +Nj−2(α+p)
)2

≲ N−2
∥∥f †∥∥2

Hs +
∞∑
j=1

j−2α′|f †
j |2(

1 +Nj−2(α+p)
)2 .

To obtain the last line, we took the maximum over j ≤ j0 of the factor in
parentheses in the first term appearing in the second line. Lemma D.22 (applied
with t = 2α′ ≥ −2s, u = 2(α+p) > 1 > 0, and v = 2) shows that the rightmost
series in the preceding display is bounded above by

N−min
(
2,α

′+s
α+p

)∥∥f †∥∥2
Hs ≤ N−2

∥∥f †∥∥2
Hs +N−

(
α′+s
α+p

)∥∥f †∥∥2
Hs .

However, the N−2 contribution is bounded above by the variance contribution
in (D.17). Putting together the pieces by enlarging constants and bounding
the sum of two nonnegative terms by twice their maximum yields (D.1) and
(D.2) as required.
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D.3.2.4 Proof of Corollary D.2

We now prove Corollary D.2, which shows that our (conditional on the design
U) high probability bounds imply full expectation bounds for the end-to-end
learning linear functional estimator.

Corollary D.2 (end-to-end learning: expectation bound). Instate the hy-
potheses and notation of Theorem D.1. Then there exists N⋆ ≥ 1 such that
for any N ≥ N⋆, the mean f̄ (N) of the Gaussian posterior distribution (5.15)
arising from the N pairs of observed training data (U, Y ) in (5.17) satisfies the
expected error bound

E
[
Eu′∼ν′

∣∣⟨f †, u′⟩ − ⟨f̄ (N), u′⟩
∣∣2] ≲ (1 + ∥f †∥2Hs

)
ε2N , (D.3)

where ε2N is as in (D.2). The constant N⋆ and the implied constant in (D.3)
do not depend on N or f †.

Proof. Recall RN from (D.15). Our goal is to bound ERN . Recalling the
bias–variance decomposition RN = BN+VN from Lemma D.9, our task reduces
to separately bounding EBN and EVN . We begin with EVN .

Let E⋆ be the event that the high probability variance bound from Proposi-
tion D.10 occurs. So, P(E⋆) ≥ 1 − e−cN . In particular, we see from (D.23)
that

VN ≤ 2µ tr
(
C−1/2
µ C ′C−1/2

µ

)
holds true on E⋆ for sufficiently large N . Next, we decompose

VN = VN1E⋆ + VN1Ec
⋆

≤ 2µ tr
(
C−1/2
µ C ′C−1/2

µ

)
+ VN1Ec

⋆
.

The first inequality holds because 1A ≤ 1 for any event A. Thus,

EVN ≤ 2µ tr
(
C−1/2
µ C ′C−1/2

µ

)
+ E

[
VN1Ec

⋆

]
.

It remains to bound the second term. We recall from the proof of Proposi-
tion D.10 that the bound

VN ≤ µ tr
(
Ĉ−1/2
µ C ′Ĉ−1/2

µ

)
= µ tr

(
Ĉ−1
µ C ′)
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holds almost surely. Applying von Neumann’s trace inequality gives

tr
(
Ĉ−1
µ C ′) ≤ ∥∥Ĉ−1

µ

∥∥
L(H)

tr(C ′)

≤ µ−1 tr(C ′) .

The last inequality follows by operator monotonicity of the spectral norm
because

Ĉ−1
µ = (Ĉ + µ IdH)

−1 ≼ µ−1 IdH .

We deduce that VN ≤ tr(C ′) almost surely so that

EVN ≤ 2µ tr
(
C−1/2
µ C ′C−1/2

µ

)
+ E

[
VN1Ec

⋆

]
≤ 2µ tr

(
C−1/2
µ C ′C−1/2

µ

)
+ tr(C ′)P(Ec

⋆)

≤ 2µ tr
(
C−1/2
µ C ′C−1/2

µ

)
+ tr(C ′)e−cN

≤ 2
∞∑
j=1

σ′
jλj

1 +Nγ−2σjλj
+ tr(C ′)e−cN

≲


N

−
(
1−α+1/2−α′

α+p

)
, if α′ < α+ 1/2 ,

N−1 log 2N , if α′ = α + 1/2 ,

N−1 , if α′ > α+ 1/2 .

The final inequality holds for sufficiently large N because the exponential decay
is always bounded above by power law decay. Thus, apart from constant
factors, the expectation bound for the variance does not change from the high
probability bound.

To complete the proof, we establish an upper bound on the expected squared
bias EBN , where BN is as in (D.16a). To proceed, we recall the high probability
bias bound from Proposition D.12. Let A be the event that this bound holds.
Denote by bN the right-hand side of (D.24). Just as we did for the variance,
we decompose the expected bias as

EBN = E
[
BN1A

]
+ E

[
BN1Ac

]
≤ bN + E

[
BN1Ac

]
.

Next, we develop a bound for the second term in the preceding display. We
estimate

BN =
∥∥(Σ′)1/2(IdH −ANSN)f †∥∥2

≤ 2
∥∥(Σ′)1/2f †∥∥2 + 2

∥∥(Σ′)1/2ANSNf
†∥∥2

= 2
∥∥(Σ′)1/2f †∥∥2 + 2

〈
f †, ((Σ′)1/2ANSN)

∗(Σ′)1/2ANSNf
†〉 .
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Next, we compute that the second term in the last line equals

2 tr
(
((Σ′)1/2ANSN)

∗(Σ′)1/2ANSNf
† ⊗ f †

)
≤ 2∥f †∥2 tr

(
((Σ′)1/2ANSN)

∗(Σ′)1/2ANSN

)
= 2∥f †∥2 tr

(
(ANSN)

∗Σ′ANSN
)
.

Recall from the proof of Lemma D.13 that

ANSN = Λ1/2Ĉ−1
µ Λ1/2Σ̂ .

Thus, we find that

tr
(
(ANSN)

∗Σ′ANSN
)
= tr

(
Σ̂Λ1/2Ĉ−1

µ C ′Ĉ−1
µ Λ1/2Σ̂

)
≤ ∥C ′∥ tr

(
Ĉ−1
µ Λ1/2Σ̂Σ̂Λ1/2Ĉ−1

µ

)
= ∥C ′∥ tr

(
Λ1/2Ĉ−2

µ Λ1/2Σ̂2
)

≤ ∥C ′∥∥Λ1/2Ĉ−2
µ Λ1/2∥ tr(Σ̂2)

≤ µ−2∥C ′∥∥Λ∥ tr(Σ̂2) .

To summarize, we have shown that

BN ≤ 2
∥∥(Σ′)1/2f †∥∥2 + 2µ−2∥f †∥2∥C ′∥∥Λ∥ tr(Σ̂2)

almost surely and hence

E
[
BN1Ac

]
≤ 2
∥∥(Σ′)1/2f †∥∥2 P(Ac) + 2µ−2∥f †∥2∥C ′∥∥Λ∥E

[
tr(Σ̂2)1Ac

]
≤ 2
∥∥(Σ′)1/2f †∥∥2 P(Ac) + 2µ−2∥f †∥2∥C ′∥∥Λ∥

(
E tr(Σ̂2)2

)1/2 P(Ac)1/2

by the Cauchy–Schwarz inequality. We now estimate

E
[(
tr(Σ̂2)

)2]
= E

∥∥Σ̂∥∥4
HS

= E
(

1

N2

∑
1≤i,j≤N

⟨ui, uj⟩2
)2

=
1

N4

∑
1≤i,j,k,l≤N

E
[
⟨ui, uj⟩2⟨uk, ul⟩2

]
≤ 1

N4

∑
1≤i,j,k,l≤N

(
E⟨ui, uj⟩4

)1/2(E⟨uk, ul⟩4)1/2
≤ 1

N4

∑
1≤i,j,k,l≤N

(
E∥ui∥4∥uj∥4

)1/2(E∥uk∥4∥ul∥4)1/2
≤ Eu∼ν∥u∥8 .
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The chain of inequalities follow from repeated application of Cauchy–Schwarz.
The eighth moment in the last line of the preceding display is finite because ν
is subgaussian by hypothesis.

Putting together the pieces, we deduce that

EBN ≤ bN + 2
∥∥(Σ′)1/2f †∥∥2 P(Ac) + 2µ−2∥f †∥2∥C ′∥∥Λ∥

(
Eu∼ν∥u∥8)1/2 P(Ac)1/2

≲ bN +
∥∥(Σ′)1/2f †∥∥2 P(Ac) +N2∥f †∥2 P(Ac)1/2

≲ bN +N2∥f †∥2 P(Ac)1/2

≤ bN +N2 exp
(
−cNmin( 1

2
,α+s−1
2(α+p)

))∥f †∥2 .

The last term decays faster than any power of N−1 for sufficiently large N .
Thus, EBN ≲ bN and the proof is complete.

D.3.3 Proofs for Full-Field Learning of Factorized Linear Function-
als

This appendix proves the main results from Appendix D.1 and Section 5.4.3 for
the (FF) approach. We begin with a lemma that gives a convenient expression
for the L2

ν′(H;R) Bochner norm of a factorized linear PtO map.

Lemma D.21 (squared Bochner norm of linear PtO map). Let ν ′ satisfy
Assumption (A-I). Let q be a linear functional and L be a linear operator such
that L =

∑∞
j=1 ljφj ⊗φj for eigenbasis {φj}j∈N of Σ′ = Cov(ν ′) and eigenvalue

sequence {lj}j∈N ⊂ R. Write {σ′
j}j∈N for the eigenvalues of Σ′. If q ◦ L is

continuous, then

Eu′∼ν′|q(Lu′)|2 =
∞∑
j=1

σ′
j|q(φj)|2l2j . (D.48)

Proof. Using linearity and the fact that qL = q◦L is scalar-valued, we compute

Eu′∼ν′ |qLu′|2 = Eu′∼ν′ [(qLu′)(qLu′)] = Eu′∼ν′ [(qLu′)(qLu′)∗]

= Eu′∼ν′ [(qL)u′ ⊗ u′(qL)∗]

= (qL)Σ′(qL)∗

= tr
(
qL(Σ′)1/2(qL(Σ′)1/2)∗

)
.

The adjoint (qL)∗ ∈ H is well-defined due to the continuity of qL. The definition
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of Hilbert–Schmidt norm and the fact that L and Σ′ share an eigenbasis yield

tr
(
qL(Σ′)1/2(qL(Σ′)1/2)∗

)
=
∥∥qL(Σ′)1/2

∥∥2
HS(H;R) =

∞∑
j=1

∣∣qL(Σ′)1/2φj
∣∣2

=
∞∑
j=1

σ′
jl

2
j |q(φj)|2

as asserted.

Lemma D.21 will be used in the proofs of following two theorems. The
arguments rely on [76, Theorem 3.9, pp. 18–19].

Theorem D.3 (full-field learning: convergence rate for Sobolev QoI). Let the
input training data distribution ν, the test data distribution ν ′, the true forward
map L†, and the QoI q† satisfy Assumption 5.10, but instead of (A-IV), suppose
that {q†(φj)}j∈N ∈ Hr for some r ∈ R. Let α and α′ be as in (5.20) and β be
as in (A-II). If min(α, α′ + r) + β > 0, then there exist constants c > 0 and
C > 0 such that for all sufficiently large N , the plug-in estimator q† ◦ L̄(N)

in (5.28) based on the Gaussian posterior distribution (5.27) arising from the
N pairs of observed full-field training data (U,Υ) in (5.25) satisfies the error
bound

EΥ |U Eu′∼ν′
∣∣q†(L†u′)− q†(L̄(N)u′)

∣∣2 ≲ ε2N (D.4)

with probability at least 1− Ce−cN over U ∼ ν⊗N , where

ε2N :=


N−
(

2α′+2β+2r
1+2α+2β

)
, if α′ + r < α+ 1/2 ,

N−1 logN , if α′ + r = α + 1/2 ,

N−1 , if α′ + r > α+ 1/2 .

(D.5)

The constants c, C, and the implied constant in (D.4) do not depend on N .

Proof. Write q†j = q†(φj) for each j ∈ N. Lemma D.21 shows that

Eu′∼ν′
∣∣q†(L†u′)− q†(L̄(N)u′)

∣∣2 = ∞∑
j=1

σ′
j|q†j |2

∣∣l†j − l̄
(N)
j

∣∣2 (D.49)

because L† and L̄(N) share an eigenbasis and q† ◦L† is continuous by hypothesis.
The assumed asymptotics σ′

j ≲ j−2α′ as j → ∞ deliver an index j0 ∈ N such
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that the preceding display is bounded above by∑
j≤j0

(
j2α

′
σ′
jj

2r|q†j |2
)
j−2(α′+r)

∣∣l†j − l̄
(N)
j

∣∣2 +∑
j>j0

(
j2r|q†j |2

)
j−2(α′+r)

∣∣l†j − l̄
(N)
j

∣∣2
≤
(
max
k≤j0

k2α
′
σ′
kk

2r|q†k|2
)∑
j≤j0

j−2(α′+r)
∣∣l†j − l̄

(N)
j

∣∣2
+

(
sup
k∈N

k2r|q†k|2
)∑
j>j0

j−2(α′+r)
∣∣l†j − l̄

(N)
j

∣∣2
≲

∞∑
j=1

j−2(α′+r)
∣∣l†j − l̄

(N)
j

∣∣2 .
The supremum is finite because its argument is summable due to q† ∈ Hr. The
asserted result follows from [76, Theorem 3.9, pp. 18–19] by using the result for
the posterior mean, choosing |ϑ′

j|2 = j−2(α′+r) (i.e., replacing α′ with α′ + r),
and choosing δ to be a sufficiently small constant.

The theorem for power law QoI decay has a proof similar to the previous one.

Theorem 5.13 (full-field learning: convergence rate for power law QoI). Let
the input training data distribution ν, the test data distribution ν ′, the true
forward map L†, and the QoI q† satisfy Assumption 5.10. Let α and α′ be as
in (5.20) and β and r be as in (A-II) and (A-IV). Then there exist constants
c > 0 and C > 0 such that for all sufficiently large N , the plug-in estimator
q† ◦ L̄(N) in (5.28) based on the Gaussian posterior distribution (5.27) arising
from the N pairs of observed full-field training data (U,Υ) in (5.25) satisfies
the error bound

EΥ |U Eu′∼ν′
∣∣q†(L†u′)− q†(L̄(N)u′)

∣∣2 ≲ ε2N (5.31)

with probability at least 1− Ce−cN over U ∼ ν⊗N , where

ε2N :=


N−
(

1+2α′+2β+2r
1+2α+2β

)
, if α′ + r < α ,

N−1 logN , if α′ + r = α ,

N−1 , if α′ + r > α .

(5.32)

The constants c, C, and the implied constant in (5.31) do not depend on N .

Proof. The proof mimics that of Theorem D.3. After enlarging j0 to accommo-
date the asymptotics of q†j , the only difference is that (D.49) is now bounded
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above by

max
k≤j0

k2α
′
σ′
kk

2r+1|q†k|2
∑
j≤j0

j−2(α′+r+1/2)
∣∣l†j − l̄

(N)
j

∣∣2 +∑
j>j0

j−2(α′+r+1/2)
∣∣l†j − l̄

(N)
j

∣∣2
≲

∞∑
j=1

j−2(α′+r+1/2)
∣∣l†j − l̄

(N)
j

∣∣2 .
Replacing α′ with α′ + r + 1/2 in [76, Theorem 3.9, pp. 18–19] completes the
proof.

D.3.4 Proof of Sample Complexity Comparison

We now prove Corollary 5.15.

Corollary 5.15 (sample complexity comparison). Instate the notation and
assertions in Assumptions 5.6, 5.7, and (A-III). Suppose that the training
and test distribution covariances have equivalent smoothness, i.e., α′ = α. Let
the underlying true PtO map f † have the factorization f † = q† ◦ L†, where
|q†(φj)|2 ≲ j−2r−1 as j → ∞ and L† is as in (5.26) with eigenvalues l† ∈ Hβ.
If β + r + 1/2 > 0, α + β + r > 1/2, and α + β > 0, then there exist
constants c > 0 and C > 0 such that for all sufficiently large N , the following
holds on an event with probability at least 1− C exp(−cNmin(1,

α+β+r−1/2
1+α+β+r

)) over
U = {un}Nn=1 ∼ ν⊗N . The (EE) posterior mean estimator f̄ (N) in (5.15) (with
p := β + r + 1 in (A3)) trained on end-to-end data (U, Y ) satisfies

EY |U Eu∼ν
∣∣q†(L†u)− ⟨f̄ (N), u⟩

∣∣2 ≲ N−
(
1− 1

2+2α+2β+2r

)
. (5.34)

On the other hand, the (FF) plug-in estimator q† ◦ L̄(N) in (5.28) trained on
full-field data (U,Υ) satisfies

EΥ |U Eu∼ν
∣∣q†(L†u)− q†(L̄(N)u)

∣∣2 ≲

N−
(
1− −2r

1+2α+2β

)
, if r < 0 ,

N−1 logN , if r = 0 ,

N−1 , if r > 0 .

(5.35)

Proof. First, we claim that f † = q† ◦ L† ∈ Hs for any s ≤ β + r + 1/2 under
the hypotheses. Since f †

j := f †(φj) = l†jq
†(φj) =: l

†
jq

†
j , we compute

∞∑
j=1

j2s|f †
j |2 =

∞∑
j=1

j2s|l†j |2|q†j |2 ≲ 1 +
∞∑
j=1

(
j2s−2r−1−2β

)
j2β|l†j |2 ≲ 1 + ∥l†∥2Hβ <∞
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if 2s − 2r − 1 − 2β ≤ 0. This proves the claim. For the end-to-end bound,
choose the maximal s = β+r+1/2 in Theorem 5.12. With optimal p = s+1/2,
the assumption p > 1/2 gives s > 0 so that β + r + 1/2 > 0 as hypothesized.
This condition also satisfies the continuity requirement (A-V) by a similar
calculation. The condition α + s > 1 from Assumption 5.9 is the same as
α + β + r > 1/2. Finally, to satisfy the condition min(α, α + r + 1/2) + β > 0

from Theorem 5.13, it suffices for α + β > 0 because the other case has
α+ r + 1/2 + β > max(α, 1) > 0. With a common set of hypotheses identified,
the convergence rates may now simply be read off from Theorem 5.12 and
Theorem 5.13 after plugging in α′ = α and s = β + r + 1/2. The fact that
these bounds hold simultaneously on an event with the asserted probability
follows by a union bound and enlarging constants.

D.3.5 Technical Lemmas

We conclude Appendix D.3 with several supporting lemmas. The following two
technical results emphasize the nonasymptotic nature of analogous asymptotic
bounds on parametrized series from [147, Lemmas 8.1–8.2, pp. 2653–2655].
The first result is useful for controlling the bias error term arising in Ap-
pendix D.3.2.2.

Lemma D.22 (series decay: Sobolev regularity). Let q ∈ R, t ≥ −2q, u > 0,
and v ≥ 0. Let N ∈ N be arbitrary. For every ξ ∈ Hq(N;R), it holds that

∞∑
j=1

j−tξ2j
(1 +Nj−u)v

≲ N−min(v, t+2q
u )∥ξ∥2Hq . (D.50)

Proof. The asserted result may be extracted from the proof of [147, Lemma
8.1].

The next lemma is analogous to the previous one and is useful for controlling
the variance error term from Appendix D.3.2.1.

Lemma D.23 (series decay: power law regularity). Let t > 1, u > 0, and
v ≥ 0. For all N ∈ N, it holds that

∞∑
j=1

j−t

(1 +Nj−u)v
≲


N−( t−1

u ) , if (t− 1)/u < v ,

N−v log 2N , if (t− 1)/u = v ,

N−v , if (t− 1)/u > v .

(D.51)
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Proof. We split the series into two parts by summing over disjoint index sets
defined by the critical indexN1/u. If j ≤ N1/u, thenNj−u ≤ 1+Nj−u ≤ 2Nj−u.
Otherwise j > N1/u and 1 ≤ 1 + Nj−u ≤ 2. Hence, for the bulk part of the
series, ∑

j≤N1/u

j−t

(1 +Nj−u)v
≃ 1

N v

∑
j≤N1/u

juv−t . (D.52)

If (t − 1)/u > v, then uv − t < −1 so that the right-hand side of (D.52) is
bounded above by N−v∑∞

j=1 j
uv−t ≲ N−v. Next, if (t − 1)/u = v, then the

right-hand side equals N−v∑
j≤N1/u j−1. The J-th harmonic number satisfies∑J

j=1 j
−1 ≤ 1 + log J (by an integral comparison). Since log( · ) is increasing,

1 + logN1/u ≤ (log 2)−1 log(2N) + (log 2N)/u ≲ log 2N and the second case
in (D.51) follows. Finally, if (t − 1)/u < v, then we consider the regimes
−1 < uv − t < 0 and uv − t ≥ 0 separately. In the first regime, h : x 7→ xuv−t

is nonincreasing. Thus, if j − 1 ≤ x ≤ j, then h(j) ≤ h(x) and hence
h(j) ≤

∫ j
j−1

h(x) dx. Summing this inequality leads to

∑
j≤N1/u

juv−t ≤
∫ N1/u

0

xuv−t dx =
N v−(t−1)/u

1 + uv − t

because 0 < 1 + uv− t < 1. Multiplying by N−v shows that (D.52) is bounded
above by a constant times N−(t−1)/u. In the second regime, uv − t ≥ 0 so h is
now nondecreasing. A similar argument to the preceding one yields

∑
j≤N1/u

juv−t ≤
∫ 1+N1/u

1

xuv−t dx ≤
∫ 1+N1/u

0

xuv−t dx =
(1 +N1/u)1+uv−t

1 + uv − t
.

Since 1 + uv − t ≥ 1 and N1/u ≥ 1, the right-hand side is bounded above by
(2N1/u)1+uv−t ≲ N v−(t−1)/u. This proves that the inequality (D.51) remains
valid if the infinite series is replaced by the bulk partial sum (D.52). It remains
to estimate the tail part of the series. By an analogous integral comparison,∑
j>N1/u

j−t

(1 +Nj−u)v
≃

∑
j>N1/u

j−t ≤
∫ ∞

⌈N1/u⌉−1

x−t dx ≤
∫ ∞

max(1,N1/u−1)

x−t dx .

The rightmost integral converges because t > 1 and evaluates to

max(1, N1/u − 1)−(t−1)

t− 1
≤ 2t−1

t− 1
N−( t−1

u ) .
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We used max(a, b) ≥ (a+ b)/2 for nonnegative a and b to obtain the inequality.
This shows that the tail series has the same upper bound N−(t−1)/u as the bulk
sum if (t − 1)/u < v. Otherwise, N−(t−1)/u ≲ N−v log 2N if (t − 1)/u = v or
N−(t−1)/u ≲ N−v if (t− 1)/u > v. Thus, the assertion (D.51) follows.

Application of the previous lemma gives an exact estimate for the effective
dimension corresponding to the prior-normalized training data covariance
operator C = Λ1/2ΣΛ1/2 under the assumption of asymptotically exact power
law decay of its eigenvalues. It plays a role in both the bias and variance
bounds.

Lemma D.24 (effective dimension). Under Assumption 5.6, it holds that

tr
(
C−1
µ C

)
≃ µ− 1

2(α+p) for all 0 < µ ≲ 1 . (D.53)

Proof. Let u := 2(α + p). Then u > 1 by hypothesis. By the simultaneous
diagonalization from Assumption 5.6, the eigenvalues of C = Λ1/2ΣΛ1/2 are
{σjλj}j∈N. Then since σj ≍ j−2α and λj ≍ j−2p as j → ∞, there exists j0 ∈ N
such that

µ tr
(
C−1
µ C

)
=

∞∑
j=1

µσjλj
µ+ σjλj

≃
∑
j≤j0

σjλj
1 + µ−1σjλj

+
∑
j>j0

j−u

1 + µ−1j−u

≤ µj0 +
∞∑
j=1

j−u

1 + µ−1j−u
.

Since 1 + µ−1 ≲ 2µ−1 follows from the hypothesis µ ≲ 1, it holds that

µ ≲
2

1 + µ−1
≤ 2

∞∑
j=1

j−u

1 + µ−1j−u
.

Application of Lemma D.23 (applied in the first case with t = u, u = u, v = 1,
and N = µ−1 because (u − 1)/u < 1) shows that the series in the preceding
display is bounded above by a constant times µ1−1/u. This implies the upper
bound in (D.53).

Now let Jµ := max(j0, µ
−1/u). For the lower bound, we compute

µ tr
(
C−1
µ C

)
≥
∑
j>j0

µσjλj
µ+ σjλj

≃
∑
j>j0

j−u

1 + µ−1j−u
≥
∑
j>Jµ

j−u

1 + µ−1j−u
.
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Since j > Jµ ≥ µ−1/u, it holds that 1 ≤ 1 + µ−1j−u ≤ 2. Hence, the right-hand
side of the preceding display is bounded above and below by a constant times∑

j>Jµ
j−u. By comparison to an integral as in the proof of Lemma D.23, we

obtain ∑
j>Jµ

j−u ≥
∫ ∞

⌈Jµ⌉
x−u dx ≥ (Jµ + 1)−(u−1)

u− 1

≥ (µ−1/u + j0 + 1)−(u−1)

u− 1

≥
(
µ−1/u + µ−1/u(j0 + 1)

)−(u−1)

u− 1
.

We used Jµ ≤ j0 + µ−1/u in the second line and 1 ≲ µ−1/u in the third line.
Since the third line evaluates to ((j0 + 2)−(u−1)/(u− 1))µ1−1/u, it follows that
tr(C−1

µ C) ≳ µ−1/u as asserted.

The next lemma, whose proof requires the previous effective dimension estimate,
defines a high probability event on which the operator norm of a certain
normalized and centered empirical covariance is uniformly bounded in the
sample size.

Lemma D.25 (good set). Let µ = γ2/N and C, Cµ, and Ĉ be as in (D.18)
and (D.20). Under Assumption 5.6 and 5.7, there exists a constant c ∈ (0, 1)

(depending only on ν, Λ, and γ2) such that if

N ≥ N0 := c−1
1{γ−2 tr(C)>c} + 1 , (D.54)

then the event
E :=

{∥∥C−1/2
µ (Ĉ − C)C−1/2

µ

∥∥
L(H)

≤ 1/2
}

(D.55)

satisfies P(E) ≥ 1− e−cN .

Proof. By [131, Lemma 5, p. 13], there exists c0 ∈ (0, 1) such that if tr(C−1
µ C) ≤

c0N and the pushforward (Λ1/2)♯ν is strongly-subgaussian, then P(E) ≥ 1 −
e−c0N . An H-valued random variable Z (equivalently, its law) is strongly-
subgaussian if∥∥⟨Z, h⟩∥∥

ψ2
= sup

p≥1

(E|⟨Z, h⟩|p)1/p√
p

≲
√

E⟨Z, h⟩2 for all h ∈ H . (D.56)

To complete the proof, we will verify the trace condition (for sufficiently large
N) and the subgaussian condition. For the latter, it is sufficient to show that
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ν itself is strongly-subgaussian because then the random variable Λ1/2u with
u ∼ ν satisfies∥∥⟨Λ1/2u, h⟩

∥∥
ψ2

= sup
p≥1

(E|⟨u,Λ1/2h⟩|p)1/p√
p

≲
√

E⟨u,Λ1/2h⟩2 =
√

⟨h, Ch⟩

for every h ∈ H as desired. By Assumption 5.7, u ∼ ν has the series expansion
u =

∑
j

√
σjzjφj with the {zj}j∈N centered and independent. Fix h ∈ H and

define hj := ⟨h, φj⟩ for each j ∈ N. Estimating the moment generating function
of ⟨u, h⟩ with an argument similar to the one used in the proof of Lemma D.18
leads to

E eλ⟨u,h⟩ = E
∞∏
j=1

eλ
√
σjzjhj =

∞∏
j=1

E eλ
√
σjzjhj

≤
∞∏
j=1

ec
′λ2σjh2j∥zj∥2ψ2

≤ exp

(
c′m2λ2

∞∑
j=1

σjh
2
j

)
= exp

(
c′m2λ2⟨h,Σh⟩

)
for some absolute constant c′ > 0 [266, p. 28] and any λ ∈ R. We used
independence of the {zj}j∈N to obtain the second equality in the preceding
display and subgaussianity to obtain the first inequality. Again by [266, p.
28], m⟨h,Σh⟩1/2 is equivalent to the subgaussian norm of ⟨u, h⟩. Thus, ν is
strongly-subgaussian as required.

Next, we show that the trace condition holds. Denote the eigenvalues of
C = Λ1/2ΣΛ1/2 by {λj(C)}j∈N. Since λj(C) ≍ j−2(α+p) and 2(α + p) > 1 by
Assumption 5.6, the operator C is trace-class and

tr
(
C−1
µ C

)
=

∞∑
j=1

λj(C)
λj(C) + γ2/N

≤ Nγ−2

∞∑
j=1

λj(C) = Nγ−2 tr(C) .

Thus, tr(C−1
µ C) ≤ c0N if γ−2 tr(C) ≤ c0. Otherwise, application of Lemma D.24

shows that there exists a constant c1 > 0 such that tr(C−1
µ C) ≤ c1N

1/(2(α+p)).
Hence, tr(C−1

µ C) ≤ c0N holds if N ≥ c2 := max(1, (c1/c0)
(α+p)/(α+p−1/2)). Fi-

nally, let c = min(c0, c
−1
2 ). We conclude by showing that the constant N0 in

(D.54) suffices to verify the trace condition. If γ−2 tr(C) ≤ c, then γ−2 tr(C) ≤ c0

and N0 ≥ 1 suffices. Otherwise, N0 ≥ c−1 + 1 ≥ max(c−1
0 , c2) + 1 ≥ c2 as

required. The fact that 1− e−c0N ≥ 1− e−cN completes the proof.
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As discussed in Remark 5.8, we are able to weaken the strongly-subgaussian
requirement on the input training distribution ν (5.11) by only requiring its KL
expansion coefficients (5.22) to be pairwise uncorrelated instead of statistically
independent. However, the following result shows that this improvement to
Assumption 5.7 leads to a strictly worse failure probability for the good event
E. Indeed, Lemma D.25 gives P(Ec) ≤ e−cN , while the next lemma yields
P(Ec) ≤ 2e−cN

r with r = (α + p− 1)/(α + p) < 1 strictly smaller than one.

Lemma D.26 (good set without independent KL coefficients). Let µ = γ2/N

and C, Cµ, and Ĉ be as in (D.18) and (D.20). Let Assumption 5.6 hold. Suppose
that the hypotheses of Assumption 5.7 hold, but instead of the requirement
that the normalized KL expansion coefficients {zj}j∈N (5.22) of u ∼ ν are
independent, assume now that the {zj}j∈N are only pairwise uncorrelated. Then
there exist constants c ∈ (0, 1) and N0 ≥ 1 (depending only on ν, Λ, and γ2)
such that if N ≥ N0, then the event

E :=
{∥∥C−1/2

µ (Ĉ − C)C−1/2
µ

∥∥
L(H)

≤ 1/2
}

(D.57)

satisfies P(E) ≥ 1− 2 exp(−cN
α+p−1
α+p ), where α and p are as in (A2) and (A3).

Proof. The proof closely mimics the argument in the proof of Lemma D.14.
Recalling the definition of T̂ = C−1/2

µ (C − Ĉ)C−1/2
µ from (D.25), it holds that

−T̂ =
1

N

N∑
n=1

(
vn ⊗ vn − E[v1 ⊗ v1]

)
, where vn := C−1/2

µ Λ1/2un

and {un}Nn=1 ∼ ν⊗N . Writing (HS(H), ⟨·, ·⟩HS(H), ∥ · ∥HS(H)) for the Hilbert
space of Hilbert–Schmidt operators mapping H into itself, we control all
moments of ∥T̂∥HS(H) and then apply a Bernstein inequality. To this end, let

Zn :=
(
vn ⊗ vn − E[v1 ⊗ v1]

)
and fix an integer ℓ ≥ 2. The inequality |a+ b|ℓ ≤ 2ℓ−1(|a|ℓ + |b|ℓ) shows that

E∥Z1∥ℓHS(H) ≤ 2ℓ−1
(
E∥v1 ⊗ v1∥ℓHS(H) + ∥E[v1 ⊗ v1]∥ℓHS(H)

)
≤ 2ℓ E∥v1∥2ℓ .

The second line is due to Jensen’s inequality and the identity ∥a⊗ b∥HS(H) =

∥a∥∥b∥. By the KL expansion hypothesis and the assumption (A1) that Λ and
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Σ share the orthonormal eigenbasis {φj}, it holds that

v1 =
∞∑
j=1

ρjzjφj , where ρj =

√
σjλj

µ+ σjλj
≥ 0

and the {zj}j∈N (5.22) are pairwise uncorrelated. Thus,

E∥v1∥2ℓ = E
[(
∥v1∥2

)ℓ]
= E

[(
∞∑
k=1

ρ2kz
2
k

)ℓ]
.

The triangle inequality in the Banach space LℓP(Ω;R) yields∥∥∥∥∥
∞∑
k=1

ρ2kz
2
k

∥∥∥∥∥
LℓP

≤
∞∑
k=1

ρ2k
∥∥z2k∥∥LℓP =

∞∑
k=1

ρ2k

(
E
[
|zk|2ℓ

])1/ℓ
.

By the definition (D.12) of the subexponential norm, Lemma D.8, and hypoth-
esis (5.23),

∞∑
k=1

ρ2k

(
E
[
|zk|2ℓ

])1/ℓ
≤

∞∑
k=1

ρ2k
(
ℓ∥z2k∥ψ1

)
≤

∞∑
k=1

ρ2k
(
2ℓ∥zk∥2ψ2

)
≤ 2ℓm2

∞∑
k=1

σkλk
µ+ σkλk

.

Taking the ℓ-th power and putting together the pieces, we deduce that

E∥Z1∥ℓHS(H) ≤ 2ℓ
(
2m2 tr

(
C−1
µ C

))ℓ
ℓℓ ≤ 1

2
ℓ!
(
8em2 tr

(
C−1
µ C

))ℓ
=:

1

2
ℓ!σ2bℓ−2

by Stirling’s formula (ℓ/e)ℓ ≤ ℓ! . Here

σ = b ≡ bN = 8em2 tr(C−1
µ C) ≃ N

1
2(α+p) ,

where the last equivalence follows from Lemma D.24. By the Pinelis–Sakhanenko
Bernstein inequality for Hilbert spaces—where the version we use is [162, The-
orem A.1, p. 14]—it holds that

P

{∥∥T̂∥∥
HS(H)

≤ 2bN t

N
+

√
2b2N t

N

}
≥ 1− 2e−t for all t > log 2 .

For ∥T̂∥HS(H) ≤ 1/2 to hold, it suffices that 2bN t/N ≤ 1/4 and 2b2N t/N ≤ 1/8.
There exists c ∈ (0, 1) and N0 ≥ 1 such that the choice t := cN

α+p−1
α+p makes

both inequalities true as long as N ≥ N0. The desired result (D.57) follows
from the inequality ∥T̂∥L(H) ≤ ∥T̂∥HS(H) and the monotonicity of probability
measure.
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Finally, following [52, Section 5.2, p. 350] and [98, Section 6.2, p. 26], we
recall the following identity for regularized inverses of linear operators. This
result is especially useful in conjunction with the cyclic property of the trace
for deriving trace bounds.

Lemma D.27 (identity for regularized inverses). Let H be a separable Hilbert
space. For any λ > 0 and any symmetric positive-semidefinite bounded linear
operators A ∈ L(H) and B ∈ L(H), let Aλ := A+ λ IdH and Bλ := B + λ IdH.
It holds that

A−1
λ = B

−1/2
λ

(
IdH −B−1/2

λ (B − A)B
−1/2
λ

)−1
B

−1/2
λ . (D.58)

Proof. Write Id := IdH. A direct calculation shows that

A+ λ Id = A−B +B + λ Id

= (B + λ Id)1/2(B + λ Id)1/2 − (B − A)

= B
1/2
λ

(
Id
)
B

1/2
λ −B

1/2
λ

(
B

−1/2
λ (B − A)B

−1/2
λ

)
B

1/2
λ

= B
1/2
λ

(
Id−B−1/2

λ (B − A)B
−1/2
λ

)
B

1/2
λ .

Inverting the both sides of the equality yields the assertion.
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