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ABSTRACT

This dissertation contains three essays, each contributing to the study of social
learning among rational agents in various contexts.

In Chapter 1, I study whether individuals can learn the informativeness of their
information technology through social learning. Building on the classic sequential
social learning model, I introduce the possibility that a common source is completely
uninformative. I then define asymptotic learning as the situation in which an
outsider, who observes the actions of all agents, eventually distinguishes between
uninformative and informative sources. I show that asymptotic learning in this
setting is not guaranteed; it depends crucially on the relative tail distributions of
private beliefs induced by uninformative and informative signals. Furthermore, I
identify the phenomenon of perpetual disagreement as the cause of learning and
provide a characterization of learning in the canonical Gaussian environment.

In Chapter 2, co-authored with Omer Tamuz and Philipp Strack, we study the
asymptotic rate at which the probability of a group of long-lived, rational agents in
a social network taking the correct action converges to one. In every period, after
observing the past actions of his neighbors, each agent receives a private signal, and
chooses an action whose payoff depends only on the state. Since equilibrium actions
depend on higher-order beliefs, characterizing agents’ behavior becomes difficult.
Nevertheless, we show that the rate of learning in any equilibrium is bounded from
above by a constant, regardless of the size and shape of the network, the utility
function, and the patience of the agents. This bound only depends on the private
signal distribution.

In Chapter 3, I study how fads emerge from social learning in a changing environ-
ment. I consider a simple sequential learning model in which rational agents arrive
in order, each acting only once, and the underlying unknown state is constantly
evolving. Each agent receives a private signal, observes all past actions of others,
and chooses an action to match the current state. Because the state changes over
time, cascades cannot last forever, and actions also fluctuate. I show that despite the
rise of temporary information cascades, in the long run, actions change more often
than the state. This provides a theoretical foundation for faddish behavior in which
people often change their actions more frequently than necessary.
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INTRODUCTION

It is human nature to observe, imitate, and learn from one another. From every-
day decisions like choosing a restaurant to significant financial endeavors such as
investing in the stock market, and even in critical domains as in organ transplant
procedures, the behavior of social learning permeates and influences many impor-
tant economic activities. The central theme of this dissertation is to explore the
role of social learning in aggregating information in various contexts. It ranges
from introducing uncertainty in information sources to examining the dynamics of
repeated interactions between agents within networks, as well as the learning pro-
cesses in evolving environments. These theoretical inquiries yield valuable insights
into phenomena such as fads, misinformation, and information cascades.

This dissertation consists of three essays, each contributing to the study of social
learning, with the second chapter also contributing to the field of network eco-
nomics. Chapter 1 examines a sequential social learning model that introduces the
possibility of an uninformative source, investigating how and when society can dif-
ferentiate between uninformative and informative sources. Chapter 2, co-authored
with Philipp Strack and Omer Tamuz, explores the efficiency of information aggre-
gation among long-lived agents who repeatedly interact on a general observational
network. Finally, Chapter 3 investigates the volatility in behavior relative to the
volatility in the state within a dynamic social learning environment.

In Chapter 1, I introduce an additional dimension of uncertainty in a sequential
social learning model. Motivated by the recent surge in new information technolo-
gies and growing concerns about their accuracy and reliability, I examine whether
society can eventually learn the informativeness of a source through social learning.
An example of such a potentially uninformative source is a novel AI algorithm that
provides a private recommendation to each investor. Rational investors arrive se-
quentially and each makes a decision based on all past investment decisions of others
and their own private recommendation. In contrast to a regime where all private
information is observable—thus ensuring the achievement of asymptotic learning
about the source’s informativeness—my main result demonstrates that when only
past decisions are observable, learning is not guaranteed. Specifically, it depends
crucially on the relative tail distribution of private beliefs induced by uninformative
and informative signals. That is, learning holds when the uninformative signals
have fatter tails than the informative ones, but fails when they have thinner tails. For
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the canonical case of Gaussian signals, I fully characterize the conditions for learn-
ing. The key insight behind the main result is that the accumulation of behavioral
anomalies, such as an action switch after an extended period of identical actions,
helps society distinguish the uninformative source from the informative one.

In Chapter 2, we study how efficiently agents can learn from repeated interactions
with each other. Repeated interactions can, for example, describe the exchange
of opinions and information among friends on social media, and are especially
prominent for agents connected via a social network. Our main result shows that
information aggregation is inefficient in the sense that the speed of learning stays
bounded below by a constant even in large networks, where efficient aggregation
of all agents’ private information would lead to arbitrarily fast learning. Method-
ologically, we introduce new techniques that allow us to relax commonly made
assumptions and study general networks with forward-looking, Bayesian agents
who interact repeatedly. The mechanism behind our main result is that agents can-
not learn too fast because fast individual learning leads to rapid growth in social
information. This, in turn, causes agents to ignore their private signals, thereby
blocking any inflow of information.

In Chapter 3, I investigate how fads can emerge from social learning in a dynamic
environment. A changing underlying state can represent, for example, the develop-
ment of an economy, technological advancements, or shifts in cultural preferences.
My main result shows that individuals who learn from observing others exhibit more
volatile behavior than the underlying state itself, resulting in fads. As an example,
consider a situation in which the relative quality between two restaurants changes
over time. Then, in the long run, customers who wish to dine at the restaurant
currently of higher quality would switch between restaurants more frequently than
the actual changes in quality warrant. The idea behind these excess action changes
is that despite the rise of temporary information cascades, agents tend to overreact
to environmental changes, leading to long-run faddish behavior. This provides a
theoretical foundation for many commonly observed volatile economic phenomena,
such as speculative bubbles, financial fads, and boom-and-bust business cycles.
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C h a p t e r 1

LEARNING ABOUT INFORMATIVENESS

1.1 Introduction
Social learning plays a vital role in the dissemination and aggregation of informa-
tion. The behavior of others reflects their private knowledge about an unknown
state of the world, and so by observing others, individuals can acquire additional
information, enabling them to make better-informed decisions. A key assumption
in most existing social learning models is the presence of an informative source that
provides a useful private signal to each individual. In this paper, we explore how
the possibility that the source is uninformative interferes with learning, and study
the conditions under which individuals can eventually distinguish an uninformative
source from an informative one. This question is particularly relevant today due
to the proliferation of novel information technologies, raising concerns about the
accuracy and credibility of the information they provide.1

Formally, we introduce uncertainty regarding the informativeness of the source
into the classic sequential social learning model [Banerjee, 1992, Bikhchandani,
Hirshleifer, and Welch, 1992]. As in the usual setting, a sequence of short-lived
agents arrives in order, each acting once by choosing an action to match an unknown
payoff-relevant state that can be either good or bad. Before making their decisions,
each agent observes the past actions of her predecessors and receives a private
signal from a common source of information. However, unlike in the usual setting,
there is uncertainty surrounding this common information source. In particular, we
assume that this source can be either informative, generating private signals that are
independent and identically distributed (i.i.d.) conditioned on the payoff-relevant
state, or uninformative, producing private signals that are i.i.d. but independent of
the payoff-relevant state. Both the payoff-relevant state and the informativeness
of the source are realized independently at the outset and are assumed to be fixed
throughout.

If an outside observer, who aims to evaluate the informativeness of the source, were
1For example, the recent surge in the popularity of ChatGPT, a generative AI language model,

has led to its widespread usage by a wide range of individuals, including laypeople, artists, and
college students. Despite the model’s disclaimer stating that “ChatGPT may produce inaccurate
information about people, places, or facts,” its adoption continues to grow.
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to have access to the private signals received by the agents, he would gradually
accumulate empirical evidence about the source, and thus eventually learn its in-
formativeness. However, when only the history of past actions is observable, his
inference problem becomes more challenging—not only because there is less infor-
mation available, but also because these past actions are correlated with each other.
This correlation stems from social learning behavior, where agents’ decisions are
influenced by the inferences they draw from observing others’ actions. We say that
asymptotic learning holds if the belief of the outside observer about the source’s in-
formativeness converges to the truth, i.e., it converges almost surely to one when the
source is informative and to zero when it is uninformative. The questions we aim to
address are: Can asymptotic learning be achieved and if so, under what conditions?
Furthermore, what are the behavioral implications of asymptotic learning?

Our question of learning about the informativeness of the source is new within the
realm of social learning. In the absence of information uncertainty, a common
inquiry in this literature is whether or not agents engaged in social learning behavior
ultimately choose the correct action, i.e., the action that matches the payoff-relevant
state. However, in the presence of information uncertainty, we show that agents
may still eventually choose the correct action, but can remain uncertain regarding
its correctness. Therefore, to establish societal confidence in their decision-making,
it is important to understand the conditions for achieving asymptotic learning.

We consider unbounded signals [Smith and Sørensen, 2000] under which the agent’s
private belief induced by an informative signal can be arbitrarily strong. We focus
on this setting since otherwise, asymptotic learning can be easily precluded by
the agents’ lack of response to their private signals.2 Our main result (Theorem
1) shows that even with unbounded signals, achieving asymptotic learning is far
from guaranteed. In fact, the determining factor of asymptotic learning lies in the
tail distributions of the private beliefs of the agents. In particular, it depends on
whether the belief distribution induced by uninformative signals has fatter or thinner
tails compared to that induced by informative signals. More specifically, we show
that asymptotic learning holds when uninformative signals have fatter tails than
informative signals, but fails when uninformative signals have thinner tails.

2The phenomenon in which agents follow the actions of their predecessors regardless of their
private signals is known as information cascades. In such cascades, since agents do not respond
to their private signals, their actions no longer reveal any private information, and thus information
stops accumulating. As shown in Bikhchandani, Hirshleifer, and Welch [1992], information cascades
occur almost surely when signals are bounded and the set of possible signal values is finite.



5

For example, consider an informative source that generates Gaussian signals with
unit variance and mean +1 if the payoff-relevant state is good and mean −1 if the
state is bad. Meanwhile, the uninformative source generates Gaussian signals with
mean 0, independent of the state. If the uninformative source generates signals with
a variance strictly greater than one, then the uninformative signals have fatter tails,
and thus asymptotic learning holds. In contrast, when the uninformative signals
have variance strictly less than one, they exhibit thinner tails, and so asymptotic
learning fails.

As another illustration of the main result, consider the case where the informative
signals have the same distributions as before, but the uninformative signals are
chosen uniformly from the bounded interval [−𝜀, 𝜀] for some 𝜀 > 0. In this case,
the distribution of private beliefs induced by these uninformative signals also has
bounded support. Consequently, it can be viewed as having extremely thinner tails
compared to those of informative Gaussian signals. Hence, Theorem 1 implies that
asymptotic learning fails. Nevertheless, under such an informative source, almost
all agents individually learn its informativeness: Once they receive a signal outside
the support [−𝜀, 𝜀], which is highly probable, they infer that it can only come from
the normal distribution, indicating that the source must be informative. However,
an outside observer who only observes the agents’ actions is unable to determine
the informativeness of the source.

The mechanism behind the main result is as follows. First, in our model, despite
information uncertainty, agents always treat signals as informative. So, when the
source is indeed informative and generates unbounded signals, agents will eventually
reach a consensus on the correct action. Now, suppose that the source is uninforma-
tive and generates signals with thinner tails. In this case, it is unlikely that agents
will receive signals that are extreme enough to break a consensus, so they usually
mimic their predecessors. Consequently, an outside observer who only observes
agents’ actions does not learn that the source is uninformative, as a consensus will
be reached under both uninformative and informative sources. In contrast, suppose
that the source is uninformative but generates signals with fatter tails. In this case,
extreme signals are more likely, allowing agents to break a consensus; in fact, both
actions will be taken infinitely often, so no consensus is ever reached. Hence, an
outside observer who observes an infinite number of action switches learns that the
source is uninformative.

For some private belief distributions, their relative tail thickness is neither thinner
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nor fatter. For these, we show that the same holds: Asymptotic learning holds if
and only if conditioned on the source being uninformative, agents never reach a
consensus (Proposition 1). In terms of behavioral implications, when the source
is informative, as mentioned above, agents eventually reach a consensus on the
correct action, regardless of the achievement of asymptotic learning. Nevertheless,
we show that in this case agents are sure that they are taking the correct action if
and only if asymptotic learning holds (Proposition 2). In contrast, when the source
is uninformative, agents are clearly not guaranteed to reach a consensus on the
correct action; in fact, their actions may or may not converge at all. Proposition
1 demonstrates that an outside observer eventually learns the informativeness of
the source if and only if the agents’ actions do not converge when the source is
uninformative.

A key assumption underlying our results is the assumption of a uniform prior on
the payoff-relevant state given an uninformative source. This assumption ensures
that despite information uncertainty, rational agents always act as if the signals
they receive are informative (Lemma 1). Intuitively, in the absence of any useful
information—when the source is uninformative—each agent with a uniform prior
is indifferent between the available actions. Therefore, there is no harm in always
treating signals as informative. We make this uniform prior assumption for tractabil-
ity, and it can be viewed as capturing settings in which agents are not very informed
a priori, thus making private signals and their informativeness a crucial determin-
ing factor of outcomes. Indeed, in many investment settings, the efficient market
hypothesis [Fama, 1965, Samuelson, 1965] implies that investors should be close to
indifference.3

Related Literature
Our paper contributes to a rich literature on sequential social learning. Assuming that
the common source of information is always informative, the primary focus of this
literature has been on determining whether agents can eventually learn to choose the
correct action. Various factors, such as the information structure [Banerjee, 1992,
Bikhchandani, Hirshleifer, and Welch, 1992, Smith and Sørensen, 2000] and the
observational networks [Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011, Çelen and
Kariv, 2004, Lobel and Sadler, 2015], have been extensively studied to analyze their

3The efficient market hypothesis states that in the financial market, asset prices should reflect
all available information. Thus, if investors are not indifferent, it suggests that they possess private
information that is not yet reflected in market prices, thereby challenging the hypothesis.
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impact on information aggregation, including its efficiency [Rosenberg and Vieille,
2019] and the speed of learning [e.g., Hann-Caruthers, Martynov, and Tamuz, 2018,
Vives, 1993]. However, the question of learning about the informativeness of the
source—which is the focus of this paper—remains largely unexplored.4

A few papers explore the idea of agents having access to multiple sources of in-
formation in the context of social learning. For example, Liang and Mu [2020]
consider a model in which agents endogenously choose from a set of correlated
information sources, and the acquired information is then made public and learned
by other agents. They focus on the externality in agents’ information acquisition
decisions and show that information complementarity can result in either efficient
information aggregation or “learning traps,” in which society gets stuck in choosing
suboptimal information structures. In a different setting, Chen [2022] examines a
sequential social learning model in which ambiguity-averse agents have access to
different sources of information. Consequently, information uncertainty arises in
his model because agents are unsure about the signal precision of their predeces-
sors. He shows that under sufficient ambiguity aversion, there can be information
cascades even with unbounded signals. Our paper differs from these prior works
as we focus on rational agents with access to a common source of information of
unknown informativeness.

Another way of viewing our model is by considering a social learning model with
four states: the source is either informative with the good or bad state, or uninfor-
mative with either the good or bad state. In such multi-state settings, recent work
by Arieli and Mueller-Frank [2021] demonstrates that pairwise unbounded signals
are necessary and sufficient for learning, when the decision problem that agents face
includes a distinct action that is uniquely optimal for each state. This is not the
case in our model, because the same action is optimal in different states, e.g., when
the source is uninformative, and so even when agents observe a very strong signal
indicating that the state is uninformative, they do not reveal it in their behavior.

More recently, Kartik, Lee, Liu, and Rappoport [2022] consider a setting with mul-
tiple states and actions on general sequential observational networks. They identify
a sufficient condition for learning —“excludability” —that jointly depends on the
information structure and agents’ preferences. Roughly speaking, this condition
ensures that agents can always displace the wrong action, which is their driving

4For comprehensive surveys on recent developments in the social learning literature, see e.g.,
Bikhchandani, Hirshleifer, Tamuz, and Welch [2021], Golub and Sadler [2017].
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force for learning. In our model, when the source is uninformative, agents cannot
displace the wrong action as all signals are pure noise.5 Conceptually, our approach
differs from theirs as we are interested in identifying the uninformative state from
the informative one, instead of identifying the payoff-relevant state.

Our paper is also related to the growing literature on social learning with misspecified
models. Bohren [2016] investigates a model where agents fail to account for the
correlation between actions, demonstrating that different degrees of misperception
can lead to distinct learning outcomes. In a broader framework, Bohren and Hauser
[2021] show that learning remains robust to minor misspecifications. In contrast,
Frick, Iĳima, and Ishii [2020] find that an incorrect understanding of other agents’
preferences or types can result in a severe breakdown of information aggregation,
even with a small amount of misperception. Later, Frick, Iĳima, and Ishii [2023]
propose a unified approach to establish convergence results in misspecified learning
environments where the standard martingale approach fails to hold. On a more
positive note, Arieli, Babichenko, Müller, Pourbabaee, and Tamuz [2023] illustrate
that by being mildly condescending—misperceiving others as having slightly lower-
quality of information—agents may perform better in the sense that on average, only
finitely many of them take incorrect actions.

1.2 Leading Example: Testing a New Information Technology
Consider an external evaluator tasked with assessing the informativeness of a novel
information technology, such as an AI recommendation system. This system is used
by a series of investors who are interested in an investment of unknown quality and
have no prior information about it. For concreteness, assume that the quality of
the investment is either good or bad, and the corresponding optimal decisions are
to invest if it is good and not to invest if it is bad. Although the recommendation
system could potentially be uninformative—thus providing no useful information
on the quality of the investment—investors consistently treat the private recommen-
dations they receive as informative since they have no other information to follow.
Furthermore, before making their own investment decisions, investors also observe
the past decisions of their peers who received recommendations from the same
system. The evaluator has access only to these investment decisions and not to the
private recommendations themselves. Based on these observations, the evaluator is

5This observation can also be seen from Theorem 2 in Kartik, Lee, Liu, and Rappoport [2022].
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rewarded if he makes the correct assessment of the information technology.6

From the perspective of the external evaluator, whether he eventually makes the cor-
rect assessment is analogous to whether past investment decisions ultimately reveal
the truth about the informativeness of the technology. In this context, our main result
indicates that when the uninformative system frequently issues strong but conflict-
ing recommendations, the evaluator eventually learns the truth about the technology,
thus reaching the correct assessment. In contrast, when such recommendations oc-
cur infrequently under the uninformative system, the evaluator cannot be certain
of the truth, and the correct assessment is no longer guaranteed. The frequency
at which these recommendations need to occur depends on their tail distributions
generated under different systems—they are frequent if the uninformative system
has fatter tails and infrequent if it has thinner tails.

Why Relative Tail Thickness Matters for Learning.
Why do uninformative signals with fatter tails induce asymptotic learning, while
those with thinner tails do not? To understand why asymptotic learning hinges
on a tail condition, recall that agents always treat signals as informative. Thus,
when the source is informative and generates unbounded signals, agents eventually
reach a consensus on the correct action, and so action switches will eventually cease
altogether.

Now suppose the source is uninformative. The condition of having fatter tails means
that a very extreme signal—say a signal that is 5 standard deviations away from its
mean—is more likely to occur under the uninformative source than the informative
one. As a consequence, the presence of such extreme signals suggests that the source
is uninformative. Even though an outside observer does not directly observe the
private signals received by the agents, he can learn from observing action switches
triggered by these extreme signals. For example, consider an agent who deviates
from an extended period of consensus on the good action. Upon observing such a
deviation, the outside observer infers that this agent must have received an extremely

6As another example, we can view this common information source as a scientific paradigm—a
set of principles guiding a specific scientific discipline. In this context, the question of learning about
the source’s (un)informativeness has a similar flavor to the question of making the right paradigm
shift, as proposed by the scientific philosopher Thomas Kuhn in his influential book “The Structure
of Scientific Revolutions” [Kuhn, 1962]. One classic example of a paradigm shift in geology is the
acceptance of the theory of plate tectonics, which only occurred in the 20th century, despite the idea
of a drifted continent being put forward as early as 1596. See Ortelius [1695] for a printed version
of “Thesaurus Geographicus” (in English, “A New Body of Geography”) where the cartographer
Abraham Ortelius first proposed the hypothesis of continental drift.
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Figure 1.1: This simulation illustrates the log-likelihood ratio of an outside ob-
server’s belief in an informative source compared to an uninformative source over
100 periods. The process is generated under uninformative signals with a normal
distribution with mean 0 and variance 2. The corresponding informative signals
are normally distributed with unit variance and mean −1 and +1, respectively. Red
crosses mark the periods in which action switches occur.

negative signal, which is more likely to occur under an uninformative source with
fatter tails. Consequently, the observer becomes more convinced that the source is
uninformative. It turns out that under uninformative signals with fatter tails, these
action switches never cease; in fact, they will persist indefinitely. This persistence
enables the observer to differentiate between the uninformative and informative
sources.

In contrast, the condition of having thinner tails means that the uninformative source
tends to produce more moderate signals than the informative source. Consequently,
under such an uninformative source, action switches become increasingly rare over
time, and eventually they will stop, thus hindering the observer from discerning the
uninformative source from the informative one.

We illustrate the aforementioned intuition in Figure 1.1. It depicts a simulation of
an outside observer’s belief about the source being informative (in its log-likelihood
ratio) under uninformative signals with fatter tails. First, observe that every action
switch after an extended period of identical actions leads to a significant decrease in
the observer’s belief that the source is informative. As discussed before, observing
these unusual action switches makes the observer less convinced that the source
is informative. Second, although his belief gradually increases in the absence of
action switches, our main result implies that it will eventually converge to zero, so the
corresponding log-likelihood ratio will converge to negative infinity. By contrast, if
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his belief were generated under uninformative signals with thinner tails, then extreme
signals would be less likely, and so would be action switches. Consequently, these
action switches would eventually cease, and thus his belief would no longer converge
to zero.

1.3 Model
Setup
There is an unknown binary state of the world 𝜃 ∈ {𝔤, 𝔟}, chosen at time 0 with
equal probability. We refer to 𝔤 as the good state and 𝔟 as the bad state. A countably
infinite set of agents indexed by time 𝑡 ∈ N = {1, 2, . . .} arrive in order, each
acting once. The action of agent 𝑡 is 𝑎𝑡 ∈ 𝐴 = {𝔤, 𝔟}, with a payoff of one if her
action matches the state 𝜃 and zero otherwise. Before agent 𝑡 chooses an action, she
observes the history of actions made by her predecessors 𝐻𝑡 = (𝑎1, . . . , 𝑎𝑡−1) and
receives a private signal 𝑠𝑡 , taking values in a measurable space (𝑆, Σ).

A pure strategy of agent 𝑡 is a measurable function 𝜎𝑡 : 𝐴𝑡−1 × 𝑆 → 𝐴 that selects an
action for each possible pair of observed history and private signal. A pure strategy
profile 𝜎 = (𝜎𝑡)𝑡∈N is a collection of pure strategies of all agents. A strategy profile
is a Bayesian Nash equilibrium—referred to as equilibrium hereafter—if no agent
can unilaterally deviate from this profile and obtain a strictly higher expected payoff
conditioned on their information. Given that each agent acts only once, the existence
of an equilibrium is guaranteed by a simple inductive argument. In equilibrium,
each agent 𝑡 chooses the action 𝑎𝑡 that maximizes her expected payoff given the
available information:

𝑎𝑡 ∈ arg max
𝑎∈𝐴

E[1(𝜃 = 𝑎) |𝐻𝑡 , 𝑠𝑡] .

Below, we make a continuity assumption which implies that agents are never indif-
ferent, and so there is a unique equilibrium.

The Informativeness of the Source
So far, the above setup is the canonical setting of the sequential social learning model
[Banerjee, 1992, Bikhchandani, Hirshleifer, and Welch, 1992, Smith and Sørensen,
2000]. Our model builds on this setting and introduces another dimension of
uncertainty regarding the informativeness of a common source. Specifically, at time
0, independent of the payoff-relevant state 𝜃, nature chooses an additional binary



12

state 𝜔 ∈ {0, 1} with equal probability.7 When 𝜔 = 1, the source is informative
and sends i.i.d. signals across agents conditional on 𝜃, with distribution 𝜇𝜃 . When
𝜔 = 0, the source is uninformative and still sends i.i.d. signals, but independently
of 𝜃, with distribution 𝜇0. The realization of 𝜔 determines the signal-generating
process for all agents. Throughout, we denote by P0 [·] := P[· | 𝜔 = 0] and
P1 [·] := P[· | 𝜔 = 1] the conditional probability distributions given 𝜔 = 0 and
𝜔 = 1, respectively. Similarly, we use the notation P1,𝔤 [·] := P[· | 𝜔 = 1, 𝜃 = 𝔤] to
denote the conditional probability distribution given 𝜔 = 1 and 𝜃 = 𝔤. We use an
analogous notation for 𝜔 = 1 and 𝜃 = 𝔟.

We first observe that, despite the uncertainty regarding the informativeness of the
source, in equilibrium, each agent chooses the action that is most likely to match the
state, conditional on the source being informative.

Lemma 1. The equilibrium action for each agent 𝑡 is

𝑎𝑡 ∈ arg max
𝑎∈𝐴

P1 [𝜃 = 𝑎 |𝐻𝑡 , 𝑠𝑡] . (1.1)

That is, agents always act as if signals are informative, irrespective of the underlying
signal-generating process. This lemma holds simply because treating signals as
informative—even when they are pure noise—does not adversely affect agents’
payoffs, since in the absence of any useful information, each agent is indifferent
between the available actions given the uniform prior assumption.

Information Structure
The distributions 𝜇𝔤, 𝜇𝔟, and 𝜇0 are distinct and mutually absolutely continuous, so
no signal fully reveals either state 𝜃 or 𝜔. As a consequence, conditioned on 𝜔 = 1,
the log-likelihood ratio of any signal

ℓ𝑡 = log
𝑑𝜇𝔤

𝑑𝜇𝔟
(𝑠𝑡),

is well-defined, and we call it the agent’s private log-likelihood ratio. By Lemma 1,
ℓ𝑡 captures how agents update their private beliefs regarding the relative likelihood
of the good state over the bad state upon receiving their signals, regardless of the
realization of𝜔. Hence, it is sufficient to consider ℓ𝑡 to capture agents’ behavior.8 We
denote by 𝐹𝔤 and 𝐹𝔟 the cumulative distribution functions (CDFs) of ℓ𝑡 conditioned

7Our results do not depend on the independence assumption between 𝜃 and 𝜔. They hold true
as long as conditioned on 𝜔 = 0, both realizations of 𝜃 are equally likely.

8Formally, the sequence of actions 𝑎1, . . . , 𝑎𝑡 is determined by ℓ1, . . . , ℓ𝑡 .
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on the event that 𝜔 = 1 and 𝜃 = 𝔤 and the event that 𝜔 = 1 and 𝜃 = 𝔟, respectively.
We denote by 𝐹0 the CDF of ℓ𝑡 conditioned on 𝜔 = 0. All conditional CDFs 𝐹𝔤,
𝐹𝔟, and 𝐹0 are mutually absolutely continuous, as 𝜇𝔤, 𝜇𝔟 and 𝜇0 are. Let 𝑓𝔤, 𝑓𝔟 and
𝑓0 denote the corresponding density functions of 𝐹𝔤, 𝐹𝔟 and 𝐹0 whenever they are
differentiable.

We focus on unbounded signals in the sense that the agent’s private log-likelihood
ratio can take on arbitrarily large or small values, i.e., for any 𝑀 ∈ R, there exists
a positive probability that ℓ𝑡 > 𝑀 and a positive probability that ℓ𝑡 < −𝑀 . We
informally refer to a signal 𝑠𝑡 as extreme when the corresponding ℓ𝑡 it induces has
a large absolute value. A common example of unbounded private signals is the
case of Gaussian signals, where 𝑠𝑡 follows a normal distribution N(𝑚 (𝜔,𝜃) , 𝜎

2) with
variance 𝜎2 and mean 𝑚 (𝜔,𝜃) that depends on the pair of states (𝜔, 𝜃). An extreme
Gaussian signal is a signal that is, for example, 5 − 𝜎 away from the mean 𝑚 (𝜔,𝜃) .

We make two assumptions for expository simplicity. First, we assume that the pair
(𝐹𝔤, 𝐹𝔟) of informative conditional CDFs is symmetric around zero, i.e., 𝐹𝔤 (𝑥) +
𝐹𝔟(−𝑥) = 1. This implies that our model is invariant with respect to a relabeling
of the payoff-relevant state. Second, we assume that all conditional CDFs—𝐹𝔤, 𝐹𝔟,
and 𝐹0—are continuous, so agents are never indifferent between actions.

In addition, we assume that 𝐹𝔟 has a differentiable left tail, i.e., is differentiable for all
𝑥 negative enough and its probability density function 𝑓𝔟 satisfies the condition that
𝑓𝔟(−𝑥) < 1 for all 𝑥 large enough. By the symmetry assumption, this implies that 𝐹𝔤
also has a differentiable right tail and its density function 𝑓𝔤 satisfies the condition
that 𝑓𝔤 (𝑥) < 1 for all 𝑥 large enough. This is a mild technical assumption that holds
for every non-atomic distribution commonly used in the literature, including the
Gaussian distribution. It holds, for instance, whenever the density tends to zero at
infinity.

Asymptotic Learning
We denote by 𝑞𝑡 := P[𝜔 = 1|𝐻𝑡] the belief that an outside observer assigns to the
source being informative after observing the history of agents’ actions from time 1
to 𝑡−1. As this observer collects more information over time, his belief 𝑞𝑡 converges
almost surely since it is a bounded martingale. To ensure that he eventually learns
the truth regarding the informativeness of the source, we introduce the following
notion of asymptotic learning.



14

Definition 1. Asymptotic learning holds if for all 𝜔 ∈ {0, 1},

lim
𝑡→∞

𝑞𝑡 = 𝜔 P𝜔-almost surely.

That is, conditioned on an informative source, the outside observer’s belief that the
source is informative converges to one almost surely; meanwhile, conditioned on
an uninformative source, his belief that the source is informative converges to zero
almost surely. As we explain below in Section 1.5, asymptotic learning is always
attainable, regardless of the underlying information structure, when all signals are
publicly observable.

1.4 Relative Tail Thickness
To study the conditions for asymptotic learning, it is crucial to understand the con-
cept of relative tail thickness, which compares the tail distributions of agents’ private
log-likelihood ratios induced by different signals. This comparison is important be-
cause it captures the relative likelihood of generating extreme signals from different
sources. Formally, for any pair of CDFs (𝐹0, 𝐹𝜃) where 𝜃 ∈ {𝔤, 𝔟} and some 𝑥 ∈ R+,
we denote their corresponding ratios by

𝐿𝜃 (𝑥) :=
𝐹0(−𝑥)
𝐹𝜃 (−𝑥)

and 𝑅𝜃 (𝑥) :=
1 − 𝐹0(𝑥)
1 − 𝐹𝜃 (𝑥)

.

For large 𝑥, 𝐿𝜃 (𝑥) and 𝑅𝜃 (𝑥) represent the left and right tail ratios of 𝐹0 over 𝐹𝜃 , re-
spectively. The following definitions of fatter and thinner tails describe situations in
which extreme signals are either more or less likely to occur under an uninformative
source compared to an informative one.

Definition 2. (i) The uninformative signals have fatter tails than the informative
signals if there exists 𝜀 > 0 such that

𝐿𝔟(𝑥) ≥ 𝜀 and 𝑅𝔤 (𝑥) ≥ 𝜀 for all 𝑥 large enough.

(ii) The uninformative signals have thinner tails than the informative signals if
there exists 𝜀 > 0 such that either

𝐿𝔤 (𝑥) ≤ 1/𝜀 for all 𝑥 large enough,

or
𝑅𝔟(𝑥) ≤ 1/𝜀 for all 𝑥 large enough.
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That is, for the uninformative signals to have fatter tails, both their corresponding
left and right tail ratios need to be eventually bounded from below. Conversely, for
the uninformative signals to have thinner tails, at least one of their corresponding
tail ratios—either left or right—needs to be eventually bounded from above.9

Note that the first condition 𝐿𝔟(𝑥) ≥ 𝜀 implies that 𝐿𝔤 (𝑥) ≥ 𝜀. This follows
from the well-known fact that 𝐹𝔤 exhibits first-order stochastic dominance over
𝐹𝔟, i.e., 𝐹𝔤 (𝑥) ≤ 𝐹𝔟(𝑥) for all 𝑥 ∈ R [see, e.g., Chamley, 2004, Rosenberg and
Vieille, 2019, Smith and Sørensen, 2000]. Similar statements apply to the remaining
three conditions. Furthermore, note that the uninformative signals cannot have
fatter and thinner tails simultaneously, as 𝐹𝔤 and 𝐹𝔟 represent distributions of the
agent’s private log-likelihood ratio.10 However, there are distributions under which
the uninformative signals have neither fatter nor thinner tails. For these cases,
we characterize the conditions for asymptotic learning in the canonical Gaussian
environment (see more details in Section 1.5).

Intuitively, compared to informative signals, uninformative signals with fatter tails
are more likely to exhibit extreme values. Thus, by Bayes’ Theorem, observing an
extreme signal suggests that the source is uninformative. In contrast, uninformative
signals with thinner tails tend to exhibit moderate values, so observing an extreme
signal in this case suggests that the source is informative. Next, we provide three
examples of uninformative signals with either fatter or thinner tails.

Example 1 (Gaussian Signals). Consider the case where 𝐹𝔤 is normal with mean +1
and unit standard deviation and 𝐹𝔟 is also normal with mean −1 and unit standard
deviation.

Suppose that 𝐹0 has zero mean. If it has a standard deviation of 17, then the
uninformative signals have fatter tails. In this case, if an extreme signal, such as
anything above 11, is observed, it is much more likely that the source is uninformative
than that an informative 10−𝜎 signal were generated under 𝐹𝔤. On the other hand,
if the standard deviation of 𝐹0 is 1/17, then the uninformative signals have thinner
tails, and thus an extreme signal indicates that the source is informative. A graphical

9In statistics, the notion of relative tail thickness has also been explored. Our definition of thinner
tails is closest to that of Rojo [1992], where a CDF 𝐹 is considered not more heavily tailed than 𝐺
if lim sup𝑥→∞ (1 − 𝐹 (𝑥))/(1 − 𝐺 (𝑥)) < ∞. Other notions of relative tail thickness, represented in
terms of density quantile functions, can be found in Parzen [1979] and Lehmann [1988]. See Rojo
[1992] for a discussion of the relationship between these existing notions.

10In particular, 𝐹𝔤 and 𝐹𝔟 satisfy the following inequality: e𝑥𝐹𝔤 (−𝑥) ≤ 𝐹𝔟 (−𝑥), for all 𝑥 ∈ R.
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Figure 1.2: Probability density functions of informative Gaussian signals and their
corresponding uninformative Gaussian signals with fatter tails (on the left) and with
thinner tails (on the right).

example of uninformative Gaussian signals with fatter and thinner tails is shown in
Figure 1.2.

Example 2 (First-Order Stochastically Dominated (FOSD) Signals). Suppose that
𝐹0 first-order stochastically dominates 𝐹𝔤. In this case, since the uninformative
signals are more likely to exhibit high values, 𝐹0 has a thinner left tail than 𝐹𝔤, and
thus by definition, it has thinner tails than the informative signals.

Now, suppose that an extreme signal of a positive value is observed. Then, it is highly
unlikely that the source is informative and associated with the bad state. Instead,
it suggests that the source is more likely to be either uninformative or informative
but associated with the good state. In this case, even though the observation of
an extremely positive signal provides some evidence of the good state, it remains
unclear whether the source is informative, as such a signal is likely to occur under
both 𝐹0 and 𝐹𝔤.

Example 3 (Mixture Signals). For any pair of distributions (𝐹𝔤, 𝐹𝔟) and any 𝛼 ∈
(0, 1), let 𝐹0 = 𝛼𝐹𝔤 + (1−𝛼)𝐹𝔟. Observe that the uninformative signals represented
by 𝐹0 have fatter tails than the informative signals.11 In particular, when 𝛼 =

1/2, the corresponding mixture distribution 𝐹0 = (𝐹𝔤 + 𝐹𝔟)/2 coincides with the
unconditional distribution of ℓ𝑡 generated by an informative source. Thus, we
can think of this uninformative source as being a priori indistinguishable from the
informative one.

Alternatively, the mixture distribution 𝐹0 can be viewed as generating conditionally
i.i.d. signals, but instead of conditioning on the state 𝜃, they are generated condi-

11To see this, fix any constant 𝛼 ∈ (0, 1) and let 𝐹0 = 𝛼𝐹𝔤 + (1 − 𝛼)𝐹𝔟. Since CDFs always take
nonnegative values, for any 𝑥 ∈ R, 𝐹0 (𝑥) ≥ (1 − 𝛼)𝐹𝔟 (𝑥). Similarly, 1 − 𝐹0 (𝑥) = 𝛼(1 − 𝐹𝔤 (𝑥)) +
(1−𝛼) (1− 𝐹𝔟 (𝑥)) ≥ 𝛼(1− 𝐹𝔤 (𝑥)). Let 𝜀 = min{𝛼, 1−𝛼}, and thus by definition 𝐹0 has fatter tails.
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tioned on a different state 𝜂. Specifically, suppose that in each period, the state 𝜂 is
randomly drawn from the same set {𝔤, 𝔟}, independent of 𝜃. Say, with probability
𝛼, the event 𝜂 = 𝔤 occurs and a signal is drawn from the distribution 𝐹𝔤. With the
complementary probability, the event 𝜂 = 𝔟 occurs, and a signal is drawn from the
distribution 𝐹𝔟.12

1.5 Main Results
A Benchmark
As a benchmark, we briefly discuss the case where all signals are observed by the
outside observer.13 Depending on the realizations of 𝜃 and 𝜔, these signals are
distributed according to either 𝜇𝔤, 𝜇𝔟 or 𝜇0. Since these measures are distinct, as
the sample size grows, this observer eventually learns which distribution is being
sampled. Formally, at time 𝑡, the empirical distribution of the signals 𝜇̂𝑡 assigns to
a measurable set 𝐵 ⊆ 𝑆 the probability

𝜇̂𝑡 (𝐵) :=
1
𝑡

𝑡∑︁
𝜏=1
1(𝑠𝜏 ∈ 𝐵).

Conditional on both states 𝜔 and 𝜃, this is the empirical mean of i.i.d. Bernoulli
random variables. Hence, by the strong law of large numbers, for every measurable
set 𝐵 ⊆ 𝑆,

lim
𝑡→∞

𝜇̂𝑡 (𝐵) = 𝜇(𝜔,𝜃) (𝐵) almost surely,

where 𝜇(1,𝔤) = 𝜇𝔤, 𝜇(1,𝔟) = 𝜇𝔟 and 𝜇(·,0) = 𝜇0.

Thus, regardless of the underlying signal-generating process, any uncertainty con-
cerning the informativeness of the source is eventually resolved if all signals are
publicly observable. Next, we turn to our main setting where the signals remain
private and only the actions are observable. Clearly, in this setting, less informa-
tion is available—observed actions contain less information than private signals.
In addition, one needs to take into account the positive correlation between these
observed actions.

Public Actions
We now present our main result (Theorem 1). In contrast to the public signal
benchmark, our main result shows that the achievement of asymptotic learning is no

12When 𝛼 = 1/2, we can think of these uninformative signals as being generated based on a
sequence of fair and independent coin tosses.

13Equivalently, one can let the outside observer observe all agents’ actions in addition to their
signals. Since actions contain no additional payoff relevant information, it suffices to only consider
the signals.
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longer guaranteed. In fact, the key determinant of asymptotic learning is the relative
tail thickness between the uninformative and informative signals, as introduced in
Definition 2.

Theorem 1. When the uninformative signals have fatter tails than the informative
signals, asymptotic learning holds. When the uninformative signals have thinner
tails than the informative signals, asymptotic learning fails.

Theorem 1 demonstrates that an outside observer, who learns from observing agents’
actions, eventually distinguishes between informative and uninformative sources if
the latter source generates signals with greater dispersion than the former. In
contrast, when the uninformative signals are relatively concentrated compared to
informative ones, such differentiation becomes unattainable for the observer.

For example, consider informative signals that follow a normal distribution with unit
variance and mean +1 and −1, respectively. When the uninformative signals follow
a normal distribution with a variance of 2, they have fatter tails and thus Theorem 1
implies that asymptotic learning holds. In contrast, when the uninformative signals
follow a normal distribution with a variance of 1/2, they have thinner tails, and thus
Theorem 1 implies that asymptotic learning fails. Indeed, for normal distributions,
the relative thickness of the tails is determined solely by their variances: a higher
variance corresponds to fatter tails, while a lower variance corresponds to thinner
tails (see Lemma 8 in the appendix). An immediate consequence of Theorem 1 is
the following result.

Corollary 1. Suppose all private signals are normal where the informative signals
have variance𝜎2, and the uninformative signals have variance 𝜏2. Then, asymptotic
learning holds if 𝜏 > 𝜎 and fails if 𝜏 < 𝜎.

The idea behind our proof of Theorem 1 is as follows. First consider the case where
the source is informative. In this case, the likelihood of generating extreme signals
that overturn a long streak of correct consensus decreases rapidly. Consequently,
agents will eventually reach a consensus on the correct action since they always treat
signals as informative. Now, suppose that the source is uninformative and instead
of reaching a consensus, agents continue to disagree indefinitely, leading to both
actions being taken infinitely often. If this were the case, an outside observer would
eventually be able to distinguish between informative and uninformative sources, as
they induce distinct behavioral patterns among agents. Whether these disagreements
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persist or not depends on whether the tails of the uninformative signals are thick
enough to generate these overturning extreme signals.

In sum, when the tails of uninformative signals are sufficiently thick (i.e., when they
have fatter tails), overturning extreme signals occur often enough so that disagree-
ments persist. When the tails are not sufficiently thick (i.e., when they have thinner
tails), these signals are less likely, so disagreements eventually cease. Hence, we
conclude that the relative tail thickness between uninformative and informative sig-
nals plays an important role in determining the achievement of asymptotic learning.

Perpetual Disagreement

As mentioned above, if agents never reach a consensus under an uninformative
source, then intuitively the outside observer can infer the uninformativeness of
the source. To formally establish the key mechanism underlying our main result,
we define the event in which agents never converge to any action as perpetual
disagreement. Let 𝑆 :=

∑∞
𝑡=1 1(𝑎𝑡 ≠ 𝑎𝑡+1) denote the total number of action

switches, so that the event {𝑆 = ∞} is the perpetual disagreement event. It turns out
that perpetual disagreement under an uninformative source is not only a sufficient
condition for asymptotic learning but also a necessary condition, as shown in the
following proposition.

Proposition 1. Asymptotic learning holds if and only if conditioned on 𝜔 = 0, the
perpetual disagreement event occurs almost surely.

The proof of Proposition 1 uses the idea of an outside observer whose goal is to guess
the informativeness of the source. Note that the achievement of asymptotic learning
means that eventually he can always make the correct guess. Since the outsider
observes all agents’ actions, he expects to see an eventual consensus when the
source is informative. Therefore, if he observes action nonconvergence, he infers
that the source must be uninformative and make the correct guess. Conversely,
suppose to the contrary that agents could also reach a consensus when the source
is uninformative. This implies that action convergence is plausible under both
informative and uninformative sources. Consequently, the observer is no longer
sure of the source’s informativeness, contradicting our hypothesis that he always
makes the correct guess.
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Gaussian Private Signals
While Theorem 1 provides valuable insight into the role of relative tail thickness
in determining the achievement of asymptotic learning, there are situations where
uninformative signals have neither fatter nor thinner tails compared to informative
signals, rendering Theorem 1 inapplicable. For example, consider a scenario where
𝐹0, 𝐹𝔤, and 𝐹𝔟 are normal distributions with the same variance and mean 0, 1, and
−1, respectively. As 𝑥 approaches infinity, both 𝐹0(−𝑥) and 𝐹𝔟(−𝑥) approach zero,
but the former goes to zero much faster than the latter, leading 𝐿𝔟(𝑥) converging to
zero. As a result, 𝐹0 does not have fatter tails. Similarly, both 𝐿𝔤 (𝑥) and 𝑅𝔟(𝑥) tend
to infinity as 𝑥 approaches infinity, so 𝐹0 does not have thinner tails either.

To complement the findings of Theorem 1, we focus on the Gaussian environment
where all signals are normal and share the same variance 𝜎2. The informative
signals are symmetric with mean +1 and −1, respectively, while the uninformative
signals have mean 𝑚0 ∈ (−1, 1).14 In this setting, a simple calculation shows that
the agent’s private log-likelihood ratio is directly proportional to the private signal:
ℓ𝑡 = 2𝑠𝑡/𝜎2. As a consequence, all distributions 𝐹𝔤, 𝐹𝔟, and 𝐹0 are also Gaussian.
In the following result, we show that asymptotic learning is achieved if and only if
the uninformative signals are symmetric around zero.

Theorem 2. Suppose all private signals are Gaussian with the same variance, where
informative signals have means −1 and +1, and uninformative signals have mean
𝑚0 ∈ (−1, 1). Then, asymptotic learning holds if and only if 𝑚0 = 0.

Together with Corollary 1, Theorem 2 provides a complete characterization of
asymptotic learning in the Gaussian environment with symmetric informative sig-
nals. In particular, it shows that in such an environment, asymptotic learning
holds in a knife-edge case where the uninformative distribution is symmetric around
zero. Intuitively, any deviation in the mean of 𝐹0 away from zero would bring 𝐹0

closer to either 𝐹𝔤 or 𝐹𝔟, thus making the uninformative signals more similar to the
corresponding informative signals. Consequently, it becomes impossible to fully
differentiate between them.

14In the case where all Gaussian signals share the same variance and the absolute value of 𝑚0
is strictly greater than one, the uninformative signals clearly have thinner tails. For example, when
𝑚0 = 2, it reduces to Example 2. Thus, our main result implies that asymptotic learning fails.
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Figure 1.3: The belief that the source is informative (on the left) and the total number
of action switches (on the right) under uninformative signals with fatter and thinner
tails.

Numerical Simulation
To further illustrate our main result, we use Monte Carlo simulations to numerically
simulate the belief process of an outside observer and the corresponding action
switches among agents. We fix the pair of informative Gaussian signal distributions
to be (𝜇𝔤, 𝜇𝔟) where 𝜇𝔤 = N(+1, 2) and 𝜇𝔟 = N(−1, 2) and simulate these processes
under fatter-tailed uninformative Gaussian signals with distribution 𝜇0 = N(0, 3)
and thinner-tailed uninformative Gaussian signals with distribution 𝜇0 = N(0, 1),
respectively.15 We conduct these simulations 1,000 times and calculate the averages
for each period. This yields approximations for the expected belief and the expected
total number of action switches in the presence of uninformative signals. Figure 1.3
displays the results of these simulations.

What immediately stands out is that under fatter-tailed uninformative signals, the
belief of the outside observer that the source is informative decreases much faster
compared to thinner-tailed uninformative signals. By period 60, this belief is
approximately 0.3 under fatter-tailed uninformative signals, which is less than two-
thirds of the belief observed under thinner-tailed uninformative signals. These
findings align with the predictions of Theorem 1, suggesting that in the former case
the observer will eventually learn that the source is uninformative. In contrast,
with thinner-tailed uninformative signals, the decline in the belief about the source’s
informativeness plateaus around 0.48 after period 20, suggesting that the observer
will not be able to learn that the source is uninformative.

As shown in Proposition 1, the key mechanism driving asymptotic learning is
15Note that in this case, the agent’s private log-likelihood ratio ℓ𝑡 = 𝑠𝑡 , so 𝐹0, 𝐹𝔤, and 𝐹𝔟 have the

same distribution as 𝜇0, 𝜇𝔤, and 𝜇𝔟, respectively.
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the persistence of disagreements under an uninformative source. Recall that the
intuition is that the uninformative source with fatter tails has a higher probability
of generating extreme signals, which in turn, prevents agents from converging to a
consensus. This phenomenon is evident in the right plot of Figure 1.3, where the
average total number of action switches under fatter-tailed uninformative signals
increases over time. In contrast, under the thinner-tailed uninformative signals,
the total number of switches plateaus in a short amount of time, suggesting that
perpetual disagreement does not occur in this case.

1.6 Asymptotic Learning and Other Notions of Learning
In this section, we discuss the connections between asymptotic learning and other
notions of learning that have been studied in the literature. One common notion,
concerning the convergence of agents’ actions, is known as herding. Another notion,
concerning the convergence of agents’ beliefs, is known as complete learning. We
will show that in the presence of information uncertainty, agents may eventually
choose the correct action without ever being certain that it is correct.

Formally, we say that correct herding holds if lim𝑡→∞ 𝑎𝑡 = 𝜃 almost surely. That
is, the event that all but finitely many agents take the correct action occurs with
probability one. Let 𝑝𝑡 := P[𝜃 = 𝔤|𝐻𝑡] denote the belief assigned by agent 𝑡 to the
good state given the history of observed actions; we refer to it as the social belief
at time 𝑡. We say that complete learning holds if the social belief 𝑝𝑡 almost surely
converges to one when 𝜃 = 𝔤 and to zero when 𝜃 = 𝔟. Essentially, complete learning
means that society eventually becomes confident that they are making the correct
choice.

In the standard model where there is no information uncertainty and the source is
always informative, Smith and Sørensen [2000] show that correct herding holds if
and only if signals are unbounded. In our model, since agents always act as if signals
are informative, when the source is indeed informative and generates unbounded
signals, correct herding also holds:

lim
𝑡→∞

𝑎𝑡 = 𝜃 P1-almost surely.

That is, given an informative source, agents eventually converge to the correct
action, regardless of the achievement of asymptotic learning. By contrast, given an
uninformative source, agents are clearly not guaranteed to converge to the correct
action; in fact, their actions may or may not converge at all. Indeed, as suggested by
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Proposition 1, in this case, agents’ actions do not converge if asymptotic learning
holds or they may converge to the wrong action if asymptotic learning fails.

Nevertheless, the achievement of correct herding under an informative source does
not imply the attainment of complete learning. In this case, although agents eventu-
ally converge to the correct action, they remain uncertain about its correctness unless
asymptotic learning holds. Conversely, if the informativeness of the source remains
uncertain, so do agents’ beliefs about the correctness of their action consensus. We
summarize this relationship in the following proposition.

Proposition 2. Asymptotic learning holds if and only if conditioned on 𝜔 = 1,
complete learning holds.

The proof of Proposition 2 uses the idea of an outside observer who observes the
same public information as agent 𝑡, but does not observe her private signal. So, at
time 𝑡, the observer’s belief is equal to the social belief. As long as the observer
remains uncertain about the source’s informativeness, he cannot fully trust the
public information, which consists of agents’ actions. Conversely, once the source’s
informativeness is confirmed, this public information becomes highly accurate,
enabling his belief to converge to the truth. The next result shows that when the
source is uninformative, achieving asymptotic learning is equivalent to the social
belief converging to the uniform prior.

Proposition 3. Asymptotic learning holds if and only if conditioned on 𝜔 = 0,
lim𝑡→∞ 𝑝𝑡 = 1/2 almost surely.

The proof of Proposition 3 uses a similar approach to Proposition 2 and applies
the result of Proposition 1. One direction is straightforward: Once an outside
observer learns that the source is uninformative, his belief about the payoff-relevant
state remains uniform since agents’ actions are based on signals that contain no
information. For the other direction, suppose that asymptotic learning fails under an
uninformative source. Then, by Proposition 1, it implies that agents may eventually
reach a consensus on some action. Since this is also possible under an informative
source, the observer cannot completely disregard the possibility that agents’ actions
are informative. As a consequence, his belief about the payoff-relevant state is not
guaranteed to remain uniform.
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1.7 Analysis
In this section we first examine how agents update their beliefs. We present two
standard yet useful properties of their belief updating process, namely, the over-
turning principle and stationarity. Then, based on Proposition 1, we characterize
asymptotic learning in terms of immediate agreement—the event in which all agents
immediately reach a consensus on some action—which simplifies the problem of
asymptotic learning. Finally, we provide a proof sketch of our main result (Theorem
1) at the end of this section.

Agents’ Beliefs Dynamics
Since agents always act as if signals are informative (Lemma 1), we focus on how
agents update their beliefs conditioned on an informative source. We denote by 𝜋𝑡
the public belief that agent 𝑡 assigns to the good state after observing the history of
actions 𝐻𝑡 , i.e., 𝜋𝑡 := P1 [𝜃 = 𝔤|𝐻𝑡]. The corresponding log-likelihood ratio of 𝜋𝑡 is
given by

𝑟𝑡 := log
𝜋𝑡

1 − 𝜋𝑡
= log

P1 [𝜃 = 𝔤|𝐻𝑡]
P1 [𝜃 = 𝔟|𝐻𝑡]

.

Furthermore, let 𝐿𝑡 denote the log-likelihood ratio of the posterior belief that agent 𝑡
assigns to the good state over the bad state after observing both the history of actions
and her private signal:

𝐿𝑡 := log
P1 [𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡]
P1 [𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡]

.

Recall that ℓ𝑡 is the log-likelihood ratio of agent 𝑡’s private belief induced by a signal
𝑠𝑡 conditioned on 𝜔 = 1. By Bayes’ rule, we can write

𝐿𝑡 = 𝑟𝑡 + ℓ𝑡 .

It follows from (1.1) that, in equilibrium, agent 𝑡 chooses action 𝔤 if ℓ𝑡 ≥ −𝑟𝑡 and
action 𝔟 if ℓ𝑡 < −𝑟𝑡 . Hence, conditioned on the state 𝜃 and the event that 𝜔 = 1, the
probability that agent 𝑡 chooses action 𝔤 is 1 − 𝐹𝜃 (−𝑟𝑡) and the probability that she
chooses action 𝔟 is 𝐹𝜃 (−𝑟𝑡). As a consequence, the agents’ public log-likelihood
ratios (𝑟𝑡) evolve as follows:

𝑟𝑡+1 = 𝑟𝑡 + 𝐷𝔤 (𝑟𝑡) if 𝑎𝑡 = 𝔤, (1.2)

𝑟𝑡+1 = 𝑟𝑡 + 𝐷𝔟(𝑟𝑡) if 𝑎𝑡 = 𝔟, (1.3)

where

𝐷𝔤 (𝑟) := log
1 − 𝐹𝔤 (−𝑟)
1 − 𝐹𝔟(−𝑟)

and 𝐷𝔟(𝑟) := log
𝐹𝔤 (−𝑟)
𝐹𝔟(−𝑟)

.
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Note that 𝐷𝔤 always takes positive values and 𝐷𝔟 always takes negative values as
𝐹𝔤 first-order stochastically dominates 𝐹𝔟.

Overturning Principle and Stationarity

One important property held by the agent’s public belief is known as the overturning
principle [Smith and Sørensen, 2000, Sørensen, 1996], which asserts that a single
action switch is sufficient to change the verdict of 𝜋𝑡 .

Lemma 2 (Overturning Principle). For each agent 𝑡, if 𝑎𝑡 = 𝔤, then 𝜋𝑡+1 ≥ 1/2.
Similarly, if 𝑎𝑡 = 𝔟, then 𝜋𝑡+1 ≤ 1/2.

Another important property held by 𝜋𝑡 is stationarity—the value of 𝜋𝑡 captures all
past information about the payoff-relevant state, independent of time. This holds in
our model because, regardless of the informativeness of the source, agents always
update their public log-likelihood ratios according to either (1.2) or (1.3). We further
write P𝜔̃,𝜃,𝜋 to denote the conditional probability distribution given the pair of state
realizations (𝜔̃, 𝜃) while highlighting the different values of the prior 𝜋.

Lemma 3 (Stationarity). For any fixed sequence (𝑏𝜏)𝑘𝜏=1 of 𝑘 actions in {𝔤, 𝔟}, any
prior 𝜋 ∈ (0, 1) and any pair (𝜔̃, 𝜃) ∈ {0, 1} × {𝔤, 𝔟}

P𝜔̃,𝜃 [𝑎𝑡+1 = 𝑏1, . . . , 𝑎𝑡+𝑘 = 𝑏𝑘 |𝜋𝑡 = 𝜋] = P𝜔̃,𝜃,𝜋 [𝑎1 = 𝑏1, . . . , 𝑎𝑘 = 𝑏𝑘 ] .

This lemma states that regardless of the source’s informativeness, if agent 𝑡’s public
belief is equal to 𝜋, then the probability of observing a sequence (𝑏1, . . . , 𝑏𝑘 ) of
actions of length 𝑘 is the same as observing this sequence starting from time 1,
given that the agents’ prior on the payoff-relevant state is 𝜋.

Asymptotic Learning and Immediate Agreement
In our model, since the agent’s public belief 𝜋𝑡 evolves as in the standard model, it
remains a martingale when the source is informative. However, when the source is
uninformative, 𝜋𝑡 ceases to be a martingale under the measure P0. Therefore, we
need to employ a different analytical approach to understand what ensures asymptotic
learning.16 To do so, we focus on the event {𝑎1 = 𝑎2 = . . . = 𝑎} in which all agents
immediately reach a consensus on some action 𝑎 ∈ {𝔤, 𝔟}. We denote such an event

16A similar approach can be found in Arieli, Babichenko, Müller, Pourbabaee, and Tamuz [2023],
where the agent’s public belief also ceases to be a martingale under the correct measure because
overconfident agents have misspecified beliefs.
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by {𝑎̄ = 𝑎} and refer to it as immediate agreement on action 𝑎. Note that conditioned
on this event, the process of public log-likelihood ratios (𝑟𝑡) is deterministic and
evolves according to either (1.2) or (1.3).

The following lemma shows that conditioned on an informative source, immediate
agreement on the wrong action is impossible, whereas immediate agreement on the
correct action is possible, at least for some prior. For brevity, we state this result
only for the case where 𝜃 = 𝔤. By symmetry, analogous statements hold for 𝜃 = 𝔟.

Lemma 4. Conditioned on 𝜔 = 1 and 𝜃 = 𝔤, the following two conditions hold:

(i) Immediate agreement on action 𝔟 is impossible.
(ii) Immediate agreement on action 𝔤 is possible for some prior 𝜋 ∈ (0, 1).

The first part of Lemma 4 holds since, as mentioned before, conditioned on an infor-
mative source, all but finitely many agents take the correct action. This immediately
implies that agents cannot reach a consensus on the wrong action from the outset.
Likewise, the second part of Lemma 4 holds because if agents eventually reach a
consensus on the correct action, by stationarity, they can also do so immediately at
least for some prior.17

Next, we focus on the immediate agreement event conditioned on an uninformative
source. Recall that in Proposition 1, we have established the relationship between
asymptotic learning and perpetual disagreement. Building on this, we now char-
acterize asymptotic learning in terms of immediate agreement, which is crucial in
proving our main result.

Proposition 4. Asymptotic learning holds if and only if conditioned on 𝜔 = 0,
immediate agreement on any actions is impossible.

This proposition states that achieving asymptotic learning is equivalent to the ab-
sence of immediate agreement starting at a uniform prior given an uninformative
source. The proof of Proposition 4 utilizes the idea that the agent’s belief updating
process is eventually monotonic—a technical property that we establish in Lemma 6
in the appendix. This property ensures that if immediate agreement is impossible for
some prior, e.g., the uniform prior, it becomes impossible for all priors. By applying
stationarity, this implies that agents cannot reach a consensus on any actions for any

17 In fact, part (ii) of Lemma 4 holds not only for some prior but also for all priors. One can see
this by applying a similar argument used in the proof of Lemma 7 in the appendix. We omit the
stronger statement here, as it is not required to prove our main result.
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priors. Consequently, perpetual disagreement occurs with probability one, and it
follows from Proposition 1 that it is equivalent to asymptotic learning.

Therefore, we have reduced the problem of asymptotic learning to determining the
possibility of immediate agreement conditioned on an uninformative source, which
is much easier to analyze. Specifically, conditioned on the event {𝑎̄ = 𝔤}, let 𝑟𝔤𝑡
denote the deterministic process of 𝑟𝑡 based on (1.2). Recall that agent 𝑡 chooses
𝑎𝑡 = 𝔤 if ℓ𝑡 ≥ −𝑟𝑡 and 𝑎𝑡 = 𝔟 otherwise. Consequently, the probability of {𝑎̄ = 𝔤}
is equal to the probability that ℓ𝑡 ≥ −𝑟𝔤𝑡 for all 𝑡 ≥ 1. Moreover, conditioned on
an uninformative source, since private signals are i.i.d., the corresponding private
log-likelihood ratios are also i.i.d. Thus, conditioned on 𝜔 = 0, the probability of
immediate agreement on action 𝔤 is

P0 [𝑎̄ = 𝔤] =
∞∏
𝑡=1

(1 − 𝐹0(−𝑟𝔤𝑡 )).

To determine whether the above probability is positive or zero, by a standard approx-
imation argument, it is equivalent to examining whether the sum of the probabilities
of the following events is finite or infinite:

P0 [𝑎̄ = 𝔤] > 0 (= 0) ⇔
∞∑︁
𝑡=1

𝐹0(−𝑟𝔤𝑡 ) < ∞ (= ∞). (1.4)

By the symmetry of the model, we also have

P0 [𝑎̄ = 𝔟] > 0 (= 0) ⇔
∞∑︁
𝑡=1

(
1 − 𝐹0(𝑟𝔤𝑡 )

)
< ∞ (= ∞). (1.5)

In summary, asymptotic learning holds if and only if conditioned on the source
being uninformative, the probability of generating extreme signals decreases slowly
enough so that both sums in (1.4) and (1.5) are infinite. As we discuss below,
for uninformative signals with fatter tails, these sums diverge, and for signals with
thinner tails, at least one of these sums converges.

Proof Sketch of Theorem 1
We conclude this section by providing a sketch of the proof of Theorem 1. On the
one hand, by part (i) of Lemma 4, the probability of generating extreme signals
that match the payoff-relevant state decreases relatively slowly under informative
signals. Hence, if the source is uninformative and generates signals with fatter tails,
this probability declines even more slowly. Consequently, both the sums in (1.4) and
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(1.5) are infinite, which means that no immediate agreement is possible. Thus, by
Proposition 4, asymptotic learning holds. On the other hand, by part (ii) of Lemma
4, the probability of generating extreme signals that mismatch the state decreases
relatively fast under informative signals. Hence, if the source is uninformative and
generates signals with thinner tails, this probability decreases even more rapidly, at
least for some type of extreme signals. Consequently, either the sum in (1.4) or the
sum in (1.5) (or both) is finite, which means that immediate agreement on some
action is possible. Hence, by Proposition 4, asymptotic learning fails.

1.8 Conclusion
In this paper, we study the sequential social learning problem in the presence of a
potentially uninformative source, e.g., an AI recommendation system of unknown
quality. We show that achieving asymptotic learning, in which an outside observer
eventually discerns the informativeness of the source, is not guaranteed, and it
depends on the relationship between the conditional distributions of the private
signals. In particular, it hinges on the relative tail distribution between signals: when
uninformative signals have fatter tails compared to their informative counterparts,
asymptotic learning holds; conversely, when they have thinner tails, asymptotic
learning fails. We also characterize the conditions for asymptotic learning in the
canonical case of Gaussian private signals, where the relative tail thickness is
incomparable.

More generally, our analysis suggests that irregular behavior, such as an action switch
(or disagreement) following a prolonged sequence of identical actions, is the driving
force behind asymptotic learning. Indeed, contrary to the public-signal benchmark
case in which asymptotic learning is always achieved, with private signals, an
outside observer can only learn that the source is uninformative from observing
these action switches. We show that conditioned on an uninformative source, when
action switches accumulate indefinitely (or disagreements occur perpetually), the
observer eventually learns the informativeness of the source, and vice versa. We
view this characterization of asymptotic learning as the key mechanism behind our
main result.18

A limitation of our results is that they apply only asymptotically. Our numerical
18In the context of scientific paradigms, this mechanism is reminiscent of Kuhn [1962]’s idea that

the accumulation of anomalies may trigger scientific revolutions and paradigm shifts. See Ba [2022]
for a study on the rationale behind the persistence of a misspecified model, e.g., a wrong scientific
paradigm.
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simulations suggest that in the case of uninformative Gaussian signals with fatter
tails, the asymptotics can already kick in relatively early in the process. It would
be interesting to understand the speed at which an outside observer learns about
the informativeness of the source. Another promising extension is to explore vary-
ing degrees of informativeness, beyond the extreme cases currently considered in
this paper. For example, instead of having either informative or completely unin-
formative signals, one could have a distribution over the variance of conditionally
i.i.d. Gaussian signals and ask whether learning about the payoff-relevant state is
achievable. We leave these questions for future research.

1.9 Proofs

Proof of Lemma 1. Recall that in equilibrium, each agent 𝑡 chooses the action that
is most likely to match the state 𝜃 conditioned on the available information (𝐻𝑡 , 𝑠𝑡).
By Bayes’ rule, the relative likelihood between the good state and the bad state for
agent 𝑡 is

P[𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡]
P[𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡]

=

∑
𝜔̃∈{0,1} P𝜔̃ [𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡] · P[𝜔 = 𝜔̃ |𝐻𝑡 , 𝑠𝑡]∑
𝜔̃∈{0,1} P𝜔̃ [𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡] · P[𝜔 = 𝜔̃ |𝐻𝑡 , 𝑠𝑡]

.

Note that P0 [𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡] = P0 [𝜃 = 𝔤] and P0 [𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡] = P0 [𝜃 = 𝔟] as con-
ditioned on 𝜔 = 0, neither the history 𝐻𝑡 nor the signal 𝑠𝑡 contains any information
about the payoff-relevant state 𝜃. Since the states 𝜔 and 𝜃 are independent of each
other and the prior on 𝜃 is uniform, P0 [𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡] = P0 [𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡] = 1/2.
Thus, it follows from the above equation that

P[𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡]
P[𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡]

≥ 1 ⇔ P1 [𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡]
P1 [𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡]

≥ 1.

That is, in equilibrium, each agent chooses the most likely action conditioned on the
available information and the source being informative. □

Proof of Lemma 2. For any 𝑡 ≥ 1, one has that

𝜋𝑡+1 = E1 [1(𝜃 = 𝔤) |𝐻𝑡+1] = E1 [E1 [1(𝜃 = 𝔤) |𝐻𝑡 , 𝑠𝑡] |𝐻𝑡+1]],

where the second equality follows from the law of the iterated expectation. Thus, if
𝑎𝑡 = 𝔤, by Lemma 1, P1 [𝜃 = 𝔤|𝐻𝑡 , 𝑠𝑡] ≥ P1 [𝜃 = 𝔟|𝐻𝑡 , 𝑠𝑡]. It follows from the above
equation that 𝜋𝑡+1 ≥ 1− 𝜋𝑡+1, which implies that 𝜋𝑡+1 ≥ 1/2. The case where 𝑎𝑡 = 𝔟

implies that 𝜋𝑡+1 ≤ 1/2 follows from a symmetric argument. □
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The following simple claim will be useful in proving Proposition 1. It employs
an idea similar to the no introspection principle in Sørensen [1996]. Recall that
𝑞𝑡 = P[𝜔 = 1|𝐻𝑡] is the belief that an outside observer assigns to the source being
informative based on the history of actions from time 1 to 𝑡 − 1.

Claim 1. For any 𝑎 ∈ (0, 1/2) and any 𝑏 ∈ (1/2, 1),

P0 [𝑞𝑡 = 𝑞] ≤
1 − 𝑎
𝑎

· P1 [𝑞𝑡 = 𝑞], for all 𝑞 ∈ [𝑎, 1/2];

P0 [𝑞𝑡 = 𝑞] ≥
1 − 𝑏
𝑏

· P1 [𝑞𝑡 = 𝑞], for all 𝑞 ∈ [1/2, 𝑏] .

Proof of Claim 1. For any 𝑞 ∈ (0, 1), let 𝐻̃𝑡 be a history of actions such that the
associated belief 𝑞𝑡 is equal to 𝑞. By the law of total expectation,

P[𝜔 = 1|𝑞𝑡 = 𝑞] = E[E[1(𝜔 = 1) |𝐻̃𝑡] |𝑞𝑡 = 𝑞] = E[𝑞 |𝑞𝑡 = 𝑞] = 𝑞.

It follows from Bayes’ rule that

P0 [𝑞𝑡 = 𝑞]
P1 [𝑞𝑡 = 𝑞]

=
P[𝜔 = 0|𝑞𝑡 = 𝑞]
P[𝜔 = 1|𝑞𝑡 = 𝑞]

· P[𝜔 = 1]
P[𝜔 = 0] =

1 − 𝑞
𝑞

.

Since for any 𝑎 ∈ (0, 1/2) and any 𝑞 ∈ [𝑎, 1/2], 1 ≤ 1−𝑞
𝑞

≤ 1−𝑎
𝑎

, it follows from the
above equation that

P0 [𝑞𝑡 = 𝑞] =
1 − 𝑞
𝑞

· P1 [𝑞𝑡 = 𝑞] ≤
1 − 𝑎
𝑎

· P1 [𝑞𝑡 = 𝑞] .

The second inequality follows from an identical argument. □

In the following proofs for Proposition 1, 2 and 3, we use extensively the idea
of an outside observer, say observer 𝑥, who observes everyone’s actions. The
information available to him at time 𝑡 is thus 𝐻𝑡 = (𝑎1, . . . , 𝑎𝑡−1) and at time infinity
is 𝐻∞ = ∪𝑡𝐻𝑡 . He gets a utility of one if his guess about 𝜔 is correct and zero
otherwise. Furthermore, we denote by 𝑞∞ := P[𝜔 = 1|𝐻∞] the belief that he has at
time infinity about the event 𝜔 = 1. Similarly, we denote by 𝑝∞ := P[𝜃 = 𝔤|𝐻∞]
the belief that he has at time infinity about the event 𝜃 = 𝔤.

Proof of Proposition 1. We first show the if direction. Recall that 𝑆 =
∑∞
𝑡=1 1(𝑎𝑡 ≠

𝑎𝑡+1) and suppose that P0 [𝑆 = ∞] = 1. Denote by 𝑎𝑥𝑡 the guess that the outside
observer 𝑥 would make to maximize his probability of guessing 𝜔 correctly at time
𝑡. Fix a large positive integer 𝑘 ∈ N. Let 𝐴𝑡 (𝑘) denote the event that there have



31

been at least 𝑘 action switches before time 𝑡 and denote its complementary event by
𝐴𝑐𝑡 (𝑘).

Consider the following strategy 𝑎̃𝑥∞(𝑘) for 𝑥 at time infinity: 𝑎̃𝑥∞(𝑘) = 0 if 𝐴∞(𝑘)
occurs and 𝑎̃𝑥∞(𝑘) = 1 otherwise. That is, the observer would guess 0 if there are at
least 𝑘 action switches at time infinity and guess 1 otherwise. The expected payoff
of 𝑥 under this strategy is

P[𝑎̃𝑥∞(𝑘) = 𝜔] = P0 [𝐴∞(𝑘)] · P[𝜔 = 0] + P1 [𝐴𝑐∞(𝑘)] · P[𝜔 = 1] . (1.9.1)

Since conditioned on 𝜔 = 1, agents eventually reach a consensus almost surely, it
follows that for all 𝑘 large enough,

P1 [𝐴𝑐∞(𝑘)] = 1. (1.9.2)

By assumption, P0 [𝑆 = ∞] = 1, which implies that P0 [𝐴∞(𝑘)] = 1 for all 𝑘 . Thus,
it follows from (1.9.1) and (1.9.2) that for all 𝑘 large enough, P[𝑎̃𝑥∞(𝑘) = 𝜔] = 1. In
other words, for all 𝑘 large enough, the strategy 𝑎̃𝑥∞(𝑘) achieves the maximal payoff
for 𝑥.

Meanwhile, note that the optimal strategy for 𝑥 at time infinity is to make a guess
that he believes is most likely, given the information 𝐻∞: 𝑎𝑥∞ = 1 if 𝑞∞ ≥ 1/2 and
𝑎𝑥∞ = 0 otherwise. Since P[𝑎̃𝑥∞(𝑘) = 𝜔] = 1 for all 𝑘 large enough, the optimal
strategy 𝑎𝑥∞ must also achieve the maximal payoff of one:

1 = P[𝑎𝑥∞ = 𝜔] = P1 [𝑞∞ ≥ 1/2] · P[𝜔 = 1] + P0 [𝑞∞ < 1/2] · P[𝜔 = 0] . (1.9.3)

It follows from (1.9.3) that P0 [𝑞∞ < 1/2] = P1 [𝑞∞ ≥ 1/2] = 1. It remains
to show that P0 [𝑞∞ = 0] = 1 and P1 [𝑞∞ = 1] = 1. To this end, first notice
that P0 [𝑞∞ < 1/2] = 1 implies that P0 [𝑞∞ ≥ 1/2] = 0. Thus, by Claim 1, it
further implies that for any 𝑏 ∈ (1/2, 1) and all 𝑞 ∈ [1/2, 𝑏], P1 [𝑞∞ = 𝑞] = 0.
Consequently, it follows from P1 [𝑞∞ ≥ 1/2] = 1 that P1 [𝑞∞ = 1] = 1. The case
that P0 [𝑞∞ = 0] = 1 follows from an identical argument. Together, we conclude
that asymptotic learning holds.

Next, we show the only-if direction. Suppose by contraposition that P0 [𝑆 < ∞] > 0.
Again, since conditioned on 𝜔 = 1, agents eventually reach a consensus on the
correct action, this implies that P1 [𝑆 < ∞] = 1. Thus, there exists a history of
actions 𝐻̃∞ at time infinity that is possible under both probability measures P0 and
P1: P0 [𝐻̃∞] > 0 andP1 [𝐻̃∞] > 0. It follows from Bayes’ rule thatP[𝜔 = 1|𝐻̃∞] < 1
and P[𝜔 = 0|𝐻̃∞] < 1.
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Assume without loss of generality that under this history 𝐻̃∞, the corresponding
belief 𝑞∞ ≥ 1/2. Therefore, given 𝐻̃∞, the observer 𝑥 would guess 𝑎𝑥∞ = 1. As
a consequence, the probability of 𝑥 guessing correctly about 𝜔 is strictly less than
one:

P[𝑎𝑥∞ = 𝜔] = P[𝑎𝑥∞ = 𝜔, 𝐻̃∞] + P[𝑎𝑥∞ = 𝜔, 𝐻̃𝑐
∞]

= P[𝜔 = 1|𝐻̃∞] · P[𝐻̃∞] + P[𝑎𝑥∞ = 𝜔, 𝐻̃𝑐
∞]

< P[𝐻̃∞] + P[𝐻̃𝑐
∞] = 1.

This implies that asymptotic learning fails since otherwise, by definition P[𝑎𝑥∞ =

𝜔] = 1, which is in contradiction with the above strict inequality. □

The following equation will be useful in proving Proposition 2 and 3. Recall that
𝑞∞ and 𝑝∞ are the beliefs of the observer 𝑥 assigned to the events 𝜔 = 1 and 𝜃 = 𝔤

at time infinity, respectively. Denote by 𝜋∞ = P1 [𝜃 = 𝔤|𝐻∞]. By the law of total
probability,

𝑝∞ = P1 [𝜃 = 𝔤|𝐻∞] · 𝑞∞ + P0 [𝜃 = 𝔤|𝐻∞] · (1 − 𝑞∞)

= 𝜋∞ · 𝑞∞ + 1
2
· (1 − 𝑞∞), (1.9.4)

where the second equality holds since conditioned on 𝜔 = 0, no action contains any
information about 𝜃. Thus P0 [𝜃 = 𝔤|𝐻∞] = P0 [𝜃 = 𝔤] = 1/2 given the uniform
prior.

Proof of Proposition 2. Since agents always act as if signals are informative (Lemma
1), the agent’s public belief 𝜋𝑡 = P1 [𝜃 = 𝔤|𝐻𝑡] remains a martingale under the mea-
sure P1. Using a standard martingale convergence argument with unbounded signals
[Smith and Sørensen, 2000], we have that (i) conditioned on𝜔 = 1 and 𝜃 = 𝔤, 𝜋∞ = 1
almost surely and (ii) conditioned on 𝜔 = 1 and 𝜃 = 𝔟, 𝜋∞ = 0 almost surely.

Suppose that conditioned on𝜔 = 1, complete learning holds. That is, (i) conditioned
on 𝜔 = 1 and 𝜃 = 𝔤, 𝑝∞ = 1 almost surely and (ii) conditioned on 𝜔 = 1 and 𝜃 = 𝔟,
𝑝∞ = 0 almost surely. It follows from (1.9.4) that conditioned on 𝜔 = 1, 𝑞∞ = 1
almost surely so that asymptotic learning holds. Conversely, suppose asymptotic
learning holds. By definition, conditioned on 𝜔 = 1, 𝑞∞ = 1 almost surely. It then
follows from (1.9.4) that conditioned on 𝜔 = 1, 𝑝∞ = 𝜋∞ almost surely, and thus
complete learning holds. □
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Proof of Proposition 3. The only-if direction is straightforward: suppose asymp-
totic learning holds. By definition, conditioned on 𝜔 = 0, 𝑞∞ = 0 almost surely,
and thus it follows from (1.9.4) that 𝑝∞ = 1/2 almost surely.

Now, we prove the if direction. Suppose asymptotic learning fails. By Proposition
1, conditioned on 𝜔 = 0, there exists a history 𝐻̃∞ that is possible at time infinity
in which agents eventually reach a consensus on some action. Since such history is
also possible conditioned on 𝜔 = 1, the corresponding belief of an outside observer
𝑞∞ ∈ (0, 1).19 Furthermore, note that depending on the action to which the history
𝐻̃∞ converges, the corresponding public belief of the agent 𝜋̃∞ takes values in {0, 1}.
Hence, by (1.9.4), the event {𝑝∞ ≠ 1/2} occurs with positive probability. □

Proof of Lemma 4. The proof idea is similar to the proof of Lemma 10 in Arieli,
Babichenko, Müller, Pourbabaee, and Tamuz [2023]. Recall that we use P1,𝔤 to
denote the conditional probability distribution given 𝜔 = 1 and 𝜃 = 𝔤 and we use
P1,𝔤,𝜋 to denote the same conditional probability distribution while emphasizing the
prior value. Since conditioned on 𝜔 = 1, correct herding holds, this means that
P1,𝔤 [lim𝑡 𝑎𝑡 = 𝔤] = 1. As a consequence, part (i) follows directly from the fact that
the events {𝑎̄ = 𝔟} and {lim𝑡 𝑎𝑡 = 𝔤} are disjoint, and thus P1,𝔤 [𝑎̄ = 𝔟] = 0.

For part (ii), let 𝜏 < ∞ denote the last random time at which the agent chooses the
wrong action 𝔟. It is well-defined as correct herding holds. Hence, 1 = P1,𝔤 [lim𝑡 𝑎𝑡 =

𝔤] =
∑∞
𝑘=1 P1,𝔤 [𝜏 = 𝑘]. By the overturning principle (Lemma 2), 𝑎𝜏 = 𝔟 implies

that 𝜋𝜏+1 ≤ 1/2. As a consequence,

1 =

∞∑︁
𝑘=1
P1,𝔤 [𝜏 = 𝑘] =

∞∑︁
𝑘=1
P1,𝔤 [𝑎𝑘+1 = 𝑎𝑘+2 = . . . = 𝔤, 𝜋𝑘+1 ≤ 1/2]

=

∞∑︁
𝑘=1
E1,𝔤

[
P1,𝔤 [𝑎𝑘+1 = 𝑎𝑘+2 = . . . = 𝔤, 𝜋𝑘+1 ≤ 1/2 | 𝜋𝑘+1]

]
=

∞∑︁
𝑘=1
E1,𝔤

[
1(𝜋𝑘+1 ≤ 1/2) · P1,𝔤 [𝑎𝑘+1 = 𝑎𝑘+2 = . . . = 𝔤 | 𝜋𝑘+1]

]
=

∞∑︁
𝑘=1
E1,𝔤

[
1(𝜋𝑘+1 ≤ 1/2) · P1,𝔤,𝜋𝑘+1 [𝑎̄ = 𝔤]

]
,

where the second equality follows from the law of total expectation, and the last
equality follows from the stationarity property (Lemma 3). Suppose that for all prior
𝜋 ∈ (0, 1), P1,𝔤,𝜋 [𝑎̄ = 𝔤] = 0. This implies that the above equation equals zero, a
contradiction. □

19Note that conditioned on 𝜔 = 0, 𝑞∞ has support ⊆ [0, 1) as P[𝜔 = 0|𝑞∞ = 1] = 0.



34

Proof of Theorem 1
In this section, we prove Proposition 4 and Theorem 1. To prove Proposition 4, we
will first prove the following proposition (Proposition 5). Together with Proposition
1, they jointly imply Proposition 4. The proof of Theorem 1 is presented at the
end of this section. We write P0,𝜋 to denote the conditional probability distribution
given 𝜔 = 0 while highlighting the value of the prior 𝜋 on 𝜃.20

Proposition 5. The following are equivalent.

(i) For any action 𝑎 ∈ {𝔤, 𝔟}, P0,𝜋 [𝑎̄ = 𝑎] = 0 for all prior 𝜋 ∈ (0, 1).
(ii) P0 [𝑆 = ∞] = 1.
(iii) For any action 𝑎 ∈ {𝔤, 𝔟}, P0,𝜋 [𝑎̄ = 𝑎] = 0 for some prior 𝜋 ∈ (0, 1).

To prove this proposition, we first establish some preliminary results on the process
of the agents’ public log-likelihood ratios conditioned on the event of immediate
agreement. These results lead to Lemma 7, a crucial part in establishing the equiva-
lence between no immediate agreement and perpetual disagreement conditioned on
an uninformative source. We present the proof of Proposition 5 towards the end of
this section.

Preliminaries

Recall that conditioned on {𝑎̄ = 𝔤}, the process of the agent’s public log-likelihood
ratio 𝑟𝑡 evolves deterministically according to (1.2), which we denote by 𝑟𝔤𝑡 . Let the
corresponding updating function be

𝜙(𝑥) := 𝑥 + 𝐷𝔤 (𝑥).

That is, 𝑟𝔤
𝑡+1 = 𝜙(𝑟𝔤𝑡 ) for all 𝑡 ≥ 1. Since the entire sequence (𝑟𝔤𝑡 ) is determined

once its initial value 𝑟𝔤1 is specified, we denote the value of 𝑟𝔤𝑡 with an initial value
𝑟
𝔤

1 = 𝑟 by 𝑟𝔤𝑡 (𝑟). We can thus write 𝑟𝔤𝑡 (𝑟) = 𝜙𝑡−1(𝑟) for all 𝑡 ≥ 1, where 𝜙𝑡 is its 𝑡-th
composition and 𝜙0(𝑟) = 𝑟.

We remind the readers of two standard properties of the sequence (𝑟𝔤𝑡 ), as summa-
rized in the following lemma. The first part of this lemma states that (𝑟𝔤𝑡 ) tends
to infinity as 𝑡 tends to infinity, and the second part shows that it takes only some
bounded time for the sequence (𝑟𝔤𝑡 ) to reach any positive value.

Lemma 5 (The Long-Run and Short-Run Behaviors of 𝑟𝔤𝑡 ).
20We continue to omit the prior 𝜋 when it is uniform.
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(i) lim𝑡→∞ 𝑟
𝔤
𝑡 = ∞.

(ii) For any 𝑟 ≥ 0, there exists 𝑡0 such that 𝑟𝔤𝑡0 (𝑟) ≥ 𝑟 for all 𝑟 ≥ 0.

Proof. See Lemma 6 and Lemma 12 in Rosenberg and Vieille [2019]. □

Note that although the sequence (𝑟𝔤𝑡 ) eventually approaches infinity, it may not do
so monotonically without additional assumptions on the distributions 𝐹𝔤 and 𝐹𝔟.21
The next lemma shows that, under some mild technical assumptions on the left tail
of 𝐹𝔟, the function 𝜙(𝑥) eventually increases monotonically.

Lemma 6 (Eventual Monotonicity). Suppose that 𝐹𝔟 has a differentiable left tail
and its probability density function 𝑓𝔟 satisfies the condition that, for all 𝑥 large
enough, 𝑓𝔟(−𝑥) < 1. Then, 𝜙(𝑥) := 𝑥 + 𝐷𝔤 (𝑥) increases monotonically for all 𝑥
large enough.

Proof. By assumption, we can find a constant 𝜌 < 1 such that for all 𝑥 large enough,
𝑓𝔟(−𝑥) ≤ 𝜌. By definition, 𝐷𝑔 (𝑥) = log 1−𝐹𝔤 (−𝑥)

1−𝐹𝔟 (−𝑥) . Taking the derivative of 𝐷𝔤,

𝐷′
𝔤 (𝑥) =

𝑓𝔤 (−𝑥)
1 − 𝐹𝔤 (−𝑥)

− 𝑓𝔟(−𝑥)
1 − 𝐹𝔟(−𝑥)

.

Observe that the log-likelihood ratio of the agent’s private log-likelihood ratio ℓ𝑡 is
the log-likelihood ratio itself (see, e.g., Chamley [2004]):

log
𝑑𝐹𝔤

𝑑𝐹𝔟
(𝑥) = 𝑥.

It follows that

−𝐷′
𝔤 (𝑥) = 𝑓𝔟(−𝑥)

( 1
1 − 𝐹𝔟(−𝑥)

− e−𝑥

1 − 𝐹𝔤 (−𝑥)

)
≤ 𝑓𝔟(−𝑥)

1 − 𝐹𝔟(−𝑥)
.

Fix some 𝜀 > 0 small enough so that (1 + 𝜀)𝜌 ≤ 1. It follows from the above
inequality that there exists some 𝑥 large enough such that −𝐷′

𝔤 (𝑥) ≤ (1 + 𝜀) 𝑓𝔟(−𝑥).
Furthermore, for all 𝑥′ ≥ 𝑥,

𝐷𝔤 (𝑥) = 𝐷𝔤 (𝑥′) −
∫ 𝑥′

𝑥

𝐷′
𝔤 (𝑦)𝑑𝑦

≤ 𝐷𝔤 (𝑥′) + (1 + 𝜀)
∫ 𝑥′

𝑥

𝑓𝔟(−𝑥)𝑑𝑥

= 𝐷𝔤 (𝑥′) − (1 + 𝜀) (𝐹𝔟(−𝑥′) − 𝐹𝔟(−𝑥)).
21In the case of binary states and actions, Herrera and Hörner [2012] show that the property

of increasing hazard ratio is equivalent to the monotonicity of this updating function. See Smith,
Sørensen, and Tian [2021] for a general treatment.
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Rearranging the above equation,

𝐷𝔤 (𝑥) − 𝐷𝔤 (𝑥′) ≤ (1 + 𝜀) (𝐹𝔟(−𝑥) − 𝐹𝔟(−𝑥′))
≤ (1 + 𝜀)𝜌(𝑥′ − 𝑥),

where the second last inequality follows from the fact that 𝑓𝔟(−𝑥) ≤ 𝜌 < 1. Since
(1 + 𝜀)𝜌 ≤ 1, the above inequality implies that there exists some 𝑥 large enough
such that 𝐷𝔤 (𝑥) + 𝑥 ≤ 𝐷𝔤 (𝑥′) + 𝑥′ for all 𝑥′ ≥ 𝑥. That is, 𝜙(𝑥) eventually increases
monotonically. □

Given these lemmas, we are ready to prove the following result. It shows that
conditioned on an uninformative source, the possibility of immediate agreement is
independent of the prior belief.

Lemma 7. For any action 𝑎 ∈ {𝔤, 𝔟}, the following statements are equivalent:

(i) P0,𝜋 [𝑎̄ = 𝑎] > 0, for some prior 𝜋 ∈ (0, 1);
(ii) P0,𝜋 [𝑎̄ = 𝑎] > 0, for all prior 𝜋 ∈ (0, 1).

Proof. The second implication, namely, (𝑖𝑖) ⇒ (𝑖) is immediate. We will show the
first implication, (𝑖) ⇒ (𝑖𝑖). Fix some prior 𝜋̃ ∈ (0, 1) such that P0,𝜋̃ [𝑎̄ = 𝔤] > 0 and
let 𝑟 = log 𝜋̃

1−𝜋̃ . Since 𝑟𝔤𝑡 (𝑟) is a deterministic process, the event {𝑎̄ = 𝔤} initiated at
the prior 𝜋1 = 𝜋̃ is equivalent to the event {ℓ𝑡 ≥ −𝑟𝔤𝑡 (𝑟),∀𝑡 ≥ 1}. Conditioned on
𝜔 = 0, since signals are i.i.d., so are the agents’ private log-likelihood ratios. Thus,
we have

P0,𝜋̃ [𝑎̄ = 𝔤] =
∞∏
𝑡=1

(1 − 𝐹0(−𝑟𝔤𝑡 (𝑟)). (1.9.5)

As a consequence, P0,𝜋̃ [𝑎̄ = 𝔤] > 0 if and only if there exists 𝑀 < ∞ such that

−
∞∑︁
𝑡=1

log
(
1 − 𝐹0(−𝑟𝔤𝑡 (𝑟))

)
< 𝑀.

For two sequences (𝑎𝑡) and (𝑏𝑡), we write 𝑎𝑡 ≈ 𝑏𝑡 if lim𝑡→∞(𝑎𝑡/𝑏𝑡) = 1. Since
𝑟
𝔤
𝑡 (𝑟) → ∞ (this follows from part (i) of Lemma 5), log

(
1 − 𝐹0(−𝑟𝔤𝑡 (𝑟))

)
≈

−𝐹0(−𝑟𝔤𝑡 (𝑟)). Thus, the above sum is finite if and only if

∞∑︁
𝑡=1

𝐹0(−𝑟𝔤𝑡 (𝑟)) < 𝑀. (1.9.6)
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By the overturning principle (Lemma 2), it suffices to show that (1.9.6) implies that
∞∑︁
𝑡=1

𝐹0(−𝑟𝔤𝑡 (𝑟)) < 𝑀, for any 𝑟 ≥ 0.

By the eventual monotonicity of 𝜙 (Lemma 6) and the fact that 𝑟𝔤𝑡 (𝑟) → ∞, we
can find a large enough 𝑡 such that 𝑟𝔤

𝑡
(𝑟) := 𝑟 ≥ 0 and 𝜙(𝑟) ≥ 𝜙(𝑟) for all 𝑟 ≥ 𝑟.

By part (ii) of Lemma 5, there exists 𝑡0 ∈ N such that 𝑟𝔤𝑡0 (𝑟) ≥ 𝑟 for all 𝑟 ≥ 0.
Since above 𝑟, 𝜙 is monotonically increasing, one has 𝜙(𝑟𝔤𝑡0 (𝑟)) ≥ 𝜙(𝑟) for any
𝑟 ≥ 0. Consequently, for all 𝜏 ≥ 1, 𝑟𝔤𝜏+𝑡0 (𝑟) = 𝜙

𝜏 (𝑟𝔤𝑡0 (𝑟)) ≥ 𝜙𝜏 (𝑟) = 𝑟𝔤
𝜏+1(𝑟). Since

𝑟
𝔤

𝜏+1(𝑟) = 𝑟
𝔤

𝜏+1(𝑟
𝔤

𝑡
(𝑟)) = 𝑟𝔤

𝜏+𝑡 (𝑟), it follows that

𝐹0(−𝑟𝔤𝜏+𝑡0 (𝑟)) ≤ 𝐹0(−𝑟𝔤𝜏+𝑡 (𝑟)).

Thus, it follows from (1.9.6) that for any 𝑟 ≥ 0,
∑∞
𝑡=1 𝐹0(−𝑟𝔤𝑡 (𝑟)) < ∞, as required.

The case for action 𝔟 follows from a symmetric argument. □

Now, we are ready to prove Proposition 5.

Proof of Proposition 5. We show that (𝑖) ⇒ (𝑖𝑖), (𝑖𝑖) ⇒ (𝑖𝑖𝑖), and (𝑖𝑖𝑖) ⇒ (𝑖).
To show the first implication, we prove the contrapositive statement. Suppose that
P0 [𝑆 < ∞] > 0. This implies that there exists a sequence of action realizations
(𝑏1, 𝑏2, . . . , 𝑏𝑘−1, 𝑏𝑘 = . . . = 𝑎) for some action 𝑎 ∈ {𝔟, 𝔤} such that

P0 [𝑎𝑡 = 𝑏𝑡 ,∀𝑡 ≥ 1] > 0.

By stationarity, there exists some 𝜋′ ∈ (0, 1) such that

P0,𝜋′ [𝑎̄ = 𝑎] > 0,

which contradicts (i).

To show the second implication, suppose towards a contradiction that there exists
some action 𝑎 ∈ {𝔤, 𝔟} such that P0,𝜋 [𝑎̄ = 𝑎] > 0 for all prior 𝜋 ∈ (0, 1). In
particular, it holds for the uniform prior. Since the event {𝑎̄ = 𝑎} is contained in the
event {𝑆 < ∞},

0 < P0 [𝑎̄ = 𝑎] ≤ P0 [𝑆 < ∞] .

This implies that P0 [𝑆 = ∞] < 1, a contradiction to (ii).

Finally, we show the last implication by contraposition. Suppose that there exists
some 𝑎 ∈ {𝔤, 𝔟} such that P0,𝜋 [𝑎̄ = 𝑎] > 0 for some prior 𝜋 ∈ (0, 1). By Lemma 7,
it also holds for all prior 𝜋 ∈ (0, 1), which is a contradiction to (iii). This concludes
the proof of Proposition 5. □
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Proof of Proposition 4. By the equivalence between (ii) and (iii) in Proposition 5
and Proposition 1, we have shown Proposition 4. □

Given Proposition 4, we are now ready to prove our main result.

Proof of Theorem 1. By part (i) of Lemma 4, P1,𝔟 [𝑎̄ = 𝔤] = 0 and P1,𝔤 [𝑎̄ = 𝔟] = 0.
Following a similar argument that led to (1.9.5), one has

0 = P1,𝔟 [𝑎̄ = 𝔤] =
∞∏
𝑡=1

(1 − 𝐹𝔟(−𝑟𝔤𝑡 )).

Taking the logarithm on both sides, the above equation is equivalent to−∑∞
𝑡=1 log(1−

𝐹𝔟(−𝑟𝔤𝑡 )) = ∞. Since 𝑟𝔤𝑡 → ∞, log(1−𝐹𝔟(−𝑟𝔤𝑡 )) ≈ −𝐹𝔟(−𝑟𝔤𝑡 ) and the previous sum
is infinite if and only if

∞∑︁
𝑡=1

𝐹𝔟(−𝑟𝔤𝑡 ) = ∞. (1.9.7)

Similarly, we have that P1,𝔤 [𝑎̄ = 𝔟] = 0 if and only if
∑∞
𝑡=1(1−𝐹𝔤 (−𝑟𝔟𝑡 )) = ∞, where

𝑟𝔟𝑡 denotes the deterministic process of 𝑟𝑡 conditioned on the event {𝑎̄ = 𝔟}. By
symmetry, 𝑟𝔟𝑡 = −𝑟𝔤𝑡 for all 𝑡 ≥ 1. Hence, P1,𝔤 [𝑎̄ = 𝔟] = 0 if and only if

∞∑︁
𝑡=1

(1 − 𝐹𝔤 (𝑟𝔤𝑡 )) = ∞. (1.9.8)

Suppose that the uninformative signals have fatter tails than the informative signals.
By definition, there exists 𝜀 > 0 such that for all 𝑥 large enough, 𝐹0(−𝑥) ≥ 𝜀 ·𝐹𝔟(−𝑥)
and 1 − 𝐹0(𝑥) ≥ 𝜀 · (1 − 𝐹𝔤 (𝑥)). It then follows from (1.9.7) and (1.9.8) that

∞∑︁
𝑡=1

𝐹0(−𝑟𝔤𝑡 ) = ∞ and
∞∑︁
𝑡=1

(1 − 𝐹0(𝑟𝔤𝑡 )) = ∞.

Using the same logic we used to deduce (1.9.7) and (1.9.8), having these two
divergent sums is equivalent to P0 [𝑎̄ = 𝔤] = 0 and P0 [𝑎̄ = 𝔟] = 0. Thus, by
Proposition 4, asymptotic learning holds.

By part (ii) of Lemma 4, there exist 𝜋, 𝜋′ ∈ (0, 1) such that P1,𝔤,𝜋 [𝑎̄ = 𝔤] > 0 and
P1,𝔟,𝜋′ [𝑎̄ = 𝔟] > 0. Let 𝑟 = log 𝜋

1−𝜋 and 𝑟′ = log 𝜋′

1−𝜋′ . Following a similar argument
that led to (1.9.6), these are equivalent to

∞∑︁
𝑡=1

𝐹𝔤 (−𝑟𝔤𝑡 (𝑟)) < ∞ and
∞∑︁
𝑡=1

(1 − 𝐹𝔟(𝑟𝔤𝑡 (𝑟′))) < ∞.
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Now, suppose that the uninformative signals have thinner tails than the informative
signals. By definition, there exists 𝜀 > 0 such that either (i) 𝐹0(−𝑥) ≤ (1/𝜀) ·𝐹𝔤 (−𝑥)
for all 𝑥 large enough, or (ii) 1 − 𝐹0(𝑥) ≤ (1/𝜀) · (1 − 𝐹𝔟(𝑥)) for all 𝑥 large enough.
It then follows from the above inequalities that either (i)

∑∞
𝑡=1 𝐹0(−𝑟𝔤𝑡 (𝑟)) < ∞ or

(ii)
∑∞
𝑡=1(1 − 𝐹0(𝑟𝔤𝑡 (𝑟′))). Equivalently, we have either (i) P0,𝜋 [𝑎̄ = 𝔤] > 0 for some

𝜋 ∈ (0, 1) or (ii) P0,𝜋′ [𝑎̄ = 𝔟] > 0 for some 𝜋′ ∈ (0, 1). By Lemma 7, these also
hold for all prior 𝜋, 𝜋′ ∈ (0, 1), including the uniform prior. So we have either (i)
P0 [𝑎̄ = 𝔤] > 0 or (ii) P0 [𝑎̄ = 𝔟] > 0. Thus, by Proposition 4, asymptotic learning
fails. □

Gaussian Private Signals
In this section, we prove Corollary 1 and Theorem 2. We consider the canonical
environment in which all signal distributions 𝜇𝔤, 𝜇𝔟 and 𝜇0 are normal. In particular,
the distributions 𝜇𝔤 and 𝜇𝔟 share the same variance 𝜎2 and have mean +1 and −1,
respectively. Meanwhile, 𝜇0 has mean 𝑚0 ∈ (−1, 1) and variance 𝜏2. Note that in
this case, the agent’s private log-likelihood ratio induced by a signal 𝑠𝑡 is

ℓ𝑡 = log
𝑓𝔤 (𝑠𝑡)
𝑓𝔟(𝑠𝑡)

=
2
𝜎2 𝑠𝑡 . (1.9.9)

Since ℓ𝑡 is proportional to 𝑠𝑡 , the distributions 𝐹𝜃 and 𝐹0 are also normal, with a
variance of 4/𝜎2 and 4𝜏2/𝜎4, respectively.

Similar to Definition 2, for any pair of CDFs (𝐹, 𝐺), we say that 𝐹 has a fatter left
tail than 𝐺 if there exists 𝜀 > 0 such that 𝐹 (−𝑥)/𝐺 (−𝑥) ≥ 𝜀 for all 𝑥 large enough.
Likewise, we say that 𝐹 has a thinner left tail than 𝐺 if there exists 𝜀 > 0 such that
𝐹 (−𝑥)/𝐺 (−𝑥) ≤ 1/𝜀 for all 𝑥 large enough. We define the concepts of fatter and
thinner right tails analogously. The following lemma demonstrates that for Gaussian
signals, the relative thickness of the tails depends solely on their relative variances.

Lemma 8. Suppose 𝐹 and 𝐺 are two Gaussian cumulative distribution functions
with means 𝜇1 and 𝜇2 and variances 𝜎2

1 and 𝜎2
2 , respectively. If 𝜎1 > 𝜎2, then 𝐹

has fatter left and right tails than 𝐺. Meanwhile, 𝐺 has thinner left and right tails
than 𝐹.

Proof. Let 𝑓 and 𝑔 denote the probability density functions of 𝐹 and 𝐺. Their ratio
evaluated at 𝑥 ∈ R is

𝑓 (𝑥)
𝑔(𝑥) =

𝜎2
𝜎1

exp
(
( 1
𝜎2

2
− 1
𝜎2

1
) 𝑥

2

2
+ ( 𝜇1

𝜎2
1
− 𝜇2

𝜎2
2
)𝑥 + 1

2
(
𝜇2

2

𝜎2
2
−
𝜇2

1

𝜎2
1
)
)
.
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Suppose 𝜎1 > 𝜎2. It follows from the above equation that lim𝑥→∞
𝑓 (−𝑥)
𝑔(−𝑥) = ∞ and

lim𝑥→∞
𝑓 (𝑥)
𝑔(𝑥) = ∞. This clearly implies that 𝐹 (−𝑥) ≥ 𝐺 (−𝑥) and 1−𝐹 (𝑥) ≥ 1−𝐺 (𝑥)

for all 𝑥 large enough. So by definition, 𝐹 has fatter left and right tails than 𝐺, and
conversely, 𝐺 has thinner left and right tails than 𝐹. □

As a consequence, Corrollary 1 follows directly from Lemma 8 and Theorem 1.

Proof of Corollary 1. If 𝜏 > 𝜎, then by (1.9.9), 𝐹0 has a strictly higher variance
than both 𝐹𝔤 and 𝐹𝔟. By Lemma 8, 𝐹0 has fatter left and right tails than both 𝐹𝔤
and 𝐹𝔟. Hence, by Definition 2, the uninformative signals have fatter tails and it
thus follows from Theorem 1 that asymptotic learning holds. An identical argument
applies to the case where 𝜏 < 𝜎. □

We henceforth focus on the case where 𝜏 = 𝜎. When all private signals are Gaussian,
Hann-Caruthers, Martynov, and Tamuz [2018] show that one can approximate the
sequence 𝑟𝔤𝑡 by (2

√
2/𝜎) ·

√︁
log 𝑡 for all 𝑡 large enough (see their Theorem 4):

lim
𝑡→∞

𝑟
𝔤
𝑡

(2
√

2/𝜎) ·
√︁

log 𝑡
= 1. (1.9.10)

Given this approximation and Proposition 4, we are ready to prove Theorem 2.

Proof of Theorem 2. In this proof we use the Landau notation, so that 𝑂 (𝑔(𝑡))
stands for some function 𝑓 : N → R such that there exists a positive 𝑀 ∈ R and
𝑡0 ∈ N such that | 𝑓 (𝑡) | ≤ 𝑀 · 𝑔(𝑡) for all 𝑡 ≥ 𝑡0.

Note that by (1.9.9), we can write

𝐹0(−𝑟𝔤𝑡 ) = P0 [ℓ𝑡 ≤ −𝑟𝔤𝑡 ] = P0 [𝑠𝑡 ≤ −(𝜎2/2) · 𝑟𝔤𝑡 ] .

By (1.9.10), we have that for all 𝑡 large enough,

𝐹0(−𝑟𝔤𝑡 ) = P0 [𝑠𝑡 ≤ −𝜎
√︁

2 log 𝑡] =: 𝜇0(−𝜎
√︁

2 log 𝑡),

where 𝜇0 is the CDF of 𝑠𝑡 conditioned on 𝜔 = 0. Since 𝜇0 is the normal distribution
with mean 𝑚0 ∈ (−1, 1) and variance 𝜎2, observe that 𝜇0(𝑥) = 1

2 erfc(− 𝑥−𝑚0
𝜎
√

2
),

where erfc(𝑥) = 2√
𝜋

∫ ∞
𝑥

e−𝑡2𝑑𝑡 is the complementary error function.

Applying a standard asymptotic expansion of the complementary error function,
i.e., erfc(𝑥) = 𝑒−𝑥

2

𝑥
√
𝜋
+𝑂 (e−𝑥2/𝑥3), we obtain that for all 𝑡 large enough,

𝜇0(−𝜎
√︁

2 log 𝑡) = e−
(
𝑚0
𝜎

√
2 log 𝑡+

𝑚2
0

2𝜎2

)
𝑡 (
√︁
𝜋 log 𝑡 + 𝛿 · 𝑚0)

+𝑂 ( e−𝑚0
√

2 log 𝑡

𝑡 (𝜎
√︁

2 log 𝑡 + 𝑚0)3
), (1.9.11)
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where 𝛿 > 0 is a constant.

Case (i): suppose𝑚0 = 0. Then (1.9.11) becomes 1
𝑡·
√
𝜋 log 𝑡

+𝑂 ( 1
𝑡·(log 𝑡)3/2 ). Since the

series 1
𝑡 log 𝑡 is divergent and 1

𝑡 log 𝑡 ≤
1

𝑡
√

log 𝑡
for all 𝑡 ≥ 2, the sum of the first term also

diverges. Hence, the sum of (1.9.11) diverges, which implies
∑∞
𝑡=1 𝐹0(−𝑟𝔤𝑡 ) = ∞. By

the same approximation argument used in the proof of Theorem 1, this is equivalent
to P0 [𝑎̄ = 𝔤] = 0. Using an analogous argument, we obtain P0 [𝑎̄ = 𝔟] = 0.
Together, by Proposition 4, we conclude that asymptotic learning holds.

Case (ii): suppose 𝑚0 ≠ 0 and 𝑚0 ∈ (−1, 1). Let 𝑐 =
𝑚0

√
2

𝜎
. By the change of

variable 𝑥 =
√︁

log 𝑡, ∫ ∞

2

e−𝑐
√

log 𝑡

𝑡
√︁

log 𝑡
𝑑𝑡 = 2

∫ ∞
√

log 2
e−𝑐𝑥𝑑𝑥.

If 𝑚0 > 0, then 𝑐 =
𝑚0

√
2

𝜎
> 0. By the integral test, the sum in (1.9.11) converges,

and thus
∑∞
𝑡=1 𝐹0(−𝑟𝔤𝑡 ) < ∞. Again, by the same logic that we use to deduce (1.9.6),

this is equivalent to P0 [𝑎̄ = 𝔤] > 0. If𝑚0 < 0, it follows from a symmetric argument
that

∑∞
𝑡=1(1 − 𝐹0(𝑟𝔤𝑡 )) < ∞, which is equivalent to P0 [𝑎̄ = 𝔟] > 0. In either case, it

follows from Proposition 4 that asymptotic learning fails. □
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C h a p t e r 2

LEARNING IN REPEATED INTERACTIONS ON NETWORKS

2.1 Introduction
We study social learning by long-lived agents who observe each others’ actions on
a social network. We show that information aggregation fails: the speed of learning
stays bounded even in large networks, where efficient aggregation of all private
information would lead to arbitrarily fast learning. Methodologically, we introduce
new techniques that allow us to relax commonly made assumptions and study
general networks, with forward-looking, Bayesian agents who interact repeatedly.
Repeated interactions can, for example, describe the exchange of opinions and
information among friends on social media or firms that learn from each others
actions. Arguably, social learning driven by such interactions can be an important
determinant in many choice domains, such as investments, health insurance, schools,
technology adoption, or where to live and work.

More formally, we consider a group of agents who repeatedly interact with their
neighbors on a network. There is a fixed but unknown state of the world, taking
values from a finite set. In every period, each agent receives a private signal about the
state and observes all past actions of his neighbors. Based on this information, each
agent updates his beliefs, chooses one of finitely many possible actions, and receives
a flow payoff that depends on his action and the state (but not on the actions of others).
We consider both myopic agents who maximize their instantaneous payoff, as well
as strategic agents who are forward-looking, and exponentially discount the future.
Since strategic agents care about their future utilities, they may sacrifice their present
flow utilities and choose actions that induce others to behave in a way which reveals
more information in the future.

The constant influx of private information in our model allows every agent to
eventually learn the truth and choose the optimal action. Thus, we focus on how
fast agents learn. If the number of agents doubles, the number of private signals
available to society also doubles. Hence, if information were aggregated efficiently,
the time that it would take for agents to choose correctly (say, with a given high
probability) would decrease by a factor of two. In other words, when information
aggregation is efficient, the speed of learning increases linearly with the number of
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agents. The question we ask is: what is the speed of learning in equilibrium, and
how does it depend on the number of agents, the structure of the network, the agents’
utilities, the signals, and the discount factor?

We focus on strongly connected networks, where there is an observational path
between every pair of agents, since otherwise efficient aggregation of information
is excluded by the lack of informational channels. This is a mild assumption,
and follows, for example, from the “six degrees of separation rule”, that stipulates
that there is a path of length at most six between every two members of a social
network.1 Our main result (Theorem 3) shows that the speed of learning does not
increase linearly with the number of agents, and is, in fact, bounded from above by
a constant that only depends on the private signal distribution, and is independent
of the structure of the network and the remaining parameters of the model.

For example, consider agents who, in each period, observe an independent binary
signal that is equal to a binary state with probability 0.9. Then, regardless of the
number of agents and network structure, the speed of learning never exceeds ten
times the speed at which an agent learns on his own. This is despite the fact that if 𝑛
agents shared their signals publicly, they would learn 𝑛 times as fast. Thus, a society
of 1,000 agents who observe their neighbors’ past actions does not learn faster than a
society of ten agents in which information is efficiently aggregated. This means that
in a society of 1,000 agents, at least 99% of the information generated by the private
signals is lost for any structure of the observational network (and any equilibrium
played by the agents with any utility).

As another illustration of this result, consider the finite two dimensional grid graph:
The set of agents is {1, . . . , 𝑛}2, and 𝑖 observes 𝑗 if and only if |𝑖− 𝑗 | = 1. Regardless
of the size of the graph, in the early periods each agent is exposed to little information,
since (at most) four other agents are observed each period. Theorem 3 shows that
even later in the process the size of the graph does not matter substantially, as the
speed of learning is bounded.

The mechanism behind this bounded speed of learning is as follows: First, in a
strongly connected network all agents learn at the same rate, as each agent could
guarantee himself the same learning rate as any of his neighbors. We establish the
bound on the learning rate by contradiction. Suppose that agents learn at a rate

1The science fiction writer Frigyes Karinthy proposed this rule in his 1929 short story “Lánc-
szemek” (in English, “Chains”). The rule was confirmed empirically on a number of online social
network data sets [Leskovec and Horvitz, 2008, Watts and Strogatz, 1998].
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that is higher than the rate that their individual private signals can support. This
implies that social information, which consists of agents’ actions, will become much
more precise than each agent’s private information. As a result, agents will ignore
their private signals and only rely on the social information they observe from their
neighbors. This implies that agents’ actions no longer reveal any information about
the state, so social information cannot grow too precise over time. This contradicts
our previous hypothesis, and we conclude that agents cannot learn too fast.

The failure of information aggregation suggested by Theorem 3 is an asymptotic
result that describes how fast learning is in late periods. We complement this result
with a numerical calculation for the first ten periods on a simple graph: the line
graph with bidirectional observations. Assuming myopic agents, and binary state,
actions and signals, we find that our asymptotic lower bound on mistake probabilities
holds also in the early periods. Quantitatively, in each of the first 10 periods agents
choose correctly with a probability that is smaller than that of a group of five agents
who share their private signals. This holds independently of the number of agents
in the network.

We contribute to the social learning literature in three aspects. First, instead of
focusing on short-lived agents who act only once, we consider a more realistic model
in which agents are long-lived and repeatedly interact with each other. Second, we
extend existing models of social learning from myopic agents to strategic agents
who discount their future utilities at a common rate. Analyzing strategic agents is
complicated since these agents may have an incentive to choose a sub-optimal action
today to learn more information from the actions of others in the future, whereas
such an incentive is completely shut down for myopic agents. Third, we generalize
previous work on the speed of learning on the complete network where all agents
observe each other [Harel et al., 2021] to general social networks where agents only
observe their neighbors.

Related Literature
There are few papers addressing repeated interaction between rational agents and
its role in information aggregation. This is because it is challenging to analyze
the evolution of beliefs of long-lived agents, particularly when these beliefs are
influenced by the interactions between them. Most of the literature has focused on
either short-lived agents who only act once [Acemoglu et al., 2011, Banerjee, 1992,
Bikhchandani et al., 1992, Smith and Sørensen, 2000] or non-fully-rational agents
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[Bala and Goyal, 1998, Molavi et al., 2018] and heuristic learning rules [Dasaratha
et al., 2020, DeGroot, 1974, Golub and Jackson, 2010]. Nevertheless, as many real-
life situations involve repeated interactions, it is natural to study models that allow
these interactions. It is likewise interesting to understand rational (and potentially
forward-looking) agents as this is an important benchmark case to assess whether or
to what extent failures of information aggregation are driven by a lack of patience
or lack of rationality of the agents.

Among models which consider repeated interactions, the bandit literature studies
endogenous information acquisition and the resulting free rider problem when mul-
tiple agents try to learn the state from each other’s public signals [Bolton and Harris,
1999, Heidhues et al., 2015, Keller and Rady, 2010, Keller et al., 2005]. Bala and
Goyal [1998] extend this to a social network setting for non-fully-rational agents
who do aggregate the results of their neighbors’ experiments but disregard the in-
formation contained in their choices. They examine how the geometry of the social
network affects learning outcomes.

Focusing on a repeated interaction setting in which agents and have no experi-
mentation motives, Mossel et al. [2014] consider rational but myopic agents who
observe each other’s actions. They give conditions for learning to occur on infinite
undirected graphs. Mossel et al. [2015] further generalize their setting to allow for
forward-looking agents.2 Unlike our model, agents in these models only receive
one signal at the beginning of time. They do not study the speed of learning, and
instead focus on identifying the types of social networks in which learning always
occurs.

Complementing the previous literature, we take the next natural step: we ask how fast
learning occurs and study its relationship with the size of the network. Furthermore,
we consider agents with any discount factor with myopic agents as a special case.
To our best knowledge, this is the first paper to consider social learning in a network
setting with fully-rational agents who interact repeatedly.

A recent paper that considers rational agents in a repeated setting is by Harel,
Mossel, Strack, and Tamuz [2021], who study the speed of learning when all agents
are myopic and observe each other. They show that similar to our main result, for any
number of agents, the speed of learning from actions is bounded above by a constant.

2In a similar setting, Migrow [2022] shows that for two forward looking agents who observe each
other there does not exist an equilibrium where agents behave myopically, under some assumptions
on the signal structure.
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Their proofs rely crucially on the symmetry inherent in the complete network in
which all agents observe each other and actions are common knowledge. Their
analysis relies on a phenomenon called “groupthink”: a feedback loop that develops
when all players take the wrong action, observe that everyone else also took the
same action, become more confident in their wrong beliefs, and then again take the
wrong action. In incomplete networks, actions are no longer common knowledge,
making the techniques used in the aforementioned paper inapplicable in our setting.
The techniques we introduce furthermore allow us to consider non-myopic agents
and multiple states of the world.

Our main insight is that learning cannot be too fast since fast individual learning
would cause agents to ignore their private signals. This is reminiscent of the
information cascades that drive the failure of information aggregation in the classical
herding literature [Banerjee, 1992, Bikhchandani et al., 1992, Smith and Sørensen,
2000]. However, the force in our model affects the speed of learning rather than
determining whether or not information aggregates, and because of the repeated
interactions between agents, it requires a very different analysis. A similar insight
also appears in the earlier literature on rational expectations in financial markets,
where it implies the breakdown of the efficient market hypothesis [Grossman and
Stiglitz, 1980]: prices cannot fully reflect all available information, precisely because
if they did, it would eliminate the agents’ incentive to respond to their private
information, contradicting the assumption that prices contain all information. This
is known as the Grossman-Stiglitz paradox.

Following the herding literature, our paper studies the friction that arises for infor-
mation aggregation when actions are coarse and thus do not fully reveal beliefs.
Another strand of the literature shows that information aggregation may still be
slow, even with a continuous action space. For example, Vives [1993] considers
a Cournot competition model with a common unknown production cost among a
continuum of firms. He shows that noisy observations of past actions (through mar-
ket prices) slow down the speed of learning. Although his environment is different
from ours,3 the force behind his slow speed of learning is related to ours: by ex-
amining the asymptotic behavior of public information’s informativeness (reflected
in prices) and agents’ responsiveness to their private information, he found that as
public information becomes more informative, agents respond less to their private

3More specifically, his setting differs from ours along a number of dimensions: Firms learn from
public prices, which are noisy observations of the average actions of others. Furthermore, there is
no network and since there is a continuum of agents, any strategic incentive is also abstracted away.
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information, leading to a slower increase in how informative the public information
can be. Put in his words, “... information revelation through the price system can
be slow precisely because it is successful.” We contribute to this literature by show-
ing that this intuition in these specific cases generalizes extensively, especially in a
general network setting with forward-looking agents.

With a rich-enough action space that fully reveals agents’ beliefs, Dasaratha and
He [2019] study how different generational networks affect the learning rate with
Gaussian signals and continuous actions. They find that learning is slow for large
symmetric overlapping generations networks with a uniform bound on the number
of signals aggregated per generation. The main mechanism behind the inefficiency
is a confounding effect: as earlier generations observe common predecessors, their
actions are correlated, reducing the amount of information transmitted to the next
generation. This effect is inherent in their overlapping generations network structure,
in which information travels unidirectionally. Since information travels bidirection-
ally in our model, higher-order beliefs pose an obstacle that is not present in Vives
[1993] and Dasaratha and He [2019].

2.2 Model
Let 𝑁 = {1, 2, . . . , 𝑛} be a finite set of agents. Time is discrete and the horizon is
infinite, i.e. 𝑡 ∈ {1, 2, . . .}. In every time period 𝑡, each agent 𝑖 has to choose an
action 𝑎𝑖𝑡 from a finite set 𝐴. There is an unknown state of the world𝜔, taking values
in a finite set Ω, that is chosen at period 0 and does not change over time. Each state
occurs with strictly positive probability. We denote by 𝔤, 𝔣 generic elements of Ω.

Utility and Optimal Actions
The flow utility for choosing an action 𝑎 ∈ 𝐴 when the state is 𝔤 ∈ Ω is 𝑢(𝑎, 𝔤) for
some 𝑢 : 𝐴 × Ω → R. We assume that for each state 𝔤 ∈ Ω there is a unique action
𝑎𝔤 ∈ 𝐴, which maximizes 𝑢(·, 𝔤), the utility in that state:

{𝑎𝔤} = arg max
𝑎∈𝐴

𝑢(𝑎, 𝔤).

We also assume that these optimal actions are distinct, i.e. if 𝔤 ≠ 𝔣 then 𝑎𝔤 ≠ 𝑎𝔣.
These assumptions facilitate learning from actions in the sense that observing the
optimal action of an agent who knows the state allows other agents to infer the state.
Note that these assumptions hold for any generic utility 𝑢, as long as the set 𝐴 has
at least as many elements as Ω. When there are two states then this assumption is
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necessary to make the model non-trivial, since otherwise there is a dominant action
which will always be played in every equilibrium.4

An important example which the reader may wish to keep in mind is the case of
binary states and actions, and where the agent aims to match the state: Ω = {𝔤, 𝔣},
𝐴 = {𝑎𝔤, 𝑎𝔣} with 𝑢(𝑎𝔤, 𝔤) = 𝑢(𝑎𝔣, 𝔣) = 1 and 𝑢(𝑎𝔤, 𝔣) = 𝑢(𝑎𝔣, 𝔤) = 0. This setting
already features all the forces and tensions of the general case, and likewise offers
the same conclusions.

Agents’ Information
In each period 𝑡, agent 𝑖 receives a private signal 𝑠𝑖𝑡 drawn from a finite set 𝑆𝑖𝑡 .
Conditional on the state 𝜔, signals 𝑠𝑖𝑡 are independent across agents and time, with
distribution 𝜇𝑖,𝜔𝑡 ∈ Δ(𝑆𝑖𝑡). For distinct 𝔣, 𝔤 ∈ Ω, the distributions 𝜇𝑖,𝔤𝑡 and 𝜇𝑖,𝔣𝑡 are
distinct and mutually absolutely continuous, so that no signal excludes any state or
perfectly reveals the state. Thus, the log-likelihood ratio of any signal 𝑠

ℓ
𝑖,𝔤,𝔣
𝑡 (𝑠) = log

𝜇
𝑖,𝔤
𝑡 (𝑠)
𝜇
𝑖,𝔣
𝑡 (𝑠)

is well defined.

We focus on bounded signals in the sense that the private belief induced by any
signal cannot be arbitrarily strong. More specifically, we assume that there exists
a constant 𝑀 > 0 that bounds the absolute value of the likelihood induced by any
signal:

𝑀 = 2 sup
𝔣,𝔤,𝑖,𝑡,𝑠

���ℓ𝑖,𝔤,𝔣𝑡 (𝑠)
��� . (2.2.1)

We make this assumption for tractability and discuss its relaxation in the conclusion.
We allow signals to depend on calendar time and the agents’ identities to highlight
the robustness of our results. However, to understand our main economic insight, it
suffices to think of the setting where all signals are i.i.d. across agents and time, as
is typically assumed in the literature.

For each agent 𝑖 there is a subset of agents 𝑁𝑖 ⊆ 𝑁 who are his social network
neighbors, and whose actions he observes. We include 𝑖 ∈ 𝑁𝑖 since agent 𝑖 observes
his own actions. The information available to agent 𝑖 at time 𝑡, before taking his

4For three states or more this assumption is more restrictive. Indeed, our Lemma 9, which shows
that agents eventually choose myopic actions, may not hold without it. This is because even when
beliefs concentrate around a state, multiple actions can be optimal for particular likelihood ratios
about the other states, and so non-myopic behavior can persist.
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action 𝑎𝑖𝑡 , thus consists of a sequence of private signals (𝑠𝑖1, · · · , 𝑠
𝑖
𝑡) and the history

of actions observed by 𝑖,

𝐻𝑖𝑡 = {𝑎 𝑗𝑠 : 𝑠 < 𝑡, 𝑗 ∈ 𝑁𝑖} .

Let I𝑖𝑡 = 𝑆𝑖1 × · · · × 𝑆𝑖𝑡 × 𝐴|𝑁𝑖 |×(𝑡−1) so that the private history 𝐼𝑖𝑡 = (𝑠𝑖1, · · · , 𝑠
𝑖
𝑡 , 𝐻

𝑖
𝑡 )

is an element of I𝑖𝑡 .

We assume that the social network is strongly connected: there is an observational
path between every pair of agents (we relax this assumption in §2.6).5,6 This as-
sumption avoids situations in which efficient aggregation of information is precluded
because there is no channel for information to travel from 𝑖 to 𝑗 . Furthermore, we as-
sume that agents observe their neighbors in every period. This assumption is purely
to simplify notation; we discuss the case where an agent observes their neighbors
only at intermittent and potentially random times in Appendix 2.9.

Strategies and Payoffs
A pure strategy of agent 𝑖 at time 𝑡 is a function 𝜎𝑖𝑡 : I𝑖𝑡 → 𝐴. A pure strategy of
agent 𝑖 is a sequence of functions 𝜎𝑖 = (𝜎𝑖1, 𝜎

𝑖
2, · · · ) and a pure strategy profile is

a collection of pure strategies of all agents, 𝜎 = (𝜎𝑖)𝑖∈𝑁 . We write 𝜎 = (𝜎𝑖, 𝜎−𝑖)
for any agent 𝑖 ∈ 𝑁 , where 𝜎−𝑖 denotes the pure strategies of all agents other than
𝑖. Given a pure strategy profile 𝜎, the action of agent 𝑖 at time 𝑡 is 𝑎𝑖𝑡 (𝜎) = 𝜎𝑖𝑡 (𝐼𝑖𝑡 ).
The flow utility of agent 𝑖 at time 𝑡 is

𝑢(𝑎𝑖𝑡 (𝜎), 𝜔).

Agents do not observe their flow utilities. Nevertheless, one can incorporate obser-
vations of utilities into the private signals that agents receive. A special case of our
model is one in which the agent receives an observed payoff 𝑣(𝑎𝑖𝑡 , 𝑠𝑖𝑡) that depends
on the action and the signal realization. In this case, the flow utility corresponds
to the expected observed payoff 𝑢(𝑎, 𝜔) =

∑
𝑠 𝜇

𝜔 (𝑠) · 𝑣(𝑎, 𝑠). The agent always
observes their payoff as it is only a function of their signal; yet, from an ex-ante
perspective, the situation is identical to that of our setting. The assumption of unob-
served flow utilities is commonly made in the literature to model learning without an
experimentation motive. Indeed, any learning situation without an experimentation

5Formally, for each 𝑖, 𝑗 ∈ 𝑁 there is a sequence 𝑖 = 𝑖1, 𝑖2, . . . , 𝑖𝑘 = 𝑗 such that 𝑖2 ∈ 𝑁𝑖1 , 𝑖3 ∈
𝑁𝑖2 , . . . 𝑖𝑘 ∈ 𝑁𝑖𝑘−1 .

6In a directed Erdős–Rényi graph with 𝑛 agents, when the expected number of neighbors is
ln 𝑛 + 𝑐 for large 𝑐, then with high probability the graph will be strongly connected, and so our
assumption will be satisfied with high probability [see Theorem 5 in Graham and Pike, 2008].
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motive can be reduced to such a situation [see, e.g., the discussion in Rosenberg
et al., 2009, §2.1, p. 981].

We assume that agents discount their future utilities at a common rate 𝛿 ∈ [0, 1).
The expected utility of agent 𝑖 under strategy profile 𝜎 is thus

𝑢𝑖 (𝜎) = (1 − 𝛿)
∞∑︁
𝑡=1

𝛿𝑡−1E[𝑢(𝑎𝑖𝑡 (𝜎), 𝜔)] .

We call agents with 𝛿 = 0 myopic and agents with 𝛿 > 0 strategic. Myopic agents
fully discount future payoffs and choose their actions in each period to maximize
expected flow utilities.

Regardless of whether agents are strategic or myopic, the sole benefit of observing
others’ past actions is to learn about the state. That is, others’ actions reflect the
signals they receive, and thus observing others’ actions can help agents make better
inferences about the state. This pure informational motive is an important feature of
the model: each agent’s flow utility depends only on his own actions and the state,
and it is independent of the actions of the others.

Equilibrium
This is a game of incomplete information, in which agents may have different
information regarding the underlying unknown state and the actions of others. We
use Nash equilibrium as our equilibrium concept and refer to it as equilibrium
thereafter.7 The existence of a (mixed) equilibrium is guaranteed in this game
by standard arguments, since, in the product topology on strategies, the space of
strategies is compact and utilities are continuous. We note here that every mixed
equilibrium can be mapped to a behaviorally equivalent pure equilibrium by adding
to each agent’s private signal an additional component that is independent of the
state and all other signals, and assuming that the agent uses this signal to randomly
choose between actions.8 As our results will only depend on the information about
the state contained in the signal, it thus suffices to establish them for pure strategy
equilibria, to show that they hold for all (pure and mixed) equilibria.

7Our results, which apply to all Nash equilibria, thus also apply to any refinement of Nash
equilibrium such as sequential equilibrium.

8 Formally, for any signal space 𝑆𝑖𝑡 we can consider 𝑆𝑖𝑡 = 𝑆𝑖𝑡 × 𝐴 | I𝑖
𝑡 | with the signal distributions

𝜇̃
𝑖,𝔤
𝑡 equal to the product measure of 𝜇𝑖,𝔤𝑡 and |I𝑖

𝑡 | independent random variables each taking each
value 𝑎 ∈ 𝐴 with probability P[𝑎𝑖𝑡 = 𝑎 |𝐼 𝑖𝑡 ]. As this transformation does not affect the informational
content of the signals it leaves the constant 𝑀 unchanged. Furthermore, we can replicate any
behaviorally mixed strategy by the pure strategy that takes the action 𝑎 if and only if the entry of the
second component corresponding to the private history 𝐼 𝑖𝑡 equals 𝑎.
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As usual, a pure strategy profile 𝜎 is an equilibrium if no agent can obtain a strictly
higher expected utility by unilaterally deviating from 𝜎. That is, a pure strategy
profile 𝜎 is an equilibrium if for all agents 𝑖, and all strategies 𝜏𝑖

𝑢𝑖 (𝜎𝑖, 𝜎−𝑖) ≥ 𝑢𝑖 (𝜏𝑖, 𝜎−𝑖) .

Speed of Learning
We say that agent 𝑖 chooses correctly at time 𝑡 if 𝑎𝑖𝑡 = 𝑎𝜔, i.e., if the agent chose
the action that is optimal given the state. We measure the speed of learning of
agent 𝑖 by the asymptotic rate at which he converges to the correct action [see, e.g.,
Hann-Caruthers et al., 2018, Harel et al., 2021, Molavi et al., 2018, Rosenberg and
Vieille, 2019, Vives, 1993]. Formally, the speed of learning of agent 𝑖 is

lim inf
𝑡→∞

−1
𝑡

logP[𝑎𝑖𝑡 ≠ 𝑎𝜔] . (2.2.2)

If this limit exists and is equal to 𝑟, then the probability of mistake at large times 𝑡 is
approximately e−𝑟𝑡 . As we explain below in §2.3, this is the case for the benchmark
case of a single agent who receives conditionally i.i.d. private signals at each period.

2.3 The Public Signals Benchmark
As a benchmark, we briefly discuss the case of public signals for a single or multiple
agents. We also assume that signals are i.i.d. across time and agents, with 𝜇𝔤 = 𝜇𝑖,𝔤𝑡
for all 𝔤 ∈ Ω. In the single-agent case, a classical large deviations argument shows
that the limit 𝑟𝑎 = lim𝑡→∞ −1

𝑡
logP[𝑎𝑖𝑡 ≠ 𝑎𝜔] exists and is positive.9 Note that the

fact that the limit is positive implies that the agents learn the state; the probability
of choosing incorrectly tends to zero. This is a consequence of the assumption that
the measures 𝜇𝔤 are distinct which ensures that signals are informative.

Next, consider the case where each of 𝑛 agents observes all 𝑛 independent public
signals in each period, as well as their neighbors’ past actions. As actions contain no
additional information about the state relative to the signals, this situation is identical
to the single-agent case, except that now each agent receives 𝑛 independent signals
at each period. An agent in period 𝑡 will thus have observed exactly as many signals
as a single agent in autarky in period 𝑛 · 𝑡. It thus follows from the single-agent case
that when signals are public, the speed of learning for 𝑛 agents is 𝑛 · 𝑟𝑎.

9For textbook treatments see, e.g., pp. 380-384 in Cover and Thomas [2006] for the binary state
case or, for the general finite state case, Theorem 2.2.30 in Dembo and Zeituni [2009]. See Moscarini
and Smith [2002] for an application in economics to single agent decision problems, and Frick et al.
[2022] for an application to a multi-agent setting.
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These results for the case of public signals immediately bound the speed of learning
in the private signals case: In any social network, observed actions contain weakly
less information than the private signals. Thus, 𝑛 · 𝑟𝑎 is an upper bound to the speed
of learning for any network with 𝑛 agents and private signals.

2.4 Results
We now state our main result. It turns out that in a strongly connected network, all
agents learn at the same speed (by Lemma 10 in §3.4), and we call this common
speed of learning the equilibrium speed of learning. In contrast to the public signal
case, our main result shows that regardless of the size of the network, the equilibrium
speed of learning is bounded above by a constant. Recall that in (2.2.1) we defined
𝑀/2 to be the maximal log-likelihood ratio induced by any signal.

Theorem 3. The equilibrium speed of learning is at most 𝑀 , in any equilibrium, on
any social network of any size, for any discount factor 𝛿 ∈ [0, 1), and any utility 𝑢.

Perhaps surprisingly, Theorem 3 shows that adding more agents (thus more informa-
tion) to the network and expanding the network cannot improve the speed of learning
beyond some bound, which is twice the strength of the strongest possible signal, as
measured in log-likelihood ratios. Indeed, this upper bound on the learning speed
implies that more and more information is lost as the size of the network increases.

For example, for a binary state, binary actions and independent binary signals that
are equal to the state with probability 0.9, the speed of learning in a social network of
any size is bounded by that of ten agents who observe each other’s signals directly.10
Consequently, in any social network, even if there are 1,000 agents who observe
their neighbors’ past actions, they cannot learn faster than a group of ten agents who
share their private signals. Equivalently, their speed of learning cannot be more
than ten times that of a single agent. Thus almost all of the private information in
large networks is lost, resulting in inefficient information aggregation.

The idea behind our proof of Theorem 3 is as follows. Intuitively, one might
think that larger networks would boost the speed of learning as agents acquire
more and more information from their neighbors, as well as indirectly from their

10To see this, given the signal distribution, we calculate the speed of learning in the single-agent
case, which is approximately equal to 0.51 (see Harel et al. [2021] for exact expressions for the speed
of learning in the binary state case). As discussed in §2.3, the learning speed in a network of ten
agents with public signals is ten times that of the single-agent case. From Theorem 3, the upper
bound 𝑀 to the equilibrium speed of learning is approximately 4.4, which is less than ten times 0.51.
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neighbors’ neighbors etc. However, we argue that the social information gathered
from observing neighbors’ past actions cannot be too precise. Indeed, if that were the
case, agents would base their decisions only on the social information. As a result,
their actions would no longer reveal any information about their private signals so
that information aggregation would cease. Thus, social information cannot grow
to be much more precise than private information. But if agents learn quickly,
then their actions provide very precise social information. Hence, we conclude that
agents cannot learn too quickly.

In sum, regardless of the size of the network, private information must continue to
influence agents’ decision-making, which can only happen if the social information
is not too precise, which in turn can only happen if agents do not learn quickly.
Moreover, as we state in the next section, 𝑀 is an upper bound to how fast the
precision of private information increases with time (see Lemma 12 in §3.4), and
this bound, too, is independent of the network size. Combining these insights, we
conclude that the speed of learning in a social network of any size is bounded by 𝑀 .

Numerical Calculation on the Line Graph
While Theorem 3 shows that information aggregation fails in the long run, it leaves
open the question of what happens in early periods. Clearly, if many agents all
observe each other, much information could be aggregated already in the first period,
as the first period actions can reveal many independent pieces of information. The
answer to this question becomes less clear in a setting where the number of neighbors
is bounded, even if there are many agents in total.

To supplement the asymptotic result of Theorem 3 we consider agents who observe
both of their adjacent neighbors on a line, i.e., 𝑁𝑖 = {𝑖 − 1, 𝑖, 𝑖 + 1} ∩ 𝑁 . We study
a binary state and binary action setting with a uniform prior and assume that in
each period, each agent gets a conditionally independent and identically distributed
symmetric binary signal that is equal to the state with probability 𝑞. We consider
myopic agents, i.e., 𝛿 = 0, and the tie-breaking rule under which agents follow their
first signal when they are indifferent.

Under these assumptions we calculate the exact probabilities of mistakes in the
first 10 periods. A naive calculation would require considering some 1030 possible
signal realizations, which is not feasible.11 To approach the computational problem,

11On a bidirectional line the number of signals that could (potentially indirectly) influence an
agent’s period 𝑡 action is the sum of her total number of private signals up to time 𝑡 and the total number
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Figure 2.1: On the top left: The log of the inverse of probability of error− logP[𝑎𝑖𝑡 ≠
𝑎𝜔] as a function of the period for agents on the bidirectional line graph (away from
its ends) for different probabilities 𝑞 of the signal matching the state. The top right
picture compares the error probabilities when the agent observes their 2 neighbors’
actions and 4 other agents’ signals for 𝑞 = 0.65. On the bottom: The maximal
empirical learning speed max𝑡∈{2,...,10} − log 1

𝑡
P[𝑎𝑖𝑡 ≠ 𝑎𝜔] for different precisions of

the signal on the 𝑥-axis.

we use the “dynamic cavity algorithm” proposed by Kanoria and Tamuz [2013] for
calculating Bayesian beliefs in social learning environments on tree graphs, which
exploits the fact that conditioning on the state and a given agent’s actions makes
the actions of his left-hand neighbor independent of the actions of his right-hand
neighbor. As such a decoupling argument is not available for graphs with cycles, it
seems computationally infeasible to perform a similar calculation for, e.g., the two
dimensional grid.

We focus on the agents who are not close to the ends of the graph: All agents
𝑖 ∈ {11, 12, . . . , 𝑛 − 12, 𝑛 − 11} face the same decision problem in the first ten
periods, and we calculate their probabilities of choosing the wrong action. Note that
these probabilities are independent of the number of agents 𝑛. Equivalently, these
are the error probabilities of any agent on a bi-infinite line graph.

of signals observed by his 𝑡 − 1 neighbors in each direction, i.e. 𝑡 +∑
𝑠≤𝑡−1 (2𝑠) = 𝑡 + 𝑡 (𝑡 − 1) = 𝑡2.

When 𝑡 = 10, this would yield 2100 ≈ 1.3 × 1030 signal realizations.
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The results are depicted in Figure 2.1. On the top left, we plot the evolution of error
probabilities on a log-scale for different precision of the signals 𝑞. Since the ordinate
uses a logarithmic scale, an exponential decay of error probabilities would manifest
as a downward sloping straight line. Indeed, the graph shows that this decay is
approximately exponential from the very early periods. This suggests that at least
for myopic agents (the limiting case of very impatient agents), our asymptotic results
bounding the speed of learning may begin to apply early on, even before these agents
have learned the state very precisely.

On the bottom left we plot, for different signal precisions, the maximum of the
empirical learning speed max𝑡∈{2,...,10} − log 1

𝑡
P[𝑎𝑖𝑡 ≠ 𝑎𝜔] starting from the second

period as well as our asymptotic bound of 𝑀 . As one can see the asymptotic bound
we obtained in Theorem 3 holds for different precision of the signal starting from
the second period. Thus, in this example, the conclusion of Theorem 3 do not only
hold asymptotically, but already in early periods. For comparison, we also plot the
maximum of the rate of mistake for the case where five agents share their private
signals on the top right, for 𝑞 = 0.65. The figure shows that in the first ten periods
agents do worse on the bidirectional line than they would if they directly observed
the private signals of their two neighbors on the right and two neighbors on the
left.12

2.5 Analysis
In this section we provide a detailed analysis of the agents’ beliefs and behavior,
leading to a proof sketch for Theorem 3.

Agents’ Beliefs
Let 𝑝𝑖,𝔤𝑡 denote the posterior belief of agent 𝑖 assigned to event𝜔 = 𝔤 after observing
𝐼𝑖𝑡 , i.e. 𝑝𝑖,𝔤𝑡 = P[𝜔 = 𝔤|𝐼𝑖𝑡 ]. The log-likelihood ratio of agent 𝑖’s posterior beliefs of
the state being 𝔤 over the state being 𝔣 at time 𝑡 is

𝐿
𝑖,𝔤,𝔣
𝑡 = log

𝑝
𝑖,𝔤
𝑡

𝑝
𝑖,𝔣
𝑡

= log
P[𝜔 = 𝔤|𝑠𝑖1, . . . , 𝑠

𝑖
𝑡 , 𝐻

𝑖
𝑡 ]

P[𝜔 = 𝔣 |𝑠𝑖1, . . . , 𝑠
𝑖
𝑡 , 𝐻

𝑖
𝑡 ]
. (2.5.1)

Then, it follows from Bayes’ rule that this log-likelihood ratio of agent 𝑖’s posterior
beliefs at time 𝑡 is equal to

𝐿
𝑖,𝔤,𝔣
𝑡 = log

P[𝜔 = 𝔤]
P[𝜔 = 𝔣] + log

P[𝐻𝑖𝑡 |𝜔 = 𝔤]
P[𝐻𝑖𝑡 |𝜔 = 𝔣]

+ log
P[𝑠𝑖1, . . . , 𝑠

𝑖
𝑡 |𝐻𝑖𝑡 , 𝜔 = 𝔤]

P[𝑠𝑖1, · · · , 𝑠
𝑖
𝑡 |𝐻𝑖𝑡 , 𝜔 = 𝔣]

.

12While not depicted in the figure, this still holds for any precision of the signal 𝑞 ∈
{0.6, 0.7, 0.8, 0.9}.
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We call

𝑄
𝑖,𝔤,𝔣
𝑡 = log

P[𝜔 = 𝔤]
P[𝜔 = 𝔣] + log

P[𝐻𝑖𝑡 |𝜔 = 𝔤]
P[𝐻𝑖𝑡 |𝜔 = 𝔣]

,

the social likelihood of agent 𝑖 at time 𝑡. This is the log-likelihood ratio of the social
information observed by agent 𝑖. Intuitively, 𝑄𝑖𝑡 measures the inference an outside
observer would draw from the observations of the actions of 𝑖 and his neighbors,
without observing 𝑖’s private signals. Similarly, we call

𝑃
𝑖,𝔤,𝔣
𝑡 = log

P[𝑠𝑖1, . . . , 𝑠
𝑖
𝑡 |𝐻𝑖𝑡 , 𝜔 = 𝔤]

P[𝑠𝑖1, · · · , 𝑠
𝑖
𝑡 |𝐻𝑖𝑡 , 𝜔 = 𝔣]

,

the private likelihood agent 𝑖 at time 𝑡. Thus, we can write the log-likelihood ratio
of agent 𝑖’s posterior beliefs at time 𝑡 as

𝐿
𝑖,𝔤,𝔣
𝑡 = 𝑆

𝑖,𝔤,𝔣
𝑡 + 𝑃𝑖,𝔤,𝔣𝑡 , (2.5.2)

which is the sum of his social likelihood and his private likelihood. We call 𝐿𝑖,𝔤,𝔣𝑡

the posterior likelihood of agent 𝑖 at time 𝑡.

Agents’ Behavior
In the context of a strategy profile 𝜎, the myopic action of agent 𝑖 at time 𝑡 is

𝑚𝑖𝑡 ∈ arg max
𝑎∈𝐴

E[𝑢(𝑎, 𝜔) |𝐼𝑖𝑡 ] .

This is the action that maximizes the expected flow utility given the information
available at that time, and hence it is the action that a myopic agent would take.13

In contrast to a myopic agent, a strategic agent may not always choose the myopic
action in equilibrium. Indeed, since a strategic agent is forward-looking, in each
period he faces a trade-off between choosing the myopic action and strategically
experimenting by choosing a non-myopic action. On the one hand, he needs to
bear the immediate cost associated with a non-myopic action. On the other hand,
choosing a non-myopic action may allow him to elicit more information from his
neighbors’ future actions, which he could then use to make better choices in the
future. Hence, when the informational gain from experimenting exceeds the current
loss caused by a non-myopic action, a strategic agent has an incentive to experiment.

Nevertheless, we show that when an agent’s belief of any state is close enough to zero
or one, he chooses the unique optimal action at that state which is also the myopic

13We assume some deterministic tie-breaking rule when the agent is indifferent. Our results do
not depend on this choice and would follow for any tie breaking rule that is common knowledge.
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action in equilibrium. This holds despite the fact that the agent is forward-looking.
Intuitively, if a strategic agent is very confident about the state, he is expected to pay
a high cost if he chooses a non-myopic action and experiments. Consequently, as his
expected future gain will not exceed the expected current loss from experimenting,
he has no incentive to experiment.

Lemma 9 (Myopic and Strategic Behavior).

(i) There is a constant 𝑐 > 0, independent of 𝛿 such that, in any equilibrium, if it
holds for 𝔤 ∈ Ω that 𝑝𝑖,𝔤𝑡 > 𝑐

𝑐+1−𝛿 , then 𝑎𝑖𝑡 = 𝑚𝑖𝑡 = 𝑎𝔤.
(ii) There exists a random time 𝑇 < ∞ such that in equilibrium, all agents behave

myopically after 𝑇 , i.e. 𝑡 ≥ 𝑇 ⇒ 𝑎𝑖𝑡 = 𝑚
𝑖
𝑡 for all 𝑖 almost surely.

The first part of Lemma 9 applies to a fixed discount factor 𝛿, rather than asymp-
totically to 𝛿 tending to one. So, agents need not have learned the state very
precisely at the point in which they become myopic. However, it does imply that as
agents become more patient, i.e., 𝛿 increases, the posterior belief threshold 𝑐

𝑐+1−𝛿 for
choosing the myopic action becomes closer to certainty. Indeed, as 𝛿 approaches 1,
agents value their future utilities more and the incentive of experimenting becomes
stronger. For these agents to forgo their potential expected future informational
gains and choose the myopic action, they must be fairly confident about the state.
The second part of Lemma 9 states that in finite time the belief of all agents will be
sufficiently precise such that they all behave myopically in all future periods.

The next lemma shows that in equilibrium, each agent learns weakly faster than any
of his neighbors. Denote the equilibrium speed of learning of agent 𝑖 by 𝑟𝑖.

Lemma 10 (All agents learn at the same speed).

(i) If agent 𝑖 can observe agent 𝑗 , i.e. 𝑗 ∈ 𝑁𝑖, then in equilibrium 𝑖 learns weakly
faster than 𝑗 , i.e. 𝑟𝑖 ≥ 𝑟 𝑗 .

(ii) All agents learn at the same speed, i.e. 𝑟𝑖 = 𝑟 𝑗 for all 𝑖, 𝑗 , in any strongly
connected network.

We will henceforth call the common speed of learning in a strongly connected
network the equilibrium speed of learning. The proof of this lemma relies on an
extension of the imitation principle from myopic agents to strategic agents. For
myopic agents, the imitation principle states that if 𝑖 observes 𝑗 , then 𝑖’s actions are
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not worse than 𝑗’s:

E[𝑢(𝑎𝑖𝑡 , 𝜔)] ≥ E[𝑢(𝑎
𝑗

𝑡−1, 𝜔)],

since 𝑖 can always imitate 𝑗 [similar arguments are used in Gale and Kariv, 2003,
Golub and Sadler, 2017, Smith and Sørensen, 2000, Sørensen, 1996]. We show that
for strategic agents, in equilibrium, 𝑖’s actions are never much worse than 𝑗’s, even
though 𝑖 may choose myopically sub-optimal actions. To formalize this we denote
by 𝑢̄ = E[𝑢(𝑎𝜔, 𝜔)] the expected utility of a decision maker that knows the state.
For any 𝑖 and 𝑡 it holds that E[𝑢(𝑎𝑖𝑡 , 𝜔)] ≤ 𝑢̄. We can think of 𝑢̄−E[𝑢(𝑎𝑖𝑡 , 𝜔)] as the
loss in flow utility as compared to the first-best. The imitation principle for strategic
agents takes the following form:

𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)] ≤
1

1 − 𝛿 (𝑢̄ − E[𝑢(𝑎
𝑗

𝑡−1, 𝜔)]).

It is obtained by upper-bounding the agent’s loss by the loss he would obtain if
guessing correctly in every future period and observing that this loss must be less
than the loss obtained by taking the action agent 𝑗 took last period in every future
period. By Claim 2 in the Appendix, this upper bound on the loss implies that there
is some constant 𝑐 > 0 such that the probability of choosing incorrectly is bounded:

P[𝑎𝑖𝑡 ≠ 𝑎𝜔] ≤
𝑐

1 − 𝛿P[𝑎
𝑗

𝑡−1 ≠ 𝑎𝜔] .

One can easily see that when 𝛿 = 0, the above equation coincides with the imitation
principle for myopic agents.

Social and Private Beliefs
We analyze the agents’ beliefs by decomposing their likelihoods into the private and
social parts. Recall that by (2.5.2), the posterior likelihood of agent 𝑖’s at time 𝑡,
𝐿
𝑖,𝔤,𝔣
𝑡 , is equal to 𝑄𝑖,𝔤,𝔣𝑡 + 𝑃𝑖,𝔤,𝔣𝑡 , the sum of the social and the private likelihoods. We

are interested in the sign of 𝐿𝑖,𝔤,𝔣𝑡 as it determines the corresponding myopic action:
𝑚𝑖𝑡 equals 𝔤 if 𝐿𝑖,𝔤,𝔣𝑡 ≥ 0, and 𝔣 otherwise. Let us first focus on the first component
of 𝐿𝑖,𝔤,𝔣𝑡 : agent 𝑖’s social likelihood 𝑄𝑖,𝔤,𝔣𝑡 . In the following lemma, we establish
a relationship between the equilibrium speed of learning and the precision of the
social likelihood, which is crucial in proving our main theorem.

Lemma 11. Suppose that the equilibrium speed of learning is at least 𝑟. Then,
conditioned on 𝜔 = 𝔤, it holds for any 𝔣 ≠ 𝔤

lim inf
𝑡→∞

1
𝑡
𝑄
𝑖,𝔤,𝔣
𝑡 ≥ 𝑟 almost surely.
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This lemma states that a high learning speed implies that the social information
inferred from a given agent 𝑖 and his neighbors’ actions must become precise at
a high speed. Intuitively, if agents learn quickly, then their actions provide very
precise social information.

The proof of Lemma 11 uses the idea of a fictitious outside observer who observes
the same social information as agent 𝑖 and nothing else. Since he observes 𝑖’s
actions, he can achieve the same learning speed as 𝑖. This implies that his posterior
likelihood increases fast. Hence, as this outside observer’s posterior likelihood
coincides with agent 𝑖’s social likelihood, the precision of 𝑖’s social information
increases at a speed of at least 𝑟 .

Next, we focus on the second component of 𝐿𝑖,𝔤,𝔣𝑡 : agent 𝑖’s private likelihood,
𝑃
𝑖,𝔤,𝔣
𝑡 . As agents receive more independent private signals over time, their private

information about the state becomes more precise. However, the precision of their
private information cannot increase without bound, as shown in the following lemma.

Lemma 12. For any agent 𝑖 at time 𝑡 and any distinct 𝔤, 𝔣 ∈ Ω, the absolute value
of the private likelihood is at most 𝑡 · 𝑀 , i.e.

1
𝑡
|𝑃𝑖,𝔤,𝔣𝑡 | ≤ 𝑀 almost surely.

This lemma states that that at any given time 𝑡, there is an upper bound to the
precision of agents’ private information, which only depends on the private signals
distribution and is independent of the structure of the network and the history of
observed actions. Notice that since 𝑃𝑖,𝔤,𝔣𝑡 = 𝐿

𝑖,𝔤,𝔣
𝑡 − 𝑆𝑖,𝔤,𝔣𝑡 by (2.5.2), it captures the

difference between what 𝑖 knows about the state and what an outside observer who
observes 𝑖’s actions and his neighbors’ actions would know about the state. Thus,
the bound 𝑀𝑡 assigned to 𝑖’s private signals also applies to the difference between
the posterior likelihood 𝐿𝑖𝑡 and the social likelihood 𝑆𝑖𝑡 .

Proof sketch for Theorem 3
We end this section by providing a sketch of the proof of Theorem 3 using our earlier
results. Suppose to the contrary that in equilibrium, agents learn at a speed that is
strictly higher than 𝑀 , where 𝑀 is twice the log-likelihood ratio of the strongest
signal. Then, by Lemma 11, the social information would become precise at a speed
that is also strictly higher than 𝑀 . Meanwhile, at any given time 𝑡, the precision of
the private information is at most 𝑀𝑡, as shown in Lemma 12. Hence, by (2.5.2) the
sign of 𝐿𝑖𝑡 would be determined purely by the social information after some (random)
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time. By Lemma 9, there exists a time𝑇 such that from𝑇 onward, in equilibrium, all
agents act only based on the social information, and furthermore they would choose
the myopic action even though they are forward-looking. Consequently, their actions
would no longer reveal any information about their private signals and information
would cease to be aggregated. This contradicts our hypothesis that the precision of
the social information grows at such a high speed. Therefore, we conclude that the
equilibrium speed of learning in networks does not increase beyond 𝑀 .

2.6 Networks which are not Strongly Connected
So far, we have focused on strongly connected networks where there is an observa-
tional path between every pair of agents. While on a strongly connected network
all agents learn at the same speed, this is not true for general networks. For ex-
ample, consider a simple star network where there is a single agent at the center
who observes everyone, and where the remaining peripheral agents observe no one.
Here, the peripheral agents’ actions are independent conditional on the state. These
actions supply the central agent with 𝑛 − 1 additional independent signals, and he
thus learns at a speed that increases linearly with the number of agents.14 In contrast,
all peripheral agents learn at a constant speed 𝑟𝑎, as in the single-agent case. Hence,
for general networks, depending on the structure of the network, some agents can
learn faster than others.

More importantly, this star network example implies that the bound obtained in
Theorem 3 does not hold for all agents in a non-strongly connected network. The
intuitive reason is that when the network is not strongly connected, some agents
might remain unobservable to others, e.g., the central agent in the star network.
These agents can thus learn very fast from observing others since their own past
actions do not affect the actions of others, rendering others’ past actions more
informative. This cannot happen in a strongly connected network where every agent
(potentially indirectly) learns about the actions of every other agent.

Nevertheless, even though it is not necessarily true that all agents learn slowly, our
next result establishes that it is still true that some agents will learn slowly in any
network.

Proposition 6. Consider an arbitrary (finite) network and let 𝑟𝑖 be the speed of
learning of agent 𝑖. We have that min𝑖 𝑟𝑖 ≤ 𝑀 .

14See Theorem 5 in Harel et al. [2021].
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The proof of Proposition 6 relies on the idea that within any general network, there
is always a strongly connected sub-network, say 𝐸 , in which no agent observes any
agent outside of this sub-network. Thus, the learning process at 𝐸 is independent
of the agents outside of 𝐸 . Since 𝐸 is strongly connected, Theorem 3 implies that
the speed of learning on 𝐸 is bounded by 𝑀 .

Learning on a Line
In this section we discuss the commonly studied case of an infinite group of agents
who learn by observing (a subset) of their predecessors. A prominent feature of
the line network is that information is transmitted unidirectionally. This simplified
observational structure has thus received particular attention in the herding literature
where agents act only once. Here, we extend it to our setting where agents act
repeatedly. As we will see below, the arguments we use on line networks are
reminiscent of the sequential social learning literature, except that we focus on the
speed of learning rather than whether learning occurs or not.

We first consider the case where agents observe a general subset of their predecessors,
which in the herding literature was considered in Acemoglu et al. [2011].15

Proposition 7. Suppose that 𝑁 = {1, 2, . . .} and 𝑁𝑖 ⊆ {1, . . . , 𝑖}. Then there is
some constant 𝐾 such that the speed of learning 𝑟𝑖 ≤ 𝐾 for infinitely many agents 𝑖.

That is, under these assumptions, it is impossible that the speed of learning 𝑟𝑖 tends
to infinity with 𝑖. Thus, even though there are infinitely many agents, many agents
will have a low speed of learning. This result thus shows that in the line networks,
the conclusion of Proposition 6 that the speed of learning of some agent must be
bounded generalizes to the conclusion that the speed of an infinite number of agents
must be bounded.

The proof of this proposition uses ideas that are similar to those of the proof of
Theorem 3. Since observations are unidirectional, agents behave myopically even
for 𝛿 > 0. To show the result, suppose towards a contradiction, that there is no such
𝐾 . Then, in particular, there are only finitely many agents whose speed of learning
is less than 𝑀 . Each of the remaining agents eventually stops using their private
signals, because the fact that they learn so quickly means that they observe very
strong social information. It follows that the only information that is aggregated

15Their conclusion is qualitatively different: For some network structures asymptotic learning
obtains, and for some it does not. Of course, their notion of learning (namely that agent 𝑖 takes the
correct action with probability that tends to 1 as 𝑖 tends to infinity) is very different than ours.



62

asymptotically is that of the finite group of agents who learn slowly. Thus, it is
impossible that any agent has a high speed of learning, which is a contradiction.

We now consider the special case of 𝑁𝑖 = {𝑖 − 1, 𝑖}, i.e., each agent observes only
their direct predecessor.

Proposition 8. When 𝑁𝑖 = {𝑖 − 1, 𝑖}, 𝑟𝑖 ≤ 𝑀 for all agents 𝑖.

Thus, the conclusion of Theorem 3 applies also to this case of a non-strongly
connected network. Again, we prove Proposition 8 by using the ideas behind
Theorem 3. Notice first that the imitation principle for myopic agents implies that
the speed of learning is weakly increasing in the index of the agent. Now, suppose to
the contrary that there exists some agent 𝑘 who learns at a speed that is strictly greater
than 𝑀 . Then all agents 𝑗 > 𝑘 would also learn at a high speed. Eventually, all
these high-speed learning agents would stop using their private signals because the
fact that they learn so fast means that they observe very precise social information.
Consequently, information aggregation stagnates and thus learning cannot be too
fast.

2.7 Conclusion
In this paper, we show that information aggregation is highly inefficient for large
groups of agents who learn from private signals and by observing their social
network neighbors. To overcome the difficulty of constructing equilibria explicitly,
we focus on the asymptotic speed of learning, allowing us to prove results that apply
to all equilibria. We show that regardless of the size of the network, the speed of
learning is bounded above by a constant, which only depends on the private signal
distribution (and not on the discount factor, the observational graph, the agents’
utilities, or prior belief).

An important limitation of our results is that they only apply asymptotically. As our
numerical results show, these asymptotic results can apply already from the early
periods, for myopic agents on particular networks. However, for patient agents, it is
unclear whether it takes a long time for the asymptotic results to apply. Calculating
welfare for patient agents seems beyond what is currently tractable, as it would
require a detailed analysis of the equilibria of this game. In fact, even for two
myopic agents who observe each other, it seems intractable to calculate welfare, and
moreover, it remains unknown whether the asymptotic speed of learning is strictly
greater than that of one agent who learns on his own. Nevertheless, even in the
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most general settings of patient agents on complex networks, it seems reasonable to
conjecture that the main economic force driving our result—that learning cannot be
too fast because it would lead agents to disregard their own signals—is significant
even in the early periods. We leave this for future research.

Another promising direction for future research is the calculation of lower bounds
for the speed of learning. Currently, we cannot show that equilibrium speed of
learning on any connected network is faster than that of a single agent. Even
without imposing equilibrium, this question remains open: What learning speed
can be achieved when a social planner is allowed to choose the agents’ strategies?
For the complete network, it is still unknown how a social planner could achieve
any speed of learning that is better than the speed achieved by a single agent. The
challenge for the social planner lies in the trade-off between using the actions to
communicate between the agents and choosing the correct actions with very high
probability at the same time. One conjecture from Harel et al. [2021] is that a better
speed can be achieved by having the social planner instruct the agents to behave
as if they are myopic and over-weight their own signals, causing their actions to
reveal more information. In simpler, sequential settings, this type of mechanism
was shown to indeed improve learning outcomes [Arieli et al., 2023].

It is possible to extend our model in a number of directions. In Appendix 2.9 we
show that our main result continues to hold if agents do not observe each other every
period, but only in some (potentially random) periods. A natural extension, which
we leave for future work, is to allow the network to be random and its realization to be
only partially observed by the agents. An interesting technical question is that of the
robustness of our results to the assumption of bounded private signals. We conjecture
that a result similar to our main theorem should hold even if signals are unbounded,
with the Kullback-Leibler divergence between the conditional signal distributions
playing the bounding role currently played by the maximum log-likelihood ratio.
This is indeed the case for myopic agents on the complete network [Harel et al.,
2021]. A substantive extension is to allow the underlying state to change over
time [see Dasaratha et al., 2020, Frongillo et al., 2011, Moscarini et al., 1998]. For
example, the underlying unknown state could capture the quality of a local restaurant
or school, which might fluctuate gradually. In such a setting, one could replace the
speed of learning metric with the long-run probability of making the correct choice
and study whether information gets aggregated in this case and, if so, whether the
information aggregation process is efficient.
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2.8 Proofs

Proof of Lemma 9. (i) First notice that we can write the agent’s expected utility
conditioned on his information 𝐼𝑖𝑡 at time 𝑡 as the sum𝑈<𝑡 + 𝛿𝑡𝑈≥𝑡 , where

𝑈<𝑡 = (1 − 𝛿)
𝑡−1∑︁
𝑘=1

𝛿𝑘−1E[𝑢(𝑎𝑖𝑘 , 𝜔) |𝐼
𝑖
𝑡 ]

is the sum of the expected flow utilities until time 𝑡, and 𝑈≥𝑡 is the expected
continuation utility at time 𝑡 given by

𝑈≥𝑡 = (1 − 𝛿)
∞∑︁
𝑘=0

𝛿𝑘E[𝑢(𝑎𝑖𝑡+𝑘 , 𝜔) |𝐼
𝑖
𝑡 ]

= (1 − 𝛿)E[𝑢(𝑎𝑖𝑡 , 𝜔) |𝐼𝑖𝑡 ] + 𝛿(1 − 𝛿)
∞∑︁
𝑘=0

𝛿𝑘E[𝑢(𝑎𝑖𝑡+𝑘+1, 𝜔) |𝐼
𝑖
𝑡 ] .

Fix some state 𝔤 ∈ Ω. Since 𝑎𝔤 is the unique optimal action in state 𝔤, by applying
an affine transformation to the flow utility function 𝑢 : 𝐴 × Ω → R we can assume
that 𝑢(𝑎𝔤, 𝔤) = 1, that 𝑢(𝑎, 𝔤) ≤ 0 for all 𝑎 ≠ 𝑎𝔤. Let 𝑐𝔤 = max𝑎,𝔣 |𝑢(𝑎, 𝔣) |. Recall
that 𝑝𝑖,𝔤𝑡 = P[𝜔 = 𝔤|𝐼𝑖𝑡 ] is the agent’s posterior at time 𝑡. Thus, for any action 𝑎 ≠ 𝑎𝔤,
since 𝑢(𝑎, 𝔤) ≤ 0, the expected flow utility E[𝑢(𝑎, 𝜔) |𝐼𝑖𝑡 ] =

∑
𝔣∈Ω 𝑢(𝑎, 𝔣) · 𝑝𝑖,𝔣𝑡 is

at most 𝑐𝔤 (1 − 𝑝
𝑖,𝔤
𝑡 ). Likewise, E[𝑢(𝑎𝑖𝑡 , 𝜔) |𝐼𝑖𝑡 ] is at most 𝑝𝑖,𝔤𝑡 + 𝑐𝔤 (1 − 𝑝

𝑖,𝔤
𝑡 ) since

𝑢(𝑎𝔤, 𝔤) = 1.

Now, suppose that 𝑎𝑖𝑡 = 𝑎 ≠ 𝑎𝔤. Then the expected continuation utility is

𝑈≥𝑡 = (1 − 𝛿)E[𝑢(𝑎, 𝜔) |𝐼𝑖𝑡 ] + 𝛿(1 − 𝛿)
∞∑︁
𝑘=0

𝛿𝑘E[𝑢(𝑎𝑖𝑡+𝑘+1, 𝜔) |𝐼
𝑖
𝑡 ]

≤ (1 − 𝛿)𝑐𝔤 (1 − 𝑝𝑖,𝔤𝑡 ) + 𝛿(𝑝𝑖,𝔤𝑡 + 𝑐𝔤 (1 − 𝑝𝑖,𝔤𝑡 ))
= 𝛿𝑝

𝑖,𝔤
𝑡 + 𝑐𝔤 (1 − 𝑝𝑖,𝔤𝑡 ).

On the other hand, the strategy that chooses 𝑎𝔤 from period 𝑡 onward has an expected
continuation utility at least 𝑝𝑖,𝔤𝑡 − 𝑐𝔤 (1 − 𝑝𝑖,𝔤𝑡 ). Thus, when

𝑝
𝑖,𝔤
𝑡 − 𝑐𝔤 (1 − 𝑝𝑖,𝔤𝑡 ) > 𝛿𝑝𝑖,𝔤𝑡 + 𝑐𝔤 (1 − 𝑝𝑖,𝔤𝑡 ) (2.8.1)

the agent cannot choose 𝑎𝑖𝑡 = 𝑎 ≠ 𝑎𝔤 in period 𝑡. Rearranging, this happens when

𝑝
𝑖,𝔤
𝑡 >

2𝑐𝔤

2𝑐𝔤 + 1 − 𝛿 .
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Thus, under the above condition, agents choose 𝑎𝑖𝑡 = 𝑎𝔤 in equilibrium. Clearly, the
myopic action is then also equal to 𝑎𝔤, as this corresponds to the case 𝛿 = 0. Part (i)
of the lemma now follows by setting 𝑐 = max𝔤 2𝑐𝔤.

For part (ii), fix a discount factor 𝛿 ∈ [0, 1) and let 𝜎 be an equilibrium. Let 𝑎𝑖𝑡 be
the action taken by 𝑖 at time 𝑡 under 𝜎. Since the entire sequence of private signals
reveals the state, conditional on 𝜔 = 𝔤, lim𝑡 𝑝

𝑖,𝔤
𝑡 = 1 almost surely. Hence, by part

(i) the agent will choose the unique optimal action that is also myopically optimal
in equilibrium from some (random) time on. Since there are finitely many agents,
this will hold for all 𝑖 for all 𝑡 larger than some (random) 𝑇 . This means that from 𝑇

onward, in equilibrium all agents will behave myopically. □

The following is a simple consequence of Lemma 9.

Corollary 2. There is a constant 𝐶 > 0 such that, in any equilibrium, if it holds for
𝔤 ∈ Ω and all 𝔣 ≠ 𝔤 that 𝐿𝑖,𝔤,𝔣𝑡 > 𝐶, then 𝑎𝑖𝑡 = 𝑚𝑖𝑡 = 𝑎𝔤.

Proof. Fix a state 𝔤 ∈ Ω. Suppose that 𝐿𝑖,𝔤,𝔣𝑡 > 𝐶 for some 𝐶 > 0 to be chosen later.
Then 𝑝𝑖,𝔤𝑡 > e𝐶 𝑝𝑖,𝔣𝑡 . If this holds for all 𝔣 ≠ 𝔤 then

𝑝
𝑖,𝔤
𝑡 >

1
|Ω| − 1

e𝐶
∑︁
𝔣≠𝔤

𝑝
𝑖,𝔣
𝑡 =

1
|Ω| − 1

e𝐶 (1 − 𝑝𝑖,𝔤).

Thus for any each 𝑐 > 0, 𝑢 and 𝛿 ∈ [0, 1), for 𝐶 large enough it holds that

𝑝
𝑖,𝔤
𝑡 >

𝑐

𝑐 + 1 − 𝛿 ,

and the result follows by part (i) of Lemma 9. □

The following lemma will be useful in the proofs below. Recall that we denote
𝑢̄ = E[𝑢(𝑎𝜔, 𝜔)].

Claim 2. There exist 𝑐, 𝑐 > 0 such that

𝑐 · P[𝑎𝑖𝑡 ≠ 𝑎𝜔] ≤ 𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)] ≤ 𝑐 · P[𝑎𝑖𝑡 ≠ 𝑎𝜔]

Recall that we can think of the difference 𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)] as the expected loss in
flow utility as compared to the first-best. The lemma above states that this quantity
is the same—up to constants—as the probability of choosing the correct action. An
immediate consequence of this lemma is that we can express the speed of learning
in terms of this loss:

𝑟𝑖 = lim inf
𝑡

−1
𝑡

logP[𝑎𝑖𝑡 ≠ 𝑎𝜔] = lim inf
𝑡

−1
𝑡

log(𝑢̄ − E[𝑤(𝑎𝑖𝑡 , 𝑎𝜔)]). (2.8.2)
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Proof of Claim 2. Denote by 𝑐 the minimum loss of utility from choosing incor-
rectly:

𝑐 = min
𝔤∈Ω,𝑎≠𝑎𝔤

𝑢(𝑎𝔤, 𝔤) − 𝑢(𝑎, 𝔤).

Since there is a unique optimal action in each state we have that 𝑐 > 0. Analogously,
denote by 𝑐 > 0 the maximum such loss:

𝑐 = max
𝔤∈Ω,𝑎≠𝑎𝔤

𝑢(𝑎𝔤, 𝔤) − 𝑢(𝑎, 𝔤).

Then

𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)] = E[𝑢(𝑎𝜔, 𝜔) − 𝑢(𝑎𝑖𝑡 , 𝜔)] ≤ E[𝑐 · 1𝑎𝑖𝑡≠𝑎𝜔 ] = 𝑐 · P[𝑎
𝑖
𝑡 ≠ 𝑎

𝜔] .

Likewise,

𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)] = E[𝑢(𝑎𝜔, 𝜔) − 𝑢(𝑎𝑖𝑡 , 𝜔)] ≥ E[𝑐 · 1𝑎𝑖𝑡≠𝑎𝜔 ] = 𝑐 · P[𝑎
𝑖
𝑡 ≠ 𝑎

𝜔] .

□

Proof of Lemma 10. Suppose 𝑖 observes 𝑗 . Let 𝜎 be an equilibrium and let 𝑎𝑖𝑡 be
the action taken by 𝑖 at time 𝑡 under 𝜎. We claim that for 𝑡 > 1,

(1 − 𝛿) (𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)]) ≤ 𝑢̄ − E[𝑢(𝑎
𝑗

𝑡−1, 𝜔)] . (2.8.3)

To see that this equation must hold observe that the left-hand side equals the expected
continuation loss the agent would have from time 𝑡 on if he chooses the action 𝑎𝑖𝑡 at
time 𝑡 and suffered no loss in future periods. Hence this is smaller than the expected
continuation loss under the strategy profile 𝜎. In equilibrium, this must be smaller
than the loss from any deviation, and the right-hand-side equals the loss the agent
suffers when imitating 𝑗’s action 𝑎 𝑗

𝑡−1 from time 𝑡 onward. Thus the above inequality
must hold.

As a consequence,

lim inf
𝑡→∞

−1
𝑡

log(𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)]) ≥ lim inf
𝑡→∞

−1
𝑡

log
(

1
1 − 𝛿 (𝑢̄ − E[𝑢(𝑎

𝑗

𝑡−1, 𝜔)])
)

= lim inf
𝑡→∞

−1
𝑡

log(𝑢̄ − E[𝑢(𝑎 𝑗
𝑡−1, 𝜔)])

= lim inf
𝑡→∞

−1
𝑡

log(𝑢̄ − E[𝑢(𝑎 𝑗𝑡 , 𝜔)]).

Thus part (i) follows from (2.8.2). Part (ii) follows as in any strongly connected
network, there is an observational path from each agent 𝑖 to each other agent 𝑗 and
the monotonicity of learning speed shown in (i) applied along this path, implies that
𝑟𝑖 ≥ 𝑟 𝑗 . The opposite inequality holds by the same argument. □
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The next simple claim will be helpful in the Proof of Lemma 11.

Claim 3. Suppose that 𝑋𝑡 is a sequence of random variables taking values in [0, 1]
such that lim𝑡 −1

𝑡
logE[𝑋𝑡 |Σ𝑡] ≥ 𝑟 almost surely, for some sequence of sigma-

algebras Σ𝑡 .Then lim inf𝑡 −1
𝑡

log 𝑋𝑡 ≥ 𝑟, almost surely.

Proof of Claim 3. By the claim hypothesis there exists a random 𝐹 : N → R, such
that lim𝑡 𝐹 (𝑡)/𝑡 = 0 almost surely and such that

E[𝑋𝑡 |Σ𝑡] ≤ e−𝑟𝑡+𝐹 (𝑡) .

We can furthermore assume that 𝐹 (𝑡) ≤ 𝑟𝑡, since 𝑋𝑡 ≤ 1. Taking expectations of
both sides yields

E[𝑋𝑡] ≤ e−𝑟𝑡 · E[e𝐹 (𝑡)] .

Hence, if we denote 𝑓 (𝑡) = logE[e𝐹 (𝑡)],

E[𝑋𝑡] ≤ e−𝑟𝑡+ 𝑓 (𝑡) .

Furthermore,

lim
𝑡

1
𝑡
𝑓 (𝑡) = lim

𝑡

1
𝑡

logE[e𝐹 (𝑡)] = lim
𝑡

logE[e𝐹 (𝑡)/𝑡] = 0,

where the last equality is a consequence of the facts that 𝐹 (𝑡)/𝑡 ≤ 𝑟 and 𝐹 (𝑡)/𝑡
converges almost surely to zero. Hence, by Markov’s inequality, for any 𝑐𝑡 > 0,

P[𝑋𝑡 ≥ 𝑐𝑡] ≤ E[𝑋𝑡]/𝑐𝑡 ≤ e−𝑟𝑡+ 𝑓 (𝑡)/𝑐𝑡 .

Choosing 𝑐𝑡 = e−𝑟𝑡+ 𝑓 (𝑡) · 𝑡2, we get that

P[𝑋𝑡 ≥ e−𝑟𝑡+ 𝑓 (𝑡)+2 log 𝑡] ≤ 1
𝑡2
.

Hence, by Borel-Cantelli, almost surely 𝑋𝑡 ≤ e−𝑟𝑡+ 𝑓 (𝑡)+2 log 𝑡 for all 𝑡 large enough,
and in particular, lim inf𝑡 −1

𝑡
log 𝑋𝑡 ≥ 𝑟. □

Proof of Lemma 11. In this proof we use Landau notation, so that 𝑜(𝑡) stands for
some function 𝑓 : N→ R such that lim𝑡 𝑓 (𝑡)/𝑡 = 0.

By assumption and the definition of speed of learning in (2.2.2), P[𝑎𝑖𝑡 ≠ 𝑎𝜔] ≤
e−𝑟𝑡+𝑜(𝑡) . Let

𝑝
𝑥,𝔣
𝑡 = P[𝜔 = 𝔣 |𝑎𝑖𝑡]
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be the probability assigned to 𝜔 = 𝔣 by an outside observer 𝑥 that sees only agent 𝑖’s
action at time 𝑡.

By Bayes’ Law,

P[𝜔 = 𝔣 |𝑎𝑖𝑡 = 𝑎𝔤] =
P[𝑎𝑖𝑡 = 𝑎𝔤, 𝜔 = 𝔣]
P[𝑎𝑖𝑡 = 𝑎𝔤]

.

Since P[𝑎𝑖𝑡 ≠ 𝑎𝜔] ≤ e−𝑟𝑡+𝑜(𝑡) , we can bound the denominator by

P[𝑎𝑖𝑡 = 𝑎𝔤] ≥ P[𝜔 = 𝔤, 𝑎𝑖𝑡 = 𝑎
𝜔] ≥ P[𝜔 = 𝔤] − P[𝑎𝑖𝑡 ≠ 𝑎𝜔] ≥ P[𝜔 = 𝔤] − e−𝑟𝑡+𝑜(𝑡) .

If 𝔤 ≠ 𝔣 then the numerator is at most P[𝑎𝑖𝑡 ≠ 𝑎𝜔] since the event that the agent takes
the wrong action contains the event that the agent takes action 𝑎𝔤 in state 𝔣. Hence

P[𝜔 = 𝔣 |𝑎𝑖𝑡 = 𝑎𝔤] ≤
e−𝑟𝑡+𝑜(𝑡)

P[𝜔 = 𝔤] − e−𝑟𝑡+𝑜(𝑡)
.

Now, because P[𝑎𝑖𝑡 ≠ 𝑎𝜔] ≤ e−𝑟𝑡+𝑜(𝑡) , by Borel-Cantelli, almost surely 𝑎𝑖𝑡 = 𝑎𝔤 for
all 𝑡 large enough, conditioned on𝜔 = 𝔤. It follows that for all 𝑡 large enough—again
conditioned on 𝜔 = 𝔤—the belief 𝑝𝑥,𝔣𝑡 will equal P[𝜔 = 𝔣 |𝑎𝑖𝑡 = 𝑎𝔤]. Hence, by the
displayed equation above, lim inf𝑡 −1

𝑡
log 𝑝𝑥,𝔣𝑡 ≥ 𝑟. Since this holds for all 𝔣 ≠ 𝔤, we

get that lim𝑡 𝑝
𝑥,𝔤
𝑡 = 1.

Now, let

𝑝
𝑦,𝔣
𝑡 = P[𝜔 = 𝔣 |𝐻𝑖𝑡 ]

be the probability assigned to 𝜔 = 𝔣 by an outside observer 𝑦 that sees only agent
𝑖’s public history 𝐻𝑖𝑡 .

Then

log
𝑝
𝑦,𝔤
𝑡

𝑝
𝑦,𝔣
𝑡

= log
P[𝐻𝑖𝑡 |𝜔 = 𝔤]
P[𝐻𝑖𝑡 |𝜔 = 𝔣]

+ log
P[𝜔 = 𝔤]
P[𝜔 = 𝔣] = 𝑄

𝑖,𝔤,𝔣
𝑡 .

Since 𝐻𝑖𝑡 includes 𝑎𝑖
𝑡−1, the law of total expectations yields that

𝑝
𝑥,𝔣

𝑡−1 = E[𝑝𝑦,𝔣𝑡 |𝑎𝑖𝑡−1] .

It now follows from Claim 3 that identical asymptotics apply to 𝑝𝑦,𝔣𝑡 : lim inf𝑡 −1
𝑡

log 𝑝𝑦,𝔣𝑡 ≥
𝑟 and lim𝑡 𝑝

𝑦,𝔤
𝑡 = 1. Thus, conditioned on 𝜔 = 𝔤,

lim inf
𝑡→∞

1
𝑡
𝑄
𝑖,𝔤,𝔣
𝑡 = lim inf

𝑡→∞
1
𝑡

log
𝑝
𝑦,𝔤
𝑡

𝑝
𝑦,𝔣
𝑡

≥ 𝑟 almost surely.

□
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Proof of Lemma 12. Recall that at time 𝑡, 𝐻𝑖𝑡 = {𝑎 𝑗𝑠 : 𝑠 < 𝑡, 𝑗 ∈ 𝑁𝑖} is the history
of actions observed by 𝑖 and 𝑠𝑖1, . . . , 𝑠

𝑖
𝑡 is the sequence of private signals received

by 𝑖. Given a pure strategy profile 𝜎, agent 𝑖 chooses a unique action 𝑎𝑖𝑡 ∈ 𝐴 at
time 𝑡: 𝑎𝑖𝑡 = 𝜎(𝑠𝑖1, · · · , 𝑠

𝑖
𝑡 , 𝐻

𝑖
𝑡 ). It follows that for each history 𝐻𝑖𝑡 there is a set

𝑆𝑖 (𝐻𝑖𝑡 ) ⊆ 𝑆𝑖1 × · · · × 𝑆𝑖
𝑡−1 of possible private signal realizations 𝑠𝑖1, . . . , 𝑠

𝑖
𝑡−1 that are

consistent with 𝐻𝑖𝑡 :

𝑆𝑖 (𝐻𝑖𝑡 ) =
{
𝑠𝑖1, . . . , 𝑠

𝑖
𝑡−1 ∈ 𝑆𝑖1 × · · · × 𝑆𝑖𝑡−1 : P[𝑠𝑖1 = 𝑠𝑖1, . . . , 𝑠

𝑖
𝑡−1 = 𝑠𝑖𝑡−1 |𝐻

𝑖
𝑡 ] > 0

}
.

In other words, if we imagine an outside observer who sees only 𝐻𝑖𝑡—i.e. sees
𝑖’s actions and his neighbors’ actions—then 𝑆𝑖 (𝐻𝑖𝑡 ) is the set of private signal
realizations (𝑠𝑖1, . . . , 𝑠

𝑖
𝑡−1) to which this observer assigns positive probability.

Consider the numerator P[𝑠𝑖1, . . . , 𝑠
𝑖
𝑡 |𝐻𝑖𝑡 , 𝜔 = 𝔤] of the private log-likelihood ratio

𝑃
𝑖,𝔤,𝔣
𝑡 . Using the definition of 𝑆𝑖 (𝐻𝑖𝑡 ), we can write

P[𝑠𝑖1, . . . , 𝑠
𝑖
𝑡 |𝐻𝑖𝑡 , 𝜔 = 𝔤] = P[𝑠𝑖1, . . . , 𝑠

𝑖
𝑡 | (𝑠𝑖1, . . . , 𝑠

𝑖
𝑡−1) ∈ 𝑆

𝑖 (𝐻𝑖𝑡 ), 𝜔 = 𝔤] almost surely.

The above equality holds as conditional on 𝜔 = 𝔤 the signals of different agents
are independent and hence the only relevant information about agent 𝑖’s signals
𝑠𝑖1, . . . , 𝑠

𝑖
𝑡 contained in the history 𝐻𝑖𝑡 is the restriction the history imposes on the

realization of these signals.

Let 𝜇𝑖,𝔤1...𝑡 be the measure over signal realizations 𝑠𝑖1, . . . , 𝑠
𝑖
𝑡 when 𝜔 = 𝔤. Then

P[𝑠𝑖1, . . . , 𝑠
𝑖
𝑡 | (𝑠𝑖1, . . . , 𝑠

𝑖
𝑡−1) ∈ 𝑆

𝑖 (𝐻𝑖𝑡 ), 𝜔 = 𝔤] =
𝜇
𝑖,𝔤

1...𝑡 (𝑠
𝑖
1, . . . , 𝑠

𝑖
𝑡)

𝜇
𝑖,𝔤

1...𝑡−1(𝑆𝑖 (𝐻
𝑖
𝑡 ))
.

We thus have that

𝑃
𝑖,𝔤,𝔣
𝑡 = log

𝜇
𝑖,𝔤

1...𝑡 (𝑠
𝑖
1, . . . , 𝑠

𝑖
𝑡)

𝜇
𝑖,𝔣

1...𝑡 (𝑠
𝑖
1, . . . , 𝑠

𝑖
𝑡)
+ log

𝜇
𝑖,𝔣

1...𝑡−1(𝑆
𝑖 (𝐻𝑖𝑡 ))

𝜇
𝑖,𝔤

1...𝑡−1(𝑆𝑖 (𝐻
𝑖
𝑡 ))
. (2.8.4)

Since the signals are independent over time the first term of (2.8.4) is equal to

𝑡∑︁
𝜏=1

log
𝜇
𝑖,𝔤
𝜏 (𝑠𝑖𝜏)
𝜇
𝑖,𝔣
𝜏 (𝑠𝑖𝜏)

,

which is at most 1
2𝑀𝑡. The second term of (2.8.4), which is equal to

log

∑
(𝑠𝑖1,··· ,𝑠

𝑖
𝑡−1)∈𝑆𝑖 (𝐻

𝑖
𝑡 )
∏𝑡−1
𝜏=1 𝜇

𝑖,𝔣
𝜏 (𝑠𝑖𝜏)∑

(𝑠𝑖1,··· ,𝑠
𝑖
𝑡−1)∈𝑆𝑖 (𝐻

𝑖
𝑡 )
∏𝑡−1
𝜏=1 𝜇

𝑖,𝔤
𝜏 (𝑠𝑖𝜏)
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is also at most 1
2𝑀 (𝑡 − 1).16 Thus, it follows that 𝑃𝑖,𝔤,𝔣𝑡 is at most 𝑀𝑡. By an

analogous argument 𝑃𝑖,𝔣,𝔤𝑡 = −𝑃𝑖,𝔤,𝔣𝑡 is at least 𝑀𝑡, and so |𝑃𝑖,𝔤,𝔣𝑡 | is at most 𝑀𝑡. □

Proof of Theorem 3. Fix a discount factor 𝛿 ∈ [0, 1). Let 𝜎 be an equilibrium and
𝑎𝑖𝑡 be the action taken by 𝑖 at time 𝑡 under 𝜎. Now consider an outside observer 𝑥
who observes everybody’s actions so that the information available to him at time 𝑡
is 𝐻𝑡 = {𝑎𝑖𝑠, 𝑖 ∈ 𝑁, 𝑠 ≤ 𝑡} and at time infinity is 𝐻∞ = ∪𝑡𝐻𝑡 . Thus at any time 𝑡, this
observer can calculate the social likelihood 𝑄𝑖𝑡 for all 𝑖.

Suppose that the social likelihood is high, and in particular 𝑄𝑖,𝔤,𝔣𝑡 > 𝑀𝑡 +𝐶 at some
𝑡 for some constant 𝐶, some state 𝔤 and all 𝔣 ≠ 𝔤. Since the private likelihood 𝑃𝑖,𝔤,𝔣𝑡

cannot be less than−𝑀𝑡 (Lemma 12), the posterior likelihood 𝐿𝑖,𝔤,𝔣𝑡 = 𝑄
𝑖,𝔤,𝔣
𝑡 +𝑃𝑖,𝔤,𝔣𝑡 >

𝐶. In this case, supposing 𝐶 is high enough, by Corollary 2, the agent will choose
the myopic action 𝑎𝑖𝑡 = 𝑚𝑖𝑡 = 𝑎𝔤. Thus, under this condition on 𝑄𝑖𝑡 the outside
observer will know which action the agent will choose in equilibrium, and will not
learn anything (in particular, about the agent’s signals or the state) from observing
this action.

Suppose towards a contradiction that the equilibrium speed of learning 𝑟 is strictly
higher than 𝑀 , i.e. 𝑟 = 𝑀 + 𝜀 for some 𝜀 > 0. Then it follows from Lemma 11
that for any 𝐶 > 0, 𝑄𝑖,𝔤,𝔣𝑡 ≥ (𝑀 + 𝜀)𝑡 > 𝑀𝑡 + 𝐶 for all 𝑡 large enough and all 𝔣 ≠ 𝔤.
Since there are finitely many agents, this will hold for all 𝑖, for all 𝑡 larger than some
(random) 𝑇 . Hence the outside observer 𝑥 learns nothing more from the agents’
actions after time 𝑇 .

Let 𝑎𝑥𝑡 be the action that 𝑥 would choose to maximize the probability of matching
the state at time 𝑡. Since no new information is gained after time 𝑇 , the outside
observer stops updating their action and so 𝑎𝑥

𝑇
= 𝑎𝑥∞. Hence P[𝑎𝑥∞ ≠ 𝑎𝜔] > 0.

Since 𝑥 observes everyone’s actions, by the imitation principle

P[𝑎𝑖𝑡 ≠ 𝑎𝜔] ≥ P[𝑎𝑥∞ ≠ 𝑎𝜔] > 0 (2.8.5)

for all agents 𝑖 and all times 𝑡. But since the equilibrium speed of learning is
𝑀 + 𝜀 > 0, by the definition of speed of learning in (2.2.2), P[𝑎𝑖𝑡 ≠ 𝑎𝜔] converges
to zero, in contradiction with (2.8.5).

16This follows from the fact that for any two sequences of positive numbers (𝑎1, . . . , 𝑎𝑛) and
(𝑏1, . . . , 𝑏𝑛) it holds that∑

𝑘 𝑎𝑘∑
𝑘 𝑏𝑘

=

∑
𝑘 𝑏𝑘 (𝑎𝑘/𝑏𝑘)∑

𝑘 𝑏𝑘
∈
[
min
𝑘

(𝑎𝑘/𝑏𝑘),max
𝑘

(𝑎𝑘/𝑏𝑘)
]
.
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□

Proof of Proposition 6. Recall that 𝐸 ⊆ 𝑁 is a strongly connected component if
there is an indirect observation path from each agent in 𝐸 to each other agent in 𝐸 .
By a standard argument17, there exists a strongly connected component 𝐸 in which
no agent observes agents outside of 𝐸 . Hence we can analyze the speed of learning
of agents in 𝐸 in isolation and apply Theorem 3 to conclude that 𝑟𝑖 ≤ 𝑀 for all
𝑖 ∈ 𝐸 . □

Proof of Proposition 7. Suppose towards a contradiction that there does not exist
a constant 𝐾 where 𝑟𝑖 ≤ 𝐾 for infinitely many agents, i.e., that lim𝑖 𝑟𝑖 = ∞. This
implies that there exists a finite 𝑘 such that the agents with 𝑟𝑖 ≤ 𝑀 constitute a
subset of {1, . . . , 𝑘}. Thus, for all agents 𝑖 > 𝑘 , 𝑟𝑖 > 𝑀 . Fix an agent 𝑛 > 𝑘 .

Consider an outside observer 𝑥 who observes agents {1, . . . , 𝑛}. Since 𝑟𝑖 > 𝑀

for all 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, it follows from Lemma 11 that conditioned on 𝜔 = 𝔤,
𝑄
𝑖,𝔤,𝔣
𝑡 > 𝑀 · 𝑡 for all 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, for all 𝔣 ≠ 𝔤 and for all 𝑡 large enough.

Since the absolute value of the private likelihood 𝑃𝑖,𝔤,𝔣𝑡 is always less than or equal
to 𝑀𝑡 at any given time 𝑡 (Lemma 12), all agents 𝑘 + 1, . . . , 𝑛 will eventually ignore
their private information and act based on their social information. I.e., for all
𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, 𝑎𝑖𝑡 is determined by 𝑄𝑖𝑡 for all 𝑡 large enough. Since there are
finitely many agents observed by 𝑥, there exists a (random) 𝑇 so that from 𝑇 onward,
𝑥, who knows 𝑄𝑖𝑡 , learns nothing more from the actions of agents {𝑘 + 1, . . . , 𝑛}.
Thus, 𝑥 will learn as fast as he would if he only observed agents {1, . . . , 𝑘}. It
follows that the speed of learning of this outsider observer 𝑥 is at most 𝑘𝑟𝑎, which is
𝑘 times the speed of learning of a single agent, or, equivalently, the speed of learning
from directly observing 𝑘 signals every period. Following the argument in the proof
of Theorem 3, since 𝑥 observes 𝑖, 𝑥 learns at least as fast as 𝑖, and so 𝑟𝑖 ≤ 𝑘𝑀 .
Since this holds for all 𝑖, we have reached a contradiction to the assumption that
lim𝑖 𝑟𝑖 = ∞. □

Proof of Proposition 8. By the imitation principle for myopic agents,

𝑟𝑖+1 ≥ 𝑟𝑖
17Define a preorder on the set of agents 𝑁 by 𝑖 ⪰ 𝑗 if there is an indirect observation path from 𝑖 to

𝑗 . The ⪰-equivalence classes are the strongly connected components. The set 𝐸 is any equivalence
class of ⪰-minimal elements.
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for all 𝑖 = 1, 2, . . . and 𝑟1 = 𝑟𝑎 < 𝑀 as agent 1 sees only their private signals.
Suppose towards a contradiction that there exits an agent 𝑘 ≥ 2 agent who learns
at a speed that is strictly higher than 𝑀 , i.e., 𝑟𝑘 = 𝑀 + 2𝜀 for some 𝜀 > 0 and let
𝑘 > 1 be the smallest such integer. By Lemma 11 there exists a (random) 𝑇 such
that for all 𝑡 larger than 𝑇 , in state 𝔤 the public log-likelihood is greater that the
largest likelihood than can be induced by any private signal

𝑄
𝑘,𝔤,𝔣
𝑡 > 𝑀 · 𝑡. (2.8.6)

Consider an outside observer 𝑥 who observes 𝐻𝑘
𝑡 : the actions of agents 𝑘 − 1 and

𝑘 . Hence 𝑥 knows 𝑄𝑘,𝔤,𝔣
𝑡 for all 𝑡 > 𝑇 , and by the same argument of the proof of

Theorem 3, does not learn anything from 𝑘’s action after time 𝑇 . Hence 𝑥’s speed of
learning is 𝑟𝑘−1. As the outside observer 𝑥 can observe 𝑘 , by the imitation principle,
𝑥’s speed of learning is at least that of agent 𝑘 . This together implies that 𝑟𝑘−1 > 𝑀 ,
which is a contradiction to the original assumption on 𝑘 . □

2.9 Intermittent and Random Observation Times
In this section we extend our model to allow for some intermittent and random
observation times. This extension allows us to consider, for example, a situation in
which one pair of agents meet every day, another pair meets every Sunday, and yet
another pair meets on a random day of the week. Our main result still applies in this
setting, and moreover the same proofs apply, with some additional details that need
to be verified, as we explain.

Formally, for each pair of agents 𝑖, 𝑗 such that 𝑗 ∈ 𝑁𝑖 let 𝑂𝑖, 𝑗 be the set of time
periods in which 𝑖 observes 𝑗 . These sets can be random, but we assume that they
are independent of each other, the state and the signals. We also assume that there is
some number 𝐷 > 0 such that, with probability 1, for every 𝑖, 𝑗 such that 𝑗 ∈ 𝑁𝑖 and
every 𝑡 ∈ {0, 1, 2, . . .}, the intersection {𝑡 + 1, . . . , 𝑡 + 𝐷} ∩𝑂𝑖, 𝑗 is not empty. That
is, if 𝑗 ∈ 𝑁𝑖 then 𝑖 observes 𝑗 at least once every 𝐷 periods. Hence, the difference
between consecutive 𝑡1, 𝑡2 ∈ 𝑂𝑖, 𝑗 is at most 𝐷.

The history of actions observed by agent 𝑖 at time 𝑡 is

𝐻𝑖𝑡 = {𝑎 𝑗𝑠 : 𝑠 < 𝑡, 𝑠 ∈ 𝑂𝑖, 𝑗 , 𝑗 ∈ 𝑁𝑖}.

As before, the private history of agent 𝑖 at time 𝑡 is 𝐼𝑖𝑡 = (𝑠𝑖1, . . . , 𝑠
𝑖
𝑡 , 𝐻

𝑖
𝑡 ), and a pure

strategy at time 𝑡 is a map that assigns an action to each possible realization of 𝐼𝑖𝑡 .
The structure of agents’ private signals and utilities remain the same. The speed of
learning is likewise defined as before.
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We now explain why, in this extended model, Theorem 3 still holds as stated.
The proof of Lemma 9 applies verbatim, as only one agent is considered, and
the observation structure plays no role. Lemma 10 likewise still applies, but an
adjustment needs to be made: the imitation principle (2.8.3) again compares the
loss the agent suffers in period 𝑡, assuming he suffers no loss in the future (on the
left-hand-side), to the loss from always taking the action agent 𝑗 took the last time
𝑡 − 𝐷 he was observed by agent 𝑖 (on the right-hand-side)

(1 − 𝛿) (𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)]) ≤ 𝑢̄ − E
[
𝑢(𝑎 𝑗

𝜏(𝑡) , 𝜔)
]
≤ max
𝑡′∈{𝑡−𝐷−1,...,𝑡−1}

𝑢̄ − E
[
𝑢(𝑎 𝑗

𝑡′ , 𝜔)
]
,

where 𝜏(𝑡) = max𝑂𝑖, 𝑗 ∩ {0, . . . , 𝑡 − 1} is the last time (before 𝑡) that 𝑖 observed 𝑗 .
Now continuing as in the proof of Lemma 10

lim inf
𝑡→∞

−1
𝑡

log(𝑢̄ − E[𝑢(𝑎𝑖𝑡 , 𝜔)]) ≥ lim inf
𝑡→∞

−1
𝑡

log(𝑢̄ − E[𝑢(𝑎 𝑗𝑡 , 𝜔)])

which implies the result of Lemma 10. Here we crucially use the fact that there are
at most 𝐷 periods between observations.

The proof of Lemma 11 remains valid, since the observation structure plays no role.
The same holds for Lemma 12: The same proof applies to the modified version of
the observed history 𝐻𝑖𝑡 . Finally, the proof of Theorem 3 again applies verbatim.
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C h a p t e r 3

THE EMERGENCE OF FADS IN A CHANGING WORLD

3.1 Introduction
The term “fad” describes transient behavior that rises and fades rapidly in popularity,
and in particular, these fast changes in behavior cannot be entirely explained by
changes in the fundamentals. For example, in macroeconomics, there are boom-
and-bust business cycles that cannot be pinned down by changes in the underlying
economy.1 In finance, it has long been documented that price deviation from the
asset’s intrinsic values can stem from speculative bubbles and fads [Aggarwal and
Rivoli, 1990, Camerer, 1989]. While the phenomenon of fads is widely observed in
many economic activities, the question of how and why fads emerge has yet to be
resolved. In this paper, we show how fads—excessive changes in behavior relative to
the fundamentals—can arise from social learning in an ever-changing environment.

The pioneering work in the social learning literature [Banerjee, 1992, Bikhchandani,
Hirshleifer, and Welch, 1992, hereafter referred to as BHW] shows that under
appropriate conditions, an information cascade always occurs. This is the event in
which social information swamps agents’ private information so that agents would
follow the action of their predecessors, even if their private information suggests
otherwise. However, since these cascades are typically formed based on limited
information, their long-run outcome is fragile to small shocks. For example, as
discussed in BHW, the possibility of a one-time change in the underlying state could
result in “seemingly whimsical swings in mass behavior without obvious external
stimulus,” a phenomenon they refer to as fads. Inspired by their original idea, we
introduce a formal definition of fads and study their long-term behavior.

While BHW present an early idea of a fad, they mainly focus on learning in a fixed
environment where fads cannot recur indefinitely. In contrast, the recurrence of fads
is possible in a changing environment, a setting that has recently attracted some at-
tention [see, e.g., Dasaratha, Golub, and Hak, 2020, Lévy, Pęski, and Vieille, 2022].
Indeed, it is important to study this setting, as many applications of social learning,
such as investment, employment, cultural norms, and technological advancement,

1See a recent study by Schaal and Taschereau-Dumouchel [2021] modeling business cycles
through the lens of social learning.
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often operate in a dynamic environment.

In this paper, we study social learning in a dynamic environment by adopting a simple
two-state Markovian model with a small and symmetric transition probability. In
this environment, we consider the canonical model of social learning with binary
signals that are symmetric and informative about the current state.2 We focus on the
long-term behavior of agents who arrive sequentially and learn from observing the
past actions of others as well as their own private signals. Given their information,
each agent updates their belief about the state, acts once, and receives a positive
payoff if her action matches the current state. As the underlying state evolves, the
optimal action also fluctuates. The questions we aim to address are: how frequently
do actions change? And more specifically, how often do they change compared to
state changes?

It is important to note that in a dynamic environment, information cascades may
occur, but they are only temporary. Hence, unlike in a static environment, agents do
not permanently disregard their private signals [Moscarini et al., 1998]. Intuitively,
once agents are in a cascade, there is no further influx of new information. However,
as the state evolves, the social information supporting this cascade gradually loses
relevance to the current agent. Thus, once this social information fades sufficiently,
agents begin responding to their private signals again. We focus on the setting where
the state evolves slowly, allowing the occurrence of these temporary cascades. This
is because if otherwise, it is clear that actions would be more volatile than the state,
as volatility in actions is purely caused by the noise in the signals, which are more
volatile than the state itself.

Given the rises of temporary information cascades, the question of whether actions
change more or less often than the state becomes unclear. On the one hand, due to
information cascades, agents sometimes ignore their private signals, and so they do
not change their actions even when the state changes. The symmetry of binary states
further amplifies this effect: consider a scenario in which the state has changed an
even number of times, say twice. However, agents in a cascade would mistakenly
perceive the state as unchanged, so they would have no reason to change their
actions. On the other hand, because signals are noisy, agents sometimes change
actions unnecessarily. We define fads as a situation in which there are more action

2See other studies of social learning with a Markovian state, e.g., Hirshleifer and Welch [2002],
Moscarini, Ottaviani, and Smith [1998] and Lévy, Pęski, and Vieille [2022]. Our model is mostly
close to that in Moscarini, Ottaviani, and Smith [1998] except for the tie-breaking rule.
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changes than state changes. Our main result (Theorem 4) shows that fads emerge in
the long run, so that actions eventually switch more often than the state.

For example, consider a private signal that matches the current state 80 percent of
the time. When the state changes once every 100 periods on average, we show
that it takes less than sixty-one periods for agents to change their actions. As a
consequence, the long-term frequency of action changes must be higher than that of
state changes, thus leading to the emergence of fads in the long run. Arguably, this
result is in line with the fragility of fads, where small shocks to the system could
cause rapid shifts in the behavior of the agents.3 We stress that in our model, agents
act rationally, and hence the emergence of fads is driven by their desire to match
with the ever-changing state, rather than any heuristics, irrationalities, or payoff
externalities among the agents.

Our proof strategy behind the long-term emergence of fads is as follows. First, for
any fixed signal precision and probability of state change, there exists a maximum
length of information cascades. As a result, even though the rise of temporary
cascades prolongs action inertia, such an effect is limited by its bounded length.
Meanwhile, once agents exit a cascade, they only need one opposing signal to
change their actions. This allows us to bound the probability of an action change
from below, thus establishing an upper bound for the expected time between these
changes. We then show that this upper bound is less than the expected time between
state changes, implying that action changes occur more frequently than state changes
on average. Finally, by translating the expected time between changes for both the
state and the action into their long-term relative frequency of changes, we conclude
that fads emerge in the long run.

Related Literature
This paper is closely related to a small stream of studies on social learning in a
changing state. In BHW, they briefly discuss the case where a one-time shock to the
state could break the cascade, even though that shock may never be realized. They
provide a numeric example where the probability of an action change is at least 87%
higher than the probability of a state change (see their Result 4) which is in line
with our main result. Later, Moscarini, Ottaviani, and Smith [1998] show that if
the underlying state is evolving in every period and it is sufficiently persistent, an

3As discussed in Bikhchandani, Hirshleifer, and Welch [1992, 1998], different kinds of small
shocks, such as uncertainty in the underlying state as in our model or the arrival of a better-informed
agent, could dislodge the previous trend and cause drastic behavioral changes.
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information cascade must arise, but it only last temporarily, i.e., it must end in finite
time. Our work builds on their model but with a different focus. Instead of analyzing
the short-term patterns of information cascades, e.g., under what conditions do they
end or arise, we ask: in the long run, should one expect more volatility in actions or
in the state?

In a setting where a single agent repeatedly receives private signals, Hirshleifer and
Welch [2002] examine the effect of memory loss—a situation in which the agent only
recalls past actions but not past signals—on the continuity of the agent’s behavior.
Using a stylized five-period model, they show that in a relatively stable environment,
memory loss induces excessive action inertia compared to a full-recall regime. In
contrast, in a more volatile environment, memory loss results in excessive action
impulsiveness.4 Instead of comparing with a single agent with perfect memory, we
are interested in understanding whether behavior under social learning (or amnesia
in their language) is more or less volatile than the underlying fundamentals.

Among a few more recent studies that consider a dynamic state, the efficiency of
learning has been a primary focus of study. For example, Frongillo, Schoenebeck,
and Tamuz [2011] consider a specific environment in which the underlying state fol-
lows a random walk with non-Bayesian agents who use different linear rules when
updating. Their main result is that the equilibrium updating weights may be Pareto
suboptimal, causing inefficiency in learning.5 In a similar but more general envi-
ronment, Dasaratha, Golub, and Hak [2020] show that having sufficiently diverse
network neighbors with different signal distributions improves learning. This is
because diverse signals enable agents to extract the most relevant information from
the old and confounded data, thereby achieving higher efficiency in information
aggregation.

In a setup similar to ours, a recent study by Lévy, Pęski, and Vieille [2022] considers
the welfare implication of a dynamic state. In their model, agents observe a random
subsample drawn from all past actions and then decide whether to acquire private
signals that are potentially costly. These model generalizations allow them to high-
light the trade-off between learning efficiency and responsiveness to environmental

4Intuitively, as volatility of the environment increases, past actions become less relevant to the
current state. At some point, this information weakens enough so that the amnesiac agent would
always follow her latest signal, but the full-recall agent may not do so at this point. Hence, there is
an increase in the probability of an action change due to amnesia.

5See more studies in the computer science literature, e.g., Acemoglu, Nedic, and Ozdaglar
[2008], Shahrampour, Rakhlin, and Jadbabaie [2013] that consider a dynamic environment with
non-Bayesian agents.
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changes in maximizing equilibrium welfare. In contrast, we assume that agents
observe the full history of past actions and there is no cost associated with obtaining
their private signals. We consider this canonical sequential learning model without
further complications as our focus is on comparing the long-term relative frequency
of action and state changes—a question that turns out to be nontrivial even in this
simple setup.

3.2 Model
Setup
We follow the setup from Moscarini, Ottaviani, and Smith [1998] closely. Time is
discrete, and the horizon is infinite, i.e., 𝑡 ∈ N+ = {1, 2, . . .}. There is a binary state
𝜃𝑡 ∈ {+1,−1} that evolves according to a Markov chain with symmetric transition
probability 𝜀 ∈ (0, 1). That is,

P[𝜃𝑡+1 ≠ 𝑖 |𝜃𝑡 = 𝑖] = 𝜀, for 𝑖 ∈ {+1,−1}.

For simplicity, we assume that both states are equally likely at the beginning of
time—a uniform distribution that is also the stationary distribution of this Markov
chain.

A sequence of short-lived agents indexed by time 𝑡 arrive in order, each acting once
by choosing an action 𝑎𝑡 ∈ {+1,−1}. For each agent 𝑡, she obtains a payoff of one
if her action matches the current state, i.e., 𝑎𝑡 = 𝜃𝑡 and zero otherwise. Before
choosing an action, she receives a binary private signal 𝑠𝑡 ∈ {+1,−1} and observes
the history of all past actions made by her predecessors (𝑎1, . . . , 𝑎𝑡−1) = ℎ𝑡−1 ∈
{+1,−1}𝑡−1. Conditional on the entire sequence of states, these private signals
(𝑠𝑡) are independent and each 𝑠𝑡 follows a Bernoulli distribution 𝐵𝜃𝑡 (𝛼) where
𝛼 ∈ (1/2, 1) is the symmetric probability of matching the current state:

P[𝑠𝑡 = 𝑖 |𝜃𝑡 = 𝑖] = 𝛼, for 𝑖 ∈ {+1,−1}.

We focus on the environment where the state is sufficiently persistent: for any signal
precision 𝛼 ∈ (1/2, 1), the probability of a state change 𝜀 ∈ (0, 𝛼(1 − 𝛼)). Under
this assumption, Moscarini et al. [1998] show that information cascades can occur,
but they only last temporarily. Equivalently, we can think of this assumption as
follows: in every period, with probability 2𝜀 ∈ (0, 2𝛼(1 − 𝛼)) the state will be
redrawn from the set {+1,−1} with equal probability. Thus, the probability of a
state change is equal to 𝜀, which lies in the open interval (0, 𝛼(1 − 𝛼)).
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Figure 3.1: An illustration of processes (𝜃𝑡) and (𝑎𝑡).

We summarize the timing of the events as follows (see a graphical illustration in
Figure 3.1). At any time 𝑡, the agent arrives and observes the history of all past
actions ℎ𝑡−1 = (𝑎1, . . . , 𝑎𝑡−1). Then the state 𝜃𝑡−1 transitions to 𝜃𝑡 with probability 𝜀
of switching. After the transition of the state, agent 𝑡 receives a private signal 𝑠𝑡 that
matches the current state 𝜃𝑡 with probability 𝛼. Finally, she chooses an action 𝑎𝑡 that
maximizes the probability of matching 𝜃𝑡 conditional on (ℎ𝑡−1, 𝑠𝑡), the information
available to her.

Fads
Given that each agent aims to match the current state, as the state evolves, the best
action to take also fluctuates. BHW informally discuss the idea of faddish behavior
as a situation where action changes occur more frequently than state changes. In
other words, fads represent scenarios where there are excessive action changes. To
formalize this idea, we denote the fraction of time periods 𝑡 ≤ 𝑛 for which 𝑎𝑡 ≠ 𝑎𝑡+1

by

Q𝑎 (𝑛) :=
1
𝑛

𝑛∑︁
𝑡=1
1(𝑎𝑡 ≠ 𝑎𝑡+1).

Similarly, we denote the fraction of time periods 𝑡 ≤ 𝑛 for which 𝜃𝑡 ≠ 𝜃𝑡+1 by
Q𝜃 (𝑛) := 1

𝑛

∑𝑛
𝑡=1 1(𝜃𝑡 ≠ 𝜃𝑡+1). We say that fads emerge at time 𝑛 + 1 if

Q𝑎 (𝑛) > Q𝜃 (𝑛). (3.2.1)

Multiplying both sides of (3.2.1) by 𝑛, the emergence of fads at time 𝑛 + 1 implies
that actions have changed more often than the state by time 𝑛 + 1.

Agents’ Beliefs
Let 𝑞𝑡 := P[𝜃𝑡 = +1|ℎ𝑡−1] denote the public belief assigned to the event 𝜃𝑡 = +1 after
observing ℎ𝑡−1 the history of actions at time 𝑡. Let 𝑝𝑡 := P[𝜃𝑡 = +1|ℎ𝑡−1, 𝑠𝑡] denote
the posterior belief of agent 𝑡 assigned to the event 𝜃𝑡 = +1 after observing a pair of
observed history and private signal (ℎ𝑡−1, 𝑠𝑡). Let 𝐿𝑡 denote the log-likelihood ratio
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(LLR) of the posterior belief of agent 𝑡:

𝐿𝑡 := log
𝑝𝑡

1 − 𝑝𝑡
= log

P[𝜃𝑡 = +1|ℎ𝑡−1, 𝑠𝑡]
P[𝜃𝑡 = −1|ℎ𝑡−1, 𝑠𝑡]

.

We refer to 𝐿𝑡 as the posterior LLR at time 𝑡. By Bayes’ rule,

𝐿𝑡 = log
P[𝑠𝑡 |𝜃𝑡 = +1, ℎ𝑡−1]
P[𝑠𝑡 |𝜃𝑡 = −1, ℎ𝑡−1]

+ log
P[𝜃𝑡 = +1|ℎ𝑡−1]
P[𝜃𝑡 = −1|ℎ𝑡−1]

. (3.2.2)

Since the private signal is independent of the history of actions conditional on the
current state, the first term in (3.2.2) reduces to the LLR induced by the signal itself,
which is equal to 𝑐𝛼 := log 𝛼

1−𝛼 if 𝑠𝑡 = +1 and −𝑐𝛼 if 𝑠𝑡 = −1. Denote the second
term in (3.2.2) by

ℓ𝑡 := log
𝑞𝑡

1 − 𝑞𝑡
= log

P[𝜃𝑡 = +1|ℎ𝑡−1]
P[𝜃𝑡 = −1|ℎ𝑡−1]

,

and we refer to it as the public LLR at time 𝑡. Intuitively, anyone who observes past
actions from time 1 to 𝑡 − 1 can calculate this log-likelihood ratio.

In summary, depending on the realization of the private signal, the posterior LLR
at time 𝑡 evolves as follows:

𝐿𝑡 =


ℓ𝑡 − 𝑐𝛼 if 𝑠𝑡 = −1,

ℓ𝑡 + 𝑐𝛼 if 𝑠𝑡 = +1.
(3.2.3)

Agents’ Behavior
The optimal action for agent 𝑡 is the action that maximizes her expected payoff
conditional on the information available to her:

𝑎𝑡 ∈ arg max
𝑎∈{−1,+1}

P[𝜃𝑡 = 𝑎 |ℎ𝑡−1, 𝑠𝑡] .

Thus 𝑎𝑡 = +1 if 𝐿𝑡 > 0 and 𝑎𝑡 = −1 if 𝐿𝑡 < 0. When 𝐿𝑡 = 0, agent 𝑡 is indifferent
between both actions. We assume that she would follow what her immediate
predecessor did in the previous period, i.e., 𝑎𝑡 = 𝑎𝑡−1.6 This tie-breaking rule differs
from the one used in Moscarini, Ottaviani, and Smith [1998], where indifferent
agents are assumed to follow their own private signals. We make this assumption
so that any action changes are driven by agents’ strict preference for one action over
another, rather than by the specification of the tie-breaking rule.

6Our results do not depend on this assumption and are robust to any tie-breaking rule that is
common knowledge.
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Cascade and Learning Regions
An information cascade is the event in which the past actions of others form an
overwhelming influence on agents so that they act independently of their private
signals. Specifically, from (3.2.3), we see that when |ℓ𝑡 | > 𝑐𝛼, the sign of 𝐿𝑡 is
purely determined by the sign of ℓ𝑡 . Since the sign of 𝐿𝑡 determines the optimal
action of agent 𝑡, in this case, 𝑎𝑡 is purely determined by the sign of ℓ𝑡 , independent
of 𝑠𝑡 . That is, 𝑎𝑡 = +1 if ℓ𝑡 > 𝑐𝛼 and 𝑎𝑡 = −1 if ℓ𝑡 < −𝑐𝛼. In the case where |ℓ𝑡 | < 𝑐𝛼,
agent 𝑡 chooses the action according to her private signal: 𝑎𝑡 = 𝑠𝑡 . Finally, in the
case where |ℓ𝑡 | = 𝑐𝛼, the tie-breaking rule at indifference implies that regardless of
the realization of 𝑠𝑡 , agent 𝑡 chooses the same action as agent 𝑡 − 1, i.e., 𝑎𝑡 = 𝑎𝑡−1.
Moreover, notice that 𝑎𝑡−1 = sign(ℓ𝑡).7 Together, we refer to the region in which
|ℓ𝑡 | ≥ 𝑐𝛼 as the cascade region and the region in which |ℓ𝑡 | < 𝑐𝛼 the learning region.

3.3 Results
A Benchmark
As a benchmark, we briefly discuss the case where each short-lived agent only
observes her own private signal but not the actions of her predecessors. In this
scenario, agent 𝑡 simply follows her private signal 𝑠𝑡 since it is the only information
she has about the state.8 As a consequence, agents’ actions would change as often
as their private signals in the long run. Hence, by the strong law of large numbers,

lim
𝑛→∞

Q𝑎 (𝑛) = P[𝑠𝑡 ≠ 𝑠𝑡+1] almost surely,

where a simple calculation shows that

P[𝑠𝑡 ≠ 𝑠𝑡+1] = (1 − 𝛼2) (1 − 𝜀) + 𝛼2𝜀.

First, observe that the above probability is strictly higher than 𝜀, which is equal
to the long-term frequency of state changes (see further details in Section 3.4).
This is intuitive because in this case agents always follow their signals, so actions
would exhibit the same amount of volatility as the signals, which themselves are
more volatile than the state. Second, notice that as the private signal becomes more

7Without loss of generality, consider the case where ℓ𝑡 = 𝑐𝛼. On the one hand, if 𝑠𝑡 = +1, then
𝐿𝑡 = ℓ𝑡 + 𝑐𝛼 > 𝑐𝛼, and so 𝑎𝑡 = +1. On the other hand, if 𝑠𝑡 = −1, then 𝐿𝑡 = ℓ𝑡 − 𝑐𝛼 = 0 and
by the tie-breaking rule, 𝑎𝑡 = 𝑎𝑡−1. To see why 𝑎𝑡−1 = sign(ℓ𝑡 ) = +1, suppose to the contrary that
𝑎𝑡−1 = −1. Given that ℓ𝑡 = 𝑐𝛼 and 𝑎𝑡−1 = −1, it must be ℓ𝑡−1 > 𝑐𝛼, which implies 𝑎𝑡−1 = +1. A
contradiction.

8Note that this case is behaviorally equivalent to the scenario where the state is not sufficiently
persistent and there are no temporary information cascades, leading agents to always follow their
private signal.
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precise (as 𝛼 → 1), the long-run frequency of action changes converges to that of
state changes. As signals become more precise, there are fewer unnecessary changes
in actions, and in the limit, actions would change as often as the state in the long
run.

Next, we turn to our main setting where each short-lived agent observes both her
private signal and the actions of her predecessors. Recall that since the state is
sufficiently persistent, i.e., 𝜀 ∈ (0, 𝛼(1 − 𝛼)), there are temporary information
cascades, during which agents follow the actions of their predecessors.

Public Actions
We now state our main result. Recall that Q𝑎 (·) and Q𝜃 (·) represent the fraction of
time periods in which action and state changes occur, respectively, and we define in
(3.2.1) the emergence of fads at time 𝑛 + 1 as Q𝑎 (𝑛) > Q𝜃 (𝑛).

Theorem 4. Fads emerge in the long run almost surely:

lim
𝑛→∞

Q𝑎 (𝑛) > lim
𝑛→∞

Q𝜃 (𝑛) almost surely.

Perhaps surprisingly, Theorem 4 shows that even though there are times in which
agents stop responding to their private signals, i.e., when cascades arise temporarily,
agents who observe their predecessors’ past actions still change their actions more
often than the state in the long run. In other words, fads can emerge from social
learning even when the underlying state evolves very slowly.

For example, consider a private signal that matches the current state 80 percent of
the time. When the probability of state change is 1 percent, on average the state
changes once every 100 periods. Meanwhile, the average time for the action to
change is strictly less than 61 periods.9 Thus, in the long run, actions would change
strictly more often than the state, resulting in faddish behavior.

The idea behind the proof of Theorem 4 is as follows. Suppose that the agents
are in an information cascade. As there is no further influx of new information,
the social information contained in the cascade gradually becomes less relevant
to the current agent as the state evolves. Consequently, at some point, this social
information becomes obsolete enough for the agent to begin responding to her
private signal again. In fact, a single opposing private signal to the current belief

9This follows from Proposition 9 in §3.4 by substituting 𝛼 = 0.8 and 𝜀 = 0.01 into 𝑀 (𝛼, 𝜀), and
we have 𝑀 (0.8, 0.01) ≈ 60.7.
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can trigger an action switch. This allows us to bound the probability of initiating a
new information cascade from above, establishing an upper bound for the expected
time between action switches (Proposition 9). It turns out that the maximum of this
upper bound is strictly less than the expected time between state changes. Building
on this, we conclude that the long-run relative frequency of action changes is higher
than that of state changes.

We note that because action switches are not independent events, the connection
between the expected time between action changes and its long-run relative switching
frequency does not directly follow from the standard result of the law of large
numbers. To address this challenge, we study the process of the random time elapsed
between action changes, which has well-defined moments (see Lemma 14 in the
appendix). Moreover, unlike the fixed-state model, when the state changes over time,
the agent’s public belief about the current state ceases to be a martingale—a property
that is crucial for analyzing the long-term outcome of learning.10 Nevertheless, the
public belief remains to be a Markov process, and we will rely on its specific
transitional patterns to analyze the expected time between its sign switches (see
Lemma 13 in Section 3.4).

We make the assumption of a sufficiently persistent state for two reasons. Firstly, in
a scenario where the state is not sufficiently persistent—thus temporary information
cascades never arise—agents would always follow their signals and change their
actions accordingly. As a result, as in our benchmark case, action changes clearly
occur more frequently than state changes. Secondly, even with a persistent state, it is
a priori unclear whether the state or the action changes more often. This is because as
the likelihood of state changes decreases, the rate of action changes also slows down.
Intuitively, when state changes are less likely, past actions become more informative
about the current state. As a consequence, temporary information cascades tend to
persist longer, leading to extended periods of action inertia. Our main result suggests
that this prolonged action inertia is eventually surpassed by action impulsiveness
induced by noisy signals, leading to excessive changes in actions relative to the state
in the long run.

Numerical Simulations
To complement the asymptotic result of Theorem 4, we simulate the empirical
frequencies of action and state changes under different parameter values of signal

10For example, the martingale property is essential in proving that all agents eventually herd on
the correct action in a setting with a fixed state and unbounded signals [Smith and Sørensen, 2000].
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𝛼 \ 𝜀 0.05 0.1 0.2
0.51 16,766 (5,081) 28,564 (10,055) 42,128 (20,024)
0.75 15,240 (5,100) 26,149 (10,034) –
0.9 14,252 (5,096) – –

Table 3.1: The numerical simulations of the number of action and state changes (in
parentheses) under different values of 𝛼 and 𝜀 ∈ (0, 𝛼(1 − 𝛼)) for 100,000 periods.

precision (𝛼) and state volatility (𝜀) over 100, 000 periods. The results are reported
in Table 3.1.

Observe first that these numerical simulations confirm our main result: for any pair
of parameter values that we consider, action changes are more frequent than state
changes. Next, we examine how the magnitude of action and state changes varies
across different parameter values. As illustrated in the first column of Table 3.1, we
observe a decrease in the frequency of action changes as the precision of the private
signal increases. This aligns with the intuition that more precise signals should
mitigate unnecessary action changes. Conversely, as state volatility increases, both
action and state changes occur more frequently. However, as shown in the first row
of Table 3.1, the ratio between these changes decreases from approximately 3.3 to
2.1. This suggests that the indirect effect of state volatility on action changes is less
significant than its direct effect on state changes.

3.4 Analysis
In this section, we begin by analyzing how public belief evolves in different regions,
namely the cascade and learning regions. We then compare the expected time
between the state and action changes.

The Public Belief Dynamics
Cascade Region

As is well-known, in our setting with a fixed state (𝜀 = 0), the public belief 𝑞
stays forever at the value at which it first enters the cascade region; thus, an incorrect
cascade can persist indefinitely with positive probability. In contrast, with a changing
state (𝜀 > 0), the behavior of the public belief varies drastically.

To see this, consider the case where the public belief 𝑞 is in the cascade region,
so its corresponding LLR ℓ = log 𝑞

1−𝑞 has an absolute value that is greater or
equal to 𝑐𝛼. Suppose 𝑡 is the time at which public belief enters the cascade region
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from the learning region. Consequently, agent 𝑡 follows the action of her immediate
predecessor, and thus her action 𝑎𝑡 contains the same amount of information about 𝜃𝑡
as 𝑎𝑡−1. Meanwhile, from time 𝑡 to 𝑡+1, the state continues to evolve with probability
𝜀 of changing. Given that the process (𝜃𝑡) is a Markov chain, conditional on 𝜃𝑡 ,
the history ℎ𝑡−1 contains no additional information about 𝜃𝑡+1. By the law of total
probability, the public belief updates deterministically as follows:

𝑞𝑡+1 = P[𝜃𝑡+1 = +1|ℎ𝑡] =
∑︁

𝑖∈{−1,+1}
P[𝜃𝑡+1 = +1|ℎ𝑡 , 𝜃𝑡 = 𝑖]P[𝜃𝑡 = 𝑖 |ℎ𝑡]

=
∑︁

𝑖∈{−1,+1}
P[𝜃𝑡+1 = +1|ℎ𝑡−1, 𝜃𝑡 = 𝑖]P[𝜃𝑡 = 𝑖 |ℎ𝑡]

= (1 − 𝜀)𝑞𝑡 + 𝜀(1 − 𝑞𝑡).

Thus, we can write

𝑞𝑡+1 = (1 − 2𝜀)𝑞𝑡 + (2𝜀) 1
2
. (3.4.1)

Equivalently, it can expressed recursively in terms of its LLR:

ℓ𝑡+1 = log
𝑞𝑡+1

1 − 𝑞𝑡+1
= log

(1 − 𝜀)eℓ𝑡 + 𝜀
1 − 𝜀 + 𝜀eℓ𝑡

. (3.4.2)

From (3.4.1), we see that 𝑞𝑡+1 tends to 1/2. Similarly, according to (3.4.2), ℓ𝑡+1 moves
towards zero over time, so eventually it will exit the cascade region. Intuitively, hav-
ing a changing state depreciates the value of older information, as actions observed
in earlier periods become less relevant to the current agent. Consequently, after some
finite number of periods, the public belief will slowly converge towards uniformity,
and thus cascades supported by this public belief will eventually cease. This is the
main insight from Moscarini, Ottaviani, and Smith [1998], where they show that
information cascades—if they arise—must end in finite time with a changing state.

Learning Region

Recall that when the state is fixed (𝜀 = 0) and the public belief is in the learning
region, agents will follow their private signals, i.e., 𝑎𝑡 = 𝑠𝑡 . As a result, the public
belief at time 𝑡 + 1 coincides with the posterior belief of agent 𝑡:

𝑞𝑡+1 := P[𝜃 = +1|ℎ𝑡−1, 𝑎𝑡] = P[𝜃 = +1|ℎ𝑡−1, 𝑠𝑡] = 𝑝𝑡 .

Hence, the corresponding LLRs also coincide: ℓ𝑡 = 𝐿𝑡 . and they both evolve
according to (3.2.3).
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In contrast, when the state changes with probability 𝜀 > 0 in every period, upon
observing the latest history, each agent needs to consider the possibility that the state
may have changed after the latest action was taken. However, neither the learning
nor the cascade region is affected by a changing state as the state only transitions
after the history of past actions is observed. It follows from the Bayes’ rule that

ℓ𝑡+1 = log
∑
𝑖∈{−1,+1} P[𝜃𝑡+1 = +1, 𝑎𝑡 |ℎ𝑡−1, 𝜃𝑡 = 𝑖]P[𝜃𝑡 = 𝑖 |ℎ𝑡−1]∑
𝑖∈{−1,+1} P[𝜃𝑡+1 = −1, 𝑎𝑡 |ℎ𝑡−1, 𝜃𝑡 = 𝑖]P[𝜃𝑡 = 𝑖 |ℎ𝑡−1]

. (3.4.3)

Since the process (𝜃𝑡) follows a Markov chain and 𝑎𝑡 = 𝑠𝑡 in the learning region, con-
ditional on 𝜃𝑡 , both 𝜃𝑡+1 and 𝑎𝑡 are independent of the history ℎ𝑡−1 and independent
of each other. Therefore, the process of (ℓ𝑡) evolves as follows:

ℓ𝑡+1 =


log (1−𝜀)𝛼eℓ𝑡 +𝜀(1−𝛼)

𝜀𝛼eℓ𝑡 +(1−𝜀) (1−𝛼) := 𝑓+(ℓ𝑡) if 𝑠𝑡 = +1,

log (1−𝜀) (1−𝛼)eℓ𝑡 +𝜀𝛼
𝜀(1−𝛼)eℓ𝑡 +(1−𝜀)𝛼 := 𝑓−(ℓ𝑡) if 𝑠𝑡 = −1.

(3.4.4)

Note that both 𝑓+(ℓ) and 𝑓−(ℓ) are strictly increasing in ℓ. Moreover, 𝑓+(ℓ) > ℓ

and 𝑓−(ℓ) < ℓ. This means that when an agent starts with a higher prior belief,
her posterior belief will always be higher conditioned on receiving a private signal.
Similarly, an agent’s posterior belief will be higher (or lower) than her prior belief
upon receiving a positive signal (or a negative signal).

Observe from (3.4.4) that the magnitude difference between ℓ𝑡 and ℓ𝑡+1 depends
on both the realization of the private signal 𝑠𝑡 and the current value of ℓ𝑡 . The
following lemma summarizes the transitional patterns of the public LLR when it is
the learning region. At any time 𝑡, we say that an action is opposing to the current
public belief if 𝑎𝑡 ≠ sign(ℓ𝑡) and supporting otherwise. The following lemma is in
spirit close to the overturning principle in Smith and Sørensen [2000], but applies
to a changing state.

Lemma 13. Suppose the public belief at time 𝑡 is in the learning region, i.e.,
|ℓ𝑡 | < 𝑐𝛼. Then the following two conditions hold.

(i) 𝑎𝑡 ≠ sign(ℓ𝑡) implies that sign(ℓ𝑡+1) = −sign(ℓ𝑡).
(ii) 𝑎𝑡 = 𝑎𝑡+1 = sign(ℓ𝑡) implies that |ℓ𝑡+2 | ≥ 𝑐𝛼.

The first part of this lemma says that observing one opposing action is sufficient
to overturn the sign of public belief. The second part of this lemma states that
initiating a cascade requires at most two supporting actions. Intuitively, given that
public belief in the learning region tends to be moderate, it is sensitive to opposing
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evidence; meanwhile, although the belief updating process is impeded by a changing
state, consecutive observations of supporting evidence suffice to trigger a cascade
as the state evolves slowly.

Another important observation is that regardless of whether the state is fixed or
changing, the process (ℓ𝑡) forms a Markov chain.11 In the case of a fixed state, the
state space of this Markov chain is finite as the magnitude difference between ℓ𝑡 and
ℓ𝑡+1 is constant given any signal precision. However, in the case of a changing state,
its state space is infinite as such magnitude differences also depend on the current
value of ℓ𝑡 .12 This poses a significant challenge in finding its stationary distribution,
which is required to calculate the exact expected time between sign switches. We
circumvent this problem by providing an upper bound to this expected time instead.

Expected Time Between Switches
We first calculate the expected time between state changes. Since the process (𝜃𝑡)
follows a simple two-state Markov chain with a symmetric transition probability 𝜀,
the expected time between state changes is inversely proportional to the likelihood
of a state change. To see this, suppose that the expected time between state changes
is equal to some unknown 𝑥. Then 𝑥 satisfies the following equation:

𝑥 = 𝜀 + (1 − 𝜀) (1 + 𝑥),

which implies that 𝑥 = 1/𝜀. That is, a higher likelihood of state changes results in a
shorter average time between changes.

Given that the process (𝑎𝑡) is not a Markov chain, determining the average time it
takes to change becomes more challenging. Nevertheless, we observe that 𝑎𝑡 is a
function of ℓ𝑡+1, i.e., 𝑎𝑡 = sign(ℓ𝑡+1), which is a Markov chain.13 As discussed before,
however, this Markov chain (ℓ𝑡) is complicated—with infinitely many possible
values and different transition probabilities—making it difficult to directly analyze
the expected time between its sign switches. We provide an upper bound to this
expected time instead, which in turn gives an upper bound to the expected time
between action changes.

11This is because conditional on the state 𝜃𝑡 , the private signal 𝑠𝑡 is independent of ℓ𝜏 , for any
𝜏 < 𝑡.

12In fact, in almost all cases, two consecutive opposing signals do not exactly offset each other,
i.e., 𝑓+ ( 𝑓− (ℓ)) ≠ ℓ and vice versa.

13Note that for a given function 𝑓 : X → Y with |X| < ∞, and a Markov chain (𝑋𝑡 )𝑡 , the process
(𝑌𝑡 )𝑡 where each𝑌𝑡 = 𝑓 (𝑋𝑡 ), is a Markov chain if and only if 𝑓 is either constant or injective. Clearly,
the sign function is neither constant nor injective.
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To do so, consider the maximum length of any cascade. Recall that such a maxi-
mum exists since the public belief in the cascade region slowly converges towards
uniformity. Note that for any signal precision and probability of a state change, no
cascade can last longer than the cascade starting at 𝑓+(𝑐𝛼), the supremum of the
public LLR. Thus, from (3.4.2), we can calculate a tight upper bound to the length
of any cascade. Following Moscarini, Ottaviani, and Smith [1998], we denote this
upper bound by 𝐾 (𝛼, 𝜀) where14

𝐾 (𝛼, 𝜀) = log(1 − 2𝛼(1 − 𝛼))
log(1 − 2𝜀) .

Notice that 𝐾 (𝛼, 𝜀) decreases in both 𝛼 and 𝜀. Intuitively, as private signals
become less precise, cascades contain more information relative to private signals.
Moreover, as the state becomes less volatile, temporary cascades last longer as social
information depreciates at a lower rate. In other words, prolonged cascades may
result from less precise private signals or a more stable environment.

Given the maximum length of any cascade and the transitional patterns of the public
LLR (Lemma 13), we obtain an upper bound to the expected time between the sign
switches of the public LLR, as shown in the next proposition. For 𝑖 = 1, 2, . . .,
denote the random time at which the public LLR switches its sign for the 𝑖-th time
by T𝑖 and let T0 = 0. Furthermore, denote the random time elapsed between the
𝑖 − 1-th and 𝑖-th sign switch by D𝑖 = T𝑖 − T𝑖−1.

Proposition 9. For any positive integers 𝑖 ≥ 2, conditional on the public LLR that
just switched its sign for the 𝑖 − 1-th time, the expected time to the next sign switch
E[D𝑖 |ℓT𝑖−1] is strictly bounded above by 𝑀 (𝛼, 𝜀) where

𝑀 (𝛼, 𝜀) = 1 + 𝐾 (𝛼, 𝜀)
2𝛼(1 − 𝛼) .

14For completeness, we provide a similar calculation of 𝐾 (𝛼, 𝜀) to the one in Section 3.B of
Moscarini, Ottaviani, and Smith [1998]. Fix any arbitrary 𝛼 ∈ (1/2, 1) and 𝜀 ∈ (0, 𝛼(1 − 𝛼)).
Denote 𝑚 as the supremum of public belief, where 𝑚 =

(1−𝜀)𝛼2+𝜀 (1−𝛼)2

𝛼2+(1−𝛼)2 . Since the public belief in
a cascade evolves deterministically according to (3.4.1), after ℎ periods, the public belief starting at
𝑚 equals

𝑔(ℎ) := 𝜀
ℎ−1∑︁
𝑖=1

(1 − 2𝜀)𝑖 + (1 − 2𝜀)ℎ𝑚.

This implies that any public belief after spending ℎ periods in the cascade region would have a value
strictly lower than 𝑔(ℎ). Thus, whenever 𝑔(ℎ) ≤ 𝛼, or equivalently (1 − 2𝜀)ℎ+1 ≤ 1 − 2𝛼(1 − 𝛼),
the public LLR of value 𝑔(ℎ) would have exited the cascade region. Hence, the maximum number
of periods in which public LLR can stay in the cascade region is log(1−2𝛼(1−𝛼) )

log(1−2𝜀) .
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This proposition states that on average, one should expect the public LLR to change
its sign at least once every𝑀 (𝛼, 𝜀) periods. For example, with𝛼 = 0.8 and 𝜀 = 0.01,
𝑀 (0.8, 0.01) is approximately equal to 61, and so once every 61 periods, there is at
least one sign switch in the public LLR. Note that 𝑀 (𝛼, 𝜀) also decreases in 𝛼. As
a result, 𝑀 (1/2, 𝜀) is the maximum upper bound for any 𝜀 ∈ (0, 𝛼(1 − 𝛼)). This
suggests that when private signals are only weakly informative, agents rely more on
social information, which potentially leads to longer action inertia.

We illustrate the proof idea of Proposition 9 using a weakly informative signal.
Suppose that 𝛼 = 1/2 + 𝛿 where 𝛿 is strictly positive and close to 0. Since 𝐾 (𝛼, 𝜀)
decreases in 𝛼, 𝐾 ( 1

2 , 𝜀) is the greatest upper bound to the length of any cascade as
𝛿 approaches zero. For sufficiently small 𝛿, upon exiting a cascade, the probability
of the public LLR switching its sign is approximately 1/2, given that the agent, who
follows her private signal, receives either a positive or a negative signal with almost
equal probability. Hence, the expected time between the sign switches is bounded
from above by a geometric distribution:

1 + 1
2

(
𝐾 (1

2
, 𝜀) + 1

2
(
𝐾 (1

2
, 𝜀) + 1

2
(𝐾 (1

2
, 𝜀) + . . . = 1 +

∞∑︁
𝑖=1

𝑖

2𝑖
𝐾 (1

2
, 𝜀)

= 1 + 2 log 2
− log(1 − 2𝜀) = 𝑀 (1/2, 𝜀).

It is straightforward to verify that 𝑀 (1/2, 𝜀) < 1/𝜀 (see Claim 4 in the appendix).
Hence, any upper bound 𝑀 (𝛼, 𝜀) provided in Proposition 9 is strictly less than 1/𝜀.
Given that the action is a function of the public LLR, an immediate consequence of
Proposition 9 is the following result.

Corollary 3. The expected time between action changes is strictly less than that
between state changes.

That is, on average, actions take less time to change than the state, even for a small
probability of state change in which temporary cascades arise. For example, when
the probability of state change is equal to 0.05, the state changes every twenty periods
on average. In comparison, the maximum average time for the action to change is
less than fourteen periods. Our main result (Theorem 4) then builds on this result
by connecting the expected time between action changes with its long-term relative
frequency of changes.
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3.5 Conclusion
We study the long-term behavior of agents who receive a private signal and observe
the past actions of their predecessors in a changing environment. As the state
evolves, the best action to take also fluctuates. We show that in the long run, the
relative frequency of action changes is higher than that of state changes, suggesting
fads can emerge from social learning in a changing environment.

Instead of considering the benchmark case where each short-lived agent receives
one private signal and acts accordingly, one could study the frequency of action
changes for a single long-lived agent who repeatedly receives private signals about
a changing state. In this case, we conjecture that action changes would be less
frequent than in our main setting—where only past actions are observable—but still
more frequent than state changes. Intuitively, shutting down the channel of noisy
observations of others’ private signals would reduce the frequency of unnecessary
action changes but not completely. As a result, we expect that the remaining action
changes would still occur more frequently than state changes.

One may wonder if the driving force behind our main result is due to the high
frequency of action changes when the posterior belief is around 1/2. Accordingly,
we can further restrict the definition of fads to action changes that do not have
consecutive changes, i.e., 𝑎𝑡 ≠ 𝑎𝑡−1 and 𝑎𝑡−1 ≠ 𝑎𝑡−2. Simulation results show that
actions still change more frequently than the state, even under this more restricted
definition of fads. For example, for 𝛼 = 0.75, 𝜀 = 0.05 and a total of 100, 000
periods, the action changes about 8,150 times which is more frequent than the
number of state changes, which is about 5,100 times.

There are several possible avenues for future research. Recall that Proposition 9
implies that 𝑀 (𝛼, 𝜀) is an upper bound to the expected time between action changes.
One could ask whether this upper bound 𝑀 (𝛼, 𝜀) is tight, and if so, for any finite
time 𝑁 , whether the number of action changes would be close to 𝑁/𝑀 (𝛼, 𝜀). Based
on the simulation results, we conjecture that it is not a tight bound. E.g., we let
𝛼 = 0.9 and 𝜀 = 0.05, and 𝑁 = 100, 000. Since 𝑀 (0.9, 0.05) ≈ 11.5, it implies
that within these hundred thousand periods, the action should change at least about
8700 times. However, our numerical simulation shows that the action changes about
14, 200 times, almost double the number suggested by 𝑀 (0.9, 0.05). Furthermore,
our simulations suggest that as the private signal becomes less informative and the
state changes more slowly, i.e., when 𝛼 approaches 1/2 and 𝜀 approaches 0 at the
same rate, the ratio between the frequency of action changes and state changes
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approaches a constant that is close to 4. This suggests that achieving a very accurate
understanding of fads in this regime might be possible.

3.6 Proofs

Proof of Lemma 13. Fix any arbitrary 𝛼 ∈ (1/2, 1) and 𝜀 ∈ (0, 𝛼(1 − 𝛼)). Without
loss of generality, consider the case where ℓ𝑡 ∈ (0, 𝑐𝛼).

(i) Suppose 𝑎𝑡 = −1. Given that 𝑓−(𝑐𝛼) = 0, we have that 𝑓−(ℓ𝑡) < 0 for all
ℓ𝑡 ∈ (0, 𝑐𝛼) since 𝑓−(·) in (3.4.4) is strictly increasing. Since ℓ𝑡 ∈ (0, 𝑐𝛼)
is in the learning region, 𝑠𝑡 = 𝑎𝑡 = −1. Thus, it follows from (3.4.4) that
ℓ𝑡+1 = 𝑓−(ℓ𝑡) and sign( 𝑓−(ℓ𝑡)) = −1.

(ii) Since 𝑓+(·) in (3.4.4) is strictly increasing, it suffices to show that 𝑓+( 𝑓+(0)) ≥
𝑐𝛼. Denote by 𝑐𝑢 the threshold at which exactly one positive signal is required
to push the public LLR into a cascade on the positive action:

𝑐𝑢 := 𝑓 −1
+ (𝑐𝛼) = log

(1 − 𝛼) (𝛼 − 𝜀)
𝛼(1 − 𝛼 − 𝜀) ∈ (0, 𝑐𝛼).

Notice that 𝑓+(0) > 𝑐𝑢 for all 𝜀 ∈ (0, 𝛼(1− 𝛼)), and thus 𝑓+( 𝑓+(0)) > 𝑓+(𝑐𝑢).
By the definition of 𝑐𝑢, we have 𝑓+( 𝑓+(0)) > 𝑓+(𝑐𝑢) = 𝑓+( 𝑓 −1

+ (𝑐𝛼)) = 𝑐𝛼, as
required.

□

Proof of Proposition 9. Let 𝛼 ∈ (1/2, 1), 𝜀 ∈ (0, 𝛼(1 − 𝛼)) and 𝑖 ≥ 2 be a positive
integer. Recall that T𝑖−1 is the time at which the public LLR changes its sign for
the 𝑖 − 1-th time and D𝑖 = T𝑖 − T𝑖−1. Suppose that ℓT𝑖−1 > 0. Then, there are three
disjoint intervals in which the value of ℓT𝑖−1 can be: (i) [𝑐𝑢, 𝑐𝛼) where 𝑐𝑢 = 𝑓 −1

+ (𝑐𝛼);
(ii) (0, 𝑐𝑢) and (iii) [𝑐𝛼, 𝑓+(𝑐𝛼)). We will show that E[D𝑖 |ℓT𝑖−1 > 0] < 𝑀 (𝛼, 𝜀).

Conditional on ℓ𝑡 = ℓ, let the probability of receiving a positive signal be 𝜋(ℓ).15
By the law of total probability,

𝜋(ℓ) = 𝛼 · eℓ

1 + eℓ
+ (1 − 𝛼) · 1

1 + eℓ
=

1 + 𝛼(eℓ − 1)
1 + eℓ

. (3.6.1)

Since 𝜋(ℓ) is strictly increasing in ℓ, the supremum of 𝜋(ℓ) over all ℓ ∈ (0, 𝑐𝛼) is
equal to 1 − 2𝛼(1 − 𝛼), and we denote it by 𝜋̄.

Furthermore, let 𝜅(ℓ) denote the length of a positive cascade triggered by receiving
a positive signal conditional on ℓ𝑡 = ℓ. Let L(ℓ) represent the resulting value of the

15For ease of notation, we suppress its dependence on 𝛼.
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public LLR after exiting the cascade region for the first time. We use ⌊𝐾 (𝛼, 𝜀)⌋ to
denote the greatest integer that is less than or equal to 𝐾 (𝛼, 𝜀).

Case (i). Suppose ℓT𝑖−1 ∈ [𝑐𝑢, 𝑐𝛼). By part (i) of Lemma 13, since ℓT𝑖−1 is in the
learning region, one opposing signal is sufficient to change the sign of ℓT𝑖−1 . Thus,
the expected time to the next sign switch

E[D𝑖 |ℓT𝑖−1] = 1 − 𝜋(ℓT𝑖−1) + 𝜋(ℓT𝑖−1)
(
𝜅(ℓT𝑖−1) + E[D𝑖 |L(ℓT𝑖−1)]

)
< 1 − 𝜋̄ + 𝜋̄

(
⌊𝐾 (𝛼, 𝜀)⌋ + E[D𝑖 |L(ℓT𝑖−1)]

)
, (3.6.2)

where the last inequality follows from the definition of 𝜋̄. There are two possible
cases for L(ℓT𝑖−1): either L(ℓT𝑖−1) ∈ [𝑐𝑢, 𝑐𝛼) or L(ℓT𝑖−1) ∈ (0, 𝑐𝑢). If the former is
the case, then by taking the supremum on both sides of (3.6.2) and rearranging,

sup
𝑐𝑢≤ℓT𝑖−1<𝑐𝛼

E[D𝑖 |ℓT𝑖−1] ≤ 1 + 𝜋̄

1 − 𝜋̄ ⌊𝐾 (𝛼, 𝜀)⌋ . (3.6.3)

If the latter is the case, by the definition of 𝜋̄,

E[D𝑖 |L(ℓT𝑖−1)] < 1 − 𝜋̄ + 𝜋̄
(
1 + E[D𝑖 | 𝑓+(L(ℓT𝑖−1))]

)
.

Substituting the above inequality into (3.6.2),

E[D𝑖 |ℓT𝑖−1] < 1 − 𝜋̄ + 𝜋̄
(
⌊𝐾 (𝛼, 𝜀)⌋ + 1 − 𝜋̄ + 𝜋̄

(
1 + E[D𝑖 | 𝑓+(L(ℓT𝑖−1))]

) )
.

Since 𝑓+(·) is strictly increasing, by part (ii) of Lemma 13, 𝑓+(L(ℓT𝑖−1)) ∈ [𝑐𝑢, 𝑐𝛼).
Thus, taking the supremum on both sides and rearranging,

sup
𝑐𝑢≤ℓT𝑖−1<𝑐𝛼

E[D𝑖 |ℓT𝑖−1] ≤
1 − 𝜋̄ + (⌊𝐾 (𝛼, 𝜀)⌋ + 1)𝜋̄

1 − 𝜋̄2

≤ 1 + 𝜋̄

1 − 𝜋̄ ⌊𝐾 (𝛼, 𝜀)⌋,

where the second inequality holds since ⌊𝐾 (𝛼, 𝜀)⌋ ≥ 1.

Case (ii). Suppose ℓT𝑖−1 ∈ (0, 𝑐𝑢). By part (i) of Lemma 13 and the definition of 𝜋̄,
the expected time to the next sign switch is bounded above:

E[D𝑖 |ℓT𝑖−1] < (1 − 𝜋̄) + 𝜋̄(1 + E[D𝑖 | 𝑓+(ℓT𝑖−1)]).

Since 𝑓+(·) is strictly increasing, part (ii) of Lemma 13 implies that 𝑓+(ℓT𝑖−1) ∈
[𝑐𝑢, 𝑐𝛼). It then follows from (3.6.3) that

E[D𝑖 |ℓT𝑖−1] <
𝜋̄2(⌊𝐾 (𝛼, 𝜀)⌋ − 1) + 1

1 − 𝜋̄ . (3.6.4)
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Case (iii). Suppose ℓT𝑖−1 ∈ [𝑐𝛼, 𝑓+(𝑐𝛼)). In this case, after at most ⌊𝐾 (𝛼, 𝜀)⌋
periods, the public LLR initiated at ℓT𝑖−1 would have exited the cascade region.
Hence, the expected time to the next sign switch is bounded above:

E[D𝑖 |ℓT𝑖−1] ≤ ⌊𝐾 (𝛼, 𝜀)⌋ + E[D𝑖 |L(ℓT𝑖−1)] .

Again, there are two possible cases for L(ℓT𝑖−1): either L(ℓT𝑖−1) ∈ [𝑐𝑢, 𝑐𝛼) or
L(ℓT𝑖−1) ∈ (0, 𝑐𝑢). If the former is the case, it follows from (3.6.3) that

E[D𝑖 |ℓT𝑖−1] < 1 + 1
1 − 𝜋̄ ⌊𝐾 (𝛼, 𝜀)⌋ . (3.6.5)

If the latter is the case, then it follows from (3.6.4) that

E[D𝑖 |ℓT𝑖−1] < ⌊𝐾 (𝛼, 𝜀)⌋ + 𝜋̄
2(⌊𝐾 (𝛼, 𝜀)⌋ − 1) + 1

1 − 𝜋̄

= ⌊𝐾 (𝛼, 𝜀)⌋ + 1 + 𝜋̄ + 𝜋̄2

1 − 𝜋̄ ⌊𝐾 (𝛼, 𝜀)⌋ ≤ 1 + 1
1 − 𝜋̄ ⌊𝐾 (𝛼, 𝜀)⌋ .

Now, notice that the maximum of these three upper bounds in (3.6.3) to (3.6.5) is
1+ 1

1−𝜋̄ ⌊𝐾 (𝛼, 𝜀)⌋ and, by definition, ⌊𝐾 (𝛼, 𝜀)⌋ ≤ 𝐾 (𝛼, 𝜀). Hence, we conclude that

E[D𝑖 |ℓT𝑖−1 > 0] < 1 + 𝐾 (𝛼, 𝜀)
2𝛼(1 − 𝛼) .

The case where ℓT𝑖−1 < 0 follows from a symmetric argument. Thus, by the law of
iterated expectations, the above inequality also holds for E[D𝑖 |ℓT𝑖−1]. □

Claim 4. 𝑀 (1/2, 𝜀) < 1/𝜀 for all 𝜀 ∈ (0, 1/4).

Proof. Recall that

𝑀 (1/2, 𝜀) = sup
𝛼∈(1/2,1)

𝑀 (𝛼, 𝜀) = 1 + 2 log 2
− log(1 − 2𝜀) .

By the L’Hôpital’s rule

lim
𝜀→0

−( 1
𝜀
− 1) log(1 − 2𝜀) = lim

𝜀→0
2
(1 − 𝜀)2

1 − 2𝜀
= 2 > 2 log 2.

Since −( 1
𝜀
− 1) log(1− 2𝜀) is strictly increasing in 𝜀, we conclude that 𝑀 (1/2, 𝜀) <

1/𝜀 for all 𝜀 ∈ (0, 1/4). □

Recall that since 𝑀 (𝛼, 𝜀) decreases in 𝛼, it follows from Claim 4 and Proposition 9
that for all 𝛼 ∈ (1/2, 1) and 𝜀 ∈ (0, 𝛼(1 − 𝛼)),

𝑀 (𝛼, 𝜀) < 1/𝜀. (3.6.6)
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The following lemma will be useful in proving Theorem 4. It shows that the
process (D𝑖) has well-defined moments. In particular, it implies that there is a finite
uniform upper bound to E[D2

𝑖
], which is required to apply the standard martingale

convergence theorem. Intuitively, since any cascade must end after 𝐾 (𝛼, 𝜀) periods,
the probability that D𝑖 is larger than some finite periods decreases exponentially
fast, and so D𝑖 must have finite moments.

Lemma 14. For every 𝑟 ∈ {1, 2, . . .} there is a constant 𝑐𝑟 that depends on 𝛼 and
𝜀 such that for all 𝑖, E[|D𝑖 |𝑟] < 𝑐𝑟 . I.e., each moment of D𝑖 is uniformly bounded,
independently of 𝑖.

Proof. Fix any arbitrary 𝛼 ∈ (1/2, 1), 𝜀 ∈ (0, 𝛼(1 − 𝛼)) and some positive integer
𝑖 ≥ 2. Suppose that ℓT𝑖−1 > 0 and so D𝑖 = T𝑖 − T𝑖−1 is the time elapsed from a
positive public LLR to a negative one. For any 𝑛 ≥ 2, we denote the minimum
number (which may not be an integer) of temporary cascades required for D𝑖 > 𝑛

by
𝑘 (𝑛) := max

{ 𝑛 − 1
⌊𝐾 (𝛼, 𝜀)⌋ , 1

}
.

Recall that 𝜋̄ is the supremum of the probability of receiving a high signal conditional
on ℓ for all ℓ ∈ (0, 𝑐𝛼). By part (ii) of Lemma 13, for any 𝑛 ≥ 2, the probability of
the event {D𝑖 > 𝑛} is bounded above:

P[D𝑖 > 𝑛] < 𝜋̄2+(⌊𝑘 (𝑛)⌋−1) .

Since D𝑖 is a positive random variable, it follows that for any 𝑝 > 0,

lim
𝑛→∞

𝑛𝑝P[|D𝑖 | > 𝑛] = lim
𝑛→∞

𝑛𝑝

1/P[D𝑖 > 𝑛]

< lim
𝑛→∞

𝑛𝑝

(1/𝜋̄)1+⌊𝑘 (𝑛)⌋ = 0. (3.6.7)

For any 𝑟 ≥ 1, the 𝑟-th moment of |D𝑖 | satisfies

E[|D𝑖 |𝑟] =
∫ ∞

0
P[|D𝑖 |𝑟 > 𝑡]𝑑𝑡

< 1 +
∫ ∞

1
P[D𝑖 > 𝑦]𝑟𝑦𝑟−1𝑑𝑦

= 1 +
∞∑︁
𝑛=1

∫ 𝑛+1

𝑛

P[D𝑖 > 𝑦]𝑟𝑦𝑟−1𝑑𝑦

< 1 +
∞∑︁
𝑛=1
P[D𝑖 > 𝑛]𝑟 (𝑛 + 1)𝑟−1,
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where the second inequality follows from a change of variable 𝑦 = 𝑡1/𝑟 . Since (3.6.7)
implies that P[D𝑖 > 𝑛] < 𝐶𝑛−𝑝 for some nonnegative constant 𝐶, it follows that for
any 𝑝 > 𝑟,

E[|D𝑖 |𝑟] < 1 + 𝑟𝐶
∞∑︁
𝑛=1

(𝑛 + 1)𝑟−1

𝑛𝑝

< 1 + 𝑟2𝑟−1𝐶

∞∑︁
𝑛=1

1
𝑛𝑝−𝑟+1 < ∞,

which holds for all 𝑖. Hence, for every 𝑟 ∈ {1, 2, . . .}, there exists a constant
𝑐𝑟 = 1+𝑟2𝑟−1𝐶

∑∞
𝑛=1

1
𝑛𝑝−𝑟+1 , independently of 𝑖, that uniformly bounds E[|D𝑖 |𝑟]. □

Given Lemma 14 and Proposition 9, we are ready to prove our main theorem.

Proof of Theorem 4. Fix any arbitrary 𝛼 ∈ (1/2, 1) and 𝜀 ∈ (0, 𝛼(1 − 𝛼)). Since
the process (𝜃𝑡) follows a two-state Markov chain with a symmetric transition
probability 𝜀, (1(𝜃1 ≠ 𝜃2), 1(𝜃2 ≠ 𝜃3), . . .) is a sequence of i.i.d. random variables.
By the strong law of large numbers,

lim
𝑛→∞

Q𝜃 (𝑛) := lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑡=1
1(𝜃𝑡 ≠ 𝜃𝑡+1) = P[𝜃𝑡 ≠ 𝜃𝑡+1] = 𝜀 almost surely.

Let Φ = (F1, F2, . . .) be the filtration where each F𝑖 = 𝜎(D1, . . . ,D𝑖) and thus
F𝑗 ⊆ F𝑖 for any 𝑗 ≤ 𝑖. Hence, the process (D1,D2, . . .) is adapted toΦ since eachD𝑖

is F𝑖-measurable. By Proposition 9 and (3.6.6), there exists 𝛿 = 1/𝜀 − 𝑀 (𝛼, 𝜀) > 0
such that for all 𝑖 ≥ 2,

E[D𝑖 |ℓT𝑖−1] < 1/𝜀 − 𝛿.

By the law of iterated expectation and the Markov property of the public LLR,

E[D𝑖 |F𝑖−1] = E[E[D𝑖 |ℓT𝑖−1 , F𝑖−1] |F𝑖−1] < 1/𝜀 − 𝛿. (3.6.8)

Let 𝑋𝑖 = D𝑖−E[D𝑖 |F𝑖−1] for all 𝑖 ≥ 2 and since F𝑖−1 ⊆ F𝑖, each 𝑋𝑖 is F𝑖-measurable.
Denote a partial sum of the process (𝑋𝑖)𝑖≥2 by

𝑌𝑛 = 𝑋2 +
1
2
𝑋3 + · · · + 1

𝑛 − 1
𝑋𝑛.

By definition, E[𝑋𝑖 |F𝑖−1] = 0 for all 𝑖 ≥ 2. Since each 𝑌𝑛−1 is F𝑛−1-measurable,

E[𝑌𝑛 |F𝑛−1] = E[
𝑛∑︁
𝑖=2

1
𝑖 − 1

𝑋𝑖 |F𝑛−1] = 𝑌𝑛−1 +
1

𝑛 − 1
E[𝑋𝑛 |F𝑛−1] = 𝑌𝑛−1,
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and so the process (𝑌𝑛)𝑛 forms a martingale.

By Lemma 14 and (3.6.8), both E[D2
𝑖
] and E[D𝑖 |F𝑖−1] are uniformly bounded.

Therefore, E[𝑋2
𝑖
] is also uniformly bounded for all 𝑖 ≥ 2. Furthermore, since

E[𝑋𝑖𝑋 𝑗 ] = 0 for any 𝑖 ≠ 𝑗 , it then follows that for all 𝑛 ≥ 2,

E[𝑌2
𝑛 ] =

𝑛∑︁
𝑖=2

1
(𝑖 − 1)2E[𝑋

2
𝑖 ] < ∞.

By the martingale convergence theorem, 𝑌𝑛 converges almost surely. It then follows
from Kronecker’s lemma that16

lim
𝑛→∞

1
𝑛 − 1

(𝑋2 + · · · 𝑋𝑛) = 0 almost surely.

Thus, by the definition of 𝑋𝑖, we can write

lim
𝑛→∞

1
𝑛 − 1

𝑛∑︁
𝑖=2

D𝑖 = lim
𝑛→∞

1
𝑛 − 1

𝑛∑︁
𝑖=2
E[D𝑖 |F𝑖−1] almost surely.

It follows from (3.6.8) that

lim
𝑛→∞

1
𝑛 − 1

𝑛∑︁
𝑖=2

D𝑖 ≤ 1/𝜀 − 𝛿 < 1/𝜀 almost surely. (3.6.9)

Since 𝑎𝑡 = sign(ℓ𝑡+1) for all 𝑡 ≥ 2,

lim
𝑛→∞

Q𝑎 (𝑛) = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑡=1
1(𝑎𝑡 ≠ 𝑎𝑡+1)

= lim
𝑛→∞

1
𝑛 − 1

𝑛∑︁
𝑡=2
1(sign(ℓ𝑡+1) ≠ sign(ℓ𝑡+2)).

By the definitions of T𝑖 and D𝑖,

1
𝑛 − 1

𝑛∑︁
𝑡=2
1(sign(ℓ𝑡+1) ≠ sign(ℓ𝑡+2)) =

𝑛 − 1
T𝑛 − T1

=
𝑛 − 1∑𝑛
𝑖=2 D𝑖

.

Hence, we conclude from (3.6.9) that

lim
𝑛→∞

Q𝑎 (𝑛) = lim
𝑛→∞

𝑛 − 1∑𝑛
𝑖=2 D𝑖

> 𝜀 almost surely.

□

16This result is also known as the strong law for martingales (See p.238, Feller [1966, Theorem
2]).
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