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Abstract

One dimensional acousto-optic signal processing techniques are examined from
the systems and functional viewpoint, and are then used as building blocks to syn-
thesize multidimensional time and space integrating architectures. Time and space
integrating signal processing systems are capable of performing 2-dimensional linear
transformations upon images or matrices, by sequentially entering rows of the image
with a travelling wave acousto-optic Bragg cell. The travelling rows are frozen by
a pulsed laser diode, and the stationary diffracted fields are spatially processed by
an optical system. The successively transformed rows are sequentially multiplied
by a time varying reference wavefront, and accumulated on a time integrating CCD
detector array to complete the two dimensional processing. Long 1-dimensional
signals can also be linearly transformed by a time and space integrating system,
by using a similar strategy upon a folded, or rastered, version of the high time
bandwidth product signal. Small pieces of the long signal are slid into the system
with an acousto-optic devices, and are spatially transformed over the device aper-
ture. Then, successively transformed portions of the long signal are multiplied by
a reference, and appropriately delayed and accumulated on a 2-D CCD in order to
perform multichannel time integrations in the orthogonal dimension. The desired
high time bandwidth one dimensional linear transformation is represented in the

folded coordinate space of the 2-dimensional output detector.

The operational characteristics of the principal active devices used in these
time and space integrating systems are examined from the viewpoint of the system
architect. The effects of the devices on the overall system operation are discussed,
and device designs intended for application in a time and space integrating system

operating environment are proposed.
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The final chapter is a detailed theoretical and experimental investigation into
the particular operating characteristics of systems designed to perform a folded
spectrum analysis of very high time bandwidth signals. This spectrum analysis
problem has a shift variant transformation kernel, which can be broken down into a
succession of smaller temporal and spatial sub transformations. The 1-dimensional
space integrating spectrum analysis operation performed by a lens is used to produce
a coarse spectral channelization of the input signal, displayed as a one dimensional
spatial profile. Each resolvable spectral channel is fine frequency analyzed by tem-
poral integration, producing a resulting intensity variation of each channel in the
orthogonal direction, thereby forming a folded representation of the desired high
time bandwidth spectrum analysis. The information which is needed to perform
the fine frequency analysis is carried on the optical phase, so interferometric tech-
niques are employed in order to detect the phase and transform it to an optical
intensity modulation. Various bias terms are produced on the detector by the in-
terferometric detection operation, and techniques for removing the unwanted bias
are investigated. These include spatial carrier encoding of the interferometric terms

combined with bandpass filtering, and direct bias subtraction techniques.
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CHAPTER 1

INTRODUCTION

Optical signal processing systems are parallel analog computers which are useful
when other signal processing techniques are somehow inappropriate or inadequate.
Typical performance advantages of optical systems over the digital alternatives are
in size, weight, or power requirements, which are important considerations for real
time on board applications. Optical techniques also have very wide bandwidth
capabilities, and they have a very large degree of parallelism and interconnectivity,
which makes optical techniques appear attractive when compared with other analog
signal processing techniques. These advantages can only be realized in certain
classes of signal processing transformations which can be realized with available
optical devices, and in this thesis I will consider the optical implementation of fixed

linear transformations of images and high time bandwidth sequences.

Although digital signal processing techniques are becoming more sophisticated,
and paralle]l hardware implementations are increasing the computational capabilities
of these systems, they are still unable to cope with some of the demanding scenarios
involving real time high resolution processing of high bandwidth data. For low
frequency signal processing tasks, such as speech processing and audio analysis,
digitization and real time processing in a computer are readily achieved. Image
processing applications involving small kernel transformations are readily performed
with pipelined digital processors. However, for wide band radar and communication
applications, the digitization operation itself presents difficulties, and processing
multi GHz bandwidth signals in real time with digital techniques may stretch the
capabilities of conventional silicon digital technology beyond the limits. It is for
these reasons that acousto-optic signal processors have been investigated for many

years.

The one dimensional acousto-optic signal processing systems discussed in Chap-
ter 2 are at a stage of maturity where they are beginning to be fielded in operational

systems as key subsystems. These applications typically involve high instantaneous
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bandwidths in multisignal environments, with moderate resolution capabilities. An
alternative approach examined in this thesis is to use these one dimensional systems
as components of more complex two dimensional systems, where extremely high
resolution is the requirement and moderate bandwidths and processing speeds are
sufficient. This outlook has become practical because of the simultaneous maturing
of three technologies; laser diode optical sources, acousto-optic (AO) travelling wave
modulators, and two dimensional charge coupled device (CCD) detector arrays. The
small size of laser diodes when compared with gas lasers makes the development of
extremely small, powerful two dimensional optical processors technically feasible.
Although AO devices can have bandwidths of several GHz, limitations due to the
other components limits TSI architectures to bandwidths in the 100s of MHz range.
The processing speed is primarily limited by the CCD detector array readout time,
which is currently in the 10s of frames per second, but could be speeded up dramat-
ically by parallel readout structures. An essential feature of the processors under
consideration here, is that signals flow through the processor dynamically, and it
is the spatial as well as the temporal variations of the optical modulations which
are used to perform the two dimensional processing operations. When real time
two dimensional spatial light modulators (SLMs) reach an equivalént level of de-
velopment, with resolution and dynamic range characteristics approaching that of
film and data throughputs approaching that of AO devices, then more conventional

static space integrating optical processors will replace those discussed in this thesis.

The optical signal processing system designer should have a top down, as well
as a bottom up perspective, in order to satisfy both the constraints upon the signal
processing system in its application environment, as well as obeying the physical
limits intrinsic to the device technology which is utilized. In this thesis the appli-
cation requirements are not considered in any detail, because the systems under
investigation are still at the stage of laboratory experiments. It is hoped that
this document will provide a running start to development engineers interested in
building two dimensional time and space integrating systems for particular systems
applications, especially for high resolution spectrum analysis applications. For this
reason a number of experimental procedures, details, and difficulties which were
encountered, are discussed at a greater length than might be considered necessary

for a thesis.



1.1 Thesis Outline

In Chapter 2, I begin with a review of the simple model for the operation of
an acousto-optic (AO) Bragg cell as a travelling wave optical modulator. Spatial
integration is defined, and the classic examples of image spectrum analysis and ma-
trix vector multiplication are used to illustrate the principles. The most successful
application of acousto-optic technology, the AO spectrum analyzer, is reviewed,
and its interferometric implementation is presented. The shift invariant opera-
tions of correlation and convolution are defined, and several different topologies for
one dimensional acousto-optic space integrating correlators are reviewed. Tempo-
ral integration is described and time integrating AO correlators are reviewed and
contrasted with space integrating correlators, and pulsed source time integrating
matrix vector multipliers are presented. The one dimensional time delay and inte-
gration (TDI) correlators that make use of the scrolling capability of charge coupled
device optical detectors are discussed. Finally, the chirp transform algorithm used
in convolutional approaches to spectrum analysis is reviewed, and its characteristics
and limitations are discussed. These one dimensional systems provide the neces-
sary building blocks for the two dimensional time and space integrating sylstems

discussed in the remainder of the thesis.

A general framework for combining the one dimensional AO space integrating
systems with parallel arrays of one dimensional time integrating processors to create
multidimensional time and space integrating (TSI) signal processors is presented in
Chapter 3. These hybrid TSI systems can operate on data with high dimensionality,
and the two cases of image transformation, and very high time bandwidth signal
processing are considered. The set of linear operations which are achievable with
TSI systems includes the shift invariant systems, and the separable and cascadable
systems, but not the most general space variant transformation. This is not too
disconcerting since conventional optical processors can not perform this fully general
transformation, and digital computers are hard pressed as well, because of practical
limitations on storage and processing time. The problem of synthetic aperture
radar (SAR) processing is introduced, and the kernel structure is shown to map
well into the processing capabilities of a TSI system. The general performance

limitations of the hybrid time and space integrating technique are illustrated for
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the SAR processor, and the issues of signal demodulation, and bias build up are

addressed, and the advantage of additive interferometers is illustrated.

The active device characteristics are the primary limitations to the TSI tech-
nique, and an understanding of device operation can result in more practical system
design, which utilizes the available features of existing devices, without expecting
unreasonable performance from any of the components. Laser diodes (LDs) are
used as the optical source in the experiments presented in this thesis, because of
the ease with which they can be directly modulated at fast rates, or pulsed with nar-
row pulses. The power and coherence limitations of these lasers provide constraints
on the processor design and on the optical efficiency which must be obtained from
the system. Acousto-optic devices (AODs) are the most mature optical modulator
technology currently available, and are used throughout this thesis to sequentially
enter real time data into the optical processors. Ideally, these devices are simply
travelling wave modulators, but an exploration of the physics of the acousto-optic
interaction leads to a deeper understanding of a number of deleterious effects that
can degrade system performance if not properly controlled. The charge coupled
device (CCD) detector arrays are used to accumulate and store optically generated
image profiles during the period of temporal integration and to transduce these
optical signals back into electronic format. The ease with which a two dimensional
CCD can be operated in a linearly scrolling mode represents another flexibility for
the system designer that can simplify the two dimensional processor, and improve
its performance by incoherently averaging coherent optical artifacts. It was found
that the detector array used in this thesis represented the limit on system resolution
and noise performance, but a state of the art device could have characteristics that

matched the performance limits of other parts of the system.

The problem of extremely high resolution spectral analysis of high time band-
width signals was selected as the test bed problem for the system concepts being
investigated in this thesis. One dimensional systems are simply not big enough to
contain all ofv the signal information that must be Fourier transformed by the spec-
trum analyzer, so the signals are entered into the system a small section at a time.
Individual sections are spatially Fourier transformed by a lens onto an array of time

integrating fine frequency spectrum analyzers. The fine frequency processors pro-
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vide an orthogonal spectral analysis of the interferometrically detected sequences
produced within each resolvable spot of the spatial transformation. This results in
a folded format of the high resolution spectrum on the two dimensional output de-
tector array, even though the entire input signal was never simultaneously present
within the window of the input AOD. This is possible because the succession of
partial products are properly weighted, delayed, and sequentially accumulated in
order to produce the complete transformation. Several techniques are examined
which perform this same signal processing task, in order to compare the different
techniques, and to select the optimal processor topology for this application. A
distributed local oscillator (DLO) interferometer combined with a scrolling TDI
CCD chirp transform processor is analyzed theoretically, and found to have a good
sidelobe suppression property due to the continuous temporal and spatial integra-
tions. Several pulsed source interferometers are examined theoretically and were
demonstrated experimentally. The pulsed source is used to alias a number of high
frequency components to baseband for subsequent temporal integration, and the
time between pulses is used to slide new reference information into the reference
AOD. This technique is used to perform multichannel discrete Fourier transforma-
tions (DFTs) upon each resolvable spot at the output of an interferometric space
integrating spectrum analyzer. A simpler system that uses a TDI CCD detector
array to perform time integrating chirp transforms on each resolvable channel of
the space integrating spectrum analyzer was also tested. The bias terms can be
removed by recombining the signal and reference beams at an angle in order to
introduce an interferometric spatial carrier which can be used to band pass filter
the output, and reject the bias. Alternatively, the bias can be eliminated with a
bias subtraction technique, and successive frame bias subtraction is demonstrated
to test this concept.

The conclusion of the thesis contrasts the different approaches to spectrum
analysis that were investigated, discusses the limitations of the TSI technique when
applied to spectrum analysis, and makes suggestions for future research directions

in TSI processing.
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CHAPTER 2

ACOUSTO-OPTIC SIGNAL PROCESSING

Optical signal processing systems consist of sources, modulators, detectors and
associated optics for interconnection and communication between elements. The
device characteristics and their effects on system performance will be treated in
detail in Chapter 4. In this chapter the idealized behavior of an acousto-optic beam
deflector is introduced, and the basic 1-dimensional architectures in which they can

be used are catalogued.

2.1 Simple Acousto-Optic Device Model

An acousto-optic Bragg cell is a device used to modulate an optical beam in
both space and time through its interaction with a travelling acoustic wavelll. A
simple model of the device geometry to be discussed in this section is presented
in Figure 2.1.1. The acoustic wave is generated from an RF electronic signal by a
piezoelectric transducer bonded to a transparent photoelastic medium in order to
launch a bulk acoustic wave into the medium. The acoustic wave is a travelling wave
replica of the signal applied to the device, and induces a corresponding travelling
wave index perturbation through the photoelastic effect. This results in a phase
modulation of an optical field passing through the acoustic beam, which diffracts
a travelling wave optical replica of the applied electronic signal. The finite size
of the crystaline photoelastic medium limits the extent of this interaction, and
the acoustic delay time from the transducer to the termination end of the device
is-a fundamental device characteristic. The product of the device delay T, with

the modulation bandwidth B gives the number of Rayleigh resolvable independent
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analog samples that can be represented at one time in the device, and typically this
number is approximately T, B =~ 103. All AO devices to be discussed in this thesis
are operated in the Bragg regime, which requires incidence at the Bragg angle,
where a long interaction length between the acoustic and optical waves produces
a volume diffraction effect allowing only one sideband of the diffracted beam to
be produced. In the remainder of this section I will present a relatively simple
analytical model of the behavior of an acousto-optic Bragg cell. In section 4.2 a
much more detailed analysis will be presented.

A bandlimited signal s(t) at center frequency fj is applied to the Bragg cell. In
order to avoid the nonlinear generation of second harmonic intermodulation terms,
it is usually required that the signal be less than octave bandwidth, where the upper
frequency limit f, is less than twice the lowest frequency component f;. Thus the
bandwidth of the signal must be less than B = f, — f; < 2fo/3. The input signal

s(t) has a Fourier expansion which is given by
s(t) = f S(f)e2m gy, (2.1.1)

This signal is amplified and applied to the piezoelectric transducer, which has a
resonant octave bandwidth centered at fo. This launches an acoustic wave replica
of the portion of the input signal within the transducers bandwidth into the pho-
toelastic medium. The acoustic wave propagates at a velocity v, across the length
of the crystal X, and is represented by a finite aperture travelling wave in the x

direction, with the origin at the transducer.

u(z,t) =rect [ELXE-/—%J st — z/v) (2.1.2)
= rect [?-:)—?—/—2] /s(t')&(t —z/v—1t)dt

The acoustic wave produces a travelling wave volume index perturbation through

the photoelastic effect that produces a phase modulation that results in an effective
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optical transmittance modulation that may be approximated as

t(z,t) = rect [i:%—/—g] eice(t=2/va) o rect [—z——“—;(ﬁ] [1 + des(t — z/vs) + ...]
— rect [123{5/3] [1 + %.’é(t _ o/va) + %‘s-*(t - :z:/va)] . (2.1.3)

Where € is the modulation index and relates to the acoustic amplitude applied
to the device and the photoelastic interaction efficiency, and in the case of small
diffraction efficiencies the higher order expansion of the phase modulation can be
neglected. The phase modulation is expressed as upper and lower sidebands, which
are complex conjugate pairs resulting from the analytic signal expansion of the real
input signal s(t) = [§(¢) +8*(¢)]/2. The spectrum of the signal is similarly broken up
into the corresponding purely negative frequency sideband S () = 2. s(t)es?mridf,
and the positive frequency sideband 8*(f) = [{° s(t)e2™/*df. When the optical
field is incident at the negative Bragg angle on a thick index perturbation so that
the x component of its direction of propagation is counterpropagating to the acous-
tic wave, then the last term will produce negligible diffraction, and the diffracted
optical field is said to be upshifted. Alternatively, when the incident optical field is
at the positive Bragg angle so that its x component of propagation is copropagating
with the acoustic wave, then the first signal term will not produce any diffraction
and the diffracted optical field will be downshifted. The purely negative frequency
sideband is responsible for the doppler upshifting interaction. This is because the
analytic representation chosen for the incident optical field uses the negative tem-
poral frequency as the representation of the optical carrier, so a doppler upshift
requires the increase in the magnitude of the negative frequency carrier, by the
addition of a negative frequency.

The optical source is assumed to be a continuous wave laser emitting coherent
light of wavelength A with temporal frequency v = ¢/A. This light is spatially

filtered and collimated producing a gaussian apodized approximation to a plane
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wave, which will be modelled as an ideal plane wave for this simple initial model.
The collimated light is tilted so that it is incident at the negative midband Bragg
angle § = —|0p| = —sin"!(A\/2A0) ~ —)/2A¢, in order to maximize the band-
width and coupling efﬁciency into the upshifted single sideband of the first order
diffracted wave. In this expression A = v,/ fo is the midband acoustic wavelength
corresponding to thé midband frequency of fo. The input optical wave referenced

to the direction of acoustic propagation at midband is given by
a(:z:,z,t) — Re[Ae—iZw[vt—sinGBz/A+cos032/)\]]. (2.1.4)

We will usually drop the explicit notation indicating the real part of the coherent
optical field, and it should be noted that the use of the negative temporal side-
band representation has sign consequences in other definitions, such as the Fourier
transform operation performed by a lens, and the meaning of doppler upshifting
and downshifting. The emerging field from the acousto-optic device is given by the
product of the incident optical field with a single sideband of the transmittance of

the device for a field incident at the Bragg angle.

b(z, 2,t) = a(z, 2, t)t4(z, 1) (2.1.5)
z—X/2| _inlvi-si L€,
~~ Arect [ % / J e 12n[vi—sinfpz/A+cosfpz/]] [1 + Es(t _ :c/va)]

This consists of the undiffracted term which continues to propagate at the input
angle —0p, and the diffracted modulation term propagating at an angle centered
around the angle +8p. In reality the undiffracted field must be slightly attenuated
by a negative image of the diffracted field so that its intensity profile will be equal
to the incident intensity minus the diffracted intensity in order to conserve optical
power, however this can effect be ignored for small diffraction efficiencies. The angle
of diffraction as a function of frequency is most easily found for the case of a single

sinusoidal input s(t) = cos(27 ft) = [e"2"/ + ¢~*27/%] /2, in which case the diffracted
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field is given by

X 2
_ Afzfrect [z —XX/Z] e 2l )t (f~fo/2)z/vatcosbaz/A] (21 6)

df(:c,z,t) = Arect [:B _ X/ZJ e—i21r[ut—fg:¢/2va+cosOBz/A]i_ee—ih'f(t—z/va)

Thus for an input at the midband frequency f = fo the angle of diffraction is
seen to be § = +8p = sin"}(Afo/2v;) = Afo/2vs. For other input frequencies f
the angular spatial frequency of diffraction is seen to be linearly proportional to
the input temporal frequency, a; = A(f — fo/2)/vs. We will ignore the change in
wavelength of the diffracted light, since it is less than 1 part in 10%. The output
field is also seen to be doppler upshifted by the frequency f, which is also only 1
part in 10%, but the frequency shift is of utmost importance when interferometric
detection is utilized. In the case of a broadband input made up of a number of
spectral components the diffracted signal is given by the superposition of that due
to each component individually. Usually we drop the propagation dimension z from

explicit notation in the diffracted field for simplicity.

d(z,t) = A%rect 2= X/2 _;/ 2| ¢mizmlvt=fos/2va] / Y B (f)entelu gy
= A%rect 3’_:5(’_‘_/3 [ B(p)enli=2e-t=sof2)slonlgg
— _’f -:B—X/Z. —2n{vt—foz/2val (s
=A 2rect X € 5t — z/va) (2.1.7)

This is the basic result of the simple model of a Bragg cell. The output field is a
travelling wave representation of a single sideband of the octave bandwidth input
signal. Temporally it is doppler shifted in an exact replication of the input for as
long as the laser remains on. Spatially it is diffracted at an angle proportional to the
input, but it is also windowed by the finite aperture of the Bragg cell. The simplest
representation is obtained by dropping the multiplicative constants and the explicit

optical carrier frequency v, and the optical axis is aligned with the input beam. The
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resulting Bragg cell model is given by the simplified expression for the diffracted
field
d(z,t) = rect [z—_}?ﬂ?‘] 3(t — z/v) = w(z)s(t — z/va) (2.1.8)

This expression will be used in all of the following sections as the simplest approx-
imate representation of the diffracted wave. In most cases however the Gaussian
spatial profile of the laser beam, the frequency dependent attenuation of the acous-
tic wave, and various phase distortions combine to make a hybrid window function
that can be much more complicated than the simple rectangular aperture of the
photoelastic crystal. This window function is essentially the spatial aperture of the

induced polarization field, which is responsible for radiating the diffracted wave.
w(z) = rect [f:_;_/?] e~(5=20=X/2/0* g=alf)a /24 ) (2.19)

In this expression o is the 1/e width of the input Gaussian optical field, which
may be offset by zo from the center of the AOD to partially compensate for the
acoustic attenuation. The exponential a(f) = aof? is a common frequency depen-
dent attenuation behavior of the acoustic power, so half of this quantity is used to
represent the exponential decay of the diffraﬁted optical field. The term ¢(z) is a
phase response due to acoustic diffraction and optical imperfections. Often we will
utilize this window function in a coordinate system referenced to the center of the
AOD where z' = z — X/2.

The diffracted field from a Bragg cell is proportional to a windowed travelling
wave representation of the applied voltage signal in the case of small diffraction
efficiencies. However in many cases we are interested in producing a travelling
wave intensity modulated optical representation of the applied signal. This can
be accomplished in several different manners which will be briefly described here,
and explained in more detail from the point of view of the coupled mode theory in

section 4.2. When the diffraction efficiency is less than 10% the diffracted amplitude
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is proportional to the applied voltage, as shown in the voltage in to amplitude out
relationship plotted in Figure 2.1.2a. This means that in the small diffraction
efficiency regime the diffracted intensity is proportional to the applied electrical
power, which is illustrated in Figure 2.1.2b. We can therefore modulate the applied
power in order to produce an equivalently modulated intensity. An alternative
interpretation is th;a,t we can achieve a linear intensity modulation, by amplitude
modulating a midband RF carrier with the square root of the desired signal, as
illustrated in Figure 2.1.2d. The square root operation compensates for the square
law of optical field amplitude to intensity conversion, but it may be quite difficult
to perform on wideband signals without introducing spurious components.

Alternatively we can utilize an interferometric technique to produce the desired
signal, in which a modulated signal is added to a coherent local oscillator refer;:nce
so that the diffracted optical fields from the two signals linearly combine and the
resulting field amplitude is modulus squared by the optical detection mechanism.
If we represent the reference as a constant amplitude sinusoid, (t) = roe"t2mfrt
and the signal as a phase and amplitude modulated carrier 5(t) = a(t)et27/t+e(?)],

then the interferometrically detected image plane intensity, after blocking the un-

diffracted beam in the Fourier plane, is given by

I(z,t) = |w(z)[3(t — z/va) + F(t — z/v,)]|? (2.1.10)
= w?(X)[la(t - 2/vs)* + |rol?

+ 2roa(t = Z)cos (2((f = £,)(t = ) + (e = )] )]-

This has turned the phase and amplitude modulated field into an intensity mod-
ulated detected waveform on a temporal carrier of frequency (f — f;), and on a
spatial carrier of spatial frequency (f — f,)/v, with a constant bias terms |ro|?,
and a signal dependent bias |a(t — z/v,)|?. This is most useful when the applied

signal is a purely phase modulated signal so that the signal dependent bias term is
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constant. It is possible to use the undiffracted light as the interferometric reference,
but this will result in very high temporal and spatial carrier frequencies, and a poor
modulation depth of the heterodyned product term, since the undiffracted beam is
much stronger than the diffracted beam in the weak coupling regime. The sum term
of the interferometric detection operation, which is due to the implicit presence of
the other sidebands that are dropped by the use of the complex notation, is not
presented in the interferometric detection equation because it rides on a temporal
carrier of 2v ~ 10'°Hz, so it is not directly observable, and this term averages to
zero over a detector integration time constant.

Another approach to linear intensity modulation utilizes the strong coupling
results of the coupled mode theory of the Bragg interaction presented in section
4.2. This analysis shows that the diffracted amplitude builds up linearly until it is
strong enough to begin the process of rediffraction back into the undiffracted beam,
which is beginning to be depleted. The diffracted amplitude, normalized by the
input amplitude, as a function of the applied voltage v, which is plotted in Figure
2.1.2a, is analytically expressed as

Ag(v) e

A;(0)  lev]

sin(cvL). (2.1.11)

Where L is the interaction length, or the transducer length, and ¢ is the coupling
constant per unit applied voltage, and is proportional to the appropriate photoe-
lastic constant, and the piezoelectric coupling efficiency. From this equation we can
see that for small diffraction efficiencies the diffracted field is linearly proportional
to the applied voltage, and is within .2% of linearity as long as the diffraction effi-
ciency is less than 10%. The resulting intensity diffraction efficiency is the ratio of

input intensity to diffracted intensity, and is plotted in Figure 2.1.2c.

ILI(Q = sin? |ev|L =~ (|ev|L)? (2.1.12)
1

This shows that the diffracted intensity is proportional to the voltage squared, or
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acoustic power, for small arguments of the sine function. The plot of this nonlinear
intensity diffraction efficiency relationship indicates that another region of linear
intensity diffraction versus applied voltage should be achievable by applying an RF
bias power to the transducer in order to operate around the linear portion of the
sin?(cvL) curvel??l, which occurs around cvL = 7 /4. The problems with this mode
of operation are that only small relative intensity variations around this operating
point are allowed, so a large bias is present with small modulation depth, and
the acoustic power density becomes so large that acoustic nonlinearities begin to
produce large nonlinear intermodulation products.

In the following general discussions of acousto-optic signal processing architec-
tures, it is often necessary to utilize one of the intensity diffraction modes briefly
presented here. For simplicity I will often assume that it is possible to operate
a Bragg cell in a manner in which the diffracted intensity is proportional to the
applied signal without going into specifics as to which method that we shall utilize.
From the above discussion a generic form of Bragg cell intensity diffraction will be
given by

I(z,t) = w?(z)[s(t — z/v,) + bias] (2.1.13)

Often it will be convenient to ignore the bias term in simple system analysis, but
it is important to realize that it is present, and sometimes signal dependent. The
presence of the optical bias term will invariably degrade overall system performance,
especially detector dynamic range, and special techniques must be employed to

remove the optical bias from the final output signal.
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2.2 Spatial Integration

Spatial Integration is the collection of light from a region of space onto an output
plane location. It can be characterized by an integration over the spatial aperture
defining the given region. Often parallel space integrating channels of processing
are performed that separate different spatial or spectral frequencies to different
output locations. Examples of this type of system would be Fourier analysis of
images, acousto-optic spectrum analyzers, and optical spectrum analyzers. The
region over which spatial integration is performed can be a 2-dimensional aperture,
but in acousto-optic signal processing we employ 1-dimensional spatial integrations
using cylindrical optics.

A classic space integrating processor is the two dimensional Fourier transforma-
tion performed by a spherical lens[2'3], which is shown in Figure 2.2.1. This powerful
operation is the basis of many space integrating optical signal processing systems.
A mask g(z,y) is illuminated by a collimated coherent wave of wavelength A. The
mask is placed at the front focal plane of a lens of focal length F, and at the back

focal plane the field observed is given by the scaled Fourier transform of g(z,y).
G(2,9) = /A 9(z, y) e~ FF (#2+99) 4z dy (2.2.1)

The actual spatial size of the transform depends on the illuminating wavelength A,
and the lens focal length F. Often we will express the transform in terms of the
normalized spatial frequency variables v = £/AF, and v = §/AF. Each position
in the output plane is the integrated product of the transparency with the space
variant Fourier kernel corresponding to that output position.

Another classic space integrating processor is the Vander Lugt correlator[4],
which uses a Fourier domain multiplication in order to implement convolutions
and correlations. The key to this approach is the ability to represent complex

image Fourier transforms with an off axis holographic recording process. To make a
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matched filter of the image g(z,y), an off axis coherent reference beam is interfered

with the spatial Fourier transform G(%,§) on a holographic recording medium.

I(u,v) =|G(u,v) + re (2.2.2)

= |G(u,v)|* + |r|® + G(u, v)r*e ™™ + G*(u,v)re’*®

The final term is the Fourier domain representation of the matched filter for the
image g(z—zo,y—yo). This hologram is developed and carefully repositioned in the
Fourier plane of the optical processor illustrated in Figure 2.2.1, and a test scene
containing a shifted and corrupted version of the reference scene is placed at the
processor input. The hologram is illuminated with the field G (u,v)eiz"(“z°+”y°) +
N(u,v), and the matched filter term represents the phase conjugate of the desired
input, so that a plane wave is diffracted by the hologram, at an angle proportional
to the test image displacement. The final Fourier lens retransforms this plane wave
back to the correlation domain where a bright spot is produced corresponding to
the correlation peak at the appropriately shifted output coordinate.

A simpler type of spatial integration is simply the accumulation of light intensity
across an aperture A. There are three primary techniques for performing this
simpler operation. A detector matched to the aperture A can be placed directly
behind the aperture, and photoelectric current generated across the detector area is
summed electronically by the detector current collection mechanism. Alternatively
Parseval’s theorem can be utilized in order to attempt to decrease the detector size.
It states that a power integration in the space domain is equal to a power integration
in the spatial frequency domain, or at any intervening Fresnel transform plane along
the propagation direction of a lossless optical system. Thus a smaller detector can
be placed in the back focal plane of a lens, where it detects the optical intensity at
each point in the transform plane and electrically sums the photocurrent across the

detector surface. The detector must be larger than the highest spatial frequency
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component of the image in order to accumulate all of the light in the Fourier domain.
Another approach to image integration results from the realization that the Fourier
kernel at the position (0,0) is equal to one, so the DC spot in the Fourier plane
is proportional to the space integration of an image. The size of the DC spot
sampling aperture must be smaller than the scaled image bandwidth, in order to
avoid transform roll off within the aperture, which will result in an incorrect estimate
of the DC intensity. These three techniques for space integrating light across an
aperture can be used interchangeably as appropriate in various systems.

The inner product operation is the basis of almost all optical processing sys-
tems, and the space integrating inner product is a powerful parallel signal processing
operation. An optical beam that is modulated by an image f(z,y), and is then im-
aged onto a transparency with transmittance function g(z,y), will multiply pixel
by pixel the corresponding image values. By space integrating this image prod-
_ uct, the space integrated inner product between the two images can be calculated,
I [ f(z,y)g9(z,y)dzdy. One dimensional optical modulators such as acousto-optic
devices or laser diode arrays can be used to calculate vector inner products, with a
one dimensional space integrating optical system. A number of vector inner prod-
ucts can be calculated in parallel in the vector matrix multiplier system shown in
Figure 2.2.205-8], The input vector ¥ is used to spatially modulate an optical beam
in the z dimension, which is imaged in z and smeared in y, broadcasting in par-
allel to a number of spatially multiplexed rows of a two dimensional matrix mask
T{(z,y). The light transmitted by the mask is the product ¥(z)T(z,y), and this is
space integrated along z and imaged along y to from a spatially multiplexed array

of vector inner products.

#(y) = / T(z,y)¥(z)dz (2.2.3)

Uy = E Trmnvn
n
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This system can compute an arbitrary linear transformation of a spatially mod-
ulated one dimensional optical vector, thereby implementing a space integrating

matrix vector product in the time it takes light to propagate the length of the

system.
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Figure 2.2.2. Space integrating matrix vector multiplier a) using a serial AOD to

enter the vector, b) using a parallel laser diode array to enter the vector.
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2.2.1 Acousto-optic spectrum analyzer

The space integrating acousto-optic spectrum analyzer is the simplest and most
successful application of acousto-optic technology for signal processing[g’m]. It is
also a fundamental building block for 2-dimensional signal processing applications
as discussed in this thesis, so a thorough review of its operation is essential. These
systems are usually operated as power spectrum analyzers, but they can also be
operated interferometrically to produce a heterodyned output that allows the mea-
surement of both amplitude and phase of the detected frequency components. The
heterodyne receivers can extend the input dynamic range of the system, given a
fixed output detector dynamic range[u]. There are two major types of AO spec-
trum analyzers, the video detector filter banks, and the incoherent radiometers,
and the difference is determined by the characteristics of the output detector array.
Parallel wideband output detector arrays are typically used with under 100 channels
as pulsed tone detectors, when time of arrival is an important parameter to be mea-
sured. Integrating photodetector arrays with on the order of 1000 detectors that
are serially read out are used when high spectral resolution and large integration
times are desired. The most important attributes of the acousto-optic spectrum
analyzers are the capability for wide instantaneous bandwidth, the large dynamic
range of the AO device, the large number of spectral sa.inples, and the simplicity of
this compact, low power system.

The basic acousto-optic sﬁectrum analyzer is shown in Figure 2.2.1.1. It consists
of an optical source, collimating lens, the AOD, RF amplifier and electronics, The
Fourier transforming lens, and the detector array with its associated electronic
readout circuitry. A bandlimited signal s;(t), centered at frequency fi, is mixed
with a local oscillator with frequency fj, = fo % f1 , producing a signal so(t) with a
frequency component at the AOD center frequency fo, and a spurious term centered

at the frequency f, = 21 &+ fo that can be removed by electronic filtering or by the
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acousto-optic device frequency response. The octave bandwidth signal s(t) resulting
from this passband filtering operation is amplified and applied to the transducer of
the AOD.
The emerging field from the acousto-optic device is given by the product of the

incident optical field and the transmittance of the device, as expressed in Equation

(2.1.5).

b(z,t) = a(z,t)ty(z,t) (2.2.1.1)

_ w(z)e—imr[ut—sinOBz/z\] [1 +ie3 (t _z-— X/Z)]

Ve
In this expression the origin of the coordinate system has been shifted to the center
of the Bragg cell. This field consists of the undiffracted term propagating at the
angle —0p, and the diffracted modulation term propagating at an angle centered
around +0p. The optical field propagates through a distance F, and is incident on
a Fourier transforming lens of focal length F, so that at a distance F behind the
lens the field observed will be the spatial Fourier transform of the field emerging

from the aperture of the AOD.

B(z,t) = / b(z,t)e 2222 F gy (2.2.1.2)

= /w(z) [1 + §€8 (t — 1:_—-_3(_[_2_)] e—i27r[vt—sin03z/,\]e—z'zn&/,\pdz

Vg
The function w(z) of Equation (2.1.9) is a hybrid window function including effects
of AOD surface imperfections, optical apodization, and the finite aperture of the
device. The spatial Fourier transform of the window function gives the impulse re-
sponse of the system, and is the fundamental limit on spectral resolution obtainable

with this system. ‘
W(u) = /w(x)e_iz”"zdx (2.2.1.3)

For an unapodized device the window function is just the rectangular aperture of the

crystal, and the number of Rayleigh resolvable (19% dip between adjacent peaks)
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spots observable in the Fourier plane is given by the time bandwidth product of the
device T, B.

The undiffracted term will result in a bright DC spot W (3% + #5322}, which
carries no information about the signal and it will be blocked. It is sometimes
useful to tilt the Fourier transform lens so that it is aligned with the undiffracted
wave, and in the Fourier plane the DC spot will appear at the position defined
as £ = 0. This also removes the angular spatial frequency term e*27%2¢52/2 gye
to the minus Bragg angle incidence, and simplifies the resulting equations. In
reality this introduces unwanted off axis aberrations into the Fourier transform of
the diffracted field if the Bragg angle is large, and often the lens is actually aligned
with the midband diffracted field component. An expression for the term of interest
due to the diffracted wave at the Fourier plane is found by Fourier expanding the

input analytic signal, and reversing the order of integration.

Vg

B; (53’ t) — %Ee——imrut/w(x)g (t _ _.'E_—:_){/_2) e—iszi/)\Fdz
. 0 . ] — o
= %ee'—t?mxt/w(z) [/ HAOD(f)S(f)ezZ‘lrf(t—-——'—]?fE)df] e—:zwzz/AFdz
—oo

= de"‘z"”t/ﬁAOD(f)g(f)eiz"ftW (X:?F_ + {-) df (2.2.1.4)

The constant d = 4ee™/Ts has absorbed all of the constants and phase factors,
and the single sideband frequency response of the acousto-optic device is given by
Haop(f). Thus at the focal plane of the lens the diffracted field from the AOD
produces a spatial represen‘tation of the Fourier spectrum of the applied signal
weighted by the device frequency response, and spatially blurred by the convolution
with the resolution limiting window function transform. By utilizing the normalized
spatial frequency variable © = Z/AF we can represent the field at the back focal

plane of a Bragg cell spectrum analyzer with the compact notation

B (u,t) = et [d'ﬁAOD(uva)g'(uva)eiz"”aut] * W (uv,) (2.2.1.5)
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The modified constant d’ = dv,. The term in brackets would be the output for
an ideal, infinitely long, perfect Bragg cell spectrum analyzer, and the * represents
convolution with the blur function W (uv,), which accounts for the finite length
and apodization of the acousto-optic interaction. Let us examine the case of a
single sinusoid of frequency f' input to the spectrum analyzer, so that s(t) =
2acos(27f't) = ae~2™/'t | ¢c. and the temporal Fourier spectrum is given by
S(f) = ab(f + f') + a6(f — f'). When this spectrum is substituted into the above
equation, the negative sideband is selected by the single sided frequency response
of the AOD, and the resulting spatial velocity scaled, delta function spectrum mul-
tiplies the next term, known as the distributed local oscillator or DLO. The DLO is
a temporal oscillation whose frequency varies linearly in space, across the Fourier
plane, or alternatively it is a plane wave, that is pivoted on the DC spot, and whose
angular spatial frequency varies linearly with time. The delta function spectrum
selects out of the DLO the exact negative temporal frequency of the input sig-
nal, but the spatial convolution with the blur function produce a spatial blur spot
d'aW (uv, — f') with a phase term that is uniformly oscillating at the frequency
—f'. This is considered a doppler upshifting interaction, even though we are using
the negative frequency sideband analytic notation, because we are representing the
optical field as a negative temporal frequency e *2"¥f, thus the upshifted signal is

represented as e *27(¥+f ),

Incoherent detection in the Fourier plane produces an instantaneous measure-
ment of the power spectrum of the signal that is currently within the AOD aperture.
The width of the intensity blur spot in the Fourier plane, W2(u— f'/v,), determines
the spectral resolution of the space integrating spectrum analyzer. An integrating
detector array, such as a charge coupled device (CCD) or a photodiode array, is
used to accumulate instantaneous power spectra for a time 7. Thus the time in-

tegrated output of this type of acousto-optic integrating radiometer is given by the
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convolution of the signal spectrum with the AOD blur spot modulus squared.

t'+To N ] 2
I(v) =/ﬂ 1By (u, 1)t =/To ld/HAOD(f)S(f)e’”ftW (u+£) df| dt
= /T 18" (wva) * W (vau)[2dt (2.2.1.6)

Where I have abbreviated the AOD frequency response as a primed spectrum,
s (f) = Haop( f)g' (f). Thus we can see that the space integrating acousto-optic
power spectrum analyzer actually utilizes a combination of spatial and temporal
integration. In this case the spatial integration is used for spectral channelization
and the temporal integration is used to incoherently average a number of instan-
taneous power spectra in order to improve the detectability of a signal buried in
noisel1%12], In succeeding chapters of this thesis we will see that the temporal in-
tegration can alternatively be used for further coherent signal processing, such as
correlations, matrix multiplications, or spectral analysis of each spatially integrated
output channel.

The interferometric spectrum analyzer is the basis for the folded spectrum ar-
chitectures presented in Chapter 5. The simplest case of interferometric detection
involves the addition of a simple plane wave reference beam to the output of a Bragg
cell spectrum analyzer, and is illustrated in Figure 2.2.1.2. The instantaneous out-
put will have a linear spatial dependence of the doppler induced temporal frequency

of the detected output intensity that is given by

I(u,t) = |By(u,t) + roe_"z’”’tyl2 (2.2.1.7)

= |8 (uvg) * W (uvg)|? + |ro|? + 2r0|8" (uv,) | cos[2m (vaut + 0 (uv,))] * W (uv,)

Where I have expanded the spectrum in terms of its magnitude and phase, §'(f) =
18( f)le"z”nl(f ). The first term is a signal dependent bias term, identical to the
instantaneous output of the power spectrum analyzer. The second term is a uniform

bias due to the reference beam. The final term reproduces the amplitude and phase
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of the complex weighted input spectrum as temporal modulations of the detected
intensity, spatially blurred due to the the input apodization. For the case of a single
sinusoidal input tone at a frequency f’, with amplitude |a|, phase {1, represented as

s(t) = |a| cos(2m flt+ 1), the heterodyne detected instantaneous intensity output is

Ip(u,t) = [aW (u — f/vg)e HBnf 40l g2t | oo o —izmt|2 (2.2.1.8)

= |a|2W2(u — f'/vg) + |ro|* + 2|a|roW (v — f'/vs) cos(27 f't + Q)

Thus we can see that the temporal modulation of the last term reproduces the input
sinusoid in frequency, amplitude, and phase, at the spatial position corresponding to
its frequency, and spatially blurred by the resolution limiting apodization function.

We will come back to this result several times in the succeeding chapters.
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2.2.2 Correlators and Convolvers

The mathematical definition of a one dimensional correlation is given by the

equation
rou(r) = fA F)R*(t + 7)dt = [f % h](r) (2.2.2.1)

It is seen to involve the point by point multiplication of a function f(t) with a shifted
version of the complex conjugate of the function h(t), followed by the integration
of all the products over the aperture A to obtain the output function as a function
of the shift ordinate r. Acousto-optic devices have the capability of rapidly shifting
and point by point multiplying two functions, and a lens can readily accumulate the
light across an aperture, resulting in a space integrating (SI) family of acousto-optic
correlators. The correlation integral is a measure of the similarity of shifted versions
of the two functions f and h, and it becomes strongly peaked at the shift ordinate
7 if f(t) = h(t + 7). This property makes the correlation integral very useful in
measuring the delay of a transmitted waveform f(t), which propagates an unknown
distance through a homogenous medium, reflects off an object, and is returned to the
transmitter where a delayed version of the transmitted signal is detected. The range
delay resolution of a correlator is given by one half the signal propagation velocity
divided by the bandwidth of the transmitted waveform ér = v/2B, where the factor
of one half is due to the round trip of the transmitted waveform. Because of the high
bandwidths achievable with acousto-optic systems, they have seen wide application
in radar and communication systems requiring high bandwidth correlators. In this
section we will present a catalog of basic 1-dimensional space integrating correlator
architectures, from which in later sections of this thesis we will select the most

appropriate building blocks of more complicated multidimensional systems.

A similar operation to the correlation is the convolution, which can be mathe-
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matically described as

esn(r) = /A F(£)h(r — t)dt = [f * k)(r) (2.2.2.2)

The convolution operation involves the point by point multiplication of a signal f(t)
with a time reversed and 7 delayed signal k(t), followed by the integration of all the
products within the aperture A in order to form the output ¢ = f * h at all shift
ordinates 7. Because of the similarities between correlations and convolutions, a
system that can perform correlations of real signals can also perform convolutions
by reversing one of the signals. For this reason we will present the acousto-optic
architectures in this section as correlators, but all of them can be used as convolvers
as well, by temporally or spatially reversing one of the signals, and in some cases
using a different diffracted order from the AODs to represent complex conjugation.

The convolution theorem is a mathematical identity which has a great deal of
physical significance in terms of Fourier plane implementation of optical correlators
and convolvers. It states that the product of the Fourier transform of two signals

is equal to the Fourier transform of their convolution

Crn(w) = F(w)H(w) = /th(r)e_jwfdr = //A F(E)h(r — t)dte™"dr  (2.2.2.3)

This means that if we can optically multiply the Fourier transform of two functions
and inverse transform the product, then we can perform convolutions. There is a

similar Fourier domain relationship for correlations that is given by
Rp(w) = F(w)H* (w) (2.2.2.4)

So we can also perform correlations with multiplications in the Fourier domain.

2.2.2.1 Fixed mask space integrating correlator
The basic space integrating correlator?3=15], illustrated in Figure 2.2.2.1, uses

photographic film, or a 1-dimensional spatial light modulator (SLM), to store the
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reference function as a spatial representation of the film intensity transmittance
h(z). The diffracted intensity s(t +z/v) from the AOD is imaged onto the reference
transparency, and the resulting product of the transmittances of the shifting AOD
and film needs to be integrated. The integration can be performed with any one
of the three methods of spatial integration; image plane integration, Fourier plane
integration, or Fourier plane zeroth order moment sampling. In the technique of
image plane integration a large photodetector is placed directly behind the film
and detects the time varying product intensity distribution at each point across the
detector surface. The detector electronically integrates the current generated across
its surface of width A, in order to produce a temporal representation of the real

correlation integral.
I(t) = /A s(t + z/v)h(z)dz = ren(t) (2.2.2.4)

The problem with this technique is that the large area photodetector required will
usually have too large a capacitance, resulting in a lower photodetector bandwidth
than the bandwidth of the AOD. In order to minimize the size of the photodetector
it is necessary' to optimally compact the product intensity transmitted through the
film. This is accomplished at the focal plane of a lens, where the Fourier transform
of the product field is formed when coherent illumination is utilized. Parseval’s
identity then states that the power integration in the Fourier domain is equal to

the power integration in the space domain.

I(t) = / 1 /A [s(t + z/v)h(z)] F e~ 224z 2 du = fA s(t + z/v)h(z)dz = re(t)
(2.2.2.5)
This technique can be used with a much smaller photodetector which can usually
have sufficient bandwidth. However, if even higher bandwidth is required and suf-
ficient light intensity is available, then the DC component of the Fourier plane can

be measured by placing a pinhole or a very small detector at the axis of the optical
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system in the focal plane of the lens. If the detector width is smaller than the
maximum spatial frequency of the product field Au < fizAF, then the detected

temporal signal will be proportional to the correlation integral.

Au
I(t)= /_Zu I/A[s(t + a:/v)h(z)]%c‘-’z”"’da:[zdu o /As(t + z/v)h(z)dz = 7, (t)
‘ (2.2.2.6)
Any one of these three space integration techniques can be utilized for several of

the succeeding space integrating correlators that utilize a time domain output, but

will not be explicitly elucidated for each case.

2.2.2.2 Programmable, counterpropagating space integrating correlator

This architecture uses a time reversed temporal reference function as a pro-
grammable input to the correlator/!3-1%], rather than the fixed mask of the previous
system. This system is illustrated in Figure 2.2.2.2, where it appears that the two
AODs are propagating in the same direction, but because of the image reversal
of the imaging system the two AODs are actually counterpropagating. The space

integrated product output is a function of time that is given by

1) = [ flt+2/0)a(~(t —o/0)dz= [, 1t +[0)g(ev)de = rpy(21)
(2.2.2.7)

This type of system is seen to time compress the output correlation function by a

factor of two.

2.2.2.3 Space integrating correlator with time compressed input

Rather than using a time reversed reference function, we can employ a time
compressed reference, and we can use a spatially demagnifying system to match
the scale of the spatial signal representationslm]. This is especially useful when a
time compressed reference, such as that produced by the previous system, needs

to be utilized in a programmable correlator. Such a system is shown in Figure
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2.2.2.3, where the first AOD is demagnified by a factor of two onto the second AOD,
consequently its spatial velocity is half the acoustic velocity. The signal applied to
the second AOD is time compressed by a factor of two, and its acoustic wave is
copropagating with the demagnified image of the first AOD, so the two spatial
representations have the same scale factor at this plane. The acoustic wave in the
second AOD propagates at twice the apparent velocity of the image of the first AOD,
producing the relative shift needed in the correlation integral. The system output
is not time compressed, since the relative motion between the two copropagating
different velocity signals in the coordinate system fixed with the demagnified signal

is not counterpropagating.

1(8) = [ £t — 22/v)g(2(t — o/v))dz = || T [0t 42 0)d = (1)
(2.2.2.8)

This type of technique can also be utilized when AODs with different acoustic

velocities need to be utilized to implement a programmable correlator.

2.2.2.4 Holographic filter space integrating correlator

The classic Vander Lugt type of correlator!*! can be implemented in 1-dimension
with travelling wave optical modulators by using a pulsed laser source to freeze the
acoustic motion, and this type of system is illustrated in Figure 2.2.2.4a. In this
type of system we must form a holographic reference of the Fourier transform of the
signal to be correlated. This is accomplished by interfering the Fourier transform
of a transparency g(z) with an off axis reference plane wave, incident at an angle
0 = sin~'k,A, and recording the interference pattern on a piece of film. The

resulting transmittance function of the developed film is given by the expression

T(u) — ‘/g(z)e—imruzdx+roei21rk,,zl2

= |G(w) 2 + |rof® + Gu)rhe 2™ 4+ G* (W) roe'?™ == (2.2.2.9)
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This consists of two low spatial frequency components, and the reference signal
transform on a spatial carrier —k;, and the conjugate of the reference signal trans-
form on a spatial carrier k,. The film is developed and realigned in the Fourier plane
of an AOD, that is illuminated by a pulsed laser. The signal applied to the AOD
transducer is s(t), and the diffracted signal is given by the product of the incident
illumination with the travelling wave single sideband amplitude modulation of the
AOD.

a(z,t) = p(t)w(z)3(t + z/v) = 6(t)w(z)3(t + z/v) = w(z)3(z/v) (2.2.2.10)
The laser pulse p(t) has been approximated by a delta function which has the effect
of freezing the acoustic motion. A spatial representation of the input signal is then
produced. As long as the laser pulse is narrow enough so that the highest spatial
frequency of s(z/v) moves by much less than a single fringe in the AOD, then
this delta function approximation is valid. This results in the condition that the
laser pulse width 7 < 2/B, where B is the bandwidth of the AOD. The temporally
sampled light that is diffracted by the AOD is Fourier transformed and is incident
upon the reference hologram. The transmitted field after the hologram is given by

the product
b(u) = T(u) / a(z, )¢~ 234z = T(u)[d'S (uwv) * W (uwv)] (2.2.2.11)
= [|G@)]? + |ro|* + G(u)rge ""*s2 4 G*(u)roe**™ =] S (uv) * W (uv)
This field is Fourier transformed by the lens following the hologram, producing

both the correlation and convolution of the reference signal with the windowed

input signal, at different locations in the output plane.
b() = llg(=)[? + Irof?] * [w(z)s(z/)] + rig(=) * [w(c)s(z/v)] * 6(=' — k:AF)
+ rog(z) * [w(z)s(z/v)] * 6(z’' + kzAF) (2.2.2.12)
The first term represents an on axis spot bearing no useful information. The second

term is centered at the position z' = k;AF, and is a spatial representation of the
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convolution ¢ys(z'—k;AF). The last term is located at the position z' = —k;AF, and
is a spatial representation of the correlation function ry,(z' + k;AF). By adjusting
the angle of the reference beam to a large enough angle, we can guarantee that none
of these terms overlap, and we can center an output detector array at the spatial

location corresponding to the desired operation of correlation or convolution.

This type of correlator has a severe optical inefficiency problem because of the
short amount of time during which the optical source is on, and the multiplicative
diffraction from both the AOD and the hologram throws away most of the available
light. The source must be pulsed in order to freeze the motion of the correlation
peak as it travels across the output plane with a velocity equal to the optically
demagnified acoustic velocity. An alternative is to use a detector array that oper-
ates in a scrolling mode that travels in synchronism with the travelling correlation
peak(l?l, as shown in Figure 2.2.2.4b. In this case the laser can be turned on for as
long as the detector integration coordinate frame remains in synchronism with the
travelling correlation peak. Integrating in a moving coordinate system is a type of
time integration that will be explored further in section 2.3. In this application it
helps to increase the optical throughput of the system, and it averages out station-
ary coherent artifacts that may be present, thereby improving the fidelity of the

detected correlation.

2.2.2.5 Joint transform filter space integrating correlator

The joint transform correlator is similar to the holographic correlator, except it
is programmable in real time through the use of an optically addressable spatial light
modulator (SLM), or a nonlinear optical medium, which is operated as a Fourier
domain multiplier. A simplified schematic of an acousto-optic joint transform cor-
relator is shown in Figure 2.2.2.5. Once again a pulsed laser source is utilized, but

in this architecture it is split into two beams which illuminate two Bragg cells at the
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same Bragg angle, shifted off-axis by an amount zo, generating two upshifted (or
two downshifted) diffracted beams. These two spatial representations of the input
signals are Fourier transformed by the same large lens, so that at the Fourier plane

of the lens the field amplitude is
'a(u,t) — p(t)[dleizwvutF(vu)]e-—-i21r[ut—zou]
+ p(t) [dle€21rvutG(vu)]e-i21r[ut+zou]

= d'F(vu)e?™0% 4 d'G(vu)et2%0% (2.2.2.13)
The pulsed source, p(t) = 6(t), samples the distributed local oscillator phase term
at time t=0, thereby removing the temporal oscillations. The time duration of the
pulse must be short enough so that locally channelized distributed local oscillator
terms produce stationary fringes, and this requires that the pulse width is less
than the AOD aperture 7 < A/2. At the Fourier plane we insert a thin nonlinear

optical material in which an absorption or index modulation can be produced that

is proportional to the incident intensity.
t(u) o I(u) = |a(u,0)? = |d'F(vu)|? + |d'G (vu)|?
+ [d' F(vu)][d'G(vu)]* e?2m220¢
+ [d' F(vu)]*[d' G (vu)]e~ 127 2%0u (2.2.2.14)
The transmittance of the recording medium is assumed to be proportional to the
detected intensity. By illuminating the recorded interference pattern with another

source, with an appropriate wavelength and illumination angle, we can read out the

product terms, and Fourier transform them with a lens.
Az) = [t(u)e ¥ ™du = 1(2) * 1(2) + 9(z) * 9(2)
+ f(z — 2z0) * g*(z) + f*(z) * g(z + 2z0) (2.2.2.15)

This system produces the autocorrelations of the two inputs as on axis terms, and

the cross correlation appears off axis at the locations +2z5. The pulsed source used
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to freeze the acoustic motion in the AODs, also must expose the optical recording
medium, which places a high peak optical power requirement on the laser, but
not as high as the Vander Lugt correlator of the previous section, because of the
longer allowed pulse width. It is also possible implement this type of system with
a single AOD, and temporally multiplex the two applied signals, so that they are

not overlapping in the Bragg cell.

2.2.2.6 Space integrating chirp correlators

In radar signal processing linear frequency modulations (LFM), or chirps, are
often used for ranging applications because of the ease with which high time band-
width chirps can be generated, and there good correlation and cross correlation
properties. The propagation of an optical field through free space can be de-
scribed as a linear system with a quadratic phase impulse response. This cén
be utilized in several different fashions to produce compact chirp pulse compression
systemsls’ls‘fll, and one version that produces a spatial representation of the out-
put chirp correlation is illustrated in Figure 2.2.2.6. A pulsed laser source is used
to illuminate an AOD to which a linear FM signal with unknown delay has been
applied. The delay ty; must be within the time delay aperture of the AOD. The

applied signal is given by

s(t) = arect [E:fl—"zg] ¢~ 27l/e(t=to)+5 (t=t0)’] (2.2.2.16)

The instantaneous frequency of the applied linear FM (or chirp) signal is given
by the derivative of the phase factor, and is seen to be f. + b(t — tp), which is
characterized by the chirp rate b, usually measured in MHz/usec (10~ 2sec™2), and
the center frequency f.. The total bandwidth of the linear FM is given by the chirp
rate b times the duration T, so the time bandwidth product of the chirp waveform
is TB = bT?. The diffracted light from the AOD is given by the usual travelling

wave modulation expression, illuminated by a laser pulsed at time t = 0 with a
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pulse of width less than the chirp inverse bandwidth 7 < 1/B so that the focussed

chirp will not appreciably smear during the laser pulse.

a(z,t) = p(t)w(z)3(t + z/v)
= 6(t)w(z)arect [Eﬂiﬂ] ¢—2mlfe(t~to—2/v)+§(t—to—2/v)’]

o(z,0) = w(z)arect [:tﬂ_;i/..] grlfeliota/o)+§Gio+a/o)) (2.2.2.17)

The temporally frozen diffracted signal is allowed to propagate through a distance
z of free space, which results in a linear transformation of the diffracted signal that

can be expressed as
no__ i P (él_z)2
b(z') = v a(z,t)ers dz (2.2.2.18)
z
-
Vaz

When the condition —b/v? = 1/Az is satisfied, then the spatial quadratic phase

w(:c)arect {—to ; x/v] ei21r[fc(to+z/v)+%(to+z/v)2]eif;(z'2—Zzz'+z2)dx

terms in z will cancel and the diffracted wave comes to a sharp focus at that plane.
For an upshifting acousto-optic interaction as illustrated here we would need to use
a down chirp with a negative b in order to obtain a real focussed spot in f_ront of the
AOD with positive zo. If we use an up chirp then the diffracted light will appear
to be emanating from a point a distance zp behind the AOD. We can use a down
shifting acousto-optic interaction to obtain a real focus of an upchirp in front of
the AOD, or we can image the virtual source behind the AOD with an auxiliary
lens. This is equivalent to having performed an autocorrelation of the applied chirp
signal, which is displayed as a function of the output spatial variable. The detected

intensity at the plane z = zy = —v?/b) is given by

1 ':HL% 3 z b (42 z __i_iﬂr_zzl
I(z') = |b(z")|® = :\_z_olae 2% / w(z)rect [%;Q] ei2nlfelto+$)+3(18+200 5)] g ~* X0 %% 4|2
1 .
= :\?OIGIZIW(IE'/)\zo) * (——vT)smc[——vT(:c'/Azo — fo/v— bto/v)]|2
= BT|al?|W (' /Az) * sinc[B(z' /v — fo/b— to)]|” (2.2.2.19)
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Thus the output plane contains a blurred sinc of width given by the velocity scaled
inverse chirp bandwidth Az = v/B, at a position that is proportional to its center
frequency divided by the chirp rate, plus its unknown delay. At this position all of
the energy of the chirp has been concentrated to its focal spot, and a large peak
with an intensity that is the chirp time bandwidth product T'B times as large as
the average diffractéd intensity just after the AOD.

When the laser is operated in a continuous mode, then the chirp focus will
scan across the focal plane at the acoustic velocity. Placing a tiny high bandwidth
output detector in the focal plane will produce a time domain output of the chirp
correlation. Alternatively, a synchronously scanning CCD detector array could be
used to accumulate energy from the focussed chirp as it scans across the output
plane. This will help to average out coherent artifacts and spatial noise, and will
lead to the same system resolution as long as the scrolling CCD and the travelling
chirp focus remain in perfect synchronism.

A travelling wave chirp lens as described here can also be used as an acousto-
optic scanner by modulating the input laser source as the chirp focus scans across
an output detector array. In this case the time integrated charge profile detected
in the chirp focus plane is given by the convolution of the laser diode temporal
modulation f(¢) with the chirp focus blur spot, which is valid as long as the chirp
is fully within the AOD.

I(«') = /f(t)‘xlz‘daei}:_oza/w(x)rect [v_(t_:g]o‘l:_z]

e~ iamlfe(t=to=z/0)+§ ((t~to)*~2(t=to)a/o)l i RE5 == g 2 gy
= [ 1()BTIelIW (& [320) * sinc| B(z'fv — f./b+ (¢ — to))] e
~ f(z'/v — f./b—to)BT|a|> ¥ W (z'/Az) * sinc[Bz'/v]|?  (2.2.2.20)
This result shows that to within the resolution limit imposed by the chirp focus,

the integrated intensity profile at the chirp focus output plane is a spatially scanned

image of the temporal laser modulation function.
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2.3 Temporal Integration

Temporal integration[22"29] (TI) in an acousto-optic signal processor is accom-
plished through the sequential accumulation of photogenerated charge in an inte-
grating detector array. It can be analytically represented as a finite time integration,
or for temporally sampled data, as a summation over the sequential data samples. In
the systems we will be discussing, parallel spatial channels of temporally integrated
data are simultaneously formed on a detector array. These can represent different
shift ordinates of correlation integrals, just as they did for the space integrating
systems of the last section.

Typically charge coupled devices (CCDs) are used for temporal integration,
since they have a high quantum efficiency as optical detectors, low read out noise,
and an inherently integrating potential well structure. Alternatively, photodiode
arrays can be utilized as integrating detectors by including an external integration
mechanism, such as an external capacitor or CCD, or integrating in the junction
capacitance itself. In a sense any optical detection operation involves an implicit
temporal integration over a time of the order of the inverse detector bandwidth,
but this is not the perspective which will be considered here.

There are three primary types of temporal integration; data formatting, non-
coherent averaging for processing gain, and signal processing. Temporal integra-
tion for data formatting is employed in the space integrating architectures utiliz-
ing pulsed sources, where an implicit time integration turns the product of the
é-function source with the travelling wave modulator into a purely spatial modula-
tion, as well as in the chirp scanner of the previous section. Temporal integration in
a moving coordinate frame was used to detect a moving correlation peak produced
by the holographic space integrating AO correlator in section 2.2.2.4 in order to
improve the light efficiency and average out coherent noise. Temporal integration

for noncoherent processing gain was utilized in section 2.2, in order to improve the
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signal to noise ratio of an acousto optic power spectrum analyzer[m]. In this sec-
tion we will present optical architectures for linear signal processing tasks that use

temporal integration for the explicit integration variable of linear transformations.

Temporal integration is invariably accompanied by an undesirable bias buildup
on the detector array, due not only to thermally generated dark current accumulated
in the integrating potential well, but also due to the optical intensity bias that
must be employed in order to represent bipolar signals with inherently unipolar
optical intensity modulation. This is the major drawback of time integration as
compared to coherent spatial integration, and appropriate bias removal techniques
must be employed. On the other hand time integration has the advantage that
the integration interval can be very long, while for space integrating techniques the
integration time is limited to the acoustic delay time of the AO medium. The limit
on integration time for TI techniques is given by the rate of bias buildup, so that
the detector dynamic range is not saturated by the bias. If still longer integration
times are desired then bias removal can be followed by further digital integration,

giving an effectively infinite integration capability.
2.3.1 Time integrating AO correlators

The basic TI correlator is shown in Figure 2.3.1, and it consists of a modulated
laser source, and an AOD which is imaged onto the integrating detector array. The
output intensity of a laser diode can easily be modulated as a function of time by
applying across the diode terminals a modulated voltage at a large enough DC bias
so that the modulation signal remains within the linear regime. In this case the out-
put intensity from a temporally modulated laser diode contains a modulation term
on an optical bias, and it is given by Irp = A+v(t), where v(t) can be bipolar. The
emitted light from the laser diode can be collimated and aligned incident to an AOD

at the Bragg angle, as shown in Figure 2.3.1. The diffracted intensity is given by the
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product of the laser diode intensity modulation with the AOD intensity diffraction
expression given in Eq. 2.1.13. This output intensity is Schlieren imaged onto a
time integrating detector array, which has a width equivalent to the (demagnified)
image of the AOD. The apparent acoustic velocity in the image plane is given by
the actual acoustic velocity times the demagnification factor, v = v;m;. The time
integrated intensity that will be accumulated on the discrete detector array will be

spatially sampled, so that after an integration period T, the output is given by

t'+To
I(z,) = /t T (A o(t) wP(2) [s(t — /) + Bdt
= w¥(zn) [TOAB + [ As(t = zn/v)dt + A Boft)dt + A o(t)s(t - z,,/v)dt]

= w?(24) [ToAB + A3 + BT + rys(za/v)] (2.3.1.1)

For zero mean signals, $ = 0, and ¥ = 0, the signal dependent bias terms disappears
and the resulting time integrated signal consists of an apodization function times a
constant bias plus a finite time correlation between the signal applied to the laser
diode v(t), and the intensity diffracted by the Bragg cell s(t). Depending on the
acousto-optic intensity modulation technique which is used, the bias term B may
contain a time dependent signal power bias such as that given in Eq. 2.1.10, which
will not integrate to zero, and will result in a deleterious fluctuating bias level.
The most notable difference between time integrating and space integrating
correlators is the presence of the bias terms, which can use up the available dynamic
range of the detector array. The constant bias is relatively easy to remove with
electronic post processing circuitry, but the signal dependent bias causes much
more difficulty. The most common technique to remove the bias is spatial carrier
demodulation?¥], in which the correlation term is placed on a spatial carrier of a
high enough frequency so that it can be unambiguously separated from the bias
terms with an electronic bandpass filter on the serial output samples from the

photodetector array. In this case both input signals are placed on temporal carriers,
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so that the laser diode intensity modulation is given by
Irp(t) = A[1 + myv(t) cos(27 fot)], (2.3.1.2)
and the AOD modulation is given by

Laop(t — z/v) = [BE(1 + mas(t — z/v,)e2 folt=2/va)]2 (2.3.1.3)

= B[1 + m23s?(t — z/v,) + 2mas(t — z/vs) cos(27 fo(t — z/vs)].
The time integrated output contains the correlation term on a spatial carrier.
I(z,) = AB [To +m?2 ‘/1.‘ si(t — zp/v)dt
0

+ 2mymg cos(27 fozn [v) -/To v(t)s(t — zn/v)dt] (2.3.1.4)

The other three terms contain a temporally oscillating cosine, which time averages
to zero. This discretely sampled spatial signal representation is turned into a serial
data stream by the readout mechanism incorporated in the photodetector array,

that reads out one pixel of width Az each pixel sample time At.
I(t) = Y I(zn)6(nAz — kAt) (2.3.1.5)
n
= AB [To + m32 ./T 82(t — tyvg/v)dt + 2mymy cos(—27rfotkvd/v)r,,s(tkvd/v)]
0

Where the serial readout is at an effective spatial velocity vg = Az/At, which
converts the sampled spatial carrier to a sampled temporal carrier of frequency
fova/v. The correlation signal ry,(txv;/v) has a temporal bandwidth equal to the
overlap bandwidth of the two signal v(t) and s(t), scaled by the velocity ratio
vg/v = vy/(vemz) which is usually much less than one, since AODs have much
higher acoustic velocity than photodetector arrays have readout velocity. In the case
of the autocorrelation of two signals with two sided bandwidth B, the condition fy >
3B will guarantee no spectral overlap between the bias terms and the correlation
term so that a temporal bandpass filter with bandwidth Bv;/v at center frequency

fovg/v can be used to remove the bias terms.
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It is interesting to notice that an implicit spatial integration has been included in
this equation to accomplish the discrete pixel sampling, that converts the continuous
spatial modulation into a discrete photodetector output. Given a pixel response
function that is independent of position and given by k(z), and with a pixel spacing
of Az, then the conversion from the continuous spatial intensity to the discrete

photodetector representation is accomplished with a spatial sampling operation.

I(z,) = /h(:c —nAz)I(z)dz (2.3.1.6)

= [ bz - naz)ur(z) [/tt

This type of spatial integration due to pixel sampling is always implicititly present

Y

+To
(A+v(2)) [s(t — z/v,) + B]dt| dz

whenever discrete photodetector arrays are utilized. Notice that in order to properly
sample the time integrated spatial intensity profile the maximum spatial frequency
of the intensity at the photodetector plane must be less than the Nyquist limit of
1/2Az. This places a restriction on the spatial bandwidth of the intensity modu-
lation of the AOD that can be satisfied when the number of photodetector pixels
that the AOD is imaged onto is greater than twice the time bandwidth product of
the Bragg cell.

An alternative approach to time acousto-optic integrating correlation utilizes
two counterpropagating Bragg cells as shown in Figure 2.3.2. The reverse imaging
of the intervening optical system results in the images of the intensity diffracted from
the two AODs to be counterpropagating, even though in the figure they appear to
be aligned. The relative motion between the signals in the two AODs allows us to
perform a correlation integral by time integrating the doubly diffracted intensity.

!

1@)= [ 1A+ e+ /o)lIB+ ot — /o)
= ABT, + A/;‘0 g(t —z/v)dt + B/To f(t+ z/v)dt + /To f(r + 2z /v)g(r)dr

= ABT, + Ag + Bf + rs4(22/v) (2.3.1.7)
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In this case the spatial scale factor of the detected correlation integral is twice that of
the modulated source correlator of the previous section. Once again there are several
bias terms which will simplify if the signals are zero mean so that f =0, g =0.
The bias terms can be removed with a carrier demodulation approach as in the
previous section. An alternative interferometﬁc, or additive implementation, of
this type of system has a higher optical throughput, since multiplicative diffractions

from the AOD are avoided, and is often the preferable approach.

2.3.2 Pulsed source time integrating optical processors

Space invariant linear transformations such as the correlation and convolution
operations are very useful, but some applications require more general space variant
transformations such as vector matrix multiplications. A pulsed laser source can be
utilized in a number of ways to implement these more general linear transformations
on discrete data sequences using acousto-optic technology. The correlators and
convolvers that have been considered are a special case of a general one dimensional
linear transformation, in which the transformation kernel, or matrix, is Toeplitz,
which means that entries along the diagonals are constant. The general space
variant linear transformation of one dimensional data is given by a vector matrix
product.

N
Ym = Z AmnZn (2.3.2.1)

n=1

We can implement this transformation by sliding successive columns of the matrix
Apn into an AOD and freezing the acoustic motion by pulsing the laser source for a
short interval and modulating its amplitude by successive samples of the vector z,,.
This involves a raster transformation of the 2-dimensional matrix A,,, into a long
1-dimensional temporal signal composed of successive columns of the matrix, each

of the appropriate duration to fill the portion of the AOD aperture that is being
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imaged onto the time integrating detector array.

t —nT — mr

N-1M-1
==

a(t)= > > rect

] Amn (2.3.2.2)
n=0 m=0

In this expression the time between row samples is given by 7, and the time between

adjacent columns must be greater than the total time required for each column

T > Mr. The modulation of the pulsed laser diode is given by the expression

N-1 t_nIT___tO N-1
z(t) = Z rect [-——A-t——] Tyt ~ Z 6(t —_ n'T —_ to)zn: (2.3.2.3)
n='0 n'= .

The width of the laser diode pulses At << 7, must be small enough so that it
essentially freezes the acoustic motion of the matrix columns, and the pulses are
delayed by tp to facilitate the alignment of each column within the aperture of the
AOD which is imaged onto the detector array. The signals a(t) and x(t) are applied
to the AOD and LD, respectively, in the system illustrated in Figure 2.3.3, which is
an identical architecture with the time integrating correlator shown in Figure 2.3.1.
The diffracted intensity from the Bragg cell is imaged onto M time integrating
detectors, spaced by Az = m,v,7 = vr, where m, is the demagnification of the
imaging system. The signal accumulated on the detector array after N laser diode
pulses is given by the time integration of the product of the source modulation with

the AOD diffracted intensity.

NT —X/2
ym(z = mAz) = ./; z(t)a(t — z/v)rect [x_;_(/_} dt
N-1 N-1M-1 !
to — —nT — — X/2
=D Ty ), D rect [nT-{- 0 :c{rv ik mT] Amnrect [E———XL]
n'=0 n=0 m=0
N-1 _ _
= Z rect [X/Z mAz z] ApnTn
oy’ Az
N-1
& Y AmnZn (2.3.2.4)
n=0

The portion of the AOD aperture that is utilized is X = MAz, and the delay

to = X/2v, allows us to overlap the rectangle functions in space which enforces the
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requirement that n' = n. The integrated output of the mth detector at position
mAz is proportional to the mth element of the matrix vector product. In this
expression the bias effects associated with time integrating intensity based process-
ing have been ignored for analytical simplicity, but they will be present in actual

implementations, so bias removal must again be employed.

2.3.3 Time delay and integration

Another approach to performing correlation with optical time integration is
to utilize a modulated source with a stationary reference, and a sliding detector
plane. This approach is called time delay and integration (TDI)[27-29, or shift and
add, and is a complimentary technique to the normal modulated source time in-
tegrating correlator where the reference function in the AOD is a travelling wave
representation, and the detector coordinate frame is stationary. However, they re-
quire different technologies for implementation, the TI correlator of section 2.3.1
require AODs in order to spatially shift the reference function with respect to the
fixed detector, while the TDI approach requires a shifting time integrating detector
array in order to transfer the photogenerated signals with respect to the fixed ref-
erence transparency. Because of limits on the TDI rate of currently available éCD
detector arrays, the TDI approach should be used for low bandwidth correlation

applications, but high speed GaAs CCDs may eliminate this limitation.

One possible implementation of a sliding detector frame is to translate a photo-
sensitive medium such as film at a constant velocity in the detector plane, however
a much more elegant implementation would involve no mechanically moving parts.
The main reason that the TDI approach is important is the ease with which a CCD
detector array can be operated in the shift and add mode, by simply modifying the
applied electronic clock waveforms. In the TDI mode of operation the CCD array

detects the incident optical intensity profile for a time At, then shifts the discrete
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photogenerated charge profile along the detector length a distance Az. New photo-
generated electrons are added to those already accumulated in the previous cycles
at successively shifted spatial locations. This process of shifting the accumulated
charge, and adding the new photogenerated charge, continues until a potential well
reaches the edge of the detector chip, where it is amplified and read off chip. An-
alytically the TDI operation can be described as a time integrating detection in a
discretely shifting coordinate frame, for an arbitrary time and space varying optical

signal I(z,t).

(n+1)At

sm(t = mAt) = "il /

e o dna / [h(z — (m —n)Az)I(z,t)dz]dt  (2.3.3.1)

The function h(z) is the spatial response function of a pixel centered at position
z, and for low enough spatial frequencies incident on the detector array it acts like
a sampling impulse. The mth output, which occurs at time ¢ = mAt¢, is seen to
consist of time integrated photogenerated charge from a succession of pixel positions
which move linearly in space from the first pixel at position z = NAz at time
t = (m — N)At, to the final integration position centered at position z = Az at
time t = (m—1)At. If we assume that the pixél spatial response acts like a sampling
impulse, and the time integration between shifts simply averages a slowly varying
temporal dependence of each pixels incident intensity, thereby replacing t by n, then

we can simplify the expression for a TDI CCD.

m-—1 m-—1
sm(t=mAt) = > /5(:c — (m—n)Az)I(z,n)dz= > I[(m—n)Az,n]
n=m—N n=m-N
(2.3.3.2)
We can implement a TDI correlator by replacing the arbitrary time and space
varying intensity profile incident on the shift and add detector, with the product of
a temporally modulated laser diode with a fixed transparency that is imaged onto

the detector. This system is illustrated in Figure 2.3.4, where the intensity emitted
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by the pulsed laser diode is given by
N-1 N-1
t—nAt
fit)= Y rect [—-—"—] far 3 6(t — nAt)f (2.3.3.3)
n=0 T n=0
The reference transparency is either a fixed computer generated 1-dimensional pho-
tographic transparency, or a spatial light modulator with a programmable spatial
reference function. The mask intensity transmittance g(z), is sampled by the detec-
tor at location kAz as g(kAz). The product of the emitted laser diode intensity and
the mask transmittance is imaged onto the TDI CCD detector array. The signal
produced by the TDI detector can be expressed as the sampled convolution of the
most recent N samples of f, with the reference function g(z).
m—1
sm(t=mAt) = > /6(:5 — (m — n)Az) f(t)g(z)dz
n=m—-N
m—1

= 5 fag((m—n)Az) = ¢5y(mAL) (2.3.3.4)

s n=m~N
Spatially reversing the mask g(z), or reversing the shift direction of the TDI de-
tector array results in the correlation of the most recent N samples of the unipolar
intensity modulated signal f with the reference signal g(z). In order to implement
bipolar signal processing operations it is again necessary to place the two signals
on appropriate biases. This will, as usual, introduce deleterious bias terms into the
resulting correlation that will have to be removed. The laser diode modulation can
be placed on a temporal carrier, and the reference transparency can be placed on a
spatial carrier, in order to facilitate a frequency domain approach to bias removal.
Complex correlations can be performed once both signals are placed on carriers
by simultaneously phase and amplitude modulating the respective temporal and
spatial carriers. However, placing the signals on carriers will cut down the process-
ing gain obtainable with an N stage TDI correlator, by requiring that the spatial
modulation bandwidth be only 1/4 or less of the available number of CCD pixels

in order to leave at least 4 pixels per cycle of the spatial carrier.
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2.4 Chirp Transform Algorithm

The chirp transform algorithm[®24-26:31] is the basis for a number of analog op-
tical spectral analysis systems. It is a technique which allows the implementation of
the shift variant Fourier kernel with shift invariant linear systems such as the corre-
lators and convolvers described in the previous sections. We will make extensive use
of this algorithm in Chapter 5 in order to implement high resolution spectral analysis
systems and an introductory explanation of the functioning of the algorithm will be
given here. There are several different forms of the chirp transform algorithm, both
continuous and discrete implementations may be realized, space integrating[3°] and
time integratingl®?4—26 systems are commonly implemented, and both symmetric

and asymmetric representations are possible. All these different realizations arise

from the observation that the exponent of the shift variant Fourier kernel, e~#27/¢,
can be decomposed as follows into shift invariant operators.
t — 2 _ t 2
—2ft=(t-f)i-f-C=f14+-(t+f)= (/) —(t+7) (2.4.1)

2

The first version of the expanded exponent will result in a convolutional expression
of the algorithm and the second will result in a correlation approach. The two
are equivalent because of the even symmetry of the quadratic. The final identity
results in the symmetric counterpropagating implementation of the chirp algorithm,
and does not require a chirp postmultiplication. Any of these expressions can be
substituted into the definition of the Fourier transform to yield one of the common

representations of the chirp transform algorithm.

5(f) = / s(t)e~ 2"t dt (2.4.2)
— (s / (s(2) eiwtzle—iw(t+f)2 dt = i [{s(t) e"”’z] N e.'wﬂ] ()
— g—inf? / Is(2) e—m”] (1) g — g—inf? [[ s(t) e_i"tz] . eim] )

- / s() im0 2gmin(t+1) (244
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From the first form of this Equation the algorithm for computing the Fourier trans-
form of the signal s(t), is seen to consist of a premultiplication of the signal with a
quadratic phase function or chirp in the time domain e‘”t2, followed by a correla-
tion with an identical chirp (or a convolution with a conjugate chirp), followed by
a postmultiplication with a chirp in the frequency domain "/ ?. Often we are only
interested in the power spectrum of the signal s(t) in‘which case we can neglect

the final chirp postmultiplication, since this represents only a complex phase factor

correction in the frequency domain.
. . 2
ISP = [ ls(e)e e+ (243)

So the simplified chirp transform algorithm for the computation of the power spec-
trum consists of a chirp premultiply, followed by a chirp convolution with the re-
sulting spectral representation modulus squared.

The algorithm can best be understood by examining the case of a single sinu-
soidal tone as the input signal, s(t) = ae'?7fot, When this CW tone is premultiplied

by the chirp we can combine the exponential terms by completing the square.

S(f) =¢"f [aeimrfot (it emz] ()

=ei1rf2 [ae-—iﬂfgeiw(t+fo)2 * eirtz] (f)
—as(f - fo) (2.4.4)

So the complex exponential single tone input acts to shift the position of the pre-
multiplied chirp by an amount proportional to the frequency fo, and the correlation
operation measures the amount of that shift, resulting in a peak at the position cor-
responding to the input frequency. The quadratic phase factor postmultiplication
term is needed to correct for the phase factor introduced in completing the square.
The correlation (or convolution) of two chirps of infinite extent results in the delta

function in the spectral domain, just as an infinite extent Fourier transform does.
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Thus the chirp algorithm can be seen to exactly compute the Fourier transform
of a single tone input, and since any input signal can be decomposed into a linear
superposition of sine waves, the linearity of the system will give the appropriate
Fourier transformation of an arbitrary signal.

A system implementing the chirp transform algorithm will integrate for a finite
time T, and use finite bandwidth chirps, which will limit the spectral resolution
that is achievable. Define a finite time chirp of bandwidth B = bT that starts at

time t = 0 at frequency f;, and sweeps linearly to frequency f, = f;+ B in time T.
e(t) = rect[1=FL2]¢2mIAt+3E] (2.4.5)

This linear FM waveform has chirp acceleration parameter b = B/T, usually ex-
pressed in MHz/usec, and center frequency f. = f; + B/2. By substituting this
signal into the chirp transform algorithm and neglecting the chirp postmultiplica-

tion, we obtain the finite chirp transform expression.

S’(br) = /;T s(t)rect [‘—“,:7'.'/—2] ei2mlfit+3¢%] Lo o [5‘—*—’%.‘—7—'3] e~ 2l fi(t+r)+5(t+7)%) gy

— e—i21r[rfg+-g-1-2] / rect [g—T(T _—:)gz]s(t)e-—imrbrtdt (2.4.6)
= e84 [ 5(7)(T ~ fel)sinel(T ~ [rl) (57 — P)le™ " =NTAap | < T

As the overlap of the finite extent chirps decreases, the gain of the transform de-
creases linearly and the resolution decreases linearly, until there is no chirp overlap
and the output becomes zero. The output chirp transform is in a scaled coordinate
system, with frequency variable f = br taking on non-zero values for the region
|7| < T, which implies that the two sided analysis bandwidth is twice the chirp
bandwidth B4 = 2bT, but the analysis bandwidth within the region of gain and
resolution loss of a factor of two is equal to the chirp bandwidth. The range of
spectral analysis is centered on the difference of the center frequencies of the pre-

multiply chirp and the reference chirp, which in this case is 0, so both positive

A
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and negative frequency components may be discerned. By using a longer dura-
tion, wider bandwidth chirp as the reference function, the chirp overlap within the
integration time will become trapezoidal instead of triangular, and the resolution
and gain will remain constant in the region of constant chirp overlap. As in any
spectral analysis system the technique of apodization can be used to decrease the
sidelobe levels of the sinc function at the expense of a loss in resolution, and this
can be simply accomplished in this system by weighting the premultiply chirp or
the reference chirp with a smooth function such as a Gaussian. For a single tone
CW input at frequency fo with amplitude a, the complex spectrum is given by

S(f) = a8(f — fo), so the output of the chirp spectrum analyzer is given by
S(br) = e 2T ST =) g(T — |7|)sinc[(T — |7]) (b7 — fo)] (2.4.7)

So the system impulse response has a gain and resolution that linearly improve
towards the central frequency, and the sinc function impulse is on a carrier of fre-
quency f.— fo. Interestingly with this realization the explicit quadratic postmultiply
chirp is canceled by the phase factor due to the motion of the centroid of the product
of the two rect functions.

In some of the implementations to be considered the signals will be real instead
of complex, and the chirp transform will implement a two sided cosine transform

instead of a Fourier transform.

S(br) = / s(t)p(t)rect [,!1-] cos[27(f.t + 5t?)]
rect[42] cos[2m (f{(t + 7) + §(t + 7))}t (2.4.8)
= / s(t)p(t)rect [,il—]rect[‘,,‘tzl] % [cos[27r(fé'r + (f! = fo)t + s(2tr + 17))]

+cos[2n(fir + (fL+ o)t + §(26® + 207 + 7))

In this generalized expression for a finite real chirp transform, an apodization func-

tion p(t) has been included, and the durations of the premultiply chirp, T1, and
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the reference chirp, T3, in general may be different. The chirps are represented
symmetrically about the respective center frequencies, which may be different if
analysis of a spectral region away from baseband is desired. When real chirps are
used in place of the earlier complex notation we see that both sum and difference
terms are generated. The difference term results in the desired cosine transform of
the apodized signal, but the sum term retains a quadratic phase factor that upon
integration will produce a term similar to a Fresnel cosine integral. For high time
bandwidth chirps this will produce a small chirping ripple contribution due to each
signal frequency component, containing as much power as the desired peak, which
can cause serious degradation of the system performance in a multitone signal en-
vironment. When the reference chirps are on a high enough carrier frequency this
term can be ignored unless the signal contains a matched chirp component, in which

case a spurious peaked integral could arise.

When an interferometric implementation is used to generate the multiplication
between the premultiplied chirp and the shifting reference chirp, then only the
desired difference term is generated, and the quadratic sum term is absent. An
example of an interferometric chirp transform processor based on the TDI correlator
presented in section 2.3 is shown in Figure 2.4.1. In this system the signal is
applied to an AO modulator in one arm of an interferometer, while the time domain
chirp reference is applied to a modulator in the other arm. An auxiliary wavefront
curvature is applied to the reference arm with a movable lens so that the spatial
interference pattern generated on the detector array is a chirp whose curvature
matches that of the temporal reference chirp, with the TDI velocity as the conversion
factor. Interferometric detection accomplishes the chirp premultiplication, while
time integration in the TDI coordinate frame accomplishes the chirp convolution of
the matched chirps in order to produce a spectral scan at the detector output. In

Chapter 5 this type of system is successfully applied to the folded spectrum systems
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Figure 2.4.1. Interferometric TDI chirp transform spectral analysis system.
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that are the major topic of this thesis. In any of the additive implementations of the
interferometric chirp transform system the output does not contain the unwanted
sum term of the cosine arguments and the desired output can be found from the

first term in Equation 2.4.8.

§(br) = / l / S(f)e 'zwftdfp(t)rect[ 1]6‘2”[f°t+ t2]+rect[—;—] ()5 ()2 [
= / ls(t)p t)rect| ][ +Irect[f ] dt + / 1S (F)] / p(t)rect [ rect[—,‘!’—]
cos[27r(fc'r+ (ff = fo)t + &(2tr + 7%) — ft) — Q(f)|dtdf (2.4.9)
= f ls(@)p)rect[ ][ + [rect[1£] [ a
+ cos|2n(f'r + 272)] / 1S()] / plt)rect [ |rect[32]
cos[2m(brt + 6f, — f)t — Q(f)]dtdf
+sinfzn(fir + §7)] [ 1S [ pl)rect[#]rect[5]
sin[2n(br + 6f. — f)t — Q(f)]dtdf

The first term is a bias term due to the interferometric detection, while the inter-
ferometric term can be split into its quadrature components. The cosine and sine
transform quadrature components produce spectral scans centered at §f = f! — f.,
with a scaled output frequency variable f = br. The quadrature components ride on
chirping carriers that can be demodulated in quadrature, or envelope detection can
be used to measure spectral amplitude. In this case the interferometric component
which generates the difference frequency will be twice as strong as that in the mul-
tiplicative approach. This is because the interferometric implementation results in
a fringe which slides along with the output variable producing a constructive con-
tribution at all integration positions, while the multiplicative approach produces
chirp patterns which beat on and off with the integration variable and contribute
constructively only half the time.

In the special case when both chirps are centered at DC, f. = f! = 0, we obtain
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an interferometric difference term which contains the two quadrature components
with chirping carriers centered at DC. Neglecting the bias terms from Eqn. 2.4.9

and performing the baseband chirp transform we obtain the following expression.

5(br) = cos[wbr?] / & (t)p(t)rect [,E;] rect [5,'-!'21] cos[2nbrt]dt (2.4.10)

+ sin[rbr?] / 3*(t)p(t)rect [,El-] rect [!;21] sin[27wbrt]dt
fh(zz-;l'l-—r)+%‘»

e TaT)- Ty

h(T2=Ts o T
+sin[7rb72]/ |S(F)] * P(f) /rh}(lfl—z;'l))-’; sin[27 (b7 — f)t — Q(f)]dt

= coslrtr?] [ 1(1)] * PF)traparlflsine| (b7 — f)traparl;]]
cos|r (br — f)ledge,r [ ] — 0(f)]
—sinlnbr?] [ [S(£)| P(f)trapaslflsine (67 — trapar ]

sin[r (br — f)ledger[£] — Q(f)]

:cos[wbrz]/ |S(f)] * P(f)/; cos[27(br — f)t — Q(f)]dt

The limits of integration are given by the overlap of the two rectangle functions, and
are specified in terms of the heavyside function h(t) = { (1) : z g The convolution
of the two rectangular window functions results in a trapezoidal resolution and gain
of the spectral estimate, and an additional phase term due to the motion of the
centroid of the product of the two rectangle functions. The trapezoidal function
trap AT[,_,I;] has a flat top of width AT = |T; —T}| at an amplitude of T}, with + unit
slope sides extending a distance T; from the flat top, and this trapezoidal function
becomes triangular when AT = 0, trap,[£]| = (T1 — |r[)rect[57;]. The additional
phase factor function ledge,r[#;] is zero over the central region |r| < &L and
has unity slope extending for a distance 77 outside this region, hence the name
“ledge” and it becomes simply Trect[z—g—.l—] when AT = 0. Over the region when the

chirp overlap is constant, |7| < % = II2.'2;I.LI, the resolution and gain are constant,

and no additional phase factors are introduced due to the motion of the centroid



70

of the region of chirp overlap. Thus in this region the computation of the chirp
transform is ideal, and the quadratic phase factor can be canceled out with the
appropriate chirp postmultiply circuitry. In the special case when the reference
chirp has twice the duration of the premultiply chirp Ty = 2T}, then the analysis
bandwidth over the region of constant resolution is given by the premultiply chirp
bandwidth B; = bT;. The resolution with no apodization is given by the sinc
function width, which in the region of constant resolution is given by the inverse
integration time Af = A7/b = 1/T). The number of Rayleigh resolvable frequency
elements within the region of constant resolution is given by the ratio of bandwidth
to resolution, which is equivalent to the premultiply chirp time-bandwidth product,
By/Af =bT} = BiTh.

When the duration of the two chirps are the same, T} = T then this equation
becomes somewhat simpler, and it can be recognized as just the two quadrature

components corresponding to Eq. 2.4.6.

3(6r) =cos[rbr?] [ 15(1)] * P(£)(T: = Irl)sinc|(6r = )(T1 - Ir)
cos[n(br = £)r — O(f)df
—sinfrbr?] [ 18(1)] + P()(Ti = Irl)sinc|(br = 1)(T1 = I
sin[7(br — f)7 — Q(f)] (2.4.11)

This equation is valid over the region —T < 7 < T, and in this region the gain and
resolution of the spectral scan are triangular. In theory these two quadrature com-
ponents could be electronically demodulated, but practically it would be difficult
to maintain enough chirp stability to accomplish this in an analog system.

In Figure 2.4.2 and 2.4.3 are illustrated some of the important characteristics
of this algorithm for both the multiplicative and interferometric implementations.

In the first figure a baseband double sided reference chirp with time bandwidth
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Figure 2.4.2. Baseband chirp transform algorithm.
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Figure 2.4.3. Single sided Nyquist limited chirp transform algorithm.
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product TB=100 is multiplied by a constant frequency complex sinusoid producing
a shifted chirp. If the sinusoid is real, then the chirp is shifted in both positive and
negative directions, and two peaks will be generated. The reference chirp slides by
the shifted chirp and at the position where they are maximally aligned a peak is
generated. In the real implementation of this baseband correlation integral a peak
whose gain is one half times the triangular chirp overlap is produced, and the rest
of the power is miss focused into the chirping Fresnel sidelobes. These chirping
sidelobes have half the chirp rate of the input chirps, with twice the duration, so
they have the same baseband bandwidth as the peak, and therefore can not be
separated from the peak. In a multisignal environment the sidelobes can construc-
tively add up to produce false peaks, or can destructively add up to cancel a true
peak. Since there is equal power in the peak as in the chirping sidelobes the signal
to noise ratio (SNR) of this type of real baseband chirp transform processor is al-
ways 1:1, so this is not an acceptable spectrum analysis technique. However, when
an interferometric correlation technique is utilized, then the chirping sidelobes are
eliminated, and all the power is concentrated into the desired peak. In the numer-
ical simulation of a multitone environment the respective peaks are clearly visible,
and have the expected triangular gain, and the resolution appears to decrease away
from the DC analysis position as(expected. The carrier frequency is given by the
highest frequency of the overlapping chirps, which in the case of baseband chirps
is symmetric for both positive and negative frequencies. The theoretical results
from Eq. 2.4.7 are plotted at the bottom of the figure with the corresponding peak
envelopes averaged over different phases (dotted), and they can be seen to be in
excellent agreement with the numerical simulations. In the following figure the case
of a single sided Nyquist limited chirp with a TB=100 is plotted, and some im-
portant differences become apparent. This chirp has the same chirp rate and time

bandwidth as the previous figure, but is on a carrier of 4 pixels per cycle. When
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a Nyquist limited up chirp is down shifted then it becomes more and more like a
double sided chirp as is illustrated. When it is up shifted then part of the chirp
is under sampled and aliases to produce a down chirp, but this does not correlate
with the shifting reference up chirp and the algorithm still works. When a real chirp
correlation is performed the Fresnel sidelobe term is significantly suppressed from
the baseband case, although the gain is still only one half. The interferometric chirp
transform produces twice the gain of the real case, and shows no Fresnel sidelobes at
all, and so is the preferable implementation. The numerically computed multitone
case shows the triangular gain and resolution as expected, and in this single sided
case the chirping carrier is readily apparent. Although it may appear that this sin-
gle sided chirp transform has better spectral resolution than the double sided case,
this is misleading because this transform comes out on a higher frequency carrier,
and actually the phase averaged resolutions are identical. The theoretical plots of
impulse response and phase averaged resolution agree quite well with the numerical
solutions, except for sampling effects associated with the large carrier frequencies.

The chirp transform algorithm can be implemented with discrete systems, and
in this context it is sometimes referred to as the chirp z-transform3!), In order to
perform a discrete Fourier transform (DFT) upon a sequence f(n), we can perform

a similar substitution as in the continuous case.

N-1 . ] )
F(m) — z—:o f(n)e—t21rnm/N - e-—urm"’/N Zo[f(n)e—wnz/N]eur(n-—m)2/N (2.4.12)

Thus a DFT can be accomplished by premultiplying a sampled data sequence with
a sampled chirp, then correlating (or convolving) with a sampled chirp with the op-
posite curvature, and finally postmultiplying with a matched chirp in the sampled
spectral domain. The same considerations apply as in the continuous case with
respect to finite duration transforms, windowing, apodization and real implenien-
tations. The additional constraint of the Nyquist limit applied to all signals within

the system limits the achievable analysis bandwidth to the Nyquist limit.
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CHAPTER 3

TIME AND SPACE INTEGRATING SIGNAL PROCESSING

Time integrating and space integrating signal processing techniques, as de-
scribed separately in the previous chapter, can be combined in order to yield more
powerful multidimensional signal processing modules with some of the best charac-
teristics of both methods. The primary motivation for investigating these hybrid
techniques is the commercial availability of high quality laser diodes, acousto-optic
devices and two dimensional charge coupled device photodetector arrays which can
be effectively utilized to synthesize efficient signal processing modules with powerful
computational abilities. The technique of temporal and spatial integration (TSI)
allows the real time computation of certain classes of 2-dimensional linear trans-
formations, without requiring the use of real-time 2-D spatial light modulators,
as would be required by a purely space integrating system. The drawback of the
TSI technique is the signal dependent bias that is always associated with temporal
integration, which builds up within each space integrated channel of the detector
array. Although this problem is not as severe as the uniform signal dependent bias
term that floods the entire detector in a 2-D time integrating processor, its nonuni-
formity and signal dependence makes it a serious drawback of the TSI technique.
However, the bias terms can be effectively eliminated through the use of spatial
carrier encoding, or with an auxiliary bias subtraction CCD.

Time and space integrating (TSI) optical processing is a hybrid technique for
performing signal accumulation along two axis of a signal space. Space integration
(S1) is accomplished with a lens system or a free space propagation, that collects all
of the light in a particular optical mode onto an array of corresponding photode-

tectors, thereby channelizing the modes at spatially multiplexed locations. Time
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integration (TI) involves the sequential accumulation of time varying optical wave-
forms in an array of parallel photodetectors, which accumulate the photogenerated
charge in the detector capacitance. There are always a number of implicit spatial
integrations performed in any AO signal processing system, such as Fourier plane
filtering to remove the undiffracted beam, and integration over the spatial aperture
of the sampling pixéls. Similarly, there are a number of types of implicit temporal
integrations that are unavoidable in any AO signal processing system, such as the
time integration implied by the finite frequency response of a photodetector. Tem-
poral integration of the output of a space integrating system can be performed on a
1-D photodetector array in order to improve the SNR of the Fourier transform of a
signal input to a Bragg cell power spectrum analyzer[ll, as discussed in section 2.1.
Temporal integration can be performed in a coordinate frame moving synchronously
with the output of a space integrating acousto-optic Vander Lugt correlator or a
free space chirp correlator in order to average out coherent a,rtifacts[zl, as discussed
in sections 2.2.4 and 2.2.6. Alternatively, temporal integration can be performed on
a 2-D photodetector array to improve the detection statistics of a space integrated
time independent wavefront, such as in a Vander Lugt filter, which is usually re-
ferred to as exposure control rather than TSI processing. Another type of system
uses space integration to decrease the dimensionality of an image via a projection
transformation on sequential rows applied to a Bragg cell, then performs a time
integrating correlation of the projected image with a projected reference in order to
implement a simple recognition without using two dimensional transformations!®.
However, in this thesis I will only consider TSI processing systems where the spatial
integration performs a channelization onto a two dimensional array of photodetector
columns, while an explicit time integrating inner product signal processing oper-
ation is performed at each photodetector site along each detector column. The
time integration at each pixel location is performed on a dynamically varying signal

wavefront incident on that detector column, which is beat against a family of refer-
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ence wavefronts. If the slow variations of the signal incident on a detector column
matches one of the references of that column, then a DC component is generated,
thereby producing a time integrated peak at the corresponding pixel, and local-
izing the signal in the dimension orthogonal to the space integration. Thus the
time integration performs a further signal channelization operation into a 2-D out-
put space of signal parameters, which is represented in the two spatial dimensions
of the photodetector array. This is therefore a multidimensional signal processing
technique, with integrations performed over two variables, time and space, project-
ing the input signal onto the two dimensional parameterization represented by the
detector array. The coherent processing operation performed by the multichannel
T1 transformation sacrifices a potential noncoherent processing gain that is obtain-
able through incoherent averaging, in a tradeoff for increased resolution or signal

parameterization.

In the context of this thesis, multidimensional signal processing can have several
different meanings. It can refer to an image processing problem, where the input
signal is a 2-dimensional function, and so is the output signal. Raster formatted
image processing problems are really 2-D processing problems with 2-D outputs,
but the serial raster format of the input and output alléws a TSI optical system to
treat the data as 1-D data streams with appropriate serial to parallel, and parallel
to serial accumulation and temporary memory for partial products included within
the processor. Multidimensional processing can also refer to a 1-dimensional input
signal in a processing problem that produces an intrinsically two dimensional out-
put space, such as the various time-frequency representations““"]. However these
operations involve only one explicit integration over the input variable, and in the
context considered here it is the dimensionality of the integration rather than the
output dimensionality that I am referring to when I discuss multidimensional sig-

nal processing. Various subspace projections of the time-frequency representations

can be performed with multidimensional integrations, as in the time averaged in-
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stantaneous power spectrum analysis performed by a Bragg cell spectrum analyzer,
but in this case the input and output functions are only one dimensional, and the
subspace projection is really just an averaging operation. It is also possible to
describe a very high time-bandwidth 1-dimensional signal processing operation in
terms of an a.rtiﬁcially constructed 2-dimensional output space, that can represent
the desired long 1-dimensional output in a folded fashion, and more effectively use
the space bandwidth capabilities of available optical devicesl®1-5-1¢] In this case
multiple integrations are required over the short time scale of the signal, and over
the long term slow variations of the input signal, so even though a 1-dimensional
signal processing operation is being performed it is being performed in a folded
multidimensional space. The Synthetic Aperture Radar (SAR) processing problem
can be viewed as either a long 1-D input or a raster scanned 2-D input, with a 2-D
image output, and orthogonal integrations over the fast local variations (range) and

slow long term variations (azimuth).

The beating of the temporal dependence of the space integrated signal against
a family of time varying reference functions can be accomplished with two different
methods, called additive and multiplicative. An additive system is constructed as
an optical interferometer, with the space integrating signal transformation system
included in one arm, and the generatién of the family of reference functions needed
for the time integrating inner product accumulations accomplished separately in
the other arm. The multiplication between the signal and reference wavefronts is
accomplished as a cross term in the interferometric detection of the recombined
wavefronts. I will use s to represent a generic signal wavefront, and r to represent
the reference wavefronts, with both coherent wavefronts functions of time and space,
and mutual coherence will be assumed. The detected output intensity is given by

the modulus squared of the sum of the incident signal and reference fields.

I=ls+r]*=|s> + |r|? + 2R[sr"] (3.1)
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The detected intensity contains the desired product which results in the beating
between the signal and complex conjugate of the reference, thereby cancelling the
temporal variations of the input signal at a particular reference location and allowing
the production of a time integrated peak.

In a multiplica.t;ive approach to system implementation, the AODs operate as
intensity modulators, by including a local oscillator reference with the signal, and
the output of the first cell is multiplicatively rediffracted by the following cells.
The multiplication of the space integrated signal with the reference AODs accom-
plishes the necessary heterodyning of the slow variations of the signal with the slow

variations of the references.

I=|s+al'|r+bf" =|(s +a)(r +b)[* = (32)
= (s? + a®)2R[rd*]) + (r? + b2)2R[sa*] + (8% + a?)(r? + b?)

+ 2R[sra*b*] + 2R[sr*a’b]

In this expression a and b are the local oscillator reference signals added to the
signal and reference waveforms respectively, and in a sense they play the role of the
beamsplitters of an interferometer. The final term is the desired beat between the
signal and the complex conjugate of the reference. The first two terms will disap-
pear if the signal and reference are zero mean signals. Both approaches introduce
additional unwanted bias terms, both signal dependent and signal independent.
The multiplicative approach has the distinct advantage that all of the optical com-
ponents are in line, and if a component vibrates then all the wavefronts that pass
through it are similarly affected, so that no additional modulations appear upon
detection. This makes the multiplicative approach an inherently self referencing
approach with intrinsic stability and suppression of unwanted modulations often
associated with interferometers. On the other hand interferometers are notoriously
unstable, with air currents and minute component vibrations introducing severe os-

cillations of the output fringe pattern, greatly decreasing the practicality, especially
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in on board applications. However, there is a serious drawback associated with the
in line multiplicative approach, and that is the low optical throughput caused by
the multiplicative diffractions from the inefficient acousto-optic devices. When the
intensity diffraction efficiency of the AODs is given by € = .1, then the light effi-
ciency of a two cell multiplicative architecture is given by €;€3 &~ .01, while the light
efficiency of an additive interferometer is %(61 + €2) = .05, which is significantly
more light. When pulsed optical sources are utilized, as they are in most of the
architectures considered in this thesis, then the extra light efficiency of the addi-
tive approach becomes very attractive. Another reason that makes the separated
path approach to multidimensional TSI processing attractive is the decoupling of
the optical design constraints that the in line architecture imposes on the various
lens focal length ratios. A more fundamental reason to avoid the multiplicative
approach arises in the consideration of complex signal processing operation, where
an extra conjugate sideband is generated in the in line processors which is avoided
completely in the interferometric approach. This term, which is the second to last
term in Eq. 3.2 will produce additional spurious sidelobes, and additional consider-
ations must be invoked to minimize these terms. Appropriate carrier encoding can
be utilized to eliminate the unwanted conjugate sideband at the expense of using up
some of the detector arrays space bandwidth, but since some sort of bias removal
technique, such as carrier encoding, must be employed in any case this is not too
severe of a restriction upon the multiplicative implementations. In order to avoid
detailed consideration of this problem I will usually consider interferometers as the
preferred implementation of a given TSI architecture, but it is usually possible to
rearrange the system into a more stable in line multiplicative processor if coherent

high power lasers are available.
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3.1 Time and Space Integrating Image Processing

The linear transformation is the basis of all the signal processing tasks to be
considered in this thesis, and it is the structure of the kernel that determines the
classification and nature of a given task. The most general 2-D linear system is
represented as a linear transformation from the two dimensional input space with
variables z,y, to the two dimensional space of output variables Z,y through the

space variant kernel h.

0(2,9) = [ [ 1(z.9)h(z,9,3,5)dzdy (3.1.1)

The kernel h(z,y,%,9) is a function of 4 independent variables, which exceeds the
number of available dimensions (2 spatial and 1 temporal) that the optical system
has available to internally represent information. Additionally, the number of de-
grees of freedom in the optical system is insufficient to represent all of the samples
of this completely general kernel. For example, if each input and output variable
has a space bandwidth product of 103, then the kernel contains 1012 independent
analog samples, while a spatial mask can contain only about 10° samples, and a
Bragg cell can only accommodate 10® samples at a time about 10* completely inde-
pendent times during the period of temporal integration, far short of the required
number. For these reasons it is not convenient to implement this general 2-D space
variant system in either a purely space integrating or in a TSI architecture, but
several important special cases can be accommodated within the framework of a
TSI processing system. The special cases of 2-D linear transformations that can be
implemented without using multiplexed devices, and obeying the physical restric-
tions inherent to a TSI system are the shift invariant (or convolutional) systems,
the separable linear systems, and the cascadable linear systems. If we include mul-
tichannel Bragg cells, parallel laser diode arrays, or multiplexed holographic arrays

we can broaden the class of problems computable with TSI techniques to include
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certain space variant systems[S] by decreasing certain dimensionalities of the system
or by choosing impulse response from among a finite librarylg“”] of separable, or
shift invariant, or scaled impulse responses.

For an image processing application using serially addressed AODs as the input
light modulators, it is necessary to represent the image as a serial raster waveform,
which is the standard method of transmitting video and graphics information. The
video raster transforms the 500x500 video image f(z,y) into a very long serial
waveform s(t) consisting of 500 image lines, with intervening synchronization sig-
nals. Ignoring the interleaving, which is often utilized to minimize flicker in com-
mercial broadcast applications, the serial raster waveform is calculated from the

image intensity distribution by the raster transformation.

[t-—nT-i-%Q]

T (3.1.2)

N
s(t) = > f(vs(t — nT),nAy)rect

n=1

In this equation the nth scan line is scanned over its full width X at a velocity
vs = X/Tp from time t = nT to t = nT + T, with T > Tp, and this scanning
operation is repeated sequentially for each of the N lines in the image. Since the
time bandwidth product (TB) of an AOD is typically 103, we can contain only
one video line at a time within the aperture of an AOD. Typical video‘line times
of To = 52usec, and T = 63usec, fit well with available TeOg3 slow shear device
apertures of T4 = 68usec, although video bandwidths of 5 MHz under utilize the
available 50 MHz AOD bandwidths. When the serial raster representation is mixed
up to the transducer center frequency wp, and applied to an AOD travelling wave
modulator, it propagates across the aperture, so that at sequential times t = nT +19
successive video lines are fully contained within the delay line length. At these times
the laser can be pulsed synchronously with the raster scanning of the video image,

with a very narrow pulse that effectively freezes the acoustic motion in the AOD.

N
a(t) = >_ 6(t—nT —to) (3.1.3)

n=1
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Each pulse will transduce successive video lines on the carrier into the optical sys-
tem as spatial modulations of the coherent wavefront diffracted by the AOD. The
transformation of the serial image raster into spatial modulations of successive laser
pulses can be described as a space-time raster conversion.
N
s(z,n) = > 6t —nT —to)s(t —z/v — A[2)e0(t=2 V) rect 2/ A]

n=1

= f(zvs/vq,nT)e o (PT+t0=2/v) (3.1.4)

The position and size of the AOD aperture A = Xv,/v, should be adjusted with
respect to the timing of the laser diode pulses, tg, so that exactly one video line is
contained within the aperture without any synchronization signals on either side.
The 2-D image is rescaled into the spatial coordinates of the optical system by the
ratio of raster scan velocity to acoustic velocity, and the orthogonal dimension of the
image raster is represented as variations of the wavefront diffracted on successive
pulses. The carrier causes a spatiai tilt of the coordinate system that can be ignored
by aligning the lens with the diffracted wave, and the temporal variation from pulse
to pulse can be canceled by making the carrier a harmonic of the video line rate or
by interfering with the same frequency carrier from the reference AOD.

The nature of this transformation to a space-time raster suggests the processing
strategy that should be utilized. First, each spatially modulated wavefront should
be spatially transformed on each pulse, then the succession of pulses must be ac-
cumulated appropriately in order to perform the transformation over the y (or n)
dimension of the raster scanned image. The time and space integrating technique
is a natural consequence of the serial raster format, and its transformation into a
space-time raster by an AOD illuminated by a pulsed source. The convenience with
which the serial raster image data are entered into the AOD, formatted for process-
ing by the travelling wave modulator, and formatted for output by the raster scan

mechanism of the output detector array, allows the intervening TSI image processor
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to act as a real time system, with a latency of only 1 image frame. Thus the image
pours smoothly into the processor, and as soon as the it is contained within the
processor, the desired computation has been completed, and the transformed image
data can be poured smoothly out of the output detector array. It is this smooth
flow of data into and out of the processor in a standard video format that makes
the TSI image processing technique convenient and practical for real time image

processing applications.

A generic interferometric time and space integrating optical image processing
system is shown schematically in Figure 3.1.1. It consists of a space integrating
multichannel 1-D linear transformation system, which is interfered with a time
and space varying reference wavefront, and the resulting succession of interference
patterns are time integrated on the detector array. The time and space varying
reference wavefront can be generated by spatially transforming the multiplicative
output from an optional point phase modulator and a pair of crossed Bragg cells,
either of which is also optional. None of the systems examined in this thesis re-
quires the full generality of this system, which some TSI systems in the literature
require[13], because we include the extra flexibility of operating the detector array
in a mode where it accumulates photogenerated charge in either a stationary or a

scrolling pixel coordinate system.

The space integrating arm is described by an optically implemented multichan-
nel linear transformation equation which is illuminated by the temporally modu-
lated coherent laser source. The collimated optical wavefront with time varying
intensity a(t) is focussed in y into the signal AOD cell producing a narrow slit il-
lumination at the Bragg angle, §(y)e'*"? sinfy/2 that is modulated by the travelling
acoustic wave, f(t — z/v), and this is spatially transformed in z by the possibly

multichannel linear system h(z, %, §).
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Figure 3.1.1. Generic TSI interferometer.
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s(2,,t) = alt) / s(t — z/va)h(z, 2, §)dz (3.1.50)

s(%,9,nT) = /A f(zvs/ve,nT)h(z, %, §)dz (3.1.50)

In general it is very difficult to implement this fully general spatial transformation
for arbitrary kernels A without a multiplexed hologram, and in the following dis-
cussion we will indicate the useful special cases of this general transformation that
can be conveniently implemented, with conventional optical components. The two
special cases of primary interest are the multichannel shift invariant 1-D correlator
defined by the spatial transformation kernel h{z — %,§), and the separable system
defined by the kernel hg(z, Z)hy(0, 7).

The time integrating reference arm of the interferometer consists of an optional
phase modulator, and a pair of crossed Bragg cells.In its full generality the equations
describing this reference waveform is quite complex and is not readily implementable

for general kernels.

r(2,9,t) = a(t) [ [ 86 = 2/0)Ma (=, i)dx} [ [ dtt = y/o)haly, f})dy] (3.1.6)

The transformation of the AODs onto the output system is represented as indepen-
dently transformed separable kernels, although in some cases slightly more general
transformations are used. A slow parametric variation on these transformation ker-
nels by the pulse number can be implemented by moving an optical component
during the time of integration. When one or the other AOD is not included, then
the processor will be assumed to produce a uniform profile in that dimension. There
are three primary simplifications of this generalized reference wavefront that will
be considered in detail in this thesis.

The first important special case that is of interest is when we eliminate the AOD

in the reference arm that is parallel to the signal AOD, which results in orthogonally
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propagating signal and reference acoustic waves, allowing us to process information

in both the z and y dimensions.
ra(3,9,t) = a(t)p(%; n) / d(t — y/v)ha(y, §;n)dy (3.1.7)

This equation includes a £ dependent spatial profile, for instance a focusing wave-
front produced by a cylindrical wavefront, that can be slowly varied from pulse to
pulse, by moving the lens during the integration period. Similarly the transforma-
tion kernel h; is shown as being parametrically dependent on the pulse number, but
this extra generality is rarely used.

Another special case is when the orthogonal reference AOD is not needed, be-
cause the orthogonal multichannel time integration is performed in a y dimensional
moving coordinate system on the detector. In this case the reference wavefront is

given by a similar expression with a colinearly propagating reference AOD.
r(2,9,t) = a(t)q(§;n) / b(t — z/v)hy(z, ;n)dz (3.1.8)

Only certain classes of kernels h; and hs can be implemented for either of these
spatial transformation of the reference acoustic signal.

Finally, the simplest interferometric system eliminates both crossed AODs in
the reference arm, so the reference wavefront is simply phase modulated in time,
and may have a slow parametric change in angle of incidence or curvature with

pulse number.

ro(2,9,t) = a(t)ho(Z, 95 n) (3.1.9)

In order to perform a useful two dimensional signal processing operation with this
type of reference wavefront it is again necessary to time integrate in a coordinate
system on the detector that is moving in the y dimension, orthogonal to the space
integration. They kernels hg, h; and hy may have a slow variation of a simple

parameter with the pulse number n, as may the orthogonal spatial wavefronts p(%)



91
and g(§) but the systems analyzed in this thesis will used fixed components so this
slow variation will be ignored.

There are three types of transformation kernels between the reference Bragg
cells and the output detector which are commonly utilized, but more complicated
transformations can be performed as well by including generalized optical elements,
such as tilted lenses or holograms. The simplest spatial kernel is just an imaging
transformation of the acoustic field with some magnification, while smearing in the
orthogonal dimension in order to form multiple copies of the diffracted image, and

this can be performed on either a horizontal or vertical reference AOD.
{ 6(z — mz)er?myd

3.1.10
)ei27rz2 ( )

hr(x, ﬁ’ay, @) = R
6(y —my

Fourier transforming the Bragg cell onto the output detector array, while smearing
the orthogonal dimension is simply accomplished with a spherical lens that per-
forms a 2-D Fourier transformation of the diffracted wavefront illuminated by a

cylindrically focussed wave.
he(z, 2,y,9) = 2722V (3.1.11)

A more general transformation that is also used is the chirp transformation which
produces wavefronts with particular curvatures in order to produce chirping fringe
profiles.

iTb(2—2)? gi2myd
he(z,%,y,9) = (3.1.12)

1273t ginb(y—9)?
It is possible to implement more general reference wavefront transformations, and
one example is the space variant kernel required for the SAR processor discussed in
section 3.3. In that case the reference kernel is a quadratically curved phase front
in y, where the curvature is inversely proportional to the Z coordinate, as can be
obtained with a tilted cylindrical lens. It is a fortuitous circumstance of the SAR

processing problem that the space variant convolutional kernel can be obtained with

a simple scale change of a conveniently produced optical modulation.
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The crossed Bragg cell processor based on the reference wavefront given in
Equation 3.1.7 uses a time integrating CCD to perform the multidimensional trans-
formation. The interferometric output of the processor produces a heterodyne mul-
tiplication between the signal and reference arms, as well as some interferometric
bias terms. The bias terms are necessary to represent a bipolar or complex signal on
a detector array that accumulates charge proportional to the incident optical flux,
which is a purely unipolar quantity. The output intensity as a function of space
and time that is produced on the detector array will contain the product between

the transformed signal and one form of the transformed reference.
- A ~A o~ A A 2
I(2,9,t) = a(t) |s(Z,9,t) +r2(%,8,1)] (3.1.13)
*
— a(t)2R ( [ [ sl = /)6 (w)h(z, 5 g‘/)d:z] [ dte = y/) a5 n)dy)
+1s(2,9, 1) + Ir2(2,8,)

The temporal accumulation of this optical intensity profile on a two dimensional
matrix of photosensors over the full sequence of N optical pulses completes the
required processing. However, the unwanted bias terms must be removed in the

electronic post processing, and for this reason the signal and reference beams are

recombined at an angle in order to introduce an interferometric spatial carrier.

a(t) |s(2,9,) + ra(, §,1) e N 4y (3.1.14)

- /NT a(t) [ls(i, 5,8)[° + 2 (2, ,1)

[\

=
N
rp—

/s(t — z/v)h(z, :‘c,@)dz]* / d(t —y/v)hs (y,@)dyeiz"(a£+ﬁg)) dt]
= 2 2R [(/ f(z',nT)6(y)h(2, %, g})