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ABSTRACT

This dissertation comprises three essays related to the field of Empirical Industrial
Organization. Chapter 1 and 2 contribute to the economic literature on online
advertising auctions, and Chapter 3 contributes to the study of decision-making
under risk using structural methods.

In Chapter 1, co-authored with Miguel Alcobendas, we provide a novel empirical
analysis of a large-scale sequential market employing auctions to allocate objects
to firms with budget constraints. Leveraging a unique proprietary dataset of online
ad auctions, we examine the trade-off participants face due to short-run budget con-
straints. We develop and estimate a finite-horizon dynamic game among bidders with
heterogeneous budgets, and we find that dynamic incentives significantly influence
their participation and bidding strategies. We conduct a counterfactual simulation
comparing first-price and second-price formats, illustrating how dynamics lead to
significant disparities in competitive outcomes.

In Chapter 2, co-authored with Miguel Alcobendas, Matthew Shum, and Ke Shi,
we investigate the impact of removing third-party cookies on the online advertising
market. Utilizing a proprietary dataset of online ad auctions, we document stylized
facts about the value of third-party cookies to advertisers. Adopting a structural
approach, we simulate counterfactual scenarios to quantify the impact of Google’s
plan to phase out third-party cookies from Chrome. Our analysis suggests a 54%
reduction in publisher revenue and a 40% reduction in advertiser surplus under
an outright ban. Introduction of alternative tracking technologies under Google’s
Privacy Sandbox initiative would mitigate some of the loss. We find big tech firms
can leverage their informational advantage to gain a larger surplus from the ban.

In Chapter 3, co-authored with Aldo Lucia, we explore the limited ability of promi-
nent economic models in explaining multiple behavioral patterns. Conducting an
experiment with 500 participants, we study two classical behaviors inconsistent
with Expected Utility: the common ratio effect and preferences for randomization.
We illustrate the lack of generalizability of existing models across these behaviors.
Motivated by this, we introduce a novel empirical approach that does not commit
on specific decision models. Our method offers more accurate out-of-sample pre-
dictions about behaviors under risk, both inside and outside laboratory settings,
compared to leading economic models and machine learning algorithms.
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INTRODUCTION

Economists have employed structural econometric methods to analyze the decision-
making processes of firms and consumers, especially in the field of Empirical
Industrial Organization. These methods enable us to connect data with economic
models, generating new insights and allowing for the simulation of counterfactual
scenarios that can inform businesses and policymakers. Broadly speaking, this
dissertation provides contributions to two different areas by formulating and utilizing
structural econometric methods. Chapter 1 and 2 study the strategic interaction
between advertising technology firms in online advertising auctions. Chapter 3
analyzes individuals’ decision-making under risk by integrating experimental and
structural methods.

In Chapter 1, co-authored with Miguel Alcobendas, we provide a novel empirical
analysis of a large-scale sequential market that employs auctions to allocate ob-
jects to firms with budget constraints, leveraging a unique proprietary dataset of
the online advertising market. In this market, because of their short-run budget
constraints, participants face a trade-off between winning auctions immediately or
holding out for later opportunities. This dynamic incentive prompts them to adjust
their entry rates and bidding strategies accordingly. We develop and estimate a
finite-horizon dynamic game between bidders with heterogeneous budgets facing
a sequence of simultaneous auctions to quantify this incentive and analyze its im-
plication in competition and auction design. We find that a substantial markdown
occurs due to the dynamic incentives arising from budget constraints, and this mark-
down varies significantly among bidders with different budgets. Using the estimated
structural model, we provide a counterfactual simulation comparing the first-price
and second-price formats. Unlike the standard environment, we find that dynamics
and heterogeneous budgets lead to a significant disparity in the welfare distributions
under them. This highlights that even a seemingly simple mechanism choice can
have competitive implications in such a dynamic environment.

In Chapter 2, co-authored with Miguel Alcobendas, Matthew Shum, and Ke Shi, we
study the effect of removing third-party cookies on the online advertising market
by leveraging a proprietary dataset of online ad auctions. Online privacy protection
has gained momentum in recent years and spurred both government regulations
and private-sector initiatives. A centerpiece of this movement is the removal of
third-party cookies, which are widely employed to track online user behavior and
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implement targeted ads, from web browsers. We first document stylized facts about
the value of third-party cookies to advertisers. Adopting a structural approach
to recover advertisers’ valuations from their bids in these auctions, we simulate a
few counterfactual scenarios to quantify the impact of Google’s plan to phase out
third-party cookies from Chrome, its market-leading browser. Our counterfactual
analysis suggests that an outright ban would reduce publisher revenue by 54% and
advertiser surplus by 40%. The introduction of alternative tracking technologies
under Google’s Privacy Sandbox initiative would recoup part of the loss. In either
case, we find that big tech firms can leverage their informational advantage over
their competitors and gain a larger surplus from the ban.

In Chapter 3, co-authored with Aldo Lucia, we illustrate the limited ability of promi-
nent economic models in explaining multiple behavioral patterns. We conduct an
experiment with 500 participants that studies two classical behaviors inconsistent
with Expected Utility: the common ratio effect and preferences for randomization.
The lack of generalizability of leading economic models across these two behaviors
calls for the development of new empirical strategies to make predictions. Mo-
tivated by this observation, we introduce a novel empirical approach that enables
us to predict behavior under risk without leaning on specific decision models. We
further demonstrate that this method offers more accurate out-of-sample predictions
about behaviors under risk, both inside and outside laboratory settings, than leading
economic models and machine learning algorithms.
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C h a p t e r 1

DYNAMIC AUCTIONS WITH BUDGET-CONSTRAINED
BIDDERS: EVIDENCE FROM THE ONLINE ADVERTISING

MARKET

1.1 Introduction
Auctions are employed in many real-world contexts, leading to extensive theoretical
and empirical research that provides valuable insights for shaping policy decisions
and mechanism design.1 However, much of this prior research has primarily focused
on analyzing auction models where bidders face only one auction. In practice, bid-
ders almost always make bid decisions in the presence of multiple auctions, often
conducted sequentially. For instance, sequential auctions are prevalent in procure-
ment, gas and oil lease, wholesale electricity, treasury, art, online retail, and online
advertising markets. Such multi-object, sequential auction scenarios have received
comparatively less attention in the literature. In particular, there is a notable gap
in our understanding regarding sequential auctions in which participating bidders
face budget constraints. When auctions are held sequentially, intertemporal budget
constraints can strategically link these auctions, influencing competitive dynamics.
Financial constraints are pervasive, affecting both consumers with budget limita-
tions and firms operating as buyers, who may face restricted purchasing power due
to financial frictions or institutional constraints. Given the prevalence of sequen-
tial auctions and budget constraints in real-world settings, research in this domain
holds significant promise for informing policy decisions and influencing mechanism
design across diverse markets.

We propose a novel structural model of dynamic auctions with budget-constrained
bidders and empirically analyze the online display advertising market, where in-
tertemporal budget constraints play a crucial role. Our model offers both tractabil-
ity and flexibility, enabling predictions of strategic behavior across various auction
mechanisms. By estimating model primitives using a proprietary dataset of dynamic
first-price auctions for ad opportunities, we find that dynamic incentives significantly
affect markdown, varying across bidders with different budgets. We provide a coun-

1Refer to Krishna (2009) and Milgrom (2004) for comprehensive introductions to auction theory.
See Paarsch et al. (2006), Hickman et al. (2012), Gentry et al. (2018), and Perrigne and Vuong (2019)
for overviews of econometric methods and empirical studies on auctions.
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terfactual analysis comparing the first-price and second-price mechanisms, which
have the same revenue and welfare considerations under the conventional auction
model. We discover that dynamics and heterogeneous budgets lead to substantial
differences in the surplus distribution. Intermediate and smaller budget bidders
fare better in the first-price format due to reduced price variance, which allows for
more aggressive bidding. This heightened competition prompts larger bidders to
spend quickly, leading to diminished competition in later periods and ultimately
benefiting smaller bidders overall. This novel finding highlights the significance
of price volatility in shaping competitive outcomes in dynamic mechanism design
with budget-constrained buyers.

Our empirical setting is the online display advertising market. This is the market
behind online banner and video advertisements, generating more than $100 billion
annually in the US. We use a novel proprietary dataset of auctions hosted on Yahoo’s
ad exchange. In this market, a significant proportion of advertising opportunities
are allocated through real-time auctions. When a user visits a website, it triggers
an instantaneous auction where the user’s characteristics are revealed to bidders.
Currently, the market predominantly uses the first-price auction mechanism. The
highest bidder secures the privilege of displaying their ad on the user’s screen once
the page fully loads. These real-time auctions enable advertisers to effectively
target users and ensure their ads are presented before users navigate away from the
webpage. In this market, advertisers typically hire bidding agents who participate in
these auctions on their behalf, and advertisers frequently impose specific campaign
budgets on these agents, typically allocated on a daily basis. These bidding agents are
frequently affiliated with major tech firms such as Google and Amazon, which tend
to attract numerous advertisers, including those with substantial campaign budgets.
One responsibility of these bidding agents is to strategize on how to effectively
participate and bid within the continuous stream of instantaneous auctions while
adhering to the daily budgets assigned to them.

We first document dynamic patterns in the data that are consistent with daily budget
constraints. First, we observe a declining trend in both the entry rate and bid
levels throughout the day, from morning to evening. This trend is in line with
diminishing demand, likely caused by bidders exhausting their daily budgets. In
fact, theoretical research has shown that sequential auctions can exhibit such a
decreasing price pattern with unit-demand bidders (Engelbrecht-Wiggans, 1994;
Bernhardt and Scoones, 1994; Gale and Hausch, 1994). Second, we also find that
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the entry rate and bid level are negatively affected by the frequency of auctions. In
other words, when there is an increase in the number of auctions (from high supply),
both the entry rate and bid levels decrease. This suggests that bidders may exercise
caution by submitting less competitive bids when faced with a higher volume of
auctions, aiming to preserve their future spending capacity and prevent exceeding
their budget constraints by winning too many auctions. This relationship is robust
to controlling for numerous bidder and auction characteristics, including time fixed
effects.

Motivated by the institutional features and the dynamic pattern in the data, we
develop a structural model for dynamic auctions with budget-constrained bidders.
In this model, each day in the market is represented as a finite-horizon dynamic game
where bidders face numerous auctions in each period. The number of auctions per
period follows a stochastic daily supply pattern. Bidders have independent private
entry costs and valuations for auctions, and they are penalized at the end of the
game if their total expenditure exceeds their budget. We analyze the best-response
problem under the first-price auction mechanism, which is the current mechanism
used in our empirical context. Our analysis reveals that the dynamic constraint
introduces another force to depress their bids in addition to the force from being in
the first-price auction. There is a tradeoff between allocating their budget toward
current auctions versus preserving it for later opportunities. This opportunity cost
manifests as an additional markdown whose magnitude depends on the number of
remaining periods, the frequency of auctions, and the bidder’s remaining budget. In
addition, the dynamic tradeoff similarly influences the entry strategy.

Solving our model poses significant computational challenges due to its dynamic
nature, exacerbated by several factors. These include the presence of continuous
choice variables without closed-form expressions, a finite time horizon resulting
in non-stationarity, a relatively large number of players (around thirty), and, most
critically, a high-dimensional continuous state space with a continuous state variable
(remaining budget) associated to each player. To tackle these complexities, we
leverage the fact that bidders do not have access to information about their rivals’
spending behaviors. In light of this information asymmetry, we adopt a large-market
solution concept in which bidders rely on the equilibrium distribution of players’
states for each period as their belief. Hence, each bidder decides his entry and
bid strategy conditional on the time period, public state (number of auctions), and
his own remaining budget. By employing this approach, we effectively reduce the
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problem’s dimensionality, enabling estimation and counterfactual simulation while
still allowing for meaningful analysis of dynamic bidding behaviors.

Following the literature on structural estimation of dynamic games, we adopt a two-
step approach to estimate our structural model (Bajari et al., 2007; Aguirregabiria
and Mira, 2007). Assuming that the market is in equilibrium under our solution
concept, we estimate our structural model by leveraging bidders’ best-response
problem given their rivals’ equilibrium behavior. In the first step, we estimate the
time-dependent distribution of the number of auctions, along with the reduced-form
entry probability and bid distribution. In the second step, we solve for bidders’ entry
and bid strategies as best responses to rivals’ estimated behaviors from the first stage
and estimate the structural parameters through maximum likelihood estimation.
This sequential approach allows us to avoid the need for solving the equilibrium and
simulating the equilibrium state distribution during the estimation process.

The identification of our structural parameters, such as bidders’ budgets and the
budget constraint parameter, relies on the exclusion restriction that bidders’ valua-
tions are independent of the state variables, which are the frequency of auctions and
their remaining budgets. This assumption is required for disentangling the effect
on bids from valuations and intertemporal budget constraints. For instance, when
bids are low, we must determine whether this is due to low valuations or increased
dynamic tradeoffs. The exclusion restriction enables us to identify the parameters
relevant to budget constraints by using the correlation between bids and the state
variables, which impact only the dynamic tradeoffs. This exogeneity assumption is
plausible for our market environment because advertisers and their bidding agents
typically compute their valuations for impressions based on a combination of the
probability of clicking/making a sale and their willingness to pay for such events.
This probability is computed based on that user’s contextual and behavioral data
alone.

Applying our structural estimation method on a large-scale proprietary dataset of
online banner-ad auctions from Yahoo reveals significant dynamic incentives arising
from budget constraints. The markdown, representing the gap between valuations
and bids, averages 83.5% of expected valuations. Our estimated model demonstrates
that first-price auctions induce 59.4% shading, and dynamic budget constraints add
an extra 24.2% shading. Our model also quantifies the impact on entry decisions,
with an average entry probability of 19.4%, compared to an unconstrained entry
probability of 45.1%. These findings underscore the significance of dynamic incen-
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tives in this context. Additionally, we observe a notable concentration of estimated
budgets among bidders, which has a substantial impact on the heterogeneity in their
bids and entry decisions.

Using our estimated structural model, we simulate a counterfactual scenario moti-
vated by a significant institutional change that took place around 2018. During this
period, the predominant auction mechanism in the online ad market shifted from
the second-price format to the first-price auction. This transition was prompted by
concerns within the industry that ad exchanges, serving as intermediaries between
publishers and advertisers, were not actually implementing the second-price auction
as claimed, leading to a loss of trust among market participants. In response to
this industry-wide credibility crisis, market participants advocated for the first-price
auction due to its transparency in revealing what winners pay. Motivated by this
shift, which happened years before our sample period, we simulate the second-price
auction format using the estimated structural model as a counterfactual scenario to
analyze the revenue and welfare consequences.

Our counterfactual simulation reveals that the first-price auction yields slightly
higher total revenue and total bidder surplus compared to the second-price auction.
More importantly, we observe a substantial disparity in welfare distribution between
these two auction formats. We find that bidders below the two largest budget holders
face more favorable outcomes under the first-price auction. This suggests that, in
addition to its transparency benefits, the first-price auction may offer a more robust
competition in the presence of market concentration. This outcome can be attributed
to the reduced price volatility under the first-price auction. Lower price volatility
allows bidders to bid more aggressively, as it enables better control over their
spending patterns. While bidders with intermediate-size and small budgets lower
their entry rates in response to this increase in competition, the two bidders with the
largest budgets keep a similar entry rate since they can afford to. Nevertheless, this
increase in competition induces these top bidders to spend more rapidly and leads to
decreased competition in later periods. Then, smaller bidders can enjoy this smaller
competition and earn more surplus during this period. This difference leads bidders
other than the top two bidders to be better off under the first-price auction. This
result underscores that even a seemingly simple choice of first-price or second-price
can have competitive implications when auctions are conducted sequentially and
participated by bidders with heterogeneous budgets.

While prior research has empirically explored dynamic aspects in various auction
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contexts, our study offers a novel perspective by investigating online display ad
auctions with intertemporal budget constraints, contributing the first empirical anal-
ysis of dynamic auctions with budget-constrained bidders. Our work builds on the
growing empirical literature utilizing structural models to study repeated auctions.
In contrast to the studies focusing on procurement auctions with increasing marginal
costs (Jofre-Bonet and Pesendorfer, 2003; Groeger, 2014; Raisingh, 2022), eBay
auctions with single-unit demand (Hendricks and Sorensen, 2018; Bodoh-Creed
et al., 2021; Backus and Lewis, 2023), or oil and gas lease auctions with synergy
effects (Kong, 2021), our paper highlights the unique dynamics arising from in-
tertemporal budget constraints in online ad auctions. The common theme in the
previous studies is that a bidder’s future payoffs depend on whether they win the
current auction. Meanwhile, in our environment, the price they would pay also
impacts future payoffs by affecting the future spending ability. In essence, the
current bid not only determines the probability of winning but also impacts future
payoffs through the potential payment. Consequently, our dynamic bidding prob-
lem presents an additional layer of complexity, increasing the relevance of price on
competitive dynamics, as illustrated in our counterfactual simulation.

In the theoretical auction literature, several papers analyze simultaneous or sequen-
tial auctions participated by budget-constrained bidders (Palfrey, 1980; Benoît and
Krishna, 2001; Pitchik and Schotter, 1988; Pitchik, 2009; Ghosh and Liu, 2019).
Our environment and structural model are substantially different from these theo-
retical works. We examine an environment that is well approximated by a finite
sequence of simultaneous auctions, and it has a large number of auctions in every
period (at least thousands) and a relatively large number of bidders (around thirty).
In contrast, theoretical studies on simultaneous or sequential auctions often focus
on a small number of auctions and bidders (typically two for each) to investigate
equilibrium existence and theoretical properties. Consequently, the assessment of
revenue and welfare implications for various auction formats in our environment re-
mains theoretically ambiguous. Our counterfactual exercise makes a novel finding
that using the first-price format in this environment benefits bidders with smaller
budgets by increasing the spending rate of bidders with large budgets.

This paper also contributes to the empirical economic literature on online adver-
tising markets (Yao and Mela, 2008; Athey and Nekipelov, 2011; Celis et al.,
2014; Decarolis and Rovigatti, 2021; Ostrovsky and Schwarz, 2023).2 While Yao

2The computer science and operation research literature has studied the theoretical and algo-



9

and Mela (2008) and Athey and Nekipelov (2011) highlight the presence of in-
tertemporal budget constraints in the sponsored-search ad market and their potential
significance, they do not incorporate these constraints in their structural models.
Our contribution lies in developing a structural model of dynamic auctions that ex-
plicitly incorporates such intertemporal budget constraints. Furthermore, our paper
aligns with 2023, which investigates the competition effects of privacy protection
measures in the online display ad market, considering firm heterogeneity in their
information on consumers. This paper reinforces the importance of accounting for
firm heterogeneity when analyzing competition in this market, as it evaluates the
competitive implications arising from heterogeneous financial capabilities among
bidding firms.

1.2 Institutional Background
Display ad market
The recent online advertisement market employs the real-time bidding process to
trade a large portion of impressions, which is the industry term for opportunities
to display ads to visitors of websites. As the name suggests, through the real-time
bidding (RTB) process, publishers of websites and advertisers trade impressions via
auctions in real-time as consumers visit these websites. Each auction typically lasts
only milliseconds. Hence, under the RTB process, impressions are sold impression-
by-impression rather than via signing contracts in advance for bulks of impressions.
Advertisers may display clickable banners or videos after purchasing impressions,
and the content of these advertisements may reflect various characteristics of the
impressions. For example, a retailer may attempt to retarget consumers by displaying
products the consumers viewed in the past. One advantage of the RTB process is
that it provides granularity to advertisers for targeting a specific audience. Rather
than buying media or ad slots to a loosely targeted audience, the RTB process allows
advertisers to target a particular audience directly.

rithmic aspects of online ad auctions with budget constraints. See Agarwal et al. (2014), Xu et al.
(2015), Balseiro et al. (2015), Balseiro et al. (2020), Conitzer et al. (2022b), Conitzer et al. (2022a),
and Gaitonde et al. (2022). Some of these papers focus on developing bidding algorithms with
budget constraints. Others use stylized models to study revenue considerations of auctions partic-
ipated by such algorithms. In contrast, our structural model takes a more general approach by not
being tailored to a specific algorithm. Instead, it captures the broader features of any algorithm
that could be deployed in the market, providing a robust framework for analysis. Furthermore, our
model accounts for the critical non-stationarity of the market, whereas many theoretical studies in
this literature assume a stationary environment. This enables our model to reflect the dynamic nature
of the market better. Finally, we contribute a novel empirical analysis of online ad auctions with
budget-constrained bidders by using a real-world dataset and our structural model.
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Generally, the RTB process involves publishers, ad exchanges, demand-side plat-
forms, and advertisers.3 An ad exchange is an online server that hosts auctions.
These auctions can have various formats, such as first-price and second-price auc-
tions. Advertisers typically bid in ad auctions through demand-side platforms
because it is technologically complex to target individual impressions and optimally
bid for them. A demand-side platform (DSP) is an intermediary that assists adver-
tisers in targeting and bidding for impressions in ad exchanges, and it typically uses
optimized bidding algorithms because of the fast-paced nature of ad auctions. The
sequence of the RTB process roughly works as follows:

1. A user visits a webpage of a publisher and triggers an impression.

2. The publisher sends an ad request to an ad exchange containing the user
information.

3. The ad exchange starts an auction for the impression and forwards the ad
request to demand-side platforms (DSPs).

4. Each DSP decides whether to participate and which advertiser to allocate
this impression among its clients, and then it bids on behalf of the chosen
advertiser in the auction held in the ad exchange.

5. The advertiser represented by the winning DSP gets the impression.

6. Finally, the corresponding advertisement is displayed to the user.

Marketing campaign and budget settings
When an advertiser wants to start advertising a banner or video ad, they register a
marketing campaign with a DSP. The advertiser sets various key marketing cam-
paign parameters, such as performance goals (number of clicks, conversions, or
impressions), targeting audience, campaign length, payment scheme, and budget.
Advertisers may choose to pay DSPs a fee proportional to spending or a fee per
click/conversion. The budget specifies how much the DSP can spend during the
campaign period to purchase ad opportunities, and generally this budget is evenly
split over days during the campaign. See Figure 1.1 for an example of a daily budget
configuration of a marketing campaign. In practice, this daily budget constraint

3In reality, there are also supply-side platforms (SSPs) that support publishers, but we omit them
in our explanation for brevity. See Yuan et al. (2013) and Choi et al. (2020) for more detail.
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Figure 1.1: Settings of a marketing campaign on a major demand-side platform.

is soft since DSPs often underspend or overspend by a bit; however, it provides a
method for advertisers to discipline the spending behavior of the DSPs they hire.

Advertisers have several reasons for setting daily budgets. First, it serves as a
safeguard against erroneous spending by the bidding agent. Given the rapid nature
of the online ad market, a mistake can be costly, potentially depleting the advertiser’s
entire budget within a mere hour. Second, advertisers often want to sustain their ad
campaign for a longer period than just one day, and the daily budget constraint is a
way to ensure that they advertise roughly evenly during the campaign period.

1.3 Data and Stylized Facts
Data description
This paper employs data of ad auctions held at the Yahoo Ad Exchange for ad
opportunities on Yahoo’s websites. Like other exchanges, the Yahoo Ad Exchange
is a clearinghouse that facilitates transactions between publishers and advertisers
(represented by DSPs), and it runs first-price auctions. This dataset is suitable
for our study for two reasons. First, Yahoo is one of the most popular websites
in the US4, so the data provides a representative sample for our study. Yahoo is
one of the most popular publishers that sell banner ad opportunities, and it also
provides a diverse range of websites, such as Mail, News, and Finance. Therefore,
although DSPs may be bidding for ad opportunities on multiple publishers and even
in multiple exchanges, the data provides us a representative sample of ad auctions
faced by advertisers who use banner ads.

4As of May 2021, Yahoo is ranked fourth in the US popularity by Alexa Rank (https://www.
alexa.com/topsites/countries/US), which is an industry-standard website ranking.

https://www.alexa.com/topsites/countries/US
https://www.alexa.com/topsites/countries/US
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variable mean std min median max

timestamp (PDT) Thu 00:06:05 Mon 00:00:04 Wed 18:01:42 Sun 23:59:57
Bid 1.000 1.682 0.061 0.577 369.070
Winning bid 2.294 3.441 0.061 1.182 369.070
Number of bidders 7.205 4.732 1.000 7.000 25.000
computer 0.953 0.212 0.000 1.000 1.000
optout 0.066 0.248 0.000 0.000 1.000
match_cookie_prop 0.628 0.336 0.000 0.778 1.000

Table 1.1: Summary statistics.

Summary Statistics
Our dataset contains auctions for impressions generated in the US on Yahoo’s
websites during a week in the second quarter of 2021. Because there can easily be
tens of millions of impressions on just one website per day, we sample our data at
a rate of 0.08%. We restrict our attention to a specific popular banner format for
simplification.

Table 1.1 provides summary statistics on the key variables in our dataset. We
observe data on 8,856,603 bids from 1,229,300 auctions, each of which is for an
impression triggered by a user5. For confidentiality reasons, we normalize bids to
have a sample mean equal to 1, but we may use dollar signs for variables relating
to bids in this paper. For each auction, we have the auction outcomes, winning bid
(revenue), number of participants (DSPs), and impression characteristics. There are
33 unique DSPs bidding on behalf of 71,011 advertisers in the data; note that each
DSP has at most one bid per auction in our dataset. The statistics for the number
of participants indicate that these bidders (DSPs) enter only a subset of auctions,
which suggests entry is an important behavior to investigate.

The timestamp variable provides the time in Eastern Daylight Time when Yahoo
held the auction; this variable is central in our analysis as we use this variable to
determine the temporal proximity between auctions. We have seven days’ worth
of data (Monday to Sunday) collected during the second quarter of 2021. The
variable computer indicates whether the user is accessing from a computer or
phone/tablet; it suggests that about 95% of impressions are from computers. Two
variables correspond to the availability of the user’s information. The variable
optout is an indicator function of the user opting out from behavioral targeting.
When a user opts out, advertisers can no longer target the user based on their
personal information; nevertheless, they can still use the user’s geographic location

5This indicates there were roughly 1.5 billion auctions on Yahoo during this period.
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and contextual information. The variable match_cookie_prop is the proportion
of DSPs that successfully matched the user with records in their databases via
third-party cookies.6 Thus, it is harder for DSPs to track a user with a small
match_cookie_prop. Note that mechanically, we have match_cookie_prop =
0 when the user opted out. Our data show that opt-out users trigger about 6.6% of
impressions, and the average proportion of match_cookie_prop is about 63%.7

In addition, although we do not report their summary statistics for confidentiality,
our dataset contains user characteristics drawn from Yahoo’s database of user pro-
files, which are constructed based on users’ cookies and Yahoo accounts (if they
exist). Although bidders do not directly observe the content of this database, these
variables are good proxies for user information bidders have access to. We have
users’ gender and age information. The gender variable is either Unknown, Male,
or Female, and the age variable is either Unknown, 25 to 44, or 45 plus. The
variable seg_size gives the number of market segments that the user belongs to;
these segments predict the user’s interests in particular topics, such as automobiles
and sports. The variables total_rev, num_month_sold, and avg_month_sold
summarize the past monetization of impressions generated by the user. The vari-
able total_rev is Yahoo’s total revenue from selling the user’s past impressions,
which is standardized to have mean zero and variance one for confidentiality. The
variable num_month_sold counts the number of months when Yahoo monetized
the user, and avg_month_rev is the average revenue per month calculated with the
two former variables. Finally, the variable profile_lengthmeasures in days how
long the user profile existed in the database.

Table 1.2 provides the frequency table for two key categorical variables: browser
and site name (anonymized for confidentiality). We observe that most impressions
come from Chrome, followed by Edge, Safari, and Firefox. The table also shows the
range of websites within the Yahoo domain, and we see that although each website
has a significant number of observed impressions, there is a considerable variation
in their total visits.

Figure 1.2 shows the geographic distribution of impressions graphed based on their
geographic coordinates. We observe users accessing from a variety of regions, and
many impressions come from cities with high population density, such as New York
and Los Angeles. In addition to geographic coordinates, we observe the state and

6We use an aggregate measure of cookie match since cookie-match information is unavailable
for two DSPs.

7See 2023 for how privacy protection measures impact ad auctions in this market.
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variable value n

Chrome 729484
Edge 220771
Safari 138794
Firefox 103956

browser

(27 other browsers) 36295

Site-1 495951
Site-2 243124
Site-3 165875
Site-4 113272
Site-5 71922
Site-6 35325
Site-7 32163
Site-8 22518
Site-9 21725
Site-10 9825
Site-11 9275

sitename

(5 other sites) 8325

Table 1.2: Frequency table for categorical variables.

city where impressions originate from; these variables are used as control variables
in our reduced-form results.

Stylized Facts
We summarize some stylized facts in this market that are consistent with how bidders
in this market dynamically participate in ad auctions with budget constraints.

Figure 1.3 shows the time-series plots from an average weekday of the number of
auctions, average bid, average number of participants, and average winning bid per
5 minutes on a weekday. We find that these statistics show similar patterns on each
day in our data. Since the supply of advertising opportunities is directly tied to
online traffic, the frequency of auctions is the highest around noon and the lowest
around 3 AM.

Observation 1: Declining Price

In Figure 1.3, we observe that the average bid, average number of bidders, and
average winning bid (price) have a declining pattern. This is consistent with bidders
having less purchasing power from spending their daily budgets. Because they have
less remaining budgets as time goes on, they enter auctions at a lower rate and
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Figure 1.2: Geographic distribution of impressions. Impressions from Alaska and
Hawaii are excluded from the figure. The labels are for the top 20 cities with the
highest number of impressions.

submit more conservative bids.

The literature on sequential auctions has studied declining price patterns in other
settings extensively. This phenomenon might initially appear as an anomaly, seem-
ingly presenting an arbitrage opportunity, but prior studies have identified several
mechanisms that can lead to declining prices in sequential auctions. In particular,
Engelbrecht-Wiggans (1994), Bernhardt and Scoones (1994), and Gale and Hausch
(1994) find that a declining price can manifest in sequential auctions participated
by single-unit demand bidders whose valuations are random across objects. Our
market environment shares some similarities with these studies, as bidders operate
under daily budget constraints, limiting their demand, and there is a significant level
of heterogeneity across impressions, which are also horizontally differentiated.

The theoretical studies find that a declining price can occur in sequential auctions
due to specific factors. First, there is less competition as time progresses due to
diminishing demand. Second, bidders with high valuations also face high delay
costs. These costs arise because, as time progresses, there is a chance they will
encounter worse objects due to randomness, and they are not guaranteed to win in
later periods. Hence, these high-valuation bidders find bidding worthwhile even in
earlier periods, where competition is more intense.
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Figure 1.3: Time-series plots from an average weekday for the number of auctions
(impressions), average bid, average number of participants, and average winning bid
per 5-minute interval. The horizontal axis is the time in Eastern Daylight Time.

Observation 2: Price jumps when budgets are renewed

−0.2
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Figure 1.4: Regression discontinuity plot of the log of winning bid (price). We fit
cubic polynomials before and after the budget renewal time.

The intra-day declining price pattern is accompanied by a jump in bidders’ bidding
behavior when their daily budgets are renewed. Using 12AM in the eastern US
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time as a discontinuity point8, we perform a regression discontinuity analysis to
examine the effect of daily budget renewal on the bidding behavior. We focus on the
two-hour time interval around the discontinuity point. In Figure 1.4, we find that
there is a significant effect on the average price when the daily budget constraints
are reset. We find that bidders become more aggressive in their bids when they are
supplied with new budgets from advertisers.9 Table A.1 in Appendix A.1 shows the
regression discontinuity results where we control for a rich set of observed auction
characteristics, which show that ceteris paribus, the price in ad auctions jumps by
about 40% on average when budgets are renewed.

Observation 3: Price declines when the number of auctions is high

In Figure 1.5, we aggregate auctions in each 5-minute time interval, and we plot the
number of auctions within the interval versus the average bid, average number of
participants, and average winning bid within the interval. Figure 1.5 shows that when
the number of auctions increases, the average bid, average number of entrants, and
average winning bid decrease, and vice versa. This inverse relationship is consistent
with budget constraints. When there is a large number of auctions, bidders risk
hurting their future spending ability or violating budget constraints by winning too
many auctions if they submit competitive bids. Thus, they need to depress their bids
to mitigate this risk.

This relationship is robust to controlling for the rich observed heterogeneity of
impressions and various fixed effects. Table A.2 in Appendix A.1 shows the results
from regressing bids and entry decisions on the number of auctions and control
variables. As control variables, we include numerous impression characteristics and
fixed effects for the websites, browsers, cities, day-hour, DSPs, and advertisers. We
include Day-Hour FE to remedy any time-variant unobserved quality of impressions.
The reduced-form results show that the coefficient of log of the number of auctions
per 5-min interval is negative and statistically significant in both the bid and entry

8We find that most bidders’ daily budgets are renewed at 12AM in the eastern US time since
typically the renewal time is set at 12AM in advertisers’ local timezone and most advertisers are in
the eastern region. In principle, we should see a change in bidding behavior at 12am in the western
US time, for example; however, we do not observe such a consistent significant jump in our data at
that time.

9As detailed in the preceding section, advertisers enforce daily budget constraints on their
bidding agents to mitigate the risk of erroneous overspending and to maintain a consistent presence
throughout their ad campaign period. Moreover, the practice of resetting these constraints at the end
of each day offers convenience in terms of billing and accounting processes.
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Figure 1.5: Scatter plots of the average bid, average number of participants, and
average winning bid (price) versus the number of impressions per 5-minute interval.
The blue curves correspond to linear regressions.
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regressions. Hence, bidders become more conservative in their entry and bids when
there are more auctions.

1.4 Structural Model
Motivated by the institutional settings and the stylized facts from the data, we
formulate a structural model of forward-looking bidders making entry and bid
decisions dynamically while facing a stream of auctions.

Model Setup
To focus on the intra-day dynamics coming from the daily budget constraint and
cyclical supply, we model the market on each day as an isolated strategic environ-
ment. On each day, there are 𝑖 = 1, . . . , 𝑁 bidders, and each bidder’s initial budget
𝑤𝑖1 = 𝑤𝑖 is independently and privately drawn from 𝐹𝑤 at the beginning of the day.
These bidders face a sequence of simultaneous auctions for 𝑡 = 1, . . . 𝑇 periods.
The last period 𝑇 is determined and common knowledge; it corresponds to the final
period before the end of the day.

At the beginning of each period 𝑡, bidders observe the number of auctions 𝐾𝑡 , which
is drawn from 𝐹

(𝑡)
𝐾

, which is time specific. Before his entry costs and valuations
are realized for these auctions, each bidder 𝑖 commits to an entry threshold strategy
𝜏𝑖𝑡 ≥ 0 and bid strategy 𝑏𝑖𝑡 : R+ → R+ that are used for each auction 𝑘 = 1, . . . , 𝐾𝑡 .
For each auction 𝑘 , an entry cost𝐶𝑖𝑘𝑡 is independently and privately drawn from 𝐹𝐶 ,
and bidder 𝑖 enters if𝐶𝑖𝑘𝑡 ≤ 𝜏𝑖𝑡 . If he enters, then valuation 𝑋𝑖𝑘𝑡 is independently and
privately drawn from 𝐹𝑋 , and 𝑖 submits 𝑏𝑖𝑡 (𝑋𝑖𝑘𝑡). To make the optimization problem
tractable, we assume that bid strategies take the flexible form 𝑏𝛾 (𝑥) = ∑𝐽

𝑗=1 𝛾 𝑗ℎ 𝑗 (𝑥),
where ℎ 𝑗 (𝑥) are a set of basis functions (such as polynomials or splines) and 𝛾 ∈ R𝐽 .
Note that this assumption imposes minimal restrictions beyond ensuring smoothness
while accommodating a wide range of bidding strategies.10

Given the submitted bids, the spot auction rule determines the winner and price for
each auction 𝑘 . With our institutional environment in mind, we suppose that the spot
auction follows the first-price auction. Hence, for each auction 𝑘 , the winner is the
highest bidder, and the price is his bid max𝑖 𝐵𝑖𝑘𝑡 where 𝐵𝑖𝑘𝑡 = 𝑏(𝑋𝑖𝑘𝑡 | 𝛾𝑖𝑡). Then,
each bidder receives the goods they won and earns

∑𝐾𝑡
𝑘=1 1{𝐶𝑖𝑘𝑡 ≤ 𝜏𝑖𝑡}1{𝐵𝑖𝑘𝑡 >

𝐵−𝑖𝑘𝑡}𝑋𝑖𝑘𝑡 and pays 𝑆𝑖𝑡 =
∑𝐾𝑡
𝑘=1 1{𝐶𝑖𝑘𝑡 ≤ 𝜏𝑖𝑡}1{𝐵𝑖𝑘𝑡 > 𝐵−𝑖𝑘𝑡}𝐵𝑖𝑘𝑡 . In sum, as the

10In our empirical application, we use cubic spline basis functions for ℎ 𝑗 .
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stage payoff, the bidder receives

𝐾𝑡∑︁
𝑘=1

1{𝐶𝑖𝑘𝑡 ≤ 𝜏𝑖𝑡} (1{𝐵𝑖𝑘𝑡 > 𝐵−𝑖𝑘𝑡} (𝑋𝑖𝑘𝑡 − 𝐵𝑘𝑡) − 𝐶𝑖𝑘𝑡) .

In addition, the bidder’s budget for period 𝑡 + 1 is updated as 𝑤𝑖𝑡+1 = 𝑤𝑖𝑡 − 𝑆𝑖𝑡 .

After period𝑇 , bidders suffer a penalty of 𝜂𝑄(𝑤𝑖𝑇+1), where 𝜂 > 0. 𝑄(𝑤) is a differ-
entiable function such that it is zero when 𝑤 > 0, meaning that the budget constraint
is satisfied. This penalty captures any negative consequences associated with violat-
ing the budget constraint. In our empirical application, we set 𝑄(𝑤) = min(0, 𝑤)2

to capture the reputation damage that the bidding agent suffers by violating the daily
budget constraints imposed by its advertisers.11

The following summarizes the sequence of the game:

1. Each bidder 𝑖’s initial budget 𝑤𝑖1 = 𝑤𝑖 is independently and privately drawn
from 𝐹𝑤.

2. For each 𝑡 = 1, . . . , 𝑇 ,

a) Bidders observe the number of auctions 𝐾𝑡 , which is drawn from 𝐹
(𝑡)
𝐾

.

b) Each bidder 𝑖 chooses bid strategy 𝑏𝑖𝑡 : R+ → R+ and entry threshold
strategy 𝜏𝑖𝑡 ≥ 0.

c) For each auction 𝑘 = 1, . . . , 𝐾𝑡 ,

i. 𝑖 ’s entry cost 𝐶𝑖𝑘𝑡 is independently and privately drawn from 𝐹𝐶 .

ii. 𝑖 enters if 𝐶𝑖𝑘𝑡 ≤ 𝜏𝑖𝑡
iii. Each entrant’s valuation 𝑋𝑖𝑘𝑡 is independently and privately drawn

from 𝐹𝑋 .

iv. Each entrant submits bid 𝐵𝑖𝑘𝑡 = 𝑏
𝛾

𝑖𝑡
(𝑋𝑖𝑘𝑡)

v. The highest bidder gets the good and pays his own bid.

d) Each bidder’s remaining budget is subtracted by his spending, 𝑤𝑖𝑡+1 =

𝑤𝑖𝑡 − 𝑆𝑖𝑡 .

3. Bidders suffer penalty 𝜂𝑄(𝑤𝑖𝑇+1)
11The penalty also accommodates other contexts. For example, if there is a borrowing cost from

spending beyond the available cash, we can set 𝑄(𝑤) = min(0, 𝑤) with 𝜂 representing the interest
rate. In addition, setting 𝜂 = ∞ allows us to incorporate hard budget constraints.
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Best-Response Analysis
We begin our analysis by assuming the form of the bidder’s belief over the strategic
behavior of each other and analyzing the best-response problem. When bidders
strategize, the key object that matters is the distribution of competing bids in each
auction (accounting for entry). This distribution is influenced by the time period,
the number of auctions, and the remaining budgets of competing players. In our
empirical application of online banner-ad auctions held at Yahoo’s ad exchange, the
remaining budgets of players are not public, and when a bidder loses in an auction,
they do not get the information of the identity of the winner and the price he paid.
Hence, there is very little information a bidder has about other players’ spending.
Leveraging this asymmetric information, we assume that in period 𝑡 with𝐾𝑡 auctions,
bidders believe that the highest rival bid in each auction is independently drawn
from distribution Ψ𝑡 (·|𝐾𝑡). In the next subsection, we endogenize this distribution
by formulating our equilibrium concept.

The idea is that although bidders do not learn each other’s private state variable
(remaining budget), they can use the interactions from previous games to forecast
the competition in each period 𝑡 and how it changes with respect to the supply
level (number of auctions). Not only is this assumption reasonable, but it also
greatly improves the tractability of the dynamic game. As our application has
a relatively large number of bidders (around thirty), a fully rational belief with
complete information over rivals’ budgets would lead to a high-dimensional state
space, which would make both solving the best-response problem and solving for
equilibrium computationally infeasible. The assumption we make over the belief
over competing bids turns the best-response problem into a finite-time horizon
dynamic problem with two state variables: the number of auctions and the bidder’s
own remaining budget.

Now, given the belief, we look at a generic bidder’s strategic problem while taking
other bidders’ strategies as given. This best-response problem provides us insights
into the tradeoffs bidders face, and it also forms the basis of our estimation method.
We proceed by backward induction and analyze the Bellman formulation. Given
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the number of auctions 𝐾𝑇 and bidder 𝑖’s remaining budget 𝑤𝑖𝑇 , his objective is

max
𝛾,𝜏

𝐸

[
𝐾𝑇∑︁
𝑘=1

1{𝐶𝑖𝑘𝑇 ≤ 𝜏𝑖𝑇 } (1{𝑏𝛾 (𝑋𝑖𝑘𝑇 ) > 𝐵−𝑖𝑘𝑇 } (𝑋𝑖𝑘𝑇 − 𝑏𝛾 (𝑋𝑖𝑘𝑇 )) − 𝐶𝑖𝑘𝑇 )
]

− 𝐸 [𝜂𝑄(𝑤𝑖𝑇+1) | 𝛾, 𝜏]
= max

𝛾,𝜏
𝐾𝑇𝐹𝐶 (𝜏) (𝐸 [Ψ𝑇 (𝑏𝛾 (𝑋) | 𝐾𝑇 ) (𝑋 − 𝑏𝛾 (𝑋))] − 𝐸 [𝐶 | 𝐶 ≤ 𝜏])

− 𝐸 [𝜂𝑄(𝑤𝑖𝑇 − 𝑆𝑖𝑇 ) | 𝛾, 𝜏] .

Denoting this maximized value as 𝑉𝑇 (𝐾, 𝑤), the Bellman formulation of the objec-
tive of period 𝑡 = 1, . . . , 𝑇 − 1 is given by

max
𝛾,𝜏

𝐾𝑡𝐹𝐶 (𝜏) (𝐸 [Ψ𝑡 (𝑏𝛾 (𝑋) | 𝐾𝑡) (𝑋 − 𝑏𝛾 (𝑋))] − 𝐸 [𝐶 | 𝐶 ≤ 𝜏])

+ 𝐸 [𝐸𝑉𝑡+1(𝑤𝑖𝑡 − 𝑆𝑖𝑡) | 𝛾, 𝜏] ,
(1.1)

where 𝐸𝑉𝑡+1(𝑤) = 𝐸 [𝑉𝑡+1(𝐾𝑡+1, 𝑤)] is the ex-ante value function in which the
number of auctions is averaged out with distribution 𝐹 (𝑡)

𝐾
. Given its similarity to

the last period’s objective, with a bit of abuse of notation, we denote 𝐸𝑉𝑇+1(𝑤) =
−𝜂𝑄(𝑤) for the rest of our analysis.

Now, we analyze the first-order necessary conditions for the bidding problem while
assuming differentiability. The one with respect to the bid function parameter 𝛾 is
given by

𝐸

[ (
𝑋 − Ψ𝑡 (𝑏𝛾 (𝑋) | 𝐾𝑡)

Ψ′
𝑡 (𝑏𝛾 (𝑋) | 𝐾𝑡)

− 𝑏𝛾 (𝑋)
)

︸                                    ︷︷                                    ︸
Static FOC

Ψ′
𝑡 (𝑏𝛾 (𝑋) | 𝐾𝑡)∇𝛾𝑏𝛾 (𝑋)

]

+ 1
𝐾𝑡𝐹𝐶 (𝜏)

∇𝛾𝐸 [𝐸𝑉𝑡+1(𝑤𝑖𝑡 − 𝑆𝑖𝑡) | 𝛾, 𝜏]︸                                             ︷︷                                             ︸
Dynamic Tradeoff

= 0.

Meanwhile, the first-order condition with respect to the entry threshold 𝜏 is

𝜏 = 𝐸 [Ψ𝑡 (𝑏𝛾 (𝑋) | 𝐾𝑡) (𝑋 − 𝑏𝛾 (𝑋))]︸                                     ︷︷                                     ︸
Static Threshold

+ 1
𝐾 𝑓𝐶 (𝑡)

𝜕

𝜕𝜏
𝐸 [𝐸𝑉𝑡+1(𝑤𝑖𝑡 − 𝑆𝑖𝑡) | 𝛾, 𝜏]︸                                            ︷︷                                            ︸
Dynamic Tradeoff

.

The first-order conditions mainly consist of the static component and dynamic
component. The optimality condition for the bid strategy contains an expression
that is typically found in static first-price auction models (Guerre et al., 2000),
along with an additional element resulting from the dynamic budget constraint.
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In particular, we observe that the state variables (𝐾𝑡 , 𝑤𝑖𝑡) directly affect only the
latter component. Similarly, the first-order condition for the participation strategy
implies that the optimal threshold equals the static entry threshold determined by the
expected payoff from an auction (Li and Zheng, 2009) and an additional dynamic
component.

The dynamic component illustrates how entry and bids are influenced by dynamic
tradeoffs. Increasing the likelihood of participation and bids impacts the contin-
uation value by 1) making it more likely to win more auctions and 2) increasing
the realized spending. Because having less remaining budget negatively affects his
future surplus, the bidder must internalize this tradeoff and adjust his entry rate and
bids further down from the statically optimal ones. Dynamic markdowns are a com-
mon feature in structural models that deal with sequential auctions, as demonstrated
in prior research (Jofre-Bonet and Pesendorfer, 2003; Bodoh-Creed et al., 2021;
Kong, 2021; Backus and Lewis, 2023). However, a notable departure in this study
is the consideration that in earlier models, the option value was primarily influenced
by whether one won an auction or not, while in our model, the option value is also
impacted by the amount paid for a win.12

Now, we consider how the optimal strategies react to changes in the state variables
under this model. When the number of auctions 𝐾𝑡 changes, it impacts the dynamic
component. Specifically, a higher 𝐾𝑡 tends to result in larger spending from this
period while keeping the strategies the same. Consequently, ceteris paribus, an
increase in 𝐾𝑡 introduces a force to make the strategies more conservative, consistent
with the empirical pattern that bidders tend to be less aggressive when more auctions
are present.

The current remaining budget 𝑤𝑖𝑡 also appears in the first-order conditions only
through the dynamic component. Ceteris paribus, decreasing 𝑤𝑖𝑡 directly shifts
down 𝑤𝑖𝑡+1. The ex-ante value function 𝐸𝑉𝑡+1(·) typically exhibits a concave in-
creasing pattern, as having a larger budget aids the bidder in securing more future
opportunities, albeit at a diminishing rate. Consequently, the reduction in 𝑤𝑖𝑡 ampli-
fies the sensitivity of the continuation value to current-period spending, prompting
the bidder to adopt more conservative strategies. The relationship between the op-
timal strategies and the remaining budget 𝑤𝑖𝑡 highlights that the variability across
bidders in their entry and bid decisions results from factors beyond random entry

12As demonstrated in our counterfactual analysis, this feature makes the price distribution relevant
in shaping strategic behavior within our environment.
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costs and valuations; it is also influenced by bidders’ remaining budgets. This
suggests that the size of each bidder’s budget introduces heterogeneity in their
behaviors.

The first-order necessary conditions highlight how this environment differs from
the standard auction environment. If the budget constraint does not matter (i.e.,
if 𝜂 = 0), the dynamic problem collapses into a series of static bidding problems,
and the state variables 𝐾𝑡 and 𝑤𝑖𝑡 become irrelevant. However, with the budget
constraint, the bidder needs to weigh the stage payoff and the option value from
having more budget for the next period, and this tradeoff is influenced by the state
variables.

Equilibrium
We now establish our solution concept by formalizing how a bidder’s belief over
competing bids is constructed. A pure strategy equilibrium of our model consists
of time-dependent strategies (𝛾𝑡 (𝐾, 𝑤), 𝜏𝑡 (𝐾, 𝑤)) and bidders’ beliefs regarding
competing bids in each auction Ψ𝑡 (𝑏 | 𝐾) that satisfy the following conditions:

1. (Optimality) For each period 𝑡 and state variables (𝐾𝑡 , 𝑤𝑖𝑡 ), (𝛾𝑡 (𝐾, 𝑤), 𝜏𝑡 (𝐾, 𝑤)) are a best
response given the belief Ψ𝑡 (𝑏 | 𝐾), meaning they solve the problem specified in (1.1).

2. (Consistency)

Ψ𝑡 (𝑏 | 𝐾) = 𝐸
[∏
𝑗≠𝑖

Pr( 𝑗 does not enter, or 𝑗 enters and submits 𝐵 𝑗𝑡 ≤ 𝑏 | 𝐾, 𝑤 𝑗𝑡 )
]

= 𝐸

[∏
𝑗≠𝑖

(
1 − 𝐹𝐶 (𝜏𝑡 (𝐾, 𝑤 𝑗𝑡 )) + 𝐹𝐶 (𝜏𝑡 (𝐾, 𝑤 𝑗𝑡 ))𝐹𝑋 (𝑏−1 (𝑏 | 𝛾𝑡 (𝐾, 𝑤 𝑗𝑡 )))

)]
,

where the distribution of state variables (remaining budgets) (𝑤 𝑗𝑡 ) 𝑗≠𝑖 is determined by the
initial budget distribution 𝐹𝑊 , the distribution of the number of auctions {𝐹 (𝑠)

𝐾
}𝑠=1,...,𝑡−1, the

strategies employed by bidders {(𝛾𝑠 (𝐾, 𝑤), 𝜏𝑠 (𝐾, 𝑤))}𝑠=1,...,𝑡−1, and the state transition rule.

The first condition requires that bidders are acting optimal given their belief, and
the second condition ensures that the current belief is consistent with the optimal
strategies they have employed in previous periods.13 If bidder 𝑖 had the knowledge
about other bidders’ remaining budgets (𝑤 𝑗 𝑡) 𝑗≠𝑖, his fully rational belief over com-
peting bids would be the expression inside the expectation in the second condition.

13Our solution concept is similar to the large market equilibrium concepts used in prior works
that study dynamic games (Hopenhayn, 1992; Krusell and Smith, 1998; Weintraub et al., 2008;
Bodoh-Creed et al., 2021; Backus and Lewis, 2023).
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However, given that bidders’ initial budgets are private and they do not observe
each other’s spending, we require that their belief is averaged out with respect to the
equilibrium state distribution of (𝑤 𝑗 𝑡) 𝑗≠𝑖. The rationale for this is that since a sepa-
rate game occurs each day, bidders can rely on historical data regarding the intraday
pattern of competition to formulate their participation and bidding strategies.14

In our analysis, we assume that a pure strategy equilibrium of the dynamic game
exists and is unique given the model primitives, and we assume that each day in
our dataset is independently sampled from this equilibrium.15 In Appendix A.4, we
present a computational algorithm for solving the dynamic game using our solution
concept. This algorithm alternates between two steps: first, obtaining the belief
Ψ𝑡 by simulating the path of state variables using the given strategies, and second,
obtaining the best response strategies given the belief through backward induction.
Importantly, we find that our algorithm converges to the same equilibrium from
various initial points, providing some support for our assumption of equilibrium
existence and uniqueness. The formal proof of equilibrium existence and uniqueness
is left for future research, as the conventional approach of backward induction does
not apply to our environment. This is due to the fact that the equilibrium strategy
in period 𝑡 depends on the strategies in periods 1 through 𝑡 − 1, given that these
strategies determine the belief regarding competing bids in period 𝑡.

Model Discussion
In our empirical application of the model to the online display advertising market,
our analysis of dynamic strategic behavior abstracts away from two features of the
market. First, we treat each demand-side platform (DSP) representing multiple
advertisers as one budget-constrained bidder. In reality, each advertiser has a
separate campaign budget, and DSPs need to make sure the constraint of each
advertiser it represents is satisfied. However, modeling this relationship between
DSPs and advertisers goes beyond the scope of this paper, and we leave it as a
potential avenue for future research and extension of our model.

14One possible way to allow for firms learning each other’s state within a game is to adapt the
moment based Markov equilibrium proposed by Ifrach and Weintraub (2017) to our model. Their
solution concept permits firms to track the state variables of a few dominant firms and form beliefs
on the state variables of other firms conditional on their aggregate statistics. See also Fershtman and
Pakes (2012) and Asker et al. (2020) for tractable ways to model players learning each other’s state
when there is persistent private information.

15Our assumption of equilibrium existence and uniqueness parallels the existing empirical works
on non-standard auction games (Fox and Bajari, 2013; Kim et al., 2014; Saini, 2012; Gentry et al.,
2020).
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Second, while display ad auctions occur continuously in the real market, we dis-
cretize time and assume that multiple auctions happen simultaneously in each period.
Hence, our model features a sequence of simultaneous first-price auctions. We make
this assumption because of tractability, and often these auctions can even occur at
the same time or within a very short time frame. This approximation aligns with the
practices of DSPs, which also employ a discrete-time framework and assume that
auctions within the same time interval happen simultaneously.

1.5 Estimation
Using our novel proprietary dataset of online display ad auctions, we estimate the
primitives of the structural model of dynamic auctions with budget-constrained
bidders. The model primitives are the distribution of the number of auctions 𝐹 (𝑡)

𝐾
for

each period 𝑡, distribution of entry costs 𝐹𝐶 , distribution of valuations 𝐹𝑋 , budget
constraint parameter 𝜂, and bidders’ budgets (𝑤𝑖)𝑁𝑖=1.

Each day in our dataset corresponds to one independent game in our structural
model, and we consider hourly periods, giving us 𝑡 = 1, . . . , 𝑇 = 24 periods in a
day. Our dataset includes a total of 𝑁 = 33 bidders. For each day 𝑑, we observe
the number of auctions 𝐾𝑡𝑑 for each hour 𝑡, as well as the spending per period 𝑆𝑖𝑡𝑑
and bids (𝐵𝑖𝑘𝑡𝑑)𝐾𝑡𝑑𝑘=1 for bidder 𝑖 during each hour 𝑡. Note that we have 𝐵𝑖𝑘𝑡𝑑 = ∅ if
bidder 𝑖 did not enter auction 𝑘 in period 𝑡 on day 𝑑. We suppress the day index
when there is no confusion.

Our structural model, being a dynamic game, faces a common challenge in structural
estimation that direct estimation requires solving for the equilibrium for every set
of structural parameters. To circumvent this computational burden during the esti-
mation process, we adopt a two-step approach, following the literature of structural
estimation of dynamic games (Bajari et al., 2007; Aguirregabiria and Mira, 2007;
Jofre-Bonet and Pesendorfer, 2003). Assuming that the market is in equilibrium
under our solution concept, we estimate our structural model by leveraging bidders’
best-response problem given their rivals’ equilibrium behavior. In the first step, we
estimate the time-dependent distribution of the number of auctions 𝐹 (𝑡)

𝐾
, along with

the reduced-form entry probability and bid distribution.16 In the second step, we
solve for bidders’ entry and bid strategies (𝛾𝑡 (𝐾, 𝑤), 𝜏𝑡 (𝐾, 𝑤)) as best responses to
rivals’ estimated behaviors from the first stage and estimate the structural parame-

16These objects essentially serve as the conditional choice probability (CCP), using the termi-
nology commonly employed in dynamic structural models. One key distinction from conventional
approaches is that we have continuous actions instead of discrete actions.
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ters through maximum likelihood estimation. This sequential approach allows us
to avoid the need for solving the equilibrium and simulating the equilibrium state
distribution during the estimation process.

First Stage
In the first stage, for each hour 𝑡, we estimate the distribution of the number of
auctions 𝐹 (𝑡)

𝐾
and the belief on competition bids Ψ𝑡 (· | 𝐾), which is the central

equilibrium object in our structural model. We assume that the number of auctions
comes from the negative binomial distribution17 with time-specific parameters,
capturing the daily pattern seen in Figure 1.3. We obtain the belief on competing
bidsΨ𝑡 (· | 𝐾) by deriving it from the entry probability and bid distribution estimated
from the data. For tractability and numerical convenience, we use parametric forms
to estimate them.18 For the entry probability, we use logistic regression of entry
outcome on the number of auctions 𝐾𝑡 with time-period fixed effect to estimate it,
meaning that entry probability is logistic(𝛼𝑒𝑛𝑡𝑟𝑦𝑡 +𝛽𝑒𝑛𝑡𝑟𝑦

𝐾
𝐾𝑡𝑑). For the bid distribution,

we assume 𝐵𝑖𝑘𝑡𝑑 ∼ LogNormal(𝛼𝑏𝑖𝑑𝑡 +𝛽𝑏𝑖𝑑
𝐾
𝐾𝑡𝑑 , 𝜎𝑡). Then, we derive the distribution

on competing bids Ψ𝑡 (· | 𝐾) by using these estimated objects.

Second Stage
In the second stage, we estimate the distribution of entry costs 𝐹𝐶 , distribution of
valuations 𝐹𝑋 , budget constraint19 parameter 𝜂 ∈ R, and bidders’ budgets (𝑤𝑖)𝑁𝑖=1.
To facilitate our estimation, we introduce parametric assumptions for 𝐹𝐶 and 𝐹𝑋 .
We assume 𝐶 ∼ TruncatedNormal(𝜇𝐶 , 𝜎𝐶) and 𝑋 ∼ LogNormal(𝜇𝑋 , 𝜎𝑋). Our
set of structural parameters is denoted as 𝜃 = (𝜇𝐶 , 𝜎𝐶 , 𝜇𝑋 , 𝜎𝑋 , 𝜂, (𝑤𝑖)𝑁𝑖=1). We
estimate these structural parameters through maximum likelihood estimation with
an inner loop solving for bidders’ entry and bid strategies (𝛾𝑡 (𝐾, 𝑤), 𝜏𝑡 (𝐾, 𝑤)) as
best responses to the estimated belief on competing bids Ψ̂𝑡 (· | 𝐾) from the first
stage. We use the best-response problem to estimate the model as if it is a single-
agent continuous-choice dynamic problem with a finite horizon. This avoids the
computational burden of computing for equilibrium during estimation.

For each set of structural parameters 𝜃, the inner-loop solves the best-response
17The negative binomial distribution is more flexible than the Poisson distribution since it allows

the mean and variance to be different.
18Using parametric assumptions on the entry probability and bid distribution follows prior em-

pirical works on one-shot auctions with entry (Athey et al., 2011; Krasnokutskaya and Seim, 2011).
19To review, when bidders violate their budget constraints, they suffer the penalty 𝜂𝑄(𝑤𝑖𝑇+1)

where 𝑄(𝑤) = min(0, 𝑤)2 and 𝑤𝑖𝑇+1 is the remaining budget at the end of the game.
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problem in (1.1) for (𝛾𝑡 (𝐾, 𝑤; 𝜃), 𝜏𝑡 (𝐾, 𝑤; 𝜃)) to evaluate our likelihood function.
The best-response problem is solved as dynamic programming with a finite horizon
via backward induction. The state variables are the number of auctions 𝐾𝑡 and
bidder’s remaining budget 𝑤𝑖𝑡 . Note that we do not observe budgets in our dataset,
so we obtain𝑤𝑖𝑡 by setting𝑤𝑖𝑡 = 𝑤𝑖−

∑𝑡−1
𝑠=1 𝑆𝑖𝑠 using the observed spending per period

𝑆𝑖𝑡 . The central object of our dynamic programming is the ex-ante value function
𝐸𝑉𝑡 (𝑤) = 𝐸𝐾𝑡 [𝑉𝑡 (𝐾𝑡 , 𝑤)]. We approach this by solving the Bellman formulation in
(1.1) over a grid of the state variables 𝐾 and𝑊 for 𝑡 = 𝑇, . . . , 1.20 We create the grid
of the first state variable by taking random draws from the estimated distribution
𝐹
(𝑡)
𝐾

from the first stage; this grid is time-dependent. For the second state variable
𝑤, because this is a continuous variable, we create a grid by taking points in [𝑎, 𝑏]
where 𝑎 < 0 is a negative value that is unlikely to happen in equilibrium but
nevertheless important for determining the shape of the value function, and 𝑏 > 0 is
a value above the maximum observed total spending. To evaluate the ex-ante value
function outside of the grid and to obtain its derivative, we use a cubic spline with
a monotonicity constraint for interpolation.

For each set of structural parameters 𝜃, the above procedure provides us the entry
thresholds 𝜏𝑡 (𝐾, 𝑤; 𝜃) and bid strategies 𝑏(· | 𝛾𝑡 (𝐾, 𝑤; 𝜃)) for each 𝐾 , 𝑤, and 𝑡.21

Note that under the true 𝜃, each observed bid 𝐵𝑖𝑘𝑡𝑑 satisfies 𝐵𝑖𝑘𝑡𝑑 = 𝑏(𝑋𝑖𝑘𝑡𝑑 |
𝛾𝑡 (𝐾, 𝑤; 𝜃)) where 𝑋𝑖𝑘𝑡𝑑 is the valuation, meaning 𝑋𝑖𝑘𝑡𝑑 = 𝑏−1(𝐵𝑖𝑘𝑡𝑑 | 𝛾𝑡 (𝐾, 𝑤; 𝜃)).
This relationship allows us to “back out” valuations by applying the inverse bid
strategy on observed bids (Guerre et al., 2000). Given the best-response strategies,
we derive the entry probabilities and density of the bid distribution to compute the
log-likelihood. The entry probability is expressed by

𝑝𝑡 (𝐾𝑡 , 𝑤𝑖𝑡 ; 𝜃) = 1 − 𝐹𝐶 (𝜏𝑡 (𝐾𝑡 , 𝑤𝑖𝑡 ; 𝜃); 𝜇𝐶 , 𝜎𝐶),

and the bid density is

�̃�𝑡 (𝐵 | 𝐾𝑡 , 𝑤𝑖𝑡 ; 𝜃) = 𝑓𝑋 (𝑏−1(𝐵 | 𝛾𝑡 (𝐾𝑡 , 𝑤𝑖𝑡 ; 𝜃)); 𝜇𝑋 , 𝜎𝑋) (𝑏′(𝐵 | 𝛾𝑡 (𝐾𝑡 , 𝑤𝑖𝑡 ; 𝜃)))−1,

where the right-most term comes from the change of variables from valuations to
bids. Finally, we can calculate the likelihood from the observed data by using these
objects.

20Each optimization problem is solved by using the first-order conditions outlined in Section 1.4.
We ensure global optimality by using multiple initial points.

21Note that in our empirical application, we set 𝑏(𝑥 | 𝛾) = ∑𝐽
𝑗=1 𝛾 𝑗ℎ 𝑗 (𝑥) where ℎ 𝑗 are a cubic

spline basis functions with monotonicity constraints.
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Identification
The identification of our structural parameters, especially the budget constraint
parameter 𝜂 and bidders’ budgets (𝑤𝑖)𝑁𝑖=1, relies on the exclusion restriction that
bidders’ valuations are independent of the state variables, which are the number of
auctions and their remaining budgets. This assumption is required for disentangling
the effect on bids from valuations and intertemporal budget constraints. For instance,
when bids are low, we must determine whether this is due to low valuations or
increased dynamic tradeoffs. The exclusion restriction enables us to identify the
parameters relevant to budget constraints by using the correlation between bids and
the state variables, which impact the dynamic tradeoffs.

For illustration, our assumption implies the following conditional moment condi-
tions:

𝐸 [𝑏−1(𝐵 | 𝛾𝑡 (𝐾𝑡 , 𝑤𝑖𝑡 ; 𝜃)) − 𝐸 [𝑋𝑖𝑘𝑡 | 𝜃] | 𝑍𝑖𝑡] = 0,

where 𝑍𝑖𝑡 is remaining budget 𝑤𝑖𝑡 or number of auctions 𝐾𝑡 . This essentially means
that the valuations backed out via the inverse bid function should not be correlated
with our instruments. Such an exclusion restriction with other instrumental variables
has been used in the empirical auction literature to test a model (Haile et al., 2003)
or identify structural parameters (Guerre et al., 2009; Gentry et al., 2020).

The exogeneity assumption is plausible for our market environment as typically
demand-side platforms (bidders) and advertisers compute their valuations for im-
pressions based on a combination of the probability of clicking/making a sale and
their value of such events, and this probability is computed based on the contex-
tual and behavioral data of that user alone. Hence, the short-run supply level of
impression (the number of auctions) and their current campaign budgets should not
directly influence how they value advertising opportunities.

Our structural framework can accommodate potential sources of unobserved hetero-
geneity that might interfere with our identification strategy above. First, valuations
could be correlated with the number of auctions through a time-varying unobserved
heterogeneity. For instance, the average user browsing the internet during the day-
time could be different from the average online user at night, and the supply levels
are different across these time periods. One possible remedy for this issue is to al-
low time-dependent valuation distribution 𝐹 (𝑡)

𝑋
, analogous to introducing time fixed

effects in standard econometric models. The second potential confounder is that
valuations could be correlated with bidders’ budgets through a bidder unobserved
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heterogeneity. Advertisers with larger budgets may also happen to have higher valu-
ations for impressions. We can alleviate this issue by classifying bidders into groups
and estimating structural parameters for each group separately. For both of these
situations, identification is possible by using the variation across different days (or
games).

1.6 Estimation Results
First-Stage Estimates
First, we present the parameter estimates for the distribution of the number of
auctions 𝐹 (𝑡)

𝐾
and the estimated reduced-form entry probability and bid distribution.

In Figure 1.6, we illustrate the probability mass function of 𝐹 (𝑡)
𝐾

, which reflects the
daily supply pattern that is also shown in Figure 1.3.22 The estimated distribution
also illustrates how the variance of 𝐾𝑡 changes over time.

Figure 1.6: The probability mass function of the estimated distribution of the number
of auctions 𝐹 (𝑡)

𝐾
for each time period 𝑡.

Table 1.3 shows the estimated parameters of the reduced-form entry probability and
bid distribution. Notably, in line with the second stylized fact reported in Section
1.3, the estimated coefficient on 𝐾𝑡 indicates that the entry probability and bid
distribution are negatively impacted by an increase in the number of auctions, all
else being equal. Furthermore, consistent with the first stylized fact, the estimated
intercepts illustrate a declining trend in the entry probability and bids.

22The table containing the estimated parameters are in Appendix A.2.
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Entry Probability Bid Distribution

𝛽𝐾 -3.627e-5 (5.485e-7) -3.417e-5 (3.852e-7)

𝛼
𝑒𝑛𝑡𝑟𝑦
𝑡 𝛼𝑏𝑖𝑑𝑡 𝜎𝑡

𝑡 = 1 -1.354 (0.003) -0.365 (0.003) 0.900 (0.0019)
𝑡 = 2 -1.278 (0.004) -0.325 (0.003) 0.893 (0.0022)
𝑡 = 3 -1.263 (0.004) -0.291 (0.003) 0.902 (0.0027)
𝑡 = 4 -1.283 (0.005) -0.224 (0.004) 0.947 (0.0033)
𝑡 = 5 -1.246 (0.005) -0.196 (0.004) 0.944 (0.0033)
𝑡 = 6 -1.158 (0.004) -0.128 (0.003) 0.950 (0.0026)
𝑡 = 7 -1.124 (0.003) -0.146 (0.002) 0.915 (0.0018)
𝑡 = 8 -1.117 (0.004) -0.226 (0.002) 0.872 (0.0012)
𝑡 = 9 -1.156 (0.005) -0.287 (0.004) 0.838 (0.0009)
𝑡 = 10 -1.239 (0.008) -0.347 (0.005) 0.823 (0.0008)
𝑡 = 11 -1.294 (0.008) -0.383 (0.006) 0.808 (0.0008)
𝑡 = 12 -1.322 (0.009) -0.410 (0.006) 0.800 (0.0007)
𝑡 = 13 -1.354 (0.009) -0.441 (0.006) 0.790 (0.0008)
𝑡 = 14 -1.363 (0.008) -0.453 (0.006) 0.785 (0.0008)
𝑡 = 15 -1.357 (0.008) -0.452 (0.005) 0.790 (0.0008)
𝑡 = 16 -1.367 (0.008) -0.470 (0.005) 0.782 (0.0008)
𝑡 = 17 -1.376 (0.007) -0.465 (0.005) 0.782 (0.0008)
𝑡 = 18 -1.365 (0.006) -0.458 (0.004) 0.785 (0.0009)
𝑡 = 19 -1.380 (0.005) -0.455 (0.003) 0.793 (0.0010)
𝑡 = 20 -1.371 (0.005) -0.452 (0.003) 0.793 (0.0011)
𝑡 = 21 -1.335 (0.004) -0.387 (0.003) 0.831 (0.0012)
𝑡 = 22 -1.340 (0.004) -0.431 (0.003) 0.825 (0.0012)
𝑡 = 23 -1.347 (0.004) -0.450 (0.002) 0.830 (0.0014)
𝑡 = 24 -1.359 (0.003) -0.464 (0.002) 0.837 (0.0016)

Table 1.3: Reduced-form estimates of entry probability logistic(𝛼𝑒𝑛𝑡𝑟𝑦𝑡 +𝛽𝑒𝑛𝑡𝑟𝑦
𝐾

(𝐾𝑡𝑑−
𝐾 𝑡)) and bid distribution LogNormal(𝛼𝑏𝑖𝑑𝑡 + 𝛽𝑏𝑖𝑑

𝐾
(𝐾𝑡𝑑 − 𝐾 𝑡), 𝜎𝑡) where 𝐾 𝑡 is the

sample average per period. We de-mean 𝐾𝑡𝑑 for an illustration purpose.

Second-Stage Estimates
We present the estimates for the structural parameters 𝜃 = (𝜇𝐶 , 𝜎𝐶 , 𝜇𝑋 , 𝜎𝑋 , 𝜂, (𝑤𝑖)𝑁𝑖=1)
from the second stage. Table 1.4 presents the estimates of (𝜇𝐶 , 𝜎𝐶 , 𝜇𝑋 , 𝜎𝑋 , 𝜂), along
with their estimated standard errors.

First, note that the estimate for 𝜂 is positive and statistically significantly different
from 0. Since bidders’ dynamic bidding problem collapses to a series of static
bidding problems if 𝜂 = 0, this confirms that bidders care about the budget constraint
and hence act dynamically. The estimated model reveals that, within the dataset,
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Parameters Estimate SE
𝜇𝐶 -11.3776 0.0091
𝜎𝐶 7.2533 0.0062
𝜇𝑋 0.9046 0.0007
𝜎𝑋 1.0950 0.0006
𝜂 0.6457 0.0084

Table 1.4: Estimates of structural parameters. The standard errors are computed
using the White (sandwich) estimator using the numerical Hessian and Jacobian.

the typical bidder exceeds their budget approximately 26% of the time. When
such overspending occurs, it amounts to an average of around 8% of their budgets,
indicating that these bidding agents occasionally exceed the budgets set by their
clients (advertisers) in pursuit of maximizing their payoffs while avoiding excessive
violations.

Figure 1.7: Histogram of the estimated budgets (𝑤𝑖)𝑁𝑖=1.

Figure 1.7 shows the histogram of the estimated daily budgets (𝑤𝑖)𝑁𝑖=1 of bidders. The
budget distribution is significantly skewed, and it reflects how the online advertising
market is concentrated. In particular, the distribution shows that there are a few large
players and many smaller players. The former type includes large tech companies
like Google and Amazon.

Dynamic Incentive
Given the estimated structural model, we can analyze the magnitude of the dynamic
incentives created by the budget constraint. First, we look at the markdown (valua-



33

tion minus bid) obtained by the model. Averaging across time periods, bidders, and
days, we find that the markdown is 3.76, which is 83.5% of the expected valuation
(4.5). This markdown reflects both the fact that bidders face first-price auctions
and dynamic incentives. To decompose these two different incentives, we simulate
counterfactual static bids while taking the probability of winning as in the data but
removing the dynamics created by the budget constraint. We find that the counter-
factual static markdown is 2.67 on average, and it is 59.4% of the expected valuation.
This highlights that facing the first-price format for each auction leads bidders to
shade their bids by 59.4% from valuations, and the dynamic budget constraint leads
them to shade further by 24.2% on average. This demonstrates that dynamic incen-
tives in this market are significant for the bidders. Figure 1.8 shows the relationship
between the daily budget and the average markdown. We see that the heterogeneity
in budgets, in turn, leads to heterogeneity in how aggressive bidders are. We find
in our counterfactual analysis (Section 1.7) that this competitive variation has a
substantial welfare implication.

Figure 1.8: Budget vs %Average Markdown. Each point represents a bidder.

Our structural model also endogenizes entry, so it also allows us to quantify the
effect of budget constraints on bidders’ entry decisions. The static simulation
above also provides us the counterfactual static entry probabilities, purely coming
from stochastic entry costs. The average entry probability fitted by the model is
19.4%, and the average static entry probability is 45.1%, which again illustrates the
importance of capturing the dynamic budget constraint to analyze bidders’ behavior
in this market. Figure 1.9 shows the relationship between the daily budget and the
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average entry probability, and again it shows that heterogeneity in budgets leads to
heterogeneity in entry behaviors.

Figure 1.9: Budget vs Average Entry Probability. Each point represents a bidder.

Finally, we utilize the estimated structural model to decompose the dynamic incen-
tive into two components: one arising from the diminishing budget and the other
from approaching the terminal period. In the data, we observe that the average
bid decreases over time due to diminishing budgets. However, as time progresses,
bidders have fewer opportunities remaining, which should in principle make them
less constrained. Therefore, what we observe in the data results from the interplay
of these two effects: the diminishing budget effect and the diminishing remaining
opportunities effect. In Figure 1.10, we illustrate this by considering a bidder with a
median budget (approximately $8000) and comparing their average bid as fitted to
the data with the model-predicted average bid when their remaining budget is held
constant, thereby isolating the effect of having fewer opportunities as time elapses.
We observe that the bidder becomes more aggressive with a constant budget as time
progresses. However, the diminishing budget effect ultimately dominates, leading
to a declining bid path, as indicated by the fitted model.

1.7 Counterfactuals
Using the estimated structural model, we simulate a counterfactual motivated by an
institutional change that occurred several years ago. Although the current online ad
market primarily uses the first-price auction mechanism, ad exchanges (auctioneers
mediating publishers and advertisers) used the second-price format until around
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Figure 1.10: The median-budget bidder’s predicted mean bid trajectory compared
to the predicted path when keeping their remaining budget constant.

2018. The shift from the second price to the first price was spurred by an industry-
wise outcry that ad exchanges are charging something other than the second-price
even though claiming to be running the second price auction. Hence, this industry-
wide credibility loss of market makers led participants to demand the first-price
auction for its transparency over what winners pay. Motivated by this shift, we
simulate the second-price auction format using the estimated structural model as a
counterfactual scenario to analyze the revenue and welfare consequences.

Although the theoretical auction literature has established that the first-price auction
and the second-price auction provide the same revenue and welfare for the stan-
dard auction environment, it is ambiguous whether this holds for our environment.
Alcobendas and Zeithammer (2023) and Goke et al. (2022) provide event-based
analyses of this transition, and a prominent finding in their research is that bidding
agents required an extended period, often spanning several months, to adapt their
bidding strategies for the first-price auction format. As market conditions can dras-
tically change in such a time span, it highlights that event-based approaches may
be inadequate to provide an equilibrium analysis of the comparison between the
two formats. Our structural framework provides a way to compare the long-run
equilibrium outcomes from the first-price and second-price auctions.

Using the best-response iteration algorithm described in Appendix A.4, we solve
both the benchmark scenario with the first-price auction (FPA) and the counterfactual
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scenario with the second-price auction (SPA) as continuous-action dynamic games
with a finite-time horizon. The best-response formulation for the second-price
format is given in Appendix A.3.

Auction Format First Price Second Price
Price Average $2.364 $2.362

Price Variance 1.1246 3.565
Expected Total Revenue $480,427.33 $480,073.49

Expected Total Bidder Surplus $1,191,000 $1,185,000

Table 1.5: Aggregate statistics of the simulated results under the first-price auction
(status quo) and the second-price auction.

First Price Second Price %(FPA - SPA)
Large Bidders $191,362.15 $197,345.68 -3.03%

Medium Bidders $473,791.65 $467,448.36 1.36%
Small Bidders $297,439.98 $291,925.99 1.89%

Table 1.6: Total bidder surplus of each type of bidders.

Table 1.5 shows aggregate statistics of the two auction mechanisms. It shows that
the total revenue and total bidder surplus are slightly better under the first-price
format on average. We find that expected daily (total) revenue and expected total
bidder surplus are slightly higher under the first-price format than the second-price
format. They are both about 0.1% higher under the first-price format.

We find a more substantial difference when we analyze the difference in the welfare
distribution among bidders. First, we classify bidders based on their estimated
budgets. Based on the distribution of budgets in Figure 1.7, we classify two bidders
with budgets ranging from $50,000 to $90,000 as ‘Large,’ eleven bidders with
budgets between $10,000 and $50,000 as ‘Medium,’ and twenty bidders with budgets
below $10,000 as ‘Small.’ Table 1.6 shows the expected total utility obtained by
each type of bidders under the two mechanisms, and it shows that the top two bidders
with the largest budgets are better off under SPA while other bidders with smaller
budgets are worse off. The combined welfare of the two large bidders is 3% higher
in SPA than in FPA, and the one for the other bidders is 1% lower in SPA. This
suggests FPA has an interesting property in this environment that, when compared
to SPA, it redistributes welfare from bidders with large budgets to those with smaller
budgets. This suggests that the transition from SPA to FPA in the online display ad
market was a welfare improvement event for smaller players, in addition to the fact
that they can enjoy the transparency of FPA.
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Figure 1.11: Average price per period.

Now we compare the dynamic outcomes of FPA and SPA. Figure 1.11 shows the
average price per period. Note that the price is the highest bid under FPA and
the second-highest bid under SPA. The average price under FPA, which is the
mechanism used in the data, shows a declining pattern as we see in our descriptive
results (Figure 1.3). As explained before, this is coming from bidders becoming
conservative from decreasing budgets. Although the price path from SPA also
shows a declining pattern, there is some distinctive difference between them. The
figure shows that the average price from FPA is systematically higher than SPA until
around 3 PM, and then the relationship switches. This suggests that FPA generates
more revenue until 3 PM, and then SPA generates more revenue after that.

Figure 1.12: Average remaining budget per period for Large and Medium bidders.

Analyzing the spending path of players reveals the critical difference that is driving
the dynamic difference. Figure 1.12 shows the average remaining budget of Large
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and Medium bidders for each period. The spending path of Large bidders shows that
in the afternoon, their remaining budgets tend to be lower under FPA. Meanwhile,
the spending path of Medium bidders is relatively similar across the two auction
formats. This suggests that the price difference between FPA and SPA after 3 PM is
primarily driven by the large bidders having tighter budgets in the afternoon under
FPA.

Figure 1.13: Average surplus per period for Large and Medium bidders.

The difference in the spending speed of the large bidders across the two formats
has a significant welfare consequence for smaller bidders. Figures 1.13 show the
time series of average surplus per auction for Large and Medium bidders. They
show that Medium bidders experience a larger surplus under FPA after around 3
PM, when FPA becomes less competitive than SPA as shown in 1.11. Meanwhile,
we do not see such a pattern for Large bidders. This dynamic difference suggests
that the contrast in the welfare distribution is driven by smaller bidders enjoying less
competition in the afternoon from the large bidders under FPA.

What is driving the large bidders to spend more rapidly under FPA? We analyze the
entry and bidding behavior to understand this. First, in Figure 1.14, we find that
FPA has a higher expected spending per auction conditional on entering most of the
time. This demonstrates that players bid more aggressively under FPA. However, in
Figure 1.15, we also find that while Large bidders have similar entry patterns across
the two formats, Medium and Small bidders enter auctions at lower rates under
FPA. Since the number of entrants is not public, entry rates affect the probability
of winning an auction. Hence, borrowing the terminology of Li and Zheng (2009),
we find that for Large bidders’ spending, the competition effect coming from all
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Figure 1.14: Average spending from entered auctions for Large and Medium bidders.

Figure 1.15: Average proportion of auctions entered for Large and Medium bidders.

bidders submitting more aggressive bids under FPA dominates the entry effect from
Medium and Small bidders entering less frequently.

Finally, we analyze why bidders submit more aggressive bids when they enter
auctions under FPA. In the standard auction environment, one key difference between
the payment for FPA and SPA is that the variance is higher for SPA.23 Similarly,
Table 1.5 shows that this is also the case in our simulation. This difference can be
crucial for bidders in our environment since it affects their ability to control their
spending dynamically. In particular, there can be more "accidents" in which they end
up paying more than they expected. Looking back at the bidder’s bidding problem
under FPA in (1.1) and SPA in (A.1), we see that the spending enters nonlinearly in

23In fact, the revenue from the second-price auction is a mean-preserving spread of the one from
the first-price auction Krishna (2009).
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the objective function through the continuation value,

𝐸 [𝐸𝑉𝑡+1(𝑤𝑖𝑡 − 𝑆𝑖𝑡) | 𝛾, 𝜏] ,

where 𝑆𝑖𝑡 is the total spending from the current period, given bid strategy 𝛾 and
entry threshold 𝜏. Note that 𝐸𝑉𝑡 (·) exhibits a concave increasing pattern in our
estimated structural model because having a larger budget aids the bidder in securing
more future opportunities, albeit at a diminishing rate. Intuitively, the continuation
value makes bidders effectively risk averse; ceteris paribus, they dislike having a
higher variance in their payment because of its concavity in the spending from
the current period. Hence, bidders are more conservative under the second-price
auction, resulting from the willingness to sacrifice some gain with a reduction in the
variance.

The finance literature has extensively documented that financial constraints tend to
induce risk aversion in firms (Froot et al., 1993; Opler et al., 1999). In particular,
theoretical studies by Milne and Robertson (1996), Holt (2003), and Rochet and
Villeneuve (2005) investigate the dynamic problem of a financially-constrained firm
determining dividends and investment policies, and they consistently find that the
concavity in the value function with respect to the cash holding leads the firm to
exhibit risk aversion, which is in line with the findings in our model.

1.8 Conclusion
When price discovery is necessary for time-sensitive goods, it is common practice
to conduct an auction for each item sequentially. These dynamic settings may lead
to behaviors distinct from static environments and affect the revenue and welfare
outcomes of various auction formats. This paper investigates how intertemporal
budget constraints affect competition in the online advertising market. Furthermore,
we examine how bidders with varying budgets face disparate welfare outcomes under
different auction mechanisms.

We develop a finite-horizon dynamic game between bidders with heterogeneous
budgets facing numerous auctions in each period. We estimate the model using a
proprietary dataset of online ad auctions from Yahoo. Our estimation results show
that bidders indeed exhibit behavior consistent with dynamic budget constraints,
and there is a significant disparity in daily budgets among players, contributing to
the heterogeneity observed in participation and bidding behaviors.

To gain insights into the strategic implications of dynamic incentives arising from
intertemporal constraints, we conduct two counterfactual exercises. First, we simu-
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late bidders’ counterfactual entry and bidding behaviors if they were unconstrained.
This exercise reveals that, on average, approximately 30% of the markdown can be
attributed to dynamic constraints, which also lead to a reduction in participation
probability by around 25 percentage points.

As our second counterfactual exercise, we compare first-price (the status quo) and
second-price auction outcomes. Although both auction formats yield equivalent
revenue and welfare outcomes in the standard auction environment with symmetric
bidders, we discover that dynamics and heterogeneous budgets lead to substantial
welfare differences between them. Intermediate and smaller budget bidders fare
better in the first-price format due to reduced price variance, which allows for more
aggressive bidding. This heightened competition prompts larger bidders to spend
quickly, leading to diminished competition in later periods and ultimately benefiting
smaller bidders overall. This highlights that even a seemingly simple mechanism
choice can have competitive implications in such a dynamic environment.

The main contribution of this paper is to empirically analyze how budget constraints
shape competition in auctions when held sequentially. Our approach involves in-
troducing a novel structural framework for analyzing such an environment. The
relevance of our findings and framework extends beyond the online advertising
market. Sequential auctions are prevalent in various settings, encompassing online
retail platforms, financial markets, and energy markets, where buyers often face
financial constraints. Traditionally, these scenarios have been examined by treat-
ing individual auctions as isolated static events. However, our work reveals how
dynamic constraints can interlink these sequential auctions, introducing nuanced
insights into competition dynamics.
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C h a p t e r 2

THE IMPACT OF PRIVACY PROTECTION ON ONLINE
ADVERTISING MARKETS

2.1 Introduction
Privacy protection is a key topic in the current policy discussions in the digital
landscape. Much of the debate surrounds the use of third-party cookies, a device
long employed by internet companies to track user behavior across the web, collect
user information, and target them with highly personalized ads. However, heightened
concerns surrounding digital privacy have spurred policy debates and initiatives to
curb the pervasive use of third-party cookies. A wave of data privacy legislation has
been introduced or proposed in the European Union and across the United States to
limit the use of third-party cookies.1 In the private sector, Apple’s Safari and Mozilla
Firefox, two popular web browsers in the market, have disabled third-party cookies
by default. Google has planned to follow suit and phase out third-party cookies in
Chrome, currently the market-leading web browser. Dubbed “Cookiepocalypse” in
the industry, the plan met widespread outcry and pushback and has been postponed
several times because it strikes at the foundation of the online advertising market.
Moreover, removing third-party cookies—a decentralized protocol—could lead to
industry concentration in the online ad supply chain, triggering antitrust sirens from
legislators and government agencies.2

In this paper, we investigate the welfare consequences of Google’s plan to re-
move third-party cookies and introduce alternative tracking technologies under its
“Privacy Sandbox” initiative.3 Our key contribution is to quantify the unequal
distributional effects on the demand side of the online advertising market, which

1See the General Data Protection Regulation (GDPR) of the European Union, the California
Consumer Privacy Act of 2018 (CCPA), the Colorado Privacy Act (CPA), and the Virginia Consumer
Data Protection Act (VCDPA).

2The EU has launched an antitrust probe into Google’s plan to ban third-party cookies in Chrome.
In the United States, federal lawmakers have also voiced antitrust concerns over the plan in a 2020
report by the US House Subcommittee on Antitrust.

3For the purpose of evaluating the distributive effects of Chrome’s blocking third-party cookies
on various parties in the online advertising market and whether its advertising network constitutes
a monopoly, this article focuses on the publishers and advertisers who are direct participants in the
market. The welfare impact of the user side is nuanced and involves consideration of their preference
for privacy, a topic subject to much debate. See Barth and Jong (2017) for a discussion of the privacy
paradox.
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encompasses advertisers and their intermediaries who purchase advertising opportu-
nities and match them with advertisers. Although potentially beneficial to consumer
privacy, the proposed plans could have negative spillovers in terms of information
monopoly and anti-competitive practices of large companies. Removing third-party
cookies will undermine firms’ ability to target consumers and reduce the surplus of
advertisers and their intermediaries. Notably, certain intermediaries, such as major
tech companies like Google, can directly obtain users’ behavioral information from
its widely popular online products (the Google search engine, Gmail, YouTube,
etc.), while other smaller intermediaries have no such recourse. Although the pro-
posed new technology might partially offset the loss, we demonstrate that this is
insufficient to diminish the information advantage enjoyed by large players.

To this end, we analyze a large sample of detailed bid-level data of online banner
ad auctions from Yahoo, a prominent online news and media publisher. Online
ads are sold via auctions: online publishers offer ad spaces when users access their
websites, and advertisers bid to determine whose ad is shown. To streamline the
process, advertisers use demand-side platforms (DSPs) to participate in auctions
and bid on their behalf. Third-party cookies enter the process by allowing DSPs
to retrieve information associated with the user and more accurately evaluate the
ad opportunity. Our first set of empirical results confirms the value of third-party
cookies to advertisers. We find that bidders are more likely to submit a bid and bid
a higher amount in auctions with third-party cookies. Comparing DSPs’ bidding
decisions for users with third-party cookies to those without, we find that third-party
cookies increase DSPs’ bids by around 30% on average. The highest bid, which
translates into the publisher’s revenue, increases by as much as 80% on average.

Our primary interest is the revenue and welfare effects after Google blocks third-
party cookies on Chrome and introduces alternative tracking technologies on the
browser. Because the plan is yet to transpire and the bidders’ underlying valuations
are not observed, we adopt a structural approach to recover valuations and compute
the counterfactual revenue and welfare for players in the market. Our empirical
model is a first-price auction model with asymmetric bidders. We enrich the model
with two essential features of the advertising market: bidder heterogeneity and
auction heterogeneity. We characterize the equilibrium as a system of differential
equations and adopt a numerical approach to approximate the bidding functions.
The recovered valuation distributions and bidding strategies are consistent with the
intuition that bidders value impressions with cookies more and bid for those more
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aggressively.

We then simulate the effect of “Cookiepocalypse,” a third-party cookie ban on
Chrome without any alternative means to track users. We consider two counterfac-
tual specifications: a baseline symmetric ban in which all bidders are affected by
the cookie ban and no longer receive cookie information, and an asymmetric ban in
which one privileged bidder continues to observe cookie information for Chrome
users. The second scenario emulates the information advantage enjoyed by a “Big
Tech” player in the market. In the absence of third-party cookies, large firms like
Google still have first-party access to user information inaccessible to other online
advertising businesses. For each simulation, we solve the auction model under the
counterfactual valuation distributions without third-party cookies.

We find a large negative effect worthy of the name Cookiepocalypse: in the baseline
symmetric specification, such a ban would reduce the publisher’s revenue by 54%
and advertiser surplus by 40%. The asymmetric specification illustrates the egre-
giously unequal welfare distribution and anti-competitive impact of the cookie ban.
The privileged bidder with exclusive access to Chrome users’ data wins auctions
twice as often and earns even more surplus compared to the no-ban status quo. Our
results confirm and justify the antitrust concerns raised by Google’s plan.

Our second counterfactual builds upon the first and introduces an alternative tracking
technology that provides limited behavioral information on Chrome users. Google
is developing a set of tools under the “Privacy Sandbox” initiative to replace third-
party cookies. The spirit of its proposed technologies is to generate groups of users
with similar interests, giving advertisers a way of targeting them without exposing
details on individual users. We find that such a more privacy-friendly tracking
technology would indeed soften the impact of “Cookiepocalypse” in terms of both
welfare and concentration.4 The revenue loss decreases to 13% from 54% in the
first counterfactual and that advertiser surplus falls from 40% to 8%. Furthermore,
although the informationally advantageous bidder still gains more surplus compared
to the status quo, other bidders’ performance is only mildly impacted. Our results
demonstrate the importance and benefits of providing advertisers with an alternative
means to target users in order to mitigate the revenue and competitive impacts of

4There are additional antitrust implications over Google’s becoming the dominant data vendor
for its Privacy Sandbox product. For instance, these concerns led to antitrust investigations by the UK
and EU regulatory authorities (https://www.wsj.com/articles/google-chrome-privacy-
plan-faces-u-k-competition-probe-11610119589). These implications, while interesting,
are outside the scope of the present paper.

https://www.wsj.com/articles/google-chrome-privacy-plan-faces-u-k-competition-probe-11610119589
https://www.wsj.com/articles/google-chrome-privacy-plan-faces-u-k-competition-probe-11610119589
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the ban.

Related literature
Our paper contributes to several existing strands of literature. First, our article
contributes to the literature on targeting in advertising.5 Many empirical studies
find positive effects of targeting for advertisers and publishers (Rutz and Bucklin
(2012), Lewis and Reiley (2014), Ghose and Todri-Adamopoulos (2016)). Our
first set of empirical results is consistent with this strand of literature. Levin and
Milgrom (2010), on the other hand, discuss trade-offs in narrower versus broader
(or “conflated”) targeting and argue that the former thins out markets and reduces
competition and prices. Rafieian and Yoganarasimhan (2021) empirically confirm
this prediction and show that the optimal level of targeting is not necessarily the
finest level. Our results suggest that third-party cookies do not suffer from the
problem of market-thinning.

Methodologically, our empirical approach connects with the structural empirical
literature on auctions.6 We model ad auctions via a first-price auction model
with a binding reserve price, and we incorporate observed heterogeneity as well
as unobserved heterogeneity (Krasnokutskaya, 2011; Hu et al., 2013; Haile and
Kitamura, 2019). In addition, similarly to Athey et al. (2011), Krasnokutskaya and
Seim (2011), and Kong (2020), we allow the valuation distributions to differ across
bidders to capture the observed difference in their bidding behaviors.7 To overcome
the complexities introduced by auction and bidder heterogeneity, for both estimation
and counterfactual analysis, we employ Mathematical Programs with Equilibrium
Constraints (MPEC) developed by Hubbard and Paarsch (2009), Hubbard et al.
(2013), and Hubbard and Paarsch (2014) to obtain equilibrium bidding strategies
numerically.

Our work also contributes to the growing literature on the economics of privacy and
data protection policies.8 Several papers study the effect of restricting third-party

5See Goldfarb (2014) and section 6 of Goldfarb and Tucker (2019) for reviews of this literature
on targeting in online advertising.

6There are a number of surveys of this literature, including Hong and Paarsch (2006), Athey and
Haile (2007), and Perrigne and Vuong (2019).

7While our study takes the existing auction format (first-price) as given, in the particular context
of online ad auctions, there is a strand of theoretical literature studying auction design (Celis et al.
(2014), Abraham et al. (2020)).

8See Acquisti et al. (2016) and Brown (2016) for reviews of the economics of privacy and
Goldfarb and Que (2023) for a review of the economics of digital privacy. Several authors (Goldberg
et al., 2019; Aridor et al., 2020) study the impact of the European Union’s General Data Protection
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cookies in online advertising and find a loss ranging from 4 percent to 66 percent
(Beales and Eisenach, 2014; Marotta et al., 2019; Johnson et al., 2020). The industry
estimate is closer to the upper end, where a study by Google finds that disabling
third-party cookies results in an average loss of 52% (Ravichandran and Korula,
2019). While most of these papers are retrospective studies using historical data,
our paper provides a counterfactual scenario of the much-discussed Chrome cookie
ban which, while planned, has yet to take place.

Finally, this article also connects with the emerging literature on the anti-competitive
practices of big tech firms, particularly through the channel of data collection and
privacy policy. Consent requirements may favor large firms (Campbell et al. (2015),
Goldberg et al. (2019), Kesler et al. (2019)). Johnson et al. (2022) and Peukert et al.
(2022) show that the GDPR has led to a greater market concentration in the media
tech industry, with Google emerging as a clear winner from the policy. Our article
is the first to structurally evaluate the impact of Chrome’s plan to remove third-party
cookies from an antitrust point of view, connecting privacy policy with competition
and demonstrating the skewed distribution of profits due to information monopoly.

2.2 Market background
Online ad auctions
Our analysis focuses on real-time auctions of banner ad space shown to users when
they browse web pages. Banner ads are displayed in rectangular boxes between or
on the side of the main text. In industry parlance, the ad space for sale is called an
impression—each time an ad is displayed on the user’s screen, it is counted as one
impression. The seller is the publisher whose web page is browsed by the user and
who has an ad space for offer (Yahoo, in our case). The bidders are advertisers who
compete for the ad space to impress the user. The auctions are mediated through an
ad exchange, the “auction house” for ad spaces. Auctions at the Yahoo ad exchange,
which are the focus of this paper, are in the first-price sealed-bid format.

The process of online ad auctions can involve many parties interacting automatically
in real time. The auction is triggered when the user opens the web page through her
browser. The publisher packages the offer of an ad space along with information
about the user and sends it to the ad exchange.9 The ad exchange then sends out a

Regulation (GDPR) on web traffic and ad revenue. See Johnson (2022) for a survey of studies on the
economic consequences of GDPR.

9The offer is usually made through a supply-side platform server that acts on behalf of the
publisher. This step is not relevant to our purpose. A data management platform could also be
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bid request to potential bidders (DSPs), inviting them to submit a bid. Given the
large volume of auctions and the complexity of online bidding, advertisers do not
participate directly in these auctions, but rather via demand-side platforms (DSPs),
which bid on behalf of their advertiser clients.10 Using information about the user
ready to view the ad, the DSP selects the most suitable advertiser for that impression
and calculates the optimal bid for the ad space, considering competition from other
DSPs. In any auction, DSPs typically submit only one bid on behalf of one of
their advertiser clients.11 In what follows, we use the terms advertisers and DSPs
interchangeably and abstract away from the distinction between the DSPs and their
advertiser clients.

DSPs are heterogeneous based on their purpose, specialty, and scope, and in this
paper, we highlight that such heterogeneity is reflected in their bidding behavior.
DSPs fall into three categories: general-purpose DSPs, rebroadcasters, and special-
ized DSPs. General-purpose DSPs provide a wide range of targeting options and
optimization tools to help advertisers reach their target audience. They are typi-
cally used by large and medium-sized advertisers with sizable budgets and broad
campaign objectives. Rebroadcasters, as the name implies, rebroadcast advertis-
ing opportunities to their own ad exchanges and consolidate bids from multiple
DSPs participating in them, acting as intermediaries that increase market thickness.
Rebroadcasters often provide additional services to help other DSPs target users.
Specialized DSPs focus on reaching potential customers who have indicated special-
ized interests or previously interacted with a brand or website. They are particularly
valuable for e-commerce advertisers looking to re-engage potential customers as
well as subscription-based services to retain existing subscribers.

Anticipating our empirical implementation, we further categorize general-purpose
DSPs and specialized DSPs by their size as either large or small. The size of the DSP
captures the budget, experience, and sophistication of the DSPs. These aspects are
relevant to their valuation distributions of impressions as well as bidding strategies,
which are crucial in our empirical exercise below.

involved to retrieve stored information of the user that may be of interest to the advertisers. The
supply-side platform packages the ad space offer with all relevant information and sends it to the ad
exchange.

10Many major internet companies, e.g., Amazon, Facebook, and Google, own DSP services.
These DSPs bid for ad spaces on their own companies’ and other publishers’ websites. Yahoo also
maintains its own DSP.

11Decarolis et al. (2020) and Decarolis and Rovigatti (2021) study the potential anti-competitive
effects of the delegation between the advertisers and the DSPs.
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Cookies and behavioral targeting
To make their ads more effective, advertisers use cookies to track user activities
and implement behavioral targeting. Cookies are small files of data created by a
web server and stored on the user’s device when a user browses a website. Cookies
contain user-associated IDs that point to entries stored in databases containing
information about the user. For example, if a user visits a news website for the
first time and selects English as her preferred language, the website stores this
information in its server and saves a cookie file on the user’s device. The next time
the user visits the website, it will read the local cookie file, identify the user with
the information on the database, and automatically select English as the preferred
language. This type of cookie is accessible only by this specific news website and
is known as a first-party cookie because it is hosted and used exclusively by the
website. First-party cookies are generally not controversial because they improve
user experience using stored information such as login credentials, settings and
preferences, and items in the shopping cart.

Third-party cookies, on the contrary, are the subjects of intense scrutiny because of
their role in user activity tracking and behavioral targeting. As the name suggests,
they are cookies created by third-party entities linking to their respective databases.
To continue the example above, in addition to its own content, the news website
also contains bits of websites embedded by third-party servers, such as banner ads
or share buttons linking to social media. These servers could also store cookies
of their own to identify the user and track her activity on the news website. A
distinguishing feature of third-party cookies is that they can be used to track the
user’s activities across a range of websites. If the user visits a retail website that
hosts the same cookie and browses, say, headphones, the third-party server would
store this information and match it with the same user who visited the news website
earlier. This allows cross-website ad targeting as it enables an ad for the headphones
she browsed on the retail website to be shown to this user during her next visit to
the news website. Third-party cookies, therefore, play a critical role in behavioral
targeting in online advertising and as such, are often considered an infringement on
consumer privacy.

Privacy protection
Given the controversial nature of third-party cookies and the growing concern over
privacy breaches, many internet entities have either eliminated or curtailed third-
party cookies in recent years. Web browsers have been at the forefront of this move.
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Safari and Firefox (which we refer to as the blocked browsers) have already blocked
third-party cookies for their users and effectively shut down behavioral targeting
by blocking the execution of scripts embedded by third-party servers. Third-party
cookies are mostly unavailable for users of blocked browsers. On the other hand,
as of 2022, Chrome, together with a few other browsers including Microsoft Edge
(the allowed browsers), still enables third-party cookies by default. Third-party
cookies are generally available on these browsers but could still be absent for a host
of reasons.12

In addition to private-sector initiatives, the CCPA and other similar privacy regula-
tions require large websites like Yahoo to implement a “Do Not Sell My Personal
Information” link that enables users to opt out of the sale of their personal informa-
tion. Under such an opt-out arrangement, publishers are not allowed to monetize
the user’s personal information (cookie, IP address, or precise geo-location data)
by sharing it with third parties.13 When cookies are no longer employed, DSPs
have significantly less information about users and cannot engage in accurate be-
havioral ad targeting. In our empirical analysis below, we will exploit the variation
in third-party cookie availability to evaluate the effect of behavioral ad targeting.

2.3 Data and Descriptive Statistics
We employ bidding data from banner ad auctions on sixteen websites of Yahoo,
including Homepage, News, Finance, etc. We focus on a specific display ad format
known as medium rectangular (MREC) units, which has the dimension 300×250
and is displayed to the right of the main content. This is one of the most popular
ad formats, and the fixed size and position help us eliminate potential heterogeneity
arising from these aspects. We consider a sample of user impressions from the
United States during one week in May 2022. Figure 2.1 shows the geographical
distribution of our sample, which roughly coincides with the population density of
the US. The dataset consists of over 5.5 million bids from about 740,000 auctions.

Table 2.1 presents summary statistics of key variables in the dataset. The variable
bid is the submitted bid price of an individual DSP. For reasons of confidentiality,
we normalize the submitted bids to have a sample mean equal to 1. For every
auction, we observe the number of bidders (out of a total of 33 DSPs) who entered

12For example, third-party cookies could be unavailable if the user chooses to block third-party
cookies in their browser settings, or browses in private (incognito) mode, or has recently cleared
cookies in her browser.

13Internet companies can still use broad geographical location (e.g., city) and contextual infor-
mation of ad opportunities coming from these users for targeted ads at a broader stroke.
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Figure 2.1: Geographical distribution of impressions.

Note: Each dot represents the number of impressions originating within the 10 by 10 km2 area around
the dot during the week.

the auction and submitted a bid, as well as the winning (highest) bid. There is
substantial variation in the number of actual bidders for each auction, with a mean
of 7.5 bidders and a standard deviation of 4.7. Our empirical model will factor in
this important behavioral pattern and account for bidders’ entry decisions.

Two key variables describe the availability of third-party cookies for each impres-
sion. The variable percentage of cookie matched is the percentage of DSPs in
each auction who matched the user with a profile in the bidders’ database con-
structed with third-party cookies. Small percentages of cookie matched indicate
that less information is available for the user.14 The variable cookie matched is
a binary variable indicating whether the percentage of cookie matched is nonzero
for the impression. In other words, it indicates whether at least one bidder has
a cookie identifier for the user. For ease of interpretation, our empirical analysis
will primarily focus on this variable. In what follows, we refer to impressions with
cookie matched = 1 as “cookie impressions” and those with cookie matched = 0 as

14Cookie-match information is unavailable for two of the DSPs in our sample; for that reason, we
do not model cookie availability at the user-DSP level but rather construct the aggregate measure at
the user level.
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Table 2.1: Summary statistics.

Variable No. observations Pct. missing Mean Std. Dev. Min Median Max

Auction:
Bid 5,529,489 0.000 1.000 1.692 0.064 0.589 275.760
No. bidders 736,745 0.000 7.505 4.745 1.000 7.000 26.000
Winning (highest) bid 736,745 0.000 2.052 3.206 0.064 1.211 275.760

Cookie availability:
Pct. cookie matched 736,745 0.000 0.577 0.404 0.000 0.800 1.000
Cookie matched 736,745 0.000 0.689 0.463 0.000 1.000 1.000

Privacy:
Opt-out 736,745 0.000 0.089 0.284 0.000 0.000 1.000
Blocked 736,745 0.000 0.215 0.400 0.000 0.000 1.000

Device:
Computer 736,745 0.000 0.968 0.177 0.000 1.000 1.000

Demographics:
Female 736,745 0.000 0.125 0.331 0.000 0.000 1.000
Male 736,745 0.000 0.146 0.353 0.000 0.000 1.000
Gender unknown 736,745 0.000 0.729 0.444 0.000 1.000 1.000
Age 24 and below 736,745 0.000 0.001 0.031 0.000 0.000 1.000
Age 25 to 44 736,745 0.000 0.053 0.225 0.000 0.000 1.000
Age 45 to 64 736,745 0.000 0.120 0.325 0.000 0.000 1.000
Age 65 and above 736,745 0.000 0.064 0.245 0.000 0.000 1.000
Age unknown 736,745 0.000 0.761 0.426 0.000 1.000 1.000

Proxies for user information:
Interest segments (10,000s) 736,745 0.581 2.558 1.100 0.000 2.551 8.741
Months monetized 736,745 0.580 29.118 24.225 0.000 32.000 55.000
Total revenue (normalized) 736,745 0.580 0.000 1.000 -0.685 -0.370 94.183
Average revenue (normalized) 736,745 0.580 0.003 0.063 -26.035 0.000 1.712
Days in database (10,000s) 736,745 0.725 1.742 0.510 0.000 1.912 1.912

“cookieless impressions.”

The variable opt-out is a binary variable indicating if the user opts out of behavioral
targeting. The variable blocked is a binary variable indicating if a browser blocks
third-party cookies by default, i.e., it is equal to 1 for Safari or Firefox and 0 for
other browsers. About 9% of auctions are for opt-out impressions, while 20% of
auctions involve impressions using browsers that block third-party cookies.

We include additional characteristic variables indicating the amount of information
available on the user. Yahoo’s database of user profiles (including those without
Yahoo accounts) contains its best guess (based on machine learning procedures) of
the user’s characteristics and proxies well for the user-specific information that can
be inferred from third-party cookies. These include gender and age categories. The
variable interest segments (in 10,000s) tallies the total number of interest segments
that the user belongs to, where each segment is a prediction of the user’s likely interest
in a particular subject (e.g., automobile, basketball, gardening, etc.). The variable
months monetized is the number of months that the user has been monetized by
Yahoo, and the total revenue and average revenue are the total and average monthly
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Table 2.2: Summary statistics of impression characteristics by browser.

Chrome Edge Safari Firefox Other

Proportion 0.576 0.199 0.109 0.106 0.009
Cookie matched 0.869 0.847 0.000 0.000 0.842
Opt-out 0.088 0.097 0.056 0.121 0.033
Female 0.137 0.139 0.000 0.000 0.049
Male 0.154 0.170 0.000 0.000 0.065
Gender unknown 0.709 0.691 1.000 1.000 0.886
Age 24 and below 0.001 0.001 0.000 0.000 0.000
Age 25 - 44 0.074 0.050 0.000 0.000 0.015
Age 45 - 65 0.153 0.150 0.000 0.000 0.055
Age 65 and above 0.068 0.117 0.000 0.000 0.048
Age unknown 0.703 0.681 1.000 1.000 0.881

revenue derived from the user, respectively, where total revenue is normalized with
mean 0 and standard deviation 1. Finally, the variable days in database (in 10,000s)
is the number of days for which the user profile has existed in Yahoo’s database. A
smaller number of days may imply that less information is available for the user.15

In addition to the user-specific characteristics, we observe variables associated with
the origination of the impression. These include the time (hour) and the city of the
impression, the website (a total of 16 including Yahoo Homepage, News, Finance,
etc.) that published the impression, the device (computer) which indicates the user
browsed with either a computer or a smartphone/tablet, and the browser (Safari,
Firefox, Edge, Chrome, and others) with which the user accessed the web page.

Because our analysis focuses on the impact of Google’s plan to terminate third-party
15We note two caveats of these user-specific variables. First, while these variables quantify the

user information observed by Yahoo’s DSP, in our empirical analysis, we use these variables to
proxy for what any DSP knows about these users, i.e., we assume all the DSPs observe the same
information as Yahoo. Without data from other DSPs, it is impossible to validate this assumption;
however, since many of the users in our dataset have registered Yahoo accounts, we believe that the
information that Yahoo has on these users represents a “best case” (upper-bound) on the information
that any DSP might have on these users.

Second, we observe a large incidence of missing data: about 70% of the users have unknown
age and gender information. As age and gender are typically inferred indirectly from users’ internet
activities using machine learning algorithms, missing values for these variables typically imply that
not enough tracking information is known about these users to permit reliable inference. Furthermore,
the variables interest segments, months monetized, and revenue are unknown for around 60% of the
analyzed users. The lack of such information is often due to users opting out or using browsers
that block third-party cookies. To address this problem and as a robustness check, we have also
implemented our empirical analysis on the subsample of users with a Yahoo account, for which the
overall incidence of missing data is lower, and confirmed the robustness of our results.
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cookies on Chrome, in Table 2.2, we show the mean statistic of key impression
characteristics, broken down by browser. Importantly, Chrome accounts for almost
60% of the impressions in our data and dominates the browser industry, suggesting
a substantial impact of Google’s plan on the market. Impressions from Safari
and Firefox, the two browsers that ban third-party cookies by default, account for
roughly 20% of impressions. Accordingly, impressions from Safari and Firefox are
missing third-party cookie information, i.e., cookie matched = 0, and gender and
age information is unavailable for these impressions as well.

Bidding patterns
Table 2.3 presents a comparison of summary auction statistics for impressions with
and without cookies. For either category, we calculate the averages and standard
deviations (in parentheses) of the bid, the winning bid, the number of bidders, and
the entry probability. Impressions with third-party cookie identifiers fare better
for all variables of interest. In particular, submitted bids on average are about
25% higher (1.0 versus 0.76) for cookie impressions, and winning bids for cookie
impressions are over two times higher (2.5 versus 1.2) than cookieless impressions.
The difference arises from both higher submitted bids and a larger number of
participating bidders, with bidders more than twice as likely to enter auctions for
cookie impressions. Finally, the standard deviation of bids and winning bids are
higher for cookie impressions. This is expected because DSPs have the most
information on these users, which increases the targeting opportunities and hence
the variation in advertisers’ bids.

Figure 2.2a shows the empirical CDFs of submitted bids in the dataset for five
categories of DSPs in the dataset by their type and size (as discussed in Section
2.2): 5 large general-purpose, 10 small general-purpose, 9 rebroadcaster, 3 large
specialized, and 6 small specialized DSPs. Consistent with the results in Table 2.3,
DSPs tend to bid higher for cookie impressions. In fact, the distribution of bids for
cookie impressions first-order stochastically dominates that for cookieless impres-
sions. Figure 2.2a also shows heterogeneity in submitted bid distributions among
different groups of DSPs. The differences are driven by a few factors: Large DSPs
generally have better access to user information, have more budget and experience,
and are more sophisticated in matching advertisers with impressions. Specialized
DSPs could focus on some areas of advertising, such as retailing or reconnecting
with existing customers (e.g. retargeting). In terms of auction participation, Figure
2.2b displays the frequencies with which the five groups of DSPs participate in
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Table 2.3: Comparison between auctions with and without third-party cookies.

Variable Cookie impressions Cookieless impressions

Bid 1.041 0.764
(1.715) (1.566)

Winning bid 2.454 1.166
(3.487) (2.278)

No. bidders 9.283 3.558
(4.315) (2.933)

Entry probability 0.265 0.102
(0.441) (0.302)

Notes: The mean values are reported in both columns and standard deviations are in parentheses
below. The bid is averaged at the bid level. The winning bid and the number of bidders are averaged
at the auction level. Entry probability is calculated by first constructing a binary variable Entry for
every auction-bidder pair. It is equal to 1 if the bidder submitted a bid in the auction.

auctions for impressions with and without third-party cookies, and it also highlights
heterogeneity in entry behavior across DSPs. The observed heterogeneity among
the bidding DSPs motivates us to adopt an auction model with asymmetric bidders
in the structural estimation exercise discussed below.

Evidence of the value of third-party cookies
Next, we present reduced-form evidence of the value of third-party cookies to
advertisers. Specifically, we run regressions of the following form:

𝑦𝑖 = 𝛽𝑐Cookie𝑖 + x′𝑖𝜷 + 𝛼𝑖 + 𝜖𝑖 (2.1)

where 𝑖 indexes a bidder or an auction depending on the model, 𝑦𝑖 is the outcome
variable to be specified later, Cookie𝑖 indicates if third-party cookies are available for
the impression, x𝑖 is a vector of covariates that include gender and age information as
well as proxies for the amount of information available on the user, and 𝛼𝑖 includes
fixed effects of the hour in the day, the city, the website, and the browser. For
models at the bidder level, we also include a DSP fixed effect to capture bidder
heterogeneity. Standard errors are clustered by the hour, the city, and the website
to account for potential correlations. The variable of interest is Cookie𝑖, where a
positive and significant estimate of 𝛽𝑐 would indicate the value of third-party cookies
to the advertisers.

We first analyze the effect of cookie availability on submitted bids by taking the
outcome variable 𝑦𝑖 = log(Bid𝑖) for every bid 𝑖 in equation 2.1. Table 2.4 columns



60

Figure 2.2: Cookie vs. cookieless: observed bidders’ behavior by DSP group.

(a) Empirical CDFs of submitted bids (log scale)

(b) Average entry frequencies.
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Table 2.4: Regression results for submitted bids and winning bids.

Dependent Variables: log(Bid) log(Winning bid)
(1) (2) (3) (4) (5)

Cookie 0.335∗∗∗ 0.318∗∗∗ 0.314∗∗∗ 0.887∗∗∗ 0.783∗∗∗
(0.028) (0.046) (0.031) (0.018) (0.042)

Opt-out 0.013 -0.004 -0.021
(0.026) (0.020) (0.024)

Computer -0.231∗∗∗ -0.177∗∗∗ -0.397∗∗∗
(0.028) (0.030) (0.055)

Gender female 0.097∗∗∗ 0.095∗∗∗ 0.260∗∗∗
(0.012) (0.009) (0.018)

Gender male 0.069∗∗∗ 0.064∗∗∗ 0.221∗∗∗
(0.010) (0.007) (0.014)

Age 24 and below 0.066∗∗∗ 0.050∗∗∗ -0.054
(0.008) (0.009) (0.033)

Age 25 to 44 0.015∗ 0.009 -0.100∗∗∗
(0.008) (0.007) (0.016)

Age 45 to 64 -0.010 -0.015∗∗ -0.141∗∗∗
(0.006) (0.006) (0.019)

Age 65 and above -0.022∗∗ -0.031∗∗∗ -0.178∗∗∗
(0.009) (0.008) (0.016)

Interest segments -0.002 0.002 0.044∗∗∗
(0.001) (0.001) (0.005)

Months monetized 0.003∗∗∗ 0.002∗∗∗ 0.003∗∗∗
(0.000) (0.000) (0.000)

Total revenue (normalized) -0.037∗∗∗ -0.027∗∗∗ -0.043∗∗∗
(0.002) (0.002) (0.003)

Days in database -0.051∗∗∗ -0.044∗∗∗ -0.053∗∗∗
(0.004) (0.004) (0.005)

Fixed-effects
Time (hour) Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes
Website Yes Yes Yes Yes Yes
Browser Yes Yes Yes Yes Yes
DSP Yes

Observations 5,529,489 5,529,489 5,529,489 736,745 736,745
Adjusted R2 0.10623 0.11052 0.31362 0.24918 0.26361

Notes: The base levels for age and gender are both Unknown. Standard errors are clustered by the
hour of the day, the city, and the website and are heteroskedasticity-robust. ***, **, and * indicate
statistical significance at the 1, 5, and 10% levels, respectively.



62

Table 2.5: Regression results for the number of bidders and entry decision.

Dependent Variables: No. bidders Entry
(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS Logit

Cookie 5.796∗∗∗ 5.220∗∗∗ 0.161∗∗∗ 0.145∗∗∗ 0.145∗∗∗ 0.184∗∗∗
(0.281) (0.259) (0.008) (0.007) (0.007) (0.013)

Opt-out 0.098 0.003 0.003 0.018∗
(0.133) (0.004) (0.004) (0.010)

Computer -0.926∗∗∗ -0.024∗∗∗ -0.024∗∗∗ -0.045∗∗∗
(0.103) (0.003) (0.003) (0.006)

Gender female 0.768∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.035∗∗∗
(0.046) (0.001) (0.001) (0.003)

Gender male 0.327∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.021∗∗∗
(0.054) (0.002) (0.002) (0.004)

Age 24 and below -0.182∗ -0.005∗ -0.005∗ -0.018∗∗∗
(0.090) (0.003) (0.003) (0.004)

Age 25 to 44 -0.498∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.020∗∗∗
(0.071) (0.002) (0.002) (0.004)

Age 45 to 64 -0.627∗∗∗ -0.017∗∗∗ -0.017∗∗∗ -0.023∗∗∗
(0.094) (0.003) (0.003) (0.005)

Age 65 and above -0.805∗∗∗ -0.022∗∗∗ -0.022∗∗∗ -0.028∗∗∗
(0.099) (0.003) (0.003) (0.005)

Interest segments 0.432∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗
(0.059) (0.002) (0.002) (0.002)

Months monetized 0.019∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗
(0.002) (0.000) (0.000) (0.000)

Total revenue (normalized) -0.180∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.006∗∗∗
(0.012) (0.000) (0.000) (0.000)

Days in database -0.256∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.008∗∗∗
(0.021) (0.001) (0.001) (0.001)

Fixed effects
Time (hour) Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Website Yes Yes Yes Yes Yes Yes
Browser Yes Yes Yes Yes Yes Yes
DSP Yes

Observations 736,745 736,745 26,522,820 26,522,820 26,522,820 2,652,282
Adjusted R2 0.44635 0.46616 0.04701 0.04908 0.26756

Notes: The base levels for age and gender are both Unknown. Column (6) reports the marginal
effects of the logit model at the mean or mode values of the explanatory variables using a 10%
sample of the dataset. The raw estimates are reported in table B.1 of the appendix. Standard errors
are clustered by the hour of the day, the city, and the website and are heteroskedasticity-robust. ***,
**, and * indicate statistical significance at the 1, 5, and 10% levels, respectively.
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(1)-(3) report the results of three alternative specifications. Column (1) includes
only cookie availability and fixed effects; column (2) adds additional covariates;
column (3) further adds a DSP fixed effect to account for bidder heterogeneity.
We find quantitatively similar results in these models: having third-party cookies
increases submitted bids by around 30%.

Next, we take the outcome variable 𝑦𝑖 = log(Winning bid𝑖) for each auction 𝑖 in
equation 2.1 to examine the effect of cookie availability on the highest bid, which
translates to the revenue for the publisher (Yahoo). Table 2.4 columns (4) and
(5) report the results of two alternative specifications. We find that having third-
party cookies increases the highest bids, and consequently Yahoo’s revenue, by a
substantial 75%. Observe that this effect is more than double the effect in columns
(1)-(3). The difference can be attributed to the fact that the bid regression does not
account for entry; it only captures submitted bids.

An important feature of the online ad market is that bidders participate in auctions
selectively. Recall that table 2.1 showed substantial variation in the number of
bidders for different auctions, with a mean of 7.5 bidders and a standard deviation
of 4.7. Therefore, we run regression 2.1 with the outcome variable 𝑦𝑖 as the number
of bidders in each auction 𝑖. Table 2.5 columns (1) and (2) report the results of
two alternative specifications. We find that, on average, an auction with third-party
cookie identifiers induces about 5 more bidders (out of 33) to participate in the
auction compared to an impression without. This is broadly consistent with some
DSPs’ strategies who simply only enter auctions with third-party cookie identifiers.

Lastly, we examine the effect of cookie availability on the entry decision of bidders
in the auctions. In model 2.1, the outcome variable 𝑦𝑖 is Entry𝑖, a binary variable
constructed for each auction-bidder pair that is equal to 1 if the bidder submitted a
bid in the auction. Table 2.5 columns (3)-(5) report the results of three alternative
specifications of such a linear probability model. We find that, on average, bidders
are about 14% more likely to participate and submit a bid if the impression has third-
party cookie identifiers. Assuming independence between the 33 DSPs, the increase
in entry probability translates to an average increase in the number of bidders by
33 × 0.14 ≈ 5, which is consistent with the estimation above. As a robustness
check, we estimate a logit model for auction participation, Entry𝑖 = 1{𝛽𝑐Cookie𝑖 +
x′
𝑖
𝜷 + 𝛼𝑖 + 𝜖𝑖 ≥ 0}, where 𝜖𝑖 follows the standard logistic distribution. Table 2.5

column (6) reports the estimated marginal effects at the mean or mode values of
the explanatory variables. The magnitude of the effect of cookies is comparable to
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those of the linear models. In the appendix, we report the point estimates of the
logit model. The estimated coefficient on cookie availability translates into an odds
ratio of 𝑒1.19 = 3; that is, the probability that a bidder participates in an auction for
a cookie impression is three times higher than that for an auction for a cookieless
impression.

2.4 Structural Estimation
Auction model and equilibrium characterization
Our empirical model is an independent private-value auction model with asymmetric
bidders and binding reserve price (Krishna, 2009; Hubbard and Paarsch, 2014). We
adopt the independent private-value assumption to reflect how users’ impressions
are horizontally differentiated; for instance, an impression from a male consumer is
more valuable for male fashion brands but less valuable for female fashion brands. As
our descriptive evidence (Figure 2.2a) shows that there is significant heterogeneity
in bidding behavior across bidders, we allow for bidder heterogeneity in valuation
distributions. Finally, our descriptive evidence shows that bidders enter only a
fraction of auctions, and auctions in our data have reserve prices that vary across
different websites.16

Consider an auction of an impression with a reserve price 𝑟 and 𝑖 = 1, 2, · · · , 𝑁
potential buyers. Suppose each bidder 𝑖 draws an independent private value 𝑣𝑖
from a distribution 𝐹𝑖 (𝑣𝑖) that is differentiable with a density function 𝑓𝑖 (𝑣𝑖). We
suppress the dependency on auction characteristics now and will allow them to
depend on both observed and unobserved auction characteristics later. Assume that
all valuation distributions have a common, compact support [0, 𝑣]. If no one bids
above the reserve price, then the impression is not sold. Otherwise, the auction is
resolved by the first-price mechanism where the bidder with the largest bid wins the
auction and pays his bid 𝑏𝑖.

Suppose that all bidders are in equilibrium and use a bidding strategy 𝛽𝑖 (𝑣𝑖) that
is differentiable and monotone increasing in his valuation 𝑣𝑖. If the submitted bid
𝑏𝑖 is less than the reserve price 𝑟, he loses the auction and receives zero profits.

16An alternative approach is to introduce an entry stage where bidders endogenously decide if
they would participate in an auction by comparing the expected profit to the bid preparation cost.
This is not applicable in our context because the bid preparation cost in terms of computation and
communication with the ad exchange is minimal compared to the reserve price.
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Otherwise, the expected profit of bidder 𝑖 given his bid 𝑏𝑖 is

𝜋𝑖 (𝑏𝑖) = (𝑣𝑖 − 𝑏𝑖)
∏
𝑗≠𝑖

𝐹𝑗
(
𝜑 𝑗 (𝑏𝑖)

)
, (2.2)

where, for simplicity, 𝜑 𝑗 (𝑏) = 𝛽−1
𝑗
(𝑏) denotes the inverse bid function.17 The first-

order condition of the profit maximization problem yields the following equilibrium
condition:

1
𝜑𝑖 (𝑏𝑖) − 𝑏𝑖

=
∑︁
𝑗≠𝑖

𝑓 𝑗
(
𝜑 𝑗 (𝑏𝑖)

)
𝐹𝑗

(
𝜑 𝑗 (𝑏𝑖)

) 𝜑′𝑗 (𝑏𝑖) (2.3)

for 𝑖 = 1, 2, · · · , 𝑁 . Equation (2.3) is a system of nonlinear ordinary differential
equations in the inverse bid functions 𝜑1, · · · , 𝜑𝑁 that characterizes the Bayes-Nash
equilibrium.18

In addition to the characterization above, we require two additional boundary con-
ditions in order to solve the system. The lower boundary condition requires that
any bidder who draws the reserve price 𝑟 would bid the reserve price. That is, for
𝑖 = 1, 2, · · · , 𝑁 ,

𝜑𝑖 (𝑟) = 𝑟. (2.4)

The upper boundary condition requires that all bidders will submit the same bid 𝑏
when they draw the highest valuation 𝑣. In terms of the inverse bid function 𝜑𝑖, we
have for 𝑖 = 1, 2, · · · , 𝑁 ,

𝜑𝑖 (𝑏) = 𝑣. (2.5)

Specifications and estimation procedure
In every auction, there is a constant number of 𝑁 = 33 potential bidders who
are both qualified and ready to submit a bid.19 As explained earlier, we model
auction interaction at the DSP level rather than the thousands of advertisers that the
DSPs bid on behalf of. This assumption stays close to reality and also simplifies
the computation. We maintain the assumption that auctions in our sample are

17Observe that the probability of winning is

Pr(𝑖 wins|𝑏𝑖) =
∏
𝑗≠𝑖

Pr
(
𝑏𝑖 > 𝛽 𝑗 (𝑣 𝑗 )

)
=
∏
𝑗≠𝑖

Pr
(
𝑣 𝑗 < 𝛽

−1
𝑗 (𝑏𝑖)

)
=
∏
𝑗≠𝑖

𝐹𝑗
(
𝛽−1
𝑗 (𝑏𝑖)

)
=
∏
𝑗≠𝑖

𝐹𝑗
(
𝜑 𝑗 (𝑏𝑖)

)
.

18The existence and uniqueness of such an equilibrium are generally guaranteed under mild con-
ditions. See Appendix G of Krishna (2009) for a discussion on the existence of such an equilibrium.
See Lebrun (1999) for the conditions for the uniqueness of the equilibrium.

19These are the DSPs that have registered and established a business relationship with Yahoo’s ad
exchange, and all of them were actively participating in the ad exchange during the sample period.
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independent of one another, abstracting away from potential dynamic considerations
of the DSPs.

Consider an auction 𝑡. Let 𝑥𝑡 denote the observed characteristics known to all DSPs
(such as the user’s cookie availability, opt-in/opt-out status, browser type, and other
characteristics including gender and age). We let the valuation distribution of each
bidder 𝑖, 𝐹𝑖𝑡 (·), depend on both observed and unobserved auction characteristics.
Specifically, we assume that the log of valuation, log(𝑣𝑖𝑡), follows a normal distri-
bution with mean 𝑥′𝑡𝛾 + 𝛼𝑖 + 𝑢𝑡 and variance 𝜎2

𝑖
, where 𝑢𝑡 is the unobserved auction

heterogeneity that is distributed normally with mean 0 and variance 𝜎2
𝑢 .20

There are two features in our specification that are integral to online ad auctions.
First, we account for bidder heterogeneity by allowing asymmetric bidder valuation
distributions through 𝛼𝑖 and 𝜎𝑖. We let each bidder 𝑖 fall into five distinct groups
according to their type and size: large general-purpose, small general-purpose,
rebroadcaster, large specialized, and small specialized (see section 2.2). With slight
abuse of notation, the subscript 𝑖 of the parameters 𝛼𝑖 and 𝜎𝑖 denotes the group to
which the bidder belongs. As explained, different types of DSPs cater to advertisers
of different budgets, objectives, and targeted consumers, which may lead to an
ex-ante difference in their valuations for impressions. The size of DSPs is a key
dimension that captures their experience and expertise in matching advertisers with
impressions.21

Second, the term 𝑢𝑡 captures the unobserved heterogeneity of the auction and is
assumed to take a normal distribution with mean 0 and standard deviation 𝜎𝑢. It
essentially has a multiplicative effect on valuations as in Krasnokutskaya (2011).
This allows for bids within an auction to be correlated conditional on observable
characteristics, suggesting that there are hidden characteristics commonly observed
by the DSPs but not the econometrician.

We adopt a nested estimation procedure in which the inner loop solves for the inverse
bidding strategies 𝜑𝑖𝑡 (𝑏) using the equilibrium characterization (2.3) and the outer

20The parametric approach follows the earlier empirical studies of auctions with high-dimensional
auction characteristics (Athey et al., 2011; Krasnokutskaya and Seim, 2011). A nonparametric
approach is not ideal in our context because of the curse of dimensionality. In addition, the binding
reserve price gives rise to the truncation of valuation and unobserved heterogeneity. The method
allows us to parametrically recover the valuation distributions and the distribution of unobserved
heterogeneity, components important for counterfactual simulations.

21A fully asymmetric version of the model with a distinct valuation distribution for every bidder
is not desirable in our empirical setting. This alternative information structure would require that
bidders know all their competitors’ exact valuation distributions—a very strong assumption. It is
more realistic to assume that bidders only know their competitors’ group-specific parameters.
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loop estimates the valuation parameters using maximum likelihood.

For the outer loop, the valuation parameters are estimated parametrically with
maximum likelihood. Specifically, let 𝑠𝑖𝑡 be an indicator variable equal to 1 if
bidder 𝑖 submits a bid in auction 𝑡 and 0 otherwise. The likelihood of bidder 𝑖’s
observed bidding behavior 𝑠𝑖𝑡 and 𝑏𝑖𝑡 in auction 𝑡 given 𝑢𝑡 is

L𝑖𝑡 (𝑠𝑖𝑡 , 𝑏𝑖𝑡 , 𝑥𝑡 , 𝑢𝑡 ; 𝛾, 𝛼𝑖, 𝜎𝑖) =
(
𝐹𝑖𝑡 (𝑟𝑡)

)1−𝑠𝑖𝑡 ( 𝑓𝑖𝑡 (𝜑𝑖𝑡 (𝑏𝑖𝑡))𝜑′𝑖𝑡 (𝑏𝑖𝑡)) 𝑠𝑖𝑡 , (2.6)

where the first component 𝐹𝑖𝑡 (𝑟𝑡) corresponds to the probability of non-participation
due to valuation below the reserve price 𝑟𝑡 , and the second component 𝑓𝑖𝑡 (𝜑𝑖𝑡 (𝑏𝑖𝑡))𝜑′𝑖𝑡 (𝑏𝑖𝑡)
is the density function of bids obtained by change of variable using the inverse bid-
ding function 𝜑𝑖𝑡 . Then the joint likelihood of all bidders in auction 𝑡 is given
by

L𝑡 (𝒔𝑡 , 𝒃𝑡 , 𝑥𝑡 ; 𝛾,𝜶,𝝈, 𝜎𝑢) =
∫ ( 𝑁∏

𝑖=1
L𝑖𝑡

)
𝜙(𝑢𝑡)𝑑𝑢𝑡 , (2.7)

where the unobserved heterogeneity is integrated out with respect to its normal
density function 𝜙(𝑢𝑡) with mean 0 and variance 𝜎2

𝑢 . We estimate the structural
parameters by maximizing the sum of log(L𝑡) over the auctions 𝑡 in the data.

The inner loop solves for the inverse bidding functions 𝜑𝑖𝑡 (𝑏) for every auction.
Because the equilibrium characterization (2.3) admits no closed-form solutions, we
adopt a numerical approach to solve the system. Following Hubbard and Paarsch
(2009), Hubbard et al. (2013), and Hubbard and Paarsch (2014), we use Mathemat-
ical Programs with Equilibrium Constraints (MPEC) to solve for the equilibrium
of the first-price auction model with asymmetric bidders. We approximate the in-
verse bidding functions 𝜑𝑖𝑡 (𝑏) as a linear combination of the first 𝐾 Chebyshev
polynomials scaled to the interval [𝑟𝑡 , 𝑏𝑡]:

𝜑𝑖𝑡 (𝑏) =
𝐾∑︁
𝑘=0

𝑐𝑘,𝑖𝑡𝑇𝑘 (𝑏), (2.8)

where 𝑇𝑘 (𝑏) is the Chebyshev polynomial of degree 𝑘 scaled to the interval [𝑟𝑡 , 𝑏𝑡].

Then, we use the MPEC approach to discipline the Chebyshev coefficients 𝒄𝑡 so
that the first-order conditions defining the inverse equilibrium bid functions are
approximately satisfied, subject to the boundary conditions (2.4) and (2.5). In
addition, we impose rationality (players must bid less than their valuation) and
monotonicity (bid functions are increasing) as shape constraints on the Chebyshev
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approximations (Hubbard and Paarsch, 2009; Hubbard et al., 2013). Specifically,
from equation (2.3), we define

𝐺𝑖𝑡 (𝑏; 𝒄𝑡 , 𝑏𝑡) = 1 − (𝜑𝑖𝑡 (𝑏) − 𝑏)
∑︁
𝑗≠𝑖

𝑓 𝑗 𝑡
(
𝜑 𝑗 𝑡 (𝑏)

)
𝐹𝑗 𝑡

(
𝜑 𝑗 𝑡 (𝑏)

) 𝜑′𝑗 𝑡 (𝑏), (2.9)

where 𝒄𝑡 are the coefficients of the linear combination of Chebyshev polynomials.
Let B be the set of Chebyshev nodes in [𝑟𝑡 , 𝑏𝑡]. For every auction 𝑡, we solve the
following constrained optimization problem to obtain 𝜑𝑖𝑡 and 𝑏𝑡 :22

min
𝒄𝑡 ,𝑏𝑡

𝑁∑︁
𝑖=1

∑︁
𝑏∈B

[
𝐺𝑖𝑡 (𝑏; 𝒄𝑡 , 𝑏𝑡)

]2 (2.10)

s.t. 𝜑𝑖𝑡 (𝑟𝑡) = 𝑟𝑡 , 𝜑𝑖𝑡 (𝑏𝑡) = 𝑣, 𝜑𝑖𝑡 (𝑏) ≥ 𝑏, 𝜑′𝑖𝑡 (𝑏) ≥ 0, for 𝑖 = 1, . . . , 𝑁 and 𝑏 ∈ B.

Estimation results
Table 2.6 reports the estimated parameters of the bid distributions. The estimates
are of the expected sign and magnitude. In particular, the estimated coefficient of
cookie availability is positive and significant, confirming that third-party cookies in-
crease bidders’ valuations. An impression with third-party cookies available raises
the mean valuation by as much as 129 percent compared to an impression without
cookies. Given bid shading in first-price auctions, the estimate is consistent with
the reduced-form estimate of the effect on submitted bids. The estimated intercepts
𝛼𝑖 and standard deviation 𝜎𝑖 show substantial differences in the mean and variance
parameters of valuation distribution across different DSP groups, where both small
general-purpose and small specialized DSPs have low valuation distributions, re-
flecting their resource constraints. Lastly, the estimated variance of unobserved
auction heterogeneity 𝜎𝑢, while smaller in comparison to group-specific variances,
remains statistically significant and positive. This suggests the presence of unob-
served variations in auctions that are not accounted for by group-specific differences
in the data.

We next present each bidder group’s bidding pattern in response to third-party cookie
availability in terms of their valuation distribution, entry probability, and bidding
strategy. Following the group classification outlined in section 2.1, we organize the
plots by large general-purpose, small general-purpose, rebroadcaster, large special-
ized, and small specialized DSPs. Each figure shows the outcome variables for both

22In the implementation, we use the first 𝐾 = 5 order Chebyshev polynomials and 20 Chebyshev
nodes forB to numerically approximate the inverse bid functions. These specifications are sufficiently
flexible for approximations in our setting.
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Table 2.6: Estimated parameters of valuation distributions.

Parameter Estimate

𝛾

Cookie 1.288∗∗∗
(0.004)

Opt-out -0.047∗∗∗
(0.007)

Gender female -0.121∗∗∗
(0.009)

Gender male 0.003
(0.009)

Age 44 and below 0.030∗∗∗
(0.010)

Age 45 to 64 -0.005
(0.010)

Age 65 and above -0.037∗∗∗
(0.011)

Interest segments 0.063∗∗∗
(0.001)

Months monetized 0.004∗∗∗
(0.000)

Total revenue (normalized) 0.000
(0.000)

Days in database 0.402∗∗∗
(0.025)

Website fixed effects Yes
Browser fixed effects Yes

𝛼

Large general-purpose -2.972∗∗∗
(0.007)

Small general-purpose -7.490∗∗∗
(0.010)

Rebroadcaster -4.144∗∗∗
(0.007)

Large specialized -3.185∗∗∗
(0.007)

mall specialized -6.111∗∗∗
(0.008)

𝜎

Large general-purpose 1.931∗∗∗
(0.002)

Small general-purpose 2.587∗∗∗
(0.004)

Rebroadcaster 2.342∗∗∗
(0.002)

Large specialized 1.383∗∗∗
(0.001)

Small specialized 2.089∗∗∗
(0.002)

𝜎𝑢 0.626∗∗∗
(0.001)

Notes: Parameter estimates of the log of valuation, log(𝑣𝑖𝑡 ), which follows a normal distribution
with mean 𝑥′𝑡𝛾 + 𝛼𝑖 + 𝑢𝑡 and variance 𝜎2

𝑖
, where 𝑢𝑡 is the unobserved auction heterogeneity that is

distributed normally with mean 0 and variance 𝜎2
𝑢 . Estimates of website and browser fixed effects

are not reported in the table. ***, **, and * indicate statistical significance at the 1, 5, and 10%
levels, respectively.
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Figure 2.3: Cookie vs. cookieless: estimated bidders’ behavior by DSP group.

(a) CDFs of valuation distributions.

(b) Density of entry probability.
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(c) Bid functions.

Notes: Plots of bidder behavior by DSP groups with estimated parameters. The DSPs are grouped
according to their purpose, specialty, and size. See section 2.1 for more details on the classification
of DSPs. Subplot (a) shows the cumulative distribution function 𝐹𝑖 of valuations at average auction
characteristics. (b) shows the empirical density of entry probability, i.e., how likely the valuation
exceeds the reserve price and the bidder submits a bid in an auction. (c) shows the bid function 𝛽𝑖
at average auction characteristics. See Figure B.1 of the appendix for the bid functions of big and
small general-purpose DSPs on the same plot.

impressions with and without cookies. For illustration, the valuation distribution
and the bidding strategy are evaluated at the average values of the covariates.

Figure 2.3a shows the cumulative distribution functions (CDFs) of recovered val-
uation distributions. Figure 2.3b presents the empirical density of fitted entry
probability, i.e., for all auctions in the data, the probability that the recovered val-
uation exceeds the reserve price. For either figure, we observe a clear dominance
relationship of cookie impressions over cookieless ones across different DSP groups.
Bidders are more likely to place a higher value and submit a bid in an auction with
third-party cookies. There is also substantial heterogeneity across bidder groups.
Notably, the effect of cookie availability is more pronounced for large DSPs.

Figure 2.3c presents the bidding strategy 𝛽𝑖 and shows that bidders bid more ag-
gressively for cookie impressions.23 Observe that, for the same valuation, bidders

23Given the relatively large number of bidders (33 in our data), average bidding strategies appear
similar across bidder groups, though they do exhibit differences. See Figure B.1 in the Appendix for



72

on average place bids on a cookie impression that are about twice as much as those
on a cookieless impression. The difference can be attributed to the competition
intensity between the two types of auctions, where fewer bidders would participate
in auctions for cookieless impressions. Overall, our estimated structural results
demonstrate that the difference between the average revenue from the two types
of auctions comes from the difference in valuations, entry behavior, and bidding
strategies.

2.5 Counterfactual Simulations
Using the structural estimates and the MPEC equilibrium solver, we simulate coun-
terfactual scenarios to investigate the welfare redistribution of (1) Cookiepocalypse,
the planned removal of third-party cookies from Chrome, and (2) Privacy Sand-
box, the implementation of alternative tracking technologies. We show that the
proposed changes have significant anti-competitive implications in terms of welfare
distribution among advertisers.

For each scenario, we consider three specifications. First, we simulate a status quo
scenario as the benchmark (a less noisy version of the status quo in the data), to
which we will compare the counterfactual scenarios. We will see that the results
from the status quo are comparable to the summary statistics from the actual data.
Second, we simulate a symmetric ban in which the cookie ban applies to all bidders,
and none of them observe the cookie information. Third, we simulate an asymmetric
ban by designating one bidder from the large general-purpose DSP group as the “Big
Tech” DSP who retains access to Chrome users’ third-party cookie information, but
none of the other bidders observe any cookie information for Chrome users.

The asymmetric ban mirrors concerns raised by antitrust authorities, whereby cer-
tain DSPs may have alternative ways to gather and use ad-relevant information about
users even when third-party cookies are blocked. For instance, DSPs affiliated with
prominent publishers may have extensive user information through first-party cook-
ies, which are typically enabled even by browsers that block third-party cookies by
default. They may be able to leverage this rich first-party information about users for
placing ads not only on their own websites but also on third-party websites, thereby
obtaining a large information advantage over DSPs without similar capabilities.24

a comparison. In particular, we find that smaller bidders adopt more aggressive bidding strategies to
compete against larger bidders, who tend to have higher valuations.

24This alternative information collection can be implemented with “digital fingerprinting” meth-
ods that track users via IP addresses or device IDs, thus sidestepping cookies altogether. Peukert
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A prominent example is Google, which possesses large amounts of first-party infor-
mation on many internet users via its extensive web ecosystem encompassing the
Google search engine, Gmail, YouTube, and more. This unique access to first-party
information may allow Google to circumvent the effects of the Chrome third-party
cookie ban and perhaps even to benefit from such a ban.25

To implement the counterfactual simulations, we draw a random sample of 10,000
auctions of impressions from the data. Importantly, this sample includes impres-
sions from all browsers because we want to investigate the market-wide impact on
the advertising market. For Chrome impressions (about 58% in the drawn pool), we
manipulate their impression characteristics to emulate scenarios of the Cookiepoca-
lypse. For each Chrome auction and each specification, we draw valuations based
on the true user characteristics for each bidder and, depending on the scenario and
the bidder, mask any third-party cookie information for each user to simulate the
effects of the ban. (That is, the cookie availability variable is set to zero. Other user
characteristics associated with third-party cookies are set to either unknown or zero).
Given the counterfactual valuation distributions, we compute the bidding strategies
by solving the system of ordinary differential equations (2.3) that characterizes the
equilibrium.

Cookiepocalypse, blocking third-party cookies on Chrome
We first investigate the effect of Cookiepocalypse on submitted bids, the number of
bidders, the winning bid (which translates into the publisher’s revenue), and bidders’
surplus. The results of this counterfactual simulation are presented in Table 2.7a.
We find that the average bid falls from $0.92 in the benchmark to $0.56, representing
a 39% decrease, and the number of bidders decreases from 7.4 to 4.8. Altogether,
this results in about a halving (-54%) of the average publisher revenue from $2.4
down to $1.1. This estimate is consistent with several studies investigating the
potential effect of removing third-party cookies including industrial studies.26 On
the buyer side, advertisers acquiring impressions through DSPs suffer a substantial

et al. (2022) observe that the drop in third-party cookie requests after the enactment of GDPR in the
European Union was accompanied by a rise in first-party cookie requests.

25The anti-competitive implications of Google’s plan on the ad supply chain have been closely
scrutinized by government agencies. See Jeon (2020) for a more detailed discussion on the market
power of Google in the online advertising markets.

26Several papers study the effect of restricting third-party cookies in online advertising and find a
loss ranging from 4 percent to 66 percent (Beales and Eisenach, 2014; Marotta et al., 2019; Johnson
et al., 2020). The industry estimate is closer to the upper end, where a study by Google finds that
disabling third-party cookies results in an average loss of 52% (Ravichandran and Korula, 2019).
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Table 2.7: Counterfactual simulation of Cookiepocalypse.

(a) Simulated outcome.

Status quo Symmetric ban Asymmetric ban

Bid 0.917 0.558 0.588
(1.487) (0.761) (0.831)

No. bidders 7.383 4.771 4.918
(3.965) (2.879) (2.865)

Publisher revenue 2.433 1.101 1.208
(2.765) (1.250) (1.399)

Bidder surplus 3.703 2.234 2.465
(5.604) (4.367) (4.629)

(b) Welfare distribution.

Status quo Symmetric ban Asymmetric ban

Winning frequency
Big Tech DSP - - 0.152
Large general-purpose 0.083 0.082 0.076
Small general-purpose 0.003 0.003 0.003
Rebroadcaster 0.048 0.048 0.045
Large specialized 0.028 0.026 0.024
Small specialized 0.004 0.004 0.003

Surplus
Big Tech DSP - - 48,900
Large general-purpose 31,800 18,700 17,600
Small general-purpose 928 559 476
Rebroadcaster 20,200 12,800 12700
Large specialized 5,030 2,150 1920
Small specialized 875 420 369

Full-information surplus
Big Tech DSP - 48,900
Large general-purpose 31,000 29,300
Small general-purpose 749 645
Rebroadcaster 18,500 18,000
Large specialized 4,890 4,260
Small specialized 651 548

Notes: Simulated results are based on 10,000 auctions randomly drawn from the data. The Big
Tech DSP is drawn from the large general-purpose DSP group. For Chrome impressions, auction
characteristics are masked for all bidders in the symmetric ban scenario and are available exclusively
to the Big Tech DSP in the asymmetric ban scenario. For each scenario, valuations are updated
according to counterfactual characteristics, and outcomes are recomputed using the equilibrium
characterization.
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40% reduction in their surplus (the difference between valuation and bid), from an
average of $3.7 in the benchmark to $2.2 in the first counterfactual.

We next investigate the distributional effect among bidders in terms of their winning
frequency and surplus to highlight the unequal impact of the Cookiepocalypse. In
Table 2.7b, we report the outcome variables in the asymmetric ban counterfactual
scenario separately for the Big Tech DSP and the other five bidder groups. (Recall
that the Big Tech DSP is drawn from the large general-purpose DSP group in
the benchmark.) In terms of winning frequency, the Big Tech DSP wins twice
as often (15.4%) in this scenario compared to the benchmark (8.3%), thanks to
its informational advantage of having sole access to the behavioral information
of Chrome users. Its total surplus also increases accordingly from $31,800 in
the status quo to $48,900 under the asymmetric ban, a 54% increase. At the
same time, all the other bidders are impacted negatively by the ban, winning less
frequently and receiving lower surpluses compared to the status quo and symmetric
ban scenarios. Our results demonstrate that the third-party cookie ban leads to
divergent experiences for the informational advantaged and disadvantaged bidders,
where the former benefit from the ban at the cost of the latter.

To further decompose this redistributive effect, we also calculate the “full-information”
surplus, that is, the difference between the valuation under cookie availability and
the bid in the counterfactual scenario. The gap between the full-information and
limited-information surpluses quantifies the loss in bidder welfare due to the inabil-
ity to make precise matches when DSPs lose the ability to accurately evaluate and
target users following the cookie ban. Comparing this difference in Table 2.7b, we
see that welfare loss stems primarily from the diminished ability of affected DSP
to effectively target users post-cookie ban. The primary factor responsible for the
welfare redistribution is the inability of disadvantaged bidders to match with the
most appropriate advertisements, rather than the Big Tech DSP monopolizing all
the valuable impressions in the market.

Privacy Sandbox, alternative tracking technologies
In the second counterfactual, we replace third-party cookies with an alternative
privacy-friendly tracking technology that allows bidders to acquire some behavioral
information on the users, albeit without the precision and granularity of the cookie-
generated information. Google has proposed a few alternative tracking technologies
under its Privacy Sandbox initiative since 2021, shortly after its announcement of a
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third-party cookie ban. A prominent proposal is the Topic API.27 With Topics, the
browser will infer a handful of recognizable, interest-based “categories” for the user
(such as automotive, literature, rock music, etc.) based on recent browsing history
to help sites serve relevant ads. However, the specific sites the user has visited
are no longer shared across the web like they might have been with third-party
cookies. In essence, this new method allows for tracking and targeting but in a more
privacy-conscious and less precise manner than traditional third-party cookies.

In our implementation, because the exact alternative technology has not been final-
ized and we do not observe the user’s interest categories, we follow the overarching
principle of these proposed technologies that seek the best of the two worlds. On the
one hand, users are afforded some degree of privacy; on the other hand, advertisers
continue to observe user characteristics, albeit coarser ones. Specifically, we model
this compromise between privacy and personalization by replacing Chrome users’
behavioral characteristics with the average characteristics for each Yahoo website
(e.g. Yahoo Mail, Yahoo Finance, Yahoo News, etc.). For example, the gender
information of a Chrome user visiting Yahoo Finance is replaced by the website’s
proportions of male and female users. The Big Tech DSP, on the other hand,
continues to observe Chrome users’ exact characteristics.

The rightmost column of Table 2.8a contains the summary outcomes of the asym-
metric ban under the Privacy Sandbox counterfactual. We find that the average
bid has fallen from $0.92 in the benchmark to $0.82 in the counterfactual, and
the number of bidders has decreased from 7.4 to 6.9. Altogether, this results in
a 13% drop in the average revenue per auction from $2.4 to $2.1, and the bidder
(advertiser) surplus drops by 8% from $3.7 to $3.4. In a word, the Privacy Sandbox
still results in sizable welfare losses for both the publisher and the advertiser—an
expected consequence given the coarser information in the market. On the other
hand, the impact is a lot more cushioned compared to that of the Cookiepocalypse
counterfactual under which the publisher and the advertiser bear a much heavier
loss of 54% and 40%, respectively.

Table 2.8b presents the differentiated impact on DSP groups. Compared to the
Cookiepocalypse counterfactual in table 2.7b, Privacy Sandbox alleviates the anti-

27See https://privacysandbox.com/. Several techniques have been or are being proposed,
developed, and experimented with. Google initially experimented with the Federated Learning
of Cohorts (FLoC) in 2021 and “received valuable feedback from regulators, privacy advocates,
developers and industry. The new Topics API proposal addresses the same general use case as FLoC,
but takes a different approach intended to address the feedback received for FLoC. Chrome intends
to experiment with the Topics API and is no longer developing FLoC.”

https://privacysandbox.com/
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Table 2.8: Counterfactual simulation of Privacy Sandbox.

(a) Simulated outcome.

Status quo Symmetric ban Asymmetric ban

Bid 0.917 0.815 0.824
(1.487) (1.276) (1.298)

No. bidders 7.383 6.838 6.872
(3.965) (3.636) (3.636)

Publisher revenue 2.433 2.061 2.099
(2.765) (2.309) (2.363)

Bidder surplus 3.703 3.378 3.442
(5.604) (5.380) (5.475)

(b) Welfare distribution.

Status quo Symmetric ban Asymmetric ban

Winning frequency
Big Tech DSP - - 0.094
Large general-purpose 0.083 0.083 0.082
Small general-purpose 0.003 0.003 0.003
Rebroadcaster 0.048 0.048 0.048
Large specialized 0.028 0.028 0.028
Small specialized 0.004 0.004 0.003

Surplus
Big Tech DSP - - 36,000
Large general-purpose 31,800 28,700 28,600
Small general-purpose 928 878 826
Rebroadcaster 20,200 18,700 18,800
Large specialized 5,030 4,230 3,940
Small specialized 875 745 715

Full-information surplus
Big Tech DSP - 36,000
Large general-purpose 32,600 32,500
Small general-purpose 951 898
Rebroadcaster 20,500 20,500
Large specialized 5,400 5,030
Small specialized 843 805

Notes: Simulated results are based on 10,000 auctions randomly drawn from the data. The Big
Tech DSP is drawn from the large general-purpose DSP group. For Chrome impressions, auction
characteristics are averaged at the website level for all bidders in the symmetric ban scenario. Exact
characteristics are available exclusively to the Big Tech DSP in the asymmetric ban scenario. For
each scenario, valuations are updated according to counterfactual characteristics, and outcomes are
recomputed using the equilibrium characterization.
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competitive redistribution as well as the rising market concentration in favor of the
Big Tech DSP. For the Big Tech bidder under the asymmetric ban, both its winning
frequency (9.4%) and total surplus ($36,000) increase compared to the benchmark
(8.3% and $31,800, respectively), representing a more than 10% gain, though the
advantage is substantially attenuated compared to that under Cookiepocalypse. The
disadvantaged bidders also experience noteworthy improvement compared to Cook-
iepocalypse. Their metrics under either symmetric or asymmetric ban are much
closer to the status quo level: Under the asymmetric ban, for example, large general-
purpose DSPs enjoy a surplus of $28,600, below the status quo level of $31,800, but a
substantial alleviation compared to $17,600 under Cookiepocalypse. Although still
a heavy 10% loss from the advertiser’s perspective, this set of results suggests that
advertising surplus and user privacy may not necessarily be at great odds. DSPs can
rely on privacy-friendly technologies and coarser information to implement targeted
ads without severely hurting their bottom lines. The anticompetitive redistribution
effect, although much ameliorated compared to Cookiepocalypse, is still present
and significant.

2.6 Conclusion
We study the impact of privacy protection on online advertising markets. As privacy
concerns have mounted in recent years, internet browsers are increasingly moving
away from third-party cookies, a widely-used tool to track online user behavior
across the web and implement targeted ads. In this paper, we investigate the impact
of a third-party cookie ban by analyzing online banner ad auctions using a detailed
bid-level dataset from Yahoo. We find that auction participation, submitted bids,
and revenue are higher when third-party cookies are available. This initial set of
results demonstrates the pivotal role of third-party cookies in facilitating online
advertising.

We next construct an empirical auction model, analytically characterize the equi-
librium, and structurally recover valuation distributions from observed bids in the
dataset. To evaluate the impact of the planned phasing-out of third-party cookies
from Google Chrome, we perform counterfactual analyses based on the recovered
structural parameters. Our results indicate that an outright ban—Cookiepocalypse—
would reduce publisher revenue by 54% and advertiser surplus by 40%. However, the
introduction of alternative, privacy-conscious tracking technologies under Google’s
Privacy Sandbox initiative, which delivers coarser user information to advertisers,
would mitigate these losses.



79

We also quantify the redistribution of welfare resulting from the third-party cookie
ban in which some large, informationally advantaged bidders could leverage their
rich information over their competitors in online ad auctions. We find that these
advantaged bidders stand to reap a larger surplus from the ban, whereas other bidders
have no such recourse. Because of big tech firms’ substantial presence in the ad
supply chain and their abundant user information, the plan to eliminate third-party
cookies raises legitimate antitrust concerns regarding competition and monopoly
power in online advertising markets.
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C h a p t e r 3

ROBUST ESTIMATION OF RISK PREFERENCES

3.1 Introduction
Economic models estimated from experimental data have the potential to guide
decisions and influence policies when they accurately predict real-world behaviors.
For instance, financial advisors can use surveys involving risky choices to predict
the portfolio composition that best aligns with their clients’ risk attitudes. Similarly,
experiments on risk preferences can inform policies aimed at regulating high-risk
financial behaviors, such as speculative trading or excessive borrowing. However,
even within experimental settings, many economic models that successfully ra-
tionalize specific behaviors fail to provide reliable out-of-sample predictions (for
discussion and examples see, e.g., Agranov et al., 2023; Chapman et al., Chapman
et al., 2023a, Chapman et al., 2023b; Dean and Ortoleva, Dean and Ortoleva, 2015,
Dean and Ortoleva, 2019). As an alternative predictive approach, machine learning
algorithms are gaining attention in the field of economics (Hofman et al., 2021).
These methods generate predictions without an explicit economic model, but they
have also been criticized for their poor out-of-sample performance.1

This paper contributes to the important question of how well we can predict behavior
under risk in two ways. First, we conduct an experiment to examine two classical
behaviors inconsistent with Expected Utility (EU): the common ratio effect and
preferences for randomization. These behaviors have mostly been analyzed in
isolation in prior experimental work. Our findings reveal that leading economic
models and machine learning algorithms produce inaccurate predictions about one
non-EU behavior when trained on choices related to the other. Second, motivated by
this negative result, we propose a novel empirical approach to predict behavior under
risk. This approach can be used to study any preference that is complete, transitive,
and continuous—three common assumptions in decision-making models—without
committing to a specific economic model. We then demonstrate the potential of this
new approach in producing more accurate out-of-sample predictions, both within
our experiment and in high-stakes behaviors outside of the lab.

Section 3.2 introduces our novel experimental design, which allows us to assess
1See Athey (2017) and Coveney et al. (2016).
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the capability of various approaches to concurrently rationalize and predict risky
choices in two important settings. The first setting is the common ratio version of the
Allais paradox, where subjects can violate EU by either displaying higher or lower
risk aversion when one option is certain, compared to when all options are risky.
The former behavior is referred to as the common ratio effect, and its counterpart as
the reverse common ratio effect. The second setting examines preferences for lottery
mixtures. Subjects can violate EU in this setting by showing a strict preference for
mixing lotteries, which we call preferences for randomization, or by displaying a
strict aversion to mixing lotteries, which we call aversion to randomization. In our
experiment, subjects engaged in incentivized binary choice tasks involving monetary
lotteries. The study was conducted on Prolific, with a total of 500 subjects recruited
on July 28, 2023. We call choice tasks associated with the common ratio version of
the Allais paradox “CR-tasks”, and those involving mixture lotteries “R-tasks”.

We focus on these two tests of EU because they contributed to the development of
many non-EU models under risk—see, for instance, Cerreia-Vioglio et al., 2015;
Chew et al., 1991; Gul, 1991; Loomes and Sugden, 1982, Kahneman and Tversky,
1979; Tversky and Kahneman, 1992—and because of two limitations that we iden-
tified in prior experimental work. First, previous experiments have studied these
EU tests either in isolation or with a predominant focus on one over the other.2 As
a result, little is known about whether a model’s rationale for one non-EU behavior
leads to accurate predictions for the other. Second, most prior experiments do not
allow for the unambiguous elicitation of aversion to randomization.3 This is impor-
tant because aversion to randomization often emerges as the prediction of a popular
model like Cumulative Prospect Theory (CPT) under standard parametrizations
used to explain behavior in the common ratio version of the Allais paradox.

Our experiment employs a within-subjects design to study the common ratio version
2To the best of our knowledge, Agranov and Ortoleva (2017) is the only paper that studies both

the common ratio version of the Allais paradox and randomization within the same experiment.
Their experiment primarily focuses on randomization, with the common ratio version of the Allais
paradox implemented through a single pair of binary choice tasks presented to subjects at the end of
the experiment.

3There are three approaches that are commonly used in the literature to elicit preferences for
mixtures. The first approach requires subjects to choose between two lotteries multiple consecutive
times (Agranov and Ortoleva, 2017; Agranov et al., 2023; Dwenger et al., 2018). The second
approach allows subjects to delegate their choice to an external randomization device (Agranov and
Ortoleva, 2017; Cettolin and Riedl, 2019; Sandroni et al., 2013; Dwenger et al., 2018). The third
approach presents a choice between two lotteries and some mixtures between them (Agranov and
Ortoleva, 2023; Dwenger et al., 2018; Feldman and Rehbeck, 2022; Miao and Zhong, 2018; Sopher
and Narramore, 2000). Agranov and Ortoleva (2022) provide an overview of these methods. None
of them allows for the direct revelation of an aversion to randomization.
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of the Allais paradox in CR-tasks and randomization in R-tasks, using a common
set of lotteries. Moreover, to enable ourselves to unambiguously identify both pref-
erence for and aversion to randomization, we design R-tasks following a procedure
proposed by Camerer and Ho (1994). In particular, we evaluate attitudes towards
mixtures between any two lotteries 𝑠 and 𝑟 through two distinct R-tasks. In the first
task, subjects compare lottery 𝑠 to a 50-50 mixture of lotteries 𝑠 and 𝑟. In the second
task, they compare the 50-50 mixture to lottery 𝑟 . If a subject chooses the 50-50
mixture in both tasks, this indicates a preference for randomization. On the other
hand, if the subject avoids the 50-50 mixture in both tasks, we infer an aversion to
randomization.

Section 3.3 summarizes the main findings of the experiment and explores the ability
of popular economic models and machine learning algorithms to rationalize them.
The common ratio effect and preferences for randomization are the two most frequent
non-EU behaviors observed in CR-tasks and R-tasks, respectively. In particular, the
common ratio effect accounts for around 63% of all non-EU behaviors in CR-tasks,
while preferences for randomization account for around 55% of all non-EU behaviors
in R-tasks. Moreover, for fixed values of probabilities and prizes of the lotteries, the
percentage of non-EU behavior in CR-tasks attributed to the common ratio effect
is strongly positively correlated with the percentage of non-EU behavior in R-tasks
attributed to preferences for randomization, with a correlation coefficient of 0.63.

After documenting the emergence of and the correlation between non-EU behav-
iors in the experiment, we turn to analyzing whether popular economic models and
machine learning algorithms can accommodate them. We consider EU and Cu-
mulative Prospect Theory (CPT) as economic models, and gradient boosting trees
(GBT) and neural networks (NN) as machine learning algorithms.4 In particular,
we implement two types of out-of-sample exercises. First, we evaluate the ability
of various approaches to predict choices in each EU test separately, employing 5-
fold cross-validation within CR-tasks and R-tasks. Second, we assess the ability
of different approaches to predict the correlation between non-EU behaviors across
CR-tasks and R-tasks. To this end, we use choices in CR-tasks as the training set
and choices in R-tasks as the test set, and vice versa.

Machine learning algorithms predict non-EU behavior within CR-tasks and R-tasks
better than economic models. In particular, GBT correctly classifies more than

4Details about the functional form assumptions we made on economic models and about the
training procedures for the machine learning algorithms can be found in Appendix C.2.
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60% of the observations in cross-validation exercises, while the best-performing
economic model, CPT, correctly classifies only around 46% of the observations.
However, the ranking between machine learning algorithms and economic models
is reversed when attempting to predict one non-EU behavior from another. In these
exercises, the predictive accuracy of machine learning models drops by about 30%,
raising concerns about their ability to produce generalizable predictions. Moreover,
CPT predicts a negative rather than a positive correlation between the common ratio
effect and preferences for randomization, performing worse than EU. Overall, EU
turns out to be the best model at predicting choices across CR-tasks and R-tasks,
despite the fact that non-EU behaviors account for more than 34% of the observations
in CR-tasks and more than 47% of the observations in R-tasks.

Our experiment sheds light on a new important instance of a more general problem:
economic models and machine learning algorithms often provide poor predictions
across settings. Motivated by this observation, Section 3.4 turns to the method-
ological contribution of the paper, which is the development of a new approach
to estimate preferences under risk and make predictions. Intuitively, estimating a
model of decision-making under risk requires making a series of assumptions about
preferences. Some assumptions are less controversial, as they are embodied in most
models. For instance, most models assume that preferences are complete, transitive,
and continuous. Other assumptions are more controversial, and this is the case
with the independence axiom. The independence axiom is the most empirically
challenged assumption of EU, and the common ratio effect and preference for ran-
domization are two examples of behaviors inconsistent with this assumption. Our
approach relies on the less controversial assumptions, as it may be more likely that
they hold across different settings, while remaining silent about the independence
axiom.

Rather than estimating a representation for a preference, which requires making
assumptions about the independence axiom, we estimate a representation for its
EU-core, which is its largest subrelation that satisfies the independence axiom
(Cerreia-Vioglio, 2009). Assuming our preference of interest is complete, transitive,
and continuous, its EU-core can be represented by a set of utility functions.5 This set
generates an upper and lower bound for risk aversion, which becomes wider as the
preference’s inconsistency with the independence axiom increases. We demonstrate
that the set of utilities representing the EU-core can be easily estimated using

5In particular, Cerreia-Vioglio et al. (2017) clarifies that the EU-core is represented by the set of
“local utilities” introduced by Machina (1982).
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standard experimental datasets that examine the independence axiom, and we present
the estimation results from our experiment. By estimating mixture models, we
observe a significant degree of heterogeneity in terms of risk aversion and adherence
to EU. In Section 3.5, we assess whether this heterogeneity can be fruitfully exploited
to make reliable predictions across different settings.

We perform various types of out-of-sample exercises, distinguished by the differ-
ences in the features of training and test data. Initially, we revisit the two out-of-
sample exercises within and across CR-tasks and R-tasks introduced in Section 3.3.
Because our empirical approach applies to all models that relax EU by violating the
independence axiom, it remains silent about how exactly the independence axiom
fails. In other words, we can predict the emergence of EU and non-EU behavior,
but we cannot differentiate between specific non-EU behaviors. To establish a fair
comparison between our approach and other predictive methods, we evaluate the
ability of all methods to predict adherence to EU. Consistent with our findings
in Section 3.3, machine learning algorithms exhibit better performance when pre-
dicting non-EU behaviors in isolation but fall short when predicting one non-EU
behavior using choices related to the other as training data. Importantly, our struc-
tural model achieves the best performance in these latter exercises, demonstrating
potential advantages in making predictions that are not tied to specific economic
models.

To provide an additional setting for testing the predictive performance of various ap-
proaches, we elicited certainty equivalents for three binary lotteries at the end of our
experiment. Using choices from CR-tasks and R-tasks as training data, our method
predicts ranges of possible certainty equivalents, which we demonstrate to encom-
pass most of the observed certainty equivalents. Furthermore, we calculate point
predictions for certainty equivalents as the midpoints of these predicted ranges.6

To compare the accuracy of our approach against other methods, we employ mean
squared errors and find that machine learning algorithms underperform compared
to economic models, while our approach yields the most accurate out-of-sample
predictions.

Finally, we explore whether the heterogeneity in risk aversion and adherence to
EU, identified through our mixture model using experimental data, correlates with

6We abstract away from the question of what theoretical assumptions on preferences justify this
aggregation rule. Nevertheless, given that this rule outperforms both the economic models and the
machine learning algorithms that we consider, we find its theoretical analysis an interesting direction
for future work.
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risky behaviors in real-world scenarios. To pursue this, we gathered information
on subjects’ investment and insurance behaviors. In the context of investments, we
assessed whether they had engaged in stock trading and held any cryptocurrencies.
Additionally, we verified whether they had insured purchased items, such as mobile
phones. This is a classic example of small stakes risk aversion, which can be
challenging to rationalize with EU (Rabin, 2000). Our findings reveal that subjects
identified as more risk-averse in the experiment are less likely to invest, particularly
in cryptocurrencies. Moreover, those identified as less consistent with EU are more
likely to insure purchased items. Overall, these correlations hint at our structural
model as a potentially useful tool for predicting behavior beyond experimental
settings.

Our paper has two broad implications for future research, which we expand upon
in our concluding Section 3.6. First, our novel experimental design enables us to
document the robust positive correlation that exists between the common ratio effect
and preferences for randomization. Popular behavioral models, like CPT, cannot
rationalize this correlation, and there is a clear need for new research to develop
superior predictive approaches. A natural path forward involves considering alterna-
tive theories. However, numerous non-EU models have already been developed over
the past decades, and their ability to rationalize and predict various behaviors under
risk has proven to be somewhat limited. Our paper proposes a different solution,
developing a structural estimation approach that is not tied to specific economic
models.

Second, our out-of-sample analysis reveals that the optimal approach for making
predictions may depend on at least two factors. The first factor concerns the differ-
ences between training and test sets. Machine learning algorithms exhibit superior
performance when training and test sets contain choices related to the same non-
EU behavior. However, their performance significantly deteriorates in all other
out-of-sample exercises we examine. The second factor pertains to the analyst’s
required level of detail in a prediction. Our model generates predictions that, while
potentially more accurate, are less detailed than those produced by conventional
predictive approaches. For example, it can only predict a range of possible certainty
equivalents for a lottery. If the analyst requires more detailed predictions, our ap-
proach can still serve as a valuable complement to conventional tools. For instance,
it can be used to generate a range of certainty equivalents, after which economic
models or machine learning algorithms can be employed to select a value from this
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range.

3.2 Experimental Design
The key objective of the experiment is to evaluate the predictive performance of
economic models and machine learning algorithms across different settings. To
achieve this objective, we have designed an experiment involving binary choice tasks
between monetary lotteries. The first two settings that we consider are different tests
of the independence axiom: one is the common ratio version of the Allais paradox,
and the other assesses attitudes toward mixing lotteries. Moreover, as additional
settings for predictions, we elicit certainty equivalents for three binary lotteries and
collect information about subjects’ financial habits.7

Binary Choice Tasks
We elicit choices between lotteries over three monetary prizes 𝐿 < 𝑀 < 𝐻. We
represent the three-outcome lottery that gives $𝐿 with probability 𝑝𝐿 , $𝑀 with
probability 𝑝𝑀 , and $𝐻 with probability 𝑝𝐻 as ($𝐿, 𝑝𝐿; $𝑀, 𝑝𝑀 ; $𝐻, 𝑝𝐻). More-
over, we denote by 𝛿𝑋 the degenerate lottery that pays $𝑋 with certainty. The
independence axiom imposes consistency requirements on choices across two or
more binary choice tasks. We first assess the independence axiom via the common
ratio version of the Allais paradox, which involves two types of binary choice tasks
that we call CR-tasks:

CR1: 𝛿𝑀 = ($𝑀, 1) vs. 𝑟 = ($𝐿, 1 − 𝑝𝐻 ; $𝐻, 𝑝𝐻).

CR2: 0.3𝛿𝑀 + 0.7𝛿𝐿 = ($𝐿, 0.7; $𝑀, 0.3) vs. 0.3𝑟 + 0.7𝛿𝐿 = ($𝐿, 1 − 0.3𝑝𝐻 ; $𝐻, 0.3𝑝𝐻).

We use the Marschak-Machina (MM) triangle to describe graphically the lotteries
in the experiment (Marschak, 1950; Machina, 1982). The left graph in Figure 3.1
illustrates the CR-tasks in the MM triangle. In the MM triangle, the probability of
receiving the highest prize 𝐻 is on the vertical axis, and the probability of receiving
the lowest prize 𝐿 is on the horizontal axis. Therefore, the generic point (𝑝𝐿 , 𝑝𝐻)
in the MM triangle represents the lottery ($𝐿, 𝑝𝐿; $𝑀, 1 − 𝑝𝐿 − 𝑝𝐻; $𝐻, 𝑝𝐻). Each
dashed segment connecting two lotteries indicate that there is a choice task that
involves these lotteries. For instance, the black dashed segments in the left MM

7We preregistered the experimental design and the analysis plan at the AEA RCT Registry as
AEARCTR-0011749 (Kobayashi and Lucia, 2023).
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Figure 3.1: Choice Tasks.

triangle of Figure 3.1 represent CR1 choice tasks, while the green dashed segments
represent CR2 choice tasks.

There are two possible scenarios in which subjects’ choices in CR-tasks are incom-
patible with the independence axiom. The Common Ratio Effect (CRE) refers to
the violation of the independence axiom in which subjects in the experiment choose
lottery 𝛿𝑀 in CR1, and lottery 0.3𝑟 + 0.7𝛿𝐿 in CR2. The opposite choices in CR1
and CR2 constitute the other possible violation of the independence axiom, known
as the Reverse Common Ratio Effect (RCRE).

As an additional assessment of the independence axiom, we also study subjects’ at-
titudes towards mixtures, i.e., randomization. To this end, we consider the following
two types of binary choice tasks that we refer to as R-tasks:

R1: 𝛿𝑀 = ($𝑀, 1) vs. 0.5𝛿𝑀 + 0.5𝑟 = ($𝐿, 0.5(1 − 𝑝𝐻); $𝑀, 0.5; $𝐻, 0.5𝑝𝐻).

R2: 𝑟 = ($𝐿, 1 − 𝑝𝐻 ; $𝐻, 𝑝𝐻) vs. 0.5𝛿𝑀 +0.5𝑟 = ($𝐿, 0.5(1 − 𝑝𝐻); $𝑀, 0.5; $𝐻, 0.5𝑝𝐻).

The right MM triangle in Figure 3.1 represents the R1 choice tasks (depicted by black
dashed segments) and the R2 choice tasks (depicted by green dashed segments). In
studies exploring preferences for randomization, it is common to combine R1 and
R2 into a single choice task in which subjects can select either lottery 𝛿𝑀 , lottery
𝑟, or a combination of the two.8 Choosing a mixture of lotteries 𝛿𝑀 and 𝑟 is
typically interpreted as a preference for randomization. However, this approach has

8Agranov and Ortoleva (2022) provide an overview of this literature.
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a limitation: it does not allow us to observe whether subjects exhibit aversion to
randomization, meaning they prefer either of the lotteries 𝛿𝑀 and 𝑟 over the mixture.
By treating R1 and R2 as separate choice tasks, we can observe both preferences for
and aversion to randomization.9 Specifically, subjects in the experiment display a
preference for randomization when they consistently choose the lottery 0.5𝛿𝑀+0.5𝑟,
and aversion to randomization when they consistently reject the lottery 0.5𝛿𝑀 +0.5𝑟.
Both a preference for randomization and an aversion to it are behaviors that violate
the independence axiom.

All subjects engage in the CR1, CR2, R1, and R2 choice tasks involving five dif-
ferent prize triplets (𝐿, 𝑀, 𝐻): (0, 15, 30), (5, 15, 25), (10, 20, 30), (15, 20, 25),
and (0, 10, 20). For each of these triplets, subjects undertake all types of tasks
with five different probability values for the high prize 𝑝𝐻: 0.5, 0.6, 0.7, 0.8, and
0.9. Thus, subjects face both CR-tasks and R-tasks at precisely the same values
of (𝐿, 𝑀, 𝐻, 𝑝𝐻). In addition to these 100 choice tasks, the experiment includes
two choice tasks in which one lottery stochastically dominates the other (referred
to as FOSD choice tasks), and three additional types of choice tasks used to elicit
certainty equivalents:10

MPL1: ($𝑋, 1) vs. ($0, 0.5; $20, 0.5) for 𝑋 ∈ {3, . . . , 13}.

MPL2: ($𝑋, 1) vs. ($5, 0.5; $25, 0.5) for 𝑋 ∈ {8, . . . , 18}.

MPL3: ($𝑋, 1) vs. ($10, 0.5; $30, 0.5) for 𝑋 ∈ {13, . . . , 23}.

We choose not to incorporate choice tasks between certain amounts and a given
lottery into a list, as is typically done using the multiple price list (MPL) method.
This design decision is made to minimize the amount of instruction that subjects need
to understand, retaining binary choice tasks as the sole method for expressing their
preferences.11 We use the certainty equivalents elicited from MPL1, MPL2, and
MPL3 choice tasks to further assess the out-of-sample accuracy of the predictions
derived from the empirical analysis of the EU-core. Table 3.1 provides a summary

9Camerer and Ho (1994) first uses this approach to distinguish between violations of betweenness,
which imposes neutrality over mixing lotteries, and violations of transitivity.

10We exclude from the analysis any subjects who violate first-order stochastic dominance more
than once. This happens for 3 subjects only.

11Different procedures to elicit risk preferences may result in different observed behavior. Free-
man et al. (2019) find that embedding a pairwise choice between a certain monetary amount and a
risky lottery in a choice list increases the proportion of subjects choosing the risky lottery.
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Table 3.1: Summary of the experimental design.

Block 1 Block 2
CR1 CR2 R1 R2 FOSD MPL1 MPL2 MPL3

# Tasks 25 25 25 25 2 11 11 11
Order Tasks Randomized MPL1, MPL2, MPL3
Order Blocks Always First Always Second

of our experimental design. The choice tasks in the experiment are divided into two
blocks: Block 1 and Block 2. Block 1 comprises the choice tasks used to test the
independence axiom (CR1, CR2, R1, and R2), along with the FOSD choice tasks.
The 102 choice tasks in Block 1 are presented to subjects in a randomized order at
the beginning of the experiment.

Upon completing Block 1, subjects then proceed to complete the remaining choice
tasks in Block 2 (MPL1, MPL2, and MPL3), specifically designed to elicit certainty
equivalents. In Block 2, subjects first encounter MPL1 tasks, followed by MPL2
tasks, and ultimately MPL3 tasks. Within each task type in Block 2, the monetary
amounts are presented in ascending order.

Recruitment and Experimental Payments
We recruited 500 subjects from Prolific on July 28, 2022. The experiment was con-
ducted using oTree. Our sample consisted of United States citizens who possessed
at least a high school education and maintained a high approval rate on Prolific.
For each subject, we collected information about gender, age, income, insurance
purchases, and investment behavior.

Each subject received $5.50 upon completing the experiment. Additionally, every
subject had a one-in-six chance of being selected to receive an additional bonus
payment based on their decisions during the study. Out of the 135 choice tasks, each
carried an equal probability of determining the bonus payment amount. Specifically,
subjects received the realized amount from the lottery they chose in the randomly
selected choice task.12
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Figure 3.2: Correlation between the overall proportions of non-EU behaviors (left
graph) and between the relative proportions of specific non-EU behaviors (right
graph) across CR-tasks and R-tasks. Each observation corresponds to a single
parameterization (𝐿, 𝑀, 𝐻, 𝑝𝐻).

3.3 Main Experimental Findings
In this section, we explore the non-EU behaviors observed in CR-tasks and R-tasks,
along with the correlation between them. The left graph in Figure 3.2 illustrates the
proportion of non-EU choice patterns in CR-tasks (on the x-axis) and R-tasks (on
the y-axis) for each pair of lotteries (𝛿𝑀 , 𝑟) in the experiment.13 Each observation
corresponds to a single parameterization (𝐿, 𝑀, 𝐻, 𝑝𝐻). Given that there are five
triplets of prizes in the experiment and five values of 𝑝𝐻 for each triplet, there are
25 observations graphed. All observations are situated to the left of the 45-degree
dashed line, indicating that non-EU behavior is more prevalent in R-tasks than in
CR-tasks for all pairs of lotteries. Moreover, there is a strong positive correlation
between non-EU behaviors in CR-tasks and R-tasks, evidenced by a correlation
coefficient of 0.9104. This high correlation is noteworthy because it implies that
observing EU failures in specific contexts, such as tests of the CRE, may provide
insights into other potential EU failures of interest.

Next, we turn to analyzing which of the non-EU behaviors are more likely to be
observed in our experiment. For each pair of lotteries (𝛿𝑀 , 𝑟), two potential non-EU
choice patterns exist in both CR-tasks and R-tasks. In the context of CR-tasks, these

12The complete instructions with screenshots from the experiment are presented in Appendix
C.5.

13Appendix C.1 provides a comprehensive description of EU and non-EU choice patterns in
CR-tasks and R-tasks.
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patterns are represented by the CRE and the RCRE. Conversely, within R-tasks,
the two non-EU choice patterns manifest as always choosing the mixture (AM) and
never choosing the mixture (NM).

The right graph in Figure 3.2 displays the proportion of CRE choice patterns over the
total non-EU behaviors in CR-tasks on the x-axis, and the proportion of AM choice
patterns over the total non-EU behaviors in R-tasks on the y-axis. Two important
observations arise from Figure 3.2. First, CRE and AM are the most frequent non-
EU choice patterns for the majority of pairs of lotteries in the experiment. At the
same time, the emergence of NM choice patterns is non-negligible for many pairs
of lotteries. This suggests that experiments which do not account for the elicitation
of aversion to randomization might neglect a critical dimension in the analysis of
attitudes towards randomization. The second fact documented in Figure 3.2 is the
strong positive correlation between the prevalence of the CRE and of AM choice
patterns, with a correlation coefficient of 0.6311.

Result 1 Non-EU behaviors in CR-tasks and R-tasks are strongly positively corre-
lated, with a correlation coefficient of 0.9104. Among non-EU behaviors, the CRE
and AM are the two most frequently observed ones in CR-tasks and R-tasks, respec-
tively. Moreover, these two non-EU behaviors are strongly positively correlated,
with a correlation coefficient of 0.6311.

Out-of-Sample Predictions: Conventional Toolbox
We now investigate whether leading economic models and machine learning al-
gorithms can predict the observed emergence of the two non-EU behaviors and
correlation between them. As popular economic models, we analyze EU model and
Cumulative Prospect Theory (CPT), which aims to rationalize non-EU behaviors
through probability weighting. In addition, we examine the predictive performance
of gradient boosting trees (GBT) and neural networks (NN), which are two common
machine learning algorithms used for classification tasks. We contrast the perfor-
mance of EU, CPT, GBT, and NN through two out-of-sample exercises.14 In the
first, we separately analyze behavior in CR-tasks and R-tasks. For each task type, we
assess the out-of-sample performance of various methods through cross-validation.
In the second exercise, we use choices from either CR-tasks or R-tasks as the training
data and aim to predict choices in the alternate tasks.

14Details on the procedures we followed to estimate economic models and train machine learning
algorithms can be found in Appendix C.2. Instead, Appendix C.3 reports the values of the estimated
parameters under EU and CPT.
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Table 3.2: Out-of-sample exercises within CR-tasks and R-tasks: predict choice
patterns.

Exercise Pattern Models
EU CPT GBT NN

Train: 80% CR-tasks
Test: 20% CR-tasks

Choice
Patterns

50.62%
(0.82)

46.01%
(1.13)

63.46%
(1.23)

46.30%
(0.78)

Train: 80% R-tasks
Test: 20% R-tasks

Choice
Patterns

40.95%
(1.73)

47.06%
(1.22)

60.14%
(0.56)

38.74%
(1.06)

Combined Choice
Patterns

45.78%
(5.25)

46.54%
(1.24)

61.80%
(1.97)

42.39%
(4.22)

Notes: Percentages of correctly classified choice patterns. Standard deviations in parenthe-
ses.

For all economic models, we estimate mixture models to account for heterogeneity.
We also provide information about each subjects to machine learning algorithms
including individual fixed effects in the training data. We use as main metric to
evaluate these methods the percentages of choice patterns that they correctly classify.
Because these methods provide probabilistic predictions, we identify the predicted
choice patterns as the ones with the highest associated predicted probability.15

Cross Validation within CR-tasks and R-tasks

We employ a 5-fold cross-validation, treating data from CR-tasks and R-tasks in-
dependently. To divide the available data into five equally sized subsets, we use
the following randomized procedure: For each subject and every triplet of prizes
in the experiment, we randomly allocate all choice tasks associated with one of
the five possible probabilities for the high prize 𝑝𝐻 in the risky lottery to each of
the five subsets. In doing so, we ensure that each iteration of the cross-validation
procedure contains sufficient information about all subjects within both training and
test sets. This approach enables accounting for heterogeneity in preferences during
the training phase and leverages this heterogeneity to formulate predictions.

Table 3.2 presents the average percentages of choice patterns that are accurately
classified across the five iterations of the cross-validation exercises within CR-tasks
and R-tasks, with standard deviations in parentheses. The first two rows display the

15We refer to Appendix C.4 for a more comprehensive probabilistic and deterministic evaluations
of all predictive tools. The findings presented in this section are qualitatively similar to the ones
obtained in Appendix C.4.
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results for the two cross-validation exercises separately, while the last row provides
the aggregate results from both exercises. GBT clearly emerges as the winner from
this out-of-sample analysis, delivering markedly superior performance compared to
both NN and economic models.

Result 2 GBT surpasses all other approaches in cross-validation exercises within
CR-tasks and R-tasks, achieving an average percentage of correctly predicted choice
patterns close to 61%. For context, CPT, the runner-up approach, showcases a
percentage of correctly predicted choice patterns that is approximately 15% lower.

Out-of-Sample Predictions across CR-tasks and R-tasks

We conduct two distinct exercises: In the first, CR-tasks serve as the training data
and R-tasks as the test data. In the second exercise, conversely, we reverse the
roles, employing R-tasks for training and CR-tasks for testing. The percentages of
correctly classified choice patterns from these exercises are presented in Table 3.3.
The first two rows of Table 3.3 display the results for the two exercises separately,
while the last row summarizes the average performance across both exercises.

The descriptive analysis of behaviors in CR-tasks and R-tasks highlight systematic
violations of EU. Yet, in these out-of-sample exercises, EU has the best overall out-
sample performance. CPT performs worse than EU because it predicts a correlation
between non-EU behaviors that is opposite to what we observe in our experiment.
In particular, CPT generally rationalizes the CRE through probability weighting.
However, probability weighting also implies aversion to randomization for the lot-
teries in the experiment, while we observe preferences for randomization as the most
frequent non-EU behavior.

Machine learning algorithms also demonstrate notably poor performance, with per-
centages of correctly classified choice patterns around 30% lower than those achieved
in cross-validation exercises within CR-tasks and R-tasks. The primary distinction
between out-of-sample exercises within a specific type of task and those across
tasks is that in the former, lotteries in the training and test sets are identical, while
in the latter, they are marginally different. Specifically, choices in R-tasks involve
mixture lotteries with three prizes, whereas all lotteries in CR-tasks feature one or
two possible prizes. In general, one might expect machine learning algorithms to
perform less effectively as the differences between training and test sets increase.
However, the strikingly different performance of these approaches in out-of-sample
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Table 3.3: Out-of-sample exercises across CR-tasks and R-tasks: predict choice
patterns.

Exercise Prediction Models
EU CPT GBT NN

Train: CR-tasks
Test: R-tasks

Choice
Patterns 40.72% 42.70% 35.71% 35.64%

Train: R-tasks
Test: CR-tasks

Choice
Patterns 48.59% 46.29% 34.16% 21.79%

Combined Choice
Patterns

44.66%
(5.56)

44.50%
(2.54)

34.93%
(1.10)

28.72%
(9.79)

Notes: Percentages of correctly classified choice patterns. Standard deviations in parenthe-
ses.

exercises across choices with very similar lotteries raise concerns about their ability
to produce generalizable predictions.

The economic models and the machine learning algorithms that we consider fail
in the out-of-sample exercises that are most interesting from an economic point
of view. If a predictive approach is not capable of predicting different behaviors
within the same experiment, then there is little hope that it can be used as guidance
for predicting real world behaviors of interest. The lack of generalizability of
conventional predictive approaches calls for the development of new empirical
strategies to make predictions.

Result 3 In cross-validation exercises across CR-tasks and R-tasks, economic mod-
els significantly outperform machine learning algorithms. Both EU and CPT allow
for approximately 44.5% of choice patterns to be correctly classified across the two
out-of-sample exercises. GBT, while achieving the best performance among ma-
chine learning algorithms, has a percentage of correctly classified choice patterns
that is, on average, around 10% below that of economic models.

3.4 Empirical Framework
In this section, we begin by reviewing the classic empirical approach used to estimate
economic models from choice data. Next, we introduce the notion of the EU-core,
and we detail the empirical strategy that we developed for estimating it. Finally,
we present our estimation results, which will then be used in Section 3.5 to make
out-of-sample predictions.
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Classic Estimation Approach
In the classic empirical framework proposed by Hey and Orme (1994), a decision-
maker chooses lottery 𝑝 over lottery 𝑞 if

𝑉 (𝑝, 𝑞) + 𝜖 ≥ 0,

where 𝑉 (𝑝, 𝑞) is a quantity that is greater or equal to zero if the decision-maker
prefers lottery 𝑝 over lottery 𝑞, and 𝜖 is an error term, assumed to be normally
distributed with a mean of zero and a variance of 𝜎. The specific functional form of
𝑉 (𝑝, 𝑞) depends on the assumptions made about the decision-making model. For
instance, under EU, 𝑉 (𝑝, 𝑞) represents the difference in expected utilities between
lottery 𝑝 and lottery 𝑞.

Within this framework, the analyst must select a decision model and also make para-
metric assumptions within that chosen model. For example, under EU, a common
assumption is that the decision-maker operates with a constant relative risk aversion
(CRRA) utility function. With this assumption, the analyst can estimate the free
parameter of the CRRA utility function and the variance of the error term using
choice data. The estimated model can then be used to undertake counterfactual
exercises, such as predicting choices between lotteries in an alternative dataset.

The analysis in Section 3.3 highlights the risks associated with specifying everything
about a decision model. For instance, CPT rationalizes the CRE with probability
weighting. However, probability weighting also implies aversion to randomization
in the experiment, which is inconsistent with what we find. At the same time, the
failures of machine learning algorithms in out-of-sample exercises across different
types of tasks also emphasize the potential benefit of predictive approaches that rely
on an underlying economic structure.

The methodological question we address is: can we generalize the empirical frame-
work of Hey and Orme (1994) to predict behavior under risk without committing to
specific decision models? The empirical approach that we propose as an answer to
this question builds on the theoretical notion of EU-core.

The EU-core
Given any reflexive, transitive, and continuous preference relation ¥, its EU-core is
the subrelation16 ¥∗ such that for all lotteries 𝑝, 𝑞, 𝑟 and for all 𝜆 ∈ (0, 1],

𝑝 ¥∗ 𝑞 ⇔ 𝜆𝑝 + (1 − 𝜆)𝑟 ¥ 𝜆𝑞 + (1 − 𝜆)𝑟.
16¥∗ is a subrelation of ¥ if for all lotteries 𝑝 and 𝑞, 𝑝 ¥∗ 𝑞 implies 𝑝 ¥ 𝑞.
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That is, 𝑝 ¥∗ 𝑞 whenever the decision-maker prefers 𝑝 to 𝑞 and mixing both
lotteries with a third common lottery 𝑟 does not affect the relative preferences of
the decision-maker between 𝑝 and 𝑞.17 Cerreia-Vioglio (2009) proves that ¥∗ is
the greatest subrelation of ¥ that satisfies the independence axiom; that is, if ¥∗∗

is another subrelation of ¥ that satisfies the independence axiom, then ¥∗∗ is a
subrelation of ¥∗. If a preference ¥ violates the independence axiom, then its EU-
core is an incomplete preference relation and admits a multi-utility representation.
In particular, there exists a set of utilities W such that for all lotteries 𝑝 and 𝑞, we
have 𝑝 ¥∗ 𝑞 if and only if the difference in expected utilities between 𝑝 and 𝑞 is
non-negative for all utilities within the set W.

Our empirical approach involves obtaining information about a preference by es-
timating the set of utility functions that represent its EU-core.18 In this way, we
can obtain estimates and generate predictions that do not rely on specific decision
models.

Econometric Specification
We detail our empirical framework in the context of our experimental design. Our
study involves lotteries over a finite set of 𝐾 monetary prizes 𝑋 = {𝑥1, . . . , 𝑥𝐾}, with
𝑥1 < 𝑥2 < · · · < 𝑥𝐾 . We consider a set of 𝐿 utility functions W = {𝑣1, . . . , 𝑣𝐿},
each utility 𝑣𝑙 : 𝑋 → R is representable as a vector with its 𝑘-th component, 𝑣𝑙𝑘 ,
being equal to 𝑣𝑙 (𝑥𝑘 ). We restrict our attention to normalized sets of utilities, setting
𝑣11 = · · · = 𝑣𝐿1 = 0 and 𝑣1𝐾 = · · · = 𝑣𝐿𝐾 = 1.19 This means all utilities assign zero
to the worst outcome 𝑥1 and one to the best outcome 𝑥𝐾 . Moreover, we assume all
utilities are weakly increasing; i.e., 𝑣𝑙1 ≤ 𝑣𝑙2 ≤ . . . ≤ 𝑣𝑙𝐾 for each 𝑣𝑙 ∈ W.

We define 𝐼 = {1, . . . , 𝑁} as a set of subjects in our experiment, △(𝑋) as the set
of lotteries over 𝑋 , and by D ⊆ △(𝑋)2 as a subset of pairs of lotteries where the
subjects express their preferences. An empirical analysis of the EU-core requires
evaluating whether it holds that 𝑝 ¥∗

𝑖
𝑞 or 𝑞 ¥∗

𝑖
𝑝 for each subject 𝑖 ∈ 𝐼 and each

pair of lotteries (𝑝, 𝑞) ∈ D. In the traditional estimation framework, where the
objective is to estimate a subject’s preferences, the choices made by the subjects

17We study the expected utility core by considering only “one-stage” lottery mixtures, rather
than two-stage compound lotteries. In other words, we focus on mixture independence, rather than
compound independence, as defined in Segal (1990).

18This set of utility functions is unique up to the closed convex hull. Our empirical approach
aims to estimate the extreme points of the convex set of utility functions that represent the EU-core.

19In our estimation procedure, the number of utilities 𝐿 is an hyperparameter that can be chosen
using standard model selection techniques.
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Figure 3.3: Examples of CR-tasks and R-tasks.

can be used directly as inputs for the estimation. However, when the focus of the
estimation shifts from a preference relation to its EU-core, additional information
becomes necessary. Specifically, we need to assess whether the choices made by
the subjects signal a violation of the independence axiom.

By observing subjects’ choices in experimental settings that test the independence
axiom, we construct an index, 𝐶𝑜𝑟𝑒𝑖, for each subject 𝑖 as follows: for each pair of
lotteries (𝑝, 𝑞) ∈ D,

𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) :=


3 if there is no experimental evidence against 𝑝 ¥∗

𝑖
𝑞

2 if there is no experimental evidence against 𝑞 ¥∗
𝑖
𝑝

1 otherwise.

We construct two distinct versions of the index 𝐶𝑜𝑟𝑒𝑖 within the context of our
experiment: 𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
and 𝐶𝑜𝑟𝑒𝑅

𝑖
. Each version builds upon different sets of infor-

mation. Specifically, 𝐶𝑜𝑟𝑒𝐶𝑅
𝑖

uses data solely from CR-tasks, while𝐶𝑜𝑟𝑒𝑅
𝑖

is based
on R-tasks only. We explain how we construct these indexes using the examples
from Figure 3.3. The left and right graphs in Figure 3.3 respectively depict the
CR-tasks and R-tasks associated with a generic pair of lotteries (𝑠1, 𝑟1) from our
experiment.

The absence of experimental evidence contradicting 𝑠1 ¥∗
𝑖
𝑟1 in CR-tasks means

that subject 𝑖 chooses for lottery 𝑠1 in the CR1 task and lottery 𝑠2 in the CR2 task.
Observing this choice pattern, we assign the value of 3 to the index 𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
(𝑠1, 𝑟1).

In a parallel manner, we find no evidence refuting 𝑟1 ¥∗
𝑖
𝑠1 in the CR-tasks if subject
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𝑖 chooses lottery 𝑟1 in the CR1 task and lottery 𝑟2 in the CR2 task. In this case, we
assign to the index𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
(𝑠1, 𝑟1) the value of 2. The two remaining choice patterns

are the CRE and the RCRE, and are both incompatible with EU. If we observe either
the CRE or the RCRE for subject 𝑖, we assign to the index 𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
(𝑠1, 𝑟1) the value

of 1.

Turning to R-tasks, we find no evidence against 𝑠1 ¥∗
𝑖
𝑟1 if subject 𝑖 chooses lottery

𝑠1 in the R1 task and lottery 𝑚 in the R2 task. When this happens, we assign the
value of 3 to the index 𝐶𝑜𝑟𝑒𝑅

𝑖
(𝑠1, 𝑟1). Similarly, if subject 𝑖 chooses lottery 𝑚 in

the R1 task and lottery 𝑟1 in the R2 task, we have no evidence against 𝑟1 ¥∗
𝑖
𝑠1. In

this case, we assign the value of 2 to the index 𝐶𝑜𝑟𝑒𝑅
𝑖
(𝑠1, 𝑟1). The two remaining

non-EU choice patterns are AM and NM. If we observe either AM or NM for subject
𝑖, we assign to the index 𝐶𝑜𝑟𝑒𝑅

𝑖
(𝑠1, 𝑟1) the value of 1.

We define 𝑉 (𝑝, 𝑞; 𝑣𝑙) as the difference in expected utilities between lottery 𝑝 and
lottery 𝑞, given a Bernoulli utility function 𝑣𝑙 . For each subject 𝑖 ∈ 𝐼, utility 𝑣𝑙 ∈ W,
and comparison (𝑝, 𝑞) ∈ D, we associate an error term 𝜖𝑖,𝑙,(𝑝,𝑞) . We assume that the
vector of error terms [𝜖𝑖,1,(𝑝,𝑞) , . . . , 𝜖𝑖,𝐿,(𝑝,𝑞)] across utilities follows a multivariate
normal distribution with mean [0, . . . , 0] ∈ R𝐿 and covariance matrix Σ ∈ R𝐿×𝐿 .
For any two lotteries 𝑝 and 𝑞, and for any subject 𝑖, our empirical framework
postulates that

𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3 ⇔ 𝑉 (𝑝, 𝑞, 𝑣𝑙) − 𝜖𝑖,𝑙,(𝑝,𝑞) ≥ 0, for all 𝑙 ∈ {1, . . . , 𝐿},

and

𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2 ⇔ 𝑉 (𝑝, 𝑞, 𝑣𝑙) − 𝜖𝑖,𝑙,(𝑝,𝑞) < 0, for all 𝑙 ∈ {1, . . . , 𝐿}.

In other words, we postulate to find no evidence against 𝑝 ¥∗
𝑖
𝑞 whenever the

difference in expected utilities between lotteries 𝑝 and 𝑞, minus an error term, is
non-negative for all utilities. Similarly, we expect to find no evidence against 𝑞 ¥∗

𝑖
𝑝

whenever the opposite condition holds.

Our flexible formulation of the error structure extends the normality assumption of
the unique error term in Hey and Orme (1994), allowing us to account for potential
noise in the 𝐶𝑜𝑟𝑒𝑖 index that might arise from several sources. First, we construct
this index by observing the choices of subject 𝑖 in experimental settings that test
the independence axiom. If these choices are noisy, then the resulting 𝐶𝑜𝑟𝑒𝑖 index
will also be noisy. Additionally, even in the absence of noise in the choices, the
𝐶𝑜𝑟𝑒𝑖 index might still be noisy due to issues with missing data. For example, we
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might find no evidence against 𝑝 ¥∗
𝑖
𝑞 simply because we could not observe enough

choices involving lotteries 𝑝 and 𝑞.

To account for variation in preferences across subjects, we employ a mixture model
and postulate that each subject 𝑖 belongs to one of 𝐶 possible different groups
(Bruhin et al., 2010). We denote by 𝑣𝑐

𝑙
the 𝑙-th utility in group 𝑐 and by Σ𝑐 the

covariance matrix in group 𝑐, with 𝑐 ∈ {1, . . . , 𝐶}. Within this framework, the
probability that we find no experimental evidence against 𝑝 ¥∗

𝑖
𝑞 if subject 𝑖 belongs

to group 𝑐 is:

Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3 | 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐) = Φ

(
𝑉 (𝑝, 𝑞; 𝑣𝑐1), . . . , 𝑉 (𝑝, 𝑞; 𝑣𝑐𝐿);Σ𝑐

)
,

where Φ represents the cumulative distribution function of the mean-zero multi-
variate normal distribution. Similarly, the probability that we find no experimental
evidence against 𝑞 ¥∗

𝑖
𝑝 if subject 𝑖 belongs to group 𝑐 is:

Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2 | 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐) = Φ

(
−𝑉 (𝑝, 𝑞; 𝑣𝑐1), . . . ,−𝑉 (𝑝, 𝑞; 𝑣𝑐𝐿);Σ𝑐

)
.

Given the observed index𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) for all pairs of lotteries (𝑝, 𝑞) ∈ D, we denote
by 𝑓 (𝐶𝑜𝑟𝑒𝑖; 𝑣𝑐1, . . . , 𝑣

𝑐
𝐿
, Σ𝑐) the likelihood function for subject 𝑖 belonging to group

𝑐: ∏
(𝑝,𝑞)∈D

(
1 (𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3) · Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3 | 𝑣𝑐1, . . . , 𝑣

𝑐
𝐿 , Σ𝑐)

+ 1 (𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2) · Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2 | 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐)

+ 1 (𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 1) · (1 − Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3) − Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2))
)
.

Let 𝜋𝑐 represent the probability of a subject belonging to group type 𝑐. The log-
likelihood of the finite mixture model is given by:

𝑁∑︁
𝑖=1

ln
𝐶∑︁
𝑐=1

𝜋𝑐 𝑓 (𝐶𝑜𝑟𝑒𝑖; 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐),

where the first sum is over subjects and the second sum is over groups.

To sum, for each group of subjects 𝑐, structural parameters are utility functions
{𝑣𝑐1, . . . , 𝑣

𝑐
𝐿
}, covariance matrices Σ𝑐, and probability of group member ship 𝜋𝑐.

We estimate these parameters through maximum likelihood estimation by using the
log-likelihood given above.
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Figure 3.4: Set of utility functions in the MM-triangle.

Model Implications: Risk Aversion and Adherence to EU
By using an example, we explain the behavioral implications of our empirical
framework. Figure 3.4 illustrates three generic choice tasks in the MM-triangle:
(𝑠, 𝑟1), (𝑠, 𝑟2), and (𝑠, 𝑟3). To obtain predictions from any decision model in these
tasks, one only needs to know the shape of the indifference curve passing through
lottery 𝑠. Lotteries to the left of this curve will be strictly better than 𝑠, while those
to the right will be strictly worse.

Under our decision model, each subject makes their decision based on not just one
but a set of utility functions. This means that there are multiple indifference curves
passing through a given lottery, each corresponding to a different utility function.
For instance, the blue solid segments in Figure 3.4 represent two indifference curves
passing through lottery 𝑠. In this new setting, any lottery 𝑟 that lies to the left of both
indifference curves will be unambiguously preferred to 𝑠. Specifically, for every
such lottery, we can conclude that 𝑟 ¥∗ 𝑠, as is the case for lottery 𝑟1 in Figure 3.4.
Conversely, any lottery 𝑟 that lies to the right of both indifference curves will be
unambiguously worse than 𝑠. In particular, for every such lottery, we can conclude
that 𝑠 ¥∗ 𝑟, as is the case for lottery 𝑟3 in Figure 3.4. For all other lotteries, without
making further assumptions, the only conclusion we can draw is that neither 𝑠 ¥∗ 𝑟

nor 𝑟 ¥∗ 𝑠 holds.

More generally, given a set of utilities W and any lottery 𝑟 on the hypotenuse of the
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MM-triangle assigning probability 𝑝𝐻 to the high prize 𝐻 and probability 1 − 𝑝𝐻
to the low prize 𝐿, we can compute the range of probabilities [𝑝

𝐻
, 𝑝𝐻], where

𝑝
𝐻

:= max {𝑝𝐻 ∈ [0, 1] : 𝑣(𝑀) ≥ 𝑝𝐻𝑣(𝐻) + (1 − 𝑝𝐻) 𝑣(𝐿) for all 𝑣 ∈ W} ,

and

𝑝𝐻 := min {𝑝𝐻 ∈ [0, 1] : 𝑝𝐻𝑣(𝐻) + (1 − 𝑝𝐻) 𝑣(𝐿) ≥ 𝑣(𝑀) for all 𝑣 ∈ W} .

These two quantities are well-defined because utilities are assumed to be weakly
increasing and continuous. In particular, 𝑝

𝐻
is the highest probability of the high

prize for which we have 𝑠 ¥∗ 𝑟. Similarly, 𝑝𝐻 is the lowest probability of the high
prize for which we have 𝑟 ¥∗ 𝑠. The green squares in Figure 3.4 describe the two
points 𝑝

𝐻
and 𝑝𝐻 given the two indifference curves.

The range of probabilities [𝑝
𝐻
, 𝑝𝐻] is a measure for the extent to which a subject

adheres to EU. In general, the narrower the range of probabilities, the more consistent
the underlying preference is with EU. Under EU, the range would collapse into a
fixed probability 𝑝𝐸𝑈 . Moreover, the range of probabilities [𝑝

𝐻
, 𝑝𝐻] provides

information about subjects’ risk attitudes. Specifically, in our experiment, the mid-
value prize 𝑀 is always set as the mean of the high prize 𝐻 and the low prize 𝐿.
Consequently, given a triplet of prizes, we can classify an EU subject as risk averse
if 𝑝

𝐻
> 0.5, risk-seeking if 𝑝𝐻 < 0.5, and as neither risk averse nor risk-seeking

otherwise. In this way, we generalize the empirical analysis of risk attitude under
EU to preferences that may violate the independence axiom.20 In the special case
of EU with a unique probability 𝑝𝐸𝑈 , we would classify a subject as risk averse if
𝑝𝐸𝑈 > 0.5, risk neutral if 𝑝𝐸𝑈 = 0.5, and risk-seeking if 𝑝𝐸𝑈 < 0.5.

Estimation Results
We present the estimation results from a mixture model with three groups of sub-
jects and two utilities for each group. The estimates are derived using data from
both CR-tasks and R-tasks.21 The three graphs on the left in Figure 3.5 show the
estimated utilities in each group, while the three graphs on the right display the
ranges of probabilities [𝑝

𝐻
, 𝑝𝐻] that they induce for the five triplets of prizes in our

experiment.

The two utilities in Group 1 are very close to each other, indicating that the behavior
of subjects in Group 1 can be accurately described by EU. Furthermore, both utilities

20Our classification adopts the aversion to mean-preserving spreads as the primitive notion for
risk aversion (Rothschild and Stiglitz, 1970).

21In particular, we used both the 𝐶𝑜𝑟𝑒𝐶𝑅
𝑖

and 𝐶𝑜𝑟𝑒𝑅
𝑖

indices as input for the estimation.
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Figure 3.5: Estimated utilities and probability ranges.
Notes: We classify the three groups in terms of risk aversion (RA) and adherence to EU.
Estimated group membership probabilities are: 0.2798 for Group 1, 0.4834 for Group 2,
and 0.2368 for Group 3. The width of the vertical bars centered around the point estimates
in the left graphs indicates the bootstrapped standard errors. We report the values of all
estimated parameters in Appendix C.3. In the right graphs, T1 through T5 correspond to
prize triplets as follows: T1 = ($0, $15, $30), T2 = ($5, $15, $25), T3 = ($10, $20, $30), T4
= ($15, $20, $25), and T5 = ($0, $10, $20).
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in Group 1 are concave and significantly deviate from being linear, pointing to strong
levels of risk-aversion. This information is reflected in the range of probabilities
induced by the two utilities. Specifically, the ranges across the five triplets of prizes
are narrow, indicating a high adherence to EU. Additionally, these ranges encompass
very high values for the probability of winning the high prize. For instance, in all the
triplets of prizes in our experiment, the two estimated utilities both rank the middle
prize above a binary risky lottery that offers the high prize with a probability of
approximately 0.8, or the low prize with the complementary probability. Therefore,
Group 1 reflects subjects in the experiment who systematically opted for the safer
available lottery. The estimated proportion of subjects belonging to Group 1 is
0.2798.

Moving to Group 2 and Group 3, the utilities within these groups are more distinct
compared to those in Group 1. The difference in utilities is most pronounced in
Group 2, which is evident from the broader range of probabilities that they induce.
Interestingly, utilities in both Group 2 and Group 3 are neither strictly concave nor
convex. As a result, the range of probabilities in these groups spans values both
below and above 0.5, which represents the expected utility threshold for risk-aversion
in our experiment. This suggests that subjects’ behavior in these two groups doesn’t
strictly align with either pure risk-aversion or risk-seeking tendencies. However,
the probability ranges in Group 2 consistently register higher values than those in
Group 3, indicating relatively more risk-averse behavior in comparative terms. The
estimated proportion of subjects belonging to Group 2 and 3 are 0.4834 and 0.2368,
respectively.

The emergence of non-EU behavior and risk-averse tendencies consistently differs
within the groups across the five triplets of prizes in the experiment. Notably,
subjects consistently exhibit stronger risk aversion when the lowest prize in the
triplet is $0 compared to when it’s a positive amount. On the whole, their behavior
aligns more closely with EU. These observations are particularly evident in the
probability ranges for the triplets 𝑇1 = ($0, $15, $30) and 𝑇5 = ($0, $10, $20),
which are narrower and encompass higher values than other triplets. Among all
the triplets, 𝑇4 = ($15, $20, $25) stands out as the one with the most pronounced
non-EU behavior across all three groups. This triplet is unique in having prizes that
are closely spaced, which could be linked to higher noise in responses.22

22A potential extension of our model might allow the variance of the error term to be influenced
by features of the lotteries, such as the prize amounts.
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Result 4 In the mixture model for the EU-core with 3 groups estimated using both
CR-tasks and R-tasks, approximately 28% of subjects (Group 1) are extremely risk-
averse and align closely with EU. The remaining subjects (Group 2 and Group 3)
deviate markedly from EU and cannot be categorically classified as either risk-
averse or risk-seeking.

3.5 Out-of-Sample Predictions: EU-Core Analysis
In this section, we evaluate whether, and under which conditions, the out-of-sample
predictions derived from the analysis of the EU-core are more precise than those ob-
tained from specific economic models or machine learning algorithms. We examine
various out-of-sample exercises, each involving different degrees of similarity be-
tween training and test sets. Initially, we reexamine the two out-of-sample exercises
related to choices in CR-tasks and R-tasks, previously discussed in Section 3.3. In
these exercises, training and test sets bear a close relationship. Subsequently, we
use all choices from CR-tasks and R-tasks as training data and aim to predict the
certainty equivalents derived from choices in Block 2 of the experiment. Lastly, we
explore the correlation between estimated levels of risk aversion and adherence to
EU with financial habits outside of the experiment.

Out-of-Sample Exercises Within and Across CR-Tasks and R-Tasks
Both economic models and machine learning algorithms can be used to predict the
probability of all conceivable choice patterns in CR-tasks and R-tasks. On the other
hand, the EU-Core approach only allows us to predict the probability of the possible
values of the index 𝐶𝑜𝑟𝑒. As a result, we cannot distinguish between non-EU
behaviors within CR-tasks and R-tasks. Specifically, we cannot differentiate between
CRE and RCRE in CR-tasks, and between AM and NM in R-tasks. To implement
a fair comparison that takes into account the different levels of prediction detail
attainable by various approaches, we also assess the ability of economic models
and machine learning algorithms to predict the index 𝐶𝑜𝑟𝑒. Hence, we deem an
observed non-EU choice pattern as correctly predicted by these approaches as long
as they assign the highest predicted probability to one non-EU behavior, even if the
predicted non-EU behavior does not match the observed one.

Table 3.4 shows the percentages of choice patterns with a correctly classified in-
dex 𝐶𝑜𝑟𝑒 for economic models, machine learning algorithms, and the EU-Core
approach. Consistent with the findings in Section 3.3, GBT achieves the best results
in out-of-sample exercises within CR-tasks and R-tasks. Our approach performs
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Table 3.4: Out-of-sample exercises: adherence to EU.

Exercise Prediction Models
EU CPT GBT NN EU-Core

Combined Within
Tasks

Index
𝐶𝑜𝑟𝑒

45.78%
(5.25)

47.73%
(1.06)

64.40%
(1.50)

45.10%
(3.93)

60.11%
(1.97)

Combined Across
Tasks

Index
𝐶𝑜𝑟𝑒

44.66%
(5.56)

44.94%
(2.93)

41.59%
(7.09)

42.23%
(11.70)

48.64%
(3.32)

Notes: Percentages of choice patterns with a correctly classified index 𝐶𝑜𝑟𝑒. Standard
deviations in parentheses. The first row (“Combined Within Tasks”) presents the average
percentages for the two cross-validation exercises within CR-tasks and R-tasks. For these
exercises, we used the same partition of data used in Section 3.3 to assess the predictive
accuracy of economic models and machine learning algorithms at predicting specific choice
patterns. The second row (“Combined Across Tasks”) displays the average percentages for
the two out-of-sample exercises across CR-tasks and R-tasks described in Section 3.3.

significantly better than both EU and CPT, while it is around 4% less accurate than
GBT. Moreover, in line with the findings in Section 3.3, the ranking between eco-
nomic models and machine learning algorithms is inverted once we switch from
out-of-sample exercises within tasks to across tasks.23 In this latter type of out-
of-sample exercise, the EU-core approach outperforms all other methods, yielding
approximately 4% higher accuracy than economic models.

Result 5 The EU-Core outperforms economic models in out-of-sample exercises
within CR-tasks and R-tasks, though it is around 4% less accurate than GBT.
Conversely, the EU-core approach attains the most accurate results in out-of-sample
exercises across CR-tasks and R-tasks, delivering predictions that are approximately
4% more accurate than those of economic models.

Certainty Equivalents
We use choices from CR-tasks and R-tasks as training data and evaluate the accuracy
of different approaches in predicting the certainty equivalents inferred from choices
in Block 2 of our experiment. In Block 2, subjects are asked to compare three risky
lotteries and various certain prizes. We focus on the subset of observations where
subjects shifted their preference between a fixed lottery and a certain amount at most

23Here, CPT and NN do relatively better than EU and GBT, respectively. This is a result of the
lenient approach we are using in evaluating these methods. For example, we categorize a choice
pattern as correctly classified even when we observe a preference for randomization, while CPT
predicts an aversion to randomization.
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once.24 For lotteries where subjects make a single switch, we compute the certainty
equivalent as the smallest certain amount preferred over the lottery, reduced by $0.5.
If a lottery is chosen over all the certain prizes, its certainty equivalent is computed
as the highest prize in the experiment compared to that lottery. Conversely, if the
certain prize is always preferred, the certainty equivalent is computed as the smallest
prize in the experiment compared to the lottery.

The EU-core model enables us to predict a range of certainty equivalents. Specifi-
cally, given an estimated set of utilities �̂� , the certainty equivalent for a lottery 𝑝 is
predicted to lie within:

[min
𝑣∈�̂�

𝑐(𝑝, 𝑣),max
𝑣∈�̂�

𝑐(𝑝, 𝑣)],

where 𝑐(𝑝, 𝑣) represents the certainty equivalent of lottery 𝑝 determined using
utility function 𝑣.

The estimation results presented in Section 3.4 highlight significant heterogeneity
in preferences. In particular, we estimated mixture models for three distinct groups
of subjects and ranked these groups in terms of risk-aversion and non-EU behavior.
The greater the risk aversion, the higher the possible values for the risk premium
associated with each lottery.25 Additionally, increased non-EU behavior implies
broader possible ranges of risk premia. Figure 3.6 summarizes with box plots the
distribution of risk premia of all lotteries from Block 2 for the three groups of
subjects. To construct this graph, we assigned each subject to the group with the
highest group membership probability.

Comparing the distribution of risk premia across groups, we observe that the risk
premia increase with the predicted level of risk aversion. For instance, the median
risk premium in the group with low predicted levels of risk aversion is 0.5, while it is
5.5 in the group with high predicted levels of risk aversion. Furthermore, our model
not only accurately predicts the differences in risk premia levels across groups but
also the levels within each group. The dashed red lines in Figure 3.6 illustrate the
predicted ranges of risk premia in the three groups. In all the groups, the predicted
ranges of risk premia are perfectly consistent with the observed ones. In particular,
for each of the three lotteries, the predicted range always includes the observed
median risk premium.

24Appendix C.1 summarizes the distribution of risk premia for the three lotteries presented to
subjects in Block 2.

25The risk premium of a lottery is the difference between the expected value and the certainty
equivalent of a lottery.
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Figure 3.6: Observed risk premia and predicted ranges under the EU-core model.
Notes: Box plots depict the distributions of risk premia in the three groups identified using
mixture models with the EU-core. Groups are classified based on risk aversion (RA) and
adherence to EU. Observations are considered outliers if they lie more than 1.5 interquartile
ranges above the third quartile (75 percent) or below the first quartile (25 percent). We
identified 11 outliers in the “High RA High EU” group. All outliers are omitted from the
graph for clarity.

To benchmark the performance of our approach, we employ both economic models
and machine learning algorithms to predict certainty equivalents. EU and CPT
directly yield point predictions for the certainty equivalent of every lottery. Similarly,
with GBT and NN, we can predict the specific point in a price list where subjects
transition from favoring the certain amount to the risky lottery. We then deduce
certainty equivalents using the same approach applied to derive certainty equivalents
from the observed choices in Block 2.26 To establish a fair comparison between
the EU-core approach and the other methods, we compute point predictions of the
EU-core approach for the certainty equivalents by taking the average values of the
predicted ranges.

We use choices from CR-tasks and R-tasks as our training data and compare the mean
squared errors of various approaches in predicting certainty equivalents. The results

26In 5.25% of observations, GBT predicts either multiple switches between the certain amount
and the risky lottery, or a single switch that’s directionally incorrect. In this latter scenario, subjects
are forecasted to choose the certain prize when its value is low and opt for the risky lottery when the
certain prize value is high. We exclude these observations when evaluating the performance of GBT.
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Table 3.5: Out-of-sample exercise across tasks in Block 1 and Block 2.

Exercise Loss Models
EU CPT GBT NN EU-core

Train: CR-tasks and R-tasks
Test: Certainty Equivalents in Block 2 MSE 13.184 16.964 64.148 57.398 11.444

Notes: We employ mixture models with three groups to predict risk premia using EU, CPT,
and the EU-core approach. For predictions with the EU-core approach, we use the average
risk premium within the predicted range.

are presented in Table 3.5, where a lower mean squared error indicates superior
model performance. In this out-of-sample evaluation, machine learning algorithms
perform considerably worse than other methods. Specifically, GBT predicts that
for over 90% of the lotteries, subjects either always prefer the certainty prize, or
the risky lottery. Meanwhile, NN yields the analogous prediction for all lotteries.
Therefore, both GBT and NN fail to offer reasonable predictions for choices in Block
2. EU and CPT significantly outperform machine learning algorithms in this task,
with EU achieving a lower MSE than CPT. Finally, the EU-core approach emerges
as the top performer.

Result 6 In the exercise of predicting risk premia from Block 2 using choices in
Block 1 as training data, the EU-core approach outperforms both economic models
and machine learning algorithms. Within economic models, EU performs better
than CPT, while machine learning algorithms exhibit the poorest performance in
this out-of-sample exercise.

Investment and Insurance Behaviors Outside the Experiment
In this section, we explore whether the heterogeneity identified in the experiments
through the EU-core approach, in terms of risk aversion and non-EU behavior, has
any correlation with real investment and insurance behaviors. All subjects on Prolific
are asked a series of questions about their financial habits when they first enroll on
the platform. In the preregistration of the experiment, we chose to evaluate two
conjectures.27 The first conjecture concerns risk aversion, and the second pertains
to subjects’ adherence to EU.

We posit that individuals who are less risk-averse should be more inclined to invest,
especially in volatile assets. To assess this conjecture, we focused on two specific
questions. The first inquires whether subjects have made investments (either personal

27See page 14 of the analysis plan preregistered at the AEA RCT Registry as AEARCTR-0011749
(Kobayashi and Lucia, 2023).
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Figure 3.7: Investment and insurance behaviors: proportions.
Notes: We estimated a mixture model for the EU-core with three groups, using CR-tasks
and R-tasks. Each subject was assigned to the group with the highest group membership
probability. The left graph displays proportions based on affirmative responses to the
question, “Have you ever made investments (either personally or through your employment)
in the common stock or shares of a company?” The middle graph represents proportions
based on affirmative answers to the question, “Do you own/hold any cryptocurrencies?”
The right graph, meanwhile, focuses on the question, “Do you actively hold any of the
following types of insurance policies?” Specifically, it illustrates the proportion of subjects
who selected the option “Purchase Insurance (e.g., Mobile Phone).”

or through their employment) in the common stock or shares of a company. Of
course, the act of investing in company shares per se does not necessarily correlate
with risk aversion. Much depends on the level of risk associated with the specific
stocks considered, information we do not possess. Consequently, we also decided to
explore whether subjects declared ownership of cryptocurrencies, serving as a more
unambiguous proxy for risky behavior. Moreover, to capture non-EU behavior, we
examined whether subjects have purchased insurance for items, such as smartphones.
This behavior is a classic example of small stakes risk aversion, which can be
challenging to rationalize with EU. Therefore, our second conjecture is that subjects
who align more closely with EU should be less inclined to purchase this type of
insurance.

Figure 3.7 summarizes the responses to the three questions under consideration,
across the different groups of subjects identified with the mixture model for the EU-
core estimated using all data from Block 1. For investments in shares of companies
(left graph) and cryptocurrencies (middle graph), we order groups from left to right
based on their estimated level of risk aversion. For purchasing insurance (right
graph), we order groups based on their estimated adherence to EU.
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The left and middle graphs of Figure 3.7 provide evidence in line with our first
conjecture: groups of subjects characterized by lower estimated levels of risk aver-
sion have higher proportions of individuals investing in shares of companies or
cryptocurrencies. Moreover, the negative correlation between risk aversion and
investment behavior is more pronounced for cryptocurrencies than for company
shares. This observation supports the idea that investments in cryptocurrencies
might be a better proxy for risky behavior. Consistent with our second conjecture,
the proportion of subjects purchasing insurance is highest among groups with low
predicted adherence to EU.

Result 7 We classified subjects in terms of risk aversion and adherence to EU
using the mixture model for the EU-core estimated from choices in CR-tasks and
R-tasks. Subjects classified as more risk averse are less likely to invest, particularly
in cryptocurrencies. Moreover, subjects classified as less adherent to EU purchase
insurance more frequently.

3.6 Discussion
Our paper offers two main contributions. Empirically, we demonstrate the short-
comings of popular economic models and machine learning algorithms in both
rationalizing and predicting two widely documented and influential non-EU be-
haviors, which were previously mostly analyzed separately in experimental work.
Methodologically, we introduce a novel empirical strategy for predicting behavior
under risk and showcase its effectiveness through a series of out-of-sample exercises.
We conclude by discussing the implications of our results for future research.

A satisfactory model of decision-making under risk should rationalize the strong
positive correlation observed between the CRE and preferences for randomization.
Conversely, CPT predicts the opposite correlation between these two non-EU be-
haviors, explaining why this model consistently achieves inferior out-of-sample
performance compared to EU in our analysis. A natural direction for future research
involves considering alternative models to CPT. Fudenberg et al. (2022) demonstrate
that adding to CPT a complexity cost, which increases with the number of prizes
in a lottery, yields better out-of-sample predictions. In our experiment, adding a
complexity cost to CPT would further strengthen the negative relationship between
CRE and preferences for randomization, leading to worse out-of-sample predictions.

Of course, many alternative theories to CPT and its generalizations have been pro-
posed, and some of them may be capable of rationalizing our main experimental
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findings. One important example is the original Prospect Theory (PT; Kahneman
and Tversky, 1979). This model drops the rank dependence assumption that char-
acterizes CPT and can rationalize the observed correlation between CRE and pref-
erences for randomization through simple probability weighting. However, there is
also abundant experimental evidence demonstrating failures of PT, with CPT being
proposed as a solution to the violations of first-order stochastic dominance implied
by PT. The overall absence of an economic model that systematically outperforms
the others in terms of predictive accuracy generates interest in exploring alternative
approaches for making predictions.

Machine learning algorithms offer an alternative approach for predicting behavior
under risk, and a growing body of research compares their predictive capabilities
with those of economic models.28 In our analysis, machine learning algorithms out-
performed economic models only when the training and test sets included choices
over the exact same lotteries. However, their predictive capabilities dropped signif-
icantly in all other out-of-sample exercises. Andrews et al. (2022) obtain a similar
result when comparing the out-of-sample performance of economic models and ma-
chine learning algorithms in the prediction of certainty equivalents. In particular,
they observe that the performance of machine learning algorithms are sensitive to
which lotteries are included in the training and test sets. Therefore, the sensitivity
of these methods to minor differences between training and test sets raises concerns
about their ability to produce generalizable predictions that are at least as substantial
as those for economic models.

This paper introduces a novel empirical approach to make predictions that retains an
underlying economic structure without being tied to specific models. We show that
the predictions of our approach are more accurate but at same time less detailed than
those produced by fully specified economic models or machine learning algorithms.
For instance, our approach does not allow distinguishing between specific non-
EU behaviors, or it does not allow one to directly obtain a point prediction for a
certainty equivalent. While this paper focuses on choices under risk, we believe
our empirical strategy holds promise for extension to choices under uncertainty,
exploiting the notion of “unambiguous preference” introduced by Ghirardato et al.
(2004).

Ultimately, determining the “best” method to predict behavior under risk may depend
28See Andrews et al. (2022), Camerer et al. (2019), Fudenberg and Liang (2019), Noti et al.

(2016), Peterson et al. (2021), Plonsky et al. (2017), Plonsky et al. (2019), and Zhao et al. (2020).
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on at least two factors. If the analyst has access to a training set that is sufficiently
close to the test set of interest, machine learning algorithms might be the most
suitable alternative. However, what constitutes “sufficiently close” can vary based
on the specific nature of the problem at hand. Our analysis underscores how minor
discrepancies between training and test sets can lead to substantial declines in the
performance of machine learning algorithms. Another critical aspect to consider
is the level of detail required in the predictions. For instance, if the analyst aims
to estimate measures of risk aversion or adherence to EU, our approach offers a
promising alternative to traditional predictive tools. Conversely, if our method does
not provide the necessary level of detail in predictions, it can still complement other
techniques. For example, if a point prediction for a certainty equivalent is needed,
our strategy can first offer a range prediction, which economic models or machine
learning algorithms can then refine to pinpoint a value within that range.
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A p p e n d i x A

APPENDIX TO CHAPTER 1

A.1 Reduced-Form Evidence
Table A.1: Regression discontinuity for price. We use the subsample from the
two-hour interval around the budget renewal point.

log(win_bid)

after renewal 0.4257∗∗∗ (0.0786)
(time − renewal) -17.60∗ (10.25)
(time − renewal)2 -5.057 (4.821)
log(#auctions per 5-min interval) -0.0927 (0.0802)
computer -0.2433∗∗∗ (0.0261)
optout -0.0746∗∗∗ (0.0279)
match_cookie_prop 1.305∗∗∗ (0.0169)
gender = Male -0.2327 (0.1421)
gender = Female -0.1599 (0.1441)
age = 25to44 0.1336 (0.1416)
age = 45plus 0.1243 (0.1423)
seg_size 1.94 × 10−5∗∗∗ (2.04 × 10−6)
num_month_sold -0.0079∗∗∗ (0.0025)
total_rev 0.0001 (0.0002)
avg_rev -0.0089∗∗∗ (0.0017)
profile_length 0.0003∗∗∗ (5.47 × 10−5)
after renewal × (time − renewal) -1.361 (14.32)
after renewal × (time − renewal)2 8.965 (7.241)

Site FE Yes
Browser FE Yes
City FE Yes

Observations 30,319
Adjusted R2 0.32271

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A.2: OLS Bid Regression and Logit Entry Regression.

log(bid) entry
Model: OLS Logit

log(#auctions per 5-min interval) -0.0701∗∗∗ (0.0114) -0.1198∗∗∗ (0.0246)
computer -0.0888∗∗∗ (0.0272) -0.3689∗∗∗ (0.1380)
optout 0.0626∗∗ (0.0242) -0.3666 (0.2338)
match_cookie_prop 0.4880∗∗∗ (0.0571) 2.087∗∗∗ (0.4137)
gender = Male -0.0551∗∗∗ (0.0122) -0.0130 (0.0323)
gender = Female -0.0375∗∗∗ (0.0112) 0.0090 (0.0332)
age = 25to44 0.0314∗∗∗ (0.0099) 0.0262 (0.0211)
age = 45plus 0.0120 (0.0091) 0.0209 (0.0198)
seg_size 92.10∗∗∗ (14.58) 642.1∗∗∗ (109.9)
num_month_sold -34.46∗∗ (16.02) -272.8∗ (154.3)
total_rev -26.59∗∗∗ (4.851) -60.62∗∗ (25.81)
avg_rev -35.40∗∗∗ (4.336) -317.7∗∗∗ (47.69)
profile_length 74.67∗∗∗ (17.68) 586.1∗∗∗ (210.4)

Site FE Yes Yes
Browser FE Yes Yes
City FE Yes Yes
Day-Hour FE Yes Yes
DSP FE Yes Yes
Advertiser FE Yes No

Observations 8,856,603 45,484,100
Adjusted/Pseudo R2 0.44974 0.34448

Double-clustered (DSP & 5-min interval) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.2 First-step estimates

𝑟𝑡 𝑝𝑡

𝑡 = 1 617.9 (440.6) 0.159 (0.095)
𝑡 = 2 2225.1 (2350.6) 0.498 (0.264)
𝑡 = 3 11055.2 (18673.2) 0.875 (0.185)
𝑡 = 4 1038.7 (910.5) 0.472 (0.218)
𝑡 = 5 238551.6 (288525.0) 0.995 (0.006)
𝑡 = 6 3933.6 (4070.4) 0.701 (0.217)
𝑡 = 7 822.3 (563.5) 0.202 (0.110)
𝑡 = 8 1079.0 (681.5) 0.151 (0.081)
𝑡 = 9 458.7 (298.2) 0.044 (0.027)
𝑡 = 10 421.5 (274.4) 0.028 (0.018)
𝑡 = 11 322.0 (197.4) 0.020 (0.012)
𝑡 = 12 1475.1 (1662.2) 0.080 (0.083)
𝑡 = 13 360.4 (227.6) 0.022 (0.013)
𝑡 = 14 232.0 (142.1) 0.015 (0.009)
𝑡 = 15 195.5 (125.0) 0.013 (0.008)
𝑡 = 16 199.2 (127.3) 0.013 (0.008)
𝑡 = 17 125.0 (78.1) 0.009 (0.006)
𝑡 = 18 154.5 (99.0) 0.014 (0.009)
𝑡 = 19 203.6 (131.6) 0.022 (0.014)
𝑡 = 20 108.1 (67.7) 0.013 (0.008)
𝑡 = 21 83.3 (52.9) 0.011 (0.007)
𝑡 = 22 109.6 (70.2) 0.016 (0.010)
𝑡 = 23 109.6 (70.5) 0.019 (0.012)
𝑡 = 24 232.6 (155.2) 0.053 (0.034)

Table A.3: Estimated parameters for 𝐹 (𝑡)
𝐾

= NegativeBinomial(𝑟𝑡 , 𝑝𝑡), the distribu-
tion of the number of auctions for each period 𝑡.

A.3 Bidders’ objectives under the second-price auction
Let Ψ̃𝑡 (· | 𝐾) be the belief on rivals’ highest bid 𝑃 conditional on the current
number of auction 𝐾 under the SPA format. This belief represents the probability
of winning an auction and also the distribution of the price in each auction. Given
the ex-ante value function �̃�𝑉 𝑡+1(𝑤) = 𝐸 [𝑉𝑡+1(𝐾𝑡+1, 𝑤)] with �̃�𝑉𝑇+1(𝑤) = 𝜂𝑄(𝑤),
the Bellman formulation of the objective is

max
𝛾,𝜏

𝐾𝑡𝐹𝐶 (𝜏)
[
𝐸

[∫ 𝑏𝛾 (𝑋)

0
(𝑋 − 𝑝)𝑑Ψ̃𝑡 (𝑝 | 𝐾𝑡 )

]
− 𝐸 [𝐶 | 𝐶 ≤ 𝜏]

]
+ 𝐸

[
�̃�𝑉 𝑡+1 (𝑤𝑖𝑡+1) | 𝛾, 𝜏

]
.

(A.1)

Now, we provide the first-order necessary conditions for the bidding problem under
the second-price format while assuming differentiablity. The one with respect to the



123

bid function parameter 𝛾 is given by

𝐸
[
Ψ′
𝑡 (𝑏𝛾 (𝑋) | 𝐾𝑡 ) (𝑋 − 𝑏𝛾 (𝑋))︸                                ︷︷                                ︸

Static FOC

∇𝛾𝑏𝛾 (𝑋)
]
+ 1
𝐾𝑡𝐹𝐶 (𝜏)

∇𝛾𝐸
[
�̃�𝑉 𝑡+1(𝑤𝑖𝑡+1) | 𝛾, 𝜏

]
︸                                          ︷︷                                          ︸

Dynamic Tradeoff

= 0.

Meanwhile, the first-order condition with respect to the entry threshold 𝜏 is

𝜏 = 𝐸

[∫ 𝑏𝛾 (𝑋)

0
(𝑋 − 𝑝)𝑑Ψ̃𝑡 (𝑝 | 𝐾𝑡)

]
︸                                     ︷︷                                     ︸

Static Threshold

+ 1
𝐾 𝑓𝐶 (𝑡)

𝜕

𝜕𝜏
𝐸
[
�̃�𝑉 𝑡+1(𝑤𝑖𝑡+1) | 𝛾, 𝜏

]
︸                                        ︷︷                                        ︸

Dynamic Tradeoff

.

Again, similarly to the first-order conditions under the first-price format for (1.1),
we have both static and dynamic components in the optimality conditions here.
For instance, in the condition for the optimal bid strategy, the static component
encourages truthful bidding, but the dynamic component provides a counteracting
force.

A.4 Algorithm for solving for an equilibrium
We setup the algorithm by first making a grid over the state space for (𝐾𝑡 , 𝑤𝑖𝑡). For
the remaining budget, we make a grid over [−𝑀, 𝑀] where 𝑀 is the upper bound
of the initial budgets. For the number of auctions, we take Monte Carlo draws from
𝐹
(𝑡)
𝐾

for each period 𝑡. We set {(𝛾 (0)𝑡 (𝐾, 𝑤), 𝜏(0)𝑡 (𝐾, 𝑤)}𝑇
𝑡=1 as the initial strategies.

Then, we execute the following loop: For each 𝑚 = 1, . . .,

• Forward simulate numerous paths of {(𝐾𝑡 , 𝑤1𝑡 , . . . , 𝑤𝑁𝑡)}𝑇𝑡=1 using

{(𝛾 (𝑚−1)
𝑡 (𝐾, 𝑤), 𝜏(𝑚−1)

𝑡 (𝐾, 𝑤)}𝑇
𝑡=1 to numerically obtain the belief:

Ψ
(𝑚)
𝑡 (𝑏 | 𝐾)

= 𝐸

[∏
𝑗≠𝑖

(
1 − 𝐹𝐶 (𝜏 (𝑚−1)

𝑡 (𝐾, 𝑤 𝑗𝑡 )) + 𝐹𝐶 (𝜏 (𝑚−1)
𝑡 (𝐾, 𝑤 𝑗𝑡 ))𝐹𝑋 (𝑏−1 (𝑏 | 𝛾 (𝑚−1)

𝑡 (𝐾, 𝑤 𝑗𝑡 )))
)]

(A.2)

over the grid of 𝐾𝑡 for each 𝑡.

• Obtain {(𝛾 (𝑚)𝑡 (𝐾, 𝑤), 𝜏(𝑚)𝑡 (𝐾, 𝑤)}𝑇
𝑡=1 over the grid of states that best respond

given Ψ
(𝑚)
𝑡 (𝑏 | 𝐾) by solving (1.1) via backward induction.

• Break if ∥{(𝛾 (𝑚)𝑡 (𝐾, 𝑤), 𝜏(𝑚)𝑡 (𝐾, 𝑤)}𝑇
𝑡=1 − {(𝛾 (𝑚−1)

𝑡 (𝐾, 𝑤), 𝜏(𝑚−1)
𝑡 (𝐾, 𝑤)}𝑇

𝑡=1∥
is below some tolerance.
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A p p e n d i x B

APPENDIX TO CHAPTER 2

B.1 Additional Tables and Figures

Table B.1: Regression results of logit model of entry decision.

Dependent Variable: Entry

Cookie 1.191∗∗∗ (0.053)
Opt-out 0.084∗ (0.046)
Computer -0.207∗∗∗ (0.028)
Gender female 0.164∗∗∗ (0.010)
Gender male 0.098∗∗∗ (0.015)
Age 24 and below -0.086∗∗∗ (0.021)
Age 25 to 44 -0.099∗∗∗ (0.020)
Age 45 to 64 -0.113∗∗∗ (0.021)
Age 65 and above -0.140∗∗∗ (0.023)
Interest segments 0.057∗∗∗ (0.008)
Months monetized 0.002∗∗∗ (0.000)
Total revenue (normalized) -0.030∗∗∗ (0.002)
Days in database -0.037∗∗∗ (0.004)

Time (hour) FE Yes
City FE Yes
Website FE Yes
Browser FE Yes

Observations 2,652,282
Notes: Estimation results of auction participation using logit model with 10% of the data. The base
levels for age and gender are both Unknown. Standard errors are clustered by the hour of the day, the
city, and the website and are heteroskedasticity-robust. ***, **, and * indicate statistical significance
at the 1, 5, and 10% levels, respectively.
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Figure B.1: Bidding functions of large and small general-purpose DSPs.

Notes: Bid functions of large and small general DSPs for cookie and cookieless impressions using
estimated parameters at average auction characteristics.
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A p p e n d i x C

APPENDIX TO CHAPTER 3

C.1 Descriptive Analysis
We provide a descriptive analysis of behavior in Block 1 and Block 2 of the experi-
ment.

Block 1
Figure C.1 displays the percentages of various choice patterns observed in CR-tasks
(on the left graph) and R-tasks (on the right graph).
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Figure C.1: Percentages of the different choice patterns in CR-tasks and R-tasks.
Notes: There are four possible choice patterns for each pair of lotteries (𝛿𝑀 , 𝑟) in CR-tasks
(left graph) and R-tasks (right graph). In CR-tasks, “Always Safer” means consistently
selecting the safer lottery, while “Always Riskier” denotes the opposite choice. The CRE
and RCRE are the two possible non-EU choice patterns in CR-tasks. Within R-tasks, “Safe
Mix” indicates choosing the safe lottery over the mixture, and the mixture over the risky
lottery. Vice versa, “Mix Risky” indicates the opposite behavior. For non-EU choice
patterns, “Always Mix” indicates always choosing the mixture, while “Never Mix” indicates
the opposite behavior. Finally, “Total EU” and “Total Non-EU” indicates respectively the
aggregate percentages of EU and non-EU choice patterns within CR-tasks (left graph) and
R-tasks (right graph).

Within the CR-tasks, two choice patterns are consistent with EU: always choosing
the safer lottery (“Always Safer”) and always choosing the riskier lottery (“Always
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Riskier”), which together make up 65.07% of all choice patterns. Among the non-
EU choice patterns in CR-tasks, the CRE is the most frequent, occurring in roughly
9% more cases than the RCRE. In the context of R-tasks, the EU-consistent patterns
emerge when subjects either choose the safe lottery over the mixture and then the
mixture over the risky one (“Safe Mix”), or vice versa (“Mix Risky”). EU choice
patterns in R-tasks account for 52.05% of all choice patterns—a drop of roughly
13% compared to CR-tasks. Turning to non-EU patterns in R-tasks, always choosing
the mixture (“Always Mix”) constitutes the 26.37% of choice patterns, while never
choosing the mixture (“Never Mix”) constitutes the 21.58%.

Block 2
Figure C.2 uses box plots to summarize the distribution of risk premia for the
three lotteries presented to subjects in Block 2. The distributions of risk premia
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Figure C.2: Distributions of certainty equivalents for the three lotteries considered
in Block 2.
Notes: We focus on the subset of observations from Block 2 where subjects shifted their
preference between a fixed lottery and a certain amount at most once. The box plots
summarize the distributions of risk premia for the three lotteries from Block 2. Lottery 1
pays $0 or $20 with equal chance. Lottery 2 pays $5 or $25 with equal chance. Lottery 3
pays $10 or $30 with equal chance.

are comparable across the three lotteries. For all three lotteries, the median risk
premium is around $4, and more than 75% of subjects have a positive risk premium.
Moreover, for each lottery, we observe a significant level of heterogeneity in the risk
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premia.

C.2 Econometric Procedures
We provide details about the procedures that we follow to estimate economic models
and train machine learning algorithms.

Economic Models
Cumulative Prospect Theory (CPT).

The value of lottery 𝑝 = ($𝐿, 𝑝𝐿; $𝑀, 𝑝𝑀 ; $𝐻, 𝑝𝐻) under CPT is

𝑈𝐶𝑃𝑇 (𝑝) = 𝜋(𝑝𝐻)𝑢(𝐻) + [𝜋(𝑝𝐻 + 𝑝𝑀) − 𝜋(𝑝𝑀)] 𝑢(𝑀) + [1 − 𝜋(𝑝𝐻 + 𝑝𝑀)] 𝑢(𝐿),

where 𝑣(·) is a utility function and 𝜋(·) is a probability weighting function. For
estimation purposes, we consider the functional forms for utility and probability
weighting functions proposed by Tversky and Kahneman, 1992:

𝑢(𝑥) = 𝑥𝛼;

𝜋(𝑝) = 𝑝𝛾

[𝑝𝛾 + (1 − 𝑝)𝛾]
1
𝛾

.

Within the empirical framework proposed by Hey and Orme, 1994, a CPT decision-
maker chooses lottery 𝑝 over lottery 𝑞 if

𝑈𝐶𝑃𝑇 (𝑝) −𝑈𝐶𝑃𝑇 (𝑞) ≥ 𝜖,

where 𝜖 is an error term normally distributed with a mean of zero and a variance of
𝜎 > 0.

We define 𝐼 = {1, . . . , 𝑁} as a set of subjects in our experiment, △(𝑋) as the set
of lotteries over 𝑋 , and by D ⊆ △(𝑋)2 as a subset of pairs of lotteries where the
subjects express their preferences. We construct an index, 𝐶ℎ𝑜𝑖𝑐𝑒𝑖, for each subject
𝑖 as follows: for each pair of lotteries (𝑝, 𝑞) ∈ D,

𝐶ℎ𝑜𝑖𝑐𝑒𝑖 (𝑝, 𝑞) :=


2 if subject 𝑖chooses lottery 𝑝 over lottery 𝑞

1 otherwise.

We estimate mixture models with three groups. Within each group 𝑐, we estimate
the risk-aversion coefficient 𝛼𝑐, the probability weighting function coefficient 𝛾𝑐,
and the variance of the error term 𝜎𝑐. We denote by 𝑓 (𝐶ℎ𝑜𝑖𝑐𝑒𝑖;𝛼𝑐, 𝛾𝑐, 𝜎𝑐) the
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likelihood function for subject 𝑖 belonging to group 𝑐:∏
(𝑝,𝑞)∈D

(
1 (𝐶ℎ𝑜𝑖𝑐𝑒𝑖 (𝑝, 𝑞) = 2) · Pr(𝑈𝐶𝑃𝑇 (𝑝) −𝑈𝐶𝑃𝑇 (𝑞) ≥ 𝜖 | 𝛼𝑐, 𝛾𝑐, 𝜎𝑐)

+ 1 (𝐶ℎ𝑜𝑖𝑐𝑒𝑖 (𝑝, 𝑞) = 1) · Pr(𝑈𝐶𝑃𝑇 (𝑝) −𝑈𝐶𝑃𝑇 (𝑞) < 𝜖 | 𝛼𝑐, 𝛾𝑐, 𝜎𝑐)
)
.

Let 𝜋𝑐 represent the probability of a subject belonging to group type 𝑐. The log-
likelihood of the finite mixture model is given by:

𝑁∑︁
𝑖=1

ln
𝐶∑︁
𝑐=1

𝜋𝑐 𝑓 (𝐶𝑜𝑟𝑒𝑖;𝛼𝑐, 𝛾𝑐, 𝜎𝑐),

where the first sum is over subjects and the second sum is over groups.

We estimate the utility functions, the parameters of the covariance matrices, and the
probabilities of group membership through maximum likelihood estimation. We
employ the Global Search algorithm in Matlab to maximize the log-likelihood. To
ensure that the algorithms converges to a global maximum, we employ a multi-
start approach initiating multiple searches with 200 different starting points. We
also evaluate the robustness of our estimates by estimating the model using an
expectation-maximization algorithm (Dempster et al., 1977).

Expected Utility (EU). To estimate EU, we repeat the same procedure fixing the
value of the probability weighting function to one for all the three groups.

Machine Learning Algorithms
Gradient Boosting Trees (GBT). We employ the LogitBoost algorithm using MAT-
LAB’s “fitcensemble” function, a specialized gradient boosting methodology tai-
lored for binary classification. This method uses an ensemble of weak decision tree
learners, optimizing the logistic loss to enhance classification accuracy. We allow
the algorithm to use the following set of features: probabilities of the lotteries (𝑝, 𝑞)
and an indicator for each subject. The output of the algorithm is the probability of
choosing 𝑝 over 𝑞.

The LogitBoost operates in a stage-wise fashion. For each iteration, the algorithm
focuses on the residuals or errors made by the present ensemble, these errors being a
product of the logistic loss. Instead of directly approximating the class labels, Logit-
Boost models the posterior probabilities of the classes. At every step, a new decision
tree is trained to fit the current residuals. This tree, once trained, is amalgamated
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into the ensemble. To optimize performance, we’ve implemented hyperparameter
optimization, adjusting the number of learning cycles, learning rate, and minimum
leaf size for the decision trees. The optimization uses a 10-fold cross-validation,
parallel computation, and is bounded to a maximum of 150 evaluations with a 4-hour
time constraint.

Neural Networks (NN). We employ a neural network classifier using MATLAB’s
“fitcnet" function. We allow the NN to use the following sets of input variables:
probabilities of the lotteries, prizes of the lotteries, observed choices and an indicator
for each subject. The outputs of the algorithm are choice probabilities.

The NN follows a structured methodology. Initially, the input data is processed with
standardization, ensuring all features have a mean of zero and a variance of one.
This pre-processing step aids in stabilizing and speeding up the network’s conver-
gence during training. Next, we implement a 10-fold cross-validation strategy to
optimize the following hyperparameters of the NN: activation functions, regulariza-
tion strength and the size of the hidden layers. To accelerate the training, parallel
computation is leveraged, and the optimization is constrained to a maximum of 150
evaluations with a 4-hour time limit.

C.3 Estimation Results
We report the estimation results arising from the EU-core analysis, as well as those
arising from EU and CPT.

EU-core Analysis
Table C.1 presents the estimation results from the EU-core analysis, which were
obtained using a mixture model with three groups. The estimates are presented with
bootstrapped standard errors in parentheses. The row labeled with 𝜋 presents the
estimated sizes of each group. The row labeled with 𝜎 shows the standard deviation
of the error terms for each utility. The row labeled with 𝜌 indicates the correlation
coefficients among the error terms.

EU and CPT
Table C.2 reports the estimation results for EU and CPT derived from mixture models
with three groups. For EU, we rank groups of subjects based on risk aversion, which
depends solely on the parameter that shapes the curvature of the utility functions
(𝛼). For CPT, we rank groups of subjects in terms of risk aversion and adherence to
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Table C.1: EU-core mixture model: Estimation results.

Dataset: CR-tasks and R-tasks

Groups High RA
High EU

Middle RA
Low EU

Low RA
Middle EU

𝜋
0.2798

(0.1355)
0.4834

(0.1128)
0.2368

(0.0973)

Utility 1 Utility 2 Utility 1 Utility 2 Utility 1 Utility 2

$5 0.7074
(0.1944)

0.6686
(0.1863)

0.5805
(0.1827)

0.4002
(0.1206)

0.1389
(0.0860)

0.3722
(0.1174)

$10 0.9758
(0.1705)

0.9184
(0.1801)

0.6105
(0.1708)

0.8286
(0.1507)

0.4424
(0.0975)

0.3722
(0.1039)

$15 0.9758
(0.1684)

0.9467
(0.1807)

0.7466
(0.1553)

0.8461
(0.1343)

0.5455
(0.1181)

0.5997
(0.1158)

$20 1.0000
(0.1661)

1.0000
(0.1681)

0.7918
(0.1710)

0.9800
(0.1435)

0.7475
(0.1564)

0.6741
(0.1276)

$25 1.0000
(0.1355)

1.0000
(0.1314)

1.0000
(0.1722)

0.9800
(0.1248)

0.8756
(0.1268)

0.9663
(0.1552)

𝜎
0.2759

(0.3551)
0.0294

(0.4093)
0.3052

(0.3016)
0.1632

(0.5821)
0.1106

(0.1978)
0.2502

(0.5068)

𝜌
0.0034

(0.1364)
0.0000

(0.1110)
0.0090

(0.1261)

EU. We use the predicted proportion of choices in CR-tasks and R-tasks where the
safest available lottery was selected as a proxy for risk aversion.1 Adherence to EU
can be directly inferred from the probability weighting function parameter, 𝛾.

C.4 Out-of-Sample Analysis: Additional Results
We develop a more comprehensive probabilistic and deterministic evaluation of all
the predictive approaches considered in this paper. We first focus on the ability
of economic models and machine learning algorithms to predict choice patterns,
thus extending the analysis in Section 3.3. Next, we extend the EU-core analysis in
Section 3.5.

Predict Choice Patterns. There are four possible choice patterns in CR-tasks and R-
tasks. We can thus define a model 𝑓 as a function that links each lottery pair (𝛿𝑀 , 𝑟)

1Risk aversion under CPT is influenced by both utility and probability weighting functions.
Hence, it is determined by the interaction between 𝛼 and 𝛾.
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Table C.2: EU and CPT mixture models: Estimation results.

Dataset: CR-tasks and R-tasks
Model Expected Utility (EU) Cumulative Prospect Theory (CPT)

Groups High RA Middle RA Low RA High RA
Low EU

Middle RA
Middle EU

Low RA
High EU

𝛼
0.0269

(0.2231)
0.4450

(0.3355)
0.9364

(0.2595)
1.0051

(0.1474)
0.2004

(0.2113)
0.7461

(0.1647)

𝛾
0.1216

(0.2678)
0.9800

(0.2092)
0.9463

(0.1975)

𝜎
0.1419

(0.1096)
0.5396

(0.5513)
2.0863

(1.1591)
6.0000

(0.7305)
0.2010

(0.0582)
1.3625

(0.3348)

𝜋
0.4935

(0.2209)
0.3463

(0.2183)
0.1602

(0.1410)
0.2401

(0.0544)
0.4166

(0.1377)
0.3433

(0.1085)

Notes: Estimates are presented with bootstrapped standard errors in parentheses. In this
table, 𝛼 denotes the risk aversion coefficient, 𝛾 denotes the probability weighting function
coefficient, 𝜎 denotes the standard deviation of the error term, and 𝜋 denotes the estimated
size of each group.

and subject 𝑖, with a vector of characteristics 𝑋𝑖, to a vector 𝑓 (𝛿𝑀 , 𝑟; 𝑋𝑖) ∈ R4. Each
component of this vector indicates the estimated probability under model 𝑓 of one
of the four choice patterns. Denoting by 𝑃𝑖 (𝛿𝑀 , 𝑟) ∈ R4 the degenerate probability
distribution that indicates which choice pattern, associated with the pair of lotteries
(𝛿𝑀 , 𝑟) and subject 𝑖, was actually observed, we define the loss of a model as follows:

𝐿𝑝 ( 𝑓 ) :=
∑︁

(𝛿𝑀 ,𝑟)∈D

500∑︁
𝑖=1

𝑙 (𝑃𝑖 (𝛿𝑀 , 𝑟), 𝑓 (𝛿𝑀 , 𝑟; 𝑋𝑖)) ,

where D is the set of the 25 pair of lotteries (𝛿𝑀 , 𝑟) in our experiment, and 𝑙 : R4 ×
R4 → R is a loss function, which we assume to be the Euclidean distance.

Moreover, we analyze the ability of different models to provide accurate determin-
istic predictions. In particular, we denote by 𝑓 (𝛿𝑀 , 𝑟) ∈ R4 the vector whose all
components are equal to zero, except from the one associated with the choice pat-
tern having the highest predicted probability. To measure deterministic accuracy,
we define the deterministic loss of model 𝑓 as the fraction of choice patterns that
are misclassified:

𝐿𝑑 ( 𝑓 ) :=
1

|D| × 500

∑︁
(𝛿𝑀 ,𝑟)∈D

500∑︁
𝑖=1

1 (𝑃𝑖 (𝛿𝑀 , 𝑟) ≠ 𝑓 (𝛿𝑀 , 𝑟)) ,

where |D| denotes the cardinality of the set D.
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Table C.3: Choice patterns analysis: deterministic and probabilistic evaluations.

Exercise Prediction Loss Models
EU CPT GBT NN

Combined
Within Task

Choice
Pattern

Det. 6.1869
(1.1196)

6.1136
(1.1023)

4.3690
(0.7961)

6.5877
(1.2214)

Prob. 3.3573
(0.4031)

3.3824
(0.4277)

2.5535
(0.3010)

3.6912
(0.4520)

Combined
Across Task

Choice
Pattern

Det. 1.9933
(0.0160)

2.0041
(0.0939)

2.3563
(0.2575)

2.5958
(0.5927)

Prob. 1.6767
(0.1415)

1.7309
(0.1576)

1.9381
(0.2201)

2.1545
(0.3754)

Notes: Normalized loss functions with standard deviation in parentheses. “Det.” stands for
“Deterministic”, while “Prob.” stands for “Probabilistic”. The smallest in-sample loss was
obtained with the GBT algorithm in all out-of-sample exercises.

In general, lower values for both probabilistic and deterministic losses indicate higher
probabilistic and deterministic accuracy of a model. However, interpreting the
absolute magnitude of these losses can be challenging. To facilitate interpretation,
we introduce a normalized loss measure. For a given loss 𝐿, its normalized version
is defined as:2

�̂� ( 𝑓 ) :=
𝐿 ( 𝑓 )
𝐿∗

,

where 𝑓 is any generic model, and 𝐿∗ is the lowest possible loss that can be achieved
by training machine learning algorithms directly on the test data. Therefore, the
normalized loss quantifies how many times greater the loss of a model trained on
the training data is compared to the lowest possible loss that can be achieved by
training a model directly on the test data.

Table C.3 summarizes the average normalized losses of the various methods for the
out-of-sample exercises within and across tasks conducted in Section 3.3 and Section
3.3. The deterministic and probabilistic assessments of all predictive approaches
yield the same result. The GBT outperforms EU and CPT in cross-validation ex-
ercises within CR-tasks and R-tasks. At the same time, EU achieves the smallest
deterministic and probabilistic normalized losses in out-of-sample exercises across
tasks. Furthermore, the values of the normalized losses inform us about the mag-
nitude of a model’s loss compared to the smallest achievable loss. Overall, all the
normalized losses are significantly greater than one, indicating a substantial cost in

2See Fudenberg et al., 2022.
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Table C.4: Adherence to EU: deterministic and probabilistic evaluations.

Exercise Prediction Loss Models
EU CPT GBT NN EU-core

Combined
Within Task

Index
𝐶𝑜𝑟𝑒

Det. 6.3195
(1.1297)

6.1190
(1.1742)

4.1648
(0.7809)

6.4227
(1.2513)

4.6769
(0.9830)

Prob. 3.0751
(0.4194)

3.1845
(0.4557)

2.4295
(0.2879)

3.4511
(0.4736)

2.9069
(0.3836)

Combined
Across Task

Index
𝐶𝑜𝑟𝑒

Det. 2.0843
(0.0316)

2.0778
(0.0671)

2.2207
(0.4566)

2.2038
(0.6289)

1.9374
(0.0401)

Prob. 1.5927
(0.1874)

1.6656
(0.1966)

1.8322
(0.3495)

1.8215
(0.4960)

1.6006
(0.1505)

Notes: Normalized loss functions with standard deviation in parentheses. The smallest
in-sample loss was obtained with the GBT algorithm in all out-of-sample exercises.

predictive accuracy when transitioning from in-sample to out-of-sample predictions.

EU-core Analysis. When the objective shifts from predicting choice patterns to
forecasting the index 𝐶𝑜𝑟𝑒, we can define a model as a function that associates each
lottery pair (𝛿𝑀 , 𝑟) and subject 𝑖, with a vector of characteristics 𝑋𝑖, to a vector
𝑓 (𝛿𝑀 , 𝑟; 𝑋𝑖) ∈ R3. The 𝑗-th component of this vector represents the estimated
probability under model 𝑓 that the index 𝐶𝑜𝑟𝑒(𝛿𝑀 , 𝑟) assumes the value of 𝑗 ∈
1, 2, 3. For each model, we derive deterministic and probabilistic normalized loss
functions, replicating the analysis previously described for choice patterns.

Table C.4 summarizes the average normalized losses of the various methods for the
out-of-sample exercises within and across tasks conducted in Section 3.5. The GBT
outperforms all other predictive approaches in cross-validation exercises within CR-
tasks and R-tasks. The probabilistic performances of both EU and the EU-core
approach are almost identical, with EU achieving a slightly smaller normalized loss.
All other predictive approaches have significantly worse probabilistic performance.

C.5 Instructions
General Instructions. You will receive $4 if you complete the entire study. We
anticipate that the study will take about 20 minutes, on average. In addition to this
payment, 1 out of every 5 participants will be randomly selected to receive a bonus
payment. The smallest possible bonus payment is $0 and the largest possible bonus
payment is $30. You will be informed of how your decisions will influence your
bonus payment if you were to be randomly selected.
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Description of the Experiment. In this study, we will ask you questions about
lotteries. A lottery specifies different payments you may receive with different
chances.

For example, one lottery might be the following:

You can think of this lottery in the following way:

• In 15 out of 100 chances (15% chance) the lottery pays $17.

• In 25 out of 100 chances (25% chance) the lottery pays $9.

• In 60 out of 100 chances (60% chance) the lottery pays $2.

We may allow you to play a lottery and receive the outcome of the lottery as bonus
payment. The outcome of the lottery will be determined by the computer using the
chances specified. You will learn more about your bonus payment in the following
instruction pages.

Check for Understanding. Before we proceed, here is a question to test your
understanding. Consider the lottery below:

In how many out of 100 chances does this lottery pay $9?

o 15

o 25

o 60
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o 90

o None of the above

[Subjects are required to provide the correct answer in order to proceed. When they
select a wrong answer, we show them the following error message: “The lottery
pays $9 with a 25% chance. The correct answer is 25. Please revise your answer.”]

Blocks of the Experiment. We will ask you to make choices over lotteries in
two different blocks. If you are selected to receive a bonus payment, then we will
randomly pick one of these blocks. We will describe within each block how your
bonus would be determined if that block were randomly selected. Please click to
learn about Block 1.

Block 1. In Block 1, we will show you two lotteries and will ask you to choose
between the following two answer choices:

1. I prefer Lottery A

2. I prefer Lottery B

Block 1: Bonus Payment. If Block 1 is selected to determine your bonus payment,
how would we pay you? We will randomly select one task from Block 1, and
we will let you play the lottery you preferred. The lottery’s outcome will be your
bonus payment. We ask you to complete a brief training session to check your
understanding of the tasks in Block 1.

Please proceed to start the training session!
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[Subjects are required to provide the correct answers in both training tasks in order
to proceed. When they select a wrong answer in the first training task, we show them
the following error message: “We are asking you to answer the question assuming
that you prefer Lottery A. Please revise your answer.” When they select a wrong
answer in the second training task, we show them the following error message:
“Given that you preferred Lottery A in this example, we would let you play Lottery
A to determine your payment. Please revise your answer.” ]



138

Begin Block 1. Thank you for completing the training session. There will be 102
tasks in Block 1. Please answer all the questions thoughtfully to the best of your
ability. Remember that there are no right or wrong answers. We are only interested
in studying your preferences. Please proceed to start Block 1!

[Subjects complete CR-tasks, R-tasks and FOSD-tasks presented to them in a ran-
domized order.]

Block 2. In Block 2, we will show you two lotteries and will ask you to choose
between the following two answer choices:

1. I prefer Lottery A

2. I prefer Lottery B

Block 2: Bonus Payment. If Block 2 is selected to determine your bonus payment,
how would we pay you? We will randomly select one task from Block 2, and we
will let you play the lottery you preferred. The lottery’s outcome will be your bonus
payment.

Begin Block 2. There will be 33 tasks in Block 2. Please answer all the questions
thoughtfully to the best of your ability. Remember that there are no right or wrong
answers. We are only interested in studying your preferences.

Please proceed to start Block 2!

Block 2 - Part 1. In the following 11 tasks of Block 2:

• Lottery A pays a monetary amount with a 100% chance that is different in
every task. In task 1, the monetary amount paid for sure by Lottery A is $3.
As you move from one task to the next one, the monetary amount paid for
sure by Lottery A increases by $1. For instance, in task 2 is $4, in task 3 is
$5, etc.

• Lottery B always pays $20 with a 50% chance, or $0 with a 50% chance.
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[Subjects complete the 11 MPL1 tasks.]

Block 2 - Part 1. In the following 11 tasks of Block 2:

• Lottery A pays a monetary amount with a 100% chance that is different in
every task. In task 12, the monetary amount paid for sure by Lottery A is $8.
As you move from one task to the next one, the monetary amount paid for
sure by Lottery A increases by $1. For instance, in task 13 is $9, in task 14 is
$10, etc.

• Lottery B always pays $25 with a 50% chance, or $5 with a 50% chance.

[Subjects complete the 11 MPL2 tasks.]

Block 2 - Part 1. In the following 11 tasks of Block 2:

• Lottery A pays a monetary amount with a 100% chance that is different in
every task. In task 23, the monetary amount paid for sure by Lottery A is
$13. As you move from one task to the next one, the monetary amount paid
for sure by Lottery A increases by $1. For instance, in task 24 is $14, in task
25 is $15, etc.

• Lottery B always pays $30 with a 50% chance, or $10 with a 50% chance.

[Subjects complete the 11 MPL3 tasks.]
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