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ABSTRACT

This dissertation introduces two novel behavioral solution concepts for dynamic
games: the cursed sequential equilibrium (CSE) and the dynamic cognitive hierarchy
solution (DCH). Chapter 1 offers an overview of these theories and highlights their
departure from standard equilibrium theory.

Chapter 2 develops the cursed sequential equilibrium, incorporating the bias where
players neglect the correlation between other players’ private types and actions into
game theory. This framework extends the analysis of cursed equilibrium proposed
by Eyster and Rabin (2005) from games in strategic form to multi-stage games, and
applies it to various applications in economics and political economy.

Chapter 3 introduces the dynamic cognitive hierarchy solution, which relaxes the
requirement of mutual consistency of beliefs by extending the cognitive hierarchy
approach from games in strategic form to the extensive form. An important feature
is that the solution can be dramatically different for games that are strategically
equivalent from the perspective of standard equilibrium theory.

This property, which I call the “representation effect,” has significant implications
for experimental methodology and real-world phenomena. To test this effect, in
Chapter 4, I design and conduct a laboratory experiment on the dirty-faces game,
a simple multi-stage game of incomplete information. The experiment consists of
two treatments, each implementing one of two strategically equivalent versions of
the game. The dynamic cognitive hierarchy solution provides precise predictions
about the differences in behavior between treatments, and the experimental results
align with that prediction.
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C h a p t e r 1

INTRODUCTION

This dissertation develops new behavioral solution concepts applicable to various
economic scenarios where individuals interact with each other over time while pos-
sessing private information, and they seek to learn about others’ private information
from their past actions. Here are some examples: employers deciding whether to
hire a job candidate based on their resume; in the used car market, buyers learning
about the true condition of the car during negotiation; banks inspecting the loan ap-
plicant’s credit report before approving the loan application; and legislators deciding
whether to amend a policy based on the reports from interest groups.

In game theory, the standard approach to analyzing these situations is to model them
as multi-stage games of incomplete information and solve for the equilibrium, either
sequential equilibrium or perfect Bayesian equilibrium. Equilibrium analysis has
been the cornerstone of economic theory since its introduction. However, there is
overwhelming evidence from both the laboratory and the field showing that choices
are often far away from equilibrium prediction.

To illustrate the extent to which our choices could deviate from the equilibrium
prediction, let’s consider a simple inductive puzzle known as the “dirty-faces game,”
a simple multi-stage game of incomplete information.

One day, two children, Ann and Bob, played in the park. While playing,
they might accidentally got some dirt on their faces. They could only see
each other’s faces but not their own. When they got home, their mother
(honestly) said, “At least one of you has a dirty face.” Then she asked
both children, “Do you have a dirty face?” If someone claims to have
a dirty face, the mother will stop asking. Otherwise, the mother will
keep asking the same question again and again until someone claims.

How will the children answer the question?

Standard equilibrium theory relies on three fundamental requirements: individuals
must be capable of (1) forming mutually consistent beliefs, (2) following Bayesian
inference, and (3) best responding to their beliefs at every information set. Under
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these requirements, the equilibrium in this example can be solved through iterative
rationality. If Ann were to see a clean face, she can infer that her own face must be
dirty and claim immediately. However, if Ann sees a dirty face, no such inference
is possible, so she will rationally wait first. In equilibrium, Ann believes that Bob
would have claimed at the beginning if her own face were clean. Hence, if Bob
waits at the beginning, due to mutual consistency and Bayesian inference, Ann will
realize that her face is dirty and claim when the mother asks the question for the
second time.

In laboratory experiments of this game, we find that the majority of participants
(around 80% to 90%) claim immediately upon seeing a clean face. However,
when seeing a dirty face, only about 50% of participants are able to follow the
two-step equilibrium reasoning. This experimental finding has been replicated
across different subject pools, suggesting that the equilibrium requirements may be
empirically implausible.

To address this, in this dissertation, I develop two novel behavioral solution concepts:
the cursed sequential equilibrium (CSE) and the dynamic cognitive hierarchy
solution (DCH), each of which relaxes the requirements of Bayesian inference and
mutual consistency, respectively. This is summarized in the figure below.

Figure 1.1: Overview of the dissertation.
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Chapter 2 (written jointly with Meng-Jhang Fong and Thomas R Palfrey) develops
the cursed sequential equilibrium (CSE) which maintains the requirements of best
response and mutual consistency of the belief system while accounting for indi-
viduals’ inability to make accurate Bayesian inferences. In CSE, “cursed” players
neglect or partially neglect the correlation between other players’ private types and
actions while having accurate beliefs about others’ average behavioral strategies.
The incorrect updating of the beliefs about others’ private information distorts their
conjectures of how others will behave in the future. With this relaxation of Bayesian
updating, CSE can generate more empirically plausible predictions than perfect
Bayesian equilibrium and the standard cursed equilibrium proposed by Eyster and
Rabin (2005) in both common-value and private-value games.

CSE provides new insights into many important applications. For instance, it offers
new explanations for deviations from the intuitive criterion in signaling games and
the failure of pivotal reasoning in strategic voting. Furthermore, it also yields clear
qualitative and testable predictions in public goods games with communication,
making CSE an experimentally falsifiable theory.

In chapter 3 (written jointly with Thomas R Palfrey), we propose the dynamic cog-
nitive hierarchy solution (DCH) which relaxes the mutual consistency requirement
by modeling individuals as heterogeneous in their beliefs about the strategic abilities
of other players, while maintaining the requirements of Bayesian inference and best
response. Conceptually, DCH extends the level-𝑘 model—a widely applied theory
for organizing experimental data in games like the beauty contest game, coordination
games, auctions, and more—from simultaneous games to dynamic games.

In the level-𝑘 model, each player is endowed with a “level” of sophistication, where
a level 𝑘 player incorrectly believes all others are level (𝑘-1) and best responds to this
belief. To apply the standard level-𝑘 model to dynamic games, one needs to assume
level-k players will choose an action that maximizes the continuation value of the
game, while believing that all other players are level (𝑘-1) in the continuation game.
Consequently, each player’s belief about others’ levels is fixed from the beginning,
creating a logic conundrum as level 𝑘 players can be “surprised” when an opponent’s
move that is inconsistent with the strategy of a level (𝑘-1) player.

To address this, DCH adopts the cognitive hierarchy approach, whereby a level 𝑘
player believes all other players have lower levels distributed anywhere from level 0 to
𝑘-1. A player updates their beliefs about the distribution of each of the other players’
levels as the history unfolds and best responds at every information set. In other
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words, DCH provides us with the essential machinery to understand hierarchical
reasoning behavior in dynamic games, such as learning and experimentation.

An important feature of DCH is the representation effect.1 That is, the solution
can be dramatically different when the same dynamic game is played according to
its extensive form and reduced-normal form. Specifically, in the extensive form,
players make decisions sequentially, acting only when the game reaches their own
information sets. In contrast, in the reduced-normal form, all players simultaneously
choose a reduced contingent strategy. Since a reduced contingent strategy specifies
the decision at every possible situation, the reduced-normal form representation
does not restrict the freedom of action. In other words, if a player is strategically
rational in the sense of Nash equilibrium, they should make the same decision in both
the extensive form and the corresponding reduced normal form. However, whether
actual behavior under different representations is the same remains an open question,
and DCH makes precise predictions about when and how different representations
will induce different behavior.

The representation effect is important not only because it is a testable prediction
but also because of its significant implications for experimental methodology and
real-world phenomena. When conducting dynamic game experiments, researchers
commonly employ two methods. The first method is the “direct-response method,”
which implements the game in its extensive form. Alternatively, the second method
is the “strategy method,” which implements the game in its reduced-normal form.
The advantage of employing the strategy method is that one can collect much
more data, particularly at information sets that are only occasionally reached dur-
ing the course of play. From the perspective of DCH, these two methods have
different extensive forms but share the same reduced-normal form, suggesting that
implementing a dynamic game experiment using the strategy method could lead to
behavioral distortions.

Furthermore, many real-world institutional settings, such as descending-clock auc-
tions and runoff elections, are often implemented in their reduced-normal form due
to simplicity or practical considerations. When implementing an auction, to avoid
learning and potential collusion, rather than using the clock auction, auctioneers
often opt for the simpler “sealed-bid” design in which bidders simply mail in their
bids, and the auctioneer opens the envelopes and announces the winner, who pays
their bids. Moreover, some countries, like France, adopt runoff elections to decide

1In Chapter 3, the representation effect is also referred to as the “strategy-reduction effect.”



5

the new president. However, running two rounds of elections could be costly and
politically chaotic. To avoid these issues, other countries, like Australia, adopt
contingent runoff elections where voters submit their ranking of the candidates.
This essentially means playing the voting game in reduced-normal form. These
institutional designs implicitly rely on the insight of standard equilibrium theory
that different representations of the game would not induce different behavior. Yet
there is more and more evidence in different contexts showing that different repre-
sentations could lead to different behavior, and DCH is a theory that can predict the
occurrence and direction of the representation effect.

To test this prediction, in Chapter 3, we reanalyze a recent laboratory experiment on
the centipede game, a classic game of perfect information where observed behavior
is grossly inconsistent with standard equilibrium theory. This experiment compares
behavior in four centipede games when played in extensive form and reduced-normal
form. Standard equilibrium theory makes the same (outcome-equivalent) prediction
under both representations for all four games. However, DCH predicts that a specific
representation effect would occur in three games but not in one game. Surprisingly,
the experimental findings align closely with the DCH prediction, providing the first
empirical evidence of DCH in games of perfect information.

In Chapter 4, I delve deeper into the DCH representation effect in multi-stage games
of incomplete information where the belief updating becomes much more intricate
because players will learn about others’ levels of sophistication and payoff-relevant
types at the same time.

In addition to extending the theoretical characterization from games of perfect infor-
mation to multi-stage games of incomplete information, I design and run a laboratory
experiment on the dirty-faces game, aiming to assess the DCH representation effect.
In this experiment, I manipulate both the timing structures (sequential vs. simulta-
neous) and the payoff parameters. The main challenge to designing the experiment
is that the effect size, predicted by DCH, depends upon both the payoff parameters
and the true distribution of levels, which is unknown before the experiment is run.
To address this, I develop an optimal design approach where I first estimate the
distribution of levels using an existing dirty-faces game experimental dataset from a
published paper and then choose parameters that are maximally informative for this
estimated distribution of levels. Employing this fine-tuned experimental design, we
are able to detect a significant treatment effect. Importantly, both the direction and
magnitude of the observed difference align with the predictions of DCH. This result
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lays a strong empirical foundation for the DCH solution.

In summary, this dissertation introduces novel behavioral solution concepts for
dynamic games. These new theories relax various requirements of standard equilib-
rium theory and produce predictions that are consistent with experimental evidence.
They offer fresh insights into human behavior within diverse institutional settings,
which were traditionally considered strategically equivalent according to standard
equilibrium theory. In essence, this dissertation opens up new avenues for compre-
hending economic behavior in institutional designs.
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C h a p t e r 2

CURSED SEQUENTIAL EQUILIBRIUM

2.1 Introduction
Cursed equilibrium (CE) proposed by Eyster and Rabin (2005) is a leading be-
havioral equilibrium concept that was developed to explain the “winner’s curse”
and related anomalies in applied game theory. The basic idea behind CE is that
individuals do not fully take account of the dependence of other players’ strategic
actions on private information. Cursed behavior of this sort has been detected
in a variety of contexts. Capen, Clapp, and Campbell (1971) first noted that in
oil-lease auctions, “the winner tends to be the bidder who most overestimates the
reserves potential” (Capen, Clapp, and Campbell, 1971, p. 641). Since then, this
observation of overbidding relative to the Bayesian equilibrium benchmark, which
can result in large losses for the winning bidder, has been widely documented in
laboratory auction experiments (Bazerman and Samuelson, 1983; Kagel and Levin,
1986; Dyer, Kagel, and Levin, 1989; Forsythe, Isaac, and Palfrey, 1989; Kagel,
Levin, et al., 1989; Lind and Plott, 1991; Kagel and Levin, 2009; Ivanov, Levin,
and Niederle, 2010; Camerer, Nunnari, and Palfrey, 2016). In addition, the neglect
of the connection between the opponents’ actions and private information is also
found in non-auction environments, such as bilateral bargaining games (Samuel-
son and Bazerman, 1985; Holt and Sherman, 1994; Carrillo and Palfrey, 2009;
Carrillo and Palfrey, 2011), zero-sum betting games with asymmetric information
(Rogers, Palfrey, and Camerer, 2009; Søvik, 2009), and voting and jury decisions
(Guarnaschelli, McKelvey, and Palfrey, 2000).

While CE provides a tractable alternative to Bayesian Nash equilibrium and can
explain some anomalous behavior in games with a winner’s-curse structure, a
significant limitation is that it is only developed as a strategic form concept for
simultaneous-move Bayesian games. Thus, when applying the standard CE to dy-
namic games, the CE analysis is carried out on the strategic form representation of
the game, implying that CE cannot distinguish behavior across dynamic games that
differ in their timing of moves but have the same strategic form. That is, players
are assumed to choose type-dependent contingent strategies simultaneously and not
update their beliefs as the history of play unfolds. A further limitation implied
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by the strategic form approach is that CE and standard Bayesian Nash equilibrium
make identical predictions in games with a private-values information structure
(Eyster and Rabin, 2005, Proposition 2). In this paper we extend the CE in a simple
and natural way to multi-stage games of incomplete information. We call the new
equilibrium concept Cursed Sequential Equilibrium (CSE).

In Section 2.2, we present the framework and our extension of cursed equilibrium
to dynamic games. We consider the framework of multi-stage games with observed
actions, introduced by Fudenberg and Tirole (1991b), where players’ private infor-
mation is represented by types, with the assumption that the set of available actions
is independent of their types at each public history. Our new solution concept is
in the same spirit of the cursed equilibrium—in our model, at each stage, players
will (partially) neglect the dependence of the other players’ behavioral strategies on
their types, by placing some weight on the incorrect belief that all types adopt the
average behavioral strategy. Specifically, at each public history, this corresponds to
the average distribution of actions given the current belief about others’ types at that
stage. Therefore, as players update their beliefs about others’ private information via
Bayes’ rule, but with incorrect beliefs about the other players’ behavioral strategies,
in later stages this can lead them to have incorrect beliefs about the other players’
average distribution of actions.

Following Eyster and Rabin (2005)’s notion of cursedness, we parameterize the
model by a single parameter 𝜒 ∈ [0, 1] which captures the degree of cursedness
and define fully cursed (𝜒 = 1) CSE analogously to fully cursed (𝜒 = 1) CE. Recall
that in a fully cursed (𝜒 = 1) CE, each type of each player chooses a best reply to
expected (cursed) equilibrium distribution of other players’ actions, averaged over
the type-conditional strategies of the other players, with this average distribution
calculated using the prior belief on types. Loosely speaking, a player best responds
to the average CE strategy of the others. In a 𝜒-CE, players are only partially cursed,
in the sense that each player best responds to a 𝜒-weighted linear combination of the
average 𝜒-CE strategy of the others and the true (type-dependent) 𝜒-CE strategy of
the others.

The extension of this definition to multi-stage games with observed actions is dif-
ferent from 𝜒-CE in two essential ways: (1) the game is analyzed with behavioral
strategies, and (2) we impose sequential rationality and Bayesian updating. In a fully
cursed (𝜒 = 1) CSE, (1) implies at every stage 𝑡 and each public history at 𝑡, each
type of each player 𝑖 chooses a best reply to the expected (cursed) equilibrium dis-
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tribution of other players’ stage-𝑡 actions, averaged over the type-conditional stage-𝑡
behavioral strategies of other players, with this average distribution calculated using
𝑖’s current belief about types at stage 𝑡. That is, player 𝑖 best responds to the average
stage-𝑡 CSE strategy of others. Moreover, (2) requires that each player’s belief at
each public history is derived by Bayes’ rule wherever possible, and best replies are
with respect to the continuation values computed by using the fully cursed beliefs
about the behavioral strategies of the other players in current and future stages.

A 𝜒-CSE, for 𝜒 < 1, is then defined in analogously to 𝜒-CE, except for using a
𝜒-weighted linear combination of the average 𝜒-CSE behavioral strategies of others
and the true (type-dependent) 𝜒-CSE behavioral strategies of others. Thus, similar
to the fully cursed CE, in a fully cursed (𝜒 = 1) CSE, each player believes other
players’ actions at each history are independent of their private information. On the
other hand, 𝜒 = 0 corresponds to the standard sequential equilibrium where players
have correct perceptions about other players’ behavioral strategies and are able to
make correct Bayesian inferences.1

After defining the equilibrium concept, in Section 2.3 we explore some general
properties of the model. We first prove the existence of a cursed sequential equilib-
rium in Proposition 2.1. Intuitively speaking, CSE mirrors the standard sequential
equilibrium. The only difference is that players have incorrect beliefs about the
other players’ behavioral strategies at each stage since they fail to fully account
for the correlation between others’ actions and types at every history. We prove
in Proposition 2.2 that the set of CSE is upper hemi-continuous with respect to 𝜒.
Consequently, every limit point of a sequence of 𝜒-CSE points as 𝜒 converges to
0 is a sequential equilibrium. This result bridges our behavioral solution concept
with the standard equilibrium theory. Finally, we also show in Proposition 2.4 that
𝜒-CSE is equivalent to 𝜒-CE for one-stage games, demonstrating the connection
between the two behavioral solutions.

In multi-stage games, cursed beliefs about behavioral strategies will distort the
evolution of a player’s beliefs about the other players’ types. As shown in Proposition
2.3, a direct consequence of the distortion is that in 𝜒-CSE players tend to update
their beliefs about others’ types too passively. That is, there is some persistence in

1For the off-path histories, similar to the idea of Kreps and Wilson (1982), we impose the
𝜒-consistency requirement (see Definition 2.2) so the assessment is approachable by a sequence of
totally mixed behavioral strategies. The only difference is that players’ beliefs are incorrectly updated
by assuming others play the 𝜒-cursed behavioral strategies. Hence, in our approach if 𝜒 = 0, a CSE
is a sequential equilibrium.
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beliefs in the sense that at each stage 𝑡, each 𝜒-cursed player’s belief about any type
profile is at least 𝜒 times the belief about that type profile at stage 𝑡 − 1. Among
other things, this implies that if the prior belief about the types is full support and
𝜒 > 0, the full support property will persist at all histories, and players will (possibly
incorrectly) believe every profile of others’ types is possible at every history.

This dampened updating property plays an important role in our framework. Not
only does it contribute to the difference between CSE and the standard CE through
the updating process, but it also implies additional restrictions on off-path beliefs.
The effect of dampened updating is starkly illustrated in the pooling equilibria of
signaling games where every type of sender behaves the same everywhere. In this
case, Proposition 2.5 shows if an assessment associated with a pooling equilibrium
is a 𝜒-CSE, then it also a 𝜒′-CSE for all 𝜒′ ≤ 𝜒, but it is not necessarily a pooling
equilibrium for all 𝜒′ > 𝜒. This contrasts with one of the main results about CE, that
if a pooling equilibrium is a 𝜒-CE for some 𝜒, then it is a 𝜒′-CE for all 𝜒′ ∈ [0, 1]
(Eyster and Rabin, 2005, Proposition 3).

This suggests that perhaps the dampened updating property is an equilibrium se-
lection device that eliminates some pooling equilibrium, but actually this is not a
general property. As we demonstrate later, the 𝜒-CE and 𝜒-CSE sets can be non-
overlapping, which we illustrate with a variety of applications. The intuition is that
in CSE, players generally do not have correct beliefs about the opponents’ average
behavioral strategies. The pooling equilibrium is just a special case where players
have correct beliefs.

In Section 2.4 we explore the implications of cursed sequential equilibrium with five
applications in economics and political science. Section 2.4.1 analyzes the 𝜒-CSE of
signaling games. Besides studying the theoretical properties of pooling 𝜒-CSE, we
also analyze two simple signaling games that were studied in a laboratory experiment
(Brandts and Holt, 1993). We show how varying the degree of cursedness can change
the set of 𝜒-CSE in these two signaling games in ways that are consistent with the
reported experimental findings. Next, we turn to the exploration of how sequentially
cursed reasoning can influence strategic communication. To this end, we analyze the
𝜒-CSE for a public goods game with communication (Palfrey and Rosenthal, 1991;
Palfrey, Rosenthal, and Roy, 2017) in Section 2.4.2, finding that 𝜒-CSE predicts
there will be less effective communication when players are more cursed.

Next, in Section 2.4.3 we apply 𝜒-CSE to the centipede game studied experimentally
by McKelvey and Palfrey (1992) where one of the players believes the other player



11

might be an “altruistic” player who always passes. This is a simple reputation-
building game, where selfish types can gain by imitating altruistic types in early
stages of the game. The public goods application and the centipede game are both
private-values environments, so these two applications clearly demonstrate how
CSE departs from CE and the Bayesian Nash equilibrium, and shows the interplay
between sequentially cursed reasoning and the learning of types in private-value
models.

In strategic voting applications, conditioning on “pivotality”—the event where your
vote determines the final outcome—plays a crucial role in understanding equilib-
rium voting behavior. To illustrate how cursedness distorts the pivotal reasoning, in
Section 2.4.4 we study the three-voter two-stage agenda voting game introduced by
Ordeshook and Palfrey (1988). Since this is a private value game, the predictions
of the 𝜒-CE and the Bayesian Nash equilibrium coincide for all 𝜒. That is, cursed
equilibrium predicts no matter how cursed the voters are, they are able to correctly
perform pivotal reasoning. On the contrary, our CSE predicts that cursedness will
make the voters less likely to vote strategically. This is consistent with the empir-
ical evidence about the prevalence of sincere voting over sequential agendas when
inexperienced voters have incomplete information about other voters’ preferences
(Levine and Plott, 1977; Plott and Levine, 1978; Eckel and Holt, 1989).

Finally, in Section 2.4.5 we study the relationship between cursedness and epistemic
reasoning by considering the two-person dirty faces game previously studied by
Weber (2001), Bayer and Chan (2007) and Lin (2023). In this game, 𝜒-CSE
predicts cursed players are, to some extent, playing a “coordination” game where
they coordinate on a specific learning speed about their face types. Therefore, from
the perspective of CSE, the non-equilibrium behavior observed in experiments can
be interpreted as possibly due to a coordination failure resulting from cognitive
limitations.

The cursed sequential equilibrium extends the concept of cursed equilibrium from
static Bayesian games to multi-stage games with observed actions. This generaliza-
tion preserves the spirit of the original cursed equilibrium in a simple and tractable
way, and provides additional insights about the effect of cursedness in dynamic
games. A contemporaneous working paper by Cohen and Li (2023) is closely
related to our paper. That paper adopts an approach based on the coarsening of
information sets to define sequential cursed equilibrium (SCE) for extensive form
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games with perfect recall. The SCE model captures a different kind of cursedness2
that arises if a player neglects the dependence of other players’ unobserved (i.e.,
either future or simultaneous) actions on the history of play in the game, which is
different from the dependence of other players’ actions on their type (as in CE and
CSE). In the terminology of Eyster and Rabin (2005), the cursedness is with respect
to endogenous information, i.e., what players observe about the path of play (Eyster
and Rabin, 2005, p. 1665). The idea is to treat the unobserved actions of other
players in response to different histories (endogenous information) similarly to how
cursed equilibrium treats players’ types. A two-parameter model of partial cursed-
ness is developed, and a series of examples demonstrate that for plausible parameter
values, the model is consistent with some experimental findings related to the fail-
ure of subjects to fully take account of unobserved hypothetical events, whereas
behavior is “more rational” if subjects make decisions after directly observing such
events. A more detailed discussion of the differences between CSE and SCE can
be found in Appendix B and Fong, Lin, and Palfrey (2023). At a more conceptual
level, our paper is related to several other behavioral solution concepts developed
for dynamic games, such as agent quantal response equilibrium (AQRE) (McKelvey
and Palfrey, 1998), dynamic cognitive hierarchy solution (DCH) (Lin and Palfrey,
2022; Lin, 2023), and the analogy-based expectation equilibrium (ABEE) (Jehiel,
2005; Jehiel and Koessler, 2008), all of which modify the requirements of sequential
equilibrium in different ways than cursed sequential equilibrium.

2.2 The Model
Since CSE is a solution concept for dynamic games of incomplete information,
in this paper we will focus on the framework of multi-stage games with observed
actions (Fudenberg and Tirole, 1991b). Section 2.2.1 defines the structure of multi-
stage games with observed actions, followed by Section 2.2.2, where the 𝜒-cursed
sequential equilibrium is formally developed.

2.2.1 Multi-Stage Games with Observed Actions
Let 𝑁 = {1, . . . , 𝑛} be a finite set of players. Each player 𝑖 ∈ 𝑁 has a type 𝜃𝑖
drawn from a finite set Θ𝑖. Let 𝜃 ∈ Θ ≡ ×𝑛

𝑖=1Θ𝑖 be the type profile and 𝜃−𝑖 be
the type profile without player 𝑖. All players have the common (full support) prior
distribution 𝐹 : Θ → (0, 1). At the beginning of the game, each player is told his
own type, but is not informed anything about the types of others. Therefore, each

2We illustrate some implications in the application to signaling games in Section 2.4.1.
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player 𝑖’s initial belief about the types of others when his type is 𝜃𝑖 is

𝐹 (𝜃−𝑖 |𝜃𝑖) =
𝐹 (𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝐹 (𝜃′−𝑖, 𝜃𝑖)
.

If the types are independent across players, each player 𝑖’s initial belief about the
types of others is 𝐹−𝑖 (𝜃−𝑖) = Π 𝑗≠𝑖𝐹𝑗 (𝜃 𝑗 ) where 𝐹𝑗 (𝜃 𝑗 ) is the marginal distribution
of player 𝑗’s type.

The game is played in stages 𝑡 = 1, 2, . . . , 𝑇 where 𝑇 < ∞. In each stage, players
simultaneously choose their actions, which will be revealed at the end of the stage.
The feasible set of actions can vary with histories, so games with alternating moves
are also included. Let H 𝑡−1 be the set of all available histories at stage 𝑡, where
H0 = {ℎ∅} and H𝑇 is the set of terminal histories. Let H = ∪𝑇

𝑡=0H
𝑡 be the set of all

available histories of the game, and let H\H𝑇 be the set of non-terminal histories.

For every player 𝑖, the available information at stage 𝑡 is in H 𝑡−1 × Θ𝑖. Thus, each
player 𝑖’s information sets can be specified as I𝑖 ∈ Π𝑖 = {(ℎ, 𝜃𝑖) : ℎ ∈ H\H𝑇 , 𝜃𝑖 ∈
Θ𝑖}. That is, a type 𝜃𝑖 player 𝑖’s information set at the public history ℎ𝑡 can be
defined as

⋃
𝜃−𝑖∈Θ−𝑖 (ℎ𝑡 , 𝜃−𝑖, 𝜃𝑖). With a slight abuse of notation, it will be denoted

as (ℎ𝑡 , 𝜃𝑖). For the sake of simplicity, the feasible set of actions for every player at
every history is assumed to be type-independent. Let 𝐴𝑖 (ℎ𝑡−1) be the feasible set of
actions for player 𝑖 at history ℎ𝑡−1 and let 𝐴𝑖 = ×ℎ∈H\H𝑇 𝐴𝑖 (ℎ) be the set of player
𝑖’s all feasible actions in the game. For each player 𝑖, 𝐴𝑖 is assumed to be finite and
|𝐴𝑖 (ℎ) | ≥ 1 for any ℎ ∈ H\H𝑇 . Let 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1) be player 𝑖’s action at history

ℎ𝑡−1, and let 𝑎𝑡 =
(
𝑎𝑡1, . . . , 𝑎

𝑡
𝑛

)
∈ ×𝑛

𝑖=1𝐴𝑖 (ℎ
𝑡−1) denote the action profile at stage 𝑡. If

𝑎𝑡 is the action profile chosen at stage 𝑡, then ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡).

A behavioral strategy for player 𝑖 is a function 𝜎𝑖 : Π𝑖 → Δ(𝐴𝑖) satisfying
𝜎𝑖 (ℎ𝑡−1, 𝜃𝑖) ∈ Δ(𝐴𝑖 (ℎ𝑡−1)). Let𝜎𝑖 (𝑎𝑡𝑖 | ℎ𝑡−1, 𝜃𝑖) denote the probability for player 𝑖 to
choose 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1). A strategy profile 𝜎 = (𝜎𝑖)𝑖∈𝑁 specifies a behavioral strategy

for each player 𝑖. Lastly, each player 𝑖 has a payoff function (in von Neumann-
Morgenstern utilities) 𝑢𝑖 : H𝑇 × Θ → R, and let 𝑢 = (𝑢1, . . . , 𝑢𝑛) be the profile of
utility functions. A multi-stage game with observed actions, Γ, is defined by the
tuple Γ = ⟨𝑁,H ,Θ, 𝐹, 𝑢⟩.

2.2.2 Cursed Sequential Equilibrium
In a multi-stage game with observed actions, a solution is defined by an “assessment,”
which consists of a (behavioral) strategy profile 𝜎, and a belief system 𝜇. Since
action profiles will be revealed to all players at the end of each stage, the belief
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system specifies, for each player, a conditional distribution over the set of type
profiles conditional on each history. Consider an assessment (𝜇, 𝜎). Following
the spirit of the cursed equilibrium, for player 𝑖 at stage 𝑡, we define the average
behavioral strategy profile of the other players as

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) =
∑︁

𝜃−𝑖∈Θ−𝑖

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)

for any 𝑖 ∈ 𝑁 , 𝜃𝑖 ∈ Θ𝑖 and ℎ𝑡−1 ∈ H 𝑡−1.

In CSE, players have incorrect perceptions about other players’ behavioral strategies.
Instead of thinking they are using 𝜎−𝑖, a 𝜒-cursed3 type 𝜃𝑖 player 𝑖 would believe
the other players are using a 𝜒-weighted average of the average behavioral strategy
and the true behavioral strategy:4

𝜎
𝜒

−𝑖 (𝑎
𝑡
−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖) = 𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖).

The beliefs of player 𝑖 about 𝜃−𝑖 are updated in the 𝜒-CSE via Bayes’ rule, whenever
possible, assuming other players are using the 𝜒-cursed behavioral strategy rather
than the true behavioral strategy. We call this updating rule the 𝜒-cursed Bayes’
rule. Specifically, an assessment satisfies the 𝜒-cursed Bayes’ rule if the belief
system is derived from the Bayes’ rule while perceiving others are using 𝜎𝜒−𝑖 rather
than 𝜎−𝑖.

Definition 2.1. (𝜇, 𝜎) satisfies 𝜒-cursed Bayes’ rule if the following is applied to
update the posterior beliefs as

∑
𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖) > 0:

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖)
.

Let Σ0 be the set of totally mixed behavioral strategy profiles, and let Ψ𝜒 be the set of
assessments (𝜇, 𝜎) such that 𝜎 ∈ Σ0 and 𝜇 is derived from 𝜎 using 𝜒-cursed Bayes’
rule.5 Lemma 2.1 below shows that another interpretation of the 𝜒-cursed Bayes’
rule is that players have correct perceptions about 𝜎−𝑖 but are unable to make perfect
Bayesian inference when updating beliefs. From this perspective, player 𝑖’s cursed

3We assume throughout the paper that all players are equally cursed, so there is no 𝑖 subscript
on 𝜒. The framework is easily extended to allow for heterogeneous degrees of cursedness.

4If 𝜒 = 0, players have correct beliefs about other players’ behavioral strategies at every stage.
5In the following, we will use 𝜇𝜒 (·) to denote the belief system derived under 𝜒-cursed Bayes’

Rule. Also, note that both 𝜎𝜒−𝑖 and 𝜇𝜒 are induced by 𝜎; that is, 𝜎𝜒−𝑖 (·) = 𝜎
𝜒

−𝑖 [𝜎] (·) and 𝜇𝜒 (·) =
𝜇𝜒 [𝜎] (·). For the ease of exposition, we drop [𝜎] when it does not cause confusion.
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belief is simply a linear combination of player 𝑖’s cursed belief at the beginning of
that stage (with 𝜒 weight) and the Bayesian posterior belief (with 1 − 𝜒 weight).
Because 𝜎 is totally mixed, there are no off-path histories.

Lemma 2.1. For any (𝜇, 𝜎) ∈ Ψ𝜒, 𝑖 ∈ 𝑁 , ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) ∈ H\H𝑇 and 𝜃 ∈ Θ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑
𝜃′−𝑖
𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
Proof: See Appendix A. ■

This is analogous to Lemma 1 of Eyster and Rabin (2005). Another insight pro-
vided by Lemma 2.1 is that even if player types are independently drawn, i.e., 𝐹 (𝜃) =
Π𝑛
𝑖=1𝐹𝑖 (𝜃𝑖), players’ cursed beliefs about other players’ types are generally not inde-

pendent across players. That is, in general, 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≠ Π 𝑗≠𝑖𝜇𝑖 𝑗 (𝜃 𝑗 |ℎ𝑡 , 𝜃𝑖). The
belief system will preserve the independence only when the players are either fully
rational (𝜒 = 0) or fully cursed (𝜒 = 1).

Finally, we place a consistency restriction, analogous to consistent assessments in
sequential equilibrium, on how 𝜒-cursed beliefs are updated off the equilibrium
path, i.e., when ∑︁

𝜃′−𝑖∈Θ−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎
𝑡
−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖) = 0.

An assessment satisfies 𝜒-consistency if it is in the closure of Ψ𝜒.

Definition 2.2. (𝜇, 𝜎) satisfies 𝜒-consistency if there is a sequence of assessments
{(𝜇𝑘 , 𝜎𝑘 )} ⊆ Ψ𝜒 such that lim𝑘→∞(𝜇𝑘 , 𝜎𝑘 ) = (𝜇, 𝜎).

For any 𝑖 ∈ 𝑁 , 𝜒 ∈ [0, 1], 𝜎, and 𝜃 ∈ Θ, let 𝜌𝜒
𝑖
(ℎ𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖) be 𝑖’s perceived

conditional realization probability of terminal history ℎ𝑇 ∈ H𝑇 at history ℎ𝑡 ∈
H\H𝑇 if the type profile is 𝜃 and 𝑖 uses the behavioral strategy 𝜎𝑖 whereas perceives
other players’ using the cursed behavioral strategy𝜎𝜒−𝑖. At every non-terminal history
ℎ𝑡 , a 𝜒-cursed player in 𝜒-CSE will use 𝜒-cursed Bayes’ rule (Definition 2.1) to
derive the posterior belief about the other players’ types. Accordingly, a type 𝜃𝑖
player 𝑖’s conditional expected payoff at history ℎ𝑡 is

E𝑢𝑖 (𝜎 |ℎ𝑡 , 𝜃𝑖) =
∑︁

𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ
𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖)𝑢𝑖 (ℎ

𝑇 , 𝜃−𝑖, 𝜃𝑖).

Definition 2.3. An assessment (𝜇∗, 𝜎∗) is a 𝜒-cursed sequential equilibrium if it
satisfies 𝜒-consistency and 𝜎∗

𝑖
(ℎ𝑡 , 𝜃𝑖) maximizes E𝑢𝑖 (𝜎∗ |ℎ𝑡 , 𝜃𝑖) for all 𝑖, 𝜃𝑖, ℎ𝑡 ∈

H\H𝑇 .
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2.3 General Properties of 𝜒-CSE
In this section, we characterize some general theoretical properties of 𝜒-CSE. The
first result is the existence of the 𝜒-CSE. The definition of 𝜒-CSE mirrors the
definition of the sequential equilibrium by Kreps and Wilson (1982)—the only
difference is that players in 𝜒-CSE update their beliefs by 𝜒-cursed Bayes’ rule
and best respond to 𝜒-cursed (behavioral) strategies. Therefore, one can prove the
existence of 𝜒-CSE in a similar way as in the standard argument of the existence of
sequential equilibrium.

Proposition 2.1. For any 𝜒 ∈ [0, 1] and any finite multi-stage game with observed
actions, there is at least one 𝜒-CSE.

Proof: We briefly sketch the proof here, and the details can be found in Appendix
A. Fix any 𝜒 ∈ [0, 1]. For any 𝑖 ∈ 𝑁 and any I𝑖 = (ℎ𝑡−1, 𝜃𝑖), player 𝑖 has to
choose every action 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1) with probability at least 𝜖 . Since there are no

off-path histories, the belief system is uniquely pinned down by 𝜒-cursed Bayes’
rule and a 𝜒-CSE exists in this 𝜖-constrained game. We denote this 𝜒-CSE as
(𝜇𝜖 , 𝜎𝜖 ). By compactness, there is a converging sub-sequence of assessments such
that (𝜇𝜖 , 𝜎𝜖 ) → (𝜇∗, 𝜎∗) as 𝜖 → 0, which is a 𝜒-CSE. ■

Let Φ(𝜒) be the correspondence that maps 𝜒 ∈ [0, 1] to the set of 𝜒-CSE. Propo-
sition 2.1 guarantees Φ(𝜒) is non-empty for any 𝜒 ∈ [0, 1]. Because 𝜒-cursed
Bayes’ rule changes continuously in 𝜒, we further prove that Φ(𝜒) is an upper
hemi-continuous correspondence.

Proposition 2.2. Φ(𝜒) is upper hemi-continuous with respect to 𝜒.

Proof: The proof follows a standard argument. See Appendix A for details. ■

As shown in Corollary 2.1, a direct consequence of upper hemi-continuity is that
every limit point of a sequence of 𝜒-CSE when 𝜒 → 0 is a sequential equilibrium.
This result bridges our behavioral equilibrium concept with standard equilibrium
theory.

Corollary 2.1. Every limit point of a sequence of 𝜒-CSE with 𝜒 converging to 0 is
a sequential equilibrium.
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Proof: By Proposition 2.2, we know Φ(𝜒) is upper hemi-continuous at 0. Consider
of a sequence of 𝜒-CSE. As 𝜒 → 0, the limit point remains a CSE, which is a
sequential equilibrium at 𝜒 = 0. This completes the proof. ■

Finally, by a similar argument to Kreps and Wilson (1982), for any 𝜒 ∈ [0, 1],
𝜒-CSE is also upper hemi-continuous with respect to payoffs. In other words, our
𝜒-CSE preserves the continuity property of sequential equilibrium.

The next result is the characterization of a necessary condition for 𝜒-CSE. As seen
from Lemma 2.1, players update their beliefs more passively in 𝜒-CSE than in the
standard equilibrium—they put 𝜒-weight on their beliefs formed in previous stage.
To formalize this, we define the 𝜒-dampened updating property in Definition 2.4.
An assessment satisfies this property if at any non-terminal history, the belief puts at
least 𝜒 weight on the belief in previous stage—both on and off the equilibrium path.
In Proposition 2.3, we show that 𝜒-consistency implies the 𝜒-dampened updating
property.

Definition 2.4. An assessment (𝜇, 𝜎) satisfies the 𝜒-dampened updating property
if for any 𝑖 ∈ 𝑁 , 𝜃 ∈ Θ and ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) ∈ H\H𝑇 ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖).

Proposition 2.3. 𝜒-consistency implies 𝜒-dampened updating for any 𝜒 ∈ [0, 1].

Proof: See Appendix A. ■

It follows that if assessment (𝜇, 𝜎) satisfies the 𝜒-dampened updating property, then
for any player 𝑖, any history ℎ𝑡 and any type profile 𝜃, player 𝑖’s belief about 𝜃−𝑖 is
bounded by

𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) ≤ 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≤ 1 − 𝜒
∑︁

𝜃′−𝑖≠𝜃−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖).

One can see from this condition that when 𝜒 increases, the feasible range of
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) shrinks, and the restriction on the belief system becomes more strin-
gent. Moreover, if the history ℎ𝑡 is an off-path history of (𝜇, 𝜎), then this condition
characterizes the feasible set of off-path beliefs, which shrinks as 𝜒 increases.

An important implication of this observation is that Φ(𝜒) is not lower hemi-
continuous with respect to 𝜒. The intuition is that for some 𝜒-CSE that contains
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off-path histories, the off-path beliefs to support the equilibrium might not be 𝜒-
consistent for sufficiently large 𝜒. In this case, the 𝜒-CSE is not attainable by a
sequence of 𝜒𝑘 -CSE where 𝜒𝑘 converges to 𝜒 from above, causing the lack of lower
hemi-continuity.6

Lastly, another implication of 𝜒-dampened updating property is that for each player
𝑖, history ℎ𝑡 and type profile 𝜃, the belief 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) has a lower bound that is
independent of the strategy profile. The lower bound is characterized in Corollary
2.2. This result implies that when 𝜒 > 0, 𝐹 (𝜃−𝑖 |𝜃𝑖) > 0 implies 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) > 0 for
all ℎ𝑡 , so that if prior beliefs are bounded away from zero, beliefs are always bounded
away from 0 as well. In other words, when 𝜒 > 0, because of the 𝜒-dampened
updating, beliefs will always have full support even if at off-path histories.

Corollary 2.2. For any 𝜒-consistent assessment (𝜇, 𝜎), player 𝑖 ∈ 𝑁 , type profile
𝜃 ∈ Θ and ℎ𝑡 ∈ H\H𝑇 ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ 𝜒𝑡𝐹 (𝜃−𝑖 |𝜃𝑖)

Proof: See Appendix A. ■

If the game has only one stage, then the dampened updating property has no effect,
in which case 𝜒-CSE and 𝜒-CE are equivalent solution concepts. This is formally
stated and proved in Proposition 2.4.

Proposition 2.4. For any one-stage game and for any 𝜒 ∈ [0, 1], 𝜒-CSE and 𝜒-CE
are equivalent.

Proof: For any one-stage game, the only public history is the initial history ℎ∅.
Thus, in any 𝜒-CSE, for each player 𝑖 ∈ 𝑁 and type profile 𝜃 ∈ Θ, player 𝑖’s belief
about other players’ types at this history is 𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖). Since the
game has only one stage, the outcome is simply 𝑎1 = (𝑎1

1, . . . , 𝑎
1
𝑛), the action profile

at stage 1. Moreover, given any behavioral strategy profile 𝜎, player 𝑖 believes 𝑎1

will be the outcome with probability

𝜎𝑖 (𝑎1
𝑖 |ℎ∅, 𝜃𝑖) ×

[
𝜒𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎1
−𝑖 |ℎ∅, 𝜃−𝑖)

]
.

Therefore, if 𝜎 is the behavioral strategy profile of a 𝜒-CSE in an one-stage game,
then for each player 𝑖, type 𝜃𝑖 ∈ Θ𝑖 and each 𝑎1

𝑖
∈ 𝐴𝑖 (ℎ∅) such that 𝜎𝑖 (𝑎1

𝑖
|ℎ∅, 𝜃𝑖) > 0,

6An example is provided in Section 2.4.1 (see Footnote 7).
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𝑎1
𝑖 ∈ argmax

𝑎1′
𝑖
∈𝐴𝑖 (ℎ∅)

∑︁
𝜃−𝑖∈Θ−𝑖

𝐹 (𝜃−𝑖 |𝜃𝑖) ×
∑︁

𝑎1
−𝑖∈𝐴−𝑖 (ℎ∅)

[
𝜒𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎1
−𝑖 |ℎ∅, 𝜃−𝑖)

] 𝑢𝑖 (𝑎1
−𝑖, 𝑎

1′
𝑖 , 𝜃−𝑖, 𝜃𝑖),

which coincides with the maximization problem of 𝜒-CE. ■

From the proof of Proposition 2.4, one can see that in one-stage games players have
correct perceptions about the average strategy of others. Therefore, the maximiza-
tion problem of 𝜒-CSE coincides with the problem of 𝜒-CE. For general multi-stage
games, because of the 𝜒-dampened updating property, players will update beliefs
incorrectly and thus their perceptions about other players’ future moves can also be
distorted.

2.4 Applications
In this section, we will explore 𝜒-CSE in five applications of multi-stage games with
observed actions, in order to illustrate the range of effects it can have and to show
how it is different from the 𝜒-CE and sequential equilibrium. The omitted proofs in
this section can be found in Appendix A.

Our first application is the sender-receiver signaling game, which is practically
the simplest possible multi-stage game. From our analysis, we will see both the
theoretical and empirical implications of our 𝜒-CSE.

2.4.1 Pooling Equilibria in Signaling Games
We first make a general observation about pooling equilibria in multi-stage games.
Player 𝑗 follows a pooling strategy if for every non-terminal history, ℎ𝑡 , all types
of player 𝑗 take the same action 𝑎𝑡+1

𝑗
∈ 𝐴 𝑗 (ℎ𝑡). Conceptually, since every type of

player 𝑗 takes the same action, players other than 𝑗 cannot make any inference about
𝑗’s type from 𝑗’s actions. A pooling 𝜒-CSE is a 𝜒-CSE where every player follows
a pooling strategy. Hence, every player has correct beliefs about any other player’s
future move because every type of every player chooses the same action.

Since in any pooling 𝜒-CSE, players can correctly anticipate other players’ future
moves no matter how cursed they are, one may naturally conjecture that a pooling
𝜒-CSE is also a 𝜒′-CSE for any 𝜒′ ∈ [0, 1]. As shown by Eyster and Rabin (2005),
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this is true for one-stage Bayesian games: if a pooling strategy profile is a 𝜒-cursed
equilibrium, then it is also a 𝜒′-cursed equilibrium for any 𝜒′ ∈ [0, 1]. Surprisingly,
this result does not extend to multi-stage games. Proposition 2.5 shows if a pooling
behavioral strategy profile is a 𝜒-CSE, then it remains a 𝜒′-CSE only for 𝜒′ ≤ 𝜒,
which is a weaker result than Eyster and Rabin (2005).

This result is driven by the 𝜒-dampened updating property which restricts the set of
off-path beliefs. As discussed above, when 𝜒 gets larger, the set of feasible off-path
beliefs shrinks, eliminating some pooling 𝜒-CSE.

Proposition 2.5. A pooling 𝜒-CSE is a 𝜒′-CSE for 𝜒′ ≤ 𝜒.

Proof: See Appendix A. ■

The proof strategy is similar to the one in Eyster and Rabin (2005) Proposition 3.
Given a 𝜒-CSE behavioral strategy profile, we can separate the histories into on-path
and off-path histories. For on-path histories in a pooling equilibrium, since all types
of players make the same decisions, players cannot make any inference about other
players’ types. Therefore, for on-path histories, their beliefs are the prior beliefs,
which are independent of 𝜒. On the other hand, for off-path histories, as shown
in Proposition 2.3, a necessary condition for 𝜒-CSE is that the belief system has
to satisfy the 𝜒-dampened updating property. As 𝜒 gets larger, this requirement
becomes more stringent, and hence some pooling 𝜒-CSE may break down.

Example 1 is a signaling game where the sender has only two types and two messages,
and the receiver has only two actions. This example demonstrates the implication of
Proposition 2.5 and shows the lack of lower hemi-continuity; i.e., it is possible for a
pooling behavioral strategy profile to be a 𝜒-CSE, but not a 𝜒′-CSE for 𝜒′ > 𝜒. We
will also use this example to illustrate how the notion of cursedness in sequential
cursed equilibrium proposed by Cohen and Li (2023) departs from CSE.

Example 1. The sender has two possible types drawn from the set Θ = {𝜃1, 𝜃2}
with Pr(𝜃1) = 1/4. The receiver does not have any private information. After the
sender’s type is drawn, the sender observes his type and decides to send a message
𝑚 ∈ {𝐴, 𝐵}, or any mixture between the two. After that, the receiver decides
between action 𝑎 ∈ {𝐿, 𝑅} or any mixture between the two, and the game ends. The
game tree is illustrated in Figure 2.1.
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Figure 2.1: Game Tree for Example 1.

If we solve for the 𝜒-CE of the game (or the sequential equilibria), we find that
there are two pooling equilibria for every value of 𝜒. In the first pooling 𝜒-CE,
both sender types choose 𝐴; the receiver chooses 𝐿 in response to 𝐴 and 𝑅 at the
off-path history 𝐵. In the second pooling 𝜒-CE, both sender types pool at 𝐵 and the
receiver chooses 𝑅 at both histories. By Proposition 3 of Eyster and Rabin (2005),
these two equilibria are pooling 𝜒-CE for all 𝜒 ∈ [0, 1]. The intuition is that in
a pooling 𝜒-CE, players are not able to make any inference about other players’
types from their actions because the average normal form strategy is the same as the
type-conditional normal form strategy. Therefore, their beliefs are independent of
𝜒, and hence a pooling 𝜒-CE will still be an equilibrium for any 𝜒 ∈ [0, 1].

However, as summarized in Claim 2.1 below, the 𝜒-CSE imposes stronger restric-
tions than 𝜒-CE in this example, in the sense that when 𝜒 is sufficiently large, the
second pooling equilibrium cannot be supported as a 𝜒-CSE. The key reason is that
when the game is analyzed in its normal form, the 𝜒-dampened updating property
shown in Proposition 2.3 does not have any bite, allowing both pooling equilibria to
be supported as a 𝜒-CE for any value of 𝜒. Yet in the 𝜒-CSE analysis, the additional
restriction of 𝜒-dampened updating property eliminates some extreme off-path be-
liefs, and hence, eliminates the second pooling 𝜒-CSE equilibrium for sufficiently
large 𝜒. For simplicity, we use a four-tuple [(𝑚(𝜃1), 𝑚(𝜃2)); (𝑎(𝐴), 𝑎(𝐵))] to
denote a behavioral strategy profile.

Claim 2.1. In this example, there are two pure pooling 𝜒-CSE, which are:

1. [(𝐴, 𝐴); (𝐿, 𝑅)] is a pooling 𝜒-CSE for any 𝜒 ∈ [0, 1].
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2. [(𝐵, 𝐵); (𝑅, 𝑅)] with 𝜇2(𝜃1 |𝐴) ∈
[ 1

3 , 1 − 3
4 𝜒

]
is a pooling 𝜒-CSE if and only

if 𝜒 ≤ 8/9.

From previous discussion, we know in general, the sets of 𝜒-CSE and 𝜒-CE are
non-overlapping because of the nature of sequential distortion of beliefs in 𝜒-CSE.
Yet a pooling 𝜒-CSE is an exception. In a pooling 𝜒-CSE, players can correctly
anticipate others’ future moves, so a pooling 𝜒-CSE will mechanically be a pooling
𝜒-CE. In cases such as this, we can find that 𝜒-CSE is a refinement of 𝜒-CE.7

Remark 2.1. This game is useful for illustrating some of the differences between the
notions of “cursedness” in 𝜒-CSE and the sequential cursed equilibrium ((𝜒𝑆, 𝜓𝑆)-
SCE) proposed by Cohen and Li (2023).8 The first distinction is that the 𝜒 and
𝜒𝑆 parameters capture substantively different sources of distortion in a player’s
beliefs about the other players’ strategies. In 𝜒-CSE, the degree of cursedness, 𝜒,
captures how much a player neglects the dependence of the other players’ behavioral
strategies on those players’ (exogenous) private information, i.e, types, drawn by
nature, and as a result, mistakenly treats different types as behaving the same with
probability 𝜒. In contrast, in (𝜒𝑆, 𝜓𝑆)-SCE, the cursedness parameter, 𝜒𝑆, captures
how much a player neglects the dependence of the other players’ strategies on future
moves of the others, or current moves that are unobserved because of simultaneous
play. Thus, it is a neglect related to endogenous information. If player 𝑖 observes
a previous move by some other player 𝑗 , then player 𝑖 correctly accounts for the
dependence of player 𝑗’s chosen action on player 𝑗’s private type, as would be the
case in 𝜒-CSE only at the boundary where 𝜒 = 0.

In the context of pooling equilibria in sender-receiver signaling games, if 𝜒𝑆 = 1,
then in SCE the sender believes the receiver will respond the same way both on
and off the equilibrium path. This distorts how the sender perceives the receiver’s
future action in response to an off-equilibrium path message. In 𝜒-CSE, cursedness
does not hinder the sender from correctly perceiving the receiver’s strategy since the
receiver only has one type. Take the strategy profile [(𝐴, 𝐴); (𝐿, 𝑅)] for example,
which is a pooling 𝜒-CSE equilibrium for all 𝜒 ∈ [0, 1]. However, with (𝜒𝑆, 𝜓𝑆)-
SCE, a sender misperceives that the receiver, upon receiving the off-path message

7Note that the 𝜒-CSE correspondence Φ(𝜒) is not lower hemi-continuous with respect to 𝜒. To
see this, we consider a sequence of {𝜒𝑘} where 𝜒𝑘 = 8

9 + 1
9𝑘 for 𝑘 ≥ 1. From the analysis of Claim

2.1, we know [(𝐵, 𝐵); (𝑅, 𝑅)] ∉ Φ(𝜒𝑘) for any 𝑘 ≥ 1. However, in the limit where 𝜒𝑘 → 8/9,
[(𝐵, 𝐵); (𝑅, 𝑅)] with 𝜇2 (𝜃1 |𝐴) = 1/3 is indeed a CSE. That is, [(𝐵, 𝐵); (𝑅, 𝑅)] is not approachable
by this sequence of 𝜒𝑘-CSE.

8To avoid confusion, we will henceforth add the subscript “S” to the parameters of SCE.
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𝐵, will, with probability 𝜒𝑆, take the same action (𝐿) as when receiving the on-path
message 𝐴. If 𝜒𝑆 is sufficiently high, the sender will deviate to send 𝐵, which implies
that [(𝐴, 𝐴); (𝐿, 𝑅)] cannot be supported as an equilibrium when 𝜒𝑆 is sufficiently
large (𝜒𝑆 > 1/3). The distortion induced by 𝜒𝑆 also creates an additional SCE
if 𝜒𝑆 is sufficiently large: [(𝐵, 𝐵); (𝐿, 𝑅)]. To see this, if 𝜒𝑆 = 1, then a sender
incorrectly believes that the receiver will continue to choose 𝑅 if the sender deviates
to 𝐴, rather than switching to 𝐿, and hence 𝐵 is optimal for both sender types.
However, [(𝐵, 𝐵); (𝐿, 𝑅)] is not a 𝜒-CSE equilibrium for any 𝜒 ∈ [0, 1], or a 𝜒-CE
in the sense of Eyster and Rabin (2005), or a sequential equilibrium.

In the two possible pooling equilibria analyzed in the last paragraph, the second
SCE parameter, 𝜓𝑆, does not have any effect, but the role of 𝜓𝑆 can be illustrated
in the context of the [(𝐵, 𝐵); (𝑅, 𝑅)] sequential equilibrium. This second SCE
parameter, 𝜓𝑆, is introduced to accommodate a player’s possible failure to fully
account for the informational content from observed events. The larger (1 − 𝜓𝑆) is,
the greater extent a player neglects the informational content of observed actions.
Although the parameter 𝜓𝑆 has a similar flavor to 1 − 𝜒 in 𝜒-CSE, it is different in
a number of ways. In particular this parameter only has an effect via its interaction
with 𝜒𝑆 and thus does not independently arise. In the two parameter model, the
overall degree of cursedness is captured by the product, 𝜒𝑆 (1 − 𝜓𝑆), and thus any
cursedness effect of 𝜓𝑆 is shut down when 𝜒𝑆 = 0. For instance, under our 𝜒-CSE,
the strategy profile [(𝐵, 𝐵); (𝑅, 𝑅)] can only be supported as an equilibrium when 𝜒
is sufficiently small. However, [(𝐵, 𝐵); (𝑅, 𝑅)] can be supported as a (𝜒𝑆, 𝜓𝑆)-SCE
even when (1 − 𝜓𝑆) = 1 as long as 𝜒𝑆 is sufficiently small. In fact, when 𝜒𝑆 = 0, a
(𝜒𝑆, 𝜓𝑆)-SCE is equivalent to sequential equilibrium regardless of the value of 𝜓𝑆.
See Appendix B and Fong, Lin, and Palfrey (2023) for a more detailed discussion.

Example 2. Here we analyze two signaling games that were studied experimentally
by Brandts and Holt, 1993 (BH 3 and BH 4) and show that 𝜒-CSE can help explain
some of their findings. In both Game BH 3 and BH 4, the sender has two possible
types {𝜃1, 𝜃2} which are equally likely. There are two messages𝑚 ∈ {𝐼, 𝑆} available
to the sender.9 After seeing the message, the receiver chooses an action from
𝑎 ∈ {𝐶, 𝐷, 𝐸}. The game tree and payoffs for both games are plotted in Figure 2.2.

In both games, there are two pooling sequential equilibria. In the first equilibrium,
both sender types send message 𝐼, and the receiver will choose 𝐶 in response to 𝐼

9𝐼 stands for “Intuitive” and 𝑆 stands for “Sequential but not intuitive”, corresponding to the two
pooling sequential equilibria of the two games.
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Figure 2.2: Game Tree for BH 3 and BH 4 in Brandts and Holt (1993).

and 𝐷 in response to 𝑆. In the second equilibrium, both sender types send message
𝑆, and the receiver will choose 𝐷 in response to 𝐼 while choose 𝐶 in response to 𝑆.
Both are sequential equilibria, in both games, but only the first equilibrium where
the sender sends 𝐼 satisfies the intuitive criterion proposed by Cho and Kreps (1987).

Since the equilibrium structure is similar in both games, the sequential equilibrium
and the intuitive criterion predict the behavior should be the same in both games.
However, this prediction is strikingly rejected by the data. Brandts and Holt (1993)
report that in the later rounds of the experiment, almost all type 𝜃1 senders send 𝐼
in Game BH 3 (97 %), and yet all type 𝜃1 senders send 𝑆 in Game BH 4 (100%). In
contrast, type 𝜃2 senders behave similarly in both games—46.2% and 44.1% of type
𝜃2 senders send 𝐼 in Games BH 3 and BH 4, respectively. Qualitatively speaking, the
empirical pattern reported by Brandts and Holt (1993) is that sender type 𝜃1 is more
likely to send 𝐼 in Game BH 3 than Game BH 4 while sender type 𝜃2’s behavior is
insensitive to the change of games.

To explain this finding, Brandts and Holt (1993) propose a descriptive story based
on naive receivers. A naive receiver will think both sender types are equally
likely, regardless of which message is observed. This naive reasoning will lead the
receiver to choose 𝐶 in both games. Given this naive response, a type 𝜃1 sender has
an incentive to send 𝐼 in Game BH 3 and choose 𝑆 in Game BH 4. (Brandts and
Holt, 1993, p. 284 – 285)
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In fact, their story of naive reasoning echoes the logic of 𝜒-CSE. When the receiver
is fully cursed (or naive), he will ignore the correlation between the sender’s action
and type, causing him to not update the belief about the sender’s type. Proposition
2.6 characterizes the set of 𝜒-CSE of both games. Following the previous notation,
we use a four-tuple [(𝑚(𝜃1), 𝑚(𝜃2)); (𝑎(𝐼), 𝑎(𝑆))] to denote a behavioral strategy
profile.

Proposition 2.6. The set of 𝜒-CSE of Game BH 3 and BH 4 are that:

• In Game BH 3, there are three pure 𝜒-CSE:

1. [(𝐼, 𝐼); (𝐶, 𝐷)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 4/7.

2. [(𝑆, 𝑆); (𝐷,𝐶)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 2/3.

3. [(𝐼, 𝑆); (𝐶,𝐶)] is a separating 𝜒-CSE if and only if 𝜒 ≥ 4/7.

• In Game BH 4, there are three pure 𝜒-CSE:

1. [(𝐼, 𝐼); (𝐶, 𝐷)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 4/7.

2. [(𝑆, 𝑆); (𝐷,𝐶)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 2/3.

3. [(𝑆, 𝑆); (𝐶,𝐶)] is a pooling 𝜒-CSE for any 𝜒 ∈ [0, 1].

As noted earlier for Example 1, by Proposition 3 of Eyster and Rabin (2005), pooling
equilibria (1) and (2) in games BH 3 and BH 4 survive as 𝜒-CE for all 𝜒 ∈ [0, 1].
Hence, Proposition 2.6 implies that 𝜒-CSE refines the 𝜒-CE pooling equilibria for
larger values of 𝜒. Moreover, 𝜒-CSE actually eliminates all pooling equilibria in
BH 3 if 𝜒 > 2/3. Proposition 2.6 also suggests that for any 𝜒 ∈ [0, 1], sender type
𝜃2 will behave similarly in both games, which is qualitatively consistent with the
empirical pattern. In addition, 𝜒-CSE predicts that a highly cursed (𝜒 > 2/3) type
𝜃1 sender will send different messages in different games—highly cursed type 𝜃1

senders will send 𝐼 and 𝑆 in Games BH 3 and BH 4, respectively. This is consistent
with the empirical data.

2.4.2 A Public Goods Game with Communication
Our second application is a threshold public goods game with private information
and pre-play communication, variations of which have been studied in laboratory
experiments (Palfrey and Rosenthal, 1991; Palfrey, Rosenthal, and Roy, 2017). Here
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we consider the “unanimity” case where there are 𝑁 players and the threshold is
also 𝑁 .

Each player 𝑖 has a private cost parameter 𝑐𝑖, which is independently drawn from a
uniform distribution on [0, 𝐾] where 𝐾 > 1. After each player’s 𝑐𝑖 is drawn, each
player observes their own cost, but not the others’ costs. Therefore, 𝑐𝑖 is player 𝑖’s
private information and corresponds to 𝜃𝑖 in the general formulation.10 The game
consists of two stages. After the profile of cost parameters is drawn, the game will
proceed to stage 1 where each player simultaneously broadcasts a public message
𝑚𝑖 ∈ {0, 1} without any cost or commitment. After all players observe the message
profile from this first stage, the game proceeds to stage 2 which is a unanimity
threshold public goods game. Player 𝑖 has to pay the cost 𝑐𝑖 if he contributes, but
the public good will be provided only if all players contribute. The public good is
worth a unit of payoff for every player. Thus, if the public good is provided, each
player’s payoff will be 1 − 𝑐𝑖.

If there is no communication stage, the unique Bayesian Nash equilibrium is that no
player contributes, which is also the unique 𝜒-CE for any 𝜒 ∈ [0, 1]. In contrast,
with the communication stage, there exists an efficient sequential equilibrium where
each player 𝑖 sends 𝑚𝑖 = 1 if and only if 𝑐𝑖 ≤ 1 and contributes if and only if all
players send 1 in the first stage.11 Since this is a private value game, the standard
cursed equilibrium has no bite, and this efficient sequential equilibrium is also a
𝜒-CE for all values of 𝜒, by Proposition 2 of Eyster and Rabin (2005). In the
following, we demonstrate that the prediction of 𝜒-CSE is different from CE (and
sequential equilibrium).

To analyze the 𝜒-CSE, consider a set of “cutoff” costs, {𝐶𝜒
𝑐 , 𝐶

𝜒

0 , 𝐶
𝜒

1 , . . . , 𝐶
𝜒

𝑁
}. In

the communication stage, each player communicates the message 𝑚𝑖 = 1 if and only
if 𝑐𝑖 ≤ 𝐶

𝜒
𝑐 . In the second stage, if there are exactly 0 ≤ 𝑘 ≤ 𝑁 players sending

𝑚𝑖 = 1 in the first stage, then such a player would contribute in the second stage if
and only if 𝑐𝑖 ≤ 𝐶

𝜒

𝑘
. A 𝜒-CSE is a collection of these cost cutoffs such that the

associated strategies are a 𝜒-CSE for the public goods game with communication.
The most efficient sequential equilibrium identified above for 𝜒 = 0 corresponds to
cutoffs with 𝐶0

0 = 𝐶0
1 = · · · = 𝐶0

𝑁−1 = 0 and 𝐶0
𝑐 = 𝐶

0
𝑁
= 1.

10This application has a continuum of types. The framework of analysis developed for finite types
is applied in the obvious way.

11One can think of the first stage as a poll, where players are asked the following question: “Are
you willing to contribute if everyone else says they are willing to contribute?” The message 𝑚𝑖 = 1
corresponds to a “yes” answer and the message 𝑚𝑖 = 0 corresponds to a “no” answer.
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There are in fact multiple equilibria in this game with communication. In order to
demonstrate how the cursed belief can distort players’ behavior, here we will focus
on the 𝜒-CSE that is similar to the most efficient sequential equilibrium identified
above, where 𝐶𝜒

0 = 𝐶
𝜒

1 = · · · = 𝐶𝜒

𝑁−1 = 0 and 𝐶𝜒
𝑐 = 𝐶

𝜒

𝑁
. The resulting 𝜒-CSE is

given in Proposition 2.7.

Proposition 2.7. In the public goods game with communication, there is a 𝜒-CSE
where

1. 𝐶𝜒

0 = 𝐶
𝜒

1 = · · · = 𝐶𝜒

𝑁−1 = 0, and

2. there is a unique 𝐶∗(𝑁, 𝐾, 𝜒) ≤ 1 s.t. 𝐶𝜒
𝑐 = 𝐶

𝜒

𝑁
= 𝐶∗(𝑁, 𝐾, 𝜒) that solves:

𝐶∗(𝑁, 𝐾, 𝜒) − 𝜒
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
= 1 − 𝜒.

To provide some intuition, we sketch the proof by analyzing the two-person game,
where the 𝜒-CSE is characterized by four cutoffs {𝐶𝜒

𝑐 , 𝐶
𝜒

0 , 𝐶
𝜒

1 , 𝐶
𝜒

2 }, with 𝐶𝜒

0 =

𝐶
𝜒

1 = 0 and 𝐶𝜒
𝑐 = 𝐶

𝜒

2 . If players use the strategy that they would send message 1 if
and only if the cost is less than 𝐶𝜒

𝑐 , then by Lemma 2.1, at the history where both
players send 1, player 𝑖’s cursed posterior belief density would be

𝜇
𝜒

𝑖
(𝑐−𝑖 |{1, 1}) =


𝜒 ·

(
1
𝐾

)
+ (1 − 𝜒) ·

(
1
𝐶
𝜒
𝑐

)
if 𝑐−𝑖 ≤ 𝐶𝜒

𝑐

𝜒 ·
(

1
𝐾

)
if 𝑐−𝑖 > 𝐶𝜒

𝑐 .

Notice that cursedness leads a player to put some probability weight on a type that is
not compatible with the history. Namely, for 𝜒-cursed players, when seeing another
player sending 1, they still believe the other player might have 𝑐−𝑖 > 𝐶𝜒

𝑐 . When 𝜒
converges to 1, the belief simply collapses to the prior belief as fully cursed players
never update their beliefs. On the other hand, when 𝜒 converges to 0, the belief
converges to 1/𝐶𝜒

𝑐 , which is the correct Bayesian inference.

Given this cursed belief density, the optimal cost cutoff to contribute, 𝐶𝜒

2 , solves

𝐶
𝜒

2 =

∫ 𝐶
𝜒

2

0
𝜇
𝜒

𝑖
(𝑐−𝑖 |{1, 1})𝑑𝑐−𝑖 .

Finally, at the first stage cutoff equilibrium, the𝐶𝜒
𝑐 type of player would be indifferent

between sending 1 and 0 at the first stage. Therefore, 𝐶𝜒
𝑐 satisfies

0 =

(
𝐶
𝜒
𝑐

𝐾

) {
−𝐶𝜒

𝑐 +
∫ 𝐶

𝜒

2

0
𝜇
𝜒

𝑖
(𝑐−𝑖 |{1, 1})𝑑𝑐−𝑖

}
.
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After substituting 𝐶𝜒
𝑐 = 𝐶

𝜒

2 , we obtain the 𝜒-CSE satisfies 𝐶𝜒
𝑐 = 𝐶

𝜒

2 = (𝐾 −
𝐾𝜒)/(𝐾 − 𝜒).

From this expression, one can see that the cutoff 𝐶𝜒
𝑐 (as well as 𝐶𝜒

2 ) is decreasing
in 𝜒 and 𝐾 . When 𝜒 → 0, 𝐶𝜒

𝑐 converges to 1, which is the cutoff of the sequential
equilibrium. On the other hand, when 𝜒 → 1, 𝐶𝜒

𝑐 converges to 0, so there is
no possibility for communication when players are fully cursed. Similarly, when
𝐾 → 1, 𝐶𝜒

𝑐 converges to 1, which is the cutoff of the sequential equilibrium, while
lim𝐾→∞𝐶

𝜒
𝑐 = 1 − 𝜒.

These comparative statics results with respect to 𝜒 and 𝐾 are not just a special
property of the 𝑁 = 2 case, but hold for all 𝑁 > 1. Furthermore, there is a similar
effect of increasing 𝑁 that results in a lower cutoff (less effective communication).
These properties of 𝐶∗(𝑁, 𝐾, 𝜒) are summarized in Corollary 2.3.

Corollary 2.3. The efficient 𝜒-CSE predicts for all 𝑁 ≥ 2 and 𝐾 > 1:

1. 𝐶∗(𝑁, 𝐾, 0) = 1 and 𝐶∗(𝑁, 𝐾, 1) = 0.

2. 𝐶∗(𝑁, 𝐾, 𝜒) is strictly decreasing in 𝑁 , 𝐾 , and 𝜒 for any 𝜒 ∈ (0, 1).

3. For all 𝜒 ∈ [0, 1], lim𝑁→∞𝐶∗(𝑁, 𝐾, 𝜒) = lim𝐾→∞𝐶∗(𝑁, 𝐾, 𝜒) = 1 − 𝜒.

These properties are illustrated in Figure 2.3. The left panel illustrates the equilib-
rium condition for 𝐶∗ in a graph where the horizontal axis is 𝐶 ∈ [0, 𝐾]. We can
rewrite the characterization of 𝐶∗(𝑁, 𝐾, 𝜒) in Proposition 2.7 as a solution for 𝐶 to
the following equation:

1 − 𝐶
𝜒

= 1 −
[
𝐶

𝐾

]𝑁−1
.

The left panel displays the LHS of this equation, 1−𝐶
𝜒

, as the downward sloping line
that connects the points (0, 1

𝜒
) and (1, 0). The RHS is displayed for 𝑁 = 2 and

𝑁 = 3 by the two curves that connect the points (0, 1) and (𝐾, 0). The equilibrium,
𝐶∗(𝑁, 𝐾, 𝜒), is given by the (unique) intersection of the LHS and RHS curves. It is
easy to see that𝐶∗(𝑁, 𝐾, 𝜒) is strictly decreasing in 𝑁 , 𝐾 , and 𝜒. When 𝑁 increases,
the RHS increases for all 𝐶 ∈ (0, 𝐾), resulting in an intersection at a lower value
of 𝐶. When 𝐾 increases, again the RHS increases for all 𝐶 ∈ (0, 𝐾), and also the
intercept of the RHS on the horizontal axis increases, leading to a similar effect;
and when 𝜒 increases, the intercept of the LHS on the horizontal axis decreases,
resulting in an intersection at a lower value of𝐶. In addition, when 𝑁 grows without
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bound, the RHS approaches to 1 for 𝐶 < 𝐾 , resulting in a limiting intersection at
𝐶∗(∞, 𝐾, 𝜒) = 1 − 𝜒. This is illustrated in the middle panel of Figure 2.3, which
graphs 𝐶∗(2, 1.5, ·), 𝐶∗(3, 1.5, ·), and 𝐶∗(∞, 1.5, ·). A similar effect occurs for
𝐾 → ∞, illustrated in the right panel of Figure 2.3, which displays 𝐶∗(2, 1.25, ·),
𝐶∗(2, 1.5, ·), and 𝐶∗(2,∞, ·).
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Figure 2.3: (Left) Illustration of the 𝜒-CSE equilibrium condition when 𝐾 = 1.5
and 𝜒 = 0.5. (Middle) The 𝜒-CSE cutoff 𝐶∗(𝑁, 𝐾, 𝜒) for 𝑁 = 2, 3 and for 𝑁 → ∞
when 𝐾 = 1.5. (Right) The 𝜒-CSE cutoff 𝐶∗(𝑁, 𝐾, 𝜒) for 𝐾 = 1.25, 1.5 and for
𝐾 → ∞ when 𝑁 = 2.

An interesting takeaway of this analysis is that in the public goods game with
communication, cursedness limits information transmission: 𝜒-CSE predicts when
players are more cursed (higher 𝜒), it will be harder for them to effectively com-
municate in the first stage for efficient coordination in the second stage. Moreover,
Corollary 2.3 shows this 𝜒-CSE varies systematically with all three parameters of
the model: 𝑁, 𝐾 , and 𝜒. In contrast, in the standard 𝜒-CE, players best respond
to the average type-contingent strategy rather than the average behavioral strategy.
Since it is a private value game, players do not care about the distribution of types,
only the distribution of actions. Thus, the prediction of standard CE coincides with
the equilibrium prediction for all 𝑁, 𝐾 , and 𝜒. This seems behaviorally implausible
and is also suggestive of an experimental design that varies the two parameters 𝑁
and 𝐾 , since the qualitative effects of changing these parameters are identified.
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2.4.3 Reputation Building: The Centipede Game with Altruists
In order to further demonstrate the difference between 𝜒-CE and 𝜒-CSE, in this
section we consider a variation of the centipede game with private information,
as analyzed in Kreps (1990) and McKelvey and Palfrey (1992). This game is an
illustration of reputation-building, where a selfish player imitates an altruistic type
in order to develop a reputation for passing, which in turn entices the opponent to
pass and leads to higher payoffs.

𝑇1 𝑇2 𝑇3 𝑇4

𝑃4𝑃3𝑃2𝑃11 1 12 2

4, 1 2, 8 16, 4 8, 32

64, 16

Figure 2.4: Four-Stage Centipede Game.

There are two players and four stages, and the game tree is shown in Figure 2.4. In
stage 1, player one can choose either Take (𝑇1) or Pass (𝑃1). If she chooses 𝑇1, the
game ends and the payoffs to players one and two are 4 and 1, respectively. If she
chooses the action 𝑃1, the game continues and player two has a choice between take
(𝑇2) and pass (𝑃2). If he chooses 𝑇2, the game ends and the payoffs to player one
and two are 2 and 8, respectively. If he chooses 𝑃2, the game continues to the third
stage where player one chooses between 𝑇3 and 𝑃3. Similar to the previous stages,
if she chooses 𝑇3, the payoffs to player one and two are 16 and 4, respectively. If she
chooses 𝑃3, the game proceeds to the last stage where player two chooses between
𝑇4 and 𝑃4. If player two chooses 𝑇4 the payoffs are 8 and 32, respectively. If player
two alternatively chooses 𝑃4, the payoffs are 64 and 16, respectively.

Player one has two types, selfish and altruistic. Selfish types are assumed to have
a utility function that is linear in their own payoff. Altruistic types instead have a
utility function that is linear in the sum of the two payoffs. For the sake of simplicity,
we assume that player two has only one type: selfish. The common probability that
player one is altruistic is 𝛼. Player one knows her own type, but player two does not.
Thus, player one’s type is her private information. In the following, we focus on the
interesting case where 𝛼 ≤ 1/7.12

12If 𝛼 > 1/7, player two always chooses 𝑃2 in the second stage since the probability of encoun-
tering altruistic player one is sufficiently high. Selfish player one would thus chooses 𝑃1 in the first
stage and choose 𝑇3 in the third stage.
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Because this is a game of incomplete information with private values, the standard
𝜒-CE is equivalent to the Bayesian Nash equilibrium of the game for all 𝜒 ∈ [0, 1],
and yields the same take probabilities as the Bayesian equilibrium. Since altruistic
player one wants to maximize the sum of the payoffs, it is optimal for her to always
pass. The equilibrium behavior is summarized in Claim 2.2.

Claim 2.2. In the Bayesian Nash equilibrium, selfish player one will choose 𝑃1 with
probability 6𝛼

1−𝛼 and choose 𝑇3 with probability 1; player two will choose 𝑃2 with
probability 1

7 and choose 𝑇4 with probability 1.

It is useful to see exactly why, in this example (and more generally) the standard
𝜒-CE is the same as the perfect Bayesian equilibrium. In particular, why it is not the
case that cursed beliefs will change player two’s updating process after observing 𝑃1
at stage one. Belief updating is not a property of the standard 𝜒-CE as the analysis is
in the strategic form, and thus is solved as a BNE of the game in the reduced normal
form.13 Table 2.1 summarizes the payoff matrices in the reduced normal form of
centipede game for selfish and altruistic type.

Table 2.1: Reduced Normal Form Centipede Game Payoff Matrix.

selfish (1 − 𝛼) 𝑇2 𝑃2𝑇4 𝑃2𝑃4 altruistic (𝛼) 𝑇2 𝑃2𝑇4 𝑃2𝑃4

𝑇1 4, 1 4, 1 4, 1 𝑇1 5, 1 5, 1 5, 1
𝑃1𝑇3 2, 8 16, 4 16, 4 𝑃1𝑇3 10, 8 20, 4 20, 4
𝑃1𝑃3 2, 8 8, 32 64, 16 𝑃1𝑃3 10, 8 40, 32 80, 16

It is easily verified that at the Bayesian Nash equilibrium, selfish player one would
choose 𝑇1 with probability (1 − 7𝛼)/(1 − 𝛼) and choose 𝑃1𝑇3 with probability
6𝛼/(1 − 𝛼), while player two would choose 𝑇2 with probability 6/7.

To solve the standard 𝜒-CE, let selfish player one choose 𝑇1 with probability 𝑝 and
𝑃1𝑇3 with probability 1 − 𝑝. Let player two choose 𝑇2 with probability 𝑞 and 𝑃2𝑇4

with probability 1 − 𝑞. Notice that for player two, 𝑃2𝑃4 is a dominated strategy and
given this, it is also sub-optimal for selfish player one to choose 𝑃1𝑃3. In this case,
selfish player one would choose 𝑇1 if and only if 4 ≥ 2𝑞 +16(1− 𝑞) ⇐⇒ 𝑞 ≥ 6/7,
implying that selfish player one’s best response correspondence in the standard
cursed analysis coincides with the Bayesian Nash equilibrium analysis. On the
other hand, to solve for player two’s best responses we need to first solve for the
perceived strategy. When player two is 𝜒-cursed, he would think that player one

13The analysis is similar for the non-reduced normal form.
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is using 𝜎𝜒1 (𝑎 |𝜃) where 𝑎 ∈ {𝑇1, 𝑃1𝑇3, 𝑃1𝑃3} and 𝜃 ∈ {selfish, altruistic}. Player
one’s true strategy is given in Table 2.2.

Table 2.2: Player one’s True Strategy.

player one’s type
𝜎1(𝑎 |𝜃) selfish altruistic
𝑇1 𝑝 0
𝑃1𝑇3 1 − 𝑝 0
𝑃1𝑃3 0 1

In this case, player one’s average strategy is simply

𝜎̄1(𝑇1) = (1 − 𝛼)𝑝, 𝜎̄1(𝑃1𝑇3) = (1 − 𝛼) (1 − 𝑝), 𝜎̄1(𝑃1𝑃3) = 𝛼.

By definition, 𝜎𝜒1 (𝑎 |𝜃) = 𝜒𝜎̄1(𝑎) + (1 − 𝜒)𝜎1(𝑎 |𝑠) and hence 𝜎𝜒1 (𝑎 |𝜃) is given in
Table 2.3.

Table 2.3: Cursed Perception of Player one’s Strategy.

player one’s type
𝜎
𝜒

1 (𝑎 |𝜃) selfish altruistic
𝑇1 𝑝(1 − 𝜒𝛼) 𝑝𝜒(1 − 𝛼)
𝑃1𝑇3 (1 − 𝑝) (1 − 𝜒𝛼) (1 − 𝑝)𝜒(1 − 𝛼)
𝑃1𝑃3 𝜒𝛼 1 − 𝜒 + 𝜒𝛼

From player two’s perspective, given any action profile, player two’s expected payoff
is not affected by whether player one is selfish or altruistic. Hence, player two only
cares about the marginal distribution of player one’s actions. In this case, 𝜒-cursed
player two believes player one will choose 𝑎 ∈ {𝑇1, 𝑃1𝑇3, 𝑃1𝑃3} with probability
𝜎̄1(𝑎). Therefore, it is optimal for player two to choose 𝑇2 if and only if

𝜎̄1(𝑇1) + 8 [1 − 𝜎̄1(𝑇1)] ≥ 𝜎̄1(𝑇1) + 4𝜎̄1(𝑃1𝑇3) + 32𝜎̄1(𝑃1𝑃3) ⇐⇒ 𝑝 ≤ 1 − 7𝛼
1 − 𝛼 ,

implying player two’s best responses in the standard cursed analysis also coincides
with the Nash best responses. As a result, one concludes that standard 𝜒-CE would
make exactly the same prediction as the Bayesian Nash equilibrium regardless how
cursed the players are.

In contrast, the 𝜒-CSE will exhibit distortions to the conditional beliefs of player two,
given that player one has passed, because player two incorrectly takes into account
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how player one’s choice to pass depended on player one’s private information. In
particular, it is harder to build a reputation, since a selfish type will have to imitate
altruists in such a way that the true posterior on altruistic type conditional on a pass is
higher than in the perfect Bayesian equilibrium, because the updating by player two
about player one’s type is dampened relative to this true posterior due to cursedness.
This distorted belief updating will result in less passing by player one compared to
the Bayesian equilibrium. Formally, the 𝜒-CSE is described in Proposition 2.8.

Proposition 2.8. In the 𝜒-CSE, selfish player one will choose 𝑃1 with probability
𝑞
𝜒

1 and choose 𝑇3 with probability 1; player two will choose 𝑃2 with probability 𝑞𝜒2
and choose 𝑇4 with probability 1 where

𝑞
𝜒

1 =


[

7𝛼−7𝛼𝜒
1−7𝛼𝜒 − 𝛼

] /
(1 − 𝛼) if 𝜒 ≤ 6

7(1−𝛼)

0 if 𝜒 > 6
7(1−𝛼)

and 𝑞
𝜒

2 =


1/7 if 𝜒 ≤ 6

7(1−𝛼)

0 if 𝜒 > 6
7(1−𝛼) .

In order to see how the cursedness affects the equilibrium behavior, here we focus
on the case of 𝜒 ≤ 6

7(1−𝛼) where selfish player one and player two will both mix
at stage one and two. Given selfish player one chooses 𝑃1 with probability 𝑞𝜒1 , by
Lemma 2.1, we know when the game reaches stage two, player two’s belief about
player one being altruistic becomes

𝜇𝜒 = 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞𝜒1

]
.

Here we see that when 𝜒 is larger, player two will update his belief more slowly.
Therefore, in order to maintain indifference at the mixed equilibrium, selfish player
one has to pass with lower probability so that 𝑃1 is a more informative signal to
player two. Thus, to make player two indifferent between 𝑇2 and 𝑃2, the following
condition must hold at the equilibrium:

𝜇𝜒 =
1
7

⇐⇒ 𝑞
𝜒

1 =

[
7𝛼 − 7𝛼𝜒
1 − 7𝛼𝜒

− 𝛼
] /

(1 − 𝛼).

To conclude this section, in Figure 2.5, we plot the probabilities of choosing 𝑃1
and 𝑃2 at 𝜒-CSE when there is a five percent chance that player one is an altruist
(i.e., 𝛼 = 0.05). From our analysis above, we can find that both the standard
equilibrium theory and 𝜒-CE predict selfish player one chooses 𝑃1 with probability
0.32 and player two chooses 𝑃2 with probability 0.14. Moreover, these probabilities
are independent of 𝜒. However, 𝜒-CSE predicts when players are more cursed,
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Figure 2.5: 𝜒-CSE for the centipede game with altruistic players (𝛼 = 0.05).

selfish player one is less likely to choose 𝑃1. When players are sufficiently cursed
(𝜒 ≥ 0.91), selfish player one and player two will never pass, i.e., behave as if there
were no altruistic players.

2.4.4 Sequential Voting over Binary Agendas
In this section, we apply the concept of 𝜒-CSE to the model of strategic binary
amendment voting with incomplete information studied by Ordeshook and Palfrey
(1988). Let 𝑁 = {1, 2, 3} denote the set of voters. These three voters will vote
over three possible alternatives in 𝑋 = {𝑎, 𝑏, 𝑐}. Voting takes place in a two-stage
agenda. In the first stage, voters vote between 𝑎 and 𝑏. In the second stage, voters
vote between 𝑐 and the majority rule winner of the first stage. The majority rule
winner of the second stage is the outcome.

Each voter 𝑖 has three possible private-value types where Θ ∈ {𝜃1, 𝜃2, 𝜃3} is the
set of possible types. Each voter’s type is independently drawn from a common
prior distribution of types, 𝑝. In other words, the probability of a voter being type
𝜃𝑘 is 𝑝𝑘 . Each voter’s type is their own private information. Each voter has the
same type-dependent payoff function, which is denoted by 𝑢(𝑥 |𝜃) for any 𝑥 ∈ 𝑋 and
𝜃 ∈ Θ. We summarize the payoff function with the following table.

Notice that 𝑣 ∈ (0, 1) is a parameter that measures the intensity of the second ranked
outcome relative to the top ranked outcome. This intensity parameter, 𝑣, is assumed
to be the same for all types of all voters. Because this is a game of private values,
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𝑥

𝑢(𝑥 |𝜃) 𝑎 𝑏 𝑐

𝜃1 1 𝑣 0
𝜃 𝜃2 0 1 𝑣

𝜃3 𝑣 0 1

the standard 𝜒-CE and the Bayesian Nash equilibrium coincide.

We use 𝑎1
𝑖
(𝜃) to denote type 𝜃 voter 𝑖’s action at stage 1. As is standard in majority

voting games we will focus on the analysis of symmetric pure-strategy equilibria
where voters do not use weakly dominated strategies. In other words, we will
consider 𝑎𝑡

𝑖
(·) = 𝑎𝑡

𝑗
(·) for all 𝑖, 𝑗 ∈ 𝑁 , and will drop the subscript.

In this PBE (and 𝜒-CE) all voters will vote sincerely in equilibrium except for type
𝜃1 voters at stage 1. To see this, first note that voting insincerely in the last stage
is dominated and thus eliminated, so all types of voters vote for their preferred
alternative on the last ballot. Second, voting sincerely in both stages is a dominant
strategy for a type 𝜃2 voter, who prefers any lottery between 𝑏 and 𝑐 to either 𝑎 or
𝑐. Third, voting sincerely in both stages is also dominant for a type 𝜃3 voter in the
sense that, in the event that neither of the other two voters are type 𝜃3, then any
lottery between 𝑎 and 𝑐 is better than a vote between 𝑏 and 𝑐 since 𝑏 (i.e., type 𝜃3’s
least preferred alternative) will win.14 The PBE (and 𝜒-CE) prediction about a type
𝜃1 voter’s strategy at stage 1 is summarized in the following claim.

Claim 2.3. The symmetric (undominated pure) PBE strategy for type 𝜃1 voters in
the first stage can be characterized as follows.

1. 𝑎1(𝜃1) = 𝑏 is a PBE strategy if and only if 𝑣 ≥ 𝑝1
𝑝1+𝑝2

.

2. 𝑎1(𝜃1) = 𝑎 is a PBE strategy if and only if 𝑣 ≤ 𝑝1
𝑝1+𝑝3

.

Proof: See Ordeshook and Palfrey (1988). ■

Claim 2.3 shows that, if 𝑣 is relatively large, only type 𝜃1 voting sophisticatedly for 𝑏
instead of sincerely for 𝑎 can be supported by a PBE. Conditional on being pivotal,
voting for 𝑏 in the first stage guarantees an outcome of 𝑏 and thus guarantees getting

14When there is another type 𝜃3 voter, the first ballot does not matter since their most preferred
alternative 𝑐 will always win in the second stage.
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𝑣, while voting for 𝑎 leads to a lottery between 𝑎 and 𝑐. Thus, when 𝑣 is sufficiently
high, a type 𝜃1 voter will have an incentive to strategically vote for 𝑏 to avoid the
risk of having 𝑐 elected stage 2.

The analysis of a cursed sequential equilibrium is different from the standard cursed
equilibrium in strategic form because the cursedness affects belief updating over
the stages of the game, and players anticipate future play of the game. Due to the
dynamics and the anticipation of future cursed behavior, such cursed behavior at
later stages of a game can feedback and affect strategic behavior earlier in the game.

In the context of the two-stage binary amendment strategic voting model, cursed
behavior and belief updating mean that voters in the first stage use the expected
cursed beliefs in the second stage to compute the continuation values in the two
continuation games of the second stage, either a vote between 𝑎 and 𝑐 or a vote
between 𝑏 and 𝑐. Because they have a cursed understanding about the relationship
between types and the voting behavior in the first stage, this affects their predictions
about which alternative wins in the second stage, conditional on which alternative
wins in the first stage.

It is noteworthy that, given any 𝜒 ∈ [0, 1], all voters will still vote sincerely in
𝜒-CSE except for type 𝜃1 voters at stage 1. As implied by Proposition 2.4, a voter
in the last stage would act as if solving a maximization problem of 𝜒-CE but under
an (incorrectly) updated belief. Therefore, we can follow the same arguments as
solving for the undominated Bayesian equilibrium and conclude that type 𝜃2 and 𝜃3

voters as well as type 𝜃1 voters at stage 2 will vote sincerely under a 𝜒-CSE.

Proposition 2.9 establishes that the set of parameters 𝑣 and 𝑝 that can support a
𝜒-CSE in which type 𝜃1 voters vote sophisticatedly for 𝑏 shrinks as 𝜒 increases.

Proposition 2.9. If 𝑎1(𝜃1) = 𝑏 can be supported by a symmetric 𝜒-CSE, then it can
also be supported by a symmetric 𝜒′-CSE for all 𝜒′ ≤ 𝜒.

The intuition behind strategic voting over agendas mainly comes from the informa-
tion content of hypothetical pivotal events. However, a cursed voter does not (fully)
take such information into consideration, and thus becomes overly optimistic about
his favorite alternative 𝑎 being elected in the second stage. Therefore, a type 𝜃1

voter has a stronger incentive to deviate from sophisticated voting to sincere voting
in stage 1 as 𝜒 increases.
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Interestingly, the set of 𝑣 and 𝑝 that can support a 𝜒-CSE in which type 𝜃1 voters
vote sincerely for 𝑎 does not necessarily expand as the level of cursedness becomes
higher, as characterized in Proposition 2.10.

Proposition 2.10. Given 𝑝 and 𝑣 ∈ (0, 1), there exists 𝜒̃(𝑝, 𝑣) such that

1. If 𝑣 > 𝑝1
𝑝1+𝑝3

, then 𝑎1(𝜃1) = 𝑎 is a 𝜒-CSE strategy if and only if 𝜒 ≥ 𝜒̃(𝑝, 𝑣);

2. If 𝑣 < 𝑝1
𝑝1+𝑝3

, then 𝑎1(𝜃1) = 𝑎 is a 𝜒-CSE strategy if and only if 𝜒 ≤ 𝜒̃(𝑝, 𝑣).

Thus, Proposition 2.10 shows that, when 𝜒 is sufficiently large, there are some values
of (𝑣, 𝑝) that cannot support sincere voting for type 𝜃1 voters under PBE (and 𝜒-CE)
but can support it under 𝜒-CSE. Alternatively, there also exist some values of (𝑣, 𝑝)
that can support sincere voting under PBE but fail to support it under 𝜒-CSE when
𝜒 is large.
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Figure 2.6: 𝜒-CSE for Sophisticated (left) and Sincere (right) Voting When 𝑣 = 0.7.

To illustrate this, Figure 2.6 plots the set of 𝑝 (fixing 𝑣 = 0.7) that can support a
𝜒-CSE for type 𝜃1 voters at stage 1 to vote sophisticatedly for 𝑏 and sincerely for
𝑎. The left panel of Figure 2.6 shows that a sophisticated voting 𝜒-CSE becomes
harder to be supported as 𝜒 increases, as indicated by Proposition 2.9. For example,
when 𝑝 ≡ (𝑝1, 𝑝2, 𝑝3) = (0.6, 0.3, 0.1), type 𝜃1 voters will not vote for second
preferred alternative 𝑏 if 𝜒 > 0.18.
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On the other hand, the right panel of Figure 2.6 shows that, while type 𝜃1 voters who
sincerely vote for 𝑎 at stage 1 cannot be supported under PBE when 𝑝3 is large, they
may emerge in a 𝜒-CSE with sufficiently high 𝜒. Also note that when 𝑝2 is large,
sincere voting by type 𝜃1 voters is no longer a 𝜒-CSE with high 𝜒. In such a sincere
voting equilibrium, a fully rational type 𝜃1 voter knows there will be only one type
𝜃2 voter among the other two voters when being pivotal. As a result, whether to
sincerely vote for 𝑎 is determined by the ratio of 𝑝1 to 𝑝3. When 𝑝3 is large, sincere
voting at stage 1 will likely lead to zero payoff for type 𝜃1 voters and thus cannot be a
PBE strategy. However, cursed type 𝜃1 voters will take the possibility of having two
type 𝜃2 voters into account since they are not correctly conditioning on pivotality.
As a result, when 𝑝2 is large, sincere voting at stage 1 will likely lead to zero payoff
for type 𝜃1 voters, and thus cannot be a 𝜒-CSE strategy with high 𝜒, while voting
sophisticatedly for 𝑏 can likely secure a payoff of 𝑣.

2.4.5 The Dirty Faces Game
The dirty faces game was first described by Littlewood (1953) to study the rela-
tionship between common knowledge and behavior.15 There are several different
variants of this game, but here we focus on a simplified version, the two-person dirty
faces game, which was theoretically analyzed by Fudenberg and Tirole (1991a) and
Lin (2023) and was experimentally studied by Weber (2001), Bayer and Chan (2007)
and Lin (2023).

Let 𝑁 = {1, 2} be the set of players. For each 𝑖 ∈ 𝑁 , let 𝑥𝑖 ∈ {𝑂, 𝑋} represent
whether player 𝑖 has a clean face (𝑂) or a dirty face (𝑋). Each player’s face
type is independently and identically determined by a commonly known probability
𝑝 = Pr(𝑥𝑖 = 𝑋) = 1 − Pr(𝑥𝑖 = 𝑂). Once the face types are drawn, each player 𝑖
can observe the other player’s face 𝑥−𝑖 but not their own face.16 If there is at least
one player with a dirty face, a public announcement of this fact is broadcast to both
players at the beginning of the game. Let 𝜔 ∈ {0, 1} denote whether there is an
announcement or not. If there is an announcement (𝜔 = 1), all players are informed
there is at least one dirty face but not the identities. When 𝜔 = 0, it is common
knowledge to both players that their faces are clean and the game becomes trivial.

15The dirty faces game has also been reframed as the “cheating wives puzzle” (Gamow and Stern,
1958), the “cheating husbands puzzle” (Moses, Dolev, and Halpern, 1986), the “muddy children
puzzle” (Barwise, 1981) and (Halpern and Moses, 1990), and the “red hat puzzle” (Hardin and
Taylor, 2008).

16To fit into the framework, each player’s “type” (their own private information) can be specified
as “other players’ faces.” That is, 𝜃𝑖 = 𝑥−𝑖 .
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Hence, in the following, we will focus only on the interesting case where 𝜔 = 1.

There are a finite number of𝑇 ≥ 2 stages. In each stage, each player 𝑖 simultaneously
chooses 𝑠𝑖 ∈ {𝑈, 𝐷}. The game ends as soon as either player (or both) chooses 𝐷,
or at the end of stage 𝑇 in case neither player has chosen 𝐷. Actions are revealed
at the end of each stage. Payoffs depend on own face types and action. If a player
chooses 𝐷, he will get 𝛼 > 0 if he has a dirty face while receive −1 if he has a clean
face. We assume that

𝑝𝛼 − (1 − 𝑝) < 0 ⇐⇒ 0 < 𝛼̄ ≡ 𝛼

(1 − 𝑝) (1 + 𝛼) < 1, (2.1)

where 𝑝𝛼 − (1 − 𝑝) is the expected payoff of 𝐷 when the belief of having a dirty
face is 𝑝. Thus, Assumption (2.1) guarantees it is strictly dominated to choose 𝐷
at stage 1 when observing a dirty face. In other words, players will be rewarded
when correctly inferring the dirty face but penalized when wrongly claiming the
dirty face.

The payoffs are discounted with a common discount factor 𝛿 ∈ (0, 1). To summarize,
conditional on reaching stage 𝑡, each player’s payoff function (which depends on
their own face and action) can be written as

𝑢𝑖 (𝑠𝑖 |𝑡, 𝑥𝑖 = 𝑋) =

𝛿𝑡−1𝛼 if 𝑠𝑖 = 𝐷

0 if 𝑠𝑖 = 𝑈
and 𝑢𝑖 (𝑠𝑖 |𝑡, 𝑥𝑖 = 𝑂) =


−𝛿𝑡−1 if 𝑠𝑖 = 𝐷

0 if 𝑠𝑖 = 𝑈.

Therefore, a two-person dirty faces game is defined by a tuple ⟨𝑝, 𝑇, 𝛼, 𝛿⟩.

Since the game ends as soon as some player chooses 𝐷, the information sets of the
game can be specified by the face type the player observes and the stage number.
Thus a behavioral strategy can be represented as

𝜎 : {1, . . . , 𝑇} × {𝑂, 𝑋} → [0, 1],

which is a mapping from information sets to the probability of choosing 𝐷, where
{𝑂, 𝑋} corresponds to a player’s observation of the other player’s face.

There is a unique sequential equilibrium. When observing a clean face, a player
would immediately know his face is dirty. Hence, it is strictly dominant to choose
𝐷 at stage 1 in this case. On the other hand, when observing a dirty face, because
of Assumption (2.1), it is optimal for the player to choose 𝑈 at stage 1. However,
if the game proceeds to stage 2, the player would know his face is dirty because
the other player would have chosen 𝐷 at stage 1 if his face were clean and the
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game would not have reached stage 2. This result is independent of the payoffs, the
timing, the discount factor, and the (prior) probability of having a dirty face. The
only assumption for this argument is common knowledge of rationality.

Alternatively, when players are “cursed,” they are not able to make perfect inferences
from the other player’s actions. Specifically, since a cursed player has incorrect
perceptions about the relationship between the other player’s actions and their private
information after seeing the other player choose 𝑈 in stage 1, a cursed player does
not believe they have a dirty face for sure. At the extreme when 𝜒 = 1, fully cursed
players never update their beliefs. In the following, we will compare the predictions
of the standard 𝜒-CE and the 𝜒-CSE. A surprising result is that there is always a
unique 𝜒-CE, but there can be multiple 𝜒-CSE.

For the sake of simplicity, we focus on the characterization of pure strategy equilib-
rium in the following analysis. Since the game ends when some player chooses 𝐷,
we can equivalently characterize a stopping strategy as a mapping from the observed
face type to a stage in {1, 2, . . . , 𝑇, 𝑇 + 1} where 𝑇 + 1 corresponds to the strategy
of never stopping. Furthermore, both 𝜒-CE and 𝜒-CSE will be symmetric because
if players were to stop at different stages, least one of the players would have a
profitable deviation. Finally, we use 𝜎̂𝜒 (𝑥−𝑖) and 𝜎̃𝜒 (𝑥−𝑖) to denote the equilibrium
stopping strategies of 𝜒-CE and 𝜒-CSE, respectively.

We characterize the 𝜒-CE in Proposition 2.11. Since 𝜒-CE is defined for simul-
taneous move Bayesian games, to solve for the 𝜒-CE, we need to look at the cor-
responding normal form where players simultaneously choose {1, 2, . . . , 𝑇, 𝑇 + 1}
given the observed face type.

Proposition 2.11. The 𝜒-cursed equilibrium can be characterized as follows.

1. If 𝜒 > 𝛼̄, the only 𝜒-CE is that both players choose:

𝜎̂𝜒 (𝑂) = 1 and 𝜎̂𝜒 (𝑋) = 𝑇 + 1.

2. If 𝜒 < 𝛼̄, the only 𝜒-CE is that both players choosing

𝜎̂𝜒 (𝑂) = 1 and 𝜎̂𝜒 (𝑋) = 2.

Proposition 2.11 shows that 𝜒-CE makes an extreme prediction, when observing
a dirty face, players would either choose 𝐷 at stage 2 (the equilibrium prediction)
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or never choose 𝐷. In addition, the prediction of 𝜒-CE is unique for 𝜒 ≠ 𝛼̄. As
characterized in Proposition 2.12, for extreme values of 𝜒, the prediction of 𝜒-CSE
coincides with 𝜒-CE. But for intermediate values of 𝜒, there can be multiple 𝜒-CSE.

Proposition 2.12. The pure strategy 𝜒-CSE can be characterized as follows.

1. 𝜎̃𝜒 (𝑂) = 1 for all 𝜒 ∈ [0, 1].

2. Both players choosing 𝜎̃𝜒 (𝑋) = 𝑇 + 1 is a 𝜒-CSE if and only if 𝜒 ≥ 𝛼̄ 1
𝑇+1 .

3. Both players choosing 𝜎̃𝜒 (𝑋) = 2 is a 𝜒-CSE if and only if 𝜒 ≤ 𝛼̄.

4. For any 3 ≤ 𝑡 ≤ 𝑇 , both players choosing 𝜎̃𝜒 (𝑋) = 𝑡 is a 𝜒-CSE if and only if(
1 − 𝜅(𝜒)

1 − 𝑝

) 1
𝑡−2

≤ 𝜒 ≤ 𝛼̄ 1
𝑡−1 where

𝜅(𝜒) ≡ [(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿] −
√︁
[(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿]2 − 4𝛿𝜒(1 + 𝛼)
2𝛿𝜒(1 + 𝛼) .
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Figure 2.7: 𝜒-CE vs. 𝜒-CSE When (𝛼, 𝛿, 𝑝, 𝑇) =
(

1
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4
5 ,

2
3 , 5

)
.

To illustrate the sharp contrast between the predictions of 𝜒-CE and 𝜒-CSE, here we
consider an illustrative example where 𝛼 = 1/4, 𝛿 = 4/5, 𝑝 = 2/3 and the horizon
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of the game is 𝑇 = 5. As characterized by Proposition 2.11, 𝜒-CE predicts players
will choose 𝜎̂𝜒 (𝑋) = 2 if 𝜒 ≤ 𝛼̄ = 0.6; otherwise, they will choose 𝜎̂𝜒 (𝑋) = 6,
i.e., they never choose 𝐷 when observing a dirty face. As demonstrated in the left
panel of Figure 2.7, 𝜒-CE is (generically) unique and it predicts players will either
behave extremely sophisticated or unresponsive to the other’s action at all.

In contrast, as characterized by Proposition 2.12, there can be multiple 𝜒-CSE. As
shown in the right panel of Figure 2.7, when 𝜒 ≤ 𝛼̄ = 0.6, both players stopping at
stage 2 is still an equilibrium, but it is not unique except for very low values of 𝜒.
For 0.168 ≤ 𝜒 ≤ 0.505, both players stopping at stage 3 is also a 𝜒-CSE, and for
0.505 ≤ 𝜒 ≤ 0.6, there are three pure strategy 𝜒-CSE where both players stop at
stage 2, 3, or 4, respectively.

The existence of multiple 𝜒-CSE in which both players stop at 𝑡 > 2 highlights a
player’s learning process in a multi-stage game, which does not happen in strategic
form cursed equilibrium. In the strategic form, a player has no opportunity to learn
about the other player’s type in middle stages. Thus, when level of cursedness is not
low enough to support a 𝜒-CE with stopping at stage 2, both players would never
stop. However, in a 𝜒-CSE of the multi-stage game, a cursed player would still learn
about his own face being dirty as the game proceeds, even though he might not be
confident enough to choose 𝐷 at stage 2. If 𝜒 is not too large, the expected payoff
of choosing 𝐷 would eventually become positive at some stage before the last stage
𝑇 .17 For some intermediate values of 𝜒, there might be multiple stopping stages
which yield positive expected payoffs. In this case, the dirty faces game becomes
a special type of coordination games where both players coordinate on stopping
strategies, resulting in the existence of multiple 𝜒-CSE.18

2.5 Concluding Remarks
In this paper, we formally developed Cursed Sequential Equilibrium, which extends
the strategic form cursed equilibrium (Eyster and Rabin, 2005) to multi-stage games,
and illustrated the new equilibrium concept with a series of applications. While the
standard CE has no bite in private value games, we show that cursed beliefs can
actually have significant consequences for dynamic private value games. In the
private value games we consider, our cursed sequential equilibrium predicts (1)

17The upper bound of the inequality in Proposition 2.12 characterizes the stages at which stopping
yields positive expected payoffs.

18Note that players with low levels of cursedness would not coordinate on stopping at late stages
since the discount factor shrinks the informative value of waiting (i.e., both choosing𝑈). This result
is characterized by the lower bound of the inequality in Proposition 2.12.
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under-contribution caused by under-communication in the public goods game with
communication, (2) low passing rate in the presence of altruistic players in the
centipede game, and (3) less sophisticated voting in the sequential two-stage binary
agenda game. We also illustrate the distinction between CE and CSE in some
non-private value games. In simple signaling games, 𝜒-CSE implies refinements of
pooling equilibria that are not captured by traditional belief-based refinements (or
𝜒-CE), and are qualitatively consistent with some experimental evidence. Lastly,
we examine the dirty face game, showing that the CSE further expands the set of
equilibrium and predicts stopping in middle stages of the game. Our findings are
summarized in Table 2.4.

Table 2.4: Summary of Findings in Section 2.4.

Private-Value
Game 𝜒-CE vs. BNE 𝜒-CSE vs. 𝜒-CE

Signaling Games with
Pooling Equilibrium No ≠ 𝜒-CSE ⊂ 𝜒-CE

Public Goods Game
with Communication Yes = ≠

Centipede Game
with Altruists Yes = ≠

Sequential Voting
Game Yes = ≠

Dirty Faces Game No ≠ ≠

The applications we consider are only a small sample of the possible dynamic games
where CSE could be usefully applied. One prominent class of problems where it
would be interesting to study the dynamic effects of cursedness is social learning. For
example, in the standard information cascade model of Bikhchandani, Hirshleifer,
and Welch (1992), we conjecture that the effect would be to delay the formation
of an information cascade because players will partially neglect the information
content of prior decision makers. Laboratory experiments report evidence that
subjects underweight the information contained in prior actions relative to their
own signal (Goeree et al., 2007). A related class of problems involves information
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aggregation through sequential voting and bandwagon effects (Callander, 2007; Ali,
Goeree, et al., 2008; Ali and Kartik, 2012). A natural conjecture is that CSE will
impede information transmission in committees and juries as later voters will under-
appreciate the information content of the decisions by early voters. This would
dampen bandwagon effects. The centipede example we studied suggests that CSE
might have broader implications for behavior in reputation-building games, such as
the finitely repeated prisoner’s dilemma or entry deterrence games such as the chain
store paradox.

The generalization of CE to dynamic games presented in this paper is limited in
several ways. First, the CSE framework is formally developed for finite multi-stage
games with observed actions. We do not extend CSE for games with continuous types
but we do provide one application that shows how such an extension is possible.
However, a complete generalization to continuous types (or continuous actions)
would require more technical development and assumptions. We also assume that
the number of stages is finite, and extending this to infinite horizon multi-stage games
would be a useful exercise. Extending CSE to allow for imperfect monitoring in
the form of private histories is another interesting direction to pursue. The SCE
approach in Cohen and Li (2023) allows for cursedness with respect to both public
and private endogenous information, which leads to some important differences
from our CSE approach. In CSE, we find that subjects are limited in their ability to
make correct inferences about hypothetical events, but the mechanism is different
from SCE, which introduces a second free parameter that modulates cursedness
with respect to hypothetical events. For a more detailed discussion of these and
other differences and overlaps between CSE and SCE, see Appendix B and Fong,
Lin, and Palfrey (2023).

As a final remark, our analysis of applications of 𝜒-CSE suggests some interesting
experiments. For instance, 𝜒-CSE predicts in the public goods game with commu-
nication, when either the number of players (𝑁) or the largest possible contribution
cost (𝐾) increases, pre-play communication will be less effective, while the predic-
tion of sequential equilibrium and 𝜒-CE is independent of 𝑁 and 𝐾 . In other words,
in an experiment where 𝑁 and 𝐾 are manipulated, significant treatment effects in
this direction would provide evidence supporting 𝜒-CSE over 𝜒-CE. Also, 𝜒-CSE
makes qualitatively testable predictions in the sequential voting games and the dirty
faces games, which have not been extensively studied in laboratory experiments. In
the sequential voting game, it would be interesting to test how sensitive strategic
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(vs. sincere) voting behavior is to preference intensity (𝑣) and the type distribution.
In the dirty faces game, it would be interesting to design an experiment to iden-
tify the extent to which deviations from sequential equilibrium are related to the
coordination problem that arises in 𝜒-CSE.
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C h a p t e r 3

COGNITIVE HIERARCHIES FOR GAMES IN EXTENSIVE
FORM

3.1 Introduction

“What surprised me was how bad they played.”

—Beth Harmon, The Queen’s Gambit

In many situations, people interact with one another over time, in a multi-stage
environment, such as playing chess or bargaining with alternating offers. The stan-
dard approach to studying these situations is to model them as games in extensive
form where equilibrium theory is applied, often with refinements such as subgame
perfection or other notions of sequential rationality. However, the standard equilib-
rium concepts, such as sequential equilibrium and its refinements, impose strong
assumptions about the strategic sophistication of the players—perhaps implausibly
strong from an empirical standpoint, as behavior in many laboratory experiments
has suggested (see, for example, Camerer 2003).

In response to these anomalous findings, researchers have proposed a variety of
models that relax the requirement of mutual consistency of beliefs embodied in
standard equilibrium concepts. The focus of this paper is the “level-𝑘” family of
models, which assume a hierarchical structure of strategic sophistication among the
players. In this family of models, each player is endowed with a specific level of
sophistication. Level-0 players are non-strategic and choose their actions randomly.
Level-𝑘 players, on the other hand, can think 𝑘 strategic steps and believe everyone
else is less sophisticated in the sense that they think fewer than 𝑘 strategic steps.
The standard level-𝑘 model assumes level-𝑘 players believe all other players are
level-(k-1) (see Nagel 1995).

However, applications of the level-𝑘 approach have been limited almost exclusively
to the analysis of games in strategic form, where all players make their moves
simultaneously, and the theory has not been formally developed for the analysis of
general games in extensive form. To apply the standard level-𝑘 model to games in
extensive form, one would assume that at each decision node, a level-𝑘 player will
choose an action that maximizes the continuation value of the game, assuming all
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other players are level-(𝑘-1) players in the continuation game. As a result, each
player’s belief about other players’ level is fixed at the beginning. However, as the
game proceeds, this fixed belief can lead to a logical conundrum, as a level-𝑘 player
can be “surprised” by an opponent’s previous move that is not consistent with the
strategy of a level-(k-1) player.1

If one closely examines this problem, the incompatibility derives from two sources
that imply players cannot learn: (1) each level of player’s prior belief about the other
players’ levels is degenerate, i.e., a singleton; and (2) players ignore the information
contained in the history of the game. To solve both of these problems at the
same time, as an alternative to the standard level-𝑘 approach, we use the cognitive
hierarchy (CH) version of level-𝑘 , as proposed by Camerer, Ho, and Chong (2004),
and extend it to games in extensive form. Like the standard level-𝑘 model, the CH
framework posits that players are heterogeneous with respect to levels of strategic
sophistication and believe that other players are less sophisticated. However, their
beliefs are not degenerate. A level-𝑘 player believes all other players have lower
levels distributed anywhere from level 0 to k-1.

Furthermore, the CH framework imposes a partial consistency requirement that ties
the players’ prior beliefs on the level-type space to the true underlying distribution
of levels. Specifically, a level-𝑘 player’s beliefs are specified as the truncated true
distribution of levels, conditional on levels ranging from 0 to k-1, i.e., players
have “truncated rational expectations.” This specification has the important added
feature, relative to the standard level-𝑘 model, that more sophisticated players also
have beliefs that are closer to the true distribution of levels, and very high level types
have approximate rational expectations about the behavior of the other players.
Thus, the CH approach blends aspects of purely behavioral models and equilibrium
theory.

In our extension of CH to games in extensive form, a player’s prior beliefs over lower
levels are updated as the history of play in the game unfolds, revealing information
about the distribution of other players’ levels of sophistication. These learning
effects can be quite substantial as we illustrate later in the paper. Hence, the main
contribution of this paper is to propose a new CH framework—dynamic cognitive

1An exception is a recent paper by Schipper and Zhou (2023) that was developed independently
and contemporaneously with ours. They take an alternative approach to resolving this conundrum
for extending the standard level-𝑘 analysis to games in extensive form, which we discuss in section
3.2.
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hierarchy (DCH)—for the analysis of general games in extensive form and, in doing
so, provide new insights beyond those offered by the original CH model.

Our first result establishes that in games with perfect information, every player will
update their belief about each of the opponent’s levels independently (Proposition
3.1). Second, we show that when the history of play in the game unfolds, players
become more certain about the opponents’ levels of sophistication, in a specific way.
Formally, the support of their beliefs shrinks as the history gets longer (Proposition
3.2). Third, we show that the probability of paths with strictly dominated strategies
being realized converges to zero as the distribution of levels increases (Proposition
3.3). Nonetheless, solution concepts based on iterated dominance, such as forward
induction, can be inconsistent with DCH even at the limit when the average level of
sophistication converges to infinity. Relatedly, even though the players fully exploit
the information from the history, it is not guaranteed that high-level players will use
strategies that are consistent with the subgame perfect equilibrium of the game. In
fact, behavior of the most sophisticated players can be inconsistent with backward
induction, even at the limit when the level of sophistication of all players is arbitrarily
high.

Another important property of the DCH solution is that it is not reduced normal
form invariant. In many games, players have multiple strategies that are realization-
equivalent. The (structurally) reduced normal form of the game consolidates such
strategies into a single strategy, thus reducing the cardinality of the set of pure
strategies. In DCH, level-0 players uniformly randomize over the set of actions at
each information set, which is realization-equivalent to uniformly randomizing over
the set of pure strategies in the normal form representation of the game. However,
it is not equivalent to uniform randomization over the set of pure strategies in the
reduced normal form, because of the reduced cardinality of the set of strategies. For
this reason, we refer to this property of DCH as the strategy-reduction effect.2

The strategy-reduction effect has important implications in experimental economics,
as sequential game experiments are often implemented by having subjects simulta-
neously choose reduced strategies, a procedure known as the strategy method. There
is considerable evidence that qualitatively different data is observed in experimental
studies of games depending on whether the strategy method or the direct-response
(sequential choice) method is used to elicit choices. How and why such differences

2In a special class of games that satisfy balancedness, the consolidation of realization equivalent
strategies is innocuous and does not lead to a strategy reduction effect in DCH. Battigalli (2023)
presents a formal statement and proof of this result.
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arise is not well understood.3 Because of the strategy-reduction effect, the DCH
solution has the potential to provide new insights into this issue.

With this goal in mind, we explore the implications of the strategy-reduction effect
of DCH in an application to a prominent class of games where observed behav-
ior is grossly inconsistent with the standard equilibrium theory, the increasing-pie
“centipede game.” In this class of games, the DCH solution makes clear predictions
about the direction of the strategy-reduction effect.4

Specifically, we consider two common implementations of centipede games studied
in experiments. The first (and the usual) implementation is to play the game in its
extensive form, as an alternating-move sequential game that terminates as soon as
one player takes (the direct-response method). That is, first player 1 decides to take
or pass. If they take, the game ends; if they pass, it is player 2’s turn to pass or
take, and so on. The second implementation asks both players to decide at which
node to take if the game gets that far, or always pass (the strategy method). That is,
players simultaneously choose from their respective set of reduced pure strategies.
The benefit of doing so, from a methodological standpoint, is that one can gather
more experimental data, particularly at histories that are only occasionally reached
when the game is played out sequentially.

However, from the perspective of DCH, implementing the strategy method reduces
the number of pure strategies, causing level-0 players to behave differently in the two
protocols. Consequently, the behavior of higher-level players (who always believe
in the existence of level-0 players) is also affected. In Theorem 3.1, we show that
this strategy-reduction effect implies that increasing-sum centipede games will end
earlier, with lower payoffs to the players, when implemented by the direct-response
method than when implemented by the strategy method.

While the direct-response method is the most commonly used method to implement
centipede game experiments, there are a few exceptions. Nagel and Tang (1998) is
the first paper to report the results from a centipede game experiment conducted as
a simultaneous move game, the reduced normal form. In their 12-node centipede
games, each player has seven available strategies that correspond to an intended

3The survey by Brandts and Charness (2011) provides an extensive account of the evidence and
discussion of possible explanations for these differences.

4These are alternating-move finite-horizon two-person games, where, in turn, each player can
either “take” the larger of two pieces of a growing pie, which terminates the game and leaves the
other player with the smaller piece of the current pie, or “pass,” which increases the size of the pie
and it is the other player’s turn to take or pass. Payoffs are such that the subgame perfect equilibrium
of this game is solved by backward induction with the game ending immediately.
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“take-node” or always passing, and they make their decisions simultaneously. Pool-
ing the data over many repetitions, they find that only 0.5% of the outcomes coincide
with the equilibrium prediction, suggesting that the non-equilibrium behavior in the
centipede games cannot solely be attributed to the violation of backward induction.
However, as the authors remarked, the results may be confounded with the effect of
reduced normal form: “...There might be substantial differences in behavior in the
extensive form game and in the normal form game...” (Nagel and Tang, 1998, p.
357). One of our contributions is to show that DCH provides a theoretical rationale
for the existence of such effects.

A recent experiment by García-Pola, Iriberri, and Kovářík (2020a) specifically
studies how the direct-response method and the strategy method would affect the
behavior in four different centipede games. The DCH solution makes a sharp predic-
tion about the strategy-reduction effect—in three of the four games, the distribution
of terminal nodes under the strategy method will first order stochastically dominate
the distribution under the direct-response method, but not in the fourth game. We
revisit the data from that experiment, and show that the results from all four of their
games are consistent with the strategy-reduction effect predicted by DCH.

The paper is organized as follows. The related literature is discussed in the next
section. Section 3.3 sets up the model. Section 3.4 establishes properties of the
DCH belief-updating process and explores the relationship between our model and
subgame perfect equilibrium with several examples. In Section 3.5, the strategy-
reduction effect is explored in a detailed analysis of centipede games with a linearly
increasing pie. Experimental data that provide a test the strategy-reduction effect
hypothesis is presented and discussed in Section 3.6. We discuss several additional
features of our model in Section 3.7 and conclude in Section 3.8.

3.2 Related Literature
The idea of limited depth of reasoning in games of strategy has been proposed and
studied by economists and game theorists for at least thirty years (see, for example,
Binmore, 1987; Binmore, 1988; Selten, 1991; Aumann, 1992; Stahl, 1993; Selten,
1998; Alaoui and Penta, 2016; Alaoui and Penta, 2022). On the empirical side,
Nagel (1995) conducts the first laboratory experiment explicitly designed to study
hierarchical reasoning in simultaneous move games, using the “beauty contest”
game. Each player chooses a number between 0 and 100. The winner is the player
whose choice is closest to the average of all the chosen numbers discounted by a
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parameter 𝑝 ∈ (0, 1). To analyze the data, Nagel (1995) assumes level-0 players
choose randomly. Level-1 players believe all other players are level-0 and best
respond to them by choosing 50𝑝. Following the same logic, level-𝑘 players believe
all other players are level-(k-1) and best respond to them with 50𝑝𝑘 .

This iterative definition of hierarchies has been applied to a range of different envi-
ronments. For instance, Ho, Camerer, and Weigelt (1998) also analyze the beauty
contest game while Costa-Gomes, Crawford, and Broseta (2001) and Crawford and
Iriberri (2007a) consider the strategic levels in a variety of simultaneous move
games. Costa-Gomes and Crawford (2006) study the “two-person guessing game,”
a variant of the beauty contest game. Finally, the level-𝑘 approach has also been
applied to games of incomplete information. Crawford and Iriberri (2007b) ap-
ply this approach to reanalyze auction data, and Cai and Wang (2006) and Wang,
Spezio, and Camerer (2010) use the level-𝑘 model to organize empirical patterns in
experimental sender-receiver games. All these studies assume level-𝑘 players best
respond to degenerate beliefs of level-(k-1) players.

This standard level-𝑘 model has been extended in a number of ways. One such
approach is that each level of player best responds to a mixture of all lower levels.
Stahl and P. W. Wilson (1995) are the first to construct and estimate a specific
mixture model of bounded rationality in games where each level of player best
responds to a mixture between lower levels and equilibrium players.5 Camerer, Ho,
and Chong (2004) develop the CH framework, where level-𝑘 players best respond
to a mixture of the behavior of all lower level behavioral types from 0 to k-1. In
addition, players have correct beliefs about the relative proportions of these lower
levels, so it includes a consistency restriction on beliefs in the form of truncated
rational expectations.

A second direction is to endogenize the strategic levels of players, using a cost benefit
approach. Alaoui and Penta (2016) develop a model of endogenous depth of rea-
soning, where each player trades off the benefit of additional levels of sophistication
against the cost of doing so. Players can have different benefit and cost functions,
depending on their beliefs and strategic abilities, respectively. A model is developed
for two-person games with complete information and calibrated against experimen-

5In the same spirit of Stahl and P. W. Wilson (1995), Levin and Zhang (2022) propose the
NLK solution which is an equilibrium model where each player best responds to a mixture of
an exogenously determined naive strategy (with probability 𝜆) and the equilibrium strategy (with
probability 1 − 𝜆). The main difference between NLK and our DCH solution is that NLK requires
the belief system to be mutually consistent (as NLK is a solution of a fixed problem) while DCH
relaxes this requirement.
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tal data. Alaoui, Janezic, and Penta (2020) provide some additional analysis and a
laboratory experiment that further explores the implications of this model.

Third, De Clippel, Saran, and Serrano (2019) study the implications of the standard
level-𝑘 approach to mechanism design. They establish a form of the revelation
principle for level-𝑘 implementation and obtain conditions on the implementability
of social choice functions under a range of assumptions about level-0 behavior.

Fourth, there have been several papers that model how an individual’s strategic level
evolves when the same game is repeated multiple times.6 The standard level-𝑘 model
is ideally suited to understanding how naive individuals behave when they encounter
a game for the first time. This is a limitation since, in most laboratory experiments in
economics and game theory, subjects play the same game with multiple repetitions,
in order to gain experience and to facilitate convergence to equilibrium behavior. It is
also a limitation since many games studied by economists and other social scientists
are aimed at understanding strategic interactions between highly experienced players
(oligopoly, procurement auctions, legislative bargaining, for example), where some
convergence to equilibrium would be natural to expect.

In this vein, Ho and Su (2013) and Ho, Park, and Su (2021) propose a modification
of CH that allows for learning across repeated plays of the same sequential game,
in a different way than in Stahl (1996), but in the same spirit. In their setting,
an individual player repeatedly plays the same game (such as the guessing game)
and updates his or her beliefs about the distribution of levels after observing past
outcomes of earlier games, but holding fixed beliefs during each play of the game.
In addition to updating beliefs about other players’ levels, a player also endogenously
chooses a new level of strategic sophistication for themselves, in the spirit of Stahl
(1996), for the next iteration of the game. This is different from our DCH framework
where each player updates their beliefs about the levels of other players after each
move within a single game. Moreover, because players are forward-looking in
DCH, they are strategic learners—i.e., they correctly anticipate the evolution of
their posterior beliefs in later stages of the game—which leads to a much different
learning dynamic compared with naive adaptive learning models.

All of these extensions add significantly to the literature on level-𝑘 behavior for
games in strategic form, by allowing for a richer set of heterogeneous beliefs, by
incorporating cognitive costs into the model, and by showing how the model can be

6Nagel (1995) proposes a model for the evolution of levels based on changing reference points
to explain unravelling in guessing games.
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used to address classic mechanism design problems, but all of them are limited by
a restriction to simultaneous move games. In extensive games, the timing structure
is crucial, and beliefs evolve as the game unfolds and players have an opportunity
to adjust their beliefs in response to past actions, which is the focus of this paper.
Our DCH provides an extension in this direction, under the assumption that players
are forward looking about the actions of their opponents in the entire game tree.7
Rampal (2022) develops an alternative approach for multi-stage games of perfect
information. He models levels of sophistication by assuming that players have
limited foresight in the sense of a rolling horizon; that is, players only look forward
a fixed number of stages. This creates a hierarchy of strategic sophistication that
depends on the length of a player’s rolling horizon. Players are uncertain about their
opponents’ foresight. The baseline game of perfect information is then transformed
into a game of incomplete information, with specific assumptions about players’
beliefs about payoffs at non-terminal nodes that correspond to the current limit of
their horizon in the game.

At a more conceptual level, our dynamic generalization of CH is related to other
behavioral models in game theory. There is a connection between DCH and mis-
specified learning models (see, for example, Hauser and Bohren, 2021) in the sense
that level-𝑘 players wrongly believe all other players are less sophisticated. How-
ever, in contrast to categorical types of players in misspecified learning models,
DCH provides added structure to the set of types in a systematic way, such that
higher-level types have a more accurate belief about opponents’ rationality at the
aggregate level. In the context of social learning, application of our model to the
investment game is related to Eyster and Rabin (2010) and Bohren (2016) who
model the updating process when there exist some behavioral types of players in the
population.

Our DCH solution is also related to two other behavioral solution concepts of the
dynamic games—the Agent Quantal Response Equilibrium (AQRE) by McKelvey
and Palfrey (1998) and the Cursed Sequential Equilibrium (CSE) by Fong, Lin, and
Palfrey (2023)—in the sense that each of these solution concepts relaxes different
requirements of the standard equilibrium theory. DCH is a non-equilibrium model

7The recent paper by Schipper and Zhou (2023) also identifies the logical conundrum when
applying the standard level-𝑘 model to games in extensive form, and resolve the conundrum in a
different way. In contrast to the DCH solution, Schipper and Zhou (2023) adopts a non-Bayesian
approach to updating, called strong level-𝑘 thinking, which posits that for every information set,
level-𝑘 players attach the maximum level-𝑙 thinking for 𝑙 < 𝑘 to their opponents consistent with the
information set.
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which allows different levels of players to best respond to different conjectures about
other players’ strategies while AQRE is an equilibrium model where players make
stochastic choices. Both DCH and AQRE depict that players are able to perform
Bayesian inferences. In contrast, CSE is an equilibrium model where players are
able to make best response but fail to perform Bayesian inferences. Both AQRE and
CSE predict a strategy-reduction effect, but in different manners from DCH.

The key application in this paper is about the centipede game, which has been
the subject of many theoretical and experimental studies. Rosenthal (1981) first
introduced the centipede game to demonstrate how backward induction can be
challenging and implausible to hold in some environments due to logical issues
about updating off-path beliefs. His example is a ten-node game with a linearly
increasing pie. Later on a shorter variant with an exponentially increasing pie,
called “share or quit,” is studied by Megiddo (1986) and Aumann (1988). The name
centipede was coined by Binmore (1987), and named for a 100-node variant.

Starting with McKelvey and Palfrey (1992), many laboratory and field experiments
have reported experimental data from centipede games in a range of environments,
such as different lengths of the game (see McKelvey and Palfrey, 1992 and Fey,
McKelvey, and Palfrey 1996), different subject pools (see Palacios-Huerta and
Volĳ, 2009; Levitt, List, and Sadoff, 2011, and Li et al., 2021), different payoff
configurations (see Fey, McKelvey, and Palfrey, 1996; Zauner, 1999; Kawagoe
and Takizawa, 2012; Healy, 2017, and García-Pola, Iriberri, and Kovářík, 2020b)
and different experimental methods (Nagel and Tang, 1998; Rapoport et al., 2003;
Bornstein, Kugler, and Ziegelmeyer, 2004, and García-Pola, Iriberri, and Kovářík,
2020a). Although standard game theory predicts the game should end in the first
stage, such behavior is rarely observed.

3.3 The Model
This section formally develops the dynamic cognitive hierarchy (DCH) solution for
games in extensive form. In Section 3.3.1, we introduce the notation for (finite)
games in extensive form by following Osborne and Rubinstein (1994). Next, we
define the DCH updating process in Section 3.3.2, specifying how players’ beliefs
about other players’ levels evolve from the history of play. This leads to a definition
of the DCH solution of a game.
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3.3.1 Games in Extensive Form
Let 𝑁𝐶 = {𝐶, 1, . . . , 𝑛} ≡ {𝐶}∪𝑁 be a finite set of players, where player𝐶 is called
“Chance.” Let 𝐻 be a finite set of sequences of actions that satisfies the following
two properties.

1. The empty sequence 𝜙 (the initial history) is a member of 𝐻.

2. If
(
𝑎 𝑗

)
𝑗=1,...,𝐽 ∈ 𝐻 and 𝐿 < 𝐽, then

(
𝑎 𝑗

)
𝑗=1,...,𝐿 ∈ 𝐻.

Each ℎ ∈ 𝐻 is a history and each component of a history is an action taken by a player.
In addition, for any non-initial history ℎ =

(
𝑎 𝑗

)
𝑗=1,...,𝐿 , we use 𝛼(ℎ) =

(
𝑎 𝑗

)
𝑗=1,...,𝐿−1

to denote the immediate predecessor of ℎ.8 A history
(
𝑎 𝑗

)
𝑗=1,...,𝐽 ∈ 𝐻 is a terminal

history if there is no 𝑎𝐽+1 such that
(
𝑎 𝑗

)
𝑗=1,...,𝐽+1 ∈ 𝐻. The set of terminal histories

is denoted as 𝑍 and 𝐻\𝑍 is the set of non-terminal histories. Moreover, for every
non-terminal history ℎ ∈ 𝐻\𝑍 , 𝐴(ℎ) = {𝑎 : (ℎ, 𝑎) ∈ 𝐻} is the set of available
actions after the history ℎ, and 𝑍ℎ is the set of terminal histories after ℎ.

The player function 𝑃 : 𝐻\𝑍 → 𝑁𝐶 assigns to each non-terminal history a player
of 𝑁𝐶 . In other words, 𝑃(ℎ) is the player who takes an action after history ℎ. With
this, for any player 𝑖 ∈ 𝑁𝐶 , 𝐻𝑖 = {ℎ ∈ 𝐻\𝑍 : 𝑃(ℎ) = 𝑖} is the set of histories where
player 𝑖 ∈ 𝑁𝐶 is the active player. Therefore, 𝐻𝐶 is the set of non-terminal histories
where Chance determines the action taken after history ℎ. A function 𝜎𝐶 specifies
a probability measure 𝜎𝐶 (·|ℎ) on 𝐴(ℎ) for every ℎ ∈ 𝐻𝐶 . That is, 𝜎𝐶 (𝑎 |ℎ) is the
probability that 𝑎 occurs after the history ℎ.

For each 𝑖 ∈ 𝑁 , a partitionI𝑖 of𝐻𝑖 defines 𝑖’s information sets. Information set 𝐼𝑖 ∈ I𝑖
specifies a subset of histories contained in𝐻𝑖 that 𝑖 cannot distinguish from one other,
where for any ℎ ∈ 𝐻𝑖, 𝐼𝑖 (ℎ) is the element of I𝑖 that contains ℎ. Furthermore, 𝑖’s
available actions are the same for all histories in the same information set. Formally,
for any history ℎ′ ∈ 𝐼𝑖 (ℎ) ∈ I𝑖, 𝐴(ℎ′) = 𝐴(ℎ).9 Therefore, we use 𝐴(𝐼𝑖) to denote
the set of available actions at information set 𝐼𝑖. In addition, each player 𝑖 ∈ 𝑁 has a
payoff function (in von Neumann-Morgenstern utilities) 𝑢𝑖 : 𝑍 → R. Finally, a game
in extensive form, Γ, is defined by the tuple Γ = ⟨𝑁𝐶 , 𝐻, 𝑃, 𝜎𝐶 , (I𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁⟩.

In a game in extensive form Γ, for each player 𝑖 ∈ 𝑁 , the set of behavioral strategies
for player 𝑖 is Σ𝑖 ≡ ×𝐼𝑖∈I𝑖Δ(𝐴(𝐼𝑖)) and 𝜎𝑖 ∈ Σ𝑖 is a behavioral strategy of player 𝑖.

8If 𝐿 = 1, then 𝛼(ℎ) = 𝜙.
9We assume that all players in the game have perfect recall. See Osborne and Rubinstein (1994)

Chapter 11 for a definition.
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For notational convenience, we use Σ ≡ ×𝑖∈𝑁Σ𝑖 to denote the set of all profiles of
behavioral strategies, and we use the notation Σ−𝑖 = × 𝑗≠𝑖Σ 𝑗 and write elements of
Σ as 𝜎 = (𝜎𝑖, 𝜎−𝑖) when focusing on a particular player 𝑖 ∈ 𝑁 .

3.3.2 Cognitive Hierarchies and Belief Updating
Prior Beliefs about Levels of Sophistication

Each player 𝑖 is endowed with a level of sophistication, 𝜏𝑖 ∈ N0, where Pr(𝜏𝑖 = 𝑘) =
𝑝𝑖𝑘 for all 𝑖 ∈ 𝑁 and 𝑘 ∈ N0, and the distribution is independent across players.10
Without loss of generality, we assume 𝑝𝑖𝑘 > 0 for all 𝑖 ∈ 𝑁 and 𝑘 ∈ N0. Let
𝜏 = (𝜏1, . . . , 𝜏𝑛) be the profile of levels and 𝜏−𝑖 be the profile of levels without player
𝑖. Each level 𝑘 > 0 of each player 𝑖 has a prior belief about all other players’ levels
and these prior beliefs satisfy truncated rational expectations. That is, for each 𝑖 and
𝑘 > 0, a level-𝑘 player 𝑖 believes all other players in the game are at most level-(k-1).
For each 𝑖, 𝑗 ≠ 𝑖 and 𝑘 , let 𝜇𝑘

𝑖 𝑗
(𝜏𝑗 ) be level-𝑘 player 𝑖’s prior belief about player

𝑗’s level, and 𝜇𝑘
𝑖
(𝜏−𝑖) =

(
𝜇𝑘
𝑖 𝑗
(𝜏𝑗 )

)
𝑗≠𝑖

be level-𝑘 player 𝑖’s profile of prior beliefs.
Furthermore, for each 𝑖 and 𝑘 , level-𝑘 player 𝑖 believes any other player 𝑗’s level is
independently distributed according to the lower truncated probability distribution
function:

𝜇𝑘𝑖 𝑗 (𝜅) =


𝑝 𝑗 𝜅∑𝑘−1
𝑚=0 𝑝 𝑗𝑚

if 𝜅 < 𝑘

0 if 𝜅 ≥ 𝑘.

(3.1)

The assumption underlying 𝜇𝑘
𝑖 𝑗

is that level-𝑘 types of each player have a correct
belief about the relative proportions of players who are less sophisticated than they
are, but maintain the incorrect belief that other players of level 𝜅 ≥ 𝑘 do not exist.
The 𝑗 subscript indicates that different players can have different level distributions.

Level-Dependent Profile of Behavioral Strategies

A profile of behavioral strategies is now a level-dependent profile of behavioral
strategies specifying the behavioral strategy for each level of each player. We
denote this profile as 𝜎 =

(
𝜎𝑘
𝑖

)
𝑖∈𝑁, 𝑘∈N0

where 𝜎𝑘
𝑖

is the behavioral strategy adopted
by level-𝑘 player 𝑖. Level-0 players are assumed to uniformly randomize at each

10For the sake of simplicity, we assume that the distribution of levels is independent of the
probability distribution of Chance’s moves 𝜎𝐶 .



60

information set.11 That is, for all 𝑖 ∈ 𝑁 , 𝐼 ∈ I𝑖 and 𝑎 ∈ 𝐴(𝐼), 𝜎0
𝑖
(𝑎 | 𝐼) = 1

|𝐴(𝐼) | . In
the following we may interchangeably call level-0 players non-strategic players and
level 𝑘 ≥ 1 players strategic players.

In the DCH solution, strategic level-𝑘 players believe all other players are strictly less
sophisticated than level-𝑘 . Therefore, in the following, we use𝜎<𝑘

𝑗
=

(
𝜎0
𝑗
, ..., 𝜎𝑘−1

𝑗

)
to denote the profile of behavioral strategies adopted by the levels below 𝑘 of player 𝑗 .
In addition, let 𝜎<𝑘−𝑖 =

(
𝜎<𝑘1 , ..., 𝜎<𝑘

𝑖−1, 𝜎
<𝑘
𝑖+1, ..., 𝜎

<𝑘
𝑛

)
denote the profile of behavioral

strategies of the levels below 𝑘 of all players other than player 𝑖.

Level-Dependent Profile of Posterior Beliefs

For each player 𝑖 with level 𝑘 ≥ 1, level 𝑘 player 𝑖 forms a posterior belief about
the joint distribution of other players’ levels of sophistication and the distribution
of histories in any information set 𝐼 ∈ I𝑖. These posterior beliefs depend on the
level-dependent profile of behavioral strategies of the other players, and their prior
beliefs about the distribution of levels, 𝜇𝑘

𝑖
(𝜏−𝑖).12

Specifically, for any 𝑖 ∈ 𝑁 and 𝑘 ≥ 1, level-𝑘 player 𝑖 forms posterior beliefs about
the joint distribution of other players’ levels of sophistication, 𝜏−𝑖 (lower than 𝑘) and
histories ℎ ∈ 𝐼 for any 𝐼 ∈ I𝑖. That is, level-𝑘 player 𝑖’s personal system of beliefs is
defined as a function 𝜈𝑘

𝑖
: I𝑖 → Δ ({0, ..., 𝑘 − 1} × 𝐻\𝑍) such that∑︁

ℎ∈𝐼

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

𝜈𝑘𝑖 (𝜏−𝑖, ℎ | 𝐼) = 1 for any 𝐼 ∈ I𝑖 .

DCH imposes a consistency restriction that the posterior beliefs of any level-𝑘
player 𝑖 are derived from Bayes’ rule, conditioned on the level-dependent profile of

11Uniform randomization is not the only way to model non-strategic level-0 players, but there are
several justifications for doing so. Firstly, one compelling reason is that it is universally applicable
to all games, in exactly the same way, unlike almost any other specification since the cardinality
of the set of available actions will typically vary across players and information sets. Probably for
this reason, it is the most commonly used approach in applications of CH, including the original
specification in Camerer, Ho, and Chong (2004). By taking the same approach in our generalization
of CH to games in extensive form, it allows for clear comparisons to the original CH framework.
Secondly, the choice of uniform randomization also appeals to the principle of insufficient reason,
not only from the agnostic standpoint of the researcher, but also in the sense of being a neutral
assumption about strategic players’ beliefs about the behavior of nonstrategic players. Because
uniform randomization is nondegenerate, a notable implication is that there is no off-path event in
the DCH solution. Lastly, it is simple and parsimonious, as uniform randomization is not based
on ad hoc assumptions tailored to specific games. In principle, the number of specifications of
level-0 behavior is enormous, especially for games with many actions and information sets. Some
alternatives to uniform randomization are noted in Section 3.7.4.

12Level-1 players do not update, since they have a degenerate prior belief that all other players
are level-0.
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behavioral strategies of lower levels being 𝜎<𝑘−𝑖 and the game being at information
set 𝐼. Because 𝜇𝑘

𝑖 𝑗
(0) > 0 for all 𝑖, 𝑗 ∈ 𝑁, 𝑘 ≥ 1 and 𝜎0

𝑗
(𝑎 |𝐼) > 0 for all 𝑗 , 𝐼 ∈ I𝑗

and 𝑎 ∈ 𝐴(𝐼), all strategic players believe every history (and hence information set)
is reached with positive probability. Therefore, these posterior beliefs derived using
Bayes’ rule are well-defined everywhere. In the following, we use 𝜈𝑘

𝑖

(
𝜏−𝑖, ℎ | 𝐼;𝜎<𝑘−𝑖

)
to denote the posterior belief of level-𝑘 player 𝑖, induced by 𝜎<𝑘−𝑖 , conditional on
being at information set 𝐼 ∈ I𝑖. We call 𝜈 =

(
𝜈𝑘
𝑖

)
𝑖∈𝑁, 𝑘≥1 the level-dependent profile

of personal systems of beliefs.

The DCH Solution

In the DCH solution, the posterior distribution of levels of other players will generally
be different for different levels of the same player at the same information set, since
the supports of those distributions will generally differ.13 This, in turn, induces
different levels of the same player to have different beliefs about the probability
distribution over the terminal payoffs that can be reached from that information
set. For each 𝑖 ∈ 𝑁 , 𝑘 ≥ 1, 𝜎, and 𝜏−𝑖 such that 𝜏𝑗 < 𝑘 for all 𝑗 ≠ 𝑖, let
𝜌̃𝑘
𝑖
(𝑧 | ℎ, 𝜏−𝑖, 𝜎<𝑘−𝑖 , 𝜎

𝑘
𝑖
) be level-𝑘 player 𝑖’s belief about the conditional realization

probability of 𝑧 ∈ 𝑍ℎ at history ℎ ∈ 𝐻\𝑍 , if the profile of levels of the other players
is 𝜏−𝑖 and 𝑖 is using strategy 𝜎𝑘

𝑖
. Finally, level-𝑘 player 𝑖’s conditional expected

payoff at information set 𝐼 is given by

E𝑢𝑘𝑖 (𝜎 |𝐼) =
∑︁
ℎ′∈𝐼

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

∑︁
𝑧∈𝑍ℎ′

𝜈𝑘𝑖

(
𝜏−𝑖, ℎ

′ | 𝐼;𝜎<𝑘−𝑖

)
𝜌̃𝑘𝑖 (𝑧 | 𝜏−𝑖, ℎ′, 𝜎<𝑘−𝑖 , 𝜎

𝑘
𝑖 )𝑢𝑖 (𝑧).

(3.2)

The DCH solution of the game is defined as the level-dependent profile of behavioral
strategies, 𝜎∗, such that 𝜎𝑘∗

𝑖
(·|𝐼) maximizes E𝑢𝑘

𝑖
(𝜎∗ |𝐼) for all 𝑖, 𝑘 and 𝐼 ∈ I𝑖.14

Moreover, the DCH belief system is the level-dependent profile of personal belief
systems induced by 𝜎∗.

Remark 3.1. In the DCH solution, each level-𝑘 player 𝑖’s personal beliefs are defined
as a joint distribution over histories and other players’ levels of sophistication. An

13However, the support of the beliefs of all levels of all players will always include the type profile
𝜏0
−𝑖 , in which all other players are level-0. That is, 𝜈𝑘

𝑖

(
𝜏0
−𝑖 , ℎ | 𝐼;𝜎<𝑘−𝑖

)
> 0 for all 𝑖 ∈ 𝑁 , 𝑘 ≥ 1,

information set 𝐼 and ℎ ∈ 𝐼.
14We assume (as is typical in level-k models) that players randomize uniformly over optimal

actions when indifferent. This assumption is convenient because it ensures a unique DCH solution
to every game, so we assume it here. Note that while the DCH solution is defined as a fixed point,
it can be solved for recursively, starting with the lowest level and iteratively working up to higher
levels.
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alternative formulation of personal beliefs would be to define level-𝑘 player 𝑖’s
updating process on 𝜏−𝑖 history-by-history, i.e., 𝜈𝑘

𝑖
(𝜏−𝑖 |ℎ;𝜎<𝑘−𝑖 ), and then derive the

conditional posterior beliefs, 𝜋𝑘
𝑖
(ℎ) over the histories in every information set of

player 𝑖 in the game, for all 𝑖, 𝑘, and 𝐼 ∈ I𝑖,
∑
ℎ′∈𝐼 𝜋

𝑘
𝑖
(ℎ′) = 1. See Lin and Palfrey

(2022). For games with perfect information, these two formulations are identical
since every information set is a singleton. Therefore, in games of perfect information,
for every level-𝑘 player 𝑖 and any ℎ ∈ 𝐻𝑖, the DCH belief system simply reduces to a
profile of personal belief systems 𝜈 = (𝜈𝑘

𝑖
)𝑖∈𝑁, 𝑘≥1 where 𝜈𝑘

𝑖
: 𝐻𝑖 → Δ({0, ..., 𝑘−1})

and 𝜈𝑘
𝑖
(𝜏−𝑖 |ℎ;𝜎<𝑘−𝑖 ) is the posterior belief about the level profile of other players at

history ℎ.

To simplify notation and exposition, most of the remainder of the paper studies DCH
in games of perfect information. Some the properties established in the next section
for games of perfect information apply more generally, and these cases are noted.
We discuss additional extensions to games of imperfect information in Section 3.7.2
and 3.7.3.

3.4 Properties of the DCH Solution
Section 3.4.1 first establishes the general properties of the belief-updating process.
Section 3.4.2 explores the relationship between the DCH solution and subgame
perfect equilibrium. Finally, we illustrate the strategy-reduction effect predicted
by DCH in Section 3.4.3. Specifically, we show that the DCH solution might be
dramatically different for two different games in extensive form that share the same
reduced normal form.

3.4.1 Properties of the Belief-Updating Process
The first result shows that for games of perfect information, the updating process sat-
isfies an independence property. Specifically, the following proposition establishes
that all levels of all players will update their posterior beliefs about other players’
levels independently.

Proposition 3.1. For any finite game of perfect information Γ, any 𝑖 ∈ 𝑁 , any
ℎ ∈ 𝐻𝑖, and for any 𝑘 ∈ N, level-𝑘 player 𝑖’s posterior belief about other players’
levels at history ℎ is independent across players. That is, 𝜈𝑘

𝑖

(
𝜏−𝑖 | ℎ;𝜎<𝑘−𝑖

)
=∏

𝑗≠𝑖 𝜈
𝑘
𝑖 𝑗

(
𝜏𝑗 | ℎ;𝜎<𝑘−𝑖

)
where 𝜈𝑘

𝑖 𝑗

(
𝜏𝑗 | ℎ;𝜎<𝑘−𝑖

)
is level-𝑘 player 𝑖’s marginal posterior

belief about player 𝑗 being level 𝜏𝑗 at history ℎ.
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Proof: We prove this proposition by induction on the length of the sequence of ℎ,
which we denote by |ℎ |. Let 𝜎 be any level-dependent strategy profile and 𝑝 be
any prior distribution over types. First we can notice that at the initial history, i.e.,
|ℎ | = 0, 𝑖 = 𝑃(𝜙), and any level 𝑘 > 0, 𝜈𝑘

𝑖

(
𝜏−𝑖 | 𝜙;𝜎<𝑘−𝑖

)
=

∏
𝑗≠𝑖 𝜇

𝑘
𝑖 𝑗
(𝜏𝑗 ) as players’

levels are independently determined. For any history ℎ′ and ℎ′′, we define a partial
order ≺ on 𝐻 such that ℎ′ ≺ ℎ′′ if and only if ℎ′ is a subsequence of ℎ′′. In the
following, for any ℎ′, ℎ′′ ∈ 𝐻 where ℎ′ ≺ ℎ′′, we use 𝛼(ℎ′, ℎ′′) to denote the unique
action at ℎ′ that leads to ℎ′′.

To establish the base case, consider any player 𝑖 with any level 𝑘 > 0 and any
ℎ ∈ 𝐻𝑖 such that |ℎ | = 1 and 𝑗 = 𝑃(𝜙) where 𝑗 ≠ 𝑖. Because player 𝑗 has made the
only move in the game so far, and the prior distribution of types is assumed to be
independent across players, we have, for any 𝜏−𝑖 such that 𝜏𝑖′ < 𝑘 ∀𝑖′ ≠ 𝑖, 𝑗 :

𝜈𝑘𝑖

(
𝜏−𝑖 | ℎ;𝜎<𝑘−𝑖

)
=

𝜎
𝜏𝑗

𝑗
(𝛼(𝜙, ℎ) | 𝜙)𝜇𝑘

𝑖 𝑗
(𝜏𝑗 )∑𝑘−1

𝑙=0 𝜎
𝑙
𝑗
(𝛼(𝜙, ℎ) | 𝜙)𝜇𝑘

𝑖 𝑗
(𝑙)

∏
𝑖′≠𝑖, 𝑗

𝜇𝑘𝑖𝑖′ (𝜏𝑖′)

=⇒ 𝜈𝑘𝑖

(
𝜏−𝑖 | ℎ;𝜎<𝑘−𝑖

)
=

∏
𝑗≠𝑖

𝜈𝑘𝑖 𝑗

(
𝜏𝑗 | ℎ;𝜎<𝑘−𝑖

)
,

where we know
∑𝑘−1
𝑙=0 𝜎

𝑙
𝑗
(𝛼(𝜙, ℎ) | 𝜙) > 0 because 𝜎0

𝑗
(𝛼(𝜙, ℎ) | 𝜙) = 1

|𝐴(𝜙) | > 0.
Therefore, the result is true for |ℎ | = 1.

Next, consider any player 𝑖 with any level 𝑘 > 0 and suppose that 𝜈𝑘
𝑖

(
𝜏−𝑖 | ℎ;𝜎<𝑘−𝑖

)
=∏

𝑗≠𝑖 𝜈
𝑘
𝑖 𝑗

(
𝜏𝑗 | ℎ;𝜎<𝑘−𝑖

)
for all ℎ ∈ 𝐻𝑖 such that |ℎ| = 1, 2, ..., 𝑡 − 1. It suffices to

complete the proof by considering any ℎ ∈ 𝐻𝑖 such that |ℎ | = 𝑡. Because in games
of perfect information, actions are perfectly observed, level 𝑘 player 𝑖’s belief about
the level profile of others being 𝜏−𝑖 such that 𝜏𝑗 < 𝑘 for any 𝑗 ≠ 𝑖 is:

𝜈𝑘𝑖

(
𝜏−𝑖 | ℎ;𝜎<𝑘−𝑖

)
=

∏
{ℎ̃: ℎ̃≺ℎ, 𝑃( ℎ̃)≠𝑖} 𝜎

𝜏𝑃 (ℎ̃)
𝑃( ℎ̃) (𝛼( ℎ̃, ℎ) | ℎ̃)∑

{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖}
∏

{ℎ̃: ℎ̃≺ℎ, 𝑃( ℎ̃)≠𝑖} 𝜎
𝜏′
𝑃 (ℎ̃)
𝑃( ℎ̃) (𝛼( ℎ̃, ℎ) | ℎ̃)

=

∏
𝑗≠𝑖 𝑓 𝑗 (ℎ | 𝜎𝜏𝑗

𝑗
)∑

{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖}
∏

𝑗≠𝑖 𝑓 𝑗 (ℎ | 𝜎
𝜏′
𝑗

𝑗
)
=

∏
𝑗≠𝑖

[
𝑓 𝑗 (ℎ | 𝜎𝜏𝑗

𝑗
)∑𝑘−1

𝑙=0 𝑓 𝑗 (ℎ | 𝜎𝑙
𝑗
)

]
=⇒ 𝜈𝑘𝑖

(
𝜏−𝑖 | ℎ;𝜎<𝑘−𝑖

)
=

∏
𝑗≠𝑖

𝜈𝑘𝑖 𝑗

(
𝜏𝑗 | ℎ;𝜎<𝑘−𝑖

)
,

where 𝑓 𝑗 (ℎ | 𝜎𝑙
𝑗
) is the probability that player 𝑗 moves along the path to reach ℎ
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given player 𝑗 is using 𝜎𝑙
𝑗
. That is,

𝑓 𝑗 (ℎ | 𝜎𝑙𝑗 ) =

∏

{ℎ̃: ℎ̃≺ℎ, 𝑃( ℎ̃)= 𝑗} 𝜎
𝑙
𝑗
(𝛼( ℎ̃, ℎ) | ℎ̃) if {ℎ̃ : ℎ̃ ≺ ℎ, 𝑃( ℎ̃) = 𝑗} ≠ ∅

1 otherwise.

This completes the proof. ■

What drives this result is that in games of perfect information, when player 𝑗 moves,
all players perfectly observe this history. As a result, all players other than 𝑗 only
update their beliefs about the level of player 𝑗 , and do not update their beliefs
about any of the other players. In addition, the assumption of independence of
the distribution of player levels is used. If levels are correlated across players
then it’s possible that player 𝑖 can update their beliefs about the level of player
𝑗 based on actions taken by player 𝑙. From Proposition 3.1, we can see that the
marginal posterior belief of level-𝑘 player 𝑖 to player 𝑗’s belief only depends on
player 𝑗’s moves along the history. Therefore, we can obtain that 𝜈𝑘

𝑖 𝑗

(
𝜅 | ℎ;𝜎<𝑘−𝑖

)
=

𝜈𝑘
𝑖 𝑗

(
𝜅 | ℎ;𝜎<𝑘

𝑗

)
.

The second property of the DCH solution is that in the later histories, the support
of the posterior beliefs is (weakly) shrinking. In this sense, the players would have
a more precise posterior belief when the history gets longer. For any player 𝑖, 𝑗 ∈ 𝑁
such that 𝑖 ≠ 𝑗 , for any ℎ ∈ 𝐻𝑖, and for any 𝑘 ∈ N, we denote the support of level-𝑘
player 𝑖’s belief about player 𝑗’s level as

𝑠𝑢𝑝𝑝𝑘𝑖 𝑗 (ℎ) ≡ {𝜏𝑗 ∈ {0, 1, ..., 𝑘 − 1} | 𝜈𝑘𝑖 𝑗
(
𝜏𝑗 | ℎ;𝜎<𝑘𝑗

)
> 0}.

This property is formally stated in the following proposition.

Proposition 3.2. In any finite game of perfect information Γ, for all 𝑖, 𝑗 ∈ 𝑁 , 𝑘 ∈ N,
and any ℎ, ℎ′ ∈ 𝐻𝑖, if ℎ′ ≺ ℎ, then 𝑠𝑢𝑝𝑝𝑘

𝑖 𝑗
(ℎ) ⊆ 𝑠𝑢𝑝𝑝𝑘

𝑖 𝑗
(ℎ′).

Proof: To prove the statement, it suffices to show that 𝜅 ∉ 𝑠𝑢𝑝𝑝𝑘
𝑖 𝑗
(ℎ′) =⇒

𝜅 ∉ 𝑠𝑢𝑝𝑝𝑘
𝑖 𝑗
(ℎ) for all 𝜅 = 0, 1, ..., 𝑘 − 1. From the proof of Proposition 3.1, we can

obtain that

𝜈𝑘𝑖 𝑗 (𝜅 | ℎ;𝜎<𝑘𝑗 ) =
𝑓 𝑗 (ℎ | 𝜎𝜅

𝑗
)∑𝑘−1

𝑙=0 𝑓 𝑗 (ℎ |𝜎𝑙𝑗 )

=


∏

{ ℎ̃: ℎ′≺ℎ̃≺ℎ, 𝑃 (ℎ̃)= 𝑗 } 𝜎
𝜅
𝑗
(𝛼( ℎ̃,ℎ) | ℎ̃)𝜈𝑘

𝑖 𝑗
(𝜅 |ℎ′;𝜎<𝑘

𝑗
)∑𝑘−1

𝑙=0
∏

{ ℎ̃: ℎ′≺ℎ̃≺ℎ, 𝑃 (ℎ̃)= 𝑗 } 𝜎
𝑙
𝑗
(𝛼( ℎ̃,ℎ) | ℎ̃)𝜈𝑘

𝑖 𝑗
(𝑙 |ℎ′;𝜎<𝑘

𝑗
) if {ℎ̃ : ℎ′ ≺ ℎ̃ ≺ ℎ, 𝑃( ℎ̃) = 𝑗} ≠ ∅

𝜈𝑘
𝑖 𝑗
(𝜅 | ℎ′;𝜎<𝑘

𝑗
) otherwise.
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Hence, 𝜈𝑘
𝑖 𝑗

(
𝜅 | ℎ′;𝜎<𝑘

𝑗

)
= 0 =⇒ 𝜈𝑘

𝑖 𝑗

(
𝜅 | ℎ;𝜎<𝑘

𝑗

)
= 0, so 𝑠𝑢𝑝𝑝𝑘

𝑖 𝑗
(ℎ) ⊆ 𝑠𝑢𝑝𝑝𝑘

𝑖 𝑗
(ℎ′).

This completes the proof. ■

Notice that although players are unable to perfectly observe all previous actions in
games of imperfect information, Proposition 3.2 still holds—the support of marginal
beliefs about others’ levels in later information sets is (weakly) shrinking. See Lin
and Palfrey (2022). Besides, the assumption of independence of the distribution
of levels is not used in the proof. In other words, the shrinkage of the support is
irreversible, regardless of how the levels are distributed.

In addition, there are a few additional remarks about the properties of the updating
process in the DCH solution that are worth highlighting. First, there is a second
source of learning, besides the shrinking support property, which is that after each
move by an opponent, each strategic player with level 𝑘 ≥ 2 updates the probability
that the opponent is level-0.15 This in turn leads to updating of the relative likelihood
of the higher strategic types of the opponent, since the probabilities have to sum
to 1. Second, as the game unfolds, the beliefs of higher level players about their
opponents can be updated in either direction, in the sense of believing an opponent
is either more or less sophisticated. Examples in the next section will illustrate this.
Third, while players’ belief-updating process is adaptive, nonetheless all players are
strategically forward-looking (rather than myopic) in the sense that players take into
account and correctly anticipate how all players in the game will update beliefs at
each future history.

Since the players are forward-looking and have truncated rational expectations, it is
natural to ask if there is any connection between our model and perfect or sequential
equilibrium. We explore this relationship in the next section.

3.4.2 DCH and Subgame Perfect Equilibrium
In this section, we study the relationship between the DCH solution and subgame per-
fect equilibrium through two simple examples. One question we address is whether
sufficiently high-level players always behave consistently with rational backward
induction. As it turns out, this is not generally true. In the following series of
simple two-person games in extensive form, we demonstrate how high-level players
could violate backward induction either on or off the equilibrium path, suggesting
the DCH solution is fundamentally different from subgame perfection. For the sake

15The updating by strategic players’ beliefs about level-0 opponents can be either increasing or
decreasing.
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of simplicity, in this section and for the rest of the paper (except for Section 3.4.2.2)
we assume every player’s level distribution is identical.

3.4.2.1 Violating Backward Induction at Some Subgame

1a

𝑙1𝑎 : 𝐿2+ 𝑟1𝑎 : 𝐿1

2a

𝑙2𝑎 : 𝐿1, 𝐿2

(3, 4)

𝑟2𝑎 : 𝐿3+

2b

(2, 5)

𝑙2𝑏 : 𝐿1+ 𝑟2𝑏

1b

(1, 6)

𝑙1𝑏

(4, 3)

𝑟1𝑏 : 𝐿1+

1c

𝑙1𝑐 : 𝐿1+

(6, 1)

𝑟1𝑐

2c

(10, 2)

𝑙2𝑐

(3, 3)

𝑟2𝑐 : 𝐿1+

Figure 3.1: Game Tree of Example 3.4.2.1. A “+” sign indicates a move is chosen
by the specified level and all higher levels. The subgame perfect equilibrium moves
are marked with arrows.

Example 3.4.2.1 demonstrates how backward induction could be violated by every
level of player at some subgame. The game tree for this two-person game of perfect
information is shown in Figure 3.1. Suppose every player’s level is independently
drawn from Poisson(1.5), which has been suggested by Camerer, Ho, and Chong
(2004) as an empirically plausible distribution. Every level of players’ move choices
are labelled in the figure, with a “+” sign indicating a move is chosen by the
specified level type and all higher levels. For instance, level-1 player 1 chooses 𝑟1𝑎

at the beginning while level-2 and above choose 𝑙1𝑎. Calculations can be found in
Appendix C.

To illustrate the mechanics of the DCH solution in this example, it is useful to begin
by focusing on subgame 2𝑎. In this subgame, level-2 and higher-level of player 2
would update from the information that player 1 is not a level-1 player, leading a
level-2 player 2 to choose 𝑙2𝑎 because the updated belief puts all weight on player
1 being level-0. However, a level-3 player 2 places positive posterior probability
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on player 1 being level-2, and as long as this posterior probability is high enough,
it is optimal for level-3 player 2 to choose 𝑟2𝑎—as if player 2 were engaged in the
same backward induction reasoning used to justify the subgame perfect equilibrium.
Following a similar logic, all high-level players would behave this way in the left
branch of the game, where player 1 chooses 𝑙1𝑎 at the beginning.

However, this is not the case for the right branch of the game after player 1 chooses
𝑟1𝑎 at the beginning. At subgame 1𝑐, the move predicted by the subgame perfect
equilibrium is never chosen by any strategic player 1. Hence, in the DCH solution
for this example, high-level player 1’s behavior is consistent with subgame perfect
equilibrium on the left branch but not on the right branch. □

3.4.2.2 Dominated Actions

As we examine this example carefully, we can find the key of this phenomenon is
that player 1 knows the subgame ℎ = 1𝑐 can be reached only if player 2 chooses
a strictly dominated action16 in the previous stage. One can think of player 2’s
decision at subgame ℎ = 2𝑏 as a rationality check in the following sense. Whenever
player 2 chooses 𝑟2𝑏, the support of strategic player 1’s posterior belief will shrink
to a singleton—he will believe player 2 is level-0. This extreme posterior belief
would lead a strategic player 1 to deviate from subgame perfect strategy.

Generally speaking, if a history contains some player’s strictly dominated action,
then all other players will immediately believe this player is non-strategic and best
respond to such strategy. As a result, it is possible that the strategy profile will not
be the subgame perfect equilibrium for every strategic level. This argument holds
as long as level-0 player’s strategy is the beginning of the hierarchical reasoning
process—no matter how small the proportion of level-0 players is. However, since
paths with strictly dominated actions can be realized only if some player is level-0,
paths containing strictly dominated actions occur with vanishing probability as the
proportion of level-0 players converges to 0. Proposition 3.3 formally shows this
conclusion.

16Formally speaking, at any history ℎ ∈ 𝐻\𝑍 with 𝑖 = 𝑃(ℎ), an action 𝑎′ ∈ 𝐴(ℎ) is strictly
dominated if there is another action 𝑎′′ ∈ 𝐴(ℎ) such that

min
𝑧∈𝑍ℎ′′

𝑢𝑖 (𝑧) > max
𝑧∈𝑍ℎ′

𝑢𝑖 (𝑧),

where ℎ′ = (ℎ, 𝑎′) and ℎ′′ = (ℎ, 𝑎′′).
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Proposition 3.3. Consider any finite game of perfect information where each player
𝑖’s level is drawn from the distribution 𝑝𝑖 = (𝑝𝑖𝑘 )∞𝑘=0. If some history ℎ can occur
only if some player chooses a strictly dominated action, then the probability for such
history being realized converges to 0 as 𝑝0 = (𝑝𝑖0)𝑖∈𝑁 → (0, . . . , 0).

Proof: Consider any ℎ that can occur only if some player chooses a strictly dominated
action. That is, there is ℎ′ that is a subsequence of ℎ with 𝑖 = 𝑃(ℎ′) such that there is
a strictly dominated action 𝑎′ ∈ 𝐴(ℎ′) and (ℎ′, 𝑎′) is a subsequence of ℎ. Since this
is a strictly dominated action, it can only be chosen by a level-0 player. Therefore,
the ex ante probability for player 𝑖 to choose 𝑎′ at ℎ′ is

Pr(𝑎′ | ℎ′) =
∞∑︁
𝑗=0
𝜎
𝑗

𝑖
(𝑎′ | ℎ′)𝑝𝑖 𝑗 = 𝜎0

𝑖 (𝑎′ | ℎ′)𝑝𝑖0 =
1

|𝐴(ℎ′) | 𝑝𝑖0.

Lastly, the ex ante probability for ℎ to be realized, Pr(ℎ), is smaller than Pr(𝑎′|ℎ′)
and hence

lim
𝑝0→(0,...,0)

Pr(ℎ) ≤ lim
𝑝0→(0,...,0)

Pr(𝑎′ | ℎ′) = lim
𝑝0→(0,...,0)

1
|𝐴(ℎ′) | 𝑝𝑖0 = 0.

This completes the proof. ■

It is worth noticing that the independence of the distribution of the levels is not
required in this proposition as strictly dominated actions will only be chosen by
level-0 players. Moreover, one can see this principle in play in Example 3.4.2.1
where player 1’s anomalous behavior only happens when player 2 chooses a strictly
dominated action, which is only chosen by level-0. For other parts of the game, if
both players are at least level 3, DCH predicts the game will follow the subgame
perfect equilibrium path.

Since the subgame perfect equilibrium path never contains strictly dominated ac-
tions, one might be tempted to conjecture that the equilibrium path is always followed
by sufficiently sophisticated players. The next example demonstrates that this is not
true. In fact, it is possible that the subgame perfect equilibrium path is never chosen
by strategic players, so high-level players in our model do not necessarily converge
to the subgame perfect equilibrium.

3.4.2.3 Violating Backward Induction on the Equilibrium Path

Example 3.4.2.3 is modified from the previous example by changing player 1’s
payoff from 4 to 3

2 as he chooses 𝑟1𝑏 at history 1𝑏. Decreasing the payoff does
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1a

𝑙1𝑎 𝑟1𝑎 : 𝐿1+

2a

𝑙2𝑎 : 𝐿1+

(3, 4)

𝑟2𝑎

2b

(2, 5)

𝑙2𝑏 : 𝐿1+ 𝑟2𝑏

1b

(1, 6)

𝑙1𝑏 (
3
2 , 3

)
𝑟1𝑏 : 𝐿1+

1c

𝑙1𝑐 : 𝐿1+

(6, 1)

𝑟1𝑐

2c

(10, 2)

𝑙2𝑐

(3, 3)

𝑟2𝑐 : 𝐿1+

Figure 3.2: Game Tree of Example 3.4.2.3. A “+” sign indicates a move is chosen
by the specified level and all higher levels. The subgame perfect equilibrium moves
are marked with arrows.

not affect the subgame perfect equilibrium. However, this change makes low-level
players think the subgame perfect equilibrium actions are not profitable, causing a
domino effect that high-level players think the equilibrium actions are not optimal
as well. Here we consider an arbitrary prior distribution 𝑝 = (𝑝𝑘 )∞𝑘=0. The game
tree is shown in Figure 3.2 with every level of players’ decisions. The calculations
can be found in Appendix C.

Level-1 players will behave the same as in the previous example. However, the
change of payoffs makes 𝑙1𝑎 not profitable for level-2 player 1 at the initial history.
Hence, player 2 would believe player 1 is certainly level-0 whenever the game
proceeds to the left branch. Moreover, every level of players would behave the same
by the same logic. As a result, the subgame perfect equilibrium path is never chosen
by strategic players. If 𝑝0 is close to 0, the subgame perfect equilibrium outcome
will almost never be reached.

Instead, there is an imperfect Nash equilibrium that can be supported by the strategy
profile of every strategic level of both players. Loosely speaking, the belief updating
process gets “stuck” at this equilibrium, causing all higher-level players behave in
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the same way.17 □

3.4.3 The Strategy-Reduction Effect of DCH

1a

𝑙1𝑎 : 𝐿1, 𝐿3+ 𝑟1𝑎 : 𝐿2

2a

𝑙2𝑎 : 𝐿1

(8, 4)

𝑟2𝑎 : 𝐿2+

2b

(2, 5)

𝑙2𝑏 : 𝐿1+ 𝑟2𝑏

1b

(1, 6)

𝑙1𝑏

( 3
2 , 3)

𝑟1𝑏 : 𝐿1+

1c

𝑙1𝑐 : 𝐿1+

(6, 1)

𝑟1𝑐

2c

(10, 2)

𝑙2𝑐

(3, 3)

𝑟2𝑐 : 𝐿1+

Figure 3.3: Game Tree of Γ. A “+” sign indicates a move is chosen by the specified
level and all higher levels. The subgame perfect equilibrium moves are marked with
arrows.

An interesting feature of the DCH solution is the strategy-reduction effect. That is,
the DCH solution can differ for two games that share the same reduced normal form.
To illustrate this effect, we first consider a toy example in this section and provide
a detailed analysis of the strategy-reduction effect for a class of increasing-sum
centipede games in the subsequent section.

Consider the game in extensive form Γ, whose game tree is shown in Figure 3.3. This
example is almost exactly the same as Example 3.4.2.3, with the single exception
being that player 1’s payoff changes from 3 to 8 after choosing 𝑟2𝑎 at subgame 2𝑎.
This change does not affect the subgame perfect equilibrium, but makes choosing 𝑙1𝑎
profitable again for high-level player 1. (Here we again assume the prior distribution
follows Poisson(1.5).) Consequently, higher levels (𝑘 ≥ 3) of DCH players in this

17The following strategy profile defines this imperfect equilibrium: player 1 chooses 𝑟1𝑎 at the
beginning, 𝑟1𝑏 at subgame ℎ = 1𝑏, and chooses 𝑙1𝑐 at subgame ℎ = 1𝑐; player 2 chooses 𝑙2𝑎 at
subgame ℎ = 2𝑎, 𝑙2𝑏 at subgame ℎ = 2𝑏, and chooses 𝑟2𝑐 at subgame ℎ = 2𝑐. Therefore, (2, 5) is an
equilibrium outcome.
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game will choose actions that lead to the subgame perfect equilibrium outcome,
(8, 4).

This switch to the subgame perfect outcome is a direct consequence of the belief-
updating process of the DCH solution. Although the payoff 10 is really attractive
to player 1, strategic player 1 will realize he can get it only if player 2 is level-0.
Therefore, if there is a high enough probability of higher levels of player 2, player 1
will realize he is likely to get the lower payoff of 3 at node 2𝑐. Hence, a high-level
player 1 will choose 𝑙1𝑎 at the beginning (as if conducting backward induction). As
long as there are enough strategic types of player 1 choosing 𝑙1𝑎, higher levels of
player 2 will update accordingly and choose the subgame perfect equilibrium action
𝑟2𝑎. The calculations can be found in Appendix C.

𝑃1

(1, 6)

𝑙2𝑎𝑙2𝑏

... ... ... ... (8, 4)

𝑟2𝑎𝑟2𝑏𝑟2𝑐

𝑙1𝑎𝑙1𝑏

( 3
2 , 3)

𝑙2𝑎𝑙2𝑏

... ... ... ... (8, 4)

𝑟2𝑎𝑟2𝑏𝑟2𝑐

𝑙1𝑎𝑟1𝑏

(2, 5)

𝑙2𝑎𝑙2𝑏

... ... ... ... (3, 3)

𝑟2𝑎𝑟2𝑏𝑟2𝑐

𝑟1𝑎𝑙1𝑐

(2, 5)

𝑙2𝑎𝑙2𝑏

... ... ... ... (6, 1)

𝑟2𝑎𝑟2𝑏𝑟2𝑐

𝑟1𝑎𝑟1𝑐

𝑃2

Figure 3.4: Game Tree of Γ′ where player 1 first chooses a reduced strategy of Γ and
then player 2 chooses a reduced strategy of Γ without observing player 1’s action.

To illustrate the strategy-reduction effect, consider another game in extensive form
Γ′, whose game tree is shown in Figure 3.4. In this game, player 1 moves first
and chooses one of the reduced strategies in Γ. That is, player 1’s action set is
𝐴1 = {𝑙1𝑎𝑙1𝑏, 𝑙1𝑎𝑟1𝑏, 𝑟1𝑎𝑙1𝑐, 𝑟1𝑎𝑟1𝑐}. After that, player 2 chooses one of the
reduced strategies in Γ′ without observing player 1’s action. Γ and Γ′ share the
same reduced normal form as shown in Table 3.1.

Since Γ′ is essentially a simultaneous-move game, the DCH solution of Γ′ coincides
with the standard CH solution of the 4 × 6 matrix game displayed in Table 3.1. It is
easy to see that level-1 and higher-level of player 1 will choose the strategy 𝑟1𝑎𝑙1𝑐 and
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level-1 and higher-level of player 2 will choose the strategy 𝑙2𝑎𝑙2𝑏, as indicated in the
table. This result illustrates how DCH could dramatically differ between different
games that share the same reduced normal form. Specifically, DCH predicts that
all strategic levels of player 1 and 2 in Γ′ will choose 𝑟1𝑎𝑙1𝑐 and 𝑙2𝑎𝑙2𝑏, respectively,
leading to a different outcome compared to the DCH solution of Γ.

Table 3.1: Reduced Normal Form of Γ and Γ′.
Player 2

Player 1 𝑙2𝑎𝑙2𝑏 𝑟2𝑎𝑙2𝑏 𝑙2𝑎𝑟2𝑏𝑙2𝑐 𝑙2𝑎𝑟2𝑏𝑟2𝑐 𝑟2𝑎𝑟2𝑏𝑙2𝑐 𝑟2𝑎𝑟2𝑏𝑟2𝑐
𝐿1+

𝑙1𝑎𝑙1𝑏 1,6 8,4 1,6 1,6 8,4 8,4
𝑙1𝑎𝑟1𝑏 3/2,3 8,4 3/2,3 3/2,3 8,4 8,4
𝑟1𝑎𝑙1𝑐 𝐿1+ 2,5 2,5 10,2 3,3 10,2 3,3
𝑟1𝑎𝑟1𝑐 2,5 2,5 6,1 6,1 6,1 6,1

When examining this result carefully, one can realize that the driving force behind
this non-equivalence between Γ and Γ′ is the difference in the numbers of available
strategies, which alters the behavior of level-0. In particular, level-0 player 2
uniformly randomizes between six reduced strategies in Γ′, whereas level-0 player
2 uniformly randomizes among eight non-reduced strategies in Γ. This difference
changes the behavior of level-1 player 1 (who best responds to level-0 player 2),
which in turn alters the behavior of level-2 player 2, and so on for all higher levels.
□

Remark 3.2. Battigalli, Leonetti, and Maccheroni (2020) prove that two extensive
game structures with imperfect information share the same mapping from profiles
of reduced strategies to induced terminal paths if and only if one can be transformed
into the other using two elementary transformations: Interchanging of simultaneous
moves (INT) and Coalescing move/sequential agent splitting (COA). The DCH so-
lution is invariant under INT, but is not invariant under COA unless a balancedness
property is satisfied. For a more detailed discussion, see Battigalli (2023).

In addition, one property of the standard CH model identified by Camerer, Ho,
and Chong (2004) is that if a level-𝑘 player plays a (pure) equilibrium strategy,
then all higher levels of that player will play that strategy too. One may wonder
if an analogous property holds in the DCH solution. That is, if some level of a
player chooses on the equilibrium path, do all higher-levels of that player choose
that action too? The game Γ provides a counterexample for this conjecture. At the
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initial history, level-1 player 1 chooses the equilibrium path 𝑙1𝑎. However, level-2
player 1 switches to 𝑟1𝑎, and level-3 (and above) player 1 switches back to 𝑙1𝑎.

The underlying reason is that even if a level-𝑘 player chooses the equilibrium path,
a higher-level player could still deviate from the equilibrium path if other players
do not move along the equilibrium path in later subgames. In this example, level-1
player 1 chooses 𝑙1𝑎 at the beginning to best respond to level-0 player 2. Yet level-1
player 2 does not choose the equilibrium path at the subgame ℎ = 2𝑎, causing level-2
player 1 to choose 𝑟1𝑎 at the beginning. Level-2 (and above) player 2 switches to the
equilibrium path at the subgame ℎ = 2𝑎, and this information can only be updated by
level-3 (and above) player 1. Finally, as long as there are enough level-2 (and above)
players, high-level player 1 would switch back to the equilibrium path, creating a
non-monotonicity.

3.5 An Application: Centipede Games

1

(1, 0)

T

P 2

(𝑐, 1 + 𝑐)

T

P 1

(1 + 2𝑐, 2𝑐)

T

P 2

((2𝑆 − 1)𝑐, 1 + (2𝑆 − 1)𝑐)

T

(1 + 2𝑆𝑐, 2𝑆𝑐)
P

Figure 3.5: 2𝑆-Move Centipede Game

In this section, we explore the strategy-reduction effect in much more detail, focusing
on the class of “linear centipede games,” which is illustrated in Figure 3.5. The
games in this class are described in the following way. Player 1, the first-mover, and
player 2, the second-mover, alternate over a sequence of moves. At each move, the
player whose turn it is can either end the game (“take”) and receive the larger of
two payoffs or allow the game to continue (“pass”), in which case both the large and
the small payoffs are incremented by an amount 𝑐 > 0. The difference between the
large and the small payoffs equals 1 and does not change. The game continues for
at most 2𝑆 decision nodes (stages) where 𝑆 ≥ 2, and we label the decision nodes by
{1, 2, . . . , 2𝑆}. Player 1 moves at odd nodes and player 2 moves at even nodes. If the
game is ended by a player at stage 𝑗 ≤ 2𝑆, the payoffs are (1+ ( 𝑗 − 1)𝑐, ( 𝑗 − 1)𝑐) if
𝑗 is odd and (( 𝑗 − 1)𝑐, 1 + ( 𝑗 − 1)𝑐) if 𝑗 is even. If no player ever takes, the payoffs
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are (1 + 2𝑆𝑐, 2𝑆𝑐). Thus, a linear centipede game has two parameters: (𝑆, 𝑐). To
avoid trivial cases, we assume 1

3 < 𝑐 < 1.18

Specifically, we will compare each level of players’ behavior when the centipede
game is played in two different representations given the same prior distribution. In
Section 3.5.1, we first characterize the DCH solution of the centipede game when it
is played in its original extensive form (as shown in Figure 3.5), by which we mean
that the game is played as an alternating-move sequential game. In Section 3.5.2,
we then characterize the DCH solution of the centipede game when it is played in
reduced normal form, by which we mean that both players simultaneously choose a
reduced strategy.19 From the perspective of the standard equilibrium theory, these
two implementations of the game would not induce different outcomes because
they share the same reduced normal form. However, whether playing the game in
extensive form (using the direct-response method) or in reduced normal form (using
the strategy method) will induce the same behavior is still an open question that is
under debate in experimental methodology.

From the perspective of DCH, the key difference between the direct-response method
and the strategy method is that the cardinalities of action sets are different, which
implies different behavior for level-0 players. Since the DCH solution is solved
recursively from the bottom of the hierarchy, this non-equivalence of level-0 behavior
triggers a chain reaction that affects the behavior of all higher levels.

3.5.1 DCH for the Centipede Game in Extensive Form
When the centipede game is played in extensive form, players take turns moving in
an alternating-move sequential game, where each player can move at (most) 𝑆 stages.
Therefore, a (behavioral) strategy for player 𝑖 is an 𝑆-tuple where each element is the
probability to take at the corresponding decision node. That is,𝜎1 = (𝜎1,1, . . . , 𝜎1,𝑆)
and 𝜎2 = (𝜎2,1, . . . , 𝜎2,𝑆) are player 1 and 2’s strategies, respectively. For every
1 ≤ 𝑗 ≤ 𝑆, 𝜎1, 𝑗 is the probability that player 1 would take at stage 2 𝑗 − 1 and 𝜎2, 𝑗

is the probability that player 2 would take at stage 2 𝑗 .

Following the notation introduced earlier, we use 𝜎𝑘1 and 𝜎𝑘2 to denote level-𝑘
players’ strategies. Level-0 players uniformly randomize at each stage. That is,

18If 𝑐 > 1, the unique equilibrium is for every player to pass at every node. If 𝑐 < 1
3 , all strategic

players will always take, so CH behavior is the same as subgame perfect equilibrium behavior.
19When we say a centipede game is played in its reduced normal form, we mean that a player’s

strategy corresponds to the node at which they will stop the game by taking (or always pass).
Therefore, each player has 𝑆 + 1 available strategies in the reduced normal form.
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𝜎0
1 = 𝜎0

2 =

(
1
2 , . . . ,

1
2

)
. Finally, to simplify the notation, for every stage 1 ≤ 𝑗 ≤ 2𝑆,

we let 𝜈𝑘
𝑗
(·) be level-𝑘 stage 𝑗-mover’s belief about the opponent’s level at stage 𝑗

where 𝜈𝑘
𝑗
(𝜏−𝑃( 𝑗)) ≡ 𝜈𝑘𝑃( 𝑗),−𝑃( 𝑗) (𝜏−𝑃( 𝑗) | 𝑗 ;𝜎

<𝑘
−𝑃( 𝑗)).

To fully characterize every level of players’ strategies, we need to compute every
level of players’ best responses at every subgame. In principle, we have to solve the
behavior of each level recursively. However, since each level of players’ strategy is
monotonic—when the player decides to take at some stage, he will take in all of his
later subgames—we can alternatively characterize the solution by identifying the
lowest level of player to take at every subgame.

In Lemma 3.1, we characterize level-1 players’ behavior and establish the mono-
tonicity result. These results are straightforward and follow from the assumption
that 1

3 < 𝑐 < 1.

Lemma 3.1. In linear centipede games with an extensive form shown in Figure 3.5,
if 1

3 < 𝑐 < 1, then

1. 𝜎𝑘2,𝑆 = 1 for all 𝑘 ≥ 1.

2. 𝜎1
1 = (0, . . . , 0) and 𝜎1

2 = (0, . . . , 0, 1).

3. For every 𝑘 ≥ 2 and every 1 ≤ 𝑗 ≤ 𝑆 − 1,

(i) 𝜎𝑘1, 𝑗 = 0 if 𝜎𝑚2, 𝑗 = 0 for every 1 ≤ 𝑚 ≤ 𝑘 − 1;

(ii) 𝜎𝑘2, 𝑗 = 0 if 𝜎𝑚1, 𝑗+1 = 0 for every 1 ≤ 𝑚 ≤ 𝑘 − 1.

Proof: See Appendix C. ■

Lemma 3.1 has three parts: (1) every strategic player 2 takes at the last stage; (2)
completely characterizes level-1 strategies—player 1 passes at every stage and player
2 passes at every stage except for the last stage; (3) provides necessary conditions for
higher levels to take at some stage. For any level 𝑘 ≥ 2 and any stage 1 ≤ 𝑗 ≤ 2𝑆−1,
a level-𝑘 player would take at stage 𝑗 only if there is some lower level player that
would take at the next stage. Otherwise, it is optimal for a level-𝑘 player to pass at
stage 𝑗 .

The general characterization of level-k optimal strategies is in terms of the following
cutoffs, specifying, for each stage, the lowest level type to take at that stage.
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Definition 3.1. For every stage 𝑗 where 1 ≤ 𝑗 ≤ 2𝑆, define the cutoff, 𝐾∗
𝑗

be the
lowest level of player that would take at this stage. In other words,

𝐾∗
𝑗 =


arg min𝑘

{
𝜎𝑘

1, 𝑗+1
2
= 1

}
, if 𝑗 is odd

arg min𝑘
{
𝜎𝑘

2, 𝑗2
= 1

}
, if 𝑗 is even

∞, if �𝑘 s.t. 𝜎𝑘
1, 𝑗+1

2
= 1 or 𝜎𝑘

2, 𝑗2
= 1.

Based on Definition 3.1, the monotonicity obtained in part (3) of Lemma 3.1 implies
the following two results about cutoffs and strategies. Together they show that for
any stage, a player’s strategy will be to take at that stage if and only if his level is
greater or equal to the cutoff.

Proposition 3.4. For every 1 ≤ 𝑗 ≤ 2𝑆 − 1,

1. 𝐾∗
𝑗
≥ 𝐾∗

𝑗+1 + 1 if 𝐾∗
𝑗+1 < ∞;

2. 𝐾∗
𝑗
= ∞ if 𝐾∗

𝑗+1 = ∞.

Proof: See Appendix C. ■

Proposition 3.5. For every 1 ≤ 𝑗 ≤ 2𝑆 − 1,

1. 𝜎𝑘
1, 𝑗+1

2
= 1 for all 𝑘 ≥ 𝐾∗

𝑗
if 𝑗 is odd and 𝐾∗

𝑗
< ∞;

2. 𝜎𝑘
2, 𝑗2

= 1 for all 𝑘 ≥ 𝐾∗
𝑗

if 𝑗 is even and 𝐾∗
𝑗
< ∞.

Proof: See Appendix C. ■

Hence, cutoffs characterize optimal strategies of each level of each player, with a
cutoff defining the lowest level that would take at each stage and all higher levels
of that player would also take at that stage. The next two propositions establish
recursive necessary and sufficient conditions for the existence of some level of some
player to take at each stage. The proofs of these propositions provide a recipe for
computing cutoffs.

Proposition 3.6. 𝐾∗
2𝑆−1 < ∞ ⇐⇒ 𝑝0 <

2𝑆
2𝑆+( 3𝑐−1

1−𝑐 )
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First, we note that the proofs are simplified somewhat by observing the following
identity:

𝑝0 <
2𝑆

2𝑆 +
(

3𝑐−1
1−𝑐

) ⇐⇒
𝑝0

(
1
2

)𝑆
𝑝0

(
1
2

)𝑆−1
+ (1 − 𝑝0)

<
1 − 𝑐
1 + 𝑐 .

Proof: Only if: Suppose 𝐾∗
2𝑆−1 < ∞. By Proposition 3.4, 𝐾∗

𝑗
≥ 𝐾∗

2𝑆−1 for all
𝑗 < 2𝑆 − 1. Hence, the belief of level 𝐾∗

2𝑆−1 of player 1 that player 2 is level-0 at
stage 2𝑆 − 1 equals

𝜈
𝐾∗

2𝑆−1
2𝑆−1 (0) =

𝑝0

(
1
2

)𝑆−1

𝑝0

(
1
2

)𝑆−1
+ ∑𝐾∗

2𝑆−1−1
𝑙=1 𝑝𝑙

,

since it is optimal for𝐾∗
2𝑆−1 < ∞ to take at 2𝑆−1. This implies 𝑝0( 1

2 )𝑆

𝑝0( 1
2 )𝑆−1+∑𝐾∗

2𝑆−1−1
𝑙=1 𝑝𝑙

<

1−𝑐
1+𝑐 and hence

𝑝0

(
1
2

)𝑆
𝑝0

(
1
2

)𝑆−1
+ (1 − 𝑝0)

<
1 − 𝑐
1 + 𝑐 ⇐⇒ 𝑝0 <

2𝑆

2𝑆 +
(

3𝑐−1
1−𝑐

) .
If: Suppose 𝐾∗

2𝑆−1 = ∞. Then from Proposition 3.4, 𝐾∗
𝑗
= ∞ for all 𝑗 < 2𝑆 − 1.

That is, all levels of both players pass at every stage up to and including 2𝑆 − 1.
Hence, the belief of level 𝑘 ≥ 1 of player 1 that player 2 is level-0 at stage 2𝑆 − 1
equals to

𝜈𝑘2𝑆−1(0) =
𝑝0

(
1
2

)𝑆−1

𝑝0

(
1
2

)𝑆−1
+ ∑𝑘−1

𝑙=1 𝑝𝑙

>

𝑝0

(
1
2

)𝑆−1

𝑝0

(
1
2

)𝑆−1
+ (1 − 𝑝0)

.

Since 𝐾∗
2𝑆−1 = ∞, it is optimal to pass at 2𝑆 − 1 for all levels 𝑘 ≥ 1 of player 1,

impling

𝑝0

(
1
2

)𝑆
𝑝0

(
1
2

)𝑆−1
+ (1 − 𝑝0)

≥ 1 − 𝑐
1 + 𝑐 .

This completes the proof. ■

Thus, 𝑝0 must be sufficiently small, and the condition is easier to satisfy the smaller
𝑐 is (the potential gains to passing) and the larger is 𝑆 (the horizon). If this condition



78

holds, there exists some strategic player 1 that takes at stage 2𝑆 − 1. The proof also
provides an insight for how the cutoffs can be computed. Specifically, the 𝐾∗

2𝑆−1
cutoff is computed as

𝐾∗
2𝑆−1 = arg min

𝑘


𝑝0

(
1
2

)𝑆
𝑝0

(
1
2

)𝑆−1
+ ∑𝑘−1

𝑙=1 𝑝𝑙

<
1 − 𝑐
1 + 𝑐

 .
Cutoffs for earlier stages can be derived recursively as the following proposition
establishes.

Proposition 3.7. For every 1 ≤ 𝑗 ≤ 2𝑆 − 2,

𝐾∗
𝑗 < ∞ ⇐⇒

𝑝0

(
1
2

) ⌊ 𝑗2 ⌋+1
+ ∑𝐾∗

𝑗+1−1
𝑙=1 𝑝𝑙

𝑝0

(
1
2

) ⌊ 𝑗2 ⌋ + (1 − 𝑝0)
<

1 − 𝑐
1 + 𝑐 . (3.3)

Proof: The logic of the proof is similar to the proof of Proposition 3.6. See Appendix
C for details. ■

A simple economic interpretation of the conditions obtained in Proposition 3.6 and
3.7 is as follows. At any stage 𝑠, if the other player will take at the next stage,
the net gain to taking at 𝑠 is [1 + (𝑠 − 1)𝑐] − 𝑠𝑐 = 1 − 𝑐. On the other hand, if
the other player passes at the next stage, the net gain to taking at stage 𝑠 + 2 is
[1 + (𝑠 + 1)𝑐] − 𝑠𝑐 = 1 + 𝑐. Hence, the right-hand side is simply the ratio of payoffs
to the current player depending on the opponent taking or passing at the next stage,
assuming the current player will take in the subsequent stage. Thus, a player will
take in the current stage if and only if the posterior probability the opponent will
take in the next stage is less than this ratio.

The information contained in the history is that if the game proceeds to later stages,
the opponent is less likely to be a level-0 player. If the game reaches stage 𝑗 ,
the player would know the opponent has passed ⌊ 𝑗2⌋ times, which would occur
with probability (conditional on the opponent being level-0) 1/2⌊ 𝑗2 ⌋ which rapidly
approaches 0.

3.5.2 DCH for the Centipede Game in Reduced Normal Form
In contrast, when the 2𝑆-move centipede game is played in reduced normal form,
both players simultaneously choose the node at which they will stop the game or
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always pass. Therefore, 𝐴1 = 𝐴2 = {1, . . . , 𝑆 + 1} is the set of actions for each
player. Action 𝑠 ≤ 𝑆 represents a plan to pass at the first 𝑠 − 1 opportunities and
take at the 𝑠-th opportunity. Strategy 𝑆 + 1 is the plan to always pass. Player
1 and 2’s strategies are denoted by 𝑎1 and 𝑎2, respectively. If 𝑎1 ≤ 𝑎2, then
the payoffs are (1 + (2𝑎1 − 2)𝑐, (2𝑎1 − 2)𝑐); if 𝑎1 > 𝑎2, then the payoffs are
((2𝑎2 − 1)𝑐, 1 + (2𝑎2 − 1)𝑐).

To characterize the DCH solution for the linear centipede game in reduced normal
form, we let 𝑎𝑘

𝑖
denote level-𝑘 player 𝑖’s strategy. A level-0 player uniformly

randomizes across all available strategies. With a minor abuse of notation, denote
𝑎0
𝑖
= 1

𝑆+1 for 𝑖 ∈ {1, 2}. Lemma 3.2 establishes level-1 players’ behavior and the
monotonicity, similarly to Lemma 3.1.

Lemma 3.2. In linear centipede games of reduced normal form, if 1
3 < 𝑐 < 1, then

1. 𝑎1
1 = 𝑆 + 1 and 𝑎1

2 = 𝑆.

2. For every 𝑘 ≥ 2,

(i) 𝑎𝑘1 ≥ min{𝑎𝑚2 : 1 ≤ 𝑚 ≤ 𝑘 − 1};

(ii) 𝑎𝑘2 ≥ min{𝑎𝑚1 : 1 ≤ 𝑚 ≤ 𝑘 − 1} − 1.

3. 𝑎𝑘+1
𝑖

≤ 𝑎𝑘
𝑖

for all 𝑘 ≥ 1 and for all 𝑖 ∈ {1, 2}.

Proof: See Appendix C. ■

Lemma 3.2 has essentially the same three parts as Lemma 3.1, but stated in terms
of the stopping point strategies rather than behavioral strategies. Therefore, as in
the extensive form, optimal strategies are given by cutoffs, defined analogously to
Definition 3.1.

Definition 3.2. For every stage 𝑠 where 1 ≤ 𝑗 ≤ 2𝑆, define the cutoff 𝐾̃∗
𝑗

to be the
lowest level of player that would take no later than this stage. In other words,

𝐾̃∗
𝑗 =


arg min𝑘

{
𝑎𝑘1 ≤ 𝑗+1

2

}
, if 𝑗 is odd

arg min𝑘
{
𝑎𝑘2 ≤ 𝑗

2

}
, if 𝑗 is even

∞, if �𝑘 s.t. 𝑎𝑘1 ≤ 𝑗+1
2 or 𝑎𝑘2 ≤ 𝑗

2 .
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By Lemma 3.2, we know 𝑎1
2 = 𝑆. Therefore, 𝐾̃∗

2𝑆 = 1. Proposition 3.8 and 3.9 are
parallel to Proposition 3.6 and 3.7, providing necessary and sufficient conditions for
the existence of some strategic players to take before a particular stage.

Proposition 3.8. 𝐾̃∗
2𝑆−1 < ∞ ⇐⇒ 𝑝0 <

𝑆+1
(𝑆+1)+( 3𝑐−1

1−𝑐 )
.

Proof: See Appendix C. ■

Proposition 3.9. For every 1 ≤ 𝑗 ≤ 2𝑆 − 2,

𝐾̃∗
𝑗 < ∞ ⇐⇒ 𝑝0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗2⌋𝑐
(𝑆 + 1) (1 + 𝑐)

)
+
𝐾̃∗
𝑗+1−1∑︁
𝑘=1

𝑝𝑘 <
1 − 𝑐
1 + 𝑐 . (3.4)

Proof: The logic of the proof is similar to the proof of Proposition 3.8. See Appendix
C for details. ■

Propositions 3.6 and 3.8 identify conditions on p such that there is some level 𝑘 > 0
of player 1 who would take at some stage when the centipede game is played in
extensive form while every strategic level of player 1 would choose “always pass”
when it is played in reduced normal form.

Corollary 3.1. If 𝑆+1
(𝑆+1)+( 3𝑐−1

1−𝑐 )
≤ 𝑝0 <

2𝑆
2𝑆+( 3𝑐−1

1−𝑐 )
, then 𝐾∗

2𝑆−1 < ∞ and 𝐾̃∗
2𝑆−1 = ∞.

Proof: Since 2𝑆 > 𝑆 + 1 for all 𝑆 ≥ 2, this is a direct consequence of Propositions
3.6 and 3.8. ■

An implication of propositions 3.7 and 3.9 is that if 𝑝0 is small, then the difference
in behavior under the two different representations of the game will also be small,
since the left hand side of inequalities (3.3) and (3.4) both converge to

∑𝐾̃∗
𝑗+1−1

𝑘=1 𝑝𝑘 .
This result is intuitive. If there is no level-0 in the population, the difference in
the behavior of level-0 will not trigger the chain reaction that affects higher-level
players’ behavior, as the behavior of level-1 players does not differ when the game
is played in extensive form or reduced normal form.

However, regardless of how small 𝑝0 is (as long as it is positive), DCH predicts the
extensive form and the reduced form representations lead to systematically different
behavioral predictions. These differences lead to the main result of this section,
Theorem 3.1, which establishes that players are more likely to take at every stage
when the game is played in extensive form.
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Theorem 3.1 (Strategy-reduction effect). For every stage 1 ≤ 𝑗 ≤ 2𝑆,

𝐾∗
𝑗 ≤ 𝐾̃∗

𝑗 .

Proof: See Appendix C. ■

This result provides a testable prediction that these centipede games will end earlier
if played in the extensive form rather than in the reduced normal form. Moreover,
this result is robust to the prior distributions of levels. Therefore, DCH predicts
players will exhibit more sophisticated behavior in the extensive form since the
information from the history is that the opponent is less likely to be a level-0 player.

3.5.3 Results for the Poisson-DCH Model
In previous applications of the CH model, it has been useful to assume the dis-
tribution of levels is given by a Poisson distribution (Camerer, Ho, and Chong,
2004). We obtain some additional results here for this one-parameter family of
distributions that allow us to further pin down the differences between the centipede
game when played in extensive form and when played in reduced normal form. The
Poisson-DCH model assumes

𝑝𝑘 ≡
𝑒−𝜆𝜆𝑘

𝑘!
, for all 𝑘 = 0, 1, 2, ...

where 𝜆 > 0 is the mean of the Poisson distribution.

Finally, we write the cutoffs as functions of 𝜆. In the extensive form, the cutoff
function for stage 𝑗 is 𝐾∗

𝑗
(𝜆). In the reduced normal form, the cutoff function for

stage 𝑗 is 𝐾̃∗
𝑗
(𝜆).

As previously discussed, due to the realization-nonequivalence of level-0 players in
different representations, beliefs of level 𝑘 ≥ 2 about the opponent being level-0
shrink much faster when the game is played in extensive form compared to when it is
played in reduced normal form. To quantify the effect, Proposition 3.10 demonstrates
the difference between two representations at stage 2𝑆 − 1, where player 1 has the
best information.

Proposition 3.10. As the prior distribution follows Poisson(𝜆), then

(i) 𝐾∗
2𝑆−1(𝜆) < ∞ ⇐⇒ 𝜆 > 𝑙𝑛

[
1 +

(
1
2

)𝑆 (
3𝑐−1
1−𝑐

)]
;
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(ii) 𝐾̃∗
2𝑆−1(𝜆) < ∞ ⇐⇒ 𝜆 > 𝑙𝑛

[
1 +

(
1
𝑆+1

) (
3𝑐−1
1−𝑐

)]
.

Proof: The result is obtained by substituting 𝑝0 = 𝑒𝜆 in the formulas given by
Propositions 3.6 and 3.8, and with some algebra. See Appendix C for details. ■
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Figure 3.6: (Left) The minimum value of 𝜆 needed to support taking at stage 2𝑆 − 1
when the centipede game is played in extensive form (solid) and when played in
reduced normal form (dashed) for 𝑐 = 0.8, with 𝑆 on the horizontal axis and 𝜆 on
the vertical axis. (Right) The CDFs of terminal nodes in four-node centipede games
when the game is played in different representations predicted by DCH.

Proposition 3.10 provides a closed form solution for the minimum 𝜆 to support some
level of player 1 to take at stage 2𝑆 − 1 in both the extensive form and the reduced
normal form. The left panel of Figure 3.6 plots the lowest 𝜆. From the figure,
we can notice that at stage 2𝑆 − 1, the minimum value of 𝜆 to start unraveling is
much smaller in the extensive form than in the reduced normal form. Moreover, the
minimum 𝜆 converges to 0 much faster in the extensive form than in the reduced
normal form as 𝑆 gets higher, which is derived from the belief updating of DCH.

On the other hand, in the right panel of Figure 3.6, we focus on the four-move
centipede game (𝑆 = 2) and plot the CDF of terminal nodes when the game is
played in extensive form and reduced normal form predicted by DCH. First of all,
we can observe the distribution of terminal nodes under the reduced normal form
first order stochastically dominates the distribution under the extensive form. In fact,
the FOSD relationship holds for any 𝑆, 𝑐, 𝜆. This leads to a second interpretation
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of Theorem 3.1; since the cutoffs when the game is played in extensive form are
uniformly smaller than when played in reduced normal form, there are more levels
of players that would take at every stage, thus generating the FOSD relationship.

When 𝜆 gets larger, the distribution of levels will shift to the right and players tend
to be more sophisticated at the aggregate level. Proposition 3.11 shows that for
sufficiently large 𝜆, highly sophisticated players would take at every stage in both
the extensive form and reduced normal form of the centipede game.

Proposition 3.11. In both extensive form and reduced normal form linear centipede
games, there exists sufficiently high 𝜆 such that unraveling occurs, i.e., for each 𝑆 :

(i) ∃𝜆∗ < ∞ such that 𝐾∗
1 (𝜆) < ∞ for all 𝜆 > 𝜆∗;

(ii) ∃𝜆̃∗ < ∞ such that 𝐾̃∗
1 (𝜆) < ∞ for all 𝜆 > 𝜆̃∗.

Proof: See Appendix C. ■

This result shows that DCH predicts unravelling occurs if 𝜆 is sufficiently high, in
both representations. However, it leaves open questions about how this unravelling
differs between the two representations. To this end, Proposition 3.12 provides some
insight on this issue, in particular that the reduced normal form requires strictly more
“density shift” (higher 𝜆) in order to completely unravel for high-level players.

Proposition 3.12. For any 𝑗 where 1 ≤ 𝑗 ≤ 2𝑆 − 1, let 𝜆∗∗2𝑆− 𝑗 be the lowest 𝜆 such
that 𝐾∗

2𝑆− 𝑗 (𝜆) = 𝑗 + 1 for all 𝜆 > 𝜆∗∗2𝑆− 𝑗 , and let 𝜆̃∗∗2𝑆− 𝑗 be the lowest 𝜆 such that
𝐾̃∗

2𝑆− 𝑗 (𝜆) = 𝑗 + 1 for all 𝜆 > 𝜆̃∗∗2𝑆− 𝑗 . Then 𝜆∗∗2𝑆− 𝑗 < 𝜆̃
∗∗
2𝑆− 𝑗 for all 1 ≤ 𝑗 ≤ 2𝑆 − 1.

Proof: See Appendix C. ■

In other words, we can view the difference of density shifts between two repre-
sentations (so that every level of players completely unravels) as a measure of the
strategy-reduction effect. As shown in Proposition 3.12, we can always find a non-
trivial set of 𝜆 such that players have already unravelled in the extensive form but
not in the reduced normal form.

Finally, in the Poisson family, we can obtain an unambiguous comparative static
result on the change of 𝜆. Proposition 3.13 shows that when 𝜆 increases, the cutoff
level of each stage is weakly decreasing. That is, when the average sophistication



84

of the players increases, play is closer to the fully rational model because strategic
players believe the opponent is less likely to be level-0.

Proposition 3.13. For every 1 ≤ 𝑗 ≤ 2𝑆, 𝐾∗
𝑗
(𝜆) and 𝐾̃∗

𝑗
(𝜆) are weakly decreasing

in 𝜆 > 0.

Proof: See Appendix C. ■

3.5.4 Non-Linear Centipede Games
The results of this section about the exact characterization of behavior in extensive
form and reduced normal form centipede games only consider games with a linearly
increasing pie. A natural robustness question is whether the qualitative findings
apply more generally to other families of centipede games. The key assumption in
our analysis is that the increment of pie is not too fast or too slow. If the increment is
too fast (i.e., 𝑐 > 1), then it is optimal to pass everywhere. On the other hand, if the
increment is too slow (i.e., 𝑐 < 1

3 ), even the lowest level of players would take at the
first stage. In all cases within this range, the DCH strategy-reduction effect occurs,
resulting in earlier taking if the centipede game is played in extensive form. This
would seem to be a general property of increasing-pie centipede games. That is,
unless the pie sizes grow so fast that all positive levels of players will always pass, or
so slowly that positive levels will always take, then the realization-nonequivalence
of level-0 will lead to different behavior of higher-level players when the game is
played in different representations. Moreover, since beliefs of level 𝑘 ≥ 2 about
the opponent being level-0 shrink much faster when the game is played in extensive
form, DCH predicts that playing the game sequentially in extensive form will result
in earlier taking compared to playing the game simultaneously in reduced normal
form, under mild conditions.

For example, the analysis can be extended to the class of centipede games with
an exponentially increasing pie, as studied in the McKelvey and Palfrey (1992)
experiment. Similar to the previous analysis, two players alternate over a sequence
of moves in an exponential centipede game with 2𝑆 nodes. At each node, if a player
passes, both the large and small (positive) payoffs would be multiplied by 𝑐 > 1.
In addition, the ratio between the large and the small payoff is equal to 𝜋 > 1 and
does not change as the game progresses. Therefore, an exponential centipede game
is parameterized by (𝑆, 𝜋, 𝑐): if the game is terminated by a player at stage 𝑗 ≤ 2𝑆,
the payoffs are (𝑐 𝑗−1𝜋, 𝑐 𝑗−1) if 𝑗 is odd and (𝑐 𝑗−1, 𝑐 𝑗−1𝜋) if 𝑗 is even. If no one
ever takes, then the payoffs will be (𝑐2𝑆𝜋, 𝑐2𝑆). In this class of centipede games, the
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multiplier 𝑐 governs the growth rate of pie, and the logic of the proofs of propositions
for the linear games is similar for exponential games as long as

−1 +
√

1 + 8𝜋2

2𝜋
< 𝑐 < 𝜋,

which rules out trivial cases, in the same way as the assumption of 1
3 < 𝑐 < 1 rules

out trivial cases in linear centipede games.

All of the qualitative results for linearly increasing centipede games also hold for
exponential centipede games, with the only difference being the analytical expression
of the cutoffs. In particular, Theorem 3.1, the strategy-reduction effect, continues
to hold.

3.6 Experimental Evidence
Since DCH is a solution concept developed for games in extensive form, the so-
lutions could appear dramatically different for different games that share the same
reduced normal form. Specifically, DCH predicts that players would behave differ-
ently if centipede games of a certain class are implemented under the direct-response
method (extensive form) and the strategy method (reduced normal form). To em-
pirically test the strategy-reduction effect predicted by DCH, we revisit a recent
experiment conducted by García-Pola, Iriberri, and Kovářík (2020a) which com-
pared the behavior in four centipede games under the direct response method and
the strategy method.

The game trees of the four centipede games (CG 1 to CG 4) studied in the experiment
are plotted in Figure 3.7. CG 1 is a centipede game with an exponentially-increasing
pie while CG 2 is a centipede game with a constant-sum pie. By contrast, the change
of the pie size in CG 3 and CG 4 is not monotonic and player 1’s payoff is always
greater than player 2’s payoff. Among these four centipede games, DCH predicts
that in CG 1, CG 2 and CG 4, the distribution of terminal nodes under the strategy
method will first order stochastically dominate the distribution of terminal nodes
under the direct response method. Yet DCH predicts the FOSD relationship does
not necessarily hold in CG 3.20

20Since CG 1 is an exponential centipede game, as discussed in section 3.5.4, we can use the
same argument as Theorem 3.1 to show the FOSD relationship. By a similar argument, we can
show that DCH also predicts the FOSD relationship in CG 2 and CG 4. We can also prove that the
FOSD relationship in CG 3 does not hold for all distributions of levels, unlike CG 1, CG 2, and CG
4, where DCH makes unambiguous predictions. In particular, the FOSD relationship is violated for
empirically plausible prior distributions of levels, for example if levels are distributed Poisson with
mean equal to 1.
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Figure 3.7: The game trees of CG 1 to CG 4 studied in García-Pola, Iriberri, and
Kovářík (2020a).

DCH Prediction: In CG 1, CG 2 and CG 4, the distribution of terminal nodes
under the strategy method will first order stochastically dominate the distribution of
terminal nodes under the direct response method. However, the FOSD relationship
can be violated in CG 3, depending on the prior distribution of levels.

This experiment consists of two treatments—the direct response method (the hot
treatment) and the strategy method (the cold treatment)—with between-subject
design. That is, each subject only participates in one of the two treatments. There
are 151 subjects in the cold treatment, 76 in the role of first-mover and 75 in the
role of second-mover. Each subject chose a stopping point for 16 different centipede
games (including the four games in the figure) without feedback between games,
and was subsequently matched with a random player of the other role to determine
payment. There were 352 subjects in the hot treatment, and each subject only played
only one of the four centipede games in the figure.21

The two treatments share the following features. The subjects are given identical
instructions in both treatments, except for the specific way subject decisions are

21In the hot treatment, there were 90 subjects (45 in each role) participating in each of CG 1,
CG 2, and CG 4, while there were 82 subjects (41 in each role) participating in CG 3. Every
subject in a session played 10 repetitions of the same game in the experiment, with feedback, using
a matching protocol that was designed to minimize reputation effects. To avoid the analysis from
being confounded with learning effects from repetition, our analysis only uses data from the first
match of each game.
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elicited. In particular, the “frame” of the game is explained and presented on
subject computer interfaces in game-tree form to reflect the timing of the centipede
game in both treatments. In the cold (strategy-method) treatment, each subject was
instructed to click on the first node at which they wanted to stop, if the game got
that far. Thus, the task for a subject in the cold treatment was to choose one of four
pure strategies of the reduced normal form of the game: take at the first opportunity
(T); pass at the first opportunity and take at the second opportunity (PT); pass at
the first two opportunities and take at the third opportunity (PPT); or never take
(PPP). The instructions provide subjects with explanations of the decision screens,
the matching protocols, the payment method, etc. Thus, there is no possibility of a
“framing” effect as could happen, for example if the cold treatment were presented
as a 4 × 4 matrix game.22
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Figure 3.8: The empirical CDF of CG 1 to CG 4 in García-Pola, Iriberri, and
Kovářík (2020a) under the direct response (solid) and the strategy method (dashed).

22See García-Pola, Iriberri, and Kovářík (2020a) and García-Pola, Iriberri, and Kovářík (2020b)
for copies of the instructions and exact details of the experimental procedures.
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Figure 3.8 plots the empirical CDFs of the terminal nodes under two different
methods in all four games. In the hot treatment, since players are randomly paired
at the beginning of the game, we plot the observed distribution of terminal nodes.
On the other hand, in the cold (reduced normal form) treatment, players are not
paired into groups before each game, and hence a distribution of terminal nodes
is not directly observed. However, the empirical conditional take probabilities of
each stage is directly observed, and from this one can easily compute the implied
distribution of terminal nodes.23

Focusing on CG 1, CG 2, and CG 4, we can see that the distribution of terminal
nodes under the strategy method indeed first order stochastically dominates the
distribution under the direct response method although the strategy-reduction effect
is weaker in CG 4. The effect is only marginally significant for CG 4 using a one-
tailed Mann-Whitney rank-sum test,24 and is insignificant using the low-powered
Kolmogorov-Smirnov test.25 In stark contrast, the opposite FOSD relationship is
observed in CG 3—earlier taking in the cold treatment, and it is not significant
(one-tailed Mann-Whitney rank-sum test 𝑝 = 0.762; Kolmogorov-Smirnov test
𝑝 = 0.940). This experimental evidence supports DCH at the aggregate level.

3.7 Discussion
In this section, we briefly discuss several additional features and potential applica-
tions of DCH. Section 3.7.1 illustrates how reputation effects can arise with DCH,
and in fact are a built-in feature of the solution concept. This follows from the fact
that strategic players are not myopic, but are forward looking and take into account
how their current actions will affect other players’ beliefs and actions. Thus, in

23For instance, the probability that the game ends at the first stage is equal to the fraction of
subjects in the first-mover role who chose the “T” strategy. The probability that the game ends at
the second stage is equal to one minus the fraction of subjects in the first-mover role who chose the
“T” strategy times the fraction of subjects in the second-mover role who chose the “T” strategy. The
probabilities that the game ends at later stages are computed in the similar way.

24A one-tailed Mann-Whitney rank-sum test is performed because DCH makes a clear directional
prediction between the two treatments.

25One-tailed Mann-Whitney rank test: CG 1 𝑝 = 0.001, CG 2 𝑝 = 0.003, CG 4 𝑝 = 0.084;
Kolmogorov-Smirnov test: CG 1 𝑝 = 0.046, CG 2 𝑝 = 0.003, CG 4 𝑝 = 0.653. To compute the
p-values, we follow the approach of García-Pola, Iriberri, and Kovářík (2020a) and generate 100,000
random sub-samples of subjects from the cold treatment to match the number of subjects in each role
in each game in the corresponding hot treatment. Next, in each random sample, we randomly match
subjects into pairs to obtain the distribution of terminal nodes. This process yields 100,000 simulated
CDFs of the terminal nodes from the cold treatment. Then, we perform the KS test and one-tailed
Mann-Whitney rank-sum test on each simulated CDF of the terminal nodes against the CDF from
the hot treatment and report the median p-value. The KS p-values computed using this process are
almost identical to the KS p-values reported by García-Pola, Iriberri, and Kovářík (2020a).
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DCH higher-level players can mimic lower-level types in order to affect lower levels
of other players’ beliefs and hence their future play. In Sections 3.7.2 and 3.7.3,
we highlight some complications of the DCH belief system that arise in games
of imperfect or incomplete information. Finally, Section 3.7.4 discusses general
issues related to the equivalence or non-equivalence of DCH when analyzed in the
non-reduced normal form.

3.7.1 Reputation Formation
In addition to the strategy-reduction effect, another interesting phenomenon that can
arise in DCH is reputation building by higher-level players. Since in DCH, players
will update their beliefs about others’ levels as the history unfolds, it is possible
for higher-level players to mimic some lower-level players’ strategies in order to
maintain the reputation of being some lower levels and benefit from this reputation.

It is worth noticing that the reputation concerns predicted by DCH do not only appear
in games of incomplete information, but also in games of complete information. In
other words, the reputation formation in DCH is driven by manipulating the beliefs
about levels of sophistication rather than the beliefs about exogenous types. We
illustrate this point with the “chain-store game” introduced by Selten (1978).

Illustrative Example

In this game, there are 𝑁 + 1 players: one chain-store (CS) and 𝑁 competitors,
numbered 1, . . . , 𝑁 . In each period, one of the potential competitors decides whether
to compete with CS or not (“In” or “Out”); in period 𝑖, it is competitor 𝑖’s turn to
decide. If competitor 𝑖 chooses “In,” then CS decides either to fight (“F”) or
cooperate (“C”). CS responds to competitor 𝑖 before competitor (𝑖 + 1)’s turn.
Hence, in each period, there are three possible outcomes {𝑂𝑢𝑡, (𝐼𝑛, 𝐹), (𝐼𝑛, 𝐶)}.
The game tree of each period 𝑖 is plotted in Figure 3.9. In addition, at every point
of the game, all players know all actions taken previously, which makes this game
an extensive game of perfect information. Finally, the payoff of CS in this game is
the sum of its payoffs in 𝑁 periods.

There are multiple Nash equilibria where the outcome in any period is either Out
or (In,C). Specifically, in any equilibrium where competitor 𝑖 chooses “Out,” CS’s
strategy is to fight if the competitor chooses “In.” However, these equilibria are
imperfect. The unique subgame perfect equilibrium is that all competitors will
choose “In” and CS will always choose “C,” which fails to capture the reality that
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𝑖

(3, 10)

𝑂𝑢𝑡 𝐼𝑛

CS

(0, 0)

𝐹

(4, 4)

𝐶

Figure 3.9: Game tree of period 𝑖 in the chain-store game. The first number of each
pair is competitor 𝑖’s payoff and the second number is CS’s payoff.

CS may choose “F” to deter entrance.

Unlike Kreps and R. Wilson (1982)’s approach to rationalize the deterrence by
introducing payoff-relevant private types, DCH predicts that higher-level CS might
purposely choose to fight in early periods to make potential competitors think they
are facing a level-0 CS. We demonstrate this by considering the following distribution
of levels

(𝑝0, 𝑝1, 𝑝2, 𝑝3) = (0.10, 0.15, 0.60, 0.15).

Under this distribution, it suffices to characterize the DCH solution by analyzing
level-1 to level-3 players’ behavior.

Level-1 players believe all other players are level-0 and best respond to this belief.
Therefore, level-1 competitors will choose “Out” and level-1 CS will choose “C.”
Next, from level-2 CS’s perspective, all competitors are either level-0 or level-1 and
the only strategic level of competitors will choose “Out,” the most preferred outcome
of CS. Therefore, level-2 CS does not have incentive to “F,” and will behave like
level-1 to always choose “C.”

On the other hand, level-2 competitors will update their beliefs about CS’s level
based on the history. If level-2 competitors have observed that CS has cooperated
for 𝑇 times and never fought, the belief about CS being level-0 is

𝜈 ≡
𝑝0

(
1
2

)𝑇
𝑝0

(
1
2

)𝑇
+ 𝑝1

=

2
(

1
2

)𝑇
2
(

1
2

)𝑇
+ 3

.

The expected payoff of choosing “In” is 2𝜈 + 4(1 − 𝜈) and therefore, it’s optimal for
a level-2 competitor to choose “In” if and only if 2𝜈 + 4(1 − 𝜈) < 3 ⇐⇒ 𝜈 < 1

2 .
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In this case, if CS has never fought, level-2 competitors will always choose “In.”
However, if CS has ever fought,26 level-2 competitors will believe CS is level-0 and
always choose “Out.” Besides, because level-2 CS behaves the same as level-1,
level-3 competitors will therefore behave the same as level-2—they will choose “In”
if CS has never chosen “F” but choose “Out” if CS has ever chosen “F.”

Finally, in the early periods,27 if the relative proportion of level-2 players is suffi-
ciently high, it would be profitable for level-3 CS to purposely choose “F” to make
all competitors believe the chain store is level-0 and choose “Out” in later periods.
Specifically, level-3 CS would choose to fight if

4+
[

𝑝0∑2
𝑘=0 𝑝𝑘

× 7 + 𝑝1∑2
𝑘=0 𝑝𝑘

× 10 + 𝑝2∑2
𝑘=0 𝑝𝑘

× 4

]
<

0+
[

𝑝0∑2
𝑘=0 𝑝𝑘

× 7 + 𝑝1∑2
𝑘=0 𝑝𝑘

× 10 + 𝑝2∑2
𝑘=0 𝑝𝑘

× 10

]
⇐⇒ 𝑝2

𝑝0 + 𝑝1 + 𝑝2
>

2
3
. □

3.7.2 Correlated Beliefs in Games of Imperfect Information
There is a wide range of applications of games in extensive form in economics
and political science where players have private information, either due to privately
known preferences and beliefs about other players, or from imperfect observabil-
ity of the histories of play in the game. These applications would include many
workhorse models, such as signaling, information transmission, information de-
sign, social learning, entry deterrence, reputation building, crisis bargaining, and
so forth. Hence the natural next step is to investigate more deeply our approach to
extensive games of imperfect information. In such environments, one complication
is that players not only learn about the opponents’ levels of sophistication but also
about more basic elements of the game structure, such as the opponents’ private
information, payoff types, and prior moves.

One observation is that allowing for imperfect information in the DCH approach
does not introduce any problems of off-path beliefs. The reason is that at every
information set of the game, all levels of all players have posterior beliefs over the
opponents’ levels that include a positive probability they are facing level-0 players.
Hence, there is no issue of specifying off-path beliefs in an ad hoc fashion and
therefore we avoid the complications of belief-based refinements.

26By Proposition 3.2, we know if CS has fought once, then all competitors will always believe
CS is level-0, regardless of how many time CS has cooperated.

27In the last period, there is no reputation concern and therefore, level-3 CS will choose “C” if he
has a chance to move.
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In games of imperfect information, the DCH belief system is a level-dependent
profile of posterior beliefs that assigns to every information set a joint distribution
of other players’ levels and the histories in the information set. When information
sets are not singleton, at some information set, the marginal beliefs about other
players’ levels can be correlated across players. In other words, Proposition 3.1
might break down in games of imperfect information. We illustrate this by using
the following three-person game where each player moves once. The game tree is
shown in Figure 3.10.

Illustrative Example

𝐼3

1

𝑙 𝑟 : 𝐿1

2

(3, 4, 2)

𝑙 𝑟 : 𝐿1

2

𝑙

(2, 5, 3)

𝑟 : 𝐿1

(1, 6, 5)

𝑙 : 𝐿1

(4, 3, 3)

𝑟

(3, 3, 2)

𝑙 : 𝐿1

(6, 1, 3)

𝑟

Figure 3.10: Game Tree of Example 3.7.2. Dashed lines are the paths selected by
level-1 players.

Player 1 chooses first whether to go left or right. After that, player 2 chooses to go
left or right. If player 1 and 2 make the same decision, the game ends. Otherwise,
player 3 makes the final decision. However, at that stage, player 3 only knows that
one of the previous players chose 𝑙 and the other chose 𝑟, but does not know which
one chose 𝑙.

Level-1 players believe all other players are level-0. As we compute the expected
payoff of each action, level-1 player 1 will choose 𝑟 at the initial node. Level-1
player 2 will choose 𝑟 at subgame ℎ = 𝑙 and ℎ = 𝑟. At player 3’s information set,
since level-1 player 3 thinks both players are level-0, he would believe both histories
are equally likely, and choose 𝑙.
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Conditional on the game reaching player 3’s information set 𝐼3, level-2 player 3’s
DCH belief 𝜈2

3 (𝜏−3, ℎ|𝐼3) is a joint distribution of the histories ℎ ∈ {𝑙𝑟, 𝑟𝑙} and the
profile of levels of other players 𝜏−3 = (𝜏1, 𝜏2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Let
(𝑝𝑘 )𝑘∈N0 be the true distribution of levels of all players, and level-2 player 3’s DCH
belief can be summarized in Table 3.2.

Table 3.2: Level 2 player 3’s DCH belief at information set 𝐼3.

𝜈2
3 (𝜏−3, ℎ|𝐼3) (0, 0) (0, 1) (1, 0) (1, 1)

ℎ = 𝑙𝑟
0.25𝑝0

0.5𝑝0+𝑝1

0.5𝑝1
0.5𝑝0+𝑝1

0 0

ℎ = 𝑟𝑙
0.25𝑝0

0.5𝑝0+𝑝1
0 0.5𝑝1

0.5𝑝0+𝑝1
0

We can first observe that given level-0 and level-1 players’ strategies, at player 3’s
information set, level-2 player 3 would think player 1 and player 2 cannot both be
level-1 players; otherwise, the game will not reach this information set. In other
words, level-2 player 3’s marginal belief 𝜈2

3 (𝜏−3 = (1, 1) |𝐼3) = 0. Nonetheless,
the marginal belief of each player is 𝜈2

3 (𝜏1 = 1|𝐼3) = 𝜈2
3 (𝜏2 = 1|𝐼3) =

0.5𝑝1
0.5𝑝0+𝑝1

,
suggesting that the marginal beliefs about levels are correlated across players as

𝜈2
3 (𝜏1 = 1|𝐼3) × 𝜈2

3 (𝜏2 = 1|𝐼3) ≠ 0 = 𝜈2
3 (𝜏−3 = (1, 1) |𝐼3) . □

Remark 3.3. The underlying reason why the DCH beliefs are correlated across
players in this example is that player 3 is unable to distinguish the actions of player
1 and 2. Therefore, this game does not belong to the class of games with observable
deviators (see Fudenberg and Levine (1993), Battigalli (1996), and Battigalli (1997)
for the definition). Battigalli (2023) shows that the DCH beliefs remain product
measures in all games with observable deviators.

3.7.3 DCH in Multi-Stage Games with Observed Actions
In line with the observation of Battigalli (2023), Lin (2023) demonstrates that the
DCH beliefs indeed conform to product measures across players in the framework
of multi-stage games with observed actions, as introduced by Fudenberg and Tirole
(1991). This framework captures situations where every player observes the actions
of every other player—the only uncertainty is about other players’ payoff-relevant
private information which is determined by an initial chance move.
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In a multi-stage game with observed action, each player 𝑖 ∈ 𝑁 has a payoff-relevant
type 𝜃𝑖 drawn from a finite type set Θ𝑖 according to the distribution 𝐹𝑖.28 After
the types are assigned, each player will learn about their own type but not others’
types. The game is played in periods 𝑡 = 1, . . . , 𝑇 . In each period, every players will
simultaneously choose an action and the action profile will be revealed to all players
at the end of the period. Therefore, in a multi-stage game with observed actions,
each player 𝑖’s information sets can be specified as (ℎ, 𝜃𝑖) where ℎ is a non-terminal
public history.29

For any 𝑘 ∈ N and 𝑖 ∈ 𝑁 , level-𝑘 player 𝑖’s DCH belief at information set (ℎ, 𝜃𝑖) is
a joint distribution of other players’ types and levels, denoted as 𝜈𝑘

𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ, 𝜃𝑖).

Proposition 1 of Lin (2023) shows that 𝜈𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ, 𝜃𝑖) is a product measure across

players. That is,

𝜈𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ, 𝜃𝑖) =
∏
𝑗≠𝑖

𝜈𝑘𝑖 𝑗 (𝜏𝑗 , 𝜃 𝑗 |ℎ, 𝜃𝑖).

From the comparison between Example 3.7.2 and multi-stage games with observed
actions, we can find that the observability of actions plays a crucial role in the
independence property of the DCH beliefs.

3.7.4 (Non-)Equivalence on the Normal Form
The analysis in Section 3.4.3 and Section 3.5 shows that the DCH solution is not
reduced-normal-form invariant—the DCH solution can look dramatically different
for two extensive games that share the same reduced normal form. To this end, one
may naturally wonder whether DCH is normal-form invariant.30

The intuition behind such invariance, which is explained in more detail in Battigalli
(2023), is as follows. First, observe that a level-0 player’s behavioral strategy
(uniform randomization at every subgame) in extensive form and a level-0 player’s
mixed strategy (uniform randomization over all contingent strategies) in normal
form are realization-equivalent.31 Second, either in extensive form or in normal

28Without loss of generality, we assume that 𝐹𝑖 (𝜃𝑖) > 0 for all 𝜃𝑖 ∈ Θ𝑖 and 𝐹𝑖 is independent of
𝐹𝑗 for any 𝑖, 𝑗 ∈ 𝑁 and 𝑖 ≠ 𝑗 .

29See Lin (2023) for a detailed description of the framework of multi-stage games with observed
actions and the DCH solution for this framework.

30We are grateful to Pierpaolo Battigali for observing the normal-form invariance of DCH. The
formal analysis for games of perfect information can be found in Battigalli (2023).

31Two (mixed or behavioral) strategies are realization-equivalent if for every collection of pure
strategies of the other players the two strategies induce the same distribution of outcomes (see
Osborne and Rubinstein (1994) Chapter 11).
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form, all strategic players (with level 𝑘 ≥ 1) best respond to totally mixed strategies
due to the ever-presence of level-0 players. Since expected payoff maximization is
dynamically consistent, the ex ante best response (the optimal contingent strategy
in normal form) must be realization-equivalent to the sequential best response (the
optimal behavioral strategy in extensive form). Hence, the DCH solution will be
realization-equivalent between two extensive games that share the same normal
form.

The equivalence of DCH solution in extensive form and non-reduced normal form
relies heavily on two assumptions: (1) uniform randomization by level-0 players
and (2) the dynamic consistency of best response.

In standard level-𝑘 and CH models, level-0 is assumed to uniformly randomize across
all available actions32, and this approach has carried over to most applications. The
specification of uniform randomization by level-0 players has several advantages:
it is well-defined (and applied equally and in the same way) for all games; it is
nondegenerate, so all paths of play can be rationalized by all strategic players;
and it is simple and parsimonious. Some non-uniform specifications of level-0
behavior have been tailored to specific games of interest in particular applications.
For example, alternative approaches include modeling level-0 players as choosing
(or avoiding) a salient action (e.g. Crawford and Iriberri 2007a), an instinctive
action (e.g. Rubinstein 2007) or a minimum-payoff averse action (e.g. Chong, Ho,
and Camerer 2016) from the action set. Regardless of the specification of level-0
behavior, if level-0 players behave differently in different games sharing the same
reduced normal form, the DCH strategy-reduction effect would still occur.

A second approach that is often used relaxes the perfect best response assumption of
strategic types. In this alternative approach, strategic levels of players are typically
assumed to make better responses, whereby players choose actions at each informa-
tion set stochastically (with full support), and the choice probabilities are increasing
in the continuation values, usually specified by a quantal response function such as
the logit choice rule (e.g. Camerer, Nunnari, and Palfrey, 2016, Stahl and P. W.
Wilson 1995). In this case, for any strategic level of player, the quantal response
behavioral strategy in extensive form will generally not be realization-equivalent to
the quantal response mixed strategy in non-reduced normal form. This relaxation
of perfect best responses could be useful for estimating DCH in experimental data

32Uniform randomization is specifically assumed in the original formulation of CH in Camerer,
Ho, and Chong (2004).
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sets.33 It results in a smoother updating process, and implies full support of beliefs
of about other players’ (lower) levels at every information set of the game.

3.8 Conclusions
We conclude by emphasizing the key motivation for this paper: to provide a theo-
retical framework that characterizes hierarchical reasoning in sequential games. As
documented in the literature, sequential equilibrium based on fully rational back-
ward induction is not only mathematically fragile but also empirically implausible
to hold. To narrow the gap between the theory and empirical patterns in sequen-
tial games, it is natural to extend the level-𝑘 approach to such games, as it has
already demonstrated considerable success in narrowing the gap for games played
simultaneously. However, the conundrum for directly applying the standard level-𝑘
approach is that players may observe actions that are incompatible with their beliefs,
which leads to the widely known problem of specifying off-path beliefs. The DCH
solution avoids this issue with a simple structure that allows players with heteroge-
neous levels of sophistication to update their beliefs everywhere as history unfolds,
using Bayes’ rule.

We characterize properties of the belief-updating process and explore how it can
affect players’ strategic behavior. The key of our framework is that the history of play
contains substantial information about other players’ levels of sophistication, and
therefore as play unfolds, players learn about their opponents’ strategic sophistication
and update their beliefs about the continuation play in the game accordingly. In this
way our DCH solution departs from the standard level-𝑘 approach and generates
new insights, including experimentally testable implications.

We obtain two main results that apply generally to all finite games in extensive
form. Proposition 3.1 establishes that a player’s updating process is independent
across the other players. That is, for every player and every non-terminal history,
the joint distribution of the beliefs of the levels of the other players is the product
of the personal posterior distribution of the levels of each of those other players.
In games of imperfect information, the information sets are non-singleton and the
beliefs could be correlated across the histories at some information set.

In addition, Proposition 3.2 establishes that the updating process filters out possible
level types of opponents as the game proceeds, and it is irreversible. That is, over
the course of play, it is possible that a player eliminates some levels of another player

33See Lin (2023) for an example of estimating DCH with quantal responses.
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from the support of his beliefs, and as the game continues, these levels can never
be added back to the support. Hence, in addition to updating posterior beliefs over
the support of level types, the support also shrinks over time. However, the level-0
players always remain in the support of beliefs, and hence every player believes
every future information set can be reached with positive probability.

The second half of the paper provides a rigorous analysis of a class of increasing-
pie centipede games and generates testable predictions about how play depends on
whether the game is played in its original extensive form or in its reduced normal
form. One direct implication is the strategy-reduction effect given by Theorem 3.1.
The theorem states that playing a centipede game in its extensive form representation,
i.e., as a sequential move game, would lead to more taking than the reduced normal
form representation, where the two players simultaneously announce the stage at
which they will take.

This result provides a prediction that may be useful for experimental testing, since
the claim is independent of the length of the centipede and the increment of the pie.
Moreover, the statement is true for any prior belief about the strategic levels. García-
Pola, Iriberri, and Kovářík (2020a) recently reported the results of an experiment that
is ideally suited to test the strategy-reduction effect implied by DCH. That experiment
explored whether there were differences in behavior in four different centipede
games, depending on whether they were played sequentially or (simultaneously)
in the reduced normal form. DCH predicts a strategy-reduction effect with earlier
taking in the sequential treatment, in three of the four games, and this is exactly what
they find, and the effect is statistically significant in two of the three games. DCH
does not predict this strategy-reduction effect in the fourth game, which is also what
their experiment finds. This provides empirical support for the strategy-reduction
effect we identify, and suggests additional experimental studies would be valuable
to establish robustness of these effects, and to see if the findings extend the linear
centipede games that we focused on in Section 3.5.

Another direction worth pursuing would be to incorporate some salient features of
alternative behavioral models of learning in extensive games into our approach. In
the approach taken here, the learning process is “extreme” in the sense that players
will completely rule out some levels from their beliefs whenever they observe
incompatible actions. For example, players will believe the opponent is level-0 with
certainty if a strictly dominated action is taken. Yet it is possible that the player is
strategic and the action is taken by mistake. In this sense, one could incorporate
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some elements of the extensive form QRE, where players choose actions at each
information set stochastically, and the choice probabilities are increasing in the
continuation values. In fact, this approach has been used with some success in
simultaneous move games (Crawford and Iriberri, 2007a). As shown in Proposition
3.2, in the current version of DCH, there is no way to expand the support of a player’s
belief about the other players’ types. However, if players choose stochastically, then
no level type is ever ruled out from the support, which smoothes out the updating
process. Because players’ beliefs maintain full support on lower types throughout
the game, a natural conjecture is that arbitrarily high-level players will approach
backward induction when the error is sufficiently small.

As a final remark, while the main point of this paper is to develop a general theoretical
foundation for applying CH to games in extensive form, the ultimate hope is that this
framework can be usefully applied to gain insight into specific economic models.
There are a number of possible such applications one might imagine, where some or
all agents in the model have opportunities to learn about the strategic sophistication
of the other agents in ways that could significantly affect their choices in the game.
One such application is reputation building, which we briefly examined in section
3.7.1 and deserves more extensive study. As another possible application, Chamley
and Gale (1994) analyze a dynamic investment game with social learning, where
investments are valuable only if enough other agents are able to invest, and learning
occurs as investment decisions are observed over time. The DCH solution, which
combines learning and updating, but without common knowledge of rationality or
fully rational expectations, might be a useful alternative approach to this problem.
Models of sequential voting on agendas (McKelvey and Niemi, 1978; Banks, 1985),
limit pricing and entry deterrence (Selten, 1978; Milgrom and Roberts, 1982),
and dynamic public good provision (Marx and Matthews, 2000; Duffy, Ochs, and
Vesterlund, 2007; Choi, Gale, and Kariv, 2008) are some additional areas of applied
interest where the DCH approach could be useful.
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C h a p t e r 4

COGNITIVE HIERARCHIES IN MULTI-STAGE GAMES OF
INCOMPLETE INFORMATION: THEORY AND EXPERIMENT

4.1 Introduction
Multi-stage games of incomplete information are important workhorse models in
economics, political science, finance, social networks, and even biology. These
games tend to be more intricate than games of perfect information due to the
potentially large number of information sets, regardless of how simple the game
rules are.1 The standard approach for analyzing these games is to solve for the
sequential equilibrium, wherein players are assumed to form mutually consistent
beliefs at each information set. In other words, each player’s conjecture about the
behavioral strategies of others aligns with the actual strategies of those other players.

The assumption of mutual consistency of the belief system is crucial in standard
equilibrium theory, as it, along with the best response requirement, pins down
precise predictions of equilibrium outcomes. However, this requirement may be
implausibly strong from an empirical standpoint, especially for complicated multi-
stage games of incomplete information, as indicated by behavior observed in many
laboratory experiments (e.g., Camerer, 2003).

In response to these findings, I develop a new tool for analyzing multi-stage games
of incomplete information without relying on mutual consistency of beliefs: the
“Dynamic Cognitive Hierarchy (DCH) Solution.” The contribution of this paper
encompasses both theoretical and experimental aspects. Theoretical contributions
involve extending the DCH solution from games of perfect information, as charac-
terized by Lin and Palfrey (2022), to multi-stage games of incomplete information.
On the experimental front, I design and conduct a laboratory experiment to test a key
implication of DCH—the violation of invariance under strategic equivalence2—in
the context of the dirty-faces game, a classic game for studying iterative rationality.

Two extensive games are strategically equivalent if they share the same reduced nor-
1For example, Johanson (2013) estimates that in a two-person Texas Hold’em game, the number

of information sets is around 10162, which is 1082 times larger than the number of atoms in the
observed universe.

2The violation of invariance under strategic equivalence is sometimes referred to as “the repre-
sentation effect” in the literature.
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mal form. It has been argued that any good equilibrium should exhibit invariance in
strategically equivalent games (e.g., Kohlberg and Mertens, 1986). This invariance
property is also appealing from the standpoint of experimental design as it suggests
that implementing a dynamic game with its reduced normal form does not distort
behavior. By doing so, one can gather more experimental data, particularly at in-
formation sets that are only occasionally reached. This approach to experimental
design is commonly referred to as the “strategy method” (Selten, 1967).

In experimental methodology, an ongoing debate surrounds whether the use of the
strategy method distorts behavior (Brandts and Charness, 2011). DCH sheds light
on this debate by indicating a potential violation of invariance under strategic equiv-
alence, suggesting that the strategy method could theoretically create distortions
in behavior. To empirically test this prediction, I implement a dirty-faces game
experiment, which consists of two treatments: the sequential and the simultaneous
treatments. In the sequential treatment, the game is played period-by-period. Players
can observe the history and are asked to make decisions at realized information sets.
In contrast, in the simultaneous treatment, the game is played in reduced normal
form, where players choose their contingent strategies.

Furthermore, the game parameters used in the experiment are selected using an
“optimal design approach,” where I first calibrate DCH using data from previous
dirty-faces game experiments reported by other studies, and then select the game
parameters to maximize the expected treatment effect. The utilization of an optimal
design approach offers a systematic method for experimenters to choose game pa-
rameters, which is not commonly applied in economic experiments. To some extent,
the experimental design in this paper serves as a proof-of-concept illustrating how
this approach can help experimenters in designing future theory-testing experiments.

By employing this fine-tuned experimental design, significant treatment effects
involving the violations of invariance are detected in the data. Both the direction
and magnitudes of the observed differences align with the predictions of DCH.
Furthermore, when comparing DCH with alternative behavioral solution concepts
that relax the best response requirement and the ability to make Bayesian inferences,
we find that DCH significantly outperforms other models in both treatments. While
there is evidence of the failure of best responses and Bayesian inferences, the
observed violation of invariance in the data is primarily attributed to the relaxation
of mutual consistency.

To offer readers a better intuitive understanding of the paper, I will next provide an
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overview of the DCH solution, illustrate its application in the dirty-faces game, and
discuss the experimental design and findings.

Overview of the DCH Solution

The DCH solution is akin to the “level-𝑘 model,” a non-equilibrium framework
introduced by Nagel (1995). That model relaxes the mutual consistency require-
ment in simultaneous-move games by assuming a hierarchical structure of strategic
sophistication among the players. In the level-𝑘 model, each player is endowed with
a specific level of sophistication. Level 0 players are non-strategic and choose their
actions randomly. Level 𝑘 players, on the other hand, incorrectly believe that all
other players are level 𝑘 − 1 and best respond to this belief.3

The level-𝑘 model has been widely applied to organize experimental data in simulta-
neous move games like the beauty contest game, coordination games, sender-receiver
games, auction games, and more. Nevertheless, when applying the standard level-𝑘
model to dynamic games, a logical conundrum arises: level 𝑘 players are assumed
to choose actions that maximize the continuation value of the game, while believing
that all other players are level 𝑘 − 1 in the continuation game. Consequently, each
player’s belief about the levels of others remains fixed from the beginning, poten-
tially leading to situations where level 𝑘 players are “surprised” by an opponent’s
move that contradicts the strategy of a level 𝑘 − 1 player.

To illustrate this conundrum, consider the extensive game shown in Figure 4.1.
Suppose the level-𝑘 model predicts that level 1 player 1 will choose 𝐴, while level 2
player 1 will choose 𝐵. Since level 3 player 2 thinks player 1 is level 2, he believes
that player 1 will certainly choose 𝐵. From the perspective of level 3 player 2, 𝐴 is
an “off-path event” of player 1. If 𝐴 is chosen, level 3 player 2’s belief about player
1’s level is incompatible with the history.

To avoid this issue, the DCH solution assumes that level 𝑘 players believe all other
players have lower levels distributed anywhere from level 0 to 𝑘 − 1, and update
their beliefs about others’ levels as the history unfolds. Specifically, suppose each
player’s level is drawn from the distribution 𝑝 = (𝑝𝑘 )∞𝑘=0. Level 0 players uniformly
randomize at every information set. Level 𝑘 players’ prior belief about any other
player being level 𝑗 < 𝑘 is 𝑝 𝑗/

∑𝑘−1
𝑙=0 𝑝𝑙 , which follows the Cognitive Hierarchy

3In this paper, level 0 players may be interchangeably referred to as “non-strategic players,” and
level 𝑘 ≥ 1 players as “strategic players” since they best respond to their beliefs.
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1

2

𝐿 𝑅

𝐴: Level 1

2

𝐿 𝑅

𝐵: Level 2

Figure 4.1: An illustration game for the level-𝑘 model in extensive games.

(CH) specification proposed by Camerer, Ho, and Chong (2004). Level 𝑘 players
correctly perceive lower-level players’ behavioral strategies and update their beliefs
about the other players’ levels using Bayes’ rule as the game progresses.

The previous illustrative example clearly demonstrates how DCH solves the conun-
drum. Suppose DCH level 1 player 1 chooses 𝐴, while DCH level 2 player 1 selects
𝐵. In contrast to the level-𝑘 model, DCH assumes that level 3 player 2’s prior belief
about player 1 being level 𝑗 = 0, 1, 2 is 𝑝 𝑗/

∑2
𝑙=0 𝑝𝑙 . Moreover, after observing

player 1’s choice of 𝐴, level 3 player 2 eliminates the possibility of player 1 being
level 2 (otherwise, 𝐵 would have been chosen), and the beliefs about player 1 being
level 0 and level 1 are 0.5𝑝0

0.5𝑝0+𝑝1
and 𝑝1

0.5𝑝0+𝑝1
, respectively. Because level 0 players

uniformly randomize at every information set, strategic players’ beliefs are always
well-defined, effectively resolving the conundrum.

When extending DCH from games of perfect information to multi-stage games of
incomplete information, players will update their beliefs about others’ levels and
payoff-relevant private types at the same time. That is, the DCH belief system is a
joint measure about the types and levels of other players.

Proposition 4.1 establishes that if the private types are independently drawn across
players, every level of every player’s posterior belief remains independent across
players at every information set. It’s important to note that this property of DCH
holds only in multi-stage games with observed actions4 but not in general extensive
games. Furthermore, when private types are correlated across players, Proposition
4.2 demonstrates that the original game (with correlated types) can be transformed
into another game with independent types, and the DCH behavioral strategy profiles
remain invariant in both games. These two propositions provide the recipe for

4Games of perfect information belong to multi-stage games with observed actions.



108

solving DCH in multi-stage games of incomplete information. Lastly, because level
0 players uniformly randomize at every information set, when the sizes of action
sets differ, level 0 players’ behavioral strategies might not be outcome-equivalent.
This, in turn, affects all higher-level players, as DCH is solved recursively from
the bottom of the hierarchy, causing DCH solutions to differ across strategically
equivalent games. This violation of invariance under strategic equivalence is then
illustrated in the dirty-faces game.

The Dirty-Faces Game

The dirty-faces game is a diagnostic game to study iterative rationality. It was
originally introduced as a mathematical puzzle by (Littlewood, 1953, p. 3-4):

Three ladies, A,B,C, in a railway carriage all have dirty faces and are all
laughing. It suddenly flashes on A: why doesn’t B realize C is laughing
at her? Heavens! I must be laughable.

This game is frequently discussed in understanding iterated reasoning and plays
a central role in many studies of common knowledge (see, for example, Binmore
and Brandeburger, 1988; Fudenberg and Tirole, 1993 & Geanakoplos, 1994). To
illustrate the violation of invariance under strategic equivalence, I consider two
versions of the game: the sequential and simultaneous versions.

The sequential (two-person) dirty-faces game was previously studied experimentally
by Weber (2001) and Bayer and Chan (2007).5 In this game, each player is randomly
assigned a face type: either “dirty” or “clean.” Once the face types are determined,
players can see the other player’s face, but not their own. Additionally, if at least
one player has a dirty face, a public announcement is made, ensuring that this
information becomes common knowledge. After observing the other’s face and the
announcement, players take actions in a series of periods. In each period, players
simultaneously choose between “wait” and “claim” (to have a dirty face). The
actions are revealed to both players at the end of each period. If both players decide
to wait, the game proceeds to the next period. Otherwise, the game ends after the

5Weber (2001) and Bayer and Chan (2007) studied both two-person and three-person games.
Since the experimental focus of this paper is on the two-person game, I will primarily focus on the
discussion of two-person games in this paper and provide the discussion of three-person games in
Appendix D.
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period in which at least one player chooses to claim. Players receive rewards for
correctly claiming to have a dirty face but are penalized for making false claims.

The second strategically equivalent version is the simultaneous (two-person) dirty-
faces game, which, to the best of my knowledge, has never been studied experi-
mentally before. In this version, the information structure remains identical to the
sequential version. The only difference is that after observing the other’s face and
announcement, both players simultaneously decide the earliest period to claim as if
the game were played in the sequential version. The payoffs are then determined
accordingly.

Since the two versions are strategically equivalent, the sequential equilibrium is
outcome-equivalent. Consider two players, Ann and Bob. When a player, let’s say
Ann, sees a clean face (along with the announcement), she should recognize that
her own face is dirty and claim in period 1. Yet if Ann sees a dirty face and is
rational, she will wait in period 1 since she has no knowledge of her own face type.
In equilibrium, Ann believes that Bob would have claimed in the first period if her
own face were clean. If the game does indeed reach the second period, Ann will
realize that her face is dirty and claim.

In contrast, due to the presence of non-strategic level 0 players, the DCH solution
lacks common knowledge of rationality, causing it to differ dramatically from the
standard equilibrium solution. Furthermore, DCH makes distinct predictions be-
tween the two versions, demonstrating the violation of invariance under strategic
equivalence.

To understand the intuition of DCH, we first focus on the sequential version. In
period 1, all strategic players behave like rational players, claiming immediately
upon seeing a clean face and the announcement, while waiting when they see a dirty
face. In contrast, level 0 players choose randomly regardless of their observations.
Unlike strategic players, the actions of level 0 players convey no information about
the true face types. Therefore, when observing a dirty face and the game proceeds
beyond period 1, strategic players will believe that there are two possible situations:

1. If the other player is level 0, then their action is randomly determined and
provides no information about my own face.

2. If the other player is level 𝑘 ≥ 1, then my own face is certainly dirty because
the other player would have claimed in period 1 if my own face were clean.



110

Consequently, after period 1, a strategic player faces a dynamic tradeoff. If she waits
and the game proceeds to the next period, she will become more certain about having
a dirty face because the other player is less likely to be a level 0 player. However,
the risk of waiting is that the game might be randomly terminated (by a level 0
opponent) and the payoff is further discounted due to impatience. As a result, the
DCH solution is characterized by level-dependent stopping periods, which depend
on the prior distribution of levels and the payoffs. Because lower-level players are
more likely to believe the other is level 0, they need to wait longer to become certain
enough about having a dirty face.

The intuition of DCH in the simultaneous version is the same as in the sequential
version. However, in the simultaneous version, the number of available strategies
changes, causing level 0 players’ behavioral strategies to differ between the two
versions. Consequently, all higher-level players behave differently between the two
versions, demonstrating the violation of invariance under strategic equivalence in
DCH.6 Furthermore, the magnitude of the difference in behavior predicted by DCH
depends on the game parameters. Specifically, there exists two disjoint sets of game
parameters, where strategic players tend to claim earlier when observing a dirty face
in one set in the sequential version and later in the other set.

Experimental Design and Findings

To assess the violation of invariance unders strategic equivalence in the dirty-faces
game, I design and conduct a laboratory experiment that manipulates the timing
structures (sequential vs. simultaneous) using a between-subject design. The main
challenge in designing the experiment, as suggested by DCH, is the selection of
game parameters. Specifically, the magnitude of the treatment effect predicted by
DCH depends on both the game parameters and the true distribution of levels, which
is unknown before the experiment is conducted.

To address this, I develop an “optimal design approach” where I first estimate the
distribution of levels using data from an experimental dirty-faces game reported by
Bayer and Chan (2007). Then, I select game parameters to maximize diagnosticity
by considering a mix of parameters expected to yield various magnitudes of the
treatment effect.7

6See Section 4.5.3 for a detailed discussion of the violation of invariance in dirty-faces games.
7It is worth remarking that the optimal design approach is not referring to the one in the statistical

literature, whose goal is to maximize the determinant of the information matrix. For more information
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This optimal design approach has two advantages. First, it provides experimenters
with a systematic method for selecting game parameters when designing experi-
ments. This is important to experimenters since, as noted by Moffatt (2020), when
choosing the parameters, “most experimenters have followed an informal approach”
(Moffatt, 2020, pp. 335). Second, it serves as a stress test for DCH. After calibrating
the prior distribution of levels, DCH offers precise predictions regarding the magni-
tudes of violations of invariance. Instead of fitting the model ex post, this approach
provides a benchmark prediction before the experiment is conducted, enabling us to
assess the predictive power of DCH.

A significant violation of invariance under strategic equivalence is detected in the
data, and more importantly, how it is violated aligns with DCH. Additionally, to
analyze whether the difference found in the data can be attributed to the relaxation
of other equilibrium requirements, I compare DCH with two alternative models:
the Agent Quantal Response Equilibrium by McKelvey and Palfrey (1998) and the
Cursed Sequential Equilibrium by Fong, Lin, and Palfrey (2023b). These alterna-
tives relax the best response requirement and Bayesian inferences, respectively. The
estimation results indicate that for both treatments, DCH fits the data significantly
better than the other two solutions. Although relaxing other requirements could
improve the fitness, the observed difference is primarily attributed to the relaxation
of mutual consistency.

This experimental result highlights how implementing a dynamic game experiment
in reduced normal form (using the “strategy method”) can lead to significant dis-
tortions in behavior. In addition, DCH provides a better explanation for how these
distortions arise compared to other behavioral solution concepts. This suggests that
if using the strategy method is necessary, DCH can offer a more reasonable as-
sessment of behavioral distortions compared to the natural approach, which allows
subjects to make decisions when it’s their turn, as if the game tree were being fully
implemented.8

The paper is organized as follows. Section 4.2 discusses the related literature.
Section 4.3 sets up the model, and general properties of the DCH solution are estab-
lished in Section 4.4. In Section 4.5, I demonstrate the violation of invariance under
strategic equivalence of DCH in a class of two-person dirty-faces games. Section

on optimal design in the statistical literature and its applications in risky lottery experiments, see
Moffatt (2020) Chapter 14, and Bland (2023).

8This approach is commonly referred to as the “direct-response method.”
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4.6 describes the experimental design, and Section 4.7 reports the experimental
results. Finally, Section 4.8 concludes the paper.

4.2 Related Literature
The DCH solution is closely related to a number of behavioral models of games.
Over the past thirty years, the idea of limited depth of reasoning has been theoretically
studied by various researchers, including Selten (1991), Aumann (1992), Stahl
(1993), Selten (1998), Alaoui and Penta (2016), and Alaoui and Penta (2022) &
Lin and Palfrey (2022). In addition to theoretical work, Nagel (1995) conducted the
first experiment on the “beauty contest game” to study people’s iterative reasoning
process. In this game, each player simultaneously chooses an integer between 0 and
100. The winner is the player whose choice is closest to the average of all numbers
multiplied by 𝑝 ∈ (0, 1). The unique equilibrium predicts that all players should
choose 0. However, empirical observations show that almost no player chooses the
equilibrium action. Instead, players seem to behave as if they are performing some
finite number of iterative best responses.9

To explain the data, Nagel (1995) proposed the “level-𝑘 model,” which assumes that
each player is endowed with a specific “level” of reasoning. Level 0 players randomly
select actions from their action sets. For every 𝑘 ≥ 1, level 𝑘 players believe that they
are one level of reasoning higher than the rest and best respond accordingly. The
level-𝑘 model has been applied to various environments, including simultaneous-
move games (Costa-Gomes, Crawford, and Broseta, 2001; Crawford and Iriberri,
2007a), two-person guessing games (Costa-Gomes and Crawford, 2006), auctions
(Crawford and Iriberri, 2007b), and sender-receiver games (Cai and Wang, 2006;
Wang, Spezio, and Camerer, 2010).

The standard level-𝑘 model has been successful in explaining the data and has been
extended in various ways. One such approach is the CH framework proposed by
Camerer, Ho, and Chong (2004), which assumes that players best respond to a
mixture of lower-level players.10 In this framework, level 𝑘 players best respond to
a mixture of lower levels, ranging from level 0 to 𝑘 − 1. Furthermore, players hold
accurate beliefs about the relative proportions of the lower levels. However, this

9This empirical pattern has been robustly replicated in different environments. For instance, Ho,
Camerer, and Weigelt (1998) and Bosch-Domenech et al. (2002) have found similar results in both
laboratory and field experiments.

10In a similar vein, Stahl and Wilson (1995) and Levin and Zhang (2022) allow each level of
players to best respond to a mixture of lower-level players and equilibrium players.
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approach is primarily developed for simultaneous-move games, and DCH extends it
to dynamic games.

Another direction is to endogenize the levels of players. Alaoui and Penta (2016)
considered a cost-benefit analysis approach, where players decide their levels of
sophistication by weighing the benefits of additional levels against the costs of doing
so. The implications of this model were further explored in Alaoui, Janezic, and
Penta (2020). In the same spirit as Stahl (1996), Ho and Su (2013), and Ho, Park, and
Su (2021) considered a canonical laboratory environment where players repeatedly
play the same game and endogenously choose a new level of sophistication for the
next iteration of the game. This approach is different from DCH, where players
update their beliefs about other players’ levels after each move within a single game.
Furthermore, DCH players are strategic learners as they can correctly anticipate the
evolution of posterior beliefs in later information sets. This leads to a much different
learning dynamic compared to naive adaptive learning models.

At a more conceptual level, the DCH solution is related to other solution concepts
for dynamic games that relax the requirements of sequential equilibrium. DCH is
a non-equilibrium model that allows players at different levels to best respond to
different conjectures about other players’ strategies, while Agent Quantal Response
Equilibrium (AQRE) by McKelvey and Palfrey (1998) is an equilibrium model in
which players make stochastic choices. Both DCH and AQRE assume that players
follow Bayes’ rule to make inferences. In contrast, Cursed Sequential Equilibrium
(CSE) by Fong, Lin, and Palfrey (2023b) and Sequential Cursed Equilibrium (SCE)
by Cohen and S. Li (2023) are two different equilibrium models in which players are
able to make best responses but are unable to make correct Bayesian inferences.11

One common theoretical property of these behavioral solution concepts is the vio-
lation of invariance under strategic equivalence, albeit in different ways. However,
whether implementing the same dynamic game with different methods creates any
behavioral distortion is an empirical question. Brandts and Charness (2011) sur-
veyed 29 experiments that compared the behavior under different elicitation methods
and found that the invariance may be violated under certain conditions.12 More re-
cently, S. Li (2017) compared the second-price auction and the ascending clock

11The CSE proposed by Fong, Lin, and Palfrey (2023b) captures the situation where players fail
to understand how other players’ actions depend on their own private information. On the other
hand, the SCE introduced by Cohen and S. Li (2023) depicts the bias where people fail to realize
how others’ action depend on their information set partitions. See Appendix B and Fong, Lin, and
Palfrey (2023a) for a detailed comparison of the two solution concepts.

12In their survey, they observed no difference in 16 studies, systematic differences in four studies,
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auction and found that players are more likely to follow dominant strategies in the
ascending clock auction. Additionally, García-Pola, Iriberri, and Kovářík (2020)
experimentally studied the invariance in four centipede games and reported that in
three of the four games, players tend to terminate the game earlier in the sequential
version of the game, which is consistent with DCH (Lin and Palfrey, 2022).13 Fi-
nally, it is worth noting that D. L. Chen and Schonger (2023a) and D. L. Chen and
Schonger (2023b) point out that the violation of invariance is linked to the emotional
salience induced during the experiment.

This paper also contributes to the literature on dirty-faces games. The concept
of dirty-faces game was originally introduced by Littlewood (1953) as a means
to illustrate the transmission of common knowledge. Binmore and Brandeburger
(1988) and Fudenberg and Tirole (1993), and Geanakoplos (1994) were the first to
theoretically study the dirty faces games with the knowledge operator. Furthermore,
Liu (2008) demonstrated that if players are unaware of other players’ face types,
they might incorrectly claim their face types, and hence influence the transmission
of knowledge among the players.

Weber (2001) and Bayer and Chan (2007) conducted the first two experiments
on dirty-faces games and found that many subjects fail to perform such iterative
reasoning. More recent experiments have further demonstrated the persistence of
failure in iterative reasoning even when playing against fully rational robot players
(Grehl and Tutić, 2015; W. J. Chen, Fong, and Lin, 2023). This failure has also
been found to be correlated with cognitive abilities (Devetag and Warglien, 2003;
Bayer and Renou, 2016a; Bayer and Renou, 2016b), while the deviations from
the equilibrium significantly decrease when the participants are selected through a
market mechanism (Choo and Zhou, 2022). Overall, these experimental findings
provide support for the existence of non-strategic types of players who are not
sequentially rational, highlighting the heterogeneity in strategic sophistication within
the population.

and mixed evidence in nine of them. In particular, they found suggestive evidence that the frequency
of violation of invariance is related to the number of available actions.

13In the three centipede games where termination occurs earlier in the sequential version, DCH
predicts that the distribution of terminal nodes from the simultaneous version (strategy method)
will first-order stochastically dominate the distribution from the sequential version (direct response
method). In the fourth centipede game where FOSD is not predicted, the empirical distributions of
terminal nodes from the two versions are almost identical.
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4.3 The Model
Section 4.3.1 introduces the multi-stage games with observed actions, as proposed
by Fudenberg and Levine (1983) and Fudenberg and Tirole (1991). This framework
provides a tractable approach to studying how players learn about the types and
levels of others. Next, the DCH solution for this family of games is defined in
section 4.3.2.

4.3.1 Multi-Stage Games with Observed Actions
Let 𝑁 = {1, . . . , 𝑛} be a finite set of players. Each player 𝑖 ∈ 𝑁 has a type 𝜃𝑖
drawn from a finite set Θ𝑖. Let 𝜃 ∈ Θ ≡ ×𝑛

𝑖=1Θ𝑖 be the type profile and 𝜃−𝑖 be
the type profile without player 𝑖. All players have the common (full support) prior
distribution 𝐹 : Θ → (0, 1). At the beginning of the game, each player is told his
own type, but is not informed anything about the types of others. Therefore, each
player 𝑖’s initial belief about the types of others when his type is 𝜃𝑖 is

𝐹 (𝜃−𝑖 |𝜃𝑖) =
𝐹 (𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝐹 (𝜃′−𝑖, 𝜃𝑖)
.

If the types are independent across players, each player 𝑖’s initial belief about the
types of others is 𝐹−𝑖 (𝜃−𝑖) = Π 𝑗≠𝑖𝐹𝑗 (𝜃 𝑗 ) where 𝐹𝑗 (𝜃 𝑗 ) is the marginal distribution
of player 𝑗’s type.

The game is played in “periods” 𝑡 = 1, 2, . . . , 𝑇 where 𝑇 < ∞. In each period,
players simultaneously choose their actions, which will be revealed at the end of the
period. The feasible set of actions can vary with histories, so games with alternating
moves are also included. Let H 𝑡−1 be the set of all available histories at period 𝑡,
where H0 = {ℎ∅} and H𝑇 is the set of terminal histories. Let H = ∪𝑇

𝑡=0H
𝑡 be the

set of all available histories of the game, and let H\H𝑇 be the set of non-terminal
histories.

For every player 𝑖, the available information at period 𝑡 is in H 𝑡−1 ×Θ𝑖. Thus, each
player 𝑖’s information sets can be specified as I𝑖 ∈ Π𝑖 = {(ℎ, 𝜃𝑖) : ℎ ∈ H\H𝑇 , 𝜃𝑖 ∈
Θ𝑖}. That is, a type 𝜃𝑖 player 𝑖’s information set at the public history ℎ𝑡 can be
defined as

⋃
𝜃−𝑖∈Θ−𝑖 (ℎ𝑡 , 𝜃−𝑖, 𝜃𝑖). With a slight abuse of notation, it will be denoted

as (ℎ𝑡 , 𝜃𝑖). For the sake of simplicity, the feasible set of actions for every player at
every history is assumed to be type-independent. Let 𝐴𝑖 (ℎ𝑡−1) be the feasible set of
actions for player 𝑖 at history ℎ𝑡−1 and let 𝐴𝑖 = ×ℎ∈H\H𝑇 𝐴𝑖 (ℎ) be the set of player
𝑖’s all feasible actions in the game. For each player 𝑖, 𝐴𝑖 is assumed to be finite and
|𝐴𝑖 (ℎ) | ≥ 1 for any ℎ ∈ H\H𝑇 . Let 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1) be player 𝑖’s action at history
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ℎ𝑡−1, and let 𝑎𝑡 =
(
𝑎𝑡1, . . . , 𝑎

𝑡
𝑛

)
∈ ×𝑛

𝑖=1𝐴𝑖 (ℎ
𝑡−1) denote the action profile at stage 𝑡. If

𝑎𝑡 is the action profile chosen at stage 𝑡, then ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡).

A behavioral strategy for player 𝑖 is a function 𝜎𝑖 : Π𝑖 → Δ(𝐴𝑖) satisfying
𝜎𝑖 (ℎ𝑡−1, 𝜃𝑖) ∈ Δ(𝐴𝑖 (ℎ𝑡−1)). Let𝜎𝑖 (𝑎𝑡𝑖 | ℎ𝑡−1, 𝜃𝑖) denote the probability for player 𝑖 to
choose 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1). A strategy profile 𝜎 = (𝜎𝑖)𝑖∈𝑁 specifies a behavioral strategy

for each player 𝑖. Lastly, each player 𝑖 has a payoff function (in von Neumann-
Morgenstern utilities) 𝑢𝑖 : H𝑇 × Θ → R, and let 𝑢 = (𝑢1, . . . , 𝑢𝑛) be the profile of
utility functions. A multi-stage game with observed actions, Γ, is defined by the
tuple Γ = ⟨𝑁,H ,Θ, 𝐹, 𝑢⟩.

4.3.2 Dynamic Cognitive Hierarchy Solution
Each player 𝑖 is endowed with a level of sophistication 𝜏𝑖 ∈ N0 which is independently
drawn from the distribution 𝑃𝑖 (𝜏𝑖). Without loss of generality, I assume 𝑃𝑖 (𝜏𝑖) > 0
for all 𝑖 ∈ 𝑁 and 𝜏𝑖 ∈ N0. Let 𝜏 = (𝜏1, . . . , 𝜏𝑛) be the level profile and 𝜏−𝑖 be the level
profile without player 𝑖. Due to the independence, the level profile is drawn from
a distribution 𝑃 : N|𝑁 |

0 → (0, 1) such that 𝑃(𝜏) = Π𝑛
𝑖=1𝑃𝑖 (𝜏𝑖). Following Lin and

Palfrey (2022), I assume that players’ “types” and “levels” are drawn independently.

Assumption 4.1. 𝐹 and 𝑃 are independent distributions.

Each player 𝑖 has a prior belief about the opponents’ levels which satisfies the
property of truncated rational expectations. That is, for each 𝑖, 𝑗 ≠ 𝑖, and 𝑘 , let
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 ) be level 𝑘 player 𝑖’s prior belief about player 𝑗’s level, and 𝑃̂𝑘

𝑖 𝑗
(𝜏𝑗 ) satisfies

𝑃̂𝑘𝑖 𝑗 (𝜏𝑗 ) =


𝑃 𝑗 (𝜏𝑗 )∑𝑘−1
𝑚=0 𝑃 𝑗 (𝑚)

if 𝜏𝑗 < 𝑘

0 if 𝜏𝑗 ≥ 𝑘.

(4.1)

The intuition of (4.1) is that despite mistakenly believing all other players are at most
level (k-1),14 each level of players have a correct belief about the relative proportions
of players who are less sophisticated than they are.

In the DCH solution, a strategy profile is a level-dependent profile of behavioral
strategy of each level of each player. Let 𝜎𝑘

𝑖
be level 𝑘 player 𝑖’s behavioral strategy,

14The cognitive hierarchy specification is in line with behavioral and psychological evidence of
overconfidence across various domains (see, for instance, Camerer and Lovallo, 1999; Moore and
Healy, 2008 & Enke, Graeber, and Oprea, 2023). While recent findings by Halevy, Hoelzemann,
and Kneeland (2021) suggest the possibility of players believing others to be more sophisticated
than themselves, this behavior falls beyond the scope of this paper, as DCH is developed within the
confines of the standard CH framework.
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where level 0 players uniformly randomize at every information set.15 That is, for
every 𝑖 ∈ 𝑁 , 𝜃𝑖 ∈ Θ𝑖, ℎ ∈ H\H𝑇 , and for all 𝑎 ∈ 𝐴𝑖 (ℎ),

𝜎0
𝑖 (𝑎 | 𝜃𝑖, ℎ) =

1
|𝐴𝑖 (ℎ) |

.

At every history ℎ𝑡 , every strategic level 𝑘 player 𝑖 forms a joint belief about all other
players’ types and levels.16 Their posterior beliefs at history ℎ𝑡 depend on the level-
dependent strategy profile and the prior beliefs. To formalize the belief updating
process, let 𝜎<𝑘

𝑗
= (𝜎0

𝑗
, . . . , 𝜎𝑘−1

𝑗
) be the profile of strategies adopted by the levels

below 𝑘 of player 𝑗 . Furthermore, let 𝜎<𝑘−𝑖 = (𝜎<𝑘1 , . . . , 𝜎<𝑘
𝑖−1, 𝜎

<𝑘
𝑖+1, . . . , 𝜎

<𝑘
𝑛 ) be the

profile of behavioral strategies of the levels below 𝑘 of all players other than player
𝑖. It is worth noticing that all strategic players believe every history is possible
because 𝑃̂𝑘

𝑖 𝑗
(0) > 0 for all 𝑖, 𝑗 ∈ 𝑁 and 𝑘 > 0, and 𝜎0

𝑗
(𝑎 | ℎ, 𝜃 𝑗 ) > 0 for all 𝑗 , 𝜃 𝑗 ,

ℎ and 𝑎 ∈ 𝐴 𝑗 (ℎ). Consequently, Bayes’ rule can be applied to derive every level
of players’ posterior belief about other players’ types and levels. Specifically, for
any 𝑖 ∈ 𝑁 , 𝑘 ≥ 1 and 𝜃𝑖 ∈ Θ𝑖, a level-dependent strategy profile will induce the
posterior belief 𝜇𝑘

𝑖
(𝜏−𝑖, 𝜃−𝑖 | ℎ, 𝜃𝑖) at every ℎ ∈ H\H𝑇 with 𝜇𝑘

𝑖
(𝜃−𝑖 | ℎ𝑡−1, 𝜃𝑖) and

𝜇𝑘
𝑖
(𝜏−𝑖 | ℎ𝑡−1, 𝜃𝑖) being level 𝑘 player 𝑖’s marginal beliefs of other players’ types and

levels at history ℎ𝑡−1, respectively. Lastly, for any 𝑗 ≠ 𝑖, let 𝜇𝑘
𝑖 𝑗
(𝜏𝑗 , 𝜃 𝑗 | ℎ𝑡−1, 𝜃𝑖)

denote level 𝑘 player 𝑖’s belief about player 𝑗’s type and level at history ℎ𝑡−1.

In the DCH solution, players correctly anticipate how they will update their pos-
terior beliefs at all future histories of the game, i.e., players are strategic learners.
Therefore, for any 𝑖, 𝑘 , 𝜃𝑖 and any level-dependent strategy-profile of others 𝜎<𝑘−𝑖 ,
type 𝜃𝑖 level 𝑘 player 𝑖 believes the probability of 𝑎𝑡−𝑖 ∈ 𝐴−𝑖 (ℎ𝑡−1) being chosen is

𝜎̃−𝑘
−𝑖 (𝑎𝑡−𝑖 | ℎ𝑡−1, 𝜃𝑖) ≡

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 | ℎ𝑡−1, 𝜃𝑖)
∏
𝑗≠𝑖

𝜎
𝜏𝑗

𝑗
(𝑎𝑡𝑗 | ℎ𝑡−1, 𝜃 𝑗 ).

Furthermore, for every level of players, given lower-level players’ strategies, they
can compute the probability of any outcome being realized at any non-terminal
history. In particular, for any 𝑖 ∈ 𝑁 , 𝜏𝑖 > 0, 𝜃 ∈ Θ, 𝜎, and 𝜏−𝑖 such that 𝜏𝑗 < 𝜏𝑖

for any 𝑗 ≠ 𝑖, let 𝑃𝜏𝑖
𝑖
(ℎ𝑇 |ℎ𝑡−1, 𝜃, 𝜏−𝑖, 𝜎

<𝜏𝑖
−𝑖 , 𝜎

𝜏𝑖
𝑖
) be level 𝜏𝑖 player 𝑖’s belief about the

conditional realization probability of ℎ𝑇 ∈ H𝑇 at history ℎ𝑡−1 ∈ H\H𝑇 if the type
15Uniform randomization is not the only way to model level 0 players’ behavior; however, one

compelling justification for its use is its universal applicability to all games in the same manner. In
fact, the DCH solution is well-defined as long as level 0 players’ behavioral strategy is fully mixed
at every information set.

16Level 1 players always believe other players are level 0 whose actions are uninformative about
their types. Therefore, they don’t update their beliefs about the levels and types of others.
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profile is 𝜃, the level profile is 𝜏, and player 𝑖 uses 𝜎𝜏𝑖
𝑖

. Finally, level 𝜏𝑖 player 𝑖’s
expected payoff at any ℎ𝑡 ∈ H\H𝑇 is

E𝑢𝜏𝑖
𝑖
(𝜎 | ℎ𝑡 , 𝜃𝑖) =∑︁

ℎ𝑇∈H𝑇

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

𝜇
𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 | ℎ𝑡 , 𝜃𝑖)𝑃𝜏𝑖𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜏−𝑖, 𝜎<𝜏𝑖−𝑖 , 𝜎
𝜏𝑖
𝑖
)𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖).

(4.2)

The DCH solution of the game is defined as the level-dependent assessment (𝜎∗, 𝜇∗),
such that 𝜎𝑘∗

𝑖
(·|ℎ𝑡 , 𝜃𝑖) maximizes (4.2) for all 𝑖, 𝑘 , 𝜃𝑖 and ℎ𝑡 ∈ H\H𝑇 and the DCH

belief system 𝜇∗ is induced by 𝜎∗. Moreover, players are assumed to uniformly ran-
domize over optimal actions when they are indifferent. This is a typical assumption
in level-𝑘 models, and it is convenient because it ensures a unique DCH solution.

Lemma 4.1. The DCH solution is unique.

Proof: See Appendix D. ■

Remark 4.1. For one-stage games, the DCH solution reduces to the standard CH
solution because one-stage games are essentially static games.

4.4 General Properties of the DCH Solution
In this section, I first characterize some general properties of the belief updating
process of DCH. Assume for now that players’ types are independently drawn, i.e.,
𝐹 (𝜃) =

∏
𝑖∈𝑁 𝐹𝑖 (𝜃𝑖). With this assumption, Proposition 4.1 shows that at every

information set, the posterior beliefs are independent across players. In other words,
the DCH belief system is a product measure.

Proposition 4.1. For any multi-stage game with observed actionsΓ, any ℎ ∈ H\H𝑇 ,
any 𝑖 ∈ 𝑁 , 𝜃𝑖 ∈ Θ𝑖, and for any 𝑘 ∈ N, if the prior distribution of types is independent
across players, i.e., 𝐹 (𝜃) = ∏𝑛

𝑖=1 𝐹𝑖 (𝜃𝑖), then level 𝑘 player 𝑖’s posterior belief about
other players’ types and levels at ℎ is independent across players. That is,

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ, 𝜃𝑖) =
∏
𝑗≠𝑖

𝜇𝑘𝑖 𝑗 (𝜏𝑗 , 𝜃 𝑗 |ℎ, 𝜃𝑖).

Proof: See Appendix D. ■

Proposition 4.1 extends the independence property shown by Lin and Palfrey (2022)
from games of perfect information to multi-stage games with observed actions. This
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generalization relies on that (1) the actions are perfectly observed and (2) players
are able to perform Bayesian inferences.

In multi-stage games with observed actions, as the prior distribution of types and
levels is independent across players,17 because every player’s action is perfectly
monitored, strategic players understand that each player’s action does not convey
any information about other players’ private information. In this case, Proposition
4.1 shows the belief system remains to be a product measure in any information
set. However, as pointed out by Lin and Palfrey (2022), this is not true for general
dynamic games of imperfect information. When the actions are not perfectly ob-
served, the marginal beliefs about others’ levels could be correlated across players
(see section 7.2 of Lin and Palfrey, 2022).

Besides, the ability to perform Bayesian inferences plays a crucial role in maintaining
the independence property. In other behavioral solution concepts, such as the Cursed
Sequential Equilibrium proposed by Fong, Lin, and Palfrey (2023b), where players
are unable to perform Bayesian inferences, players may mistakenly believe that
others’ actions are informative about another player’s private information, even
though the actions are perfectly observed and the prior distribution of types is
independent across players.

It is worth noticing that the independence property is useful for solving the DCH
solution. When there are more players or when the game structure becomes more
complex, computing the posterior belief can become challenging, as it involves
level-dependent probability measures. Yet Proposition 4.1 guarantees that the DCH
belief system can be computed player-wise rather than information-set-wise, which
simplifies the computation process.

Next, I consider the case where the prior distribution of types is not independent
across players. When the types are correlated across players, their actions are infor-
mative about not only their own private information but also the private information
of players whose types are correlated with them. Similar to the observations of
Myerson (1985) and Fudenberg and Tirole (1991), to deal with correlated types, the
original game (with correlated types) can be simply transformed into one game with
independent types with a specific transformation.

For any multi-stage game with observed actions Γ, consider a corresponding trans-
formed game Γ̂ where the prior distribution of types is the product of independent

17The independence property does not rely on Assumption 4.1. It holds as long as the priors
distributions of types and levels are both independent across players.
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uniform marginal distributions. Namely,

𝐹̂ (𝜃) = 1∏𝑛
𝑖=1 |Θ𝑖 |

∀𝜃 ∈ Θ.

In addition, the utility functions are transformed to be

𝑢̂𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖)𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖).

Proposition 4.2 shows that the DCH level-dependent behavioral strategy profile is
invariant under the transformation between the transformed and original game, sug-
gesting that the independence assumption of the types is without loss of generality.
Moreover, it is surprising that the transformation is level-independent, given that
the best response of each level is determined iteratively. The intuition behind this is
that, due to the independence of types and levels (Assumption 4.1), players cannot
make inferences about others’ types based on their knowledge of others’ levels.

Proposition 4.2. The level-dependent assessment (𝜎̂, 𝜇̂) is the DCH solution of
the transformed game (with independent types) if and only if the level-dependent
assessment (𝜎, 𝜇) is the DCH solution of the original game (with correlated types)
where 𝜎 = 𝜎̂ and for any 𝑖 ∈ 𝑁 , 𝜃𝑖 ∈ Θ𝑖, 𝑘 > 0, and ℎ𝑡 ∈ H\H𝑇 ,

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝐹 (𝜃−𝑖 |𝜃𝑖) 𝜇̂𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖) 𝜇̂𝑘𝑖 (𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡 , 𝜃𝑖)

.

Proof: See Appendix D. ■

Proposition 4.2 shows that at any (ℎ𝑡 , 𝜃𝑖), player 𝑖’s belief of a specific type-level
profile (𝜏−𝑖, 𝜃−𝑖) is proportional to prior belief of 𝜃−𝑖 conditional on 𝜃𝑖. In addition,
if 𝐹 (𝜃−𝑖 |𝜃𝑖) → 1, i.e., 𝜃𝑖 is almost perfectly correlated with 𝜃−𝑖, then

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝐹 (𝜃−𝑖 |𝜃𝑖) 𝜇̂𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖) 𝜇̂𝑘𝑖 (𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡 , 𝜃𝑖)

→
𝜇̂𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)∑

{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝜇̂
𝑘
𝑖
(𝜏′−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)

= 𝜇̂𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖),

implying that the belief in the transformed game aligns with the belief in the orig-
inal game. Intuitively speaking, if the types are almost perfectly correlated, then
the remaining information to be learned is solely others’ levels. Since the DCH
behavioral strategy profile is invariant under the transformation, the belief about
others’ levels will also be invariant under the transformation.
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The next property is about the evolution of the support of the beliefs. Lin and Palfrey
(2022) have shown that in games of perfect information, the support of beliefs about
the levels weakly shrinks as the history unfolds. Proposition 4.3 extends this result to
multi-stage games with observed actions, indicating that the support of the marginal
beliefs about the levels weakly shrinks in later periods. Additionally, Proposition 4.3
demonstrates that the marginal beliefs about other players’ types always maintain
full support. In other words, in the DCH solution, players will become more certain
about the levels of others in later periods while never completely ruling out any
possibility of a type profile. To formally state the proposition, I first define the
support of the marginal beliefs.

Definition 4.1 (Support). For any multi-stage game with observed actions Γ, any
𝑖 ∈ 𝑁 , any 𝜏𝑖 ∈ N, any 𝜃𝑖 ∈ Θ𝑖, and any history ℎ ∈ H\H𝑇 , let 𝑠𝑢𝑝𝑝𝑖 (𝜃−𝑖 |ℎ, 𝜃𝑖, 𝜏𝑖)
and 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |ℎ, 𝜃𝑖, 𝜏𝑖) be the support of level 𝜏𝑖 player 𝑖’s marginal belief about
other players’ types and levels at information set (ℎ, 𝜃𝑖), respectively. In other
words, for any 𝜃′−𝑖 and 𝜏′−𝑖,

𝜃′−𝑖 ∈ 𝑠𝑢𝑝𝑝𝑖 (𝜃−𝑖 |ℎ, 𝜃𝑖, 𝜏𝑖) ⇐⇒ 𝜇
𝜏𝑖
𝑖
(𝜃′−𝑖 | ℎ, 𝜃𝑖) > 0,

𝜏′−𝑖 ∈ 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |ℎ, 𝜃𝑖, 𝜏𝑖) ⇐⇒ 𝜇
𝜏𝑖
𝑖
(𝜏′−𝑖 | ℎ, 𝜃𝑖) > 0.

Proposition 4.3. Consider any multi-stage game with observed actions Γ, any 𝑖 ∈ 𝑁 ,
any 𝜏𝑖 ∈ N, and any 𝜃𝑖 ∈ Θ𝑖. The following two statements hold.

1. For any ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) ∈ H 𝑡\H𝑇 , 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |ℎ𝑡 , 𝜃𝑖, 𝜏𝑖) ⊆ 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |ℎ𝑡−1, 𝜃𝑖, 𝜏𝑖).

2. For any ℎ ∈ H\H𝑇 , 𝑠𝑢𝑝𝑝𝑖 (𝜃−𝑖 |ℎ, 𝜃𝑖, 𝜏𝑖) = Θ−𝑖.

Proof: See Appendix D. ■

The intuition behind Proposition 4.3 is that since it is always possible for other
players to be level 0, players can always rationalize any type profile by assuming all
other players are level 0.18 This implies that no matter how sophisticated the players
are, common knowledge of rationality is never reached in DCH, which suggests that
DCH and the equilibrium theory are fundamentally different solution concepts.

Furthermore, another feature of DCH that sharply contrasts with the equilibrium
theory is the violation of invariance under strategic equivalence. In DCH, since level

18If the action sets vary not only with histories but also with types, players may rule out the
possibility of certain type profiles when specific actions are chosen.
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0 players uniformly randomize at every information set, their behavioral strategies
might not be outcome-equivalent if the cardinality of action sets changes. All
higher-level players are subsequently affected, as DCH is solved recursively from
the bottom of the hierarchy.19 In the remaining part of the paper, I will demonstrate
theoretically and experimentally how the invariance property is violated in a family
of dirty-faces games.

Finally, it is worth remarking that the DCH posterior beliefs about the types and
levels are generally correlated despite of that the types and levels are determined
independently (Assumption 4.1). This will also be illustrated in the next section.

4.5 DCH Analysis of the Dirty-Faces Games
The dirty-faces game was originally developed by Littlewood (1953) to study the
role of common knowledge.20 In this section, I focus on a particular specification
of the game that has been theoretically and experimentally studied in the literature
(see e.g., Fudenberg and Tirole, 1993, Weber, 2001 and Bayer and Chan, 2007).

There are two players 𝑁 = {1, 2} and there are up to 2 ≤ 𝑇 < ∞ periods. At the
beginning of the game, each player 𝑖 is randomly assigned a face type, denoted as
𝑥𝑖, which can be either 𝑥𝑖 = 𝑂 (representing a clean face) or 𝑥𝑖 = 𝑋 (representing
a dirty face). The face types are i.i.d. drawn from the distribution 𝑝 = Pr(𝑥𝑖 =
𝑋) = 1 − Pr(𝑥𝑖 = 𝑂) where 𝑝 > 0 represents the probability of having a dirty face.
After the face types are determined, each player 𝑖 can observe the other player’s
face type 𝑥−𝑖 but not their own face. Hence, player 𝑖’s private information is the
other player’s face type 𝑥−𝑖. Furthermore, if at least one player has a dirty face, a
public announcement is made, informing both players of this fact. If there is no
announcement, it is common knowledge to both players that both faces are clean.
To avoid triviality, I will focus on the case where an announcement is made.

After seeing the other player’s face type and the announcement, in each period,
every player 𝑖 simultaneously chooses to “Wait” (𝑊) or “Claim” (to have a dirty
face, 𝐶) and their actions are revealed at the end of each period. The game will end

19According to Thompson (1952) and Elmes and Reny (1994), two extensive games share the
same reduced normal form if and only if they can be transformed into each other using a small set of
elementary transformations. Specifically, Elmes and Reny (1994) propose three such transformations:
INT, COA, and ADD, which preserve perfect recall. Because DCH is sensitive to the cardinality of
action sets, it varies under COA while remaining invariant under INT and ADD.

20It has also been referred to as the “cheating wives puzzle” (Gamow and Stern, 1958), the
“cheating husbands puzzle” (Moses, Dolev, and Halpern, 1986), the “muddy children puzzle”
(Barwise, 1981; Halpern and Moses, 1990), and the “red hat puzzle” (Hardin and Taylor, 2008).
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after any period where some player chooses 𝐶 or after period 𝑇 . The last period of
the game is called the “terminal period,” and both players’ payoffs are determined
by their own face types and their actions in the terminal period.

Suppose period 𝑡 is the terminal period. If player 𝑖 chooses𝑊 in the terminal period,
his payoff for this game is 0 regardless of his face type. On the other hand, if player
𝑖 chooses 𝐶 to terminate the game, he will receive 𝛼 > 0 if his face is dirty and −1
if his face is clean. Besides, payoffs are discounted with a common discount factor
𝛿 ∈ (0, 1) per period. That is, if player 𝑖 claims in period 𝑡 and 𝑥𝑖 = 𝑋 , player 𝑖 will
receive 𝛿𝑡−1𝛼, but player 𝑖 will receive −𝛿𝑡−1 if 𝑥𝑖 = 𝑂. To make players unattractive
to gamble if they do not have additional information except for the prior, following
Weber (2001) and Bayer and Chan (2007), I assume that

𝑝𝛼 − (1 − 𝑝) < 0 ⇐⇒ 0 < 𝛼̄ ≡ 𝑝𝛼

1 − 𝑝 < 1, (4.3)

which guarantees it is strictly dominated to choose𝐶 in period 1 when seeing a dirty
face. Thus, a two-person dirty-faces game is defined by a tuple ⟨𝑇, 𝛿, 𝛼, 𝑝⟩ where
(𝛿, 𝛼̄) ∈ (0, 1)2.

With common knowledge of rationality, the unique equilibrium can be solved
through the following iterative reasoning: When player 𝑖 sees a clean face, the
public announcement will lead him to realize that his own face is dirty and claim in
period 1. On the other hand, when player 𝑖 sees a dirty face, he will wait in period
1 because of the uncertainty about his own face. However, if player −𝑖 also waits in
period 1, player 𝑖 will then recognize that his own face is dirty and claim in period
2, as player 𝑖 knows that if his own face were clean, player −𝑖 would have claimed
in period 1.

When implementing this game in a laboratory experiment, the natural approach is
to specify this game as a sequential dirty-faces game and allow subjects to make
decisions period-by-period, following the rules described above, using the direct-
response method. Alternatively, the other approach is the strategy method which
specifies this game as a simultaneous dirty-faces game—after seeing the other’s face
and the announcement, players simultaneously decide a “plan” which specifies the
period to claim or always wait. From the standard game-theoretic perspective, the
sequential and simultaneous dirty-faces game are strategically equivalent as they
share the same reduced normal form. In the following, I will demonstrate that the
DCH solution varies in these two versions of the game, illustrating the violation of
invariance under strategic equivalence of DCH.
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4.5.1 DCH Solution for the Sequential Dirty-Faces Games
In the sequential dirty-faces game, since there are (at most) 𝑇 periods, a behavioral
strategy for player 𝑖 is a mapping from the period and the observed face type
(𝑥−𝑖 ∈ {𝑂, 𝑋}) to the probability of 𝐶. The behavioral strategy is denoted by

𝜎𝑖 : {1, . . . , 𝑇} × {𝑂, 𝑋} → [0, 1] .

For the sake of simplicity, I assume that each player 𝑖’s level is i.i.d. drawn from
the distribution 𝑝 = (𝑝𝑘 )∞𝑘=0 where 𝑝𝑘 > 0 for all 𝑘 . In the DCH solution, each
player’s optimal behavioral strategy is level-dependent. Let the behavioral strategy
of level 𝑘 player 𝑖 be 𝜎𝑘

𝑖
. Following previous notations, let 𝜇𝑘

𝑖
(𝑥𝑖, 𝜏−𝑖 |𝑡, 𝑥−𝑖) be level

𝑘 player 𝑖’s belief about their own face and the level of the other player, conditional
on observing 𝑥−𝑖 and being at period 𝑡. Level 0 players will uniformly randomize
everywhere, so 𝜎0

𝑖
(𝑡, 𝑥−𝑖) = 1/2 for all 𝑡 and 𝑥−𝑖.

Proposition 4.4 fully characterizes the DCH solution for the sequential dirty-faces
games. When observing a clean face, a player can immediately figure out that
his face is dirty. Therefore, DCH coincides with the equilibrium prediction when
𝑥−𝑖 = 𝑂. However, if a player sees a dirty face and the other player waits in period
1, he cannot tell his face type for sure, no matter how sophisticated he is. Instead,
he will believe that he is more likely to have a dirty face as the game continues. As
a result, conditional on observing a dirty face, level 𝑘 ≥ 2 players will claim as long
as the reward 𝛼̄ is high enough or the discount rate 𝛿 is sufficiently low. Otherwise,
they will wait for more evidence.

Proposition 4.4. For any sequential two-person dirty-faces game, the level-dependent
strategy profile of the DCH solution satisfies that for any 𝑖 ∈ 𝑁 ,

1. 𝜎𝑘
𝑖
(𝑡, 𝑂) = 1 for any 𝑘 ≥ 1 and 1 ≤ 𝑡 ≤ 𝑇 .

2. 𝜎1
𝑖
(𝑡, 𝑋) = 0 for any 1 ≤ 𝑡 ≤ 𝑇 . Moreover, for any 𝑘 ≥ 2,

(1) 𝜎𝑘
𝑖
(1, 𝑋) = 0,

(2) for any 2 ≤ 𝑡 ≤ 𝑇 − 1, 𝜎𝑘
𝑖
(𝑡, 𝑋) = 1 if and only if

𝛼̄ ≥

[(
1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0[(

1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0 + (1 − 𝛿)∑𝑘−1

𝑗=1 𝑝 𝑗

,



125

(3) 𝜎𝑘
𝑖
(𝑇, 𝑋) = 1 if and only if

𝛼̄ ≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

.

Proof: See Appendix D. ■

To gain insights into the mechanics of the model, I analyze the behavior of level 1
and 2 players. Level 1 players believe the other player is non-strategic, implying
that the other player’s actions do not provide any information about their face type.
Consequently, for level 1 players, the announcement and their own observations are
the only relevant sources of information. As a result, level 1 players in each period
will behave exactly the same as in period 1—they will claim when seeing a clean
face, and wait when seeing a dirty face. This is because they cannot gather any
additional information from the other’s actions, and their belief about their own face
type remains unchanged in every period.

For level 2 players, they will also claim to have a dirty face immediately upon seeing
a clean face. Furthermore, level 2 players are aware that level 1 players will claim in
period 1 if they observe a clean face. In contrast, when observing a dirty face, level
2 players will wait in period 1 (which is a strictly dominant strategy) and form a joint
belief about the other player’s level and their own face type if the game proceeds
to period 2. Due to the presence of level 0 players, even if the game proceeds to
period 2, level 2 players are still uncertain about their face types. However, they
will know it is impossible that the other player is level 1 and their own face is clean.
Specifically, level 2 players’ posterior belief about the their own face 𝑥𝑖 and the other
player’s level 𝜏−𝑖 is 𝜇2

𝑖
(𝑥𝑖, 𝜏−𝑖 | 2, 𝑋) where

𝜇2
𝑖 (𝑋, 0|2, 𝑋) =

(
1
2

)
𝑝0𝑝(

1
2

)
𝑝0 + 𝑝𝑝1

, 𝜇2
𝑖 (𝑂, 0|2, 𝑋) =

(
1
2

)
𝑝0(1 − 𝑝)(

1
2

)
𝑝0 + 𝑝𝑝1

,

𝜇2
𝑖 (𝑋, 1|2, 𝑋) =

𝑝𝑝1(
1
2

)
𝑝0 + 𝑝𝑝1

, 𝜇2
𝑖 (𝑂, 1|2, 𝑋) = 0.

As the game proceeds beyond period 2, level 2 players will make the inference that
if the other player is level 1, then their own face is dirty; otherwise, the other player’s
actions are uninformative about their face types. Moreover, at any period 2 ≤ 𝑡 ≤ 𝑇 ,
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level 2 players’ marginal belief about having a dirty face is

𝜇2
𝑖 (𝑋 |𝑡, 𝑋) =

(
1
2

) 𝑡−1
𝑝0𝑝(

1
2

) 𝑡−1
𝑝0 + 𝑝𝑝1︸               ︷︷               ︸

= 𝜇2
𝑖
(𝑋,0|𝑡,𝑋)

+ 𝑝𝑝1(
1
2

) 𝑡−1
𝑝0 + 𝑝𝑝1︸               ︷︷               ︸

= 𝜇2
𝑖
(𝑋,1|𝑡,𝑋)

=

𝑝

[(
1
2

) 𝑡−1
𝑝0 + 𝑝1

]
(

1
2

) 𝑡−1
𝑝0 + 𝑝𝑝1

,

which is increasing in 𝑡, suggesting that level 2 players are more certain about having
a dirty face in later periods. This is level 2 players’ benefit of waiting when seeing
a dirty face. However, the cost of waiting is that the other player may randomly
end the game (if the other is level 0) and the payoff is discounted. Therefore,
level 2 players’ tradeoff is analogous to the sequential sampling problem of Wald
(1947)—they decide the optimal stopping period to claim. The optimal stopping
period depends on the parameters 𝛼̄ and 𝛿, as well as the distribution of levels. This
is in sharp contrast with the equilibrium prediction that the equilibrium prediction
is independent of the parameters.

In particular, for any period 2 ≤ 𝑡 ≤ 𝑇 , level 2 player 𝑖’s expected payoff of claiming
to have a dirty face is

E𝑢2
𝑖 (𝐶 |𝑡) := 𝛿𝑡−1 [

𝛼𝜇2
𝑖 (𝑋 |𝑡, 𝑋) − 𝜇2

𝑖 (𝑂 |𝑡, 𝑋)
]
.

At period 𝑇 , the last period of the game, it is optimal to claim if and only if

E𝑢2
𝑖 (𝐶 |𝑇) ≥ 0 ⇐⇒ 𝛼 ≥

𝜇2
𝑖
(𝑂 |𝑇, 𝑋)

𝜇2
𝑖
(𝑋 |𝑇, 𝑋)

⇐⇒ 𝛼̄ ≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 + 𝑝1

.

For any other period 2 ≤ 𝑡′ ≤ 𝑇 − 1, it is optimal to claim at period 𝑡′ only if

E𝑢2
𝑖 (𝐶 |𝑡′) ≥ Pr(𝑡′ + 1|𝑡′, 𝑋)E𝑢2

𝑖 (𝐶 |𝑡′ + 1),

where Pr(𝑡′ + 1|𝑡′, 𝑋) is level 2 player 𝑖’s belief about the probability that player −𝑖
would wait in period 𝑡′.21 Rearranging the inequality yields the condition stated in
Proposition 4.4. Furthermore, the proof in Appendix D shows that these conditions

21Pr(𝑡′ + 1|𝑡′, 𝑋) is the probability that the other player chooses to wait in period 𝑡′, which is

Pr(𝑡′ + 1|𝑡′, 𝑋) = 0.5 · 𝜇2
𝑖 (0|𝑡′, 𝑋) + 1 · 𝜇2

𝑖 (1|𝑡′, 𝑋) =

(
1
2

) 𝑡 ′
𝑝0 + 𝑝𝑝1(

1
2

) 𝑡 ′−1
𝑝0 + 𝑝𝑝1

.
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are not only necessary but also sufficient to pin down level 2 players’ optimal stopping
periods. By induction on the levels, it can be shown that no matter how sophisticated
the players are, the behavior is characterized by the solution of a sequential sampling
problem.

Proposition 4.4 characterizes the level-dependent behavioral strategies. Alterna-
tively, the DCH solution can be characterized by the level-dependent stopping
period (given observing 𝑥−𝑖), which is formally defined in Definition 4.2.

Definition 4.2 (Stopping Period). For any sequential two-person dirty-faces game
and its DCH level-dependent strategy profile 𝜎, let 𝜎̂𝑘

𝑖
(𝑥−𝑖) be level 𝑘 player 𝑖’s

earliest period to claim to have a dirty face conditional on observing 𝑥−𝑖 for any
𝑘 ≥ 1 and 𝑖 ∈ 𝑁 . Specifically,

𝜎̂𝑘𝑖 (𝑥−𝑖) =


min
{
𝑡′ : 𝜎𝑘

𝑖
(𝑡′, 𝑥−𝑖) = 1

}
, if ∃ 𝑡 s.t. 𝜎𝑘

𝑖
(𝑡, 𝑥−𝑖) = 1

𝑇 + 1, otherwise.

With Definition 4.2, Corollary 4.1 is a direct consequence of Proposition 4.4. If
𝑥−𝑖 = 𝑂, every strategic level of players will know their face is dirty and claim to
have a dirty face in period 1, viz. 𝜎̂𝑘

𝑖
(𝑂) = 1 for every 𝑘 ≥ 1. In contrast, if 𝑥−𝑖 = 𝑋 ,

Corollary 4.1 shows that the optimal stopping period is monotonically decreasing
in 𝑘 , implying that higher-level players tend to claim in fewer periods.

Corollary 4.1. For any sequential two-person dirty-faces game, the DCH level-
dependent strategy profile 𝜎 can be equivalently characterized by level-dependent
stopping periods. Moreover, for any 𝑖 ∈ 𝑁 , we know

1. 𝜎̂𝑘
𝑖
(𝑂) = 1 for any 𝑘 ≥ 1,

2. 𝜎̂1
𝑖
(𝑋) = 𝑇 + 1, and 𝜎̂𝑘

𝑖
(𝑋) ≥ 2 for all 𝑘 ≥ 2.

3. 𝜎̂𝑘
𝑖
(𝑋) is weakly decreasing in 𝑘 .

Proof: See Appendix D. ■

To summarize, I illustrate the DCH optimal stopping periods of level 2 and level
infinity players when seeing a dirty face, i.e., 𝜎̂2

𝑖
(𝑋) and 𝜎̂∞

𝑖
(𝑋). Because the set of

dirty-faces games is described by (𝛿, 𝛼̄), it is simply the unit square on the (𝛿, 𝛼̄)-
plane. For the illustrative purpose, I consider 𝑇 = 5 and the distribution of levels
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follows Poisson(1.5), which is an empirically regular prior according to Camerer,
Ho, and Chong (2004).

The DCH stopping periods can be solved according to Proposition 4.4 and are
plotted in Figure 4.2. From the figure, we can find that DCH predicts it is possible
for strategic players to choose any stopping period in {2, 3, 4, 5, 6}, depending on
the parameters 𝛼̄ and 𝛿. For instance, level 2 players will claim in period 2 (red
area) if and only if

𝛼̄ ≥

(
1
2 − 1

4𝛿
)
𝑝0(

1
2 − 1

4𝛿
)
𝑝0 + (1 − 𝛿)𝑝1

=

(
1
2 − 1

4𝛿
)
𝑒−1.5(

1
2 − 1

4𝛿
)
𝑒−1.5 + (1 − 𝛿)1.5𝑒−1.5

=
2 − 𝛿

8 − 7𝛿
.

In addition, DCH predicts the comparative statics that the optimal stopping period is
weakly decreasing in 𝛼̄ and weakly increasing in 𝛿 for any level 𝑘 ≥ 2. The intuition
is that when 𝛼̄ is larger or 𝛿 is smaller, waiting becomes more costly, which causes
the players to claim earlier with a less certain belief about their own face type.
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Figure 4.2: DCH stopping periods in sequential dirty-faces games for level 2 (left)
and level ∞ players (right) as 𝑥−𝑖 = 𝑋 where 𝑇 = 5 and the distribution of levels
follows Poisson(1.5).

4.5.2 DCH Solution for the Simultaneous Dirty-Faces Games
In contrast, the strategically equivalent simultaneous dirty-faces game is essentially
a one-period game where players simultaneously choose an action from the set
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𝑆 = {1, . . . , 𝑇 + 1}. Action 𝑡 ≤ 𝑇 represents the plan to wait from period 1 to 𝑡 − 1
and claim in period 𝑡. Action 𝑇 + 1 is the plan to always wait. In the simultaneous
dirty-faces game, a mixed strategy for player 𝑖 is a mapping from the observed face
type (𝑥−𝑖 ∈ {𝑂, 𝑋}) to a probability distribution over the action set. The mixed
strategy is denoted by

𝜎̃𝑖 : {𝑂, 𝑋} → Δ(𝑆).

Suppose (𝑠𝑖, 𝑠−𝑖) is the action profile. If 𝑠𝑖 ≤ 𝑠−𝑖, then the payoff for player 𝑖 is
computed as the case where player 𝑖 claims in period 𝑠𝑖; if 𝑠𝑖 > 𝑠−𝑖, then player 𝑖’s
payoff is 0.

The DCH solution for one-stage games coincides with the standard CH solution.
For the sake of simplicity, I again assume that each player’s level is i.i.d. drawn
from the distribution 𝑝 = (𝑝𝑘 )∞𝑘=0 where 𝑝𝑘 > 0 for all 𝑘 . Level 0 players will
uniformly randomize, regardless of what they observe, so 𝜎̃0

𝑖
(𝑥−𝑖) = 1

𝑇+1 for all
𝑖, 𝑥−𝑖. Since level 𝑘 ≥ 1 players will generically choose pure strategies, I slightly
abuse the notation to use 𝜎̃𝑘

𝑖
(𝑥−𝑖) to denote the pure strategies.22

Proposition 4.5 is parallel to Proposition 4.4 that characterizes the DCH solution
for the simultaneous dirty-faces games. The intuition is similar to the analysis of
sequential dirty-faces games. When observing a clean face, players can figure out
their face types immediately. Hence, they will choose the strictly dominant strategy
𝜎̃𝑘
𝑖
(𝑂) = 1 for all 𝑘 ≥ 1. On the other hand, when observing a dirty face, players

have to make hypothetical inferences about their face types and the other player’s
level of sophistication.

Proposition 4.5. For any simultaneous two-person dirty-faces game, the level-
dependent strategy profile of the DCH solution satisfies that for any 𝑖 ∈ 𝑁 ,

1. 𝜎̃𝑘
𝑖
(𝑂) = 1 for any 𝑘 ≥ 1.

2. 𝜎̃1
𝑖
(𝑋) = 𝑇 + 1. Moreover, for any 𝑘 ≥ 2,

(1) 𝜎̃𝑘
𝑖
(𝑋) ≥ 2,

22Specifically, for any 𝑡 ∈ {1, 2, . . . , 𝑇, 𝑇 + 1}, we use 𝜎̃𝑘
𝑖
(𝑥−𝑖) = 𝑡 to denote the degenerated

distribution:
𝜎̃𝑘𝑖 (𝑥−𝑖) (𝑡) = 1, and 𝜎̃𝑘𝑖 (𝑥−𝑖) (𝑡′) = 0 ∀ 𝑡′ ≠ 𝑡.
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(2) for any 2 ≤ 𝑡 ≤ 𝑇 − 1, 𝜎̃𝑘
𝑖
(𝑋) ≤ 𝑡 if and only if

𝛼̄ ≥
[
𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)∑𝑘−1

𝑗=1 𝑝 𝑗
,

(3) 𝜎̃𝑘
𝑖
(𝑋) ≤ 𝑇 if and only if

𝛼̄ ≥
2
𝑇+1 𝑝0

2
𝑇+1 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

.

Proof: See Appendix D. ■

The characterization is similar to Proposition 4.4. When seeing a dirty face, strategic
players will not choose 1, i.e., wait in period 1. Instead, they will claim in period 𝑡
if and only if the reward 𝛼̄ is sufficiently high or the discount rate 𝛿 is low enough.
However, the critical level of 𝛼̄ is different, indicating a violation of invariance under
strategic equivalence. Although DCH makes different quantitative predictions in
the sequential and simultaneous dirty-faces games, it makes a similar qualitative
prediction that higher-level players tend to claim earlier than lower-level players.
This is proven in Corollary 4.2.

Corollary 4.2. For any simultaneous two-person dirty-faces game, the DCH level-
dependent strategy profile 𝜎̃ satisfies for any 𝑖 ∈ 𝑁 and any 𝑘 ≥ 2, 𝜎̃𝑘

𝑖
(𝑋) is weakly

decreasing in 𝑘 .

Proof: See Appendix D. ■

To conclude, I illustrate the DCH strategies for the simultaneous dirty-faces games
of level 2 and level infinity players when seeing a dirty face, i.e., 𝜎̃2

𝑖
(𝑋) and 𝜎̃∞

𝑖
(𝑋),

with 𝑇 = 5 and the prior distribution of levels being Poisson(1.5). The DCH
strategies can be solved by Proposition 4.5 and plotted in the unit square on the
(𝛿, 𝛼̄)-plane.

From Figure 4.3, we can observe that the DCH solution for the simultaneous games
is similar to the DCH solution for the sequential games. In both games, DCH
predicts that the stopping periods are weakly decreasing in 𝛼̄ and weakly increasing
in 𝛿 for any level 𝑘 ≥ 2, although the boundaries of the areas are different.
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Figure 4.3: DCH stopping periods in simultaneous dirty-faces games for level 2
(left) and level ∞ players (right) as 𝑥−𝑖 = 𝑋 where 𝑇 = 5, and the distribution of
levels follows Poisson(1.5).

4.5.3 The Violation of Invariance under Strategic Equivalence
As discussed in the previous sections, DCH predicts that players might behave
differently in two strategically equivalent dirty-faces games. This result is driven by
the fact that when the cardinalities of the action sets differ, the behavioral strategies
of level 0 players may not be outcome-equivalent. This initiates a chain reaction
that affects the behavior of higher-level players because the DCH solution is solved
recursively. In this subsection, I will examine how changes in the cardinalities of
the action sets influence behavior in dirty-faces games.

In the sequential game, the cardinality of each player 𝑖’s action set (conditional on
each 𝑥−𝑖) is 2𝑇 , while in the simultaneous game, the cardinality is 𝑇 + 1. This
difference in cardinalities leads to different behavior among level 0 players. For
example, in the first period, level 0 players will claim to have a dirty face with a
probability of 1/2 in the sequential game, while in the simultaneous game, they will
claim with a probability of 1/(𝑇 +1). Although this difference does not impact level
1 players, it significantly influences how level 2 (and more sophisticated) players
update their beliefs regarding their own face types.

Remark 4.2. The standard CH solutions for the sequential and simultaneous dirty-
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faces games coincide. Therefore, the difference of DCH between two versions of the
game can alternatively be interpreted as the difference between the DCH and the
standard CH on sequential games.

To characterize this distinction, we can begin by partitioning the set of dirty-faces
games based on the stopping rules of each level in the sequential games, i.e., 𝜎̂𝑘

𝑖
(𝑋).

Specifically, for any level 𝑘 ≥ 1, we define E𝑘𝑡 as the set of games in which level 𝑘
players will claim no later than period 𝑡 when they observe a dirty face.23 That is,

(𝛿, 𝛼̄) ∈ E𝑘𝑡 ⇐⇒ 𝜎̂𝑘𝑖 (𝑋) ≤ 𝑡 under (𝛿, 𝛼̄).

The partition is visualized in Figure 4.2. For instance, E2
2 corresponds to the

“2 (EQ)” area in the left panel.24 Second, the set of dirty-faces games can be
alternatively partitioned by the stopping rules of each level in the simultaneous
games, i.e., 𝜎̃𝑘

𝑖
(𝑋). For any 𝑡 ≥ 1 and 𝑘 ≥ 1, let S𝑘

𝑡 be the set of dirty-faces games
where 𝜎̃𝑘

𝑖
(𝑋) ≤ 𝑡, which is illustrated in Figure 4.3. Proposition 4.6 compares the

DCH solutions in different versions of the game with the set inclusions of E𝑘𝑡 and
S𝑘
𝑡 .

Proposition 4.6. Consider any 𝑇 ≥ 2 and the set of two-person dirty-faces games.
For any level 𝑘 ≥ 2, the following relationships hold.

1. S𝑘
𝑇
⊂ E𝑘

𝑇
.

2. S𝑘
𝑡 ⊂ E𝑘𝑡 for any [ln(𝑇 + 1)/ln 2] ≤ 𝑡 ≤ 𝑇 − 1.

3. There is no set inclusion relationship between S𝑘
𝑡 and E𝑘𝑡 for 2 ≤ 𝑡 <

[ln(𝑇 + 1)/ln 2]. Moreover, for any 𝑖 ∈ 𝑁 , there exists 𝛿(𝑇, 𝑡) ∈ (0, 1)
such that 𝑡 = 𝜎̂𝑘

𝑖
(𝑋) ≤ 𝜎̃𝑘

𝑖
(𝑋) if 𝛿 ≤ 𝛿(𝑇, 𝑡) and 𝜎̂𝑘

𝑖
(𝑋) ≥ 𝜎̃𝑘

𝑖
(𝑋) = 𝑡 if

𝛿 > 𝛿(𝑇, 𝑡). Specifically,

𝛿(𝑇, 𝑡) = (2𝑡 − 2) (𝑇 + 1) − (𝑡 − 1)2𝑡
(2𝑡 − 1) (𝑇 + 1) − 𝑡2𝑡 .

Proof: See Appendix D. ■
23Therefore, Corollary 4.1 implies for level 1 players, E1

𝑡 = ∅ for all 𝑡 = 1, . . . , 𝑇 and E1
𝑇+1 =

(0, 1)2; for higher-level players, E𝑘1 = ∅ for all 𝑘 ≥ 1.
24Formally, when the distribution of levels follows Poisson(1.5), E2

2 is characterized by: (𝛿, 𝛼̄) ∈
E2

2 ⇐⇒ (2 − 𝛿)/(8 − 7𝛿) ≤ 𝛼̄ < 1, and 0 < 𝛿 < 1.
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Proposition 4.6 formally compares the DCH solutions of the sequential games and
the simultaneous games. First, S𝑘

𝑇
⊂ E𝑘

𝑇
for any 𝑘 ≥ 2 implies that when seeing a

dirty face, players are more likely to claim before the game ends in the sequential
game than the simultaneous game. Yet this does not imply players will always
claim earlier in the sequential games than the simultaneous games. The second
and third results show that when the horizon is long enough and the players are
sufficiently patient, i.e., 𝛿 > 𝛿(𝑇, 𝑡), it is possible for players to claim later in the
sequential games. More surprisingly, the cutoff 𝛿(𝑇, 𝑡) is independent of the level
of sophistication and the prior distributions of levels, suggesting that the differences
between the two versions have the same impact on each level of players.
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Figure 4.4: The set of dirty-faces games where 𝜎̃𝑘
𝑖
(𝑋) = 2 or 𝜎̂𝑘

𝑖
(𝑋) = 2 for

𝑘 = 2 (left) and 𝑘 = ∞ (right) where 𝑇 = 5 and the distribution of levels follows
Poisson(1.5).

To illustrate this proposition, consider the case where 𝑇 = 5 and the distribution of
levels follows Poisson(1.5). By Proposition 4.6, we can find that S𝑘

𝑡 ⊂ E𝑘𝑡 for any
𝑘 ≥ 2 and 3 ≤ 𝑡 ≤ 5, while there is no set inclusion relation between S𝑘

2 and E𝑘2 .
These two sets for 𝑘 = 2 and ∞ are plotted in Figure 4.4. By Proposition 4.4 and
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Proposition 4.5, E2
2 and S2

2 can be characterized by

(𝛿, 𝛼̄) ∈ E2
2 ⇐⇒ 𝛼̄ ≥

(
1
2 − 1

4𝛿
)
𝑒−1.5(

1
2 − 1

4𝛿
)
𝑒−1.5 + (1 − 𝛿)1.5𝑒−1.5

=
2 − 𝛿

8 − 7𝛿
,

(𝛿, 𝛼̄) ∈ S2
2 ⇐⇒ 𝛼̄ ≥

(
5
6 − 2

3𝛿
)
𝑒−1.5(

5
6 − 2

3𝛿
)
𝑒−1.5 + (1 − 𝛿)1.5𝑒−1.5

=
5 − 4𝛿

14 − 13𝛿
.

The boundaries of E2
2 and S2

2 intersect at 𝛿 = 0.8, suggesting that when 𝛿 < 0.8,
level 2 players tend to claim earlier in the sequential games, and vice versa. By
similar calculations, it can be shown that the boundaries of E∞

2 andS∞
2 also intersect

at 𝛿 = 0.8, illustrating that the cutoff 𝛿(5, 2) is the same for every level.

Lastly, as the maximum horizon 𝑇 increases, the cardinalities of the action sets in
the sequential and simultaneous games become increasingly distinct. Consequently,
the behavior of level 0 players diverges even further between the sequential and
simultaneous games. As 𝑇 → ∞, Proposition 4.6 implies for any period 𝑡 ≥ 2
and level 𝑘 ≥ 2, S𝑘

𝑡 and E𝑘𝑡 do not have set inclusion relationship, suggesting that
higher-level players do not definitely learn their face types earlier in one game or
another. Their behavior depends on the parameters (𝛿, 𝛼̄). The result is formally
presented in Corollary 4.3.

Corollary 4.3. When 𝑇 → ∞, for any 𝑡 ≥ 2 and 𝑘 ≥ 2, there is no set inclusion
relationship between S𝑘

𝑡 and E𝑘𝑡 . Specifically, if 𝛿 < 𝛿
∗(𝑡), then 𝑡 = 𝜎̂𝑘

𝑖
(𝑋) ≤

𝜎̃𝑘
𝑖
(𝑋); and if 𝛿 > 𝛿∗(𝑡), then 𝜎̂𝑘

𝑖
(𝑋) ≥ 𝜎̃𝑘

𝑖
(𝑋) = 𝑡 where

𝛿
∗(𝑡) = [2𝑡 − 2]/[2𝑡 − 1] .

Proof: See Appendix D. ■

When there are more than two players, DCH predicts a bigger difference between
the two versions in the sense that the boundaries between the sequential and simul-
taneous games are further apart. For the purpose of illustration, in Appendix D,
I characterize the DCH solutions of three-person three-period games and find that
players tend to learn their face types earlier in the sequential games.

4.6 Experimental Design, Hypotheses and Procedures
As demonstrated in the previous section, DCH makes various predictions about how
people’s behavior would vary with the timing (sequential vs. simultaneous) and the



135

payoff structures of the dirty-faces games. To test these predictions, I conduct
a laboratory experiment on two-person dirty-faces games tailored to evaluate the
DCH solution.

Specifically, the primary goal of the experiment is to measure the violation of
invariance under strategic equivalence and understand how it interacts with the
payoff structures. Furthermore, the variation of the payoff structures provides the
opportunity to explore the sensitivity of behavior to payoffs in both the sequential
and simultaneous versions of the game. Lastly, the stylized facts found in this
experiment will help identify the strengths and the weaknesses of the DCH solution
and alternative theories.

The theoretical analysis of DCH suggests that the main challenge in designing
the experiment lies in the fact that the magnitude of the difference between the
two versions depends on the payoff structure and the distribution of levels, which
remains unknown before the experiment is run. To address this, I first estimate
the distribution of levels using the dirty-faces game experimental data collected by
Bayer and Chan (2007), and then choose the game parameters to maximize the
diagnosticity based on the calibration results.

4.6.1 Calibration
The dirty-faces game experiment by Bayer and Chan (2007) is implemented under
the direct response method with two treatments: two-person two-period games and
three-person three-period games. In both treatments, the prior probability of having
a dirty face is 2/3, the discount factor 𝛿 is 4/5, and the reward 𝛼 is 1/4.25 I will
focus on the data from two-person games because this environment is the closest to
my experiment.26 A detailed analysis of the data can be found in Appendix D.

There are 42 subjects (from two sessions) in the two-person treatment of Bayer and
Chan (2007). At the beginning of the experiment, the computer randomly matches
two subjects into a group. Subjects play 14 rounds of dirty-faces games against
the same opponent, with the face types in each round being independently drawn
according to the prior probabilities. In each round, an announcement is made on

25In Bayer and Chan (2007), the payoff of correctly claiming a dirty face is 100 ECU (experimental
currency unit) and the penalty of wrongly claiming a dirty face is −400 ECU. Therefore, the relative
reward of correctly claiming a dirty face 𝛼 = 1/4 can be obtained by normalizing the payoffs.

26Weber (2001)’s dataset consists of two experiments where experiment 2 is comparable with
Bayer and Chan (2007)’s design. However, there are much fewer observations in this experiment
than Bayer and Chan (2007) and there is no discount factor, making this dataset less ideal for the
purpose of calibration.
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the screen to both subjects if there is at least one person having a dirty face (type
𝑋). At the end of each round, subjects are told their own payoffs from that round
and they are paid with the sum of the earnings of all 14 rounds.

In the calibration exercise, I exclude the data from the situation where there is no
public announcement27, resulting in 690 observations at the information set level.
Following previous notations, I use (𝑡, 𝑥−𝑖) to denote the situation where subject 𝑖
sees type 𝑥−𝑖 at period 𝑡. Table 4.1 reports the empirical frequency of choosing
claim at each information set, revealing that the behavior is inconsistent with the
prediction of standard equilibrium theory, particularly when observing a dirty face.

Following the literature on the cognitive hierarchy theory, I assume the prior dis-
tribution of levels follows a Poisson distribution. In the Poisson-DCH model, each
individual 𝑖’s level is identically and independently drawn from (𝑝𝑘 )∞𝑘=0 where
𝑝𝑘 = 𝑒−𝜏𝜏𝑘/𝑘! for all 𝑘 ∈ N0 and 𝜏 > 0. Once the distribution of levels is speci-
fied, DCH makes a precise prediction about the aggregate choice frequency at each
information set.28 The rationale for estimating the Poisson-DCH model is to find 𝜏,
estimated using the maximum likelihood method, which minimizes the difference
between the choice frequencies predicted by DCH and the empirical frequencies.
See Appendix D for the details on the construction of the likelihood function.

It is worth remarking that since 𝜏 is the mean (and variance) of the Poisson dis-
tribution, the economic interpretation of 𝜏 is as the average level of sophistication
among the population. Additionally, another property of the Poisson-DCH model is
that as 𝜏 → ∞, the aggregate choice frequencies predicted by DCH converge to the
equilibrium predictions. This provides a second interpretation of 𝜏: the higher the
value of 𝜏, the closer the predictions are to the equilibrium. See Proposition D.1 in
Appendix D for the proof.

Table 4.1 reports the estimation results of the Poisson-DCH model. Additionally,
I estimate the standard Poisson-CH model by Camerer, Ho, and Chong (2004)

27If there is no public announcement, it is common knowledge that both subjects’ faces are clean.
28The aggregate choice frequency can be constructed as follows. Consider any game, any player

𝑖, any information set I𝑖 , and any available action 𝑐𝑖 at this information set. Let 𝑃𝑘 (𝑐𝑖 |I𝑖) represent
the probability of level 𝑘 player 𝑖 choosing 𝑐𝑖 at I𝑖 . Additionally, let 𝑓 (𝑘 |I𝑖 , 𝜏) be the posterior
distribution of levels at information set I𝑖 . The choice frequency predicted by DCH for action
𝑐𝑖 at information set I𝑖 is the aggregation of choice probabilities from all levels, weighted by the
proportion 𝑓 (𝑘 |I𝑖 , 𝜏):

D(𝑐𝑖 |I𝑖, 𝜏) ≡
∞∑︁
𝑘=0

𝑓 (𝑘 |I𝑖 , 𝜏)𝑃𝑘 (𝑐𝑖 |I𝑖 , 𝜏).
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Table 4.1: Estimation Results for Two-Person Dirty-Faces Games

(𝑡, 𝑥−𝑖) 𝑁 𝜎∗
𝑖
(𝑡, 𝑥−𝑖) 𝜎̂𝑖 (𝑡, 𝑥−𝑖) DCH

Standard
CH

𝜎𝑖 (𝑡, 𝑥−𝑖) (1, 𝑂) 123 1.000 0.943 0.859 0.791
(2, 𝑂) 6 1.000 0.500 0.500 0.500
(1, 𝑋) 391 0.000 0.210 0.141 0.104
(2, 𝑋) 170 1.000 0.618 0.503 0.477

Parameter 𝜏 1.269 1.161
S.E. (0.090) (0.095)

Fitness LL -360.75 -381.46
AIC 723.50 764.91
BIC 728.04 769.45

Vuong Test 6.517
p-value < 0.001
Note: The equilibrium and the empirical frequencies of 𝐶 at each information set are
denoted as 𝜎∗

𝑖
and 𝜎̂𝑖 , respectively. There are 294 games (rounds × groups).

as a benchmark.29 Comparing the fitness of these models, I find that the log-
likelihood of DCH is significantly higher than standard CH (Vuong test p-value
< 0.001), suggesting that DCH outperforms the standard CH in capturing the
empirical pattern. Besides, the estimated 𝜏 of Poisson-DCH falls within the range
of commonly observed 𝜏 in various environments, with a value of 1.269. In the
following, I will design the experiment by treating Poisson(1.269) as the true prior
distribution of levels.

4.6.2 Games and Hypotheses
In this experiment, I employ a between-subject design where each participant is
assigned to either the “sequential treatment” (using the direct-response method) or
the “simultaneous treatment” (using the strategy method). To observe potential
heterogeneity in stopping periods, I set the maximum length to be 𝑇 = 5 for both
treatments.

Assessing whether the difference between the two treatments is challenging because
level 1 players—the most common types of players according to the calibration

29The logit-AQRE proposed by McKelvey and Palfrey (1998) is also estimated. The likelihood
scores between Poisson-DCH and logit-AQRE are not significantly different. See Appendix D for
the details.
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result—will behave the same under the two treatments. When observing a dirty face,
they will always wait in both the sequential and simultaneous games. Therefore, to
diagnose the predictivity of DCH, the game parameters are chosen to make level 2
players behave differently under different representations. The behavioral change
of level 2 players (around 22.6% based on the calibration) is anticipated to yield a
sizable treatment effect.
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Figure 4.5: (Left) The set of dirty-faces games where at information set (2, 𝑋), level
2 players behave differently in the two versions when 𝑇 = 5 and the distribution
of levels follows Poisson(1.269). (Right) The two diagnostic games and the four
control games in the experiment.

According to Proposition 4.6, DCH predicts the existence of a set of dirty-faces
games in which level 2 players exhibit different behavior in the sequential and
simultaneous games at information set (2, 𝑋). The left panel of Figure 4.5 illustrates
this set of games when the distribution of levels follows Poisson(1.269). From this
figure, we can observe the following:

(1) For 𝛿 < 0.8, there is a range of games (red area) where level 2 players choose
to claim at (2, 𝑋) in the sequential games but not in the simultaneous games.

(2) For 𝛿 = 0.8, level 2 (and more sophisticated) players behave the same in the
sequential and simultaneous games.
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(3) For 𝛿 > 0.8, there is a range of games (blue area) where level 2 players choose
to claim at (2, 𝑋) in the simultaneous games but not in the sequential games.

Guided by DCH, I consider the following six dirty-faces games (𝛿, 𝛼̄) as depicted
in the right panel of Figure 4.5.

The set of games consists of two diagnostic games where (𝛿, 𝛼̄) = (0.6, 0.45) and
(0.95, 0.8) and four control games where (𝛿, 𝛼̄) = (0.6, 0.8), (0.8, 0.45), (0.8, 0.8)
and (0.95, 0.45). DCH predicts in the diagnostic games, level 2 players will behave
differently in two treatments, but not in the control games. This variation allows
us to examine the interplay between the violation of invariance under strategic
equivalence varies with the payoff structures.

DCH makes several predictions about the comparative statics. First, by Proposition
4.4 and 4.5, DCH predicts that no matter in sequential games or in simultaneous
games, when observing a dirty face, players will choose to claim earlier when 𝛿 is
smaller or 𝛼̄ is higher. An implication is that in both treatments, at information set
(2, 𝑋), players are more likely to claim when 𝛿 decreases or 𝛼̄ increases.

Hypothesis 4.1. In both the sequential and simultaneous treatments, at information
set (2, 𝑋), the empirical frequency of choosing 𝐶 is higher when 𝛿 decreases or 𝛼̄
increases.

Besides, DCH makes a specific prediction regarding the relative magnitude of the
treatment effect among these six games. First, in the DCH solution, part of the
treatment effect is attributed to the difference in level 0 players’ strategies between
the two treatments. In the sequential games, level 0 players uniformly randomize
at every information set, resulting in a conditional probability to claim at (2, 𝑋) is
1/2. Yet in the simultaneous games, level 0 players uniformly randomize across
all reduced contingent strategies, leading to a conditional probability to claim at
(2, 𝑋) is 1/5. In other words, the difference in level 0 players’ strategies generates a
mechanical effect that increases the likelihood of players choosing to claim at (2, 𝑋)
in the sequential games. Because in all four control games, strategic players behave
the same at (2, 𝑋) under two representations, DCH predicts the magnitude of the
violation of invariance under strategic equivalence will be similar in the control
games. Particularly, in the game (𝛿, 𝛼̄), the treatment effect can be quantified by
computing the difference between the conditional probabilities of choosing to claim
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at (2, 𝑋) in the sequential version and the simultaneous version. This difference is
denoted by Δ(𝛿, 𝛼̄).30

Second, in the game where (𝛿, 𝛼̄) = (0.6, 0.45), level 2 players will claim at (2, 𝑋)
in the sequential version but not in the simultaneous version. As a result, DCH
predicts that the difference between the two treatments in this diagnostic game will
be stronger compared to the effect observed in the control games. On the contrary,
in the game where (𝛿, 𝛼̄) = (0.95, 0.8), level 2 players will claim at (2, 𝑋) in the
simultaneous version but not in the sequential version. This offsets the mechanical
effect caused by level 0 players. The expected differences based on the calibration
results are summarized below.

Hypothesis 4.2. Based on the calibration results, the expected differences are:

Δ(0.6, 0.45)

=

31.15%

> Δ(0.6, 0.8)

=

7.4%

= Δ(0.8, 0.8)

=

7.4%

≈ Δ(0.8, 0.45)

=
4.82%

≈ Δ(0.9, 0.45)

=

3.26%

> Δ(0.95, 0.8)

=

−18.93%

.

4.6.3 Experimental Procedures
The experimental sessions were conducted at the Experimental Social Science Labo-
ratory (ESSL) located on the campus of the University of California, Irvine. Subjects
were recruited from the general undergraduate population, from all majors. Experi-
ments were conducted through oTree software (D. L. Chen, Schonger, and Wickens,
2016). I conducted 10 sessions with a total of 118 subjects. No subject participated
in more than one session. Each session lasted around 45 minutes, and the average
earnings was $33.36, including the $10 show-up fee (max $52 and min $10).

Subjects were given instructions at the beginning and the instructions were read
aloud. Subjects were allowed to ask any questions during the whole instruction
process. The questions were answered so that every one can hear. Afterwards, they
had to answer several comprehension questions on the computer screen in order to
proceed. The instructions for both the sequential treatment and the simultaneous
treatments are identical except for the instructions about the choices and the feedback
after each game. The instructions for both treatments can be found in Appendix D.

30In the sequential version, the observed conditional probability of claiming at (2, 𝑋) is simply the
empirical 𝜎𝑖 (2, 𝑋). For the simultaneous version, the conditional probability can be computed from
the empirical 𝜎̃𝑖 (𝑋) by 𝜎̃𝑖 (2, 𝑋) ≡ Pr(𝜎̃𝑖 (𝑋) = 2)/∑6

𝑡=2 Pr(𝜎̃𝑖 (𝑋) = 𝑡). Therefore, the treatment
effect is quantified by the (empirical) difference between 𝜎𝑖 (2, 𝑋) and 𝜎̃𝑖 (2, 𝑋), i.e., Δ ≡ 𝜎𝑖 (2, 𝑋) −
𝜎̃𝑖 (2, 𝑋).
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Table 4.2: List of Game Parameters Implemented in the Experiment

Game Parameters Normalized Probabilities
𝛿 𝛼 𝑝 𝛼̄ one X, one O two X

Diagnostic Game 1 0.60 0.225 0.67 0.45 0.25 0.50
Diagnostic Game 1’ 0.60 0.150 0.75 0.45 0.20 0.60
Diagnostic Game 2 0.95 0.400 0.67 0.80 0.25 0.50
Diagnostic Game 2’ 0.95 0.267 0.75 0.80 0.20 0.60

Control Game 1 0.60 0.400 0.67 0.80 0.25 0.50
Control Game 1’ 0.60 0.267 0.75 0.80 0.20 0.60
Control Game 2 0.80 0.225 0.67 0.45 0.25 0.50
Control Game 2’ 0.80 0.150 0.75 0.45 0.20 0.60
Control Game 3 0.80 0.400 0.67 0.80 0.25 0.50
Control Game 3’ 0.80 0.267 0.75 0.80 0.20 0.60
Control Game 4 0.95 0.225 0.67 0.45 0.25 0.50
Control Game 4’ 0.95 0.150 0.75 0.45 0.20 0.60

Each session comprised 12 games with different (𝛿, 𝛼, 𝑝) configurations, as sum-
marized in Table 4.2.31 The sequence of these games was randomized, and in each
game, subjects were randomly paired into groups. The draws for player types were
independent, and the protocol was common knowledge. To prevent any framing
effect, the “dirty face” and the “clean face” were labelled as “red” and “white” in
the instruction, respectively. Besides, the actions were labelled as “I’m red” and
“wait.” Finally, to avoid situations where both faces are clean, the probabilities were
normalized to ensure that having two clean faces was impossible.32

After observing the other’s face type, subjects were asked to simultaneously choose
their actions. In the sequential treatment, subjects simultaneously chose either “I’m
red” or “wait.” If both subjects chose to wait, the game would proceed to the next
period and they were asked to choose again. The game ended after the period where
some one chose “I’m red” or after period 5. On the other hand, in the simultaneous
treatment, subjects simultaneously chose one of the six plans (the period to choose
“I’m red” or always wait) and the plans were implemented by the computer. At the
end of each match, the subjects were informed of their own payoffs, the true types

31Notice that the parameters are selected such that each (𝛿, 𝛼̄) is played twice.
32For example, in the game with 𝑝 = 2/3, subjects were informed that the probability of one dirty

face and one clean face was 1/4, and the probability of two dirty faces was 1/2. Therefore, if the
other’s face was clean, the subject could infer that his own face was dirty. Conversely, if the other’s
face was dirty, the subject’s belief about his own face being dirty was 2/3.
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and the histories of the game.33

Lastly, subjects were paid in cash based on their total points earned from the
12 games. The highest possible earnings of each game was 100 points.34 The
conversion rate was two US dollars for every 100 points. Following previous dirty
face game experiments (Weber, 2001; Bayer and Chan, 2007), each subject was
provided an endowment of 900 points at the beginning of the experiment to prevent
early bankruptcy, and they would only receive the show-up fee if the total point is
negative.

4.7 Experimental Results
4.7.1 Aggregate-Level Analysis
The data includes two treatments (sequential and simultaneous) with 60 subjects
in the sequential treatment and 58 subjects in the simultaneous treatment. Each
subject participates in 12 games, resulting in 1024 observations for the sequential
treatment and 1979 observations for the simultaneous treatment at the information
set level.35 Figure 4.6 provides a comprehensive overview of the data by plotting
the distribution of stopping periods in both treatments, aggregating across all payoff
configurations. This analysis considers scenarios where players encounter either a
clean face or a dirty face.36

A few key observations emerge from this figure. First, when players see a clean
face, their behavior is consistent across both treatments. A majority of players seem
to understand that their face is dirty and claim in period 1. Second, when players
encounter a dirty face, it is evident that the distribution of stopping periods in the
simultaneous treatment first-order stochastically dominates the distribution in the
sequential treatment, implying that players are more inclined to claim earlier in the
sequential treatment. Furthermore, a striking pattern in the right panel of Figure

33To control for the amount of feedback in both treatments, in the simultaneous treatment, subjects
would learn the other’s exact plan if the other chose “I’m red” earlier or at the same period; otherwise,
they would be told that the other subject was later than you.

34That is, a correct claim in the first period would yield 100 points, while an incorrect claim in
the first period would result in a penalty of 100/𝛼 points.

35For the simultaneous treatment, the choice data at the information set level are implied by the
contingent strategies. For instance, choosing the contingent strategy “claim at period 4” implies that
the subject will wait from period 1 to period 3 and claim in period 4.

36In the sequential treatment, the cumulative density of stopping periods is derived from the
choice probability at each information set. For example, the probability of stopping in period 1
corresponds to the empirical frequency of choosing 𝐶. Similarly, the probability of stopping in
period 2 is the product of the empirical frequency of choosing 𝑊 in period 1 and the empirical
frequency of choosing 𝐶 in period 2. The probabilities for other stopping periods are calculated in a
similar manner.
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4.6 is the prevalence of the “always wait” strategy in the simultaneous treatment,
chosen by approximately 36.72% of participants. This is in stark contrast to the
sequential treatment, where the proportion of participants employing the “always
wait” strategy is only about 13.88%.
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Figure 4.6: The CDFs of the stopping periods when players see either a clean face
(left panel) or a dirty face (right panel). The blue solid and the red dashed are the
distributions in the sequential and the simultaneous treatments, respectively.

Focusing on data from the first two periods, Figure 4.7 displays the empirical
frequencies of choosing𝐶 at each information set during the first two periods. From
the figure, it’s evident that at information set (1, 𝑂), the behavior in the sequential
treatment is not significantly different from the simultaneous treatment (Ranksum
test p-value = 0.4423). In both treatments, the frequencies of 𝐶 exceed 80%,
indicating that the majority of subjects understand that choosing𝐶 in the first period
is a strictly dominant strategy.

Despite the limited number of observations at information set (2, 𝑂), it provides
valuable insights into the behavioral strategies of level 0 players. This is because,
from the perspective of DCH, information set (2, 𝑂) is reached only when a player
is level 0. As depicted in Figure 4.7, the frequencies of 𝐶 in the sequential and
simultaneous treatments are 43.8% and 25%, respectively.37 These results align
with DCH, which predicts that the frequencies of 𝐶 in the sequential and simulta-
neous treatments should be 50% and 20%, respectively. This suggests that uniform
randomization is a reasonable specification for level 0 players’ behavior.

37A similar pattern is also found in Bayer and Chan (2007). In their dataset, the frequency of
choosing 𝐶 at information set (2, 𝑂) is exactly 50%, which coincides with the prediction of DCH.
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 Ranksum test p-value = 0.4423
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Figure 4.7: The empirical frequencies of 𝐶 and 95% CI at each information set
in period 1 and 2, aggregating across all configurations. Each panel represents an
information set. The blue bars are the frequencies of the sequential treatment and
the red bars are the frequencies of the simultaneous treatment.

On the other hand, when players see a dirty face, they need to make inferences about
their own faces either from the opponent’s actions or hypothetically. However,
regardless of the treatment, claiming in period 1 is strictly dominated. Comparing
the empirical frequencies of choosing 𝐶 at information set (1, 𝑋), we find that
players in the simultaneous treatment are less likely to choose 𝐶 (Ranksum test
p-value = 0.0641). This observation is consistent with DCH, as level 0 players
in the simultaneous treatment are less likely to claim at information set (1, 𝑋).
Furthermore, a strong treatment effect is detected at period 2. The frequency of
choosing𝐶 at information set (2, 𝑋) in the sequential treatment is 60.00%, while the
frequency in the simultaneous treatment is 22.28% (Ranksum test p-value< 0.0001).

Result 1. (1) When observing a clean face in both treatments, over 80% of the
subjects choose 𝐶 in period 1, the strictly dominant strategy. Additionally, the
behavior at information set (2, 𝑂) aligns with the prediction of DCH about level 0
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players’ behavior. (2) When players observe a dirty face, a significant difference
emerges: they are more likely to claim at information set (2, 𝑋) in the sequential
treatment. Furthermore, the most prevalent strategy in the simultaneous treatment
when players see a dirty face is to “always wait.”

The supplementary analysis can be found in Appendix D. In the following, I will
focus on information set (2, 𝑋), where a strong treatment effect is found, and I will
test two hypotheses related to the sensitivity of behavior to the payoff structures and
the interplay between the payoff structures and the magnitude of the effect.

4.7.2 The Payoff Effect
Focusing on information set (2, 𝑋), DCH predicts that in both treatments, players’
behavior is sensitive to the payoff configurations. Specifically, DCH predicts that
the empirical frequencies of choosing 𝐶 at information set (2, 𝑋) will exhibit a
monotonic relationship with 𝛿 and 𝛼̄. To test this prediction, I perform Kruskal-
Wallis ranksum tests on the sequential and simultaneous treatments separately.
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Figure 4.8: The empirical frequencies of 𝐶 and 95% CI at information set (2, 𝑋) in
each payoff configuration (𝛿, 𝛼̄). The data from the sequential and the simultaneous
treatments are plotted in the left and the right panel, respectively.

In the sequential treatment, we find that the null hypothesis is marginally rejected
(𝜒2(5) = 9.856, p-value = 0.0794), suggesting that behavior is influenced by vari-
ations in payoff structures. Furthermore, we can observe from the left panel of
Figure 4.8 that the frequency of choosing 𝐶 weakly increases with 𝛼̄ for any 𝛿. This
monotonic pattern aligns with the prediction of DCH.
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Similarly, the null hypothesis is rejected for the simultaneous treatment (𝜒2(5) =

11.831, p-value = 0.0372), indicating that behavior in the simultaneous treatment
significantly varies with the payoff parameters. Once again, we can observe from
Figure 4.8 that for each 𝛿, the frequency of choosing 𝐶 weakly increases with 𝛼̄,
aligning with DCH.

Result 2. The behavior at information set (2, 𝑋) in both treatments significantly
varies with payoffs, aligning with the qualitative predictions of DCH.

4.7.3 The Violation of Invariance under Strategic Equivalence
The behavior in both treatments significantly varies with the payoff structures.
Additionally, the difference in behavior between the two treatments also varies with
the payoff structures. This variability allows us to examine the predictions of DCH.

First, the left panel of Figure 4.9 displays the joint distribution of the empirical
frequencies of choosing 𝐶 at (2, 𝑋) between the two treatments, where each point
represents one payoff configuration. From the figure, we can observe that all six
points are below the 45-degree line, implying that players are more likely to claim
at (2, 𝑋) in the sequential treatment than in the simultaneous treatment, regardless
of the payoff configuration.
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Figure 4.9: (Left) The empirical frequencies of 𝐶 and 95% CI at information set
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Second, for each payoff configuration (𝛿, 𝛼̄), I calculate Δ(𝛿, 𝛼̄), which represents
the difference in the empirical frequencies of choosing 𝐶 at (2, 𝑋) between both
treatments. The results are shown in the right panel of Figure 4.9. Focusing on
the diagnostic game where (𝛿, 𝛼̄) = (0.6, 0.45), we observe a significant treatment
effect with a magnitude of Δ(0.6, 0.45) = 30.77% (95% CI = [15.90%, 45.64%],
p-value = 0.001). This is highly consistent with the prediction of the calibrated
DCH.

Furthermore, when focusing on the four control games, we find that the magni-
tudes of the treatment effects are similar in these games, which aligns with the
qualitative predictions of DCH. However, these magnitudes are much stronger
than the predictions of calibrated DCH, ranging from Δ(0.95, 0.45) = 30.26%
(95% CI = [13.85%, 46.68%], p-value = 0.002) to Δ(0.6, 0.8) = 42.88% (95%
CI = [6.73%, 79.03%], p-value = 0.025). Lastly, in the second diagnostic game
with (𝛿, 𝛼̄) = (0.95, 0.8), DCH predicts a negative treatment effect based on the
calibration results. However, the observed empirical difference for this game is
Δ(0.95, 0.8) = 42.94% (95% CI = [18.17%, 67.71%] and p-value = 0.004), which
is inconsistent with the quantitative prediction of the calibrated DCH.

Result 3. In the diagnostic game with (𝛿, 𝛼̄) = (0.6, 0.45), the frequency of 𝐶 at
information set (2, 𝑋) is 30.77% higher in the sequential treatment compared to
the simultaneous treatment. In the diagnostic game with (𝛿, 𝛼̄) = (0.95, 0.8), the
difference is 42.94%. Furthermore, treatment effects are detected in all control
games, with magnitudes exceeding the predictions of calibrated DCH.

In summary, when analyzing the interplay between the violation of strategic equiv-
alence and payoff structures, we observe that while calibrated DCH captures some
qualitative patterns, the observed magnitudes are significantly larger. This suggests
that the observed behavior might result from both the violation of mutual consistency
and other behavioral biases. To delve deeper into this aspect, in the next subsection,
I will compare DCH with other behavioral models that relax other requirements of
the standard equilibrium theory.

4.7.4 Structural Estimation and Model Comparison
DCH relaxes the requirement of mutual consistency in sequential equilibrium while
still adhering to the requirements of best response and Bayesian inference. Can
the empirical pattern be better explained by relaxing other requirements? To assess
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the relaxation of two other requirements, I estimate the “Quantal Cursed Sequen-
tial Equilibrium (QCSE),”38 which is a hybrid model combining AQRE and CSE,
thereby relaxing the requirements of best response and Bayesian inference.

QCSE assumes that players are unable to fully understand how other players’ actions
depend on their private information.39 In particular, for any strategy profile 𝜎, any
player 𝑖 and any information set I𝑖 = (ℎ𝑡−1, 𝜃𝑖), the average behavioral strategy of
player −𝑖 is

𝜎̄−𝑖
(
𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖

)
=

∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖
(
𝑎𝑡+1
−𝑖 |ℎ𝑡−1, 𝜃′−𝑖

)
.

In QCSE, there is a parameter 𝜒 ∈ [0, 1]. For any 𝜒, 𝜒-cursed player 𝑖 believes the
other players are playing the behavioral strategy:

𝜎
𝜒

−𝑖 (𝑎
𝑡
−𝑖 |ℎ𝑡−1, 𝜃) = 𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖),

which is a linear combination between the average behavioral strategy (with 𝜒

weight) and the true behavioral strategy (with 1 − 𝜒 weight). When 𝜒 = 0, players
have correct perceptions about others’ behavioral strategies. On the other extreme,
when 𝜒 = 1, players fail to understand the correlation between others’ actions and
types. As the game progresses, players update their beliefs via Bayes’ rule, believing
that other players are using 𝜎𝜒−𝑖 instead of the true behavioral strategy 𝜎−𝑖. As shown
by Fong, Lin, and Palfrey (2023b), at any history ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡), player 𝑖’s 𝜒-cursed
belief is

𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝜇𝜒𝑖 (𝜃−𝑖 |ℎ

𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑

𝜃′−𝑖
𝜇
𝜒

𝑖
(𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
,

which is a linear combination between the belief from the previous period (with 𝜒
weight) and the Bayesian belief (with 1 − 𝜒 weight).

Moreover, in QCSE, players make quantal responses rather than best responses.
In particular, players make make logit quantal responses, and the precision is de-
termined by a parameter 𝜆 ∈ [0,∞). Consider any information set I𝑖. For any
𝑎𝑖 ∈ 𝐴𝑖 (I𝑖), let 𝑢̄𝑎𝑖 denote the continuation value of 𝑎𝑖 in QCSE. The choice proba-
bility of 𝑎𝑖 is given by a multinomial logit distribution:

𝜎𝑖 (𝑎𝑖 |I𝑖) =
𝑒𝜆𝑢̄𝑎𝑖∑

𝑎′∈𝐴𝑖 (I𝑖) 𝑒
𝜆𝑢̄𝑎′

.

38See Appendix D for a detailed description of the model.
39In the context of the dirty-faces game, QCSE assumes that players do not fully recognize how

the other player’s actions depend on the observed face type.
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When 𝜆 = 0, players become insensitive to the payoffs, behaving like level 0 players.
As 𝜆 increases, players’ behavior becomes more sensitive to the payoffs. In the limit
as 𝜆 → ∞, players become fully rational and make best responses. In summary,
QCSE relaxes the requirements of best response and Bayesian inferences with two
parameters, 𝜆 ∈ [0,∞) and 𝜒 ∈ [0, 1].

Remark 4.3. When 𝜒 = 0, QCSE reduces to AQRE, and as 𝜆 → ∞, it reduces to
CSE.

To enable a fair comparison between DCH and QCSE, I estimate a Quantal DCH
model (QDCH) where the prior distribution of levels follows Poisson(𝜏), and all
levels (𝑘 ≥ 1) of players make logit quantal responses instead of best responses.
In essence, Quantal DCH relaxes the requirements of best response and mutual
consistency with two parameters, 𝜆 ∈ [0,∞) and 𝜏 ∈ [0,∞). A description of
QDCH can be found in Appendix D.

Remark 4.4. When 𝜆 → ∞, QDCH reduces to DCH.

In addition to QDCH and QCSE, I also estimate DCH and AQRE, which are
nested within QDCH and QCSE, respectively.40 These models are estimated using
maximum likelihood estimation, and the construction of the likelihood functions
can be found in Appendix D. Table 4.3 presents the estimation results for both the
sequential and simultaneous treatments.41 The comparison between the models is
summarized in Figure 4.10.

Comparing these four models, we first observe that in both the sequential and simul-
taneous treatments, QDCH fits the data significantly better than QCSE (Sequential:
Vuong Test p-value = 0.0056; Simultaneous: Vuong Test p-value < 0.0001). With-
out relaxing the best response requirement, DCH’s fitness is significantly better than
QCSE in the simultaneous treatment (Vuong Test p-value < 0.0001). However, in
the sequential treatment, QCSE fits the data significantly better than DCH (Vuong
Test p-value = 0.0245).

QDCH outperforms other models in both treatments, indicating that the observed
violation of strategic equivalence is primarily due to the relaxation of mutual con-
sistency. However, there is evidence of the violation of other behavioral biases. In

40CSE cannot be estimated independently as it lacks an error structure in the model.
41In the simultaneous treatment, due to the flatness of the log-likelihood functions for both QDCH

and QCSE at the MLE estimates, the square roots of the inverse Hessian matrices are not well-defined.
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Table 4.3: Estimation Results for the Sequential and Simultaneous Treatments

Sequential Treatment Simultaneous Treatment
QDCH DCH QCSE AQRE QDCH DCH QCSE AQRE

Parameters 𝜆 12.371 5.672 5.484 1774.5 8.740 3.839
S.E. (2.062) (0.821) (0.426) — — (0.452)
𝜏 1.309 0.277 0.388 0.389

S.E. (0.220) (0.043) — (0.015)
𝜒 0.101 1.000

S.E. (0.364) —
Fitness LL -634.72 -671.78 -648.36 -648.40 -1100.76 -1100.76 -1167.68 -1211.08

AIC 1273.43 1345.57 1300.73 1298.80 2205.51 2203.52 2339.37 2424.16
BIC 1283.29 1350.50 1310.59 1303.73 2214.61 2208.07 2348.46 2428.70

the sequential treatment, a significant quantal response effect is observed (QDCH
vs. DCH: Likelihood Ratio Test p-value < 0.0001), but not in the simultaneous
treatment (Likelihood Ratio Test p-value = 0.9340). Furthermore, in the simultane-
ous treatment, a significant cursed effect is detected (𝜒̂ = 1.000, p-value < 0.0001),
but not in the sequential treatment (𝜒̂ = 0.101, p-value = 0.7846). This suggests
that, players struggle to accurately understand how other players’ actions depend on
their private information and update their beliefs accordingly in the simultaneous
treatment, but not in the sequential treatment.

Lastly, it’s worth noting that DCH estimates a significantly lower 𝜏 in the sequential
treatment compared to the simultaneous treatment (Sequential: 𝜏 = 0.277; Simulta-
neous: 𝜏 = 0.389). In contrast, when introducing quantal responses into DCH, we
observe a significantly higher 𝜏 in the sequential treatment compared to the simulta-
neous treatment (Sequential: 𝜏 = 1.309; Simultaneous: 𝜏 = 0.389). This suggests
that in the simultaneous treatment, all of the randomness can be attributed to level
0 behavior, whereas in the sequential treatment, some randomness is attributable to
the mistakes of higher-level players.

Result 4. (1) In both the sequential and simultaneous treatments, QDCH outper-
forms QCSE in explaining the data. Additionally, in the sequential treatment, the
fitness of DCH is not significantly different from QCSE and AQRE. In the simul-
taneous treatment, DCH significantly outperforms QCSE and AQRE. (2) In both
treatments, there is evidence of the failure of Bayesian inferences. Additionally, in
the sequential treatment, evidence of quantal responses is present, while it is not
observed in the simultaneous treatment.
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Figure 4.10: Negative log-likelihood of each model. The likelihood ratio test is
performed when comparing two nested models, while the Vuong test is performed
when comparing QDCH and DCH with QCSE.

4.7.5 The Analysis of Reaction Times
Besides the choice data, it is also interesting to see how long it takes individuals to
make decisions. There is evidence suggesting that people tend to take an action faster
if they adopt some simple decision-making heuristics or have strong preferences over
the action (see, for example, Rubinstein, 2007; Chabris et al., 2009; Konovalov and
Krajbich, 2019; Lin, Brown, et al., 2020 and Gill and Prowse, 2023).

Focusing on the case where players observe a dirty face, Figure 4.11 presents two
panels. The left panel illustrates the distribution of reaction times at each period
of the sequential games. The right panel displays the distribution of reaction times
for each stopping strategy in the simultaneous games. In the sequential treatment,
we can observe that the reaction times at each period are significantly different
(Kruskal-Wallis ranksum test: 𝜒2(4) = 32.519 and p-value = 0.0001). Moreover,
the reaction time decreases as the game progresses to later periods, dropping from
11.29 seconds in period 1 to 7.66 seconds in period 5. Combined with the low
frequencies of 𝐶 in later periods (around 21.43%), we can conclude that players
quickly decide to wait in later periods.

In the simultaneous treatment, we once again observe that the reaction times for each
stopping strategy are significantly different (Kruskal-Wallis ranksum test: 𝜒2(5) =
54.291 and p-value = 0.0001). The right panel of Figure 4.11 reveals a monotonic
pattern: players take longer to decide to claim in later periods, with average reaction
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Figure 4.11: (Left) The reaction time in the sequential treatment. The scatterplot
of reaction time conditional on the current period is shown by the blue dots. The
mean and the 95% CIs are overlaid. (Right) The reaction time in the simultaneous
treatment when seeing a dirty face. The scatterplot of reaction time conditional on
the choice of the stopping periods is shown by the red dots. The mean and the 95%
CIs are overlaid.

time of 11.93 seconds for period 1 and 23.34 seconds for period 5. However, it only
takes players approximately 14.42 seconds to decide to always wait.

The empirical patterns from both treatments provide suggestive evidence that the
heuristic of choosing to “always wait” differs from the heuristic of claiming at a
specific period. This finding aligns with the rationale of DCH—level 1 players
will always wait upon seeing a dirty face, regardless of the payoff configurations.
Conversely, higher-level strategic players will make inferences to determine their
stopping strategies. Lastly, the observed monotonic increase in reaction times across
stopping strategies in the simultaneous treatment aligns with the idea that choosing
to claim at later periods requires more steps of reasoning.

Result 5. (1) In the sequential treatment, when players see a dirty face, their reaction
time is shorter in later periods. (2) In the simultaneous treatment, the reaction time
of choosing to claim at some period when players see a dirty face is monotonically
increasing in the stopping periods. However, players take much less time to decide
to always wait.
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4.8 Conclusions
This paper theoretically and experimentally studies the DCH solution, an alternative
model that relaxes the mutual consistency requirement of the standard equilibrium
theory, in multi-stage games of incomplete information. Instead of mutual con-
sistency, DCH posits that players are heterogeneous with respect to their levels of
sophistication and incorrectly believe others are strictly less sophisticated than they
are. As the dynamic game progresses, strategic players will update their beliefs
about others’ types and levels.

In this paper, I characterize some general properties of the DCH belief system in
multi-stage games of incomplete information. Proposition 4.1 guarantees that the
DCH belief system is a product measure across players when every player’s payoff-
relevant type is independently determined. On the other hand, when the prior
distribution of types is correlated across players, Proposition 4.2 demonstrates the
existence of a unique corresponding game, where the types are independently drawn,
resulting in the DCH solution being invariant in both games. While solving the
DCH solution does not require a fixed point argument, it could be computationally
challenging in principle, especially when there are more players or information sets
involved. To this end, Proposition 4.1 and 4.2 simplify the computation, preserving
the tractability of DCH. In addition, Proposition 4.3 shows that strategic players
always consider the possibility of others being non-strategic, causing the lack of
common knowledge of rationality in DCH.

Furthermore, another feature of DCH is the violation of invariance under strategic
equivalence, which arises because level 0 players’ behavioral strategies are not
always outcome-equivalent in different strategically equivalent games, leading to
different behavior of higher-level players. To demonstrate the violation of invariance
and contrast DCH with the standard equilibrium theory, I characterize the DCH
solutions of the sequential and simultaneous two-person dirty-faces games. Despite
the two versions of the game sharing the same reduced normal form, the DCH
solutions of the two versions differ in a specific way, as characterized by Proposition
4.6. In summary, DCH predicts that higher-level (level 𝑘 ≥ 2) players tend to claim
earlier in the sequential version when they are sufficiently impatient, and vice versa
in the simultaneous version when they are patient enough.

To test the predictions of DCH, I design and run a laboratory experiment on two-
person dirty-faces games where I manipulate both the timing (sequential vs. simul-
taneous) and payoff structures. The experimental design is guided by DCH, wherein
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I first calibrate the model using an existing dirty-faces game experimental dataset
and choose the payoff parameters to maximize the diagnositicity. Considering that
the prior distributions of levels might significantly vary among different subject
pools, this experimental design to some extent serves as a stress test for assessing
the external validity of DCH.

Overall, a significant treatment effect is detected: players tend to claim earlier
in the sequential treatment than in the simultaneous treatment. Some interesting
patterns emerge from the data. First, players’ behavior significantly varies with
payoff structures in both treatments, aligning with the qualitative predictions of
DCH. Second, players take longer to choose higher-level stopping strategies. Third,
when comparing the fitness of different behavioral models, we find that QDCH
outperforms other behavioral models in both treatments. Moreover, there is some
evidence of the failure of best responses and Bayesian inferences.

Lastly, when comparing the observed treatment effects with the predictions of the
calibrated DCH, we find in one of the diagnostic games where (𝛿, 𝛼̄) = (0.6, 0.45),
the empirical frequency of choosing to claim at period 2 with the observation of a
dirty face is 30.77% higher in the sequential treatment than in the simultaneous treat-
ment, which is highly consistent with the calibrated DCH (approximately 31.15%).
However, in all control games and the other diagnostic game, the treatment effect
is significantly higher than the predictions of the calibrated DCH. Along with the
estimation results, we can conclude that while the observed violation of invariance
in the data is primarily attributed to the relaxation of mutual consistency, it is a joint
consequence of the relaxation of all equilibrium requirements.

The key contribution of this paper is establishing the theoretical and empirical
foundations of the DCH solution. However, there are considerable extensions and
applications that might be fruitful for future research. The first extension worth
pursuing is to endogenize the levels of sophistication, possibly using the cost-benefit
analysis proposed by Alaoui and Penta (2016). This extension could be challenging
in dynamic games because each player’s level might vary in different information
sets of the same game. Additionally, players not only form beliefs about others’
current levels but also about their cognitive bounds, which might make the model
less tractable.

Second, while the assumption of uniform randomization of level 0 players has
some distinct advantages, exploring the actual behavior of level 0 players is another
direction worth investigating. Inspired by X. Li and Camerer (2022), an alternative
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assumption for level 0 players is that they will randomize across visually salient
actions at each information set. In particular, due to the rapid development of
machine learning algorithms, how visually salient an action is can be quantified
even before any behavioral data is collected.

Finally, this last section lists several potential applications of dynamic games of
incomplete information where the mutual consistency requirement is easily violated
and the DCH solution might provide some new insights.

1. Social learning: In social learning games with repeated actions, players make
inferences about the true state based on their private signals and publicly
observed actions (Bala and Goyal, 1998; Harel et al., 2021). The DCH
solution posits that players do not commonly believe others are able to make
correct inferences. Specifically, level 0 players’ actions do not convey any
information about the true states, while level 1 players will always obey their
private signals. For higher-level players, they will constantly update their
beliefs about the true state and other players’ levels of sophistication. An
open question is whether higher-level players will eventually learn the true
state.

2. Sequential bargaining: The equilibrium of a sequential bargaining game was
first characterized by Rubinstein (1982). To reach the perfect equilibrium,
players are required to choose the optimal proposal among a continuum of
choices at every subgame, and believe the other player to optimally respond
to each proposal. Later, McKelvey and Palfrey (1993) and McKelvey and
Palfrey (1995) considered a two-person multi-stage bargaining game where
each players has a private payoff-relevant type and makes a binary decide
(whether to give in or hold out) in every period. The game continues until
at least one of the players gives in. In this game, it is strictly dominant for
the strong type of players to hold out forever, but not for the weak type—the
weak type players need to trade-off between the reward of giving in earlier
and the reputational benefit from mimicking the high type. This reasoning is
behaviorally challenging. In contrast, DCH is not a solution of a fixed point
problem but solved iteratively from lower to higher levels. Therefore, the DCH
solution is expected to be sharply different from the standard equilibrium in
the sequential bargaining game.

3. Signaling: In a multi-stage signaling game, an informed player will have
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a persistent type and interact with an uninformed player repeatedly. Kaya
(2009) analyzed such an environment, finding that the set of equilibrium
signal sequences includes a large class of possibly complex signal sequences.
In contrast, in the DCH solution, the uninformed player will learn about the
informed player’s true type and level when observing a new signal, and the
informed player will also learn about the uninformed player’s level at each
stage. Given that the DCH solution is unique, it would be interesting to
characterize the signal sequence of each level of informed players and test
whether this is consistent with the behavioral data.

4. Sequential voting: There is a large class of voting rules that includes multiple
rounds, such as sequential voting over agendas (Baron and Ferejohn, 1989) or
elections based on repeated ballots and elimination of one candidate in each
round (Bag, Sabourian, and Winter, 2009). To reach Condorcet consistent
outcomes, players are required to behave strategically. However, in cases
where voters are not strategic or believe others might not be strategic, the
DCH solution becomes an ideal solution concept. In the DCH solution, voters
will update their beliefs about others’ preferences and levels of sophistication
simultaneously, and vote according to their posterior beliefs in each round.
Since the common knowledge of rationality is violated in DCH, it is natural
to conjecture that higher-level players will vote more sincerely in DCH than
in the equilibrium.
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A p p e n d i x A

PROOFS FOR CHAPTER 2

A.1 Proofs of General Properties
Proof of Lemma 2.1
By Definition 2.1, for any (𝜇, 𝜎) ∈ Ψ𝜒, any history ℎ𝑡−1, any player 𝑖 and any type
profile 𝜃 = (𝜃𝑖, 𝜃−𝑖),∑︁

𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖) [𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)]

= 𝜒


∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)
︸                     ︷︷                     ︸

=1

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)

∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)
︸                                             ︷︷                                             ︸

=𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1,𝜃𝑖)

= 𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖).

Therefore, since (𝜇, 𝜎) ∈ Ψ𝜒, with some rearrangement, it follows that

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖)

=
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) [𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)]

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖)

= 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑
𝜃′−𝑖
𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
. ■

Proof of Proposition 2.1
The proof is similar to the proof for sequential equilibrium and proceeds in three
steps. First, for any finite multi-stage games with observed actions, Γ, we construct
an 𝜖-perturbed game Γ𝜖 that is identical to Γ but every player in every information
set has to play any available action with probability at least 𝜖 . Second, we defined a
cursed best-response correspondence for Γ𝜖 and prove that the correspondence has a
fixed point by Kakutani’s fixed point theorem. Finally, in step 3, we use a sequence
of fixed points in perturbed games, with 𝜖 converging to 0, where the limit of this
sequence is a 𝜒-CSE.

Step 1: Let Γ𝜖 be a game identical to Γ but for each player 𝑖 ∈ 𝑁 , player 𝑖 must play
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any available action in every information set I𝑖 = (𝜃𝑖, ℎ𝑡) with probability at least 𝜖
where 𝜖 < 1∑𝑛

𝑗=1 |𝐴 𝑗 |
. Let Σ𝜖 = ×𝑛

𝑗=1Σ
𝜖
𝑗

be set of feasible behavioral strategy profiles
for players in the perturbed game Γ𝜖 . For any behavioral strategy profile 𝜎 ∈ Σ𝜖 ,
let 𝜇𝜒 (·) ≡ (𝜇𝜒

𝑖
(·))𝑛

𝑖=1 be the belief system induced by 𝜎 via 𝜒-cursed Bayes’ rule.
That is, for each player 𝑖 ∈ 𝑁 , information set I𝑖 = (𝜃𝑖, ℎ𝑡) where ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) and
type profile 𝜃−𝑖 ∈ Θ−𝑖,

𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝜇

𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)

[
𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝜇
𝜒

𝑖
(𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
.

Notice that the 𝜒-cursed Bayes’ rule is only defined on the family of multi-stage
games with observed actions. As 𝜎 is fully mixed, the belief system is uniquely
pinned down.

Finally, let 𝐵𝜖 : Σ𝜖 ⇒ Σ𝜖 be the cursed best response correspondence which maps
any behavioral strategy profile 𝜎 ∈ Σ𝜖 to the set of 𝜖-constrained behavioral strategy
profiles 𝜎̃ ∈ Σ𝜖 that are best replies given the belief system 𝜇𝜒 (·).

Step 2: Next, fix any 0 < 𝜖 < 1∑𝑛
𝑗=1 |𝐴 𝑗 |

and show that 𝐵𝜖 has a fixed point by
Kakutani’s fixed point theorem. We check the conditions of the theorem:

1. It is straightforward that Σ𝜖 is compact and convex.

2. For any 𝜎 ∈ Σ𝜖 , as 𝜇𝜒 (·) is uniquely pinned down by 𝜒-cursed Bayes’ rule, it
is straightforward that 𝐵𝜖 (𝜎) is non-empty and convex.

3. To verify that 𝐵𝜖 has a closed graph, take any sequence of 𝜖-constrained
behavioral strategy profiles {𝜎𝑘 }∞

𝑘=1 ⊆ Σ𝜖 such that 𝜎𝑘 → 𝜎 ∈ Σ𝜖 as 𝑘 → ∞,
and any sequence {𝜎̃𝑘 }∞

𝑘=1 such that 𝜎̃𝑘 ∈ 𝐵𝜖 (𝜎𝑘 ) for any 𝑘 and 𝜎̃𝑘 → 𝜎̃.
We want to prove that 𝜎̃ ∈ 𝐵𝜖 (𝜎).

Fix any player 𝑖 ∈ 𝑁 and information set I𝑖 = (𝜃𝑖, ℎ𝑡). For any 𝜎 ∈ Σ𝜖 , recall
that 𝜎𝜒−𝑖 (·) is player 𝑖’s 𝜒-cursed perceived behavioral strategies of other play-
ers induced by 𝜎. Specifically, for any type profile 𝜃 ∈ Θ, non-terminal
history ℎ𝑡−1 and action profile 𝑎𝑡−𝑖 ∈ 𝐴−𝑖 (ℎ𝑡−1), 𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖) =

𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖).

Additionally, recall that 𝜌𝜒
𝑖
(·) is player 𝑖’s belief about the terminal nodes

(conditional on the history and type profile), which is also induced by𝜎. Since
𝜇𝜒 (·) is continuous in 𝜎 we have that 𝜎𝜒−𝑖 (·) and 𝜌𝜒

𝑖
(·) are also continuous
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in 𝜎. We further define S𝑘
I𝑖 ≡

{
𝜎′
𝑖
∈ Σ𝜖

𝑖
: 𝜎′

𝑖
( · |I𝑖) = 𝜎̃𝑘𝑖 ( · |I𝑖)

}
and SI𝑖 ≡{

𝜎′
𝑖
∈ Σ𝜖

𝑖
: 𝜎′

𝑖
( · |I𝑖) = 𝜎̃𝑖 ( · |I𝑖)

}
. Since 𝜎̃𝑘 ∈ 𝐵𝜖 (𝜎𝑘 ), for any 𝜎′

𝑖
∈ Σ𝜖

𝑖
, we

can obtain that

max
𝜎′′
𝑖
∈S𝑘I𝑖

{ ∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎𝑘 ] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎
𝑘 ], 𝜎′′

𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖)
}

≥
∑︁

𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎𝑘 ] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎
𝑘 ], 𝜎′

𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖).

By continuity, as we take limits on both sides, we can find 𝜎̃ ∈ 𝐵𝜖 (𝜎) because

max
𝜎′′
𝑖
∈SI𝑖

{ ∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎], 𝜎
′′
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖)

}
≥

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎], 𝜎
′
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖).

By Kakutani’s fixed point theorem, 𝐵𝜖 has a fixed point.

Step 3: For any 𝜖 , let 𝜎𝜖 be a fixed point of 𝐵𝜖 and 𝜇𝜖 be the belief system
induced by 𝜎𝜖 via 𝜒-cursed Bayes’ rule. We combine these two components and let
(𝜇𝜖 , 𝜎𝜖 ) be the induced assessment. We now consider a sequence of 𝜖 → 0, where
{(𝜇𝜖 , 𝜎𝜖 )} is the corresponding sequence of assessments. By compactness and
the finiteness of Γ, the Bolzano-Weierstrass theorem guarantees the existence of a
convergent subsequence of the assessments. As 𝜖 → 0, let (𝜇𝜖 , 𝜎𝜖 ) → (𝜇∗, 𝜎∗). By
construction, the limit assessment (𝜇∗, 𝜎∗) satisfies 𝜒-consistency and sequential
rationality. Hence, (𝜇∗, 𝜎∗) is a 𝜒-CSE. ■

Proof of Proposition 2.2
To prove Φ(𝜒) is upper hemi-continuous in 𝜒, consider any sequence of {𝜒𝑘 }∞

𝑘=1
such that 𝜒𝑘 → 𝜒∗ ∈ [0, 1], and any sequence of CSE, {(𝜇𝑘 , 𝜎𝑘 )}, such that
(𝜇𝑘 , 𝜎𝑘 ) ∈ Φ(𝜒𝑘 ) for all 𝑘 . Let (𝜇∗, 𝜎∗) be the limit assessment, i.e., (𝜇𝑘 , 𝜎𝑘 ) →
(𝜇∗, 𝜎∗). We need to show that (𝜇∗, 𝜎∗) ∈ Φ(𝜒∗).

For simplicity, for any player 𝑖 ∈ 𝑁 , any information set I𝑖 = (ℎ𝑡 , 𝜃𝑖), any 𝜎′
𝑖
∈ Σ𝑖,

and any 𝜎 ∈ Σ, the expected payoff under the belief system 𝜇𝜒 (·) induced by 𝜎 is
denoted as

E𝜇𝜒 [𝜎]
[
𝑢𝑖 (𝜎′

𝑖 , 𝜎−𝑖 |ℎ𝑡 , 𝜃𝑖)
]
≡

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎
′
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖).
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Suppose (𝜇∗, 𝜎∗) ∉ Φ(𝜒∗). Then there exists some player 𝑖 ∈ 𝑁 , some information
set I𝑖 = (ℎ𝑡 , 𝜃𝑖), some 𝜎′

𝑖
∈ Σ𝑖, and some 𝜖 > 0 such that

E𝜇𝜒∗ [𝜎∗]
[
𝑢𝑖 (𝜎′

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E𝜇𝜒∗ [𝜎∗]

[
𝑢𝑖 (𝜎∗

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
> 𝜖. (A.1)

Since 𝜇𝜒 (·) is continuous in 𝜒, it follows that for any strategy profile 𝜎, 𝜎𝜒−𝑖 (·) and
𝜌
𝜒

𝑖
(·) are both continuous in 𝜒. Thus, there exists a sufficiently large 𝑀1 such that

for every 𝑘 ≥ 𝑀1,����E𝜇𝜒𝑘 [𝜎𝑘] [
𝑢𝑖 (𝜎𝑘𝑖 , 𝜎𝑘−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E𝜇𝜒∗ [𝜎∗]

[
𝑢𝑖 (𝜎∗

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

] ���� < 𝜖

3
. (A.2)

Similarly, there exists a sufficiently large 𝑀2 such that for every 𝑘 ≥ 𝑀2,����E𝜇𝜒𝑘 [𝜎𝑘] [
𝑢𝑖 (𝜎′

𝑖 , 𝜎
𝑘
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E𝜇𝜒∗ [𝜎∗]

[
𝑢𝑖 (𝜎′

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

] ���� < 𝜖

3
. (A.3)

Therefore, for any 𝑘 ≥ max{𝑀1, 𝑀2}, inequalities (A.1), (A.2) and (A.3) imply:

E
𝜇𝜒
𝑘 [𝜎𝑘]

[
𝑢𝑖 (𝜎′

𝑖 , 𝜎
𝑘
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E

𝜇𝜒
𝑘 [𝜎𝑘]

[
𝑢𝑖 (𝜎𝑘𝑖 , 𝜎𝑘−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
>
𝜖

3
,

implying that 𝜎′
𝑖

is a profitable deviation for player 𝑖 at information set I𝑖 = (ℎ𝑡 , 𝜃𝑖),
which contradicts (𝜇𝑘 , 𝜎𝑘 ) ∈ Φ(𝜒𝑘 ). Therefore, (𝜇∗, 𝜎∗) ∈ Φ(𝜒∗), as desired. ■

Proof of Proposition 2.3
Fix any 𝜒 ∈ [0, 1] and let (𝜇, 𝜎) be a 𝜒-consistent assessment. We prove the
result by contradiction. Suppose (𝜇, 𝜎) does not satisfy 𝜒-dampened updating
property. Then there exists 𝑖 ∈ 𝑁 , 𝜃 ∈ Θ and a non-terminal history ℎ𝑡 such that
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) < 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖).

Since (𝜇, 𝜎) is 𝜒-consistent, there exists a sequence {(𝜇𝑘 , 𝜎𝑘 )} ⊆ Ψ𝜒 such that
(𝜇𝑘 , 𝜎𝑘 ) → (𝜇, 𝜎) as 𝑘 → ∞. By Lemma 2.1, we know for this 𝑖, 𝜃 and ℎ𝑡 ,
𝜇𝑘
𝑖
(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) equals to

𝜒𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇𝑘
𝑖
(𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝑘−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑

𝜃′−𝑖
𝜇𝑘
𝑖
(𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝑘−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
≥ 𝜒𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖).

There will be a contradiction as we take the limit 𝑘 → ∞ on both sides:

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = lim
𝑘→∞

𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ lim
𝑘→∞

𝜒𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖),

which yields a contradiction. ■
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Proof of Corollary 2.2
We prove the statement by induction on 𝑡. For 𝑡 = 1, by Proposition 2.3, 𝜇𝑖 (𝜃−𝑖 |ℎ1, 𝜃𝑖) ≥
𝜒𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝜒𝐹 (𝜃−𝑖 |𝜃𝑖). Next, suppose there is 𝑡′ such that the statement holds
for all 1 ≤ 𝑡 ≤ 𝑡′ − 1. At stage 𝑡′, by Proposition 2.3 and the induction hypothesis,
we can find that

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) ≥ 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖) ≥ 𝜒

[
𝜒𝑡

′−1𝐹 (𝜃−𝑖 |𝜃𝑖)
]
= 𝜒𝑡

′
𝐹 (𝜃−𝑖 |𝜃𝑖). ■

Proof of Proposition 2.5
Let the assessment (𝜇, 𝜎) be a pooling 𝜒-CSE. We want to show that for any 𝜒′ ≤ 𝜒,
the assessment (𝜇, 𝜎) is also a 𝜒′-CSE. Consider any non-terminal history ℎ𝑡−1, any
player 𝑖, any 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1) and any 𝜃 ∈ Θ. We can first observe that

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) =
∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

= 𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)

∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)
 = 𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖),

where the second equality holds because 𝜎 is a pooling behavioral strategy profile,
so 𝜎−𝑖 is independent of other players’ types. For this pooling 𝜒-CSE, let 𝐺𝜎 be the
set of on-path histories and 𝐺̃𝜎 be the set of off-path histories. We can first show
that for every ℎ ∈ 𝐺𝜎, 𝑖 ∈ 𝑁 and 𝜃 ∈ Θ, 𝜇𝑖 (𝜃−𝑖 |ℎ, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖).

This can be shown by induction on 𝑡. For 𝑡 = 1, any ℎ1 = (ℎ∅, 𝑎1) and any 𝜃 ∈ Θ,
by Lemma 2.1, we can obtain that

𝜇𝑖 (𝜃−𝑖 |ℎ1, 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖) + (1 − 𝜒)
[
𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖)𝜎−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖)

]
= 𝜒𝐹 (𝜃−𝑖 |𝜃𝑖) + (1 − 𝜒)𝐹 (𝜃−𝑖 |𝜃𝑖)

[
𝜎−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖)

]
︸                  ︷︷                  ︸

=1

= 𝐹 (𝜃−𝑖 |𝜃𝑖).

Now, suppose there is 𝑡′ such that the statement holds for 1 ≤ 𝑡 ≤ 𝑡′ − 1. At stage
𝑡′ and ℎ𝑡′ = (ℎ𝑡′−1, 𝑎𝑡

′) ∈ 𝐺𝜎, by Lemma 2.1 and the induction hypothesis, we can
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again obtain that the posterior belief is the prior belief

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖) + (1 − 𝜒)
[
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡
′
−𝑖 |ℎ𝑡

′−1, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎𝑡

′
−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)

]
= 𝜒𝐹 (𝜃−𝑖 |𝜃𝑖) + (1 − 𝜒)𝐹 (𝜃−𝑖 |𝜃𝑖)

[
𝜎−𝑖 (𝑎𝑡

′
−𝑖 |ℎ𝑡

′−1, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎𝑡

′
−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)

]
︸                     ︷︷                     ︸

=1

= 𝐹 (𝜃−𝑖 |𝜃𝑖).

Therefore, we have shown that players will not update their beliefs at every on-path
information set, so the belief system is independent of 𝜒. Finally, for any off-path
history ℎ𝑡 ∈ 𝐺̃𝜎, by Proposition 2.3, we can find that the belief system satisfies for
any 𝜃 ∈ Θ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) ≥ 𝜒′𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖),

implying that when 𝜒′ ≤ 𝜒, 𝜇 will still satisfy the dampened updating property.
Therefore, (𝜇, 𝜎) remains a 𝜒′-CSE. ■

A.2 Proofs for Section 2.4
Proof of Claim 2.1

First, observe that after player 1 chooses 𝐵, it is strictly optimal for player 2 to choose
𝑅 for all beliefs 𝜇2(𝜃1 |𝐵), and after player 1 chooses 𝐴, it is optimal for player 2 to
choose 𝐿 if and only if

2𝜇2(𝜃1 |𝐴) + [1 − 𝜇2(𝜃1 |𝐴)] ≥ 4𝜇2(𝜃1 |𝐴) ⇐⇒ 𝜇2(𝜃1 |𝐴) ≤ 1/3.

Equilibrium 1. If both types of player 1 choose 𝐴, then 𝜇2(𝜃1 |𝐴) = 1/4, so it is
optimal for player 2 to choose 𝐿. Given 𝑎(𝐴) = 𝐿 and 𝑎(𝐵) = 𝑅, it is optimal for
both types of player 1 to choose 𝐴 as 2 > 1. Hence 𝑚(𝜃1) = 𝑚(𝜃2) = 𝐴, 𝑎(𝐴) = 𝐿
and 𝑎(𝐵) = 𝑅 is a pooling 𝜒-CSE for any 𝜒 ∈ [0, 1].

Equilibrium 2. In order to support𝑚(𝜃1) = 𝑚(𝜃2) = 𝐵 to be an equilibrium, player
2 has to choose 𝑅 at the off-path information set 𝐴, which is optimal if and only
if 𝜇2(𝜃1 |𝐴) ≥ 1/3. In addition, by Proposition 3, we know in a 𝜒-CSE, the belief
system satisfies

𝜇2(𝜃2 |𝐴) ≥
3
4
𝜒 ⇐⇒ 𝜇2(𝜃1 |𝐴) ≤ 1 − 3

4
𝜒.

Thus, the belief system has to satisfy that 𝜇2(𝜃1 |𝐴) ∈
[ 1

3 , 1 − 3
4 𝜒

]
, requiring 𝜒 ≤

8/9. ■
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Proof of Proposition 2.6

Here we provide a characterization of 𝜒-CSE of Game BH 3 and Game BH 4. For
the analysis of both games, we denote 𝜇𝐼 ≡ 𝜇2(𝜃1 |𝑚 = 𝐼) and 𝜇𝑆 ≡ 𝜇2(𝜃1 |𝑚 = 𝑆).

Analysis of Game BH 3.

At information set 𝑆, given 𝜇𝑆, the expected payoffs of 𝐶, 𝐷, 𝐸 are 90𝜇𝑆, 30− 15𝜇𝑆
and 15, respectively. Therefore, for any 𝜇𝑆, 𝐸 is never a best response. Moreover,
𝐶 is the best response if and only if 90𝜇𝑆 ≥ 30 − 15𝜇𝑆 or 𝜇𝑆 ≥ 2/7. Similarly, at
information set 𝐼, given 𝜇𝐼 , the expected payoffs of 𝐶, 𝐷, 𝐸 are 30, 45 − 45𝜇𝐼 and
15, respectively. Therefore, 𝐸 is strictly dominated, and 𝐶 is the best response if
and only if 30 ≥ 45 − 45𝜇𝐼 or 𝜇𝐼 ≥ 1/3. Now we consider four cases.

Case 1 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝑆]: By Lemma 2.1, 𝜇𝐼 = 1 − 𝜒/2 and 𝜇𝑆 = 𝜒/2.
Moreover, since 𝜇𝐼 = 1− 𝜒/2 ≥ 1/2 for any 𝜒, player 2 will choose𝐶 at information
set 𝐼. To support this equilibrium, player 2 has to choose 𝐶 at information set 𝑆.
In other words, [(𝐼, 𝑆); (𝐶,𝐶)] is separating 𝜒-CSE if and only if 𝜇𝑆 ≥ 2/7 or
𝜒 ≥ 4/7.

Case 2 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝐼]: By Lemma 2.1, 𝜇𝐼 = 𝜒/2 and 𝜇𝑆 = 1 − 𝜒/2.
Because 𝜇𝑆 ≥ 1 − 𝜒/2 ≥ 1/2, it is optimal for player 2 to choose 𝐶 at information
set 𝑆. To support this as an equilibrium, player 2 has to choose 𝐷 at information set
𝐼. Yet in this case, type 𝜃2 player 1 will deviate to 𝑆. Therefore, this profile cannot
be supported as an equilibrium.

Case 3 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝐼]: Since player 1 follows a pooling strategy, player 2
will not update his belief at information set 𝐼, i.e., 𝜇𝐼 = 1/2. 𝜒-dampened updating
property implies 𝜒/2 ≤ 𝜇𝑆 ≤ 1 − 𝜒/2. Since 𝜇𝐼 > 1/3, player 2 will choose
𝐶 at information set 𝐼. To support this profile to be an equilibrium, player 2 has
to choose 𝐷 at information set 𝑆, and hence, it must be the case that 𝜇𝑆 ≤ 2/7.
Coupled with the requirement from 𝜒-dampened updating, the off-path belief has
to satisfy 𝜒/2 ≤ 𝜇𝑆 ≤ 2/7. That is, [(𝐼, 𝐼); (𝐶, 𝐷)] is pooling 𝜒-CSE if and only if
𝜒/2 ≤ 2/7 or 𝜒 ≤ 4/7.

Case 4 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝑆]: Similar to the previous case, since player 1 follows
a pooling strategy, player 2 will not update his belief at information set 𝑆, i.e.,
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𝜇𝑆 = 1/2. Also, the 𝜒-dampened updating property suggests 𝜒/2 ≤ 𝜇𝐼 ≤ 1 − 𝜒/2.
Because 𝜇𝑆 > 2/7, it is optimal for player 2 to choose 𝐶 at information set 𝑆.
To support this as an equilibrium, player 2 has to choose 𝐷 at information set
𝐼. Therefore, it must be that 𝜇𝐼 ≤ 1/3. Combined with the requirement of 𝜒-
dampened updating, the off-path belief has to satisfy 𝜒/2 ≤ 𝜇𝐼 ≤ 1/3. As a result,
[(𝑆, 𝑆); (𝐷,𝐶)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 2/3.

Analysis of Game BH 4.

At information set 𝐼, given 𝜇𝐼 , the expected payoffs of 𝐶, 𝐷, 𝐸 are 30, 45 − 45𝜇𝐼
and 35𝜇𝐼 . Hence, 𝐷 is the best response if and only if 𝜇𝐼 ≤ 1/3 while 𝐸 is the best
response if 𝜇𝐼 ≥ 6/7. For 1/3 ≤ 𝜇𝐼 ≤ 6/7, 𝐶 is the best response. On the other
hand, since player 2’s payoffs at information set 𝑆 are the same as in Game 1, player
2 will adopt the same decision rule—player 2 will choose 𝐶 if and only if 𝜇𝑆 ≥ 2/7,
and choose 𝐷 if and only if 𝜇𝑆 ≤ 2/7. Now, we consider the following four cases.

Case 1 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝑆]: In this case, by Lemma 2.1, 𝜇𝐼 = 1 − 𝜒/2 and
𝜇𝑆 = 𝜒/2. To support this profile to be an equilibrium, player 2 has to choose 𝐸
and 𝐶 at information set 𝐼 and 𝑆, respectively. To make it profitable for player 2 to
choose 𝐸 at information set 𝐼, it must be that

𝜇𝐼 = 1 − 𝜒/2 ≥ 6/7 ⇐⇒ 𝜒 ≤ 2/7.

On the other hand, player 2 will choose𝐶 at information set 𝑆 if and only if 𝜒/2 ≥ 2/7
or 𝜒 ≥ 4/7, which is not compatible with the previous inequality. Therefore, this
profile cannot be supported as an equilibrium.

Case 2 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝐼]: In this case, by Lemma 2.1, 𝜇𝐼 = 𝜒/2 and
𝜇𝑆 = 1 − 𝜒/2. To support this as an equilibrium, player 2 has to choose 𝐷 at both
information sets. Yet 𝜇𝑆 = 1 − 𝜒/2 > 2/7, implying that it is not a best reply
for player 2 to choose 𝐷 at information set 𝑆. Hence this profile also cannot be
supported as an equilibrium.

Case 3 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝐼]: Since player 1 follows a pooling strategy, player
2 will not update his belief at information set 𝐼, i.e., 𝜇𝐼 = 1/2. The 𝜒-dampened
updating property implies 𝜒/2 ≤ 𝜇𝑆 ≤ 1 − 𝜒/2. Because 1/3 < 𝜇𝐼 = 1/2 < 6/7,
player 2 will choose𝐶 at information set 𝐼. To support this profile as an equilibrium,
player 2 has to choose 𝐷 at information set 𝑆, and hence, it must be the case that
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𝜇𝑆 ≤ 2/7. Coupled with the requirement of 𝜒-dampened updating, the off-path
belief has to satisfy 𝜒/2 ≤ 𝜇𝑆 ≤ 2/7. That is, [(𝐼, 𝐼); (𝐶, 𝐷)] is pooling 𝜒-CSE if
and only if 𝜒/2 ≤ 2/7 or 𝜒 ≤ 4/7.

Case 4 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝑆]: Similar to the previous case, since player 1 follows
a pooling strategy, player 2 will not update his belief at information set 𝑆, i.e.,
𝜇𝑆 = 1/2. Also, the 𝜒-dampened updating property implies 𝜒/2 ≤ 𝜇𝐼 ≤ 1 − 𝜒/2.
Because 𝜇𝑆 > 2/7, it is optimal for player 2 to choose 𝐶 at information set 𝑆. To
support this as an equilibrium, player 2 can choose either 𝐶 or 𝐷 at 𝐼.

Case 4.1: To make it a best reply for player 2 to choose 𝐷 at information set 𝐼, it
must be that 𝜇𝐼 ≤ 1/3. Combined with the requirement from 𝜒-dampened updating,
the off-path belief has to satisfy 𝜒/2 ≤ 𝜇𝐼 ≤ 1/3. As a result, [(𝑆, 𝑆); (𝐷,𝐶)] is a
pooling 𝜒-CSE if and only if 𝜒 ≤ 2/3.

Case 4.2: To make it a best reply for player 2 to choose 𝐶 at information set 𝐼, it
must be that 1/3 ≤ 𝜇𝐼 ≤ 6/7. Combined with the requirement from 𝜒-dampened
updating, the off-path belief has to satisfy

max
{

1
2
𝜒,

1
3

}
≤ 𝜇𝐼 ≤ min

{
6
7
, 1 − 1

2
𝜒

}
.

For any 𝜒 ∈ [0, 1], one can find 𝜇𝐼 that satisfies both inequalities. Hence,
[(𝑆, 𝑆); (𝐶,𝐶)] is a pooling 𝜒-CSE for any 𝜒.

This completes the analysis of Game BH 3 and Game BH 4. ■

Proof of Proposition 2.7

To prove this set of cost cutoffs form a 𝜒-CSE, we need to show that there is no
profitable deviation for any type at any subgame. First, at the second stage where
there are exactly 0 ≤ 𝑘 ≤ 𝑁 − 1 players sending 1 in the first stage, since no players
will contribute, setting 𝐶𝜒

𝑘
= 0 is indeed a best response. At the subgame where

all 𝑁 players send 1 in the first stage, we use 𝜇𝜒
𝑖
(𝑐−𝑖 |𝑁) to denote player 𝑖’s cursed

belief density. By Lemma 2.1, the cursed belief about all other players having a cost
lower than 𝑐 is simply

𝐹 𝜒 (𝑐) ≡
∫
{𝑐 𝑗≤𝑐, ∀ 𝑗≠𝑖}

𝜇
𝜒

𝑖
(𝑐′−𝑖 |𝑁)𝑑𝑐′−𝑖

=


𝜒 (𝑐/𝐾)𝑁−1 + (1 − 𝜒)

(
𝑐/𝐶𝜒

𝑐

)𝑁−1 if 𝑐 ≤ 𝐶𝜒
𝑐

1 − 𝜒 + 𝜒
(
𝑐/𝐶𝜒

𝑐

)𝑁−1 if 𝑐 > 𝐶𝜒
𝑐 ,
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and 𝐶𝜒

𝑁
is the solution of the fixed point problem of 𝐶𝜒

𝑁
= 𝐹 𝜒 (𝐶𝜒

𝑁
).

Moreover, in equilibrium, 𝐶𝜒
𝑐 type of players would be indifferent between sending

1 and 0 in the communication stage. Thus, given 𝐶𝜒

𝑁
, 𝐶𝜒

𝑐 is the solution of the
following equation

0 =

(
𝐶
𝜒
𝑐

𝐾

)𝑁−1 [
−𝐶𝜒

𝑐 + 𝐹 𝜒 (𝐶𝜒

𝑁
)
]
.

As a result, we obtain that in equilibrium, 𝐶𝜒
𝑐 = 𝐶

𝜒

𝑁
= 𝐹 𝜒 (𝐶𝜒

𝑁
) ≤ 1 and denote this

cost cutoff by 𝐶∗(𝑁, 𝐾, 𝜒). Substituting it into 𝐹 𝜒 (𝑐), gives

𝐶∗(𝑁, 𝐾, 𝜒) − 𝜒
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
= 1 − 𝜒.

Next, we show that for any 𝑁 ≥ 2 and 𝜒, the cutoff 𝐶∗(𝑁, 𝐾, 𝜒) is unique.

Case 1: When 𝑁 = 2, the cutoff 𝐶∗(2, 𝐾, 𝜒) is the unique solution of the linear
equation

𝐶∗(2, 𝐾, 𝜒) − 𝜒
[
𝐶∗(2, 𝐾, 𝜒)

𝐾

]
= 1 − 𝜒 ⇐⇒ 𝐶∗(2, 𝐾, 𝜒) = 𝐾 − 𝐾𝜒

𝐾 − 𝜒 .

Case 2: For 𝑁 ≥ 3, we define the function ℎ(𝑦) : [0, 1] → R where

ℎ(𝑦) = 𝑦 − 𝜒
( 𝑦
𝐾

)𝑁−1
− (1 − 𝜒).

It suffices to show that ℎ(𝑦) has a unique root in [0, 1]. When 𝜒 = 0, ℎ(𝑦) = 𝑦 − 1
which has a unique root at 𝑦 = 1. In the following, we will focus on the case
where 𝜒 > 0. Since ℎ(𝑦) is continuous, ℎ(0) = −(1 − 𝜒) < 0 and ℎ(1) =

𝜒
[
1 − (1/𝐾)𝑁−1] > 0, there exists a root 𝑦∗ ∈ (0, 1) by the intermediate value

theorem. Moreover, as we take the second derivative, we can find that for any
𝑦 ∈ (0, 1),

ℎ′′(𝑦) = −
( 𝜒

𝐾𝑁−1

)
(𝑁 − 1) (𝑁 − 2)𝑦𝑁−3 < 0,

implying that ℎ(𝑦) is strictly concave in [0, 1]. Furthermore, ℎ(0) < 0 and ℎ(1) > 0,
so the root is unique, as illustrated in the left panel of Figure 2.3. This completes
the proof. ■

Proof of Corollary 2.3

By Proposition 2.7, we know the cutoff 𝐶∗(𝑁, 𝐾, 𝜒) ≤ 1 and it satisfies

𝐶∗(𝑁, 𝐾, 𝜒) − 𝜒
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
= 1 − 𝜒.
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Therefore, when 𝜒 = 0, the condition becomes 𝐶∗(𝑁, 𝐾, 0) = 1. In addition, when
𝜒 = 1, the condition becomes

𝐶∗(𝑁, 𝐾, 1) −
[
𝐶∗(𝑁, 𝐾, 1)

𝐾

]𝑁−1
= 0,

implying 𝐶∗(𝑁, 𝐾, 1) = 0.

For 𝜒 ∈ (0, 1), to prove𝐶∗(𝑁, 𝐾, 𝜒) is strictly decreasing in 𝑁 ,𝐾 and 𝜒, we consider
a function 𝑔(𝑦; 𝑁, 𝐾, 𝜒) : (0, 1) → R where 𝑔(𝑦; 𝑁, 𝐾, 𝜒) = 𝑦 − 𝜒[𝑦/𝐾]𝑁−1. For
any 𝑦 ∈ (0, 1) and fix any 𝐾 and 𝜒, we can observe that when 𝑁 ≥ 2,

𝑔(𝑦; 𝑁 + 1, 𝐾) − 𝑔(𝑦; 𝑁, 𝐾) = −𝜒
[ 𝑦
𝐾

]𝑁
+ 𝜒

[ 𝑦
𝐾

]𝑁−1
> 0,

so 𝑔(·; 𝑁, 𝐾, 𝜒) is strictly increasing in 𝑁 . Thus, the cutoff 𝐶∗(𝑁, 𝐾, 𝜒) is strictly
decreasing in 𝑁 . Similarly, for any 𝑦 ∈ (0, 1) and fix any 𝑁 and 𝜒, observe that
when 𝐾 > 1,

𝜕𝑔

𝜕𝐾
= 𝜒(𝑁 − 1)

(
𝑦𝑁−1

𝐾𝑁

)
> 0,

which implies that cutoff 𝐶∗(𝑁, 𝐾, 𝜒) is also strictly decreasing in 𝐾 . For the
comparative statics of 𝜒, we can rearrange the equilibrium condition where

1 − 𝐶∗(𝑁, 𝐾, 𝜒)
𝜒

= 1 −
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
.

Since LHS is strictly decreasing in 𝜒, the equilibrium cutoff is also strictly decreasing
in 𝜒. Finally, taking the limit on both sides of the equilibrium condition, we obtain

lim
𝑁→∞

𝐶∗(𝑁, 𝐾, 𝜒) = lim
𝐾→∞

𝐶∗(𝑁, 𝐾, 𝜒) = 1 − 𝜒. ■

Proof of Claim 2.2

By backward induction, we know selfish player two will choose 𝑇4 for sure. Given
that player two will choose 𝑇4 at stage four, it is optimal for selfish player one to
choose 𝑇3. Now, suppose selfish player one will choose 𝑃1 with probability 𝑞1

and player two will choose 𝑃2 with probability 𝑞2. Given this behavioral strategy
profile, player two’s belief about the other player being altruistic at stage two is
𝜇 = 𝛼/[𝛼 + (1 − 𝛼)𝑞1]. In this case, it is optimal for selfish player two to pass if
and only if 32𝜇 + 4(1 − 𝜇) ≥ 8 ⇐⇒ 𝜇 ≥ 1/7.

At the equilibrium, selfish player two is indifferent between 𝑇2 and 𝑃2. If not, say
32𝜇+4(1−𝜇) > 8, player two will choose 𝑃2. Given that player two will choose 𝑃2,
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it is optimal for selfish player one to choose 𝑃1, which makes 𝜇 = 𝛼 and 𝛼 > 1/7.
However, we know 𝛼 ≤ 1/7 which yields a contradiction. On the other hand, if
32𝜇 + 4(1− 𝜇) < 8, then it is optimal for player two to choose 𝑇2 at stage two. As a
result, selfish player one would choose 𝑇1 at stage one, causing 𝜇 = 1. In this case,
player two would deviate to choose 𝑃2, yielding a contradiction. To summarize, in
equilibrium, player two must be indifferent between 𝑇2 and 𝑃2, i.e., 𝜇 = 1/7. As
rearranging the equality, we can obtain that

𝛼

𝛼 + (1 − 𝛼)𝑞∗1
=

1
7

⇐⇒ 𝑞∗1 =
6𝛼

1 − 𝛼 .

Finally, since the equilibrium requires selfish player one to mix at stage one, selfish
player one has to be indifferent between 𝑃1 and 𝑇1. Therefore,

4 = 16𝑞∗2 + 2(1 − 𝑞∗2) ⇐⇒ 𝑞∗2 =
1
7
. ■

Proof of Proposition 2.8

By backward induction, we know selfish player two will choose 𝑇4 for sure. Given
this, it is optimal for selfish player one to choose𝑇3. Now, suppose selfish player one
will choose 𝑃1 with probability 𝑞1 and player two will choose 𝑃2 with probability
𝑞2. Given this behavioral strategy profile, by Lemma 1, player two’s cursed belief
about the other player being altruistic at stage 2 is

𝜇𝜒 = 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞1

]
.

In this case, it is optimal for player two to pass if and only if 32𝜇𝜒 + 4(1 − 𝜇𝜒) ≥
8 ⇐⇒ 𝜇𝜒 ≥ 1/7. We can first show that in equilibrium, it must be that 𝜇𝜒 ≤ 1/7.
If not, then it is strictly optimal for player two to choose 𝑃2. Therefore, it is optimal
for selfish player one to choose 𝑃1 and hence 𝜇𝜒 = 𝛼 ≤ 1/7, which yields a
contradiction. In the following, we separate the discussion into two cases.

Case 1
[
𝜒 ≤ 6

7(1−𝛼)

]
: In this case, we argue that player two is indifferent between

𝑃2 and 𝑇2. If not, then 32𝜇𝜒 + 4(1 − 𝜇𝜒) < 8 and it is strictly optimal for player
two to choose 𝑇2. This would cause selfish player one to choose 𝑇1 and hence
𝜇𝜒 = 1 − (1 − 𝛼)𝜒. This yields a contradiction because 𝜇𝜒 = 1 − (1 − 𝛼)𝜒 <

1/7 ⇐⇒ 𝜒 > 6/[7(1 − 𝛼)] . Therefore, in this case, player two is indifferent
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between 𝑇2 and 𝑃2 and thus,

𝜇𝜒 =
1
7

⇐⇒ 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞𝜒1

]
=

1
7

⇐⇒ 𝑞
𝜒

1 =

[
7𝛼 − 7𝛼𝜒
1 − 7𝛼𝜒

− 𝛼
] /

(1 − 𝛼).

Since the equilibrium requires selfish player one to mix at stage 1, selfish player one
has to be indifferent between 𝑃1 and 𝑇1. Therefore,

4 = 16𝑞𝜒2 + 2(1 − 𝑞𝜒2 ) ⇐⇒ 𝑞
𝜒

2 =
1
7
.

Case 2
[
𝜒 > 6

7(1−𝛼)

]
: In this case, we know for any 𝑞𝜒1 ∈ [0, 1],

𝜇𝜒 = 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞𝜒1

]
≤ 1 − (1 − 𝛼)𝜒 < 1

7
,

implying that it is strictly optimal for player two to choose 𝑇2, and hence it is strictly
optimal for selfish player one to choose 𝑇1 at stage 1. This completes the proof. ■

Proof of Proposition 2.9

If 𝑎1(𝜃1) = 𝑏 and all other types of voters as well as type 𝜃1 at stage 2 vote sincerely,
voter 𝑖’s 𝜒-cursed belief in the second stage upon observing 𝑎1

−𝑖 = (𝑎, 𝑏) is

𝜇
𝜒

𝑖
(𝜃−𝑖 |𝑎1

−𝑖 = (𝑎, 𝑏)) =


𝑝1𝑝3𝜒 + 𝑝1

𝑝1+𝑝2
(1 − 𝜒) if 𝜃−𝑖 = (𝜃3, 𝜃1)

𝑝2𝑝3𝜒 + 𝑝2
𝑝1+𝑝2

(1 − 𝜒) if 𝜃−𝑖 = (𝜃3, 𝜃2)

𝑝𝑘 𝑝𝑙𝜒 otherwise.

As mentioned in Section 2.4.4, a voter would act as if he perceives the other voters’
(behavioral) strategies correctly in the last stage. However, misunderstanding the
link between the other voters’ types and actions would distort a voter’s belief updating
process. In other words, a voter would perceive the strategies correctly but form
beliefs incorrectly. As a result, the continuation value of the 𝑎 vs 𝑐 subgame to
a type 𝜃1 voter is simply the voter’s 𝜒-cursed belief, conditional on being pivotal,
about there being at least one type 𝜃1 voter among his opponents. Similarly, the
continuation value of the 𝑏 vs 𝑐 subgame is equal to the voter’s conditional 𝜒-
cursed belief about there being at least one type 𝜃1 or 𝜃2 voter among his opponents
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multiplied by 𝑣. Therefore, the continuation values to a type 𝜃1 voter in the two
possible subgames of the second stage are (let 𝑝2 ≡ 𝑝1

𝑝1+𝑝2
):

𝑎 vs 𝑐 : 𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝2

𝑏 vs 𝑐 :
(
1 − 𝑝2

3𝜒
)
𝑣

It is thus optimal for a type 𝜃1 voter to vote for 𝑏 in the first stage if

𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝2 ≤

(
1 − 𝑝2

3𝜒
)
𝑣

⇐⇒ [2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣]𝜒 ≤ 𝑣 − 𝑝2. (A.4)

Notice that the statement would automatically hold when 𝜒 = 0. In the following,
we want to show that given 𝑣 and 𝑝, if condition (A.4) holds for some 𝜒 ∈ (0, 1],
then it will hold for all 𝜒′ ≤ 𝜒. As 𝜒 > 0, we can rewrite condition (A.4) as

2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣 ≤ 𝑣 − 𝑝2
𝜒

. (A.4’)

Case 1 [𝑣 − 𝑝2 < 0]: We want to show that voting 𝑏 in the first stage is never
optimal for type 𝜃1 voter. That is, we want to show condition (A.4’) never holds for
𝑣 < 𝑝2. To see this, we can first observe that the RHS is strictly increasing in 𝜒.
Therefore, it suffices to show

2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣 > 𝑣 − 𝑝2.

This is true because

2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣 − (𝑣 − 𝑝2) = 2𝑝1 − 𝑝2
1 − (1 − 𝑝2

3)𝑣
> 2𝑝1 − 𝑝2

1 − (1 + 𝑝3)𝑝1 = 𝑝1𝑝2 ≥ 0,

where the second inequality holds as 𝑣 < 𝑝1
𝑝1+𝑝2

.

Case 2 [𝑣 − 𝑝2 ≥ 0]: Since the RHS of condition (A.4’) is greater or equal to 0,
it will weakly increase as 𝜒 decreases. Thus, if condition (A.4’) holds for some
𝜒 ∈ (0, 1], it will also hold for all 𝜒′ ≤ 𝜒. This completes the proof. ■
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Proof of Proposition 2.10

Assuming that all voters vote sincerely in both stages, voter 𝑖’s 𝜒-cursed belief in
the second stage upon observing 𝑎1

−𝑖 = (𝑎, 𝑏) is

𝜇
𝜒

𝑖
(𝜃−𝑖 |𝑎1

−𝑖 = (𝑎, 𝑏)) =


𝑝1𝑝2𝜒 + 𝑝1

𝑝1+𝑝3
(1 − 𝜒) if 𝜃−𝑖 = (𝜃1, 𝜃2)

𝑝2𝑝3𝜒 + 𝑝3
𝑝1+𝑝3

(1 − 𝜒) if 𝜃−𝑖 = (𝜃3, 𝜃2)

𝑝𝑘 𝑝𝑙𝜒 otherwise.

Similar to the proof of Proposition 2.9, the continuation values to a type 𝜃1 voter in
the two possible subgames of the second stage are (let 𝑝3 ≡ 𝑝1

𝑝1+𝑝3
):

𝑎 vs 𝑐 : 𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝3

𝑏 vs 𝑐 :
(
1 − 𝑝2

3𝜒
)
𝑣

Thus, it is optimal for a type 𝜃1 voter to vote for 𝑎 in the first stage if

𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝3 ≥

(
1 − 𝑝2

3𝜒
)
𝑣

⇐⇒ 𝜒

(
2𝑝1 − 𝑝2

1 − 𝑝3 + 𝑝2
3𝑣

)
≥ 𝑣 − 𝑝3. (A.5)

Case 1 [𝑣 − 𝑝3 > 0]: In this case, we want to show that given 𝑝 and 𝑣, there exists
𝜒̃ such that condition (A.5) holds if and only if 𝜒 ≥ 𝜒̃. Let 𝜏 ≡ 2𝑝1 − 𝑝2

1 − 𝑝3 + 𝑝2
3𝑣.

If 𝜏 > 0, then condition (A.5) holds if and only if 𝜒 ≥ 𝜒̃ ≡ 𝑣−𝑝3
𝜏

. On the other hand,
if 𝜏 ≤ 0, condition (A.5) will not hold for all 𝜒 ∈ [0, 1] and hence we can set 𝜒̃ = 2.

Case 2 [𝑣 − 𝑝3 ≤ 0]: In this case, we want to show that given 𝑝 and 𝑣, there exists
𝜒̃ such that condition (A.5) holds if and only if 𝜒 ≤ 𝜒̃. If 𝜏 < 0, then condition
(A.5) holds if and only if 𝜒 ≤ 𝑣−𝑝3

𝜏
where the RHS is greater or equal to 0. On the

other hand, if 𝜏 ≥ 0, then condition (A.5) will hold for any 𝜒 ∈ [0, 1] and hence we
can again set 𝜒̃ = 2. ■

Proof of Proposition 2.11

When observing a clean face, a player will know that he has a dirty face immediately.
Therefore, choosing 1 (i.e., choosing 𝐷 at stage 1) when observing a clean face is a
strictly dominant strategy. In other words, for any 𝜒 ∈ [0, 1], 𝜎̂𝜒 (𝑂) = 1.

The analysis of the case where one observes a dirty face is separated into two cases.
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Case 1 [𝜒 > 𝛼̄]: In this case, we show that 𝜎̂𝜒 (𝑋) = 𝑇 + 1 is the only 𝜒-CE. If not,
suppose 𝜎̂𝜒 (𝑋) = 𝑡 where 𝑡 ≤ 𝑇 can be supported as a 𝜒-CE. We can first notice
that 𝜎̂𝜒 (𝑋) = 1 cannot be supported as a 𝜒-CE because it is strictly dominated to
choose 1 when observing a dirty face. For 2 ≤ 𝑡 ≤ 𝑇 , given the other player −𝑖
chooses 𝜎̂𝜒 (𝑋) = 𝑡, we can find player −𝑖’s average strategy is

𝜎̄−𝑖 ( 𝑗) =


1 − 𝑝 if 𝑗 = 1

𝑝 if 𝑗 = 𝑡

0 if 𝑗 ≠ 1, 𝑡.

Therefore, the other player −𝑖’s 𝜒-cursed strategy is

𝜎
𝜒

−𝑖 ( 𝑗 |𝑥𝑖 = 𝑂) =


𝜒(1 − 𝑝) + (1 − 𝜒) if 𝑗 = 1

𝜒𝑝 if 𝑗 = 𝑡

0 if 𝑗 ≠ 1, 𝑡,

and

𝜎
𝜒

−𝑖 ( 𝑗 |𝑥𝑖 = 𝑋) =


𝜒(1 − 𝑝) if 𝑗 = 1

𝜒𝑝 + (1 − 𝜒) if 𝑗 = 𝑡

0 if 𝑗 ≠ 1, 𝑡.

In this case, given (player 𝑖 perceives that) player −𝑖 chooses the 𝜒-cursed strategy,
player 𝑖’s expected payoff to choose 2 ≤ 𝑗 ≤ 𝑡 when observing a dirty face is

(1−𝑝)
[
−𝛿 𝑗−1𝜒𝑝

]
+𝑝

{
𝛿 𝑗−1𝛼 [𝜒𝑝 + (1 − 𝜒)]

}
= 𝑝𝛿 𝑗−1 [𝛼 − 𝜒(1 + 𝛼) (1 − 𝑝)]︸                       ︷︷                       ︸

<0 ⇐⇒ 𝜒>𝛼̄

< 0.

Hence, given the other player chooses 𝑡 when observing a dirty face, it is strictly
dominated to choose any 𝑗 ≤ 𝑡. Therefore, the only 𝜒-CE is 𝜎̂𝜒 (𝑋) = 𝑇 + 1.

Case 2 [𝜒 < 𝛼̄]: In this case, we want to show that 𝜎̂𝜒 (𝑋) = 2 is the only 𝜒-CE. If
not, suppose 𝜎̂(𝑋) = 𝑡 for some 𝑡 ≥ 3 can be supported as a 𝜒-CE. We can again
notice that since when observing a dirty face, it is strictly dominated to choose 1, 1 is
never a best response. Given player −𝑖 chooses 𝜎̂𝜒 (𝑋) = 𝑡, by the same calculation
as in Case 1, the expected payoff to choose 2 ≤ 𝑗 ≤ 𝑡 is

𝑝𝛿 𝑗−1 [𝛼 − 𝜒(1 + 𝛼) (1 − 𝑝)]︸                       ︷︷                       ︸
>0 ⇐⇒ 𝜒<𝛼̄

> 0,

which is decreasing in 𝑗 . Therefore, the best response to 𝜎̂𝜒 (𝑋) = 𝑡 is to choose 2
when observing a dirty face. Hence, the only 𝜒-CE in this case is 𝜎̂𝜒 (𝑋) = 2. ■
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Proof of Proposition 2.12

When observing a clean face, the player would know that his face is dirty. Thus,
choosing𝐷 at stage 1 is a strictly dominant strategy, and 𝜎̃𝜒 (𝑂) = 1 for all 𝜒 ∈ [0, 1].
On the other hand, the analysis for the case where the player observes a dirty face
consists of several steps.

Step 1: Assume that both players choosing 𝐷 at some stage 𝑡. We claim that at
stage 𝑡 ≤ 𝑡, the cursed belief 𝜇𝜒 (𝑋 |𝑡, 𝑋) = 1 − (1 − 𝑝)𝜒𝑡−1. We can prove this by
induction on 𝑡. At stage 𝑡 = 1, the belief about having a dirty face is simply the prior
belief 𝑝. Hence this establishes the base case. Now suppose the statement holds for
any stage 1 ≤ 𝑡 ≤ 𝑡′ (and 𝑡′ < 𝑡). At stage 𝑡′ + 1, by Lemma 2.1,

𝜇𝜒 (𝑋 |𝑡′ + 1, 𝑋) = 𝜒𝜇𝜒 (𝑋 |𝑡′, 𝑋) + (1 − 𝜒) = 𝜒
[
1 − (1 − 𝑝)𝜒𝑡′−1

]
+ (1 − 𝜒)

= 1 − (1 − 𝑝)𝜒𝑡′ ,

where the second equality holds by the induction hypothesis. This proves the claim.

Step 2: Given the cursed belief computed in the previous step, the expected payoff
to choose 𝐷 at stage 𝑡 is

𝜇𝜒 (𝑋 |𝑡, 𝑋)𝛼 − [1 − 𝜇𝜒 (𝑋 |𝑡, 𝑋)] =
[
1 − (1 − 𝑝)𝜒𝑡−1] 𝛼 −

[
(1 − 𝑝)𝜒𝑡−1]

= 𝛼 − (1 − 𝑝) (1 + 𝛼)𝜒𝑡−1,

which is increasing in 𝑡. Notice that at the first stage, the expected payoff is
𝛼 − (1 − 𝑝) (1 + 𝛼) < 0 by Assumption (2.1), so choosing 𝑈 at stage 1 is strictly
dominated. Furthermore, the player would choose𝑈 at every stage when observing
a dirty face if and only if

𝜇𝜒 (𝑋 |𝑇, 𝑋)𝛼 − [1 − 𝜇𝜒 (𝑋 |𝑇, 𝑋)] ≤ 0 ⇐⇒ 𝛼 − (1 − 𝑝) (1 + 𝛼)𝜒𝑇−1 ≤ 0

⇐⇒ 𝜒 ≥ 𝛼̄ 1
𝑇+1 .

As a result, both players choosing 𝜎̃𝜒 (𝑋) = 𝑇 +1 is a 𝜒-CSE if and only if 𝜒 ≥ 𝛼̄ 1
𝑇+1 .

Step 3: In this step, we show both players choosing 𝜎̃𝜒 (𝑋) = 2 is a 𝜒-CSE if and
only if 𝜒 ≤ 𝛼̄. We can notice that given the other player chooses 𝐷 at stage 2,
the player would know stage 2 would be the last stage regardless of his face type.
Therefore, it is optimal to choose 𝐷 at stage 2 as long as the expected payoff of 𝐷
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at stage 2 is positive. Consequently, both players choosing 𝜎̃𝜒 (𝑋) = 2 is a 𝜒-CSE
if and only if

𝜇𝜒 (𝑋 |2, 𝑋)𝛼 − [1 − 𝜇𝜒 (𝑋 |2, 𝑋)] ≥ 0 ⇐⇒ 𝛼 − (1 − 𝑝) (1 + 𝛼)𝜒 ⇐⇒ 𝜒 ≤ 𝛼̄.

Step 4: Given the other player chooses 𝜎̃𝜒 (𝑋) > 𝑡, as the game reaches stage 𝑡, the
belief about the other player choosing𝑈 at stage 𝑡 is

𝜇𝜒 (𝑋 |𝑡, 𝑋)︸       ︷︷       ︸
prob. of dirty

[𝜒𝜇𝜒 (𝑋 |𝑡, 𝑋) + (1 − 𝜒)]

+ [1 − 𝜇𝜒 (𝑋 |𝑡, 𝑋)]︸               ︷︷               ︸
prob. of clean

[𝜒𝜇𝜒 (𝑋 |𝑡, 𝑋)] = 𝜇𝜒 (𝑋 |𝑡, 𝑋).

Furthermore, we denote the expected payoff of choosing 𝐷 at stage 𝑡 as

E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ≡ 𝜇𝜒 (𝑋 |𝑡, 𝑋)𝛼 − (1 − 𝜇𝜒 (𝑋 |𝑡, 𝑋)) .

In the following, we claim that for any stage 2 ≤ 𝑡 ≤ 𝑇 − 2, given the other player
will stop at some stage later than stage 𝑡 + 2 or never stop, if it is optimal to choose
𝑈 at stage 𝑡 + 1, then it is also optimal for you to choose𝑈 at stage 𝑡. That is,

E [𝑢𝜒 (𝐷 |𝑡 + 1, 𝑋)] < 𝛿𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡 + 2, 𝑋)]
=⇒ E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] < 𝛿𝜇𝜒 (𝑋 |𝑡, 𝑋)E [𝑢𝜒 (𝐷 |𝑡 + 1, 𝑋)] .

To prove this claim, first observe that

E [𝑢𝜒 (𝐷 |𝑡 + 1, 𝑋)] < 𝛿𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡 + 2, 𝑋)]
⇐⇒ (1 + 𝛼)𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋) − 1 < 𝛿𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋) [(1 + 𝛼)𝜇𝜒 (𝑋 |𝑡 + 2, 𝑋) − 1] .

After rearrangement, the inequality is equivalent to

𝛿𝜒 [𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋)]2 +
[
𝛿(1 − 𝜒) − 𝛿

1 + 𝛼 − 1
]
𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋) + 1

1 + 𝛼 > 0.

Consider a function 𝐹 : [0, 1] → R where

𝐹 (𝑦) = 𝛿𝜒𝑦2 +
[
𝛿(1 − 𝜒) − 𝛿

1 + 𝛼 − 1
]
𝑦 + 1

1 + 𝛼 .

Since 𝜇𝜒 (𝑋 | 𝑗 , 𝑋) = 1− (1− 𝑝)𝜒 𝑗−1 is increasing in 𝑗 , it suffices to show that there
exists a unique 𝑦∗ ∈ (0, 1) such that 𝐹 is single-crossing on [0, 1] where 𝐹 (𝑦∗) = 0,
𝐹 (𝑦) < 0 for all 𝑦 > 𝑦∗, and 𝐹 (𝑦) > 0 for all 𝑦 < 𝑦∗. Because 𝐹 is continuous and
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• 𝐹 (0) = 1
1+𝛼 > 0,

• 𝐹 (1) = 𝛿𝜒 +
[
𝛿(1 − 𝜒) − 𝛿

1+𝛼 − 1
]
+ 1

1+𝛼 = −𝛼(1−𝛿)
1+𝛼 < 0.

By intermediate value theorem, there exists a 𝑦∗ ∈ (0, 1) such that 𝐹 (𝑦∗) = 0.
Moreover, 𝑦∗ is the unique root of 𝐹 on [0, 1] because 𝐹 is a strictly convex
parabola and 𝐹 (1) < 0. This establishes the claim.

Step 5: For any 3 ≤ 𝑡 ≤ 𝑇 , in this step, we find the conditions to support both
players choosing 𝜎̃𝜒 (𝑋) = 𝑡 as a 𝜒-CSE. We can first notice that both players
choosing 𝜎̃𝜒 (𝑋) = 𝑡 is a 𝜒-CSE if and only if

1. E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ≥ 0

2. E [𝑢𝜒 (𝐷 |𝑡 − 1, 𝑋)] ≤ 𝛿𝜇𝜒 (𝑋 |𝑡 − 1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡, 𝑋)].

Condition 1 is necessary because if it fails, then it is better for the player to choose
𝑈 at stage 𝑡 and get at least 0. Condition 2 is also necessary because if the condition
doesn’t hold, it would be profitable for the player to choose 𝐷 before stage 𝑡.
Furthermore, these two conditions are jointly sufficient to support 𝜎̃𝜒 (𝑋) = 𝑡 as a
𝜒-CSE by the same argument as step 3. From condition 1, we can obtain that

E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ≥ 0 ⇐⇒ (1 + 𝛼)𝜇𝜒 (𝑋 |𝑡, 𝑋) − 1 ≥ 0

⇐⇒ 1 − (1 − 𝑝)𝜒𝑡−1 ≥ 1
1 + 𝛼 ⇐⇒ 𝜒 ≤ 𝛼̄ 1

𝑡−1 .

In addition, by the calculation of step 4, we know

E [𝑢𝜒 (𝐷 |𝑡 − 1, 𝑋)] ≤ 𝛿𝜇𝜒 (𝑋 |𝑡−1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ⇐⇒ 𝐹 (𝜇𝜒 (𝑋 |𝑡 − 1, 𝑋)) ≥ 0,

which is equivalent to

𝜇𝜒 (𝑋 |𝑡 − 1, 𝑋) ≤

[
1 + 𝛿

1+𝛼 − 𝛿(1 − 𝜒)
]
−

√︂[
1 + 𝛿

1+𝛼 − 𝛿(1 − 𝜒)
]2 − 4𝛿𝜒

(
1

1+𝛼

)
2𝛿𝜒

=
[(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿] −

√︁
[(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿]2 − 4𝛿𝜒(1 + 𝛼)
2𝛿𝜒(1 + 𝛼) ≡ 𝜅(𝜒).

Therefore, condition 2 holds if and only if

1 − (1 − 𝑝)𝜒𝑡−2 ≤ 𝜅(𝜒) ⇐⇒ 𝜒 ≥
(
1 − 𝜅(𝜒)

1 − 𝑝

) 1
𝑡−2

.
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In summary, both players choosing 𝜎̃𝜒 (𝑋) = 𝑡 is a 𝜒-CSE if and only if(
1 − 𝜅(𝜒)

1 − 𝑝

) 1
𝑡−2

≤ 𝜒 ≤ 𝛼̄ 1
𝑡−1 .

This completes the proof. ■
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A p p e n d i x B

A NOTE ON CURSED SEQUENTIAL EQUILIBRIUM AND
SEQUENTIAL CURSED EQUILIBRIUM

B.1 Introduction
In this appendix, we compare two recently proposed theories: the cursed sequential
equilibrium (CSE) of Fong, Lin, and Palfrey (2023); and the sequential cursed
equilibrium (SCE) of Cohen and Li (2023). Both generalize the cursed equilibrium
(CE) by Eyster and Rabin (2005) to dynamic games, yet in different ways.

Following the specification of CE, CSE extends the concept of cursedness—the
failure to fully account for the correlation between the types and actions of other
players—to multi-stage games with publicly observed actions. After each stage of
the game, each player in the game updates their current beliefs about the profile of
other players’ types in a cursed way, i.e., based on the average behavioral strategies
of the other players rather than the type conditional behavioral strategies of the other
players. As in CE, CSE is generalized to 𝜒-CSE, where the parameter 𝜒 ∈ [0, 1]
indicates the degree of cursedness, with 𝜒 = 0 corresponding to standard fully
rational equilibrium behavior (i.e., updating based on the type conditional behavior
strategies of the other players), and the case of 𝜒 = 1 is fully cursed (i.e., updating
based on the average behavioral strategies of the other players). Values of 𝜒 ∈ (0, 1)
correspond to a mixture of these two extremes, defined similarly to CE, but with
respect to behavioral strategies rather than mixed strategies.

The SCE extension of CE to dynamic games differs from 𝜒-CSE in a number of
ways, and we will illustrate through a series of examples some of these differences.
Two differences are immediate and are due to a major difference in basic approach.
First, while 𝜒-CSE is developed for a subclass of games in extensive form with
perfect recall, SCE is developed for a larger class: extensive form games with
perfect recall. In such games, the “stages” and “public histories” do not generally
exist or are not well-defined. As a result, instead of applying the cursed updating
stage-by-stage, a player’s cursedness is defined in terms of coarsening the partition of
other players’ information sets. In this sense, the difference between SCE and CSE
reminds one of the differences between the CE and Analogy Based Expectations
(ABEE) approach by Jehiel (2005) and Jehiel and Koessler (2008), where the



183

latter approach is based on the bundling of nodes at which other players move into
analogy classes, which formally is a coarsening of information sets. Second, SCE
is generalized by introducing two free parameters, (𝜒𝑆, 𝜓𝑆) ∈ [0, 1]2.1 With two
parameters, (𝜒𝑆, 𝜓𝑆)-SCE can distinguish inferences (and degree of neglect) based
on past observed actions by other players and the inferences (and degree of neglect)
based on simultaneous or future (hypothetical) strategies of the other players.

In addition to the family of applicable games and the dimension of parameter space,
this appendix identifies and illustrates six additional differences between CSE and
SCE. To formally illustrate these technical differences, in this appendix, we will
focus on the class of multi-stage games with observed actions, using the framework
of Fudenberg and Tirole (1991). We next introduce the framework and the two
solution concepts in Section B.2. After that, we will discuss and illustrate the rest
of the six differences between CSE and SCE in Section B.3 which are organized as
follows:

(1) the belief updating process (Section B.3.1),

(2) the way of treating public histories (Section B.3.2),

(3) effects in games of complete information (Section B.3.3),

(4) violations of subgame perfection and sequential rationality (Section B.3.4),

(5) the effect of re-labeling actions (Section B.3.5), and

(6) effects in one-stage simultaneous-move games (Section B.3.6).

B.2 Preliminary
B.2.1 Multi-Stage Games with Observed Actions
Let 𝑁 = {1, . . . , 𝑛} be a finite set of players. Each player 𝑖 ∈ 𝑁 has a type 𝜃𝑖
drawn from a finite set Θ𝑖. Let 𝜃 ∈ Θ ≡ ×𝑛

𝑖=1Θ𝑖 be the type profile and 𝜃−𝑖 be
the type profile without player 𝑖. All players have the common (full support) prior
distribution 𝐹 : Θ → (0, 1). At the beginning of the game, each player is told his
own type, but is not informed anything about the types of others. Therefore, each
player 𝑖’s initial belief about the types of others when his type is 𝜃𝑖 is:

𝐹 (𝜃−𝑖 |𝜃𝑖) =
𝐹 (𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝐹 (𝜃′−𝑖, 𝜃𝑖)
.

1To avoid confusion, we will henceforth add the subscript “S” to the parameters of SCE.
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If the types are independent across players, each player 𝑖’s initial belief about the
types of others is 𝐹−𝑖 (𝜃−𝑖) = Π 𝑗≠𝑖𝐹𝑗 (𝜃 𝑗 ) where 𝐹𝑗 (𝜃 𝑗 ) is the marginal distribution
of player 𝑗’s type.

The game is played in stages 𝑡 = 1, 2, . . . , 𝑇 where 𝑇 < ∞. In each stage, players
simultaneously choose their actions, which will be revealed at the end of the stage.
The feasible set of actions can vary with histories, so games with alternating moves
are also included. Let H 𝑡−1 be the set of all available public histories2 at stage 𝑡,
where H0 = {ℎ∅} and H𝑇 is the set of terminal histories. Let H = ∪𝑇

𝑡=0H
𝑡 be the

set of all available histories of the game, and let H\H𝑇 be the set of non-terminal
histories.

For every player 𝑖, the available information at stage 𝑡 is in H 𝑡−1 × Θ𝑖. Thus, each
player 𝑖’s information sets can be specified as I𝑖 ∈ Π𝑖 = {(ℎ, 𝜃𝑖) : ℎ ∈ H\H𝑇 , 𝜃𝑖 ∈
Θ𝑖}. That is, a type 𝜃𝑖 player 𝑖’s information set at the public history ℎ𝑡 can be
defined as

⋃
𝜃−𝑖∈Θ−𝑖 (ℎ𝑡 , 𝜃−𝑖, 𝜃𝑖). With a slight abuse of notation, it will be denoted

as (ℎ𝑡 , 𝜃𝑖). For the sake of simplicity, the feasible set of actions for every player at
every history is assumed to be type-independent. Let 𝐴𝑖 (ℎ𝑡−1) be the feasible set of
actions for player 𝑖 at history ℎ𝑡−1 and let 𝐴𝑖 = ×ℎ∈H\H𝑇 𝐴𝑖 (ℎ) be the set of player
𝑖’s all feasible actions in the game. For each player 𝑖, 𝐴𝑖 is assumed to be finite and
|𝐴𝑖 (ℎ) | ≥ 1 for any ℎ ∈ H\H𝑇 . Let 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1) be player 𝑖’s action at history

ℎ𝑡−1, and let 𝑎𝑡 =
(
𝑎𝑡1, . . . , 𝑎

𝑡
𝑛

)
∈ ×𝑛

𝑖=1𝐴𝑖 (ℎ
𝑡−1) denote the action profile at stage 𝑡. If

𝑎𝑡 is the action profile chosen at stage 𝑡, then ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡).

A behavioral strategy for player 𝑖 is a function 𝜎𝑖 : Π𝑖 → Δ(𝐴𝑖) satisfying
𝜎𝑖 (ℎ𝑡−1, 𝜃𝑖) ∈ Δ(𝐴𝑖 (ℎ𝑡−1)). Let𝜎𝑖 (𝑎𝑡𝑖 | ℎ𝑡−1, 𝜃𝑖) denote the probability for player 𝑖 to
choose 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1). A strategy profile 𝜎 = (𝜎𝑖)𝑖∈𝑁 specifies a behavioral strategy

for each player 𝑖. Lastly, each player 𝑖 has a payoff function (in von Neumann-
Morgenstern utilities) 𝑢𝑖 : H𝑇 × Θ → R, and let 𝑢 = (𝑢1, . . . , 𝑢𝑛) be the profile of
utility functions. A multi-stage game with observed actions, Γ, is defined by the
tuple Γ = ⟨𝑁,H ,Θ, 𝐹, 𝑢⟩.

B.2.2 CSE in Multi-Stage Games
Consider an assessment (𝜇, 𝜎), where 𝜇 is a belief system and 𝜎 is a behavioral
strategy profile. The belief system specifies, for each player, a conditional distribu-

2Technically, each public history is not a history in general extensive form games as a public
history only specifies the past action profiles but not the realized type profile. In the following, we
will use the term public history when referring to the past action profiles, and use the term history
when referring to the past action profiles with a type profile.
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tion over the set of type profiles conditional on each public history. Following the
spirit of the cursed equilibrium, for player 𝑖 at the public history ℎ𝑡−1, we define the
average behavioral strategy profile of the other players as

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) =
∑︁

𝜃−𝑖∈Θ−𝑖

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)

for any 𝑖 ∈ 𝑁 , 𝜃𝑖 ∈ Θ𝑖 and ℎ𝑡−1 ∈ H 𝑡−1.

A 𝜒-CSE is parameterized by a single parameter 𝜒 ∈ [0, 1]. Instead of thinking the
other players are using 𝜎−𝑖, a 𝜒-cursed type 𝜃𝑖 player 𝑖 would believe they are using
a 𝜒-weighted average of the average behavioral strategy and the true behavioral
strategy:

𝜎
𝜒

−𝑖 (𝑎
𝑡
−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖) = 𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖).

The beliefs of player 𝑖 about the type profile 𝜃−𝑖 are updated via Bayes’ rule in 𝜒-
CSE, whenever possible, assuming others are using the 𝜒-cursed behavioral strategy
rather than the true behavioral strategy. Specifically, an assessment satisfies the 𝜒-
cursed Bayes’ rule if the belief system is derived from Bayes’ rule while perceiving
others are using 𝜎𝜒−𝑖 rather than 𝜎−𝑖:

Definition B.1. (𝜇, 𝜎) satisfies 𝜒-cursed Bayes’ rule if the following is applied to
update the posterior beliefs as

∑
𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖) > 0:

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖)
.

Finally, 𝜒-CSE places a consistency restriction, analogous to consistent assessments
in sequential equilibrium, on how 𝜒-cursed beliefs are updated off the equilibrium
path:

Definition B.2. Let Ψ𝜒 be the set of assessments (𝜇, 𝜎) such that 𝜎 is a totally
mixed behavioral strategy profile and 𝜇 is derived from𝜎 using 𝜒-cursed Bayes’ rule.
(𝜇, 𝜎) satisfies 𝜒-consistency if there is a sequence of assessments {(𝜇𝑘 , 𝜎𝑘 )} ⊆ Ψ𝜒

such that lim𝑘→∞(𝜇𝑘 , 𝜎𝑘 ) = (𝜇, 𝜎).

For any 𝑖 ∈ 𝑁 , 𝜒 ∈ [0, 1], 𝜎, and 𝜃 ∈ Θ, let 𝜌𝜒
𝑖
(ℎ𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖) be player 𝑖’s

perceived conditional realization probability of terminal history ℎ𝑇 ∈ H𝑇 at the
public history ℎ𝑡 ∈ H\H𝑇 if the type profile is 𝜃 and player 𝑖 uses the behavioral
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strategy 𝜎𝑖 whereas perceives other players’ using the cursed behavioral strategy
𝜎
𝜒

−𝑖. At every non-terminal public history ℎ𝑡 , a 𝜒-cursed player in 𝜒-CSE will use
𝜒-cursed Bayes’ rule (Definition B.1) to derive the posterior belief about the other
players’ types. Accordingly, a type 𝜃𝑖 player 𝑖’s conditional expected payoff at the
public history ℎ𝑡 is given by

E𝑢𝑖 (𝜎 |ℎ𝑡 , 𝜃𝑖) =
∑︁

𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ
𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖)𝑢𝑖 (ℎ

𝑇 , 𝜃−𝑖, 𝜃𝑖).

Definition B.3. An assessment (𝜇∗, 𝜎∗) is a 𝜒-cursed sequential equilibrium if it
satisfies 𝜒-consistency and 𝜎∗

𝑖
(ℎ𝑡 , 𝜃𝑖) maximizes E𝑢𝑖 (𝜎∗ |ℎ𝑡 , 𝜃𝑖) for all 𝑖, 𝜃𝑖, ℎ𝑡 ∈

H\H𝑇 .

B.2.3 SCE in Multi-Stage Games
Some additional notation is required to define sequential cursed equilibrium (SCE)
in a multi-stage game. First, let 𝜆 denote nature. In the framework of multi-stage
games with observed actions, 𝜆 only moves once in stage 0, i.e., at the initial history,
denoted ℎ∅. The action set for 𝜆 is the set of states of nature, i.e., the set of profiles
of player types, Θ = ×𝑛

𝑖=1Θ𝑖. The totally mixed strategy of nature, denoted by
𝜎𝜆 (ℎ∅) ∈ Δ(Θ), is common knowledge to all players 𝑖 ∈ 𝑁 and exogenously given
by 𝐹. Note that nature’s information set is singleton. Also, note that after nature’s
action (i.e., type profile) is realized, 𝜃𝑖 will be observed only by player 𝑖 but not by
the other players. That is, each player’s type is his own private information.

Second, let 𝜇[𝜎] denote the probability measure on H𝑇 × Θ that is induced by
𝜎 ≡ (𝜎1, ..., 𝜎𝑛, 𝜎𝜆). Following Cohen and Li (2023), we allow 𝜇[𝜎] to denote the
probability measure onH𝑇×Θ for some 𝑡 < 𝑇 by viewing ((𝑎1, ..., 𝑎𝑡), 𝜃′) ∈ H 𝑡×Θ
as {(ℎ𝑇 , 𝜃) ∈ H𝑇 × Θ : (𝑎1, ..., 𝑎𝑡) ≺ ℎ𝑇 , 𝜃 = 𝜃′}.

Third, let P denote the coarsest (valid) partition of the non-terminal histories
H\H𝑇 ×Θ,3 and 𝑃(I𝑖) denotes 𝑃 ∈ P such that I𝑖 ⊆ 𝑃. Note that a partition P′ is
coarser than P′′ if, given any 𝑃′′ ∈ P′′, there exists a cell of P′ that contains 𝑃′′.

Finally, given I𝑗 = (ℎ𝑡 , 𝜃 𝑗 ), let 𝜎I𝑗
𝑖

: ΠI𝑗
𝑖

→ Δ(𝐴𝑖) denote a partial strategy for
player 𝑖 at I𝑗 , where Π

I𝑗
𝑖

= {(ℎ′, 𝜃′
𝑖
) : ℎ′ ∈ H\H𝑇 , ℎ𝑡 ⪯ ℎ′ or ℎ′ ⪯ ℎ𝑡 , 𝜃′

𝑖
∈ Θ𝑖}.

In other words, 𝜎I𝑗
𝑖

is a function from information sets containing public histories
compatible with ℎ𝑡 to distributions over player 𝑖’s feasible actions.

3A partition of the non-terminal histories is invalid if it defines information sets that violate the
assumption of perfect recall.
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To define a SCE, Cohen and Li (2023) define three types of conjectures about
opponents’ and nature’s strategies: the sequentially cursed conjecture (𝜎̃), the
typically cursed conjecture (𝜎̌), and the Bayesian conjecture (𝜎̂).

Consider a non-terminal information set I𝑖 = (ℎ𝑡 , 𝜃𝑖) where ℎ𝑡 = (𝑎1, ..., 𝑎𝑡). Given
a totally mixed behavioral strategy 𝜎, Cohen and Li (2023) define the three types of
conjectures of player 𝑖 about player 𝑗 ≠ 𝑖 at information set I𝑖 as follows:4

1. Sequentially cursed conjecture: 𝜎̃I𝑖
𝑗
(·) is said to be player 𝑖’s sequentially

cursed conjecture about 𝑗’s behavioral strategy at I𝑖 if, for all I𝑗 = (ℎ𝑡′ , 𝜃 𝑗 )
and all 𝑎 𝑗 ∈ 𝐴 𝑗 (ℎ𝑡

′),

𝜎̃
I𝑖
𝑗
(𝑎 𝑗 | I𝑗 ) ≡ 𝜇[𝜎] ({((ℎ, 𝜃), 𝑎 𝑗 ) : (ℎ, 𝜃) ∈ 𝑃(I𝑗 )}| I𝑖 ∩ 𝑃(I𝑗 )).

2. Typically cursed conjecture: 𝜎̌I𝑖
𝑗
(·) is said to be player 𝑖’s typically cursed

conjecture about 𝑗’s behavioral strategy at I𝑖 if, for all I𝑗 = (ℎ𝑡′ , 𝜃 𝑗 ) and all
𝑎 𝑗 ∈ 𝐴(ℎ𝑡

′),

𝜎̌
I𝑖
𝑗
(𝑎 𝑗 | I𝑗 ) ≡ 𝜇[𝜎] ({((ℎ, 𝜃), 𝑎 𝑗 ) : (ℎ, 𝜃) ∈ 𝑃(I𝑗 )}| (·, 𝜃𝑖) ∩ 𝑃(I𝑗 ))

where (·, 𝜃𝑖) ≡ {(ℎ, 𝜃−𝑖, 𝜃𝑖) : ℎ ∈ H\H𝑇 , 𝜃−𝑖 ∈ Θ−𝑖}.

3. Bayesian conjecture: 𝜎̂I𝑖
𝑗
(·) is said to be player 𝑖’s Bayesian conjecture about

𝑗’s behavioral strategy at I𝑖 if, for all I𝑗 = (ℎ𝑡′ , 𝜃 𝑗 ) and all 𝑎 𝑗 ∈ 𝐴(ℎ𝑡
′),

𝜎̂
I𝑖
𝑗
(𝑎 𝑗 | I𝑗 ) ≡ 𝜇[𝜎] ({((ℎ, 𝜃), 𝑎 𝑗 ) : (ℎ, 𝜃) ∈ I𝑗 }| I𝑖 ∩ I𝑗 ).

A (𝜒𝑆, 𝜓𝑆)-SCE has two parameters, (𝜒𝑆, 𝜓𝑆) ∈ [0, 1]2. At every information set
I𝑖, a (𝜒𝑆, 𝜓𝑆)-sequentially cursed player 𝑖 would perceive that the game has been and
will be played by the other players according to his sequentially cursed, typically
cursed, and Bayesian conjectures with probability 𝜒𝑆𝜓𝑆, 𝜒𝑆 (1 − 𝜓𝑆), and 1 − 𝜒𝑆,
respectively. Based on such perceptions, a (𝜒𝑆, 𝜓𝑆)-sequential cursed equilibrium
is defined as follows:

Definition B.4. A strategy profile 𝜎∗ is said to be a (𝜒𝑆, 𝜓𝑆)-sequential cursed
equilibrium if, given any 𝑖 ∈ 𝑁 and I𝑖 = (ℎ𝑡 , 𝜃𝑖) with ℎ𝑡 = (𝑎1, ..., 𝑎𝑡), there exists
a partial strategy 𝜎I𝑖

𝑖
such that 𝜎I𝑖

𝑖
(I𝑖) = 𝜎∗

𝑖
(I𝑖) and 𝜎I𝑖

𝑖
maximizes 𝑖’s expected

utility under the belief that 𝜃−𝑖 is realized with probability 𝜇[𝜎̄I𝑖 ] (ℎ𝑡 , 𝜃−𝑖, 𝜃𝑖 | I𝑖) and
that the game will proceed according to 𝜎̄I𝑖

−𝑖, where
4For general behavioral strategy profiles, SCE imposes a consistency requirement similar to

Kreps and Wilson (1982) as it requires the limits of all three types of conjectures exist.
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1. 𝜎̄I𝑖
𝑖
(𝑎𝑡′ |ℎ𝑡′−1, 𝜃𝑖) = 1 for all 𝑡′ ≤ 𝑡

2. 𝜎̄I𝑖
−𝑖 = 𝜎̃

I𝑖
−𝑖 with probability 𝜒𝑆𝜓𝑆

3. 𝜎̄I𝑖
−𝑖 = 𝜎̌

I𝑖
−𝑖 with probability 𝜒𝑆 (1 − 𝜓𝑆)

4. 𝜎̄I𝑖
−𝑖 = 𝜎̂

I𝑖
−𝑖 with probability (1 − 𝜒𝑆)

When 𝜒𝑆 = 0, a (𝜒𝑆, 𝜓𝑆)-SCE reduces to a sequential equilibrium. A sequential
cursed equilibrium refers to a boundary case when 𝜒𝑆 = 𝜓𝑆 = 1 in a (𝜒𝑆, 𝜓𝑆)-SCE.

B.3 Differences Between CSE and SCE
B.3.1 Difference in the Belief Updating Dynamics
One key difference between the two equilibrium concepts is in the belief updating
process about nature’s strategy. In the framework of CSE, players update their beliefs
about the other players’ type profile at each public history by 𝜒-cursed Bayes’ rule,
which is stated in Claim B.1. In the case of totally mixed strategies, the updating
process is very simple to characterize:

Claim B.1. For any 𝜒-cursed sequential equilibrium (𝜇, 𝜎) where 𝜎 is a to-
tally mixed behavioral strategy profile, any 𝑖 ∈ 𝑁 , any non-terminal history
ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) ∈ H\H𝑇 and any 𝜃 ∈ Θ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)+(1−𝜒)
[

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑
𝜃′−𝑖
𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
.

(B.1)

On the other hand, SCE is defined as a mixture of three different kinds of conjectures.
The mathematical object that corresponds to the belief of SCE is the conjecture
about nature’s strategy. In the following, we will characterize the evolution of this
conjecture. In general, the characterization of the belief updating process about
nature’s strategy can be quite complicated. To simplify the comparison between
CSE and SCE, it is instructive to first examine the comparison in games where
the coarsest valid partition, P, accords with public histories, in the sense that P is
measurable with respect to public histories. Later examples in this appendix will
explore some of the implications if this condition is not satisfied.

Definition B.5. The coarsest valid partition, P, satisfies Public History Consis-
tency (PHC) if, for all 𝑡 < 𝑇, 𝑖 ∈ 𝑁, 𝜃𝑖 ∈ Θ𝑖, ℎ

𝑡 ∈ H 𝑡 , ℎ̂𝑡 ∈ H 𝑡:

ℎ𝑡 ≠ ℎ̂𝑡 ⇒ 𝑃(ℎ𝑡 , 𝜃𝑖) ≠ 𝑃( ℎ̂𝑡 , 𝜃𝑖).
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Following Definition B.5, we can explicitly characterize𝑃(I𝑖) under PHC, as demon-
strated in Lemma B.1:

Lemma B.1. The coarsest valid partition, P, satisfies Public History Consistency
if and only if, for all 𝑡 < 𝑇 , 𝑖 ∈ 𝑁 , 𝜃𝑖 ∈ Θ𝑖, and ℎ𝑡 ∈ H 𝑡 , we can obtain that
𝑃(ℎ𝑡 , 𝜃𝑖) =

⋃
𝜃∈Θ(ℎ𝑡 , 𝜃).

Proof: (⇒): We prove by contrapositive. Suppose that there exists some non-
terminal information set (ℎ𝑡 , 𝜃𝑖) such that 𝑃(ℎ𝑡 , 𝜃𝑖) ≠

⋃
𝜃∈Θ(ℎ𝑡 , 𝜃), then by the

definition of the coarsest partition, we have 𝑃(ℎ𝑡 , 𝜃𝑖) ⊋
⋃
𝜃∈Θ(ℎ𝑡 , 𝜃). However, in

games of perfect recall, this implies that there is some 𝑃 ∈ P and ℎ̂𝑡 ∈ H 𝑡 such that
ℎ𝑡 ≠ ℎ̂𝑡 but (ℎ𝑡 , 𝜃𝑖) ⊂ 𝑃 and ( ℎ̂𝑡 , 𝜃𝑖) ⊂ 𝑃, which contradicts Definition B.5.

(⇐): Definition B.5 follows immediately from the statement. ■

A key implication of PHC is that no matter how cursed the players are, they know
that everyone’s behavioral strategy depends on the realized public history. In other
words, this condition shuts down one source of cursedness: players fully understand
that other players’ future actions are conditional on current and past actions. Other
implications of the PHC condition will be discussed in later sections. Of course, it
is still the case that at any history the players are cursed in the sense of neglecting
the dependence of other players’ current and future actions on the type profile (i.e.,
nature’s initial move).5

Fix any totally mixed behavioral strategy profile 𝜎 and any information set I𝑖 =
(ℎ𝑡 , 𝜃𝑖) where ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡). Under SCE, player 𝑖’s belief about other players’
type profile (Nature’s initial move) is the weighted average of the conjectures about
nature’s strategy. Specifically, for any (𝜒𝑆, 𝜓𝑆) ∈ [0, 1]2, the belief is simply

𝜇
(𝜒𝑆 ,𝜓𝑆)
𝑖

(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≡ 𝜒𝑆𝜓𝑆 𝜎̃
(ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅)︸          ︷︷          ︸
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑐𝑢𝑟𝑠𝑒𝑑

+ 𝜒𝑆 (1 − 𝜓𝑆) 𝜎̌ (ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅)︸          ︷︷          ︸
𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 𝑐𝑢𝑟𝑠𝑒𝑑

+ (1 − 𝜒𝑆) 𝜎̂ (ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅)︸          ︷︷          ︸
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

.

5PHC may seem like a weak condition, but for most games the coarsest valid partition in
SCE violates the condition. For example, it will be violated even in very simple games of perfect
information, where there is no initial move by nature, and no simultaneous moves, as we illustrate
later in this appendix. One alternative to avoid this would be to modify the definition of SCE so that
the coarsest valid partition, P, is required to satisfy PHC, leading to a different equilibrium concept,
which could be called Public Sequential Cursed Equilibrium (PSCE). For multi-stage games with
public histories, PHC seems like a plausible requirement for valid coarsening.
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If PHC is satisfied, one can relatively easily characterize the evolution of the
(𝜒𝑆, 𝜓𝑆)-SCE conjecture about nature. This is done next in Claim B.2.

Claim B.2. Under PHC, for any (𝜒𝑆, 𝜓𝑆)-sequential cursed equilibrium where 𝜎
is a totally mixed behavioral strategy profile, and any non-terminal information set
(𝜃𝑖, ℎ𝑡) where ℎ𝑡 = (𝑎1, . . . , 𝑎𝑡), the conjecture about nature’s strategy is:

𝜇
(𝜒𝑆 ,𝜓𝑆)
𝑖

(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝑆 (1 − 𝜓𝑆)𝐹 (𝜃−𝑖 |𝜃𝑖) + [1 − 𝜒𝑆 (1 − 𝜓𝑆)]𝜇∗𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) (B.2)

where

𝜇∗𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝐹 (𝜃−𝑖 |𝜃𝑖)

[∏
𝑗≠𝑖

∏
1≤𝑙≤𝑡 𝜎𝑗

(
𝑎𝑙
𝑗
|ℎ𝑙−1, 𝜃 𝑗

)]
∑
𝜃′
𝑖
∈Θ−𝑖 𝐹

(
𝜃′−𝑖 |𝜃𝑖

) [∏
𝑗≠𝑖

∏
1≤𝑙≤𝑡 𝜎𝑗

(
𝑎𝑙
𝑗
|ℎ𝑙−1, 𝜃′

𝑗

)] .
Proof: To obtain the belief of (𝜒𝑆, 𝜓𝑆)-SCE under PHC, we need to derive the
sequentially cursed conjecture, typically cursed conjecture and the Bayesian con-
jecture of nature separately.

1. Player 𝑖’s Bayesian conjecture about nature’s strategy is

𝜎̂
(ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅) = 𝜇[𝜎] (ℎ∅, 𝜃 | (ℎ𝑡 , 𝜃𝑖) ∩ ℎ∅)

=

𝐹 (𝜃−𝑖, 𝜃𝑖)
[∏

𝑗≠𝑖

∏
1≤𝑙≤𝑡 𝜎𝑗

(
𝑎𝑙
𝑗
|ℎ𝑙−1, 𝜃 𝑗

)]
∑
𝜃′
𝑖
∈Θ−𝑖 𝐹

(
𝜃′−𝑖, 𝜃𝑖

) [∏
𝑗≠𝑖

∏
1≤𝑙≤𝑡 𝜎𝑗

(
𝑎𝑙
𝑗
|ℎ𝑙−1, 𝜃′

𝑗

)]
=

𝐹 (𝜃−𝑖 |𝜃𝑖)
[∏

𝑗≠𝑖

∏
1≤𝑙≤𝑡 𝜎𝑗

(
𝑎𝑙
𝑗
|ℎ𝑙−1, 𝜃 𝑗

)]
∑
𝜃′
𝑖
∈Θ−𝑖 𝐹

(
𝜃′−𝑖 |𝜃𝑖

) [∏
𝑗≠𝑖

∏
1≤𝑙≤𝑡 𝜎𝑗

(
𝑎𝑙
𝑗
|ℎ𝑙−1, 𝜃′

𝑗

)]
≡ 𝜇∗𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖).

2. Player 𝑖’s sequentially cursed conjecture about nature’s strategy is

𝜎̃
(ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅) = 𝜇[𝜎] (ℎ∅, 𝜃 | (ℎ𝑡 , 𝜃𝑖) ∩ 𝑃(ℎ∅)) = 𝜇∗𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖),

which coincides with the Bayesian conjecture. Note that 𝑃(ℎ∅) = ℎ∅ since
the nature’s information set is singleton.

3. Player 𝑖’s typically cursed conjecture about nature’s strategy is

𝜎̌
(ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅) = 𝜇[𝜎] (ℎ∅, 𝜃 | (·, 𝜃𝑖) ∩ ℎ∅) =
𝐹 (𝜃−𝑖, 𝜃𝑖)
𝐹 (𝜃𝑖)

= 𝐹 (𝜃−𝑖 |𝜃𝑖),

which is just the common prior conditional on player 𝑖’s type.
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Combined these three conjectures, we can obtain that 𝜇(𝜒𝑆 ,𝜓𝑆)
𝑖

(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =

𝜒𝑆𝜓𝑆𝜎̃
(ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅) + 𝜒𝑆 (1 − 𝜓𝑆)𝜎̌ (ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅) + (1 − 𝜒𝑆)𝜎̂ (ℎ𝑡 ,𝜃𝑖)
𝜆

(𝜃 |ℎ∅)
= 𝜒𝑆 (1 − 𝜓𝑆)𝐹 (𝜃−𝑖 |𝜃𝑖) + [1 − 𝜒𝑆 (1 − 𝜓𝑆)]𝜇∗𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖).

This completes the characterization of the evolution of the conjecture. ■

From the proof of Claim B.2, we can find that under the typically cursed conjecture,
players do not update their beliefs about others’ types while under the sequentially
cursed and the Bayesian conjectures, players will update their beliefs correctly—in
the sense that their conjecture about nature’s strategy coincides with the Bayesian
posterior. By contrast, under the framework of CSE, players update their beliefs
via Bayes’ rule while having incorrect perceptions about other players’ behavioral
strategies. Therefore, as characterized by Claim B.1, in 𝜒-CSE the posterior belief
about others’ types at stage 𝑡 is a weighted average between the posterior belief at
stage 𝑡 − 1 and the Bayesian posterior.

The results from Claim B.1 and Claim B.2 sharply contrast the difference in the
belief updating process of the two theories. Under the framework of (𝜒𝑆, 𝜓𝑆)-
SCE, a player perceives the others’ strategies by weighting over cursed and actual
strategies formed under different partitions of entire game trees. As a result, the
posterior belief induced by a (𝜒𝑆, 𝜓𝑆)-SCE at every stage is a weighted average
over two extreme cases—the prior belief (i.e., no belief updating) and the Bayesian
posterior belief implied by the actual strategy profile (i.e., correct Bayesian belief
updating). Alternatively, under the framework of 𝜒-CSE, a player perceives the
others’ strategies by weighting between cursed (average) and actual strategies at
each stage. The player would update his belief by applying Bayes rule to his belief
in the previous stage, but with an incorrect perception about the behavioral strategy
used in that stage. As a result, the posterior belief induced by a 𝜒-CSE at stage 𝑡
is a weighted average over two cases—the belief at stage 𝑡 − 1, and the Bayesian
posterior belief implied jointly by that belief and actual behavioral strategy at 𝑡 − 1.

Another implication of Claim B.1 and Claim B.2 concerns the anchoring of the
belief evolution to the original prior (nature’s move). Under the framework of
(𝜒𝑆, 𝜓𝑆)-SCE, a player always puts 𝜒𝑆 (1 − 𝜓𝑆) weight on his prior belief about
the joint distribution of types when forming the posterior belief. In this sense, the
impact of prior on posterior is persistent and independent of which period the player
is currently in. By contrast, under the framework of 𝜒-CSE, a player at stage 𝑡 puts a
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𝜒weight on his belief in previous stage, which has typically evolved over 𝑡−1 stages.
The impact of prior on posterior belief thus diminishes over time compared to the
posterior beliefs formed in the latest periods. The following example highlights
this difference in the belief updating processes and sheds light on how they reflect
distinct views about (cursed) learning behavior in dynamic games.

Before diving into the illustrative example, in Remark B.1, we derive a player’s
conjectures about other players’ strategies in past and future events under PHC. This
remark is useful for understanding the mechanism of the belief updating in SCE and
useful for the calculations in the illustrative example.

Remark B.1. Fix any non-terminal information set I𝑖 = (ℎ𝑡 , 𝜃𝑖) such that there are
public histories ℎ𝑡′ , ℎ𝑡′′ with ℎ𝑡′ ≺ ℎ𝑡 ⪯ ℎ𝑡

′′ . Let ℎ𝑡′′ ≡ (𝑎1, . . . , 𝑎𝑡
′
, . . . , 𝑎𝑡 , . . . , 𝑎𝑡

′′).
Following the definition of SCE, under PHC, we can find that player 𝑖’s conjectures
about type 𝜃 𝑗 player 𝑗’s partial strategy at the past public history ℎ𝑡′ are:

1. The sequentially cursed conjecture coincides with the Bayesian conjecture:

𝜎̃
I𝑖
𝑗
(𝑎̃𝑡′+1

𝑗 |ℎ𝑡′ , 𝜃 𝑗 ) = 𝜎̂I𝑖
𝑗
(𝑎̃𝑡′+1

𝑗 |ℎ𝑡′ , 𝜃 𝑗 ) =


1 if 𝑎̃𝑡′+1
𝑗

= 𝑎𝑡
′+1
𝑗

0 if 𝑎̃𝑡′+1
𝑗

≠ 𝑎𝑡
′+1
𝑗

2. The typically cursed conjecture is the average behavioral strategy:

𝜎̌
I𝑖
𝑗
(𝑎𝑡′+1

𝑗 |ℎ𝑡′ , 𝜃 𝑗 ) =
∑︁
𝜃′
𝑗
∈Θ 𝑗

𝜇∗𝑖 (𝜃′𝑗 |ℎ𝑡
′
, 𝜃𝑖)𝜎𝑗 (𝑎𝑡

′+1
𝑗 |ℎ𝑡′ , 𝜃′𝑗 ).

On the other hand, player 𝑖’s conjectures about type 𝜃 𝑗 player 𝑗’s partial strategy at
the future public history ℎ𝑡′′ are:

1. The sequentially cursed conjecture coincides with the typically cursed
conjecture:

𝜎̃
I𝑖
𝑗
(𝑎𝑡′′+1

𝑗 |ℎ𝑡′′ , 𝜃 𝑗 ) = 𝜎̌I𝑖
𝑗
(𝑎𝑡′′+1

𝑗 |ℎ𝑡′′ , 𝜃 𝑗 ) =
∑︁
𝜃′
𝑗
∈Θ 𝑗

𝜇∗𝑖 (𝜃′𝑗 |ℎ𝑡
′′
, 𝜃𝑖)𝜎𝑗 (𝑎𝑡

′′+1
𝑗 |ℎ𝑡′′ , 𝜃′𝑗 ).

2. The Bayesian conjecture coincides with the true behavioral strategy:

𝜎̂
I𝑖
𝑗
(𝑎̃𝑡′′+1

𝑗 |ℎ𝑡′′ , 𝜃 𝑗 ) = 𝜎𝑗 (𝑎̃𝑡
′′+1
𝑗 |ℎ𝑡′′ , 𝜃 𝑗 ).
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In summary, a player who is sequentially cursed accurately perceives another player’s
past behavior by assigning a probability of 1 to the actions that have been played,
but assumes that the other player will use an average strategy (averaged based on
𝜇∗) going forward. On the other hand, a player who is typically cursed perceives
both the past and future strategies of another player in the same way, assuming that
the other player uses the average strategy.

Illustrative Example

Consider the following game where there is one broadcaster (𝐵) and two other
players. We denote the set of players as 𝑁 = {𝐵, 1, 2}. There are two possible
states—good (𝜃𝑔) or bad (𝜃𝑏)—with equal probability. At the beginning of the
game, nature will draw the true state. Only the broadcaster observes the state,
not the other two players. Therefore, the true state is the broadcaster’s private
information.

In this game, all players except for the broadcaster will take turns to choose either a
safe option (𝑠) or a risky option (𝑟). Without loss of generality, we let player 𝑖 be the
𝑖-th mover for any 𝑖 ∈ {1, 2}. Each of these two players only takes one action and
all actions of all players are public. Moreover, before each player 𝑖 ∈ {1, 2} makes a
move, the broadcaster makes a public announcement about the state being good (𝑔)
or bad (𝑏).

Technically speaking, this is a three-player four-stage multi-stage game with ob-
served actions where player 𝐵 moves at odd stages (𝑡 = 1, 3) with the action set
𝐴𝐵 (ℎ𝑡) = {𝑔ℎ𝑡 , 𝑏ℎ𝑡 } and each player 𝑖 ∈ {1, 2} moves at stage 2𝑖 with the action set
𝐴𝑖 (ℎ2𝑖) = {𝑠ℎ2𝑖

, 𝑟ℎ
2𝑖 }. Formally, this game satisfies PHC since the available actions

at different histories are labeled differently.6 We drop the superscripts ℎ𝑡 and ℎ2𝑖

when there is no risk of confusion.

The broadcaster will get one unit payoff for each truthful announcement and 0
otherwise. Therefore, it is strictly optimal for the broadcaster to always report the
true state. For other players, they will get 0 for sure if they choose the safe option 𝑠.
If they choose the risky option 𝑟, they will get 𝛼 ∈ (0, 1) if the state is 𝜃𝑔 and −1 if
the stage is 𝜃𝑏.

In summary, the broadcaster has private information about the true state, and is
incentivized to always truthfully report the state. All other players do not know the

6See Section B.3.5 for more discussion on the labeling issue.
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true state, but they are incentivized to choose 𝑟 in their turn if they are sufficiently
confident about the state being 𝜃𝑔. The standard equilibrium theory predicts the
broadcaster will always announce the true state and every player 𝑖 ∈ {1, 2} will
choose 𝑠 if the announcement is 𝜃𝑏 and choose 𝑟 otherwise.

To highlight how the belief updating processes differ under SCE and CSE, we will
focus on the case in which the state is good (𝜃𝑔) and characterize player 𝑖’s best
response to the broadcaster’s announcement(s) for 𝑖 ∈ {1, 2}. Because the solutions
have the structure that if it is optimal for some player 𝑖 to choose 𝑟, then it is also
optimal for 𝑖+1 to choose 𝑟, in the following, we characterize the solutions by finding
the first player to choose 𝑟. Notice that there are three possible cases, {1, 2, 𝑠}, which
corresponds to the cutoff player or the case where both players choose 𝑠. We use 𝑖∗

and 𝑖∗∗ to denote the cutoff players predicted by SCE and CSE, respectively. Claim
B.3 shows that, in every SCE, the two players other than the broadcaster would take
identical actions—either 𝑖∗ = 1 (both choose 𝑟) or 𝑖∗ = 𝑠 (both choose 𝑠).

Claim B.3. In a (𝜒𝑆, 𝜓𝑆)-SCE, when the broadcaster announces 𝑔, the cutoff player
𝑖∗ is characterized as the following:

1. 𝑖∗ = 1 if and only if 𝜒𝑆 (1 − 𝜓𝑆) ≤ 2𝛼
(1+𝛼) , and

2. 𝑖∗ = 𝑠 if and only if 𝜒𝑆 (1 − 𝜓𝑆) ≥ 2𝛼
(1+𝛼) .

Proof: Consider the case where the broadcaster announces 𝑔 and fix any player
𝑖 ∈ {1, 2}. By Claim B.2, we can obtain that player 𝑖’s belief about 𝜃𝑔 is

𝜇
(𝜒𝑆 ,𝜓𝑆)
𝑖

(𝜃𝑔 | observing 𝑔 for 𝑖 times) = 0.5𝜒𝑆 (1 − 𝜓𝑆) + [1 − 𝜒𝑆 (1 − 𝜓𝑆)]
= 1 − 0.5𝜒𝑆 (1 − 𝜓𝑆).

In other words, every player 𝑖 will hold the same belief. Therefore, it is optimal for
player 𝑖 to choose 𝑟 if and only if

𝛼 [1 − 0.5𝜒𝑆 (1 − 𝜓𝑆)] − 0.5𝜒𝑆 (1 − 𝜓𝑆) ≥ 0 ⇐⇒ 𝜒𝑆 (1 − 𝜓𝑆) ≤
2𝛼

(1 + 𝛼) .

Because every player has the same belief, they will take the same action. Coupled
with the calculation above, we can conclude that

1. 𝑖∗ = 1 if and only if 𝜒𝑆 (1 − 𝜓𝑆) ≤ 2𝛼
(1+𝛼) , and

2. 𝑖∗ = 𝑠 if and only if 𝜒𝑆 (1 − 𝜓𝑆) ≥ 2𝛼
(1+𝛼) ,
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which completes the proof. ■

On the contrary, in the framework of 𝜒-CSE, each player 𝑖 will gradually update
their beliefs as they gather more observations of 𝑔 announcements, so player 2 will
be better informed than player 1. Claim B.4 shows that, for intermediate values
of 𝜒, the first mover would choose the safe option but the second mover would be
confident enough about state being good and choose the risky option in a 𝜒-CSE.

Claim B.4. In a 𝜒-CSE, when the broadcaster announces 𝑔, the cutoff player 𝑖∗∗ is
characterized as the following:

1. 𝑖∗∗ = 1 if and only if 𝜒 ≤ 2𝛼
1+𝛼 ,

2. 𝑖∗∗ = 2 if and only if 𝜒 ∈
[(

2𝛼
1+𝛼

)
,

(
2𝛼

1+𝛼

) 1
2
]
, and

3. 𝑖∗∗ = 𝑠 if and only if 𝜒 ≥
(

2𝛼
1+𝛼

) 1
2 .

Proof: Consider the case where the broadcaster announces 𝑔 and fix any player
𝑖 ∈ {1, 2}. By Claim B.1, we can obtain that player 𝑖’s belief about 𝜃𝑔 is

𝜇
𝜒

𝑖
(𝜃𝑔 | observing 𝑔 for 𝑖 times) = 𝜒𝜇𝜒

𝑖
(𝜃𝑔 | observing 𝑔 for 𝑖 − 1 times) + (1 − 𝜒)

As we iteratively apply Claim B.1, we can obtain that for any player 𝑖, the belief
about 𝜃𝑔 is

𝜇
𝜒

𝑖
(𝜃𝑔 | observing 𝑔 for 𝑖 times) = 1 − 0.5𝜒𝑖,

suggesting that players are more certain about the state being good as they observe
more 𝑔 announcements. Thus, it is optimal for player 𝑖 to choose 𝑟 if and only if

𝛼
[
1 − 0.5𝜒𝑖

]
− 0.5𝜒𝑖 ≥ 0 ⇐⇒ 𝜒 ≤

(
2𝛼

1 + 𝛼

) 1
𝑖

.

This completes the proof since the RHS is strictly increasing in 𝑖. ■

It is noteworthy that the above example as well as Claim B.3 and B.4 can be easily
extended to the case with 𝑛 players (other than the broadcaster) for any 𝑛 > 2. In a
(𝜒𝑆, 𝜓𝑆)-SCE, the 𝑛 players would take the same action, while in a 𝜒-CSE, the early
movers would choose 𝑠 but the late movers would choose 𝑟 for some intermediate
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value of 𝜒. Besides, for any value of 𝜒 < 1, there is a critical value 𝑛𝜒 such that for
all 𝑛 > 𝑛𝜒, there will be a switch point at which later movers will all choose 𝑟 .

The (𝜒𝑆, 𝜓𝑆)-SCE predicts that in this example, even though later players (𝑖 ≥ 2)
repeatedly observe the broadcaster’s behavior, they only believe the first announce-
ment contains useful information. Under the SCE framework, a cursed player 𝑖 acts
as if she fully understands the correlation between the broadcaster’s announcements,
so collecting more of the broadcaster’s announcements does not provide new infor-
mation for updating her belief. In contrast, the 𝜒-CSE predicts that a (partially)
cursed player 𝑖 will eventually learn the true state if she can observe the broad-
caster’s announcements infinitely many times. Under the CSE framework, although
a cursed player 𝑖 may be unsure about the broadcaster’s private information at the
beginning, she will gain confidence from observing that the broadcaster makes the
same announcement over time. In this sense, player 𝑖 gradually learns how another
player’s strategy depends on his type as she observes the other’s actions over time,
which is fundamentally different from the learning process characterized in SCE,
where beliefs can get stuck after the first stage of the game.

B.3.2 Difference in Treating Public Histories
In addition to the difference in the belief updating process, another key difference
between the CSE and SCE is about the publicness of public histories. In the
framework of CSE, players have correct understanding about how choosing different
actions would result in different histories and they know all other players know this.
In other words, from the perspective of CSE, public histories are essentially public.

However, public histories are not necessarily public in the framework of SCE.
Players in SCE are allowed to be cursed about endogenous information—namely,
players may incorrectly believe other players will not respond to changes of actions.
Technically speaking, when the coarsest valid partition is not consistent with public
histories, i.e., PHC is violated, there is some information set where the player would
believe regardless of what he chooses, others will have the same perception about
the course of game play.

To demonstrate how this difference leads to different predictions in a specific game,
we next consider a simple signaling game and compare 𝜒-CSE and (𝜒𝑆, 𝜓𝑆)-SCE.
This comparison illustrates when PHC is violated, the (𝜒𝑆, 𝜓𝑆)-SCE can look dra-
matically different from 𝜒-CSE.
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Illustrative Example
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Figure B.1: Game Tree for the Illustrative Example.

Consider the signaling game depicted in Figure B.1 (Example 1 Fong, Lin, and
Palfrey, 2023): The sender has two possible types drawn from the set Θ = {𝜃1, 𝜃2}
with Pr(𝜃1) = 1/4. The receiver does not have any private information. After the
sender’s type is drawn, the sender observes his type and decides to send a message
𝑚 ∈ {𝐴, 𝐵} (or any mixture between the two). After that, the receiver decides
between action 𝑎 ∈ {𝐿, 𝑅} (or any mixture between the two), and the game ends. In
the following, we will focus on equilibrium in pure behavioral strategies and use a
four-tuple [(𝑚(𝜃1), 𝑚(𝜃2)); (𝑎(𝐴), 𝑎(𝐵))] to denote a behavioral strategy profile.

In Claim B.5 and Claim B.6, we summarize the solutions of 𝜒-CSE and (𝜒𝑆, 𝜓𝑆)-
SCE, respectively.

Claim B.5. There are two pure pooling 𝜒-CSE, which are:

1. [(𝐴, 𝐴); (𝐿, 𝑅)] is a pooling 𝜒-CSE for any 𝜒 ∈ [0, 1].

2. [(𝐵, 𝐵); (𝑅, 𝑅)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 8/9.

Proof: See Appendix A. ■

Claim B.6. There are four pure (𝜒𝑆, 𝜓𝑆)-SCE, which are:

1. [(𝐴, 𝐴); (𝐿, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE if and only if 𝜒𝑆 ≤ 1/3.

2. [(𝐵, 𝐵); (𝐿, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE if and only if 𝜒𝑆 ≥ 1/3.
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3. [(𝐵, 𝐴); (𝐿, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE if and only if 𝜒𝑆 = 1/3.

4. [(𝐵, 𝐵); (𝑅, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE if and only if 𝜒𝑆 (1 − 𝜓𝑆) ≤ 8/9.

Proof: First, we can observe that the presence or absence of a PHC restriction on
the coarsest partition does not affect player 2’s best response to player 1’s strategy.
Since player 2 moves at the last stage after receiving player 1’s message, player
2’s conjecture about the other player’s (and nature’s) strategy is independent of the
condition on the publicness of public history. Therefore, we can still apply Claim B.2
to pin down player 2’s beliefs and the corresponding best responses under player 1’s
different strategies. For player 2, it is strictly optimal to choose 𝑅 after seeing𝑚 = 𝐵

for any belief, and it is optimal to choose 𝐿 if and only if 𝜇(𝜒𝑆 ,𝜓𝑆)2 (𝜃1 |𝐴) ≤ 1/3. By
Claim B.2, we can find that:

1. 𝑚(𝜃1) = 𝑚(𝜃2) = 𝐴: 𝜇(𝜒𝑆 ,𝜓𝑆)2 (𝜃1 |𝐴) = 1/4, so it is optimal for player 2 to
choose 𝐿 when 𝑚 = 𝐴, implying that [(𝐴, 𝐴); (𝑅, 𝑅)] is not a (𝜒𝑆, 𝜓𝑆)-SCE.

2. 𝑚(𝜃1) = 𝑚(𝜃2) = 𝐵: 𝜇(𝜒𝑆 ,𝜓𝑆)2 (𝜃1 |𝐴) ∈ [ 1
4 𝜒𝑆 (1 − 𝜓𝑆), 1 − 3

4 𝜒𝑆 (1 − 𝜓𝑆)], so
𝑚(𝐴) = 𝑅 can be supported as a best response if and only if 𝜒𝑆 (1−𝜓𝑆) ≤ 8/9;
alternatively, 𝑚(𝐴) = 𝐿 can be supported as a best response for all (𝜒𝑆, 𝜓𝑆) ∈
[0, 1]2.

3. 𝑚(𝜃1) = 𝐴 and 𝑚(𝜃2) = 𝐵: 𝜇(𝜒𝑆 ,𝜓𝑆)2 (𝜃1 |𝐴) = 1− 3
4 𝜒𝑆 (1−𝜓𝑆), so it is optimal

for player 2 to choose 𝐿 when receiving 𝐴 if and only if 𝜒𝑆 (1 − 𝜓𝑆) ≥ 8/9.

4. 𝑚(𝜃1) = 𝐵 and 𝑚(𝜃2) = 𝐴: 𝜇(𝜒𝑆 ,𝜓𝑆)2 (𝜃1 |𝐴) = 1
4 𝜒𝑆 (1 − 𝜓𝑆) ≤ 1/3, so it is

optimal for player 2 to choose 𝐿 when receiving 𝐴.

Player 1’s conjecture about player 2’s strategy, however, depends on whether player
1 realizes that the message 𝑚 will be public. In the framework of SCE, the element
of the coarsest valid partition at the message 𝑚 is

𝑃(𝑚) = {(𝑚′, 𝜃) : 𝑚′ ∈ {𝐴, 𝐵}, 𝜃 ∈ {𝜃1, 𝜃2}},

which is the same for any 𝑚 ∈ {𝐴, 𝐵}. This implies player 1 would (incorrectly)
believe player 2 will behave the same regardless of which message is sent. Given a
strategy profile, 𝜎 = [(𝑚(𝜃1), 𝑚(𝜃2)); (𝑎(𝐴), 𝑎(𝐵))], a type 𝜃′ player 1’s (sequen-
tially and typically) cursed conjecture about player 2’s strategy when seeing the
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message 𝑚̃ ∈ {𝐴, 𝐵} becomes

𝜎̄
(𝜃′)
2 (𝑎′|𝑚̃) = 𝜇[𝜎] ({((𝑚, 𝜃), 𝑎′) : (𝑚, 𝜃) ∈ 𝑃(𝑚̃)}| 𝜃′ ∩ 𝑃(𝑚̃))

=
𝜎𝜆 (𝜃′)

∑
𝑚∈{𝐴,𝐵} 𝜎1(𝑚 |𝜃′)𝜎2(𝑎′|𝑚)

𝜎𝜆 (𝜃′)
= 1 · 𝜎2(𝑎′|𝑚 = 𝑚(𝜃′)) + 0 · 𝜎2(𝑎′|𝑚 ≠ 𝑚(𝜃′))
= 𝜎2(𝑎′|𝑚(𝜃′)).

In other words, with probability 𝜒𝑆, player 1 conjectures that player 2’s off-path
strategy would be the same as her on-path strategy. Notice that both types of player
1 have the same payoff function. Hence:

1. 𝑎(𝐴) = 𝑎(𝐵) = 𝑅: It is optimal for player 1 to send the message 𝐵 as 1 > −1,
implying [(𝐵, 𝐵); (𝑅, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE when 𝜒𝑆 (1 − 𝜓𝑆) ≤ 8/9.

2. 𝑎(𝐴) = 𝐿 and 𝑎(𝐵) = 𝑅: It is optimal for player 1 to send 𝐴 if and only if

2 ≥ 4𝜒𝑆 + (1 − 𝜒𝑆) ⇐⇒ 𝜒𝑆 ≤ 1/3.

Alternatively, it is optimal for player 1 to send 𝐵 if and only if

1 ≥ −𝜒𝑆 + 2(1 − 𝜒𝑆) ⇐⇒ 𝜒𝑆 ≥ 1/3.

Therefore, [(𝐴, 𝐴); (𝐿, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE when 𝜒𝑆 ≤ 1/3. In ad-
dition, [(𝐵, 𝐵); (𝐿, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE when 𝜒𝑆 ≥ 1/3. Moreover,
[(𝐵, 𝐴); (𝐿, 𝑅)] is also a (𝜒𝑆, 𝜓𝑆)-SCE when 𝜒𝑆 = 1/3. It is worth noticing
that [(𝐴, 𝐵); (𝐿, 𝑅)] cannot be supported as a (𝜒𝑆, 𝜓𝑆)-SCE since it requires
two contradicting conditions to hold (𝜒𝑆 = 1/3 and 𝜒𝑆 (1 − 𝜓𝑆) ≥ 8/9).

This completes the characterization of (𝜒𝑆, 𝜓𝑆)-SCE. ■

To visualize the effect of PHC, we plot the solutions characterized in Claim B.6
in Figure B.2. In a (𝜒𝑆, 𝜓𝑆)-SCE, a cursed player 1 would incorrectly believe
player 2 would behave the same regardless of which 𝑚 is chosen. As a result,
(𝜒𝑆, 𝜓𝑆)-SCE differs dramatically from 𝜒-CSE when PHC is violated. The pooling
equilibrium [(𝐴, 𝐴); (𝐿, 𝑅)] is a (𝜒𝑆, 𝜓𝑆)-SCE if and only if players are not too
cursed about endogenous information, i.e., 𝜒𝑆 ≤ 1/3, while this is a 𝜒-CSE for
any 𝜒 ∈ [0, 1]. Moreover, when players are sufficiently cursed about endogenous
information (𝜒𝑆 ≥ 1/3), there is an additional (𝜒𝑆, 𝜓𝑆)-SCE [(𝐵, 𝐵); (𝐿, 𝑅)] which
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is neither a PBE, a CE nor a 𝜒-CSE. Lastly, it is worth mentioning that there exists
an knife-edge case that [(𝐵, 𝐴); (𝐿, 𝑅)] is a separating (𝜒𝑆, 𝜓𝑆)-SCE if and only if
𝜒𝑆 = 1/3. Since the incentives of both types of player 1 are perfectly aligned, the
existence of such a separating (𝜒𝑆, 𝜓𝑆)-SCE is unexpected.

Figure B.2: The Solution Set of (𝜒𝑆, 𝜓𝑆)-SCE.

In summary, a key difference between CSE and SCE is about the way of treating
public histories. From the illustrative example, we can find that when the coarsest
valid partition is not consistent with the public histories, (𝜒𝑆, 𝜓𝑆)-SCE and 𝜒-CSE
make extremely different predictions. In the following sections, we will explore the
implications of the difference in the publicness of public histories. Surprisingly, the
impact of the publicness of public histories not only arises in multistage games with
incomplete information but also appears in games of perfect information, which will
be formally discussed in the next section.

B.3.3 Difference in Games of Complete Information
A significant difference between CSE and SCE is about the predictions of the games
with complete information, i.e., |Θ| = 1. As shown in Claim B.7, in games with
complete information, CSE coincides with sequential equilibrium. As the type
space is singleton, there is no possibility for players to make mistaken inferences
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about the types of other players, so neglect of the correlation between types and
actions is a moot issue, as is also the case in CE.

Claim B.7. If |Θ| = 1, 𝜒-CSE is equivalent to the sequential equilibrium for any
𝜒 ∈ [0, 1].

Proof: LetΘ = {(𝜃1, . . . , 𝜃𝑛)} and consider any behavioral strategy profile. Because
|Θ| = 1, for any player 𝑖 and public history ℎ𝑡−1, we can obtain that 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 1.
Consequently, the average behavioral strategy profile of −𝑖 is simply:

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) = 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) = 𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖)

for any 𝑎𝑡−𝑖 ∈ 𝐴−𝑖 (ℎ𝑡−1), suggesting 𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃) = 𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖) for any
𝜒 ∈ [0, 1]. Since the perception about others’ strategy profile always aligns with
the true strategy profile, 𝜒-CSE is equivalent to the sequential equilibrium for any
𝜒 ∈ [0, 1]. ■

In contrast, SCE does not coincide with the sequential equilibrium in games with
complete information. In fact, this is even true for games of perfect information, i.e.,
nature is not a player and every information set is a singleton. This is illustrated with
the following simple game of perfect information. The intuition of this phenomenon
ties in with the discussion earlier in this appendix, since in this example PHC is
violated. The coarsest partition is not consistent with the public history—even
though the type space and information sets are singleton sets. As a result, when
the coarsest partition bundles multiple public histories, players neglect how their
current action affects another player’s future action.

One of the motivations for SCE is to extend the notion of cursedness to endogenous
information, i.e., observed actions, which are endogenous to the game. However, it
is useful to distinguish between private endogenous information and public endoge-
nous information. In CSE, cursedness arises because players neglect the jointness of
other players’ actions and their private information, but understand the link between
other players’ actions and public information. In multistage games with public
histories, there is no “private endogenous” information. We conjecture that if SCE
were modified so that the coarsest valid partition is required to be measurable with
respect to public histories, then cursedness with respect to private endogenous in-
formation could still arise, but the phenomenon of cursedness with respect to public
endogenous information would not arise.
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Illustrative Example

Consider the two-player game of perfect information in Figure B.3. In the first stage,
player 1 makes a choice from 𝐴1 = {𝐵, 𝑅}. After observing player 1’s decision,
player 2 then makes a choice from 𝐴2 ∈ {𝑏, 𝑟}. The payoffs are shown in the game
tree where 𝑥 ∈ R and 𝑦 < 1. In the following, we will denote the players’ (pure)
behavioral strategy profile by [𝑎1; (𝑎2(𝐵), 𝑎2(𝑅))].

1

2

(2, 2)

𝑏

(0, 0)

𝑟

𝐵

2

(𝑥, 𝑦)

𝑏

(1, 1)

𝑟

𝑅

Figure B.3: A Two-Player Game with Complete Information.

In this game, the only subgame perfect Nash equilibrium is [𝐵; (𝑏, 𝑟)]. However,
Claim B.8 shows that [𝑅; (𝑏, 𝑟)] can also be supported as a (𝜒𝑆, 𝜓𝑆)-SCE if 𝜒𝑆 is
sufficiently large.

Claim B.8. For any 𝑥 ∈ R and 𝑦 < 1, [𝑅; (𝑏, 𝑟)] is a (𝜒𝑆, 𝜓𝑆)-SCE if and only if
𝜒𝑆 ≥ 1/2.

Proof: First, player 2’s best responses to 𝐵 and 𝑅 are 𝑏 and 𝑟, respectively. Note
that player 1’s information set is singleton, so coarsening it has no effect on player
2’s conjecture about, and thus best response to, player 1’s action. Second, under
the coarsest partition, 𝑃(ℎ1 = 𝑅) is {𝑎1 : 𝑎1 ∈ {𝐵, 𝑅}}. Given [𝑅; (𝑏, 𝑟)], player 1
conjectures that player 2 when observing 𝐵 will choose 𝑟 with probability 𝜒𝑆 and
choose 𝑏 with probability 1 − 𝜒𝑆. Therefore, player 1 will not have an incentive to
deviate to 𝐵 if and only if 1 ≥ 2(1 − 𝜒𝑆) ⇐⇒ 𝜒𝑆 ≥ 1/2. ■

It is noteworthy that, given any 𝑥 and 𝑦 < 1, choosing 𝑅 is a (𝜒𝑆, 𝜓𝑆)-SCE strategy
for player 1 if 𝜒𝑆 > 1/2 and this threshold is independent of 𝑥 and 𝑦. In other words,
under the SCE framework, a cursed player 1 could choose 𝑅 in equilibrium even
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when such choice is extremely risky for player 1 due to a huge potential loss (e.g.,
𝑥 = −1000000) or when player 2 is extremely unlikely to go for 𝑏 conditional on
observing 𝑅 due to a large negative payoff (e.g., 𝑦 = −1000000), and such possibility
does not change in the values of 𝑥 and 𝑦.

B.3.4 Difference in Consistency with Subgame Perfection and Sequential Ra-
tionality

The example above shows that SCE can yield predictions that violate subgame
perfection, which cannot happen in CSE. A similar issue arises in the context of the
signaling game analyzed in section B.3.2. In the CSE analysis of the signaling game,
players correctly understand that choosing different actions would bring the game to
different public histories although they update their beliefs about the types via the
𝜒-cursed Bayes’ rule. They further believe that future players will choose optimally
(perhaps with non-Bayesian beliefs) at future public histories. Thus, CSE has built
into it the property of sequential rationality, analogous to subgame perfection in
games of perfect information.7

As we observed in the signaling game, when 𝜒𝑆 ≥ 1/3, there exists a (𝜒𝑆, 𝜓𝑆)-SCE
where both types of player 1 pool at 𝐵 and player 2 will choose 𝐿 and 𝑅 in public
histories 𝐴 and 𝐵, respectively. This solution violates sequential rationality in the
sense that, in this SCE, player 1 incorrectly believes player 2 would behave the same
at both public histories. That is, player 1 believes player 2 will irrationally choose
𝑅 in response to 𝐴. But if player 1 correctly believes player 2 will rationally choose
𝐿 at public history 𝐴, it would be profitable for both types of player 1 to choose 𝐴.

In summary, the violation of sequential rationality of SCE in these examples is
indeed a consequence of the coarsest valid partition being incompatible with public
histories. In the next section, we show how the coarseness of the partition can also
be affected by how the actions are labelled, which in CSE is an inessential technical
detail of the formal game representation. For some additional discussion about the
labeling issue see Cohen and Li (2023).

B.3.5 Difference in the Effect of Re-Labeling Actions
From the discussion in the previous section, we can find that the violation of
subgame perfection of SCE is a consequence of coarsening public histories into an
information set, which in fact, is sensitive to the labels of actions available at these

7Here we use the term sequential rationality instead of subgame perfection, because in the
signaling game there are no proper subgames.
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public histories. The requirement of an information set is that the set of actions for
every history in this information set is exactly the same. Therefore, if the actions at
every public histories are all labelled differently, then the coarsest valid partition is
consistent with the public histories. This observation is stated in Claim B.9.

Definition B.6. A multi-stage game with observed actions is scrambled if for any
𝑖 ∈ 𝑁 , any 𝑡 < 𝑇 , and any ℎ, ℎ′ ∈ H 𝑡 such that ℎ ≠ ℎ′, then

∀ 𝑠 ∈ 𝐴𝑖 (ℎ) and 𝑠′ ∈ 𝐴𝑖 (ℎ′) =⇒ 𝑠 ≠ 𝑠′.

Claim B.9. A scrambled multi-stage game with observed actions satisfies PHC.

Proof: If not, there is some 𝑃(ℎ𝑡 , 𝜃𝑖) which contains two public histories ℎ, ℎ′ ∈ H 𝑡

where ℎ ≠ ℎ′. However, because the game is scrambled, 𝐴𝑖 (ℎ) ≠ 𝐴𝑖 (ℎ′). Therefore,
ℎ and ℎ′ cannot belong to the same cell of a partition under any partition, which
yields a contradiction. ■

This observation provides an alternative interpretation of PHC—we can view this
as an additional requirement of SCE such that the solution concept is immune to the
effect of re-labeling actions.8 On the other hand, because the average behavioral
strategy of CSE is defined at every public history, the immunity of CSE is built in
the model setup.

The illustrative example in Section B.3.2 can also demonstrate the effect of re-
labeling. Let 𝐴2(𝐴) and 𝐴2(𝐵) be the action sets at the public history 𝐴 and 𝐵,
respectively. If 𝐴2(𝐴) = {𝐿, 𝑅} and 𝐴2(𝐵) = {𝐿′, 𝑅′}, then this is a scrambled game
and hence satisfies PHC. As characterized in Claim B.10, we can find that CSE and
SCE are equivalent if 𝜒 = 𝜒𝑆 (1 − 𝜓𝑆). However, if 𝐴2(𝐴) = 𝐴2(𝐵) = {𝐿, 𝑅},
then two public histories 𝐴 and 𝐵 belong to the same information set under the
coarsest valid partition. As shown in Claim B.6, the (𝜒𝑆, 𝜓𝑆)-SCE solution looks
dramatically different.

Claim B.10. If the signaling game depicted in Figure B.1 is scrambled, then there
are two pure pooling (𝜒𝑆, 𝜓𝑆)-SCE, which are:

1. [(𝐴, 𝐴); (𝐿, 𝑅′)] is a pooling (𝜒𝑆, 𝜓𝑆)-SCE for any (𝜒𝑆, 𝜓𝑆) ∈ [0, 1]2.
8To deal with this issue, Cohen and Li propose the concept of casual SCE. See Appendix D of

Cohen and Li (2023) for details.
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2. [(𝐵, 𝐵); (𝑅, 𝑅′)] is a pooling (𝜒𝑆, 𝜓𝑆)-SCE if and only if 𝜒𝑆 (1 − 𝜓𝑆) ≤ 8/9.

Proof: If the signaling game is scrambled, then by PHC, we can find that the partition
illustrated in Figure B.1 is the coarsest valid partition. We can observe that at the
public history 𝑚 = 𝐵, it is strictly optimal for player 2 to choose 𝑅′ for any belief.
On the other hand, at the public history 𝑚 = 𝐴, it is optimal for player 2 to choose
𝐿 if and only if 𝜇(𝜒𝑆 ,𝜓𝑆)2 (𝜃1 |𝐴) ≤ 1/3, as shown in the proof of Claim B.5.

Equilibrium 1. If both types of player 1 choose 𝐴, then by Claim B.2, we can
find that 𝜇(𝜒𝑆 ,𝜓𝑆)2 (𝜃1 |𝐴) = 1/4, so it’s optimal for player 2 to choose 𝐿 at the public
history 𝑚 = 𝐴. Because of PHC, player 1 knows player 2 is choosing a contingent
strategy for different public histories. As a result, given 𝑎(𝐴) = 𝐿 and 𝑎(𝐵) = 𝑅′,
it is optimal for both types of player 1 to choose 𝐴. This shows under PHC,
[(𝐴, 𝐴); (𝐿, 𝑅′)] is a pooling (𝜒𝑆, 𝜓𝑆)-SCE for any (𝜒𝑆, 𝜓𝑆) ∈ [0, 1]2.

Equilibrium 2. To support 𝑚(𝜃1) = 𝑚(𝜃2) = 𝐵 to be an equilibrium, because of
PHC, player 2 has to choose 𝑅 at the public history 𝑚 = 𝐴. By Claim B.2 and the
consistency requirement, the belief system has to satisfy

𝜇
(𝜒𝑆 ,𝜓𝑆)
2 (𝜃1 |𝐴) ∈

[
1
3
, 1 − 3

4
𝜒𝑆 (1 − 𝜓𝑆)

]
,

which is valid if and only if 𝜒𝑆 (1−𝜓𝑆) ≤ 8/9. Finally, because of PHC, both players
know that player 2’s strategy is a contingent strategy which is responsive to different
public histories. Consequently, we can use the standard equilibrium argument to
show that there is no separating pure strategy equilibrium. This completes the
characterization of SCE under PHC. ■

Figure B.4 depicts the SCE of the signaling game when it is unscrambled (i.e.,
PHC is violated) and scrambled (i.e., PHC is satisfied). With PHC, all players
understand that every player’s strategy is a contingent strategy conditional on the
public histories. Therefore, if this two-stage signaling game is scrambled, (𝜒𝑆, 𝜓𝑆)-
SCE coincides with 𝜒-CSE when 𝜒 = 𝜒𝑆 (1 − 𝜓𝑆). Moreover, the strategy profiles
that could only be supported as a (𝜒𝑆, 𝜓𝑆)-SCE in the unscrambled signaling game
by a relatively large 𝜒𝑆 (i.e., [(𝐵, 𝐵); (𝐿, 𝑅′)] and [(𝐵, 𝐴); (𝐿, 𝑅′)]) would no longer
be a (𝜒𝑆, 𝜓𝑆)-SCE when PHC is required.
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Figure B.4: (𝜒𝑆, 𝜓𝑆)-SCE of an unscrambled and scrambled signaling game.

B.3.6 Difference in One-Stage Simultaneous-Move Games
The last important difference between CSE and SCE is in their relations with the
standard cursed equilibrium in one-stage games. As shown by Fong, Lin, and Palfrey
(2023), CSE coincides with the standard CE for any one-stage game. Yet Cohen and
Li (2023) show that SCE in one-stage games is equivalent to independently cursed
equilibrium (ICE), under which players are cursed about not only the dependence
of opponents’ actions on private information but also the correlation between oppo-
nents’ actions. In the following, we will first summarize the definitions of CE and
ICE, and then illustrate how substantial their predictions can differ in an example of
a three-player game.

Definition B.7 describes the standard CE in an one-stage game. Under CE, a player
fails to account for how the other players’ action profile may depend on their types,
and best responds to the average strategy profile of the other players.

Definition B.7. A strategy profile 𝜎 is a cursed equilibrium (CE) if for each player
𝑖, type 𝜃𝑖 ∈ Θ𝑖 and each 𝑎1

𝑖
∈ 𝐴𝑖 (ℎ∅) such that 𝜎𝑖 (𝑎1

𝑖
|ℎ∅, 𝜃𝑖) > 0,

𝑎1
𝑖 ∈ argmax

𝑎1′
𝑖
∈𝐴𝑖 (ℎ∅)

∑︁
𝜃−𝑖∈Θ−𝑖

𝐹 (𝜃−𝑖 |𝜃𝑖) ×

∑︁
𝑎1
−𝑖∈𝐴−𝑖 (ℎ∅)

[ ∑︁
𝜃−𝑖∈Θ−𝑖

𝐹 (𝜃−𝑖 |𝜃𝑖)𝜎−𝑖 (𝑎1
−𝑖 |ℎ∅, 𝜃−𝑖)

]
𝑢𝑖 (𝑎1

−𝑖, 𝑎
1′
𝑖 , 𝜃−𝑖, 𝜃𝑖),
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Definition B.8 provides the definition of ICE in an one-stage game. Under ICE, a
player fails to account for how each player’s action may depend on her own type,
and how it may correlate with another player’s action (via the correlation in type
distribution). Therefore, a player would best respond as if the average strategies
across the other players are independent.

Definition B.8. A strategy profile 𝜎 is an independently cursed equilibrium (ICE)
if for each player 𝑖, type 𝜃𝑖 ∈ Θ𝑖 and each 𝑎1

𝑖
∈ 𝐴𝑖 (ℎ∅) such that 𝜎𝑖 (𝑎1

𝑖
|ℎ∅, 𝜃𝑖) > 0,

𝑎1
𝑖 ∈ argmax

𝑎1′
𝑖
∈𝐴𝑖 (ℎ∅)

∑︁
𝜃−𝑖∈Θ−𝑖

𝐹 (𝜃−𝑖 |𝜃𝑖) ×

∑︁
𝑎1
−𝑖∈𝐴−𝑖 (ℎ∅)

∏
𝑗∈𝑁\{𝑖}


∑︁
𝜃 𝑗∈Θ 𝑗

𝐹 (𝜃 𝑗 |𝜃𝑖)𝜎𝑗 (𝑎1
𝑗 |ℎ∅, 𝜃 𝑗 )

 𝑢𝑖 (𝑎1
−𝑖, 𝑎

1′
𝑖 , 𝜃−𝑖, 𝜃𝑖).

Claim B.11 and B.12 summarize the relations between CSE, SCE, and CE in one-
stage games. The proofs can be found in Fong, Lin, and Palfrey (2023) and Cohen
and Li (2023), respectively.

Claim B.11. For any one-stage game and for any 𝜒 ∈ [0, 1], 𝜒-CSE and 𝜒-CE are
equivalent.

Claim B.12. For any finite one-stage game, ICE and SCE are equivalent.

Although CE and ICE are equivalent in an one-stage two-person game, we show
in the following example that the sets of CE and ICE may be non-overlapping in a
three-person game. This finding suggests that CSE and SCE are generally different
when there are more than two players.

Illustrative Example

Consider the following three-player one-stage game. Player 1 and 2 have two
possible types drawn from the set Θ = {𝑏, 𝑟} with the joint distribution 𝐹 (𝜃1 = 𝜃2 =

𝑏) = 𝐹 (𝜃1 = 𝜃2 = 𝑟) = 0.5 − 𝜖 and 𝐹 (𝜃1 = 𝑏, 𝜃2 = 𝑟) = 𝐹 (𝜃1 = 𝑟, 𝜃2 = 𝑏) = 𝜖

where 𝜖 ∈ (0, 0.5). Player 3 has no private information. Each player makes a choice
from the set 𝐴 = {𝑏, 𝑟, 𝑚}. Player 1 and 2 will get one unit of payoff if his choice
matches his type (and 0 otherwise). Player 3 will get one unit of payoff if his choice
matches player 1’s and 2’s choices when 𝑎1 = 𝑎2, or if he chooses 𝑚 when 𝑎1 ≠ 𝑎2

(and 0 otherwise).
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To summarize, player 1 and 2 have private information, and their payoffs will be
maximized if their actions match their types. Player 1’s (and 2’s) type is 𝑏 or 𝑟 with
equal probabilities. However, their types can be the same with probability 1 − 2𝜖 .
Player 3 has no private information, and his goal is to guess his opponents’ actions
by following them when they act the same and choosing𝑚 when they act differently.

Claim B.13. When 𝜖 < 1/6, player 3 will choose 𝑏 or 𝑟 in CE but 𝑚 in ICE. That
is, CE and ICE do not overlap.

Proof: In both CE and ICE, 𝑎∗
𝑖
(𝜃𝑖) = 𝜃𝑖 for 𝑖 ∈ {1, 2}, which is a strictly dominant

strategy for Player 1 and 2. Player 3’s expected payoff of choosing 𝑎3 under CE is
thus

E𝑢3(𝑎3, 𝑎−3 |𝜎∗
−3) =


𝐹 (𝜃1 = 𝜃2 = 𝑎3) if 𝑎3 = 𝑏 or 𝑟

𝐹 (𝜃1 ≠ 𝜃2) if 𝑎3 = 𝑚.

Therefore, it is optimal for player 3 to choose 𝑏 or 𝑟 in CE if

0.5 − 𝜖 > 2𝜖 ⇐⇒ 𝜖 < 1/6.

Alternatively, player 3’s expected payoff of choosing 𝑎3 under ICE is

E𝑢3(𝑎3, 𝑎−3 |𝜎∗
−3) =


𝐹 (𝜃1 = 𝑎3)𝐹 (𝜃2 = 𝑎3) if 𝑎3 = 𝑏 or 𝑟

𝐹 (𝜃1 = 𝑏)𝐹 (𝜃2 = 𝑟) + 𝐹 (𝜃1 = 𝑟)𝐹 (𝜃2 = 𝑏) if 𝑎3 = 𝑚

⇒ E𝑢3(𝑎3, 𝑎−3 |𝜎∗
−3) =


0.25 if 𝑎3 = 𝑏 or 𝑟

0.5 if 𝑎3 = 𝑚.

Therefore, it is optimal for player 3 to choose 𝑚 for all 𝜖 ∈ [0, 0.5]. ■

Players’ private information may serve as a coordinating device for the players’
actions if their types are correlated. As a result, when a player neglects the possible
correlation in the other players’ strategies under ICE, he would respond as if he
neglects the dependence of types across players in the prior distribution.
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A p p e n d i x C

PROOFS FOR CHAPTER 3

C.1 Proofs for Section 3.4
Let 𝜏𝑖 be player 𝑖’s level. Following previous notations, we use 𝜎𝑖 (ℎ) to denote
player 𝑖’s (pure) action at ℎ. In addition, 𝜇𝑘

𝑖
(𝜏−𝑖) is level-𝑘 player 𝑖’s prior belief

about the opponent’s level, and 𝜈𝑘
𝑖
(𝜏−𝑖 | ℎ) is level-𝑘 player 𝑖’s posterior belief about

the opponent’s level at history ℎ. Finally, level-0 players would uniformly randomize
at every node. The analysis of the examples is summarized in the following claims.

Example 3.4.2.1

Claim C.1. In Example 3.4.2.1, each level of players’ strategies are:

1. for any 𝑘 ∈ N, 𝜎𝑘1 (1𝑏) = 𝑟1𝑏, 𝜎𝑘1 (1𝑐) = 𝑙1𝑐, 𝜎
𝑘
2 (2𝑏) = 𝑙2𝑏, and 𝜎𝑘2 (2𝑐) = 𝑟2𝑐;

2. 𝜎1
1 (1𝑎) = 𝑟1𝑎 and 𝜎𝑘1 (1𝑎) = 𝑙2𝑎 for 𝑘 ≥ 2; 𝜎1

2 (2𝑎) = 𝜎2
2 (2𝑎) = 𝑙2𝑎 and

𝜎𝑘2 (2𝑎) = 𝑟2𝑎 for 𝑘 ≥ 3.

Proof : The calculation consists of two parts.

1. First, all strategic levels of players would choose the action with a higher payoff
at the last node. Hence, 𝜎𝑘1 (1𝑏) = 𝑟1𝑏 and 𝜎𝑘2 (2𝑐) = 𝑟2𝑐 for all 𝑘 ≥ 1. Player 2
has a dominant action at history ℎ = 2𝑏, so 𝜎𝑘2 (2𝑏) = 𝑙2𝑏 for all 𝑘 ≥ 1. Notice that
whenever a dominant action is not chosen, players would believe the opponent is
level-0 with certainty. At history ℎ = 1𝑐, every level of player 1 thinks player 2 is
level-0 and hence for all 𝑘 ≥ 1, 𝜎𝑘1 (1𝑐) = 𝑙1𝑐 since the expected payoff is 13/2 > 6.

2. Level-1 players believe the other player would randomize at every node. On
the one hand, 𝜎1

1 (1𝑎) = 𝑟1𝑎 and 𝜎1
2 (2𝑎) = 𝑙2𝑎 so that they can maximize the

expected payoff. On the other hand, level-2 players’ initial beliefs are 𝜇2
𝑖
(0) =

𝑒−1.5/(𝑒−1.5 + 1.5𝑒−1.5) = 2/5 and 𝜇2
𝑖
(1) = 3/5. Thus, 𝜎2

1 (1𝑎) = 𝑙1𝑎 since the
expected payoff for 𝑙1𝑎 is 19/5 > 29/10. On the other hand, when history ℎ = 2𝑎 is
realized, level-2 player 2 would believe the opponent is definitely level-0 and hence
𝜎2

2 (2𝑎) = 𝜎
1
2 (2𝑎) = 𝑙2𝑎.
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The behavior of higher-level players can be solved by induction. Level-3 players’
prior beliefs are 𝜇3

𝑖
(0) = 8/29, 𝜇3

𝑖
(1) = 12/29, and 𝜇3

𝑖
(2) = 9/29. In this case,

𝜎3
1 (1𝑎) = 𝑙1𝑎 since the expected payoff for 𝑙1𝑎 is 112/29 > 76/29. In addition,

when history ℎ = 2𝑎 is realized, level-3 player 2’s posterior belief becomes 𝜈3
2 (0 |

2𝑎) = 0.5𝑒−1.5/(0.5𝑒−1.5 + 1.125𝑒−1.5) = 4/13 and 𝜈3
2 (2 | 2𝑎) = 9/13, and hence

𝜎3
2 (2𝑎) = 𝑟2𝑎 since 4 > 45/13. Suppose for some 𝑘 > 3, 𝜎𝜅1 (1𝑎) = 𝑙1𝑎 for all

2 ≤ 𝜅 ≤ 𝑘 and𝜎𝜅2 (2𝑎) = 𝑟2𝑎 for all 3 ≤ 𝜅 ≤ 𝑘 . We want to show that𝜎𝑘+1
1 (1𝑎) = 𝑙1𝑎

and 𝜎𝑘+1
2 (2𝑎) = 𝑟2𝑎. Level-(k+1) players’ prior beliefs are 𝜇𝑘+1

𝑖
(𝜅) = 𝑝𝜅/(

∑𝑘
𝜅=0 𝑝𝜅)

for 0 ≤ 𝜅 ≤ 𝑘 . By the induction hypothesis, 𝜎𝑘+1
1 (1𝑎) = 𝑙1𝑎 if and only if

7
2

(
𝑝0∑𝑘
𝜅=0 𝑝𝜅

)
+ 4

(
𝑝1 + 𝑝2∑𝑘
𝜅=0 𝑝𝜅

)
+ 3

(∑𝑘
𝜅=3 𝑝𝜅∑𝑘
𝜅=0 𝑝𝜅

)
>

17
4

(
𝑝0∑𝑘
𝜅=0 𝑝𝜅

)
+ 2

(
1 − 𝑝0∑𝑘

𝜅=0 𝑝𝜅

)
,

which is equivalent to (7/4)𝑝0 − 𝑝1 − 𝑝2 <
∑𝑘
𝜅=0 𝑝𝜅. This holds because (7/4)𝑝0 −

𝑝1 − 𝑝2 = −(7/8)𝑒−1.5 < 0. Finally, by the induction hypothesis, level-(k+1) player
2’s posterior belief at ℎ = 2𝑎 is 𝜈𝑘+1

2 (0 | 2𝑎) = 0.5𝑝0/(0.5𝑝0 + ∑𝑘
𝜅=2 𝑝𝜅) and

𝜈𝑘+1
2 ( 𝑗 | 2𝑎) = 𝑝 𝑗/(0.5𝑝0 +

∑𝑘
𝜅=2 𝑝𝜅) where 2 ≤ 𝑗 ≤ 𝑘 . Thus, 𝜎𝑘+1

2 (2𝑎) = 𝑟2𝑎 if
and only if

9
2
𝜈𝑘+1

2 (0 | 2𝑎) + 3
(
1 − 𝜈𝑘+1

2 (0 | 2𝑎)
)
< 4 ⇐⇒ 𝜈𝑘+1

2 (0 | 2𝑎) < 2
3
.

Moreover, the induction hypothesis suggests that

𝜈𝑘+1
2 (0 | 2𝑎) =

1
2 𝑝0

1
2 𝑝0 +

∑𝑘
𝜅=2 𝑝𝜅

<

1
2 𝑝0

1
2 𝑝0 +

∑𝑘−1
𝜅=2 𝑝𝜅

= 𝜈𝑘2 (0 | 2𝑎) < 2
3
,

implying the optimal choice for level-(k+1) player 2 is 𝑟2𝑎. ■

Example 3.4.2.3

Claim C.2. Suppose 𝜏𝑖’s are independently drawn from 𝑝 = (𝑝𝑘 )∞𝑘=0, then in Ex-
ample 3.4.2.3,

1. for any 𝑘 ∈ N, 𝜎𝑘1 (1𝑎) = 𝑟1𝑎, 𝜎𝑘1 (1𝑏) = 𝑟1𝑏, 𝜎𝑘1 (1𝑐) = 𝑙1𝑐, 𝜎𝑘2 (2𝑎) = 𝑙2𝑎,
𝜎𝑘2 (2𝑏) = 𝑙2𝑏, and 𝜎𝑘2 (2𝑐) = 𝑟2𝑐;

2. the ex ante probability of the subgame perfect equilibrium path being realized
converges to 0 as 𝑝0 → 0+.

Proof : The calculation consists of two parts.
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1. By the analysis of Example 3.4.2.1, we only need to check player 1’s action at the
initial node and player 2’s action at history ℎ = 2𝑎. We can prove the statement by
induction on 𝑘 . For 𝑘 = 1, players would think the opponent is level-0. In this case,
𝜎1

1 (1𝑎) = 𝑟1𝑎 since the expected payoff is 17/4 > 9/4 and 𝜎1
2 (2𝑎) = 𝑙2𝑎 with the

expected payoff being 9/2 > 4. Suppose there is some 𝐾 such that 𝜎𝑘1 (1𝑎) = 𝑟1𝑎

and 𝜎𝑘2 (2𝑎) = 𝑙2𝑎 for all 1 ≤ 𝑘 ≤ 𝐾 . For level-(K+1) player 1, the prior belief is
𝜇𝐾+1

1 (0) = 𝑝0/(
∑𝐾
𝜅=0 𝑝𝜅) and 𝜎𝐾+1

1 (1𝑎) = 𝑟1𝑎 if and only if

17
4
𝜇𝐾+1

1 (0) + 2
(
1 − 𝜇𝐾+1

1 (0)
)
>

9
4
𝜇𝐾+1

1 (0) + 3
2

(
1 − 𝜇𝐾+1

1 (0)
)
,

which holds as 𝜇𝐾+1
1 (0) > 0. On the other hand, by the induction hypothesis, player

2 would believe player 1 is level-0 with certainty when history ℎ = 2𝑎 is realized,
so 𝜎𝐾+1

2 (2𝑎) = 𝜎1
2 (2𝑎) = 𝑙2𝑎.

2. Statement 1 implies the probability of the subgame perfect equilibrium path 𝑟2𝑎

being realized is

Pr(𝑟2𝑎) = Pr((1𝑎, 2𝑎) | 1𝑎) Pr(𝑟2𝑎 | 2𝑎) =
[
𝜎0

1 (1𝑎, 2𝑎)𝑝0
] [
𝜎0

2,2𝑎 (𝑟2𝑎)𝑝0

]
=

1
4
𝑝2

0.

Therefore, we can find the limit of the probability is

lim
𝑝0→0+

Pr(𝑟2𝑎) = lim
𝑝0→0+

1
4
𝑝2

0 = 0.

This completes the proof. ■

Example 3.4.3

Claim C.3. In Game Γ, each level of players’ strategies are:

1. for any 𝑘 ∈ N, 𝜎𝑘1 (1𝑏) = 𝑟1𝑏, 𝜎𝑘1 (1𝑐) = 𝑙1𝑐, 𝜎
𝑘
2 (2𝑏) = 𝑙2𝑏, and 𝜎𝑘2 (2𝑐) = 𝑟2𝑐;

2. 𝜎𝑘1 (1𝑎) = 𝑙1𝑎 for all 𝑘 ≠ 2, and 𝜎2
1 (1𝑎) = 𝑟1𝑎; 𝜎1

2 (2𝑎) = 𝑙2𝑎, and 𝜎𝑘2 (2𝑎) =
𝑟2𝑎 for all 𝑘 ≥ 2.

Proof : The proof consists of two parts.

1. The proof is the same as the proof of Claim C.1.

2. First, level-1 players believe the other player randomizes everywhere, so𝜎1
1 (1𝑎) =

𝑙1𝑎 and 𝜎1
2 (2𝑎) = 𝑙2𝑎 in order to maximize their expected payoffs. Level-2 players’
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prior beliefs are 𝜇2
𝑖
(0) = 2/5 and 𝜇2

𝑖
(1) = 3/5. Therefore, 𝜎2

1 (1𝑎) = 𝑟1𝑎 since the
expected payoff is 29/10 > 28/10. Level-2 player 2’s posterior belief at history
ℎ = 2𝑎 is 𝜈2

2 (0 | 2𝑎) = 0.5𝑒−1.5/(0.5𝑒−1.5 + 1.5𝑒−1.5) = 1/4 and 𝜈2
2 (1 | 2𝑎) = 3/4.

In this case, 𝜎2
2 (2𝑎) = 𝑟2𝑎 because 4 > 27/8.

Finally, we can solve higher-level players’ behavior by induction. Level-3 players’
prior beliefs are 𝜇3

𝑖
(0) = 8/29, 𝜇3

𝑖
(1) = 12/29, and 𝜇3

𝑖
(2) = 9/29, and hence

𝜎3
1 (1𝑎) = 𝑙1𝑎 since the expected payoff is 128/29 > 76/29. At history ℎ = 2𝑎,

level-3 player 2’s posterior belief is the same as level-2, and so 𝜎3
2 (2𝑎) = 𝜎

2
2 (2𝑎) =

𝑟2𝑎. Suppose there is some 𝐾 > 3 such that 𝜎𝑘1 (1𝑎) = 𝑙1𝑎 for all 3 ≤ 𝑘 ≤ 𝐾

and 𝜎𝑘2 (2𝑎) = 𝑟2𝑎 for all 2 ≤ 𝑘 ≤ 𝐾 . Level-(K+1) players’ prior beliefs are
𝜇𝐾+1
𝑖

( 𝑗) = 𝑝 𝑗/
∑𝐾
𝑖=0 𝑝𝑖 for 0 ≤ 𝑗 ≤ 𝐾 . By the induction hypothesis, 𝜎𝐾+1

1 (1𝑎) = 𝑙1𝑎
if and only if

19
4

(
𝑝0∑𝐾
𝑖=0 𝑝𝑖

)
+ 3

2

(
𝑝1∑𝐾
𝑖=0 𝑝𝑖

)
+ 8

(∑𝐾
𝑖=2 𝑝𝑖∑𝐾
𝑖=0 𝑝𝑖

)
>

17
4

(
𝑝0∑𝐾
𝑖=0 𝑝𝑖

)
+ 2

(
1 − 𝑝0∑𝐾

𝑖=0 𝑝𝑖

)
,

which is equivalent to 5.5𝑝0 + 6.5𝑝1 < 6
∑𝐾
𝑖=0 𝑝𝑖. This holds when the distribution

of levels follows Poisson(1.5). On the other hand, by the induction hypothesis, level-
(K+1) player 2’s posterior belief at history ℎ = 2𝑎 is 𝜈𝐾+1

2 (0 | 2𝑎) = 0.5𝑝0/(0.5𝑝0 +
𝑝1 +

∑𝐾
𝑖=3 𝑝𝑖) and 𝜈𝐾+1

2 ( 𝑗 | 2𝑎) = 𝑝 𝑗/(0.5𝑝0 + 𝑝1 +
∑𝐾
𝑖=3 𝑝𝑖) where 𝑗 ≠ 0 or 2, and

hence 𝜎𝐾+1
2 (2𝑎) = 𝑟2𝑎 if and only if

9
2
𝜈𝐾+1

2 (0 | 2𝑎) + 3
(
1 − 𝜈𝐾+1

2 (0 | 2𝑎)
)
< 4 ⇐⇒ 𝜈𝐾+1

2 (0 | 2𝑎) < 2
3
.

Moreover, the induction hypothesis implies:

𝜈𝐾+1
2 (0 | 2𝑎) =

1
2 𝑝0

1
2 𝑝0 + 𝑝1 +

∑𝐾
𝑖=3 𝑝𝑖

<

1
2 𝑝0

1
2 𝑝0 + 𝑝1 +

∑𝐾−1
𝑖=3 𝑝𝑖

= 𝜈𝐾2 (0 | 2𝑎) < 2
3
,

as desired. ■

C.2 Proofs for Section 3.5
Proof of Lemma 3.1
1. Since stage 2𝑆 is the last stage of the game, for any 𝑘 ≥ 1, player 2 would take at
this stage if and only if

1 + (2𝑆 − 1)𝑐 > 2𝑆𝑐 ⇐⇒ 1 > 𝑐,

which holds by assumption. Therefore, 𝜎𝑘2,𝑆 = 1 for all 𝑘 ≥ 1.
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2. Consider a level-1 type of player 1 and any of player 1’s decision nodes 𝑗 ∈
{1, ..., 𝑆}. The payoff from Take is 1 + (2 𝑗 − 2)𝑐 and the expected payoff from Pass
is greater than or equal to 1

2 (2 𝑗 − 1)𝑐 + 1
2 (1 + (2 𝑗)𝑐). Thus, 𝜎𝑘1, 𝑗 = 0 is strictly

optimal if and only if:

1 + (2 𝑗 − 2)𝑐 < 1
2
(2 𝑗 − 1)𝑐 + 1

2
(1 + (2 𝑗)𝑐)

⇐⇒ 1
3
< 𝑐.

Hence, 𝜎1
1 = (0, . . . , 0). A similar argument shows that 𝜎1

2 = (0, . . . , 0, 1).

3. The argument is similar to the proof of the first statement. Consider a level-𝑘 type
of player 1 and any of player 1’s decision nodes 𝑗 ∈ {1, ..., 𝑆−1}, and suppose𝜎𝑚2, 𝑗 =
0 for every 1 ≤ 𝑚 ≤ 𝑘−1. Then the payoff from Take is 1+(2 𝑗−2)𝑐 and the expected
payoff from Pass is greater than or equal to 1

2𝜈
𝑘
2 𝑗−1(0) (2 𝑗 −1)𝑐+ (1− 1

2𝜈
𝑘
2 𝑗−1(0)) (1+

(2 𝑗)𝑐), which in turn is greater than or equal to 1
2 (2 𝑗 − 1)𝑐 + 1

2 (1 + (2 𝑗)𝑐) because
𝜈𝑘2 𝑗−1(0) ≤ 1. Thus 𝜎𝑘1, 𝑗 = 0 is strictly optimal if and only if:

1 + (2 𝑗 − 2)𝑐 < 1
2
(2 𝑗 − 1)𝑐 + 1

2
(1 + (2 𝑗)𝑐)

⇐⇒ 1
3
< 𝑐.

Hence, 𝜎𝑘1, 𝑗 = 0. A similar argument shows that 𝜎𝑘2, 𝑗 = 0 if 𝜎𝑚1, 𝑗+1 = 0 for every
1 ≤ 𝑚 ≤ 𝑘 − 1. This completes the proof. ■

Proof of Proposition 3.4
1. The statement can be proved by induction. Consider stage 2𝑆 − 1. By Lemma
3.1, we know 𝐾∗

2𝑆 = 1 and 𝜎1
1,𝑆 = 0, suggesting 𝐾∗

2𝑆−1 ≥ 2 = 𝐾∗
2𝑆 + 1. Now, fix any

2 ≤ 𝑚 ≤ 2𝑆 − 1 and suppose the statement holds for all stages 𝑚 ≤ 𝑗 ≤ 2𝑆 − 1.
Without loss of generality, we consider an even𝑚. We want to show that if 𝐾∗

𝑚 < ∞,
then 𝐾∗

𝑚−1 ≥ 𝐾∗
𝑚 + 1. By construction, we know 𝜎𝑘2,𝑚2

= 0 for all 1 ≤ 𝑘 ≤ 𝐾∗
𝑚 − 1.

Therefore, Lemma 3.1 implies 𝜎1,𝑚2 = 0 for all 1 ≤ 𝑘 ≤ 𝐾∗
𝑚, and 𝐾∗

𝑚−1 ≥ 𝐾∗
𝑚 + 1.

2. Consider any 𝑗 such that 𝐾∗
𝑗+1 = ∞. Without loss of generality, we consider an

odd 𝑗 . Hence, 𝜎𝑘
2, 𝑗+1

2
= 0 for all 𝑘 ≥ 1 and we want to show 𝜎𝑘

1, 𝑗+1
2
= 0 for all 𝑘 ≥ 1

by induction. Lemma 3.1 implies 𝜎1
1, 𝑗+1

2
= 0. Suppose there is 𝐾 ≥ 2 such that

𝜎𝑘
1, 𝑗+1

2
= 0 for all 1 ≤ 𝑘 ≤ 𝐾 . Since 𝜎𝑘

2, 𝑗+1
2

= 0 for all 𝑘 ≥ 1, Lemma 3.1 implies

𝜎𝐾+1
1, 𝑗+1

2
= 0, as desired. ■
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Proof of Proposition 3.5
We prove this by induction. Consider stage 2𝑆 − 1. Level 𝐾∗

2𝑆−1 player 1 believes
that only level-0 player 2 will pass at stage 2𝑆, so

1 + (2𝑆 − 2)𝑐 >
(
1 − 1

2
𝜈
𝐾∗

2𝑆−1
2𝑆−1 (0)

)
[(2𝑆 − 1)𝑐] + 1

2
𝜈
𝐾∗

2𝑆−1
2𝑆−1 (0) [1 + 2𝑆𝑐]

>

(
1 − 1

2
𝜈𝑘2𝑆−1(0)

)
[(2𝑆 − 1)𝑐] + 1

2
𝜈𝑘2𝑆−1(0) [1 + 2𝑆𝑐] for all 𝑘 > 𝐾∗

2𝑆−1

since 1
2𝜈

𝑘
2𝑆−1(0) <

1
2𝜈

𝐾∗
2𝑆−1

2𝑆−1 (0) and therefore 𝜎𝑘1,𝑆 = 1 for all 𝑘 ≥ 𝐾∗
2𝑆−1.

Next, suppose for any 𝑚 where 2 ≤ 𝑚 ≤ 2𝑆 − 1, the statement holds for all 𝑗 such
that𝑚 ≤ 𝑗 ≤ 2𝑆−1. Suppose𝑚 is odd and 𝐾∗

𝑚−1 < ∞. (A similar argument applies
if 𝑚 is even.) By construction, 𝜎𝑘

2,𝑚−1
2

= 0 for all 1 ≤ 𝑘 ≤ 𝐾∗
𝑚−1 − 1. By Lemma

3.1, we have 𝜎𝑘1,𝑠 = 0 for all 1 ≤ 𝑠 ≤ 𝑚−1
2 and for all 1 ≤ 𝑘 ≤ 𝐾∗

𝑚−1. Level 𝐾∗
𝑚−1

player 2’s belief at stage 𝑚 − 1 that the other player would pass at stage 𝑚 is

1
2
𝜈
𝐾∗
𝑚−1

𝑚−1 (0) +
𝐾∗
𝑚−1∑︁
𝜅=1

𝜈
𝐾∗
𝑚−1

𝑚−1 (𝜅) = 1
2

𝑝0

(
1
2

) 𝑚−1
2

𝑝0

(
1
2

) 𝑚−1
2 + ∑𝐾∗

𝑚−1−1
𝜅=1 𝑝𝜅

+
∑𝐾∗

𝑚−1
𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑚−1
2 + ∑𝐾∗

𝑚−1−1
𝜅=1 𝑝𝜅

=

𝑝0

(
1
2

) 𝑚+1
2 + ∑𝐾∗

𝑚−1
𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑚−1
2 + ∑𝐾∗

𝑚−1−1
𝜅=1 𝑝𝜅

.

Since 𝜎𝐾
∗
𝑚−1

1,𝑠 = 0 for all 1 ≤ 𝑠 ≤ 𝑚−1
2 , then for any 𝑘 > 𝐾∗

𝑚−1, at stage 𝑚 − 1 level-𝑘
player 2’s belief about the probability that the other player would pass at stage 𝑚 is

1
2
𝜈𝑘𝑚−1(0) +

𝐾∗
𝑚−1∑︁
𝜅=1

𝜈𝑘𝑚−1(𝜅) ≤
1
2
𝜈
𝐾∗
𝑚−1+1

𝑚−1 (0) +
𝐾∗
𝑚−1∑︁
𝜅=1

𝜈
𝐾∗
𝑚−1+1

𝑚−1 (𝜅)

=
1
2

𝑝0

(
1
2

) 𝑚−1
2

𝑝0

(
1
2

) 𝑚−1
2 + ∑𝐾∗

𝑚−1
𝜅=1 𝑝𝜅

+
∑𝐾∗

𝑚−1
𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑚−1
2 + ∑𝐾∗

𝑚−1
𝜅=1 𝑝𝜅

<

𝑝0

(
1
2

) 𝑚+1
2 + ∑𝐾∗

𝑚−1
𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑚−1
2 + ∑𝐾∗

𝑚−1−1
𝜅=1 𝑝𝜅

.

since
∑𝐾∗

𝑚−1
𝜅=1 𝑝𝜅 >

∑𝐾∗
𝑚−1−1

𝜅=1 𝑝𝜅. This implies that for any level 𝑘 > 𝐾∗
𝑚−1, higher

level of player 2 at stage 𝑚 − 1 would think the other player is less likely to pass at
stage 𝑚. Since it is already profitable for level 𝐾∗

𝑚−1 player 2 to take at stage 𝑚 − 1,
we can conclude that 𝜎𝑘

2,𝑚−1
2

= 1 for all 𝑘 ≥ 𝐾∗
𝑚−1. ■
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Proof of Proposition 3.7
Without loss of generality, we can consider an even 𝑗 , so ⌊ 𝑗2⌋ =

𝑗

2 and it is player
2’s turn at stage 𝑗 .

Only if: Suppose 𝐾∗
𝑗
< ∞. Then from Proposition 3.4, 𝐾∗

𝑗 ′ ≥ 𝐾∗
𝑗
+ 1 for all 𝑗 ′ < 𝑗 .

Hence, the belief of level 𝐾∗
𝑗

of player 2 that player 1 is level-0 at stage 𝑗 equals to

𝜈
𝐾∗
𝑗

𝑗
(0) =

𝑝0

(
1
2

) 𝑗

2

𝑝0

(
1
2

) 𝑗

2 + ∑𝐾∗
𝑗
−1

𝜅=1 𝑝𝜅

>

𝑝0

(
1
2

)𝑆−1

𝑝0

(
1
2

)𝑆−1
+ (1 − 𝑝0)

.

Level 𝐾∗
𝑗

player 2’s belief at stage 𝑗 that the player 1 would pass at stage 𝑗 + 1 is

1
2
𝜈
𝐾∗
𝑗

𝑗
(0) +

𝐾∗
𝐽+1−1∑︁
𝜅=1

𝜈
𝐾∗
𝑗

𝑗
(𝜅) = 1

2

𝑝0

(
1
2

) 𝑗

2

𝑝0

(
1
2

) 𝑗

2 + ∑𝐾∗
𝑗
−1

𝜅=1 𝑝𝜅

+
∑𝐾∗

𝑗+1−1
𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑗

2 + ∑𝐾∗
𝑗
−1

𝜅=1 𝑝𝜅

=

𝑝0

(
1
2

) 𝑗

2+1
+ ∑𝐾∗

𝑗+1−1
𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑗

2 + ∑𝐾∗
𝑗
−1

𝜅=1 𝑝𝜅

,

where we know that 𝐾∗
𝑗+1 ≤ 𝐾∗

𝑗
− 1 Since it is optimal for level 𝐾∗

𝑗
< ∞ to take at 𝑗

this implies 𝑝0( 1
2 )

𝑗
2 +1+∑𝐾∗

𝑗+1−1

𝜅=1 𝑝𝜅

𝑝0( 1
2 )

𝑗
2 +∑𝐾∗

𝑗
−1

𝜅=1 𝑝𝜅

< 1−𝑐
1+𝑐 and therefore

𝑝0

(
1
2

) 𝑗

2+1
+ ∑𝐾∗

𝑗+1−1
𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑗

2 + (1 − 𝑝0)
<

1 − 𝑐
1 + 𝑐 .

If: Suppose 𝐾∗
𝑗
= ∞. Then from Proposition 3.4, 𝐾∗

𝑗 ′ = ∞ for all 𝑗 ′ < 𝑗 . That is,
all levels of both players pass at every stage up to and including 𝑗 . Hence the belief
of level 𝑘 ≥ 1 of player 2 that player 1 is level-0 at stage 𝑗 equals to

𝜈𝑘𝑗 (0) =
𝑝0

(
1
2

) 𝑗

2

𝑝0

(
1
2

) 𝑗

2 + ∑𝑘−1
𝜅=1 𝑝𝜅

>

𝑝0

(
1
2

) 𝑗

2

𝑝0

(
1
2

) 𝑗

2 + (1 − 𝑝0)
.
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Since 𝐾∗
𝑗
= ∞ it is optimal to pass at 𝑗 for all levels 𝑘 ≥ 1 of player 2, which implies

1
2 𝑝0( 1

2 )
𝑗
2 +∑𝐾∗

𝑗+1−1

𝜅=1 𝑝𝜅

𝑝0( 1
2 )

𝑗
2 +∑𝑘−1

𝜅=1 𝑝𝜅

≥ 1−𝑐
1+𝑐 , for all 𝑘 , where possibly 𝐾∗

𝑗+1 = ∞, so

1
2 𝑝0

(
1
2

) 𝑗

2 + ∑𝐾∗
𝑗+1−1

𝜅=1 𝑝𝜅

𝑝0

(
1
2

) 𝑗

2 + (1 − 𝑝0)
≥ 1 − 𝑐

1 + 𝑐 ,

as desired. ■

Proof of Lemma 3.2
1. To prove the statement, we can discuss player 1 and 2 separately.

Player 2:

(i) 𝑎1
2 = 𝑆 strictly dominates 𝑎1

2 = 𝑆 + 1: E
[
𝑢2(𝑎0

1, 𝑆)
]
− E

[
𝑢2(𝑎0

1, 𝑆 + 1)
]
=

1−𝑐
𝑆+1 > 0 since 𝑐 < 1.

(ii) 𝑎1
2 = 𝑗 + 1 strictly dominates 𝑎1

2 = 𝑗 for all 1 ≤ 𝑗 ≤ 𝑆 − 1: For 1 ≤ 𝑗 ≤ 𝑆 − 1,
since 𝑐 > 1

3 ,

E
[
𝑢2(𝑎0

1, 𝑗 + 1)
]
−E

[
𝑢2(𝑎0

1, 𝑗)
]
=

1
𝑆 + 1

[−1 + (2𝑆 − 2 𝑗 + 1)𝑐] ≥ 1
𝑆 + 1

(−1+3𝑐) > 0.

Hence, we can obtain that 𝑎1
2 = 𝑆.

Player 1: By the same logic as (ii) above, 𝑎1
1 = 𝑗 + 1 strictly dominates 𝑎1

1 = 𝑗 for
all 1 ≤ 𝑗 ≤ 𝑆: For 1 ≤ 𝑗 ≤ 𝑆, since 𝑐 > 1

3 ,

E
[
𝑢1( 𝑗 + 1, 𝑎0

2)
]
−E

[
𝑢1( 𝑗 , 𝑎0

2)
]
=

1
𝑆 + 1

[−1 + (2𝑆 − 2 𝑗 + 3)𝑐] ≥ 1
𝑆 + 1

(−1+3𝑐) > 0.

Hence, we can obtain that 𝑎1
1 = 𝑆 + 1.

2. (i) Notice that for any 𝑎2, 𝑢1(𝑎1, 𝑎2) is maximized at 𝑎1 = 𝑎2. Fix level 𝑘 ≥ 2. If
level-𝑘 player 1 chooses 𝑠, then the expected payoff is

𝑉 𝑘1 (𝑠) ≡
𝑘−1∑︁
𝜅=0

𝑝𝑘𝜅E
[
𝑢1(𝑠, 𝑎𝜅2)

]
= 𝑝𝑘0E

[
𝑢1(𝑠, 𝑎0

2)
]
+
𝑘−1∑︁
𝜅=1

𝑝𝑘𝜅𝑢1(𝑠, 𝑎𝜅2).
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Suppose min{𝑎𝑚2 : 1 ≤ 𝑚 ≤ 𝑘 − 1} = 1, then (i) holds trivially. If min{𝑎𝑚2 :
1 ≤ 𝑚 ≤ 𝑘 − 1} ≥ 2, then we can prove the statement by contradiction. Suppose
𝑎𝑘1 < min{𝑎𝑚2 : 1 ≤ 𝑚 ≤ 𝑘 − 1}, then

𝑉 𝑘1 (𝑎
𝑘
1) = 𝑝

𝑘
0 E

[
𝑢1(𝑎𝑘1 , 𝑎

0
2)

]︸            ︷︷            ︸
<E[𝑢1 (𝑎𝑘1+1,𝑎0

2)]

+
𝑘−1∑︁
𝜅=1

𝑝𝑘𝜅 𝑢1(𝑎𝑘1 , 𝑎
𝜅
2)︸      ︷︷      ︸

≤𝑢1 (𝑎𝑘1+1,𝑎𝑙2)

< 𝑉 𝑘1 (𝑎
𝑘
1 + 1).

E
[
𝑢1(𝑎𝑘1 , 𝑎

0
2)

]
< E

[
𝑢1(𝑎𝑘1 + 1, 𝑎0

2)
]

follows from the first statement. Furthermore,
𝑎𝑘1 < min{𝑎𝑚2 : 1 ≤ 𝑚 ≤ 𝑘 − 1} implies 𝑢1(𝑎𝑘1 , 𝑎

𝜅
2) ≤ 𝑢1(𝑎𝑘1 + 1, 𝑎𝜅2) for all

1 ≤ 𝜅 ≤ 𝑘 − 1. Hence, 𝑎𝑘1 < min{𝑎𝑚2 : 1 ≤ 𝑚 ≤ 𝑘 − 1} is not optimal for level-𝑘
player 1, a contradiction.

(ii) The logic is similar for player 2.

3. We prove this statement by induction on 𝑘 . First, it holds for 𝑘 = 1, by the first
statement. Next, we suppose it holds for any 𝑘 where 1 ≤ 𝑘 ≤ 𝐾 − 1 and prove it
holds for 𝑘 = 𝐾 . For level 𝐾 + 1 player 1, the expected payoff for choosing 𝑠 is

𝑉𝐾+1
1 (𝑠) = 𝑝𝐾+1

0 E
[
𝑢1(𝑠, 𝑎0

2)
]
+

𝐾∑︁
𝜅=1

𝑝𝐾+1
𝜅 𝑢1(𝑠, 𝑎𝜅2)

=

(∑𝐾−1
𝜅=0 𝑝𝜅∑𝐾
𝜅=0 𝑝𝜅

)
𝑉𝐾1 (𝑠) + 𝑝𝐾+1

𝐾 𝑢1(𝑠, 𝑎𝐾2 ).

Suppose, by way of contradiction, that 𝑎𝐾+1
1 > 𝑎𝐾1 . Then 𝑉𝐾1 (𝑎𝐾+1

1 ) < 𝑉𝐾1 (𝑎𝐾1 ).
From the induction hypothesis, 𝑎𝐾2 ≤ 𝑎𝐾−1

2 , and from the second statement, 𝑎𝐾1 ≥
𝑎𝐾−1

2 and hence 𝑎𝐾+1
1 > 𝑎𝐾1 ≥ 𝑎𝐾−1

2 ≥ 𝑎𝐾1 .This implies 𝑢1(𝑎𝐾+1
1 , 𝑎𝐾2 ) ≤ 𝑢1(𝑎𝐾1 , 𝑎

𝐾
2 ),

so 𝑉𝐾+1
1 (𝑎𝐾+1

1 ) < 𝑉𝐾+1
1 (𝑎𝐾1 ), which contradicts that 𝑎𝐾+1

1 is the optimal strategy for
level 𝐾 + 1 player 1. Hence 𝑎𝐾+1

1 ≤ 𝑎𝐾1 , so the result is proved for 𝑖 = 1. A similar
argument proves the result for 𝑖 = 2. ■

Proof of Proposition 3.8
With slight abuse of notation, denote a level-𝑘 player’s prior belief that the opponent
is level-𝜅 by 𝜇𝑘𝜅 ≡

𝑝𝜅∑𝑘−1
𝑗=0 𝑝 𝑗

, 𝜅 = 1, ..., 𝑘 − 1.

Only if: Suppose 𝑝0 ≥ 𝑆+1
(𝑆+1)+( 3𝑐−1

1−𝑐 )
, then we want to show that 𝑎𝑘1 = 𝑆 + 1 for all

𝑘 ≥ 1. We can prove this statement by induction on 𝑘 . By Lemma 3.2, we know
𝑎1

1 = 𝑆 + 1. Now, suppose this statement holds for all 1 ≤ 𝑘 ≤ 𝐾 for some 𝐾 ∈ N,
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then we want to show this holds for level 𝐾 + 1 player 1. First, by Lemma 3.2, we
have 𝑎𝑘2 = 𝑆 for all 1 ≤ 𝑘 ≤ 𝐾 . Level 𝐾 + 1 player 1 would choose 𝑆 if and only if

𝜇𝐾+1
0

[
1

𝑆 + 1

[
1 + 2𝑆𝑐 +

𝑆+1∑︁
𝑖=2

(2𝑖 − 3)𝑐
] ]

+
(
1 − 𝜇𝐾+1

0

)
(2𝑆 − 1)𝑐

< 𝜇𝐾+1
0

[
1

𝑆 + 1

[
2(1 + (2𝑆 − 2)𝑐) +

𝑆∑︁
𝑖=2

(2𝑖 − 3)𝑐
] ]

+
(
1 − 𝜇𝐾+1

0

)
(1 + (2𝑆 − 2)𝑐)

⇐⇒ 𝜇𝐾+1
0

[
1

𝑆 + 1
(1 − 3𝑐)

]
+

(
1 − 𝜇𝐾+1

0

)
(1 − 𝑐) > 0

⇐⇒ 𝜇𝐾+1
0 <

𝑆 + 1

(𝑆 + 1) +
(

3𝑐−1
1−𝑐

) .
However, we know 𝜇𝐾0 > 𝑝0 and we have assumed 𝑝0 ≥ 𝑆+1

(𝑆+1)+( −1+3𝑐
1−𝑐 )

, so 𝜇𝐾+1
0 >

𝑝0 ≥ 𝑆+1
(𝑆+1)+( 3𝑐−1

1−𝑐 )
, implying that 𝑎𝐾+1

1 = 𝑆 + 1.

If: Suppose 𝑝0 < 𝑆+1
(𝑆+1)+( 3𝑐−1

1−𝑐 )
, then there exists 𝑁∗ < ∞ such that 𝜇𝑁∗

0 <

𝑆+1
(𝑆+1)+( 3𝑐−1

1−𝑐 )
. Therefore, by a previous calculation we have that

𝐾̃∗
2𝑆−1 = arg min

𝑁∗

𝜇𝑁
∗

0 <
𝑆 + 1

(𝑆 + 1) +
(

3𝑐−1
1−𝑐

)  < ∞,

which is the lowest level of player 1 who would take at no later than stage 2𝑆 − 1. ■

Proof of Proposition 3.9
First, an immediate implication of Lemma 3.2 is that for all level 𝑘 ≥ 1, the optimal
choice for level-(k+1) is either the same as level-𝑘 or to take at one stage earlier.
Given this observation, the logic of the proof is similar to Proposition 3.7.

Only if: For any 1 ≤ 𝑗 ≤ 2𝑆 − 2, suppose 𝑝0

(
𝑆
𝑆+1 − 2⌊ 𝑗2 ⌋𝑐

(𝑆+1) (1+𝑐)

)
+∑𝐾̃∗

𝑗+1−1
𝜅=1 𝑝𝜅 ≥ 1−𝑐

1+𝑐 ,

then we want to show 𝐾̃∗
𝑗
= ∞. Without loss of generality, we consider an odd

𝑗 . If 𝐾̃∗
𝑗+1 = ∞, then the statement holds immediately. Otherwise, we can prove

𝑎𝑘1 >
𝑗+1
2 for all 𝑘 ≥ 1 by induction. By construction, we know 𝑎𝑚2 >

𝑗+1
2 for all

1 ≤ 𝑚 ≤ 𝐾̃∗
𝑗+1 − 1 and 𝑎𝑘1 >

𝑗+1
2 for all 1 ≤ 𝑘 ≤ 𝐾̃∗

𝑗+1 by Lemma 3.2. Suppose there
is some 𝐾 ≥ 𝐾̃∗

𝑗+1 + 1 such that 𝑎𝑘1 >
𝑗+1
2 for all 1 ≤ 𝑘 ≤ 𝐾 . We want to show this

holds for level 𝐾 + 1 player 1. Level 𝐾 + 1 player 1 would choose 𝑗+1
2 + 1 if and only

if

𝑝0

[
1

𝑆 + 1
(1 − (2𝑆 − 𝑗 + 2)𝑐)

]
+

©­­«
𝐾̃∗
𝑗+1−1∑︁
𝜅=1

𝑝𝜅
ª®®¬ (−2𝑐) +

©­­«
𝐾∑︁

𝜅=𝐾̃∗
𝑗+1

𝑝𝜅
ª®®¬ (1 − 𝑐) ≤ 0.
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Moreover, we can observe that this condition is implied by

𝑝0

[
1

𝑆 + 1
(1 − (2𝑆 − 𝑗 + 2)𝑐)

]
+

©­­«
𝐾̃∗
𝑗+1−1∑︁
𝜅=1

𝑝𝜅
ª®®¬ (−2𝑐) +

©­­«1 − 𝑝0 −
𝐾̃∗
𝑗+1−1∑︁
𝜅=1

𝑝𝜅
ª®®¬ (1 − 𝑐) ≤ 0

⇐⇒ 𝑝0

[
𝑆

𝑆 + 1
− ( 𝑗 − 1)𝑐

(𝑆 + 1) (1 + 𝑐)

]
+
𝐾̃∗
𝑗+1−1∑︁
𝜅=1

𝑝𝜅 ≥
1 − 𝑐
1 + 𝑐 .

By our assumption, we can conclude that the optimal choice for level (K+1) player
1 is 𝑗+1

2 + 1,1 which completes the only if part of the proof.

If: For any 1 ≤ 𝑗 ≤ 2𝑆 − 2, suppose

𝑝0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗2⌋𝑐
(𝑆 + 1) (1 + 𝑐)

)
+
𝐾̃∗
𝑗+1−1∑︁
𝜅=1

𝑝𝜅 <
1 − 𝑐
1 + 𝑐 ,

then there exists 𝑁∗ where 𝐾̃∗
𝑗+1 + 1 ≤ 𝑁∗ < ∞ such that

𝜇𝑁
∗

0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗2⌋𝑐
(𝑆 + 1) (1 + 𝑐)

)
+

∑𝐾̃∗
𝑗+1−1

𝜅=1 𝑝𝜅∑𝑁∗−1
𝜅=0 𝑝𝜅

<
1 − 𝑐
1 + 𝑐 .

Therefore, by previous calculation and the existence of such 𝑁∗ < ∞, we can obtain
that

𝐾̃∗
𝑗 = arg min

𝑁∗

𝜇𝑁
∗

0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗2⌋𝑐
(𝑆 + 1) (1 + 𝑐)

)
+

∑𝐾̃∗
𝑗+1−1

𝜅=1 𝑝𝜅∑𝑁∗−1
𝜅=0 𝑝𝜅

<
1 − 𝑐
1 + 𝑐

 < ∞,

which is the lowest level of player who would take at no later than stage 𝑗 . ■

Proof of Theorem 3.1
Step 1: By Lemma 3.1 and Lemma 3.2, we can obtain that 1 = 𝐾∗

2𝑆 ≤ 𝐾̃∗
2𝑆 = 1,

suggesting that the inequality holds at stage 2𝑆.

Step 2: By Proposition 3.6 and 3.8, we know 𝐾∗
2𝑆−1 and 𝐾̃∗

2𝑆−1 are the lowest levels
such that

1If 𝑗 is even, by the same argument, we can obtain level (K+1) player 2 would choose 𝑗

2 + 1 as

𝑝0

(
𝑆

𝑆 + 1
− 𝑗𝑐

(𝑆 + 1) (1 + 𝑐)

)
+
𝐾̃∗

𝑗+1−1∑︁
𝑙=1

𝑝𝑙 ≥
1 − 𝑐
1 + 𝑐 .
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𝑝0∑𝐾∗
2𝑆−1−1

𝜅=0 𝑝𝜅

<
2𝑆

2𝑆 +
(
−1+3𝑐

1−𝑐

) , and

𝑝0∑𝐾̃∗
2𝑆−1−1

𝜅=0 𝑝𝜅

<
𝑆 + 1

(𝑆 + 1) +
(
−1+3𝑐

1−𝑐

) , respectively.

We can observe that 𝑆+1
(𝑆+1)+( −1+3𝑐

1−𝑐 )
< 2𝑆

2𝑆+( −1+3𝑐
1−𝑐 )

, suggesting the inequality for the

dynamic model is less stringent. Hence, we can obtain that 𝐾∗
2𝑆−1 ≤ 𝐾̃∗

2𝑆−1.

Step 3: We can finish the proof by induction on the stages. At stage 2𝑆 − 2, as
we rearrange the condition from Proposition 3.7, we can obtain 𝐾∗

2𝑆−2 is the lowest
level such that

𝐾∗
2𝑆−2−1∑︁
𝜅=1

𝑝𝜅 > 𝑝0

(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)
+ ©­«

𝐾∗
2𝑆−1−1∑︁
𝜅=1

𝑝𝜅
ª®¬
(

1 + 𝑐
1 − 𝑐

)
. (C.1)

Similarly, as we rearrange the necessary and sufficient condition from Proposition
3.9, we can find that 𝐾̃∗

2𝑆−2 is the lowest level such that

𝐾̃∗
2𝑆−2−1∑︁
𝜅=1

𝑝𝜅 > 𝑝0

(
1

𝑆 + 1

) (
−1 + 3𝑐

1 − 𝑐

)
+ ©­«

𝐾̃∗
2𝑆−1−1∑︁
𝜅=1

𝑝𝜅
ª®¬
(

1 + 𝑐
1 − 𝑐

)
. (C.2)

It suffices to prove 𝐾∗
2𝑆−2 ≤ 𝐾̃∗

2𝑆−2 by showing the right-hand side of Condition (C.1)

is smaller than the right-hand side of (C.2). This holds because
(

1
2

)𝑆
< 1

𝑆+1 for all
𝑆 ≥ 2 and 𝐾∗

2𝑆−1 ≤ 𝐾̃∗
2𝑆−1 as we have shown in step 2.

Step 4: Consider any 𝑗 where 3 ≤ 𝑗 ≤ 2𝑆 − 1 and suppose 𝐾∗
2𝑆−𝑖 ≤ 𝐾̃∗

2𝑆−𝑖 for all
0 ≤ 𝑖 ≤ 𝑗 − 1. We want to show 𝐾∗

2𝑆− 𝑗 ≤ 𝐾̃∗
2𝑆− 𝑗 . Without loss of generality, we

consider an odd 𝑗 . That is, player 1 owns stage 2𝑆− 𝑗 . By Proposition 3.7, we know
𝐾∗

2𝑆− 𝑗 is the lowest level such that

𝐾∗
2𝑆− 𝑗−1∑︁
𝜅=1

𝑝𝜅 > 𝑝0

(
1
2

)𝑆− 𝑗+1
2 +1 (

−1 + 3𝑐
1 − 𝑐

)
+ ©­«

𝐾∗
2𝑆− 𝑗+1−1∑︁
𝜅=1

𝑝𝜅
ª®¬
(

1 + 𝑐
1 − 𝑐

)
. (C.3)

Similarly, as we rearrange the necessary and sufficient condition from Proposition
3.9, we can obtain that 𝐾̃∗

2𝑆− 𝑗 is the lowest level such that

𝐾̃∗
2𝑆− 𝑗−1∑︁
𝜅=1

𝑝𝜅 > 𝑝0

(
1

𝑆 + 1

) [
−1 + ( 𝑗 + 2)𝑐

1 − 𝑐

]
+

©­­«
𝐾̃∗

2𝑆− 𝑗+1−1∑︁
𝜅=1

𝑝𝜅
ª®®¬
(

1 + 𝑐
1 − 𝑐

)
. (C.4)
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Similar to the previous step, we can finish the proof by showing the right-hand
side of Condition (C.3) is smaller than the right-hand side of (C.4). The induction
hypothesis implies the second term of (C.4) is larger than the second term of (C.3).
Hence, the only thing left to show is(

1
2

)𝑆− 𝑗+1
2 +1 (

−1 + 3𝑐
1 − 𝑐

)
<

(
1

𝑆 + 1

) [
−1 + ( 𝑗 + 2)𝑐

1 − 𝑐

]
.

Or equivalently,

(𝑆 + 1) (−1 + 3𝑐) < 2𝑆−
𝑗+1
2 +1(−1 + ( 𝑗 + 2)𝑐). (C.5)

Since 3 ≤ 𝑗 ≤ 2𝑆 − 1, there is nothing to show if 𝑆 < 𝑗+1
2 . When 𝑆 ≥ 𝑗+1

2 , we know
(C.5) would hold in the following three different cases.

– Case 1: If 𝑆+1 = 2𝑆−
𝑗+1
2 +1, then (C.5) becomes −1+3𝑐 < −1+ ( 𝑗 +2)𝑐 ⇐⇒

𝑗 > 1.

– Case 2: If 𝑆 + 1 < 2𝑆−
𝑗+1
2 +1, then (C.5) is equivalent to

2𝑆−
𝑗+1
2 +1−(𝑆+1) <

[
( 𝑗 + 2)2𝑆−

𝑗+1
2 +1 − 3(𝑆 + 1)

]
𝑐 ⇐⇒ 1 <


3 + ( 𝑗 − 1)2𝑆−

𝑗+1
2 +1

2𝑆−
𝑗+1
2 +1 − (𝑆 + 1)︸                 ︷︷                 ︸
>0 as 𝑗≥3


𝑐,

which holds under our assumption 𝑐 > 1
3 .

– Case 3: If 𝑆 + 1 > 2𝑆−
𝑗+1
2 +1, then (C.5) can be rearranged as

(𝑆+1)−2𝑆−
𝑗+1
2 +1 >

[
3(𝑆 + 1) − ( 𝑗 + 2)2𝑆−

𝑗+1
2 +1

]
𝑐 ⇐⇒ 1 >


3 − 𝑗 − 1(

𝑆+1

2𝑆−
𝑗+1
2 +1

)
− 1


𝑐.

The right-hand side of the inequality is negative since

3 − 𝑗 − 1(
𝑆+1

2𝑆−
𝑗+1
2 +1

)
− 1

≤ 3 − 𝑗 − 1(
𝑗+1
2 +1
2

)
− 1

= −1.

This completes the proof. ■
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Proof of Proposition 3.10
By Proposition 3.6, we know

𝐾∗
2𝑆−1 < ∞ ⇐⇒ 𝑝0 <

2𝑆

2𝑆
(
−1+3𝑐

1−𝑐

) .
As the prior distribution follows Poisson(𝜆), the condition becomes

𝐾∗
2𝑆−1(𝜆) < ∞ ⇐⇒ 𝑒−𝜆 <

2𝑆

2𝑆
(
−1+3𝑐

1−𝑐

)
⇐⇒ 𝜆 > 𝑙𝑛

[
1 +

(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)]
.

Similarly, by Proposition 3.8, we know

𝐾̃∗
2𝑆−1 < ∞ ⇐⇒ 𝑝0 <

𝑆 + 1

(𝑆 + 1)
(
−1+3𝑐

1−𝑐

) ,
which can be rearranged to the following expression when the prior distribution
follows Poisson(𝜆):

𝐾̃∗
2𝑆−1(𝜆) < ∞ ⇐⇒ 𝑒−𝜆 <

𝑆 + 1

(𝑆 + 1)
(
−1+3𝑐

1−𝑐

)
⇐⇒ 𝜆 > 𝑙𝑛

[
1 +

(
1

𝑆 + 1

) (
−1 + 3𝑐

1 − 𝑐

)]
.

This completes the proof. ■

Proof of Proposition 3.11
Here we show the existence of 𝜆∗. The existence of 𝜆̃∗ can be proven by the same
argument.

Step 1: By Proposition 3.1, we know for all 𝜆 > 0, 𝐾∗
2𝑆 (𝜆) = 1.

Step 2: By Proposition 3.10, we know

𝐾∗
2𝑆−1(𝜆) < ∞ ⇐⇒ 𝜆 > 𝑙𝑛

[
1 +

(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)]
≡ 𝜆∗2𝑆−1.

Since 𝜆∗2𝑆−1 < ∞, we know 𝐾∗
2𝑆−1(𝜆) < ∞ ⇐⇒ 𝜆 > 𝜆∗2𝑆−1.
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Step 3: By Proposition 3.7, we know

𝐾∗
2𝑆−2(𝜆) < ∞ ⇐⇒

𝑒−𝜆
(

1
2

)𝑆
+ 𝑒−𝜆 ∑𝐾∗

2𝑆−1 (𝜆)−1
𝑙=1

𝜆𝑙

𝑙!

𝑒−𝜆
(

1
2

)𝑆−1
+ (1 − 𝑒−𝜆)

<
1 − 𝑐
1 + 𝑐

⇐⇒ 1 − 𝑒−𝜆
[
1 +

(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)]
− 𝑒−𝜆

𝐾∗
2𝑆−1 (𝜆)−1∑︁
𝜅=1

𝜆𝜅

𝜅!

(
1 + 𝑐
1 − 𝑐

)
> 0.

Notice that by step 2, we know there exists some 𝑀 < ∞, such that for all 𝜆 >
𝜆∗2𝑆−1, 𝐾

∗
2𝑆−1(𝜆) < 𝑀 . Moreover, by Proposition 3.4, we know 𝐾∗

2𝑆−1(𝜆) ≥ 2.
Hence,

0 = lim
𝜆→∞

𝜆

𝑒𝜆
≤ lim
𝜆→∞

𝑒−𝜆
𝐾∗

2𝑆−1 (𝜆)−1∑︁
𝜅=1

𝜆𝜅

𝜅!
≤ lim
𝜆→∞

𝑒−𝜆
𝑀−1∑︁
𝜅=1

𝜆𝜅

𝜅!
= 0.

Coupled with the fact that lim𝜆→∞ 𝑒−𝜆 = 0, we can conclude that there exists 𝜆∗2𝑆−2
such that 𝜆∗2𝑆−1 < 𝜆

∗
2𝑆−2 < ∞ and 𝐾∗

2𝑆−2(𝜆) < ∞ ⇐⇒ 𝜆 > 𝜆∗2𝑆−2.

Step 4: Now we can prove this statement by induction on each stage. Consider
any 𝑗 where 3 ≤ 𝑗 ≤ 2𝑆 − 1 and suppose there exists 𝜆∗2𝑆− 𝑗+1 < ∞ such that
𝐾∗

2𝑆− 𝑗+1(𝜆) < ∞ for all 𝜆 > 𝜆∗2𝑆− 𝑗+1. By Proposition 3.7, we know

𝐾∗
2𝑆− 𝑗 (𝜆) < ∞ ⇐⇒

𝑒−𝜆
(

1
2

) ⌊ 2𝑆− 𝑗
2 ⌋+1

+ 𝑒−𝜆 ∑𝐾∗
2𝑆− 𝑗+1 (𝜆)−1

𝜅=1
𝜆𝜅

𝜅!

𝑒−𝜆
(

1
2

) ⌊ 2𝑆− 𝑗
2 ⌋

+ (1 − 𝑒−𝜆)
<

1 − 𝑐
1 + 𝑐

⇐⇒ 1 − 𝑒−𝜆
[
1 +

(
1
2

) ⌊ 2𝑆− 𝑗
2 ⌋+1 (

−1 + 3𝑐
1 − 𝑐

)]
− 𝑒−𝜆

𝐾∗
2𝑆− 𝑗+1 (𝜆)−1∑︁

𝜅=1

𝜆𝜅

𝜅!

(
1 + 𝑐
1 − 𝑐

)
> 0.

By the induction hypothesis, we know there exists some 𝐿 < ∞ such that for all
𝜆 > 𝜆∗2𝑆− 𝑗+1, 𝐾∗

2𝑆− 𝑗+1(𝜆) < 𝐿. Proposition 3.4 gives us 𝐾∗
2𝑆− 𝑗+1(𝜆) ≥ 𝑗 , and hence,

0 = lim
𝜆→∞

𝑒−𝜆
(
𝑗−1∑︁
𝜅=1

𝜆𝜅

𝜅!

)
≤ lim
𝜆→∞

𝑒−𝜆
𝐾∗

2𝑆− 𝑗+1 (𝜆)−1∑︁
𝜅=1

𝜆𝜅

𝜅!
≤ lim
𝜆→∞

𝑒−𝜆
𝐿−1∑︁
𝜅=1

𝜆𝜅

𝜅!
= 0.

Combined with the fact lim𝜆→∞ 𝑒−𝜆 = 0, we have proved that there exists 𝜆∗2𝑆− 𝑗 such
that 𝜆∗2𝑆− 𝑗+1 < 𝜆∗2𝑆− 𝑗 < ∞ and 𝐾∗

2𝑆− 𝑗 (𝜆) < ∞ ⇐⇒ 𝜆 > 𝜆∗2𝑆− 𝑗 . Thus, 𝜆∗1 is the
desired 𝜆∗. ■
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Proof of Proposition 3.12
The proofs of Propositions 3.6 through 3.9 provide a recipe to derive the necessary
and sufficient conditions for complete unraveling at each stage. That is, when the
prior distribution follows Poisson distribution, we can compute the minimum 𝜆 for
both models such that the predictions coincide with the standard level-𝑘 model. In
the dynamic model, we can obtain from Proposition 3.6 and 3.7 that for any stage
2𝑆 − 𝑗 where 1 ≤ 𝑗 ≤ 2𝑆 − 1,

𝐾∗
2𝑆−1(𝜆) = 2 ⇐⇒ 𝑒−𝜆

𝑒−𝜆 + 𝜆𝑒−𝜆
<

2𝑆

2𝑆 +
(
−1+3𝑐

1−𝑐

) ⇐⇒ 𝜆 >

(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)
≡ 𝜆∗∗2𝑆−1, and

𝐾∗
2𝑆− 𝑗 (𝜆) = 𝑗 + 1 ⇐⇒

𝑗∑︁
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!
> 𝑒−𝜆

(
1
2

)𝑆−⌊ 𝑗+1
2 ⌋+1 (

−1 + 3𝑐
1 − 𝑐

)
+

(
𝑗−1∑︁
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!

) (
1 + 𝑐
1 − 𝑐

)
⇐⇒ 1

𝑗!
𝜆 𝑗 −

(
2𝑐

1 − 𝑐

) (
𝑗−1∑︁
𝜅=1

𝜆𝜅

𝜅!

)
>

(
1
2

)𝑆−⌊ 𝑗+1
2 ⌋+1 (

−1 + 3𝑐
1 − 𝑐

)
≡ 𝑀∗∗

2𝑆− 𝑗 .

Similarly, we know from Proposition 3.8 and Proposition 3.9 that for any stage 2𝑆− 𝑗
where 1 ≤ 𝑗 ≤ 2𝑆 − 1,

𝐾̃∗
2𝑆−1(𝜆) = 2 ⇐⇒ 𝑒−𝜆

𝑒−𝜆 + 𝜆𝑒−𝜆
<

𝑆 + 1

(𝑆 + 1) +
(
−1+3𝑐

1−𝑐

) ⇐⇒ 𝜆 >
−1 + 3𝑐

(𝑆 + 1) (1 − 𝑐) ≡ 𝜆̃∗∗2𝑆−1, and

𝐾̃∗
2𝑆− 𝑗 (𝜆) = 𝑗 + 1 ⇐⇒

𝑗∑︁
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!
> 𝑒−𝜆

©­­«
−1 +

(
2⌊ 𝑗+1

2 ⌋ + 1
)
𝑐

(𝑆 + 1) (1 − 𝑐)
ª®®¬ +

(
𝑗−1∑︁
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!

) (
1 + 𝑐
1 − 𝑐

)

⇐⇒ 1
𝑗!
𝜆 𝑗 −

(
2𝑐

1 − 𝑐

) (
𝑗−1∑︁
𝜅=1

𝜆𝜅

𝜅!

)
>

©­­«
−1 +

(
2⌊ 𝑗+1

2 ⌋ + 1
)
𝑐

(𝑆 + 1) (1 − 𝑐)
ª®®¬ ≡ 𝑀̃∗∗

2𝑆− 𝑗 .

First, we can find 𝜆∗∗2𝑆−1 < 𝜆̃
∗∗
2𝑆−1 since ( 1

2 )
𝑆 < 1

𝑆+1 . Moreover, because the LHS of
each inequality is a degree of 𝑗 polynomial of 𝜆, it has only one positive root by
Descartes’ rule of signs. Hence, it suffices to prove 𝑀∗∗

2𝑆− 𝑗 < 𝑀̃
∗∗
2𝑆− 𝑗 , or equivalently,

𝑀̃∗∗
2𝑆− 𝑗

𝑀∗∗
2𝑆− 𝑗

> 1, for all 2 ≤ 𝑗 ≤ 2𝑆 − 1. Due to the property of floor functions, we can
focus on odd 𝑗 without loss of generality. Also, we can observe that this ratio is
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decreasing in 𝑗 since for any odd 𝑗 where 3 ≤ 𝑗 ≤ 2𝑆 − 3,

𝑀̃∗∗
2𝑆−( 𝑗+2)

𝑀∗∗
2𝑆−( 𝑗+2)

=

(
2𝑆−

𝑗+1
2

𝑆 + 1

) (
−1 + ( 𝑗 + 4)𝑐

−1 + 3𝑐

)
=

1
2

(
𝑀̃∗∗

2𝑆− 𝑗
𝑀∗∗

2𝑆− 𝑗

)
+ 1

2

[(
2𝑆−

𝑗−1
2

𝑆 + 1

) (
2𝑐

−1 + 3𝑐

)]
<
𝑀̃∗∗

2𝑆− 𝑗
𝑀∗∗

2𝑆− 𝑗

⇐⇒ 2𝑐 < −1 + ( 𝑗 + 2)𝑐 ⇐⇒ 1 < 𝑗𝑐,

which holds because of the assumption 𝑐 > 1
3 . The monotonicity implies that the

ratio is minimized when 𝑗 = 2𝑆 − 1, and we can obtain the conclusion by showing
𝑀̃∗∗

1
𝑀∗∗

1
> 1:

𝑀̃∗∗
1

𝑀∗∗
1

=

(
2

𝑆 + 1

) (
−1 + (2𝑆 + 1)𝑐

−1 + 3𝑐

)
> 1 ⇐⇒ (𝑆 − 1) (1 + 𝑐) > 0,

as desired. ■

Proof of Proposition 3.13
Here we only provide the proof for the case where the game is played in extensive
form. A very similar argument can be applied to the case where the game is played
in reduced normal form. First of all, by Proposition 3.1, we know 𝐾∗

2𝑆 (𝜆) = 1 for
all 𝜆 > 0. Therefore, it is weakly decreasing in 𝜆.

To show the monotonicity of 𝐾∗
2𝑆−1(𝜆), we need to introduce the function 𝐹𝑘 (𝜆) :

R++ → R where 𝑘 ∈ N and 𝐹𝑘 (𝜆) =
∑𝑘
𝜅=1

𝜆𝜅

𝜅! . Notice that 𝐹𝑘+1(𝜆) > 𝐹𝑘 (𝜆) for all
𝜆 > 0, and 𝐹𝑘 (𝜆) is strictly increasing since 𝐹′

𝑘
(𝜆) =

∑𝑘−1
𝜅=0

𝜆𝜅

𝜅! > 0 for all 𝜆 > 0.
We prove the monotonicity toward contradiction. By Proposition 3.6, we know
𝐾∗

2𝑆−1(𝜆) is the lowest level such that

𝐹𝐾∗
2𝑆−1 (𝜆)−1(𝜆) >

(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)
.

If 𝐾∗
2𝑆−1(𝜆) is not weakly decreasing in 𝜆, then there exists 𝜆′ > 𝜆 such that

𝐾∗
2𝑆−1(𝜆

′) > 𝐾∗
2𝑆−1(𝜆). By the construction and the monotonicity of 𝐹𝑘 (𝜆), we can

find that

𝐹𝐾∗
2𝑆−1 (𝜆)−1(𝜆′) > 𝐹𝐾∗

2𝑆−1 (𝜆)−1(𝜆) >
(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)
.

Also, 𝐾∗
2𝑆−1(𝜆

′) is the lowest level such that

𝐹𝐾∗
2𝑆−1 (𝜆′)−1(𝜆′) >

(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)
,
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implying that

𝐹𝐾∗
2𝑆−1 (𝜆)−1(𝜆′) > 𝐹𝐾∗

2𝑆−1 (𝜆′)−1(𝜆′) >
(
1
2

)𝑆 (
−1 + 3𝑐

1 − 𝑐

)
.

This contradicts the assumption that 𝐾∗
2𝑆−1(𝜆

′) > 𝐾∗
2𝑆−1(𝜆). ■
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A p p e n d i x D

SUPPLEMENTARY INFORMATION FOR CHAPTER 4

D.1 Proofs for General Properties
Proof of Lemma 4.1
The uniqueness of DCH can be proven by induction on levels. That is, it suffices
to prove that for every level 𝑘 ≥ 1, the optimal behavior strategy profile is unique.
Consider any player 𝑖 ∈ 𝑁 any type 𝜃𝑖 ∈ Θ𝑖. Level 1 type 𝜃𝑖 player 𝑖 believes all other
players are level 0, and will uniformly randomize at every history. Therefore, at
every history ℎ𝑡 , level 1 type 𝜃𝑖 player 𝑖’s DCH belief is 𝜇1

𝑖
((0, ..., 0), 𝜃−𝑖 | ℎ𝑡 , 𝜃𝑖) =

𝐹 (𝜃−𝑖 |𝜃𝑖). By one-deviation principle, level 1 type 𝜃𝑖 player 𝑖’s best response satisfies
that for any history ℎ𝑡 and action 𝑎 ∈ 𝐴𝑖 (ℎ𝑡), 𝜎1

𝑖
(𝑎 |ℎ𝑡 , 𝜃𝑖) > 0 if and only if

𝑎 ∈ argmax
𝑎′∈𝐴𝑖 (ℎ𝑡 )

E𝑢1
𝑖 ((𝜎0

−𝑖, 𝜎̄
1
𝑖 (𝑎′)) | ℎ𝑡 , 𝜃𝑖),

where 𝜎̄1
𝑖

agrees with 𝜎1
𝑖

except at (𝜃𝑖, ℎ𝑡) where 𝜎̄1
𝑖
(𝑎′) chooses 𝑎′ with probability

1. Since players are assumed to uniformly randomize over optimal actions when
they are indifferent, 𝜎1

𝑖
is uniquely pinned down.

Suppose there is 𝐾 > 2 such that the optimal strategy profiles for level 1 to 𝐾 − 1
are unique. In this case, level 𝐾 player 𝑖’s conjecture about other players’ behavior
strategy profile 𝜎̃−𝐾

−𝑖 is also unique and totally mixed. By one-deviation principle,
level𝐾 type 𝜃𝑖 player 𝑖’s best response satisfies that for any history ℎ𝑡 and 𝑎 ∈ 𝐴𝑖 (ℎ𝑡),
𝜎𝐾
𝑖
(𝑎 |ℎ𝑡 , 𝜃𝑖) > 0 if and only if

𝑎 ∈ argmax
𝑎′∈𝐴𝑖 (ℎ𝑡 )

E𝑢𝐾𝑖 ((𝜎̃−𝐾
−𝑖 , 𝜎̄

𝐾
𝑖 (𝑎′)) | ℎ𝑡 , 𝜃𝑖).

Since players are assumed to uniformly randomize over optimal actions when they
are indifferent, 𝜎𝐾

𝑖
is again uniquely pinned down. This completes the proof. ■

Proof of Proposition 4.1
To prove this proposition, I first characterize the posterior beliefs in Lemma D.1 then
prove that the beliefs are independent across players if the types are independently
drawn.
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Lemma D.1. Consider any multi-stage game with observed actions Γ, any 𝑖 ∈ 𝑁 ,
𝜃𝑖 ∈ Θ𝑖, ℎ ∈ H\H𝑇 , and every level 𝑘 ∈ N. For every information set I𝑖 = (ℎ, 𝜃𝑖),
level 𝑘 player 𝑖’s belief at I𝑖 can be characterized as follows.

1. Level 𝑘 player 𝑖’s prior belief about other players’ types and levels are inde-
pendent. That is, 𝜇𝑘

𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖 𝑃̂

𝑘
𝑖 𝑗
(𝜏𝑗 ).

2. For any 1 ≤ 𝑡 < 𝑇 , and ℎ𝑡 ∈ H 𝑡 , level 𝑘 player 𝑖’s belief at information set
(ℎ𝑡 , 𝜃𝑖) where ℎ𝑡 = (𝑎1, . . . , 𝑎𝑡) is

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝐹 (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 )

∏𝑡
𝑙=1 𝜎

𝜏𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃 𝑗 )

}
∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏′
𝑗
)∏𝑡

𝑙=1 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃′

𝑗
)
} .

Proof of Lemma D.1:

1. At the beginning of the game, the only information available to player 𝑖 is his
own type 𝜃𝑖 and his level of sophistication 𝜏𝑖 = 𝑘 . Therefore, the prior belief is the
probability of the opponents’ types and levels conditional on 𝜃𝑖 and 𝜏𝑖, which is

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖) = Pr(𝜏−𝑖, 𝜃−𝑖 |𝜏𝑖 = 𝑘, 𝜃𝑖)
= Pr(𝜃−𝑖 |𝜃𝑖) Pr(𝜏−𝑖 |𝜏𝑖 = 𝑘)
= 𝐹 (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

𝑃̂𝑘𝑖 𝑗 (𝜏𝑗 ).

The second equality holds because the types and levels are independently drawn.

2. This can be shown by induction on 𝑡. Consider any available history at period 2,
ℎ1 ∈ H1. Level 𝑘 player 𝑖’s belief at information set (ℎ1, 𝜃𝑖) is

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ1, 𝜃𝑖) =
𝜇𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖)

∏
𝑗≠𝑖 𝜎

𝜏𝑗

𝑗
(𝑎1

𝑗
|ℎ∅, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝜇

𝑘
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ∅, 𝜃𝑖)

∏
𝑗≠𝑖 𝜎

𝜏′
𝑗

𝑗
(𝑎1

𝑗
|ℎ∅, 𝜃′𝑗 )

.

(D.1)
By step 1, we can obtain that 𝜇𝑘

𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖 𝑃̂

𝑘
𝑖 𝑗
(𝜏𝑗 ). Plugging

in Equation (D.1), we can further obtain that

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ1, 𝜃𝑖) =
𝜇𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖)

∏
𝑗≠𝑖 𝜎

𝜏𝑗

𝑗
(𝑎1

𝑗
|ℎ∅, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝜇

𝑘
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ∅, 𝜃𝑖)

∏
𝑗≠𝑖 𝜎

𝜏′
𝑗

𝑗
(𝑎1

𝑗
|ℎ∅, 𝜃′𝑗 )

=

𝐹 (𝜃−𝑖 |𝜃𝑖)
∏

𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 )𝜎

𝜏𝑗

𝑗
(𝑎1

𝑗
|ℎ∅, 𝜃 𝑗 )

}
∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏′
𝑗
)𝜎

𝜏′
𝑗

𝑗
(𝑎1

𝑗
|ℎ∅, 𝜃′𝑗 )

} .
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Next, suppose there is 𝑡′ such that the statement holds for every period 𝑡 = 2, . . . , 𝑡′.
Consider period 𝑡′ + 1 and any history available at period 𝑡′ + 1, ℎ𝑡′ ∈ H 𝑡′ where
ℎ𝑡

′
= (𝑎1, . . . , 𝑎𝑡

′). Then level 𝑘 player 𝑖’s belief at information set (ℎ𝑡′ , 𝜃𝑖) is

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) =

𝜇𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝜇

𝑘
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)

=

𝐹 (𝜃−𝑖 |𝜃𝑖)
∏

𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 )

∏𝑡′−1
𝑙=1 𝜎

𝜏𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃 𝑗 )

} ∏
𝑗≠𝑖 𝜎

𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏′
𝑗
)∏𝑡′−1

𝑙=1 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃′

𝑗
)
} ∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)

=

𝐹 (𝜃−𝑖 |𝜃𝑖)
∏

𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 )

∏𝑡′

𝑙=1 𝜎
𝜏𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃 𝑗 )

}
∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏′
𝑗
)∏𝑡′

𝑙=1 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃′

𝑗
)
} .

The second equality holds because of the induction hypothesis, as desired. □

Proof of Proposition 4.1:

We prove this by induction on 𝑡. Let 𝜎 be any level-dependent strategy profile and
𝐹 and 𝑃 be any distributions of types and levels. First, consider 𝑡 = 1. By Lemma
D.1, we know 𝜇𝑘

𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖 𝑃̂

𝑘
𝑖 𝑗
(𝜏𝑗 ). As the prior distribution

of types is independent across players, we can obtain that

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖)
∏
𝑗≠𝑖

𝑃̂𝑘𝑖 𝑗 (𝜏𝑗 )

=
∏
𝑗≠𝑖

𝐹𝑗 (𝜃 𝑗 )
∏
𝑗≠𝑖

𝑃̂𝑘𝑖 𝑗 (𝜏𝑗 )

=
∏
𝑗≠𝑖

[
𝐹𝑗 (𝜃 𝑗 )𝑃̂𝑘𝑖 𝑗 (𝜏𝑗 )

]
=

∏
𝑗≠𝑖

𝜇𝑘𝑖 𝑗 (𝜏𝑗 , 𝜃 𝑗 |ℎ∅, 𝜃𝑖).

Therefore, we know the result is true at 𝑡 = 1. Next, suppose there is 𝑡′ > 1 such that
the result holds for all 𝑡 = 1, . . . , 𝑡′. We want to show that the result holds at period
𝑡′ + 1. Let ℎ𝑡′ ∈ H 𝑡′ be any available history in period 𝑡′ + 1 where ℎ𝑡′ = (ℎ𝑡′−1, 𝑎𝑡

′).
Therefore, player 𝑖’s posterior belief at history ℎ𝑡′ is

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) =

𝜇𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝜇

𝑘
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)
.

By induction hypothesis, we know

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡
′−1, 𝜃𝑖) =

∏
𝑗≠𝑖

𝜇𝑘𝑖 𝑗 (𝜏𝑗 , 𝜃 𝑗 |ℎ𝑡
′−1, 𝜃𝑖).
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Therefore, as we rearrange the posterior belief 𝜇𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡

′
, 𝜃𝑖), we can obtain that

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) =

𝜇𝑘
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝜇

𝑘
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)

=

∏
𝑗≠𝑖

[
𝜇𝑘
𝑖 𝑗
(𝜏𝑗 , 𝜃 𝑗 |ℎ𝑡

′−1, 𝜃𝑖)𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )

]
∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖}

∏
𝑗≠𝑖

[
𝜇𝑘
𝑖 𝑗
(𝜏′
𝑗
, 𝜃′

𝑗
|ℎ𝑡′−1, 𝜃𝑖)𝜎

𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)
]

=

∏
𝑗≠𝑖

[
𝜇𝑘
𝑖 𝑗
(𝜏𝑗 , 𝜃 𝑗 |ℎ𝑡

′−1, 𝜃𝑖)𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )

]
∑
𝜃′−𝑖∈Θ−𝑖

∏
𝑗≠𝑖

[∑
𝜏′
𝑗
<𝑘 𝜇

𝑘
𝑖 𝑗
(𝜏′
𝑗
, 𝜃′

𝑗
|ℎ𝑡′−1, 𝜃𝑖)𝜎

𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)
]

=

∏
𝑗≠𝑖

[
𝜇𝑘
𝑖 𝑗
(𝜏𝑗 , 𝜃 𝑗 |ℎ𝑡

′−1, 𝜃𝑖)𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )

]
∏

𝑗≠𝑖

[∑
𝜃′
𝑗
∈Θ 𝑗

∑
𝜏′
𝑗
<𝑘 𝜇

𝑘
𝑖 𝑗
(𝜏′
𝑗
, 𝜃′

𝑗
|ℎ𝑡′−1, 𝜃𝑖)𝜎

𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)
] .

As a result, we can conclude that

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) =

∏
𝑗≠𝑖


𝜇𝑘
𝑖 𝑗
(𝜏𝑗 , 𝜃 𝑗 |ℎ𝑡

′−1, 𝜃𝑖)𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′
𝑗
∈Θ 𝑗

∑
𝜏′
𝑗
<𝑘 𝜇

𝑘
𝑖 𝑗
(𝜏′
𝑗
, 𝜃′

𝑗
|ℎ𝑡′−1, 𝜃𝑖)𝜎

𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)


=

∏
𝑗≠𝑖

𝜇𝑘𝑖 𝑗 (𝜏𝑗 , 𝜃 𝑗 |ℎ𝑡
′
, 𝜃𝑖).

This completes the proof of the proposition. ■

Proof of Proposition 4.2
By Lemma D.1, we know that in the transformed game (with independent types) Γ̂,
level 𝑘 player 𝑖’s belief at ℎ𝑡 ∈ H 𝑡 is

𝜇̂𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝐹̂ (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 )

∏𝑡
𝑙=1 𝜎

𝜏𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃 𝑗 )

}
∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹̂ (𝜃

′
−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏′
𝑗
)∏𝑡

𝑙=1 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃′

𝑗
)
}

=

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 )

∏𝑡
𝑙=1 𝜎

𝜏𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃 𝑗 )

}
∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖}

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏′
𝑗
)∏𝑡

𝑙=1 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃′

𝑗
)
} .

Therefore, we can obtain that

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝐹 (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏𝑗 )

∏𝑡
𝑙=1 𝜎

𝜏𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃 𝑗 )

}
∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖

{
𝑃̂𝑘
𝑖 𝑗
(𝜏′
𝑗
)∏𝑡

𝑙=1 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑙

𝑗
|ℎ𝑙−1, 𝜃′

𝑗
)
}

=
𝐹 (𝜃−𝑖 |𝜃𝑖) 𝜇̂𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝐹 (𝜃

′
−𝑖 |𝜃𝑖) 𝜇̂𝑘𝑖 (𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡 , 𝜃𝑖)

.
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To complete the proof, it suffices to show that for each level 𝑘 player 𝑖 and every
ℎ𝑡 ∈ H\H𝑇 , maximizing E𝑢𝑘

𝑖
given belief 𝜇𝑘

𝑖
and 𝜎<𝑘−𝑖 is equivalent to maximizing

E𝑢̂𝑘
𝑖

given belief 𝜇̂𝑘
𝑖

and 𝜎̂<𝑘−𝑖 = 𝜎<𝑘−𝑖 . This is true because the expected payoff in the
original game (with correlated types) is:

E𝑢𝑘𝑖 (𝜎 |ℎ𝑡 , 𝜃𝑖) =∑︁
ℎ𝑇∈H𝑇

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

𝜇𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝑃𝑘𝑖 (ℎ𝑇 |ℎ𝑡 , 𝜃, 𝜏−𝑖, 𝜎<𝑘−𝑖 , 𝜎
𝑘
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖),

which is proportional to

E𝑢̂𝑘𝑖 (𝜎 |ℎ𝑡 , 𝜃𝑖) =∑︁
ℎ𝑇∈H𝑇

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

𝐹 (𝜃−𝑖 |𝜃𝑖) 𝜇̂𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝑃𝑘𝑖 (ℎ𝑇 |ℎ𝑡 , 𝜃, 𝜏−𝑖, 𝜎<𝑘−𝑖 , 𝜎
𝑘
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖)

=
∑︁

ℎ𝑇∈H𝑇

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

𝜇̂𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝑃𝑘𝑖 (ℎ𝑇 |ℎ𝑡 , 𝜃, 𝜏−𝑖, 𝜎<𝑘−𝑖 , 𝜎
𝑘
𝑖 )𝑢̂𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖).

This completes the proof of the proposition. ■

Proof of Proposition 4.3
Proof of statement 1:

Consider any player 𝑖 ∈ 𝑁 , any level 𝜏𝑖, any type 𝜃𝑖 and any non-terminal history
ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) ∈ H 𝑡\H𝑇 . To prove the statement, it suffices to show that for any
𝜏−𝑖, if 𝜏−𝑖 ∉ 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |ℎ𝑡−1, 𝜃𝑖, 𝜏𝑖), then 𝜏−𝑖 ∉ 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |ℎ𝑡 , 𝜃𝑖, 𝜏𝑖).

If 𝜏−𝑖 ∉ 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |ℎ𝑡−1, 𝜃𝑖, 𝜏𝑖), then 𝜇𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) = 0 for any 𝜃−𝑖. By Lemma

D.1, we can find that for any 𝜃−𝑖,

𝜇
𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =

𝜇
𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)

∏
𝑗≠𝑖 𝜎

𝜏𝑗

𝑗
(𝑎𝑡

𝑗
|ℎ𝑡−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝑘 ∀ 𝑗≠𝑖} 𝜇

𝜏𝑖
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)

∏
𝑗≠𝑖 𝜎

𝜏′
𝑗

𝑗
(𝑎𝑡

𝑗
|ℎ𝑡−1, 𝜃′

𝑗
)
= 0,

implying that 𝜇𝜏𝑖
𝑖
(𝜏−𝑖 |𝜃𝑖, ℎ𝑡) = 0 and hence 𝜏−𝑖 ∉ 𝑠𝑢𝑝𝑝𝑖 (𝜏−𝑖 |𝜏𝑖, 𝜃𝑖, ℎ𝑡). □

Proof of statement 2:

The second statement can be proven by induction on 𝑡. First, consider 𝑡 = 1. For any
𝑖 ∈ 𝑁 , 𝜏𝑖 ∈ N and 𝜃𝑖 ∈ Θ𝑖, by Lemma D.1, we know the belief about other players’
types and levels is 𝜇𝜏𝑖

𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝐹 (𝜃−𝑖 |𝜃𝑖)

∏
𝑗≠𝑖 𝑃̂

𝜏𝑖
𝑖 𝑗
(𝜏𝑗 ). Since 𝐹 has full

support, for any 𝜃−𝑖 ∈ Θ−𝑖,∑︁
{𝜏−𝑖 :𝜏𝑗<𝜏𝑖 ∀ 𝑗≠𝑖}

𝜇
𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ∅, 𝜃𝑖) =

∑︁
{𝜏−𝑖 :𝜏𝑗<𝜏𝑖 ∀ 𝑗≠𝑖}

𝐹 (𝜃−𝑖 |𝜃𝑖)
∏
𝑗≠𝑖

𝑃̂
𝜏𝑖
𝑖 𝑗
(𝜏𝑗 ) = 𝐹 (𝜃−𝑖 |𝜃𝑖) > 0.
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Hence, the statement is true at period 1.

Next, suppose there is 𝑡′ > 1 such that the result holds for all 𝑡 = 1, . . . , 𝑡′. We want
to show the statement holds at period 𝑡′+1. Let ℎ𝑡′ be any available history at period
𝑡′ + 1 where ℎ𝑡′ = (ℎ𝑡′−1, 𝑎𝑡

′). Therefore, player 𝑖’s posterior belief at ℎ𝑡′ is

𝜇
𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡

′
, 𝜃𝑖) =

𝜇
𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝜏𝑖 ∀ 𝑗≠𝑖} 𝜇

𝜏𝑖
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)
,

which is well-defined as level 0s are always in the support and 𝜎0
𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
) =

1
|𝐴 𝑗 (ℎ𝑡′−1) | > 0 for all 𝑗 . By induction hypothesis, we know 𝑠𝑢𝑝𝑝𝑖 (𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖, 𝜏𝑖) =
Θ−𝑖. Therefore, as we fix any 𝜃−𝑖 ∈ Θ−𝑖, we know 𝜇

𝜏𝑖
𝑖
((0, . . . , 0), 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖) > 0,
suggesting that 𝜃−𝑖 ∈ 𝑠𝑢𝑝𝑝𝑖 (𝜃−𝑖 |ℎ𝑡

′
, 𝜃𝑖, 𝜏𝑖) because

𝜇
𝜏𝑖
𝑖
(𝜃−𝑖 |ℎ𝑡

′
, 𝜃𝑖) =

∑
{𝜏−𝑖 :𝜏𝑗<𝜏𝑖 ∀ 𝑗≠𝑖} 𝜇

𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝜏𝑖 ∀ 𝑗≠𝑖} 𝜇

𝜏𝑖
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)

≥
𝜇
𝜏𝑖
𝑖
((0, . . . , 0), 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
0
𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃 𝑗 )∑

𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝜏𝑖 ∀ 𝑗≠𝑖} 𝜇

𝜏𝑖
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)

=

𝜇
𝜏𝑖
𝑖
((0, . . . , 0), 𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖
1

|𝐴 𝑗 (ℎ𝑡′−1) |∑
𝜃′−𝑖∈Θ−𝑖

∑
{𝜏′−𝑖 :𝜏′𝑗<𝜏𝑖 ∀ 𝑗≠𝑖} 𝜇

𝜏𝑖
𝑖
(𝜏′−𝑖, 𝜃′−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)
∏

𝑗≠𝑖 𝜎
𝜏′
𝑗

𝑗
(𝑎𝑡′

𝑗
|ℎ𝑡′−1, 𝜃′

𝑗
)
> 0.

This completes the proof of the proposition. ■

D.2 Proofs for Two-Person Dirty-Faces Games
Proof of Proposition 4.4
Step 1: Consider any 𝑖 ∈ 𝑁 . If 𝑥−𝑖 = 𝑂, then player 𝑖 knows his face is dirty
immediately. Therefore, 𝐶 is a dominant strategy, suggesting 𝜎𝑘

𝑖
(𝑡, 𝑂) = 1 for all

𝑘 ≥ 1 and 1 ≤ 𝑡 ≤ 𝑇 . If 𝑥−𝑖 = 𝑋 , player 𝑖’s belief of having a dirty face at period
1 is 𝑝. Hence, the expected payoff of choosing 𝐶 at period 1 is 𝑝𝛼 − (1 − 𝑝) < 0,
implying 𝜎𝑘

𝑖
(1, 𝑋) = 0 for all 𝑘 ≥ 1. Finally, since level 1 players believe the

other player’s actions don’t convey any information about their own face types, the
expected payoff of 𝐶 at each period is 𝑝𝛼 − (1 − 𝑝) < 0, implying 𝜎1

𝑖
(𝑡, 𝑋) = 0 for

any 1 ≤ 𝑡 ≤ 𝑇 .

Step 2: Consider any level 𝑘 ≥ 2, and period 2 ≤ 𝑡 ≤ 𝑇 . This step characterizes
the DCH posterior belief when 𝑥−𝑖 = 𝑋 . When the game proceeds to period 𝑡, the
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posterior belief of (𝑥𝑖, 𝜏−𝑖) = ( 𝑓 , 𝑙) for any 𝑓 ∈ {𝑂, 𝑋} and 0 ≤ 𝑙 ≤ 𝑘 − 1 is:

𝜇𝑘𝑖 ( 𝑓 , 𝑙 |𝑡, 𝑋) =
[∏𝑡−1

𝑡′=1(1 − 𝜎𝑙−𝑖 (𝑡′, 𝑓 ))
]
𝑝𝑙 Pr( 𝑓 )∑

𝑥∈{𝑂,𝑋}
∑𝑘−1
𝑗=0

[∏𝑡−1
𝑡′=1(1 − 𝜎 𝑗

−𝑖 (𝑡′, 𝑥))
]
𝑝 𝑗 Pr(𝑥)

. (D.2)

By step 1, since strategic players will claim immediately when seeing a clean face,
𝜎𝑙−𝑖 (𝑡′, 𝑂) = 1 for all 1 ≤ 𝑡′ ≤ 𝑡−1. Therefore, as the game proceeds to period 𝑡 ≥ 2,
level 𝑘 player 𝑖 would know that it is impossible for the other player to observe a
dirty face and have a positive level of sophistication at the same time. Furthermore,
let M𝑘

𝑖
(𝑡) be the support of level 𝑘 player 𝑖’s marginal belief of 𝜏−𝑖 at period 𝑡. For

any 0 ≤ 𝑙 ≤ 𝑘 − 1,

𝑙 ∈ M𝑘
𝑖 (𝑡) ⇐⇒

∑︁
𝑥𝑖∈{𝑂,𝑋}

𝑡−1∏
𝑡′=1

(1 − 𝜎𝑙−𝑖 (𝑡′, 𝑥𝑖)) > 0,

and we let M𝑘
𝑖+(𝑡) ≡ M𝑘

𝑖
(𝑡)\{0}. Therefore, equation (D.2) implies that for any

𝑡 ≥ 2,

𝜇𝑘𝑖 (𝑋, 0|𝑡, 𝑋) =

(
1
2

) 𝑡−1
𝑝𝑝0(

1
2

) 𝑡−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

, 𝜇𝑘𝑖 (𝑂, 0|𝑡, 𝑋) =

(
1
2

) 𝑡−1
(1 − 𝑝)𝑝0(

1
2

) 𝑡−1
𝑝0 + 𝑝

∑
∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

.

Moreover, for any 1 ≤ 𝑘′ ≤ 𝑘 − 1, 𝜇𝑘
𝑖
(𝑂, 𝑘′|𝑡, 𝑋) = 0, and for any 𝑙 ∈ M𝑘

𝑖+(𝑡),

𝜇𝑘𝑖 (𝑋, 𝑙 |𝑡, 𝑋) =
𝑝𝑝𝑙(

1
2

) 𝑡−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

.

Consequently, the marginal belief of having a dirty face at period 2 ≤ 𝑡 ≤ 𝑇 is

𝜇𝑘𝑖 (𝑋 |𝑡, 𝑋) =
𝑘−1∑︁
𝑗=0

𝜇𝑘𝑖 (𝑋, 𝑗 |𝑡, 𝑋) =
𝑝

[(
1
2

) 𝑡−1
𝑝0 +

∑
𝑗∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

]
(

1
2

) 𝑡−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

.

Thus, the expected payoff of choosing𝐶 at period 𝑡 is 𝛿𝑡−1 [
(1 + 𝛼)𝜇𝑘

𝑖
(𝑋 |𝑡, 𝑋) − 1

]
,

which equals to E𝑢𝑘
𝑖
(𝐶 |𝑡, 𝑋) =

𝛿𝑡−1(
1
2

) 𝑡−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

𝑝𝛼

(
1
2

) 𝑡−1
𝑝0 +

∑︁
𝑗∈M𝑘

𝑖+ (𝑡)

𝑝 𝑗

 − (1 − 𝑝)
[(

1
2

) 𝑡−1
𝑝0

] .
(D.3)
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Finally, at period 𝑡, level 𝑘 player 𝑖 believes the other player will wait with probability

1
2
𝜇𝑘𝑖 (0|𝑡, 𝑋) +

∑︁
𝑗∈M𝑘

𝑖+ (𝑡+1)

𝜇𝑘𝑖 ( 𝑗 |𝑡, 𝑋) =

(
1
2

) 𝑡
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡+1) 𝑝 𝑗(
1
2

) 𝑡−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

. (D.4)

Step 3: This step proves a monotonicity result: if 𝜎𝑘
𝑖
(𝑡, 𝑋) = 1, then 𝜎𝑘+1

𝑖
(𝑡, 𝑋) = 1

for any 𝑘 ≥ 2 and 2 ≤ 𝑡 ≤ 𝑇 . The proof consists of two cases. First consider period
𝑇 . Equation (D.3) implies 𝜎𝑘

𝑖
(𝑇, 𝑋) = 1 if and only if

𝛿𝑇−1(
1
2

)𝑇−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑇)
𝑝 𝑗

𝑝𝛼

(
1
2

)𝑇−1
𝑝0 +

∑︁
𝑗∈M𝑘

𝑖+ (𝑇)

𝑝 𝑗

 − (1 − 𝑝)
[(

1
2

)𝑇−1
𝑝0

] ≥ 0

⇐⇒ 𝛼̄ ≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑
𝑗∈M𝑘

𝑖+ (𝑇)
𝑝 𝑗

.

Because M𝑘
𝑖
(𝑇) ⊆ M𝑘+1

𝑖
(𝑇), it can be proven that

𝛼̄ ≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑
𝑗∈M𝑘

𝑖+ (𝑇)
𝑝 𝑗

≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑
𝑗∈M𝑘+1

𝑖+ (𝑇) 𝑝 𝑗

,

implying that if it is optimal for level 𝑘 player 𝑖 to claim at period𝑇 , it is also optimal
for level 𝑘 + 1 player 𝑖 to claim.

Second, consider any period 2 ≤ 𝑡 ≤ 𝑇 − 1. Note that if level 𝑘 players would
choose 𝐶 at period 𝑡, 𝑘 ∉ M𝑘+1

𝑖
(𝑡 + 1) and hence M𝑘

𝑖+(𝑡′) = M𝑘+1
𝑖+ (𝑡′) for any

𝑡 + 1 ≤ 𝑡′ ≤ 𝑇 . Therefore, as the game proceeds beyond period 𝑡, level 𝑘 and level
𝑘 + 1 players will have the same continuation value. Let 𝑉 𝑘̃

𝑡
be level 𝑘̃ players’

continuation value at period 𝑡. The observation implies 𝑉 𝑘
𝑡+1 = 𝑉 𝑘+1

𝑡+1 . Coupled with
that M𝑘

𝑖+(𝑡) ⊆ M𝑘+1
𝑖+ (𝑡), level 𝑘 + 1 player 𝑖’s expected payoff of choosing 𝑊 at

period 𝑡 satisfies(
1
2

) 𝑡
𝑝0 + 𝑝

∑
𝑗∈M𝑘+1

𝑖+ (𝑡+1) 𝑝 𝑗(
1
2

) 𝑡−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘+1

𝑖+ (𝑡) 𝑝 𝑗

𝑉 𝑘+1
𝑡+1 ≤

(
1
2

) 𝑡
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡+1) 𝑝 𝑗(
1
2

) 𝑡−1
𝑝0 + 𝑝

∑
𝑗∈M𝑘

𝑖+ (𝑡)
𝑝 𝑗

𝑉 𝑘𝑡+1,

where the RHS is level 𝑘 player’s expected payoff of choosing 𝑊 at period 𝑡. The
inequality shows level 𝑘 player’s expected payoff of choosing 𝑊 is weakly higher
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than level 𝑘 + 1 player’s expected payoff of choosing 𝑊 . To complete the proof, it
suffices to argue that level 𝑘 + 1 player’s expected payoff of 𝐶 at period 𝑡 is higher
than level 𝑘 player’s expected payoff of 𝐶. This is true because M𝑘

𝑖+(𝑡) ⊆ M𝑘+1
𝑖+ (𝑡)

implies 𝜇𝑘+1
𝑖

(𝑋 |𝑡, 𝑋) ≥ 𝜇𝑘
𝑖
(𝑋 |𝑡, 𝑋), and hence,

𝛿𝑡−1 [
(1 + 𝛼)𝜇𝑘+1

𝑖 (𝑋 |𝑡, 𝑋) − 1
]
≥ 𝛿𝑡−1 [

(1 + 𝛼)𝜇𝑘𝑖 (𝑋 |𝑡, 𝑋) − 1
]
.

Step 4: The proposition is proven by induction on 𝑘 . This step establishes the base
case for level 2 players. By step 1, 𝜎1

𝑖
(𝑡, 𝑋) = 0 for all 1 ≤ 𝑡 ≤ 𝑇 , and hence

M2
𝑖+(𝑡) = {1} for all 1 ≤ 𝑡 ≤ 𝑇 . Therefore, equation (D.3) suggests the expected

payoff of 𝐶 at period 𝑇 is

E𝑢2
𝑖 (𝐶 |𝑇, 𝑋) =

𝛿𝑇−1(
1
2

)𝑇−1
𝑝0 + 𝑝𝑝1

{
𝑝𝛼

[(
1
2

)𝑇−1
𝑝0 + 𝑝1

]
− (1 − 𝑝)

[(
1
2

)𝑇−1
𝑝0

]}
.

Therefore, 𝐶 is optimal at period 𝑇 if and only if

E𝑢2
𝑖 (𝐶 |𝑇, 𝑋) ≥ 0 ⇐⇒ 𝛼̄ ≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 + 𝑝1

.

For any period 2 ≤ 𝑡 ≤ 𝑇 − 1, I first prove the direction of necessity. Equation (D.4)
implies level 2 player 𝑖’s belief about the other player choosing𝑊 at period 𝑡 is

1
2
𝜇2
𝑖 (0|𝑡, 𝑋) + 𝜇2

𝑖 (1|𝑡, 𝑋) =

(
1
2

) 𝑡
𝑝0 + 𝑝𝑝1(

1
2

) 𝑡−1
𝑝0 + 𝑝𝑝1

.

Therefore, the expected payoff of𝑊 at period 𝑡 is at least
[
( 1

2 )𝑡 𝑝0+𝑝𝑝1

( 1
2 )𝑡−1

𝑝0+𝑝𝑝1

]
E𝑢2

𝑖
(𝐶 |𝑡 +

1, 𝑋) =
𝛿𝑡(

1
2

) 𝑡−1
𝑝0 + 𝑝𝑝1

{
𝑝𝛼

[(
1
2

) 𝑡
𝑝0 + 𝑝1

]
− (1 − 𝑝)

[(
1
2

) 𝑡
𝑝0

]}
.

Since𝑊 is always available, 𝐶 is strictly dominated at period 𝑡 for level 2 player 𝑖 if

E𝑢2
𝑖 (𝐶 |𝑡, 𝑋) <


(

1
2

) 𝑡
𝑝0 + 𝑝𝑝1(

1
2

) 𝑡−1
𝑝0 + 𝑝𝑝1

E𝑢
2
𝑖 (𝐶 |𝑡 + 1, 𝑋)

⇐⇒ 𝛼̄ <

[(
1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0[(

1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

.
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This proves the direction of necessity.

Second, the sufficiency is proven by induction on the periods. Namely, I show the
sufficiency holds for any period 𝑇 − 𝑡′ where 1 ≤ 𝑡′ ≤ 𝑇 − 2. Consider the base case
for period 𝑇 − 1. Because

𝛼̄ ≥

[(
1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0[(

1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

>

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 + 𝑝1

,

level 2 players will choose 𝐶 at period 𝑇 , it is optimal to choose 𝐶 at period 𝑇 − 1 if

E𝑢2
𝑖 (𝐶 |𝑇 − 1, 𝑋) ≥


(

1
2

)𝑇−1
𝑝0 + 𝑝𝑝1(

1
2

)𝑇−2
𝑝0 + 𝑝𝑝1

 E𝑢
2
𝑖 (𝐶 |𝑇, 𝑋)

⇐⇒ 𝛼̄ ≥

[(
1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0[(

1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

.

Now, suppose there is 𝑡′ ≤ 𝑇 − 2 such that the statement holds at any period 𝑇 − 𝑡
where 1 ≤ 𝑡 ≤ 𝑡′−1. It can be proven that the sufficiency also holds at period 𝑇 − 𝑡′.
Because

𝛼̄ ≥

[(
1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0[(

1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

>

[(
1
2

)𝑇−𝑡′
−

(
1
2

)𝑇−𝑡′+1
𝛿

]
𝑝0[(

1
2

)𝑇−𝑡′
−

(
1
2

)𝑇−𝑡′+1
𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

,

level 2 players will choose𝐶 at period 𝑇 − 𝑡′+1 by induction hypothesis. Therefore,
it is optimal to choose 𝐶 at period 𝑇 − 𝑡′ if

E𝑢2
𝑖 (𝐶 |𝑇 − 𝑡′, 𝑋) ≥


(

1
2

)𝑇−𝑡′
𝑝0 + 𝑝𝑝1(

1
2

)𝑇−𝑡′−1
𝑝0 + 𝑝𝑝1

 E𝑢
2
𝑖 (𝐶 |𝑇 − 𝑡′ + 1, 𝑋)

⇐⇒ 𝛼̄ ≥

[(
1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0[(

1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

.

This completes the proof of sufficiency.
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Step 5: Step 4 establishes the base case for 𝑘 = 2. Now, suppose there is 𝐾 > 2
such that the statement holds for all 2 ≤ 𝑘 ≤ 𝐾 . It suffices to prove the statement
holds for level 𝐾 + 1 players. The proof for period 𝑇 is straightforward. From step
3, we know if 𝜎𝐾

𝑖
(𝑇, 𝑋) = 1, then 𝜎𝐾+1

𝑖
(𝑇, 𝑋) = 1. Hence, the only case that needs

to be considered is when

𝛼̄ <

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑𝐾−1
𝑗=1 𝑝 𝑗

.

By induction hypothesis, 𝜎𝑙−𝑖 (𝑡, 𝑋) = 0 for all 1 ≤ 𝑙 ≤ 𝐾 and for all 1 ≤ 𝑡 ≤ 𝑇 .
Therefore, 𝜎𝐾+1

𝑖
(𝑇, 𝑋) = 1 if and only if E𝑢𝐾+1

𝑖
(𝐶 |𝑇, 𝑋) ≥ 0, which is equivalent

to

𝛼̄ ≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

.

For any period 2 ≤ 𝑡 ≤ 𝑇 − 1, I first prove the direction of necessity. If

𝛼̄ <

[(
1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0[(

1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗

,

then by induction hypothesis, 𝜎𝑙−𝑖 (𝑡′, 𝑋) = 0 for all 1 ≤ 𝑙 ≤ 𝐾 and 1 ≤ 𝑡′ ≤
𝑡, implying that M𝐾+1

𝑖+ (𝑡) = {1, . . . , 𝐾}. Then equation (D.3) suggests that the
expected payoff of 𝐶 at period 𝑡 is

𝛿𝑡−1(
1
2

) 𝑡−1
𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

𝑝𝛼

(
1
2

) 𝑡−1
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗

 − (1 − 𝑝)
[(

1
2

) 𝑡−1
𝑝0

] .
Furthermore, equation (D.4) suggests level 𝐾 + 1 players believe the other player
will wait at period 𝑡 with probability

1
2
𝜇𝐾+1
𝑖 (0|𝑡, 𝑋) +

𝐾∑︁
𝑗=1

𝜇𝐾+1
𝑖 (𝑙 |𝑡, 𝑋) =

(
1
2

) 𝑡
𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗(

1
2

) 𝑡−1
𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

.
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Therefore, by similar calculation as in step 4, choosing 𝐶 is strictly dominated if

𝛿𝑡−1(
1
2

) 𝑡−1
𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

𝑝𝛼

(
1
2

) 𝑡−1
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗

 − (1 − 𝑝)
[(

1
2

) 𝑡−1
𝑝0

]
<

𝛿𝑡(
1
2

) 𝑡−1
𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

𝑝𝛼

(
1
2

) 𝑡
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗

 − (1 − 𝑝)
[(

1
2

) 𝑡
𝑝0

] ,
which is implied by

𝛼̄ <

[(
1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0[(

1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗

.

This proves the direction of necessity.

Second, the sufficiency is proven by induction on the periods. Namely, I show the
sufficiency holds for any period 𝑇 − 𝑡′ where 1 ≤ 𝑡′ ≤ 𝑇 − 2. Consider the base
case for period 𝑇 − 1. By step 3, if 𝜎𝐾

𝑖
(𝑇 − 1, 𝑋) = 1, then 𝜎𝐾+1

𝑖
(𝑇 − 1, 𝑋) = 1.

Therefore, it suffices to consider the case where[(
1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0[(

1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗

≤ 𝛼̄ <

[(
1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0[(

1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾−1

𝑗=1 𝑝 𝑗

.

By induction hypothesis, 𝜎𝑙−𝑖 (𝑡, 𝑋) = 0 for all 1 ≤ 𝑡 ≤ 𝑇 − 1 and 1 ≤ 𝑙 ≤ 𝐾 .
Moreover, 𝜎𝐾+1

𝑖
(𝑇, 𝑋) = 1 because[(

1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0[(

1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗

>

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

.

Therefore, by a similar calculation as in step 4, it can be proven that it is optimal for
level 𝐾 + 1 players to choose 𝐶 at period 𝑇 − 1 if

E𝑢𝐾+1
𝑖 (𝐶 |𝑇 − 1, 𝑋) ≥


(

1
2

)𝑇−1
𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗(

1
2

)𝑇−2
𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

 E𝑢
𝐾+1
𝑖 (𝐶 |𝑇, 𝑋)

⇐⇒ 𝛼̄ ≥

[(
1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0[(

1
2

)𝑇−2
−

(
1
2

)𝑇−1
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗

.
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Now, suppose there is 𝑡′ ≤ 𝑇 − 2 such that the statement holds for any period 𝑇 − 𝑡
where 1 ≤ 𝑡 ≤ 𝑡′ − 1. It can be proven that the statement also holds at period period
𝑇 − 𝑡′. By step 3, if 𝜎𝐾

𝑖
(𝑇 − 𝑡′, 𝑋) = 1, then 𝜎𝐾+1

𝑖
(𝑇 − 𝑡′, 𝑋) = 1 and it suffices to

consider the case:[(
1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0[(

1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗

≤ 𝛼̄

<

[(
1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0[(

1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾−1

𝑗=1 𝑝 𝑗

.

By induction hypothesis, 𝜎𝑙−𝑖 (𝑡, 𝑋) = 0 for all 1 ≤ 𝑡 ≤ 𝑇 − 𝑡′ and 1 ≤ 𝑙 ≤ 𝐾 , and
𝜎𝐾+1
𝑖

(𝑇 − 𝑡′ + 1, 𝑋) = 1. Therefore, by a similar calculation as in step 4, it can be
proven that it is optimal for level 𝐾 + 1 players to choose 𝐶 at period 𝑇 − 𝑡′ if

𝛼̄ ≥

[(
1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0[(

1
2

)𝑇−𝑡′−1
−

(
1
2

)𝑇−𝑡′
𝛿

]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗

.

This completes the proof of the proposition. ■

Proof of Corollary 4.1
By Proposition 4.4, we know 𝜎𝑘

𝑖
(𝑡, 𝑂) = 1 for all 𝑡 and 𝑘 ≥ 1, and 𝜎1

𝑖
(𝑡, 𝑋) = 0

for all 𝑡. Then by Definition 4.2, we can obtain that 𝜎̂𝑘
𝑖
(𝑂) = 1 for all 𝑘 ≥ 1,

and 𝜎̂1
𝑖
(𝑋) = 𝑇 + 1. In addition, since 𝜎𝑘

𝑖
(1, 𝑋) = 0 for all 𝑘 ≥ 2, 𝜎̂𝑘

𝑖
(𝑋) ≠ 1.

Moreover, the DCH solution can be equivalently characterized by optimal stopping
periods because for any 𝑡 ≥ 2 and 𝑘 ≥ 2,

𝜎̂𝑘𝑖 (𝑋) = 𝑡 ⇐⇒ 𝜎𝑘𝑖 (𝑡 − 1, 𝑋) = 0 and 𝜎𝑘𝑖 (𝑡, 𝑋) = 1,

𝜎̂𝑘𝑖 (𝑋) = 𝑇 + 1 ⇐⇒ 𝜎𝑘𝑖 (𝑡′, 𝑋) = 0 for any 1 ≤ 𝑡′ ≤ 𝑇.

Lastly, to show the monotonicity, it suffices to show that for any 𝑘′ > 𝑘 ≥ 2 and any
2 ≤ 𝑡 ≤ 𝑇 , if 𝜎𝑘

𝑖
(𝑡, 𝑋) = 1, then 𝜎𝑘 ′

𝑖
(𝑡, 𝑋) = 1. The discussion is separated into two

cases. First, if 𝑡 = 𝑇 , then by Proposition 4.4, 𝜎𝑘
𝑖
(𝑇, 𝑋) = 1 suggests

𝛼̄ ≥

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

>

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑𝑘 ′−1
𝑗=1 𝑝 𝑗

,
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implying 𝜎𝑘 ′
𝑖
(𝑇, 𝑋) = 1. Second, if 2 ≤ 𝑡 ≤ 𝑇 − 1, by Proposition 4.4, 𝜎𝑘

𝑖
(𝑡, 𝑋) = 1

suggests

𝛼̄ ≥

[(
1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0[(

1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0 + (1 − 𝛿)∑𝑘−1

𝑗=1 𝑝 𝑗

>

[(
1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0[(

1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0 + (1 − 𝛿)∑𝑘 ′−1

𝑗=1 𝑝 𝑗

,

implying 𝜎𝑘 ′
𝑖
(𝑡, 𝑋) = 1. This completes the proof. ■

Proof of Proposition 4.5
Step 1: Consider any 𝑖 ∈ 𝑁 . If 𝑥−𝑖 = 𝑂, player 𝑖 knows his face is dirty immediately,
suggesting 1 is a dominant strategy and 𝜎̃𝑘

𝑖
(𝑂) = 1 for any 𝑘 ≥ 1. If 𝑥−𝑖 = 𝑋 ,

the expected payoff of 1 is 𝑝𝛼 − (1 − 𝑝) < 0, implying 𝜎̃𝑘
𝑖
(𝑋) ≥ 2 for any 𝑘 ≥ 1.

Moreover, level 1 players believe the other player is level 0, so when observing 𝑋 ,
the expected payoff of 2 ≤ 𝑗 ≤ 𝑇 is

𝑝

[
𝑇 + 2 − 𝑗

𝑇 + 1
𝛿 𝑗−1𝛼

]
− (1 − 𝑝)

[
𝑇 + 2 − 𝑗

𝑇 + 1
𝛿 𝑗−1

]
= 𝛿 𝑗−1

(
𝑇 + 2 − 𝑗

𝑇 + 1

)
[𝑝𝛼 − (1 − 𝑝)] < 0.

implying 𝜎̃1
𝑖
(𝑋) = 𝑇 + 1.

Step 2: This step proves for any 𝐾 > 1, if 𝜎̃𝑙+1
𝑖

(𝑋) ≤ 𝜎̃𝑙
𝑖
(𝑋) for all 1 ≤ 𝑙 ≤ 𝐾 − 1,

then 𝜎̃𝐾+1
𝑖

(𝑋) ≤ 𝜎̃𝐾
𝑖
(𝑋). Note that if 𝜎̃𝐾

𝑖
(𝑋) = 𝑇 +1, then there is nothing to prove.

Let 𝑠∗ ≡ 𝜎̃𝐾
𝑖
(𝑋) and focus on the case where 2 ≤ 𝑠∗ ≤ 𝑇 . If 𝑠∗ = 𝑇 , then level 𝐾 + 1

player’s expected payoff of choosing 𝑇 is

𝛿𝑇−1

[
𝑝𝛼

(
2

𝑇 + 1
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
2

𝑇 + 1
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

)]
> 𝛿𝑇−1

[
𝑝𝛼

(
2

𝑇 + 1
𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

+
∑𝐾−1
𝑗=1 𝑝 𝑗∑𝐾−1
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
2

𝑇 + 1
𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

)]
≥ 0.

The last inequality holds because it is optimal for level 𝐾 players to choose 𝑇 . This
suggests that 𝑇 + 1 is dominated by 𝑇 and hence 𝜎̃𝐾+1

𝑖
(𝑋) ≤ 𝑇 = 𝜎̃𝐾

𝑖
(𝑋).

On the other hand, consider 2 ≤ 𝑠∗ ≤ 𝑇 − 1. If level 𝐾 + 1 player 𝑖 chooses some 𝑠
where 𝑠∗ < 𝑠 < 𝑇 + 1 that yields a non-negative expected payoff, then choosing 𝑠 is
strictly suboptimal because
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𝛿𝑠−1

[
𝑝𝛼

(
𝑇 + 2 − 𝑠
𝑇 + 1

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾−1
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
𝑇 + 2 − 𝑠
𝑇 + 1

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

)]
< 𝛿𝑠−1

[
𝑝𝛼

(
𝑇 + 2 − 𝑠
𝑇 + 1

𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

+
∑𝐾−1
𝑗=1 𝑝 𝑗∑𝐾−1
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
𝑇 + 2 − 𝑠
𝑇 + 1

𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

)]
≤ 𝛿𝑠∗−1

[
𝑝𝛼

(
𝑇 + 2 − 𝑠∗
𝑇 + 1

𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

+
∑𝐾−1
𝑗=1 𝑝 𝑗∑𝐾−1
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
𝑇 + 2 − 𝑠∗
𝑇 + 1

𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

)]
< 𝛿𝑠

∗−1

[
𝑝𝛼

(
𝑇 + 2 − 𝑠∗
𝑇 + 1

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
𝑇 + 2 − 𝑠∗
𝑇 + 1

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

)]
.

Note that the second inequality holds because 𝑠∗ is level 𝐾 player’s optimal choice,
and the RHS of the last inequality is level 𝐾 +1 player’s expected payoff of choosing
𝑠∗. These inequalities show that it is not optimal for level 𝐾 + 1 players to choose
any 𝑠 > 𝑠∗, suggesting that 𝜎̃𝐾+1

𝑖
(𝑋) ≤ 𝜎̃𝐾

𝑖
(𝑋).

Step 3: The proposition is proven by induction on 𝑘 . This step establishes the base
case for level 2 players. For any 2 ≤ 𝑗 ≤ 𝑇 , the expected payoff of choosing 𝑗 is
E𝑢2

𝑖
( 𝑗 |𝑋) =

𝑝

[(
𝑇 + 2 − 𝑗

𝑇 + 1
𝛿 𝑗−1𝛼

)
𝑝0

𝑝0 + 𝑝1
+

(
𝛿 𝑗−1𝛼

) 𝑝1
𝑝0 + 𝑝1

]
− (1 − 𝑝)

[(
𝑇 + 2 − 𝑗

𝑇 + 1
𝛿 𝑗−1

)
𝑝0

𝑝0 + 𝑝1

]
.

For level 2 players and any 2 ≤ 𝑗 ≤ 𝑇 − 1, let Δ2
𝑗
≡ E𝑢2

𝑖
( 𝑗 |𝑋) −E𝑢2

𝑖
( 𝑗 + 1|𝑋) be the

difference of expected payoffs between 𝑗 and 𝑗 + 1. That is,

Δ2
𝑗 = 𝛿

𝑗−1𝑝𝛼

[(
𝑇 + 2 − 𝑗

𝑇 + 1
− 𝑇 + 1 − 𝑗

𝑇 + 1
𝛿

)
𝑝0

𝑝0 + 𝑝1
+ (1 − 𝛿) 𝑝1

𝑝0 + 𝑝1

]
− 𝛿 𝑗−1(1 − 𝑝)

[(
𝑇 + 2 − 𝑗

𝑇 + 1
− 𝑇 + 1 − 𝑗

𝑇 + 1
𝛿

)
𝑝0

𝑝0 + 𝑝1

]
,

suggesting that 𝑗 dominates 𝑗 + 1 if and only if

Δ2
𝑗 ≥ 0 ⇐⇒ 𝛼̄ ≥

[
𝑇+2− 𝑗
𝑇+1 − 𝑇+1− 𝑗

𝑇+1 𝛿

]
𝑝0[

𝑇+2− 𝑗
𝑇+1 − 𝑇+1− 𝑗

𝑇+1 𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

.

Because the RHS is decreasing function in 𝑗 , Δ2
𝑗
≥ 0 implies Δ2

𝑗+1 ≥ 0. Moreover,
since

E𝑢2
𝑖 ( 𝑗 |𝑋) ≥ 0 ⇐⇒ 𝛼̄ ≥

𝑇+2− 𝑗
𝑇+1 𝑝0

𝑇+2− 𝑗
𝑇+1 𝑝0 + 𝑝1

,
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Δ2
𝑗
≥ 0 implies E𝑢2

𝑖
( 𝑗 |𝑋) ≥ 0 because

𝛼̄ ≥

[
𝑇+2− 𝑗
𝑇+1 − 𝑇+1− 𝑗

𝑇+1 𝛿

]
𝑝0[

𝑇+2− 𝑗
𝑇+1 − 𝑇+1− 𝑗

𝑇+1 𝛿

]
𝑝0 + (1 − 𝛿)𝑝1

>

𝑇+2− 𝑗
𝑇+1 𝑝0

𝑇+2− 𝑗
𝑇+1 𝑝0 + 𝑝1

.

As a result, 𝜎̃2
𝑖
(𝑋) ≤ 𝑇 if and only if E𝑢2

𝑖
(𝑇 |𝑋) ≥ 0, which is equivalent to

𝛼̄ ≥
2
𝑇+1 𝑝0

2
𝑇+1 𝑝0 + 𝑝1

,

and for any other 2 ≤ 𝑡 ≤ 𝑇 − 1, 𝜎̃2
𝑖
(𝑋) ≤ 𝑡 if and only if

Δ2
𝑡 ≥ 0 ⇐⇒ 𝛼̄ ≥

[
𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)𝑝1

.

Step 4: Step 3 establishes the base case where 𝑘 = 2. Now suppose there is 𝐾 > 2
such that the statement holds for any 2 ≤ 𝑘 ≤ 𝐾 . It suffices to prove that the
statement also holds for level 𝐾 + 1 players. By step 1, 𝜎̃𝐾+1

𝑖
(𝑋) ≥ 2. Besides, note

that for any 1 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑙 ≤ 𝐾 , if 𝜎̃𝑙−𝑖 (𝑋) > 𝑡, then level 𝐾 + 1 player 𝑖’s
expected payoff of choosing 2 ≤ 𝑗 ≤ 𝑡 + 1 is E𝑢𝐾+1

𝑖
( 𝑗 |𝑋) =

𝛿 𝑗−1

[
𝑝𝛼

(
𝑇 + 2 − 𝑗

𝑇 + 1
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
𝑇 + 2 − 𝑗

𝑇 + 1
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

)]
.

Similar to step 3, we define Δ𝐾+1
𝑡′ for any 2 ≤ 𝑡′ ≤ 𝑡 where Δ𝐾+1

𝑡′ is the difference of
expected payoff between choosing 𝑡′ and 𝑡′ + 1. That is,

Δ𝐾+1
𝑡′ ≡ 𝛿𝑡′−1𝑝𝛼

[(
𝑇 + 2 − 𝑡′
𝑇 + 1

− 𝑇 + 1 − 𝑡′
𝑇 + 1

𝛿

)
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+ (1 − 𝛿)
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

]
− 𝛿𝑡′−1(1 − 𝑝)

[(
𝑇 + 2 − 𝑡′
𝑇 + 1

− 𝑇 + 1 − 𝑡′
𝑇 + 1

𝛿

)
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

]
.

By the same argument as in step 3, Δ𝐾+1
𝑡′ < 0 implies Δ𝐾+1

𝑡′−1 < 0. Therefore, if
𝜎̃𝑙−𝑖 (𝑋) > 𝑡 for any 1 ≤ 𝑙 ≤ 𝐾 , it is strictly dominated for level 𝐾 + 1 players to
choose 𝑡′ (and all strategies 𝑠 < 𝑡′) where 2 ≤ 𝑡′ ≤ 𝑡 if

𝛼̄ <

[
𝑇+2−𝑡′
𝑇+1 − 𝑇+1−𝑡′

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡′
𝑇+1 − 𝑇+1−𝑡′

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗
, (D.5)

and by a similar argument as in step 3, Δ𝐾+1
𝑡′ ≥ 0 implies E𝑢𝐾+1

𝑖
(𝑡′|𝑋) ≥ 0.
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The proof for period 𝑇 is straightforward. The implication of the induction hypoth-
esis is that 𝜎̃𝑙+1

𝑖
(𝑋) ≤ 𝜎̃𝑙

𝑖
(𝑋) for all 1 ≤ 𝑙 ≤ 𝐾 − 1. By step 2, 𝜎̃𝐾+1

𝑖
(𝑋) ≤ 𝑇 if

𝜎̃𝐾
𝑖
(𝑋) ≤ 𝑇 . Thus, it suffices to consider the case where

𝛼̄ <

2
𝑇+1 𝑝0

2
𝑇+1 𝑝0 +

∑𝐾−1
𝑗=1 𝑝 𝑗

.

By induction hypothesis, 𝜎̃𝑙
𝑖
(𝑋) = 𝑇 + 1 for all 1 ≤ 𝑙 ≤ 𝐾 , so 𝜎̃𝐾+1

𝑖
(𝑋) ≤ 𝑇 if and

only if

E𝑢𝐾+1
𝑖 (𝑇 |𝑋) ≥ 0 ⇐⇒ 𝛼̄ ≥

2
𝑇+1 𝑝0

2
𝑇+1 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

.

Next, consider any 2 ≤ 𝑡 ≤ 𝑇 −1. By induction hypothesis and step 2, if 𝜎̃𝐾
𝑖
(𝑋) ≤ 𝑡,

then 𝜎̃𝐾+1
𝑖

(𝑋) ≤ 𝑡. Hence, it suffices to complete the proof by considering

𝛼̄ <

[
𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)∑𝐾−1

𝑗=1 𝑝 𝑗
.

In this case, 𝑡 < 𝜎̃𝑙+1
𝑖

(𝑋) ≤ 𝜎̃𝑙
𝑖
(𝑋) for all 1 ≤ 𝑙 ≤ 𝐾 − 1. Therefore, inequality

(D.5) implies that 𝜎̃𝐾+1
𝑖

(𝑋) ≤ 𝑡 if and only if

𝛼̄ ≥
[
𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)∑𝐾

𝑗=1 𝑝 𝑗
.

This completes the proof of this proposition. ■

Proof of Corollary 4.2
It suffices to prove the monotonicity by showing for all 𝑘′ > 𝑘 ≥ 2, if 𝜎̃𝑘

𝑖
(𝑋) ≤ 𝑡,

then 𝜎̃𝑘 ′
𝑖
(𝑋) ≤ 𝑡 for any 2 ≤ 𝑡 ≤ 𝑇 . We can separate the analysis into two cases.

First, if 𝑡 = 𝑇 , then by Proposition 4.5, 𝜎̃𝑘
𝑖
(𝑋) ≤ 𝑇 suggests

𝛼̄ ≥
2
𝑇+1 𝑝0

2
𝑇+1 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

>

2
𝑇+1 𝑝0

2
𝑇+1 𝑝0 +

∑𝑘 ′−1
𝑗=1 𝑝 𝑗

,

implying 𝜎̃𝑘 ′
𝑖
(𝑋) ≤ 𝑇 . Second, for any 2 ≤ 𝑡 ≤ 𝑇−1, by Proposition 4.5, 𝜎̃𝑘

𝑖
(𝑋) ≤ 𝑡

suggests

𝛼̄ ≥
[
𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)∑𝑘−1

𝑗=1 𝑝 𝑗
>

[
𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)∑𝑘 ′−1

𝑗=1 𝑝 𝑗
,

implying 𝜎̃𝑘 ′
𝑖
(𝑋) ≤ 𝑡. This completes the proof. ■
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Proof of Proposition 4.6
First, for any 𝑘 ≥ 2, it suffices to prove S𝑘

𝑇
⊂ E𝑘

𝑇
by showing if 𝜎̃𝑘

𝑖
(𝑋) ≤ 𝑇 , then

𝜎̂𝑘
𝑖
(𝑋) ≤ 𝑇 . This is true because

2
𝑇+1 𝑝0

2
𝑇+1 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

>

(
1
2

)𝑇−1
𝑝0(

1
2

)𝑇−1
𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

.

Similarly, for 2 ≤ 𝑡 ≤ 𝑇 − 1, we can first observe that S𝑘
𝑡 ⊂ E𝑘𝑡 if and only if[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0[

𝑇+2−𝑡
𝑇+1 − 𝑇+1−𝑡

𝑇+1 𝛿
]
𝑝0 + (1 − 𝛿)∑𝑘−1

𝑗=1 𝑝 𝑗
≥

[(
1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0[(

1
2

) 𝑡−1
−

(
1
2

) 𝑡
𝛿

]
𝑝0 + (1 − 𝛿)∑𝑘−1

𝑗=1 𝑝 𝑗

⇐⇒ 𝛿 ≤ (2𝑡 − 2) (𝑇 + 1) − (𝑡 − 1)2𝑡
(2𝑡 − 1) (𝑇 + 1) − 𝑡2𝑡 ≡ 𝛿(𝑇, 𝑡),

(D.6)

where 𝛿(𝑇, 𝑡) > 0 because (2𝑡 − 2) (𝑇 + 1) − (𝑡 − 1)2𝑡 ≥ 2(𝑇 + 1) − 4 > 0 and
(2𝑡 − 1) (𝑇 + 1) − 𝑡2𝑡 ≥ 3(𝑇 + 1) − 8 > 0. If 𝛿(𝑇, 𝑡) > 1, then the inequality holds
for any 𝛿 ∈ (0, 1), and hence S𝑘

𝑡 ⊂ E𝑘𝑡 . Otherwise, if 𝛿(𝑇, 𝑡) < 1, the inequality
does not hold for all 𝛿, implying there is no set inclusion relationship between S𝑘

𝑡

and E𝑘𝑡 . In addition, inequality (D.6) suggests 𝜎̂𝑘
𝑖
(𝑋) < 𝜎̃𝑘

𝑖
(𝑋) if 𝛿 < 𝛿(𝑇, 𝑡) and

𝜎̂𝑘
𝑖
(𝑋) > 𝜎̃𝑘

𝑖
(𝑋) if 𝛿 > 𝛿(𝑇, 𝑡). Lastly, as we rearrange the inequality, we can obtain

𝛿(𝑇, 𝑡) < 1 ⇐⇒ (2𝑡 − 2) (𝑇 + 1) − (𝑡 − 1)2𝑡
(2𝑡 − 1) (𝑇 + 1) − 𝑡2𝑡 < 1 ⇐⇒ 𝑡 <

ln(𝑇 + 1)
ln(2) .

This completes the proof of this proposition. ■

Proof of Corollary 4.3
By Proposition 4.6, we know for any 𝑘 ≥ 2, there is no set inclusion relationship
between S𝑘

𝑡 and E𝑘𝑡 if 2 ≤ 𝑡 < [ln(𝑇 + 1)/ln(2)]. When 𝑇 → ∞, this condition
holds for any 𝑡 ≥ 2. Moreover, from Proposition 4.6, we can obtain that

𝛿
∗(𝑡) = lim

𝑇→∞
𝛿(𝑇, 𝑡) = lim

𝑇→∞

(2𝑡 − 2) (𝑇 + 1) − (𝑡 − 1)2𝑡
(2𝑡 − 1) (𝑇 + 1) − 𝑡2𝑡 =

2𝑡 − 2
2𝑡 − 1

.

This completes the proof. ■

Additional Result for Poisson-DCH
One feature of the Poisson-DCH model is that as 𝜏 → ∞, the aggregate choice
frequencies converge to the equilibrium prediction. This provides a second inter-
pretation for the parameter 𝜏: the higher the value of 𝜏, the closer the predictions
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are to the equilibrium. It is worth noting that, as highlighted by Camerer, Ho, and
Chong (2004), this convergence property does not hold for general classes of games.

For the sake of simplicity, I will prove the result for sequential two-person games. A
similar argument holds for the simultaneous version. For any two-person dirty faces
game, conditional on there is an announcement, there are two possible states: one
dirty face or two dirty faces, which are denoted as Ω = {𝑂𝑋, 𝑋𝑋}. For each 𝜔 ∈ Ω,
equilibrium predicts a deterministic terminal period. We use 𝐹∗

𝜔 (𝑡) to express the
(degenerated) distribution of terminal periods at the equilibrium. The equilibrium
predicts that players will choose 𝐶 at period 1 when seeing 𝑂, and choose 𝑊 at
period 1 and 𝐶 at period 2 when seeing 𝑋 . Therefore, when 𝜔 = 𝑂𝑋 , the game will
end at period 1, and when 𝜔 = 𝑋𝑋 , the game will end at period 2. In other words,

𝐹∗
𝑂𝑋 (𝑡) =


0 if 𝑡 < 1

1 if 𝑡 ≥ 1,
and 𝐹∗

𝑋𝑋 (𝑡) =


0 if 𝑡 < 2

1 if 𝑡 ≥ 2.

In contrast, given any 𝜏 > 0 and 𝜔 ∈ Ω, the Poisson-DCH model predicts a non-
degenerated distribution over all possible terminal periods. We use 𝐹𝐷𝑤 (𝑡 |𝜏) to
denote the distribution predicted by the Poisson-DCH. Proposition D.1 states that
when 𝜏 → ∞, the max norm between 𝐹𝐷𝜔 (𝑡 |𝜏) and 𝐹∗

𝜔 (𝑡) will converge to 0 for any
𝜔 ∈ Ω.

Proposition D.1. Consider any sequential two-person dirty faces game. When the
prior distribution of levels follows Poisson(𝜏), for any 𝜔 ∈ Ω,

lim
𝜏→∞



𝐹∗
𝜔 (𝑡) − 𝐹𝐷𝜔 (𝑡 |𝜏)




∞ = 0.

Proof: When 𝜔 = 𝑂𝑋 , a strategic player that sees a clean face will choose 𝐶 in
period 1. Therefore,

𝐹𝐷𝑂𝑋 (1|𝜏) = 1 −
(
1
2
𝑒−𝜏

) (
1 − 1

2
𝑒−𝜏

)
.

To show


𝐹∗

𝑂𝑋
(𝑡) − 𝐹𝐷

𝑂𝑋
(𝑡 |𝜏)




∞ → 0, it suffices to show 𝐹𝐷

𝑂𝑋
(1|𝜏) → 1 as 𝜏 → ∞.

This is true because

lim
𝜏→∞

𝐹𝐷𝑂𝑋 (1|𝜏) = lim
𝜏→∞

1 −
(
1
2
𝑒−𝜏

) (
1 − 1

2
𝑒−𝜏

)
= 1.

When 𝜔 = 𝑋𝑋 , it suffices to prove the convergence by showing 𝐹𝐷
𝑋𝑋

(1|𝜏) → 0 and
𝐹𝐷
𝑋𝑋

(2|𝜏) → 1 as 𝜏 → ∞. Since every level 𝑘 ≥ 1 will choose𝑊 in period 1 when
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seeing a dirty face, 𝐹𝐷
𝑋𝑋

(1|𝜏) = 1 − [1 − (1/2)𝑒−𝜏]2, implying that

lim
𝜏→∞

𝐹𝐷𝑋𝑋 (1|𝜏) = lim
𝜏→∞

1 −
[
1 − 1

2
𝑒−𝜏

]2
= 0.

Lastly, let 𝐾∗(𝜏) be the lowest level of players to choose 𝐶 at period 2 when seeing
a dirty face with the prior distribution of levels being Poisson(𝜏). By Proposition
4.4, 𝐾∗(𝜏) is weakly decreasing in 𝜏, and 𝐾∗(𝜏) → 2 as 𝜏 → ∞. Hence,

𝐹𝐷𝑋𝑋 (2|𝜏) = 1 −
(1/4)𝑒−𝜏 +

𝐾∗ (𝜏)−1∑︁
𝑗=1

𝑒−𝜏𝜏 𝑗/ 𝑗!


2

,

suggesting the limit is

lim
𝜏→∞

𝐹𝐷𝑋𝑋 (2|𝜏) = lim
𝜏→∞

1 −

1
4
𝑒−𝜏 +

𝐾∗ (𝜏)−1∑︁
𝑗=1

𝑒−𝜏𝜏 𝑗

𝑗!


2

= lim
𝜏→∞

1 −
[
1
4
𝑒−𝜏 + 𝜏𝑒−𝜏

]2
= 1. ■

D.3 Three-Person Three-Period Dirty-Faces Games
In this section, I characterize the DCH solutions for the sequential and simultaneous
three-person three-period dirty-faces games. In a three-person dirty-faces game,
each player 𝑖 will be random assigned a face type type, either clean (𝑂) or dirty (𝑋).
The face types are i.i.d. drawn from the distribution 𝑝 = Pr(𝑥𝑖 = 𝑋) = 1−Pr(𝑥𝑖 = 𝑂)
where 𝑝 > 0. After the face types are drawn, each player 𝑖 can observe the other
two players’ faces 𝑥−𝑖 but not their own face. If there is at least one player having a
dirty face, a public announcement is made, informing all players of this fact.

There are up to 3 periods. In each period, all three players simultaneously choose
either to claim to have a dirty face (𝐶) or wait (𝑊) and the actions are revealed at the
end of each period. Similar to the two-person games, the game will end after any
period where some player chooses 𝐶 or after period 3. A player’s payoff depends
on their own face types and their actions in the terminal period. If player 𝑖 waits in
the terminal period, his payoff is 0 regardless of his face type. If player 𝑖 chooses 𝐶
in the terminal period, say period 𝑡, then he will receive 𝛿𝑡−1𝛼 if his face is dirty but
−𝛿𝑡−1 if his face is clean. Following the analysis of two-person games, I will focus
on the case where there is a public announcement. Moreover, the assumption that
0 < 𝛼̄ ≡ 𝛼𝑝/(1 − 𝑝) < 1 is maintained so it is strictly dominated to choose 𝐶 in
period 1 when seeing one or two dirty faces.
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D.3.1 DCH Solution for the Sequential Games
In the sequential three-person three-period dirty-faces game, a behavioral strategy
for player 𝑖 is a mapping from the period and the observed face types (𝑥−𝑖 ∈
{𝑂𝑂,𝑂𝑋, 𝑋𝑋}) to the probability of claiming to have a dirty face. The behavioral
strategy is denoted by

𝜎𝑖 : {1, 2, 3} × {𝑂𝑂,𝑂𝑋, 𝑋𝑋} → [0, 1] .

For the sake of simplicity, I assume that each player 𝑖’s level is i.i.d. drawn from the
the distribution 𝑝 = (𝑝𝑘 )∞𝑘=0 where 𝑝𝑘 > 0 for all 𝑘 . Proposition D.2 characterizes
the DCH solution for the sequential three-person three-period dirty-faces games.

Proposition D.2. For any sequential three-person three-period dirty-faces game,
the level-dependent strategy profile of the DCH solution satisfies that for any 𝑖 ∈ 𝑁 ,

1. 𝜎𝑘
𝑖
(𝑡, 𝑂𝑂) = 1 for all 𝑘 ≥ 1 and 1 ≤ 𝑡 ≤ 3.

2. 𝜎1
𝑖
(𝑡, 𝑂𝑋) = 0 for any 1 ≤ 𝑡 ≤ 3. Moreover, for any 𝑘 ≥ 2,

(1) 𝜎𝑘
𝑖
(1, 𝑂𝑋) = 0,

(2) 𝜎𝑘
𝑖
(2, 𝑂𝑋) = 1 if and only if

𝛼̄ ≥

(
1
2 − 1

4𝛾𝑘𝛿
)
𝑝0(

1
2 − 1

4𝛾𝑘𝛿
)
𝑝0 + (1 − 𝛾𝑘𝛿)

∑𝑘−1
𝑗=1 𝑝 𝑗

where 𝛾𝑘 ≡
[

1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

]
/
[

1
2 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

]
,

(3) 𝜎𝑘
𝑖
(3, 𝑂𝑋) = 1 if and only if

𝛼̄ ≥
1
4 𝑝0

1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

,

3. 𝜎1
𝑖
(𝑡, 𝑋𝑋) = 𝜎2

𝑖
(𝑡, 𝑋𝑋) = 0 for any 1 ≤ 𝑡 ≤ 3. Moreover, for any 𝑘 ≥ 3,

(1) 𝜎𝑘
𝑖
(1, 𝑋𝑋) = 𝜎𝑘

𝑖
(2, 𝑋𝑋) = 0,

(2) 𝜎𝑘
𝑖
(3, 𝑋𝑋) = 1 if and only if there exists 2 ≤ 𝑙 ≤ 𝑘 − 1 such that

𝜎𝑙
𝑖
(2, 𝑂𝑋) = 1 with 𝐿∗

𝑘
≡ min 𝑗

{
𝑗 < 𝑘 : 𝜎 𝑗

𝑖
(2, 𝑂𝑋) = 1

}
, and

𝛼̄ ≥ max


(

1
2 − 1

4𝛾𝐿∗𝑘𝛿
)
𝑝0(

1
2 − 1

4𝛾𝐿∗𝑘𝛿
)
𝑝0 + (1 − 𝛾𝐿∗

𝑘
𝛿)∑𝐿∗

𝑘
−1

𝑗=1 𝑝 𝑗

,
©­«

1
4 𝑝0 +

∑𝐿∗
𝑘
−1

𝑗=1 𝑝 𝑗

1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

ª®¬
2 .
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Proof: Step 1: Consider any 𝑖 ∈ 𝑁 . If 𝑥−𝑖 = 𝑂𝑂, then player 𝑖 knows his face is dirty
immediately. Therefore, 𝐶 is a dominant strategy, suggesting 𝜎𝑘

𝑖
(𝑡, 𝑂𝑂) = 1 for all

𝑘 ≥ 1 and 1 ≤ 𝑡 ≤ 3. If 𝑥−𝑖 = 𝑂𝑋 , player 𝑖’s belief of having a dirty face at period
1 is 𝑝. Hence, the expected payoff of choosing 𝐶 at period 1 is 𝑝𝛼 − (1 − 𝑝) < 0,
implying 𝜎𝑘

𝑖
(1, 𝑂𝑋) = 0 for all 𝑘 ≥ 1. Similarly, if 𝑥−𝑖 = 𝑋𝑋 , the beliefs of having

a dirty face at period 1 and 2 are 𝑝, which suggests 𝜎𝑘
𝑖
(1, 𝑋𝑋) = 𝜎𝑘

𝑖
(2, 𝑋𝑋) = 0

for all 𝑘 ≥ 1.

In addition, level 1 players believe other players’ actions don’t convey any informa-
tion about their own face types, so 𝜎1

𝑖
(𝑡, 𝑂𝑋) = 𝜎1

𝑖
(𝑡, 𝑋𝑋) = 0 for any 1 ≤ 𝑡 ≤ 3.

Since level 1 players behave exactly the same when observing 𝑂𝑋 and 𝑋𝑋 , level
2 player 𝑖’s belief about having a dirty face at period 3 is still 𝑝 when 𝑥−𝑖 = 𝑋𝑋 ,
implying 𝜎2

𝑖
(3, 𝑋𝑋) = 0.

Step 2: In this step, I prove that (
1
2 − 1

4𝛾𝑘𝛿
)
𝑝0(

1
2 − 1

4𝛾𝑘𝛿
)
𝑝0 + (1 − 𝛾𝑘𝛿)

∑𝑘−1
𝑗=1 𝑝 𝑗

is decreasing in 𝑘 for all 𝑘 ≥ 2 where 𝛾𝑘 ≡
[

1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

]
/
[

1
2 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

]
. To

prove this, it suffices to prove that for any 𝑙 ≥ 2,(
1
2 − 1

4𝛾𝑙𝛿
)
𝑝0(

1
2 − 1

4𝛾𝑙𝛿
)
𝑝0 + (1 − 𝛾𝑙𝛿)

∑𝑙−1
𝑗=1 𝑝 𝑗

≥

(
1
2 − 1

4𝛾𝑙+1𝛿
)
𝑝0(

1
2 − 1

4𝛾𝑙+1𝛿
)
𝑝0 + (1 − 𝛾𝑙+1𝛿)

∑𝑙
𝑗=1 𝑝 𝑗

⇐⇒
(
−1

4
𝛾𝑙+1𝛿 +

1
4
𝛾𝑙𝛿

) 𝑙−1∑︁
𝑗=1

𝑝 𝑗 + (1 − 𝛾𝑙+1𝛿)
(
1
2
− 1

4
𝛾𝑙𝛿

)
𝑝𝑙 ≥ 0

Notice that the LHS of the inequality is decreasing in 𝛿 since

𝑑

𝑑𝛿


(
−1

4
𝛾𝑙+1𝛿 +

1
4
𝛾𝑙𝛿

) 𝑙−1∑︁
𝑗=1

𝑝 𝑗 + (1 − 𝛾𝑙+1𝛿)
(
1
2
− 1

4
𝛾𝑙𝛿

)
𝑝𝑙


=

(
−1

4
𝛾𝑙+1 +

1
4
𝛾𝑙

)
︸              ︷︷              ︸

<0

𝑙−1∑︁
𝑗=1

𝑝 𝑗 +
(
−1

2
𝛾𝑙+1 −

1
4
𝛾𝑙 +

1
2
𝛾𝑙𝛾𝑙+1𝛿

)
︸                              ︷︷                              ︸

<− 1
2𝛾𝑙+1− 1

4𝛾𝑙+
1
2𝛾𝑙𝛾𝑙+1

≤−
√︃

1
2𝛾𝑙𝛾𝑙+1+ 1

2𝛾𝑙𝛾𝑙+1 < 0

𝑝𝑙 < 0.

Therefore, it suffices to prove that the inequality holds when 𝛿 = 1. That is,(
−1

4
𝛾𝑙+1 +

1
4
𝛾𝑙

) 𝑙−1∑︁
𝑗=1

𝑝 𝑗 + (1 − 𝛾𝑙+1)
(
1
2
− 1

4
𝛾𝑙

)
𝑝𝑙 ≥ 0,
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which holds because the inequality is equivalent to

𝑝𝑙∑𝑙−1
𝑗=1 𝑝 𝑗

≥
1
4 (𝛾𝑙+1 − 𝛾𝑙)

(1 − 𝛾𝑙+1)
(

1
2 − 1

4𝛾𝑙

) =
𝑝𝑙

3
4 𝑝0 +

∑𝑙−1
𝑗=1 𝑝 𝑗

.

Step 3: In this step, I characterize level 𝑘 player 𝑖’s behavior when 𝑥−𝑖 = 𝑂𝑋 for all
𝑘 ≥ 2 by induction on 𝑘 . I first prove the base case where 𝑘 = 2. At period 3, level
2 player 𝑖’s belief about having a dirty face is

𝜇2
𝑖 (𝑋 |3, 𝑂𝑋) =

∑︁
𝜏−𝑖

𝜇2
𝑖 (𝑋, 𝜏−𝑖 |3, 𝑂𝑋) =

𝑝

(
1
4 𝑝0 + 𝑝1

)
1
4 𝑝0 + 𝑝𝑝1

.

Therefore, it is optimal to choose 𝐶 at period 3 if and only if

𝜇2
𝑖 (𝑋 |3, 𝑂𝑋)𝛼 − (1 − 𝜇2

𝑖 (𝑋 |3, 𝑂𝑋)) ≥ 0 ⇐⇒ 𝛼̄ ≥
1
4 𝑝0

1
4 𝑝0 + 𝑝1

.

At period 2, level 2 player 𝑖’s belief about having a dirty face is

𝜇2
𝑖 (𝑋 |2, 𝑂𝑋) =

∑︁
𝜏−𝑖

𝜇2
𝑖 (𝑋, 𝜏−𝑖 |2, 𝑂𝑋) =

𝑝

(
1
2 𝑝0 + 𝑝1

)
1
2 𝑝0 + 𝑝𝑝1

,

and the belief about that the two other players wait at period 2 is(
1
4 𝑝0 + 𝑝1

) (
1
4 𝑝0 + 𝑝𝑝1

)(
1
2 𝑝0 + 𝑝1

) (
1
2 𝑝0 + 𝑝𝑝1

) ≡ 𝛾2

(
1
4 𝑝0 + 𝑝𝑝1
1
2 𝑝0 + 𝑝𝑝1

)
.

Conditional on reaching period 3, the payoff of waiting is 0, and the expected payoff
of 𝐶 is

𝛿2

1
4 𝑝0 + 𝑝𝑝1

[
𝑝𝛼

(
1
4
𝑝0 + 𝑝1

)
− (1 − 𝑝)

(
1
4
𝑝0

)]
.

Therefore, it is optimal to choose 𝐶 at period 2 if and only if

𝛿

1
2 𝑝0 + 𝑝𝑝1

[
𝑝𝛼

(
1
2
𝑝0 + 𝑝1

)
− (1 − 𝑝)

(
1
2
𝑝0

)]
≥ max

{
𝛾2

(
1
4 𝑝0 + 𝑝𝑝1
1
2 𝑝0 + 𝑝𝑝1

)
𝛿2

1
4 𝑝0 + 𝑝𝑝1

[
𝑝𝛼

(
1
4
𝑝0 + 𝑝1

)
− (1 − 𝑝)

(
1
4
𝑝0

)]
, 0

}

⇐⇒ 𝛼̄ ≥ max


(
1
2 − 1

4𝛾2𝛿
)
𝑝0(

1
2 − 1

4𝛾2𝛿
)
𝑝0 + (1 − 𝛾2𝛿)𝑝1

,

1
2 𝑝0

1
2 𝑝0 + 𝑝1

 .
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Furthermore, because for any 𝛿 ∈ (0, 1),(
1
2 − 1

4𝛾2𝛿
)
𝑝0(

1
2 − 1

4𝛾2𝛿
)
𝑝0 + (1 − 𝛾2𝛿)𝑝1

>

1
2 𝑝0

1
2 𝑝0 + 𝑝1

,

it is optimal for level 2 players to claim at period 2 if and only if

𝛼̄ ≥

(
1
2 − 1

4𝛾2𝛿
)
𝑝0(

1
2 − 1

4𝛾2𝛿
)
𝑝0 + (1 − 𝛾2𝛿)𝑝1

.

This completes the proof for level 2 players.

Suppose there is 𝐾 > 2 such that the statement holds for any level 2 ≤ 𝑘 ≤ 𝐾 .
I now prove the statement holds for level 𝐾 + 1 players. By the same argument
as in the proof of Proposition 4.4, level 𝐾 + 1 players would choose 𝐶 when it is
already optimal for level 𝐾 players to choose 𝐶. Therefore, for period 3, it suffices
to consider the case where

𝛼̄ <

1
4 𝑝0

1
4 𝑝0 +

∑𝐾−1
𝑗=1 𝑝 𝑗

.

By induction hypothesis, we know for every level 1 ≤ 𝑘 ≤ 𝐾 players, they will wait
for three periods when observing one dirty face. Therefore, level 𝐾 + 1 player 𝑖’s
belief about having a dirty face at period 3 when 𝑥−𝑖 = 𝑂𝑋 is

𝜇𝐾+1
𝑖 (𝑋 |3, 𝑂𝑋) =

∑︁
𝜏−𝑖

𝜇𝐾+1
𝑖 (𝑋, 𝜏−𝑖 |3, 𝑂𝑋) =

𝑝

(
1
4 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

)
1
4 𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

.

Consequently, level 𝐾 + 1 players would choose 𝐶 at period 3 if and only if

𝜇𝐾+1
𝑖 (𝑋 |3, 𝑂𝑋)𝛼 − (1 − 𝜇𝐾+1

𝑖 (𝑋 |3, 𝑂𝑋)) ≥ 0 ⇐⇒ 𝛼̄ ≥
1
4 𝑝0

1
4 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

.

For period 2, by step 2 and the induction hypothesis, it suffices to consider

𝛼̄ <

(
1
2 − 1

4𝛾𝐾+1𝛿
)
𝑝0(

1
2 − 1

4𝛾𝐾+1𝛿
)
𝑝0 + (1 − 𝛾𝐾+1𝛿)

∑𝐾
𝑗=1 𝑝 𝑗

;

otherwise, level 𝐾 players would choose 𝐶 at period 2 and so do level 𝐾 + 1 players.
By similar argument, level 𝐾 + 1 player 𝑖 will choose 𝐶 at period 2 if and only if

𝛿

1
2 𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

𝑝𝛼 ©­«1
2
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
1
2
𝑝0

)
≥ max

𝛾𝐾+1

(
𝛿2

1
2 𝑝0 + 𝑝

∑𝐾
𝑗=1 𝑝 𝑗

) 𝑝𝛼 ©­«1
4
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
1
4
𝑝0

) , 0
 ,
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which is equivalent to

𝛼̄ ≥

(
1
2 − 1

4𝛾𝐾+1𝛿
)
𝑝0(

1
2 − 1

4𝛾𝐾+1𝛿
)
𝑝0 + (1 − 𝛾𝐾+1𝛿)

∑𝐾
𝑗=1 𝑝 𝑗

.

Step 4: This step characterizes level 𝑘 player 𝑖’s behavior when 𝑥−𝑖 = 𝑋𝑋 for all
𝑘 ≥ 3. Consider any level 𝑘 ≥ 3. For level 𝑘 players, they update their beliefs
about having a dirty face at period 3 only if there is some lower level of players that
chooses 𝐶 at period 2 when observing one dirty face. That is, 𝜎𝑘

𝑖
(3, 𝑋𝑋) = 1 only

if there is 2 ≤ 𝑙 ≤ 𝑘 − 1 such that

𝛼̄ ≥

(
1
2 − 1

4𝛾𝑙𝛿
)
𝑝0(

1
2 − 1

4𝛾𝑙𝛿
)
𝑝0 + (1 − 𝛾𝑙𝛿)

∑𝑙−1
𝑗=1 𝑝 𝑗

.

If there exists such level of players, let 𝐿∗
𝑘

denote the lowest level below 𝑘 that would
choose 𝐶 at period 2 when observing one dirty face. In this case, level 𝑘 player 𝑖’s
belief about having a dirty face at period 3 is

𝜇𝑘𝑖 (𝑋 |3, 𝑋𝑋) =
𝑝

(
1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

)2

𝑝

(
1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

)2
+ (1 − 𝑝)

(
1
4 𝑝0 +

∑𝐿∗
𝑘
−1

𝑗=1 𝑝 𝑗

)2 ,

and expected payoff of 𝐶 is greater than 0 if and only if

𝜇𝑘𝑖 (𝑋 |3, 𝑋𝑋)𝛼 − (1 − 𝜇𝑘𝑖 (𝑋 |3, 𝑋𝑋)) ≥ 0 ⇐⇒ 𝛼̄ ≥ ©­«
1
4 𝑝0 +

∑𝐿∗
𝑘
−1

𝑗=1 𝑝 𝑗

1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

ª®¬
2

.

Therefore, we can conclude that 𝜎𝑘
𝑖
(3, 𝑋𝑋) = 1 if and only if

𝛼̄ ≥ max


(

1
2 − 1

4𝛾𝐿∗𝑘𝛿
)
𝑝0(

1
2 − 1

4𝛾𝐿∗𝑘𝛿
)
𝑝0 + (1 − 𝛾𝐿∗

𝑘
𝛿)∑𝐿∗

𝑘
−1

𝑗=1 𝑝 𝑗

,
©­«

1
4 𝑝0 +

∑𝐿∗
𝑘
−1

𝑗=1 𝑝 𝑗

1
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

ª®¬
2 .

This completes the proof of step 4 and this proposition. ■

D.3.2 DCH Solution for Simultaneous Games
The strategically equivalent simultaneous three-person three-period dirty-faces game
is a one-period game, in which all three players simultaneously choose an action
from the set 𝑆 = {1, 2, 3, 4}. Action 𝑡 ≤ 3 represents the plan to wait from period 1
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to 𝑡−1 and claim in period 𝑡. Action 4 is the plan to always wait. In the simultaneous
three-person three-period dirty-faces game, a mixed strategy is a mapping from the
observed face type (𝑥−𝑖 ∈ {𝑂𝑂,𝑂𝑋, 𝑋𝑋}) to a probability distribution over the
action set. That is,

𝜎̃𝑖 : {𝑂𝑂,𝑂𝑋, 𝑋𝑋} → Δ(𝑆).

Suppose (𝑠𝑖, 𝑠−𝑖) is the realized action profile. If 𝑠𝑖 is the smallest number, then
the payoff for player 𝑖 is computed as the case where player 𝑖 claims to have a dirty
face at period 𝑠𝑖; otherwise, player 𝑖’s payoff is 0. The equilibrium analysis for the
simultaneous game is the same as the sequential game. However, as characterized
by Proposition D.3, the DCH solution for the simultaneous games differs from the
DCH solution for the sequential games.

Proposition D.3. For any simultaneous three-person three-period dirty-faces game,
the level-dependent strategy profile of the DCH solution satisfies that for 𝑖 ∈ 𝑁 ,

1. 𝜎̃𝑘
𝑖
(𝑂𝑂) = 1 for all 𝑘 ≥ 1.

2. 𝜎̃1
𝑖
(𝑂𝑋) = 4. Moreover, for any 𝑘 ≥ 2, 𝜎̃𝑘

𝑖
(𝑂𝑋) > 1 and

(1) 𝜎̃𝑘
𝑖
(𝑂𝑋) = 2 if and only if

𝛼̄ ≥
3
4 𝑝0

(
3
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

)
(

3
4 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

)2
− 𝛿

(
1
2 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

)2 ,

(2) 𝜎̃𝑘
𝑖
(𝑂𝑋) ≤ 3 if and only if

𝛼̄ ≥
1
2 𝑝0

1
2 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

,

(3) 𝜎̃1
𝑖
(𝑋𝑋) = 𝜎̃2

𝑖
(𝑋𝑋) = 4. Furthermore, for any 𝑘 ≥ 3, 𝜎̃𝑘

𝑖
(𝑋𝑋) > 2, and

𝜎̃𝑘
𝑖
(𝑋𝑋) = 3 if and only if there exists 2 ≤ 𝑙 ≤ 𝑘 − 1 such that 𝜎̃𝑙

𝑖
(𝑂𝑋) = 2

with 𝐿̃∗
𝑘
= min 𝑗

{
𝑗 < 𝑘 : 𝜎̃ 𝑗

𝑖
(𝑂𝑋) = 2

}
, and

𝛼̄ ≥ max


3
4 𝑝0

(
3
4 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)
(

3
4 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)2
− 𝛿

(
1
2 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)2 ,

1
2 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

1
2 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

 .
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Proof: Step 1: Consider any 𝑖 ∈ 𝑁 . If 𝑥−𝑖 = 𝑂𝑂, player 𝑖 knows his face is dirty
immediately, suggesting 1 is a dominant strategy and 𝜎̃𝑘

𝑖
(𝑂𝑂) = 1 for any 𝑘 ≥ 1. If

𝑥−𝑖 = 𝑂𝑋 or 𝑋𝑋 , the expected payoff of 1 is 𝑝𝛼−(1−𝑝) < 0, implying 𝜎̃𝑘
𝑖
(𝑂𝑋) ≥ 2

and 𝜎̃𝑘
𝑖
(𝑋𝑋) ≥ 2 for any 𝑘 ≥ 1. Moreover, level 1 players believe all other players

are level 0, so when observing 𝑂𝑋 or 𝑋𝑋 , the expected payoff of 𝑡 ∈ {2, 3} is

𝑝

[
𝛿𝑡−1𝛼

(
5 − 𝑡

4

)2
]
+ (1 − 𝑝)

[
−𝛿2

(
5 − 𝑡

4

)2
]
= 𝛿𝑡−1

(
5 − 𝑡

4

)2
[𝑝𝛼 − (1 − 𝑝)] < 0,

implying 𝜎̃1
𝑖
(𝑂𝑋) = 𝜎̃1

𝑖
(𝑋𝑋) = 4.

In addition, 𝜎̃𝑘
𝑖
(𝑋𝑋) ≥ 3 for all 𝑘 ≥ 1 can be proven by induction on 𝑘 . From

the previous calculation, we know 𝜎̃1
𝑖
(𝑋𝑋) = 4, which establishes the base case.

Suppose 𝜎̃𝑘
𝑖
(𝑋𝑋) ≥ 3 for all 1 ≤ 𝑖 ≤ 𝐾 for some 𝐾 > 1. It suffices to prove

𝜎̃𝐾+1
𝑖

(𝑋𝑋) ≥ 3 by showing 2 is a strictly dominated strategy for level 𝐾 + 1 players.
This is strictly dominated because

𝑝

𝛿𝛼
(

3
4

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)2 + (1 − 𝑝)
−𝛿

(
3
4

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)2
= 𝛿

(
3
4

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)2

[𝑝𝛼 − (1 − 𝑝)] < 0.

Step 2: This step establishes a monotonic result: for any 𝐾 > 1, if 𝜎̃𝑙+1
𝑖

(𝑂𝑋) ≤
𝜎̃𝑙
𝑖
(𝑂𝑋) for all 1 ≤ 𝑙 ≤ 𝐾 − 1, then 𝜎̃𝐾+1

𝑖
(𝑂𝑋) ≤ 𝜎̃𝐾

𝑖
(𝑂𝑋). If 𝜎̃𝐾

𝑖
(𝑂𝑋) = 4, then

there is nothing to prove. Suppose 𝜎̃𝑙+1
𝑖

(𝑂𝑋) ≤ 𝜎̃𝑙
𝑖
(𝑂𝑋) for all 1 ≤ 𝑙 ≤ 𝐾 − 1. If

𝜎̃𝐾
𝑖
(𝑂𝑋) = 3, then it is necessary that level 𝐾 player’s expected payoff of choosing

3 is non-negative. Namely,

𝛿2

(
1
2

𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

+
∑𝐾−1
𝑗=1 𝑝 𝑗∑𝐾−1
𝑗=0 𝑝 𝑗

) [
𝑝𝛼

(
1
2

𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

+
∑𝐾−1
𝑗=1 𝑝 𝑗∑𝐾−1
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
1
2

𝑝0∑𝐾−1
𝑗=0 𝑝 𝑗

)]
≥ 0,

which implies

𝛿2

(
1
2

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

) [
𝑝𝛼

(
1
2

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
1
2

𝑝0∑𝐾
𝑗=0 𝑝 𝑗

)]
> 0,

suggesting 𝜎̃𝐾+1
𝑖

(𝑂𝑋) ≤ 3. If 𝜎̃𝐾
𝑖
(𝑂𝑋) = 2, it suffices to prove 𝜎̃𝐾+1

𝑖
(𝑂𝑋) = 2

as well. Notice that if 𝜎̃𝐾
𝑖
(𝑂𝑋) = 2, then it is necessary for level 𝐾 players that 2
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dominates 3 and 4. Let 𝑀 be the lowest level of players that would choose 2 when
observing 𝑂𝑋 . Then level 𝐾 player’s expected payoff of choosing 2 would satisfy

𝛿
©­«3

4
𝑝0 +

𝐾−1∑︁
𝑗=1

𝑝 𝑗
ª®¬
𝑝𝛼 ©­«3

4
𝑝0 +

𝐾−1∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
3
4
𝑝0

)
≥ max

𝛿2 ©­«1
2
𝑝0 +

𝑀−1∑︁
𝑗=1

𝑝 𝑗
ª®¬
𝑝𝛼 ©­«1

2
𝑝0 +

𝑀−1∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
1
2
𝑝0

) , 0
 ,

which implies

𝛿
©­«3

4
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬
𝑝𝛼 ©­«3

4
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
3
4
𝑝0

)
≥ max

𝛿2 ©­«1
2
𝑝0 +

𝑀−1∑︁
𝑗=1

𝑝 𝑗
ª®¬
𝑝𝛼 ©­«1

2
𝑝0 +

𝑀−1∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
1
2
𝑝0

) , 0
 ,

suggesting that 𝜎̃𝐾+1
𝑖

(𝑂𝑋) = 2.

Step 3: In this step, I characterize level 𝑘 player 𝑖’s behavior as 𝑥−𝑖 = 𝑂𝑋 for all
𝑘 ≥ 2 by induction on 𝑘 . Level 2 player 𝑖’s expected payoff of choosing 𝑡 ∈ {2, 3} is

𝛿𝑡−1
(
5 − 𝑡

4
𝑝0

𝑝0 + 𝑝1
+ 𝑝1
𝑝0 + 𝑝1

) [
𝑝𝛼

(
5 − 𝑡

4
𝑝0

𝑝0 + 𝑝1
+ 𝑝1
𝑝0 + 𝑝1

)
− (1 − 𝑝)

(
5 − 𝑡

4
𝑝0

𝑝0 + 𝑝1

)]
︸                                                                         ︷︷                                                                         ︸

increasing in 𝑡

.

Therefore, 𝜎̃2
𝑖
(𝑂𝑋) ≤ 3 if and only if

𝑝𝛼

(
1
2
𝑝0 + 𝑝1

)
− (1 − 𝑝)

(
1
2
𝑝0

)
≥ 0 ⇐⇒ 𝛼̄ ≥

1
2 𝑝0

1
2 𝑝0 + 𝑝1

,

and 𝜎̃2
𝑖
(𝑂𝑋) = 2 if and only if

𝛿

(
3
4
𝑝0 + 𝑝1

) [
𝑝𝛼

(
3
4
𝑝0 + 𝑝1

)
− (1 − 𝑝)

(
3
4
𝑝0

)]
≥ max

{
𝛿2

(
1
2
𝑝0 + 𝑝1

) [
𝑝𝛼

(
1
2
𝑝0 + 𝑝1

)
− (1 − 𝑝)

(
1
2
𝑝0

)]
, 0

}
⇐⇒ 𝛼̄ ≥ max


3
4 𝑝0

(
3
4 𝑝0 + 𝑝1

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 + 𝑝1

)
(

3
4 𝑝0 + 𝑝1

)2
− 𝛿

(
1
2 𝑝0 + 𝑝1

)2 ,

3
4 𝑝0

3
4 𝑝0 + 𝑝1

 .
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Since for any 𝛿 ∈ (0, 1),

3
4 𝑝0

(
3
4 𝑝0 + 𝑝1

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 + 𝑝1

)
(

3
4 𝑝0 + 𝑝1

)2
− 𝛿

(
1
2 𝑝0 + 𝑝1

)2 >

3
4 𝑝0

3
4 𝑝0 + 𝑝1

,

2 is optimal for level 2 players if and only if

𝛼̄ ≥
3
4 𝑝0

(
3
4 𝑝0 + 𝑝1

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 + 𝑝1

)
(

3
4 𝑝0 + 𝑝1

)2
− 𝛿

(
1
2 𝑝0 + 𝑝1

)2 .

Now suppose there is 𝐾 > 1 such that the statement holds for any 1 ≤ 𝑘 ≤ 𝐾 . We
want to show it also holds for level𝐾+1 players. Notice that by induction hypothesis,
𝜎̃𝑙+1
𝑖

(𝑂𝑋) ≤ 𝜎̃𝑙
𝑖
(𝑂𝑋) for all 1 ≤ 𝑙 ≤ 𝐾 − 1, implying 𝜎̃𝐾+1

𝑖
(𝑂𝑋) ≤ 𝜎̃𝐾

𝑖
(𝑂𝑋) by

step 2. If 𝜎̃𝐾
𝑖
(𝑂𝑋) ≤ 3, then 𝜎̃𝐾+1

𝑖
(𝑂𝑋) ≤ 3 by step 2. Therefore, it suffices to

focus on the case where 𝜎̃𝑙
𝑖
(𝑂𝑋) = 4 for all 1 ≤ 𝑙 ≤ 𝐾 . In this case, level 𝐾 + 1

player’s expected payoff of choosing 𝑡 ∈ {2, 3} is

𝛿𝑡−1

(
5 − 𝑡

4
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

) [
𝑝𝛼

(
5 − 𝑡

4
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

+
∑𝐾
𝑗=1 𝑝 𝑗∑𝐾
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

(
5 − 𝑡

4
𝑝0∑𝐾
𝑗=0 𝑝 𝑗

)]
,

suggesting 4 is a dominated strategy if and only if

𝛼̄ ≥
1
2 𝑝0

1
2 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

.

If 𝜎̃𝐾
𝑖
(𝑂𝑋) = 2, then 𝜎̃𝐾+1

𝑖
(𝑂𝑋) = 2 by step 2. Thus, it suffices to consider the case

where 𝜎̃𝑙
𝑖
(𝑂𝑋) ≥ 3 for all 1 ≤ 𝑙 ≤ 𝐾 . In this case, 𝜎̃𝐾+1

𝑖
(𝑂𝑋) = 2 if and only if

𝛿
©­«3

4
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬
𝑝𝛼 ©­«3

4
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
3
4
𝑝0

)
≥ max

𝛿2 ©­«1
2
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬
𝑝𝛼 ©­«1

2
𝑝0 +

𝐾∑︁
𝑗=1

𝑝 𝑗
ª®¬ − (1 − 𝑝)

(
1
2
𝑝0

) , 0


⇐⇒ 𝛼̄ ≥
3
4 𝑝0

(
3
4 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

)
(

3
4 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

)2
− 𝛿

(
1
2 𝑝0 +

∑𝐾
𝑗=1 𝑝 𝑗

)2 .

Step 4: Lastly, this step characterizes level 𝑘 player 𝑖’s behavior when 𝑥−𝑖 = 𝑋𝑋

for level 𝑘 ≥ 3. Consider any level 𝐾 ≥ 3. For level 𝑘 players, they would choose
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3 only if there is some level 2 ≤ 𝑙 ≤ 𝑘 − 1 such that 𝜎̃𝑙
𝑖
(𝑂𝑋) = 2. Let 𝐿̃∗

𝑘
be the

lowest level below 𝑘 that would choose 2 when seeing one dirty face. Then level 𝑘
player 𝑖’s expected payoff of 3 is

𝛿2

(
1
2

𝑝0∑𝑘−1
𝑗=0 𝑝 𝑗

+
∑𝑘−1
𝑗=1 𝑝 𝑗∑𝑘−1
𝑗=0 𝑝 𝑗

) 𝑝𝛼
(

1
2

𝑝0∑𝑘−1
𝑗=0 𝑝 𝑗

+
∑𝑘−1
𝑗=1 𝑝 𝑗∑𝑘−1
𝑗=0 𝑝 𝑗

)
− (1 − 𝑝)

©­­«
1
2

𝑝0∑𝑘−1
𝑗=0 𝑝 𝑗

+
∑𝐿̃∗

𝑘
−1

𝑗=1 𝑝 𝑗∑𝑘−1
𝑗=0 𝑝 𝑗

ª®®¬
 ,

which dominates 4 if and only if

𝛼̄ ≥
1
2 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=0 𝑝 𝑗

1
2 𝑝0 +

∑𝑘
𝑗=0 𝑝 𝑗

.

Coupled with the existence of 𝐿̃∗
𝑘
, 𝜎̃𝑘

𝑖
(𝑋𝑋) = 3 if and only if

𝛼̄ ≥ max


3
4 𝑝0

(
3
4 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)
(

3
4 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)2
− 𝛿

(
1
2 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

)2 ,

1
2 𝑝0 +

∑𝐿̃∗
𝑘
−1

𝑗=1 𝑝 𝑗

1
2 𝑝0 +

∑𝑘−1
𝑗=1 𝑝 𝑗

 .
This completes the proof of this proposition. ■

D.3.3 Illustrative Example
To illustrate the representation effect in three-person games, I characterize level 3
players’ behavior in both the sequential and simultaneous games when the distribu-
tion of levels follows Poisson(1.5). Similar to the analysis of two-person games, the
set of dirty-faces games is the unit square on the (𝛿, 𝛼̄)-plane.

When observing one dirty face and one clean face, level 3 players cannot tell their
faces for sure in period 1, so they will wait, no matter in sequential games or in
simultaneous games. In period 2, level 3 players will claim to have a dirty face if and
only if the expected payoff of𝐶 is higher than the continuation value of choosing𝑊 .
By Proposition D.2 and D.3, level 3 players will claim in period 2 in the sequential
game if and only if

𝛼̄ ≥

(
1
2 − 1

4𝛾3𝛿
)
𝑝0(

1
2 − 1

4𝛾3𝛿
)
𝑝0 + (1 − 𝛾3𝛿) (𝑝1 + 𝑝2)

=
100 − 46𝛿

625 − 529𝛿
,

and choose 2 in the simultaneous game if and only if

𝛼̄ ≥
3
4 𝑝0

(
3
4 𝑝0 + 𝑝1 + 𝑝2

)
− 𝛿

(
1
2 𝑝0

) (
1
2 𝑝0 + 𝑝1 + 𝑝2

)
(

3
4 𝑝0 + 𝑝1 + 𝑝2

)2
− 𝛿

(
1
2 𝑝0 + 𝑝1 + 𝑝2

)2 =
162 − 100𝛿
729 − 625𝛿

.
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At period 3, level 3 players will claim to have a dirty face if and only if the expected
payoff of 𝐶 is positive. Therefore, in the sequential game, level 3 players will claim
in period 3 if and only if

𝛼̄ ≥
1
4 𝑝0

1
4 𝑝0 + 𝑝1 + 𝑝2

=
2

23
,

while in the simultaneous game, they will not choose always wait if and only if

𝛼̄ ≥
1
4 𝑝0

1
4 𝑝0 + 𝑝1 + 𝑝2

=
4

25
.

When observing two dirty faces, level 3 players cannot tell their face types in the
first two periods, so they will wait in the first two periods. At period 3, level 3
players will claim if and only if (1) level 2 players will claim at period 2 when seeing
only one dirty face,1 and (2) the expected payoff of 𝐶 is positive. Therefore, in the
sequential game, it is optimal to claim at period 3 if and only if

𝛼̄ ≥ max
{

16 − 7𝛿
64 − 49𝛿

,
196
529

}
.

In the simultaneous game, it is optimal to claim at period 3 when observing two
dirty faces if and only if

𝛼̄ ≥ max
{

27 − 16𝛿
81 − 64𝛿

,
16
25

}
.

Level 3 players’ DCH optimal stopping periods in both sequential and simultaneous
games are plotted in Figure D.1. The definition of optimal stopping periods is
naturally extended to three-person games. From this figure, we can observe two
features that are different from the two-person games. First, when observing one
dirty face and 𝛿 → 1, level 3 players will claim at period 2 if 𝛼̄ ≥ 9/16. However,
in two-person games, when 𝛿 → 1, players will always wait till the last period. This
is because when there are more players, the game is more likely to be randomly
terminated, causing the players to claim earlier even if the payoff is not discounted.
Second, when observing two dirty faces, level 3 players’ behavior at period 3 depends
on 𝛿 even if this is the last period. The reason is that level 3 players’ belief at period
3 depends on level 2 players’ behavior at period 2 which depends on 𝛿.

1Otherwise, if both level 1 and 2 players wait at period 2 when seeing only one dirty face, level
3 players cannot make inferences about their face types when the game proceeds to period 3.
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Figure D.1: Level 3 players’ DCH stopping periods in sequential (left column) and
simultaneous (right column) three-person three-period dirty-faces games where the
distribution of levels follows Poisson(1.5).
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Remark D.1. In this illustrative example, DCH predicts level 3 players tend to claim
earlier in sequential games than in simultaneous games because (1) at information
set (2, 𝑂𝑋), (162 − 100𝛿)/(729 − 625𝛿) > (100 − 46𝛿)/(625 − 529𝛿), (2) at
information set (3, 𝑂𝑋), 4/25 > 2/23, and (3) at information set (3, 𝑋𝑋),

max
{

27 − 16𝛿
81 − 64𝛿

,
16
25

}
> max

{
16 − 7𝛿
64 − 49𝛿

,
196
529

}
.

To summarize, the analysis of three-person three-period games demonstrates how
the DCH solution varies with the representations and the number of players in a
game. The prediction of the equilibrium theory only depends on the number of dirty
faces, not the number of players. This sharply contrasts with DCH. The intuition is
that when there are more players, the game is more likely to be randomly terminated
by level 0 players, and hence strategic players’ behavior is affected.

D.4 Detailed Analysis of Bayer and Chan (2007) Data
D.4.1 Data Description
This section revisits the dirty-faces experimental data by Bayer and Chan (2007).
The description of the experimental setting can be found in the main text section
4.6.1, and the instructions and screenshots can be found in Bayer and Chan (2007)
Appendix A.

Following previous notations, I use (𝑡, 𝑥−𝑖) to denote the situation where subject
𝑖 sees type 𝑥−𝑖 at period 𝑡. After excluding the data from the case where there is
no public announcement, the raw data at each information set is reported in Table
D.1. Each entry in the table states the number of observations and the percentage of
the choices that follow the equilibrium predictions. For instance, at information set
(𝑡, 𝑥−𝑖) = (2, 𝑋), there are 170 choices and 62 percent of the choices are 𝐶, which
is the action predicted by the equilibrium.

From Table D.1, we can observe that the behavior aligns with the equilibrium
prediction when players do not see any dirty face. In this situation (𝑥−𝑖 = 𝑂 or𝑂𝑂),
players are aware that their face type is 𝑋 and choose 𝐶 in period 1. However, the
behavior becomes less consistent with the equilibrium as the reasoning complexity
increases. When players see only one dirty face (𝑥−𝑖 = 𝑋 or𝑂𝑋), they should realize
that their face type is 𝑋 as the game progresses to period 2. However, the empirical
data show that only 62% and 58% of players in Treatment 1 and 2, respectively, are
able to do so. Furthermore, when players see two dirty faces (𝑥−𝑖 = 𝑋𝑋), only 30%
of the players claim to have a dirty face in period 3.
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Table D.1: Experimental Data from Bayer and Chan (2007).

Number of Players
2 3

𝑥−𝑖 𝑂 𝑋 𝑂𝑂 𝑂𝑋 𝑋𝑋

EQ 𝐶 𝑊𝐶 𝐶 𝑊𝐶 𝑊𝑊𝐶

Period Number of Obs (EQ %)
1 123 (0.94) 391 (0.79) 48 (0.92) 280 (0.61) 320 (0.76)
2 6 (0.50) 170 (0.62) 2 (0.50) 60 (0.58) 145 (0.79)
3 — — — 10 (0.20) 56 (0.36)
Note: In Treatment 1, there are 21 groups of subjects (42 subjects in total), and in
Treatment 2, there are 16 groups of subjects (48 subjects in total). Because each group
plays 14 rounds, the data set consists of (21 + 16) × 14 = 518 games.

These observations suggest that the equilibrium fails to explain a significant portion
of the data. In the following analysis, I compare the fitness of the DCH model with
that of the standard CH model and the agent quantal response equilibrium (AQRE)
proposed by McKelvey and Palfrey (1998). By comparing the DCH and the standard
CH models, I can quantify the improvement achieved by incorporating learning from
past actions into the CH framework. On the other hand, AQRE is an equilibrium
model designed for extensive games, where players make stochastic choices and
assume that other players do the same. The comparison between the DCH and
AQRE demonstrates how hierarchical thinking models can generate statistically
comparable predictions as equilibrium-based models.

D.4.2 Likelihood Functions
This section derives the likelihood functions. For the cognitive hierarchy theories,
I follow Camerer, Ho, and Chong (2004) to assume the prior distribution of levels
follows Poisson distribution. Therefore, for both of the Poisson-DCH and the
standard Poisson-CH, there is one parameter to be estimated—the average number
of levels 𝜏. For AQRE, I follow McKelvey and Palfrey (1998) to estimate the
logit-AQRE which has a single parameter 𝜆.
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D.4.2.1 Poisson-CH Models

The Poisson-CH models assume each player’s level is i.i.d. drawn from (𝑝𝑘 )∞𝑘=0
where

𝑝𝑘 ≡
𝑒−𝜏𝜏𝑘

𝑘!
, for all 𝑘 = 0, 1, 2, . . .

and 𝜏 > 0. Because 𝜏 is the mean and variance of the Poisson distribution, the
economic meaning of 𝜏 is the average level of sophistication among the population.

I first construct the likelihood function for the Poisson-DCH model. For each subject
𝑖, let Π𝑖 denote the set of information sets that subject 𝑖 has encountered in the game,
and let I𝑖 = (𝑡, 𝑥−𝑖) denote a generic information set. At any information set I𝑖,
subject 𝑖 can choose 𝑐𝑖 ∈ {𝐶,𝑊}. Let 𝑃𝑘 (𝑐𝑖 |I𝑖, 𝜏) be the probability of level 𝑘
players choosing 𝑐𝑖 at information set I𝑖. Moreover, let 𝑓 (𝑘 |I𝑖, 𝜏) be the posterior
distribution of levels at information set I𝑖. At period 1, 𝑓 (𝑘 |I𝑖, 𝜏) = 𝑒−𝜏𝜏𝑘/𝑘!.
For later periods, 𝑓 (𝑘 |I𝑖, 𝜏) given any 𝜏 can be analytically solved by Proposition
4.4 (two-person games) and Proposition D.2 (three-person games). Finally, the
predicted choice probability for 𝑐𝑖 at information set I𝑖 is simply the aggregation of
best responses from all levels weighted by the proportion 𝑓 (𝑘 |I𝑖, 𝜏):

D(𝑐𝑖 |I𝑖, 𝜏) ≡
∞∑︁
𝑘=0

𝑓 (𝑘 |I𝑖, 𝜏)𝑃𝑘 (𝑐𝑖 |I𝑖, 𝜏).

Consequently, the log-likelihood function for the DCH model can be formed by
aggregating over every subject 𝑖, actions 𝑐𝑖 and information set I𝑖:

ln 𝐿𝐷 (𝜏) =
∑︁
𝑖

∑︁
I𝑖∈Π𝑖

∑︁
𝑐𝑖∈{𝑊,𝐶}

1{𝑐𝑖,I𝑖} ln [D(𝑐𝑖 |I𝑖, 𝜏)] ,

where 1{𝑐𝑖,I𝑖} is the indicator function which is 1 when subject 𝑖 chooses 𝑐𝑖 at I𝑖.

Second, the log-likelihood function for the standard Poisson-CH model can be
constructed in the similar way. Given any 𝜏, the standard Poisson-CH model
predicts a probability distribution over {1, . . . , 𝑇, 𝑇 + 1} (earliest period to choose
𝐶 or always𝑊) for each level of players conditional on the announcement and other
players’ faces. Following previous notations, the probability of level 𝑘 subject 𝑖
choosing 𝑡 conditional on 𝑥−𝑖 is denoted by 𝜎̃𝑘

𝑖
(𝑡 |𝑥−𝑖), which can be analytically

solved by Proposition 4.5 (two-person games) and Proposition D.3 (three-person
games). Therefore, subject 𝑖’s predicted choice probability for 𝑡 ∈ {1, . . . , 𝑇, 𝑇 + 1}
conditional on 𝑥−𝑖 is the aggregation of choice frequencies of all levels weighted by
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Poisson(𝜏):

S̃(𝑡 |𝑥−𝑖, 𝜏) =
∞∑︁
𝑘=0

𝑒−𝜏𝜏𝑘

𝑘!
𝜎̃𝑘𝑖 (𝑡 |𝑥−𝑖).

Since 𝜎̃0
𝑖
(𝑡 |𝑥−𝑖) = 1

𝑇+1 for all 𝑡, S̃(𝑡 |𝑥−𝑖, 𝜏) > 0 for all 𝑡. Moreover, the conditional
probability to choose 𝐶 or𝑊 at information set I𝑖 = (𝑡, 𝑥−𝑖) can be computed by

S(𝐶 |I𝑖, 𝜏) =
S̃(𝑡 |𝑥−𝑖, 𝜏)∑
𝑡′≥𝑡 S̃(𝑡′|𝑥−𝑖, 𝜏)

and S(𝑊 |I𝑖, 𝜏) = 1 − S(𝐶 |I𝑖, 𝜏).

Finally, the log-likelihood function for the standard CH model can be constructed
by aggregating over every subjects 𝑖, actions 𝑐𝑖, and information set I𝑖:

ln 𝐿𝑆 (𝜏) =
∑︁
𝑖

∑︁
I𝑖∈Π𝑖

∑︁
𝑐𝑖∈{𝑊,𝐶}

1{𝑐𝑖,I𝑖} ln [S(𝑐𝑖 |I𝑖, 𝜏)] .

D.4.2.2 Logit-AQRE Model

For the purpose of illustrate, I only derive the likelihood function for two-person
games. The likelihood function for three-person games can be derived by a similar
calculation.

Let 𝑄(𝑐𝑖 |I𝑖, 𝜆) be the probability of subject 𝑖 choosing 𝑐𝑖 at information set I𝑖
predicted by the logit-AQRE. In the two-person two-period dirty-faces game, each
player’s strategy is defined by a four-tuple (𝑞1, 𝑞2, 𝑟1, 𝑟2) which corresponds to
𝑄(𝐶 |1, 𝑂, 𝜆), 𝑄(𝐶 |2, 𝑂, 𝜆), 𝑄(𝐶 |1, 𝑋, 𝜆), and𝑄(𝐶 |2, 𝑋, 𝜆), respectively. At infor-
mation set (𝑡, 𝑥−𝑖) = (1, 𝑂), players would estimate the payoff of 𝐶 and𝑊 by

𝑈1,𝑂 (𝐶) = 𝛼 + 𝜖1,𝑂,𝐶

𝑈1,𝑂 (𝑊) = 𝛿𝛼(1 − 𝑟1)𝑞2 + 𝜖1,𝑂,𝑈 ,

where 𝜖1,𝑂,𝐶 and 𝜖1,𝑂,𝑊 are independent random variables with a Weibull distribution
with the precision parameter 𝜆. Then the logit formula suggests

𝑞1 =
1

1 + 𝑒𝑥𝑝 {𝜆 [𝛿𝛼(1 − 𝑟1)𝑞2 − 𝛼]}
.

Similarly, 𝑞2 can be expressed by

𝑞2 =
1

1 + 𝑒𝑥𝑝 {−𝛿𝛼𝜆} .

On the other hand, when observing a dirty face and the game proceeds to period 2,
players’ posterior beliefs become

𝜇 ≡ Pr(𝑋 |2, 𝑋) = 𝑝(1 − 𝑟1)
𝑝(1 − 𝑟1) + (1 − 𝑝) (1 − 𝑞1)

=
1

1 +
(

1−𝑝
𝑝

) (
1−𝑞1
1−𝑟1

) ,
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and hence the expected payoff to choose 𝐶 at information set (2, 𝑋) is

𝛿 [𝛼𝜇 − (1 − 𝜇)] = 𝛿 [(1 + 𝛼)𝜇 − 1] .

As a result, 𝑟2 satisfies that

𝑟2 =
1

1 + 𝑒𝑥𝑝 {𝜆𝛿 [1 − (1 + 𝛼)𝜇]} .

Finally, the expected payoff of choosing 𝐶 at information set (1, 𝑋) is 𝛼𝑝 − (1− 𝑝),
while the expected payoff of𝑊 is

[𝑝(1 − 𝑟1) + (1 − 𝑝) (1 − 𝑞1)]︸                                 ︷︷                                 ︸
prob. to reach period 2

𝑟2𝛿 [(1 + 𝛼)𝜇 − 1] ≡ 𝐴,

and therefore, 𝑟1 can be expressed by

𝑟1 =
1

1 + 𝑒𝑥𝑝 {𝜆 [𝐴 + (1 − 𝑝) − 𝛼𝑝]} .

As plugging 𝑝 = 2/3, 𝛿 = 4/5 and 𝛼 = 2/3 into the choice probabilities, we can
obtain that

𝑟1 =
1

1 + 𝑒𝑥𝑝
{
𝜆

[ 2
15 (1 − 𝑟1)𝑟2 − 4

15 (1 − 𝑞1)𝑟2 + 1
6
]}

𝑟2 =
1

1 + 𝑒𝑥𝑝
{
𝜆

[
4
5 − 2−2𝑟1

3−2𝑟1−𝑞1

]}
𝑞1 =

1
1 + 𝑒𝑥𝑝

{
𝜆

[ 1
5 (1 − 𝑟1)𝑞2 − 1

4
]}

𝑞2 =
1

1 + 𝑒𝑥𝑝
{
−1

5𝜆
} .

Given each 𝜆, the system of four equations with four unknowns can be solved
uniquely. Besides, for each I𝑖, 𝑄(𝑊 |I𝑖, 𝜆) = 1 − 𝑄(𝐶 |I𝑖, 𝜆). Thus, the log-
likelihood function can be formed by aggregating over every subject 𝑖, action 𝑐𝑖, and
information set I𝑖:

ln 𝐿𝑄 (𝜆) =
∑︁
𝑖

∑︁
I𝑖∈Π𝑖

∑︁
𝑐𝑖∈{𝑊,𝐶}

1{𝑐𝑖,I𝑖} ln [𝑄(𝑐𝑖 |I𝑖, 𝜆)] .

D.4.3 Estimation Results
The Poisson-DCH, standard Poisson-CH and the AQRE models are estimated by
maximum likelihood estimation. Table D.2 reports the estimation results on Treat-
ment 1 and Treatment 2 data, showing the estimated parameters and the fitness of
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each model. Comparing the fitness of these models, I find that the log-likelihood of
DCH is significantly higher than standard CH (Vuong Test p-value < 0.001 for both
treatments), while it is not significantly different from AQRE (Treatment 1: p-value
= 0.144; Treatment 2: p-value = 0.184). This result suggests in both Treatment 1
and 2, DCH outperforms the standard CH in capturing the empirical patterns and
generates predictions that are statistically comparable to other equilibrium-based
behavioral solution concepts.

Table D.2: Estimation Results for Treatment 1 and Treatment 2 Data.

Two-Person Games Three-Person Games

DCH
Standard

CH
AQRE DCH

Standard
CH

AQRE

Parameters 𝜏 1.269 1.161 — 0.370 0.140 —
S.E. (0.090) (0.095) — (0.043) (0.039) —
𝜆 — — 7.663 — — 5.278

S.E. — — (0.493) — — (0.404)
Fitness LL -360.75 -381.46 -368.38 -575.30 -608.45 -565.05

AIC 723.50 764.91 738.76 1152.61 1218.89 1132.11
BIC 728.04 769.45 743.29 1157.43 1223.72 1136.93

Vuong Test 6.517 1.463 3.535 -1.330
p-value < 0.001 0.144 < 0.001 0.184

Note: There are 294 games (rounds × groups) in Treatment 1 and 224 games in Treatment 2.

Comparing the estimation results of Treatment 1 and 2, I observe that there is more
randomness in three-person games compared to two-person games. In two-person
games, the DCH estimates indicate that players can think 1.269 steps (95% C.I.
= [1.093, 1.445]) on average, while in three-person games, players can only think
an average of 0.370 steps (95% C.I. = [0.286, 0.454]). Additionally, the estimation
result of AQRE suggests that as the game changes from two-person games to three-
person games, the precision of decision-making decreases significantly (from 7.663
to 5.278). This implies that players are less likely to make best responses in three-
person games.

To analyze the differences between the models in detail, I compare the choice
probabilities predicted by each model. Figure D.2 illustrates the choice probabilities
in two-person games, while Figure D.3 displays the choice probabilities in three-
person games. Comparing the DCH and the standard CH models, I observe that the
standard CH model generally underestimates the probability of choosing𝐶 in period
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1. In two-person games, the empirical frequencies of choosing 𝐶 at information
sets (1, 𝑂) and (1, 𝑋) are 0.943 and 0.210, respectively. Yet the predictions of the
standard CH model are 0.791 and 0.104 for the same information sets. A similar
pattern of underestimation is also evident in three-person games.
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Figure D.2: The choice probabilities in two-person games at different information
sets. Each panel plots the empirical choice frequencies and the predictions of dif-
ferent models at one information set. The gray panel represents the off-equilibrium
path information set.

The underestimation is primarily caused by the difference in the specifications of
level 0 players’ behavior. In two-person games, the standard CH model assumes
that level 0 players uniformly randomize across the set {1, 2, 3}. Consequently, the
probability of level 0 players choosing 𝐶 in period 1 according to the standard CH
model is 1/3. In contrast, in the DCH model, level 0 players uniformly randomize
at every information set, resulting in a probability of 1/2 for them to choose 𝐶.
Similarly, in three-person games, the standard CH model assumes that level 0
players uniformly randomize across the set {1, 2, 3, 4}, leading to a probability of
1/4 for them to choose 𝐶 in period 1. In contrast, in the DCH model, level 0
players’ behavior remains the same across both two-person and three-person games.
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These differences in level 0 players’ behavior contribute to the underestimation of
the probability of choosing 𝐶 in the standard CH model compared to DCH.
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Figure D.3: The choice probabilities in three-person games at different information
sets. Each panel plots the empirical choice frequencies and the predictions of differ-
ent models at one information set. The gray panels represent the off-equilibrium-path
information sets.

Moreover, the key difference between the CH approach and AQRE is highlighted
in the off-equilibrium-path information sets.2 Conceptually, the reason why the
game could proceed to the off-equilibrium-path information sets differs between the
CH approach and AQRE. From the perspective of AQRE, the off-equilibrium-path
information sets are reached due to mistakes. As a result, AQRE predicts a high

2When 𝑥−𝑖 = 𝑂𝑂, the equilibrium predicts that players will choose 𝐶 in period 1, resulting in
the game not proceeding beyond period 2. Similarly, when 𝑥−𝑖 = 𝑂𝑋 , the equilibrium suggests that
players should choose 𝐶 in period 2, preventing the game from progressing to period 3.
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probability of choosing𝐶 at these off-equilibrium-path information sets because the
expected payoff of choosing 𝐶 is much higher than𝑊 at these information sets. By
contrary, in the CH approach, the off-equilibrium-path information sets are reached
because the players are not sophisticated enough. For instance, when observing no
dirty face, players should immediately choose 𝐶 since it is a dominant strategy. If
someone doesn’t choose 𝐶, they are definitely a level 0 player.

From the choice probabilities, it can be observed that DCH provides the most
accurate predictions at off-path information sets, regardless of whether it is in
two-person or three-person games. At information sets (2, 𝑂) and (2, 𝑂𝑂), the
empirical choice probabilities of 𝐶 are 0.5, which are correctly predicted by DCH.
Furthermore, at the information set (3, 𝑂𝑋), the empirical choice probability of 𝐶
is 0.2, while the predictions of DCH, standard CH, and AQRE are 0.291, 0.385, and
0.624, respectively.

Table D.3: Estimation Results for Pooled Data.

DCH
Standard

CH
AQRE

Parameters 𝜏 1.030 0.241 —
S.E. (0.060) (0.033) —
𝜆 — — 6.235

S.E. — — (0.302)
Fitness LL -956.92 -1047.12 -940.65

AIC 1915.84 2096.23 1883.30
BIC 1921.22 2101.62 1888.69

Vuong Test 7.513 -1.363
p-value < 0.001 0.173

LR Test 𝜒2
(1) 41.74 114.42 14.44

p-value < 0.001 < 0.001 < 0.001
Note: The likelihood ratio test is testing if the log-likelihood of
two-parameter models (Treatment 1 and 2) is significantly higher
than the log-likelihood of one-parameter models.

In addition, I estimate the three models using the pooled data, and the results are
reported in Table D.3. Consistent with the results from the two-person games and
three-person games, it can be observed that DCH provides a significantly better fit to
the data compared to the standard CH model (Vuong test: p-value < 0.001). How-
ever, there is no statistically significant difference between DCH and AQRE (Vuong
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test p-value = 0.173). Furthermore, I conduct a likelihood ratio test on all three
models to assess whether allowing different parameters for two-person and three-
person games can significantly improve the model fit. The results indicate that the
heterogeneous models are significantly better than the homogeneous models. Taken
together, these findings lead to the conclusion that both the level of sophistication
and the precision vary with the complexity of the games.

To summarize, it is not surprising that DCH can provide a better explanation for the
data compared to the misspecified standard CH model in dynamic games. However,
what is surprising is that when the CH model is correctly specified, the estimated
average level of sophistication is 1.03, which falls within the expected range of a
“regular” 𝜏 value between 1 and 2, as predicted by Camerer, Ho, and Chong (2004).

D.5 Supplementary Analysis for Experimental Data
D.5.1 Supplementary Tables
This section includes all the supplementary tables from the experiment. Table D.4
lists the empirical frequencies of choosing 𝐶 at each information set for both treat-
ments. Table D.5 presents the empirical frequencies of choosing 𝐶 at information
set (2, 𝑋) for different payoff structures and treatments.

Table D.4: The Empirical Frequencies of 𝐶 at Each Information Set.

Sequential Treatment Simultaneous Treatment
𝑥−𝑖 𝑂 𝑋 𝑂 𝑋

Obs Claim % s.d. Obs Claim % s.d. Obs Claim % s.d. Obs Claim % s.d.
Periods

1 148 0.845 0.364 572 0.313 0.464 148 0.811 0.393 548 0.263 0.441
2 16 0.438 0.512 210 0.600 0.491 28 0.250 0.441 404 0.223 0.417
3 4 0.000 0.000 34 0.206 0.410 21 0.190 0.402 314 0.172 0.378
4 3 0.000 0.000 21 0.190 0.402 16 0.250 0.447 259 0.131 0.338
5 2 0.500 0.707 14 0.214 0.426 14 0.143 0.363 227 0.172 0.378

Note: For the simultaneous treatment, the choice data at the information set level are implied by the contingent strategies. For instance,
choosing the contingent strategy “claim at period 4” implies that the subject will wait from period 1 to period 3 and claim in period 4.

To compute the measure of violation of invariance under strategic equivalence of
each payoff structure (𝛿, 𝛼̄), I run the following regression on the data of information
set (2, 𝑋):

1{claim}𝑖 = 𝛼0 + 𝛼11{sequential}𝑖 + 𝜖𝑖, (D.7)

where 1{claim}𝑖 is the dummy variable for player 𝑖 choosing 𝐶 and 1{sequential}𝑖
is the dummy variable for the sequential treatment. Table D.6 reports the results for
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Table D.5: The Empirical Frequencies of 𝐶 at (2, 𝑋) for Different Games.

Sequential Treatment Simultaneous Treatment
(𝛿, 𝛼̄) Obs Claim % s.d. Obs Claim % s.d.

Diagnostic Games
(0.60, 0.45) 39 0.564 0.502 78 0.256 0.439
(0.95, 0.80) 36 0.667 0.479 59 0.237 0.429

Control Games
(0.60, 0.80) 38 0.789 0.413 61 0.361 0.484
(0.80, 0.45) 35 0.543 0.505 67 0.134 0.344
(0.80, 0.80) 24 0.542 0.509 63 0.190 0.396
(0.95, 0.45) 38 0.474 0.506 76 0.171 0.379

all payoff structures. The standard errors are clustered at the session level.

Table D.6: The Magnitude of the Treatment Effect for Different Games.

Payoff Structure
(𝛿, 𝛼̄) (0.60, 0.45) (0.60, 0.80) (0.80, 0.45) (0.80, 0.80) (0.95, 0.45) (0.95, 0.80)

Sequential Treatment 0.308*** 0.429* 0.409* 0.351** 0.303** 0.429**
(0.066) (0.160) (0.160) (0.101) (0.073) (0.110)

Constant 0.256*** 0.361*** 0.134*** 0.190*** 0.171** 0.237**
(0.057) (0.070) (0.018) (0.025) (0.049) (0.062)

N 117 99 102 87 114 95
R-squared 0.0914 0.1744 0.1889 0.1203 0.1028 0.1808

Note: The standard errors are clustered at the session level. * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001.

Finally, Table D.7 and D.8 report the distributions of reaction times when players
see a dirty face in the sequential and simultaneous treatments, respectively.

Table D.7: Reaction Times (seconds) when Seeing 𝑋 in the Sequential Treatment.

Periods Obs Mean s.d. Q1 Median Q3
1 572 11.29 9.845 5.359 7.574 13.72
2 210 8.172 6.531 4.495 6.106 9.745
3 34 7.530 3.816 4.785 6.277 11.44
4 21 6.901 4.135 3.150 6.299 9.767
5 14 7.663 5.597 3.231 6.677 8.856
All 851 10.20 8.917 5.000 7.152 12.08
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Table D.8: Reaction Times (seconds) when Seeing 𝑋 in the Simultaneous Treatment.

Stopping Strategies Obs Mean s.d. Q1 Median Q3
Claim at 1 144 11.93 8.804 5.811 8.958 15.91
Claim at 2 90 13.85 10.18 7.191 11.32 16.62
Claim at 3 54 17.64 12.81 8.095 14.30 24.61
Claim at 4 34 21.15 15.16 12.32 16.46 22.96
Claim at 5 39 23.34 14.43 13.84 19.76 27.83
Always Wait 187 14.24 11.09 7.342 10.48 20.24
All 548 15.04 11.58 7.413 11.32 19.48

D.5.2 Likelihood Functions
Quantal Cursed Sequential Equilibrium

The “Quantal Cursed Sequential Equilibrium (QCSE)” is a model applicable to
multi-stage games with observed actions. This model relaxes both the requirements
of best responses and Bayesian inference. Specifically, QCSE is a hybrid model,
combining the Agent Quantal Response Equilibrium (AQRE) proposed by McK-
elvey and Palfrey (1998) and the Cursed Sequential Equilibrium introduced by Fong,
Lin, and Palfrey (2023).

Consider an assessment (𝜇, 𝜎). For any player 𝑖 and any history ℎ𝑡−1, the average
behavioral strategy profile of −𝑖 is defined as

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) =
∑︁

𝜃−𝑖∈Θ−𝑖

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖).

In QCSE, players have incorrect perceptions about the behavioral strategies of other
players. Instead of thinking they are using 𝜎−𝑖, a 𝜒-cursed type 𝜃𝑖 player 𝑖 would
believe the other players are using a 𝜒-weighted average of the average behavioral
strategy and the true behavioral strategy:

𝜎
𝜒

−𝑖 (𝑎
𝑡
−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖) = 𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖).

The beliefs of player 𝑖 about 𝜃−𝑖 in QCSE are updated via Bayes’ rule, whenever
possible, assuming other players are using the 𝜒-cursed behavioral strategy rather
than the true behavioral strategy. This updating rule is called the 𝜒-cursed Bayes’
rule. Specifically, an assessment satisfies the 𝜒-cursed Bayes’ rule if the belief
system is derived from the Bayes’ rule while perceiving others are using 𝜎𝜒−𝑖 rather
than 𝜎−𝑖.
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Consider any totally mixed strategy profile 𝜎 ∈ Σ0. As shown by Fong, Lin, and
Palfrey (2023), if the belief system 𝜇 is derived from the 𝜒-cursed Bayes’ rule, then
player 𝑖’s cursed belief is simply a linear combination of player 𝑖’s cursed belief at
the beginning of that stage (with 𝜒 weight) and the Bayesian posterior belief (with
1 − 𝜒 weight). That is, for any ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡),

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑
𝜃′−𝑖
𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
.

For any player 𝑖, any 𝜒 ∈ [0, 1], 𝜎 ∈ Σ0, and any 𝜃 ∈ Θ, let 𝜌𝜒
𝑖
(ℎ𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖)

be 𝑖’s perceived conditional realization probability of terminal history ℎ𝑇 ∈ H𝑇 at
history ℎ𝑡 ∈ H\H𝑇 if the type profile is 𝜃 and 𝑖 uses the behavioral strategy 𝜎𝑖
whereas perceives other players’ using the cursed behavioral strategy 𝜎𝜒−𝑖. At every
non-terminal history ℎ𝑡 , a 𝜒-cursed player in QCSE will use 𝜒-cursed Bayes’ rule
to derive the posterior belief about the other players’ types. Accordingly, a type 𝜃𝑖
player 𝑖’s conditional expected payoff at history ℎ𝑡 is

𝑢̄𝑖 (𝜎 |ℎ𝑡 , 𝜃𝑖) ≡
∑︁

𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ
𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖)𝑢𝑖 (ℎ

𝑇 , 𝜃−𝑖, 𝜃𝑖).

Moreover, let 𝑢̄𝑖 (𝑎, 𝜎 |ℎ𝑡 , 𝜃𝑖) be the conditional expected payoff of player 𝑖 of using
𝑎 ∈ 𝐴𝑖 (ℎ𝑡) with probability one, and using 𝜎𝑖 elsewhere.

In QCSE, there is a parameter 𝜆 ∈ [0,∞) that governs the precision of choices.
Given an assessment (𝜇, 𝜎) where 𝜎 ∈ Σ0 and 𝜇 is derived from the 𝜒-cursed
Bayes’ rule, if (𝜇, 𝜎) is a QCSE for any player 𝑖, history ℎ𝑡 , and type 𝜃𝑖, then
type 𝜃𝑖 player 𝑖 will have choice probabilities at ℎ𝑡 that follow a multinomial logit
distribution. In particular, the probability of player 𝑖 choosing 𝑎 ∈ 𝐴𝑖 (ℎ𝑡) is

𝑒𝜆𝑢̄𝑖 (𝑎,𝜎 |ℎ
𝑡 ,𝜃𝑖)∑

𝑎′∈𝐴𝑖 (ℎ𝑡 ) 𝑒
𝜆𝑢̄𝑖 (𝑎′,𝜎 |ℎ𝑡 ,𝜃𝑖)

.

In summary, for each 𝜆 ∈ [0,∞) and 𝜒 ∈ [0, 1], an assessment (𝜇, 𝜎) is a QCSE if

1. The belief system is derived from the 𝜒-cursed Bayes’ rule, and

2. For any player 𝑖, type 𝜃𝑖, history ℎ𝑡 and 𝑎 ∈ 𝐴𝑖 (ℎ𝑡),

𝜎𝑖 (𝑎 |ℎ𝑡 , 𝜃𝑖) =
𝑒𝜆𝑢̄𝑖 (𝑎,𝜎 |ℎ

𝑡 ,𝜃𝑖)∑
𝑎′∈𝐴𝑖 (ℎ𝑡 ) 𝑒

𝜆𝑢̄𝑖 (𝑎′,𝜎 |ℎ𝑡 ,𝜃𝑖)
.
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When estimating QCSE, constructing the likelihood function follows a similar pro-
cess as described in Appendix D.4.2. For each information set I𝑖, QCSE uniquely
predicts the choice probability of each 𝑎𝑖, denoted as 𝑄̄(𝑎𝑖 |I𝑖, 𝜆, 𝜒), given 𝜆 and
𝜒. The log-likelihood function can be formed by aggregating over every subject 𝑖,
action 𝑎𝑖, and information set I𝑖:

ln 𝐿𝑄̄ (𝜆, 𝜒) =
∑︁
𝑖

∑︁
I𝑖∈Π𝑖

∑︁
𝑎𝑖∈𝐴𝑖 (I𝑖)

1{𝑎𝑖,I𝑖} ln
[
𝑄̄(𝑎𝑖 |I𝑖, 𝜆, 𝜒)

]
.

Quantal Dynamic Cognitive Hierarchy Solution

The “Quantal Dynamic Cognitive Hierarchy Solution (QDCH)” is a natural exten-
sion of DCH, where all strategic levels of players make quantal responses instead
of best responses. In particular, following previous notations, for any 𝑖 ∈ 𝑁 , 𝜏𝑖 ≥ 1,
𝜃 ∈ Θ, 𝜎, and 𝜏−𝑖 such that 𝜏𝑗 < 𝜏𝑖 for any 𝑗 ≠ 𝑖, let 𝑃𝜏𝑖

𝑖
(ℎ𝑇 |ℎ𝑡−1, 𝜃, 𝜏−𝑖, 𝜎

<𝜏𝑖
−𝑖 , 𝜎

𝜏𝑖
𝑖
)

be level 𝜏𝑖 player 𝑖’s belief about the conditional realization probability of ℎ𝑇 ∈ H𝑇

at history ℎ𝑡−1 ∈ H\H𝑇 if the type profile is 𝜃, the level profile is 𝜏, and player 𝑖
uses 𝜎𝜏𝑖

𝑖
. In this case, level 𝜏𝑖 player 𝑖’s expected payoff at any ℎ𝑡 ∈ H\H𝑇 is

𝑢̄
𝜏𝑖
𝑖
(𝜎 |ℎ𝑡 , 𝜃𝑖) ≡∑︁
ℎ𝑇∈H𝑇

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
{𝜏−𝑖 :𝜏𝑗<𝑘 ∀ 𝑗≠𝑖}

𝜇
𝜏𝑖
𝑖
(𝜏−𝑖, 𝜃−𝑖 | ℎ𝑡 , 𝜃𝑖)𝑃𝜏𝑖𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜏−𝑖, 𝜎<𝜏𝑖−𝑖 , 𝜎
𝜏𝑖
𝑖
)𝑢𝑖 (ℎ𝑇 , 𝜃−𝑖, 𝜃𝑖).

Similar to QCSE, in QDCH, there is a parameter 𝜆 ∈ [0,∞) that governs the
precision of choices. Let 𝑢̄𝜏𝑖

𝑖
(𝑎, 𝜎 |ℎ𝑡 , 𝜃𝑖) be the conditional expected payoff of level

𝜏𝑖 player 𝑖 of using 𝑎 ∈ 𝐴𝑖 (ℎ𝑡) with probability one, and using 𝜎𝜏𝑖
𝑖

elsewhere. In
QDCH, players’ choice probabilities follow multinomial logit distributions. That is,
in QDCH, the probability of level 𝜏𝑖 player 𝑖 choosing 𝑎 ∈ 𝐴𝑖 (ℎ𝑡) at history ℎ𝑡 is

𝜎
𝜏𝑖
𝑖
(𝑎 |ℎ𝑡 , 𝜃𝑖) =

𝑒𝜆𝑢̄
𝜏𝑖
𝑖
(𝑎,𝜎 |ℎ𝑡 ,𝜃𝑖)∑

𝑎′∈𝐴𝑖 (ℎ𝑡 ) 𝑒
𝜆𝑢̄

𝜏𝑖
𝑖
(𝑎′,𝜎 |ℎ𝑡 ,𝜃𝑖)

.

When estimating QDCH, I assume the prior distribution of levels follows Poisson(𝜏).
At any information set I𝑖, let 𝑓 (𝑘 |I𝑖, 𝜆, 𝜏) be the posterior distribution of levels at
information set I𝑖 given 𝜆 and 𝜏. In this case, the predicted choice probability
for 𝑎𝑖 at I𝑖 is the aggregation of quantal responses from all levels weighted by the
proportion 𝑓 (𝑘 |I𝑖, 𝜆, 𝜏):

D̄(𝑎𝑖 |I𝑖, 𝜆, 𝜏) ≡
∞∑︁
𝑘=0

𝑓 (𝑘 |I𝑖, 𝜆, 𝜏)𝑃𝑘 (𝑎𝑖 |I𝑖, 𝜆, 𝜏),
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where 𝑃𝑘 (𝑎𝑖 |I𝑖, 𝜆, 𝜏) is the probability of level 𝑘 players choosing 𝑎𝑖 at I𝑖. Conse-
quently, the log-likelihood function for QDCH can be formed by aggregating over
every subject 𝑖, actions 𝑎𝑖 and information set I𝑖:

ln 𝐿𝐷̄ (𝜆, 𝜏) =
∑︁
𝑖

∑︁
I𝑖∈Π𝑖

∑︁
𝑎𝑖∈𝐴𝑖 (I𝑖)

1{𝑎𝑖,I𝑖} ln
[
D̄(𝑎𝑖 |I𝑖, 𝜆, 𝜏)

]
,

where 1{𝑎𝑖,I𝑖} is the indicator function which is 1 when subject 𝑖 chooses 𝑎𝑖 at I𝑖.

D.6 Experimental Instructions
D.6.1 Sequential Treatment
General Instructions

Thank you for participating in the experiment. You are about to take part in a
decision-making experiment, in which your earnings will depend partly on your
decisions, partly on the decision of others, and partly on chance.

The entire session will take place through computer terminals, and all interactions
between participants will be conducted through the computers. Please do not talk
or in any way try to communicate with other participants during the session.

The main task of the experiment consists of 12 matches. Before the main task, you
will be asked to complete some comprehension questions. If you have any questions,
please raise your hand and the question will be answered so that everyone can hear.

In this experiment, you will earn “points” in each match. Your earnings will be
determined by the total points you earn in the 12 matches. Each point has a value
of $0.02. That is, every 100 points generates $2 in earnings for you. In addition to
your earnings from decisions, you will receive a show-up fee of $10. At the end of
the experiment, your earnings will be rounded up to the nearest dollar amount. All
your earnings will be paid in cash privately at the end of the experiment.

Main Task

1. In this experiment, you will be asked to make decisions in 12 matches. You
will be randomly matched with another participant into a group for every separate
match. This random pairing changes in every match.

2. Each match in this experiment corresponds to a game with the following rules.
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• At the beginning of each match, each of you and the other participant will
be randomly assigned a “color” (either Red or White). After the colors are
assigned, you will be able to see the color of the other participant who is
paired with you. However, you cannot see your own color!

• There are 3 possible situations, and the probabilities of these situations are
summarized in the following table.

Situations Probabilities
You are Red and the other participant is White. 𝑝

You are White and the other participant is Red. 𝑝

Both of you are Red. 1 − 2𝑝

In other words, there is always at least one Red participant among each group.

• Each match is played in rounds. In each match, there are at most 5 rounds.
Your color and the other participant’s color are fixed in the match. In each
round, you and the other participant will simultaneously choose either “I’m
Red” or “wait.” If both participants choose “wait,” then the match will
continue to the next round. The match will end:

(1) after round 5; or

(2) after some round where there is at least one participant choosing “I’m
Red.”

This round is called the “terminal round.” Your payoff for this match depends
on which round the terminal round is, your action in the terminal round, and
your color. Important: your payoff does not depend on the other participant’s
color.

• Payoffs:

(1) If you choose “wait” in the terminal round, you will get 0 points for this
match regardless of your color.

(2) If you choose “I’m Red” in the terminal round, your payoff for this match
depends on which round the terminal round is and your own color. The
payoffs are summarized in the following table. Notice that in each match,
you and the other participant will face the same payoff table.
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Terminal Round 1 2 3 4 5
Your payoff if your color is Red 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

Your payoff if your color is White −𝑤1 −𝑤2 −𝑤3 −𝑤4 −𝑤5

(3) Examples:

a. If you choose “I’m Red” in round 3, you will earn 𝑝3 points if your
color is Red and −𝑤3 if your color is White.

b. If you choose “wait” in round 4 and the other participant chooses
“I’m Red” in the same round, you will get 0 points regardless of
your color.

3. Decisions:

• After observing the other participant’s color, you and the other participant
matched with you will play the game according to the rules described above.

• Therefore, your payoffs are summarized as below.

You choose “I’m Red” in the
terminal round

You choose “wait” in the
terminal round

Terminal Round Your color Red White Red or White
1 𝑝1 −𝑤1 0
2 𝑝2 −𝑤2 0
3 𝑝3 −𝑤3 0
4 𝑝4 −𝑤4 0
5 𝑝5 −𝑤5 0

• Each match starts from Round 1. You will make your decision in the following
screen.

After you make your decision, the following would happen: If either you or
the other participant chooses “I’m Red,” then this round is the terminal round,
and your payoff is determined by your action in this round. However, if both
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you and the other participant choose “wait,” the match continues to the next
round, and you will make your decision in the following screen.

Like the previous round, if either you or the other participant chooses “I’m
Red,” the match will end after this round. Yet if both you and the other
participant choose “wait,” the match will proceed to the next round.

• If the game proceeds to round 5, then the match will end after this round and
your payoff is determined by your action (and color) in round 5.

4. At the end of each match, there will be a summary of the match which includes
both of your colors, actions in each round (whenever applicable) and your own
payoff for this match.

5. At the beginning of the experiment, you will start from 900 points. You will get
paid in cash based on your total points earned from the 12 matches. If your total
point is negative, you will only receive the show-up fee.

6. Important:

a. After each match, you will be randomly paired with another participant in the
next match.

b. Your color and the other participant’s color will also be randomly re-drawn in
each match. The colors in each match are independent of the colors in other
matches.

c. The probability distribution of colors and the payoff table will change in each
match.

Please raise your hand if you have any questions. The question will be answered so
that everyone can hear.
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D.6.2 Simultaneous Treatment
General Instructions

Thank you for participating in the experiment. You are about to take part in a
decision-making experiment, in which your earnings will depend partly on your
decisions, partly on the decision of others, and partly on chance.

The entire session will take place through computer terminals, and all interactions
between participants will be conducted through the computers. Please do not talk
or in any way try to communicate with other participants during the session.

The main task of the experiment consists of 12 matches. Before the main task, you
will be asked to complete some comprehension questions. If you have any questions,
please raise your hand and the question will be answered so that everyone can hear.

In this experiment, you will earn “points” in each match. Your earnings will be
determined by the total points you earn in the 12 matches. Each point has a value
of $0.02. That is, every 100 points generates $2 in earnings for you. In addition to
your earnings from decisions, you will receive a show-up fee of $10. At the end of
the experiment, your earnings will be rounded up to the nearest dollar amount. All
your earnings will be paid in cash privately at the end of the experiment.

Main Task

1. In this experiment, you will be asked to make decisions in 12 matches. You
will be randomly matched with another participant into a group for every separate
match. This random pairing changes in every match.

2. Each match in this experiment corresponds to a game with the following rules.

• At the beginning of each match, each of you and the other participant will
be randomly assigned a “color” (either Red or White). After the colors are
assigned, you will be able to see the color of the other participant who is
paired with you. However, you cannot see your own color!

• There are 3 possible situations, and the probabilities of these situations are
summarized in the following table.
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Situations Probabilities
You are Red and the other participant is White. 𝑝

You are White and the other participant is Red. 𝑝

Both of you are Red. 1 − 2𝑝

In other words, there is always at least one Red participant among each group.

• Each match is played in rounds. In each match, there are at most 5 rounds.
Your color and the other participant’s color are fixed in the match. In each
round, you and the other participant will simultaneously choose either “I’m
Red” or “wait.” If both participants choose “wait,” then the match will
continue to the next round. The match will end:

(1) after round 5; or

(2) after some round where there is at least one participant choosing “I’m
Red.”

This round is called the “terminal round.” Your payoff for this match depends
on which round the terminal round is, your action in the terminal round, and
your color. Important: your payoff does not depend on the other participant’s
color.

• Payoffs:

(1) If you choose “wait” in the terminal round, you will get 0 points for this
match regardless of your color.

(2) If you choose “I’m Red” in the terminal round, your payoff for this match
depends on which round the terminal round is and your own color. The
payoffs are summarized in the following table. Notice that in each match,
you and the other participant will face the same payoff table.

Terminal Round 1 2 3 4 5
Your payoff if your color is Red 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

Your payoff if your color is White −𝑤1 −𝑤2 −𝑤3 −𝑤4 −𝑤5

(3) Examples:

a. If you choose “I’m Red” in round 3, you will earn 𝑝3 points if your
color is Red and −𝑤3 if your color is White.
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b. If you choose “wait” in round 4 and the other participant chooses
“I’m Red” in the same round, you will get 0 points regardless of
your color.

3. Decisions:

• Instead of playing the game round by round, after observing the other partici-
pant’s color, you and the other participant are asked to simultaneously choose
a “plan” which describes how you would commit to play the game if the
game were played round by round. After you and the other participant both
submit the plans, the computer will implement the plans and your payoff is
determined accordingly.

• Since the game ends after some participant chooses “I’m Red,” there are six
possible plans corresponding to the earliest round you intend to choose “I’m
Red” or “always wait.” Specifically, the six plans are listed below.

◦ “I’m Red in Round 1” means you plan to choose “I’m Red” in Round
1.

◦ “I’m Red in Round 2” means you plan to choose “wait” in Round 1
and choose “I’m Red” in Round 2.

◦ “I’m Red in Round 3” means you plan to choose “wait” in Round 1
and Round 2 and choose “I’m Red” in Round 3.

◦ “I’m Red in Round 4” means you plan to choose “wait” in Round 1 to
Round 3 and choose “I’m Red” in Round 4.

◦ “I’m Red in Round 5” means you plan to choose “wait” in Round 1 to
Round 4 and choose “I’m Red” in Round 5.

◦ “Always wait” means you plan to choose “wait” in Round 1 to Round 5.

• In each match, you will be asked to choose your plan in the following screen.

• Therefore, your payoffs are summarized as below.
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You choose “I’m Red” no later

than the other participant
You choose “I’m Red” later

or choose “always wait”
Terminal Round Your color Red White Red or White

1 𝑝1 −𝑤1 0
2 𝑝2 −𝑤2 0
3 𝑝3 −𝑤3 0
4 𝑝4 −𝑤4 0
5 𝑝5 −𝑤5 0

4. At the end of each match, there will be a summary of the match which includes
both of your colors, the terminal round, your action, and your own payoff for this
match. If you choose “I’m Red” later or at the same round as the other participant,
you will be informed the other participant’s exact plan. Otherwise, you will be told
that the other participant is “later than you.”

5. At the beginning of the experiment, you will start from 900 points. You will get
paid in cash based on your total points earned from the 12 matches. If your total
point is negative, you will only receive the show-up fee.

6. Important:

a. After each match, you will be randomly paired with another participant in the
next match.

b. Your color and the other participant’s color will also be randomly re-drawn in
each match. The colors in each match are independent of the colors in other
matches.

c. The probability distribution of colors and the payoff table will change in each
match.

Please raise your hand if you have any questions. The question will be answered so
that everyone can hear.

D.6.3 Screenshots
Figures D.4 and D.5 show the actual screenshots of the sequential treatment, and
Figures D.6 to D.8 display the actual screenshots of the simultaneous treatment.
Notice that Figure D.7 represents the feedback screen of a player who selects “I’m
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Red” earlier than the opponent, and Figure D.8 provides the perspective from the
other player.

Figure D.4: The Decision Stage of the Sequential Treatment.

Figure D.5: The Feedback Stage of the Sequential Treatment.
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Figure D.6: The Decision Stage of the Simultaneous Treatment.

Figure D.7: The Feedback Stage of the Simultaneous Treatment (1).
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Figure D.8: The Feedback Stage of the Simultaneous Treatment (2).
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