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ABSTRACT

This dissertation comprises three chapters related to the fields of decision theory,
game theory, and experimental economics. Chapters 1 and 2 use experimental and
structural methods to study individual decision-making in the domain of risk, while
Chapter 3 examines decision-making under risk in settings of strategic interaction.

In Chapter 1, co-authored with Shunto Kobayashi, we conduct the first experiment
that studies two classical behaviors under risk inconsistent with Expected Utility
together: the common ratio effect and preferences for randomization. We show
that these two behaviors are strongly positively correlated in a manner inconsistent
with the predictions of leading economic models and machine learning algorithms.
Motivated by this observation, we develop a novel empirical approach which, unlike
machine learning algorithms, imposes some basic assumptions on preferences but
does not rely on specific decision models. We further demonstrate that this approach
provides more accurate predictions—both inside and outside laboratory settings—
compared to leading economic models and machine learning algorithms.

In Chapter 2, I design an experiment testing Expected Utility’s central independence
axiom and contemporaneously eliciting measures of decision confidence. Recent
theoretical work implicates decision confidence as a central component of decision-
making under risk, attributing failures of Expected Utility to a lack of confidence.
I find that choices characterized by high self-reported levels of decision confidence
and low response times are more likely to comply with the independence axiom.
Contrary to the common certainty effect rationale for independence violations, I
show that subjects predominantly violate Expected Utility by choosing risky lotteries
over certain amounts when they are unconfident in their choices.

In Chapter 3, co-authored with Marco Loseto, we study static games in which players
have convex preferences. Under convexity, players’ preferences admit a conservative
multi-utility representation: each utility generates an evaluation for each action, and
actions are ranked according to the lowest evaluation. We characterize the set
of optimal actions for players with convex preferences and propose an efficiency
criterion to rank them. Next, we derive a new class of mixed Nash equilibria that
we call “strict” because players strictly prefer randomization. In general, convexity
may lead to a multiplicity of mixed Nash equilibria. However, we show that when
they exist, only strict equilibria ensure that all mixed actions are efficient.
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INTRODUCTION

Economists develop models to make predictions, and these models are particularly
valuable when their predictions hold beyond the original setting in which they are
derived. For instance, let’s consider a financial advisor interested in determining the
portfolio composition that best aligns with her client’s attitude towards risk. To this
end, the financial advisor can conduct an experiment eliciting choices over financial
assets in the form of monetary lotteries. Next, the financial advisor can use a model
to estimate the client’s level of risk aversion, which can then be used to predict the
optimal portfolio composition. An important message arising from this example
is that a key metric for evaluating any model must be its ability to provide reliable
predictions across different settings.

Given this motivation, two important questions arise: What are the tools that we
typically use in economics to make predictions, and how effective are they across
different settings? The first set of tools consists of economic models that have
been developed to rationalize many behavioral observations, for instance in the
contexts of time and risk preferences, ambiguity, and loss aversion. However,
a growing body of research documents their limited ability to provide reliable
predictions across settings. As an alternative approach, machine learning algorithms
are gaining attention in the field of economics. These flexible tools allow researchers
to make predictions without referencing any economic model, but they have also
been criticized for their poor performance across different settings. Overall, poor
out-of-sample performance limits the scope of these approaches as credible tools to
guide decisions and influence policymaking.

In Chapter 1, co-authored with Shunto Kobayashi, we contribute to the analysis of
how well we can rationalize and predict behavior under risk in two ways. First,
we conduct an experiment with the main objective of evaluating the predictive
performance of economic models and machine learning approaches across different
settings. In particular, we look at three main prediction exercises, each characterized
by a different level of similarity between the settings involved. In the first exercise,
we test the ability to predict choices related to two different tests of Expected
Utility. In the second exercise, we attempt to predict certainty equivalents from
choices. In the third exercise, we explore the correlation between choices in the
experiment and behavior outside of the experiment. The key empirical finding
from the experiment is that both economic models and machine learning algorithms
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generate poor predictions across settings. Motivated by this finding, we develop
a new empirical strategy to make predictions and we demonstrate its potential for
predicting choices, certainty equivalents, as well as financial habits outside of the
experiment.

One interpretation of the empirical approach developed in Chapter 1 is that choices
can be classified as either “easy” or “hard”. Easy choices can be predicted without
committing to a specific decision model, as the predictions of all models align with
those of Expected Utility. Conversely, hard choices violate the independence axiom,
leading different models to offer divergent behavioral predictions. In Chapter 2, I
conduct an experiment in which individuals make choices over lotteries and express
how confident they are in their own choices. I show that easy choices, characterized
by high self-reported confidence and shorter response times, are more likely to
comply with the independence axiom. From an economic point of view, this result
is significant because it shows that decision confidence systematically correlates
with observed behavior and can thus be used to generate better predictions.

Chapter 3, co-authored with Marco Loseto, turns to the analysis of behavior under
risk in settings of strategic interaction. In particular, we study theoretical models
that link failures of Expected Utility to a lack of decision confidence in strategic
interaction settings. Within these settings, we characterize a new class of Nash
equilibria that we call “strict” because players in the equilibrium strictly prefer the
mixed actions to the pure actions chosen with positive probability. In these models,
randomization may serve as a tool to hedge against uncertainty regarding the value
of outcomes, future tastes, or degrees of risk aversion. Our analysis provides testable
predictions for models of deliberate randomization in strategic settings that can be
explored in future experimental work.
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C h a p t e r 1

ROBUST ESTIMATION OF RISK PREFERENCES

1.1 Introduction
Economic models estimated from experimental data have the potential to guide
decisions and influence policies when they accurately predict real-world behaviors.
For instance, financial advisors can use surveys involving risky choices to predict
the portfolio composition that best aligns with their clients’ risk attitudes. Similarly,
experiments on risk preferences can inform policies aimed at regulating high-risk
financial behaviors, such as speculative trading or excessive borrowing. However,
even within experimental settings, many economic models that successfully ra-
tionalize specific behaviors fail to provide reliable out-of-sample predictions (for
discussion and examples see, e.g., Agranov, Healy, and Nielsen, 2023; Chapman
et al., 2023, 2023; Dean and Ortoleva, 2015, 2019). As an alternative predictive ap-
proach, machine learning algorithms are gaining attention in the field of economics
(Hofman et al., 2021). These methods generate predictions without an explicit
economic model, but they have also been criticized for their poor out-of-sample
performance.1

This paper contributes to the important question of how well we can predict behavior
under risk in two ways. First, we conduct an experiment to examine two classical
behaviors inconsistent with Expected Utility (EU): the common ratio effect and
preferences for randomization. These behaviors have mostly been analyzed in
isolation in prior experimental work. Our findings reveal that leading economic
models and machine learning algorithms produce inaccurate predictions about one
non-EU behavior when trained on choices related to the other. Second, motivated by
this negative result, we propose a novel empirical approach to predict behavior under
risk. This approach can be used to study any preference that is complete, transitive,
and continuous—three common assumptions in decision-making models—without
committing to a specific economic model. We then demonstrate the potential of this
new approach in producing more accurate out-of-sample predictions, both within
our experiment and in high-stakes behaviors outside of the lab.

Section 1.2 introduces our novel experimental design, which allows us to assess
1See Athey (2017) and Coveney, Dougherty, and Highfield (2016).
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the capability of various approaches to concurrently rationalize and predict risky
choices in two important settings. The first setting is the common ratio version of the
Allais paradox, where subjects can violate EU by either displaying higher or lower
risk aversion when one option is certain, compared to when all options are risky.
The former behavior is referred to as the common ratio effect, and its counterpart as
the reverse common ratio effect. The second setting examines preferences for lottery
mixtures. Subjects can violate EU in this setting by showing a strict preference for
mixing lotteries, which we call preferences for randomization, or by displaying a
strict aversion to mixing lotteries, which we call aversion to randomization. In our
experiment, subjects engaged in incentivized binary choice tasks involving monetary
lotteries. The study was conducted on Prolific, with a total of 500 subjects recruited
on July 28, 2023. We call choice tasks associated with the common ratio version of
the Allais paradox “CR-tasks”, and those involving mixture lotteries “R-tasks”.

We focus on these two tests of EU because they contributed to the development of
many non-EU models under risk—see, for instance, Cerreia-Vioglio, Dillenberger,
and Ortoleva, 2015; Chew, Epstein, and U. Segal, 1991; Gul, 1991; Loomes and
Sugden, 1982, Kahneman and Tversky, 1979; Tversky and Kahneman, 1992—and
because of two limitations that we identified in prior experimental work. First,
previous experiments have studied these EU tests either in isolation or with a pre-
dominant focus on one over the other.2 As a result, little is known about whether
a model’s rationale for one non-EU behavior leads to accurate predictions for the
other. Second, most prior experiments do not allow for the unambiguous elicitation
of aversion to randomization.3 This is important because aversion to randomization
often emerges as the prediction of a popular model like Cumulative Prospect Theory
(CPT) under standard parametrizations used to explain behavior in the common ratio

2To the best of our knowledge, Agranov and Ortoleva (2017) is the only paper that studies both
the common ratio version of the Allais paradox and randomization within the same experiment.
Their experiment primarily focuses on randomization, with the common ratio version of the Allais
paradox implemented through a single pair of binary choice tasks presented to subjects at the end of
the experiment.

3There are three approaches that are commonly used in the literature to elicit preferences for
mixtures. The first approach requires subjects to choose between two lotteries multiple consecutive
times (Agranov and Ortoleva, 2017; Agranov, Healy, and Nielsen, 2023; Dwenger, Kübler, and
Weizsäcker, 2018). The second approach allows subjects to delegate their choice to an external
randomization device (Agranov and Ortoleva, 2017; Cettolin and Riedl, 2019; Sandroni, Ludwig,
and Kircher, 2013; Dwenger, Kübler, and Weizsäcker, 2018). The third approach presents a choice
between two lotteries and some mixtures between them (Agranov and Ortoleva, 2023; Dwenger,
Kübler, and Weizsäcker, 2018; Feldman and Rehbeck, 2022; Miao and Zhong, 2018; Sopher and
Narramore, 2000). Agranov and Ortoleva (2022) provide an overview of these methods. None of
them allows for the direct revelation of an aversion to randomization.
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version of the Allais paradox.

Our experiment employs a within-subjects design to study the common ratio version
of the Allais paradox in CR-tasks and randomization in R-tasks, using a common
set of lotteries. Moreover, to enable ourselves to unambiguously identify both pref-
erence for and aversion to randomization, we design R-tasks following a procedure
proposed by Camerer and Ho (1994). In particular, we evaluate attitudes towards
mixtures between any two lotteries 𝑠 and 𝑟 through two distinct R-tasks. In the first
task, subjects compare lottery 𝑠 to a 50-50 mixture of lotteries 𝑠 and 𝑟. In the second
task, they compare the 50-50 mixture to lottery 𝑟 . If a subject chooses the 50-50
mixture in both tasks, this indicates a preference for randomization. On the other
hand, if the subject avoids the 50-50 mixture in both tasks, we infer an aversion to
randomization.

Section 1.3 summarizes the main findings of the experiment and explores the ability
of popular economic models and machine learning algorithms to rationalize them.
The common ratio effect and preferences for randomization are the two most frequent
non-EU behaviors observed in CR-tasks and R-tasks, respectively. In particular, the
common ratio effect accounts for around 63% of all non-EU behaviors in CR-tasks,
while preferences for randomization account for around 55% of all non-EU behaviors
in R-tasks. Moreover, for fixed values of probabilities and prizes of the lotteries, the
percentage of non-EU behavior in CR-tasks attributed to the common ratio effect
is strongly positively correlated with the percentage of non-EU behavior in R-tasks
attributed to preferences for randomization, with a correlation coefficient of 0.63.

After documenting the emergence of and the correlation between non-EU behaviors
in the experiment, we turn to analyzing whether popular economic models and
machine learning algorithms can accommodate them. We consider EU and CPT
as economic models, and gradient boosting trees (GBT) and neural networks (NN)
as machine learning algorithms.4 In particular, we implement two types of out-
of-sample exercises. First, we evaluate the ability of various approaches to predict
choices in each EU test separately, employing 5-fold cross-validation within CR-
tasks and R-tasks. Second, we assess the ability of different approaches to predict
the correlation between non-EU behaviors across CR-tasks and R-tasks. To this end,
we use choices in CR-tasks as the training set and choices in R-tasks as the test set,
and vice versa.

4Details about the functional form assumptions we made on economic models and about the
training procedures for the machine learning algorithms can be found in Appendix A.2.
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Machine learning algorithms predict non-EU behavior within CR-tasks and R-tasks
better than economic models. In particular, GBT correctly classifies more than
60% of the observations in cross-validation exercises, while the best-performing
economic model, CPT, correctly classifies only around 46% of the observations.
However, the ranking between machine learning algorithms and economic models
is reversed when attempting to predict one non-EU behavior from another. In these
exercises, the predictive accuracy of machine learning models drops by about 30%,
raising concerns about their ability to produce generalizable predictions. Moreover,
CPT predicts a negative rather than a positive correlation between the common ratio
effect and preferences for randomization, performing worse than EU. Overall, EU
turns out to be the best model at predicting choices across CR-tasks and R-tasks,
despite the fact that non-EU behaviors account for more than 34% of the observations
in CR-tasks and more than 47% of the observations in R-tasks.

Our experiment sheds light on a new important instance of a more general problem:
economic models and machine learning algorithms often provide poor predictions
across settings. Motivated by this observation, Section 1.4 turns to the method-
ological contribution of the paper, which is the development of a new approach
to estimate preferences under risk and make predictions. Intuitively, estimating a
model of decision-making under risk requires making a series of assumptions about
preferences. Some assumptions are less controversial, as they are embodied in most
models. For instance, most models assume that preferences are complete, transitive,
and continuous. Other assumptions are more controversial, and this is the case
with the independence axiom. The independence axiom is the most empirically
challenged assumption of EU, and the common ratio effect and preference for ran-
domization are two examples of behaviors inconsistent with this assumption. Our
approach relies on the less controversial assumptions, as it may be more likely that
they hold across different settings, while remaining silent about the independence
axiom.

Rather than estimating a representation for a preference, which requires making
assumptions about the independence axiom, we estimate a representation for its EU
core, which is its largest subrelation that satisfies the independence axiom (Cerreia-
Vioglio, 2009). Assuming our preference of interest is complete, transitive, and
continuous, its EU core can be represented by a set of utility functions.5 This set
generates an upper and lower bound for risk aversion, which becomes wider as the

5In particular, Cerreia-Vioglio, Maccheroni, and Marinacci (2017) clarifies that the EU core is
represented by the set of “local utilities” introduced by Machina (1982).
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preference’s inconsistency with the independence axiom increases. We demonstrate
that the set of utilities representing the EU core can be easily estimated using standard
experimental datasets that examine the independence axiom, and we present the
estimation results from our experiment. By estimating mixture models, we observe
a significant degree of heterogeneity in terms of risk aversion and adherence to EU.
In Section 1.5, we assess whether this heterogeneity can be fruitfully exploited to
make reliable predictions across different settings.

We perform various types of out-of-sample exercises, distinguished by the differ-
ences in the features of training and test data. Initially, we revisit the two out-of-
sample exercises within and across CR-tasks and R-tasks introduced in Section 1.3.
Because our empirical approach applies to all models that relax EU by violating the
independence axiom, it remains silent about how exactly the independence axiom
fails. In other words, we can predict the emergence of EU and non-EU behavior,
but we cannot differentiate between specific non-EU behaviors. To establish a fair
comparison between our approach and other predictive methods, we evaluate the
ability of all methods to predict adherence to EU. Consistent with our findings
in Section 1.3, machine learning algorithms exhibit better performance when pre-
dicting non-EU behaviors in isolation but fall short when predicting one non-EU
behavior using choices related to the other as training data. Importantly, our struc-
tural model achieves the best performance in these latter exercises, demonstrating
potential advantages in making predictions that are not tied to specific economic
models.

To provide an additional setting for testing the predictive performance of various ap-
proaches, we elicited certainty equivalents for three binary lotteries at the end of our
experiment. Using choices from CR-tasks and R-tasks as training data, our method
predicts ranges of possible certainty equivalents, which we demonstrate to encom-
pass most of the observed certainty equivalents. Furthermore, we calculate point
predictions for certainty equivalents as the midpoints of these predicted ranges.6
To compare the accuracy of our approach against other methods, we employ mean
squared errors and find that machine learning algorithms underperform compared
to economic models, while our approach yields the most accurate out-of-sample
predictions.

6We abstract away from the question of what theoretical assumptions on preferences justify this
aggregation rule. Nevertheless, given that this rule outperforms both the economic models and the
machine learning algorithms that we consider, we find its theoretical analysis an interesting direction
for future work.
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Finally, we explore whether the heterogeneity in risk aversion and adherence to
EU, identified through our mixture model using experimental data, correlates with
risky behaviors in real-world scenarios. To pursue this, we gathered information
on subjects’ investment and insurance behaviors. In the context of investments, we
assessed whether they had engaged in stock trading and held any cryptocurrencies.
Additionally, we verified whether they had insured purchased items, such as mobile
phones. This is a classic example of small stakes risk aversion, which can be
challenging to rationalize with EU (Rabin, 2000). Our findings reveal that subjects
identified as more risk averse in the experiment are less likely to invest, particularly
in cryptocurrencies. Moreover, those identified as less consistent with EU are more
likely to insure purchased items. Overall, these correlations hint at our structural
model as a potentially useful tool for predicting behavior beyond experimental
settings.

Our paper has two broad implications for future research, which we expand upon
in our concluding Section 1.6. First, our novel experimental design enables us to
document the robust positive correlation that exists between the common ratio effect
and preferences for randomization. Popular behavioral models, like CPT, cannot
rationalize this correlation, and there is a clear need for new research to develop
superior predictive approaches. A natural path forward involves considering alterna-
tive theories. However, numerous non-EU models have already been developed over
the past decades, and their ability to rationalize and predict various behaviors under
risk has proven to be somewhat limited. Our paper proposes a different solution,
developing a structural estimation approach that is not tied to specific economic
models.

Second, our out-of-sample analysis reveals that the optimal approach for making
predictions may depend on at least two factors. The first factor concerns the differ-
ences between training and test sets. Machine learning algorithms exhibit superior
performance when training and test sets contain choices related to the same non-
EU behavior. However, their performance significantly deteriorates in all other
out-of-sample exercises we examine. The second factor pertains to the analyst’s
required level of detail in a prediction. Our model generates predictions that, while
potentially more accurate, are less detailed than those produced by conventional
predictive approaches. For example, it can only predict a range of possible certainty
equivalents for a lottery. If the analyst requires more detailed predictions, our ap-
proach can still serve as a valuable complement to conventional tools. For instance,
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it can be used to generate a range of certainty equivalents, after which economic
models or machine learning algorithms can be employed to select a value from this
range.

1.2 Experimental Design
The key objective of the experiment is to evaluate the predictive performance of
economic models and machine learning algorithms across different settings. To
achieve this objective, we have designed an experiment involving binary choice tasks
between monetary lotteries. The first two settings that we consider are different tests
of the independence axiom: one is the common ratio version of the Allais paradox,
and the other assesses attitudes toward mixing lotteries. Moreover, as additional
settings for predictions, we elicit certainty equivalents for three binary lotteries and
collect information about subjects’ financial habits.7

Binary Choice Tasks
We elicit choices between lotteries over three monetary prizes 𝐿 < 𝑀 < 𝐻. We
represent the three-outcome lottery that gives $𝐿 with probability 𝑝𝐿 , $𝑀 with
probability 𝑝𝑀 , and $𝐻 with probability 𝑝𝐻 as ($𝐿, 𝑝𝐿; $𝑀, 𝑝𝑀 ; $𝐻, 𝑝𝐻). More-
over, we denote by 𝛿𝑋 the degenerate lottery that pays $𝑋 with certainty. The
independence axiom imposes consistency requirements on choices across two or
more binary choice tasks. We first assess the independence axiom via the common
ratio version of the Allais paradox, which involves two types of binary choice tasks
that we call CR-tasks:

CR1: 𝛿𝑀 = ($𝑀, 1) vs. 𝑟 = ($𝐿, 1 − 𝑝𝐻 ; $𝐻, 𝑝𝐻).

CR2: 0.3𝛿𝑀 + 0.7𝛿𝐿 = ($𝐿, 0.7; $𝑀, 0.3) vs. 0.3𝑟 + 0.7𝛿𝐿 = ($𝐿, 1 − 0.3𝑝𝐻 ; $𝐻, 0.3𝑝𝐻).

We use the Marschak–Machina (MM) triangle to describe graphically the lotteries
in the experiment (Marschak, 1950; Machina, 1982). The left graph in Figure 1.1
illustrates the CR-tasks in the MM triangle. In the MM triangle, the probability of
receiving the highest prize 𝐻 is on the vertical axis, and the probability of receiving
the lowest prize 𝐿 is on the horizontal axis. Therefore, the generic point (𝑝𝐿 , 𝑝𝐻)
in the MM triangle represents the lottery ($𝐿, 𝑝𝐿; $𝑀, 1 − 𝑝𝐿 − 𝑝𝐻; $𝐻, 𝑝𝐻). Each
dashed segment connecting two lotteries indicate that there is a choice task that

7We preregistered the experimental design and the analysis plan at the AEA RCT Registry as
AEARCTR-0011749 (Kobayashi and Lucia, 2023).
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Figure 1.1: Choice Tasks.

involves these lotteries. For instance, the black dashed segments in the left MM
triangle of Figure 1.1 represent CR1 choice tasks, while the green dashed segments
represent CR2 choice tasks.

There are two possible scenarios in which subjects’ choices in CR-tasks are incom-
patible with the independence axiom. The common ratio effect (CRE) refers to the
violation of the independence axiom in which subjects in the experiment choose
lottery 𝛿𝑀 in CR1, and lottery 0.3𝑟 + 0.7𝛿𝐿 in CR2. The opposite choices in CR1
and CR2 constitute the other possible violation of the independence axiom, known
as the reverse common ratio effect (RCRE).

As an additional assessment of the independence axiom, we also study subjects’ at-
titudes towards mixtures, i.e., randomization. To this end, we consider the following
two types of binary choice tasks that we refer to as R-tasks:

R1: 𝛿𝑀 = ($𝑀, 1) vs. 0.5𝛿𝑀 + 0.5𝑟 = ($𝐿, 0.5(1 − 𝑝𝐻); $𝑀, 0.5; $𝐻, 0.5𝑝𝐻).

R2: 𝑟 = ($𝐿, 1 − 𝑝𝐻 ; $𝐻, 𝑝𝐻) vs. 0.5𝛿𝑀 +0.5𝑟 = ($𝐿, 0.5(1 − 𝑝𝐻); $𝑀, 0.5; $𝐻, 0.5𝑝𝐻).

The right MM triangle in Figure 1.1 represents the R1 choice tasks (depicted by black
dashed segments) and the R2 choice tasks (depicted by green dashed segments). In
studies exploring preferences for randomization, it is common to combine R1 and
R2 into a single choice task in which subjects can select either lottery 𝛿𝑀 , lottery
𝑟, or a combination of the two.8 Choosing a mixture of lotteries 𝛿𝑀 and 𝑟 is

8Agranov and Ortoleva (2022) provide an overview of this literature.
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typically interpreted as a preference for randomization. However, this approach has
a limitation: it does not allow us to observe whether subjects exhibit aversion to
randomization, meaning they prefer either of the lotteries 𝛿𝑀 and 𝑟 over the mixture.
By treating R1 and R2 as separate choice tasks, we can observe both preferences for
and aversion to randomization.9 Specifically, subjects in the experiment display a
preference for randomization when they consistently choose the lottery 0.5𝛿𝑀+0.5𝑟,
and aversion to randomization when they consistently reject the lottery 0.5𝛿𝑀 +0.5𝑟.
Both a preference for randomization and an aversion to it are behaviors that violate
the independence axiom.

All subjects engage in the CR1, CR2, R1, and R2 choice tasks involving five dif-
ferent prize triplets (𝐿, 𝑀, 𝐻): (0, 15, 30), (5, 15, 25), (10, 20, 30), (15, 20, 25),
and (0, 10, 20). For each of these triplets, subjects undertake all types of tasks
with five different probability values for the high prize 𝑝𝐻: 0.5, 0.6, 0.7, 0.8, and
0.9. Thus, subjects face both CR-tasks and R-tasks at precisely the same values
of (𝐿, 𝑀, 𝐻, 𝑝𝐻). In addition to these 100 choice tasks, the experiment includes
two choice tasks in which one lottery stochastically dominates the other (referred
to as FOSD choice tasks), and three additional types of choice tasks used to elicit
certainty equivalents:10

MPL1: ($𝑋, 1) vs. ($0, 0.5; $20, 0.5) for 𝑋 ∈ {3, . . . , 13}.

MPL2: ($𝑋, 1) vs. ($5, 0.5; $25, 0.5) for 𝑋 ∈ {8, . . . , 18}.

MPL3: ($𝑋, 1) vs. ($10, 0.5; $30, 0.5) for 𝑋 ∈ {13, . . . , 23}.

We choose not to incorporate choice tasks between certain amounts and a given
lottery into a list, as is typically done using the multiple price list (MPL) method.
This design decision is made to minimize the amount of instruction that subjects
need to understand, retaining binary choice tasks as the sole method for expressing
their preferences.11 We use the certainty equivalents elicited from MPL1, MPL2, and

9Camerer and Ho (1994) first uses this approach to distinguish between violations of betweenness,
which imposes neutrality over mixing lotteries, and violations of transitivity.

10We exclude from the analysis any subjects who violate first-order stochastic dominance more
than once. This happens for three subjects only.

11Different procedures to elicit risk preferences may result in different observed behavior. Free-
man, Halevy, and Kneeland (2019) find that embedding a pairwise choice between a certain monetary
amount and a risky lottery in a choice list increases the proportion of subjects choosing the risky
lottery.
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Table 1.1: Summary of the experimental design.

Block 1 Block 2
CR1 CR2 R1 R2 FOSD MPL1 MPL2 MPL3

# Tasks 25 25 25 25 2 11 11 11
Order Tasks Randomized MPL1, MPL2, MPL3
Order Blocks Always First Always Second

MPL3 choice tasks to further assess the out-of-sample accuracy of the predictions
derived from the empirical analysis of the EU core. Table 1.1 provides a summary
of our experimental design. The choice tasks in the experiment are divided into two
blocks: Block 1 and Block 2. Block 1 comprises the choice tasks used to test the
independence axiom (CR1, CR2, R1, and R2), along with the FOSD choice tasks.
The 102 choice tasks in Block 1 are presented to subjects in a randomized order at
the beginning of the experiment.

Upon completing Block 1, subjects then proceed to complete the remaining choice
tasks in Block 2 (MPL1, MPL2, and MPL3), specifically designed to elicit certainty
equivalents. In Block 2, subjects first encounter MPL1 tasks, followed by MPL2
tasks, and ultimately MPL3 tasks. Within each task type in Block 2, the monetary
amounts are presented in ascending order.

Recruitment and Experimental Payments
We recruited 500 subjects from Prolific on July 28, 2022. The experiment was con-
ducted using oTree. Our sample consisted of United States citizens who possessed
at least a high-school education and maintained a high approval rate on Prolific.
For each subject, we collected information about gender, age, income, insurance
purchases, and investment behavior.

Each subject received $5.50 upon completing the experiment. Additionally, every
subject had a one-in-six chance of being selected to receive an additional bonus
payment based on their decisions during the study. Out of the 135 choice tasks, each
carried an equal probability of determining the bonus payment amount. Specifically,
subjects received the realized amount from the lottery they chose in the randomly
selected choice task.12

12The complete instructions with screenshots from the experiment are presented in Appendix
A.5.
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Figure 1.2: Correlation between the overall proportions of non-EU behaviors (left
graph) and between the relative proportions of specific non-EU behaviors (right
graph) across CR-tasks and R-tasks. Each observation corresponds to a single
parameterization (𝐿, 𝑀, 𝐻, 𝑝𝐻).

1.3 Main Experimental Findings
In this section, we explore the non-EU behaviors observed in CR-tasks and R-tasks,
along with the correlation between them. The left graph in Figure 1.2 illustrates the
proportion of non-EU choice patterns in CR-tasks (on the x-axis) and R-tasks (on
the y-axis) for each pair of lotteries (𝛿𝑀 , 𝑟) in the experiment.13 Each observation
corresponds to a single parameterization (𝐿, 𝑀, 𝐻, 𝑝𝐻). Given that there are five
triplets of prizes in the experiment and five values of 𝑝𝐻 for each triplet, there are
25 observations graphed. All observations are situated to the left of the 45-degree
dashed line, indicating that non-EU behavior is more prevalent in R-tasks than in
CR-tasks for all pairs of lotteries. Moreover, there is a strong positive correlation
between non-EU behaviors in CR-tasks and R-tasks, evidenced by a correlation
coefficient of 0.9104. This high correlation is noteworthy because it implies that
observing EU failures in specific contexts, such as tests of the CRE, may provide
insights into other potential EU failures of interest.

Next, we turn to analyzing which of the non-EU behaviors are more likely to be
observed in our experiment. For each pair of lotteries (𝛿𝑀 , 𝑟), two potential non-EU
choice patterns exist in both CR-tasks and R-tasks. In the context of CR-tasks, these
patterns are represented by the CRE and the RCRE. Conversely, within R-tasks,

13Appendix A.1 provides a comprehensive description of EU and non-EU choice patterns in
CR-tasks and R-tasks.
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the two non-EU choice patterns manifest as always choosing the mixture (AM) and
never choosing the mixture (NM).

The right graph in Figure 1.2 displays the proportion of CRE choice patterns over the
total non-EU behaviors in CR-tasks on the x-axis, and the proportion of AM choice
patterns over the total non-EU behaviors in R-tasks on the y-axis. Two important
observations arise from Figure 1.2. First, CRE and AM are the most frequent non-
EU choice patterns for the majority of pairs of lotteries in the experiment. At the
same time, the emergence of NM choice patterns is non-negligible for many pairs
of lotteries. This suggests that experiments which do not account for the elicitation
of aversion to randomization might neglect a critical dimension in the analysis of
attitudes towards randomization. The second fact documented in Figure 1.2 is the
strong positive correlation between the prevalence of the CRE and of AM choice
patterns, with a correlation coefficient of 0.6311.

Result 1. Non-EU behaviors in CR-tasks and R-tasks are strongly positively corre-
lated, with a correlation coefficient of 0.9104. Among non-EU behaviors, the CRE
and AM are the two most frequently observed ones in CR-tasks and R-tasks, respec-
tively. Moreover, these two non-EU behaviors are strongly positively correlated,
with a correlation coefficient of 0.6311.

Out-of-Sample Predictions: Conventional Toolbox
We now investigate whether leading economic models and machine learning al-
gorithms can predict the observed emergence of the two non-EU behaviors and
correlation between them. As popular economic models, we analyze EU model and
CPT, which aims to rationalize non-EU behaviors through probability weighting. In
addition, we examine the predictive performance of GBT and NN, which are two
common machine learning algorithms used for classification tasks. We contrast the
performance of EU, CPT, GBT, and NN through two out-of-sample exercises.14 In
the first, we separately analyze behavior in CR-tasks and R-tasks. For each task
type, we assess the out-of-sample performance of various methods through cross-
validation. In the second exercise, we use choices from either CR-tasks or R-tasks
as the training data and aim to predict choices in the alternate tasks.

For all economic models, we estimate mixture models to account for heterogeneity.
We also provide information about each subjects to machine learning algorithms

14Details on the procedures we followed to estimate economic models and train machine learning
algorithms can be found in Appendix A.2. Instead, Appendix A.3 reports the values of the estimated
parameters under EU and CPT.
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Table 1.2: Out-of-sample exercises within CR-tasks and R-tasks: predict choice
patterns.

Exercise Pattern Models
EU CPT GBT NN

Train: 80% CR-tasks
Test: 20% CR-tasks

Choice
Patterns

50.62%
(0.82)

46.01%
(1.13)

63.46%
(1.23)

46.30%
(0.78)

Train: 80% R-tasks
Test: 20% R-tasks

Choice
Patterns

40.95%
(1.73)

47.06%
(1.22)

60.14%
(0.56)

38.74%
(1.06)

Combined Choice
Patterns

45.78%
(5.25)

46.54%
(1.24)

61.80%
(1.97)

42.39%
(4.22)

Notes: Percentages of correctly classified choice patterns. Standard deviations in parenthe-
ses.

including individual fixed effects in the training data. We use as main metric to
evaluate these methods the percentages of choice patterns that they correctly classify.
Because these methods provide probabilistic predictions, we identify the predicted
choice patterns as the ones with the highest associated predicted probability.15

Cross-Validation within CR-Tasks and R-Tasks

We employ a fivefold cross-validation, treating data from CR-tasks and R-tasks
independently. To divide the available data into five equally sized subsets, we use
the following randomized procedure: For each subject and every triplet of prizes
in the experiment, we randomly allocate all choice tasks associated with one of
the five possible probabilities for the high prize 𝑝𝐻 in the risky lottery to each of
the five subsets. In doing so, we ensure that each iteration of the cross-validation
procedure contains sufficient information about all subjects within both training and
test sets. This approach enables accounting for heterogeneity in preferences during
the training phase and leverages this heterogeneity to formulate predictions.

Table 1.2 presents the average percentages of choice patterns that are accurately
classified across the five iterations of the cross-validation exercises within CR-tasks
and R-tasks, with standard deviations in parentheses. The first two rows display the
results for the two cross-validation exercises separately, while the last row provides
the aggregate results from both exercises. GBT clearly emerges as the winner from

15We refer to Appendix A.4 for a more comprehensive probabilistic and deterministic evaluations
of all predictive tools. The findings presented in this section are qualitatively similar to the ones
obtained in Appendix A.4.
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Table 1.3: Out-of-sample exercises across CR-tasks and R-tasks: predict choice
patterns.

Exercise Prediction Models
EU CPT GBT NN

Train: CR-tasks
Test: R-tasks

Choice
Patterns 40.72% 42.70% 35.71% 35.64%

Train: R-tasks
Test: CR-tasks

Choice
Patterns 48.59% 46.29% 34.16% 21.79%

Combined Choice
Patterns

44.66%
(5.56)

44.50%
(2.54)

34.93%
(1.10)

28.72%
(9.79)

Notes: Percentages of correctly classified choice patterns. Standard deviations in parenthe-
ses.

this out-of-sample analysis, delivering markedly superior performance compared to
both NN and economic models.

Result 2. GBT surpasses all other approaches in cross-validation exercises within
CR-tasks and R-tasks, achieving an average percentage of correctly predicted choice
patterns close to 61%. For context, CPT, the runner-up approach, showcases a
percentage of correctly predicted choice patterns that is approximately 15% lower.

Out-of-Sample Predictions across CR-Tasks and R-Tasks

We conduct two distinct exercises: In the first, CR-tasks serve as the training data
and R-tasks as the test data. In the second exercise, conversely, we reverse the
roles, employing R-tasks for training and CR-tasks for testing. The percentages of
correctly classified choice patterns from these exercises are presented in Table 1.3.
The first two rows of Table 1.3 display the results for the two exercises separately,
while the last row summarizes the average performance across both exercises.

The descriptive analysis of behaviors in CR-tasks and R-tasks highlight systematic
violations of EU. Yet, in these out-of-sample exercises, EU has the best overall out-
sample performance. CPT performs worse than EU because it predicts a correlation
between non-EU behaviors that is opposite to what we observe in our experiment.
In particular, CPT generally rationalizes the CRE through probability weighting.
However, probability weighting also implies aversion to randomization for the lot-
teries in the experiment, while we observe preferences for randomization as the most
frequent non-EU behavior.
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Machine learning algorithms also demonstrate notably poor performance, with per-
centages of correctly classified choice patterns around 30% lower than those achieved
in cross-validation exercises within CR-tasks and R-tasks. The primary distinction
between out-of-sample exercises within a specific type of task and those across
tasks is that in the former, lotteries in the training and test sets are identical, while
in the latter, they are marginally different. Specifically, choices in R-tasks involve
mixture lotteries with three prizes, whereas all lotteries in CR-tasks feature one or
two possible prizes. In general, one might expect machine learning algorithms to
perform less effectively as the differences between training and test sets increase.
However, the strikingly different performance of these approaches in out-of-sample
exercises across choices with very similar lotteries raise concerns about their ability
to produce generalizable predictions.

The economic models and the machine learning algorithms that we consider fail
in the out-of-sample exercises that are most interesting from an economic point
of view. If a predictive approach is not capable of predicting different behaviors
within the same experiment, then there is little hope that it can be used as guidance
for predicting real-world behaviors of interest. The lack of generalizability of
conventional predictive approaches calls for the development of new empirical
strategies to make predictions.

Result 3. In cross-validation exercises across CR-tasks and R-tasks, economic
models significantly outperform machine learning algorithms. Both EU and CPT
allow for approximately 44.5% of choice patterns to be correctly classified across
the two out-of-sample exercises. GBT, while achieving the best performance among
machine learning algorithms, has a percentage of correctly classified choice patterns
that is, on average, around 10% below that of economic models.

1.4 Empirical Framework
In this section, we begin by reviewing the classic empirical approach used to estimate
economic models from choice data. Next, we introduce the notion of the EU core,
and we detail the empirical strategy that we developed for estimating it. Finally,
we present our estimation results, which will then be used in Section 1.5 to make
out-of-sample predictions.
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Classic Estimation Approach
In the classic empirical framework proposed by Hey and Orme (1994), a decision-
maker chooses lottery 𝑝 over lottery 𝑞 if

𝑉 (𝑝, 𝑞) + 𝜖 ≥ 0,

where 𝑉 (𝑝, 𝑞) is a quantity that is greater or equal to zero if the decision-maker
prefers lottery 𝑝 over lottery 𝑞, and 𝜖 is an error term, assumed to be normally
distributed with a mean of zero and a variance of 𝜎. The specific functional form of
𝑉 (𝑝, 𝑞) depends on the assumptions made about the decision-making model. For
instance, under EU, 𝑉 (𝑝, 𝑞) represents the difference in expected utilities between
lottery 𝑝 and lottery 𝑞.

Within this framework, the analyst must select a decision model and also make para-
metric assumptions within that chosen model. For example, under EU, a common
assumption is that the decision-maker operates with a constant relative risk-aversion
(CRRA) utility function. With this assumption, the analyst can estimate the free
parameter of the CRRA utility function and the variance of the error term using
choice data. The estimated model can then be used to undertake counterfactual
exercises, such as predicting choices between lotteries in an alternative dataset.

The analysis in Section 1.3 highlights the risks associated with specifying everything
about a decision model. For instance, CPT rationalizes the CRE with probability
weighting. However, probability weighting also implies aversion to randomization
in the experiment, which is inconsistent with what we find. At the same time, the
failures of machine learning algorithms in out-of-sample exercises across different
types of tasks also emphasize the potential benefit of predictive approaches that rely
on an underlying economic structure.

The methodological question we address is: can we generalize the empirical frame-
work of Hey and Orme (1994) to predict behavior under risk without committing to
specific decision models? The empirical approach that we propose as an answer to
this question builds on the theoretical notion of EU core.

The EU core
Given any reflexive, transitive, and continuous preference relation ≿, its EU core is
the subrelation16 ≿∗ such that for all lotteries 𝑝, 𝑞, 𝑟 and for all 𝜆 ∈ (0, 1],

𝑝 ≿∗ 𝑞 ⇔ 𝜆𝑝 + (1 − 𝜆)𝑟 ≿ 𝜆𝑞 + (1 − 𝜆)𝑟.
16≿∗ is a subrelation of ≿ if for all lotteries 𝑝 and 𝑞, 𝑝 ≿∗ 𝑞 implies 𝑝 ≿ 𝑞.
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That is, 𝑝 ≿∗ 𝑞 whenever the decision-maker prefers 𝑝 to 𝑞 and mixing both
lotteries with a third common lottery 𝑟 does not affect the relative preferences of
the decision-maker between 𝑝 and 𝑞.17 Cerreia-Vioglio (2009) proves that ≿∗ is
the greatest subrelation of ≿ that satisfies the independence axiom; that is, if ≿∗∗

is another subrelation of ≿ that satisfies the independence axiom, then ≿∗∗ is a
subrelation of ≿∗. If a preference ≿ violates the independence axiom, then its EU
core is an incomplete preference relation and admits a multi-utility representation.
In particular, there exists a set of utilities W such that for all lotteries 𝑝 and 𝑞, we
have 𝑝 ≿∗ 𝑞 if and only if the difference in expected utilities between 𝑝 and 𝑞 is
non-negative for all utilities within the set W.

Our empirical approach involves obtaining information about a preference by es-
timating the set of utility functions that represent its EU core.18 In this way, we
can obtain estimates and generate predictions that do not rely on specific decision
models.

Econometric Specification
We detail our empirical framework in the context of our experimental design. Our
study involves lotteries over a finite set of 𝐾 monetary prizes 𝑋 = {𝑥1, . . . , 𝑥𝐾}, with
𝑥1 < 𝑥2 < · · · < 𝑥𝐾 . We consider a set of 𝐿 utility functions W = {𝑣1, . . . , 𝑣𝐿},
each utility 𝑣𝑙 : 𝑋 → R is representable as a vector with its 𝑘-th component, 𝑣𝑙𝑘 ,
being equal to 𝑣𝑙 (𝑥𝑘 ). We restrict our attention to normalized sets of utilities, setting
𝑣11 = · · · = 𝑣𝐿1 = 0 and 𝑣1𝐾 = · · · = 𝑣𝐿𝐾 = 1.19 This means all utilities assign zero
to the worst outcome 𝑥1 and one to the best outcome 𝑥𝐾 . Moreover, we assume all
utilities are weakly increasing; i.e., 𝑣𝑙1 ≤ 𝑣𝑙2 ≤ . . . ≤ 𝑣𝑙𝐾 for each 𝑣𝑙 ∈ W.

We define 𝐼 = {1, . . . , 𝑁} as a set of subjects in our experiment, △(𝑋) as the set
of lotteries over 𝑋 , and by D ⊆ △(𝑋)2 as a subset of pairs of lotteries where the
subjects express their preferences. An empirical analysis of the EU core requires
evaluating whether it holds that 𝑝 ≿∗

𝑖
𝑞 or 𝑞 ≿∗

𝑖
𝑝 for each subject 𝑖 ∈ 𝐼 and each

pair of lotteries (𝑝, 𝑞) ∈ D. In the traditional estimation framework, where the
objective is to estimate a subject’s preferences, the choices made by the subjects

17We study the EU core by considering only “one-stage” lottery mixtures, rather than two-stage
compound lotteries. In other words, we focus on mixture independence, rather than compound
independence, as defined in Uzi Segal (1990).

18This set of utility functions is unique up to the closed convex hull. Our empirical approach
aims to estimate the extreme points of the convex set of utility functions that represent the EU core.

19In our estimation procedure, the number of utilities 𝐿 is an hyperparameter that can be chosen
using standard model selection techniques.
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Figure 1.3: Examples of CR-tasks and R-tasks.

can be used directly as inputs for the estimation. However, when the focus of the
estimation shifts from a preference relation to its EU core, additional information
becomes necessary. Specifically, we need to assess whether the choices made by
the subjects signal a violation of the independence axiom.

By observing subjects’ choices in experimental settings that test the independence
axiom, we construct an index, 𝐶𝑜𝑟𝑒𝑖, for each subject 𝑖 as follows: for each pair of
lotteries (𝑝, 𝑞) ∈ D,

𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) B


3 if there is no experimental evidence against 𝑝 ≿∗

𝑖
𝑞

2 if there is no experimental evidence against 𝑞 ≿∗
𝑖
𝑝

1 otherwise.

We construct two distinct versions of the index 𝐶𝑜𝑟𝑒𝑖 within the context of our
experiment: 𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
and 𝐶𝑜𝑟𝑒𝑅

𝑖
. Each version builds upon different sets of infor-

mation. Specifically, 𝐶𝑜𝑟𝑒𝐶𝑅
𝑖

uses data solely from CR-tasks, while𝐶𝑜𝑟𝑒𝑅
𝑖

is based
on R-tasks only. We explain how we construct these indexes using the examples
from Figure 1.3. The left and right graphs in Figure 1.3, respectively, depict the
CR-tasks and R-tasks associated with a generic pair of lotteries (𝑠1, 𝑟1) from our
experiment.

The absence of experimental evidence contradicting 𝑠1 ≿
∗
𝑖
𝑟1 in CR-tasks means

that subject 𝑖 chooses for lottery 𝑠1 in the CR1 task and lottery 𝑠2 in the CR2 task.
Observing this choice pattern, we assign the value of 3 to the index 𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
(𝑠1, 𝑟1).

In a parallel manner, we find no evidence refuting 𝑟1 ≿
∗
𝑖
𝑠1 in the CR-tasks if subject
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𝑖 chooses lottery 𝑟1 in the CR1 task and lottery 𝑟2 in the CR2 task. In this case, we
assign to the index𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
(𝑠1, 𝑟1) the value of 2. The two remaining choice patterns

are the CRE and the RCRE, and are both incompatible with EU. If we observe either
the CRE or the RCRE for subject 𝑖, we assign to the index 𝐶𝑜𝑟𝑒𝐶𝑅

𝑖
(𝑠1, 𝑟1) the value

of 1.

Turning to R-tasks, we find no evidence against 𝑠1 ≿
∗
𝑖
𝑟1 if subject 𝑖 chooses lottery

𝑠1 in the R1 task and lottery 𝑚 in the R2 task. When this happens, we assign the
value of 3 to the index 𝐶𝑜𝑟𝑒𝑅

𝑖
(𝑠1, 𝑟1). Similarly, if subject 𝑖 chooses lottery 𝑚 in

the R1 task and lottery 𝑟1 in the R2 task, we have no evidence against 𝑟1 ≿
∗
𝑖
𝑠1. In

this case, we assign the value of 2 to the index 𝐶𝑜𝑟𝑒𝑅
𝑖
(𝑠1, 𝑟1). The two remaining

non-EU choice patterns are AM and NM. If we observe either AM or NM for subject
𝑖, we assign to the index 𝐶𝑜𝑟𝑒𝑅

𝑖
(𝑠1, 𝑟1) the value of 1.

We define 𝑉 (𝑝, 𝑞; 𝑣𝑙) as the difference in expected utilities between lottery 𝑝 and
lottery 𝑞, given a Bernoulli utility function 𝑣𝑙 . For each subject 𝑖 ∈ 𝐼, utility 𝑣𝑙 ∈ W,
and comparison (𝑝, 𝑞) ∈ D, we associate an error term 𝜖𝑖,𝑙,(𝑝,𝑞) . We assume that the
vector of error terms [𝜖𝑖,1,(𝑝,𝑞) , . . . , 𝜖𝑖,𝐿,(𝑝,𝑞)] across utilities follows a multivariate
normal distribution with mean [0, . . . , 0] ∈ R𝐿 and covariance matrix Σ ∈ R𝐿×𝐿 .
For any two lotteries 𝑝 and 𝑞, and for any subject 𝑖, our empirical framework
postulates that

𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3 ⇔ 𝑉 (𝑝, 𝑞, 𝑣𝑙) − 𝜖𝑖,𝑙,(𝑝,𝑞) ≥ 0, for all 𝑙 ∈ {1, . . . , 𝐿},

and

𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2 ⇔ 𝑉 (𝑝, 𝑞, 𝑣𝑙) − 𝜖𝑖,𝑙,(𝑝,𝑞) < 0, for all 𝑙 ∈ {1, . . . , 𝐿}.

In other words, we postulate to find no evidence against 𝑝 ≿∗
𝑖
𝑞 whenever the

difference in expected utilities between lotteries 𝑝 and 𝑞, minus an error term, is
non-negative for all utilities. Similarly, we expect to find no evidence against 𝑞 ≿∗

𝑖
𝑝

whenever the opposite condition holds.

Our flexible formulation of the error structure extends the normality assumption of
the unique error term in Hey and Orme (1994), allowing us to account for potential
noise in the 𝐶𝑜𝑟𝑒𝑖 index that might arise from several sources. First, we construct
this index by observing the choices of subject 𝑖 in experimental settings that test
the independence axiom. If these choices are noisy, then the resulting 𝐶𝑜𝑟𝑒𝑖 index
will also be noisy. Additionally, even in the absence of noise in the choices, the
𝐶𝑜𝑟𝑒𝑖 index might still be noisy due to issues with missing data. For example, we
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might find no evidence against 𝑝 ≿∗
𝑖
𝑞 simply because we could not observe enough

choices involving lotteries 𝑝 and 𝑞.

To account for variation in preferences across subjects, we employ a mixture model
and postulate that each subject 𝑖 belongs to one of 𝐶 possible different groups
(Bruhin, Fehr-Duda, and Epper, 2010). We denote by 𝑣𝑐

𝑙
the 𝑙-th utility in group

𝑐 and by Σ𝑐 the covariance matrix in group 𝑐, with 𝑐 ∈ {1, . . . , 𝐶}. Within this
framework, the probability that we find no experimental evidence against 𝑝 ≿∗

𝑖
𝑞 if

subject 𝑖 belongs to group 𝑐 is:

Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3 | 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐) = Φ

(
𝑉 (𝑝, 𝑞; 𝑣𝑐1), . . . , 𝑉 (𝑝, 𝑞; 𝑣𝑐𝐿);Σ𝑐

)
,

where Φ represents the cumulative distribution function of the mean-zero multi-
variate normal distribution. Similarly, the probability that we find no experimental
evidence against 𝑞 ≿∗

𝑖
𝑝 if subject 𝑖 belongs to group 𝑐 is:

Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2 | 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐) = Φ

(
−𝑉 (𝑝, 𝑞; 𝑣𝑐1), . . . ,−𝑉 (𝑝, 𝑞; 𝑣𝑐𝐿);Σ𝑐

)
.

Given the observed index𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) for all pairs of lotteries (𝑝, 𝑞) ∈ D, we denote
by 𝑓 (𝐶𝑜𝑟𝑒𝑖; 𝑣𝑐1, . . . , 𝑣

𝑐
𝐿
, Σ𝑐) the likelihood function for subject 𝑖 belonging to group

𝑐: ∏
(𝑝,𝑞)∈D

(
1 (𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3) · Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3 | 𝑣𝑐1, . . . , 𝑣

𝑐
𝐿 , Σ𝑐)

+ 1 (𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2) · Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2 | 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐)

+ 1 (𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 1) · (1 − Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 3) − Pr(𝐶𝑜𝑟𝑒𝑖 (𝑝, 𝑞) = 2))
)
.

Let 𝜋𝑐 represent the probability of a subject belonging to group type 𝑐. The log-
likelihood of the finite mixture model is given by:

𝑁∑︁
𝑖=1

ln
𝐶∑︁
𝑐=1

𝜋𝑐 𝑓 (𝐶𝑜𝑟𝑒𝑖; 𝑣𝑐1, . . . , 𝑣
𝑐
𝐿 , Σ𝑐),

where the first sum is over subjects and the second sum is over groups.

To sum, for each group of subjects 𝑐, structural parameters are utility functions
{𝑣𝑐1, . . . , 𝑣

𝑐
𝐿
}, covariance matrices Σ𝑐, and probability of group member ship 𝜋𝑐.

We estimate these parameters through maximum likelihood estimation by using the
log-likelihood given above.
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Figure 1.4: Set of utility functions in the MM triangle.

Model Implications: Risk Aversion and Adherence to EU
By using an example, we explain the behavioral implications of our empirical
framework. Figure 1.4 illustrates three generic choice tasks in the MM triangle:
(𝑠, 𝑟1), (𝑠, 𝑟2), and (𝑠, 𝑟3). To obtain predictions from any decision model in these
tasks, one only needs to know the shape of the indifference curve passing through
lottery 𝑠. Lotteries to the left of this curve will be strictly better than 𝑠, while those
to the right will be strictly worse.

Under our decision model, each subject makes their decision based on not just one
but a set of utility functions. This means that there are multiple indifference curves
passing through a given lottery, each corresponding to a different utility function.
For instance, the blue solid segments in Figure 1.4 represent two indifference curves
passing through lottery 𝑠. In this new setting, any lottery 𝑟 that lies to the left of both
indifference curves will be unambiguously preferred to 𝑠. Specifically, for every
such lottery, we can conclude that 𝑟 ≿∗ 𝑠, as is the case for lottery 𝑟1 in Figure 1.4.
Conversely, any lottery 𝑟 that lies to the right of both indifference curves will be
unambiguously worse than 𝑠. In particular, for every such lottery, we can conclude
that 𝑠 ≿∗ 𝑟, as is the case for lottery 𝑟3 in Figure 1.4. For all other lotteries, without
making further assumptions, the only conclusion we can draw is that neither 𝑠 ≿∗ 𝑟
nor 𝑟 ≿∗ 𝑠 holds.

More generally, given a set of utilities W and any lottery 𝑟 on the hypotenuse of the
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MM triangle assigning probability 𝑝𝐻 to the high prize 𝐻 and probability 1− 𝑝𝐻 to
the low prize 𝐿, we can compute the range of probabilities [𝑝

𝐻
, 𝑝𝐻], where

𝑝
𝐻
B max {𝑝𝐻 ∈ [0, 1] : 𝑣(𝑀) ≥ 𝑝𝐻𝑣(𝐻) + (1 − 𝑝𝐻) 𝑣(𝐿) for all 𝑣 ∈ W} ,

and

𝑝𝐻 B min {𝑝𝐻 ∈ [0, 1] : 𝑝𝐻𝑣(𝐻) + (1 − 𝑝𝐻) 𝑣(𝐿) ≥ 𝑣(𝑀) for all 𝑣 ∈ W} .

These two quantities are well defined because utilities are assumed to be weakly
increasing and continuous. In particular, 𝑝

𝐻
is the highest probability of the high

prize for which we have 𝑠 ≿∗ 𝑟. Similarly, 𝑝𝐻 is the lowest probability of the high
prize for which we have 𝑟 ≿∗ 𝑠. The green squares in Figure 1.4 describe the two
points 𝑝

𝐻
and 𝑝𝐻 given the two indifference curves.

The range of probabilities [𝑝
𝐻
, 𝑝𝐻] is a measure for the extent to which a subject

adheres to EU. In general, the narrower the range of probabilities, the more consistent
the underlying preference is with EU. Under EU, the range would collapse into a
fixed probability 𝑝𝐸𝑈 . Moreover, the range of probabilities [𝑝

𝐻
, 𝑝𝐻] provides

information about subjects’ risk attitudes. Specifically, in our experiment, the mid-
value prize 𝑀 is always set as the mean of the high prize 𝐻 and the low prize 𝐿.
Consequently, given a triplet of prizes, we can classify an EU subject as risk averse
if 𝑝

𝐻
> 0.5, risk seeking if 𝑝𝐻 < 0.5, and as neither risk averse nor risk seeking

otherwise. In this way, we generalize the empirical analysis of risk attitude under
EU to preferences that may violate the independence axiom.20 In the special case
of EU with a unique probability 𝑝𝐸𝑈 , we would classify a subject as risk averse if
𝑝𝐸𝑈 > 0.5, risk neutral if 𝑝𝐸𝑈 = 0.5, and risk seeking if 𝑝𝐸𝑈 < 0.5.

Estimation Results
We present the estimation results from a mixture model with three groups of sub-
jects and two utilities for each group. The estimates are derived using data from
both CR-tasks and R-tasks.21 The three graphs on the left in Figure 1.5 show the
estimated utilities in each group, while the three graphs on the right display the
ranges of probabilities [𝑝

𝐻
, 𝑝𝐻] that they induce for the five triplets of prizes in our

experiment.

The two utilities in Group 1 are very close to each other, indicating that the behavior
of subjects in Group 1 can be accurately described by EU. Furthermore, both utilities

20Our classification adopts the aversion to mean-preserving spreads as the primitive notion for
risk aversion (Rothschild and Stiglitz, 1970).

21In particular, we used both the 𝐶𝑜𝑟𝑒𝐶𝑅
𝑖

and 𝐶𝑜𝑟𝑒𝑅
𝑖

indices as input for the estimation.
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Figure 1.5: Estimated utilities and probability ranges.
Notes: We classify the three groups in terms of risk aversion (RA) and adherence to EU.
Estimated group membership probabilities are: 0.2798 for Group 1, 0.4834 for Group 2,
and 0.2368 for Group 3. The width of the vertical bars centered around the point estimates
in the left graphs indicates the bootstrapped standard errors. We report the values of all
estimated parameters in Appendix A.3. In the right graphs, T1 through T5 correspond to
prize triplets as follows: T1 = ($0, $15, $30), T2 = ($5, $15, $25), T3 = ($10, $20, $30), T4
= ($15, $20, $25), and T5 = ($0, $10, $20).
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in Group 1 are concave and significantly deviate from being linear, pointing to strong
levels of risk aversion. This information is reflected in the range of probabilities
induced by the two utilities. Specifically, the ranges across the five triplets of prizes
are narrow, indicating a high adherence to EU. Additionally, these ranges encompass
very high values for the probability of winning the high prize. For instance, in all the
triplets of prizes in our experiment, the two estimated utilities both rank the middle
prize above a binary risky lottery that offers the high prize with a probability of
approximately 0.8, or the low prize with the complementary probability. Therefore,
Group 1 reflects subjects in the experiment who systematically opted for the safer
available lottery. The estimated proportion of subjects belonging to Group 1 is
0.2798.

Moving to Group 2 and Group 3, the utilities within these groups are more distinct
compared to those in Group 1. The difference in utilities is most pronounced in
Group 2, which is evident from the broader range of probabilities that they induce.
Interestingly, utilities in both Group 2 and Group 3 are neither strictly concave nor
convex. As a result, the range of probabilities in these groups spans values both
below and above 0.5, which represents the EU threshold for risk aversion in our
experiment. This suggests that subjects’ behavior in these two groups does not
strictly align with either pure risk aversion or risk seeking tendencies. However,
the probability ranges in Group 2 consistently register higher values than those in
Group 3, indicating relatively more risk averse behavior in comparative terms. The
estimated proportion of subjects belonging to Group 2 and 3 are 0.4834 and 0.2368,
respectively.

The emergence of non-EU behavior and risk averse tendencies consistently differs
within the groups across the five triplets of prizes in the experiment. Notably,
subjects consistently exhibit stronger risk aversion when the lowest prize in the
triplet is $0 compared to when it is a positive amount. On the whole, their behavior
aligns more closely with EU. These observations are particularly evident in the
probability ranges for the triplets 𝑇1 = ($0, $15, $30) and 𝑇5 = ($0, $10, $20),
which are narrower and encompass higher values than other triplets. Among all
the triplets, 𝑇4 = ($15, $20, $25) stands out as the one with the most pronounced
non-EU behavior across all three groups. This triplet is unique in having prizes that
are closely spaced, which could be linked to higher noise in responses.22

22A potential extension of our model might allow the variance of the error term to be influenced
by features of the lotteries, such as the prize amounts.
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Result 4. In the mixture model for the EU core with three groups estimated using
both CR-tasks and R-tasks, approximately 28% of subjects (Group 1) are extremely
risk averse and align closely with EU. The remaining subjects (Group 2 and Group
3) deviate markedly from EU and cannot be categorically classified as either risk
averse or risk seeking.

1.5 Out-of-Sample Predictions: EU core Analysis
In this section, we evaluate whether, and under which conditions, the out-of-sample
predictions derived from the analysis of the EU core are more precise than those ob-
tained from specific economic models or machine learning algorithms. We examine
various out-of-sample exercises, each involving different degrees of similarity be-
tween training and test sets. Initially, we reexamine the two out-of-sample exercises
related to choices in CR-tasks and R-tasks, previously discussed in Section 1.3. In
these exercises, training and test sets bear a close relationship. Subsequently, we
use all choices from CR-tasks and R-tasks as training data and aim to predict the
certainty equivalents derived from choices in Block 2 of the experiment. Lastly, we
explore the correlation between estimated levels of risk aversion and adherence to
EU with financial habits outside of the experiment.

Out-of-Sample Exercises Within and Across CR-Tasks and R-Tasks
Both economic models and machine learning algorithms can be used to predict the
probability of all conceivable choice patterns in CR-tasks and R-tasks. On the other
hand, the EU core approach only allows us to predict the probability of the possible
values of the index 𝐶𝑜𝑟𝑒. As a result, we cannot distinguish between non-EU
behaviors within CR-tasks and R-tasks. Specifically, we cannot differentiate between
CRE and RCRE in CR-tasks, and between AM and NM in R-tasks. To implement
a fair comparison that takes into account the different levels of prediction detail
attainable by various approaches, we also assess the ability of economic models
and machine learning algorithms to predict the index 𝐶𝑜𝑟𝑒. Hence, we deem an
observed non-EU choice pattern as correctly predicted by these approaches as long
as they assign the highest predicted probability to one non-EU behavior, even if the
predicted non-EU behavior does not match the observed one.

Table 1.4 shows the percentages of choice patterns with a correctly classified index
𝐶𝑜𝑟𝑒 for economic models, machine learning algorithms, and the EU core approach.
Consistent with the findings in Section 1.3, GBT achieves the best results in out-of-
sample exercises within CR-tasks and R-tasks. Our approach performs significantly
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Table 1.4: Out-of-sample exercises: adherence to EU.

Exercise Prediction Models
EU CPT GBT NN EU core

Combined Within
Tasks

Index
𝐶𝑜𝑟𝑒

45.78%
(5.25)

47.73%
(1.06)

64.40%
(1.50)

45.10%
(3.93)

60.11%
(1.97)

Combined Across
Tasks

Index
𝐶𝑜𝑟𝑒

44.66%
(5.56)

44.94%
(2.93)

41.59%
(7.09)

42.23%
(11.70)

48.64%
(3.32)

Notes: Percentages of choice patterns with a correctly classified index 𝐶𝑜𝑟𝑒. Standard
deviations in parentheses. The first row (“Combined Within Tasks”) presents the average
percentages for the two cross-validation exercises within CR-tasks and R-tasks. For these
exercises, we used the same partition of data used in Section 1.3 to assess the predictive
accuracy of economic models and machine learning algorithms at predicting specific choice
patterns. The second row (“Combined Across Tasks”) displays the average percentages for
the two out-of-sample exercises across CR-tasks and R-tasks described in Section 1.3.

better than both EU and CPT, while it is around 4% less accurate than GBT.
Moreover, in line with the findings in Section 1.3, the ranking between economic
models and machine learning algorithms is inverted once we switch from out-
of-sample exercises within tasks to across tasks.23 In this latter type of out-of-
sample exercise, the EU core approach outperforms all other methods, yielding
approximately 4% higher accuracy than economic models.

Result 5. The EU core outperforms economic models in out-of-sample exercises
within CR-tasks and R-tasks, though it is around 4% less accurate than GBT.
Conversely, the EU core approach attains the most accurate results in out-of-sample
exercises across CR-tasks and R-tasks, delivering predictions that are approximately
4% more accurate than those of economic models.

Certainty Equivalents
We use choices from CR-tasks and R-tasks as training data and evaluate the accuracy
of different approaches in predicting the certainty equivalents inferred from choices
in Block 2 of our experiment. In Block 2, subjects are asked to compare three risky
lotteries and various certain prizes. We focus on the subset of observations where
subjects shifted their preference between a fixed lottery and a certain amount at most

23Here, CPT and NN do relatively better than EU and GBT, respectively. This is a result of the
lenient approach we are using in evaluating these methods. For example, we categorize a choice
pattern as correctly classified even when we observe a preference for randomization, while CPT
predicts an aversion to randomization.
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once.24 For lotteries where subjects make a single switch, we compute the certainty
equivalent as the smallest certain amount preferred over the lottery, reduced by $0.5.
If a lottery is chosen over all the certain prizes, its certainty equivalent is computed
as the highest prize in the experiment compared to that lottery. Conversely, if the
certain prize is always preferred, the certainty equivalent is computed as the smallest
prize in the experiment compared to the lottery.

The EU core model enables us to predict a range of certainty equivalents. Specifi-
cally, given an estimated set of utilities �̂� , the certainty equivalent for a lottery 𝑝 is
predicted to lie within:

[min
𝑣∈�̂�

𝑐(𝑝, 𝑣),max
𝑣∈�̂�

𝑐(𝑝, 𝑣)],

where 𝑐(𝑝, 𝑣) represents the certainty equivalent of lottery 𝑝 determined using
utility function 𝑣.

The estimation results presented in Section 1.4 highlight significant heterogeneity
in preferences. In particular, we estimated mixture models for three distinct groups
of subjects and ranked these groups in terms of risk aversion and non-EU behavior.
The greater the risk aversion, the higher the possible values for the risk premium
associated with each lottery.25 Additionally, increased non-EU behavior implies
broader possible ranges of risk premia. Figure 1.6 summarizes with box plots the
distribution of risk premia of all lotteries from Block 2 for the three groups of
subjects. To construct this graph, we assigned each subject to the group with the
highest group membership probability.

Comparing the distribution of risk premia across groups, we observe that the risk
premia increase with the predicted level of risk aversion. For instance, the median
risk premium in the group with low predicted levels of risk aversion is 0.5, while it is
5.5 in the group with high predicted levels of risk aversion. Furthermore, our model
not only accurately predicts the differences in risk premia levels across groups but
also the levels within each group. The dashed red lines in Figure 1.6 illustrate the
predicted ranges of risk premia in the three groups. In all the groups, the predicted
ranges of risk premia are perfectly consistent with the observed ones. In particular,
for each of the three lotteries, the predicted range always includes the observed
median risk premium.

24Appendix A.1 summarizes the distribution of risk premia for the three lotteries presented to
subjects in Block 2.

25The risk premium of a lottery is the difference between the expected value and the certainty
equivalent of a lottery.
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Figure 1.6: Observed risk premia and predicted ranges under the EU core model.
Notes: Box plots depict the distributions of risk premia in the three groups identified using
mixture models with the EU core. Groups are classified based on RA and adherence to EU.
Observations are considered outliers if they lie more than 1.5 interquartile ranges above the
third quartile (75%) or below the first quartile (25%). We identified eleven outliers in the
“High RA High EU” group. All outliers are omitted from the graph for clarity.

To benchmark the performance of our approach, we employ both economic models
and machine learning algorithms to predict certainty equivalents. EU and CPT
directly yield point predictions for the certainty equivalent of every lottery. Similarly,
with GBT and NN, we can predict the specific point in a price list where subjects
transition from favoring the certain amount to the risky lottery. We then deduce
certainty equivalents using the same approach applied to derive certainty equivalents
from the observed choices in Block 2.26 To establish a fair comparison between
the EU core approach and the other methods, we compute point predictions of the
EU core approach for the certainty equivalents by taking the average values of the
predicted ranges.

We use choices from CR-tasks and R-tasks as our training data and compare the mean
squared errors of various approaches in predicting certainty equivalents. The results
are presented in Table 1.5, where a lower mean squared error indicates superior

26In 5.25% of observations, GBT predicts either multiple switches between the certain amount
and the risky lottery, or a single switch that is directionally incorrect. In this latter scenario, subjects
are forecasted to choose the certain prize when its value is low and opt for the risky lottery when the
certain prize value is high. We exclude these observations when evaluating the performance of GBT.
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Table 1.5: Out-of-sample exercise across tasks in Block 1 and Block 2.

Exercise Loss Models
EU CPT GBT NN EU core

Train: CR-tasks and R-tasks
Test: Certainty Equivalents in Block 2 MSE 13.184 16.964 64.148 57.398 11.444

Notes: We employ mixture models with three groups to predict risk premia using EU, CPT,
and the EU core approach. For predictions with the EU core approach, we use the average
risk premium within the predicted range.

model performance. In this out-of-sample evaluation, machine learning algorithms
perform considerably worse than other methods. Specifically, GBT predicts that
for over 90% of the lotteries, subjects either always prefer the certainty prize, or
the risky lottery. Meanwhile, NN yields the analogous prediction for all lotteries.
Therefore, both GBT and NN fail to offer reasonable predictions for choices in Block
2. EU and CPT significantly outperform machine learning algorithms in this task,
with EU achieving a lower MSE than CPT. Finally, the EU core approach emerges
as the top performer.

Result 6. In the exercise of predicting risk premia from Block 2 using choices in
Block 1 as training data, the EU core approach outperforms both economic models
and machine learning algorithms. Within economic models, EU performs better
than CPT, while machine learning algorithms exhibit the poorest performance in
this out-of-sample exercise.

Investment and Insurance Behaviors Outside the Experiment
In this section, we explore whether the heterogeneity identified in the experiments
through the EU core approach, in terms of risk aversion and non-EU behavior, has
any correlation with real investment and insurance behaviors. All subjects on Prolific
are asked a series of questions about their financial habits when they first enroll on
the platform. In the preregistration of the experiment, we chose to evaluate two
conjectures.27 The first conjecture concerns risk aversion, and the second pertains
to subjects’ adherence to EU.

We posit that individuals who are less risk averse should be more inclined to
invest, especially in volatile assets. To assess this conjecture, we focused on two
specific questions. The first inquires whether subjects have made investments (either
personal or through their employment) in the common stock or shares of a company.

27See page 14 of the analysis plan preregistered at the AEA RCT Registry as AEARCTR-0011749
(Kobayashi and Lucia, 2023).
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Figure 1.7: Investment and insurance behaviors: proportions.
Notes: We estimated a mixture model for the EU core with three groups, using CR-tasks
and R-tasks. Each subject was assigned to the group with the highest group membership
probability. The left graph displays proportions based on affirmative responses to the
question, “Have you ever made investments (either personally or through your employment)
in the common stock or shares of a company?” The middle graph represents proportions
based on affirmative answers to the question, “Do you own/hold any cryptocurrencies?”
The right graph, meanwhile, focuses on the question, “Do you actively hold any of the
following types of insurance policies?” Specifically, it illustrates the proportion of subjects
who selected the option “Purchase Insurance (e.g., Mobile Phone).”

Of course, the act of investing in company shares per se does not necessarily
correlate with risk aversion. Much depends on the level of risk associated with
the specific stocks considered, information we do not possess. Consequently, we
also decided to explore whether subjects declared ownership of cryptocurrencies,
serving as a more unambiguous proxy for risky behavior. Moreover, to capture non-
EU behavior, we examined whether subjects have purchased insurance for items,
such as smartphones. This behavior is a classic example of small stakes risk aversion,
which can be challenging to rationalize with EU. Therefore, our second conjecture
is that subjects who align more closely with EU should be less inclined to purchase
this type of insurance.

Figure 1.7 summarizes the responses to the three questions under consideration,
across the different groups of subjects identified with the mixture model for the EU
core estimated using all data from Block 1. For investments in shares of companies
(left graph) and cryptocurrencies (middle graph), we order groups from left to right
based on their estimated level of risk aversion. For purchasing insurance (right
graph), we order groups based on their estimated adherence to EU.
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The left and middle graphs of Figure 1.7 provide evidence in line with our first
conjecture: groups of subjects characterized by lower estimated levels of risk aver-
sion have higher proportions of individuals investing in shares of companies or
cryptocurrencies. Moreover, the negative correlation between risk aversion and
investment behavior is more pronounced for cryptocurrencies than for company
shares. This observation supports the idea that investments in cryptocurrencies
might be a better proxy for risky behavior. Consistent with our second conjecture,
the proportion of subjects purchasing insurance is highest among groups with low
predicted adherence to EU.

Result 7. We classified subjects in terms of risk aversion and adherence to EU
using the mixture model for the EU core estimated from choices in CR-tasks and
R-tasks. Subjects classified as more risk averse are less likely to invest, particularly
in cryptocurrencies. Moreover, subjects classified as less adherent to EU purchase
insurance more frequently.

1.6 Discussion
Our paper offers two main contributions. Empirically, we demonstrate the short-
comings of popular economic models and machine learning algorithms in both
rationalizing and predicting two widely documented and influential non-EU be-
haviors, which were previously mostly analyzed separately in experimental work.
Methodologically, we introduce a novel empirical strategy for predicting behavior
under risk and showcase its effectiveness through a series of out-of-sample exercises.
We conclude by discussing the implications of our results for future research.

A satisfactory model of decision-making under risk should rationalize the strong
positive correlation observed between the CRE and preferences for randomization.
Conversely, CPT predicts the opposite correlation between these two non-EU be-
haviors, explaining why this model consistently achieves inferior out-of-sample
performance compared to EU in our analysis. A natural direction for future research
involves considering alternative models to CPT. Fudenberg, Kleinberg, et al. (2022)
demonstrate that adding to CPT a complexity cost, which increases with the number
of prizes in a lottery, yields better out-of-sample predictions. In our experiment,
adding a complexity cost to CPT would further strengthen the negative relationship
between CRE and preferences for randomization, leading to worse out-of-sample
predictions.

Of course, many alternative theories to CPT and its generalizations have been pro-
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posed, and some of them may be capable of rationalizing our main experimental
findings. One important example is the original Prospect Theory (PT; Kahneman
and Tversky, 1979). This model drops the rank dependence assumption that char-
acterizes CPT and can rationalize the observed correlation between CRE and pref-
erences for randomization through simple probability weighting. However, there is
also abundant experimental evidence demonstrating failures of PT, with CPT being
proposed as a solution to the violations of first-order stochastic dominance implied
by PT. The overall absence of an economic model that systematically outperforms
the others in terms of predictive accuracy generates interest in exploring alternative
approaches for making predictions.

Machine learning algorithms offer an alternative approach for predicting behavior
under risk, and a growing body of research compares their predictive capabilities
with those of economic models.28 In our analysis, machine learning algorithms out-
performed economic models only when the training and test sets included choices
over the exact same lotteries. However, their predictive capabilities dropped signif-
icantly in all other out-of-sample exercises. Andrews et al. (2022) obtain a similar
result when comparing the out-of-sample performance of economic models and ma-
chine learning algorithms in the prediction of certainty equivalents. In particular,
they observe that the performance of machine learning algorithms are sensitive to
which lotteries are included in the training and test sets. Therefore, the sensitivity
of these methods to minor differences between training and test sets raises concerns
about their ability to produce generalizable predictions that are at least as substantial
as those for economic models.

This paper introduces a novel empirical approach to make predictions that retains an
underlying economic structure without being tied to specific models. We show that
the predictions of our approach are more accurate but at same time less detailed than
those produced by fully specified economic models or machine learning algorithms.
For instance, our approach does not allow distinguishing between specific non-EU
behaviors, or it does not allow one to directly obtain a point prediction for a certainty
equivalent. While this paper focuses on choices under risk, we believe our empirical
strategy holds promise for extension to choices under uncertainty, exploiting the
notion of “unambiguous preference” introduced by Ghirardato, Maccheroni, and
Marinacci (2004).

28See Andrews et al. (2022), Camerer, Nave, and Smith (2019), Fudenberg and Liang (2019),
Noti et al. (2016), Joshua C. Peterson et al. (2021), Plonsky, Erev, et al. (2017), Plonsky, Apel, et al.
(2019), and Zhao et al. (2020).
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Ultimately, determining the “best” method to predict behavior under risk may depend
on at least two factors. If the analyst has access to a training set that is sufficiently
close to the test set of interest, machine learning algorithms might be the most
suitable alternative. However, what constitutes “sufficiently close” can vary based
on the specific nature of the problem at hand. Our analysis underscores how minor
discrepancies between training and test sets can lead to substantial declines in the
performance of machine learning algorithms. Another critical aspect to consider
is the level of detail required in the predictions. For instance, if the analyst aims
to estimate measures of risk aversion or adherence to EU, our approach offers a
promising alternative to traditional predictive tools. Conversely, if our method does
not provide the necessary level of detail in predictions, it can still complement other
techniques. For example, if a point prediction for a certainty equivalent is needed,
our strategy can first offer a range prediction, which economic models or machine
learning algorithms can then refine to pinpoint a value within that range.
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C h a p t e r 2

WHAT DRIVES VIOLATIONS OF THE INDEPENDENCE
AXIOM? THE ROLE OF DECISION CONFIDENCE

2.1 Introduction
A central research question in economics is how individuals make decisions in
the presence of uncertainty. Research has demonstrated critical shortcomings in
the neoclassical formulation of EU and its central assumption, the independence
axiom. In the most famous counterexample of EU proposed by Maurice Allais in
1952, individuals typically violate the independence axiom by showing risk aversion
when one certain option is available and risk tolerance when all the available options
are uncertain.1 This tendency, known as the “certainty effect" (Kahneman and
Tversky, 1979), is a centerpiece of theoretical alternatives to EU—most notably
CPT introduced by Tversky and Kahneman (1992).

Recent research has challenged the empirical regularities related to the certainty
effect and the theoretical explanations proposed to rationalize them. In particular,
P. Blavatskyy, Ortmann, and Panchenko (2022, 2022) and Jain and Nielsen (2022)
document that features of the experimental design can affect the likelihood of the
certainty effect. Moreover, Bernheim and Sprenger (2020) find no evidence of the
rank dependence assumption on which CPT relies. Motivated by these findings, I
design an experiment to study the relevance of certainty and the certainty effect and
to investigate an alternative mechanism for violations of EU’s independence axiom:
lack of confidence when choosing between different lotteries.

This paper provides the first experimental investigation of the independence axiom
through the lenses of the EU core, which captures the greatest part of a preference
relation that satisfies the independence axiom (Cerreia-Vioglio, 2009). When a
decision-maker violates the independence axiom, his EU core is a partial order that
is typically interpreted as the subset of his uncontroversial rankings. According to
this interpretation, we should observe violations of the independence axiom only in
choice problems that are “hard" enough so that the decision-maker feels unconfident
about them. Recent non-EU models further appeal to the lack of decision confidence

1Independence states that for any three lotteries 𝑝, 𝑞, and 𝑟 , and any number 𝜆 ∈ (0, 1), if 𝑝 is
preferred to 𝑞, then 𝜆𝑝 + (1 − 𝜆)𝑟 is preferred to 𝜆𝑞 + (1 − 𝜆)𝑟.
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as the driving force for violations of the independence axiom. However, little is
known empirically about the relationship between decision confidence and violations
of the independence axiom that our experiment seeks to explore.

In our experiment, we ask subjects to make incentivized choices between lotteries.
After making each choice, subjects report on a scale from zero to 100 how confident
they are about their choice. We also collect response times as an additional proxy
for confidence. To construct the pairs of lotteries in the experiment, we start with
an initial set of unmixed comparisons, each consisting of a certain prize and a
risky lottery. Next, to test the independence axiom, we create mixed comparisons
by mixing each of the lotteries in an unmixed comparison with a series of third
common lotteries. Evaluating independence by assessing behavior in multiple mixed
comparisons allows us to assess the independence axiom—and hence adherence to
the EU core—for each choice.

We conduct our experiment on the online platform Prolific.co with 300 subjects.
Each subject made binary choices over lotteries in 74 comparisons. We assess
adherence to the independence axiom for each choice and relate that adherence to
measures of decision confidence. A central result of this paper is that behavior
is more likely to comply with the independence axiom when subjects report high
confidence and make their decisions quickly. In contrast, behavior systematically
deviates from EU when subjects report low confidence and need more time to make
their choices.

Our data also show precisely how individuals choose when they are not confident
(i.e., when the comparison is less likely to belong to the EU core). Dillenberger
(2010) introduces the negative certainty independence (NCI) axiom to rationalize
the certainty effect. The NCI axiom can be interpreted as a rule that prescribes
what to choose when not confident. In particular, whenever an individual consistent
with NCI is not confident that a risky lottery is better than a certain prize, he should
prefer the certain prize. Somewhat surprisingly, we find evidence against NCI and
its interpretation: risky lotteries are more likely to be chosen in situations of low
confidence and to induce independence violations.

Finally, we study whether the mere presence of a certain prize in a decision makes
independence violations more likely. Recent works find evidence consistent with
the idea that people value certain and uncertain outcomes differently (Halevy, 2008;
Andreoni and Harbaugh, 2009; Andreoni and Sprenger, 2010, 2011, 2012). In
this paper we first show that a naive analysis may lead to overestimating the role
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of certainty; there is more data to detect EU violations in choices with a certain
alternative than in choices where all alternatives are risky. In the benchmark scenario
of an EU decision-maker who makes mistakes, more data to test independence
translates into higher expected independence violations. We then adopt the error
model of Harless and Camerer (1994) to control for this asymmetry and find that
the presence of a certain prize is not always associated with more independence
violations.

The first main implication of our results is that the analysis of decision confidence in
choices under risk constitutes a promising avenue for deepening our understanding
of why subjects deviate from EU in a specific way. Our analysis relates to the recent
experimental literature on preferences for randomization. Agranov and Ortoleva
(2017) show that individuals strictly prefer to randomize in “hard" comparisons and
consequently violate the independence axiom. Arts, Ong, and Qiu (2022) design
an experiment to elicit both decision confidence and randomization probabilities
in choices under risk. In line with the interpretation of the hard questions in
Agranov and Ortoleva (2017), they show that subjects tend to choose randomization
probabilities that are close to uniform when they report low confidence measures.
In our experiment, we obtain the same relationship between decision confidence and
violations of the independence axiom in common ratio questions.

More broadly, this paper relates to the literature in psychology, neuroscience, and
to less extent, economics, documenting how behavioral anomalies are often asso-
ciated with low levels of decision confidence.2 Enke and Graeber (2019) show
that cognitive uncertainty—measured as subjective uncertainty over the ex-ante
utility-maximizing decision—is associated with an attenuated relationship between
decisions and problem parameters. This attenuated relationship may lead to the
emergence of well-known behavioral patterns, such as the fourfold pattern of risk
attitudes.

We contribute to this literature by focusing on the choice implications of low decision
confidence in the risk domain. Within this domain, we show that subjects tend to
adopt a form of “incaution" when reporting low confidence levels by choosing the
riskiest available lottery. This finding generates interest in decision models that relies
on the positive certainty independence (PCI) axiom (Cerreia-Vioglio, Dillenberger,
and Ortoleva, 2020). This axiom rationalizes the behavioral pattern opposite to

2We refer to Arts, Ong, and Qiu (2022) for a review of this literature.
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the certainty effect and predicts the relationship between decision confidence and
preference for risky alternatives we observe in the data.

Moreover, our findings highlight that features of the experimental design may dras-
tically affect the overall amount and, most importantly, the conclusions about what
drives violations of the independence axiom. Most experimental works on the
independence axiom are variations of the Allais paradox, in which we know that
the certainty effect constitutes the modal behavioral pattern.3 However, our results
show that the predominance of the certainty effect may not be robust to richer envi-
ronments where subjects face a wider variety of unmixed and mixed comparisons.4

Another stylized fact in choices under risk that we put under scrutiny is that viola-
tions of the independence axiom are less frequent in comparisons with nondegener-
ate lotteries over common prizes. Camerer (1992) writes that “much as Newtonian
mechanics is an adequate working theory at low velocities, EU seems to be an ade-
quate working theory for gambles inside the triangle".5 Our analysis challenges the
generality of this conclusion showing that its validity may depend on the mechanism
through which mixed comparisons are constructed.

The paper proceeds as follows. Section 2.2 describes the theoretical framework
in the context of our experimental design. Section 2.3 illustrates our experimental
design. Section 2.4 presents our main findings and Section 2.5 concludes.

2.2 Theoretical Framework
We describe the theoretical framework in the context of our experimental design.
All questions in the experiment involve lotteries over the set of monetary prizes
𝑋 = {$1, $7, $20}. We denote the set of lotteries with prizes in 𝑋 by △(𝑋). We refer
to generic prizes in 𝑋 by 𝑥 and denote generic lotteries in △(𝑋) by 𝑝, 𝑞, 𝑟 and 𝑠. We
represent the three-outcome lottery, 𝑞, giving $1 with probability 𝑞(1), $7 with prob-
ability 𝑞(7) and $20 with probability 𝑞(20) as ($1, 𝑞 (1) ; $7, 𝑞 (7) ; $20, 𝑞 (20)).
We write the lottery that gives $𝑥 for sure as 𝛿𝑥 and we refer to generic pairs of
lotteries (𝑠, 𝑟) ∈ △(𝑋)2 as comparisons. Moreover, we denote by 𝑁 be the set of
all the subjects in the experiment, and by ≿𝑖 and ≻𝑖 the weak and strict preference
relations of a subject 𝑖 ∈ 𝑁 over △(𝑋).

The preference ≿𝑖 satisfies the independence axiom if for all lotteries 𝑞, 𝑠, 𝑟 ∈ △(𝑋)
3We refer to P. R. Blavatskyy (2010) for a review of this literature.
4Jain and Nielsen (2022) also find that the certainty effect is not the most common behavioral

pattern that violates the independence axiom.
5See also Starmer (2000).
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and for all 𝜆 ∈ (0, 1],

𝑠 ≿𝑖 𝑟 ⇒ 𝜆𝑠 + (1 − 𝜆)𝑞 ≿𝑖 𝜆𝑟 + (1 − 𝜆)𝑞.

The EU core of ≿𝑖 is the subrelation ≿∗
𝑖

such that for all lotteries 𝑞, 𝑠, 𝑟 ∈ △(𝑋) and
for all 𝜆 ∈ (0, 1],6

𝑠 ≿∗𝑖 𝑟 ⇔ 𝜆𝑠 + (1 − 𝜆)𝑞 ≿𝑖 𝜆𝑟 + (1 − 𝜆)𝑞.

That is, 𝑠 ≿∗
𝑖
𝑟 whenever subject 𝑖 prefers 𝑠 to 𝑟 and mixing both lotteries 𝑠 and 𝑟

with a third common lottery 𝑞 does not affect the relative preferences of 𝑖 between
𝑠 and 𝑟.7 Cerreia-Vioglio (2009) proves that ≿∗

𝑖
is the greatest subrelation of ≿𝑖 that

satisfies the independence axiom.8 Therefore, to study how the independence axiom
fails, we test for each subject 𝑖 separately or for all subjects 𝑖 ∈ 𝑁 at the aggregate
level the following hypothesis:

𝑠 ≿∗𝑖 𝑟 or 𝑟 ≿∗𝑖 𝑠. (EU-CORE)

Throughout the paper, we say that hypothesis EU-CORE holds if we find no evidence
against it, while we say that it fails otherwise. By correlating the results of hypothesis
EU-CORE with the measures of decision confidence that we collect, we test the
interpretation of 𝑠 ≿∗

𝑖
𝑟 as individual 𝑖 being confident that lottery 𝑠 is better than

lottery 𝑟. Moreover, we examine whether individuals are more likely to choose the
safer or the riskier lottery when hypothesis EU-CORE does not hold and when they
declare to be unconfident. If either lottery 𝑠 or lottery 𝑟 is degenerate, this analysis
will allow us to shed light on the relevance of the certainty effect. Finally, we study
whether hypothesis EU-CORE is more likely to hold in comparisons where the two
lotteries are risky and have the same support.

2.3 Experimental Design
The rationale behind the experimental design is to create a rich dataset to study
for what comparisons individuals are more likely to violate hypothesis EU-CORE
and test whether the lack of decision confidence can explain failures of hypoth-
esis EU-CORE. This section first illustrates the comparisons that we consider in

6≿∗
𝑖

is a subrelation of ≿𝑖 if for all lotteries 𝑠 and 𝑟, 𝑠 ≿∗
𝑖
𝑟 implies 𝑠 ≿𝑖 𝑟 .

7In our experiment, we study the EU core by considering only “one-stage” lottery mixtures,
rather than two-stage compound lotteries. In other words, we focus on mixture independence, rather
than compound independence, as defined in Segal (1990).

8That is, if ≿∗∗
𝑖

is another subrelation of ≿𝑖 that satisfies the independence axiom, then ≿∗∗
𝑖

is a
subrelation of ≿∗

𝑖
.
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Figure 2.1: Unmixed and mixed comparisons in the three treatments.

the experiment. Next, we describe the questions that subjects answer about each
comparison. Finally, we discuss the recruitment procedures and the experimental
payments.9

Comparisons
There are three treatments: “Worst", “Bad" and “WorstBest". In all treatments, sub-
jects face the same seventeen comparisons that we call unmixed, each involving the
degenerate lottery 𝛿7 and a risky lottery. The treatments differ in how we construct
the additional comparisons to test the independence axiom. In what follows, we use
the MM triangle to describe the lotteries in the experiment (Marschak, 1950; Mark J.
Machina, 1982). The top-left graph in Figure 2.1 shows the unmixed comparisons
in the MM triangle. In all the graphs of Figure 2.1, the probability of receiving

9We preregistered the experimental design and the analysis plan at the AEA RCT Registry website
on February 21, 2022. Link to the preregistration: https://www.socialscienceregistry.org/
trials/8615.

https://www.socialscienceregistry.org/trials/8615
https://www.socialscienceregistry.org/trials/8615
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$20 is on the vertical axis, and the probability of receiving $1 is on the horizontal
axis. Therefore, the generic point (𝑥, 𝑦) in the MM triangle represents the lottery
($1, 𝑥; $7, 1 − 𝑥 − 𝑦; $20, 𝑦). Each segment connecting the degenerate lottery 𝛿7

with a risky lottery represents an unmixed comparison between these two lotteries.

In order to test hypothesis EU-CORE for an unmixed comparison (𝛿7, 𝑟), we need
at least another comparison (𝑝, 𝑞) of the following form:

𝑝 = 𝜆𝛿7 + (1 − 𝜆)𝑧 and 𝑞 = 𝜆𝑟 + (1 − 𝜆)𝑧,

where both lotteries 𝑝 and 𝑞 are constructed by mixing lotteries 𝛿7 and 𝑟 with a third
common lottery 𝑧, using a fixed probability weight 𝜆 ∈ (0, 1). We call comparisons
that satisfy this property mixed. In particular, we omit the dependence on the third
common lottery and refer to (𝜆𝛿7, 𝜆𝑟) as a 𝜆-mixed comparison.

Each treatment includes an equal number of 0.95-mixed, 0.7-mixed, and 0.4-mixed
comparisons. Overall, there are 51 mixed comparisons in each treatment. The 0.95-
mixed comparisons involve one almost degenerate lottery, i.e., 0.95𝛿7+0.05𝑧, while
lotteries in the remaining mixed comparisons are all “far" from being degenerate.
Therefore, we can study whether the presence of a degenerate or almost degenerate
lottery is the main driver for the violations of hypothesis EU-CORE.

In the Worst treatment, we build 𝜆-mixed comparisons by mixing the lotteries in
each of the seventeen unmixed comparisons with the worst lottery ($1, 1) using the
probability weight 𝜆 ∈ {0.95, 0.7, 0.4}. To construct mixed comparisons in the Bad
treatment, we repeat the same procedure except for replacing lottery ($1, 1) with
lottery ($1, 0.9; $7, 0.05; $20, 0.05), which is inside the MM triangle. The bottom-
left graph of Figure 2.1 represents the mixed comparisons in the Bad treatment.
Unlike the Worst treatment, mixed comparisons in the Bad treatment have lotteries
with the same support. Therefore, we can study the relevance of this feature by
comparing failures of hypothesis EU-CORE in the Worst and the Bad treatments.

Mixed comparisons in the Worst and the Bad treatments cluster in the southeast
region of the MM triangle. This concentration may preclude us from detecting
violations of hypothesis EU-CORE.10 To account for this potential concern, we
consider an additional treatment that we call WorstBest. The WorstBest treatment
shares the same 0.95-mixed comparisons of the Worst treatment. The 0.7-mixed
comparisons are constructed by mixing the lotteries in each of the 0.95-mixed

10For instance, this is the case if subjects’ preferences are consistent with the fanning-out hypoth-
esis (Mark J. Machina, 1982, 1987).
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Table 2.1: Summary information of the three treatments.

Worst Bad WorstBest
# Unmixed Comparisons 17 17 17
# Mixed Comparisons 51 51 51
# Dominance Comparisons 6 6 6
Third Common Lottery Fixed Fixed Alternate
Probability Weights 0.95,0.7,0.4 0.95,0.7,0.4 0.95,0.7,0.4
Sample Size 100 100 100

comparisons with lottery ($20, 1) using 0.7/0.95 as probability weight. Finally, for
0.4-mixed comparisons, we mix the lotteries in each of the 0.7-mixed comparisons
with lottery ($1, 1) using 0.4/0.7 as probability weight.11 The bottom-right graph
of Figure 2.1 describes the mixed comparisons in the WorstBest treatment.

Table 2.1 summarizes our experimental design. The large number and the diver-
sity of the comparisons in the experiment enable us to test hypothesis EU-CORE
throughout the MM triangle and ensure that systematic and persistent violations of
hypothesis EU-CORE are not just a reflection of indifference.12 To further evaluate
the reliability of our data, we also include in each treatment six comparisons involv-
ing stochastically dominated lotteries.13 When presenting our results, we exclude
all subjects that chose the stochastically dominated lottery more than once.14

Questions
We first ask subjects to indicate the lottery they prefer for each comparison. Next,
we ask them to report their confidence level on a scale from zero (not confident at
all) to 100 (completely confident). We also collect response times in these answers
as an indirect measure of decision confidence.15 Subjects answer one question at
a time. Once subjects select an answer, they can not modify it. Figure 2.2 shows
a decision screen from the experiment. In this example, a subject who declared to
prefer lottery ticket A over lottery ticket B is asked to report how confident he feels
about this choice. The slider always starts at 50. In order to proceed to the next

11This approach ensures that differences in expected values between lotteries in unmixed and
mixed comparisons are constant across the three treatments. That is, in all treatments, 𝜆-mixed
comparisons can be created by mixing the lotteries in unmixed comparisons with some third common
lottery 𝑧 using 𝜆 as probability weight.

12The “indifference" argument is a common critique for experiments that document preference
reversals (P. R. Blavatskyy, 2010).

13We report these six comparisons in Appendix B.1.
14Overall, 32 out of 300 subjects chose the stochastically dominated lottery more than once.
15We report our analysis on response times in Appendix B.5.
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Figure 2.2: Decision screen from the experiment.

question, subjects need to click on the slider at least once.

Recruitment and Experimental Payments
We recruit 300 subjects through the online platform Prolific.co to run the experiment.
A total of nine sessions were conducted between February 22 and February 26 of
2022. Overall, we recruited 100 subjects for each treatment. Our sample consists
of United States citizens between the ages of 18 and 30 with at least a high-school
education. We focus on this sample because most previous experiments involving
common ratio questions have been conducted on undergraduate samples. Moreover,
given that there are three times more women than men within the population of
possible participants that meet these criteria, we ask Prolific to recruit an equal
number of men and women.16

Each subject receives a fixed payment of $4.75 and has a one out of ten chance of
receiving a bonus payment. The software randomly selects one of the 74 compar-
isons for subjects that receive a bonus payment. The bonus payment consists of
the prize that subjects win by playing the lottery they declared to prefer during the
experiment in the selected comparisons.17

16Table B.2 in Appendix B.2 summarizes the demographic information of the participants.
17The complete instructions with screenshots from the experiment are presented in Appendix

B.6.
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Table 2.2: Percentage of comparisons consistent with hypothesis EU-CORE at the
individual level. Standard errors in parenthesis.

Worst Bad WorstBest
% hp. EU-CORE holds 57.03% 57.58% 52.08%

(0.71) (0.76) (0.73)

N. of subjects 95 82 91
N. of observations 4845 4182 4641

2.4 Results
Table 2.2 summarizes the fraction of comparisons consistent with hypothesis EU-
CORE in the three treatments of the experiment. In the Worst and the Bad treatments,
approximately 57% of the observations are consistent with hypothesis EU-CORE.
The main difference between mixed comparisons in these two treatments is that
lotteries have different support in the Worst treatment while sharing the same support
in the Bad treatment. However, given the statistically indistinguishable percentage
of comparisons consistent with hypothesis EU-CORE, we find that this difference
is inessential. In the WorstBest treatment, the percentage of consistent comparisons
goes down by approximately five percentage points. The novel approach used to
construct mixed comparisons in the WorstBest treatment allows us to detect more
failures of hypothesis EU-CORE. Most importantly, it will enable us in Section 2.4
to shed new light on the role of certainty as a driver for such failures.

The analysis that follows aims to uncover the relevance of decision confidence and
the availability of certain alternatives as potential explanations for the violations
of hypothesis EU-CORE that we observe. We begin by presenting the estimates
from the two linear probability models reported in Table 2.3. In both regressions,
the dependent variable is equal to one if the observation is consistent with hypoth-
esis EU-CORE, zero otherwise. The two regressions differ in the variable used
to measure decision confidence. Regression (1) uses the collected measures of
decision confidence, while regression (2) uses response times. We find a strong
positive correlation between decision confidence and the likelihood of being consis-
tent with hypothesis EU-CORE. Moreover, subjects who spend more time choosing
the preferred lottery are more likely to violate hypothesis EU-CORE.18

Table 2.3 also provides new insights into how subjects are violating the indepen-
18In Appendix B.5, we show that response times negatively correlate with decision confidence,

confirming the intuition that subjects spend more time when not confident about their choices.
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Table 2.4: Percentage of certainty effect violations (unmixed comparisons only).

Worst Bad WorstBest
# Total Violations of Hp. EU-CORE 907 762 838
% Certainty Effect Violations 35.94% 29.92% 45.94%

dence axiom and what is the role of certainty in driving such violations. Subjects
who choose riskier over safer lotteries are approximately a 30% more likely to vi-
olate hypothesis EU-CORE. Section 2.4 will further document this observation for
unmixed comparisons, concluding that the certainty effect is not the most relevant
violation of hypothesis EU-CORE. The analysis of decision confidence in Section
2.4 will also provide a rationale for why this happens, showing that subjects are more
likely to prefer the risky lottery over the certain prize when they are less confident.

Moreover, subjects are more likely to violate hypothesis EU-CORE in unmixed
comparisons than in mixed comparisons. Taken at face value, this result is consistent
with the idea that the availability of certain alternatives plays a role in driving
violations of hypothesis EU-CORE. Nevertheless, in Section 2.4, we will show that
this conclusion is not entirely robust to a more sophisticated analysis that allows us
to control for the different stringency of the requirements that hypothesis EU-CORE
imposes on different types of comparisons.

The Prevalence of the Reverse Certainty Effect
Subjects violate hypothesis EU-CORE in line with the certainty effect if they choose
the certain alternative in an unmixed comparison and the riskier lottery in one of
the associated mixed comparisons. The reverse certainty effect refers instead to
the opposite behavioral pattern: subjects choosing the risky lottery in an unmixed
comparison and then switching to the safer lottery in one of the associated mixed
comparisons. Any failures of hypothesis EU-CORE in unmixed comparisons can
be then classified as a certainty effect or a reverse certainty effect violation. In this
section, we will study which of the two behavioral patterns is more frequent in our
experiment.

Table 2.4 documents that in all treatments of the experiment, certainty effect viola-
tions are less frequent than reverse certainty effect violations. However, an important
aspect that is worth considering to compare the relevance of these two types of viola-
tions is that their emergence in an experiment may be inflated or deflated depending
on the relative attractiveness of risky lotteries. For instance, if most subjects prefer
risky lotteries over certain prizes in unmixed comparisons, we will have more data
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Figure 2.3: Percentage of safe choices and certainty effect violations.

to test certainty effect violations. In the benchmark scenario of an EU subject who
makes mistakes, more data to test the certainty effect automatically translates into
higher expected certainty effect violations.

For this reason, we examine the emergence of the certainty effect controlling for
the fraction of subjects in each unmixed comparison that prefer the risky lottery.
Figure 2.3 shows for each unmixed comparison the percentage of subjects choosing
the certain prize on the x-axis and the percentage of certainty effect violations over
all violations of hypothesis EU-CORE on the y-axis. The blue circles represent
unmixed comparisons in the Worst treatment, the red circles in the Bad treatment,
and the green circles in the WorstBest treatment. The size of the circles informs
about the overall percentages of violations of hypothesis EU-CORE, with bigger
circles corresponding to higher ranges of percentages.

The fact that the relevance of the certainty effect increases as the fraction of subjects
choosing the safe lottery in unmixed comparisons increases suggests that one has
to take seriously the potential bias arising from the unbalance in the available
data discussed above. Nevertheless, “fair" comparisons can be made by looking at
unmixed comparisons in which both lotteries are chosen by a non-negligible fraction
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of subjects. For instance, the shaded yellow region in Figure 2.3 includes all the
unmixed comparisons for which the percentage of subjects who chose the certain
prize is between 30% and 70%. For comparisons in this region, reverse certainty
effect violations are always more frequent than certainty effect violations.

The size of the circles in Figure 2.3 provides further evidence against the relevance of
the certainty effect. As the fraction of subjects choosing the certain prize increases,
the size of the circles tends to be smaller. In other words, the more data we have
to observe certainty effect violations of hypothesis EU-CORE, the smaller the total
number of hypothesis EU-CORE failures that we observe.19

A Possible Mechanism: Decision Confidence
The estimates of the linear probability models in Table 2.3 indicate that hypothesis
EU-CORE is more likely to hold when subjects declare to be confident about their
decisions. Figure 2.4 provides a graphical representation of this result, describing the
empirical cumulative distribution functions of decision confidence for observations
in which hypothesis EU-CORE holds (red distribution) and does not hold (blue
distribution). The red distribution in Figure 2.4 stochastically dominates the blue
one, indicating that conditional on being consistent with hypothesis EU-CORE,
subjects in our experiment tend to report higher confidence levels.20

The positive correlation between decisions with low confidence and failures of
hypothesis EU-CORE summarized in Figure 2.4 on the one hand, and the prevalence
of the reverse certainty effect documented in Section 2.4 on the other hand, jointly
suggest that subjects tend to prefer risky lotteries over certain prizes when reporting
low confidence levels. The PCI axiom theorizes this form of incaution in a way that
is easily understandable using the notion of EU core. In its canonical formulation,
a subject 𝑖 satisfies the PCI axiom if for all lotteries 𝑝, 𝑟 ∈ △(𝑋), prizes 𝑥 ∈ 𝑋 and
weights 𝜆 ∈ [0, 1],

𝛿𝑥 ≿𝑖 𝑝 ⇒ 𝛿𝑥 ≿
∗
𝑖 𝑝.

In words, the PCI axiom precludes subject 𝑖 from violating the independence axiom
in line with the certainty effect but does not impose any constraint on the reverse

19In Appendix B.4, we provide additional evidence of the relevance of the reverse certainty effect
by studying the implications of the NCI and PCI axioms on risk attitude.

20In Appendix B.3 we further explore the relationship between hypothesis EU-CORE and decision
confidence using the notion of “indecisiveness" introduced by Cerreia-Vioglio, Dillenberger, and
Ortoleva (2015). An individual is more indecisive than another if his EU core is smaller in the sense
of set inclusion. Our analysis provides an empirical justification for the use of the term “indecisive"
showing that more indecisive individuals tend to report lower levels of decision confidence.
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Figure 2.4: Hypothesis EU-CORE and confidence in all treatments.

certainty effect. An equivalent and insightful way to express the PCI axiom is: for
all lotteries 𝑝 ∈ △(𝑋) and prizes 𝑥 ∈ 𝑋 ,

¬ [𝛿𝑥 ≿∗ 𝑝] ⇒ 𝑝 ≻ 𝛿𝑥 .

Building on the interpretation of the EU core as the subset of uncontroversial com-
parisons that our analysis supports, the PCI axiom has the following interpretation:
when a certain prize is not confidently better than a risky lottery, the risky lottery
should be strictly preferred. Motivated by this interpretation, we test whether sub-
jects are more likely to choose the risky lottery or the certain prize in unmixed
comparisons when reporting low confidence levels.

Figure 2.5 shows the likelihood of choosing risky lotteries in unmixed comparisons
as a function of the reported level of decision confidence. As decision confidence
decreases, subjects are more likely to choose risky lotteries over certain prizes. This
finding is consistent with the idea hinted by the PCI axiom of individuals being
incautious rather than cautious when reporting low levels of decision confidence.
Moreover, it provides a rationale for the prevalence of the reverse certainty effect
documented in Section 2.4.
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Figure 2.5: Confidence and preference for risky lotteries in unmixed comparisons.
Notes: We partition observations into five categories of equal size based on decision
confidence. The red markers on the x-axis denote the thresholds for each category. The
red dots placed at the average confidence values in each category represent the fractions of
observations in which the risky lottery is preferred over the certain prize. The predicted
probabilities of choosing the risky lottery are computed using a probit model.

Certainty Does Not Always Matter
Our analysis of behavior thus far highlights the reverse certainty effect as the most
relevant violation of hypothesis EU-CORE in unmixed comparisons. In this section,
we take a step back and study whether the mere presence of a certain alternative
in a comparison is predictive of more violations of hypothesis EU-CORE. The
estimation results in Table 2.3 provide a first positive answer to this question,
showing that hypothesis EU-CORE is more likely to fail in unmixed than in mixed
comparisons. However, using the same logic adopted to compare certainty effect
and reverse certainty effect violations, we now show that this result does not account
for the amount of information we have to disprove hypothesis EU-CORE for different
categories of comparisons.

Let us consider the four comparisons from the Worst treatment represented in Figure
2.6 and imagine that a subject declared to prefer lottery 𝑠1 over lottery 𝑟1. Disproving
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Figure 2.6: Four comparisons from the Worst treatment.

hypothesis EU-CORE for the unmixed comparison (𝑠1, 𝑟1) amounts to observing a
preference for the riskier lottery (𝑟2, 𝑟3 or 𝑟4) in any of the three associated mixed
comparisons. On the contrary, hypothesis EU-CORE for mixed comparisons does
not impose any constraint on the preferences expressed in the unmixed comparison.
For instance, let us imagine that a subject preferred lottery 𝑠2 over lottery 𝑟2 in
the 0.95-mixed comparison (𝑠2, 𝑟2). Disproving hypothesis EU-CORE for this
comparison amounts to observing a preference for the riskier lottery (𝑟3 or 𝑟4) in
any of the remaining mixed comparisons.

Consequently, we have more data to disprove hypothesis EU-CORE for unmixed
comparisons than we have for mixed comparisons.21 To see why this asymmetry
can lead to overestimating the role of certainty, let us consider an individual that
satisfies EU but with probability 0.1 makes independent mistakes in each of the
four comparisons in Figure 2.6 by choosing the least-preferred option. In this case,
the probability that this individual satisfies hypothesis EU-CORE in the unmixed
comparison (𝑠1, 𝑟1) is 0.6562, in the 0.95-mixed comparison (𝑠2, 𝑟2) is 0.73 while
in the 0.7-mixed comparison (𝑠3, 𝑟3) is 0.82. We now describe how we account
for this asymmetry by exploiting the error model proposed by Harless and Camerer
(1994).

We summarize subjects’ choices over the four comparisons in Figure 2.6 by strings
21It is worth noting that this observation applies to any experiment that aims at testing the

independence axiom.
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of chosen lotteries. For instance, choosing lottery 𝑠𝑖 over lottery 𝑟𝑖 for every index
𝑖 ∈ {1, 2, 3, 4} corresponds to the string 𝑠1𝑠2𝑠3𝑠4. In the error model of Harless
and Camerer (1994), subjects have strict preferences over lotteries but can make
mistakes choosing the least-preferred lottery. In each comparison, mistakes happen
with probability 𝜖 ∈ (0, 1) and are independent across choices. For instance, a
subject with true preferences 𝑠1𝑠2𝑠3𝑠4 with probability 𝜖 (1 − 𝜖)3 makes one error
and report 𝑟1𝑠2𝑠3𝑠4, 𝑠1𝑟2𝑠3𝑠4, 𝑠1𝑠2𝑟3𝑠4 or 𝑠1𝑠2𝑠3𝑟4. We denote by 𝑥1𝑥2𝑥3𝑥4 a generic
string of chosen lotteries and define by 𝑝(𝑥1𝑥2𝑥3𝑥4) the fraction of subjects in the
experiment for which in the absence of mistakes we would observe 𝑥1𝑥2𝑥3𝑥4, where
𝑥𝑖 ∈ {𝑠𝑖, 𝑟𝑖} and 𝑖 ∈ {1, 2, 3, 4}. For instance, 𝑝(𝑠1𝑠2𝑠3𝑠4) is the fraction of subjects
preferring lottery 𝑠𝑖 over lottery 𝑟𝑖 for every index 𝑖 ∈ {1, 2, 3, 4}.

Within this framework, consistency with hypothesis EU-CORE in all comparisons
amounts to assuming EU:

𝑝(𝑠1𝑠2𝑠3𝑠4) + 𝑝(𝑟1𝑟2𝑟3𝑟4) = 1. (EU)

If, instead, we allow hypothesis EU-CORE to fail in unmixed comparisons, the
relaxed model becomes:∑︁

𝑥1∈{𝑠1,𝑟1}
𝑝(𝑥1𝑠2𝑠3𝑠4) + 𝑝(𝑥1𝑟2𝑟3𝑟4) = 1. (CC)

Therefore, no matter how “close to certainty" one of the two lotteries in a comparison
is, model CC requires consistency with hypothesis EU-CORE. Finally, allowing for
failures of hypothesis EU-CORE in unmixed and 0.95-mixed comparisons leads us
to the following model:∑︁

𝑥2∈{𝑠2,𝑟2}

∑︁
𝑥1∈{𝑠1,𝑟1}

𝑝(𝑥1𝑥2𝑠3𝑠4) + 𝑝(𝑥1𝑥2𝑟3𝑟4) = 1. (AC)

In other words, model AC requires consistency with hypothesis EU-CORE only for
comparisons in which both lotteries are “away from certainty".

In each of the three model specifications, the fractions of true preferences and the
error term can be estimated using maximum likelihood estimation.22 The unit of
observation in this analysis is the pattern of choices in an unmixed comparison and
the three associated mixed comparisons. Figure 2.6 shows an example of unmixed
and associated mixed comparisons from the Worst treatment. Each treatment has
seventeen unmixed comparisons with their own associated three mixed comparisons.
Therefore, we estimate our three models in each treatment seventeen times, one for
each unmixed and associated mixed comparison.

22We refer to Harless and Camerer (1994) for a detailed description of the likelihood function.
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Table 2.5: Likelihood ratio tests results.

Worst Bad WorstBest
CC-AC 7 9 0
EU-AC 10 3 1
CC-EU 0 0 0
EU-EU 0 5 16

Notes: Each treatment has seventeen patterns of comparisons. This table classifies each
pattern of comparisons into four possible categories. We denote by 𝑖- 𝑗 the category of all
patterns in which model 𝑖 ∈ {EU,CC} prevails in a likelihood ratio test between model EU
and model CC, while model 𝑗 ∈ {EU,AC} in a likelihood ratio test between model EU and
model AC.

To evaluate the relevance of certainty for violations of hypothesis EU-CORE, we
perform two likelihood ratio tests. The first test compares model EU with model CC,
while the second test model EU with model AC. Table 2.5 summarizes the results
of these likelihood ratio tests. In the Worst treatment, model EU is always rejected
against either model CC or model AC. In the Bad treatment, accommodating for
failures of hypothesis EU-CORE in unmixed comparisons also allows explaining
our data significantly better, with the exception of five patterns of comparisons.
However, the results in the WorstBest treatment completely overturn this conclusion.
In this latter treatment, for sixteen out of seventeen patterns, model EU is never
rejected. In other words, allowing for violations of hypothesis EU-CORE in unmixed
or 0.95-mixed comparisons does not help to explain our data better.

2.5 Discussion
This study sheds new light on what drives violations of the independence axiom. We
conduct an experimental investigation involving choices between risky lotteries. Our
main finding is that subjects are more likely to be consistent with the independence
axiom when they report high decision confidence levels. In this way, we provide
empirical support for the psychological interpretation of the EU core as the subset
of the uncontroversial rankings. We believe that exploiting the notion of EU core
into experimental works, as we do in this paper, represents a promising direction to
expand our understanding of decision-making under risk.

Moreover, we analyze decision-making under low decision confidence. Contrary to
the certainty effect rationale for independence violations, subjects are more likely
to choose a risky lottery over a certain prize and violate the independence axiom
when not confident. Given the extensive evidence on the certainty effect and the
impact that this evidence had and still has on new theoretical models, more research
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is plainly needed to test the robustness of our conclusion. An important insight
of our work is that the certainty effect may be less relevant in environments where
subjects face a greater variety of lotteries than in the Allais paradox.

Our data also questions the relevance of certainty itself. In the WorstBest treatment,
where we construct mixed comparisons alternating the third common lottery, we
detect more independence violations. Remarkably, we also find that in this treatment,
the presence of certain alternatives does not increase independence violations. To
our knowledge, this is the first study that alternates the third common lotteries to build
mixed comparisons. Given the different conclusions we obtain in the 𝑊𝑜𝑟𝑠𝑡𝐵𝑒𝑠𝑡
treatment, we believe that exploring new ways to construct mixed comparisons
constitutes a promising line of research for studying the independence axiom.

References

Agranov, Marina and Pietro Ortoleva (2017). “Stochastic Choice and Preferences
for Randomization”. In: Journal of Political Economy 125.1, pp. 40–68.

Andreoni, James and William Harbaugh (2009). “Unexpected utility: Experimental
tests of five key questions about preferences over risk”. In.

Andreoni, James and Charles Sprenger (2010). “Certain and uncertain utility: The
allais paradox and five decision theory phenomena”. In: Levine’s Working Paper
Archive 926159295.

– (2011). Uncertainty equivalents: Testing the limits of the independence axiom.
Tech. rep. National Bureau of Economic Research.

– (2012). “Risk preferences are not time preferences”. In: American Economic
Review 102.7, pp. 3357–76.

Arts, Sara, Qiyan Ong, and Jianying Qiu (2022). “Measuring subjective decision
confidence”. In.

Bernheim, B Douglas and Charles Sprenger (2020). “On the empirical validity of cu-
mulative prospect theory: Experimental evidence of rank-independent probability
weighting”. In: Econometrica 88.4, pp. 1363–1409.

Blavatskyy, Pavlo, Andreas Ortmann, and Valentyn Panchenko (Feb. 2022). “On
the Experimental Robustness of the Allais Paradox”. In: American Economic
Journal: Microeconomics 14.1, pp. 143–63. doi: 10.1257/mic.20190153.
url: https://www.aeaweb.org/articles?id=10.1257/mic.20190153.

Blavatskyy, Pavlo, Valentyn Panchenko, and Andreas Ortmann (2022). “How com-
mon is the common-ratio effect?” In: Experimental Economics, pp. 1–20.

Blavatskyy, Pavlo R (2010). “Reverse common ratio effect”. In: Journal of Risk and
Uncertainty 40.3, pp. 219–241.

https://doi.org/10.1257/mic.20190153
https://www.aeaweb.org/articles?id=10.1257/mic.20190153


60

Camerer, Colin F (1992). “Recent tests of generalizations of expected utility theory”.
In: Utility theories: Measurements and applications. Springer, pp. 207–251.

Cerreia-Vioglio, Simone (2009). Maxmin expected utility on a subjective state space:
Convex preferences under risk. Tech. rep. Mimeo, Bocconi University.

Cerreia-Vioglio, Simone, David Dillenberger, and Pietro Ortoleva (2015). “Cautious
expected utility and the certainty effect”. In: Econometrica 83.2, pp. 693–728.

– (2020). “An explicit representation for disappointment aversion and other be-
tweenness preferences”. In: Theoretical Economics 15.4, pp. 1509–1546.

Dillenberger, David (2010). “Preferences for one-shot resolution of uncertainty and
Allais-type behavior”. In: Econometrica 78.6, pp. 1973–2004.

Enke, Benjamin and Thomas Graeber (2019). Cognitive uncertainty. Tech. rep.
National Bureau of Economic Research.

Halevy, Yoram (2008). “Strotz meets Allais: Diminishing impatience and the cer-
tainty effect”. In: American Economic Review 98.3, pp. 1145–62.

Harless, David W and Colin F Camerer (1994). “The predictive utility of generalized
expected utility theories”. In: Econometrica: Journal of the Econometric Society,
pp. 1251–1289.

Jain, Ritesh and Kirby Nielsen (2022). “A systematic test of the independence axiom
near certainty”. In.

Kahneman, Daniel and Amos Tversky (Mar. 1979). “Prospect Theory: An Analysis
of Decision under Risk”. In: Econometrica 47.2, pp. 263–291. url: https:
//ideas.repec.org/a/ecm/emetrp/v47y1979i2p263-91.html.

Machina, Mark J (1987). “Choice under uncertainty: Problems solved and unsolved”.
In: Journal of Economic Perspectives 1.1, pp. 121–154.

– (1982). ““Expected Utility” analysis without the independence axiom”. In: Econo-
metrica 50.2, pp. 277–323. issn: 00129682, 14680262. url: http://www.
jstor.org/stable/1912631 (visited on 02/21/2024).

Marschak, Jacob (1950). “Rational behavior, uncertain prospects, and measurable
utility”. In: Econometrica: Journal of the Econometric Society, pp. 111–141.

Segal, Uzi (1990). “Two-stage lotteries without the reduction axiom”. In: Econo-
metrica: Journal of the Econometric Society, pp. 349–377.

Starmer, Chris (2000). “Developments in non-expected utility theory: The hunt for a
descriptive theory of choice under risk”. In: Journal of economic literature 38.2,
pp. 332–382.

Tversky, Amos and Daniel Kahneman (1992). “Advances in prospect theory: Cu-
mulative representation of uncertainty”. In: Journal of Risk and uncertainty 5.4,
pp. 297–323.

https://ideas.repec.org/a/ecm/emetrp/v47y1979i2p263-91.html
https://ideas.repec.org/a/ecm/emetrp/v47y1979i2p263-91.html
http://www.jstor.org/stable/1912631
http://www.jstor.org/stable/1912631


61

C h a p t e r 3

DELIBERATE RANDOMIZATION UNDER RISK

3.1 Introduction
Random choices interpreted as the outcome of deliberate randomization are the
object of theoretical and experimental works that study decision-making under risk.
The recent experimental effort to provide robust evidence about deliberate random-
ization motivates the growing attention on theoretical models that can rationalize
this observed pattern.1 Yet, while several appealing models belong to this category,
the lack of analytical tractability that characterizes a large class of them limits their
use in applied research.

Convexity is the axiom that captures preferences for randomization. It requires that
if a decision-maker (DM) is indifferent between two lotteries 𝑝 and 𝑞, then any
convex combination between 𝑝 and 𝑞 is weakly preferred. Preferences that satisfy
convexity and few other rationality requirements admit a conservative multi-utility
representation: the DM has a set of utility functions and reacts to this multiplicity by
evaluating each lottery with the utility function that yields the lowest payoff.2 One
can imagine either a DM with multiple selves or a Rawlsian planner that aggregates
the preferences of different individuals.3

In many economic problems, a DM chooses an action from a set of available
alternatives to maximize his well being. Unfortunately, the conservative multi-
utility representation is not differentiable, and consequently, it is not possible to use
standard optimization techniques to characterize the properties of the set of optimal
actions. To overcome this issue, we provide a general characterization of the DM’s
optimal action(s) in terms of the strict upper-contour sets of the utilities involved
in the representation. In particular, we show that an action maximizes the DM’s
preferences if and only if the intersection of the strict upper-contour sets of the
"worst-off" utilities (i.e., the ones whose evaluation of the DM’s action is the lowest)
is empty.4

1See, for instance, Agranov and Ortoleva (2017).
2Cerreia-Vioglio (2009) first studies the implications of convexity for preferences under risk.
3Cerreia-Vioglio (2009) describes a DM with multiple selves which is unsure about one or

possibly all of the following: the value of the decision outcome, future tastes, and degree of risk
aversion.

4Properties of maxmin optima have also been exploited in other contexts. For example, in the
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Furthermore, we propose a notion of efficiency that strengthens the requirement
of optimality in two ways. We start by calling an optimal action minimal if no
other action constitutes a Pareto improvement for the set of worst-off utilities that it
induces. We motivate this additional requirement by showing that minimal actions
induce the smallest set of worst-off utilities. Next, we define an action efficient if it
is minimal and there is no other action that constitutes a Pareto improvement for the
set of all utilities.5 We prove that there is always an efficient action within the set of
optimal actions. Consequently, this efficiency notion can always serve as a selection
criterion for the case of multiple optimal actions. Moreover, we derive conditions
that guarantee the uniqueness of the optimal action.

Our general analysis of the set of optimal actions and their properties lays the
groundwork for the second part of our paper, where aiming for higher tractability,
we turn to the analysis of deliberate randomization for a DM with two utilities. In
this setting, the DM never finds it optimal to select more than two actions with
positive probability. The value of this result is twofold. First, it shows that finding
optimal actions is easier in the two utility specification than in the generic finite case
because it is enough to focus on randomization over at most two actions. Second, it
provides a testable implication of this assumption: a DM with two utilities should
never be willing to pay any positive monetary amount to pick more than two actions
with positive probability.

We call randomization strictly beneficial when it allows the DM to achieve a strictly
greater payoff than with any pure action. If the DM is indifferent among all the
pure actions, randomization is always strictly beneficial unless preferences do not
degenerate to EU. In this scenario, we explicitly derive the support of the optimal
random choices. Moreover, we study the case of two pure actions, which is relevant
in experimental settings. We then use this result to characterize when an observed
preference for randomization can be used to rule out both risk aversion and risk-
seeking attitudes in the Cautious Expected Utility (C-EU) model, which is a special
case of the class of preferences that we consider.6

Finally, we apply our results to non-cooperative game theory, the main analytical
tool to build formal economic models. One obstacle in studying games in which
theory of optimal auctions, Chung and Ely (2007) provide sufficient conditions for dominant-strategy
mechanisms to have maxmin foundation.

5In the auction context, Börgers (2017) refines Chung and Ely (2007)’s criterion in order to
exclude dominant-strategy mechanisms that he classifies as “dominated". Our refinement notion is
stronger because we require efficient actions to be minimal.

6See Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).
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players have non-EU preferences is that the notion of Nash equilibrium often needs
to be modified. For instance, the Nash requirement of correct conjectures is not
well defined in models under uncertainty with multiple beliefs. Instead, the class
of convex preferences that we focus on does not feature the same problem. While
each player has multiple utility functions, the conjecture is unique. Moreover, all
the standard assumptions for the existence of a Nash equilibrium hold for the class
of convex preferences that we consider.

Specifically, we study a static game with two players with convex preferences. Each
player has two actions and two utility functions. We partition the possible mixed
equilibria into three categories: weak, partially strict, and strict. In weak equilibria,
players are indifferent in equilibrium between their mixed and pure actions, as in
the EU case. Partially strict and strict mixed equilibria instead constitute an element
of novelty. In these equilibria, at least one player strictly prefers the equilibrium
mixed action to the pure actions in the support. We provide necessary conditions
for the existence of these new types of equilibria and we illustrate them in a simple
coordination game. In this example, convexity may lead to a multiplicity of mixed
Nash equilibria. However, we show that when they exist, only strict mixed Nash
equilibria are such that both players play efficient mixed actions.

Related Literature
This paper contributes to the recent theoretical literature that studies stochastic
choice as the outcome of deliberate randomization.7 This strand of contributions
builds on the idea first proposed by Machina (1985) that individuals with non-
stochastic preferences over lotteries may have an explicit desire to randomize their
choices. Battigalli et al. (2017) develop a framework to model random choices under
uncertainty. Our paper, instead, focuses on choices under risk, building on the multi-
utility representation result obtained by Cerreia-Vioglio (2009) for preferences that
satisfy convexity. This representation is appealing because it encompasses several
well-known decision criteria under risk, such as the C-EU model of Cerreia-Vioglio,
Dillenberger, and Ortoleva (2015) or the maxmin model of Maccheroni (2002).

The premise of this paper is that the multi-utility representation in Cerreia-Vioglio
(2009) is not differentiable, so standard optimization techniques to study random
choices are not viable. Cerreia-Vioglio, Dillenberger, and Ortoleva (2020) make
an analogous remark for betweenness preferences that satisfy Dillenberger’s (2010)

7See Agranov and Ortoleva (2022) for a recent review of the literature.
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NCI axiom, such as the Gul’s (1991) model of disappointment aversion. Given
that NCI implies convexity, the representation in Cerreia-Vioglio (2009) is more
general. At the same time, our focus on a finite set of utilities in practice allows
for betweenness violations. For this reason, we see our paper as complementary to
Cerreia-Vioglio, Dillenberger, and Ortoleva (2020) for the analysis of preferences
in which randomization can be strictly beneficial.

A growing experimental literature supports the hypothesis that subjects make stochas-
tic decisions deliberately. Agranov and Ortoleva (2017) provide evidence in favor
of the class of convex preferences that we consider, showing that models of bounded
rationality or random preferences cannot rationalize subjects’ stochastic behavior in
their experiment. Consistently with the conservative multi-utility interpretation of
convex preferences, hedging and diversification were the main motivations behind
this stochastic behavior. Agranov and Ortoleva (2023) push this observation further,
showing not only the existence of questions for which subjects want to randomize
but also their prevalence. Our paper provides new testable predictions for models
of deliberate randomization, deriving properties of optimal random choices and
conditions under which strict preferences for randomization are inconsistent with
both risk aversion and risk-seeking attitudes.

Evidence of preferences for randomization extends to strategic settings. Agranov,
Healy, and Nielsen (2023) show that randomization is a stable and pervasive feature
of several choice environments, including games. In their experiment, a sizable
part of individuals displays preferences for randomization in individual decision
problems but especially in games. Calford (2021) studies the role of mixed actions
for ambiguity averse players with maxmin EU preferences (Gilboa and Schmeidler
(1989)). He proves that the set of rationalizable strategies grows larger as preferences
for randomization weaken. We also apply our results to static games. However,
while each player has multiple utilities in our setting, the conjecture is unique.
Consequently, it is not necessary to modify the Nash equilibrium notion, as is the
case with models under ambiguity.8

Allen and Rehbeck (2021) also study preferences for randomization in settings
of strategic interaction by focusing on concave perturbed utility games. In their
framework, players’ preferences are represented by a general base utility index and an
additively separable concave perturbation function. By making different functional
form assumptions on the perturbation function, they construct and study properties

8See, for instance, Marinacci (2000).
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of the best-response functions. Our framework differs because rather than relying
on utility perturbations, we start by imposing convexity on players’ preferences
and exploit the general axiomatic representation in Cerreia-Vioglio (2009) to model
preferences for randomization. At the same time, in Section 3.6, we provide a
closed-form expression for the best-response function under the assumption that
players have maxmin preferences and that randomization is strictly beneficial. We
then use this characterization to compute the set of all possible Nash equilibria in a
simple coordination problem.

Outline
The rest of the paper is organized as follows. Section 3.2 sets up the decision
model. Section 3.3 provides a general characterization of the set of DM’s optimal
actions. Section 3.4 deals with the efficiency and uniqueness of optimal actions.
Section 3.5 studies the implications of deliberate randomization for a DM with two
utilities. Section 3.6 applies our results to the analysis of mixed Nash equilibria in
a static game where players have convex preferences. Section 3.7 summarizes the
main findings and concludes. All the proofs of the statements are collected in the
appendix.

3.2 Model
This section begins with the introduction of the decision framework. After that,
we describe the conservative multi-utility model of Cerreia-Vioglio (2009) and the
additional assumptions we impose on his representation.

Decision Framework
Following Luce and Raiffa (1957),9 a decision framework is a quartet ⟨𝐴, 𝑆, 𝐶, 𝜌⟩,
where 𝐴 is a finite set of conceivable pure actions, 𝑆 is a finite set of states, 𝐶 is a
finite set of consequences and 𝜌 : 𝐴 × 𝑆 → 𝐶 is the consequence function. Given a
generic set 𝑋 , we denote by △(𝑋) the set of probability distributions over 𝑋 . The
DM can commit his actions to some random devices. We denote by A = △(𝐴) the
set of feasible actions.10

The DM has a belief 𝜇 ∈ △(𝑆) over the states. Every feasible action 𝛼, given a
9Luce and Raiffa (1957) introduce this framework to study choice under uncertainty. Here, we

endow the DM with a subjective belief over the states.
10△(𝐴) is the set of conceivable actions. In principle, not all conceivable actions are feasible:

A ⊆ △(𝐴). In this paper, we assume A = △(𝐴).
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belief 𝜇 induces a lottery according to the stochastic outcome function:

�̂� : A × △(𝑆) → △(𝐶).

The specification of the belief is relevant in Section 3.6, where we consider an
application of our results to game theory. In all the other sections, we omit the
dependence from the belief in the notation because it plays no specific role.

Preferences
We denote by E(𝛼, 𝑣) the EU of action 𝛼, with utility 𝑣 : 𝐶 → R:

E(𝛼, 𝑣) =
∑︁
𝑎∈𝐴

𝛼(𝑎)
∑︁
𝑠∈𝑆

𝜇(𝑠)𝑣 (𝜌(𝑎, 𝑠)) .

We also indicate by ≿𝑣 the binary relation representing the preferences of an EU
DM with utility 𝑣:

𝛼 ≿𝑣 𝛽 ⇔ E(𝛼, 𝑣) ≥ E(𝛽, 𝑣),

with 𝛼, 𝛽 ∈ A. Moreover, we denote by ≻𝑣 and ∼𝑣 the asymmetric and symmetric
parts of ≿𝑣, respectively. Given an action 𝛼 ∈ A, we denote by 𝑆𝑈𝐶𝑆𝑣 (𝛼) the strict
upper-contour set of 𝛼 for utility 𝑣. That is,

𝑆𝑈𝐶𝑆𝑣 (𝛼) B {𝛼′ ∈ A : 𝛼′ ≻𝑣 𝛼}.

In words, 𝑆𝑈𝐶𝑆𝑣 (𝛼) is the set of actions that utility 𝑣 strictly prefers to 𝛼.

When a preference ≿ over A is complete, transitive, continuous and satisfies con-
vexity,11 Cerreia-Vioglio (2009) shows the existence of a utility function 𝑢 that
represents ≿ as follows: there exist a set of normalized utility functions W and a
function U : R ×W → [−∞, +∞] such that for all 𝛼 ∈ A,12

𝑢(𝛼) = inf
𝑣∈W

U [E(𝛼, 𝑣), 𝑣] . (★)

For every utility 𝑣 ∈ W, the DM computes the EU of action 𝛼 and then distorts
it with the function U[·, 𝑣], which we assume to be strictly increasing in the first
argument.13 Of all possible distorted EU evaluations, the DM adopts a conservative
criterion assigning to 𝛼 the smallest one. We further assume that W is finite so

11The preference relation ≿ satisfies convexity if and only if for all 𝛼 ∈ A, 𝛽 ∈ A and 𝜆 ∈ (0, 1),
𝛼 ∼ 𝛽 ⇒ 𝜆𝛼 + (1 − 𝜆)𝛽 ≿ 𝛼.

12We fix an arbitrary consequence 𝑐 ∈ 𝐶 and define W = W1 = {𝑣 ∈ R𝐶 : 𝑣(𝑐) = 1}.
13Cerreia-Vioglio (2009) proves that U[·, 𝑣] must be increasing in the first argument. The

additional requirement that we impose is satisfied in the special cases of Maccheroni (2002) and
Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).
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that the smallest evaluation is always well defined. We call an action optimal if it
maximizes (★).

Because this representation relies on minimal assumptions for ≿, it encompasses
several decision models under risk. If W is a singleton, the representation reduces
to EU. When U [𝑥, 𝑣] = 𝑥 for all 𝑣 ∈ W and 𝑥 ∈ R, we obtain the maxmin EU
model of Maccheroni (2002). Finally, if U [𝑥, 𝑣] = 𝑣−1(𝑥) for all 𝑣 ∈ W and 𝑥 ∈ R,
we get the C-EU model of Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).

Given an action 𝛼 ∈ A, denote by 𝑆𝛼 the support of 𝛼 and by 𝑀𝛼 the set of worst-off
utilities that 𝛼 induces:

𝑀𝛼 B arg min
𝑣∈W

U [E(𝛼, 𝑣), 𝑣] .

Moreover, given a utility function 𝑣 ∈ W, denote by 𝑃𝑣 the set of pure actions for
which 𝑣 belongs to the induced set of worst-off utilities:

𝑃𝑣 B {𝑎 ∈ 𝐴|𝑣 ∈ 𝑀𝑎}.

3.3 Optimal Actions
Our main result characterizes the set of optimal actions in terms of the strict upper-
contour sets of the worst-off utilities that these actions induce.

Proposition 1. Action 𝛼∗ ∈ A is optimal if and only if
⋂

𝑣∈𝑀𝛼∗
𝑆𝑈𝐶𝑆𝑣 (𝛼∗) = ∅.

Proposition 1 establishes that an action is optimal whenever there is no other action
that is strictly better for all the worst-off utilities that the action induces. Suppose
that the intersection of the strict upper-contour sets of all the worst-off utilities that
action 𝛼∗ induces is empty. Then, for all actions 𝛼 ∈ A, there must exists a utility
𝑣 ∈ 𝑀𝛼∗ such that 𝛼∗ ≿𝑣 𝛼. Consequently, action 𝛼∗ is optimal.

For the other direction, suppose that the intersection of the strict upper-contour sets
of all the worst-off utilities that action 𝛼∗ induces is non-empty. Then, there must
exist an action 𝛼 that is strictly better than 𝛼∗ for all utilities 𝑣 ∈ 𝑀𝛼∗ . Given that
the set of utilities W is finite, the payoffs of action 𝛼∗ for utilities that do not belong
to 𝑀𝛼∗ must be larger than the payoff of the worst-off utilities in 𝑀𝛼∗ by some finite
amount, say 𝜖 > 0. Because all utilities are continuous, it is possible to mix action
𝛼∗ with a little bit of 𝛼 to make all utilities in 𝑀𝛼∗ better off without rendering
anyone outside 𝑀𝛼∗ worst off by more than 𝜖 . Therefore, action 𝛼∗ is not optimal.
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Proposition 1 hints at a strategy to verify whether an action 𝛼∗ is optimal: check
whether the intersection of the strict upper-contour sets of all the worst-off utilities
in 𝑀𝛼∗ is empty. The next proposition introduces an indirect tool to simplify this
task.

Proposition 2. Action 𝛼∗ ∈ A is optimal if and only if
⋂

𝑣∈𝑀𝛼∗
𝑆𝑈𝐶𝑆𝑣 (𝛼) = ∅ for all

𝛼 ∈ A with 𝑆𝛼 ⊆ 𝑆𝛼∗ .

According to Proposition 2, an action 𝛼∗ is optimal whenever there are no actions
𝛼 and �̃� such that the support of action 𝛼∗ contains the support of action �̃�, and
action 𝛼 is strictly better than action �̃� for all utilities in 𝑀𝛼∗ . For instance, suppose
that for all utilities 𝑣 ∈ 𝑀𝛼∗ and for some pure actions 𝑎 ∈ 𝑆𝛼∗ and �̃� ∈ 𝐴, we have
�̃� ≻𝑣 𝑎. By Proposition 2, we can conclude that 𝛼∗ is not optimal.

The argument for the proof of Proposition 2 goes as follows. Take an action �̃�
with 𝑆�̃� ⊆ 𝑆𝛼∗ and suppose that there exists another action 𝛼 that is strictly better
for all utilities in 𝑀𝛼∗ . Given that the set of utilities W is finite, the payoffs of
action 𝛼∗ for utilities that do not belong to 𝑀𝛼∗ must be larger than the payoff of the
worst-off utilities in 𝑀𝛼∗ by some finite amount, say 𝜖 > 0. Because all utilities are
continuous, it is possible to add a little bit of 𝛼 and subtract a little bit of �̃� from
action 𝛼∗ to make all utilities in 𝑀𝛼∗ better off without rendering anyone outside 𝑀𝛼∗

worse off by more than 𝜖 . Notice that the resulting action is well defined because
𝑆�̃� ⊆ 𝑆𝛼∗ . Therefore, action 𝛼∗ is not optimal.

Representation in the Marschak–Machina Triangle
We conclude this section with a graphical representation of the results in Propositions
1 and 2. Figure 3.1 shows an example with three pure actions (𝑎, 𝑏 and 𝑐) and three
utility functions (𝑣1, 𝑣2 and 𝑣3) using a revisitation of the MM triangle.14 Every
point in the triangle corresponds to the lottery associated with an action. The figure
also includes the indifference curves for the three utilities. Given that the level of
the indifference curves matters, we make it explicit through the thickness of the
curves. The indifference curves of utilities 𝑣1, 𝑣2, and 𝑣3 passing through �̂� have
the same thickness and thus achieve the same level of utility. At the same time, the
indifference curve of utility 𝑣3 passing through 𝛼∗ is thicker than the indifference
curve passing through �̂� because it is associated with a higher level of utility.

14The canonical MM triangle represents the set of all lotteries involving three fixed outcomes.
Here instead, we represent the set of all lotteries arising from random choices that involve three
actions.
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Figure 3.1: Example with A = △({𝑎, 𝑏, 𝑐}) and W = {𝑣1, 𝑣2, 𝑣3}.

According to Proposition 1, an action 𝛼 is optimal if there is no other action that is
strictly better for all utilities in 𝑀𝛼. For instance, let us consider the mixed action
�̂� and notice that 𝑀�̂� = {𝑣1, 𝑣2, 𝑣3}. Understanding whether action �̂� is optimal
amounts to check whether the intersection of the strict upper-contour sets of the three
utilities at �̂� is empty. In Figure 3.1, the shaded red region is the strict upper-contour
set for 𝑣1, the shaded blue region for 𝑣2, and the dotted green region for 𝑣3. As it
is clear from the figure, the intersection is empty: to make utility 𝑣2 strictly better
off, it is necessary to make utility 𝑣1 strictly worse off and vice versa. Therefore, by
Proposition 1 action �̂� is optimal.

To appreciate the practical use of Proposition 2, consider a richer decision framework
with the same set of utility functions but with a larger set of pure actions 𝐴′ such
that {𝑎, 𝑏, 𝑐} ⊂ 𝐴′. Suppose that we are interested in verifying whether an action
𝛼 with support 𝑆𝛼 = 𝐴′ is optimal. Thanks to Proposition 2, it is still possible to
address this task by looking at the MM triangle in Figure 3.1. Indeed, if there are
two actions in the triangle such that for all utilities in 𝑀𝛼, one action is strictly better
than the other, then by Proposition 2 𝛼 is not optimal.
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3.4 Uniqueness and Efficiency
Proposition 1 characterizes the set of optimal actions in terms of the strict upper-
contour sets of the worst-off utilities. This section explores additional properties
that optimal actions might satisfy. Figure 3.1 shows that the set of optimal actions
does not need to be a singleton. In the example, this set consists of all actions in
the segment with extremes �̂� and 𝛼∗. The next proposition answers the following
question: under what condition is an optimal action unique?

Proposition 3. Let 𝛼∗ ∈ A be an optimal action. Then 𝛼∗ is unique if and only if
there is no action 𝛼 ∈ A, with 𝛼∗ ≠ 𝛼, such that 𝛼∗ ∼𝑣 𝛼 for all 𝑣 ∈ 𝑀𝛼∗ .

Proposition 3 states that an optimal action 𝛼∗ is unique whenever there is no action
𝛼 that is indifferent to 𝛼∗ for all utilities in 𝑀𝛼∗ . If such action exists, it is possible
to mix 𝛼∗ with a little bit of 𝛼. The resulting new action keeps the set of worst-off
utilities fixed to 𝑀𝛼∗ maintaining the same level of minimum utility. Conversely,
suppose that there are two actions 𝛼∗ and 𝛼 that are optimal. All utilities in 𝑀𝛼∗

weakly prefer action 𝛼 to action 𝛼∗. Let us build a new action �̂� by mixing action
𝛼∗ with a little bit of 𝛼. The resulting action �̂� is still optimal. Furthermore, the set
of utilities 𝑀�̂� coincides with all the utilities in 𝑀𝛼∗ for which 𝛼∗ is indifferent to 𝛼.
Therefore, the action �̂� is optimal and all the utilities in 𝑀�̂� are indifferent between
actions �̂� and 𝛼∗.

If the condition in Proposition 3 fails, the set of optimal actions is not a singleton.
To reduce the extent of this multiplicity, we propose an efficiency criterion that
refines the set of optimal actions. The set of worst-off utilities 𝑀𝛼∗ plays a key role
in determining whether action 𝛼∗ is optimal. For this to be the case, there must be
no other action 𝛼 that is strictly better than 𝛼∗ for all utilities in 𝑀𝛼∗ . A first natural
refinement is then to ask that there is no other action 𝛼 that Pareto dominates 𝛼∗ in
𝑀𝛼∗ . That is, there is no other action 𝛼 such that 𝛼 is weakly better than 𝛼∗ for all
utilities 𝑣 ∈ 𝑀𝛼∗ , and 𝛼 is strictly better than 𝛼∗ for at least one utility 𝑣 ∈ 𝑀𝛼∗ .

This Pareto efficiency requirement in the set of worst-off utilities relates to the
following question: how large is the set of worst-off utilities? Suppose an optimal
action 𝛼∗ is not Pareto efficient in 𝑀𝛼∗ . In this case, it is possible to find another
action whose set of worst-off utilities is strictly smaller in the sense of set inclusion.
The following proposition formalizes this intuition.

Proposition 4. An optimal action 𝛼∗ is Pareto efficient in 𝑀𝛼∗ if and only if 𝑀𝛼∗ ⊆
𝑀𝛼 for any other optimal action 𝛼.
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According to Proposition 4, an optimal action 𝛼∗ is Pareto efficient in 𝑀𝛼∗ whenever
there is no other optimal action that induces a strictly smaller set of worst-off utilities.
For instance, let us come back to the scenario in Figure 3.1. The action �̂� is optimal
because no action is strictly better for all the utilities. However, from Proposition 4, it
is possible to conclude that action �̂� is not Pareto efficient in 𝑀�̂�. Indeed, any action
𝛼 in the interval (�̂�, 𝛼∗] is also optimal and 𝑀𝛼 = {𝑣1, 𝑣2} ⊂ {𝑣1, 𝑣2, 𝑣3} = 𝑀�̂�.
We refer to actions that are Pareto efficient in the induced set of worst-off utilities
as minimal and denote by 𝑀𝑚𝑖𝑛 the set of worst-off utilities that they induce.

Despite any action in the interval (�̂�, 𝛼∗] is minimal, the most natural action to pick
seems 𝛼∗, because utilities 𝑣1 and 𝑣2 are always indifferent, while utility 𝑣3 strictly
prefers action 𝛼∗. In other words, a sensible selection criterion should also impose
an efficiency requirement for utilities that are outside𝑀𝑚𝑖𝑛. This consideration leads
us to our definition of efficiency.

Definition 1. An action 𝛼∗ ∈ A is efficient if it is minimal and there is no other
action that Pareto dominates 𝛼∗ in W.

In the example of Figure 3.1, 𝛼∗ is the only efficient action. The next proposition
shows that there is always at least one efficient action.

Proposition 5. For any finite set of utilities W, there always exists an efficient
action.

The existence of a minimal action follows from Proposition 4 and by the fact that the
set of utilities W is finite. If an optimal action is not minimal, then by Proposition 4
there must exist another optimal action that induces a strictly smaller set of worst-off
utilities. Given that W is finite, there must exist a minimal action that induces the
smallest set of worst-off utilities.

At this point, it is not possible to directly establish the existence of an efficient
action by solving a maximization problem over the set of minimal actions because
this set may not be compact as in the example of Figure 3.1. We circumvent this
issue as follows. First, we maximize again (★) over the set of optimal actions using
W\𝑀𝑚𝑖𝑛 as set of utility functions. Second, we show that all the actions that solve
the maximization problem must be minimal. Third, within this compact subset of
minimal actions, we maximize the sum of the expected utilities over all utilities in
W \ 𝑀𝑚𝑖𝑛. Finally, we prove that any solution to this latter maximization problem
is efficient.
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3.5 Deliberate Randomization with Two Utilities
In this section, we study the role of deliberate randomization for a DM with convex
preferences and two utilities: W = {𝑣1, 𝑣2}. From an operational point of view,
we show that this assumption is appealing because it simplifies the structure of the
set of optimal actions. At the same time, it still allows interesting deviations from
EU. For instance, in the C-EU model, Cerreia-Vioglio, Dillenberger, and Ortoleva
(2015) show that two utilities are enough to rationalize the certainty effect in the
Allais’ common ratio example.

Our first result is that a DM with convex preferences and two utilities never finds it
strictly beneficial to select more than two pure actions with positive probability.

Proposition 6. If |W| = 2, then

max
𝛼∈A

𝑢(𝛼) = max
𝛼∈{𝛼′∈A : |𝑆𝛼′ |≤2}

𝑢(𝛼).

There are two possibilities for any three pure actions in the support of an optimal
mixed action: either both utilities are indifferent among them, or they have opposite
preferences. Otherwise, the mixed action would not be optimal. In the case of
indifference, it is easy to construct another optimal mixed action with smaller
support. In the proof, we show that this is also possible in the scenario of opposite
preferences.

To fix ideas, consider the example in Figure 3.1 neglecting the role of utility 𝑣3.
Utilities 𝑣1 and 𝑣2 have opposite preferences for the pure actions 𝑎, 𝑏 and 𝑐. In
particular, 𝑎 ≻𝑣1 𝑏 ≻𝑣1 𝑐 and 𝑐 ≻𝑣2 𝑏 ≻𝑣2 𝑎. We show that if there is a mixed
action inside the triangle that is optimal (for instance, action �̂�), then there must
exist a unique mixed action 𝛼∗ with support {𝑎, 𝑐} that is indifferent to the pure
action 𝑏 for both utilities. Therefore, starting from �̂�, one can reduce to zero the
probability weight of action 𝑏 and increase the probability weights of actions 𝑎 and
𝑐 by 𝛼∗(𝑎)�̂�(𝑏) and 𝛼∗(𝑐)�̂�(𝑏), respectively. The resulting new mixed action has
smaller support and is still optimal.

Proposition 6 provides a testable implication of our restriction on the set of utility
functions. Experiments that document deliberate randomization typically focus on
binary comparisons. For instance, in Agranov and Ortoleva (2023) subjects can use
an external randomization device to choose between two lotteries, exactly as in our
theoretical framework. To test our restriction on the number of utilities, one can
enlarge the set of available lotteries and add a small cost for selecting more than two
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lotteries with a positive probability. Subjects consistent with the assumption of two
utilities should never be willing to pay any positive amount.

Maintaining the assumption of two utilities, we now characterize the mixed actions
that maximize the DM’s preferences when there are no optimal pure actions. In this
case, we call randomization strictly beneficial.

Definition 2. Randomization is strictly beneficial if

∃𝛼 ∈ A : 𝑢(𝛼) > max
𝑎∈𝐴

𝑢(𝑎).

In what follows, we first look at the case where the DM is indifferent among all the
pure actions. Then, we conclude by studying what happens when there are only two
pure actions.

Indifference
A non-EU DM with convex preferences always strictly benefits from randomization
when indifferent among all the pure actions.

Proposition 7. Assume that arg max
𝑎∈𝐴

𝑢(𝑎) = 𝐴. For any finite set of utilities W,

randomization is strictly beneficial if and only if there is no utility 𝑣 ∈ W such that
𝑃𝑣 = 𝐴.

Whenever a utility 𝑣 always belongs to the set of worst-off utilities, then it is as if
the DM had EU preferences with utility 𝑣. This result holds regardless of the size
of W. The next proposition characterizes the set of optimal mixed actions under
indifference.

Proposition 8. Suppose that W = {𝑣1, 𝑣2}, arg max
𝑎∈𝐴

𝑢(𝑎) = 𝐴 and there is no

utility 𝑣 ∈ W such that 𝑃𝑣 = 𝐴. A mixed action 𝛼 ∈ A is optimal if and only if the
following conditions hold:

1. 𝑀𝛼 = {𝑣1, 𝑣2}.

2. 𝑆𝛼 ⊆ arg max
𝑎∈𝑃𝑣1\𝑃𝑣2

U [E(𝑎, 𝑣2), 𝑣2] ∪ arg max
𝑎∈𝑃𝑣2\𝑃𝑣1

U [E(𝑎, 𝑣1), 𝑣1] .

The evaluation of the optimal mixed action 𝛼 must be the same for both utilities.
Otherwise, it is always possible to increase the minimum evaluation. Moreover,
the optimal mixed action must select with positive probability only pure actions for
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which the two utilities disagree in the evaluations. That is, each pure action must
belong to 𝑃𝑣1 \ 𝑃𝑣2 or 𝑃𝑣2 \ 𝑃𝑣1 . In light of Proposition 6, it is enough to consider
only mixed actions that assign positive probability to two pure actions, one from
each set.

Intuitively, when the two utilities have two different evaluations for a pure action,
selecting the action with positive probability is strictly beneficial because it helps
the DM hedging against his conservative nature. However, when the two evaluations
coincide, no hedging is possible. Because of the indifference assumption, utility
𝑣1 assigns the same value to all the actions in 𝑃𝑣1 \ 𝑃𝑣2 . Therefore, among these
actions, an optimal mixed action must select only those that maximize the evaluation
for utility 𝑣2. An analogous argument applies to actions in 𝑃𝑣2 \ 𝑃𝑣1 .

Two Actions
In most experiments that document deliberate randomization, there are only two
feasible pure actions for each choice. The setting with binary actions is also inter-
esting in several applications, such as the static game we consider in the next section.
We begin characterizing strict benefits from randomization when there are only two
pure actions.

Proposition 9. Assume that 𝐴 = {𝑎, 𝑏} and W = {𝑣1, 𝑣2}. Randomization is
strictly beneficial if and only if the following are true:

1. There is no utility 𝑣 ∈ W such that 𝑃𝑣 = 𝐴.

2. Either 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎, or 𝑏 ≻𝑣1 𝑎 and 𝑎 ≻𝑣2 𝑏.

The DM can find randomization strictly beneficial even if the two pure actions
do not ensure the same minimum evaluation. Therefore, the DM must be able to
commit credibly to stick with the indications of the randomization device. As for
the case of indifference, the DM’s preferences must not degenerate to Expected
Utility. Moreover, the two utilities must disagree in ranking the two pure actions.
Randomization is a valuable tool only when this internal disagreement is present
because it allows the DM to hedge against his pessimistic nature in evaluating pure
actions.

Besides shedding light on the drivers that make randomization desirable, Proposition
9 also allows studying the DM’s risk attitude. In the C-EU model, Cerreia-Vioglio,
Dillenberger, and Ortoleva (2015) show that the DM is risk averse (versus risk
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seeking) if and only if all the utilities in W are concave (versus convex). Thanks
to Proposition 9, it is possible to rule out both risk attitudes considering two pure
actions 𝑎 and 𝑏, where 𝑎 is a mean-preserving spread of 𝑏.15

Corollary 1. Assume that W = {𝑣1, 𝑣2}, 𝐴 = {𝑎, 𝑏} and that action 𝑎 is a mean-
preserving spread of action 𝑏. If incentives to randomize are strict, then a C-EU
DM is neither risk averse, nor risk seeking.

According to Proposition 9, if incentives to randomize are strict, the two utilities
must disagree in the ranking between actions 𝑎 and 𝑏. But this necessarily implies
that one utility is convex while the other one is concave. Consequently, a C-EU DM
is neither risk averse nor risk seeking.

We conclude with the characterization of the optimal and unique mixed action.

Corollary 2. Assume that 𝐴 = {𝑎, 𝑏} and W = {𝑣1, 𝑣2} and that randomization is
strictly beneficial. The action 𝛼 ∈ A is uniquely optimal if and only if 𝑀𝛼 = W.

When there are two utilities, two actions, and incentives to randomize are strict, the
unique optimal mixed action equalizes the payoff of the two utilities.

3.6 Games with Convex Preferences
A normal game form is a mathematical structure ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , 𝐶, 𝑔⟩ , where 𝑁 is a
finite set of players, 𝑆𝑖 and is the set of available actions for each player 𝑖, 𝐶 is the
set of consequences and 𝑔 : ×𝑖∈𝑁 𝑆𝑖 → 𝐶 is the outcome function that associates
consequences with strategy profiles. Therefore, each player 𝑖 faces the decision
framework ⟨𝑆𝑖, 𝑆−𝑖, 𝐶, 𝑔⟩.16

Given a conjecture 𝜇𝑖 ∈ △(𝑆−𝑖), player 𝑖 chooses 𝛼𝑖 ∈ △(𝑆𝑖) to maximize

𝑢𝑖 (𝛼, 𝜇𝑖) = min
𝑣∈W𝑖

U
[
E𝜇𝑖 (𝛼, 𝑣), 𝑣

]
,

where we make the dependence from the conjecture explicit. Similarly, we write
𝑀𝛼𝑖 ,𝜇𝑖 , 𝑃𝑣,𝜇𝑖 , ≻𝑣,𝜇𝑖 and ∼𝑣,𝜇𝑖 instead of 𝑀𝛼𝑖 , 𝑃𝑣, ≻𝑣 and ∼𝑣. A normal-form game
with convex preferences𝐺 adds to the normal game form the profile (W𝑖)𝑖∈𝑁 of sets
of utility functions on 𝐶. Every normal-form game with convex preferences always

15We identify actions with the lotteries that they induce. Formally, given a belief 𝜇, we say that
action 𝑎 is a mean-preserving spread of action 𝑏 if �̂�(𝑎, 𝜇) is a mean-preserving spread of �̂�(𝑏, 𝜇).
For a definition of mean-preserving spread, we refer to Rothschild and Stiglitz (1970).

16We denote by −𝑖 = 𝑁 \ {𝑖} the set of players different from 𝑖.
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has a Nash equilibrium because all the standard assumptions for existence hold.17
In what follows, we characterize the set of all possible Nash equilibria when there
are two players, each having two pure actions and two utility functions.

Consider a normal-form game with convex preferences 𝐺 with 𝑁 = {𝐴, 𝐵}, 𝑆𝐴 =

{𝑎1, 𝑎2}, 𝑆𝐵 = {𝑏1, 𝑏2} and |W𝐴 | = |W𝐵 | = 2. For convenience, we identify mixed
actions for players 𝐴 and 𝐵 with the probabilities 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1) that they
assign to actions 𝑎1 and 𝑏1. We also denote by 𝑣 and 𝑤 generic utilities for players
𝐴 and 𝐵. Given a utility 𝑣 ∈ W𝐴 for player 𝐴, we represent by 𝛽𝑣 the mixed action
of player 𝐵 such that 𝑎1 ∼𝑣,𝛽𝑣 𝑎2. Therefore, player 𝐴 is indifferent between pure
actions 𝑎1 and 𝑎2 when using utility 𝑣 and thinking that player 𝐵 chooses the mixed
action 𝛽𝑣. Similarly, given a utility 𝑤 ∈ W𝐵 for player 𝐵, we denote by 𝛼𝑤 the
mixed action of player 𝐴 such that 𝑏1 ∼𝑤,𝛼𝑤 𝑏2. We assume that for all 𝑣 ∈ W𝐴 and
𝑤 ∈ W𝐵, 𝛼𝑤 ∈ [0, 1] and 𝛽𝑣 ∈ [0, 1] are well defined. This amounts to imposing
that under no single utility, one player has a dominant action.

Strict Mixed Nash Equilibria
The profile of strategies (𝛼𝑤, 𝛽𝑣) is the mixed Nash equilibrium that would result
in a game in which players 𝐴 and 𝐵 maximize subjective EU with utilities 𝑣 and
𝑤. Within the subjective EU framework, every player is indifferent between the
mixed action played in equilibrium and all the pure actions in the support. When
instead players have convex preferences, our analysis thus far shows that given a
fixed conjecture about the other player’s action, the incentives to play a mixed action
may be strict. We now study under what conditions incentives to randomize extend
to mixed Nash equilibria of 𝐺.

Let (𝛼, 𝛽) ∈ (0, 1)2 be a mixed Nash equilibrium of 𝐺. First, notice that

𝛼 ∈ �̄� B [ min
𝑤∈W𝐵

𝛼𝑤, max
𝑤∈W𝐵

𝛼𝑤] and 𝛽 ∈ �̄� B [ min
𝑣∈W𝐴

𝛽𝑣, max
𝑣∈W𝐴

𝛽𝑣] .

These conditions follow directly from the definition of Nash equilibrium. For
instance, if 𝛽 > max �̄�, then either 𝑎1 ≻𝑣,𝛽 𝑎2 or 𝑎2 ≻𝑣,𝛽 𝑎1 for all 𝑣 ∈ W𝐴. In
both cases, the mixed action 𝛼 ∈ (0, 1) for player 𝐴 can not be a best reply to
action 𝛽 for player 𝐵. The next corollary clarifies that, in equilibrium, incentives to
randomize are strict for both players 𝐴 and 𝐵 depending on whether actions 𝛽 and
𝛼 are boundary or interior points of �̄� and �̄�, respectively.18

17The set ×𝑖∈𝑁 △(𝑆𝑖) is compact and convex. Moreover, for each player 𝑖 ∈ 𝑁 , the function 𝑢𝑖 is
continuous and quasi-concave since the preferences that it represents satisfy convexity.

18Given a generic set 𝑋 , we denote by 𝑋o the set of interior points of 𝑋 .
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Corollary 3. Let (𝛼, 𝛽) ∈ (0, 1)2 be a mixed Nash equilibrium of 𝐺. The following
statements are true:

1. 𝛼 ∈ �̄�o if and only if 𝑢𝐵 (𝛽, 𝛼) > max{𝑢𝐵 (𝑏1, 𝛼), 𝑢𝐵 (𝑏2, 𝛼)}.

2. 𝛽 ∈ �̄�oif and only if 𝑢𝐴 (𝛼, 𝛽) > max{𝑢𝐴 (𝑎1, 𝛽), 𝑢𝐴 (𝑎2, 𝛽)}.

Suppose first that 𝛼 ∉ 𝐴o. Then player 𝐵 does not strictly benefit from randomiza-
tion. Indeed, for any 𝛼 ∉ 𝐴o, at least one of the two utilities in W𝐵 is indifferent
between actions 𝑏1 and 𝑏2. By Proposition 9, incentives to randomize can not be
strict. Suppose instead that 𝛼 ∈ 𝐴o. In this case, player 𝐵 strictly benefits from
randomization. Given that 𝛼 ∈ 𝐴o, it must be that one utility in W𝐵 strictly prefers
action 𝑏1 to action 𝑏2, and the other has opposite preferences. By Proposition 9, it
is enough to show that there is no utility in W𝐵 that belongs to the sets of worst-off
utilities induced by both pure actions. This latter condition must hold because oth-
erwise, the mixed action 𝛽 would not be a best reply to the correct conjecture 𝛼. An
analogous reasoning can be used to prove the second statement of Corollary 3.

In light of Corollary 3, we classify mixed Nash equilibria as follows.

Definition 3. Let (𝛼, 𝛽) ∈ (0, 1)2 be a mixed Nash equilibrium of 𝐺. We call (𝛼, 𝛽)

• weak if 𝛼 ∉ �̄�
o and 𝛽 ∉ �̄�

o.

• partially strict if either 𝛼 ∉ �̄�
o and 𝛽 ∈ �̄�o or 𝛼 ∈ �̄�o and 𝛽 ∉ �̄�

o.

• strict if 𝛼 ∈ �̄�o and 𝛽 ∈ �̄�o.

When the sets �̄�o and �̄�o are empty, Corollary 3 implies that there can not be strict
mixed Nash equilibria. One example of a game in which this happens is matching
pennies. Indeed, as long as the utilities of the two players are strictly increasing, we
have �̄� = �̄� = {0.5}. For the remaining part of this section, we assume that �̄�o and
�̄�

o are non-empty so that any mixed Nash equilibrium is a priori possible.

The computation of weak equilibria follows the same logic used to compute equilib-
ria under EU. In equilibrium, each player must be indifferent between the two pure
actions. We now turn to the analysis of partially strict and strict equilibria, in which
at least one player strictly benefits from randomization. In particular, let us focus on
player 𝐴 and suppose that there exists a subset of conjectures 𝑋 ⊆ �̄�

o under which
player 𝐴 strictly benefits from randomization. The next corollary characterizes the
best reply of player 𝐴 for all conjectures in 𝑋 , assuming the maxmin EU model.
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Table 3.1: Coordination game: outcome function.

𝐵

𝑏1 𝑏2

𝐴
𝑎1 3, 1 0, 0
𝑎2 0, 0 1, 3

Corollary 4. Let 𝑊𝐴 = {𝑣𝐴, 𝑤𝐴}. For all conjectures 𝛽 ∈ 𝑋 , the unique optimal
mixed action 𝛼(𝛽) in the maxmin EU model satisfies

𝛼(𝛽) =
E𝛽 [𝑎2, 𝑤𝐴] − E𝛽 [𝑎2, 𝑣𝐴]

E𝛽 [𝑎2, 𝑤𝐴] − E𝛽 [𝑎2, 𝑣𝐴] + E𝛽 [𝑎1, 𝑣𝐴] − E𝛽 [𝑎1, 𝑤𝐴]
.

Corollary 4 provides a closed-form expression that characterizes the best reply
of player 𝐴 for the subset of conjectures under which randomization is strictly
beneficial. One insight that emerges from Corollary 4 is that the optimal probability
with which player 𝐴 chooses action 𝑎1 is increasing in |E𝛽 [𝑎2, 𝑤𝐴] − E𝛽 [𝑎2, 𝑣𝐴] |
and decreasing in |E𝛽 [𝑎1, 𝑤𝐴] − E𝛽 [𝑎1, 𝑣𝐴] |. That is, in the maxmin EU model,
players dislike actions for which there is high variability in their evaluations.

To illustrate all the possible types of mixed Nash equilibria, we consider the coor-
dination game with the outcome function represented in Table 3.1. We assume that
players 𝐴 and 𝐵 behave according to maxmin EU criterion. Each player has two
utility functions, one CARA and one CRRA.19 Figure 3.2 represents the best replies
for the two players.20 Every intersection point of the two best replies represents a
Nash equilibrium. In this example, there are eleven Nash equilibria: two pure, four
weak, four partially strict, and one strict. The two pure Nash equilibria are in light
blue, the four weak Nash equilibria are in light green, the four partially strict mixed
Nash equilibria are in magenta, and the strict Nash equilibrium is in black.

In this simple and analytically tractable scenario of two utility functions for each
player, we obtain starkly different predictions from the EU case. From a numerical
point of view, convexity may lead to a multiplicity of mixed equilibria. Most
importantly, partially strict and strict mixed Nash equilibria do not have an analog
under EU. We now extend the notion of efficiency developed in Section 3.4 to
profiles of actions and show that strict mixed Nash equilibria are the only type of
equilibria that satisfy this notion.

19CARA: 𝑣𝐴(𝑥) = 𝑤𝐴(𝑥) = 1 − 1
𝛼
𝑒−𝛼𝑥 , with 𝑥 ≥ 0 and 𝛼 > 0. CRRA: 𝑣𝐵 (𝑥) = 𝑤𝐵 (𝑥) = 𝑥𝛾 ,

with 𝑥 ≥ 0 and 𝛾 ∈ (0, 1).
20Parameters: 𝛼 = 1.52 and 𝛾 = 0.42.
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Figure 3.2: Nash equilibria of the coordination game.

Definition 4. A mixed Nash equilibrium (𝛼, 𝛽) of 𝐺 is efficient if in equilibrium 𝛼

and 𝛽 are efficient.

The next corollary clarifies that only strict mixed Nash equilibria satisfy the effi-
ciency requirement in Definition 4.

Corollary 5. Let (𝛼, 𝛽) be a mixed Nash equilibrium of 𝐺 and suppose that �̄�o and
�̄�

o are non-empty. Then (𝛼, 𝛽) is efficient if and only if (𝛼, 𝛽) is strict.

The notion of efficiency introduced in Definition 4 can serve as a selection criterion
for settings with multiple mixed Nash equilibria. In the example described in Figure
3.2, there are nine mixed Nash equilibria, but only one is strict and, by Corollary 5,
efficient.

Overall, the presence of strict mixed Nash equilibria is the main element of novelty
that emerges from our equilibrium analysis in games with convex preferences. We
show that, as documented by contemporaneous experimental works, incentives to
randomize extend to strategic interaction settings but only under certain conditions.
For instance, strict mixed Nash equilibria may arise in a coordination game as
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the one described in Figure 3.2 but do not exist in matching pennies. Besides
being empirically relevant given the evidence of randomization in games, Corollary
5 shows that when they exist, strict mixed Nash equilibria are also normatively
appealing because they are the only efficient equilibria.

3.7 Conclusions
Despite the growing theoretical and experimental literature on random choices
under risk, the applicability of models that rationalize deliberate randomization is
still limited. This paper studies the set optimal actions for a DM whose preferences
satisfy convexity, the axiom that makes randomization weakly beneficial. Under
convexity, the DM’s preferences admit a conservative multi-utility representation:
actions are ranked only through the lowest utility valuation they generate.

One drawback of this representation in applications is that it is not differentiable,
so standard optimization techniques are not viable. Our main result (Proposition 1)
shows that an action is optimal whenever the intersection of the strict upper-contour
sets of the worst-off utilities is empty. When more than one action is optimal,
we propose Pareto efficiency in the set of worst-off utilities and in the set of all
utilities as a selection rule. Proposition 4 clarifies that the first requirement amounts
to isolating optimal actions that induce the smallest set of worst-off utilities. The
second requirement allows instead to account for utilities outside this set. Proposition
5 guarantees that there is always an optimal action that satisfies both requirements
and thus is efficient.

Next, we narrow our attention to random choices for a DM with two utilities.
Proposition 6 provides a testable implication of this assumption, proving that a DM
with two utilities never finds it strictly beneficial to select more than two actions
with positive probability. We then study under what conditions randomization is
strictly beneficial and the properties that an optimal random choice must satisfy
in two cases: when the DM is indifferent among the pure actions (Proposition 7
and Proposition 8) and when there are only two pure actions (Proposition 9 and
Corollary 2).

The binary actions setting recreates the typical environment that subjects face in
experiments on randomization under risk. In general, preferences for randomization
can coexist with various attitudes towards risk. Our analysis of randomization
incentives suggests a new approach to rule out risk aversion and risk seeking in
the C-EU model. According to Corollary 1, a C-EU DM is neither risk averse nor
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risk seeking if incentives to randomize are strict between two actions, one being
a mean-preserving spread of the other. Moreover, Corollary 2 shows that when
incentives to randomize are strict, the optimal mixed action is unique.

A special case of the decision framework that we study is game theory. We focus
on a generic game with two players, each with two actions and two utility functions.
The new prediction that arises from our analysis is that strict incentives to randomize
extend to strategic interaction settings. Corollary 3 provides necessary conditions
for the existence of a new class of mixed Nash equilibria that we call strict because
players strictly prefer the equilibrium mixed actions to the pure actions. Corollary 4
derives a closed-form expression of the best-response function for the case in which
randomization is strictly beneficial, and players have maxmin preferences. We then
exploit this result to compute the mixed Nash equilibria of a simple coordination
game. In this example, we find nine mixed Nash equilibria, one of which is strict.
Although convexity may lead to a multiplicity of mixed equilibria, we show in
Corollary 5 that when they exist, only strict equilibria are such that all the mixed
actions are efficient.
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A p p e n d i x A

APPENDIX TO CHAPTER 1

A.1 Descriptive Analysis
We provide a descriptive analysis of behavior in Block 1 and Block 2 of the experi-
ment.

Block 1
Figure A.1 displays the percentages of various choice patterns observed in CR-tasks
(on the left graph) and R-tasks (on the right graph).
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Figure A.1: Percentages of the different choice patterns in CR-tasks and R-tasks.
Notes: There are four possible choice patterns for each pair of lotteries (𝛿𝑀 , 𝑟) in CR-tasks
(left graph) and R-tasks (right graph). In CR-tasks, “Always Safer” means consistently
selecting the safer lottery, while “Always Riskier” denotes the opposite choice. The CRE
and RCRE are the two possible non-EU choice patterns in CR-tasks. Within R-tasks, “Safe
Mix” indicates choosing the safe lottery over the mixture, and the mixture over the risky
lottery. Vice versa, “Mix Risky” indicates the opposite behavior. For non-EU choice
patterns, “Always Mix” indicates always choosing the mixture, while “Never Mix” indicates
the opposite behavior. Finally, “Total EU” and “Total Non-EU” indicate, respectively, the
aggregate percentages of EU and non-EU choice patterns within CR-tasks (left graph) and
R-tasks (right graph).

Within the CR-tasks, two choice patterns are consistent with EU: always choosing
the safer lottery ("Always Safer") and always choosing the riskier lottery ("Always
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Riskier"), which together make up 65.07% of all choice patterns. Among the non-
EU choice patterns in CR-tasks, the CRE is the most frequent, occurring in roughly
9% more cases than the RCRE. In the context of R-tasks, the EU-consistent patterns
emerge when subjects either choose the safe lottery over the mixture and then the
mixture over the risky one ("Safe Mix"), or vice versa ("Mix Risky"). EU choice
patterns in R-tasks account for 52.05% of all choice patterns—a drop of roughly
13% compared to CR-tasks. Turning to non-EU patterns in R-tasks, always choosing
the mixture ("Always Mix") constitutes the 26.37% of choice patterns, while never
choosing the mixture ("Never Mix") constitutes the 21.58%.

Block 2
Figure A.2 uses box plots to summarize the distribution of risk premia for the
three lotteries presented to subjects in Block 2. The distributions of risk premia
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Figure A.2: Distributions of certainty equivalents for the three lotteries considered
in Block 2.
Notes: We focus on the subset of observations from Block 2 where subjects shifted their
preference between a fixed lottery and a certain amount at most once. The box plots
summarize the distributions of risk premia for the three lotteries from Block 2. Lottery 1
pays $0 or $20 with equal chance. Lottery 2 pays $5 or $25 with equal chance. Lottery 3
pays $10 or $30 with equal chance.

are comparable across the three lotteries. For all three lotteries, the median risk
premium is around $4, and more than 75% of subjects have a positive risk premium.
Moreover, for each lottery, we observe a significant level of heterogeneity in the risk
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premia.

A.2 Econometric Procedures
We provide details about the procedures that we follow to estimate economic models
and train machine learning algorithms.

Economic Models
Cumulative Prospect Theory (CPT).

The value of lottery 𝑝 = ($𝐿, 𝑝𝐿; $𝑀, 𝑝𝑀 ; $𝐻, 𝑝𝐻) under CPT is

𝑈𝐶𝑃𝑇 (𝑝) = 𝜋(𝑝𝐻)𝑢(𝐻) + [𝜋(𝑝𝐻 + 𝑝𝑀) − 𝜋(𝑝𝑀)] 𝑢(𝑀) + [1 − 𝜋(𝑝𝐻 + 𝑝𝑀)] 𝑢(𝐿),

where 𝑣(·) is a utility function and 𝜋(·) is a probability weighting function. For
estimation purposes, we consider the functional forms for utility and probability
weighting functions proposed by Tversky and Kahneman (1992):

𝑢(𝑥) = 𝑥𝛼;

𝜋(𝑝) = 𝑝𝛾

[𝑝𝛾 + (1 − 𝑝)𝛾]
1
𝛾

.

Within the empirical framework proposed by Hey and Orme (1994), a CPT DM
chooses lottery 𝑝 over lottery 𝑞 if

𝑈𝐶𝑃𝑇 (𝑝) −𝑈𝐶𝑃𝑇 (𝑞) ≥ 𝜖,

where 𝜖 is an error term normally distributed with a mean of zero and a variance of
𝜎 > 0.

We define 𝐼 = {1, . . . , 𝑁} as a set of subjects in our experiment, △(𝑋) as the set
of lotteries over 𝑋 , and by D ⊆ △(𝑋)2 as a subset of pairs of lotteries where the
subjects express their preferences. We construct an index, 𝐶ℎ𝑜𝑖𝑐𝑒𝑖, for each subject
𝑖 as follows: for each pair of lotteries (𝑝, 𝑞) ∈ D,

𝐶ℎ𝑜𝑖𝑐𝑒𝑖 (𝑝, 𝑞) B


2 if subject 𝑖chooses lottery 𝑝 over lottery 𝑞

1 otherwise.

We estimate mixture models with three groups. Within each group 𝑐, we estimate
the risk aversion coefficient 𝛼𝑐, the probability weighting function coefficient 𝛾𝑐,
and the variance of the error term 𝜎𝑐. We denote by 𝑓 (𝐶ℎ𝑜𝑖𝑐𝑒𝑖;𝛼𝑐, 𝛾𝑐, 𝜎𝑐) the
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likelihood function for subject 𝑖 belonging to group 𝑐:∏
(𝑝,𝑞)∈D

(
1 (𝐶ℎ𝑜𝑖𝑐𝑒𝑖 (𝑝, 𝑞) = 2) · Pr(𝑈𝐶𝑃𝑇 (𝑝) −𝑈𝐶𝑃𝑇 (𝑞) ≥ 𝜖 | 𝛼𝑐, 𝛾𝑐, 𝜎𝑐)

+ 1 (𝐶ℎ𝑜𝑖𝑐𝑒𝑖 (𝑝, 𝑞) = 1) · Pr(𝑈𝐶𝑃𝑇 (𝑝) −𝑈𝐶𝑃𝑇 (𝑞) < 𝜖 | 𝛼𝑐, 𝛾𝑐, 𝜎𝑐)
)
.

Let 𝜋𝑐 represent the probability of a subject belonging to group type 𝑐. The log-
likelihood of the finite mixture model is given by:

𝑁∑︁
𝑖=1

ln
𝐶∑︁
𝑐=1

𝜋𝑐 𝑓 (𝐶𝑜𝑟𝑒𝑖;𝛼𝑐, 𝛾𝑐, 𝜎𝑐),

where the first sum is over subjects and the second sum is over groups.

We estimate the utility functions, the parameters of the covariance matrices, and the
probabilities of group membership through maximum likelihood estimation. We
employ the Global Search algorithm in MATLAB to maximize the log-likelihood.
To ensure that the algorithms converges to a global maximum, we employ a multi-
start approach initiating multiple searches with 200 different starting points. We
also evaluate the robustness of our estimates by estimating the model using an
expectation-maximization algorithm (Dempster, Laird, and Rubin, 1977).

Expected Utility (EU). To estimate EU, we repeat the same procedure fixing the
value of the probability weighting function to one for all the three groups.

Machine Learning Algorithms
Gradient Boosting Trees (GBT). We employ the LogitBoost algorithm using MAT-
LAB’s “fitcensemble” function, a specialized gradient boosting methodology tai-
lored for binary classification. This method uses an ensemble of weak decision tree
learners, optimizing the logistic loss to enhance classification accuracy. We allow
the algorithm to use the following set of features: probabilities of the lotteries (𝑝, 𝑞)
and an indicator for each subject. The output of the algorithm is the probability of
choosing 𝑝 over 𝑞.

The LogitBoost operates in a stage-wise fashion. For each iteration, the algorithm
focuses on the residuals or errors made by the present ensemble, these errors being a
product of the logistic loss. Instead of directly approximating the class labels, Logit-
Boost models the posterior probabilities of the classes. At every step, a new decision
tree is trained to fit the current residuals. This tree, once trained, is amalgamated
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into the ensemble. To optimize performance, we have implemented hyperparameter
optimization, adjusting the number of learning cycles, learning rate, and minimum
leaf size for the decision trees. The optimization uses a 10-fold cross-validation,
parallel computation, and is bounded to a maximum of 150 evaluations with a 4-hour
time constraint.

Neural Networks (NN). We employ a neural network classifier using MATLAB’s
“fitcnet" function. We allow the NN to use the following sets of input variables:
probabilities of the lotteries, prizes of the lotteries, observed choices and an indicator
for each subject. The outputs of the algorithm are choice probabilities.

The NN follows a structured methodology. Initially, the input data is processed with
standardization, ensuring all features have a mean of zero and a variance of one.
This pre-processing step aids in stabilizing and speeding up the network’s conver-
gence during training. Next, we implement a 10-fold cross-validation strategy to
optimize the following hyperparameters of the NN: activation functions, regulariza-
tion strength and the size of the hidden layers. To accelerate the training, parallel
computation is leveraged, and the optimization is constrained to a maximum of 150
evaluations with a 4-hour time limit.

A.3 Estimation Results
We report the estimation results arising from the EU core analysis, as well as those
arising from EU and CPT.

EU Core Analysis
Table A.1 presents the estimation results from the EU core analysis, which were
obtained using a mixture model with three groups. The estimates are presented with
bootstrapped standard errors in parentheses. The row labeled with 𝜋 presents the
estimated sizes of each group. The row labeled with 𝜎 shows the standard deviation
of the error terms for each utility. The row labeled with 𝜌 indicates the correlation
coefficients among the error terms.

EU and CPT
Table A.2 reports the estimation results for EU and CPT derived from mixture
models with three groups. For EU, we rank groups of subjects based on risk
aversion, which depends solely on the parameter that shapes the curvature of the
utility functions (𝛼). For CPT, we rank groups of subjects in terms of risk aversion
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Table A.1: EU core mixture model: Estimation results.

Dataset: CR-tasks and R-tasks

Groups High RA
High EU

Middle RA
Low EU

Low RA
Middle EU

𝜋
0.2798

(0.1355)
0.4834

(0.1128)
0.2368

(0.0973)

Utility 1 Utility 2 Utility 1 Utility 2 Utility 1 Utility 2

$5 0.7074
(0.1944)

0.6686
(0.1863)

0.5805
(0.1827)

0.4002
(0.1206)

0.1389
(0.0860)

0.3722
(0.1174)

$10 0.9758
(0.1705)

0.9184
(0.1801)

0.6105
(0.1708)

0.8286
(0.1507)

0.4424
(0.0975)

0.3722
(0.1039)

$15 0.9758
(0.1684)

0.9467
(0.1807)

0.7466
(0.1553)

0.8461
(0.1343)

0.5455
(0.1181)

0.5997
(0.1158)

$20 1.0000
(0.1661)

1.0000
(0.1681)

0.7918
(0.1710)

0.9800
(0.1435)

0.7475
(0.1564)

0.6741
(0.1276)

$25 1.0000
(0.1355)

1.0000
(0.1314)

1.0000
(0.1722)

0.9800
(0.1248)

0.8756
(0.1268)

0.9663
(0.1552)

𝜎
0.2759

(0.3551)
0.0294

(0.4093)
0.3052

(0.3016)
0.1632

(0.5821)
0.1106

(0.1978)
0.2502

(0.5068)

𝜌
0.0034

(0.1364)
0.0000

(0.1110)
0.0090

(0.1261)

and adherence to EU. We use the predicted proportion of choices in CR-tasks and
R-tasks where the safest available lottery was selected as a proxy for risk aversion.1
Adherence to EU can be directly inferred from the probability weighting function
parameter, 𝛾.

A.4 Out-of-Sample Analysis: Additional Results
We develop a more comprehensive probabilistic and deterministic evaluation of all
the predictive approaches considered in this paper. We first focus on the ability
of economic models and machine learning algorithms to predict choice patterns,
thus extending the analysis in Section 1.3. Next, we extend the EU core analysis in
Section 1.5.

Predict Choice Patterns. There are four possible choice patterns in CR-tasks and R-
1Risk aversion under CPT is influenced by both utility and probability weighting functions.

Hence, it is determined by the interaction between 𝛼 and 𝛾.
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Table A.2: EU and CPT mixture models: Estimation results.

Dataset: CR-tasks and R-tasks
Model Expected Utility (EU) Cumulative prospect theory (CPT)

Groups High RA Middle RA Low RA High RA
Low EU

Middle RA
Middle EU

Low RA
High EU

𝛼
0.0269

(0.2231)
0.4450

(0.3355)
0.9364

(0.2595)
1.0051

(0.1474)
0.2004

(0.2113)
0.7461

(0.1647)

𝛾
0.1216

(0.2678)
0.9800

(0.2092)
0.9463

(0.1975)

𝜎
0.1419

(0.1096)
0.5396

(0.5513)
2.0863

(1.1591)
6.0000

(0.7305)
0.2010

(0.0582)
1.3625

(0.3348)

𝜋
0.4935

(0.2209)
0.3463

(0.2183)
0.1602

(0.1410)
0.2401

(0.0544)
0.4166

(0.1377)
0.3433

(0.1085)

Notes: Estimates are presented with bootstrapped standard errors in parentheses. In this
table, 𝛼 denotes the risk-aversion coefficient, 𝛾 denotes the probability weighting function
coefficient, 𝜎 denotes the standard deviation of the error term, and 𝜋 denotes the estimated
size of each group.

tasks. We can thus define a model 𝑓 as a function that links each lottery pair (𝛿𝑀 , 𝑟)
and subject 𝑖, with a vector of characteristics 𝑋𝑖, to a vector 𝑓 (𝛿𝑀 , 𝑟; 𝑋𝑖) ∈ R4. Each
component of this vector indicates the estimated probability under model 𝑓 of one
of the four choice patterns. Denoting by 𝑃𝑖 (𝛿𝑀 , 𝑟) ∈ R4 the degenerate probability
distribution that indicates which choice pattern, associated with the pair of lotteries
(𝛿𝑀 , 𝑟) and subject 𝑖, was actually observed, we define the loss of a model as follows:

𝐿𝑝 ( 𝑓 ) B
∑︁

(𝛿𝑀 ,𝑟)∈D

500∑︁
𝑖=1

𝑙 (𝑃𝑖 (𝛿𝑀 , 𝑟), 𝑓 (𝛿𝑀 , 𝑟; 𝑋𝑖)) ,

where D is the set of the 25 pair of lotteries (𝛿𝑀 , 𝑟) in our experiment, and 𝑙 : R4 ×
R4 → R is a loss function, which we assume to be the Euclidean distance.

Moreover, we analyze the ability of different models to provide accurate determin-
istic predictions. In particular, we denote by 𝑓 (𝛿𝑀 , 𝑟) ∈ R4 the vector whose all
components are equal to zero, except from the one associated with the choice pat-
tern having the highest predicted probability. To measure deterministic accuracy,
we define the deterministic loss of model 𝑓 as the fraction of choice patterns that
are misclassified:

𝐿𝑑 ( 𝑓 ) B
1

|D| × 500

∑︁
(𝛿𝑀 ,𝑟)∈D

500∑︁
𝑖=1

1 (𝑃𝑖 (𝛿𝑀 , 𝑟) ≠ 𝑓 (𝛿𝑀 , 𝑟)) ,

where |D| denotes the cardinality of the set D.
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Table A.3: Choice patterns analysis: deterministic and probabilistic evaluations.

Exercise Prediction Loss Models
EU CPT GBT NN

Combined
Within Task

Choice
Pattern

Det. 6.1869
(1.1196)

6.1136
(1.1023)

4.3690
(0.7961)

6.5877
(1.2214)

Prob. 3.3573
(0.4031)

3.3824
(0.4277)

2.5535
(0.3010)

3.6912
(0.4520)

Combined
Across Task

Choice
Pattern

Det. 1.9933
(0.0160)

2.0041
(0.0939)

2.3563
(0.2575)

2.5958
(0.5927)

Prob. 1.6767
(0.1415)

1.7309
(0.1576)

1.9381
(0.2201)

2.1545
(0.3754)

Notes: Normalized loss functions with standard deviation in parentheses. “Det." stands for
“Deterministic”, while “Prob." stands for “Probabilistic”. The smallest in-sample loss was
obtained with the GBT algorithm in all out-of-sample exercises.

In general, lower values for both probabilistic and deterministic losses indicate higher
probabilistic and deterministic accuracy of a model. However, interpreting the
absolute magnitude of these losses can be challenging. To facilitate interpretation,
we introduce a normalized loss measure. For a given loss 𝐿, its normalized version
is defined as:2

�̂� ( 𝑓 ) B 𝐿 ( 𝑓 )
𝐿∗

,

where 𝑓 is any generic model, and 𝐿∗ is the lowest possible loss that can be achieved
by training machine learning algorithms directly on the test data. Therefore, the
normalized loss quantifies how many times greater the loss of a model trained on
the training data is compared to the lowest possible loss that can be achieved by
training a model directly on the test data.

Table A.3 summarizes the average normalized losses of the various methods for the
out-of-sample exercises within and across tasks conducted in Section 1.3 and Section
1.3. The deterministic and probabilistic assessments of all predictive approaches
yield the same result. The GBT outperforms EU and CPT in cross-validation ex-
ercises within CR-tasks and R-tasks. At the same time, EU achieves the smallest
deterministic and probabilistic normalized losses in out-of-sample exercises across
tasks. Furthermore, the values of the normalized losses inform us about the mag-
nitude of a model’s loss compared to the smallest achievable loss. Overall, all the
normalized losses are significantly greater than one, indicating a substantial cost in

2See Fudenberg et al. (2022).
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Table A.4: Adherence to EU: deterministic and probabilistic evaluations.

Exercise Prediction Loss Models
EU CPT GBT NN EU core

Combined
Within Task

Index
𝐶𝑜𝑟𝑒

Det. 6.3195
(1.1297)

6.1190
(1.1742)

4.1648
(0.7809)

6.4227
(1.2513)

4.6769
(0.9830)

Prob. 3.0751
(0.4194)

3.1845
(0.4557)

2.4295
(0.2879)

3.4511
(0.4736)

2.9069
(0.3836)

Combined
Across Task

Index
𝐶𝑜𝑟𝑒

Det. 2.0843
(0.0316)

2.0778
(0.0671)

2.2207
(0.4566)

2.2038
(0.6289)

1.9374
(0.0401)

Prob. 1.5927
(0.1874)

1.6656
(0.1966)

1.8322
(0.3495)

1.8215
(0.4960)

1.6006
(0.1505)

Notes: Normalized loss functions with standard deviation in parentheses. The smallest
in-sample loss was obtained with the GBT algorithm in all out-of-sample exercises.

predictive accuracy when transitioning from in-sample to out-of-sample predictions.

EU Core Analysis. When the objective shifts from predicting choice patterns to
forecasting the index 𝐶𝑜𝑟𝑒, we can define a model as a function that associates each
lottery pair (𝛿𝑀 , 𝑟) and subject 𝑖, with a vector of characteristics 𝑋𝑖, to a vector
𝑓 (𝛿𝑀 , 𝑟; 𝑋𝑖) ∈ R3. The 𝑗-th component of this vector represents the estimated
probability under model 𝑓 that the index 𝐶𝑜𝑟𝑒(𝛿𝑀 , 𝑟) assumes the value of 𝑗 ∈
1, 2, 3. For each model, we derive deterministic and probabilistic normalized loss
functions, replicating the analysis previously described for choice patterns.

Table A.4 summarizes the average normalized losses of the various methods for the
out-of-sample exercises within and across tasks conducted in Section 1.5. The GBT
outperforms all other predictive approaches in cross-validation exercises within CR-
tasks and R-tasks. The probabilistic performances of both EU and the EU core
approach are almost identical, with EU achieving a slightly smaller normalized loss.
All other predictive approaches have significantly worse probabilistic performance.

A.5 Instructions
General Instructions. You will receive $4 if you complete the entire study. We
anticipate that the study will take about 20 minutes, on average. In addition to this
payment, one out of every five participants will be randomly selected to receive a
bonus payment. The smallest possible bonus payment is $0 and the largest possible
bonus payment is $30. You will be informed of how your decisions will influence
your bonus payment if you were to be randomly selected.
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Description of the Experiment. In this study, we will ask you questions about
lotteries. A lottery specifies different payments you may receive with different
chances.

For example, one lottery might be the following:

You can think of this lottery in the following way:

• In 15 out of 100 chances (15% chance) the lottery pays $17.

• In 25 out of 100 chances (25% chance) the lottery pays $9.

• In 60 out of 100 chances (60% chance) the lottery pays $2.

We may allow you to play a lottery and receive the outcome of the lottery as bonus
payment. The outcome of the lottery will be determined by the computer using the
chances specified. You will learn more about your bonus payment in the following
instruction pages.

Check for Understanding. Before we proceed, here is a question to test your
understanding. Consider the lottery below:

In how many out of 100 chances does this lottery pay $9?

o 15

o 25

o 60
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o 90

o None of the above

[Subjects are required to provide the correct answer in order to proceed. When they
select a wrong answer, we show them the following error message: “The lottery
pays $9 with a 25% chance. The correct answer is 25. Please revise your answer.”]

Blocks of the Experiment. We will ask you to make choices over lotteries in
two different blocks. If you are selected to receive a bonus payment, then we will
randomly pick one of these blocks. We will describe within each block how your
bonus would be determined if that block were randomly selected. Please click to
learn about Block 1.

Block 1. In Block 1, we will show you two lotteries and will ask you to choose
between the following two answer choices:

1. I prefer Lottery A

2. I prefer Lottery B

Block 1: Bonus Payment. If Block 1 is selected to determine your bonus payment,
how would we pay you? We will randomly select one task from Block 1, and
we will let you play the lottery you preferred. The lottery’s outcome will be your
bonus payment. We ask you to complete a brief training session to check your
understanding of the tasks in Block 1.

Please proceed to start the training session!
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[Subjects are required to provide the correct answers in both training tasks in order
to proceed. When they select a wrong answer in the first training task, we show them
the following error message: “We are asking you to answer the question assuming
that you prefer Lottery A. Please revise your answer.” When they select a wrong
answer in the second training task, we show them the following error message:
“Given that you preferred Lottery A in this example, we would let you play Lottery
A to determine your payment. Please revise your answer.” ]
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Begin Block 1. Thank you for completing the training session. There will be 102
tasks in Block 1. Please answer all the questions thoughtfully to the best of your
ability. Remember that there are no right or wrong answers. We are only interested
in studying your preferences. Please proceed to start Block 1!

[Subjects complete CR-tasks, R-tasks and FOSD-tasks presented to them in a ran-
domized order.]

Block 2. In Block 2, we will show you two lotteries and will ask you to choose
between the following two answer choices:

1. I prefer Lottery A

2. I prefer Lottery B

Block 2: Bonus Payment. If Block 2 is selected to determine your bonus payment,
how would we pay you? We will randomly select one task from Block 2, and we
will let you play the lottery you preferred. The lottery’s outcome will be your bonus
payment.

Begin Block 2. There will be 33 tasks in Block 2. Please answer all the questions
thoughtfully to the best of your ability. Remember that there are no right or wrong
answers. We are only interested in studying your preferences.

Please proceed to start Block 2!

Block 2 - Part 1. In the following 11 tasks of Block 2:

• Lottery A pays a monetary amount with a 100% chance that is different in
every task. In task 1, the monetary amount paid for sure by Lottery A is $3.
As you move from one task to the next one, the monetary amount paid for
sure by Lottery A increases by $1. For instance, in task 2 is $4, in task 3 is
$5, etc.

• Lottery B always pays $20 with a 50% chance, or $0 with a 50% chance.
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[Subjects complete the 11 MPL1 tasks.]

Block 2 - Part 1. In the following 11 tasks of Block 2:

• Lottery A pays a monetary amount with a 100% chance that is different in
every task. In task 12, the monetary amount paid for sure by Lottery A is $8.
As you move from one task to the next one, the monetary amount paid for
sure by Lottery A increases by $1. For instance, in task 13 is $9, in task 14 is
$10, etc.

• Lottery B always pays $25 with a 50% chance, or $5 with a 50% chance.

[Subjects complete the 11 MPL2 tasks.]

Block 2 - Part 1. In the following 11 tasks of Block 2:

• Lottery A pays a monetary amount with a 100% chance that is different in
every task. In task 23, the monetary amount paid for sure by Lottery A is
$13. As you move from one task to the next one, the monetary amount paid
for sure by Lottery A increases by $1. For instance, in task 24 is $14, in task
25 is $15, etc.

• Lottery B always pays $30 with a 50% chance, or $10 with a 50% chance.

[Subjects complete the 11 MPL3 tasks.]

Block 2 - Part 1. In the following 11 tasks of Block 2:

• Lottery A pays a monetary amount with a 100% chance that is different in
every task. In task 23, the monetary amount paid for sure by Lottery A is
$13. As you move from one task to the next one, the monetary amount paid
for sure by Lottery A increases by $1. For instance, in task 24 is $14, in task
25 is $15, etc.

• Lottery B always pays $30 with a 50% chance, or $10 with a 50% chance.

[Subjects complete the 11 MPL3 tasks.]
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A p p e n d i x B

APPENDIX TO CHAPTER 2

B.1 FOSD Questions
Table B.1: Comparisons with dominated lotteries.

Lottery A Lottery B
Questions Pr($1) Pr($7) Pr($20) Pr($1) Pr($7) Pr($20)

1 0.3 0.7 0 0.7 0.3 0
2 0.5 0.2 0.3 0.5 0.1 0.4
3 0 0.8 0.2 0 0.6 0.4
4 0.5 0.4 0.1 0.9 0 0.1
5 0.2 0.6 0.2 0.1 0.5 0.4
6 0.5 0.5 0 0.8 0.2 0

B.2 Demographic Summary
Table B.2: Demographics, overall sample.

Age
18-24 54.3%
25-30 45.7%

Gender
Male 50%
Female 50%

Education completed
High school diploma 50.3%
Undergraduate degree (BA/BSc/other) 40%
Master degree (MA/MSc/MPhil/other) 7%
Doctorate degree (PhD/other) 1.7%
Prefer not to say 1%

Employment
Unemployed (and job seeking) 22.3%
New job within the next month 0.7%
Part-time 11.3%
Full-time 22.3%
Other / Prefer not to say 43.3%
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B.3 Confidence and Indecisiveness
Cerreia-Vioglio, Dillenberger, and Ortoleva (2015) classify one individual as more
indecisive than another if his EU core is smaller, in the sense of set inclusion.

Definition 5. Individual 𝑖 is more indecisive than individual 𝑗 if for all lotteries
𝑝, 𝑞:

𝑝 ≿∗𝑖 𝑞 ⇒ 𝑝 ≿∗𝑗 𝑞.

We show that the term “indecisive" presumes a relationship between confidence
and independence that we observe in the data: subjects that we classify as more
indecisive tend to report lower confidence levels. To this end, Section B.3 details
our approach to operationalize the notion of indecisiveness. Section B.3 builds a
measure of decision confidence comparable across subjects, while Section B.3 uses
this new measure to rank subjects in terms of decision confidence. Finally, Section
B.3 shows that more indecisive subjects tend to be less confident.

Pairwise Analysis: Indecisiveness
We denote by 𝑡 a generic treatment in the experiment and by𝐶𝑡 the set of comparisons
in treatment 𝑡. For any comparison (𝑠, 𝑟), we define the index 𝐶𝑜𝑟𝑒𝑖 for each
individual 𝑖 to be equal to two if there is no evidence against 𝑠 ≿∗

𝑖
𝑟 , one if there is

no evidence against 𝑟 ≿∗
𝑖
𝑠, and zero otherwise. Using this index, we propose two

different criteria to operationalize the notion of indecisiveness proposed by Cerreia-
Vioglio, Dillenberger, and Ortoleva (2015) in the context of our experiment:

1. Criterion IND 1: subject 𝑖 is more indecisive than subject 𝑗 if for all compar-
isons (𝑠, 𝑟) ∈ 𝐶𝑡 ,

𝐶𝑜𝑟𝑒𝑖 (𝑠, 𝑟) > 0 ⇒ 𝐶𝑜𝑟𝑒𝑖 (𝑠, 𝑟) = 𝐶𝑜𝑟𝑒 𝑗 (𝑠, 𝑟)

and there exists a comparison (𝑠, 𝑟) ∈ 𝐶𝑡 such that𝐶𝑜𝑟𝑒𝑖 (𝑠, 𝑟) ≠ 𝐶𝑜𝑟𝑒 𝑗 (𝑠, 𝑟).

2. Criterion IND 2: subject 𝑖 is more indecisive than subject 𝑗 if

|{(𝑠, 𝑟) ∈ 𝐶𝑡 : 𝐶𝑜𝑟𝑒𝑖 (𝑠, 𝑟) > 0}| < |{(𝑠, 𝑟) ∈ 𝐶𝑡 : 𝐶𝑜𝑟𝑒 𝑗 (𝑠, 𝑟) > 0}|.

Criterion IND 1 amounts to classifying a subject as more indecisive than another
only if there is no evidence against it. Because it is very demanding, we show
that it does not allow the classification of most pairs of subjects in each treatment.
On the contrary, to classify one subject as more indecisive than another according
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Figure B.1: Distribution of confidence self-reports for different categories of com-
parisons and all subjects in the experiment.

to criterion IND 2, it is enough to compare the number of comparisons with index
𝐶𝑜𝑟𝑒 equal to one. The advantage of criterion IND 2 is that being less demanding, it
allows the classification of the vast majority of pairs of subjects. The disadvantage is
that it moves away from the original notion of indecisiveness captured in Definition
5. In Section B.3, we show that the qualitative results linking indecisiveness with
decision confidence are stable across the two criteria.

Benchmarked Confidence Self-Reports
An important challenge in interpreting the self-reported confidence measures that
we collect is that they are subjective and may have different meanings for different
subjects. We now describe the approach that we adopt to convert the confidence
reports of different subjects into the same unit of measure. To this end, we exploit
subjects’ confidence statements in comparisons involving stochastic dominance.

Let 𝐹𝑂𝑆𝐷 be the set of the six comparisons in which one lottery first-order stochas-
tically dominates the other described in Appendix B.1. Figure B.1 shows the
distributions of confidence self-reports for different categories of comparisons.1
A few things emerge from this figure. First, as expected, subjects tend to report
higher confidence levels in 𝐹𝑂𝑆𝐷 (leftmost box plot in Figure B.1) than in any

1The red plus signs denote outliers. We classify any observation that is more than 1.5 times the
interquartile range away from the first quantile or the third quantile as an outlier.
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other category of comparisons. However, while the median value of the confidence
self-reports for 𝐹𝑂𝑆𝐷 comparisons is close to 100, the interquartile range is equal
to 25. In other words, there is significant heterogeneity in how subjects express
high confidence using numbers. In what follows, we exploit this heterogeneity to
benchmark the confidence self-reports in all other categories of comparisons.

We denote by𝐶𝑜𝑛 𝑓𝑖 (𝑠, 𝑟) the confidence self-report of subject 𝑖 in comparison (𝑠, 𝑟)
divided by 100. Moreover, we indicate by 𝑐𝑖 the average confidence self-report in
𝐹𝑂𝑆𝐷 comparisons for which subject 𝑖 declares to prefer the dominant lottery. For
all comparisons (𝑠, 𝑟) not in 𝐹𝑂𝑆𝐷 and all subjects 𝑖, we construct the following
benchmarked index of confidence:

𝐴𝑑𝑗𝐶𝑜𝑛 𝑓𝑖 (𝑠, 𝑟) = min
{
𝐶𝑜𝑛 𝑓𝑖 (𝑠, 𝑟)

𝑐𝑖
, 1
}
.

Intuitively, 𝑐𝑖 is an estimate of what number individual 𝑖 reports to express extreme
confidence. In the extreme case in which 𝐶𝑜𝑛 𝑓𝑖 (𝑠, 𝑟) is greater or equal to 𝑐𝑖, we
simply assign to the benchmarked index 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓𝑖 (𝑠, 𝑟) the value of one.2
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Figure B.2: Mean confidence in FOSD comparisons and in all other comparisons
for each subject normalized to one.

The underlying assumption behind this benchmarked confidence index is that sub-
jects who use lower numbers to express extreme confidence in FOSD comparisons

2This happens overall for the 24.72% of the self-reported confidence measures.



101

use lower numbers to express any confidence level. We now test the validity of this
assumption. Figure B.2 shows the mean confidence levels in unmixed and mixed
comparisons (x-axis) and in FOSD comparisons (y-axis) for each subject.3 The
orange line in Figure B.2 represents the best linear fit (in a least-squares sense).
The positive correlation that we observe between these two quantities justifies our
benchmarked index: subjects expressing extreme confidence in FOSD comparisons
with lower numbers express any confidence with lower numbers.4 Figure B.2 also
allows us to evaluate the reliability of the confidence measures that we collect: for
the 83.96% of subjects, the mean confidence in FOSD comparisons is higher than
in all other comparisons.

Pairwise Analysis: Confidence
In analogy with the pairwise analysis of indecisiveness in Section B.3, we propose
two different criteria to rank pairs of subjects in terms of decision confidence using
the benchmarked index 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓𝑖:

1. Criterion CONF 1: subject 𝑖 is less confident than subject 𝑗 if for all compar-
isons (𝑠, 𝑟) ∈ 𝐶𝑡 ,

𝐴𝑑𝑗𝐶𝑜𝑛 𝑓𝑖 (𝑠, 𝑟) ≤ 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓 𝑗 (𝑠, 𝑟),

with strict inequality for some comparison (𝑠, 𝑟) ∈ 𝐶𝑡 .

2. Criterion CONF 2: subject 𝑖 is less confident than subject 𝑗 if for all 𝑥 ∈ [0, 1],

|{(𝑠, 𝑟) ∈ 𝐶𝑡 : 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓𝑖 (𝑠, 𝑟) ≤ 𝑥}| ≤ |{(𝑠, 𝑟) ∈ 𝐶𝑡 : 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓 𝑗 (𝑠, 𝑟) ≤ 𝑥}|,

with strict inequality for at least one 𝑥 ∈ (0, 1).

Using criterion CONF 1, we classify subject 𝑖 as less confident than subject 𝑗 if the
benchmarked confidence self-report of 𝑖 is lower than the benchmarked confidence
self-report of 𝑗 in all comparisons. As with criterion IND 1 for indecisiveness,
criterion CONF 1 is very demanding and does not allow the classification of most
pairs of subjects. For this reason, we also consider criterion CONF 2, which
generalizes the requirement of criterion IND 2 to the continuous index 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓 .

3For FOSD comparisons, we exclude confidence self-reports in pairs of lotteries where the
dominated lottery was preferred. Given our restriction on the sample, this can happen at most once
for each subject.

4Correlation coefficient: 0.303.
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Table B.3: Percentage of pairs of subjects in which the more indecisive subject is
less confident. Number of classifiable pairs in parenthesis.

Worst
IND 1 IND 2

CONF 1 75.00%
(4)

66.67%
(243)

CONF 2 68.85%
(61)

59.44%
(2,125)

Bad
IND 1 IND 2

CONF 1 65.22%
(23)

65.27%
(334)

CONF 2 86.49%
(111)

60.76%
(1,909)

WorstBest
IND 1 IND 2

CONF 1 54.00%
(100)

67.30%
(523)

CONF 2 64.22%
(218)

56.66%
(2,344)

According to criterion CONF 2, subject 𝑖 is less confident than subject 𝑗 whenever the
empirical cumulative distribution function of 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓 𝑗 first-order stochastically
dominates the empirical cumulative distribution function of 𝐴𝑑𝑗𝐶𝑜𝑛 𝑓𝑖.

Results
We now explore the relationship between EU core and decision confidence by
using the notion of indecisiveness introduced by Cerreia-Vioglio, Dillenberger, and
Ortoleva (2015). In Section B.3 and Section B.3 we propose two criteria to rank
subjects in terms of indecisiveness (IND 1 and IND 2) and confidence (CONF 1 and
CONF 2). Considering all four possible combinations of these approaches, Table
B.3 reports the percentage of pairs of subjects, among those that can be classified
according to both criteria, for which the more indecisive subject is less confident.
The number in parenthesis below each percentage in Table B.3 represents the total
number of classifiable pairs. For instance, in the Worst treatment, 243 pairs of
subjects can be classified according to criterion CONF 1 and criterion IND 2. In
the 66.67% of these pairs, the more indecisive subject is less confident.

Overall, for all the possible combinations of criteria in all three treatments, the
more indecisive subject is less confident in more than half of the classifiable pairs.
We see this result as an empirical justification of the term “indecisive" used in
Cerreia-Vioglio, Dillenberger, and Ortoleva (2015) to rank subjects’ EU cores.

B.4 Indecisiveness and Risk Aversion
Our analysis shows that hypothesis EU-CORE is less likely to fail when the safer
lottery is chosen. Given that the extent to which subjects prefer safer over riskier
lotteries positively correlates with their degree of risk aversion, these estimates sug-
gest a negative relationship between indecisiveness and risk aversion. At the same
time, Cerreia-Vioglio, Dillenberger, and Ortoleva (2015) show that the opposite
relationship holds for preferences that satisfy the NCI axiom. If a subject is more
indecisive than another, he must be more risk averse. We now propose a direct test
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Table B.4: Percentage of pairs of subjects in which the more indecisive subject is
more risk averse. Number of classifiable pairs in parenthesis.

Worst
IND 1 IND 2

RA 1 13.64%
(110)

48.85%
(4,274)

RA 2 12.61%
(111)

47.79%
(4,340)

Bad
IND 1 IND 2

RA 1 10.71%
(168)

27.33%
(3,154)

RA 2 10.71%
(168)

28.38%
(3,213)

WorstBest
IND 1 IND 2

RA 1 10.11%
(356)

31.03%
(3,938)

RA 2 12.40%
(363)

33.44%
(4,007)

for this prediction.

We adopt two criteria to rank subjects’ risk attitudes. The first criterion (RA 1)
consists in classifying one subject as more risk averse than another if he chooses the
safer over the riskier lottery more often in the experiment. In the second criterion
(RA 2), we instead normalize the utility of $1 to zero, the utility of $20 to one, and
following Hey and Orme (1994), we estimate the utility of $7 and of the variance
of the error term which we assume to be normally distributed with zero mean. The
higher the estimated utility, the more risk averse a subject is.

Table B.4 reports the percentage of pairs of subjects, among those that can be
classified according to both indecisiveness and risk aversion, for which the more
indecisive subject is more risk averse. Below each percentage in Table B.4 is reported
the total number of classifiable pairs. For all the possible combinations of criteria
in all treatments, more indecisive subjects are less risk averse. In what follows, we
prove that preferences satisfying the PCI axiom may explain the correlation between
indecisiveness and risk aversion that we observe in Table B.4.

Definition 6. Let ≿ be a binary relation over the set of lotteries △(𝑋). We say that
≿ satisfies:5

• Completeness if for each 𝑝, 𝑞 ∈ △(𝑋), either 𝑝 ≿ 𝑞 or 𝑞 ≿ 𝑝.

• Transitivity if for each 𝑝, 𝑞, 𝑟 ∈ △(𝑋), 𝑝 ≿ 𝑞 and 𝑞 ≿ 𝑟 imply 𝑝 ≿ 𝑟.

• Continuity if for each 𝑝 ∈ △(𝑋), the sets {𝑞 ∈ △(𝑋) : 𝑞 ≿ 𝑝} and
{𝑞 ∈ △(𝑋) : 𝑝 ≿ 𝑞} are closed.

• Strict first-order stochastic dominance if for each 𝑝 ∈ △(𝑋), if 𝑝 first-order
stochastically dominates q, then 𝑝 ≻ 𝑞.

5We denote by ∼ and ≻ the symmetric and the asymmetric parts of ≿. The set 𝑋 represents any
compact set of monetary prizes.
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• Betweenness if for each 𝑝, 𝑞 ∈ △(𝑋) and 𝜆 ∈ [0, 1],

𝑝 ∼ 𝑞 ⇒ 𝑝 ∼ 𝜆𝑝 + (1 − 𝜆)𝑞 ∼ 𝑞.

We refer to binary relations that satisfy the five axioms in Definition 6 as betweenness
preferences. Next, we introduce the PCI axiom.

Definition 7. ≿ satisfies the PCI axiom if for each 𝑝, 𝑞 ∈ △(𝑋), 𝑥 ∈ 𝑋 and𝜆 ∈ [0, 1],

𝛿𝑥 ≿ 𝑝 ⇒ 𝜆𝛿𝑥 + (1 − 𝜆)𝑞 ≿ 𝜆𝑝 + (1 − 𝜆)𝑞.

Let ≿1 and ≿2 be the preferences over △(𝑋) for individuals 1 and 2. We use the
following standard approach to compare risk attitudes.

Definition 8. Individual 1 is more risk averse than individual 2 if for each 𝑝 ∈ △(𝑋)
and 𝑥 ∈ 𝑋 ,

𝑝 ≿1 𝛿𝑥 ⇒ 𝑝 ≿2 𝛿𝑥 .

We are now ready to show that betweenness preferences satisfying the PCI axiom
rationalize what we observe in our experiment: more indecisive subjects tend to be
less risk averse. The result follows combining the representation result in Cerreia-
Vioglio, Dillenberger, and Ortoleva (2020, Remark 1) with the proof technique used
in Cerreia-Vioglio, Dillenberger, and Ortoleva (2015, Proposition 2).

Corollary 6. Suppose that ≿1 and ≿2 are betweenness preferences that satisfy the
PCI axiom. If individual 1 is more indecisive than individual 2, then individual 1 is
less risk averse than individual 2.

Proof. We denote by E [𝑝, 𝑣] and 𝑐(𝑝, 𝑣) the EU and the certainty equivalent of
lottery 𝑝 with utility function 𝑣, respectively. By Cerreia-Vioglio, Dillenberger, and
Ortoleva (2020), for each individual 𝑖 ∈ {1, 2}, there exists a set of utility functions
W𝑖 such that

𝑝 ≿∗𝑖 𝑞 ⇔ E [𝑝, 𝑣] ≥ E [𝑞, 𝑣] for all 𝑣 ∈ W𝑖,

and the functional 𝑢𝑖 : △(𝑋) → R defined by

𝑢𝑖 (𝑝) = sup
𝑣∈W𝑖

𝑐(𝑝, 𝑣) for all 𝑝 ∈ △(𝑋),

is a continuous utility representation of≿𝑖. Given that individual 1 is more indecisive
than individual 2,

𝑝 ≿∗1 𝑞 ⇒ 𝑝 ≿∗2 𝑞 ⇒ 𝑝 ≿2 𝑞.
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By Cerreia-Vioglio (2009, Proposition 22), W2 ⊆ W1. Therefore, for any risky
lottery 𝑝,

𝑢1(𝑝) = sup
𝑣∈W1

𝑐(𝑝, 𝑣) ≥ sup
𝑣∈W2

𝑐(𝑝, 𝑣) = 𝑢2(𝑝).

Consequently, individual 1 is less risk averse than individual 2. □

B.5 Response Times
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Figure B.3: Distribution of response times for all subjects in the experiment.

Figure B.3 shows the distribution of these response times for different categories
of comparisons.6 Contrary to the confidence self-reports, response times tend
to be lower in unmixed than in 0.95-mixed and 0.7-mixed comparisons. Indeed,
we observe a negative correlation between confidence self-reports and response
times for these three categories of comparisons.7 At the same time, analogously
to confidence self-reports, response times tend to be higher in FOSD comparison
than in any other category of comparisons. We suspect that the high response
times observed in FOSD comparisons may result from a “too good to be true"
effect. Subjects may lose time in double-checking their understanding of questions
in FOSD comparisons, given the lack of trade-offs between the two lotteries.

6We classify as outlier any observation that is more than 1.5 times the interquartile range away
from the first quantile or the third quantile. Overall, there are 1,322 outliers. Given that many outliers
correspond to particularly high numbers, representing subjects that most likely took a break during
the experiment, we do not report them in Figure B.3 for clarity.

7Correlation coefficient: −0.206. P-value less than 0.001.
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B.6 Instructions
General Instructions. The study consists of questions about lottery tickets that pay
$1, $7 or $20 with some fixed probabilities. Let us highlight from the start that there
are no right or wrong answers. We are only interested in studying your preferences.
Here is an example of a pair of lottery tickets:

• Lottery ticket A involves no chance at all: it pays $7 for sure.

• Lottery ticket B pays $20 with probability 60%, or $1 with probability 40%.

During the experiment, you will encounter 74 pairs of lottery tickets. For each pair,
you will answer to two questions.

Notice that after you select an answer to a question and click on Next, you will not
be able to modify it.

We will now show you these two questions.

Training session. To familiarize yourself with the setup of the experiment, you
will complete a brief training session. The training session consists of five pairs of
lottery tickets. For each pair of lottery tickets, you will answer the two questions
that we described to you. The answers that you give in this training session do not
affect your monetary compensation. We will describe the details of your monetary
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compensation at the end of your training session.

[Subject answers the five comparisons. For each comparison, the decision screen
looks like in Figure 2.2.]

Possible rewards. Now that you have familiarized yourself with the questions of
the study, you will learn about the details of your compensation. You will receive
a participation fee of $4.75 for completing all the questions in the experiment.
Moreover, you may also receive a bonus payment:

• At the end of the experiment, the computer will randomly select a number
between 1 and 10. Each number has an equal probability (10%) of being
selected.

• If the randomly selected number is 1, you will receive a bonus payment.

• If you are chosen to receive a bonus payment, the computer will randomly
pick one of the 74 pairs of lotteries that you encountered in the experiment.

• Then, you will be able to play the lottery ticket from the selected pair that
you declared to prefer in Question 1 (which lottery ticket do you prefer?).
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That is, the computer will use the probabilities specified in the lottery ticket
to select a monetary prize ($1, $7 or $20).

• Your bonus payment will be the monetary prize that the computer will
select. You will receive your bonus payment together with the participation
fee after we review your submission.

Example: Suppose that you are randomly selected for a bonus payment and the
randomly picked pair of lottery tickets is:

• If you chose Lottery ticket A in Question 1, you get additional $7 for sure.

• If you chose Lottery ticket B in Question 1, you have a 60% chance of getting
additional $20 and a 40% chance of getting additional $1.

Begin the experiment. Congratulations, you are now ready to participate in the ex-
periment. If anything is unclear, please let us know through the Prolific anonymized
internal messaging service. Otherwise, please click next to begin the experiment.
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A p p e n d i x C

APPENDIX TO CHAPTER 3

C.1 Proofs
This appendix contains the proofs of the results stated in Chapter 3.

Proof of Proposition 1
Step 1. If

⋂
𝑣∈𝑀𝛼∗

𝑆𝑈𝐶𝑆𝑣 (𝛼∗) = ∅, then 𝛼∗ is optimal.

Proof of Step 1. Consider an action 𝛼∗ such that
⋂

𝑣∈𝑀𝛼∗
𝑆𝑈𝐶𝑆𝑣 (𝛼∗) = ∅. This

implies that for all 𝛼 ∈ A, there exists 𝑣 ∈ 𝑀𝛼∗ such that

𝑢(𝛼∗) = U [E(𝛼∗, 𝑣), 𝑣] ≥ U [E(𝛼, 𝑣), 𝑣] ≥ 𝑢(𝛼).

Therefore, 𝛼∗ is optimal.

Step 2. If 𝛼∗ is optimal, then
⋂

𝑣∈𝑀𝛼∗
𝑆𝑈𝐶𝑆𝑣 (𝛼∗) = ∅.

Proof of Step 2. We show that if there exists an action 𝛼 ∈ A such that 𝛼 ≻𝑣 𝛼∗ for
all 𝑣 ∈ 𝑀𝛼∗ , then 𝛼∗ is not optimal. Define a new mixed action �̂�𝜆 parametrized by
𝜆 ∈ (0, 1) such that for all 𝑎 ∈ 𝐴

�̂�𝜆 (𝑎) = 𝜆𝛼(𝑎) + (1 − 𝜆)𝛼∗(𝑎).

We now show that there exists a value �̄� ∈ (0, 1] such that for all 𝜆 ∈ (0, �̄�),
𝑢(�̂�𝜆) > 𝑢(𝛼∗). To this end, consider the function Ψ : [0, 1] ×W → R such that
Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] −𝑢(𝛼∗), for all 𝜆 ∈ [0, 1] and 𝑣 ∈ W. As an intermediate
step, we prove that for each 𝑣 ∈ W, there exists a value �̄�𝑣 ∈ (0, 1] such that for all
𝜆 ∈ (0, �̄�𝑣), Ψ(𝜆, 𝑣) > 0. Take a utility 𝑣 ∈ W. There are two possibilities:

1. If 𝛼 ≿𝑣 𝛼∗, then for all 𝜆 ∈ (0, 1]

Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗)
= U [𝜆E(𝛼, 𝑣) + (1 − 𝜆)E(𝛼∗, 𝑣), 𝑣] − 𝑢(𝛼∗)
≥ U [𝜆E(𝛼∗, 𝑣) + (1 − 𝜆)E(𝛼∗, 𝑣), 𝑣] − 𝑢(𝛼∗)
= U [E(𝛼∗, 𝑣), 𝑣] − 𝑢(𝛼∗) ≥ 0,
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where at least one of the two weak inequalities holds strict. If 𝛼 ≻𝑣 𝛼∗, the
first inequality is strict because the function U [·, 𝑣] is strictly increasing in
the first argument. If instead 𝛼 ∼𝑣 𝛼∗, the last inequality is strict because
𝑣 ∉ 𝑀𝛼∗ . For all such 𝑣, we let �̄�𝑣 = 1.

2. If 𝛼∗ ≻𝑣 𝛼, then Ψ(·, 𝑣) is strictly decreasing in the first argument because
U [·, 𝑣] is strictly increasing in the first argument. Ψ(·, 𝑣) is continuous in
the first argument because U [·, 𝑣] is continuous in the first argument. If
Ψ(1, 𝑣) ≥ 0, the result follows immediately by taking �̄�𝑣 = 1. Suppose that
Ψ(1, 𝑣) < 0. Notice that Ψ(0, 𝑣) > 0 because 𝛼∗ ≻𝑣 𝛼 implies that 𝑣 ∉ 𝑀𝛼∗ .
Therefore, by the Intermediate Value Theorem, there exists �̄�𝑣 ∈ (0, 1) such
that Ψ(�̄�𝑣, 𝑣) = 0. By Ψ(·, 𝑣) strictly decreasing, Ψ(𝜆, 𝑣) > 0 for all 𝜆 ∈
(0, �̄�𝑣).

To conclude the proof, we let �̄� = min
𝑣∈W

�̄�𝑣. Given that W is finite, �̄� is well defined.

By construction, for all 𝜆 ∈ (0, �̄�) and for all 𝑣 ∈ W,

Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗) > 0.

This implies that 𝑢(�̂�𝜆) > 𝑢(𝛼∗). Consequently, we conclude that 𝛼∗ is not optimal.

Proof of Proposition 2
Step 1. If

⋂
𝑣∈𝑀𝛼∗

𝑆𝑈𝐶𝑆𝑣 (𝛼) = ∅ for all 𝛼 ∈ A with 𝑆𝛼 ⊆ 𝑆𝛼∗ , then 𝛼∗ is optimal.

Proof of Step 1. Consider an action 𝛼∗ ∈ A. If for all 𝛼 ∈ A with 𝑆𝛼 ⊆ 𝑆𝛼∗ ,⋂
𝑣∈𝑀𝛼∗

𝑆𝑈𝐶𝑆𝑣 (𝛼) = ∅, then trivially 𝛼∗ is optimal by Proposition 1.

Step 2. If 𝛼∗ is optimal, then
⋂

𝑣∈𝑀𝛼∗
𝑆𝑈𝐶𝑆𝑣 (𝛼) = ∅ for all 𝛼 ∈ A with 𝑆𝛼 ⊆ 𝑆𝛼∗ .

Proof of Step 2. Take an action 𝛼∗ ∈ A. We show that if there exist an action
�̃� ∈ A, with 𝑆�̃� ⊆ 𝑆𝛼∗ and another action 𝛼 ∈ A such that 𝛼 ≻𝑣 �̃� for all 𝑣 ∈ 𝑀𝛼∗ ,
then 𝛼∗ is not optimal. Define a new mixed action �̂�𝜆 parametrized by 𝜆 ∈ (0, �̂�)
such that for all 𝑎 ∈ 𝐴

�̂�𝜆 (𝑎) = 𝛼∗(𝑎) + 𝜆 [𝛼(𝑎) − �̃�(𝑎)] ,

where the upper bound �̂� is defined as follows:

�̂� = max {𝜆 ∈ (0, 1] : ∀𝑎 ∈ 𝐴, �̂�𝜆 (𝑎) ≥ 0} .
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Notice that �̂� is well defined because 𝑆�̃� ⊆ 𝑆𝛼∗ . We now show that there exists a
value �̄� ∈ (0, �̂�] such that for all 𝜆 ∈ (0, �̄�), 𝑢(�̂�𝜆) > 𝑢(𝛼∗). To this end, consider
the function Ψ : [0, �̂�] ×W → R such that Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗), for
all 𝜆 ∈ [0, �̂�] and 𝑣 ∈ W. As an intermediate step, we prove that for each 𝑣 ∈ W,
there exists a value �̄�𝑣 ∈ (0, �̂�] such that for all 𝜆 ∈ (0, �̄�𝑣), Ψ(𝜆, 𝑣) > 0. Take a
utility 𝑣 ∈ W. There are two possibilities:

1. If 𝛼 ≿𝑣 �̃�, then for all 𝜆 ∈ (0, �̂�]

Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗)
= U [E(𝛼∗, 𝑣) + 𝜆 [E(𝛼, 𝑣) − E(�̃�, 𝑣)] , 𝑣] − 𝑢(𝛼∗)
≥ U [E(𝛼∗, 𝑣), 𝑣] − 𝑢(𝛼∗) ≥ 0,

where at least one of the two weak inequalities holds strict. If 𝛼 ≻𝑣 �̃�, the first
inequality is strict because the function U [·, 𝑣] is strictly increasing in the
first argument. If instead 𝛼 ∼𝑣 �̃�, the last inequality is strict because 𝑣 ∉ 𝑀𝛼∗ .
For all such 𝑣, we let �̄�𝑣 = �̂�.

2. If �̃� ≻𝑣 𝛼, then Ψ(·, 𝑣) is strictly decreasing in the first argument because
U [·, 𝑣] is strictly increasing in the first argument. Ψ(·, 𝑣) is continuous in
the first argument because U [·, 𝑣] is continuous in the first argument. If
Ψ(�̂�, 𝑣) ≥ 0, the result follows immediately by taking �̄�𝑣 = �̂�. Suppose that
Ψ(�̂�, 𝑣) < 0. Notice that Ψ(0, 𝑣) > 0 because �̃� ≻𝑣 𝛼 implies that 𝑣 ∉ 𝑀𝛼∗ .
Therefore, by the Intermediate Value Theorem, there exists �̄�𝑣 ∈ (0, �̂�) such
that Ψ(�̄�𝑣, 𝑣) = 0. By Ψ(·, 𝑣) strictly decreasing, Ψ(𝜆, 𝑣) > 0 for all 𝜆 ∈
(0, �̄�𝑣).

To conclude the proof, we let �̄� = min
𝑣∈W

�̄�𝑣. Given that W is finite, �̄� is well defined.

By construction, for all 𝜆 ∈ (0, �̄�) and for all 𝑣 ∈ W,

Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗) > 0.

This implies that 𝑢(�̂�𝜆) > 𝑢(𝛼∗) and 𝛼∗ is not optimal.

Proof of Proposition 3
Suppose that 𝛼∗ ∈ A is optimal.

Step 1. If there is no 𝛼 ∈ A with 𝛼∗ ≠ 𝛼, such that 𝛼∗ ∼𝑣 𝛼 for all 𝑣 ∈ 𝑀𝛼∗ , then
𝛼∗ is unique.
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Proof of Step 1. We show that if 𝛼∗ is not unique, then there is an action 𝛼 ∈ A,
with 𝛼∗ ≠ 𝛼, such that 𝛼∗ ∼𝑣 𝛼 for all 𝑣 ∈ 𝑀𝛼∗ . Take an optimal action 𝛼 with
𝛼 ≠ 𝛼∗. First, notice that for all 𝑣 ∈ 𝑀𝛼∗ , it holds that 𝛼 ≿𝑣 𝛼∗. Consider the set
{𝑣 ∈ 𝑀𝛼∗ : 𝛼 ∼𝑣 𝛼∗}. By Proposition 1, this set is non-empty. If it coincides with
𝑀𝛼∗ , then the proof is completed: 𝛼 ∼𝑣 𝛼∗ for all 𝑣 ∈ 𝑀𝛼∗ . Otherwise, define a new
mixed action �̂�𝜆 parametrized by 𝜆 ∈ (0, 1) such that for all 𝑎 ∈ 𝐴

�̂�𝜆 (𝑎) = 𝜆𝛼(𝑎) + (1 − 𝜆)𝛼∗(𝑎).

We now show that there exists a value �̄� ∈ (0, 1] such that for all 𝜆 ∈ (0, �̄�), �̂�𝜆
is optimal and for all 𝑣 ∈ 𝑀�̂�𝜆 , �̂�𝜆 ∼𝑣 𝛼∗. To this end, consider the function
Ψ : [0, 1] ×W → R such that Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗), for all 𝜆 ∈ [0, 1]
and 𝑣 ∈ W. As an intermediate step, we prove that for each 𝑣 ∈ W, there exists a
value �̄�𝑣 ∈ (0, 1] such that for all 𝜆 ∈ (0, �̄�𝑣), Ψ(𝜆, 𝑣) ≥ 0, with equality holding
only if 𝑣 ∈ {𝑣 ∈ 𝑀𝛼∗ : 𝛼 ∼𝑣 𝛼∗}. Take a utility 𝑣 ∈ W. There are two possibilities:

1. If 𝛼 ≿𝑣 𝛼∗, then for all 𝜆 ∈ (0, 1]

Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗)
= U [𝜆E(𝛼, 𝑣) + (1 − 𝜆)E(𝛼∗, 𝑣), 𝑣] − 𝑢(𝛼∗)
≥ U [𝜆E(𝛼∗, 𝑣) + (1 − 𝜆)E(𝛼∗, 𝑣), 𝑣] − 𝑢(𝛼∗)
= U [E(𝛼∗, 𝑣), 𝑣] − 𝑢(𝛼∗) ≥ 0,

where both weak inequalities hold as equalities only if 𝑣 ∈ {𝑣 ∈ 𝑀𝛼∗ : 𝛼 ∼𝑣
𝛼∗}. For all 𝑣 with 𝛼 ≿𝑣 𝛼∗, we let �̄�𝑣 = 1.

2. If 𝛼∗ ≻𝑣 𝛼, then Ψ(·, 𝑣) is strictly decreasing in the first argument because
U [·, 𝑣] is strictly increasing in the first argument. Ψ(·, 𝑣) is continuous in
the first argument because U [·, 𝑣] is continuous in the first argument. If
Ψ(1, 𝑣) ≥ 0, the result follows immediately by taking �̄�𝑣 = 1. Suppose that
Ψ(1, 𝑣) < 0. Notice that Ψ(0, 𝑣) > 0 because 𝛼∗ ≻𝑣 𝛼 implies that 𝑣 ∉ 𝑀𝛼∗ .
Therefore, by the Intermediate Value Theorem, there exists �̄�𝑣 ∈ (0, 1) such
that Ψ(�̄�𝑣, 𝑣) = 0. By Ψ(·, 𝑣) strictly decreasing, Ψ(𝜆, 𝑣) > 0 for all 𝜆 ∈
(0, �̄�𝑣).

To conclude the proof, we let �̄� = min
𝑣∈W

�̄�𝑣. Given that W is finite, �̄� is well defined.

By construction, for all 𝜆 ∈ (0, �̄�) and for all 𝑣 ∈ W,

Ψ(𝜆, 𝑣) = U [E(�̂�𝜆, 𝑣), 𝑣] − 𝑢(𝛼∗) ≥ 0,
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where the inequality holds as an equality for 𝑣 ∈ {𝑣 ∈ 𝑀𝛼∗ : 𝛼 ∼𝑣 𝛼∗}. Therefore,
𝑢(𝛼∗) = 𝑢(�̂�𝜆) and given that action 𝛼∗ is optimal, action �̂�𝜆 must be optimal as well.
Moreover, by construction, 𝑀�̂�𝜆 = {𝑣 ∈ 𝑀𝛼∗ : 𝛼 ∼𝑣 𝛼∗} ⊂ 𝑀𝛼∗ and consequently
�̂�𝜆 ∼𝑣 𝛼∗ for all 𝑣 ∈ 𝑀�̂�𝜆 .

Step 2. If 𝛼∗ is unique, then there is no 𝛼 ∈ A with 𝛼∗ ≠ 𝛼, such that 𝛼∗ ∼𝑣 𝛼 for
all 𝑣 ∈ 𝑀𝛼∗ .

Proof of Step 2. Suppose that there exist two actions 𝛼∗ and 𝛼, with 𝛼∗ ≠ 𝛼, such
that 𝛼∗ is optimal and 𝛼∗ ∼𝑣 𝛼 for all 𝑣 ∈ 𝑀𝛼∗ . We show that 𝛼∗ is not unique. To
this end, define a new mixed action �̂�𝜆 parametrized by 𝜆 ∈ (0, 1) such that for all
𝑎 ∈ 𝐴

�̂�𝜆 (𝑎) = 𝜆𝛼(𝑎) + (1 − 𝜆)𝛼∗(𝑎).

Replicating the same argument used for Step 1 of Proposition 3, we can show
that there exists a value �̄� ∈ (0, 1] such that for all 𝜆 ∈ (0, �̄�), �̂�𝜆 is optimal and
𝑀�̂�𝜆 = 𝑀𝛼∗ . This proves that the optimal action 𝛼∗ is not unique.

Proof of Proposition 4
Step 1. For any optimal action 𝛼∗, if 𝑀𝛼∗ ⊆ 𝑀𝛼 for any other optimal action 𝛼,
then 𝛼∗ is efficient.

Proof of Step 1. Take an action 𝛼∗ that is optimal. We show that if 𝛼∗ is not
efficient, then there exists another optimal action �̂� such that 𝑀�̂� ⊂ 𝑀𝛼∗ . Given
that 𝛼∗ is not efficient, there exists 𝛼 ∈ A such that 𝛼 ≿𝑣 𝛼∗ for all 𝑣 ∈ 𝑀𝛼∗ and
𝛼 ≻𝑣 𝛼∗ for some 𝑣 ∈ 𝑀𝛼∗ . Also notice that by Proposition 1 there exists at least
one 𝑣 ∈ 𝑀𝛼∗ with 𝛼 ∼𝑣 𝛼∗ because 𝛼∗ is optimal. Define a new mixed action �̂�𝜆
parametrized by 𝜆 ∈ (0, 1) such that for all 𝑎 ∈ 𝐴

�̂�𝜆 (𝑎) = 𝜆𝛼(𝑎) + (1 − 𝜆)𝛼∗(𝑎).

Replicating the same argument used for Step 1 of Proposition 3, we can show
that there exists a value �̄� ∈ (0, 1] such that for all 𝜆 ∈ (0, �̄�), �̂�𝜆 is optimal and
𝑀�̂�𝜆 = {𝑣 ∈ 𝑀𝛼∗ : 𝛼 ∼𝑣 𝛼∗} ⊂ 𝑀𝛼∗ .

Step 2: If 𝛼∗ is efficient, then 𝑀𝛼∗ ⊆ 𝑀𝛼 for any other optimal action 𝛼.

Proof of Step 2. Take an optimal action 𝛼∗. We show that if there exists another
optimal action 𝛼 such that it is not true that𝑀𝛼∗ ⊆ 𝑀𝛼, then action 𝛼∗ is not efficient.
First, notice that for all 𝑣 ∈ 𝑀𝛼∗ ,

U [E(𝛼, 𝑣), 𝑣] ≥ 𝑢(𝛼) = 𝑢(𝛼∗) = U [E(𝛼∗, 𝑣), 𝑣] .
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In particular, there is a utility �̄� ∈ 𝑀𝛼∗ such that �̄� ∉ 𝑀𝛼. For this utility �̄�, the weak
inequality holds strict. Therefore, 𝛼∗ is not efficient.

Proof of Proposition 5
Step 1. There exists an optimal action 𝛼∗ that is Pareto efficient in 𝑀𝛼∗ .

Proof of Step 1. By contradiction, suppose that there is no optimal action 𝛼∗ that
is Pareto efficient in 𝑀𝛼∗ . Take an optimal action 𝛼. By Proposition 4, there exists
another optimal action �̂� such that 𝑀�̂� ⊂ 𝑀𝛼. Given that W is finite, after a finite
number of iterations of this argument, we obtain an optimal action 𝛼∗ such that
𝑀𝛼∗ = {𝑣}, for some utility 𝑣 ∈ W. By assumption, 𝛼∗ is not Pareto efficient in
𝑀𝛼∗ . This implies that there exists another action �̃� ≻𝑣 𝛼∗. By Proposition 1, 𝛼∗ is
not optimal, a contradiction. Consequently, the set of minimal actions is non-empty.
Before proceeding with Step 2 of the proof, we introduce some additional notation.

Let us denote by 𝑂 the set of optimal actions, by 𝐸 ⊆ 𝑂 the set of minimal actions
and by 𝑀𝑚𝑖𝑛 the set of worst-off utilities induced by minimal actions. By Step 1,
the sets 𝐸 and 𝑀𝑚𝑖𝑛 are well defined. Let us consider the following optimization
problem:

max
𝛼∈𝑂

min
𝑣∈W\𝑀𝑚𝑖𝑛

U [E(𝛼, 𝑣), 𝑣] . (C.1)

The set of optimal actions 𝑂 is non-empty and compact by the maximum theorem.
Moreover, the objective function is continuous and quasi-concave. Consequently,
the set of solutions for problem (C.1) that we denote by 𝐸1 is non-empty and again
compact by the maximum theorem.

Step 2: 𝐸1 ⊆ 𝐸 .

Proof of Step 2. Take any optimal action 𝛼 that is not minimal. We show that
𝛼 ∉ 𝐸1. Take any other action �̃� ∈ 𝐸 . We have

min
𝑣∈W\𝑀𝑚𝑖𝑛

U [E(𝛼, 𝑣), 𝑣] = min
𝑣∈W

U [E(𝛼, 𝑣), 𝑣]

= min
𝑣∈W

U [E(�̃�, 𝑣), 𝑣]

< min
𝑣∈W\𝑀𝑚𝑖𝑛

U [E(�̃�, 𝑣), 𝑣] ,

where the first equality holds because𝛼 is not minimal and consequently𝑀𝑚𝑖𝑛 ⊂ 𝑀𝛼,
the second equality holds because both actions 𝛼 and �̃� are optimal, the third strict
inequality holds because �̃� is efficient and consequently 𝑀�̃� = 𝑀𝑚𝑖𝑛.
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Consider now the following maximization problem:

max
𝛼∈𝐸1

∑︁
𝑣∈W\𝑀𝑚𝑖𝑛

E(𝛼, 𝑣). (C.2)

We denote by 𝐸2 the set of actions that solve (C.2). By the maximum theorem, 𝐸2

is non-empty and compact.

Step 3: Any 𝛼 ∈ 𝐸2 is efficient.

Proof of Step 3. Take any actions 𝛼 ∈ 𝐸2 and �̃� ∈ A. If �̃� ∉ 𝑂, then given that 𝛼
is optimal, there must exist a utility 𝑣 ∈ W such that 𝛼 ≻𝑣 �̃�. If instead �̃� ∈ 𝑂 \ 𝐸 ,
then 𝑀�̃� \𝑀𝑚𝑖𝑛 ≠ ∅. For any utility 𝑣 ∈ 𝑀�̃� \𝑀𝑚𝑖𝑛, we have 𝛼 ≻𝑣 �̃�. Let us assume
now that �̃� ∈ 𝐸 . Notice that 𝐸2 ⊆ 𝐸1 ⊆ 𝐸 . We consider two different cases:

• Case 1: �̃� ∈ 𝐸1. Given that �̃� ∈ 𝐸1 and 𝛼 ∈ 𝐸2, we have∑︁
𝑣∈W\𝑀𝑚𝑖𝑛

E(𝛼, 𝑣) ≥
∑︁

𝑣∈W\𝑀𝑚𝑖𝑛

E(�̃�, 𝑣).

Consequently, if there exists a utility 𝑣 ∈ W \ 𝑀𝑚𝑖𝑛 such that �̃� ≻𝑣 𝛼, then
there must also exist a utility �̄� ∈ W \ 𝑀𝑚𝑖𝑛 such that 𝛼 ≻�̄� �̃�. Therefore, no
action �̃� ∈ 𝐸1 Pareto dominates 𝛼 ∈ 𝐸2 in W.

• Case 2: �̃� ∈ 𝐸 \ 𝐸1. In this case, for at least one utility �̄� ∈ W \ 𝑀𝑚𝑖𝑛, we
have

U [E(𝛼, �̄�), �̄�] ≥ min
𝑣∈W\𝑀𝑚𝑖𝑛

U [E(𝛼, 𝑣), 𝑣]

> min
𝑣∈W\𝑀𝑚𝑖𝑛

U [E(�̃�, 𝑣), 𝑣]

= U [E(�̃�, �̄�), �̄�] ,

where the first weak inequality holds for any utility �̄� ∈ W\𝑀𝑚𝑖𝑛, the second
strict inequality holds because 𝛼 ∈ 𝐸1 and �̃� ∉ 𝐸1, the third equality holds
for at least one utility �̄� ∈ W \ 𝑀𝑚𝑖𝑛 because W is finite. For such utility �̄�,
we have 𝛼 ≻𝑣 �̃�. Therefore, no action �̃� ∈ 𝐸 \ 𝐸1 Pareto dominates 𝛼 ∈ 𝐸2

in W.

Proof of Proposition 6
Let W = {𝑣1, 𝑣2} and suppose that the action 𝛼 ∈ A with |𝑆𝛼 | > 2 is optimal. We
show that there exists another optimal action �̂� ∈ A with |𝑆�̂� | ≤ 2. If 𝑢(𝛼) = 𝑢(𝑎)
for some 𝑎 ∈ 𝐴, the statement follows. Suppose that 𝑢(𝛼) > 𝑢(𝑎) for all 𝑎 ∈ 𝐴.
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Step 1. If 𝛼 is optimal, then 𝑀𝛼 = {𝑣1, 𝑣2}.

Proof of Step 1. Suppose that |𝑀𝛼 | = 1. Without loss of generality, let 𝑀𝛼 = {𝑣1}.
Given that 𝛼 is optimal, by Proposition 1 𝛼 ≿𝑣1 𝑎 for all 𝑎 ∈ 𝑆𝛼. Therefore, 𝛼 ∼𝑣1 𝑎

for all 𝑎 ∈ 𝑆𝛼. Given that 𝑢(𝛼) > 𝑢(𝑎) for all 𝑎 ∈ 𝐴, it must be that 𝑀𝑎 = {𝑣2} for
all 𝑎 ∈ 𝑆𝛼. Therefore, we have

U [E(𝛼, 𝑣1), 𝑣1] = U
[
max
�̃�∈𝑆𝛼
E(�̃�, 𝑣1), 𝑣1

]
> U

[
max
�̃�∈𝑆𝛼
E(�̃�, 𝑣2), 𝑣2

]
≥ U [E(𝛼, 𝑣2), 𝑣2] ,

where the equality holds because 𝛼 ∼𝑣1 𝑎 for all 𝑎 ∈ 𝑆𝛼, the strict inequality
because 𝑀𝑎 = {𝑣2} for all 𝑎 ∈ 𝑆𝛼 and the weak inequality because U [·, 𝑣2] is
a strictly increasing function. Consequently, U [E(𝛼, 𝑣1), 𝑣1] > U [E(𝛼, 𝑣2), 𝑣2],
which contradicts 𝑀𝛼 = {𝑣1}.

Step 2. If 𝛼 is optimal, for all 𝑎, 𝑎′ ∈ 𝑆𝛼, we have 𝑎 ∼𝑣1 𝑎
′ if and only if 𝑎 ∼𝑣2 𝑎

′.

Proof of Step 2. Suppose that there exist actions 𝑎, 𝑎′ ∈ 𝑆𝛼 such that 𝑎 ∼𝑣1 𝑎
′

and 𝑎 ≻𝑣2 𝑎
′. We show that 𝛼 is not optimal. Consider a new action �̃� such that

�̃�(𝑎) = 𝛼(𝑎) + 𝛼(𝑎′), �̃�(𝑎′) = 0 and �̃�(𝑎′′) = 𝛼(𝑎′′) for all 𝑎′′ ∈ 𝑆𝛼 \ {𝑎, 𝑎′}.
Therefore, we have �̃� ∼𝑣1 𝛼 and �̃� ≻𝑣2 𝛼. Given that by Step 1 𝑀𝛼 = {𝑣1, 𝑣2}, then
𝑀�̃� = {𝑣1} and 𝑢(𝛼) = 𝑢(�̃�). However, Step 1 also implies that �̃� is not optimal,
which in turn implies that 𝛼 is not optimal.

Whenever there are two actions 𝑎, 𝑎′ ∈ 𝑆𝛼, such that 𝑎 ∼𝑣1 𝑎
′ and 𝑎 ∼𝑣2 𝑎

′, it is
possible to construct another optimal mixed action 𝛼′ with 𝑆𝛼′ ⊂ 𝑆𝛼. It is enough
take 𝛼′ such that 𝛼′(𝑎) = 𝛼(𝑎) + 𝛼(𝑎′), 𝛼′(𝑎′) = 0 and 𝛼′(𝑎′′) = 𝛼(𝑎′′) for all
𝑎′′ ∈ 𝑆𝛼 \ {𝑎, 𝑎′}. From now on, assume that there are no actions 𝑎, 𝑎′ ∈ 𝑆𝛼, such
that 𝑎 ∼𝑣1 𝑎

′ and 𝑎 ∼𝑣2 𝑎
′, but still |𝑆𝛼 | > 2.

Step 3. If 𝛼 is optimal, for all 𝑎, 𝑎′ ∈ 𝑆𝛼, we have 𝑎 ≻𝑣1 𝑎
′ if and only if 𝑎′ ≻𝑣2 𝑎.

Proof of Step 3. Suppose that there exist actions 𝑎, 𝑎′ ∈ 𝑆𝛼 such that 𝑎 ≻𝑣1 𝑎
′ and

𝑎 ≿𝑣2 𝑎
′. We show that 𝛼 is not optimal. By Step 2 we have 𝑎 ≻𝑣2 𝑎

′, otherwise
we could conclude 𝑎 ∼𝑣1 𝑎

′. Therefore, by Proposition 2 we conclude that 𝛼 is not
optimal.

Step 4. If 𝛼 is optimal and |𝑆𝛼 | = 𝑛 > 2, there exists another optimal action �̃� with
|𝑆�̃� | = 𝑛 − 1 .

Proof of Step 4. Consider three actions 𝑎, 𝑎′, 𝑎′′ ∈ 𝑆𝛼. Without loss of generality,
assume 𝑎 ≻𝑣1 𝑎

′ ≻𝑣1 𝑎
′′. By Step 3, 𝑎′′ ≻𝑣2 𝑎

′ ≻𝑣2 𝑎. Define a new mixed action 𝛼𝜆
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parametrized by 𝜆 ∈ [0, 1] such that 𝛼𝜆 (𝑎) = 𝜆 and 𝛼𝜆 (𝑎′′) = 1 − 𝜆. Consider the
sets

𝑆1 B {𝜆 ∈ [0, 1] : 𝛼𝜆 ≿𝑣1 𝑎
′} and 𝑆2 B {𝜆 ∈ [0, 1] : 𝛼𝜆 ≿𝑣2 𝑎

′}.

These sets are non-empty because 1 ∈ 𝑆1 and 0 ∈ 𝑆2. Moreover, they are closed
because ≿𝑣1 and ≿𝑣2 are EU preferences and satisfy continuity. Therefore, let
𝑘1, 𝑘2 ∈ (0, 1) such that 𝑆1 = [𝑘1, 1] and 𝑆2 = [0, 𝑘2]. We have that 𝛼𝑘1 ∼𝑣1 𝑎

′

and 𝛼𝑘2 ∼𝑣2 𝑎
′. In what follows, we show that if 𝛼 is optimal, then 𝑘1 = 𝑘2. If

𝑘1 < 𝑘2, for 𝜆 ∈ (𝑘1, 𝑘2) we have 𝛼𝜆 ≻𝑣1 𝑎
′ and 𝛼𝜆 ≻𝑣2 𝑎

′. By Proposition 2, 𝛼
is not optimal. If 𝑘1 > 𝑘2, for 𝜆 ∈ (𝑘2, 𝑘1) we have 𝑎′ ≻𝑣1 𝛼𝜆 and 𝑎′ ≻𝑣2 𝛼𝜆. By
Proposition 2, 𝛼 is not optimal. Therefore, it must be that 𝑘1 = 𝑘2 = 𝑘 . Define a
new mixed action �̂� such that

• �̂�(𝑎′) = 0.

• �̂�(𝑎) = 𝛼(𝑎) + 𝛼(𝑎′)𝑘 .

• �̂�(𝑎′′) = 𝛼(𝑎′′) + 𝛼(𝑎′) (1 − 𝑘).

• �̂�(�̂�) = 𝛼(�̂�) for all �̂� ∈ 𝐴 \ {𝑎, 𝑎′, 𝑎′′}.

Notice that �̂� is optimal because �̂� ∼𝑣1 𝛼 and �̂� ∼𝑣2 𝛼. Moreover, |𝑆�̂� | = |𝑆𝛼 | − 1.

Therefore, if |𝑆𝛼 | = 𝑛 > 2, iterating 𝑛 − 2 times Step 4 we can obtain an optimal
action �̃� with |𝑆�̃� | = 2.

Proof of Proposition 7
Take any finite set of utilities W and assume that arg max

𝑎∈𝐴
𝑢(𝑎) = 𝐴.

Step 1. If randomization is strictly beneficial, then there is no utility 𝑣 ∈ W such
that 𝑃𝑣 = 𝐴.

Proof of Step 1. Suppose that randomization is strictly beneficial. Then, there
exists 𝛼 ∈ A such that 𝑢(𝛼) > 𝑢(𝑎) for all 𝑎 ∈ 𝐴. By contradiction, suppose that
there exists 𝑣 ∈ W such that 𝑃𝑣 = 𝐴. Then, for all 𝑎 ∈ 𝐴, we have

U [E(𝑎, 𝑣), 𝑣] = U [E(𝛼, 𝑣), 𝑣] ≥ 𝑢(𝛼) > 𝑢(𝑎) = U [E(𝑎, 𝑣), 𝑣] ,

where the first equality holds because 𝑃𝑣 = 𝐴 and arg max
𝑎∈𝐴

𝑢(𝑎) = 𝐴, the second

weak inequality by definition of 𝑢(·), the third strict inequality by assumption and
the last equality because 𝑃𝑣 = 𝐴. Therefore, we obtained a contradiction.
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Step 2. If there is no utility 𝑣 ∈ W such that 𝑃𝑣 = 𝐴, then randomization is strictly
beneficial.

Proof of Step 2. Take an action 𝛼 ∈ A with 𝑆𝛼 = 𝐴. Notice that for all �̃� ∈ 𝐴, and
for all 𝑣 ∈ W,

U [E(𝛼, 𝑣), 𝑣] ≥ U
[
min
𝑎∈𝐴
E(𝑎, 𝑣), 𝑣

]
≥ 𝑢(�̃�),

where the first weak inequality holds because the function U [·, 𝑣] is strictly increas-
ing in the first argument and the second weak inequality because arg max

𝑎∈𝐴
𝑢(𝑎) = 𝐴

and by definition of 𝑢(·). Moreover, if the first inequality holds as equality, then the
second inequality is strict. Otherwise, we would have 𝑃𝑣 = 𝐴. Therefore, incentives
to randomize are strict.

Proof of Proposition 8
Suppose that W = {𝑣1, 𝑣2}, arg max

𝑎∈𝐴
𝑢(𝑎) = 𝐴 and there is no utility 𝑣 ∈ W such

that 𝑃𝑣 = 𝐴.

Step 1. If action 𝛼 ∈ A is optimal, then 𝑀𝛼 = {𝑣1, 𝑣2}.

Proof of Step 1. See Step 1 in the proof of Proposition 6.

Step 2. If action 𝛼 ∈ A is optimal, then

𝑆𝛼 ⊆ arg max
𝑎∈𝑃𝑣1\𝑃𝑣2

U [E(𝑎, 𝑣2), 𝑣2] ∪ arg max
𝑎∈𝑃𝑣2\𝑃𝑣1

U [E(𝑎, 𝑣1), 𝑣1] .

Proof of Step 2. Suppose that there is an action 𝑎 ∈ 𝑆𝛼 such that

𝑎 ∉ arg max
𝑎∈𝑃𝑣1\𝑃𝑣2

U [E(𝑎, 𝑣2), 𝑣2] ∪ arg max
𝑎∈𝑃𝑣2\𝑃𝑣1

U [E(𝑎, 𝑣1), 𝑣1] .

We show that action 𝛼 is not optimal. Assume that 𝑀𝛼 = {𝑣1, 𝑣2}, otherwise by
Step 1 the statement follows. There are three cases:

1. 𝑎 ∈ 𝑃𝑣1 ∪ 𝑃𝑣2 . Consider a new mixed action �̂� such that �̂�(𝑎) = 0 and for all
𝑎′ ≠ 𝑎, �̂�(𝑎′) = 𝛼(𝑎′) + 𝛼(𝑎) ( |𝐴| − 1)−1. Notice that for all actions 𝑎′ ∈ 𝐴,
𝑎′ ≿𝑣1 𝑎 and 𝑎′ ≿𝑣2 𝑎 because arg max

𝑎∈𝐴
𝑢(𝑎) = 𝐴. Moreover, given that that

there is no utility 𝑣 ∈ W such that 𝑃𝑣 = 𝐴, there must be two actions 𝑎1 and
𝑎2 such that 𝑎1 ≻𝑣1 𝑎 and 𝑎2 ≻𝑣2 𝑎. Therefore, it follows that �̂� ≻𝑣1 𝛼 and
�̂� ≻𝑣2 𝛼, concluding that 𝛼 is not optimal.
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2. 𝑎 ∈ 𝑃𝑣1 \ 𝑃𝑣2 . Take an action 𝑎′ ∈ 𝑃𝑣1 \ 𝑃𝑣2 such that 𝑎′ ≻𝑣2 𝑎. By
assumption, such action exists. Consider a new mixed action �̂� such that
�̂�(𝑎) = 0, �̂�(𝑎′) = 𝛼(𝑎) + 𝛼(𝑎′) and for all 𝑎′′ ∈ 𝐴 \ {𝑎, 𝑎′}, �̂�(𝑎′) = 𝛼(𝑎).
Given that 𝑎′ ≻𝑣2 𝑎 and 𝑎′ ∼𝑣1 𝑎, it must be that 𝑢(𝛼) = 𝑢(�̂�) and 𝑀�̂� = {𝑣1}.
By Step 1, there exists another action �̃� such that 𝑢(�̃�) > 𝑢(�̂�) = 𝑢(𝛼).
Therefore, action 𝛼 is not optimal.

3. 𝑎 ∈ 𝑃𝑣2 \ 𝑃𝑣1 . Take an action 𝑎′ ∈ 𝑃𝑣2 \ 𝑃𝑣1 such that 𝑎′ ≻𝑣1 𝑎. By
assumption, such action exists. Consider a new mixed action �̂� such that
�̂�(𝑎) = 0, �̂�(𝑎′) = 𝛼(𝑎) + 𝛼(𝑎′) and for all 𝑎′′ ∈ 𝐴 \ {𝑎, 𝑎′}, �̂�(𝑎′) = 𝛼(𝑎).
Given that 𝑎′ ≻𝑣1 𝑎 and 𝑎′ ∼𝑣2 𝑎, it must be that 𝑢(𝛼) = 𝑢(�̂�) and 𝑀�̂� = {𝑣2}.
By Step 1, there exists another action �̃� such that 𝑢(�̃�) > 𝑢(�̂�) = 𝑢(𝛼).
Therefore, action 𝛼 is not optimal.

Step 3. Action 𝛼 ∈ A is optimal if the following statements are true:

(1) 𝑀𝛼 = {𝑣1, 𝑣2}

(2) 𝑆𝛼 ⊆ arg max
𝑎∈𝑃𝑣1\𝑃𝑣2

U [E(𝑎, 𝑣2), 𝑣2] ∪ arg max
𝑎∈𝑃𝑣2\𝑃𝑣1

U [E(𝑎, 𝑣1), 𝑣1] .

Proof of Step 3. Consider any other mixed action �̃� and suppose by contradiction
that 𝑢(�̃�) > 𝑢(𝛼). By (1), it must be that �̃� ≻𝑣1 𝛼 and �̃� ≻𝑣2 𝛼. By (2), �̃� ≻𝑣1 𝛼

implies that ∑︁
𝑎∈𝑃𝑣2\𝑃𝑣1

�̃�(𝑎) >
∑︁

𝑎∈𝑃𝑣2\𝑃𝑣1

𝛼(𝑎).

Similarly, by (2), �̃� ≻𝑣2 𝛼 implies that∑︁
𝑎∈𝑃𝑣1\𝑃𝑣2

�̃�(𝑎) >
∑︁

𝑎∈𝑃𝑣1\𝑃𝑣2

𝛼(𝑎).

Therefore, it must be that∑︁
𝑎∈𝑃𝑣2\𝑃𝑣1

�̃�(𝑎) +
∑︁

𝑎∈𝑃𝑣1\𝑃𝑣2

�̃�(𝑎) >
∑︁

𝑎∈𝑃𝑣2\𝑃𝑣1

𝛼(𝑎) +
∑︁

𝑎∈𝑃𝑣1\𝑃𝑣2

𝛼(𝑎) = 1,

where the last equality holds by (2). Consequently, we obtained a contradiction.
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Proof of Proposition 9
Assume that 𝐴 = {𝑎, 𝑏} and W = {𝑣1, 𝑣2}.

Step 1. If randomization is strictly beneficial, then there is no utility 𝑣 ∈ {𝑣1, 𝑣2}
such that 𝑃𝑣 = {𝑎, 𝑏}.

Proof of Step 1. See Step 1 in the proof of Proposition 7.

Step 2. If randomization is strictly beneficial, then either 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎, or
𝑏 ≻𝑣1 𝑎 and 𝑎 ≻𝑣2 𝑏.

Proof of Step 2. Suppose that it is not true that either 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎, or
𝑏 ≻𝑣1 𝑎 and 𝑎 ≻𝑣2 𝑏. If 𝑎 ≿𝑣1 𝑏 and 𝑎 ≿𝑣2 𝑏, for all mixed actions 𝛼 ∈ A, and for
all 𝑣 ∈ {𝑣1, 𝑣2}, we have

U [E(𝑎, 𝑣), 𝑣] ≥ U [E(𝛼, 𝑣), 𝑣] ≥ 𝑢(𝛼),

where the first inequality holds because 𝑎 ≿𝑣1 𝑏 and 𝑎 ≿𝑣2 𝑏, the second inequality
by definition of 𝑢(·). Consequently, 𝑢(𝑎) ≥ 𝑢(𝛼) and randomization is not strictly
beneficial. If instead 𝑏 ≿𝑣1 𝑎 and 𝑏 ≿𝑣2 𝑎, for all mixed actions 𝛼 ∈ A, and for all
𝑣 ∈ {𝑣1, 𝑣2}, we have

U [E(𝑏, 𝑣), 𝑣] ≥ U [E(𝛼, 𝑣), 𝑣] ≥ 𝑢(𝛼),

where the first inequality holds because 𝑏 ≿𝑣1 𝑎 and 𝑏 ≿𝑣2 𝑎, the second inequality
by definition of 𝑢(·). Consequently, 𝑢(𝑏) ≥ 𝑢(𝛼) and randomization is not strictly
beneficial.

Step 3. Randomization is strictly beneficial if the following statements are true:

(1) There is no utility 𝑣 ∈ {𝑣1, 𝑣2} such that 𝑃𝑣 = {𝑎, 𝑏}.

(2) Either 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎, or 𝑏 ≻𝑣1 𝑎 and 𝑎 ≻𝑣2 𝑏.

Proof of Step 3. By (1), either 𝑀𝑎 = {𝑣1} and 𝑀𝑏 = {𝑣2}, or 𝑀𝑎 = {𝑣2} and
𝑀𝑏 = {𝑣1}. Without loss of generality, assume 𝑀𝑎 = {𝑣1} and 𝑀𝑏 = {𝑣2}. Then it
must be that 𝑏 ≻𝑣1 𝑎. Otherwise, by (2) we have 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎. This implies
that

U [E(𝑏, 𝑣2), 𝑣2] > U [E(𝑎, 𝑣2), 𝑣2] > U [E(𝑎, 𝑣1), 𝑣1] > U [E(𝑏, 𝑣1), 𝑣1] ,

where the first strict inequality holds because 𝑏 ≻𝑣2 𝑎, the second strict inequality
because 𝑀𝑎 = {𝑣1}, and the third strict inequality because 𝑎 ≻𝑣1 𝑏. However,
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U [E(𝑏, 𝑣2), 𝑣2] > U [E(𝑏, 𝑣1), 𝑣1] contradicts 𝑀𝑏 = {𝑣2}. Therefore, it must be
that 𝑏 ≻𝑣1 𝑎 and by (2) 𝑎 ≻𝑣2 𝑏. Without loss of generality, assume that 𝑢(𝑎) ≥ 𝑢(𝑏).
Define a new mixed action 𝛼𝜆 parametrized by 𝜆 ∈ (0, 1) such that 𝛼𝜆 (𝑎) = 1 − 𝜆
and 𝛼𝜆 (𝑏) = 𝜆. Notice that for any 𝜆 ∈ (0, 1), 𝛼𝜆 ≻𝑣1 𝑎. Moreover, for 𝜆 small
enough, 𝑀�̃� = {𝑣1}. Therefore,

𝑢(𝛼𝜆) = U [E(𝛼𝜆, 𝑣1), 𝑣1] > U [E(𝑎, 𝑣1), 𝑣1] = 𝑢(𝑎) ≥ 𝑢(𝑏),

proving that randomization is strictly beneficial.

Proof of Corollary 1
If incentives to randomize are strict, by Proposition 9 either 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎, or
𝑏 ≻𝑣1 𝑎 and 𝑎 ≻𝑣2 𝑏. Given that 𝑎 is a mean-preserving spread of 𝑏, then either 𝑣1

is strictly concave and 𝑣2 is strictly convex, or vice versa. In any case, a C-EU DM
is neither risk averse, nor risk seeking.

Proof of Corollary 2
By Proposition 6, if 𝛼 is optimal, then 𝑀𝛼 = {𝑣1, 𝑣2}. Suppose that 𝑀𝛼 = {𝑣1, 𝑣2}.
Given that randomization is strictly beneficial, either 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎, or 𝑏 ≻𝑣1 𝑎

and 𝑎 ≻𝑣2 𝑏. Without loss of generality, assume 𝑎 ≻𝑣1 𝑏 and 𝑏 ≻𝑣2 𝑎. Consider
any other mixed action �̃� ≠ 𝛼. If �̃�(𝑎) > 𝛼(𝑎), then 𝛼 ≻𝑣2 �̃� and 𝑢(𝛼) > 𝑢(�̃�). If
instead 𝛼(𝑎) > �̃�(𝑎), then 𝛼 ≻𝑣1 �̃� and 𝑢(𝛼) > 𝑢(�̃�). Therefore 𝛼 is optimal and
unique.

Proof of Corollary 3
Let W𝐴 = {𝑣1, 𝑣2} and W𝐵 = {𝑤1, 𝑤2}. Assume that (𝛼, 𝛽) is a mixed Nash
equilibrium of 𝐺.

Step 1. If 𝑢𝐵 (𝛽, 𝛼) > max{𝑢𝐵 (𝑏1, 𝛼), 𝑢𝐵 (𝑏2, 𝛼)}, then 𝛼 ∈ �̄�o.

Proof of Step 1. Suppose that 𝛼 ∉ �̄�
o. Then, either 𝑏1 ≿𝑤,𝛼 𝑏2 for all utilities

𝑤 ∈ W𝐵 or vice versa. In both cases, by Proposition 9, incentives to randomize for
player 𝐵 are not strict.

Step 2. If 𝛼 ∈ �̄�o, then 𝑢𝐵 (𝛽, 𝛼) > max{𝑢𝐵 (𝑏1, 𝛼), 𝑢𝐵 (𝑏2, 𝛼)}.

Proof of Step 2. Suppose that 𝛼 ∈ �̄�o. Then, either 𝑏1 ≻𝑤1,𝛼 𝑏2 and 𝑏2 ≻𝑤2,𝛼 𝑏1,
or 𝑏2 ≻𝑤1,𝛼 𝑏1 and 𝑏1 ≻𝑤2,𝛼 𝑏2. Without loss of generality, assume that the first
case holds. By Proposition 9, it is enough to show that there is no utility 𝑤 ∈ W𝐵
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such that 𝑃𝑤,𝛼 = 𝑆𝐵. By contradiction, suppose that 𝑃𝑤1,𝛼 = 𝑆𝐵. Then, we have

𝑢𝐵 (𝑏1, 𝛼) = U [E𝛼 (𝑏1, 𝑤1), 𝑤1]
> U [E𝛼 (𝛽, 𝑤1), 𝑤1]
≥ 𝑢𝐵 (𝛽, 𝛼),

where the first equality holds because 𝑃𝑤1,𝛼 = 𝑆𝐵, the second strict inequality
because 𝑏1 ≻𝑤1,𝛼 𝑏2 implies 𝑏1 ≻𝑤1,𝛼 𝛽, and the third weak inequality by definition
of 𝑢𝐵 (·, 𝛼). However, given that (𝛼, 𝛽) is a mixed Nash equilibrium of𝐺, this is not
possible.

Step 3. 𝛽 ∈ �̄�oif and only if then 𝑢𝐴 (𝛼, 𝛽) > max{𝑢𝐴 (𝑎1, 𝛽), 𝑢𝐴 (𝑎2, 𝛽)}.

Proof of Step 3. It follows from the same arguments that we use in Steps 1 and 2.

Proof of Corollary 4
Let 𝑋 ⊆ 𝐵o and assume that for all 𝛽 ∈ 𝑋 , incentives to randomize are strict for
player 𝐴. By Corollary 2, the unique optimal mixed action 𝛼 of player 𝐴 satisfies
𝑀𝛼 = W𝐴. This implies that 𝛼 satisfies E𝛽 [𝛼, 𝑣𝐴] = E𝛽 [𝛼, 𝑤𝐴]. Solving this
equation for 𝛼 yields the desired result.

Proof of Corollary 5
Let W𝐴 = {𝑣1, 𝑣2} and W𝐵 = {𝑤1, 𝑤2}. Assume that (𝛼, 𝛽) is a mixed Nash
equilibrium of 𝐺.

Step 1. If (𝛼, 𝛽) is strict, then it is efficient.

Given that (𝛼, 𝛽) is a strict mixed Nash equilibrium, given the correct conjectures,
incentives to randomize are strict for both players, and actions 𝛼 and 𝛽 are optimal.
By Corollary 2, 𝛼 and 𝛽 are the unique optimal actions and therefore they are
efficient. Consequently, the equilibrium (𝛼, 𝛽) is efficient.

Step 2. If (𝛼, 𝛽) is efficient, then it is neither weak nor partially strict provided that
�̄�

o and �̄�o are non-empty.

Suppose that (𝛼, 𝛽) is a weak or partially strict mixed Nash equilibrium. We show
that (𝛼, 𝛽) is not efficient. Given that (𝛼, 𝛽) is not a strict equilibrium, there exists
one player for which randomization is not strictly beneficial in equilibrium. Without
loss of generality, assume that this is true for player 𝐴. That is, given the correct
conjecture 𝛽, we have

𝑢𝐴 (𝛼, 𝛽) = max{𝑢𝐴 (𝑎1, 𝛽), 𝑢𝐴 (𝑎2, 𝛽)}.
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By Corollary 3, it must be that either 𝛽 = min(�̄�) or 𝛽 = max(�̄�). Given that �̄�o is
non-empty, these two quantities are distinct. In both cases, it must be the case that
one utility in W𝐴 is indifferent between the pure actions 𝑎1 and 𝑎2, while the other
utility in W𝐴 strictly prefers one of the two actions. Consequently, one of the two
pure actions Pareto dominates action 𝛼 in W𝐴, proving that action 𝛼 is not efficient.
Therefore, also the mixed Nash equilibrium (𝛼, 𝛽) is not efficient.


	Acknowledgements
	Abstract
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Robust Estimation of Risk Preferences
	Introduction
	Experimental Design
	Main Experimental Findings
	Empirical Framework
	Out-of-Sample Predictions: EU core Analysis
	Discussion

	What Drives Violations of the Independence Axiom? The Role of Decision Confidence
	Introduction
	Theoretical Framework
	Experimental Design
	Results
	Discussion

	Deliberate Randomization under Risk
	Introduction
	Model
	Optimal Actions
	Uniqueness and Efficiency
	Deliberate Randomization with Two Utilities
	Games with Convex Preferences
	Conclusions

	Appendix to Chapter 1
	Descriptive Analysis
	Econometric Procedures
	Estimation Results
	Out-of-Sample Analysis: Additional Results
	Instructions

	Appendix to Chapter 2
	FOSD Questions
	Demographic Summary
	Confidence and Indecisiveness
	Indecisiveness and Risk Aversion
	Response Times
	Instructions

	Appendix to Chapter 3
	Proofs


