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ABSTRACT 

Over the past decade, the advancement of ‘omics’ technologies has ushered in a new era for 
the life sciences. Given the high-throughput nature of omics technologies, this era is 
characterized by unique computational challenges pertaining to data size and dimensionality, 
and technical and biological noise. Concurrently, it offers opportunities, as global, 
untargeted, and parallel measurement of large amounts of information often captures 
unexpected insights.  

This thesis describes challenges inherent to the omics era of life sciences, particularly 
highlighting the increasing importance of merging expertise in biology and computer 
science. It describes the development of multiple software tools designed to address several 
of these challenges, which were immediately adopted and widely implemented in 
transcriptomics and proteomics research. Additionally, it contains three chapters focused on 
unraveling previously unquantifiable information, including the interpretation of sequencing 
data from organisms with low-quality reference genome assemblies and workflows for 
identifying novel viruses using single-cell RNA sequencing data already massively 
generated in research, healthcare, and agriculture. 
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1 
C h a p t e r  1  

INTRODUCTION – PART I 

From Beaker to (Peta)Byte 

Over the past decade, the ‘omics’ era of the life sciences has led to a significant increase in 
the volume and complexity of biological data. The Sequence Read Archive, which stores 
raw sequencing data and alignment information, has grown to >30 petabases since its 
establishment in 20121. In 1996, the NCBI GenBank, which stores annotated DNA 
sequences, was sent to subscriber’s homes in the format of 7 CDs (Figure 1.1). Today, 
GenBank contains 2.5 billion sequences, and one would require 5,703 CDs (assuming a 
capacity of 700 MB per CD) to follow GenBank’s original distribution model (the GenBank 
Release 258.0 (https://www.ncbi.nlm.nih.gov/genbank/release/258) requires roughly 3,992 
GB of disk space). To store the Sequence Read Archive on CDs, one would require upwards 
of 42,857,143 CDs. To tackle the increasing size, as well as the heterogenicity and noisiness 
of omics data, a myriad of software programs continues to be released daily.  

As a wet-lab geneticist who learned how to code and switched to the field of computational 
biology during her Ph.D., I noticed that there were often overlooked yet crucial factors 
beyond how well a software program performs its designated function that contribute heavily 
to whether a program will be widely implemented. I incorporated these into the software 
programs described in this thesis, which were instantly adopted and became a worldwide 
standard in the analysis of transcriptomic and proteomic data analysis (Figure 1.2). Here, I 
will describe and quantify some of these factors. 

I will use the software tools documented in the 
scRNA-tools database2 (https://www.scrna-
tools.org/) to model the current state of software 
released to support omics research. Single-cell RNA 
sequencing (scRNA-seq) is a method to measure all 
RNA molecules in thousands of individual cells in 
parallel while retaining single-cell resolution, and it is 
one of the most widely used omics technologies that 
emerged over the past decade. According to the 
scRNA-tools database, 1,706 software programs 
were released between September 2016 and January 
2024 for the analysis of scRNA-seq data – 
approximately one tool every second day. 107 of 
these tools were not published. To get an estimate of 
the extent to which the tools were used in practice, 
Figure 1.3 shows the number of citations of tools that 

Figure 1.1 Photograph of the CDs 
containing release 97.0 of the NCBI 
GenBank database as distributed to 
subscribers in 1996. Courtesy of Prof. 
Lior Pachter. 

https://www.ncbi.nlm.nih.gov/genbank/release/258/
https://www.scrna-tools.org/
https://www.scrna-tools.org/
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were published between September 2016 and December 2022 (to allow at least one year to 
gather citations). I note that this method will be biased towards tools that have had more time 
to accumulate citations. Only 35 (3 %) of published tools received over 1,000 citations, 
suggesting extensive use, with the most highly cited tools STAR3, Seurat4, Monocle5, 
Salmon6, and kallisto7 having been cited 32,005, 29,316, 7,912, 7,030, and 7,011 times, 
respectively. 490 (46 %) of published tools received less than 20 citations. This indicates that 
almost half of peer-reviewed software programs published for analyzing scRNA-seq data are 
barely used in practice. To understand the difference between tools that end up being widely 
used and those that don’t, we first need to understand the user base. 

Omics data is highly complex, both in terms of the computational requirements of its analysis 
and the underlying biological implications. To rigorously analyze and interpret high-
dimensional omics data, extensive knowledge in both computer science and biology is 
required. However, only recently have undergraduate and graduate biology programs begun 
to include advanced programming classes in their curriculums, and many biology students 
still begin their Ph.D. and PostDoc positions with no to minimal coding skills8,9. Hence, 
widely used omics tools need to accommodate novice programmers. From my experience as 
I evolved from novice programmer to writing software for novice and advanced 
bioinformaticians, there are three major obstacles an omics software’s user interface needs 
to overcome for successful, widespread, and long-lived implementation: installation, 
documentation, and updates. 

Installation 
The first hurdle when using a new software program is the installation. There are several 
program repositories and associated package managers that greatly simplify the installation 
of software programs. For Python programs, the most widely used program repositories for 
omics software are PyPI and Bioconda. Both allow the installation of software in a single 
line of code, greatly simplifying the process compared to requiring users to run a container 

Figure 1.2 The number of active users of the gget website (https://pachterlab.github.io/gget/) by country 
between November 2023 and February 2024. The code to reproduce this figure can be found here: 
https://github.com/lauraluebbert/lauraluebbert. 

https://pachterlab.github.io/gget/
https://github.com/lauraluebbert/lauraluebbert
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application, e.g., through Docker, or compile the software from source code. Even without 
testing whether the installation is functional, highly cited Python tools are more likely to have 
available PyPI and/or Bioconda installations (Figure 1.4A). 

Documentation 
Next, the user needs to learn how to use the newly installed software program. Ideally, 
software documentation is provided in the form of Python/R function descriptions, shell 
script help arguments, a GitHub README and/or wiki, and/or a separate documentation 
website. All 35 published tools with over 1,000 citations in the scRNA-tools database 
provide an extensive, publicly available manual containing software documentation, 
installation guidelines, quick start guides, and tutorials (Table 1.1). Except for the programs 
BackSPIN, CellChat, DoubletFinder, Scrublet, and MAGIC, for which documentation and 
tutorials are included in the GitHub README, these manuals are hosted on a website 
separate from the GitHub code repository. The Bioconductor project  
has set a commendable example by requiring contributors to adhere to a minimum standard 
of guidelines outlining, amongst others, package documentation 
(contributions.bioconductor.org). The accessibility of the documentation can be further 
increased by following Americans with Disabilities Act (ADA) guidelines for web content, 
as well as providing translations to different languages. Based on Google Analytics tracking 
of the documentation website for the software tool gget10 (https://pachterlab.github.io/gget/), 
further described in Chapter 2, the number of Spanish-speaking users increased by 35 % 

Figure 1.3 The number of citations for software tools used in the analysis of scRNA-seq data published 
between September 2016 and December 2022 according to the scRNA-tools database (https://www.scrna-
tools.org/). The top plot shows the histogram for all published tools. The first bin in the top plot consists of 
tools with 0-100 citations and is broken down further in the bottom plot. The code to reproduce this figure 
can be found here: https://github.com/lauraluebbert/PhD_thesis/blob/main/Chapter1_Introduction.ipynb. 

https://contributions.bioconductor.org/
https://pachterlab.github.io/gget/
https://www.scrna-tools.org/
https://www.scrna-tools.org/
https://github.com/lauraluebbert/PhD_thesis/blob/main/Chapter1_Introduction.ipynb
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(from an average 3.1 to 4.2 new users per month) after the gget documentation was also made 
available in Spanish. 

Updates 
With the pressure to produce and publish in academic research, it may be tempting to move 
on to the next project after the release of a software program and forget all about the latter. 
However, as omics methods evolve, data structures and package dependencies are likely to 
be updated or changed, and programs must also evolve with these updates to provide 
continued usability. Figure 1.4B shows the fraction of tools in the scRNA-tools database 
released between September 2016 and December 2022, for which the latest GitHub commit 
was at least six months after the initial release of the software tool. Using the latest GitHub 
commit as an indicator for a software update, 91.4 % of highly cited (>500 citations) software 
programs were updated after the initial release compared to 47.4 % of less cited (0-10 
citations) programs (Figure 1.4B).  

The following subchapter lists specific guidelines for user-friendly omics technologies based 
on the factors discussed here. User-friendliness is especially important when catering to 
novice programmers, including a large fraction of the biologists generating the omics data 
these software tools are designed to analyze. However, making it easier for beginners makes 
it easier for everyone, which increases the chances of the software being implemented. 

Figure 1.4 A Fraction of published Python software tools in the scRNA-tools database (https://www.scrna-
tools.org/) with available installations from PyPI or Bioconda binned by number of citations. B Fraction of 
software tools in the scRNA-tools database (https://www.scrna-tools.org/) released between September 2016 
and December 2022 for which the last GitHub commit was at least 6 months after the initial software release 
binned by number of citations. The code to reproduce these figures can be found here: 
https://github.com/lauraluebbert/PhD_thesis/blob/main/Chapter1_Introduction.ipynb. 

A B 

https://www.scrna-tools.org/
https://www.scrna-tools.org/
https://www.scrna-tools.org/
https://github.com/lauraluebbert/PhD_thesis/blob/main/Chapter1_Introduction.ipynb
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The guidelines described in the following subchapter are intended to complement widely 
accepted best practices in software engineering, such as code quality control, testing, 
debugging, version control, formatting, and documentation, including comments and 
meaningful commit messages. 

All software described in this thesis, though varying in purpose, followed these guidelines 
and was rapidly adopted by the bioinformatics community. Where applicable, I also adhered 
to these guidelines when releasing auxiliary code and workflows used for downstream 
analyses (Chapters 3-5), which resulted in the added benefit of maximizing reproducibility.  
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Name Platform Citations Website/ 
Manual Manual type Tutorials/ 

Vignettes 
STAR C/C++ 32,005 Link Separate website Yes 
Seurat R 29,316 Link Separate website Yes 

Monocle R 7,912 Link Bioconductor standard Yes 
salmon C++ 7,030 Link Separate website Yes 
kallisto C/C++ 7,011 Link Separate website Yes 
Scanpy Python 4,481 Link Separate website Yes 

CellRanger Python/R 4,084 Link Separate website Yes 
inferCNV R 3,329 Link GitHub Wiki Yes 
SCENIC R/Python 3,328 Link Separate website Yes 
Harmony R/C++ 3,241 Link Separate website Yes 

CellPhoneDB Python 3,103 Link Separate website Yes 
AUCell R 2,878 Link Separate website Yes 

BackSPIN Python 2,501 Link GitHub README Yes 
velocyto Python/R 2,497 Link Separate website Yes 

scran R 2,329 Link Bioconductor standard Yes 
SingleR R 2,129 Link Bioconductor standard Yes 

scvi-tools Python 2,086 Link Separate website Yes 
CellChat R/C++ 1,948 Link GitHub README Yes 
MAST R 1,918 Link Bioconductor standard Yes 

Rsubread R 1,616 Link Bioconductor standard Yes 
DoubletFinder R 1,533 Link GitHub README Yes 

batchelor R 1,513 Link Bioconductor standard Yes 
slingshot R 1,470 Link Bioconductor standard Yes 
scVelo Python 1,454 Link Separate website Yes 
SCDE R 1,412 Link Separate website Yes 

MiXCR Java/Kotlin 1,371 Link Separate website Yes 
UMI-tools Python 1,253 Link Separate website Yes 
Scrublet Python 1,214 Link GitHub README Yes 
Scater R 1,212 Link Bioconductor standard Yes 
scuttle R/C++ 1,212 Link Bioconductor standard Yes 

MAGIC Python/R/MATLAB 1,147 Link GitHub README Yes 
SC3 R 1,128 Link Bioconductor standard Yes 

MIMOSCA Python 1,090 Link GitHub README Yes 
dynverse R 1,036 Link Separate website Yes 

bseqsc R 1,007 Link 
(broken) Separate website Yes 

Table 1.1 The 35 most highly cited (>1000 citations) software tools for the analysis of scRNA-seq data 
published between September 2016 and December 2022 according to the scRNA-tools database 
(https://www.scrna-tools.org/). 

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf
https://satijalab.org/seurat/
https://bioconductor.org/packages/release/bioc/manuals/monocle/man/monocle.pdf
https://salmon.readthedocs.io/en/latest/
https://www.kallistobus.tools/
https://scanpy.readthedocs.io/en/stable/
https://www.10xgenomics.com/support/software/cell-ranger/latest
https://github.com/broadinstitute/inferCNV/wiki
https://scenicplus.readthedocs.io/en/latest/
https://portals.broadinstitute.org/harmony/
https://cellphonedb.readthedocs.io/en/latest/
https://bioconductor.org/packages/release/bioc/vignettes/AUCell/inst/doc/AUCell.html
https://github.com/linnarsson-lab/BackSPIN
https://velocyto.org/velocyto.py/
https://bioconductor.org/packages/release/bioc/manuals/scran/man/scran.pdf
https://bioconductor.org/packages/release/bioc/manuals/SingleR/man/SingleR.pdf
https://scvi-tools.org/
https://github.com/jinworks/CellChat
https://bioconductor.org/packages/release/bioc/manuals/MAST/man/MAST.pdf
https://bioconductor.org/packages/release/bioc/manuals/Rsubread/man/Rsubread.pdf
https://github.com/chris-mcginnis-ucsf/DoubletFinder?tab=readme-ov-file
https://bioconductor.org/packages/devel/bioc/manuals/batchelor/man/batchelor.pdf
https://www.bioconductor.org/packages/release/bioc/manuals/slingshot/man/slingshot.pdf
https://scvelo.readthedocs.io/en/stable/
https://hms-dbmi.github.io/scde/index.html
https://mixcr.com/
https://umi-tools.readthedocs.io/en/latest/
https://github.com/AllonKleinLab/scrublet?tab=readme-ov-file
https://bioconductor.org/packages/devel/bioc/manuals/scater/man/scater.pdf
https://bioconductor.org/packages/devel/bioc/manuals/scuttle/man/scuttle.pdf
https://github.com/KrishnaswamyLab/MAGIC
https://bioconductor.org/packages/release/bioc/manuals/SC3/man/SC3.pdf
https://github.com/asncd/MIMOSCA
https://dynverse.org/
http://shenorrlab.github.io/bseqsc/reference/index.html
https://www.scrna-tools.org/
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INTRODUCTION – PART II 

Guidelines for User-Friendly Omics Software 

The below is a checklist of simple yet effective guidelines for user-friendly omics software 
curated based on the analyses performed in part I of the introduction: 

• Devise a memorable and distinctive name for the tool that is compatible with Google 
and GitHub searches (good example: kallisto, poor example: bio) 

• Tip: For increased searchability on GitHub, include GitHub keywords and a 
short “About” description 

• If possible, the computational resources (e.g., memory and disk space) to run the 
software should not exceed those of a standard laptop 

• If this is not feasible, consider supplying a simplified version of the software 
(for example, the widely used gget alphafold module (see Chapter 2) allows 
users to run a simplified version of AlphaFold2 without requiring 3 TB of disk 
space and a modern NVIDIA GPU) 

• Provide users with a functional installation (including package dependencies) using 
a single line of code, ideally through the widely used package managers PyPI, 
Bioconda, and/or Bioconductor (e.g., “pip install gget”) 

• Keep package dependencies to a minimum (ideally limited to standard libraries or 
widely used third-party libraries, e.g., numpy), and specify dependency versions if 
necessary (avoid this or provide version ranges to avoid package version conflicts) 

• Provide clear and coherent documentation through various media:  

• Provide function descriptions in Python/R/etc. 

• Add help (-h / --help) methods to shell scripts 

• Write a GitHub README that includes the documentation or links to the 
documentation 

• Write extensive documentation that includes installation instructions and 
ideally a “quick start” or “getting started” guide, and describe the function and 
the data type (e.g., int) of each argument with input examples 
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• Write tutorials spanning different use cases of the software, ideally in the form 

of immediately executable Google Colab notebooks, and link to them in the 
documentation 

• To increase accessibility, use alt text for images and provide the documentation 
in different languages, e.g., English and Spanish  

• Keep required arguments to a minimum: The simplest use case of the software tool 
should require as little user input as possible to simplify the process of getting started 

• Write extensive unit tests and use GitHub Actions to automatically run the tests when 
changes to the code are committed AND in specified time intervals, e.g., once a week 

• Include a badge in the GitHub README and/or the documentation to inform 
users of the current test status (fail/pass) 

• Maintain the software tool: 

• Maintain backward compatibility when implementing changes  

• Document the changes for each new release in the software documentation 

• Update the software when the unit tests break (Tip: Set up E-mail notifications 
through GitHub for failing unit tests) 

• Respond to GitHub issues raised by users (I do not recommend the use of bots 
that automatically close “stale” GitHub issues) 

• Update dependencies to the most recent versions as updates are released 

• Facilitate and promote user feedback and contribution: 

• Set up GitHub issue templates to facilitate communication between users and 
software developers 

• Include contributing guidelines in the software documentation, including a 
detailed checklist for contributors (examples: 
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-
contributions/setting-guidelines-for-repository-contributors, 
https://pachterlab.github.io/gget/en/contributing.html) 

 

https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://pachterlab.github.io/gget/en/contributing.html
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C h a p t e r  2  

SOFTWARE FOR BIOLOGISTS BY BIOLOGISTS - PART I 

Efficient Querying of Genomic Reference Databases with gget 

Preamble 
This chapter describes the development of the software program gget, which, since its 
release in May 2022, has been downloaded 97,000 times. gget is a collection of separate, 
but interoperable modules and has grown to 16 modules to date, including several modules 
contributed by the gget community. Beyond tackling endemic problems faced by the 
bioinformatics community accurately and efficiently, the success of gget can be attributed 
to the factors and guidelines described in the introduction. The rationale behind gget as 
described in the summary and introduction below is magnified when working with data 
from non-model organisms, as further described in Chapter 4 Part I.  

Laura Luebbert, Lior Pachter (2023). Efficient querying of genomic reference databases 
with gget. Bioinformatics. https://doi.org/10.1093/bioinformatics/btac836 

Summary 
A recurring challenge in interpreting single-cell RNA-seq data is the assessment of results 
in the context of existing genomic databases. Currently, there is no tool implementing 
automated, easy programmatic access to information stored in a diverse collection of large, 
public genomic databases. gget is a free and open-source command-line tool and Python 
package that enables efficient querying of genomic databases. gget consists of a collection 
of separate but interoperable modules, each designed to facilitate one type of database 
querying required for single-cell RNA-seq data analysis in a single line of code. The 
manual and source code are available at https://github.com/pachterlab/gget. 

Introduction 
The increasingly common use of single-cell RNA-seq to provide transcriptomic 
characterization of cells is dependent on quick and easy access to reference information 
stored in large genomic databases such as Ensembl, NCBI, and UniProt (Cunningham et 
al., 2022; NCBI Resource Coordinators, 2013; UniProt Consortium, 2021). A majority of 
researchers currently access genomic databases to annotate and functionally characterize 
putative marker genes through web access (Stalker et al., 2004; Birney et al., 2004). This 
process is time-consuming and error-prone, as it requires manually copying and pasting 
data, such as gene IDs.  

To facilitate and automate functional annotation for single-cell RNA-seq analyses, we 
developed gget: a free and open-source software package that rapidly queries information 
stored in several large, public databases directly from a command line or Python 
environment. gget consists of a collection of tools designed to perform the database 
querying required for single-cell RNA-seq data analysis in a single line of code. In addition 

https://doi.org/10.1093/bioinformatics/btac836
https://github.com/pachterlab/gget
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to providing access to genomic databases, gget can also leverage sequence analysis tools, 
such as BLAST (Altschul et al., 1990, 1997), thus simplifying complex annotation 
workflows. 

While there are some web-based Application Programming Interface (API) data mining 
systems, such as BioMart (Durinck et al., 2005; Kasprzyk et al., 2004), we identified 
several limitations in such tools, including limits to query types and to utilizing databases 
in tandem. Moreover, large-scale single-cell RNA-seq analysis is better served by 
command line or packaged APIs that can fetch data directly into programming 
environments. 

The gget modules combine MySQL (Oracle Corporation, 1995), API, and web data 
extraction queries to rapidly and reliably request comprehensive information from different 
databases (Figure 2.1). This approach allows gget to perform tasks unsupported by existing 
tools built around standard API queries (de Ruiter, 2016). For instance, searching for genes 
and transcripts using free-form search terms. Each gget tool requires minimal arguments, 
provides clear output, and operates from both the command line and Python environments, 
such as JupyterLab, maximizing ease of use and accommodating novice programmers. 

Figure 2.1 Overview of the nine gget tools and the public databases they access. One simple command 
line ($) example and its Python (>>>) equivalent are shown for each tool with the corresponding output. 
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Description  
gget consists of nine tools: 

● gget ref: Fetch File Transfer Protocols (FTPs) and metadata for reference genomes 
or annotations from Ensembl by species. 

● gget search: Fetch genes or transcripts from Ensembl using free-form search terms. 
● gget info: Fetch extensive gene or transcript metadata from Ensembl, UniProt, and 

NCBI by Ensembl ID. 
● gget seq: Fetch nucleotide or amino acid sequences of genes or transcripts from 

Ensembl or UniProt by Ensembl ID. 
● gget blast: BLAST (Altschul et al., 1990, 1997) a nucleotide or amino acid 

sequence to any BLAST database. 
● gget blat: Find the genomic location of a nucleotide or amino acid sequence using 

BLAT (James Kent, 2002). 
● gget muscle: Align multiple nucleotide or amino acid sequences to each other using 

the Muscle5 algorithm (Edgar, 2021). 
● gget enrichr: Perform an enrichment analysis on a list of genes using Enrichr (Chen 

et al., 2013; Xie et al., 2021; Kuleshov et al., 2016) and an extensive collection of 
gene set libraries, including KEGG (Kanehisa and Goto, 2000; Kanehisa, 2019; 
Kanehisa et al., 2021) and Gene Ontology (Ashburner et al., 2000; Gene Ontology 
Consortium, 2021). 

● gget archs4: Find the most correlated genes to a gene of interest or find the gene's 
tissue expression atlas using ARCHS4 (Lachmann et al., 2018). 

Each gget tool accesses data stored in one or several public databases, as depicted in Figure 
2.1. gget fetches the requested data in real-time, guaranteeing that each query will return 
the latest information. One exception is gget muscle, which locally compiles the Muscle5 
algorithm (Edgar, 2021) and therefore does not require an internet connection. 
gget info combines information from Ensembl, NCBI, and UniProt (Cunningham et al., 
2022; NCBI Resource Coordinators, 2013; UniProt Consortium, 2021) to provide the user 
with a comprehensive executive summary of the available information about a gene or 
transcript. This also enables users to assert whether data from different sources are 
consistent. 

By accessing the NCBI server (NCBI Resource Coordinators, 2013) through HTTP 
requests, gget blast does not require the download of a reference BLAST database, as is 
the case with existing BLAST tools (Buchfink et al., 2021; Camacho et al., 2009). The 
whole self-contained gget package is approximately 3 MB after installation. 

The package dependencies were carefully chosen and kept to a minimum. gget depends on 
the HTML parser beautifulsoup4 (Richardson, 2022), the Python MySQL-connector 
(Oracle, 2022), and the HTTP library requests (Reitz, 2022). All of these are well-
established packages for server interaction in Python. gget has been tested on Linux/Unix, 
Mac OS (Darwin), and Windows.  
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Usage and documentation 
gget can be installed from the command line by running ‘pip install gget’. Figure 2.1 
depicts one use case for each gget tool with the corresponding output. 

Each gget tool features an extensive manual available as function documentation in a 
Python environment or as standard output using the help flag [-h] in the command line. 
The complete manual with examples can be viewed in the gget repository, available at 
https://github.com/pachterlab/gget. A separate gget examples repository is accessible at 
https://github.com/pachterlab/gget_examples and includes exemplary workflows 
immediately executable in Google Colaboratory (Bisong, 2019). 

Discussion 
Our open-source Python and command-line program gget enables efficient and easy 
programmatic access to information stored in a diverse collection of large, public genomic 
databases. The gget modules were motivated by experience with tedious single-cell RNA-
seq data analysis tasks (Supplementary Figure 2.1), however, we anticipate their utility for 
a wide range of bioinformatics tasks.   

Acknowledgments 
We thank Kyung Hoi (Joseph) Min for advice on the command-line interface, Matteo 
Guareschi for advice on Windows operability, and A. Sina Booeshaghi, Kristján Eldjárn 
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Supplementary Figure 2.1 gget performs the database querying underlying a standard single-cell RNA-seq 
data analysis workflow. The workflow and all of the figures are reproducible starting with raw reads using 
immediately executable Google Colaboratory notebooks that can be run for free and are accessible at 
https://github.com/pachterlab/gget_examples/tree/main/scRNAseq_workflow.   

https://github.com/pachterlab/gget_examples/tree/main/scRNAseq_workflow
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SOFTWARE FOR BIOLOGISTS BY BIOLOGISTS - PART II 

Fast and Scalable Querying of Eukaryotic Linear Motifs with gget elm 

Preamble 
This subchapter describes the development of gget elm, a recently published tool for high-
throughput identification of protein-protein interaction motifs in amino acid sequences. 
The gget elm module exemplifies how the gget project provides a platform and backbone 
for the rapid development of novel modules that solve widely faced challenges in 
computational biology spanning various fields, in this case interactomics, proteomics, and 
molecular cell biology. 

Laura Luebbert, Chi Hoang, Manjeet Kumar, Lior Pachter (2023). Fast and scalable 
querying of eukaryotic linear motifs with gget elm. Bioinformatics. 
https://doi.org/10.1093/bioinformatics/btae095 

Summary 
Eukaryotic linear motifs (ELMs), or Short Linear Motifs (SLiMs), are protein interaction 
modules that play an essential role in cellular processes and signaling networks and are 
often involved in diseases like cancer. The ELM database is a collection of manually 
curated motif knowledge from scientific papers. It has become a crucial resource for 
investigating motif biology and recognizing candidate ELMs in novel amino acid 
sequences. Users can search amino acid sequences or UniProt Accessions on the ELM 
resource web interface. However, as with many web services, there are limitations in the 
swift processing of large-scale queries through the ELM web interface or API calls, and, 
therefore, integration into protein function analysis pipelines is limited.  

To allow swift, large-scale motif analyses on protein sequences using ELMs curated in the 
ELM database, we have extended the gget suite of Python and command line tools with a 
new module, gget elm, which does not rely on the ELM server for efficiently finding 
candidate ELMs in user-submitted amino acid sequences and UniProt Accessions. gget elm 
increases accessibility to the information stored in the ELM database and allows scalable 
searches for motif-mediated interaction sites in the amino acid sequences. 

The manual and source code are available at https://github.com/pachterlab/gget.  

Introduction 
Eukaryotic linear motifs (ELMs), also known as Short Linear Motifs (SLiMs), are short 
stretches of contiguous amino acids, typically 3 to 15 residues in length, encoding protein-
protein interaction sites. They are mainly located in the intrinsically disordered regions 
(IDRs) of proteins and are typically found to be highly conserved in orthologous proteins. 
These modules can encode multiple functionalities, which include modification, 
degradation, docking, targeting, and binding sites for protein domains. As such, ELM-
mediated interactions play an essential role in cellular processes and signaling networks, 
including the regulation of homeostasis, apoptosis, and differentiation (Van Roey et al., 

https://doi.org/10.1093/bioinformatics/btae095
https://github.com/pachterlab/gget
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2014; Davey et al., 2012). Pathogens like 
SARS-CoV-2 mimic ELMs to gain entry 
into the cell (Kruse et al., 2021; Mészáros et 
al., 2021), and mutations in sequences 
containing ELMs contribute to diseases like 
cancer (Uyar et al., 2014; Mészáros et al., 
2017). As a result, ELM-mediated protein 
interactions are potential targets for 
therapeutic intervention (Mészáros et al., 
2021; Simonetti et al., 2023; Fasano et al., 
2022).  

The ELM resource has two main 
components: an exploratory candidate motif 
search web interface and a database with 
manually curated linear motif knowledge, 
including information on binding partners 
and recognition features along with 
associated biological context. The database 
information is derived from the scientific 
literature by expert ELM curators who 
analyze motif-containing sequences to 
capture key insights, such as the residues 
involved in the interaction, their 
evolutionary conservation, local sequence 
context in flanking regions, features of the 
binding site on the interacting partner, and 
other motif-related insights. In addition, the curation process captures relevant information 
on the contextual knowledge, which includes cellular function, location, and taxonomic 
distribution of motif-containing proteins. Since the database was first created (Puntervoll 
et al., 2003; Dinkel et al., 2011), it has been continuously updated and has been widely 
used for both biomedical studies as well as interactomics, proteomics, and molecular 
research studies (Kumar et al., 2020, 2022; Gouw et al., 2018; Dinkel et al., 2015; 
Carberry, 2008; Kumar et al., 2023, Benz et al., 2022; Gogl et al., 2022; Zhang et al., 2012; 
Reys and Labesse, 2022). Users can search amino acid sequences or UniProt Accessions 
on the ELM database web interface (http://elm.eu.org/) or by submitting an API request 
through the ELM server. However, these methods have processing limitations when 
performing large-scale queries, and many requests being submitted simultaneously can 
lead to server overload and extended wait times.  

To expedite the investigation of ELMs, we have extended the gget suite of Python and 
command line tools (Luebbert and Pachter, 2022) with a new module which efficiently 
finds ELMs in user-submitted amino acid sequences or UniProt Accessions: gget elm. gget 
elm increases accessibility to the information stored in the ELM database and allows 
scalable searches for ELMs in amino acid sequences. The command line interface and 

Figure 2.2 Runtime comparison for 50 amino acid 
sequences and 50 UniProt Accessions submitted to 
gget elm and the ELM server API. For the ELM 
server API, a 3-minute wait time was observed 
between each request to comply with the server 
rules. These wait times were not taken into account 
when measuring the runtimes. The black dot denotes 
the mean. The code used to generate this figure can 
be found here: http://tinyurl.com/bdc6mhm3. 

http://elm.eu.org/
http://tinyurl.com/bdc6mhm3
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optional JSON formatted output allow swift integration into existing protein analysis 
workflows. 

Description 
Users can submit an amino acid sequence or a UniProt Accession to gget elm. gget elm 
captures both homology-based matches corresponding to curated motifs in orthologous 
proteins in the ELM database and POSIX regular expression (regex) matches 
corresponding to candidate motifs in the provided sequence. Hence, gget elm returns two 
separate data frames (or JSON formatted dictionaries for use from the command line) 
containing the respective motif matches and extensive information about each motif. 
Figure 2.3 provides an overview of the gget elm back-end. 

Figure 2.3 Schematic overview of the gget elm back-end. 
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After installing gget ($ pip install gget), the user downloads the ELM database reference 
information using a specialized module, gget setup, with the command $ gget setup elm. 
This command may be repeated at any time to update the local copy of the ELM database, 
which currently requires a total of 3 MB of disk space. The files are saved in the gget 
installation directory. If the user submits a UniProt Accession to gget elm and the protein 
is not present in the ELM database, its amino acid sequence is fetched from UniProt 
(UniProt Consortium, 2021). Using the DIAMOND alignment algorithm (Buchfink et al., 
2021), the sequence is compared to the motif-containing proteins in the ELM database. 
gget elm returns all motifs associated with orthologous proteins, including information 
about each orthologous protein, and extensive details on each motif. gget elm also returns 
alignment scores for each DIAMOND hit, including identity and coverage percentages and 
boolean output on whether the orthologous motif is contained within the overlapping 
region between the query and subject sequence. To compute the regex data frame, gget elm 
considers all regex expressions from the ELM database and scans them against the 
provided amino acid sequence to report all matches. The data from the ELM database is 
combined to return relevant information about each matched interaction motif, including 
motif description, type, sequence, location in the ortholog and query sequence, and host 
taxonomy, for both data frames. How different types of user input traverse the gget elm 
back-end is explored in this Google Colab notebook: https://tinyurl.com/4bd5h8hr. 

gget elm builds on existing gget modules, such as gget seq to fetch amino acid sequences 
from UniProt, and a new module developed in parallel with gget elm: gget diamond, which 
aligns sequences using the DIAMOND algorithm (Buchfink et al., 2021) and can be used 
independently from gget elm. 

While gget elm results are similar to results obtained through the ELM web interface, they 
may not be identical due to differences underlying the computations. For example, gget 
elm uses DIAMOND for fast and sensitive local alignment of the amino acid sequences, 
whereas the ELM web interface has its own suite of back-end tools and deliberately limits 
the number of proteins in the output to be manageable for the web server (Chica et al., 
2008). In a comparison between the ‘regex’ data frame returned by gget elm and the results 
obtained through the ELM server API for 50 amino acid sequences and 50 UniProt 
Accessions, gget elm returned results 8x faster for amino acid sequences and 3.5x faster 
for UniProt Accessions on average (Figure 2.2). For the ELM server API, runtimes are 
further increased significantly by a mandatory 1-minute wait time between amino acid 
sequence requests, and a 3-minute wait time between UniProt Accession requests to 
comply with the server usage recommendations and avoid 429 errors. The results returned 
by both methods matched 100% across all tested amino acid sequences and UniProt 
Accessions. The code to reproduce this analysis can be found here: 
http://tinyurl.com/bdc6mhm3. 

Usage and Documentation 
Akin to all modules contained within gget (Luebbert and Pachter, 2022), gget elm features 
an extensive manual available as function documentation in a Python environment or as 
standard output using the help flag [-h] in the command line. The accuracy of the returned 

https://tinyurl.com/4bd5h8hr
https://tinyurl.com/4bd5h8hr
https://tinyurl.com/4bd5h8hr
http://tinyurl.com/bdc6mhm3
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results is maintained through extensive unit tests, which automatically run on a bi-
weekly basis. The complete manual with examples can be viewed on the gget website in 
English (https://pachterlab.github.io/gget/en/elm) and in Spanish 
(https://pachterlab.github.io/gget/es/elm). 

gget can be installed from PyPI using the command line with the following command: 
$ pip install gget 
Alternatively, gget can be installed using Anaconda: 
$ conda install -c bioconda gget 

Example gget elm commands to find ELMs in a protein from its amino acid sequence or 
UniProt Accession look as follows: 
Command line (JSON formatted results are saved in a folder named ‘results’): 
$ gget setup elm                       # Downloads/updates local ELM database 
$ gget elm -o results LIAQSIGQASFV 
$ gget elm -o results --uniprot Q02410 

Python (two data frames are returned): 
>>> gget.setup(“elm”)             # Downloads/updates local ELM database 
>>> ortholog_df, regex_df = gget.elm(“LIAQSIGQASFV”) 
>>> ortholog_df, regex_df = gget.elm(“Q02410”, uniprot=True) 

The [--threads][-t] (Python: “threads”) argument can be used to multithread the sequence 
alignment for increased speed for large-scale computations. The following tutorial 
demonstrates how gget elm can be combined with the IUPred3 API (Erdős et al., 2021) to 
filter putative ELMs located within intrinsically disordered regions and thereby limiting 
false positive matches: http://tinyurl.com/mw5s5yf3.  

Proof of concept: gget elm reports the loss of a protein interaction motif involved in 
DNA repair in a carcinogenic BRCA2 mutation 
BRCA2 (BReast CAncer gene 2) plays an essential role in DNA repair through 
homologous recombination, and heterozygous germline defects in BRCA2 increase the 
risk of breast cancer. The promotion of homologous recombination by BRCA2 requires its 
association with the partner and localizer of BRCA2 (PALB2) (Hanenberg and 
Andreassen, 2018). This important protein-protein interaction occurs at the site of a linear 
motif (ELM: LIG_PALB2_WD40_1, regex: [....WF..L]), which can be recognized by gget 
elm. We analyzed the wildtype BRCA2 sequence and a mutant BRCA2 sequence with a 
single amino acid substitution (W31C), previously described as carcinogenic due to a loss 
of interaction with PALB2 (Oliver et al., 2009). gget elm accurately reports the loss of the 
PALB2 interaction motif in the mutant sequence compared to the wildtype sequence: 
https://tinyurl.com/yc5r2b5m. 

Discussion 
We have shown that gget elm facilitates scalable querying of the ELM database via local 
queries, and its use via the command line makes it easy to integrate into scripted workflows. 
While this feature should extend the usability of the ELM database, there are limitations 

https://pachterlab.github.io/gget/es/elm
https://tinyurl.com/yc5r2b5m
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while performing motif searches using the ELM database web interface or gget elm. A 
common problem encountered is that short and degenerate ELMs inevitably lead to false 
positive matches. Accuracy can be improved by filtering the results using the additional 
contextual information, which is also returned by gget elm, including description, structural 
features, and host taxonomy. Furthermore, combining motif results with structural and 
alignment information can provide information about the functional availability of the 
interaction site (Lee et al., 2023). The 3D structure of a protein can be predicted from its 
amino acid sequence de novo using algorithms like AlphaFold2 (Jumper et al., 2021) and 
compared to experimentally derived crystal structures of orthologs deposited on the PDB 
(Berman et al., 2000). The gget suite of tools contains a workflow to perform both of these 
computations, which is demonstrated here: https://tinyurl.com/yzc9ytvx. 
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C h a p t e r  3  

QUANTIFYING HIDDEN INFORMATION 

Detection of Viral RNA at Single-cell Resolution 

Preamble 
Combining extensive expertise in biology and computer science allows the extraction of 
information from existing data that was previously not possible to quantify. In this chapter, 
I expanded the open-source transcriptomic data pre-processing tool kallisto to perform 
translated alignment of nucleotide sequences to an amino acid reference. To date, this is 
the only software tool capable of translated alignment while retaining single-cell 
resolution. I used translated alignment to identify viral RNA in bulk and single-cell RNA 
sequencing data based on highly conserved motifs, thereby overcoming limitations due to 
the lack of viral reference genomes. The single-cell resolution allowed the characterization 
of viral tropism and the prediction of viral presence based on host gene expression. This 
approach revealed novel viruses whose presence perturbed host gene expression. 

Laura Luebbert, Delaney K. Sullivan, Maria Carilli, Kristján Eldjárn Hjörleifsson, 
Alexander Viloria Winnett, Tara Chari, Lior Pachter (2023). Efficient and accurate 
detection of viral sequences at single-cell resolution reveals novel viruses perturbing host 
gene expression. bioRxiv. https://doi.org/10.1101/2023.12.11.571168 

Abstract  
There are an estimated 300,000 mammalian viruses from which infectious diseases in 
humans may arise. They inhabit human tissues such as the lungs, blood, and brain and often 
remain undetected. Efficient and accurate detection of viral infection is vital to 
understanding its impact on human health and to make accurate predictions to limit adverse 
effects, such as future epidemics. The increasing use of high-throughput sequencing 
methods in research, agriculture, and healthcare provides an opportunity for the cost-
effective surveillance of viral diversity and investigation of virus-disease correlation. 
However, existing methods for identifying viruses in sequencing data rely on and are 
limited to reference genomes or cannot retain single-cell resolution through cell barcode 
tracking. We introduce a method that accurately and rapidly detects viral sequences in bulk 
and single-cell transcriptomics data based on highly conserved amino acid domains, which 
enables the detection of RNA viruses covering over 100,000 virus species. The analysis of 
viral presence and host gene expression in parallel at single-cell resolution allows for the 
characterization of host viromes and the identification of viral tropism and host responses. 
We applied our method to identify putative novel viruses in rhesus macaque PBMC data 
that display cell type specificity and whose presence correlates with altered host gene 
expression.  
  

https://doi.org/10.1101/2023.12.11.571168
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Introduction 
There are an estimated 1031 virions on Earth, which amounts to 10 million virions for every 
star in the known universe1,2. Viruses inhabit oceans, forests, deserts, and human tissues 
such as the lungs, blood, and brain. There are an estimated 300,000 mammalian viruses3 
from which infectious diseases in humans may arise4. However, only 261 species have 
been detected in humans5. Many of these have been implicated in complex diseases such 
as heart disease and cancer. Recent studies suggest that viruses also play a major, 
unexpected role in common neurodegenerative disorders such as Alzheimer’s, Parkinson’s, 
and multiple sclerosis6-8. Accurate detection of viral infections is crucial to understanding 
viral impact on human health. 

Of the 261 known disease-causing viruses, 206 fall into the realm of Riboviria5, which 
includes all RNA-dependent RNA polymerase (RdRP)-encoding RNA viruses and RNA-
dependent DNA polymerase (RdDP)-encoding retroviruses. Amongst many others, these 
include Corona-, Dengue, Ebola-, Hepatitis B, influenza, Measles, Mumps, Polio-, West 
Nile, and Zika viruses. Most existing workflows for detecting viruses in transcriptomics 
data rely on the availability of pre-assembled reference genomes. Currently, NCBI RefSeq 
hosts 5,970 Riboviria reference genomes—a diminutive fraction of Riboviria viruses. 
Pioneering work by Edgar et al.9 leveraged a well-conserved amino acid sub-sequence of 
the RdRP, called the ‘palmprint’, to identify RNA viruses in 5.7 million globally and 
ecologically diverse sequencing samples from the Sequence Read Archive (SRA). Their 
method’s independence from pre-computed indices allowed alignment to diverged 
sequences, leading to the discovery of thousands of novel viruses. This effort resulted in a 
consensus of 296,623 unique RdRP-containing amino acid sequences, henceforth referred 
to as ‘PalmDB’. Clustering palmprints into species-like operational taxonomic units 
(sOTUs) yielded 146,973 known as well as novel sOTUs9. Compared to the 8,694 
Riboviria reference genomes currently available on NCBI, this translates to a more than 
16x increase in the number of viruses that can be detected. The actual number of virus 
species that can be detected using the PalmDB is likely even higher due to RdRP sequence 
conservation across Riboviria (Extended Data Fig. 1). sOTUs serve to approximate 
taxonomic assignment9,10 and allow species-level virus identification for 40,392 sequences 
in the PalmDB. 

The increasing use of high-throughput next-generation sequencing (NGS) methods in 
molecular biology research, agriculture, and healthcare provides an opportunity for the 
cost-effective surveillance of viral diversity and the investigation of virus-disease 
correlations11,12. Specifically, single-cell genomics technologies make possible, in 
principle, the characterization of viruses at single-cell resolution. We expanded the RNA 
sequencing data preprocessing tool kallisto13 to support the detection of viral RNA using 
the amino acid database PalmDB. To our knowledge, this is the only existing method 
capable of translated alignment while retaining single-cell resolution. The small size of 
PalmDB (36 MB) enables efficient detection of orders of magnitude more viruses than 
detection based on (NCBI) reference genomes. Moreover, operating in the amino acid 
space yields a method robust to silent nucleotide mutations. 
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Figure legend on next page.  
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Results 

Translated alignment of nucleotide sequences to an amino acid reference with kallisto 
enables efficient, accurate detection of RNA viruses in transcriptomic data at single-
cell resolution 
Most existing methods to detect viral sequences either (i) rely on and are limited to (NCBI) 
reference genomes14–23, (ii) are not able to perform translated alignment of nucleotide data 
to an amino acid reference24–26, or (iii) are unable to retain single-cell resolution through 
cell barcode tracking27,28 (Fig. 3.2b). We expanded the bulk and single-cell RNA-seq 
preprocessing tool kallisto13 to allow translated search and validated its use in combination 
with PalmDB for the detection of virus-like sequences in single-cell and bulk RNA 
sequencing data. PalmDB is a database of 296,623 unique RdRP-containing amino acid 
sequences, representing 146,973 virus species9. Fig. 3.2a provides an overview of the 
number of entries per taxonomy in the NCBI and PalmDB databases. The figure can also 
be viewed interactively here: tinyurl.com/4dzwz5ny.  

The translated alignment is performed by first reverse translating the amino acid reference 
sequences and all possible reading frames (three forward and three reverse) of the 
nucleotide sequencing reads to comma-free code (Fig. 3.1)29. A comma-free code is a set 
of k-letter ‘words’ selected such that any off-frame k-mers formed by adjacent letters do 
not constitute a ‘word’, and will thus be interpreted as ‘nonsense’. For k=3 (a triplet code) 
and 4 letters (e.g. ‘A’, ‘T’, ‘C’, and ‘G’), this results in exactly 20 possible words (theorem 
shown in Fig. 3.1), which equals the number of amino acids specified by the universal 
genetic code. Due to the serendipity of these numbers, Crick et al. hypothesized the genetic 

Fig. 3.1: Schematic overview of the kallisto translated search front- and back-end. The front-end is similar 
to kallisto-bustools workflows as previously described43,44. The user provides sequencing data, usually in the 
form of FASTQ files, as well as a reference FASTA file containing amino acid sequences to align the 
nucleotide sequencing data against. The novel argument ‘--aa’ activates the translated search alignment. In 
the example shown here, the reference file consists of the PalmDB amino acid RdRP sequences contained in 
‘palmdb_rdrp_seqs.fa.’ The ‘palmdb_clustered_t2g.txt’ file groups virus IDs with the same taxonomy across 
all main taxonomic ranks like transcripts of the same gene (see Methods). Both files are available here: 
https://tinyurl.com/4wd33rey. During the generation of the reference index with ‘kb ref’, the D-list option 
may be used to mask host genomic and/or transcriptomic sequences, as further discussed in this manuscript. 
Here, human genomic sequences fetched from Ensembl using gget45 are masked using the D-list. The 
reference index only needs to be generated once, and precomputed PalmDB reference indices for human and 
mouse hosts are available here: https://tinyurl.com/aaxyy8v8. Following the generation of a reference index, 
the sequencing reads are pseudoaligned to the reference index, and a count matrix is generated using the ‘kb 
count’ command. The ‘-x’ argument is used to define the sequencing technology. In the example code, the 
minimum required user input is marked in orange (amino acid space) and blue (nucleotide space). In the 
kallisto translated search back-end, the reference amino acid sequences and the nucleotide sequencing reads 
are translated into a non-redundant comma-free code. For the nucleotide sequences, the translation occurs in 
all six possible reading frames (three forward and three reverse frames). The pseudoalignment is performed 
in the comma-free code space and is compatible with the kallisto cell barcode tracking which enables analysis 
at single-cell resolution. The workflow generates a cell barcode by virus ID count matrix. 

https://tinyurl.com/4dzwz5ny
https://tinyurl.com/4wd33rey
https://tinyurl.com/aaxyy8v8
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code to be a comma-free code in 195730. The impossibility of off-frame matches makes 
comma-free codes highly appropriate for translated alignment (Extended Data Fig. 3.10, 
Methods). The de Bruijn graph generated from the reverse translated PalmDB sequences 
groups viruses of the same taxonomies, indicating that within-taxonomy similarity is 
conserved in comma-free space as expected (Extended Data Fig. 3.4d). Finally, the six 
reading frames of the sequencing reads translated to comma-free code are pseudoaligned 
to the reference sequences reverse translated to comma-free code. If several reading frames 
of the same read produce alignments, the best frame is chosen (Fig. 3.1, Methods).  

The workflow can be executed in three lines of code, and computational requirements do 
not exceed those of a standard laptop (Fig. 3.1). Building on kallisto’s versatility, the 

Fig. 3.2: a, Phylogenetic tree of the taxonomies of viral sequences/genomes included in the PalmDB sOTUs 
and NCBI RefSeq databases from phylum to genus. Barplots indicate the number of sequences/species 
available for each taxonomy in each database. The tree was generated with iTOL46. This plot can also be 
viewed interactively here: tinyurl.com/4dzwz5ny. b, Overview of available tools for the detection of viral 
sequences in next-generation sequencing data14–26,28,47, and their ability to align to NCBI RefSeq nucleotide 
genomes, perform translated alignment of nucleotide data against an amino acid reference, and retain single-
cell resolution through cell barcode tracking. c, Mutation-Simulator48 was used to add random single 
nucleotide base substitutions to 676 ZEBOV RdRP sequences obtained by Seq-Well sequencing37 at 
increasing mutation rates. We performed 10 simulations per mutation rate. The sequences were subsequently 
aligned using kallisto translated search against the complete PalmDB, Kraken2 translated search against the 
RdRP amino acid sequence of ZEBOV with a manually adjusted NCBI Taxonomy ID to allow compatibility 
with Kraken2, and kallisto standard workflow against the complete ZEBOV nucleotide genome 
(GCA_000848505.1). The plot shows the recall percentage of the 676 sequences for each of the 10 
simulations at each mutation rate. Each was fitted with an inverse sigmoid for mutation rates > 0.  

https://tinyurl.com/4dzwz5ny


 

 

29 

workflow is compatible with all state-of-the-art single-cell and bulk RNA sequencing 
methods, including but not limited to 10x Genomics, Drop-Seq31, SMART-Seq32, SPLiT-

Fig. 3.3: a, Sequencing data from samples with a known viral infection and sequenced using different bulk 
and single-cell RNA sequencing technologies was aligned to PalmDB using kallisto translated search. Viral 
load obtained through alternative methods, such as RNA-ISH and qPCR, is compared to the target virus 
counts returned by kallisto. From left to right: 1. RNA-ISH (%) over total raw kallisto counts for SARS-
CoV for 23 lung autopsy samples from COVID-19 patients obtained by bulk RNA sequencing34. Error bars 
show min-max values for each read in a pair; the dot shows the mean. 2. SARS-CoV-2 viral load by RT-
qPCR (copies/mL) over total raw kallisto counts for SARS-CoV species obtained by bulk RNA sequencing 
of 16 saliva (circle), nasal swab (triangle), and throat swab (star) specimens from patients with acute SARS-
CoV-2 infection35,36. Each specimen underwent duplicate library preparation and paired-end sequencing; 
points indicate the mean among the paired reads and duplicates, and error bars show min-max values. 3. 
Total raw kallisto counts for SARS-CoV species for 3 human iPSC-derived cardiomyocytes infected with 
SARS-CoV-2 and 3 control samples obtained by SMART-Seq38. 4. RT-qPCR (copies/mL) over total raw 
kallisto counts for ZEBOV for 19 rhesus macaque blood samples obtained during different stages of infection 
with ZEBOV and sequenced with Seq-Well37. b, To validate the mapping of nucleotide sequences to an 
amino acid reference with kallisto translated search and assess the robustness of the taxonomic assignment, 
we reverse translated all amino acid sequences in the PalmDB using the ‘standard’ genetic code (see 
Methods). The reverse translated PalmDB RdRP sequences were subsequently aligned to the optimized 
PalmDB amino acid reference (see Methods) with kallisto translated search. For each sequence, we 
differentiated the mapping result at each taxonomic rank into four categories: ‘correct’ or ‘incorrect’ 
taxonomic assignment based on the sOTU to virus ID mapping, ‘multimapped’ (the sequence aligned to 
multiple targets in the reference and could not unambiguously be assigned to one), or ‘not aligned’ (the 
sequence was not aligned). The plot shows the fraction of sequences falling into each mapping result 
category assessed at each taxonomic rank. The numbers above the bars indicate the total number of 
sequences per rank. Family names and numbers were omitted, and genera and species ranks were combined 
for readability.  
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Seq33 (including Parse Biosciences), and spatial methods such as Visium. 

Validation testing was performed using different bulk and single-cell RNA sequencing 
datasets with known infections with severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) or Zaire ebolavirus (ZEBOV)34–38. In these tests, translated search with 
kallisto and PalmDB was able to detect the viral RNA and correctly assign species-level 
taxonomy at counts correlating with viral loads measured by RT-qPCR or RNA-ISH, 
regardless of the technology used to generate the data (Fig. 3.3a). Fig. 3.3b provides an 
overview of the robustness of the taxonomic assignment across all available taxonomic 
ranks after reverse translated RdRP sequences were aligned to the PalmDB with kallisto 
translated search. At the species level, 96.76 % of 296,561 sequences were assigned the 
correct taxonomy, 0.007 % were assigned an incorrect taxonomy, 0.37 % could not be 
unambiguously matched to a single virus (they were multimapped), and 2.86 % were not 
aligned. This confirms that the sequence transformation introduced by the kallisto 
translated search pipeline retains taxonomic assignments with up to species-level 
specificity. 

Next, we sought to confirm that kallisto translated search with PalmDB correctly identifies 
sequences that originate from the RdRP gene. To this end, we selected a subset of 
100,000,000 reads obtained using Seq-Well sequencing of macaque peripheral blood 
mononuclear cell (PBMC) samples obtained at 8 days post-infection with ZEBOV37 (see 
Methods). We aligned the reads to the PalmDB amino acid sequences with kallisto 
translated search. We also aligned the reads to the complete ZEBOV nucleotide genome 
using Kraken2 (standard nucleotide alignment)27. Aligned reads from both alignments 
were extracted and realigned to the ZEBOV genome using bowtie239, a BAM file was 
created using SAMtools40 and the alignment was subsequently visualized NCBI Genome 
Workbench41. The visualized alignments are shown in Extended Data Fig. 3.2 and 
confirmed that kallisto translated search accurately and comprehensively detected ZEBOV 
RdRP sequences.  

We then tested whether our translated search method is robust to single nucleotide 
mutations, which occur at a relatively high rate in RNA viruses of up to 10−4 substitutions 
per nucleotide site per cell infection42. We added random single nucleotide base 
substitutions to 676 ZEBOV nucleotide RdRP sequences identified during the alignment 
described in the previous paragraph37, then assessed the frequency of correct taxonomic 
classification (recall percentage) by kallisto translated search, in comparison to the current 
state-of-the-art translated search tool, Kraken2 (translated search). kallisto translated 
search correctly recalled up to 27.5 % more viral RdRP sequences than Kraken2 (translated 
search) (Fig. 3.2c). Moreover, kallisto translated search was more robust than aligning to 
the complete nucleotide genome with the standard kallisto workflow at mutation rates > 4 
% (Fig. 3.2c), which emphasizes the advantage of operating in the amino acid space. While 
the Kraken2 (translated search) and the kallisto standard workflow were given only the 
correct virus as a reference (here, ZEBOV), kallisto translated search had to distinguish 
between all viruses contained in the PalmDB and identify the correct taxonomy. kallisto 
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translated search was able to maintain > 90 % precision in the species-level taxonomic 
assignment at mutation rates up to 12 % (Extended Data Fig. 3.4b). 

We next sought to investigate whether viral species not included as species-like operational 
taxonomic units (sOTUs) in the reference PalmDB database could be detected based on the 
conservation of the RdRP gene. To do this, we removed all Ebolavirus species, all 
Ebolavirus genera, and all members of the Filoviridae family from the reference, and 
subsequently aligned the 676 ZEBOV RdRP sequences obtained by Seq-Well 
sequencing37. In each scenario, a subset of sequences aligned to the nearest remaining 
relative based on the main taxonomic rank (Extended Data Fig. 3.1). This suggests that 
kallisto translated search can detect the highly conserved RdRP of a large number of viral 
species, beyond the number of sequences in the PalmDB database, while still providing 
reliable sOTU-based taxonomic assignment of lower-rank taxonomies. 

Read and virus filtering 
A common problem that arises during the identification of microbial sequences is the cross-
species contamination of reference genome databases, such as the ubiquitous 
contamination of bacterial genomes with human DNA49–51. The PalmDB is not a curated 
database, and it is possible that some virus-like sequences in the PalmDB are not derived 
from viruses. This can lead to the misclassification of host reads as bacterial or viral, 
suggesting the presence of microbes that were not truly present. The misclassification of 
host reads as viral can be prevented by removing host reads prior to the alignment to the 
viral reference. However, conservatively removing host reads will also remove sequences 
of endogenous viral elements, which are very abundant in vertebrate genomes52 and may 
lead to the removal of viral sequences that were truly present. Hence, there are two goals: 
(i) removing host reads to prevent the misclassification of host reads as viral while (ii) 
comprehensively identifying the virome within a sample.  

We first evaluated the impact of different host masking options on the resulting virome. 
We used kallisto translated search with PalmDB to map the virus profiles of peripheral 
blood mononuclear cell (PBMC) RNA sequencing samples from 19 rhesus macaques and 
applied different host masking workflows. The approach to masking host versus microbe 
reads and the handling of overlap between reference sequences can affect the downstream 
result. For example, sequences with varying sizes of virus-host overlap, sequences that 
span the junction of two exons, and entirely ambiguous sequences can influence the 
outcome of the masking and generate highly variable results depending on the method used 
(Extended Data Fig. 3.4a and 5). Depending on the research question and design, any one 
or a combination of different masking options might be appropriate. We explored the 
following masking options, listed from least to most conservative: 

No mask 
We aligned the sequencing reads to the PalmDB with kallisto translated search without 
masking or previously removing host sequences. For the macaque PBMC dataset, this 
masking option resulted in 243 distinct sOTUs detected (Fig. 3.4a). 
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D-list genome + transcriptome 
To incorporate host read masking into our kallisto workflow, we quantified the reads while 
masking the host genome and transcriptome using an index created with the D-list 
(distinguishing list) option53. This option identifies sequences that are shared between a 
target transcriptome and a secondary genome and/or transcriptome. k-mers flanking the 
shared sequence on either end in the secondary genome are added to the index de Bruijn 
graph. During pseudoalignment, the flanking k-mers are used to identify reads that 
originated from the secondary genome but would otherwise be erroneously attributed to 
the target transcriptome due to the spurious alignment to the shared sequences. In our 
experiments, the target transcriptome consisted of the viral RdRP amino acid sequences 
contained in the PalmDB, and the secondary genome consisted of transcriptomic and 
genomic macaque and dog nucleotide sequences. When combining D-list with translated 

Fig. 3.4: a, Schematic overview of the different host masking options discussed in this manuscript. Reads 
that align to PalmDB and are considered viral are marked in orange and reads that align to the host genome 
or transcriptome are marked in black or grey, respectively. The barplot shows the number of distinct sOTUs, 
defined by distinct virus IDs observed in ≥ 0.05 % of cells for each workflow. b, Schematic overview of 
masking the host genome with the D-list argument when used in combination with translated search. The 
D-list genome consists of nucleotide sequences and hence is translated to comma-free code in all six possible 
reading frames, similar to the translation of the nucleotide sequencing reads. c, Masking host sequences 
with the kallisto read capture workflow generates two distinct virus count matrices: The first contains viral 
reads that only aligned to the PalmDB, and the second contains viral reads that aligned to the host 
transcriptome in addition to the PalmDB. The majority of viruses detected above the quality control (QC) 
threshold (observed in ≥ 0.05 % of cells), had reads that aligned to the host transcriptome as well as the 
PalmDB. The barplot shows the fraction of reads for each virus that aligned to the PalmDB only (‘virus 
only’) and those that aligned to the host transcriptome in addition to the PalmDB (‘also in host’).  
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search, the secondary genome is translated to comma-free code in all six possible reading 
frames (Fig. 3.4b). This masking option can be easily added to the kallisto translated search 
workflow without any additional commands (Fig. 3.1). Masking the host transcriptome and 
genome with D-list resulted in 150 distinct sOTUs detected (Fig. 3.4a). Note that masking 
both the transcriptome and the genome, or either one will generate different results because 
masking only the genome will not mask sequences that span exon-exon junctions 
(Extended Data Fig. 3.4a and 3.5). 

Host read capture with kallisto 
To imitate prior alignment to the host genome, as performed with bwa (described below), 
within a simple, efficient kallisto workflow, we captured all reads that pseudoaligned to 
the host transcriptome with kallisto. Masking by capturing these host reads resulted in the 
same number of distinct sOTUs detected as masking with D-list (Fig. 3.4a).  

Host read capture with kallisto + D-list genome + transcriptome 
Although masking with D-list and capturing reads that aligned to the host transcriptome 
resulted in the same number of distinct sOTUs detected, the two methods masked different 
reads and resulted in different virus profiles (Fig. 3.5a, Extended Data Fig. 3.5). We 
decided to combine the D-list and host read capture masking approaches to achieve a 
conservative result similar to that achieved by prior alignment with bwa. In this approach, 
the sequencing reads were aligned to the PalmDB index with a D-list containing the host 
genome and transcriptome, and subsequently reads that pseudoaligned to the host 
transcriptome were captured. Combining the D-list and host read capture masking options 
reduced the number of detected sOTUs to 80 (Fig. 3.4a). 

Prior alignment to host with bwa 
We aligned the sequencing reads to the macaque and dog genomes using the highly 
sensitive alignment algorithm bwa54 and removed all reads that aligned anywhere in the 
host genomes before alignment to PalmDB with kallisto translated search. This achieved 
very conservative masking of the host genome. However, this workflow is complex, time-
consuming, and computationally expensive (~4.5 days using 60 cores for the macaque 
ZEBOV PBMC dataset). This workflow resulted in the detection of 53 distinct sOTUs (Fig. 
3.4a). 

There are inherent differences between these masking methods which are illustrated in Fig 
4a and Extended Data Fig. 3.4a. Although the genome is passed to the software, the 
standard kallisto workflow builds an index based on the host transcriptome, not the entire 
host genome, since for genomes as large as the macaque genome, building the index on the 
entire genome would require a large amount of memory. Hence, masking by capturing 
reads that pseudoaligned to the host with kallisto will only capture host reads from mature 
mRNA molecules. If the D-list is passed both the transcriptome and the genome, it will be 
able to mask mature and nascent RNA molecules as well as RNA molecules originating 
from intergenic regions. The D-list index avoids excessive memory requirements by 
restraining the index to distinguishing sequences between viral and host sequences. As a 
result, reads that contain non-flanking host and viral sequences will not be filtered. 
Moreover, the D-list will favor viral assignment in the case of an entirely ambiguous read. 
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Neither of these issues applies to masking with bwa since the alignment with bwa was 
performed against the host genome. Since bwa uses a smaller seed length than kallisto’s 
default k-mer size of 31, bwa provides more sensitive alignment of sequencing reads 
against the host genome and provides the most stringent filtering. 

To confirm that reads identified as viral were not misaligned macaque reads, we extracted 
randomly selected sequencing reads from 11 virus IDs and aligned them against the 
nucleotide sequence database with BLAST+55,56 (Fig. 3.5b). The reads associated with 
virus IDs identified by all masking workflows (u202260, u103829, u102324, u102540, and 
u1001) BLAST-aligned with relatively low coverage and identity to several 
superkingdoms, including viruses. For u202260, approximately ⅔ of the extracted reads 
yielded no BLAST results. Given that the majority of RdRP sequences in the PalmDB 
originate from unknown viruses lacking reference genomes, it was expected that these 
sequences would not yield confident BLAST results. However, given the 
comprehensiveness of the macaque genome57, misaligned macaque sequences should 

Fig. 3.5: a, The number of positive cells obtained for 12 different virus IDs by each masking workflow. Each 
masking workflow is described in detail in the Methods section. The cell counts for all viruses detected above 
the QC threshold for all masking workflows are shown in Extended Data Fig. 3.5. b, pyCirclize plots showing 
the BLAST+55,56 results of randomly selected sequencing reads for each of the novel viruses shown in a 
(excluding the known virus ZEBOV which corresponds to virus ID ‘u10’). Each circular plot corresponds to 
the results for one virus ID. Each light grey sector corresponds to one sequencing read that links to the 
superkingdoms (red (eukaryotes), yellow (bacteria), orange (viruses), and dark grey (archaea) sectors) based 
on its BLAST+ alignment results. The width of the connecting link indicates the BLAST+ alignment 
coverage percentage, and its color indicates the identity percentage. For u202260, approximately ⅔ of the 
extracted reads yielded no BLAST results.  
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BLAST to the macaque genome with high coverage and identity. The next two virus 
IDs, u39566 and u11150, were filtered out by the bwa workflow and did not BLAST to the 
viruses superkingdom. However, their BLAST results displayed relatively low coverage 
and identity, which would not be expected from macaque sequences. Below, we provide 
further evidence that u11150 sequences might have originated from an ongoing viral 
infection. This was likely an instance where filtering with bwa was too conservative and 
threw out viral sequences. u41991 was identified as viral by the bwa workflow but filtered 
out by the D-list + host capture workflow. Based on the BLAST results for u41991, which 
include high coverage and identity matches for eukaryotes, it is likely that filtering is the 
appropriate action. u164445 and u162905 were filtered by either capturing the host reads 
or using the D-list, respectively, and BLAST to eukaryotes with high coverage and identity, 
illustrating that a combination of the two methods leads to more robust results. Finally, 
sequences identified as u149397, which were filtered by all masking options and are only 
retained without masking, BLAST to eukaryotes with high coverage and identity.  

Separately from exploring the results of different read masking options, we also 
investigated the question of virus filtering. Host read capture with kallisto generates two 
separate count matrices: One contains counts for reads that are solely viral, and a second 
contains counts for viral reads that also pseudoaligned to the host transcriptome. The 
distinction between filtering reads and filtering viruses becomes evident when examining 
the two count matrices: for the macaque PBMC dataset, we found that most viruses found 
in ≥ 0.05 % of cells had at least some reads that also mapped to the host transcriptome, 
including reads for ZEBOV (Fig. 3.4c and 3.5a). Moreover, aligning without host masking 
often led to the detection of more positive cells (Extended Data Fig. 3.5). Hence, naive 
masking of reads can lower the detection sensitivity of viruses that seem truly present. Our 
masking workflows facilitate the identification of viruses with a high likelihood of being 
truly present based on conservative host read masking, while also obtaining unmasked 
reads for these viruses to prevent the decrease in sensitivity inherent to masking host reads. 
We applied this approach when training the logistic regression models described below to 
minimize the occurrence of false viral absence. 

The presence of novel putative viruses perturbs host gene expression in macaque 
blood cells, allowing prediction of viral presence based on host gene expression at 
single-cell resolution 
We used kallisto translated search and the PalmDB to map the viral profiles of PBMC 
samples from 19 rhesus macaques sequenced at different stages of Ebola virus disease 
(EVD)37 (Fig. 3.6a) at single-cell resolution. The dataset consisted of 30,594,130,037 reads 
in total. After alignment to both the host genome (using the standard kallisto workflow) 
and PalmDB (using kallisto translated search with D-list + host capture masking), and 
quality control using the host count matrix (Extended Data Fig. 3.3a, Methods), we retained 
202,525 PBMCs. We used the Leiden algorithm58 to partition the PBMC transcriptomes 
into 18 clusters of similar macaque gene expression, of which 16 could be assigned cell 
types based on common marker genes (Extended Data Fig. 3.3d).  
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The obtained cell types, their marker gene expression and relative abundance over time are 
consistent with the results reported by Kotliar et al.37, including the emergence of a cluster 
of immature neutrophils and decreased lymphocyte abundance, especially natural killer 
cells, during EVD (Fig. 3.7a). While density based PBMC isolation typically removes 
neutrophils, immature neutrophils are less dense than mature neutrophils and can co-isolate 
with PBMCs during infections37. Clusters of the same cell type were often separated by 
time point (Fig. 3.7a), indicating changes in macaque gene expression within the same cell 
type over the course of the EVD. This is in agreement with results obtained by mass 
cytometry in Kotliar et al.37.  

Fig. 3.6: a, Schematic overview of the single-cell RNA sequencing data collected by Kotliar et al.37. Kotliar 
et al. performed single-cell RNA sequencing of  peripheral blood mononuclear cell (PBMC) samples from 
19 rhesus macaques at different time points during Ebola virus disease (EVD) after infection with Zaire 
Ebolavirus (ZEBOV) using Seq-Well74 with the S3 protocol75. A subset of the PBMC samples were spiked 
with Madin-Darby canine kidney (MDCK) cells. This schematic was adapted from the original design by 
Kotliar et al. b, For each virus-like sequence, the percentage of positive MDCK cells is plotted against the 
percentage of positive macaque cells. Virus IDs were categorized into ‘shared’, ‘macaque only’, ‘MDCK 
only’, and ‘undefined’ as described in the Methods section. The insert shows the same plot without log scale 
axes such that zero counts are included. A red edge marks contaminating virus-like sequences also observed 
in sequencing data obtained from blank sequencing libraries containing only sterile water and reagent mix 
(Extended Data Fig. 3.9c). c, Bar plot showing the fraction of positive cells obtained for each viral order, as 
defined by the PalmDB sOTUs, for each category. d, Fraction of positive cells for all ‘macaque only’ and 
‘shared’ virus IDs. Each row corresponds to one animal at a specific EVD time point. The fractions were 
scaled to range from zero to one for each virus ID. The raw total fraction of positive cells for each virus ID 
across all samples is shown in blue below.   
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ZEBOV count data from this analysis workflow was also consistent with previously 
reported results. Since only a small fraction of the RNA molecules in these tissue samples 
are viral and of those, we only detect the RdRP, the measured absolute RNA counts for 
any one virus per cell are low (Extended Data Fig. 3.3e). As a result, we converted the 
virus count matrix into a binary matrix where each virus was recorded as being either 
present or not present in each cell. This approach has been previously validated for sparse 
single-cell RNA, specifically viral, sequencing data24,59, and prevented the need for further 
normalization by individual cellular viral load, which may introduce biases49. The presence 
of virus in each cell was then used to determine the viral abundance among populations of 
cells composed of clusters, cell types, or tissues. First, we used the binary virus count 
matrix to validate the detection of ZEBOV. Samples obtained during incubation displayed 
the highest abundance of ZEBOV-positive cells, and ZEBOV-positive cells remained 
detectable at all following time points (Fig. 3.7b, top left). These trends are consistent with 
the results reported by Kotliar et al.37.  

The parallel analysis of viral and host gene counts at single-cell resolution allowed the 
identification of infected cell types based on host gene expression to reveal that ZEBOV-
positive cells consisted predominantly of monocytes (Fig. 3.7b, top right). These results 
are consistent with previous literature on ZEBOV tropism60 and reproduce the ZEBOV 
abundance trends obtained by alignment to the ZEBOV genome37. This indicates that while 
the total viral counts obtained by kallisto translated search with PalmDB are low due to 
only detecting the RdRP, comparative trends are captured accurately. All Ebolavirus reads 
were identified correctly as ZEBOV with no counts detected for other Ebolavirus species 
(Extended Data Fig. 3.6). 

Our analysis workflow identified virus-like sequences with sOTUs other than ZEBOV in 
this dataset. These virus-like sequences may be present due to, amongst others, viral 
infection of the host, host endogenous viral elements, infection of microbes residing in the 
host, infection of food ingested by the host, or laboratory contamination. Fig. 3.7b (bottom 
left and right) shows the total number of distinct sOTUs (corresponding to distinct virus 
IDs) detected over time and per cell type. We observed a slight increase in the number of 
distinct sOTUs detected per cell during the later stages of EVD, driven by T cell, B cell, 
and neutrophil clusters with high fractions of cells during later EVD stages (Fig. 3.7a). 
Neutrophils showed the highest numbers of distinct sOTUs per cell (Fig. 3.7b, bottom 
right). Since neutrophils fulfill their microbicidal function through phagocytosis and 
pinocytosis, it is possible that viral RNA was picked up by these cells through ingestion. 
In the following paragraphs, we explore different approaches to interpret the presence of 
these virus-like sequences. 

Among the samples in this dataset, we detected a total of 11,176 virus-like sequences with 
at least one read that aligned to the PalmDB and did not align to the host (Fig. 3.4c), 
including many sOTUs from genera known to infect rhesus macaques (Extended Data Fig. 
3.6)61. However, the majority of these virus-like sequences were expressed in less than 0.05 
% of cells, which we defined as a quality control (QC) threshold (Fig. 3.6b, Methods). All 
of the virus-like sequences with positive cell fractions above the QC threshold in macaque 
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cells that passed quality control can be explored in this interactive Krona plot62 broken 
down by animal, timepoint, taxonomy, and fraction of cells occupied by each virus: 
https://tinyurl.com/23h6k36u. 

A subset of samples included a spike-in of Madin-Darby canine kidney (MDCK) cells, 
resulting in a total of 23,500 MDCK cells after quality control and species separation 
(Extended Data Fig. 3.3b and c, Methods). We used the spike-in to further break down the 
viruses into ‘macaque only’, ‘MDCK only’, and ‘shared’ viruses (Fig. 3.6b, Methods). We 
expected that shared viruses occurring in both macaque and MDCK cells would include 
viruses introduced by the contamination of laboratory reagents used during sample 
preparation and sequencing63, cell-free RNA contamination, endogenous retroviruses52,64, 
and widespread latent infections. After filtering and categorization of viruses, we detected 
4 (including ZEBOV) macaque only, 7 MDCK only, 15 undefined, and 54 shared viruses. 
This result suggests that the majority of virus-like sequences detected in this dataset were 

Fig. 3.7: a, The fraction of cells occupied by each EVD time point is shown per Leiden cluster. Each Leiden 
cluster was assigned a cell type based on previously defined marker genes (Extended Data Fig. 3.3d). On the 
right, the number of distinct sOTUs detected in each cell is shown. Each grey dot corresponds to one cell, 
and the black dot corresponds to the mean across all cells. b, The number of ZEBOV (u10) positive cells per 
10,000 cells is plotted per EVD time point (left) and per cell type (right). For each time point and cell type, 
the number of distinct sOTUs found per cell is plotted at the bottom. Each grey dot corresponds to one cell, 
and the black dot corresponds to the mean across all cells. c, The number of positive cells per 10,000 cells is 
shown per cell type for the remaining three (excluding ZEBOV) macaque only virus IDs and two shared 
virus IDs. Virus IDs that show relatively high cell type specificity are shown on the left, and virus IDs with 
relatively even detection across all cell types are shown on the right.  

 

https://tinyurl.com/23h6k36u
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introduced through contamination. Indeed, many virus-like sequences that fell into the 
shared category could also be detected in ‘blank’ sequencing libraries containing only 
sterile water and reagent mix, providing evidence for their origin in widespread laboratory 
reagent contamination63 (Fig. 3.6b, Extended Data Fig. 3.9c). The sOTUs of the macaque 
only and shared virus IDs, when available, are listed in Extended Data Table 1. Fig. 3.6c 
shows the fraction of reads occupied by each viral order (as defined in the sOTU for each 
virus ID) for macaque only, MDCK only, and shared viruses. Among viruses shared 
between macaque and MDCK cells, Levivirales (recently renamed to Norzivirales65), 
Articulavirales (which include the family of influenza viruses), and viruses of unknown 
taxonomy made up the largest fractions. Norzivirales are an order of bacteriophages, the 
majority of which were discovered in metagenomics studies66. They might have been 
introduced through bacterial contamination during sample preparation and sequencing. The 
shared viruses also included orders such as Herpesvirales, which are widespread, 
sometimes spreading through cross-species infections, and are known to persist in their 
host as latent infection67,68. Virus-like sequences detected in MDCK cells included sOTUs 
from the order of Bunyavirales, which infect a wide range of hosts, including MDCK 
cells69, as well as virus-like sequences of unknown order. Virus-like sequences found only 
in macaque cells were of unknown order, in the order Mononegavirales, which includes 
ZEBOV, and in the order Nidovirales, which are known to infect mammals and include the 
family Coronaviridae. Virus-like sequences of known order (based on the sOTU) for each 
group are reasonably expected to be present in the respective sample types and the context 
of the hosts, which supports the biological validity of these viral read classifications. 

To visualize the virus profiles of individual animals and over time, we plotted the fraction 
of positive cells for each macaque only and shared virus ID per animal and time point (Fig. 
3.6d). The relative viral abundances varied, both between individual monkeys and time 
points. Notably, in some instances where the same animal was measured across several 
time points, the viral profile of this animal was reproduced in the later time point (Fig. 3.6d, 
Fig. 3.8a). The viral profiles of animal NHP08 at -4 days pre-infection and 6 days post-
infection with ZEBOV are highlighted in the heatmap (Fig. 3.6d). Animals NHP1 and 
NHP2 each had two samples sequenced 20 hours apart which displayed highly similar viral 
profiles for each animal over time (Fig. 3.8a). This suggests that viral profiles sampled and 
sequenced within a short time window are coherent over time and across samples which is 
consistent with expectation. Several virus-like sequences, including u102324, were present 
in all animals and time points with relatively similar abundance (Fig. 3.6d, Extended Data 
Fig. 3.7a), coherent with their classification as shared sequences likely originating from 
contamination. 

We then attempted to further determine which virus-like sequences were likely present due 
to viral infection of the host based on cell-type specificity and a coinciding host antiviral 
response. We visualized the viral tropism of the remaining three (other than ZEBOV) 
macaque only viruses. Two of them, u102540 and u11150, displayed relatively high 
sample-specificity while u39566 was abundant across all samples, similar to the shared 
viruses u134800 and u102324 (Extended Data Fig. 3.7a). The sOTU of u102540 indicates 
that it is an Alphacoronavirus sp., which are known to infect rhesus macaques61. u102324 
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is predicted to belong to the family Iflaviridae (Extended Data Table 1), which is a family 
of viruses that infect insects70, and the viral reads from this virus ID were likely not the 
result of an ongoing viral infection. The remaining virus IDs, u11150, u39566, and 
u134800, are of unknown taxonomy across all taxonomic ranks. 

Two virus-like sequences exhibited cell-type specificity suggestive of viral infection. Of 
the three macaque only virus IDs excluding ZEBOV, we found that u102540 and u11150 
showed high cell type specificity, while u39566 was expressed more evenly across all cell 
types (Fig. 3.7c). While u39566 was categorized as ‘macaque only’ above, it is likely a 
contaminating sequence given its presence in the blank sequencing libraries (Extended 
Data Fig. 3.9c). The lack of cell-type specificity coincides with u39566 sequences 
originating from reagent contamination and illustrates the importance of combining several 
different approaches, as described here, when interpreting the presence of virus-like 
sequences. u102540 (Alphacoronavirus sp.) exhibited high fractions of positive cells in 
neutrophils, while u11150 also displayed lower expression in monocytes, B cells, and T 
cells. Neutrophils play an important role in the innate immune response and promote virus 
clearance through phagocytosis. During phagocytosis, neutrophils engulf virions and 
apoptotic bodies. It is possible that the cell type specificity towards neutrophils observed 
here was due to neutrophils engulfing viral RNA during phagocytosis rather than viral 
tropism. As expected, the shared viruses u134800 and u102324 did not display cell type 
specificity (Fig. 3.7c). 

The simultaneous analysis of the host and virus count matrices supported that several 
viruses identified were likely infecting the host and revealed virus-induced host gene 
expression. We hypothesized that viral presence in individual cells may be predicted based 
on the host gene expression. Since our workflow maintains single-cell resolution, we can 
analyze viral presence and host gene expression at single-cell resolution in parallel and 
investigate whether the presence of a virus affects host gene expression. We trained logistic 
regression models for all macaque only and shared (present in both MDCK and macaque 
cells) virus-like sequences to predict viral presence or absence in individual cells based on 
the cell’s host gene expression. The models were either trained on all or only highly 
variable macaque genes and with or without the donor animal and time point as covariates. 
After training models using a random selection of virus-positive and an equal number of 
virus-negative cells, we tested the model predictions on held-out test cells (Fig. 3.8b, 
Extended Data Fig. 3.8a and e). Given the cell type specificity of several of the virus-like 
sequences, virus-negative training cells were selected to be of the same cell types as virus-
positive cells to ensure that we were not simply predicting cell type rather than viral 
presence. 

We found that the presence or absence of virus-like sequences that displayed cell type- and 
sample-specificity (u10 (ZEBOV), u102540, and u11150) could be predicted at > 70 % 
accuracy (Fig. 3.8b and c), although for u11150, the sensitivity decreased with the inclusion 
of the covariates donor animal and EVD time point (Extended Data Fig. 8a). The sensitivity 
and specificity are shown in Extended Data Fig. 3.8a. By contrast, the presence of viruses 
that did not display cell type-specificity (u39566, u134800, and u102324) could not be 
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predicted better than random chance (50 %) (Fig. 3.8b and c, Extended Data Fig. 3.8a). As 
a negative control, we scrambled the binary virus count matrix used for model training, 
effectively randomizing the presence or absence of a virus in each cell. As expected, the 
prediction accuracies dropped to those expected at random (50 %) (Fig. 3.8b and c). We 
also confirmed that the different virus-like sequences with high prediction accuracy, 
including the known infection with ZEBOV (u10), were not present in the same cells 
(Extended Data Fig. 3.7b). 

Fig. 3.8: a, Several animals included in the macaque PBMC dataset were sampled twice, at two different time 
points. Here, for each virus-like sequence, the percentage of positive cells occupied by the later time point is 
shown. The number of positive cells for each virus-like sequence was first normalized to the total number of 
cells in the sample. Only virus-like sequences for which at least one time point had positive counts were 
included for each animal. A percentage of 50% indicates that the number of positive cells for that virus-like 
sequence remained stable between the two time points. b, We trained logistic regression models to predict the 
presence of specific virus-like sequences based on host gene expression at single-cell resolution. The accuracy 
of the logistic regression model trained on all macaque genes with donor animal and EVD time point as 
covariates is shown for the known virus ZEBOV (u10) and five novel virus IDs. The presence of virus-like 
sequences that displayed high cell type specificity could be predicted with >70 % accuracy, while virus-like 
sequences with low cell type specificity could not be predicted above random chance (50 %, marked by the 
red dashed line). As a negative control, viral presence and absence labels were scrambled at random in the 
training data, causing the prediction accuracy to drop to random chance (50 %), as expected. The error bars 
indicate the standard deviation between models initialized with different random seeds. The bottom bar plots 
show the number of testing and training cells for each virus (also see Extended Data Fig. 3.8c). c, Heatmap of 
the prediction accuracy (averaged across models initialized with different random seeds) across all possible 
modeling combinations (training on all macaque genes versus only highly variable (HV) genes, and with or 
without covariates donor animal and EVD time point).  
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This learnable relationship between viral presence and host gene expression provides 
further evidence that reads from u10, the known infection with ZEBOV, as well as novel 
virus-like sequences u102540 and potentially u11150, originated from an ongoing viral 
infection and/or viral clearance which perturbed host gene expression at the single-cell 
level.  

The only other virus-like sequence which displayed prediction accuracies > 70% was 
u202260 (Extended Data Fig. 3.8e). This was surprising, as u202260 was categorized as 
shared between macaque and MDCK cells and was also present in the blank sequencing 
libraries (Fig. 3.6b, Extended Data Fig. 3.9c), indicating that it likely originated from 
laboratory reagent contamination. However, although its prediction accuracies were 
relatively high, the gene weight correlation between different models was low for u202260 
(Extended Data Fig. 3.8b) and the standard deviation of gene weights within the same 
model generated with different random seeds was comparatively high (Extended Data Fig. 
3.9a), indicating that genes were weighted differently between models and seeds for 
u202260. This suggests that a shared feature across genes, such as cell health or sequencing 
depth, was learned rather than the expression of specific genes.  

To explore virus-induced host gene expression, we identified macaque genes with the 
largest predictive power and smallest variation (across models initialized with different 
random seeds), for the regression models trained on highly variable genes with the donor 
animal and time point as covariates (Extended Data Fig. 3.9a). Approximately one third of 
the macaque Ensembl IDs did not have annotated gene names, which is a common problem 
for genomes from non-model organisms. We used gget45 to translate annotated Ensembl 
IDs to gene symbols and to perform an enrichment analysis on the returned gene symbols 
using Enrichr71 against the 2023 Gene Ontology (GO) Biological Processes database72. The 
highly weighted genes for u10 (ZEBOV) returned significant enrichment results for several 
virus-associated GO terms including ‘Negative Regulation Of Viral Entry Into Host Cell 
(GO:0046597)’, ‘Negative Regulation Of Viral Life Cycle (GO:1903901)’, and 
‘Regulation Of Viral Entry Into Host Cell (GO:0046596)’, validating our approach for the 
identification of genes associated with a virus-related host gene response. Similarly, the 
enrichment analysis of highly weighted genes for the novel virus ID u11150 mapped to 
‘Receptor-Mediated Endocytosis Of Virus By Host Cell (GO:0019065).’ For virus ID 
u102540, several highly ranked GO terms were indicative of an inflammatory response, 
such as ‘Positive Regulation Of Type II Interferon Production (GO:0032729)’ and 
‘Positive Regulation Of Cytokine Production (GO:0001819)’. Several predictive genes 
were associated with the positive regulation of cytokine production and modulation of 
inflammation (e.g., FCN1 for u 10, MAPK11 for u11150, and CD14 for u102540). Overall, 
these results provide further evidence that the novel virus-like sequences u102540 and 
u11150 originated from an ongoing viral infection or clearance resulting in a host gene 
response.  

Discussion 
Our work provides a method for extracting a ‘virome’ modality from any bulk or single-
cell RNA-seq data by leveraging a new method that maps and quantifies species-level viral 



 

 

43 
RdRP sequences against an amino acid reference. We built on the existing alignment 
software kallisto44 and bustools76 and expanded them for translated alignment by (reverse) 
translating both the amino acid reference and the nucleotide sequencing reads into a 
common, nonredundant comma-free code. While we validated kallisto translated search in 
combination with PalmDB for the identification of viral RNA, our novel workflow can be 
applied in combination with any amino acid reference. kallisto translated search permits 
the alignment of nucleotide sequencing data to any amino acid reference at single-cell 
resolution. For example, amino acid sequences of antimicrobial peptides77 can be used as 
a reference to identify these peptides in bulk and single-cell RNA sequencing data. 
Moreover, amino acid transcriptomes of homologous species may be used as a reference 
for species with missing or incomplete reference genomes. In this case, operating in the 
amino acid space will increase similarity due to the robustness to single-nucleotide 
mutations. 

We validated kallisto translated search in combination with PalmDB for the detection and 
identification of viral RNA in next-generation sequencing data at single-cell resolution. As 
we noted in the introduction, the number of viruses expected to cause human infectious 
disease is eclipsed by the comparatively few viruses with complete reference genomes and 
the even smaller number of viruses that have been detected in humans. It is important to 
monitor the presence of viruses in the human population, both to prevent pandemic 
outbreaks and to further understand the role of viruses in various diseases. We have shown 
that such monitoring and novel virus discovery can be performed using single-cell RNA-
seq data. Moreover, our work provides a platform for characterizing omnipresent virus-
like sequences associated with different environments, hosts, and laboratory reagents.  

The virus count matrix, which is obtained using kallisto translated search in combination 
with PalmDB, is an entirely new modality that we have begun to explore in this paper. We 
found that this matrix is sparse with relatively low molecule counts per cell (Extended Data 
Fig. 3.3e). While using the highly conserved RdRP to identify viruses makes our workflow 
very efficient and is the key to being able to detect over 100,000 distinct viruses, RdRP 
RNA only makes up ~1 % of the total viral RNA present in the sequencing data analyzed 
here (Extended Data Fig. 3.2) resulting in the sparsity of the virus count matrix. We 
anticipate that this number varies between virus species and sequencing technology, 
making it difficult to define a general detection limit. To normalize this sparse and low-
count matrix, we binarized the virus count matrix such that each cell was either positive or 
negative for each virus. Given the low counts, we expect that there is a high occurrence of 
false negatives in the virus count matrix while the confidence in positive cells is high. 
However, we have shown that relationships between viral presence and host gene 
signatures can be learned regardless.  

A common problem in the identification of microbial sequences is the misidentification of 
host sequences as microbial. The PalmDB is not a curated database, and it is possible that 
some virus-like sequences in the PalmDB are not derived from viruses. In addition, 
differentiating between ongoing infections, reagent or sample contamination, cell-free 
RNA contamination, endogenous retroviruses, and widespread latent infections is a 
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challenge. The kallisto translated search method computes both the virus count matrix 
and the host gene expression matrix at single-cell resolution, providing unique 
opportunities for parallel analysis of viral signatures and their effect on host gene 
expression. We describe different approaches to evaluate the nature of viral sequences 
identified by kallisto translated search, including taxonomic assignment of viruses based 
on the sOTU, analysis of viral tropism, extraction and BLAST alignment of raw sequencing 
reads identified as viral, and using a sample spike-in to categorize viruses into shared and 
sample-specific viruses. Moreover, we describe and evaluate different workflows to mask 
the host genome and/or transcriptome, allowing different levels of conservativeness and 
the quantification of sequencing reads that align to viral RdRPs as well as the host 
transcriptome. Notably, the efficacy of masking the host genome and/or transcriptome will 
depend on the quality and comprehensiveness of said genome/transcriptome. In this case, 
the majority of host sequences originated from rhesus macaque, which has a very 
comprehensive genome assembly57. Finally, we trained logistic regression models to 
predict viral presence at the single-cell level based on host gene expression, achieving high 
accuracy indicative of an ongoing viral infection or clearance. Our results show that it is 
beneficial to combine multiple of these approaches, which we validate and describe in 
detail, for the interpretation of the presence of virus-like sequences. 

Focusing on the RdRP produces biases between virus species with varying life cycles, 
depending on the sequencing technology used. The genome of many negative-strand RNA 
(-ssRNA) is replicated as well as transcribed. Transcription produces short, often 
polyadenylated mRNA products which are captured and sequenced, including the RdRP. 
In contrast, the genome of many positive-strand RNA (+ssRNA) viruses undergoes 
replication, but not transcription. Instead, the genome is translated into polyproteins, which 
are subsequently cleaved. While +ssRNA virus genomes are often polyadenylated and 
hence are captured by polyA capture-dependent single-cell RNA sequencing technologies, 
sequencing ~100 bases from the polyA-tail using a poly(T) primer will not capture the 
RdRP if it is located too far from the polyA-tail (see the schematic overview of the SARS-
CoV genome in Fig. 3,1). In this scenario, the RdRP of +ssRNA viruses will, however, be 
captured by bulk RNA sequencing and random hexamer primers in single-cell RNA 
sequencing (Extended Data Fig. 3.4c). Hence, sequencing using random hexamer primers 
overcomes the virus life cycle-dependent bias for single-cell technologies. Many novel 
sequencing technologies, including Parse Biosciences SPLiT-Seq33, employ random 
hexamer primers to produce full-coverage sequencing and overcome biases introduced by 
poly(T) primers. We foresee that the use of random priming in sequencing will continue to 
increase. It is worth noting that, depending on the technology, intra-genomic sequences of 
+ssRNA viruses might be captured by poly(T) primers nonetheless due to mispriming. 
Even with random priming, many biases will remain. For example, any viral RNA that is 
not polyadenylated will not be captured efficiently by single-cell sequencing technologies 
that rely on polyA capture. 

We hope that kallisto translated search will be widely implemented in the analysis of next-
generation sequencing data to identify the presence of viral RNA, as well as inform the 
experimental design of research aiming to identify microbial reads from RNA sequencing 
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data. We describe several experimental design choices that greatly impact the results of 
microbial read quantification, such as the sequencing primer design and sample spike-ins. 
The masking workflows described in this paper and the associated challenges are 
applicable to any metagenomics analysis beyond the identification of viral reads, and the 
workflows described here can be easily applied to nucleotide references, such as a 16S 
database for the characterization of the human gut microbiome78.  

Methods 

Developing kallisto translated search and optimization for the identification of viral 
RNA 
Building kallisto translated search and choosing a new ‘genetic code’ 
To perform translated alignment, the nucleotide and amino acid sequences need to be 
translated into a shared ‘language’. This might be achieved by translating nucleotides to 
amino acids or vice versa. Since kallisto encodes nucleotide characters in 2 bits (allowing 
a total of 4 distinct nucleotides to be encoded), encoding the 20 different amino acids 
resulting from translated nucleotide sequences was not feasible. Moreover, reverse 
translating the amino acid sequences to nucleotides would be intractable due to the 
redundancy in the genetic code leading to a combinatorial explosion in nucleotide 
sequences consistent with an amino acid reference. We therefore translated the nucleotide 
sequences and reverse translated the amino acid sequences using a fixed synthetic code 
designed to reduce spurious alignments. We explored two different codes for this 
translation: 1. Comma-free code and 2. A code that maximizes the Hamming distance 
between frequently occurring amino acids (Extended Data Fig. 3.10a). While maximizing 
Hamming distance is advantageous in terms of avoiding sequence multimapping (see next 
paragraph), a comma-free code prevents off-frame alignment since any k-mers formed by 
adjacent words will not be included in the dictionary. We found that the comma-free code 
recalls viral sequences equally well compared to maximizing the Hamming distance 
between amino acids (Extended Data Fig. 3.10b).  

Optimization of PalmDB for the identification of viral reads in RNA sequencing data 
Due to the occurrence of the ambiguous amino acid characters B, J, and Z, 62 out of 
296,623 viral sequences were transformed into identical sequences after reverse translation 
to comma-free code. The identical sequences were merged and assigned a representative 
virus ID. Due to the high similarity between viral RdRP sequences, the loss of aligned 
sequences due to multimapping to several reference sequences was a major concern. 
Moreover, the necessity of reverse translating the amino acid sequences further decreases 
the Hamming distance between reference sequences by approximately 30 % (Extended 
Data Fig. 3.10d). To overcome this problem, we tried clustering the amino acid sequences 
based on 99 % similarity using the MMseqs2 algorithm79. This resulted in 6,518 clusters 
with high concordance of taxonomy labels between sequences in the same cluster 
(Extended Data Fig. 3.10e). However, although clusters were computed correctly based on 
their concordance with taxonomy, this resulted in 67.4 % of sOTUs not being detected 
anymore (compared to 3.3 % when using the complete index). As a result, we decided to 
group the sOTUs instead, treating virus IDs with the same taxonomy across all main 
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taxonomic ranks like transcripts of the same gene (available here: 
https://tinyurl.com/4wd33rey). This retained the alignment percentage of the complete 
index while allowing highly accurate taxonomic assignment and minimal sequence loss to 
multimapping (Fig. 3.3b). It is noteworthy that the default kallisto k-mer length of 31 
nucleotides equals only 10 amino acids. Given the architecture of the current kallisto 
version (0.50.1), which is optimized for 64-bit k-mers with each nucleotide occupying two 
bits, k cannot be set > 31. This will change in future versions. 

Validation and benchmarks 

Visualization of the Kraken2 and kallisto translated search alignments of ZEBOV 
sequences 
Kotliar et al.37 performed single-cell RNA sequencing of PBMC samples from rhesus 
macaques after infection with ZEBOV (further described below). A subset of the data 
obtained by Kotliar et al. at 8 days post-infection with ZEBOV was used to visualize the 
identification of RdRP sequences using kallisto (v0.50.1) translated search. The first 
100,000,000 raw sequencing reads from the GSE158390 library SRR12698539 were 
aligned to the ZEBOV reference genome (NC_002549.1) using Kraken2 v2.1.2 and to the 
optimized PalmDB using kallisto translated search. Aligned reads from both workflows 
were extracted and realigned to the ZEBOV genome using bowtie239 v2.2.5 and 
SAMtools40 v1.6 as previously described80. The visualization shown in Extended Data Fig. 
3.2 was generated from the resulting sorted bam files with the NCBI Genome 
Workbench41. 

Testing robustness to mutation 
676 Zaire ebolavirus (ZEBOV) RdRP sequences were identified by aligning the first 
100,000,000 raw sequencing reads from the GSE158390 library SRR12698539 to the 
optimized PalmDB using kallisto translated search. Mutation-Simulator48 (v3.0.1) was 
used to add random single nucleotide base substitutions to the RdRP sequences at 
increasing mutation rates. We performed 10 rounds of simulated mutations per mutation 
rate. The sequences were subsequently aligned using kallisto translated search against the 
complete PalmDB, Kraken2 translated search against the RdRP amino acid sequence of 
ZEBOV with a manually adjusted NCBI Taxonomy ID to allow compatibility with 
Kraken2, and kallisto standard workflow against the complete ZEBOV nucleotide genome 
(GCA_000848505.1). We subsequently calculated the recall percentage over all 676 
sequences. For kallisto translated search, the recall percentage was calculated based on 
species-level taxonomic assignment. Since the other two methods were only given the 
target virus sequence as a reference and did not have to distinguish between different 
viruses, their recall percentage was calculated based on all aligned sequences. The recall 
percentage over all 676 sequences for the 10 rounds at each mutation rate is shown in Fig. 
3.2c. Extended Data Fig. 3.4b shows the precision with which kallisto translated search 
identified the correct virus versus other taxonomies at each mutation rate. The recall and 
precision at mutation rates > 0 were fitted with an inverse sigmoid function using non-
linear least squares using the scipy.optimize.curve_fit function (scipy v1.11.1). 
  

https://tinyurl.com/4wd33rey
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158390
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158390
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Alignment and quantification of viral counts in validation datasets 
The sequencing reads for each library used in the validation (Fig. 3.3a) were aligned with 
kallisto translated search against the PalmDB index D-listed with the corresponding host 
genome and transcriptome. The hosts were (i) human (GRCh38 Ensembl version 109) for 
GSE150316, GSM4548303 and the SARS-CoV-2 saliva, nasal, and throat samples, (ii) 
mouse (GRCm39 Ensembl version 109) for GSM5974202, and (iii) rhesus macaque 
(Mmul_10 Ensembl version 109) and dog (ROS_Cfam_1.0 Ensembl version 109) for 
GSE158390. Count matrices were generated with bustools (v0.43.1). Fig. 3.3a shows the 
total raw counts obtained for each target virus species. RT-qPCR and RNA-ISH counts 
were reproduced from the original publications. 

Validating the alignment of nucleotide sequences to an amino acid reference and assessing 
the accuracy of the taxonomic assignment 
To validate the mapping of nucleotide sequences to an amino acid reference with kallisto 
translated search and assess the accuracy of the taxonomic assignment, we reverse 
translated all amino acid sequences in the PalmDB using the ‘standard’ genetic code from 
the biopython81 (v1.79) Bio.Data.CodonTable module and DnaChisel82 (v3.2.10) (with a 
slight adaptation to allow the ambiguous amino acids ‘X’, ‘B’, ‘J’, and ‘Z’ occurring in the 
PalmDB, which was later implemented in DnaChisel v3.2.11). A unique synthetic ‘cell 
barcode’ was generated for each resulting nucleotide sequence, and the sequences were 
aligned to the optimized amino acid PalmDB with kallisto translated search, keeping track 
of each sequence separately as if they were an individual cell. The synthetic barcodes 
allowed subsequent analysis of the alignment result for each individual sequence, and the 
accuracy of the obtained taxonomy based on the virus ID to sOTU mapping provided by 
PalmDB is shown in Fig. 3.3b. For each sequence, we differentiated between ‘correct’ or 
‘incorrect’ taxonomic assignment, or, if the sequence did not return any results, whether it 
was ‘multimapped’ (the sequence aligned to multiple targets in the reference and could not 
unambiguously be assigned to one) or ‘not aligned’ (the sequence was not aligned), at each 
taxonomic rank. 

Analysis of macaque PBMC data 
Kotliar et al.37 performed single-cell RNA sequencing of  PBMC samples from 19 rhesus 
macaques at different time points during Ebola virus disease (EVD) after infection with 
ZEBOV (EBOV/Kikwit; GenBank accession MG572235.1; Filoviridae: Zaire ebolavirus) 
using Seq-Well74 with the S3 protocol75. A subset of PBMC samples were spiked with 
Madin-Darby canine kidney (MDCK) cells. The data is available at GSE158390, and we 
obtained the raw sequencing data from the European Nucleotide Archive using FTP 
download links and ffq (v0.3.0)83. The data is split into 106 datasets containing 
30,594,130,037 reads in total.  

Alignment to the host transcriptome 
The rhesus macaque Mmul_10 and domestic dog ROS_Cfam_1.0 genomes were retrieved 
from Ensembl version 109. The reference index was built using both genomes and the kb-
python (v0.28.0 with kallisto v0.50.1 and bustools v0.43.1) ref command to create a 
combined index containing the transcriptome of both species. We quantified the gene 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150316
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4548303
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5974202
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158390
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158390


 

 

48 
expression in each of the 106 datasets using the standard kallisto-bustools workflow13 
with the ‘batch’ and ‘batch-barcodes’ arguments to process all files simultaneously while 
keeping track of each batch, and with the ‘x’-string ‘0,0,12:0,12,20:1,0,0’ to match the Seq-
Well technology. Since the Seq-Well technology does not provide a barcode on-list, we 
generated a barcode on-list using the ‘bustools allowlist’ command, requiring each barcode 
to occur at least 1,000 times. We subsequently corrected the cell barcodes using the 
generated on-list and computed the count matrix using the ‘bustools count’ function.  

Host cell quality control, filtering, and separation of macaque and MDCK cells 
The count matrix generated by bustools was converted to h5ad using 
kb_python.utils.kb_utils and read into Python using anndata v0.8.0. Metadata such as 
donor animal, the presence of an MDCK spike-in, and time point were added to the 
AnnData object from the SRR library metadata provided by Kotliar et al.37. The cell 
barcodes were filtered based on a minimum number of UMI counts of 125 obtained from 
the knee plot of sorted total UMI counts per cell (Extended Data Fig. 3.3a), resulting in a 
mean UMI count of 1,401 after filtering. The cells were further filtered based on a 
maximum percentage of mitochondrial genes of 10 %, based on a combination of macaque 
and dog mitochondrial genes facilitated by Scanpy84 (v1.9.3) and gget45 (v0.28.0). Cells 
were categorized as macaque if a maximum of 10 % of their UMIs originated from dog 
genes and vice versa (Extended Data Fig. 3.3b). Macaque and MDCK cells were 
normalized separately using log(CP10k + 1) with Scanpy’s normalize_total defaults of 
target sum 10,000 and log1p.  

Macaque cell clustering and cell type assignment 
The macaque gene count matrix was transformed by PCA to 50 dimensions applied using 
the log-normalized counts filtered for highly variable genes using Scanpy’s 
highly_variable_genes. Next, we computed nearest neighbors and conducted Leiden 
clustering58 using Scanpy, resulting in 19 Leiden clusters. We found that EVD time points 
were highly concordant across sequencing libraries, suggesting the lack of a batch effect 
(Fig. 3.7a, also see GitHub code repository). Each cluster was manually annotated with a 
cell type based on the expression of previously established marker genes37 (Extended Data 
Fig. 3.3d). Cluster ‘Undefined 1’ was omitted because it only contained 12 cells. Gene 
names and descriptions for Ensembl IDs without annotations were obtained using gget45.  

Virus alignment with different masking options 
For each masking option, we quantified the gene expression in each of the 106 datasets 
from GSE158390 using kallisto with the ‘batch’ and ‘batch-barcodes’ arguments to process 
all files simultaneously while keeping track of each batch and with the ‘x’-string 
‘0,0,12:0,12,20:1,0,0’ to match the Seq-Well technology. kallisto translated search was 
initiated in the ‘kallisto index’ and ‘kallisto bus’ commands by adding the ‘—aa’ flag. 
Following the alignment to PalmDB with any of the masking options, cell barcodes were 
corrected using the barcode on-list generated during the alignment to the host as described 
above. 
  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158390
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- No mask 
The raw sequencing reads were aligned to the optimized PalmDB reference files (see 
‘Optimization of PalmDB’ above) using kallisto translated search.  

- D-list genome + transcriptome 
The raw sequencing reads were aligned to the optimized PalmDB reference using kallisto 
translated search with the added argument ‘d-list’, which was passed the concatenated 
macaque genome and transcriptome (Mmul_10 Ensembl version 109), and dog genome 
and transcriptome (ROS_Cfam_1.0 Ensembl version 109). For D-list masking options 
including only the genomes or transcriptomes (Extended Data Fig. 3.4a), only the genome 
or transcriptome files from both species were concatenated and passed to the ‘d-list’ 
argument, respectively.   

- D-list genome + transcriptome + ambiguous reads filtered 
This workflow was performed as described above for the ‘D-list genome + transcriptome’ 
with an unreleased version of kallisto where ambiguous reads in the D-list will be thrown 
out as host instead of being assigned to virus (Extended Data Fig. 3.4a). We explored this 
option to investigate the effect of ambiguous reads during D-list masking. However, we 
found that the alignment results did not notably differ from the masking option ‘D-list 
genome + transcriptome’ (Fig. 3.4a and Extended Data Fig. 3.5). 

- Host read capture with kallisto 
The raw sequencing reads were aligned to the combined macaque and dog reference index 
generated during the alignment to host with ‘kallisto bus’ with the added ‘-n’ flag. The ‘-
n’ flag keeps track of the read line number of each aligned read; the line numbers are added 
to the resulting BUS file. The raw sequencing reads were also aligned to the modified 
PalmDB with kallisto translated search with the added ‘-n’ flag to obtain all reads that map 
to viral RdRPs. Subsequently, the BUS file returned by kallisto translated search was split 
into reads that only aligned to viral RdRPs and reads that also aligned to host based on the 
read line numbers in the BUS files. This step was performed using ‘bustools capture’ to, 
first, obtain all reads that belonged to a single batch file (of the 106 dataset files), and, 
second, capture all reads that also aligned to host. 

- Host read capture with kallisto + D-list genome + transcriptome 
Host reads were captured with kallisto as described above under ‘Host read capture with 
kallisto’. However, during the alignment of the raw sequencing reads to PalmDB with the 
‘-n’ flag, we also used the ‘d-list’ flag to mask the host genomes and transcriptomes as 
described above under ‘D-list genome + transcriptome’. 

- Prior alignment to host with bwa 
bwa54 v0.7.17 was installed from source. The ‘bwa index’ command was used to generate 
a bwa index from the concatenated macaque and dog genomes (Mmul_10 and 
ROS_Cfam_1.0 from Ensembl v109). The raw sequencing reads were subsequently 
aligned to the bwa index using the ‘bwa mem’ command, aligning each file separately. For 
each FASTQ file, the names of all unmapped reads were extracted using ‘samtools view’ 
(SAMtools40 v1.6), and a new FASTQ file including only unmapped sequences was 
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generated using the ‘seqtk subseq’ command (v1.4; https://github.com/lh3/seqtk). The 
resulting FASTQ files containing the sequencing reads that did not map to the host 
genomes were aligned to the optimized PalmDB reference files using kallisto translated 
search.  

Extraction and BLAST alignment of viral reads 
Randomly selected sequencing reads from three libraries that included reads that mapped 
to the viruses of interest were aligned to the optimized PalmDB with kallisto translated 
search including the ‘-n’ flag, without any host read masking. Reads that mapped to the 
viruses of interest were subsequently captured and extracted from the raw sequencing 
FASTQ files using ‘bustools capture’ and ‘bustools extract’.  

BLAST+55,56 v2.14.1 was installed from source and the BLAST nt database was 
downloaded using the update_blastdb.pl command. 10 reads were randomly chosen for 
each target virus for each library and were BLASTed against the nt database using the 
blastn algorithm. Sequences that aligned to the polyA tail were recognized by the 
occurrence of ‘AAAAAAAAAAAA’ or ‘TTTTTTTTTTTT’ in the aligned part of the 
subject or query sequences and removed from the results. BLAST results were 
subsequently plotted using pyCirclize.Circos (v1.0.0; 
https://github.com/moshi4/pyCirclize). 

Virus quality control 
The viral count matrix generated using the ‘Host read capture with kallisto + D-list genome 
+ transcriptome’ masking workflow was converted to h5ad using kb_python.utils.kb_utils 
and read into Python using anndata v0.8.0. Metadata such as donor animal, the presence of 
an MDCK spike-in, and time point were added to the AnnData object from the SRR library 
metadata provided by Kotliar et al.37. For each cell, the host species and cell type were 
added from the host matrices generated as described above. The virus count matrix was 
subsequently binarized, such that for each cell, each virus was either present or absent. The 
viruses were thresholded to viruses that were observed in ≥ 0.05 % of cells in either species. 

Virus categorization into shared, ‘macaque only’, and ‘MDCK only’ viruses 
For each virus ID, the virus was defined as ‘shared’ if the fold change between the fraction 
of positive macaque cells and the fraction of positive MDCK cells was less than or equal 
to 2. Viruses were assigned the category ‘macaque only’ if the virus was seen in ≥ 0.05 % 
of macaque cells and ≤ 7 MDCK cells, and vice versa for the category ‘MDCK only’. 
These thresholds were defined based on the percentages of positive cells observed for each 
virus in each species, as shown in Fig. 3.6b. 

Generation of the Krona plot 
KronaTools62 v2.8.1 was installed from source. We generated a data frame containing the 
total numbers of positive cells for each sOTU seen in ≥ 0.05 % of macaque cells for each 
animal and time point (including only cells that passed host cell quality control). The 
ktImportText tool was used to generate a Krona plot HTML file from a text file generated 
from this data frame. 

https://github.com/lh3/seqtk
https://github.com/moshi4/pyCirclize
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Logistic regression models to predict viral presence based on host gene expression 
Logistic regression models the log odds of an event as a weighted linear combination of 
some predictor variables. That is, the natural log of the ratio of the probability 𝑝 that an 
event occurs to the probability that it does not occur is modeled:  

 

where each 𝑥! is a predictor variable with corresponding weight 𝛽! and 𝛽" is an intercept. 
Here, 𝑝 is the probability of viral presence or absence in a given cell, predicted based on a 
linear combination of normalized host gene count values (denoted as 𝑥 with a total of 𝐺 
modeled genes). Viral presence or absence is modeled for a single virus at a time. To 
control for covariates, we also included animal identifier (denoted as 𝑦 with a total of 𝐴 
animals) and time point (denoted as 𝑧 with a total of 𝑇 time points), which were one-hot 
encoded for fits: 

 

The magnitude of the weight value for each predictor variable corresponds to that 
variable’s influence on event probability, with large positive weights increasing the 
probability and large negative weights decreasing the probability of the event. Thus, for 
our purposes, an analysis of gene weights suggests which genes are likely to correlate with 
viral infection. For models parameterized by highly variable (HV) genes, the host 
(macaque) matrix was subset to highly variable genes as defined above. To reduce the 
occurrence of false negative viral counts, the logistic regression models were trained using 
the viral count matrix obtained without any masking of the host genes. However, the 
models were trained for viruses that were filtered based on the more conservative masking 
options (‘macaque only’ and ‘shared’ viruses). To further reduce the occurrence of false 
negative viral counts, we filtered the virus and host matrices to include only the top 50 % 
of cells according to the sum of raw host reads per cell before training the models. This 
was done to reduce the effects introduced by varying sequencing depths. For example, cells 
with a lower sequencing depth will have a higher likelihood of a false negative viral count.   

For viruses with more virus-negative than virus-positive cells, half of the virus-positive 
cells and an equal number of virus-negative cells were randomly selected to train the 
logistic regression models. For viruses with more virus-positive than virus-negative cells, 
half of the virus-negative cells and an equal number of virus-positive cells were randomly 
selected for training. In both cases, the remaining cells were held out for testing the 
performance of trained models. Given the cell type specificity of the viruses whose 
presence could be predicted with high accuracy, we wanted to confirm that we were not 
simply predicting cell type. To this end, virus-negative training cells were selected to be of 
the same cell types as virus-positive cells (Extended Data Fig. 3.8d). The number of 
training and testing cells for each virus are shown in Extended Data Fig. 3.8c. 
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For models that included covariates, donor animal and EVD time point were one-hot 
encoded and appended to the gene expression training matrix. All models included an 
intercept. Models were trained with L2 weight regularization using the 
sklearn.linear_model.LogisticRegression (sklearn v1.0.1) classifier with a maximum of 
100 iterations to predict the probability of viral presence at single-cell resolution. Virus-
positive cells were assigned class label 1, and virus-negative cells were assigned class label 
0. All four possible combinations of two modeling choices (highly variable versus all 
genes, and covariates versus no covariates) were tested, and the results are shown in Fig. 
3.8c. Accuracy, specificity, and sensitivity were calculated for each model on the held-out 
testing cells (Extended Data Fig. 3.8a). A negative control where labels of viral presence 
and absence for each virus were randomly scrambled in the training data was included in 
the modeling experiments. For the scrambled labels, the original ratio of virus-positive to 
virus-negative cells was maintained.  

All results were averaged across models generated using six different random seeds for 
parameter optimization and random selection of cells for training and testing. 

Enrichment analysis of predictive genes 
Of the top 50 highly variable macaque genes with the largest positive average weights in 
the regression model we selected those for which the standard deviation of the weights was 
less than half than the lowest weight. Here, we used the model trained on highly variable 
genes with covariates donor animal and time point. The gene weight distributions and 
thresholds are shown in Extended Data Fig. 3.9a. Approximately one third of the macaque 
Ensembl IDs did not have annotated gene names. We used gget45 to translate annotated 
Ensembl IDs to gene symbols and to perform enrichment analysis on the returned gene 
symbols using Enrichr71 against the 2023 Gene Ontology (GO) Biological Processes 
database (‘GO_Biological_Process_2023’)72. The reported P values were corrected with 
the Benjamini-Hochberg method73.  
  



 

 

53 
Data availability 
 

Sample Methods Data shown 
in 

DOI GEO 
accession 

Lung autopsy 
samples from 

COVID-19 patients 

Bulk RNA 
sequencing; 
RNA-ISH 

Fig. 3.3a https://doi.org
/10.1038/s414

67-020-
20139-7 

GSE150316 

Self-collected 
saliva, anterior 
nares swab, and 

oropharyngeal swab 
samples from 

individuals enrolled 
in a COVID-19 

household 
transmission study 

Bulk RNA 
sequencing 
with viral 

surveillance 
panel 

enrichment 
(Illumina Cat. 
20040536 and 

20088154); 
RT-qPCR 

Fig. 3.3a https://doi.org
/10.1128/spec
trum.03873-

22 
 

https://doi.org
/10.1093/pnas
nexus/pgad03

3 

Raw 
sequencing 
data is not 
publicly 

available per 
participant 

privacy 
practices 

SARS-CoV-2 
infected human 
iPSC derived 

cardiomyocytes 

SMART-Seq 
V4 

Fig. 3.3a https://doi.org
/10.1016/j.xcr
m.2020.1000

52 

GSM4548303 

Blood samples from 
rhesus macaques 

infected with Zaire 
ebolavirus 

Seq-Well S3; 
RT-qPCR 

Fig. 3.2-8; 
Extended 
Data Fig. 

3.1-9 

https://doi.org
/10.1016/j.cel
l.2020.10.002 

GSE158390 

Lungs from APOE 
knock-in mice 
infected with 
SARS-CoV-2 

SPLiT-Seq  
(Parse 

Biosciences) 

Extended 
Data Fig. 

3.4c 

https://doi.org
/10.1038/s415

86-022-
05344-2 

GSM5974202 

Table 3.1: Availability of data analyzed in this paper. 
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File Description Category 
viral sequences in 

laboratory 
reagents.h5ad 

Count matrix containing virus-like sequences found in sequencing 
libraries comprised of only sterile water and laboratory reagents 

Alignment of ‘blank’ 
sequencing libraries 

to the PalmDB 

host alignment 
results.zip 

Raw alignment results obtained by kallisto after alignment to the 
macaque and dog (to account for the MDCK spike-in) 

transcriptomes 
Alignment of the 
macaque PBMC 
data37 to the host 
transcriptome(s)  

host QC.h5ad Filtered count matrix containing all host cells 
canis QC norm 

leiden.h5ad Filtered and clustered count matrix containing MDCK cells 

macaque QC norm 
leiden.h5ad Filtered and clustered count matrix containing macaque cells 

macaque QC norm 
leiden celltypes.h5ad 

Filtered and clustered count matrix containing macaque cells with 
cell type assignments 

virus no mask 
alignment results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB without masking host sequences 

Alignment of the 
macaque PBMC 

data37 to the PalmDB 
for the detection of 

viral RNA with 
different workflows 
for the masking of 
host genome(s) and 

transcriptome(s) 

virus no mask.h5ad Count matrix obtained through the alignment above with added 
metadata 

virus dlist cdna 
alignment results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host transcriptome(s) using 

the D-list 

virus dlist cdna.h5ad Count matrix obtained through the alignment above with added 
metadata 

virus dlist dna 
alignment results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) using the 

D-list 

virus dlist dna.h5ad Count matrix obtained through the alignment above with added 
metadata 

virus dlist cdna dna 
alignment results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) and 

transcriptome(s) using the D-list 
virus dlist cdna 

dna.h5ad 
Count matrix obtained through the alignment above with added 

metadata 

virus dlist cdna dna 
amb alignment 

results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) and 

transcriptome(s) using the D-list + forcing ambiguous sequences to 
be discarded 

virus dlist cdna dna 
ambiguous.h5ad 

Count matrix obtained through the alignment above with added 
metadata 

virus host capture 
alignment 

results.tar.gz 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB + reads that align to the host 

transcriptome(s) were captured 
virus host-

captured.h5ad 
Count matrix obtained through the alignment above with added 

metadata 

virus host capture dlist 
cdna dna alignment 

results.tar.gz 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) and 
transcriptome(s) using the D-list + reads that align to the host 

transcriptome(s) were captured 
virus host-captured 
dlist cdna dna.h5ad 

Count matrix obtained through the alignment above with added 
metadata 

bwa unmapped 
reads.tar.gz 

Raw sequencing files obtained after removal of host sequences based 
on alignment with bwa 

virus bwa alignment 
results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB after reads that align to the host genome(s) 

with bwa were removed 

virus bwa.h5ad Count matrix obtained through the alignment above with added 
metadata 
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models.zip Logistic regression models to predict viral presence based on host 

gene expression 
Logistic regression 

models 
palmdb human dlist 

cdna dna.idx 
Pre-computed PalmDB reference index with human genomic and 

transcriptomic sequences masked using D-list 
Pre-computed 

references for future 
use with kallisto 
translated search 

palmdb mouse dlist 
cdna dna.idx 

Pre-computed PalmDB reference index with mouse genomic and 
transcriptomic sequences masked using D-list 

Table 3.2: Availability of data generated in this paper. The data is available on Caltech Data under the DOIs 
10.22002/krqmp-5hy81 and 10.22002/k7xqw-88d74. 

The PalmDB reference files optimized for use with kallisto translated search for the 
identification of viral sequences in bulk and single-cell RNA sequencing data are available 
here: https://tinyurl.com/4wd33rey. 

The data generated in this paper is freely and publicly available on Caltech Data under the 
DOIs 10.22002/krqmp-5hy81 and 10.22002/k7xqw-88d74. 

Code availability 
The code used to generate all of the results and figures reported in this paper, starting from 
the raw sequencing reads, can be found here: 
https://github.com/pachterlab/LSCHWCP_2023. The code is organized by figure panel 
and provided in immediately executable Google Colab notebooks to maximize the 
reproducibility of the results and methods described in this manuscript.  
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Extended Data Table 3.1: Virus ID to species-like operational taxonomic unit (sOTU) mapping for the 
most highly expressed viruses (in the same order as shown in Fig. 3.6d). Virus IDs that are further 
mentioned in the paper are marked in blue. Virus IDs not included in this list are of unknown taxonomy 
across all taxonomic ranks. 

Virus ID Phylum Class Order Family Genus Species 
u102540 Pisuviricota Pisoniviricetes Nidovirales Coronaviridae Alphacoronavirus . 
u10 Negarnaviricota Monjiviricetes Mononegavirales Filoviridae Ebolavirus Zaire ebolavirus 
u10240 Pisuviricota Pisoniviricetes Nidovirales Arteriviridae . . 
u1001 Negarnaviricota Insthoviricetes Articulavirales Orthomyxoviridae Alphainfluenzavirus Influenza A virus 
u100291 Negarnaviricota Monjiviricetes Mononegavirales . . . 
u103829 Negarnaviricota Insthoviricetes Articulavirales Orthomyxoviridae . . 
u110641 Duplornaviricota Resentoviricetes Reovirales Reoviridae . . 
u101227 Pisuviricota Pisoniviricetes Picornavirales Picornaviridae . . 
u100188 Kitrinoviricota Alsuviricetes Martellivirales Closteroviridae . . 

u27694 Peploviricota Herviviricetes Herpesvirales Herpesviridae Varicellovirus 
Bubaline 
alphaherpesvirus 1 

u100245 . . . Fusariviridae . . 
u10015 Duplornaviricota Chrymotiviricetes Ghabrivirales Totiviridae . . 
u100733 Negarnaviricota . . . . . 
u100173 Lenarviricota Miaviricetes Ourlivirales Botourmiaviridae Ourmiavirus . 
u100196 Negarnaviricota Monjiviricetes . . . . 
u100599 Negarnaviricota Ellioviricetes . . . . 
u100644 Lenarviricota Amabiliviricetes Wolframvirales . . . 
u100296 Pisuviricota Pisoniviricetes Picornavirales Dicistroviridae . . 
u100017 Lenarviricota Allassoviricetes Levivirales Leviviridae . . 
u100002 Lenarviricota Allassoviricetes Levivirales . . . 
u100012 Lenarviricota Allassoviricetes . . . . 
u100024 Pisuviricota Duplopiviricetes Durnavirales Picobirnaviridae . . 
u100048 Lenarviricota Amabiliviricetes . . . . 
u100302 Negarnaviricota Monjiviricetes Mononegavirales Rhabdoviridae . . 
u100074 Lenarviricota Howeltoviricetes Cryppavirales . . . 
u100289 Negarnaviricota Ellioviricetes Bunyavirales . . . 
u100026 Pisuviricota Duplopiviricetes Durnavirales . . . 
u100111 Duplornaviricota Chrymotiviricetes Ghabrivirales . . . 
u100139 Kitrinoviricota Alsuviricetes Martellivirales . . . 
u100154 Pisuviricota Duplopiviricetes Durnavirales Amalgaviridae . . 
u100251 Pisuviricota Duplopiviricetes . . . . 
u100177 Kitrinoviricota Tolucaviricetes Tolivirales . . . 
u100215 Duplornaviricota Chrymotiviricetes . . . . 
u100049 Lenarviricota Miaviricetes . . . . 
u100000 Kitrinoviricota Tolucaviricetes Tolivirales Tombusviridae . . 
u100001 Lenarviricota Howeltoviricetes Cryppavirales Mitoviridae . . 
u100007 Lenarviricota . . . . . 
u100004 Lenarviricota Miaviricetes Ourlivirales . . . 
u100011 Lenarviricota Howeltoviricetes . . . . 
u100093 Pisuviricota Duplopiviricetes Durnavirales Partitiviridae . . 
u100116 Pisuviricota Pisoniviricetes . . . . 
u100019 Pisuviricota Duplopiviricetes Durnavirales Picobirnaviridae Picobirnavirus . 
u100076 Kitrinoviricota Tolucaviricetes . . . . 
u100028 Pisuviricota . . . . . 
u100153 Lenarviricota Miaviricetes Ourlivirales Botourmiaviridae . . 
u100031 Kitrinoviricota Alsuviricetes . . . . 
u100145 Pisuviricota Pisoniviricetes Sobelivirales . . . 
u102324 Pisuviricota Pisoniviricetes Picornavirales Iflaviridae . . 
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Extended Data Fig. 3.1: 676 ZEBOV RdRP sequences were identified by aligning a subset of 100,000,000 
single-cell RNA sequencing reads of macaque PBMC samples obtained at 8 days post-infection with 
ZEBOV37 to the optimized PalmDB using kallisto translated search. We subsequently aligned the sequences 
to PalmDB reference indices from which (i) all Ebolavirus species were removed (dark blue), (ii) all 
Ebolavirus genera were removed (medium blue), or (iii) all Filoviridae were removed (light blue). In each 
scenario, a subset of sequences aligned to the nearest remaining relative based on the main taxonomic rank, 
suggesting that kallisto translated search can detect the highly conserved RdRP of a large number of viral 
species, beyond the number of sequences in the PalmDB database, while still providing reliable sOTU-based 
taxonomic assignment of lower-rank taxonomies. 
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Extended Data Fig. 3.2: Visualization of the identification of RdRP sequences with kallisto translated 
search. We selected a subset of 100,000,000 reads obtained using Seq-Well sequencing of macaque 
peripheral blood mononuclear cell (PBMC) samples obtained at 8 days post-infection with ZEBOV37. We 
aligned the reads to the PalmDB amino acid sequences with kallisto translated search. We also aligned the 
reads to the complete ZEBOV nucleotide genome using Kraken2 (standard nucleotide alignment)27. Aligned 
reads from both alignments were extracted and realigned to the ZEBOV genome using bowtie239, a BAM 
file was created using SAMtools40, and the alignment was subsequently visualized NCBI Genome 
Workbench41.  
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 Figure legend on next page.  
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Extended Data Fig. 3.3: a, Knee plot of sorted total UMI counts per cell and library saturation plot of 
host (rhesus macaque and MDCK) cells sequenced by Kotliar et al.37 b, Canis lupus (dog/MDCK) over 
Macaca mulatta (macaque) UMI count for each cell. Cells were categorized as macaque if a maximum of 10 
% of their UMIs originated from dog genes and vice versa. c, The obtained numbers of macaque, dog 
(MDCK), and uncategorized cells after species separation. d, Mean expression of marker genes used for cell 
type assignment per macaque Leiden cluster. The barplot shows the number of cells in each cluster. Cluster 
‘Undefined 1’ was omitted because it only contained 12 cells. e, Frequency of host and viral gene counts in 
individual cells. 
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Figure legend on next page.  
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Extended Data Fig. 3.4: a, Schematic overview of different host masking options, extending the masking 
options shown in Fig. 3.4a. Reads that align to PalmDB and are considered viral are marked in orange, and 
reads that align to the host genome or transcriptome are marked in black or grey, respectively. The barplot 
shows the number of distinct sOTUs, defined by distinct virus IDs, observed in ≥ 0.05 % of cells for each 
workflow. b, Precision of species-level taxonomic assignment at increasing simulated mutation rates. 
Mutation-Simulator48 was used to add random single nucleotide base substitutions to 676 ZEBOV RdRP 
sequences obtained by Seq-Well sequencing37 at increasing mutation rates. We performed 10 simulations per 
mutation rate. The sequences were subsequently aligned using kallisto translated search against the complete 
PalmDB. The recall percentages at each mutation rate are shown in Fig. 3.2c. c, Fraction of counts obtained 
for the known viral infection (here, SARS-CoV-2) and per viral strandedness of other sOTUs per primer 
type. Lung samples from mice infected with SARS-CoV2 were sequenced with SPLiT-Seq85 and aligned to 
PalmDB using kallisto translated search using the D-list to mask the host (here, mouse) genome. The plot 
shows the fraction of counts obtained for SARS-CoV as well as all sOTUs of different strandedness per 
primer type. d, The de Bruijn graph generated from the reverse translated PalmDB sequences in the kallisto 
translated search workflow, visualized and colored using Bandage v0.8.186.  
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Extended Data Fig. 3.5: The number of positive cells for each individual virus ID obtained by different host 
masking options. Each virus ID shown here was observed in ≥ 0.05 % of cells. The host masking options are 
visualized in Extended Data Fig. 3.4a. 
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Extended Data Fig. 3.6: Number of positive cells per 10k cells for virus-like sequences from genera known 
to infect rhesus macaques61 in the data from Kotliar et al.37 analyzed using kallisto translated search with 
PalmDB. Host sequences were masked using the D-list option with the host genomes and transcriptomes, 
followed by host read capture using kallisto. No quality control thresholding of virus-like sequences was 
performed prior to generating this plot and the majority of these virus-like sequences were filtered out during 
quality control, and identification of contaminating sequences. 
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Extended Data Fig. 3.7: a, For each virus ID, the fraction of positive animal (top) and time point (bottom) 
samples was plotted. A sample was considered positive if at least 0.05 % of cells were positive. b, The 
number of positive cells for each virus ID or any combination of virus IDs for the count matrices generated 
from host-masked reads (D-list host genome and transcriptome + host transcriptome read capture) (left) and 
reads without any host masking (right). A large amount of reads for u202260 were masked when 
conservatively removing host reads (Fig. 3.5a). The plots were generated using PyVenn 
(https://github.com/tctianchi/pyvenn). 

 

  

https://github.com/tctianchi/pyvenn
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Figure legend on next page. 
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Extended Data Fig. 3.8: a, We trained logistic regression models to predict the presence of specific 
viruses based on host gene expression at single-cell resolution. The average accuracy, specificity, and 
sensitivity of the logistic regression models trained on highly variable (HV) or all macaque genes with or 
without donor animal and EVD time point as covariates are shown for ZEBOV (u10) and five novel virus-
like sequences. Error bars indicate the standard deviation between models initialized with different random 
seeds. As a negative control, viral presence and absence labels were scrambled at random in the training data. 
b, Correlations of the average weights of predictive genes for models trained on HV genes with and without 
covariates on the real and scrambled labels. The weight correlations are lost when the model is trained using 
the scrambled labels. Virus IDs with high cell type specificity have slightly higher correlations than those 
with low cell type specificity. The color bar indicates the standard deviation (SD) of gene weights generated 
using different random seeds in the model trained on HV genes with covariates. The weights were max 
normalized between random seeds before computing the average and SD. c, The number of cells used to train 
and test the logistic regression models for ZEBOV (u10) and five novel virus-like sequences. d, Total number 
of training cells per cell type. The total consists of an equal number of virus-positive and -negative cells. e, 
Average prediction accuracy of models trained on HV genes with donor animal and EVD time point as 
covariates for all ‘macaque only’ and ‘shared’ viruses. Error bars indicate the standard deviation between 
models initialized with different random seeds.   
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Figure legend on next page. 
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Extended Data Fig. 3.9: a, Average weight distributions of predictive genes from the models trained on 
highly variable genes with donor and time point as covariates for the four virus-like sequences with high 
predictive accuracy. The weights were averaged across models initialized using different random seeds and 
the standard deviations (SD) of the weights between seeds are shown in red. Gene weights were max 
normalized between random seeds before computing the average and SD. The dashed, grey lines indicate the 
minimum average gene weight and maximum SD for genes included in the enrichment analysis. b, 
Enrichment analysis of predictive genes from the regression model trained on highly variable genes with 
donor and time point as covariates. Approximately one third of the macaque Ensembl IDs did not have 
annotated gene names, which is a common problem for genomes from non-model organisms. We used gget45 
to translate annotated Ensembl IDs to gene symbols and to perform enrichment analysis using Enrichr71 
against the 2023 Gene Ontology (GO) Biological Processes database (‘GO_Biological_Process_2023)72. 
Gene names are listed on the bar plot. Reported P values were corrected with the Benjamini-Hochberg 
method. c, Sequencing reads were obtained by sequencing multiple ‘blank’ sequencing libraries containing 
only sterile water and reagent mix. The plot shows the fraction of reads that map to different virus IDs for 
each sequencing technology. The fractions were normalized to the total number of reads obtained for each 
technology. The data was generated by Porter et al.63 and analyzed using kallisto translated search with 
PalmDB. Virus IDs also detected in the macaque dataset are marked in red. 
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Figure legend on next page.  



 

 

72 
Extended Data Fig. 3.10: a, Hamming distances between amino acids in the comma-free code (left) and 
a second code that maximizes Hamming distances between amino acids that occur most often (right). b, We 
reverse translated all amino acid sequences in the PalmDB using the ‘standard’ genetic code (see Methods). 
The reverse translated PalmDB RdRP sequences were subsequently aligned to the optimized PalmDB amino 
acid reference (see Methods) with kallisto translated search. The left plot shows the expected and observed 
counts for each sOTU when kallisto performs the pseudoalignment in the comma-free code space. The plot 
on the right shows the expected and observed counts for each sOTU when kallisto performs the 
pseudoalignment using a second code that maximizes the Hamming distances between reverse translated 
amino acids. c, Occurrence of each amino acid in the PalmDB. d, Percentage of differing amino acids or 
nucleotides between 10,000 sequences randomly selected from the PalmDB before and after reverse 
translation using the standard genetic code (optimized for human) and comma-free code. e, The virus orders 
of RdRP sequences sorted based on their clustering by MMseqs279 (see Methods).    
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C h a p t e r  4  

TRANSCRIPTOMICS IN NON-MODEL ORGANISMS – PART I 

Challenges and Solutions 

The first step in the analysis of single-cell RNA sequencing data following standard 
analysis workflows is the alignment of the data to a reference genome. This assumes that 
a reference genome for the species of interest is available. As discussed in Chapter 2, the 
number of viruses with the potential to cause human infectious disease is eclipsed by the 
comparatively few viruses with complete reference genomes. In the workflows described 
in Chapter 2, this challenge is overcome by identifying protein domains that were highly 
conserved across species. Assuming that a genome is available, the alignment quality will 
depend on the quality of the genome assembly, including the percentage of gaps in the 
assembly, annotation of protein-encoding and non-coding genes, including isoforms and 
gene candidates, and haplotype completeness. While there are high-quality genome 
assemblies for widely studied organisms such as human, mouse, and rhesus macaque, the 
quality of genome assemblies for other species quickly decreases (Figure 4.1).  

The following subchapter presents the 
results obtained through single-cell 
RNA sequencing of the non-model 
organism Taeniopygia guttata (zebra 
finch). This dataset was the first 
single-cell RNA sequencing dataset 
generated from zebra finch tissue. 
While the zebra finch was the second 
avian species, after chicken, to have its 
genome sequenced, at the time the 
analysis discussed below was 
performed, the zebra finch genome 
coverage was only 88.2x with a contig 
N50 of 12 Mb (compared to 67.8 Mb 
for the human genome assembly 
GRCh38). Moreover, depending on 
which assembly and version are used, 
different results may be obtained. This 
problem is further complicated when 
the difference between reference 
genomes is not documented 
comprehensively. 

Figure 4.1 Number of gaps and contig N50 lengths for 
different mammalian genomes, including human 
(GRCh38.p13), mouse (GRCm38.p6), and rhesus 
macaque (Mmul_10). Reproduced from Warren et al.1  
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For example, between the zebra finch reference genomes GCA_003957565.2 (available on 
Ensembl) and GCA_003957565.4 (available on NCBI), the haplotypes were switched, 
with bTaeGut1_v1 containing the first haplotype (GCA_003957565.2) and bTaeGut1.4.pri 
the alternative haplotype (GCA_003957565.4). Both genomes should be derived from the 
male zebra finch ‘Black17’. However, according to the fna files of bTaeGut1.4.pri 
(GCA_003957565.4) provided by RefSeq (GCF_003957565.2 as listed on 
https://www.ncbi.nlm.nih.gov/assembly/GCA_003957565.4), all chromosomes originated 
from the female zebra finch ‘Blue55’. Moreover, only bTaeGut1.4.pri includes information 
from mitochondrial (MT) chromosomes, which is crucial for the assessment of cell health. 
The bTaeGut1.4.pri fna file provided by GenBank (GCA_003957565.4) is annotated as 
Black17, as expected (GCA_003957565.4_bTaeGut1.4.pri_genomic.fna). However, MT 
chromosomes are not immediately included, but available in a separate fna file. 
Additionally, chromosome W from the female bird Blue 55 is also not included in the 
general fna file, but is available when each chromosome is downloaded separately. This is 
not a problem for the analysis below, since all of those animals were male.  

To make sense of the different assemblies and allow reproducible retrieval over time as 
assemblies get updated, I developed the gget ref module3, which allows version-controlled 
retrieval of genome assemblies from Ensembl2 (further described in Chapter 2). 

Beyond incomplete genome sequence coverage, lower-quality reference genome 
assemblies tend to lack transcriptome annotations. In Ensembl genome assemblies, genes 
and transcripts are annotated with Ensembl IDs. For example, gene ENSG00000167360 
encodes transcript ENST00000300778. Since these IDs do not contain any biological 
information, ideally, each ID has metadata associated with it, including the gene name and 
a description. However, in the zebra finch assembly GCA_003957565.2 (May 2019), 23.8 
% of Ensembl IDs had no associated metadata. This often led to unannotated genes of 
interest obtained through clustering and differential gene expression analyses (described in 
the following subchapter). As a result, the Ensembl ID was the only information obtained 
about the gene of interest, which does not allow any further biological interpretation. This 
problem was the initial motivation behind writing the first gget3 module, gget info (also see 
Chapter 2), which facilitates the retrieval of metadata about a gene from its Ensembl ID by 
combining information from several databases, including Ensembl2, NCBI4, and UniProt5. 

Figure 4.2 Example commands and results obtained using the gget search module for the search term ‘HLA-
DRA,’ showing how the annotation for this gene changed between two different Ensembl releases (109 and 
110). 

https://www.ncbi.nlm.nih.gov/assembly/GCA_003957565.4
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Combining information from different databases increases the chance of finding 
information for genes with little to no annotation on Ensembl and allows the comparison 
of information stored in each database. Moreover, gget’s database version arguments allow 
continued reproducibility over time as databases get updated (Figure 4.2 shows an example 
of a gene name change between Ensembl releases). The gget search module allows 
conversion in the other direction, from search terms or gene names to Ensembl IDs. Later 
modules, such as gget blast and gget seq, enable the retrieval of information about 
homologous genes in other species, which potentially have more extensively annotated 
reference genomes. Overall, the gget suite of tools allows leveraging reference genome 
annotation across databases and species, allowing the analysis and interpretation of 
sequencing data from species with sparsely annotated reference genomes. 

Augmenting transcriptome metadata using gget does not solve the second problem of low-
quality reference genomes: low coverage. Efforts such as the international Genome 10K 
(G10K) consortium6 are working to develop cost-effective methods for producing high-
quality, comprehensive reference genome assemblies. Moreover, the translated alignment 
algorithm described in Chapter 3 may be co-opted to align bulk and single-cell RNA 
sequencing data to reference proteomes from homologous species. Alignment in the amino 
acid space will make the alignment more robust to silent nucleotide substitutions between 
homologs and potentially allow the analysis of sequencing data from species with a missing 
or low-quality reference genome.  
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TRANSCRIPTOMICS IN NON-MODEL ORGANISMS – PART II 

Neuronal Dynamics of Behavior Recovery in Zebra Finches 

Preamble 
Here, single-cell RNA sequencing is used to investigate the neuronal dynamics underlying 
the recovery of a learned behavior after chronically silencing inhibitory neurons in zebra 
finches. Beyond the challenges of studying a non-model organism described in the previous 
subchapter, this analysis was further complicated by the experimental design comparing 
two conditions. Here, I am only including the relevant single-cell RNA sequencing results 
and methods from the published paper. 

Zsofia Torok, Laura Luebbert, Jordan Feldman, Alison Duffy, Alexander A. Nevue, 
Shelyn Wongso, Claudio V. Mello, Adrienne Fairhall, Lior Pachter, Walter G. Gonzalez, 
Carlos Lois (2023). Recovery of a learned behavior despite partial restoration of neuronal 
dynamics after chronic inactivation of inhibitory neurons. bioRxiv. 
https://doi.org/10.1101/2023.05.17.541057 

Summary 
Maintaining motor skills is crucial for an animal’s survival, enabling it to endure diverse 
perturbations throughout its lifespan, such as trauma, disease, and aging. What mechanisms 
orchestrate brain circuit reorganization and recovery to preserve the stability of behavior 
despite the continued presence of a disturbance? To investigate this question, we 
chronically silenced inhibitory neurons, which altered brain activity and severely perturbed 
a complex learned behavior for around two months, after which it was precisely restored. 
Electrophysiology recordings revealed abnormal offline dynamics resulting from chronic 
inhibition loss, while subsequent recovery of the behavior occurred despite partial 
normalization of brain activity. Single-cell RNA sequencing revealed that chronic 
silencing of interneurons leads to elevated levels of microglia and MHC I. These 
experiments demonstrate that the adult brain can overcome extended periods of drastic 
abnormal activity. The reactivation of mechanisms employed during learning, including 
offline neuronal dynamics and upregulation of MHC I and microglia, could facilitate the 
recovery process following perturbation of the adult brain. These findings indicate that 
some forms of brain plasticity may persist in a dormant state in the adult brain until they 
are recruited for circuit restoration. 

Introduction  
Maintaining the ability to precisely execute motor behavior throughout life, despite 
perturbations due to trauma, disease, or aging, is crucial for reproduction and survival. To 
reliably execute behaviors, brain circuits require a balance of excitation and inhibition (E/I 
balance) to maintain physiological activity patterns. Loss of E/I balance causes abnormal 
patterns of neuronal activity, which can result in diseases such as epilepsy 1,2. Given its 
importance, brain circuits strive to restore E/I balance once disturbed 3. However, the 

https://doi.org/10.1101/2023.05.17.541057
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mechanisms orchestrating circuit reorganization and recovery of E/I balance during the 
continued presence of a perturbation remain poorly understood. 

Zebra finches produce a highly stereotyped song with minimal variability over extended 
periods of time 4, underpinned by temporally precise neural activity 5. This species thus 
provides an optimal model to simultaneously track abnormal brain activity, its effect on 
behavior, and changes to both over time. It serves as an excellent model for studying 
chronic E/I imbalance and accompanying changes over time at the behavioral, neuronal, 
and transcriptomic levels.  

Graphical Abstract Schematic overview of the experiments performed in this study. To investigate how a 
complex motor behavior recovers after chronic loss of inhibitory tone, we blocked the function of zebra finch 
HVC inhibitory neurons by bilateral stereotaxic injection of an AAV viral vector into HVC. Throughout 
various timepoints in this perturbation paradigm, we recorded song behavioral data, electrophysiological 
measurements (chronic and acute within HVC), and measured changes in gene expression at single-cell 
resolution. 
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Here, we genetically block inhibitory neurons in HVC (proper name), a premotor brain 
nucleus of the male zebra finch involved in song production, to chronically perturb the E/I 
balance. HVC contains two main types of excitatory neurons that project to two main 
downstream targets: nucleus X (proper name) and nucleus RA (robust nucleus of the 
arcopallium). In addition, HVC includes several types of inhibitory neurons whose axons 
do not leave HVC; thus, they act locally within HVC 5. Juvenile male zebra finches learn 
their song from their fathers during the “critical period” and once learned, produce a highly 
stereotypical song for the rest of their lives 6. Previous work has shown that inhibition plays 
a role during development to close the critical period and protect learned components of 
the song in juvenile animals 7. Acutely blocking interneuron signaling in adult animals by 
chemicals leads to abnormal behaviors that quickly return to normal once the chemical is 
washed out 8. However, it is not known how long-term disruption of inhibitory neurons 
affects neuronal dynamics, and whether behaviors can recover after such drastic 
perturbation. 

Results 
To investigate how a complex motor behavior recovers after chronic loss of inhibitory tone, 
we blocked the function of HVC inhibitory neurons in adult male zebra finches by bilateral 
stereotaxic injection of an AAV viral vector into HVC. The AAV viral vector carried the 
light chain of tetanus toxin (TeNT), driven by the human dlx5 promoter, which is 
selectively active in inhibitory neurons 9. TeNT blocks the release of neurotransmitters 
from presynaptic terminals, thereby preventing neurons from communicating with their 
postsynaptic partners 10. Thus, expression of TeNT does not directly alter the ability of 
neurons to fire action potentials, but effectively mutes them. As a control, a second group 
of animals was injected with an AAV carrying the green fluorescent protein NeonGreen 
driven by the ubiquitous promoter CAG. Throughout various time points in this 
perturbation paradigm, we recorded song behavioral data, obtained electrophysiological 
measurements (chronic and acute within HVC), and measured changes in gene expression 
at single-cell resolution (Graphical Abstract). 

Single-cell RNA sequencing suggests mechanisms of neuronal plasticity driven by 
microglia and MHC class I genes during song perturbation 
To investigate cellular mechanisms that might underlie the observed changes in neuronal 
activity and behavior at the transcriptomic level, we performed single-cell RNA 
sequencing (scRNAseq) of HVC from control (n=2) and TeNT-treated (n=2) adult male 
zebra finches at 25 dpi, around the time of peak song distortion. HVC from both 
hemispheres of all four birds were dissected based on retrograde tracer fluorescence and 
dissociated to prepare single-cell suspensions, which were indexed and pooled. This 
allowed the construction of a combined dataset, containing results from all organisms and 
conditions, without the need for batch correction (Supplementary Figure 4.1, 
Supplementary Table 4.1). Following quality control, we retained a total of 35,804 single-
cell profiles spanning four individuals, consisting of two control and two TeNT-treated 
animals. 
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Figure legend on next page. 
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While cell type abundance was highly concordant between replicates of the same condition 
(Supplementary Figure 4.1, Figure 4.3 A), we found that animals treated with TeNT we 
found that animals treated with TeNT displayed a three-fold increase in the number of 
microglia (Figure 4.3 B). This increase in microglia was likely not due to an inflammatory 
reaction caused by the surgical procedure or the AAV injection because control animals 
also received a viral injection with a highly similar construct. Thus, we hypothesize that 
the increase in microglia in TeNT-treated animals is a consequence of the chronic muting 
of inhibitory neurons.  

Several studies have shown that microglia play a role in synaptic plasticity during early 
brain development and learning in mammals 32–35. These prior observations in combination 
with our findings suggest that microglia might participate in the synaptic reorganization 
triggered by circuit perturbation. We performed in situ hybridization (ISH) using a probe 
against RGS10, a gene expressed in microglia, during song degradation at 25 dpi and after 
recovery at 90 dpi. At 25 dpi, the number of microglia increased in TeNT-treated animals 
compared to control (Figure 4.4 A, Supplementary Figure 4.2 A and B), and returned to 
control levels by 90 dpi, when the song had recovered.  

To further investigate the hypothesis that microglia are associated with circuit 
reorganization involved in neuronal plasticity, we counted the number of microglial cells 
in HVC at different times during song learning in naive (untreated), juvenile birds using 
ISH. The number of microglia in the HVC of juveniles was higher during the early stages 
of the song learning period (30-50 days post-hatching (dph)), compared to 70 dph, after the 
song became more stereotypic (Figure 4.4 B, Supplementary Figure 4.2 C and D).  

Furthermore, scRNAseq analysis revealed a significant increase in the expression of the α 
chain of major histocompatibility complex class I (MHC I) and β2-microglobulin (B2M) 
across several neuronal cell types in TeNT-treated animals (Figure 4.3 C and D) and 
confirmed the increases in MHC I by ISH (Figure 4.4 C, Supplementary Figure 4.2 E and 
F). MHC class I molecules are heterodimers that consist of two polypeptide chains, α and 

Figure 4.3 Transcriptomic changes at single-cell resolution in HVC at 25 days after chronic loss of 
inhibitory neurons through viral expression of tetanus toxin (TeNT). Single-cell RNA sequencing of the 
HVCs of control (n=2) and TeNT-treated (n=2) animals was performed at 25 days post-injection (dpi). A 
Heatmap showing min-max scaled expression of cell type marker genes for each cell type (data from both 
control and TeNT-treated animals). B Log-fold change in total number of cells per cell type between TeNT-
treated and control animals. C Volcano plot showing statistical significance over magnitude of change of 
differentially expressed genes between TeNT-treated and control animals across all cell types. Dotted lines 
indicate fold change = 1.5 and p value = Bonferroni corrected alpha of 0.05. A list of all differentially 
expressed genes can be found here: https://github.com/lauraluebbert/TL_2023. D Violin plots of 
normalized counts of major histocompatibility complex 1 α chain-like (MHC1) 
(ENSTGUG00000017273.2) and beta 2 microglobulin-like (B2M) (ENSTGUG00000004607.2) genes in 
control (n=2, blue) and TeNT-treated (n=2, red) animals per cell cluster. A star indicates a significant 
increase in gene expression in TeNT-treated animals compared to control (p < 0.05 and fold change > 1.5). 
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B2M, and are involved in antigen presentation for T cells 36. This increase in MHC I and 
B2M is likely triggered by the genetic silencing of inhibitory neurons, and not due to an 
inflammatory response because it was not observed in control animals injected with a 
control virus. MHC I and B2M have been observed in previous studies to be highly 

Figure 4.4 In situ hybridization of microglia marker gene RGS10 in adult male control, TeNT-treated and 
juvenile male HVC & MHC1 gene in adult male control and TeNT-treated HVC. A Histological sections of 
HVC (in control and TeNT-treated animals at 25 and 90 dpi) after in situ hybridization of RNA probes for 
RGS10 (a gene marker for microglia). B Histological sections of HVC in naive juvenile males (at 20, 50, 
and 75 days post-hatching (dph)) after in situ hybridization of RNA probes for RGS10. C Histological 
sections of HVC (from control and TeNT-treated animals at 25 and 90 dpi) after in situ hybridization of 
RNA probes for MHC1. Black/darker dots indicate enzyme reactions resulting in successful probe 
localization and suggest target gene expression. 
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expressed in neurons during brain development 37,38, consistent with a hypothetical role 
in synaptic plasticity 39,40. Here we observe that MHC I and B2M are upregulated in 
response to perturbation of neuronal activity in a fully formed circuit, indicating their 
possible role in the restoration of brain function.  

Discussion 
The brain requires a balance between excitation and inhibition to maintain physiological 
activity patterns and enable reliable behaviors. We found that chronic muting of inhibitory 
neurons in a pre-motor circuit severely disrupts a learned motor behavior for an extended 
period of time (30-90 days). Even after several weeks of perturbed brain activity, the brain 
circuit is able to regain function and recover the behavior, despite failing to restore some 
aspects of its neuronal dynamics. We propose that the return to control-like offline voltage 
deflections and the precision of local neuronal activity during alpha oscillations during 
these deflections are key components that accompany the behavioral recovery. Our 
observations indicate a putative relationship between activity dynamics offline and the 
restoration of circuit function. Furthermore, our data suggest that microglia and MHC I 
may be involved in changes caused by chronic perturbation of neuronal activity. These 
experiments reveal that the adult brain can overcome extended periods of E/I imbalance, 
potentially by processes that occur offline. The reactivation of mechanisms typically 
employed during juvenile learning, including night replay and activation of MHC I and 
microglia, could facilitate the recovery process following perturbation in the adult brain. 
This indicates that some forms of circuit plasticity may persist throughout adulthood, 
entering a dormant state until their activation is required for circuit restoration. 

Methods 
Animals 
All procedures involving zebra finches were approved by the Institutional Animal Care 
and Use Committee of the California Institute of Technology. All birds used in the current 
study were bred in our own colony and housed with multiple conspecific cage mates of 
mixed genders and ages until used for experiments. Before any experiments, adult male 
birds (>120 days post-hatching (dph)) were singly housed in sound isolation cages with a 
14/10 hr light/dark cycle for >5 days until they habituated to the new environment and 
started singing. Thereafter, birds were kept in isolation until the end of the experiment. 

Behavioral recordings 
Adult male zebra finches’ (n=30, 130-890 dph) undirected songs were recorded 24/7 in 
sound-isolated chambers for 10-14 days before any manipulation to get a baseline of their 
song. Recordings were done with microphones (Audio-technica, AT831b) that are 
connected to an amplifier M-TRACK 8 and recording software Sound Analysis Pro 2011 
at 44100 Hz. Animals were housed in these chambers and continuously recorded for the 
duration of the experiments.  

Viral vectors 
AAV-TeNT contained the promoter from the human dlx5 gene driving expression of the 
light chain of tetanus toxin fused to EGFP with a PEST domain. AAV9-dlx-TeNT was 
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obtained from the Duke viral core facility. The control virus used was AAV9-CAG-
NeonGreen, where CAG drives the expression of NeonGreen which is a GFP variant. 

Stereotaxic injection 
Birds were anesthetized with isoflurane (0.5% for initial induction, 0.2% for maintenance) 
and head-fixed on a stereotaxic apparatus. First, to inject a retrograde tracer in area X, 
craniotomies were made bilaterally and fluorescent tracers (fluoro-ruby 10%, 100-300 nL) 
were injected through a glass capillary (tip size ~25 μm) into the corresponding nuclei 
(coordinates from dorsal sinus in mm - area X: Anteroposterior (AP) 3.3-4.2, Mediolateral 
(ML) 1.5-1.6, Deep (D): 3.5-3.8). To deliver the virus (AAV) into HVC, a second surgery 
was performed 7-10 days after retrograde tracer injection. By then, HVC was strongly 
labeled by fluorescence and visible through a fluorescent stereoscope. AAVs diffuse 
extensively (~500 µm), and a single injection (~100 nL) in the center of HVC was sufficient 
to label enough cells. All injections in HVC were performed at ~20 nL/min to minimize 
physical damage. At the end of every surgery, craniotomies were covered with Kwik-Sil, 
and the skin incision was closed with Gluture.  

Chronic electrophysiology recordings 
Animals (n=4, 300-700 dph) were implanted in the right hemisphere HVC with 4 by 4 
electrode arrays (Neuronexus A4x4-3mm-50/100-125-703-CM16LP) based on retrograde 
fluorescent labeling of HVC (just as for viral injections). Post-perfusion histology images 
were obtained to locate the electrode array within HVC for each animal (Supplementary 
Figure 4.3). Electrode implantation occurred within the same surgery as the viral injection. 

This procedure follows the same surgical steps as the viral delivery protocol, until the point 
of electrode implantation. A small opening was cut on the dura (just big enough to fit the 
electrode array) to lower the electrodes manually. The reference and ground were a gold 
screw pin placed into the cerebellum. The skin was removed from the surface of the skull 
for the majority of the surface, in order to secure the implant. Before implantation, the skull 
and the craniotomies were cleaned with saline and dried and the skull was prepared 
according to the protocol of the C&B Metabond cement system. Post implantation we 
covered the craniotomies with kwik-sil. Once hardened, we covered the whole skull, and 
the part of the electrode still exposed, with metabond. The head stage (Intan RHD Part # 
C3335) was connected to the probe before implantation and securely metabonded to the 
connection between the probe and head stage in order to prevent detachment when the bird 
is moving. SPI interface cables (Intan Part #C3203, #C3213) were connected to the 
acquisition board (Open Ephys). Data was recorded at 30,000 Hz with the Open Ephys 
software system. Animals were freely moving with a passive counterweight-based 
commutator system.  

Acute electrophysical recordings  
Animals (n=10, 140-250 dph) went through the same surgical procedure as described for a 
stereotaxic viral injection. However, at the end of the surgery the skin was removed from 
the skull, and the whole skull was pre-treated and covered in metabond except for the 
craniotomies over HVC that were covered with kwik-cast until the day of the acute 
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recording session. Shortly before the recording session, a head-bar was glued on top of 
the frontal surface of the metabonded skull to allow the head-fixation of the bird for the 
recording session. Then, the kwik-cast was removed from the craniotomy over HVC (left 
or right hemisphere or both depending on the animal) and a small incision was made in the 
dure over HVC, which was identified by the retrograde tracer previously injected. The 
ground was placed into the cerebellum. Then the high-density silicone probe (Neuropixel) 
was lowered with a motorized arm over hours for 2.6-3 mm deep into the brain. The head 
stage and acquisition board was connected to the computer and data was recorded with the 
Open Ephys software. Once the probe settled in the brain, we had 4 distinct recording 
sessions. Post-perfusion histology images were obtained to locate electrode array within 
HVC for each animal (Supplementary Figure 4.4). Recording sessions: lights on silence 
(10 min), followed by playback of the bird’s own song (3-10 min); lights-off silence (10 
min), followed by playback of the bird’s own song (3-10 min); microinjection of 100 nL 
250 µM Gabazine (Hellobio, HB0901), followed by the same protocol of lights-off and on 
without Gabazine. 

Single-cell RNA sequencing 
Animals 
All of the work described in this study was approved by California Institute of Technology 
and Oregon Health & Science University’s Institutional Animal Care and Use Committee 
and is in accordance with NIH guidelines. Zebra finches (Taeniopygia guttata) were 
obtained from our own breeding colony or purchased from local breeders.  

Dissociation and cDNA generation 
Animals were anesthetized with a mix of ketamine-xylazine (0.02 mL / 1 gram) and quickly 
decapitated, then the brain was placed into a carbogenated (95% O2, 5% CO2) NMDG-
ACSF petri dish on ice. The brains were dissected on a petri dish with NMDG-ACSF 
surrounded by ice under an epifluorescent microscope guided by the fluoro-ruby retrograde 
tracing from Area X to HVC. 

We used the commercially available Worthington Papain Dissociation system with some 
minor changes and add-on steps. We followed all the steps included in the Worthington 
protocol with a final concentration of 50 U/mL of papain. To match the intrinsic osmolarity 
of neurons in zebra finches we used NMDG-ACSF (~310 mOsm) instead of the EBSS for 
post-dissection and STOP solution. Another modification was to add 20 µL of 1 mg/mL 
Actinomycin D (personal communication from Allan-Hermann Pool; 47) into 1 mL of the 
post-dissection medium and the STOP solution in which trituration occurred. Papain 
digestion occurred for an hour on a rocking surface with constant carbogenation in a 
secondary container above the sample vial at RT. We performed trituration with 
increasingly smaller diameter glass pasteur pipettes. Trituation was performed inside the 
papain solution. Then, once the tissue was fully dissociated, we centrifuged the samples at 
300 g RT for 5 minutes and resuspended them in STOP solution. Next, we used a 40 µm 
Falcon cell strainer pre-wet with the STOP solution and centrifuged again at 300 g RT for 
5 min. Finally, we resuspended the cell pellet in 60µl of STOP solution and proceeded to 
barcoding and cDNA synthesis. The cell barcoding, cDNA synthesis, and library 
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generation protocol were performed according to the Chromium v3.1 next GEM single 
cell 3’ reagent kits by Jeff Park in the Caltech sequencing facility. Sequencing was 
performed on an Illumina Novaseq S4 sequencer with 2x150 bp reads. 

Generation of count matrices 
The reference genome GCA_003957565.2 (Black17, no W) was retrieved from Ensembl 
on March 20, 2021 (http://ftp.ensembl.org/pub/release-104/gtf/taeniopygia_guttata/). We 
quantified the gene expression in each of the four datasets using the kallisto-bustools 
workflow 48. The reference index was built using the kb-python (v0.26.3) ref command 
and the above-mentioned reference genome. Subsequently, the WRE sequence was 
manually added to the cdna and t2g files generated by kallisto-bustools to allow the 
identification of transgenic cells. The count matrix was generated for each dataset using 
the kallisto-bustools count function. The resulting count matrices were compared to those 
generated by the 10X Cell Ranger pipeline (v6.0.1) and kallisto-bustools count with 
multimapping function. For all four datasets, kallisto-bustools mapped approximately 10% 
more reads than Cell Ranger (Supplementary Figure 4.5). No increase in confidently 
mapped reads was observed when using the multimapping function, indicating that reads 
align confidently to one gene in the reference genome (Supplementary Figure 4.5).  

Quality control and filtering  
The datasets were filtered separately based on the expected number of cells and their 
corresponding minimum number of UMI counts (Supplementary Figure 4.6). Following 
quality control based on apoptosis markers and library saturation plots (Supplementary 
Figure 4.6), the count matrices were concatenated and normalized using log(CP10k + 1) 
for downstream dimensionality reduction and visualization using Scanpy’s (v1.9.1) 49 
normalize_total with target sum 10,000 and log1p. Gene names and descriptions for 
Ensembl IDs without annotations were obtained using gget (v0.27.3) 50. 

Dimensionality reduction and normalization 
The concatenated data was mapped to a lower dimensional space by PCA applied to the 
log-normalized counts filtered for highly variable genes using Scanpy’s 
highly_variable_genes. Next, we computed nearest neighbors and conducted Leiden 
clustering 51 using Scanpy.  

Initially, this approach was performed on the control and TeNT datasets separately. This 
resulted in the identification of 19 clusters in the control data and 22 clusters in the TeNT 
data (Supplementary Figure 4.6). For both conditions, equal contribution from both 
datasets indicated that there was minimal batch effect, as expected since the data was 
sequenced in a pooled sequencing run. We also performed batch correction using scVI 52 
which did not change the contribution of each dataset per cluster. As a result, we continued 
the analysis using the data that was not batch-corrected with scVI. 

Next, we concatenated all four datasets and followed the approach described above. This 
resulted in the identification of 21 Leiden clusters, which we also refer to as cell types 
(Figure 4.3 A). Each cluster was manually annotated with a cell type based on the 

http://ftp.ensembl.org/pub/release-104/gtf/taeniopygia_guttata/
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expression of previously established marker genes 53. The cell type annotation was 
validated by the top 20 differentially expressed genes extracted from each cluster using 
Scanpy’s rank_genes_groups (P values were computed using a t-test and adjusted with the 
Bonferroni method for multiple testing) (Supplementary Figure 4.1). Clusters identified as 
glutamatergic neurons were further broken down into HVC-X- and HVC-RA-projecting 
glutamatergic neurons using previously established marker genes (data not shown; also see 
https://github.com/lauraluebbert/TL_2023). We found that reclustering all cells labeled as 
glutamatergic neurons using the Leiden algorithm did not yield different results and we 
therefore continued with the initial clusters (data not shown). All results discussed in this 
paper were confirmed by both jointly and separately clustering the experimental 
conditions. 

Comparative analysis of clusters and conditions 
Differentially expressed genes between clusters were identified using Scanpy’s 
rank_genes_groups (p values were computed using a t-test and adjusted with the 
Bonferroni method for multiple testing, and confirmed by comparison to P values 
generated with Wilcoxon test with Bonferroni correction). 

In the violin plots, unless otherwise indicated, a star indicates a p value < 0.05 and a fold 
change > 1.5 difference in mean gene expression between the indicated conditions (p value 
computed with scipy.stats’ (v1.7.0) ttest_ind and adjusted with the Bonferroni method for 
multiple testing). 

In situ hybridization  
Animals 
All of the work described in this study was approved by the California Institute of 
Technology and Oregon Health & Science University’s Institutional Animal Care and Use 
Committee and is in accordance with NIH guidelines. Zebra finches (Taeniopygia guttata) 
were obtained from our own breeding colony or purchased from local breeders. 
Developmental gene expression in HVC in the 20-, 50-, and 75-days post-hatch (dph) male 
and female zebra finches was assessed as previously described 54. The sex of birds was 
determined by plumage and gonadal inspection. Birds were sacrificed by decapitation, 
bisected in the sagittal plane and flash-frozen in Tissue-Tek OCT (Sakura-Finetek), and 
frozen in a dry ice/isopropyl alcohol slurry. Brains of TeNT-manipulated finches were 
coronally blocked anterior to the tectum and flash frozen in Tissue-Tek (Sakura). All brains 
were sectioned at 10 µm on a cryostat and mounted onto charged slides (Superfrost Plus, 
Fisher). 

In situ hybridization 
In situ hybridization was performed as previously described 55,56. Briefly, DIG-labeled 
riboprobes were synthesized from cDNA clones for RGS10 (CK312091) and 
LOC100231469 (class I histocompatibility antigen, F10 alpha chain; DV951963). Slides 
containing the core of HVC were hybridized overnight at 65°C. Following high stringency 
washes, sections were blocked for 30 min and then incubated in an alkaline phosphatase 
conjugated anti-DIG antibody (1:600, Roche). Slides were then washed and developed 

https://github.com/lauraluebbert/TL_2023


 

 

93 
overnight in BCIP/NBT chromogen (Perkin Elmer). To minimize experimental 
confounds between animals, sections for each gene were fixed together in 3% 
paraformaldehyde, hybridized with the same batch of probe, and incubated in chromogen 
for the same duration.  

Sections were imaged under consistent conditions on a Nikon E600 microscope with a 
Lumina HR camera and imported into ImageJ for analysis. We quantified the expression 
level of the gene as measured by optical density and the number of cells expressing the 
gene per unit area, as previously described 54. Optical density was measured by taking the 
average pixel intensity of a 300x300 pixel square placed over the center of HVC. This 
value was normalized to the average background level of the tissue. To quantify the number 
of labeled cells, we established a threshold of expression that was 2.5x the background 
level. Binary filters (Close-, Open) were applied and the number of particles in the same 
300x300 pixel square was quantified. 

Histology 
After cardiac perfusion with room temperature 3.2% PFA in 1xPBS we let the brains fix 
for 2-4 hours at room temperature. After each hemisphere of the brain was sectioned 
sagittally with a vibratome at 70-100 µm thickness. The brain slices containing HVC were 
collected and incubated at 4 C overnight with the primary rabbit anti-GFP (AB3080P, 
EMD Milipore) (blocked in 10% donkey serum in 0.2% Triton 1xPBS). On the second 
day, the brains were washed in 0.05% Triton 1xPBS and incubated for 2 hours in the dark 
at room temperature in the secondary goat anti-rabbit 488 (ab150077). Next, the brain 
slices were washed and mounted in Fluoromount (Sigma). Confocal images were taken 
with the LSM800. 

Data and Code Availability 
Data generated in this study have been deposited in Caltech DATA and can be found at the 
following DOIs: https://doi.org/10.22002/ednra-nn006 and 
https://doi.org/10.22002/3ta8v-gj982. Please do not hesitate to contact the authors for data 
or code requests. The code used for the analysis of the single-cell RNA sequencing data 
can be found here: https://github.com/lauraluebbert/TL_2023. The code used for the 
analysis of the chronic electrophysiology data can be found here: 
https://github.com/jordan-feldman/Torok2023-ephys. 
  

https://doi.org/10.22002/ednra-nn006
https://doi.org/10.22002/3ta8v-gj982
https://github.com/lauraluebbert/TL_2023
https://github.com/jordan-feldman/Torok2023-ephys
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Supplementary Figure 4.1 Heatmap of top 5 differentially expressed genes per annotated cell type/cluster 
obtained by single-cell RNA sequencing of HVC from control and TeNT-treated birds at 25 dpi. 
Differentially expressed genes between clusters were identified using Scanpy’s rank_genes_groups (p values 
were computed using a t-test and were adjusted with the Bonferroni method for multiple testing. They were 
then confirmed by comparison to p values generated with the nonparametric Wilcoxon test with Bonferroni 
correction). The heatmap depicts the min-max scaled expression for each gene. 
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Supplementary Figure 4.2 Quantification of the in situ hybridization against microglia marker gene RGS10 
in adult male control, TeNT-treated and juvenile male HVC; and MHC1 in adult male control, TeNT-treated 
animals. A-B Quantification of the in situ hybridization for RGS10 between control (n=4 animals) and TeNT-
treated animals at 25 dpi (n=4) and 90 dpi (n=4). C-D Quantification of the in situ hybridization for RGS10 
between juvenile males at 20, 50, and 70 days post-hatching (dph) (n=4). E-F Quantification of the in situ 
hybridization for MHC1 between control (n=4) and TeNT-treated animals at 25 (n=4) and 90 dpi (n=4). Error 
bars represent standard deviation. 
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  Supplementary Figure 4.3 Histology of electrode array location in HVC in the chronically implanted 
animals. The white dotted line outlines HVC. Some sections display missing tissue due to the removal of the 
electrodes after perfusion of the animals. The stronger cyan signal indicates glial scar formation around the 
electrode array, which provides an approximation of the location of the electrodes. 
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Supplementary Figure 4.4 Histology to confirm the high-density silicone electrode location in the acute 
head-fixed animal recordings. The red trace represents the electrode location. The green trace represents the 
second electrode location in animals that were recorded twice, 40 days apart. The white labels represent the 
animal IDs. “LH” and “RH” stands for left and right hemisphere, respectively. 
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Supplementary Figure 4.5 Comparison of different pre-processing methods for the HVC single-cell RNA 
sequencing datasets. A Number of cells retained after quality control for each dataset and alignment method. 
B Mean UMI counts per cell for each dataset and pre-processing method. C Percentage of reads confidently 
mapped to transcriptome for each pre-processing method. 
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Figure legend on next page. 
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Supplementary Figure 4.6 Quality control of the single-cell RNA sequencing HVC datasets from control 
and TeTN-treated animals at 25 days post-injection (dpi). A “Knee plots” showing the set of barcodes (top 
row) and number of genes detected (bottom row) over UMI counts. The dashed lines depict the quality 
filtering cutoff. B-C Barplot depicting the fraction of cells from each replicate per cluster for control (B) and 
TeNT (C), normalized (by dividing) to the total number of cells in each replicate. Control and TeNT datasets 
were clustered separately using the Leiden algorithm. The equal distribution of replicates across the clusters 
suggests that technical effects do not dominate the clusters. Thus, we did not perform batch correction. The 
numbers on top of the bars indicate the total number of cells in each cluster. D Barplot depicting the fraction 
of cells from each dataset in the cell type clusters obtained after jointly clustering the control and TeNT 
datasets. The numbers on top of the bars indicate the total number of cells in each cluster. 

Supplementary Table 4.1 Overview of single-cell RNA sequencing datasets. 



 

 

101 
References 
1. Dehghani, N., Peyrache, A., Telenczuk, B., Le Van Quyen, M., Halgren, E., Cash, S.S., 

Hatsopoulos, N.G., and Destexhe, A. (2016). Dynamic Balance of Excitation and 
Inhibition in Human and Monkey Neocortex. Sci. Rep. 6, 23176. 

2. Fritschy, J.-M. (2008). Epilepsy, E/I balance and GABA(A) receptor plasticity. Front. 
Mol. Neurosci. 1, 5. 

3. Cossart, R., Bernard, C., and Ben-Ari, Y. (2005). Multiple facets of GABAergic 
neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends 
Neurosci. 28, 108–115. 

4. Nottebohm, F., Stokes, T.M., and Leonard, C.M. (1976). Central control of song in the 
canary, Serinus canarius. J. Comp. Neurol. 165, 457–486. 

5. Kozhevnikov, A.A., and Fee, M.S. (2007). Singing-related activity of identified HVC 
neurons in the zebra finch. J. Neurophysiol. 97, 4271–4283. 

6. Brainard, M.S., and Doupe, A.J. (2002). What songbirds teach us about learning. 
Nature 417, 351–358. 

7. Vallentin, D., Kosche, G., Lipkind, D., and Long, M.A. (2016). Neural circuits. 
Inhibition protects acquired song segments during vocal learning in zebra finches. 
Science 351, 267–271. 

8. Kosche, G., Vallentin, D., and Long, M.A. (2015). Interplay of inhibition and excitation 
shapes a premotor neural sequence. J. Neurosci. 35, 1217–1227. 

9. Dimidschstein, J., Chen, Q., Tremblay, R., Rogers, S.L., Saldi, G.-A., Guo, L., Xu, Q., 
Liu, R., Lu, C., Chu, J., et al. (2016). A viral strategy for targeting and manipulating 
interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749. 

10. Link, E., Edelmann, L., Chou, J.H., Binz, T., Yamasaki, S., Eisel, U., Baumert, M., 
Südhof, T.C., Niemann, H., and Jahn, R. (1992). Tetanus toxin action: inhibition of 
neurotransmitter release linked to synaptobrevin proteolysis. Biochem. Biophys. Res. 
Commun. 189, 1017–1023. 

11. Vu, E.T., Mazurek, M.E., and Kuo, Y.C. (1994). Identification of a forebrain motor 
programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–
6934. 

12. Yu, A.C., and Margoliash, D. (1996). Temporal hierarchical control of singing in birds. 
Science 273, 1871–1875. 

13. Glaze, C.M., and Troyer, T.W. (2006). Temporal structure in zebra finch song: 
implications for motor coding. J. Neurosci. 26, 991–1005. 

14. Brainard, M.S., and Doupe, A.J. (2000). Interruption of a basal ganglia–forebrain 
circuit prevents plasticity of learned vocalizations. Nature 404, 762–766. 

15. Olveczky, B.P., Andalman, A.S., and Fee, M.S. (2005). Vocal experimentation in the 
juvenile songbird requires a basal ganglia circuit. PLoS Biol. 3, e153. 

16. Kao, M.H., Doupe, A.J., and Brainard, M.S. (2005). Contributions of an avian basal 
ganglia–forebrain circuit to real-time modulation of song. Nature 433, 638–643. 

17. Markowitz, J.E., Liberti, W.A., 3rd, Guitchounts, G., Velho, T., Lois, C., and Gardner, 
T.J. (2015). Mesoscopic patterns of neural activity support songbird cortical sequences. 
PLoS Biol. 13, e1002158. 



 

 

102 
18. Brown, D.E., 2nd, Chavez, J.I., Nguyen, D.H., Kadwory, A., Voytek, B., Arneodo, 

E.M., Gentner, T.Q., and Gilja, V. (2021). Local field potentials in a pre-motor region 
predict learned vocal sequences. PLoS Comput. Biol. 17, e1008100. 

19. Crandall, S.R., Adam, M., Kinnischtzke, A.K., and Nick, T.A. (2007). HVC neural 
sleep activity increases with development and parallels nightly changes in song 
behavior. J. Neurophysiol. 98, 232–240. 

20. Dave, A.S., and Margoliash, D. (2000). Song replay during sleep and computational 
rules for sensorimotor vocal learning. Science 290, 812–816. 

21. Elmaleh, M., Kranz, D., Asensio, A.C., Moll, F.W., and Long, M.A. (2021). Sleep 
replay reveals premotor circuit structure for a skilled behavior. Neuron 109, 3851–
3861.e4. 

22. Hahnloser, R.H.R., Kozhevnikov, A.A., and Fee, M.S. (2006). Sleep-related neural 
activity in a premotor and a basal-ganglia pathway of the songbird. J. Neurophysiol. 
96, 794–812. 

23. Shank, S.S., and Margoliash, D. (2009). Sleep and sensorimotor integration during 
early vocal learning in a songbird. Nature 458, 73–77. 

24. Wang, B., Torok, Z., Duffy, A., Bell, D., Wongso, S., Velho, T., Fairhall, A., and Lois, 
C. (2022). Unsupervised Restoration of a Complex Learned Behavior After Large-
Scale Neuronal Perturbation. bioRxiv, 2022.09.09.507372. 
10.1101/2022.09.09.507372. 

25. Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M., Barbarits, B., Lee, 
A.K., Anastassiou, C.A., Andrei, A., Aydın, Ç., et al. (2017). Fully integrated silicon 
probes for high-density recording of neural activity. Nature 551, 232–236. 

26. Steinmetz, N.A., Koch, C., Harris, K.D., and Carandini, M. (2018). Challenges and 
opportunities for large-scale electrophysiology with Neuropixels probes. Curr. Opin. 
Neurobiol. 50, 92–100. 

27. Fisher, R.S., Scharfman, H.E., and deCurtis, M. (2014). How can we identify ictal and 
interictal abnormal activity? Adv. Exp. Med. Biol. 813, 3–23. 

28. Lubenov, E.V., and Siapas, A.G. (2009). Hippocampal theta oscillations are travelling 
waves. Nature 459, 534–539. 

29. Buzsáki, G. (1986). Hippocampal sharp waves: their origin and significance. Brain Res. 
398, 242–252. 

30. Hulse, B.K., Lubenov, E.V., and Siapas, A.G. (2017). Brain State Dependence of 
Hippocampal Subthreshold Activity in Awake Mice. Cell Rep. 18, 136–147. 

31. Joo, H.R., and Frank, L.M. (2018). The hippocampal sharp wave–ripple in memory 
retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757. 

32. Lenz, K.M., and Nelson, L.H. (2018). Microglia and Beyond: Innate Immune Cells As 
Regulators of Brain Development and Behavioral Function. Front. Immunol. 9, 698. 

33. Li, Q., and Barres, B.A. (2018). Microglia and macrophages in brain homeostasis and 
disease. Nat. Rev. Immunol. 18, 225–242. 

34. Thion, M.S., Ginhoux, F., and Garel, S. (2018). Microglia and early brain development: 
An intimate journey. Science 362, 185–189. 

35. Parkhurst, C.N., Yang, G., Ninan, I., Savas, J.N., Yates, J.R., 3rd, Lafaille, J.J., 
Hempstead, B.L., Littman, D.R., and Gan, W.-B. (2013). Microglia promote learning-



 

 

103 
dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 
1596–1609. 

36. Simpson, E. (1988). Function of the MHC. Immunol. Suppl. 1, 27–30. 
37. Elmer, B.M., and McAllister, A.K. (2012). Major histocompatibility complex class I 

proteins in brain development and plasticity. Trends Neurosci. 35, 660–670. 
38. Chacon, M.A., and Boulanger, L.M. (2013). MHC class I protein is expressed by 

neurons and neural progenitors in mid-gestation mouse brain. Mol. Cell. Neurosci. 52, 
117–127. 

39. Shatz, C.J. (2009). MHC class I: an unexpected role in neuronal plasticity. Neuron 64, 
40–45. 

40. Lazarczyk, M.J., Kemmler, J.E., Eyford, B.A., Short, J.A., Varghese, M., Sowa, A., 
Dickstein, D.R., Yuk, F.J., Puri, R., Biron, K.E., et al. (2016). Major Histocompatibility 
Complex class I proteins are critical for maintaining neuronal structural complexity in 
the aging brain. Sci. Rep. 6, 26199. 

41. Tchernichovski, O., Nottebohm, F., Ho, C.E., Pesaran, B., and Mitra, P.P. (2000). A 
procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–
1176. 

42. Goffinet, J., Brudner, S., Mooney, R., and Pearson, J. (2021). Low-dimensional learned 
feature spaces quantify individual and group differences in vocal repertoires. Elife 10. 
10.7554/eLife.67855. 

43. Sainburg, T., Thielk, M., and Gentner, T.Q. (2020). Finding, visualizing, and 
quantifying latent structure across diverse animal vocal repertoires. PLoS Comput. 
Biol. 16, e1008228. 

44. Yeganegi, H., Luksch, H., and Ondracek, J.M. (2019). Hippocampal-like network 
dynamics underlie avian sharp wave-ripples. bioRxiv, 825075. 10.1101/825075. 

45. Shan, K.Q., Lubenov, E.V., and Siapas, A.G. (2017). Model-based spike sorting with 
a mixture of drifting t-distributions. J. Neurosci. Methods 288, 82–98. 

46. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., and Harris, K.D. (2016). 
Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of 
channels. bioRxiv, 061481. 10.1101/061481. 

47. Pool, A.-H., Wang, T., Stafford, D.A., Chance, R.K., Lee, S., Ngai, J., and Oka, Y. 
(2020). The cellular basis of distinct thirst modalities. Nature 588, 112–117. 

48. Melsted, P., Sina Booeshaghi, A., Gao, F., Beltrame, E., Lu, L., Hjorleifsson, K.E., 
Gehring, J., and Pachter, L. (2019). Modular and efficient pre-processing of single-cell 
RNA-seq. bioRxiv, 673285. 10.1101/673285. 

49. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene 
expression data analysis. Genome Biol. 19, 15. 

50. Luebbert, L., and Pachter, L. (2023). Efficient querying of genomic reference databases 
with gget. Bioinformatics 39. 10.1093/bioinformatics/btac836. 

51. Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Leiden: 
guaranteeing well-connected communities. Sci. Rep. 9, 5233. 

52. Lopez, R., Regier, J., Cole, M.B., Jordan, M.I., and Yosef, N. (2018). Deep generative 
modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058. 



 

 

104 
53. Colquitt, B.M., Merullo, D.P., Konopka, G., Roberts, T.F., and Brainard, M.S. 

(2021). Cellular transcriptomics reveals evolutionary identities of songbird vocal 
circuits. Science 371. 10.1126/science.abd9704. 

54. Zemel, B.M., Nevue, A.A., Dagostin, A., Lovell, P.V., Mello, C.V., and von Gersdorff, 
H. (2021). Resurgent Na+ currents promote ultrafast spiking in projection neurons that 
drive fine motor control. Nat. Commun. 12, 6762. 

55. Carleton, J.B., Lovell, P.V., McHugh, A., Marzulla, T., Horback, K.L., and Mello, C.V. 
(2014). An optimized protocol for high-throughput in situ hybridization of zebra finch 
brain. Cold Spring Harb. Protoc. 2014, 1249–1258. 

56. Nevue, A.A., Lovell, P.V., Wirthlin, M., and Mello, C.V. (2020). Molecular 
specializations of deep cortical layer analogs in songbirds. Sci. Rep. 10, 18767. 

  



 

 

105 
C h a p t e r  5  

TRANSCRIPTOMICS IN HEALTHCARE – PART I 

PSCA-CAR T cells for Metastatic Castration-resistant Prostate 
Cancer: A Phase 1 Trial 

Preamble 
This chapter describes the results obtained through single-cell RNA sequencing of the CAR 
T product, peripheral blood, and solid tumor tissue derived from 12 prostate cancer patients 
at varying time points of CAR T therapy using two different sequencing technologies, 
single-cell gene expression and V(D)J immune repertoire sequencing, resulting in a total 
of 64 multiplexed datasets and over 25 billion sequencing reads which I analyzed in 
parallel, revealing significant differences in the immune landscape dynamics and 
identifying relevant time points for clonotype expansion. Below, I am only including the 
relevant single-cell RNA sequencing results and methods from the published paper. 

Tanya B. Dorff, M. Suzette Blanchard, Lauren N. Adkins, Laura Luebbert, Neena 
Leggett, Stephanie N. Shishido, Alan Macias, Marissa Del Real, Gaurav Dhapola, Colt 
Egelston, John P. Murad, Reginaldo Rosa, Jinny Paul, Ammar Chaudhry, Hripsime 
Martirosyan, Ethan Gerdts, Jamie R. Wagner, Tracey Stiller, Dileshni Tilakawardane, 
Sumanta Pal, Robert E. Reiter, Catalina Martinez, Elizabeth L. Budde, Massimo 
D’Apuzzo, Peter Kuhn, Lior Pachter, Stephen J. Forman, Saul J. Priceman (2024). PSCA-
CAR T cell therapy for metastatic castration-resistant prostate cancer: a phase 1 trial. 
Under review. 

Summary 
Despite recent therapeutic advances, metastatic castration-resistant prostate cancer 
(mCRPC) remains lethal. Chimeric antigen receptor (CAR) T cell therapies have 
demonstrated durable remissions in hematological malignancies and are of interest for 
patients with mCRPC. We report results from a phase 1, first-in-human study of prostate 
stem cell antigen (PSCA)-directed CAR T cells in patients with mCRPC screened for tumor 
PSCA expression. The starting dose level was 100 million (M) CAR T cells without 
lymphodepletion (LD), followed by incorporation of LD with 100M CAR T cells. The 
primary endpoints were safety and dose-limiting toxicities (DLTs). No DLTs were 
observed at DL1, with a DLT of grade 3 cystitis encountered at DL2, resulting in addition 
of a new cohort using a reduced LD regimen + 100M CAR T cells (DL3). No DLTs were 
observed in DL3. Cytokine release syndrome (CRS) of grade 1 or 2 occurred in 5 of 14 
treated patients. PSA declines (>30%) occurred in 4 of 14 patients, as well as radiographic 
improvements. Dynamic changes indicating activation of peripheral blood endogenous and 
CAR T cell subsets, TCR repertoire diversity, and changes in the tumor immune 
microenvironment were observed in a subset of patients. Limited persistence of CAR T 
cells was observed beyond 28 days post infusion. In summary, CAR T cells targeting PSCA 
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demonstrate bioactivity at a single dose of 100M, supporting future clinical studies 
evaluating multiple infusions to achieve higher total dose and combinatorial approaches 
are needed to improve durable therapeutic outcomes.  

Introduction 
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease, causing more 
than 30,000 deaths in American men each year (1). Immunotherapy has largely been 
unsuccessful; both vaccine-based strategies such as GVAX and Prost-VAC (2,3) and 
immune checkpoint inhibition with CTLA-4 and PD-1 inhibitors (4,5) have shown limited 
activity. The only immunotherapy proven to prolong survival in mCRPC is sipuleucel-T, 
which is an autologous cellular immunotherapy with ex-vivo incubation of dendritic cells 
leading to activation against prostate acid phosphatase (6). However, significant 
improvements are needed for immunotherapies to effectively target mCRPC. 

Reasons for lack of immunotherapy response in prostate cancer are multi-fold, including 
strong immunosuppression in advanced prostate cancer (7)  that limits both trafficking and 
effector T cell function in the local tumor microenvironment. Despite this, there are unique 
tumor-associated antigens in mCRPC which are commonly and robustly expressed 
including prostate stem cell antigen (PSCA) and prostate specific membrane antigen 
(PSMA), which could be leveraged as targets for powerful cellular immunotherapy 
modalities. The dramatic successes of chimeric antigen receptor (CAR) T cell therapies in 
hematological malignancies have inspired the clinical development of CAR T cell therapies 
for the treatment of mCRPC.  

PSCA is highly expressed in prostate cancer, and increases with advanced disease states, 
particularly in the setting of bone metastases (8). Using xenograft and syngeneic tumor 
models, we demonstrated safety and efficacy of second generation PSCA-CAR T cells with 
4-1BB costimulation in eradicating bone metastatic prostate cancer (9). Here, we report 
results of our first-in-human phase 1 clinical trial to evaluate the safety and bioactivity of 
PSCA-CAR T cells in mCRPC patients. 

Results 
Clinical trial design and patient characteristics 
City of Hope conducted a single center, first-in-human, phase 1 clinical trial to evaluate 
safety and bioactivity of PSCA-directed CAR T cells in patients with metastatic castration-
resistant prostate cancer (NCT03873805). The primary endpoints were safety and dose-
limiting toxicities (DLT). The secondary endpoints were persistence of CAR T cells to 28 
days post infusion (defined as CAR T cells comprising at least 7.5 copies/μg of DNA of 
total CD3 cells), expansion of CAR T cells (Max log10 copies/μg of genomic DNA, disease 
response (PSA decline, RECIST) and survival described as percent of participants alive at 
6 months. Exploratory endpoints were phenotypes and frequencies of immune cell subsets 
in the peripheral blood pre- and post-therapy, serum cytokine profile before and after CAR 
T infusion to assess potential CRS toxicity and CAR T cell effector function, phenotype of 
tumor-infiltrating lymphocytes, gene expression (by RNA-seq) of CTCs, cfDNA in 
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peripheral blood by whole exome sequencing, and CAR immunogenicity (anti-PSCA-CAR 
antibodies).   

Figure 5.1 Clinical trial design and CONSORT diagram. (a) Illustration of clinical trial design including 
subject screening, leukapheresis, PSCA-CAR T cell manufacturing, pre-infusion biopsy (BX), peripheral 
blood (PB) sample collection prior to lymphodepletion (LD), bone scan and CT imaging, Flu/Cy LD, PSCA-
CAR T cell infusion, serial PB sample collection timepoints from day 0 to day 28, post-infusion bone scan 
and CT imaging, post-infusion BX, and long-term follow up (LTFU). (b) CONSORT diagram detailing 
subjects consented and screened for PSCA expression by immunohistochemistry (IHC) (n = 58), subjects 
enrolled and leukapheresis (n = 22), subjects received CAR T cell infusion (n = 14). Dose level (DL) cohorts 
including DL1 (100 million (M) PSCA-CAR T cells, n = 3), DL2 (Flu/Cy LD + 100M PSCA-CAR T cells, 
n = 6), and DL3 (Reduced Flu/Cy LD + 100M PSCA-CAR T cells, n = 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. Clinical trial design and CONSORT diagram. (a) Illustration of clinical trial design 
including subject screening, leukapheresis, PSCA-CAR T cell manufacturing, pre-infusion biopsy 
(BX), peripheral blood (PB) sample collection prior to lymphodepletion (LD), bone scan and CT 
imaging, Flu/Cy LD, PSCA-CAR T cell infusion, serial PB sample collection timepoints from day 
0 to day 28, post-infusion bone scan and CT imaging, post-infusion BX, and long-term follow up 
(LTFU). (b) CONSORT diagram detailing subjects consented and screened for PSCA expression 
by immunohistochemistry (IHC) (n = 58), subjects enrolled and leukapheresis (n = 22), subjects 
received CAR T cell infusion (n = 14). Dose level (DL) cohorts including DL1 (100 million (M) 
PSCA-CAR T cells, n = 3), DL2 (Flu/Cy LD + 100M PSCA-CAR T cells, n = 6), and DL3 (Reduced 
Flu/Cy LD + 100M PSCA-CAR T cells, n = 5).  
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The clinical trial design is summarized in Figure 5.1a. Fifty-eight subjects were 
screened for PSCA expression by immunohistochemistry, twenty-two subjects underwent 
leukapheresis and CAR T cell manufacturing, and fourteen subjects were treated from 
August 2019 to July 2022 (Figure 5.1b CONSORT diagram). The first subject was pre-
screened (tissue testing) 5/23/19, first subject enrolled (leukapheresis) 7/30/19, and last 
subject treated (CAR T cell infusion) 7/25/22; the trial is closed. The median age of subjects 
on study was 62 for dose level (DL)1, 70 for DL2, and 69 for DL3. All subjects received 
prior androgen receptor signaling inhibitors, either enzalutamide (71%), abiraterone (79%), 
or both (64%) and a majority of patients received cabazitaxel (57%), docetaxel (86%), or 
both (57%) prior to CAR T cell infusion. Baseline PSA (median) ranged from 16.5 to 
235.3. 

CAR T cell product manufacturing and characterization 
The PSCA-CAR construct comprised the anti-PSCA humanized scFv (A11 clone), �CH2 
extracellular spacer, CD4 transmembrane domain, 4-1BB intracellular co-stimulatory 
domain, and CD3γ cytolytic domain as previously published (9). Briefly, CAR T cell 
manufacturing included depletion of CD14+ and CD25+ cells, CD3/28 bead stimulation, 
transduction with lentivirus at multiplicity of infection of 0.1, removal of beads at day 7-9, 
followed by expansion for a total of 12-17 days in IL-2 and IL-15 cytokines. There were 
no manufacturing failures, with a median CAR percentage of 86.8% in the final released 
product. Thawed products were characterized by flow cytometry for expression of 
CD4/CD8 , CD19 (for CD19t transduction marker) expression, and Fc (PSCA-CAR) 
expression, as well as T cell subsets demonstrating a dominant Tcm/Tem phenotype. Two 
products fell outside the pre-specified woodchuck post-transcriptional regulatory element 
(WPRE) copy number (<5), and FDA approval was granted to proceed with infusion. 
Median time from leukapheresis to infusion of the product was 73 days (range 34 to 182); 
delays were primarily due to protocol mandated holds on accrual during toxicity 
assessments and protocol amendments, waiting for confirmatory PSCA staining from on-
study biopsies, as well as seeking regulatory approval for the use of product out of 
parameters (as specified above). Six patients received bridging therapy: cabazitaxel (4), 
cabazitaxel + carboplatin (1), enzalutamide (1).    

Treatment response 
PSA declines from before treatment to day 28 after CAR T cell infusion were seen in 1 of 
3 subjects in DL1, 3 of 6 subjects in DL2, and 3 of 5 subjects in DL3. Waterfall plot of the 
maximum PSA change from before CAR T cell infusion to day 28 shows 4 of 14 subjects 
with PSA declines >30% (Figure 5.2a). Of these, only 1 subject maintained PSA decline 
>30% beyond 28 days. In DL1, 1 of 3 subjects treated experienced a transient PSA 
response; notably this subject had evidence of early neuroendocrine (NE) expression in the 
on-study biopsy but still retained strong PSCA expression, and RECIST response was PD. 
Post-treatment biopsy revealed further NE transformation (data not shown). The first 
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subject treated in DL2 (with 
lymphodepletion) achieved a >90% 
PSA decline in the first 28 days post 
CAR T cell infusion. The response in 
this subject is characterized in greater 
detail below. 

Rates of stable disease by RECIST 
were DL1: 0%, DL2 67%, and DL3 
60%. Swimmer plots for treated 
subjects are shown in Figure 5.2b, 
with a 33%, 67%, and 40% 6-month 
survival rate in DL1, DL2, and DL3, 
respectively. The first subject treated 
in DL3 achieved radiographic 
improvement in liver metastatic 
burden but did not achieve PSA 
response (Figure 5.2c). One subject 
with bone only disease who exhibited 
stable disease in DL3 requested and 
received a 2nd infusion of 100M CAR 
T cells about 6 months following 
initial infusion. He experienced 
transient relief of cancer-related pain 
after the 2nd infusion. 

We also evaluated treatment response 
by circulating tumor cell (CTC) 
quantification in the peripheral blood 
of treated subjects on study using 
high-definition single cell analysis 
(HDSCA) (10). Cytokeratin (CK)-
positive cells were detected in the 
peripheral blood of 100% of treated 
subjects. Overall, there were marked 
declines in mean CK+ cells from 
baseline to 28 days after CAR T cell 
infusion in both of the LD cohorts 
(DL2 and DL3), but not in DL1.   

Somatic DNA sequencing results were available for 8 subjects and 2 subjects had germline 
testing results (no overlap between somatic and germline tested patients). Of the 8 with 
somatic testing, the highest tumor mutational burden was 10.5, all others were deemed low.  
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Figure 5.2 Treatment response following PSCA-CAR T 
cell infusion. (a) PSA waterfall plot showing best PSA 
response in the 28 days following CAR T cell infusion at 
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study. (c) Computed tomography (CT) scan of a patient 
(UPN394) in DL3 showing liver metastases before 
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PTEN loss was noted in 3 of these subjects, one of whom experienced the greatest PSA 
decline on study (Figure 5.2a). In DL3, the subject with radiographic improvement in liver 
metastases had a genomic alteration in CDK12, and he had progressed on prior immune 
checkpoint inhibitor therapy. 

Patient with biochemical and radiographic response  
One participant, a subject in DL2, experienced a >90% PSA decline following CAR T cell 
infusion, from 64.2 ng/mL before LD and CAR T cells to 3.5 ng/mL at day 28 after CAR 
T cell infusion (Figure 5.3a). Radiographic improvement was seen in this subject’s soft 
tissue metastasis (Figure 5.3b) though RECIST assessment was SD due to the presence of 
bone metastases. Changes in serum cytokines in this patient demonstrate pronounced but 
transient induction of inflammatory factors, including IFNy, IL-6, GM-CSF, IP-10, and 
MIG. Serum chemistry showed mild increases in CRP (max 81 mg/L), ferritin (max 555 
ng/mL), ALT/AST (<1.5 x ULN), LDH (max 365 U/L), and alkaline phosphatase (max 
192) following CAR T cell infusion. This corresponded to grade 2 CRS with T max 39.1 
on day 4, 38.8 on day 5 and tocilizumab was administered on day 6 due to persistent rigors 
without fever; all aforementioned labs subsequently trended down by day 21.  CTC 
assessment with cytokeratin positivity were significantly reduced, both in bone marrow 
(Figure 5.3c) and in peripheral blood samples, from baseline to 28 days after CAR T 
infusion. The post-CAR T cell infusion bone metastasis biopsy showed reductions in 
PSCA+ disease, Ki67+ expression, along with greater infiltration of CD3+ and cytotoxic 
CD8+ T cells by immunofluorescence staining (Figure 5.3d). Few residual tumor cells in 
the post-treatment biopsy were observed and were associated with increased granzyme B+ 
and PD-L1+ areas, suggestive of an active anti-tumor immune response. Quantification of 
immunofluorescence staining showed increased CD8+ and PD-L1+ areas in this subject, 
with variable results from other subjects analyzed. Interestingly, UPN388 also had a biopsy 
proven prostate cancer metastasis in the pancreas which necessitated stent placement prior 
to study entry; this completely resolved after CAR T cell infusion (Figure 5.3e). 

Figure 5.3 Patient with biochemical and radiographic response with associated immune landscape changes. 
(a) PSA response in UPN388 on DL2 before and through the 28 days following PSCA-CAR T cell infusion 
and at day 90. (b) bone scintigraphy (anterior-posterior view) for bone metastases detection before and 1 
month after PSCA-CAR T cell infusion in the same patient. Red asterisks denote representative bone 
metastases. (c) High-definition single cell analysis (HDSCA) of circulating tumor cells (CTCs) in the bone 
marrow before and 1 month after infusion of PSCA-CAR T cells. Quantification of CK+ cells per mL is 
shown in grey box. (d) Immunofluorescence images of bone metastasis biopsy samples from before (top) 
and 1 month after PSCA-CAR T cell infusion (bottom), evaluating expression of pan-cytokeratin (pan-CK) 
(tumor cells), PDL1, CD3 (T cells), CD8 (effector cells), and Granzyme B (GzmB). Indicated areas of tumor 
and stromal regions, and arrows indicate residual tumor cells in post-infusion sample. Images shown are 
representative of the whole evaluable tissue region on slide. (e) Computed tomography (CT) scan of 
pancreatic lesion in UPN388 before and 1 month after PSCA-CAR T cell infusion. Red circles denote 
pancreatic lesion around stent. Measured size of lesion before infusion, 40.2 mm x 24.8 mm. Lesion 
regressed 1 month after infusion and was not measurable. (f) scRNAseq analysis of CD3+ T cell subsets in 
the infused product and in the peripheral blood T cells at indicated timepoints post-T cell infusion. (g) Single 
cell analysis of TCRa/b repertoire diversity in the peripheral blood T cells at indicated timepoints post-T 
cell infusion. Top 40 clonotypes with greatest fractions at day 28. Legend in Figure 5.4e. 
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Immune landscape changes in patient with biochemical response 
Endogenous and CAR T cell populations in peripheral blood were further characterized by 
flow cytometry, as well as by single cell RNA sequencing (scRNAseq) and TCR repertoire 
analysis in this patient. Initial assessment of T cell subsets in peripheral blood pre- and 
post- LD and CAR T cell infusion in this patient showed dynamic changes in naïve (Tn), 
central memory Tcm), effector memory (Tem), and terminally differentiated effector 
memory (Temra) cells over time. Greater re-emergence of CD8+ Tcm and Tem cells were 
observed by day 28 post-CAR T cell infusion. CD8+ CAR T cells expanded with this 
phenotype by day 14 in this patient. Interestingly, CAR+ and endogenous non-CAR T cells 
showed increased PD1 expression (and smaller increases in LAG3 and TIM3) over the 28 
days following treatment, which is associated with an activation and/or exhaustive 
phenotype. Peripheral blood CAR T cells showed elevated expression of CX3CR1, which 
has been correlated with response to immunotherapy with anti-PD1 immune checkpoint 
blockade (10). Few CX3CR1-positive T cells were observed in the product prior to 
infusion. Similar results in CAR+ and endogenous non-CAR T cells in the peripheral blood 
were observed in a patient in DL3, but not in DL1. scRNAseq corroborated these data, with 
increased effector CD8+ T cell subsets including CX3CR1+ CD8+ T cells in patients 
(Figure 5.3f and Figure 5.4a, c). Single cell TCR a/b repertoire analysis of endogenous T 
cells in peripheral blood demonstrated emerging and expanded clones by day 28 post-CAR 
T cell infusion in patients (Figure 5.3g, Figure 5.4b, d, e-g, and Figure 5.5), which 
contracted at days 90 in UPN388, suggesting TCR clonal diversity changes following 
therapy. Collectively, these data suggest that LD + PSCA-CAR T cell therapy can induce 
biochemical and radiographic response along with changes in the immune landscape and 
TCR repertoire. 

Figure 5.4 Single cell analysis of CD3+ T cell subsets and TCRα/β repertoire diversity in the peripheral 
blood. (a) scRNAseq analysis of CD3+ T cell subsets in the infused product and in the peripheral blood T 
cells at indicated timepoints post-T cell infusions of UPN375. (b) Single cell analysis of TCRα/β repertoire 
diversity in the peripheral blood T cells of UPN375 at indicated timepoint post-T cell infusion. (c-d) Same 
as (a-b) for UPN394. (e) Legend for Figure 5.3g. (f) Legend for Figure 5.4b. (g) Legend for Figure 5.4d. 

Figure 5.5 TCR repertoire diversity in peripheral blood T cells. Number of cells per clonotype at day 0 
versus day 28 following therapy in UPN388 (a), UPN375 (b), and UPN394 (c). 
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Discussion 
CAR T cell therapy has achieved durable response rates for patients with refractory 
hematological malignancies (16-18), creating enthusiasm in translating this therapy to 
patients with solid tumors. Our study evaluated PSCA-directed CAR T cells in patients 
with mCRPC. We observed biochemical and radiographic responses in patients following 
LD and PSCA-CAR T cell infusion. The dose-limiting toxicity was cystitis, which was 
likely an on-target/ off-tumor effect (19) with contribution from cyclophosphamide LD 
(20). Reducing the cyclophosphamide dose avoided high grade cystitis events in DL3 while 
retaining similar peripheral blood expansion of CAR T cells, although small number of 
patients limits the statistical power to exclude a difference. In this heavily pretreated 
population, encouraging anti-cancer responses were seen. Our findings are limited by the 
small number of subjects accrued. Accrual to a phase 1 trial with tissue pre-screening 
requirement, holds to accrual during DLT assessment periods and enrollment of heavily 
pre-treated patients was by nature slow, and many patients did not proceed with treatment 
if disease progression occurred in a way that led to ineligibility, including some who had 
undergone leukapheresis. The relatively lengthy process may have excluded patients with 
more aggressive disease or borderline performance status. This highlights the importance 
of streamlining enrollment in phase 2 to reduce enrollment bias and overall study cost by 
improving the rate of infusion of manufactured CAR T cell product.  This study validates 
PSCA as a viable CAR T cell therapeutic target and provides encouraging early clinical 
data to support further studies, focused on extending CAR T cell persistence, which, with 
the use of novel dosing and/or combinatorial strategies is hoped to lead to improved 
responses in patients.  

Both activity and toxicity of CAR T were impacted by the addition of LD, though the role 
of LD in facilitating CAR T cell activity in solid tumors is likely different than the role it 
plays in hematological malignancies. Preconditioning with LD promoted greater peripheral 
blood CAR T cell expansion and serum cytokine levels which manifested in greater 
objective anti-cancer response in DL2 and DL3. These phase 1 trial results validate our 
recent preclinical studies, which found that increased efficacy of CAR T cells following 
administration of cyclophosphamide was associated with enhanced T cell infiltration into 
tumors along with antigen presenting cell (i.e., dendritic cell) infiltration and reduced 
myeloid suppressive features compared to CAR T cell therapy alone (21). Notably, lower 
dose cyclophosphamide (300 mg/m2) still yielded greater CAR T cell bioactivity than 
absence of LD, while it did reduce the toxicities compared to cyclophosphamide dosed at 
500 mg/m2; similar findings have been documented in hematological malignancies (22). 
Given the critical role of LD, an important avenue of investigation will be to study different 
LD regimens for optimal changes in the tumor immune microenvironment. Preclinically, 
gene ontology enrichment analysis identified T cell migration and IFNγ production as key 
processes enhanced by cyclophosphamide pre-treatment (21) and these can be used as 
endpoints of preclinical exploration. Metronomic dosing strategies of cyclophosphamide 
and alternative LD regimens warrant evaluation since the traditional high dose IV 3-day 
LD regimen adopted from hematological malignancy CAR T cell trials may not be 
equivalently translated for solid tumors. Taxanes and platinum agents have shown potential 
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for modulation of the tumor immune microenvironment and for solid tumor CAR T cell 
therapy (23,24) and bendamustine is also emerging as a potentially valuable LD agent (22). 

DLTs were only seen after the addition of LD in this trial, mirroring the toxicity experience 
of the PSMA-targeted TGFβ dominant negative CAR T cell trial, in which DLT were only 
encountered after LD chemotherapy was added (25). In the PSMA-targeting TGFβ-
insensitive armored CAR T cell trial the dose of CAR T cells was reduced after high grade 
toxicity occurred (sepsis and macrophage activation syndrome/ hemophagocytic 
lymphohistiocytosis – MAS/HLH). Our approach of incorporating LD prior to CAR T cell 
dose escalation allowed for earlier appearance of DLTs during the trial. Therefore, 
reducing LD and maintaining CAR T cell dose resulted in continued evidence of anti-
cancer efficacy with a lower toxicity profile. CRS onset was slightly delayed with PSCA 
CAR T cell therapy compared to the experience in hematological malignancies (26), with 
median onset at 4 days post infusion in this study. Tocilizumab was administered in 3 
patients primarily for relief of fever and chills, with no grade 3 CRS events, and no 
hypotension or hypoxia events noted. Unlike other CAR T cell trials in mCRPC (25, 
27,28), no high-grade neurologic toxicity nor MAS/HLH events occurred though it is 
unclear whether the PSCA target or this particular CAR cell construct underly this 
observation. Overall, the favorable toxicity profile of PSCA-CAR T cell therapy enables 
the currently accruing phase 1b trial (NCT05805371) to proceed with entirely outpatient 
dosing in the context of close clinical monitoring.  

While PSCA CAR T expansion was robust with objective measures of disease-modifying 
activity including PSA decline, reduction in CTCs, and radiographic improvements, there 
was a lack of CAR T cell persistence that corresponded to the lack of durable remission. 
Innovative strategies will be needed to enhance CAR T cell persistence and prolong the 
anti-cancer efficacy. Armoring CAR T cells with modifications such as the TGFb-
dominant negative approach with PSMA targeting showed efficacy but at the cost of fatal 
toxicities, perhaps due to uncontrolled over-expansion (25). Over-expansion was also 
potentially the cause of fatal toxicity with the strategy employed by the Go-CART agent, 
in which rimiducid was administered in pulses to stimulate proliferation (28). Alternative 
strategies to improve persistence of CAR T cells may include enriching for T 
naïve/stem/memory cells (29) and incorporating agents into the CAR T cell manufacturing 
process to improve T cell fitness, including AKT inhibitors (30, 31). Allogeneic cell 
therapy approaches may further modify therapeutic activity (32) while also increasing 
feasibility by shortening time to treatment, which was a factor in the high drop-out rate 
observed in this trial. In order to avoid high-grade toxicity and to prolong the presence of 
infused T cells, our phase 1b strategy will administer multiple smaller doses of PSCA-CAR 
T cells rather than escalating to a larger single dose. Preclinical models of cystitis can be 
leveraged to study potential prevention or early intervention strategies, which could make 
it feasible to escalate the PSCA-CAR T cell dose in future trial iterations.  

Tumor antigen heterogeneity with neuroendocrine transformation was noted in one patient 
in this study and may be a more general resistance mechanism in heavily-treated mCRPC 
patients. Treatment-emergent neuroendocrine transformation is reported to occur more 
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commonly in mCRPC recently since the introduction of powerful androgen receptor 
pathway inhibitors (33) Thus, treating patients with mCRPC earlier in the disease course 
may be necessary to achieve durable responses. Alternatively, dual targeting to include 
proteins expressed on the de-differentiated CRPC cell populations such as CEA or DLL3 
(34) may be required. T cell exhaustion may have contributed to the limited duration of 
activity, as indicated by upregulation of PD1 in peripheral CAR T cells. Anecdotal 
experiences suggest that CAR T cells lose function in the setting of high tumor volumes, 
and immune checkpoint inhibitor therapy may rescue incomplete CAR T cell responses 
(35) which may have contributed to the long-term survival of a patient who received 
pembrolizumab as part of a clinical trial after participation in the phase 1 PSCA-CAR T 
study (Figure 5.2).  

In summary, our first-in-human phase 1 trial evaluating PSCA-CAR T cell therapy showed 
bioactivity and early evidence of clinical effectiveness, though on-target toxicity of cystitis 
impacted intended CAR T cell dose escalation. Reduced LD dose mitigated toxicity while 
still enhancing CAR T cell expansion compared to no LD. Future studies will explore 
multi-dose and combinatorial strategies to improve persistence with the goal of increasing 
clinical activity in patients with mCRPC.  

Methods 
Trial design and patients 
This was a single-center phase 1 trial aimed at evaluating safety and feasibility of 
intravenously administered, lentivirally transduced PSCA-CAR T cells in patients with 
mCRPC, with a total of three dose level (DL) cohorts. The primary endpoints were safety 
and dose-limiting toxicities (DLT). The secondary endpoints were persistence of CAR T 
cells to 28 days post infusion (defined as CAR T cells comprising at least 7.5 copies/μg of 
DNA of total CD3 cells), expansion of CAR T cells (Max log10 copies/μg of genomic 
DNA, disease response (PSA decline, RECIST) and survival described as percent of 
participants alive at 6 months. Exploratory endpoints were phenotypes and frequencies of 
immune cell subsets in the peripheral blood pre- and post-therapy, phenotype of tumor-
infiltrating lymphocytes, gene expression (by RNA-seq) of CTCs, cfDNA in peripheral 
blood by whole exome sequencing, CAR immunogenicity (anti-PSCA-CAR antibodies) 
and serum cytokine profile before and after CAR T cell infusion to assess potential CRS 
toxicity and CAR T cell effector function. 

The trial was conducted in accordance with the United States Food and Drug 
Administration (FDA) and International Conference on Harmonization Guidelines for 
Good Clinical Practice, the Declaration of Helsinki and applicable institutional review 
board requirements (study protocol approved by the City of Hope Institutional Review 
Board). Only subjects with male sex were enrolled due to prostate cancer presenting only 
in this sex group. After IND was obtained and institutional review board approved the 
protocol, subjects provided written informed consent in a two-step process. Many patients 
pre-screened (tissue PSCA testing) but did not proceed with leukapheresis due to lengthy 
wait times with limited slot availability and accrual pauses during DLT evaluation periods. 
The trial was registered with clinicaltrials.gov (NCT03873805). The City of Hope Data 
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Safety Monitoring Board monitored the conduct of this study to ensure the safety of 
enrolled and treated subjects, and the validity and integrity of the acquired data. 

A starting dose of 100 million (M) PSCA-CAR T cells was selected based on experience 
with other CAR T cell trials and anticipated effective dose. The first 3 subjects on Dose 
level (DL) 1 at 100M CAR T cells without fludarabine and cyclophosphamide (Flu/Cy) 
preconditioning lymphodepletion (LD), and the first 3 subjects on DL2 at 100M CAR T 
cells with LD were staggered through the dose-limiting toxicity (DLT) period.  All further 
subjects were accrued to dose levels (DLs) in cohorts of 3. After evaluation of the data 
from the completed DLT period (28 days) the protocol management team met to determine 
whether it was safe to escalate to the next DL, with rules following the TEQR design of 
Blanchard and Longmate (11) with an equivalence range of 0.20-0.35 and a too toxic level 
of 0.51. The first cohort received 100M CAR T cells without LD; the subsequent cohorts 
would all receive LD with plans to escalate the dose of CAR T cells from 100M to 300M 
to 600M, and the option to de-escalate the dose to 50M if LD plus 100M CAR T cells was 
not tolerated. 

Lymphodepletion (LD) chemotherapy: standard regimen of cyclophosphamide 500 mg/m2 
IV on days -5 to -3 and fludarabine 30 mg/m2 IV on days -5 to -3 was employed in DL2; 
this was reduced due to DLT, and DL3 subjects received cyclophosphamide 300 mg/m2 
IV on days -5 to -3 with the same dose schedule of fludarabine. Prophylactic G-CSF was 
not utilized, but G-CSF could be added for neutropenia if the treating physician felt it was 
indicated, as well as all other standard supportive measures such as antiemetics. 

In order to attempt to exclude patients unlikely to benefit due to lack of tumor PSCA 
expression, all potential subjects signed a pre-screening consent form so that archived 
tissue could be tested for PSCA by immunohistochemistry (IHC) staining. Subjects were 
required to have at least moderate PSCA expression in their prostate primary or metastatic 
biopsy tissue to enroll in the study, although due to lack of a validated assay there was no 
pre-specified cut-off. All subjects enrolled had PSCA expression in >30% of tumor cells 
(Figure 5.1a CONSORT diagram). An on-study biopsy was performed, and for soft tissue 
metastases confirmation of PSCA staining was required (this was not required for bone 
metastases due to inadequate calibration of the IHC assay on bone material); repeat biopsy 
of the same metastatic area was performed during the day 28 assessment period. 

Patients with mCRPC were eligible if they had experienced disease progression on at least 
one androgen receptor pathway inhibitor, e.g. abiraterone, enzalutamide. Prior taxane 
chemotherapy was allowed but not required.  Creatinine clearance > 50 mL/min were 
required, as well as AST/ALT < 5 x ULN and bilirubin < 2.0 mg/dL. Electrocardiogram 
was required to show no acute abnormalities requiring intervention and echocardiogram 
was required to document a left ventricular ejection fraction of > 40%. Patients with 
clinically significant cardiac arrhythmias or central nervous system disease were excluded. 
Patients with HIV, active hepatitis B or C, or uncontrolled active infection were excluded. 
Eligibility was confirmed prior to leukapheresis and again prior to start of treatment (DL1: 
CAR T and DL 2 or DL 3: LD).  
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CAR T cell manufacturing 
Following screening and enrollment into the trial, subjects underwent leukapheresis at City 
of Hope’s Michael Amini Transfusion Medicine Center. Autologous PBMC were 
immunomagnetically depleted of CD14+ and CD25+ cells, then stimulated with 
CD3/CD28 DynaBeads and subjected to transduction with PSCA(dCH2)BBζ/CD19t 
lentivirus (multiplicity of infection = 0.1) followed by T cell expansion for 10-16 days until 
the freezing process. Cells were manufactured in the City of Hope Center for Biomedicine 
and Genetics (CBG) GMP facility; details are provided in the clinical protocol (see 
Supplemental Materials). 

Flow cytometry 
Peripheral blood samples were obtained from subjects prior to and at various timepoints 
for 28 days following CAR T cell infusion, as well as day 60, 90, and q12 weeks after day 
90 to evaluate CAR T cell expansion/persistence. Peripheral blood samples were lysed 
using BD PharmLyse (15 min at RT) and quenched using RPMI containing 10% FBS. 
Cells were resuspended in FACS buffer (Hank’s balanced salt solution without Ca2+, 
Mg2+, or phenol red (HBSS−/−, Life Technologies) containing 2% FBS and 1 × AA). 
Cells were incubated with Fc block (BD Biosciences) for 5 min at RT and then incubated 
with fluorescence-labelled antibodies for 15 min at RT in the dark. Unless otherwise stated, 
antibodies were used at a dilution of 1:100. Cell viability was determined using 4′, 6-
diamidino-2-phenylindole (DAPI, Sigma, Cat: D8417). For samples run on the Cytek 
Aurora, samples were thawed, counted using a Muse cell counter (1 milion cells) and were 
stained in a two-step process.  Before staining, the cells were Fc Blocked with BD 
Pharmingen™ Human BD Fc Block™ (BD Biosciences) for 20 min on ice, washed, spun, 
and resuspended in the first master mix. The first master mix included 1 antibody, PDL1 
PE-Fire810 (Biolegend), in FACS buffer.  Following incubation on ice for 20 minutes, 
cells were washed twice with FACS Buffer and then stained with a 23-antibody master 
mix. The second master mix was prepared using FACS Buffer with Brilliant Buffer Plus 
(BD Horizon). After incubation, the cells were washed twice with FACS Buffer and finally 
resuspended in FACS buffer with 7-AAD (Invitrogen). Flow cytometry was performed on 
a MACSQuant Analyzer 10 (Miltenyi Biotec) or Cytek Aurora 3, and data were analyzed 
with FlowJo software (v10.8.1, TreeStar) or OMIQ software (Dotmatics). 

Single cell transcriptomics and TCR repertoire analysis 
Single cell RNA and TCR libraries were prepared using 10x Genomics Chromium Single 
Cell Immune Profiling Solution Kit and workflow (10×Genomics Inc.). Cells were thawed, 
washed twice, and resuspended in RPMI containing 10% FBS to a final concentration of 
100–1000 cells per μl as determined by Cell Countess. Samples with unique donor 
identities were pooled together and processed for a targeted cell recovery of 10,000 cells.  
Single cell RNA-seq and TCR-seq libraries were assessed for quality and quantified using 
the Agilent 2100 Bioanalyzer System and Qubit 3.0 Fluorometer. Single cell RNA libraries 
were sequenced on an Illumina NovaSeq to a minimum sequencing depth of 25,000 reads 
per cell using read lengths of 26 bp read 1, 8 bp i7 index, 98 bp read 2. The single-cell TCR 
libraries were sequenced on an Illumina HiSeq and NovaSeq to a minimum sequencing 
depth of 5,000 reads per cell using read lengths of 150 bp read 1, 8 bp i7 index, 150 bp 
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read 2. DNA was extracted from each sample donor’s CAR T cell product using the 
DNeasy Blood and Tissue Kit (Qiagen) and recommended protocol for Purification of 
Total DNA from Animal Blood or cells. Isolated DNA was genotyped with Infinium 
Omni5-4 Beadchip Array at City of Hope’s Integrative Genomics Core.  

A full description of the methods and code used to process and analyse the single-cell RNA 
seq data is available at: 
https://github.com/pachterlab/DBALLSMRDMCMGWSTPMBDKPFP_2023. 
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Obtaining biologic materials statement 
Chimeric antigen receptor T cells (CAR T cells) were manufactured at City of Hope in the 
GMP facility, with materials and processes approved by FDA IND. These are provided 
(administered) only to individual patients enrolled on the trial. 
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TRANSCRIPTOMICS IN HEALTHCARE – PART II 

Analysis of Heterogenous Datasets Across Patients: 
Dealing with Varying Medical Histories, Sequencing Technologies, 

and Treatment Time Points 

Preamble 
While transcriptomics technologies have revolutionized the study of RNA expression in 
healthcare, the heterogeneity of data obtained from different patients with varying medical 
histories, in addition to the technical and biological noise inherent to sequencing data, 
results in substantial and unique data analysis challenges. The data presented in the 
previous subchapter was derived from 12 prostate cancer patients at varying time points of 
CAR T therapy from CAR T product, peripheral blood, and solid tumor tissue using two 
different sequencing technologies, single-cell gene expression and V(D)J immune 
repertoire sequencing, resulting in a total of 32 multiplexed datasets for each sequencing 
technology. In this subchapter, I will describe additional data analysis approaches, 
expanding on the methods and results described in the previous subchapter and 
emphasizing the consequences of data heterogeneity and complexity.  

Methods and Results 
Detection of transgenes from single-cell RNA sequencing data 
Since the single-cell RNA sequencing data described in the previous subchapter was 
generated from patients who were treated with transgenic T cells, we can detect these cells 
in the sequencing data based on their expression of the transgenic CAR product. This can 
be achieved by manually adding the CAR sequence to the reference genome (excluding 
any endogenous sequences such as CD19). The detection rate of transgenes is low. Hence, 
this approach works best for samples with a high copy number of transgenes, such as the 

Figure 5.6 UMI counts of the CAR transgene and the number of CAR+ cells obtained for each donor. 
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CAR T product (Figure 5.6). Interestingly, transgenic CAR T cells were only detected in 
the peripheral blood samples of the two patients that showed the most promising treatment 
response (Figure 5.7). 

Data quality control and filtering 
Following the alignment of raw sequencing data to a reference genome, the data quality 
needs to be assessed and low-quality cells removed. Knee and library saturation plots are 
often generated to evaluate data quality. A ‘knee plot’ shows the number of unique reads 
(each read tagged with a Unique Molecular Identifier (UMI)) observed for each cell and is 
used to determine a threshold above which cells are considered valid. Cells with relatively 
few reads are considered low-quality and removed before further analysis. A library 
saturation plot shows the number of genes detected over the total read count for each cell. 
The library plot plateaus as the introduction of more UMIs does not lead to the detection 
of new genes, thereby indicating a saturation with UMIs. Extended Data Figure 5.1 shows 
the knee and library saturation plots for all 32 gene expression datasets obtained from the 
12 prostate cancer patients throughout different time points. Several of these datasets are 
multiplexed across patients. The data quality and barcode filtering threshold differ greatly 
between datasets (Extended Data Figure 5.1). Due to the heterogeneity in quality between 
datasets, it is crucial to independently assess data quality and filter cells for each dataset. 
Otherwise, some datasets would be filtered too conservatively, while others would have 
introduced low-quality cells into the analysis.  

Batch correction and clustering 
Following data quality assessment and filtering, the datasets were concatenated, and 
log(CP10k +1) normalized for further analysis. Given that datasets spanning different 
patients, time points, and sequencing runs were combined, we considered batch correction 
to remove experimental biases and batch effects prior to clustering. However, after batch 
correction using single-cell variational inference (scVI)1, the gene expression profiles were 
incorrectly homogenized across the datasets. This was easily identified by the suddenly 
widespread expression of the transgenic CAR construct in cell types other than T cells. 
Instead, we clustered the combined dataset using Leiden clustering2 without prior batch 
correction and examined whether the clustering was best explained by sequencing batches 

Figure 5.7 The number of transgenic CAR+ cells per donor at each treatment time point. 
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or the expected biological groups. Figure 5.8 shows the fraction of cells in each Leiden 
cluster from the different sequencing batches (Figure 5.8 B) and different treatment time 
points (Figure 5.8 A). As expected, cells from similar treatment time points cluster into the 
same clusters across sequencing batches and donors. This is also true for cells originating 
from the CAR T product (infusion product (IP)), which is expected to show similar gene 
expression across donors. Given that the clustering was better explained by experimental 

Figure 5.8 A The fraction of cells obtained for each time point per Leiden cluster. B The fraction of cells 
from each sequencing batch (dataset) in each Leiden cluster. C The fraction of cells obtained for each time 
point per donor. 
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condition than sequencing batch, we decided to continue the analysis without batch 
correction to avoid the biases introduced by batch correction. 

The Leiden clusters can subsequently be assigned cell types based on the expression of 
marker genes. Figure 5.9 shows the expression of cell type marker genes per Leiden cluster 
obtained without batch correction labeled with the corresponding cell type assignment. The 
clear separation of clusters by cell type marker genes and the similarity in gene expression 
space between clusters of the same cell type (see the dendrogram in Figure 5.9) further 
indicates that the clustering captured biological rather than batch effects. As expected, only 
T cells expressed the CAR transgene. Moreover, the presence of the CAR transgene 
correlated with the expression of CD19, which is not usually expressed in T cells. These 
CD19 counts likely originated from the CAR transgene, which also contains a copy of 
human CD19, rather than corresponding to endogenous expression of the CD19 gene as 
observed in B cells (Figure 5.9). 

Comparison of gene expression results between donors 
Using an approach similar to the assignment of cell types to Leiden clusters based on cell 
type marker genes, as discussed above, T cells can be further broken down into immune 

Figure 5.9 Expression of cell type marker genes in each Leiden cluster labeled with the corresponding cell 
type. 
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sub-cell types based on marker genes for different types of T cells. Instead of re-clustering 
the T cells and assigning sub-cell types to smaller Leiden clusters, we assigned the sub-cell 
type labels to each individual T cell using a custom reiterative algorithm that increases 
marker gene expression thresholds with each round of sub-cell type assignment. This 
resulted in groups of immune sub-cell types with clearly defined expression of the 
corresponding marker genes (Figure 5.10).  

This sub-cell type assignment allowed us to follow different populations of immune cells 
over time, as is shown for donor 388 in Figure 5.3f in the previous subchapter. The 
comparison of these results across several donors is hindered by the data heterogenicity 
between donors, partly caused by different medical histories, and the uneven distribution 
of time point data per donor (Figure 5.8 C). However, we hypothesized that global trends, 
such as changes in the fraction of cells occupied by each immune sub-cell type, may be 
reproducible across donors. Figure 5.11 shows the fraction of T cells occupied by each 
immune sub-cell type for donors 375, 394, and 376 over time. Although the number of 
available T cells per donor differs between time points, an expansion of effector CD8+ T 
cell subsets can be observed for all patients between 0- and 29-days post-infusion. This 
coincides with the results presented for donor 388 in Figure 5.3f in the previous subchapter.  

Analysis of the V(D)J immune repertoire across donors 
The expression of antigen binding domains from the V(D)J immune repertoire sequencing 
data was quantified using the V(D)J algorithm of 10x Genomics Cell Ranger v7.1.0. 
Interestingly, the expansion of clonotypes 28 days post-infusion, as observed for donor 388 
(Figure 5.3g in the previous subchapter), could not be reproduced for donor 375 (Figure 
7A). Figure 5.12 B shows the number of clonotypes contained in different fractions of cells 
at 28 days post-infusion, further visualizing that the clonotypes in donor 388 are split into 
dominating clonotypes present in large fractions of cells and fewer clonotypes occupying 
small fractions of cells. By contrast, the fractions of cells occupied by clonotypes in donor 
375 are more evenly distributed (Figure 5.12 B). 

Figure 5.10 Expression of immune sub-cell type marker genes in groups of different T cell types. 
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Figure 5.11 Fraction of T cells occupied by each immune sub-cell type for donors 375 (A), 394 (B), and 376 
(C) over time. The numbers above each bar delineate the total number of T cells at that time point.  



 

 

129 

In contrast to donor 388, donor 375 did not undergo lymphodepletion prior to infusion with 
CAR T product, which potentially prevented individual evolving clonotypes from 
inhabiting large fractions of the overall clonotype population as seen in donor 388. To 
investigate whether there were any expanding clonotypes over time in donor 375, we 
visualized the percentage of cells each clonotype was expressed at 0- and 28-days post-
infusion (Figure 5.12 C). In this plot, expanding clonotypes are underrepresented at 0 days 
post-infusion, while contracting clonotypes are underrepresented at 28 days post-infusion. 

Expanding Expanding 

Contracting Contracting 

Figure 5.12 A The fraction of clonotypes occupied by individual clonotypes over time in the peripheral 
blood of donor 375. B The number of clonotypes occupying different fractions of cells for donors 375 and 
388 at 28 days post-infusion. C The percentage of cells occupied by each individual clonotype at 28 days 
post-infusion over the percentage at 0 days post-infusion for donors 388 (left) and donor 375 (right). 
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Donor 388 showed two separate populations of expanding and contracting clonotypes, 
with only a single clonotype remaining stable over time. In contrast, all clonotypes in donor 
375 remained stable with only slight changes in the percentage of cells occupied by each 
clonotype between 0- and 28-days post-infusion, suggesting that donor 375 did not show 
any expansion of clonotypes. 

Code availability 
The code to reproduce the figures and analysis, as well as supplementary methods, can be 
found here: https://github.com/pachterlab/DBALLSMRDMCMGWSTPMBDKPFP_2023 
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Extended Data Figure 5.1 Knee and library saturation plots for 32 gene expression datasets derived from 
prostate cancers patients at different time points of treatment with CAR T therapy. The dashed grey lines 
indicate the data quality threshold for barcode filtering.  
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C h a p t e r  6  

CONCLUSION AND OUTLOOK 

While the development of hardware and wet-lab technologies for the high-throughput 
capture of transcriptomic and proteomic information surges ahead, computational methods 
for analyzing high-dimensional omics data are still catching up. We have only begun to 
understand the various sources of technological and biological noise in transcriptomics 
data and how to model them accurately1-6. Moreover, the refinement of algorithms for 
crucial analysis steps, such as data visualization, is ongoing–in some cases, this is true for 
already widely used algorithms7.  

The host sequence masking strategies described in Chapter 3 exemplify how seemingly 
minor decisions in the data analysis, in this case pertaining to the data alignment and the 
identification of host versus viral sequences, can significantly impact biological 
interpretations. These intricacies underscore the need to merge extensive knowledge from 
both biological research fields and computer science when analyzing transcriptomics data. 

As the required fields of expertise continue to expand, rigorous analysis often necessitates 
collaborative efforts. Successful collaboration between biologists and computer scientists 
requires a mutual understanding of each other’s challenges, fostering effective and 
respectful communication through a shared language. Moreover, software developers can 
enhance the usability of their software by following the guidelines discussed in Chapter 1, 
emphasizing accessibility, reproducibility, and relevance for users from diverse 
backgrounds. 

Successful collaboration across disciplines unlocks new potential within existing 
technologies, as exemplified in Chapter 3 with the detection of previously unknown viral 
sequences from existing data. The findings described in this thesis were only possible 
through combining expertise from many fields of study, and the need for collaboration will 
only increase in the future. 

Finally, computational biology, like all fields of science, needs more than just brilliant 
minds. A brilliant mind will fade in an unsupportive environment. As scientists, one of the 
most essential parts of our job is educating and mentoring the next generation of scientists. 
This is achieved through teaching, as well as actively creating a safe, stable, respectful, and 
comfortable institute-wide environment that empowers and encourages all aspiring 
scholars to try, experiment, not know (yet), learn, fail, and succeed. To quote Einstein: “I 
never teach my pupils. I only attempt to provide the conditions in which they can learn.” 
If we let arrogance and ego get in the way of creating such conditions, we inevitably fail 
as scientists. 
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