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ABSTRACT 

  Transition metal catalysis can be leveraged to construct challenging chemical bonds 

with excellent chemo- and stereoselectivity. Herein we describe the discovery of a novel 

palladium-catalyzed cascade cyclization and a nickel-catalyzed spirocyclization, enabling 

the assembly of complex carbocyclic architectures. We begin with an introduction describing 

notable applications of palladium-catalyzed cascade cyclizations in natural product 

synthesis, enabling the concurrent formation of C–C and C–N bonds in a single synthetic 

step.  

  Next, the development of a palladium-catalyzed oxidative Heck/aza-Wacker 

cascade cyclization is described. This cascade reaction enabled the construction of an all-

carbon quaternary center, a C–C bond, and a C–N bond in a single synthetic step. 

Furthermore, it was employed to build the carbocyclic core of the natural product 

noraugustamine. 

  Then, we outline the discovery and optimization of an enantioselective nickel-

catalyzed a-spirocyclization of lactones. The established method efficiently and 

enantioselectively forges 5-, 6-, and 7-membered rings containing all-carbon quaternary 

centers. This discovery represents an expansion of the synthetic toolkit for enantioselective 

spirocyclization, providing access to chiral, pharmaceutically relevant spirocyclic products. 

  Finally, we describe a collaborative project with the Su lab at the University of 

Arizona in the area of polymer synthesis and gas sensing, where we designed a sensor for 

the selective detection of gaseous nitric oxide. The sensor’s excellent specificity and part-

per-trillion level sensitivity was enabled by novel ferrocene-containing polymeric coatings. 
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CHAPTER 1    

Palladium-Catalyzed Cascade Cyclizations Involving C–C and C–X 

Bond Formation: Strategic Applications in Natural Product Synthesis† 

 

1.1   INTRODUCTION 

Strategically applied cascade reactions can enable the rapid construction of natural 

product core structures from simpler starting materials, dramatically shortening and 

simplifying synthetic plans.1 As the breadth of palladium-catalyzed C–X (X = O,N) and 

C–C bond-forming reactions has expanded over the past 30 years, palladium-catalyzed 

cascade cyclizations (PCCs) have emerged as a powerful strategy to forge multiple rings 

in a single synthetic operation.2  

In a cascade (or domino) reaction, multiple bond-forming and/or bond-breaking 

transformations occur sequentially under a constant set of conditions. In order for a process 

to be classified as a cascade, the functionality required for the second transformation must 

be generated as a result of the first.2 These processes are occasionally referred to as tandem 

reactions, but there is some controversy to this nomenclature. The term “tandem reaction” 

has previously been used to describe sequential transformations occurring under a changing 

set of conditions, so we will abstain from using this term to describe the cascade reactions 
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covered herein.3 It has also become customary to name PCCs after known cross-coupling 

reactions, such as the Heck reaction, with which they share some mechanistic steps. 

However, we find this nomenclature to be problematic, given that the mechanisms of most 

cascades are not identical to those of their parent cross-couplings. Therefore, with the 

exception of named cascade reactions, such as the Larock heteroannulation, we refer to 

PCCs by their key bond-forming mechanistic steps.   

Palladium-catalyzed cascade reactions have been defined mechanistically as 

consisting of three parts: initiation, relay, and termination (Figure 1.1).4 An initiation step, 

for example, nucleopalladation or oxidative addition, generates a carbon- or heteroatom-

bound Pd species. This intermediate then undergoes one or more relay steps, such as olefin 

carbopalladation or carbonylation. A termination step, such as β-hydride elimination or 

nucleophilic capture, releases the cascade product and regenerates the Pd catalyst.  

Figure 1.1 Mechanistic analogy for palladium-catalyzed cascade reactions. 

In this review, we demonstrate how the strategic application of PCCs can expedite 

the total synthesis of complex natural products, enabling the formation of multiple rings 

and both C–C and C–X bonds in a single synthetic operation. We begin by discussing how 

carbonylative cascades can be employed to build fused and spirocyclic lactones into 

carbocyclic frameworks, enabling the synthesis of multiple natural products including (±)-

schindilactone A (3) and (+)-perseanol (2, Figure 1.2). Next, we describe how the Larock 

initiation relay termination

oxidative addition
nucelopalladation

carbopalladation
carbonylation

β-hydride elimination
nucleophilc capture
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heteroannulation cascade can forge both C–C and either C–O or C–N bonds to construct 

indole or benzofuran-containing natural products. Finally, we focus on cascades that are 

used to form both C–C and C–N bonds, facilitating the total synthesis of complex alkaloids 

such as (+)-mitomycin K (1).  

Figure 1.2 Representative natural products synthesized via PCC. 

1.2 C–C AND C–O BOND FORMATION: CARBONYLATIVE CASCADES  

1.2.1 The Semmelhack Reaction 

The Semmelhack reaction was initially developed as a means to investigate the 

stereoselectivity of olefin oxypalladation, a key mechanistic step in the Wacker process 

(Scheme 1.1a). Following oxypalladation of cis-2-butene (4), Stille and coworkers sought 

to trap the resultant alkylpalladium intermediate (5) before it could undergo β-hydride 

elimination to form 6.5 As carbonylation of alkylpalladium species had previously been 

shown to occur at a faster rate than β-hydride elimination, 4 was subjected to typical 

Wacker conditions in the presence of carbon monoxide. Trans-oxypalladation was 

followed by carbonylation and methanol trapping to afford β-methoxyester 7.  

In 1984, Semmelhack and Bodurow applied this cascade to the synthesis of 

tetrahydrofuran (THF) and tetrahydropyran (THP) rings from alcohols bearing pendant 

olefins.6 Here, the catalytic cycle is thought to be initiated by intramolecular oxypalladation 

of olefin 8 to form alkylpalladium 9 (Scheme 1.1b). Carbonylation and methanol trapping 
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then afford 11, and the liberated Pd0 complex is oxidized by CuCl2 to regenerate PdII. In 

another report, intramolecular trapping of the acyl-PdII complex was found to give rise to 

two rings in a single transformation. In this case, stoichiometric Pd(OAc)2 was used instead 

of PdCl2/CuCl2 (Scheme 1.1c).7 The Semmelhack reaction has since been widely used in 

the synthesis of complex natural products due to its mild reaction conditions, functional 

group tolerance, and generally high yields.8  

Scheme 1.1 Development of the Semmelhack reaction. 

Total Synthesis of (–)-Kumausallene 

One notable application of the Semmelhack PCC in natural product synthesis is 

Tang and Werness’ synthesis of (–)-kumausallene (15), a bromoallene-containing 

nonisoprenoid sesquiterpene (Scheme 1.2a).9 Given that previous synthetic approaches by 

Overman and Evans were challenged by stereoselective bromoallene formation, Tang and 

Werness envisioned a biomimetic approach. Late-stage biomimetic bromoetherification 
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could selectively afford 15 from (+)-trans-deacetylkumausyne (16), the putative 

biosynthetic precursor to (–)-kumausallene. Enyne 16 could arise from pseudosymmetric 

lactone 17, which could in turn be formed via Semmelhack reaction of known diol 18. The 

use of a PCC early in the synthesis of 15 would allow rapid entry to the polycyclic 

framework by exploiting the symmetry present in the natural product.  

Key to the success of this strategy was the robust nature of the Semmelhack reaction 

on scale. Indeed, subjection of C2-symmetric diol 18, accessed in three steps from 

acetylacetone, to typical Semmelhack reaction conditions afforded 17 in 87% yield on 

gram scale (Scheme 1.2b). With ready access to lactone 17, it was then elaborated to enyne 

16 in seven steps. Finally, upon treatment with N-bromosuccinimide, 16 readily underwent 

bromoetherification to afford (–)-kumausallene as a single diastereomer. 

Scheme 1.2 Total synthesis of (–)-kumausallene. 

Total Synthesis of (±)-Schindilactone A 

Tang, Chen, and Yang’s synthesis of (±)-schindilactone A (3) further demonstrated 

the utility of the Semmelhack reaction in natural product synthesis (Scheme 1.3a).10 
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Schindilactone A was isolated in 1982 from the Schisandraceae family of flowering plants, 

many species of which have been used in traditional Chinese medicine. With twelve 

stereogenic centers decorating a highly oxygenated octacyclic framework, 3 is a formidable 

synthetic target. In contrast to Tang and Werness’ synthesis of (–)-kumausallene, wherein 

the cascade was performed early in the synthesis to rapidly build complexity, here a 

Semmelhack reaction was used on an advanced substrate.  

Retrosynthetically, 3 was first disconnected at the A ring, which was envisioned to 

arise from aldol addition of an acetyl-protected alcohol to the B ring lactone. Next, a 

Semmelhack reaction was proposed to form the G and H rings. This disconnection 

simplified the natural product to pentacyclic compound 21. The F ring could be installed 

via a Pauson–Khand reaction, and the central E ring could arise from cross-coupling 

followed by ring-closing metathesis. The proposed late-stage Semmelhack reaction would 

be key in constructing two of the final rings of the natural product. However, this strategy 

would require an especially robust cascade to be able to perform well on highly 

functionalized 21.  

In prior studies, Chen and Yang found that the Semmelhack reaction could be used 

to construct the GH ring system of a related natural product. Model substrate 22 underwent 

Semmelhack reaction to afford 24 in 95% yield (Scheme 1.3b). Encouraged by these 

studies, advanced intermediate 21 (prepared in 22 steps) was subjected to similar reaction 

conditions (Scheme 1.3c). By increasing the catalyst loading relative to the model studies 

(from 30 to 50 mol %), 20 could be obtained in 78% isolated yield. Lactone 20 was then 
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elaborated to 3 in a six-step sequence to achieve the first total synthesis of (±)-

schindilactone A in 29 steps.  

Scheme 1.3 Total synthesis of (+)-schindilactone A. 

The Semmelhack PCC has been employed in the synthesis of a number of other 

natural products: (–)-plakortone D (25),11 (±)-crisamicin A (26),12 (±)-pallambins C and D 

(27),13 and (±)-pallambins A and B (28, Figure 1.3).14 Together, these syntheses illustrate 

the utility of the Semmelhack reaction to construct the bicyclic lactone motif found in a 

variety of natural product classes. Although application of this PCC is limited to lactone 

formation, the compatibility of the Semmelhack reaction with both early and late stages of 

a synthesis makes it an attractive strategy to synthesize complex, polycyclic systems. 

Figure 1.3 Other natural products synthesized via Semmelhack reaction. 
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1.2.2 Carbopalladation/Carbonylative Lactonization  

Recently, PCCs involving carbopalladation followed by carbonylation have been 

used in natural product synthesis. This reaction, initially reported by Grigg and coworkers 

in 1993, shares some common features with the Semmelhack reaction (Scheme 1.4a).15 

Rather than olefin oxypalladation, the initiating step of this cascade is oxidative addition 

of an aryl or alkenyl halide (29) to a Pd0 species (Scheme 1.4b). Subsequent migratory 

insertion (i.e., carbopalladation) of a pendant olefin forms the first ring, resulting in alkyl 

PdII species 32. Carbon monoxide insertion affords acyl PdII species 33, then capture by 

an internal alcohol nucleophile forges the second ring and releases Pd0. Overall, one C–O 

and two C–C bonds are formed in a single transformation. This reaction is often referred 

to in the literature as the “Heck/carbonylative lactonization cascade”. However, as we have 

previously described, this nomenclature is not accurate; the cascade does not involve all of 

the same mechanistic steps as the Heck reaction. Thus, we refer to this reaction as the 

carbopalladation/carbonylative lactonization cascade. 

Despite their mechanistic similarities, this cascade provides access to structurally 

distinct scaffolds from the Semmelhack reaction: multiple C–C bonds are formed, enabling 

construction of a broader variety of ring systems. Additionally, an exogenous 

stoichiometric oxidant is not required. However, premature carbonylation can be a 

challenge. In order for this cascade to proceed in high yield, alkene insertion of species 31 

must outcompete CO insertion.  
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Scheme 1.4 The carbopalladation/carbonylative lactonization cascade. 

Total Synthesis of (–)-Spinosyn A 

The carbopalladation/carbonylative lactonization cascade was first applied to 

natural product synthesis in Dai and coworkers’ synthesis of (–)-spinosyn A (34, Scheme 

1.5a).16 (–)-Spinosyn A is the primary component of spinosad, a broadly used insecticide 

with an excellent environmental profile and low mammalian toxicity. Cross-resistance to 
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macrocycle formation via the carbopalladation/carbonylative lactonization cascade was 

unprecedented. 

The key strategic steps were initially validated in a simpler model system (Scheme 

1.5b). Propargylic acetate 36, formed via a convergent 1,2-addition, smoothly rearranged 

under gold catalysis to give 37. Excitingly, carbopalladation/carbonylative 

macrolactonization of 37 afforded 38 in 58% yield and 3:1 dr. The 6-membered ring was 

thought to promote the desired carbopalladation via the Thorpe–Ingold effect, placing the 

alkenyl iodide and pendant olefin in close proximity.  

In light of these promising results, fully elaborated substrate 39 was prepared and 

subjected to the reaction conditions (Scheme 1.5c). After some reoptimization, including a 

change in ligand and increased CO pressure, the desired cyclization proceeded in 43% yield 

to afford 12-membered lactone 40 as a single diastereomer. Macrocycle 40 could be 

advanced to (–)-spinosyn A in four additional steps, requiring 23 total steps (15 in the 

longest linear sequence). This synthesis expanded the scope of the 

carbopalladation/carbonylative macro-lactonization cascade, demonstrating its efficacy in 

forming fused macrocyclic ring systems. Furthermore, the smooth transition from the 

model system to the fully functionalized system is a promising indicator that homologous 

complex substrates may be tolerated in the reaction, enabling the preparation of analogs of 

34.  
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Scheme 1.5 Total synthesis of (–)-spinosyn A. 

Total Synthesis of (+)-Perseanol 

The carbopalladation/carbonylative lactonization cascade was also employed in 

Reisman and coworkers’ synthesis of (+)-perseanol (2), an isoryanodane diterpene with 
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palladation/carbonylative lactonization cascade of the resulting alcohol 44 would close the 

B and D rings to afford 41. 

Scheme 1.6 Strategic Approach to (+)-Perseanol 

To that end, cyclopentene fragments 42 and 43 were each prepared in six steps from 

commercially available substrates and coupled to give secondary alcohol 44 in 75% yield. 
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8). Cascade product 45 was advanced to 2 in 8 additional steps, completing the first total 

synthesis of (+)-perseanol in 16 steps (longest linear sequence) from (R)-pulegone. 

Table 1.1 Optimization of carbopalladation/carbonylative lactonization cascade. 
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Scheme 1.7 Spirolactonization strategy toward a-levantenolide and a-levantanolide. 

The proposed cascade was developed using model substrate 53 (Table 1.2). 

Pd(TFA)2 and [(cinnamyl)PdCl]2 were effective in combination with CO and 2 equivalents 
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was tested, and the yield improved to 85% (entry 3). A balloon of oxygen could be used in 

place of benzoquinone, though the yield was significantly reduced (entry 4). Increasing the 

temperature to 50 °C allowed the catalyst loading and reaction time to be reduced, affording 

product in 89% yield after only 18 h with 5 mol % catalyst (entry 5). The efficacy of this 

reaction was further demonstrated using a set of 23 hydroxycyclopropanol substrates, with 
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2 mol % catalyst; however, a mixture of diastereomers was obtained. The desired 

diastereomer, 48, was isolated in 30% yield. This was consistent with the substrate scope,  

Table 1.2 Development of spirolactonization cascade. 

in which spiro[4.4] ring systems were generally synthesized in poor dr, but spiro[4.5] 

systems were generally obtained with good dr. Nevertheless, a-levantanolide (48) was 

obtained in 17% overall yield across two steps. Both diastereomers of spirocyclization 

product (48 and 58) could be carried forward in a two-step sequence, affording a-

levantenolide (47) in four steps and 14% overall yield. 

Scheme 1.8 Total synthesis of a-levantenolide and a-levantanolide. 
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species onto the aryl ring and then subsequent cyclization to form a 3-substituted indole 

were originally established by Taylor, McKillop and Stille.19 The widely used single-step 

heteroannulation method was developed by Larock soon after these initial reports.20 The 

method was later expanded for the synthesis of 1,2-dihydroisoquinolines, benzofurans, 

benzopyrans, and isocoumarins.  

The proposed mechanism for these reactions involves initial reduction of the PdII 

source to Pd0, subsequent oxidative addition of the aryl iodide 59, alkyne coordination and 

insertion to give alkenyl Pd species 62, and reductive elimination to release the indole 

product (63, Scheme 1.9).21 If the difference in size between alkyne substituents is large 

enough, the annulation occurs with high regioselectivity. Given that the interaction 

between the larger substituent (RL) and a developing Pd–C bond will be less than that 

between RL and a shorter C–C bond, RL is placed at the 2-position of the indole.  

Scheme 1.9 Proposed catalytic cycle for the Larock heteroannulation cascade. 
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Total Synthesis of Eight Ergot Alkaloids 

 The 3,4-fused indole motif is present in many bioactive natural products, 

necessitating streamlined methods for the construction of these scaffolds (Scheme 1.10a). 

Striving to establish a general strategy for the single-step construction of this moiety, Jia 

and coworkers developed an intramolecular Larock heteroannulation reaction. They aimed 

to apply the method to the natural product fargesine (68) as a proof of concept.22 To the 

authors’ delight, the optimization of this method proved simpler than anticipated, as the 

standard conditions for the Larock indole synthesis furnished the desired 3,4-fused indoles 

in good to excellent yields (Scheme 1.10a).  Furthermore, this method could be used to 

form both medium-sized rings as well as macrocycles. Additionally, 2-bromoanilines could 

be employed as substrates in the presence of a MePhos (79) or dppp ligand in place of the 

traditional PPh3 ligand. Finally, the application of this method enabled the 8-step total 

synthesis of (±)-fargesine (Scheme 1.10b). 

Scheme 1.10 Development and application of intramolecular Larock 

heteroannulation method. 
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In fact, several ergot alkaloids are used in the clinical treatment of migraines and 

Parkinson’s disease, rendering natural products in this class attractive synthetic targets.23 

Demonstrating the synthetic utility of their previously established intramolecular Larock 

heteroannulation method, Jia and coworkers designed a highly divergent synthetic route 

for the total syntheses of (±)-festuclavine (69), (±)-9-deacetoxy-fumigaclalvine C (70), (±)-

pibocin A (71), (±)-fumigaclavine G (72), (±)-dihydrosetoclavine  (73), (±)-iso-

dihydrosetoclavine (74), (±)-costaclavine (75), and (±)-epi-costaclavine (76) from 

common intermediate 77 (Scheme 1.11).24 Larock heteroannulation precursor 78 was 

accessed in 6 steps from commercially available 2-bromo-1-methyl-3-nitrobenzene.  

Scheme 1.11 Abbreviated retrosynthetic strategy for the synthesis of eight ergot 

alkaloids. 

When 78 was subjected to the previously established PCC conditions, the expected 

heteroannulation product was obtained in 92% yield on gram scale (Scheme 1.12a). 
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than a cascade. By simply increasing the Pd and ligand loadings, tetracyclic product 80 

was obtained in 65% yield, along with 25% of the Larock heteroannulation product, 77 

(Scheme 1.12b). Impressively, this one-pot transformation established the tetracyclic 

framework shared by the target ergot alkaloids and forged two C–N bonds and one C–C 

bond in a single synthetic step. Furthermore, this constituted the first example of Tsuji–

Trost allylation utilizing a TBS-protected allylic alcohol. Each ergot alkaloid target was 

subsequently accessed from tetracyclic indole 80 in five or fewer steps, demonstrating the 

synthetic efficiency and versatility of this divergent synthetic route. 

Scheme 1.12 One-pot Larock heteroannulation cascade/Tsuji-Trost allylation. 

Catalytic Asymmetric Total Synthesis of (–)-Galanthamine and (–)-Lycoramine 
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substitutions at the 2-position.  Notably, the desire to utilize the Larock heteroannulation 

cascade to construct (–)-galanthamine (83) and (–)-lycoramine (84) resulted in the 

expansion of the substrate scope for this reaction, demonstrating that strategic applications 

can have impacts beyond the realm of natural product synthesis.  

Scheme 1.13 Substrate scope of Larock heteroannulation method. 

Amaryllidaceae alkaloids 83 and 84 are medicinally relevant targets that have 

demonstrated inhibition of acetyl-cholinesterases; in fact, (–)-galanthamine has been used 

clinically to treat Alzheimer’s disease. Previous approaches aimed to form the “B” or “D” 

ring at a late stage in the synthesis. In contrast, Jia and coworkers aimed to construct the 
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Scheme 1.14 Total synthesis of (–)-galanthamine and (–)-lycoramine. 
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coupling. An impressive transformation nonetheless, this one-pot reaction installed the 

benzylic quaternary center of both natural products in 85% ee and 20% yield from triflate 

92 (Scheme 15b). Tricyclic product 93 was then advanced to PCC precursor 91 in an eight-

step sequence. The key Larock heteroannulation cascade occurred in a 72% yield. Notably, 

this was the first published example of intramolecular Larock annulation, and it was also 

the first application to utilize an iodinated diosphenol. This synthetic effort enabled the 

short and enantioselective construction of both 88 and 89, and it demonstrates how the 

strategic combination of multiple palladium-catalyzed cyclizations can be utilized to build 

complex carbocyclic frameworks from simple starting materials. 

 Scheme 1.15 Asymmetric total synthesis of (+)-halenaquinone and (+)-halenaquinol.  
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dihydrolysergol (95).28 In addition, the total syntheses of macrocyclic peptides (±)-

chloropeptin I (96) and (±)-chloropeptin II (97) were enabled by an intramolecular Larock 

O

O

O O

O
Me

(+)-halenaquinone (88)

O

OH

OH O

O
Me

(+)-halenaquinol (89)

O

OMe

OMe O

O
Me

TIPS

2-3 
steps

Larock 
hetero-

annulation

OH

OMe

OMe O

Me

O

TIPSI
cascade Suzuki
cross-coupling/
asymmetric Heck
benzylic oxidation

a) Retrosynthetic plan for the total synthesis of (+)-halenaquinone and (+)-halenaquinol

b) One-pot Suzuki coupling/asymmetric Heck coupling and intramolecular Larock heteroannulation cascade

OH

OMe

OMe O

Me

O

TIPSI

O

OMe

OMe O

O
Me

TIPS

Pd2(dba)3 (cat.)
K2CO3

DMF, rt, 8 h
(72% yield)

8 steps
OMe

OMe

Me

OTBDPS
OMe

OMe

OTf

OTf

BBN
Me

Pd(OAc)2 (cat.)
(S)-BINAP (cat.)

K3CO3

THF, 60 ℃, 42 hr
(85% ee, 20% yield)

12 steps LLS
90 91

92 93 91 90

OTBDPS



Chapter 1: Palladium-Catalyzed Cascade Cyclizations Involving C–C and C–X Bond Formation: 23 
Strategic Applications in Natural Product Synthesis 

 

macrocyclization using stoichiometric palladium.29 More recently, Boger and coworkers 

completed the total synthesis of macrocyclic peptide (±)-streptide (98) using a similar 

transformation, which gave the indole product in 60% yield.30 These examples demonstrate 

the robust and highly selective nature of the intramolecular Larock heteroannulation 

reaction, enabling the formation of 20-membered macrocycles from complex polypeptide 

substrates.  

Figure 1.4 Additional targets completed via Larock heteroannulation cascade. 
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this transformation was established by Semmelhack, and enantioselective variants were 

developed soon after.32,33 The analogous transformation with nitrogen nucleophiles was 

first reported in the context of chiral indoline synthesis and later applied to the total 

synthesis of (+)-mitomycin K (1).34 The proposed mechanism of this PCC is initiated by 

aminopalladation to afford alkylpalladium species 99 (Scheme 1.16). Subsequent 

carbopalladation of the pendant alkene forms an additional ring, and β-hydride elimination 

from 100 releases the polycyclic product (101). Reductive elimination and oxidation 

regenerate the PdII catalyst. 

Scheme 1.16 Proposed catalytic cycle for nucleopalladation/carbopalladation/ β-

hydride elimination cascades.  
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Asymmetric Total Synthesis of (+)-Mitomycin K  

The mitomycins are an iconic class of natural products, well known for their small 

but highly functionalized structure and potent antitumor activity. Mitomycins have a long 

synthetic history, but the first enantioselective synthesis of (+)-mitomycin K (1) was only 

recently achieved (Scheme 1.17). Retrosynthetically, the authors envisioned the 

completion of target 1 from precursor azide 102, which had previously been employed in 

a racemic synthesis of (±)-mitomycin K.  They aimed to derive azide 102 from PCC 

product 103 via a sequence of functional group manipulations. A key palladium-catalyzed 

oxidative cascade cyclization of 104 would establish the 6/5/5 fused polycyclic core and 

constitute the first successful strategic application of their previous established 

enantioselective oxidative cyclization method.  

Scheme 1.17 Retrosynthetic plan for the synthesis of (+)-mitomycin K.  
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whereas benzyl ether substitution at C8, vicinal to the allyl group, was somewhat beneficial, 

although the rationale for these substituent effects is unclear. The authors obtained 

cyclization product 103 in 83% ee, which was subsequently advanced to azide 102 in 12 

steps. Although the absolute configuration at C9 established by the cyclization was 

subsequently ablated via oxidation, it was first used to relay the correct absolute 

configurations at both C1 and C2. Finally, azide 102 was advanced to (+)-mitomycin K 

using a procedure established by Jimenez et al.  

Scheme 1.18 Key palladium-catalyzed oxidative cascade cyclization. 
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The carbopalladation/π-allyl capture cascade is one of the most widely developed 

and frequently applied PCCs, accepting a variety of diene or allene substrates and O, C, 

and N-centered nucleophiles. In the literature, this cascade is often referred to as the Heck 

insertion/anion capture cascade or the Heck/Tsuji–Trost cascade. We consider it more 

accurate to refer to these reactions as carbopalladation/π-allyl capture cascades, as their 

proposed mechanism does not contain all the elementary steps of the Heck coupling or the 

Tsuji–Trost allylation. The suggested mechanism for these transformations commences 

with oxidative addition of an alkenyl or aryl halide electrophile, such as 105, to a Pd0 

complex (Scheme 1.19). The resulting PdII complex (106) participates in the 

carbopalladation of a diene or allene to give π-allylpalladiumII intermediate 107. This 

intermediate can then be trapped by a variety of internal or external nucleophiles. This PCC 

was initially disclosed and extensively developed by Grigg and coworkers, who found that 

π-allylpalladiumII complexes generated from allene or diene insertion could be 

successfully trapped by hydrides, organozincs, organoborons, organotins, C-, O-, and N-

centered nucleophiles.35 Subsequently, Shibasaki and coworkers developed an 

enantioselective variant that utilized a Pd(OAc)2 catalyst and chiral (S)-BINAP ligand to 

promote asymmetric diene insertion followed by stereoselective π-allyl capture by acetate 

anions or benzylamines.36,37 They later applied this cascade to the asymmetric total 

synthesis of natural product (–)-!9(12)-capnellene.38 
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Scheme 1.19 Proposed catalytic cycle for carbopalladation/π-allyl capture cascades. 
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amidation and Horner–Wadsworth–Emmons olefination of aldehydes derived from 112a 

and 112b.   

Unfortunately, upon exposure of cyclization precursor 111a to Pd2(dba)3 and 

either (R) or (S)-BINAP, only SEM protected (–)-18-epi-spirotryprostatin B (117) 

and (–)-3-epi-spirotryprostatin B (118) were obtained, along with byproducts 119 

and 120 resulting from elimination of palladium hydride from the π-allylpalladium 

intermediate (Scheme 1.21b). 

Scheme 1.21 Studies toward the total synthesis of (–)-spirotryprostatin B.  
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preventing isomerization. A 1:1 mixture of SEM protected (–)-spirotryprostatin B (121) 

and (–)-3,18-epi-spirotryprostatin B (122) was obtained in 72% yield (Scheme 1.22b). 

Scheme 1.22 Additional studies toward the total synthesis of (–)-spirotryprostatin B.  
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natural products. The application of the carbopalladation/π-allyl capture cascade was 

inspired by their previously established cycloamidation of carbamoyl chlorides with dienes. 

Compound 125 was identified as the requisite PCC precursor to the natural product, and it 

was prepared from Heck coupling product 126 in eight steps, including reductive lactone 

opening, Wittig olefination, and amide installation. 

Scheme 1.23. Retrosynthetic scheme for the formal synthesis of elacomine and 

isoelacomine. 

Surprisingly, subjection of carbamoyl chloride 125 to the conditions 

previously optimized for domino cyclization did not result in the expected cascade 

product (entry 1, Table 1.3). Instead, 129 was isolated, the product of β-hydride 

elimination from the π-allylpalladium intermediate. When Bu4NI was used as an 

additive, desired PCC product 130 could be isolated, albeit in low yield (entry 2). 

Changing the ligand to DPPF did not improve the yield of 130 (entry 3), but 

byproduct 129 was not observed in the absence of Cs2CO3 (entry 4), inspiring a 

screen of acidic conditions. In the presence of catalytic Bi(OTf)3, cyclization product 

130 was obtained in 52% yield but with poor dr (entry 7). Ultimately, the Heck 

reaction and hydroamination were performed separately to improve the yield and dr 

of spirooxindole 130 formation. When elimination product 129 was subjected to 

catalytic Bi(OTf)3 and KPF6, the hydroamination product (130) was obtained in 83%  
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Table 1.3 Optimization of carbopalladation/ π-allyl capture strategy. 

yield and 3:1 dr (Scheme 1.24). The diastereomeric reaction products were 

separately converted to elacomine and isoelacomine in just two steps. Despite its 

practical challenges, the late-stage PCC greatly simplified the synthetic strategy for 

the total synthesis of elacomine and isoelacomine.  

Scheme 1.24 Bi-catalyzed hydroamination.  
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their first completed synthesis involving the cascade (Scheme 1.25).46 Their key 

retrosynthetic disconnections included a palladium-catalyzed carbopalladation/π-allyl 

capture cascade to establish the 3,4-fused tricyclic indole scaffold and an organocatalytic 

asymmetric aziridination to establish the absolute configuration of the single stereogenic 

center in the natural product.  

Scheme 1.25 Enantioselective formal synthesis of (–)-aurantioclavine. 

Their first attempt at PCC with substrate 133 unfortunately failed to yield the 

desired product; instead, compound 137 was isolated due to elimination of the tosylamido 

moiety (Scheme 1.26a). In order to circumvent this undesired reactivity, the authors 

reduced the methyl ester to obtain TBS ether 138, hypothesizing that the lack of an acidic 

proton in this substrate would prevent tosylamido elimination. Subjecting 138 to their 
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surrogate. Because the carbopalladation/π-allyl capture cascade tolerates terminal allenes, 

this method may be more useful for the synthesis of indoles lacking substitution at the 2-

position, whereas the Larock heteroannulation cascade is best suited to indoles with 

functionality at the 2-position.   

Scheme 1.26 Optimization of carbopalladation/ π-allyl capture cascade. 
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Scheme 1.27 Retrosynthetic plan for the total synthesis of lysergic acid and analogues. 

a 4:1 ratio of diastereomers to a screen of Pd sources, ligands, bases, and solvents (Table 

1.4). Although the diastereoselectivity of the reaction could not be improved without a 

reduction in yield, it was found that the tosylamide substrates 146a and 146b provided 

slightly higher dr than the nosylamides 145a and 145b (entries 1 and 4). HPLC separation 

of nosylamide substrates 145a and 145b showed that dr improved slightly when a 

diasteromerically pure substrate was used (entries 2 and 3). 
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methyl ester gave a separable mixture of diastereomers, the major of which was advanced 

to (±)-lysergic acid.  

The authors proposed that the major cyclization product (148a) could arise from a 

pathway involving oxidative addition, aminopalladation, and reductive elimination 

(Scheme 1.28). This mechanistic pathway is reminiscent of palladium-catalyzed 

carboamination reactions developed by the Wolfe group.48–50 The minor diastereomer was 

proposed to arise from a carbopalladation/π-allyl capture pathway that involved anti 

capture of the π-allyl Pd intermediate by nitrogen. 

Scheme 1.28 Proposed mechanistic pathways leading to major and minor 

diastereomers. 

 

1.6 CONCLUSION 
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synthesis to rapidly build complexity and establish the core structure of the natural product. 

This approach is exemplified in the synthesis of (–)-kumausallene (15), in which a gram-

scale Semmelhack reaction is the fourth step. Second, a PCC can be used at a late stage to 

construct the final few rings of a natural product. This strategy requires particularly robust 

and functional group-tolerant cascades. Notable examples highlighted in this review 

include the syntheses of (±)-schindilactone A (3), (–)-spinosyn A (34), and (+)-

halenaquinone/halenaquinol (88 and 89). Third, a PCC can support a convergent synthetic 

strategy. In this case, an initial fragment coupling step joins two fragments of similar size 

and complexity. The PCC is then used to forge additional rings between these fragments, 

tailoring the natural product scaffold. This strategy was employed in the syntheses of (+)-

perseanol (2) and (–)-spirotryprostatin B (110). 

Despite the success of PCCs in natural product synthesis, there are some areas 

which invite further development. Some of the syntheses covered required lengthy 

functional group interconversion sequences following the key PCC. This may be avoidable 

in some cases with improved route design; however, it could also indicate a lack of 

functional group tolerance in the PCC itself. Another interesting extension of the current 

technology would be the development and application of intermolecular PCCs. Such a 

cascade could be applied toward a convergent total synthesis, in which the PCC would 

encompass both the fragment coupling and the scaffold tailoring steps. Finally, expansion 

of PCCs to other ring systems, such as strained carbocyclic systems and lactams, could 

enable their use toward a broader variety of natural products. This could potentially 

facilitate the synthesis of previously inaccessible natural products. Overall, palladium-
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catalyzed cascades have been used effectively in the total synthesis of a multitude of natural 

products. We anticipate that these reactions will continue to be successfully leveraged in 

natural product synthesis due to their power, breadth, and versatility. 
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CHAPTER 2 

Synthesis of Noraugustamine and Development of an Oxidative 

Heck/Aza-Wacker Cascade Cyclization 

2.1    INTRODUCTION 

The Amaryllidaceae alkaloid family of natural products has attracted attention from 

synthetic chemists due to their diverse structures and biological activities.1–3 Two 

representative members are augustamine (149) and the N-demethyl congener, 

noraugustamine (150), which bear structural features such as an all-carbon quaternary 

center, a fused pyrrolidine ring, and a bridging benzylidene acetal (Scheme 2.1).4–6 We 

Scheme 2.1 Retrosynthetic analysis. 

 became interested in 149 and 150 as part of a more general program aimed at developing 

cascade cyclizations that enable the sequenced formation of C–C and C–N bonds.7 In this 

context, we envisioned accessing the tetracyclic ABCD core from cyclohexene 153 by 

either a radical8,9 or transition metal-catalyzed10–13 process.14–16 Here we report our efforts 
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in this area, which resulted in the development of an oxidative Pd-catalyzed cascade 

reaction to form a quaternary center and two rings in a single step.    

2.2 RESULTS AND DISCUSSION 

We first investigated a radical cascade cyclization of aryl iodide 151. In the 

proposed cascade, iodine atom abstraction from 151 would be followed by cyclization of 

the aryl radical onto the olefin. The resulting alkyl radical could then cyclize onto a pendant 

azide, delivering 149.17 To this end, we prepared azide 157 from known cyclohexadiene 

154, which is available in two steps from commercially available starting materials 

(Scheme 2.2).18 Following dihydroxylation of 154 with osmium tetroxide, diol 155 was 

coupled with 152 to afford acetal 156 in moderate yield and good diastereoselectivity.19 

Displacement of the pendant tosylate with sodium azide delivered cyclization substrate 157. 

Scheme 2.2 Radical cyclization approach. 

With 157 in hand, we investigated the radical cyclization cascade. We were pleased 

to find that 150 was obtained in 32% yield upon treatment with AIBN and 

tris(trimethylsilyl)silane. Despite extensive optimization, efforts to improve the yield of 

this transformation were unsuccessful (See Experimental Section 2.4.2). We hypothesized 
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that the low yield resulted from poor regioselectivity in the initial C–C bond-forming 

cyclization. Indeed, when 158 was subjected to the optimized conditions, the desired 6-

exo-trig cyclization product 159 (26% yield) was accompanied by a 32% yield of 160, the 

result of a 7-endo-trig cyclization process.20–24 

To address this regioselectivity issue, we hypothesized that use of a transition metal 

catalyst might favor the desired isomer. Given the documented preference of Heck 

reactions for exo over endo cyclizations, we subjected 161 to palladium catalysis (Scheme 

2.3).25,26 Gratifyingly, 161 underwent exclusive 6-exo-trig Heck cyclization in 58% yield.  

Scheme 2.3 Heck cyclization studies. 

aPd(OAc)2 (10 mol %), (R,R)-Me-BozPhos (20 mol %), n-Bu4NOAc (2 equiv), H2O (200 equiv), DMSO, 

120 °C, 18–22 h. bDetermined by 1H NMR versus 1,3,5-trimethoxybenzene as an internal standard 

Substrate 158 performed similarly, affording 163 in 46% yield. When the reaction 

was performed open to air, we observed formation of 164, the result of Heck reaction 

followed by aza-Wacker cyclization. Subjection of Heck product 163 to the reaction 

conditions, in this case sparging with oxygen, resulted in clean conversion to 164 in 48% 

yield. However, the yield of 164 from the single-step cascade cyclization of 158 could not 
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be improved. Subjection of 158 to the O2-sparged reaction conditions resulted in increased 

amounts of unreacted starting material. Unfortunately, use of a sulfonamide, which was 

anticipated to cyclize faster under the aza-Wacker conditions,27 resulted in 7-endo-trig 

cyclization (See Experimental Section 2.4.2).   

To further investigate the feasibility of a Pd-catalyzed cascade cyclization, we 

synthesized modified substrate 166 (Scheme 2.4). We envisioned that removing the rigid 

acetal would favor 6-exo-trig cyclization even for sulfonamide substrates by alleviating the 

ring strain associated with formation of the C10a–C10b bond. We also hypothesized that a 

cascade process in which both cyclizations are oxidative would be more amenable to 

optimization; the aza-Wacker cyclization requires a stoichiometric oxidant for catalyst 

turnover, so the C–C bond-forming cyclization must also be compatible with oxidizing 

reaction conditions.28–30 To this end, alkenyl iodide 167 and alkyl bromide 168, each 

accessible in one step,31,32 were coupled to afford 169 in 58% yield on multigram scale.  

Scheme 2.4 Pd-catalyzed cascade cyclization approach. 

This is a rare example of Ni-catalyzed cross-electrophile coupling using an a-halogenated 

enone, and further exploration of this transformation is underway.33–35 SEM protection and 
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Luche reduction afforded 170, which was advanced in three steps to substrate 166 (See 

Experimental Section 2.3.3). 

A broad survey of reaction conditions identified Pd(OAc)2 (10 mol %)/Cu(OAc)2 

(40 mol %) in DMSO as optimal, with air as the terminal oxidant and H2O (5 equiv) as an 

additive, affording cascade product 165 in 62% yield (Table 2.1, entry 1). Importantly, no 

7-endo-trig cyclization was identified under any of the reaction conditions investigated.  

Table 2.1 Optimization of oxidative Heck/aza-Wacker cascade.   

When Cu(OAc)2 was used in stoichiometric quantities as the sole oxidant, conversion of 

Heck product 171 to 165 was incomplete (entry 2). In the absence of Pd(OAc)2 and air, 

stoichiometric Cu(OAc)2 promoted protodeborylation, forming 172 in 64% yield (entry 3). 

Interestingly, stoichiometric Cu(OAc)2 resulted in distinct reactivity under air, instead 

furnishing byproduct 173 in 23% yield (entry 4).36 To suppress these undesired reactions, 

alternative oxidants were explored; use of O2 37 or benzoquinone (BQ) 38 as oxidant resulted 
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0
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in mostly recovered starting material (entries 5 and 6) When 166 was subjected to catalytic 

Pd(OAc)2 and Cu(OAc)2 with O2 in place of air, 165 was observed in only 38% yield (entry 

7). Water was found to be a crucial additive; 165 was formed in only 9% yield when it was 

omitted.39–41 Performing the reaction at lower temperature resulted in poor conversion of 

Heck product 171 to 165 (entry 9).  

Finally, we explored the scope of the transformation (Scheme 2.5). We were 

pleased to find that electron-rich (26b) and electron-neutral (26a and 26c) substrates 

performed well in the cyclization, with fluorinated substrate 26c giving the highest yield. 

Scheme 2.5 Additional substrates. Reactions were conducted on 0.05 mmol scale. 

Isolated yields are reported. 

2.3 CONCLUSION  

In summary, two cascade cyclization strategies were investigated to form the B and 

D rings of the augustamine-type Amaryllidaceae alkaloids. A radical cyclization cascade 

enabled access to 150 but displayed poor regioselectivity of the first, C–C bond-forming 

step.  Efforts to improve the regioselectivity of this cyclization using Pd catalysis 

uncovered the feasibility of a Heck/aza-Wacker cascade. This reactivity was further 

developed, demonstrating that a Pd-catalyzed oxidative Heck/aza-Wacker cascade enables 

construction of an all-carbon quaternary center, a C–N bond, and two rings in a single step.  
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2.4 EXPERIMENTAL SECTION 

2.4.1 Materials and Methods 

Unless otherwise stated, reactions were performed under a N2 atmosphere using 

freshly dried solvents. Tetrahydrofuran (THF), diethyl ether (Et2O), methylene chloride 

(CH2Cl2), toluene (PhMe), hexanes, and benzene (C6H6) were dried by passing through 

activated alumina columns under a positive pressure of argon. Anhydrous dimethyl 

sulfoxide (DMSO) was degassed via three freeze-pump-thaw cycles then stored in a 

nitrogen-filled glovebox. Triethylamine (Et3N) was distilled over calcium hydride prior to 

use. NiBr2(dtbbpy) was synthesized according to the procedure reported by Shenvi and 

coworkers.1 Cu(OAc)2•H2O was dehydrated by refluxing in acetic anhydride.2 Unless 

otherwise stated, chemicals and reagents were used as received. All reactions were 

monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated 

plates (0.25 mm) and were visualized by UV, CAM, or KMnO4 staining. Flash column 

chromatography was performed as described by Still and coworkers using silica gel (230-

400 mesh, Silicycle).3 Purified compounds were dried on a high vacuum line (0.2 torr) to 

remove trace solvent. 1H and 13C NMR spectra were recorded on a Bruker Avance III HD 

with Prodigy cryoprobe (at 400 MHz and 101 MHz, respectively), a Varian 400 MR (at 

400 MHz and 101 MHz, respectively), or a Varian Inova 500 (at 500 MHz and 126 MHz, 

respectively). 1H NMR and 19F NMR spectra were also recorded on a Varian Inova 300 (at 

300 MHz and 282 MHz, respectively). NMR data is reported relative to internal CHCl3 

(1H, δ = 7.26), internal CDCl3 (13C, δ = 77.0), or added C6F6 (19F, δ = –164.9). Data for 1H 
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NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling 

constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. In cases where 

residual solvent was present in the NMR spectra, its contribution to the mass of the sample 

was calculated by 1H NMR and the yield was adjusted; unless otherwise noted, compounds 

are >95% pure. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer 

and are reported in frequency of absorption (cm–1). HRMS were acquired from the Caltech 

Mass Spectral Facility using fast-atom bombardment (FAB), electrospray ionization (TOF-

ESI), atmospheric pressure chemical ionization (APCI), field desorption (FD), or electron 

impact (EI). 

2.4.2 Synthesis of (±)-Noraugustamine 

Preparation of Cyclohexadiene 154: 

Cyclohexadiene 154 was prepared according to the procedure reported by 

Diver and coworkers.18 Spectral data matched those reported in the literature. 

Preparation of Diol 155: 

 

A round-bottomed flask was charged with cyclohexadiene 154 (1.38 g, 5.0 mmol, 1.0 

equiv), acetone/H2O (4:1, 40 mL), and a stir bar then cooled to 0 °C using an ice/water 

bath. N-Methylmorpholine N-oxide (0.581 g, 5.0 mmol, 1.0 equiv) and OsO4 (2.5% in t-

BuOH, 2.5 mL, 0.25 mmol, 0.050 equiv) were added, and the brown mixture was stirred 

OTs OsO4 (5 mol %)
NMO (1.0 equiv) OTs

OH
HO

4:1 acetone/H2O
0 to 20 °C, 15 h

38% yield 155154
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for 15 h while it was allowed to slowly warm to room temperature. The reaction was 

quenched with saturated aqueous Na2S2O3 (30 mL) and stirred for another hour before it 

was diluted with EtOAc (40 mL). The aqueous layer was extracted with EtOAc (3 x 40 

mL). The combined organic phases were washed with brine (100 mL; aqueous phase was 

once more extracted with EtOAc), dried over MgSO4, and concentrated. The residue was 

purified via column chromatography (20 to 33% EtOAc/hexanes) to afford diol 155 (706 

mg, 38% yield) as a cloudy, colorless oil. This compound is unstable and must be used 

shortly after purification; see note in 13C NMR for more information. The sample contained 

residual EtOAc by NMR and the yield was adjusted accordingly.  

1H NMR (400 MHz, CDCl3): δ 7.77 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 9.2 Hz, 2H), 5.60 (t, 

J = 3.4 Hz, 1H), 4.26 – 4.14 (m, 2H), 3.94 – 3.87 (m, 1H), 3.78 – 3.65 (m, 1H), 2.62 – 2.48 

(m, 1H), 2.44 (s, 3H), 2.42 – 2.38 (m, 1H), 2.21 – 2.12 (m, 1H), 2.03 – 1.96 (m, 1H), 1.76 

– 1.52 (m, 2H). 
13C NMR (101 MHz, CDCl3): δ 144.9, 133.3, 132.4, 130.0, 129.1, 128.0, 69.5 (2 

overlapping peaks), 68.9, 34.3, 25.4, 23.8, 21.8. The signals at 171.3, 60.6, 21.2, and 14.4 

are derived from the residual EtOAc. The lower-intensity signals at 133.8, 119.6, 67.2, 

64.6, 30.9, 25.3, and 20.9 are derived from cyclization of the allylic alcohol onto the 

pendant tosylate and match the previously reported data for this compound.42 This 

compound is not present in appreciable amounts in the 1H spectrum, indicating that 

cyclization likely occurred in the NMR tube following purification. 

FTIR (NaCl, thin film): 3378, 2923, 1598, 1439, 1356, 1188, 1175, 1097, 1051, 960, 915, 

833, 815 cm-1.  

HRMS (APCI) m/z: [M – OH]+ Calcd for C15H19O4S 295.0999; Found 295.0987. 

Rf = 0.20 (silica, 50% EtOAc/hexanes, KMnO4). 
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Preparation of 6-iodobenzo[d][1,3]dioxole-5-carbaldehyde (152): 

6-iodobenzo[d][1,3]dioxole-5-carbaldehyde (152) was prepared according to the 

procedure reported by Crich and Krishnamurthy.43 Spectral data matched those 

reported in the literature. 

Preparation of acetal 156: 

A flame-dried three-necked round bottom flask equipped with two rubber septa, a magnetic 

stir bar and a gas inlet. This apparatus was placed under an atmosphere of nitrogen then 

charged with 6-iodobenzo[d][1,3]dioxole-5-carbaldehyde (152, 1.08 g, 3.9 mmol, 2.0 

equiv), p-TsOH•H2O (0.186 g, 0.98 mmol, 0.50 equiv), and anhydrous THF (25 mL). The 

diol (155, 0.611 g, 2.0 mmol, 1.0 equiv) was added as a solution in benzene (25 mL) and 

the resulting pale yellow suspension was stirred for 48 h. The reaction mixture was poured 

into saturated aqueous NaHCO3 (50 mL) and the aqueous phase was extracted with EtOAc 

(3 x 50 mL). The combined organic layers were washed with brine (50 mL), dried over 

MgSO4 and concentrated. NMR analysis of the crude reaction mixture indicated 

diastereoselectivity of 10:1. The residue was purified via column chromatography (10 to 

25% EtOAc/hexanes) to afford 156 (718 mg, 66% yield) as a white foam.  
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1H NMR (400 MHz, CDCl3): δ 7.73 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.17 (s, 

1H), 6.90 (s, 1H), 6.04 – 5.93 (m, 2H), 5.89 (s, 1H), 5.72 (t, J = 4.2 Hz, 1H), 4.34 – 4.27 

(m, 2H), 4.19 (dt, J = 9.9, 7.0 Hz, 1H), 4.05 (dt, J = 9.9, 6.6 Hz, 1H), 2.57 – 2.42 (m, 2H), 

2.42 (s, 3H), 2.23 – 2.09 (m, 1H), 1.99 – 1.90 (m, 1H), 1.88 – 1.76 (m, 2H). 

13C NMR (101 MHz, CDCl3): δ 149.3, 148.6, 144.7, 133.1, 132.7, 130.4, 129.8, 129.1, 

127.9, 118.3, 108.3, 106.4, 101.9, 86.1, 74.6, 74.1, 68.8, 33.9, 25.5, 21.7, 21.1. 

FTIR (NaCl, thin film): 2900, 2257, 2075, 1919, 1853, 1618, 1598, 1502, 1477, 1415, 

1388, 1359, 1307, 1293, 1243, 1188, 1176, 1119, 1097, 1070, 1038, 993, 963, 914, 871, 

771, 734 cm-1. 

HRMS (APCI) m/z: [M + H]+ Calcd for C23H24IO7S 571.0282; Found 571.0265.  

Rf = 0.55 (silica, 33% EtOAc/hexanes, UV/KMnO4).  

Preparation of azide 157: 

A 25 mL Schlenk flask was charged with the alkyl tosylate (156, 372 mg, 0.65 mmol, 1.0 

equiv), sodium azide (84.6 mg, 1.3 mmol, 2.0 equiv), and a stir bar. The flask was 

evacuated and backfilled with nitrogen three times, and then anhydrous DMF (10 mL) was 

added. The suspension was heated to 60 °C using an oil bath for 2 h then cooled to ambient 

temperature and quenched with water (10 mL). The aqueous phase was extracted with Et2O 

(3 x 20 mL). The combined organic layers were washed with water (20 mL), dried over 
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DMF, 60 °C, 2 h
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MgSO4, and concentrated. The residue was purified via column chromatography (40:1:1 

to 30:1:1 hexanes/EtOAc/Et2O) to afford azide 157 (276 mg, 96% yield) as a white oil. 

1H NMR (500 MHz, CDCl3): δ 7.21 (s, 1H), 6.99 (s, 1H), 6.02 – 5.94 (m, 3H), 5.89 – 5.79 

(m, 1H), 4.45 (d, J = 6.4 Hz, 1H), 4.42 – 4.34 (m, 1H), 3.51 – 3.34 (m, 2H), 2.56 – 2.33 

(m, 2H), 2.31 – 2.15 (m, 1H), 2.01 (dq, J = 18.0, 5.0 Hz, 1H), 1.97 – 1.82 (m, 2H). 

13C NMR (126 MHz, CDCl3): δ 149.5, 148.7, 132.8, 132.0, 128.9, 118.5, 108.5, 106.7, 

101.9, 86.3, 74.8, 74.5, 49.7, 34.2, 25.8, 21.4. 

FTIR (NaCl, thin film): 2894, 2357, 2093, 1617, 1500, 1474, 1413, 1388, 1366, 1293, 

1241, 1175, 1116, 1069, 1037, 1004, 966, 929, 903, 869, 838, 801 cm-1. 

HRMS (APCI) m/z: [M – N2 + H]+ Calcd for C16H17INO4 414.0197; Found 414.0177.  

Rf = 0.57 (silica, 80:10:10 EtOAc/hexanes, UV/KMnO4).  

Preparation of Amine S1: 

A round-bottomed flask was charged with azide (157, 793 mg, 1.80 mmol, 1.0 equiv), PPh3 

(707 mg, 2.70 mmol, 1.5 equiv), THF (7 mL), H2O (28 mL), and a stir bar. The reaction 

was heated to 50 °C under nitrogen using an oil bath for 3 h then cooled and diluted with 

EtOAc (50 mL) and 2 M NaOH (40 mL). The aqueous layer was extracted with EtOAc (3 

x 50 mL), then the combined organics were dried over Na2SO4 and concentrated. The 
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residue was purified via column chromatography (94:5:1 DCM/MeOH/NH4OH) to afford 

S1 as a colorless oil (724 mg, 91% yield). 

1H NMR (400 MHz, CDCl3): δ 7.19 (s, 1H), 6.98 (s, 1H), 5.95 (s, 3H), 5.76 (t, J = 4.1 Hz, 

1H), 4.48 – 4.40 (m, 1H), 4.35 (td, J = 6.3, 4.2 Hz, 1H), 2.97 – 2.74 (m, 2H), 2.36 (dtd, J 

= 13.2, 6.6, 1.6 Hz, 1H), 2.29 – 2.14 (m, 2H), 2.04 – 1.92 (m, 1H), 1.85 (dq, J = 7.5, 5.7 

Hz, 2H). 

13C NMR (101 MHz, CDCl3): δ 148.8, 148.1, 132.5, 132.3, 127.4, 117.9, 107.9, 105.9, 

101.3, 85.7, 74.2, 73.9, 39.6, 38.0, 25.5, 20.8. 

FTIR (NaCl, thin film): 2905, 1501, 1475, 1413, 1242, 1116, 1068, 1034 cm-1.  

HRMS (FD) m/z: [M + H]+ Calcd for C16H19NO4I 416.0353; Found 416.0358.  

Rf = 0.27 (silica, 80:19:1 DCM/MeOH/NH4OH, UV/ninhydrin) 

 

Preparation of Carbamate 158: 

A round-bottomed flask was charged with amine (S1, 229 mg, 0.55 mmol, 1.0 equiv), 

DCM (2.8 mL), and a stir bar then stirred at ambient temperature. Triethylamine (0.100 

mL, 0.72 mmol, 1.3 equiv) was added, followed by di-tert-butyl dicarbonate (Boc2O, 156 

mg, 0.72 mmol, 1.3 equiv). The reaction was stirred for 2 h then concentrated. The residue 

NH2

O
O

DCM, 20 °C, 2 h

Boc2O (1.3 equiv)
Et3N (1.3 equiv)

S1

89% yield

H
I
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O

NHBoc
O

O

158

H
I

O
O



Chapter 2: Synthesis of Noraugustamine and Development of an Oxidative Heck/Aza-Wacker  
Cascade Cyclization  

 

59 

 

was purified via column chromatography (20% EtOAc/hexanes) to afford carbamate 158 

(253 mg, 89% yield) as an amorphous white solid. 

1H NMR (500 MHz, CDCl3): δ 7.21 (s, 1H), 6.99 (s, 1H), 5.97 (d, J = 1.9 Hz, 3H), 5.82 

– 5.74 (m, 1H), 4.66 (s, 1H), 4.47 (d, J = 6.4 Hz, 1H), 4.37 (td, J = 6.4, 4.1 Hz, 1H), 3.43 

– 3.20 (m, 2H), 2.52 – 2.34 (m, 1H), 2.23 (dt, J = 14.0, 7.1 Hz, 2H), 2.03 – 1.95 (m, 1H), 

1.87 (dq, J = 9.1, 5.5 Hz, 2H), 1.43 (s, 9H). 
13C NMR (101 MHz, CDCl3): δ 156.0, 149.3, 148.6, 132.7, 128.4, 118.4, 108.3, 106.3, 

101.8, 86.1, 79.0, 74.7, 74.3, 38.8, 35.2, 28.4, 25.9, 21.2. 

FTIR (NaCl, thin film): 3362, 2920, 1702, 1502, 1476, 1242, 1168, 1038 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C21H26NO6I 515.0799; Found 515.0828.  

Rf = 0.54 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 

 

Preparation of Carbamate 161: 

An oven-dried 2-dram vial was charged with a stir bar then pumped into a nitrogen-filled 

glovebox. NaH (8.0 mg, 0.30 mmol, 2.0 equiv) was added. The vial was sealed with a 

19/38 septum and electrical tape then removed from the glovebox. DMF (0.375 mL) was 

added, and the suspension was stirred at 0 °C under nitrogen using an ice/water bath. The 

carbamate (158, 77.3 mg, 0.15 mmol, 1.0 equiv) was added as a solution in DMF (0.375 

mL), then the reaction was warmed to ambient temperature and stirred for 45 min. The 

reaction was cooled to 0 °C, iodomethane (28.0 μL, 0.45 mmol, 3.0 equiv) was added, and 

then the reaction was warmed to ambient temperature and stirred for an additional 19 h. 

NHBoc
O

O

DMF, 20 °C, 19 h

NaH (2.0 equiv)
MeI (3.0 equiv)

158

71% yield

H
I

O
O
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The reaction was quenched with water then extracted with EtOAc (3 x 2 mL). The 

combined organic layers were washed with 1 M LiCl (2 x 2 mL), dried over Na2SO4, and 

concentrated. The residue was purified via column chromatography (15% EtOAc/hexanes) 

to afford carbamate 161 (56.7 mg, 71% yield) as a sticky, off-white foam. 

1H NMR (400 MHz, CDCl3): δ 7.20 (s, 1H), 6.99 (s, 1H), 5.97 (d, J = 2.0 Hz, 3H), 5.72 

(t, J = 4.1 Hz, 1H), 4.65 – 4.43 (m, 1H), 4.36 (td, J = 6.1, 4.4 Hz, 1H), 3.72 – 3.37 (m, 1H), 

3.18 (s, 1H), 2.83 (s, 3H), 2.48 – 2.26 (m, 2H), 2.26 – 2.13 (m, 1H), 1.96 (s, 1H), 1.90 (s, 

2H), 1.44 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 155.7, 149.2, 148.5, 132.8 (2 overlapping peaks), 

127.9/127.6*, 118.4, 108.4, 106.4, 101.7, 86.1, 79.2/79.1*, 74.7, 74.2/74.0*, 47.9/46.6*, 

34.1, 32.7/32.2*, 28.5, 25.8, 21.3. *rotamers 

FTIR (NaCl, thin film): 2926, 1694, 1476, 1391, 1242, 1158, 1038 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C22H28NO6I 529.0956; Found 529.0960.   

Rf = 0.57 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 

Procedures for Radical Cyclizations 

Radical Cyclization: General Procedure 1 

A flame-dried three-necked round-bottomed flask was equipped with a reflux condenser, 

two rubber septa, and a stir bar under nitrogen. The flask was charged with substrate (0.030 

N3

O
O

PhH, 80 °C, 4 h

AIBN (0.7 equiv)
(TMS)3SiH (1.0 equiv)

157
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mmol, 1.0 equiv), tris(trimethylsilyl)silane (9.3 μL, 0.030 mmol, 1.0 equiv), and benzene 

(2.6 mL) then heated to reflux using an oil bath. AIBN (3.4 mg, 0.021 mmol, 0.7 equiv) 

was added over 4 h as a solution in benzene (1.1 mL), then the reaction was concentrated.  

Optimization of Radical Cascade  

 

Noraugustamine (150): 

Prepared from azide 157 according to General Procedure 1. The residue was 

dissolved in DCM (2 mL) and extracted with 0.1 M HCl (2 x 1 mL). The 

aqueous phase was basified to pH 14 with 3 M NaOH then extracted with DCM 

(3 x 2 mL). The combined organic extracts were dried over Na2SO4 and concentrated. 

Following analysis by 1H NMR to determine yield, several reactions were combined and 

purified via column chromatography (20:2:1 DCM/MeOH/Et2O) to give 150 as an 

amorphous white solid.  

1H NMR (400 MHz, CDCl3): δ 6.77 (s, 1H), 6.62 (s, 1H), 5.93 (d, J = 1.9 Hz, 2H), 5.86 

(s, 1H), 4.32 (d, J = 4.5 Hz, 1H), 4.25 (dt, J = 4.6, 4.1 Hz, 1H), 3.52 (dd, J = 4.6, 4.1 Hz, 

entry

1

2

3

4

5

6

7

8

9

equiv (TMS)3SiH

3

3

3

1.1

1

1

1

1

1

radical initiator

AIBN (1 equiv)

V-70 (1 equiv)

Et3B/air (0.25 equiv)

ABCN (1 equiv)

AIBN (1 equiv)

AIBN (1 equiv)

AIBN (0.7 equiv)

AIBN (0.3 equiv)

AIBN (0.7 equiv)

t (h)

4

50

1

4

4

4

4

4

4

NMR yield

11%

0%

trace

11%

10%

23%

23%

16%

32%

T (°C)
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PhH
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PhH

PhH

PhH
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Entries 1–5: syringe pump addition of silane and initator over the course of the reaction
Entries 6–8: syringe pump addition of substrate over the course of the reaction
Entry 9: syringe pump addition of AIBN over the course of the reaction
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1H), 3.49 – 3.29 (m, 2H), 2.44 (ddd, J = 13.4, 7.9, 3.9 Hz, 1H), 2.20 – 2.04 (m, 2H), 1.77 

(dddd, J = 14.9, 4.3, 4.2, 4.2 Hz, 1H), 1.59 – 1.48 (m, 2H). 

13C NMR (101 MHz, CDCl3): δ 148.2, 145.9, 133.5, 129.3, 106.6, 105.1, 101.4, 100.4, 

76.2, 74.5, 65.9, 47.1, 43.9, 39.7, 21.6, 18.8. 

FTIR (NaCl, thin film): 2920, 1738, 1614, 1503, 1486, 1441, 1377, 1322, 1245, 1077, 

1037, 934, 868, 841, 824, 736 cm-1.  

HRMS (APCI) m/z: [M + H]+ Calcd for C16H18NO4 288.1230; Found 288.1221.  

Rf = 0.22 (silica, 20:2:1 DCM/MeOH/Et2O, UV/ninhydrin). 

 

Compound 159 

Prepared from carbamate 158 (10.3 mg, 0.020 mmol) according to 

General Procedure 1. The residue was dissolved in EtOAc (2 mL) and 

saturated aqueous NaHCO3 (2 mL) then extracted with EtOAc (3 x 2 

mL). The combined organic extracts were dried over Na2SO4 and concentrated. The residue 

was purified via column chromatography (20% EtOAc/hexanes) then preparative TLC 

(15/15/70 Et2O/DCM/PhMe) to give 11 as an amorphous white solid (2.0 mg, 25% yield). 

1H NMR (400 MHz, CDCl3): δ 6.69 (s, 1H), 6.59 (s, 1H), 5.94 (dd, J = 8.5, 1.4 Hz, 2H), 

5.83 (s, 1H), 4.74 (s, 1H), 4.22 (s, 2H), 3.25 – 2.94 (m, 2H), 2.06 (d, J = 13.9 Hz, 1H), 1.97 

– 1.84 (m, 2H), 1.73 (dt, J = 14.3, 7.0 Hz, 1H), 1.40 (s, 9H), 1.31 (td, J = 13.6, 2.7 Hz, 4H). 

13C NMR (101 MHz, CDCl3): δ 156.0, 148.2, 145.6, 133.8, 106.1, 104.6, 101.2, 100.4, 

79.2, 79.0, 74.9, 44.9, 41.3, 38.4, 37.4, 28.6, 27.5, 15.7.  

FTIR (NaCl, thin film): 2933, 1708, 1505, 1239, 1172, 1039, 940 cm-1.  
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HRMS (FD) m/z: [M + •]+ Calcd for C21H27NO6 389.1833; Found 389.1844.   

Rf = 0.27 (silica, 40% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 159 

 Prepared from carbamate 158 (10.3 mg, 0.020 mmol) according to 

General Procedure 1. The residue was dissolved in EtOAc (2 mL) and 

saturated aqueous NaHCO3 (2 mL) then extracted with EtOAc (3 x 2 mL). 

The combined organic extracts were dried over Na2SO4 and concentrated. 

The residue was purified via column chromatography (20% EtOAc/hexanes) then 

preparative TLC (15/15/70 Et2O/DCM/PhMe) to give 159 as an amorphous white solid 

(2.1 mg, 26% yield). 

1H NMR (400 MHz, CDCl3): δ 6.68 (s, 1H), 6.64 (s, 1H), 5.96 – 5.89 (m, 2H), 5.83 (s, 

1H), 4.65 – 4.56 (m, 1H), 4.55 – 4.48 (m, 1H), 4.46 (s, 1H), 3.27 – 3.10 (m, 2H), 2.95 – 

2.81 (m, 1H), 2.21 – 2.07 (m, 1H), 2.07 – 1.96 (m, 1H), 1.85 (s, 1H), 1.78 – 1.65 (m, 1H), 

1.65 – 1.60 (m, 1H), 1.52 (dd, J = 14.1, 7.1 Hz, 2H), 1.43 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 156.2, 147.3, 145.5, 137.7, 133.7, 111.8, 109.2, 106.7, 

101.3, 79.3, 75.3 (2 overlapping peaks), 41.6, 38.4, 34.5, 30.8, 28.6, 25.2, 21.6. 

FTIR (NaCl, thin film): 3384, 2929, 1700, 1506, 1489, 1364, 1243, 1175, 1120, 1045 cm-

1.  

HRMS  (FD) m/z: [M + •]+ Calcd for C21H27NO6 389.1833; Found 389.1839.    

Rf = 0.27 (silica, 40% EtOAc/hexanes, UV/anisaldehyde). 

Procedures for Heck Reactions 
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Heck Cyclization: General Procedure 2 

A 1-dram vial was charged with a stir bar and pumped into a nitrogen-filled 

glovebox. Tetrabutylammonium acetate (30.2 mg, 0.10 mmol, 2.0 equiv) was added, and 

then the aryl iodide (0.050 mmol, 1.0 equiv) was added as a solution in DMSO (0.50 mL). 

Pd(OAc)2 (1.1 mg, 0.0050 mmol, 0.10 equiv) and (R,R)-Me-BozPhos (3.2 mg, 0.010 mmol, 

0.20 equiv) were added as a solution in DMSO (0.50 mL). The vial was capped and 

removed from the glovebox. Water (0.18 mL, 10 mmol, 200 equiv) was quickly added, 

then the reaction was immediately sealed with a Teflon-lined cap and stirred at 120 °C for 

18 h using an aluminum heating block. The reaction was cooled to ambient temperature 

then diluted with EtOAc (2 mL), brine (0.5 mL), and water (1 mL). The aqueous layer was 

extracted with EtOAc (3 x 2 mL), then the combined organics were washed with water (2 

mL), dried over Na2SO4, and concentrated. 

Reactions under N2: the above procedure, taking care to minimize the time that the vial is 

open between adding water and sealing with a Teflon cap. 

Reactions under air: stirred open to air for 10 minutes prior to addition of water. 

Reactions under O2: sparged with oxygen for 5 minutes prior to addition of water, taking 

care to minimize the time that the vial is open between sparging and sealing with a Teflon 

cap. 

NHBoc
O

O
DMSO, 120 °C, 18 h

Pd(OAc)2 (10 mol %)
(R,R)-Me-BozPhos (20 mol %)

Bu4NOAc (2 equiv)
H2O (200 equiv)
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Compound 162 

Prepared from carbamate 161 (23.8 mg, 0.045 mmol) according to 

General Procedure 2 (under N2). The residue was purified via column 

chromatography (20% EtOAc/hexanes) to give 162 as an amorphous, 

white solid (10.4 mg, 58% yield). 

1H NMR (400 MHz, CDCl3): δ 6.71 (s, 1H), 6.58 (s, 1H), 5.91 (dd, J = 9.9, 1.4 Hz, 2H), 

5.84 (s, 1H), 5.81 – 5.74 (m, 1H), 5.63 – 5.52 (m, 1H), 4.49 – 4.26 (m, 2H), 3.78 – 3.31 

(m, 1H), 3.06 – 2.87 (m, 1H), 2.81 (s, 3H), 2.53 (d, J = 17.1 Hz, 1H), 2.32 (d, J = 19.3 Hz, 

1H), 2.19 – 2.08 (m, 1H), 1.90 (s, 1H), 1.44 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 155.7, 148.2, 145.5, 133.3, 131.7, 131.1, 124.2, 107.0, 

104.7, 101.2, 100.1, 79.5, 77.8, 72.5, 45.7, 40.4, 39.5, 34.4, 28.3. 

FTIR (NaCl, thin film): 2924, 1686, 1484, 1394, 1366, 1256, 1159, 1080, 1038, 931, 872 

cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C22H27NO6 401.1833; Found 401.1828.   

Rf = 0.35 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 163 

Prepared from carbamate 158 (25.8 mg, 0.050 mmol) according to 

General Procedure 2 (under N2). The residue was purified via column 

chromatography (20% EtOAc/hexanes) to give 163 as an amorphous 

white solid (9.8 mg, 47% yield). 
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1H NMR (400 MHz, CDCl3): δ 6.67 (s, 1H), 6.58 (s, 1H), 5.97 – 5.83 (m, 3H), 5.76 (dt, J 

= 10.7, 1.3 Hz, 1H), 5.56 (ddd, J = 9.9, 4.5, 3.3 Hz, 1H), 4.71 (s, 1H), 4.40 (d, J = 5.1 Hz, 

1H), 4.35 (ddd, J = 7.1, 4.9, 2.0 Hz, 1H), 3.33 – 3.17 (m, 1H), 3.17 – 3.05 (m, 1H), 2.61 – 

2.47 (m, 1H), 2.37 – 2.24 (m, 1H), 2.12 (ddd, J = 14.2, 8.1, 6.2 Hz, 1H), 1.89 (dt, J = 13.8, 

7.1 Hz, 1H), 1.41 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 156.0, 148.2, 145.6, 133.5, 132.0, 131.0, 124.2, 107.2, 

104.7, 101.2, 100.0, 79.1, 77.8, 72.4, 42.6, 39.8, 37.1, 28.6, 28.4. 

FTIR (NaCl, thin film): 2972, 1708, 1502, 1483, 1365, 1246, 1166, 1078, 1038, 931 cm-

1.  

HRMS (FD) m/z: [M + •]+ Calcd for C21H25NO6 387.1676; Found 387.1686. 

Rf = 0.32 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 164 

Prepared from carbamate 158 (7.5 mg, 0.019 mmol) according to General 

Procedure 2 (under O2). The residue was purified via column chromatography 

(15:15:70 EtOAc/DCM/hexanes) to give 164 as an amorphous white solid (3.6 

mg, 48% yield). 

1H NMR (400 MHz, CDCl3): δ 6.74 (s, 1H), 6.60 (s, 1H), 6.37 – 6.00 (m, 2H), 5.97 – 5.85 

(m, 3H), 4.55 (d, J = 5.6 Hz, 1H), 4.43 (dd, J = 5.6, 2.9 Hz, 1H), 4.21 (s, 1H), 3.80 (s, 1H), 

3.54 (td, J = 11.3, 6.7 Hz, 1H), 2.46 (dd, J = 13.0, 6.7 Hz, 1H), 2.16 – 2.06 (m, 1H), 1.49 

(s, 9H). 

XX

O
O

BocN

H

O
O

H



Chapter 2: Synthesis of Noraugustamine and Development of an Oxidative Heck/Aza-Wacker  
Cascade Cyclization  

 

67 

 

13C NMR (101 MHz, CDCl3): δ 155.0*, 148.2, 146.2, 132.8, 127.7, 127.7, 127.3, 106.9, 

105.3, 101.4, 101.0, 80.5*, 73.8, 70.3, 62.8, 46.6*, 46.1, 36.9*, 28.6. *quaternary carbons 

and/or broad rotamers, difficult to see in 13C NMR (low signal due to poor solubility) but 

visible by HMBC. 

FTIR (NaCl, thin film): 2918, 1691, 1486, 1392, 1244, 1172, 1115, 1078, 1039, 925, 730 

cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C21H23NO6 385.1520; Found 385.1532. 

Rf = 0.42 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 

 

S3 

Prepared from sulfonamide S2 (7.2 mg, 0.013 mmol) according to 

General Procedure 2 (under N2). The residue was purified via column 

chromatography (30% EtOAc/hexanes) then preparative TLC (40% 

EtOAc/hexanes) to give S3 as a white solid (2.0 mg, 33% yield, 1.2:1 

mixture of inseparable olefin isomers). This sample was 91% pure by weight (6% EtOAc, 

3% TsNH2, determined by 1H NMR) and the yield has been adjusted accordingly. 

 

1H NMR (400 MHz, CDCl3): δ 7.77 – 7.66 (m, 4H), 7.38 – 7.29 (m, 2H), 7.25 (s, 2H), 

6.69 (s, 2H), 6.62 (s, 1H), 6.50 (s, 1H), 6.01 – 5.83 (m, 6H), 5.52 (t, J = 7.0 Hz, 1H), 5.47 

(t, J = 7.2 Hz, 1H), 5.02 (d, J = 6.6 Hz, 1H), 4.63 (d, J = 7.5 Hz, 1H), 4.59 (dd, J = 7.1, 3.4 

Hz, 2H), 4.42 (t, J = 6.1 Hz, 1H), 4.27 (t, J = 6.0 Hz, 1H), 3.84 – 3.68 (m, 3H), 3.68 – 3.54 
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(m, 2H), 3.35 (d, J = 11.1 Hz, 1H), 2.45 (s, 3H), 2.42 (s, 3H), 2.19 – 2.06 (m, 2H), 2.02 – 

1.93 (m, 2H), 1.89 – 1.71 (m, 2H), 1.43 – 1.31 (m, 2H). 

13C NMR (101 MHz, CDCl3): δ 147.7, 145.7, 145.6, 143.9, 143.8, 139.2, 138.3, 137.8, 

137.0, 136.8, 136.6, 133.6, 133.0, 130.0, 129.9, 127.3, 127.3, 126.6, 126.2, 125.5, 110.3, 

110.0, 109.6, 109.5, 107.0, 106.7, 101.5, 101.4, 81.8, 76.1, 76.1, 73.5, 48.4, 40.0, 39.9, 

27.1, 26.9, 22.1, 22.0, 21.7, 21.7. 

FTIR (NaCl, thin film): 3270, 2924, 1487, 1328, 1240, 1157, 1093, 1036 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C23H23NO6S 441.1241; Found 441.1241.  

Rf = 0.37 (silica, 40% EtOAc/hexanes, UV/anisaldehyde). 

Oxidative Heck/Aza-Wacker Cascade 

Substrate Preparation  

 

Preparation of 2-iodocyclohex-2-en-1-one (167): 

2-iodocyclohex-2-en-1-one (167) was prepared according to the procedure 

reported by Krafft and Cran.31 Spectral data matched those reported in the 

literature. 
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Preparation of N-(2-bromoethyl)-4-methylbenzenesulfonamide (168): 

N-(2-bromoethyl)-4-methylbenzenesulfonamide (168) was prepared 

according to the procedure reported by Romo and coworkers.32 Spectral data matched those 

reported in the literature. 

 

Preparation of enone 169:  

0.1 mmol scale procedure: A flame-dried 1 dram vial was charged with a stir bar, 2-

iodocyclohex-2-en-1-one (167, 22.2 mg, 0.10 mmol, 1.0 equiv), N-(2-bromoethyl)-4-

methylbenzenesulfonamide (168, 41.7 mg, 0.15 mmol, 1.5 equiv), zinc dust (19.6 mg, 0.30 

mmol, 3.0 equiv), and NaI (15.0 mg, 0.10 mmol, 1.0 equiv). The vial was pumped into a 

nitrogen-filled glovebox, and then NiBr2(dtbbpy) (2.44 mg, 0.050 mmol, 0.05 equiv) and 

anhydrous DMPU (0.40 mL) were added. The reaction was sealed with a Teflon-lined cap 

and electrical tape then removed from the glovebox and stirred at 20 °C and 700 rpm. After 

24 h, the reaction was diluted with EtOAc (5 mL) and 0.5 M HCl (2 mL). The layers were 

separated, and the organic layer was washed with water (2 x 2 mL), dried over Na2SO4, 

and concentrated. 1H NMR with added 1,1,2,2-tetra-chloroethane indicated a 62% yield of 

the desired enone. The residue was purified twice by column chromatography (30 to 40% 

EtOAc/hexanes) to yield enone 169 (10.0 mg, 34% yield) as an amorphous white solid.  

Br
NHTs

XX

O
I + Br

NHTs

NiBr2(dtbbpy) (5 mol %)
NaI (1.0 equiv)
Zn0 (3 equiv)

DMPU, 20 °C

O
NHTs

167 168 169
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1H NMR (400 MHz, CDCl3): δ 7.72 (dd, J = 8.5, 2.0 Hz, 2H), 7.33 – 7.27 (m, 2H), 6.78 

(q, J = 3.3 Hz, 1H), 4.73 (t, J = 6.0 Hz, 1H), 3.14 – 2.96 (m, 2H), 2.42 (d, J = 2.0 Hz, 3H), 

2.41 – 2.30 (m, 6H), 1.99 – 1.91 (m, 2H). 

13C NMR (101 MHz, CDCl3): δ 200.0, 148.8, 143.4, 137.2, 136.4, 129.8, 127.2, 42.7, 

38.4, 30.6, 26.2, 23.0, 21.6. 

FTIR (NaCl, thin film): 3277, 2926, 1666, 1426, 1327, 1159, 1094 cm-1.  

HRMS (FD) m/z: [M + H]+ Calcd for C15H20NO3S 294.1158; Found 294.1148.  

Rf = 0.35 (silica, 50% EtOAc/hexanes, UV/anisaldehyde). 

 

10 mmol scale procedure: A flame-dried 200 mL round-bottomed flask was charged with 

a large football-shaped stir bar, 2-iodocyclohex-2-en-1-one (167, 2.22 g, 10 mmol, 1.0 

equiv), N-(2-bromoethyl)-4-methylbenzenesulfonamide (168, 4.17 g, 15 mmol, 1.5 equiv), 

zinc dust (1.96 g, 30 mmol, 3.0 equiv), NaI (1.50 g, 10 mmol, 1.0 equiv), and NiBr2(dtbbpy) 

(244 mg, 0.50 mmol, 0.05 equiv) then sealed with a septum. The flask was evacuated and 

backfilled 3x with nitrogen, then anhydrous DMPU (40 mL) was added. The top of the 

septum was sealed with parafilm (where the needle had pierced it) and the edges of the 

septum were sealed with electrical tape. The reaction was stirred at 20 °C and 700 rpm for 

20 h then transferred to a separatory funnel and diluted with EtOAc (300 mL) and 0.5 M 

HCl (120 mL). The layers were separated, and the organic layer was washed with water 

(150 mL) then saturated aqueous NaHCO3 (150 mL), dried over Na2SO4, and concentrated 

onto Celite. The residue was purified via column chromatography (35% EtOAc/hexanes) 

to yield enone 169 (2.10 g, 58% yield) as a yellow oil. The sample was 81% pure by weight 
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(9% EtOAc, 10% TsNH2, determined by 1H NMR) and the yield has been adjusted 

accordingly. The sample can be carried forward at this purity; alternatively, an additional 

flash column (30 or 35% EtOAc/hexanes) can remove excess TsNH2. 

Preparation of SEM-protected enone S4: 

An oven-dried round-bottomed flask and stir bar were pumped into a nitrogen-filled 

glovebox. NaH (134 mg, 5.0 mmol, 1.2 equiv) was added, and then the flask was sealed 

with a septum and removed from the glovebox. THF (21 mL) was added, and the reaction 

was stirred at 0 °C under nitrogen using an ice/water bath. The enone (169, 1.23 g, 4.2 

mmol, 1.0 equiv) was added dropwise as a solution in THF (21 mL). This solution was 

stirred for 10 minutes, and then 2-(trimethylsilyl)ethoxymethyl chloride (SEMCl, 1.12 mL, 

6.3 mmol, 1.5 equiv) was added. The reaction was allowed to stir at 0 °C under nitrogen 

for 30 min then quenched with brine (5 mL). The reaction was diluted with water (50 mL) 

and EtOAc (100 mL). The aqueous layer was extracted with EtOAc (100 mL), then the 

combined organic layers were dried over Na2SO4 and concentrated onto Celite. The residue 

was purified via column chromatography (20% EtOAc/hexanes) to yield enone S4 as a 

pale yellow oil (1.69 g, 90% yield). 

1H NMR (500 MHz, CDCl3): δ 7.83 – 7.62 (m, 2H), 7.33 – 7.21 (m, 2H), 6.78 (t, J = 4.2 

Hz, 1H), 4.73 (s, 2H), 3.43 (dd, J = 10.1, 6.9 Hz, 2H), 3.26 (t, J = 7.1 Hz, 2H), 2.50 – 2.44 

(m, 2H), 2.41 (s, 3H), 2.36 (td, J = 6.0, 4.3 Hz, 2H), 2.03 – 1.94 (m, 2H), 0.85 (dd, J = 10.1, 

6.9 Hz, 2H), –0.02 (s, 9H). 

SEMCl (1.5 equiv)
NaH (1.2 equiv)

THF, 0 °C, 30 min

O
N

S4

O
NHTs

169

Ts

SEM

90% yield
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13C NMR (126 MHz, CDCl3): δ 199.4, 147.8, 143.3, 137.8, 136.4, 129.6, 127.5, 78.1, 

65.7, 46.1, 38.5, 29.8, 26.3, 23.1, 21.6, 18.0, –1.3. 

FTIR (NaCl, thin film): 2949, 1673, 1340, 1248, 1157, 1067, 938, 837, 657 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C21H33NO4SSi 423.1894; Found 423.1917.  

Rf = 0.44 (silica, 30% EtOAc/hexanes, UV/anisaldehyde). 

Preparation of allylic alcohol 170: 

A round-bottomed flask was charged with enone (S4, 1.20 g, 2.7 mmol, 1.0 equiv), MeOH 

(10.8 mL), cerium chloride heptahydrate (1.11 g, 3.0 mmol, 1.1 equiv), and a stir bar then 

stirred at 0 °C under nitrogen using an ice/water bath. Sodium borohydride (112 mg, 3.0 

mmol, 1.1 equiv) was added portionwise, and the reaction was stirred at 0 °C for 10 min 

then quenched with saturated aqueous NH4Cl. The resulting mixture was diluted with 

saturated aqueous Rochelle's salt (250 mL) and Et2O (250 mL) and stirred at 1400 rpm 

overnight. The layers were separated, and the aqueous layer was extracted with Et2O (2 x 

100 mL). The combined organics were washed with brine (50 mL), dried over MgSO4, 

filtered, and concentrated onto Celite. The residue was purified via column 

chromatography (20 to 30% EtOAc/hexanes) to afford 170 as a colorless oil (1.07 g, 93% 

yield). 

1H NMR (500 MHz, CDCl3): δ 7.72 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 5.57 (t, 

J = 3.9 Hz, 1H), 4.75 (dt, J = 12.0, 9.2 Hz, 2H), 4.06 (s, 1H), 3.46 (dd, J = 8.2, 6.7 Hz, 2H), 

3.33 (t, J = 5.6 Hz, 2H), 2.53 – 2.43 (m, 1H), 2.42 (s, 3H), 2.31 (dt, J = 14.4, 7.4 Hz, 1H), 

CeCl3•7H2O (1.1 equiv)
NaBH4 (1.1 equiv)

MeOH, 0 °C, 10 min

OH
N

170

O
N

S4

Ts

SEM

93% yield

Ts

SEM
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2.09 – 1.99 (m, 1H), 1.99 – 1.87 (m, 1H), 1.80 – 1.49 (m, 4H), 0.87 (t, J = 9.7 Hz, 2H), –

0.02 (s, 9H). 

13C NMR (126 MHz, CDCl3): δ 143.4, 137.7, 136.1, 129.7, 128.0, 127.4, 78.0, 67.4, 65.7, 

46.4, 34.1, 32.4, 25.6, 21.6, 18.2, 18.0, –1.3. 

FTIR (NaCl, thin film): 3520, 2936, 1336, 1249, 1157, 1068, 859, 837, 656 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C21H35NO4SSi 425.2051; Found 425.2046.   

Rf = 0.25 (silica, 15:15:70 DCM/EtOAc/hexanes, UV). 

Preparation of Benzyl Bromides: 

5-(bromomethyl)-6-iodobenzo[d][1,3]dioxole (S5), 

2-(bromomethyl)-1-iodo-4-methoxybenzene (S6), 

and 2-(bromomethyl)-4-fluoro-1-iodobenzene (S7) 

were prepared according to the procedure reported by Lete and coworkers.44 Spectral data 

matched those reported in the literature. 

 

 

Alkylation: General Procedure 3 

A round-bottomed flask was charged with a stir bar then brought into a nitrogen-filled 

glovebox. NaH (72.5 mg, 2.7 mmol, 1.5 equiv) was added. Anhydrous DMF (6 mL) was 

added, then the flask was sealed with a septum and electrical tape, removed from the 

Br

I

S7

F

Br

I

S6

MeO

Br

O
O

I

S5

OH
N

170

Ts

SEM

O
N

Ts

SEMDMF, 20 °C

I

Br

I
NaH (1.5 equiv)

+
R

R
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glovebox, and stirred at 0 °C under nitrogen using an ice/water bath. The alcohol (170, 772 

mg, 1.8 mmol, 1.0 equiv) was added as a solution in DMF (6 mL) over 6 minutes. The 

reaction was stirred at ambient temperature for 10 min, cooled to 0 °C, and then the benzyl 

bromide (3.6 mmol, 2.0 equiv) was added slowly as a solution in DMF (6 mL). The reaction 

was allowed to warm to ambient temperature, stirred under nitrogen for 18.5 h, then 

quenched slowly with water (5 mL) and diluted with EtOAc (50 mL). The layers were 

separated, and the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined 

organic layers were washed with 1 M LiCl (50 mL), dried over Na2SO4, filtered, and 

concentrated.  

 

S8 

Prepared from alcohol 170 (772 mg, 1.8 mmol, 1.0 equiv) and 5-

(bromomethyl)-6-iodobenzo[d][1,3]dioxole (S5, 1.24 g, 3.6 mmol, 2.0 

equiv) according to General Procedure 3. The residue was purified via 

column chromatography (5 to 10% EtOAc/hexanes) to give S8 as a 

colorless oil (806 mg, 64% yield). 

1H NMR (400 MHz, CDCl3): δ 7.75 – 7.64 (m, 2H), 7.26 – 7.20 (m, 3H), 6.99 (s, 1H), 

5.95 (s, 2H), 5.67 – 5.58 (m, 1H), 4.79 – 4.68 (m, 2H), 4.51 (d, J = 11.8 Hz, 1H), 4.34 (d, 

J = 11.8 Hz, 1H), 3.83 (s, 1H), 3.47 – 3.37 (m, 2H), 3.32 (ddd, J = 14.0, 9.5, 6.8 Hz, 1H), 

3.19 (ddd, J = 14.3, 9.7, 5.0 Hz, 1H), 2.42 (d, J = 8.2 Hz, 1H), 2.39 (s, 3H), 2.30 (dt, J = 

14.8, 8.2 Hz, 1H), 2.12 – 1.86 (m, 3H), 1.68 (td, J = 11.9, 7.3 Hz, 3H), 0.90 – 0.78 (m, 2H), 

–0.04 (s, 9H). 

O
N

Ts

SEM

I

XX

O
O
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13C NMR (101 MHz, CDCl3): δ 148.6, 147.9, 143.2, 137.9, 134.7, 134.6, 129.6, 128.7, 

127.4, 118.5, 109.9, 101.7, 86.3, 77.7, 74.8, 74.2, 65.5, 46.1, 33.9, 27.4, 25.6, 21.6, 18.2, 

18.0, –1.3. 

FTIR (NaCl, thin film): 2938, 1477, 1339, 1245, 1157, 1068, 1037, 861, 835 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C29H40NO6SSiI 685.1385; Found 685.1397.  

Rf = 0.50 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

 

S9 

Prepared from alcohol 170 (192 mg, 0.45 mmol, 1.0 equiv) and 1-

(bromomethyl)-2-iodobenzene (267 mg, 0.90 mmol, 2.0 equiv) according 

to General Procedure 3. The residue was purified via column 

chromatography (8% EtOAc/hexanes) to give S9 as a colorless oil (218 mg, 74% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.81 (dd, J = 7.9, 1.2 Hz, 1H), 7.74 – 7.62 (m, 2H), 7.47 

(dd, J = 7.7, 1.7 Hz, 1H), 7.32 (td, J = 7.5, 1.2 Hz, 1H), 7.23 – 7.18 (m, 2H), 6.97 (td, J = 

7.6, 1.8 Hz, 1H), 5.65 – 5.59 (m, 1H), 4.79 – 4.67 (m, 2H), 4.60 (d, J = 12.2 Hz, 1H), 4.41 

(d, J = 12.2 Hz, 1H), 3.87 (t, J = 4.1 Hz, 1H), 3.45 – 3.37 (m, 2H), 3.33 (ddd, J = 14.0, 9.6, 

6.8 Hz, 1H), 3.20 (ddd, J = 14.3, 9.8, 5.0 Hz, 1H), 2.57 – 2.41 (m, 1H), 2.38 (s, 3H), 2.36 

– 2.26 (m, 1H), 2.10 – 1.84 (m, 3H), 1.78 – 1.62 (m, 2H), 1.56 – 1.49 (m, 1H), 0.93 – 0.76 

(m, 2H), –0.04 (s, 9H). 
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13C NMR (101 MHz, CDCl3): δ 143.2, 141.2, 139.1, 137.9, 134.6, 129.6, 129.4, 129.2, 

128.7, 128.4, 127.4, 98.2, 77.7, 74.9, 74.5, 65.5, 46.1, 34.0, 27.3, 25.6, 21.6, 18.2, 18.0, –

1.3. 

FTIR (NaCl, thin film): 2932, 1343, 1247, 1158, 1068, 836, 751 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C28H40NO4SSiI 641.1487; Found 641.1505.  

Rf = 0.60 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

 

S10 

Prepared from alcohol 170 (192 mg, 0.45 mmol, 1.0 equiv) and 2-

(bromomethyl)-1-iodo-4-methoxybenzene (S6, 294 mg, 0.90 mmol, 

2.0 equiv) according to General Procedure 3. The residue was purified 

via column chromatography (8% EtOAc/hexanes) to give S10 as a 

colorless oil (212 mg, 68% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.74 – 7.59 (m, 3H), 7.23 – 7.17 (m, 2H), 7.08 (d, J = 3.1 

Hz, 1H), 6.58 (dd, J = 8.6, 3.1 Hz, 1H), 5.66 – 5.56 (m, 1H), 4.78 – 4.65 (m, 2H), 4.54 (d, 

J = 12.5 Hz, 1H), 4.37 (d, J = 12.5 Hz, 1H), 3.87 (d, J = 4.7 Hz, 1H), 3.76 (s, 3H), 3.46 – 

3.37 (m, 2H), 3.36 – 3.29 (m, 1H), 3.19 (ddd, J = 14.3, 9.7, 5.0 Hz, 1H), 2.52 – 2.40 (m, 

1H), 2.38 (s, 3H), 2.32 (dd, J = 14.3, 7.9 Hz, 1H), 2.04 (s, 1H), 2.00 – 1.87 (m, 2H), 1.68 

(tdd, J = 13.1, 10.9, 4.9 Hz, 2H), 1.60 – 1.47 (m, 1H), 0.90 – 0.76 (m, 2H), –0.05 (s, 9H). 
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13C NMR (101 MHz, CDCl3): δ 160.5, 143.5, 142.6, 139.8, 138.2, 134.9, 129.9, 129.0, 

127.7, 115.7, 115.4, 86.5, 78.0, 75.1, 74.9, 65.8, 55.8, 46.3, 34.4, 27.8, 25.9, 21.9, 18.6, 

18.3, –1.0. 

FTIR (NaCl, thin film): 2937, 2366, 1456, 1340, 1158, 1068, 841, 680 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C29H42NO5SSiI 671.1592; Found 671.1600.  

Rf = 0.50 (silica, 20% EtOAc/hexane, UV/anisaldehyde). 

 

S11 

Prepared from alcohol 170 (192 mg, 0.45 mmol, 1.0 equiv) and 2-

(bromomethyl)-4-fluoro-1-iodobenzene (S7, 283 mg, 0.90 mmol, 2.0 

equiv) according to General Procedure 3. The residue was purified via 

column chromatography (5% EtOAc/hexanes) to give S11 as a colorless 

oil (158 mg, 52% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.73 (dd, J = 8.6, 5.5 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.24 

– 7.18 (m, 3H), 6.81 – 6.65 (m, 1H), 5.65 (t, J = 2.0 Hz, 1H), 4.81 – 4.66 (m, 2H), 4.53 (d, 

J = 12.9 Hz, 1H), 4.36 (d, J = 13.0 Hz, 1H), 3.89 (t, J = 4.0 Hz, 1H), 3.51 – 3.39 (m, 2H), 

3.35 (ddd, J = 14.1, 9.7, 6.7 Hz, 1H), 3.21 (ddd, J = 14.3, 9.8, 5.0 Hz, 1H), 2.50 – 2.40 (m, 

1H), 2.37 (s, 3H), 2.36 – 2.28 (m, 1H), 2.04 (s, 1H), 2.01 – 1.88 (m, 2H), 1.75 – 1.63 (m, 

2H), 1.58 – 1.50 (m, 1H), 0.90 – 0.75 (m, 2H), –0.04 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 163.4 (d, J = 247.2 Hz), 143.7 (d, J = 7.2 Hz), 143.2, 

140.0 (d, J = 7.6 Hz), 137.8, 134.4, 129.6, 128.9, 127.3, 116.3 (d, J = 23.8 Hz), 116.3 (d, J 

O
N
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I
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= 21.9 Hz), 89.8 (d, J = 3.1 Hz), 77.7, 74.9, 74.4, 65.5, 46.1, 34.1, 27.4, 25.6, 21.6, 18.2, 

18.0, –1.3. 

19F NMR (282 MHz, CDCl3): δ –116.8. 

FTIR (NaCl, thin film): 2936, 1464, 1454, 1341, 1248, 1157, 1072, 944, 859, 836, 655 

cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C28H39NO4SSiFI 659.1392; Found 659.1416.  

Rf = 0.63 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

SEM Deprotection: General Procedure 4 

 

A round-bottomed flask was charged with 4Å molecular sieves (powdered, 260 mg/mmol) 

and a stir bar then flame-dried and cooled under nitrogen. The SEM-protected substrate 

(0.32 mmol, 1.0 equiv) was added as a solution in anhydrous THF (3.2 mL), followed by 

tetrabutylammonium fluoride (1.0 M in THF, 1.6 mL, 1.6 mmol, 5.0 equiv). The reaction 

was equipped with a reflux condenser and heated to reflux using an oil bath for 15 h. The 

reaction was cooled to ambient temperature then filtered over Celite, taking care to rinse 

several times with EtOAc to ensure that the compound fully elutes. The resulting solution 

(75 mL) was then quenched with saturated aqueous NaHCO3 (10 mL) and brine (10 mL) 

then diluted with water (30 mL). The aqueous layer was extracted with EtOAc (2 x 50 mL), 

then the combined organic layers were dried over Na2SO4 and concentrated. 
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S12 

Prepared from S8 (219 mg, 0.32 mmol) according to General Procedure 

4. The residue was purified via column chromatography (20% 

EtOAc/hexanes) to give S12 as an off-white oil (127 mg, 68% yield). 

 

1H NMR (500 MHz, CDCl3): δ 7.65 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 6.6 Hz, 3H), 6.93 (s, 

1H), 6.03 – 5.97 (m, 2H), 5.55 (s, 1H), 4.76 (t, J = 5.7 Hz, 1H), 4.48 (d, J = 11.8 Hz, 1H), 

4.26 (d, J = 11.8 Hz, 1H), 3.67 (s, 1H), 3.05 (dt, J = 12.0, 6.0 Hz, 1H), 3.01 – 2.86 (m, 1H), 

2.42 (s, 3H), 2.40 – 2.32 (m, 1H), 2.13 – 2.07 (m, 1H), 2.03 – 1.88 (m, 3H), 1.73 – 1.58 

(m, 3H). 

13C NMR (101 MHz, CDCl3): δ 148.7, 148.2, 143.2, 137.1, 134.1, 133.8, 130.1, 129.7, 

127.2, 118.6, 109.8, 101.9, 86.5, 74.6, 74.1, 42.2, 34.6, 27.1, 25.6, 21.7, 18.0. 

FTIR (NaCl, thin film): 3274, 2931, 1477, 1327, 1232, 1158, 1037, 932, 814, 668 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C23H27NO5SI 556.0655; Found 556.0668.  

Rf = 0.23 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

 

S13 

Prepared from S9 (210 mg, 0.32 mmol) according to General Procedure 

4. The residue was purified via column chromatography (20% 

EtOAc/hexanes) to give S13 as a viscous, pale yellow oil (144 mg, 84% 

yield). 
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1H NMR (400 MHz, CDCl3): δ 7.81 (dd, J = 7.9, 1.2 Hz, 1H), 7.69 – 7.56 (m, 2H), 7.41 

(dd, J = 7.7, 1.8 Hz, 1H), 7.35 (td, J = 7.5, 1.2 Hz, 1H), 7.23 – 7.16 (m, 2H), 7.00 (td, J = 

7.6, 1.8 Hz, 1H), 5.56 (t, J = 3.9 Hz, 1H), 4.76 (t, J = 5.7 Hz, 1H), 4.55 (d, J = 12.3 Hz, 

1H), 4.30 (d, J = 12.3 Hz, 1H), 3.82 – 3.63 (m, 1H), 3.12 – 2.87 (m, 2H), 2.40 (s, 3H), 2.40 

– 2.31 (m, 1H), 2.20 – 2.06 (m, 1H), 2.02 – 1.87 (m, 3H), 1.80 – 1.48 (m, 3H). 

13C NMR (101 MHz, CDCl3): δ 143.2, 140.7, 139.3, 137.1, 133.7, 130.2, 129.7, 129.5, 

129.4, 128.6, 127.2, 98.3, 74.7, 74.4, 42.1, 34.7, 27.1, 25.6, 21.7, 18.0. 

FTIR (NaCl, thin film): 3268, 2928, 2859, 1438, 1324, 1163, 1090, 1012, 814, 749, 661 

cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C22H27NO3SI 512.0756; Found 512.0786.  

Rf = 0.29 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

 

S14 

Prepared from S10 (208 mg, 0.30 mmol) according to General 

Procedure 4. The residue was purified via column chromatography (25% 

EtOAc/hexanes) to give S14 as a viscous, pale yellow oil (121 mg, 72% 

yield). 

1H NMR (400 MHz, CDCl3): δ 7.66 (d, J = 8.6 Hz, 1H), 7.61 (d, J = 8.3 Hz, 2H), 7.24 – 

7.18 (m, 2H), 7.02 (d, J = 3.1 Hz, 1H), 6.61 (dd, J = 8.7, 3.1 Hz, 1H), 5.66 – 5.49 (m, 1H), 

4.81 (t, J = 5.7 Hz, 1H), 4.49 (d, J = 12.6 Hz, 1H), 4.26 (d, J = 12.6 Hz, 1H), 3.81 (s, 3H), 

3.69 (t, J = 4.1 Hz, 1H), 3.23 – 2.88 (m, 2H), 2.40 (s, 3H), 2.39 – 2.30 (m, 1H), 2.17 – 2.06 

(m, 1H), 2.02 – 1.87 (m, 2H), 1.76 – 1.47 (m, 4H). 
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13C NMR (101 MHz, CDCl3): δ 160.3, 143.2, 141.8, 139.6, 137.1, 133.6, 130.3, 129.7, 

127.2, 115.6, 115.1, 86.2, 74.6, 74.4, 55.6, 42.1, 34.8, 27.1, 25.6, 21.7, 18.0. 

FTIR (NaCl, thin film): 3277, 2932, 1467, 1326, 1297, 1160, 1093, 1076, 812, 663 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C22H29NO4SI 542.0862; Found 542.0883.  

Rf = 0.19 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

 

S15 

Prepared from S11 (132 mg, 0.20 mmol) according to General Procedure 

4. The residue was purified via column chromatography (15% 

EtOAc/hexanes) to give S15 as a colorless oil (85.4 mg, 77% yield). 

 

 

1H NMR (400 MHz, CDCl3): δ 7.74 (dd, J = 8.6, 5.5 Hz, 1H), 7.70 – 7.60 (m, 2H), 7.23 

(d, J = 8.0 Hz, 2H), 7.16 (dd, J = 9.6, 3.1 Hz, 1H), 6.76 (td, J = 8.3, 3.1 Hz, 1H), 5.60 (t, J 

= 1.9 Hz, 1H), 4.66 (t, J = 5.8 Hz, 1H), 4.47 (d, J = 12.9 Hz, 1H), 4.25 (d, J = 13.0 Hz, 1H), 

3.78 – 3.67 (m, 1H), 3.17 – 2.92 (m, 2H), 2.48 – 2.30 (m, 4H), 2.18 – 2.06 (m, 1H), 2.03 – 

1.84 (m, 3H), 1.75 – 1.50 (m, 3H). 

13C NMR (101 MHz, CDCl3): δ 163.4 (d, J = 247.8 Hz), 143.3, 143.2 (d, J = 7.2 Hz), 

140.2 (d, J = 7.7 Hz), 137.0, 133.5, 130.3, 129.7, 127.2, 116.6 (d, J = 22.0 Hz), 116.3 (d, J 

= 23.6 Hz), 89.9 (d, J = 3.1 Hz), 74.8, 74.3, 42.0, 34.8, 27.1, 25.6, 21.7, 18.0. 

19F NMR (282 MHz, CDCl3): δ –116.3. 

FTIR (NaCl, thin film): 3268, 2921, 1328, 1158, 1074, 813, 681 cm-1.  
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HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C22H26NO3SFI 530.0662; Found 530.0649.  

Rf = 0.33 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

 

Borylation: General Procedure 5 

 

A 2-dram vial was charged with aryl iodide (139 mg, 0.27 mmol, 1.0 equiv) and a stir bar 

then pumped into a nitrogen-filled glovebox.  Bis(pinacolato)diboron (B2pin2, 96.6 mg, 

0.38 mmol, 1.4 equiv), PdCl2(dppf)•DCM (11.1 mg, 0.014 mmol, 0.050 equiv), potassium 

acetate (80.0 mg, 0.82 mmol, 3.0 equiv), and DMA (2.7 mL) were added, then the vial was 

sealed with a Teflon cap and electrical tape and brought out of the glovebox. The reaction 

was stirred at 80 °C using an aluminum heating block for 24 h, cooled to ambient 

temperature, and then diluted with EtOAc (2 mL) and saturated aqueous NaHCO3 (3 mL). 

The layers were partitioned, and the aqueous layer was extracted with EtOAc (3 x 2 mL). 

The combined organic layers were washed with 1 M LiCl (2 x 1 mL), filtered over a short 

silica plug, and then concentrated onto Celite. 

 

Compound 166 

O
NHTs

I

O
NHTs

B(pin)

DMA, 80 °C, 24 h

PdCl2(dppf)•DCM (5 mol %)
B2pin2 (1.4 equiv)
KOAc (3 equiv)

R R
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Prepared from S12 (462 mg, 0.82 mmol) according to General Procedure 

5, using a 25 mL round-bottomed flask instead of a 2-dram vial and an oil 

bath instead of an aluminum heating block. The residue was purified via 

column chromatography (20% EtOAc/hexanes) to give 166 as a sticky 

white solid (274 mg, 61% yield). 

1H NMR (400 MHz, CDCl3): δ 7.72 – 7.57 (m, 2H), 7.25 – 7.21 (m, 3H), 6.94 (s, 1H), 

6.00 – 5.92 (m, 2H), 5.48 (t, J = 3.9 Hz, 1H), 4.97 (t, J = 5.6 Hz, 1H), 4.74 (d, J = 11.6 Hz, 

1H), 4.65 (d, J = 11.6 Hz, 1H), 3.64 (t, J = 4.0 Hz, 1H), 3.00 (dq, J = 11.9, 5.9 Hz, 1H), 

2.87 (ddt, J = 12.0, 8.4, 5.5 Hz, 1H), 2.40 (s, 3H), 2.33 – 2.23 (m, 1H), 2.03 – 1.86 (m, 4H), 

1.72 – 1.62 (m, 1H), 1.56 – 1.43 (m, 2H), 1.31 (d, J = 1.9 Hz, 12H). 

13C NMR (101 MHz, CDCl3): δ 150.3, 146.7, 143.0, 140.5, 137.3, 134.4, 129.6, 129.5, 

127.2, 114.8, 109.9, 101.2, 83.7, 73.1, 69.2, 42.3, 34.5, 27.3, 25.6, 25.0, 25.0, 21.6, 18.0. 

FTIR (NaCl, thin film): 3280, 2932, 1428, 1369, 1319, 1161, 1114, 1041 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C29H38NO7SB 555.2462; Found 555.2451.  

Rf = 0.23 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 174a 

Prepared from S13 (139 mg, 0.27 mmol) according to General Procedure 

5. The residue was purified via column chromatography (15% 

EtOAc/hexanes) to give 174a as a viscous, colorless oil (75.0 mg, 53% 

yield). 
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1H NMR (400 MHz, CDCl3): δ 7.79 (dt, J = 7.3, 1.0 Hz, 1H), 7.66 – 7.54 (m, 2H), 7.47 – 

7.38 (m, 2H), 7.31 – 7.23 (m, 1H), 7.23 – 7.15 (m, 2H), 5.49 (t, J = 3.8 Hz, 1H), 4.98 (t, J 

= 5.7 Hz, 1H), 4.83 (d, J = 12.0 Hz, 1H), 4.68 (d, J = 12.0 Hz, 1H), 3.66 (t, J = 4.1 Hz, 1H), 

2.96 (dq, J = 11.9, 5.9 Hz, 1H), 2.86 (ddt, J = 11.8, 8.2, 5.6 Hz, 1H), 2.39 (s, 3H), 2.26 (dtd, 

J = 12.0, 6.3, 1.5 Hz, 1H), 2.04 – 1.88 (m, 3H), 1.72 – 1.45 (m, 4H), 1.34 (d, J = 2.3 Hz, 

12H). 

13C NMR (101 MHz, CDCl3): δ 144.7, 142.9, 137.3, 136.0, 134.3, 131.3, 129.6, 129.5, 

128.8, 127.2, 126.9, 83.8, 73.3, 69.7, 42.2, 34.6, 27.2, 25.6, 25.1, 25.0, 21.6, 18.1. 

FTIR (NaCl, thin film): 2933, 1380, 1347, 1222, 1162, 1075, 661 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C28H39NO5SB 512.2642; Found 512.2623.  

Rf = 0.45 (silica, 25% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 174b 

Prepared from S14 (114 mg, 0.21 mmol) according to General 

Procedure 5. The residue was purified via column chromatography (15% 

EtOAc/hexanes) to give 174b as a viscous, colorless oil (48.9 mg, 43% 

yield). 

1H NMR (400 MHz, CDCl3): δ 7.75 (d, J = 8.3 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.20 (d, J = 

8.0 Hz, 2H), 7.05 (d, J = 2.5 Hz, 1H), 6.80 (dd, J = 8.3, 2.6 Hz, 1H), 5.48 (t, J = 3.8 Hz, 

1H), 5.08 (t, J = 5.6 Hz, 1H), 4.76 (q, J = 12.4 Hz, 2H), 3.84 (s, 3H), 3.66 (t, J = 3.8 Hz, 

1H), 3.05 – 2.94 (m, 1H), 2.94 – 2.83 (m, 1H), 2.39 (s, 3H), 2.27 (ddd, J = 12.0, 9.4, 4.2 

Hz, 1H), 2.04 – 1.82 (m, 4H), 1.72 – 1.44 (m, 3H), 1.32 (d, J = 2.2 Hz, 12H). 
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13C NMR (101 MHz, CDCl3): δ 162.2, 147.4, 143.0, 137.9, 137.3, 134.3, 129.7, 129.6, 

127.2, 113.9, 112.7, 83.5, 73.3, 69.4, 55.3, 42.3, 34.6, 27.3, 25.7, 25.0, 25.0, 21.6, 18.0. 

FTIR (NaCl, thin film): 2930, 1601, 1380, 1347, 1321, 1288, 1161, 1126, 1032 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C29H41NO6SB 542.2748; Found 542.2728. 

Rf = 0.41 (silica, 25% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 174c 

Prepared from S15 (78.0 mg, 0.14 mmol) according to General Procedure 

5. The residue was purified via column chromatography (15% 

EtOAc/hexanes) to give 174c as a colorless oil (55.4 mg, 74% yield). 

1H NMR (400 MHz, CDCl3): δ 7.79 (dd, J = 8.3, 6.5 Hz, 1H), 7.67 – 7.57 (m, 2H), 7.25 

– 7.20 (m, 2H), 7.16 (dd, J = 10.4, 2.6 Hz, 1H), 6.94 (td, J = 8.4, 2.6 Hz, 1H), 5.54 (t, J = 

3.9 Hz, 1H), 4.85 (t, J = 5.7 Hz, 1H), 4.81 (d, J = 12.8 Hz, 1H), 4.68 (d, J = 12.8 Hz, 1H), 

3.76 – 3.64 (m, 1H), 3.06 – 2.86 (m, 2H), 2.39 (s, 3H), 2.37 – 2.25 (m, 1H), 2.11 – 2.01 

(m, 1H), 2.01 – 1.85 (m, 2H), 1.74 – 1.44 (m, 4H), 1.33 (d, J = 1.2 Hz, 12H). 

13C NMR (101 MHz, CDCl3): δ 165.1 (d, J = 250.5 Hz), 148.6 (d, J = 7.5 Hz), 143.1, 

138.4 (d, J = 8.2 Hz), 137.2, 134.1, 129.8, 129.6, 127.2, 115.0 (d, J = 21.1 Hz), 113.7 (d, J 

= 20.0 Hz), 83.9, 74.0, 69.2, 42.1, 34.7, 27.3, 25.6, 25.1, 25.0, 21.6, 18.1. 

19F NMR (282 MHz, CDCl3): δ –111.8. 

FTIR (NaCl, thin film): 3261, 2930, 1601, 1380, 1346, 1323, 1160, 1104, 857 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C28H38NO5SFB 530.2548; Found 530.2569.  

Rf = 0.30 (silica, 20% EtOAc/hexanes, UV/anisaldehyde). 
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b) Reaction on 0.015 mmol Scale 

 

Three oven-dried 1-dram vials were pumped into a nitrogen-filled glovebox. A stock 

solution of Cu(OAc)2 (1.09 mg, 0.0060 mmol, 0.40 equiv) in DMSO (0.15 mL) was 

prepared in one vial, which was then sealed with a 19/38 septum and electrical tape. A 

stock solution of Pd(OAc)2 (0.337 mg, 0.0015 mmol, 0.10 equiv) and substrate (0.015 

mmol, 1.0 equiv) in DMSO (0.15 mL) was prepared in another vial, which was sealed the 

same way. The final vial was charged with a stir bar, sealed the same way, and then all 

three vials were removed from the glovebox. The Cu/DMSO solution was charged with 

water (1.35 μL, 0.075 mmol, 5.0 equiv), sonicated until all solids had dissolved, and then 

added to the reaction vial. The Pd/substrate/DMSO solution was then added to the reaction 

vial. A balloon of compressed air was added, and then the reaction was stirred at 80 °C and 

300 rpm using an aluminum heating block for 24 h. The reaction was cooled to ambient 

temperature then diluted with EtOAc (2 mL) and 1:1:1 brine/water/1 M HCl (2 mL). The 

aqueous layer was extracted with EtOAc (2 x 2 mL), and then the combined organic layers 

were washed with water (2 x 2 mL), dried over Na2SO4, and concentrated. 

 

c) Reaction on 0.050 mmol Scale: General Procedure 6 

N
Ts

OB(pin)

O
NHTs

Pd(OAc)2 (10 mol %)
Cu(OAc)2 (40 mol %)

H2O (5 equiv)

DMSO, air (1 atm) 
80 °C, 24 h

R

R
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Three oven-dried 2-dram vials were pumped into a nitrogen-filled glovebox. A stock 

solution of Cu(OAc)2 (3.63 mg, 0.020 mmol, 0.40 equiv) in DMSO (0.50 mL) was 

prepared in one vial, which was then sealed with a 19/38 septum and electrical tape. A 

stock solution of Pd(OAc)2 (1.12 mg, 0.0050 mmol, 0.10 equiv) and substrate (0.050 mmol, 

1.0 equiv) in DMSO (0.50 mL) was prepared in another vial, which was sealed the same 

way. The final vial was charged with a stir bar, sealed the same way, and then all three 

vials were removed from the glovebox. The Cu/DMSO solution was charged with water 

(4.50 μL, 0.25 mmol, 5.0 equiv), sonicated until all solids had dissolved, and then added 

to the reaction vial. The Pd/substrate/DMSO solution was then added to the reaction vial. 

A balloon of compressed air was added, and then the reaction was stirred at 80 °C and 700 

rpm using an aluminum heating block for 24 h. The reaction was cooled to ambient 

temperature then diluted with EtOAc (3 mL) and 1:1:1 brine/water/1 M HCl (3 mL). The 

aqueous layer was extracted with EtOAc (2 x 2 mL), and then the combined organic layers 

were washed with water (2 x 2 mL), dried over Na2SO4, and concentrated. 

d) Characterization of Reaction Products 

Compound 165 

Prepared from 166 (27.8 mg, 0.050 mmol) according to General 

Procedure 6. The residue was purified via column chromatography (20% 

EtOAc/hexanes) to give 165 as an amorphous white solid (15.0 mg, 59% yield). The 

sample contained residual protodeborylation (172, 16% by weight, determined by 1H NMR) 

and the yield was adjusted accordingly. An aliquot of the sample was further purified by 

preparative TLC (30% EtOAc/hexanes) to afford analytically pure 165 (5.4 mg, 25% yield). 
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Another sample was recrystallized from Et2O/DCM to obtain crystals suitable for x-ray 

diffraction. 

1H NMR (400 MHz, CDCl3): δ 7.69 (d, J = 9.0 Hz, 2H), 7.28 (d, J = 2.0 Hz, 2H), 6.37 (s, 

1H), 6.19 (s, 1H), 5.87 (dd, J = 5.1, 1.4 Hz, 2H), 5.86 – 5.79 (m, 1H), 5.77 – 5.66 (m, 1H), 

4.85 – 4.67 (m, 2H), 4.30 (s, 1H), 3.88 – 3.76 (m, 1H), 3.70 – 3.59 (m, 1H), 3.59 – 3.45 

(m, 1H), 2.53 – 2.44 (m, 1H), 2.42 (s, 3H), 2.40 – 2.28 (m, 1H), 2.24 – 2.08 (m, 1H), 1.94 

– 1.81 (m, 1H). 

13C NMR (101 MHz, CDCl3): δ 146.7, 146.4, 143.4, 136.8, 133.6, 129.7, 127.3, 126.6, 

126.6, 124.9, 106.2, 103.8, 101.0, 73.4, 67.5, 64.0, 46.3, 45.7, 33.7, 27.6, 21.7. 

FTIR (NaCl, thin film): 2924, 1483, 1334, 1238, 1162, 1108, 1036, 935, 658 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C23H23NO5S 425.1291; Found 425.1300. 

Rf = 0.32 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 

mp = 180–184 °C 
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Low-temperature diffraction data (f-and w-scans) were collected on a Bruker AXS D8 

VENTURE KAPPA diffractometer coupled to a PHOTON II CPAD detector with Cu Ka 

radiation (l = 1.54178 Å) from an IμS micro-source for the structure of compound 165. 

The structure was solved by direct methods using SHELXS45 and refined against F2 on all 

data by full-matrix least squares with SHELXL-201746 using established refinement 

techniques.47 All non-hydrogen atoms were refined anisotropically. All hydrogen atoms 

were included into the model at geometrically calculated positions and refined using a 

riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). 

Compound 165 crystallizes in the monoclinic space group P21/n with one molecule in the 

asymmetric unit.  

ORTEP drawing of 165 showing thermal ellipsoids at the 50% probability level. 

Crystal data and structure refinement for 165: 
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Identification code  d20043  

Empirical formula  C23H23NO5S  

Formula weight  425.48  

Temperature/K  100.0  

Crystal system  monoclinic  

Space group  P21/n  

a/Å  14.402(10)  

b/Å  7.842(3)  

c/Å  17.774(7)  

α/°  90  

β/°  105.567(18)  

γ/°  90  

Volume/Å3  1933.7(17)  

Z  4  

ρcalcg/cm3  1.461  

μ/mm‑1  0.205  

F(000)  896.0  

Crystal size/mm3  0.304 × 0.272 × 0.15  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  4.246 to 70.448  

Index ranges  -22 ≤ h ≤ 22, -12 ≤ k ≤ 12, -28 ≤ l ≤ 28  
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Reflections collected  116660  

Independent reflections  8319 [Rint = 0.0428, Rsigma = 0.0250]  

Data/restraints/parameters  8319/0/272  

Goodness-of-fit on F2  1.056  

Final R indexes [I>=2σ (I)]  R1 = 0.0427, wR2 = 0.1022  

Final R indexes [all data]  R1 = 0.0577, wR2 = 0.1084  

Largest diff. peak/hole / e Å-3  0.57/-0.46  

Compound 171 

Isolated from optimization table entry 9. The residue was purified via 

preparative TLC (40% EtOAc/hexanes) to give 171 as an amorphous 

white solid (1.6 mg, 25% yield). 

1H NMR (400 MHz, CDCl3): δ 7.66 (dd, J = 7.6, 1.2 Hz, 2H), 7.31 – 7.26 (m, 2H), 6.62 

(s, 1H), 6.32 (s, 1H), 5.90 (dt, J = 11.7, 1.2 Hz, 2H), 5.71 – 5.54 (m, 2H), 5.00 (t, J = 6.2 

Hz, 1H), 4.68 (d, J = 15.0 Hz, 1H), 4.46 (d, J = 15.0 Hz, 1H), 3.81 (dd, J = 9.2, 3.4 Hz, 

1H), 2.92 – 2.81 (m, 1H), 2.81 – 2.69 (m, 1H), 2.42 (s, 3H), 2.21 – 2.04 (m, 2H), 1.95 – 

1.72 (m, 4H). 

13C NMR (101 MHz, CDCl3): δ 147.2, 146.0, 143.4, 137.2, 132.9, 131.3, 129.7, 127.2, 

126.8, 126.3, 106.5, 104.1, 101.0, 75.0, 64.3, 42.5, 40.1, 39.7, 23.9, 23.4, 21.7. 

FTIR (NaCl, thin film): 3272, 2911, 1483, 1324, 1234, 1159, 1038 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C23H25NO5S 427.1448; Found 427.1458.   

Rf = 0.47 (silica, 40% EtOAc/hexanes, UV/anisaldehyde). 

 

NHTs

O

O

O

XX



Chapter 2: Synthesis of Noraugustamine and Development of an Oxidative Heck/Aza-Wacker  
Cascade Cyclization  

 

92 

 

Compound 172 

Isolated from optimization table entries 3 and 4. The residue was purified 

via preparative TLC (40% EtOAc/hexanes) to give 172 as a colorless oil 

(6.4 mg, 50% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.71 – 7.60 (m, 2H), 7.26 – 7.24 (m, 2H), 6.79 (s, 1H), 

6.76 (s, 2H), 5.96 (s, 2H), 5.50 (t, J = 2.1 Hz, 1H), 5.00 (t, J = 5.6 Hz, 1H), 4.50 (d, J = 

11.4 Hz, 1H), 4.25 (d, J = 11.4 Hz, 1H), 3.68 – 3.57 (m, 1H), 3.09 – 2.98 (m, 1H), 2.86 

(ddt, J = 11.9, 8.6, 5.3 Hz, 1H), 2.41 (s, 3H), 2.35 – 2.22 (m, 1H), 2.03 – 1.85 (m, 4H), 

1.71 – 1.59 (m, 1H), 1.56 – 1.45 (m, 2H). 

13C NMR (101 MHz, CDCl3): δ 147.9, 147.4, 143.1, 137.2, 134.0, 132.1, 130.0, 129.6, 

127.2, 121.9, 109.0, 108.3, 101.2, 73.2, 70.6, 42.4, 34.6, 26.9, 25.6, 21.6, 17.8. 

FTIR (NaCl, thin film): 3279, 2930, 1491, 1442, 1325, 1250, 1160, 1094, 1038, 810 cm-

1.  

HRMS (FD) m/z: [M + •]+ Calcd for C23H27NO5S 429.1605; Found 429.1616. 

Rf = 0.64 (silica, 40% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 173 

Isolated from optimization table entries 3 and 4. The residue 

was purified via column chromatography (20:20:60 to 

30:30:40 Et2O/DCM/hexanes) to give 173 as a colorless oil 

(6.3 mg, 24% yield). 
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1H NMR (400 MHz, CDCl3): δ 7.65 (dd, J = 8.3, 1.8 Hz, 4H), 7.24 (d, J = 8.0 Hz, 4H), 

6.89 (s, 2H), 6.30 (s, 2H), 5.97 – 5.92 (m, 4H), 5.47 (t, J = 3.8 Hz, 2H), 5.09 (q, J = 5.1 Hz, 

2H), 4.53 (dd, J = 11.4, 6.2 Hz, 2H), 4.41 (dd, J = 11.4, 5.7 Hz, 2H), 3.71 – 3.61 (m, 2H), 

3.04 (dqd, J = 12.1, 6.0, 2.0 Hz, 2H), 2.96 – 2.81 (m, 2H), 2.40 (s, 6H), 2.26 (dt, J = 12.4, 

6.2 Hz, 2H), 2.00 (ddd, J = 14.5, 8.5, 6.5 Hz, 2H), 1.93 – 1.78 (m, 6H), 1.56 – 1.40 (m, 

6H). 

13C NMR (101 MHz, CDCl3): δ 149.7, 148.1, 143.8, 143.7, 143.1, 137.3, 137.3, 134.2, 

129.6, 129.6, 129.6, 127.2, 121.5, 109.5, 109.5, 101.7, 100.3, 74.1, 74.1, 65.2, 42.4, 42.4, 

34.4, 27.0, 25.6, 21.6, 17.9, 17.9. 

FTIR (NaCl, thin film): 3277, 2924, 1479, 1426, 1323, 1158, 1091, 1037 cm-1.  

HRMS (FD) m/z: [M + •]+ Calcd for C46H52N2O11S2 872.3007; Found 872.3000. 

Rf = 0.48 (silica, 50% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 175a 

Prepared from 174a (25.6 mg, 0.050 mmol) according to General Procedure 

6. The residue was purified via column chromatography (20% 

EtOAc/hexanes) to give 175a as an amorphous, off-white solid (11.7 mg, 61% yield). 

1H NMR (400 MHz, CDCl3): δ 7.73 – 7.64 (m, 2H), 7.26 – 7.22 (m, 3H), 7.13 (td, J = 7.4, 

1.2 Hz, 1H), 6.95 – 6.91 (m, 1H), 6.76 (d, J = 8.2 Hz, 1H), 5.83 (dtd, J = 10.2, 2.7, 1.5 Hz, 

1H), 5.78 – 5.69 (m, 1H), 4.94 – 4.81 (m, 2H), 4.39 – 4.33 (m, 1H), 3.89 (t, J = 4.0 Hz, 

1H), 3.69 (ddd, J = 10.2, 9.5, 5.5 Hz, 1H), 3.57 (td, J = 9.9, 5.9 Hz, 1H), 2.57 – 2.47 (m, 
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1H), 2.43 (s, 3H), 2.39 – 2.31 (m, 1H), 2.19 (ddd, J = 13.3, 9.6, 5.5 Hz, 1H), 1.97 (ddd, J 

= 13.4, 9.5, 6.0 Hz, 1H). 

13C NMR (101 MHz, CDCl3): δ 143.3, 140.3, 137.0, 133.2, 129.7, 127.4, 127.0, 126.6, 

126.6, 125.8, 124.8, 124.0, 73.4, 67.5, 63.9, 46.2, 45.8, 33.5, 27.7, 21.7. 

FTIR (NaCl, thin film): 2924, 1337, 1156, 1098, 1040, 760, 673, 661 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C22H24NO3S 382.1477; Found 382.1491. 

Rf = 0.44 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 

 

Compound 175b 

Prepared from 174b (27.1 mg, 0.050 mmol) according to General 

Procedure 6. The residue was purified via column chromatography (20 

to 25% EtOAc/hexanes) to give 175b as a white solid (10.6 mg, 49% yield). 

1H NMR (500 MHz, CDCl3): δ 7.67 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 9.4 Hz, 2H), 6.68 (d, 

J = 8.6 Hz, 1H), 6.53 – 6.41 (m, 2H), 5.81 (d, J = 10.8 Hz, 1H), 5.76 – 5.68 (m, 1H), 4.90 

– 4.76 (m, 2H), 4.32 (s, 1H), 3.86 (t, J = 3.9 Hz, 1H), 3.76 (s, 3H), 3.72 – 3.64 (m, 1H), 

3.56 (td, J = 10.0, 5.7 Hz, 1H), 2.57 – 2.48 (m, 1H), 2.44 (s, 3H), 2.40 – 2.30 (m, 1H), 2.24 

– 2.13 (m, 1H), 1.98 – 1.88 (m, 1H). 

13C NMR (101 MHz, CDCl3): δ 158.0, 143.1, 137.0, 134.4, 132.5, 129.5, 127.2, 126.9, 

126.6, 124.6, 113.0, 108.3, 73.5, 67.5, 63.9, 55.2, 45.6, 45.6, 33.3, 27.5, 21.5. 

FTIR (NaCl, thin film): 2923, 1500, 1338, 1164, 1094, 1038, 682, 663 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C23H26NO4S 412.1583; Found 412.1580.  

Rf = 0.34 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 
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Compound 175c 

Prepared from 174c (26.5 mg, 0.050 mmol) according to General 

Procedure 6. The residue was purified via column chromatography (25% 

EtOAc/hexanes) to give 175c as an amorphous white solid (13.5 mg, 66% yield). 

1H NMR (400 MHz, CDCl3): δ 7.65 (d, J = 8.6 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.71 

(dd, J = 8.7, 5.4 Hz, 1H), 6.63 (dd, J = 8.9, 2.7 Hz, 1H), 6.56 (td, J = 8.6, 2.8 Hz, 1H), 5.79 

(dtd, J = 10.2, 2.6, 1.3 Hz, 1H), 5.76 – 5.69 (m, 1H), 4.91 – 4.76 (m, 2H), 4.29 (s, 1H), 

3.85 (t, J = 3.8 Hz, 1H), 3.77 – 3.64 (m, 1H), 3.57 (td, J = 10.0, 5.5 Hz, 1H), 2.57 – 2.47 

(m, 1H), 2.44 (s, 3H), 2.41 – 2.30 (m, 1H), 2.18 (ddd, J = 13.4, 9.8, 5.8 Hz, 1H), 1.96 (ddd, 

J = 13.4, 9.4, 5.5 Hz, 1H). 

13C NMR (101 MHz, CDCl3): δ 160.0 (d, J = 244.8 Hz), 143.3, 137.0, 136.2, 135.2 (d, J 

= 6.9 Hz), 129.5, 127.5 (d, J = 8.0 Hz), 127.1, 126.4, 124.5, 113.7 (d, J = 21.3 Hz), 110.3 

(d, J = 21.6 Hz), 73.5, 67.4, 63.8, 45.8, 45.5, 33.0, 27.6, 21.5. 

19F NMR (282 MHz, CDCl3): δ –119.0. 

FTIR (NaCl, thin film): 2925, 1496, 1338, 1249, 1160, 1099, 810, 682, 668 cm-1.  

HRMS (TOF-ESI) m/z: [M + H]+ Calcd for C22H23NO3SF 400.1383; Found 400.1380. 

Rf = 0.40 (silica, 35% EtOAc/hexanes, UV/anisaldehyde). 
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Spectra Relevant to Chapter 2: Synthesis of Noraugustamine and 

Development of an Oxidative Heck/Aza-Wacker Cyclization  
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Figure A1.2 13C NMR (101 MHz, CDCl3) of Compound 155. 
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Figure A1.4 13C NMR (101 MHz, CDCl3) of Compound 156. 
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Figure A1.6 13C NMR (101 MHz, CDCl3) of Compound 157. 
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Figure A1.8 13C NMR (101 MHz, CDCl3) of Compound S1. 
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Figure A1.10 13C NMR (101 MHz, CDCl3) of Compound S2. 
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Figure A1.12 13C NMR (101 MHz, CDCl3) of Compound 158. 
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Figure A1.14 13C NMR (101 MHz, CDCl3) of Compound 161. 
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Figure A1.16 13C NMR (101 MHz, CDCl3) of Compound 150. 
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Figure A1.18 13C NMR (101 MHz, CDCl3) of Compound 159. 
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Figure A1.20 13C NMR (101 MHz, CDCl3) of Compound 160. 
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Figure A1.22 13C NMR (101 MHz, CDCl3) of Compound 162. 
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Figure A1.24 13C NMR (101 MHz, CDCl3) of Compound 163. 
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Figure A1.26 13C NMR (101 MHz, CDCl3) of Compound 164. 
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Figure A1.28 13C NMR (101 MHz, CDCl3) of Compound S3. 
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Figure A1.30 13C NMR (101 MHz, CDCl3) of Compound 169. 
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Figure A1.32 13C NMR (126 MHz, CDCl3) of Compound S4. 
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Figure A1.34 13C NMR (126 MHz, CDCl3) of Compound 170. 
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Figure A1.36 13C NMR (101 MHz, CDCl3) of Compound S8. 



Appendix 1: Spectra Relevant to Chapter 2  
 

140 

0
1

2
3

4
5

6
7

8

p
p
m

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Fi
gu

re
 A

1.
37

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 

S9
. 

N
O

I

S9

SE
M

Ts



Appendix 1: Spectra Relevant to Chapter 2  
 

141 

0102030405060708090100110120130140150

ppm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure A1.38 13C NMR (101 MHz, CDCl3) of Compound S9. 



Appendix 1: Spectra Relevant to Chapter 2  
 

142 

Fi
gu

re
 A

1.
39

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 

S1
0.

 
0

1
2

3
4

5
6

7
8

p
p
m

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

N
O

I

S1
0

SE
M

Ts

M
eO



Appendix 1: Spectra Relevant to Chapter 2  
 

143 

020406080100120140160

ppm

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure A1.40 13C NMR (101 MHz, CDCl3) of Compound S10. 
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Figure A1.43 13C NMR (101 MHz, CDCl3) of Compound S11. 

Figure A1.42 19F NMR (282 MHz, CDCl3) of Compound S11. 
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Figure A1.45 13C NMR (101 MHz, CDCl3) of Compound S12. 
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Figure A1.47 13C NMR (101 MHz, CDCl3) of Compound S13. 
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Figure A1.49 13C NMR (101 MHz, CDCl3) of Compound S14. 
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Figure A1.52 13C NMR (101 MHz, CDCl3) of Compound S15. 

Figure A1.51 19F NMR (282 MHz, CDCl3) of Compound S15. 
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Figure A1.54 13C NMR (101 MHz, CDCl3) of Compound 166. 
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Figure A1.56 13C NMR (101 MHz, CDCl3) of Compound 174a. 
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Figure A1.58 13C NMR (101 MHz, CDCl3) of Compound 174b. 
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Figure A1.61 13C NMR (101 MHz, CDCl3) of Compound 174c. 

Figure A1.60 19F NMR (282 MHz, CDCl3) of Compound 174c. 
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Figure A1.63 13C NMR (101 MHz, CDCl3) of Compound 165. 
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Figure A1.65 13C NMR (101 MHz, CDCl3) of Compound 171. 
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Figure A1.67 13C NMR (101 MHz, CDCl3) of Compound 172. 
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Figure A1.69 13C NMR (101 MHz, CDCl3) of Compound 173. 
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Figure A1.71 13C NMR (101 MHz, CDCl3) of Compound 175a. 
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Figure A1.73 13C NMR (101 MHz, CDCl3) of Compound 175b. 



Appendix 1: Spectra Relevant to Chapter 2  
 

174 

0
1

2
3

4
5

6
7

8

p
p
m

Fi
gu

re
 A

1.
74

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 

17
5c

.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

N Ts

O
F

17
5c



Appendix 1: Spectra Relevant to Chapter 2  
 

175 

020406080100120140160180200

ppm

-119.8-119.7-119.6-119.5-119.4-119.3-119.2-119.1-119.0-118.9-118.8-118.7-118.6-118.5-118.4-118.3-118.2

ppm

  

Figure A1.76 13C NMR (101 MHz, CDCl3) of Compound 175c. 

Figure A1.75 19F NMR (282 MHz, CDCl3) of Compound 175c. 



 

!This research was performed under the advisory of Prof. Brian M. Stoltz. Portions of this chapter have been 
reproduced with permission from Stanko, A. M.; Ramirez, M.; de Almenara, A. J.; Virgil, S. C.; Stoltz, B. 
M. Manuscript to be Submitted to Organic Letters. 
 
 

CHAPTER 3 

Enantioselective Nickel-Catalyzed a-Spirocyclization of Lactones 

3.1   INTRODUCTION 

Spirocyclic scaffolds frequently appear in molecules of interest to the chemical and 

biological communities (Figure 3.1A). Spironolactone (176), aptly named after its 

spirocyclic lactone core, is an FDA-approved drug for the treatment of hypertension and 

heart failure.1 Spirocycles also comprise the backbones of chiral ligands, including (R)-

SDP (177), which has been employed for enantioselective ketone hydrogenation.2,3 

Additionally, spirocyclic cores can be found in bioactive natural products such as 

exiguaquinol (178).4,5 Despite the medicinal and synthetic utility of spirocycles, the 

enantioselective construction of these motifs remains a significant synthetic challenge, 

necessitating costly chiral separations and limiting their potential applications.6 

Methods for the asymmetric synthesis of spirocycles bearing a stereogenic quaternary 

center as the spiro atom are even less common, due to the added challenge of installing the 

all-carbon quaternary center enantioselectively.7–10 In 2016, our laboratory disclosed a 

unique strategy for the enantioselective synthesis of all-carbon quaternary centers via a 

nickel-catalyzed C-acylation of lactams, furnishing b-keto lactam products (181) in up to 
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92% yield (Figure 3.1B).11 Chiral Mandyphos ligand SL-M004-1 was employed in 

conjunction with Ni(COD)2, imparting enantioselectivities as high as 94% ee. This reaction 

is thought to proceed through the addition of a metal enolate species to an aryl nitrile, 

giving rise to N-aryl imine products 182. Subsequent hydrolysis of these species gives rise 

to the corresponding b-keto lactams (181). 

Figure 3.1 Spirocyclic motifs in molecules of synthetic interest, disclosure of a nickel-

catalyzed C-acylation of lactams, and initial discovery of enantioselective lactone 

spirocyclization.  
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aReaction yield determined by 1H NMR relative to 1,3,5-trimethoxybenzene 

3.2  RESULTS AND DISCUSSION 

We recognized that an intramolecular version of this transformation using a-alkylated 

substrates, such as 183, would give rise to spirocycles bearing an all-carbon quaternary 

center (Figure 3.1C). Subjecting 183 to the optimal conditions for the previously 

established intermolecular reaction gave spirocycle 184 in 68% yield, but in only 5% ee. 

We suspected that a base-promoted background reaction could be competing with the 

transition-metal catalyzed process for substrate 183, explaining the low level of 

enantioselectivity. Indeed, when 8 was treated with a stoichiometric amount of LHMDS in 

the absence of the nickel catalyst, spirocycle 184 was formed in an 83% yield. The facile 

background reaction observed for 183 can be rationalized by the favorable kinetics of 5-

membered ring formation.12  

We surmised that altering the sterics and electronics of the enolate nucleophile could 

perhaps lower the rate of background reactivity and improve enantioselectivity. 

Specifically, we became interested in employing lactone nucleophiles, owing to their 

synthetic utility and prevalence in pharmaceutically relevant small molecules.13 Moreover, 

on the basis of pKa,14,15 and the weaker resonance donation of O vs. N, we predicted that 

a lactone enolate should be less nucleophilic than a lactam enolate, thereby slowing the 

rate of background reaction. To our delight, when a-substituted lactone 185a was treated 

with LHMDS and PhBr in the presence of Ni(COD)2 and Mandyphos ligand SL-M004-1, 

spirocyclic lactone 186a was obtained in 85% yield and 62% ee (Figure 3.1D).  
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As suspected, when Ni(COD)2 was omitted from the reaction, 186a was observed in only 

6% yield (Table 3.1, entry 1), indicating that the rate of base-promoted background reaction 

was much slower for lactone 185a compared to more nucleophilic lactam 183. Similarly, 

in the absence of PhBr, 186a was formed in only 5% yield (entry 2), suggesting that the 

lactone a-spirocyclization was proceeding through a mechanistic framework similar to the 

previously described intermolecular lactam acylation. Indeed, the corresponding 

spirocyclic N-aryl imine product may be isolated prior to acid hydrolysis, if desired. (see 

Section 3.4: Experimental Section) The optimal reaction conditions for spirocyclization 

employed Ni(COD)2 as the catalyst, Mandyphos ligand SL-M001-1 as the chiral ligand, 

LHMDS as the base, PhBr as the aryl halide, and TBME as the reaction solvent, affording 

186a in 90% yield and 83% ee (entry 3). When ligand SL-M009-1 was used in place of 

SL-M001-1, the reaction yield improved to 97%, but 186a was formed with lower 

enantioselectivity (69% ee, entry 4). Interestingly, 186a was obtained in 91% yield and 57% 

ee when diphosphine ligand (S,S)-BDPP was employed as the ligand (entry 5). Extensive 

investigation of additional chiral ligands was facilitated via an automated reaction setup 

(see Section 3.4: Experimental Section) but failed to improve the enantioselectivity of the 

reaction beyond 83% ee. When toluene was employed as the reaction solvent in place of 

TBME, 186a was formed in 78% yield and 78% ee (entry 6). The addition of LiBr to the 

reaction mixture had no impact on reaction yield or enantioselectivity (entry 7). This 

contrasts with what was observed for the previously described lactam acylation, where the 

addition of LiBr led to a significant improvement in reaction yield and ee (Figure 1B). 

Finally, LHMDS was the optimal base in regard to enantioselectivity, with LiOtBu 
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affording 186a in 91% yield but only 72% ee (entry 8). We also probed the effect of varying 

the sterics and electronics of the aryl halide component, but none of the other aryl halides 

investigated led to greater reaction yield or enantioselectivity (see Supporting Information). 

Air-stable nickel pre-catalysts such as Ni(COD)DQ were also investigated in this chemistry 

but failed to afford 186a.16 

Table 3.1. Reaction investigation. 

aYield was determined by HPLC relative to (4,4’)-di-tert-butylbiphenyl. b Enantiomeric excess was 

determined via chiral SFC, and absolute stereochemistry was assigned in analogy to X-ray crystal 

structures of 188b and 188c. 

With the optimal conditions in hand, we began investigating the scope of the lactone a-

spirocyclization with respect to 5 and 6-membered ring formation (Table 3.2). We 

evaluated the performance of the two best ligands, SL-M001-1, and SL-M009-1, for each 

substrate. (see Supporting Information for detailed procedures for substrate synthesis). 

Arene substitution para to the nitrile with an electron-donating methoxy group (185b) 

resulted in lower yield but improved enantioselectivity with both SL-M001-1 (52% yield, 

O

O

O

O

O CN

Ni(COD)2 (10 mol %)
SL-M001-1 (12 mol%) 

LHMDS (1.1 equiv)
PhBr (3.0 equiv)

TBME, 30 ºC, 20 h

then 1 M aq. HCl, EtOAc, 23 ºC, 4 h
185a 186a

Fe

SL-M001-1

Ph2P
H

PPh2
Me2N

H

NMe2

Ph

Ph

Fe

SL-M009-1
 (R = 3,5-Me2Ph)

R2P
H

PR2
Me2N

H

NMe2

Ph

Ph

(S,S)-BDPP

Me Me

PPh2 PPh2

deviation from optimal conditions % yielda % eebentry

no Ni(COD)2 6 -1
no PhBr 5 -2

none 90 833
SL-M009-1 instead of SL-M001-1 97 694
(S,S)-BDPP instead of SL-M001-1 91 575

toluene instead of TBME 78 786
5 equiv LiBr as additive 90 827

LiOtBu instead of LHMDS 91 728
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84% ee) and SL-M009-1 (67% yield, 83% ee) compared to electron-neutral substrate 185a. 

This effect of substitution on reaction yield may be due to the lower electrophilicity of the 

aryl nitrile when an electron-donating group is introduced. Conversely, substitution para 

to the nitrile with a slightly electron-withdrawing fluorine afforded 186c with reduced 

levels of enantioselectivity for both ligands employed. Finally, when substrate 185d was 

employed, 6-membered ring formation occurred in good yield but dramatically reduced 

enantiomeric excess for both SL-M001-1 (81% yield, 50% ee) and SL-M009-1 (90% yield, 

35% ee), suggesting that the mechanism of enantioinduction might be different for 6-

membered ring formation versus 5-membered ring formation. We aim to better understand 

this phenomenon via computational investigation of the reaction mechanism, which is 

currently underway. 

Table 3.2. Substrate scope of spirocyclization for 5 and 6-membered ring formation. 

Next, we investigated the possibility of 7-membered ring formation within this reaction 

manifold (Table 3.3). Medium-sized rings are prevalent in both pharmaceutical drugs and 

natural products, but their preparation is often complicated by entropic factors and 

transannular interactions.17 Substrate 187a was prepared from known α-allyl-γ-

O

O

O

O

O CN

O

O

O

52% yield
84% ee

O

O

O

OMe F

Ni(COD)2 (10 mol %)
SL-M001-1 or SL-M009-1 (12 mol%) 

LHMDS (1.1 equiv)
PhBr (3.0 equiv)

TBME, 30 ºC, 20-22 h

then 1 M aq. HCl, EtOAc, 23 ºC, 4 h

O

O

O

90% yielda

83% ee

O

O

O

( )
n

( )
n

36% yield
73% ee

81% yield 
50% ee

97% yielda

69% ee
67% yield

83% ee
80% yield

61% ee
90% yield

35% ee

n = 1,2

186a 186b 186c 186d

185a-d 186a-dR

R



Chapter 3: Enantioselective Nickel-Catalyzed a-Spirocyclization of Lactones 

 

182 

 

butyrolactone and 2-vinylbenzonitrile in a facile two step sequence of olefin metathesis 

followed by hydrogenation (see Supporting Information). This synthetic sequence 

provided access to 187b – 187g in good yields. When 187a was subjected to the optimized 

conditions for spirocyclization at a slightly elevated temperature of 40 ºC, we were pleased 

to observe spirocycle 188a in 54% yield and 78% ee for SL-M001-1 and 84% yield and 

86% ee for SL-M009-1. This ligand performance is complementary to the trend observed 

for 5- and 6-membered ring formation. Notably, this reaction represents a fundamentally 

new approach to the formation of 7-membered carbocycles containing all-carbon 

quaternary centers.18 Substitution of the arene with an electron-donating methoxy group 

para to the aryl nitrile (188b) resulted in improved reaction enantioselectivity but reduced 

yield for both ligands employed, in analogy to the trend observed for 5-membered ring 

formation. Spirocycle 188c, containing a methyl group para to the aryl ketone, was 

obtained in good yield and enantioselectivity with both SL-M001-1 (57% yield, 90% ee) 

and SL-M009-1 (62% yield, 90% ee). When substrates 188d-188f were surveyed, a strong 

electronic effect was noted. As the sp value of the substituent para to the nitrile increased 

from –F to –CO2Et to –CF3, the corresponding spirocyclic product was obtained with lower 

enantioselectivity.19 Curious to see if background reactivity was responsible for this 

erosion of enantioselectivity, we treated 187f with a stoichiometric amount of LHMDS in 

the absence of the nickel catalyst. Spirocycle 188f was not observed under these conditions, 

suggesting that the lower levels of enantioselectivity observed for electron-poor substrates 

were not a result of competitive background reaction. We were pleased to find that the 

reaction was tolerant of an aryl chloride functional handle, with spirocycle 188g obtained 
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in modest yield and enantioselectivity for both ligand systems employed. While other 

unidentified species were formed in these reactions, protodechlorination byproducts were 

not observed. Lastly, substrate 187h, containing a Z-olefin embedded in the tether between 

the lactone and aryl nitrile, was evaluated. Unfortunately, low conversion was observed 

with this substrate, and spirocycle 188h was isolated in low yield and enantioselectivity for 

both ligand systems tested. We posited that the rigidity in the tether imparted by the Z-

olefin might affect the mechanism of C–C bond formation for this substrate, leading to 

lower yield and enantioselectivity. Nevertheless, the olefin functional handle remained 

intact under the reaction conditions.  

Table 3.3. Substrate scope for 7-membered ring formation. 

Finally, we investigated the impact of altering the enolate nucleophile on the 

spirocyclization (Scheme 1). When d-valerolactone substrate 189 was subjected to the 

reaction conditions, employing SL-M009-1 as the ligand and toluene as the solvent, 

Ni(COD)2 (10 mol %)
SL-M001-1 or SL-M009-1 (12 mol%) 

LHMDS (1.1 equiv)
PhBr (3.0 equiv)

TBME, 40 ºC, 20-22 h

then 1 M aq. HCl, EtOAc, 23 ºC, 4 h
O

O CN O

O

O
R

R

188a-h187a-h

O

O

O

O

O

O OMe

O

O

O Me

188a 188b 188c
40% yield 

84% ee
54% yield

78% ee
84% yield

86% ee
58% yield

90% ee

57% yield
90% ee

62% yield
90% ee

O

O

O CO2Et

O

O

O CF3

O

O

O F

188d

188e 188f
57% yield

51% ee
62% yield

71% ee
73% yield

65% ee
76% yield

44% ee

80% yield
85% ee

72% yield
83% ee

O

O

O

Cl
55% yield

60% ee
38% yield

72% ee

188g

O

O

O

31% yield
30% ee

31% yield
27% ee

188h
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spirocycle 190 was obtained in a low 27% yield with moderate enantioselectivity of 78% 

ee. Undesired indanone byproduct 191 was also isolated in 46% yield. We hypothesized 

that 191 was formed via ring opening and decarboxylation of spirocycle 190. Previous 

literature reports demonstrate that d-valerolactone undergoes acid-promoted ring-opening 

more readily than γ-butyrolactone, explaining why 190 was unstable to the conditions for 

N-aryl imine hydrolysis.20 This undesired reactivity was not observed for γ-butyrolactone 

substrates. Lastly, we were pleased to find that α-alkylated tetralone substrate 192 

underwent spirocyclization in excellent yield and moderate enantioselectivity (91 % yield, 

73% ee) when SL-M009-1 was employed as the ligand. A solvent mixture of 1:1 

toluene/TBME provided better substrate solubility in this case.  

Scheme 3.1 Spirocyclization with other nucleophiles.  

3.3  CONCLUSION  

In summary, we have discovered a nickel-catalyzed enantioselective lactone α-

spirocyclization, affording 5-, 6-, and 7-membered spirocycles in good yield and 

enantioselectivity. The reaction proceeds through an N-aryl imine intermediate, which is 

hydrolyzed upon workup to provide enantioenrichced b-keto lactone products. 

O

O

O CN
Ni(COD)2 (10 mol %)

 SL-M009-1 (12 mol%) 
LHMDS (1.1 equiv)

PhBr (3.0 equiv)

toluene, 30 ºC, 20 h

then 1 M aq. HCl, 
EtOAc, 23 ºC, 1 h

O

O

O

+

27% yield
78% ee

46% yield

189 190 191

O

O

91% yield
73% ee

CN
Ni(COD)2 (10 mol %)

SL-M009-1 (12 mol %)
LHMDS (1.1 equiv)

PhBr (3.0 equiv)

toluene/TBME (1:1), 
40 ºC, 24 h

then 1 M HCl, EtOAc, 
23 ºC, 21 h

O

192 193

OH
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Interestingly, the reaction enantioselectivity was greatest for 7-membered ring formation 

(up to 90% ee), good for 5-membered ring formation (up to 84% ee) and moderate for 6-

membered ring formation (up to 50% ee), suggesting mechanistic differences in the 

enantiodetermining steps across different ring sizes. During our investigation of substrate 

scope, we uncovered complementary ligand performance for many substrates by 

investigating both SL-M001-1 and SL-M009-1 as ligands on nickel. The spirocyclization 

was tolerant of multiple synthetically modular functional groups, including esters, aryl 

chlorides, and alkenes. Finally, the spirocyclization could be extended to tetralone 

nucleophiles, representing a potential avenue to expand this reaction manifold beyond 

lactone α-spirocyclization. Presently, we are investigating the free energy profile of the 

reaction to elucidate the elementary steps of the catalytic cycle and understand the origins 

of enantioselectivity. Ultimately, we aim to leverage computational insights on the reaction 

mechanism to tailor our catalyst and achieve higher levels of enantioselectivity with a 

broader scope of enolate nucleophiles. 

 

3.4 EXPERIMENTAL SECTION 

3.4.1 Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by 

passage through an activated alumina column under argon. Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 
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visualized by UV fluorescence quenching or KMnO4 staining. Silicycle SiliaFlash® P60 

Academic Silica gel (particle size 40–63 μm) was used for silica gel flash chromatography. 

1H NMR spectra were recorded on Varian Inova 500 MHz,Varian Inova 600 MHz, and 

Bruker 400 MHz spectrometers and are reported relative to residual CHCl3 (δ 7.26 ppm). 

13C NMR spectra were recorded using a Bruker 400 MHz spectrometer (100 MHz) and are 

reported relative to residual CHCl3 (δ 77.16 ppm) 19F NMR spectra were recorded on a 

Varian Mercury 300 MHz spectrometer (282 MHz) or a Bruker 400 MHz spectrometer 

(376 MHz) and referenced to an external standard (hexafluorobenzene; 19F NMR (282 

MHz, CDCl3) δ -161.64. Data for 1H NMR are reported as follows: chemical shift (δ ppm), 

multiplicity, coupling constant (Hz), integration. Multiplicities are reported as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet. Data for 13C 

NMR is reported in terms of chemical shifts (δ ppm). Some reported spectra include minor 

solvent impurities of water (δ 1.56 ppm), ethyl acetate (δ 4.12, 2.05, 1.26 ppm), methylene 

chloride (δ 5.30 ppm), acetone (δ 2.17 ppm), grease (δ 1.26, 0.86 ppm), and/or silicon 

grease (δ 0.07 ppm), which do not impact product assignments. IR spectra were obtained 

by use of a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl 

plates and reported in frequency of absorption (cm–1). Optical rotations were measured 

with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm 

path-length cell. Analytical SFC was performed with a Mettler SFC supercritical CO2 

analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel 

(OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical 

Industries, Ltd. High resolution mass spectra (HRMS) were obtained from the Caltech 
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Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in 

Field Ionization (FI) mode. The absolute configuration of S41 was determined by X-ray 

crystallography and all other products are assigned by analogy. Reagents were purchased 

from commercial sources and used as received unless otherwise stated. Ni(COD)2, SL-

M001-1, SL-M009-1, and (S,S)-BDPP were purchased from Strem Chemicals. HG-II was 

gratuitously provided by Umicore.  

 

3.4.2 Substrate Preparation 

General Procedure A: LDA Alkylation for the Synthesis of Substrates 185a-c and 189 

A round-bottom flask with a stir bar was flame-dried and cooled to room temperature under 

vacuum. The flask was backfilled with nitrogen, then diisopropylamine (1.1 equiv, freshly 

distilled over CaH) and 1/3 of the THF were added via syringe. The flask was cooled to 0 

ºC in an ice bath, then n-BuLi (2.5 M in hexanes, 1.1 equiv) was added dropwise over 10 

min. After stirring at 0 ºC for 20 min, the flask was cooled to -78 ºC, and a solution of the 

lactone (1 equiv) in 1/3 of the THF was added dropwise over 30 min. Lastly, a solution of 

benzyl bromide (1.2 equiv) was added dropwise over 30 minutes in the last 1/3 of the THF 

(0.43 M with respect to γ-butyrolactone) The reaction was stirred at -78 ºC until 

consumption of the lactone was observed by TLC. (1-3 hours depending on the substrate) 

The reaction was quenched at -78 ºC with sat. aq. NH4Cl, diluted with EtOAc (1 x reaction 

volume), then immediately warmed to room temperature. The reaction was transferred to 

O

O CN

O

O CN

+ Br

R R

LDA (1.1 equiv)

THF, 0ºC to -78 ºC, 1-3 h

185a-c (n = 1)
189 (n = 2)

n

n = 1, 2
n
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a separatory funnel and the aqueous phase was extracted with EtOAc (2 x reaction volume). 

The combined organics were washed with brine (1 x reaction volume), dried over Na2SO4, 

and concentrated. The crude reaction was purified via silica gel flash column 

chromatography. 

Compound 185a was prepared via General Procedure A from γ-butyrolactone (1 equiv, 25 

mmol, 1.9 mL) and 2-cyanobenzyl bromide (1.2 equiv, 30 mmol, 5.88 g) with a reaction 

time of 3 h. The residue was purified by silica gel flash column chromatography (30% 

EtOAc/Hexanes) and then recrystallized (4:9 EtOAc/Hexanes, 130 mL) to afford 185a as 

a fluffy white solid (2.02 g, 40% yield)  

1H NMR (600 MHz, CDCl3) δ 7.65 (dd, J = 7.8, 1.4 Hz, 1H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 

7.43 (d, J = 7.8 Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz, 1H), 4.31 (td, J = 8.8, 2.5 Hz, 1H), 4.17 

(td, J = 9.5, 6.5 Hz, 1H), 3.42 (dd, J = 14.2, 5.3 Hz, 1H), 3.08 (dd, J = 14.2, 8.5 Hz, 1H), 

2.95 (dtd, J = 11.0, 8.5, 5.3 Hz, 1H), 2.31 (dddd, J = 12.8, 8.8, 6.5, 2.4 Hz, 1H), 2.05 (dtd, 

J = 12.7, 10.3, 8.4 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 177.82, 142.45, 133.36, 133.07, 130.46, 127.62, 118.09, 

113.04, 66.61, 40.90, 34.22, 28.10. 

IR (NaCl, Thin Film) 2912, 2224, 1769, 1599, 1487, 1450, 1376, 1310, 1260, 1206, 1187, 

1154, 1109, 1021, 957, 916, 765 cm-1. 

HRMS(FI) m/z: [M + •]+: Calculated for C12H11NO2: 201.07898, Found: 201.07857. 

O

O CN

185a
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Compound S16 was prepared in 2 steps from commercially available 4-bromo-2-

methylbenzonitrile according to a published procedure. Spectral data matched those 

reported in the literature.21 

Compound 185b was prepared via General Procedure A from γ-butyrolactone (1 equiv, 

0.83 mmol, 63 µL) and benzyl bromide S1 (1.2 equiv, 1.0 mmol, 225.4 mg) with a reaction 

time of 1 h. The residue was purified by silica gel flash column chromatography (35% 

EtOAc/Hexanes) afford 185b as a  white solid (116.4 mg, 61% yield) 

1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.6 Hz, 1H), 6.92 (d, J = 2.5 Hz, 1H), 6.85 (dd, 

J = 8.6, 2.5 Hz, 1H), 4.41 – 4.27 (m, 1H), 4.18 (ddd, J = 10.0, 9.1, 6.5 Hz, 1H), 3.85 (s, 

3H), 3.37 (dd, J = 14.0, 5.2 Hz, 1H), 3.07 (dd, J = 14.1, 8.1 Hz, 1H), 2.94 (dtd, J = 10.9, 

8.3, 5.2 Hz, 1H), 2.33 (dddd, J = 12.7, 8.7, 6.4, 2.5 Hz, 1H), 2.06 (dddd, J = 14.8, 12.7, 

10.0, 8.4 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 177.94, 163.23, 144.62, 134.71, 118.59, 115.84, 113.66, 

104.67, 66.67, 55.76, 40.98, 34.28, 28.01. 

IR (NaCl, Thin Film) 3060, 2941, 2915, 2884, 2218, 1768, 1605, 1567, 1494, 1462, 1455, 

1431, 1375, 1293, 1249, 1209, 1153, 1110, 1072, 1022, 959, 921, 885, 823, 732, 698 cm-1 

O

O CN

185b OMe

CN

Br

OMe

S16
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HRMS(FI) m/z: [M + •]+ Calculated for C13H13NO3: 231.08954; Found: 231.08824. 

Compound 185c was prepared via General Procedure A from γ-butyrolactone (1 equiv, 0.5 

mmol, 38 µL) and 2-(bromomethyl)-4-fluorobenzonitrile (1.2 equiv, 0.6 mmol, 128 mg) 

with a reaction time of 2.5 h. The residue was purified by silica gel flash column 

chromatography (30% EtOAc/Hexanes) afford 185c as a white solid (70.6 mg, 64% yield). 

1H NMR (400 MHz, CDCl3) δ 7.67 (dd, J = 8.6, 5.5 Hz, 1H), 7.17 (dd, J = 9.1, 2.5 Hz, 

1H), 7.13 – 7.03 (m, 1H), 4.35 (td, J = 8.8, 2.3 Hz, 1H), 4.19 (ddd, J = 10.2, 9.2, 6.4 Hz, 

1H), 3.40 (dd, J = 14.2, 5.5 Hz, 1H), 3.09 (dd, J = 14.2, 8.1 Hz, 1H), 2.95 (dtd, J = 11.1, 

8.3, 5.5 Hz, 1H), 2.35 (dddd, J = 12.7, 8.6, 6.4, 2.3 Hz, 1H), 2.05 (dddd, J = 12.7, 11.1, 

10.2, 8.5 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 177.48, 166.48, 163.92, 145.91, 145.82, 135.42, 135.32, 

118.14, 117.92, 117.39, 115.62, 115.39, 109.21, 109.17, 66.59, 40.68, 34.23, 34.21, 28.17. 

IR (NaCl, Thin Film) 2911, 2226, 1766, 1607, 1584, 1493, 1376, 1346, 1279, 1243, 1211, 

1171, 1153, 1022, 985, 961, 825, 682 cm-1. 

HRMS(FI) m/z: [M + •]+: Calculated for C12H10NO2F: 219.06959, Found: 219.06929. 

Compound 189 was prepared via General Procedure A from d-valerolactone (1 equiv, 15 

mmol, 1.39 mL) and 2-cyanobenzyl bromide (1.2 equiv, 18 mmol, 3.53 g) with a reaction 

time of 2 h. The residue was purified by silica gel flash column chromatography (35% 

EtOAc/Hexanes) afford 189 as a white solid (2.25 g, 80% yield) 

CN

O

O

189

O

O CN

185c F
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1H NMR (400 MHz, CDCl3) δ 7.63 (dd, J = 7.7, 1.4 Hz, 1H), 7.54 (td, J = 7.6, 1.4 Hz, 

1H), 7.47 (dd, J = 8.0, 1.3 Hz, 1H), 7.34 (td, J = 7.6, 1.3 Hz, 1H), 4.38 – 4.24 (m, 2H), 3.49 

(dd, J = 14.0, 5.8 Hz, 1H), 3.03 (dd, J = 14.1, 7.8 Hz, 1H), 2.91 – 2.79 (m, 1H), 2.08 – 1.80 

(m, 3H), 1.63 (ddt, J = 12.6, 11.1, 7.1 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 173.49, 143.38, 133.12, 132.96, 130.89, 127.33, 118.27, 

113.08, 68.45, 41.23, 35.56, 24.41, 22.02. 

IR (NaCl, Thin Film) 3448, 3066, 2952, 2874, 2223, 1768, 1731, 1599, 1573, 1485, 1449, 

1401, 1351, 1267, 1212, 1155, 1084, 983, 969, 902, 827, 766, 738, 624 cm-1. 

HRMS(FI) m/z: [M + •]+: Calculated for C13H13NO2: 215.09436, Found: 215.09429. 

 

Alkylation/Decarboxylative Protonation Sequence for the Synthesis of 185d  

  
 Preparation of Alcohol S17 

A 250 RBF with stir bar was flame-dried and cooled under vacuum. The flask was opened, 

charged with 2-bromobenzonitrile as a solid (1 equiv, 12.5 mmol, 2.28 g), and then 

evacuated and purged with nitrogen 3x.  THF (0.19 M, 67 mL) was added via cannula and 

Br
CN

+ O

O O

O O

O O

O

NC

Cs2CO3 (1 equiv)

DMF, 23 ºC, 22.5 h

Pd(OAc)2 (10 mol %)
HCO2H (8.0 equiv)
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dioxane, 40 - 60 ºC, 
17 h
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THF, -78 ºC, 1 h
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CNCBr4 (2 equiv)

PPh3 (1 equiv)
imidazole (1.4 equiv)

DCM, 0ºC to
23 ºC (19 h)
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CN
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n-BuLi (1.0 equiv) 
BF3·Et2O (1.0 equiv)

+ O
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the solution was cooled to -78 ºC. Next, n-BuLi (2.5 M in hexanes, 1 equiv, 12.5 mmol, 5 

mL) was added dropwise over 10 minutes and the reaction was stirred at -78 ºC for 15 

minutes. Ethylene oxide (advertised as 2.5 – 3.3 M in THF, assumed 2.5 M, 2 equiv, 25 

mmol, 10 mL) was added dropwise over 10 minutes, followed by BF3•Et2O (added quickly 

via syringe, 1 equiv, 12.5 mmol, 1.54 mL). The reaction was stirred at -78 ºC for 1 hour, 

after which 2-bromobenzonitrile was observed to be fully consumed by TLC. The reaction 

was quenched at -78 ºC by adding sat. NH4Cl (50 mL) and EtOAc (40 mL), warmed to 

room temperature, and stirred at room temperature overnight. (CAUTION- ethylene oxide 

is a highly carcinogenic and volatile reagent, bp ~ 11 ºC at 1 atm. Care should be exercised 

in handling and quenching this reaction.) The reaction mixture was transferred to a 

separatory funnel, the layers were separated, and the aqueous layer was extracted with 

EtOAc (3 x 50 mL). The combined organics were washed with brine, dried over Na2SO4, 

and concentrated. The residue was purified via column chromatography to afford S17 as 

an off-white oil (1.02 g, 55% yield). 

1H NMR (500 MHz, CDCl3) δ 7.68 (dd, J = 7.7, 1.4 Hz, 1H), 7.57 (td, J = 7.7, 1.4 Hz, 

1H), 7.44 (dd, J = 7.8, 1.1 Hz, 1H), 7.37 (td, J = 7.6, 1.2 Hz, 1H), 3.99 (t, J = 6.5 Hz, 2H), 

3.15 (t, J = 6.5 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 142.85, 133.04, 132.93, 130.50, 127.17, 118.24, 112.98, 

62.75, 37.89. 

IR (NaCl, Thin Film) 3434, 3068, 2952, 2881, 2224, 1599, 1486, 1449, 1210, 1165, 1099, 

1048, 950, 761, 720 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C9H9NO: 147.06841, Found: 147.06816. 
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Preparation of Bromide S18 

A 100 mL RBF with stir bar was charged with a solution of alcohol in DCM (0.3 M, 23.1 

mL). The solution was cooled to 0 ºC, and then imidazole (1.4 equiv, 9.72 mmol, 662 mg) 

was added. Next, CBr4 (2 equiv, 13.9 mmol, 4.6 g) was added, followed by PPh3 (1 equiv, 

6.93 mmol, 1.82 g), which was added slowly in 3 portions. The reaction was warmed to 23 

ºC and stirred for 19 h. Upon consumption of the alcohol starting material, the reaction was 

quenched with sat. aq. NH4Cl (1 x 25 mL and diluted with DCM (25 mL). The reaction 

was transferred to a separatory funnel, and the layers were separated. The aqueous layer 

was extracted with DCM (2 x 25 mL), and the combined organic layers were washed with 

water (1 x 25 mL) and brine, then dried over Na2SO4. The residue was purified via silica 

gel flash chromatography (5% EtOAc/Hexanes) to afford S18 as a white solid (988 mg, 

68% yield). 

1H NMR (400 MHz, CDCl3) δ 7.66 (ddt, J = 7.7, 1.3, 0.7 Hz, 1H), 7.57 (td, J = 7.7, 1.4 

Hz, 1H), 7.44 – 7.33 (m, 2H), 3.66 (t, J = 7.1 Hz, 2H), 3.41 (t, J = 7.1 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 142.51, 133.21, 133.01, 130.43, 127.76, 117.78, 112.74, 

37.50, 31.40. 

IR (NaCl, Thin Film) 3068, 2967, 2224, 1599, 1574, 1487, 1450, 1434, 1306, 1286, 1263, 

1219, 1185, 1164, 11135, 1085, 1040, 1003, 956, 924, 895, 865, 765, 649 cm-1 

HRMS(FI) m/z: [M + •]+: Calculated for C9H8NBr: 208.98401; Found: 208.98346 

CN
OH Br

CNCBr4 (2 equiv)
PPh3 (1 equiv)

imidazole (1.4 equiv)

DCM, 0ºC to
23 ºC (19 h)

S17 S18
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Preparation of Carboxy Lactone S19 

A 250 mL RBF with a stir bar was flame-dried and cooled under vacuum. The flask was 

backfilled with N2, opened, charged with NaH (65% wt, 2.5 equiv, 17.5 mmol, 700 mg), 

then evacuated and purged with N2 3x. Next, 1/2 of the THF (29 mL) was added and the 

reaction was cooled to 0 ºC in an ice bath. A solution of γ-butyrolactone (1 equiv, 7 mmol, 

0.53 mL) in the remaining 1/2 of the THF (29 mL) was added dropwise. The reaction was 

warmed to 23º C and diallyl carbonate (1.5 equiv), 10.5 mmol, 1.51 mL) was added quickly 

via syringe. The reaction was stirred at 23 ºC for 17 hours until the lactone was consumed. 

The reaction was quenched with sat. aq. NH4Cl (1x 25 mL), transferred to a separatory 

funnel, and extracted with EtOAc (2 x 50 mL). The combined organics were washed with 

brine, dried over Na2SO4, and concentrated under vacuum. The residue was purified via 

silica gel flash column chromatography (30% EtOAc/hexanes to 50% EtOAc/hexanes) to 

give S19 as a clear oil (884.5 mg, 71% yield). Spectral data matched those reported in the 

literature.22 

Preparation of Carboxy lactone S20 

A 25 mL RBF with a stir bar was flame-dried and cooled under vacuum. The flask was 

backfilled with N2, opened and charged with Cs2CO3 (1 equiv, 1.3 mmol, 423.6 mg). The 

flask was sealed, then evacuated and purged with nitrogen 3x. Then, a solution of S19 (1 

equiv, 1.3 mmol, 216.7 mg) in dry DMF (2.3 mL) was added, and the reaction was stirred 

Br
CN

+ O

O O

O O

O O

O

NC

Cs2CO3 (1 equiv)

DMF, 23 ºC, 22.5 h

S18 S19 S20

O

O O

O

S19
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at 23 ºC for 30 min. Finally, bromide S18 (1.8 equiv, 2.34 mmol, 491.6 mg was added as 

a solution in the remaining dry DMF (2.3 mL, total concentration 0.28 M in S19) and the 

reaction was stirred at 23 ºC for 22.5 hours. The reaction was quenched with water (1 x 10 

mL), transferred to a separatory funnel, and extracted with EtOAc (3 x 15 mL). The 

combined organics were washed with brine, dried over Na2SO4, and concentrated under 

vacuum. The residue was purified via silica gel flash column chromatography (7.5% 

EtOAc/toluene) to afford S20 as a clear oil (248.6 mg, 64% yield). 

1H NMR (400 MHz, CDCl3) δ 7.62 (dd, J = 7.7, 1.4 Hz, 1H), 7.54 (td, J = 7.7, 1.4 Hz, 

1H), 7.41 – 7.28 (m, 2H), 5.93 (ddt, J = 17.2, 10.4, 5.8 Hz, 1H), 5.43 – 5.24 (m, 2H), 4.70 

(dt, J = 5.8, 1.4 Hz, 2H), 4.46 – 4.39 (m, 2H), 2.97 (td, J = 12.9, 5.0 Hz, 1H), 2.92 – 2.76 

(m, 2H), 2.53 – 2.38 (m, 2H), 2.07 (ddd, J = 13.9, 12.4, 4.8 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 174.35, 168.86, 144.60, 133.28, 132.98, 131.17, 129.91, 

127.25, 119.64, 117.97, 112.37, 66.96, 66.56, 54.08, 35.40, 31.86, 30.04. 

IR (NaCl, Thin Film) 3069, 2919, 2223, 1774, 1735, 1598, 1485, 1450, 1376, 1251, 1212, 

1169, 1119, 1029, 954, 765 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C17H17NO4: 299.11576; Found: 299.11472 

Preparation of Substrate 185d 

A 100 mL RBF equipped with a stir bar (capped with a 24/40 septa) was charged with 4 Å 

molecular sieves (2.4 x mass substrate)  and flame-dried under vacuum 3 x. The flask was 

O

O O

O

NC

Pd(OAc)2 (10 mol %)
HCO2H (8.0 equiv)

dppe (12 mol%)
4 Å MS

dioxane, 40 - 60 ºC, 
17 h

O

O

NC
185dS20
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cooled under vacuum and then filled with nitrogen. The septum was secured onto the flask 

with electrical tape and pumped into the glovebox. Inside the glovebox, the flask was 

opened and charged with Pd(OAc)2 (0.1 equiv, 0.07 mmol, 15.7 mg) and dppe (0.12 equiv, 

0.088 mmol, 35.1 mg), sealed with a septum, and removed from the glovebox. Freshly 

dried 1,4-dioxane (18 mL) was added via syringe, and the reaction was heated to 40 ºC 

under nitrogen for 30 min. To the resulting green solution was added neat HCO2H (8 equiv, 

5.6 mmol, 0.21 mL), and the immediately S20 (1 equiv, 0.7 mmol, 209.5 mg) was added 

as a solution in the remaining 1,4-dioxane (5 mL, total concentration in S20 of 0.03 M). 

The reaction was heated to 60 ºC and stirred for 17 hours until S20 was fully consumed by 

TLC. The reaction was cooled to room temperature, filtered through a short SiO2 plug, 

concentrated under reduced pressure and loaded directly onto a silica gel column (30% 

EtOAc/hx) to afford 185d as a clear oil (129.4 mg, 86% yield). 

1H NMR (400 MHz, CDCl3) δ 7.62 (dd, J = 7.7, 1.4 Hz, 1H), 7.54 (td, J = 7.7, 1.4 Hz, 

1H), 7.44 – 7.36 (m, 1H), 7.32 (td, J = 7.6, 1.2 Hz, 1H), 5.29 (s, 0H), 4.43 – 4.34 (m, 1H), 

4.21 (td, J = 9.5, 6.4 Hz, 1H), 4.11 (q, J = 7.2 Hz, 0H), 2.98 (dd, J = 8.9, 7.1 Hz, 2H), 2.62 

– 2.44 (m, 2H), 2.31 – 2.17 (m, 1H), 2.15 – 1.99 (m, 1H), 1.84 (dtd, J = 13.7, 8.7, 7.3 Hz, 

1H).  

13C NMR (101 MHz, CDCl3) δ 178.95, 145.01, 133.22, 133.01, 129.78, 127.12, 118.11, 

112.46, 66.67, 38.75, 32.13, 31.67, 28.82. 

IR (NaCl, Thin Film) 3513, 3064, 2923, 2868, 2222, 1766, 1649, 1598, 1573, 1485, 1450, 

1375, 1300, 1168, 1111, 1062, 1024, 966, 936, 767, 703, 667, 624 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C13H13NO2: 215.09463; Found: 215.09365 
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Suzuki Coupling/Olefin Metathesis/Hydrogenation Sequence for the Synthesis of 
Substrates 187a-g 
 
General Procedure B: Suzuki Coupling for the Synthesis of S21-S25 

 
(Adapted from a published procedure)23  

A 100 mL Schlenk tube was charged with aryl halide (1 equiv), potassium 

vinyltrifluoroborate (1 equiv), cesium carbonate (3 equiv), palladium dichloride (0.02 

equiv), and triphenylphosphine (0.06 equiv) as solids. The tube was evacuated and purged 

with nitrogen 3x, then THF and H2O were added via syringe (9:1 THF/H2O, 0.5 M in aryl 

halide). The vessel was sealed and heated to 85 ºC for 20-48 h, depending on the aryl halide 

employed. The reaction was cooled to room temperature, opened to air, and diluted with 

H2O (1 x 20 mL). The reaction was transferred to a separatory funnel and extracted with 

Et2O (3 x 25 mL). The combined organics were washed with brine, dried over Na2SO4, and 

concentrated under vacuum. The residue was purified via silica gel flash column 

chromatography.  

Compound S21 was prepared via general procedure B from 2-bromobenzonitrile (1 equiv, 

10 mmol, 1.82 g) and potassium vinyltrifluoroborate (1 equiv, 10 mmol, 1.34 g). The 

reaction was stirred for 46 hours, and S21 was purified by silica gel flash chromatography 

(1-10% EtOAc/Hexanes) to afford S21 as a clear oil (1.06 g, 76% yield). Spectral data 

matched those reported in the literature.23 

CN

S21

CN
X

PdCl2 (2.5 mol %) 
PPh3 (6 mol %)

Cs2CO3 (3 equiv)

CN

R+
BF3K

1.0 equiv S21- S25

R

1.0 equiv

THF/H2O (9:1), 85 ºC, 
24-48 h
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Compound S22 was prepared via general procedure B from 2-bromo-4-

methoxybenzonitrile (1 equiv, 4 mmol, 848 mg) and potassium vinyltrifluoroborate (1 

equiv, 4 mmol, 536 mg). The reaction was stirred for 21 hours, and S22 was purified by 

silica gel flash chromatography (1-10% EtOAc/Hexanes) to afford S22 as a white solid 

(320.6 mg, 50% yield). 

1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.7 Hz, 1H), 7.12 (d, J = 2.5 Hz, 1H), 7.04 (dd, 

J = 17.4, 11.0 Hz, 1H), 6.86 (dd, J = 8.6, 2.5 Hz, 1H), 5.92 (dd, J = 17.4, 0.6 Hz, 1H), 5.53 

(dd, J = 10.9, 0.6 Hz, 1H), 3.88 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 162.96, 142.79, 134.75, 133.16, 119.03, 118.34, 114.34, 

110.69, 103.37, 55.70. 

IR (NaCl, Thin Film) 3091, 3014, 2943, 2840, 2218, 1600, 1561, 1491, 1463, 1429, 1313, 

1299, 1287, 1244, 1200, 1169, 1103, 1085, 1024, 986, 924, 874, 822, 683 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C10H9NO: 159.06841, Found: 159.06639. 

Compound S23 was prepared via general procedure B from 2-bromo-4-methylbenzonitrile 

(1 equiv, 5.1 mmol, 1.0 g) and potassium vinyltrifluoroborate (1 equiv, 5.10 mmol, 683 

mg). The reaction was stirred for 20 hours, and S23 was purified via silica gel flash 

chromatography (0-5% EtOAc/Hexanes) to afford S23 as a white solid (171 mg, 23% 

yield).  

CN

Me

S23

CN

S22
OMe
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1H NMR (400 MHz, CDCl3) δ 7.55 – 7.44 (m, 2H), 7.15 (ddd, J = 7.9, 1.7, 0.8 Hz, 1H), 

7.04 (dd, J = 17.4, 11.0 Hz, 1H), 5.93 (dd, J = 17.4, 0.7 Hz, 1H), 5.51 (dd, J = 11.0, 0.7 Hz, 

1H), 2.42 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 143.67, 140.64, 133.14, 132.95, 129.06, 126.18, 118.69, 

118.25, 108.41, 22.03. 

IR (NaCl, Thin Film) 3093, 3017, 2988, 2957, 2922, 2223, 1603, 1560, 1486, 1455, 1421, 

1379, 1314, 1291, 1231, 1162, 1038, 986, 925, 818, 778, 761, 650 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C10H9N: 143.07350, Found: 143.07328 

Compound S24 was prepared via general procedure B from ethyl 3-bromo-4-

cyanobenzoate (1 equiv, 1.18 mmol, 300 mg) and potassium vinyltrifluoroborate (1 equiv, 

1.18 mmol, 158 mg). The reaction was stirred for 45 hours, and S24 was purified via silica 

gel flash chromatography (10 % Et2O/Hexanes) to afford S24 as a white solid (207 mg, 87% 

yield).  

1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 1.6 Hz, 1H), 7.98 (dd, J = 8.1, 1.6 Hz, 1H), 

7.70 (dd, J = 8.1, 0.5 Hz, 1H), 7.10 (dd, J = 17.4, 11.0 Hz, 1H), 6.07 (d, J = 17.4 Hz, 1H), 

5.63 (d, J = 11.1 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 165.19, 141.10, 134.46, 133.13, 132.29, 128.59, 126.59, 

120.38, 117.21, 114.80, 62.01, 14.40. 

IR (NaCl, Thin Film) 2992, 2226, 1720, 1420, 1389, 1365, 1296, 1286, 1265, 1203, 1133, 

1114, 1087, 1055, 1025, 993, 952, 929, 850, 759, 734 cm-1 

CN

S24
CO2Et
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HRMS(FI) m/z: [M + •]+ Calculated for C12H11NO2: 201.07898, Found: 201.07850 

Compound S25 was prepared via general procedure B from 3-bromo-4-

trifluoromethylbenzonitrile (1 equiv, 7.5 mmol, 1.87 g) and potassium vinyltrifluoroborate 

(1 equiv, 7.5 mmol, 1.0 g). The reaction was stirred for 48 hours, and S25 was purified via 

silica gel flash chromatography (20% DCM/Hexanes) to afford S25 as a white solid (925 

mg, 63% yield). 

1H NMR (600 MHz, CDCl3) δ 7.91 (s, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.60 (dd, J = 8.1, 1.7 

Hz, 1H), 7.11 (dd, J = 17.4, 11.0 Hz, 1H), 6.05 (d, J = 17.4 Hz, 1H), 5.68 (d, J = 11.0 Hz, 

1H). 

13C NMR (101 MHz, CDCl3) δ 141.58, 134.66 (q, J = 33.2 Hz), 133.56, 131.82, 124.56 

(q, J = 3.6 Hz), 122.97 (q, J = 273.2 Hz), 122.46 (q, J = 3.8 Hz). 121.01, 116.52, 114.38. 

IR (NaCl, Thin Film) 3087, 2938, 2231, 1768, 1721, 1681, 1634, 1571, 1488, 1428, 1385, 

1328, 1290, 1273, 1205, 1171, 1137, 1107, 1079, 1043, 984, 932, 904, 885, 836, 740, 690 

cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C10H6NF3: 197.04523, Found: 197.04431 
 
Preparation of Styrene S26  

A 100 mL RBF equipped with a stir bar was charged with 2-bromo-5-chlorobenzonitrile 

(1 equiv, 5 mmol, 1.0823 g), potassium vinyltrifluoroborate (1.2 equiv, 6 mmol, 803.4 mg), 

CN

S25
CF3

CN

Cl

S26

CN
Br Pd(dppf)Cl2 (2 mol %) 

Cs2CO3 (3 equiv)+
BF3K

1.2 equiv1.0 equiv

dioxane/H2O (10:1), 
80 ºC, 20 hCl
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Cs2CO3 (3 equiv, 15 mmol, 4.8873 g), 1,4-dioxane (45.45 mL), and H2O (4.55 mL) (0.1 M 

total in aryl bromide). The solution was sparged with N2 for 15 min then charged with 

Pd(dppf)Cl2 (0.02 equiv, 0.1 mmol, 73.2 mg). The flask was sealed, vacuum degassed 3 x 

with N2 then heated to 80 ºC with stirring. After reaction completion was noted via NMR 

(20 h) the reaction was cooled to room temperature and concentrated in vacuo to remove 

1,4-dioxane. The aqueous mixture was transferred to a separatory funnel and diluted with 

EtOAc (50 mL) and sat. aq. NH4Cl (50 mL). The layers were separated, and the aqueous 

layer was extracted with EtOAc (2 x 50 mL). The combined organics were washed with 

brine, dried over Na2SO4, and concentrated under vacuum. The residue was purified via 

silica gel flash column chromatography (5% EtOAc/Hexanes) to afford S26 as a white 

solid (712.5 mg, 87% yield). 

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 6.2 Hz, 1H), 7.60 (s, 1H), 7.56 – 7.49 (m, 1H), 

7.03 (ddd, J = 17.4, 11.1, 0.7 Hz, 1H), 5.94 (d, J = 17.4 Hz, 1H), 5.57 (d, J = 11.0 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 139.33, 133.93, 133.31, 132.49, 132.02, 126.90, 119.73, 

116.63, 112.61. 

IR (NaCl, Thin Film) 3611, 3072, 2358, 2224, 1479, 1463, 1418, 1314, 1265, 1212, 1177, 

1119, 1087, 1028, 984, 927, 877, 859, 832, 813 

HRMS(FI) m/z: [M + •]+ Calculated for C9H6NCl: 163.01888, Found: 163.01847. 

Preparation of Styrene S27 
CN

S27

CN
Cl Pd(amphos)Cl2 (2 mol %) 

Cs2CO3 (3 equiv)+
BF3K

1.2 equiv1.0 equiv

dioxane/H2O (10:1), 
80 ºC (4 h) to 
90 ºC (15 h)F F
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A 250 mL RBF equipped with a stir bar was charged with 1,4-dioxane (120 mL) and H2O 

(12 mL). The solution was sparged with N2 while stirring and the flask was charged 

sequentially with 2-chloro-4-fluorobenzonitrile (1 equiv, 15 mmol, 2.33 g), potassium 

vinyltrifluoroborate (1.2 equiv, 18 mmol, 2.41 g), and Cs2CO3 (3 equiv, 45 mmol, 14.66 

g). The resulting suspension was sparged for an additional 15 min then charged with Bis(di-

tert-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II) (0.02 equiv, 0.3 mmol, 

212.4 mg) The flask was sealed, vacuum degassed three times, then heated to 80 ºC and 

stirred under N2 for 4 hours. After 4 hours, the reaction was heated to 90 ºC and stirred for 

an additional 15 hours. The reaction was cooled to ambient temperature and concentrated 

in vacuo to remove 1,4-dioxane. The aqueous mixture was transferred to a separatory 

funnel and diluted with EtOAc (100 mL) and sat. aq. NH4Cl (100 mL). The layers were 

separated, and the aqueous layer was extracted with EtOAc (2 x 100 mL). The combined 

organics were washed with brine, dried over MgSO4, and concentrated under vacuum. The 

residue was purified via silica gel flash column chromatography (2.5% EtOAc/Hexanes) 

to afford S27 as a white solid (2.038 g, 92% yield). 

1H NMR (400 MHz, CDCl3) δ 7.64 (dd, J = 8.6, 5.5 Hz, 1H), 7.35 (dd, J = 9.7, 2.5 Hz, 

1H), 7.11 – 6.99 (m, 2H), 5.95 (d, J = 17.3 Hz, 1H), 5.61 (d, J = 11.0 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 165.28 (d, J = 255.7) , 143.93 (d, J = 8.8 Hz), 135.39 (d, 

J = 9.5 Hz), 132.23 (d, J = 2.0 Hz), 120.39, 117.21, 115.97 (d, J = 23.1 Hz), 112.70 (d, J = 

23.5 Hz), 107.48 (d, J = 3.1 Hz). 

19F NMR (376 MHz, CDCl3) δ -102.65 – -102.77 (m). 
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IR (NaCl, Thin Film) 3405, 3096, 3074, 3020, 2224, 1886, 1605, 1484, 1432, 1318, 1276, 

1232, 1180, 1158, 1084, 1060, 984, 940, 893, 817, 7563, 691 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C9H6NF: 147.04843, Found: 147.04816 

General Procedure C: Olefin Metathesis for the Preparation of S29 – S35 

  
A two-necked round-bottom flask with a stir bar was flame-dried, fitted with an oven-dried 

reflux condenser, and cooled to room temperature under vacuum. The flask was backfilled 

with nitrogen, then styrene (3.0 equiv) and α-allyl-γ-butyrolactone S28 (1.0 equiv) were 

added as solutions in dry dichloromethane (total concentration 0.05 M in S28). 

Subsequently, HG-II (0.05 equiv or 0.10 equiv depending on the styrene employed) was 

quickly added to the flask. The reaction mixture was stirred at 40 °C for 6 - 24 h depending 

on the substrate (until consumption of S28 observed by TLC) then allowed to cool to 

ambient temperature. The crude reaction was concentrated under reduced pressure and the 

resulting residue was purified via silica gel flash column chromatography. 

Compound S28 was prepared according to a published procedure.24 Spectral data was in 

accordance with those reported in the literature. 

Prepared from styrene S29 (484 mg, 3.75 mmol, 3 equiv) and lactone S28 (0.158 mg, 1.25 

mmol, 1 equiv) according to General Procedure B with a reaction time of 6 h. The crude 

CN

R

S21 - S27

+ O

O
HG-II (5 OR 10 mol %)

DCM, 40 ºC, 6 - 24 h O
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reaction was purified via flash column chromatography (35% EtOAc/hx) to afford S29 as 

a clear oil (157.7 mg, 56% yield). 

1H NMR (400 MHz, CDCl3) δ 7.65 – 7.58 (m, 2H), 7.53 (dddd, J = 8.1, 7.4, 1.3, 0.5 Hz, 

1H), 7.32 (td, J = 7.6, 1.3 Hz, 1H), 6.83 (dd, J = 15.7, 1.6 Hz, 1H), 6.48 – 6.35 (m, 1H), 

4.37 (td, J = 8.8, 2.8 Hz, 1H), 4.24 (ddd, J = 9.6, 9.1, 6.8 Hz, 1H), 2.87 – 2.72 (m, 2H), 

2.63 – 2.50 (m, 1H), 2.44 (dddd, J = 12.7, 8.6, 6.8, 2.8 Hz, 1H), 2.16 – 2.00 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 178.57, 140.36, 133.07, 132.93, 131.84, 128.99, 127.74, 

125.89, 118.10, 110.84, 66.75, 39.07, 33.72, 28.09. 

IR (NaCl, thin film) 3516, 3066, 2989, 2911, 2221, 1769, 1650, 1596, 1566, 1479, 1453, 

1372, 1296, 1280, 1202, 1154, 1112, 1021, 968, 915, 769, 705 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C14H13NO2: 227.09463, Found: 227.09429 

Prepared from styrene S22 (320.6 mg, 2.01 mmol, 3 equiv) and lactone S28 (84.7 mg, 

0.671 mmol, 1 equiv) according to General Procedure B with a reaction time of 17 h. The 

crude reaction was purified via flash column chromatography (30% EtOAc/Hexanes) to 

afford S30 as a white solid (61.8 mg, 36% yield). 

1H NMR (400 MHz, CDCl3) δ 7.54 (dd, J = 8.7, 0.9 Hz, 1H), 7.04 (d, J = 2.5 Hz, 1H), 

6.89 – 6.69 (m, 2H), 6.39 (dt, J = 15.6, 7.0 Hz, 1H), 4.38 (td, J = 8.9, 2.8 Hz, 1H), 4.24 (td, 

J = 9.4, 6.8 Hz, 1H), 3.87 (d, J = 0.8 Hz, 3H), 2.79 (tdd, J = 13.1, 7.0, 3.3 Hz, 2H), 2.62 – 

2.50 (m, 1H), 2.44 (dddd, J = 9.4, 8.1, 6.7, 2.7 Hz, 1H), 2.15 – 2.00 (m, 1H). 
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13C NMR (101 MHz, CDCl3) δ 178.60, 163.0, 142.35, 134.75, 131.78, 129.16, 118.5, 

114.14, 110.91, 102.93, 66.78, 55.76, 39.07, 33.66, 28.08 

IR (NaCl, thin film) 3521, 2976, 2943, 2914, 2596, 2217, 1769, 1760, 1650, 1600, 1562, 

1493, 1486, 1299, 1244, 1157, 1025, 969, 827, 821 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C15H15NO3: 257.10519, Found: 257.10486 

Prepared from styrene S23 (139.7 mg, 0.976 mmol, 3 equiv) and lactone S28 (41 mg, 0.325 

mmol, 1 equiv) according to General Procedure B with a reaction time of 21 h. The crude 

reaction was purified via flash column chromatography (33% EtOAc/Hexanes) to afford 

S31 as a white solid (43.4 mg, 55% yield). 

1H NMR (600 MHz, CDCl3) δ 7.56 (d, J = 8.5 Hz, 0H), 7.50 (d, J = 7.9 Hz, 1H), 7.40 (dd, 

J = 1.6, 0.8 Hz, 1H), 7.12 (ddd, J = 7.9, 1.7, 0.8 Hz, 1H), 6.80 (dt, J = 16.0, 1.5 Hz, 1H), 

6.74 (d, J = 11.5 Hz, 0H), 6.39 (dt, J = 15.8, 7.1 Hz, 1H), 5.89 (dt, J = 11.5, 7.4 Hz, 0H), 

4.37 (td, J = 8.8, 2.8 Hz, 1H), 4.32 (td, J = 8.9, 2.6 Hz, 0H), 4.24 (td, J = 9.4, 6.8 Hz, 1H), 

2.79 (dtt, J = 10.4, 8.5, 4.9 Hz, 2H), 2.60 – 2.51 (m, 1H), 2.47 – 2.41 (m, 1H), 2.41 (s, 3H), 

2.08 (dtd, J = 12.7, 9.9, 8.6 Hz, 1H).	
13C NMR (101 MHz, CDCl3) δ 178.64, 143.78, 140.42, 132.95, 131.37, 129.14, 128.73, 

126.49, 118.43, 107.98, 66.78, 39.11, 33.69, 28.06, 22.01. 

IR (NaCl, thin film) 2912, 2220, 1776, 1766, 1605, 1487, 1454, 1374, 1295, 1202, 1184, 

1155, 1023, 968, 820 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C15H15NO2: 241.11028, Found: 241.11023 
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Prepared from styrene S27 (882.9 mg, 6.0 mmol, 3 equiv) and lactone S28 (252.3 mg, 2.0 

mmol, 1 equiv) according to General Procedure B. The crude reaction was purified via 

flash column chromatography (30% EtOAc/hx) to afford S32 as a tan solid (387.4 mg, 79% 

yield). 

1H NMR (400 MHz, CDCl3) δ 7.63 (dd, J = 8.6, 5.5 Hz, 1H), 7.29 (dd, J = 9.7, 2.5 Hz, 

1H), 7.03 (ddd, J = 8.7, 7.7, 2.5 Hz, 1H), 6.81 (dt, J = 15.8, 1.6 Hz, 1H), 6.44 (dt, J = 15.8, 

7.1 Hz, 1H), 4.39 (td, J = 8.9, 2.7 Hz, 1H), 4.24 (td, J = 9.5, 6.7 Hz, 1H), 2.88 – 2.72 (m, 

2H), 2.63 – 2.50 (m, 1H), 2.50 – 2.40 (m, 1H), 2.14 – 1.98 (m, 1H).	
13C NMR (101 MHz, CDCl3) δ 178.38, 165.26 (d, J = 255.4 Hz), 143.46 (d, J = 9.1 Hz), 

135.41 (d, J = 9.6 Hz), 133.36, 128.16 (d, J = 2.5 Hz), 117.42, 115.63 (d, J = 23.0 Hz), 

113.00 (d, J = 23.3 Hz), 107.02, 66.73, 39.01, 33.68, 28.19.  

19F NMR (376 MHz, CDCl3) δ -102.50 (td, J = 8.6, 5.6 Hz). 

IR (NaCl, thin film) 2911, 2223, 1759, 1603, 1573, 1481, 1426, 1374, 1276, 1233, 1153, 

1020, 975, 827, 693 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C14H12NO2F: 245.08521, Found: 245.08476 

Prepared from styrene S24 (151 mg, 0.750 mmol, 3 equiv) and lactone S28 (31.5 mg, 0.250 

mmol, 1 equiv) according to General Procedure B with a reaction time of 18.5 h. The crude 
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reaction was purified via flash column chromatography (33% EtOAc/Hexanes) to afford 

S33 as a white solid (43.6 mg, 58% yield). 

1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 1.6 Hz, 1H), 7.95 (dd, J = 8.1, 1.6 Hz, 1H), 

7.68 (d, J = 8.1 Hz, 1H), 6.85 (dt, J = 15.6, 1.4 Hz, 1H), 6.52 (dt, J = 15.8, 7.1 Hz, 1H), 

4.47 – 4.35 (m, 3H), 4.24 (ddd, J = 9.8, 9.1, 6.7 Hz, 1H), 2.91 – 2.73 (m, 2H), 2.62 – 2.51 

(m, 1H), 2.46 (dddd, J = 12.7, 8.7, 6.7, 2.7 Hz, 1H), 2.08 (dtd, J = 12.7, 10.0, 8.5 Hz, 1H), 

1.42 (t, J = 7.1 Hz, 3H).	
13C NMR (101 MHz, CDCl3) δ 178.43, 165.16, 140.63, 134.49, 133.23, 133.14, 128.25, 

128.22, 126.78, 117.38, 114.34, 66.72, 62.03, 39.03, 33.81, 28.17, 14.40 

IR (NaCl, thin film) 2984, 2909, 2224, 1769, 1722, 1651, 1561, 1479, 1453, 1416, 1371, 

1299, 1290, 1257, 1206, 1155, 1022, 970, 856, 765 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C17H17NO4: 299.11576, Found: 299.11590 

 
Prepared from styrene S25 (900 mg, 4.56 mmol, 3 equiv) and lactone S13 (191.7 mg, 1.52 

mmol, 1 equiv) according to General Procedure B with a reaction time of  13 h. The crude 

reaction was purified via flash column chromatography (30% EtOAc/Hexanes) to afford 

S34 as a white solid (262.6 mg, 59% yield). 

1H NMR (400 MHz, CDCl3) δ 7.88 – 7.82 (m, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.57 (dd, J 

= 8.2, 1.7 Hz, 1H), 6.87 (dt, J = 16.0, 1.4 Hz, 1H), 6.53 (dt, J = 15.8, 7.1 Hz, 1H), 4.40 (td, 

J = 8.9, 2.6 Hz, 1H), 4.25 (td, J = 9.5, 6.7 Hz, 1H), 2.93 – 2.74 (m, 2H), 2.58 (dtd, J = 13.8, 
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7.6, 1.4 Hz, 1H), 2.47 (dddd, J = 12.7, 9.0, 6.7, 2.6 Hz, 1H), 2.08 (dtd, J = 12.7, 10.0, 7.6 

Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 178.32, 141.27, 135.31 – 134.30 (q, J = 33.0 Hz), 134.16, 

133.71, 127.87, 124.29 (q, J = 3.7 Hz), 127.24 – 119.10 (q, J = 272.1), 123.08 – 122.62 (q, 

J = 3.7 Hz), 116.85, 114.05, 66.72, 38.99, 33.78, 28.23.  

19F NMR (282 MHz, CDCl3) δ –63.55 

IR (NaCl, thin film) 2913, 2230, 1774, 1423, 1377, 1329, 1208, 1166, 1130, 1073, 1024, 

971, 916, 848 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C15H12NO2F3: 295.08201, Found: 295.08017 

Prepared from styrene S26 (490.8 mg, 3.0 mmol, 3 equiv) and lactone S28 (126.2 mg, 1.0 

mmol, 1 equiv) according to General Procedure B with a reaction time of 12 h. The crude 

reaction was purified via flash column chromatography (40% EtOAc/hx) to afford S35 as 

a tan solid (237.8 mg, 91% yield). 

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 2.2 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.50 (dd, 

J = 8.6, 2.2 Hz, 1H), 6.78 (dt, J = 15.7, 1.5 Hz, 1H), 6.42 (dt, J = 15.8, 7.0 Hz, 1H), 5.95 

(dt, J = 11.6, 7.3 Hz, 0H), 4.38 (td, J = 8.9, 2.7 Hz, 1H), 2.86 – 2.72 (m, 2H), 2.62 – 2.50 

(m, 1H), 2.44 (dddd, J = 12.7, 8.5, 6.7, 2.8 Hz, 1H), 2.06 (dtd, J = 12.4, 10.0, 8.6 Hz, 1H).	
13C NMR (101 MHz, CDCl3) δ 178.45, 138.90, 133.53, 133.36, 132.61, 132.47, 127.98, 

127.21, 116.82, 112.13, 66.74, 39.04, 33.73, 28.15. 
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IR (NaCl, thin film) 3518, 3067, 2986, 2912, 2226, 1759, 1651, 1592, 1470, 1395, 1376, 

1264, 1210, 1154, 1120, 1023, 971, 875, 705 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C14H12NO2Cl: 261.05566, Found: 261.05514 
 
General Procedure D: Hydrogenation to Afford 187a-g 
 

 
 A round bottom flask equipped with a stir bar was charged with Pd/C (0.05 equiv) and 

alkene (1 equiv) in absolute EtOH (0.06 M). The vessel was sealed and vigorously sparged 

with a balloon of H2 for 5 min. The reaction was stirred for 5 min to 3 hours depending on 

the substrate employed, until consumption of alkene was observed by LC/MS. The reaction 

was filtered through a short pad of celite, eluting with EtOAc. The residue was 

concentrated under reduced pressure and purified via flash column chromatography to 

afford 187a-g. 

Compound 187a was prepared via general procedure D from alkene S29 (1 equiv, 0.62 

mmol, 141.25 mg). The reaction was complete in 5 minutes, and 187a was purified via 

silica gel flash chromatography (35% EtOAc/Hexanes) to afford 187a as a clear oil (120.7 

mg, 85% yield). 

1H NMR (400 MHz, CDCl3) δ 7.62 (dd, J = 7.7, 1.4 Hz, 1H), 7.52 (td, J = 7.7, 1.4 Hz, 

1H), 7.38 – 7.27 (m, 2H), 4.35 (td, J = 8.8, 2.8 Hz, 1H), 4.20 (td, J = 9.4, 6.7 Hz, 1H), 2.97 

O

O CN

R

Pd/C (5 mol %) 
H2 (balloon)

EtOH, 23 ºC, time
O

O CN

R

187a-gS29-S35

O

O CN

187a



Chapter 3: Enantioselective Nickel-Catalyzed a-Spirocyclization of Lactones 

 

210 

 

– 2.80 (m, 2H), 2.58 (dtd, J = 10.1, 8.8, 5.1 Hz, 1H), 2.50 – 2.38 (m, 1H), 2.06 – 1.89 (m, 

2H), 1.89 – 1.72 (m, 2H), 1.62 – 1.48 (m, 1H).  

13C NMR (101 MHz, CDCl3) δ 179.28, 145.82, 133.01, 129.76, 126.84, 118.22, 112.36, 

66.65, 39.09, 34.36, 29.95, 28.77, 28.61. 

IR (NaCl, Thin Film) 3510, 3064, 2943, 2864, 22231769, 1599, 1573, 1485, 1454, 1376, 

1293, 1180, 1150, 1021, 966, 941, 882, 828, 818, 762, 737, 702, 666, 614 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C14H15NO2: 229.11028, Found: 229.10978. 

Compound 187b was prepared via general procedure D from alkene S30 (1 equiv, 0.62 

mmol, 141.25 mg). The reaction was complete in 5 minutes, and 187b was purified via 

silica gel flash chromatography (35% EtOAc/Hexanes) to afford 187b as a clear oil (120.7 

mg, 85% yield). 

1H NMR (400 MHz, CDCl3) δ 7.58 – 7.50 (m, 1H), 6.80 (d, J = 8.1 Hz, 2H), 4.35 (td, J = 

8.8, 2.8 Hz, 1H), 4.20 (ddd, J = 9.6, 9.1, 6.7 Hz, 1H), 3.85 (s, 3H), 2.92 – 2.75 (m, 2H), 

2.58 (dtd, J = 10.2, 8.8, 5.1 Hz, 1H), 2.44 (dddd, J = 12.5, 8.7, 6.7, 2.8 Hz, 1H), 2.07 – 1.90 

(m, 2H), 1.89 – 1.70 (m, 2H), 1.62 – 1.46 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 179.32, 163.06, 148.00, 134.73, 118.68, 115.32, 112.55, 

104.04, 66.66, 55.67, 39.00, 34.53, 29.91, 28.76, 28.44. 

IR (NaCl, Thin Film) 3517, 2932, 2864, 2217, 1769, 1605, 1567, 1495, 1463, 1455, 1374, 

1311, 1291, 1248, 1179, 1171, 1147, 1109, 1023, 966, 941, 878, 815, 609 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C15H17NO3: 259.12084, Found: 259.11933 
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Compound 187c was prepared via general procedure D from alkene S31 (1 equiv, 0.717 

mmol, 173.1 mg). The reaction was complete in 5 minutes, and 187c was purified via silica 

gel flash chromatography (35% EtOAc/Hexanes) to afford 187c as a clear oil (127.8 mg, 

73% yield). 

1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 7.8 Hz, 1H), 7.16 – 7.06 (m, 2H), 4.34 (td, J = 

8.8, 2.8 Hz, 1H), 4.19 (td, J = 9.4, 6.7 Hz, 1H), 2.93 – 2.72 (m, 2H), 2.57 (dtd, J = 10.1, 

8.8, 5.0 Hz, 1H), 2.44 (dddd, J = 12.6, 8.8, 6.7, 2.9 Hz, 1H), 2.39 (s, 3H), 2.04 – 1.88 (m, 

2H), 1.87 – 1.69 (m, 2H), 1.54 (dtd, J = 13.3, 9.0, 5.4 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 179.25, 145.69, 143.94, 132.88, 130.52, 127.60, 118.56, 

109.25, 66.66, 39.10, 34.29, 29.97, 28.76, 28.64, 21.94. 

IR (NaCl, Thin Film) 3731, 3523, 2940, 2864, 2333, 2221, 1769, 1610, 1568, 1486, 1462, 

1454, 1377, 1358, 1291, 1180, 1148, 1025, 967, 940, 822, 703 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C15H17NO2: 243.12593, Found: 243.12584 

Compound 187d was prepared via General Procedure D from alkene S32 (1 equiv, 1 mmol, 

245.25 mg). The reaction was carried out in MeOH instead of EtOH (0.1 M). The reaction 

was complete in 5 minutes, and 187d was purified via silica gel flash chromatography (30% 

EtOAc/Hexanes) to afford 187d as an off-white solid (241.1 mg, 98% yield). 

1H NMR (400 MHz, CDCl3) δ 7.65 (dd, J = 8.5, 5.5 Hz, 1H), 7.11 – 6.99 (m, 2H), 4.38 

(td, J = 8.8, 2.7 Hz, 1H), 4.23 (ddd, J = 9.7, 9.1, 6.7 Hz, 1H), 2.99 – 2.82 (m, 2H), 2.60 
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(dtd, J = 10.2, 8.7, 5.2 Hz, 1H), 2.47 (dddd, J = 12.5, 8.8, 6.7, 2.8 Hz, 1H), 2.06 – 1.92 (m, 

2H), 1.92 – 1.75 (m, 2H), 1.66 – 1.52 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 179.00, 166.34, 163.79, 149.20, 149.11, 135.23, 135.14, 

117.38, 117.07, 116.85, 114.63, 114.40, 108.41, 108.38, 66.50, 38.93, 34.23, 34.22, 29.78, 

28.67, 28.18. 

19F NMR (376 MHz, CDCl3) δ -102.35 – -102.46 (m). 

IR (NaCl, Thin Film) 3523, 2934, 2868, 2225, 1769, 1608, 1583, 1488, 1468, 1461, 1454, 

1422, 1375, 1280, 1241, 1218, 1175, 1152, 1107, 1024, 956, 947, 886, 875, 829, 822, 688, 

634 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C14H14NO2F: 247.10086, Found: 247.10039 

Compound 187e was prepared via General Procedure D from alkene S33 (1 equiv, 0.34 

mmol, 102 mg). The reaction was performed in MeOH instead of EtOH (0.14 M)The 

reaction was complete in 3 h, and 187e was purified via silica gel flash chromatography 

(35% EtOAc/Hexanes) to afford 187e as a white solid (79.9 mg, 78% yield). 

1H NMR (400 MHz, CDCl3) δ 8.01 – 7.92 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 4.42 (t, J = 

7.1 Hz, 2H), 4.38 – 4.32 (m, 1H), 4.20 (ddd, J = 9.7, 9.0, 6.7 Hz, 1H), 3.02 – 2.85 (m, 2H), 

2.58 (dtd, J = 10.3, 8.8, 5.1 Hz, 1H), 2.45 (dddd, J = 12.5, 9.0, 6.7, 2.7 Hz, 1H), 2.06 – 1.91 

(m, 2H), 1.91 – 1.74 (m, 2H), 1.64 – 1.50 (m, 1H), 1.42 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 179.15, 165.26, 146.17, 134.53, 133.05, 130.49, 127.71, 

117.47, 116.25, 66.63, 61.95, 39.10, 34.35, 30.00, 28.79, 28.59, 14.41. 
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IR (NaCl, Thin Film) 3516, 2985, 2938, 2226, 1769, 1727, 1608, 1567, 1462, 1454, 1415, 

1371, 1296, 1270, 1262, 1207, 1178, 1149, 1105, 1024, 969, 942, 861, 818, 768, 737 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C17H19NO4: 301.13141, Found: 301.13117 

Compound 187f was prepared via General Procedure D from alkene S34 (1 equiv, 0.887 

mmol, 262.6 mg). The reaction was performed in 7:1 EtOH/EtOAc instead of EtOH (0.06 

M). The reaction was complete in 30 min, and 187f was purified via silica gel flash 

chromatography (35% EtOAc/Hexanes) to afford 187f as a white solid (158.7 mg, 60% 

yield). 

1H NMR (400 MHz, CDCl3) δ 7.76 (dt, J = 8.0, 0.8 Hz, 1H), 7.63 – 7.54 (m, 2H), 4.36 

(td, J = 8.8, 2.7 Hz, 1H), 4.21 (ddd, J = 9.9, 9.1, 6.7 Hz, 1H), 3.04 – 2.87 (m, 2H), 2.59 

(dtd, J = 10.4, 8.7, 5.2 Hz, 1H), 2.45 (dddd, J = 12.6, 8.9, 6.6, 2.7 Hz, 1H), 2.06 – 1.73 (m, 

4H), 1.67 – 1.59 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 179.06, 146.99, 134.80 (q, J = 33.2 Hz), 133.56, 127.28 – 

119.12 (q, J = 272.4 Hz) , 126.48 (q, J = 3.7 Hz), 123.82 (q, J = 3.7 Hz), 116.91, 116.00, 

66.62, 39.04, 34.43, 30.00, 28.79, 28.51. 

19F NMR (282 MHz, CDCl3) δ -63.43. 

IR (NaCl, Thin Film) 3506, 3088, 2926, 2869, 2229, 1769, 1702, 1483, 1461, 1421, 1376, 

1331, 1285, 1209, 1171, 1132, 1093, 1077, 1024, 968, 941, 904, 840, 734, 723, 705, 682, 

667, 623 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C15H14NO2F3: 297.09766, Found: 297.09618. 
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Compound 187g was prepared via General Procedure D from alkene S35 (1 equiv, 0.887 

mmol, 262.6 mg). The reaction was performed in MeOH instead of EtOH (0.1 M). The 

reaction was complete in 15 min, and XXg was purified via reverse phase chromatography 

(C18 reverse phase silica gel), eluting with 10-100% MeCN/H2O (0.1% TFA to afford 

187g as an off-white solid (56.1 mg, 39% yield). 

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 2.2 Hz, 1H), 7.49 (dd, J = 8.4, 2.3 Hz, 1H), 

7.28 (d, J = 8.4 Hz, 1H), 4.35 (td, J = 8.8, 2.7 Hz, 1H), 4.20 (td, J = 9.4, 6.6 Hz, 1H), 2.94 

– 2.78 (m, 2H), 2.57 (dtd, J = 10.2, 8.7, 5.2 Hz, 1H), 2.44 (dddd, J = 12.5, 9.0, 6.6, 2.8 Hz, 

1H), 2.02 – 1.87 (m, 2H), 1.87 – 1.70 (m, 2H), 1.61 – 1.49 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 179.16, 144.33, 133.40, 132.69, 132.47, 131.13, 116.93, 

113.87, 66.64, 39.06, 33.85, 29.89, 28.78, 28.49. 

IR (NaCl, Thin Film) 3750, 3523, 3069, 2937, 2865, 2227, 1759, 1715, 1595, 1563, 1485, 

1463, 1455, 1395, 1377, 1338, 1264, 1210, 1179, 1150, 1126, 1088, 1024, 972, 940, 899, 

874, 838, 709, 641 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C14H14NO2Cl: 263.07131, Found: 263.07090. 

 

Synthesis of Z Olefin Substrate 187h: Sonogashira/Lindlar Reduction Sequence 
 
Preparation of S37: Sonogashira Coupling 

 

O

O CN

187g
Cl

O

O

S36

+

CN
Br

O

O
CN

Pd(PPh3)2Cl2 (2 mol %)
CuI (4 mol %)
NEt3 (2 equiv)

DMF, 50 ºC, ł7 h

1 equiv 2.5 equiv

S37
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A 50 mL RBF equipped with a stir bar was flame-dried and cooled under vacuum. The 

flask was opened and charged with S36 (1 equiv, 3 mmol, 372.4 mg), 2-bromobenzonitrile 

(2.5 equiv, 7.5 mmol, 1.365 g), and toluene (~ 20 mL). The solution was concentrated in 

vacuo to dry reagents. The flask was then placed under a N2 atmosphere. A second 50 mL 

RBF equipped with a stir bar was flame-dried,  cooled under vacuum, and backfilled with 

N2. The flask was charged with Pd(PPh3)2Cl2 (0.02 equiv, 0.06 mmol, 42.1 mg), CuI (0.04 

equiv, 0.12 mmol, 22.9 mg), and 1/2 of the dry DMF (10 mL). The flask was sealed, and 

the solution was sparged with N2 for 15 min. The other flask was charged with 10 mL dry 

DMF and sparged with N2 for 15 min. The solution containing S36 and 2-

bromobenzonitrile was transferred to the catalyst solution via syringe. The reaction was 

stirred at 50 ºC under N2 for 17 h. Then, the reaction was cooled to 23 ºC, diluted with 

EtOAc (25 mL), filtered through a pad of celite, and concentrated in vacuo. The residue 

was purified by silica gel flash column chromatography (30% EtOAc/Hexanes) to afford 

S37 as a tan solid (580.3 mg, 86% yield). 

1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 7.6 Hz, 1H), 7.58 – 7.47 (m, 2H), 7.45 – 7.35 

(m, 1H), 4.48 (td, J = 8.9, 2.3 Hz, 1H), 4.27 (dddd, J = 10.1, 9.3, 6.8, 1.0 Hz, 1H), 3.02 (dd, 

J = 16.8, 4.1 Hz, 1H), 2.97 – 2.87 (m, 1H), 2.82 (dd, J = 16.6, 7.7 Hz, 1H), 2.65 (dddd, J 

= 12.8, 8.8, 6.7, 2.3 Hz, 1H), 2.51 – 2.35 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 177.69, 132.64, 132.58, 132.49, 128.38, 127.28, 117.89, 

115.60, 93.14, 79.29, 66.95, 38.78, 27.92, 20.92. 

IR (NaCl, Thin Film) 3522, 3039, 2986, 2913, 2229, 1769, 1592, 1564, 1482, 1455, 1445, 

1378, 1346, 1303, 1212, 1170, 1158, 1100, 1022, 960, 887, 764 cm-1 
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HRMS(FI) m/z: [M + •]+ Calculated for C14H11NO: 225.07898, Found: 225.07855 

Preparation of S36 

Compound S36 was prepared according to a published procedure.25 Spectral data were in 

accordance with those described in the literature. 

Preparation of 187h: Lindlar Reduction  

A 50 mL 2-necked RBF equipped with a stir bar was charged with S37 (1 equiv, 1.5 mmol) 

Lindlar’s catalyst (1 equiv, 1.5 mmol, 337.9 mg) followed by MeOH (15 mL, 0.1 M). The 

vessel was sealed, evacuated and backfilled with N2 (x 6), then evacuated and backfilled 

with H2 6 x. The heterogeneous mixture was vigorously stirred under a balloon of H2 at 23 

ºC for 24 hours. After this time, an additional portion of Lindlar’s catalyst (1 equiv, 1.5 

mmol, 337.9 mg) was added. The vessel was sealed, evacuated, backfilled with H2 (x 6), 

and stirred for an additional 19 h. The reaction was filtered through a short pad of celite, 

eluting with MeOH (2 x 10 mL), and the filtrate was concentrated under reduced pressure. 

The residue was purified sequentially via silica gel flash column chromatography then via 

preparative scale HPLC with C18 silica (30% MeCN/H2O) to afford 187h (165.2 mg, 48% 

yield).  

1H NMR (400 MHz, CDCl3) δ 7.68 (ddd, J = 7.8, 1.4, 0.6 Hz, 1H), 7.58 (td, J = 7.7, 1.4 

Hz, 1H), 7.43 – 7.32 (m, 2H), 6.78 (dt, J = 11.6, 1.9 Hz, 1H), 5.92 (dt, J = 11.6, 7.4 Hz, 

O

O

S36

O

O
CN

S37

O

O NC

187h

Lindlar Catalyst (2 equiv)
H2 (balloon)

MeOH, 23 ºC, 43 h
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1H), 4.33 (td, J = 8.9, 2.6 Hz, 1H), 4.19 (ddd, J = 10.0, 9.1, 6.7 Hz, 1H), 2.80 (dddd, J = 

14.9, 6.9, 4.7, 1.9 Hz, 1H), 2.68 (dtd, J = 10.5, 8.8, 4.7 Hz, 1H), 2.49 – 2.35 (m, 2H), 1.91 

(dddd, J = 12.7, 10.5, 9.9, 8.6 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 178.41, 140.39, 132.92, 132.59, 132.23, 129.56, 128.17, 

127.57, 117.84, 112.27, 66.57, 39.14, 29.09, 28.20. 

IR (NaCl, Thin Film) 3519, 3067, 2989, 2910, 2223, 1769, 1650, 1595, 1566, 1479, 1446, 

1402, 1374, 1341, 1309, 1211, 1160, 1024, 955, 921, 844, 825, 777, 761, 702, 680 cm-1. 

HRMS(FI) m/z: [M + •]+ Calculated for C14H13NO2: 227.09463, Found: 227.09428. 

Preparation of Tetralone Substrate 192: Alkylation/Decarboxylative Protonation 

Sequence 

Preparation of S39: Alkylation of β-Keto Ester S38 

A 2-necked 25 mL RBF equipped with a stir bar was flame-dried and cooled under vacuum. 

The flask was backfilled with N2 and charged with a solution of S38 in DMF (1 equiv, 1.13 

mmol, 261.2 mg), then NaH (2.2 equiv, 2.49 mmol, 99.6 mg) was added portionwise. The 

reaction was stirred under N2 at 23 ºC for 30 min, then 2-cyanobenzyl bromide (1.5 equiv, 

1.70 mmol, 333.3 mg) was added as a solid and the reaction was heated to 50 ºC for 1 hour 

until S23 was consumed. The reaction was cooled to ambient temperature, diluted with 

H2O (1 x 10 mL) and EtOAc (1 x 10 mL) and transferred to a separatory funnel. The 

aqueous layer was extracted with EtOAc ( 3 x 10 mL) and the combined organic layers 

were washed with H2O ( 3 x 10 mL) then brine, dried over Na2SO4, and concentrated under 

O O

O
+

Br

CN O O

O

CNDMF, 50 ºC, 1 h

NaH (2.2 equiv)

S38
S39
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reduced pressure. The residue was purified via silica gel flash column chromatography (10% 

EtOAc/Hexanes) to afford S39 as a clear oil (292.0 mg, 75% yield).  

1H NMR (400 MHz, CDCl3) δ 8.08 (dd, J = 7.9, 1.5 Hz, 1H), 7.62 (ddd, J = 7.7, 1.5, 0.6 

Hz, 1H), 7.51 – 7.38 (m, 3H), 7.31 (td, J = 7.5, 1.4 Hz, 2H), 7.17 (d, J = 7.7 Hz, 1H), 5.76 

(ddt, J = 17.6, 10.2, 5.5 Hz, 1H), 5.18 – 5.08 (m, 2H), 4.65 – 4.50 (m, 2H), 3.75 – 3.61 (m, 

2H), 3.09 (ddd, J = 17.2, 12.2, 4.7 Hz, 1H), 2.87 (ddd, J = 17.5, 4.9, 3.0 Hz, 1H), 2.62 (ddd, 

J = 13.6, 4.7, 3.0 Hz, 1H), 2.07 (ddd, J = 13.6, 12.2, 4.9 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 194.04, 170.38, 143.17, 140.82, 133.85, 132.98, 132.69, 

132.24, 131.82, 131.27, 128.90, 128.32, 127.52, 126.96, 118.70, 118.60, 114.69, 66.22, 

59.09, 37.98, 30.67, 26.15. 

IR (NaCl, Thin Film) 3067, 3027, 2933, 2223, 1730, 1688, 1649, 1599, 1485, 1450, 

1356, 1294, 1260, 1233, 1180, 1123, 1101, 1065, 976, 935, 834, 802, 763, 746, 671 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C22H19NO3: 345.13649, Found: 345.13600 
 

Compound S38 was prepared according to a published procedure.26 Spectral data 

matched those reported in the literature. 

 
Preparation of Tetralone Substrate 192: Decarboxylative Protonation of S39 
 

A 100 mL RBF with stir bar (capped with a 24/40 septa) was charged with 4 Å molecular 

sieves (2.4 x mass substrate) and flame-dried under vacuum 3 x. The vial was cooled under 

O O

O

S38

O O

O

CN

S39

O CN

192

Pd(OAc)2 (10 mol %)
HCO2H (8.0 equiv)

dppe (12 mol%)
4 Å MS

dioxane, 40 - 60 ºC, 
17 h
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vacuum and then filled with nitrogen. The septa was secured onto the flask with electrical 

tape and pumped into the glovebox. Inside the glovebox, the flask was opened and charged 

with Pd(OAc)2 (0.1 equiv, 0.093 mmol, 20.1 mg) and dppe (0.12 equiv, 0.116 mmol, 46.2 

mg), sealed with a septa, and removed from the glovebox. Freshly dried 1,4-dioxane (31 

mL) was added via syringe, and the reaction was heated to 40 ºC under nitrogen for 30 

minutes. To the resulting green solution was added neat HCO2H (8 equiv, 7.44 mmol, 0.28 

mL), and the immediately S39 (1 equiv, 0.93 mmol, 320.2 mg) was added as a solution in 

the remaining 1,4-dioxane (5 mL, total concentration in S39 of 0.03 M). The reaction was 

heated to 60 ºC and stirred for 17 hours until S39 was fully consumed by TLC. The reaction 

was cooled to room temperature, filtered through a short SiO2 plug, concentrated under 

reduced pressure and loaded directly onto a silica gel column (20% EtOAc/hx) to afford 

192 as a white solid (180.9 mg, 74% yield). 

1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J = 7.9, 1.5 Hz, 1H), 7.64 (dd, J = 7.7, 1.4 Hz, 

1H), 7.58 – 7.39 (m, 3H), 7.32 (tt, J = 7.5, 1.6 Hz, 2H), 7.25 – 7.20 (m, 1H), 3.66 (dd, J = 

14.0, 5.1 Hz, 1H), 3.07 – 2.95 (m, 3H), 2.94 – 2.82 (m, 1H), 2.14 (dq, J = 13.0, 4.3 Hz, 

1H), 1.92 (tt, J = 12.9, 8.1 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 198.55, 144.62, 143.99, 133.61, 132.98, 132.93, 132.43, 

130.77, 128.88, 127.71, 126.95, 126.85, 118.40, 113.26, 49.31, 34.54, 29.03, 28.37. 

IR (NaCl, Thin Film) 2938, 2222, 1680, 1598, 1482, 1452, 1291, 1222, 933, 758, 738 

cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C18H15NO: 261.11536, Found: 261.11508 

Preparation of Lactam Substrate 183 
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A 100 mL round-bottom flask with a stir bar was flame-dried and cooled to room 

temperature under vacuum. The flask was backfilled with nitrogen, then diisopropylamine 

(1.1 equiv, 11 mmol, 1.54 mL) and 1/3 of the THF (11 mL) were added via syringe. The 

flask was cooled to 0 ºC in an ice bath, then n-BuLi (2.5 M in hexanes, 1.1 equiv, 11 mmol, 

4.4 mL) was added dropwise over ten minutes. After stirring at 0 ºC for 20 minutes, the 

flask was cooled to -78 ºC, and a solution of S40  (1 equiv, 10 mmol, 1.91 g) in 1/3 of the 

THF (11 mL) was added dropwise over 30 minutes. Lastly, a solution of 2-cyanobenzyl 

bromide (1.2 equiv, 12 mmol, 2.35 g) was added dropwise over 30 minutes in the last 1/3 

of the THF (11 mL, 0.3 M in S40) The reaction was stirred at -78 ºC for 2 hours, until 

consumption of S40 was observed by TLC. The reaction was quenched at -78 ºC with sat. 

aq. NH4Cl (30 mL), diluted with EtOAc (1 x 30 mL), then immediately warmed to ambient 

temperature. The reaction was transferred to a separatory funnel and the aqueous phase 

was extracted with EtOAc (2 x 30 mL). The combined organics were washed with brine, 

dried over Na2SO4, and concentrated. The crude reaction was purified via silica gel flash 

column chromatography (40-50% EtOAc/Hexanes) to give a white solid which was 

recrystallized from 1:4 EtOAc/Hexanes (300 mL) to afford pure 183 as a fluffy white solid 

(1.41 g, 46% yield). 

1H NMR (400 MHz, CDCl3) δ 7.68 – 7.61 (m, 1H), 7.59 – 7.48 (m, 2H), 7.38 – 7.27 (m, 

2H), 7.25 – 7.21 (m, 1H), 7.02 – 6.92 (m, 2H), 3.82 (s, 3H), 3.73 – 3.55 (m, 2H), 3.46 (dd, 

N

O CN

N

O CN

+ Br
LDA (1.1 equiv)

THF, 0ºC to -78 ºC, 2 hOMe

183

OMe

S40
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J = 14.1, 5.0 Hz, 1H), 3.16 (dd, J = 14.1, 8.7 Hz, 1H), 3.04 – 2.92 (m, 1H), 2.22 (dddd, J 

= 12.6, 8.4, 7.2, 3.4 Hz, 1H), 1.95 (ddt, J = 12.6, 9.3, 8.4 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 175.18, 154.91, 143.92, 133.09, 132.87, 130.59, 128.87, 

128.68, 127.29, 127.09, 120.99, 118.49, 113.26, 112.14, 55.73, 48.07, 43.77, 35.08, 25.22. 

IR (NaCl, Thin Film) 3384, 3064, 2940, 2900, 2880, 2837, 2222, 1695, 1595, 1503, 1486, 

1460, 1525, 1407, 1302, 1278, 1253, 1183, 1161, 1122, 1104, 1045, 1024, 893, 765, 759 

cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C19H18N2O2: 306.13683, Found: 306.13659 

 

3.4.3 Spirocyclization of Lactam 183 

The reaction was setup according to the literature procedure on a 0.2 mmol scale.11 The 

reaction yield was determined by 1H NMR relative to 1,3,5-trimethoxybenzene as an 

internal standard (68% yield). 

1H NMR (400 MHz, CDCl3) δ 7.77 (dt, J = 7.7, 1.0 Hz, 1H), 7.62 (td, J = 7.4, 1.2 Hz, 

1H), 7.50 (dt, J = 7.6, 0.9 Hz, 1H), 7.44 – 7.36 (m, 1H), 7.36 – 7.27 (m, 2H), 7.02 – 6.92 

(m, 2H), 4.08 (ddd, J = 9.3, 8.4, 7.5 Hz, 1H), 3.92 – 3.80 (m, 5H), 3.07 (d, J = 17.1 Hz, 

1H), 2.64 (ddd, J = 12.6, 7.5, 2.8 Hz, 1H), 2.35 (dt, J = 12.6, 8.6 Hz, 1H). 

Ni(COD)2 (10 mol %)
SL-M004-1 (12 mol %)

LHMDS (1.2 equiv) 
PhBr (1.5 equiv)

LiBr (5 equiv)
toluene/THF (10:1) 

4 ºC, 48 h
then 1 M HCl (aq.), EtOAc,

23 ºC, 1 h

N

O

OMP

O
183 184

N

O CN
OMP
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13C NMR (101 MHz, CDCl3) δ 204.87, 173.12, 154.98, 153.95, 135.39, 135.25, 128.94, 

128.90, 127.83, 127.28, 126.55, 124.74, 121.10, 112.21, 58.90, 55.90, 47.45, 38.06, 

31.02. 

IR (NaCl, Thin Film) 3384, 3052, 2925, 2853, 2839, 1713, 1693, 1582, 1605, 1597, 

1504, 1463, 1455, 1408, 1308, 12798, 1255, 1209, 1184, 1153, 1122, 1102, 1090, 1043, 

1024, 995, 979, 918, 909, 882, 872, 806, 786, 750 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C19H17N2O3: 307.12084, Found: 307.12200 

SFC Conditions: 35% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, tR (min): 

major = 2.810, minor = 6.464   
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Background Reaction Promoted by LHMDS 

A 1 dram vial with a stir bar was flame-dried and pumped into a nitrogen-filled glovebox. 

The vial was charged with 183 (1 equiv, 0.05 mmol, 15.32 mg). Then, 0.55 mL of a 10:1 

mixture of toluene/THF was added via syringe. The solution was chilled to 4 ºC, then 

LHMDS (1.1 equiv, 0.055 mmol, 9.2 mg) was added and the resulting yellow solution 

was stirred at 4 ºC for 48 h. The yield of 184 was determined to be 83% by 1H NMR 

relative to 1,3,5-trimethoxybenzene as an internal standard.  

3.4.4 General Procedure for Spirocyclization: Optimization Scale (Procedure 

Employed for Experiments in Table 2)   

 
In a nitrogen-filled glovebox, a 1 dram vial was charged with a stir bar, Ni(COD)2 (10 

mol %, 0.006 mmol, 1.7 mg) as a solid, SL-M001-1 (12 mol%, 0.0072 mmol, 5.9 mg), and 

half of the TBME (200 µL). The vial was sealed with a Teflon-lined cap. A separate 1 dram 

vial was charged with a stir bar, 185a (1 equiv, 0.06 mmol, 12.1 mg), and LHMDS (1.1 

equiv, 0.066 mmol, 11.0 mg) as solids. Then, the remaining TBME (200 µL) was added 

N

O

OMP

O

LHMDS (1.1 equiv)

183 184

N

O CN
OMP

toluene/THF (10:1) 
4 ºC, 48 h

O

O

O

O

O CN

Ni(COD)2 (10 mol %)
SL-M001-1 (12 mol%) 

LHMDS (1.1 equiv)
PhBr (3.0 equiv)

TBME, 30 ºC, 20 h

then 1 M aq. HCl, EtOAc, 23 ºC, 4 h185a 186a
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via syringe. Lastly, PhBr (3 equiv, 0.3 mmol, 32 µL) was added via microsyringe, and the 

vial was sealed with a Teflon-lined cap. Both vials were stirred at 30 ºC for 3 minutes, and 

then the vial containing the orange Ni-ligand complex was added to the vial containing the 

enolate solution via glass pipet. The reaction vial was sealed with a Teflon lined cap and 

stirred inside the nitrogen-filled glovebox at 30 ºC for 20-24 hours. The reaction was then 

removed from the glovebox, opened to air, transferred to a 2 dram vial, and diluted with 1 

mL of EtOAc. Next, 1 mL of 1 M aq. HCl was added, the reaction was capped, and the 

resulting biphasic solution was stirred vigorously for 4 hours. Then, the layers were 

separated, and the aqueous layer was extracted with EtOAc (2 x 0.5 mL). The combined 

organics were washed with sat. aq. NaHCO3 (1 mL), brine (1 mL), dried over Na2SO4, and 

concentrated in vacuo. A solution of 4,4’-Di-tert-butylbiphenyl in acetonitrile was added 

to the crude reaction, and the reaction yield was determined via HPLC using a calibration 

curve. Enantiomeric excess was determined by analytical SFC. 
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3.4.5 Additional Optimization Experiments  

Aryl Halide Screening: (Setup Manually via General Procedure for Spirocyclization: 
Optimization Scale) 

Ligand Screening: Automated Reaction Setup  
 
The following steps were performed using a custom-designed automated liquid handling 

system equipped with a gastight syringe (picture below).  

entry % yield (HPLC)

bromobenzene

2-bromotoluene

3-bromotoluene

2-bromoanisole

3-bromoanisole

4-bromoanisole

2-bromobenzotrifluoride

3-bromobenzotrifluoride

4-bromobenzotrifluoride

5-bromo-m-xylene

4-bromo-2,6-dimethylanisole

4-tertbutylbromobenzene

1-bromo-2-methyl-1-propene

2-bromonaphthalene

3-bromoquinoline

% ee

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

82

69

92

19

75

99

68

82

58

31

38

20

37

56

19

80

71

72

51

76

75

56

56

53

58

48

4

21

73

27

ArBr

electron-rich

electron-poor

bulky

neutral

misc.

Ni(COD)2 (10 mol %)
SL-M009-1 (12 mol %)

LHMDS (1.1 equiv)
ArBr (3.0 equiv)

toluene (0.2 M), 30 ºC, 22 h

then 1 M HCl, EtOAc, 23 ºC, 48 h

O

O
CN

O

O

O

FeR2P

PR2

Ph

NMe2

Ph

Me2N

R = 3,5-Me2Ph, SL-M009-1

Stock Solution Plate

Reaction Plate

Source Plate

= LHMDS + PhBr stock solution

= Ni(COD)2 stock solution

= substrate stock solution
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Ligands were weighed out by hand into 1 dram vials and placed in the reaction plate. The 

source plate was filled with 1/2 dram high-recovery vials. Stock solutions of LHMDS + 

PhBr, Ni(COD)2, and substrate 185a in toluene were prepared and placed in the stock 

solution plate.  

Command 1: Dispense 75 µL LHMDS and PhBr into source plate.  

Command 2: Dispense 150 µL Ni(COD)2 into reaction plate. 

Command 3: Dispense 75 µL into source plate.  

Command 4: Draw up solution from source plate and dispense into corresponding vial in 

the reaction plate.  

The reactions were manually capped, and the reaction plate was placed in a stirring module 

and tumble stirred at 200 rpm for 20 hours. The reaction plate was removed from the 

PPh2
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O

O
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(R)-SEGPHOS
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PPh2
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Fe
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P(XylF)2
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Fe

P

P

RR

R

R
R = Et, (S,S)-Et-Ferrocelane
R = iPr, (S,S)-iPr-Ferrocelane
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Et EtFe
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PR2

Ph
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R = Xyl, SL-M009-1
R = 4-OMe Xyl, SL-M004-1

R = Ph, SL-M001-1

FeR2P

PR2

Ph

NMe2

Ph

Me2N

R = 3,5-(CF3)Ph , SL-M003-2

FeR2P
Me

PR1
2

(R = Ph, R1 = Cy) SL-J001-1
(R = Ph,R1 = tBu) SL-J002-1
(R = Cy, R1 = Cy) SL-J003-1
(R = Cy, R1 = Ph) SL-J004-1
(R = Ph, R1 = Xyl) SL-J005-1
(R = XylF, R1 = Cy) SL-J006-1

(R = 4-OMe Xyl, R1= Cy) SL-J007-1

Ligand Screening:
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glovebox and each vial was diluted with 1 mL EtOAc and 1 mL aq. HCl and stirred at 23 

ºC for 4 hours. The layers were separated, the organic layer was concentrated down and a 

Ni(COD)2 (10 mol %)
ligand (12 mol %)
LHMDS (1.1 equiv)

PhBr (3 equiv)
tol (0.16 M), 30 ºC, 22.5 h

then 1 M HCl, EtOAc, o/n

O

O CN

O

O

O

entry % yield (HPLC)ligand

(R)-BINAP

(R)-SEGPHOS

(S)-C3-TunePhos

(R)-SDP

% ee

1

2

3

4

91

44

36

31

37

35

-38

-8

BINAP & Friends

entry % yield (HPLC)ligand

(R,R)-MeDuPhos

(R,R)-ChiraPhos

(R,R)-DIOP

(S,S)-BDPP

% ee

5

6

7

8

27

11

77

96

14

-10

-20

44

Other C2 - symmetric diphosphines

entry % yield (HPLC)ligand

SL-T001-1

SL-W001-1

% ee

9

10

84

83

6

-10

Misc. Ferrocene backbone Diphosphines

entry % yield (HPLC)ligand

(2R,5R)-Me-Ferrocelane

(2S,5S)-Et-Ferrocelane

(2S,5S)-iPr-Ferrocelane

(2S,4S)-Et-FerroTANE

% ee

11

12

13

14

91

68

17*

68

-26

-26

14

-24

Ferrocelane/FerroTANE Ligands

entry % yield (HPLC)ligand

SL-M003-2

SL-M004-1

SL-M009-1

SL-M001-1

% ee

15

16

17

18

25

90

49

78

4

55

61

78

Mandyphos ligands

entry % yield (HPLC)ligand

SL-J001-1

SL-J002-1

SL-J003-1

SL-J004-1

SL-J005-1

SL-J006-1

SL-J007-1

% ee

19

20

21

22

23

24

25

84

92

38

51

60

85

45

12

8

-6

-8

3

23

10

Josiphos ligands
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solution of 4,4’-Di-tert butylbiphenyl in acetonitrile was added to the crude reaction, and 

the reaction yield was determined via HPLC using a calibration curve. 

3.4.6 General Procedure for Spirocyclization: Isolation Scale   

In a nitrogen-filled glovebox, a 1 dram vial was charged with a stir bar, Ni(COD)2 (10 

mol %, 0.01 mmol, 2.8 mg) as a solid, ligand (12 mol%, 0.012 mmol), and half of the 

TBME (333 µL). The vial was sealed with a Teflon-lined cap. A separate 1 dram vial was 

charged with a stir bar, substrate (1 equiv, 0.1 mmol)*, and ¼ of the TBME (167 µL). 

LHMDS (1.1 equiv, 0.11 mmol, 18.4 mg) was added to the vial containing the substrate (1 

equiv, 0.1 mmol) as a solution in the remaining ¼ of the TBME (167 µL). Lastly, PhBr (3 

equiv, 0.3 mmol, 32 µL) was added via microsyringe and the vial was sealed with a Teflon-

lined cap. Both vials were stirred at 30 ºC for 3 minutes, and then the vial containing the 

orange Ni-ligand complex was added to the vial containing the enolate solution via glass 

pipet. The reaction vial was sealed with a Teflon lined cap and stirred inside the nitrogen-

filled glovebox at 30 ºC (5,6-membered rings) or 40 ºC (7-membered rings) for 20-24 hours. 

The reaction was then removed from the glovebox, opened to air, transferred to a 2 dram 

vial, and diluted with 2 mL of EtOAc. Next, 2 mL of 1 M aq. HCl was added, the reaction 

was capped, and the resulting biphasic solution was stirred vigorously for 4 hours. Then, 

the layers were separated, and the aqueous layer was extracted with EtOAc (2 x 1 mL). 

The combined organics were washed with sat. aq. NaHCO3 (1 mL), brine (1 mL), dried 

O

O

O

O

O CN

Ni(COD)2 (10 mol %)
SL-M001-1 or SL-M009-1 (12 mol%) 

LHMDS (1.1 equiv)
PhBr (3.0 equiv)

TBME, 30 ºC, 20 h

then 1 M aq. HCl, EtOAc, 23 ºC, 4 h

R2

R2

( )
n

( )
n

FeR2P

PR2

Ph

NMe2

Ph

Me2N

R = Ph, SL-M001-1
R = 3,5-Me2Ph, SL-M009-1
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over Na2SO4, and concentrated in vacuo. The residue was purified via flash column 

chromatography. 

*solid substrates were added via spatula, and oils were added via stock solution in TBME.  

Spectroscopic Data for Enantioenriched Spirocycles 
 
(R)-4,5-dihydro-2H-spiro[furan-3,2'-indene]-1',2(3'H)-dione (186a) 

1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 7.7 Hz, 1H), 7.66 (td, J = 7.5, 1.2 Hz, 1H), 

7.51 (dt, J = 7.7, 1.0 Hz, 1H), 7.47 – 7.39 (m, 1H), 4.75 (td, J = 9.1, 7.1 Hz, 1H), 4.47 (td, 

J = 8.7, 3.0 Hz, 1H), 3.76 (d, J = 17.2 Hz, 1H), 3.12 (d, J = 17.2 Hz, 1H), 2.75 (ddd, J = 

12.8, 7.1, 3.0 Hz, 1H), 2.46 (dt, J = 12.8, 9.0 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 201.89, 175.79, 153.11, 136.02, 134.31, 128.36, 126.55, 

125.15, 66.62, 56.73, 37.82, 33.71. 

IR (NaCl, Thin Film) 3408, 2954, 2920, 2855, 1759, 1747, 1704, 1698, 1682, 1604, 1463, 

1427, 1375, 1304, 1283, 1193, 1141, 1045, 1023, 990, 965, 917, 891, 781, 769, 756, 741, 

724, 668 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C12H10O3: 202.06299, Found: 202.06196 

[α]d23 = -91.6908 (c = 1.20, CHCl3) (83% ee, with SL-M001-1) 

SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

3.594, minor = 3.896  

O

O

O
186a
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Racemic Reaction SFC Trace:  

Ligand: SL-M001-1 (83% ee) 

Ligand: SL-M009-1 (69% ee) 
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(R)-5'-methoxy-4,5-dihydro-2H-spiro[furan-3,2'-indene]-1',2(3'H)-dione (186b) 

Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 186b as a yellow 

oil.  

With SL-M001-1: 12.1 mg, 52% yield  

With SL-M009-1: 15.5 mg, 67% yield  

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.5 Hz, 1H), 6.92 – 6.81 (m, 2H), 4.68 (td, J = 

9.0, 7.2 Hz, 1H), 4.38 (td, J = 8.8, 2.9 Hz, 1H), 3.83 (s, 3H), 3.62 (d, J = 17.2 Hz, 1H), 2.98 

(d, J = 17.2 Hz, 1H), 2.67 (ddd, J = 12.8, 7.1, 2.9 Hz, 1H), 2.37 (dt, J = 12.8, 9.1 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 199.82, 176.20, 166.38, 156.18, 127.36, 126.81, 116.55, 

109.61, 66.65, 60.67, 56.91, 55.94, 37.75, 33.68. 

IR (NaCl, Thin Film) 3059, 2979, 2942, 2918, 2843, 1789, 1634, 1599, 1488, 1453, 

1427, 1375, 1340, 1308, 1271, 1221, 1179, 1132, 1184, 1025, 988, 96, 927, 910, 877, 

848, 819, 777, 736, 700, 665 cm-1  

HRMS(FI) m/z: [M + •]+ Calculated for C13H12O4: 232.07356, Found: 232.07305 

[α]d23 = -199.8078 (c = 0.9, CHCl3) (84% ee, with SL-M001-1) 

SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

3.594, minor = 3.896 

O

O

O

OMe

186b
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Racemic Reaction SFC Trace: 

Ligand: SL-M001-1 (84% ee) 

Ligand: SL-M001-1 (83% ee) 
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(R)-5'-fluoro-4,5-dihydro-2H-spiro[furan-3,2'-indene]-1',2(3'H)-dione (186c) 
 

Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 186c as a white 

solid.  

With SL-M001-1: 8.0 mg, 36% yield  

With SL-M009-1: 17.7 mg, 80% yield  

1H NMR (400 MHz, CDCl3) δ 7.72 (dd, J = 8.4, 5.2 Hz, 1H), 7.15 – 7.03 (m, 2H), 4.69 

(ddd, J = 9.4, 8.8, 7.1 Hz, 1H), 4.41 (td, J = 8.8, 2.8 Hz, 1H), 3.67 (d, J = 17.4 Hz, 1H), 

3.04 (d, J = 17.4 Hz, 1H), 2.69 (ddd, J = 12.8, 7.1, 2.9 Hz, 1H), 2.39 (dt, J = 12.8, 9.1 Hz, 

1H). 

13C NMR (101 MHz, CDCl3) δ 199.93, 175.49, 169.26, 166.69, 156.07, 155.97, 130.70, 

130.69, 127.60, 127.50, 117.00, 116.76, 113.49, 113.26, 66.65, 57.07, 37.56, 33.57. 

IR (NaCl, Thin Film) 2915, 1760, 1704, 1614, 1592, 1375, 1306, 1256, 1234, 1180, 

1091, 1024, 991, 682 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C12H12O3F: 220.05357, Found: 220.05320 

[α]d23 = -33.1477 (c = 1.07, CHCl3) (73% ee, with SL-M001-1) 

SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

3.594, minor = 3.896 

O

O

O

F

186c
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Racemic Reaction SFC Trace: 

Ligand: SL-M001-1 (73% ee) 

Ligand: SL-M001-1 (61% ee) 
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(R)-3',4,4',5-tetrahydro-1'H,2H-spiro[furan-3,2'-naphthalene]-1',2-dione (186d) 
 

Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 186d as a white 

solid.  

With SL-M001-1: 17.5 mg, 81% yield  

With SL-M009-1: 19.5 mg, 90% yield  

1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J = 7.9, 1.4 Hz, 1H), 7.53 (td, J = 7.5, 1.5 Hz, 

1H), 7.35 (td, J = 7.6, 1.1 Hz, 1H), 7.28 (d, J = 7.8 Hz, 1H), 4.52 – 4.38 (m, 2H), 3.36 – 

3.25 (m, 1H), 2.98 (ddd, J = 17.0, 9.4, 4.7 Hz, 1H), 2.74 (ddd, J = 13.0, 6.8, 3.9 Hz, 1H), 

2.65 (ddd, J = 14.0, 9.4, 4.7 Hz, 1H), 2.28 (dt, J = 13.0, 8.6 Hz, 1H), 2.17 (ddd, J = 13.7, 

6.5, 4.7 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 194.21, 175.91, 143.71, 134.50, 130.27, 128.97, 128.48, 

127.30, 65.91, 54.74, 33.03, 31.35, 25.58. 

IR (NaCl, Thin Film) 3530, 3332, 3064, 2933, 2867, 1769, 1673, 1600, 1480, 1454, 

1434, 1375, 1356, 1339, 1320, 1297, 1231, 1210, 1183, 1157, 1114, 1057, 1030, 983, 

973, 939, 906, 825, 800, 780, 746, 727, 697, 665, 644 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C13H12O3:216.07864, Found: 216.07776 

[α]d23 = -56.3394 (c = 0.71, CHCl3) (50% ee, with SL-M001-1) 

SFC Conditions: 40% IPA, 2.5 mL/min, Chiralcel IC , λ = 254 nm, tR (min): major = 

5.592, minor = 6.445 

O

O

O
186d
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Racemic Reaction SFC Trace:  

Ligand: SL-M001-1 (50% ee)  

Ligand: SL-M009-1 (35% ee) 
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(R)-4',5',8,9-tetrahydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-2',5(7H)-dione 
(188a) 
 

Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 188a as a white 

solid.  

With SL-M001-1: 12.4 mg, 54% yield  

With SL-M009-1: 23.3 mg, 84% yield  

1H NMR (600 MHz, CDCl3) δ 7.50 – 7.42 (m, 2H), 7.32 (td, J = 7.5, 1.2 Hz, 1H), 7.17 

(d, J = 7.1 Hz, 1H), 4.51 (dt, J = 8.8, 7.7 Hz, 1H), 4.39 (td, J = 8.6, 4.2 Hz, 1H), 2.95 

(ddd, J = 14.6, 6.0, 4.6 Hz, 1H), 2.79 (ddd, J = 14.6, 10.3, 6.3 Hz, 1H), 2.71 (ddd, J = 

12.9, 7.5, 4.2 Hz, 1H), 2.32 (dt, J = 12.9, 8.2 Hz, 1H), 2.26 (ddd, J = 14.7, 10.2, 5.8 Hz, 

1H), 2.04 (ddtd, J = 14.2, 10.1, 5.9, 4.2 Hz, 1H), 1.97 – 1.89 (m, 1H), 1.86 (ddd, J = 14.6, 

5.6, 4.2 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 206.82, 176.47, 138.66, 137.97, 132.72, 128.99, 128.53, 

127.30, 66.18, 57.89, 32.67, 31.98, 30.10, 22.11. 

IR (NaCl, Thin Film) 2942, 2868, 1759, 1667, 1597, 1448, 1377, 1351, 1293, 1256, 

1218, 1184, 1152, 1028, 958, 889, 765, 709 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C14H14O3: 230.09429, Found: 230.09380 

[α]d23 = -22.0581 (c = 0.74, CHCl3) (86% ee, with SL-M009-1) 

SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

5.058, minor = 5.431 

O

O

O

188a
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Racemic Reaction SFC Trace: 

Ligand: SL-M001-1 (78% ee) 

Ligand: SL-M009-1 (86% ee) 
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(R)-2-methoxy-4',5',8,9-tetrahydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-2',5(7H)-
dione (188b) 

 
Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (0-10% EtOAc/toluene) to afford 188b as a 

white solid.  

With SL-M001-1: 10.5 mg, 40% yield  

With SL-M009-1: 14.5 mg, 58% yield  

1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.6 Hz, 1H), 6.82 (dd, J = 8.6, 2.5 Hz, 1H), 

6.67 (d, J = 2.5 Hz, 1H), 4.50 (td, J = 8.5, 7.3 Hz, 1H), 4.39 (td, J = 8.6, 3.9 Hz, 1H), 3.85 

(s, 3H), 2.91 (ddd, J = 14.6, 6.1, 4.5 Hz, 1H), 2.80 (ddd, J = 14.6, 10.4, 6.1 Hz, 1H), 2.69 

(ddd, J = 12.9, 7.4, 3.9 Hz, 1H), 2.39 – 2.23 (m, 2H), 2.03 (tq, J = 11.3, 4.8 Hz, 1H), 1.98 

– 1.89 (m, 1H), 1.89 – 1.80 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 204.86, 176.84, 163.16, 140.78, 131.45, 131.15, 114.73, 

111.90, 65.93, 57.78, 55.44, 32.58, 32.47, 29.84, 22.03. 

IR (NaCl, Thin Film) 3514, 2946, 2868, 1765, 1731, 1659, 1651, 1598, 1573, 1556, 

1493, 1454, 1375, 1351, 1313, 1285, 1272, 1252, 1214, 1185, 1168, 1116, 1098, 1032, 

995, 958, 914, 856, 825, 777, 673 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C15H16O4: 260.10486, Found: 260.10464 

[α]d23 = -15.1893 (c = 1.21, CHCl3) (90% ee, with SL-M009-1) 

SFC Conditions: 25% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

5.058, minor = 5.431 

O

O

O OMe

188b
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Racemic Reaction SFC Trace: 

Ligand: SL-M001-1 (84% ee)  

Ligand: SL-M009-1 (90% ee) 
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(R)-2-methyl-4',5',8,9-tetrahydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-2',5(7H)-

dione (188c) 

Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 188c as a 

white solid.  

With SL-M001-1: 13.8 mg, 57% yield  

With SL-M009-1: 15.7 mg, 62% yield  

1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.7 Hz, 1H), 7.12 (dd, J = 7.9, 1.6 Hz, 1H), 

6.98 (s, 1H), 4.49 (q, J = 8.2 Hz, 1H), 4.38 (td, J = 8.6, 4.0 Hz, 1H), 2.90 (dt, J = 14.6, 

5.3 Hz, 1H), 2.83 – 2.74 (m, 1H), 2.74 – 2.64 (m, 1H), 2.37 (s, 3H), 2.37 – 2.20 (m, 2H), 

2.09 – 1.80 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.29, 176.70, 143.45, 138.23, 135.92, 129.85, 128.98, 

127.94, 66.10, 57.94, 32.71, 32.14, 30.12, 22.19, 21.63. 

IR (NaCl, Thin Film) 3514, 2948, 2869, 1767, 1667, 1605, 1453, 1383, 1348, 1315, 

1294, 1284, 1251, 1236, 1210, 1183, 1152, 1117, 1034, 1014, 1117, 1034, 1014, 990, 

959, 918, 852, 828, 775, 703 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C15H16O4: 244.10994, Found: 244.10963 

[α]d23 = -19.8090 (c = 1.11, CHCl3) (90% ee, with SL-M009-1) 

SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

7.021, minor = 7.686 

O

O

O Me

188c
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Racemic Reaction SFC Trace:  

 

Ligand: SL-M001-1 (90% ee)  

Ligand: SL-M009-1 (90% ee) 



Chapter 3: Enantioselective Nickel-Catalyzed a-Spirocyclization of Lactones 

 

243 

 

(R)-2-fluoro-4',5',8,9-tetrahydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-2',5(7H)-
dione (188d) 

 
Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 188d as a 

white solid.  

With SL-M001-1: 19.8 mg, 80% yield  

With SL-M009-1: 17.8 mg, 72% yield  

1H NMR (400 MHz, CDCl3) δ 7.51 (dd, J = 8.6, 5.7 Hz, 1H), 7.00 (td, J = 8.4, 2.5 Hz, 

1H), 6.88 (dd, J = 9.1, 2.5 Hz, 1H), 4.51 (dt, J = 8.9, 7.8 Hz, 1H), 4.40 (td, J = 8.6, 4.3 

Hz, 1H), 2.95 (ddd, J = 14.6, 6.1, 4.7 Hz, 1H), 2.86 – 2.76 (m, 1H), 2.76 – 2.66 (m, 1H), 

2.38 – 2.19 (m, 2H), 2.12 – 2.01 (m, 1H), 2.01 – 1.82 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 205.28, 176.36, 166.56, 164.04, 141.31 (d, J = 8.6 Hz), 

134.87 (d, J = 3.2 Hz), 131.44 (d, J = 9.4 Hz), 115.21 (dd, J = 172.5, 21.8 Hz), 66.15, 

57.86, 32.66, 32.03, 29.93, 21.90. 

IR (NaCl, Thin Film) 3518, 3068, 2946, 2870, 1765, 1710, 1672, 1606, 1586, 1486, 

1454, 1376, 1352, 1294, 1274, 1242, 1209, 1184, 1169, 1160, 1107, 1095, 1076, 1030, 

994, 964, 867, 828, 777, 703 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C14H13O3F: 248.08487, Found: 248.08436 

[α]d23 = -22.5267 (c = 0.86, CHCl3) (85% ee, with SL-M001-1) 

SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

3.969, minor = 4.259 

O

O

O F

188d
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Racemic Reaction SFC Trace: 

Ligand: SL-M001-1 (85% ee) 

 
Ligand: SL-M009-1 (83% ee) 
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ethyl (R)-2',5-dioxo-4',5,5',7,8,9-hexahydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-
2-carboxylate (188e) 

 
Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 188e as a 

white solid.  

With SL-M001-1: 18.6 mg, 62% yield  

With SL-M009-1:  22.2 mg, 73% yield  

1H NMR (600 MHz, CDCl3) δ 7.97 (dd, J = 7.9, 1.6 Hz, 1H), 7.86 (d, J = 1.6 Hz, 1H), 

7.50 (d, J = 7.9 Hz, 1H), 4.53 (dt, J = 8.9, 7.7 Hz, 1H), 4.44 – 4.36 (m, 3H), 3.03 (ddd, J 

= 14.6, 6.1, 4.6 Hz, 1H), 2.81 (ddd, J = 14.6, 10.2, 6.3 Hz, 1H), 2.74 (ddd, J = 12.9, 7.7, 

4.5 Hz, 1H), 2.32 (dt, J = 12.9, 8.1 Hz, 1H), 2.23 (ddd, J = 14.8, 10.1, 5.7 Hz, 1H), 2.12 – 

2.05 (m, 1H), 1.94 (dddd, J = 16.0, 10.3, 8.2, 5.1 Hz, 1H), 1.87 (ddd, J = 14.7, 5.5, 4.4 

Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.43, 175.96, 165.88, 142.26, 137.93, 133.97, 130.03, 

128.40, 66.23, 61.57, 57.88, 32.59, 31.70, 30.02, 21.90, 14.43. 

IR (NaCl, Thin Film) 2934, 2866, 1764, 1417, 1681, 1567, 1453, 1416, 1369, 1352, 

1288, 1254, 1214, 1184, 1153, 1108, 1026, 960, 919, 862, 752 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C17H18O5: 302.11542, Found: 302.11534 

[α]d23 = -37.2952 (c = 0.62, CHCl3) (70% ee, with SL-M001-1) 

O

O

O CO2Et

188e
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SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

3.942, minor = 4.285 

Racemic Reaction SFC Trace: 

Ligand: SL-M001-1 (71% ee) 

Ligand: SL-M009-1 (65% ee) 
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(R)-2-(trifluoromethyl)-4',5',8,9-tetrahydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-
2',5(7H)-dione (188f) 

Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 188f as an off-

white solid.  

With SL-M001-1: 20.9 mg, 57% yield  

With SL-M009-1:  22.7 mg, 76% yield  

1H NMR (400 MHz, CDCl3) δ 7.63 – 7.53 (m, 2H), 7.49 – 7.42 (m, 1H), 4.54 (dt, J = 

8.8, 7.6 Hz, 1H), 4.41 (ddd, J = 8.9, 8.3, 4.5 Hz, 1H), 3.10 – 2.99 (m, 1H), 2.89 – 2.71 

(m, 2H), 2.37 – 2.19 (m, 2H), 2.16 – 2.02 (m, 1H), 2.02 – 1.84 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 205.89, 175.77, 141.72, 138.61, 133.94 (q, J = 32.4 Hz), 

128.84, 125.88 (q, J = 3.5 Hz), 123.67 (d, J = 272.7 Hz), 124.27 (q, J = 4.0 Hz), 66.26, 

57.89, 32.60, 31.78, 30.05, 21.83. 

19F NMR (282 MHz, CDCl3) δ -61.47. 

IR (NaCl, Thin Film) 2949, 2869, 1764, 1685, 1455, 1422, 1376, 1331, 1279, 1254, 

1218, 1167, 1126, 1073, 1030, 959, 900, 859, 841, 769, 736, 708 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C15H13O3F3: 298.08168, Found: 298.08054 

[α]d23 = -19.8407 (c = 1.18, CHCl3) (51% ee, with SL-M001-1) 

SFC Conditions: 10% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

3.281, minor = 3.485 

O

O

O CF3

188f
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Racemic Reaction SFC Trace: 

 
Ligand: SL-M001-1 (51% ee) 

Ligand: SL-M009-1 (44% ee) 
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(R)-3-chloro-4',5',8,9-tetrahydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-2',5(7H)-
dione (188g)  

 
Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 188g as an off-

white solid.  

With SL-M001-1: 14.2 mg, 55% yield  

With SL-M009-1:  10.2 mg, 38% yield  

1H NMR (400 MHz, CDCl3) δ 7.47 – 7.37 (m, 2H), 7.12 (d, J = 8.0 Hz, 1H), 4.51 (dt, J 

= 8.9, 7.7 Hz, 1H), 4.39 (td, J = 8.6, 4.4 Hz, 1H), 2.95 (dt, J = 14.8, 5.1 Hz, 1H), 2.83 – 

2.67 (m, 2H), 2.38 – 2.17 (m, 2H), 2.12 – 1.97 (m, 1H), 1.98 – 1.81 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 205.33, 176.02, 139.87, 136.37, 133.27, 132.45, 130.51, 

128.33, 66.17, 57.93, 32.74, 31.36, 30.07, 21.99. 

IR (NaCl, Thin Film) 3061, 2919, 2852, 2774, 1769, 1681, 1592, 1479, 1454, 1401, 

1377, 1352, 1301, 1285, 1253, 1216, 1193, 1167, 1153, 1121, 1103, 1075, 1030, 993, 

971, 888, 837, 823, 732, 715, 639 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C14H13O3Cl: 264.05532, Found: 264.05518 

[α]d23 = -14.7140 (c = 1.18, CHCl3) (72% ee, with SL-M009-1) 

SFC Conditions: 40% IPA, 2.5 mL/min, Chiralcel IC , λ = 254 nm, tR (min): major = 

3.894, minor = 5.126 

O

O

O

Cl188g
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Racemic Reaction SFC Trace: 

Ligand: SL-M001-1 (60% ee) 

Ligand: SL-M009-1 (72% ee) 
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(R)-4',5'-dihydro-2'H-spiro[benzo[7]annulene-6,3'-furan]-2',5(7H)-dione (188h) 

 
Prepared via “General Procedure for Spirocyclization: Isolation Scale”. The residue was 

purified via flash column chromatography (10% EtOAc/toluene) to afford 188h as an off-

white oil.  

With SL-M001-1: 7.1 mg, 31% yield  

With SL-M009-1: 7.1 mg, 31% yield  

1H NMR (400 MHz, CDCl3) δ 7.99 (dd, J = 7.9, 1.4 Hz, 1H), 7.55 (td, J = 7.6, 1.5 Hz, 

1H), 7.36 (td, J = 7.6, 1.3 Hz, 1H), 7.24 (d, J = 1.2 Hz, 0H), 6.60 (dd, J = 11.4, 2.6 Hz, 

1H), 6.15 (ddd, J = 11.4, 8.0, 4.2 Hz, 1H), 4.35 (ddd, J = 9.2, 8.3, 2.2 Hz, 1H), 4.22 (ddd, 

J = 10.2, 9.1, 6.4 Hz, 1H), 3.12 (ddd, J = 17.0, 4.2, 2.6 Hz, 1H), 2.60 – 2.44 (m, 2H), 2.33 

(ddd, J = 13.4, 10.2, 8.4 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 198.96, 175.64, 135.76, 133.83, 133.53, 132.49, 131.37, 

131.35, 128.75, 128.01, 65.67, 60.71, 32.89, 31.13. 

IR (NaCl, Thin Film) 2956, 2918, 2849, 1769, 1658, 1591, 1480, 1461, 1442, 1371, 

1350, 1313, 1281, 1239, 1172, 1113, 1025, 973, 959, 929, 794, 782 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated C14H12O3: 228.07864, Found: 228.07849 

[α]d23 = -12.9574 (c = 0.68, CHCl3) (31% ee, with SL-M001-1) 

SFC Conditions: 40% IPA, 2.5 mL/min, Chiralcel IC , λ = 254 nm, tR (min): major = 

7.429, minor = 8.418 

O

O

O
188h
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Racemic Reaction SFC Trace: 

 
Ligand: SL-M001-1 (31% ee) 

 
Ligand: SL-M009-1 (27% ee) 
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(S)-5',6'-dihydro-2'H,4'H-spiro[indene-2,3'-pyran]-1,2'(3H)-dione (190) 

 
Prepared via “General Procedure for Spirocyclization: Isolation Scale” using SL-M009-1 

as the ligand, but performed on a 0.06 mmol scale with toluene in place of TBME as the 

reaction solvent. The residue was purified via preparative scale TLC (50% 

EtOAc/Hexanes) to afford 190 as a white solid (3.5 mg, 27% yield) along with 191 as a 

yellow oil (5.2 mg, 46% yield). 

1H NMR (600 MHz, CDCl3) δ 7.79 (d, J = 7.7 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.47 (d, 

J = 7.6 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 4.69 – 4.63 (m, 1H), 4.51 (dq, J = 11.6, 5.4 Hz, 

1H), 3.05 (d, J = 16.8 Hz, 1H), 2.46 – 2.27 (m, 2H), 2.00 – 1.88 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 203.00, 170.56, 152.82, 135.77, 134.28, 128.22, 126.49, 

125.38, 71.00, 56.66, 41.86, 31.16, 20.58. 

IR (NaCl, Thin Film) 2919, 2851, 1704, 1604, 1446, 1334, 1288, 1273, 1193, 1158, 

1095, 980, 946, 799, 730, 679 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C13H12O3: 216.07864, Found: 216.07826 

[α]d23 = -35.4600 (c = 0.1, CHCl3) (28% ee, with SL-M001-1) 

SFC Conditions: 40% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

5.247, minor = 6.275 

O

O

O
190
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Racemic Reaction SFC Trace: 

 
Ligand: SL-M009-1 (78% ee) 

1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 7.6 Hz, 1H), 7.59 (td, J = 7.4, 1.3 Hz, 1H), 

7.46 (dp, J = 7.7, 1.0 Hz, 1H), 7.42 – 7.34 (m, 1H), 3.69 (t, J = 6.4 Hz, 2H), 3.36 (dd, J = 

17.1, 7.9 Hz, 1H), 2.84 (dd, J = 17.2, 4.0 Hz, 1H), 2.71 (dddd, J = 8.8, 7.9, 5.1, 4.0 Hz, 

1H), 2.07 – 1.93 (m, 1H), 1.80 – 1.68 (m, 2H), 1.65 – 1.54 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 208.77, 153.48, 136.53, 134.62, 127.25, 126.38, 123.77, 

62.45, 46.82, 32.75, 30.16, 27.43. 

O

191

OH
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IR (NaCl, Thin Film) 3416, 3068, 3032, 2932, 2861, 1694, 1607, 1588, 1464, 1434, 

1371, 1331, 1295, 1206, 1181, 1151, 1123, 1058, 1027, 1014, 852, 823, 752, 723 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C12H14O2: 190.09938, Found: 190.09927 

(S)-3',4'-dihydro-1'H-spiro[indene-2,2'-naphthalene]-1,1'(3H)-dione 

Prepared via “General Procedure for Spirocyclization: Isolation Scale” at 40 ºC with SL-

M009-1 and 1:1 toluene/TBME in place of TBME. The residue was purified via flash 

column chromatography (10% EtOAc/Hexanes) to afford 193 as a white solid (23.8 mg, 

91% yield).  

1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 7.9, 1.4 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 

7.62 (td, J = 7.5, 1.2 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.44 – 7.36 (m, 1H), 7.37 – 7.27 (m, 

2H), 3.84 (d, J = 17.0 Hz, 1H), 3.49 (ddd, J = 17.0, 8.9, 4.9 Hz, 1H), 3.09 – 2.94 (m, 2H), 

2.56 (ddd, J = 13.7, 6.8, 4.9 Hz, 1H), 2.31 (ddd, J = 13.7, 8.8, 4.9 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 204.22, 196.52, 153.05, 144.40, 135.38, 135.33, 133.98, 

131.58, 128.94, 128.31, 127.95, 126.94, 126.59, 124.82, 61.22, 38.14, 32.34, 25.63. 

Spectral data were in accordance with those reported in the literature for 193.27 

IR (NaCl, Thin Film) 2923, 1704, 1667, 1602, 1453, 1425, 1324, 1295, 1275, 1228, 

1155, 1134, 1070, 965, 937, 888, 870, 801, 780, 756, 745 cm-1 

[α]d23 = -92.0347 (c = 0.72, CHCl3) (73% ee, with SL-M009-1) 

SFC Conditions: 30% IPA, 2.5 mL/min, Chiralcel AD-H , λ = 254 nm, tR (min): major = 

3.675, minor = 4.570 

O

O
193
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Racemic Reaction SFC Trace: 

Ligand: SL-M009-1 (73% ee) 

Isolation of N-Aryl Imine S41 

Compound S41 was prepared following the “General Procedure for Spirocyclization: 

Isolation Scale”, with SL-M009-1 as the ligand, and toluene was used in place of TBME. 

NO aqueous reaction quench was performed. Instead, the crude reaction was filtered 

through a short SiO2 plug, eluting with EtOAc. The residue was purified by column 

chromatography (25% EtOAc/Hexanes) to afford S41 as a yellow foam. (15.4 mg, 46% 

yield)  

O

O

N

O

O CN

Ni(COD)2 (10 mol %)
SL-M009-1 (12 mol%) 

LHMDS (1.1 equiv)
PhBr (3.0 equiv)

toluene, 30 ºC, 20 h

185a S41
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1H NMR (600 MHz, CDCl3) δ 7.40 – 7.33 (m, 4H), 7.15 (tt, J = 7.5, 1.2 Hz, 1H), 6.99 – 

6.93 (m, 1H), 6.89 – 6.84 (m, 2H), 6.57 (d, J = 8.0 Hz, 1H), 4.79 (td, J = 8.8, 7.2 Hz, 1H), 

4.46 (td, J = 8.6, 3.2 Hz, 1H), 3.73 (d, J = 16.8 Hz, 1H), 3.13 (d, J = 16.8 Hz, 1H), 2.92 

(ddd, J = 12.7, 7.2, 3.2 Hz, 1H), 2.51 (dt, J = 12.8, 8.8 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 178.42, 172.08, 150.74, 149.46, 132.62, 132.10, 129.65, 

128.47, 127.14, 127.13, 126.33, 123.94, 118.29, (2 C's, overlapped), 66.57, 54.84, 39.57, 

36.15. 

IR (NaCl, Thin Film) 2925, 1764, 1654, 1591, 1485, 1467, 1447, 1375, 1301, 1285, 

1220, 1207, 1171, 1157, 1095, 1069, 1054, 1027, 963, 912, 805, 771, 757, 711, 677 cm-1 

HRMS(FI) m/z: [M + •]+ Calculated for C18H15NO2: 277.11028, Found: 277.11003 

3.4.7 X-Ray Structure Determination  

X-Ray Structure Determination: Compound S41 
 
X-ray coordinate of compound S41.  

 
Low-temperature diffraction data (f-and w-scans) were collected on a Bruker AXS D8 

VENTURE KAPPA diffractometer coupled to a PHOTON II CPAD detector with Cu Ka 
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radiation (l = 1.54178 Å) from an IμS micro-source for the structure of compound V23214. 

The structure was solved by direct methods using SHELXSi and refined against F2 on all 

data by full-matrix least squares with SHELXL-2019ii using established refinement 

techniques.iii All non-hydrogen atoms were refined anisotropically. All hydrogen atoms 

were included into the model at geometrically calculated positions and refined using a 

riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). 

Compound V23214 crystallizes in the orthorhombic space group P212121 with one 

molecule in the asymmetric unit.  

 

Crystal data and structure refinement for S41 

Empirical formula  C18 H15 NO2 

Formula weight  277.31 
Temperature  100(2) K 
Wavelength  1.54178 Å 
Crystal system  Orthorhombic 
Space group  P212121 
Unit cell dimensions a = 8.4202(10) Å a= 90°. 
 b = 9.7385(14) Å b= 90°. 
 c = 17.3452(16) Å g = 90°. 
Volume 1422.3(3) Å3 
Z 4 
Density (calculated) 1.295 Mg/m3 
Absorption coefficient 0.677 mm-1 
F(000) 584 
Crystal size 0.200 x 0.150 x 0.100 mm3 
Theta range for data collection 5.100 to 74.489°. 
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Index ranges -10<=h<=10, -12<=k<=12, -21<=l<=21 
Reflections collected 19589 
Independent reflections 2899 [R(int) = 0.0515] 
Completeness to theta = 67.679° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7538 and 0.6485 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 2899 / 0 / 190 
Goodness-of-fit on F2 1.057 
Final R indices [I>2sigma(I)] R1 = 0.0288, wR2 = 0.0665 
R indices (all data) R1 = 0.0317, wR2 = 0.0683 
Absolute structure parameter -0.04(11) 
Extinction coefficient n/a 
Largest diff. peak and hole 0.168 and -0.138 e.Å-3 
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Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2 x 103) 

for S41.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 315(2) 897(1) 2882(1) 25(1) 

C(1) 1464(2) 1725(2) 2612(1) 21(1) 

O(2) 1281(2) 2429(1) 2053(1) 27(1) 

C(2) 827(2) 217(2) 3587(1) 29(1) 

C(3) 2629(2) 319(2) 3588(1) 24(1) 

C(4) 2946(2) 1624(2) 3116(1) 19(1) 

C(5) 3011(2) 2888(2) 3644(1) 18(1) 

N(1) 1747(2) 3294(2) 3973(1) 21(1) 

C(13) 1732(2) 4426(2) 4487(1) 19(1) 

C(14) 2020(2) 4222(2) 5269(1) 22(1) 

C(15) 1932(2) 5318(2) 5778(1) 24(1) 

C(16) 1524(3) 6608(2) 5516(1) 32(1) 

C(17) 1182(3) 6795(2) 4741(1) 39(1) 

C(18) 1294(3) 5717(2) 4224(1) 29(1) 

C(6) 4674(2) 3378(2) 3651(1) 19(1) 

C(7) 5420(2) 4372(2) 4107(1) 21(1) 

C(8) 7036(2) 4596(2) 4005(1) 24(1) 

C(9) 7895(2) 3856(2) 3458(1) 25(1) 

C(10) 7150(2) 2883(2) 2997(1) 23(1) 

C(11) 5540(2) 2648(2) 3098(1) 21(1) 

C(12) 4511(2) 1651(2) 2661(1) 24(1) 
 

Table S3. Bond lengths [Å] and angles [°] for  S26. 

O(1)-C(1)  1.343(2) 

O(1)-C(2)  1.457(2) 

C(1)-O(2)  1.197(2) 
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C(1)-C(4)  1.527(2) 

C(2)-C(3)  1.520(3) 

C(2)-H(2A)  0.9900 

C(2)-H(2B)  0.9900 

C(3)-C(4)  1.536(2) 

C(3)-H(3A)  0.9900 

C(3)-H(3B)  0.9900 

C(4)-C(5)  1.535(2) 

C(4)-C(12)  1.537(2) 

C(5)-N(1)  1.271(2) 

C(5)-C(6)  1.480(2) 

N(1)-C(13)  1.417(2) 

C(13)-C(18)  1.388(3) 

C(13)-C(14)  1.392(2) 

C(14)-C(15)  1.387(3) 

C(14)-H(14)  0.9500 

C(15)-C(16)  1.380(3) 

C(15)-H(15)  0.9500 

C(16)-C(17)  1.388(3) 

C(16)-H(16)  0.9500 

C(17)-C(18)  1.383(3) 

C(17)-H(17)  0.9500 

C(18)-H(18)  0.9500 

C(6)-C(7)  1.399(2) 

C(6)-C(11)  1.399(3) 

C(7)-C(8)  1.390(3) 

C(7)-H(7)  0.9500 

C(8)-C(9)  1.394(3) 

C(8)-H(8)  0.9500 

C(9)-C(10)  1.389(3) 

C(9)-H(9)  0.9500 

C(10)-C(11)  1.386(2) 

C(10)-H(10)  0.9500 
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C(11)-C(12)  1.506(3) 

C(12)-H(12A)  0.9900 

C(12)-H(12B)  0.9900 

 

C(1)-O(1)-C(2) 110.63(14) 

O(2)-C(1)-O(1) 122.20(16) 

O(2)-C(1)-C(4) 127.31(17) 

O(1)-C(1)-C(4) 110.49(15) 

O(1)-C(2)-C(3) 105.51(15) 

O(1)-C(2)-H(2A) 110.6 

C(3)-C(2)-H(2A) 110.6 

O(1)-C(2)-H(2B) 110.6 

C(3)-C(2)-H(2B) 110.6 

H(2A)-C(2)-H(2B) 108.8 

C(2)-C(3)-C(4) 103.09(15) 

C(2)-C(3)-H(3A) 111.1 

C(4)-C(3)-H(3A) 111.1 

C(2)-C(3)-H(3B) 111.1 

C(4)-C(3)-H(3B) 111.1 

H(3A)-C(3)-H(3B) 109.1 

C(1)-C(4)-C(5) 108.62(14) 

C(1)-C(4)-C(3) 102.54(14) 

C(5)-C(4)-C(3) 110.59(14) 

C(1)-C(4)-C(12) 113.90(14) 

C(5)-C(4)-C(12) 105.19(14) 

C(3)-C(4)-C(12) 115.95(16) 

N(1)-C(5)-C(6) 133.50(16) 

N(1)-C(5)-C(4) 119.19(16) 

C(6)-C(5)-C(4) 107.31(15) 

C(5)-N(1)-C(13) 122.15(15) 

C(18)-C(13)-C(14) 119.73(16) 

C(18)-C(13)-N(1) 120.04(16) 

C(14)-C(13)-N(1) 119.99(16) 
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C(15)-C(14)-C(13) 120.06(17) 

C(15)-C(14)-H(14) 120.0 

C(13)-C(14)-H(14) 120.0 

C(16)-C(15)-C(14) 120.36(17) 

C(16)-C(15)-H(15) 119.8 

C(14)-C(15)-H(15) 119.8 

C(15)-C(16)-C(17) 119.29(18) 

C(15)-C(16)-H(16) 120.4 

C(17)-C(16)-H(16) 120.4 

C(18)-C(17)-C(16) 120.96(19) 

C(18)-C(17)-H(17) 119.5 

C(16)-C(17)-H(17) 119.5 

C(17)-C(18)-C(13) 119.53(17) 

C(17)-C(18)-H(18) 120.2 

C(13)-C(18)-H(18) 120.2 

C(7)-C(6)-C(11) 120.31(16) 

C(7)-C(6)-C(5) 130.78(16) 

C(11)-C(6)-C(5) 108.90(15) 

C(8)-C(7)-C(6) 118.50(18) 

C(8)-C(7)-H(7) 120.7 

C(6)-C(7)-H(7) 120.7 

C(7)-C(8)-C(9) 120.87(18) 

C(7)-C(8)-H(8) 119.6 

C(9)-C(8)-H(8) 119.6 

C(10)-C(9)-C(8) 120.66(17) 

C(10)-C(9)-H(9) 119.7 

C(8)-C(9)-H(9) 119.7 

C(11)-C(10)-C(9) 118.81(17) 

C(11)-C(10)-H(10) 120.6 

C(9)-C(10)-H(10) 120.6 

C(10)-C(11)-C(6) 120.84(17) 

C(10)-C(11)-C(12) 127.28(17) 

C(6)-C(11)-C(12) 111.88(15) 
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C(11)-C(12)-C(4) 104.23(14) 

C(11)-C(12)-H(12A) 110.9 

C(4)-C(12)-H(12A) 110.9 

C(11)-C(12)-H(12B) 110.9 

C(4)-C(12)-H(12B) 110.9 

H(12A)-C(12)-H(12B) 108.9 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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 Anisotropic displacement parameters  (Å2 x 103) for S41.  The anisotropic 
displacement factor exponent takes the form:  -2p2 [ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 22(1)  27(1) 27(1)  -2(1) -3(1)  -2(1) 

C(1) 22(1)  20(1) 20(1)  -6(1) -1(1)  1(1) 

O(2) 34(1)  27(1) 21(1)  0(1) -6(1)  4(1) 

C(2) 32(1)  27(1) 27(1)  3(1) 0(1)  -7(1) 

C(3) 30(1)  21(1) 20(1)  0(1) -3(1)  1(1) 

C(4) 19(1)  21(1) 18(1)  -2(1) -1(1)  1(1) 

C(5) 20(1)  20(1) 14(1)  2(1) -2(1)  -1(1) 

N(1) 18(1)  24(1) 21(1)  -2(1) -1(1)  0(1) 

C(13) 15(1)  22(1) 20(1)  -2(1) 1(1)  -2(1) 

C(14) 23(1)  22(1) 22(1)  1(1) 0(1)  1(1) 

C(15) 29(1)  27(1) 17(1)  -2(1) 2(1)  -3(1) 

C(16) 46(1)  23(1) 27(1)  -8(1) 1(1)  -1(1) 

C(17) 62(2)  19(1) 35(1)  2(1) -7(1)  4(1) 

C(18) 40(1)  25(1) 21(1)  3(1) -6(1)  -2(1) 

C(6) 19(1)  20(1) 17(1)  4(1) 0(1)  0(1) 

C(7) 22(1)  21(1) 20(1)  3(1) -2(1)  0(1) 

C(8) 23(1)  22(1) 27(1)  5(1) -5(1)  -3(1) 

C(9) 18(1)  29(1) 29(1)  9(1) -1(1)  0(1) 

C(10) 22(1)  27(1) 20(1)  5(1) 2(1)  4(1) 

C(11) 22(1)  22(1) 18(1)  4(1) -1(1)  2(1) 

C(12) 22(1)  29(1) 19(1)  -4(1) 1(1)  1(1) 

______________________________________________________________________________ 
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 Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for S41. 
________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2A) 486 -756 3589 34 

H(2B) 375 680 4045 34 

H(3A) 3116 -496 3342 28 

H(3B) 3045 410 4120 28 

H(14) 2278 3331 5454 26 

H(15) 2154 5178 6309 29 

H(16) 1477 7361 5864 39 

H(17) 867 7676 4562 47 

H(18) 1073 5860 3693 34 

H(7) 4835 4881 4478 25 

H(8) 7563 5263 4313 29 

H(9) 9001 4018 3400 30 

H(10) 7734 2387 2620 28 

H(12A) 5004 728 2646 28 

H(12B) 4333 1970 2126 28 

________________________________________________________________________________ 
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 Torsion angles [°] for S41. 
________________________________________________________________  

C(2)-O(1)-C(1)-O(2) -177.02(17) 

C(2)-O(1)-C(1)-C(4) 2.5(2) 

C(1)-O(1)-C(2)-C(3) -19.2(2) 

O(1)-C(2)-C(3)-C(4) 27.33(19) 

O(2)-C(1)-C(4)-C(5) 77.3(2) 

O(1)-C(1)-C(4)-C(5) -102.15(16) 

O(2)-C(1)-C(4)-C(3) -165.62(18) 

O(1)-C(1)-C(4)-C(3) 14.92(18) 

O(2)-C(1)-C(4)-C(12) -39.6(2) 

O(1)-C(1)-C(4)-C(12) 140.99(16) 

C(2)-C(3)-C(4)-C(1) -25.06(18) 

C(2)-C(3)-C(4)-C(5) 90.60(18) 

C(2)-C(3)-C(4)-C(12) -149.79(16) 

C(1)-C(4)-C(5)-N(1) 43.2(2) 

C(3)-C(4)-C(5)-N(1) -68.6(2) 

C(12)-C(4)-C(5)-N(1) 165.55(15) 

C(1)-C(4)-C(5)-C(6) -137.06(15) 

C(3)-C(4)-C(5)-C(6) 111.15(16) 

C(12)-C(4)-C(5)-C(6) -14.75(18) 

C(6)-C(5)-N(1)-C(13) -1.7(3) 

C(4)-C(5)-N(1)-C(13) 177.93(15) 

C(5)-N(1)-C(13)-C(18) 97.1(2) 

C(5)-N(1)-C(13)-C(14) -88.5(2) 

C(18)-C(13)-C(14)-C(15) -2.5(3) 

N(1)-C(13)-C(14)-C(15) -176.97(17) 

C(13)-C(14)-C(15)-C(16) 1.5(3) 

C(14)-C(15)-C(16)-C(17) 0.8(3) 

C(15)-C(16)-C(17)-C(18) -2.0(4) 

C(16)-C(17)-C(18)-C(13) 0.9(4) 

C(14)-C(13)-C(18)-C(17) 1.3(3) 

N(1)-C(13)-C(18)-C(17) 175.8(2) 
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N(1)-C(5)-C(6)-C(7) 8.8(3) 

C(4)-C(5)-C(6)-C(7) -170.81(17) 

N(1)-C(5)-C(6)-C(11) -172.14(18) 

C(4)-C(5)-C(6)-C(11) 8.22(18) 

C(11)-C(6)-C(7)-C(8) -1.1(3) 

C(5)-C(6)-C(7)-C(8) 177.89(17) 

C(6)-C(7)-C(8)-C(9) 0.4(3) 

C(7)-C(8)-C(9)-C(10) 0.5(3) 

C(8)-C(9)-C(10)-C(11) -0.8(3) 

C(9)-C(10)-C(11)-C(6) 0.2(3) 

C(9)-C(10)-C(11)-C(12) 179.75(18) 

C(7)-C(6)-C(11)-C(10) 0.8(3) 

C(5)-C(6)-C(11)-C(10) -178.39(16) 

C(7)-C(6)-C(11)-C(12) -178.88(16) 

C(5)-C(6)-C(11)-C(12) 2.0(2) 

C(10)-C(11)-C(12)-C(4) 169.22(17) 

C(6)-C(11)-C(12)-C(4) -11.2(2) 

C(1)-C(4)-C(12)-C(11) 134.16(16) 

C(5)-C(4)-C(12)-C(11) 15.33(18) 

C(3)-C(4)-C(12)-C(11) -107.18(17) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

 

X-Ray Structure Determination: Compound 188b 
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X-ray coordinate of 188b.  

 
 
 
Low-temperature diffraction data (f-and w-scans) were collected on a Bruker AXS D8 

VENTURE KAPPA diffractometer coupled to a PHOTON II CPAD detector with Cu Ka 

radiation (l = 1.54178 Å) from an IμS micro-source for the structure of compound V24082. 

The structure was solved by direct methods using SHELXSi and refined against F2 on all 

data by full-matrix least squares with SHELXL-2019ii using established refinement 

techniques.iii All non-hydrogen atoms were refined anisotropically. All hydrogen atoms 

were included into the model at geometrically calculated positions and refined using a 

riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). 

Compound 188b crystallizes in the monoclinic space group P21 with one molecule in the 

asymmetric unit.  

 
Crystal data and structure refinement for 188b. 
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Identification code  V24082 
Empirical formula  C15 H16 O4 
Formula weight  260.28 
Temperature  100(2) K 
Wavelength  1.54178 Å 
Crystal system  Monoclinic 
Space group  P21 
Unit cell dimensions a = 8.4789(9) Å a= 90°. 
 b = 10.7304(9) Å b= 102.577(7)°. 
 c = 13.9179(11) Å g = 90°. 
Volume 1235.9(2) Å3 
Z 4 
Density (calculated) 1.399 Mg/m3 
Absorption coefficient 0.833 mm-1 
F(000) 552 
Crystal size 0.300 x 0.200 x 0.200 mm3 
Theta range for data collection 3.253 to 74.518°. 
Index ranges -10<=h<=9, -13<=k<=13, -16<=l<=17 
Reflections collected 27571 
Independent reflections 5037 [R(int) = 0.0380] 
Completeness to theta = 67.679° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7538 and 0.6329 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 5037 / 1 / 345 
Goodness-of-fit on F2 1.027 
Final R indices [I>2sigma(I)] R1 = 0.0275, wR2 = 0.0706 
R indices (all data) R1 = 0.0282, wR2 = 0.0709 
Absolute structure parameter -0.02(7) 
Extinction coefficient n/a 
Largest diff. peak and hole 0.178 and -0.183 e.Å-3 
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Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 
103) for 188b.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
C(1) 12956(2) 5769(2) 9952(1) 17(1) 

O(1) 14128(2) 4949(1) 9898(1) 21(1) 

O(2) 13245(2) 6814(1) 10248(1) 24(1) 

C(2) 11270(2) 5190(2) 9598(1) 13(1) 

C(3) 10646(2) 5783(2) 8574(1) 13(1) 

O(3) 11507(1) 5741(1) 7978(1) 18(1) 

C(4) 9095(2) 6486(2) 8360(1) 14(1) 

C(5) 9059(2) 7622(2) 7854(1) 14(1) 

C(6) 7666(2) 8330(2) 7646(1) 14(1) 

C(7) 6271(2) 7899(2) 7920(1) 14(1) 

O(4) 4983(2) 8674(1) 7700(1) 18(1) 

C(8) 3478(2) 8266(2) 7903(2) 21(1) 

C(9) 6274(2) 6739(2) 8384(1) 15(1) 

C(10) 7691(2) 6038(2) 8618(1) 14(1) 

C(11) 7711(2) 4788(2) 9118(1) 16(1) 

C(12) 8634(2) 4817(2) 10198(1) 19(1) 

C(13) 10260(2) 5492(2) 10357(1) 15(1) 

C(14) 11676(2) 3800(2) 9511(1) 16(1) 

C(15) 13435(2) 3807(2) 9413(1) 21(1) 

C(21) 7963(2) 4268(2) 4940(1) 17(1) 

O(5) 9174(2) 5098(1) 5016(1) 21(1) 

O(6) 8013(2) 3258(1) 4575(1) 25(1) 

C(22) 6570(2) 4800(2) 5364(1) 14(1) 

C(23) 6784(2) 4161(2) 6378(1) 14(1) 

O(7) 8151(2) 4110(1) 6894(1) 19(1) 

C(24) 5413(2) 3523(2) 6680(1) 14(1) 

C(25) 5766(2) 2416(2) 7216(1) 16(1) 

C(26) 4561(2) 1703(2) 7462(1) 17(1) 
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C(27) 2957(2) 2102(2) 7172(1) 16(1) 

O(8) 1852(2) 1316(1) 7426(1) 21(1) 

C(28) 179(2) 1589(2) 7062(2) 22(1) 

C(29) 2587(2) 3236(2) 6685(1) 15(1) 

C(30) 3810(2) 3958(2) 6440(1) 14(1) 

C(31) 3429(2) 5216(2) 5960(1) 16(1) 

C(32) 3499(2) 5214(2) 4865(1) 18(1) 

C(33) 4963(2) 4525(2) 4645(1) 16(1) 

C(34) 7026(2) 6191(2) 5480(1) 16(1) 

C(35) 8853(2) 6191(2) 5566(1) 19(1) 

________________________________________________________________________________  

Bond lengths [Å] and angles [°] for  188b. 
_____________________________________________________  

C(1)-O(2)  1.201(2) 

C(1)-O(1)  1.342(2) 

C(1)-C(2)  1.538(2) 

O(1)-C(15)  1.459(2) 

C(2)-C(13)  1.533(2) 

C(2)-C(14)  1.541(2) 

C(2)-C(3)  1.546(2) 

C(3)-O(3)  1.220(2) 

C(3)-C(4)  1.488(2) 

C(4)-C(10)  1.401(2) 

C(4)-C(5)  1.405(2) 

C(5)-C(6)  1.381(2) 

C(5)-H(5)  0.9500 

C(6)-C(7)  1.398(2) 

C(6)-H(6)  0.9500 

C(7)-O(4)  1.354(2) 

C(7)-C(9)  1.402(2) 

O(4)-C(8)  1.434(2) 

C(8)-H(8A)  0.9800 

C(8)-H(8B)  0.9800 
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C(8)-H(8C)  0.9800 

C(9)-C(10)  1.395(2) 

C(9)-H(9)  0.9500 

C(10)-C(11)  1.510(2) 

C(11)-C(12)  1.536(2) 

C(11)-H(11A)  0.9900 

C(11)-H(11B)  0.9900 

C(12)-C(13)  1.530(2) 

C(12)-H(12A)  0.9900 

C(12)-H(12B)  0.9900 

C(13)-H(13A)  0.9900 

C(13)-H(13B)  0.9900 

C(14)-C(15)  1.528(2) 

C(14)-H(14A)  0.9900 

C(14)-H(14B)  0.9900 

C(15)-H(15A)  0.9900 

C(15)-H(15B)  0.9900 

C(21)-O(6)  1.200(2) 

C(21)-O(5)  1.347(2) 

C(21)-C(22)  1.541(2) 

O(5)-C(35)  1.458(2) 

C(22)-C(33)  1.533(2) 

C(22)-C(34)  1.542(2) 

C(22)-C(23)  1.543(2) 

C(23)-O(7)  1.224(2) 

C(23)-C(24)  1.487(2) 

C(24)-C(25)  1.400(2) 

C(24)-C(30)  1.406(2) 

C(25)-C(26)  1.378(3) 

C(25)-H(25)  0.9500 

C(26)-C(27)  1.399(2) 

C(26)-H(26)  0.9500 

C(27)-O(8)  1.363(2) 
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C(27)-C(29)  1.395(3) 

O(8)-C(28)  1.429(2) 

C(28)-H(28A)  0.9800 

C(28)-H(28B)  0.9800 

C(28)-H(28C)  0.9800 

C(29)-C(30)  1.396(2) 

C(29)-H(29)  0.9500 

C(30)-C(31)  1.510(2) 

C(31)-C(32)  1.539(2) 

C(31)-H(31A)  0.9900 

C(31)-H(31B)  0.9900 

C(32)-C(33)  1.532(2) 

C(32)-H(32A)  0.9900 

C(32)-H(32B)  0.9900 

C(33)-H(33A)  0.9900 

C(33)-H(33B)  0.9900 

C(34)-C(35)  1.528(2) 

C(34)-H(34A)  0.9900 

C(34)-H(34B)  0.9900 

C(35)-H(35A)  0.9900 

C(35)-H(35B)  0.9900 

 

O(2)-C(1)-O(1) 122.21(16) 

O(2)-C(1)-C(2) 126.41(16) 

O(1)-C(1)-C(2) 111.39(15) 

C(1)-O(1)-C(15) 110.38(14) 

C(13)-C(2)-C(1) 108.27(14) 

C(13)-C(2)-C(14) 115.23(14) 

C(1)-C(2)-C(14) 102.06(13) 

C(13)-C(2)-C(3) 114.68(14) 

C(1)-C(2)-C(3) 103.70(13) 

C(14)-C(2)-C(3) 111.36(14) 

O(3)-C(3)-C(4) 121.13(15) 
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O(3)-C(3)-C(2) 118.41(15) 

C(4)-C(3)-C(2) 120.24(14) 

C(10)-C(4)-C(5) 119.96(15) 

C(10)-C(4)-C(3) 122.53(15) 

C(5)-C(4)-C(3) 117.49(14) 

C(6)-C(5)-C(4) 120.42(15) 

C(6)-C(5)-H(5) 119.8 

C(4)-C(5)-H(5) 119.8 

C(5)-C(6)-C(7) 119.79(16) 

C(5)-C(6)-H(6) 120.1 

C(7)-C(6)-H(6) 120.1 

O(4)-C(7)-C(6) 115.06(15) 

O(4)-C(7)-C(9) 124.76(15) 

C(6)-C(7)-C(9) 120.18(16) 

C(7)-O(4)-C(8) 118.41(14) 

O(4)-C(8)-H(8A) 109.5 

O(4)-C(8)-H(8B) 109.5 

H(8A)-C(8)-H(8B) 109.5 

O(4)-C(8)-H(8C) 109.5 

H(8A)-C(8)-H(8C) 109.5 

H(8B)-C(8)-H(8C) 109.5 

C(10)-C(9)-C(7) 120.05(15) 

C(10)-C(9)-H(9) 120.0 

C(7)-C(9)-H(9) 120.0 

C(9)-C(10)-C(4) 119.50(15) 

C(9)-C(10)-C(11) 120.57(15) 

C(4)-C(10)-C(11) 119.90(15) 

C(10)-C(11)-C(12) 112.65(14) 

C(10)-C(11)-H(11A) 109.1 

C(12)-C(11)-H(11A) 109.1 

C(10)-C(11)-H(11B) 109.1 

C(12)-C(11)-H(11B) 109.1 

H(11A)-C(11)-H(11B) 107.8 
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C(13)-C(12)-C(11) 113.76(14) 

C(13)-C(12)-H(12A) 108.8 

C(11)-C(12)-H(12A) 108.8 

C(13)-C(12)-H(12B) 108.8 

C(11)-C(12)-H(12B) 108.8 

H(12A)-C(12)-H(12B) 107.7 

C(12)-C(13)-C(2) 114.91(14) 

C(12)-C(13)-H(13A) 108.5 

C(2)-C(13)-H(13A) 108.5 

C(12)-C(13)-H(13B) 108.5 

C(2)-C(13)-H(13B) 108.5 

H(13A)-C(13)-H(13B) 107.5 

C(15)-C(14)-C(2) 103.92(14) 

C(15)-C(14)-H(14A) 111.0 

C(2)-C(14)-H(14A) 111.0 

C(15)-C(14)-H(14B) 111.0 

C(2)-C(14)-H(14B) 111.0 

H(14A)-C(14)-H(14B) 109.0 

O(1)-C(15)-C(14) 105.38(14) 

O(1)-C(15)-H(15A) 110.7 

C(14)-C(15)-H(15A) 110.7 

O(1)-C(15)-H(15B) 110.7 

C(14)-C(15)-H(15B) 110.7 

H(15A)-C(15)-H(15B) 108.8 

O(6)-C(21)-O(5) 122.24(16) 

O(6)-C(21)-C(22) 126.68(16) 

O(5)-C(21)-C(22) 111.08(15) 

C(21)-O(5)-C(35) 110.33(13) 

C(33)-C(22)-C(21) 108.92(14) 

C(33)-C(22)-C(34) 114.93(14) 

C(21)-C(22)-C(34) 101.71(13) 

C(33)-C(22)-C(23) 115.02(14) 

C(21)-C(22)-C(23) 103.81(13) 
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C(34)-C(22)-C(23) 110.93(14) 

O(7)-C(23)-C(24) 120.82(16) 

O(7)-C(23)-C(22) 117.65(15) 

C(24)-C(23)-C(22) 121.28(14) 

C(25)-C(24)-C(30) 119.47(15) 

C(25)-C(24)-C(23) 116.84(15) 

C(30)-C(24)-C(23) 123.68(16) 

C(26)-C(25)-C(24) 121.26(16) 

C(26)-C(25)-H(25) 119.4 

C(24)-C(25)-H(25) 119.4 

C(25)-C(26)-C(27) 119.09(16) 

C(25)-C(26)-H(26) 120.5 

C(27)-C(26)-H(26) 120.5 

O(8)-C(27)-C(29) 124.80(16) 

O(8)-C(27)-C(26) 114.63(16) 

C(29)-C(27)-C(26) 120.56(16) 

C(27)-O(8)-C(28) 117.83(14) 

O(8)-C(28)-H(28A) 109.5 

O(8)-C(28)-H(28B) 109.5 

H(28A)-C(28)-H(28B) 109.5 

O(8)-C(28)-H(28C) 109.5 

H(28A)-C(28)-H(28C) 109.5 

H(28B)-C(28)-H(28C) 109.5 

C(27)-C(29)-C(30) 120.17(15) 

C(27)-C(29)-H(29) 119.9 

C(30)-C(29)-H(29) 119.9 

C(29)-C(30)-C(24) 119.26(16) 

C(29)-C(30)-C(31) 120.36(15) 

C(24)-C(30)-C(31) 120.32(15) 

C(30)-C(31)-C(32) 112.70(14) 

C(30)-C(31)-H(31A) 109.1 

C(32)-C(31)-H(31A) 109.1 

C(30)-C(31)-H(31B) 109.1 
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C(32)-C(31)-H(31B) 109.1 

H(31A)-C(31)-H(31B) 107.8 

C(33)-C(32)-C(31) 113.97(14) 

C(33)-C(32)-H(32A) 108.8 

C(31)-C(32)-H(32A) 108.8 

C(33)-C(32)-H(32B) 108.8 

C(31)-C(32)-H(32B) 108.8 

H(32A)-C(32)-H(32B) 107.7 

C(32)-C(33)-C(22) 114.85(14) 

C(32)-C(33)-H(33A) 108.6 

C(22)-C(33)-H(33A) 108.6 

C(32)-C(33)-H(33B) 108.6 

C(22)-C(33)-H(33B) 108.6 

H(33A)-C(33)-H(33B) 107.5 

C(35)-C(34)-C(22) 103.61(14) 

C(35)-C(34)-H(34A) 111.0 

C(22)-C(34)-H(34A) 111.0 

C(35)-C(34)-H(34B) 111.0 

C(22)-C(34)-H(34B) 111.0 

H(34A)-C(34)-H(34B) 109.0 

O(5)-C(35)-C(34) 105.11(13) 

O(5)-C(35)-H(35A) 110.7 

C(34)-C(35)-H(35A) 110.7 

O(5)-C(35)-H(35B) 110.7 

C(34)-C(35)-H(35B) 110.7 

H(35A)-C(35)-H(35B) 108.8 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

  

Anisotropic displacement parameters  (Å2x 103) for 188b.  The anisotropic 
displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 
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______________________________________________________________________________  

C(1) 16(1)  21(1) 14(1)  2(1) 2(1)  -1(1) 

O(1) 14(1)  26(1) 23(1)  -1(1) 4(1)  1(1) 

O(2) 27(1)  20(1) 23(1)  -3(1) 2(1)  -7(1) 

C(2) 12(1)  13(1) 14(1)  0(1) 3(1)  0(1) 

C(3) 13(1)  12(1) 14(1)  -1(1) 3(1)  -3(1) 

O(3) 16(1)  21(1) 17(1)  2(1) 7(1)  2(1) 

C(4) 14(1)  14(1) 13(1)  0(1) 3(1)  0(1) 

C(5) 12(1)  16(1) 13(1)  -1(1) 4(1)  -4(1) 

C(6) 18(1)  12(1) 13(1)  2(1) 2(1)  -1(1) 

C(7) 14(1)  14(1) 13(1)  -1(1) 2(1)  1(1) 

O(4) 15(1)  16(1) 24(1)  6(1) 6(1)  2(1) 

C(8) 15(1)  20(1) 28(1)  6(1) 7(1)  3(1) 

C(9) 15(1)  14(1) 16(1)  0(1) 5(1)  -2(1) 

C(10) 15(1)  15(1) 13(1)  1(1) 3(1)  0(1) 

C(11) 14(1)  15(1) 22(1)  5(1) 7(1)  1(1) 

C(12) 19(1)  20(1) 20(1)  7(1) 9(1)  4(1) 

C(13) 19(1)  15(1) 13(1)  2(1) 6(1)  4(1) 

C(14) 19(1)  12(1) 17(1)  1(1) 5(1)  1(1) 

C(15) 21(1)  20(1) 22(1)  0(1) 7(1)  4(1) 

C(21) 16(1)  20(1) 16(1)  0(1) 4(1)  2(1) 

O(5) 17(1)  24(1) 22(1)  -2(1) 8(1)  -2(1) 

O(6) 27(1)  21(1) 30(1)  -7(1) 9(1)  5(1) 

C(22) 14(1)  14(1) 15(1)  -1(1) 4(1)  1(1) 

C(23) 15(1)  11(1) 16(1)  -1(1) 3(1)  2(1) 

O(7) 15(1)  20(1) 20(1)  3(1) 0(1)  0(1) 

C(24) 17(1)  13(1) 14(1)  -2(1) 3(1)  0(1) 

C(25) 14(1)  16(1) 17(1)  0(1) 2(1)  2(1) 

C(26) 20(1)  14(1) 17(1)  2(1) 4(1)  1(1) 

C(27) 17(1)  15(1) 16(1)  -1(1) 6(1)  -2(1) 

O(8) 17(1)  19(1) 29(1)  6(1) 8(1)  -1(1) 

C(28) 16(1)  23(1) 26(1)  2(1) 7(1)  -3(1) 

C(29) 14(1)  16(1) 16(1)  -2(1) 4(1)  1(1) 
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C(30) 16(1)  13(1) 12(1)  -2(1) 4(1)  1(1) 

C(31) 14(1)  13(1) 19(1)  2(1) 4(1)  3(1) 

C(32) 16(1)  18(1) 18(1)  4(1) 3(1)  1(1) 

C(33) 16(1)  17(1) 14(1)  0(1) 2(1)  -2(1) 

C(34) 18(1)  14(1) 18(1)  0(1) 5(1)  -1(1) 

C(35) 18(1)  18(1) 21(1)  -1(1) 4(1)  -4(1) 

______________________________________________________________________________ 
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 Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for 188b. 
________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(5) 10000 7906 7654 16 

H(6) 7656 9108 7319 17 

H(8A) 3127 7502 7532 31 

H(8B) 2660 8916 7707 31 

H(8C) 3619 8100 8609 31 

H(9) 5310 6430 8541 18 

H(11A) 8218 4165 8756 20 

H(11B) 6584 4519 9090 20 

H(12A) 7953 5233 10596 23 

H(12B) 8822 3950 10439 23 

H(13A) 10899 5277 11020 19 

H(13B) 10059 6401 10346 19 

H(14A) 11555 3334 10105 19 

H(14B) 10967 3419 8925 19 

H(15A) 14015 3067 9737 25 

H(15B) 13499 3808 8711 25 

H(25) 6858 2151 7414 19 

H(26) 4816 951 7822 20 

H(28A) -84 2385 7335 32 

H(28B) -479 925 7259 32 

H(28C) -47 1644 6342 32 

H(29) 1499 3517 6520 18 

H(31A) 4209 5836 6313 19 

H(31B) 2334 5474 6022 19 

H(32A) 2502 4821 4481 21 

H(32B) 3520 6087 4638 21 

H(33A) 5072 4749 3973 19 
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H(33B) 4754 3617 4652 19 

H(34A) 6469 6676 4900 20 

H(34B) 6746 6545 6079 20 

H(35A) 9200 6962 5280 22 

H(35B) 9432 6131 6264 22 

________________________________________________________________________________  

Torsion angles [°] for 188b 

________________________________________________________________  

O(2)-C(1)-O(1)-C(15) -173.69(17) 

C(2)-C(1)-O(1)-C(15) 6.61(19) 

O(2)-C(1)-C(2)-C(13) -47.4(2) 

O(1)-C(1)-C(2)-C(13) 132.27(15) 

O(2)-C(1)-C(2)-C(14) -169.39(17) 

O(1)-C(1)-C(2)-C(14) 10.29(18) 

O(2)-C(1)-C(2)-C(3) 74.8(2) 

O(1)-C(1)-C(2)-C(3) -105.52(16) 

C(13)-C(2)-C(3)-O(3) 169.34(15) 

C(1)-C(2)-C(3)-O(3) 51.49(19) 

C(14)-C(2)-C(3)-O(3) -57.6(2) 

C(13)-C(2)-C(3)-C(4) -5.3(2) 

C(1)-C(2)-C(3)-C(4) -123.13(16) 

C(14)-C(2)-C(3)-C(4) 127.83(16) 

O(3)-C(3)-C(4)-C(10) 139.84(18) 

C(2)-C(3)-C(4)-C(10) -45.7(2) 

O(3)-C(3)-C(4)-C(5) -38.3(2) 

C(2)-C(3)-C(4)-C(5) 136.15(16) 

C(10)-C(4)-C(5)-C(6) 2.8(2) 

C(3)-C(4)-C(5)-C(6) -178.97(15) 

C(4)-C(5)-C(6)-C(7) -1.5(3) 

C(5)-C(6)-C(7)-O(4) 178.70(15) 

C(5)-C(6)-C(7)-C(9) -1.4(3) 

C(6)-C(7)-O(4)-C(8) 176.28(15) 

C(9)-C(7)-O(4)-C(8) -3.6(3) 
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O(4)-C(7)-C(9)-C(10) -177.05(16) 

C(6)-C(7)-C(9)-C(10) 3.1(2) 

C(7)-C(9)-C(10)-C(4) -1.8(2) 

C(7)-C(9)-C(10)-C(11) 179.97(15) 

C(5)-C(4)-C(10)-C(9) -1.2(2) 

C(3)-C(4)-C(10)-C(9) -179.27(15) 

C(5)-C(4)-C(10)-C(11) 177.12(15) 

C(3)-C(4)-C(10)-C(11) -1.0(2) 

C(9)-C(10)-C(11)-C(12) -108.37(18) 

C(4)-C(10)-C(11)-C(12) 73.4(2) 

C(10)-C(11)-C(12)-C(13) -45.7(2) 

C(11)-C(12)-C(13)-C(2) -43.1(2) 

C(1)-C(2)-C(13)-C(12) -171.09(14) 

C(14)-C(2)-C(13)-C(12) -57.59(19) 

C(3)-C(2)-C(13)-C(12) 73.68(19) 

C(13)-C(2)-C(14)-C(15) -138.90(15) 

C(1)-C(2)-C(14)-C(15) -21.83(17) 

C(3)-C(2)-C(14)-C(15) 88.27(16) 

C(1)-O(1)-C(15)-C(14) -21.06(19) 

C(2)-C(14)-C(15)-O(1) 26.39(17) 

O(6)-C(21)-O(5)-C(35) -174.80(17) 

C(22)-C(21)-O(5)-C(35) 5.72(19) 

O(6)-C(21)-C(22)-C(33) -45.2(2) 

O(5)-C(21)-C(22)-C(33) 134.24(15) 

O(6)-C(21)-C(22)-C(34) -166.95(18) 

O(5)-C(21)-C(22)-C(34) 12.50(18) 

O(6)-C(21)-C(22)-C(23) 77.8(2) 

O(5)-C(21)-C(22)-C(23) -102.76(15) 

C(33)-C(22)-C(23)-O(7) 163.83(15) 

C(21)-C(22)-C(23)-O(7) 44.9(2) 

C(34)-C(22)-C(23)-O(7) -63.6(2) 

C(33)-C(22)-C(23)-C(24) -10.4(2) 

C(21)-C(22)-C(23)-C(24) -129.32(16) 
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C(34)-C(22)-C(23)-C(24) 122.15(16) 

O(7)-C(23)-C(24)-C(25) -32.4(2) 

C(22)-C(23)-C(24)-C(25) 141.69(16) 

O(7)-C(23)-C(24)-C(30) 148.95(17) 

C(22)-C(23)-C(24)-C(30) -37.0(2) 

C(30)-C(24)-C(25)-C(26) 4.0(3) 

C(23)-C(24)-C(25)-C(26) -174.74(16) 

C(24)-C(25)-C(26)-C(27) -0.3(3) 

C(25)-C(26)-C(27)-O(8) 178.22(16) 

C(25)-C(26)-C(27)-C(29) -3.2(3) 

C(29)-C(27)-O(8)-C(28) 8.3(3) 

C(26)-C(27)-O(8)-C(28) -173.19(15) 

O(8)-C(27)-C(29)-C(30) -178.51(17) 

C(26)-C(27)-C(29)-C(30) 3.0(3) 

C(27)-C(29)-C(30)-C(24) 0.6(2) 

C(27)-C(29)-C(30)-C(31) -176.81(15) 

C(25)-C(24)-C(30)-C(29) -4.1(2) 

C(23)-C(24)-C(30)-C(29) 174.56(16) 

C(25)-C(24)-C(30)-C(31) 173.36(15) 

C(23)-C(24)-C(30)-C(31) -8.0(2) 

C(29)-C(30)-C(31)-C(32) -107.41(18) 

C(24)-C(30)-C(31)-C(32) 75.2(2) 

C(30)-C(31)-C(32)-C(33) -44.1(2) 

C(31)-C(32)-C(33)-C(22) -43.9(2) 

C(21)-C(22)-C(33)-C(32) -168.54(14) 

C(34)-C(22)-C(33)-C(32) -55.2(2) 

C(23)-C(22)-C(33)-C(32) 75.46(19) 

C(33)-C(22)-C(34)-C(35) -141.88(14) 

C(21)-C(22)-C(34)-C(35) -24.40(16) 

C(23)-C(22)-C(34)-C(35) 85.50(16) 

C(21)-O(5)-C(35)-C(34) -21.92(18) 

C(22)-C(34)-C(35)-O(5) 28.62(17) 

________________________________________________________________  
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Symmetry transformations used to generate equivalent atoms:  

  

X-Ray Structure Determination: Compound 188c 
 

 
Low-temperature diffraction data (f-and w-scans) were collected on a Bruker AXS D8 

VENTURE KAPPA diffractometer coupled to a PHOTON II CPAD detector with Cu Ka 

radiation (l = 1.54178 Å) from an IμS micro-source for the structure of compound V24079. 

The structure was solved by direct methods using SHELXS and refined against F2 on all 

data by full-matrix least squares with SHELXL-2019 using established refinement 

techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms 

were included into the model at geometrically calculated positions and refined using a 

riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).  

Compound 188c crystallizes in the monoclinic space group P21 with two molecules in the 

asymmetric unit.  
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Crystal data and structure refinement for 188c. 
 
Identification code  V24079 
Empirical formula  C15 H16 O3 
Formula weight  244.28 
Temperature  100(2) K 
Wavelength  1.54178 Å 
Crystal system  Monoclinic 
Space group  P21 
Unit cell dimensions a = 8.2548(9) Å a= 90°. 
 b = 13.6753(6) Å b= 90.362(7)°. 
 c = 10.8014(8) Å g = 90°. 
Volume 1219.31(17) Å3 
Z 4 
Density (calculated) 1.331 Mg/m3 
Absorption coefficient 0.745 mm-1 
F(000) 520 
Crystal size 0.200 x 0.200 x 0.200 mm3 
Theta range for data collection 4.093 to 75.115°. 
Index ranges -10<=h<=10, -17<=k<=17, -13<=l<=13 
Reflections collected 28637 
Independent reflections 4973 [R(int) = 0.0471] 
Completeness to theta = 67.679° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7538 and 0.6520 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 4973 / 1 / 327 
Goodness-of-fit on F2 1.028 
Final R indices [I>2sigma(I)] R1 = 0.0291, wR2 = 0.0717 
R indices (all data) R1 = 0.0331, wR2 = 0.0728 
Absolute structure parameter -0.11(6) 
Extinction coefficient n/a 
Largest diff. peak and hole 0.208 and -0.170 e.Å-3 
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Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 
103) for 188c.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
 x y z U(eq) 

________________________________________________________________________________   
O(4) 7579(2) 7432(1) 7689(1) 22(1) 

O(1) 10760(2) 2494(1) 7340(1) 21(1) 

O(6) 5821(2) 5637(1) 6512(1) 22(1) 

O(5) 6494(2) 7976(1) 5923(1) 27(1) 

O(2) 9683(2) 2024(1) 9131(1) 25(1) 

O(3) 8855(2) 4358(1) 8378(1) 23(1) 

C(23) 4601(2) 6124(1) 6674(2) 16(1) 

C(3) 7708(2) 3806(1) 8273(2) 16(1) 

C(21) 6343(2) 7552(2) 6889(2) 18(1) 

C(24) 3021(2) 5837(1) 6102(2) 16(1) 

C(7) 3220(2) 4452(1) 10108(2) 18(1) 

C(10) 4634(2) 3819(1) 8298(2) 17(1) 

C(1) 9524(2) 2406(2) 8135(2) 18(1) 

C(5) 6152(2) 4475(1) 10040(2) 17(1) 

C(11) 4579(2) 3383(2) 7019(2) 18(1) 

C(4) 6124(2) 4031(1) 8874(2) 16(1) 

C(13) 6587(2) 2078(2) 7766(2) 17(1) 

C(25) 3080(3) 5334(1) 4969(2) 19(1) 

C(30) 1512(2) 6059(1) 6621(2) 17(1) 

C(9) 3216(2) 4044(2) 8923(2) 18(1) 

C(22) 4775(2) 7098(1) 7390(2) 15(1) 

C(26) 1669(3) 5118(2) 4328(2) 21(1) 

C(6) 4716(3) 4671(2) 10659(2) 20(1) 

C(29) 104(2) 5842(1) 5949(2) 19(1) 

C(31) 1401(2) 6497(2) 7898(2) 18(1) 

C(34) 5235(2) 6916(2) 8763(2) 17(1) 

C(2) 7952(2) 2826(2) 7584(2) 16(1) 

C(15) 10275(2) 3062(2) 6262(2) 22(1) 

C(12) 5045(2) 2295(2) 7018(2) 20(1) 
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C(32) 1843(2) 7587(2) 7924(2) 21(1) 

C(35) 7081(2) 6840(2) 8739(2) 21(1) 

C(27) 159(3) 5393(2) 4787(2) 20(1) 

C(8) 1643(3) 4640(2) 10760(2) 23(1) 

C(33) 3374(2) 7821(2) 7189(2) 18(1) 

C(14) 8427(2) 2992(2) 6219(2) 19(1) 

C(28) -1370(3) 5204(2) 4057(2) 26(1) 
 

Bond lengths [Å] and angles [°] for 188c. 
_____________________________________________________  

O(4)-C(21)  1.343(2) 

O(4)-C(35)  1.456(2) 

O(1)-C(1)  1.342(2) 

O(1)-C(15)  1.455(3) 

O(6)-C(23)  1.221(2) 

O(5)-C(21)  1.200(3) 

O(2)-C(1)  1.203(3) 

O(3)-C(3)  1.215(2) 

C(23)-C(24)  1.492(3) 

C(23)-C(22)  1.547(3) 

C(3)-C(4)  1.496(3) 

C(3)-C(2)  1.547(3) 

C(21)-C(22)  1.537(3) 

C(24)-C(30)  1.403(3) 

C(24)-C(25)  1.405(3) 

C(7)-C(9)  1.396(3) 

C(7)-C(6)  1.399(3) 

C(7)-C(8)  1.506(3) 

C(10)-C(9)  1.389(3) 

C(10)-C(4)  1.405(3) 

C(10)-C(11)  1.506(3) 

C(1)-C(2)  1.536(3) 

C(5)-C(6)  1.390(3) 
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C(5)-C(4)  1.399(3) 

C(5)-H(5)  0.9500 

C(11)-C(12)  1.537(3) 

C(11)-H(11A)  0.9900 

C(11)-H(11B)  0.9900 

C(13)-C(12)  1.533(3) 

C(13)-C(2)  1.535(3) 

C(13)-H(13A)  0.9900 

C(13)-H(13B)  0.9900 

C(25)-C(26)  1.384(3) 

C(25)-H(25)  0.9500 

C(30)-C(29)  1.398(3) 

C(30)-C(31)  1.507(3) 

C(9)-H(9)  0.9500 

C(22)-C(33)  1.536(3) 

C(22)-C(34)  1.549(3) 

C(26)-C(27)  1.396(3) 

C(26)-H(26)  0.9500 

C(6)-H(6)  0.9500 

C(29)-C(27)  1.399(3) 

C(29)-H(29)  0.9500 

C(31)-C(32)  1.534(3) 

C(31)-H(31A)  0.9900 

C(31)-H(31B)  0.9900 

C(34)-C(35)  1.528(3) 

C(34)-H(34A)  0.9900 

C(34)-H(34B)  0.9900 

C(2)-C(14)  1.545(3) 

C(15)-C(14)  1.528(3) 

C(15)-H(15A)  0.9900 

C(15)-H(15B)  0.9900 

C(12)-H(12A)  0.9900 

C(12)-H(12B)  0.9900 
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C(32)-C(33)  1.531(3) 

C(32)-H(32A)  0.9900 

C(32)-H(32B)  0.9900 

C(35)-H(35A)  0.9900 

C(35)-H(35B)  0.9900 

C(27)-C(28)  1.506(3) 

C(8)-H(8A)  0.9800 

C(8)-H(8B)  0.9800 

C(8)-H(8C)  0.9800 

C(33)-H(33A)  0.9900 

C(33)-H(33B)  0.9900 

C(14)-H(14A)  0.9900 

C(14)-H(14B)  0.9900 

C(28)-H(28A)  0.9800 

C(28)-H(28B)  0.9800 

C(28)-H(28C)  0.9800 

 

C(21)-O(4)-C(35) 110.64(14) 

C(1)-O(1)-C(15) 110.66(15) 

O(6)-C(23)-C(24) 121.12(18) 

O(6)-C(23)-C(22) 117.84(17) 

C(24)-C(23)-C(22) 120.80(16) 

O(3)-C(3)-C(4) 120.94(18) 

O(3)-C(3)-C(2) 118.66(17) 

C(4)-C(3)-C(2) 120.26(16) 

O(5)-C(21)-O(4) 122.37(18) 

O(5)-C(21)-C(22) 126.39(18) 

O(4)-C(21)-C(22) 111.23(16) 

C(30)-C(24)-C(25) 119.33(18) 

C(30)-C(24)-C(23) 123.62(17) 

C(25)-C(24)-C(23) 117.03(17) 

C(9)-C(7)-C(6) 118.11(18) 

C(9)-C(7)-C(8) 119.97(18) 
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C(6)-C(7)-C(8) 121.92(18) 

C(9)-C(10)-C(4) 118.48(18) 

C(9)-C(10)-C(11) 120.89(18) 

C(4)-C(10)-C(11) 120.61(17) 

O(2)-C(1)-O(1) 122.11(17) 

O(2)-C(1)-C(2) 126.60(18) 

O(1)-C(1)-C(2) 111.27(16) 

C(6)-C(5)-C(4) 120.46(18) 

C(6)-C(5)-H(5) 119.8 

C(4)-C(5)-H(5) 119.8 

C(10)-C(11)-C(12) 112.17(17) 

C(10)-C(11)-H(11A) 109.2 

C(12)-C(11)-H(11A) 109.2 

C(10)-C(11)-H(11B) 109.2 

C(12)-C(11)-H(11B) 109.2 

H(11A)-C(11)-H(11B) 107.9 

C(5)-C(4)-C(10) 119.84(18) 

C(5)-C(4)-C(3) 118.08(17) 

C(10)-C(4)-C(3) 122.07(17) 

C(12)-C(13)-C(2) 114.24(16) 

C(12)-C(13)-H(13A) 108.7 

C(2)-C(13)-H(13A) 108.7 

C(12)-C(13)-H(13B) 108.7 

C(2)-C(13)-H(13B) 108.7 

H(13A)-C(13)-H(13B) 107.6 

C(26)-C(25)-C(24) 120.50(19) 

C(26)-C(25)-H(25) 119.8 

C(24)-C(25)-H(25) 119.8 

C(29)-C(30)-C(24) 118.96(18) 

C(29)-C(30)-C(31) 120.30(17) 

C(24)-C(30)-C(31) 120.72(17) 

C(10)-C(9)-C(7) 122.49(18) 

C(10)-C(9)-H(9) 118.8 
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C(7)-C(9)-H(9) 118.8 

C(33)-C(22)-C(21) 109.00(16) 

C(33)-C(22)-C(23) 114.60(15) 

C(21)-C(22)-C(23) 104.32(15) 

C(33)-C(22)-C(34) 114.74(15) 

C(21)-C(22)-C(34) 101.59(15) 

C(23)-C(22)-C(34) 111.19(16) 

C(25)-C(26)-C(27) 120.97(19) 

C(25)-C(26)-H(26) 119.5 

C(27)-C(26)-H(26) 119.5 

C(5)-C(6)-C(7) 120.54(18) 

C(5)-C(6)-H(6) 119.7 

C(7)-C(6)-H(6) 119.7 

C(30)-C(29)-C(27) 121.86(19) 

C(30)-C(29)-H(29) 119.1 

C(27)-C(29)-H(29) 119.1 

C(30)-C(31)-C(32) 112.77(17) 

C(30)-C(31)-H(31A) 109.0 

C(32)-C(31)-H(31A) 109.0 

C(30)-C(31)-H(31B) 109.0 

C(32)-C(31)-H(31B) 109.0 

H(31A)-C(31)-H(31B) 107.8 

C(35)-C(34)-C(22) 103.48(15) 

C(35)-C(34)-H(34A) 111.1 

C(22)-C(34)-H(34A) 111.1 

C(35)-C(34)-H(34B) 111.1 

C(22)-C(34)-H(34B) 111.1 

H(34A)-C(34)-H(34B) 109.0 

C(13)-C(2)-C(1) 108.69(16) 

C(13)-C(2)-C(14) 114.32(16) 

C(1)-C(2)-C(14) 101.87(15) 

C(13)-C(2)-C(3) 114.68(15) 

C(1)-C(2)-C(3) 104.41(15) 
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C(14)-C(2)-C(3) 111.51(16) 

O(1)-C(15)-C(14) 105.10(15) 

O(1)-C(15)-H(15A) 110.7 

C(14)-C(15)-H(15A) 110.7 

O(1)-C(15)-H(15B) 110.7 

C(14)-C(15)-H(15B) 110.7 

H(15A)-C(15)-H(15B) 108.8 

C(13)-C(12)-C(11) 113.26(16) 

C(13)-C(12)-H(12A) 108.9 

C(11)-C(12)-H(12A) 108.9 

C(13)-C(12)-H(12B) 108.9 

C(11)-C(12)-H(12B) 108.9 

H(12A)-C(12)-H(12B) 107.7 

C(33)-C(32)-C(31) 113.02(16) 

C(33)-C(32)-H(32A) 109.0 

C(31)-C(32)-H(32A) 109.0 

C(33)-C(32)-H(32B) 109.0 

C(31)-C(32)-H(32B) 109.0 

H(32A)-C(32)-H(32B) 107.8 

O(4)-C(35)-C(34) 105.16(15) 

O(4)-C(35)-H(35A) 110.7 

C(34)-C(35)-H(35A) 110.7 

O(4)-C(35)-H(35B) 110.7 

C(34)-C(35)-H(35B) 110.7 

H(35A)-C(35)-H(35B) 108.8 

C(26)-C(27)-C(29) 118.12(19) 

C(26)-C(27)-C(28) 120.95(19) 

C(29)-C(27)-C(28) 120.9(2) 

C(7)-C(8)-H(8A) 109.5 

C(7)-C(8)-H(8B) 109.5 

H(8A)-C(8)-H(8B) 109.5 

C(7)-C(8)-H(8C) 109.5 

H(8A)-C(8)-H(8C) 109.5 
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H(8B)-C(8)-H(8C) 109.5 

C(32)-C(33)-C(22) 114.56(16) 

C(32)-C(33)-H(33A) 108.6 

C(22)-C(33)-H(33A) 108.6 

C(32)-C(33)-H(33B) 108.6 

C(22)-C(33)-H(33B) 108.6 

H(33A)-C(33)-H(33B) 107.6 

C(15)-C(14)-C(2) 103.86(15) 

C(15)-C(14)-H(14A) 111.0 

C(2)-C(14)-H(14A) 111.0 

C(15)-C(14)-H(14B) 111.0 

C(2)-C(14)-H(14B) 111.0 

H(14A)-C(14)-H(14B) 109.0 

C(27)-C(28)-H(28A) 109.5 

C(27)-C(28)-H(28B) 109.5 

H(28A)-C(28)-H(28B) 109.5 

C(27)-C(28)-H(28C) 109.5 

H(28A)-C(28)-H(28C) 109.5 

H(28B)-C(28)-H(28C) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

  

 

Anisotropic displacement parameters  (Å2x 103) for compound 188c. The anisotropic 
displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(4) 16(1)  23(1) 25(1)  2(1) 1(1)  -3(1) 

O(1) 16(1)  23(1) 23(1)  2(1) 2(1)  2(1) 

O(6) 19(1)  21(1) 26(1)  -3(1) 3(1)  2(1) 

O(5) 30(1)  28(1) 23(1)  7(1) 5(1)  -6(1) 

O(2) 26(1)  29(1) 21(1)  6(1) -4(1)  0(1) 
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O(3) 19(1)  22(1) 28(1)  -4(1) 1(1)  -3(1) 

C(23) 18(1)  17(1) 13(1)  2(1) 4(1)  -1(1) 

C(3) 17(1)  17(1) 15(1)  2(1) -2(1)  -1(1) 

C(21) 20(1)  15(1) 20(1)  -2(1) 2(1)  -1(1) 

C(24) 21(1)  14(1) 14(1)  1(1) 1(1)  -1(1) 

C(7) 22(1)  14(1) 18(1)  2(1) 2(1)  2(1) 

C(10) 20(1)  14(1) 16(1)  2(1) 1(1)  -1(1) 

C(1) 18(1)  16(1) 20(1)  -2(1) -1(1)  -1(1) 

C(5) 22(1)  13(1) 17(1)  1(1) -3(1)  0(1) 

C(11) 16(1)  24(1) 15(1)  -3(1) 0(1)  0(1) 

C(4) 19(1)  14(1) 16(1)  2(1) 1(1)  1(1) 

C(13) 19(1)  15(1) 16(1)  -1(1) 3(1)  -2(1) 

C(25) 24(1)  16(1) 16(1)  -1(1) 3(1)  1(1) 

C(30) 20(1)  14(1) 17(1)  2(1) 1(1)  -2(1) 

C(9) 18(1)  17(1) 18(1)  0(1) -1(1)  0(1) 

C(22) 16(1)  17(1) 13(1)  1(1) 1(1)  -2(1) 

C(26) 29(1)  18(1) 16(1)  -1(1) 1(1)  -2(1) 

C(6) 29(1)  16(1) 14(1)  0(1) -1(1)  2(1) 

C(29) 19(1)  17(1) 21(1)  2(1) 1(1)  -1(1) 

C(31) 15(1)  22(1) 17(1)  -2(1) 3(1)  -1(1) 

C(34) 18(1)  20(1) 14(1)  1(1) 0(1)  1(1) 

C(2) 17(1)  17(1) 14(1)  1(1) 1(1)  0(1) 

C(15) 20(1)  27(1) 18(1)  2(1) 4(1)  -1(1) 

C(12) 18(1)  22(1) 20(1)  -4(1) 1(1)  -3(1) 

C(32) 18(1)  24(1) 20(1)  -4(1) -1(1)  2(1) 

C(35) 19(1)  25(1) 20(1)  3(1) -2(1)  2(1) 

C(27) 26(1)  15(1) 20(1)  3(1) -4(1)  -5(1) 

C(8) 27(1)  24(1) 18(1)  -3(1) 4(1)  3(1) 

C(33) 22(1)  16(1) 15(1)  -2(1) -2(1)  1(1) 

C(14) 19(1)  22(1) 15(1)  0(1) 1(1)  -1(1) 

C(28) 28(1)  26(1) 25(1)  2(1) -6(1)  -7(1) 

______________________________________________________________________________ 

Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
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for compound 188c. 
________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(5) 7159 4644 10413 21 

H(11A) 5331 3748 6477 22 

H(11B) 3472 3457 6673 22 

H(13A) 6992 1423 7531 20 

H(13B) 6309 2056 8656 20 

H(25) 4096 5142 4641 22 

H(9) 2206 3916 8530 21 

H(26) 1728 4776 3563 25 

H(6) 4751 4955 11461 23 

H(29) -918 6005 6292 23 

H(31A) 2139 6138 8463 22 

H(31B) 283 6415 8208 22 

H(34A) 4881 7466 9293 21 

H(34B) 4742 6303 9071 21 

H(15A) 10753 2787 5500 26 

H(15B) 10625 3751 6349 26 

H(12A) 4139 1911 7365 24 

H(12B) 5206 2079 6153 24 

H(32A) 927 7969 7579 25 

H(32B) 2005 7793 8794 25 

H(35A) 7559 7094 9518 26 

H(35B) 7425 6152 8630 26 

H(8A) 765 4686 10147 34 

H(8B) 1717 5255 11223 34 

H(8C) 1420 4102 11333 34 

H(33A) 3750 8484 7422 21 

H(33B) 3094 7834 6297 21 

H(14A) 8072 2437 5694 22 
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H(14B) 7943 3603 5894 22 

H(28A) -1487 5702 3410 39 

H(28B) -2304 5233 4611 39 

H(28C) -1312 4555 3675 39 
________________________________________________________________________________ 
Torsion angles [°] for compound 188c. 

________________________________________________________________  

C(35)-O(4)-C(21)-O(5) -176.3(2) 

C(35)-O(4)-C(21)-C(22) 4.6(2) 

O(6)-C(23)-C(24)-C(30) 151.25(19) 

C(22)-C(23)-C(24)-C(30) -34.5(3) 

O(6)-C(23)-C(24)-C(25) -30.1(3) 

C(22)-C(23)-C(24)-C(25) 144.22(18) 

C(15)-O(1)-C(1)-O(2) -174.64(19) 

C(15)-O(1)-C(1)-C(2) 6.8(2) 

C(9)-C(10)-C(11)-C(12) -107.1(2) 

C(4)-C(10)-C(11)-C(12) 74.7(2) 

C(6)-C(5)-C(4)-C(10) 2.7(3) 

C(6)-C(5)-C(4)-C(3) -177.85(17) 

C(9)-C(10)-C(4)-C(5) -1.1(3) 

C(11)-C(10)-C(4)-C(5) 177.19(18) 

C(9)-C(10)-C(4)-C(3) 179.49(18) 

C(11)-C(10)-C(4)-C(3) -2.2(3) 

O(3)-C(3)-C(4)-C(5) -37.1(3) 

C(2)-C(3)-C(4)-C(5) 138.54(18) 

O(3)-C(3)-C(4)-C(10) 142.3(2) 

C(2)-C(3)-C(4)-C(10) -42.1(3) 

C(30)-C(24)-C(25)-C(26) 4.3(3) 

C(23)-C(24)-C(25)-C(26) -174.40(18) 

C(25)-C(24)-C(30)-C(29) -5.0(3) 

C(23)-C(24)-C(30)-C(29) 173.69(18) 

C(25)-C(24)-C(30)-C(31) 173.22(18) 

C(23)-C(24)-C(30)-C(31) -8.1(3) 

C(4)-C(10)-C(9)-C(7) -1.4(3) 
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C(11)-C(10)-C(9)-C(7) -179.74(19) 

C(6)-C(7)-C(9)-C(10) 2.3(3) 

C(8)-C(7)-C(9)-C(10) -177.39(19) 

O(5)-C(21)-C(22)-C(33) -44.3(3) 

O(4)-C(21)-C(22)-C(33) 134.69(16) 

O(5)-C(21)-C(22)-C(23) 78.5(2) 

O(4)-C(21)-C(22)-C(23) -102.47(17) 

O(5)-C(21)-C(22)-C(34) -165.8(2) 

O(4)-C(21)-C(22)-C(34) 13.2(2) 

O(6)-C(23)-C(22)-C(33) 160.42(17) 

C(24)-C(23)-C(22)-C(33) -14.1(2) 

O(6)-C(23)-C(22)-C(21) 41.3(2) 

C(24)-C(23)-C(22)-C(21) -133.16(17) 

O(6)-C(23)-C(22)-C(34) -67.4(2) 

C(24)-C(23)-C(22)-C(34) 118.10(18) 

C(24)-C(25)-C(26)-C(27) 0.1(3) 

C(4)-C(5)-C(6)-C(7) -1.8(3) 

C(9)-C(7)-C(6)-C(5) -0.6(3) 

C(8)-C(7)-C(6)-C(5) 179.04(19) 

C(24)-C(30)-C(29)-C(27) 1.3(3) 

C(31)-C(30)-C(29)-C(27) -176.89(18) 

C(29)-C(30)-C(31)-C(32) -105.8(2) 

C(24)-C(30)-C(31)-C(32) 76.0(2) 

C(33)-C(22)-C(34)-C(35) -141.82(17) 

C(21)-C(22)-C(34)-C(35) -24.4(2) 

C(23)-C(22)-C(34)-C(35) 86.09(18) 

C(12)-C(13)-C(2)-C(1) -167.25(15) 

C(12)-C(13)-C(2)-C(14) -54.2(2) 

C(12)-C(13)-C(2)-C(3) 76.4(2) 

O(2)-C(1)-C(2)-C(13) -46.9(3) 

O(1)-C(1)-C(2)-C(13) 131.63(16) 

O(2)-C(1)-C(2)-C(14) -167.9(2) 

O(1)-C(1)-C(2)-C(14) 10.6(2) 
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O(2)-C(1)-C(2)-C(3) 75.9(2) 

O(1)-C(1)-C(2)-C(3) -105.54(17) 

O(3)-C(3)-C(2)-C(13) 165.89(17) 

C(4)-C(3)-C(2)-C(13) -9.8(2) 

O(3)-C(3)-C(2)-C(1) 47.1(2) 

C(4)-C(3)-C(2)-C(1) -128.65(18) 

O(3)-C(3)-C(2)-C(14) -62.2(2) 

C(4)-C(3)-C(2)-C(14) 122.11(18) 

C(1)-O(1)-C(15)-C(14) -21.6(2) 

C(2)-C(13)-C(12)-C(11) -42.0(2) 

C(10)-C(11)-C(12)-C(13) -47.3(2) 

C(30)-C(31)-C(32)-C(33) -45.3(2) 

C(21)-O(4)-C(35)-C(34) -20.9(2) 

C(22)-C(34)-C(35)-O(4) 28.0(2) 

C(25)-C(26)-C(27)-C(29) -3.7(3) 

C(25)-C(26)-C(27)-C(28) 176.72(19) 

C(30)-C(29)-C(27)-C(26) 3.0(3) 

C(30)-C(29)-C(27)-C(28) -177.41(19) 

C(31)-C(32)-C(33)-C(22) -43.6(2) 

C(21)-C(22)-C(33)-C(32) -165.36(16) 

C(23)-C(22)-C(33)-C(32) 78.2(2) 

C(34)-C(22)-C(33)-C(32) -52.2(2) 

O(1)-C(15)-C(14)-C(2) 27.1(2) 

C(13)-C(2)-C(14)-C(15) -139.45(17) 

C(1)-C(2)-C(14)-C(15) -22.4(2) 

C(3)-C(2)-C(14)-C(15) 88.43(19) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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APPENDIX 2 

  Spectra Relevant to Chapter 3: Enantioselective Nickel-Catalyzed a-

Spirocyclization of Lactones 
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Figure A2.2 IR (NaCl, Thin Film) of compound 185a. 

Figure A2.3 13C NMR (101 MHz, CDCl3) of compound 185a. 
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Figure A2.5 IR (NaCl, Thin Film) of compound 185b. 

Figure A2.6 13C NMR (101 MHz, CDCl3) of compound 185b. 
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Figure A2.8 IR (NaCl, Thin Film) of compound 185c. 

Figure A2.9 13C NMR (101 MHz, CDCl3) of compound 185c. 
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Figure A2.11 IR (NaCl, Thin Film) of compound 189. 

Figure A2.12 13C NMR (101 MHz, CDCl3) of compound 189. 
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Figure A2.14 IR (NaCl, Thin Film) of compound S17. 

Figure A2.15 13C NMR (101 MHz, CDCl3) of compound S17. 
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Figure A2.17 IR (NaCl, Thin Film) of compound S18. 

Figure A2.18 13C NMR (101 MHz, CDCl3) of compound S18. 
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Figure A2.20 IR (NaCl, Thin Film) of compound S20. 

Figure A2.21 13C NMR (101 MHz, CDCl3) of compound S20. 
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Figure A2.23 IR (NaCl, Thin Film) of compound 185d. 

Figure A2.24 13C NMR (101 MHz, CDCl3) of compound 185d. 
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Figure A2.26 IR (NaCl, Thin Film) of compound S22. 

Figure A2.27 13C NMR (101 MHz, CDCl3) of compound S22. 
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Figure A2.29 IR (NaCl, Thin Film) of compound S23. 

Figure A2.30 13C NMR (101 MHz, CDCl3) of compound S23. 
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Figure A2.32 IR (NaCl, Thin Film) of compound S24. 

Figure A2.33 13C NMR (101 MHz, CDCl3) of compound S24. 
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Figure A2.35 IR (NaCl, Thin Film) of compound S25. 

Figure A2.36 13C NMR (101 MHz, CDCl3) of compound S25. 
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Figure A2.38 IR (NaCl, Thin Film) of compound S26. 

Figure A2.39 13C NMR (101 MHz, CDCl3) of compound S26. 
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Figure A2.41 IR (NaCl, Thin Film) of compound S27. 

Figure A2.42 13C NMR (101 MHz, CDCl3) of compound S27. 
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Figure A2.43 19F NMR (376 MHz, CDCl3) of compound S27. 



Appendix 2: Spectra Relevant to Chapter 3  
 

334 

0
1

2
3

4
5

6
7

8

p
p
m

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

O

O
C
N

S2
9

Fi
gu

re
 A

2.
4 4

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 

S2
9.

 



Appendix 2: Spectra Relevant to Chapter 3  
 

335 

020406080100120140160180

ppm

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure A2.45 IR (NaCl, Thin Film) of compound S29. 

Figure A2.46 13C NMR (101 MHz, CDCl3) of compound S29. 
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Figure A2.48 IR (NaCl, Thin Film) of compound S30. 

Figure A2.49 13C NMR (101 MHz, CDCl3) of compound S30. 
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Figure A2.51 IR (NaCl, Thin Film) of compound S31. 

Figure A2.52 13C NMR (101 MHz, CDCl3) of compound S31. 
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Figure A2.54 IR (NaCl, Thin Film) of compound S32. 

Figure A2.55 13C NMR (101 MHz, CDCl3) of compound S32. 



Appendix 2: Spectra Relevant to Chapter 3  
 

342 

 
 

  

-103.3-103.2-103.1-103.0-102.9-102.8-102.7-102.6-102.5-102.4-102.3-102.2-102.1-102.0-101.9-101.8-101.7

ppm

Figure A2.56 19F NMR (376 MHz, CDCl3) of compound S32. 
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Figure A2.58 IR (NaCl, Thin Film) of compound S33. 

Figure A2.59 13C NMR (101 MHz, CDCl3) of compound S33. 
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Figure A2.61 IR (NaCl, Thin Film) of compound S34. 

Figure A2.62 13C NMR (101 MHz, CDCl3) of compound S34. 
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Figure A2.63 19F NMR (376 MHz, CDCl3) of compound S34. 
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Figure A2.65 IR (NaCl, Thin Film) of compound S35. 

Figure A2.66 13C NMR (101 MHz, CDCl3) of compound S35. 
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Figure A2.68 IR (NaCl, Thin Film) of compound 187a. 

Figure A2.69 13C NMR (101 MHz, CDCl3) of compound 187a. 
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Figure A2.71 IR (NaCl, Thin Film) of compound 187b. 

Figure A2.72 13C NMR (101 MHz, CDCl3) of compound 187b. 
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13C	NMR	(101	MHz,	CDCl3)	δ	179.25,	145.69,	143.94,	132.88,	130.52,	127.60,	118.56,	109.25,	66.66,	39.10,	34.29,	29.97,	28.76,	28.64,	21.94.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A2.74 IR (NaCl, Thin Film) of compound 187c. 

Figure A2.75 13C NMR (101 MHz, CDCl3) of compound 187c. 
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Figure A2.77 IR (NaCl, Thin Film) of compound 187d. 

Figure A2.78 13C NMR (101 MHz, CDCl3) of compound 187d. 
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Figure A2.79 19F NMR (376 MHz, CDCl3) of compound 187d. 
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Figure A2.81 IR (NaCl, Thin Film) of compound 187e. 

Figure A2.82 13C NMR (101 MHz, CDCl3) of compound 187e. 
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Figure A2.84 IR (NaCl, Thin Film) of compound 187f. 

Figure A2.85 13C NMR (101 MHz, CDCl3) of compound 187f. 
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Figure A2.86 19F NMR (376 MHz, CDCl3) of compound 187f. 
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Figure A2.88 IR (NaCl, Thin Film) of compound 187g. 

Figure A2.89 13C NMR (101 MHz, CDCl3) of compound 187g. 
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Figure A2.91 IR (NaCl, Thin Film) of compound S37. 

Figure A2.92 13C NMR (101 MHz, CDCl3) of compound S37. 



Appendix 2: Spectra Relevant to Chapter 3  
 

368 

 

0
1

2
3

4
5

6
7

8

p
p
m

1
H
	N
M
R
	(
4
0
0
	M
H
z,
	C
D
C
l 3
)	
δ	
7
.6
8
	(
d
d
d
,	
J
	=
	7
.8
,	
1
.4
,	
0
.6
	H
z,
	1
H
),
	7
.5
8
	(
td
,	
J
	=
	7
.7
,	
1
.4
	H
z,
	1
H
),
	7
.4
3
	–
	7
.3
2
	(
m
,	
2
H
),
	6
.7
8
	(
d
t,
	J
	=
	1
1
.6
,	
1
.9
	H
z,
	1
H
),
	5
.9
2
	(
d
t,
	J
	=
	1
1
.6
,	
7
.4
	H
z,
	1
H
),
	4
.3
3
	(
td
,

J
	=
	8
.9
,	
2
.6
	H
z,
	1
H
),
	4
.1
9
	(
d
d
d
,	
J
	=
	1
0
.0
,	
9
.1
,	
6
.7
	H
z,
	1
H
),
	2
.8
0
	(
d
d
d
d
,	
J
	=
	1
4
.9
,	
6
.9
,	
4
.7
,	
1
.9
	H
z,
	1
H
),
	2
.6
8
	(
d
td
,	
J
	=
	1
0
.5
,	
8
.8
,	
4
.7
	H
z,
	1
H
),
	2
.4
9
	–
	2
.3
5
	(
m
,	
2
H
),
	1
.9
1
	(
d
d
d
d
,	
J
	=
	1
2
.7
,	
1
0
.5
,

9
.9
,	
8
.6
	H
z,
	1
H
).

Fi
gu

re
 A

2.
9 3

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 

18
7h

.  

O

O
N
C

18
7h



Appendix 2: Spectra Relevant to Chapter 3  
 

369 

020406080100120140160180

ppm

13C	NMR	(101	MHz,	CDCl3)	δ	178.41,	140.39,	132.92,	132.59,	132.23,	129.56,	128.17,	127.57,	117.84,	112.27,	66.57,	39.14,	29.09,	28.20.

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure A2.94 IR (NaCl, Thin Film) of compound 187h. 

Figure A2.95 13C NMR (101 MHz, CDCl3) of compound 187h. 
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30.67,	26.15.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure A2.97 IR (NaCl, Thin Film) of compound S39. 

Figure A2.98 13C NMR (101 MHz, CDCl3) of compound S39. 
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Figure A2.100 IR (NaCl, Thin Film) of compound 192. 

Figure A2.101 13C NMR (101 MHz, CDCl3) of compound 192. 
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13C	NMR	(101	MHz,	CDCl3)	δ	175.18,	154.91,	143.92,	133.09,	132.87,	130.59,	128.87,	128.68,	127.29,	127.09,	120.99,	118.49,	113.26,	112.14,	55.73,	48.07,	43.77,	35.08,	25.22.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure A2.103 IR (NaCl, Thin Film) of compound 183. 

Figure A2.104 13C NMR (101 MHz, CDCl3) of compound 183. 
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13C	NMR	(101	MHz,	CDCl3)	δ	204.87,	173.12,	154.98,	153.95,	135.39,	135.25,	128.94,	128.90,	127.83,	127.28,	126.55,	124.74,	121.10,	112.21,	58.90,	55.90,	47.45,	38.06,	31.02.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A2.106 IR (NaCl, Thin Film) of compound 184. 

Figure A2.107 13C NMR (101 MHz, CDCl3) of compound 184. 
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Figure A2.109 IR (NaCl, Thin Film) of compound 186a. 

Figure A2.110 13C NMR (101 MHz, CDCl3) of compound 186a. 
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Figure A2.112 IR (NaCl, Thin Film) of compound 186b. 

Figure A2.113 13C NMR (101 MHz, CDCl3) of compound 186b. 
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Figure A2.115 IR (NaCl, Thin Film) of compound 186c. 

Figure A2.116 13C NMR (101 MHz, CDCl3) of compound 186c. 
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Figure A2.117 19F NMR (376 MHz, CDCl3) of compound 186c. 
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  Figure A2.119 IR (NaCl, Thin Film) of compound 186d. 

Figure A2.120 13C NMR (101 MHz, CDCl3) of compound 186d. 
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Figure A2.122 IR (NaCl, Thin Film) of compound 188a. 

Figure A2.123 13C NMR (101 MHz, CDCl3) of compound 188a. 



Appendix 2: Spectra Relevant to Chapter 3  
 

389 

0
1

2
3

4
5

6
7

p
p
m

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

O

O

O
O
M
e

18
8b

Fi
gu

re
 A

2.
1 2

4 
1 H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 

18
8b

. 



Appendix 2: Spectra Relevant to Chapter 3  
 

390 

020406080100120140160180200

ppm

 
 
 
 
 
 
 
 
 
 

 
  

Figure A2.125 IR (NaCl, Thin Film) of compound 188b. 

Figure A2.126 13C NMR (101 MHz, CDCl3) of compound 188b. 
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Figure A2.129 13C NMR (101 MHz, CDCl3) of compound 188c. 

Figure A2.128 IR (NaCl, Thin Film) of compound 188c. 
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Figure A2.131 IR (NaCl, Thin Film) of compound 188d. 

Figure A2.132 13C NMR (101 MHz, CDCl3) of compound 188d. 



Appendix 2: Spectra Relevant to Chapter 3  
 

395 

 

  -108.0-107.8-107.6-107.4-107.2-107.0-106.8-106.6-106.4-106.2-106.0-105.8

ppm

Figure A2.133 19F NMR (376 MHz, CDCl3) of compound 188d. 
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13C	NMR	(101	MHz,	CDCl3)	δ	206.43,	175.96,	165.88,	142.26,	137.93,	133.97,	130.03,	128.40,	66.23,	61.57,	57.88,	32.59,	31.70,	30.02,	21.90,	14.43.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A2.135 IR (NaCl, Thin Film) of compound 188e. 

Figure A2.136 13C NMR (101 MHz, CDCl3) of compound 188e. 
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Figure A2.138 IR (NaCl, Thin Film) of compound 188f. 

Figure A2.139 13C NMR (101 MHz, CDCl3) of compound 188f. 
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Figure A2.140 19F NMR (376 MHz, CDCl3) of compound 188f. 
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Figure A2.142 IR (NaCl, Thin Film) of compound 188g. 

Figure A2.143 13C NMR (101 MHz, CDCl3) of compound 188g. 
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13C	NMR	(101	MHz,	CDCl3)	δ	198.96,	175.64,	135.76,	133.83,	133.53,	132.49,	131.37,	131.35,	128.75,	128.01,	65.67,	60.71,	32.89,	31.13.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure A2.145 IR (NaCl, Thin Film) of compound 188h. 

Figure A2.146 13C NMR (101 MHz, CDCl3) of compound 188h. 
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Figure A2.148 IR (NaCl, Thin Film) of compound 190. 

Figure A2.149 13C NMR (101 MHz, CDCl3) of compound 190. 
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Figure A2.151 IR (NaCl, Thin Film) of compound 191. 

Figure A2.152 13C NMR (101 MHz, CDCl3) of compound 191. 
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Figure A2.154 IR (NaCl, Thin Film) of compound 193. 

Figure A2.155 13C NMR (101 MHz, CDCl3) of compound 193. 
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13C	NMR	(101	MHz,	CDCl3)	δ	178.42,	172.08,	150.74,	149.46,	132.62,	132.10,	129.65,	128.47,	127.14,	127.13,	126.33,	123.94,	118.29,	(2	C's,	overlapped),	66.57,	54.84,	39.57,	36.15.

 

 
Figure A2.157 IR (NaCl, Thin Film) of compound S41. 

Figure A2.158 13C NMR (101 MHz, CDCl3) of compound S41. 
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CHAPTER 4 

Low Part-Per-Trillion, Humidity Resistant Detection of Nitric Oxide 

Using Microtoroid Optical Resonators 

4.1   INTRODUCTION 

Systems for the selective and rapid detection of gases are important tools used to 

monitor environmental impacts,1 occupational safety,2 and human biomarkers.3 Nitric 

oxide is a common byproduct of vehicle exhaust and industrial processes involving 

combustion, making it a main contributor to air pollution.4 In fact, nitric oxide is a major 

industrial emission contributing to ozone layer depletion.5  In the context of atmospheric 

chemistry, the detection of nitric oxide at the sub-ppb level is important for the study of 

climate history, air-snow interactions, and current atmospheric processes.6–8 Additionally, 

nitric oxide detection in low ppt levels may have applications in determining the 

habitability of remote moons and exoplanets,9 as NO is a biosignature of terrestrial life.  In 

addition to its environmental impacts, nitric oxide also serves as an important biomarker 

of respiratory health. Higher concentrations of exhaled nitric oxide are associated with 

asthma and Chronic Obstructive Pulmonary Disease (COPD), and the exhaled nitric oxide 

(FENO) test is commonly administered in the diagnosis of these diseases.10 Furthermore, 
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nitric oxide is easily oxidized in air to nitrogen dioxide, a common air pollutant which is 

highly corrosive and toxic and has been implicated as a danger to human respiratory 

health.11 To mitigate injury due to gas exposure and monitor the environmental impacts of 

industrial processes, selective sensors for NO detection must be developed and deployed.12 

Additionally, for sensors to produce reliable and reproducible results in the field, resistance 

to external environmental factors such as humidity must be demonstrated.  

A variety of sensors have been established for nitric oxide monitoring, including 

chemical electrode sensors,13 chemiresistive gas sensors (CGS),14–18 Rayleigh surface 

acoustic wave resonators (RSAW)19 and chemiluminescence-based sensors.20 The lowest 

limits of NO detection (sub-ppt) have been achieved with single-wall carbon nanotube 

(SWNT) based sensors, albeit with a lack of analyte specificity and lab-to-lab perturbations 

in sensitivity.15 Semiconductor metal oxide based chemiresistive gas sensors have also 

demonstrated merit in NO sensing, however their practicality is limited by their extreme 

operating temperatures.21 Additionally, chemiresistive gas sensors often display poor 

humidity tolerance due to the competitive absorption of water onto metal oxide 

semiconductor surfaces.22 Recently, the development of humidity resistant materials for 

gas sensing has received much attention.23–25 Highly practical, wearable, flexible, and 

humidity resistant NO/NO2 gas sensors based on laser-induced graphene were recently 

reported by Yang and coworkers, displaying a LOD of 8.3 ppb for NO.14 Despite this 

advance, there have been no reports of part-per-trillion level nitric oxide sensors that are 

selective as well as humidity resistant, a gap which we aimed to address through our 

research efforts.  
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Recently, our lab developed a platform for selective, ultra-sensitive gas sensing 

using whispering-gallery mode (WGM) microtoroid sensors coated with polymer 

brushes.26 WGM optical microresonators have attracted intense interest in the past decades 

due to their high quality factors (Q) and small mode volumes, which cause enhanced light 

matter interaction. In WGM microresonators, photons will take hundreds of thousands of 

round trips while interacting with analytes on the surface, significantly increasing the 

optical sensing signal response to analytes. Since 2002, sensing based on WGM mode shift 

has developed a wide application area, including proteins,27–30 gases,26 exosomes,31,32 

nanoparticles,27 viruses,33 and even single molecules.27,34 Frequency locked optical 

whispering evanescent resonator (FLOWER) is a sensing system that provides a lock-in 

method to track WGM resonances in real time with high (sub-femtometer) 

resolution.27,30,35–38 This system allows us to further investigate the resonance shift of a 

WGM sensor at timescales as short as milliseconds when the sensor is placed in a 

continuously changing external environment. FLOWER provides advantages over 

plasmonic39 or hybrid plasmonic-WGM sensors40 in that it uses a bare microcavity, which 

enables a greater capture area and thus response time.41  

In this research, we create a WGM gas-sensing platform to enable selective nitric 

oxide sensing in the low part-per-trillion range (6.4 ppt – 240 ppt). This is two orders of 

magnitude lower than what has previously been demonstrated with whispering gallery 

mode sensors for volatile organics such as DIMP, ammonia, and formaldehyde.26 Co-

polymers of 2-(methacryloyloxy) ferrocenecarboxylate (FcMA) and methyl methacrylate 

(MMA) were synthesized and deposited on the surface of the microtoroid in a polymer 
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brush. We propose that the selective binding of NO to the Fe centers in the poly(FcMA-

MMA) co-polymer coating results in the formation of iron nitrosyl species within the 

polymer brush, causing brush swelling and a corresponding WGM resonance shift. While 

polymers of this type have been previously accessed via free-radical polymerization42 and 

atom-transfer radical polymerization,43 to the best of our knowledge, this is the first report 

of FcMA/MMA statistical co-polymers prepared via reversible addition fragmentation 

chain-transfer (RAFT) polymerization. Employing RAFT polymerization allowed us to 

access polymers with precise control over molecular weight while ensuring end-group 

fidelity. By testing polymeric coatings with various molecular weights and ferrocene 

content in our gas sensing experiments, we gauged the impacts of these factors on sensor 

performance. Additionally, our sensor displayed excellent specificity for NO, exhibiting 

no response greater than blank noise to volatile organics including benzene, hexanes, and 

diisopropyl methylphosphonate (DIMP). To evaluate the selectivity and practicality of our 

device, we tested it in different humidity environments, finding that sensor’s response was 

consistent despite changes in humidity.  Lastly, we discuss our proposed detection 

mechanism of NO and explain our sensor’s high selectivity.                      

4.2  EXPERIMENTAL METHODS 

Polymer Synthesis and Microtoroid Coating 

Statistical co-polymers of 2-(methacryloyloxy) ferrocenecarboxylate and methyl 

methacrylate were prepared via RAFT polymerization (Scheme 4.1). Chain transfer agent 

CTA-OSu and radical initiator Int-OSu were employed to reliably install the desired 
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succinimide ester end group needed for toroid functionalization. Polymer A was prepared 

by employing a 1: 10 ratio of FcMA to MMA, leading to a statistical co-polymer with a 1: 

8.8 ratio of FcMA: MMA units (determined by 1H NMR) and a Mn of 10.1 kDa, with 

excellent polydispersity of Mn/Mw = 1.032. Polymer B was prepared in the same fashion, 

however a 1: 20 ratio of FcMA to MMA was employed, leading to a polymer with Mn ~ 

8.5 kDa, Mn/Mw ~ 1.08 and a FcMA: MMA ratio of 1: 18.5.   

 Scheme 4.1 Synthesis of statistical copolymers of 2-(methacryloyloxy) 

ferrocenecarboxylate and methyl methacrylate via RAFT polymerization.  

Microdisks were fabricated as previously described27 in a cleanroom via 

photolithography, patterning, and etching. Then, the silica microdisk was reflowed using a 

carbon dioxide laser to form a microtoroid structure with a major radius of 100 !m in 

diameter and a minor radius of 10 !m.  Following plasma treatment of the microtoroid 

surface, the chip was immersed in a glass vial containing a 1% solution of 3-(aminopropyl) 

triethoxysilane (APTES) in 990 μL of chloroform, functionalizing the silica surface with 

free amine groups (Scheme 4.2). The vial was placed on a nutator for 10 min and the chip 

was then rinsed with chloroform and dried with nitrogen. Afterwards, the chip was 

immersed in a 5 mM solution of either Polymer A or Polymer B for 2 hours, depositing the 
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polymer brush via an on-toroid amide coupling reaction. The chip was rinsed and blown-

dry and then baked on a 100 ˚C hotplate for 30 min to evaporate most of the solvent and 

enhance the stability of the surface. Lastly, the chip was placed in a room-temperature 

vacuum overnight to thoroughly remove residual solvent. 

Scheme 4.2 Deposition of polymer brush onto microtoroid surface. 

Gas Sensing  

The chip was placed inside a small chamber (Figure 4.1a) enclosed  inside a larger 

20 cm × 10 cm	×	10 cm stainless steel box connected to a vacuum to remove residual gas. 

A TEC element (Thorlabs TECD2S) was placed at the bottom of the small chamber. The 

small chamber was designed to reduce the space for diffusion and to make gas flow reach 

the microtoroid more evenly. A FlexStream™ Gas Standard Generator was connected to a 

flowmeter to read the exact flow rate into the chamber and then connected to the chamber 

to blow a target gas at a specific flow rate and concentration. The target gas was generated 

by mixing high concentration gas from a permeation tube and a gas carrier (either nitrogen 

or argon). This brings the gas to a secondary dilution system for further dilution to low 

part-per-trillion values. The concentration was controlled by adjusting the primary dilution 
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flow rate ,Fpd, the component gas flow rate, Fc, and diluted gas rate, Fsd, in the second 

dilution system. The final diluted gas concentration in ppm unit $!!"# is given by: 

$!!"# =
&$%/"'$ × 22.41	L/mol

01 × 2!(
× 2)
2) + 2*(

 
(1) 

where 01  is molecule weight of target gas and &$%/"'$  is the emission rate of the 

permeation tube. The flowmeter sets the flow rate after the second dilution system. 

The FLOWER system uses a tunable laser (Velocity TLB-6700).The laser light 

polarization is adjusted by a polarization controller and goes through a 50:50 fiber splitter. 

One beam goes directly to a balanced photodetector (PD) while another goes through a 

tapered optical fiber. The balanced PD minimizes the effects of laser power fluctuations. 

A 24-bit data acquisition (DAQ) card collects the real time wavelength signal from both 

the laser and the temperature sensor. The fundamental mode was selected for tracking, as 

it exhibits the highest quality factors and greatest field area overlap with the polymer layer 

where the gas absorption is changing the optical properties of the layer (Figure 4.1c). 

Afterwards, the laser wavelength was locked-in to the selected fundamental mode and the 

DAQ monitored both the laser wavelength shift and the temperature sensor to give the raw 

data of WGM resonance and temperature.  

Before testing the response to nitric oxide, argon was blown into the sample 

chamber for 30 minutes until thermal equilibration occurred. During an experiment, we 

cycled between blowing in pure argon for 10 minutes as a blank comparison and blowing 

in the mixed target gas and gas carrier for another 10 minutes. Argon was chosen as the 

carrier gas for the nitric oxide sensing experiments, as it is more dense than nitric oxide 
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and therefore can reliably displace it in between cycles. After completing one cycle, 

recording was stopped for several minutes until the residual waste gas was removed and 

the chamber re-filled with pure argon. (Figure 4.2) 

Figure 4.1 (a) Diagram of gas-sensing setup (b) Gas chamber with humidity sensor 

and coupled toroid. (c) Schematic of the coated microtoroid and nitric oxide binding 

process.  

 

4.3  RESULTS AND DISCUSSION  

The WGM resonance wavelength (Δλ) was measured in real time at concentrations 

from 6.4 ppt to 240 ppt (Figure 4.2). The chamber was purged with argon between each 
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concentration tested in order to release any NO absorbed in the polymer coating. Linear 

fits were assigned to track the sensor’s response during the intervals of Ar purging (white 

intervals) and nitric oxide exposure (red intervals).  

Figure 4.2 (a) FLOWER response to nitric oxide using a Polymer A as the toroid 

coating. (b) FLOWER response to nitric oxide sensing using Polymer B as the toroid 

coating.  

Nitric oxide detection real-time traces post temperature calibration are shown in 

Figure 4.3, where the sensor’s response is plotted against nitric oxide concentration.  The 

wavelength shift value (Δλ) is the relative wavelength shift from the starting point. The 

slope of the wavelength shift over time is considered to be the target gas response. 

Langmuir’s theory of adsorption44 is applied in our case to describe the molecule binding 

dynamic and fit the curve of response. The two groups of data were fit to: 
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4 = 56
7( + 6	

 (2) 

where B and 7( are both fitting parameters (Figure 4.3b). By calculating the intersection 

point between the curve and the blank signal (1.5 fm/min), we derived the LOD (limit of 

detection) of the sensor for Polymer A to be 2.43 ppt and Polymer B to be 2.91 ppt. The 

response slope was relatively consistent across trials for concentrations from 0 to 100 ppt.  

Fluctuations observed at a given concentration between gas sensing trials were attributed 

to small differences in microtoroid size and polymer surface density. However, it was noted 

that the sensor’s response began to decrease when concentrations above 100 ppt were tested, 

implying that the polymer coating on the toroid was quickly saturating with gas. The total 

wavelength shift since time zero is plotted in Figure 4.3d to show that binding continued 

above 100 ppt although the binding rate is attenuated by the reduced number of binding 

sites. Concentrations above 240 ppt could also be detected, although this causes the sensor 

to saturate (Figure S5, Supporting Information). This capability can be valuable for issuing 

early warnings, as it allows for the detection of NO concentrations within the 6.4 to 240 

ppt range, while also indicating when larger concentrations are present. The sensor can also 

be recovered using heat, thus making it reusable after saturation (Figure S2, Supporting 

Information). 

The impact of the chemical composition and molecular weight of the polymeric 

coating on the toroid was also evaluated. Polymer A, which contains a higher ratio of 

FcMA to MMA, displayed a higher response slope than Polymer B for concentrations 

between 0 and 100 ppt. Polymer A contains twice as many Fe binding sites for nitric oxide  
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Figure 4.3 (a)  Plot of the sensor response to the tested concentrations of nitric oxide. 

(b) One-site specific binding curve fit of each response trace. (c) Sensor coated with 

polymer A response to nitric oxide in different humidity environments. (d) Total 

wavelength shift since time zero.  

relative to Polymer B, thereby increasing the swelling of the polymer coating and 

producing a higher response slope. Polymer coatings of lower (~ 6.9 kDa) and higher (~ 

19.2 kDa) molecular weights were also tested, but these either provided lower response 

slopes or saturated more quickly (Figure S4, Supporting Information). Additionally, a 
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polymer coating with low molecular weight (~ 5.0 kDa) but high FcMA content (1 : 5.7 

ratio of FcMA:MMA) produced an irreversible response to NO at ppb-level concentrations 

(Figure S5b, Supporting Information). We propose that the molecular weight of the 

polymeric coating impacts the surface density of the polymer brush, which in turn impacts 

the magnitude of the sensor response. Lower response slopes are observed for polymers 

with lower molecular weights (5.0 kDa – 6.9 kDa), as there are fewer ferrocene binding 

sites on shorter chains. Conversely, we propose that larger polymers (~ 19.2 kDa) reduce 

the surface density of the polymer brush due to additional steric hindrance.45,46 

To test the practicality of our sensor in the field, we also measured its response to 

NO in different humidity environments (Figure 4.3c). While competitive water absorption 

is a major challenge in the development of semiconductor metal oxide-based sensors22, we 

hypothesized that the hydrophobic nature of the polymer coating on the microtoroid surface 

would protect against water absorption. We anticipated that our poly(FcMA/MMA) 

coatings would have similar water-resistant properties to that of poly(methyl methacrylate), 

due to their similar chemical composition. Despite being a hydrophobic polymer, 

poly(methyl methacrylate) can absorb up to 2% (w/w) water and experience a small degree 

of physical swelling47. However, this small amount of water absorption is only observed 

after the polymer is immersed in distilled water for 24 hours. Therefore, one would expect 

that the short-term exposure of our similar poly(FcMA-MMA) co-polymer to air with a 

relative humidity of 47% would not cause significant swelling, due to the polymer’s 

hydrophobic nature. Accordingly, we anticipated the sensor’s performance would remain 

consistent in different humidity environments. Indeed, the sensor displayed a similar 
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response at 44% or 47% humidity as compared to 20% humidity. The response slopes at 

higher humidity are largely unaffected at concentrations between 6.4 and 20 ppt, but at 

concentrations between 40 ppt and 80 ppt, the response slopes are slightly lower than those 

observed for Polymer A at 20% humidity. While this does slightly increase the error in NO 

concentration detected, we anticipate that in our future experimentation, we will be able to 

derive a mathematical model that could be applied to minimize this error. Notably, this 

constitutes the first report of a humidity resistant, part-per-trillion level nitric oxide sensor.   

 In addition to humidity resistance, the sensor reported herein also demonstrates 

excellent selectivity for nitric oxide when compared to other hazard gases including 

diisopropyl methylphosphonate (DIMP), hexane, and benzene (Figure 4a-c). None of these 

gases gave a response higher than the blank signal, even when tested at part-per-billion 

level concentrations.  

We propose that the selective binding of NO to the Fe centers in the poly(FcMA-

MMA) co-polymer coating results in the formation of iron nitrosyl species within the 

polymer brush, causing brush swelling and a corresponding WGM resonance shift. NO is 

an important biological signaling molecule, and the interaction between NO and Fe-

containing enzymes is at the heart of many biosignaling pathways.48 NO is a redox-active 

ligand that can change oxidation states when bound to a transition metal center. The 

geometric and electronic structure of metal nitrosyl complexes is a complex phenomenon 

that has been the subject of intense study, and structure often depends on both the oxidation 

level of a metal center and its spin state.49  
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Figure 4.4 Selectivity demonstration of the FLOWER nitric oxide sensor. The sensor 

is tested in response to (a) DIMP, (b) hexane, (c) benzene. The grey and red line are 

linear fits to the blank  (nitrogen) and the target gas response. 

In the context of the nitric oxide sensor reported within, the geometric and 

electronic structure of the proposed iron nitrosyl species has yet to be elucidated. One 

possibility is that NO binds as a dative (L-type) ligand to the Fe center. As ferrocene is 

already an 18 electron complex, Cp ring slippage50 would be necessary to generate a stable 

iron nitrosyl species that avoids an unfavorable 20-electron configuration (Figure S7, 

Supporting Information). To the best of our knowledge, ferrocene-nitrosyl complexes of 

this type have not yet been reported in the literature. Future studies are required to 
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determine the geometric and electronic structure of the iron nitrosyl species formed on the 

surface of the sensor. 

One other mechanistic possibility we considered was a redox reaction between NO 

and ferrocene to form a ferrocenium hyponitrite species.51–53 We hypothesized that a 

colorimetric change in the polymer coating associated with the oxidation of ferrocene 

(yellow) to ferrocenium (blue) could change the coating’s refractive index, causing a WGM 

resonance shift. To test this hypothesis, we performed a solution-phase experiment wherein 

NO gas was bubbled through a solution of the poly(FcMA-MMA) co-polymer in MeCN. 

If the proposed oxidation occurred, we would have expected to observe a color change 

from yellow to blue. Instead, the solution stayed yellow even after 10 minutes of NO 

sparging, and no redox reaction was observed (Figure S21, Supporting Information). This 

experimental result does not support a redox mechanism; however, it cannot be ruled out 

at this time.  

In comparison to existing technologies for nitric oxide sensing, the FLOWER 

sensor reported herein displayed the lowest experimentally detected concentration to date 

of 6.4 ppt, with an LOD of 2.43 ppt (Table 4.1). Slightly lower limits of detection were 

reported for carbon nanotube sensors,15 albeit with a lack of selectivity. Except for carbon 

nanotube sensors, our FLOWER sensor is the only other reported device that can measure 

nitric oxide in the low part-per-trillion range, and its humidity resistance and selectivity 

provide distinct advantages over existing nitric oxide sensors.  
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Table 1. Comparison of FLOWER-based NO sensor against existing technologies. 

* We can detect higher concentrations if the sensor is heated (Fig. S5) 

4.4 CONCLUSION 

In this paper, we exhibit low part-per-trillion level selective nitric oxide detection 

using  WGM microtoroids functionalized with novel polymeric coatings. We synthesized 

ferrocene-containing polymers via RAFT polymerization that enable the sensor’s selective 

responsive to nitric oxide, finding that more ferrocene-rich polymers with molecular 

weights around 10 kDa displayed the best sensing capabilities. With FLOWER real-time 

resonance tracking, we experimentally detected nitric oxide in concentrations as low as 6.4 

ppt, the lowest experimentally demonstrated concentration reported in the literature, and 

we theoretically calculated an LOD of 2.43 ppt with a one-site binding model. Humidity 

resistance of the sensor was enabled by the hydrophobic nature of the polymer coatings 

Sensing 
Technique 

Calculated 
LOD 

Concentration 
Range  

Lowest 
Concentration 
Experimentally 

Detected 

References 

FLOWER  2.43 ppt 6.4 ppt – 240 ppt* 
 

6.4 ppt This paper 

Carbon nanotube 
chemiresistor 

590 ppq 10 ppt – 500ppm  10 ppt 15 

Carbon nanotube 
chemiresistor 

0.2 ppb 100 ppb – 5 ppm 100 ppb 16 

Graphene 
chemiresistor 

 2 ppb – 420 ppb 2 ppb 17 

LIG chemiresistor 8.3 ppb 20 ppb – 1 ppm 20 ppb 14 

ZnO chemiresistor 10 ppb 10 ppb – 1 ppm 10 ppb 18  

RSAW resonator 23 ppb 100 ppb –700ppb 100 ppb 19 

RSAW resonator  1 ppb – 200 ppb 1 ppb 54 

Chemical 
electrode 

350 ppb 2.5 ppm – 10 ppm 2.5 ppm 13 
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employed. Control experiments with several hazardous gases demonstrated the selectivity 

of our sensor to nitric oxide.  

4.5  EXPERIMENTAL SECTION  

4.5.1 Temperature Calibration  

Lock-in resonance shift raw data from FLOWER system and concurrent 

temperature sensor trace data. This data is subtracted to give the final trace.  

 
Figure 4.5. (a) Raw resonance shift data and real-time temperature trace. (b) 

Resonance shift after calibration. 

4.5.2 Sensor Recovery 

After saturation was observed for polymer C, a TEC heating element was set to 

100⁰C to recover the signal. Sensor recovery was then observed.  
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Figure 4.6. Sensor recovery experiment. The blue arrow points to the time that 

heating was applied. Comparing the response from 40 min to 60 min and 80 min to 

100 min, heating can recover the sensor’s performance. 

4.5.3 Control Experiments 

To demonstrate the necessity of the FcMA/MMA copolymer coating, we also tested 

microtoroids coated with either a ferrocenyl monolayer or poly(methyl methacrylate) 

(PMMA) in our nitric oxide sensing experiments (Figure 4.7a). The ferrocenyl monolayer-

coated microtoroid sensor displayed some response to nitric oxide at very low 

concentrations (6.4 ppt – 10 ppt) but quicky saturated (Figure 4.7a). The PMMA coated 

microtoroid did not provide a response above that of the control for concentrations from 

6.4 ppt – 480 ppt (Figure 4.7b). Taken together, these results imply that the FcMA/MMA 

co-polymer coating is necessary to generate a sensitive and selective response of the sensor 

to nitric oxide.  

Figure 4.7 (a) Structures of ferrocenyl monolayer and PMMA attached to the 

microtoroid. (b) Sensor response to nitric oxide for microtoroid coated with a 

ferrocenyl monolayer. (c) Sensor response to nitric oxide for microtoroid coated with 

PMMA.  
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4.5.4 Effect of Polymer Molecular Weight on Sensing Capabilities 

In addition to polymer A and B, we also evaluated the sensing capabilities of the 

polymeric coatings shown in Figure 4.8a. Polymers C and D contain similar FcMA content 

to Polymer B, but they differ in polymer chain length. Polymer E is a homopolymer of 2-

(methacryloyloxy) ferrocenecarboxylate (FcMA) with a molecular weight of ~ 5.9 kDa. 

Figure 4.8b shows the response of a microtoroid coated with Polymer C to nitric oxide. 

Although a response was observed for concentrations from 6.4 ppt – 40 ppt, saturation 
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behavior was observed at a lower concentration of 40 ppt, whereas Polymer B saturated at 

a higher concentration of 160 ppt. Polymer D has a similar n: m ratio with polymer C while 

it has smaller molecule weight. However, the performance in Figure 4.8c shows that 

polymer D has a higher response and saturation concentration. Polymer E, with a different 

structure, showed some response to nitric oxide from 10 ppt to 80 ppt, but the response 

slope was significantly lower at all concentrations measured. Interestingly, Polymer F, the 

most ferrocene-rich polymer tested, displayed a lower response slope to NO for the 

concentration range evaluated.  

The response from different polymers indicates that the sensitivity is not simply 

linearly related to either molecular weight of the polymer chain or the n: m ratio. For clarity, 

plots of sensitivity versus the n: m ratio, molecular weight, and total number of ferrocene 

binding sites are shown in Figure 4.8f. The values of the response at 40 ppt of Polymers A, 

B, C, D, F divided by concentration are taken as sensitivity with units of fm/(min∙ppt). The 

number of ferrocene binding sites is roughly proportional to MW times the n: m ratio. From 

Figure 4.8f we conclude that the sensitivity has a positive correlation with molecular 

weight when the molecular weight is lower than 11 kDa. The larger polymers (~ 19.2 kDa) 

reduce the surface density of the polymer brush due to additional steric hindrance. This 

effect also has an impact on the sensitivity versus number of ferrocene binding sites. 

Figure 4.8 (a) Structures of Polymers C – E. (b) FLOWER response to nitric oxide 

using a coating of Polymer C. (c) FLOWER response to nitric oxide using a coating of 

Polymer D. (d) FLOWER response to nitric oxide using a coating of Polymer E. (e) 
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FLOWER response to nitric oxide using a coating of Polymer F. (f) Sensitivity versus 

n: m ratio, molecular weight (MW) and number of ferrocene binding sites 

(represented as MW times n: m ratio).   
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4.5.5 Sensor Performance at High Concentration  

The sensors using Polymer B and Polymer F are tested at a higher concentration 

range. Both polymers showed saturation after the first concentration. For high 

concentration nitric oxide detection, a cleaning process is necessary if the sensor is to be 

used multiple times.  

 
Figure 4.9 (a) FLOWER response to nitric oxide using Polymer B from 0.26 to 1.5 

ppb of NO. (b) FLOWER response to nitric oxide using Polymer F from 0.5 to 2 ppb. 

 
4.5.6 Humidity Sensing Experiments 

High humidity environments were generated by putting water containers into the 

sample chamber (Figure 4.10). This approach was chosen to minimize noise generated by 

commercial humidifiers. A humidity sensor recorded the real-time humidity value in the 

chamber. This relatively sealed environment reached vapor-liquid equilibrium after over 
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an hour. After reaching equilibrium, temperature recording began and resonance shift 

tracking began. 

Figure 4.10 Top view of the big chamber. Water containers inside the chamber 

generate a humid environment. The chamber is covered during experimentation.  

 

4.5.7 Hypothesized Mechanism of NO Binding  

Figure 4.11 Possible structure of iron nitrosyl complex formed upon binding of NO 

to the Fe centers embedded in the polymer.  

4.5.8 Polymer Synthesis and Characterization  

All synthetic procedures were carried out using dry and degassed acetonitrile. CTA-

OSu55 and int-OSu56 were prepared according to the literature protocol. FcMA was 
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prepared according to the literature protocol43. Methyl methacrylate (stabilized with 6-tert-

Butyl-2,4-xylenol) was obtained from Tokyo Chemical Industry, and the inhibitor was 

removed immediately prior to polymerization via a short basic alumina plug. 1H NMR 

spectra were collected with a 400 mHz Bruker spectrometer and reported relative to 

residual CHCl3 (d = 7.26 ppm). Size Exclusion Chromatography data were collected using 

an Agilent 1260 series pump equipped with two Agilent PLgel MIXED-B columns (7.5 x 

300 mm), an Agilent 1200 series diode array detector, a Wyatt 18-angle DAWN HELEOS 

light scattering detector, and an Optilab rEX differential refractive index detector. The 

mobile phase was THF at a flow rate of 1 mL/min. The dn/dc value of the FcMA/MMA 

co-polymer at 25 ºC in THF was determined to be 0.094 mL/g via online calculation using 

injections of known concentration and mass.  

Scheme 4.3 Synthesis of poly(FcMA-MMA) via RAFT Polymerization 

General Procedure for FcMA/MMA Co-polymer Synthesis 

A 25 mL Schlenk tube was charged with a stir bar, CTA-OSu (0.2 equiv), int-OSu 

(0.01 equiv), and FcMA (1 equiv) as solids. Methyl methacrylate (10 or 20 equiv) was 

added via syringe, then dry MeCN (2.0 M in FcMA) was added via syringe. The flask was 

sealed and subjected to three freeze-pump-thaw cycles. After the final thaw, the flask was 
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not backfilled with inert gas. The reaction was placed in a 70 ºC oil bath, protected with a 

blast shield, and stirred for 17 h. The reaction was allowed to cool to 23 ºC, opened to air, 

and diluted with ~ 5 mL CHCl3 and the resulting viscous orange polymer was dissolved by 

vortexing. The solution was added dropwise to a flask of Et2O (150 mL) at -78 ºC with 

stirring to precipitate the FcMA/PMMA co-polymer. The solution was filtered through a 

medium porosity sintered glass frit, and the resulting sticky orange residue was re-

dissolved in 2-5 mL of CHCl3 and added dropwise to a flask of hexanes (150 mL) at -78 

ºC with stirring to re-precipitate the polymer. The solution was filtered as described above 

and the filtrate was washed with ~ 60 mL of hexanes (3 x 20 mL portions). The resulting 

light orange powder was dried under high vacuum at 40 ºC overnight to remove any 

residual solvent.  

Polymer A (n: m = 1: 8.8) 

Polymer A was prepared as described by the general procedure above using 10 

equiv of MMA relative to 1 equiv of FcMA. Mn (GPC) ~ 10.1 kDa, PDI = 1.03. 1H NMR 

(400 MHz, CDCl3, 298 K) δ 4.84 (bs), 4.44 (bs, overlapped), 4.41 (bs, overlapped), 4.23 

(bs, overlapped), 3.59 (bs), 3.23 (t), 2.85 (bs, overlapped), 1.80 (bm), 1.25 (bs), 1.02 (bs), 

0.85 (bm). Note: many of the aliphatic signals below 2 ppm are indiscernible due to 

substantial overlap. However, signals attributable to the succinimide ester end group and 

ferrocenyl protons are clearly marked. 

 

 

 



Chapter 4: Low Part-Per-Trillion, Humidity Resistant Detection of Nitric Oxide Using 
Microtoroid Optical Resonators 

 

438 

 

Polymer B (n: m = 1: 18.5) 

Polymer B was prepared as described by the general procedure above using 20 

equiv of MMA relative to 1 equiv of FcMA. Mn (GPC) ~ 8.5 kDa, PDI = 1.06. 1H NMR 

(400 MHz, CDCl3, 298 K) δ 4.94 (bs), 4.36 (bs, overlapped), 4.22 (bs, overlapped), 3.59 

(bs), 2.85 (bs, overlapped), 1.80 (bm), 1.24 (bs), 1.01 (bs), 0.85 (bm). Note: many of the 

aliphatic signals below 2 ppm are indiscernible due to substantial overlap. However, 

signals attributable to the succinimide ester end group and ferrocenyl protons are clearly 

marked. Additionally, the use of different experimental parameters (number of scans and 

relaxation delay) in the collection of this spectra is responsible for the peak broadening 

observed. 

Polymer C (n: m = 1: 22) 

Polymer C was prepared as described by the general procedure above using 20 

equiv of MMA relative to 1 equiv of FcMA, and 0.1 equiv of the CTA-OSu was used 

instead of 0.2 equiv. Mn (GPC) ~ 19.2 kDa, PDI = 1.05. 1H NMR (400 MHz, CDCl3, 298 

K) δ 4.83 (bs), 4.44 (bs, overlapped), 4.40 (bs, overlapped), 4.22 (bs, overlapped), 3.58 

(bs), 2.84 (bs, overlapped), 1.80 (bm), 1.24 (bs), 1.00 (bs), 0.83 (bm). 

Polymer D (n: m = 1: 21.5) 

Polymer D was prepared as described by the general procedure above using 20 

equiv of MMA relative to 1 equiv of FcMA, and 0.4 equiv of the CTA-OSu were used 

instead of 0.2 equiv. Mn (GPC) ~ 6.9 kDa, PDI = 1.22. 1H NMR (400 MHz, CDCl3, 298 
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K) δ 5.01 (bs), 4.42 (bs, overlapped), 4.33 (bs, overlapped), 4.21 (bs, overlapped), 3.59 

(bs), 2.85 (bs, overlapped), 1.80 (bm), 1.25 (bs), 1.01 (bs), 0.85 (bm). 

Polymer E  

To a solid mixture of 2-(Methacryloyloxy)ethyl ferrocenecarboxylate (1.07 g, 3.12 

mmol), CTA1 (100 mg, 0.2 mmol), and OSu initiator (4.3 mg, 0.010 mmol) was added 

anhydrous acetonitrile (2.5 mL). The resulting suspension was sealed in a thick walled 

reaction vessel fitted with a threaded PTFE high vacuum valve. The reaction mixture was 

degassed by three freeze-pump-thaw cycles. The reaction vessel was not backfilled with 

inert gas prior to heating. The reaction mixture was heated at 70 oC for 24 h. [Note: the 

reaction mixture was observed to become homogeneous within ca. 5 minutes of heating.] 

Upon cooling, an amorphous mass separated from the solution. Following exposure to air, 

the reaction mixture was dissolved into 10 mL of chloroform and precipitated into ca. 200 

mL of methanol cooled to -78 ºC. The resulting suspension was filtered through a medium 

porosity sintered glass frit, and the isolated solids were washed with room temperature 

methanol (3 x 20 mL). The resulting yellow solids were exposed to high vacuum at 40 ºC 

overnight to remove residual volatiles. Mn (GPC) = 5.9 kDa, PDI = 1.04. 1H NMR (400 

MHz, CDCl3, 298 K): δ 4.94 (bs), 4.74-3.99 (m), 3.21 (bs), 2.84 (s), 2.74 (bs), 2.17 (s, 

overlapped), 1.95 (bs), 1.80 (s), 1.62 (bs), 1.25 (s), 1.13 (s), 0.98 (bs), 0.92-0.84 (m).  

Polymer F (n: m = 1: 5.7)  

Polymer F was prepared as described by the general procedure above using 7.5 

equiv of MMA relative to FcMA. Mn (GPC) = 5.0 kDa, PDI = 1.11. 1H NMR (400 MHz, 
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CDCl3, 298 K): δ 4.95 (bs), 4.36 (bs, overlapped), 4.23 (bs, overlapped), 3.59 (bs), 3.23 

(bs), 2.85 (bs, overlapped), 1.81(bm), 1.25 (bs), 1.02 (bs), 0.88 (bm). 

Polymer Stability Over Time  

NMR of Polymer B After One Year of Storage at 23 ºC: 

1H NMR (400 MHz, CDCl3, 298 K) δ 4.84 (bs), 4.44 (bs, overlapped), 4.40 (bs, 

overlapped), 4.23 (bs, overlapped), 3.59 (bs), 2.85 (bs, overlapped), 1.80 (bs), 1.24 (bs), 

1.01 (bs), 0.84 (bm). Comparing to the spectrum taken immediately after isolation, there is 

no evidence of polymer chain scission or decomposition over time.  
Figure 4.12 1H NMR spectrum of Polymer B after one year. 
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4.5.9 Testing Redox Reaction Mechanistic Hypothesis 

Figure 4.13 Testing redox reaction mechanism by sparging a solution of polymer with 

NO.  

0 minutes  10 minutes 
 

Procedure: A solution of Polymer A (~ 10 mg) in dry, degassed MeCN was sparged 

vigorously with 22 ppmv NO in N2 for 10 minutes, and the color of the solution was 

monitored. No color change was observed.   
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*Please note, spectra are listed below in the order in which they appear in Section 4.5: Experimental Section 
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APPENDIX 3 

  Spectra Relevant to Chapter 4: Low Part-Per-Trillion, Humidity 

Resistant Detection of Nitric Oxide Using Microtoroid Optical 

Resonators 
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Figure A3.8 SEC trace of Polymer D. 
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Figure A3.10 SEC trace of Polymer E. 
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