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ABSTRACT

Adaptation in nature begins at the subcellular, molecular level with the delicate
interplay of biomolecule cascades orchestrating the myriad function of cells. The
intermingling activity of these cells becomes expressions of complex behavior of
multi-cellular system. Nature provides a dazzling array of examples showcasing the
variations of intelligent functions. However, in the realm of synthetic construction,
what systems have humans managed to engineer, and what are the boundaries of
our technological power? In comparison to nature’s repertoire, mankind’s accom-
plishments appear rather modest. The intricate behaviors observed in intelligent
organisms emerge from the collective interactions and feedback loops among their
constituent elements, resulting in the emergence of novel properties and phenom-
ena. To develop large-scale engineered systems exhibiting ever more brain-like,
intelligent behaviors, we must first devise new molecular architectures and algo-
rithms designed for adaptation and learning at the molecular scale. My research
presented here is a humble step toward those goals. I will present the design of
novel molecular systems made from DNA that exhibit complex neural computation
and learning behaviors.

Chapter 2 covers my contribution to scaling up the computing power of DNA cir-
cuits. From bacteria following simple chemical gradients to the brain distinguishing
complex odor information, the ability to recognize molecular patterns is essential for
biological organisms. This type of information-processing function has been imple-
mented using DNA-based neural networks. Winner-take-all computation has been
suggested as a potential strategy for enhancing the capability of DNA-based neural
networks. Compared to the linear-threshold circuits and Hopfield networks used
previously, winner-take-all circuits are computationally more powerful, allow sim-
pler molecular implementation, and are not constrained by coupling the number of
patterns and their complexity, so both a large number of simple patterns and a small
number of complex patterns can be recognized. Here, we report a systematic imple-
mentation of winner-take-all neural networks based on DNA-strand-displacement
reactions. We use a previously developed seesaw DNA gate motif, extended to
include a simple and robust component that facilitates the cooperative hybridization
involved in selecting a ‘winner.’ We show that with this extended seesaw motif,
DNA-based neural networks can classify patterns into up to nine categories. Each
of these patterns consists of 20 distinct DNA molecules chosen from the set of 100
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that represents the 100 bits in 10×10 patterns, with the 20 DNA molecules selected
tracing one of the handwritten digits ‘1’ to ‘9.’ The network successfully classified
test patterns with up to 30 of the 100 bits flipped relative to the digit patterns ‘remem-
bered’ during training, suggesting that molecular circuits can robustly accomplish
the sophisticated task of classifying highly complex and noisy information on the
basis of similarity to a memory.

Chapter 3 investigates the development of a computational neural network model
inspired by biological learning mechanisms, particularly focusing on the new mech-
anisms for learning in a WTA neural network. The study incorporates novel molec-
ular motifs used in inhibited activators and inhibited weights, designed specifically
for training from environmental input patterns. These motifs emulate biological
systems by facilitating memory storage and retrieval within DNA-based neural net-
works, similar to synaptic connections and signal processing observed in living
organisms. We assess the function of the individual molecular motifs and char-
acterize their specificity in up to 18-species cross-talk experiments. Furthermore,
we characterize the network’s performance across a wide array of training and test
patterns, mirroring the adaptive responses and diverse conditions encountered by
biological systems. Additionally, we analyze the computational efficiency and speed
of the learning system, comparing it with both the previous non-learning DNA-based
WTA model and a direct weight activation model. By exploring the principles of
molecular learning, particularly within winner-take-all neural networks, this study
aims to advance computational systems by emulating adaptability and resilience
observed in biological organisms using robust, new molecular motifs.
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NOMENCLATURE

branch migration. a process in which one or two DNA helices exchange strands
by the movement of a branch point or junction along a DNA molecule.

chemical reaction network. (CRN) a mathematical representation of a set of chem-
ical reactions in a system describing how reactants interact and transform into
products. It may also include kinetic rate parameters and initial species con-
centrations.

neural network. a computing system inspired by the brain, consisting of intercon-
nected nodes or neurons popular for tasks like recognition and decision-
making in the field of machine learning.

strand displacement. a molecular process in which one single-stranded DNA
molecule displaces another from a double helix by forming more stable
base pairs.

toehold. refers to a short, single-stranded DNA segment that acts as a specific
binding site on a longer DNA strand.

winner-take-all. (WTA) a neural network mechanism where the neuron with the
highest input value dominates and becomes the sole output, suppressing the
others.
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C h a p t e r 1

INTRODUCTION

1.1 DNA computation
DNA is well known for encoding genetic information and as the heredity material
in organisms. However, it can also be utilized beyond its biological role. Scientists
can create synthetic DNA sequences and use them as a programmable material
by exploiting the base-pairing specificity of DNA nucleotides. These synthesized
sequences can self-assemble and exhibit programmable interactions through base
pairing, enabling the construction of molecular circuits. Seminal work by Adleman
(1994) sparked interest in computing with molecules when he reimagined a use for
the large copy number of molecules as many parallel computing reactions. That in-
sight led him to solving the popular and computationally difficult Hamiltonian path
problem, known as the traveling salesman problem, using DNA molecules. Follow-
ing that foundational work, concepts like branch migration, strand displacement, and
toehold-mediated interactions (Yurke et al., 2000; Turberfield et al., 2003; Zhang
and Winfree, 2009) facilitated exquisite control over DNA reactions. Molecules
programmers then began building DNA-based logic gates (Saghatelian et al., 2003;
Okamoto et al., 2004; Seelig, Yurke, et al., 2005), expanding the possibilities for
engineering DNA-based computational systems. These advancements enabled the
design and implementation of early DNA-based molecular motors (Yurke et al.,
2000; Yin et al., 2004; Shin and Pierce, 2004) and multi-layered molecular circuits
(Seelig and Soloveichik, 2009; Qian and Winfree, 2011; Zhang and Seelig, 2011;
Qian, Winfree, and Bruck, 2011), cementing DNA as more than solely an evolu-
tionary molecule but serving as a programmable substrate for executing complex
computational tasks.

1.2 Inspiration from biological learning and adaptation
Learning is a fundamental process observed across various biological scales. The
brain’s remarkable ability to restructure and reorganize itself, known as neuroplas-
ticity, serves as the foundation of our understanding of learning, memory, and adapt-
ability. This phenomenon encompasses the brain’s capacity to form and strengthen
neural connections and rewire pathways in response to experiences, learning, and
environmental influences. At its essence, neuroplasticity embodies the brain’s adapt-
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ability, allowing for acquiring new skills and shaping behaviors, thoughts, and mem-
ories. The brain’s dynamic and malleable nature underpins our capacity to learn,
adjust to new situations, and navigate the complexities of the ever-changing world
around us.

Microorganisms, like bacteria, also exhibit learning-like behaviors. While microor-
ganisms lack a nervous system, they display adaptive responses to environmental
stimuli, demonstrating a form of primitive learning through evolutionary changes
and adaptive mechanisms. For instance, bacteria can respond to environmental
stressors, including exposure to antibiotics or changes in environmental conditions.
Bacteria become resistant to antibiotics over time by developing genetic mutations
or acquiring resistance genes. This adaptation demonstrates a type of ’learning’
where microorganisms respond and adjust to their surroundings, allowing them to
survive and proliferate in changing environments. Furthermore, microorganisms
can exhibit behaviors that indicate an ability to sense and react to environmental
cues. Some single-celled microorganisms, like certain algae or bacteria, exhibit
phototaxis or chemotaxis, moving towards or away from light or specific chemicals.
While not traditional forms of learning, these responses illustrate a capacity for
microorganisms to sense their environment and alter their behaviors in ways that
enhance their survival, demonstrating a basic form of molecular adaptability.

The distributed cells of the immune system also display a mechanism of learning
with remarkable parallels to machine learning. Immunological memory within the
immune system is analogous to machine learning’s concept of retaining informa-
tion. This biological mechanism involves memory B and T cells functioning as
repositories, storing precise details about confronted pathogens. Upon re-exposure
to a known threat, these memory cells promptly initiate a targeted immune response,
similar to how trained machine learning models apply past knowledge to respond
effectively to familiar scenarios. Just as machine learning models improve predic-
tions by learning from data, the immune system’s memory cells enable a faster and
more accurate response when confronted with previously encountered pathogens.
The role of memory is vital in both systems, demonstrating their ability to retain
and utilize past experiences to enhance future responses.

Biological adaptation, including neuroplasticity, microorganism evolution, and im-
munological memories, showcase life’s ability to learn, adapt, and thrive. Inspired
by natural biological processes, we have built an engineered system that leverages
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the programmability of DNA to create artificial neural networks that can store and
utilize information, adapting their responses to changing environments.

1.3 Neural network models of molecular information processing and learning
Artificial neural networks serve as a good mathematical model for biological learn-
ing due to their structure and function, which share parallels with the human brain’s
neural connections and learning mechanisms. These networks consist of intercon-
nected nodes (neurons) that process information, similar to the neural pathways
in the brain. Through an iterative process called “learning,” neural networks edit
their connections (weights) based on provided data, much like the brain adapts its
neural connections through experience. Given the choice of computing models,
neural networks hold greater interest compared to logic circuits primarily because
of their training processes. Unlike traditional logic circuits that rely on fixed, pre-
defined rules, neural networks can change their internal parameters, allowing them
to recognize patterns, make predictions, and perform complex tasks without ex-
plicit programming. This flexible behavior and resemblance to natural learning
systems make neural networks a desirable computational framework for building
novel, engineered molecular learning networks. We have developed molecular neu-
ral networks that leverage DNA’s programmability and self-assembly properties to
create synthetic circuits capable of learning and adapting to environmental stimuli.

Although biology and machine learning have a shared inspiration in biological in-
formation processing, their development has been largely divergent. Some projects
in the field of molecular computation have sought to integrate ideas from these dis-
parate fields—creating novel engineered systems that perform advanced information
processing. Qian et al. experimentally demonstrated a DNA-based Hopfield net-
work (Qian, Winfree, and Bruck, 2011) that could recall four 4-bit patterns. Others
have developed experimental (Pei et al., 2010) and theoretical (Aubert et al., 2013)
molecular systems that can be programmed to play a game. Lakin et al. (2014) pro-
posed a biomolecular circuit that could learn linear functions from labeled training
data. Y.-J. Chen et al. (2013) built a consensus network that computes approximate
majority using only DNA molecules. The output of the consensus network is sim-
ilar to winner-take-all, but the molecular implementation is very different from our
work. A mechanism for iterative updating of a biochemical network’s weights was
proposed by Baek et al. (2018). However, obtaining the weights required rounds of
laborious hybridization, purification, and enzymatic amplification. More recently,
Xiong et al. (2022) took inspiration from our work on scaling up DNA neural net-
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works and devised a system that could implement convolutional neural networks by
adding more orthogonal matrix multiplication operations to the input layer. This
allowed them to classify test patterns with more bits into more target classes.

The works from these groups highlight the strong interest in and potential of DNA
computation and molecular neural networks but also the many challenges. A molec-
ular Hopfield network that stores memories with more than four bits would be very
difficult to implement experimentally because it is a fully connected dual-rail net-
work requiring many update steps. The other published works (Lakin et al., 2014)
demonstrate how difficult it is to embed learning into a molecular system. Even a
small set of rules can require complex molecules, and basic learning algorithms like
linear regression on a 2-bit vector need many chemical species and reactions, mak-
ing them only possible in theory currently. The WTA network architecture is more
suitable for the experimental implementation of large-scale pattern recognition. The
simplicity of the learning algorithm we devised for the WTA network makes it an
ideal candidate for experimentally building an artificial molecular neural network
with learning capabilities.

1.4 WTA networks and their computational power
Winner-take-all (WTA) neural networks are a class of competitive neural models
featuring a mechanism where neurons compete to become the most activated while
inhibiting others. This network architecture facilitates the selection of the most
relevant input stimuli, suppressing less pertinent information. WTA networks are
fundamental in tasks such as pattern recognition and decision-making, enabling the
focusing of attention on only the salient data. They offer valuable insights into the
functioning of biological neural circuits and serve as a foundation for designing
more sophisticated and intricate neural networks.

The WTA network model has one output bit for each input bit it receives. In
hard-WTA, there is only one winner—the largest of the input bits. The output bit
corresponding to this winner is set to 1, and the rest are set to 0. The network is
capable of signal classification if a signal pattern is multiplied with a chosen weight
matrix, and then the WTA layer is applied to the weighted sums. A neural network
schematic of the function and the algorithm are shown in Fig. 3.1a.

WTA networks are not only inspiring because of their similarity to inhibitory biolog-
ical networks in the brain, but a single WTA layer also has surprising power (Maass,
2000). For example, a 𝑘-WTA unit can compute any Boolean function, and a single
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soft-WTA unit can approximate any continuous function. In fact, WTA circuits
are more powerful than perceptrons (McCulloch and Pitts, 1943), also known as a
linear threshold unit—one of the earliest and most common neural network algo-
rithms. A function computed by a single 𝑛-input WTA gate requires a feed-forward
circuit consisting of at least O(𝑛2) linear threshold gates. A single 𝑘-WTA gate can
compute the function of any two-layer feed-forward linear threshold circuit (Maass,
2000). Of further interest to molecular computing is that these WTA networks can
accomplish this using strictly positive weights. Compared with DNA-based linear
threshold circuits (Qian, Winfree, and Bruck, 2011), this eliminates the need for
dual-rail representations of negative values and enables more sophisticated compu-
tation by a network of similar size. WTA networks are also more flexible than the
previously demonstrated Hopfield network (Qian, Winfree, and Bruck, 2011). The
number of members is not restricted to the number of bits in a pattern—networks
with many small memories or several large memories can be constructed. Finally,
WTA networks have the simplest training function—using the desired target patterns
directly as the weight matrix. See Chapter 2 Section 2.9 for more information on
the theoretical limits of WTA networks.

1.5 Summary of thesis
The work is presented here in two closely related chapters. Chapter 2 discusses our
work establishing winner-take-all neural networks as a powerful model for DNA-
based pattern classification. Chapter 3 builds directly on Chapter 2 and explains
the newly added features of adaptable weights and supervised learning in WTA
networks.

Chapter 2 covers my contribution to scaling up the computing power of DNA cir-
cuits. From bacteria following simple chemical gradients to the brain distinguishing
complex odor information, the ability to recognize molecular patterns is essential
for biological organisms. This type of information-processing function has been
implemented using DNA-based neural networks but has been limited to the recog-
nition of a set of no more than four patterns, each composed of four distinct DNA
molecules. Winner-take-all computation has been suggested as a potential strat-
egy for enhancing the capability of DNA-based neural networks. Compared to the
linear-threshold circuits and Hopfield networks used previously, winner-take-all cir-
cuits are computationally more powerful, allow simpler molecular implementation,
and are not constrained by the number of patterns and their complexity, so both a
large number of simple patterns and a small number of complex patterns can be
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recognized. Here, we report a systematic implementation of winner-take-all neural
networks based on DNA-strand-displacement reactions. We use a previously devel-
oped seesaw DNA gate motif, extended to include a simple and robust component
that facilitates the cooperative hybridization involved in selecting a ‘winner.’ We
show that with this extended seesaw motif, DNA-based neural networks can classify
patterns into up to nine categories. Each of these patterns consists of 20 distinct
DNA molecules chosen from the set of 100 that represents the 100 bits in 10×10
patterns, with the 20 DNA molecules selected tracing one of the handwritten digits
‘1’ to ‘9.’ The network successfully classified test patterns with up to 30 of the 100
bits flipped relative to the digit patterns ‘remembered’ during training, suggesting
that molecular circuits can robustly accomplish the sophisticated task of classifying
highly complex and noisy information on the basis of similarity to a memory.

Chapter 3 investigates the development of a computational neural network model
inspired by biological learning mechanisms, particularly focusing on the new mech-
anisms for learning in a WTA neural network. The study incorporates novel molec-
ular motifs used in inhibited activators and inhibited weights, designed specifically
for training from environmental input patterns. These motifs emulate biological
systems by facilitating memory storage and retrieval within DNA-based neural net-
works, conceptually similar to synaptic plasticity and signal processing observed in
living organisms. We assess the function of the individual molecular motifs and
characterize their specificity in up to 18-species cross-talk experiments. Further-
more, we characterize the network’s performance across a wide array of training and
test patterns, mirroring the adaptive responses and diverse conditions encountered by
biological systems. Additionally, we analyze the computational efficiency and speed
of the learning system, comparing it with both the previous non-learning DNA-based
WTA model and a direct weight activation model. By exploring the principles of
molecular learning, particularly within winner-take-all neural networks, this study
aims to advance computational systems by emulating adaptability and resilience
observed in biological organisms using robust, new molecular motifs.
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C h a p t e r 2

WINNER-TAKE-ALL NEURAL NETWORKS FOR PATTERN
RECOGNITION

Cherry, Kevin M. and Lulu Qian (2018). “Scaling up molecular pattern recognition
with DNA-based winner-take-all neural networks”. In: Nature 559.7714, pp. 370–
376.

2.1 WTA function and its chemical reaction network implementation
Winner-take-all computation (Maass, 2000) is one of the simplest competitive neural
network models, inspired by the lateral inhibition and competition observed among
biological neurons in the brain (Redgrave et al., 1999). In this model, the output of a
neuron is ON if and only if the weighted sum of all binary inputs is the largest among
all neurons (Fig. 2.1a). Here, in a winner-take-all neural network, the weight matrix
associated with each output is also referred to as a “memory.” As shown in Fig. 2.1b,
a simple training algorithm uses the target patterns as weights. The example network
has two memories—in other words, it “remembers” two patterns—‘L’ and ‘T.’ The
network “recognizes” a pattern as being most similar to one of the memories if the
output associated with the memory is ON and all other outputs are OFF when the
pattern is given as an input. For instance, a corrupted ‘L’ with the last bit flipped
from 1 to 0 can be recognized as ‘L’ because it will result in 𝑦1 being ON and 𝑦2

being OFF.

The winner-take-all function can be broken into five sub-functions, each of which
can be implemented with a simple chemical reaction (Fig. 2.1c): First, weight
multiplication of 𝑥𝑖 × 𝑤𝑖 𝑗 (𝑥𝑖 is a binary input and 𝑤𝑖 𝑗 is an analog weight) is
implemented with a reaction wherein an input species 𝑋𝑖 catalytically converts a
weight species 𝑊𝑖 𝑗 to an intermediate product 𝑃𝑖 𝑗 . If 𝑋𝑖 is absent, no 𝑃𝑖 𝑗 will be
produced; if 𝑋𝑖 is present, the final concentration of 𝑃𝑖 𝑗 will be determined by the
initial concentration of 𝑊𝑖 𝑗 , thus setting the value of the weighted input. Next,
summation is implemented with reactions that convert all intermediate species 𝑃𝑖 𝑗

arriving at the same neuron to a common weighted sum species 𝑆 𝑗 . Comparing
which weighted sum is larger than the others is implemented with a set of “pairwise
annihilation” reactions, wherein each weighted sum species 𝑆 𝑗 destroys any other
weighted sum species 𝑆𝑘 until only a single winner is left. Signal restoration
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reactions bring the concentration of the winner species back to a predetermined
output value—the final concentration of a winning output species 𝑌 𝑗 corresponds
to the initial concentration of a restoration gate species 𝑅𝐺 𝑗 . Finally, reporting
reactions are used to convert each output 𝑌 𝑗 to a fluorescent signal 𝐹𝑙𝑢𝑜𝑟 𝑗 .

All reactions except pairwise annihilation and signal restoration will naturally occur
sequentially because the product of a previous reaction is a reactant of the next one.
Since there are common reactants in the annihilation and restoration reactions, we
used different rates to control their order: the former has a much faster rate constant
than the latter, so a winner that survives all fast competitions is slowly converted to
an output signal.

2.2 DNA strand displacement implementation
Weight multiplication and signal restoration are both catalytic reactions that are
implemented with a pair of seesawing reactions (Qian and Winfree, 2011) (Fig. 2.1e
and Extended Data Fig. 2.5). An input 𝑋𝑖 (or weighted sum 𝑆 𝑗 ) species first
interacts with a weight 𝑊𝑖 𝑗 (or restoration gate 𝑅𝐺 𝑗 ) species through a reversible
strand displacement reaction (Zhang and Winfree, 2009) to release an intermediate
product 𝑃𝑖 𝑗 (or output 𝑌 𝑗 ) species. A fuel strand 𝑋𝐹𝑖 (or 𝑌𝐹𝑗 ) then frees the input
(or weighted sum) species for more catalytic cycles. As long as the fuel strand is
in excess, all weight (or restoration gate) molecules will eventually be converted
to intermediate (or output) molecules. Summation is implemented with a single
seesawing reaction facilitated by a summation gate 𝑆𝐺 𝑗 (Extended Data Fig. 2.5).
The reaction is reversible by itself but drained forward by the downstream irreversible
reaction of pairwise annihilation.

The annihilation reaction is implemented with cooperative hybridization (Zhang,
2010) (Fig. 2.1f). One weighted sum strand 𝑆 𝑗 can bind to a toehold on one side
of an annihilator molecule 𝐴𝑛ℎ 𝑗 𝑘 and branch migrate to the middle point of the
double-stranded domain. If only 𝑆 𝑗 is present, this process is completely reversible,
and no molecules will be consumed. However, if another weighted sum strand 𝑆𝑘

is also present, it can bind to another toehold on the opposite side of the annihilator
and also branch migrate to the middle point of the double-stranded domain. When
both 𝑆 𝑗 and 𝑆𝑘 strands simultaneously reach the middle point, the annihilator will
be split apart into two waste molecules. Because neither waste molecule has a
toehold exposed, they cannot interact with any other molecules. The annihilation
reaction shown in Fig. 2.1f is designed to be roughly a hundred times faster than the
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Figure 2.1 | Winner-take-all neural network and its DNA implementation. a, A winner-take-all
(WTA) neural network with 𝑚 memories that each has 𝑛 bits. 𝑥1 to 𝑥𝑛 and 𝑦1 to 𝑦𝑚 are binary
inputs and outputs, respectively. 𝑤𝑖 𝑗 (1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚) are analog weights of positive, real
numbers. 𝑠 𝑗 (1 ≤ 𝑗 ≤ 𝑚) are weighted sums of the inputs. b, Example pattern recognition using
target patterns as weights. Each 9-bit pattern is shown in a 3 by 3 grid. Each black or colored pixel
indicates a 1, and each white pixel indicates a 0. The two target patterns correspond to letter ‘L’ and
‘T,’ respectively. If the input pattern is corrupted (for example, the last bit of ‘L’ is flipped from 1
to 0, indicated by the orange ‘×’), the neural network can still recognize it as being more similar to
‘L’ than to ‘T,’ because the weighted sum using ‘L’ as weights is still larger than the weighted sum
using ‘T’ as weights. c, Chemical reaction network implementation. The concentrations of chemical
species 𝑋𝑖 , 𝑊𝑖 𝑗 , 𝑆 𝑗 , and 𝑌 𝑗 correspond to the values of variables 𝑥𝑖 , 𝑤𝑖 𝑗 , 𝑠 𝑗 and 𝑦 𝑗 , respectively. The
species in black are needed as part of the function, and the species in gray are needed to facilitate the
reactions. The waste molecules are not shown in the reactions. 𝑘 𝑓 and 𝑘𝑠 are the rate constants of
the pairwise annihilation and signal restoration reactions, respectively. d, DNA strand displacement
implementation. The initial test tube (left) shows all DNA species with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑚.
The final test tube (right) shows only the product species after a set of input strands are added, with 𝑖,
𝑗 and 𝑘 being a subset of all possible numbers depending on the specific input. e, Signal restoration
reaction. The gray circle with an arrow indicates the direction of the catalytic cycle. f, Pairwise
annihilation reaction. Zigzag lines indicate short (5 or 7 nucleotide) toehold domains and straight
lines indicate long (15 or 20 nucleotide) branch migration domains in DNA strands, with arrowheads
marking their 3’ ends. Each domain is labeled with a name, and stars in the names indicate sequence
complementarity. Black and white arrows indicate forward and backward directions of a reaction
step, respectively. Representative but not all possible states are shown in (f). The mechanisms of
weight multiplication, summation, and reporting reactions are shown in Extended Data Fig. 2.5.
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signal restoration reaction shown in Fig. 2.1e because of the two extra nucleotides
in both toeholds on the annihilator—it is known that the rate of strand displacement
reactions grows exponentially faster with a longer toehold (Turberfield et al., 2003;
Zhang and Winfree, 2009).

Reporting is simply implemented with an irreversible strand displacement reaction,
wherein an output strand𝑌 𝑗 interacts with a double-stranded reporter molecule 𝑅𝑒𝑝 𝑗

(Extended Data Fig. 2.5) to separate the fluorophore and quencher labeled strands in
the reporter, resulting in increased fluorescence. Overall, the implementation of an
arbitrary winner-take-all neural network can be systematically mapped to a seesaw
DNA circuit (Extended Data Fig. 2.6).

2.3 Experimental characterization of the winner-take-all behavior
We started the experimental demonstration with a two-species winner-take-all func-
tion (Fig. 2.2a), which is similar to approximate majority (Cardelli and Csikász-
Nagy, 2012) and consensus network (Y.-J. Chen et al., 2013). If the initial concen-
tration of one weighted sum species (𝑆1 or 𝑆2) is higher than that of the other, we
expect the corresponding output strand (𝑌1 or𝑌2) to be catalytically released and the
fluorescent signal to reach an ideal ON state, while the other output signal to remain
at an ideal OFF state. The data agreed with the expected overall circuit behavior,
and also led to two main observations: First, the circuit computed an ON state faster
with a larger difference between the two species, as shown in the plots farther away
from the diagonal line in Fig. 2.2a. This is because the signal restoration reaction
reaches completion faster with a larger amount of catalyst, which is the leftover
amount of the winner after the annihilation reaction. Second, among experiments
where the difference between the two species are the same, the circuit maintained a
cleaner OFF state with lower initial concentrations of the two species, as shown in
the plots that are equidistant to the diagonal line but closer to the bottom left corner
of the grid. This is because a small fraction of the weighted sum strands will interact
with a restoration gate molecule before encountering an annihilator molecule—the
stronger the runner-up is (i.e., with a higher concentration), the more it can escape
the process of being completely annihilated. These observations suggest that the
DNA circuit does not yield a perfect winner-take-all behavior, but it does compute
correctly for competitors that are not too similar to each other and are not both too
strong.
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Next, we added a weighted sum layer to the winner-take-all circuit to demonstrate
recognition of 4-bit patterns (Fig. 2.2b). Using the two target patterns as weights,
the perfect input patterns each triggered the desired output trajectory to turn ON,
indicating that the inputs were correctly recognized. When one or two bits of the
input patterns were flipped, either from a 1 to a 0 or vice versa, the circuit still yielded
the desired output for all six examples that are classifiable. The other eight possible
inputs are not classifiable because they result in equal weighted sums (𝑠1=𝑠2).
Interestingly, the circuit behavior was better for the inputs with two-bit corruptions,
compared with the perfect inputs: the ON trajectories reached completion just as
fast and the OFF trajectories remained lower. This result can be understood by
looking at the input patterns in the weighted sum space (Fig. 2.2b, bottom left):
all four inputs are equidistant to the diagonal line, and the corrupted patterns are
closer to the bottom left corner of the space. Because catalytic reactions are used to
implement weight multiplication, together with thresholding reactions, the circuit
can also handle a range of input concentration varying from the ideal high or low
concentration (Extended Data Fig. 2.7).

2.4 Theoretical limits
To understand the theoretical limits of the scalability and power of winner-take-
all DNA neural networks, in the context of simply using the target patterns as
weights, we now address the following three questions. First, how many distinct
target patterns can be simultaneously remembered? Any set of patterns consisting
of the same number of ones can be remembered (Methods, Theorem 1). For
example,

(9
5
)
= 126 patterns is the size of the largest set of 9-bit patterns that can

be remembered, each consisting of five 1s. Moreover, any set of patterns can be
remembered if it does not contain a pattern in which all 1s are a subset of 1s in
another pattern (Methods, Theorem 2). Second, which corrupted patterns can be
recognized? All patterns with less than 𝑏 − 𝑜 corrupted bits can be recognized,
where 𝑏 is the total number of 1s and 𝑜 is the maximum overlapped number of 1s in
all target patterns (Methods, Theorem 3). For example, all patterns with less than 3
corrupted bits can be recognized for the 9-bit target patterns ‘L’ and ‘T’ shown in
Fig. 2.1b, because 𝑏 = 5 and 𝑜 = 2. Moreover, some patterns with more than 𝑏 − 𝑜

corrupted bits can still be recognized. For example, in all possible 9-bit patterns,
there are 128, 102, and 30 patterns with 3, 4, and 5 corrupted bits, respectively,
that can be recognized as ‘L’ or ‘T.’ We chose 28 example 9-bit patterns with an
increasing number of corrupted bits from 1 to 5, and demonstrated that the DNA
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Figure 2.2 | Experimental characterization of winner-take-all DNA neural networks. a, Two-
species winner-take-all behavior. Standard concentration 1× = 50 nM. The circuit is composed of
two weighted sum strands (𝑆1 and 𝑆2), an annihilator molecule (𝐴𝑛ℎ1,2 = 1.5×), two restoration
gates (𝑅𝐺1 and 𝑅𝐺2 = 1×), two fuel strands (𝑌𝐹1 and 𝑌𝐹2 = 2×), and two reporters (𝑅𝑒𝑝1 and
𝑅𝑒𝑝2 = 2×). Initial concentrations of 𝑆1 and 𝑆2 are shown as a number relative to the standard
concentration. The diagonal line indicates equal concentrations of both strands. Fluorescence
kinetics data are shown over the course of 2.5 hours, and normalized using a common minimum
and maximum fluorescence level (Methods, Data normalization). To clearly illustrate the difference
between the two output trajectories, the background below the data points are shown in the same color
(with some transparency) as the data points. b, A 4-bit pattern recognition circuit. In the weighted
sum layer of the circuit diagram, each wire corresponds to a weight molecule, all wires from the same
input require a common fuel strand, and all wires to the same output require a common summation
gate. Thus, a circuit that can remember any two 4-bit patterns is composed of 25 molecules total
(4 inputs + 14 molecules in the weighted sum layer + 7 molecules in the winner-take-all layer).
However, a circuit that remembers two specific 4-bit patterns only requires a subset of the wires in
the weighted sum layer, each corresponding to a 1 in the memories (e.g., each orange wire in the
circuit diagram corresponds to a black pixel in the memories). Thus, the example circuit is composed
of 20 molecules total (4 fewer weight molecules and 1 fewer fuel strands). In each output trajectory
plot, dotted lines indicate fluorescence kinetics data and solid lines indicate simulation. The pattern
to the left and right of the arrow indicate input signals and output classification, respectively. Each
orange ‘×’ indicates a bit flip compared to the memories. Initial concentration of each input strand
or weight molecule is either 0 or 50 nM. Initial concentrations of the annihilator, restoration gates,
fuels, and reporters are 4×, 1×, 2×, and 2×, respectively, with 1× = 100 nM.
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neural network correctly classified all examples (Extended Data Fig. 2.8). Finally,
how does the size of the DNA circuit scale with an increasing number of more
complex patterns? In general, constructing a network that can remember 𝑚 distinct
𝑛-bit patterns requires 𝑛 input strands, 𝑛 × 𝑚 weight molecules and 𝑛 fuel strands
for weight multiplication, 𝑚 summation gates,

(𝑚
2
)

annihilators, 𝑚 gates and 𝑚

fuel strands for signal restoration, and 𝑚 reporters, totaling 𝑛 × 𝑚 + 2𝑛 + 4𝑚 +
(𝑚

2
)

molecules. However, for a specific set of target patterns, only a subset of the weight
molecules are required, each corresponding to a 1 in the patterns.

2.5 Scalability with increasing pattern complexity
To experimentally demonstrate the scalability and power of winner-take-all DNA
neural networks, we chose a task that is visually interesting: recognizing handwritten
digits. Some aspects of this task are computationally nontrivial, for example,
distinguishing a sloppy ‘4’ from a sloppy ‘9.’ The patterns of digits were taken from
the Modified National Institute of Standards and Technology (MNIST) database
(LeCun et al., n.d.), which has been commonly used to test machine learning
algorithms (Deng, 2012). We converted the original patterns to binary patterns with
twenty 1s on a 10 by 10 grid, averaged a hundred example ‘6’ and ‘7’ patterns, and
selected and normalized the top twenty pixels as weights (Fig. 2.3a and Methods,
Neural network training and testing). The value of each analog weight was then
implemented with the concentration of a weight molecule. The test inputs remained
binary patterns, in which each 1 and 0 corresponded to the presence and absence of
an input strand, respectively (Fig. 2.3b). The theoretical limits of the winner-take-
all neural networks with analog weights are similar to those with binary weights
(Methods, Theorems 4 and 5). In total, 104 distinct molecules were used for
testing any specific input pattern out of 184 distinct molecules for all possible inputs
(Fig. 2.3c).

In the MNIST database, there are a total of over 14,000 example handwritten ‘6’
and ‘7’ digits. Based on the understanding that we have established from the
experimental characterization of smaller winner-take-all circuits, we looked at all
example patterns in the weighted sum space (Fig. 2.3d and Extended Data Fig. 2.9a):
2% of the patterns are on the wrong side of the diagonal line, which means it is
impossible for the DNA circuit to recognize them correctly. 8% of the patterns
are fairly close to the diagonal line (within a 15% margin), which we expect to
be experimentally difficult. However, the remaining 90% of the patterns are far
enough from the diagonal line, which we expect correct recognition. Thus, we
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chose 36 representative example patterns from the last category, ensuring both
uniform distribution in the weighted sum space and full range of bit deviation from
the memories (Methods, Neural network training and testing). As shown in the
experimental data (Fig. 2.3e and Extended Data Fig. 2.9d), the perfect patterns
(which are the weights converted to binary) each yielded the desired circuit output.
More importantly, patterns that are increasingly deviated from the memories were
also recognized, with up to 30 flipped bits. Similar to observations in the smaller
DNA neural networks, some of the patterns that are visually more challenging to
recognize are not necessarily more difficult for the DNA circuit—which is a desirable
property of the winner-take-all computation.

2.6 Scalability with an increasing number of memories
We have now shown that the winner-take-all DNA neural networks scale well with
more complex patterns. Next, we explore if they could also be used to remember
an increasing number of distinct patterns simultaneously. The pairwise annihilation
approach alone is not well-suited for scaling up the number of patterns, as the
number of annihilators grows quadratically with the number of patterns. We showed
that three-species winner-take-all function was still robust enough (Extended Data
Fig. 2.10a) to allow the construction of a DNA neural network that remembers
three 100-bit patterns, but the competition became harder with more competitors:
the reaction rates for multiple annihilation pathways could be approximately but
not perfectly matched (Methods, Sequence design and Extended Data Fig. 2.10bc),
and it took much longer for the annihilation reactions to yield a winner and for the
signal level of the winner to be fully restored (Extended Data Fig. 2.11). Using
the same method, it would be difficult to construct networks that remember more
patterns. Thus, we proposed an alternative approach that first divides the target
patterns into groups and then uses multiple distinct group identities to classify the
patterns (Fig. 2.4a). For example, the nine digits ‘1’ through ‘9’ can be divided
into three groups in two ways, such that a pair of outputs uniquely corresponds to
each digit (Fig. 2.4d). For example, a ‘4’ is recognized if and only if 𝑦1 = 1 and
𝑧1 = 1. With this grouping approach, 9 distinct patterns can be recognized using
only

(√9
2
)
× 2 = 6 annihilators, which would otherwise require

(9
2
)
= 36 annihilators.

In total, 225 distinct molecules were used for testing any specific input pattern out
of 305 distinct molecules for all possible inputs (Fig. 2.4c).

We determined the weights for each group using a simple “average-then-subtract”
method (Fig. 2.4b): take the average of a hundred examples per in-group digit,
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Figure 2.3 | A winner-take-all DNA neural network that recognizes 100-bit patterns as one
of two handwritten digits. a, Weights determined as the average of a hundred ‘6’s and ‘7’s from
the MNIST database. The value of each pixel (e.g., 0.036 for the 35th pixel in ‘6’ and 0.062 for
the 16th pixel in ‘7’) was used to determine the concentration of each weight molecule, relative
to a standard concentration of 1× = 100 nM (e.g., 𝑊35,1 = 3.6 nM and 𝑊16,2 = 6.2 nM). The
fuel strands facilitating the weight multiplication reactions were twice the concentrations of their
respective weight molecules. b, Example binary inputs with each 1 and 0 corresponding to the
presence and absence of an input strand, respectively. The concentration of each present input strand
was 1/𝑏 × 100 nM = 5 nM, where 𝑏 = 20 is the total number of 1s in each input. The orange ‘×’
indicates a bit flip compared to the memories (i.e., weight matrices) shown in (a). There are 12
flipped bits in each example. Because the total number of 1s in each input pattern is the same as
the total number of non-zero weights in the memories, it is always the case that half of the flipped
bits are associated with non-zero weights. c, Circuit diagram and the number of distinct species in
the circuit. d, Test input patterns chosen based on their locations in the weighted sum space. e,
Recognizing handwritten digits with up to 30 flipped bits compared to the “remembered” digits.
Dotted lines indicate fluorescence kinetics data and solid lines indicate simulation. The input pattern
is shown on each plot. Note that 40 is the maximum number of flipped bits, because all patterns have
exactly 20 1s. Initial concentrations of all species are listed in Extended Data Fig. 2.14.
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subtract the average of a hundred examples per out-of-group digit, and select and
normalize the top twenty pixels (Methods, Neural network training and testing). The
trade-off of the grouping approach is that fewer example patterns can be recognized:
With the best grouping, 47% of the patterns can possibly be recognized, of which
48% are experimentally feasible (with a 15% margin to the diagonal line in the
normalized weighted sum space). In general, with the same circuit complexity, this
alternative approach allows a larger set of distinct target patterns to be classified
but with less accuracy. Nonetheless, as shown in the experimental data, the circuit
yielded the desired pair of outputs for 99 representative example patterns (Fig. 2.4d
and e).

To facilitate the design of winner-take-all DNA neural networks, we developed an
online software tool. The WTA Compiler (Cherry, 2017) (Extended Data Fig. 2.12)
converts a user-defined set of memories and test patterns into program code de-
scribing a DNA neural network, which can then be used to simulate the kinetics of
the network behavior. It also provides sequences of the DNA strands required to
experimentally construct the DNA neural network.

2.7 Discussion
It is interesting to compare the performance of winner-take-all neural networks with
logic circuits. For example, it is possible to distinguish if a 9-bit pattern is more
similar to ‘L’ or ‘T’ using a circuit consisting of 8 logic gates, for all input patterns
that we have experimentally tested. However, a more complex circuit that consists
of 21 logic gates is required to correctly compute the output for all classifiable
patterns (Extended Data Fig. 2.13a). Similarly, the 100-bit handwritten digits can
be recognized by circuits with up to 23 logic gates, if only the example patterns
that we have experimentally tested are considered. But these logic circuits perform
poorly when tested against the entire MNIST database (Extended Data Fig. 2.13b).
To match the theoretical limit of winner-take-all neural networks, measured by the
percentage of classifiable patterns, much more complex logic circuits are needed.
Importantly, varying the concentrations of the weight molecules in the winner-
take-all neural networks would allow the same set of DNA molecules to be used
for different pattern classification tasks. In contrast, without reconfigurable circuit
architectures, a different set of DNA molecules would be required for a logic circuit
that performs a different task.
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Figure 2.4 | A winner-take-all DNA neural network that recognizes 100-bit patterns as one of
nine handwritten digits. a, Circuit diagram for recognizing nine distinct patterns using a grouping
approach. b, Weights determined using an “average-then-subtract” method. Averaged digits are
shown grouped by rows and columns. The weight matrix for each group is the average of all in-
group digits subtracting the average of all out-of-group digits, highlighted with a distinct color that
corresponds to the respective output trajectories shown in (d). c, Number of distinct species in the
circuit. d, Fluorescence kinetics data (dotted lines) and simulation (solid lines) of the circuit behavior
with nine representative examples of input patterns. The input is shown on each plot. e, Fluorescence
level of each pair of outputs at 24 hours or longer after the inputs were added, collected from 99
experiments with 11 example patterns per digit. Each colored dot corresponds to one example pattern
from the labeled class of digit, and each gray dot corresponds to an out-of-class example pattern.
Initial concentrations of all species are listed in Extended Data Fig. 2.14.
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The power of winner-take-all DNA neural networks could be further explored in
several directions. Instead of the pairwise annihilation approach, a winner could
be selected by competing resources (Kim et al., 2004; Genot et al., 2013), which
could potentially lead to more scalable and accurate pattern recognition. It could
also provide the possibility of selecting several winners instead of just one, which
in theory is computationally more powerful (Maass, 2000). Extending the circuit
construction from single-layer to multi-layer winner-take-all computation, or simply
allowing the outputs of winner-take-all circuits to be connected with downstream
logic circuits, could enable more sophisticated pattern recognition (for example,
involving translated and rotated patterns) (Rojas, 2013). Using a variable-gain
amplifier (Zhang and Seelig, 2010; S. X. Chen and Seelig, 2017), winner-take-all
DNA circuits could be adapted to process analog inputs, which would enable a wider
range of signal classification tasks, including applications in detecting complex
disease profiles that consist of mRNA and microRNA signals. With aptamers (Cho
et al., 2009; Li et al., 2011), more diverse biomolecules could be detected.

Most excitingly, the fact that we were able to use target patterns as weights in
winner-take-all DNA neural networks has opened up immediate possibilities for
embedding learning within autonomous molecular systems: With one additional
circuit component that actives weight molecules during a supervised training pro-
cess, the DNA circuits would be capable of activating a specific set of wires in the
weight multiplication layer when exposed to a specific set of patterns. As widely
discussed in experimental (Pei et al., 2010) and theoretical (Fernando et al., 2009;
Aubert et al., 2013; Lakin et al., 2014) studies, learning—the most desirable prop-
erty of biochemical circuits—would allow artificial molecular machines to adapt
their functions based on environmental signals during autonomous operations.

2.8 Methods
Sequence design
All DNA strands used in the winner-take-all neural networks are composed of long
branch migration domains and short toehold domains. Thanks to the modularity
of the previously-developed seesaw DNA motif (Qian and Winfree, 2011; Qian,
Winfree, and Bruck, 2011) and the extended new circuit component, the annihilator,
the sequence design was performed at the domain level. A pool of domain sequences
was generated according to a set of design heuristics which have been previously
experimentally validated (Thubagere et al., 2017). All domains used a three letter
code (A, T, and C) to reduce secondary structure and undesired strand interactions.
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No domain sequences include runs of more than 4 consecutive As or Ts or more
than 3 consecutive Cs, which reduces synthesis errors. All domain sequences had
between 30% and 70% C-content so all double-stranded complexes would have
similar melting temperatures. And finally, no pairs of domain sequences share a
matching sequence longer than 35% of the domain length, and all pairs have at
least 30% different nucleotides. This ensures that a strand with mismatched branch
migration domain will not complete strand displacement initiated from either the
3’ or 5’ end. In addition to a 15 nucleotide sequence pool used in previous work
(Qian and Winfree, 2011; Qian, Winfree, and Bruck, 2011; Thubagere et al., 2017),
a 20 nucleotide sequence pool was generated and used in the weight multiplication
layers because of the large number of molecules employed in this work. The two
sequence pools were checked to ensure that the same pairwise criteria was met.
All domains included the clamp design introduced in the previous work (Qian and
Winfree, 2011) in order to reduce leak reactions between initial gate species.

All molecular complexes shared a 5 nucleotide universal toehold domain (Qian and
Winfree, 2011; Qian, Winfree, and Bruck, 2011; Thubagere et al., 2017). The anni-
hilator complexes had 7 nucleotide toeholds composed of the 5 nucleotide universal
toehold and a 2 nucleotide extension which matched the 2 nucleotides adjacent to
the toehold on the upstream seesaw gate. This increased the binding energy and thus
the effective strand displacement reaction rate between the annihilator complexes
and the weighted sum strands, compared to that between the signal restoration gates
and the weighted sum strands.

To ensure “fair competition” between the weighted sum species (i.e., same rates for
all pairwise annihilation reactions), all annihilators within a set of winner-take-all
computation had identical toehold extensions, and the weighted sum strands had
the same single nucleotide dangle to keep the binding energies consistent within
a winner-take-all computation. In this work, we used up to two sets of three
annihilators. The extensions and dangle sequences were chosen by estimating
the binding energies using NUPACK (Zadeh et al., 2011), and the sequences for
the second set of annihilators were chosen with similar energies to the first set
that worked well in the three-species winner-take-all experiments (Extended Data
Fig. 2.10a). Additionally, the rate of an annihilation reaction could also depend
on the sequence of the branch migration domains. We measured the rates of 15
catalytic gates, and selected two groups of three gates with the closest rates (Extended
Data Fig. 2.10bc). By using these gates for signal restoration, the branch migration
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domains in the annihilators were simultaneously determined, as the signal restoration
gates and annihilators share the same branch migration domains (Extended Data
Fig. 2.5).

Neural network training and testing
The winner-take-all DNA neural network was tested on patterns derived from the
classic MNIST handwritten digit database (LeCun et al., n.d.). Both the training
and testing sets were downloaded and merged into a single database, and all example
patterns of digits ‘1’ through ‘9’ were retained, totaling 63,097 images. The original
MNIST dataset consists of weight-centered gray-scale images on a 28 by 28 grid.
In this work, we used binary patterns on a 10 by 10 grid. First, the images were
rescaled to a 12 by 12 grid using Gaussian resampling. The largest 20 bits in each
image were set to 1, and the remaining bits were set to 0. Finally, the digits were
re-centered on a 10 by 10 grid, based on their bounding boxes.

A conscious effort was made to train the neural networks with a simple algorithm.
In the neural networks that remember two or three handwritten digits, for each
digit, the weight matrices were the average of the first 100 example patterns in
the database, restricted to the 20 most-common bits (i.e., the ones with the largest
averaged values), and normalized to sum to 1. For the nine-digit network, all digits
were divided into three groups in two ways. For each group, the weight matrix was
the average of the first 100 examples of the three in-group digits minus the average
of the first 100 examples of the six out-of-group digits. The 20 most-common bits
were retained, and all weight matrices were normalized to sum to 1.15, for the
purpose of shifting the test patterns into a more ideal area in the weighted sum
space. The fraction of experimentally-feasible test patterns (with a 15% margin to
the diagonal line in the weighted sum space for all pairs of species) was calculated
for all ways of grouping the nine digits, and the best grouping was chosen. The
classification performance of the network using weights determined by non-negative
least squares was only slightly better than the performance using weights from the
simple average-then-subtract method (54% versus 47%).

Experimentally tested input patterns were chosen to represent the whole weighted
sum space as well as the full range of bit deviation from the memories of the
networks. In order to choose a set of test patterns for a digit, all correctly classified
examples of that digit with at least a 15% margin in the weighted sum space were
divided into six corruption classes. The weighted sums for the digits in each class
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were then clustered using the k-medoids algorithm, and an example test pattern
was randomly chosen from each cluster according to a uniform distribution. This
ensured that the test patterns represented the whole weighted sum space and not just
the most common digits.

By exporting each sheet of the Excel file to a .csv file and uploading it to the WTA
Compiler (Cherry, 2017), the weights and inputs can be visually displayed, the inputs
analyzed in their weighted sum space, the kinetics behavior of the winner-take-all
DNA neural network simulated, and DNA sequences generated.

DNA oligonucleotide synthesis
All DNA strands were purchased from Integrated DNA Technologies (IDT). The re-
porter strands with fluorophores and quenchers were purified (HPLC), and the other
strands were unpurified (standard desalting). All strands were shipped lyophilized
then resuspended at 100 𝜇M in TE, pH 8.0, and stored at 4 ◦C.

Annealing protocol and buffer condition
Annihilator and gate complexes were prepared for annealing at 45 𝜇M with top and
bottom strands in a 1:1 ratio. Reporters were prepared at 20 𝜇M with top quencher
strands in 20% excess of bottom strands. Buffer for all experiments and annealed
complexes was TE buffer with 12.5 mM Mg2+. Complexes were annealed in a
thermal cycler (Eppendorf) by heating to 90 ◦C for 5 minutes, and then cooling to
20 ◦C at the rate of 0.1 ◦C per 6 seconds.

Purification
Annealed annihilator and gate complexes were purified using 12% polyacrylamide
gel electrophoresis (PAGE). Double-stranded complex bands were cut from the
gel, chopped into pieces, and incubated for 24 hours at room temperature in TE
buffer with 12.5 𝜇M Mg2+ to allow DNA to diffuse into the buffer. The solution
with purified complexes was recovered and concentrations were determined with
NanoDrop (Thermo Fisher). Weight matrices for the DNA neural networks that
remember handwritten digits had 20 gate complexes for each neuron. These gates
(i.e., weight molecules) were annealed individually and then mixed together in
the appropriate ratio, based on the values of the weights. This mixture was then
purified via PAGE, recovered, and concentration determined by NanoDrop using
the weighted-average extinction coefficient.
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Fluorescence spectroscopy
Fluorescence kinetics data were collected every 2, 3, or 4 minutes, depending
on the overall length of the experiment, using a microplate reader (Synergy H1,
Biotek). Excitation and emission wavelengths were 496/525 nm for dye ATTO488,
555/582 nm for dye ATTO550, and 598/629 nm for dye ATTO590. Experiments
were performed in 96-well plates (Corning) with 160 𝜇L reaction mixture per
well for the nine-digit experiments and 200 𝜇L reaction mixture per well for all
other experiments. Experiments were performed at 1× = 100 nM for all 4-bit and
100-bit pattern recognition and at 1× = 50 nM for all other experiments. Initial
concentrations of all species are listed in Extended Data Fig. 2.14.

In the nine-digit experiments, six distinct output trajectories were read using three
distinct fluorophores. Every experiment was ran twice, each having half of the
outputs connected to fluorophore-labeled reporters and the other half to non-
fluorophore-labeled reporters. Combining the output trajectories from each pair
of experiments into a single plot allows the observation of all six outputs simulta-
neously.

Data normalization
All data were normalized from raw fluorescence level to 1× standard concentration,
which is the maximum concentration of an output strand 𝑌 𝑗 released from gate 𝑅𝐺 𝑗

and interacted with a double-stranded reporter molecule 𝑅𝑒𝑝 𝑗 . The fluorescence
level that corresponds to 1× was obtained from the average of the final five measure-
ments from the highest signal produced from gate 𝑅𝐺 𝑗 on a plate. 0× corresponds
the background fluorescence of the reaction mixture before any reporter molecules
have been triggered, which was obtained from the first measurement of the lowest
signal produced from gate 𝑅𝐺 𝑗 on a plate. All experiments on a single plate were
normalized together, allowing direct comparison between a network’s output for
different input patterns. In the two-species winner-take-all experiments shown in
Extended Data Fig. 2.7, the first 6 columns of data were measured on one plate and
the last 5 columns measured on another. In the 9-bit pattern recognition experiments
shown in Extended Data Fig. 2.8, the input patterns with 0 to 2 corrupted bits were
measured on one plate and those with 3 to 5 corrupted bits measured on another.
All other experimental data shown for the same neural network were measured on a
single plate.
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Model and simulations
Mass action simulation was performed using the same set of reactions and rate
constants developed in the seesaw model (Qian and Winfree, 2011), with four
additional reactions to model the pairwise annihilation:

𝑆 𝑗 + 𝐴𝑛ℎ 𝑗 𝑘

𝑘 𝑓−−⇀↽−−
𝑘𝑟

𝑆 𝑗 : 𝐴𝑛ℎ 𝑗 𝑘

𝑆𝑘 + 𝐴𝑛ℎ 𝑗 𝑘

𝑘 𝑓−−⇀↽−−
𝑘𝑟

𝑆𝑘 : 𝐴𝑛ℎ 𝑗 𝑘

𝑆 𝑗 : 𝐴𝑛ℎ 𝑗 𝑘 + 𝑆𝑘
𝑘 𝑓−−→ ∅

𝑆𝑘 : 𝐴𝑛ℎ 𝑗 𝑘 + 𝑆 𝑗

𝑘 𝑓−−→ ∅

Here, 𝑘 𝑓 = 2 × 106 M−1s−1, which is the same as the forward rate constant of
the thresholding reaction in the seesaw model (Qian and Winfree, 2011). The
reverse rate constant 𝑘𝑟 = 0.4 s−1 was determined using the experimental data
shown in Extended Data Fig. 2.7a. This rate constant is on the same order as found
in the previous study of cooperative hybridization (Zhang, 2010). Similar to the
spurious reactions in the original seesaw model, temporary toehold binding between
any single-stranded species and any annihilator (or intermediate annihilator species
listed above) are also included here.

Code availability
Simulation code is available at the WTA Compiler website (Cherry, 2017).

2.9 Theoretical limits of the power of WTA neural networks
Let 𝑿 = {𝒙1, 𝒙2, · · · , 𝒙𝑚} be a set of 𝑚 patterns, each having 𝑛 bits. Let an example
pattern from 𝑿 be 𝒙𝛼 = [𝑥𝛼1 , 𝑥

𝛼
2 , · · · , 𝑥

𝛼
𝑛 ] with 𝑥𝛼

𝑖
∈ {0, 1}. Let 𝑠 𝑗 =

∑𝑛
𝑖=1 𝑤𝑖 𝑗𝑥𝑖. The

winner-take-all function shown in Fig. 2.1a can be rewritten as 𝑦 𝑗 = 1 if and only
if 𝑠 𝑗 > 𝑠𝑘 for all 𝑘 ≠ 𝑗 . We say that a winner-take-all neural network with weights
𝑾 remembers 𝑿 if for all 𝛼, 1 ≤ 𝛼 ≤ 𝑚, 𝑦𝛼 = 1 (and 𝑦 𝑗 = 0 for all 𝑗 ≠ 𝛼) when
𝒙 = 𝒙𝛼.

Theorem 1. If 𝑿 is a set of 𝑚 distinct 𝑛-bit patterns, each containing exactly
𝑏 1s, then the winner-take-all neural network with 𝑾 = [𝒘1, 𝒘2, · · · , 𝒘𝑚]⊺ and
𝒘 𝑗 = [𝑤1 𝑗 , 𝑤2 𝑗 , · · · , 𝑤𝑛 𝑗 ] = 𝒙 𝑗 (i.e., 𝑤𝑖 𝑗 = 𝑥

𝑗

𝑖
) remembers 𝑿.

Proof. Consider this network on input 𝒙 = 𝒙𝛼. First, we calculate 𝑠𝛼 =
∑𝑛

𝑖=1 𝑥
𝛼
𝑖
𝑥𝛼
𝑖
=

𝑏. Second, for 𝑗 ≠ 𝛼, 𝒙 𝑗 ≠ 𝒙𝛼. Because the number of 1s in both these patterns
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is 𝑏, the number of indices at which the bits are both 1 is strictly less than 𝑏. Thus
𝑠 𝑗 =

∑𝑛
𝑖=1 𝑥

𝑗

𝑖
𝑥𝛼
𝑖
< 𝑏. Putting the first and second calculations together, we conclude

that 𝑠𝛼 > 𝑠 𝑗 and thus 𝑦𝛼 = 1 and 𝑦 𝑗 = 0 for all 𝑗 ≠ 𝛼. □

Theorem 2. If 𝑿 is a set of 𝑚 distinct 𝑛-bit patterns, and the 1s in any example
pattern 𝒙𝛼 is not a subset of the 1s in another pattern 𝒙𝛽 (i.e., no two example
patterns satisfy 𝒙𝛼 · 𝒙𝛽 = 𝒙𝛼 · 𝒙𝛼), then the winner-take-all neural network with
𝑾 = [𝒘1, 𝒘2, · · · , 𝒘𝑚]⊺ and 𝒘 𝑗 = 𝒙 𝑗 remembers 𝑿.

Proof. Consider this network on input 𝒙 = 𝒙𝛼. First, 𝑠𝛼 =
∑𝑛

𝑖=1 𝑥
𝛼
𝑖
𝑥𝛼
𝑖
= 𝒙𝛼 · 𝒙𝛼.

Second, for 𝑗 ≠ 𝛼, 𝑠 𝑗 =
∑𝑛

𝑖=1 𝑥
𝑗

𝑖
𝑥𝛼
𝑖
= 𝒙 𝑗 · 𝒙𝛼 ≠ 𝒙𝛼 · 𝒙𝛼. Third, for all 𝑗 , 𝒙 𝑗 · 𝒙𝛼 ≤

𝒙𝛼 · 𝒙𝛼 = the total number of 1s in 𝒙𝛼. Putting the three constraints together, we
conclude that 𝑠𝛼 > 𝑠 𝑗 and thus 𝑦𝛼 = 1 and 𝑦 𝑗 = 0 for all 𝑗 ≠ 𝛼. □

In a winner-take-all neural network with 𝑾 = [𝒘1, 𝒘2, · · · , 𝒘𝑚]⊺ and 𝒘 𝑗 = 𝒙 𝑗 , we
say each 𝒙 𝑗 is a memory. We say that the network recognizes input 𝒙 as memory
𝒙𝛼 if 𝑦𝛼 = 1 (and 𝑦 𝑗 = 0 for all 𝑗 ≠ 𝛼). We say that a pattern 𝒙 has 𝑐 corrupted bits
compared to a memory 𝒙𝛼 (or has 𝑐-bit deviation from 𝒙𝛼) if the number of indices
at which the bits are different (i.e., one bit is 0 and the other is 1 or vice versa) in 𝒙

and 𝒙𝛼 is exactly 𝑐. We say that two memories 𝒙𝛼 and 𝒙𝛽 have 𝑜 overlapped bits if
the number of indices at which the bits are both 1 in these memories is exactly 𝑜.

Theorem 3. If 𝒙 is a pattern with 𝑐 < 𝑏 − 𝑜 corrupted bits compared to a memory
𝒙𝛼, where 𝑏 is the total number of 1s in 𝒙𝛼 and 𝑜 is the maximum overlapped bits in
𝒙𝛼 and 𝒙 𝑗 for all 𝑗 ≠ 𝛼, then the winner-take-all neural network recognizes 𝒙 as 𝒙𝛼.

Proof. Let 𝑐0 = the number of flipped 0s (i.e., 1 in 𝒙 and 0 in 𝒙𝛼 at the same index)
and 𝑐1 = the number of flipped 1s (i.e., 0 in 𝒙 and 1 in 𝒙𝛼 at the same index). First,
𝑠𝛼 =

∑𝑛
𝑖=1 𝑥

𝛼
𝑖
𝑥𝑖 = 𝑏 − 𝑐1. Second, for 𝑗 ≠ 𝛼, 𝑠 𝑗 =

∑𝑛
𝑖=1 𝑥

𝑗

𝑖
𝑥𝑖 ≤ 𝑜 + 𝑐0 (𝑠 𝑗 reaches

its maximum when all corrupted 1s are 0s and all corrupted 0s are 1s at the same
indices in 𝒙 𝑗 ). Third, because 𝑐 = 𝑐0 + 𝑐1 and 𝑐 < 𝑏 − 𝑜, 𝑜 + 𝑐0 = 𝑜 + 𝑐 − 𝑐1 <

𝑜 + 𝑏 − 𝑜 − 𝑐1 = 𝑏 − 𝑐1. Putting the three calculations together, we conclude that
𝑠𝛼 > 𝑠 𝑗 and thus 𝑦𝛼 = 1 and 𝑦 𝑗 = 0 for all 𝑗 ≠ 𝛼. □

Next, we consider a much larger set of n-bit patterns, 𝑿 = {𝒙1, 𝒙2, · · · , 𝒙𝑀},
𝑀 ≫ 𝑚. Let each example pattern 𝒙𝜇 = [𝑥𝜇1 , 𝑥

𝜇

2 , · · · , 𝑥
𝜇
𝑛 ] be associated with a

desired output 𝒚𝜇 = [𝑦𝜇1 , 𝑦
𝜇

2 , · · · , 𝑦
𝜇
𝑚], 𝑦𝜇𝑗 ∈ {0, 1} and

∑𝑚
𝑗=1 𝑦

𝜇

𝑗
= 1 (i.e., only one
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specific 𝑦
𝜇
𝛼 = 1, and 𝑦

𝜇

𝑗
= 0 for all 𝑗 ≠ 𝛼). If 𝑦𝜇𝛼 = 1, we say 𝒙𝜇 is a pattern in class

𝛼.

Let 𝒙̃𝛼 = [𝑥𝛼1 , 𝑥
𝛼
2 , · · · , 𝑥

𝛼
𝑛 ] = [∑𝜇 𝑥

𝜇

1 ,
∑

𝜇 𝑥
𝜇

2 , · · · ,
∑

𝜇 𝑥
𝜇
𝑛 ] for all 𝜇 with 𝑦

𝜇
𝛼 = 1 (i.e.,

the sum of all patterns in class 𝛼). Let 𝑡𝛼 =
∑

𝑖 𝑥
𝛼
𝑖

for the 𝑏 largest values of 𝑥𝛼
𝑖
.

Let 𝒙𝛼 = [𝑥𝛼1 , 𝑥
𝛼
2 , · · · , 𝑥

𝛼
𝑛 ] with 𝑥𝛼𝑖 = 1

𝑡𝛼
× 𝑥𝛼

𝑖
if 𝑥𝛼

𝑖
is among the 𝑏 largest values

and otherwise 𝑥𝛼𝑖 = 0 (i.e., the averaged pattern for class 𝛼, restricted to the 𝑏

most-common bits and normalized to sum to 1). Let 𝒙̂𝛼 = [𝑥𝛼1 , 𝑥
𝛼
2 , · · · , 𝑥

𝛼
𝑛 ] with

𝑥𝛼
𝑖
= 1 if 𝑥𝛼𝑖 > 0 and 𝑥𝛼

𝑖
= 0 if 𝑥𝛼𝑖 = 0. Let 𝑿̂ = {𝒙̂1, 𝒙̂2, · · · , 𝒙̂𝑚} be the set of

averaged patterns converted to binary.

Theorem 4. If 𝑿 is a set of 𝑀 distinct 𝑛-bit patterns, 𝒙̂ 𝑗 contains exactly 𝑏 1s
for all 𝑗 , and 𝒙̂ 𝑗 ≠ 𝒙̂𝑘 for all 𝑗 ≠ 𝑘 , then the winner-take-all neural network with
𝑾 = [𝒘1, 𝒘2, · · · , 𝒘𝑚]⊺ and 𝒘 𝑗 = 𝒙 𝑗 remembers 𝑿̂.

Proof. Consider this network on input 𝒙 = 𝒙̂𝛼. First, we calculate 𝑠𝛼 =
∑𝑛

𝑖=1 𝑥
𝛼
𝑖 𝑥

𝛼
𝑖
=∑𝑛

𝑖=1 𝑥
𝛼
𝑖 = 1. Second, for 𝑗 ≠ 𝛼, 𝒙̂ 𝑗 ≠ 𝒙̂𝛼. Because the number of 1s in both these

patterns is 𝑏, there exist at least one index 𝑖 at which 𝑥
𝑗

𝑖
= 1 (and 𝑥

𝑗

𝑖
> 1) and

𝑥𝛼
𝑖
= 0, thus 𝑠 𝑗 =

∑𝑛
𝑖=1 𝑥

𝑗

𝑖
𝑥𝛼
𝑖
<
∑𝑛

𝑖=1 𝑥
𝑗

𝑖
= 1. Putting the two calculations together,

we conclude that 𝑠𝛼 > 𝑠 𝑗 and thus 𝑦𝛼 = 1 and 𝑦 𝑗 = 0 for all 𝑗 ≠ 𝛼. □

In a winner-take-all neural network with 𝑾 = [𝒘1, 𝒘2, · · · , 𝒘𝑚]⊺ and 𝒘 𝑗 = 𝒙 𝑗 , we
say each 𝒙 𝑗 is a memory and each 𝒙 = 𝒙̂ 𝑗 is a perfect input. We say that a binary
pattern 𝒙 has 𝑐-bit deviation from a memory 𝒙𝛼 if the number of indices at which
the bits are different in 𝒙 and 𝒙̂𝛼 is exactly 𝑐. We say that two memories 𝒙𝛼 and 𝒙𝛽

have overlap 𝑜 = max{𝒙𝛼 · 𝒙̂𝛽, 𝒙𝛽 · 𝒙̂𝛼}. We say a bit 𝑖 is no more than average in
𝒙𝛼 if 𝑥𝛼𝑖 ≤ 1

𝑏
, where 𝑏 is the total number of 1s in 𝒙̂𝛼.

Theorem 5. If 𝒙 is a pattern with 𝑐 < 𝑏 × (1 − 𝑜) bit deviation from a memory 𝒙𝛼,
where 𝑏 is the total number of 1s in 𝒙̂𝛼 and 𝑜 is the maximum overlap in 𝒙𝛼 and 𝒙 𝑗

for all 𝑗 ≠ 𝛼, and if all flipped 1s are no more than average in 𝒙𝛼 and all flipped
0s are no more than average in 𝒙 𝑗 for all 𝑗 ≠ 𝛼, then the winner-take-all neural
network recognizes 𝒙 as 𝒙̂𝛼.

Proof. Let 𝑐0 = the number of flipped 0s (i.e., 1 in 𝒙 and 0 in 𝒙̂𝛼 at the same index)
and 𝑐1 = the number of flipped 1s (i.e., 0 in 𝒙 and 1 in 𝒙̂𝛼 at the same index). First,
𝑠𝛼 =

∑𝑛
𝑖=1 𝑥

𝛼
𝑖 𝑥𝑖 ≥ 1− 𝑐1

𝑏
. Second, for 𝑗 ≠ 𝛼, 𝑠 𝑗 =

∑𝑛
𝑖=1 𝑥

𝑗

𝑖
𝑥𝑖 ≤ 𝑜+ 𝑐0

𝑏
. Third, because

𝑐 = 𝑐0 + 𝑐1 and 𝑐 < 𝑏 × (1− 𝑜), 𝑜 + 𝑐0
𝑏
= 𝑜 + 𝑐−𝑐1

𝑏
< 𝑜 + 𝑏×(1−𝑜)−𝑐1

𝑏
= 1− 𝑐1

𝑏
. Putting
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the three calculations together, we conclude that 𝑠𝛼 > 𝑠 𝑗 and thus 𝑦𝛼 = 1 and 𝑦 𝑗 = 0
for all 𝑗 ≠ 𝛼. □

Note that these are not the strongest results possible, but they give some intuition
about how the winner-take-all neural network functions, with both binary and analog
weights, and how tolerant to errors it is.
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2.10 Extended data figures

Figure 2.5 | DNA implementation of winner-take-all neural networks. The winner-take-all com-
putation is broken into five sub-functions: weight multiplication, summation, pairwise annihilation,
signal restoration, and reporting. In the chemical reactions listed next to the five sub-functions, the
species in black are needed as part of the function, the species in gray are needed to facilitate the
reactions, and the waste species are not shown. 𝑘 𝑓 and 𝑘𝑠 are the rate constants of the pairwise
annihilation and signal restoration reactions, respectively. In the DNA strand displacement imple-
mentation, both weight multiplication and signal restoration are catalytic reactions. The gray circle
with an arrow indicates the direction of the catalytic cycle. Representative but not all possible states
are shown for the pairwise annihilation reaction. Zigzag lines indicate short (5 or 7 nucleotide)
toehold domains and straight lines indicate long (15 or 20 nucleotide) branch migration domains
in DNA strands, with arrowheads marking their 3’ ends. Each domain is labeled with a name, and
stars in the names indicate sequence complementarity. Black and white arrows indicate forward and
backward directions of a reaction step, respectively.
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Figure 2.6 | Seesaw circuit implementation of winner-take-all neural networks. a, A winner-
take-all neural network with 𝑚 memories that each has 𝑛 bits. 𝑥1 to 𝑥𝑛 and 𝑦1 to 𝑦𝑚 are binary
inputs and outputs, respectively. 𝑤𝑖 𝑗 (1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚) are analog weights of positive,
real numbers. 𝑠 𝑗 (1 ≤ 𝑗 ≤ 𝑚) are weighted sums of the inputs. b, Seesaw circuit diagram for
implementing the winner-take-all neural network. Each black number indicates the identity of a
seesaw node. A total of 𝑛 + 3𝑚 nodes are required for implementing a winner-take-all neural
network with 𝑚 memories that each has 𝑛 bits. The location and absolute value of each red number
indicates the identity and initial concentration of a DNA species, respectively. A red number on a
wire connected to a node (or between two nodes) indicates a free signal molecule, which can be an
input or fuel strand. A red number inside a node indicates a gate molecule, which can be a weight,
summation gate or restoration gate. A red number on a wire that stops perpendicularly at two wires
indicates an annihilator molecule. A negative red number inside a half node with a zigzag arrow
indicates a reporter molecule.
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Figure 2.7 | Experimental characterization of winner-take-all DNA neural networks. a, Two-
species winner-take-all behavior. The experimental data (left) were used to identify the reverse rate
constant 𝑘𝑟 = 0.4/s of the annihilation reaction in simulation (right). All fluorescence kinetics data
and simulation are shown over the course of 2.5 hours. 1× = 50 nM. Initial concentrations of the
annihilator, restoration gates, fuels, and reporters are 1.5×, 1×, 2×, and 2×, respectively. b, A 4-bit
pattern recognition circuit with input concentration varying from 1× to 10×. In each output trajectory
plot, dotted lines indicate fluorescence kinetics data and solid lines indicate simulation. The pattern
to the left and right of the arrow indicate input signal and output classification, respectively. c,
Applying thresholding to clean up noisy input signals. The thresholding mechanism was reported
in the previous work on seesaw DNA circuits (Qian and Winfree, 2011). The extended toehold in
threshold molecule has 7 nucleotides. In both (b) and (c), for comparing the range of inputs, the
concentration of each input strand is shown relative to 1× = 50 nM. Initial concentration of each
weight molecule is either 0 or 50 nM. Initial concentrations of the annihilator, restoration gates, fuels,
and reporters are 4×, 1×, 2×, and 2×, respectively, with 1× = 100 nM.
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Figure 2.8 | A winner-take-all DNA neural network that recognizes 9-bit patterns as ‘L’ or
‘T.’ In each output trajectory plot, dotted lines indicate fluorescence kinetics data and solid lines
indicate simulation. 1× = 50 nM. Initial concentration of each input strand is either 0× or 1×. Initial
concentration of each weight molecule is either 0× or 0.2×. Initial concentrations of the annihilator,
restoration gates, fuels, and reporters are 1.5×, 1×, 2×, and 2×, respectively. The pattern to the left
and right of the arrow indicate input signal and output classification, respectively. In addition to the
perfect inputs, 28 example input patterns with 1 to 5 corrupted bits were tested. Note that 5 is the
maximum number of corrupted bits, because a ‘L’ with more than 5-bit corruption will be as similar
or more similar to a ‘T,’ and vice versa.
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Figure 2.9 | A winner-take-all DNA neural network that recognizes 100-bit patterns as one of
two handwritten digits. a, Choosing the test input patterns based on their locations in the weighted
sum space. b, Overlap between the two memories: ‘6’ and ‘7.’ c, 36 test patterns with the number
of flipped bits shown next to their weighted sums. d, Recognizing handwritten digits with up to 30
flipped bits compared to the perfect digits. Dotted lines indicate fluorescence kinetics data and solid
lines indicate simulation. 1× = 100 nM. Initial concentrations of all species are listed in Extended
Data Fig. 2.14. The input pattern is shown on each plot. Note that 40 is the maximum number of
flipped bits, because all patterns have exactly 20 1s.
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Figure 2.10 | Three-species winner-take-all behavior and rate measurements for selecting DNA
sequences in winner-take-all reaction pathways. a, Fluorescence kinetics data of a three-species
winner-take-all circuit. Initial concentrations of the three weighted sum species are shown on top
of each plot as a number relative to a standard concentration of 1× = 50 nM. Initial concentrations
of the annihilators, restoration gates, fuels, and reporters are 1.5×, 1×, 2×, and 2×, respectively. b,
Measuring the rates of 15 catalytic gates. Fluorescence kinetics data (dotted lines) and simulations
(solid lines) of the signal restoration reaction, with a trimolecular rate constant (𝑘) fitted using a
Mathematica Markov Chain Monte Carlo (MCMC) package (Burkart, 2015). The reporting reaction
was needed for the fluorescence readout. Initial concentrations of all species are listed as a number
relative to a standard concentration of 1× = 50 nM. c, The 15 catalytic gates sorted and grouped
based on their rate constants. All rate constants are within ±65% of the median. The two colored
groups of three rate constants are within ±5% of the median. These two groups of catalytic gates
were selected for signal restoration in the winner-take-all DNA neural networks that remember two
to nine 100-bit patterns (Methods, Sequence design).
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Figure 2.11 | A winner-take-all DNA neural network that recognizes 100-bit patterns as one of
three handwritten digits. a, Circuit diagram. b, Choosing the test input patterns based on their
locations in the weighted sum space. c, Overlap between the three memories: ‘2,’ ‘3,’ and ‘4.’ d,
Recognizing handwritten digits with up to 28 flipped bits compared to the “remembered” digits.
Dotted lines indicate fluorescence kinetics data and solid lines indicate simulation. 1× = 100 nM.
Initial concentrations of all species are listed in Extended Data Fig. 2.14. The input pattern is shown
on each plot. Note that 40 is the maximum number of flipped bits, because all patterns have exactly
20 1s.
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Figure 2.12 | Workflow of the winner-take-all compiler. The compiler (Cherry, 2017) is a software
tool for designing DNA-based winner-take-all neural networks. Users can start by uploading a
file describing a WTA neural network. Alternatively, the weight matrix and test patterns can be
graphically drawn. Next, a plot of the weighted sum space provides a visual representation of the
classification decision boundaries. The kinetics of the system can be simulated with Mathematica
code downloaded from the compiler website, and the set of the reaction functions are displayed
online. Finally, the compiler produces a list of DNA strands required to experimentally demonstrate
the network as designed by the user.
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Figure 2.13 | Size and performance analysis of logic circuits for pattern recognition. a, Logic
circuits that distinguish if a 9-bit pattern is more similar to L or T. b, Logic circuits that recognize
100-bit handwritten digits. To find a logic circuit that produces correct outputs for a given set of
inputs, with no constraint on other inputs, we first created a truth table including all experimentally
tested inputs and their corresponding outputs. The outputs for all other inputs were specified as ‘don’t
care,’ meaning the values could be 0 or 1. The truth table was converted to a Boolean expression
and minimized in Mathematica, and then minimized again jointly for multiple outputs and mapped
to a logic circuit in Logic Friday. In the minimized truth tables shown here, ‘X’ indicates a specific
bit of the input on which the output does not depend. For comparison, minimized logic circuits were
also generated from training sets with a varying total number of random examples from the MNIST
database. The performance of each logic circuit, defined as the percentage of correctly classified
inputs, was computed using all examples in the database. To make the minimization and mapping
to logic gates computable in Logic Friday, the size of input was restricted to the 16 most significant
bits based on the weight matrix of the neural networks.
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Figure 2.14 | Species and their initial concentrations in all neural networks that recognize
100-bit patterns. a, List of species and strands. Reporters were annealed with top strands (i.e.,
Rep[j]-t) in 20% excess. All other two-stranded complexes were annealed with a 1:1 ratio of the
two strands and then PAGE purified (Methods, Purification). b, Weights and example inputs in the
neural network that recognizes ‘6’ and ‘7.’ c, Weights in the neural network that recognizes ‘1’
through ‘9.’
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C h a p t e r 3

SUPERVISED LEARNING IN DNA-BASED
WINNER-TAKE-ALL NEURAL NETWORKS

[pages 37-65 temporarily redacted]
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C h a p t e r 4

CONCLUSION

A DNA-based neural network implementing the winner-take-all function is an ef-
fective architecture for classifying very large, complex patterns. Because it requires
only positive weights, it is an efficient network architecture for molecular compu-
tation. The simple, robust DNA molecules along with the pair-wise annihilation
approach to computing the nonlinear operation results in a scalable molecular net-
work much larger than previous experimental demonstrations. The digital input
and output mean that the network can be composed with other types of molecular
computation. One limitation is the scaling of the number of molecules required
for pair-wise input annihilation as more memories are added, so it is best suited for
recognizing large input patterns and classifying them into a few target classes; how-
ever, a carefully determined weight matrix and orthogonal WTA neurons provides
a suitable solution for adding more memories. Finally, the ability to use the target
patterns as the weight matrix allowed us to construct a molecular network capable
of dynamically learning new weights from the environment. The development of
new, activatable molecular motifs provided the means for implementing supervised
learning in a DNA-based artificial neural network. The network learns from labeled
training patterns and then classifies unseen molecular test patterns.

4.1 A Look into the future
Here, I discuss just a few of the tantalizing next steps and open questions related
to WTA networks and molecular design. These topics frequently occupied my
thoughts, but I could never devote enough time to finding satisfying answers. I
encourage others who find this work interesting to consider these intriguing inquiries.

Potential of 𝑘-WTA networks
The WTA network architecture implemented in this work utilizes a destructive
WTA layer as the non-linear function where the signal strands annihilate each other
until only one signal species remains. However, another mechanism for computing
WTA with global feedback was demonstrated by Kim et al. (2004) and Genot et al.
(2013). This mechanism employs strands competing for a shared, limited resource.
The concentration of a signal strand will correlate with its success in acquiring
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the shared resource which boosts its concentration. All strands are also subject to
degradation. If tuned carefully, the balance of production and degradation will select
the winning species. The challenge of this mechanism is needed to carefully balance
the supply of shared resource and the rate of degradation. These parameters limit the
range of signal species concentration in which this mechanism will be successful.
However, this method also has some major benefits. The network is much less limited
in the number of competing signal species, as the number of required molecules
scales linearly instead of quadratic with my pairwise annihilation approach. What
is equally exciting is careful choice of parameters will allow implementation of
𝑘-WTA, which is a more general, powerful version of WTA, compared with the
1-WTA network implemented in my work here.

The theory papers by Maass (1999) and Maass (2000) provide insights on the power
of WTA neural networks. It is known that logic circuits are capable of universal
computation, and linear threshold unit (LTU) circuits can implement any logic
circuit. The author shows a method for converting any feed forward LTU neural
network into a 𝑘-WTA circuit. In a 𝑘-WTA network, the 𝑖th output has value 1 only
if the 𝑖th input was among the 𝑘 largest inputs. My work only implemented 𝑘-WTA,
where 𝑘 = 1. However, using the competitive WTA approach mentioned above, one
may be able to implement a 𝑘-WTA network in DNA with 𝑘 much larger than 1. I
have not explored which features of a linear threshold circuit result in which required
values for 𝑘 . My cursory explorations of a handful of networks only produced
converted 𝑘-WTA networks with 𝑘 ≥ 2. Which classes of logic circuits and LTU
networks could be simplified, reduced, and implemented as DNA 𝑘-WTA network
remains an intriguing outstanding question. It is possible, through this conversion
to 𝑘-WTA, that logic circuits much larger than any experimentally demonstrated to
date may be constructed. This could be a break-through in circumventing scaling
limitations currently encounter in the largest, state-of-the-art, well-mixed chemical
reaction networks.

Providing structure to WTA weights
My networks presented here often have stored memories and classify test patterns
that are visually interesting, meaningful shapes, such as the MNIST digits. Our
human visual systems recognize handwritten digits due to the proximity of the
bit information. This belies a sense of structure to the information not present
in the well-mixed chemical system. I show the digits as a 10x10 grid, but the
chemical system would be equally well shown as a 1x100 vector of bits. Truly, the
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WTA system has much less information than the human brain is receiving when
viewing an image of a digit—the WTA completely lacks structural information.
This realization often disappoints the audience when they understand the network’s
weakness in classifying patterns with affine transformations like shifts or rotations.
Although, much biological information does not inherently contain structure like
diagnostic tests for identification and classification of patterns of small molecules.
A motivated student could add more weight layers which account for pixel location,
where structure is important like with images. These additional layers could be
logical tests of subsets of the patterns, or more generally, they could be convolutions
across the pattern. These convolutions could blur or sharpen, for example, and also
serve to reduce the large size of input data. However, one should be aware that
adding weight layers could strongly affect the time at which competing summation
species are produced possibly resulting in erroneous computation. Inspired by my
work, Xiong et al. (2022) devised a system that could implement convolutional
neural networks by adding more orthogonal matrix multiplication operations to the
input layer in a multi-step process. This allowed them to classify test patterns with
more bits into more target classes.

I spent some time considering the layout and structure of the weight matrix, but it
was in the service of minimizing leak reactions that would adversely affect network
performance. In the early design of the learning network, each bit was uniquely
identified by a toehold-length domain that underwent branch migration. The first
few initiating nucleotides would necessarily be shared with other bit sequences due
to the limited supply of unique domains, and therefore some cross-talk between bits
would occur. If these cross-talking bits were placed near each other, the resulting
weighted input from a leaky test pattern would be similar to that produced by a blurry
test image. This works for MNIST digits because an ON bit is more likely to be
adjacent to other ON bits. The handwritten digit is a connected image. This strategy
would not work on highly non-contiguous patterns resembling checkerboards. In
pursuit of optimizing this layout, I built a fully connected spring model with spring
constants proportional to the similarity between each pair of sequences and then
simulated a 2D thermal annealing before assigning each bit to a grid location. This
layout strategy worked well, but ultimately the cross-talk between was too great to
continue pursuing this DNA molecule design.
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Activatable seesaw gates as transistors
The activatable seesaw gates utilized in the weight layer of the learning WTA
network bear a strong resemblance to electronic relays or transistors. Transistors
are among the most significant inventions in history and serve as the foundation of
modern computing technology. A transistor is a fundamental electronic component
employed to amplify or switch electronic signals. It accomplishes this by regulating
the flow of an electrical signal between the source and the drain through control of
the voltage on the gate terminal. I dedicated a substantial amount of time to studying
the molecular design of the activatable seesaw gate. When an activator is present,
the molecular gate allows signals to pass from an input to an output representation.
Like modern central processors, these molecular gates could allow construction
of general network circuits with nodes selectively activated to control the creation
of many alternate functions. There is only a minor, though important, difference
between the molecule and electronic transistor. In a transistor the voltage on the
gate terminal can be much smaller than the controlled voltage passing between the
source and drain. In my molecular design the source is catalytic, but it only produces
output up to the limit of the concentration of the activator. A small change making
the activator catalytic would remove this limitation. The transistor-like molecular
gate could have many applications in diagnostic and molecular detection devices
that require signal amplification with low leak.

4.2 Philosophy on project selection
It is a most unfortunate truth about science that someone who wants to know
everything, learn everything, and build everything, only has time to wade into one
minuscule area of knowledge. To make a splash, a scientist must immerse themselves
in one specialized area, leaving countless other fields untouched. Graciously, there
is great satisfaction in probing one idea to its vast depths—becoming an expert,
albeit in a singular domain. They get to explore the boundaries of an area entirely
of their choosing, so they should endeavour to make it count.

I want my contribution to science to be more than just the completion of a small
engineering project contained neatly within the blip of time of one person’s graduate
school tenure. The impact should be more than the project’s direct purpose—
its stated goals. Beyond the data and the graphs, a project should inspire. It
should spawn more projects and encourage more exploration. A project’s greatest
achievement is not the publication’s final figure with the most complex graphic. The
loftiest achievement of a scientific work nudges a field in a wholly new direction.
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Not to the detriment of other directions, but a new, additional direction—stretching
the domain of a research discipline ever larger.

In this sense, academic fields are like water droplets on a surface. Often they
are distinct and non-overlapping. Occasionally they touch; a connection is made
between them and new ideas quickly infuse throughout previously disconnected
fields. A truly successful project can pull a droplet into a new direction, and if
there is enough interest, akin to strong surface tension, a quantity of the droplet
will follow and the field expands—sometimes onto a wholly new, previously dry,
uncharted surface and sometimes nearer to other droplets.

I hope that I was able to achieve this to some degree with my research project. I
have undoubtedly expanded the field of molecular computing. By implementing a
DNA-based winner-take-all neural network architecture that is much larger than any
previously demonstrated network, I showed that a molecular network could classify
larger, more interesting patterns into a larger number of distinct memories, and it
could handle corrupted input patterns. Additionally, by adding adaptive behavior to
that neural network—where the molecules learn from environmental examples—I
also brought that allegorical water droplet of the field of molecular computing closer
to another interesting droplet: machine learning. New students have been inspired to
join our scientific community after hearing about my research, and I have seen more
molecular computing research projects focused on building neural networks. And
interest in molecular learning has piqued. Time will tell the extend of this impact,
but germinated seeds are taking hold throughout our small community—even if my
work was only able to wet the surface.
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