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ABSTRACT 

Additive manufacturing (AM) enables three-dimensional micro-patterning of battery 

electrode materials, permitting complex structural designs beyond those of traditional slurry 

electrodes. We demonstrate two novel AM approaches for architecting electrode materials 

in lithium-ion batteries. First, we introduce a process for fabricating 3D micro-architected 

cathodes utilizing gel infusion additive manufacturing, and demonstrate this technique with 

lithium cobalt oxide (LCO). This method combines VP-based 3D printing with subsequent 

ion infusion and calcination processes. It starts with the printing of a blank organogel 

structure using a customized acrylate-based photoresin. This organogel is then converted into 

a hydrogel, infused with lithium and cobalt precursors, and finally subjected to calcination 

to form the LCO structure. This technique achieves 3D micro-architected LCO lattices with 

beam diameters of 45 µm, and maintains the designed architecture with tunable 

microstructures. By fabricating 3D micro-architected LiNi0.33Mn0.33Co0.33O2 (NMC111) 

through a very similar process, we demonstrate the potential for this gel infusion additive 

manufacturing method to engineer a variety of cathode materials for lithium-ion batteries in 

3D. 

We also develop a fabrication method to create 3D lithium anodes supported by micro-

architected carbon scaffold. By pyrolyzing 3D printed polymer microlattices, mechanically 

robust carbon electrodes are produced. Their micro-scale features and flexible structural 

control make them suitable as scaffolds for lithium-metal anodes. Surface functionalization 

and lithium electrodeposition are explored for dense lithium nucleation and uniform epitaxial 

growth on the carbon framework, resulting in micro-architected lithium/carbon anodes. With 

the rapid development of high-resolution AM techniques in recent decades, these approaches 

to additively manufacture cathode and anode materials provide promising pathways to build 

batteries with customizable 3D designs, and pursue higher energy and power densities for 

different applications. 
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1 
C h a p t e r  1  

INTRODUCTION: ADDITIVE MANUFACTURING OF 3D-
ARCHITECTED ELECTRODE MATERIALS FOR LIHTIUM-ION 

BATTERIES 

1.1 Potentials and Challenges of Lithium-Ion Batteries 

In recent decades, lithium-ion batteries have profoundly transformed various aspects of our 

daily lives. With high energy density and the lightweight nature, they have revolutionized 

portable electronic devices including smartphones, laptops and wearable technologies, which 

in turn have fundamentally changed how people communicate and access information [1]. 

Portable medical devices such as pacemakers, insulin pumps and oxygen concentrators, and 

portable household appliances such as electric toothbrushes, handheld vacuum cleaners and 

cordless power tools also grew more durable, powerful, and compact due to the 

advancements in lithium-ion battery technologies. They are also significantly accelerating 

the transition from traditional gasoline-powered vehicles to electric vehicles (EVs) by 

making EVs more viable and competitive, supplying longer driving ranges, shorter charging 

times, and generally greater performance than earlier rechargeable battery technologies [2,3]. 

This shift helps to reduce the emission of CO2 and other greenhouse gases and decrease 

reliance on fossil fuels, contributing to environmental and energy sustainability. Lithium-ion 

batteries are also increasingly used for another important sustainability effort: the integration 

of renewable energy into the grid [4]. Many renewable energy sources like solar and wind 

are intermittent by nature and highly variable in their output. As a result, they require the 

storage of excess energy generated during the peak hours for use when the production is 

lower. Lithium-ion batteries are becoming key components in energy storage systems, 

facilitating a more stable and reliable energy grid. In addition to these impacts on our daily 

lives, lithium-ion batteries are used in many aerospace applications, powering drones, 

satellites, and space exploration vehicles [5]. Their high energy density and durability make 

them suitable for these critical applications in challenging environments. 



 

 

2 
The commercialization of lithium-ion batteries began in the 1970s with Whittingham's 

discovery of reversible lithium intercalation in TiS2 [6]. In 1980, Goodenough reported 

LiCoO2 as a cathode material which enabled a 4.0 V rechargeable battery against lithium 

metal [7]. Yoshino developed an efficiently working lithium-ion battery with heat-treated 

petroleum coke as anode and LiCoO2 as cathode in 1985 [8], which was then successfully 

commercialized by Sony in 1991 [8]. Lithium-ion batteries have significantly advanced the 

performance of rechargeable batteries compared to earlier technologies like nickel-cadmium 

or nickel-metal hydride batteries [9]. With a standard reduction potential of -3.04 V versus 

the standard hydrogen electrode, lithium has the highest electrochemical potential of any 

metal, which allows it to drive higher voltage reactions when paired with various materials 

in a battery's cathode [10]. The higher battery voltage translates to higher power output for a 

given current, contributing to a higher energy density relative to both weight and volume. 

The lithium intercalation mechanism, which involves the insertion and removal of lithium 

ions into and from electrode materials without significant alteration of the material's 

structure, offers better electrochemical and mechanical stabilities [11,12]. The minimal 

material volume change reduces the stress on the battery's internal structure during cycling 

and enhances its mechanical stability, which leads to less capacity loss over time. 

Slurry-based electrodes are commonly used in most commercial lithium-ion batteries. They 

are manufactured by creating a slurry mixture that contains the cathode or anode active 

material particles, conductive additives, and binders dissolved in a solvent [13]. This slurry 

is coated onto a metal foil which serves as the current collector, and then dried to remove the 

solvent, leaving behind a thin and uniform film of the solid slurry mixture. The commercial 

slurry electrode films, with a stochastic porous structure, is usually limited to a thickness of 

50–100 μm to balance between energy and power densities [14]. For a specific electrode 

material, higher energy density requires either higher thickness or lower porosity of the slurry 

film, and both of which reduce its power density. For lithium-ion battery electrodes, this 

trade-off between energy and power densities poses a significant challenge to improve 

battery performance. To overcome this limitation, battery electrodes with controlled 

structures have been proposed. 
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1.2 3D Batteries and 3D-Architected Electrodes 

Beyond conventional batteries with stacked 2D layers of slurry electrodes, various 3D battery 

architectures have been explored as a means of pursuing higher energy density and power 

density since they maximize cell volume loading while minimizing transport lengths for ions 

and electrons. As illustrated in Figure 1.1, Long et al. outlined in their review article from 

2004 four representative designs: interdigitated arrays of cathode and anode cylinders; 

interdigitated electrode plate arrays; arrays of one electrode cylinders with in-filled counter 

electrodes; and an aperiodic porous electrode with an in-filled counter electrode [15]. 

 

Figure 1.1 Illustrations of 3D batteries. Designs include a) interdigitated arrays of cathode and anode 
cylinders, b) interdigitated electrode plate arrays, c) arrays of one electrode cylinders with in-filled 
counter electrodes, and d) an aperiodic porous electrode with an in-filled counter electrode. Adapted 
with permission from reference [15]. Copyright 2004 American Chemical Society. 

3D batteries with the interdigitated plate configuration have been successfully created with 

direct ink-writing, an extrusion-based 3D printing technique [16,17]. Semiconductor-based 

processes have been utilized to fabricate 3D-architected anode arrays of 100 μm diameter 

cylinders with in-filled cathode slurries, although the anode material was limited to silicon, 

a material known for its enormous volume expansion upon lithiation which often results in 

rapid mechanical degradation of the battery [18]. Many attempts for other materials in this 

rod-array geometry are limited to single electrodes [19,20]. The last design, requiring a 

conformal solid electrolyte layer on all surfaces of one electrode and dense counter electrode 

in-fill into micro or nanopores, has yet to be realized with existing manufacturing techniques, 

and the state-of-the-art works are mostly limited to the fabrication of a single electrode with 

aperiodic porous structures [21]. 
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1.3 Techniques to Fabricate 3D-Architected Electrode Materials 

Additive manufacturing (AM) offers an efficient approach to construct self-supporting, 

three-dimensional (3D) electrode architectures for batteries. Among the diverse range of AM 

techniques, the extrusion-based direct ink-writing (DIW) stands out as an early technique to 

fabricate 3D architected electrode materials. Typically, a viscous ink as a blend of active 

material particles, polymers, and solvents is extruded through a nozzle and solidified upon 

layering to build a prescribed 3D structure. Sun et al. have demonstrated in their pioneering 

work the utility of DIW to fabricate LiFePO4 and Li4Ti5O12 interdigitated electrodes for a 3D 

battery (Figures 1.2a–b) [16]. Using this technique, Fu et al. also created a similar 

interdigitated battery with the same cathode and anode active materials, with the addition of  

graphene oxide for improved ink rheology (Figures 1.2c–d) [17]. 

 

Figure 1.2 Examples of 3D interdigitated electrodes for lithium-ion batteries printed via direct ink-
writing. a) Schematic and b) SEM image of interdigitated LiFePO4 cathode and Li4Ti5O12 anode. 
Adapted with permission from reference [16]. Copyright 2013 Wiley. Optical images of c) an 
electrode being printed and d) the interdigitated battery electrodes for a 3D lithium-ion battery with 
LiFePO4/graphene oxide cathode and Li4Ti5O12/graphene oxide anode. Adapted with permission 
from reference [17]. Copyright 2016 Wiley. 
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Although DIW enables AM of a wide range of materials, it encounters intrinsic limitations 

due to the viscous nature of the ink, requiring additional support structures for overhanging 

parts, which complicates post-print processing and renders it incapable of producing features 

with micron- and sub-micron resolution while maintaining adequate pattern fidelity. These 

limitations restrict most ink-written electrode geometries to vertically stacked 2D-patterned 

layers, whose aspect ratios are constrained by the maximum number of layers that can be 

self-supporting when vertically stacked [16,17]. The electrode feature sizes are 

predominantly determined by the extrusion nozzle diameter, which must accommodate the 

rheological properties of the viscous inks. Thinner nozzles enable the production of finer 

features but are more susceptible to clogging. Typical line thicknesses of ink-written 3D 

microlattice electrodes are around 200–400 μm, as demonstrated by Lacey et al. in their 3D 

graphene oxide electrodes shown in Figures 1.3a–b [22] and Gao et al. in the sulfur/carbon 

composite electrodes shown in Figures 1.3c–d [23]. 

 

Figure 1.3 Examples of 3D microlattice electrodes printed via direct ink-writing. a) Optical image of 
a holey graphene oxide (hGO) 3D microlattice electrode and b) a top-view of the lattice mesh. 
Adapted with permission from reference [22]. Copyright 2018 Wiley. c) Optical image of a 
sulfur/carbon 3D microlattice electrode and d) top-view SEM image of the lattice mesh. Adapted with 
permission from reference [23]. Copyright 2018 Elsevier. 
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Vat photopolymerization (VP) 3D printing is a promising technique that allows for the 

fabrication of high-resolution three-dimensional architectures compared with traditional 3D 

printing and offers significant flexibility and control of attainable geometries and printing 

parameters. This method utilizes a photo-polymerizable liquid resin, which can be uniquely 

synthesized and cured with UV light layer-by-layer to produce the computed or designed 3D 

structures. For example, during the digital light processing (DLP) 3D printing, a high-

resolution VP 3D printing technique, as illustrated in Figure 1.4a, a strong UV light is 

redirected by a digital micromirror to project a light pattern of one layer of the 3D model 

through a transparent window. Above the window, there is liquid photoresin containing 

oligomer molecules, photoinitiator which starts the chain reaction, and UV blocker to prevent 

UV light from penetrating too deeply into the resin. UV light penetration into the resin 

follows the Beer-Lambert law,  

"($) = "!'"#$ 

where "! is the initial light intensity, ( is the attenuation coefficient, $ is the length of the 

travelling path of light and "($) is the light intensity after travelling a distance $ (Figure 1.4b). 

The liquid resin will cure into a solid when it receives a sufficient dose of energy, where the 

dose is the product of light intensity and exposure time. 
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Figure 1.4 Schematics of a) digital light processing (DLP) 3D printing and b) UV light travelling 
through a transparent window and penetrating into the photoresin. 

VP 3D printing technique provides a promising pathway for the fabrication of 3D architected 

carbon as the anode material for lithium-ion batteries, as demonstrated by Narita et al. (Figure 

1.5) [24]. By pyrolyzing a printed polymer microlattice, a 3D architected carbon electrode 

with beam diameters as small as 28 μm was fabricated. 

 

Figure 1.5 Example of 3D carbon microlattice. a) Optical image of a printed 3D architected polymer 
lattice and the corresponding 3D architected carbon lattice after pyrolysis. SEM images of b) the 
printed 3D architected polymer lattice and c) the 3D architected carbon lattice. Adapted with 
permission from reference [24]. Copyright 2020 Wiley. 

Unlike the straightforward conversion of 3D printed polymer lattices into carbon anodes 

through pyrolysis, VP-based AM techniques face more challenges to fabricate cathode 

materials for lithium-ion batteries, mainly with incorporating the desired electrode materials 

into the 3D printed polymer structure. A common strategy is to incorporate the powder of 

the desired battery electrode material into the photoresin, followed by a post-print thermal 

process to remove polymers [25]. Unlike DIW, significant challenges arise from the presence 

of particles in the photoresin due to their absorption and scattering of UV light, leading to 

inhomogeneous polymerization and a diffused gelation profile as demonstrated in Figure 1.6. 

Moreover, particle sedimentation in the resin suspension often occurs in long prints of several 

hours, which gives nonuniform density throughout the 3D structure. 
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Figure 1.6 Comparison between photoresin gelation profiles of a) clear raw resin and b) a resin 
suspension with ceramic powders, when a laser beam scans a straight line with the same exposure 
time. Adapted with permission from reference [25] under open-access CC-BY license. 

In an alternative approach, pioneering works have explored dissolving soluble precursors for 

the desired battery electrode materials in the photoresin rather than by suspending them as 

insoluble powders, and synthesizing the electrode material during post-print thermal 

processing. For example, as shown in Figure 1.7a–c, Yee et al. demonstrated the additive 

manufacturing of a 3D LiCoO2 lattice by printing a hydrogel using an aqueous photoresin 

containing lithium and cobalt nitrates followed by calcination [26]. This method opens a 

pathway for high-resolution AM of battery electrode materials, but its generalization for a 

broader range of materials is hindered by the need to individually customize photoresin 

composition and optimize 3D printing parameters for each material. The solubility of 

electrode material precursors limits possible candidate solvent, photoinitiator, and UV 

blocker chemicals, and their interactions with UV light further complicates the photoresin 

design for high-resolution print. In the state-of-art works, 3D electrodes fabricated in this 

manner achieve beam diameters of 100–300 µm, as shown in Figure 1.7 [26,27]. 
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Figure 1.7 Examples of 3D LiCoO2 (LCO) and LiNi0.33Mn0.33Co0.33O2 (NMC111) microlattices. 
Optical images of a) a 3D architected hydrogel lattice printed with a vat photopolymerization 3D 
printer, with lithium and cobalt nitrates dissolved in the aqueous photoresin and b) the corresponding 
3D architected LCO lattice after calcination. c) SEM image of the LCO lattice from top-view. 
Adapted with permission from reference [26]. Copyright 2020 Wiley. Optical images of d) a 3D 
architected hydrogel lattice printed with a vat photopolymerization 3D printer, with lithium, nickel, 
manganese and cobalt nitrates dissolved in the aqueous photoresin and e) the corresponding 3D 
architected NMC111 lattice after calcination. f) SEM image of a beam of the NMC111 lattice. 
Adapted with permission from reference [27] under open-access CC-BY license. 
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C h a p t e r  2  

GEL INFUSION ADDITIVE MANUFACTURING OF MICRO-
ARCHITECTED LITHIUM COBALT OXIDE 

2.1 Overview 

Building on the advancements in vat-photopolymerization (VP) 3D printing and addressing 

its challenges, we developed a gel infusion AM technique for creating micro-architected 

battery electrode materials, demonstrating with the fabrication of LiCoO2 (LCO) 3D 

microlattices. The process starts with VP 3D printing to create a blank organogel 

microlattice. The absence of electrode material powders or their precursors in the photoresin 

prevents undesired UV absorption and scattering during printing. After solvent exchange, 

the gel is infused with LCO precursors, which then undergoes a high-temperature synthesis 

process. A 3D LCO microlattice preserving the designed architecture while achieving 45 µm 

beam diameters is synthesized, with promising electrochemical and mechanical 

functionalities and tunable microstructures. This method utilizes VP's advantage of high 

resolution while simplifying photoresin design, making it adaptable for a wide range of 

battery electrode materials. 
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2.2 Gel Infusion Additive Manufacturing Technique 

 

Figure 2.1 Fabrication of 3D micro-architected LCO using the gel infusion additive manufacturing 
technique. Schematic of digital light processing (DLP) 3D printing (center). a) Composition of the 
photoresin for vat-photopolymerization 3D printing. b) Computer-aided design (CAD) of an octet 
truss 3D lattice, with unit cell shown on the right. Optical images and schematics of corresponding 
compositions of c) printed blank organogel after soaked in N,N-Dimethylformamide (DMF), d) blank 
hydrogel, e) infused hydrogel and f) synthesized LCO microlattice. 

Figure 2.1 illustrates the gel infusion AM processes of the 3D-architected gels and LCO 

microlattice. A digital light processing (DLP) 3D printer is used where high intensity 385 nm 

UV light is redirected by a digital micromirror and projected through a transparent window 

into the liquid photoresin, which cures an entire layer of resin at once, realizing 3D structures 

through layer-by-layer printing. Composition of the customized acrylate-based photoresin is 
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shown in Figure 1a with details listed in Table 2.1.To prepare the photoresin, 57.5 g (0.10 

mol) of poly(ethylene glycol) diacrylate (PEGda, Mn = 575) was dissolved in 40 mL N,N-

Dimethylformamide (DMF). 506.1 mg (1.33 mmol) of 2-dimethylamino-2-(4-methyl-

benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one (Omnirad 379), 335.4 mg (1.25 mmol) of 

Bis[4-(dimethylamino)phenyl]methanone (Michler’s ketone) and 14.90 mg (0.06 mmol) of 

1-(Phenyldiazenyl)naphthalen-2-ol (Sudan I) were dissolved in 11.3 mL of DMF separately, 

and then mixed with the previous solution to form a clear photoresin with orange color. 

Component Amount 

N,N-Dimethylformamide 51.3 mL 

Poly(ethylene glycol) diacrylate (average Mn 575) 0.10 mol 

Omnirad 379 1.33 mmol 

Michler’s ketone 1.25 mmol 

Sudan I 0.06 mmol 
 
Table 2.1 Composition of the customized arylate-based photoresin for VP 3D printing. 

Starting with the 3D lattice from computer-aided design (CAD, Figure 2.1b), an organogel 

3D lattice (Figure 2.1c) is printed with Titan 3 printer from MicroSLA, using the printing 

parameters shown in Table 2.2. We demonstrate the process with an octet truss lattice which 

has hanging beams in horizontal and 45° angled directions, to demonstrate the versatility of 

this AM method to fabricate sophisticated micro-scale 3D structures, challenging for 

extrusion-based 3D printing techniques. 

Slice thickness (mm) 0.01 LED Current 
(5.86 mA per unit) 300 

 

 Exposure 
Time (s) 

Lift Height 
(mm) 

Lift Speed 
(mm min-1) 

Down Speed 
(mm min-1) 

Delay Time (s) 

First layer 3 7 10 150 2 

Remaining layers 0.8 7 25 150 2 
 
Table 2.2 Printing parameters for the customized photoresin using Titan 3 DLP printer (MicroSLA). 



 

 

13 
Using a printer with 25 μm XY pixel size and 10 μm layer thickness, a gel with cylindrical 

beams of 120 μm in diameter and 707 μm in length is printed (Figure 2.2). The overall 

geometry was designed to be circular, with 12.8 mm in diameter and 4.5 mm in thickness. 

The periodic surface roughness is due to the square pixels and layer thickness in DLP 3D 

printing. The printed gel is soaked in DMF for 2 hours to remove photosensitizer and UV 

blocker, and then is subjected to solvent exchange in water at 80 °C for 2 hours, transforming 

it into a hydrogel (Figure 2.1d). The hydrogel is infused in a 2M LiNO3 and Co(NO3)2 

aqueous solution at 80 °C for 48 hours (Figure 2.1e). Upon reaching ion infusion equilibrium, 

indicated by stable gel mass discussed in Chapter 2.3, the gel is calcined and sintered in a 

tube furnace to synthesize LCO, giving 3D architected LCO microlattice with the same 

geometry as designed in CAD (Figure 2.1f). The overall dimensions of the LCO lattice 

experience an isotropic linear shrinkage to around 40% of the infused gel. 

 

Figure 2.2 Optical and optical microscope images of a 3D printed gel microlattice. 

During 3D printing of the microlattice, it is important to set the lift height larger than the 

sample thickness to allow the liquid photoresin to drain out of the structure between the 

printing of adjacent layers. If the resin draining is not sufficient, when the accumulated dose 

of scattered UV light in the trapped resin exceeds the gelation dose over the curing of multiple 

layers, resin will partially cure and form solid in the pores, giving undesired features on the 

printed structure. Figure 2.3 shows images of a printed gel with overall sample thickness of 



 

 

14 
4.5 mm and lift height set to 2 mm. Resin near the center of the sample was significantly 

trapped, which caused undesired gelation in the pores. 

 

Figure 2.3 Optical images of a 3D printed gel with photoresin gelation in the pores of the microlattice. 

Figure 2.4 shows the 3D architected LCO microlattice in multiple scales. Figure 2.4b 

presents a top-view scanning electron microscope (SEM) image of the LCO octet truss 

lattice, which has beam diameters of 45 μm, as shown in Figure 2.4c. The characteristic pixel-

type surface roughness from DLP 3D printing is retained on the synthesized LCO structure. 

Figure 2.4d captures a representative image of LCO grains on the surface of the microlattice. 

In addition to the octet truss lattice, LCO fabricated in cubic lattices with various beam 

diameters and unit cell sizes are highlighted in Figure 2.5, demonstrating the versatility and 

design freedom offered by this gel infusion AM process for creating diverse architectures of 

electrode materials. 
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Figure 2.4 a) Optical image and b) SEM image in top view of a 3D micro-architected LCO octet 
truss lattice. c) SEM image of a beam in the LCO microlattice. d) SEM image of LCO grains on the 
surface of the LCO microlattice. 

 

Figure 2.5 Optical images of 3D micro-architected LCO lattices with different unit cells, including 
a) octet truss unit cell and b) tilted cubic unit cell in varies sizes. Insets show the octet truss and tilted 
cubic unit cells. 
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2.3 Equilibrium of Ion Infusion 

Infusion of metal salts into the 3D hydrogel microlattices introduces precursors for the 

calcination process. For LCO synthesis, the gel was immersed in aqueous solutions of lithium 

nitrate and cobalt nitrate. To estimate the swelling time at 80 °C for the hydrogel to reach 

equilibrium, identically fabricated hydrogel microlattices were immersed in solutions with 

Li+ and Co2+ ion concentrations to be 1M, 2M and 5M for 1 day, 2 days and 5 days, and then 

dried in vacuum oven at 90 °C for 24 hours to remove water, leaving cross-linked PEGda 

polymer with lithium and cobalt nitrate salts, shown in Figure 2.6. The mass of a blank 

hydrogel after drying in vacuum oven is 38.1 mg, and the mass of pure polymer in all other 

samples were assumed to be the same. Table 2.3 summarizes the mass of all ion-infused dry 

samples, together with the corresponding mass and weight percentage of lithium and cobalt 

nitrate salts in the dry polymer. For all three concentrations of the infusion solution, the 

weight of dry samples swelled for 2 and 5 days are very close, but the samples swelled for 

only 1 day are significantly lighter, indicating the hydrogels reached equilibrium between 1 

and 2 days. Therefore, in the fabrication process all samples are immersed in metal ion 

solutions for 2 days to ensure complete ion infusion. 



 

 

17 

 

Figure 2.6 Optical images of blank and ion-infused hydrogel microlattices before and after drying in 
vacuum oven. 

Mass of ion-infused dry polymer 
microlattices (mg) 

 

 

Mass and w% of infused lithium and cobalt nitrates in 
dry polymer microlattices (mg) 

 

 1M 2M 5M  1M 2M 5M 

24hr 46.1 54.1 67.9 24hr 8.0 (17%) 16.0 (30%) 29.8 (44%) 

48hr 51.2 59.5 74.0 48hr 13.1 (26%) 21.4 (36%) 35.9 (49%) 

120hr 51.3 58.5 73.7 120hr 13.2 (26%) 20.4 (35%) 35.6 (48%) 

 
Table 2.3 Mass of ion-infused dry polymer microlattices and the corresponding mass and weight 
percentage of lithium and cobalt nitrates in the dry polymer. 
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2.4 Thermal Analysis for Calcination Process 

Thermogravimetric analysis (TGA; TGA 550, TA Instruments) and differential scanning 

calorimetry (DSC; DSC 25, TA Instruments) analysis of the infused gel shown in Figure 2.7 

reveal the endothermic dehydration followed by the exothermic decomposition and 

combustion reactions between polymers, metal salts and O2 in air, which finish below 400 

°C. The overall reaction is 2LiNO3 + 2Co(NO3)2 + 2kC26H46O13 + (62k-7)O2 ® 2LiCoO2 + 

52kCO2 + 46kH2O + 3N2, for which k is the molar ratio of the oligomer to Li or Co ions. 

The unbounded water weighs 40% of the total mass of the ion-infused gel, and the final LCO 

lattice retains 13% of the original mass. 

 

Figure 2.7 TGA and DSC profiles of hydrogel microlattices infused with lithium and cobalt nitrates, 
both heated in air. TGA temperature ramps at 20 °C min-1 from room temperature to 120 °C, followed 
by an isothermal hold for 60 min for complete water removal, and then ramps at 2 °C min-1 to 700 
°C. DSC temperature ramps at 1 °C min-1 from 25 °C to 400 °C. 
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2.5 Calcination Temperature Profile and Microlattice Structural Integrity  

The lithium and cobalt ion-infused hydrogel microlattices are calcined on an alumina plate 

inside a tube furnace (OTF-1500X, MTI) to become LCO microlattices. This calcination 

process consists of three steps, including the reaction to synthesize LCO under 400 °C, 

sintering to allow LCO grain growth, and cooling back to room temperature, as shown in 

Figure 2.8. 

 

Figure 2.8 Calcination temperature profile for the synthesis of LCO microlattices from ion-infused 
hydrogel microlattices. 

The LCO synthesis reaction takes place under reduced pressure at 0.01 atm with air flowing 

at 5 mL min-1, using a temperature ramp at 0.25 °C min-1 to 400 °C followed by an isothermal 

hold for 5 hours. After the hold, the gas is switched to Ar which flows at 14 mL min-1 at 1 

atm for LCO sintering, and the temperature ramps at 2 °C min-1 to 700 °C before cooling. 

Microlattices lose around 87% of their original mass due to the loss of water and the 

combustion of polymers during the reaction step and experience isotropic linear shrinkage 

of around 60%. While this significant loss of mass and volume can prevent printed 

geometries from surviving the thermal treatment, the challenge can be overcome by limiting 

the reaction rate to allow for isotropic part shrinkage throughout the entire 3D structure. The 

furnace tube is also connected to a rotary vane pump to reduce O2 concentration for slower 

combustion. The temperature ramping rate from room temperature to 400 °C is another 
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deterministic parameter to control the reaction rate. Figure 2.9 shows the different calcined 

LCO microlattice morphologies with temperature ramping rate of 2 °C min-1, 1 °C min-1 and 

0.25 °C min-1. 2 °C min-1 results in the complete disintegration of the entire microlattice 

structure due to the fast combustion and outgassing. Self-supporting LCO lattices which 

mainly maintained the 3D structure can be obtained with a slower rate of 1 °C min-1, but 

broken beams are widely observed, indicating the mass loss during thermal treatment is still 

too fast for isotropic shrinkage. High quality LCO microlattices are obtained when the 

temperature ramping rate is further reduced to 0.25 °C min-1, so this rate is used as the 

standard heating rate for the reaction step during the calcination process to fabricate micro-

architected cathode materials through this gel infusion additive manufacturing technique. 

 

Figure 2.9 Optical images of LCO microlattices calcined from ion-infused hydrogel microlattices 
with different temperature ramping rates for the reaction step, including 2 °C min-1, 1 °C min-1 and 
0.25 °C min-1. 
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2.6 Elemental Analysis and Crystal Structure 

Elemental mappings from energy dispersive X-ray spectroscopy (EDS), as depicted in Figure 

2.10, show a uniform distribution of cobalt, oxygen and carbon atoms on the beam of the 

LCO microlattice. EDS analysis was performed in SEM (Versa 3D DualBeam, Thermo 

Fisher) with an EDS system (Quantax 200, Bruker), using an applied voltage of 10 kV. 

Lithium is undetectable by this system. 

 

Figure 2.10 SEM image of a beam in the LCO microlattice, with EDS elemental mapping on the 
corresponding area. 

LiCoO2 as a cathode material in lithium-ion batteries should have 1:1 stoichiometric ratio 

between lithium and cobalt atoms when it is uncharged. Other lithium compounds may be 

present in the LCO microlattice as potential side products from calcination when cobalt is 

deficient, and cobalt compounds would occur when lithium is deficient. To quantitatively 

analyze the amount of lithium and cobalt atoms in the LCO microlattice and the mass 

percentage of residual carbon from incomplete oxidation of decomposed polymers, 

inductively coupled plasma mass spectroscopy (ICP-MS; 8800 Triple Quad ICP-MS, 

Agilent) experiments were conducted. 
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Figure 2.11 shows the sample and standards preparation processes for ICP-MS experiments. 

To prepare samples, around 25 mg of the LCO microlattice was weighed with high precision 

analytical balance and fully digested in about 6 mL of 70% HNO3 at 90 °C with reflux 

heating for 12 hours. The overall reaction for LCO is 4LiCoO2 + 12HNO3 ® 4LiNO3 + 

4Co(NO3)2 + 6H2O + O2. The obtained concentrated solution was diluted with 5% HNO3 to 

50 mL. This solution with around 50 mg sample per 50 mL was further diluted with a factor 

of 500 to around 0.1 mg sample per 50 mL, which is used as the final sample solution for 

ICP-MS analysis. Eight external standards were prepared with 1000 mg L-1 lithium and 

cobalt standard solutions for ICP through serial dilution with 5% HNO3 into concentrations 

shown in Figure 2.11. The standard solution with 120 ppb Li and 1200 ppb Co, which is the 

closest to the sample solution, was chosen as the quality control (QC) standard, and 5% 

HNO3 was used as the calibration blank. Calibration curves collected from the standards have 

R2 values no less than 0.9999. 

 

Figure 2.11 Sample preparation (left) and external standards preparation (right) processes for ICP-
MS experiments on LCO microlattices. 

Three sample solutions were measured for each LCO microlattice sample with two 

measurements for each solution, and the average lithium and cobalt ion concentrations were 

calculated, all with standard deviations less than 2%. The ion concentrations were then used 

to calculate the amount of lithium and cobalt atoms in the corresponding LCO sample. The 

amount of oxygen atoms was obtained by assuming charge neutrality and +3 oxidation state 

for Co. The mass of carbon can also be calculated, since from EDS analysis it is the only 

element which presents in the LCO microlattice besides lithium, cobalt and oxygen. For the 
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LCO microlattice sample with the standard infusion condition introduced in Chapter 2.2 

and the standard calcination condition described in Chapter 2.5, ICP-MS analysis confirms 

a lithium to cobalt molar ratio of 1.01:1, and reveals the amount of carbon residue to be 5% 

in weight. 

The composition of LCO microlattice samples fabricated using excess amount of lithium in 

the ion-infusion solution were also studied using ICP-MS. Each infusion solution has cobalt 

concentration of 2M, with 5%, 12%, 25% and 50% excess lithium in molarity, and the 

standard calcination condition introduced in Chapter 2.5 was applied. At infusion 

equilibrium, the higher concentration of lithium ion compared to cobalt ion in the infusion 

solution will lead to a similar difference in ion concentrations in the hydrogel. Figure 2.12 

presents the lithium and cobalt ion calibration curves and the measured ion concentrations in 

sample solutions. Compositions of LCO microlattice samples are summarized in Table 2.4, 

showing over-stoichiometry of lithium in the synthesized sample for excess amount of 

infused lithium ions. In Chapter 2.8, alternative sintering conditions are discussed, where 

LCO microlattices may show sub-stoichiometric quantities of lithium even when infused 

with excess amount of lithium ions before calcination. 

 

Figure 2.12 ICP-MS analysis results for LCO microlattices with excess amount of lithium. 
Calibration curves for lithium and cobalt ions and the measured ion concentrations for LCO 
microlattice samples fabricated using ion-infusion solutions with 5%, 12%, 25% and 50% excess 
amount of lithium in molarity. 
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 5% excess Li 12% excess Li 25% excess Li 50% excess Li 

LCO microlattice mass (mg) 52.0 37.2 51.3 54.5 

Li:Co atomic ratio 1.08:1 1.15:1 1.33:1 1.64:1 

LCO stoichiometric formula Li1.08CoO2.04 Li1.15CoO2.08 Li1.33CoO2.16 Li1.64CoO2.32 

 
Table 2.4 The mass of LCO microlattice samples fabricated using ion-infusion solutions with 5%, 
12%, 25% and 50% excess amount of lithium in molarity for ICP-MS analysis, the measured atomic 
ratio between lithium and cobalt atoms and the equivalent LCO stoichiometric formula. 

X-ray powder diffraction (XRD) confirms the resulting crystal possesses only a single 

crystalline phase after the standard ion infusion and calcination conditions: the hexagonal α-

NaFeO2 layered structure in the trigonal )3+, space group, shown in Figure 2.13 together 

with a reference from Inorganic Crystal Structure Database (ICSD). The data was collected 

using an X-ray diffractometer (SmartLab, Rigaku) with a Cu K! source at 40 kV and 50 mA. 

The clear splitting of (006)/(012) and (018)/(110) peaks suggest well-layered hexagonal 

crystal structure. 

 

Figure 2.13 XRD pattern for the additively manufactured LCO fabricated with the standard ion-
infusion and calcination conditions, and a reference from ICSD. 
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The residual carbon in LCO microlattices from incomplete oxidation of decomposed 

polymers is commonly observed at LCO grain boundaries, as shown in Figure 2.14. The 

carbon can be removed by a further thermal treatment of the sample in air with ambient 

pressure, but the 5% carbon was kept since it enhances electrical conductivity of the LCO 

electrode. The desired presence of carbon between LCO grains in this additively 

manufactured LCO mirrors the practice in conventional slurry cathodes where carbon-based 

materials are usually included purposefully as electron conducting additives [11]. 

 

Figure 2.14 SEM image and the corresponding EDS carbon element mapping showing carbon at 
LCO grain boundaries, from a sample sintered up to 900 °C under 1 atm Ar. 
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2.7 Electrochemical Analysis 

3D micro-architected LCO lattices fabricated with the standard ion infusion and calcination 

processes are selected as representative for electrochemical analysis. To decouple the 

material electrochemical properties of the additively manufactured LCO, cyclic voltammetry 

(CV) is performed at a scanning rate of 0.05 mV s-2 using a battery cycling system (BioLogic 

BCS-805) between 3.0 and 4.2 V on slurry electrodes fabricated from pulverized 3D LCO 

lattice and with a thickness of 20 μm. To make the slurry paste, 255 mg of the pulverized 

LCO powder was thoroughly mixed using zirconia ball milling with 15 mg of Super C65 

conductive carbon black, 30 mg of polyvinylidene fluoride (PVDF) binder and 0.5 mL of N-

methyl-2-pyrrolidone (NMP) in a plastic vial. The slurry paste was coated on a 20 μm thick 

sheet of aluminum foil using a micrometer film applicator (SH0335, TQC Sheen) with a 150 

μm gap and then dried in a vacuum oven at 50 °C for 24 hours. An electrode film with 70 

μm thick dry slurry coating was obtained and electrode disks of 9.5 mm in diameter were 

punched out of the film and dried in a vacuum oven at 100 °C for 24 hours. Following this, 

electrode disks were tested in CR2032 coin cells against Li metal, with 1M LiPF6 in a 1:1 

(v/v) ratio of ethylene carbonate (EC) and diethyl carbonate (DEC) liquid electrolyte. As 

shown in Figure 2.15, the major pair of peaks at 3.98/3.87 V correspond to the transformation 

of LixCoO2 in the region of x = 1–0.7 through a solid state reaction process between two O3 

hexagonal phases, which involves a drastic change in electronic properties [28,29]. The two 

pairs of peaks at 4.09/4.07 V and 4.18/4.15 V signal the distortion to a monoclinic phase near 

x = 0.5 and then the transformation back to an O3 hexagonal phase [30]. 
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Figure 2.15 Cyclic voltammogram of a slurry electrode fabricated from pulverized LCO microlattice. 

The 3D LCO lattice was assembled as a half-cell in a CR2032 coin cell against Li metal, 

with 1M LiPF6 in 1:1 (v/v) ratio of EC/DEC liquid electrolyte. The LCO mass loading is 93 

mg cm-2. Compared with conventional slurry electrodes, this additively manufactured LCO 

electrode eliminates the polymer binders which may harm battery performance by impeding 

the ionic percolation while incorporating about 5% of carbon into the structure [31]. The 

mass of carbon is included in the reported LCO mass loading and specific capacities. The 

thickness of the LCO lattice is 1.80 mm. A high density polyethylene (HDPE) washer with 

a thickness of 1.78 mm was used to centrally position the 3D lattice and support the 

compressive stress from the coin cell assembly. Figure 2.16 shows the image of LCO on the 

aluminum foil current collector with a washer and a schematic of all coin cell components. 

The slightly thinner washer guarantees effective contact between the LCO lattice and the 

aluminum current collector (Al CC), while the LCO lattice is pre-compressed to a minor 

strain of 1.1%. This mechanical loading was studied using uniaxial compression 

experiments, as described in Chapter 2.9. Major structural failures, including layer collapse 

and extensive node fracturing, will not occur at this strain. 



 

 

28 

 

Figure 2.16 Optical image of the 3D LCO microlattice surrounded by an HDPE washer on Al CC in 
a CR2032 coin cell case (left) and schematic of all coin cell components (right). 

Figures 2.17 and 2.18 illustrate the cycling performance of 3D LCO between 3.0 and 4.2 V 

at various current densities, tested using a battery cycling system (BTS4000, Neware). In 

Figure 2.17, the charge-discharge curves of the first two galvanostatic cycles at 3.5 mA g-1, 

corresponding to a C-rate of C/40, give 133 and 137 mAh g-1 of the reversible capacity, with 

82.4% and 89.9% of the Coulombic efficiency, respectively. The C-rates are calculated based 

on a 140 mAh g-1 practical capacity of LCO, which is approximately half of its theoretical 

capacity of 274 mAh g-1. As indicated by the CV measurement, the monoclinic-hexagonal 

phase transformation near composition Li0.5CoO2 occurs at 4.2 V [30]. 

 

Figure 2.17 First and second charge-discharge curves from the galvanostatic cycling of the 3D LCO 
microlattice at C/40. 
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The discharge capacities and the corresponding Coulombic efficiencies at increasing C-

rates from C/40 to 2C, followed by ten cycles at C/2, are summarized in Figure 2.18. C/40, 

C/20, C/10 and C/5 were cycled with constant current charging and discharging, giving a 

stable reversible capacity fluctuating in the range of 122–142 mAh g-1 (11.3–13.2 mAh cm-

2). The Coulombic efficiency gradually increases to 98.7% in the first five cycles, and 

remains > 99% until the current density goes above C/5. For C/2, 1C and 2C cycles, constant 

current constant voltage (CC-CV) charging with 0.02 mA cutoff and constant current 

discharging were employed. While the discharge capacity remains above 130 mAh g-1 during 

C/2, it drops abruptly to 47–64 mAh g-1 for 1C and 5–7 mAh g-1 for 2C, with Coulombic 

efficiencies to be 95.4%, 49.2% and 15.6% for the first cycle at each rate. The capacity 

immediately recovers to 125 mAh g-1 upon returning to C/2, and then a gradual capacity fade 

to 115 mAh g-1 occurs over the next five cycles, followed by an abrupt drop to 62 mAh g-1 

in five more cycles. 

 

Figure 2.18 Coulombic efficiency (top) and discharge specific and areal capacities (bottom) of the 
3D LCO lattice cycled between 3.0 and 4.2 V at different C-rates. 

During cycling, Li is plated and stripped on and from the Li metal foil only in the area not 

covered by the HDPE washer, as shown in Figure 2.19. Therefore, at a rate of 2C for LCO 

cathode, the effective areal current density for the Li metal anode is around 10.7 mA cm-2, 
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which can rapidly lead to mossy Li surface morphology, deteriorating the full cell 

performance [32]. Using a high-rate anode to match the high areal capacity of the LCO 3D 

microlattice may further enhance the long-term cycling performance of the full cell [33]. 

 

Figure 2.19 Optical image of Li metal anode after full cell cycling. 

The freestanding 3D LCO electrode fabricated with our gel infusion additive manufacturing 

technique eliminates the polymer binder and largely improves the mass loading of active 

materials on the current collector. To demonstrate the significant difference in active material 

mass loading, the specific discharge capacity at multiple C-rates for a 3D interdigitated LCO 

electrode was compared to a commercial LCO slurry electrode, shown in Figure 2.20. The 

3D electrode consisted of beams with 100 μm in diameter, and its detailed structure is 

presented in Chapter 4.2. The mass of each component in both slurry and 3D electrode is 

summarized in Table 2.5. With comparable capacities at low rates, the active material mass 

percentage in the overall electrode is 1.4 times higher in the 3D electrode (88%) than in the 

slurry electrode (62%). The relatively poor performance of the 3D electrode at C/5 is a result 

of the thick beams in the 3D structure. If the beam diameter is reduced from 100 μm to 45 

μm, significantly better performance at C/5 should be achieved, as demonstrated by the 

specific discharge capacity of LCO microlattices shown in Figure 2.18.  
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Figure 2.20 Discharge specific capacities of a slurry electrode fabricated with commercial LCO 
powder and an LCO interdigitated electrode fabricated with the gel infusion additive manufacturing 
technique, both cycled between 3.0 and 4.2 V at different C-rates. 

 Slurry electrode 3D electrode 

Mass of slurry coating (47 μm) or 3D electrode (mg) 10.28 89.76 

Mass of Al current collector (20 μm) (mg) 3.80 3.80 

Mass of carbon (mg) 0.51 (5%) 4.49 (5%) 

Mass of PVDF (mg) 1.03 (10%) 0 

Mass of LCO active material (mg) 8.75 85.27 

Mass of overall electrode (Al + carbon + PVDF + LCO) (mg) 14.08 97.36 

Mass percentage of LCO in the overall electrode  62% 88% 

 
Table 2.5 Mass of components in the commercial LCO slurry electrode and the 3D interdigitated 
LCO electrode fabricated using gel infusion additive manufacturing technique. 

The beam diameter of the 3D micro-architected LCO lattice in this work was minimized 

down to 45 μm within the fabrication limitations, to reduce the Li ion diffusion path within 
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the electrode. With 45 μm beams, we observed significantly improved discharge capacities 

at C/5 compared to the previous work by Yee et al., which reported 94 mAh g-1 for LCO 

cubic microlattices with 100 μm beam diameters [26]. The potential for further reducing the 

beam size for improving capacities at higher rates than C/5 needs to be balanced against the 

potential trade-off with mechanical strength and electrical conductivity. Enhancing the 

electrical conductivity could involve optimizing the gas composition, pressure and flow rate 

for LCO synthesis and sintering processes to increase carbon content in the final structure. 

Our choice of an octet truss lattice consisting of beams with high aspect ratio of ~5.8 

demonstrates the capability of this AM technique to create 3D architected electrode materials 

with intricate geometries. For battery electrode applications, future designs should aim for 

3D structures with higher relative densities but similar minimum feature size, which could 

give higher areal and volumetric energy densities and potentially further enhance the overall 

mechanical strength of the electrode. 
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2.8 Microstructural Tailoring with Various Sintering Conditions 

In addition to sufficient electrochemical performance, the 3D micro-architected LCO lattices 

need to be mechanically strong to survive sample handling during cell assembly. Since LCO 

is the constituent material of the microlattice, for samples with the same architecture, the 

overall mechanical strength is tunable by tailoring LCO microstructure. Chapter 2.8 

introduces 3D micro-architected LCO lattices with several different LCO microstructures 

obtained from various sintering conditions, and Chapter 2.9 probes the mechanical strength 

and different failure mechanisms of these LCO microlattices. 

 

Figure 2.21 LCO calcination temperature profiles with different sintering pressures and gas species: 
a) under 1 atm Ar up to 700 °C; b) under 0.01 atm air up to 700 °C; c) under 1 atm Ar up to 800 °C; 
d) under 1 atm Ar up to 900 °C. 
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The rate-limited combustion of the infused gel under air with reduced pressure produces 

porous, nanocrystalline LCO, distributed uniformly across the 3D structure. Sintering under 

the standard condition, with 1 atm Ar up to 700 °C (Figure 2.21a), results in a final grain size 

of ~500 nm for the LCO, as illustrated in the ion channeling contrast image in Figure 2.22a, 

taken with gallium focused ion beam (FIB), and the SEM image of the electrode surface in 

Figure 2.23a. The LCO microlattice overall undergoes isotropic linear shrinkage to 40% of 

the printed gel, and the porosity of LCO in the microlattice is approximately 24%, estimated 

with the cross-section area shown in Figure 2.24a. 

 

Figure 2.22 Ion channeling contrast images taken with gallium focused ion beam over the cross-
sections of 3D micro-architected LCO sintered under a) 1 atm Ar up to 700 °C and b) 0.01 atm air up 
to 700 °C, with necking between LCO particles in the latter highlighted in the inset. 

To tailor the microstructure of additively manufactured LCO, we explored different 

atmospheres and temperatures during the sintering stage, while keeping the same conditions 

during LCO synthesis below 400 °C. When the atmosphere of air under reduced pressure at 

0.01 atm is maintained during sintering (Figure 2.21b), similar to Yee et al.'s method for their 

3D printed hydrogels, the LCO microlattice experiences isotropic linear shrinkage to 53% of 

the original gel size, leading to smaller grain sizes of ~100 nm (Figure 2.22b, Figure 2.23b) 

and increased porosity of 33%, estimated with the four cross-section areas shown in Figure 

2.24b, compared to the samples fabricated with the standard sintering condition [26]. Figure 

2.25 compares the size of LCO microlattices fabricated with different sintering conditions. 

This reduced shrinkage in the overall dimensions of 3D lattices is due to the lower degree of 
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material densification and higher LCO porosity. The LCO particles exhibit more rounded 

geometries, more free surfaces and fewer grain boundaries, with connections between 

particles through necking commonly observed, as depicted in the inset of Figure 2.22b. 

 

Figure 2.23 SEM images of surfaces of 3D micro-architected LCO sintered under a) 1 atm Ar up to 
700 °C and b) 0.01 atm air up to 700 °C. 

 

Figure 2.24 Optical images of 3D micro-architected LCO lattices mounted in epoxy and after 
progressive polishing to a 50 nm grit suspension, and the corresponding SEM images of the cross-
sections after mechanical and FIB polishing for samples sintered a) under 1 atm Ar up to 700 °C and 
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b) under 0.01 atm air up to 700 °C. The thorough penetration of epoxy into the porous volume within 
LCO indicates interconnected pore spaces, allowing for the flow of electrolytes. 

 

Figure 2.25 Optical image of 3D micro-architected LCO lattices sintered under different atmospheres 
up to various maximum temperatures. 

We also explored the impact of sintering temperature on the microstructure of this additively 

manufactured LCO. The melting temperature of LCO is around 1100 °C [34]. Sintering at 

700 °C, 800 °C and 900 °C, corresponding to approximately 0.6, 0.7 and 0.8 of its melting 

point, ensures it in the solid phase during the process, in line with standard practices in solid-

state sintering where the material is typically heated to 0.5–0.9 of its melting point [35]. 800 

°C (Figure 2.21c) and 900 °C (Figure 2.21d) sintering under 1 atm Ar results in LCO grain 

sizes of ~2 μm and ~4 μm, respectively, as shown in the images of sample cross-sections in 

Figure 2.26 and sample surfaces in Figure 2.27. 
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Figure 2.26 Ion channeling contrast images taken with gallium focused ion beam over the cross-
sections of 3D micro-architected LCO sintered under 1 atm Ar up to a) 800 °C and b) 900 °C. 

 

Figure 2.27 SEM images of surfaces of 3D micro-architected LCO sintered under 1 atm Ar up to a) 
800 °C and b) 900 °C. 

Figure 2.28 shows the XRD patterns for LCO microlattices sintered under various 

conditions, indicating pure LCO in the samples sintered under 1 atm Ar up to 700 °C, 0.01 

atm air up to 700 °C and 1 atm Ar up to 800 °C. A small CoO peak is present in the sample 

sintered under 1 atm Ar up to 900 °C. An interesting finding emerged when sintering was 

performed at 900 °C under 0.01 atm air, with the temperature profile in Figure 2.29b. Both 

CoO and Co3O4 phases as side products from calcination occur in the synthesized LCO 

microlattice, indicated by its XRD pattern. 
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Figure 2.28 XRD patterns for the additively manufactured LCO sintered under different pressures 
and gas species up to various maximum temperatures, with references from ICSD. 

 

Figure 2.29 LCO calcination temperature profiles for samples sintered under 0.01 atm air up to a) 

700 °C and b) 900 °C, with an additional isothermal hold for 3 hours at the peak temperature. 
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Figure 2.30 Lithium and cobalt ion calibration curves from ICP-MS analysis, and the measured ion 

concentrations for LCO microlattice samples sintered under 0.01 atm air up to 700 °C and 900 °C, 

with an additional isothermal hold for 3 hours at the peak temperature. 

To investigate whether the presence of CoO and Co3O4 phases in the sample sintered under 

0.01 atm air up to 900 °C is attributed to a substantial loss of lithium during high temperature 

sintering under reduced pressure, ICP-MS experiments were conducted for this sample. For 

comparison, a sample sintered under the same pressure and gas species, and with a similar 

temperature profile except for a peak temperature of 700 °C (Figure 2.29a) was also 

analyzed. Figure 2.30 presents the lithium and cobalt ion calibration curves and the measured 

ion concentrations in sample solutions. Compositions of LCO microlattice samples are 

summarized in Table 2.6, showing significant lithium deficient, with a lithium to cobalt 

molar ratio of 0.75:1, in the sample sintered under 0.01 atm air up to 900 °C. An exact 1:1 

molar ratio between lithium and cobalt atoms in the sample sintered only up to 700 °C 

indicates the significant loss of lithium occurs between 700 °C and 900 °C for sintering under 
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reduced pressure. These results suggest that, unlike in this work, the sintering process 

introduced by Yee et al. cannot be straightforwardly generalized into higher peak 

temperatures for LCO grain size tailoring without changing the atmosphere [26]. 

 700 °C 900 °C 

Li:Co atomic ratio 1.00:1 0.75:1 

 
Table 2.6 The atomic ratio between lithium and cobalt atoms measured from ICP-MS analysis for 

LCO microlattice samples sintered under 0.01 atm air up to 700 °C and 900 °C, with an additional 

isothermal hold for 3 hours at the peak temperature. 

In Chapter 2.6, the composition of LCO microlattices fabricated using excess amount of 

lithium in the ion infusion solution and with the standard calcination conditions were studied 

using ICP-MS, which demonstrates over-stoichiometry of lithium in the synthesized sample 

for excess amount of infused lithium ions. 5%, 12%, 25% and 50% excess lithium results in 

LCO microlattices with lithium to cobalt atomic ratios of 1.08:1, 1.15:1, 1.33:1 and 1.64:1, 

respectively. Here, to investigate whether the excess amount of lithium in the ion infusion 

solution is able to compensate for the significant loss of lithium when sintered under reduced 

pressure at high temperature, we fabricated LCO microlattices using ion infusion solutions 

with 5%, 10%, 15%, 20% and 25% excess amount of lithium in molarity, all sintered under 

0.01 atm air up to 900 °C following the process in Figure 2.29b. However, from XRD 

patterns for all these samples shown in Figure 2.31, there are still significant peak intensities 

for CoO and Co3O4 phases, even for the one with the highest amount of infused lithium ions, 

which indicates the LCO microlattices still suffer from severe under-stoichiometry of 

lithium. 
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Figure 2.31 XRD patterns for the additively manufactured LCO samples fabricated using ion-
infusion solutions with 5%, 10%, 15%, 20% and 25% excess amount of lithium in molarity, all 
sintered under 0.01 atm air up to 900 °C, with an additional isothermal hold for 3 hours at the peak 
temperature. 

When the sintering atmosphere is switched to 1 atm Ar as in the standard sintering condition, 

the additional 3-hour isothermal hold at 900 °C (Figure 2.32) allows for more extensive grain 

growth and results in even larger LCO grains with rounded shape compared to the LCO 

microlattices sintered without the high-temperature hold. Figure 2.33a presents a top-view 

SEM image of the LCO microlattice sintered under this condition, with a closer view of an 

individual beam shown in Figure 2.33b and a highlight of a representative LCO grain on the 

surface of the microlattice shown in Figure 2.33d. The beam cross-section in the SEM image 

in Figure 2.33c was imaged with gallium focused ion beam, giving the ion channeling 
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contrast image in Figure 2.33e, which shows only two LCO grains in this cross-section area 

as highlighted in Figure 2.33f. 

 

Figure 2.32 LCO calcination temperature profile for samples sintered under 1 atm Ar up to 900 °C, 

with an additional isothermal hold for 3 hours at the peak temperature. 
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Figure 2.33 3D micro-architected LCO lattice sintered under 1 atm Ar up to 900 °C, with an 
additional isothermal hold for 3 hours at the peak temperature. a) SEM image of a microlattice from 
top-view. b) SEM image of a beam in this lattice. c) SEM image of the cross-section of a beam. d) 
SEM image of an LCO grain on the surface of the sample. e) Ion channeling contrast image taken 
with gallium FIB over the cross-section. f) Highlight of the two LCO grains in the cross-section area. 

Following the sintering condition in Figure 2.32, excess amount of lithium ions in the 

infusion solutions again results in over-stoichiometry of lithium in the synthesized LCO 

microlattices, with ICP-MS analysis results summarized in Table 2.7 and their corresponding 

XRD patterns shown in Figure 2.34. This result confirms that for a peak temperature of 900 

°C, the sintering atmosphere of air with reduced pressure in the process shown in Figure 

2.29b is a key factor to cause significant loss of lithium. When the sintering atmosphere is 1 
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atm Ar as in the standard sintering condition, the additional 3-hour isothermal hold at 900 

°C does not lead to severe lithium loss. 

 5% 
excess Li 

8% 
excess Li 

10% 
excess Li 

12% 
excess Li 

15% 
excess Li 

18% 
excess Li 

Li:Co atomic ratio 1.01:1 1.02:1 1.03:1 1.06:1 1.11:1 1.16:1 
Carbon mass 

percentage (%) 
7.6 2.0 7.9 8.5 6.1 10.2 

 

Table 2.7 The atomic ratio between lithium and cobalt atoms measured from ICP-MS analysis for 
LCO microlattice samples sintered under 1 atm Ar up to 900 °C with an additional isothermal hold 
for 3 hours at the peak temperature, and the calculated carbon mass percentage in each sample. 

 

Figure 2.34 XRD patterns for the additively manufactured LCO samples fabricated using ion-

infusion solutions with 5%, 8%, 10%, 12%, 15% and 18% excess amount of lithium in molarity, all 

sintered under 1 atm Ar up to 900 °C, with an additional isothermal hold for 3 hours at the peak 

temperature.  
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2.9 Mechanical Behaviors of 3D Micro-Architected Lithium Cobalt Oxide Lattice 

The various microstructures of LCO, resulting from different sintering atmospheres, lead to 

distinct mechanical strengths in the 3D architected microlattices. To investigate their 

mechanical behaviors, uniaxial compression experiments at a quasistatic strain rate of 10-3  

s-1 are performed, using a dynamic mechanical analyzer (DMA 850, TA Instruments) with a 

15 mm diameter compression clamp, shown in Figure 2.35a. 

Figure 2.35b shows the typical engineering stress-strain signatures of samples sintered up to 

700 °C under different pressures following the conditions in Figures 2.21a and 2.21b, 

normalized to the overall dimensions of each microlattice. These profiles indicate the 3D 

architected LCO sintered under 0.01 atm exhibits over ten times weaker mechanical strength 

compared to the one sintered at 1 atm. The disparity in strength can be attributed to the larger 

number of free surface-grain boundary junctions in the 0.01 atm sintered sample, which are 

the weak points with concentrated stress facilitating fracture initiation and propagation [36]. 

Additionally, the irregular geometries of grains in the 1 atm sample, as shown in Figure 

2.22a, contribute to frictional interlocking, which can further reinforce the structural integrity 

of LCO microlattice. 

Quasistatic uniaxial compression experiments are also performed on the samples sintered up 

to 800 °C and 900 °C under 1 atm Ar following the conditions in Figures 2.21c and 2.21d.  

Similar mechanical strengths across samples were observed, as shown in Figure 2.35. Their 

mechanical strengths are also in a similar range as the previous sample sintered up to 700 °C 

under 1 atm Ar. From the investigation on the impact of sintering temperature on the 

microstructure of the LCO microlattices in Chapter 2.8, we have observed significant 

difference in the LCO grain size from 700 °C (~500 nm), 800 °C (~2 μm) and 900 °C (~4 

μm) sintering. The quasistatic uniaxial compression results reveal that the grain size variation 

in the additively manufactured LCO within the studied range in this work is not the most 

important factor contributing to the overall mechanical strengths of LCO microlattices, and 

highlight the significant contribution of different sintering atmospheres. 



 

 

46 

 

Figure 2.35 Quasistatic uniaxial compression on LCO microlattices. a) Experimental setup in the 
dynamic mechanical analyzer with a 15 mm diameter compression clamp. b) Engineering stress-
strain curves of 3D micro-architected LCO sintered under 1 atm Ar and 0.01 atm air up to 700 °C. c) 
Engineering stress-strain curves of 3D micro-architected LCO sintered under 1 atm Ar up to 800 °C 
and 900 °C. 

Figure 2.36 compares two characteristic engineering stress-strain curves up to 25% effective 

strain of 3D LCO lattices, paired with corresponding video frames captured at multiple 

strains. It reveals different failure mechanisms for samples with distinct mechanical 

strengths, corresponding to the two different sintering pressures. The sample sintered at 0.01 

atm starts fracturing at multiple nodes on the bottom of the lattice, when the stress is below 

0.01 MPa. Full contact is established near 0.5% strain, and the lattice sustains a stress around 

0.02 MPa after 2% strain. Beyond 12% strain, densification due to beam collapse becomes 

significant, and the stress keeps increasing afterwards, reaching 0.04 MPa at 24% strain. In 

contrast, the sample sintered at 1 atm up to 900 °C attains full contact at about 0.5% strain, 

followed by elastic deformation up to 0.15 MPa. The slope gives an effective elastic modulus 

of 19.03 MPa. After several initial fracture events, the stress goes up to 0.32 MPa before a 

major lattice collapse around 3.5% strain. Throughout compression, multiple layer collapses 

occur, corresponding to the rapid stress drops on the curve. A notable instance is captured on 

the video frame at 12% strain. Random node fracturing, similar to the 0.01 atm sample, is 
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also present in the 1 atm sample, but the overall lattice maintains better structural integrity, 

as illustrated in the video frame at 24% strain. 

 

Figure 2.36 Failure mechanisms of LCO microlattices. Engineering stress-strain curves of 3D micro-
architected LCO sintered under 1 atm Ar up to 900 °C and 0.01 atm air up to 700 °C, with side-view 
images captured at multiple strains. The triangle guides the slope of the elastic loading. 

For the sample sintered at the reduced pressure, the early node fracturing before the 

establishment of full contact is likely due to the imperfect initial contact, as a result of 

structural imperfections from fabrication. The global uniaxial stress is concentrated at nodes 

with defects on the bottom of the lattice when individual local fractures are ready to occur. 

Similar structural imperfections are also present on the sample sintered at 1 atm, which does 

not achieve full contact until 0.5% strain as well. But in this sample, LCO, as the constituent 

material for the octet truss lattice, exhibits much higher mechanical resilience. Its 3D 

structure remains intact under the local stress concentrated at nodes with defects, while 

allowing the global stress to distribute across the whole lattice before layer collapses take 

place at much higher uniaxial stress. 
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2.10 Nanomechanical Analysis of Additively Manufactured Lithium Cobalt Oxide 

After mechanical analysis of the 3D architected LCO lattice at macro-scale, we then zoomed 

into its constituent material at nano-scale by looking at the LCO grains and grain boundaries. 

There have been nanoindentation studies showing grain boundary softening for sintered 

ceramic grains due to low cohesive energy, where a significant reduction of elastic modulus 

has been measured at the grain boundary compared to the values measured on the grains [37]. 

Therefore, it will be interesting to see, whether our additively manufactured LCO, sintered 

at 1 atm, has this grain boundary softening effect. 

To probe elastic and plastic properties of the additively manufactured LCO grains, we 

conducted SEM-based in situ nanoindentation experiments on 3D LCO lattice sintered up to 

900 °C under 1 atm Ar following the condition in Figure 2.21d. The LCO lattice was 

mounted in epoxy (FibreGlast 2000) in a customized silicone mold and fully cured on a 70 

°C hotplate for 24 hours. The silicone mold, shown in Figure 2.37a, was fabricated by 

infilling a 3D printed counterpart. The cured epoxy with LCO microlattice was then 

progressively polished with 320 grit, 400 grit, 600 grit, 800 grit and 1200 grit silicon carbide 

papers (Buehler), and subsequently 9 μm, 6 μm, 3 μm, 1 μm and 50 nm grit monocrystalline 

diamond suspensions (Buehler). The polished sample was shown in Figure 2.37b. 

 

Figure 2.37 The 3D micro-architected LCO lattice mounted in epoxy for nanoindentation. a) The 
LCO microlattice mounted in epoxy in a customized silicone mold. b) The LCO microlattice in epoxy 
after progressively polished to a 50 nm grit suspension. 
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The nanoindentation experiments were performed in SEM (Versa 3D DualBeam, Thermo 

Fisher), shown in Figure 2.38a, using a nanomechanical testing system (FT-NMT04, 

FemtoTools AG), shown in Figure 2.38b, under displacement-controlled mode using a 

diamond Berkovich tip (Figure 2.39). This Berkovich tip has a micro-electromechanical 

system (MEMS)-based capacitive force sensor (FT-S200000), which has a force range of 

200,000 μN with 0.5 μN noise floor (one sigma at 10 Hz). 

 

Figure 2.38 Experimental setup for in situ nanoindentation experiments on LCO microlattices. a) The 
SEM chamber. b) The FemtoTools nanoindentation system mounted on the SEM stage. 

 

Figure 2.39 SEM images of the diamond Berkovich nanoindentation tip above a polished LCO 
microlattice sample. 
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Each indentation was executed at a displacement rate of 5 nm s-1 up to a maximum depth 

of 150 nm. The areas containing multiple LCO grains and grain boundaries were identified 

in SEM to be the target sites for nanoindentation mapping prior to the experiments. 

Indentation arrays in the mappings have a spacing of 1.5 μm between individual indents. 

Continuous stiffness measurement (CSM) technique was utilized, which involves 

superimposing a 200 Hz oscillating displacement of 3 nm in amplitude, allowing for a 

continuous measurement of unloading stiffness during the entire global loading process. It is 

important to keep a small global displacement within one CSM oscillating cycle compared 

to the CSM amplitude. Since the CSM method relies on the unloading during CSM cycles 

throughout the global loading to calculate hardness and elastic modulus over the full depth 

range, if the loading rate is too high for the superimposed oscillation, large systematic error 

will occur due to the lack of effective unloading in each CSM cycle. 

Before nanoindentation experiments on LCO samples, the system was calibrated in two steps 

using a fused silica standard sample of 12.7 mm in diameter, as shown in Figure 2.40. The 

fused silica is isotropic in both elastic properties and hardness, with known modulus and 

hardness values [38]. 

 

Figure 2.40 Optical image of the fused silica standard sample for calibrations, mounted on the 
nanoindentation system. 
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First, a frame compliance map calibration measurement was performed under force-

controlled mode, with 5 by 5 indentation arrays centered on the sensor position, and the 

spacing between individual indents is 1000 μm. Each indentation was executed at a loading 

rate of 0.2 N s-1 up to a maximum depth of 12.5 μm. The measured force and displacement 

signals are both separated into a global part, - and ℎ, filtered to below the CSM oscillation 

frequency and an oscillating part as a function of time / with the peak force amplitude 0% 

(not the root mean square value) and the peak displacement amplitude 0&, as well as the 

phase lag	 2  between them. The measured contact stiffness 3  and the corresponding 

measured contact compliance 4 can be calculated through equations 

3 =
0%
0&
cos2 

4 =
1
3

 

The whole system is modeled as two springs in series, one representing the sample-indenter 

combination and the other one representing the load frame, in which case 

4 = 4'"( + 4% 

where 4'"(  is the compliance of the sample-indenter combination and 4%  is the frame 

compliance. Therefore, to obtain the frame compliance 4% for the calibration purpose, the 

compliance of the sample-indenter combination 4'"( need to be calculated. 

With known Young’s modulus :' = 72.06	GPa and Poisson’s ratio C' = 0.17 for the fused 

silica standard and Young’s modulus :( = 1140	E-0 and Poisson’s ratio C( = 0.07 for the 

diamond indenter tip, the reduced modulus of the sample-indenter combination was 

calculated to be :) = 70.25	GPa according to the relationship 

1
:)
=
1 − C'*

:'
+
1 − C(

*

:(
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The contact stiffness of the sample-indenter combination 3'"(  is related to the reduce 

modulus of the sample-indenter combination :) through the equation 

1
:)
=
√I
2J

3'"(
√K

 

where the geometric factor J = 1.034 was chosen here for the Berkovich tip, and K is the 

contact area, which is a function of contact depth ℎ+  and need to be determined in the 

indenter tip area function calibration in the second calibration step. 

Note that the contact depth ℎ+  is smaller than the nominal indentation depth ℎ, , and is 

calculated with the equation 

ℎ+ = ℎ, − L
-
3

 

where the geometric factor L = 0.75 for Berkovich tip. The nominal indentation depth ℎ, is 

defined as the displacement after the initial contact point, where the initial contact point was 

found by a power fit of the force-displacement curve near the initial loading between 5 μN 

and 100 μN. 

The indenter tip area function was calibrated under displacement-controlled mode, using 

CSM indentation measurements of 3 by 3 arrays with 4 μm spacing. A 200 Hz oscillating 

displacement of 3 nm in amplitude was superimposed to the global loading. Each indentation 

was executed at a loading rate of 5 nm s-1 up to a maximum depth of 200 nm, fully covering 

the indentation depth of 150 nm in maximum for LCO samples. With known hardness M =

9.434	GPa for the fused silica standard sample, the contact area K can be determined by the 

measured force - for any indentation depth ℎ+ according to the relationship 

M =
-(ℎ+)
K(ℎ+)
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For an ideal Berkovich tip, K(ℎ+) = 24.5ℎ+*, but for a real tip, correction terms need to be 

added to obtain more accurate area function. Here, we fitted to the measurement data using 

an area function with 7 coefficients 4- through 4. 

K(ℎ+) = 24.5ℎ+* +O4,P*Qℎ+'",/!/&
.

,1-
 

where Q = 0.3 was chosen for the fitting.  

With the indenter tip area function K(ℎ+), the expected contact stiffness of the sample-

indenter combination 3'"( can be obtained, which then gives the frame compliance 4%. The 

frame stiffness fit range was chosen to be 20% to 100% of the maximum contact depth due 

to the deviation from the bulk hardness of fused silica at very low indentation depths. The 

area function fit range was chosen to be 1% to 100% of the maximum contact depth. A 

fourth-order polynomial was applied to fit the measured frame compliance values at all 

indented locations to describe the relative spatial distribution of the frame stiffness in Y and 

Z system directions over the 5 mm by 5 mm calibrated area, centered on the sensor position. 

The CSM nanoindentation experiments on the LCO sample generates the force and 

displacement signals which are separated into the global parts, force - and displacement ℎ, 

and the oscillating part with peak force amplitude 0% and peak displacement amplitude 0&, 

as well as the phase lag	2. Similar to the analysis in calibrations, the hardness M of the LCO 

sample as a function of the contact depth ℎ+ was calculated with the known Berkovich tip 

area function K(ℎ+). The measured contact stiffness 3 was obtained from the oscillation part, 

which was converted to the measured contact compliance 4 to give the compliance of the 

sample-indenter combination 4'"(  by subtracting the frame compliance 4% . The reduced 

modulus of the sample-indenter combination :) as a function of the contact depth ℎ+ was 

calculated with the stiffness of the sample-indenter combination 3'"( and the contact area K 

for each ℎ+. Assuming a Poisson’s ratio C' = 0.3 for the LCO sample and with the known 

Young’s modulus :( = 1140	E-0 and Poisson’s ratio C( = 0.07 for the diamond indenter 
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tip, the indentation modulus of the LCO sample :' as a function of the contact depth ℎ+ 

was then calculated. 

To identify the crystal orientations of LCO grains on which the nanoindentation experiments 

were conducted, an electron backscatter diffraction (EBSD) system (AZtec, Oxford 

Instruments) in SEM (LEO 1550 VP, Zeiss) was used, with a 120 μm aperture at 20 kV. 

Figure 2.41 shows SEM images of multiple areas on the polished LCO microlattice sample, 

together with the corresponding EBSD mappings displayed with the inverse pole figure 

coloring in the z-direction (IPF Z). No extrapolation or other data cleaning procedures were 

performed on the collected EBSD maps. 

 

Figure 2.41 SEM images (left) of multiple areas on the polished LCO microlattice sample and the 
corresponding EBSD mappings displayed with the inverse pole figure coloring in the z-direction. 
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Figure 2.42a shows a representative nanoindentation mapping across the grain boundary of 

two adjacent LCO grains, with two indentations performed precisely on the grain boundary 

highlighted in yellow. Figure 2.42b displays the complementary post-indentation EBSD 

mapping of the area in the out-of-plane direction. The corresponding maps of hardness M 

and indentation modulus :' are presented in Figures 2.42c–d, illustrating a clear dependency 

on the orientation of LCO grains. The reported values of the indentation modulus and the 

hardness are the average values between 40–41 nm of the contact depth ℎ+  to eliminate 

surface effects below 40 nm. The values measured at large contact depths may also deviate 

from the true value due to the potential crack formation in LCO. Both modules and hardness 

values on the LCO grain boundary, colored in yellow in Figures 2.42c–d, are intermediate to 

those on the adjacent grains, which indicates no grain boundary weakening or softening for 

the sample [37]. 

 

Figure 2.42 Hardness and indentation modulus maps for an area on a polished cross-section of a 3D 
micro-architected LCO. a) The SEM image of the nanoindentation mapping. b) The corresponding 
EBSD image over the indented area. c) The hardness map for the area. d) The indentation modulus 
map for the area. 
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Figure 2.43 summarizes indentation modulus across five distinct LCO crystal orientations, 

showing a trend of decreasing modulus as the indentation direction aligns more closely with 

[0001], the crystallographic c-axis of LCO. The alignment of these two orientations is 

quantified as the absolute value of the dot product between unit vectors in these directions, 

denoted as |ĉcrystal⋅ẑindentation|. Crystal orientations were determined using EBSD, extracted 

from areas away from the indentations on each grain. Table 2.8 lists the measured crystal 

orientation Euler angles in Bunge convention and the corresponding calculated 

|ĉcrystal⋅ẑindentation| for the five LCO crystals. Figure 2.44 demonstrates the crystal orientations 

in detail for the five studied grains from top and side views along the indentation direction. 

Across all individual nanoindentation measurements, the indentation modulus varies 

between 148.4 GPa and 286.6 GPa. 

 

Figure 2.43 LCO indentation modulus as a function of the crystal orientation, quantified by 
|ĉcrystal⋅ẑindentation|. The inset images are the crystal orientation for each grain in the out-of-plane direction 
for indentations. 
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 Crystal orientation Euler angles in 

Bunge convention "#$"#$%&'( ∙ &$)*+,*&'&)-*" 
 '. ( '/ 

Orientation 1 139.3° 103.8° 115.8° 0.24 

Orientation 2 106.8° 49.0° 72.5° 0.66 

Orientation 3 107.8° 39.9° 103.2° 0.77 

Orientation 4 27.9° 26.3° 13.5° 0.90 

Orientation 5 173.0° 165.9° 24.4° 0.97 

 

Table 2.8 Crystal orientation Euler angles in Bunge convention measured from EBSD for five 
indented LCO grains and the corresponding calculated |ĉcrystal⋅ẑindentation| values. 

 

Figure 2.44 Illustration of LCO crystal orientations from top and side views along the indentation 
direction for the five studied LCO grains. 

Figure 2.45a shows a representative indentation impression with the corresponding LCO 

crystal orientation. The load-displacement curve of this indentation experiment is in Figure 

2.45b, with the calculated hardness and indentation modulus as functions of contact depth 
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during loading shown in Figures 2.45 c–d. In this case, the indentation direction is nearly 

perpendicular to [0001] (|ĉ⋅ẑ| = 0.24), and the load-displacement curve shows multiple load 

drops, highlighted by arrows. Cracks are observed along the LCO basal plane from the image 

of impression. Its hardness as a function of contact depth exhibits notable discontinuities, 

with a significant decrease around 140 nm depth, corresponding to a large pop-in event on 

the load-displacement curve. The indentation modulus shows a significant decrease with 

depth, resulting in ~60 GPa difference between 40 nm and 150 nm. 

 

Figure 2.45 A representative nanoindentation experiment for an LCO grain with an orientation of 
|ĉ⋅ẑ| = 0.24. a) The indentation impression. The inset is a schematic of its crystal orientation. b) The 
load-displacement curve obtained from this indentation experiment and the calculated c) hardness 
and d) indentation modulus, both as functions of the contact depth. 
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In contrast, the experiment on an LCO grain with the indentation direction nearly aligned 

along [0001] (|ĉ⋅ẑ| = 0.90), with a representative indentation impression and the 

corresponding crystal orientation shown in Figure 2.46a, gives a steadier load-displacement 

curve as demonstrated in Figure 2.46b. No apparent load drops are observed within the 150 

nm maximum depth. This orientation exhibits only a minor decrease in hardness (Figure 

2.46c) and a relatively stable indentation modulus which leads to a smaller difference of ~30 

GPa between 40 nm and 150 nm depths (Figure 2.46d). 

 

Figure 2.46 A representative nanoindentation experiment for an LCO grain with an orientation of 
|ĉ⋅ẑ| = 0.90. a) The indentation impression. The inset is a schematic of its crystal orientation. b) The 
load-displacement curve obtained from this indentation experiment and the calculated c) hardness 
and d) indentation modulus, both as functions of the contact depth. 
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Anisotropic mechanical properties are expected for LCO as a result of its crystallographic 

anisotropy. Wu et al. calculated Young’s modulus for LCO with the energy-strain approach 

utilizing two different packages [39]. Vienna ab intio Simulation Package (VASP) gave EX 

= 321.05 GPa / EZ = 212.83 GPa and Cambridge Serial Total Energy Package (CASTEP) 

gave EX = 290.06 GPa / EZ = 177.25 GPa, where X and Z correspond to [112+0] and [0001] 

directions, respectively. 

Qu et al. employed simple nanoindentation experiments on 21 LCO grains following the 

Oliver-Pharr method, reporting Young’s modulus ranging from 151–236 GPa [40]. Their 

method, without a superimposed oscillation to the global loading and unloading, calculates 

the contact stiffness from the unloading curve after reaching a maximum indentation load of 

2 mN, corresponding to a typical indentation depth of around 100 nm. The Oliver-Pharr 

method calculates Young’s modulus using contact stiffness independent of indenter shape, 

under the assumption of isotropic elasticity [37]. For highly anisotropic materials like LCO, 

the relation between contact stiffness and Young’s modulus is not as straightforward due to 

the dependency on indenter geometry [41,42]. Moreover, the method’s accuracy requires the 

absence of fracturing during loading, as crack closure will contribute to unloading 

displacement, thus affecting the measured indentation modulus. This is particularly relevant 

for LCO, where nanoindentation instability varies with the crystal orientation, as 

demonstrated in our discussion of two representative indentation experiments in which we 

observed significantly different contact depths for the occurrence of the initial failure. 

Failures can occur at as early as ~50 nm depth for orientations with |ĉ⋅ẑ| close to 0, while 

more stable behaviors are observed for |ĉ⋅ẑ| near 1. The commonly observed early failures in 

certain orientations suggest a potential underestimation of LCO’s modulus calculated from 

unloading curves in simple nanoindentation experiments, especially for maximum depths 

above 50 nm. This underestimation is directly demonstrated by the measurements for LCO 

grains in these orientations using CSM technique, which shows a significant decrease in 

indentation modulus with depth as in Figure 2.45d. 
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2.11 Gel Infusion Additive Manufacturing for Other Cathode Materials 

This gel infusion AM technique simplifies the creation of 3D micro-architected battery 

materials by eliminating the need for extensive photoresin design and printing parameter 

optimization typically required in VP 3D printing. The LCO fabrication process showcased 

here is adaptable for a large variety of Li-ion battery cathode materials. It is especially 

suitable for the two main categories: (1) lithium transition metal oxides, where the transition 

metals are mainly cobalt, nickel and manganese, including LiMO2 (M = Co, Ni, Mn, etc.) or 

LiM2O4 (M = Mn, etc.) type compounds, and (2) lithium metal phosphates of the form 

LiMPO4 (M = Fe, Mn, Ni, Co, etc.) [43]. This method also holds promise for mixed lithium 

metal oxides, such as LiNixMnyCo1-x-yO2 with tunable transition metal stoichiometry [44]. 

 

Figure 2.47 Generalization of the gel infusion additive manufacturing process for 3D micro-
architected cathodes from LCO to other types of cathode materials for lithium-ion batteries. 

Figure 2.47 highlights the versatility of this AM technique by comparing the fabrication 

processes of micro-architected LCO and LiNi0.33Mn0.33Co0.33O2 (NMC111). They both 

follow a similar initial process involving computer-aided 3D structure design, high resolution 

VP 3D printing of the blank organogel and solvent exchange into the blank hydrogel. The 
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divergence in the target materials for synthesis arises with the infusion of distinct metal 

precursors, followed by the synthesis of each target material through a similar calcination 

process. Switching the infusion solution to 2M LiNO3 with 0.67M Ni(NO3)2, Mn(NO3)2 and 

Co(NO3)2, we demonstrated a straightforward fabrication of 3D architected NMC111 

microlattice with 45 μm beam diameters (Figure 2.48a). The sample was sintered under the 

standard condition of 1 atm Ar up to 700 °C, as in Figure 2.21a. Figure 2.48b shows an SEM 

image of its beam cross-section and an ion channeling contrast image for an area near the 

center which shows ~100 nm of the grain size. EDS element mapping reveals a uniform 

distribution of O, Ni, Mn and Co atoms, as demonstrated in Figure 2.49. Sample crystal 

structure was confirmed with XRD, with the pattern shown in Figure 2.50. 

 

Figure 2.48 The NMC111 microlattice and its beam cross-section. a) SEM images of a 3D micro-
architected NMC111 octet truss lattice in top view. b) (i) SEM and (ii) ion channeling contrast images 
of its beam cross-section. 
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Figure 2.49 EDS element mapping of the beam cross-section of an NMC111 microlattice. 

 

Figure 2.50 XRD pattern for the additively manufactured NMC111 microlattice. 

To apply this gel infusion additive manufacturing technique across a more diverse range of 

other oxide and phosphate-type cathode materials for lithium-ion batteries, as shown on the 

right side of Figure 2.47, the extensively studied sol-gel methods can often provide a robust 

starting point, as they could guide the selection of suitable precursors for infusion and help 

in determining the optimal conditions for the thermal synthesis reactions [45–47]. 
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C h a p t e r  3  

3D LITHIUM ANODE WITH MICRO-ARCHITECTED CARBON 
SCAFFOLD 

3.1 Overview 

3D micro-architected carbon lattices can be additively manufactured through a 

straightforward conversion via pyrolysis from 3D printed polymer microlattices, as 

mentioned in Chapter 1.3. Narita et al. developed a fabrication method to create 3D glassy 

carbon microlattice as the anode for lithium-ion batteries, achieving the smallest feature size 

(diameter of microlattice beams) of 28 μm  [24]. This carbon electrode is mechanically 

robust, with a maximum pre-collapse stress of 27 MPa for a 45° tilted square lattice of 1 mm 

in thickness with a porosity of 90%. It is glassy carbon with the microstructure mostly 

composed of differently oriented graphitic layers, and it has been demonstrated as the carbon 

anode for lithium-ion batteries which stores lithium ions by intercalation. Beyond directly 

serving as an anode, this carbon microlattice also has a great potential to be used as a 3D 

scaffold for the lithium-metal anode due to its small feature size and the ability to contain 

independently controlled structural factors in both unit cells and the bulk lattice. 

Safe and durable lithium metal electrodes will bring about a revolutionary increase in battery 

energy density due to their ultrahigh theoretical specific capacity of 3860 mAh g-1 and the 

low electrochemical potential of -3.04 V versus the standard hydrogen electrode [48]. 

Although lithium metal anodes were often used in battery research since the very early stages 

in the 1970s [6], they were gradually omitted from the commercialization of lithium-ion 

batteries due to the safety concerns. The dendrites commonly formed during lithium plating 

may cause shorting between the cathode and anode, which risks thermal runaway and even 

explosion of the battery [49]. The morphology of the lithium deposited during plating is 

closely related to the current density and the ionic distribution near the electrode surface. To 

lower the effective current density, in order to mitigate lithium dendrite growth, host 

materials have been widely studied, among which porous carbon-based materials, usually 
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made of carbon fiber, carbon nanotube, graphene or biomass-derived carbon, are most 

promising due to their outstanding chemical resilience and light weight [50]. 

As shown in Figure 3.1, Zhang et al. demonstrated a carbon fiber network film prepared by 

vacuum filtration, which suppressed the formation of dendritic lithium as on a copper foil 

current collector during plating, giving a generally flatter anode surface and achieving an 

average Coulombic efficiency of 99.9% for 300 cycles at a current density of 2.0 mA cm-2 

with 1 mAh cm-2 lithium loading [51].  

 

Figure 3.1 Carbon fibers as the host material for lithium anodes. SEM images a) before and b) after 
lithium deposition. Adapted with permission from reference [51]. Copyright 2016 Tsinghua Press, 
co-published with Springer. 

Want et al. utilized a biomass-derived carbon material as lithium metal host which achieved 

an average Coulombic efficiency of 99.1% with the areal capacity of 2.2 mAh cm-2 [52]. 

Prepared by carbonizing an eggplant, this material has channel-like structures as shown in 

Figure 3.2. The carbon sample was coated with zinc oxide using atomic layer deposition and 

then infused with lithium through a melt infusion process, followed by a surface coating of 

lithium fluoride through the reaction with commercial Freon R134a under 0.5 atm and 120 

°C for 24 hours. 
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Figure 3.2 Carbonized eggplants as the host material for lithium anodes. SEM and optical (inset) 
images a) before and b) after zinc oxide coating using atomic layer deposition and melt infusion of 
lithium. Adapted with permission from reference [52]. Copyright 2019 Wiley. 

Unlike the stochastic 3D structure in the porous carbon-based materials made of carbon fiber, 

carbon nanotube, graphene or biomass-derived carbon, additive manufacturing techniques 

enable the creation of 3D porous carbon materials with periodic structures and well-defined 

form factors. We utilized VP 3D printing and pyrolysis to fabricate 3D architected porous 

carbon scaffolds with flexibly designed micron-to-centimeter form-factors and outstanding 

mechanical strength. We investigated surface functionalization and studied lithium 

electrodeposition conditions to achieve dense lithium nucleation and uniform epitaxial 

growth on the surface of the carbon scaffold. The fabricated free-standing 3D architected 

lithium metal electrode was able to accommodate the large volume change of lithium during 

cycling and the resulting mechanical stress built up in the battery compared to the lithium 

foil electrode. Smooth lithium morphology was observed after 200 cycles of symmetric 

cycling at current density of 1.0 mA cm-2 with 1 mAh cm-2 lithium loading. 
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3.2 Fabrication of 3D Micro-Architected Carbon Scaffold 

The fabrication process for 3D carbon scaffolds mainly follows the method developed by 

Narita et al. [24]. A commercially available photoresin, PR-48 (Arkema) with the 

composition listed in Table 3.1, was used to print 3D architected polymer microlattices with 

a DLP 3D printer (Titan 3, MicroSLA). The printing parameters shown in Table 3.2. 

Component Amount 

Allnex Ebecryl 8210 39.776% 

Sartomer SR 494 39.776% 

2,4,6-Trimethylbenzoyl-diphenylphosphineoxide 0.400% 

Rahn Genomer 1122 19.888% 

2.2’-(2,5-thiophenediyl)bis(5-tertbutylbenzoxazole) 0.160% 
 
Table 3.1 Composition of the commercially available photoresin PR-48 for 3D printing. 

Slice thickness (mm) 0.025 LED Current 
(5.86 mA per unit) 200 

 

 Exposure 
Time (s) 

Lift Height 
(mm) 

Lift Speed 
(mm min-1) 

Down Speed 
(mm min-1) 

Delay Time 
(s) 

First layer 2 4 25 150 1 

Remaining layers 0.8 4 25 150 1 
 
Table 3.2 Printing parameters for the PR-48 photoresin using the Titan 3 DLP printer (MicroSLA). 

The printed polymer samples were soaked in propylene glycol methyl ether acetate 

(PGMEA) for 2 hours to fully remove the unreacted photoresin, then rinsed with isopropanol 

and dried. As illustrated in Figure 3.3, the printed polymer microlattices were pyrolyzed in a 

tube furnace (OTF-1500X, MTI) under vacuum with a pressure around 0.001 atm up to 1000 

°C, following the temperature profile in Figure 3.4, to give 3D micro-architected carbon 

lattices. The decomposition of polymer during pyrolysis generates CO2 and H2O which are 

released from the structure, and the obtained carbon microlattices undergoes isotropic linear 

shrinkage to around 30% of the polymer microlattices. 
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Figure 3.3 Schematic of the pyrolysis process and optical images of printed polymer microlattices 
and pyrolyzed carbon microlattices. 

 

Figure 3.4 Pyrolysis temperature profile for the synthesis of carbon microlattice from PR-48 polymer 
microlattice. 

The low pressure around 0.001 atm is important for this pyrolysis process, which helps to 

prevent gas bubbles from being trapped inside the structure during decomposition and 
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shrinkage. A pyrolyzed 3D micro-architected carbon sample with severe structural 

deformation due to the trapped gas bubbles is shown in Figure 3.5. 

 

Figure 3.5 A 3D micro-architected carbon sample severely deformed due to the trapped gas bubbles 
formed during pyrolysis. 

The overall geometry of the sample was designed to be a cylindrical disk with a handle, and 

the lattice was composed of tilted cubic unit cells. Samples with two different sizes were 

fabricated, and the corresponding dimensions of their CAD models are shown in Figure 3.6. 

The smaller samples were used for investigating lithium electrodeposition conditions, as 

discussed in Chapter 3.3, and various surface coatings applied to the 3D carbon scaffold, as 

described in Chapter 3.4. The larger samples were fabricated for symmetric cycling 

experiments in coin cells, which will be discussed in Chapter 3.6. The purpose of adding a 

handle structure on the 3D microlattice will be illustrated during the discussion of the lithium 

electrodeposition and surface coating processes. 
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Figure 3.6 Computer-aided design (CAD) models for 3D printed polymer microlattices with a) small 
and b) large overall dimensions. 

Figures 3.7a–b present a small polymer microlattice as printed and the corresponding 

pyrolyzed carbon microlattice. During pyrolysis, the overall dimensions of the sample 

experience isotropic linear shrinkage of approximately 73%, and the lattice beam diameter 

shrinks approximately 76% from 250 μm to 60 μm, as shown in the SEM images of the 

carbon sample in Figure 3.8. Surface roughness with a layered-geometry is observed on the 

lattice beams, which is intrinsically related to the layered-curing mechanism of DLP 3D 

printing, illustrated by the schematic in the inset of Figure 3.8b. Figures 3.9a–b demonstrate 

a large polymer microlattice as printed and the corresponding pyrolyzed carbon microlattice 

sample. The large sample exhibits isotropic linear shrinkage of approximately 74% for the 

overall geometry and the beam diameter shrinkage of approximately 77% from 200 μm to 

46 μm, as shown in Figure 3.9c. The relative density of the 3D micro-architected carbon 

lattice is around 13% (87% porosity). 
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Figure 3.7 Optical images of a small a) polymer microlattice as printed and b) its corresponding 
pyrolyzed carbon microlattice. 

 

Figure 3.8 SEM images of a) a small carbon microlattice and b) a beam of this lattice, showing 
surface roughness with a layered-geometry intrinsically related to the layered-curing mechanism 
(inset) of 3D printing. 

 

Figure 3.9 Optical images of a large a) polymer microlattice as printed and b) its corresponding 
pyrolyzed carbon microlattice. c) Optical microscope image of the carbon microlattice from top-view. 
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3.3 Electrodeposition of Lithium on 3D Carbon Scaffold 

We plan to use the micro-architected carbon lattice as a scaffold for lithium metal anode and 

store lithium in the free volume of the lattice, which accounts for 87% of the overall volume, 

instead of intercalating lithium ions into the glassy carbon as demonstrated by Narita et al. 

[24]. A conformal layer of lithium needs to be electrodeposited on the surface of the carbon 

microlattice before the electrode is assembled as the anode in a full battery. This is done to 

compensate for the loss of lithium inventory during cycling. The experimental setup for the 

lithium electrodeposition reaction is placed in an Ar glovebox, demonstrated in Figure 3.10, 

and the electrodes are connected to a potentiostat (SP200, BioLogic) outside the glovebox. 

 

Figure 3.10 Optical images of a) the experimental setup for lithium electrodeposition in an Ar 
glovebox connected to a potentiostat outside the glovebox and b) a close view of the reaction system. 
c) Schematic of the experimental setup. 

The electrodeposition reaction took place in 1M lithium bis(trifluoromethane)sulfonimide 

(LiTFSI) solution at 60 °C with stirring, and lithium foil was used as the counter electrode. 

Conductive wires to connect the carbon lattice to a metal clip were attached to it via the 
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handle structure that helps prevent the physical contact between wires and the lattice disk. 

We used the Cu/Ni wire of 130 μm in diameter, which can be inserted into the pores on the 

handle, as shown in Figure 3.11. 

 

Figure 3.11 Optical images 3D micro-architected carbon lattices with the attached Cu/Ni wire. 

The sample is fixed in the center of an HDPE washer with 2 mm in thickness (Figure 3.12a), 

and covered by a separator film (Celgard 2325) with Kapton tape (Figure 3.12b) before being 

sandwiched between two sheets of lithium foil, used as the counter electrode (Figure 3.12c). 

The separator prevents the potential contact between the working and counter electrodes 

during the electrodeposition reaction (Figure 3.12d). 

 

Figure 3.12 Optical images of the process to prepare a small 3D carbon microlattice for lithium 
electrodeposition. 
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After electrodeposition, the sample was air sensitive, as lithium will rapidly react with the 

moisture in ambient conditions. To image the sample in SEM (Versa 3D DualBeam, Thermo 

Fisher), an air-free transfer tool (Vacushut, Figure 3.13a) was used to transfer the sample 

from the Ar glovebox to the SEM chamber. The Vacushut was also sealed in a secondary 

container during transfer (Figure 3.13b). Figure 3.13c shows how the Vacushut lid opens to 

expose the sample due to the expansion of a gas-filled bag when the vacuum level in the 

SEM chamber goes up. 

 

Figure 3.13 Optical images of a) Vacushut, a tool for air-free sample transfer from glovebox to SEM 
chamber, and b) Vacushut sealed in a secondary container. c) Vacushut lid opens in SEM chamber.  

When the small carbon lattice was electrodeposited with 5 mA direct current (32 mA cm-2 

for surface area of the cylindrical disk with 2.7 mm diameter and 0.5 mm thickness) for 30 

minutes, a significant amount of lithium was non-uniformly deposited, partially covering the 

lattice and mainly staying on the outer surface of the cylindrical disk (Figure 3.14). 

 

Figure 3.14 SEM images of a 3D micro-architected carbon lattice after lithium electrodeposition with 
5 mA direct current for 30 minutes. 
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Compared to direct current, pulse current allows for the ion diffusion in the electrolyte 

solution to replenish at the electrode surface during the off periods, which helps maintain a 

consistent ion concentration across the surface and often gives better uniformity in metal 

electroplating, which has also been observed to improve lithium morphology [53]. However, 

when the sample is electrodeposited with 5 mA pulse current, with 1 second on and 1 second 

off, for 30 minutes of the total pulse-on time, only small amount of highly mossy lithium was 

observed on the carbon microlattice, as shown in Figure 3.15. 

 

Figure 3.15 SEM images a 3D micro-architected carbon lattice after lithium electrodeposition with 
5 mA pulse current (1s on, 1s off) for 30 minutes of the total pulse-on time. 

The non-uniform lithium plating is mainly due to the carbon substrate. There is a high 

interfacial energy between carbon and lithium, which leads to an overpotential for lithium 

nucleation to overcome the heterogeneous nucleation barrier on the carbon substrate [54]. 

Therefore, the surface of carbon microlattice needs to be engineered, for example by coating 

a lithiophilic material which gives small or zero lithium nucleation overpotential, to achieve 

conformal lithium electrodeposition. 
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3.4 Lithium Morphology Tailoring with Various Surface Coatings on 3D Carbon 

Scaffold 

Au is known to be lithiophilic as a substrate for heterogeneous lithium nucleation [54]. When 

Li is plated on Au, two alloy phases of LixAu form before the formation of the pure Li phase. 

In addition, the binary phase diagram between Au and Li (Figure 3.16) indicates there exists 

a region where a very small amount of Au dissolves in Li at room temperature, allowing Au 

atoms on the surface layers of LixAu to dissolve into Li to form a buffer layer. This solid 

solution buffer layer has the same crystal structure as pure Li, and can significantly reduce 

Li nucleation energy, resulting in a near zero overpotential for Li electroplating on Au. 

Therefore, coating Au on the surface of the 3D micro-architected carbon lattice will in turn 

create a lithiophilic substrate for Li electrodeposition. 

 

Figure 3.16 Phase diagram between Au and Li. Adapted with permission from reference [54]. 
Copyright 2016 Springer Nature. 

An ultra-high vacuum (UHV) dielectric sputtering system (Orion-8, AJA) shown in Figure 

3.17a was used to uniformly coat ~50 nm of Au on the surface of carbon microlattices. 

However, this system is designed for thin film coatings on flat substrates. To coat our 3D 
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samples, a customized sample holder was designed and printed using a DLP 3D printer 

(Titan 3, MicroSLA) with a commercially available photoresin (UHR, MicroSLA). Figure 

3.18 shows a small size carbon lattice mounted on the sample holder with the Cu/Ni wires. 

The samples with holder were taped onto a silicon wafer for sputter coating. The schematic 

in Figure 3.17b demonstrates the configuration of sample, substrate, and sputter targets in 

the chamber. A 2 inch Au target was placed in one of the side guns in the chamber, from 

which the Au plasma is shot at an angle to the sample. The rotating stage allows uniform 

coating on all surfaces of the lattice. Figure 3.19 shows the small 3D micro-architected 

carbon samples after Au coating. 

 

Figure 3.17 a) Optical image of the Orion-8 UHV sputtering system. b) Schematic of sample and 
target configurations of this system. 

 

Figure 3.18 Optical images of a small 3D micro-architected carbon sample mounted on the 3D 
printed sample holder for sputter coating. 
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Figure 3.19 Optical images of small 3D micro-architected carbon samples a) mounted on the 3D 
printed sample holder and taped on a silicon wafer, and b) after removed from the holder. 

A higher Ar pressure compared to normal Au sputtering procedures for thin film depositions 

in this system was used. This can cause more collisions between Au and Ar atoms within the 

Au plasma, resulting in highly randomized Au atom trajectories at the sample surface. For 

3D structures, a highly directional plasma will result in thicker coatings on certain sample 

surfaces and insufficient coatings on the surfaces facing other directions. The key parameters 

for the Au sputtering process are listed in Table 3.3. 

 DC Mode RF Mode 

Reaction gas Ar Ar 

Gas flow rate 30 sccm 30 sccm 

Strike pressure 30 mTorr 30 mTorr 

Strike power 30 W 30 W 

Running pressure 30 mTorr 30 mTorr 

Running power 100 W 120 W 

Running time 720 s 900 s 
 
Table 3.3 Key parameters for the Au sputtering process. 

Around 500 nm of Au was uniformly coated on the surface of 3D micro-architected carbon 

lattices. Afterwards, the sample was electrodeposited with 5 mA direct current for 30 

minutes. Compared to the sample without Au coating shown in Figure 3.14, lithium on this 

sample shows a more uniform overall distribution, indicating more lithium nucleation sites 
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throughout the lattice. However, the lithium grew in a highly mossy morphology as shown 

in Figure 3.20, which is still far from the dense lithium layer we desire. 

 

Figure 3.20 SEM images of a 3D micro-architected carbon lattice with Au coating after Li 
electrodeposition with 5 mA direct current for 30 minutes. 

Potentially, the mossy lithium plating is due to the loose Au coating on the surface of carbon. 

When the sample is immersed into the electrodeposition solution, a large amount of Au floats 

away from the sample surface, with only scattered Au pieces or nanoparticles remaining on 

the carbon lattice. These Au particles trigger the heterogeneous nucleation of Li at many 

scattered sites when the current is applied, and as a result, Li grows into loose and highly 

mossy clusters. 

First principles calculations of the interfaces between a metallic layer and two representative 

carbon substrates, in this case graphite and diamond, show significantly smaller work of 

separation for Au compared to Ti and Cr on both carbon substrates, as shown in Figure 3.21 

[55]. The work of separation between two materials is calculated as 

R'23-"* = S- + S* − S-* 

where S- and S* are surface energies of materials 1 and 2, and S-* is the interface energy 

between them. The small work of separation for Au-carbon interface indicates low adhesion 

of Au on carbon substrates. Therefore, to maintain a uniform Au coating on the surface of 
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3D micro-architected carbon samples during the entire electrodeposition reaction, an 

additional adhesion layer of Ti or Cr between Au and carbon is necessary. 

 

Figure 3.21 The adhesion strength of Ti, Cr and Au against graphite and diamond, from first 
principles calculations. Adapted with permission from reference [55]. Copyright 2010 Elsevier. 

Figure 3.22 compares Ti and Cr as the adhesion layer between Au and SiO2 substrate, which 

shows a clear Ti layer below Au but highly overlapping Cr and Au layers due to a strong 

interdiffusion between the two [56]. Since Ti has a higher work of separation than Cr for 

both graphite and diamond substrates and limited interdiffusion with Au, a ~5 nm Ti layer 

was sputtered as an adhesion layer to improve the stability of Au coating on carbon 

microlattices. The key parameters for the Ti sputtering process are listed in Table 3.4. Au is 

sputtered after Ti without breaking the vacuum to avoid oxidation of Ti. 

 

Figure 3.22 STEM-EDX maps of the Au layer on SiO2 with Ti or Cr as the adhesion layer, with 
corresponding adhesion layer models. Adapted with permission from reference [56]. Copyright 2017 
American Chemical Society. 
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 DC Mode RF Mode 

Reaction gas Ar Ar 

Gas flow rate 30 sccm 30 sccm 

Strike pressure 30 mTorr 30 mTorr 

Strike power 30 W 30 W 

Running pressure 20 mTorr 20 mTorr 

Running power 150 W 150 W 

Running time 1800 s 3000 s 
 
Table 3.4 Key parameters for the Ti sputtering process. 

After Ti/Au coating, the carbon microlattices show significantly different behaviors after Li 

electrodeposition. With 5 mA direct current for 30 minutes, Li was deposited on the lattice 

beams and also filled most of the empty volume in the lattice, as shown in Figure 3.23a, 

instead of only on the outer surface of the cylindrical disk as shown in Figure 3.14. For the 

electrode to start with lower initial mass and larger empty volume for Li storage in a battery 

before charging, the 5 mA direct current deposition was reduced from 30 minutes to 15 

minutes, which allowed Li to be deposited only on the lattice beams without filling the pores 

(Figure 3.23b). A deposition of 10 minutes, as shown in Figure 3.24, achieved an even 

thinner Li layer, with smooth surface on most areas but a rougher morphology on some lattice 

beams (Figure 3.24). 

 

Figure 3.23 SEM images of a 3D micro-architected carbon lattice with Ti/Au coating after Li 
electrodeposition with 5 mA direct current a) for 30 minutes and b) for 15 minutes. 
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Figure 3.24 SEM images of a 3D micro-architected carbon lattice with Ti/Au coating after Li 
electrodeposition with 5 mA direct current for 10 minutes. 

To further improve the surface morphology of electrodeposited Li, the carbon microlattice 

with Ti/Au coating was applied with 5 mA pulse current, with 1 second on and 1 second off, 

for 30 minutes of the total pulse-on time. The pulse current allows for Li ion diffusion during 

the off periods to replenish at the electrode surface and helps maintain a consistent ion 

concentration across the surface. As shown in Figure 3.25, a thin and conformal layer of Li 

on the surface of the 3D lattice was achieved. 

 

Figure 3.25 SEM images of a 3D micro-architected carbon lattice with Ti/Au coating after Li 
electrodeposition with 5 mA pulse current (on 1s, off 1s) for 30 minutes of the total pulse-on time. 

For easier assembly of the 3D anode into a CR2032 coin cell for cycling experiments, larger 

3D micro-architected carbon samples were fabricated and sputtered with Ti/Au following 

the same recipe. The large sample also has an overall shape of a cylindrical disk (Figure 
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3.6b), but is 6 mm in diameter. The maximum overall sample dimensions are limited by the 

size of the sputter’s load-lock. Sputtering on even larger samples in this system can be 

achieved using alternative sample-loading methods. Figure 3.26 shows the large samples 

threaded with the Cu/Ni wires and taped onto a silicon wafer, and the results after Ti/Au 

sputtering. The coated large samples were prepared for Li electrodeposition similarly to the 

small samples, as summarized in Figure 3.27. 

 

Figure 3.26 Optical images of a) a large 3D micro-architected carbon lattice with Cu/Ni wire threaded 
through the handle structure, and several large samples mounted in the 3D printed holders and taped 
on a silicon wafer b) before and c) after Ti/Au sputtering. 

 

Figure 3.27 The fabrication process for small and large 3D micro-architected carbon/Li lattices. 
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The current for Li electrodeposition on the large samples was modified due to its different 

overall dimensions. 20 mA pulse current (26 mA cm-2 for surface area of the cylindrical disk 

with 6.0 mm diameter and 1.1 mm thickness), with 1 second on and 1 second off, for 30 

minutes of the total pulse-on time was applied. The electrodeposited Li forms a uniform layer 

on the surface of the microlattice, as shown in Figure 3.28a. The beam diameter of the carbon 

lattice is 46 μm (Figure 3.9c), and after Li deposition, the beam diameter increases to around 

50 μm. The thickness of Li layer is 4–5 μm, confirmed by measurements on a beam cross-

section milled using Ga focused ion beam (Figure 3.28c). EDS mapping (Ga signal removed) 

in Figure 3.28d of the same cross-sectional area shows a clear interface between Au coating 

and carbon beam. 

 

Figure 3.28 SEM images of a large 3D micro-architected carbon lattice with Ti/Au coating after Li 
electrodeposition with 20 mA pulse current (on 1s, off 1s) for 30 minutes of the total pulse-on time. 
a) A top-down view of the lattice. b) A close view of the beam. c) An area on the cross-section of a 
lattice beam cut with Ga FIB and d) a corresponding EDS mapping. 
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3.5 Cycling of 3D Micro-Architected Lithium/Carbon Electrode 

The large 3D micro-architected lithium/carbon electrodes were assembled in the CR2032 

coin cell against Li metal, with 1M LiPF6 in 1:1 (v/v) ratio of ethylene carbonate (EC) and 

ethyl methyl carbonate (EMC) liquid electrolyte (battery grade; Sigma-Aldrich). The overall 

diameter of the microlattice is 6 mm and the thickness is 1.1 mm. An HDPE washer with a 

thickness of 1 mm was used to centrally position the 3D lattice and support the compressive 

stress from coin cell assembly. Other components of the coin cell are shown in Figure 3.29. 

For comparison, a coin cell with the 3D electrode replaced by a Li electrode with 6 mm in 

diameter and 0.75 mm in thickness, with all other components the same, was also assembled 

and tested. 

 

Figure 3.29 Optical images of CR2032 coin cell components for symmetric cycling experiments of 
3D micro-architected lithium/carbon electrode. 

Figure 3.30 displays the galvanostatic charge/discharge cycling performances of a 3D micro-

architected lithium/carbon electrode and a Li metal electrode with 6 mm diameter, in 

symmetric batteries against Li foil, for 200 cycles. The corresponding Coulombic efficiency 

is shown on the bottom of the same figure. The electrodes were cycled to a capacity of 1 

mAh cm-2 with a current density of 1.0 mA cm-2, and the cutoff voltage is 2 V. The battery 

voltage decreases during the plating of lithium on the tested 3D lithium/carbon or Li metal 

electrode, and increases during the stripping. The counter Li metal electrode is much larger 

than the tested electrodes, therefore experiences a much smaller current density, which leads 

to the highly asymmetric voltage above and below zero during cycling. The 3D electrode has 

a voltage hysteresis of around 0.5 V for its lithium stripping throughout 200 cycles. The Li 
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metal electrode with 6 mm diameter shows a lower voltage hysteresis of around 0.2–0.3V, 

slowly increasing with longer cycling, before cycle number 163. However, around cycle 163, 

the Li electrode experienced a rapid increase in voltage hysteresis, and kept hitting the cutoff 

voltage of 2 V in the rest cycles. Due to the termination of cycling step at the cutoff voltage, 

less lithium was stripped from the Li electrode than the amount plated in the previous step, 

giving <100% Coulombic efficiencies in the cycles after 163, which fluctuated around 10%–

50%. 

 

Figure 3.30 Cycling performance of 3D micro-architected Li/carbon electrode and Li electrode with 
the same 6 mm diameter as 3D electrode, in symmetric batteries against Li foil, with a capacity of 1 
mAh cm-2 and a current density of 1.0 mA cm-2. 

To characterize the morphology of the electrodes after 200 cycles and to investigate the main 

cause for the abrupt failure of the Li electrode around cycle 163, the cycled coin cells were 

opened in an Ar glovebox, and the electrodes were transferred to SEM for imaging using the 

Vacushut (Figure 3.13). From the optical images of the Li electrode before and after 200 

cycles (Figure 3.31a), a significant change in color was observed. SEM images (Figure 

3.31c) show many cracks and partial detachment at the edge from the stainless steel spacer 

substrate, with mossy lithium morphology throughout the whole electrode. The rapid 
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increase in voltage hysteresis after 163 cycles may potentially be caused by the extensive 

formation of mossy lithium on the bottom of the lithium metal when it became partially 

detached from the substrate due to the cracking and deformation. Such failures would result 

in a significant increase of interface resistance between the electrode and substrate. 

 

Figure 3.31 Optical images of a) Li foil electrode (6 mm diameter) and b) 3D micro-architected 

lithium/carbon electrode before and after 200 cycles. SEM images of c) Li foil electrode and d) 3D 

micro-architected lithium/carbon electrode after 200 cycles. 

The 3D lithium/carbon electrode mainly appeared the same after 200 cycles, as shown in 

Figure 3.31b, with a small amount of mossy Li remaining on the surfaces of lattice beams 

(Figure 3.31d). In a sample that received one additional plating step (200 cycles plus a plating 

step), some of the cubic unit cells were filled with lithium, while others remained empty. The 

lithiation capacity of 1 mAh cm-2 during cycling was much smaller than the theoretical 

capacity of the 3D electrode. Assuming all empty volume in the lattice is utilized for lithium 

storage during cycling, with 50 μm beam diameter, 250 μm unit cell and 1.1 mm thickness, 

the theoretical capacity of this electrode is around 150 mAh cm-2. 
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Figure 3.32 Cycling performance of 3D micro-architected carbon electrode with Ti/Au coating in 
comparison with 3D micro-architected Li/carbon electrode, in symmetric batteries against Li foil, 
with a capacity of 1 mAh cm-2 and a current density of 1.0 mA cm-2. 

To highlight the necessity of Li electrodeposition on the carbon microlattice prior to cycling, 

a 3D micro-architected carbon electrode with Ti-Au coating was assembled in a coin cell for 

cycling in the same way as the 3D micro-architected Li/carbon electrode. Figure 3.32 

displays the galvanostatic charge/discharge cycling performances and the corresponding 

Coulombic efficiency, in comparison with the Li/carbon electrode. The Ti-Au coated carbon 

electrode without Li electrodeposition started hitting the cutoff voltage of 2 V from the first 

cycle, giving a <100% Coulombic efficiency, and its voltage hysteresis maintained at around 

2 V throughout 200 cycles. The significantly higher voltage hysteresis of the carbon electrode 

compared to the Li/carbon electrode is due to the lack of lithium on the electrode before 

cycling to compensate for the irreversible lithium loss as a result of solid electrolyte interface 

(SEI) or “dead” lithium formation during cycling. 

The 3D micro-architected lithium/carbon electrode was assembled in a CR2032 coin cell 

against a LiCoO2 (LCO) slurry electrode (94% wt% BTR LCO, 2 wt% Timcal C45, 4 wt% 

Solvay 5130 PVDF; CAMP Facility), with 1M LiPF6 in a 1:1 (v/v) ratio of EC:EMC liquid 

electrolyte. The LCO slurry coating has a porosity of 32.4%, a thickness of 47 μm and LCO 
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loading of 13.6 mg cm-2. The total mass of LCO on the 5.56 mm diameter disk electrode is 

3.30 mg. Figure 3.33 shows all coin cell components. For comparison, a coin cell with the 

3D electrode replaced by a Li foil electrode with 6 mm in diameter and 0.75 mm in thickness, 

with all other components the same, was also assembled and tested. 

 

Figure 3.33 Schematics coin cell components for cycling experiments of 3D micro-architected 
lithium/carbon electrode and lithium foil electrode against LCO slurry cathode. 

 

Figure 3.34 Coulombic efficiency (top) and discharge specific capacities (bottom) of 3D Li/C anode 
and Li foil anode against LCO cathodes cycled between 3.0 and 4.2 V at different current densities. 

The discharge capacities and the corresponding Coulombic efficiencies at 17 mA g-1 (~C/8), 

34 mA g-1 (~C/4) and 170 mA g-1 (~1.2C) for the two cells are shown in Figure 3.34. All 

current densities and C-rates are based on LCO mass, assuming a practical capacity of 140 

mAh g-1. CCCV charging with 0.02 mA cutoff current and CC discharging were employed. 

The 3D anode outperformed the Li foil anode at C/8 and C/4. When the current density was 
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switched to 1.2C, capacities of both cells experienced a rapid drop due to Li ion diffusion 

limitations. Capacity of the cell with 3D anode decreased within 20 cycles at the high current 

and became lower than the Li foil cell, but then stayed consistent for the rest 80 cycles. The 

cell with Li foil anode, in contrast, showed a stable capacity in the first 30 cycles, but then 

experienced a continuous capacity fade afterwards until the end of the cycling experiment. 

The mechanically robust 3D micro-architected carbon scaffolds support lithium plating and 

maintain good contact with the coin cell case during long-term cycling experiments. While 

mossy and dendric lithium morphologies were observed on the surface of Li metal foil 

electrodes, a smooth lithium surface morphology was observed to fill free space in the 

architected lattice. This difference is potentially due to a distinct lithium growth mechanism 

when interacting with the carbon scaffold with Ti/Au coating, as a result of a different electric 

field near the electrode, and a smaller effective areal current density on the surface of the 

microlattice. In situ observation of the lithium plating and stripping mechanisms on this 3D 

micro-architected carbon lattice, using optical microscopy and customized in situ cells 

(Figure 3.33), will be interesting for future studies. 

 

Figure 3.35 Potential designs for in situ optical study of lithium platting and stripping on the 3D 
micro-architected lithium/carbon electrode. a) Experimental setup. b) Potential cell configurations for 
in situ cycling experiments. 
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C h a p t e r  4  

SUMMARY AND OUTLOOK 

4.1 Summary 

This thesis introduces two new methodologies to fabricate 3D micro-architected electrode 

materials for lithium-ion batteries. The first highlights an innovative technique to fabricate 

3D micro-architected LCO through gel infusion additive manufacturing, which combines VP 

3D printing with a gel infusion and calcination process. This process utilizes a customized 

acrylate-based photoresin and a DLP 3D printer to print a blank organogel microlattice, 

which is transformed into a hydrogel through solvent exchange and then infused with lithium 

and cobalt precursors. The infused gel undergoes calcination to synthesize the 3D LCO 

microlattice. This technique achieves 3D LCO microlattices with beam diameters of 45 µm 

and maintains the designed architecture with tunable microstructures. Thermal, mechanical 

and electrochemical analysis demonstrate the method's effectiveness in producing LCO 

microlattices with promising mechanical and electrochemical properties. By fabricating 3D 

micro-architected NMC111 through a very similar process, we demonstrate the potentials to 

apply this gel infusion additive manufacturing method in a variety of cathode materials for 

lithium-ion batteries in 3D. 

The second methodology introduces the fabrication of a 3D lithium anode using a micro-

architected carbon scaffold. The additive manufacturing of 3D micro-architected carbon 

lattices via pyrolysis from 3D printed polymer microlattices enables the creation of 

mechanically robust carbon electrodes with micro-scale feature sizes and flexible structural 

control, making them suitable as scaffolds for lithium-metal anodes. Surface 

functionalization and lithium electrodeposition conditions are explored for dense lithium 

nucleation and uniform epitaxial growth on the carbon microlattice. Symmetric cycling 

experiments of 3D micro-architected lithium/carbon electrodes reveal promising 
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performance, with the 3D electrode demonstrating a consistent voltage hysteresis across 

200 cycles. 

The development of these fabrication techniques for micro-architected electrode materials 

unlocks new possibilities for fully three-dimensional batteries, such as the 3D interdigitated 

battery and the 3D interpenetrated battery designs proposed in the outlook. In addition to 

constructing 3D batteries, the micro-architected electrodes also open new pathways for the 

exploration of micro-architected flow systems in many applications, such as the water 

filtration system for lithium ion recycling and the flow cells for electrocatalytic CO2 

reduction. 
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4.2 Outlook: Future Applications of 3D Micro-Architected Electrode Materials 

4.2.1 3D Interdigitated Lithium-Ion Batteries 

As introduced in Chapter 1, 3D batteries with the interdigitated-plate configuration have been 

successfully created through DIW, with both cathode and anode inks extruded onto a 

substrate to form stacked filaments, achieving up to 16 layers and giving a maximum height-

to-thickness ratio of 8:1 for the electrode plates [16,17]. Higher stackings remain challenging 

due to the viscoelastic nature of the inks. Advancements in VP-based AM techniques now 

offer significantly enhanced design flexibility for 3D electrodes, allowing for more intricate 

micro-scale structures, such as horizontally oriented beams, to be precisely fabricated. 

 

Figure 4.1 Free-standing 3D interdigitated lithium-ion battery with additively manufactured LCO 

cathode and carbon anode. (i) CAD of a 3D electrode with interdigitated-plate configuration. Optical 

images of (ii) carbon anode and (iii) LCO cathode fabricated into the corresponding structure. (iv) 

Schematic and (v) optical image of the assembled 3D battery. 
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We propose a novel free-standing 3D interdigitated Li-ion battery design where both 

electrodes are structured as interdigitated plates, composed of beams ranging from 50 to 70 

µm in diameter, as depicted in Figure 6b. The carbon anode is produced following a VP 3D 

printing and pyrolysis method introduced in Chapter 3.2, while the LCO cathode was 

fabricated through the AM technique demonstrated in Chapter 2 [24]. The designs of these 

electrodes are similar and complementary (Figure 4.1(i-iii)). Figure 4.2 shows the anode and 

cathode in each stage of their fabrication. The surface of the LCO cathode is coated with a 

photopolymerizable gel polymer electrolyte resin, which also fills the free volume in each 

plate via capillary action, followed by UV curing. Subsequently, the carbon anode is 

integrated, with additional electrolyte resin filling any remaining gap space between 

electrodes before final curing. Figure 4.1b(iv) illustrates a schematic of the assembled fully 

3D battery, with Figure 4.1b(v) providing an optical image of the actual sample. A significant 

challenge in this design is ensuring the resin thoroughly permeates the empty volumes in the 

plates and forms a uniform layer on their surfaces, without overfilling the interspace between 

adjacent LCO electrode plates, requiring precise viscosity control of the electrolyte resin. 

Despite this challenge, the free-standing 3D interdigitated batteries display high active 

material mass loading and minimized ion transport distances, and thus show promise in 

breaking the conventional compromise between energy density and power density in energy 

storage technologies [57,58]. 

 

Figure 4.2 Fabrication of 3D interdigitated carbon anode and LCO cathode. 
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4.2.2 3D Interpenetrated Lithium-Ion Batteries 

Additive manufacturing enables the fabrication of interpenetrated microlattices, which are 

very challenging to fabricate with techniques other than additive manufacturing due to their 

high structural complexity. We propose a method to create 3D lithium-ion batteries with 

interpenetrated cathode and anode lattices using VP 3D printing of a nonconductive ceramic 

material, followed by sputter coating of conductive layers and electrodeposition of cathode 

and anode active materials. 3D cathode and anode in this design are fixed for their relative 

positions, making for easier cell assembly compared to the previous interdigitated batteries 

with free-standing cathodes and anodes separately. 

 

Figure 4.3 Schematic of a 3D interpenetrated lattice as the backbone of 3D interpenetrated lithium-

ion battery. 

Schematics in Figure 4.3 show the design for a 3D interpenetrated lattice as the backbone of 

3D interpenetrated battery, using cubic lattices for demonstration. The dark and light grey 

parts are two cubic lattices which are interpenetrated into each other without contact. They 

are each connected to a thin plate on two opposite sides of the lattice, shown with the same 

color, and the two plates are connected to each other with bridging plates on the rest two 

sides. By VP 3D printing using a ceramic resin containing ceramic nanoparticles such as 

SiO2 and Al2O3, followed by a high-temperature process to remove organic components in 
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the 3D structure and sinter the ceramic nanoparticles, a nonconductive and mechanically 

robust ceramic interpenetrated structure should be obtained. The two bridges on the structure 

are covered before sputtering of a conductive metal layer such as Au, potentially with a Ti 

adhesion layer, to give a conformal coating on the surface of the lattices. Each lattice 

becomes electrically conductive due to the metal coating, while the two interpenetrated 

lattices are insulated from each other due to the absence of coating on the bridges. 

Afterwards, one lattice will be electrodeposited with a cathode material such as LCO [59], 

while the other lattice would be electrodeposited with an anode material such as lithium. The 

two interpenetrated electrode microlattices are connected by the insulating bridge so their 

relative positions are fixed, and therefore the two electrodes will not be in contact during the 

entire fabrication process. A solid-state electrolyte should then be filled into the empty space 

between lattices. The electrolyte will provide ionic conductivity and serve as an 

electronically insulating barrier between electrodes. By carrying out the aforementioned 

process, one would fabricate a full solid-state battery with interpenetrated electrodes. 

 

Figure 4.4 A printed polymer interpenetrated lattice before and after Au sputtering, and the results of 

conductivity measurements between different parts. 
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We demonstrated the feasibility of this design using a 3D interpenetrated polymer structure 

printed with PR-48 photoresin, as shown in Figure 4.4. The bridges were covered with 

aluminum foil and then the sample was sputtered with 20 nm Au. After removing the foil 

covers, the conductivity for a single lattice and the conductivity between the two 

interpenetrated lattices were measured, giving a finite resistance for the former and an out-

of-range resistance for the latter. One lattice of the Au-coated sample was electroplated with 

Ni in a Watts bath [60] while the other lattice remained unchanged, as shown in Figure 4.5. 

The deposition of Ni on only one of the interpenetrated lattices indicates each electrode can 

be individually electrodeposited to achieve a full 3D interpenetrated battery. 

 

Figure 4.5 Ni plating on one of the interpenetrated lattices after Au coating. 
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Figure 4.6 Scaling up of the interpenetrated battery design by adding layers in the additively 

manufactured microlattice backbones. 

The layer-by-layer printing mechanism for the fabrication of interpenetrated microlattice 

backbones in this design enables straightforward scaling up of the 3D battery, simply by 

adding layers to the lattices in the CAD model, as demonstrated in Figure 4.6. With further 

advancements in high-resolution additive manufacturing techniques in the future, 3D 

batteries with micro-scale or even nano-scale architected features to achieve both higher 

energy and power densities will be interesting to pursue. 

4.2.3 3D Micro-Architected Electrode Materials for Lithium Ion Recycling and 

Electrocatalytic CO2 Reduction 

In addition to constructing fully three-dimensional batteries, the techniques to architect 

electrode materials in 3D with micro-scale form factors open new pathways for the 

exploration of micro-architected flow systems for many applications. The gel infusion 

additive manufacturing technique to fabricate 3D architected cathode materials for lithium-

ion batteries, for example, can be used to build 3D filtering systems for lithium ion recycling 

from wastewater or seawater. There are pioneering studies on selective electrochemical 

extraction of lithium ions from water with a high concentration of sodium ions, which is the 

major ion in competition with lithium, using delithiated LiCoO2 or LiFePO4 slurry electrodes 

[61,62]. By replacing the 2D slurry electrodes with 3D micro-architected electrodes, the 

electrode surface area can be maximized to achieve higher lithium ion extraction efficiency 

for the recycling system. 
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Additive manufacturing enables the fabrication of 3D architected carbon electrodes with 

flexible form factors and well-defined geometries, as shown in Figure 4.7, and these carbon 

electrodes can be potentially used to construct flow cells for electrocatalytic CO2 reduction. 

 

Figure 4.7 Potential designs of 3D micro-architected carbon electrodes for electrocatalytic CO2 
reduction with a) square channels and b) cubic unit cells. 

Copper, one of the most promising catalysts for the reduction of CO2 to products beyond CO 

[63], can be deposited on the surface of the architected carbon electrodes. Figure 4.8a shows 

the micro-architected carbon electrodes with square channels mounted on a silicon wafer 

before and after sputter coating. A Ti/Au/Cu trilayer was sputtered on the carbon electrodes 

for demonstration, with ~5 nm Ti as an adhesion layer, ~10 nm Au as a substrate layer, and 

~30 nm Cu as the catalyst layer. The hydrodynamics of the system and the transport of the 

dissolved species through the architected electrodes can be modeled using multiphysics 

simulation to achieve rational designs, for example by optimizing the pore size, varying the 

electrode thickness, or adding turbulence-enhancing structures to alter the retention time of 

the reaction intermediates on the electrode (Figure 4.8b) [64]. Such simulation-guided 

structural optimization can be realized by the additively manufactured carbon electrodes in 

a much easier way than the porous carbon paper with stochastic 3D structures, commonly 

used in electrocatalytic CO2 reduction experiments. Using rational electrode designs, it will 

be possible to tune the selectivity of CO2 reduction towards multi-carbon products such as 

ethylene and ethanol. The rigid nature of these additively manufactured carbon electrodes is 

a challenge for incorporating them into the typical flow cells, which usually contain flexible 

carbon paper electrodes (Figure 4.8c(iii)) [65]. This issue can be solved by mounting the 3D 

electrode between two flexible polypropylene (PP) sheets with hollow rectangle windows, 
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as shown in Figure 4.8c, for it become compatible with typical flow cell designs. It will be 

interesting to explore the selective CO2 reduction using 3D micro-architected carbon 

electrodes with the guidance from simulations. 

 

Figure 4.8 3D micro-architected carbon electrodes for electrocatalytic CO2 reduction experiments. 
a) Carbon electrodes with square channels mounted on a silicon wafer before and after sputter coating. 
b) Schematic of potential turbulencc enhancing structures on the architected carbon electrode. c)(i)–
(ii) Preparation of the architected carbon electrode for (iii) a typical flow cell design. c(iii) in this 
figure is adapted with permission from reference [65] under open-access CC-BY license. 
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