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Abstract

Controlled quantum systems have the potential to make major advancements in tasks rang-
ing from computing to metrology. In recent years, quantum devices have experienced
tremendous progress, reaching meaningful, intermediate-scale sizes and demonstrating ad-
vantage over their classical counterparts. Still, sensing, learning, verifying, and hopefully
mitigating errors in these systems is an outstanding and ubiquitous challenge facing all

modern quantum platforms.

Here we review and expound upon one such platform: arrays of Rydberg atoms trapped in
optical tweezers. We demonstrate several key advancements, including the first experimental
realization of erasure conversion to prepare two-qubit Bell states with a fidelity in excess
of 0.999, and to cool atoms to their motional ground state. We further showcase the tools
of universal quantum processing via arbitrary single-qubit gates, fixed two-qubit gates, and
mid-circuit measurement, and discuss applications of these techniques for metrology and

computing.

Then, we turn to the many-body regime, generating highly entangled states with up to 60
atoms through analog quench dynamics. We reveal the emergence of random behavior
from unitary quantum evolution, and uncover a universal form of quantum ergodicity
linking quantum and statistical mechanics. We exploit these discoveries to verify the global
many-body fidelity and then realize practical applications like parameter estimation and
noise learning. Finally, we compare against both state-of-the-art quantum and classical
processors: we introduce a new proxy for the experimental mixed state entanglement which
is comparable amongst all quantum platforms, and that reflects the classical complexity of

quantum simulation.
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CHAPTER 1

Introduction

The central goal of this thesis is to address the seemingly fraught task of verifiably controlling
quantum systems with high fidelity, despite explicitly attempting to do so in a regime where
we both cannot fully measure the quantum state, and where no classical computer could
possibly represent its complexity. To that end, we begin here by broadly describing the
field of quantum science, the importance of controlling such systems, the myriad of ways
researchers are attempting to do so, and finally by outlining our contributions to this

continuing, monumental effort.

1.1 BACKGROUND

The theory of quantum mechanics can seem paradoxical in many ways, not least of which
because though it underlies the last century of technological progress, it is strangely in-
visible in our day-to-day lives. Indeed, in many ways quantum mechanics is alien to our
usual sensibilities and intuition. For instance, quantum particles can be in two places at
once (superposition) and multiple such particles can be correlated so extremely that their
individuality is subsumed into one collective (entanglement). These ‘spooky’ aspects of
the theory disturbed even its originators [1] and it was not until the 1970s that experiments
began conclusively demonstrating the validity and unavoidability [2] of these phenom-
ena [3, 4]. These early efforts were recognized by the Nobel Prize in Physics in 2022 and in
the decades since those pioneering discoveries, the field of experimental quantum science

has flourished.

The drive to study quantum mechanics is fundamentally interesting — it has proven time

and time again one of our most accurate theories of how the universe works — but much
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of the modern fervor within the field is practically minded. In the early 1980s, physicist
Richard Feynman [5], amongst others [6, 7], suggested that the quantum world may be
too complex to simulate accurately on an ordinary, or classical, computer. Then from
the 1990s continuing until today, a series of landmark results [8—13] have found classical
computational problems in a wide variety of disciplines which are extremely challenging to
solve on classical computers, but can be solved efficiently by carefully engineering quantum

systems, or quantum computers; for a very exhaustive list of applications, see Ref. [14].

Importantly, these advantages are not because quantum computers are simply faster versions
of ordinary computers!, but because they operate on fundamentally different principles,
which are integrally linked to the ‘spooky’ characteristics of quantum theory [15]. For
instance, whereas ordinary computers are composed of bits which are either O or 1, the most
basic of quantum computers are composed of quantum bits, or qubits. Qubits can also be
either O or 1, but also any superposition of the two — you can think of a qubit as an arrow
in three-dimensional space that can point up or down (1 or 0), but also forward, backward,
left, right, or any other direction. We write the state of the qubit as [¢)) = ¢]0) + ¢1|1),
where ¢y and c; are complex numbers which tell us how closely the “arrow” is pointing

upwards (1) or downwards (0).

While we may represent the state of /V bits with /V real numbers, representing multiple
qubits is markedly more complicated. For instance, the most general state of just two
qubits is a superposition of all possible combinations of the individual qubits, |¢)) =
0|00) + ¢1]01) + ¢2|10) + c3|11), which requires us to know 2* = 4 complex numbers.
To describe N qubits requires 2V complex numbers. For a system composed of only
N = 60 qubits, the memory required for a classical computer to represent the quantum
state is around ten exabytes, or roughly the entire storage capacity for all of Google. This
exponential scaling underscores the difficulty of studying quantum systems with classical
computers, but also represents great potential, because with only 60 qubits, we can access a
state space equivalent to quintillions of classical bits. Though this alone does not guarantee
the computational power of quantum computers, careful engineering and control over the
state of a few qubits allows us to encode and solve the problems of interest mentioned

previously.

The trouble, then, is simply to control 60 qubits.

In contrast, in terms of clock speed they are between a thousand to a billion times slower-.



1.2 THE CHALLENGE OF QUANTUM SCIENCE

The possibility and promise of quantum computers to solve so many problems of broad
interest has sparked a worldwide, ongoing race to develop such a system with substantial
academic, governmental, and industrial investment. As of now, however, no such practically
relevant device has been created. The chief reason for this comes down to a phenomena
known as quantum decoherence [16, 17]. Without belaboring the explanation too much
here — understanding decoherence fundamentally and practically will be a major thrust of
this work — decoherence is essentially the loss of information about the state of a system

due to its interactions with the environment.

Imagine trying to prepare an intricate meal. Working alone, you know exactly which and
how many ingredients are cooked in what order, and after following the recipe, the dish will
come out perfect. Now imagine, however, that whenever you open the lid of the pot to add
your ingredients, a crowd of onlookers can do so as well, each adding some random spice
to the pot. Very soon, the preparation will be spoiled, and the final product ruined. There
is a paradoxical relationship: we want an isolated system which allows us to control it, but
allows nothing else to do so. Further, the larger and longer the recipe, the more times we
must open the lid, and thus the more opportunities for the dish to be ruined. Controlling

quantum systems is essentially hampered by a too-many-cooks-in-the-kitchen scenario.

However, where the metaphor breaks down, and where one of the central challenges of
quantum science lies, is that while the dish can tasted and immediately deemed rotten, it is
incredibly difficult to tell how, or even if, the quantum programming has gone awry. This
is because measuring quantum states is projective. This means that though the state may be
in a complex superposition of 2" components, reading out the state of the system randomly
selects one of those components, with probabilities controlled by the particular quantum
program [18, 19]. Thus, quantum computers are inherently probabilistic entities, which are
then further complicated by probabilistic errors. As a point of reference, while classical
computers make one error every 10'7 operations, even the best-performing current quantum

devices hover around error rates of 0.1% per operation.

This difficulty was recognized since the conception of the field, spawning the vast subject
of quantum error correction [20-23]. In these protocols, quantum information is protected
from decoherence by entangling the states of many qubits, and sharing information be-
tween them such that local errors show clear signatures when measured projectively. By
interspersing checks throughout the program to verify no errors have taken place — and

ideally correcting them if detected — the program can thus be run error-free. However,
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to realize a net gain the underlying error rates of the quantum device must be sufficiently
small [24, 25] and the number of available qubits must be sufficiently large, in addition to
other technical requirements such as repeated, mid-circuit readout. While there has been
significant progress on these fronts, no large-scale, error-corrected system with practical
ramifications has been demonstrated. Still, creating such a fully error-corrected device

seems to be the only reasonable way to reliably realize the power of quantum computation.

Thus, the major goals of the field currently are generally summarized as: 1) better under-
stand the physical errors mechanisms affecting a given quantum system, 2) measure and
validate the performance of a device affected by these error sources, 3) correct or other-
wise eliminate the errors. Similarly, making progress on these fronts is the overarching
goal of this thesis, with several novel contributions specifically towards error characteriza-
tion [26, 27], detection [26, 28], verification [29-31], and elimination [26, 32]. Though
many of our results will be intentionally generally applicable to any quantum system, we
will show experimental demonstrations of our techniques with a state-of-the-art array of
atoms trapped in optical tweezers, for which we demonstrate enhanced scalability [33]
and improved fidelities for single-qubit [28, 32, 34], two-qubit [26, 32, 34], and many-
qubit operations [26, 29, 31]. Ultimately, through application of our techniques, we will
demonstrate our system is controlled with such high-fidelity that it is beginning to enter the
regime of quantum advantage, where classical computers become incapable of replicating

the quantum experimental results [31].

1.3 QUANTUM PLATFORMS

Since the 1990s, many candidate platforms have been in development which are attempting
to achieve the dream of useful quantum computing. While these various approaches difter
in substantial, practical ways, they face the same fundamental tension between isolation and
control. In this crowded landscape, a new challenger has emerged in the last decade and
firmly established itself: Rydberg atom arrays [35, 36]. Though many of the techniques
and ideas we will discuss in this thesis are explicitly general to many quantum platforms,
most of our experimental demonstrations will come using a state-of-the-art Rydberg atom
array. We describe details of the platform and its various error mechanisms in Chapter 2.
A key facet to note, however, is that like other quantum platforms, Rydberg atom arrays can
be used for performing universal gate-based quantum computation [37—40], or to study a

rich assortment of spin-models [31, 41-47].

This distinction is important. There are essentially two modalities in which controlled

quantum systems can be operated, either digital or analog. The same distinction can be
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made classically: when trying to simulate how a particular plane will fly, for instance, one
might either program the dynamical equations into a computer (digital), or build a wind

tunnel! replicating those dynamics and test scale models (analog).

Digital quantum devices, which are sometimes distinguished as more proper quantum
computers, or quantum processors, operate much like digital classical computers. They
implement a discrete, universal gate-set, which then can be used to program any unitary
circuit of interest [15, 49]. In the modern noisy, intermediate-scale quantum [50] (NISQ)
era, however, compilation overhead can be inefficient [51, 52], and can increase error
rates [53] for instance due to limited native expressivity [54]. Errors affecting these systems
can often be abstracted into tractable forms [55-58], though this analysis is potentially
fraught with oversimplification of the physical dynamics.

Analog quantum devices, also called quantum simulators, implement particular problems
of interest by mapping them directly into the native continuous dynamics of the particular
quantum system [36, 59-65]. This idea of using a quantum system to essentially “simulate
itself” was the original idea of Feynman [5]. This approach largely eliminates overhead, at
the cost of restricting the explorable space of problems, and making theoretical analysis in

general more complex [66].

In this thesis, we explore both modalities. A major focus on this work is the particular
problem of how to verify that a quantum simulator is giving trustworthy results. This task,
already difficult in the digital case, is made far harder by the continuous nature of analog
dynamics and errors. While historically quantum simulators have been treated as error-
agnostic machines, with a concentration on low-order, supposedly-robust observables [59,
66], our goal explicitly is to validate the performance of these systems at all-orders. Our
interest in digital quantum processors will mainly stem from their potential to dramatically

improve the performance of quantum metrological systems, such as atomic clocks [28, 39].

1.4 OUTLINE

Now, we briefly summarize the remainder of this thesis. Overall our work is broadly split

into three different parts.

In Part I we focus on systems of just a few atoms to further define the Rydberg atom
array platform including its native strengths and weaknesses. In particular we will describe
various errors affecting the system, and will then immediately describe how some of them

may be mollified through a newly-realized error mitigation technique known as erasure

Per von Neumann, who called wind tunnels “computing devices of the so-called analogy type” [48]
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conversion [67, 68]. We shall discuss how this technique enabled our record achievement
of 0.999 entanglement-fidelity between two Rydberg atoms [26], in addition to a myriad
of benefits such as improved quantum simulation [26], cooling to the motional ground
state [32], and even enhanced loading of an optical tweezer array [33]. Finally, we will
discuss how Rydberg atom arrays can be endowed with a set of universal quantum operations
including arbitrary single-qubit gates [28], fixed two-qubit gates [32], and mid-circuit
measurement [32]. Such operations are particularly useful for our system which can also
function as precise atomic clock [69], as we demonstrate with concrete and practical methods

for improving quantum metrology using digital quantum computing techniques [28].

In Part IT we move to the realm of the many-body and ponder how to verify the performance of
large quantum systems without incurring an exponential cost due to their exploding Hilbert
space dimension. To start, we dive into the world of random state ensembles, and discuss
newly discovered ways in which randomness emerges from natural, unitary Hamiltonian
time dynamics [27, 29]. Such discoveries open new questions about the connections
between quantum mechanics and statistical mechanics, with many interesting theoretical
discoveries [27, 70, 71]. Exploiting the chaotic nature of this emergent randomness, we then
devise protocols [29, 30] for measuring the global many-body fidelity with relatively few
measurements for systems with less than roughly 30 atoms. Besides enabling benchmarking
of large quantum systems, we discuss several important implications of this technique for

Hamiltonian estimation and noise learning, amongst others.

In Part III we enter the beyond-classically-exact regime and face the nebulous task of bench-
marking quantum systems when no classical reference is possible [31]. We will discuss why
existing evaluation protocols fail because of the analog nature of errors affecting our system,
but will propose and implement an extension of our many-body fidelity estimation through
a many-pronged comparison against many approximate classical algorithms with varying
degrees of entanglement. We successfully estimate the fidelity — roughly ten percent — to
prepare a system of sixty atoms into a state with nearly maximal entanglement entropy. We
then showcase a novel protocol for estimating the actual mixed state entanglement [72].
This allows for mutual comparison amongst state-of-the-art quantum platforms, with which
we find we are competitive. Finally, we evaluate the classical cost of quantum simula-
tion, demonstrating both the present computational power of our system, and the long-term

potential of highly entangled analog quantum simulators more generally [59].

In total, the contributions of this thesis span the gamut from single atoms to many-body
systems, with advancements both theoretical and experimental in the fields of quantum

computing, simulation, information science, and metrology.



Part I

Rydberg atom arrays



Prelude

Understanding and minimizing the effect of errors is critical to the future of quantum science,
both in the near [50] and far [24] term. Rydberg atom arrays have emerged as an exciting
platform with vast scalability [73] combined with high fidelity operations [26, 39, 74, 75];
still there is much progress yet to be made. In the following chapters, we describe our

contributions to this ongoing effort.

To start, we reiterate the key features of atom arrays, and of our experiment [76] specifically.
We present a comprehensive summary and overview of the various major error sources
affecting these systems, and explain how they may be realized in a numerical model which
closely replicates experimental observations. With this model in hand, we introduce and
demonstrate a new tool in the quantum toolbox, erasure conversion [67, 68], which we apply
to improve quantum simulation [26], to cool atoms to their motional ground state [32], and
even to improve system sizes (through a classical sense of erasure conversion). Through
this, we demonstrate a record two-qubit entanglement fidelity with neutral atoms, with

higher fidelities a question of technical improvements which we understand well.

Then we parlay these improvements to demonstrate the tools of universal quantum compu-
tation with neutral atom arrays. Specifically, we show arbitrary single-qubit gates [28],
fixed two-qubit gates [32, 39], mid-circuit measurement [32], control of a potentially
bosonic degree of freedom [26], and even the controllable generation of so-called hyper-
entanglement [32]. With these tools we can tackle largely any computing task, but we turn
our attention to metrology, and demonstrate how the marriage of an atomic clock and a

quantum computer can yield improved sensing performance [28].



CHAPTER 2

Experimental setup and error modeling

In this chapter, we describe the main experimental workhorse of this research, a Rydberg
atom array. Rydberg atom arrays have been established for nearly a decade, and as such there
are various excellent resources available to learn about their basic physics. In particular,
we recommend reviews in Refs. [35, 36], and for a wealth of experimental and theoretical

information one can scarcely do better than consulting Refs. [76, 77].

In particular, Ref. [76] — a previous thesis from our group at Caltech — is an excellent expo-
sition of the basics of the platform, and additionally contains comprehensive descriptions
about our specific experiment. In this work, we will omit many such details, and so if ever

in doubt on a technical aspect of basics of the platform, Ref. [76] is a good place to start.

2.1 TRAPPING AND CONTROLLING SINGLE ATOMS

Central to the success of any quantum platform are the qubits which compose it. In Rydberg
atom arrays, the qubits of choice are single neutral atoms (neutral as opposed to ionic species
which have been explored in detail in the study of trapped ion quantum computers [78]).
The key benefits of the platform are plentiful, starting with its innate scalability. Single
atoms are sourced from a magneto-optical trap of tens of millions of atoms, and loaded into
a user-configurable array of tightly focused (<1 pum waist) laser beams, known as optical
tweezers!. All atoms (qubits) are identical?, meaning limitations on achievable system

size originate mainly from how many optical tweezers can be created with available laser

IThe invention [79, 80] of which was recognized by the Nobel Prize in Physics in 2018.

2This is an oft repeated claim, but is really not that true — while atoms themselves are identical, true
uniformity requires their environment, including their trapping conditions, be uniform as well. Such metrics
are typically hard to make better than a ~0.1% homogeneity level [81]
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power: experiments with several hundred [42, 43] or even a few thousand such traps [82—84]
are readily achievable, and recently a landmark, state-of-the-art demonstration of a twelve

thousand trap array filled with over six thousand atoms was demonstrated [73].

Still, having many atoms counts for very little if the fidelity of controlling them is poor.
Many factors affect the fidelity of the platform, but the most basic is loss of atoms from their
traps. Such lossy type errors are a subset of the broader class of leakage errors. In order
to minimize such effects, atoms are trapped in optical tweezers in a vacuum chamber at a
pressure of ~107!2 Torr, or about the atmospheric pressure on the surface of the Moon (a
billionth of a millionth of Earth’s atmosphere). This results in few collisional interactions
with background gas molecules, leading to innate trapping lifetimes on the order of tens of

minutes [73, 85] (even hours in cryogenic environments [86]).

With atoms firmly held in place, the internal electronic state of the atoms can then be
manipulated with microwave or laser sources to perform single qubit gates, again with high
fidelity (>0.999). The state of the atoms can be detected by fluorescence imaging while
atoms remain trapped, and high-resolution microscopy techniques pioneered over the last
twenty years [87, 88] enable fully resolving atoms spaced by a few micron. Further, the
optical tweezer array geometry is programmable in near real-time, meaning atoms can be
rearranged into largely any configuration desired in one [81], two [43, 89, 90], or even

three [91, 92] dimensions.

In order to generate entanglement, we must make multiple qubits interact, which we accom-
plish through excitation to high-energy Rydberg states. When in the Rydberg state, atoms
experience a long-range, distance-dependent interaction based on a second-order induced
dipole effect. In the early 2000s, this interaction was recognized as a potent resource due to
the so-called Rydberg blockade mechanism [93, 94]. As the simplest example, when two
atoms are close enough together (a few micron separation), excitation of one to the Rydberg
state is allowed, but the energy of the doubly-excited state can be shifted dramatically. This
precludes occupation of such doubly-excited states, meaning when the two atoms are simul-
taneously driven to the Rydberg state the result is a single Rydberg excitation shared across
the two atoms, i.e. an antiferromagnetic Bell state; we will explore this process in great
detail in Chapter 3. When operating in a digital modus, this enables a variety of schemes
for performing high-fidelity controlled-phase gates [39, 74, 75, 95] (as we will explore and
discuss in Chapter 4).
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2.1.1 The Rydberg Hamiltonian

The Rydberg interaction has further ramifications for systems with more than two atoms.
In this work, we will almost always consider a one-dimensional chain of atoms with ideally
uniform spacing. As such, the Rydberg Hamiltonian is well approximated by

H/h—ngf—AZﬁi—l—%Z ity 2.1)

——
= i =]l

describing a set of interacting two-level systems, labeled by site indices ¢ and j, driven
by a laser with Rabi frequency €2 and detuning A, with /& being Planck’s constant. The
interaction strength is determined by the so-called C coefficient and the lattice spacing a.
Operators are 57 = (|1);(0]; + [0);(1;)/2 and 7; = |1);(1];, where |0); and |1); denote the

electronic ground and Rydberg states at site 7, respectively.

The Rydberg blockade mechanism is still of central importance in this case. For typical
parameters, the nearest neighbor interaction strength (Cg/a%) is a few hundred MHz, as
compared to typical achievable Rabi frequencies of a few MHz. As such, simultaneous
excitation of neighboring atoms to Rydberg states are strongly suppressed. To first order the
blockade reduces the Hilbert space dimension from 2V to Fib(N + 2) & 1.62", where Fib
is the Fibonacci function (see Appendix C). This means that for a system size of N atoms,
the effective Hilbert space size is only that of ~0.7 N qubits. In this case the Hilbert space
is complete [96], but becomes non-factorizable, i.e. if you bipartition a system of Rydberg
atoms with Hilbert space dimension dim(# ) into two halves, left and right with Hilbert space
dimensions dim(# ;) and dim(Hp), respectively, then dim(H ) x dim(Hg) # dim(H).
This has practical ramifications for the growth of entanglement in these systems, while also

enabling efficient classical simulation methods in some cases [97, 98].

Often, we will parameterize the time-axis during evolution under the Rydberg Hamiltonian
in terms of cycles, given by t.,. = 27/€2. This timescale is chosen as (2 is the dominant
energy-scale in the system, after the blockading nearest neighbor interaction energy. As

such, entanglement growth in the blockaded Hilbert space is primarily constrained [31] by

tcycle .

2.2 STRONTIUM

Through the many iterations of the Rydberg atom array platform, many atom species have
been utilized. At the outset, it is important to note that as of now, there is no clear consensus

as to which element is ‘best,” and in fact it may be that none can actually hold the crown.
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Figure 2.1: Relevant level structure of strontium a, Strontium in the periodic table. b,c,
Simplified level structures of strontium with selected transitions labeled along with their
wavelength, highlighting states important to this work of this thesis; for a more complete
version, see for instance Ref. [107]. In general, for many purposes of this thesis we will
be concerned with an effective two-level qubit subspace defined between the 5s5p ® P,
clock state and the 5s61s 35| Rydberg state. Additional levels are for instance used for
atom trapping, imaging, and cooling, as well as detection of the Rydberg state through
autoionization [34]. As the exception, in Chapter 4 we will focus on the qubit defined
between 552 1Sy and the clock state, in order to realize a universal digital quantum processor
with strontium atoms. We operate in the sideband resolved regime for the ultranarrow clock
transition, which allows us to address individual motional transitions. We will use this
ability to great effect for atom cooling as well as mid-circuit measurement in Chapter 4.

Each choice of element comes with pros and cons, both to the complexity of control required,

and the richness of physics attainable.

Early experiments utilized alkali atoms which are the historical workhorse of the atomic
physics community due to their largely hydrogenic level structure. Such alkali-based
experiment are still in use in modern, state-of-the-art experiments, but in recent years
a second-generation of experiments has been developed which utilize alkaline-earth(-like)
atoms such as strontium [99-102] or ytterbium [103—106]. These elements have two valence
electrons, which leads to a somewhat more complex level structure, but which enables a
variety of striking applications. Ours is one of these original experiments [99] (alongside

Refs. [100, 103]), and utilizes the bosonic strontium-88 species.

Strontium has a number of enticing advantages. Its two valence electrons lead to a level

structure composed of both singlet and triplet electronic states; the level structure of states
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relevant to this work are shown in Fig. 2.1. The absolute ground state is the singlet state
552 1S,. Within the singlet manifold, the only transition of major importance for our
purposes is the broad transition to 5s5p ' P, which is used for MOT cooling, as well as

atomic imaging [76].

The more interesting transitions are those between the singlet and triplet manifolds, which
are only weakly-allowed due to spin-orbit interactions, leading to narrow linewidths. For
instance, the transition between 5s% 1S, <+ 5s5p 3P; is only 7 kHz broad (much narrower
than typical trap frequencies of ~70 kHz, and as such can be used for atomic cooling
schemes such as sideband [99] or Sisyphus [85] cooling to near the motional ground state,

in addition to providing a second stage of MOT cooling [76, 99].

Perhaps the most interesting transition in strontium is that from 5s% 1Sy <+ 5s5p 3P,. This
transition is in fact double-forbidden (both due to the required spin-flip, as well as by
the apparent violation of angular momentum conservation), and for bosonic isotopes like
strontium-88 is approximately [108] enabled only through application of a strong magnetic
field to effectively admix 3P, and 3P, [109]. Once prepared in 3P, the atom has an
effectively infinite lifetime compared to typical experimental timescales, though in reality is
limited to around 1 s due to technical effects like Raman scattering from the trapping light.
It is for this reason that the transition to P is the basis for the current most precise atomic
clocks in the world [110, 111], which use this ultra-narrow transition (employing fermionic
isotopes rather than bosonic) to stabilize the frequency of lasers locked to state-of-the-art
high finesse cavities. Thus, 3P, is often called the clock state, and the 5s* 1Sy <+ 5s5p 3 P,
transition is similarly called the clock transition; we will employ this parlance throughout

this work.

Strontium has thus been studied in a metrological context for several decades. In fact, one of
the earliest works of our experiment [69] (alongside Ref. [112]) was to demonstrate running
such an optical atomic clock using a tweezer array with various benefits such as single atom
resolution and reduced deadtime. In Chapter 4, we will extensively discuss utilizing the
clock transition to enable digital quantum computation schemes and to realize enhanced
metrological protocols. However, for much of the rest of this work, we will disregard this
myriad of interesting physics, and will instead solely employ the clock state because of its

long-lived, metastable nature.

The long lifetime of the clock state is important because when making atoms interact
through the Rydberg interaction, we ideally want to excite them to isotropic Rydberg S
orbitals. However, given that the absolute ground state of our system is also such an S

state, this cannot be accomplished with direct photon excitation (and even if it could, such
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excitations would be ~218 nm, a very inhospitable wavelength to work with). Thus, a typical
experimental sequence will begin by first transferring all atoms to the clock state, which is
then treated as a metastable ground state from which single photon Rydberg excitation can
take place. We note that this is fundamentally different than the typical approach of most
alkali atom arrays, which do not have access to such a long-lived, metastable state, and so
instead generally rely on two-photon transitions to enable Rydberg interactions. We note
that the long lifetime of the clock state will additionally be integral to our implementation of

error mitigation techniques known as erasure conversion, as shall be discussed in Chapter 3.

Besides preparation, alkaline-earth atoms also feature a unique benefit in terms of Rydberg
state readout. This is because only one of the two valence electrons will actually be
excited to the high-lying Rydberg orbital, leaving the other valence electron in the low lying
manifold. However, this secondary electron can also be excited to an intermediate energy
state which quickly leads to electron-electron interactions which ionize the atom, termed
autoionization (Fig. 2.1c). The resulting ion is dark to the normal fluorescence imaging
transitions, and is typically quickly expelled from the optical tweezer due to stray electric
fields. In contrast, our normal fluorescence imaging detects atoms in the clock state with
high fidelity. Thus, we can perform state discrimination between the clock and Rydberg
states by first performing Rydberg excitation, then applying an autoionizing pulse, and finally
imaging. We demonstrated this effect in Ref. [34], and showed it could reach discrimination
fidelities in excess of 0.999. Further, the autoionizing transition is particularly well adapted
for performing single site control on Rydberg excitations via targeted light shifts [113],

though we do not use this capability in this work.

To summarize, in a typical experimental sequence atoms are first loaded in the 552 1S
state, and then cooled on the narrow-line 552 1S, <+ 5s5p 3P; (689 nm) transition close
to their motional ground state. When studying analog quantum evolution in the clock-
Rydberg manifold, atoms are then initialized to the 5s5p ® Py (698 nm) clock state through
a combination of coherent drive and incoherent pumping. We treat the clock state as a

metastable qubit ground state, |0), and subsequently drive to the 55615 2S5}, m ;=0 (317 nm)

Rydberg state, |1). Following Hamiltonian evolution, state readout is performed using the
autoionizing transition 5s61s 3S;, m ;=0 <> 5p3/261s1 /5 (408 nm, J=1, m ;= £1) which
rapidly ionizes atoms in the Rydberg state leaving them dark to our fluorescence imaging.
Atoms in the clock state are pumped into the imaging cycle, allowing us to measure
qubit state with atomic fluorescence measurements on the 5s 1Sy <+ 5s5p 1P, (461 nm)
transition. The result of each measurement is a bitstring for N atoms, z € {0, 1}®V,

where e.g. z = 100101001. We can repeat measurements many times to accrue many such
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bitstrings, from which we make inferences and observations about the many-body physics

we wish to study.

2.3 ERRORS FOR RYDBERG ATOM ARRAYS

The Rydberg Hamiltonian (Eq. (2.1)) is the paradigmatic model for our experiment. How-
ever, in practice quantum systems are not perfectly isolated and can undesirably interact
with their environment. This could either be due to control parameters in the Hamiltonian
drifting over time (e.g. as the laser intensity randomly fluctuates) or coupling to extrinsic

quantum degrees of freedom (e.g. spontaneous decay of excited states).

Much of the experimental work of this thesis is focused on the problem of identifying the
signatures of these errors using experimental data, for instance by measuring the fidelity
of performing a given quantum operation, but it is equally important to develop a well-
constructed error model to understand the impact of errors in realistic scenarios. We set out
to define such an error model here, which we will reference and use extensively throughout
the remainder of this work. After incorporating all known error effects, we generally
find our error model agrees very well with experiment even on the level of many-body
bitstring probability distributions, for instance typified by studying the difference between
probability distributions during quench evolution of the experiment versus either error-
free or error-model simulation (Fig. 2.2). While in this Section we take a descriptivist
approach to the matter of noise modelling, in Chapter 7 we approach it both theoretically
and experimentally from the perspective of learning noise sources directly from their effects

on quantum many-body observables.

At the outset, it is important to note that there are many ways of simulating open system
dynamics in quantum systems, for instance through master equation-based approaches which
explicitly consider time evolution of the experimental mixed state under appropriate jump
operators. While such an approach is effective for simple and small systems, it requires
manipulating the 4" elements of the density matrix which is prohibitive for larger systems.
We wish to use our error model for large systems (> 20 atoms), and include the entire gamut
of complex error sources. As such, we forgo the master equation, and instead perform our

open system dynamics simulations using a Monte Carlo wavefunction [114] approach.
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Figure 2.2: Quantitative evaluation of ab initio error model: Kullback-Leibler (KL)
divergence of bitstring probability distributions between the ten-qubit Rydberg experiment
and an error-free model (blue square) and an ab initio error model (red circle). When the
experimental data is benchmarked against an error-free model, the KL divergence increases
over time since the presence of decoherence effects and control imperfections are not taken
into account in the error-free model. In the case of the error model, however, we find a
significant reduction in the KL divergence between the experiment and error model at all
times.

2.3.1 Summary

As shown in Eq. (2.1), the Rydberg Hamiltonian is well approximated by
x U n]
1>]
where the interatomic spacing is written as ]f, — 7.
To a good approximation, error sources in the experiment can be written via the following

transformations (where notations are defined in subsequent sections, e.g. LP is a low-pass
function given by an AOM bandwidth)

Q= Qo + Qe+ Que(07) + Qaelwr, 1) + Qpi(0y) + Q(T) (2.2)
Q — LP[Q] (2.3)
A= Ao+ A+ Age(0,) + Ape(wy, t) + Adop(T) (2.4)
A — LP[A] + £ (2.5)
T — agi + 0O(T) (2.6)

In the following, we shall explain each of these terms, categorizing them largely by the source

of the error. In practice, we typically account for all such errors, though the relevance of any
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Figure 2.3: Errors in Rydberg atom arrays. Various physical error sources affecting the
Rydberg atom array pipeline. Here we list the general structure and components of our
error model, and throughout the text we will describe each error source, including ways in
which to calibrate and mollify their effects. Above, blue boxes are error-free operations,
while red boxes denote possible error cases

given error can vary dramatically with the type of experiment being performed (Fig. 11.1).
A general flowchart for how such errors are captured in a typical sequence is shown in
Fig. 2.3, and a summary of major error sources and general information about them is
shown in Table 2.1. Further, we note that several, but not all, of these errors are covered in

one way or another in Ref. [115].
First, a few important notes.

1) Throughout we will often distinguish between “correlated” and “uncorrelated” noise
sources. By correlated, we generally refer to spatial correlation, i.e. a noise source which
affects all atoms in a joint manner. While this is not the same as a high-weight error (i.e. a
non-factorizable error acting on multiple qubits), it does lead to spatial correlations in the

experimental mixed state.

2) Our error model includes numerous leakage errors, errors which leave the qubit subspace,
such as decay to a different manifold or imperfect state preparation. To account for such

errors, we could assume a higher dimensional particle subspace like a qutrit or higher.
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Spatially- Time-

Noise channel correlated? dependent? Intensity Frequency
DC intensity X X
AC intensity X

DC frequency X X
AC frequency X

Poynting X X

Doppler shifts X X X

Beam sampling X X X

Interaction variation X X - -
Spontaneous decay X - -

Table 2.1: Error sources. Note that in general most “intensity” noise sources also can
impart frequency noise if the system experiences a self-light-shift. Given that most error
source have a unique set of truth values, they can be isolated and measured via in situ atomic
signals through measurement of on-site observables and connected correlation functions.

However, doing so would become quite computationally expensive. Instead, we take a
semi-classical approach. We still treat each atom as a qubit, but additionally store a flag
array (linear in system size) stating if the qubit has leaked or not. If the qubit does leak,
we make it inert, turning off all associated Hamiltonian terms!. The quantum state vector
is then not a trustworthy reference, and so cannot be used for calculating state overlaps etc.
Still, we can still incorporate such effects into measurements of many-body fidelity, etc. via

the flag vector, and the simulation results are still accurate on the level of bitstring samples.

3) We will typically make a frozen-core type approximation, whereby many error sources
are assumed to be static on the timescale of typical experiments. We will try to point out

such cases.

4) As a combination of points (1) and (3) above, many of the noise sources we consider are
explicitly non-Markovian and in some cases are high-weight. Such errors can have dramatic
effects not only on the fidelity of performing quantum operations, but can also non-trivially
change how fidelity decays during erroneous evolution, a matter we shall discuss at length

in Chapter 8.

I'We make the explicit assumption that atoms which leak out of the qubit subspace cannot reenter, for
which we see no evidence to the contrary on the level of observables we study.
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2.3.2 Laser errors

Some of the most significant error sources affecting the neutral atom quantum platform
arise from imperfect control of lasers which are used for performing atomic excitation. In
general (and simplifying somewhat), a laser’s output has a stochastically varying amplitude
and frequency, both of which can be largely captured through a power spectral density
(PSD). Here, we break this PSD up into two basic parts: DC or “low frequencies,” and AC

2

or “high frequencies.” While there is no firm definition of what makes for DC noise or
AC noise, we generally consider AC noise to arise from the the portion of the PSD with
frequencies higher than a typical experimental duty cycle, while the DC noise arises from
the portion of the PSD with frequencies lower than the typical experimental duty cycle.
Thus, we often will describe DC noise as “shot-to-shot” because it is roughly constant
throughout a single experimental realization, but can vary from one such realization to the
next. As a general note, the laser is generally applied equally across the entire array, thus

making such errors correlated.

Frequency noise
To best understand frequency noise arising from the laser, we consider its two components
(DC and AC) separately.

DC frequency noise The DC frequency noise is symbolized by Ag4.(c,). There are
multiple ways to estimate this contribution, but we find the simplest, and likely most
accurate is to directly use an atomic signal. In particular, we import techniques from atomic
clocks [69] to lock the frequency of the Rydberg transition directly to the atoms. Using as
low a Rabi frequency as possible (to narrow the transition’s spectral width), we perform
two-point locking [69], feeding back to the frequency of an AOM driving the transition
(Fig. 2.4a). By recording the locked error signals over time, we have very fine resolution of
the shot-to-shot transition frequency variations. While these variations are a convolution
of both laser frequency noise and thermal noise, the laser frequency noise can be extracted
either by assuming the thermal noise from independent measurements (discussed below), or
by looking at connected correlation functions of the in-lock signal. Connected correlation
functions subtract off the effect of uncorrelated noise sources, like thermal noise, leaving
only correlated laser noise. We typically find the DC frequency variation is largely Gaussian,
with a standard deviation of o,, from which we sample for our ab initio error model. The
DC frequency noise can also be cross-checked via comparison to sensitive atomic signals

like Ramsey spectroscopy.
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Figure 2.4: Measuring laser phase noise. a, Simplified setup of our Rydberg laser,
featuring a seed laser which is then amplified via tapered amplifier (TA) before passing
through two doubling cavities. The resulting power is ~300 mW (though with a more
recent upgrade to an RFA system, we achieve up to 3 W). Also shown are the PDH locking
setup for stabilizing the laser frequency, and the intensity stabilization setup post-laser.
b. We perform PDH locking to a high-finesse (finesse of 14000, linewidth of 110 kHz)
cavity. Modulation is provided by an EOM which generates sidebands at both low and high
frequencies. High frequency sidebands allow us to tune the locked frequency across the
entire cavity FSR. The low frequency provides the PDH locking modulation, while also
providing a stable frequency reference for converting from voltage to frequency. ¢. We take
long voltage time traces of the in-lock PDH signal, which we then convert to frequency via
the slope calibration in b. Then, we convert to a power spectral density which (accounting
for cavity-roll-off factors, see text), allows us to generate frequency noise traces for our
system.

AC frequency noise To account for time-dependent (AC) frequency noise (A,.(wy, 1)),

we must have some estimate of the power spectral density (PSD), w,, of the noise.

Our approach takes advantage of the fact that we lock the Rydberg laser to a stable frequency
reference, a high-finesse cavity (Fig. 2.4a). To lock to the cavity, light is modulated with
an EOM with two tones, a low-frequency (LF) tone at 20 MHz, and a high-frequency
(HF) tone ranging from O to 1.5 GHz. The HF tone allows us to span the entire free
spectral range of the cavity, while the LF allows us to lock the laser with Pound-Drever-
Hall (PDH) modulation [116]. In the unlocked state, the cavity rejection signal shows a
characteristic trimodal structure (Fig. 2.4b), with features separated by the LF modulation
frequency. By fitting a linear slope to the central PDH feature (Fig. 2.4b, inset) this provides
an unambiguous conversion from voltage (as measured on an oscilloscope) to frequency

deviations of the laser.

We can then lock the laser, measure the continuous-time voltage, and convert it into fre-
quency. By taking the Fourier transform, we then arrive at the PSD (Fig. 2.4c). The PSD

can then be sampled to generate unlimited time-dependent frequency noise traces. See
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Ref. [117] for discussion of the technical specifics of this process.

However, first we multiply by the cavity roll-off factor [117, 118], as the error signal
underestimates high frequency noise because the cavity acts as an efficient low-pass filter.

The cavity roll-off factor is given by

1
1 1- L

Frovagme @D

C(f) =
where f is the frequency, & = 14000 is the finesse and I' = 110 kHz is the cavity linewidth.
In our particular circumstance, we need to perform further conditioning, given that we
measure frequency noise on the infrared laser light, which is then quadrupled through two
doubling cavities. This quadrupling up-converts the frequency noise, while the doubling
cavities act as effective low-pass filters on the light (which also converts frequency noise

into intensity noise).

Thus, the effective cavity roll-off factor is given by Cet = C/(CrucCsnc), Where Cryg is
the roll-off for the fourth-harmonic generation (FHG) cavity, and similarly for the second-
harmonic generation cavity (SHG). For our particular laser, we find the resulting PSD is

largely peaked around 1 MHz, which we attribute to the servo bump of the PDH lock.

However, even with all this care, it is still entirely possible that the resulting PSD does not
correctly match the frequency noise seen by the atoms. There are a number of elements
between the laser PDH lock and the atoms themselves, and so this PSD should be considered
heuristic at best; still we find that using it matches sensitive experimental observables quite
well. We note that there are means of directly measuring the frequency PSD through

so-called spin-locking methods [39], which can help to confirm the findings here.

Intensity noise
As with frequency noise, we separate the contributions for intensity noise into slow, DC
intensity variations, and fast, AC variations. However, unlike the case of frequency noise,
we measure both fast and slow noise directly on a fast photodiode. In particular, we pick
off a small fraction of the light just before it reaches the atoms (Fig. 2.4a) and direct it
onto a fast avalanche photodiode (50 MHz bandwidth), being careful to to make sure the
measurement is not limited by the intrinsic noise of the sensor. The voltage measured is

directly proportional to the laser intensity, up to small offsets which can be subtracted off.

There are multiple ways in which we could analyze the resulting voltage signal, for instance
the most naive would be to simply take a very long time trace with the laser and AOMs
continuously on, perform the Fourier transform, and acquire the PSD down to very low
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Figure 2.5: Characteristics of intensity noise. a, We measure intensity noise traces on a
photodiode (schematic shown in Fig. 2.4). Each pulse (recorded at the normal experimental
duty cycle), is characterized by turn-on and -off dynamics, as well as a bulk period. b, We
study fluctuations in the bulk by fractional intensity variation, i.e. the standard deviation
of the pulse area over many trials at a given pulse length, 7", divided by the average pulse
area. The result decreases nearly as 1/ VT, the expectation for white noise, before settling
to a value around ~0.007. We stitch multiple bulk measurements together (subtracting
off the mean for each) and take the Fourier transform to acquire the intensity noise power
spectral density. The result is largely similar to that found from taking the Fourier transform
of a single long time trace (not shown), but in principle is more accurate to the AOM
thermalization dynamics at the experimental duty cycle.

frequencies. However, with some testing, we find this is not the best approach to find the
actual Rabi frequency at the atoms, because the noise spectra of a very long continuous
beam of light can be different than short pulses of light with a very low duty cycle, and the
latter is more accurate to the experiment. Thus we measure the intensity noise by running
the experiment at its normal duty cycle, and recording pulses, IV (¢), of varying length on
the photodiode (Fig. 2.5a).

DC intensity noise To find the DC intensity noise, Q4.(c7), we measure the I (t) for
various total pulse durations, 7', and then calculate the fractional intensity uncertainty, o;
over iterations, i. We find that the result decays nearly as 1/ VT, the expectation for white
noise, before settling to a value around ~0.007 (Fig. 2.5b). We further confirm this value
via auxiliary measurements on cameras and other photodiodes (not shown). We take this
long-time value as the DC intensity variation. To calculate the DC Rabi frequency we

approximate that o & /2, which is true for small variations.

AC intensity noise To find the AC intensity noise, {2,.(w, t), we consider the raw intensity

traces () (), and truncate them to only the bulk of the pulse (i.e. without turn-on and -off
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dynamics). We then stitch these fragments together, subtracting off the mean of each, and
take the Fourier transform to arrive at the intensity noise PSD (Fig. 2.5¢). We note the result
is largely similar to the PSD found from just a single very long intensity noise trace on the
photodiode, but is in principal more accurate to the exact experimental thermalization. For
our particular system we find the PSD peaks around a few hundred kHz, which we attribute
to the servo bump of the intensity stabilization system. However, it is also possible that
some of the AC frequency noise is converted into intensity noise via the doubling cavities

we employ downstream from the frequency stabilization setup (Fig. 2.4a).

AOM dynamics
In order to address the atoms, the laser beam is passed through a series of acousto-optic
modulators (AOMs) which control its intensity and frequency! (Fig. 2.4a). However, such
devices cannot modulate the laser infinitely quickly, even in order to turn it on or off. For our
particular AOMs, and our particular beam waist inside the AOM, we find a characteristic
response time of ~35 ns or ~14 MHz bandwidth. Thus, any time-dependent variations in
laser intensity or frequency are essentially modulated by a low-pass filter with that cutoff
frequency (which we symbolize as LP[Q2] and LP[A]). Typically, we do not explicitly
account for this effect in most error model simulations, but note that it can non-trivially

alter programmed pulse areas, and thus acts essentially as a form of miscalibration error.

There is a far more pernicious problem associated with AOM response dynamics than just
their slow bandwidth, though. As a brief review, AOMs essentially work by passing an
acoustic wave through a crystal, changing its refractive index with a periodic modulation.
This periodic modulation then acts as a grating to incoming light, diffracting it and altering
its frequency slightly. An alternative picture is to consider the acoustic wave as a propagating
phonon mode, which then scatters off an incoming photon. For our purposes, the wave-based

picture is more helpful.

When an RF signal is sent to the AOM, it is transduced to the acoustic wave via a piezoelectric
element at one end of the crystal. The wave then propagates across the crystal at the finite
speed of sound. However, impingent laser beams have a finite extent, and thus there is a
finite time required for the acoustic wave to traverse the beam profile. At very early times,
when the wave has not crossed the full profile, the frequency will be Fourier broadened

significantly, which will then sharpen over time as the acoustic wave crosses the entire

'We use two AOMs in order to vary the frequency while keeping the beam position constant. Such a task
is often accomplished with a double pass AOM setup, but UV AOMs are very sensitive to polarization, and
thus standard double pass methods are not immediately applicable. It is possible to do double passing via the
use of prisms, or carefully aligned lens, with one such example shown in Ref. [119].
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Figure 2.6: Finite response time effects of the AOM. a,b, The AOM for modulating the
laser intensity and frequency (see Fig 2.4a) has a finite response bandwidth due to the
time needed for the acoustic wave in the crystal to traverse the beam extent. This means
at early times the beam is significantly broadened along the modulation axis (though not
along the orthogonal axis), introducing a time-dependent, power-law intensity if the laser
is not perfectly aligned to the atoms. ¢. Because the angle of diffraction from the AOM
is proportional to the frequency imparted, the effect in b also leads to a time-dependent
frequency if the beam is misaligned. For three different choices of alignment (well-aligned,
misaligned to the right, misaligned to the left) we show the experimentally measured center
frequency of the Rydberg excitation as a function of time. The misaligned cases converge
as a power-law towards the well-aligned case at late times. Accounting for these effects thus
necessitates careful alignment, which we discuss in Appendix A.

beam. What this means is that at early times after turning on the AOM, the outgoing beam

will be broadened.

We observe this effect experimentally. Using a camera in an atom-equivalent focal plane
of the laser after the AOM, we record the beam profile as a function of pulse duration
(Fig. 2.6ab). We find that along the vertical axis (which is orthogonal to the AOM modu-
lation), the beam profile has a constant fitted waist at all times. However, for the horizontal
axis (which is parallel to the AOM modulation), the beam waist is greatly broadened at early
times and decays with a power law form over the course of over a hundred nanoseconds.
This means that if the beam is not well aligned to the atoms, the atoms will experience a

time-dependent intensity as the Fourier components of the modulation sharpen.

However, intensity variations over time are not the only problem; there are also frequency

variations over time. This is because the angle of diffraction from the AOM is proportional to
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the frequency modulation of the light, so the broad beams at early times also have a frequency
gradient across their entire horizontal span. This effect we also resolve experimentally
(Fig. 2.6¢c). We intentionally misalign the atoms along the horizontal axis with respect to
the beam center, and measure the corresponding center frequency. We see a clear power law
convergence over time, much the same as for the beam waist in Fig. 2.6b, which narrows

towards the well aligned value at late times.

To sum up, the AOM introduces a time-dependent modulation due to the finite speed of
sound of the crystal, which leads to both time-dependent intensity and frequency variations
if the atom is misaligned by as much as a micron. Thus it is extremely important to
implement a robust alignment procedure (which we discuss in Appendix A) to waylay this
effect. We note that alternatively one might consider using a fiber coupled system which
would mix the spatially-dependent frequencies and intensities, thus transforming the well-
defined detuning into a time-dependent frequency noise which might be preferred for some
applications. Fibers are difficult to make work at high power for UV lasers, though there is

some work in this regard [119-122].

Other effects
Various other laser-based effects can harm the fidelity of quantum operations, including the

intensity-dependent detuning, beam drifts, and calibration errors.

Light shifts The laser detuning experienced by the atoms is weakly dependent on the
laser intensity itself [34], and thus any variations in {2 — either programmed or erroneous
— will produce a corresponding error in A, with scaling coefficient «. This effect is often
called a self-light-shift.

Poynting noise The laser is generally well-aligned to the atoms, but its exact position
(and angle) still fluctuates on a shot-to-shot basis. This is known as Poynting instability!.
We measure such variations on a camera placed in a atom-equivalent focal plane of the
laser, and find variations are on the order of a few hundred nanometer, as compared to beam
waist-radii of a few tens of micron. Besides this variation, we also generally assume a static
offset of around 200 nanometer due to imperfect alignment. Thus the effect is small, though
still accounted for, and it also can have some amplifying effects on temperature-based errors,

as we shall discuss.

1T still have never had a satisfactory answer as to whether this should be “pointing”, like where the laser is
pointing, or “Poynting”, like the energy flux vector. Given the ambiguity, I choose to use Poynting. However,
during the course of the revision of this thesis it was pointed out by Nick Hutzler that a perfectly stable beam
would still have “Poytning” fluctuations if its intensity varied, and thus maybe “pointing” should be preferred.
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Calibration errors While we spend great pains to consistently and accurately feedback
on the Hamiltonian parameters (see Appendix A), both the Rabi frequency (intensity) and
detuning (frequency) of the laser are subject to miscalibration control errors, denoted as
Q. and A.. For many applications like many-body fidelity benchmarking such effects
are somewhat minor, given that we can always accurately measure the actual parameters

realized by the experiment via in situ procedures, as discussed in Chapter 6.

2.3.3 Temperature errors

Optical tweezers trap atoms in a nearly harmonic potential [123]. As such, to a good
approximation we can describe the movement of the atoms in terms of the motional Fock
basis in order to capture their position and velocities. However, the state of the atoms
is not pure; finite thermal excitations make the atomic motional state mixed, which can
be deleterious for various reasons. Significant research over the past twenty years has
been devoted to cooling atoms down to their motional ground state [124—130], and in our
experiment with a little effort we are able to reach motional ground state fractions of po~70%
purely through conventional means [85]. This fraction is then related to the approximate
temperature via po(7) = 1 — exp(—(hw)/(kgT')), where kg is Boltzmann’s constant and
w is the angular trapping frequency!. We recommend consulting Refs. [76, 117] for more

details on aspects of atomic cooling that we do not discuss here.

In Chapter 3.5 we will explore a novel measurement-based cooling scheme which allows
us to reach ground state fractions as high as 99%, but it is still worth it to carefully discuss
the pernicious effects of temperature. Importantly, as opposed to laser errors, temperature
is an inhomogeneous error source, and as such its effects are uncorrelated across the array.
We largely break these effects up into three subcategories: Doppler shifts, beam sampling
effects, and interaction variations. These effects stem from the fact that thermal atoms
have finite and Gaussian position and velocity distributions, characterized respectively by

standard deviations

0y = \/szcoth<QZ:T) 2.8)
o, = \/ %coth(QZ:T> , (2.9)

where m is the atomic mass.

1See Ref. [76] for a nice table showing conversions between different thermal quantities.
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Doppler shifts

The first, and simplest error source arises from Doppler shifts, denoted as Aggp(T) arising
from the atoms finite thermal velocity distribution. Numerically, one samples a given
velocity, v, from Eq. 2.9, and then calculates the Doppler shift via § = k - ¥, where k is the
addressing laser’s wavevector. See Ref. [117] for further details of this calculation. In our
system we find Doppler shifts to be a few tens of kHz at typical temperatures. We note that
this description of Doppler shifts is valid in the sideband non-resolved regime, whereas in
the sideband-resolved regime one accounts for Doppler shifts via the Fock-state-dependent
Rabi frequency [76, 124].

Ostensibly, the velocity distribution which induces Doppler shifts could also lead to time-
dependent atomic motion, affecting result we will discuss below. However, at typical
microkelvin temperatures the characteristic velocity is o,~10 nm/us, meaning roughly 100
nanometer may be traversed over the course of a 10 ps experiment. Because of this relatively
small value (the context of which shall become apparent shortly), we generally consider a

frozen-core approximation, and sample atomic velocities purely to calculate Doppler shifts.

Beam sampling
One of the most pernicious errors, and most often overlooked, affecting atom arrays arises
from the effect of the atom sampling different laser intensities, which we call beam sampling
Qgs) (T'). Atoms at finite temperature have a wavefunction spread, and thus on an approxi-
mately shot-to-shot basis they will sample different regions of the addressing laser. If the
addressing laser has a very large waist!, wy, and is well aligned, this results in a somewhat
negligible effect. However, if the addressing beam is misaligned, then the atom will sample

a linear slope of the Gaussian beam, and as such will be dramatically more sensitive.

The relative intensity variation for a given displacement ¢, is given by
81(6,) = 1 — e=2(0e/w0)” (2.10)

Then, assuming the laser is well-aligned to the mean atomic position, we can convert
from the positional Gaussian probability distribution (characterized by o) to a probability

distribution of the intensity?2.
1
(1 — (51)\/—71'(){ log(l — 51)

1Unless otherwise noted, we will always mean waist-radius when simply referring to a laser waist.

2While basic, it bears repeating that the probability density function (PDF) of a function of a random
variable is not the same as the function applied to the PDF of the random variable. That statement is true on
the level of cumulative distribution functions, so accurate PDF transformations simply require judicious use
of the chain rule.

P(o;) = (1-d7)= 2.11)
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Figure 2.7: Intensity variation from beam sampling. a,b, The thermal positional spread
of the atoms leads to intensity variation. Numerical simulations, assuming a Gaussian
beam and thermal distribution of atoms, are in good agreement with our analytical formula
(Eq. (2.11)) both when the position fluctuations are (a) small or (b) large compared to the
beam waist. ¢, Beam misalignment can amplify the deleterious effects of beam sampling
by leading to a larger effective standard deviation of intensity fluctuations.
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where o = 402 /w3, and where in the second-line we have approximated §; < 1 during
the derivation (Fig. 2.7). For single atom Rabi oscillations with Rabi frequency (2, this
variation leads to approximate power-law decay envelope of (1 + (¢/T)2)~"/* ~ t~1/2, with
T = w}/(2Q02). Incorporating a finite misalignment, z, the standard deviation of P(d;)

distribution is approximately
4 2 2
o= 8(2) e re(2) (22)" @.13)
Wo Wo Wo

Thus, the effect of this noise channel increases dramatically both as the beam waist decreases,

and as the beam alignment worsens (Fig. 2.7). In our case, characteristic length scales are
0, ~ 200 nm (along the weakly-confining axial direction), and wy ~ 20 pm. Thus, keeping
the laser and atoms well-aligned (see Appendix A) is of paramount importance, as for
instance a 1 ym beam misalignment can lead to nearly a 50% loss of single-atom Rabi
coherence, with similarly drastic effects on the many-body fidelity. We also note that the
susceptibility to this effect can be mollified through the use of super-Gaussian addressing
beams [131].

Interaction variation
The position variations of the atoms do not only affect their interaction with the addressing

beam, but also with each other due to the long-ranged Rydberg interaction. As such, each
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atom will have its position displaced by some amount §()(T") which needs to be taken
into account when calculating the atom-atom interaction strength. The impact of such
effects falls of dramatically with distance between atoms and is further suppressed at short
distances due to the Rydberg blockade mechanism, because small changes in distance do
not substantively change the blockaded condition. Thus, it is most important to be aware
of this effect when atoms are spaced just barely at or beyond the blockade radius from each
other. This is particularly possible in two-dimensional arrays like square arrays as one must
be careful of next-nearest-neighbor interactions (Fig. 11.4). Still for the one-dimensional
arrays we concern ourselves with here, this effect can still lead to non-trivial fidelity loss.
This effect necessarily introduces a force on the atoms, though a back-of-the-envelope
calculation suggests for our typical parameters it only results in a velocity of ~10 nm/us,

and as such we typically employ a frozen-core approximation.

2.3.4 State preparation and measurement (SPAM) errors

The survival and detection fidelities of atoms in optical tweezers are in general very high,
with record values reaching or surpassing the 0.9999 level [26, 73, 85, 132]. Still, even
such high values can have a dramatic effect on conclusions drawn from experimental data.
We direct the reader to Ref. [34] which discusses many of these ideas for the case of one

and two qubits.

Preparation errors
Typically all quantum circuits and simulations assume an input fiduciary state in the Hilbert
space. When qubits are defined along the clock-Rydberg transition, this input state is for
instance the vacuum state, or the all-zero state |0)*" of N atoms. However, our ability to
prepare this state is limited by three effects: atomic survival, imperfect transfer to the clock

state, and decay out of the clock state.

The atomic imaging survival in our system generally approaches the 0.9999 level [26, 85],
which is nearly vacuum-limited. Thus, we expect that the probability for atom loss is
relatively uniform across all times, without much regard for the dynamics affecting the
atoms, such as imaging, cooling, etc. For most operations we perform, atoms are first
rearranged, then imaged again to verify rearrangement has succeeded, and then there is a
wait time of ~200 ms before actual quantum operations. This wait time is largely limited
by the time needed to change magnetic fields. However, after we perform the quantum
operation, there is <1 ms of wait time before the final readout image; because of this

separation of timescales, we can assume that any atom loss occurs before the quantum
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operation. Such losses leave unidentified holes in the array, which can have dramatic
ramifications for quantum dynamics; we shall explore this effect in great detail in Chapter 3

where we detect these errors through erasure conversion.

Beyond atomic survival, preparation is also limited by imperfect clock state preparation.
We generally are able to drive the clock transition coherently with ~0.998 fidelity [28, 39],
limited by frequency noise on the clock laser and atomic temperature. Further, we can
supplement clock state preparation with incoherent pumping [34], which enables close to
survival-limited preparation (though atoms which are pumped are also likely prepared in a

much hotter thermal state, which we do not explore the implications of).

Once prepared, there is generally a wait time of a few milliseconds before Rydberg excitation
to account for shutter opening times etc. and so some atoms will decay out of the metastable
clock state in that time. For bosonic strontium the lifetime of the clock state is conjectured
to be thousands of years [107], but in practice it is limited by Raman scattering from the
high-intensity trapping light [133]. Specifically, the tweezer light at 813 nm can induce a
far off-resonant coupling to the S, excited state, which can then rapidly decay to any state
in the ®P; manifold. The rate of scattering is roughly proportional to the trap depth (i.e.
tweezer intensity), which we find [33] to be ~ 250(30) s/uK. At our normal trap depths this

amounts to a lifetime on the order of ~1 s.

Thus, we generally find an overall preparation fidelity of ~0.997 per atom. Preparation
failure is a leakage error, for which we make the atom inert. There are two possibilities, that
the preparation error was from atom loss (which would be dark to our final imaging), or
was from imperfect clock state transfer (which would likely be bright to our final imaging);
in the former case, we switch the inert ‘qubit’ state to a |1) to have it be properly accounted
for during readout.

Measurement errors
When the quantum state is measured, it collapses into a distinct basis state with a probability
given by the state vector. However, at this point a classical error channel can distort the
resulting bitstring. We distinguish two types of measurement errors: Rydberg detection

(autoionization) errors and imaging errors.

Autoionization errors In order to distinguish Rydberg atoms from clock atoms, we apply
a short and powerful autoionizing pulse [26, 34]. This pulse ionizes Rydberg atoms with a
fidelity in excess of Fy = 0.999, though we note care must be taken to minimize wait times

between the end of Rydberg excitation and the start of the autoionization pulse otherwise
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Rydberg decay can mitigate the autoionization fidelity. If the autoionization pulse fails,

then it is essentially a classical amplitude-damping channel mapping |1) — |0).

Imaging errors The state of the atoms is read out through fluorescence imaging by ideally
scattering many photons quickly, collecting them on a camera, and weighting them with a
precalibrated point-spread-function (PSF) mask!. The basics of this process are discussed
in detail in Ref. [34], but essentially it amounts to two different detection fidelities: the
false positive fidelity (F}) for an atom in state |0) to be readout as a ‘0’, and the false
negative fidelity (F) for an atom in state |1) to be readout as a ‘1°. These fidelities are
typically balanced by using a threshold based approach [73, 99], accounting for the tweezer
filling fraction [34, 73], though we note more advanced imaging methods involving neural

networks may improve imaging fidelity [134, 135].

To account for both imaging and autoionization errors, we employ a transfer function
based approach. We first take the absolute square of the quantum state vector to form the
population vector. Then, for each individual qubit in the array (see Appendix B for details),
we apply the transfer matrix
F 1 —Fy)F + Fa(l — F
M = 1 A By Fa o) (2.14)
1—F, FuFy+ (1 —FA)(l —F[))

Note that if an atom is marked as inert, then /'y = 1. The resulting population vector then

is an accurate model for experimental observables.

2.3.5 Spontaneous decay errors

The Rydberg state is inherently short-lived, with lifetimes on the order of 10s of us, where
the lifetime increases with increasing principal quantum number [76]. Due to its highly
excited nature, the Rydberg state has substantial branching ratio to decay along a number
of different pathways. As a simplification, we generally consider two possible channels:
1) spontaneous decay down to a low-lying energy manifold which is detected in our final
image (bright-state decay), 2) blackbody radiation induced decay to a manifold which is

dark to our final image, such as nearby Rydberg levels (dark-state decay). These processes

Tn our work, besides the specific case of erasure conversion in Chapter 3 we always perform all images
with the same imaging parameters, i.e. the image used prior to rearrangement is the same as the image
used for final readout. However, this is not really the most ideal strategy, as different images have different
requirements and sensitivities to detection fidelities and atomic survivals. For instance, in the final readout
image we could stand to gain by ignoring atom survival and only maximizing photons scattered to improve
detection.
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Figure 2.8: Rydberg lifetime. a, Pseudo-level diagram of the Rydberg dynamics and
associated decay channels. During Rydberg evolution with Rabi frequency (2, the Rydberg
atom can decay into either a set of states which is ‘bright’ to the imaging process (including
both the erasure images and the final detection images), e.g states like 5s5p 3 %, or into states
which are ‘dark’ to the imaging process, e.g. nearby Rydberg states. A small percentage
of decays into ‘bright’ states can go directly into 3P, where they can be re-excited by
the Rydberg driving; note that such decays are dark in the erasure image, but bright in
the final detection image. b, Measurement of the dark state decay lifetime, measured by
performing a m-pulse on the Rydberg transition, waiting a variable amount of time, and
then returning atoms to the ground state (inset). ¢, Measurement of the bright state decay
lifetime, measured by performing a Rydberg m-pulse, waiting, and then performing an
auto-ionization pulse to destroy any remaining Rydberg or dark state excitations. Markers
are experimental data where error bars are often smaller than the marker sizes, and solid
lines represent exponential fits. d, Aggregating data from our own study (Ref. [26], circles)
with that of Ref. [136] (squares) shows good agreement to the expected scaling [76] of the
Rydberg decay lifetimes with the principal quantum number. Note that bright state decay
and dark state decay have different expected scaling coefficients with Rydberg quantum
number, n, of n® and n?, respectively [76] .

are broadly summarized in Fig. 2.8. We note that all numerical values below are measured
for a principal quantum number of n = 61. Different decay mechanisms have different
scaling with n (see Table 4.5 in Ref. [76] for a summary), but we note all our findings are
consistent with that of Ref. [136] (Fig. 2.8d).

We simulate spontaneous decay processes using the quantum jump method [114] which
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Figure 2.9: 3P, photo-ionization. a, We prepare atoms into P, (a bright state), and then
perform continuous Rydberg driving. Atoms are lost from the trap at a rate which increases
with increasing Rabi frequency. b, The lifetime of atoms in ® P, scales inversely with the
square of the Rabi frequency (i.e. scales inversely with the intensity of the Rydberg beam).
We attribute this to a photo-ionization process which can convert bright state decay into
dark state decay through prolonged Rydberg excitation, as shown in a.

employs non-Hermitian evolution in concert with probabilistic decay events. For each
time interval dt, the decay channel |i) — |f) occurs with probability T';¢|(i|i)1(¢)|?dt,
where |1(t)) is the quantum state at time ¢. If a quantum jump happens, we will apply the

projection operator | f)(f| to the state.

We find the following lifetimes for the various decay channels (Fig. 2.8: 1) dark state decay
- 7 = 85(5)us; 2) decay to the 5s5p 3Py manifold - 7 = 168(14)us and branching ratio
10%, 30%, 60% for J = 0, 1, 2. Further, atoms in 3P; and ®P, are photoionized by the Ryd-
berg drive (Fig. 2.9), with a Rabi-frequency-dependent timescale of 7 = 3204us/(Q/MHz)?.

We note that we do not account for a potential major error source, namely correlated
spontaneous decay, as has been observed in Rydberg-dressed lattices [137], and which we
do see some signatures of. Essentially, when a Rydberg atom via blackbody radiation to a
dark state, the decay wavelength is much longer than the array lattice spacing. This leads to

a avalanche phenomena where all atoms simultaneously decay. This effect is pronounced
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when the lattice spacing is tighter. We do not explicitly take into account this effect in our
error model, but note that doing so is likely not too difficult. To do so, if we detect a quantum
jump has occurred during evolution we would perform conditional nearest-neighbor checks.
Specifically, we would introduce a new random number parameter, such that if there is a
dark state decay at site ¢, we draw two random numbers for sites ¢ — 1 and ¢ + 1. If either
of these random numbers is lower than a constant, ¢, then we project these sites into dark
states. If the projection occurs, we repeat the same process for the 7 — 2 and ¢ 4 2 sites (and
so on) to capture the proliferation of dark states, and so on. In this scheme ¢ would likely

be calibrated directly against in situ many-body measurements.
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CHAPTER 3

Erasure conversion

Having described many of the error sources facing Rydberg atom array quantum simulators,
we now turn to discuss how to eliminate many of them using a new tool in the quantum
toolbox: erasure conversion. The definition of erasure conversion is still somewhat in flux,
but fundamentally it means the direct detection of errors as they occur in situ during a
quantum algorithm, so that they may be heralded or corrected for. The specification that
this detection is direct is key: we are not detecting errors via syndrome measurements,
as is standard in quantum error correction, but instead by reading off a per-qubit signal
which flags if that qubit has suffered an error. Our demonstration of erasure conversion
is the first of its kind (alongside Ref. [75]) following the theoretical proposal of Ref. [68]
(and early discussions in Ref. [67]), and could have significant implications both for near
term quantum applications and for reducing the pseudo-threshold needed to achieve error
correction [68].

In this chapter, we will first describe the importance of erasure conversion, and how it is
accomplished in atom arrays. We then describe several case studies of its application, such
as improving the preparation fidelity of two-qubit Bell states, and for improving quantum
simulation fidelities for large-range entangled states [26]. Using the principles of erasure
conversion, we then demonstrate a erasure-based method for cooling atoms to their motional
ground state [32], and show a measurement- and feedback-based method for improving atom

array loading, called dark-state enhanced loading [33].
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3.1 LOCATING ERRORS

Errors are rampant in quantum systems, and Rydberg atom arrays are no different. A
common, and lofty, goal of the field is to achieve so-called error correction, where many
physical qubits are aggregated in order to perform the functions of a single logical qubit at
a much reduced error rate. While quantum error correction schemes can be quite involved,
their simplest classical analogs are quite intuitive. For instance, the simplest classical error

correcting code is the repetition code.

Say there is a single bit of information which is subject to a noisy channel. To improve the
transmission fidelity we can simply copy the bit several times, producing, say, 9 identical
bits total, and then send all the resultant bits through the channel. The receiver on the other
end then evaluates all simultaneously and uses majority vote to determine the bit value (i.e.
if eight of the transmitted bits are a “1”, and only one is a “0”, then it is more likely than
not that the true value is a “1”). This approach, while relatively memory inefficient, is
quite effective classically, and spiritually underlies many of the decoding mechanisms for

quantum error correction techniques.

Still, let’s imagine error rates are slightly higher, and instead when we send our 9 identical
bits through the noisy channel the result is that five are “1”” and four are “0.” We could still
apply majority vote, but the statistical significance is greatly reduced. For this reason, we
ideally want to have a method of pruning some of the “bad” bits so that we are less affected
by their errors. If we can use some auxiliary information to be sure that all the “0” instances
came from erroneous transmissions, then we regain high statistical certainty in the aggregate
(logical) value. This process of locating where errors have occurred is precisely the point of
erasure conversion. Theoretical proposals for erasure conversion [68] discussed it explicitly
in the context of improving the ability of near term quantum computers to implement error

correction techniques.

It is simplest to first consider the most classical version of erasure correction, namely
atomic rearrangement. When atoms are loaded into an optical tweezer array they do so
stochastically, only filling a given site in the array with roughly a 50% probability. Consider
running an algorithm on N atoms, without implementing rearrangement protocols. In such
a case, the probability of success will be at best 2=, as any missing atom guarantees failure.
Seemingly daunting, we know this impedance is immaterial, given that it is straightforward
to image the array before performing the operation, and rearrange [81, 89] to ensure a defect
free arrangement of our NV atoms. In other words, we have prepared an array of atoms, then

it has undergone a noisy channel of stochastic filling, then we directly measure the “errors,”
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by imaging where the atoms are located, and subsequently we correct via rearrangement.

To be clear, there are distinctions and caveats to be drawn from this simple example, which
in some sense is an example of classical erasure conversion. We employ the following
definitions: Classical erasure conversion - all qubits (bits) are readout (projected) for errors;
Quantum erasure conversion - only erroneous qubits are readout, while non-erroneous
qubits are not projected; Mid-circuit erasure conversion - the readout (and potentially
correction) is fast compared to the qubit coherence time. Clearly, atomic rearrangement
falls into the category of ‘classical’ erasure conversion, per our definitions. Still, it helps
to convey the basic point: if we can image where errors take place, and can do so in such
a way so as not to disturb error-free qubits we can potentially dramatically improve device

performance (and hasten the arrival of error corrected quantum systems [68]).

3.2 AN ATOMIC ERASURE CONVERSION IMPLEMENTATION

Here we describe how we perform the erasure imaging which allows us to detect site-resolved

leakage errors out of the qubit subspace spanned by the clock state and the Rydberg state.

Our basic protocol relies on the long-lived nature of the clock state, and the fact that both
improper preparation into the clock state or bright state decay (see Section 2.3.5) out of
the qubit manifold will typically result in erroneous atoms cascading into 'Sy. To exploit
this, we develop a very fast atom detection technique (previously showcased for freely
propagating lithium atoms [138]) which allows us to detect atoms in 'Sy in a ~20 us
timescale (Fig. 3.1a). The basic imaging technique, which is covered in great detail in
Ref. [138], essentially relies on scattering a large number of photons very quickly, and then
overcoming intrinsic camera noise through a combination of low-pass and binary filters on

the camera signal.

We highlight the characteristic features of this imaging scheme experimentally. We show
in Fig. 3.1b the survival probability of atoms in 1S as a function of imaging time. After
4 us, more than 80% of the atoms are lost. However, the number of detected photons
continues to increase: even though the kinetic energy of the atoms is too large to keep
them trapped, their mean position remains centered on the tweezers. In order to both avoid
any extra heating coming from the imaging beams and optimize imaging fidelity, we shine
two identical counter-propagating beams with crossed m-polarization and Rabi frequencies
)/2m = 40 MHz on the 1Sy — P, transition. This minimizes the net force on an atom,
and the crossed polarization avoids intensity interference patterns. After ~24 us, the atomic

spread becomes too large and the number of detected photons plateaus.
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Figure 3.1: Fast imaging on the erasure detection subspace. a, Sketch of the involved
energy levels. We detect atoms in 'Sy by strongly driving the 1Sy <+ ' P, transition. b,
Survival of atoms in 1S (green) and number of detected photons (red) as a function of
the imaging time. We observe an increase of detected photons whereas the atoms are
already lost: even though the kinetic energy of the atoms is too large to keep them trapped,
their mean position remains centered on the tweezers thanks to the use of two counter-
propagating beams with equal power. After ~24 us, the atomic spread becomes too large
to measure a significant increase in detected photons. Inset: losses from 3P, as a function
of time, expressed in number of fast images. The survival probability of an atom in 3P is
99.99954(12)% for one image, consistent with its 5 second lifetime. ¢, Typical histograms
of the number of detected photons for 24 us imaging. Using a slow, high-fidelity image
prior to the fast image, we can detect if a tweezer is empty (blue) or filled (red). The
typical detection fidelity which corresponds to equal error probability in detecting absence
or presence of an atom is 98.0(1)%.

We note that in our implementation, we explicitly scatter a very large number of photons very
quickly such that cooling the imaged atoms is not possible and they are almost inevitably lost
during the imaging process!. While unfortunate, in this first experimental demonstration
it is not too much of a bother, given that the only atoms that will be lost in this way are
those for which errors had occurred; specifically these errors are leakage errors out of the
qubit subspace, which are anyway difficult to correct without replacing the atom. In the
future, it will be necessary to either perform these ultrafast images non-destructively for
instance using cavity-assisted readout [139], or to provide a steady stream of fresh atoms
via continuous loading techniques [33, 84, 140, 141].

The obtained detection histogram is shown in Fig. 3.1c. We present the results both for
empty (blue) and filled (red) tweezers, which we achieve by first imaging the atoms using
usual, high survival imaging for initial detection in a 50% loaded array, then perform the
fast image. We obtain a typical detection fidelity of 0.980(1) of true positives and true
negatives, limited by the finite probability for atoms in ! P; to decay into ' D, (Fig. 3.1a).

IThis is in contrast to our standard method of imaging, described at length in Ref. [76] which continually
cools atoms during imaging such that their survival is nearly vacuum-limited.
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We note this fidelity is somewhat dependent on the array spacing: atoms can travel over
relatively large distances during the violent imaging process, which we conjecture mixes
their imaging point-spread-functions more than in standard imaging. We are able to see

fidelities in excess of 0.99 by spreading atoms further apart prior to imaging.

This imaging scheme is sufficiently fast to avoid perturbing atoms in ® P, as measured by
losses from 3P, as a function of imaging time (Fig. 3.1b, inset). We fit the data (circles)
using a linear function (solid line), and obtain a loss of 0.0000046(12) per image, consistent
with the lifetime of the 3P, state [33] of ~5 s for the trap depth of 45 uK used during fast

imaging.

We note that current limitations to this the scheme are not yet fundamental, and there are a
number of technical improvements which could be made. First, the camera we use (Andor
iXon Ultra 888) has a quantum efficiency of ~80%, which has been improved in some recent
models. Further, we currently collect photons only from one direction, when in principle
photons could be collected from both objectives [38]. This would improve our estimated
total collection efficiency of ~4% by a factor of 2, leading to faster imaging times with
higher fidelity (as more photons could be collected before that atoms were ejected from the
trap). Finally, but not exhaustively, the fidelity may be substantially improved by actively
repumping the ' D, state back into the imaging manifold so as to not effectively lose any

atoms via this pathway [142].

3.3 CASE STUDY: IMPROVING BELL STATE GENERATION

Having discussed the physical implementation of our erasure conversion scheme, we now
demonstrate it is practically useful on an important problem of interest, namely Bell state
generation resulting in fidelities competitive with other state-of-the-art platforms [143-146].
Bell states are the smallest example of entangled states, with applications in computing [15],

metrology [147], and communication [148].

First, we reiterate some of the basic physics at play. To controllably generate entanglement
between atoms, we employ Rydberg interactions [94, 149, 150]. When two atoms in close
proximity are simultaneously excited to high-lying electronic energy levels, called Rydberg
states, they experience a distance-dependent van der Waals interaction V' = Cj/r®, where

7 is the interatomic spacing, and Cj is an interaction coefficient. If the Rabi frequency, €2,

which couples the ground, |g), and Rydberg, |r), states is much smaller than the interaction
shift, 2/V < 1, the two atoms cannot be simultaneously excited to the Rydberg state

(Fig. 3.2b, right), a phenomena known as Rydberg blockade. In this regime, the laser
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Figure 3.2: Erasure conversion for high-fidelity entanglement. a, Level structure used
in this work. We distinguish two subspaces: a qubit subspace in which the atoms interact
via their Rydberg states, and a measurement subspace used to detect leakage errors from
the qubit subspace with single-site resolution, realizing erasure conversion. b, Sketch of the
erasure conversion scheme, as applied to Bell pair generation. After arranging atoms into
pairs (top) we prepare them in |g), and entangle them via the Rydberg blockade mechanism
(right), denoted by a unitary operation U (). Immediately afterwards, we auto-ionize atoms
in |r), effectively projecting the populations of the Bell states, and follow with a fast erasure
conversion image to detect leakage out of the qubit subspace during the preparation or
evolution periods. This is followed by the final detection of atoms in |g), yielding two
separate, independent images. We can discard data from pairs where atoms are detected in
the erasure-error image, termed erasure-excision in the following.

drives a unitary operation, U (t), that naturally results in the two atoms forming a Bell state,
|Ut) = \%(|gr) + |rg)), between the ground and Rydberg states (Fig. 3.2b).

3.3.1 Protocol

This Bell state generation has several major practical limitations. Of particular interest here
are leakage errors to the absolute ground state, 1.S;. The first error of this type is imperfect
preparation of atoms in |¢) prior to applying U(t). The second arises from decay out of
the Rydberg state along multiple channels. We distinguish decay into ‘bright’ states, which
we can image, and ‘dark’ states, which are undetected (Fig. 2.8). The former primarily
refers to low-lying energy states which are repumped to .S as part of the imaging process
or decay to 'Sy via intermediate states, while the latter mainly consists of nearby Rydberg

states accessed via blackbody radiation.

Our general procedure is shown in Fig. 3.2 (further detailed in Fig. 3.3). We first re-
arrange [81, 89] atoms into pairs, coherently transfer them to |g), and then perform the
entangling U operation. Immediately after, we auto-ionize the atoms to project the popula-

tions of the resultant state.

We then perform the fast erasure image; any atoms which are detected are concluded to be

the result of some leakage error process. Thus, we obtain two separate images characterizing
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Figure 3.3: Experimental sequence. Sketch of the experimental sequence including the
erasure detection for the Bell state generation experiment. We start by loading the atoms
into the desired geometry, then initialize the atoms in |g), perform the Bell state generation
or quantum simulation, and finally read out by auto-ionizing atoms in |r) and imaging atoms
in |g). We utilize a single erasure detection, placed after auto-ionizing atoms in |r).

a single experimental repetition, the final image showing the ostensible result of U, and the

erasure image revealing leakage errors with single-site resolution.

We note that this work is not a form of mid-circuit detection as no superposition states
of |g) and |r) exist at the time of the erasure image. Instead, our approach is a noise
mitigation strategy via erasure-excision, where experimental realizations are discarded
if erasures are detected. Importantly, in contrast to other leakage mitigation schemes
previously demonstrated in matter-based qubit platforms [151-153], we directly spatially
resolve leakage errors in a way which is decoupled from the performed experiment, is not

post-selected on the final qubit readout, and does not require any extra qubits to execute.

However, the coherence between |g) and |r) can in principle be preserved during erasure
detection for future applications; in particular, we see no significant difference in Bell state
lifetime with and without the imaging light for erasure detection on (Fig. 3.5). We also
expect long-lived qubits encoded in |g) to be unperturbed by our implementation of erasure
conversion [32, 68, 75, 104, 113], as we for instance demonstrate in Section 3.5 for the case

of a long-lived qubit encoded in the motional manifold.

3.3.2 Results

With a procedure for performing erasure conversion in hand, we now describe its impact
on Bell state generation. Experimentally, we only obtain a lower-bound for the Bell state

generation fidelity [34] (Fig. 3.6); the difference of this lower bound to the true fidelity is
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Figure 3.4: Predicting infidelities at the 1073 level. a, Lower bounds for Bell state
fidelities with (blue) and without (red) the erasure-excision, and using incoherent pumping
to reduce preparation errors instead of erasure-excision (green). We present the results
for the raw data, corrected for measurement errors, and corrected for state preparation and
measurement errors (SPAM). All data is averaged over eight pairs of atoms which are excited
in parallel. Error bars represent a 68% confidence interval. b, SPAM-corrected Bell state
fidelity as a function of the ratio of interaction energy and Rabi frequency, V/€). Error-
free simulations (blue line) show fidelities continually increase with increasing V/(2, in
agreement with results from perturbation theory (dashed line). For large enough interaction
strength (V//Q2 > 50), other error sources become dominant, and we employ a noisy open
system dynamics simulation from which we obtain an estimate of the true fidelity (light
grey fill) and for the lower bounding procedure used in experiment (dark grey fill). We find
good agreement between simulation and experimental results with erasure-excision (red
markers). ¢, Predicted Bell state fidelity for 1/ = 140 from simulations turning on a
single noise term at a time. Dominant limitations come from laser frequency and intensity
noise, as well as decay of the Rydberg state into dark states. We also show the results
when taking into account all errors, for both the true fidelity and the lower bound estimation
(right). The lower-bound significantly underestimates the true fidelity. Shaded areas in b
and error bars in ¢ represent the standard deviation of the mean over 5000 trajectories.

discussed further below.

We first coherently transfer atoms to |g) as described before, and then consider three
scenarios (Fig. 3.4a). In the first, as a baseline we perform the entangling unitary U without
considering any erasure detection results (red bars). In the second, we excise data from
any pairs of atoms with an observed erasure error (blue bars). Finally, we compare against
another strategy for mitigating preparation errors through incoherent repumping [34], but

without erasure detection (green bars). Notably, the raw value for the Bell state lower-
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Figure 3.5: Coherence preservation during erasure detection. a,b, We prepare the Bell
state |¥*), and measure the relevant populations for Bell fidelity extraction P, + P,, and
P,, (after an extra 7 pulse) as a function of holding time. We perform a 27 pulse in the
middle of the holding time to get rid of dephasing effect due to e.g. Doppler effect. We
present the results with (blue) and without (red) performing the erasure imaging during
the holding time. We observe no significant difference between the two conditions, which
suggests that the erasure detection imaging light, in principle, does not destroy the coherence
of the Bell state.

bound with erasure-excision is >0.9962(410/—13), significantly higher than with the
other methods. This difference mainly comes from erasure excision of preparation errors
and, to a much lower degree, Rydberg decay. These contribute at the level of ~5 x 1072
and 1.2(3) x 107*, respectively.

Correcting for final measurement errors, we find a lower bound of >0.9971(+10/—13),
which quantifies our ability to generate Bell pairs conditioned on finding no erasure events.
To quantify the quality of the Rydberg entangling operation U (t) itself, we further correct
for remaining preparation errors that are not detected in the erasure image, and find a state
preparation and measurement (SPAM) corrected lower bound of >0.9985(+7/—12).

To our knowledge, these bare, measurement-corrected, and SPAM-corrected values are,
respectively, the highest two-qubit entanglement fidelities measured for neutral atoms to
date, independent of the means of entanglement generation. While Bell state generation as
demonstrated here is not a computational two-qubit quantum gate, our results are indicative

of the fidelities achievable in Rydberg based gate operations.

3.3.3 Error modelling

Importantly, we understand remaining errors in the entangling operation as well the nature

of detected erasure errors from our detailed ab-initio error model simulation for SPAM-
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corrected fidelities (Fig. 3.4). Parameters are not fine-tuned to match the measured Bell
state fidelity, and the model equally well describes results from many-body quench experi-
ments [29].

We identify limited interaction strength as a dominant effect that restricted SPAM-corrected
entanglement fidelities in our previous work [34] (Fig. 3.4b); in particular, one major
difference here is that we operate at smaller distance and hence larger V/€2. In line
with experimental data (red markers), fidelities at large distances are limited to Fgey <
1 — 2(Q/V)? obtained from perturbation theory (black dashed line).

For strong enough interaction, /2 > 50, corresponding to distances r < 3 um, other error
sources become limiting. In this short-distance regime, the experimental SPAM-corrected
fidelity lower-bound is in good agreement with the error model prediction of >0.99881(3)
(dark grey fill).

Our error model results show that the lower bound procedure significantly underestimates
the true fidelity (light grey fill), found to be 0.99931(6). This effect arises because the lower
bound essentially evaluates the fidelity of U by a measurement after performing U twice,
meaning particular errors can be exaggerated. Given the good match of the error model
and experimental fidelity lower bounds, we expect this effect to be present in experiment as
well, and to underestimate the true SPAM-corrected fidelity by about 5 x 10~%.

Atoms can decay from 3 I between state preparation and Rydberg excitation, which is 60 ms
to allow time for magnetic fields to settle. In previous work [34], we supplemented coherent
preparation with incoherent pumping to 3P, immediately prior to Rydberg operations.
However, during the repumping process, atoms can be lost due to repeated recoil events
at low trap depth, which is not detected by the erasure image, and thus can lower the bare
fidelity. Even with SPAM-correction of this effect, we expect the fidelity with repumping

to be slightly inferior due to an increased atomic temperature for pumped atoms.

As to the nature of the detected erasure errors for the Bell state generation, we find that
preparation errors contribute the vast majority of erasure events compared to bright Rydberg
decay, and excising them has a more significant impact on reducing infidelities. In particular,
application of U lasts for only ~59 ns, which is significantly shorter than the independently
measured bright state decay lifetime of 168(14) us (Fig. 2.8). The error model described
in Fig. 3.4b suggests that excising such errors results in an infidelity reduction of only
1.2(3) x 1074 Conversely, preparation errors account for ~5 x 1072 infidelity pe