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Abstract

Controlled quantum systems have the potential to make major advancements in tasks rang-
ing from computing to metrology. In recent years, quantum devices have experienced
tremendous progress, reaching meaningful, intermediate-scale sizes and demonstrating ad-
vantage over their classical counterparts. Still, sensing, learning, verifying, and hopefully
mitigating errors in these systems is an outstanding and ubiquitous challenge facing all
modern quantum platforms.

Here we review and expound upon one such platform: arrays of Rydberg atoms trapped in
optical tweezers. We demonstrate several key advancements, including the first experimental
realization of erasure conversion to prepare two-qubit Bell states with a fidelity in excess
of 0.999, and to cool atoms to their motional ground state. We further showcase the tools
of universal quantum processing via arbitrary single-qubit gates, fixed two-qubit gates, and
mid-circuit measurement, and discuss applications of these techniques for metrology and
computing.

Then, we turn to the many-body regime, generating highly entangled states with up to 60
atoms through analog quench dynamics. We reveal the emergence of random behavior
from unitary quantum evolution, and uncover a universal form of quantum ergodicity
linking quantum and statistical mechanics. We exploit these discoveries to verify the global
many-body fidelity and then realize practical applications like parameter estimation and
noise learning. Finally, we compare against both state-of-the-art quantum and classical
processors: we introduce a new proxy for the experimental mixed state entanglement which
is comparable amongst all quantum platforms, and that reflects the classical complexity of
quantum simulation.
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CHAPTER 1
Introduction

The central goal of this thesis is to address the seemingly fraught task of verifiably controlling
quantum systems with high fidelity, despite explicitly attempting to do so in a regime where
we both cannot fully measure the quantum state, and where no classical computer could
possibly represent its complexity. To that end, we begin here by broadly describing the
field of quantum science, the importance of controlling such systems, the myriad of ways
researchers are attempting to do so, and finally by outlining our contributions to this
continuing, monumental effort.

1.1 BACKGROUND

The theory of quantum mechanics can seem paradoxical in many ways, not least of which
because though it underlies the last century of technological progress, it is strangely in-
visible in our day-to-day lives. Indeed, in many ways quantum mechanics is alien to our
usual sensibilities and intuition. For instance, quantum particles can be in two places at
once (superposition) and multiple such particles can be correlated so extremely that their
individuality is subsumed into one collective (entanglement). These ‘spooky’ aspects of
the theory disturbed even its originators [1] and it was not until the 1970s that experiments
began conclusively demonstrating the validity and unavoidability [2] of these phenom-
ena [3, 4]. These early efforts were recognized by the Nobel Prize in Physics in 2022 and in
the decades since those pioneering discoveries, the field of experimental quantum science
has flourished.

The drive to study quantum mechanics is fundamentally interesting — it has proven time
and time again one of our most accurate theories of how the universe works — but much
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of the modern fervor within the field is practically minded. In the early 1980s, physicist
Richard Feynman [5], amongst others [6, 7], suggested that the quantum world may be
too complex to simulate accurately on an ordinary, or classical, computer. Then from
the 1990s continuing until today, a series of landmark results [8–13] have found classical
computational problems in a wide variety of disciplines which are extremely challenging to
solve on classical computers, but can be solved efficiently by carefully engineering quantum
systems, or quantum computers; for a very exhaustive list of applications, see Ref. [14].

Importantly, these advantages are not because quantum computers are simply faster versions
of ordinary computers1, but because they operate on fundamentally different principles,
which are integrally linked to the ‘spooky’ characteristics of quantum theory [15]. For
instance, whereas ordinary computers are composed of bits which are either 0 or 1, the most
basic of quantum computers are composed of quantum bits, or qubits. Qubits can also be
either 0 or 1, but also any superposition of the two — you can think of a qubit as an arrow
in three-dimensional space that can point up or down (1 or 0), but also forward, backward,
left, right, or any other direction. We write the state of the qubit as |ψ⟩ = c0|0⟩ + c1|1⟩,
where c0 and c1 are complex numbers which tell us how closely the “arrow” is pointing
upwards (1) or downwards (0).

While we may represent the state of N bits with N real numbers, representing multiple
qubits is markedly more complicated. For instance, the most general state of just two
qubits is a superposition of all possible combinations of the individual qubits, |ψ⟩ =

c0|00⟩ + c1|01⟩ + c2|10⟩ + c3|11⟩, which requires us to know 22 = 4 complex numbers.
To describe N qubits requires 2N complex numbers. For a system composed of only
N = 60 qubits, the memory required for a classical computer to represent the quantum
state is around ten exabytes, or roughly the entire storage capacity for all of Google. This
exponential scaling underscores the difficulty of studying quantum systems with classical
computers, but also represents great potential, because with only 60 qubits, we can access a
state space equivalent to quintillions of classical bits. Though this alone does not guarantee
the computational power of quantum computers, careful engineering and control over the
state of a few qubits allows us to encode and solve the problems of interest mentioned
previously.

The trouble, then, is simply to control 60 qubits.

1In contrast, in terms of clock speed they are between a thousand to a billion times slower.
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1.2 THE CHALLENGE OF QUANTUM SCIENCE

The possibility and promise of quantum computers to solve so many problems of broad
interest has sparked a worldwide, ongoing race to develop such a system with substantial
academic, governmental, and industrial investment. As of now, however, no such practically
relevant device has been created. The chief reason for this comes down to a phenomena
known as quantum decoherence [16, 17]. Without belaboring the explanation too much
here — understanding decoherence fundamentally and practically will be a major thrust of
this work — decoherence is essentially the loss of information about the state of a system
due to its interactions with the environment.

Imagine trying to prepare an intricate meal. Working alone, you know exactly which and
how many ingredients are cooked in what order, and after following the recipe, the dish will
come out perfect. Now imagine, however, that whenever you open the lid of the pot to add
your ingredients, a crowd of onlookers can do so as well, each adding some random spice
to the pot. Very soon, the preparation will be spoiled, and the final product ruined. There
is a paradoxical relationship: we want an isolated system which allows us to control it, but
allows nothing else to do so. Further, the larger and longer the recipe, the more times we
must open the lid, and thus the more opportunities for the dish to be ruined. Controlling
quantum systems is essentially hampered by a too-many-cooks-in-the-kitchen scenario.

However, where the metaphor breaks down, and where one of the central challenges of
quantum science lies, is that while the dish can tasted and immediately deemed rotten, it is
incredibly difficult to tell how, or even if, the quantum programming has gone awry. This
is because measuring quantum states is projective. This means that though the state may be
in a complex superposition of 2N components, reading out the state of the system randomly
selects one of those components, with probabilities controlled by the particular quantum
program [18, 19]. Thus, quantum computers are inherently probabilistic entities, which are
then further complicated by probabilistic errors. As a point of reference, while classical
computers make one error every 1017 operations, even the best-performing current quantum
devices hover around error rates of 0.1% per operation.

This difficulty was recognized since the conception of the field, spawning the vast subject
of quantum error correction [20–23]. In these protocols, quantum information is protected
from decoherence by entangling the states of many qubits, and sharing information be-
tween them such that local errors show clear signatures when measured projectively. By
interspersing checks throughout the program to verify no errors have taken place — and
ideally correcting them if detected — the program can thus be run error-free. However,
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to realize a net gain the underlying error rates of the quantum device must be sufficiently
small [24, 25] and the number of available qubits must be sufficiently large, in addition to
other technical requirements such as repeated, mid-circuit readout. While there has been
significant progress on these fronts, no large-scale, error-corrected system with practical
ramifications has been demonstrated. Still, creating such a fully error-corrected device
seems to be the only reasonable way to reliably realize the power of quantum computation.

Thus, the major goals of the field currently are generally summarized as: 1) better under-
stand the physical errors mechanisms affecting a given quantum system, 2) measure and
validate the performance of a device affected by these error sources, 3) correct or other-
wise eliminate the errors. Similarly, making progress on these fronts is the overarching
goal of this thesis, with several novel contributions specifically towards error characteriza-
tion [26, 27], detection [26, 28], verification [29–31], and elimination [26, 32]. Though
many of our results will be intentionally generally applicable to any quantum system, we
will show experimental demonstrations of our techniques with a state-of-the-art array of
atoms trapped in optical tweezers, for which we demonstrate enhanced scalability [33]
and improved fidelities for single-qubit [28, 32, 34], two-qubit [26, 32, 34], and many-
qubit operations [26, 29, 31]. Ultimately, through application of our techniques, we will
demonstrate our system is controlled with such high-fidelity that it is beginning to enter the
regime of quantum advantage, where classical computers become incapable of replicating
the quantum experimental results [31].

1.3 QUANTUM PLATFORMS

Since the 1990s, many candidate platforms have been in development which are attempting
to achieve the dream of useful quantum computing. While these various approaches differ
in substantial, practical ways, they face the same fundamental tension between isolation and
control. In this crowded landscape, a new challenger has emerged in the last decade and
firmly established itself: Rydberg atom arrays [35, 36]. Though many of the techniques
and ideas we will discuss in this thesis are explicitly general to many quantum platforms,
most of our experimental demonstrations will come using a state-of-the-art Rydberg atom
array. We describe details of the platform and its various error mechanisms in Chapter 2.
A key facet to note, however, is that like other quantum platforms, Rydberg atom arrays can
be used for performing universal gate-based quantum computation [37–40], or to study a
rich assortment of spin-models [31, 41–47].

This distinction is important. There are essentially two modalities in which controlled
quantum systems can be operated, either digital or analog. The same distinction can be
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made classically: when trying to simulate how a particular plane will fly, for instance, one
might either program the dynamical equations into a computer (digital), or build a wind
tunnel1 replicating those dynamics and test scale models (analog).

Digital quantum devices, which are sometimes distinguished as more proper quantum
computers, or quantum processors, operate much like digital classical computers. They
implement a discrete, universal gate-set, which then can be used to program any unitary
circuit of interest [15, 49]. In the modern noisy, intermediate-scale quantum [50] (NISQ)
era, however, compilation overhead can be inefficient [51, 52], and can increase error
rates [53] for instance due to limited native expressivity [54]. Errors affecting these systems
can often be abstracted into tractable forms [55–58], though this analysis is potentially
fraught with oversimplification of the physical dynamics.

Analog quantum devices, also called quantum simulators, implement particular problems
of interest by mapping them directly into the native continuous dynamics of the particular
quantum system [36, 59–65]. This idea of using a quantum system to essentially “simulate
itself” was the original idea of Feynman [5]. This approach largely eliminates overhead, at
the cost of restricting the explorable space of problems, and making theoretical analysis in
general more complex [66].

In this thesis, we explore both modalities. A major focus on this work is the particular
problem of how to verify that a quantum simulator is giving trustworthy results. This task,
already difficult in the digital case, is made far harder by the continuous nature of analog
dynamics and errors. While historically quantum simulators have been treated as error-
agnostic machines, with a concentration on low-order, supposedly-robust observables [59,
66], our goal explicitly is to validate the performance of these systems at all-orders. Our
interest in digital quantum processors will mainly stem from their potential to dramatically
improve the performance of quantum metrological systems, such as atomic clocks [28, 39].

1.4 OUTLINE

Now, we briefly summarize the remainder of this thesis. Overall our work is broadly split
into three different parts.

In Part I we focus on systems of just a few atoms to further define the Rydberg atom
array platform including its native strengths and weaknesses. In particular we will describe
various errors affecting the system, and will then immediately describe how some of them
may be mollified through a newly-realized error mitigation technique known as erasure

1Per von Neumann, who called wind tunnels “computing devices of the so-called analogy type” [48]
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conversion [67, 68]. We shall discuss how this technique enabled our record achievement
of 0.999 entanglement-fidelity between two Rydberg atoms [26], in addition to a myriad
of benefits such as improved quantum simulation [26], cooling to the motional ground
state [32], and even enhanced loading of an optical tweezer array [33]. Finally, we will
discuss how Rydberg atom arrays can be endowed with a set of universal quantum operations
including arbitrary single-qubit gates [28], fixed two-qubit gates [32], and mid-circuit
measurement [32]. Such operations are particularly useful for our system which can also
function as precise atomic clock [69], as we demonstrate with concrete and practical methods
for improving quantum metrology using digital quantum computing techniques [28].

In Part II we move to the realm of the many-body and ponder how to verify the performance of
large quantum systems without incurring an exponential cost due to their exploding Hilbert
space dimension. To start, we dive into the world of random state ensembles, and discuss
newly discovered ways in which randomness emerges from natural, unitary Hamiltonian
time dynamics [27, 29]. Such discoveries open new questions about the connections
between quantum mechanics and statistical mechanics, with many interesting theoretical
discoveries [27, 70, 71]. Exploiting the chaotic nature of this emergent randomness, we then
devise protocols [29, 30] for measuring the global many-body fidelity with relatively few
measurements for systems with less than roughly 30 atoms. Besides enabling benchmarking
of large quantum systems, we discuss several important implications of this technique for
Hamiltonian estimation and noise learning, amongst others.

In Part III we enter the beyond-classically-exact regime and face the nebulous task of bench-
marking quantum systems when no classical reference is possible [31]. We will discuss why
existing evaluation protocols fail because of the analog nature of errors affecting our system,
but will propose and implement an extension of our many-body fidelity estimation through
a many-pronged comparison against many approximate classical algorithms with varying
degrees of entanglement. We successfully estimate the fidelity – roughly ten percent – to
prepare a system of sixty atoms into a state with nearly maximal entanglement entropy. We
then showcase a novel protocol for estimating the actual mixed state entanglement [72].
This allows for mutual comparison amongst state-of-the-art quantum platforms, with which
we find we are competitive. Finally, we evaluate the classical cost of quantum simula-
tion, demonstrating both the present computational power of our system, and the long-term
potential of highly entangled analog quantum simulators more generally [59].

In total, the contributions of this thesis span the gamut from single atoms to many-body
systems, with advancements both theoretical and experimental in the fields of quantum
computing, simulation, information science, and metrology.
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Prelude

Understanding and minimizing the effect of errors is critical to the future of quantum science,
both in the near [50] and far [24] term. Rydberg atom arrays have emerged as an exciting
platform with vast scalability [73] combined with high fidelity operations [26, 39, 74, 75];
still there is much progress yet to be made. In the following chapters, we describe our
contributions to this ongoing effort.

To start, we reiterate the key features of atom arrays, and of our experiment [76] specifically.
We present a comprehensive summary and overview of the various major error sources
affecting these systems, and explain how they may be realized in a numerical model which
closely replicates experimental observations. With this model in hand, we introduce and
demonstrate a new tool in the quantum toolbox, erasure conversion [67, 68], which we apply
to improve quantum simulation [26], to cool atoms to their motional ground state [32], and
even to improve system sizes (through a classical sense of erasure conversion). Through
this, we demonstrate a record two-qubit entanglement fidelity with neutral atoms, with
higher fidelities a question of technical improvements which we understand well.

Then we parlay these improvements to demonstrate the tools of universal quantum compu-
tation with neutral atom arrays. Specifically, we show arbitrary single-qubit gates [28],
fixed two-qubit gates [32, 39], mid-circuit measurement [32], control of a potentially
bosonic degree of freedom [26], and even the controllable generation of so-called hyper-
entanglement [32]. With these tools we can tackle largely any computing task, but we turn
our attention to metrology, and demonstrate how the marriage of an atomic clock and a
quantum computer can yield improved sensing performance [28].
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CHAPTER 2
Experimental setup and error modeling

In this chapter, we describe the main experimental workhorse of this research, a Rydberg
atom array. Rydberg atom arrays have been established for nearly a decade, and as such there
are various excellent resources available to learn about their basic physics. In particular,
we recommend reviews in Refs. [35, 36], and for a wealth of experimental and theoretical
information one can scarcely do better than consulting Refs. [76, 77].

In particular, Ref. [76] – a previous thesis from our group at Caltech – is an excellent expo-
sition of the basics of the platform, and additionally contains comprehensive descriptions
about our specific experiment. In this work, we will omit many such details, and so if ever
in doubt on a technical aspect of basics of the platform, Ref. [76] is a good place to start.

2.1 TRAPPING AND CONTROLLING SINGLE ATOMS

Central to the success of any quantum platform are the qubits which compose it. In Rydberg
atom arrays, the qubits of choice are single neutral atoms (neutral as opposed to ionic species
which have been explored in detail in the study of trapped ion quantum computers [78]).
The key benefits of the platform are plentiful, starting with its innate scalability. Single
atoms are sourced from a magneto-optical trap of tens of millions of atoms, and loaded into
a user-configurable array of tightly focused (<1 µm waist) laser beams, known as optical
tweezers1. All atoms (qubits) are identical2, meaning limitations on achievable system
size originate mainly from how many optical tweezers can be created with available laser

1The invention [79, 80] of which was recognized by the Nobel Prize in Physics in 2018.
2This is an oft repeated claim, but is really not that true – while atoms themselves are identical, true

uniformity requires their environment, including their trapping conditions, be uniform as well. Such metrics
are typically hard to make better than a ≈0.1% homogeneity level [81]
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power: experiments with several hundred [42, 43] or even a few thousand such traps [82–84]
are readily achievable, and recently a landmark, state-of-the-art demonstration of a twelve
thousand trap array filled with over six thousand atoms was demonstrated [73].

Still, having many atoms counts for very little if the fidelity of controlling them is poor.
Many factors affect the fidelity of the platform, but the most basic is loss of atoms from their
traps. Such lossy type errors are a subset of the broader class of leakage errors. In order
to minimize such effects, atoms are trapped in optical tweezers in a vacuum chamber at a
pressure of ≈10−12 Torr, or about the atmospheric pressure on the surface of the Moon (a
billionth of a millionth of Earth’s atmosphere). This results in few collisional interactions
with background gas molecules, leading to innate trapping lifetimes on the order of tens of
minutes [73, 85] (even hours in cryogenic environments [86]).

With atoms firmly held in place, the internal electronic state of the atoms can then be
manipulated with microwave or laser sources to perform single qubit gates, again with high
fidelity (>0.999). The state of the atoms can be detected by fluorescence imaging while
atoms remain trapped, and high-resolution microscopy techniques pioneered over the last
twenty years [87, 88] enable fully resolving atoms spaced by a few micron. Further, the
optical tweezer array geometry is programmable in near real-time, meaning atoms can be
rearranged into largely any configuration desired in one [81], two [43, 89, 90], or even
three [91, 92] dimensions.

In order to generate entanglement, we must make multiple qubits interact, which we accom-
plish through excitation to high-energy Rydberg states. When in the Rydberg state, atoms
experience a long-range, distance-dependent interaction based on a second-order induced
dipole effect. In the early 2000s, this interaction was recognized as a potent resource due to
the so-called Rydberg blockade mechanism [93, 94]. As the simplest example, when two
atoms are close enough together (a few micron separation), excitation of one to the Rydberg
state is allowed, but the energy of the doubly-excited state can be shifted dramatically. This
precludes occupation of such doubly-excited states, meaning when the two atoms are simul-
taneously driven to the Rydberg state the result is a single Rydberg excitation shared across
the two atoms, i.e. an antiferromagnetic Bell state; we will explore this process in great
detail in Chapter 3. When operating in a digital modus, this enables a variety of schemes
for performing high-fidelity controlled-phase gates [39, 74, 75, 95] (as we will explore and
discuss in Chapter 4).
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2.1.1 The Rydberg Hamiltonian

The Rydberg interaction has further ramifications for systems with more than two atoms.
In this work, we will almost always consider a one-dimensional chain of atoms with ideally
uniform spacing. As such, the Rydberg Hamiltonian is well approximated by

Ĥ/ℏ = Ω
∑
i

Ŝxi −∆
∑
i

n̂i +
C6

a6

∑
i>j

n̂in̂j
|i− j|6

(2.1)

describing a set of interacting two-level systems, labeled by site indices i and j, driven
by a laser with Rabi frequency Ω and detuning ∆, with h being Planck’s constant. The
interaction strength is determined by the so-called C6 coefficient and the lattice spacing a.
Operators are Ŝxi = (|1⟩i⟨0|i + |0⟩i⟨1|i)/2 and n̂i = |1⟩i⟨1|i, where |0⟩i and |1⟩i denote the
electronic ground and Rydberg states at site i, respectively.

The Rydberg blockade mechanism is still of central importance in this case. For typical
parameters, the nearest neighbor interaction strength (C6/a

6) is a few hundred MHz, as
compared to typical achievable Rabi frequencies of a few MHz. As such, simultaneous
excitation of neighboring atoms to Rydberg states are strongly suppressed. To first order the
blockade reduces the Hilbert space dimension from 2N to Fib(N + 2) ≈ 1.62N , where Fib
is the Fibonacci function (see Appendix C). This means that for a system size of N atoms,
the effective Hilbert space size is only that of ∼0.7 N qubits. In this case the Hilbert space
is complete [96], but becomes non-factorizable, i.e. if you bipartition a system of Rydberg
atoms with Hilbert space dimension dim(H) into two halves, left and right with Hilbert space
dimensions dim(HL) and dim(HR), respectively, then dim(HL) × dim(HR) ̸= dim(H).
This has practical ramifications for the growth of entanglement in these systems, while also
enabling efficient classical simulation methods in some cases [97, 98].

Often, we will parameterize the time-axis during evolution under the Rydberg Hamiltonian
in terms of cycles, given by tcycle = 2π/Ω. This timescale is chosen as Ω is the dominant
energy-scale in the system, after the blockading nearest neighbor interaction energy. As
such, entanglement growth in the blockaded Hilbert space is primarily constrained [31] by
tcycle.

2.2 STRONTIUM

Through the many iterations of the Rydberg atom array platform, many atom species have
been utilized. At the outset, it is important to note that as of now, there is no clear consensus
as to which element is ‘best,’ and in fact it may be that none can actually hold the crown.
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Figure 2.1: Relevant level structure of strontium a, Strontium in the periodic table. b,c,
Simplified level structures of strontium with selected transitions labeled along with their
wavelength, highlighting states important to this work of this thesis; for a more complete
version, see for instance Ref. [107]. In general, for many purposes of this thesis we will
be concerned with an effective two-level qubit subspace defined between the 5s5p 3P0

clock state and the 5s61s 3S1 Rydberg state. Additional levels are for instance used for
atom trapping, imaging, and cooling, as well as detection of the Rydberg state through
autoionization [34]. As the exception, in Chapter 4 we will focus on the qubit defined
between 5s2 1S0 and the clock state, in order to realize a universal digital quantum processor
with strontium atoms. We operate in the sideband resolved regime for the ultranarrow clock
transition, which allows us to address individual motional transitions. We will use this
ability to great effect for atom cooling as well as mid-circuit measurement in Chapter 4.

Each choice of element comes with pros and cons, both to the complexity of control required,
and the richness of physics attainable.

Early experiments utilized alkali atoms which are the historical workhorse of the atomic
physics community due to their largely hydrogenic level structure. Such alkali-based
experiment are still in use in modern, state-of-the-art experiments, but in recent years
a second-generation of experiments has been developed which utilize alkaline-earth(-like)
atoms such as strontium [99–102] or ytterbium [103–106]. These elements have two valence
electrons, which leads to a somewhat more complex level structure, but which enables a
variety of striking applications. Ours is one of these original experiments [99] (alongside
Refs. [100, 103]), and utilizes the bosonic strontium-88 species.

Strontium has a number of enticing advantages. Its two valence electrons lead to a level
structure composed of both singlet and triplet electronic states; the level structure of states
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relevant to this work are shown in Fig. 2.1. The absolute ground state is the singlet state
5s2 1S0. Within the singlet manifold, the only transition of major importance for our
purposes is the broad transition to 5s5p 1P1 which is used for MOT cooling, as well as
atomic imaging [76].

The more interesting transitions are those between the singlet and triplet manifolds, which
are only weakly-allowed due to spin-orbit interactions, leading to narrow linewidths. For
instance, the transition between 5s2 1S0 ↔ 5s5p 3P1 is only 7 kHz broad (much narrower
than typical trap frequencies of ≈70 kHz, and as such can be used for atomic cooling
schemes such as sideband [99] or Sisyphus [85] cooling to near the motional ground state,
in addition to providing a second stage of MOT cooling [76, 99].

Perhaps the most interesting transition in strontium is that from 5s2 1S0 ↔ 5s5p 3P0. This
transition is in fact double-forbidden (both due to the required spin-flip, as well as by
the apparent violation of angular momentum conservation), and for bosonic isotopes like
strontium-88 is approximately [108] enabled only through application of a strong magnetic
field to effectively admix 3P1 and 3P0 [109]. Once prepared in 3P0, the atom has an
effectively infinite lifetime compared to typical experimental timescales, though in reality is
limited to around 1 s due to technical effects like Raman scattering from the trapping light.
It is for this reason that the transition to 3P0 is the basis for the current most precise atomic
clocks in the world [110, 111], which use this ultra-narrow transition (employing fermionic
isotopes rather than bosonic) to stabilize the frequency of lasers locked to state-of-the-art
high finesse cavities. Thus, 3P0 is often called the clock state, and the 5s2 1S0↔ 5s5p 3P0

transition is similarly called the clock transition; we will employ this parlance throughout
this work.

Strontium has thus been studied in a metrological context for several decades. In fact, one of
the earliest works of our experiment [69] (alongside Ref. [112]) was to demonstrate running
such an optical atomic clock using a tweezer array with various benefits such as single atom
resolution and reduced deadtime. In Chapter 4, we will extensively discuss utilizing the
clock transition to enable digital quantum computation schemes and to realize enhanced
metrological protocols. However, for much of the rest of this work, we will disregard this
myriad of interesting physics, and will instead solely employ the clock state because of its
long-lived, metastable nature.

The long lifetime of the clock state is important because when making atoms interact
through the Rydberg interaction, we ideally want to excite them to isotropic Rydberg S
orbitals. However, given that the absolute ground state of our system is also such an S
state, this cannot be accomplished with direct photon excitation (and even if it could, such
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excitations would be≈218 nm, a very inhospitable wavelength to work with). Thus, a typical
experimental sequence will begin by first transferring all atoms to the clock state, which is
then treated as a metastable ground state from which single photon Rydberg excitation can
take place. We note that this is fundamentally different than the typical approach of most
alkali atom arrays, which do not have access to such a long-lived, metastable state, and so
instead generally rely on two-photon transitions to enable Rydberg interactions. We note
that the long lifetime of the clock state will additionally be integral to our implementation of
error mitigation techniques known as erasure conversion, as shall be discussed in Chapter 3.

Besides preparation, alkaline-earth atoms also feature a unique benefit in terms of Rydberg
state readout. This is because only one of the two valence electrons will actually be
excited to the high-lying Rydberg orbital, leaving the other valence electron in the low lying
manifold. However, this secondary electron can also be excited to an intermediate energy
state which quickly leads to electron-electron interactions which ionize the atom, termed
autoionization (Fig. 2.1c). The resulting ion is dark to the normal fluorescence imaging
transitions, and is typically quickly expelled from the optical tweezer due to stray electric
fields. In contrast, our normal fluorescence imaging detects atoms in the clock state with
high fidelity. Thus, we can perform state discrimination between the clock and Rydberg
states by first performing Rydberg excitation, then applying an autoionizing pulse, and finally
imaging. We demonstrated this effect in Ref. [34], and showed it could reach discrimination
fidelities in excess of 0.999. Further, the autoionizing transition is particularly well adapted
for performing single site control on Rydberg excitations via targeted light shifts [113],
though we do not use this capability in this work.

To summarize, in a typical experimental sequence atoms are first loaded in the 5s2 1S0

state, and then cooled on the narrow-line 5s2 1S0 ↔ 5s5p 3P1 (689 nm) transition close
to their motional ground state. When studying analog quantum evolution in the clock-
Rydberg manifold, atoms are then initialized to the 5s5p 3P0 (698 nm) clock state through
a combination of coherent drive and incoherent pumping. We treat the clock state as a
metastable qubit ground state, |0⟩, and subsequently drive to the 5s61s 3S1,mJ=0 (317 nm)
Rydberg state, |1⟩. Following Hamiltonian evolution, state readout is performed using the
autoionizing transition 5s61s 3S1,mJ=0 ↔ 5p3/261s1/2 (408 nm, J=1,mJ= ±1) which
rapidly ionizes atoms in the Rydberg state leaving them dark to our fluorescence imaging.
Atoms in the clock state are pumped into the imaging cycle, allowing us to measure
qubit state with atomic fluorescence measurements on the 5s2 1S0 ↔ 5s5p 1P1 (461 nm)
transition. The result of each measurement is a bitstring for N atoms, z ∈ {0, 1}⊗N ,
where e.g. z = 100101001. We can repeat measurements many times to accrue many such
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bitstrings, from which we make inferences and observations about the many-body physics
we wish to study.

2.3 ERRORS FOR RYDBERG ATOM ARRAYS

The Rydberg Hamiltonian (Eq. (2.1)) is the paradigmatic model for our experiment. How-
ever, in practice quantum systems are not perfectly isolated and can undesirably interact
with their environment. This could either be due to control parameters in the Hamiltonian
drifting over time (e.g. as the laser intensity randomly fluctuates) or coupling to extrinsic
quantum degrees of freedom (e.g. spontaneous decay of excited states).

Much of the experimental work of this thesis is focused on the problem of identifying the
signatures of these errors using experimental data, for instance by measuring the fidelity
of performing a given quantum operation, but it is equally important to develop a well-
constructed error model to understand the impact of errors in realistic scenarios. We set out
to define such an error model here, which we will reference and use extensively throughout
the remainder of this work. After incorporating all known error effects, we generally
find our error model agrees very well with experiment even on the level of many-body
bitstring probability distributions, for instance typified by studying the difference between
probability distributions during quench evolution of the experiment versus either error-
free or error-model simulation (Fig. 2.2). While in this Section we take a descriptivist
approach to the matter of noise modelling, in Chapter 7 we approach it both theoretically
and experimentally from the perspective of learning noise sources directly from their effects
on quantum many-body observables.

At the outset, it is important to note that there are many ways of simulating open system
dynamics in quantum systems, for instance through master equation-based approaches which
explicitly consider time evolution of the experimental mixed state under appropriate jump
operators. While such an approach is effective for simple and small systems, it requires
manipulating the 4N elements of the density matrix which is prohibitive for larger systems.
We wish to use our error model for large systems (> 20 atoms), and include the entire gamut
of complex error sources. As such, we forgo the master equation, and instead perform our
open system dynamics simulations using a Monte Carlo wavefunction [114] approach.
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Figure 2.2: Quantitative evaluation of ab initio error model: Kullback-Leibler (KL)
divergence of bitstring probability distributions between the ten-qubit Rydberg experiment
and an error-free model (blue square) and an ab initio error model (red circle). When the
experimental data is benchmarked against an error-free model, the KL divergence increases
over time since the presence of decoherence effects and control imperfections are not taken
into account in the error-free model. In the case of the error model, however, we find a
significant reduction in the KL divergence between the experiment and error model at all
times.

2.3.1 Summary

As shown in Eq. (2.1), the Rydberg Hamiltonian is well approximated by

H = Ω
∑
i

Sxi −∆
∑
i

ni + C6

∑
i>j

ninj
|x⃗(i) − x⃗(j)|6

,

where the interatomic spacing is written as |x⃗i − x⃗j|.

To a good approximation, error sources in the experiment can be written via the following
transformations (where notations are defined in subsequent sections, e.g. LP is a low-pass
function given by an AOM bandwidth)

Ω→ Ω0 + Ωc + Ωdc(σI) + Ωac(ωI , t) + Ωpt(σp) + Ω
(i)
bs (T ) (2.2)

Ω→ LP[Ω] (2.3)

∆→ ∆0 +∆c +∆dc(σν) + ∆ac(ων , t) + ∆
(i)
dop(T ) (2.4)

∆→ LP[∆] + κΩ (2.5)

x⃗i → a0i+ δ(i)(T ) (2.6)

In the following, we shall explain each of these terms, categorizing them largely by the source
of the error. In practice, we typically account for all such errors, though the relevance of any
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Figure 2.3: Errors in Rydberg atom arrays. Various physical error sources affecting the
Rydberg atom array pipeline. Here we list the general structure and components of our
error model, and throughout the text we will describe each error source, including ways in
which to calibrate and mollify their effects. Above, blue boxes are error-free operations,
while red boxes denote possible error cases

given error can vary dramatically with the type of experiment being performed (Fig. 11.1).
A general flowchart for how such errors are captured in a typical sequence is shown in
Fig. 2.3, and a summary of major error sources and general information about them is
shown in Table 2.1. Further, we note that several, but not all, of these errors are covered in
one way or another in Ref. [115].

First, a few important notes.

1) Throughout we will often distinguish between “correlated” and “uncorrelated” noise
sources. By correlated, we generally refer to spatial correlation, i.e. a noise source which
affects all atoms in a joint manner. While this is not the same as a high-weight error (i.e. a
non-factorizable error acting on multiple qubits), it does lead to spatial correlations in the
experimental mixed state.

2) Our error model includes numerous leakage errors, errors which leave the qubit subspace,
such as decay to a different manifold or imperfect state preparation. To account for such
errors, we could assume a higher dimensional particle subspace like a qutrit or higher.
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Noise channel
Spatially-

correlated?
Time-

dependent? Intensity Frequency

DC intensity ✓ × ✓ ×
AC intensity ✓ ✓ ✓ ×

DC frequency ✓ × × ✓

AC frequency ✓ ✓ × ✓

Poynting ✓ × ✓ ×
Doppler shifts × × × ✓

Beam sampling × × ✓ ×
Interaction variation × × - -
Spontaneous decay × ✓ - -

Table 2.1: Error sources. Note that in general most “intensity” noise sources also can
impart frequency noise if the system experiences a self-light-shift. Given that most error
source have a unique set of truth values, they can be isolated and measured via in situ atomic
signals through measurement of on-site observables and connected correlation functions.

However, doing so would become quite computationally expensive. Instead, we take a
semi-classical approach. We still treat each atom as a qubit, but additionally store a flag
array (linear in system size) stating if the qubit has leaked or not. If the qubit does leak,
we make it inert, turning off all associated Hamiltonian terms1. The quantum state vector
is then not a trustworthy reference, and so cannot be used for calculating state overlaps etc.
Still, we can still incorporate such effects into measurements of many-body fidelity, etc. via
the flag vector, and the simulation results are still accurate on the level of bitstring samples.

3) We will typically make a frozen-core type approximation, whereby many error sources
are assumed to be static on the timescale of typical experiments. We will try to point out
such cases.

4) As a combination of points (1) and (3) above, many of the noise sources we consider are
explicitly non-Markovian and in some cases are high-weight. Such errors can have dramatic
effects not only on the fidelity of performing quantum operations, but can also non-trivially
change how fidelity decays during erroneous evolution, a matter we shall discuss at length
in Chapter 8.

1We make the explicit assumption that atoms which leak out of the qubit subspace cannot reenter, for
which we see no evidence to the contrary on the level of observables we study.
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2.3.2 Laser errors

Some of the most significant error sources affecting the neutral atom quantum platform
arise from imperfect control of lasers which are used for performing atomic excitation. In
general (and simplifying somewhat), a laser’s output has a stochastically varying amplitude
and frequency, both of which can be largely captured through a power spectral density
(PSD). Here, we break this PSD up into two basic parts: DC or “low frequencies,” and AC
or “high frequencies.” While there is no firm definition of what makes for DC noise or
AC noise, we generally consider AC noise to arise from the the portion of the PSD with
frequencies higher than a typical experimental duty cycle, while the DC noise arises from
the portion of the PSD with frequencies lower than the typical experimental duty cycle.
Thus, we often will describe DC noise as “shot-to-shot” because it is roughly constant
throughout a single experimental realization, but can vary from one such realization to the
next. As a general note, the laser is generally applied equally across the entire array, thus
making such errors correlated.

Frequency noise
To best understand frequency noise arising from the laser, we consider its two components
(DC and AC) separately.

DC frequency noise The DC frequency noise is symbolized by ∆dc(σν). There are
multiple ways to estimate this contribution, but we find the simplest, and likely most
accurate is to directly use an atomic signal. In particular, we import techniques from atomic
clocks [69] to lock the frequency of the Rydberg transition directly to the atoms. Using as
low a Rabi frequency as possible (to narrow the transition’s spectral width), we perform
two-point locking [69], feeding back to the frequency of an AOM driving the transition
(Fig. 2.4a). By recording the locked error signals over time, we have very fine resolution of
the shot-to-shot transition frequency variations. While these variations are a convolution
of both laser frequency noise and thermal noise, the laser frequency noise can be extracted
either by assuming the thermal noise from independent measurements (discussed below), or
by looking at connected correlation functions of the in-lock signal. Connected correlation
functions subtract off the effect of uncorrelated noise sources, like thermal noise, leaving
only correlated laser noise. We typically find the DC frequency variation is largely Gaussian,
with a standard deviation of σν , from which we sample for our ab initio error model. The
DC frequency noise can also be cross-checked via comparison to sensitive atomic signals
like Ramsey spectroscopy.
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Figure 2.4: Measuring laser phase noise. a, Simplified setup of our Rydberg laser,
featuring a seed laser which is then amplified via tapered amplifier (TA) before passing
through two doubling cavities. The resulting power is ∼300 mW (though with a more
recent upgrade to an RFA system, we achieve up to 3 W). Also shown are the PDH locking
setup for stabilizing the laser frequency, and the intensity stabilization setup post-laser.
b. We perform PDH locking to a high-finesse (finesse of 14000, linewidth of 110 kHz)
cavity. Modulation is provided by an EOM which generates sidebands at both low and high
frequencies. High frequency sidebands allow us to tune the locked frequency across the
entire cavity FSR. The low frequency provides the PDH locking modulation, while also
providing a stable frequency reference for converting from voltage to frequency. c. We take
long voltage time traces of the in-lock PDH signal, which we then convert to frequency via
the slope calibration in b. Then, we convert to a power spectral density which (accounting
for cavity-roll-off factors, see text), allows us to generate frequency noise traces for our
system.

AC frequency noise To account for time-dependent (AC) frequency noise (∆ac(ων , t)),
we must have some estimate of the power spectral density (PSD), ων , of the noise.

Our approach takes advantage of the fact that we lock the Rydberg laser to a stable frequency
reference, a high-finesse cavity (Fig. 2.4a). To lock to the cavity, light is modulated with
an EOM with two tones, a low-frequency (LF) tone at 20 MHz, and a high-frequency
(HF) tone ranging from 0 to 1.5 GHz. The HF tone allows us to span the entire free
spectral range of the cavity, while the LF allows us to lock the laser with Pound-Drever-
Hall (PDH) modulation [116]. In the unlocked state, the cavity rejection signal shows a
characteristic trimodal structure (Fig. 2.4b), with features separated by the LF modulation
frequency. By fitting a linear slope to the central PDH feature (Fig. 2.4b, inset) this provides
an unambiguous conversion from voltage (as measured on an oscilloscope) to frequency
deviations of the laser.

We can then lock the laser, measure the continuous-time voltage, and convert it into fre-
quency. By taking the Fourier transform, we then arrive at the PSD (Fig. 2.4c). The PSD
can then be sampled to generate unlimited time-dependent frequency noise traces. See
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Ref. [117] for discussion of the technical specifics of this process.

However, first we multiply by the cavity roll-off factor [117, 118], as the error signal
underestimates high frequency noise because the cavity acts as an efficient low-pass filter.
The cavity roll-off factor is given by

C(f) = 1

F
+

1− 1
F

1 + 4(f/Γ)2
, (2.7)

where f is the frequency,F = 14000 is the finesse and Γ = 110 kHz is the cavity linewidth.
In our particular circumstance, we need to perform further conditioning, given that we
measure frequency noise on the infrared laser light, which is then quadrupled through two
doubling cavities. This quadrupling up-converts the frequency noise, while the doubling
cavities act as effective low-pass filters on the light (which also converts frequency noise
into intensity noise).

Thus, the effective cavity roll-off factor is given by Ceff = C/(CFHGCSHG), where CFHG is
the roll-off for the fourth-harmonic generation (FHG) cavity, and similarly for the second-
harmonic generation cavity (SHG). For our particular laser, we find the resulting PSD is
largely peaked around 1 MHz, which we attribute to the servo bump of the PDH lock.

However, even with all this care, it is still entirely possible that the resulting PSD does not
correctly match the frequency noise seen by the atoms. There are a number of elements
between the laser PDH lock and the atoms themselves, and so this PSD should be considered
heuristic at best; still we find that using it matches sensitive experimental observables quite
well. We note that there are means of directly measuring the frequency PSD through
so-called spin-locking methods [39], which can help to confirm the findings here.

Intensity noise
As with frequency noise, we separate the contributions for intensity noise into slow, DC
intensity variations, and fast, AC variations. However, unlike the case of frequency noise,
we measure both fast and slow noise directly on a fast photodiode. In particular, we pick
off a small fraction of the light just before it reaches the atoms (Fig. 2.4a) and direct it
onto a fast avalanche photodiode (50 MHz bandwidth), being careful to to make sure the
measurement is not limited by the intrinsic noise of the sensor. The voltage measured is
directly proportional to the laser intensity, up to small offsets which can be subtracted off.

There are multiple ways in which we could analyze the resulting voltage signal, for instance
the most naïve would be to simply take a very long time trace with the laser and AOMs
continuously on, perform the Fourier transform, and acquire the PSD down to very low
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Figure 2.5: Characteristics of intensity noise. a, We measure intensity noise traces on a
photodiode (schematic shown in Fig. 2.4). Each pulse (recorded at the normal experimental
duty cycle), is characterized by turn-on and -off dynamics, as well as a bulk period. b, We
study fluctuations in the bulk by fractional intensity variation, i.e. the standard deviation
of the pulse area over many trials at a given pulse length, T , divided by the average pulse
area. The result decreases nearly as 1/

√
T , the expectation for white noise, before settling

to a value around ∼0.007. We stitch multiple bulk measurements together (subtracting
off the mean for each) and take the Fourier transform to acquire the intensity noise power
spectral density. The result is largely similar to that found from taking the Fourier transform
of a single long time trace (not shown), but in principle is more accurate to the AOM
thermalization dynamics at the experimental duty cycle.

frequencies. However, with some testing, we find this is not the best approach to find the
actual Rabi frequency at the atoms, because the noise spectra of a very long continuous
beam of light can be different than short pulses of light with a very low duty cycle, and the
latter is more accurate to the experiment. Thus we measure the intensity noise by running
the experiment at its normal duty cycle, and recording pulses, I(i)(t), of varying length on
the photodiode (Fig. 2.5a).

DC intensity noise To find the DC intensity noise, Ωdc(σI), we measure the I(i)(t) for
various total pulse durations, T , and then calculate the fractional intensity uncertainty, σI
over iterations, i. We find that the result decays nearly as 1/

√
T , the expectation for white

noise, before settling to a value around ∼0.007 (Fig. 2.5b). We further confirm this value
via auxiliary measurements on cameras and other photodiodes (not shown). We take this
long-time value as the DC intensity variation. To calculate the DC Rabi frequency we
approximate that σΩ ≈ σI/2, which is true for small variations.

AC intensity noise To find the AC intensity noise,Ωac(ωI , t), we consider the raw intensity
traces I(i)(t), and truncate them to only the bulk of the pulse (i.e. without turn-on and -off
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dynamics). We then stitch these fragments together, subtracting off the mean of each, and
take the Fourier transform to arrive at the intensity noise PSD (Fig. 2.5c). We note the result
is largely similar to the PSD found from just a single very long intensity noise trace on the
photodiode, but is in principal more accurate to the exact experimental thermalization. For
our particular system we find the PSD peaks around a few hundred kHz, which we attribute
to the servo bump of the intensity stabilization system. However, it is also possible that
some of the AC frequency noise is converted into intensity noise via the doubling cavities
we employ downstream from the frequency stabilization setup (Fig. 2.4a).

AOM dynamics
In order to address the atoms, the laser beam is passed through a series of acousto-optic
modulators (AOMs) which control its intensity and frequency1 (Fig. 2.4a). However, such
devices cannot modulate the laser infinitely quickly, even in order to turn it on or off. For our
particular AOMs, and our particular beam waist inside the AOM, we find a characteristic
response time of ≈35 ns or ≈14 MHz bandwidth. Thus, any time-dependent variations in
laser intensity or frequency are essentially modulated by a low-pass filter with that cutoff
frequency (which we symbolize as LP[Ω] and LP[∆]). Typically, we do not explicitly
account for this effect in most error model simulations, but note that it can non-trivially
alter programmed pulse areas, and thus acts essentially as a form of miscalibration error.

There is a far more pernicious problem associated with AOM response dynamics than just
their slow bandwidth, though. As a brief review, AOMs essentially work by passing an
acoustic wave through a crystal, changing its refractive index with a periodic modulation.
This periodic modulation then acts as a grating to incoming light, diffracting it and altering
its frequency slightly. An alternative picture is to consider the acoustic wave as a propagating
phonon mode, which then scatters off an incoming photon. For our purposes, the wave-based
picture is more helpful.

When an RF signal is sent to the AOM, it is transduced to the acoustic wave via a piezoelectric
element at one end of the crystal. The wave then propagates across the crystal at the finite
speed of sound. However, impingent laser beams have a finite extent, and thus there is a
finite time required for the acoustic wave to traverse the beam profile. At very early times,
when the wave has not crossed the full profile, the frequency will be Fourier broadened
significantly, which will then sharpen over time as the acoustic wave crosses the entire

1We use two AOMs in order to vary the frequency while keeping the beam position constant. Such a task
is often accomplished with a double pass AOM setup, but UV AOMs are very sensitive to polarization, and
thus standard double pass methods are not immediately applicable. It is possible to do double passing via the
use of prisms, or carefully aligned lens, with one such example shown in Ref. [119].
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Figure 2.6: Finite response time effects of the AOM. a,b, The AOM for modulating the
laser intensity and frequency (see Fig 2.4a) has a finite response bandwidth due to the
time needed for the acoustic wave in the crystal to traverse the beam extent. This means
at early times the beam is significantly broadened along the modulation axis (though not
along the orthogonal axis), introducing a time-dependent, power-law intensity if the laser
is not perfectly aligned to the atoms. c. Because the angle of diffraction from the AOM
is proportional to the frequency imparted, the effect in b also leads to a time-dependent
frequency if the beam is misaligned. For three different choices of alignment (well-aligned,
misaligned to the right, misaligned to the left) we show the experimentally measured center
frequency of the Rydberg excitation as a function of time. The misaligned cases converge
as a power-law towards the well-aligned case at late times. Accounting for these effects thus
necessitates careful alignment, which we discuss in Appendix A.

beam. What this means is that at early times after turning on the AOM, the outgoing beam
will be broadened.

We observe this effect experimentally. Using a camera in an atom-equivalent focal plane
of the laser after the AOM, we record the beam profile as a function of pulse duration
(Fig. 2.6ab). We find that along the vertical axis (which is orthogonal to the AOM modu-
lation), the beam profile has a constant fitted waist at all times. However, for the horizontal
axis (which is parallel to the AOM modulation), the beam waist is greatly broadened at early
times and decays with a power law form over the course of over a hundred nanoseconds.
This means that if the beam is not well aligned to the atoms, the atoms will experience a
time-dependent intensity as the Fourier components of the modulation sharpen.

However, intensity variations over time are not the only problem; there are also frequency
variations over time. This is because the angle of diffraction from the AOM is proportional to
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the frequency modulation of the light, so the broad beams at early times also have a frequency
gradient across their entire horizontal span. This effect we also resolve experimentally
(Fig. 2.6c). We intentionally misalign the atoms along the horizontal axis with respect to
the beam center, and measure the corresponding center frequency. We see a clear power law
convergence over time, much the same as for the beam waist in Fig. 2.6b, which narrows
towards the well aligned value at late times.

To sum up, the AOM introduces a time-dependent modulation due to the finite speed of
sound of the crystal, which leads to both time-dependent intensity and frequency variations
if the atom is misaligned by as much as a micron. Thus it is extremely important to
implement a robust alignment procedure (which we discuss in Appendix A) to waylay this
effect. We note that alternatively one might consider using a fiber coupled system which
would mix the spatially-dependent frequencies and intensities, thus transforming the well-
defined detuning into a time-dependent frequency noise which might be preferred for some
applications. Fibers are difficult to make work at high power for UV lasers, though there is
some work in this regard [119–122].

Other effects
Various other laser-based effects can harm the fidelity of quantum operations, including the
intensity-dependent detuning, beam drifts, and calibration errors.

Light shifts The laser detuning experienced by the atoms is weakly dependent on the
laser intensity itself [34], and thus any variations in Ω – either programmed or erroneous
– will produce a corresponding error in ∆, with scaling coefficient κ. This effect is often
called a self-light-shift.

Poynting noise The laser is generally well-aligned to the atoms, but its exact position
(and angle) still fluctuates on a shot-to-shot basis. This is known as Poynting instability1.
We measure such variations on a camera placed in a atom-equivalent focal plane of the
laser, and find variations are on the order of a few hundred nanometer, as compared to beam
waist-radii of a few tens of micron. Besides this variation, we also generally assume a static
offset of around 200 nanometer due to imperfect alignment. Thus the effect is small, though
still accounted for, and it also can have some amplifying effects on temperature-based errors,
as we shall discuss.

1I still have never had a satisfactory answer as to whether this should be “pointing”, like where the laser is
pointing, or “Poynting”, like the energy flux vector. Given the ambiguity, I choose to use Poynting. However,
during the course of the revision of this thesis it was pointed out by Nick Hutzler that a perfectly stable beam
would still have “Poytning” fluctuations if its intensity varied, and thus maybe “pointing” should be preferred.
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Calibration errors While we spend great pains to consistently and accurately feedback
on the Hamiltonian parameters (see Appendix A), both the Rabi frequency (intensity) and
detuning (frequency) of the laser are subject to miscalibration control errors, denoted as
Ωc and ∆c. For many applications like many-body fidelity benchmarking such effects
are somewhat minor, given that we can always accurately measure the actual parameters
realized by the experiment via in situ procedures, as discussed in Chapter 6.

2.3.3 Temperature errors

Optical tweezers trap atoms in a nearly harmonic potential [123]. As such, to a good
approximation we can describe the movement of the atoms in terms of the motional Fock
basis in order to capture their position and velocities. However, the state of the atoms
is not pure; finite thermal excitations make the atomic motional state mixed, which can
be deleterious for various reasons. Significant research over the past twenty years has
been devoted to cooling atoms down to their motional ground state [124–130], and in our
experiment with a little effort we are able to reach motional ground state fractions of p0≈70%
purely through conventional means [85]. This fraction is then related to the approximate
temperature via p0(T ) = 1 − exp(−(ℏω)/(kBT )), where kB is Boltzmann’s constant and
ω is the angular trapping frequency1. We recommend consulting Refs. [76, 117] for more
details on aspects of atomic cooling that we do not discuss here.

In Chapter 3.5 we will explore a novel measurement-based cooling scheme which allows
us to reach ground state fractions as high as 99%, but it is still worth it to carefully discuss
the pernicious effects of temperature. Importantly, as opposed to laser errors, temperature
is an inhomogeneous error source, and as such its effects are uncorrelated across the array.
We largely break these effects up into three subcategories: Doppler shifts, beam sampling
effects, and interaction variations. These effects stem from the fact that thermal atoms
have finite and Gaussian position and velocity distributions, characterized respectively by
standard deviations

σx =

√
ℏ

2mω
coth

( ℏω
2kBT

)
(2.8)

σv =

√
ℏω
2m

coth
( ℏω
2kBT

)
, (2.9)

where m is the atomic mass.

1See Ref. [76] for a nice table showing conversions between different thermal quantities.
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Doppler shifts
The first, and simplest error source arises from Doppler shifts, denoted as ∆(i)

dop(T ) arising
from the atoms finite thermal velocity distribution. Numerically, one samples a given
velocity, v⃗, from Eq. 2.9, and then calculates the Doppler shift via δ = k⃗ · v⃗, where k⃗ is the
addressing laser’s wavevector. See Ref. [117] for further details of this calculation. In our
system we find Doppler shifts to be a few tens of kHz at typical temperatures. We note that
this description of Doppler shifts is valid in the sideband non-resolved regime, whereas in
the sideband-resolved regime one accounts for Doppler shifts via the Fock-state-dependent
Rabi frequency [76, 124].

Ostensibly, the velocity distribution which induces Doppler shifts could also lead to time-
dependent atomic motion, affecting result we will discuss below. However, at typical
microkelvin temperatures the characteristic velocity is σv≈10 nm/µs, meaning roughly 100
nanometer may be traversed over the course of a 10 µs experiment. Because of this relatively
small value (the context of which shall become apparent shortly), we generally consider a
frozen-core approximation, and sample atomic velocities purely to calculate Doppler shifts.

Beam sampling
One of the most pernicious errors, and most often overlooked, affecting atom arrays arises
from the effect of the atom sampling different laser intensities, which we call beam sampling
Ω

(i)
bs (T ). Atoms at finite temperature have a wavefunction spread, and thus on an approxi-

mately shot-to-shot basis they will sample different regions of the addressing laser. If the
addressing laser has a very large waist1, w0, and is well aligned, this results in a somewhat
negligible effect. However, if the addressing beam is misaligned, then the atom will sample
a linear slope of the Gaussian beam, and as such will be dramatically more sensitive.

The relative intensity variation for a given displacement δx is given by

δI(δx) = 1− e−2(δx/w0)2 . (2.10)

Then, assuming the laser is well-aligned to the mean atomic position, we can convert
from the positional Gaussian probability distribution (characterized by σx) to a probability
distribution of the intensity2.

P (δI) =
1

(1− δI)
√
−πα log(1− δI)

(1− δI)
1
α (2.11)

1Unless otherwise noted, we will always mean waist-radius when simply referring to a laser waist.
2While basic, it bears repeating that the probability density function (PDF) of a function of a random

variable is not the same as the function applied to the PDF of the random variable. That statement is true on
the level of cumulative distribution functions, so accurate PDF transformations simply require judicious use
of the chain rule.
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Figure 2.7: Intensity variation from beam sampling. a,b, The thermal positional spread
of the atoms leads to intensity variation. Numerical simulations, assuming a Gaussian
beam and thermal distribution of atoms, are in good agreement with our analytical formula
(Eq. (2.11)) both when the position fluctuations are (a) small or (b) large compared to the
beam waist. c, Beam misalignment can amplify the deleterious effects of beam sampling
by leading to a larger effective standard deviation of intensity fluctuations.

≈ 1√
παδI

e−δI/α , (2.12)

where α = 4σ2
x/w

2
0, and where in the second-line we have approximated δI ≪ 1 during

the derivation (Fig. 2.7). For single atom Rabi oscillations with Rabi frequency Ω, this
variation leads to approximate power-law decay envelope of (1+(t/T )2)−1/4 ∼ t−1/2, with
T = w2

0/(2Ωσ
2
x). Incorporating a finite misalignment, x0, the standard deviation of P (δI)

distribution is approximately

σI =

√
8
(σx
w0

)4
+ 16

( x0
w0

)2(σx
w0

)2
. (2.13)

Thus, the effect of this noise channel increases dramatically both as the beam waist decreases,
and as the beam alignment worsens (Fig. 2.7). In our case, characteristic length scales are
σx ≈ 200 nm (along the weakly-confining axial direction), andw0 ≈ 20 µm. Thus, keeping
the laser and atoms well-aligned (see Appendix A) is of paramount importance, as for
instance a 1 µm beam misalignment can lead to nearly a 50% loss of single-atom Rabi
coherence, with similarly drastic effects on the many-body fidelity. We also note that the
susceptibility to this effect can be mollified through the use of super-Gaussian addressing
beams [131].

Interaction variation
The position variations of the atoms do not only affect their interaction with the addressing
beam, but also with each other due to the long-ranged Rydberg interaction. As such, each
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atom will have its position displaced by some amount δ(i)(T ) which needs to be taken
into account when calculating the atom-atom interaction strength. The impact of such
effects falls of dramatically with distance between atoms and is further suppressed at short
distances due to the Rydberg blockade mechanism, because small changes in distance do
not substantively change the blockaded condition. Thus, it is most important to be aware
of this effect when atoms are spaced just barely at or beyond the blockade radius from each
other. This is particularly possible in two-dimensional arrays like square arrays as one must
be careful of next-nearest-neighbor interactions (Fig. 11.4). Still for the one-dimensional
arrays we concern ourselves with here, this effect can still lead to non-trivial fidelity loss.
This effect necessarily introduces a force on the atoms, though a back-of-the-envelope
calculation suggests for our typical parameters it only results in a velocity of ≈10 nm/µs,
and as such we typically employ a frozen-core approximation.

2.3.4 State preparation and measurement (SPAM) errors

The survival and detection fidelities of atoms in optical tweezers are in general very high,
with record values reaching or surpassing the 0.9999 level [26, 73, 85, 132]. Still, even
such high values can have a dramatic effect on conclusions drawn from experimental data.
We direct the reader to Ref. [34] which discusses many of these ideas for the case of one
and two qubits.

Preparation errors
Typically all quantum circuits and simulations assume an input fiduciary state in the Hilbert
space. When qubits are defined along the clock-Rydberg transition, this input state is for
instance the vacuum state, or the all-zero state |0⟩⊗N of N atoms. However, our ability to
prepare this state is limited by three effects: atomic survival, imperfect transfer to the clock
state, and decay out of the clock state.

The atomic imaging survival in our system generally approaches the 0.9999 level [26, 85],
which is nearly vacuum-limited. Thus, we expect that the probability for atom loss is
relatively uniform across all times, without much regard for the dynamics affecting the
atoms, such as imaging, cooling, etc. For most operations we perform, atoms are first
rearranged, then imaged again to verify rearrangement has succeeded, and then there is a
wait time of ≈200 ms before actual quantum operations. This wait time is largely limited
by the time needed to change magnetic fields. However, after we perform the quantum
operation, there is <1 ms of wait time before the final readout image; because of this
separation of timescales, we can assume that any atom loss occurs before the quantum
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operation. Such losses leave unidentified holes in the array, which can have dramatic
ramifications for quantum dynamics; we shall explore this effect in great detail in Chapter 3
where we detect these errors through erasure conversion.

Beyond atomic survival, preparation is also limited by imperfect clock state preparation.
We generally are able to drive the clock transition coherently with ≈0.998 fidelity [28, 39],
limited by frequency noise on the clock laser and atomic temperature. Further, we can
supplement clock state preparation with incoherent pumping [34], which enables close to
survival-limited preparation (though atoms which are pumped are also likely prepared in a
much hotter thermal state, which we do not explore the implications of).

Once prepared, there is generally a wait time of a few milliseconds before Rydberg excitation
to account for shutter opening times etc. and so some atoms will decay out of the metastable
clock state in that time. For bosonic strontium the lifetime of the clock state is conjectured
to be thousands of years [107], but in practice it is limited by Raman scattering from the
high-intensity trapping light [133]. Specifically, the tweezer light at 813 nm can induce a
far off-resonant coupling to the 3S1 excited state, which can then rapidly decay to any state
in the 3Pj manifold. The rate of scattering is roughly proportional to the trap depth (i.e.
tweezer intensity), which we find [33] to be≈ 250(30) s/µK. At our normal trap depths this
amounts to a lifetime on the order of ≈1 s.

Thus, we generally find an overall preparation fidelity of ≈0.997 per atom. Preparation
failure is a leakage error, for which we make the atom inert. There are two possibilities, that
the preparation error was from atom loss (which would be dark to our final imaging), or
was from imperfect clock state transfer (which would likely be bright to our final imaging);
in the former case, we switch the inert ‘qubit’ state to a |1⟩ to have it be properly accounted
for during readout.

Measurement errors
When the quantum state is measured, it collapses into a distinct basis state with a probability
given by the state vector. However, at this point a classical error channel can distort the
resulting bitstring. We distinguish two types of measurement errors: Rydberg detection
(autoionization) errors and imaging errors.

Autoionization errors In order to distinguish Rydberg atoms from clock atoms, we apply
a short and powerful autoionizing pulse [26, 34]. This pulse ionizes Rydberg atoms with a
fidelity in excess of FA = 0.999, though we note care must be taken to minimize wait times
between the end of Rydberg excitation and the start of the autoionization pulse otherwise
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Rydberg decay can mitigate the autoionization fidelity. If the autoionization pulse fails,
then it is essentially a classical amplitude-damping channel mapping |1⟩ → |0⟩.

Imaging errors The state of the atoms is read out through fluorescence imaging by ideally
scattering many photons quickly, collecting them on a camera, and weighting them with a
precalibrated point-spread-function (PSF) mask1. The basics of this process are discussed
in detail in Ref. [34], but essentially it amounts to two different detection fidelities: the
false positive fidelity (F0) for an atom in state |0⟩ to be readout as a ‘0’, and the false
negative fidelity (F1) for an atom in state |1⟩ to be readout as a ‘1’. These fidelities are
typically balanced by using a threshold based approach [73, 99], accounting for the tweezer
filling fraction [34, 73], though we note more advanced imaging methods involving neural
networks may improve imaging fidelity [134, 135].

To account for both imaging and autoionization errors, we employ a transfer function
based approach. We first take the absolute square of the quantum state vector to form the
population vector. Then, for each individual qubit in the array (see Appendix B for details),
we apply the transfer matrix

M =

[
F1 (1− FA)F1 + FA(1− F0)

1− F1 FAF0 + (1− FA)(1− F0)

]
. (2.14)

Note that if an atom is marked as inert, then FA ≡ 1. The resulting population vector then
is an accurate model for experimental observables.

2.3.5 Spontaneous decay errors

The Rydberg state is inherently short-lived, with lifetimes on the order of 10s of µs, where
the lifetime increases with increasing principal quantum number [76]. Due to its highly
excited nature, the Rydberg state has substantial branching ratio to decay along a number
of different pathways. As a simplification, we generally consider two possible channels:
1) spontaneous decay down to a low-lying energy manifold which is detected in our final
image (bright-state decay), 2) blackbody radiation induced decay to a manifold which is
dark to our final image, such as nearby Rydberg levels (dark-state decay). These processes

1In our work, besides the specific case of erasure conversion in Chapter 3 we always perform all images
with the same imaging parameters, i.e. the image used prior to rearrangement is the same as the image
used for final readout. However, this is not really the most ideal strategy, as different images have different
requirements and sensitivities to detection fidelities and atomic survivals. For instance, in the final readout
image we could stand to gain by ignoring atom survival and only maximizing photons scattered to improve
detection.
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Figure 2.8: Rydberg lifetime. a, Pseudo-level diagram of the Rydberg dynamics and
associated decay channels. During Rydberg evolution with Rabi frequency Ω, the Rydberg
atom can decay into either a set of states which is ‘bright’ to the imaging process (including
both the erasure images and the final detection images), e.g states like 5s5p 3P2, or into states
which are ‘dark’ to the imaging process, e.g. nearby Rydberg states. A small percentage
of decays into ‘bright’ states can go directly into 3P0 where they can be re-excited by
the Rydberg driving; note that such decays are dark in the erasure image, but bright in
the final detection image. b, Measurement of the dark state decay lifetime, measured by
performing a π-pulse on the Rydberg transition, waiting a variable amount of time, and
then returning atoms to the ground state (inset). c, Measurement of the bright state decay
lifetime, measured by performing a Rydberg π-pulse, waiting, and then performing an
auto-ionization pulse to destroy any remaining Rydberg or dark state excitations. Markers
are experimental data where error bars are often smaller than the marker sizes, and solid
lines represent exponential fits. d, Aggregating data from our own study (Ref. [26], circles)
with that of Ref. [136] (squares) shows good agreement to the expected scaling [76] of the
Rydberg decay lifetimes with the principal quantum number. Note that bright state decay
and dark state decay have different expected scaling coefficients with Rydberg quantum
number, n, of n3 and n2, respectively [76] .

are broadly summarized in Fig. 2.8. We note that all numerical values below are measured
for a principal quantum number of n = 61. Different decay mechanisms have different
scaling with n (see Table 4.5 in Ref. [76] for a summary), but we note all our findings are
consistent with that of Ref. [136] (Fig. 2.8d).

We simulate spontaneous decay processes using the quantum jump method [114] which
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Figure 2.9: 3P2 photo-ionization. a, We prepare atoms into 3P2 (a bright state), and then
perform continuous Rydberg driving. Atoms are lost from the trap at a rate which increases
with increasing Rabi frequency. b, The lifetime of atoms in 3P2 scales inversely with the
square of the Rabi frequency (i.e. scales inversely with the intensity of the Rydberg beam).
We attribute this to a photo-ionization process which can convert bright state decay into
dark state decay through prolonged Rydberg excitation, as shown in a.

employs non-Hermitian evolution in concert with probabilistic decay events. For each
time interval dt, the decay channel |i⟩ → |f⟩ occurs with probability Γif |⟨i|i⟩ψ(t)|2dt,
where |ψ(t)⟩ is the quantum state at time t. If a quantum jump happens, we will apply the
projection operator |f⟩⟨f | to the state.

We find the following lifetimes for the various decay channels (Fig. 2.8: 1) dark state decay
- τ = 85(5)µs; 2) decay to the 5s5p 3PJ manifold - τ = 168(14)µs and branching ratio
10%, 30%, 60% for J = 0, 1, 2. Further, atoms in 3P1 and 3P2 are photoionized by the Ryd-
berg drive (Fig. 2.9), with a Rabi-frequency-dependent timescale of τ = 320µs/(Ω/MHz)2.

We note that we do not account for a potential major error source, namely correlated
spontaneous decay, as has been observed in Rydberg-dressed lattices [137], and which we
do see some signatures of. Essentially, when a Rydberg atom via blackbody radiation to a
dark state, the decay wavelength is much longer than the array lattice spacing. This leads to
a avalanche phenomena where all atoms simultaneously decay. This effect is pronounced
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when the lattice spacing is tighter. We do not explicitly take into account this effect in our
error model, but note that doing so is likely not too difficult. To do so, if we detect a quantum
jump has occurred during evolution we would perform conditional nearest-neighbor checks.
Specifically, we would introduce a new random number parameter, such that if there is a
dark state decay at site i, we draw two random numbers for sites i − 1 and i + 1. If either
of these random numbers is lower than a constant, q, then we project these sites into dark
states. If the projection occurs, we repeat the same process for the i− 2 and i+2 sites (and
so on) to capture the proliferation of dark states, and so on. In this scheme q would likely
be calibrated directly against in situ many-body measurements.



35

CHAPTER 3
Erasure conversion

Having described many of the error sources facing Rydberg atom array quantum simulators,
we now turn to discuss how to eliminate many of them using a new tool in the quantum
toolbox: erasure conversion. The definition of erasure conversion is still somewhat in flux,
but fundamentally it means the direct detection of errors as they occur in situ during a
quantum algorithm, so that they may be heralded or corrected for. The specification that
this detection is direct is key: we are not detecting errors via syndrome measurements,
as is standard in quantum error correction, but instead by reading off a per-qubit signal
which flags if that qubit has suffered an error. Our demonstration of erasure conversion
is the first of its kind (alongside Ref. [75]) following the theoretical proposal of Ref. [68]
(and early discussions in Ref. [67]), and could have significant implications both for near
term quantum applications and for reducing the pseudo-threshold needed to achieve error
correction [68].

In this chapter, we will first describe the importance of erasure conversion, and how it is
accomplished in atom arrays. We then describe several case studies of its application, such
as improving the preparation fidelity of two-qubit Bell states, and for improving quantum
simulation fidelities for large-range entangled states [26]. Using the principles of erasure
conversion, we then demonstrate a erasure-based method for cooling atoms to their motional
ground state [32], and show a measurement- and feedback-based method for improving atom
array loading, called dark-state enhanced loading [33].
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3.1 LOCATING ERRORS

Errors are rampant in quantum systems, and Rydberg atom arrays are no different. A
common, and lofty, goal of the field is to achieve so-called error correction, where many
physical qubits are aggregated in order to perform the functions of a single logical qubit at
a much reduced error rate. While quantum error correction schemes can be quite involved,
their simplest classical analogs are quite intuitive. For instance, the simplest classical error
correcting code is the repetition code.

Say there is a single bit of information which is subject to a noisy channel. To improve the
transmission fidelity we can simply copy the bit several times, producing, say, 9 identical
bits total, and then send all the resultant bits through the channel. The receiver on the other
end then evaluates all simultaneously and uses majority vote to determine the bit value (i.e.
if eight of the transmitted bits are a “1”, and only one is a “0”, then it is more likely than
not that the true value is a “1”). This approach, while relatively memory inefficient, is
quite effective classically, and spiritually underlies many of the decoding mechanisms for
quantum error correction techniques.

Still, let’s imagine error rates are slightly higher, and instead when we send our 9 identical
bits through the noisy channel the result is that five are “1” and four are “0.” We could still
apply majority vote, but the statistical significance is greatly reduced. For this reason, we
ideally want to have a method of pruning some of the “bad” bits so that we are less affected
by their errors. If we can use some auxiliary information to be sure that all the “0” instances
came from erroneous transmissions, then we regain high statistical certainty in the aggregate
(logical) value. This process of locating where errors have occurred is precisely the point of
erasure conversion. Theoretical proposals for erasure conversion [68] discussed it explicitly
in the context of improving the ability of near term quantum computers to implement error
correction techniques.

It is simplest to first consider the most classical version of erasure correction, namely
atomic rearrangement. When atoms are loaded into an optical tweezer array they do so
stochastically, only filling a given site in the array with roughly a 50% probability. Consider
running an algorithm onN atoms, without implementing rearrangement protocols. In such
a case, the probability of success will be at best 2−N , as any missing atom guarantees failure.
Seemingly daunting, we know this impedance is immaterial, given that it is straightforward
to image the array before performing the operation, and rearrange [81, 89] to ensure a defect
free arrangement of ourN atoms. In other words, we have prepared an array of atoms, then
it has undergone a noisy channel of stochastic filling, then we directly measure the “errors,”
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by imaging where the atoms are located, and subsequently we correct via rearrangement.

To be clear, there are distinctions and caveats to be drawn from this simple example, which
in some sense is an example of classical erasure conversion. We employ the following
definitions: Classical erasure conversion - all qubits (bits) are readout (projected) for errors;
Quantum erasure conversion - only erroneous qubits are readout, while non-erroneous
qubits are not projected; Mid-circuit erasure conversion - the readout (and potentially
correction) is fast compared to the qubit coherence time. Clearly, atomic rearrangement
falls into the category of ‘classical’ erasure conversion, per our definitions. Still, it helps
to convey the basic point: if we can image where errors take place, and can do so in such
a way so as not to disturb error-free qubits we can potentially dramatically improve device
performance (and hasten the arrival of error corrected quantum systems [68]).

3.2 AN ATOMIC ERASURE CONVERSION IMPLEMENTATION

Here we describe how we perform the erasure imaging which allows us to detect site-resolved
leakage errors out of the qubit subspace spanned by the clock state and the Rydberg state.

Our basic protocol relies on the long-lived nature of the clock state, and the fact that both
improper preparation into the clock state or bright state decay (see Section 2.3.5) out of
the qubit manifold will typically result in erroneous atoms cascading into 1S0. To exploit
this, we develop a very fast atom detection technique (previously showcased for freely
propagating lithium atoms [138]) which allows us to detect atoms in 1S0 in a ≈20 µs
timescale (Fig. 3.1a). The basic imaging technique, which is covered in great detail in
Ref. [138], essentially relies on scattering a large number of photons very quickly, and then
overcoming intrinsic camera noise through a combination of low-pass and binary filters on
the camera signal.

We highlight the characteristic features of this imaging scheme experimentally. We show
in Fig. 3.1b the survival probability of atoms in 1S0 as a function of imaging time. After
4µs, more than 80% of the atoms are lost. However, the number of detected photons
continues to increase: even though the kinetic energy of the atoms is too large to keep
them trapped, their mean position remains centered on the tweezers. In order to both avoid
any extra heating coming from the imaging beams and optimize imaging fidelity, we shine
two identical counter-propagating beams with crossed π-polarization and Rabi frequencies
Ω/2π ≊ 40MHz on the 1S0 → 1P1 transition. This minimizes the net force on an atom,
and the crossed polarization avoids intensity interference patterns. After≈24µs, the atomic
spread becomes too large and the number of detected photons plateaus.
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Figure 3.1: Fast imaging on the erasure detection subspace. a, Sketch of the involved
energy levels. We detect atoms in 1S0 by strongly driving the 1S0 ↔ 1P1 transition. b,
Survival of atoms in 1S0 (green) and number of detected photons (red) as a function of
the imaging time. We observe an increase of detected photons whereas the atoms are
already lost: even though the kinetic energy of the atoms is too large to keep them trapped,
their mean position remains centered on the tweezers thanks to the use of two counter-
propagating beams with equal power. After ≈24µs, the atomic spread becomes too large
to measure a significant increase in detected photons. Inset: losses from 3P0 as a function
of time, expressed in number of fast images. The survival probability of an atom in 3P0 is
99.99954(12)% for one image, consistent with its 5 second lifetime. c, Typical histograms
of the number of detected photons for 24µs imaging. Using a slow, high-fidelity image
prior to the fast image, we can detect if a tweezer is empty (blue) or filled (red). The
typical detection fidelity which corresponds to equal error probability in detecting absence
or presence of an atom is 98.0(1)%.

We note that in our implementation, we explicitly scatter a very large number of photons very
quickly such that cooling the imaged atoms is not possible and they are almost inevitably lost
during the imaging process1. While unfortunate, in this first experimental demonstration
it is not too much of a bother, given that the only atoms that will be lost in this way are
those for which errors had occurred; specifically these errors are leakage errors out of the
qubit subspace, which are anyway difficult to correct without replacing the atom. In the
future, it will be necessary to either perform these ultrafast images non-destructively for
instance using cavity-assisted readout [139], or to provide a steady stream of fresh atoms
via continuous loading techniques [33, 84, 140, 141].

The obtained detection histogram is shown in Fig. 3.1c. We present the results both for
empty (blue) and filled (red) tweezers, which we achieve by first imaging the atoms using
usual, high survival imaging for initial detection in a 50% loaded array, then perform the
fast image. We obtain a typical detection fidelity of 0.980(1) of true positives and true
negatives, limited by the finite probability for atoms in 1P1 to decay into 1D2 (Fig. 3.1a).

1This is in contrast to our standard method of imaging, described at length in Ref. [76] which continually
cools atoms during imaging such that their survival is nearly vacuum-limited.
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We note this fidelity is somewhat dependent on the array spacing: atoms can travel over
relatively large distances during the violent imaging process, which we conjecture mixes
their imaging point-spread-functions more than in standard imaging. We are able to see
fidelities in excess of 0.99 by spreading atoms further apart prior to imaging.

This imaging scheme is sufficiently fast to avoid perturbing atoms in 3P0, as measured by
losses from 3P0 as a function of imaging time (Fig. 3.1b, inset). We fit the data (circles)
using a linear function (solid line), and obtain a loss of 0.0000046(12) per image, consistent
with the lifetime of the 3P0 state [33] of ≈5 s for the trap depth of 45µK used during fast
imaging.

We note that current limitations to this the scheme are not yet fundamental, and there are a
number of technical improvements which could be made. First, the camera we use (Andor
iXon Ultra 888) has a quantum efficiency of≈80%, which has been improved in some recent
models. Further, we currently collect photons only from one direction, when in principle
photons could be collected from both objectives [38]. This would improve our estimated
total collection efficiency of ≈4% by a factor of 2, leading to faster imaging times with
higher fidelity (as more photons could be collected before that atoms were ejected from the
trap). Finally, but not exhaustively, the fidelity may be substantially improved by actively
repumping the 1D2 state back into the imaging manifold so as to not effectively lose any
atoms via this pathway [142].

3.3 CASE STUDY: IMPROVING BELL STATE GENERATION

Having discussed the physical implementation of our erasure conversion scheme, we now
demonstrate it is practically useful on an important problem of interest, namely Bell state
generation resulting in fidelities competitive with other state-of-the-art platforms [143–146].
Bell states are the smallest example of entangled states, with applications in computing [15],
metrology [147], and communication [148].

First, we reiterate some of the basic physics at play. To controllably generate entanglement
between atoms, we employ Rydberg interactions [94, 149, 150]. When two atoms in close
proximity are simultaneously excited to high-lying electronic energy levels, called Rydberg
states, they experience a distance-dependent van der Waals interaction V = C6/r

6, where
r is the interatomic spacing, and C6 is an interaction coefficient. If the Rabi frequency, Ω,
which couples the ground, |g⟩, and Rydberg, |r⟩, states is much smaller than the interaction
shift, Ω/V ≪ 1, the two atoms cannot be simultaneously excited to the Rydberg state
(Fig. 3.2b, right), a phenomena known as Rydberg blockade. In this regime, the laser
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Figure 3.2: Erasure conversion for high-fidelity entanglement. a, Level structure used
in this work. We distinguish two subspaces: a qubit subspace in which the atoms interact
via their Rydberg states, and a measurement subspace used to detect leakage errors from
the qubit subspace with single-site resolution, realizing erasure conversion. b, Sketch of the
erasure conversion scheme, as applied to Bell pair generation. After arranging atoms into
pairs (top) we prepare them in |g⟩, and entangle them via the Rydberg blockade mechanism
(right), denoted by a unitary operation Û(t). Immediately afterwards, we auto-ionize atoms
in |r⟩, effectively projecting the populations of the Bell states, and follow with a fast erasure
conversion image to detect leakage out of the qubit subspace during the preparation or
evolution periods. This is followed by the final detection of atoms in |g⟩, yielding two
separate, independent images. We can discard data from pairs where atoms are detected in
the erasure-error image, termed erasure-excision in the following.

drives a unitary operation, Û(t), that naturally results in the two atoms forming a Bell state,
|Ψ+⟩ = 1√

2
(|gr⟩+ |rg⟩), between the ground and Rydberg states (Fig. 3.2b).

3.3.1 Protocol

This Bell state generation has several major practical limitations. Of particular interest here
are leakage errors to the absolute ground state, 1S0. The first error of this type is imperfect
preparation of atoms in |g⟩ prior to applying Û(t). The second arises from decay out of
the Rydberg state along multiple channels. We distinguish decay into ‘bright’ states, which
we can image, and ‘dark’ states, which are undetected (Fig. 2.8). The former primarily
refers to low-lying energy states which are repumped to 1S0 as part of the imaging process
or decay to 1S0 via intermediate states, while the latter mainly consists of nearby Rydberg
states accessed via blackbody radiation.

Our general procedure is shown in Fig. 3.2 (further detailed in Fig. 3.3). We first re-
arrange [81, 89] atoms into pairs, coherently transfer them to |g⟩, and then perform the
entangling Û operation. Immediately after, we auto-ionize the atoms to project the popula-
tions of the resultant state.

We then perform the fast erasure image; any atoms which are detected are concluded to be
the result of some leakage error process. Thus, we obtain two separate images characterizing
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Figure 3.3: Experimental sequence. Sketch of the experimental sequence including the
erasure detection for the Bell state generation experiment. We start by loading the atoms
into the desired geometry, then initialize the atoms in |g⟩, perform the Bell state generation
or quantum simulation, and finally read out by auto-ionizing atoms in |r⟩ and imaging atoms
in |g⟩. We utilize a single erasure detection, placed after auto-ionizing atoms in |r⟩.

a single experimental repetition, the final image showing the ostensible result of Û , and the
erasure image revealing leakage errors with single-site resolution.

We note that this work is not a form of mid-circuit detection as no superposition states
of |g⟩ and |r⟩ exist at the time of the erasure image. Instead, our approach is a noise
mitigation strategy via erasure-excision, where experimental realizations are discarded
if erasures are detected. Importantly, in contrast to other leakage mitigation schemes
previously demonstrated in matter-based qubit platforms [151–153], we directly spatially
resolve leakage errors in a way which is decoupled from the performed experiment, is not
post-selected on the final qubit readout, and does not require any extra qubits to execute.

However, the coherence between |g⟩ and |r⟩ can in principle be preserved during erasure
detection for future applications; in particular, we see no significant difference in Bell state
lifetime with and without the imaging light for erasure detection on (Fig. 3.5). We also
expect long-lived qubits encoded in |g⟩ to be unperturbed by our implementation of erasure
conversion [32, 68, 75, 104, 113], as we for instance demonstrate in Section 3.5 for the case
of a long-lived qubit encoded in the motional manifold.

3.3.2 Results

With a procedure for performing erasure conversion in hand, we now describe its impact
on Bell state generation. Experimentally, we only obtain a lower-bound for the Bell state
generation fidelity [34] (Fig. 3.6); the difference of this lower bound to the true fidelity is



42

Figure 3.4: Predicting infidelities at the 10−3 level. a, Lower bounds for Bell state
fidelities with (blue) and without (red) the erasure-excision, and using incoherent pumping
to reduce preparation errors instead of erasure-excision (green). We present the results
for the raw data, corrected for measurement errors, and corrected for state preparation and
measurement errors (SPAM). All data is averaged over eight pairs of atoms which are excited
in parallel. Error bars represent a 68% confidence interval. b, SPAM-corrected Bell state
fidelity as a function of the ratio of interaction energy and Rabi frequency, V/Ω. Error-
free simulations (blue line) show fidelities continually increase with increasing V/Ω, in
agreement with results from perturbation theory (dashed line). For large enough interaction
strength (V/Ω > 50), other error sources become dominant, and we employ a noisy open
system dynamics simulation from which we obtain an estimate of the true fidelity (light
grey fill) and for the lower bounding procedure used in experiment (dark grey fill). We find
good agreement between simulation and experimental results with erasure-excision (red
markers). c, Predicted Bell state fidelity for V/Ω = 140 from simulations turning on a
single noise term at a time. Dominant limitations come from laser frequency and intensity
noise, as well as decay of the Rydberg state into dark states. We also show the results
when taking into account all errors, for both the true fidelity and the lower bound estimation
(right). The lower-bound significantly underestimates the true fidelity. Shaded areas in b
and error bars in c represent the standard deviation of the mean over 5000 trajectories.

discussed further below.

We first coherently transfer atoms to |g⟩ as described before, and then consider three
scenarios (Fig. 3.4a). In the first, as a baseline we perform the entangling unitary Û without
considering any erasure detection results (red bars). In the second, we excise data from
any pairs of atoms with an observed erasure error (blue bars). Finally, we compare against
another strategy for mitigating preparation errors through incoherent repumping [34], but
without erasure detection (green bars). Notably, the raw value for the Bell state lower-
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Figure 3.5: Coherence preservation during erasure detection. a,b, We prepare the Bell
state |Ψ+⟩, and measure the relevant populations for Bell fidelity extraction Pgr + Prg and
Pgg (after an extra π pulse) as a function of holding time. We perform a 2π pulse in the
middle of the holding time to get rid of dephasing effect due to e.g. Doppler effect. We
present the results with (blue) and without (red) performing the erasure imaging during
the holding time. We observe no significant difference between the two conditions, which
suggests that the erasure detection imaging light, in principle, does not destroy the coherence
of the Bell state.

bound with erasure-excision is ≥0.9962(+10/−13), significantly higher than with the
other methods. This difference mainly comes from erasure excision of preparation errors
and, to a much lower degree, Rydberg decay. These contribute at the level of ∼5 × 10−2

and 1.2(3)× 10−4, respectively.

Correcting for final measurement errors, we find a lower bound of ≥0.9971(+10/−13),
which quantifies our ability to generate Bell pairs conditioned on finding no erasure events.
To quantify the quality of the Rydberg entangling operation Û(t) itself, we further correct
for remaining preparation errors that are not detected in the erasure image, and find a state
preparation and measurement (SPAM) corrected lower bound of ≥0.9985(+7/−12).

To our knowledge, these bare, measurement-corrected, and SPAM-corrected values are,
respectively, the highest two-qubit entanglement fidelities measured for neutral atoms to
date, independent of the means of entanglement generation. While Bell state generation as
demonstrated here is not a computational two-qubit quantum gate, our results are indicative
of the fidelities achievable in Rydberg based gate operations.

3.3.3 Error modelling

Importantly, we understand remaining errors in the entangling operation as well the nature
of detected erasure errors from our detailed ab-initio error model simulation for SPAM-
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corrected fidelities (Fig. 3.4). Parameters are not fine-tuned to match the measured Bell
state fidelity, and the model equally well describes results from many-body quench experi-
ments [29].

We identify limited interaction strength as a dominant effect that restricted SPAM-corrected
entanglement fidelities in our previous work [34] (Fig. 3.4b); in particular, one major
difference here is that we operate at smaller distance and hence larger V/Ω. In line
with experimental data (red markers), fidelities at large distances are limited to FBell ≤
1− 5

8
(Ω/V )2 obtained from perturbation theory (black dashed line).

For strong enough interaction, V/Ω > 50, corresponding to distances r < 3µm, other error
sources become limiting. In this short-distance regime, the experimental SPAM-corrected
fidelity lower-bound is in good agreement with the error model prediction of ≥0.99881(3)
(dark grey fill).

Our error model results show that the lower bound procedure significantly underestimates
the true fidelity (light grey fill), found to be 0.99931(6). This effect arises because the lower
bound essentially evaluates the fidelity of Û by a measurement after performing Û twice,
meaning particular errors can be exaggerated. Given the good match of the error model
and experimental fidelity lower bounds, we expect this effect to be present in experiment as
well, and to underestimate the true SPAM-corrected fidelity by about 5× 10−4.

Atoms can decay from 3P0 between state preparation and Rydberg excitation, which is 60 ms
to allow time for magnetic fields to settle. In previous work [34], we supplemented coherent
preparation with incoherent pumping to 3P0 immediately prior to Rydberg operations.
However, during the repumping process, atoms can be lost due to repeated recoil events
at low trap depth, which is not detected by the erasure image, and thus can lower the bare
fidelity. Even with SPAM-correction of this effect, we expect the fidelity with repumping
to be slightly inferior due to an increased atomic temperature for pumped atoms.

As to the nature of the detected erasure errors for the Bell state generation, we find that
preparation errors contribute the vast majority of erasure events compared to bright Rydberg
decay, and excising them has a more significant impact on reducing infidelities. In particular,
application of Û lasts for only∼59 ns, which is significantly shorter than the independently
measured bright state decay lifetime of 168(14)µs (Fig. 2.8). The error model described
in Fig. 3.4b suggests that excising such errors results in an infidelity reduction of only
1.2(3) × 10−4. Conversely, preparation errors account for ∼5 × 10−2 infidelity per pair
due to the long time between preparation in |g⟩ and Rydberg excitation (Fig. 3.3). Hence,
the gains in fidelity from erasure-conversion mainly come from nearly eliminating all
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preparation errors, which has the added benefit of significantly reducing error bars on the
SPAM-corrected values. Still, SPAM-corrected values might also benefit from the small
gain in eliminating the effect of bright state decay, and from avoiding potential deleterious
effects arising from higher atomic temperature in the repumper case.

The remaining infidelity is a combination of multiple errors. In Fig. 3.4c, we report an
error budget for the most relevant noise source contributions to the Bell state infidelity at
the experimentally chosen V/Ω = 140. Frequency and intensity laser noise are dominant
limitations, but could be alleviated by improving the stability of laser power, and reducing
its linewidth, for instance via cavity filtering [154]. Eliminating laser noise completely
would lead to fidelities of ∼0.9997 in our model. The other major limit is Rydberg state
decay into dark states, which cannot be converted into an erasure detection with our scheme.
This decay is mostly blackbody induced [68, 155], and thus could be greatly reduced by
working in a cryogenic environment [86], leaving mostly spontaneous decay that is bright to
our erasure detection. Accounting for these improvements, it is realistic that Rydberg-based
Bell state generation in optical tweezers arrays could reach >0.9999 fidelity in the coming
years.

3.3.4 Extraction of the Bell state fidelity

In order to extract the Bell state fidelities quoted in the main text, we use a lower bound
method [34] which relies on measuring the populations in the four possible states Pgr, Prg,
Pgg and Prr during a Rabi oscillation between |gg⟩ and |Ψ+⟩. The lower bound on Bell
state fidelity is given by:

FBell ≥
P π
gr+rg

2
+

√∑
i(P

2π
i )2 − 1

2
+ P π

grP
π
rg, (3.1)

where P 2π
i are the measured probabilities for the four states at 2π, and P π

gr+rg is the
probability Pgr + Prg measured at π. In order to measure these probabilities with high
accuracy, we concentrate our data-taking around the π and 2π times (Fig. 3.6a), and fit the
obtained values using quadratic functions f(t) = p0+p1(t−p2)2. We first detail the fitting
method, then how we obtain the four probabilities, and finally the extraction of the Bell
state fidelity from these.

Fitting method
We perform a fit which takes into account the underlying Beta distribution of the data, and
prevents systematic errors arising from assuming a Gaussian distribution of the data. The
aim of the fit is to obtain the three-dimensional probability density function Q(p0, p1, p2)
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of f , using each experimental data point i defined by its probability density function Pi(x),
where x is a probability. In order to obtain a particular value of Q(p̃0, p̃1, p̃2), we look at
the corresponding probability density function value Pi(f(ti)) for each data point i, where
f(ti) = p̃0 + p̃1(ti − p̃2)

2, and assign the product of each Pi(f(ti)) to the fit likelihood
function:

Q(p̃0, p̃1, p̃2) =
∏
i

Pi(f(ti)). (3.2)

We repeat this for various [p̃0, p̃1, p̃2].

The result of such fitting method is shown in Fig. 3.6b (black line), where we present
f(t) = p0+p1(t−p2)2 for [p0, p1, p2] corresponding to the maximum value ofQ(p0, p1, p2).
We emphasize that this results in a lower peak value than a standard fitting procedure which
assumes underlying Gaussian distributions of experimentally measured probabilities (red
line). Choosing this lower peak value eventually will provide a more conservative, but more
accurate value for the Bell state fidelity lower bound than the naïve Gaussian approach.

Obtaining the four probability distributions
Our method to obtain the probability density functions of the four probabilities at π and 2π

times ensures both that the sum of the four probabilities always equals one, and that their
mutual correlations are preserved. We first extract the Beta distribution of Prr by gathering
all the data around the π and 2π times (Fig. 3.6c). In particular, the mode of the obtained
Beta distribution at π is Prr ≃ 0.0005. The distribution of Pgr+rg and Pgg are obtained by
fitting the data in the following way. We perform a joint fit on Pgr+rg using a fit function
f1(t), and on Pgg using a fit function f2(t). The fit functions are expressed as:

f1(t) = p0 + p1(t− p2)2, (3.3)

f2(t) = 1− p0 − Prr − p1(t− p2)2, (3.4)

which ensures that the sum of the four probabilities is always equal to 1. We then calculate
the joint probability density function Q1,2(p0, p1, p2) of both f1 and f2 using the method
described above. In particular:

Q1,2(p̃0, p̃1, p̃2) =
∏
i

Pgr+rgi (f1(ti))
∏
i

Pggi (f2(ti)), (3.5)

where Pgr+rgi (Pggi ) is the probability density function associated with Pgr+rg (Pgg) for the
i-th experimental data point. In particular, we impose that p0 ≤ 1 − Prr to avoid negative
probabilities. We show the resulting Q1,2(p0, p1, p2) in Fig. 3.6d as two-dimensional maps
along (p0, p1) and (p0, p2).
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Figure 3.6: Bell state fidelity measurement from blockaded Rabi oscillations. a Prob-
abilities of measuring both atoms in the ground state Pgg and a single atom in the ground
state Pgr + Prg in the blockaded regime as a function of excitation time. b, Zoom over the
π time, where we prepare the Bell state |Ψ+⟩. We use a quadratic fit function of the form
f(x) = p0 + p1(x − p2)2 to extract the population values at π and 2π times. c,d Fitting
method used to obtain the probability distributions of Prr, Pgg, and Pgr + Prg at π and 2π
times. We first experimentally obtain the Beta distribution of the probability Prr to observe
both atoms in the Rydberg state. We then perform a joint fit on Pgr + Prg and Pgg with the
same p1 and p2 fit coefficients for both. We fix the value of Prr, and condition the joint
fit such that the sum of all probabilities is always equals to one. We repeat this process
for various values of Prr. The results shown here are for Prr = 0.0005, which is the mode
of the obtained Beta distribution for Prr. The fitting method uses the true, experimentally
measured Beta distribution of each data point. We obtain corresponding probability density
functions for each Prr. We perform this method independently for both π and 2π times.
e, Resulting Bell state fidelity lower bound using the probability density functions of Prr
and Pgr + Prg. We start by randomly drawing from the Prr distribution, then assign the
corresponding probability density function of Pgr + Prg, and draw a value from it. The
asymmetry between Pgr and Prg is obtained by averaging over each experimental data point,
and is assumed to be Gaussian. We repeat this process 1 million times for both π and
2π times. We obtain the corresponding probability density function. f, SPAM-corrected
Bell state fidelity lower bound distribution, obtained by correcting the probabilities after
randomly drawing them from their respective probability density functions.
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We then obtain the one dimensional probability density function for p0 by integrating over
p1 and p2 (see Fig. 3.6d). This provides the fitted probability density function of Pgr+rg,
and hence Pgg = 1− Prr − Pgr − Prg at π time. We repeat this process for various values
of Prr, for both π and 2π times.

At the end of this process, we obtain different probability density functions for each Prr
value. The asymmetry between Pgr and Prg is obtained by taking the mean of Pgr − Prg
at π and 2π times. We assume the underlying distribution to be Gaussian, as Pgr − Prg is
centered on 0, and can be positive or negative with equal probability.

Bell state fidelity
Now that we have the probability density function for all four probabilities at π and 2π

times, we move on to the Bell state fidelity extraction. For both π and 2π, we perform a
Monte-Carlo sampling of the Beta distribution of Prr which then leads to a joint probability
density function for Pgr+rg and Pgg. We then sample from this, and use Eq. 3.1 to obtain
a value for the Bell state fidelity lower bound. We repeat this process 1 million times, and
fit the obtained results using a Beta distribution (see Fig. 3.6e). We observe an excellent
agreement between the fit and the data, from which we obtain FBell ≥ 0.9962(+10/−13),
where the quoted value is the mode of the distribution, and the error bars represent 68%
confidence interval.

We use the same method to obtain the measurement-corrected Bell fidelity, and the state
preparation and measurement (SPAM) corrected one. After drawing the probabilities from
the probability density functions, we infer the SPAM-corrected probabilities from our known
errors, described in detail previously [34]. During this process, there is a finite chance that
the sum of probabilities does not sum up to one. This comes from the fact that the probability
density functions and the SPAM correction are uncorrelated, an issue which is avoided for
raw Bell fidelity extraction thanks to the correlated fit procedure described above. We
employ a form of rejection sampling to alleviate this issue by restarting the whole process in
the case of such event. We perform this 1 million times, and fit the obtained results using a
Beta distribution (see Fig. 3.6f). We observe an excellent agreement between the fit and the
data, from which we obtain a SPAM-corrected fidelity FBell ≥ 0.9985(+7/−12), where the
quoted value is the mode of the distribution, and the error bars represent 68% confidence
interval.
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3.3.5 Interaction limitation for Bell fidelity

For the case of measuring two-qubit Bell state fidelities we set Ω/2π = 6.2 MHz. In-
teraction strengths in Fig. 3.4b are directly measured at inter-atomic separations of 4 and
5 µm, and extrapolated via the predicted 1/r6 scaling to the level at 2.5 µm. Mean
atomic distances are calibrated via a laser-derived ruler based on shifting atoms in coherent
superposition states [28]. We calibrate C6/2π = 230(25) GHz µm6 using maximum-
likelihood-estimation (and associated uncertainty) from resonant quench dynamics [29],
which additionally calibrates a systematic offset in our global detuning.

We then estimate the theoretically expected Bell state fidelity using perturbation analysis.
Specifically, resonant blockaded Rabi oscillation are described by

Ĥ/ℏ =
Ω

2
(X̂1 + X̂2) + V n̂1n̂2, (3.6)

where V = C6/r
6 is the distance-dependent, interaction strength between two atoms

separated at distance r (see Eq. 2.1). Since the two-atom initial ground state, |ψ(0)⟩ = |gg⟩,
has even parity under the left-right reflection symmetry, the Rabi oscillation dynamics can
be effectively solved in an even-parity subspace with three basis states of |gg⟩, |rr⟩, and
|Ψ+⟩ = 1√

2
(|gr⟩+ |rg⟩). In the Rydberg-blockaded regime where V ≫ Ω, we can perform

perturbation analysis with the perturbation parameter η = Ω/
√
2V and find that the energy

eigenvectors of the subspace are approximated as

|E1⟩ ≈
(1− η

4
− η2

32
)|gg⟩+ (−1− η

4
+ 17η2

32
)|Ψ+⟩+ (η − 3η2

4
)|rr⟩

√
2

|E2⟩ ≈
(−1− η

4
+ η2

32
)|gg⟩+ (−1 + η

4
+ 17η2

32
)|Ψ+⟩+ (η + 3η2

4
)|rr⟩

√
2

|E3⟩ ≈ η2|gg⟩+ η|Ψ+⟩+ (1− η2/2)|rr⟩

with their corresponding energy eigenvalues ofE1 ≈ V (−η−η2/2), E2 ≈ V (η−η2/2), and
E3 ≈ V (1 + η2), respectively1. Rewriting the initial state using the perturbed eigenbasis,
we solve

FBell = max
t
|⟨Ψ+|e−iĤt|ψ(0)⟩|2 (3.7)

to obtain the analytical expression of the maximum achievable Bell state fidelity, FBell, at a
given perturbation strength η. Keeping the solution up to the second order of η, we find

FBell = 1− 5

4
η2 = 1− 5

8

(
Ω

V

)2

(3.8)

obtained at t = π/
√
2Ω.

1Note that the definition of E3 (both the eigenvalue and eigenvector) is slightly corrected here from the
version presented in Ref. [26].
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Figure 3.7: Experimental sequence. Sketch of the experimental sequence including the
erasure detection for the GHZ adiabatic preparation experiment. We start by loading the
atoms into the desired geometry, then initialize the atoms in |g⟩, perform the Bell state
generation or quantum simulation, and finally read out by auto-ionizing atoms in |r⟩ and
imaging atoms in |g⟩. We perform two erasure images: one before applying Û(t), and one
after auto-ionization.

3.4 CASE STUDY: GHZ STATE PREPARATION

Having demonstrated the benefits of erasure-excision for the case of improving two-qubit
entanglement fidelities, we now show it can be similarly applied to the case of many-body
quantum simulation, demonstrating the utility of erasure detection for NISQ applications.
As part of this investigation, we distinguish erasure errors from preparation and Rydberg
spontaneous decay, the latter of which becomes more visible in a many-body setting and
for longer evolution times. Further, we show that erasure conversion can reveal otherwise
hidden correlations between errors.

3.4.1 Overview

As a prototypical example, we explore a quasi-adiabatic sweep into a Z2-ordered phase
(Fig. 3.8a) through the use of a varying global detuning [156] (Fig. 3.8b). In this ordered
phase, ground and Rydberg states form an antiferromagnetic (AFM) pattern, with long-range
order appearing at a quantum phase transition. Unlike previous examples [41, 157], we op-
erate in the effectively attractive interacting regime of the Rydberg blockaded space [156],
which features a true two-fold degenerate ground state for systems with an even num-
ber of atoms, even for open boundary conditions, and without explicitly modifying the
boundary [157].

For performing many-body quasi-adiabatic sweeps, the detuning is swept symmetrically in
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Figure 3.8: Erasure conversion in quantum simulation. a, b, We perform quasi-adiabatic
sweeps with N = 26 spins in the effective ground state manifold of an attractive Rydberg
Hamiltonian, starting from the initially disordered phase, and ending in the Z2 ordered
phase. c, We perform two erasure images, one preceding the quantum simulation (to
detect preparation errors), and one following (to partially detect Rydberg decay errors). d,
The probability for detecting a preparation error (orange markers) remains constant while
the probability for detecting a decay error (green markers) grows in agreement with the
Rydberg lifetime and detection infidelities (solid lines). e, The total probability, PAFM,
for forming either of the AFM Z2 states is improved by performing erasure-excision on
all errors (blue markers), as compared to only on preparation errors (orange markers) or
performing no excision (pink markers). The sensitivity of PAFM with respect to a change in
∆ also increases with erasure-excision (inset).

a tangent profile from +30 MHz to -30 MHz, while the Rabi frequency is smoothly turned on
and off with a maximum value of Ω/2π = 5.6 MHz. For an initially positive detuning, the
|r⟩ state is energetically favorable, making the all ground initial state, |gg...gg⟩, the highest
energy eigenstate of the blockaded energy sector, where no neighboring Rydberg excitations
are allowed. For negative detunings, where |g⟩ is energetically favorable, the highest energy
state uniquely becomes the symmetric AFM state (|grgr...gr⟩ + |rgrg...rg⟩)/

√
2 in the

deeply ordered limit. Thus, considering only the blockaded energy sector, sweeping the
detuning from positive to negative (remaining in the highest energy eigenstate) is equivalent
to the ground state physics of an effective Hamiltonian with attractive Rydberg interaction
and inverted sign of the detuning. This equivalence allows us to operate in the effectively
attractive regime of the blockaded phase diagram of Ref. [156]. For our Hamiltonian
parameters, we use exact diagonalization numerics to identify the infinite-size critical
detuning using a scaling collapse near the finite-system size minimum energy gap [158].

Staying adiabatic during ground state preparation requires evolution over microseconds,
orders of magnitude longer than the two-qubit entanglement operation shown before, which
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Figure 3.9: System size scaling of sweep fidelity. a, Total probability for forming either of
the Z2 states following the quasi-adiabatic sweeps presented in Fig. 3.8 of the main text, here
presented for the final sweep time as a function of system size for full erasure-excision (blue
markers), preparation erasure-excision (orange markers), and the baseline (pink markers)
data. b, The ratio gain from using full erasure-excision grows as a function of system size,
both with respect to the baseline values (pink markers), and to the case of only excising
preparation erasures (orange markers). Solid lines are linear guides to the eyes. c, For
a fixed detection threshold of 5 photons, the number of erasure errors also increases as a
function of system size.

magnifies the effect of Rydberg decay. In order to differentiate between leakage out of the
qubit manifold due to either preparation errors or Rydberg decay, we perform two erasure
images, one before the adiabatic sweep which captures preparation errors, and one after
(Fig. 3.8c). The second image allows us to measure Rydberg decay into the detection
subspace throughout the sweep. For a system size of N = 26 atoms (Fig. 3.8d), we see the
number of detected preparation erasures (orange markers) stays constant over the course of
a 3 µs sweep; conversely, the number of detected decay erasures (green markers) grows over
time, in good agreement with the measured Rydberg lifetime and erasure image infidelities
(green solid line).

With the ability to distinguish these effects, we plot the total probability to form either of
the AFM states, PAFM = P (|grgr...gr⟩) + P (|rgrg...rg⟩) (Fig. 3.8e). At the conclusion
of the sweep, we find PAFM = 0.33(2) without any erasure-excision (pink markers). By
excising instances with preparation erasures, this fidelity is improved to 0.44(2) (orange
markers), and is then further improved to 0.49(2) by additionally excising Rydberg decay
erasures. The sharpness of the signal, exemplified by the derivative of PAFM with respect
to the detuning, is similarly improved near the phase boundary (Fig. 3.8e, inset). We also
observe that the gain in PAFM from erasure-excision increases with system size (Fig. 3.9).

We further explore how errors affect quantities reflecting higher-order magnetization statis-
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Figure 3.10: Erasure conversion in quantum simulation. a, The probability distribution
for measuring a given AFM magnetization after the adiabatic GHZ-preparation sweep is
initially peaked at 0 in the disordered phase, before bifurcating when entering the Z2 phase,
consistent with spontaneous symmetry breaking. b, Deep in either phase, erasure-excision
leads to a sharpening of the probability distribution (left, right). Around the phase transition,
we observe a close-to-flat distribution (middle).

tics [159]. To this end, we explore the probability distribution to find magnetic order of
different magnitude by studying the AFM magnetization operator, defined as

M̂ = ẐA/NA − ẐB/NB, (3.9)

where ẐS =
∑

j∈S Ẑj is the total magnetization operator in sub-lattice S=A (odd sites)
or S=B (even sites), respectively, NS is the number of atoms in each sub-lattice, and
Ẑj = |r⟩⟨r| − |g⟩⟨g| is the local magnetization at site j. We plot the probability to find a
specific eigenvalue,M , of M̂ as a function of detuning (Fig. 3.10a). While the values ofM
are initially tightly grouped aroundM = 0 in the disordered phase, as the sweep progresses
the probability distribution bifurcates, forming two separate dominant peaks in the Z2

phase, consistent with aforementioned two-fold spontaneous symmetry breaking across the
quantum phase transition. We find that erasure-excision improves the sharpness of the
distribution in both the disordered and Z2 phases (Fig. 3.10b). Near the phase transition,
the distribution is close-to-flat, consistent with order appearing at all length scales. We
note, though do not explore in more detail, that this observation is again consistent with the
emergence of microscopic critical phenomena [159–161].

These results demonstrate improvements in fidelity for preparation of long-range-ordered
ground states with erasure-excision in quantum simulation experiments, a first proof-of-
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principle for utilizing erasure conversion in NISQ-type applications. Our demonstrated
improvements for analog quantum simulation of ground-state physics could be extended to
non-equilibrium dynamics, for example generating large entanglement entropy states [29],
with the potential to reach a quantum advantage over classical simulations [162]. We
envision erasure conversion will improve other tasks such as quantum optimization [163]
and potentially quantum metrology [164, 165].

3.4.2 Learning from erasure errors

Finally, we turn to studying a new tool enabled by our implementation of erasure conver-
sion: exploring the effect of errors on experimental outcomes at a microscopic level and
studying correlations between different error sources, which is enabled by having three
separate images for a given experimental run (Fig. 3.11a). In particular, we consider the
joint probability distribution, P(e(i)1 , e

(j)
2 , e

(k)
3 ), that atoms at sites i, j, and k are detected,

respectively, in the preparation erasure image (e1), the decay erasure image (e2), and the
final state detection image (e3).

We again consider adiabatic sweeps into the Z2 phase as in Fig. 3.8, but now with a total
duration of 8 µs. We first study P(e(j+d)3 = 0|e(j)1 = 0), equivalent to finding a Rydberg
excitation on site j + d, conditioned on finding no preparation erasure on site j. We plot
this quantity (Fig. 3.11b, left) as a function of both d and the sweep duration. We explicitly
average over choices of j and find a signal essentially uniform in d.

However, if we instead consider P(e(j+d)3 = 0|e(j)1 = 1), the probability to find a Rydberg
excitation on site j + d conditioned on detecting a preparation erasure on site j, markedly
different behavior emerges (Fig. 3.11b, middle). For simplicity, we further post-select on
instances where only a single erasure is detected across the entire array. At intermediate
sweep times, we observe an AFM order forms around the preparation erasure error position.
We interpret the error as breaking the atom chain into two shorter chains; excitations will
naturally form at the system edges of these shorter chains in order to maximize the Rydberg
density in the attractive regime in which we operate. This effectively pins the Rydberg
density around the error, which then establishes a preferred AFM order further out into
the array. Interestingly, the equivalent quantity for decay erasures, P(e(j+d)3 = 0|e(j)2 = 1),
shows a more complex behavior.

To quantify this behavior more explicitly, we consider a variant of the AFM magnetization
(Eq. 3.9) conditioned on the erasure location, where sublatticeA (B) is now defined as being
sites an odd (even) distance away from an erasure. In Fig. 3.11c we plot the mean AFM
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Figure 3.11: Learning from erasure errors. a, Post-processed [138] single-shot atom
fluorescence images. After arranging the array (top panel) we use the fast erasure images
to learn how detected errors (middle panels) affect detection outcomes (lower panel). b,
Conditional probability to detect no atom in the final image as a function of sweep progress
and distance from a hypothetical erasure event. In the case of no erasures (left), the
resulting profile is uniform. However, when conditioning on detecting a preparation erasure
(middle), the error breaks the Z2 symmetry by establishing a single AFM order. In the case
of conditioning on decay errors (right) the situation is more complex. c, AFM magnetization
(see Eq. 3.9) as a function of time. Preparation erasures (orange markers) lead to a growth
of a single AFM order with Rydberg excitations predominantly on sub-lattice A (defined
as sites an odd distance from the erasure position). Decay erasures (green markers) follow
a similar trend at early times by acting as effective preparation errors, but past the critical
point (vertical dashed line) their behavior reverses: a decay erasure spontaneously breaks
the two-fold symmetry, where the neighboring sites must have been in the ground state due
to the Z2 structure, yielding Rydberg excitations on sub-lattice B. d, For the maximum
sweep duration, the probability of detecting a Rydberg decay erasure (bars) is significantly
increased (decreased) from the baseline level (red fill) at a distance of one (two) away
from the site of a detected preparation erasure, induced by the altered Rydberg population
on these sites due to the crystal formation in b, indicating direct detection of correlations
between errors through erasure imaging.

magnetization for both the preparation (orange circles) and decay erasure (green circles)
cases. Preparation erasures develop a negative, single AFM order as they pin Rydberg
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excitations at odd distances away from the erasure.

Decay erasures behave similarly before the critical point, as Rydberg decay acts effectively
as a preparation error. However, past the critical point, this behavior changes: decay now
acts as a measurement on the AFM superposition ground state, selecting one of these orders.
In this case, assuming perfect Z2 states, the neighboring sites must have been in the ground
state to detect a decay, meaning the AFM order is reversed from the preparation case. This
leads to data that first dips to negative values and then grows to positive values past the
phase transition (green markers in Fig. 3.11c).

We also study correlations between preparation errors and Rydberg decay. In particular, a
preparation error forces atoms at odd intervals from the preparation erasure to have a higher
probability to be in Rydberg states, meaning they should also be more likely to decay. As
shown in Fig. 3.11d, we directly observe this effect at the end of the sweep by considering
P(e(j+d)2 = 1|e(j)1 = 1), the probability to detect a decay erasure at a distance d away
from a preparation erasure. For d = 1 (d = 2), this probability is significantly increased
(decreased) from the unconditional decay erasure probability, in line with the increased
(decreased) Rydberg population on these sites, which shows that errors are correlated.

We note that erasure-excision for preparation errors using the first erasure image can be
considered heralding the subsequent quantum simulation on the presence of atoms in
tweezers in the correct initial state. For erasure-excision of Rydberg decay using the second
erasure image, we interpret the post-selected results as coming from a non-jump trajectory
in a Monte Carlo wavefunction approach [166].

Overall, insights into erasure-error correlations could be used to understand error processes
in NISQ devices in unprecedented detail, in particular if erasure detection could be made
time-resolved with respect to the many-body dynamics. This could also be used to study
post-measurement physics with erasure detection, such as measurement-induced phase
transitions [167, 168] and measurement-altered quantum criticality [169].

3.4.3 Statistics reduction due to erasure-excision

Our demonstration of erasure-excision explicitly discards some experimental realizations
(Fig. 3.9), which can be seen as a downside of the method. However, this is a controllable
trade-off: by adjusting the threshold for detecting an erasure error, we can balance gains
in fidelity versus losses in experimental statistics (as shown in Fig. 3.12) for whatever
particular task is of interest. In general, the optimum likely always includes some amount
of erasure-excision, as it is usually better to remove erroneous data than keeping them.
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Figure 3.12: Controlling fidelity gains from erasure-excision. Erasure-excision explicitly
trades improved experimental fidelity for a reduced number of experimental repetitions.
However, this process is controllable by adjusting the threshold used for detecting atoms
during erasure images. Changing the threshold essentially changes the false positive and
false negative rate for detecting erasures correctly (inset). We plot the total AFM probability
(green markers) after a sweep as in Fig. 3.8 of the main text, and vary the detection threshold
used for identifying erasures. For too high a threshold, many erasure events go unnoticed,
and so erroneous outcomes become relatively more prevalent, reducing the overall fidelity.
As the detection threshold is lowered, more true erasures, where an atom is actually present
in the erasure image, are correctly detected, which improves the fidelity. However, lowering
the threshold too far (in our case past ∼5 photons) increases the likelihood of seeing false
positive erasures; excising data based on these events discards experimental statistics with
relatively little gain in fidelity. In the main text, we select a detection threshold of 5 photons.

For erasure detection employed in the context of many-body quantum simulation, we adjust
the binarization threshold for atom detection to raise the false positive imaging fidelity to
0.9975, while the false negative imaging fidelity is lowered to ∼0.6 (Fig. 3.8d); this is
done as a conservative measure to prioritize maximizing the number of usable shots while
potentially forgoing some fidelity gains (Fig. 3.12).

3.5 ERASURE CORRECTION COOLING

Next, we demonstrate that erasure conversion is not solely limited to improving quantum
simulation fidelities through detecting leakage errors. Specifically, we showcase a new
measurement-based [170] cooling method which uses erasure conversion (and correction)
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to prepare atoms nearly deterministically in their motional ground state – we term our
method erasure correction cooling.

This technique is species-agnostic and can be used to efficiently prepare motional ground
state atoms. While cold atoms are important for practically all applications, later in this
thesis (Chapter 4) we will discuss how high-fidelity motional purification as we perform
here enables new tasks in quantum information processing.

The mechanism behind erasure cooling is fundamentally reminiscent of the Maxwell’s de-
mon thought experiment, and relies on (i) conversion of motional excitations into detectable,
localized erasure errors [170], and (ii) their active correction. Using such a technique, we
obtain a motional ground state occupation of 0.984(+4/−5), increased to 0.995(+3/−4)
if post-selection is used rather than active correction. Importantly, we find this new cooling
scheme systematically outperforms traditional sideband cooling, which we demonstrate ex-
perimentally in the case of shallow tweezers by comparing our results to simulations of an
idealized sideband cooling process.

3.5.1 Overview

To start, we describe erasure correction cooling (ECC). The basic principle relies on detect-
ing atoms in motion-excited states, while shelving motion-ground state atoms such that they
are not disturbed by measurement. From there, motional excitations can either be removed,
or selectively re-cooled. The results presented here concern the tightly-confined, radial
direction of the optical tweezers; we also implemented ECC along the weakly-confining,
axial direction, for which we find similar results in Sec. 3.5.6.

Atoms are initialized in their ground electronic state 1S0 and initially cooled with Sisyphus
cooling [85] (a conventional form of laser cooling) to an initial motional ground state
population of P ′

0 = 0.77(1). To perform ECC, we convert remaining motional excitations
into erasure errors (Fig. 3.13a) by working in the sideband resolved regime on the transition
between 1S0 and the metastable excited state 3P0. The trapping wavelength is 813 nm to
achieve a magic trapping condition for 1S0 and 3P0.

We note that in all of the following, we will consider a single motional degree of freedom,
which is defined along the 1S0 ↔ 3P0 laser beam propagation axis. We use numerical
notation for motional states (e.g. |0⟩ for the motional ground state), and pseudo-spin
notation for electronic states (e.g. |↓⟩ is 1S0 and |↑⟩ is 3P0); for the latter we will use
the terms spin, electronic state, and optical qubit interchangeably. We further denote their
tensor product as e.g. |0⟩ ⊗ |↑⟩ = |0, ↑⟩.
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Figure 3.13: Improving motional ground state preparation with erasure correction
cooling. a,b, After cooling the atoms with Sisyphus cooling, we apply spin-motion conver-
sion, which leaves atoms in a different pseudo-spin state depending on whether they do or do
not have motional excitations. To accomplish spin-motion conversion, we transfer the atoms
in |↓⟩ to the |↑⟩ state using a carrier pulse, which conserves the motional state of the atoms.
We then apply a blue sideband pulse, which performs the |n, ↑⟩ → |n − 1, ↓⟩ transition,
where n is the atom’s motional level. We then detect atoms with motional excitations by
imaging the pseudo-spin state |↓⟩, without perturbing atoms in the motional ground state,
which reside in |↑⟩. c, We correct tweezers containing atoms with motional excitations in
two different ways: (i) by reapplying Sisyphus cooling selectively on such atoms (reset), or
(ii) by replacing such atoms using rearrangement (replacement). d, In the reset case, the
erasure detection image is a slow and non-destructive image. After the image, we cool the
atoms again. Atoms in |0, ↑⟩ are shelved from the Sisyphus cooling mechanism. We then
selectively transfer [33] the atoms which were imaged in |↓⟩ to |↑⟩. e, For the replacement
method, the erasure detection image is a combination of a slow, high survival image, and
a fast, low survival image. We then repeat a sideband pulse and a fast image in order to
improve the erasure cooling efficiency. We then fill the emptied tweezers with auxiliary
atoms which were measured to be in the |0, ↑⟩ state.

Erasure correction cooling then proceeds with the following steps (Fig. 3.13a,b): first
we drive all atoms into the excited electronic state using the motion-preserving carrier
transition, |n, ↓⟩ → |n, ↑⟩, where n is an arbitrary motional level. Second, we perform a
spin-motion coupling sideband transition, |n, ↑⟩ ↔ |n−1, ↓⟩, ideally leaving only motional
ground state atoms in the excited electronic state. We then perform fluorescence imaging
of the ground electronic state, while leaving atoms in |0, ↑⟩ unperturbed [26]. This means
that we directly image the location of motion-excited atoms, for which we can then perform
error correction.

This correction can be done in two ways (Fig. 3.13c-e), either: (1) Reset, where we reapply
Sisyphus cooling with site-selectivity, or (2) Replacement, by discarding hot atoms and
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Figure 3.14: Erasure correction cooling in the radial direction a, Probability, P0, for an
atom to be in the motional ground state, |0⟩, measured via sideband spectroscopy. We show
the results without erasure correction cooling, performing erasure correction with reset, and
erasure correction with replacement. b, Post-correction motion-ground state probability,P0,
as a function of intentionally varied motion-ground state probability after Sisyphus cooling,
P ′
0. We show the results for both replacement (blue markers) and reset (red markers). The

replacement method is largely insensitive to the Sisyphus cooling efficiency. The green
dashed line is a guide to the eye which represents unity gain. c, P0 as a function of the trap
frequencyω. Our experimental erasure cooling results (blue markers) using the replacement
method are in good agreement with an ab initio error model including known imperfections
(blue dashed line). We compare against two variants of sideband cooling, one using the 3P1

state of strontium (green line), and one which is an idealization representing the ultimate
limit of sideband cooling for given trap and Rabi frequencies, and Lamb-Dicke factor. Our
experimental erasure cooling outperforms both sideband cooling variants in the regime of
low trap frequency, and an error-free simulation of erasure cooling is superior to sideband
cooling for all frequencies. Error bars represent the standard error of the mean.

replacing them with cold atoms using atom rearrangement. At the end of the correction,
we transfer any remaining atom in |↓⟩ to |↑⟩ using optical pumping to avoid any vacancy
defects in the array.

To assess the efficacy of ECC, we use a 39-tweezer array, and measure P0 via sideband
spectroscopy on the |↓⟩ → |↑⟩ transition (Fig. 3.14a). Starting from P ′

0 = 0.77(1) after
Sisyphus cooling, we obtain a final motional ground state population P0 = 0.93(1) with
one round of reset, and P0 = 0.984(+4/−5) with replacement. The maximum P0 after
reset is limited here by only doing one round of cooling, with a theoretical maximum of
P0 = P ′

0 + (1− P ′
0)P

′
0 ≈ 0.95. In Fig. 3.14b we show the efficacy of ECC as a function of
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P ′
0 obtained after Sisyphus cooling (allowing up to 3 rounds of reset cooling for the lowest
P ′
0 values); in general we find that ECC with replacement is especially insensitive to this

initial cooling temperature. If we post-select on erasure detection, rather than applying
active correction, we achieve P0 = 0.995(+3/−4) (not shown).

Having demonstrated the efficacy of ECC for our particular experimental realization, we
now show that it outperforms even idealized, noise-free, conventional laser cooling in
certain realistic parameter regimes (Fig. 3.14c). We first perform a noise-free simulation
of ECC (purple line), and compare it against two possible realizations of ideal sideband
cooling. The first is against cooling on the commonly used 1S0 → 3P1 intercombination
line [99, 100] (green line), while the second is against idealized sideband cooling performed
with infinitely small linewidth (red line), but including an effective spontaneous decay in
order to remove entropy from the system [171].

We observe that across all trap frequencies, the idealized ECC always outperforms idealized
sideband cooling, but particularly so in the limit of low trap depth, where the sideband-
resolved condition (ω ≫ Γ) breaks down. In this limit, sideband cooling efficiency becomes
limited by (i) the finite Rabi frequency (here 2π × 2.5 kHz) used to cool the atoms, and
(ii) photon recoil. Conversely, ECC is (i) less sensitive to errors coming from the finite
Rabi frequency because they can be partially erased, and (ii) not limited by photon recoil
since cooling does not rely on spontaneous emission from a cooling state. Instead, ECC is
primarily limited by tweezer-induced heating during error correction, as seen in both exper-
imental (blue points) and ab initio error model results (dashed line) accounting for known
noise sources. Importantly, for ω/(2π) ≲ 24 kHz, the experimental ECC implementation
outperforms sideband cooling on 1S0 → 3P1, and outperforms even the idealized sideband
cooling for ω/(2π) ≲ 12 kHz.

We stress that this regime of relatively low trap frequency is particularly relevant for the
tweezers’ weakly confining, axial direction. Furthermore, whilst a high trap frequency
enables large sideband-cooling efficiency, it also limits the achievable number of physical
qubits for a fixed laser power. Our results demonstrate that the same cooling can be achieved
practically at a much lower trap depth, potentially opening the door to greatly expanding
the size of tweezer arrays.

Our scheme for erasure correction cooling (i) presents a practical advantage in cooling
efficiency for our setup, and (ii) can outperform sideband cooling in general, which we
demonstrated experimentally in the regime of low trap frequency.
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3.5.2 The mechanism of erasure correction cooling

Here we detail the erasure correction cooling (ECC) mechanism in greater detail. We start
with the erasure detection of motional excitations, then describe the two methods employed
to perform error correction.

The erasure detection is described in Fig. 3.13. After cooling the atoms with Sisyphus
cooling using the 3P1 level, we transfer the atoms in |↓⟩ to the |↑⟩ state using a carrier pulse,
which conserves the motional state of the atoms. We then apply a blue sideband pulse which
performs the |n, ↑⟩ → |n− 1, ↓⟩ transition, where n is the atom’s motional level. Atoms in
|0, ↑⟩ are not transferred back to |↓⟩. We then selectively image atoms in |↓⟩, which allows
us to spatially resolve the position of motional excitations in the array. We then correct for
these errors using two methods: re-using the same atoms by selectively cooling them again
(reset) or replacing them with auxiliary atoms in the |0, ↑⟩ state (replacement).

We first detail the reset method (Fig. 3.13d). In this case, the erasure detection is a slow,
high survival image with a duration of 45ms [85]. After the image, we cool the atoms in
|↓⟩ again through Sisyphus cooling, while atoms in |0, ↑⟩ are shelved from this cooling.
We then use movement-induced phase shifts [33] (described in Chapter 4) to selectively
transfer to |↑⟩ the atoms which were previously imaged in |↓⟩. This process can be repeated
several times in order to improve the erasure cooling efficiency.

The erasure detection image in the case of the replacement method (Fig. 3.13e) is a combina-
tion of a high survival, slow image [85] with a duration of 30ms and a fast, low survival [26]
image with a duration of 24µs. We perform this combination in order to maximize the
imaging fidelity while minimizing the misidentification of Raman scattering events from
the |↑⟩ state to the |↓⟩ state. We then perform another blue sideband pulse and a fast image
in order to minimize the effect of tweezer-induced heating during the erasure detection,
which improves the eventual erasure cooling efficiency. Due to the fast image, the tweezers
holding atoms in |↓⟩ are empty. We fill them with auxiliary atoms which were measured to
be in the |0, ↑⟩ state.

We ramp down the tweezers depth to ∼40µK, which corresponds to one-tenth of their
nominal depth in order to reduce the effect of tweezer-induced heating such as Rayleigh
scattering. In particular, we also observe that rearrangement-induced heating strongly
depends on the tweezers’ depth, and is minimized for s tweezer depth in the range ∼20 −
40µK. This rearrangement-induced heating is identified to be coming from (i) the finite
probability that an atom is heated during transportation, and (ii) tweezers depth oscillations
during atom movement due to intermodulation of the varying frequencies in the acousto-
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optic deflector used to generate the tweezers [81], although we leave a quantitative analysis
of these effects to future work.

3.5.3 Cooling simulations

Here we provide details on the cooling simulations results presented in Fig. 3.14c. We
first describe sideband cooling on the 3P1 level of strontium, then the idealized sideband
cooling, and finally both idealized and noisy erasure cooling using replacement.

In all cases, we simulate the following one-dimensional Hamiltonian

H = ℏω(a†a+
1

2
)− ℏ∆|↑⟩⟨↑ |+ 1

2
ℏΩ(eiη(a+a†)|↑⟩⟨↓ |+ h.c.), (3.10)

where a† (a) is the creation (annihilation) operator acting on the motional levels, ω is
the trapping frequency, ∆ is the detuning, η is the Lamb-Dicke factor and Ω is the Rabi
frequency. We set ∆ = −ω, and use a basis of ten motional states.

Ideal sideband cooling on 3P1

We perform a simulation of sideband cooling on the |3P1,mJ = 0⟩ state. Here we assume
ideal conditions, namely: (i) we assume no laser noise, (ii) we set a Rabi frequency 500
times smaller than the cooling state linewidth, and (iii) we consider cooling only in a single
direction, but take into account the dipole radiation pattern in 3D (more details below).

We solve the Master equation in which we take into account spontaneous emission from the
|↑⟩ state and its associated momentum kick which follows a dipole pattern distribution:

iℏ∂tρ = (HΓρ− ρH†
Γ) + iℏΓ

∫
dθD(θ)cθρc

†
θ.

We define HΓ = H − i
2
ℏΓ|↑⟩⟨↑|, and cθ = e−i|k| cos(θ)|↓⟩⟨↑|. Here, ρ is the density matrix

of the spin and motional states, Γ = 2π × 7.4 kHz is the linewidth of 3P1, D(θ) =

3 sin2(θ)/(8π) is the dipole radiation pattern for the transition of interest, θ the angle of
emission with respect to the quantization axis. The dipole emission pattern takes this simple
form thanks to considering cooling on the |3P1,mJ = 0⟩ state.

We use as an initial condition a thermal distribution of motional states with mean vibrational
level n̄ = 1. We set Ω = Γ/500, and perform the simulation for 1000 Rabi cycles. This
ensures that we reach the system’s steady state, and that the effect of the finite Ω on the final
motional state populations is negligible.

We note that in this work, we do not perform a simulation of cooling in the three directions
of space, even though we take into account the dipole emission pattern in 3D. We assume
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that there is no thermalization between the different axes; if such cross-axis thermalization
did exist it would lead to a higher temperature than we find here.

Idealized sideband cooling
We consider sideband cooling on an idealized cooling transition, which is defined as having
an infinitely narrow linewidth (Γ = 0), but still having the ability to decay to the spin
ground state. We set Ω = 2π × 2.5 kHz and assume that the difference in energy between
the spin states is given by a wavelength of 698 nm, which would correspond to cooling on
the 3P0 state of strontium. We initialize the system in a thermal distribution with n̄ = 1, and
perform the following simulation. We evolve the system’s state for a duration corresponding
to a sideband π pulse. We then project the state onto |↓⟩ in order to mimic spontaneous
decay. During this event, a momentum kick is provided to the atom following the radiation
dipole pattern described earlier. We repeat this process 100 times, which ensures that we
reach the system’s steady state.

Idealized erasure correction cooling using replacement
The idealized erasure correction cooling simulations are similar to the idealized sideband
cooling. We set Ω = 2π × 2.5 kHz and initialize the system in a thermal distribution with
n̄ = 1. We then perform the following simulation. Starting in |↑⟩, we evolve the system’s
state for a duration corresponding to a sideband π pulse. In order to simulate a perfect
erasure detection and replacement, we get rid of the population in |↓⟩, and re-normalize the
population of the various motional levels in |↑⟩. We repeat this process 100 times, which
ensures that we reach the system’s steady state.

Noisy simulation of erasure correction cooling using replacement
We finally describe the simulation of erasure correction cooling using replacement including
relevant imperfections. We solve the Master equation described earlier in which we take
into account the finite lifetime of the 3P0 state, and the tweezer-induced heating rate, which
we implement by adding a jump operator acting on the motional states; the tweezer-induced
heating is independently measured as an increase in mean vibrational number by 3.0(4) s−1.
We initialize the system in a thermal distribution with P ′

0 = 0.77, and simulate the sequence
described in Fig. 3.13. We assume a perfect imaging fidelity in the erasure detection but
take into account the tweezer-induced heating during the imaging and replacement times.
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Figure 3.15: Limits of sideband cooling and erasure correction cooling a, The limit in
sideband cooling efficiency is due to the off-resonant coupling to motional levels which are
not the ground state (n > 0), either (i) in the opposite pseudo-spin state as the initial one
|n, ↑⟩, or (ii) in the same spin state |n, ↓⟩ via an off-resonant two-photon process. b, In the
case of erasure correction cooling, off-resonant coupling to the opposite spin state |n, ↓⟩ is
detected and hence does not contribute to the finite efficiency. The limit is the off-resonant
two-photon transition to |n, ↑⟩. c, Simulated efficiency of ideal ECC 1 − P EC

0 (red line),
and difference between sideband cooling and ECC efficiencies P EC

0 − P SC
0 (green line), as

a function of trap frequency ω. We fit the data using f(ω) = A(1/ω)B, with A and B as
free parameters (dashed lines). The obtained exponents are B = 1.9(1) for 1 − P EC

0 and
B = 2.9(1) for P EC

0 − P SC
0 , which is consistent with our expectations.

3.5.4 Fundamental limits simulations

Previously, we experimentally showed that erasure correction cooling using the replacement
method leads to higherP0 than a simulation of idealized sideband cooling (SC), for a specific
range of parameters. Here we explain why, on a fundamental level, this new cooling
mechanism leads to a larger P0 than SC for any trapping frequency. We further determine
the scaling of the ECC efficiency in the sideband resolved and Lamb-Dicke regimes, as a
function of the trap frequency.

We start by describing the fundamental limits of sideband cooling. We assume that the
atoms are initialized in |0, ↓⟩, and that we drive a red sideband transition in order to cool
the atoms. In this situation, sideband cooling has a finite probability to actually heat the
atoms via off-resonant couplings to any motional state |n, ↑⟩. Note that in the deep Lamb-
Dicke regime, spontaneous emission does not lead to a change in motional state, and thus
off-resonant coupling to |0, ↓⟩ does not impact the finite cooling efficiency.
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These off-resonant couplings affect the system in two qualitatively different ways (Fig. 3.15A):
(i) the off-resonant coupling flips the initial pseudo-spin state to reach |n, ↑⟩with probability
Pflip, and (ii) an off-resonant two-photon process which transfers the atoms in |n, ↓⟩ and
n > 0, with probability Psame. The values of Pflip and Psame depend on the Rabi frequency,
Lamb-Dicke factor, and trap frequency, and are detailed below. The eventual fundamental
limit in SC is therefore the sum of these two contributions:

P SC
0 = 1− Pflip − Psame,

where P SC
0 is the fundamental limit of the |0⟩ population with sideband cooling.

We now turn to the case of ECC, and consider off-resonant coupling out of the initial state
|0, ↑⟩ (see Fig. 3.15B). For ECC, off-resonant coupling to opposite spin states |n, ↓⟩ does
not impact the ECC cooling efficiency: any atom transferred to |↓⟩ is detected and replaced,
which can be effectively seen as Pflip = 0. The fundamental limit is thus given only by the
pseudo-spin conserving, off-resonant two-photon transition |0, ↑⟩ → |n, ↑⟩, which cannot
be converted into an erasure in our scheme. We therefore get:

P EC
0 = 1− Psame,

where P EC
0 is the fundamental limit in |0⟩ population with erasure correction cooling.

We note that the value of Psame is the same in both cooling methods, as the action employed
to cool the atoms – a red sideband pulse – is exactly the same for both methods. We therefore
obtain that

P EC
0 − P SC

0 = Pflip,

meaning that P EC
0 is an upper bound for P SC

0 .

Scaling of Pflip and Psame with ω
We further comment on the scaling of Pflip and Psame with the trap frequency ω, in the
sideband resolved (Ω≪ ω) and Lamb-Dicke (η(2n̄+ 1)≪ 1) regimes. For simplicity, we
will assume in the following that the atoms are initialized in the |↓⟩ state and that we drive
a red sideband transition to the |↑⟩ state. Note that the results obtained below are also true
if the atoms are initialized in |↑⟩.

Under these assumptions, Pflip to lowest order arises from off-resonant coupling via the
|0,↓⟩ → |1,↑⟩ transition, with strength ηΩ and detuning proportional to ω. We therefore
obtain

Pflip ∝
(ηΩ)2

ω2
∝ Ω2

ω3
,
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where we used η ∝ 1/
√
ω.

Psame to lowest order arises from off-resonant coupling via the |0,↓⟩ → |0,↑⟩ transition, with
strength (1 − η2)Ω ≃ Ω and detuning proportional to ω. Once this off-resonant transition
happens, the on-resonance red sideband transition |0,↑⟩ → |1,↓⟩ transfers the atoms back
to the same spin state, but in a higher motional level. We therefore obtain

Psame ∝
Ω2

ω2
.

We can therefore extract the scaling of idealized sideband cooling and erasure correction
cooling in the sideband resolved and deep Lamb-Dicke regimes. In particular, we obtain

1− P EC
0 ∝

Ω2

ω2
,

and
P EC
0 − P SC

0 ∝
Ω2

ω3
.

We verify these scalings using our numerical simulations results of idealized SC and ECC
(Fig. 3.15v), which are also presented in Fig. 3.14c. We consider the ECC deficiency 1−P EC

0

(green solid line) as well as the difference between SC and ECC efficiencies P EC
0 − P SC

0

(red solid line). In both cases, we fit our results with the function f(ω) = A(1/ω)B (dashed
lines), where A and B are free parameters. The obtained exponents are B = 1.9(1) for
1 − P EC

0 , and B = 2.9(1) for P EC
0 − P SC

0 . These results are consistent with the formulas
derived above.

3.5.5 Erasure correction cooling on other platforms

Here we show that ECC is, in principle, applicable to any tweezer platform, and detail
which states can be used for the |↓⟩ and |↑⟩ when implementing ECC. Our present work
uses strontium, and a generalization to other alkaline-earth(-like) atoms is trivial, so we
focus on platforms using molecules and alkalis (Fig. 3.16).

As discussed previously, the two key ingredients to implement ECC are (i) driving sideband
transitions between |↓⟩ and |↑⟩, and (ii) the ability to selectively detect |↓⟩ while |↑⟩ is
shelved. These ingredients are present in both molecules and alkalis.

For molecules (Fig. 3.16a), good candidates are two different rotational states, such as
|↓⟩ = X2Σ+, N = 1 and |↑⟩ = X2Σ+, N = 3 in calcium fluoride. Sideband transitions
can be achieved through Raman processes, and selective imaging of |↓⟩ is achieved through
driving the closed-transition to A2Π1/2, for which |↑⟩ is shelved.
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Figure 3.16: Erasure correction cooling in other platforms. a, Good candidates in
molecules, using the example of calcium-fluoride. b, Good candidates in alkalis, using the
example of rubidium.

For alkalis (Fig. 3.16b), good candidates are two different hyperfine states, such as |↓⟩ =
|5S1/2, F = 2,mF = 2⟩ and |↑⟩ = |5S1/2, F = 1,mF = 1⟩ in rubidium 87. Sideband
transitions can be achieved through a Raman process, and selective imaging of |↓⟩ is
achieved through driving the closed-transition to |5P3/2, F = 3,mF = 3⟩, for which |↑⟩ is
shelved.

In principle ECC is also applicable to ion-based platforms, for which post-selection on
detected erasures has been recently reported [170]. Furthermore, ECC should also work for
neutral atoms and molecules trapped in optical lattices by using the reset method combined
with local addressing in order to perform the local rotations [172].

3.5.6 Erasure cooling in the axial direction

The erasure cooling results presented previously concern one of the tightly-confining radial
direction. We here show that the method also applies to the axial direction, enabling this
new cooling mechanism to be used to perform 3D cooling in principle. The overall method
is the same as described earlier, and the only difference lies in the direction of the sideband
driving beam with respect to the tweezer axis. We use a beam that propagates in the same
direction as the tweezer, allowing us to drive sideband transitions on the axial direction of
the tweezers, for which the trapping frequency is 2π × 10.7 kHz.

The results are shown in Fig 3.17. We start with a motional ground state population
P ′
0 = 0.40(2) after Sisyphus cooling, which is lower than the radial direction due to the lower

trapping frequency. Applying erasure correction cooling, we obtain P0 = 0.982(+9/−18)
after erasure detection and post-selection, andP0 = 0.925(+13/−25)with active correction
using the replacement method. These results are also better than what can be achieved
using sideband cooling on the 3P1 transition for this trapping frequency, showing a practical
advantage in using erasure correction cooling over sideband cooling.
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Figure 3.17: Erasure correction cooling in the axial direction. Probability P0 for an
atom to be in the |0⟩ state measured via sideband spectroscopy, in the axial direction of
the tweezers. We show the results without erasure correction cooling, performing erasure
conversion with post-selection (not correction), and with correction using the replacement
method.

3.6 DARK-STATE ENHANCED LOADING

Finally, we detail another application related to erasure conversion, namely using our ability
to non-destructively locate defects in the array to perform feedback to improve array loading.
This is a measurement- and feedback-based approach, and thus it is broadly reminiscent of
classical erasure correction techniques like atomic rearrangement.

3.6.1 Overview

The central problem at hand is that while neutral atoms and molecules trapped in optical
tweezers have become a powerful tool for quantum science, the maximum achievable
system sizes of such arrays are often limited by the stochastic nature of loading into optical
tweezers. This limits most experiments to a typical loading probability of only 50%. Here
we present a species-agnostic method for dark-state enhanced loading (DSEL) based on real-
time feedback, long-lived shelving states, and iterated array reloading. We demonstrate this
technique with a 95-tweezer array of 88Sr atoms, achieving a maximum loading probability
of 84.02(4)% and a maximum array size of 91 atoms in one dimension. Our protocol is
complementary to, and compatible with, existing schemes for enhanced loading based on
direct control over light-assisted collisions [104, 173–177], and we predict it can enable
close-to-unity filling for arrays of atoms or molecules.

In typical experiments, a magneto-optical trap (MOT) or large-waist optical dipole trap
(ODT) containing a cloud of atoms is overlapped with a set of tweezer potentials which
each capture an ensemble of atoms. Traps are then illuminated to induce light-assisted
collisions and pairwise loss [35, 178, 179], resulting in a typical loading fidelity of 50%
(∼35% for molecular tweezer arrays [180, 181]). Through direct control of the collisional
process [173, 174], the array-averaged filling has been raised as high as 74-80% for arrays
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Figure 3.18: Dark-state enhanced loading a. A scheme for dark-state enhanced loading
(DSEL) of an optical tweezer array. (1) Atoms (or molecules) are initially stochastically
loaded into a tweezer array, and imaged to determine their locations. (2) Atoms are
transferred to a long lived shelving state which is dark to the loading dynamics, and (3)
occupied traps are ramped down in depth to limit reloading. (4) The loading procedure
is repeated, stochastically reloading the unoccupied deep traps while leaving the shelved
dark-state atoms unaffected, and (5) all atoms are returned to the ground state for an effective
increase in filling fraction. The procedure can be repeated for successively higher filling
fraction. b. DSEL is feasible to implement in arrays of alkaline-earth atoms (clock state
shelving, e.g. Sr), alkali atoms (hyperfine state shelving, e.g. Rb), or molecules (rotational
state shelving, e.g. CaF); the latter two both require tweezers be loaded from an ODT, rather
than directly from a MOT. In this work we show an experimental demonstration with the
alkaline-earth species 88Sr.

of alkali species [175–177] and 93% for Yb [104]. While tweezer rearrangement can be
used to eliminate remaining holes, the success probability and rearrangement time both
scale poorly with the number of initial defects in the array [81, 89, 90], making methods
for improving the initial loading not just impactful in terms of increasing atom number, but
also in terms of increasing overall operational fidelity.

It is this context that we present our new, species-agnostic protocol for dark-state enhanced
loading (DSEL), which we note is the first such demonstration of any enhanced loading
protocol for strontium atoms. Our protocol is illustrated in Fig. 3.18a. In the initialization
step, an array of atoms is loaded stochastically and imaged to identify the occupied traps.
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Atoms are then shelved into a state which is both dark to the loading dynamics and long-
lived. Occupied traps are ramped down in intensity through real-time feedback, and the
process is restarted by regenerating the MOT or ODT which stochastically reloads the deep,
unoccupied traps, while leaving the dark-state atoms in shallow traps unperturbed. The result
is a theoretically 25% higher loading fraction (for an initial loading probability of 50%); the
process can then be repeatedly infinitely for successively higher loading fidelity. We note
that iterative loading techniques have been used to demonstrate continuous reloading of dual-
atom tweezer arrays, though without increasing the filling fraction of either species [140].
The ingredients necessary to implement DSEL are accessible in arrays of alkaline-earth
atoms, alkali atoms, or molecules (Fig. 3.18b), as we discuss further below.

3.6.2 Method

The experimental setup we use to implement DSEL is our standard array of 88Sr atoms [69,
85, 99]. In brief, atoms are initially captured by a 461 nm (blue) MOT based on the
1S0↔1P1 transition (Fig. 3.19a). With a small probability, some atoms can decay from
1P1→1D2 [99] and then into either 3P2 or 3P1 [182]. Atoms in 3P2 are repumped with
707 nm light through the 3S1 state to 3P1; from there they can decay back to 1S0, closing
the MOT cycle. Atoms are typically also repumped out of 3P0 as there is a pathway from
3P2→3P0 during repumping.

Atoms are transferred from the blue MOT to a cold and dense 689 nm (red) MOT based on
the narrow 1S0↔3P1 transition. From there, an acousto-optic deflector (AOD) generates
an arbitrary one-dimensional configuration of optical tweezer traps (813 nm); by tuning
the electrical input to the AOD we control the number of tweezers, their spacing, and their
relative intensities [81]. With a typical depth of 470 µK, optical tweezers are overlapped
with the red MOT, loaded with an ensemble of atoms, and then illuminated with 689 nm
light to induce light-assisted collisions [183, 184]. The transitions to the 1P1 and 3P1 states
can then be respectively used to image and cool the atoms with high fidelity [85].

A key feature of the low-lying energy landscape of Sr is the 3P0 state. This state is
metastable [108], enabling applications in metrology [69, 110, 111, 185, 186] and it underlies
proposals for alkaline-earth based neutral atom quantum computers [68, 187]. When in 3P0,
atoms are dark to light involved in imaging, cooling, and MOT loading. In (Fig. 3.19b) we
demonstrate this concept directly with three consecutive single-shot fluorescence images. In
the first, all atoms are in the absolute ground state, and fluoresce under the 461 nm imaging
light; during all images, 689 and 707 nm light is also active for cooling and repumping,
respectively. Second, the central atom is locally excited to 3P0, making it dark to the
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Figure 3.19: DSEL in strontium. a. Low-lying state manifold for 88Sr. Of particular
importance is the 3P0 state which is long-lived, and dark to imaging, cooling, and MOT
dynamics. b. Consecutive, single-shot fluorescence images of: (top) all atoms initially
in the ground state; (middle) select atoms locally shelved via frequency-selective motional
sideband driving to 3P0, and thus hidden from imaging; (bottom) all atoms brought back
to the ground state, indicating the survival of the 3P0 atoms. In all images 461, 689, and
707 nm light is illuminating the array. c. 3P0 state population (orange) at 8 µK trap depth
while the blue and red MOT light is on, showing a 23(4) s lifetime. In contrast, atoms in
1S0 (grey) at this trap depth are quickly heated and expelled from the trap in less than 2 µs
with the MOT light on (inset).

subsequent image. Local addressing is accomplished by lowering the central trap frequency
by a factor of two and driving the motional blue sideband with a frequency selective pulse.
Ramped down trap frequencies are∼40 kHz, relative to∼80 kHz for the non-ramped down
traps, and a Rabi frequency of 2 kHz. Finally, all atoms are repumped to the ground state
and imaged once more, demonstrating that the 3P0 atoms have survived.

The lifetime of atoms in the 3P0 state is limited by Raman scattering from the high-intensity
trapping light [133]. We find a lifetime of 23(4) s for 8 µK deep traps while light used for
generating the red and blue MOTs is active (Fig. 3.19c) and 0.58(4) s at our typical trap
depth of 470 µK (not shown). At both trap depths the lifetime is unaffected by disabling
the MOT light (not shown). In contrast, scattering from the MOT light quickly heats and
ejects atoms in the 1S0 state, limiting their trapped lifetime in 8 µK deep tweezers to less
than 2 µs (Fig. 3.19c); this amounts to an effective increase in lifetime by a factor of ∼107

when shelving into 3P0.

Isolation from other transitions, in combination with a long lifetime, makes 3P0 an ideal
candidate for the dark-state required by DSEL. However, during the standard MOT loading
cycle, 3P0 is explicitly repumped. In practice, we find that under our typical conditions,
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loading without the 3P0 repumper incurs only a 0.7(4)% drop in loading probability; through
optimization of the blue MOT density it is likely that this minor penalty could be further
reduced.

3.6.3 Results

We show the results of DSEL for a 95-tweezer array in Fig. 3.20a. With an initial loading
probability of 45.88(5)%, after a single cycle of DSEL we achieve 68.43(5)%, which then
saturates to 84.02(4)% after five cycles of DSEL (the zeroth cycle is the initial standard
loading). We show exemplary fluorescence images from a single set of DSEL cycles in
Fig. 3.20b, demonstrating the cycle-to-cycle growth of array filling, resulting in a maximum
of 91 trapped atoms. Note that in Fig. 3.20b, atoms are additionally rearranged to the middle
of the array between each cycle.

We see the effect of DSEL starts stagnating after around 2 cycles, limited by the probability
that a shelved atom survives and still is present after a cycle of DSEL, which we designate
as the cycle-to-cycle survival, p0. Assuming the loading process is only controlled by this
cycle-to-cycle survival and by the per-cycle loading probability, f0, we predict the total
loading probability, f̄ , after κ DSEL cycles is given by

f̄(κ) = f0

κ∑
j=0

(p0 − f0)j = f0
1− (p0 − f0)κ+1

1− (p0 − f0)
, (3.11)

where j is a cycle index. For the 95-tweezer array, we find our results are well described by
Eq. (3.11) with f0 = 0.46 and p0 = 0.93 (Fig. 3.20a, inset).

For a smaller 39-tweezer array with improved atomic survival and dark transfer efficiency,
the cycle-to-cycle probability is improved to p0 ∼ 0.97 (Fig. 3.20c, upper). We find p0 is
primarily controlled by imperfect transfer to 3P0 (transfer to 3P0 is performed coherently,
as incoherent pumping leads to atomic heating, and increased loss.), decay of the atoms out
of 3P0, and atom survival (Fig. 3.20c, upper). This is because if atoms are not transferred
to 3P0, or if they decay back to the ground state, then they will be ejected from the traps
during the MOT dynamics, leading to loss (Fig. 3.19c).

Traps are ramped down immediately following transfer in order to extend the lifetime of
atoms in 3P0 and limit this effect. However, traps cannot be ramped down arbitrarily low as
the probability for atoms to remain trapped, regardless of electronic state, decreases below
a certain trap depth (Fig. 3.20c, upper) due to their temperature [188]. Ultimately we find
an optimum of these effects at a trap ramp down factor of 1/60 (a trap depth of 8 µK); at this
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Figure 3.20: Continuous and record enhanced loading with DSEL. a. DSEL results in a
95-tweezer array. Shown in the main plot are histograms of the filling fraction of the array
after each successive repeated loading cycle. The zeroth cycle is the standard, non-enhanced
loading with a loading fraction of 45.88(5)%, while after five DSEL cycles a maximum of
84.02(4)% is achieved. Inset: Average and standard deviation of the filling fraction as a
function of loading cycle (markers), compared against the prediction from Eq. (3.11) based
on a per-cycle loading fidelity of 0.46, and a cycle-to-cycle survival probability of 0.93
(pink line, see text). b. Exemplary single-shot fluorescence images from a single set of
DSEL cycles, showing the largest-achieved 91 atom array. Sites above the atom-detection
threshold are circled in black, while those below the threshold are circled in blue. Note that
atoms are additionally rearranged to the middle of the array between each cycle, though this
is not required. c. Cycle-to-cycle survival (red markers) is limited by imperfect dark-state
transfer fidelity (blue fill), dark-state lifetime (purple line), and vacuum-limited survival
(open markers) during the reloading cycle, here 280 ms; x-error bars indicate uncertainty
in the exact ramp-down trap depth due to a fluctuating bias on a photodiode used for
stabilization. The combination of these effects is shown as a pink line. An optimum in
survival emerges at a ramp-down factor of 1/60th (a trap depth of 8 µK). At this trap depth,
the probability of reloading an already occupied tweezer is ≲0.1% (bottom). Data in c are
taken in a 39-tweezer array with higher fidelity survival and dark-state transfer compared to
the 95-tweezer array in a and b.

trap depth we additionally find the probability of tweezer reloading is ≲0.1% (Fig. 3.20c,
lower), limiting the probability for new atoms to be loaded into already occupied traps.

Having demonstrated DSEL experimentally, in Fig. 3.21a we plot the results of Eq. (3.11)
as a function of total number of cycles for various p0 at a fixed f0 = 0.5, and include the
infinite cycle limit of:

f̄(∞) = f0
1

1− (p0 − f0)
. (3.12)
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Figure 3.21: Limits of DSEL. a Predicted total filling fraction from Eq. (3.11) with
varying number of DSEL cycles, κ, and a fixed per-cycle filling fraction, f0 = 0.5. b
Total filling fraction after DSEL for various cycle numbers, per-cycle filling fractions, f0,
and cycle-to-cycle survival probability, p0; f0 values greater than 0.5 are achievable by
combining DSEL with existing methods for directly controlling the collisional processes
during loading [104, 173–177].

We find that the final filling fraction saturates, with the saturation level varying with p0.
To understand this behavior, we plot the filling as a function of p0 for 1, 5, and infinite
cycles in Fig. 3.21b. There we show the results for various f0 ranging from 0.3 to 0.9, given
that f0 can be increased with existing methods for enhanced loading based on control over
light-assisted collisions [104, 173–177].

In the many cycle limit, we find that DSEL is limited primarily by p0; for p0 approaching
1, Eq. (3.12) reduces at lowest order to f̄(∞) ≈ 1 + (p0 − 1)/f0. Even with perfect initial
loading (f0 = 1), this further simplifies directly to f̄(∞) ≈ p0. On the other hand, if p0 = 1

then f̄(∞) = 1, no matter the value of f0. Intuitively, this is because the gain from DSEL
stems from accurately learning information from atomic imaging to reduce loading entropy.
If that information is erroneous, i.e. if p0 is low, then there can be relatively little gain (and
if p0 < f0, applying DSEL can even lead to a loss of atoms). On the other hand, the gain is
maximized when the information gained from imaging the array is most accurate, i.e. when
p0 is maximized. With state-of-the-art imaging survival [85], dark-state transfer [34, 119],
and optimized MOT loading times, p0>0.99 is likely achievable.
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3.6.4 Discussion

Though demonstrated here only for the alkaline-earth atom Sr, DSEL is feasible to imple-
ment for both alkali and molecular tweezer arrays (Fig. 3.18b). For the case of laser-coolable
molecules, such as CaF, the MOT is typically transferred to an ODT to increase molecule
densities [180]; molecules are then cooled into tweezer potentials via Λ-cooling on the
|X 2Σ+

1/2, N=1⟩↔|A 2Π1/2, J=1/2,+⟩ transition. In this case, the dark-state for DSEL
could be another long-lived rotational state, such as N=2, which is far-off resonant from
this cooling process1.

In the alkali case, such as with Rb, the dark-states would be a long-lived hyperfine manifold
such as F=1; however, because it is difficult to form the initial MOT without repumping
from these states, it may be necessary to first transfer from the MOT into an ODT, similar
to the molecule case. Atoms can be cooled from the ODT into tweezers using e.g. the
|F = 2,mF = 2⟩↔|F = 3,mF = 3⟩ transition, to which F=1 shelved atoms would be
dark [189].

Loading directly from an ODT may prove beneficial in general, besides the particular
application to the molecular and alkali cases. This is because once the ODT is formed, it
can be moved away while the tweezer array is imaged, and then the two can be overlapped
once more to perform DSEL without the need to repeat the entire MOT sequence. This
could greatly reduce one of the main limitations of DSEL, namely the increased experimental
runtime.

Importantly, DSEL can be implemented with practically no impact on experiment duty cycle
by reusing atoms from one iteration of the experiment to the next. Typical experimental
sequences end in a stage of readout, which can then be followed by transferring any
remaining atoms to the dark-state before preparing the next experimental repetition. This
effectively passes atoms from one experimental iteration to the next by implementing a
1-cycle version of DSEL. Such an approach has since been realized in Ref. [141], which
essentially implements DSEL in a two-dimensional array of strontium atoms for thousands
of cycles.

If a species has internal structure to its dark-state, coherence could feasibly be maintained
within that manifold during DSEL, similar to an approach utilizing dual-species arrays [140].
For instance, the multiple hyperfine sublevels of 3P0 in fermionic alkaline-earth species

1We especially acknowledge discussions with molecule-experts Arian Jadbabaie, Loïc Anderegg, and
Yicheng Bao, and thank them for their insights and suggestions
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could be used to shelve atoms while performing mid-circuit replacement of lost atoms [68,
190].

We emphasize that though here we have implemented DSEL in one dimension, the basic
principle is applicable to arbitrary-dimensional systems, as long as there is sufficient control
over the trap depths of individual traps (or regions of traps) during real-time feedback. This
is possible with either crossed AOD, time-multiplexed, or holographic techniques, as are
typically used for two-dimensional array generation [99, 103, 191–194]. It can also be
achieved with bichromatic trapping potentials [141].

We finally note a natural extension to DSEL by adding more tweezers to the array on each
round of loading. Tweezer arrays are typically limited in scale by available laser power
needed to perform loading and imaging with high fidelity, but following DSEL atoms can
be held in shallow traps, allowing for the total laser power to be redistributed to generate
more total traps, and thus increasing the array size. With such a protocol, effective loading
fidelities greater than 1 (relative to the original number of traps) could be realized, and the
requirement that p0 < f0 could be softened.

In summary, we have proposed and demonstrated a protocol for enhancing the filling fraction
of an optical tweezer array through dark-state enhanced loading. This protocol achieved a
filling fraction of 84.02(4)% in a 95-tweezer array and yielded an array with 91 atoms; to
our knowledge this is the first such enhanced loading demonstrated with a Sr atom array,
and the largest one-dimensional array of atoms in optical tweezers to date. Importantly, our
protocol is scalable, complementary to existing enhanced loading schemes, and species-
agnostic. Ultimately, consistent creation of larger arrays will have benefits for metrology,
quantum simulation, and tests of quantum advantage in optical tweezer systems.
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CHAPTER 4
Tools of a universal quantum processor

Having described the Rydberg Hamiltonian, its error sources, and means to mitigate those
errors, much of the rest of this thesis will focus on what we can learn from such a system
operating in an analog context. However, importantly, Rydberg atom arrays also can be
operated in a digital modus, where continuous operations are replaced by a discrete, gate-
based approach. While such digital quantum computers are currently limited by noise and
compilation times, with the advent of error correction such systems will be universal in their
capabilities. Even in the modern day, Rydberg atom arrays operating as digital quantum
processors have shown impressive results [37–40] thanks to a slew of utilities such as high-
fidelity single- and two-qubit gate operations [39, 74, 75, 95, 104, 154, 195], mid-circuit
measurement [32, 40, 106, 139, 196, 197], and more.

In this chapter we will demonstrate these tools of universal quantum computation. In almost
all prior cases with atoms, such demonstrations were performed with a long-lived hyperfine
or nuclear qubit, while in our case our long-lived qubit will be composed of the absolute
ground state and the metastable clock state. This is thus an optical qubit, which brings with it
a distinct set of challenges and advantages. This is especially important because such optical
transitions, especially in strontium [110, 111], constitute the basis for state-of-the-art optical
atomic clocks [198]; by combining a digital quantum processor with such a pristine clock
system, even greater metrological capabilities could be achieved [28, 39, 136, 147, 199–
201].

Specifically, we first demonstrate arbitrary, parallel, single-site addressing for an optical
transition via sub-wavelength controlled moves of tweezer-trapped atoms [28]. Our method
is robust, and easily scalable to larger arrays while maintaining high-fidelites of ∼0.999,
and with essentially zero crosstalk. Next we will demonstrate mid-circuit measurement
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and state shelving by coherently manipulating the motional degrees of freedom in optical
tweezers [32]. Our method is applicable to all tweezer platforms, but especially important for
bosonic strontium arrays due to the lack of otherwise readily available shelving states. Then,
we will demonstrate two-qubit gates on pairs of optical qubits via transient excitation to
Rydberg states, and will show the formation of optical Bell pairs. We will combine these two-
qubit gates with our motional shelving techniques to generate hyper-entanglement [202, 203]
by preparing a simultaneous Bell state of motional and optical qubits. This is the first such
demonstration of hyper-entanglement for any matter-based (i.e. non-photonic) qubit, and
could be the basis for a number of important tasks in quantum information science.

Finally, we combine this diverse and universal set of tools to demonstrate applications
in quantum metrology for potentially exponentially improving the capabilities of atomic
clocks [28]. First, we use our arbitrary local addressing scheme to implement single-shot,
dual-quadrature readout of Ramsey interferometry using two atomic ensembles simultane-
ously, and show an enhancement of the usable interrogation time at a given error probability.
This scheme can be even further improved through the use of many more ensembles of atoms
evolving with different phase sensitivities, as has been long studied theoretically. Realizing
such schemes could be done in many ways, including local dynamical decoupling [200, 201],
mid-circuit measurement and reset [200, 201], and via creation of registers of entangled
states [147, 199]. We first show the local dynamical decoupling technique, using local
single-site control to evolve three ensembles with variable phase sensitivities. Then we
discuss our ongoing work to combine this technique with entangled states of clock qubits,
and show a proof-of-principle [39].

Ultimately our results demonstrate that digital quantum processing is not only viable in
strontium-based atom arrays, but is practical and immediately useful. We foresee that in
future years as this digital processing modus becomes more refined, state-of-the-art quantum
metrology may be performed using versions of our techniques demonstrated here.

4.1 LOCAL ADDRESSING WITH ATOM SHIFTS

Here we show local control of optical transitions in a tweezer array clock [69, 112, 186] by
using rearrangement techniques [37, 81, 89, 204–206] on atoms in superposition states to
precisely control the position-dependent phase imprinted by light-matter interaction. The
scheme [187, 207] is experimentally simple and highly robust as it relies solely on the
relative stability of tweezer positions and does not involve any auxiliary addressing beams.
Using this technique, we demonstrate arbitrary, parallel, single-site-resolved optical qubit
rotations with high fidelity. Later in this thesis we will discuss this approach in the context of
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Figure 4.1: Single-site addressing with movement-induced phase shifts. c. We consider
two atoms individually trapped in optical tweezers, both initially in the electronic ground
state. Traveling light emitted from a global laser beam applies a π/2 rotation to both atoms,
and is disabled, but remains phase coherent with the atomic transition. One of the atoms is
then moved by half the laser wavelength, λ, from its initial position, rotating the effective
local laser frame by an angle ϕ = π. When the laser drive is restarted to apply another π/2
pulse, the moved atom now rotates back to the ground state, while the static atom rotates to
the excited state. c. Control over the atom displacement, ∆x, is equivalent to arbitrary local
rotations of the laser drive by ϕ = k∆x about the Ẑ-axis. c. We implement this protocol
with an array of 88Sr atoms utilizing the ultra-narrow 1S0↔3P0 transition with λ = 698.4
nm for global driving. d. Top: with an array of 39 tweezers in one dimension, we apply the
protocol in b, shifting every odd site (purple markers) in the array while leaving all even
sites static (blue markers) during the dynamics. Bottom: a sinusoidal oscillation emerges
in the excited state population of the shifted sites, with a period of 699(1) nm.

building better atomic clocks, but our technique for implementing local, parallel rotations
about arbitrary axes might also find use in neutral atom quantum computing platforms
utilizing optical transitions [68, 187], where local coherent control of optical qubits has
not been demonstrated before this work. More generally, our results point to a future
of fully programmable neutral atom optical clocks that incorporate features of quantum
computers [39].

The basic principle of our scheme is illustrated in Fig. 4.1a. We consider two atoms both
initially in the ground electronic state, |0⟩, interacting with a global laser beam characterized
by wavevector k = 2π/λ, and wavelength λ, propagating along the array axis. With the
globally applied laser, we create an equal superposition state of |0⟩ and the excited state, |1⟩;
in a Bloch sphere picture, this corresponds to a π/2 rotation around the x-axis (X̂(π/2)).
The laser beam is then extinguished with an optical modulator, but remains phase coherent
with the atomic transition. Using atom rearrangement techniques [37, 81, 89, 204–206],
one of the atoms is shifted from its original position by ∆x, applying an effective phase shift
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of ϕ = k∆x (see Eq. (4.1)). In Fig. 4.1a, we first consider the special case of ∆x = λ/2,
or equivalently a π rotation around the z-axis (Ẑ(π)) for the shifted atom (Fig. 4.1a).
Subsequently, we apply a second global X̂(π/2) rotation with the same laser as before; the
shifted atom now rotates back to |0⟩ because of the movement-induced phase shift, while
the unmoved atom completes its rotation to |1⟩.

The main principle behind this scheme is a locally controlled change of the relative phase
between the atomic dipole-oscillation and the phase of the laser while the atom is in a
superposition state; in essence, our scheme realizes a locally controlled Ramsey sequence
with global driving. Similar techniques have been used in the context of ion trap experiments
with two ions [207], but not in a scalable fashion, as is possible with tweezer arrays [187].

We show an experimental demonstration with our 88Sr optical tweezer array experiment [29,
69, 99]. We employ a one-dimensional array of 39 optical tweezers generated via an acousto-
optic deflector (AOD) driven by an arbitrary waveform generator (AWG). This allows for
precise control over the relative tweezer positions at the nanometer level, enabling arbitrary
Ẑ(ϕ) rotations (Fig. 4.1b). Global driving is performed on the ultra-narrow 1S0↔3P0

optical clock transition with a transition wavelength of λ = 698.4 nm (Fig. 4.1c).

In a first experiment, we apply an X̂(π/2) operation globally to the entire array, then shift
every odd site by the same distance, ∆x, apply another global X̂(π/2) rotation, and finally
measure the excited state population in both the shifted and unshifted sub-arrays. The
excited state population of shifted atoms, Ps, shows sinusoidal oscillations with a period of
699(1) nm as a function of ∆x, consistent with ϕ/2π = ∆x/λ, where λ is the transition
wavelength. The quoted error on this measurement is purely statistical, and ignores potential
systematic error arising from the independent distance calibration performed with an optical
resolution test target. We note that the present measurement is likely a far more precise and
accurate distance calibration tool, and could find use as an effective in-situ laser-based ruler
with applications for precision determination of distance-dependent inter-atom effects, such
as Rydberg interactions.

To quantify the phase shift fidelity, we focus on a narrow region around ∆x = λ, corre-
sponding to a Ẑ(2π) rotation (Fig. 4.2a). A quadratic fit to Ps(∆x) shows a maximum value
of Ps = 0.9940(5) (not corrected for state preparation and measurement (SPAM) errors),
consistent with the mean excited state population of unshifted atoms, Pu = 0.9942(2), in
the same range. Correcting for the bare X̂(π) fidelity (red dashed line) of 0.9956(1) shows
the shift operation is performed with a fidelity of 0.9984(5). We note that applying SPAM
correction on the bare fidelities maintains the shift fidelity largely unchanged as it is calcu-
lated from the ratio of the two. The ratio of the shifted to unshifted fidelities is 0.9998(5),
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Figure 4.2: Fidelity of local addressing c. Focusing on the region around ∆x = λ (grey
shaded region in Fig. 4.1d), we find the shifted atom shows no measurable loss in fidelity
compared to the unshifted atoms. Correcting for the bare fidelity for performing a global
X̂(π) rotation (red dashed line, 0.9956(1)), we find the shift operation is performed with a
fidelity of 0.9984(5). The ratio of the shifted to unshifted fidelities is 0.9998(5), suggesting
that the dominant source of error comes from global laser phase noise during the finite wait
time required to perform the shift, rather than the movement itself. c. The shift to apply a
Ẑ(2π) rotation can be performed without noticeable loss of fidelity down to shift times of
∼20 µs; data in e are taken with a shift time of 32 µs, in addition to an extra wait time of
34 µs to account for finite jitter in the control timings. c. From data in Fig. 4.1d, we find
the crosstalk to the static atoms is 0.1(2)%, consistent with 0. To verify this, we check for
any residual linear phase shifts by repeating that experiment with a global phase shift of
π/2 on the final Ramsey pulse which yields linear sensitivity to small phase shifts. We find
the unshifted atom’s phase to still be consistent with zero over a range of more than one
wavelength.

suggesting that the dominant source of error comes from global laser phase noise during
the finite wait time required to perform the shift, rather than the movement itself. We study
the fidelity to perform the Ẑ(2π) rotation as a function of the shift time (Fig. 4.2b), and
find that the fidelity remains constant down to shift times of ts = 20 µs; data in Fig. 4.2a
were taken with ts = 32 µs, plus an additional 34 µs of wait time to account for jitter in the
subsequent control timings. Timing improvements could be made by implementing more
sophisticated atom movement profiles [208]. Importantly, for all shift distances in Fig. 4.1d,
the excited state population of the neighboring unshifted atoms is nearly constant, showing
crosstalk of only 0.1(2)% (Fig. 4.2c).

Arbitrary rotation patterns can be imprinted on the array by shifting all of the atoms by
varying distances such that rotations about the z-axis with tweezer-resolved phase, ϕj , are
applied (Fig. 4.3a). We show the results of time-resolved Ramsey spectroscopy for four
different choices of single-site addressing patterns, demonstrating arbitrary, site-revolved,
and parallel Ẑ rotations (Fig. 4.3b). Such addressing patterns could be used to negate vari-
ations in the transition frequency across the array, for instance due to gradients in magnetic
field or from the finite differences in tweezer wavelengths as generated by an AOD [69].



83

Figure 4.3: Arbitrary, parallel, local rotations. c. We implement site-resolved phase
shifts, ϕj , during the dark time, t, of standard Ramsey interrogation by inserting arbitrary
and parallel shifts of various distances to the array of atoms. c. Results of this operation
as a function of Ramsey time (x-axis) for different tweezers in the array (y-axis). The
corresponding programmed phase-shift pattern is shown on the right of each subfigure. c.
By applying multiple global X̂(π/2) pulses (grey blocks), in tandem with local movement
shifts (same color scale as in a), arbitrary local rotations can be performed. We show a
demonstration by rotating an array of six atoms, initially in the |0⟩ = |−Z⟩ state, in parallel
to the six cardinal states (|−Z⟩, |+Z⟩, |−Y ⟩, |+Y ⟩, |−X⟩, |+X⟩), achieving an average
fidelity of 0.984(2) (blue bars), and 0.987(2) after state preparation and measurement
(SPAM) correction (tan bars), limited by global X̂(π/2) fidelity and decoherence during
the time needed for movement. d. Bloch sphere visualizations of the states measured with
quantum state tomography in c.

Combining these single-site Ẑ(ϕj) rotations with a series of global X̂(π/2) pulses allows
for rotations about any axes, not just the z-axis. As a demonstration (Fig. 4.3c,d), we choose
a set of 6 contiguous atoms, initially in the ground state (denoted here as |−Z⟩), and rotate
them each in parallel into the six states |−Z⟩, |+Z⟩, |−Y ⟩, |+Y ⟩, |−X⟩, |+X⟩, with an
average fidelity of 0.984(2) (0.987(2) SPAM-corrected), as determined by state tomography
(described below). The dominant limitations to this value are likely from global drive
infidelity and dephasing during the finite shift times. We further note that this technique
can readily be extended to realize robust pulses not just to realize the cardinal states [209]
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We note that while here we have demonstrated our protocol on a one-photon optical tran-
sition, it could be used to induce a similar effect for two-photon Raman transitions, for
instance between hyperfine states, assuming the two beams are counter-propagating. Fur-
ther, the movement-induced phase-shifts employed here rely solely on a relative change
in tweezer position, in contrast to alternative techniques that apply additional addressing
beams [38, 154, 172, 210, 211], where the phase shift is proportional to a local address-
ing beam’s intensity. While the addressing beam intensity and alignment are prone to
drifts on experimental time scales, relative atom movements are ultimately derived from
the radiofrequency electronic output of an AWG, which is precise, consistent, and robust.
We emphasize our results did not utilize noise-compensating composite pulse sequences
and that all data were taken without any system realignments or recalibrations of the atom
movements.

4.1.1 Light-matter interaction Hamiltonian

After applying the rotating-wave-approximation, the light-matter interaction Hamiltonian
considered in this work is given by [129]

Ĥ =
ℏ|Ω|
2

(|0⟩⟨1|eikx + |1⟩⟨0|e−ikx), (4.1)

where Ω is the Rabi frequency, k is the global laser wavevector, x is the atomic position
along the beam propagation axis, |0⟩ is the ground state and |1⟩ is the excited state. Atom
displacements by ∆x correspond to phase shifts of ϕ = k∆x, as described in the main text.

Note the choice of the phase for the initial X̂(π/2) rotation is a local gauge freedom, and
thus all atoms in the array can be said to experience the rotation about the same local
axis, e.g. the x-axis, despite the spacing between atoms generically not being perfectly
commensurate with the driving wavelength. When the atom is shifted, it can be thought of
as changing X̂ → X̂ cos(ϕ) + iŶ sin(ϕ). For the case of only a single global X̂ rotation
after the movement, this is equivalent to an effective Ẑ(ϕ) rotation of the quantum state;
however, in general if multiple global X̂ operations are performed, the equivalence with an
effective Ẑ rotation breaks down.

4.1.2 Operation fidelities

Error modeling suggests that the global X(π) fidelity of 0.9956(1) is primarily limited by:
measurement errors (see below), finite temperature (the average motional occupation of the
atoms along the radial axis is n̄∼0.2, leading to a 2× 10−3 infidelity)), and frequency noise
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on our laser; the latter of these we believe is also the dominant limitation to our Ramsey
coherence time. The Rabi frequency is ∼2.5 kHz for all measurements in this work, which
allows for fast operations compared to the timescale of decay from 3P0 (∼550 ms [33]).
Measurement errors are dominated by the vacuum-limited atom survival during imaging
(0.9995(4)), the imaging fidelity for detecting the presence of an atom (0.9997(2)), and
the likelihood of ejecting atoms in 1S0 from the tweezers to perform state discrimination
(0.9967(5)) before the final imaging. We note that not all of these measurement errors
contribute equally, and their relative importance generically depends on the amount of
excited state population in the measured state.

The wavelength of the oscillation, λosc in Fig. 4.1d is found from fitting the excited state
population of shifted atoms with a sinusoid of the formA sin(2π∆x/λosc)+B, from which
we determine the quoted value of λosc = 699(1) nm. Per our independent calibration of
distances within the array, we expect there is an additional∼5 nm of systematic uncertainty
on this measurement. Further systematic uncertainty could arise if the beam propagation is
not perfectly coaxial with the array. The crosstalk fidelity of 0.1(2)% is found by fitting the
unshifted atom excited state populations in Fig. 4.1d with a sinusoid of the same period as
was determined for the shifted atoms; the quoted crosstalk is then the amplitude, A, of this
sinusoid. We also check for any residual linear phase shifts by repeating this experiment
with a global phase shift of π/2 on the final Ramsey pulse which yields linear sensitivity to
small phase shifts (Fig. 4.2c). We find the unshifted atoms phase to still be consistent with
zero over a range of more than one wavelength.

To determine the fidelity of arbitrary local rotations (Fig. 4.3c), we perform quantum state
tomography by reading out the produced states in the x-, y- and z- bases by rotating the
state with a global π/2 pulse of a given global laser phase as necessary. The fidelity is
then estimated with F = ⟨ψtarget|ρ|ψtarget⟩, where ρ is the experimental state determined by
quantum tomography. Due to the choice of the six arbitrary rotations, the fidelity estimation
coincides with the population of the excited state or the ground state along the corresponding
axis. For instance, the fidelity of |+Y ⟩ is determined by the population of the excited state
when the prepared state is rotated and measured in the y-basis. In order to access the
intrinsic infidelity induced by arbitrary local rotations, we extract SPAM errors and correct
them. SPAM sources are dominated by the same detection infidelities as for the global
X̂(π/2) fidelity (see above), and the finite SPAM-corrected readout π/2 pulse fidelity of
0.9982(4).
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4.2 MID-CIRCUIT READOUT

Over the last few years, tremendous efforts have been pursued in a wide array of quantum
platforms to develop efficient quantum information carriers [145, 212–215]. In particular,
for neutral atom based platforms, quantum information has so far been encoded in electronic
or nuclear states [36, 75, 95, 216]. However, there is another manifold in which information
can be encoded: the motional state of a trapped atom. Here we demonstrate how mid-circuit
measurement can be accomplished in arrays of strontium atoms via shelving coherent spin
superposition states into the motional manifold where they are protected for tens or even
hundreds of milliseconds.

The motion of atoms trapped in nearly-harmonic potentials, such as optical tweezers, is
quantized [217, 218], and acts essentially as a bosonic degree of freedom, similarly to aux-
iliary bosonic states in ion traps [219, 220] and superconducting circuits [221, 222]. Recent
experiments exploiting this resource have demonstrated squeezing of motional states [217]
and creation of a quantum register of fermion pairs [218]. Unlike electronic or nuclear
states, motional states do not interact directly with electromagnetic fields and are thus ro-
bust to environmental effects [223]. Further, their bosonic nature may be used to implement
quantum error correction schemes with bosonic degrees of freedom such as Gottesman-
Kitaev-Preskill (GKP) codes [220, 224], or as a resource for studying lattice gauge theo-
ries [225, 226].

Building from the efficient preparation of arrays of motional ground state atoms in Section
3.5, we demonstrate key tasks in quantum information processing using motional states.
We first demonstrate coherent transduction of electronic superposition states into the two
lowest energy motional states along a single tweezer axis, with a one-way fidelity of
0.993(3), post-selected on erasure detection. We then combine this with local addressing
via selective trap depth control [33] in order to perform mid-circuit readout of a tweezer
array [106, 139, 196, 197, 223]. To our knowledge, this is the first such demonstration on
an optical transition; furthermore, it relies only on local tweezer depth control, and does
not require multiple species [223], nuclear states [106, 197], or a cavity [139]. Importantly,
as part of this study, we also demonstrate mid-circuit erasure detection [75], utilizing
metastable motional state superpositions which have a coherence time much longer than
our mid-circuit detection time.

Assuming perfectly harmonic trapping, the manifold of motional states for a single principal
axis acts as a bosonic degree of freedom with an infinite ladder of states. We will focus on
the case of controlling only a single motional degree of freedom, and in particular focus
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on the lowest two levels, which we refer to as the motional qubit. The isolation of these
two motional states is achieved due to driving sideband transitions which only couple the
motional ground state to the first excited state, and therefore higher energy levels are not
populated. Extensions of our scheme and results are readily generalized to control over all
three axes, and to control over higher energy states in the motional manifold, which may
enable various new applications [220] not explored directly in this work. We will use a trap
frequency (equivalently, motional qubit energy spacing) of ω/(2π) ≃ 35.5 kHz.

4.2.1 Preparing motional superposition states

We first show the preparation of a coherent superposition state of the motional qubit via
transduction from an optical qubit (Fig. 4.4a). Essentially, the preparation and readout
of this state is a form of Ramsey interrogation, with the addition of spin-motion coupling
inserted into the Ramsey dark time. We first perform ECC to isolate atoms in |0, ↑⟩. We then
form a spin-superposition state by performing a π/2 pulse on the carrier, and transduce this
superposition onto the motional qubit by performing spin-motion coupling via sideband
driving. This yields the state |+, 0⟩ = 1√

2
(|0⟩ + |1⟩) ⊗ |↑⟩. We then leave this state

unperturbed for a duration τ during which it will evolve coherently, and then read its state
by reversing the sideband and carrier driving.

We plot the resultant signal, given as the probability P↓ for the atom be in |↓⟩ after the
entire sequence (Fig. 4.4b). We observe Ramsey oscillations at a frequency of 35.3(3) kHz,
consistent with the programmed trap frequency, as is expected for the motional qubit.

Importantly, after the transduction, a coherent motional qubit state is sensitive to dephasing
largely only from noise on the trapping laser power (which controls the relative qubit
energy spacing). This is in contrast to optical qubits, which may dephase due to noise on
the addressing laser frequency, often limiting the coherence time for optical qubits based on
ultranarrow transitions [69]. We demonstrate this insensitivity by fixing τ = 100µs, and
then vary the laser phase between each preparation or readout pulse (Fig. 4.4c). We observe
that P↓ is apparently insensitive to laser phase variation between the two sideband pulses
(green points), while the atom is in a motional superposition state. By contrast, significant
sensitivity is observed with respect to phase variation between the carrier and sideband
pulses (red and blue points and lines), as during that time the atom is in a sensitive optical
superposition state. In practice, however, the time between the carrier and sideband pulses
is short enough to avoid significant dephasing.

Thus, our results show that motional levels can be used to store information in a subspace
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Figure 4.4: Spin-motion transduction and mid-circuit readout. a, Sketch of the protocol
used to transfer a coherent superposition of pseudo-spin states into a superposition of
motional states. After cooling the atoms and preparing the spin-superposition state |0,+⟩,
we apply a sideband pulse which drives the |0, ↓⟩ → |1, ↑⟩ transition, allowing us to obtain
the motion-superposition state |+, ↑⟩. We then revert the process in order to read out the
coherence of the created state. b, Probability to obtain the atom in |↓⟩ as a function of holding
time in |+, ↑⟩. We observe an oscillation with frequency 35.3(3) kHz, consistent with our
trapping frequencyω/(2π) ≃ 35.5 kHz. c, Probability to obtain the atom in |↓⟩ as a function
of the phase difference between the pulses in a. The atom is sensitive to the laser phase
while in a pseudo-spin superposition state. However, when in the motion-superposition
state |+, ↑⟩, the atom is not sensitive to the laser phase, and is hence insensitive to laser
phase noise. d, Sketch showing local pseudo-spin coherence preservation using motional
state shelving. We prepare the |0,+⟩ state and locally shelve some atoms into |+, ↑⟩ by
lowering their trap depth [33] and applying site-selective sideband drive. We detect atoms
in |↓⟩ to project the unshelved atoms into |↓⟩ or |↑⟩. The shelved atoms are not affected
by the detection, hence the coherence is preserved within the motional states. e, Obtained
pseudo-spin coherence for the shelved atoms after the sequence described in d. We obtain
a bare one-way transduction fidelity of 0.943(3), further increased to 0.993(3) with erasure
detection and excision. f, Motional coherence in an echo sequence as a function of shelving
time. We obtain a typical 1/e coherence time of ∼ 100ms, which is long compared to our
fast detection time of 24µs. Error bars represent the standard error of the mean.

that is insensitive to phase noise [115] on the laser which drives the optical qubit transition.
Other extrinsic noise sources, such as environmental magnetic and electric field noise
should behave similarly, assuming they minimally affect the trap frequency. This overall
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insensitivity makes the demonstrated motional qubit a promising storage subspace for
quantum information, which we discuss in the following.

4.2.2 Mid-circuit readout with motional state shelving

Having demonstrated our capability to prepare motion-superposition states, we now show
that this can be used to perform mid-circuit readout [106, 139, 196, 197, 223] (Fig. 4.4D),
which is a necessary step in error correcting codes [227], and which enables various
near term applications such as measurement-based generation of long-range entangled
states [228, 229] and enhanced metrology [200].

To do so, we first divide the atom array into two ensembles A and B. We apply a global
carrier π/2 pulse on both ensembles to prepare the |0,+⟩ state. We then selectively lower
the trap depths in B, while holding A constant [33]. This induces a reduction in trap
frequency for atoms inB, and thus changes the motional qubit energy spacing. We can then
selectively apply sideband driving only to the ensemble B, hence transferring only atoms
in B into the |+, ↑⟩ state [33], leaving A largely unperturbed.

We then apply a global, fast detection of atoms in the electronic ground state [26], which
projects the spin state of atoms in A, while preserving the coherence of atoms in B. We
finally unshelve atoms in B, and read out their coherence (Fig. 4.4e). The shelving and
unshelving procedure is designed to apply a motional echo composed of four sideband pulses
in order to eliminate shot-to-shot fluctuations of the trap depth (Fig. 4.5). We obtain a bare
contrast of 0.79(1) after performing these four sideband pulses, which corresponds to a state
preparation and measurement (SPAM) corrected one-way, optical-to-motion transduction
fidelity of 0.943(3). This fidelity can be further improved thanks to erasure conversion of
atoms in B. If the transduction fails, then atoms in B are detected during the fast image,
which we then excise to obtain an overall contrast of 0.972(10) which corresponds to a one-
way transduction fidelity of 0.993(3). We note that as the fast image has negligible impact
on the coherence of motional states in B, this protocol demonstrates mid-circuit erasure
detection which has only been recently demonstrated with ytterbium atoms in neutral atom
systems [75].

We measure the coherence time of the motional states for atoms in B (Fig. 4.4f) using a
motion-echo sequence, and obtain a typical 1/e time of ∼100ms, which is long compared
to our imaging time of 24µs using our fast detection scheme [26]. This coherence time
is thought to be limited by tweezer-induced Rayleigh scattering and tweezer intensity
fluctuations; we expect these results should be improvable by using better stabilization
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Figure 4.5: Motional-echo sequence. Sketch of the motional-echo sequence used in
Fig. 4.4e, here assuming the phase accumulated during the wait time τ is exactly a multiple
of 2π solely for presentation simplicity.

techniques, although we leave such a study to future work.

These high transduction fidelities, combined with the relatively long motional state coher-
ence time as compared to coherent manipulation and detection duration, make this new
shelving method an appealing alternative to other recently demonstrated schemes for mid-
circuit detection in tweezer-based platforms [106, 139, 196, 197, 223]. As opposed to other
schemes, our method does not require any specific electronic or nuclear structure, besides
the presence of a sideband resolved transition, and is applicable for alkaline-earth as well as
both molecular and alkali species. Further, so far the demonstrated schemes for mid-circuit
readout require an auxiliary laser to address specific atoms in the array. In our case, the
single-site addressability only requires single tweezer depth control [33], which is a built-in
feature of most tweezer platforms. We note this is fundamentally different than methods
which protect atoms from imaging light via detuned narrow-line imaging [102], and offers
many distinct advantages we discuss below.

4.2.3 Motional coherence and motional-echo sequence

Here we describe the motional-echo sequence we use for the results presented in Fig. 4.4e.
The sequence is similar to the one presented in Fig. 4.4a, and is further detailed in Fig. 4.5.
In the absence of such an echo sequence, we find relatively short motional coherence
times of up to ∼5ms, limited by both trap frequency inhomogeneities across the array, and
shot-to-shot fluctuations in trap frequency.

The scheme proceeds as follows: (1) we prepare the motion-superposition state |+,↑⟩ as
described in the main text. (2) The state is then allowed to evolve for a duration τ . (3)
We then convert the state back into the electronic manifold, and apply a carrier π-pulse,
which exchanges the populations in |↑⟩ and |↓⟩. (4) The state is then transduced back into
the motional manifold, meaning that effectively we have exchanged the populations in |0⟩
and |1⟩. (5) The state then evolves for time τ , realizing effectively a standard spin-echo
sequence. Erasure-excision is performed on this sequence by performing a fast image just
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before steps (2) and (5), and post-selecting on detected atoms.

The motional-echo sequence used to obtain the results of Fig. 4.4e consists of four sideband
pulses. In order to derive the one-way transduction fidelity FOW = 0.993(3) quoted
in the main text from the bare measured contrast of Ftot = 0.972(10), we assume that
each sideband pulse is independent from the previous ones, meaning Ftot = F 4

OW. This
assumption is reasonable as we perform erasure detection between sideband pulses, which
both suppresses any potential coherent superposition between |0,↓⟩ and |1,↑⟩, and also
ejects any atom left in |↓⟩.

Finally, we note that the fundamental limit to the motional coherence time would stem from
Rayleigh scattering. This scattering rate was calculated [133] for the fermionic 87Sr to be
about 10−4 s−1 at a trap depth of a single recoil energyU = Er; for comparison we typically
operate at a trap depth of U ≈ 250Er (≈ 1300Er during imaging).

4.3 ENTANGLEMENT AND HYPER-ENTANGLEMENT

As the final tool of our universal quantum processor, we demonstrate entangling gates
between long-lived qubits. In particular, we will use transient Rydberg excitation to entangle
two clock qubits, with applications in quantum computing and quantum metrology, as
we will discuss. In this particular demonstration our entanglement fidelity was limited
to roughly 90% for unimportant technical reasons, but in more recent studies we have
improved the two-qubit gate fidelity to the 0.997 level [39], as measured via randomized
benchmarking.

Further, we will showcase how we can combine multi-qubit entanglement with coherent,
independent manipulation of electronic and motional degrees of freedom to generate a
hyper-entangled state [202, 203, 230], i.e. a state of two atoms which is entangled across
two degrees of freedom. This has the potential to enable various applications such as hyper-
parallel quantum computation [202], entanglement purification [203, 231], or superdense
coding [232, 233]. Further, hyper-entanglement could be used to implement two-copy
interference protocols [234] using a single system, where one copy is encoded in motional
states, and the other one in the electronic degree of freedom. Our scheme is naturally
extensible to control over all three motional axes, allowing up to four Bell states worth of
entanglement (one electronic, three motional) to be stored in a single pair of atoms. Given
the long-lived nature of the motional entanglement, one could perform quantum computation
tasks in the spin degree of freedom, and quantum memory tasks on the motional degree of
freedom.
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Building upon the single qubit control showcased in the previous sections, we now turn
to generate entanglement between motional states of atoms in separate tweezers. We first
demonstrate the preparation of motion-entangled Bell pairs, i.e. two atoms whose center-
of-mass motion is entangled while their spin state is separable. Second, we demonstrate the
simultaneous hyper-entanglement of multiple degrees of freedom per particle [202, 203].
Here, these multiple degrees of freedom are the electronic state of the atoms and their
motion along a single axis.

A natural extension of our work is to use the full bosonic degree of freedom to implement
quantum error correction schemes [220, 224], or to study lattice gauge theories [225, 226].
Further, the controlled entanglement of the motion of atoms separated at mesoscopic dis-
tances could lead to entanglement-enhanced tests of short-length gravitational effects [235].

4.3.1 Entanglement

We entangle the center-of-mass motion of two atoms by combining spin-motion conversion
and spin-spin interactions mediated via excitation to high-lying Rydberg states (Fig. 4.6a).
Starting with two atoms in |0,↑⟩, we first apply a spin π/2 pulse in order to prepare each in
|0,+⟩, for which we denote the two-atom state as |00,++⟩. We then apply a controlled-Z
gate through Rydberg interactions [39, 74, 75, 95, 119]. A final π/4 pulse rotates the state
into the spin-entangled Bell state |00,Φ+⟩ = 1√

2
|00⟩ ⊗ (|↓↓⟩+ |↑↑⟩). We then perform

spin-motion transduction, obtaining a state which is spin-separable, but motion-entangled,
|Φ+, ↑↑⟩ = 1√

2
(|00⟩+ |11⟩)⊗ |↑↑⟩.

We characterize the resulting state by performing a parity measurement on the motional
degree of freedom (Fig. 4.6b). This consists of evolution under the trapping potential for a
variable amount of time, which induces a phase difference between different motional states,
followed by spin-motion transduction for readout. We observe an oscillation frequency of
ω/(2π) ≃ 71.0(5) kHz, consistent with the expectation of twice the trap frequency (green
markers).

We also generate the odd parity Bell state [95] |Ψ+, ↑↑⟩ = 1√
2
(|01⟩+ |10⟩)⊗ |↑↑⟩ by alter-

ing the spin-π/4 rotation to yield the spin entangled state |00,Ψ+⟩ = 1√
2
|00⟩ ⊗ (|↓↑⟩+ |↑↓⟩),

followed by transduction to the motional state. In this case, we do not observe a parity os-
cillation, since the energy gap between |01⟩ and |10⟩ is given only by the small difference
in trap frequency between the two traps (Fig. 4.7).

Combining the contrast of the parity oscillation with the measured populations in the
states |00⟩ and |11⟩, we obtain a motional Bell state fidelity for the state |Φ+, ↑↑⟩ of
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Figure 4.6: Entanglement and hyper-entanglement of motion and spin. a, Sketch of
the protocol used to generate an entangled state of motion. After cooling the atoms and
preparing the pseudo-spin superposition state |0,+⟩, we entangle the spin degree of freedom
via Rydberg interactions, preparing either the |00,Φ+⟩ or the |00,Ψ+⟩ state (see text). We
then apply spin-motion transduction via sideband driving, transferring spin-entanglement
to motion-entanglement, yielding |Φ+, ↑↑⟩, or |Ψ+, ↑↑⟩. b, Parity oscillation measured by
varying the time in |Φ+, ↑↑⟩ before converting back to pseudo-spin states for readout. The
obtained oscillation frequency of 71.0(5) kHz is consistent with twice the trap frequency
2ω/(2π) ≃ 71 kHz, as expected for |Φ+, ↑↑⟩. c, Motion parity amplitude as a function of
time. We observe a Gaussian decay of fidelity with a typical 1/e decay time of 96(5)ms.
d, Sketch of the protocol used to generate hyper-entanglement of both spin and motion.
We prepare the motion-entangled state |Ψ+, ↑↑⟩, and apply a second entangling operation
on the spin degree of freedom, producing the hyper-Bell state |Ψ+,Φ+⟩. In order to read
out this hyper-entanglement, we project the spin component onto |Ψ+, ↑↑⟩, then convert
the motional entanglement into spin entanglement. e, Spin parity oscillation after hyper-
entangling the atoms measured by applying a readout π/2-pulse and varying its phase.
f, Parity oscillation after the spin projection, without (red) and with (green) spin-motion
transduction. The parity oscillation collapses without spin-motion transduction, as the
projection disentangles the spin part. However, the motion entanglement remains intact,
which allows us to recover spin entanglement after performing the transduction.

Fmotion
Bell = 0.75(1) (uncorrected for SPAM errors). Currently, this value is limited by the

bare Bell state generation fidelity in the electronic manifold and the combined transduction
fidelity for both atoms. In more recent results [39] we have achieved an electronic Bell state
fidelity of∼0.997, and thus we expect the motional Bell state to have improved accordingly.

Importantly, the lifetime of motionally-entangled states is relatively long. We quantify
this by measuring the amplitude of the parity oscillation signal as a function of hold time
(Fig. 4.6c). We embed this measurement in a motion-echo sequence, as in the single atom
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case (Fig. 4.5), to remove the effects of shot-to-shot trap variation. We observe a Gaussian
decay, with a 1/e decay time of 96(5)ms. This coherence time is similar to the one obtained
for the single-atom motional superposition case, and we expect this also to improve through
better trap intensity stabilization.

These results demonstrate Bell pair generation of motional states in separate traps spaced by
distances much larger than the spatial extent of the atomic wavefunction; in our particular
implementation, traps are separated by ≈ 3.3 µm, while the ground state wavefunction
spread along the array axis is only≈60 nm. To our knowledge, this is the first demonstration
of motional Bell pair generation for neutral atoms in general, following earlier work with
ions [236].

4.3.2 Hyper-entanglement

Using this versatile control we can go one step beyond pure motional entanglement, and
demonstrate hyper-entanglement of motion and electronic state. In a hyper-entangled state,
more than a single degree of freedom across two atoms is entangled, yielding a larger
Hilbert space with various applications such as entanglement purification[203, 231], hyper-
parallel quantum computation [202], or superdense coding [232, 233]. To date, such
hyper-entangled states have only been realized utilizing multiple degrees of freedom in the
state of a photon [203].

To accomplish this task, we prepare the motion-entangled state |Ψ+, ↑↑⟩, and then apply a
second entangling operation on the electronic degree of freedom. As opposed to hyperfine
or nuclear qubits, the Rydberg drive couples nearly identically to both levels of the motional
qubit, up to a detuning δ ≃ 2π × 35 kHz that is much smaller than the Rabi frequency
Ω ≃ 2π×3.5MHz applied. The gate thus acts on the electronic degree of freedom, leaving
the motional state largely unchanged, generating the hyper-Bell state |Ψ+,Φ+⟩.

To show that entanglement coexists on the two degrees of freedom, we first measure the spin
parity and population (Fig. 4.6e). We obtain an entanglement fidelity F spin

Bell = 0.855(7). To
show the simultaneous motional entanglement, we perform our fast imaging procedure [26]
to project the |Ψ+,Φ+⟩ state onto |Ψ+, ↑↑⟩ or |Ψ+, ↓↓⟩ with equal probability. Atoms in
|↓⟩ have a low probability of surviving the fast imaging [26], so in the following we only
consider pairs projected into |Ψ+, ↑↑⟩.

We first verify that no spin entanglement remains by measuring a null spin parity (Fig. 4.6f,
red markers). We then apply spin-motion transduction, and again recover a parity oscillation
signal (green markers), indicating that the motion-entanglement was preserved. We obtain
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Fmotion
Bell = 0.76(1). Even with the complications of the hyper-entanglement sequence,

this value is comparable to the one obtained using the sequence described in Fig. 4.6a,
indicating that Rydberg entanglement and spin projection do not appreciably affect motion-
entanglement.

4.3.3 Details of the two-qubit Rydberg gate

The controlled-Z (CZ) gate is realized by a global excitation in the Rydberg blockade
regime with a time-optimal pulse [74, 75, 237, 238]. We use a single-photon excitation
to a Rydberg state (5s61s 3S1) of two atoms spaced by 3.25 µm with a phase modulated
field. A 500G magnetic field perpendicular to the |↓⟩ → |↑⟩ laser beam propagation axis is
applied throughout the sequence, enabling high Rabi frequency on this transition. This high
magnetic field results in a reduction of the Rydberg interaction strength as compared to low
field conditions [29], and we leave an investigation of this effect to future work. We measure
a C6 coefficient of 52 GHz·µm6 and use a maximal Rabi frequency of 2π × 3.6MHz.

For |Φ+⟩, we measure SPAM uncorrected populations P↑↑ + P↓↓ = 0.97(2); and induce
parity oscillations with a final π/2 analyzing pulse where we measure a contrast of 0.89(1),
yielding a SPAM-uncorrected optical Bell state [119] generation fidelity of 0.93(2). We
note that following further optimization [39], we observe a SPAM-corrected controlled-Z
fidelity 0.9935(10) in a randomized benchmarking [74] sequence, which we have since
improved to the 0.997 level, though do not show those results explicitly here.

4.3.4 Parity oscillations for the motional Bell states

Here we show our results concerning parity oscillations of the odd-parity and even-parity
motion-Bell states |Ψ+, ↑↑⟩ = (|01⟩+ |10⟩)/

√
2⊗ |↑↑⟩ and |Φ+, ↑↑⟩ = (|00⟩+|11⟩)/

√
2⊗

|↑↑⟩. After preparing these states, we perform the experimental sequence described in
Fig. 4.7a, which consists of holding atoms in the motion Bell state for a variable amount
of time, and then reading out the parity signal. We show the results of this experiment
in Fig. 4.7b, for both |Φ+, ↑↑⟩ (blue circles) and |Ψ+, ↑↑⟩ (green circles). We observe a
significant difference in their behavior: for |Φ+, ↑↑⟩, we obtain a parity oscillation (also
shown in Fig. 4.6b), whereas for |Ψ+, ↑↑⟩, we do not observe significant parity oscillations.

This behavior is expected: as both tweezers have approximately the same power and same
trap frequency ω, the energy spacing ℏω of the motional level is the same for both tweezers.

In order to prove that we undoubtedly prepare |Ψ+, ↑↑⟩, we induce parity oscillations by
varying the power of a single tweezer in the pair. The experimental sequence is described
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Figure 4.7: Inducing parity oscillations on an odd-parity Bell state with relative trap
depth variation a, Sketch of the performed experiment to induce the parity oscillation on
|Φ+, ↑↑⟩. b, Parity oscillations following the experiment described in a for |Φ+, ↑↑⟩ (also
shown in Fig. 4.6b), and for |Ψ+, ↑↑⟩, for which we do not observe significant oscillations.
c, Sketch of the performed experiment to induce parity oscillations on |Ψ+, ↑↑⟩. After
preparing the motion-entangled Bell state |Ψ+, ↑↑⟩, we ramp down the power of a single
tweezer for a fixed duration of 640µs. d, Motion parity as a function of the relative trap
depth difference between the two tweezers.

in Fig. 4.7c. After preparing the motion-entangled Bell state |Ψ+, ↑↑⟩, we ramp down the
power of a single tweezer for a fixed duration of twait = 640µs. During this time, the
state evolves as (|01⟩+ eiδωtwait|10⟩)/

√
2⊗ |↑↑⟩, where δω is the trap frequency difference

between the two tweezers.

After this step, we ramp up the tweezer power to its original value, and read-out the state’s
parity. We repeat this for various trap depth, and show our results as a function of δω/ω
(Fig. 4.7b). We obtain a parity oscillation, indicating that we indeed prepared the |Ψ+, ↑↑⟩
state.

4.4 APPLICATION: METROLOGY

We now demonstrate that access to robust, high-fidelity, single-site operations (Section 4.1)
can enable enhanced sensing protocols for entanglement-free metrology. Further, we discuss
how these protocols can be further improved through the use of mid-circuit measurement
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(Section 4.2) or entanglement (Section 4.3).

Sensors based on quantum probes provide some of the most precise measurements in
science [198, 239–242]. For many such systems, fundamental sensitivity limits can be
improved through entanglement [164, 243–245], but in the presence of noise, a practical
advantage of such schemes is not guaranteed [246, 247]. A complementary approach
studies optimal metrology with entanglement-free quantum control and readout methods.
For both approaches, an important figure of merit is not just the sensitivity to a given
observable, but also the dynamic range over which that observable can unambiguously be
estimated [200, 201, 248].

In the particular case of optical atomic clocks [198], the observable of interest is the
stochastically evolving phase of a laser, θ, acting as a local oscillator, which is mapped into
population imbalance of an ultra-narrow optical transition. The clock stability improves
with the interrogation time, but the phase can only be unambiguously mapped when it
is in the range [−π/2, π/2]; phases outside of this range lead to phase-slip errors, which
limits the attainable interrogation time at a given phase-slip error probability in the case
of local oscillator limited clocks. Optimal readout schemes [200, 201, 249, 250] could
improve the attainable interrogation time exponentially but require local rotational control
over sub-ensembles during the sensing protocol or local mid-circuit readout and reset, both
of which have not been demonstrated prior to our work.

4.4.1 Quadrature readout

Here we show one such proposal [250] experimentally, by splitting the array into two sub-
ensembles using local addressing to perform Ramsey interferometry simultaneously in two
orthogonal bases, X and Y , yielding populations P (x) and P (y). While readout in a single
basis limits the invertible phase range to θ ∈ [−π/2, π/2], readout in both bases allows this
range to be extended unambiguously to [−π, π] (Fig. 4.8a). Consequently, we can afford
a longer Ramsey interrogation time before θ drifts outside of the invertible range, which
would cause a phase-slip error. Note that while the atom number in each quadrature has been
halved, this typically does not increase [200, 250] the quantum projection noise (QPN) [251]
from the dual-quadrature measurement compared to a single-basis measurement (Fig. 4.12).

To implement this dual-quadrature readout, we perform Ramsey inteferometry with the
addition of a Ẑ(π/2) rotation to all odd sites in the array before readout (Fig. 4.8b). The
resultant oscillations in P (x) and P (y) show a π/2 phase shift between the even (X) and odd
(Y ) sites in the array (Fig. 4.8c). For every repeated measurement (indexed by j) at time t
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Figure 4.8: Enhanced sensing with dual-quadrature measurement. a. For a given phase
angle, θ, population measurement in only a single basis, e.g. Y , can only be inverted within
a dynamic range of −π/2 < θ < π/2. By measuring both quadratures, X and Y , this
dynamic range can be doubled to −π < θ < π, allowing for interrogating larger spreads in
phase, such as when measuring for longer times. b. We implement dual-quadrature readout
of Ramsey interrogation by applying local π/2 phase shifts to all odd sites in the array. c.
With single-quadrature readout, the interrogation time is limited due to phase-slips, visible
by the separation between a decay envelope reconstructed from the single-quadrature phase
spread (orange dashed line) and the averaged Ramsey signal (blue and red markers and
lines). The equivalent reconstruction with dual-quadrature readout (green dashed line) is
accurate up to longer times, as will be explained in Fig. 4.9.

we estimate the phase as [200]

θj(t) = arg(z(x)j (t) + iz
(y)
j (t)), (4.2)

where z(x,y)j (t) = (2P
(x,y)
j (t)− 1) and arg is the argument function. We then calculate the

difference, δj(t), of θj(t) from its mean phase (Sec. 4.4.4).

We plot the probability distribution P(δj(t)) in Fig. 4.9a, and observe a continuous growth
of its standard deviation (STD) σ (inset). We stress that we are interested in the distribution
of the laser phase itself, which determines the phase-slip error probability. Hence, we have
subtracted off the contribution from QPN to our experimental data shown in the inset of
Fig. 4.9a (Sec. 4.4.3). We find that the laser phase STD grows with time as a power law
σ = βtα, with α = 0.56(2) which we attribute to a power spectral density composed of
1/f and white frequency noise. If this standard deviation of the laser phase itself becomes
too large compared to the dynamic range, frequent phase-slip errors occur. In Fig. 4.9b we
evaluate the phase-slip probability, ϵ, that the phase has exceeded the bounds [−π/2, π/2]
(in emulation of a theoretical single-basis measurement, black dashed lines in Fig. 4.9a),
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Figure 4.9: Gains from multi-ensemble metrology. a. To perform phase reconstruction,
we measure time-resolved probability distributions of the estimated phase relative to the
mean from dual-quadrature measurement. As the standard deviation, σ, of the phase
distribution grows (inset), the estimated phase begins exceeding the −π/2 < θ < π/2
range for normal spectroscopy (black dashed lines), but is still resolvable via dual-quadrature
measurement. Note that the time-dependent contribution from quantum projection noise
to the standard deviation has been subtracted off in the inset (Sec. 4.4.3). b. We estimate
the phase-slip probability, ϵ, for single- (orange circles) and dual-quadrature (green circles)
measurements by fitting a folded Gaussian to the time-resolved estimated phases in a. The
fit is folded over at the boundaries of the dynamic range to account for the behavior of
phase-slips, as in Fig. 4.8a. For the single-quadrature case, we also estimate the probability
directly from the underlying data (squares), which is in good agreement with the estimate
from fit. Solid lines are the predicted phase slip probabilities from the fit in the inset of a.
This fit is used to estimate decay envelopes in Fig. 4.8c. c. For a given allowable phase-
slip probability, the enhanced dynamic range of the dual-quadrature readout improves the
maximum possible interrogation time. For our particular phase growth profile (inset of a),
the improvement is a factor of ∼3.43.

or [−π, π] (for the dual-quadrature readout); we find that the error probability for the
single-basis case quickly becomes substantially larger at shorter interrogation times.

We characterize the maximum interrogation time, Tmax(ϵ), for which the phase-slip error
probability is still below a threshold ϵ (Sec 4.4.4). We find that Tmax(ϵ) is significantly
increased for the dual-quadrature case (Fig. 4.9c) by a factor of 3.43(13), as determined by
the phase STD growth rate observed experimentally and related to the laser noise spectrum.
Such elongation in the attainable interrogation time can be translated directly to enhanced
stability in a metrological setting. For example, in a zero dead-time optical clock the
stability is proportional to the square-root of Tmax(ϵ), such that we can project an increase in
stability by a factor of

√
3.43 ∼ 1.8 for our particular noise profile. This would constitute a
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practical improvement in phase estimation without increasing the probability of phase-slip
errors, a common problem for entanglement enhanced metrology schemes [199, 247].

4.4.2 Multi-ensemble metrology

Even greater enhancements in dynamic range, and hence clock stability, could be possible
through the use of multiple ensembles with different interrogation times by utilizing fast
QND measurements [252, 253] or by explicitly programming ensembles with different
sensitivities to the global laser phase [200, 201]. In the latter of these protocols, the total
number of atoms is evenly divided into M ensembles, which are each further subdivided
into two sub-ensembles for dual-quadrature measurement. One ensemble is used for normal
phase measurement, while for the rest the free evolution time is reduced by factors of
2−1, · · · , 21−M , or equivalently their effective phase accumulation is reduced by the same
amount. If this procedure is performed correctly, the effective ensemble coherence times
will then be extended by factors of 2, · · · , 2M−1, meaning slower evolving ensembles can be
used to probe for phase-slips in the fastest ensembles. This then allows for phase estimation
over a wider dynamic range beyond [−π, π], and potentially allows for an improved scaling
of the clock stability with atom number [200] at fixed phase-slip probability (Fig. 4.10a).
Such a scheme can be realized through several physical mechanisms, including local mid-
circuit readout, local dynamical decoupling, or by preparing a cascade of progressively
larger GHZ states [199].

To give a simplified analogy, the idea is basically the same as having multiple hands on
a watch: an hour hand to keep track of longer time changes, and a minute hand to more
precisely keep track of shorter time changes. What we have done is essentially build such
a multi-hand clock at the atomic scale. In this analogy, by adding more ensembles, we add
more hands to our watch which keep track of longer (days, weeks, months, years, etc.) or
shorter (seconds, milliseconds, etc.) timescales.

As an outlook, we demonstrate a proof-of-principle of local control techniques towards such
protocols by performing local dynamical decoupling such that three ensembles experience
different effective Ramsey evolution times of T , T/2, and T/4. This is accomplished by
inserting local X̂(π) pulses (using techniques from Fig. 4.1) during the evolution at timeT/4
for the second-fastest ensemble, and time 3T/8 for the slowest ensemble. Each ensemble
is then subdivided further into two sub-ensembles for dual-quadrature readout (Fig. 4.10c).
Resultant Ramsey oscillations versus the total evolution time, T , show a frequency ratio of
1:1.99(1):4.10(4), very close to the desired 1:2:4 ratio.
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Figure 4.10: Local dynamical decoupling towards optimal metrology. a. Clock perfor-
mance can be improved on all time-scales by using multiple hands. b. We split the array
into three ensembles, and perform a local dynamical decoupling (DD) sequence such that
even though the total Ramsey dark time is T , individual ensembles experience different
effective evolution times of T/4, T/2, and T , respectively. The phase of each ensemble is
then measured using dual-quadrature readout. c. Slower evolving ensembles (those which
experience less evolution time) can be used to detect phase-slips in faster evolving ensem-
bles, extending the effective interrogation time of optical clocks. Following the sequence in
b, we find the three ensembles evolve at relative rates of 1:1.99(1):4.10(4) with respect to
the total evolution time, T . d. For a slightly different scheme (not shown), we measure the
contrast of the different ensembles over longer evolution times, which we find scales with the
phase accumulation rate (i.e. the decoherence goes as the number of cycles, as expected).
The demonstrated scheme in b-d is effective for the case of slow frequency noise where the
corresponding noise correlation time is longer than the total evolution time. e. To handle
generic time-dependent noise with shorter correlation times, we envision breaking the total
evolution time into k kernels of length τ , each of which is composed of local dynamical
decoupling and free evolution. In this way, as long as τ is shorter than the correlation
time of any time-dependent noise affecting the system, the different M ensembles (indexed
by m = 0, · · · ,M − 1) can accumulate phase in a correlated manner over the interleaved
Ramsey interrogation periods.

Following this experimental demonstration, we now discuss two limitations (and possible
solutions) of this scheme, specifically related to the frequency noise profile and the atom
number per ensemble. First, for the simplest case of shot-to-shot noise of laser frequencies
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that are otherwise constant during the interrogation, our scheme would allow the clock
stability to be improved exponentially [200] by a factor of

√
2M−1/M ; the factor of

√
1/M

stems from increased QPN in the ensemble used for phase estimation and assumes the
total number of atoms is distributed uniformly across the M ensembles. However, for
more general time-dependent frequency noise, the situation is more complex, requiring a
higher-order pulse sequence [200]. We propose one such pulse sequence in Fig. 4.10e,
by breaking the total evolution time, T , into multiple kernels of length τ . Within each
kernel, each ensemble experiences a combination of local dynamical decoupling and free
evolution, such that the net phase evolution time is T, T/2, · · · , T/2M−1. This scheme
could handle noise profiles where the local phase accumulation period, τ , is shorter than the
correlation time of the noise. We numerically find that exponential scaling of the maximal
interrogation time is then possible up to a saturation point set by the effective decoupling
bandwidth (Fig. 4.13).

Second, multi-ensemble estimation schemes in general require sufficient atom number per
ensemble to be useful [200]. When the number of atoms per ensemble is limited, quantum
projection noise can negate any advantage, i.e. when the error probability in estimating a
phase slip by using a slower evolving ensemble exceeds the actual phase slip probability in
the fastest evolving ensemble. For the present experimental demonstration with N ≈ 6 per
ensemble we do not expect a metrological gain (Fig. 4.13), but we note that a generalization
of our addressing scheme to two dimensional tweezer clock systems [186] is straightforward.
For example, we imagine a realistic scenario of a two-dimensional atom array with column-
by-column control of tweezer positions, such as could be generated with crossed AODs or
an AOD combined with a spatial light modulator. In this case, each pair of columns could
realize one ensemble with dual-quadrature readout. Finally, we note that such exponential
scaling is possible only up to a time-scale where decoherence is dominated by local oscillator
noise. Beyond that, interrogation time will be limited by atomic coherence and ultimately
by atomic state lifetime [110].

In summary, we have used local rotations to interrogate two atomic ensembles simulta-
neously for dual-quadrature readout of a Ramsey interferometry signal with demonstrable
metrological gain. As an aside, we note that our local phase control may also find use
for mapping spatial phase variations (such as Gouy phase) across the clock interrogation
beam, as can be limiting in some metrological applications like compact clocks [254]. More
importantly, we have extended our dual-quadrature work to show a proof-of-principle for
controlling many ensembles with variable sensitivity during Ramsey evolution, a key ingre-
dient of proposals for optimal clocks. Further, these methods could be naturally combined
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Figure 4.11: Simultaneous interrogation with a cascade of GHZ states a. A quantum
circuit for the simultaneous preparation and characterization of GHZ states containing 2j

atoms each, here j = 0, 1, 2. c. Parity oscillations for j = 0, 1, 2 from top to bottom showing
a 1:1.96(6):3.9(1) ratio in phase sensitivity for states of the form |ψj⟩ ∝ |0⟩⊗2j + |1⟩⊗2j .

with metrologically useful entangled states [199, 250, 255] to enable simultaneously high
sensitivity with a large dynamic range. More generally, our results are an important step
towards a fully programmable quantum optical clock based on neutral atoms, which would
incorporate quantum computing techniques towards metrological gains, similar to work
done with ion trap devices [255] but likely in a more scalable fashion. Such a universal
neutral atom clock system would ideally combine arbitrary local rotations, as shown here,
with two-qubit entangling operations for optical transitions [39, 119].

As a first step towards this goal, we utilize the two-qubit entangling gates discussed in
Section 4.3 to realize a cascade of progressively sized GHZ states, which can be used [199]
as the different ensembles in the multi-ensemble metrology schemes [200, 201]. These
results are shown in Fig. 4.11, and expanded upon in great detail in Ref. [39]. In particular
we simultaneously realize three different GHZ states, with 1, 2, and 4 atoms respectively,
utilizing a combination of local and global rotations, along with dynamic reconfigurabil-
ity [37] to change the connectivity of two-qubit gates. The fidelity of preparing these states
is limited by the coherence of our clock laser, and could be substantially improved [39, 136].
Still, these results demonstrate that our multi-ensemble schemes can be combined with en-
tanglement; further improvements can be made by performing quantum logic spectroscopy
with entangled-ancilla atoms in a mid-circuit measurement in order to efficiently prepare,
evolve, and readout the sensing capabilities of atomic clocks [39].
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4.4.3 Estimating laser phase prior width

Here, we detail how we find and isolate the prior width of the laser phase distribution from
the experimentally measured values. We note that while the phase slip probability depends
only on this prior width, the measured distribution is further affected by quantum projection
noise (QPN). The QPN itself is a function of the fraction of excited atoms measured in
the Ramsey sequence. One thus finds that the relative contribution of the QPN term varies
with the central phase of the laser and the prior width of the phase distribution. Assuming
a system of N = 20 atoms, we plot the calculated phase distribution width as a function
of central laser phase θ̄, but with the underlying prior phase distribution having a width
of zero (Fig. 4.12a). We repeat this calculation for both single and dual quadrature phase
estimation.

We note that these estimators are affected slightly differently by QPN. Specifically, while
the optimal single quadrature working point in terms of minimal QPN is around a mean
phase of 0 (which corresponds to measurement with an excitation fraction of 0.5), we find
that the optimal working point for a dual-quadrature estimation is around a mean phase
of π/4 (corresponding to the two quadratures having excitation fractions of 0.85), though
we note the dual-quadrature value is relatively flat over the entire bandwidth. For longer
interrogation times, the prior width grows as a power law which depends on the laser noise
spectrum. The contribution from projection noise is thus in general time-dependent.

To isolate this effect and learn the true laser phase distribution as a function of interrogation
time, we first calculate the total observable width including QPN, σtot, for a range of prior
widths σδ at a given laser central phase θ̄. This is done by sampling random phases from
a normal distribution, followed by sampling the observed phase from a binomial random
process representing the projection uncertainty. Repeating this process over a million draws
we obtain the observed distribution as a function of the prior width (Fig. 4.12b. We then
invert the function to obtain σδ (σtot) and interpolate the latter to find the prior width at
the given measured σtot. While the details of added noise are important for the attainable
stability, we note that quantum projection noise itself can not cause a phase slip and thus
does not limit the interrogation time.

4.4.4 Fitting the phase-slip probability

To find the phase deviation from the mean phase for a given shot, we fit the Ramsey oscilla-
tions in Fig. 4.8c with a decaying sinusoid, and at each time define the fitted mean populations
as P̄ (x)(t) and P̄ (y)(t). These populations are inverted via Eq. 4.2 into the mean phase, θ̄(t),
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Figure 4.12: Quantum projection noise in a dual-quadrature measurement. a, Added
standard deviation due to quantum projection noise (QPN) for phase estimation around
different average phases θ̄, plotted forN = 20 atoms utilized in a single-quadrature (orange)
or dual-quadrature (green, 10 atoms per quadrature) measurement. The added QPN varies
with the phase the measurement is taken at; thus as the prior width of the phase distribution
grows over time, and a broader range of phases is sampled, the QPN will vary. b, To
learn the prior width from the measured width we sample random phases from a normal
distribution, followed by sampling the observed phase from a binomial random process
representing the projection uncertainty (inset). We use the sampled distributions for the
dual-quadrature estimator to calculate the width including QPN for a range of prior laser
widths. We then invert this function and interpolate if needed, to find the prior width for
any measured width.

and finally we calculate the phase deviation from the mean as δj(t) = mod(θj(t)− θ̄(t), π).

For the phase-slip probability (Fig. 4.9b), we fit the probability densities P(δj(t)) with
G(P), where G is a Gaussian distribution folded into the range [−π, π]. This fit provides
an estimation of the true standard deviation, σ, of the δj(t) distribution. With this in hand,
for a given half-dynamic range, B, we then find the phase-slip probability, ϵ, as

ϵ = 2

∫ ∞

B

G(P)dP = erfc
( B√

2σ

)
, (4.3)
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where erfc is the complementary error function. Note that here B = π/2 corresponds to a
single-basis measurement while B = π corresponds to a dual-quadrature measurement.

In order to calculate the maximal interrogation time, we first find the laser phase prior
width (as described in the previous section) and then fit the time-resolved profile of σ(t),
as σ(t) = βtα. We find β = π × 0.119(6) and α = 0.56(2). The growth of σ over time
can then be used to predict the Ramsey decay envelope, C, for different choices of B, as
C = e−σ

2/2. In Fig. 4.8c, we show this envelope estimation for the cases of B = π/2 and
B = π (orange and green dashed lines, respectively).

We then analytically calculate the maximum interrogation time at a fixed phase-slip error
probability, ϵ, from Eq. 4.3 as

Tmax(ϵ) = (B/(
√
2βerfc−1(ϵ)))1/α. (4.4)

4.4.5 Limits in multi-ensemble metrology

To study the possible limitations of the multi-ensemble scheme we simulate stochastic
phase evolution of a local oscillator with 1/f frequency noise, whose overall power sets a
characteristic single ensemble 1/e Ramsey coherence time TLO. We numerically find the
maximal interrogation time at a fixed phase slip probability ϵ (here we use ϵ = 5 ·10−3) with
increasing ensemble numberM by iteratively correcting for phase slips as described in Ref.
[200]. We repeat this calculation for different dynamical decoupling block lengths τ . In
Fig. 4.13a we plot the results for up to M = 9 ensembles, assuming infinite atom number.
We find that adding more ensembles indeed enables exponential scaling of the interrogation
time up to a saturation point set by the effective dynamical decoupling bandwidth (expressed
in terms of τ/TLO).

We further study the effect of quantum projection noise on the efficacy of the scheme in the
case of low atom number per ensemble. For the optimal dynamical decoupling sequence
found previously, we vary the number of atoms per ensemble N and repeat the calculation,
which is now affected by quantum projection noise. Specifically, the use of slower evolving
ensembles with limited atom number for the iterative correction of phase slips in the fastest
evolving ensembles is prone to errors due to the increased variance in such estimation. For
a small number of atoms per ensemble, this negates any advantage. However, we note
that N ≃ 20 atoms per ensemble suffice for efficient operation of the scheme, with the
interrogation times and noise strength tested here.
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Figure 4.13: Limits in multi-ensemble metrology. a, Asymptotic scaling of the extended
interrogation time factor as a function of the number of ensembles M employed. We
numerically calculate the maximal interrogation time at a fixed phase slip probability for
different dynamical decoupling block lengths τ , in terms of the local-oscillator coherence
time TLO, assuming 1/f frequency noise and infinite atom number. The addition of more
ensembles enables exponential scaling of the maximal interrogation time (solid line marks
2M−1) up to a saturation point set by the effective decoupling bandwidth. The latter can be
extended by reducing the block length while maintaining a sufficiently high Rabi frequency
with respect to the fast noise frequency. b, For the optimal decoupling sequence found in a,
we plot the extended interrogation time as a function of the number of atoms per ensemble
N. For a small number of atoms per ensemble, quantum projection noise results in an
enhanced rate of false positive indication of a phase slip, negating any advantage. We find
that N ≃ 20 atoms per ensemble suffice for efficient operation.
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Coda

Rydberg atom arrays are relatively new but are already impressively capable. Importantly,
most of their error sources are currently technical, and not nearing fundamental limitations.
Indeed, even apparently intrinsic error sources such as spontaneous decay can be alleviated
either via advanced experimental design [86] or via advanced error correction mechanisms,
as we have demonstrated [26]. As systems mature further in coming years, it is likely higher
fidelity operations will be achieved throughout the entire feature stack.

Our effort to understand the error sources affecting Rydberg atom arrays has allowed us
to build a robust ab initio error model for our system. Predictions from this error model
have been accurate to the experiment [26, 29], and have allowed us to identify the most
meaningful error sources in our system. While here we have tested this error model (mostly)
on the level of a few qubits, for the rest of this thesis we will continue applying it in a roughly
unchanged form to study and understand the behavior of many-body quantum operations.
Such careful calibration of an error model has been, and will continue to be, instrumental
in improving quantum systems more broadly going forward, and in many ways the major
task of the NISQ era is to build better models and intuition for decoherence.

Further, we showed how these errors can be mitigated through the first experimental demon-
stration of erasure conversion, with significant implications for quantum technology. For
Rydberg atom arrays in particular, our current demonstration of ∼0.999 SPAM-corrected
two-qubit fidelity shows Rydberg atom arrays can be equipped with entangling operations
at competitive fidelities to other quantum platforms, and our modeling implies that val-
ues of ∼0.9997 could be possible with laser noise improvements alone. Further, utilizing
a cryogenic environment could freeze out blackbody decay to a large degree [86], with
remaining decay detected as an erasure, leaving almost no intrinsic decoherence. Our
techniques could be combined with a long-lived qubit which is dark to the fast image (as
since realized in Refs. [32, 39, 75], e.g. using the 3P0 nuclear qubit in neutral Sr [256]
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and Yb [104, 226], or S1/2 in Ca+ and Ba+ ions [215]. Similarly, schemes for imple-
menting erasure conversion in superconducting circuits have been put forward [257, 258]
and demonstrated [259, 260]. Such techniques could lead to drastically reduced quantum
error-correction thresholds [68, 261] for fault-tolerant quantum computing.

For our part, we have further demonstrated a universal toolbox for quantum computation
with Rydberg atom arrays, including arbitrary single-site control [28], two-qubit gates [26]
(with fidelities since improved to the≈0.997 level [39]), mid-circuit measurement [26], and
built-in error mitigation through erasure correction [26, 32]. We since have also incorporated
dynamical circuit reconfigurability [39] via atom shuttling [37]. Together these tools enable
new applications for atom arrays in quantum computation, and are specifically useful in our
tweezer clock system for near-term metrological improvements [28, 39].

More generally, the techniques we have demonstrated benefit quantum simulation [26], and
could enable new paradigms for tweezer arrays that control bosonic motional degrees of
freedom to serve as a quantum memory or to perform quantum information processing tasks
like error correction [224]. While such schemes have been explored by ion trap quantum
platforms [220], we note there are distinct advantages of the tweezer array platform. For
instance, tweezers can be diabatically shifted and compressed to implement native squeezing
and displacement operators on the bosonic motional manifold, and these operations can
be done in parallel and arbitrarily to an array of atoms simultaneously with no cross-
coupling [28]. This could enable a new paradigm for efficient error correction protocols
using arrays of single physical atoms to represent arrays of logical qubits.
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Prelude

Quantum mechanics is often popularly associated with randomness, mostly out of associa-
tion with Born’s rule. However, besides the measurement-problem, quantum science is far
from random, and in fact its dynamics are unitary and deterministic. Still, many quantum
algorithms and protocols developed over the last several decades presume the ability for the
experimentalist to prepare random quantum states at-will, where random admittedly requires
some definition. Applications include tasks in quantum algorithms [262–264], cryptogra-
phy [265–268], and communication [269]; many further applications can be found in the
first few paragraphs of Refs. [270, 271] (which are themselves good discussions of random
quantum states).

However, by far one of the most major applications of preparing random quantum states
is that of device benchmarking [58, 272–277], where random quantum states are used to
amplify the effects of small errors into macroscopic observables. Most notably, random
states were instrumental to the first declarations of quantum advantage [162]. Further,
ensembles of randomly distributed, but pure quantum states are of great theoretical interest,
as they for instance underlie our understanding of complexity in quantum circuits [278] and
black holes [279, 280]. Thus, producing quantum states at random has become increasingly
important in modern quantum science, but creating random ensembles has necessitated a
high degree of spatiotemporal control [267, 274, 281–284], placing such studies out of
reach for a wide class of quantum systems.

In the following chapters, we describe how we solve this problem, by predicting and
experimentally observing the emergence of random state ensembles naturally under time-
independent Hamiltonian dynamics. First, we provide a brief introduction to the idea of
random quantum states, and then showcase how we observe such randomness in two forms:
1) from projective measurement of a larger quantum system [29, 70] (Chapter 5), or 2)
from time-evolution of a globally ergodic system [27], dubbed Hilbert-space ergodicity
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(Chapter 7). For this second case, we also make predictions — and consistent observations
— for the behavior of local quantum states under time-independent evolution, the natural
setting of quantum thermalization. For a closed system, where the environment is a
complementary subsystem, we predict and observe a smooth quantum-to-classical transition
in that observables progress from large, quantum fluctuations to small, Gaussian fluctuations
as the bath size grows. This transition is universal on a quantitative level amongst a wide
range of systems, including those at finite temperature, those with itinerant particles, and
random circuits. Further, in a theory work [71] (not summarized in this thesis) we describe
how these two perspectives are intimately linked, and point to a universal description of
entropy in generic quantum systems.

However, our developments are not only related to the fundamentals of randomness; we
further develop and exploit these protocols that produce random states to demonstrate
benchmarking of our system through only time-independent Hamiltonian dynamics [29]
(Chapter 6). We demonstrate accurate estimation of the many-body fidelity, as well as
numerous applications including Hamiltonian parameter estimation, noise learning, and
more. For instance, we specialize some of our theoretical results on ergodicity to the
case of an open system interacting noisily with an external environment [27]. We predict
the statistics of observables under largely arbitrary noise channels including those with
correlated errors, allowing us to discriminate candidate error models both for continuous
Hamiltonian time evolution and for digital random circuits, where we specifically use the
many-body fidelity as a measurable input parameter.

Ultimately our results clarify the role of randomness and ergodicity in quantum dynamics,
with fundamental and practical consequences.
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CHAPTER 5
Uncovering emergent randomness

Preparing random, but pure, quantum states has a number of applications [58, 262–277], but
so far has been limited to systems with explicit spatiotemporal control. This is because to
engineer quantum randomness, it has been necessary to “inject” classical randomness, e.g.
by randomizing the circuit layout and operations. However, this puts many important appli-
cations, like device benchmarking, out of reach of a broad swathe of quantum experiments.
Most importantly, it also makes studying such random behavior seemingly impossible with
the most natural form of quantum dynamics, i.e. time-independent Hamiltonian evolution.
Here, we refute this existing paradigm, showing that randomness does emerge from natural
unitary quantum evolution without any explicit classical stochasticity. To do so, first we
(very briefly) discuss the background of random quantum states, namely through the lens
of discussing the concept of Haar randomness. We then show how this random behavior
emerges from projective measurements of subsystems of a larger quantum state, a phe-
nomenon intimately related to the projected ensemble, a term we introduce [29, 70]. In
upcoming chapters we will both show how this protocol is practically useful for performing
device benchmarking, as well as show how a different perspective on the same dynam-
ics allows us to understand a quantum notion of ergodicity underlying the transition from
quantum to statistical mechanics.

5.1 HAAR-RANDOM STATE ENSEMBLES

We start by illustrating the concept of pure random state ensembles via a thought experiment:
consider a programmable quantum device which evolves an input state |Ψ0⟩ to an arbitrary
output state |ψj⟩ through action of unitary evolution Ûj , labeled by the program setting,
j (Fig. 5.1a). If the set of states |ψj⟩ – in the limit of many repetitions with different j
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Figure 5.1: Random pure state ensembles from Hamiltonian dynamics. a, A thought
experiment, consisting of a programmable device producing arbitrary quantum states |ψj⟩
through unitary operations Ûj , where j enumerates over different program setting. b,
Repeatedly applying explicitly randomized unitary evolution to an initial state |Ψ0⟩ produces
an ensemble of pure quantum states |ψj⟩ (blue arrows) which is distributed near-uniformly
over the Hilbert space, H (grey sphere), a random state ensemble. c, Practical quantum
devices cannot sample from perfectly random state distributions, but only from low-order
approximations. These ensembles are known as k-designs, and approach the fully Haar-
random ensemble.

– is homogeneously distributed over the output Hilbert space, it is termed a Haar-random
(or uniform) state ensemble [285], which we denote as E∞ (Fig. 5.1b). More formally, an
ensemble of states is considered Haar-random if any unitary rotation of the ensemble leaves
it invariant. It is easiest to think of the one-qubit Bloch sphere picture, and realize that
this statement essentially just means the ensemble of states covers the entire Bloch sphere
surface.

Practically, approximations to Haar-random state ensembles are conventionally generated by
certain quantum devices requiring explicit classical randomization, in the sense that output
states |ψj⟩ are produced by randomly chosen unitary evolution operators Ûj . Examples
include random unitary circuits [267, 282], where each configuration j is realized by a
random choice of single and two-qubit gates, and stochastic evolution with a dynamically
changing Hamiltonian [284, 286], Ĥj(t). However, it is currently unknown how to generate
such random ensembles from the simplest form of quantum evolution, that governed by a
fixed, time-independent Hamiltonian Ĥ which is not explicitly randomized, as is the case for
dynamics of closed and unperturbed quantum systems. In the next section by considering
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pure state ensembles generated during partial measurement of a larger quantum system, we
show such random ensembles do in fact emerge under such conditions.

It is important to emphasize this conceptual point. Normally in quantum mechanics, we
start with an initial state, apply some deterministic evolution, and end with a fixed final state.
Now, the setting we are considering is different. We are starting with a fixed initial state,
then we are sampling different forms of unitary evolution (each with a probability pj), which
respectively result in different final states |ψj⟩. The object of our study is not any individual
|ψj⟩, but instead the ensemble, E , over all of them, which we can for instance denote as
E ≡ {[pj, |ψj⟩]}j , where we include the pj explicitly (sometimes we will omit them for
notational simplicity). Importantly, we can define a given ensemble however we like, for
instance we could define an ensemble of just a single qubit as E1 = {[0.5, |0⟩], [0.5, |1⟩]},
where the two states both have equal probability of 0.5 (left-most panel of Fig. 5.1c).
Intuitively we can understand this ensemble is ‘less complex’ than an ensemble over all
possible states on the Bloch sphere, a concept we will formalize below. Conceptually we
can then think of our quantum device as producing the ensemble E , and then randomly
sampling a given |ψj⟩ from it. While this may seem a subtle distinction, it will be a helpful
mindset in future discussions, and also better clarifies what we mean by ‘preparing random
state ensembles.’

It is extremely important to understand the distinctions between: 1) an ensemble of pure
states, 2) a superposition of pure states, 3) a mixed state. First, there is no notion of
superposition in our definition of an ensemble. We could have composed our ensemble
of any possible pure state, including those which are themselves superpositions in a given
basis, but the ensemble itself is just a collection of these pure states, not a superposition of
them. Then, even more importantly, a state ensemble is not a mixed state. You can certainly
define a mixed state from a state ensemble just via the sum ρ̂ =

∑
j pj|ψj⟩⟨ψj|, but the state

ensemble contains far more information than the mixed state (even if the states |ψj⟩ are
orthogonal!). Indeed, as we will define further below, the mixed state can be thought of as
the ‘mean’ of the ensemble, whereas the ensemble itself encodes higher-order information
(analogous to higher-order quantities like variance, etc.). This is perhaps the most important
fundamental concept to understand, so it bears repeating, and rebolding:

A state ensemble is not a mixed state.

With those important conceptual ideas presented, it is important to mention that notions
of Haar-randomness have been studied extensively theoretically, and there are many very
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formal ways in which to contextualize it via the lenses of Lie algebras, group theory, etc.
For the most part, we will be forgoing such formalities here, and will take Haar-random to
simply mean “random over the Hilbert space.” Readers interested in delving more into the
theoretical subtleties are encouraged to peruse Refs. [285, 287], amongst others.

It is worth discussing sampling states from an ensemble, and specifically ask how does one
sample a pure state from a Haar-random ensemble? Well, the Haar-measure is essentially
the symmetry of a circle: any unitary operation, i.e. rotation, leaves it invariant. Thus we
want to sample uniformly on the perimeter of a (high-dimensional) circle, but our basis
(the elements of our state vector) are effectively Cartesian. This problem is well known
mathematically, and an efficient solution is known as the Box-Muller transform [288]. As the
simplest example, consider a two dimensional space. We sample both x and y (our Cartesian
coordinates) from a standard normal distribution (i.e. with mean 0 and standard deviation 1).
The resulting multi-dimensional Gaussian factorizes in rotational and radial components,
so when we normalize the resulting vector, we find that it is uniformly sampled on the
perimeter of the unit circle. The same algorithm applies efficiently for generating high-
dimensional spherically-random (i.e. Haar-random) vectors. Explicitly, a D-dimensional
Haar-random state is a complex Gaussian-random vector. In other words, generate a D-
dimensional vector, where every element is a Gaussian-random variable with mean 0 and
standard deviation 1. Add this vector to another Gaussian-random vector multiplied by
i. Normalize, and the result is Haar-random. We further describe how to generate Haar-
random unitaries in Appendix B. Also, we note that this connection to Gaussian random
variables is explicitly used in many of the proofs in Ref. [285].

In the rest of this section, we briefly summarize the key observables and features of random
state ensembles. Then, in the next section, we describe how we discover that random state
ensemble behavior can emerge from unitary, deterministic quantum evolution.

5.1.1 Observables of random ensembles

With the concept of Haar-random state ensembles in mind, it is important to define their
observable characteristics, so we know what experimental signatures to study. Two observ-
ables stand out in their universality and usefulness: moments of Haar-random observables,
and the Porter-Thomas [289] distribution.

Moments The first observable of interest are the moments of the state ensemble. Staying
first on the level of observables, moments are the fluctuations of those observables across
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the ensemble. For instance, consider again our ensemble on a single qubit, defined above,
E1 = {[0.5, |0⟩], [0.5, |1⟩]}. Say we wanted to calculate the mean probability to sample the
ensemble, and find a qubit in the state |1⟩. Obviously, this is just m(1)

1 = 0.5(0) + 0.5(1) =

1/2. This mean is the first moment of the ensemble; we indicate the order of the moment
in the subcript on m, while we indicate that it is taken over E1 via the superscript.

In the same way as we talk about higher-order moments of probability distributions (like the
mean, variance, skewness, kurtosis, etc.)1, we can define higher order moments of the state
ensemble. For instance, what is the second moment of E1? It is again simply calculated as
m

(1)
2 = 0.5(0)2 + 0.5(1)2 = 1/2, and in fact every k-th moment will also be m(1)

k = 1/2.
To be concrete, what we are studying is: if you sampled a random pure state many times
from the ensemble E1, and each time you measured if the qubit was in the up state for that
pure state, what would the variance2 of those measurements be over the set of all sampled
pure states? We could ask the same question for any higher-order moment, where we are
essentially asking: how fluctuating are observables of this ensemble?

Having understood this basic idea, let us ask what the moments of the Haar-random ensem-
ble, E∞, are. We shall not go into the full derivation here [285], but at least for our simple
one-qubit manifold we have so far considered it is a simple spherical integral. For instance,
in a Bloch sphere picture the probability to be in the state |1⟩ is cos(θ/2)2; if we then want
the k-th order fluctuations of this quantity, we simply compute the normalized spherical
integral explicitly

1

4π

∫ π

0

∫ 2π

0

cos(θ/2)2k sin(θ)dϕdθ =
1

k + 1
. (5.1)

To generalize this problem, imagine that we are in a D-dimensional Hilbert space, for
instance the tensor product space of several qubits. For a given pure vector, |ψ⟩, say
we are interested in the probability to measure a given bitstring, z, which we denote as
rψ(z) = |⟨z|ψ⟩|2. To compute this more general case we use Gaussian integrals [285] to
find the k-th moment over E∞ is

m
(∞)
k ≡ Eψ∈E∞

[
rψ(z)

k
]
=

k!

D(D + 1) · · · (D + k − 1)
=

1(
D+k−1

k

) . (5.2)

1Note that variance is a central moment (i.e. one in which the mean has been subtracted off), whereas
primarily here we will be discussing raw moments. For instance, for a random variable X , the k-th raw
moment is just E[Xk]. Normally people are more familiar and comfortable with central moments, which is
why we list them here as an example. Of course, skewness and kurtosis are not even central moments, they
are standardized moments, but we will not get into that here.

2Again, we are only using the word variance here colloquially. We actually are studying the raw moments,
not the central moments.
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One can then immediately verify this matches with our simplified spherical integration for
D = 2 (i.e. for a single qubit). The most important thing to remember, conceptually, is
that though this expression looks more complicated, it is simply a ‘spherical integral’ in a
higher dimensional manifold, essentially.

There is one final thing to mention about the moments worth mentioning, which we pose
as a temporary mystery to motivate our upcoming discussion.

Let us compare the first few moments of E1 (the ensemble of antipodal states on the
Bloch sphere) and E∞ (the ensemble over all states on the surface of the Bloch sphere).
Before we found m(1)

k = 1/2, but m(1)
k = 1/(k + 1), but these expressions only match

for k = 1. Now, let us somewhat sans-motivation propose a different ensemble of
states E3, which is composed of the six cardinal states with equal probabilities, i.e.
E3 ≡ {(|1⟩, |0⟩, |+⟩, |−⟩, |+i⟩, |−i⟩} (see the third panel from the left in Fig. 5.1c). What
are the first few moments of this ensemble?

m
(3)
k =

1

6
(0) +

4

6

(1
2

)k
+

1

6
=

1 + 22−k

6
(5.3)

m
(3)
1 =

1

2
, m

(3)
2 =

1

3
, m

(3)
3 =

1

4
, m

(3)
4 =

5

24
· · · (5.4)

Thus, we see the moments of E3 match with the moments of E∞ up to the third moment1,
but past this point they diverge. In a moment, we will describe why this occurs, how we
judiciously chose the element of E3 to make this statement true, and why this is important
for our purposes.

The Porter-Thomas distribution Above we studied moments, or fluctuations of ensem-
bles of states. However, the presence of moments implies there must be a distribution
of sorts, which for reasons discussed below we will call the Porter-Thomas (PT) distribu-
tion [289]. What is this distribution?

Remember, previously we calculated moments of the quantity rψ(z), which is itself a
probability. Thus, the distribution we are interested in is a probability-of-probabilities (PoP)
distribution, which is sometimes called the ‘histogram-of-histograms’ or the ‘fingerprint’
amongst many other names in the statistics community [290].

This concept can seem unintuitive at first, so first we return to the simple example of E1,
where we studied, rψ(1), the probability to measure the qubit in the up state, |1⟩. There are
two possible states we can sample from E1, with corresponding r|0⟩(1) = 0 and r|1⟩(1) = 1.
Thus, the PoP distribution in this case is a set of two delta functions, at 0 and 1.

1Which might suspiciously motivate our decision to give E3 a subscript of 3...
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More generally, we could have a system of N qubits, and could study rψ(z) for any
given bitstring z. For a given state ensemble, E , composed of J total pure states |ψj⟩
with equal probability then we can enumerate all the rψ1(z), rψ1(z), · · · , rψJ

(z), and the
PoP distribution will then be the sum of delta functions at each of these r values. More
concretely, for a given ensemble, we can write the PoP as

PE(p) ≡ Eψ∈E [δ(rψ(z)− p)] . (5.5)

Specializing to the case of the Haar-random ensemble, we can then easily write the moments
of this distribution as m(∞)

k ≡
∫ 1

0
P∞(p)pk = 1/

(
D+k−1

k

)
, where we have used Eq. (5.2).

We can then recognize1 the result as the moments of a Beta distribution, specifically

P∞(p) = (D − 1)(1− p)D−2 . (5.6)

Importantly, in the limit of D → ∞, this distribution becomes [291] the exponential
distribution, P∞(p) ≈ exp(−Dp).

The Porter-Thomas distribution is a well-studied object, particularly in the realm of random
matrix theory [292–294]. It is a prototypical emergent observable of quantum chaotic
systems [295]. However, it is also appears in much more ‘pedestrian settings’: for instance,
if you shine a laser on rough surface, you will see a ‘speckle pattern,’ a seemingly random
pattern of constructive and destructive quantum interferences, for which it turns out the
intensity distribution is also a Porter-Thomas distribution [296]. Basically, the Porter-
Thomas distribution (which, again, is just a fancy name for an exponential distribution)
shows up whenever quantum systems are randomized, not in the sense of their measurement,
but in the sense of their evolution2. A full description of the Porter-Thomas distribution’s
properties and appearances throughout physics is certainly beyond the scope of this thesis:
our only real claim about it here is that it is the distribution which describes observables
drawn from a Haar-random state ensemble.

However, there is something else interesting to note, which is not immediately obvious from
our derivation, and which bears stating. Above, we claimed that the probability to measure
a single, fixed bitstring, z, from the Haar-random ensemble of states was distributed as
the Porter-Thomas distribution. Now, imagine we take D to be large (for a tensor product

1We will not be deriving this whole process here. However, the basic schematic is that one knows all the
moments,mk, one can write down the moment-generating function,M(t) = 1+m1t+m2

t2

2!+· · ·+mn
tn

n!+....
Then, one can form the characteristic function, ψ(t) =M(it), and finally one takes the Fourier transform to
arrive at the probability density function, which we provide above.

2As a slight spoiler for what is about to come, our central discovery in the next section is that the
entanglement – in combination with the randomness of Born’s rule – also leads to fundamentally quantum
description of random quantum evolution for generic many-body states.
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space of qubits), and we sample a single pure state, |Ψ⟩ from the Haar-random ensemble,
and we consider the probability to measure every single possible bitstring from |Ψ⟩, i.e.
rΨ(z0), rΨ(z1), · · · , rΨ(z2N ). If we now form a histogram of all these r, we will find that it
too follows the Porter-Thomas distribution. In other words, the probability distribution over
bitstrings for a single typical Haar-random state is the same as the probability distribution for
a single bitstring over the entire Haar ensemble. This notion of ‘typicality’ is remarkable,
and will be important in many future discussions. We do not present a full derivation of it
here, but we do note that it is derived, very pedagogically and thoroughly, in Ref. [297].

Having defined the Porter-Thomas distribution and the moments of the Haar-random en-
semble, we now turn to better define what it means for an ensemble to be complex, and how
complex can real experiments be.

5.1.2 Quantum state k-designs

It is important to highlight that in practice most forms of quantum evolution are incapable of
sampling truly uniformly from the available Hilbert space, and thus are not strictly speaking
Haar-random. Thus, it is important to develop a metric of how random they in fact are.
For this reason, we will often study so-called quantum state k-designs [298], which are
low-order approximations of the Haar-random ensemble.

Quantum state k-designs are pure state ensembles that become progressively more complex
with larger k; for example, for the single-qubit case shown in Fig. 5.6a, state k-designs
appear as increasingly uniform distributions on the Bloch sphere, and realize the uniform
ensemble in the infinite k limit. A state k-design reproduces observables up to order k as if
they were sampled from the uniform ensemble, e.g., the analytic result of for the moments
discussed in Section 5.1.1 can be predicted from a state k-design. That is why E1 (which
is a 1-design) was able to match the moments of the Haar-random ensemble only up to
first order, but E3 (which is a 3-design) was able to do so up to third order. A vanishing
distance between the state k-design and a given ensemble implies that the ensemble and the
Haar-random ensemble are statistically indistinguishable for any observables up to order k.

It is important to highlight that this is not just a statement about observables of the random
state ensemble, but about the ensemble itself. If one only has access to the average of the
random state ensemble (which would be a mixed state), one would not be able to calculate
moments beyond first order (e.g. the average observable obtained form the ensemble). We
can find a generalized description however via the k-th moments of the ensemble itself.
Consider if we have an ensemble E over states {|ψj⟩} and associated sampling probabilities
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pj . Then in that case, we construct a higher-order version of a ‘mixed state’ via

ρ
(k)
E (t) =

∑
j

pj(|ψj⟩⟨ψj|)⊗k , (5.7)

where k is the order of the ensemble. Note that, as discussed previously, the normal mixed
state is simply the k = 1 version of this generalization, further reiterating our declaration
that

A state ensemble is not a mixed state.

This distinction is made very apparent here, because in order to describe an observable of
order k from the ensemble (such as k-th order moments of observables drawn from the
ensemble), one formally needs to employ the higher-order mixed state generalization

mk = Tr[ρ(k)E (|z⟩⟨z|)⊗k] (5.8)

where Tr is the trace operation. If one only has access to the mixed state, k = 1, then one
can only describe observables up to order k = 1, like the average value measured from an
ensemble.

So what are the ρ(k)E for the Haar-random ensemble, which we will denote ρ(k)∞ ? Well, again
we start with our simple example of a one-qubit system. Here, we can explicitly write the
state vector in spherical coordinates as

|ψ⟩ =

(
cos(θ/2)

sin(θ/2)eiϕ

)
. (5.9)

Correspondingly, the state |ψ⟩⊗2 ≡ |ψ⟩ ⊗ |ψ⟩ is given by

|ψ⟩⊗2 =


cos(θ/2)2

cos(θ/2) sin(θ/2)eiϕ

cos(θ/2) sin(θ/2)eiϕ

sin(θ/2)2e2iϕ

 . (5.10)

We can then explicitly integrate |ψ⟩⊗2 over the surface of the Bloch sphere, finding

1

4π

∫ π

0

∫ 2π

0

(|ψ⟩⟨ψ|)⊗2 sin(θ)dϕdθ =
1

6


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 =
1

6
(Î + Ŝ) , (5.11)
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where Î is the diagonal identity operator, and Ŝ is the SWAP operator. One could repeat
this calculation for |ψ⟩⊗3, in which case you would find

1

4π

∫ π

0

∫ 2π

0

(|ψ⟩⟨ψ|)⊗2 sin(θ)dϕdθ =
1

24



6 0 0 0 0 0 0 0

0 2 2 0 2 0 0 0

0 2 2 0 2 0 0 0

0 0 0 2 0 2 2 0

0 2 2 0 2 0 0 0

0 0 0 2 0 2 2 0

0 0 0 2 0 2 2 0

0 0 0 0 0 0 0 2


(5.12)

=
1

24
(Ŝ123 + Ŝ132 + Ŝ213 + Ŝ231 + Ŝ312 + Ŝ321) ,

(5.13)

where the Ŝ are permutation operators, e.g. Ŝ321 is the operator which swaps the 1st and
3rd copies of the state vector in the Kronecker product, leaving the 2nd copy fixed:

Ŝ321 =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1


b⃗ =



000

001

010

011

100

101

110

111


, (5.14)

where we have bolded the matrix entries to improve visibility, and have further written the
binary representation of the basis vector, b⃗ to make more clear the correspondence mapping.

One could continue in this way infinitely and in general would find

ρ(k)∞ =
1

(k + 1)!

∑
σ∈Pk

Ŝσ (5.15)

where Pk is the group of permutations of k elements. Fancier math [285] can do the same
calculation for arbitrary dimensional Hilbert space, yielding the same basic answer, but
with a different normalization constant

ρ(k)∞ =

∑
σ∈Pk

Ŝσ

D(D + 1) · · · (D + k − 1)
. (5.16)
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Figure 5.2: The symmetric subspace. When we integrate over k copies of Hilbert space,
for instance to calculate the k-th moments of the Haar-random ensemble, the integration
takes place in a special manifold of Hilbert space: the symmetric subspace [285]. Here we
visualize this for an exclusively real qubit Hilbert space, i.e. one in which the Hilbert space
is a circle rather than the Bloch sphere, for which the tensor product space is a torus. Note
that generically for complex, multi-qubit Hilbert space, the space topology is a hyper-torus.
The symmetric subspace (black line) is the unique manifold with no symmetries, except
the permutation symmetries between the k copies. You can convince yourself visually that
averaging over the symmetric subspace (the black line) does not give the same mean as
averaging over the entire Hilbert space (the surface of the torus). The average of the torus is
the identity operator (the origin), whereas the average of the symmetric subspace is offset by
permutation operators, see Eq. (5.16). (In this case the average is offset far more drastically
because we are averaging over real Hilbert spaces, see Ref. [285].)

So what does this mean?

What we are finding is that the k-th order generalization of a mixed state of the Haar-random
ensemble is essentially the sum over all possible permutations of k copies of the Hilbert
space. Hopefully this result is intuitive: when we integrate over the set of all Haar-random
states, we are integrating uniformly over the Hilbert space. This process averages over all
possible symmetries leaving only the identity (i.e. the maximally mixed state). However,
there is still a symmetry which is not averaged over: the permutation symmetry between
the different copies of Hilbert space. This residual symmetry means that averages over k-th
moments of the Haar-ensemble have additional structure beyond the maximally mixed state.
Thus, we work in the so-called symmetric subspace [285], the sub-manifold of the k-copied
Hilbert space with unbroken permutation symmetry (Fig. 5.2).

This property that averages over k copies of the Haar-random ensemble can be reduced to
sums of permutation operators can greatly simplify many calculations, some of which we
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outline below.

5.1.3 Why does randomness matter?

Why is it important to know more than the mean of the ensemble? Because understanding
the fluctuations of an observation is just as important as the observation itself, not only for
bounding the amount by which observables can vary, but for practical purposes. This is
because of what is sometimes referred to as the swap tricks [287], that for the two-body
SWAP operator Ŝ21, any operators Â and B̂, and any states |ϕ⟩ and |ψ⟩ we can write

Ŝ21(|ψ⟩ ⊗ |ϕ⟩) = |ϕ⟩ ⊗ |ψ⟩ (5.17)

Tr((Â⊗ B̂)Ŝ21) = Tr(ÂB̂) (5.18)

Tr2((Â⊗ B̂)Ŝ21) = ÂB̂ , (5.19)

where Tr2 is the partial trace over the second of the tensor product spaces. The second
two of these properties, the action of the SWAP operator on tensor products of operators,
is particularly useful, as it allows us to contort a tensor network representation of a given
quantum operation into a more easily computable form [30, 287, 299]. This for instance is
used in the classical shadows formalism [300] to both estimate arbitrary observables of a
quantum system from a few randomized measurements, and also to bound the confidence
of those estimations; see for instance Ref. [287]. Further, it can be used calculate the purity
efficiently of a multipartite states averaged over random states, again see Ref. [287].

There are of course also higher-order analogs of the swap trick. For instance if we consider
cyclic permutation operators, Ĉ(k)

d , which are permutations which keep the order of the k
indices the same but just rotate them by d sites e.g. Ĉ(4)

2 = Ŝ3412, then we can write the
generalized swap trick

Tr((Â1 ⊗ · · · ⊗ Âk)Ĉ(k)
1 ) = Tr(Â1 · · · Âk) . (5.20)

One of the most important use-cases of the swap tricks is for benchmarking [58, 272–277],
where we use swap tricks to change measurements of a quantum overlap fidelity between
two quantum states into a cross-correlation between observables of those states. We will
discuss this application at length in Chapter 6, but here present a qualitative justification. If
we have a 1-design of a single qubit, E1, composed of the antipodal states |0⟩ and |1⟩. As
discussed, E1 only matches observables from the Haar-ensemble up to first order, and so is
essentially just described by the maximally mixed state, ρ̂ = 1

2
|0⟩⟨0| + 1

2
|1⟩⟨1|. Imagine

that we now subject E1 to a depolarization channel, transforming each pure state itself to



125

the maximally mixed state, i.e. we define a generalized notion of a mixed state ensemble,
which is defined as the action of some noisy channel on all the states of E1. Well, for E1
there is no substantive difference after depolarization in terms of the correspondence to the
Haar random ensemble: it is still only as ‘random’ as the maximally mixed state.

Now however, consider if instead of E1, we started with E3 composed of the six cardinal
states. Imagine this ensemble is subjected to the same depolarization channel which maps
all inputs to the maximally mixed state. If we measured the second or third moment
before depolarization we would find they matched the Haar-random expectation, but after
depolarization they would not. In other words, we are using the fact that we can predict
the moments of Haar-random ensembles to tell how far a given ensemble of (potentially
mixed) states is from the maximally mixed state. The reader can hopefully then see that
by studying how close observables match their Haar-random predictions, we can develop
methods (which we can quantitatively formalize using swap tricks) of benchmarking the
fidelity of a quantum operation under a noisy channel: we shall return to this idea extensively
in Chapter 6. Later, in Chapter 7, we will show how by studying higher-order fluctuations
of the ensemble produced by a noisy channel, we can actually learn the noise processes
affecting our quantum experiment.

5.1.4 Relation to spherical designs

While we have tried to present intuitive, low-order explanations of Haar-randomness and
k-designs, we understand these concepts may feel exotic still. Thus, here we finally make a
concrete connection between this relatively abstract discussion of ensembles and k-designs,
and remind the reader that ultimately, we are essentially asking how uniformly is a set of
states spread over a given Hilbert space. Even more simply, how uniformly is a set of
vectors spread over some geometric space. It turns out that the entire notion of k-designs
can be captured in this simpler geometric picture, and in fact the very notion of k-designs
has its origins in asking how faithfully an integral over a sphere can be reproduced through
sampling only a finite set of points. Indeed, even the name of ‘k-designs’ comes from the
earlier study of ‘spherical-designs’ [301].

Concretely, we define a series of polynomials of three variables, the first few of which we
will explicitly write out as

P0(x, y, z) =a

P1(x, y, z) =b1x+ b2y + b3z

P2(x, y, z) =c1xy + c2yz + c3zx+ c4x
2 + c5y

2 + c6z
2
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P3(x, y, z) =d1x
2y + d2y

2z + d3z
2x+ d4x

2z + d5y
2x+ d6z

2y+

d7x
3 + d8y

3 + d9y
3 + d10xyz,

and where for more notation we define P̂n =
n∑
i=0

Pi(x, y, z). Now consider we want to

integrate such functions, say P̂1, on S2, the surface of a sphere. To do so, we could perform
the full spherical integration, and in doing so calculate P̂1 for every possible point on the
sphere. Alternatively, however, we could simply recognize that due to symmetry and the
simplicity of P̂1 we know the answer is a (where we have normalized by the sphere surface
area). In other words, what we have done is recognize that due to symmetry, integration
over the sphere’s surface is the same as averaging over just two antipodal points, i.e.

E{r1}(P̂1) = a =

∫
S

P̂1(x, y, z)dxdydz, (5.21)

where S represents the surface of the sphere (and again we are normalizing the sphere
surface area), {r} is the set of points we are averaging over, E is an expectation value, and
{r1} = {(0, 0, 1), (0, 0,−1)}.

What about, however, if we tried integrating a higher order polynomial, like P̂2 with the
same method? Ostensibly the same spherical symmetry holds, so we could try the same
trick as before, but we would find that

E{r1}(P̂2) = a+ c5 ̸= a+
1

3
(c4 + c5 + c6) =

∫
S

P̂2(x, y, z)dxdydz. (5.22)

Clearly, something has gone awry, however, if instead of averaging over {r1} we instead
averaged over {r2}, the vertices of a regular tetrahedron embedded in the sphere, we would
find E{r2}(P̂2) = a+ 1

3
(c4 + c5 + c6) as desired. To belabor the point but a moment longer,

if we tried integrating P̂3, we would now find {r2} insufficient, and would have to average
over {r3}, the vertices of a regular octahedron.

What we are essentially discovering is that even for complex functions, we can forgo
integration over the entire space and instead calculate our function at a few judiciously
chosen points (the number and placement of which depends on how complex the function
is). Notably, using a higher-order choice of points will also yield the correct answer
for lower-order polynomials, i.e. averaging over {r3} would yield the correct answer for
integrating P̂1 or P̂2.

The punchline of all of this is that the same exact intuition that applies to integrating
polynomials on a sphere applies equally to calculating moments of observables of the
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Figure 5.3: Pictoral representation of the projected ensemble. Partial measurement of
a subset (B) of a quantum state projects those qubits into well-defined classical bitstrings,
subject to the Born rule. However, entanglement between that subset and the rest of the
unmeasured system (A) then ‘transfers’ the randomness of the Born rule onto the quantum
states in A. The result is an ensemble of states, which we call the projected ensemble,
tagged by classical bitstrings in B, which we find approach the Haar-random distribution
for generic quantum evolution.

Haar-ensemble, which informally you can intuitively understand from the fact that the
Haar-ensemble is a uniform cover of the sphere itself. For a precomputed list of spherical
designs, which visually correspond to the set of states in k-designs on single qubit Bloch
spheres (Fig. 5.1c), see Ref. [302].

5.2 THE PROJECTED ENSEMBLE

Having introduced the concept of random state ensembles, now we discuss our novel
discovery of emergent randomness from unitary, time-independent Hamiltonian evolution.
Remember, it is well known that stochastic, time-dependent evolution can produce (nearly)
Haar-random states in exponential time [267, 282, 284, 286] - we are interested in the same
can somehow be said for evolution without injecting classical randomness, instead relying
only on the most fundamental features of quantum mechanics. We present a new perspective
on the emergence of statistical behavior in chaotic quantum many-body systems: instead
of imagining that a physical state is sampled from a random ensemble, we use a single
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many-body wavefunction to generate an ensemble of pure states on a subsystem (Fig. 5.3).

To study the emergence of random state ensembles, we generically consider Hamiltonian
evolution that produces a global quantum state |ψ⟩, which we here suppose describes a set
of qubits with basis states |0⟩ and |1⟩. We bipartition the state into two subsystems: a
local system of interest, A, and its complement B (Fig. 5.4c). Explicitly keeping track of
measurement results in B, which are bitstrings of the form e.g. zB = 100 · · · 010, provides
a full description of the total system state as

|ψ⟩ =
∑
zB

√
p(zB)|ψA(zB)⟩ ⊗ |zB⟩, (5.23)

where p(zB) is the probability of measuring a given bitstring in B, and |ψA(zB)⟩ is a pure
quantum state in A conditioned on the measurement outcome in B. Thus, for each possible
zB, there is a well-defined pure state inA, the set of all of which is generally not orthogonal.
Together these states, |ψA(zB)⟩, and their respective probabilities, p(zB), form what we
term the projected ensemble [70] (Fig. 5.4b); similar concepts also enter the definition
of localizable entanglement [303], and in the concept of conditional wavefunctions [304].
By tracking the time evolution of the projected ensemble through both the states and
probabilities which compose it, we can probe for signatures of the ensemble approaching a
Haar-random distribution (Fig. 5.4c).

We stress that this concept is distinct from typical studies of equilibration in quantum
many-body systems. There, the central object of interest is the reduced density operator
on A, ρ̂A = TrB(ρ̂), found from tracing out B from the full density operator ρ̂. The
reduced density operator can be constructed by averaging over the projected ensemble
states, ρ̂A =

∑
zB
p(zB)|ψA(zB)⟩⟨ψA(zB)|, but as such can only provide information on

the mean of ensemble observables, and never on the actual ensemble distribution itself (see
Section 5.1.2).

To elucidate the importance of this distinction and reveal the emergence of random statistical
properties of the projected ensemble, we employ a Rydberg analog quantum simulator [34,
36, 41], which provides high fidelity preparation, evolution, and readout [34]. After a
variable evolution time, we perform site-resolved readout in a fixed measurement basis,
yielding experimentally measured bitstrings, z, which we bipartition into bitstrings zA and
zB.

Hamiltonian parameters are chosen such that, after a short settling time, the marginal
probability, p(zA), of measuring a given zA (while ignoring the complementary zB) agrees
with the prediction from ρ̂A being a maximally mixed state. In the language of quantum



129

Figure 5.4: The projected ensemble. a, Here we demonstrate a new approach to creating
random state ensembles based on only a single instance of time-independent Hamiltonian
evolution. An initial product state evolves under a Hamiltonian, Ĥ , before site-resolved
projective measurement in the computational basis {|0⟩, |1⟩}. We bipartition the system into
two subsystems A andB, and analyze the conditional measurement outcomes in subsystem
A, zA, given a specific result zB from the complement B. These outcomes are described
by the projected ensemble, a pure state ensemble in A, {|ψA(zB)⟩}, realized through
measurement of B. b, As an example for when A consists of a single qubit, conditional
single-qubit quantum states |ψA(zB)⟩ are visualized on a Bloch sphere for all possible zB
bitstrings. c, Numerical simulations of our experimental system show that the distribution
of the conditional pure state ensemble in A changes during evolution into a near-uniform
form. Selected states are chosen (as shown in b) and highlighted to demonstrate their
late-time divergence (right panel) despite nearly overlapping initial conditions (left panel).

thermalization [305–308], this is equivalent to saying ρ̂A has reached an equilibrium at
infinite effective temperature with the complement B as an effective, intrinsic bath [306,
309, 310] (see Appendix C for a definition of the many-body temperature). For a single qubit
inA, such a reduced density operator is ρ̂A = 1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
: the qubit has a probability

of being in state |0⟩ of p(zA=0) = 1/DA = 1/2, where DA = 2 is the local dimension
of A. As shown in Fig. 5.5a, after a short transient period the experimentally measured
probabilities, p(zA=0) (grey squares), equilibrate in agreement with this prediction.

We contrast this equilibration with the dynamics of conditional probabilities, p(zA|zB), of
measuring a given zA conditioned on finding an accompanying measurement outcome in the
intrinsic bath, zB. We note the marginal probability for finding zA is the weighted average
over conditional probabilities, p(zA) =

∑
zB
p(zB)p(zA|zB). More generally, while p(zA)
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Figure 5.5: Experimental signatures of random pure state ensembles. a, We employ a
ten-atom Rydberg quantum simulator to perform Hamiltonian evolution leading to quantum
thermalization at infinite effective temperature (see Appendix C). For a single qubit in A,
we plot the probabilities for finding a single qubit subsystem in state |0⟩ as a function of
time. Grey square markers indicate the marginal probabilities p(zA=0), which equilibrate
to ∼0.5 due to thermalization with B. In contrast, colored circle markers show conditional
probabilities given a specific measured zB inB, p(zA=0|zB), which show large fluctuations
even after the marginal probability reaches a steady state; these then diminish at late times
due to extrinsic decoherence effects. Such conditional probabilities yield information
about the projected ensemble as p(zA|zB) = |⟨zA|ψA(zB)⟩|2. Grey lines are simulated
trajectories of p(zA=0|zB) for all outcomes zB, with a few highlighted to be compared
with experimental data (color lines and markers). Decoherence sources are included for
simulations after the axis break. b, Histograms, P (p), of the probabilities p(zA=0|zB) at
intermediate (Ωt0/2π = 2.3) time. The experimental results are close to a flat distribution,
consistent with a Haar-random ensemble, as visualized by the simulated distribution of
projected states (right). c, However, at late (Ωt1/2π = 38) time, decoherence effects have
concentrated probabilities around 1/DA = 0.5, consistent with the error model simulation
showing the reduced lengths of single-qubit states (right). d,e, Similar agreement with
predictions from random state ensembles is also seen for larger subsystem sizes of A with
higher subsystem dimension, DA. In b-e, black lines and grey bands are predictions and
uncertainties (from finite sampling) of a DA-dimensional uniform random ensemble; red
dashed lines and blue solid lines are from simulations with and without decoherence
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yields information of the reduced density operator, such conditional probabilities yield
signatures of the projected ensemble, as p(zA|zB) = |⟨zA|ψA(zB)⟩|2. In Fig. 5.5a, we
plot numerically simulated p(zA=0|zB) in grey, with selected traces highlighted in color
to be compared with their corresponding experimental data (circle markers). Importantly,
conditional probabilities fluctuate chaotically with sensitive dependence on zB, even when
the marginal probability has reached a steady state. In experiments, fluctuations slowly
damp out over time due to extrinsic decoherence effects from coupling to an external
environment at very late time, but these decoherence effects do not appear to affect the
late-time marginal probability (right panel, Fig. 5.5a).

For calculations involving conditional probabilities, we bipartition each bitstring z into
subsystemsA andB with bitstrings zA and zB respectively. When considering the statistics
of conditional probabilities, we note that the blockade interaction [36] can reduce the
dimensionality of the Hilbert space of subsystem A if the boundary qubits in B are in
the Rydberg state. To isolate a set of conditional states having the same Hilbert space
dimension, DA, for a given choice of subsystem A and B, we only consider bitstrings zA
and zB if the qubits in B bordering A are in the |0⟩ state.

To analyze fluctuations, we bin conditional probabilities into a histogram P (p) for a time
when fluctuations are strong and decoherence effects are small (t0, Fig. 5.5b) as well as
at very late time (t1, Fig. 5.5c) when decoherence dominates. At t0, the experimental
P (p) distribution is essentially flat, as predicted for a Haar-random ensemble (Eq. (5.6)),
up to finite-sampling fluctuations and weak decoherence effects. We show projected states
obtained from simulation (Bloch sphere in Fig. 5.5b), including decoherence, to illustrate
how such a flat distribution is generated from a near-uniform ensemble of states. At very late
time, t1, decoherence reduces the purity of projected states significantly, leading to P (p)
becoming concentrated around 1/DA = 0.5 (Fig. 5.5c). This highlights that the agreement
between the experimental data and the random ensemble prediction in Fig. 5.5b,d is a
coherent phenomenon of closed quantum system dynamics. We further validate this in
Figs. 5.5d,e by plotting the P (p) for A composed of 2 and 3 atoms, with corresponding
Hilbert space dimensions of DA = 3 and 5, respectively. Here, the prediction from the
Haar-random distribution (Eq. (5.6)) is P (p) = (DA − 1)(1− p)DA−2.

5.2.1 Moments of the projected ensemble

The convergence of the projected ensemble to a nearly Haar-random distribution can be
temporally resolved by considering the moments of the distributions P (p), where the kth
moment is defined as p(k) =

∑
p p

kP (p) (Fig. 5.6a). Looking order-by-order, we find after
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Figure 5.6: Development of emergent randomness. a, Rescaled second (red), third
(purple), and fourth (blue) moments of the conditional probability distributions in Fig. 5.5b
for subsystem of length LA = 2. Experimental moments saturate to ≈k!, the expectation
from the uniformly random ensemble (dotted lines) and consistent with numerical simulation
(solid lines), before eventually decaying due to decoherence. b, Numerically computed trace
distances as a function of time between the LA = 2 projected ensemble and the four lowest
order approximations to the uniform random ensemble, so called quantum state k-designs,
for k = 1, 2, 3, 4 (inset). Distances for all k decrease initially before saturating due to finite
system-size effects. If the trace distances up to order k vanish, the ensemble is as random
as the kth design, and fluctuations of observables match up to order k, such as the kth
moments in a. c, Late-time distances decrease as ∼1/

√
DB (solid lines), the Hilbert space

dimension of the effective bath, subsystem B.

rescaling by a factor ofDA · · · (DA+ k− 1), moments from both experiment and numerics
quickly approach k!, the analytical result expected from a Haar-random ensemble (Eq. (5.2)).
This is independent of the details of subsystem selection, whether A is chosen at the edge,
center, or is even discontiguous (Fig. 5.7). At very late time, moments decrease, indicating
sensitivity to decoherence effects (Fig. 5.6a, right). Further examples for different sizes of
A are shown in Fig. 5.8.

Further, universal values are also found for two-point correlators, in agreement with their
Haar-random predictions. In Fig. 5.9, we measure the square root of a weighted average
of squared two-point correlators in the z-basis using the projected ensemble of a two-qubit
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Figure 5.7: Universality of moments of the projected ensemble. kth moments of the
conditional probability distributions in Fig. 5.5b,c, evaluated at late-time (Ωt/2π = 2.3)
and for a variety of choices of subsystems (see panel on the right); we find a universal
convergence to ≈k!, independent of subsystem choice, suggesting that a subsystem’s pro-
jected ensemble converges to the uniform random ensemble irrespective of the details of
placement, or connectivity. Error bars are the standard deviation over temporal fluctuations
in moments near the evaluated time, as shown in Fig. 5.6a.

subsystem, given as

σcorr(z1, z2) =

√∑
zB

p(zB)C(z1, z2|zB)2 (5.24)

where

C(z1, z2|zB) = ⟨ψA(zB)|Ẑ1Ẑ2|ψA(zB)⟩− (5.25)

⟨ψA(zB)|Ẑ1|ψA(zB)⟩⟨ψA(zB)|Ẑ2|ψA(zB)⟩.

Here, Ẑi is the Pauli-Z operator at site i, p(zB) is the probability of observing a bitstring zB
from outer subsystem B, and the expectation values on the right-hand side are computed
with the projected two-qubit state |ψA(zB)⟩. To compare the projected ensemble result with
a Haar-random ensemble, we use Eq. (5.16) for DA = 4 to compute the analytical value of
such a correlator for the Haar-random ensemble:√

Eψ∈Haar(4)

[(
⟨ψ|Ẑ1Ẑ2|ψ⟩ − ⟨ψ|Ẑ1|ψ⟩⟨ψ|Ẑ2|ψ⟩

)2]
=

√
4

35
. (5.26)

5.2.2 Comparison to quantum state k-designs

We study the trace distance between the projected ensemble, generated from error-free
simulation, and successive k-designs (Fig. 5.6b), finding the distance decreases for all kth
orders as a function of time, before saturating to a value exponentially small in the total
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Figure 5.8: Moments of the projected ensemble. 2nd (red), 3rd (purple), and 4th (blue)
moments of the projected ensemble for different choices of the size of A, ranging from
LA = 1 (top) to LA = 4 (bottom). Data is taken from the same dataset as in Fig. 5.6

system size (Fig. 5.6c). Similar numerical results are found for the case of random unitary
circuits and a Hamiltonian used in ion trap experiments (Fig. 5.10). In Ref. [70], we show
that the formation of uniformly random, pure state ensembles in subsystems is a more
universal phenomenon.
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Figure 5.9: Fluctuations of conditional two-point correlations in projected state ensem-
bles: a, Two-point correlations based on conditional projected states of two qubits separated
at distance d. b, Fluctuations of two-point correlation functions of conditional probabili-
ties, σcorr(z1, z2), characterized with a ten-qubit Rydberg-atom array simulator (Eq. (5.24)).
Experimental (markers) and numerical (solid lines) results increase and saturate to near
the theoretical prediction of σcorr =

√
4/35 from the uniformly random ensemble. At late

times t > 1 µs, the universal feature gradually vanishes due to accumulated errors and
decoherence processes in the experiment (time scale is logarithmic after the break). Colors
and markers used are: d = 2, blue circle; d = 4, orange square; d = 6, purple triangle;
d = 8; red triangle. c, Individual plots for the four different pair separations shown in b.

5.2.3 Finite temperature projected ensembles

While all measurements thus far were conducted with the system thermalizing close to
an infinite effective temperature condition, it is interesting to ask how the emergent ran-
domness of the projected ensemble is changed in the finite effective temperature case (see
Appendix C). We note that here we given only a very brief, and incomplete, discussion of
this effect, and so for substantial further details we recommend the reader consult Ref. [71].

To study the finite temperature condition, we numerically simulate quench evolution under
the Rydberg Hamiltonian with different choices of global detuning, and observe the effect on
observables for anN = 16 atom system. In Fig. 5.12a, we first show the late-time marginal
probability of measuring a single-qubit subsystem A in the state |0⟩, which is minimized at
a detuning of 0.5 MHz, with a probability close to 0.5; this condition corresponds to the
infinite effective temperature case. Similarly, we find the distance between the projected
ensemble and the Haar-random ensemble (at the level of a 2nd order moment) also is
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Figure 5.10: Emergence of the projected ensemble in other quantum systems. Numer-
ically computed trace distances between the projected ensemble of a two-qubit subsystem
and the corresponding k-design for RUC and trapped ion models. Results are shown for
multiple different total system sizes: 10, 13, 16 for the trapped ion case, and 10, 12, 14, 16
for the RUC case, with darker colors corresponding to larger total system sizes.

minimized at this point (Fig. 5.12b). For three choices of detuning, indicated by vertical
dashed lines in Fig. 5.12a and b, we plot the probability histograms for the single qubit
subsystem, as in Fig. 5.5, and show the corresponding distribution of projected ensemble
state vectors on the Bloch sphere (Fig. 5.12c).

We find that the numerical data in Fig. 5.12c agree well with an analytical form, PS(p) =
(ap + b(1 − p))−3, where a and b are real constants fixed such that the distribution is
normalized,

∫ 1

0
dpPS(p) = 1, and the mean of the distribution corresponds to the marginal

probability,
∫ 1

0
dpPS(p)p = p(zA = 1) (red curves). This distribution, PS(p), is predicted

from a so-called Scrooge ensemble of states, first proposed in Ref. [311] in the context of
quantum communication (see Ref. [312] for a derivation ofPS(p)). It was later hypothesized
that such an ensemble could appear in quantum chaotic dynamics [304].

The Scrooge ensemble consists of normalized states, |ψ⟩ρ = ρ̂1/2|ψ⟩/
√
⟨ψ|ρ̂|ψ⟩, where |ψ⟩

is drawn from a uniform, Haar-random ensemble with a weighing factorDS⟨ψ|ρ̂|ψ⟩, where
DS is the dimension of the Hilbert space in which the Scrooge ensemble is defined. As
its first-order moment, the Scrooge ensemble reproduces a desired target density operator,
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Figure 5.11: Trace distance between the projected ensemble and quantum state k-
designs: a, b, System size scaling of late-time trace distances from three different
subsystem sizes of LA = 1, 2, and 3. For fixed subsystem A size, we increase the Hilbert
space dimension of outer subsystem B, DB, and compute trace distances to the quantum
state k-designs for four different orders, k = 1 (orange), 2 (red), 3 (purple), and 4 (blue).
Sampling weighting factors of p(zB) and pk(zB)/

∑
zB
pk(zB) are used in a and b, respec-

tively, in the construction of a kth-order projected ensemble.

ρ̂: Eψ∈Haar[DS⟨ψ|ρ̂|ψ⟩|ψ⟩ρ⟨ψ|ρ] = ρ̂; in our case, ρ̂ refers to the reduced density operator
of A. For the effective infinite effective temperature case (ρ̂ = Î/DA), the Scrooge
ensemble reduces to a homogeneous, Haar-random ensemble. Motivated by the the good
agreement of probability histograms (Fig. 5.12c), we also plot the trace distance between the
second moment of the Scrooge ensemble,Eψ∈Haar[DS⟨ψ|ρ̂|ψ⟩(|ψ⟩ρ⟨ψ|ρ)⊗2], and the second
moment of the projected ensemble as a function of detuning (Fig. 5.12d). In contrast to the
Haar ensemble, the distance to the Scrooge ensemble is now almost independent of detuning.
Moreover, for a detuning that corresponds to finite effective temperature, we observe that
the distance decreases monotonically with total system size (inset of Fig. 5.12d).

It is interesting to note that the projected ensemble can indeed be viewed through a quantum
communication lens: projective measurements in B create the projected ensemble, which
can be thought of as a message ensemble sent to an observer in A. Message ensembles
are often characterized by the accessible information, the maximum information gain the
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Figure 5.12: Signatures of finite effective temperature projected ensembles. a, Late-
time, marginal probability values of p(zA = 0) as a function of global detuning for the
Rydberg Hamiltonian with N = 16 atoms; error bars denote the standard deviation over
temporal fluctuations. We find that at a detuning value of 0.5 MHz, the late-time probability
value equilibrates around 0.5, signaling the infinite effective temperature condition where a
uniformly random ensemble emerges. b, Trace distances between the projected ensemble
and the Haar-random ensemble as a function of the global detuning; as in a, the distance
is minimized at the infinite effective temperature condition of 0.5 MHz. c, Projected
ensembles for a single-qubit subsystem and their conditional probability distributions at
finite effective temperatures. Detuning values are chosen as 0.5, 3, and 5.5 MHz (indicated
by dashed lines in a and b), respectively from top to bottom. Here, the subsystem A is
taken from the middle atom at site 8. We find the numerical results are in good agreement
with the analytic prediction from the so-called Scrooge ensemble (red lines, see text). d,
Trace distances between the projected ensemble and the Scrooge ensemble as a function
of the global detuning. The inset shows that the trace distance decreases monotonically
as increasing total system size, N , which suggests that the single-qubit, finite-temperature
projected ensembles converge to the Scrooge ensemble in the thermodynamic limit.

observer (by optimal measurement) can achieve about the message. Interestingly, Scrooge
ensembles attain a lower bound of the accessible information if used as a message en-
semble [311]. Our results in Fig. 5.12 suggest that Scrooge ensembles naturally appear
in quantum many-body dynamics as projected ensembles (from a generic local basis mea-
surement inB), hence minimizing the accessible information about the projected ensemble
obtainable from measurements in A.

Again we recommend interested readers consult Ref. [71] for wealth of details on this
subject, most of which we only briefly touch on here.
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CHAPTER 6
Many-body fidelity benchmarking

While not a hard and fast rule, the conventional wisdom is that what makes quantum
computers powerful is their ability to wield large entangled states. Entanglement1 is a
resource for quantum computation, simulation, and metrology, but in the modern NISQ [50]
(noisy intermediate-scale quantum) era generating entanglement is far from a trivial task.
By contrast, in these murky pre-error-correction days, experiments are beset by errors,
limiting their fidelity of correctly performing a desired quantum evolution. However, the
problem is even more fundamental than poor execution: except in special cases, we don’t
even know how to measure how badly we did!

In Chapter 3, we studied two particular instances of quantum evolution: preparation of
two-atom Bell states, and preparation of long-range-ordered states of 26 atoms. In both
cases, we were able to make quantitative statements as to our success probability, and in
the two-atom case could even directly estimate the preparation fidelity. With such results in
hand, it may seem we can simply skip forward, and apply similar techniques to the generic
many-body case. Unfortunately, the very aspect of quantum science which makes it of such
general interest – namely, its classical computational intractability – seemingly precludes
us from efficiently understanding how well we can accomplish generic quantum tasks.

In this chapter, we will explore why we care about measuring quantum fidelities, how
standard methods are unable to accomplish this task, and what our solution to this problem
is. At the end, we will emerge with a general, efficient fidelity estimator, applicable for
nearly any type of quantum evolution.

1Throughout this thesis we will almost always use “entanglement” to imply an entropy-type quantity like
von Neumann entanglement entropy or negativity. As we study in great detail, such extensive metrics are
related to the complexity of representing quantum states. Thus when we say “highly entangled” we do NOT
refer to classically representable states like Greenberger–Horne–Zeilinger (GHZ), cluster, or stabilizer states.



140

6.1 ESTIMATING FIDELITY

To get started, what do we even mean by fidelity in a many-body context? We note that much
of the elementary discussion here can be found in much more detailed form in Ref. [15],
Chapter 9; however, be warned that in Ref. [15] what they call “fidelity” is really the square
root of the quantity we will be referring to, though our definition is the more standard
modern nomenclature.

At its core, fidelity is a distance measure between quantum states, and quantifies their
overlap. While fidelity can be defined between two mixed states, in this thesis we will
always be interested in the fidelity overlap between a mixed state, ρ̂, (generally generated
by the experiment) and a pure state, |ψ⟩, which allows us to simply write the fidelity, F , as

F = ⟨ψ|ρ̂|ψ⟩. (6.1)

Intuitively, you can think of the fidelity as a roughly a success likelihood, i.e. it is the
probability that when we execute a quantum operation we correctly generate the pure state
we desire. Thus it is a global quantity measuring the “goodness” of our operation.

Besides just being a success metric, however, the fidelity also encodes information about
how well we can estimate any observable. With some math expounded upon in more detail
in Ref. [15], we can write

max
{Êj}

1

2

∑
j

|pj − qj| ≤
√
1− F , (6.2)

where {Êj} is a POVM, pj = Tr(|ψ⟩⟨ψ|Êj), and qj = Tr(ρ̂Êj). The l.h.s. of Eq. (6.2) is
the cumulative absolute difference between observable probability distribution for a given
set of measurements on the quantum state, maximized over all possible choices of POVM
observables. Thus, more plainly, Eq. 6.2 states that knowledge of F allows us to upper
bound the maximum possible variation between observables of the experimental mixed state
and the target pure state.

Unfortunately, however, measuring the fidelity is a tricky business for all but the smallest
quantum systems for two reasons. One, it is in general hard to predict what |ψ⟩ is in generic
situations where classical simulations become intractable, and two, it is exceedingly difficult
to reconstruct ρ̂ from experimental measurements. The latter task is known as quantum
state tomography [313–315], and in its most naïve implementation it requires a exponential
number of measurements. This is because it requires measurement in an exponential number
of bases to have access to all 4N components of ρ̂, and requires an exponential number of
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measurements in each basis to accurately reconstruct the exponentially small terms. In
other words, it is practically impossible for more than a few qubits.

6.1.1 The linear cross-entropy benchmark

Clearly if our goal is to measure the fidelity, quantum state tomography is a non-starter, and
we will need to take a different approach. Luckily significant theoretical work [275, 276]
was devoted exactly to this question, and a solution was uncovered: employ randomness
in quantum evolution to estimate the fidelity with high accuracy with few measurements.
We highlight Ref. [297] for a very pedagogical and beginner-friendly introduction to many
topics we shall discuss.

The idea essentially is the following. To start, begin with your system in a simple to prepare
initial state. Then apply sufficiently randomizing, or scrambling, evolution such that the
quantum state ergodically explores its Hilbert space. After some finite time, measure the
state of the system in a fixed basis – call it the Z-basis for simplicity – to resolve the
probability distribution, q(z). At the same time, simulate the same exact evolution on a
classical computer with no errors, yielding a probability distribution p(z). Now, calculate
the following quantity

FXEB = (D + 1)(
∑
z

q(z)p(z))− 1 , (6.3)

where D = 2N is the Hilbert space dimension. If q(z) = p(z), i.e. if the distributions
are perfectly correlated, then the sum becomes the second moment of p(z). While this
is generically unhelpful, the key thing to note is that we chose our dynamics to be highly
scrambling, meaning the output of the experiment should look as if it was essentially drawn
from a random state ensemble – the same random state ensembles we have discussed ad
nauseum in Chapter 5. Under this assumption, we know that the second moment should be
equal to

∑
z

p(z)2 = 2/(D + 1), such that the r.h.s of Eq. (6.3) simplifies to 1.

Now, consider the opposite limit, where the experiment experiences so many errors as to
reduce it to a maximally mixed state, ρ̂ = Î/D, such that q(z) = 1/D for all z. In this case,
the two probability distributions are completely uncorrelated, and Eq. (6.3) simplifies to
1/D. Thus at least for these two limits of perfect correlation or complete uncorrelation, the
quantity FXEB appears to mimicking what we expect as the fidelity between the experiment
and the ideal.

We can go a step further, and make this connection more concrete. Let us assume the mixed
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state can be written as

ρ̂ = F |ψ⟩⟨ψ|+ (1− F )σ̂ , (6.4)

where σ̂ absorbs all the error in the system and we define ⟨ψ|σ̂|ψ⟩ = 0 such that F is the
fidelity1. We further define s(z) = ⟨z|σ̂|z⟩, in which case we write the following proof:

Proof.

FXEB = (D + 1)(
∑
z

q(z)p(z))− 1

= (D + 1)
(∑

z

(
Fp(z) + (1− F )s(z)

)
p(z)

)
− 1

= (D + 1)
(
F
∑
z

p(z)2 + (1− F )
∑
z

s(z)p(z)
)
− 1

= (D + 1)
( 2F

D + 1
+

(1− F )
D

)
− 1

= F +
1− F
D

≈ F , (6.5)

where in the last line we have taken D →∞, and where crucially we have assumed
that s(z) is uncorrelated with p(z).

Thus we have essentially shown that – assuming the target pure state is sufficiently random
– FXEB is a good estimator for the many-body fidelity.

6.1.2 Caveats of cross-entropy benchmarking

There are some obvious subtleties with Eq. (6.5), which will motivate our development of
more optimal fidelity estimators in the next sections.

Anti-correlation
For one, here we have only considered the case where s(z) and p(z) are well-correlated or
uncorrelated. However, it is of course equally valid that the two distributions could be anti-
correlated, for instance when they have no mutual support (e.g. let s(z) = δ(z − z1) and
p(z) = δ(z− z2) where δ is the Dirac-delta function, and z1 ̸= z2). In this case FXEB < 0,

1Oftentimes, we take σ̂ = Î/D, i.e. it is a maximally mixed state. In this case, however, F is not quite
the fidelity as we typically define it at the level of 1/D, and one must properly account for the overlap between
|ψ⟩ and σ̂.
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which is clearly unphysical behavior for estimating the fidelity which is strictly non-negative.
From extensive numerical evidence, this case is atypical for normal experimental noise
sources. However, it shall rear its head dramatically in Chapter 8 when we work with
approximate classical simulations of the quantum dynamics, and we shall employ innovative
methods to rein it in.

Invisibility of errors
Furthermore, the assumption that s(z) and p(z) are uncorrelated is partially violated in
many other cases. In the most pathological and unrealistic scenario, if an error occurs
which commutes both with the Hamiltonian and the projectors into the measurement basis,
it will be wholly undetectable.

Much more realistically, s(z) and p(z) can remain correlated at very short times after an
error occurs. For instance, if a phase flip error occurs, it is not immediately visible in
the fixed measurement basis, and so s(z) and p(z) could still be highly correlated even
though the global many-body fidelity has diminished. However, for sufficiently scrambling
dynamics, the error will again become visible after a short delay time.

To understand why, it is easiest to work in the Heisenberg picture. In this case, we can
consider what happens to the operator Ẑi (a phase flip occurring on site i) as a function of
time. Under action of the unitary operator Û , we can write

Û ẐiÛ
† =

∑
µ1µ2...µN

Aµ1µ2...µN µ̂1µ̂2...µ̂N , (6.6)

where the coefficient A on the r.h.s. is the quantum amplitude of a specific Pauli string
operator, where the µ̂i are Pauli operators drawn from {X̂, Ŷ , Ẑ, Î}.

Essentially, Eq. (6.6) says that an initially localized error can transform into a highly non-
local string operator under unitary evolution. The fundamental assumption of “sufficient
scrambling” is that the coefficientsA are all roughly equal, such that errors in any basis will
show some signature in the measurement basis, albeit potentially after a short delay.

We can model this effect by assuming s(z) = p(z) exp(−t/τ)+(1−exp(−t/τ))/D, where
τ is the typical delay time. Inserting this expression into Eq. (6.5), we find

FXEB = (D + 1)
( 2F

D + 1
+ (1− F )

∑
z

s(z)p(z)
)
− 1

= (D + 1)
( 2F

D + 1
+ (1− F )

∑
z

(
p(z) exp(−t/τ) + 1− exp(−t/τ)

D

)
p(z)

)
− 1

≈ F (1− exp(−t/τ)) + exp(−t/τ) , (6.7)
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Figure 6.1: Breakdown of fidelity estimation. Inset: When an error occurs, the fidelity
estimator (for instanceFXEB) does not instantly follow the decrease in fidelity, but only does
so after a finite delay time. Main plot: fidelity estimation fails beyond a certain error rate,
as errors accumulate faster than they are recognized due to the delay time. This breakdown
occurs roughly when the total error probability per layer approaches unity. Here this is
visualized for N = 10 RUC dynamics with random single-qubit Pauli errors, where the
breakdown occurs around a independent single qubit error rate of 0.1.

where in the last line we have again taken the limitD →∞. Thus, FXEB only is an accurate
estimator of F after a delay time of τ has elapsed (Fig. 6.1 inset).

We note that this delay time has more dramatic ramifications than just making fidelity
estimation slightly inaccurate. In particular, consider the case where the error rate grows
large enough that on average more than one error occurs per circuit depth. In this case, when
an error occurs the fidelity estimator will start dropping (with a characteristic timescale of
the delay time) to match the true fidelity, but before it has equilibrated another error will
occur, affecting the fidelity. This will lead to a staggered process where the fidelity estimator
becomes entirely inaccurate to the true fidelity.

We visualize this process in Fig. 6.1, where we see for N = 10 RUC dynamics with
single-qubit Pauli errors the relative mis-estimation of the fidelity estimator remains small
and relatively flat until the error rate is 0.1, at which point the fidelity estimator becomes
completely erroneous. This breakdown point occurs roughly where more than one error
occurs per circuit layer, and is thus sensitive to both the number of qubits, and the error
rate. We note that this observation is intimately linked to other studies of phase transitions
in cross-entropy benchmarking [316–318], but recasts it in a more intuitive light.



145

Necessity of global scrambling
Finally, FXEB is only a good description if the global state is as random as a 2-design, i.e.
if the second moment p(z) = 2/(D+1). There are various reasons why this may not be the
case. For instance, at the earliest time, let q(z) = p(z) = δ(z− z0), where |z0⟩ is the initial
fiduciary product state. Then we would have FXEB = (D+1)

∑
z δ(z− z0)2− 1 = D+2,

which is exponentially larger than 1, and would slowly diminish to match the actual fidelity
as scrambling was ongoing (see for instance Ref. [316]). Still, the FXEB is not a fidelity
estimator until the global second moment is that of a Haar random state, which is limited
by the Lieb-Robinson velocity [319, 320].

Furthermore, this condition is impossible if the system is constrained by conservation laws
or symmetries such that a global 2-design is never achieved. As an example, imagine a finite
temperature scenario such that the |1⟩ state is far preferred over the |0⟩ state. In this case, the
second moment cannot reach the needed value. However, as we have explored extensively
in Chapter 5, there are still ways to identify random state ensemble behavior even in cases
where global scrambling has not occurred due to Lieb-Robinson bounds, symmetries, or
conservation laws.

In the next section, we will be employing these innovative types of random state ensembles
to solve, or at least partially address, many of the insufficiencies of FXEB. We will proceed
in two steps, and introduce two new fidelity estimators, Fc and Fd. Fc is designed to
make the standard linear cross-entropy perform better at early times via the use of local
scrambling from the projected ensemble (see Chapter 5 for details thereof). Fd then will
build off of Fc, maintaining its same benefits while opening them up to many new types of
quantum systems.

6.2 BUILDING A BETTER CROSS-ENTROPY

As just discussed, the linear cross-entropy benchmark suffers from several problems, such
as failure at early times and lack of applicability to systems with conservation laws or
symmetries. In this section, we will tackle these problems, and introduce a new, more
general cross-entropy which estimates the fidelity both at short and early times, and is
applicable to a wide range of quantum dynamics. We note that especially for the latter
point, the definitive reference is Ref. [30], which should be consulted for extensive details.

A key question is if the formation of approximate k-designs in the projected ensemble en-
ables associated applications like device benchmarking with only global, time-independent
control. Decoherence changes observables of the projected ensemble (Figs. 5.6); can this
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Figure 6.2: Detecting errors during quantum evolution. a, Schematic of noisy time
evolution with an error occurring at time terr. The influence of the local error propagates
outward, affecting the measurement outcomes non-locally at a later time. b, Errors during
evolution can be detected by correlating the measurement outcomes with an error-free, ideal
evolution case. We numerically tested this by applying a local, instantaneous phase error to
the middle qubit of anN = 16 atom Rydberg simulator at timeΩterr/2π ≈ 1. The proposed
fidelity estimator, Fc (solid line), accurately approximates the many-body overlap (dashed
line) between states produced with and without errors, after a slightly delayed time. Inset:
Conditional probability distributions in A before (blue) and after (red) the error, showing
decorrelation.

quantitatively signal the onset of decoherence in a quantum device?

We affirmatively answer this question by benchmarking the evolution of our experimental
system under a time-independent Hamiltonian. As a toy example, we consider the case of
a single error occurring at time terr during unitary evolution. The effect of this error then
propagates outward [320], generically transforming the evolution output state and affecting
measurement outcomes in subsystemA (Fig. 6.2). Using the fact that the projected ensemble
forms an approximate 2-design (see Chapter 5), we devise a fidelity estimator Fc to quantify
the effect of this error as a rescaled cross-correlation between measurement probabilities in
the experimental and ideal conditions:

Fc = 2

∑
z p(z)q(z)∑
z p

2(z)
− 1, (6.8)

where q(z) and p(z) are the experimental and theoretical probabilities of observing a global
bitstring z, respectively. We numerically confirm that shortly after we apply an instantaneous
phase rotation error on one qubit, our estimator approximates the many-body state overlap,
Fc ≈ F = ⟨ψ|ρ̂|ψ⟩, between the ideal state, |ψ⟩, and the erroneous state, ρ̂ (Fig. 6.2b).

To evaluate Fc experimentally, we formulate an empirical, unbiased estimator:

Fc ≈ 2
1
M

∑M
i=1 p(z

(i)
exp)∑

z p
2(z)

− 1, (6.9)

where M is the number of measurements and z(i)exp is the experimentally measured bitstring
at the ith repetition. While this reformulation still requires calculation of a reference
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theory comparison, we note that the required number of experimental samples to accurately
approximate Fc scales favorably with system size N . Concretely, the standard deviation
of Fc is estimated to be σ(Fc) ≈ 1.04N/

√
M (Fig. 6.6), yielding an improved sample

complexity in comparison to other existing methods [321]. This implies that we do not
need to fully reconstruct the experimental probability distribution for fidelity estimation of
large quantum systems.

6.2.1 Experimental results

We test our benchmarking protocol for errors occurring continuously with a Rydberg
quantum simulator of up to N = 25 atoms. We estimate the fidelity of our experimental
device, Fc,exp, by correlating measured bitstrings to results from error-free simulation as
a function of evolution time. In addition, we use an ab initio error model with no free
parameters that mimics the experimental output, from which we extract both the fidelity
estimator, Fc,model, and the model fidelity, Fmodel = ⟨ψ(t)|ρ̂model(t)|ψ(t)⟩ (Fig. 6.3a).

In Fig. 6.3b, we compare Fmodel, Fc,exp, and Fc,model for a system of ten atoms. We observe
Fc,model ≈ Fmodel, validating the efficacy of the estimator under realistic error sources.
Additionally, we find Fc,exp ≈ Fc,model, and that full bitstring probability distributions show
good agreement between the error model and the experiment, indicating that our ab initio
error model is a good description of the experiment.

We further apply this method to estimate the fidelity for generating states with a maximum
half-chain entanglement entropy in larger systems. We first use error-free simulation to
calculate the half-chain entanglement entropy growth as a function of system size, finding
that the entanglement saturates at a time, tent, linear in system size (Fig. 6.3c). We evaluate
the fidelity estimator Fc for N ranging from 10 to 25, each at their respective tent, again
finding good agreement between experiment and our ab initio error model in the range for
which our error model is readily calculable (Fig. 6.3d). We note an estimated fidelity of
0.49(2) for generating a state with maximum half-chain entanglement entropy for N = 25.

We numerically show Fc also applies for erroneous evolution using other quantum devices
(Fig. 6.4). For both random unitary circuits and Hamiltonian evolution, Fc accurately
estimates the fidelity at much shorter evolution times than do existing methods such as
linear cross-entropy benchmarking [162, 276], which can be explained through the early
time-formation of the projected ensemble. Specifically, the Hamiltonian system we simulate
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Figure 6.3: Fidelity estimation of an analog Rydberg quantum simulator. a, To estimate
experimental fidelity, we repeatedly perform Hamiltonian evolution, each time performing a
projective measurement to accrue an ensemble of measured bitstrings zexp. We then correlate
the measured bitstrings with an error-free simulation of the dynamics in order to calculate
the fidelity estimator, Fc,exp. To validate our fidelity estimation method, we compare the
error-free simulation against results from an ab initio error model, to calculate the model
fidelity Fmodel and accompanying estimator Fc,model. b, Experimental benchmarking of
a Rydberg quantum simulator for N=10 atoms with blockaded Hilbert space dimension
D=144. Shown are Fc,exp (grey markers), the fidelity Fmodel (dashed red line), and Fc,model
(solid pink line). c, The half-chain entanglement entropy (calculated from the error-free
simulation) increases before saturating at a time, tent, which grows linearly with system size
(inset). d, Fidelity estimated at tent, showing estimator Fc from experiment (grey markers)
up to N=25, and from error model (pink crosses) up to N=22. Additionally, we show
a fit to the model fidelity, given as FN

0 exp[−γ(N)tent(N)] (red dashed line), where F0

is the single-atom preparation fidelity and γ(N) is the many-body fidelity decay rate of
our Rydberg simulator. The fidelity estimation uses only <104 experimentally sampled
bitstrings per data point.

is a trapped ion Hamiltonian:

Ĥion/ℏ = 2πJ

[
N∑
i=1

0.4Ŝxi + 0.45Ŝyi +
N−1∑
i=1

N∑
j=i+1

Ŝxi Ŝ
x
j

|i− j|

]
, (6.10)

where Ŝx,y,zi are the spin-1/2 operators at site i. The Hamiltonian coefficients are adapted
from Ref. [322], including the 1/r long-range interactions. In addition, coefficients are
globally rescaled by J such that the early-time growth rate of half-chain entanglement
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Figure 6.4: Benchmarking for other quantum systems. a, Fidelity estimation for the case
of a trapped ion quantum simulator governed by chaotic Hamiltonian evolution (left) and a
quantum computer implementing a random unitary circuit (RUC) (right). In both cases, we
plot the many-body fidelity (dashed line), as well as our fidelity estimator, Fc (solid line)
and the more conventional linear cross-entropy-benchmark, FXEB [162] (dotted line). We
find that Fc approximates the fidelity at much earlier times than FXEB.

entropy is matched to that of RUC dynamics. The many-body quantum state at time t is
obtained by solving for |ψ(t)⟩ = e−iĤiont/ℏ|0⟩⊗N , and noisy evolution is represented by local
bit-flip and phase-flip errors. Random unitary circuit details are summarized in Appendix B.

6.2.2 Data analysis

Our state readout is described in detail in Ref. [34]; it features single-site detection which
discriminates atoms in the clock state, |0⟩, versus the Rydberg state, |1⟩, through a combina-
tion of fluorescence imaging and Rydberg auto-ionization. We take a total of three images:
1) after the array is initially loaded to perform rearrangement, 2) after the rearrangement
is completed to verify the initial state is correct, 3) after the sequence has finished. We
post-select for image triplets where the proper rearrangement pattern is visible in image
(2), and calculate the survival of each atom by comparing site occupations in image (2) to
image (3).

This array of survival signals is then converted into the qubit basis. For instance, in typical
experiments where atoms are rearranged into defect-free arrays of ten atoms, we calculate
the binary survivals for each atom, and then make the mapping ‘atom survived’→ |0⟩ and
‘atom did not survive’→ |1⟩, yielding a bitstring of the qubit states. After taking many shots
we accrue an ensemble of such bitstrings, {z}. For randomness measurements, a total of
≈120000 shots are used (≈3000 shots per time point). For benchmarking measurements a
total of ≈40000 shots are used for generating the time-trace at N = 10 in Fig. 6.3b (≈3700
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shots per time point). Approximately ≈44000 total shots are used for the N -scaling plot
in Fig. 6.3d, where the number of shots for a given system size is approximately given by
M ≈ 3000 + 250N .

In Fig. 6.3, error bars on experimental quantities are calculated via extrapolation from
subsampling of the total number of experimentally measured bitstrings to estimate the
sample complexity at a givenN (Fig. 6.6). The error bars on Fc,model from the ab initio error
model stem from typicality errors associated with the temporal fluctuation of our estimator.

6.2.3 Calculating the entanglement saturation time

As can be seen in Fig. 6.3c, entanglement growth in our Rydberg quantum simulator is
generally characterized by two distinct regions: a size-independent linear increase, followed
by saturation at an N -dependent value. In order to systematically capture this behavior and
predict the entanglement saturation time for arbitrary N , we apply the following protocol.
We first calculate the entanglement growth for system sizes ranging from N = 10 to 22.
We then fit all profiles with a functional form of

Sent(N, t) =

m1t t ≤ tc(N)

m1tc(N) +m2(N)(t− tc(N)) t > tc(N)

with free parameters m1,m2(N), and tc(N), but with the explicit constraint that m1 must
be the same for all system sizes. From this we find tc(N), and we further define tent(N) =

Ctc(N), where in the Rydberg case we set C = 1.35 in order to make sure the time we
study is firmly in the saturated entanglement regime (as can be verified visually in Fig. 6.3c).
The secondary slope m2 is used because even past tent there is still some slight growth to
the entanglement entropy, which becomes more noticeable for larger N ; we explore this
in slightly more detail in Section 9.2.1. The entanglement saturation time is then fit as a
linear function of system size, yielding tent(N) = α0+α1N ; for our particular Hamiltonian
parameters we find α0 = −0.0580(2), α1 = 0.05404(1), both in units of µs, or α0 ≈ −0.3
and α1 ≈ 0.3 in units of cycles.

6.2.4 Derivation of the fidelity estimator

Here we prove the fidelity estimator Fc is a good estimator of the fidelity, in the sense that it
captures the effect of single errors supported in local subsystems; by averaging over many
such local subsystems, the global fidelity can be captured even at early times.
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Proof. Our fidelity estimator Fc (Eq. 6.8) can be understood by expressing the global
bitstring probabilities for ideal and noisy evolution, p(z) and q(z) respectively, in
terms of conditional and marginal probabilities as

p(z) = p(zA|zB)p(zB) (6.11)

q(z) = q(zA|zB)q(zB), (6.12)

for complementary subsystems A and B. We consider the simplest case of a single
local error V̂ occurring at time terr during time-evolution, and assume that the time-
evolved error operator, V̂ (τ) = Û(τ)V̂ Û(τ)†, is supported within subsystem A. Here
τ = t− terr is the time past the occurrence of the error and Û(τ) is the time-evolution
operator from terr to t. This implies that the measurement outcome in B is not
affected by the error, giving q(z) = q(zA|zB)p(zB) because q(zB) = p(zB). Under
these conditions, we can rewrite Fc as

Fc = 2

∑
z p(z)q(z)∑
z p(z)

2
− 1 (6.13)

= 2

∑
zB
p2(zB)

∑
zA
q(zA|zB)p(zA|zB)∑

zB
p2(zB)

∑
zA
p2(zA|zB)

− 1 (6.14)

≈
∑

zB
p2(zB)(FXEB(zB) + 1)∑

zB
p2(zB)

− 1 (6.15)

=
∑
zB

r(zB)FXEB(zB) (6.16)

where r(zB) = p2(zB)∑
zB

p2(zB)
and

FXEB(zB) = (DA + 1)
∑
zA

q(zA|zB)p(zA|zB)− 1 (6.17)

is the zB-dependent, linear cross-entropy benchmark [162] in subsystem A, and DA

is the Hilbert space dimension of A. From Eq. (6.14) to Eq. (6.15), we used the
second-order moment of the projected ensemble in an error-free case

1

DA

∑
zA

p2(zA|zB) ≈
2!

DA(DA + 1)
(6.18)

based on our experimental and numerical observations of emergent local randomness
during chaotic quantum dynamics (Chapter 5.2).

The validity of the relation Fc ≈ F can be analytically understood based on the
assumption that the projected ensemble of |ψA(zB)⟩ approximately forms a quantum
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state 2-design. To see this explicitly, we consider∑
zB

r(zB)p(zA|zB)p(zA|zB)

=
∑
zB

r(zB)⟨ψA(zB)|P̂zA|ψA(zB)⟩⟨ψA(zB)|V̂ †(τ)P̂zAV̂ (τ)|ψA(zB)⟩

= tr

{(
P̂zA ⊗ V̂ †(τ)P̂zAV̂ (τ)

)
·
∑
zB

r(zB)(|ψA(zB)⟩⟨ψA(zB)|)⊗2

}

≈
tr
{(
P̂zA ⊗ V̂ †(τ)P̂zAV̂ (τ)

)
·
(
1̂+ ŜA

)}
DA(DA + 1)

=
1 +

∣∣∣⟨zA|V̂ (τ)|zA⟩
∣∣∣2

DA(DA + 1)
(6.19)

where P̂zA = |zA⟩⟨zA| is the z-basis projector onto a specific bitstring zA inA, r(zB)
is the probability weighting factor, 1̂ is the identity operator, and ŜA is the swap
operator acting on subsystem A for the duplicated Hilbert space H⊗2

A . In order to
obtain the fourth line, we used

∑
zB

r(zB)(|ψA(zB)⟩⟨ψA(zB)|)⊗2 ≈ 1̂+ ŜA
DA(DA + 1)

, (6.20)

where the right-hand side is due to the projected ensemble forming an approximate
quantum state 2-design. We note that the weighting factors q(zB) are different
than those used for the majority of the thesis; however, we numerically find that
approximate 2-designs form regardless of which weighting factor is used.

Inserting Eq. (6.19) into Eq. (6.16), we obtain

Fc ≈
1

DA

∑
zA

∣∣∣⟨zA|V̂ (τ)|zA⟩
∣∣∣2

=
1

D

∑
z

∣∣∣⟨z|V̂ (τ)|z⟩
∣∣∣2 , (6.21)

where the equality on the second line holds because one can always multiply the
identity 1

DB

∑
zB
⟨zB|zB⟩2 = 1 with the Hilbert space dimension of the complement

DB = D/DA with D being the Hilbert space dimension of the entire system.

The relation in Eq. (6.21) explains how Fc estimates the many-body fidelity with a good
accuracy. The right-hand side of Eq. (6.21) describes the return probability of V̂ (τ) (also
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Figure 6.5: Systematic delay time in fidelity estimation. a, Systematic error in the fidelity
estimator Fc (red) and the linear cross-entropy benchmark FXEB (blue) relative to the true
fidelity F for a ten-qubit random quantum circuit. Noisy quantum dynamics are simulated
with random, local bit-flip and phase-flip errors at four different single-qubit error rate per
circuit depth, γerr = 0.0025 (circle), 0.005 (square), 0.0075 (diamond), and 0.01 (triangle).
The dashed grey lines are the phenomenological error scaling of exp(Nγerrτd) with an
γerr-independent delay time of τd = 0.8 and N = 10. The saturation of both Fc/F and
FXEB/F at large circuit depth implies that at late times there is a delayed response in
fidelity estimation performed with a fixed measurement basis, i.e. F = exp(−Nγerrt), but
Fc = exp(−Nγerr(t− τd)).

known as Loschmidt echo) averaged over all possible initial states in the fixed measurement
basis. Under chaotic time evolution, the propagated error operator V̂ (τ) becomes scrambled,
and it is exponentially unlikely in the size ofA that a computational state remains unchanged.

Therefore, non-vanishing contributions to Fc arise only when the error operator is partly
proportional to the identity, e.g. V̂ (τ) = c01̂+

∑
s cs(τ)σ̂s with c0 ̸= 0, where s enumerates

over all possible Pauli strings supported inA [320]. In such a case, Fc ≈ |c0|2 approximates
the probability that V̂ did not affect the many-body wavefunction, hence Fc ≈ F . This
statement becomes exact if the local qubit on which the error occurs is maximally entangled
with the rest of the system at the time of the error. Our analysis can be straightforwardly
generalized to more than one error, either located nearby or distant, as long as their joint
support A leads to a random ensemble approximately close to the state 2-design.

Finally, we comment on the conditions in which Fc may significantly deviate from F . If
V̂ is diagonal in the measurement basis, e.g. dephasing error along the z axis, and if the
error occurs shortly before the bitstring measurements, the return probability in Eq. (6.21)
will be close to unity despite that the many-body fidelity may be decreased significantly.
Our method can fail in this special case. However, if Fc is evaluated after some delay time
from the error (Fig. 6.5), then V̂ (τ) becomes scrambled in the operator basis, and F can be
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approximately estimated (Fig. 6.2). In other words, even in the case of off-diagonal errors,
our formula becomes valid after a finite delay time.

6.2.5 Fidelity estimation in the Rydberg model

Bitstring probability distributions in our system are characterized in a constrained Hilbert
spaceHc where the simultaneous excitation of two neighboring atoms to the Rydberg state
is not allowed. In order to benchmark our quantum device in the subspace Hc, we modify
the fidelity estimator Fc as

Fc(t) = B(t)B0(t)

(
2

∑
z∈Hc

p̃(z)p̃0(z)∑
z∈Hc

p̃0(z)2
− 1

)
. (6.22)

HereB(t) areB0(t) are the total probabilities of being in the subspaceHc at time t in noisy
and clean evolution, respectively, and p̃ and p̃0 are the corresponding bitstring probabilities
normalized in Hc. We numerically confirm that Eq. (6.22) is a good approximation in
the strong Rydberg blockade regime, provided that noisy evolution results in negligible
many-body overlap in the manifold outsideHc. In addition, we take into account the spatial
inversion symmetry of the Rydberg Hamiltonian. Specifically, our Hamiltonian commutes
with the left-right inversion operator Q̂, which swaps two atoms at sites i and N − i+1 for
every i, due to the global uniformity implicit in the one-dimensional Rydberg model. Under
this symmetry, we find that |ze⟩ = |z⟩+|z̄⟩√

2
and |zo⟩ = |z⟩−|z̄⟩√

2
are the even- and odd-parity

eigenstates of Q̂with eigenvalues of 1 and−1, respectively. Here, |z⟩ and |z̄⟩ are the z-basis
bitstring and its mirrored version, i.e., |z⟩ = |z1z2 . . . zN⟩ and |z̄⟩ = |zNzN−1 . . . z1⟩ where
zi is either 0 or 1 at site i. Since our initial state |ψ0⟩ = |0⟩⊗N is the even-parity eigenstate
of Q̂, i.e., Q̂|ψ0⟩ = +|ψ0⟩, the resulting many-body states after a quench always reside
within the even-parity sector, reducing the effective Hilbert space dimension approximately
by a factor of two. Furthermore, since projective measurement yields either |z⟩ or |z̄⟩
with probabilities 1/2 due to the parity eigenbasis {|ze⟩, |zo⟩}, their contributions to the
fidelity estimation formula need to be adjusted; in consideration of this inversion symmetry,
we rewrite both p̃(z) and p̃0(z) using the parity eigenbasis and assume that both |z⟩ and
|z̄⟩ measurement outcomes originate from the same |ze⟩ in the even-parity sector. This
effectively corresponds to checking the bitstring correlation in the even-parity sector of the
parity eigenbasis. Having incorporated these modifications, we numerically confirm that
the adjusted fidelity estimator shows good agreement with the true fidelity defined from the
full Hilbert space.
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6.2.6 Errors in fidelity benchmarking

Fidelity estimation is not without error; besides the systematic effect of the delay time
previously discussed, there are also statistical limitations. These originate from two sources:
Sampling (i.e. we need to take enough samples for our benchmarking to be statistically
significant) and Typicality (i.e. we need the Hilbert space to be large enough that some of
our approximations in deriving Fc are always true). We note that we repeat these studies
in perhaps a more intuitive way in Section 8.6.3, where we also show more experimentally
relevant values for these error sources, but we present information on them here as well for
completeness.

Sampling
We quantify the typical statistical error from approximating our fidelity estimator via Eq. 6.9
in two steps. First, we use our ab initio error model to simulate the quantum evolution of
the Rydberg Hamiltonian for system sizes fromN = 10 to 22, from which we can calculate
the exact value of Fc compared to error-free numerics. We then sample a finite number of
M samples from the probability distributions produced from the error model simulation,
apply Eq. 6.9, and plot the standard deviation of Fc as a function of M (Fig. 6.6a). We see
a characteristic scaling of σ(Fc) = A/

√
M , where A is the sample complexity, expected

to scale exponentially with N , and σ denotes the standard deviation. We perform a similar
process directly on our experimental data by repeatedly subsampling the experimentally
measured bitstrings in order to estimate the scaling of the standard deviation. We plot both
error model and experimental results in Fig. 6.6b as a function ofN , where the time is set as
the N -dependent entanglement saturation time. By fitting the experimental (error model)
results, we find A ≈ aN , with a = 1.037(2) (a = 1.039(2)).

Typicality
Benchmarking results for RUCs are averaged over an ensemble of RUCs realized via
sampling of two-qubit unitaries Û . For FXEB, a single choice of an RUC out of such an
ensemble already yields accurate results in the sense that, in the limit of large circuit depth,
the error from using only a single RUC scales as 1/

√
D with D being the Hilbert space

dimension of a global system [162].

We now investigate if a similar typicality scaling holds for benchmarking of Hamiltonian
dynamics. To this end, we consider an ensemble of Hamiltonians generated from a mixed-
field Ising model [322], given as

ĤQIMF/ℏ = 2π

[
N∑
i=1

0.22Ŝxi + 0.25Ŝyi +
N−1∑
i=1

Ŝxi Ŝ
x
i+1

]
, (6.23)
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Figure 6.6: Finite sampling analysis for Fc. a, Statistical fluctuations of the fidelity
estimator, Fc, at N=13 (dark purple) and N=22 (light purple), computed both using our
ab initio error model (solid lines) and experiment (markers) evaluated with a finite number
of M bitstring samples. Data are consistent with a 1/

√
M scaling, shown here as a guide

to the eye (grey dashed line) b, Sample complexity of the fidelity estimator, evaluated at
the N -dependent entanglement saturation time for the error model (blue crosses), and for
the experimental data in Fig. 6.3d (red circles). A fit to the experimental data (dashed line)
with functional form σ(Fc)

√
M = aN yields an estimate of a = 1.037(2) (a similar fit to

the error model yields an estimate of a = 1.039(2)).

by adding a series of site-dependent transverse fields:

ĤQIMF(J)/ℏ = ĤQIMF/ℏ+ 2π
N∑
i=1

JiŜ
z
i , (6.24)

where ĤQIMF(J) is a Hamiltonian in the ensemble parameterized by site-dependent trans-
verse fields, J = (J1, ..., Ji, ..., JN). We sample the Ji uniformly from [−0.5, 0.5] with
a restriction,

∑N
i=1 Ji = 0, imposed so all target states thermalize to effective infinite ef-

fective temperature (see Appendix C). With the ĤQIMF(J), we generate an ensemble of
parameterized target states, |ψ(t,J)⟩ = e−iĤQIMF(J)t/ℏ|0⟩⊗N . We now consider a single
error occurring at a time t0, induced by a single-site rotation around the x-axis, on top
of otherwise error-free evolution. We denote the erroneous states as |ψ(t,J)⟩e. The ro-
tation angle is fixed across J-choices with an amplitude that yields a many-body overlap
F (J) = |⟨ψ(t,J)|ψ(t,J)⟩e|2 ≈ 0.5.

We now estimate this many-body overlap using the bitstring probabilities for these two states,
yielding a time- and J-dependent estimator Fc(t,J). To quantify relative fluctuations, we
introduce the relative difference d(τ,J) = (Fc(t0 + τ,J)− F (J))/F (J), where τ = t− t0
is the evolution time after the error. We show the ensemble average of d(τ,J) as a function
of τ (Fig. 6.7a) for two different choices of t0: t0 = 0 and t0 = 5. We observe that the
ensemble average settles quickly to zero within a 10−2 level; however, we find fluctuations
around this mean value arising from different choices of J. To quantify these fluctuations,



157

Figure 6.7: Typicality analysis of Fc: a, Normalized fidelity estimation errors as a function
of interrogation time τ after a local, instantaneous error occurs at time t0 (see the inset of
a). The error strength is chosen such that the many-body overlap is reduced to ∼0.5.
To investigate typical statistical errors in fidelity estimation, we simulate an ensemble of
chaotic Hamiltonians at a fixed system size of N = 16 for two error occurrence times of
t0 = 0 (left) and t0 = 5 (right). The mean and standard deviation of the normalized fidelity
estimation errors are plotted as the solid line and grey band, respectively. b, Standard
deviation of normalized fidelity estimation errors, characterized at two different post-error
interrogation times (τ = 8; open markers, τ = 30; closed markers) as a function of the
total Hilbert space dimension D for the two error occurrence times of t0 = 0 (left) and t0
= 5 (right). At the late interrogation time of τ = 30, we find that the typical error from
the distinct choice of a Hamiltonian follows a scaling of σ[(Fc − F )/F ] ∼ 1/

√
D (solid

lines), as also found for deep random unitary circuits. In b, error bars denote the standard
deviation of σ[(Fc − F )/F ] in a [τ − 1, τ + 1] window.

we evaluate the standard deviation of d(τ,J) over J and find that it decreases with system
size (Fig. 6.7b). At late times τ , we find a 1/

√
D scaling similar to the case of RUCs. These

results suggest that, at sufficiently late time, our method becomes increasingly more precise
in the limit of large system size for a single typical Hamiltonian evolution.

6.2.7 Benchmarking with evolution constraints

The fidelity estimator considered in the last section, Fc, accurately tracks evolution fidelity
when that evolution is tuned such that the initial state thermalizes at infinite effective
temperature (see Appendix C). However, problems may arise when this infinite effective
temperature condition is not met, or if symmetries of the Hamiltonian restrict the system
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Figure 6.8: Comparison to a new fidelity estimator. We compare benchmarking with the
fidelity estimator Fc, as in Fig. 6.3 (left), against a new fidelity estimator, Fd [30], which
normalizes all probabilities in Eq. 6.8 by their time-average (right). Colors and marker
types are equivalent to those in Fig. 6.3 in all subplots.

dynamics, as the projected ensemble may not completely form a 2-design. In recent
work [30], a new estimator, Fd, was introduced by rescaling the bitstring probabilities in
Eq. 6.8 by their time-average; remarkably this allows for benchmarking systems evolving
at finite effective temperature as well as systems of itinerant particles such as Bose- and
Fermi-Hubbard models. In Fig. 6.8 we compare this new estimator, Fd [30], and our original
estimator Fc for benchmarking our Rydberg quantum simulator. We observe no sizeable
difference between the two estimators, which we interpret as due to intentionally performing
all evolution close to infinite effective temperature in this work. We revisit this improved
estimator in detail in Chapter 8.

6.3 APPLICATIONS

Our study of random state ensemble led us to successfully benchmark the many-body fidelity
for performing time-independent Hamiltonian quench dynamics. While already an impor-
tant milestone that will be (and already is) useful for evaluating and improving quantum
devices, there are several other more direct and practical application of our techniques. In
this chapter we delve into such applications in more detail, highlighting three in particular;
a fourth application, namely learning microscopic noise models affecting our system will
be discussed in further detail in the following Chapter.

First, we perform Hamiltonian parameter estimation, or Hamiltonian learning, via many-
body fidelity measurements. Specifically, we perform a many-body quench with the ex-
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periment, and then in the corresponding simulation we vary the Hamiltonian parameters.
We find that a clear maxima emerges which agrees with pre-calibrated values, and which
gives access to space- and time-dependent parameters, and for instance may be useful for
uncovering unexpected Hamiltonian terms.

Second, we extend the reach of our fidelity estimation from simple quench dynamics to
a broader class of target state benchmarking. Specifically, we numerically show that the
fidelity for many types of complex quantum processes can be benchmarked by appending a
short chaotic quench after the dynamics, and measuring the result fidelity. We numerically
find this technique works for adiabatic sweeps as well as for specific interesting entangled
states. This task is spiritually quite related to Hamiltonian parameter estimation, as both are
essentially many-body fidelity estimation with different choices of target or initial states.

Finally, we demonstrate that many-body fidelity estimation allows for evaluating the relative
performance of analog and digital quantum devices, even when their dynamics are quite
different. In this case we will use a relatively simple metric, which is the effective gate
fidelity per unit entanglement time, but we note that in Chapter 9 we greatly extend this
formalism to capture the actual mixed state entanglement content of experiments.

6.3.1 Hamiltonian parameter estimation

First, we demonstrate coherent Hamiltonian parameter estimation. To do so we measure Fc
while varying Hamiltonian parameters in simulation; when numerical parameters do not
match with those in experiment, Fc will decay quickly. To capture this effect in a single
quantity we plot the normalized, time-integrated Fc (Fig. 6.9a). For each Hamiltonian
parameter, a sharp maximum emerges, showing good agreement with precalibrated values
(dashed lines and shaded areas). Parameter estimation also works when applied to learn
local, site-dependent terms of a disordered Hamiltonian (Fig. 6.9b), notably without any
local control during readout.

The Hamiltonian parameter estimation scheme presented in Fig. 6.9 works by comparing
measurements from experiment against an ensemble of target states from numerical sim-
ulations, each evolved with a different set of Hamiltonian parameters. For example, we
can define a family of target states, which are parameterized by the Rabi frequency, Ω,
as |ψ(t,Ω)⟩ = e−itĤ(Ω)/ℏ|0⟩⊗N . When the value of Ω does not match the Rabi frequency
used in the experiment, the target state |ψ(t,Ω)⟩ will have smaller overlap with the exper-
imental state, and the fidelity estimator Fc(t,Ω) ≈ ⟨ψ(t,Ω)|ρ̂(t)|ψ(t,Ω)⟩ will decay more
quickly. To identify the best Rabi frequency yielding the highest fidelity, we define the
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Figure 6.9: Hamiltonian parameter estimation. a, Normalized, time-integrated Fc as a
function of the global Rabi frequency, detuning, and the next-nearest-neighbor interaction
strength in the Rydberg model; this normalized Fc is maximized only when the correct
parameters are used. Vertical dashed lines and shaded areas denote independently calibrated
values and their uncertainties. b, Programmed (grey bars) and learned (red bars) local
Hamiltonian parameters for an arbitrary, site-dependent detuning field imposed with an
intensity-dependent lightshift from locally addressable optical tweezers (inset, red funnels).

time-integrated estimator defined as F c(Ω) =
∫ T
0
dt Fc(t,Ω), where T is the maximum

interrogation time, and plot F c(Ω) as a function of Ω.

The Hamiltonian parameter estimation scheme presented in Fig. 6.9 allows for estimating
both global and local Hamiltonian parameters; here we show how its sensitivity compares to,
for instance, a metric based on the residual-sum-of-squares between the local magnetization
from experiment (or any noisy reference) and from error free numerics,

RSS(Ω, t) =
N∑
i=1

(⟨Ŝiz(Ω)⟩ − ⟨Ŝiz,exp⟩)2, (6.25)

where Ŝiz the local magnetization along the z axis for the atom at site i from the numerical
simulation, and Ŝiz,exp is the same magnetization from a fixed reference, for instance the
experimental data. Here, Ω can be regarded as any parameter that determines the Hamilto-
nian of interest (e.g. Rabi frequency). We hypothesize that while the RSS will be peaked
at the correct set of Hamiltonian parameters, at late times it will be less sensitive than our
proposed protocol based on Fc because while the local magnetization will thermalize to a
fixed value, the global state, which Fc is sensitive to, will still be continuously evolving.
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Figure 6.10: Sensitivity of Hamiltonian parameter estimation. a, We perform an error-
free numerical simulation of the Rydberg Hamiltonian with N = 12 and fixed Rabi fre-
quency, Ω = 5.3 MHz, which is then compared against another error-free simulation with
varying Ω. To explore the efficacy of our parameter estimation scheme, we compare the
two simulations in two ways: via Fc (red, as in Fig. 5a of the main text), and via 1−RSS,
whereRSS is the residual-sum-of-squares of the local magnetizations (blue, see text); both
estimators are taken at a single time point of t = 8 µs. We note that Fc is both more
sharply peaked at the correct Ω, and that the range of values which Fc takes is larger than
for 1− RSS, which has a dynamic range of only 0.01. b, The FWHM of the central peak
in Fc in a stays relatively flat up until tent, the entanglement time of the system (see Fig. 4d
of the main text for example), before decreasing as 1/t at late times. The FWHM of the
RSS estimator follow similar behavior, but follows a 1/

√
t trend at late times.

We test this hypothesis via error-free numerical simulation: first we simulate the Rydberg
Hamiltonian with the Rabi frequency fixed atΩ/2π = 5.3MHz – this set of numerics serves
as the reference. Next, we repeat the simulation several times, each time with a different
Rabi frequency, varying from Ω/2π = 5.15 MHz to 5.45 MHz. We then compare these
simulations on the level of Fc and RSS to identify how well both estimation methods can
identify 5.3 MHz as the correct Rabi frequency in the original simulation.

Such results are plotted in Fig. 6.10a at a late fixed time of t = 8 µs (Ωt/2π ≈ 42). We see
that indeed while both Fc and 1−RSS are peaked at Ω/2π = 5.3 MHz, the Fc peak is both
more sharp, and has a larger dynamic range. Further, we plot the central peak width as a
function of time in Fig. 6.10b, where we see after the entangling time, tent (given as the point
at which the half-chain entanglement entropy saturates), the FWHM of the Fc central peak
decreases as ≈ 1/t, while the FWHM of the 1 − RSS central peak decreases as ≈ 1/

√
t,

indicating that the protocol based on Fc will become comparatively more sensitive as the
quench time increases.
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6.3.2 Target state benchmarking

Next,Fc can be used to benchmark the fidelity of preparing various quantum states of interest
by preparing a target state and then quenching the Hamiltonian to evolve the prepared state
at infinite effective temperature (Fig. 6.11a). In this modality, we assume the target state
is prepared with some non-unity fidelity due to experimental imperfections, after which
we apply an infinite effective temperature quench Hamiltonian, and observe the resulting
dynamics.

As a numerical proof-of-principle, we show results for such target state benchmarking to
prepare a ground state near the Ising quantum phase transition in the Rydberg model [323]
(Fig. 6.11a,b), where the noisy state is an equal probability mixture of the ground and first
excited states. After a short disordered quench, the estimator Fc reveals the fidelity of the
prepared state, offering a novel way to perform in situ optimization of many-body state
preparation.

In more detail, in Fig. 6.11a, the ideal state is the ground state at ∆/Ω = 3, Vnnn/Ω = 0.26,
close to the phase transition between the disordered and Z2-ordered states of the Rydberg
Hamiltonian [323]. The imperfect state is taken to be an incoherent mixture composed
of 50% each of the ground and first excited states. This state is then quenched with a
Hamiltonian with parameters Ω/2π = 5.3 MHz, ∆/2π = 2.8 MHz, C6/2π = 254 GHz
µm6, a = 3.75 µm, with 2π × ±1MHz random on-site disorder drawn from a uniform
distribution.

In Fig. 6.11 we provide further examples of the technique by numerically demonstrating
fidelity estimation of various target states such as a cluster state, a Haar-random state of a
2D Rydberg quantum simulator, and a symmetry-protected topological (SPT) ground state.

Specifically, in Fig. 6.11c, we estimate the state preparation fidelity of a one-dimensional
cluster state defined as

|ψ⟩cluster =
N−1∏
i=1

(CZ)i,i+1|+⟩⊗N (6.26)

where (CZ)i,i+1 is the two-qubit, controlled-Z gate acting on two adjacent qubits at site
i and i + 1, and |+⟩ is the equal superposition of the |0⟩ and |1⟩ states. The imperfect
quantum state is prepared by applying a global phase rotation to the ideal state such that the
state overlap becomes F = 0.5. We then employ an infinite effective temperature quench
Hamiltonian given as Ĥ/ℏ = hx

∑
i(Ŝ

x
i − 1.79Ŝyi + 4.64Ŝxi Ŝ

x
i+1) to learn the state overlap

via our Fc formula.
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Figure 6.11: Applications to target state benchmarking. a,b, Our Fc benchmark (solid
line) can estimate the fidelity F (dashed line) of producing a specified target state by evolv-
ing at infinite effective temperature after preparation, here numerically demonstrated for
a ground state of system size N = 15 near the Z2 Ising quantum phase transition in the
one-dimensional Rydberg ground state phase diagram [323], with a noisy state consisting
of an equal probability mixture of the ground and first excited states. c, Benchmarking
of a one-dimensional cluster state, d, a pure Haar-random state benchmarked in a two-
dimensional square Rydberg atom array, and e, a symmetry-protected topological (SPT)
ground state prepared in a Rydberg ladder array realizing the Su-Schrieffer-Heeger topo-
logical model [44]. In c, CZ denotes a controlled-Z gate and |+⟩ = |0⟩+|1⟩√

2
. In d, RB

denotes the Rydberg blockade radius within which more than a single excitation is not
allowed [34, 36, 41]. In e, J and J ′ are the alternating coupling strengths of a two-leg
ladder array, respectively. In all cases, N = 16 qubits are used, and imperfect quantum
states are prepared via phase rotations such that the many-body fidelity overlap becomes
0.5 (red dashed line). Additionally, chaotic evolution is performed such that the initial state
is at infinite effective temperature to apply our Fc formalism (blue solid lines).

In Fig. 6.11d, we estimate the state preparation fidelity of a pure Haar-random state generated
from Rydberg atoms in a 4 × 4 two-dimensional square array. The imperfect state is
prepared by applying a local phase rotation to a central qubit, yielding F = 0.5. For
subsequent quench dynamics, identical Hamiltonian parameters are used as in the 1D
Rydberg benchmarking case (Fig. 6.3).

Lastly, in Fig. 6.11e, we estimate the state preparation fidelity of a symmetry-protected topo-
logical (SPT) ground state prepared in a Rydberg ladder array realizing the Su-Schrieffer-
Heeger topological model, following the approach of Ref. [44]. The imperfect state is
prepared with a local phase error yielding a state overlap of F = 0.5. It is subsequently
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benchmarked via infinite effective temperature evolution with the quench Hamiltonian
chosen to be the combination of the identical interaction Hamiltonian, a random on-site
disorder of strength 1 MHz, and a detuned global drive with a Rabi frequency of 2 MHz
and a detuning of 0.5 MHz.

6.3.3 Cross-platform comparisons

Finally, to compare analog and digital quantum evolution, we evaluate the fidelity achieved
at tent for both analog quantum simulators and digital quantum computers (for which
tent is defined in terms of gate depth). We find our system has an equivalent effective,
SPAM-corrected, two-qubit cycle fidelity of 0.987(2) for the gate-set used in Ref. [162],
and 0.9965(5) for a gate-set based on two-qubit SU(4) gates [277] (Fig. 6.12), and below
provide details behind this calculation.

We note that while this estimation method gives a useful general methodology for comparing
quantum systems of various types, in Chapter 9 we will discuss and implement an even
more general formalism based on direct estimation of mixed state entanglement (rather than
simply an entanglement-fidelity product, as we have implicitly utilize here).

Calculating the entanglement time for RUCs
For the case of finding the entanglement saturation depth, dent, for the case of random
unitary circuits (RUCs) considered in Fig. 6.12, we apply essentially the same procedure.
We study two different digital circuit implementations. In the first, with a gate-set based
on Ref. [162], the RUC circuit is composed of alternating one- and two-qubit gates; the
one-qubit gates are randomly chosen π/2 rotations along the x̂, ŷ and x̂ + ŷ directions,
while the two-qubit gates are ‘fSym’ [162]. In the second, the RUC is composed entirely of
two-qubit SU(4) gates (without global swap operations [277]). For the first implementation,
we set C = 1, while in the second we set C = 1.7, to better guarantee the chosen depth is
in the saturated entanglement regime. Open boundary conditions are used in accordance
with the experimental Rydberg system, and thus there are two possible gate topologies (i.e.
in the first depth applying the ‘fSym’ gate to qubits 1-2, 3-4, etc. or 2-3, 4-5, etc.) – we
explicitly average over an equal number of randomized realizations of each topology when
calculating the entanglement entropy growth. As in the Rydberg case, we fit the entangle-
ment saturation depth as a linear function of the number of qubits in the RUC, yielding
dent = β0 + β1NRUC. For the gate-set based on Ref. [162] we find β0 = −0.395(17), and
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Figure 6.12: Comparison to digital quantum devices executing random circuits. a,
Numerical simulations of a one-dimensional digital quantum device implementing a random
unitary circuit (RUC). Two different digital gate implementations are tested: a configuration
based on the gate-set used in Ref. [162] (bottom), and an configuration where each cycle is
composed of parallel two-qubit SU(4) gates (top) [277]. Cross markers indicate when the
half-chain entanglement entropy saturates. b, Due to the Rydberg blockade mechanism,
as well as symmetries of the Rydberg Hamiltonian (Supplementary Information), an equal
number of atoms in the Rydberg simulator,N , and qubits in the RUC,NRUC, will not saturate
to the same half-chain entanglement entropy. However, we can still find an equivalence
by plotting the saturated entanglement entropy for the RUC (blue crosses for the SU(4)
gate-set, open red squares for gate-set from Ref. [162]) and for the Rydberg simulator (grey
markers) as a function of their respective system sizes. We fit the results for the Rydberg
simulator (black line), and plot the analytic prediction for the RUC [324] (purple line),
from which we can write an equivalent NRUC as a function of N , in the sense of maximum
achievable entanglement entropy (Methods). c, For a given N (and equivalent NRUC),
we plot the SPAM-corrected, two-qubit cycle fidelity for an equivalently-sized RUC to
match the evolution fidelity of our Rydberg simulator at the time/depth when entanglement
saturates. Red lines, markers and crosses are for the gate-set of Ref. [162], while blue are for
the SU(4) gate-set. Shaded regions come from the error on fitting the variousN -dependent
parameters which enter this calculation (Methods).

β1 = 0.557(1), and for the gate-set based on SU(4) gates [277] we find β0 = −3.18(77),
and β1 = 2.261(51).

Estimating fidelity decay
In Fig. 6.3, we see the decay profile of the model fidelity, Fmodel, for our Rydberg simulator
is approximately exponential. We confirm this result roughly in our error model (though
shall return to this point in Chapter 8.4). We perform quench evolution in the error model
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for various system sizes (not shown) and fit the fidelity decay profile as,

F (N, t) ∝ exp(−γ(N)t), (6.27)

where γ(N) is the fidelity decay rate. We find that for the system size range considered
here, γ(N) scales approximately linearly with N , from which we fit γ(N) = γ0 + γ1N ;
for our particular Hamiltonian parameters and noise sources, we find γ0 = 0.12(4), and
γ1 = 0.017(3), both in MHz.

For the RUC case, fidelity decay for a given system size, NRUC, and depth, d, is modeled as
a simple product over constituent two-qubit cycle fidelity, Fcycle, yielding

FRUC(N, d) = F
(NRUC−1)d/2
cycle , (6.28)

where the exponent of the right-hand side reflects the fact that we apply, on average,
(NRUC − 1)/2 two-qubit gates in parallel per depth.

Note that in Fig. 6.3, we used this fitted γ(N) explicitly to predict the fidelity scaling of our
Rydberg simulator at the N -dependent entanglement saturation time, tent, as a function of
system size. Concretely, we plotted (red dashed line):

Fmodel(N, tent(N)) = FN
0 exp(−γ(N)tent(N)), (6.29)

where F0=0.997(1) is the single-atom preparation fidelity determined experimentally. The
shaded red region in Fig. 6.3 depicts the error from fit uncertainty of γ(N).

Comparing digital and analog devices
We wish to directly compare the evolution fidelity of our analog Rydberg quantum simulator
against that of a digital device implementing an RUC with equivalent entanglement entropy
at the entanglement saturation time. However, due to the Rydberg blockade mechanism, as
well as symmetries of our Hamiltonian (Supplementary Information), an equal number of
atoms in the Rydberg simulator, N , and qubits in the RUC, NRUC, will not saturate to the
same half-chain entanglement entropy.

To overcome this, in Fig. 6.12b we plot the entanglement entropy, S (SRUC), achieved at
tent (dent) for the Rydberg simulator (RUC) as a function of N (NRUC). For the Rydberg
simulator, we fit S(N) = σ0 + σ1N with σ0 = 0.16(4), σ1 = 0.26(3). For the RUC, we
use the prediction of SRUC(NRUC) = η0 + η1NRUC with η0 = −log2(e)/2 ≈ −0.72 and
η1 = 1/2 being exact values with no error bars, as defined in Ref. [324] (where e is Euler’s
number, and where we have used the log2 entanglement entropy convention). To find the
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equivalent NRUC for a given N , we then simply equate SRUC(NRUC) = S(N), yielding
NRUC = (σ1N + (σ0 − η0))/η1 = 0.52N + 1.76.

With this system size equivalence established we can directly compare the SPAM-corrected
Rydberg and RUC systems at their respective entanglement time and depth, in order
to find the equivalent RUC two-qubit cycle fidelity which would match the Rydberg
quantum simulator’s evolution fidelity. By evolution fidelity, we refer to the fidelity
at the entanglement time, up to preparation errors, which based on our validated er-
ror model is approximately given by exp(−γ(N)tent(N)) from Eq. 6.29. We equate
FRUC(NRUC, dent) = exp(−γ(N)tent(N)), and then solve for Fcycle. As shown in Fig. 6.12c,
for the gate-set used in Ref. [162], we find Fcycle = 0.987(2), while for the SU(4) circuit we
find Fcycle = 0.9965(5), nearly independent of system size. Error bars originate from the
uncertainty on the parameters of γ, tent, dent, F0, and S.
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CHAPTER 7
Hilbert-space ergodicity

The developing study of quantum thermalization [305, 307, 308, 325–329] has sought to
create a consistent formulation for both statistical and quantum mechanics. In this frame-
work, entanglement entropy between subsystems of a quantum state plays the role of thermal
entropy in statistical mechanics. Considering a closed, bipartite quantum system composed
of interacting subsystemsA andB under a time-independent Hamiltonian (Fig. 7.1a), quan-
tum thermalization suggests that at late times, local observables in A will behave as if they
were drawn from a thermal state. Here B acts as a thermal bath, for which the system
Hamiltonian and initial state define an effective temperature [329], as supported by numer-
ous experiments [29, 306, 330–333]. See Appendix C for a more pedagogical introduction
to the notion of effective temperature.

Quantum thermalization predicts expectation values of local observables, but newer theo-
retical perspectives have begun to shed light on the behavior of global quantum systems. In
particular, it was proposed that global quantum states homogeneously explore their available
Hilbert space [71, 334] (Fig. 7.1b). This phenomenon, dubbed Hilbert-space ergodicity
(HSE), is analogous to ergodicity in classical mechanics, whereby over time a system visits
its state space uniformly. The assumption of HSE entails consequences beyond standard
predictions of quantum thermalization. For instance, consider a global projective observ-
able which is not described by quantum thermalization, like the probability to measure a
specific basis state (e.g. a ‘bitstring’ for a system of qubits). HSE predicts that relative prob-
ability fluctuations over time precisely follow an exponential (or Porter-Thomas [275, 289])
distribution, both for the well-known case of randomized circuits [275, 297], and even for
time-independent Hamiltonian dynamics typically studied by quantum thermalization.

Here we observe both existing predictions of HSE and new generalizations we introduce,
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Figure 7.1: Quantum systems interacting with baths. a. A quantum system, A, in-
teracts with an intrinsic bath, B, and with the external environment, E. b. We study
temporal fluctuations of observables in A, and find they take on a universal form for closed,
time-independent Hamiltonian systems exhibiting Hilbert-space ergodicity [30, 71], a re-
cent theoretical notion that isolated quantum systems ergodically explore their available
Hilbert space. Blue arrows are pure state trajectories. We verify these predictions on an
experimental Rydberg quantum simulator, and numerically with various systems. c. For
closed dynamics (i.e. with no coupling to E), we find an exact and universal dependence of
the fluctuations of normalized bitstring probabilities in A on the intrinsic bath dimension:
when the bath is small, relative fluctuations are large, and vice versa. This results in a uni-
versal probability-of-probabilities (PoP) distribution aggregated over measurement times.
d. In the latter half of this work we study interactions with the external environment. As
an example, we show bitstring probabilities following quench dynamics from experiment
(markers), error-free simulation (grey line), and error-model simulation [31] (black line).
For both the experiment and the error-model, probabilities become less fluctuating over time
as errors accumulate, analogous to the closed system case where fluctuations decreased with
increasing intrinsic bath dimension. e. Based on this heuristic connection, we introduce
a framework to identify and discriminate between different types of system-environment
coupling.

using an experimental Rydberg quantum simulator [31, 36, 41] and numerical models
of spins, itinerant particles, and random circuits. Specifically, we observe the global
Porter-Thomas distribution, and extend HSE to the case of a local system interacting with
its environment to make concrete predictions beyond the scope of conventional quantum
thermalization.

First, we consider the typical setting of quantum thermalization: when the environment,
B, is a complementary subsystem of a closed system, which we call the intrinsic bath
(Fig. 7.1a). For thermalization at infinite effective temperature, we find temporal fluctuations
of projective observables follow a universal form: the Erlang distribution [291]. Solely
parameterized by the dimension of the bath, the Erlang distribution undergoes a smooth



170

quantum-to-classical transition, progressing from the global Porter-Thomas distribution
to a narrow Gaussian distribution as the intrinsic bath size increases (Fig. 7.1c). These
results are exact and universal (i.e. independent of system details) for ergodic systems both
globally and locally. This in contrast to studies of quantum thermalization which typically
either only bounded [335, 336] or predicted the scaling of fluctuations with the total system
dimension [337–339]; previous predictions have been made more exact for special cases
like explicitly randomized dynamics [340] or the weakly non-integrable regime [341].

Then, we consider the case when the environment, E, is external, and the global composite
system,AB, evolves under open system dynamics (Fig. 7.1a). Such a setting is omnipresent
for quantum experiments [50]. The coupling between E and AB damps out fluctuations
of observables like bitstring probabilities (Fig. 7.1d), but in a way which depends on
the microscopic system-environment interaction. Based on our understanding of HSE
principles, we devise a formalism to account for this behavior. We identify classes of
noise models with distinct signatures on observable fluctuations in order to discriminate
candidate models directly with many-body bitstring measurements (Fig. 7.1e). Our method
can handle bespoke models with correlated noise and with heavy tails [342], both of which
could be detrimental to quantum error correction [342–344].

Overall, our work studies the role of ergodicity in open and closed quantum dynamics, with
fundamental and practical consequences for modern quantum experiments.

7.1 CLOSED SYSTEM DYNAMICS

First, we consider the case with no external environment (closed system dynamics), and
examine the microscopic interactions of the subsystem,A, and its intrinsic bath,B, through
the lens of HSE. The statement of HSE is that global quantum states uniformly cover
their available Hilbert space, as constrained by conservation laws, symmetries, or a finite
effective temperature. This is guaranteed when there are no high-order degeneracies in
the energy spectrum, referred to as the no-resonance conditions (Section 7.4.2). When
these conditions are fulfilled, at any particular (late) time we can consider the quantum
state as essentially being sampled randomly from the ensemble of all possible states in
the constrained Hilbert space. For instance, in the case of time-independent Hamiltonian
evolution, this ensemble is the random phase ensemble [30, 71, 345], the set of quantum
states with well-defined amplitudes in the energy eigenbasis (fixed by the initial state), but
random phases.

This innate randomness then enables us to make quantitative predictions for the relative
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Figure 7.2: Subsystem fluctuations are tied to the bath dimension. a. When there is
no intrinsic bath (NA = 10 qubits, NB = 0 qubits), normalized bitstring probabilities from
both experiment and numerics are highly fluctuating past a short onset timescale (grey fill
before this time, normalized time is in Rabi cycles), resulting in a wide, exponential PoP
distribution (aggregated over all bitstrings and times). b. When the bath is large (NA = 4
qubits,NB = 6 qubits), fluctuations are substantially reduced (e.g. typified by the temporal
variance, σ2

rel), and the PoP distribution is narrow.

Figure 7.3: Observing a smooth quantum-to-classical transition for closed system
dynamics. PoP distributions for many bath Hilbert-space dimensions, DB, are in excellent
agreement with our prediction that the PoP follows a universal form, the Erlang distribution
(see text). The Erlang distribution starts as an exponential distribution for DB = 1 before
becoming progressively more narrow and Gaussian as DB increases.
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fluctuations of projective observables like the probability, p(zA, t), to measure a given
bitstring in A, zA (e.g. 1001), at a particular time, t. By relative, we mean probabilities are
normalized by their long-time average, e.g. p̃(zA, t) ≡ p(zA, t)/pavg(zA). Normalization by
the mean eliminates the effects of symmetries and conservation laws which constrain HSE
and make the pavg(zA) non-equal [30, 71].

To study temporal fluctuations of p̃, we construct the probability-of-probabilities (PoP)
distribution, a histogram, P (p̃), binning all p̃ over time (Fig. 7.1c). The PoP encodes
higher-order moments of p̃, e.g. the variance of the PoP is the variance of p̃ over time.
Remarkably, under HSE we can analytically derive the PoP (Section 7.4.3). In particular,
for large global Hilbert-space dimension,D→∞, and for thermalization at infinite effective
temperature, we predict the PoP to be

PErlang(p̃;DB) =
DDB
B

(DB − 1)!
exp(−DB p̃) p̃

DB−1 , (7.1)

which is the Erlang distribution, parameterized solely by the intrinsic bath Hilbert-space
dimension, DB.

This indicates that in the thermodynamic limit, temporal fluctuations of observables in
subsystem A are entirely controlled by the dimension of the bath, and not by the dimension
of the subsystem in which they are measured. For DB = 1, the Erlang becomes the
exponential (Porter-Thomas) distribution [275, 289], while forDB→∞ it approaches [291]
a narrow Gaussian distribution. We note previous theoretical studies [71] of HSE predicted
the emergence of the Porter-Thomas distribution for global quantum systems, but not the
more general Erlang distribution which is a novel theoretical discovery of our work. While
this assumes an infinite effective temperature, we consider finite effective temperatures in
Section 7.4.3.

We now test if experimental and numerical observations are consistent with our predictions.
We implement a time-independent, global quench under the one-dimensional Ising-like
Rydberg Hamiltonian [36, 41] with N=10 qubits. Parameters are chosen such that the
initial all-zero state, |Ψ0⟩ = |0⟩⊗N , thermalizes at infinite effective temperature [308].
While our theoretical proofs are only rigorously true in the infinite time limit, for the
experiment we focus on early time dynamics, defined below, such that the global fidelity
remains high [31] (i.e. such that the influence of the external environment is small). Still,
remarkably we find the key signatures of our theory are visible experimentally already at
these early times.

Qubits are measured after evolving for a time t, producing a global bitstring z∈{0, 1}N , and
over many measurements we build up the global probability distribution p(z, t). In post-
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Figure 7.4: Universality of the PoP variance. The PoP variance (i.e. the variance of
temporal fluctuations) scales inversely with the bath dimension for both the experiment and
various numerical models exhibiting Hilbert-space ergodicity, in agreement with Eq. (7.2).
Inset: The scaling coefficient ⟨DB(σ

2
rel + 1/D)⟩ (⟨·⟩ denotes an average over choices of

DB) is uniformly 1 for the models studied in the main plot, but deviates as a function of
total system size for models for which Hilbert-space ergodicity does not hold. For the
Bose-Hubbard system in the main plot, and all models in the inset, the bath dimension is
rescaled to account for conservation laws and finite temperature, see Fig. 7.8.

processing, we bipartition into arbitrary subsystems A and B (of sizes NA and NB, and
Hilbert-space dimensionsDA andDB respectively), and study the corresponding marginal,
normalized probability distributions p̃(zA, t). Normalization factors, pavg(zA), are found
numerically. We note that DA and DB are non-trivially modified due to the Rydberg
blockade regime [36] in which we operate the experiment (Section 7.3).

First, we consider global probabilities (i.e. NA=N=10 and thus DB=1). We observe
probabilities are highly fluctuating, and upon aggregating all probabilities from 1.5 to 4
cycles of evolution, we find the PoP is a nearly exponential distribution [30, 289], P (p̃) =
exp(−p̃), a concrete experimental observation consistent with HSE [71] (Fig. 7.2a). Then,
for local systems (e.g. forNA = 4 andNB = 6), we find probability fluctuations are greatly
diminished, and the PoP is accordingly narrow (Fig. 7.2b).
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Overall, we observe a smooth transition in the experimental PoP as a function of bath
dimension from the wide exponential distribution for DB = 1 to a narrower, Gaussian-like
distribution for DB ≫ 1, in excellent agreement with the theoretical Erlang distribution
over several orders-of-magnitude (Fig. 7.3c).

We do observe slight deviations from the Erlang distribution in Fig. 7.3c for DB≈D as
our derivation assumed D→∞. Still, we can calculate arbitrary moments of the PoP
accounting for finite D, as we demonstrate explicitly for the second and third moments in
the Section 7.4.5. In particular, we predict the variance of the PoP is

σ2
rel =

1

DB

− 1

D
, (7.2)

agreeing with the Erlang distribution variance for D→∞.

Importantly, the predictions of Eqs. 7.1 and 7.2 are not unique to the Rydberg Hamiltonian,
but are instead universal for any quantum many-body system which exhibits HSE. To
observe this, we plot σ2

rel + 1/D for various systems expected to exhibit HSE including our
experimental Rydberg system, and also numerical simulations of random unitary circuits
(RUC), mixed field Ising models, and itinerant models like Bose-Hubbard systems (Fig. 7.4).
In all cases, we find good agreement with the analytic prediction of Eq. (7.2). Later, we will
introduce a rescaling of the bath dimension to treat systems at finite temperature or with
conservation laws, with experimental and numerical support (see Fig. 7.8).

On the contrary, for failure cases which do not exhibit HSE (because they do not fulfill
the no-resonance conditions), such as the transverse field Ising model [346] and systems of
non-interacting spins, the prediction of Eq. (7.2) is violated (Fig. 7.4 inset). Specifically,
the estimated scaling coefficient with bath dimension – ⟨DB(σ

2
rel + 1/D)⟩ where ⟨·⟩ is

an average over choices of DB – is uniformly 1 for systems exhibiting HSE, but shows
non-uniform and progressively greater deviations from 1 as a function of system size for
non-ergodic cases.

In summary, we identify universality in the relative fluctuations of quantum systems inter-
acting with an intrinsic bath under the condition of HSE, and we show the PoP for such
systems is a universal Erlang distribution. When the bath is small, large quantum fluctua-
tions dominate, but when the bath is large, quantum fluctuations are damped out, leaving
only small, Gaussian fluctuations. We identify this smooth quantum-to-classical crossover
as integral to the transition from quantum mechanical to statistical mechanical descrip-
tions of generic, closed, quantum many-body systems as the number of bath configurations
increases.
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7.2 OPEN SYSTEM DYNAMICS

So far, we studied the case of closed system dynamics, where A reaches a thermal equi-
librium due to interaction with its complement subsystem, B. Now we consider the open,
composite system AB, and explore if similar universal predictions hold for noisy interac-
tions with the external environment, E (Fig. 7.1a). Here we will study the PoP aggregated
over all bitstrings at a fixed time instead of over measurement times; HSE entails these two
pictures are equivalent [30, 71], as we verify numerically in the Fig. 7.9. Explicitly we
focus on the global PoP distribution, not the local PoP measured in a subsystem.

To approach this task, we revisit our understanding of the Erlang distribution for closed
system thermalization. Under HSE, the global bitstring probability, p̃(z), is randomly
sampled from an exponential distribution. The marginal probability, p̃(zA), is then a sum
of DB uncorrelated exponential random variables, each with equal weight, ω=1/DB, as
the infinite temperature bath has no preferred configuration. This process leads precisely
to the Erlang distribution, i.e. the Erlang distribution is the convolution of DB exponential
distributions [291] (Fig. 7.5a).

We can make a similar assumption for open system dynamics – that for each bath config-
uration the system samples an independent exponential distribution – but now allow for
non-equal weights that are determined by the microscopic details of the extrinsic coupling
mechanisms. As an example, we consider the case of RUC evolution where a single error
can occur on a random qubit sometime during the evolution. For a circuit with N qubits
run for a depth D, there are K = N ×D potential error locations, and the circuit executes
with a finite global fidelity of F . Thus, with a probability of F the circuit will execute
without error and will sample bitstring probabilities from an exponential distribution. How-
ever, if an error does occur at one of the K locations, assuming the circuit is sufficiently
scrambling [275] it will sample a separate independent exponential distribution. Without
the ability to explicitly keep track of all errors, the aggregate distribution describes a sum of
independent exponential variables with weights ω1 = F and {ω2, · · · , ωK+1} = (1−F )/K
(Fig. 7.5b), which are related to the system’s Kraus operators (Section 7.7.2).

When weights are allowed to be non-equal, we identify the result as a hypoexponential dis-
tribution [291, 347], or generalized Erlang distribution. Importantly, largely arbitrary noise
channels coupling the quantum system to the external environment can be captured simply
by adjusting the weight vector (Fig. 7.5b). To demonstrate this, we perform numerical sim-
ulations of RUC evolution and mixed field Ising model Hamiltonian evolution (Section 7.3).
In both cases we apply either: 1) global depolarizing error, 2) local amplitude damping
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Figure 7.5: Distinguishing noise channels using PoP distributions. a. The Erlang
distribution observed in the case of closed, infinite temperature thermalization can be
alternatively derived as a convolution of independent exponential distributions with equal
weights, one for each bath configuration. b. We extend this heuristic derivation to the
case of open system dynamics, where the weights in the convolution are determined by the
specifics of the noise channel, for example here a local error channel (see text), resulting
in the PoP being a hypoexponential distribution. c. Hypoexponential distributions for four
different noise channels each with distinct hypoexponential weights (insets, see Section 7.3
for model details), with noise strengths set to result in the same fidelity F ≈ 0.2. Also
shown is the Erlang distribution from closed system thermalization with an intrinsic bath
of two qubits. PoP obtained from numerical simulations of RUC (top) and Hamiltonian
evolution under a mixed field Ising model (bottom) show excellent agreement with their
corresponding analytical predictions (thick, dark lines), but can easily be distinguished from
predictions of other bath types (thin, faint lines), both intrinsic and extrinsic.

errors, 3) global Gaussian coherent errors, or 4) a combination of errors (2) and (3). For
each, the error strength is tuned so the final fidelity is F≈0.2. By coherent error, we mean
a static, shot-to-shot under/over rotation, which here we take to be Gaussian-distributed and
applied to all qubits globally. We note that the weights for the global depolarizing channel
are the same as those of the local error channel with K→∞, consistent with Ref. [348]
(Fig. 7.14). Note, however, that the PoP for global coherent errors does not converge to the
PoP of global depolarizing noise for increasing system sizes at fixed fidelity. Coherent errors
could arise from non-Markovian Hamiltonian parameter variations [31, 349], or systematic
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Figure 7.6: Characterizing experimental noise. a. We compare the PoP distribution
obtained from the experiment following long-time evolution against various noise models,
including our own ab initio error model. Model PoPs are nontrivially modified by finite
sampling effects (inset, see Section 7.6). b. We compute the symmetric χ2-distance (CSD)
between the experimental distribution and the model PoPs (left), including to a mixture
error model composed of global coherent error and local incoherent error with varying
global coherent error fraction, R. c. We perform noisy RUC simulations with varying R,
and find that estimating R from the CSD minimum is well-correlated with the actual R.

gate miscalibrations [162, 350]; discriminating such noise sources from Markovian errors
is crucial as they lead to different functional forms of fidelity decay which may be otherwise
difficult to distinguish [31, 351], and their mitigation necessitates different models of error
correction [227, 342–344].

In all cases, we see excellent agreement between the numerical PoP distributions and their
corresponding analytical hypoexponential predictions, while being visually distinct from
those of other noise channels, and from thermalization with an infinite temperature bath
with DB = 4 (Fig. 7.5c). Thus, on a qualitative level we can discriminate between a wide
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range of noise models through many-body bitstring probability measurements, even when
those models lead to an equal final fidelity.

We then turn to apply this method quantitatively to our experimental quantum simulator.
We program the same time-independent dynamics as we studied in the case of intrinsic
thermalization, but now evolve out to late times with N=15 atoms such that the global
fidelity is F≈0.18, as estimated via the Fd cross-entropy variant [30, 31]. We then compare
the experimental PoP distribution against the predictions for various noise models including
our in-house ab initio noise model capturing all known physical noise sources [31]. The use
of a finite number of samples modifies the predicted PoP distributions (inset of Fig. 7.6a,
Section 7.6).

A qualitative evaluation (Fig. 7.6a) already suggests our ab initio noise model is the best
match to the experiment. To quantify this statement, we compute the normalized symmetric
χ2-distance (CSD) between the experiment and the model PoPs (Section 7.6, Fig. 7.6b),
and find the distance is indeed minimized for the ab initio noise model.

Further, we apply this technique to error models with a mixture of global Gaussian coherent
error and local incoherent error. We vary the fractional contribution of global coherent
error, R, and analytically construct the model PoP to compare against (Section 7.5). We
find the lowest CSD is found for R ≈ 2/3. This technique is applicable to both analog
quantum simulators and digital quantum processors. For instance, we simulate noisy RUC
dynamics for different choices of R, and for each compare the R estimated from the CSD
minimum versus the actual R (Fig. 7.6c). We find the estimated and actual values are
well-correlated (which improves with deeper circuits, see Fig. 7.15) across the entire range
of R.

Importantly, our analysis requires no circuit or Hamiltonian simulation, and makes no
assumption about the underlying noise model besides its weight vector. However, this
also means it cannot discriminate between noise models with the same weights, such as
distinguishing local bit flips from local phase flips. Thus, it should be considered a tool for
efficiently identifying experimentally-consistent models with bespoke noise distributions,
which can then be further refined via additional measurements to distinguish different
models with the same weights.

7.3 DETAILS OF EXPERIMENTS AND SIMULATIONS

We summarize details of the experiment and of the simulations which were used throughout
this chapter.
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7.3.1 Experimental details

For the N = 10 data at approximately infinite temperature shown in Figs. 7.2,7.3 and 7.4,
the Hamiltonian parameters are chosen to be: Ω/2π = 5.3 MHz, ∆/2π = 0.6 MHz,
C6/2π = 254 GHz×µm6, and a = 3.77 µm (the lattice spacing is calibrated with a
laser-based ruler [28]). For the N = 15 data at approximately infinite temperature shown
in Fig. 7.6, the Hamiltonian parameters are the same, but with Ω/2π = 5.4 MHz. For
the N = 10 data at finite temperature in Fig. 7.8, the parameters are the same, but with
Ω/2π = 5.3 MHz, and ∆/2π = 4.6 MHz.

Through measurement, we accrue a set of time-labeled bitstrings, {z}. When normalizing
bitstring probabilities, we obtain the temporal long time average directly from the diagonal
ensemble [30, 305, 326],

ρ̂d =
∑
n

|cn|2|En⟩⟨En| , (7.3)

where |En⟩ are energy eigenstates, and cn = |⟨En|Ψ0⟩|2 are overlaps with the initial state.
Any observable, including bitstring probabilities, of ρ̂d is equal to the same observable
obtained from an infinite time average:

pavg(z) = ⟨z|ρ̂d|z⟩ =
∫ ∞

0

dt |⟨z|Ψ(t)⟩|2 . (7.4)

A major feature of our system Hamiltonian is the Rydberg blockade mechanism [36],
whereby the energy eigenspectrum is naturally stratified into a number of widely spaced
sectors. In particular, the nearest-neighbor interaction is≈20× greater than the next largest
energy scale, so cases where neighboring pairs of atoms are both excited to the Rydberg state
are greatly suppressed. The resulting effective Hilbert-space dimension, D, of a system
with N qubits is given by Fib(N + 2) ≈ 1.6N , where Fib is the Fibonacci function. To
be clear, statements in this work that the Rydberg system thermalizes at infinite effective
temperature refer only to thermalization within the blockade-satisfying subspace, not across
the entire Hilbert space.

For N = 10, we find ≈99% of all experimental bitstrings are in the blockade-satisfying
energy sector at short times; we typically refine {z} by discarding all realizations not in
this sector. For the late-time N = 15 data the number of blockade-satisfying bitstrings
drops to ≈75%, which we attribute mainly to spontaneous decay [26], though leave careful
investigation to future work.

The effective dimension of the intrinsic bath, DB, is altered by the blockade constraint.
Specifically, the blockade must be accounted for at the boundary between subsystems
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A and B, such that DB then depends on the bitstring measured in A. As an example,
consider the system A as the leftmost atoms in a one dimensional array with ten total
atoms, and B as the remaining NB = 9 atoms, such that the global bitstring is written as
z = zAzB. For the subsystem bitstring zA = 0, there are no possible blockade violation
across the boundary between A and B, and so the bath dimension is given by DB(zA =

0) = Fib(NB + 2) = 89. However, for the subsystem bitstring zA = 1, the blockade
constraint forbids the leftmost qubit in B from also being a 1. Thus the bath dimension is
DB(zA = 1) = Fib((NB−1)+2) = 55. In general, we allowA to be any contiguous block
of atoms in the array (meaning B may be discontiguous), and for instance in the analysis of
Fig. 7.3 we aggregate over bitstrings in A with equal effective bath dimension.

Error bars on the experimental data in Fig. 7.4 are 1σ standard error of the variance taken
over the different choices of zA at a given DB. The variance for the random unitary circuit
in Fig. 7.4B is taken as the median over 1000 circuit realizations; the actual circuit being
simulated is composed of SU(4) gates in a brickwork pattern. In Fig. 7.6, The error model
prediction is calculated via a Monte Carlo wavefunction approach [29, 31, 114] from which
bitstrings are sampled at an equal number as the experiment. Experimental error bars in
Fig. 7.6 are analytic based on the Poisson sampling errors: for a histogram bin with m
counts, its standard error is

√
m ( Section 7.6.3).

7.3.2 Simulation details

Here we summarize the parameters used in numerical simulations throughout. In general,
PoP distributions from numerics are aggregated over several hundred cycles of evolution,
except where otherwise noted.

Error free simulations
Rydberg: Rydberg simulation parameters are the same as for experiment, as given in a
previous section.

MFIM: For the mixed field Ising model simulations in Fig. 7.4 and Fig. 7.8, we utilize the
following Hamiltonian [322]:

Ĥ/ℏ =
N∑
i=1

(hxŜ
x
i + hyŜ

y
i − ζŜzi ) +

N∑
i=1

JŜxi Ŝ
x
i+1, (7.5)

where hx = 0.41, hy = 0.45, and J = 1. The field ζ = 0 corresponds to infinite temperature
evolution and ζ = 0.86 to finite temperature evolution. In Fig. 7.13, we instead set ζ = 0

but tune the initial state as |Ψ0⟩ =
[
exp(iθŜx)|0⟩

]⊗N
for various angles θ.
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TFIM: For the transverse field Ising model simulations in the inset of Fig. 7.4 we consider
a one-dimensional open chain under the following Hamiltonian:

Ĥ/ℏ = −
∑
i

Ŝxi − 3
∑
i ̸=j

Ŝzi Ŝ
z
j . (7.6)

We use as an initial state of |Ψ(t = 0)⟩ = |+⟩⊗N .

Non-interacting spins: Non-interacting spins studied in the inset of Fig. 7.4 are initialized
in their ground state, and then evolved with equal Rabi frequency and no detuning, thus
undergoing disconnected, correlated Rabi oscillations.

Bose Hubbard: We simulate the Bose-Hubbard model with N particles on a one-
dimensional open chain with length M :

Ĥ/ℏ = −Ω
M−1∑
j=1

(
b̂†j b̂j+1 + h.c.

)
+
U

2

M∑
j=1

n̂j (n̂j − 1) , (7.7)

where n̂j = b̂†j b̂j . We choose parameter values (Ω, U) = (1, 2.87). In our simulations,
we have M = N , and we take the initial state to be the one with one particle at each site,
i.e. |1, 1 . . . , 1⟩.

Open system simulations
Rydberg Hamiltonian dynamics: Our ab initio error model for Rydberg Hamiltonian
dynamics has been described previously [29], and shown to be accurate to experiment in
several regimes [26, 29, 31]. We note that many of these noise sources generically are highly
non-Markovian with important impact on the many-body fidelity [31]. Further, spontaneous
decay channels are potentially non-unital, and predominantly dominated by leakage errors
out of the qubit subspace [26].

Spin chain Hamiltonian dynamics: Amplitude damping – To obtain the bottom row of
Fig. 7.5, we simulate the open system dynamics of the mixed Field Ising model [Eq. (7.5)]
in the presence of amplitude damping, or spontaneous decay |0⟩⟨1| errors, with the quantum
trajectory method [114, 352]. In all trajectory methods, we perform a sufficient number of
trajectories, typically 1000 for a system size of N = 12, to see convergence of the PoP.

Global coherent errors – To simulate global coherent errors, we again perform a trajectory
method, where in each trajectory, we sample the parameter J in Eq. (7.5) from a normal
distribution N(J0, σ

2
J), with J0 = 1 and σJ tuned to achieve the desired fidelity at a given

time.
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Mixed error sources – To simulate both amplitude damping and global coherent errors, we
simply use a quantum trajectory method with both noise sources enabled.

Random unitary circuits: Local errors – We simulate the open system dynamics of a
random unitary circuit (RUC) in the presence of amplitude damping errors. We evolve the
density matrix by applying a layer of random unitary gates, before applying Kraus operators
of the amplitude damping channel (for the top row of Fig. 7.5) independently at every qubit.

Global coherent errors – In order to model global coherent errors in a RUC, we parameterize
each ideal random two-qubit gate as an SU(4) rotation about some axis and with some
angle. In each run we model the angles of each gate to be systematically over- or under-
rotated by a factor which is constant over all gates within each run, but sampled from a
normal distribution over many runs. For the mixed error sources in Fig. 7.5, we perform
this stochastic over- and under-rotation with the density matrix evolution method outlined
above.

Mixed error sources – For the mixed error sources in Fig. 7.6, we use a quantum trajectory
method with both bitflip errors and stochastic over- and under-rotation errors (outlined
above).

7.4 DERIVING THE ERLANG DISTRIBUTION

In this work, we studied closed system dynamics and predicted the distribution functions
of bitstring probabilities (or, probability-of-probabilities) in a subsystem which is strongly
coupled to the rest of the system that serves as a bath. Our main quantitative prediction
was Eq. (7.1), the Erlang distribution, for such systems at infinite effective temperature
and large total system sizes. Subsequently, we predicted the variance of the probability-of-
probabilities, including 1/D corrections from the Erlang value.

Here, we provide a rigorous derivation of the Erlang distribution. First we formally define the
probability-of-probabilities (PoP) distribution, then describe how Hilbert-space ergodicity
entails that the PoP for global, isolated quantum systems is the Porter-Thomas distribution,
with more formal details left to our recent theoretical work Ref. [71]. Then, we use this
fact to derive that the Erlang distribution describes the PoP of subsystems thermalizing at
infinite effective temperature, during closed system dynamics and in the large system size
limit. In more technical sections, we then relax some of our assumptions and show how
arbitrary order moments of the PoP may be calculated even at finite effective temperatures
and finite system sizes. We also note that we provide a different, more heuristic, derivation
of the Erlang distribution in Section 7.5.3.
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7.4.1 The probability-of-probabilities distribution

The PoP distribution for a single bitstring, z, is a histogram of the bitstring probabilities,
p(z, t), formally over infinite time. For a given probability, p0, we write it as (where we
drop the z for notational simplicity)

P (p0) = Et[δ(p(t)− p0)] ≡ lim
T→∞

1

T

∫ T

0

δ(p(t)− p0)dt . (7.8)

The PoP encodes all temporal fluctuations of the time-series p(t) as its moments,∫ 1

0

pk0P (p0)dp0 = lim
T→∞

1

T

∫ T

0

∫ 1

0

pk0δ(p(t)− p0)dp0dt (7.9)

= lim
T→∞

1

T

∫ T

0

p(t)kdt ≡ Et[p(t)
k] . (7.10)

The PoP is defined here for a single bitstring over all evolution times, but it can alternatively
be defined for a single time over all bitstrings, a distinction which we will revisit below.

In this study, we are chiefly interested in studying relative temporal fluctuations, i.e. nor-
malizing the time-series p(t) to have mean 1. For random-circuit dynamics, this is simply
the rescaling p̃ ≡ Dp, while in Hamiltonian dynamics, this is p̃(z) ≡ p(z)/pavg(z), where
pavg(z) ≡ Et[p(z, t)] is the time-averaged probability of z. This accordingly rescales the
PoPs, which we will write as P (p̃)dp̃ (occasionally omitting dp̃). The pavg(z) may be found
from the diagonal ensemble:

ρ̂d =
∑
n

|cn|2|En⟩⟨En| , (7.11)

where |En⟩ are energy eigenstates, and cn = |⟨En|Ψ0⟩|2 are overlaps with the initial state.
Any observable, including bitstring probabilities, of ρ̂d is equal to the same observable
obtained from an infinite time average:

pavg(z) = ⟨z|ρ̂d|z⟩ = lim
T→∞

1

T

∫ T

0

dt |⟨z|Ψ(t)⟩|2 . (7.12)

7.4.2 The Porter-Thomas distribution from Hilbert-space ergodicity

The chief object of our interest is the temporal ensemble, the set of pure states, |Ψ(t)⟩,
evaluated at different times t for evolution under a time-independent Hamiltonian, Ĥ .
Explicitly, if we discretize the time evolution with infinitesimal step size, δ, and define
the time tj = δj for j ∈ Z+, the temporal ensemble is the set {|Ψ(tj)⟩}j∈Z+ . The
initial state sets a well-defined energy, which then constrains the temporal ensemble to a
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subset of Hilbert space obeying energy conservation. Specifically, the Schrödinger equation
conserves the population |cn|2 of each energy eigenstate |En⟩, where |cn|2 ≡ |⟨Ψ0|En⟩|2.
This imposes a total ofD (the Hilbert space dimension) constraints, and the only remaining
degrees of freedom are the complex phases arg(⟨En|Ψ(t)⟩).

The temporal ensemble has been previously studied [30, 71, 345], where at late times it was
connected to the random phase ensemble, the ensemble of quantum states with well-defined
amplitudes in the energy eigenbasis, but random phases. This connection depends on
so-called no-resonance conditions [336], which are colloquially the absence of high-order
degeneracies in the energy eigenspectrum. More concretely, a Hamiltonian Ĥ satisfies the
k-th no-resonance condition if for any two sets of k eigenvalues {Eαj

}kj=1 and {Eβj}kj=1 the
equation

Eα1 + Eα2 + · · ·+ Eαk
= Eβ1 + Eβ2 + · · ·+ Eβk (7.13)

is true if and only if the sets of indices (α1, α2, . . . , αk) and (β1, β2, . . . , βk) are equal
up to reordering. For example, the 2nd-no resonance condition states that the relation
Ea + Eb = Ec + Ed is true if and only if a = c, b = d or a = d, b = c. That is, there
are no “accidental resonances.” Existence of k-th no-resonance conditions for any order
k guarantee the temporal ensemble is equivalent to the random phase ensemble in the
infinite time limit [71]; as shown in Ref. [71] this then is equivalent to the statement that
Hilbert-space ergodicity holds.

We are interested in the k-th moment of the temporal ensemble, which, up to corrections
which are exponentially small in the system size, is equal to [71]

Et[|Ψ(t)⟩⟨Ψ(t)|⊗k] ≈ ρ̂⊗kd
∑
σ∈Sk

Perm(σ), (7.14)

where ρ̂d is the diagonal ensemble [Eq. (7.11)] and Perm(σ) is the permutation operator
acting on k copies of the Hilbert space, which, for a permutation σ in the symmetric group
Sk, takes any configuration |i1, i2, . . . , ik⟩ ∈ H⊗k and maps it to |iσ(1), iσ(2), . . . , iσ(k)⟩.
Explicitly, the permutation operator has k! elements. As an example, for k = 2

Et[|Ψ(t)⟩⟨Ψ(t)|⊗2] ≈ ρ̂⊗2
d (Î + Ŝ), (7.15)

where Î is the identity, Ŝ is the swap operator between two copies of Hilbert space, and ρ̂d
is the diagonal ensemble (Eq. (7.11)). Importantly, this is the same as the k-th moment of
the Haar ensemble [285], taking ρ̂d = Î/D.

To study fluctuations of bitstring probabilities, we simply contract Eq. (7.14) with ⟨z|⊗k and
|z⟩⊗k, where each of the k! permutations have equal contribution pavg(z)

k. This contraction
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is equivalent to the k-th moment of the probability time series [71]

Et[p(z, t)
k] ≈ k! pavg(z)

k . (7.16)

These are the same as the moments of the Porter-Thomas (exponential) distribution with
mean value pavg(z). Thus, upon rescaling p̃(z, t) = p(z, t)/pavg(z), the resulting distribution
is exactly the Porter-Thomas with PoP

P (p̃)dp̃ = exp(−p̃)dp̃. (7.17)

7.4.3 The Erlang distribution from Hilbert-space ergodicity

From Eq. (7.14), we can also derive that the rescaled marginal distributions p(zA)/pavg(zA)

follow the Erlang distribution.

Proof. We consider the k-th cumulants of p(zA), which is related to the k-th moment,
but subtracts off trivial contributions from lower order moments. The k-th cumulant
of the Erlang distribution can be simply calculated as κk = (k − 1)!/Dk−1

B , since
the Erlang distribution is the convolution of multiple exponential distributions [291],
and cumulants of convolutions are additive [353].

To calculate the k-th cumulant we consider the permutations in Eq. (7.14). The
permutation operator swaps between different copies of the Hilbert space, and can
be represented by a directed graph indicating the action of the permutation on k

elements. Importantly, this graph can be disconnected, e.g. for three copies of the
Hilbert space the permutation operator can leave one unchanged while swapping the
other two. However, in this case the permutation will only contain terms which are
related to lower-order moments. The cumulant explicitly subtracts off such lower
order moments, and thus it is related only to cyclic permutations, i.e. permutations
with only a single cycle [353].

Applying this to our observable of interest, we write the general formula for the k-th
cumulant of the time series of p(zA), κk, as:

κk =
∑
σ∈Ck

∑
z
(1)
B

· · ·
∑
z
(k)
B

( k⊗
i=1

⟨zA, z(i)B |
)
ρ̂⊗kd Perm(σ)

( k⊗
i=1

|zA, z(i)B ⟩
)

(7.18)

where
⊗

represents a repeated Kronecker product, and Ck is the subset of Sk
containing only cyclic permutations, which importantly has (k − 1)! elements. This
is a general statement for cumulants of a local bitstring probability, p(zA), in the
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large total system size limit; it is much like Eq. (7.16), but is subselected only to the
cyclic permutations and with the inclusion of sums over different choices of zB in
the contraction.

To simplify this equation, it is helpful to first consider its lowest non-trivial form for
k = 2, for which the only contributing permutation is the swap operator, Ŝ, with
explicit steps

κ2 =
∑
zB ,z

′
B

(⟨zA, zB| ⊗ ⟨zA, z′B|)ρ̂⊗2
d Ŝ(|zA, zB⟩ ⊗ |zA, z′B⟩) (7.19)

=
∑
zB ,z

′
B

⟨zA, zB|ρ̂d|zA, z′B⟩⟨zA, z′B|ρ̂d|zA, zB⟩ (7.20)

=
∑
zB

⟨zA, zB|ρ̂d|zA, zB⟩2 +
∑
zB ̸=z′B

|⟨zA, zB|ρ̂d|zA, z′B⟩|2 (7.21)

≈
∑
zB

⟨zA, zB|ρ̂d|zA, zB⟩2 . (7.22)

In the third line, we have split the sum over different choices of zB and z′B into cases
where zB = z′B and cases where zB ̸= z′B. In the final line, we have made the infinite
temperature approximation that ρ̂d ≈ Î/D – up to small variations along the diagonal
due to the varied pavg(z) – which nullifies the second term, where zB ̸= z′B. In other
words, we assume off-diagonal terms are negligible.

Carrying out a similar calculation – and again only keeping terms where all zB are
equal – for the k-th cumulant yields

κk ≈ (k − 1)!
∑
zB

⟨zA, zB|ρ̂d|zA, zB⟩k , (7.23)

where the coefficient (k − 1)! comes precisely from the number of elements in the
set of cyclic permutations. To be explicit, by selecting cases where all zB are equal
(because of the infinite temperature condition) the cyclicity of the permutations does
not actually matter for our proof, beyond the fact that there are (k − 1)! of them.

Then to further simplify Eq. (7.23), we assume that any zB dependence can be ignored
and we can approximate∑

zB

⟨zA, zB|ρ̂d|zA, zB⟩k ≈ ⟨zA|trB(ρ̂d)|zA⟩k/Dk−1
B (7.24)

= pavg(zA)
k/Dk−1

B . (7.25)
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This is an assumption that the basis {zB} is energy non-revealing, see Section 7.5.3.

Thus, when considering cumulants of relative quantities, i.e dividing the k-th cu-
mulant by pavg(zA)

k, we find the k-th cumulant is (k − 1)!/Dk−1
B . This is precisely

equal to the k-th cumulant of the Erlang distribution. Since all cumulants match,
all moments must match too, and we conclude that the marginal probabilities p(zA)
follow an Erlang distribution for systems thermalizing at infinite temperature, up to
corrections exponentially small in the system size.

In this derivation, we have made two approximations. First, we have assumed that the basis
zB is energy non-revealing, and second, we have assumed that the off-diagonal terms of the
form ⟨zAzB|ρ̂d|zAz′B⟩ are negligible. Remarkably, we may perform an exact calculation of
the k-th moments Et[p(zA, t)k] to estimate the effect of these approximations. We outline
these more technical results below. Among other results, this allows us to obtain the 1/D

correction in the expression of the relative variance σ2
rel.

7.4.4 Second Hamiltonian twirling identity

Our primary tool will be the “second Hamiltonian twirling identity,” which describes
“twirling” under a family of channels Ut ≡ exp(−iHt) formed by evolution under a fixed
Hamiltonian H , over different times t, and was established in Refs. [30, 71]. This is
analogous to a conventional twirling channel composed of Haar random unitaries and its
results bear many similarities [354].

Assuming the second no-resonance condition, the twirling channel, τ2, acting on any two-
copy operator Â : H⊗2 → H⊗2 is given as

τ2 = Et
[
Û⊗2
t ÂÛ⊗2

−t

]
(7.26)

≡ lim
T→∞

1

T

∫ T

0

dt Û⊗2
t ÂÛ⊗2

−t (7.27)

=
∑
i,j,k,l

[
lim
T→∞

1

T

∫ T

0

dt e−i(Ei+Ej−Ek−El)t

]
|Ei, Ej⟩⟨Ei, Ej|Â|Ek, El⟩⟨Ek, El| (7.28)

=
∑
i,j,k,l

δ(Ei + Ej − Ek − El) |Ei, Ej⟩⟨Ei, Ej|Â|Ek, El⟩⟨Ek, El| (7.29)

=
∑
E,E′

[
|E,E ′⟩⟨E,E ′|Â|E,E ′⟩⟨E,E ′|+ |E,E ′⟩⟨E,E ′|Â|E ′, E⟩⟨E ′, E|

]
(7.30)

−
∑
E

|E,E⟩⟨E,E|Â|E,E⟩⟨E,E|.
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Figure 7.7: Diagrams for subsystem bitstring probability fluctuations. We diagram-
matically organize our computations for the second and third moments Et[p(zA, t)k], which
we show are equal to the low moments of the Erlang distribution at infinite temperature. a.
We organize the terms in the second moment of the temporal ensemble diagrammatically,
which translates to the equation Et[p(zA, t)2] = tr[ρ̂d(zA)]2 + tr[ρ̂d(zA)2] − tr[ρ̂(2)d (zA)]
[Eq. (7.40)]. The blue dot represents ρ̂d(zA), which is an operator onHB, and can be inter-
preted as the initial state, dephased in the energy eigenbasis, and projected onto a subsystem
bitstring |zA⟩. The blue bar represents ρ̂(2)d (zA), which acts on the double Hilbert space
H⊗2
B , and is a subleading correction term to the first two terms. Each diagram is ultimately

traced out (gray lines), which we subsequently omit for simplicity. b. The diagrammatic
framework greatly simplifies the computation of the third moment [Eq. (7.51)]. The six
permutations of S3 give rise to three terms, since permutations with the same cycle type
produce the same terms (blue box). Correction terms may be expressed in terms of diagrams
with blue bars. Furthermore, diagrams where the lines with a blue bar are swapped are
equivalent. Therefore, there are only two inequivalent diagrams involving ρ̂(2)d (zA). The
number of equivalent diagrams, along with double-counting coefficients from the twirling
identity gives rise to the coefficients −3 and −6. Finally, there is a higher-order diagram
that accounts for triple-counting, involving ρ̂(3)(zA).
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In Eq. (7.30), we applied the no-resonance condition to simplify our sum over four indices
to a sum over two indices. The last term comes from the case where i = j = k = l, which
is double counted in the first sum in Eq. (7.30). As discussed in Ref. [30], the second
no-resonance condition is violated whenever there are energy degeneracies, which may be
protected by non-Abelian symmetries. However, when the operator Â is specialized to
Â = ρ̂⊗2

0 (as we do below), the degenerate energy eigenspace is projected onto a single
state, and we may ignore such degeneracies: our analysis is valid as long as the second no-
resonance condition modulo degeneracies applies. To aid their application, diagrammatic
methods have been developed to represent the twirling identities [30, 299] (Fig. 7.7).

We specialize our results to Â = ρ̂⊗2
0 , where ρ̂0 = |Ψ0⟩⟨Ψ0| is the initial pure state. This

object is the second moment of the temporal ensemble, which we will use to study the
variance of observables over time. Eq. (7.30) becomes

LHS = Et
[
Û⊗2
t ρ̂⊗2

0 Û⊗2
−t

]
= Et[|Ψ(t)⟩⟨Ψ(t)|⊗2] (7.31)

RHS =

[(∑
E

|E⟩⟨E|ρ̂0|E⟩⟨E|

)
⊗

(∑
E′

|E ′⟩⟨E ′|ρ̂0|E ′⟩⟨E ′|

)]
(Î + Ŝ) (7.32)

−
∑
E

|E,E⟩⟨E,E|ρ̂⊗2
0 |E,E⟩⟨E,E|.

Here Ŝ =
∑

E,E′ |E,E ′⟩⟨E ′, E| is the swap operator between the two copies of Hilbert
space. Thus, we arrive at the following simplified expression:

Et[|Ψ(t)⟩⟨Ψ(t)|⊗2] = ρ̂⊗2
d (Î + Ŝ)− ρ̂(2)d , (7.33)

where ρ̂d =
∑

E |E⟩⟨E|ρ̂0|E⟩⟨E| is the diagonal ensemble (Eq. (7.11)) and
ρ̂
(2)
d =

∑
E |E,E⟩⟨E,E|ρ̂

⊗2
0 |E,E⟩⟨E,E| is a two-copy generalization. The inclusion of

the ρ̂(2)d term is crucially different compared to Eq. (7.14).

7.4.5 Universal variance including finite-size corrections

We study the variance of bitstring probabilities by using explicit expressions for the second
moment of the temporal ensemble when Hilbert-space ergodicity applies [30, 71]. Specifi-
cally, we study the relative temporal fluctuation σ2

rel(zA), and we find an expression that has
a natural interpretation as an effective dimension of the finite-temperature bath.

We define the relative temporal fluctuation σ2
rel(zA) of the probability of a particular bitstring

zA in subsystem A as follows:

σ2
rel(zA) ≡

Et[p(zA, t)2]− Et[p(zA, t)]2

Et[p(zA, t)]2
=

Et[p(zA, t)2]
Et[p(zA, t)]2

− 1. (7.34)
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Figure 7.8: Rescaling by effective bath dimension for finite temperature systems. We
show relative variance plots for Rydberg (both experiment and simulation) as well as for
mixed field Ising model (simulation). In each case the quench evolution is at an finite
effective temperature. In the left plots we show the relative variance (without the addition
of a 1/D term) versus the bath dimensional, showing non-universal behavior. In the right
plots we show the relative variance (plus the 1/Dβ term, Eq. 7.44) versus the effective
bath dimension, DB,eff (Eq. (7.43)), which recovers the scaling expected from Eq. (7.42).
In all plots, the markers are averaged over all bitstring realizations with an effective bath
dimension in an interval from [i − 0.5, i + 0.5), for i ∈ Z, and error bars are the standard
deviations over these realizations.

Here p(zA, t) = tr
[
(|zA⟩⟨zA| ⊗ ÎB)|Ψ(t)⟩⟨Ψ(t)|

]
is the marginal probability of measuring

zA at time t, where ÎB is the identity operator acting on subsystem B. The denominator of
Eq. (7.34) can be simplified to

Et[p(zA, t)] = tr
[
|zA⟩⟨zA| ⊗ ÎB

(
lim
T→∞

1

T

∫ T

0

dt |Ψ(t)⟩⟨Ψ(t)|
)]

(7.35)

= ⟨zA|trB(ρ̂d)|zA⟩ (7.36)



191

≡ trB
[
ρ̂d(zA)

]
, (7.37)

where in the second-last equality trB(ρ̂d) is a mixed state on subsystem A, and in the last
equality we instead consider the quantity ρ̂d(zA) ≡ (⟨zA| ⊗ ÎB)ρ̂d(|zA⟩ ⊗ ÎB), which is a
mixed state on the subsystem B.

Meanwhile, the numerator of Eq. (7.34) can be evaluated from the second moment of the
temporal ensemble [30, 71]. This yields three terms: the permutation terms from Eq. (7.14),
as well as a correction term illustrated in Fig. 7.7.

Et[p(zA, t)
2] = Et

[(
⟨zA|trB (|Ψ(t)⟩⟨Ψ(t)|) |zA⟩

)2] (7.38)

= tr
[(
|zA⟩⟨zA| ⊗ ÎB

)⊗2
ρ̂⊗2
d

]
+ tr

[(
|zA⟩⟨zA| ⊗ ÎB

)⊗2
ρ̂⊗2
d Ŝ

]
(7.39)

− tr
[(
|zA⟩⟨zA| ⊗ ÎB

)⊗2
ρ̂
(2)
d

]
= trB

[
ρ̂d(zA)

]2
+ trB

[
ρ̂d(zA)

2
]
−
∑
E

q2zA(E) (7.40)

The inclusion of ρ̂(2)d prevents double counting of certain terms in the sum of permuta-
tions (see Fig. 7.7), and is explicitly included here while previously (e.g. Eq. (7.14)) we
disregarded it as negligible in the large system size limit.

Combining these results, we obtain the relative fluctuation as follows:

σ2
rel(zA) =

trB
[
ρ̂d(zA)

]2
+ trB

[
ρ̂d(zA)

2
]
−
∑

E q
2
zA
(E)

trB
[
ρ̂d(zA)

]2 − 1 (7.41)

≡ 1

DB,eff
− 1

Dβ

, (7.42)

where

D−1
B,eff ≡

trB
[
ρ̂d(zA)

2
]

trB
[
ρ̂d(zA)

]2 (7.43)

D−1
β ≡

∑
E q

2
zA
(E)

trB
[
ρ̂d(zA)

]2 . (7.44)

Here D−1
B,eff is the purity of the conditional reduced density matrix ρ̂d(zA)/trB

[
ρ̂d(zA)

]
.

It measures the effective size of the bath, hence we dub it the effective bath dimension.
Meanwhile, D−1

β , is the purity of the classical distribution [30] (of size D) over the energy
eigenstates, which has typical value O(1/D). At infinite temperature, we can approximate
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ρ̂d(zA) ≈ ÎB/D and qzA(E) ≈ DB/D
2, where D and DB are the Hilbert-space dimension

of the total system and subsystem B respectively, meaning

ρ̂d(zA) ≈
1

D
ÎB (7.45)

trB
[
ρ̂d(zA)

]
≈ DB

D
(7.46)

trB
[
ρ̂d(zA)

2
]
≈ DB

D2
(7.47)

qzA(E) ≈
1

D

∑
zB

1

D
≈ DB

D2
(7.48)

1

Dβ

≈ D(DB/D
2)2

(DB/D)2
≈ 1

D
, (7.49)

leading to Dβ → D and DB,eff → DB.

Applying these infinite temperature approximations, we immediately arrive at the result of
Eq. (7.2), that

σ2
rel(zA) =

1

DB

− 1

D
. (7.50)

Explicitly, in Fig. 7.4 in the main plot for the Rydberg, mixed field Ising model, and random
unitary circuits the x-axis is DB, while for the Bose-Hubbard system the x-axis is DB,eff to
account for particle number conservation. Further, when calculating the scaling coefficients
for all models in the inset of Fig. 7.4, we use DB,eff instead of DB - this is to be maximally
fair to all models in case there are slight non-infinite temperature conditions.

The prediction of Eq. (7.42) is also matched by both numerical and experimental data
at finite effective temperature. In Fig. 7.8, we plot the relative variance, σ2

rel(zA) versus
either the bath dimension, DB, or the effective bath dimension, DB,eff (Eq. (7.43)), for
finite temperature evolution with both Rydberg (experiment and simulation) and mixed
field Ising model (simulation) systems. We observe the relative variance scales inversely
with the effective bath dimension, as expected.

To be explicit, for each bitstring zA we calculate the corresponding DB,eff and Dβ numeri-
cally, which will be different generically for every zA. For the experimental data, we select
only blockade-satisfying bitstrings as we do not have sufficiently many experimental mea-
surements to resolve probabilities with high confidence outside this space. However, we
note in general that rescaling the bath dimension naturally takes into account the Rydberg
blockade, as it is essentially a finite temperature effect. In other words, while we can operate
in an infinite effective temperature regime within the blockade-satisfying subspace, within
the global Hilbert space the system is at effectively low temperature; this temperature is
naturally accommodated via the bath dimension rescaling for each zA.
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7.4.6 Higher moments of subsystem bitstring probabilities

Eq. (7.42) shows that the relative temporal variance, i.e. the second moment of the PoP,
approximately satisfies σ2

rel = 1/DB − 1/D. This agrees with the second moment of the
Erlang distribution, up to the 1/D term. Here, we explicitly compute the third moment,
demonstrate that it is similarly consistent with the Erlang distribution and discuss leading
order corrections.

Higher moments of the temporal ensemble may be evaluated [30, 71]. We find:

Et[p(zA, t)
3] = tr[ρ̂d(zA)]3 + 3tr[ρ̂d(zA)]tr[ρ̂d(zA)2] + 2tr[ρ̂d(zA)3] (7.51)

− 3tr[ρ̂d(zA)]tr[ρ̂
(2)
d (zA)]− 6tr[ρ̂(2)d (zA)(Î ⊗ ρ̂d(zA))] + 4tr[ρ̂(3)d (zA)]

where ρ̂(k)d (zA) ≡ (⟨zA|⊗ ÎB)⊗k
∑

E |cE|2k|E⟩⟨E|⊗k(|zA⟩⊗ ÎB)⊗k are higher-order correc-
tion terms. We diagrammatically illustrate this expression in Fig. 7.7B. We emphasize that
this expression is exact, and further approximations are often required to make headway.

The relevant quantity we wish to compare is the third cumulant κ3

κ3 ≡
Et[p(zA, t)3]
Et[p(zA, t)]3

− 3
Et[p(zA, t)2]
Et[p(zA, t)]2

+ 2 (7.52)

= 2
tr[ρ̂d(zA)3]
tr[ρ̂d(zA)]3

− 6
tr[ρ̂(2)d (zA)(Î ⊗ ρ̂d(zA))]

tr[ρ̂d(zA)]3
+ 4

tr[ρ̂(3)d (zA)]

tr[ρ̂d(zA)]3
(7.53)

≈ 2

D2
B

− 6

DBD
+

4

D2
(7.54)

where in the last step we have used the same approximations above at infinite temperature,
that ρ̂d(zA) ≈ ÎB/D and qzA(E) ≈ DB/D

2 (and note that tr(ρ̂(3)d (zA)) =
∑

E qzA(E)
3).

As with the variance, this agrees with the third cumulant of the Erlang distribution (which
is simply 2/D2

B) up to corrections O(1/D). It is also close, but not exactly equal to
2(1/DB − 1/D)2, i.e. replacing 1/DB with 1/DB − 1/D as the parameter in the Erlang
distribution.

We note that both Eqs. (7.50) and (7.54) agree with the (average) second and third
cumulants of Haar random states [285, 340], i.e. for marginal distributions pψ(zA) ≡
⟨zA|trB(|ψ⟩⟨ψ|)|zA⟩ of Haar random states |ψ⟩,

E|ψ⟩∼Haar[D
2
Ap

2
ψ(zA)]− 1 =

D +DA

D + 1
− 1 ≈ 1

DB

− 1

D
(7.55)

E|ψ⟩∼Haar
[
D3
Ap

3
ψ(zA)− 3D2

Ap
2
ψ(zA) + 2

]
=
D3 + 3D2DA + 2DD2

A

D(D + 1)(D + 2)
− 3

D +DA

D + 1
+ 2

(7.56)
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Figure 7.9: Observation of Porter-Thomas statistics on the level of a single bitstring or
time. Probability-of-probabilities (PoP) distributions obtained from numerical simulations
for an N = 15 Rydberg atom array. Top: PoP distributions for the probability to observe
a single bitstring, aggregated over evolution times ranging from 0 to 500 cycles, and
normalized by the average temporal probability. Bottom: PoP distributions aggregated
over all 215 bitstrings at a single fixed time, with probabilities normalized by their average
temporal probability. In all cases, the observed PoP distributions agree with the exponential
Porter-Thomas distribution, as is expected from theoretical arguments related to Hilbert-
space ergodicity [71]. In the case of averaging over all bitstrings at a fixed time, this
agreement is observed to set in past ≈ 4 cycles, as quantified by the L1-norm between the
numerical and analytic PoP as a function of time (inset). Note that in all plots we consider
not just the lowest energy non-blockaded sector, but the entire Hilbert space.

≈ 2

D2
B

− 6

DBD
+

4

D2
(7.57)

We next note that the substitutions ρ̂d(zA) ≈ ÎB/D and qzA(E) ≈ DB/D
2 leading up

to Eq. (7.54) are heuristic in nature and they may not appropriately capture the relevant
higher-order fluctuations to the desired level of precision (here, up to 1/D2). Nevertheless,
they appear to give the correct answer; we have verified that Eqs. (7.50) and (7.54) agree
with a more careful calculation which treats the eigenbasis {|E⟩} as a random basis, and
averages over such bases with an integral over Haar-random unitaries.
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Figure 7.10: Time-resolved saturation of the temporal variance. We plot σ2
rel + 1/D

for both experiment and numerical simulations evolved at infinite temperature, for various
choices of bath dimension,DB. The variance is calculated in a temporal window of varying
length, where the endpoint is fixed at 4 Rabi cycles of evolution, the latest time measured
experimentally, while the start of the window is varied (inset). We see for both the numerics
and the experiment the variance settles to the prediction of 1/DB for start times of ≈ 1.5
cycles. We note that when simulating out to many hundreds of cycles – to emulate the
infinite time limit – the convergence is observed without excluding any early time transient
behavior (not shown), but we do not have the experimental resolution to evolve to such late
times without incurring fidelity loss.

Finally, we note that in all approaches discussed above, the leading O(1/Dk−1
B ) terms of all

k-th cumulants agree with those of the Erlang distribution.

7.4.7 Bitstrings vs time, and time-dependence of the PoP

So far, we have shown the global PoP forms the Porter-Thomas distribution when aggregated
over many measurement times. However, under Hilbert-space ergodicity, Refs. [30, 71] state
the Porter-Thomas distribution should also be apparent when forming the PoP over many
choices of bitstrings at a fixed measurement time.
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Figure 7.11: Non-Porter-Thomas behavior of the transverse field Ising model. We
evolve anN = 12 atom system under the transverse field Ising model out to several hundred
cycles, as in the inset of Fig. 7.4, and aggregate all global bitstring probabilities over all
bitstrings and at different times (to obtain better statistics), normalized by their respective
long time averages. The resulting PoP shows non-exponential and non-universal signatures.
Accounting for such effects may allow us us to better describe models not exhibiting Hilbert-
space ergodicity.

In Fig. 7.9 we present numerical evidence for this by simulating the Rydberg Hamiltonian
with no decoherence out to several hundred cycles of evolution forN = 15 atoms. We then
form the global PoP either by a) aggregating normalized probabilities across many times
for a single bitstring, or b) aggregating normalized probabilities over many bitstrings at a
fixed time. Explicitly, in both cases the normalization is done by dividing probabilities by
their respective long-time averages. Note that typically for the Rydberg systems we only
consider the non-blockaded Hilbert space as it is difficult to gather sufficient experimental
statistics to reconstruct bitstring probabilities in the higher-energy sectors, but in Fig. 7.9
we consider all bitstrings, not just those drawn from the non-blockaded subspace.

An important aspect visible in the inset of Fig. 7.9 is that the fixed-time PoP converges
close to the Porter-Thomas distribution over a few cycles of evolution. In Fig. 7.2 – where
we observe the experimental global PoP is roughly consistent with the Porter-Thomas



197

Figure 7.12: Integrable models exhibiting Hilbert-space ergodicity. While some in-
tegrable models (e.g. the transverse field Ising model) do not fulfill the no-resonance
conditions, and thus do not exhibit HSE, some integrable models (e.g. the XXZ model)
do. Thus, we expect, and observe that temporal fluctuations of the XXZ model obey the
universal scaling of Eq. (7.2), similar to models studied in Fig. 7.4.

distribution – we aggregated over both bitstring index and measurement times from 1.5 to 4
cycles of evolution to gather sufficient statistics. Evolving out to longer times experimentally
modifies the PoP distribution due to interaction with the external environment, as discussed
at length. To verify we study sufficiently late dynamics in the experiment, we consider σ2

rel

calculated in a temporal window of varying length, but fixed endpoint at 4 Rabi cycles of
evolution (Fig. 7.4), the latest time measured experimentally. We find σ2

rel appears roughly
converged for a start time of ≈ 1.5 cycles, for which we observe both the experimental and
numerical σ2

rel closely matches the 1/DB − 1/D prediction. We note some disagreement
for the experimental data at DB = 1, which again we attribute to early signatures of
decoherence.
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7.4.8 Failure cases

As shown in the inset of Fig. 7.4, not all models follow our analytic predictions, in particular
those that do not fulfill the no-resonance conditions such as the transverse field Ising model
and systems of non-interacting spins. As a further example of this failure we plot the
PoP aggregated over global bitstring probabilities from many times for the transverse field
Ising model (Fig. 7.11). Probabilities are normalized by their long time average, and are
measured out to several hundred cycles. We observe clear non-exponential signatures in
the PoP, which then lead to the non-universal features seen in Fig. 7.4. However, this
is not to imply all integrable models behave in this way; some integrable models, like the
XXZ Hamiltonian, do fulfill the no-resonance conditions, and thus do exhibit Hilbert-space
ergodicity, as typified in Fig. 7.12.

7.5 GENERALIZING TO HYPOEXPONENTIAL DISTRIBUTIONS

In Section 7.4, we formally derived the emergence of the Erlang distribution from results in
Hilbert-space ergodicity for closed system dynamics. Using the intuition gained from that
derivation, in this section we build models of how the probability-of-probabilities (PoP)
should behave under a variety of conditions, including open system dynamics, explicitly
comparing them to numerical simulations. We find that the PoP qualitatively and quan-
titatively is changed in the presence of different types of noise, which we used both to
discriminate between noise channels as well as learn their relative strengths.

We first give an overview of how the exponential, or Porter-Thomas distribution emerges
from ergodic unitary dynamics. We then introduce hypoexponential distributions, which
parameterize all the PoP distributions studied in this work, including the Erlang distribu-
tion which describes closed system dynamics at infinite temperature. For closed system
dynamics at finite temperature, we describe the hypoexponential weights and discuss the
conditions on the bath size under which these weights are the eigenvalues of the system (or
bath) reduced density matrix.

We then move on to the case where our system is coupled to an external environment,
describing our models for local errors, global depolarizing noise, Gaussian coherent errors,
and a mixture of local and Gaussian coherent errors.

In this section, all probability distribution functions (PDFs) will be supported on the non-
negative real line x ≥ 0.



199

7.5.1 Porter-Thomas from random distributions

Our basic building block will be the exponential distribution Exp(λ), with PDF

PExp(x, λ)dx = λ exp(−λx)dx (7.58)

We will refer to variables which follow the exponential distribution with λ = 1 (or, Porter-
Thomas distribution) as “standard exponential variables.”

The Porter-Thomas distribution is a universal feature of random quantum states [275,
289, 297]. To see this, note that the probability distributions p(z) = |⟨z|Ψ⟩|2 obtained
from Haar-random states are random probability distributions p(z). To be precise, such
distributions are drawn from the flat Dirichlet distribution, which is a distribution over
the space of probability distributions (the probability simplex). Such random distributions
can be generated by i.i.d. sampling each probability value p(z) ∼ Exp(1/D), and then
normalizing all entries such that

∑
z p(z) = 1. This final step introduces weak correlations

cov[p(z), p(z′)] = δz,z′/2D − 1/2D2, which vanish in the limit of large Hilbert-space
dimension D.

We are primarily interested in the marginal distributions P [p] of individual probability val-
ues, namely, the distribution of the values of p(z). This is known to be the Beta distribution
Beta(1, D−1) [291, 355], which converges to Exp(1/D) in the large system limitD →∞.
Crucially, the marginal distribution P [p(z)] can be observed from a single typical distri-
bution p(z), and one does not have to sample many Dirichlet random distributions. Since
the entries p(z) of a typical distribution {p(z)} are very weakly correlated, the histogram
of their values, or probability-of-probabilities (PoP), is also approximately exponentially
distributed. In this context, the exponential distribution is referred to as the Porter-Thomas
distribution.

In the above discussion, we have motivated the Porter-Thomas distribution through Haar-
random states. However, the Porter-Thomas distribution is present in states which can be
practically produced. Specifically, it is present in the states output from random unitary
circuits (RUCs) [275]. It is convenient to rescale the probability values as Dp(z), which
follow the standard exponential distribution (i.e. with mean 1).

Furthermore, as shown in Section 7.4.2, the Porter-Thomas distribution appears in states
obtained from unitary Hamiltonian evolution [30], i.e. |Ψ(t)⟩ = exp(−iĤt)|Ψ0⟩ for an
arbitrary initial state |Ψ0⟩. We prove [71] this in the limit of exponentially long times,
and observe that in practice the required time is small, only growing weakly with system
size [30]. Specifically, we consider the probabilities p(z, t) ≡ |⟨z|Ψ(t)⟩|2 and their time-
average values pavg(z) ≡ Et[p(z, t)]. Hamiltonian dynamics differs from RUC dynamics
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by energy conservation, which introduces non-trivial pavg(z). The probabilities p(z, t)
fluctuate about their average value, but the rescaled probabilities p̃(z) ≡ p(z)/pavg(z)

follow the Porter-Thomas distribution.

7.5.2 Hypoexponential distributions

As described, the hypoexponential distribution is the probability distribution of a weighted
sum of independent standard exponential variables. For a given set of weights ωi (which
are positive and sum to 1), and associated i.i.d. Dirichlet probability distributions {pi(z)},
the overall distribution is given by the weighted sum:

p(z) =
∑
i

ωipi(z) . (7.59)

When the number of weights is small (i.e. for a small bath dimension), the weights can be
related to the eigenvalues of the density matrix ρ̂. Their properties may be inferred from
each other (Section 7.7.1). For example, the state purity is related to the second moment of
the weights tr(ρ̂2) =

∑
i ω

2
i , which we utilize heavily in Section 7.7.

The corresponding PoP distribution is given by Hypo({ωi}) (Note that the hypoexponential
distribution is conventionally parameterized in terms of the inverse weights ω−1

i , which are
known as rates). When the ωi are distinct, the hypoexponential distribution has probability
distribution function (PDF) [347]

PHypo(x) =⊛
i

PExp(x/ωi) =
∑
i

ω−1
i exp(−x/ωi)

∏
j ̸=i

ωi
ωi − ωj

, (7.60)

where⊛denotes convolution, an operation of functions defined by (f⊛g)(x) =
∫
dyf(y)g(x−

y). Eq. (7.60) does not hold when there are degenerate ωi, which is often the case for our
purposes. Hence, we will rarely directly use Eq. (7.60) (see Ref. [347] for an expression
valid for degenerate ωi).

Different types of noise give different weights ωi. Below, we state types of noise we
consider, their weights ωi and their resultant PoP distributions.

7.5.3 Intrinsic baths

We first consider the PoP distribution in the context of closed system quantum thermaliza-
tion: a subsystem effectively thermalizes due to its entanglement with the rest of the system,
which serves as a bath.
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Infinite temperature
First, we let the bath be at infinite effective temperature. The quantities of interest are
the subsystem bitstring probabilities p(zA), which are marginal probabilities p(zA) =∑

zB
p(zA · zB). As discussed, we find that the PoP of the marginal probabilities are

described by Erlang distributions. In Section 7.4, we gave a rigorous derivation of this,
including small deviations from the perfect Erlang distribution. Here, we give an intuitive,
heuristic derivation.

Consider an infinite temperature state in the absence of symmetries for simplicity. We
take the average probabilities pavg(z) to be trivially 1/D. Therefore, the joint probabilities
p(zA · zB) are essentially i.i.d. exponential variables, and the (rescaled) sumDAp(zA) is the
average ofDB i.i.d. standard exponential variables, i.e. ωi = 1/DB for i = {1, 2, . . . , DB}.
This special case of the hypoexponential distribution is precisely the Erlang distribution,
parameterized by a positive integer k (here k = DB). Because the weights are degenerate,
its PDF cannot be directly obtained from Eq. (7.60), but can be independently derived as

PErlang(x; k) =
k

⊛
i=1

PExp(kx) =
kkxk−1

(k − 1)!
exp(−kx), (7.61)

where in our case of interest the variable x = DAp(zA), and k = DB.

Intrinsic bath at finite temperature
Having established the PoP distribution for an intrinsic bath at infinite effective tempera-
ture, a natural next step is to investigate the PoP distribution at finite effective temperatures.
Specifically, we consider the following setting: a system is partitioned into a larger subsys-
tem A and smaller one B, which we treat as the “bath.”

We first restrict ourselves to a special type of measurement basis zA, whose conditions are
explained later. Here, we claim that when the bathB is small, the PoP of the bitstrings onA
is the hypoexponential distribution with coefficients λ−1

i , where {λi}DB
i=1 are the eigenvalues

of the reduced density matrix ρ̂A (or ρ̂B). That is,

p̃(zA) ≡ p(zA)/pavg(zA) ∼ Hypo({λi}), (7.62)

where p(zA) =
∑

zB
p(zA · zB) and pavg(zA) =

∑
zB
pavg(zA · zB) are the marginal distribu-

tions of zA.

This result may be understood through the lens of projected ensembles [29, 70]. These are
the ensembles of states defined on a subsystem Hilbert space (here, HB) by measuring a
global state |Ψ⟩ in its complement (A). For concreteness, we let |Ψ⟩ = |Ψ(t)⟩ be generated
by many-body dynamics for time t. Each of the exponentially many measurement outcomes
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Figure 7.13: Hypoexponential distributions for finite temperature closed system dy-
namics. In (a-d), we plot the PoP of the conditional probabilities of p̃(zA) = p(zA)/pavg(zA)
formed by states time-evolved by the mixed field Ising model (MFIM). Here, the system is
a one-dimensionalN = 18 open chain and the subsystem B is four sites at the center of the

chain. (abc) The temperature is tuned by rotating the initial state |Ψ0⟩ =
[
exp(iθŜx)|0⟩

]⊗N
at various angles θ = 0,−0.6,−1.2. In abc, B is measured in the {zB} basis. Only at
infinite temperature does the PoP agree with the Erlang distribution (green), while at finite
temperatures, the PoP agrees with the hypoexponential distribution [Eq. (7.62)] instead. In
d, B is measured in the energy-revealing {xB} basis, showing small deviations from the
hypoexponential distribution. In ef, we form the PoP from the state |1, 1 . . . 1⟩ evolved by
the Bose-Hubbard model [Eq. (7.7)] with M = 10 sites and N = 10 particles, measured in
the particle number basis, and with a subsystem of 3 sites. Due to the number-conservation
of the evolution, we restrict to the measurement outcomes where zB has e) 4 and f) 5 par-
ticles, and form the symmetry-resolved density matrix accordingly. The PoPs agree better
with the hypoexponential prediction instead of the Erlang distribution with the appropriate
symmetry-resolved subsystem dimension.
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zA projects |Ψ⟩ into a distinct pure state |Ψ(zA)⟩ ∈ HB. The statistical properties of
projected ensembles translate to properties of the PoP.

In companion work [71], we study projected ensembles at finite temperature, relevant to
our setting here. When two conditions are satisfied, ρ̂d(zA) is approximately the reduced
density matrix ρ̂B(t) ≡ trA [|Ψ(t)⟩⟨Ψ(t)|], which gives the stated claim Eq. (7.62). These
two conditions are (i) that the measurement basis should be “energy non-revealing,” and
(ii) the bath size must be sufficiently small.

Effect of the measurement basis — The result Eq. (7.62) applies to specific measurement
bases |zA⟩ that are “energy non-revealing,” i.e. do not have significant correlations with the
Hamiltonian that generated the state |Ψ(t)⟩ (and which defines the notion of temperature).
One example of an “energy non-revealing basis” is the ZA basis for the mixed field Ising
model with fields and couplings in theX andY directions, where the measurement outcomes
zA are uncorrelated with the energy density. For other bases, such as the XA basis for the
mixed field Ising model discussed above, such correlations may exist. Specifically, due
to energy conservation of the overall state, measurement outcomes with higher values of
energy (on subsystemA) on average lead to projected states with lower energy (on subsystem
B), and vice-versa. Therefore the projected ensemble {|Ψ(zA)⟩} may not be taken to be
samples from the same distribution, independent of zA. Among other consequences [71],
the simple prediction Eq. (7.62) does not hold in this setting.

Effect of bath size — When the measurement basis is energy non-revealing, we may
conclude that the time-averaged reduced density matrix Et[ρ̂B(t)] is proportional to any of
the ρ̂d(zA). However, ρ̂B(t) has fluctuations over time, and therefore the eigenvalues of
Et[ρ̂B(t)] (the weights of the hypoexponential PoP) may not agree with the eigenvalues of
ρ̂B(t). To see this, it is instructive to consider the case of infinite temperature, where we
model the global state as a Haar-random state. Indeed, for Haar-random states, the eigen-
values of the reduced state follow the so-called Marchenko-Pastur distribution [356, 357],
which is supported on the interval [D−1

B (1 −
√
DB/DA)

2, D−1
B (1 +

√
DB/DA)

2] and is
controlled by the parameter DB/DA = 22|B|−N . Meanwhile, the time-averaged reduced
state is equal to ÎB/DB, with all eigenvalues equal to 1/DB. When |B| = N/2, the second
moment of the Marchenko-Pastur distribution is

∑
j λ

2
j ≈ 2/DB, while the flat spectral

distribution has second moment 1/DB, a clear disagreement. This feature is not particular
to our results, and instead reflects the conditions under which the time-dependent reduced
density matrix may be approximated by a time-independent thermal state. Thus, the size
of the bath should be sufficiently small; specifically, |B| should be a constant amount less
from half the system size N/2.
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In Fig. 7.13, we confirm some of our predictions. In Fig. 7.13ABC we plot the PoP of a state
time-evolved under the MFIM [Eq. (7.5)], with a total system size of N = 18 qubits, and a
bath size of NB = 4 qubits. We tune the effective temperature by rotating the initial state

|Ψ0⟩ =
[
exp(iθŜx)|0⟩

]⊗N
. At infinite temperature (A, θ = 0), the PoP is well described by

the Erlang distribution. Tuning through finite temperature (BC, θ = −0.6,−1.2), the PoP
is instead well described by the hypoexponential distribution [Eq. (7.62)]. Measuring in
the energy-revealing {xB} basis (D), the PoP shows small deviations from the Eq. (7.62).
To illustrate the ubiquity of our prediction, we illustrate this with a finite temperature state
evolved under the Bose-Hubbard model. In the presence of number conservation ⟨N̂⟩ =
Ntot., we must form the projected ensemble by restricting to measurement outcomes with
fixed number N̂A, and forming the according symmetry resolved density matrix ρ̂B(N̂A) ∝∑

{zA|n(zA)=N̂A}(⟨zA| ⊗ ÎB)|Ψ(t)⟩⟨Ψ(t)|(|zA⟩ ⊗ ÎB), as detailed in Refs. [70, 71].

7.5.4 Extrinsic baths

We now consider the appearance of the hypoexponential under coupling to an extrinsic bath,
i.e. with weights controlled by a given noise model.

Local errors
First, we consider the case of local errors. As illustrated in Fig. 7.5, our model for the PoP
obtained from local errors with k locations is that it is the convolution of one exponential
variable (speckle pattern) with large weight F (the “ideal trajectory”), and k exponential
variables with small weights (1− F )/k. In this case, the PDF is given by

PLocal Err.(x;F, k) = PExp(x/F )⊛ PErlang(x/(1− F ); k) (7.63)

=

(
k

1− F−1 + k

)k
γ

(
k,
F − 1 + kF

F (1− F )
x

)
e−x/F

F (k − 1)!
, (7.64)

where γ(k, x) ≡
∫ x
0
zk−1e−zdz is the lower incomplete Gamma function. In Fig. 7.14ab

we plot these PDFs for various values of k and F .

This model holds for any type of local error. In Fig. 7.5b, we illustrate the PoP with
amplitude damping errors, i.e. spontaneous decay of the |1⟩ state to |0⟩, while in Fig. 7.14
we show it for local Pauli noise. In practice, however, the various assumptions made for the
local noise channel may not hold, for instance because errors are not necessarily completely
orthogonal and because multiple errors can occur in a single shot of the experiment. These
largely result in a value of k which is not simply the spacetime volume of the circuit. To
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Figure 7.14: Probability-of-probabilities (PoP) for local noise. a. PoP distributions for
local noise (see Eq. (7.63)) with F = 0.5 and k varying from 2 to 10000 logarithmically. As
k increases, the PoP distribution converges to the prediction for global depolarizing noise
(see Eq. (7.66)) at the same fidelity, consistent with Ref. [348]. b. PoP distribution for
local noise with k = 50 and F varying from 1 to 0.1. c. PoP distribution for either local
Pauli-X errors or Pauli-Z errors, both of which are roughly equally well described by the
same effective k value. d. Fitted value of k versus value predicted from Eq. (7.65) for
noisy simulation with either Pauli-X or Pauli-Z errors evaluated for varying circuit depths.
Inset: The fitted value agrees best with the predicted value in the low fidelity regime, as
quantified by the relative error between keff and kfit. In c-e, results are aggregated over 10
random circuit instances, blue points represent a local Pauli-X error model, and red points
represent a local Pauli-Z error model.

address this, in practice we use an effective predicted k value defined as

keff =
(1− F )2

κ2 − F 2
, (7.65)

where κ2 is the second cumulant of the experimentally measured PoP distribution (as



206

discussed in greater detail in Section 7.7, see Table 7.1). Using Eq. (7.65) we can predict
the k value for a given measured PoP distribution at a given fidelity. In Fig. 7.14c we
show the good agreement between Eq. (7.63) and numerical simulations using an effective
k found from Eq. (7.65). Further, in Fig. 7.14d we compare keff from Eq. (7.65) against k
value of best fit for various error rates and evolution depths, and generally find the two are
in good agreement, particularly in the low fidelity regime (Fig. 7.14d, inset).

We stress that this model is limited. As an example, it stipulates that the weights of the
non-ideal trajectories be equal. This is not true if more than one error can occur during
the dynamics: the probability of the trajectory decreases exponentially with the number of
errors, while the number of such distinct trajectories increases exponentially. Furthermore,
even the weights of single-error events may not be uniform. For example, the probability of
amplitude damping errors depend on the magnetization of the state at each layer, which may
change during the dynamics. These effects may lead to small deviations between our model
and PoPs generated by realistic many-body dynamics, which may affect high-precision tasks
such as determining the fraction of coherent-to-local error in Fig. 7.6bc. However, such
limitations may be solved with straightforward model-level refinements (such as explicitly
adjusting weights to account for multiple error occurrences).

Extrinsic bath: Global depolarizing noise
Global depolarizing noise is a commonly used toy model for the effects of noise on quantum
states. This channel maps states ρ̂ 7→ F ρ̂ + (1 − F )Î/D, where Î is the identity and F
is a parameter which is approximately the fidelity of the channel. Under this channel,
the bitstring distribution p(z) 7→ Fp(z) + (1 − F )/D and hence the PoP distribution of
x = Dp(z) is shifted to the right and rescaled by 1/F , with PDF

PGD(x;F ) =

0 for 0 ≤ x < 1− F

F−1 exp
(
−x−(1−F )

F

)
for x ≥ 1− F

(7.66)

As seen in Fig. 7.14, PLocal Err.(x;F, k)→ PGD(x;F ) as k →∞, consistent with Ref. [348],
which states that the output distribution of random circuit sampling under local noise
converges to that of “global white noise” when scaling the circuit spacetime volume.

Extrinsic bath: Gaussian coherent errors
Next, we discuss the case of Gaussian coherent errors, which describes shot-to-shot variation
of a global parameter.

For a circuit model, we model this error by systematically under- or over-rotating ev-
ery two-qubit gate by a multiplicative, Gaussian-distributed factor. For Hamiltonian
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evolution, a global Hamiltonian parameter, such as the Rabi frequency Ω, is taken to
be a Gaussian random variable. Such a noise channel is linked to shot-to-shot param-
eter fluctuations observed in Hamiltonian evolution [31], and certain models of con-
trol errors. As found in Ref. [31], evolution for a time t under these parameter val-
ues produces a continuous family of pure states |Ψ(t,Ω)⟩ which mutually overlap as
|⟨Ψ(t,Ω)|Ψ(t,Ω′)⟩|2 ∝ exp(−N(Ω − Ω′)2t2/2σ2

Ω). When Ω is normally distributed,
i.e. with P (Ω) = exp(−(Ω − Ω0)

2/(2σ′2))/
√
2πσ′2 for some σ′, we obtain a normally-

distributed mixture ρ̂(t) =
∫
dΩP (Ω)|Ψ(t,Ω)⟩⟨Ψ(t,Ω)|.

Our model for the PoP converts this continuous mixture of states into a discrete sum of
probability distributions, with discrete weights ωi. It is natural to let the weights follow a
Gaussian profile when σF is sufficiently large (see below for deviations)

ωcoh.
i =

1

Z(σF )
exp

[
− i2

2σ2
F

]
, (7.67)

where i ranges from −∞ to ∞. These weights are parameterized by the width σF , and
Z(σF ) ≡

∑∞
i=−∞ exp[−i2/(2σ2

F )] is a normalization constant. This sum is equal to the
Jacobi theta function [358] θ3(exp[−1/(2σ2

F )]), which is well approximated by
√
2πσF

when σF ≫ 1, but approaches 1 as σF → 0. Incidentally, since ω0 = 1/Z(σF ) has largest
height, it corresponds to the fidelity F , i.e. the maximum overlap ⟨Ψ|ρ̂|Ψ⟩ for any pure state
|Ψ⟩. Therefore, we may parameterize the PoP in terms of F instead, by solving for σF such
that θ3(exp[−1/(2σ2

F )]) = F−1.

A large fidelity corresponds to a small σ, and our model of discrete Gaussian weights shows
quantitative differences in this regime. As an illustration, the second moment of the PoP can
be computed analytically, and differs from the Gaussian hypoexponential model at small σ
(Section 7.7 and Fig. 7.18C). This may be addressed by a non-Gaussian profile of weights
in the narrow limit.

As a technical point, the weights ωcoh.
−i = ωcoh.

i are degenerate and therefore we must modify
Eq. (7.60) to

PGauss. Coh.(x; {ωi}) = PExp(x/ω0)⊛

(
∞
⊛
i=1

PErlang (x/ωi; 2)

)
(7.68)

= ω−1
0 e−x/ω0

∏
j>0

ω2
0

(ω0 − ωj)2
(7.69)

+
∞∑
i=1

ω−2
i

(
x−

∑
j∈Z
j ̸=i

ωiωj
ωi − ωj

)
e−x/ωi

ωi
ωi − ω0

∏
j∈Z
j ̸=i

ω0

ω0 − ωj
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Extrinsic bath: Mixture of local and global coherent errors
Finally, we turn to modeling the effects of both local and global coherent errors simulta-
neously. We take the errors to be independent of each other, and the weights are simply
products of the local and global weights ωij = ωloc.

i × ωcoh.
j . We further notice that in

numerical simulations of such a mixture of errors, the fidelity factorizes into the fideli-
ties arising from incoherent and coherent errors (Fig. 7.18A), i.e. F = Fcoh. × Floc., i.e.
log(Fcoh.) + log(Floc.) = log(F ). This allows us to define the “fraction” of coherent errors
as f = log(Fcoh.)/ log(F ). We note that such a factorization is also approximately apparent
for our ab initio Rydberg error model [31].

For completeness, we outline our algorithm used in Fig. 7.6bc to generate the PoP arising
from a mixture of local and global errors based on our model, with a finite number of
samples. The effects of a finite number of samples are detailed on a later section. We use
this algorithm to generate the local and global coherent finite-sample PoPs in Fig. 7.6a,
as well as to provide a reference distribution to calculate the χ2−distances in Fig. 7.6bc.
Note that in the case of RUCs, the average probability is pavg(z) = 1/D, and the rescaled
empirical probabilities will only take finite values jD/M for positive integer j.

7.5.5 Other noise sources

We briefly remark that our analysis here is by no means complete. While we have analyzed
commonly considered noise sources, other sources such as qubit leakage and readout error
will yield different PoP distributions. For example, readout error may be treated in a similar
fashion to local error. However, here there are only N possible error locations, and as such
the parameter k may not be taken to be large. This is particularly notable for our moment
analysis in Eq. (7.91). We leave a detailed study of this, and other noise models, to future
work. However, we expect that in general accounting for novel noise models will simply
amount to judicious corresponding choice of the hypoexponential weight vector.

7.6 EFFECTS OF FINITE SAMPLING

It is important to understand the effect of a finite number of experimental samples on
the probability-of-probabilities discussed in this work. Finite sampling must be carefully
treated since its effects on the PoP can be drastic: the simplest estimation of the PoP does
not only introduce statistical noise, but also systematic bias. Here we first discuss how
experimental and model PoPs are compared, then describe how the model PoP is affected
by finite sampling by effectively smearing out the distribution. Finally, we suggest a method
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Algorithm 1: Numerical algorithm to generate model PoP under both local and global
coherent noise
Data: Fidelity F , fraction f , number of samples M , Hilbert-space dimension D,

number of trajectories k, averaged probabilities pavg(z), and bin width ∆p̃
Result: Empirical PoP n⃗
Floc. ← F f ;
Fcoh. ← F 1−f ;
σF ← Solution of θ3(exp[−1/(2σ2

F )]) = F−1
coh.;

n(σF )← Fcoh.;
p(z)← 0;
for j in {−⌈5σF ⌉,−⌈5σF ⌉+ 1, . . . , ⌈5σF ⌉}; /* Infinite sum truncated at
±⌈5σF ⌉ */
do
pRand(z)← Dirichlet random distribution;
p(z)← p(z) + Finc.n(σF ) exp[−j2/(2σ2

F )]pRand(z);
for n in {1, 2, . . . , k} do

pRand(z)← Dirichlet random distribution;
p(z)← p(z) + (1−Finc.)

k
n(σF ) exp[−j2/(2σ2

F )]pRand(z);
end

end
p(z)← p(z)× pavg(z)/∥p(z)× pavg(z)∥1 ; /* Multiply mixture of Dirichlet
random distributions by pavg and normalize */
ntrial ← 100;
n⃗← 0⃗ ; /* Initialize mean for finite sample PoP */
for j in {1, 2, . . . , ntrial} do
{z1, . . . , zM} ←M samples from p(z);
Nz ← #(zi = z);
n⃗← n⃗+ Hist({ Nz

Mpavg(z)
}; ∆p̃)/ntrial ; /* Form histogram of rescaled

empirical frequencies Nz/(Mpavg(z)), with bin width ∆p̃, add to
mean vector n⃗. Each entry is the expected number of
bitstrings with empirical frequency in bin. */

end
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to potentially invert this finite sampling effect. In the next section we show that low-order
moments of the PoPs can be estimated in an unbiased way which is robust to a finite number
of samples.

7.6.1 Comparing experiment and finite-sampled model PoP

As shown in Fig. 7.6, we compare the experimental empirical PoP against PoPs obtained
from analytical models, accounting for the finite sampling of the experiment. Specifically,
we accrue roughly 32000 blockade-satisfying [36] bitstrings from the experimental evolu-
tion, which is m ≈ 20.6× the Hilbert-space dimension of D = 1597, and compare against
analytical PoPs which are modified to account for this degree of finite sampling (described
below). For our ab initio error model, we perform the full quantum simulation, then sample
an equivalent number of bitstrings from the resultant state, then repeat this sampling many
times to find the mean finite-sampling prediction.

For the analytical noise models, no direct quantum simulation is necessary. We first take the
analytical model PoP, and sample a given normalized probability vector from it. We then
sample this probability vector as many times as the experiment was sampled and reconstruct
an empirical model PoP. We repeat this procedure many times, and take the average over
iterations to define the numerically sampled model PoP. We emphasize that in doing so,
no actual quantum simulation was needed, simply repeated resampling. The results of this
resampling are in excellent agreement with analytical predictions where available (discussed
below), as in Fig. 7.16.

To quantitatively compare experiment and model PoPs (as in Fig. 7.6b), we use the sym-
metric, standardized χ2-distance (CSD) defined as

χ2(x⃗, y⃗) =
1

B

B∑
i

(xi − yi)2

(xi + yi)/2
, (7.70)

where B is the number of bins in the PoP, xi is a bin drawn from experiment, and yi is a bin
drawn from the model distribution. We calculate the CSD for each iteration of the model
PoP resampling, and then define the mean CSD and its error bar as the mean and standard
deviation over all such iterations.

For our comparison between the model PoPs and RUC numerics in Fig. 7.6c, we again
employ the CSD as our distance, and compare our noisy RUC simulations against model
PoPs. For each point in Fig. 7.6, we average over 100 RUC circuit realizations. We show
additional results in Fig. 7.15, where we see the estimation correlation improves with greater
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Figure 7.15: Noise learning improves with greater depth. We perform RUC numerics
with varying fraction of global coherent error to local incoherent error, as in Fig. 7.6c, with
parameters chosen such that the final fidelity is 0.2 after either depth 24 (left) or depth 48.
For shorter depth circuits, the estimator correlation becomes worse, which we believe is
due to a) limited scrambling, and b) not accounting for higher-order terms in the analytic
noise channels (i.e. non-dilute effects of the local error channel). We also show the results
for either infinite or finite sampling, which are horizontally offset from each other to better
distinguish, which does not seem to have a dramatic effect on the estimation correlation.

circuit depth at an equal fidelity, which we attribute to a) limited scrambling in shallower
circuits and b) not-accounting for higher-order terms in the analytic noise channels; we
note that the second of these effects is solvable with model-level refinements, discussed in
Secs. 7.5.4 and 7.5.4. We further find that finite sampling does not introduce significant
bias in the estimator correlation, only increasing its statistical fluctuations.

In the following subsections, we describe an analytic description of finite sampling for the
PoP distribution, and potential ways to undo these effects.

7.6.2 Multinomial distribution and Poisson sampling

Taking M i.i.d. samples from a probability distribution p(z) yields a number nz of occur-
rences of each bitstring z. The vector n⃗ ≡ (nz1 , . . . , nzD) of such numbers is a random
variable following the multinomial distribution n⃗ ∼ Multinomial(M, p(z)) with PDF

P (n⃗;M, p(z)) =
M !

nz1 ! · · ·nzD !
p(z1)

nz1 · · · p(zD)nzD , (7.71)

where we have indexed the bitstrings from 1 to D. This is known i.i.d. sampling [359].

While Eq. (7.71) is an exact statistical description of the outcome of sampling, it is analyt-
ically easier to use the Poisson sampling model, which assumes that each number nz is an
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independent Poisson random variable with mean Mp(z), i.e. nz ∼ Poi(µ =Mp(z)) [359].
Since each number variable is independent, the constraint

∑
z nz = M is not enforced; in

the multinomial distribution, there are weak anticorrelations between number variables nz
and nz′ . The Poisson sampling approximation becomes increasingly accurate with increas-
ing sample number M and serves as a useful model for sampling [359]. Nevertheless, the
full multinomial distribution is necessary for quantitatively accurate formulae in some cases
which we will indicate.

7.6.3 Finite-sample estimate of PoP distribution

The Poisson sampling model will be essential to helping us understand the effects of finite
sampling on reconstructing the PoP distribution. Here, we wish to estimate the distribution
of probabilitiesP (p) from empirical data. The challenge lies in the fact that the probabilities
p(z) are difficult to empirically estimate — the plug-in estimate p̂(z) ≡ nz/M is a rescaled
Poisson variable and is unbiased, but may exhibit large fluctuations. For simplicity of
discussion, we first consider the case where pavg(z) = 1/D (as in RUCs) before tackling the
general case. In this case, the possible values of p̂(z) are discrete; they are integer multiples
of 1/M , and the rescaled probability p̃(z) is simply Dp(z). Accordingly, we shall express
our PoP as P (Dp), which is system-size independent.

A standard practice to empirically estimate the PoP is to simply take the histogram of
p̂(z). That is, one takes M samples from p(z), measuring each bitstring nz times. The
empirical frequencies p̂(z) = nz/M take discrete values in multiples of 1/M (when pavg(z)

is nontrivial, the empirical rescaled frequencies are continuous) and estimates the PoP by
the fraction of bitstrings with a given empirical frequency P̂ (Dp̂) ≡ Np̂/D.

For each bitstring z with probability p(z), the empirical frequency nz/M is a rescaled
Poisson random variable. For a given empirical frequency p̂, the number of bitstrings Np̂

with that empirical frequency is also a Poisson random variable with expected value

P̂ (Dp̂ = nD/M) =

∫ ∞

0

d(Dp)P (Dp)pPoi(n; pM), (7.72)

where pPoi(n; pM) ≡ e−pM(pM)n/n! is the probability of a Poisson variable taking value n
when the expected number of counts is µ = pM . This prediction determines the empirical
PoP with a finite number of samples. We emphasize that Eq. (7.72) is the expected value of
the finite-sampling PoP, and a given experimental PoP will show statistical fluctuations about
this mean. In practice, occurrences for large Dp occur with sufficiently small probability
that the number of potential values may be truncated at some level. Then, as long as
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Figure 7.16: Finite sampling effects on the probability-of-probabilities (PoP). The PoP
is nontrivially modified when reconstructed from a finite number of samples, as generally
considered in Eq. (7.72). However, not all PoPs are as susceptible as others; for instance,
(A) the Porter-Thomas distribution (Eq. (7.74)) shows relatively little sensitivity to M/D
(the ratio of number of measured bitstrings divided to the total Hilbert-space dimension),
while (B) the PoP for global depolarization noise with F = 0.5 (Eq. (7.75)) shows greater
sensitivity due to the discontinuous PDF. In both cases, we see good agreement between
numerical finite sampling and the analytical predictions Eqs. (7.74) and (7.75).

M/D is large enough, there will be enough outcomes that each PoP count is approximately
independent (i.e. the normalization constraint is negligible), acting as a Poisson random
variable with

√
Np̂ uncertainty.

When the factor pavg(z) is not constant, the empirical rescaled probability p̂/pavg(z) takes
on continuous values and we must perform histogram binning instead. Here, the expected
value of the histogram is given by

P̂ (p̂) ≈
∞∑
n=0

1

D

∑
z

∫
dp̃P (p̃)pPoi(n;Mpavg(z)p̃)δ

(
p̂− n

Mpavg(z)

)
. (7.73)

The empirical PoP P̂ (p̂) is akin to (but not exactly) a convolution of the underlying PoP
with the Poisson PDF. It solely depends on the underlying PoP, P (Dp), as well as the
ratio of samples to Hilbert-space dimension, m ≡ M/D. In the limit m → ∞, the
estimate converges to the true value P̂ (Dp̂)→ P (Dp). Finite values ofm show potentially
substantial deviations between P̂ (Dp̂) and P (Dp). In Fig. 7.16, we illustrate the effects
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of finite sampling when the underlying PoP distribution is Porter-Thomas or arising from
global depolarization errors [Eq. (7.66)]. The Porter-Thomas (PT) distribution is accurately
reconstructed with modest ratios m ≳ 1. However, the global depolarization distribution
shows a sharp discontinuity at Dp = 1− F , which is smoothed out under finite sampling.
Even large sampling ratios such as m = 30 show considerable deviations.

These two cases can be analytically solved. The PT distribution yields the following
finite-sampling PoP

P̂ (Dp̂)d(Dp̂) =
1

P>0

(
m

1 +m

)1+mDp̂

d(Dp̂) , (7.74)

where P>0 = m/(1+m) is the probability of observing a non-zero value of p̂ in Eq. (7.72),
elaborated on below. Meanwhile, the global-depolarization PoP gives:

P̂ (Dp̂)d(Dp̂) =
1

P>0

F−1eF
−1−1

(
Fm

1 + Fm

)1+mDp̂ Γ(1 +mDp̂, 1−F
F

(1 + Fm))

Γ(1 +mDp̂)
d(Dp̂),

(7.75)
where P>0 = 1− em(F−1), Γ(k, x) ≡

∫∞
x
zk−1 exp(−z)dz is the upper incomplete Gamma

function and Γ(k) is the Gamma function.

In the literature, the probability P̂ (p̂ = 0) is typically not included in the empirical PoP,
and we must renormalize the resulting histogram by the factor P−1

>0 . Indeed, if one does
include P̂ (p̂ = 0), the finite-sampling deviations from the PT distribution become more
evident, the factor P−1

>0 should not be included in Eqs. (7.74) and (7.75), and Eq. (7.72) is
true without modification.

7.6.4 Inverting finite sample effects

Proof of principle: inverting with Laguerre polynomials — Remarkably, for any value
of m, it is theoretically possible to invert Eq. (7.72) with Laguerre polynomials (making a
technical assumption that the PoP P (Dp) is square-integrable, which is true in any finite
system). We expand P (Dp) in terms of Laguerre polynomials:

P (Dp) =
∞∑
k=0

ckLk(2mDp) exp(−mDp), (7.76)

where Lk(x) is the k-th Laguerre polynomial, satisfying the orthogonality relation∫∞
0
dxe−xLn(x)Lm(x) = δnm and ck are the unknown coefficients to be determined. Using

the above orthogonality relation, ck can be extracted from the empirical PoP, P̂ (Dp̂n), with
the formula

ck = 2
k∑

n=0

(
k

n

)
(−2)nP̂ (Dp̂n) , (7.77)
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where p̂n = n/M are the discrete values of the empirical frequencies. However, this
formula is not practical. It is not robust to any amount of statistical or measurement error
since it weights the measured frequencies P̂ (Dp̂ = Dn/M) with exponentially increasing
and oscillatory weights in n. Nevertheless, this serves as a theoretical basis that the ideal
PoP can be reconstructed from any finite-sampling PoP. For a more practical procedure, we
employ a regularized least squares approach.

Inversion with regularized least squares — Our practical approach to undo the effects of
finite sampling will be based on regularized least squares. We note that this method is not
used for any data shown, and we instead present it for completeness and as a potential way
to further improve our results.

We discretize the domain of the PoP into a discrete number of histogram bins centered at
p̃j and with width ∆p̃. For concreteness, it suffices to stop at p̃ = 5. We also discretize
the finite-sampling PoP into discrete and finite histogram bins. When pavg(z) = 1/D, its
domain is naturally discrete, but this is not so for nontrivial pavg(z). Working in the former
case for simplicity, we can rewrite Eq. (7.72) as a linear equation

P̂ =MP , (7.78)

Mn,j = exp(−p̃jM)
(p̃jM)n

n!
(∆p̃) . (7.79)

When pavg(z) is nontrivial, one must perform histogram binning on both the range and the
domain, and the matrixM is instead

Mi,j ≈
1

D

∑
z

⌊M(p̂i+∆p̂/2)pavg(z)⌋∑
n=⌈M(p̂i−∆p̂/2)pavg(z)⌉

P (p̃j)pPoi(n;Mpavg(z)p̃j) . (7.80)

Our result Eq. (7.77) essentially gives an explicit result forM−1 in the Laguerre polynomial
basis. Unfortunately,M−1 is extremely ill-conditioned and cannot accommodate the shot-
noise in P̂. If one naively attempts to solve this linear equation, the solution is wildly
oscillatory and large. In order to remedy this, we simply regularize our solution and solve
the least-squares equation with a penalty term:

Pest = argminy

[(
My − P̂

)T
A
(
My − P̂

)
+ λyTBy

]
(7.81)

where we have presented this problem in its full generality and A and B are arbitrary
symmetric positive-semidefinite matrices that we can suitably choose to regularize the
regression. When A and B = Î , the first term is the well-known squared error and the
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Figure 7.17: Strategies to reverse finite-sampling effects on the PoP. We simulate the
finite-sampling effects on a global depolarization PoP, with a Hilbert-space dimension of
D = 215, and M = 20D samples. a. Regular least squares regression [Eq. (7.78)] is
numerically unstable and leads to large, unphysical solutions (note scale of values). b.
Regularized regression penalizes this divergence and gives an approximate reconstruction
(blue) of the infinite-sampling PoP (black dashed) from the finite-sampling PoP (red points).
c. The free parameter λ is chosen by plotting the regression error as a function of λ,
displaying two regimes where the solution is respectively overfitted and overdamped. We
choose λ at the transition between these regimes. Nevertheless, the reconstructed PoP is
imperfect; adding further constraints, that for instance force the PoP to be always positive,
may improve agreement, but we leave such avenues to future work.

second is the L2 norm. However, we may modify A and B to enforce other constraints,
such as smoothness of the solution. This is known as ridge, or Tikhonov, regression [360]
and has explicit solution

Pest =
(
MTAM+ λB

)−1MTAP̂ . (7.82)

As an illustration, we demonstrate this in Fig. 7.17. The parameter λ is tunable, and one
must choose and appropriate value. While it can be deduced analytically, here we present a
user-friendly and intuitive method. In Fig. 7.17c we plot the squared error ∥MPest(λ)−P̂∥22
as a function of the parameter λ. This shows two parameter regions. When λ is small,
the squared error is nearly independent of λ. In this regime, the solution is overfitted and
enforcing the constraint effectively regularizes the solution without significant effect on the
squared error. When λ is large, the squared error grows quickly with λ. In this regime,
the solution is overdamped and the constraint is too strong. We find that operating at the
midpoint between both regimes is often optimal. Despite this, its reconstructed solutions are
often imperfect, though potentially improvable through addition of additional constraints
on the regression (like forcing the PoP to be always positive). Therefore, we rely on direct
comparisons of the finite-sampling PoP, outlined below.
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7.7 CUMULANTS OF POP DISTRIBUTIONS

As established above, due to finite-sampling effects, it can be challenging to empirically
estimate the PoP. We have compared directly to finite sampled version of model PoP
predictions, and in addition we have discussed potential theoretical means of reversing the
finite sampling effect. Here, we discuss how we can also estimate properties of the PoP
to greater precision, without reconstructing the PoP distribution itself. Specifically, the
moments of the PoP can be efficiently estimated, which we may use to learn about the type
of noise present in the system. Further, the moments for different error models can have
different functional dependencies on the fidelity, F , meaning that analysing how moments
change over multiple values of fidelity may improve predictive power.

From Section 7.5, the probability distribution can be written as p̃(z) =
∑

i ωip̃i(z), where
p̃(z) ≡ p(z)/pavg(z) is the rescaled probability and p̃i(z) are independent Porter-Thomas
(i.e. Dirichlet random) distributions. Remarkably, some properties of the coefficients
{ωi} can be estimated from empirical samples from p(z), even without knowledge of
the constituents p̃i(z). Specifically, cumulants of the PoP are related to moments of {ωi}.

As above, we first discuss the case when the factors pavg are constant, before generalizing.
The k-th (raw, i.e. non-central) moment of the PoP P (Dp) is given by

mk ≡ D−1
∑
z

(Dp(z))k ≈
∫
(Dp)kP (Dp)d(Dp), (7.83)

where the approximation follows by treating each value Dp(z) as an independent sample
from the PoP P (Dp). We then consider the cumulants κk. For example, the first three
cumulants are:

κ1 = m1 (7.84)

κ2 = m2 −m2
1 (7.85)

κ3 = m3 − 3m2m1 + 2m3
1 . (7.86)

A key property of the cumulants are that they add for sums of independent random vari-
ables [353]. That is, for p̃ =

∑
i ωip̃i, κk(p̃) =

∑
i ω

k
i κk(p̃i). Since each p̃i is an independent

Porter-Thomas distribution, they have identical cumulants κk = (k − 1)!. Therefore, these
k-th cumulants of the PoP are equal to the raw k-th moment of {ωi}

κk(p)

(k − 1)!
≈
∑
i

ωki . (7.87)

As an illustration, we concretely demonstrate this with k = 2. We have

κ2(p) = D
∑
z

p(z)2 − 1 ≈
∑
i

ω2
i . (7.88)
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To see this, note that
∑

z p(z)
2 =

∑
z ωiωj

∑
ij pi(z)pj(z). Since pi(z), pj(z) are in-

dependent Porter-Thomas distributions, they are approximately orthogonal, in the sense
D
∑

z pi(z)pj(z) = 1 + δij +O(D−1/2). Using this relation, we obtain:

D
∑
z

p(z)2 = 1 +
∑
i

ω2
i +O(D−1/2) , (7.89)

where we have used the fact that
∑

i ωi = 1. Remarkably, due to this approximate orthogo-
nality, the second moment of the PoP only depends on the coefficientsωi, up to exponentially
small fluctuations.

When pavg(z) is nontrivial, we should replace Dp(z) with p̃(z) ≡ p(z)/pavg(z) and the
average over z as a weighted mean Ez[·] =

∑
z pavg(z)[·]. This modifies the moments to

mk =
∑

z p(z)
k−1/pavg(z)

k−1.

7.7.1 Relation of hypoexponential moments to mixed state moments

The moments give key information about the mixed state. In the context of closed system
dynamics, we found that the moments of the weight vector satisfy∑

i

ωki ≈ tr(ρ̂kA), (7.90)

as long as the bath B is sufficiently small.

We conjecture that the above equation also holds in the context of open system dynamics,
as long as the fidelity is sufficiently high. Indeed, Eq. (7.90) is true for Haar-random
measurement bases {|z⟩}, up to subleading O(D−1/2) corrections. If the eigenstates of ρ̂
look “random” with respect to the computational basis |z⟩, we get the desired equivalence.

The moments
∑

i ω
k
i behave differently under different noise channels. In Table 7.1, we

summarize the low-order cumulants (κ2 and κ3) of the PoP predicted for various noise
channels and their dependence on the fidelity F . By independently measuring the fidelity F
(using, for example, cross-entropy benchmarking [30, 31, 162]), and the cumulants κk(p),
one would be able to discriminate between such noise models.

Consider first a local error channel, we have {ωloc.
i } ≈ {F, (1−F )/k, (1−F )/k, . . . , (1−

F )/k}. Therefore, its second moments∑
i

(
ωloc.
i

)2
= F 2 +

(1− F )2

k

k→∞
≈ F 2. (7.91)

This relationship generalizes to higher moments: the largest weight F dominates, and we
have

∑
i

(
ωloc.
i

)k ≈ F k.
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Noise channel κ2 κ3

Global depolarization F 2 2F 3

Local incoherent F 2 + (1− F )2/k 2
(
F 3 + (1− F )3/k2

)
Global Gaussian coherent F/

√
2 2F 2/

√
3

Table 7.1: Low order cumulants of PoPs for various selected noise channels.

We next consider global coherent errors. Here, the weights follow a Gaussian distribution

ωcoh.
i = exp(−i2/(2σ2

F ))/Z(σF ) (7.92)

with a width σF that depends on the fidelity F . When σF ≫ 1, the normalization factor is
well-approximated by Z(σF ) ≈

√
2πσ2

F . Performing the sum, we have∑
i

(
ωcoh.
i

)2 ≈ 1

4πσ2
F

=
F√
2
. (7.93)

Note the different scaling with F . In Fig. 7.18b, we verify these scaling behaviors for our
two types of errors in an RUC simulation.

Note that the above prediction breaks down when F ≈ 1. Using our Gaussian hypo-
exponential model above, the discrete Gaussian sums can be explicitly evaluated, giving∑

i

(
ωcoh.
i

)2
= θ3(exp[−1/σ2

F ])/θ3(exp[−1/(2σ2
F )])

2, where θ3 is a Jacobi theta function.
Meanwhile, using methods developed in Ref. [31], one can perform an exact calculation of
the state purity in this setting, which gives tr(ρ̂2) = (2/F 2 − 1)−1/2. As seen in Fig. 7.18c,
these expressions show deviations when F ≈ 1, with numerical data from RUC simulations
more consistent with the latter expression.

In the presence of mixed noise, we further observe that since the weights factorize as
ωmixed
ij = ωloc.

i ωcoh.
j , so do the cumulants, in particular κ2 ≈ F 2

loc.Fcoh./
√
2. Coupled with

knowledge of the fidelity F = Floc.Fcoh., one could extract the fidelities of each noise type.
In Fig. 7.18B, we show proof-of-principle numerical evidence for this behaviour in a RUC.

7.7.2 From weights to Kraus operators

In addition to their relative ease of measurement, the moments of the hypoexponential weight
vector, ω⃗, can also be theoretically analyzed and related to quantities that characterize the
strength of the noise channel. Given our analysis, it is natural to ask how the weight vector ω⃗
reflects the underlying quantum channel. We find that the properties of ω⃗ are related to the
strength of the channel, but there are additional terms that we expect to be subleading. We
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Figure 7.18: RUC simulations of mixed local and coherent errors. a. We first verify that
errors factorize over a large range of fidelities. Here, a single instance of a random unitary
circuit is presented, at a fixed proportion of local error and coherent error. As a function
of circuit depth, its fidelity F decreases. We simulate the same circuit in the presence of
only local or coherent errors at the same rate, obtaining the “local” and “coherent” fidelities
Floc. and Fcoh.. The overall fidelity is well approximated by F ≈ Floc.Fcoh.. This makes the
concept of an error source “fraction” meaningful. b. Plots of the purity, or second moment,
D
∑

z p(z)
2 for noisy RUC dynamics in the presence of global coherent or local noise, or

a mixture of the two noise sources (Table 7.1). The purity due to global coherent noise
asymptotically behaves as Fcoh./

√
2, while the purity due to local noise behaves as F 2

loc..
In the presence of both types of noise, the purity behaves as F 2

loc.Fcoh./
√
2 (blue dashed

line), enabling efficient estimation of the noise content from the second moment. Our
mixed error simulation is a depth-96 RUC with 12 qubits, using the same error rates as in
Fig. 7.6c (precise depth marked with a red star), while our local and global coherent errors
are simulations of RUCs at several error rates. Data points displayed are at depths of 24
and above. c. Purity from global coherent noise at high fidelities. Here, we see deviations
from the asymptotic behaviour F/

√
2 (red dashed). In particular, it takes a value of 1 at

F = 1. At intermediate values 0.5 < F < 0.9, the purity deviates from the prediction from
our Gaussian-hypoexponential model (blue dashed), instead agreeing with (2/F 2 − 1)−1/2

(blue solid line), an expression obtained from a calculation of the state purity. This indicates
that our model for the hypoexponential distribution [Eq. (7.67)] should be refined in this
regime. In addition, to illustrate the importance of circuit depth, for the open markers we
indicate the purity at depths 24 and below. These deviate from our prediction due to a lack
of anticoncentration in shallow circuits.
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denote the channel Φ, such that the output state is ρ̂ ≡ Φ(|Ψ0⟩⟨Ψ0|) ≡
∑

iKi|Ψ0⟩⟨Ψ0|K†
i ,

where Ki are Kraus operators that describe the channel, satisfying
∑

iK
†
iKi = Î . The set

of {Ki} can be uniquely chosen to be orthogonal [361], in the sense that tr(KiK
†
j ) = Dqiδij ,

such that
∑

i qi = 1.

We first consider the second moment
∑

i ω
2
i , which, using Eq. (7.90), approximates the

purity tr(Φ(|Ψ0⟩⟨Ψ0|)2). We approximate this purity with the Haar-averaged value:

Eψ∼Haar[tr(Φ(|ψ⟩⟨ψ|)2)] =

∑
i,j

(
tr(KiK

†
j )tr(KjK

†
i ) + tr(KiK

†
iKjK

†
j )
)

D(D + 1)
(7.94)

=
D

D + 1

(∑
i

q2i + tr
[
Φ
(
Î/D

)2 ])
, (7.95)

where we have used the orthogonality conditions above. The first term is the “purity” of the
noise channel strengths pi, while the second term is related to whether the channel is unital
or not [362]. If the channel is unital, then Φ(Î/D) = Î/D so the second term has size 1/D,
which we expect to be exponentially smaller than the purity of the channel. Meanwhile,
if the channel is non-unital – in an extreme case consider the amplitude damping channel
such that Φ(Î/D) = |0⟩⟨0| – then the second term has size 1, which is larger than

∑
i q

2
i . In

other words, the purity of the state has two contributions, given by the decoherence strength
of the channel and the purity of the steady state Φ(Î/D). Assuming that Φ(Î/D) is unital
or close to maximally mixed, however, we conclude that the purity of a typical input state
reflects how noisy the channel is.

Higher moments give additional terms which we may not simplify, such as∑
hij tr(KhK

†
iKj) + h.c. for k = 3. However, we may assume that such quantities are

exponentially suppressed, since the orthogonal operators Ki are obtained by the (reshaped)
eigenvectors of the Choi matrix which describes the channel [361]. If these eigenvectors
have sufficiently complicated bipartite structure, we expect the contributions from such
terms to be exponentially suppressed. We may repeatedly apply this argument to all
orders k, and find that the (expected) dominant contribution is

∑
i q
k
i . This also bounds

the typicality error, that is the difference between the moment tr(Φ(|Ψ⟩⟨Ψ|)k) of a single,
typical random state |Ψ⟩ and the ensemble average. Indeed, we also expect our conclusion
to hold as long as the initial state |Ψ0⟩ has sufficiently small overlap with the eigenstates
{|E⟩}. Therefore, we have

κk(p)

(k − 1)!
≈
∑
i

ωki ≈ tr(Φ(|Ψ0⟩⟨Ψ0|)k) ≈
∑
i

qki , (7.96)

which therefore allows us to conclude that ωi ≈ qi, as long as the number of non-zero
weights is less than the Hilbert-space dimension, i.e. #{ωi} ≪ D.
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Figure 7.19: Estimating the Rényi-2 entropy from bitstring probabilities. a. Rényi-2
entropy for our experimental Rydberg array quantum simulator as a function of subsystem
size following quench evolution. Proxy values are obtained from an unbiased estimator
based on bitstring measurements, see Eq. (7.97). b. The estimator matches the growth
and saturation of the true entropy as a function of time, with some underestimation at early
times where bitstring probabilities are not sufficiently anticoncentrated. However, we note
this representative data is slightly cherry-picked, and similarly good agreement is not seen
across all times and system sizes due to effects of decoherence, limited scrambling, and
arguments related to those made in Section 7.5 that the PoP for finite temperature systems
is not always a hypoexponential distribution.

7.7.3 Entropy estimation from PoP moments

Our description of the PoP distribution for closed system dynamics allows a means to
estimate the Rényi entanglement entropy between systemsA andB. It will be convenient to
consider the variance of probabilities of the bath bitstrings zB, instead of the system bitstrings
zA. This variance estimates the Rényi-2 entropy of system A, S(2)[ρA] ≡ − log2 tr(ρ2A),
through the following proxy:

S(2)
proxy ≡ − log2

[∑
zB

pd(zB)
p(zB)

2

pd(zB)2
− 1

]
≈ S(2)[ρA] , (7.97)

whenever NB > NA and the measurement basis on the bath is sufficiently “unbiased”
(discussed in Section 7.5). For globally pure states, S(2)[ρA] = S(2)[ρB]. However, the
amount of entanglement is dictated by the size of the smaller system A, and hence we
denote the entropy as S(2)[ρA]. Experimental results for our Rydberg atom array quantum
simulator are shown as a function of subsystem size and as a function of time for a half-chain
cut in Fig. 7.19, though we note this representative dataset is slightly cherry-picked, and not
all system sizes and evolution times show as good a match due to decoherence as well as
more fundamental arguments described in Section 7.5.
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7.7.4 Estimator of moments

Remarkably, the moments can be efficiently estimated [363] with the following estimator:

m̂k = Dk−1
∑
z

(nz)
k

Mk
≈ Dk−1

∑
z

p(z)k, (7.98)

where nk ≡ n(n − 1) · · · (n − k) is the k-th falling power of n and nz is the number of
occurrences of the bitstring z from M measurements. This was shown to be an unbiased
estimator of mk, with optimal sample complexity scaling. Specifically, Ref. [363] showed
that the k-th Rényi entropy (obtained from mk) can be estimated to additive error δ with
M = Θ(D1−1/k/δ2) samples, where D is the Hilbert-space dimension (more generally the
number of possible measurement outcomes). In the same work, they showed that this scaling
is optimal. Further, note that in the original reference [363], the denominator of Eq. (7.98)
isMk instead ofMk. The former is the unbiased estimator in the Poisson sampling setting,
while the latter is the unbiased estimator under realistic sampling. When pavg(z) is nontrivial,
the moment estimator is m̂k =

∑
z(nz)

k/(Mkpavg(z)
k−1) ≈

∑
z p(z)

k−1/pavg(z)
k−1.

We are interested in Eq. (7.98) because the low moments of the PoP can be estimated
with far fewer samples (e.g. M = O(

√
D) for the second moment) than the entire PoP,

which requires M = O(D). It is illustrative to consider the simplest nontrivial case, the
second moment m2. Our estimator m̂2 = D

∑
z nz(nz − 1)/(M(M − 1)) essentially

counts the number of times a bitstring z is seen more than once. Accordingly, this estimates
the collision probability D

∑
z p(z)

2, here rescaled to be typically an O(1) quantity. The
sample complexity is almost optimal: estimating the second moment to multiplicative
accuracy δ only requires

√
D/δ2 measurements, a manifestation of the birthday paradox.

For our purposes, it is also useful to estimate its sample requirements for additive accuracy.
Using properties of the multinomial distribution, we find that the expected uncertainty in
the second moment m2 is

(∆m̂2)
2 =

[
2M2 −M

M4
Dm2 + 4

M3

M4
m3 − 2

M2(2M − 3)

M4
m2

]
(7.99)

≈ 2Dm2

M2
+

4m3

M
− 4m2

2

M
, (7.100)

where last term arises from anticorrelations between nz, nz′ which are not present in the
Poisson sampling model. Since m2 and m3 are O(1) quantities, this result indicates that
for an additive error |m̂2| = δ, the sample complexity behaves as O(max(

√
D/δ, 1/δ2)),

where the crossover between the two scaling behaviors occurs at M ≈ D.

To recover the result of Ref. [363] for the required number of samples to achieve a mul-
tiplicative error δ, namely Θ(

√
D/δ2), we focus on the second term of Eq. (7.100), then
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use the inequalities m3 = D2
∑

z p(z)
3 ≤ D2 (

∑
z p(z)

2)
3/2

=
√
Dm

3/2
2 , and m2 ≥ 1 to

give the desired result that (∆m̂2)
2 ∼ m3/M ≤

√
Dm2

2/M . The former inequality comes
from the relation between Lp norms, Lp ≤ Lq for p ≥ q, relating m2 and m3 to the L2

and L3 norms of the probability vector p(z), while the latter inequality is a straightforward
application of the Cauchy-Schwarz inequality. Finally, note that this result is only valid
in the asymptotic regime where the second term of Eq. (7.100) dominates the first term.
This is valid at a crossover value of M ≈ D, before which the sample complexity scales as
M ∼

√
D/δ instead.
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Coda

We have uncovered emergent randomness arising both from partial measurement (projected
ensembles) of an interacting many-body system, and from time-evolution (temporal en-
sembles) of that same system. Using features of the projected ensemble, we have shown
a widely applicable fidelity estimation scheme which works at shorter evolution times and
with reduced experimental complexity compared to existing approaches, and have demon-
strated applications in quantum device comparison, Hamiltonian parameter estimation,
and benchmarking the fidelity of preparing interesting quantum states. The concept of
emergent randomness (projected ensembles) could provide a new framework for quantum
thermalization, chaos, and complexity growth [364], which has indeed jump-started the now
thriving field study of deep thermalization [365–373]. Such developments could enable a
more flexible and standardized way of performing quantum fidelity estimation in a wide
variety of quantum hardware, including trapped ions [78], superconducting qubits [276],
photonic systems [374], and cold atoms and molecules in optical lattices [65], as we have
subsequently theoretically demonstrated [30] with experimental showcases [31, 375].

Then, we have studied the question of a quantum system interacting with its environment
through the lens of Hilbert-space ergodicity [71] both for the case of interactions between
complementary subsystems, and for noisy interactions with an external environment.

In the case of closed system thermalization at infinite temperature we have analytically,
experimentally, and numerically found the PoP for bitstring measurements is universally the
Erlang distribution. Accordingly, there is a smooth quantum-to-classical transition with bath
size from large, Porter-Thomas fluctuations to small, Gaussian fluctuations, highlighting the
transition between quantum mechanical and statistical mechanical descriptions of physical
systems as the number of bath configurations grow. Further, we considered systems at
finite temperatures with an effective bath dimension, and showed how arbitrary moments
of the PoP may be calculated. We do not yet have a closed form for the PoP at arbitrary
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temperatures, but in the limit of small bath sizes we associate the finite temperature PoP
with a hypoexponential distribution, with weights given by the eigenvalues of the reduced
density matrix (i.e. the bipartitioned system’s Schmidt coefficients).

For the case of closed system dynamics, our hypoexponential model allows us to categorize
different noise models via the weight vector and produce an analytical prediction for the
PoP. This enables experimentally-accessible discrimination between candidate noise mod-
els purely through their effect on the many-body bitstring PoP, without expensive numerical
simulations of quantum dynamics. We have demonstrated how bespoke noise models can
be found through a quantitative comparison between model predictions and experimental
statistics, as has been explored in the context of random circuit sampling [376–378]. Our
technique is computationally inexpensive and applies equally to analog quantum simulators
and digital quantum processors. Additional quantitative tests, such as comparing the low-
order moments of the PoP distributions, may enhance discrimination power while being
more sample-efficient (SM). Fruitful questions remain, such as directly learning the hypo-
exponential weights via entanglement spectroscopy methods [379, 380]. Further, learning
the weights of heavy-tailed and correlated noise distributions may guide improvements of
quantum error correction schemes [342–344].

Ultimately, our results probe new types of universal emergent many-body behavior visible
to high precision quantum systems. In turn, the universality we uncover has applications
for both improving quantum experiments and studying fundamental quantum dynamics.
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The beyond-classically-exact regime

227



228

Prelude

Quantum systems have entered a competitive regime where classical computers must make
approximations to represent highly entangled quantum states [50, 162]. However, in this
beyond-classically-exact regime, fidelity comparisons between quantum and classical sys-
tems have so far been limited to digital quantum devices [162, 316, 381, 382], and it remains
unsolved how to estimate the actual entanglement content of experiments [72]. Here we per-
form fidelity benchmarking and mixed-state entanglement estimation with a 60-atom analog
Rydberg quantum simulator, reaching a high entanglement entropy regime where exact clas-
sical simulation becomes impractical. Our benchmarking protocol involves extrapolation
from comparisons against an approximate classical algorithm, introduced here, with vary-
ing entanglement limits. We then develop and demonstrate an estimator of the experimental
mixed-state entanglement [72], finding our experiment is competitive with state-of-the-art
digital quantum devices performing random circuit evolution [162, 316, 381, 382]. Finally,
we compare the experimental fidelity against that achieved by various approximate classical
algorithms, and find that only the algorithm we introduce is able to keep pace with the
experiment on the classical hardware we employ. Our results enable a new paradigm for
evaluating the ability of both analog and digital quantum devices to generate entanglement
in the beyond-classically-exact regime, and highlight the evolving divide between quantum
and classical systems.

Importantly, in general classical computers struggle to exactly represent highly entangled
states [383–386], in the sense of entanglement entropy. This has raised interest in the
potential of quantum devices to efficiently solve certain classically-hard problems [11, 387],
but modern noisy-intermediate-scale-quantum [50, 388] (NISQ) devices are limited by
experimental errors (Fig. 7.20a). This makes it a key goal to benchmark NISQ devices in the
highly entangled regime where exact classical simulation becomes infeasible (Fig. 7.20b);
for example, state-of-the-art classical simulation of Hamiltonian time evolution generating
highly entangled states with exact global fidelity is currently limited to 38 qubits [389].
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Figure 7.20: Entanglement in quantum and classical systems. a. In quantum systems,
entanglement spreads between neighboring particles before saturating at an extensive level.
However, entanglement growth is hampered by experimental errors which reduce the fi-
delity, limiting entanglement build-up. b. On the other hand, classical computers employ
approximate simulation algorithms which often can only capture a limited degree of en-
tanglement to avoid an exponential increase in cost, meaning they cannot exactly simulate
dynamics at large system sizes and long evolution times. c. Here we compare quantum
devices and classical algorithms in their ability to prepare highly entangled states using a
Rydberg quantum simulator (d) with up to 60 atoms in a one-dimensional array (shown as
a fluorescence image).

One such approach is to study the fidelity of preparing a highly entangled target state
of interest [162], with several efficient fidelity estimators [29, 30, 276, 277, 390] having
been introduced in recent years. However, in the beyond-classically-exact regime, these
protocols have only been applied to digital quantum devices, with no such demonstrations
on analog quantum simulators [391], i.e. quantum devices tailored to efficiently encode
select problems of interest [36, 59–65].

In this work, we perform fidelity estimation with an analog quantum simulator targeting
highly entangled states which are impractical to represent exactly on a classical computer.
Our Rydberg quantum simulator [29, 36] has demonstrated [26] two-qubit entanglement
fidelities of ∼0.999, spurring this study with up to 60 atoms [33] in a one-dimensional
array (Fig. 7.20c). We stress that we target high entanglement entropy states that require
an exponential number of coefficients to represent classically, as distinct from Green-
berger–Horne–Zeilinger (GHZ), cluster, or stabilizer states, which are efficiently repre-
sentable on a classical computer at all system sizes [392] (Fig. 7.21).

Our fidelity estimation is based on extrapolation from benchmarking against many approx-
imate classical simulations, namely, matrix product state (MPS) algorithms which cap the
maximum simulation entanglement to avoid the aforementioned exponential increase in
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Figure 7.21: Map of the relevant regions of Hilbert space. For any intermediate or large
system size,N , an average Haar random state in the Hilbert space will have nearly maximal
entanglement entropy (up to the Page correction [324]), and correspondingly is described
by an MPS with approximately maximal bond dimension, χ. By contrast, states such as
GHZ state and cluster states – which are colloquially referred to as maximally-entangled –
actually have very little extensive entanglement entropy, and can be written in an efficient
MPS representation with only χ = 2.

classical cost [392–394] (Fig. 7.20b). In one-dimension, early-time entanglement growth
is system-size independent, so at short times the MPS representation is exact for essen-
tially arbitrarily large systems. When entanglement growth surpasses the entanglement
cap, the MPS is no longer a faithful reference, but we can extrapolate the fidelity through a
combination of varying the system size, evolution time and simulation entanglement limit.

Using the fidelity, we derive and demonstrate a simple proxy of the experimental mixed
state entanglement [72], which to date has been notoriously difficult to measure in large
systems. Our proxy serves as a universal quality-factor requiring only the fidelity with,
and the entanglement of, the ideal target pure state. This enables comparisons between
our experiment and state-of-the-art digital quantum devices [162, 316, 381, 382, 395], with
which we are competitive.

Ultimately, we compare the fidelity of our experiment against that achieved by a variety of
approximate classical algorithms, including several not based on MPS. Using a single node
of the Caltech central computing cluster, none of the tested algorithms is able to match the
experimental fidelity in the high-entanglement regime, except for an improved algorithm
we introduce, termed Lightcone-MPS. Even with this new algorithm, classical costs reach
a regime requiring high-performance computing to match the experiment’s performance.
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CHAPTER 8
Benchmarking large scale simulators

In Chapter 6 we introduced the concept of many-body fidelity benchmarking, predicated
on our discoveries of emergent randomness in Chapter 5. Specifically, we showed that the
many-body fidelity could be estimated following a short quench with two requirements:
1) a sufficient number of bitstrings were sampled from the quantum experiment, and 2)
an exact classical simulation of the quantum evolution was performed to compare against.
Using these tools, we demonstrated fidelity benchmarking with up to 25 atoms, close to the
limit of practical exact classical simulation. Now, we ask what happens when we violate
the second of these assumptions, and enter a regime beyond exact classical simulations.

In this chapter, we demonstrate how our many-body fidelity estimation techniques can be
extended when system sizes grow beyond the point of classical simulability, in our case
reaching as large as 60 atoms. Existing methods for benchmarking such large systems, such
as patch circuits [162], explicitly fail in our setting both due to the analog control of our
system, and, importantly, due to the noise sources affecting our system.

Thus we devise, develop, and deploy a new method based on performing experimental
fidelity estimation with a series of approximate classical algorithms, each of which is erro-
neous, but which en masse can be used to extrapolate the correct answer. Our extrapolation
procedure is based on Monte Carlo inference and ensemble learning, which we believe is
generally applicable, and which should be scalable to systems of a few hundred particles.
With significant cross-checks along the way, we believe these methods give accurate es-
timators of the actual many-body fidelity, potentially extending both the applications of
Chapter 6 to the beyond-classically-exact regime, and also enabling new means in under-
standing the complexity of quantum simulation, as we will discuss in the remaining chapters
of this thesis.
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Figure 8.1: Failure of fidelity estimation with an approximate classical algorithm.
a. We use a Rydberg quantum simulator and a classical computer to simulate a time-
independent, high-temperature quench starting from the all-zero state, targeting an ideal
pure state, |ψ⟩. b. The classical algorithm is characterized by a bond dimension, χ,
which limits the maximum simulable entanglement, resulting in smaller-than-unity classical
simulation fidelity,C. We estimate the quantum fidelity,F , with a cross-correlation between
measurement outcomes of the classical and quantum systems, termed [30] Fd. c, d, e. (Top)
Half-cut von Neumann entanglement entropy of |ψ⟩, (Middle) classical simulation fidelity,
(Bottom) estimated experimental quantum fidelity. We study benchmarking against an exact
simulation (gray) or an approximate simulation with limited bond dimension (blue). c, For
a system size of N = 30 (left panels), using too small of a bond dimension sets a cap in
the simulation entanglement. d. This causes the classical fidelity to fall at a time, tex,
when the entanglement of the target state becomes too large. e. At approximately tex, the
estimated experimental quantum fidelity also drops. For the largest system size, N = 60
(right panels), tex is well before when the entanglement saturates, even for the largest bond
dimension we employ. The time-axis is normalized by the Rabi frequency (see Sec. 8.2.1).

8.1 FIDELITIES FROM APPROXIMATE ALGORITHMS

As was extensively discussed in the last Part of this thesis, a key quantity when studying
quantum systems is the fidelity [15], F = ⟨ψ|ρ̂exp|ψ⟩, where |ψ⟩ is a pure state of interest,
and ρ̂exp is the experimental mixed state. For digital devices studying deep circuits, the
fidelity can be estimated via the linear-cross-entropy [162, 276], a cross-correlation between
measurement outcomes of an experiment and an exact classical simulation. A modified
cross-entropy, termed [30] Fd, was proposed for both analog and digital systems, and
demonstrated on Rydberg [29] and superconducting [375] analog quantum simulators. Fd
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is efficiently sampled (Fig. 8.23) as

Fd = 2
1
M

∑M
m=1 p(zm)/pavg(zm)∑
z p(z)

2/pavg(z)
− 1, (8.1)

whereM is the number of measurements, zm is the experimentally measured bitstring, p(z)
is the probability of measuring z with no errors following quench evolution, and pavg(z)

is the time-averaged probability of measuring z. Importantly, Fd ≈ F for a wide class
of physical systems, as long as the rescaled probabilities p(z)/pavg(z) follow the so-called
Porter-Thomas distribution [30]. Still, a stringent requirement remains: access to an exact
classical simulation to obtain p(z), precluding direct fidelity estimation at large system
sizes. We circumvent this constraint by introducing a method to estimate the fidelity by
benchmarking against approximate classical simulations.

We consider a comparison (Fig. 8.1b) between an ideal high-entanglement target pure state,
|ψ⟩, the experimental mixed state, ρ̂exp, and a pure state from classical MPS simulation,
|Ψsim⟩. We introduce an improved MPS time-evolution algorithm using an optimal decom-
position of Hamiltonian dynamics into quantum circuits [396], which we term Lightcone-
MPS (see Sec. 10.2). The MPS is parameterized by a bond dimension, χ, that defines the
maximum simulable entanglement, which scales as log(χ). Starting from an all-zero state,
we program a time-independent, global quench under the one-dimensional Ising-like Ryd-
berg Hamiltonian (Fig. 8.1a, for Hamiltonian details see Fig. 8.4). Hamiltonian parameters
lead to high-temperature thermalization [306, 307], such that describing |ψ⟩ at late times
requires an exponential number of classical coefficients [29].

For a system size of N=30 (Fig. 8.1c-e, left), we can exactly classically simulate these
dynamics (Fig. 8.1d, grey); by exact, we mean the classical fidelity, C = |⟨Ψsim|ψ⟩|2,
stays near unity for all times. We numerically observe the entanglement of the target state
increases linearly at early times, before eventual near-saturation (Fig. 8.1c). Moreover,
the estimated experimental quantum fidelity, Fd, shows apparent exponential decay due to
experimental errors [29] (Fig. 8.1e, grey).

However, the situation changes when using an approximate classical simulation. Now,
the classical fidelity begins to decay (Fig. 8.1d, blue) after the time, tex, when the ideal
entanglement exceeds the limit set by the bond dimension (Fig. 8.1c, blue), meaning
the classical simulation is no longer a faithful reference of the ideal dynamics. Most
importantly, we find that after tex the experimental benchmarked fidelity also deviates
downwards (Fig. 8.1e, blue), indicating that Fd no longer accurately estimates the fidelity
to the ideal state. For the largest system sizes (for instance, N = 60 in Fig. 8.1c-e, right),
tex occurs well before the entanglement is predicted to saturate, even for the largest bond
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Figure 8.2: Failure of fidelity estimation with an approximate classical algorithm. a.
We fit the early time fidelity decay for all system sizes and normalize the experimental
fidelity measurements by these exponential values. The resulting ratio shows two clear
regimes of either roughly exponential decay (white areas) or greatly superexponential decay
(blue areas). These areas correspond to the regime of exact classical simulation (I) and
approximate classical simulation (II) in Fig. 7.20. Notably, the boundary between regimes
I and II (black line) depends on the bond dimension used in fidelity estimation. b. The
estimated fidelity (averaged over all experimental times) increases with bond dimension
(open markers), before saturating (closed markers) at a bond dimension capturing the
necessary entanglement. For the largest system sizes, saturation is not achieved using the
available classical resources.

dimension we can realistically use. We estimate the classical fidelity in this case using the
product of MPS truncation errors [394], which we find is accurate in the regime in which
we operate (Fig. 10.8).

Essentially, Fd appears to be an amalgam of both classical and quantum fidelities, only
estimating the quantum fidelity to the ideal state in the limit of the classical simulation
being perfect. To test this behavior for all system sizes, we study the benchmarked value
of Fd averaged over all experimental times (Fig. 8.2b). Consistently we see for too small
of a bond dimension (open markers), Fd is reduced. In some cases the requirement that
p(z)/pavg(z) follow a Porter-Thomas distribution can be violated, resulting in Fd even
becoming unphysically negative. As bond dimension increases, Fd rises, before reaching
a saturation bond dimension, χ0(N, t), which depends on system size and time (closed
markers). For the largest system sizes and times, however, the saturation bond dimension is
beyond the capabilities of any current classical hardware [389].
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Figure 8.3: Fidelity-benchmarking a 60-atom system. a. We employ a Monte Carlo
inference approach to extrapolate the fidelity at large system sizes and long evolution
times. Specifically, we train 1500 neural networks, each instantiated with randomized
(hyper)parameters, to predict Fd as a function of size, time, and bond dimension, and take
the ensemble average as the predicted value. b. We test this procedure using error model
simulations from N = 8 to 18 with increased laser intensity noise to emulate the fidelity
expected for the experimental N = 60 dataset. For t > 6.6 cycles and N > 15, we only
train on bond dimensions below the level necessary for exact simulation in order to mimic
constraints at large system sizes. We observe two behaviors: 1) the ensemble prediction
is consistent with the ground truth, and 2) the fidelity appears to follow a non-exponential
form. See Sec. 8.5 for further crosschecks, as well as Sec. 8.4 for analytic evidence for the
origin of the non-exponential decay due to non-Markovian noise. c. Experimental fidelities
for N up to 60; markers are grayscale where the classical fidelity (with χ = 3072) is less
than 0.99. d. Early-time fidelity decay rate as a function of system size, consistent with
linear system size scaling. e. Fidelity at the time (inset) where the pure state entanglement
saturates, with Fd = 0.095(11) at N = 60; the error bar is the standard error over Monte
Carlo inferences added in quadrature with the underlying sampling error.
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If the noise affecting the system was purely Markovian then the fidelity would decay
exponentially [348] and it would be possible to measure the fidelity at early times before
tex to learn the exponential decay rate, and then extrapolate in time to estimate the late-time
fidelity. Indeed, we note this is an advantage of the Fd metric we employ here, because
it accurately estimates the fidelity earlier than other estimators like the standard linear
cross-entropy [29, 30]. However, extrapolating to late times is non-trivial in our case due
to non-Markovian noise sources often affecting analog quantum systems. In particular,
with analytic and numerical analysis we show that shot-to-shot Hamiltonian parameter
fluctuations (e.g. laser intensity variations) induce sub-exponential fidelity decay at low
fidelities (Theorem 1, Fig. 8.10).

Instead, we use a model-agnostic extrapolation by leveraging a large amount of data with
three independent parameters: evolution time, system size, and bond dimension normalized
by its saturation value (Fig. 8.3a). We can calculate Fd in seven of the octants of this
parameter space - the only outlier is the high-entanglement regime of interest. We thus use
a Monte Carlo inference approach by training an ensemble [397] of initially randomized
neural networks to predict Fd given an input N , χ, and t; Fd at large system sizes and long
evolution times is then estimated as the ensemble average when χ → χ

0 (Fig. 8.14). We
emphasize that essentially we are simply performing curve fitting of the smoothly varying
function Fd(N,χ, t), for which we can directly simulate many ground truth data.

We check that this protocol consistently reproduces fidelities at small system sizes, does
not appear to overfit the experiment (Fig. 8.19), is insensitive to hyperparameters such as
the neural net topology and size, and that predictions are converged as a function of the
bond dimension (Fig. 8.21). We further reaffirm that our method extrapolates correctly by
replicating our entire procedure in a smaller scale wherein the quantum device is replaced
by numerical error model simulations up to N = 18 atoms (see Sec. 8.5). For t > 6.6

cycles and N > 15, the training data only consists of low bond dimensions to emulate
the limitations of the large-N experimental data. Even still, the extrapolated fidelity is in
excellent agreement with the ground truth data (Fig. 8.3b, Fig. 8.19), and reproduces the
sub-exponential fidelity decay predicted analytically (Theorem 1).

Ultimately, we apply Monte Carlo inference to the full experimental dataset for system sizes
up to N = 60 atoms (Fig. 8.3c; see Figs. 8.9 and 8.18 for all data). At high fidelities
(≳0.2), we observe nearly exponential decay, with a rate scaling linearly with system size
(Fig. 8.3d). At low fidelity, however, the Monte Carlo prediction reproduces the expected
sub-exponential response. We estimate the fidelity to produce the target state when the
entanglement is expected to saturate (Fig. 8.3e) to be Fd = 0.095(11) at N = 60.



237

To our knowledge, this is the first global fidelity estimation in the classically-inexact regime
with an analog quantum simulator, and it furthermore showcases benchmarking a quantum
device by extrapolating from approximate classical simulations. We expect this approach
to be scalable; by studying the convergence of predicted fidelities as a function of bond
dimension, our approach appears feasible for up to an order-of-magnitude more atoms than
we employ here (Fig. 8.22).

8.2 EXPERIMENT DETAILS

Hamiltonian parameters are precalibrated via ab initio measurements, and then refined
using maximum likelihood estimation (MLE) from fidelity measurements at small system
sizes (N ≤ 21), as described in Ref. [29] and Sec. 6.3.1. MLE estimated parameters are
insensitive to system size, so we believe they are accurate for the larger system sizes we test
here. MLE results are consistent with pre-calibrated values, and tightly optimize the target
Hamiltonian used in classical simulation (Fig. 8.5a). Note that the real-space positions of
atoms are taken into account when performing MLE on parameter gradients. For instance,
several small islands of atoms are benchmarked over the same spatial extent as the largest
60-atom array.

The main experimental dataset was taken continuously over the course of 17 days. Pa-
rameters such as Rabi frequency, detuning, beam alignment, state preparation, and others
were automatically calibrated via our home-built control architecture [29], resulting in high
stability even over such a long data-taking period. The overall duty cycle of our experiment
(the ratio of time spent on ‘science shots’ versus the total wall time) was roughly 36%
over that period. As we load many more atoms than are needed when benchmarking small
system sizes, we simultaneously excite and detect multiple non-interacting subensembles
when possible, and accrue several thousand bitstrings per system size and time ( Fig. 8.23a,
inset).

8.2.1 Defining the experimental time unit

Throughout, we define the time unit in terms of ‘cycles,’ given by tcycle = 1/Ω, and
thus concretely tcycle ≈ 145 ns. This timescale was chosen as Ω is the dominant energy-
scale in the system (after the blockading nearest neighbor interaction energy). However,
it is instructive to compare cycles versus a more natural timescale, namely the ‘unit-
entanglement-time,’ tebit, required to generate 1 ebit of entanglement in the early time
linear growth regime (see Fig. 8.1c). For our system parameters, we numerically find this
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Figure 8.4: Description of the experiment. a. The Rydberg Hamiltonian is Ising-
like, with single particle terms characterized by a detuning, ∆, and Rabi frequency, Ω,
between the two qubit levels. Rydberg atoms are strongly interacting, characterized by
the C6 coefficient, and with a strength falling off approximately as 1/R6, where R is the
interatomic distance. When two atoms are close enough together, simultaneous excitation
to the Rydberg state is strongly suppressed, causing the so-called Rydberg blockade effect.
We operate in a regime in which the nearest neighbor interaction strength is∼13× the Rabi
frequency, which is strongly blockaded. b. We study one-dimensional chains of atoms
(fluorescence image), with the Rydberg excitation laser aligned along the longitudinal array
axis to minimize inhomogeneity. c. A classical control system [29] continuously interleaves
data-taking with automated atom-based calibration of Hamiltonian parameters, resulting in
highly stable operation over the course of multiple weeks. For example, the Rabi frequency
is held constant with a relative standard deviation of only 0.0023(1). d. A single run of the
experiment takes ∼1.7 s, almost entirely limited by array loading and imaging. The actual
time required for quantum evolution is ∼1 µs. We use dark-state enhanced loading [33] to
reach the largest array sizes used in this work.

timescale is given by tebit ≈ 0.83× tcycle ≈ 121 ns. This definition is convenient, because
it then allows us to directly compare our analog evolution times against the equivalent depth
for digital circuit evolution.

We numerically fit the early time linear entanglement growth for one-dimensional random
unitary circuit (RUC) evolution, and compare against our experiment. For the gate-set of
Ref. [162], we find that tebit ≈ 1.1 layers, meaning 1 ebit of entanglement is built up in
1.1 layers. While this value is gate-set dependent, the exact numerical values are not of
too much importance, but serve to demonstrate that tcycle used throughout this manuscript
can be treated roughly as 1 circuit depth. For further details on comparing the evolution of
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Figure 8.5: Coherent Hamiltonian parameters. a. We calibrate Hamiltonian parameters
using a maximum-likelihood-estimation (MLE) technique based on varying parameters
used during classical simulation, and finding the point of highest fidelity overlap with the
experimental data; for further details, see Ref. [29]. Fidelities are time-integrated over
all experimental measurements. MLE calibrated values are consistent for system sizes up
to N = 21, as is expected as data taking for all system sizes (and times) is done in a
randomized, interleaved fashion. Several smaller arrays are benchmarked simultaneously
over the entire spatial extent of the largest 60-atom array to perform MLE on parameter
gradients. b. Resultant MLE-calibrated Hamiltonian parameters (and gradients) used for
all N in the classical simulation.

analog and digital devices, see Ref. [29].

8.3 MPS CROSS-ENTROPY BENCHMARKING

We employ a recently developed fidelity estimator [30], Fd, to evaluate the many-body
fidelity of ergodic quench dynamics [70] producing large entanglement. Importantly, Fd
can be efficiently sampled using only a small number of measurements as

Fd = 2
1
M

∑M
m=1 p(zm)/pavg(zm)∑
z p(z)

2/pavg(z)
− 1, (8.2)

whereM is the number of measurements, zm is the experimentally measured bitstring at the
mth repetition, p(z) is the theoretically calculated probability of measuring z by a classical
algorithm, and pavg(z) is the time-averaged probability of measuring z over a certain time
window. The denominator can be efficiently calculated by importance-sampling from the
MPS [398] as Ez∼p(z)p(z)/pavg(z). For small system sizes where we accrue bitstrings from
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Figure 8.6: Accuracy of the fidelity estimator. a. Comparing fidelities estimated from
experiment against both the true fidelity and the estimated fidelity for our error model,
showing good agreement both between experiment and theory, and between the estimator
Fd and the true fidelity. Fd shows systematic typicality fluctuations around the true fidelity,
but these decrease in amplitude with increasing system size, see Fig. 8.23b. b. Fd does
exhibit a systematic multiplicative offset from the true fidelity in the time regime we study
due to a time-delay needed for errors to scramble and become visible [29, 30]. We find that
Fd ≈ 1.02F , regardless of system size around t = 15 cycles.

multiple non-interacting subarrays, we calculate Fd for each individual ‘island’ and then
average their values, weighting by the number of measured bitstrings from each.

We compute pavg(z) via time-averaging the calculated bitstring probabilities. Specifically,
for each time point ti of the experiment, we estimate pavg(z) as a discrete average of the
probability distributions within a window of ti ± 1.4µs, with an step size of approximately
28 ns. This means around 100 points are averaged, which limits statistical sampling fluctu-
ations. Points included in the averaging are weighted to emphasize data with similar values
of classical fidelity, namely using a weight factor of min{Fsvd(ti)

Fsvd(tj)
,
Fsvd(tj)

Fsvd(ti)
}. Here Fsvd is the
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Figure 8.7: Benchmarking in the blockaded Hilbert space. a. Fd versus Fd,s=0 (the
fidelity benchmarked in only the blockaded Hilbert space, see text) for system sizes up
to N=30, consistent with correlation with unity slope, but with a slight ∼0.01 offset. b.
For exactly simulable systems, Fd typically always exceeds Fd,s=0 (left), but for larger
systems (right), Fd systematically begins underestimating Fd,s=0, even before the nominal
exact simulation time. c. We understand this behavior as arising from the MPS preferen-
tially truncating higher blockade subspaces, leading to the non-blockaded classical fidelity
dropping below unity before it is visible in the full Hilbert space fidelity. This implies
Fd,s=0 stays a more accurate estimator slightly longer than Fd. d. Probability to be in
the blockaded subspace for both experiment and simulation. Note the different color-scale
axes for the simulation and experiment, as many experimental errors can lead to apparently
non-blockaded measurements.

product of MPS truncation errors [392, 394], which we use to approximate the classical
accuracy, and defined as

Fsvd =
∏
i

χ∑
α=1

s2i,α, (8.3)

where i runs over all MPS steps involving Schmidt value truncations, and si,α are the
Schmidt values at truncation step i. Here, we assume the wave function is normalized where∑∞

α=1 s
2
i,α = 1. While this estimation is only approximate, it can be extremely accurate

when successive truncations are independent [394]. We describe this approximation in
more detail in Section 10.3 and Fig. 10.8. We weight in this way under the hypothesis that
averaging classical simulations of very different accuracies (as typified by Fsvd) will lead to
a poorer estimation of pavg(z).

To account for the Rydberg blockade mechanism, we have the option to slightly modify [29]
theFd formula. Indexing the different blockade sectors by the number of blockade violations
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Figure 8.8: Experimental and numericl blockade probabilities. Probability to be in
the blockaded subspace for both experiment and simulation. Note the different color-scale
axes for the simulation and experiment, as many experimental errors can lead to apparently
non-blockaded measurements.

in that sector, s, we can write an approximator for Fd to get an estimator for the blockade
sector, Fd,s=0, only:

Fd,s=0 = BthyBexp

(
2

1
M ′

∑M ′

m=1 p
′(z′m)/p

′
avg(z

′
m)∑

z p
′(z)2/p′avg(z)

− 1
)
. (8.4)

Here Bexp (Bthy) is the total probability for an experimental (simulation) bitstring to be in
the blockaded Hilbert space, s = 0, which further redefines the normalized probabilities,
p′(z) = p(z)/Bthy. Note hereM ′ is the number of bitstrings, z′m, measured in the blockaded
Hilbert space.

Importantly, we find Fd,s=0 is more robust against the failure of the classical simulation
algorithm, as compared to Fd,s>0. This is because MPS truncations more strongly affect
the s > 0 sectors in ways which are not necessarily visible only by looking at the MPS
truncation fidelity (Fig. 8.7bc).

For this reason, when estimating the quantum fidelity, we employ a two-pronged approach.
Where Fsvd > 0.99 we approximate Fd as Fd,s=0, which from measurements at small
system sizes we find is always conservative (Fig. 8.7a). Utilizing Fd,s=0 allows us to more
confidently directly measure the fidelity out to intermediate times at the largest system sizes,
and measure the according effective decay rate (Fig. 8.3c. However, where Fsvd < 0.99, we
estimate Fd from our Monte Carlo inference procedure (described below), which is trained
directly on the values of Fd.
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Figure 8.9: Fidelity benchmarking for all system sizes and times. Fidelity (quantified
by Fd,s=0 with χ = 3072) as well as Monte Carlo inference for all system sizes. Grayscale
markers are those for which the classical fidelity is less than 0.99.

To be concrete all data shown as markers in Figs. 8.1 and 8.3 is Fd,s=0 for χ = 3072. We
summarize all of the data, both Fd,s=0 and the Monte Carlo fidelities, in Fig. 8.9.

8.4 NON-EXPONENTIAL FIDELITY DECAY

In Fig. 8.3, we experimentally observe that the many-body fidelity appears to decrease
exponentially at intermediate times, before bending sub-exponentially at late times, a be-
havior which seems to grow stronger with increasing system size (also visible in Fig. 8.9).
We believe this behavior originates from globally-correlated, non-Markovian Hamiltonian
parameter fluctuations, which we note are often found in analog quantum simulators. In
particular, a dominant noise source in our experiment is shot-to-shot variation of the Rabi
frequency, for instance arising from fluctuations of the driving laser intensity, which we
measure to be around ∼0.5%, corresponding to a shot-to-shot variation of σ∼40 kHz
(Fig. 8.10a). Here, we present analytical and numerical support that such an error source
can induce the observed fidelity decay behavior.
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8.4.1 Fidelity response to coherent Hamiltonian errors

We discover a surprising dependence of the fidelity between states subject to coherent
Hamiltonian errors.

Theorem 1 (Gaussian fidelity response to coherent errors). Let |Ψ(t, θ)⟩ ≡
exp(−i(Ĥ0 + θV̂ )t)|Ψ0⟩ denote the initial state |Ψ0⟩ quench-evolved by a
translationally-invariant local Hamiltonian Ĥ0 + θV̂ for a time t, where the per-
turbation V̂ =

∑
x V̂

x is a sum of local terms and θ quantifies the perturbation
strength. We assume the Eigenstate Thermalization Hypothesis (ETH), i.e. that the
expectation values ⟨E|V̂ x|E⟩ of each term V̂ x with respect to the eigenstates |E⟩ of
Ĥ0 are independent random samples from a fixed distribution. Then in the limit of
large system size N and long time t, the fidelity F between two such states |Ψ(t, θ1)⟩
and |Ψ(t, θ2)⟩ is a Gaussian function of (θ1 − θ2)t:

F (θ1, θ2) ≡ |⟨Ψ(t, θ1)|Ψ(t, θ2)⟩|2 = exp(−Nλ(θ1 − θ2)2t2/2) , (8.5)

for some constant λ defined in Eq. (8.14).

This result is illustrated in Fig. 8.10b and will be instrumental to showing our observed non-
exponential fidelity decay (Corollary 1). This fidelity response is related to the Loschmidt
echo, and our result is consistent with existing numerical observations in e.g. Refs. [399–
401].

Proof. Without loss of generality, it suffices to let θ1 = 0 and θ2 = θ. We compute
the Taylor series of F (θ) ≡ F (0, θ) and show that for large N , it agrees to all orders
with the Gaussian series

exp

(
−θ

2t2

2σ2

)
= 1− 1

2

(
θt

σ

)2

+
1

8

(
θt

σ

)4

+ · · · (8.6)

It is instructive to compute the first non-trivial term: the second derivative

∂2θF (θ)|θ=0 =
[

(∂2θ ⟨Ψ(t)|Ψ(t, θ)⟩)⟨Ψ(t, θ)|Ψ(t)⟩ (8.7)

+ 2(∂θ⟨Ψ(t)|Ψ(t, θ)⟩)(∂θ⟨Ψ(t, θ)|Ψ(t)⟩) (8.8)

+ ⟨Ψ(t)|Ψ(t, θ)⟩(∂2θ ⟨Ψ(t, θ)|Ψ(t)⟩)
]∣∣∣
θ=0
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In order to evaluate these derivatives, we use the relation [402]:

∂θ exp(i(Ĥ0+θV̂ )t)|θ=0 =

∫ t

0

dτ exp(iĤ0τ)(iV̂ ) exp(iĤ0(t− τ)) (8.9)

= it
∑
E

VEE|E⟩⟨E|eiEt

+ i
∑
E ̸=E′

VEE′|E⟩⟨E ′|e
iE′t − eiEt

i(E ′ − E)
,

where |E⟩ are the eigenstates of Ĥ0 with eigenvaluesE, and we have defined VEE′ ≡
⟨E ′|V̂ |E⟩. For our purposes, Eq. (8.9) is valid even when Ĥ0 has degeneracies: the
initial state |Ψ0⟩ projects any degenerate subspace onto a single eigenstate |E⟩.

The first term in Eq. (8.9) grows linearly with time t, while the summands in the
second term oscillate and are sub-dominant. We subsequently neglect such terms.
We obtain a similar expression for the second derivative:

∂2θ exp(i(Ĥ0 + θV̂ )t) ≈ −t2
∑
E

V 2
EE|E⟩⟨E|eiEt . (8.10)

This gives:

∂2θF (θ)|θ=0 ≈ −2t2
[∑

E

|cE|2 V 2
EE −

(∑
E

|cE|2 VEE
)2]

≡ −2t2(⟨V̂ 2⟩ − ⟨V̂ ⟩2)

≡ −2t2κ2(V̂ ) , (8.11)

where |cE| ≡ |⟨E|Ψ0⟩|2 are the populations of |Ψ0⟩ in the energy eigenbasis. We
interpret the quantities

∑
E |cE|

2 VEE and
∑

E |cE|
2 V 2

EE as averages of the vector
VEE and V 2

EE with respect to the distribution |cE|2: we denote them ⟨V̂ ⟩ and ⟨V̂ 2⟩
respectively; the expression ⟨V̂ 2⟩ − ⟨V̂ ⟩2 is the variance, which we denote κ2 for
reasons made clear below.

Within the approximation made in Eq. (8.9), ∂nθ F (θ)|θ=0=0 for all odd n. The next
term can be expressed in terms of the moments ⟨V̂ k⟩ as

∂4θF (θ)|θ=0 ≈ 2t4(⟨V̂ 4⟩ − 4⟨V̂ 3⟩⟨V̂ ⟩+ 3⟨V̂ 2⟩2)

= 2t4
[
κ4(V̂ ) + 6κ2(V̂ )2

]
, (8.12)

whereκ4(V̂ ) ≡ ⟨(V̂ −⟨V̂ ⟩)4⟩−3⟨(V̂ −⟨V̂ ⟩)2⟩2 is the fourth cumulant of V̂ . Crucially,
V̂ =

∑
x V̂

x is the sum of identical local terms: the Eigenstate Thermalization
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Hypothesis (ETH) predicts that their eigenstate overlapsV x
EE fluctuate about a smooth

function of energy [328]. Furthermore, for sufficiently high-temperature states,
correlations ⟨V̂ xV̂ y⟩ are short-ranged, and we can treat each V̂ x as an effectively
independent random variable.

We utilize a further property of cumulants: they are additive, obeying κn(
∑

x V̂
x) =∑

x κn(V̂
x). Therefore, all cumulants scale linearly with N . When N is large,

κ4(V̂ ) ≪ κ2(V̂ )2 and we can neglect the κ4 term in Eq. (8.12). This gives the
expression

F (θ) ≈ 1− 1

2
2κ2(V̂ )(θt)2 +

1

8
(2κ2(V̂ ))2(θt)4 + · · · , (8.13)

which agrees with Eq. (8.6) when we identify

σ−1 = 2κ2(V̂ ) = Nκ2(V̂
x) ≡ Nλ . (8.14)

In fact, all higher cumulants are subleading to the κ2 contribution. As long as they can
be neglected, the series Eq. (8.6) and Eq. (8.13) agree to all orders. For example, the
(θt)6 term of (8.13) is−2(κ6(V̂ )+30κ4(V̂ )κ2(V̂ )+60κ2(V̂ ))/6! ≈ −(2κ2(V̂ ))3/48,
in agreement with the sixth-order term of Eq. (8.6).

We prove this equivalence to all orders using properties of Bell polynomials, Bk

(where k is a polynomial index) [403]. The n-th derivative of the fidelity can be
expressed as

∂nθ F |θ=0 = (−1)n/2(θt)n
n∑
k=0

(−1)k
(
n

k

)
⟨V̂ n−k⟩⟨V̂ k⟩ . (8.15)

We can rewrite this in terms of the cumulants κ1, . . . , κk with the cumulant-moment
relation [404]

⟨V̂ k⟩ = Bk(κ1, κ2, · · · , κk) . (8.16)

While the full expression is challenging, we are only interested in the coefficient of
the κ2(V̂ )n/2 term in Eq. (8.15). We first note that ⟨V̂ k⟩ contains a κ2(V̂ )k/2 term
only for even k. To determine its coefficient, we use the recursion relation [403]
∂κ2Bk =

(
k
2

)
Bk−2 to conclude that ⟨V̂ k⟩ = · · · + (k!/k!!)κ2(V̂ )k/2 + · · · , where

k!! = k(k−2) · · · 2 is the double factorial of k. Returning to Eq. (8.15), we conclude
that ∂nθ F |θ=0 = · · ·+ anκ2(V̂ )n/2(θt)n + · · · , where

an = (−1)n/2
∑
k even

(
n

k

)
k!(n− k)!
k!!(n− k)!!

κ
n/2
2
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= (−2)n/2 n!
n!!
κ
n/2
2 , (8.17)

which equals the n-th derivative ∂nθ exp(−θ2/(2σ2))|θ=0=(−1)n/2 n!
n!!
σ−n, thus con-

cluding our derivation of the Gaussian fidelity response [Eq. (8.5)].

8.4.2 Non-exponential decay for Rydberg quantum simulators

The non-exponential fidelity decay immediately follows from Theorem 1.

Corollary 1. When the parameter value θ follows a Gaussian probability distribution
P (θ) with mean θ′ and standard deviation σ

P (θ) =
1√
2πσ

exp
(
− (θ − θ′)2

2σ2

)
, (8.18)

Theorem 1 and a straightforward integration give a universal form for the fidelity of
the target state |Ψ(t, θ0)⟩ to the mixed state ρ(t) ≡

∫
dθP (θ)|Ψ(t, θ)⟩⟨Ψ(t, θ)|.

F =

∫
dθP (θ)F (θ0, θ) =

1√
1 + Λ

exp
(
− δ2

2

Λ

1 + Λ

)
, (8.19)

where Λ ≡ Nt2λσ2 and δ = (θ′ − θ0)/σ is the overall relative parameter miscali-
bration.

This functional form leads to markedly different behavior as compared to simple exponential
decay, as it becomes essentially like a power-law at late times (Fig. 8.11d). In simulation,
we benchmark an N = 16 atom system experiencing only global intensity fluctuations –
but otherwise no noise – and see an excellent agreement between the simulated fidelity, and
a fit to Eq. (8.19) with free λ. Notably, we see Eq. (8.19) exhibits three distinct regimes:
super-exponential behavior at very early time, effectively simple-exponential behavior at
intermediate times, and finally sub-exponential behavior at late times. Notably, by studying
multiple system sizes, we find the divergence between Eq. (8.19) and an effective exponential
decay model is mainly a function of fidelity, not time, and becomes visible when the fidelity
reaches F∼0.2, which in our dataset is only the case for the highest N (Fig. 8.3).

As a quantitative comparison, we define an effective model of the fidelity as

F ≈ F0 exp(−γt)
1√

1 + λ′t2
exp

(
− δ2

2

λ′t2

1 + λ′t2

)
, (8.20)
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Figure 8.10: Origins of the non-exponential fidelity decay. a. A major noise source
for our platform is Rabi frequency fluctuations (for instance arising from variation in the
driving laser intensity), which have a shot-to-shot standard deviation of∼0.5% (∼40 kHz).
b. For global, correlated intensity noise, the fidelity is Gaussian with respect to error in
the Rabi frequency. c. The standard deviation of this Gaussian dependence decreases as
1/t
√
N .

that is, Eq. (8.19) multiplied by an exponential decay factor to account for the other noise
sources, where we have redefined the free parameter λ′ ≡ λNσ2. We perform error model
simulations from 7 < N < 21 for two cases: 1) for only global, shot-to-shot Rabi and
detuning noise, 2) for all other noise sources. Then, assuming multiplicativity of the error
sources (Fig. 8.12a), from case (1) we fit the expected behavior of λ′, and from case (2)
we fit the expected behavior of γ. We extrapolate the observed parameters all the way to
N = 60, and compare against the experiment (inset of Fig. 8.11d). Even assuming perfect
calibration (δ = 0) we see general agreement between the fidelity decay curve of the error
model prediction and the experiment.

However, the relative proportion of exponential decay versus non-exponential decay is
difficult to calibrate versus experimental data at small system sizes, as this requires evolving
out to very late times when other error sources (such as finite recapture probability of
atoms in their traps) become noticeable. In addition, we expect that Hamiltonian parameter
calibration is likely imperfect, at the very least up to our uncertainty in the Hamiltonian
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Figure 8.11: Evidence of non-exponential decay. a. The behavior described in Fig. 8.10
leads to an analytic solution for the fidelity decay of F∼(1+ λNt2)−1/2, for free parameter
λ. This decay is characterized by super-exponential curvature at early times, and sub-
exponential curvature at late times. In the inset, we use our error model with all error
sources enabled, and extrapolate to the expected fidelity behavior at N = 60, seeing
generally good agreement with the experiment, which is improved by directly fitting and
allowing unity-level changes in the extrapolated error model parameters. b. Besides the
data shown for large system sizes in Fig. 8.3, we show data for N = 10 evolved out to
late times and low fidelities, which we see is clearly better described by the non-Markovian
decay formula over an exponential.

parameters. As a general sanity check then, we fit with γ, λ′, and δ free. Fitting N = 60

(withF0 fixed by the separately calibrated single-atom preparation fidelity), we find δ ≈ 0.2,
γ ≈ 1/4× γ0 and λ′ ≈ 4× λ′0, where γ0 and λ′0 are the extrapolated predictions from error
model. We note δ ≈ 0.2 corresponds to a potential error of ≈10 kHz in the calibrated Rabi
frequency, which is within our measured error bar (Fig. 8.5b).

We also note that other error sources, in particular atomic position fluctuations, also likely
have some contribution to the non-exponential decay behavior, which may improve the
agreement above. However, the analytical expression for their effect becomes quite involved,
and so we disregard them here for simplicity, and leave a more in-depth analytic and
numerical study of the various error sources to future work.
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Figure 8.12: Impact of different error sources on fidelity. a. Simulated fidelity decay for
a variety of choices of noise sources affecting our Rydberg quantum simulator. b. Fidelities
for error sources in a at short (left) and long (right) times. Solid lines are exponential fits as
a function of system size with free offset at zero time to account for non-exponential decay
effects. Clear non-exponential signatures are seen for multiple error sources.

Figure 8.13: Relative error strengths. We use the fits in Fig. 8.12b to estimate the
relative contribution of different error sources for increasing system size. Here relative
error contribution is defined as log(Fi)/ log(F ), where the subscript, i, indexes the error
source in question, and F = ΠiFi, the product of all individual errors. Note that collective
Rydberg decay processes are not accounted for here, and may further lower the fidelity
measured for spontaneous decay noise at late times.
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Figure 8.14: Monte Carlo fidelity inference. a. All the data in this study, mapping
the three inputs (system size, N , evolution time, t, and log-normalized bond dimension,
χ̃ = log(χ)/ log(χ0)) to an estimated fidelity. Here χ0 is the time- and size-dependent
saturation bond dimension (Fig. 8.17e). b. To improve generalization into the unknown
regime, we use a Monte Carlo inference approach. We train an ensemble of 1500 fully-
connected neural networks, each instantiated and trained with random choices of parameters
within reasonably specified ranges (defined in c); the Monte Carlo predicted fidelity is then
taken as the ensemble average for a given input. d. Monte Carlo prediction for the fidelity
of the N = 60 system at the entanglement saturation time. Over ∼98% of the individual
Monte Carlo instance predictions exceed the expectation from the early time exponential
decay (see Fig. 8.3), resulting in an average of 0.095(11), where the error bar represents
the standard error on the mean, added in quadrature with the intrinsic sampling error of the
underlying data.

8.5 MONTE CARLO INFERENCE

To extrapolate fidelities into the high-entanglement (i.e. late-time, large system-size)
regime, we use a Monte Carlo inference approach. More specifically, we train an en-
semble [397] of fully-connected regression neural networks, implemented in MATLAB,
with three inputs (system size, evolution time, and bond dimension), and one output (es-
timated fidelity). The neural networks are instantiated with randomized hyperparameters
(including the initial seed for the weights and biases). We emphasize that this approach is
not trying to learn directly from experimental observations [405–408], and instead we are
simply extrapolating a smoothly varying 3-to-1 function. Fundamentally, the goal of this
approach is to utilize all aspects of the data simultaneously, rather than extrapolating along
only a single axis at a time, for instance either via time-extrapolation or system-size scaling
alone.
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Figure 8.15: Bond dimension training limits. Maximum log-normalized bond dimension
available for training as a function of system size and time, for χ = 3072.

8.5.1 Method description

For training data, we use the fidelities from all combinations of the 14 system sizes, 18
evolution times, and 91 simulated bond dimensions (from χ = 2 to 3072), resulting in
a total dataset of ∼23000 points (Fig. 8.14a). The network is then trained to learn the
functional dependence of F (N,χ, t).

To improve generalization and avoid fine-tuning, we employ a Monte Carlo approach
through ensemble learning [397], where the training is repeated 1500 times. Each iteration
is instantiated with a randomized seed, and every three iterations we randomly select from
a range of hyperparameters, the domain of which are specified in Fig. 8.14c. The fidelity
for a given set of inputs is then taken to be the unweighted ensemble average, while the
error bar is taken as the ensemble standard error of the mean added in quadrature with the
sampling error at a given time.

To preprocess the data, we log-normalize the bond dimensions as χ̃ = log(χ)/ log(χ0),
where χ0 is the size- and time-dependent saturation bond dimension required for the sim-
ulation to be exact (Fig. 8.17e). This makes the learned function have a more consistent
domain for different system sizes and evolution times. We also test if we train using simply
log(χ). We stress that in doing so, the largest trained log(χ) ≈ 8, but for instance for
N = 60 we predict the fidelity at log(χ) ≈ 14.5, with no training data in the interim
regime. We find consistent mean predictions between the two methods, but the standard
deviation of Monte Carlo instances is reduced by training on χ̃.

We determine χ0 by finding the minimum χ, at a given system size and evolution time,
where the MPS fidelity is greater than 0.999. We extrapolate the behavior of χ0 into the
high-entanglement regime of large system sizes and late evolution times (Fig. 8.17e). We
further normalize the input (subtracting off the mean and dividing by the standard deviation)
to improve learnability.
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Figure 8.16: Determining the log-normalized bond dimension. a, b. As a function
of bond dimension, the classical simulation fidelity rises before saturating to 1; we define
χ
0 (the saturation bond dimension), as the minimum value for which the classical fidelity

is greater than 0.999. c, d. By χ0, the experimentally benchmarked fidelities have also
saturated.

Figure 8.17: Limits in log-normalized bond dimension. We fit the dependence of χ0 as
a function of system size and time (solid lines) in order to extrapolate beyond the range of
χ values which we directly simulate in this work.
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To avoid overfitting, we randomly select a few N from 21 to 30, for which we excise from
the training any data with χ̃ > 2/3 and t > 6.6 cycles. We then use the data for these
system sizes and times with χ̃ ∼ 1 as the validation dataset, and stop the training when
the validation loss – defined by the prediction root mean square error (RMSE) – does not
decrease for 50 epochs in a row (see for instance Fig. 8.19b).

We summarize a partial subset of the data showing the Monte Carlo inference as a function
of N , t, and χ in Fig. 8.18.

8.5.2 Consistency checks

In order to test that this approach is accurate in estimating the fidelity, we perform several
consistency checks, ranging from varying the number of learnable parameters, testing the
result as a function of the amount of experimental training data, checking against small
system sizes in experiment and error model where we have exact ground truth data, and
more. Several of these tests are described below.

Small system sizes, experimental
For the largest system sizes we do not have ground truth data for Fd in the late-time regime,
and so cannot directly verify our model’s efficacy. However, we can emulate the effect in
this regime at smaller system sizes where we do have ground truth data in all regimes.

We employ the same training methodology as on the full dataset, but only considerN ≤ 30

where we have the full ground truth. For t > 6.6 cycles and N ≥ 24, we excise from
the training data all bond dimensions for which χ̃ > 2/3. This value is chosen as it is
approximately the maximum normalized bond dimension available at N = 60 (Fig. 8.15e).
Concretely, this approach is essentially pretending as if N ≥ 24 is beyond the exactly
simulable regime. In reality, of course, we have the ground truth data to compare against,
and can for instance use it to study the behavior of the loss functions (Fig. 8.19ab).

Averaging over all Monte Carlo instantiations, we find the training loss decreases consis-
tently as a function of training epoch, but the validation loss (where the ground truthN ≥24
results are used as the validation data set) reaches a minimum after∼50 epochs, after which
it proceeds into an overfitting regime. As with the full dataset, we thus stop the training for
each instantiation at the point where the validation loss is non-decreasing for ∼50 epochs
in a row, and then take the result from the best epoch. We note that both losses drop most
dramatically after only a single epoch of training from initially randomized configurations,
meaning the gradient descent quickly finds a nearly optimal regime, implying that the loss
function is both smooth and non-flat.
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Figure 8.18: Monte Carlo inference for all data. a. Fidelity-estimator, Fd, for various
system sizes and evolution times as a function of the log-normalized bond dimension,
χ̃ = log(χ)/ log(χ0). The fidelity is estimated at χ̃ = 1. A key feature to note is that as
system size or evolution time increases (i.e. as χ0 increases), the data points shift left: the
classical simulation breakdown regime is when no data is available at χ̃ = 1.

We then compare directly between the Monte Carlo predicted Fd and the ground truth value
forN = 30 across all times. We see good agreement even in the emulated breakdown regime
at long times (Fig. 8.19c), with no indication that the learned fidelities are misestimating
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Figure 8.19: Evaluating the Monte Carlo inference at small system sizes. a, b. As a
cross-check of our approach, we use the same training methodology employed on the full
dataset, but truncate to only include N ≤ 30 where we have the full ground truth. We
bipartition the data (inset), and for the large system sizes and late evolution times we only
directly train with χ̃ < 2/3. Averaging over 1500 instantiations, we find the training loss
decreases consistently, but validation loss at χ̃∼1 reaches a minimum after ∼50 epochs,
and as expected proceeds into an over-fitting regime after. c. Model predictions show the
Monte Carlo inference accurately predicts fidelities at late times, despite not having access
to the underlying ground truth data at large bond dimensions in this regime.

the true values, despite not having access to the underlying ground truth data at large bond
dimensions.

Small system sizes, error model
As described, we can check our model’s efficacy at small system sizes directly on experi-
mental data, but the non-exponential fidelity decay behavior is not yet strongly visible. We
reach this regime using Monte Carlo fidelity inference on error model simulations (Fig. 8.3).
Here we further describe this analysis.

We perform error model simulations for N = 8 → 18 up to the maximum experimental
time, but artificially increase the shot-to-shot Rabi frequency variation by a factor of 4 in
order to roughly emulate the predicted experimental fidelities at large N . We choose to
do this, rather than simulate for much longer timescales where the behavior would become
naturally evident (Fig. 8.11d), because we want to replicate as much as possible the fact that
for the experimental dataset the entanglement is still growing for most times for the largest
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Figure 8.20: Evaluating the Monte Carlo inference at small system sizes. We perform
a similar test using error model simulations of our experiment, as for instance shown in
Fig. 8.3b. We train with N = 8 to 18, excising χ̃ > 2/3 for N > 15 and t > 6.6 cycles.
The resultant Monte Carlo inference predictions are well correlated with the ground truth,
across the whole range of fidelities. X-error bars represent estimated typicality fluctuations,
y-error bars represent the Monte Carlo inference standard deviation.

system sizes. Performing error model simulations out to ∼100 cycles would dominate the
training by a regime where the entanglement had already saturated for these small system
sizes.

We perform MPS simulations for all bond dimensions up to χ0(N = 18, t → ∞) = 89,
and benchmark the error model with each. Though we run the error model with a finer
timestep of ∼10 ns, we only select data at the experimentally measured times for training.
We then emulate the experimental dataset by treating all N < 16 as “small N” where we
have full ground truth data. We excise from the training any data for which χ̃ > 2/3,
N > 15, and t > 6.6 cycles, to emulate the available data for the full experimental dataset.
We use N = 13 → 15 as the validation dataset to prevent overfitting. We then train in the
same way as for the experiment, and compare Monte Carlo predictions versus ground truth
output (Fig. 8.20). We find the two are consistent, both in terms of the values obtained, and
the non-exponential fidelity decay, indicating the Monte Carlo inference is able to learn this
behavior.
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Figure 8.21: Robustness of Monte Carlo inference. a, b. For the majority (∼70%) of
hyperparameter combinations sampled during the Monte Carlo inference (Fig. 8.14c), the
number of learnable parameters is smaller than the number of training points (∼23000).
Further, we see no correlation between number of learnable parameters (nor any individual
specific choice of hyperparameter) with the predicted fidelity. c. The Monte Carlo mean
prediction is insensitive to the choice of data: removing half of the data along any axis
leads to the same predicted fidelity. Note that while the “Full training” is composed of 1500
models, the “excised” ensembles only feature 192 trained models. Markers show mean
and standard deviation for each distribution. d. To check the convergence of our protocol,
we repeat the Monte Carlo inference procedure with varying maximum bond dimension
allowed in the breakdown regime of large system sizes and long evolution times. We find
the fidelity (at N = 60 and the latest experimental time) is generally consistent over the
entire range, with convergence achieved around a bond dimension of 1500.

Number of learnable parameters
For the full dataset, a total of ∼23000 training data points are generated, while depending
on the choice of hyperparameters, the number of learnable parameters can vary from
∼350−83000. For∼70% of the Monte Carlo instances, the number of learnable parameters
is lower than the number of training points (Fig. 8.21ab). Further we do not see any strong
correlation between the predicted fidelity and the number of learnable parameters, or more
generally between the fidelity and either network depth or width.

We also perform the same training procedure on several variants of reduced experimental
datasets, where we excise from the training half of the bond dimensions, system sizes, or
evolution times used. We find the resulting Monte Carlo mean is always consistent with the
prediction from training on the full dataset (Fig. 8.21c).
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Maximum bond dimension used
The maximum bond dimension used in the training is constrained by our computational
resources, but we can still study if the Monte Carlo prediction appears to be converged as
a function of the bond dimension. In Fig. 8.21d we systematically scale the training bond
dimension used in the breakdown regime of large system sizes and long evolution times,
and find that the results appear converged with a bond dimension of ∼1500, about a factor
of 2 lower than the maximum bond dimension we consider in this work. However, we
note that by supplementing the experimental data with numerical data obtained from our
error model simulations, this required bond dimension is dramatically reduced (see the next
section, Fig. 8.22).

8.6 SCALABILITY OF FIDELITY ESTIMATION

Importantly, our method of benchmarking large scale quantum systems from many approx-
imate classical simulations is not yet at its limits. Indeed, we predict that it can be applied
for much larger systems, especially making assumptions of the noise affecting the system.

8.6.1 Markovian noise

A major advantage of the fidelity estimator which we use, Fd, is its accuracy at early
times [29, 30]. This is in contrast to the original linear cross-entropy which only becomes
accurate for deep circuits [162]. As we established, using tensor network simulation
methods such as MPS, we are able to compute exact classical simulation references for
essentially arbitrarily large systems up to constant time. Assuming the noise affecting the
system is purely Markovian (i.e. the fidelity decays exponentially [348]), then to estimate
the fidelity in the late-time, high-entanglement regime it is sufficient to measure the fidelity
with high-precision at early times, and then fit the resulting exponential decay rate.

This gives another axis for fidelity extrapolation which may be particularly useful for digital
quantum devices implementing random unitary circuits, which typically use a form of
system size scaling to estimate the fidelity in the high-entanglement regime [316]. Such
an approach should work for fidelity estimation of systems with largely arbitrary size and
dimension, but does require the exact functional form of the fidelity decay be assumed a
priori, and thus would not apply for systems with more non-trivial noise sources like those
affecting our present experiment (or potentially also some digital quantum computers [162]).
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Figure 8.22: Scalability of Monte Carlo inference. a. We plot the predicted fidelity for
N = 36 and N = 60 at the latest experimental time for two possible sets of training data:
1) considering only the experimental data (from N = 6 to N = 60 up to 15 cycles), and
2) supplementing with error model data out to late times (75 cycles). In order to improve
scalability of our Monte Carlo inference protocol, we supplement training with error model
data evaluated out to late evolution times for system sizes fromN = 8 andN = 17. In both
cases we vary the maximum bond dimension used during training, and then fit to find the
bond dimension where predictions saturate, χextrap. Fits are proportional to log(χ) and then
constant after χextrap (dashed lines). b. χextrap as a function of system size for the predicted
fidelity to saturate at the latest experimental time. The χextrap is improved by roughly an
order of magnitude by supplementing with error model data. Conservatively extrapolating
with χextrap ∝ exp(N) (grey lines) and setting a maximum χ = 3072 shows maximum
system sizes of ∼500 and ∼90 with and without the error model supplement.

8.6.2 Non-Markovian noise

In Fig. 8.21d, we investigated the minimum bond dimension of the classical (approximate)
simulation, χextrap, required for the Monte Carlo inference procedure to reach a reliable,
saturated prediction for the fidelity at N = 60 at the latest experimental time (14.5 cycles).
There we found χextrap saturated for a bond dimension around χ ∼ 1500. However, an
important question concerns the applicability at the Monte Carlo inference technique at
larger system sizes, i.e. the scaling of χextrap with N . If the required bond dimension scales
poorly with system size then it becomes difficult to trust the Monte Carlo inference results
at larger system sizes, assuming there is a cap in the maximum bond dimension usable by
the classical simulation.

We consider two versions of the training procedure (Fig. 8.22). In the first, we perform
Monte Carlo inference using just the experimental data, as done previously. In the second
approach we replace the training data fromN = 8 to 17 with data obtained from error model
simulations up to 75 evolution cycles (sampled every 1 cycle). Fd values are calculated for
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error model data for χ ranging from 1 to 90. We replace with error model results, rather
than simply augmenting, so that the training data does not have multiple outputs defined for
the same set of inputs.

We have extensively checked the validity of our error model both in terms of fidelity and KL
divergence (also see Refs. [26, 29] and Fig. 8.6), and using error model allows us to generate
training data for Fd as a function of bond dimension in the low-N , long-time regime where
the non-exponential fidelity decay becomes more clearly visible. We emphasize that access
to an error model is not a general requirement, but is instead simply a tool we are employing
in this case as the original experimental dataset was planned and taken without accounting
for the non-exponential fidelity decay, as it was a novel observation of our present analysis.
Using the error model alone (with no experimental data) for inference is not expected to
give good fidelity extrapolation at large system sizes given the large difference between the
largest simulable error model size (N ≈ 20) and the largest experimental size.

In both cases (purely experimental data, or supplemented with error model data), we plot
χextrap as a function of system size. Here χextrap is found from a phenomenological fit of the
predicted fidelity, Fp, as a function of the maximum bond dimension used in training, χ,

Fp =

F + A log(χ) χ < χextrap

F χ ≥ χextrap,
(8.21)

where F and A are free fit parameters (Fig. 8.22c). In general, we see that supple-
menting with error model data produces consistent fidelity predictions as our original,
all-experimental inferences, but saturates far earlier. This builds additional confidence in
both the error model and the Monte Carlo inference procedure.

We then study how χextrap scales as a function of N , and set a cap of χ ∼ 3072, which
represents a significant, but still achievable bond dimension. We choose a conservative
phenomenological fit model of

χextrap = A exp(BN), (8.22)

where A and B are fit constants.

We find the all-experimental inference exceeds this cap for N∼90, but the supplemented
dataset goes as high as N∼500. We emphasize that this value represents a lower bound
that could be improved either through use of larger classical resources, or possibly through
an improved classical algorithm. This indicates that as long as care is taken to acquire
experimental data in a diverse regime of system sizes and evolution times, we conserva-
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Figure 8.23: Uncertainty sources of the benchmarking protocol. There are two funda-
mental sources of noise in calculating Fd: statistical error, and systematic error arising from
so-called typicality fluctuations [29]. a. We first evaluate the statistical error behavior. At
a fixed fidelity, the statistical error bars of our protocol are given [30] by A/

√
M , where M

is the number of samples and A is the sample complexity. At approximately a fixed fidelity
of Fd = 0.5 (see text), we find A grows weakly with system size, indicating favorable
scalability of our protocol from a statistical perspective. For this work, M∼40000 for all
system sizes, summing over all times (inset). b. Typicality error manifests as temporal
fluctuations of the estimator Fd, with respect to the true fidelity F , due to benchmarking in a
finite-sized Hilbert space. The standard deviation of these fluctuations scales [29] as 1/

√
D,

where D is the Hilbert space dimension. From error model simulations, we calculate the
standard deviation of temporal fluctuations of Fd in a 1-cycle period at late times, which we
find decreases as 1.23−N (or∼1.2/

√
D), implying a negligible typicality error of∼10−6 at

N = 60.

tively believe the Monte Carlo inference procedure we show here should provide scalable
predictions for an order of magnitude more atoms than we currently study.

8.6.3 Sample complexity

To estimate error bars on the raw data, σF , we propagate from separately calculating the
sampling error of the numerator and denominator of Fd as

σ =
√

(E(p̃(z)2)− E(p̃(z))2) /M, (8.23)

where p̃ is the rescaled bitstring probability distribution obtained from MPS simulation, M
is the number of samples, and the expectation value is taken over the set of experimentally
(numerically) sampled bitstrings for the numerator (denominator). Enough samples are
taken numerically that the dominant overall sampling error is from the experiment. See
Section B for more details.
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We expect the statistical error of our benchmarking protocol [29, 30] to scale as A/
√
M ,

where A is the sample complexity which scales exponentially in system size with a base
which depends on the fidelity [30]. We measure A at an approximately fixed fidelity of
Fd = 0.5 by performing an average of all the experimentally measured error bars from
Eq. (8.23), weighted by their inverse distance from Fd = 0.5, such that

A(N) =

∑
t σF (N, t)

√
M(N, t)w(N, t)∑

tw(N, t)
, (8.24)

withw(N, t) = 1/|Fd(N, t)−0.5|. With this approach, we findA=1.0083(4)N (Fig. 8.23a).
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CHAPTER 9
Quantum comparisons

Having benchmarked the fidelity of our Rydberg quantum simulator, we now turn to in-
vestigate the actual half-chain bipartite entanglement content of the experiment. In the
past, several studies have investigated entanglement properties of (nearly) pure states by
estimating the second Rényi entropy in (sub-)systems up to 10 particles [306, 409–411].
However, the actual output of an experiment can be a highly mixed state, with markedly
different entanglement content than the target pure state. For this reason, it is desirable
to directly quantify mixed state entanglement measures. Unfortunately, extensions of most
pure state entanglement measures to the case of mixed states are defined variationally, and
as such are incalculable for even moderately sized systems [412]. For a general review and
tutorial for concepts related to entanglement entropy, see Ref. [413]

Here we devise and demonstrate a new proxy for the mixed state entanglement of a system,
based on the negativity [72]. Our proxy takes as input only the (assumed or extrapolated)
pure state entanglement, and the many-body fidelity. As such, we are able to calculate it
whenever fidelity-estimation is possible. This estimator has several important applications,
but in particular extends the ideas of Section 6.3.3 as a universal proxy comparable across
all quantum platforms.

Our discussion is broken into four parts.

First, we introduce our entanglement proxy, demonstrate its effectiveness for numerical
simulations of both digital and analog quantum systems, and then show a comparison
amongst many state-of-the-art quantum platforms.

Next, we prove certain bounds about the effectiveness of our proxy. In particular, we prove
its validity for the case when the target pure state, |ψ⟩ is an eigenstate of the mixed state, ρ̂,
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as for instance is the case if |ψ⟩ is the highest fidelity pure state to ρ̂. We further improve
our result for the case where |ψ⟩ is a Haar-random state. Finally, we prove more general
unconditional upper and lower bounds to argue that our entanglement-proxy becomes
exponentially tighter as the system size increases.

Then, we discuss possible violations of the lower bound given by EP , if we allow |ψ⟩
to no longer be an eigenstate of ρ̂. We consider two physically realistic possibilities: 1)
globally correlated coherent errors, and 2) incoherent local errors. For each case we provide
numeric or analytic evidence showing that at worst our entanglement-proxy lower bound is
potentially violated by an O(1) amount.

Finally, we show the entanglement-proxy is more broadly applicable than solely for studying
quench dynamics, and for instance can be used to estimate entanglement build-up during
quasiadiabatic state preparation. Enabling this application is the work of target state
benchmarking, as discussed in Section 6.3.2.

9.1 EXPERIMENTAL MIXED STATE ENTANGLEMENT

While pure-state entanglement measures have often been estimated experimentally [306,
409–411], extensions of most pure-state entanglement measures to the case of mixed
states are defined variationally, and as such are incalculable for even moderately sized
systems [412]. An alternative, computable measure of mixed state entanglement is the
log negativity [72], EN , which is an upper bound to the distillable entanglement of the
system [412]. However, measuring the value of the negativity naïvely requires tomography
of the full system density matrix, which is infeasible even for intermediate scale quantum
systems [313, 314]. In the past, experiments have been limited to demonstrating necessary
conditions for a non-vanishing negativity, which can only reveal the binary presence of
mixed state entanglement [414, 415].

Explicitly, consider a system bipartitioned into two subsystems, A and B, and described by
density matrix, ρ̂AB. The log negativity [72] is given by

EN = log2 ||ρ̂
TA
AB||1,

where ρ̂TAAB is the partially transposed density matrix, and || · ||1 is the trace norm. More
plainly, the log negativity measures the log absolute sum of all eigenvalues of ρ̂TAAB. If ρ̂AB
is separable, the log negativity is zero, but for entangled states it generically serves as an
upper bound to the distillable entanglement of the system [412], and is an entanglement
monotone [412]. For pure states the log negativity is equivalent to the Rényi-1/2 entropy.
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Figure 9.1: Experimental mixed state entanglement. a. We develop an experimentally
measurable proxy that lower-bounds the log negativity, which is a measure of mixed state
entanglement. Here we demonstrate this proxy with error model simulations of random
unitary circuit and Rydberg evolution. b. The experimental mixed state entanglement-
proxy; solid lines are guides to the eye.

Here we derive and demonstrate an entanglement-proxy, EP , which can lower-bound the
extensive mixed state entanglement (quantified by log negativity). For a mixed state, ρ̂,
with fidelity, F , to a target pure state, |ψ⟩, with known entanglement, EN(|ψ⟩), our mixed
state entanglement-proxy is

EP (ρ̂) ≡ EN(|ψ⟩) + log2(F ). (9.1)

Intuitively, EP is a proxy evaluating the competition between the growth of the error-free
entanglement, EN(|ψ⟩), versus the error-sensitive fidelity, as F < 1 reduces the mixed state
entanglement. When ρ̂ is an isotropic state (an admixture of a maximally entangled state
and a maximally mixed state), it has been shown [72, 416] that EN(ρ̂) = max(EP (ρ̂), 0) at
large system sizes. Further, we show the same holds for a Haar-random state admixed with
a maximally mixed state – the expected output [348] of deep noisy random unitary circuits
(RUCs) – as long as the fidelity is large compared to the inverse of the half-chain Hilbert
space dimension.

More generally, we prove EP is a lower bound for EN for any mixed state assuming |ψ⟩ is
the highest fidelity state to ρ̂, and becomes tighter as the system size increases (Fig. 9.4).
Importantly, violations of this assumption can only lead to small violations of our bound
in the worst case for physically realistic conditions with local or quasi-static errors, as we
show with both analytic (Theorems 3 and 4) and numeric (Figs. 9.5 and 9.8) support.

We demonstrate the efficacy of EP on both noisy RUC evolution and error model simulation
of our Rydberg dynamics (Fig. 9.1a). In both cases, the target pure state log negativity
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Figure 9.2: Mixed state entanglement comparisons. The maximum entanglement-proxy
for our experiment can be compared against that of literature examples performing global
fidelity estimation with digital quantum processors: Sycamore [162, 316], Zuchongzhi [381,
382], and H2 [395] (text indicates release year). For literature examples, the x-axis is the
number of qubits, while for our experiment the effective system size is defined as the
number of qubits with the same Hilbert space dimension as our experiment under the
Rydberg blockade constraint, and is for instance ∼42 at N = 60.

Experiment Type Date N
Fidelity
(×10−2)

Mixed state
entanglement Ref.

Sycamore Digital Oct 2019 53 0.22 16.7 [162]
Zuchongzhi 2.0 Digital Jun 2021 56 0.066 17.0 [381]
Zuchongzhi 2.1 Digital Sep 2021 60 0.037 18.1 [382]

Sycamore Digital Apr 2023 70 0.17 25.3 [316]
Sycamore Digital Dec 2023 67 0.9∗ 26.2 [316]

Quantinuum H2 Digital May 2023 32 57 14.7 [395]
Harvard Digital Dec 2023 48 9.7 19.2 [40]

This work Analog Aug 2023 42† 9.5 14.6 -

Table 9.1: Mixed state entanglement values for various experiments. For all literature
experiments, we assume the target pure state is as entangled as a typical Haar random
state, while for this work we extrapolate the entanglement directly (Fig. 9.3). † indicates an
approximate effective system size due to the Rydberg blockade constraint, see text.



268

increases and saturates, while the exactly calculated mixed state log negativity reaches
a maximum before decaying at late times, behavior which the entanglement-proxy EP
replicates as a lower bound.

We then plot the experimental entanglement-proxy (Fig. 9.1b), where EN(|ψ⟩) is extrapo-
lated from small system sizes (Fig. 9.3), and F is found from Monte Carlo inference. We
observe the entanglement proxy peaks before falling at late times; this peak value increases
(Fig. 9.2c) as a function of effective system size defined as the number of qubits with the
same Hilbert space dimension as our experiment under the Rydberg blockade constraint
(∼42 for N=60).

Importantly, with Eq. (9.1) we can directly compare the results of our present study against
RUC evolution in state-of-the-art digital quantum devices [162, 381, 382, 395] (Fig. 9.2c).
We find we are within ∼2 ebits of early tests of quantum advantage [162] (an ebit is
the entanglement of a two-qubit Bell state). For literature examples, we assume targeted
states are Haar-random [417, 418], while for our experiment we conservatively use the
extrapolated log negativity, which is∼2 ebits below the expectation for Haar-random states
at the largest system sizes (Fig. 9.3).

The mixed-state entanglement-proxy EP can serve as a useful quality-factor of the ability
for different experiments to produce highly entangled states, including preparation meth-
ods besides quench evolution such as quasi-adiabatic ground state preparation (Figs. 9.10
and 9.9), and could be a more widely applicable alternative to other measures, such as
quantum volume [277], for directing efforts to improve NISQ-era quantum systems.

9.2 NEGATIVITY BOUNDS AND ESTIMATION

Here we discuss our mixed state entanglement proxy in more detail, and specifically provide
rigorous bounds guaranteeing its efficacy in reasonable regimes.

9.2.1 Extrapolating pure state entanglement growth

Calculating the mixed state entanglement proxy requires we have an estimate of EN(|ψ⟩),
the negativity of the target pure state. For RUC evolution of sufficient depth, we can assume
this is equal to the value predicted for Haar random states [324], but cannot necessarily
make the same assumptions for our experiment. Thus we first must estimate the pure
state entanglement, even for system sizes for which we can no longer exactly simulate
the dynamics. To do this, we extrapolate the scaling behavior from small system sizes.
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Figure 9.3: Pure state entanglement growth dynamics for the Rydberg Hamiltonian.
We directly calculate the entanglement (here log negativity) for system sizes up toN = 60,
and fit the resulting data (see text) to extrapolate the entanglement dynamics for large N at
late times. We also compare against the prediction for Haar random states at various system
sizes (black dashed lines), and find that as system size increases we gradually undershoot this
expectation more, which we attribute potentially to imperfect parameter selection making
the dynamics effectively less than infinite temperature at large N .

Specifically, we fit entanglement growth, S, with the following functional form as a function
of time and system size:

S = S0 +m1t+
(m2 −m1)(t− tent − σ)

1 + exp(− t−tent
σ

)
. (9.2)

To respect the physical constraints of the entanglement growth, we fix m1 – the early time
linear entanglement growth – to be system size independent. The Rydberg Hamiltonian
induces fast entanglement growth over the first∼0.5 cycles of evolution which makes fitting
the linear growth erroneous without also including a system-size independent offset, S0. We
then expect tent, which we identify with the approximate entanglement saturation time, to
scale linearly withN , which we empirically find is true also for σ (a smoothness parameter).
We further empirically find thatm2 (the shallow entanglement growth slope after tent) scales
approximately quadratically with N .

We show the results of these fits in Fig. 9.3, where markers are measured directly from
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Figure 9.4: Estimation of log negativity from fidelity. a. We demonstrate the validity
of the lower bound Eq. (9.1), by plotting the difference EN(ρ̂) − EP , with |ψ⟩ the pure
state with highest fidelity to ρ̂. Here, we generate 1000 random two-qubit mixed states as
uniform incoherent mixtures of two Haar random states. The difference is always above
zero, indicating the validity of the lower bound. b. Dependence between log negativity
EN(ρ̂) and fidelity F for globally depolarized Haar random states, Eq. (9.11). For small
values of F , the negativity EN(ρ̂) (black dashed) deviates from the lower bound EP (red),
illustrated here for the half-chain negativity of six-qubit depolarized Haar random states.
Remarkably, for such states, EN(ρ̂) is uniquely determined by the fidelity F and Hilbert
space dimension D. We find an analytic series expression for this dependence, Eq. (9.13),
with first-order correction illustrated in blue. We also illustrate general lower and upper
bounds for the log negativity, Eq. (9.18), in light blue. Inset: The lower bound (red)
improves exponentially as a function of system size, quantified here as the minimum fidelity
for which the lower bound is 90% of the actual value.

simulation, and lines are fits. Though here we show log negativity, the von Neumann
entropy scales and acts in the same way.

It is important to note that as system size increases, we gradually reach relatively less
entangled states at tent as compared to the expectation for a Haar random state (dashed lines
in Fig. 9.3). Given the Rydberg blockade constraint, we define the Haar random prediction
as SHaar ≈ log2(D0) − 0.47, where D0 is the blockaded Hilbert space dimension of the
half-cut chain, and the numerical offset of -0.47 is a type of Page correction [324], which is
actually [417, 418] ≈ log2(

64
9π2 ), as explained further below.

9.2.2 Negativity lower bounds and estimators

The validity of our entanglement-proxy has been shown in the past [416] for the case of
isotropic states; here we extend this result and validate our entanglement-proxy when the
target pure state, |ψ⟩, is an eigenstate of the mixed state, ρ̂ (Theorem 2). We then improve
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our result for the case of depolarized Haar-random pure states (Lemma 1), and then show
more general lower bounds which allow us to argue our entanglement-proxy should tighten
exponentially with system size (Lemma 2). Numerical support of these analytical claims is
shown in Fig. 9.4.

We begin with the case of |ψ⟩ being an eigenstate of ρ̂

Theorem 2. For any mixed state ρ̂ and pure state |ψ⟩ which is an eigenstate of ρ̂, the
logarithmic negativities EN(ρ̂) and EN(|ψ⟩) are related by

EN(ρ̂) ≥ EP ≡ EN(|ψ⟩) + log2(F ) , (9.3)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is their fidelity.

Proof. The proof of this Theorem follows in three steps. It is equivalent to derive
the bound

∥ρ̂TA∥1 ≥ F∥|ψ⟩⟨ψ|TA∥1 . (9.4)

First, we express the state

ρ̂ = F |ψ⟩⟨ψ|+ (1− F )ρ̂⊥ (9.5)

for some positive semi-definite state ρ̂⊥, which is guaranteed because |ψ⟩ is an
eigenstate of ρ̂.

Next, we use the variational definition of the trace-norm as a maximum over projectors
P̂ , i.e. operators with eigenvalues either 0 or 1.

∥ρ̂TA∥1 = 2max
P

tr(P̂ ρ̂TA)− 1 . (9.6)

This maximum is attained when P̂ is the projector onto the positive-eigenvalue
subspace of ρ̂TA . This variational definition gives the lower bound:

∥ρ̂TA∥1 ≥ F∥|ψ⟩⟨ψ|TA∥1 + (1− F )(2tr(P̂ψρ̂TA⊥ )− 1) , (9.7)

where P̂ψ is the projector onto the positive-eigenvalue subspace of |ψ⟩⟨ψ|TA .

Finally, we utilize an explicit construction of P̂ψ to show that tr(P̂ψρ̂TA⊥ ) ≥ 1/2,
giving the desired bound Eq. (9.4). This step is the most involved, which we show
below.
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The eigenvalues λ and eigenvectors |v⟩ of |ψ⟩⟨ψ|TA can be expressed in terms of
the Schmidt values sj and Schmidt basis |aj⟩, |bj⟩ of |ψ⟩, with respect to the same
bipartition [416]. With |ψ⟩ =

∑
j sj|aj⟩|bj⟩, the eigenvalues λ are s2j or ±sisj (for

i ̸= j), and their corresponding eigenvectors are respectively |vjj⟩ ≡ |aj⟩|bj⟩ and
|v±ij⟩ ≡ 1

2
(|ai⟩|bj⟩ ± |aj⟩|bi⟩). Then P̂ψ has explicit expression:

P̂ψ =
∑
j

|vjj⟩⟨vjj|+
∑
i<j

|v+ij⟩⟨v+ij | . (9.8)

Next, we use the relation tr(M̂TAN̂TA) = tr(M̂N̂), valid for all operators M̂ and N̂
defined on AB. Thus tr(P̂ψρ̂TA⊥ ) = tr(P̂ TA

ψ ρ̂⊥). P̂ TA
ψ can be expressed as

P̂ TA
ψ =

1

2
(I + |Φ⟩⟨Φ|) , (9.9)

where |Φ⟩ ≡
∑

j |aj⟩|bj⟩ is the unnormalized maximally entangled state in the
Schmidt bases {|aj⟩} and {|bj⟩}. Since ρ̂⊥ is a positive semidefinite state, we have

tr(P̂ TA
ψ ρ̂⊥) =

1

2
tr(ρ̂⊥) +

1

2
⟨Φ|ρ̂⊥|Φ⟩ ≥

1

2
. (9.10)

This proves the desired bound Eq. (9.4).

This Theorem validates the entanglement proxy in the simplest case. We next move to
improve it, first specifically in the case where |ψ⟩ is taken to be a Haar random state,
|ψHaar⟩.

Lemma 1. For depolarized Haar random states, i.e. states of the form

ρ̂ = F ′|ψHaar⟩⟨ψHaar|+ (1− F ′)
I

D
, (9.11)

where F ′ = F − (1−F )/(D− 1) (chosen so the fidelity ⟨ψHaar|ρ̂|ψHaar⟩ equals F ),
the mixed state entanglement has the form

EN(ρ̂) ≈ EN(|ψ⟩) + log2(f(F )) , (9.12)

where the more general function f can be expressed to low order as

f(F ) = F ′ +
9

64
(F ′DA)

−1 (2 ln(F ′DA) + 8 ln 2− 1) +O((F ′DA)
−3) , (9.13)

where DA is the Hilbert space dimension of subsystem A, here assumed to be for a
half-chain bipartitions.
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Proof. Here, we restrict our discussion to equal bipartitions, although our results can
be generalized to any bipartition.

First, with Haar random pure states, with high probability we have [417, 418]

EN(|ψ⟩) =
N

2
+ log2

64

9π2
≈ N

2
− 0.472 . (9.14)

This expression follows from random matrix theory (RMT), which states that the
Schmidt values sj of a Haar random state follow the quarter-circle law, while s2j
follow the Marchenko-Pastur distribution.

This enables us to compute the distribution of eigenvalues λ of |ψ⟩⟨ψ|TA . The
eigenvalues of the form λ=s2j contribute a constant amount to ∥ρ̂TA∥1. The dominant
(exponentially larger) contribution to the log negativity comes from the eigenvalues
of the form λ= ±sisj which follow the distribution [419]

P (λ̃) =
2

π2

[(
1 +

λ̃2

16

)
K

(
1− λ̃2

16

)
− 2E

(
1− λ̃2

16

)]
, (9.15)

where λ̃ ≡ DAλ, P (λ̃) is supported in λ̃ ∈ [−4, 4], and K and E are complete
elliptic integrals.

The negativity of the depolarized state ρ̂ can be calculated using this distribution:
the eigenvalues λ′ of ρ̂TA are given by λ′ = F ′λ+ (1− F ′)/D. Therefore, the trace
norm can be calculated from P (λ̃) as

∥ρ̂TA∥1 ≈ 2F ′DA

(∫ ∞

0

λ̃P (λ̃)dλ̃

+

∫ (F ′DA)−1

0

[
(F ′DA)

−1 − λ̃
]
P (λ̃)dλ̃

)
. (9.16)

The first term evaluates to 64
9π2F

′DA, while the second term can be systematically
computed by using the expansion P (λ̃)≈− 2

π2 ln |λ̃|+ 8 ln 2−4
π2 , valid for small λ̃,

giving Eq. (9.13).

Importantly, if more terms are added in the expansion of Eq. (9.13) Lemma 1 is an exact
estimator of the mixed state entanglement. Further, if DA is large, as is the case for large
system sizes, then the original simple proxy is restored as f ∼ F ′ ∼ F . We show the
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efficacy of this estimator, with f(F ) evaluated to first order, in Fig. 9.4b.

Finally we prove an even more general set of upper and lower bounds. While not amenable to
be computed experimentally, they allow us to argue our entanglement-proxy likely becomes
exponentially tight as the system size increases.

Lemma 2. For any state pure state |ψ⟩ and mixed state ρ̂ with decomposition

ρ̂ = F |ψ⟩⟨ψ|+ (1− F )ρ̂⊥ , (9.17)

where ρ̂⊥ is the (not necessarily positive semi-definite) remainder of the noisy state,
we can bound the mixed state log negativity by

EN(ρ̂) ≥ log2
(
F2EN (|ψ⟩) − (1− F )∥ρ̂TA⊥ ∥1

)
(9.18)

EN(ρ̂) ≤ log2
(
F2EN (|ψ⟩) + (1− F )∥ρ̂TA⊥ ∥1

)
,

where F is a lower bound for the fidelity ⟨ψ|ρ̂|ψ⟩.

Proof. Unlike above, ρ̂⊥ does not necessarily commute with |ψ⟩⟨ψ|.
To bound the negativity for such a state, we simply apply the triangle inequality on
the trace norm ∥ · ∥1, yielding Eqs. (9.18).

This bound is particularly useful in settings such as ours. Here, we can expect the noisy
state to be weakly entangled, i.e. ∥ρ̂TA⊥ ∥1 = O(1), while the pure state is highly entangled:
∥|ψ⟩⟨ψ|TA∥1 = O(exp(N)), where N is the system size. Then the above bounds imply
that our entanglement-proxy is in fact exponentially close to the true mixed state negativity:
EN(ρ̂) = EP +O(exp(−N)), as observed in the inset of Fig. 9.4b.

As a brief aside, we note an important point, arising from the fact that we have used
either Fd as the fidelity for experiment, or the linear cross-entropy, FXEB, as the fidelity for
the literature examples. However, Fd and FXEB are both affected by measurement error,
which strictly speaking does not affect the mixed state entanglement. However, both Fd
and FXEB are expected to decrease due to measurement errors, and so this only serves to
make our lower bound less tight. In principle the mixed state entanglement-proxy could be
measurement-corrected to account for this effect, but we choose to include measurement
errors as a more general quality-factor of the experiments.
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9.3 ROBUSTNESS TO REALISTIC EXPERIMENTAL ERRORS

In the above section, we showed several proofs which let us argue our entanglement-proxy,
EP is a tight lower bound for the mixed state entanglement under specific assumptions.
Here, we relax these assumptions, but show that under realistic noise sources, maximum
possible violations of our bound are at most O(1).

9.3.1 Error model simulations

To start, we reiterate and emphasize the results of Fig. 9.1a There, we showed numerically
that the entanglement-proxy appears to be a genuine lower bound of the mixed state entan-
glement either for a random unitary circuit (RUC) undergoing incoherent local noise, or for
our experiment undergoing the full set of error sources (Fig. 8.12).

Now, our aim is to provide further analytical and numerical evidence for the robustness of
the entanglement-proxy under: 1) global coherent errors, or 2) incoherent local errors.

9.3.2 Global coherent errors

In this section, we consider potential violations of our bound due to global coherent errors.
To study this, we first prove a Theorem for a more general bound of the mixed state
entanglement, based on studying the norm of the commutator between the mixed state ρ̂
and pure state |ψ⟩. This bound is equivalent to our original entanglement-proxy up to a
correction term, which we then show analytically is small if the normalized entanglement
of the target state is large. Finally, we present numerical support of this discussion.

Theorem 3 (Commutator based bound of the mixed state entanglement). For
any mixed state ρ̂ and pure state |ψ⟩ whose commutator has Frobenius norm
C ≡ ∥ [ρ̂, |ψ⟩⟨ψ|] ∥F , the logarithmic negativities EN(ρ̂) and EN(|ψ⟩) are related
by

EN(ρ̂) ≥ EN(|ψ⟩) + log2(F ) + 2 log2(1− (C/F )
√

(1− α)/(2α)) , (9.19)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is the fidelity, α ≡ 2EN (|ψ⟩)/DA ∈ [0, 1] is a normalized
entanglement of |ψ⟩, and DA is the Hilbert space dimension of the subsystem A

(assumed to be smaller than its complement).
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Proof. We write ρ̂ in a suitable basis as:

ρ̂ =

(
F B†

B ρ̂′

)
, (9.20)

where the first row/column denotes the basis vector |ψ⟩, and the second denotes the
subspace perpendicular to |ψ⟩. With P⊥ the projector onto this subspace, the matrix
ρ̂′ ≡ P⊥ρ̂P⊥ is positive semi-definite. The off-diagonal element B ≡ P⊥ρ̂|ψ⟩ is a
(d−1)×1 vector, which we take to be an unnormalized vector |B⟩ in the full Hilbert
space (with first entry equal to zero).

Using the variational definition of the trace-norm used in the proof of Theorem 2, we
write

∥ρ̂TA∥1 ≥ tr(P̂ψρ̂TA) = ⟨Φ|ρ̂|Φ⟩ (9.21)

= F |⟨ψ|Φ⟩|2 + ⟨Φ|ρ̂′|Φ⟩+ ⟨Φ|ψ⟩⟨B|Φ⟩+ ⟨Φ|B⟩⟨ψ|Φ⟩, (9.22)

where |Φ⟩ is the unnormalized maximally entangled state in the full Hilbert space,
in the Schmidt bases {|aj⟩} and {|bj⟩} of |ψ⟩. We then bound the terms of this
expression.

First, the Frobenius norm of the commutator C = ∥[ρ̂, |ψ⟩⟨ψ|]∥F has the expression

C2 = 2⟨ψ|ρ̂2|ψ⟩ − 2⟨ψ|ρ̂|ψ⟩2 = 2⟨B|B⟩ . (9.23)

Therefore, ⟨B|B⟩ ≤ C2/2. We then use the Schur complement condition for positive
semi-definite matrices. With our decomposition, the fact that ρ̂ is positive semi-
definite implies that the Schur complement ρ̂′−F−1|B⟩⟨B| is positive semi-definite.
We conclude that

⟨Φ|B⟩⟨B|Φ⟩ ≤ F ⟨Φ|ρ̂′|Φ⟩ . (9.24)

Using the fact that, |B⟩ ⊥ |ψ⟩ and that |Φ⟩ is an unnormalized state with norm DA

and overlap |⟨Φ|ψ⟩|2 ≡ αDA, then accounting for the norms of |Φ⟩ and |B⟩, the
maximum possible value of |⟨B|Φ⟩| is |⟨B|Φ⟩| ≤

√
(1− α)DAC/

√
2. Eq. (9.24)

also implies that ⟨Φ|ρ̂′|Φ⟩ ≥ (1− α)DAC2/(2F ).

Combining these ingredients with Eq. (9.22), we then have

∥ρ̂TA∥1 ≥ ⟨Φ|ρ̂|Φ⟩

≥ FαDA + (1− α)DAC2/(2F )− 2
√
αD2

A(1− α)C2/2
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=
(√

Fα−
√

(1− α)C2/(2F )
)2
DA

= FαDA

(
1− (C/F )

√
(1− α)/(2α)

)2
. (9.25)

Taking the logarithm of both sides, we arrive at Theorem 3.

With this Theorem 3 in hand, to validate our entanglement proxy we need only bound the
size of the quantity C/F , and show it is O(1). Here, we show this is the case under the
physically realistic scenario of the system undergoing coherent global errors. which are
a dominant error source in our experiment (Fig. 8.12). First, we prove a useful Lemma
rewriting the coefficient to the correction term, C/F , in terms of only F .

Lemma 3. For normally distributed global coherent quasistatic parameter errors,
the coefficient to the correction term in Theorem 3, C/F , can be written entirely in
terms of the fidelity as

C
F
√
2
=

√
2√

3 + 2F 2 − F 4
− 1 . (9.26)

Proof. To begin, consider evolution under a fixed parameter value, which results
in the pure state |Ψ(t, θ)⟩ ≡ e−i(Ĥ0+θV̂ )t|Ψ0⟩. In Theorem 1, we found a Gaussian
fidelity dependence between states corresponding to any two parameter values θ1 and
θ2:

F (θ1, θ2) ≡ |⟨Ψ(t, θ1)|Ψ(t, θ2)⟩|2 = exp

(
−Nλt2 (θ1 − θ2)

2

2

)
, (9.27)

For some constant λ [Eq. (8.5)]. Assuming a normal distribution P (θ) of parameter
values θ with mean θ0 and standard deviation σ, we obtain the mixed state ρ̂(t) =∫
dθP (θ)|Ψ(t, θ)⟩⟨Ψ(t, θ)|. In Eq. (8.19), we computed the fidelity of ρ(t) to the

pure state |Ψ(t, θ0)⟩ and found it to be F = 1/
√
Λ + 1, where Λ ≡ Nt2λσ2.

The Frobenius norm of the commutator, C, then has expression

C2 = ∥ [ρ̂(t), |Ψ(t, θ0)⟩⟨Ψ(t, θ0)|] ∥2F
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= 2⟨Ψ(t, θ0)|ρ̂(t)2|Ψ(t, θ0)⟩ − 2⟨Ψ(t, θ0)|ρ̂(t)|Ψ(t, θ0)⟩2

= 2

∫
dθ1P (θ1)

∫
dθ2P (θ2)

(
⟨Ψ(t, θ0)|Ψ(t, θ1)⟩

⟨Ψ(t, θ1)|Ψ(t, θ2)⟩

⟨Ψ(t, θ2)|Ψ(t, θ0)⟩
)
− 2F 2

=
4√

3Λ2 + 8Λ + 4
− 2

Λ + 1
. (9.28)

In this computation, the unknown phases of the inner products ⟨Ψ(t, θi)|Ψ(t, θj)⟩
cancel, allowing the use of Theorem 1. Rearranging, it is straightforward to then
arrive at Eq. (9.26).

We can then combine Theorem 3 and Lemma 3, to arrive at the simplified result

EN(ρ̂) ≥ EN(|ψ⟩) + log2(F ) + 2 log2

(
1−

√(
2√

3 + 2F 2 − F 4
− 1

)
1− α
α

)
(9.29)

≈

EN(|ψ⟩) + log2(F ) F ≈ 1

EN(|ψ⟩) + log2(F ) + 2 log2

(
1− 0.39

√
1−α
α

)
F ≪ 1

(9.30)

which shows that our entanglement-proxy is robust in the presence of quasistatic parameter
fluctuations, up to a O(1) deviation which decreases with the normalized entanglement
α ≡ 2EN (|ψ⟩)/DA.

More concretely, let us assume a normalized entanglement of α = 0.8 (as is approximately
the expectation at N = 60 and t = 14.3 cycles, see Fig. 9.3). In that case, Eq. (9.30)
reduces to

EN(ρ̂) ⪆ EP (ρ̂)− 0.6. (9.31)

In other words, we expect the maximum possible violation of our bound is at most around
half an ebit of entanglement. We emphasize that this does not mean the bound is in fact
violated by this amount – only that it potentially could be.

In order to validate that the coefficient to the correction term is small, in Fig. 9.5a we show
C/(F

√
2) as a function of F for various system sizes, calculated with our full Rydberg

error model (which includes both Markovian and non-Markovian terms, and both global
and local errors). Despite the error model including more noise terms than just global
parameter fluctuations, we see curves as a function of N increase but appear to converge
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Figure 9.5: Bounding the entanglement-proxy in the presence of errors. a. We consider
full error model simulations of the Rydberg dynamics, i.e. simultaneously under both global
and local errors which each can be either Markovian or non-Markovian. We study the ratio
of the commutator norm to the fidelity versus fidelity, truncating to only show data for
which F > 1/DA, where DA is the half chain Hilbert space dimension. The data appears
to converge as a function of system size, approaching the theory prediction obtained for the
case of purely global, coherent Hamiltonian fluctuations, see Eq. (9.29). b. Here we plot
the expected maximum violation of our entanglement-proxy lower bound as a function of
the fidelity and the normalized entanglement; more specifically, we plot the correction term
from Eq. (9.29). We find that in the reasonable parameter regime shown, the violation is
always ≲ 1 ebit. From analysis shown in Fig. 9.3, we plot the expected experimental values
from N = 12 to 60, and find the maximum violation appears to saturate around≈0.6 ebits.
Together these results imply that our entanglement-proxy is robust up to O(1) corrections
in the face of realistic noise.

near the prediction of Eq. (9.26). Then, assuming the prediction of Eq. (9.26), we show the
maximum possible violation of the lower bound provided by EP (i.e. the correction term
in Eq. (9.29)) as a function of normalized entanglement and fidelity. We further include
estimated experimental values up to N = 60 (Fig. 9.5b). We find the experimental values
appears to saturate around a maximum possible violation of ≈0.6 ebits.

9.3.3 Systematic miscalibration errors

Next, we comment on the case where the target state |ψ⟩ is set incorrectly, for instance
because of a miscalibration of the Hamiltonian parameters. While this type of error can
lead to a violation of our lower bound, the violation is small and the period for which it
occurs is ephemeral, because the incorrect choice of |ψ⟩will lead to a fidelity decay which is
stronger than any typical increase in pure state entanglement. To showcase this, we consider
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Figure 9.6: Sensitivity to incorrect pure state. a. We study a possible error source in
our entanglement proxy, that the pure state negativity could be assumed incorrectly, for
instance if the wrong Hamiltonian parameters are chosen in simulation. We consider error-
free quench evolution with Ω/2π = 6.9 MHz, leading to normal linear growth and then
saturation of pure state negativity (which is equal to the entanglement proxy, as F = 1). If
we calculated the entanglement proxy assuming the Rabi frequency was insteadΩ/2π = 7.2
MHz, then at very early times the calculated entanglement proxy can actual slightly exceed
the true entanglement, showcasing an adversarial example where our entanglement proxy
fails to be a lower bound (inset). However, loss of fidelity due to the Hamiltonian parameter
mismatch will eventually dominate (top), restoring the validity of the lower bound for large
system sizes or late evolution times. b. Even for a wide range of possible Rabi frequency
miscalibrations (represented by the ratio of the miscalibrated Rabi frequency to the actual
Rabi frequency), the maximum possible violation of the proxy lower bound is only ∼ 0.02
ebits.

quench dynamics resulting in linear growth of negativity followed by saturation (Fig. 9.6).
We study the two entanglement regimes (saturated or growing linearly) separately.

First, we consider the case where the entanglement has saturated. We imagine the true
evolution was performed with a Rabi frequency Ω0, resulting in a state |ψ0⟩ at time t.
However, we consider the situation where the parameters in the Hamiltonian have been
mischosen, for instance with Rabi frequency Ω1 = Ω0 + ω. From Theorem 1 we know the
resulting fidelity overlap between the two states is given by

F = |⟨ψ0|ψ1⟩|2 = 2−Nλω
2t2/2. (9.32)

Because we are studying the entanglement saturated regime, the pure state negativities of
|ψ0⟩ and |ψ1⟩ are approximately equal, but the mixed state negativity will now be calculated
as

EP (|ψ1⟩) = EN(|ψ1⟩) + log2(F ) (9.33)

≈ EP (|ψ0⟩)−Nλω2t2/2. (9.34)
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Therefore, any change in the assumed Rabi frequency will lead to a quadratic loss in the
mixed state entanglement proxy, and the proxy will remain a lower bound.

The situation is largely the same if we now work in the linear growth regime, where we
assume the pure state entanglement grows as E(|ψ0⟩) = αΩ0t, and E(|ψ1⟩) = αΩ1t,
where α is the entanglement velocity related to Lieb-Robinson bounds. In this case, the
entanglement proxy can be written as

EP (|ψ1⟩) = EN(|ψ1⟩) + log2(F ) (9.35)

= αΩ1t−Nλω2t2/2 (9.36)

= EP (|ψ0⟩) + αωt−Nλω2t2/2 (9.37)

= EP (|ψ0⟩) + ωt(α−Nλωt/2). (9.38)

Thus, as long asNλωt/2 > α, the erroneous choice of target state will still result in a lower
overall mixed state entanglement proxy, thus maintaining the lower bound. This will then
become increasingly tight for larger system sizes and later evolution times. In Fig. 9.6 we
show simulations demonstrating this, indicating that Hamiltonian parameter miscalibration
should not substantially affect the veracity of our mixed state entanglement lower bound
past very early times.

9.3.4 Incoherent local errors

We now turn to prove our entanglement proxy is a valid lower bound for the case of random
unitary circuits (RUCs) undergoing realistic noise, namely local depolarization error. To
do so, we will introduce a new theorem, which bounds the violation in our entanglement
proxy by a value related to the fidelity overlap with eigenstates of ρ̂, and then will show that
this correction term is small.

We proceed first by proving a more general Lemma which will assist us; the proof has
similarities to the proof of Theorem 3, but we will present it again here for completeness.

Lemma 4. For any mixed state ρ̂ and pure state |ψ⟩

EN(ρ̂) ≥ EN(|ψ⟩) + log2(F ) + 2 log2(1−
√
(1− F )(1− α)/(Fα)) , (9.39)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is their fidelity, α ≡ 2EN (|ψ⟩)/DA ∈ [0, 1] is a normalized
entanglement of |ψ⟩, and DA is the Hilbert space dimension of the subsystem A

(assumed to be smaller than its complement).
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Proof. In deriving Theorem 2, we utilized the fact that when |ψ⟩ is an eigenstate
of ρ̂, the remainder state ρ̂⊥ is positive semi-definite, which allowed us to bound
⟨Φ|ρ̂⊥|Φ⟩ ≥ 0. To show Lemma 4, we use constraints that arise from the fact that ρ̂
is positive semidefinite. We write ρ̂ in a suitable basis as:

ρ̂ =

(
F B†

B ρ̂′

)
, (9.40)

where the first row/column denotes the basis vector |ψ⟩, and the second denotes the
subspace perpendicular to |ψ⟩. With P⊥ the projector onto this subspace, the matrix
ρ̂′ ≡ P⊥ρ̂P⊥ is positive semi-definite. The off-diagonal element B ≡ P⊥ρ̂|ψ⟩ is a
(d−1)×1 vector, which we take to be an unnormalized vector |B⟩ in the full Hilbert
space (with first entry equal to zero).

Using Eq. (9.7), the negativity can be obtained from

∥ρ̂TA∥1 ≥ ⟨Φ|ρ̂|Φ⟩ = F |⟨ψ|Φ⟩|2+ ⟨Φ|ρ̂′|Φ⟩+ ⟨Φ|ψ⟩⟨B|Φ⟩+ ⟨Φ|B⟩⟨ψ|Φ⟩ . (9.41)

Only the last two terms above may be negative. We bound their magnitude using the
Schur complement condition for positive semi-definite matrices. With our decom-
position, the fact that ρ is positive semi-definite implies that the Schur complement
ρ̂′ − F−1|B⟩⟨B| is positive semi-definite. We conclude that

⟨Φ|B⟩⟨B|Φ⟩ ≤ F ⟨Φ|ρ̂′|Φ⟩ , (9.42)

which allows us to further conclude that

⟨Φ|ρ̂|Φ⟩ ≥ (
√
F |⟨Φ|ψ⟩| −

√
⟨Φ|ρ̂′|Φ⟩)2 . (9.43)

We then use the fact that |Φ⟩/
√
DA is a normalized state. Since |⟨Φ|ψ⟩|2 = αDA =

∥|ψ⟩⟨ψ|TA∥1, trρ̂′ = 1− F and ⟨ψ|ρ̂′|ψ⟩ = 0, we conclude that

⟨Φ|ρ̂′|Φ⟩ ≤ (1− F )(1− α)DA . (9.44)

Then when F ≥ 1− α, we obtain the claimed Eq. (9.39).

We then simply generalize Lemma 4 to the case where |ψ⟩ has fidelity overlap with a
particular eigenstate of ρ̂.
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Theorem 4 (Eigenstate-fidelity based bound). For any mixed state ρ̂ and pure state
|ψ⟩ which has a fidelity f ≡ |⟨ψ|λ⟩|2 with an eigenstate |λ⟩ of ρ̂, the logarithmic
negativities EN(ρ̂) and EN(|ψ⟩) are related by

EN(ρ̂) ≥ EN(|ψ⟩) + log2(F ) + 2 log2(1−
√

(1− f)(1− α)/(fα)) , (9.45)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is the fidelity, α ≡ 2EN (|ψ⟩)/DA ∈ [0, 1] is a normalized
entanglement of |ψ⟩, and DA is the Hilbert space dimension of the subsystem A

(assumed to be smaller than its complement).

Proof. We first write ρ̂ = Ft|v⟩⟨v| + (1 − Ft)ρ̂⊥, where |v⟩ is an eigenstate of
ρ̂ with eigenvalue Ft, and ρ̂⊥ is the state projected onto the orthogonal subspace
to |v⟩. We write the state |ψ⟩ that we benchmark against ρ̂ in terms of |v⟩ as
|ψ⟩ =

√
f |v⟩+

√
1− f |ψ⊥⟩. Then writing ρ̂ in the same basis as Eq. (9.20) gives

ρ̂ =

(
Ftf Ft

√
f(1− f)|ψ⟩⟨ψ⊥|

Ft
√
f(1− f)|ψ⊥⟩⟨ψ| ρ̂⊥ + Ft(1− f)|ψ⊥⟩⟨ψ⊥|

)
. (9.46)

As with the above, the only negative contribution to ⟨Φ|ρ̂|Φ⟩ arises from the off-
diagonal terms of Eq. (9.46). This allows us to improve our bound to the claimed
Theorem 4.

We now show that under incoherent local errors, the correction term presented in Theorem 4
is small. We study the case of random unitary circuits (RUCs) in the presence of local
depolarization in order to treat the problem analytically.

We study the fidelity and purity and bound the fidelity f ≡ |⟨ψ(t)|v⟩|2 between the ideal
evolved state |ψ(t)⟩ with the largest eigenstate |v⟩ of the noisy evolved state ρ̂(t), by
computing both the purity and fidelity of |ψ(t)⟩ and ρ̂(t). The relationship between these
quantities in fact bounds the fidelity of |ψ(t)⟩ to the largest eigenstate of ρ̂, allowing us to
apply Theorem 4 to evaluate the robustness of our negativity proxy.

Physically, our result means that the state ρ̂ is a mixture of a particular pure state |v1⟩
with large population F = λ1 and many other orthogonal states with smaller populations.
For a circuit with spacetime volume V = Nt, the largest eigenvalue decays exponentially
λ1 ≈ (1 − p)V , yet remains larger than all other eigenvalues. The other states correspond
to trajectories with errors. The average number of errors is k = pV , and there are roughly
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σ1, σ2, σ2 WP (σ1, σ2, σ3; p) WF (σ1, σ2, σ3; p)

+,+,+ 1 1
+,+,− 0 0
+,−,+ d

d2+1
+ 2d

d4−1
p+ 4d

3(d4−1)
p2 d

d2+1
+ d

d4−1
p

+,−,− d
d2+1

+ −2d3

d4−1
p+ 4d3

3(d4−1)
p2 d

d2+1
+ −d3

d4−1
p

−,+,+ d
d2+1

+ 2d
d4−1

p+ 4d
3(d4−1)

p2 d
d2+1

+ d
d4−1

p

−,+,− d
d2+1

+ −2d3

d4−1
p+ 4d3

3(d4−1)
p2 d

d2+1
+ −d3

d4−1
p

−,−,+ 4d2

d4−1
p+ −20d2

3(d4−1)
p2 + 16d2

3(d4−1)
p3 + −16d2

9(d4−1)
p4 2d2

d4−1
p+ −d2

d4−1
p2

−,−,− 1 + −4d4

d4−1
p+ 20d4

3(d4−1)
p2 + −16d4

3(d4−1)
p3 + 16d4

9(d4−1)
p4 1 + −2d4

d4−1
p+ d4

d4−1
p2

Table 9.2: Ising Boltzmann weights of local downward-facing triangle configurations for
the effective statistical mechanical models. Their partition functions equal the purity P
[Eq. (9.47)] and fidelity F [Eq. (9.48)] of random unitary circuits (RUCs) with local
depolarization. The geometric arrangement of σ1, σ2, σ3 is indicated in Fig. 9.7c. In this
work, we consider RUCs of qubits, with local Hilbert space dimension d = 2, and only
consider the O(1) and O(p) terms. In this table, however, we state the full expressions in
terms of general d for future reference.

V !
k!(V−k)! different spacetime locations of k errors. When the number of trajectories are much
less than the Hilbert space dimension D, we expect the resultant wavefunctions resultant
to be orthogonal to one another. This is true if the k errors are sparsely spread over the
system in spacetime (such that their separations are sufficiently large) and the effects of
errors are scrambled quickly. When p is sufficiently small and when the quantum dynamics
is sufficiently chaotic, these assumptions are expected to hold.

We proceed to justify this intuition by averaging over random circuits. At every time step,
we apply random unitary two-qubit gates in a brickwork circuit geometry, and subject it to
local depolarization, which locally depolarizes the state ρ at every site with probability p,
equivalent to applying the local channel ρ 7→ (1− p)ρ+ p(Ij/d)⊗ trj(ρ) independently to
every site j, where d = 2 is the local Hilbert space dimension (Fig. 9.7a). For simplicity,
we also take the initial state |ψ0⟩ to be the product state |0⟩⊗N . After averaging over RUCs,
the purity P ≡ tr[ρ(t)2] and fidelity F ≡ ⟨ψ(t)|ρ(t)|ψ(t)⟩ can be expressed as the partition
functions of two different Ising ferromagnets, with the Ising spins σ = ±1 respectively
denoting the local identity and swap permutations (Fig. 9.7b).

The derivation of the mapping between RUCs and classical spin models is described in
detail in many works including Refs. [420, 421]. Here we simply quote the result:

P =
∑
{σ}

∏
▽

WP (σ1, σ2, σ3; p) , (9.47)
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Figure 9.7: Purity and fidelity in random unitary circuits (RUCs) with local depolar-
ization. a. We consider a brickwork RUC, where local depolarization with strength p is
applied after every layer and at every site (red dots). b. Typical values of purity or fidelity
can be computed by random circuit averages. In both quantities, swap boundary conditions
are applied on four copies of the circuit, representing two copies of the states. For purity,
dephasing is applied to both copies (depicted here), while for fidelity, dephasing is only
applied to one copy. c. After averaging over random circuits, the purity and fidelity can be
expressed as the partition functions of effective statistical mechanical Ising models, with
three-spin Boltzmann weights on every downward-facing triangle (listed in Table 9.2), the
top boundary fixed to be ‘-’ (blue circles) and the bottom boundary free. d. The dominant
Ising spin configuration for both quantities is where all Ising spins are in the ‘-’ (swap) state
(blue circles). e. Subleading corrections arise from configurations with sparse, isolated
“bubbles” of ‘+’ Ising spins (red circles). f. For sufficiently deep circuits, the dominant
configurations are those with a boundary domain of ‘-’ spins and a bulk domain of ‘+’ spins.
However, this is only relevant in a regime where the fidelity is trivially small.

F =
∑
{σ}

∏
▽

WF (σ1, σ2, σ3; p), (9.48)

where the summation is over all possible Ising configurations of classical spin variables
σ = ±1 and the product is over all downward-facing triangles in the resulting triangular
lattice (Fig. 9.7c). WP/F (σ1, σ2, σ3; p) act as local “Boltzmann weights,” parameterized
by the error probability p. Their values are enumerated in Table 9.2. The Ising spins at
the bottom are determined by the initial condition and are effectively unconstrained (open
boundary condition), while the purity and fidelity expressions result in an additional layer
of Ising spins at the top, which are pinned to be the swap permutation ‘−’.

When p = 0, notice thatWP/F (−,−,+) = 0. Combined with the fact that all top boundary
spins have σ = −, the only non-vanishing contribution to P or F is the one where all σ = −
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(Fig. 9.7d). In this case, P =
∏

▽WP (−,−,−) = 1 and similarly F = 1. This is expected
since in the absence of errors, ρ is a pure state with perfect fidelity.

Now consider small, nonzero p. P and F have contributions from configurations where
some of the spin variables are flipped to the ‘+’ state, with weightO(p) (Fig. 9.7e). We call
such spin flips “bubbles,” because such bubbles are penalized from growing by an effective
line-tension term, which weights larger bubbles by a factor of (2/5)l, where l is the length of
the boundary of the bubble. These small bubbles will effectively have renormalized weights,
but will remain O(p) and whose precise values are not consequential to our conclusions.
Therefore, in this regime, the number of such spin flips will be rare and sparse. To this end,
we approximate P and F by simply summing over the contributions from sparse, disjoint
bubbles. However, this approximation breaks down at larger values of p, discussed below.
Within this approximation,

P ≈
(
1− 4d2

d4 − 1
p+O(p2)

)V
exp(APV ) ≡ exp(−BPV ) , (9.49)

F ≈
(
1− 2d2

d4 − 1
p+O(p2)

)V
exp(AFV ) ≡ exp(−BFV ) , (9.50)

where V is the spacetime volume (number of Ising spins) andAF andAP are the renormal-
ized relative weights of a single bubble.

We are interested in the ratio P/F 2 ≈ e(2BF−BP )V ≥ 1. When p≪ 1,

2BF −BP = −2AF + AP − 2 ln

(
1− 2d2

d4 − 1
p+O(p2)

)
+ ln

(
1− 4d2

d4 − 1
p+O(p2)

)
= AP − 2AF +O(p2). (9.51)

Because each bubble already hasO(p) weight, the leading order contribution to AP − 2AF

is determined by that of WP (−,−,+) and WF (−,−,+), which have ratio precisely 2.
Therefore, we conclude that all O(p) terms vanish and

P/F 2 = eCp
2V , (9.52)

for some O(1) constant C.

In order to translate this into a bound on the eigenstate-fidelity f , we denote the fidelities
between |ψ⟩ and the eigenstates |vi⟩ of ρ̂ as µi ≡ |⟨vi|ψ⟩|2, with f ≡ µ1. With λi the
eigenvalues of ρ̂, we have F =

∑
i λiµi and P =

∑
i λ

2
i . The Cauchy-Schwarz inequality

implies that

µ2
1 + (1− µ1)

2 ≥
∑
i

µ2
i ≥ F 2/P ⇒ 1− µ1 ≤

P/F 2 − 1

2P/F 2
. (9.53)
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Figure 9.8: Bounding the entanglement-proxy in the presence of errors. We consider
the case of incoherent local errors, specifically for random unitary circuits undergoing local
depolarization. The overlap, f , between the target pure state and the highest fidelity state to
ρ̂ remains near unity. Further, 1− f is linearly bounded by the quantity log(F )2/Nt with a
small proportionality constant 0.03 (inset), consistent with our RUC analysis leading up to
Eq. (9.54), and giving the overall bound Eq. (9.55).

Using Eq. (9.52), we obtain

1− f ≡ 1− µ1 ≤ (1− exp(−Cp2V ))/2 = O(p2V ). (9.54)

Using Theorem 4, we obtain

EN(ρ̂) ⪆ EN(|ψ⟩) + log2(F ) + 2 log2

(
1−

√
1− α
α

C2
ln(F )2

V

)
, (9.55)

for another O(1) constant C2, indicating that the entanglement-proxy EP is valid up to
a small correction which is negligible as long as F ≫ exp(−

√
V ) = exp(−

√
Nt) ∼

exp(−N), i.e. F is not trivially small. We give numerical support for this in Fig. 9.8.

Finally, we remark that additional configurations may come to dominate the partition
function sums Eqs. (9.47), (9.48) when the circuit is sufficiently deep. This is easiest to
understand in the statistical mechanical picture. For both the purity and fidelity, the bulk
has a small preference for the ‘+’ state, because depolarization breaks the Ising symmetry
and favors the identity element. Meanwhile, the boundary condition (associated with
evaluating purity or fidelity) pins the boundary to the ‘-’ state, acting as a strong boundary
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field. When the circuit is shallow, the boundary term dominates, giving rise to the global
‘-’ domain assumed above. However, when the circuit is sufficiently deep, it becomes
energetically favorable for a large domain wall to form, dividing the spins into a ‘-’ domain
near the boundary, and a ‘+’ domain in the bulk (Fig. 9.7f), at the expense of a domain wall
with free-energy scaling with the spatial size. In our above calculations, we neglect this
phenomenon because it is only relevant when the fidelity is trivially small, O(D−1), where
D is the total Hilbert space dimension. In this regime, the purity and fidelity decouple from
the bulk dynamics and assume this constant value which arises from the boundary Ising ‘-’
domain.

9.4 ENTANGLEMENT OF STATE PREPARATION

The mixed state entanglement proxy we have introduced (Eq. 9.1) is a general lower bound in
generic situations for any target pure state of interest. We have demonstrated its applicability
in quantum quench dynamics, and we anticipate its direct applicability in a much broader
range of quantum simulation experiments. To exemplify this, we consider in this section
the estimation of mixed state entanglement during quasi-adiabatic state preparation and at
quantum critical points.

To estimate the mixed state entanglement with our proxy, we require knowledge of the
entanglement of the pure target state and the fidelity of experimental state to the pure target
state. At quantum critical points, the scaling of entanglement is well studied [422], and the
pure state entanglement can be extrapolated from exact simulations at small system size.

It remains then to estimate the fidelity, for which we identify two possible methods
(Fig. 9.9a):

Method A) For particular states of interest, Fd may not work directly. However, Fd can
still be applied by following the quasi-adiabatic sweep preparation with a short, ergodic
quench [29, 30]. Importantly, Fd is accurate for short quenches, meaning there is little
fidelity loss in this process, and that tensor network methods can be used to generate exact
classical simulation references even for large system sizes where critical states have area
law entanglement with potentially logarithmic corrections [422]. Further, the performance
of this method could be improved by calibrating the fidelity loss due to the quench via
measurements at multiple times.

Method B) Continue the adiabatic sweep into a phase with a ground state for which the
fidelity is easily measured (such as a product state). The fidelity of preparing the critical
state can then be approximated as the fidelity at the end of the sweep.



289

Figure 9.9: Estimating mixed state entanglement of adiabatic state preparatiom. a.
The mixed state entanglement proxy can be applied to the case of adiabatic state preparation.
For instance, a quasi-adiabatic sweep may be performed to prepare the critical state at a
quantum phase transition. To estimate the fidelity, there are two possible methods: A)
use the Fd formula presented here (and as further discussed in this context of target state
benchmarking in Ref. [29]), or B) continue the sweep into a classical phase for which the
ground state fidelity can be directly measured. b, c. We use our error model to simulate a
sweep to the quantum phase transition between the disordered and Z2 phases of the ground
state Rydberg phase diagram in 1D. For method A, after reaching the critical point we
performed a disordered quench for 4 cycles and calculate Fd to estimate the fidelity. For
method B, we use the Z2 population at the end of the entire sweep to estimate the fidelity.
While both options work, for the particular sweep simulated here, method A yields a tighter
lower bound on the actual mixed state negativity at the critical point, particularly if the
measurement quench is error-free.

We demonstrate both fidelity estimation methods using our standard error model (with
no preparation or measurement errors) to simulate a quasi-adiabatic sweep to prepare the
ground state of the quantum phase transition between the disordered and classical Z2 ordered
phases in the 1D Rydberg phase diagram (Fig. 9.9b) with N = 11 atoms. The sweep in
question has a tangent detuning profile with maximum detuning range of ±2π × 40 MHz,
and Rabi frequency of 2π × 5 MHz. The sweep duration is 3 µs.

For Method A, we simulate the preparation of the target state at the critical point. We then
use the error model to simulate a quench for 4 cycles with a time-independent Hamiltonian
with Ω = 2π × 6.9 MHz, and with 2π × ±2 MHz random on-site disorder drawn from a
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Figure 9.10: Schematic for mixed state entanglement estimation of a target quantum
state. a. The quantum device prepares a target state [29] of interest, |ψ⟩, before performing
an ergodic quench, and measuring a set of resulting bitstrings. The experimental fidelity
drops both during state preparation and the quench due to errors (not pictured). b. A classical
computer then performs noise-free simulations of the entire dynamics (either exactly or
approximately), calculates both the bitstring probabilities and the time-averaged bitstring
probabilities, pavg, and further estimates the second moment of the bitstring probability
distribution. c. The fidelity is then estimated via a cross-entropy type quantity [29, 30, 375],
Fd. If the classical simulation were approximate, Fd is predicted either via Monte Carlo
inference or direct extrapolation. d. The negativity of the target state is estimated or
assumed, and the experimental mixed state entanglement-proxy is calculated.

uniform distribution. Such a technique in a similar parameter regime has been well studied
theoretically in our previous works [29, 30]. For Method B, we measure the population of
the classical Z2 ordered state (|10101 . . . 0101⟩) at the end of the entire quench. Similar
techniques can also be used for estimating fidelities of two-dimensional arrays [42, 43]. For
both methods the mixed state entanglement proxy remains a lower bound to the actual mixed
state negativity at the quantum phase transition, with Method A providing a tighter bound.
For Method A we also provide the value assuming the measurement quench is error-free
(or where the fidelity loss due to the quench is calibrated away), which closely estimates
the actual mixed state negativity (Fig. 9.9c). We summarize the entirety of Method A in
Fig. 9.10.
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CHAPTER 10
The classical cost of quantum simulation

We finally ask: which device, quantum or classical, has a higher fidelity of reproducing
a high-entanglement pure target state of interest? Equivalently, in term of fidelity, what
are the minimum classical resources required for a classical computer to outperform the
quantum device?

10.1 OVERVIEW

To answer this question, we compare the fidelity of the experiment against that of the MPS
with varying bond dimension. We define the critical bond dimension for a given system
size, χ∗, as the minimum bond dimension for which the classical fidelity always exceeds the
estimated experimental fidelity. Importantly, this controls the costs of classical simulation
– for instance, MPS simulation time scales asO(Nχ3). We find χ∗ continually increases as
a function of system size (Fig. 10.1a), reaching a maximum value of χ∗ = 3400 forN = 60

(Fig. 10.10), and apparently continuing to increase beyond that point.

In performing this study, we used our new Lightcone-MPS algorithm, but considered sev-
eral alternative approximate classical algorithms, including path integral [162], matrix
product operator [424], time-dependent variational principle [425], Schrieffer-Wolff trans-
formation [97], and neural net [426] approaches (see Section 10.2); however, we found
the equivalent classical cost of these methods quickly became infeasible, typically well
before N = 60. As an example, we show χ∗ for a more conventional MPS approach using
time-evolving block decimation [423] (Fig. 10.1a).

All calculations used a single 16-core node of the Caltech central computing cluster (see
Section 10.2). On this machine, we estimate that running the Lightcone-MPS simulation
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Figure 10.1: Classical cost to simulate the experiment. a. The equivalent classical cost
of the experiment, as quantified by the minimum bond dimension, χ∗, for the classical
simulation to maintain a higher fidelity than the experiment across all times, i.e. for
C > Fd (inset). We consider several classical algorithms (for example, time-evolving block
decimation, TEBD [423]), all of which become impractical at moderate system sizes. This
necessitates the introduction of our Lightcone-MPS algorithm (Section 10.2), which reaches
a maximum value of χ∗ = 3400 for N = 60. b. Predicted MPS costs (simulation time,
sampling time, and peak memory usage) to operate at χ∗ as a function of the experimental
per-atom fidelity (see text). Times are representative of a single 16-core node on the Caltech
cluster.
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for N = 60 and χ∗ = 3400 would entail a peak memory usage of ∼110 GB (scaling
as O(Nχ2)), and would take ∼11.3 days, or 11.3×16 ≈ 180 core-days; sampling from
the resultant MPS would take ∼0.3 core-seconds per sample (scaling as O(Nχ2)). For
comparison, the experimental cycle time is ∼1.7 s, limited by array loading and imaging;
the actual quantum simulation time is only∼1µs per shot. While the classical computer can
utilize multiple cores, so too can the experiment be parallelized over multiple atom-array
chains simultaneously, which in fact we do already at small system sizes.

We predict these classical costs are highly-sensitive to the effective per-atom fidelity, F ,
defined by FNt ≡ F (N, t) (Fig. 10.1b). For instance, the simulation time scales as
∼(1−F)−10 around the experimental F . While specialized classical hardware [389, 427]
may more readily perform the present approximate classical simulations, we thus expect
small improvements in the quantum fidelity may soon make the experiment out of reach of
even these more advanced classical systems.

For instance, using erasure conversion (Chapter 3) techniques we would expect roughly
a 50% increase in fidelity at N = 60 from both eliminating preparation and bright state
decay errors. Further, by post-selecting benchmarking purely in the blockaded Hilbert space
(Chapter 8.3, roughly a further 50% gain in fidelity could be achieved, meaning the fidelity
would be increased to ≈0.4, or an effective per-atom fidelity of F ≈ 0.999. This would
entail (Fig. 10.1 a χ∗ of a few tens of thousands, simulation times on the order of thousands
of core-days, sampling times exceeding the experimental duty cycle (in core-time), and
terabytes of required classical RAM memory.

10.2 SIMULATION METHODS

Here we describe the various simulation methods we compared against our quantum simu-
lator, including tensor network, path integral, neural net, and effective Hamiltonian models.

10.2.1 Description of the Caltech computing cluster

This work extensively utilizes the Caltech Resnick High Performance Computing (HPC)
Center, running CentOS Linux 7. In our work, each simulation is assigned to a single node,
using 16 cores of Intel Cascade Lake CPU (at 2.2 or 2.4 GHz), with a total node memory
of 386 GB (at 2933 MT/s). We note that many classical simulation times are reported as
core-time, which we simplify as the wall time multiplied by the number of cores.

In terms of raw wall time, the largest simulation we performed (for N = 60 and χ = 3072)
took ∼8.3 days (∼11.1 days if including the additional time points past the last experiment



294

Figure 10.2: Simulation time as a function of bond dimension. After an initial overhead
plateau, the Lightcone-MPS simulation time (measured in raw wall time on the Caltech
central cluster) to reach the last experimental time increases as a function ofN , approaching
the expected asymptotic χ3 scaling.

time in order to calculate pavg). Representative times to simulate up to the last experimental
time point are shown as a function of bond dimension in Fig. 10.2; extrapolating the expected
O(χ3) scaling we predict simulation for N = 60 and χ∗ = 3400 would entail a simulation
time of 11.3 wall-days (180 core-days). In total, we generated roughly ∼100 TB of data in
order to create and store the MPS tensors at various bond dimensions used in this work.

10.2.2 Schrieffer-Wolff transformations

We first consider the possibility of exact brute-force simulation of our system. The current
state-of-the-art in exact RUC simulation is 45 qubits [428], while the state-of-the-art for
continuous Hamiltonian time evolution is 38 qubits [389]. While clearly neither of these
approaches would work natively for the largest experimental system sizes of N = 60,
it is possible they could become applicable through a Schrieffer-Wolff transformation by
rewriting the Rydberg Hamiltonian only in the blockaded subspace, applying appropriate
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Figure 10.3: Using an effective Hamiltonian simulation. a. The Rydberg blockade
constraint stratifies the energy levels of the Rydberg Hamiltonian, enabling approximating
the dynamics in the full Hilbert space by an effective set of dynamics in the lowest energy
Hilbert space (relative size of energy sectors are not to scale). b. While a lowest-order
approximation (blue) quickly causes the fidelity of the reduced-Hilbert-space simulation
to drop compared to simulation in the full space, adding the second-order term from a
Schrieffer-Wolff Hamiltonian transformation [97] (orange) improves the fidelity. c. Even
with the second-order correction, the simulation fidelity decreases as a function of system
size. It is possible that numerically solving for higher order terms in the Schrieffer-Wolff
transformation will improve this fidelity, but it likely can never achieve unity given the finite
blockade violation probability (Fig. 8.8d).

level shifts to mimic the effect of higher blockade sectors, as described in the supplement
of Ref. [97]. Because of the Rydberg blockade constraint, the effective system size is
given by Ñ = log2(Fib(N + 2)) ≈ 0.7N , where Fib is the Fibonacci function. For the
60-atom system, Ñ∼42 qubits, so such brute-force techniques could allow for potentially
pseudo-exact simulation.

However, here we discount such approaches for multiple reasons. First they both rely on
specialized hardware – a supercomputing system [428] with 100s of TB of RAM, or tensor
processing units [389] which are not widely available. Further, even with this hardware it is
not clear that our system would be easily simulable, because of difficulties associated with
treating the blockaded subspace. In particular, applying local gate operations becomes more
complicated to implement efficiently, because the blockaded subspace is not factorizable
into the product of local bases.

Finally, applying this transformation is still an approximation to the true dynamics, for
which it is not clear if the resulting fidelities will actually be competitive at these large
system sizes and late evolution times. In Fig. 10.3 we test the accuracy of the Schrieffer-
Wolff transformation at second order for system sizes up to N = 20 (Ñ ∼ 14), where
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we see the fidelity falls by the latest experimental time. Importantly, the fidelity decay
increases with system size. A simple linear extrapolation implies a simulation accuracy of
∼0.48 for N = 60. Further, employing this approach will always have some fundamental
inaccuracy as the blockade constraint is imperfect, and we expect the ideal target state to
always have some finite population in the blockade-violating sectors, a symptom which
grows stronger with increasing system size and evolution time (Fig. 8.8d). However, we do
not discount the possibility that by adding successively higher-order terms in the Schrieffer-
Wolff transformation, the accuracy of this method could be at least improved.

We strongly emphasize that storing even a single copy of the wavefunction at Ñ∼42
still requires ∼65 TB of memory, and that Ñ∼42 exceeds the current state-of-the-art for
Hamiltonian simulation [389], N = 38. Still, we welcome collaboration on studying the
boundaries of nearly-exact classical simulation with the most advanced hardware.

10.2.3 Standard Trotterization-based TEBD-MPS

A standard approach for simulating large one-dimensional (1D) quantum systems is to use
a matrix product state (MPS) representation [393]. In this representation, the quantum state
is decomposed into a tensor network in the form of a 1D chain through repeated Schmidt
decompositions. The key insight of such schemes is that if particles are weakly entangled
at any bipartition of the system, then the on-site tensors will be low rank, and so can be
efficiently truncated to a smaller size while preserving most of the information. The size to
which the tensor is truncated is user-controllable, and is known as the bond dimension, χ.
Thus, larger bond dimensions equate to truncating less information when converting a state
into its MPS representation. For a more general review of MPS, see Ref. [392].

An important aspect of the tensor decomposition of the MPS is that unitary evolution can be
efficiently applied to just part of the tensor network. This enables the standard time-evolving
block decimation (TEBD) algorithm [423], in which Hamiltonian evolution is discretized
(or Trotterized) using the Suzuki–Trotter formula

e−i(
∑

i Ĥi)δ =
∏
i

e−iĤiδ +O(δ2). (10.1)

For a many-body Hamiltonian with (geometrically) local interactions Ĥi, each term is
applied sequentially onto the MPS. With suitable implementation, Trotterization results in
a second-order decomposition of the time evolution operator.

Thus, the basic algorithmic loop of the TEBD approach is: 1) perform Schmidt decompo-
sitions to write the state as a tensor network, 2) truncate the tensor ranks, 3) Trotterize the
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Hamiltonian, 4) and apply it to the relevant tensors, after which we repeat step 1. The two
fundamental sources of error in this approach come from steps 2 (the truncation) and 3 (the
Trotterization) (Fig. 10.5).

The error of the Trotterization decomposition depends on the product of the commutator
of the terms in the Hamiltonian and the time step dt (here dt is defined as a full cycle of
application of local evolution from the leftmost site to the rightmost site and then back
to the leftmost site). For the Rydberg system, the commutator is on the order of the
nearest neighbor interaction Vnn. Therefore, even with the second-order Suzuki–Trotter
decomposition, the perturbative expansion converges only for Vnn · dt ≲ 1. Due to the
Rydberg blockade, the nearest neighbor interaction for Rydberg Hamiltonian is strong,
putting a significant constraint on the maximum dt possible for the simulation. In practice,
with a second-order decomposition of the time-evolution operator, we found that a maximum
of dt ≈ 1/100 Rabi cycle is necessary to have a 0.5% Trotterization error.

Importantly, however, for too small of a timestep, the TEBD algorithm will perform many
more truncations, each time lowering the fidelity. This leads to a fundamental tension,
where an optimal dt must be chosen which balances these competing effects of truncation
and Trotterization errors (Fig. 10.5d).

Moreover, a truncation of the long-range interaction must be chosen to efficiently use the
TEBD algorithm. In practice, we found that keeping an interaction length of 5 results in
the desired error of less than 0.5% (Fig. 10.4c). This results in a local evolution involving
at most 6 atoms.

We emphasize that we do not believe this performance could be strongly improved through
the use of a Schrieffer-Wolff transformation as described above. This is because in perform-
ing the Schmidt decompositions, MPS-based methods already find the optimal working
basis, which is nearly entirely within the blockaded Hilbert space (Fig. 8.8d). In fact, it
is likely such a transformation will decrease the MPS performance, because of the added
complexity in local gate application due to the non-locally-factorizable structure of the
blockaded subspace.

10.2.4 The Lightcone-MPS algorithm

One of the challenges of the Trotterization TEBD algorithm is the small dt required to
faithfully simulate the quantum dynamics. However, this difficulty can be circumvented by
efficiently utilizing the lightcone dynamics of quantum systems, allowing for simulation with
much larger dt, and thus higher fidelity as truncation errors are minimized. In particular,
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Figure 10.4: Overview of the Lightcone-MPS algorithm. a. Illustration of the Lightcone-
MPS Hamiltonian decomposition over a single time step dt. The long range Rydberg
interaction is truncated after a cutoff distance of L. b. Illustration of the MPS update
procedure. c. We choose the Lightcone-MPS block size to be L = 6, which we estimate as
introducing an error of < 0.5% at N = 60.

in Ref. [396] it was shown that a global time evolution operator could be decomposed into
small blocks of local evolution by combining forward and backward time evolution. In
this proposed non-perturbative decomposition, the time step is only limited by the Lieb-
Robinson velocity v and the block size L of the local time evolution, not the blockade
interaction strength [429].

Here, we propose a modified version of the Hamiltonian decomposition in Ref. [396], which
is especially amenable to efficient integration with MPS state representations, and which
we call Lightcone-MPS. This modification allows for a smaller block size L with the same
cutoff of long-range interactions. This algorithm consists of alternating forward-time and
backward-time evolution, where the forward-time evolution has a block size L, and the
backward evolution has a block size of L − 1. Each block performs the time evolution
for all Hamiltonian terms strictly inside the block. Crucially, in this implementation, dt
is no longer limited by blockade interactions at the edges of the local evolution blocks
(Fig. 10.5d).

Specifically, for the Rydberg Hamiltonian on N atoms

Ĥ/h = Ω
N∑
i=1

Ŝxi −∆
N∑
i=1

n̂i +
C6

a6

N∑
i=1

N∑
j=i+1

n̂in̂j
|i− j|6

, (10.2)
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Figure 10.5: Comparing Lightcone-MPS and TEBD algorithms. a, b. For MPS algo-
rithms there exists an optimal simulation timestep; for too large a timestep, the Hamiltonian
Trotterization introduces simulation errors. For too small a timestep, the MPS is contracted
and truncated too often, leading to loss of accuracy. For the TEBD algorithm, the maxi-
mum timestep is set by the inverse blockade energy, but the Lightcone-MPS algorithm can
be used accurately with much larger timesteps. This ultimately means that at equal bond
dimension, χ, the Lightcone-MPS algorithm can be optimized to higher fidelities than the
TEBD.

we consider the Hamiltonian defined locally from k to k + L− 1 sites as

Ĥk,k+L−1/h = Ω
k+L−1∑
i=k

Ŝxi −∆
k+L−1∑
i=k

n̂i +
C6

a6

k+L−1∑
i=k

k+L−1∑
j=i+1

n̂in̂j
|i− j|6

, (10.3)

with the forward evolution operator on L sites and backward evolution operator on L − 1

sites defined as

Û forward
k,k+L−1 = exp

(
−iĤk,k+L−1

h

dt

2

)
; (10.4)

Ûbackward
k,k+L−2 = exp

(
+i
Ĥk,k+L−2

h

dt

2

)
(10.5)

Then, the evolution within one timestep is decomposed (Fig. 10.4a) as

exp

(
−iĤ

h
dt

)
≈ Û forward

1,L

N−L+1∏
i=2

(
Ûbackward
i,i+L−2 Û

forward
i,i+L−1

) 2∏
i=N−L+1

(
Û forward
i,i+L−1Û

backward
i,i+L−2

)
Û forward
1,L .

(10.6)

Here, the order of applying the time evolution operator is reversed in every other layer
(i.e. left to right for odd layers and right to left for even layers), and each two layers are
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defined as one timestep. In practice, each forward evolution can be combined with the
backward evolution (each pair of operators in Eq. (10.6)) into a single operator, reducing
the simulation cost.

The simulation cost can be further reduced by always keeping a tensor with L − 1 atoms
fused together, without performing addition decompositions of the MPS. (Fig. 10.4b). More
specifically, we can keep an MPS in the form

⟨z1, z2, . . . , zN |ψMPS⟩ =
∑

α1,α2,...,αN−1

Aα1
z1
Aα1α2
z2
· · ·Mαj−1αj+L−2

zj ,...,zj+L−2
· · ·BαN−1

zN
, (10.7)

without decomposingMαj−1αj+L−2
zj ,...,zj+L−2 into L−1 tensors. Here, zi denotes the physical indices

and αi denotes the bond dimensions. In addition, we use A to denote the tensors in the left
canonical form, B to denote tensors in the right canonical form, and M to denote tensors
in the center canonical form. Basically, all tensors to the left of Mαj−1αj+L−2

zj ,...,zj+L−2 should be in
the left canonical form and all the tensors to the right of Mαj−1αj+L−2

zj ,...,zj+L−2 should be in the right
canonical form. When applying the operator of length L between site j and site j + L− 1,
we can first combine Mαj−1αj+L−2

zj ,...,zj+L−2 with Bαj+L−2αj+L−1
zj+L−1 into a tensor of length L

Mαj−1αj+L−1
zj ,...,zj+L−1

=
∑

αj+L−2

Mαj−1αj+L−2
zj ,...,zj+L−2

Bαj+L−2αj+L−1
zj+L−1

. (10.8)

Then, we update the tensor by applying the operator of length L

M ′αj−1αj+L−1

zj ,...,zj+L−1
=

∑
z′j ,...,z

′
j+L−1

Uzj ,...,zj+L−1;z
′
j ,...,z

′
j+L−1

M
αj−1αj+L−1

z′j ,...,z
′
j+L−1

, (10.9)

and decompose the updated tensor back into two tensors of length 1 and L− 1

M ′αj−1αj+L−1

zj ,...,zj+L−1

SV D−−−→ A′αj−1αj

zj
M ′αjαj+L−1

zj+1,...,zj+L−1
. (10.10)

Here, the process of truncating the Schmidt coefficient and combining it intoM ′αjαj+L−1
zj+1,...,zj+L−1

is omitted for simplicity. The same process can be carried on over the rest of the system,
and reversed if the operators are applied in the reverse order.

The Lightcone-MPS algorithm allows for a maximum dt∼L/v. Although computing the
Lieb-Robinson velocity is difficult, based on empirical results, we find in practice that
dt ≈ 0.5 Rabi cycle is sufficient for a 0.5% decomposition error with a block size of 6
(long-range interaction cutoff at 5). Again, the dt is defined as a full cycle of application of
local evolution from the left-most site to the right-most site and then back to the left-most
site.
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Crucially, there is still a tension on dt from the competing effects of truncation and Trotteri-
zation errors, but for the Lightcone-MPS algorithm the Trotterization errors are minimized
up to much larger dt. This means at equal bond dimension, if selecting the optimal dt,
the Lightcone-MPS can reach higher fidelities than TEBD (Fig. 10.5de). Equivalently, to
reach the same fidelity necessitates the TEBD to use a larger bond dimension, as is visible
in Fig. 10.1.

Additionally, even if a larger bond dimension is used for the TEBD (where truncation error
is small), the optimal dt in TEBD is empirically ∼50× smaller than that for the Lightcone-
MPS, increasing the raw simulation time further. In practice, to benchmark the experiment,
we need to choose dt such that we can match the time step chosen in the experiment (around
0.77 Rabi cycle). Therefore, we use half the experimental time step as the dt for the
Lightcone-MPS algorithm, and use 1/80 the experimental time step as the dt for the TEBD
algorithm. This still results in a 1/40 reduction in number of simulation steps thanks to the
Lightcone-MPS algorithm.

10.2.5 Time-dependent variational principle

The Time-Dependent Variational Principle [425] (TDVP) algorithm is another MPS time
evolution algorithm. In this algorithm, the Schrödinger equation is projected onto the
variational manifold of MPS, where an effective (nonlinear) partial differential equation
(PDE) is obtained to update the MPS parameters. This method is better than TEBD in
certain situations such as simulating emergent hydrodynamics, due to its ability to preserve
all symmetries and conservation laws. In addition, TDVP can naturally handle long-range
interactions.

However, the TEBD algorithm (and the Lightcone-MPS algorithm) is expected to be better
suited in our setup. First, the TEBD algorithm is optimal for minimizing the infidelity in
each evolution time step. This is done by truncating the Schmidt coefficients in a way that
the infidelity is minimized. In the TDVP algorithm, on the other hand, the infidelity is
not necessarily minimized at the cost of preserving conserved quantities. Second, when
combined with MPS representation, the TDVP implementation is nontrivial. This is due to
the existence of the gauge degree of freedom in MPS representation. More specifically, the
representation of MPS is not unique due to gauge transformation. This makes it difficult to
utilize MPS-based TDVP by leveraging existing PDE solvers. Ref. [430] presents a solution
to this problem, which shows that TDVP can be implemented by using the canonical form of
MPS, but it relies on evolving the system locally in small time steps, akin to the Trotterization
of the Hamiltonian. In addition, it turns out that this solution is a minor modification of
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the original TEBD algorithm, where a backward time evolution is added. This backward
evolution is already naturally incorporated in our Lightcone-MPS algorithm.

Moreover, regardless of the implementation of the TDVP algorithm, the PDE needs to
be solved numerically, with the maximum time step limited by the largest term of the
Hamiltonian or the largest term in the PDE. Therefore, the TDVP algorithm has the same
bottleneck as the TEBD algorithm: the time step must be small compared to the blockade
interaction strengths, limiting its utility. In our Lightcone-MPS algorithm, however, this
limitation is lifted by utilizing extra physical properties such as Lieb-Robinson bound and
our knowledge about the geometry of the system (Fig. 10.4). Given this, we do not explicitly
test a TDVP implementation in this work.

10.2.6 Noisy MPO-based simulation

Instead of simulating perfect quantum dynamics with limited fidelity, an alternative method
of benchmarking with the experiment is to (almost) exactly simulate noisy quantum dy-
namics ρ̂(t) with similar fidelity. We explore this possibility using the recently developed
matrix product operator (MPO) based simulation [424]. In MPO simulation, each local
tensor has an extended Hilbert space dimension of 4 instead of 2. The increased local
dimension significantly increases the cost of simulation using the efficient decomposition
of Ref. [396]. Therefore, we fall back to simulating the Trotterized Hamiltonian dynamics
and ignore the long-range interactions. In addition, we choose dt to be half the Rabi cycle,
and ignore Trotterization error, in order to consider this method in the most favorable light.

For simplicity, we consider local dephasing error as the only error source and find the
effective dephasing rate γ per qubit as a function of system size such that the fidelity
of the simulation matches the fidelity of the experiment (Fig. 10.6), extrapolated using
the exponential decay fit. As shown in the figure, the effective dephasing rate decreases
as the system size increases, which means the dephasing rate at N = 12 overestimates
the dephasing rates at larger system sizes. Since the MPO entanglement decreases as
the decoherence rate increases, this leads to an underestimation of the MPO simulation
complexity. To make the case more favorable for the MPO method, we thus use the
dephasing rate at N = 12 for the simulation at N = 60.

Assuming the early time exponential fit of the experimental fidelity, the Lightcone-MPS al-
gorithm achieves similar fidelity with the experiment atN = 60 using χ = 913 (Fig. 10.10).
This motivates us to test if the MPO method with a similar or larger bond dimension can
achieve the same fidelity. We simulate the noisy quantum dynamics at N = 60 using
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Figure 10.6: Matrix product operator (MPO) simulation. Effective dephasing rate per
qubit to obtain noisy dynamics with a fidelity similar to the exponential decay fit of the
experiment. Inset) Truncation accuracy of the MPO method with χ = 1100 at N = 60.
The effective dephasing rate is taken as the dephasing rate at N = 12, which should serve
as an upper bound of the effective dephasing rate at N = 60.

χ = 1100 and the dephasing rate upper bound, yielding the un-normalized simulation
mixed state ρ̂trun, where we do not explicitly normalize ρ̂trun at each time step. Here,
tr(ρ̂trun) serves as a measure of the simulation accuracy, where it equals 1 when the simu-
lation is perfect and decreases as we truncate the density matrix. We measure tr(ρ̂trun) as a
function of time (Fig. 10.6, inset) and find that it drops to∼10−7. This shows that the MPO
algorithm is far from an exact simulation of the noisy quantum dynamics. We note that the
tr(ρ̂trun) measures the accuracy of the algorithm compared to the noisy dynamics. It does
not measure the fidelity of the simulation compared to the ideal dynamics, which can be
even smaller. Thus, this study, in combination with the Trotterization errors not considered
here, implies the MPO-based approach will achieve far lower fidelity than the experiment
and the lightcone-MPS method for reasonable simulation parameters.

10.2.7 Path integral formulation

A hybrid path integral algorithm was introduced in Ref. [162] for quantum circuit simulation.
In this algorithm, the system is cut into two patches. When no gate is applied between the
two patches, each patch evolves independently under the Schördinger equation. When a
gate is applied across the two patches, the gate is decomposed into sums of gates that apply
independently on the two patches, where one path was sampled out of this decomposition.
More formally, we write the gate as Û =

∑
i V̂i ⊗ Ŵi. For each path, we only choose a

particular V̂i ⊗ Ŵi, so that the two patches stay in a product state. The wave function of
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Figure 10.7: A hybrid path integral simulation. a. Illustration of the hybrid lightcone-
path integral (Lightcone-PI) method. b. Simulation fidelity of the Lightcone-PI with 4×106
paths, showing decreasing fidelity as a function of N . We compare against Fsvd for the
Lightcone-MPS algorithm at χ = 1024 and N = 60, which outperforms the L-PI method.
c, d. At a fixed N , the infidelity in the Lightcone-PI method from using too few paths
is visible when benchmarking directly against experimental data, as was the case for the
Lightcone-MPS algorithm (Fig. 8.1).

each path can be then summed over to obtain the desired result. Suppose each gate across
the cut can be minimally decomposed as r product gates and there are m gates across the
cut in total, rm paths are required to fully describe the system.

In this work, we adapt the hybrid path integral algorithm to the long-range Hamiltonian
dynamics. We first decompose [396] the global time evolution operator into local gates
with block size L = 10. We further reverse the order of the gate application at every
other layer so the gates can be fused between the two layers (Fig. 10.7). This reduces the
number of gates that need to be decomposed at the cut. This allows us to have a minimum
of 19 cuts throughout the simulation to match the experiment time steps. Similar to the
original hybrid path integral algorithm, we cut the system into two halves. For gates applied
across the two halves of the system, we use Schmidt decomposition to write the gate as
Û =

∑
i σiV̂i ⊗ Ŵi, where σi can be then absorbed into either of the halves. However, a

naïve decomposition results in a large interaction between the blockade and non-blockade
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sectors, which results in poor convergence. Therefore, we project the gate into the blockade
sector before performing the decomposition.

We test this algorithm for up to 24 atoms where we truncate the rank of the gates across
the cut to ri to mimic actually simulating the path integral with

∏
i ri paths. We find that

the resulting fidelity mostly depends on the number of paths and only weakly depends
on the system size, where the dependency becomes weaker as the system size increases.
This is because, for all system sizes, we have the same number of gates across the cut,
which we expect to be the only factor affecting the fidelity for large enough system sizes.
Extrapolating to 60 atoms, we find that we need at least 4× 106 paths to obtain a fidelity of
∼0.01, where each path requires an exact simulation of two 30-atom systems. Even using
our Lightcone-MPS method, simulating each 30-atom system takes 60 core-hours (with
χ = 1536, which is nearly exact). This adds up to a formidable amount of computational
resources. In comparison, a direct application of the Lightcone-MPS algorithm for 60
atoms achieves better fidelity with a bond dimension of χ = 1024 (Fig. 10.7b).

Interestingly, we can still benchmark the experimental fidelity using the hybrid path integral
approach, which we see shows qualitatively the same behavior as the Lightcone-MPS
algorithm in Fig. 8.1. That is, when the number of paths is too low, the classical simulation
fidelity drops, and this drop is visible directly on the benchmarked experimental fidelity
(Fig. 10.7cd).

This raises the interesting potential prospect of using the experimental benchmarking pro-
tocol in reverse to determine the fidelity of the classical algorithm, which we leave to future
work.

10.2.8 Neural network based Hamiltonian simulation

Neural networks have shown great potential in simulating quantum dynamics [426, 431].
However, such protocols are still in an early age of development and their application to the
Rydberg Hamiltonian with ergodic, long-time dynamics is still challenging. We considered
two different neural network algorithms used in Refs [432, 433], but neither results in a
fidelity higher than the Lightcone-MPS algorithm, even for comparing both at system sizes
as low as N = 12. While it is possible that neural network based algorithms require
additional fine-tuning and hyper-optimization, as it is not the main focus of this work, we
leave them for future study. We also note that neural network algorithms are under active
development, and we welcome readers to benchmark their algorithms on our data.
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Figure 10.8: Estimating the classical fidelity. a. MPS truncation accuracy, Fsvd, and MPS
fidelity, C, for various bond dimensions and system sizes. The MPS fidelity is measured
against another MPS calculation with χ = 3072, which is almost exact for N ≤ 30. b. For
a fixed log-normalized bond dimension, χ̃∼0.7, Fsvd first over-estimates C, before under-
estimating it at late time (left). However, rescaling the time by the entanglement saturation
time (which is linearly proportional to system size, see Fig. 8.3e) causes the data to collapse
(right). This implies that before tent, Fsvd will over-estimate C, so in the parameter regimes
we study in this work, using Fsvd is the conservative choice when comparing quantum and
classical fidelities. c. The ratio ofFsvd/C around the entanglement saturation time, showing
the over-estimation increases with decreasing χ̃. Given the data collapse, we expect that
Fsvd overestimates by a factor of 1.15 at the entanglement saturation time for N = 60.
Taking this effect into account implies the actual χ∗(N=60) ≈ 4000, higher than the value
of 3400 quoted earlier in this Chapter. However, we choose to present the lower value as
a more conservative estimate. We note that this relationship between Fsvd and C is only
observed to hold for the case of the Lightcone-MPS algorithm, because the timestep is long
enough that truncations are relatively independent. The agreement is not observed with a
TEBD MPS implementation (which requires much finer timesteps, see text).

10.3 ESTIMATING THE MPS FIDELITY

While MPS gives a controlled approximation of the exact wave function, an exact calculation
of the MPS fidelity, C – defined as the overlap between the MPS state and the ideal target
state – is not possible over multiple time steps for system sizes greater thanN∼30. However,
it is possible to estimate the MPS fidelity from the truncation fidelity

Fsvd =
∏
i

χ∑
α=1

s2i,α, (10.11)
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Figure 10.9: Estimating χ∗ from Fd and true classical fidelity. For system sizes larger
than N > 30, we are not easily able to calculate the exact classical MPS fidelity (as it is
impractical to simulate the exact reference state), so we have used Fsvd to compare against
the experimental quantum fidelity. However, for N ≤ 30, we can directly compare against
the classical MPS fidelity, C, which we find gives consistent values of χ∗ in the applicable
range. Finally, for these small N , we can directly calculate Fd between an approximate
MPS simulation and an exact simulation. We find the corresponding χ∗ is also consistent
with the values based solely on fidelity.

where i runs over all steps involving Schmidt value truncations, and si,α are the Schmidt
values at truncation step i. Here, we assume the wave function is normalized where∑∞

α=1 s
2
i,α = 1. While this estimation is only approximate, it can be extremely accurate

when successive truncations are independent [394]. For N ≤ 30, a bond dimension of
χ = 3072 almost exactly captures the dynamics, therefore, it is possible to compute the
MPS fidelity, C, for various bond dimensions. In Fig. 10.8a, we plot Fsvd versus the actual
MPS fidelity, C, to show the general agreement when using the Lightcone-MPS algorithm.
This is expected due to the large dt of the algorithm, which makes successive truncations
approximately independent.

In addition, we notice that the agreement becomes better when the system size increases,
indicating thatFsvd can be a good estimator of the MPS fidelity for large systems (Fig. 10.8b).
If anything, it appears that in the parameter regime of evolution times shorter than the
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Figure 10.10: Extrapolating χ∗. MPS fidelity (as quantified by the MPS truncation,
Fsvd) for bond dimensions up to χ = 3072, the largest directly simulated. None of the
MPS fidelities (markers) exceed the experimental value (blue dashed lines), but given the
functional smoothness in this regime, we use a linear extrapolation of the last few data
points to predict the χ∗ for the experimental fidelity, yielding χ∗ = 3392 ≈ 3400.

entanglement saturation time, Fsvd slightly over-estimates C, making it a conservative
quantity to study (Fig. 10.8bc). Further, we emphasize that for N < 30, where we have
access to both C and Fsvd, the values of χ∗ are consistent (Fig. 10.9).

10.3.1 Extrapolating the experimental classical cost

We only directly perform Lightcone-MPS simulations up to χ = 3072. At this highest χ,
the MPS fidelity for N = 60 at the latest experimental time is 0.088, as quantified by Fsvd.
Given that this is lower than the experimental fidelity of 0.095(11), we need to extrapolate
in order to find the predicted value of χ∗. The fidelities are very close, so we make a simple
linear extrapolation approximation, from which we find χ∗ = 3392 ≈ 3400 (Fig. 10.10a).

10.3.2 Fitting and extrapolating the MPS fidelity

In the previous subsection, we used a linear extrapolation of MPS fidelity as a function of
bond dimension in order to predict χ∗ beyond the regime we directly simulated. However, in
Fig. 10.1b, we compare the experimental and MPS fidelity over a much larger hypothetical
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Figure 10.11: A universal form of MPS fidelity decay. For estimating the χ required to
reach a broader range of fidelities (as for instance is used in Fig. 10.1b), we fit the Lightcone-
MPS fidelity as a stretched exponential decay past the exact simulation time (inset). We
observe a universal collapse of the decay rate as a function of the log-normalized bond
dimension, for all system sizes and bond dimension up to N = 60 and χ = 3072.

fidelity range, where the linear approximation breaks down (see for instance Fig. 8.16ab).

In order to make the comparisons in Fig. 10.1b, we perform fits of the MPS fidelity,
approximated by Fsvd. For RUCs, Fsvd is essentially exponentially decaying past tex, as the
truncations are independent [394]. In our case this behavior is not perfect, and so we fit the
MPS fidelity as a stretched exponential decay after tex.

We are able to fit the exponential parameters, and in particular observe an apparent univer-
sality in the decay rate as a function of the log-normalized bond dimension (Fig. 10.11b),
an interesting phenomena which we leave to future study. We ultimately use these fits to
predict the MPS fidelity at arbitrary bond dimension to compare against experiment; we
find the fits generally agree to within a few percent with the true fidelities.

To generate Fig. 10.1b, we assume an effective per-atom error rate,F , and find the minimum
χ∗ such that the fitted MPS fidelity is always greater than F = FNt. The experimental F
is the value required for exponential decay of the experiment to match the fidelity value
of 0.095(11) for the experiment at t = 14.3 cycles and N = 60. We then convert χ∗ into
runtime using the known conversion of χ = 3072→ 136 core-days, measured empirically
on the Caltech cluster, and assuming the runtime scales as O(χ3) (Fig. 10.2).
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10.4 NEGATIVITY OF TRUNCATED MPS STATES

We now investigate an interesting observation, that atN = 60 the entanglement-proxy found
for the experiment in Fig. 9.2 is ∼3 ebits higher than log2(χ

∗) in Fig. 10.1. In other words,
the fidelity-equivalent MPS simulation is less entangled than the experiment. Here we study
the fidelity and entanglement (negativity) of truncated pure state MPS representations to
explain this behavior. Ultimately out results indicate there may be a deeper connection
between mixed state entanglement and computational complexity, a thorough investigation
of which we leave to future work.

For a theoretical treatment, we consider a simplified setup where we start with an ideal
pure state and its equal bipartite Schmidt decomposition |ψ⟩ =

∑DA

j=1 sj|aj⟩|bj⟩ where
DA is the Hilbert space dimension of the half system and the Schmidt values sj are
assumed to be in descending order. Then the Schmidt rank is truncated to a maximum
bond dimension χ ≤ DA. Denote the truncated state and its Schmidt decomposition
as |ψχ⟩ =

∑χ
j=1 s

′
j|aj⟩|bj⟩, with s′j = sj/

√∑χ
k=1 s

2
k (normalization condition). It is

straightforward to see that

F = |⟨ψχ|ψ⟩|2 =
χ∑
j=1

s2j . (10.12)

To derive the entanglement negativity, the eigenvalues λ of the partial transposed state
|ψ⟩⟨ψ|TA is given by s2j or ±sisj as mentioned above. This gives

|||ψχ⟩⟨ψχ|TA||1 =

(∑χ
j=1 sj

)2∑χ
j=1 s

2
j

, (10.13)

and therefore

E(|ψχ⟩) = log2 |||ψχ⟩⟨ψχ|TA||1 = 2 log2

χ∑
j=1

sj − log2

χ∑
j=1

s2j . (10.14)

For generic states with unknown sj , it is hard to draw any meaningful relationship between
fidelity and entanglement negativity. Therefore, we consider two cases: maximally entan-
gled states and Haar random states.

Maximally entangled states—For a maximally entangled state, the Schmidt values are
given by sj = 1/

√
DA. It follows directly that

F =
χ

DA

; (10.15)

E(|ψχ⟩) = log2 χ = log2DA + log2 F, (10.16)
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with log2DA the log negativity of the ideal maximally entangled pure state. Thus, the log
negativity for a fidelity-equivalent truncated maximally entangled state is equal to that of
an isotropic mixed state.

Haar random states—The case for Haar random states is more interesting, as such states
arise from random unitary circuit evolution, and are closer to the output of our Rydberg
experiment as well. As mentioned previously, the Schmidt values of Haar random states
follow the quarter-circle law as

P (s̃) =
1

π

√
4− s̃2, (10.17)

where s̃ ≡
√
DAs. Setting a maximum Schmidt rank can be translated to setting a

minimum cutoff smin (and the corresponding 0 ≤ s̃min ≤ 2) of the Schmidt values (keeping
only Schmidt values above smin), where the relation between χ and s̃min is given by

χ = DA

∫ 2

s̃min

P (s̃)ds̃ = DA

[
4

π
sin−1

(√
2− s̃min

2

)
− 1

2π
s̃min

√
4− s̃2min

]
. (10.18)

Depending on the cutoff,

χ(s̃min)∑
j=1

sj =
√
DA

∫ 2

s̃min

s̃P (s̃)ds̃ =

√
DA

3π

(
4− s̃2min

) 3
2 ; (10.19)

χ(s̃min)∑
j=1

s2j =

∫ 2

s̃min

s̃2P (s̃)ds̃ =
4

π
sin−1

(√
2− s̃min

2

)
+

1

4π
s̃min(2− s̃2min)

√
4− s̃2min.

(10.20)

Therefore, the fidelity and log negativity can be written in parametric forms as

F (s̃min) =
4

π
sin−1

(√
2− s̃min

2

)
+

1

4π
s̃min(2− s̃2min)

√
4− s̃2min; (10.21)

E(|ψχ(s̃min)⟩) = log2DA + log2
(4− s̃2min)

3

9π2
− log2 F (s̃min). (10.22)

It is easy to verify that when s̃min = 0, the equations reduce to the case of ideal Haar random
states, with χ = DA, F = 1, and E = log2DA + log2 64/9π

2, where 64/9π2 ≈ 0.72 is the
Page correction [324].

Importantly, we can then compare this prediction against the prediction for a depolarized
Haar random state, where we use the first-order approximation from Eq. (9.13), in other
words taking DA → ∞. At a given fidelity for each, the difference in estimated entangle-
ment, δ, is given as
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Figure 10.12: Entanglement difference between truncated and depolarized Haar ran-
dom states. At fixed fidelity, MPS truncation and depolarization affect the entanglement
content of a pure state differently. For a Haar random state, we can solve this relation an-
alytically, finding the depolarized state has a higher entanglement (log negativity) content
than the MPS-truncated stated at equal fidelity.

δ = EN(ρ̂Haar)− EN(|ψχ(s̃min)⟩) (10.23)

= 3 log2

(
4

4− s̃2min

)
+ 2 log2(F ) (10.24)

≈
(
2 + log2

(
64

9π2

))
(1− F )2/3 ≈ 3

2
(1− F )2/3 (10.25)

In the last line we have performed series expansions of both F and δ in terms of s̃min to
arrive at a non-parametric form. In Fig. 10.12 we plot δ (as well as the non-parametric
approximation) as a function of F , which is always positive, indicating that for all F , the
MPS representation of a truncated Haar random state is less entangled (byO(1) ebits) than
a equivalent-fidelity depolarized Haar random mixed state. Given that the experiment does
not produce a perfect Haar random state, as well as the fact that a real MPS simulation
performs many truncations between potentially correlated timesteps, these results are in
good agreement with the experimentally found discrepancy of∼3 ebits. We thus conjecture
there is a deeper connection between the mixed state entanglement proxy we have introduced
and the classical computational complexity, though leave further investigations to future
work.
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Coda

As quantum systems tackle tasks of rising complexity, it is increasingly important to un-
derstand their ability to produce states in the highly entangled, beyond-classically-exact
regime. Here we have studied this regime directly by measuring the global fidelity of
an analog quantum simulator with up to 60 atoms, the first such demonstration to our
knowledge.

A careful analysis (Fig. 8.22) indicates that with reasonable classical resources, our Monte
Carlo inference protocol is scalable to an order-of-magnitude larger system sizes than were
studied here, potentially enabling fidelity estimation for system sizes with N ∼ 500. It
is also applicable for digital devices [162, 316, 381, 382, 395] that are affected by non-
Markovian noises like control errors [162], which could then lead to non-exponential scaling
of global fidelities in certain parameter regimes. Additionally, it could be applied to analog
quantum simulators for itinerant particles [30, 59, 65, 434]. Further, one may imagine
applying the same basic technique to cross-platform comparisons [321, 435, 436] between
erroneous quantum devices by varying the decoherence of each, a form of zero-noise
extrapolation [437, 438].

In addition, we have addressed a longstanding problem by introducing a simple proxy
of the experimental mixed state entanglement. This entanglement-proxy can serve as
a universal quality-factor comparable amongst analog and digital quantum devices as a
guide for improving future systems, and may act as a probe for detecting topological
order [439, 440] and measurement-induced criticality [441].

Finally, we have studied the equivalent classical cost of our experiment on the level of
global fidelity, which we note could be greatly increased through the use of erasure con-
version [26, 68, 75]. Similar techniques could be applied to quantify the classical cost of
measuring physical observables [66, 385], and to benchmark the performance of approx-
imate classical algorithms themselves through comparison to high fidelity quantum data.
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While here we have focused on one-dimensional systems to exploit the power of MPS rep-
resentations, using higher-dimensional systems [42, 43], while maintaining high fidelities,
may prove even more difficult for classical algorithms. We emphasize that in contrast to
many previous experiments [162, 316, 381, 382] which explicitly targeted spatiotemporally
complex quantum evolution when exploring the limits of classical simulation, here the
dynamics we have studied are one-dimensional and both space- and time-independent, yet
still begin to reach a regime of classical intractability.

Ultimately, our results showcase the present and potential computational power of analog
quantum simulators, encouraging an auspicious future for these platforms [59].
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CHAPTER 11
Outlook

Over the course of this thesis, we have described the Rydberg atom array platform, extolling
its virtues and attempting to mitigate its weaknesses. We have observed the emergence of
random and ergodic behavior from unitary quantum evolution, and have exploited those
chaotic effects to benchmark the fidelity of creating highly entangled states of up to 60
atoms. Ultimately, we have tested our system against state-of-the-art quantum and classical
processors, finding it is competitive with both, and is entering a regime of computational
advantage through quantum simulation.

Now, in the remainder we ask what is next, both for the Rydberg atom array platform, and
for the physics we have studied more generally. To tackle this unbridled task, we discuss
future work along three axes1: 1) improving system fidelities, 2) increasing system sizes,
3) exploring new physics.

11.1 IMPROVING FIDELITIES

As we have extensively studied, it is of paramount importance to understand the errors
affecting quantum system, and to mitigate them. Not only do such studies inform our
approach to the era of error-correction, they also allow us to make more firm conclusions as
to the signals obtained on near term devices. To this end, we have spent considerable effort
building a sophisticated error model (Chapter 2) which has been cross-checked extensively
versus experimental data (Chapters 3, 6, and 8). Using this model, we can explore what are
the major limitations along several research directions.

1Shamelessly adopted/stolen from Ref. [76]
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Figure 11.1: The limitations of quantum operations. Using our ab initio error model
(Chapter 2) we determine the major contributing error sources to various quantum operations
of interest. Relative error strength is defined as in Fig 8.13, and is log(Fi)/ log(

∏
Fi), where

i enumerates the different choices of errors. We see that for different tasks, different error
sources become limiting. As such, improvements in fidelity must be carefully tracked to
problems of interest.

We study the relative error percentage for the tasks (Fig. 11.1) of: 1) performing CZ-
gates with clock-ground qubits (Chapter 4), 2) creating Bell states of clock-Rydberg qubits
(Chapter 3), 3) creating clock-Rydberg GHZ states (Chapter 3), or 4) performing many-body
quenches ((Chapter 8). Here relative error strength is defined as log(Fi)/ log(

∏
Fi), where

i indexes different choices of errors (either laser intensity noise, laser frequency noise,
spontaneous decay, or atomic temperature). For all applications, we have checked that the
error probability largely factorizes, enabling this metric.

In general, we find that – unfortunately but not surprisingly – different tasks are sensitive
to different errors in different proportions. For instance, improving laser intensity noise is
paramount for improving simulation of quench dynamics, but largely irrelevant for opti-
mizing GHZ state preparation. Similarly, laser frequency is minimally intrusive for GHZ
states and quenches, but is (close to) dominant for performing CZ gates or creating Bell
states. While we might of course hope to isotropically improve all aspects of the experiment
simultaneously, realistically we need to pick certain noise sources to minimize at a time; this
decision must be done in close concert with analysis à la Fig. 11.1. Still, here we broadly
lay out steps by which each noise source may be mitigated, each of which is actively being
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pursued in our lab. We also note that the use of erasure conversion could change the relative
priority of certain upgrades [442].

First, laser intensity noise. Currently, the way in which the laser intensity is stabilized in
our system is via a sample-and-hold loop, for which the hold time is a few milliseconds to
account for shutter opening times. This means noise at, or faster than, a few kHz is largely
invisible to our stabilization. Further, the AOMs we use for stabilization are not fast enough
to actively correct for intensity noise in situ while pulsing. Thus, we propose two upgrades,
both involving EOMs. First, we have bought a noise-eating [443] EOM to be placed directly
after the laser output with a tight, always-on feedback loop to eliminate noise close to the
MHz timescale which is clearly present in our system (see Fig. 2.5). This noise eater would
be followed by our conventional AOM setup for frequency control and further intensity
stabilization. Finally, we would introduce another pulse-shaping EOM to act as an ultrafast
(nanosecond timescale) optical shutter so as to greatly minimize any servo loop hold times.
With these improvements, we expect intensity noise could be substantially reduced.

Next, laser frequency noise. Improvements here could be accomplished through two
methods, either 1) improving available Rabi frequencies, or 2) actually minimizing fre-
quency noise. To the first point, most quantum operations are principally sensitive, in
general, to noise at their highest energy scale, which typically is set by the drive (Rabi)
frequency. We do note that some operations like gates may show some sensitivity at lower
frequencies (see some discussion in Ref. [39]), but even there pushing to higher Rabi fre-
quencies generally reduces the relative impact of frequency noise. Intuitively, one can
consider that for Rabi frequency, Ω, and detuning ∆, the generalized drive frequency is√
Ω2 +∆2 ≈ Ω(1 + (∆/Ω)2/2, for Ω ≫ ∆. Thus, frequency noise much lower than Ω is

quadratically suppressed. We have purchased and are in the midst of installing an upgraded
Rydberg laser which will allow for up to an order of magnitude higher intensity, and thus
roughly a 3× increase in Rabi frequency.

Second, we could consider trying to actively reduce the frequency noise. To this end, we
note that an obvious and straightforward upgrade to our system is to implement cavity
filtering [154], i.e. using the transmission of the high-finesse stabilization cavity directly as
a seed for subsequent amplification. This upgrade is underway. Further improvements are
possible, but are made difficult by the fact that the laser light is UV, which is generally not
amenable to many types of laser stabilization. Still, a passive stabilization approach [444]
may allow us to reduce the frequency noise at specific targeted frequencies of interest.

Then, we consider spontaneous decay of the Rydberg state. Notably, we have already
largely addressed this issue through active detection of bright state decays via erasure
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conversion [26] (Chapter 3), and the same technique could in theory be applied to dark state
decay [68]. However, alternatively decay could be minimized either through a (substantial)
upgrade of our experimental system to a cryogenic environment [86], or via use of higher
lying Rydberg states with improved lifetimes (Fig. 2.8). We note that in this work we have
not explored the issue of correlated Rydberg decays in much detail [137]; quantitatively
evaluating this process will be paramount for next generation Rydberg atom arrays.

Finally, atomic temperature effects. Again, here we have largely solved such issues through
the introduction of our erasure cooling protocol [32] (Chapter 4), via which we achieve
nearly ground state cold atoms. Still, for two-dimensionsal arrays (which we will discuss
more in a moment), interaction variations arising from small finite temperatures become
significantly more deleterious. Thus, improvements to our overall cooling architecture,
such as implementing cavity filtering also on our cooling laser, are advisable.

With these upgrades, it is generally reasonable that about an order of magnitude can be
reduced in infidelity across the board for all tasks we have considered. Concretely, this
would mean CZ gates with fidelities in excess of 0.999, and many-body quenches which are
comfortably in the advantage regime (Fig. 10.1).

11.2 INCREASING SYSTEM SIZES

One of the major promised benefits of optical tweezer arrays is their scalability and flexibility.
Indeed, numerous experiments with two dimensional arrays [42, 43, 82, 140, 445, 446] of
a few hundred atoms have been demonstrated. More recent examples have breached the
thousand atom level [83, 84, 141]. In particular, the current state of the art is Ref. [73] (a
partner experiment to our own, but one to which the author of this thesis did not directly
contribute), where over 6000 atoms are individually trapped in an array of 12000 sites
(Fig. 11.2). For our part, we have demonstrated (Chapter 3) an iterative reloading technique
for dark-state enhanced loading which enabled dramatically increased scalability (which was
then subsequently used for two-dimensional arrays in [141]). Still, as we look to the future
it is clear we will need to improve atom numbers beyond the level of a few tens of qubits we
currently control. Additionally, for truly large scale quantum computing it will be necessary
to link multiple atom array quantum processors together via cavity [139, 204, 447, 448]
interconnects [449–451] (Fig. 11.3).

The benefits of larger quantum systems are multiple and manifold. For quantum metrology,
clock stability is directly tied to atom number [198, 200]. For quantum simulation, realizing
larger systems allows for isolating ‘bulk’ vs ‘edge’ physics [452], with specific applications,
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Figure 11.2: Scaling to optical tweezer arrays with thousands of atoms. Single-shot
(left) and average (right) fluorescence images of a 12000 site optical tweezer array, filled
on average with over 6000 individual cesium atoms. This system was demonstrated in
Ref. [73] (a partner experiment to our own, though one to which the author of this thesis did
not directly contribute), and despite the dramatic improvement in atom number compared
to prior works, it also set records for single atom metrics like survival, imaging fidelity, and
qubit coherence.

e.g. simulating amorphous quantum systems [453]. Moreover, quantum error correction
relies on an extensive number of qubits to minimize errors [50, 454], with schemes likely
requiring thousands of physical qubits to achieve roughly a hundred logical qubits [455].

Unfortunately, scaling strontium atom arrays is not easy, given that we typically rely on the
magic trapping condition with a tweezer wavelength at 813 nm in order to reliably drive
the clock transition. The polarizability of strontium is relatively weak at this wavelength,
and further it, as of now, can only be produced at the level of a few watts from conventional
lasers [456]. While alternative wavelengths with higher polarizability and greater available
laser power could be used, they break the magic condition and come with drawbacks;
for instance, it was long thought that 520 nm could be a ‘good’ trapping wavelength for
strontium, but it was found to lead to photoionization of the 3P manifold [141]. One
approach to achieve higher atom numbers was demonstrated quite successfully in, for
instance, Refs. [434, 457] (and earlier works) via the use of a hybrid between a tweezer
array and optical lattice. There, the tweezer array utilizes higher polarizability trapping
wavelengths to hold more atoms, before transferring them to the power-efficient magic
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Figure 11.3: Scaling optical tweezer arrays with cavity integrations. The most long-term
way to scale the sizes of optical tweezer arrays is to modularize them, where individual
computing modules are connected via cavity [139, 204, 447, 448] interconnects [449–451].

wavelength lattice.

We plan to scale to relatively conservative system sizes of a few hundred atoms in two-
dimensional arrays via a brute force approach: more laser power at 813 nm. We have1

acquired a coherently combined Ti:Sapph laser system which achieves up to 16 W of output
power2 for this purpose.

11.2.1 Designing for advantage

One of the most immediate applications of this upgrade will be to repeat similar quantum
advantage tests as we have performed in Chapter 10, but now for two-dimensional arrays.
The main motivation is that most classical simulation methods largely fail for simulating
dynamics of high entanglement entropy states in such systems [458–462]. Further, for such

1Finally acquired, we should say, given that it was supposed to arrive in the third year of this PhD.
2For how long, who knows.
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Figure 11.4: Errors in two-dimensional arrays. a, Unlike one-dimensional systems,
two-dimensional arrays feature a number of potential array geometries, each with their
own connectivity introducing unique advantages and disadvantages. When considering
scaling our fidelity estimation tests to two-dimensional arrays, we perform error model
simulations of the eight candidate geometries shown here, where light gray lines represent
a blockading interaction between atoms. Note that while some geometries have a higher
atom density, they also incur more Rydberg blockade instances, making all the effective
Hilbert space dimensions approximately equal. b, Entanglement growth of the candidate
models in a, following resonant quench dynamics. In a two-dimensional it is unclear
what the best bipartition of the system is to calculate entanglement; here we perform all
possible bipartitions, and choose the one with the slowest growth, which we reason is most
accurate to the computational complexity of classical simulation. c, Fidelity decay from our
standard error model. An obstacle to scaling to two-dimensional arrays is the introduction
of next-nearest neighbor interactions on the order of the Rabi frequency, for which thermal
fluctuations become quite deleterious. Note that here the ‘chains’ array has had the inter-
chain distance pre-optimized to maximize fidelity.
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Figure 11.5: Finding the optimal two-dimensional geometry. a, Entanglement (S) and
fidelity (F ) product for the candidate geometries in Fig. 11.4a in terms of the absolute
evolution time in cycles. F × S is not a perfect analogue of the mixed state entanglement,
but serves as a computationally efficient estimator. b, Rescaling each model’s time-axis
by its unit entanglement time shows many models collapse, but with the highest fidelity-
entanglement product for the Kagome lattice and the triangular lattice. c, Multiplying
the fidelity-entanglement product by the blockade density (D), defined as the logarithm of
the blockaded Hilbert space divided by the number of actual atoms, shows many models
collapse, without a clear indication of a best model. Thus, it will be an area of active research
to find candidate models in two-dimensional systems which bear interesting physics, while
reaching computationally-complex regimes.

systems there are complexity-theoretic tests of quantum advantage [386, 463].

However, it is important to take stock of exactly which array geometry will be used in such
protocols, in order to maximize fidelity. In Fig 11.4 we consider several such geometries,
simulated with our ab initio error model. For each we calculate the entanglement entropy
growth (normalized by the long time value for fair comparison) and also the fidelity of
quench evolution. Note that entanglement entropy here is calculated over all possible
system bipartitions, and the final curve is the one with the slowest growth, as this is the best
analogue of the classical complexity for tensor networks to simulate such systems.

We generally find that there is a trade-off between the entanglement growth rate, and the
fidelity reduction of various geometries. In particular, we identify the next nearest neighbor
interaction as being particularly deleterious; for two-dimensional systems, the next nearest
neighbor interaction can be on the order of the Rabi frequency, meaning noise on the
interaction strength (either from temperature or from static positional inhomogeneity) can
lead to drastic fidelity reductions. Thus, we generally find the highest fidelity systems are
those which minimize next nearest neighbor interactions, for instance in triangular-based
arrays.



323

With these numerics in hand, we can then attempt to find the optimal geometry. To
do so, we consider the fidelity-entanglement product, a very rough analog for the mixed
state entanglement entropy, and thus the simulation complexity (Fig. 11.5). We find that
while plotting in terms of cycles shows clearly optimal geometries, rescaling each time-scale
individually by the ‘natural’ units of the entanglement saturation time show most geometries
collapse, with some preference for the Kagome or triangular lattice.

However, we must also account for the fact that certain geometries require a greater number
of physical atoms to achieve the same blockaded Hilbert space size (because the nearest
neighbor coordination number changes from one geometry to the next). As such, we consider
the fidelity-entanglement-density product (where the density is the effective number of
qubits in the blockade subspace, divided by the physical qubits), for which we find all
geometries are roughly equal, with a few low performers like the square array, and perhaps
the Kagome lattice performing best (Fig. 11.5c).

Thus, we leave it as an open, interesting question to explore which array geometries bring
the most fruitful combination of rapid entanglement growth, and slow fidelity decay.

11.3 EXPLORING NEW PHYSICS

Finally, we turn to the question of what new physics there is to explore with our system. With
a high-fidelity, highly-programmable, high-entanglement quantum simulator/processor in
hand, the applications are manifold, but here we focus on just three: 1) quantum process-
ing for metrology, 2) uncovering critical phenomena, and 3) investigating unconventional
thermalization.

11.3.1 Quantum processing for metrology

First, there are immediate and near-term applications of our system in the realm of quantum
metrology. As demonstrated in Refs. [28, 39], access to the tools of a universal quantum
processor (Chapter 4) enables new applications in metrology, such as schemes to achieve
exponentially improved precision over classical sensors [147, 199–201]. In particular,
in Ref. [39] we combined the tools previously demonstrated in this thesis with long-
range, coherence preserving movements to enable dynamic circuit reconfigurability [37]
(Fig. 11.6a). This for instance enabled the creation of GHZ states with up to 4 atoms
(Fig. 4.11). Additionally, in Ref. [39] we demonstrated that further improvements in
metrology could be achieve via the used of ancilla-based readout [464], for instance using a
single ancilla qubit to readout the multi-qubit parity of an entangled sensor state (Fig. 11.6b).



324

Figure 11.6: The future of quantum processor-clocks. a, Schematic of the tools of a
universal quantum processor mixed with an atomic sensor, all of which we have demon-
strated in this thesis (Chapter 4). b, Combining these tools together in our platform allows
for a myriad of metrologically useful tasks, such as using ancilla qubits to read out the total
phase of entangled states to aid sensing. c, We envision a future continuous processor-clock
hybrid, composed of a dedicated ‘sensing’ module and a ‘processing’ module. While the
sensor measures a signal of interest, the processor prepares large scale entangled states to
swap with the processor for enhanced metrology, and can further readoff the state of the
sensor efficiently through ancilla readout. For more details, see Ref. [39].

With such a capability in hand, there is clear pathway towards a next generation modular
clock-processor system (Fig. 11.6c).

In such a system, we imagine two distinct modules which may ideally be composed of
two distinct atomic species [140] for ease of control. One module (for instance, strontium
atoms), would continuously sense the signal of interest. The other processor module (for
instance, rubidium atoms) would serve two purposes. One, while the other module senses
the field, the processor would simultaneously prepare an entangled state register. When the
sensor has finished a round of measurement, a swap operation [464] would be performed
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Figure 11.7: Microscopic conformal field theory physics. Following Ref. [323], we
study boundary conformal field theory (BCFT) observables associated with the phase
transition between the disordered phase and the Z2 ordered phase. For definitions of all
BCFT observables, see Ref. [323]. a, Experimental, numerical, and analytic BCFT spin
observables forN = 26; the agreement between the experiment and the prediction improves
slightly with erasure excision. b, The BCFT prediction has a free amplitude parameter which
is left open in a; we find the amplitude is maximized at the predicted critical phase transition
point. The phase transition is found via scaling collapse, extrapolated to infinite system
size [158]. The shaded area for the numerics comes from uncertainty in our Hamiltonian
parameters, in particular theC6 coefficient. c, With the free amplitude, we find the BCFT fit
error is minimized at the critical point, and that the fit error is smaller using erasure-excision.

between the sensing and processing modules. Thus, the sensor would be prepared in a
fiducial, metrologically-relevant state and could immediately begin sensing once more.
Meanwhile, the state of the processor could be readout without crosstalk to the sensor,
and the next entangled state could be prepared. This would enable a continuous operation
quantum clock achieving Heisenberg scaling with near-zero deadtime.

11.3.2 Uncovering critical phenomena

Second, there are fruitful questions of quantum simulation to study with our system. In
Chapter 3 we studied spontaneous symmetry breaking across a quantum phase transition,
and resolved clear signatures of this process. However, there is further interesting critical
phenomena directly at the phase transition itself. Specifically, we follow Ref. [323] and
study the boundary conformal field theory (BCFT) characterizing the transition between the
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disordered and ordered phases in the Rydberg model. We leave most details to Ref. [323],
but essentially characterize a single on-site observable, the BCFT spin (akin to the AFM
on-site magnetization).

For the 26-atom system we study here, we find good agreement between the experimental
BCFT spin profile and that predicted from numerics and also analytically (Fig. 11.7). The
BCFT analytic prediction has a free amplitude, which we find is maximized at approximately
the critical point, and accordingly we find that fitting the experiment to the BCFT prediction
shows a fit error which is minimized at the critical point. Further, the fit error is lessened
through the use of erasure excision. Though not a thorough examination of the apparent
critical phenomena (in particular, we do not here characterize critical exponents [465]), this
suggests an experimental demonstration of microscopic conformal field theory behavior,
and indicates the power of erasure-excision to improve such studies more generally.

Still, this investigation is far from complete. The BCFT theory [323] has concrete predictions
not just for chains with even length, but also odd length chains. Further, it makes predictions
for higher-order observables like correlators, and even string operators related to Majorana
modes. All such observables should be visible experimentally, potentially through the
use of advanced shadows-based [300, 466] readout methods. Extensions of this study to
two-dimensional systems enables studying quantum spin liquids [467]. Then, introducing
low-energy dynamics on top of the ground state would enter an unexplored (and classically
complex) playground of exciting new physics related to the behavior of (near-)critical
systems. Such critical states have information-theoretic properties, such as a cusped Fisher
information [159–161]. Interestingly, we believe that tomography of these phenomena
may be greatly advanced through the use of speckle-benchmarking techniques, as we have
studied extensively with regard to random state ensembles in Chapter 5.

11.3.3 Investigating unconventional thermalization

Finally, there are numerous open questions related to the subject of hydrodynamics [468]
and thermalization in our system. In particular, we turn back to the large-scale dataset
considered in Chapter 10. At the time, we only studied the global fidelity with which
our experiment produced highly entangled target state of interest, but now we investigate
the behavior of its low order observables like magnetization and few-body correlators; the
system was thermalizing at close to infinite temperature, and so we would not generically
expect there to be features of interest.

We focus on the anti-ferromagnetic two-body connected correlator, which for a distance d
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Figure 11.8: Observation of unexpected thermalization. a, We study few-body observ-
ables isolated to the bulk of large one-dimensional systems following infinite temperature
quench dynamics (the same setting as for Chapter 10). b, The anti-ferromagnetic connected
correlator (see text) show non-trivial behavior consistently across many system sizes, in-
cluding an apparent ballistic spreading of correlations at early times, and a long-lived,
short-range correlator at distance 5 (color scale is arbitrary, but consistent across all plots).
c, We compare these observations with the expectation of an infinite temperature state in
the blockaded manifold, and find neither are consistent with expectations. d, We plot the
relative error in units of the experimental error bar between the experimental values and the
theoretical prediction, and find both the long-lived mode and ballistic propagation are well
outside error bars (some temporal smoothing has been applied to the data for visualization).
e, For both simulations and experiment, the distance-5 correlator saturates to a non-zero
value as a function of system-size and time (though more careful simulation shows it very
slow decays towards zero).

between two atomic sites is given by

C = (−1)d⟨n̂in̂i+d⟩ − ⟨n̂i⟩⟨n̂i+d⟩ , (11.1)

where n̂i is the Rydberg population operator on site i. For a blockaded system thermalized
at infinite temperature, we expect this correlator to decay exponentially as

C ≈ 0.2
(φ− 1

φ

)d
, (11.2)
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where φ is the golden ratio (see Appendix C).

We plot the experimentally found C for a number of different system sizes, where we isolate
the calculation only to the bulk of the one-dimensional chains (Fig. 11.8). We observe clear
non-exponential and unexpected behavior, including ballistic spreading of correlations at
early times, and a long-lived mode at a distance of 5. These behavior are clearly distinct
from the theoretical expectation, which we typify by plotting

r =
Cexp − Cthy

ϵexp
(11.3)

where ϵexp is the error bar on the experimental data points. In other words, the quantity r
measures the distance in units of experimental standard deviations between the experiment
and theory, which we find to be large both for the long-lived mode and the ballistic correlator
(Fig. 11.8d). While analysis of these features is ongoing, we identify similar features to the
ballistic spreading in studies of finite temperature hydrodynamics and transport in systems
of itinerant particles [469–472]. For the long-lived mode, we believe it is connected to
a little studied1 new family of scar states [474] with significant overlap with the vacuum
state. It is interesting and exciting that non-trivial hydrodynamics and non-thermalizing
scar states can be found in the setting of a one-dimensional homogeneous spin system under
infinite temperature thermalization, and further study is needed to fully characterize these
behaviors. Then, with our upgrade to two-dimensional systems, these studies will become
even more nontrivial as classical simulations and theory predictions become more difficult.

Even in one-dimension, it is not clear if these phenomena are trivial to study classically.
It is conventional wisdom that tensor network based methods are efficient at studying
few-body observables, but we can directly test this idea against the results of our high-
fidelity experiment. In particular, we plot the anti-ferromagnetic connected correlator for
system sizes of N = 30 and N = 60, which we simulate using our Lightcone-MPS
(Section 10.2.4) algorithm; as a reminder this algorithm was found to be by far the most
efficient at producing states with the maximum overlap fidelity with highly entangled target
states produced by infinite temperature quench dynamics (Chapter 10). Still we find that
the two-body correlators do not converge until quite high bond dimension is used in the
MPS simulations (Fig. 11.9).

For small system sizes (up toN = 30) we can compare the results from low-bond dimension
simulations against exact values. Hypothesizing the long-lived distance-5 correlator is the
most nontrivial feature to simulate (as it is persistent far beyond the entanglement saturation

1As far as we can tell, this family is only identified, but not explored, with unsupervised machine learning
methods in Ref. [473]
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Figure 11.9: Classically complex low-order observables? a, We simulate systems sizes
N = 30 and N = 60 using the Lightcone-MPS (Section 10.2.4) algorithm with varying
bond dimension, and plot the anti-ferromagnetic connected correlation function. We find
correlators continue to evolve as a function of the bond dimension up to the saturation
bond dimension (color scale is arbitrary, but consistent across all plots). b, For small
system sizes, we plot the relative error for the distance-5 correlator between simulations
at a low bond dimension to the exact simulations, and find the relative error continually
increases as a function of time for limited bond dimensions. Further, we plot the equivalent
bond dimension required to match the relative error of the experimentally found correlators
(red lines), which show that for long-evolution times nearly the maximum saturation bond
dimension is needed to match the experimental accuracy. While we cannot exactly simulate
larger systems, we conjecture the trend continues, possibly indicating the experimental
observations of low-order observables are the most accurate compared to limited bond
dimension classical simulations (though we leave open the possibility that specialized
simulation methods may better accomplish this task [475]).
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time), we plot the relative error for the distance-5 correlator between the low bond dimension
simulations and the exact simulation. We find this relative error continually increases as a
function of time, except when the bond dimension surpasses the saturation bond dimension
(Fig. 8.17). Further, we study the effective bond dimension needed for the low bond
dimension simulations to have a smaller relative error than the experimental data, which
we find continually increases; past the entanglement saturation time, roughly the saturation
bond dimension is needed to match the experimental accuracy. We are not able to perform
exact simulations for system sizes greater thanN = 30, and so it is not clear if this trend will
continue, but we hypothesize it will, perhaps indicating that our high-fidelity experiment
might have some advantage at accurately measuring few-body observables already at system
sizes of N≈60.

Of course, this study is not comprehensive, and there may well be classical simulation
methods which perform worse than our Lightcone-MPS on the level of global fidelity, but
are more accurate for measuring few-body operators [471, 475]. However, it is exciting that
we are clearly entering a regime where exact and careful choice of classical algorithm is
important to surpass the performance of the experiment even on these ‘simple’ observables.
When the experiment is upgraded to a two-dimensional array, such comparisons will become
even more nontrivial, and it may soon be the case that the experimental quantum simulator
is the most accurate simulacrum for studying phenomena like hydrodynamics and quantum
thermalization more generally. It may well be that such tasks hold the key to practical
demonstrations of computational advantage through analog quantum simulation [59], a
goal well in-line with the overarching aspirations of this thesis.
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APPENDIX A
Experimental automated feedback

For many of the datasets considered throughout this work, a large number of samples (many
hundreds of thousands of data points) are needed to reach significant conclusions. As the
cycle time of the Rydberg atom array is around 1 second (limited mostly by atom loading
and imaging), this then entails many days or weeks of data-taking. Even with great effort,
it is difficult to passively maintain environmental conditions to such a high-level so as to
keep the experimental results temporally consistent over such a long period, so instead we
utilize an active feedback approach.

We utilize a home-built control architecture1 which automatically and periodically in-
terleaves data-taking with feedback to several experimentally relevant parameters. For
example, some of these are: 1) the Rydberg transition resonance frequency, 2) the Rydberg
Rabi frequency, 3) the clock transition resonance frequency to ensure maximal clock state
preparation fidelity, and 4) the Rydberg laser beam alignment. In all cases, rather than using
an instrumental signal such as a voltage on a photodiode (which is susceptible to environ-
mental variations like temperature drifts), we instead measure an atomic signal specifically
targeted to the observable of interest. After each feedback experiment, the relevant param-
eters are automatically updated for subsequent measurements (Fig. A.1). Aggregating such
measurements, we find that we can control parameters of interest to within a few tenths of
a percent over even weeks-long time periods, which is significantly better than the passive
stability.

1Informally named DRAQON (Dynamic and Robust Automated Quantum OperatioN), but that was
deemed too ‘cheeky’ by Ivaylo Madjarov so instead we went with ‘MATControl.’ Other potential names
under consideration: KRAQEN, EAQLE.
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Figure A.1: Experimental system and parameter feedback. a, Illustration of a Rydberg
quantum simulator consisting of strontium-88 atoms trapped in optical tweezers (red fun-
nels). All atoms are driven by a global transverse control field (purple horizontal beam)
at a Rabi frequency Ω and a detuning ∆ (right panel). The interaction strength is given
as C6/R

6
ij with an interaction constant C6 and atomic separations Rij between two atoms

at site i and j. b, Schematic of the experimental feedback scheme. We automatically
interleave data taking with feedback to global control parameters and systematic variables
through a home-built control architecture; in particular, we feedback to the clock laser
frequency (to maintain optimal state preparation fidelity), the Rydberg laser alignment, the
Rydberg detuning ∆, and the Rabi frequency Ω. Note that while here we show the Rabi
frequency and detuning feedback occurring in two separate blocks, in more recent iterations
of the control software we combine them into a single measurement. c, Example of the
interleaved automatic Rabi frequency stabilization over the course of ≈20 hours with no
human intervention. Feedback is comprised of performing single-atom Rabi oscillations,
fitting the observed Rabi frequency, and updating the laser amplitude, rather than simply
stabilizing the laser amplitude against a photodiode reference. While the Rabi frequency
setpoint (orange squares) changes over the course of the sequence (due to long-time insta-
bilities like temperature drifts), the measured Rabi frequency (blue circles) stays constant
to within <0.3%, with a standard deviation of 0.15%. Similar performance is seen over a
matter of weeks, see Fig. 8.4.

Rydberg Rabi frequency and detuning
In order to keep the Rydberg laser’s intensity and frequency stable, we measure the spectrum
of the laser with Rabi spectroscopy at a fixed, late time (with atoms spaced far apart so as
to be non-interacting). Doing so produces many fringes in the spectrum which we then
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Figure A.2: Automated feedback on the laser intensity and frequency a, To maintain
a constant Rabi frequency and laser detuning, we measure a Rabi spectroscopy signal at
a late time (here around Ωt = 24π) as a function of detuning; the signal itself is the
atomic survival. We then fit the resulting lineshape with Eq. (A.1), which accounts for
decoherence sources as well as corrections to the lineshape. Fits are consistent with other
ancillary measurements. Note that while the signal around the line center looks relatively
flat (which would normally imply insensitivity) the fit is in fact quite precise because of the
fringes at larger detunings (note that here for presentational simplicity we have subtracted
off ν0, but still present its error bar). Indeed, using this fit form, the evolution time does not
need to be carefully chosen - the fit will work well regardless. b, To make the fitting more
robust we perform it in stages (see text), for instance manually computing the least-squares
error over choices of Rabi frequency and line center.

fit to simultaneously determine the line center and the Rabi frequency; the later the time,
the better the frequency resolution (Fig. A.2). By line center, we mean the programmed
frequency on the Rydberg laser such that the laser frequency is resonant with the atomic
transition. However, this signal is susceptible to decoherence, but we can include such
terms in our fit function. Specifically, we fit the ground state population signal, S, at a time
t as a function of the programmed frequency, ν, as

S(ν) = 1−
( Ω2

Ω2 + (ν − ν0)2
)
×((

1−
(
cos(2

√
Ω2 + (ν − ν0)2πt)

)(
exp(−(t/τ)2

))
/2
)
×(

1 + α(ν − ν0)
)
×(

exp(−γ(ν − ν0)2)
)
, (A.1)

with fit parameters [Ω, ν0, τ, γ, α], where Ω is the Rabi frequency, ν0 is the line center, and
τ is an effective Gaussian decay rate. Then the parameter γ is a numerically found factor
which accounts for the finite turn-on time of the AOM (Section 2.3.2): because the AOM
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does not output a perfect square pulse, the Rabi lineshape (which is related to the Fourier
transform of the intensity pulse) is narrowed. The exact value of γ should be numerically
found from simulations of measured AOM turn-on dynamics. The final parameter α is a
phenomenological one which we introduce to account for the fact that a slight misalignment
of the atoms with respect to the laser leads to a time-dependent variation in Rabi frequency as
well as laser frequency (Section 2.3.2). In general, we find the value of α is well-correlated
with our alignment; if the alignment is good (described below), then α will be consistent
with 0.

In practice we find it is most robust to fit make a quick estimate of τ as

τ̃ = Ω̃/
√

log(C) (A.2)

where Ω̃ is an initial guess for the Rabi frequency, and C is an estimate of the contrast (the
difference between the maximum and minimum observed values) in the experimental line
shape. We then manually find the optimal choices of Ω and ν0 (fixing τ = τ̃ and α = 0)
by explicitly rasterizing over a two-dimensional region in their parameter space, calculating
the squared error for each point in that space, and finding the corresponding minimum. This
error space shows multiple minima spaced at 2π increments, but we find the lowest error
minima is always the correct one. We then take the corresponding manually found Ω and
ν0 as initial parameters and refit Eq. (A.1), including with free τ . We find this procedure is
quite robust at estimating the Rabi frequency and line center simultaneously in only ≈150
experimental shots.

Clock frequency
For feedback on the clock frequency, we utilize two different methods. The first is essentially
the same as described previously for feedback on the Rydberg laser. However, our clock
laser requires more frequent frequency feedback than the Rydberg laser (for instance, we
see clear signatures of noise on ≈10 minute timescales that must be corrected for), so
we supplement with a quicker and ‘dirtier’ feedback. We first carefully feedback on the
frequency as described above, then we perform Ramsey spectroscopy.

The clock self-light shifts itself [69, 76], and so we carefully select an offset frequency during
the Ramsey dark time to cancel this effect, such that ideally the Ramsey signal should show
no oscillations, and should be quite flat around unity (assuming no decoherence). We then
set the Ramsey dark time to a very late time, and sweep the frequency during the dark time
in a very narrow range. We fit the result with a Gaussian (or a quadratic in some cases), and
use the result to adjust the clock frequency. This method takes fewer shots, but we find it
can be more unstable on longer time periods, because it is susceptible to ‘fringe-hopping’
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by 2π. Thus our normal clock feedback consists of one round of the normal Rabi-based
feedback (which fixes the absolute frequency) for every roughly 10 rounds of Ramsey-based
feedback (which efficiently corrects for small relative frequency offsets).

Alignment
Correctly optimizing the alignment between the Rydberg laser and the atoms is crucial:
the laser waist-radius is only ≈15 µm, meaning relative displacements by as much as one
micron can drastically impact fidelity (see Section 2.3.2). To perform automated feedback
of the alignment, we illuminate the atoms with a fixed, long-time pulse, and then raster the
Rydberg beam across the array. What signal does this produce? Well, if we tune pulse area
to be approximately 1π when aligned, the resultant signal will be a monomodal peak. If
instead the pulse area is 2π, the signal will be a bimodal peak. If the pulse are is 1.5π, we
get something in between (Fig. A.3).

Assuming the laser beam has a Gaussian mode with waist-radiusw0, the Rabi frequency, Ω,
at a displacement, x, is given by Ω ∝ exp(−x2/w2

0). Thus, the signal we expect to measure
is

S(x) =
1

2

(
1−

(
cos
(
exp

(
− x2

w2
0

)
t× π

)(
exp

(
− x2

a2

))))
, (A.3)

where a is a fit parameter roughly capturing the effect of increased intensity noise from mis-
alignment (in reality the functional form is slightly more complicated, see Section 2.3.2). In
a narrow region around the central peak of the signal we can largely ignore this decoherence
term. To calculate the sensitivity of this signal, we consider the second derivative around
x = 0 at t = 0.5, 2.5, 4.5, · · · (i.e. π/2 times, chosen such that the integer component is
even so the second derivative is positive), for which we find the sensitivity increases linearly
with the evolution time. This means in principle we can gain arbitrary statistical certainty
by successively increasing the pulse area. Indeed, we are able to see alignment accuracies
at the few tens-of-micron level (Fig. A.3b).

Another important aspect of this technique is that when we raster the laser across the atoms,
we can resolve the signal on an atom-resolved basis. This allows us to image not just the
mean position misalignment of the laser beam, but also misalignment in its angle, and
misalignment along the z-position (i.e. along the array axis). This is why in practice we do
not actually use Eq. (A.3) to fit the experimental signal, but instead perform a manual sweep
across the relevant parameters of beam position, angle, divergence, finding the set which
best matches experiment. We can also independently measure the angle for instance by
taking a measurement like Fig. A.3b, fitting the first-order troughs or peaks symmetrically
outside the central feature, and then plotting their slopes as a function of position along the
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Figure A.3: Automated feedback on the laser alignment a, For a given aligned pulse
area (number in top left of each plot), the signal when rastering the laser beam across the
atoms will change, where the sensitivity (i.e. second derivative at zero displacement) of the
signal increases linearly with the pulse area. Here we show the case with no decoherence
from misalignment, though note that such effects are quadratically suppressed in the narrow
region around the optimum. b, For a large pulse area (here≈30π the resultant raster can be
quite accurate down to the level of ≲100 nm. c, When rastering the beam across the atom
array, we can take a full three-dimensional map of the beam intensity (similar to work in
cavities [139]). Here we show the case of a well aligned signal, but if the beam had an angle
with respect to the atoms, or was displaced in the z-direction (the array axis), it would be
clearly visible, and correctable.

tweezer array axis. For typical alignments, we perform first the alignment in the vertical
direction and then the horizontal, each taking roughly 200 experimental shots.
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APPENDIX B
Numerical simulation methods

Here we give a (very) brief tutorial on classically simulating quantum systems. While this
topic is ubiquitous in the field – and covered by several simulation packages [476, 477] –
it is surprisingly difficult to find a good, tutorial-esque introduction to these concepts. A
notable exception is Ref. [478], which is a clear, comprehensive reference to consult with.
Further, Refs. [479, 480] are good tutorials for specific aspects of classical simulation with
explicit examples and code for MATLAB and Mathematica. The goal of this chapter is
not to reproduce all the results of these established texts, but simply to give a practical
introduction in a way which would have been helpful early in this author’s PhD process.

B.1 HAMILTONIANS AND SYMMETRIES

To start, we will consider one of the simplest problems of interest: simulation of on-
resonance two-qubit Rydberg dynamics. Two qubits are easily simulable on any classical
computer, but we use this model system to introduce tools to efficiently represent and
simulate quantum systems applicable to larger systems.

The full Hamiltonian is given in Eq. (2.1), but here we will work with the simplified
Hamiltonian (with h = 1 throughout)1

Ĥ =
Ω

2
(X̂ ⊗ Î + Î ⊗ X̂) + V (n̂⊗ n̂) , (B.1)

1While basic, it is worth stressing that when people generally write sums of operators, like Ĥ =
∑
X̂ ,

they are actually performing a Kronecker sum, and inserting identity operations for unaffected subspaces. For
example Ĥ =

∑3
i=1 X̂i = X̂ ⊗ Î ⊗ Î + Î ⊗ X̂ ⊗ Î + Î ⊗ Î ⊗ X̂ .
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where

X̂ =

[
0 1

1 0

]
, Î =

[
1 0

0 1

]
, n̂ =

[
0 0

0 1

]
. (B.2)

The most straightforward way to construct the Hamiltonian is simply to directly perform
Kronecker products on the underlying matrices, yielding a matrix, Ĥ , operating on the
standard computational basis, b⃗

Ĥ =


0 Ω

2
Ω
2

0
Ω
2

0 0 Ω
2

Ω
2

0 0 Ω
2

0 Ω
2

Ω
2

V

 , b⃗ =


00

01

10

11

 . (B.3)

To perform time-evolution under this Hamiltonian, we form the unitary Û = exp−iĤt,
which then can be multiplied onto a vector representation of some arbitrary state, |ψ⟩.
Explicitly, this operation requires us to diagonalize the matrix representation of Ĥ , and as
such is known as exact diagonalization (ED). While it is – as the name implies – exact,
this method is also computationally inefficient. Matrix diagonalization is an expensive
operation, scaling as O(m3) where m is the linear matrix dimension; in our case m = 2N ,
where N is the number of atoms, the cost of ED goes as O(8N), and thus quickly becomes
computationally intractable for system sizes of N ≳ 13 without much effort (or patience).

To accommodate this problem, we need to either reduce the matrix size, or use a different
method of time evolution which does not require explicit diagonalization. To start, we focus
on the first point, and ask how we can simplify the Hamiltonian using our physical intuition
for the problem. In particular, we can use physical symmetries inherent in Ĥ to reduce it
to a simpler basis. Explicitly, in the case of the two-qubit system considered here, we see
there is a swap-symmetry (or reflection symmetry more generally) between the two qubits.
We can explicitly write the matrix representation of this symmetry operation (dubbed the
transformation matrix),

P̂ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (B.4)

which we can explicitly verify commutes with Ĥ , i.e. [Ĥ, P̂ ] = 0. We want to rewrite
Ĥ accounting for the symmetry operation of P̂ , so first diagonalize1 P̂ , and construct the

1I know, our goal here was to get away from the problem of diagonalization, and yet here we do it
again. In a moment we will introduce a more efficient method for this process which does not require explicit
diagonalization of P̂ .
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matrix R̂, where the columns are eigenvectors of P̂ :

R̂ =


0 1 0 0
1√
2

0 1√
2

0

− 1√
2

0 1√
2

0

0 0 0 1

 . (B.5)

This is the change-of-basis matrix from the eigenbasis of P̂ to the standard basis, b⃗. The
order of the columns in R̂ is technically arbitrary, but should be done at the very least such
that eigenvectors with equal eigenvalues should be placed next to each either (in a ‘block’).

In the following, let us denote the eigenbasis of P̂ with a prime-designation (e.g. |ψ′⟩),
and the lack of a prime indicates it is written in the standard basis, b⃗. We know that
for any such basis transformation where R̂|ψ′⟩ = |ψ⟩, expectation values stay the same:
⟨ψ|Ĥ|ψ⟩ = ⟨ψ′|Ĥ ′|ψ′⟩ = ⟨ψ|R̂Ĥ ′R̂−1|ψ⟩, and thus

Ĥ ′ = R̂−1ĤR̂ =


0 0 0 0

0 0 Ω√
2

0

0 Ω√
2

0 Ω√
2

0 0 Ω√
2

V

 , b⃗′ =


01− 10

00

10 + 01

11

 , (B.6)

where b⃗′ is the new basis.

Importantly Ĥ ′ takes on a block-diagonal form, where the first column/row corresponds to
the antisymmetric basis {(|01⟩− |10⟩)/

√
2}, and the other columns/rows correspond to the

symmetric basis {|00⟩, (|01⟩+|10⟩)/
√
2, |11⟩}. This makes sense – the swap transformation

matrix has simultaneous positive eigenvalues for symmetric states, and negative eigenvalue
for antisymmetric states.

Now, the key realization is that if our initial state lives in only one of these subspaces
(e.g. our initial state is |ψ0⟩ = |00⟩) then its dynamics will be entirely constrained to the
symmetric subspace. This means the effective Hilbert space is only 3-dimensional, rather
than 4-dimensional, and thus any corresponding time-evolution can be performed more
efficiently. If we now assume the Rydberg blockade condition (i.e. V ≫ Ω), then we can
further reduce the to a two-dimensional subspace1.

This principle is quite general: for any Hamiltonian we wish to simulate, we can always work
in a reduced state space by identifying symmetries of the Hamiltonian, block-diagonalizing

1Astute readers will also note that in this reduced subspace the Rabi frequency is effectively increased by
a factor of

√
2, as is well-known for blockaded Rabi oscillations [34].
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and proceeding in the lower dimensional manifold. Examples of symmetries commonly ex-
ploited in this way are: translation symmetry, often found in systems with periodic boundary
conditions, charge conservation, where the total number of excitations or particles is in-
variate, reflection symmetry, the higher-order analog of the swap symmetry we have already
considered, and more. In all cases, write down the transformation matrix, diagonalize it to
find the change of basis matrix, and then block diagonalize the Hamiltonian accordingly.

While nice in principle we have not really solved the issue: our method still explicitly
requires us to diagonalize a large matrix. Thus, the proper way (which is unfortunately
much more cumbersome) is to eschew diagonalization altogether, and instead to construct
the Hamiltonian efficiently term-by-term using bitwise operations. This method also turns
out to be far more efficient for Hamiltonian creation than simply repeatedly applying
Kronecker products. We cannot give a better explanation of this process than the one found
in Chapter 4 of Ref. [478], and so direct readers there once they are comfortable with the
basic outline we have presented above. Further references are for instance Refs. [481, 482].

B.2 TIME-EVOLUTION

With the Hamiltonian in hand, one needs to actually perform time evolution with it. In its
reduced form, it might be possible to perform exact diagonalization efficiently. Indeed, for
instance for systems with translation symmetry the reduced Hilbert space can be substan-
tially smaller than the naïve one, and so Hamiltonians of over 30 qubits can be diagonalized.
However, this is not a general solution to the problem. There are a sea of methods for per-
forming approximate time-evolution in the literature, most mentioned in one way or another
in Ref. [476], but also many are covered in Chapter 10 of this thesis. Many of these methods
are tensor network based for which good general tutorials are Refs. [392, 483]. Here we
briefly describe just a few of these ideas.

Krylov evolution
One popular non-tensor network based approach for efficient Hamiltonian simulation is
known as the Krylov subspace method, or Lanczos method more broadly in science and
engineering disciplines [478]. Essentially, the idea underlying Krylov methods is that the
chief difficulty in exact diagonalization is the explicitly finding the matrix exponential Û =

exp(−iĤt). However, we do not actually care about Û , but instead only care about its action
on a state of interest, |ψ0⟩. Thus, we are always going to be concerned with solving problems
of the form |ψ1⟩ = Û |ψ0⟩. Heuristically, and blithely throwing away lots of constants, we
can essentially think of this operation as |ψ1⟩ = (1 + Ĥ + Ĥ2 + Ĥ3 · · · )|ψ0⟩. Krylov
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methods then take advantage of this expansion by writing basis vectors, |ζ0⟩ = |ψ0⟩, |ζ1⟩ =
Ĥ1|ψ0⟩, |ζ2⟩ = Ĥ2|ψ0⟩, |ζ3⟩ = Ĥ3|ψ0⟩ · · · , and then performing the corresponding unitary
rotation only in this basis. Thus, it is effectively approximating |ψ1⟩ in the span of the |ζ⟩
vectors. The size of the basis of course depends upon the problem of interest, but for spin
systems, a basis size of a few tens to a hundred generally suffices. While certainly possible
to write one’s own Krylov method implementation, they are quite well studied with efficient
libraries available for almost all languages. The key thing to remember is that ultimately
they are essentially just a Taylor expansion of the matrix exponential.

Circuit evolution
Often in analog quantum simulation we are given an initial state, and a global Hamiltonian
affecting all atoms continuously. However, for digital quantum processors executing quan-
tum circuits the task is quite different. In particular, for circuits we generally assume the
quantum evolution occurs only on a small (e.g. one or two) number of qubits independently
at a time. How does this help us perform more efficient time-evolution? Consider a state of
e.g. N = 5 qubits, initially in the vacuum state |ψ0⟩ = |0⟩⊗N . Let’s say we want to apply a
round of randomized single qubit gates, Ô(i), to every qubit, where the superscript denotes
the qubit index. To do so we could explicitly construct the global unitary as

Û1 =
∑
i

Ô(i) (B.7)

which we then apply to |ψ⟩. However, doing the required Kronecker products is costly, and,
as it turns out, unnecessary via use of clever matrix reshaping tricks.

Consider a concrete representation of |ψ⟩, a 32 × 1 vector. While we could multiply this
vector by a 32× 32 unitary matrix, we can instead reshape it in order to apply evolution on
just a subset of qubits at a time. For instance, to apply the operation Ô(3) alone to the third
qubit, we do the following.

1. Reshape the 32× 1 state vector into a 2× 2× 2× 2× 2 tensor.
2. Permute the tensor indices so the ordering transforms as (1, 2, 3, 4, 5)→(3, 1, 2, 4, 5).
3. Reshape the tensor into a 2× 16 matrix.
4. Left multiply by the 2× 2 operator Ô(3).
5. Reshape into a 2× 2× 2× 2× 2 tensor, and undo the permutation in (2).
6. Reshape back into a 32× 1 state vector.

This same procedure applies to multi-qubit gates, simply with judicious choice of reshaping
and permutation.
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Reshaping tricks like this are quite useful for a number of quantum operations. For instance,
let’s say one wants to obtain the reduced density matrix on just qubits 1 3 and 5 in the above
example. Then the same basic procedure applies

1. Reshape the 32× 1 state vector into a 2× 2× 2× 2× 2 tensor.
2. Permute the tensor indices as (1, 2, 3, 4, 5)→(1, 3, 5, 2, 4).
3. Reshape the tensor into a 8× 4 matrix.
4. Right multiply by the matrix transpose, yielding the 8× 8 reduced density matrix.

With straightforward changes to the above basic procedure, one can also measure local
observables etc. In general, gaining familiarity and confidence with matrix manipulations
like reshaping and permutations will be greatly beneficial for practical classical simulation.

Hamiltonian circuits
Finally, we discuss how to import some of the best features of efficient circuit simulation
into the realm of analog quantum simulation. This discussion is heavily based on the
theoretical work of Ref. [396]. Section 10.2.4 already contains an introduction to this topic,
but in the context of matrix product states (MPS); here we will have a less formal discussion
using exact diagonalization rather than MPS, with the goal being that readers can use this
introduction as a base to learn more details in the aforementioned sources. As a brief note,
our discussion here will be on a slightly less optimal, but easier to understand, version of
the algorithm in Ref. [396], while Section 10.2.4 describes a more optimal implementation.

As we have just seen, it can be more efficient to break a large quantum evolution up into
a circuit model in order to apply quantum operations without the overhead of taking large
scale Kronecker products and matrix diagonalizations. It would be ideal if the same could be
performed for analog quantum simulations. It is straightforward to break a continuous-time
Hamiltonian up into discrete time steps (i.e. Trotterization), but it is less clear how to break
a continuous-space Hamiltonian (i.e. one with long-distance interactions) into discrete
chunks. Ref. [396] proposes to solve this problem in a clever way through a combination
of forward time, and backward time evolution (Fig. B.1).

Let’s say we have a system of N = 18 interacting qubits in a one-dimensional chain, where
the interactions go beyond nearest neighbor, but are not too long-ranged (e.g. Rydberg
interactions). The resulting unitary evolution operator is 218 × 218, which is clearly far
too large for exact diagonalization, and is costly even for Krylov methods. However, here
we must draw on our physical intuition. While interactions are long-ranged, entanglement
across the one-dimensional chain cannot spread infinitely quickly, and is instead limited by
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Figure B.1: The Lightcone unitary decomposition As theoretically proposed in Ref. [396],
and explained in greater detail both in this appendix and in Section 10.2.4, we perform
efficient Hamiltonian unitary evolution by exploiting the relatively short-ranged interaction.
Specifically, we both Trotterize the unitary evolution in time, and also in space. We use a
combination of forward and backwards evolution in order to keep Trotterization commutator
errors to an optimal minimum.

the Lieb-Robinson velocity [319]. This means that if we just evolve for a short amount of
time, δt, atoms are not able to ‘feel’ the effects of atoms further than few sites away.

To exploit this behavior, we break our chain of 18 atoms into a group, G1, of three consecutive
blocks of six atoms each (i.e. block one has atoms 1-6, block 2 has atoms 7-12, block 3
has atoms 13-18) (see Fig. B.1, though note it contains additional complexity we will
address shortly). For each, we construct the Hamiltonian only in the block, with no
external coupling. These Hamiltonians have a linear dimension of only 64, and are easy
to diagonalize to produce a block-unitary operator. We can then apply these unitaries to
the three chunks separately, and time-evolve the system forward efficiently. Then, for the
next time step, we could for instance form a group, G3, of two blocks spanning the interface
(i.e. block one with atoms 4-8, and block two with atoms 9-15). We could again efficiently
construct their time-evolution operators, and then on alternating time-steps going forward
we alternate unitary evolution on G1 or G3. For small enough δt, the result will accurately
track the ideal result of exact diagonalization over the whole system.

There are some caveats and improvements to be made. First (and less meaningful), in
that implementation we are assuming that a block of six atoms is large enough to capture
the long-ranged Hamiltonian accurately. Why not choose a block of four atoms, or two?
Ultimately, the size of the block simply comes down to the Lieb-Robinson velocity - for a
smaller block size, the δtmust be accordingly lowered to maintain accuracy. It is in general
a good idea to set the block size as big as it needs to be, but no bigger, which for the Rydberg
Hamiltonian we find (Section 10.2.4) to be a block size of around 6.

Second (and more meaningfully), in the algorithm above, carefully keeping track of commu-
tators shows a growing error due to the alternation between G1 and G3. However, Ref. [396]
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proposes a solution. We introduce a new group, G2, of blocks of just three atoms (block one
with atoms 4-6, block two with atoms 7-9, block three with atoms 10-12, block four with
atoms 13-15) – see Fig. B.1. The block in G2 straddle the interface between blocks in G1.
The claim of Ref. [396] is that errors are optimally reduced if the time-evolution is done as
follows:

1. Perform forward time evolution on blocks of atoms in G1.
2. Perform backwards time evolution on blocks of atoms in G2.
3. Perform forward time evolution on blocks of atoms in G3.

The reader may check for themselves that to first order each individual atom experiences
the same total evolution, but the introduction of backwards evolution next to the block
interfaces eliminates higher-order terms in the Trotterization commutator expansion, and
thus substantially reduces such Trotterization errors.

Crucially, for time-independent evolution the unitary operators in the different groups can
be precomputed and stored in memory (as they are relatively small), and then applied ad
nauseum throughout the evolution. Further optimizations are possible, for instance by
combining groups G1 and G2 during the precomputation step. Additionally, a more optimal
block decomposition is suggested in Ref. [396], which we discuss in Section 10.2.4. It
should be noted that the more optimal decomposition weakly breaks the reflection symmetry
inherent to most global analog quantum simulation experiments, and thus can lead to small
coupling between the symmetric and antisymmetric subspaces; if signals of interest are
sensitive to this divide, such as preparation of GHZ states, then use caution and be sure to
use a small enough δt, and a large enough block size.

With this approach – which we alternatively call ‘Lightcone’ simulation, or ‘ED-Haah’
(after the first author of Ref. [396]) – we are able to simulate systems of up to 28 qubits.
Further, the Lightcone algorithm is easily adaptable to a matrix product state representation,
which we find to be the highest fidelity simulation method for one-dimensional Rydberg
atom arrays (Chapter 10).

B.3 RANDOM UNITARY CIRCUITS

Finally, here we describe random unitary circuit (RUC) simulation, as we used extensively
throughout this thesis. In general random unitary circuits are not strictly defined: they could
be a combination of randomly chosen single qubit gates followed by fixed two-qubit gates (as
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for instance used in the Google supremacy paper [162]), or they could be composed of two-
qubit Haar-randomized SU(4) gates, as are considered in tests of quantum volume [277].
Here we shall just describe the SU(4) implementation that we employ throughout this thesis.

The dynamics of the one-dimensional random unitary circuit (RUC) shown in are simulated
using randomly sampled two-qubit SU(4) unitary gates from the Haar measure1. Specifi-
cally, the time evolution of an N -qubit system starting from the initial state |0⟩⊗N can be
described as follows:

|ψ(t)⟩ = ÛtÛt−1 · · · Û2Û1|0⟩⊗N , (B.8)

where Ûodd = {Û1, Û3, · · · } and Ûeven = {Û2, Û4, · · · } are the odd- and even-time unitaries
composed of local two-qubit unitaries as

Ûodd =

N/2∏
i=1

Û2i−1,2i, Ûeven =

N/2∏
i=1

Û2i,2i+1 (B.9)

with open boundary condition, and t is the circuit depth and Ûµ,ν is the randomly-sampled
SU(4) gate acting on two qubits at site µ and ν. Note that at each circuit depth t, we
randomly sample two-qubit random unitaries to generate a many-body unitary Û , which
leads to chaotic dynamics.

To emulate noisy quantum dynamics, we utilize a stochastic evolution method [114] in-
corporating local errors represented by the Pauli operators Ŝx,y,z. These local errors are
stochastically applied to individual qubits at a given single-qubit error rate per circuit layer.
We repeat the noisy dynamics for thousands of trajectories at a fixed error rate, and further
repeat over around 10 different circuit realizations. Through this repetition, we obtain a
good approximation of the density matrix, ρ̂RUC.

1To generate a randomized SU(D) gate the procedure [484] is:

1. Generate a D × D complex, Gaussian random matrix, i.e. one in which each element is given by
(x+iy)/

√
2where x and y are Gaussian random numbers with zero mean and unity standard deviation.

2. Perform QR decomposition on the matrix, yielding matrices Q and R.

3. Normalize R′ = diag(R)/|diag(R)|, where diag picks out the diagonal elements of R.

4. The SU(D) gate is then Q×R′.
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APPENDIX C
Many-body temperature

In many of the studies we have conducted, it was important to define a notion of ‘temperature’
for many-body quantum states (for instance when discussing random state ensembles in
Chapters 5 and 7, and for application of our benchmarking protocol in Chapters 6 and 8).
Here we describe what we mean by temperature, and specifically describe observables of
Rydberg atom arrays evolving at infinite temperature.

C.1 TEMPERATURE

As discussed extensively in Chapter 7, the developing study of quantum thermalization [305,
307, 308, 325–329] has sought to create a consistent formulation for both statistical and
quantum mechanics. See Ref. [329] for the most pedagogical introduction to this topic.
With this comes a notion of temperature for generic many-body quantum states; we will
employ two different methods to practically define this temperature, one based on matching
the energy density of a thermal state, and one based directly on the entropy of the quantum
state.

As a disclaimer for both methods, it is very important to only study temperature in the irre-
ducible Hilbert space of interest. As a concrete example, often in this thesis we considered
states equilibrated at infinite effective temperature in the blockaded Hilbert space. When
performing calculations to determine the temperature it is important to truncate the Hilbert
space only to the blockaded manifold, because while a state may be at infinite temperature
with respect to the blockade manifold it will be at very low temperature with respect to
the total Hilbert space. The same care must be taken if there are symmetries in the system
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(i.e. reflection, translation, etc.), which must be eliminated by writing the Hamiltonian in
its irreducible representation (see Appendix B).

Energy density
Consider a pure quantum state, |ψ0⟩, which can be expressed in terms of the eigenvalues,
En, and eigenstates, |En⟩ of a given Hamiltonian, Ĥ , as |ψ0⟩ =

∑
n cn|En⟩ for coefficients

cn. The corresponding density matrix is ρ̂ = |ψ0⟩⟨ψ0| =
∑

n,m cnc
∗
m|En⟩⟨Em|. We could

alternatively consider a mixed state, ρ̂β , which is an incoherent (i.e. diagonal) mixture of
the eigenstates, ρ̂β =

∑
n pn|En⟩⟨En|, for probabilities pn with

∑
n pn = 1.

To make connection to classical statistical mechanics, we then consider the mixture of
eigenstates to describe a canonical ensemble at a temperature T (and inverse temperature
β = 1/T ), for which the probabilities are defined via Boltzmann factors pn = exp(−βEn)
(we set Boltzmann’s constant to 1 throughout). Thus, the thermal density matrix is written
as

ρ̂β ∝
∑
n

e−βEn|En⟩⟨En| = e−βĤ , (C.1)

where the thermal expectation value of any operator, Ô, can be written simply as

⟨Ô⟩ = Tr[Ôe−βĤ ]
Tr[e−βĤ ]

. (C.2)

So far, we have only been making definitional statements. Now we make the explicit claim
that the effective temperature of the pure quantum state |ψ0⟩ is the value of β for which the
expectation value of the energy is the same for |ψ0⟩ and for ρ̂β . In other words, we equate

⟨ψ0|Ĥ|ψ0⟩ =
Tr[Ĥe−βĤ ]
Tr[e−βĤ ]

. (C.3)

Thus, for any initial state, we can numerically test different values of β until Eq. (C.3) is
fulfilled, at which point we associate β with the effective temperature of the state.

Then, if we for instance want to design a Hamiltonian such that the initial state is at infinite
effective temperature, we simply pick a Hamiltonian parameter (e.g. detuning) to tune, until
we find the point where β = 0. Note that such an infinite temperature point formally is one
for which the overlap of the initial state with all energy eigenstates is equal, but in general
for quantum many-body systems there will be some ‘speckle’ around this condition, even
for (nearly) infinite effective temperature evolution.
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Entropy
The method described above is a good conceptual way to define temperature, but it requires
explicitly diagonalizing the Hamiltonian, and thus is limited to reasonably small system
sizes. Here we describe a different, equivalent method of defining temperature directly
from the entropy of a given quantum state, which can be modified to be performed with
larger systems.

As a reminder, quantum thermalization deals with the situation of a bipartite quantum
system, where one subsystem is the system of interest, while the other acts as an effectively
thermal bath. While there is not an actual notion of thermal entropy for pure quantum
states, we instead associate entanglement entropy between the two subsystems as analogous
to thermal entropy. For a given density matrix, ρ̂ we can write the entropy as

S = −Tr[ρ̂ log(ρ̂)] . (C.4)

From classical thermodynamics we can then relate the entropy to the temperature via the
simple differential relationship

δS = βδE (C.5)

where δE is a differential change in energy. To utilize this definition, we consider the
diagonal density matrix (explored in greater detail in Chapter 7), which takes the form

ρ̂d =
∑
n

|cn|2|En⟩⟨En| , (C.6)

where |En⟩ are energy eigenstates, and cn = |⟨En|ψ0⟩|2. If we normalize ρ̂d in the irre-
ducible representation of the Hilbert space (i.e. accounting for all symmetries, blockade,
etc), then we may simply calculate the entropy as S = −Tr[ρ̂d log(ρ̂d)].

As before, if we wish to find an infinite temperature condition, we can tune a term of the
Hamiltonian until we find the entropy is maximized with respect to the tuning parameter: at
this point the slope of the entropy with respect to the system energy is 0, and so the effective
temperature is infinite. This method will be consistent with the thermal density matrix
approach above, but in general yields broader features. Also, it still explicitly requires us to
diagonalize the Hamiltonian to calculate ρ̂d.

To get around this problem, we could instead obtain ρ̂d directly as

ρ̂d = lim
τ→∞

∫ τ

0

dt|ψ(t)⟩⟨ψ(t)| (C.7)
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where |ψ(t)⟩ is the time-evolved initial state. One can perform this time-evolution for
relatively large system sizes out to a very long time, then numerically construct the ρ̂d. After
truncating to the appropriate irreducible representation, the same entropy-based analysis
above applies.

C.2 INFINITE TEMPERATURE RYDBERG ATOM ARRAYS

When systems are equilibrated at infinite effective temperature, a number of their key
characteristics may be simplified. First, we better define the blockaded Hilbert space
dimension, and then describe calculating certain observables for a Rydberg atom array at
infinite effective temperature.

The blockaded Hilbert space dimension
It is somewhat common knowledge that the dimension of the blockaded Hilbert space forN
atoms with open boundary conditions is given by Fib(N+2) ≈ φN , whereφ = 1+

√
5

2
≈ 1.6

is the golden ratio. However, it is nice to see this derived. To do so, consider a chain of
N − 1 atoms. Let’s label the last atom of this N − 1 atom chain as x, and consider adding
one more atom, which we’ll call y, to its right. If y = 0, then the Hilbert space dimension
is the same as that of the entire N − 1 atom chain. However, if y = 1 then we force x = 0,
and so the Hilbert space dimension is that of the N − 2 atom chain. Thus, the Hilbert
space dimension of the N qubit system will be dim(HOBC

N ) = dim(HOBC
N−1) + dim(HOBC

N−2).
While this already looks very Fibonacci-ish, we can formalize this by writing the recurrence
relationship in matrix form as[

dim(HOBC
N )

dim(HOBC
N−1)

]
=

[
1 1

1 0

][
dim(HOBC

N−1)

dim(HOBC
N−2)

]
. (C.8)

The eigenvalues of this matrix are the golden ratio and its negative inverse, as expected.

Note that for periodic boundary conditions, we instead have dim(HPBC
N ) = dim(HOBC

N−1) +

dim(HOBC
N−3) (note the change from (N − 2)→ (N − 3)). This is because if the y atom is a

1, it not only restricts the x atom, but also the ‘first’ atom in the chain.

Rydberg expectation values at infinite temperature
Operating at an infinite effective temperature allows us to make analytical predictions for
many experimental observables. For instance, what is the steady state Rydberg occupation
(expectation value of n̂) for such a system? To simplify our lives, we consider periodic
boundary conditions, which is equivalent to working in the bulk of an open boundary
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system, though the same types of calculations we will perform could be done for the edges
of open boundary systems.

To calculate ⟨n̂⟩ at a given arbitrary site, we note it is the number of blockaded bitstrings
with a ‘1’ on a given site, divided by the number of total bitstrings. If there is a ‘1’ on a
given site, we know its neighbors must be ‘0,’ meaning there are only dim(HOBC

N−3) bitstrings
satisfying this requirement. Thus, the expectation value will be

⟨n̂⟩ =
dim(HOBC

N−3)

dim(HPBC
N )

(C.9)

=
φN−3

φN−3 + φN−1
(C.10)

=
1

φ2 + 1
(C.11)

≈ 0.276 . (C.12)

The same analysis can be carried our for higher-order operators, like the anti-ferromagnetic
connected two-point correlator (−1)|i−j|(⟨n̂in̂j⟩ − ⟨n̂i⟩⟨n̂j⟩) we considered in Chapter 11,
for which we would find the infinite temperature prediction as a function of distance,

d = |i− j|, is 0.2
(
φ−1
φ

)d
.

Note that all these claims can be easily checked numerically by explicitly constructing the
blockaded basis.
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