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ABSTRACT

Studying and controlling light-matter and matter-matter interactions is a central
theme in quantum physics and provides the foundation for quantum applications.
Rare-earth ions (REIs) doped in solids are promising candidates for engineering
scalable quantum technologies, such as quantum memories and quantum transduc-
ers, and for exploring emerging fundamental phenomena. This is because REIs
have highly stable optical and spin transitions at cryogenic temperatures, and as a
solid-state platform, they are compatible for integrating with quantum devices using
well-established semiconductor manufacturing techniques.

This thesis is centered on nanophotonic devices coupling to an ensemble of REIs.
To explore the light-matter interaction, we build a light-matter interface by cou-
pling an inhomogeneously broadened ensemble of ytterbium-171 doped in yttrium
orthovanadate to a nanophotonic cavity with high cooperativity. In this many-body
cavity quantum electrodynamics (cavity QED) system, we observe the appearance
of a narrow transparency window in the cavity reflection spectrum under optical
driving (collectively induced transparency, CIT). This phenomenon results from the
destructive interference between pairs of two-level emitters across the inhomoge-
neous line and the saturation of resonant ions. Furthermore, coherent excitation of
the system within this transparency window enables us to observe highly nonlinear
optical emission, spanning from fast superradiance to slow subradiance. To study
matter-matter interactions, we shift the focus to the strongly interacting spins. These
spins feature clock transitions and pure spin exchange interactions, leading to com-
parable magnitudes of interaction strength and on-site disorder. We characterize
and control the many-body dynamics via Hamiltonian engineering and population
initialization. Furthermore, we observe the emergence of robust subharmonic os-
cillations under Floquet driving, providing evidence for the presence of a discrete
time crystal.

The discoveries in many-body cavity QED enable new mechanisms for achieving
slow light and frequency referencing, and they provide potential for superradiant
lasers. Meanwhile, our studies on spin dynamics showcase REIs as a promising
platform for the study of many-body physics, with potential applications in quantum
sensing and quantum simulations. In general, our findings deepen the understanding
for a disordered quantum system and offer valuable insights for development of
quantum applications.
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C h a p t e r 1

INTRODUCTION

Quantum science provides the foundation for modern physics and engineering. From
a two-level quantum system to an ensemble of quantum emitters, there are broad
implications for exploring emerging exotic fundamental phenomena and developing
advanced technologies. Starting with a two-level quantum system, coherent single
emitters, such as atoms or atomlike defects, have various applications in quantum
networks, including single-photon light sources, quantum logic gates in quantum
computing, and spin-photon interfaces for future quantum networks. As we increase
the number of atoms, an ensemble of emitters serves as a more efficient light-matter
interface for engineering ensemble-based quantum technologies, such as quantum
memories and quantum transducers. Moreover, inspired by P.W. Anderson’s ‘More
is Different’[1], many-body phenomena emerge as we bring multiple atoms together.
The study of many-body phenomena not only reveals new physics but also provides
insights for developing quantum technologies, along with the potential for quantum
simulation and sensing.

In this introductory chapter, we first discuss the motivation for quantum memories,
the quantum application we engineered as a part of this thesis. Next, we provide
a broad overview of many-body physics, the main focus of this thesis. Then, we
introduce a quantum light-matter interface based on cavity quantum electrodynamics
(cavity QED) and the specific experimental platform we use—rare-earth ions in
solids coupled to a nanophotonic cavity.

1.1 Ensemble-based quantum technology: quantum memories
In the broad context of quantum information science, a quantum network is important
for the implementation of quantum computation and quantum communication. A
quantum network is comprised of quantum nodes and quantum channels linking
them (Fig. 1.1a). Due to optical absorption and other channel noise, it is challenging
to generate nearly perfect entangled states between two sites over a distance directly.

One solution is to use quantum repeaters, where the basic idea is to divide the
transmission channel into many segments (Fig. 1.1b). Entanglement is generated
and purified for each segment. Subsequently, by applying entanglement swapping
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between neighboring segments, entanglement can be extended through them. Af-
terwards, purification is applied to this extended entanglement. By repeating the
entanglement swapping and purification processes, the entanglement states can be
extended to the entire channel.

One essential requirement in the quantum repeater protocol is to store the created
entanglement until it has been established in the neighboring segment as well;
otherwise, all the entanglement needs to be created simultaneously. Therefore,
the quantum repeater protocol requires quantum memory to synchronize different
quantum processes (Fig. 1.1c).

... ...

QM

QM

QM

QM

QM

QM

a b c

Quantum repeater Quantum memories

Figure 1.1: Quantum network, quantum repeater and quantum memories. a.
A quantum network consists of nodes and channels linking them. b. The quantum
repeater protocol is to divide the transmission line into many segments. c. Quantum
memories are needed to store entanglement.

Our work focuses on engineering a quantum memory device with high efficiency
and fidelity.

1.2 Quantum many-body physics
In the field of quantum many-body physics, emergent phenomena arise in a group of
interacting particles. The properties of quantum many-body systems differ signifi-
cantly from those of individual components and often lack classical counterparts.

Conventional many-body physics in condensed matter explores exotic equilibrium
phases of matter, such as superconducting phases, Bose-Einstein condensates, and
spin liquids. This typically involves experimental measurements of material proper-
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ties under various conditions and the theoretical development of different mod-
els. On the other hand, recent advances in controllable experimental systems
provide opportunities to explore new frontiers of many-body physics, including
non-equilibrium phenomena [2].

Being out of equilibrium makes the systems much more complicated, increasing
the challenge in theoretical modeling. Therefore, understanding and controlling
non-equilibrium dynamics from the experimental side are fundamentally important.
Moreover, these dynamics could have fruitful applications, such as for quantum
information processing and quantum computing [3].

Atomic systems or atom-like systems, such as cold atoms, trapped ions, and solid-
state spins, serve as potential candidates for studying many-body dynamics. There
are several factors that are needed for them to be suitable for the study, including
long coherence time, high-fidelity manipulation, coherent control, and strong in-
teractions. One way to engineer many-body interactions is through their inherent
nature, such as magnetic dipole-dipole interaction (Fig. 1.2a), while another way is
through a medium, such as cavity photon-mediated interaction (Fig. 1.2b).

ba

Mediated interactionDirect interaction

Figure 1.2: Mechanisms of many-body interactions. a. Direct interaction between
spins. b. The interaction between spins is mediated by some medium, such as cavity
photons.

Cold atoms and trapped ions systems usually have the advantage of individual
control, while solid-state spins have the inherent capability to scale to a large number
of emitters and the potential for integration into nano devices. Among the solid-
state spins, there have been significant demonstrations in nitrogen-vacancy centers
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in diamond for performing quantum simulations, quantum sensing, and realizing
exotic phases of matter such as discrete time crystals (DTC) [4–6]. Rare-earth ions
(REIs) doped in solids, as an alternative, can inject new vitality into many-body
studies, as we will illustrate further in the next section.

1.3 Rare-earth ions in solids
Rare earth elements refer to the 15 lanthanide series elements, as well as yttrium and
scandium. Lanthanide elements form trivalent ions when doped into host materials.
The 5s and 5p orbitals are filled, while the 4f electron shell is partially filled. Most
of the 4f orbitals are much less extended than the 5s and 5p orbitals; thus the 5s and
5p shells form a Faraday shield for 4f from the environment (Fig. 1.3).
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Figure 1.3: Rare-earth ions. Rare-earth elements in periodic table and electron
structure of lanthanide series elements.

The spectroscopic properties of 4f, including the configuration of energy levels and
dynamics of electronic transitions, are important for studying the optical properties
of REIs in solids [7]. The 4f ↔ 4f electric dipole optical transitions are forbidden 1

for free ions but partially allowed by the crystal field generated in the host materials.
As a result, the optical lifetime is quite long, and optical coherence is mainly
determined by the spin properties. The spin lattice relaxlation via phonon couping
is the main source for spin decoherence, so cooling down to crygenic temeprature
will extend the the optical and spin coherence time. The spin-lattice relaxation
via phonon coupling is the main source of spin decoherence, so cooling down to
cryogenic temperatures will extend the optical and spin coherence time.

1Magnetic dipole transitions are allowed. A substantial fraction of the emission is magnetic
dipole for atoms like Erbium.
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In this thesis, we are focusing on two species of REIs: Erbium and Ytterbium
(Fig. 1.3). Erbium is of particular interest because it has an optical transition in the
telecom band, which allows integration with silicon photonics and telecommunica-
tion compatibility. Ytterbium has an effective electron spin of 1/2 and a nuclear spin
1/2 isotope (171Yb). The hybridization of electron and nuclear spin forms relatively
simple energy levels and can result in zero first-order-Zeeman (ZEFOZ) transitions
(clock transitions) at zero magnetic field, which can exhibit high coherence [8, 9].

1.4 Light-matter interface: cavity quantum electrodynamics (cavity QED)
The interaction between light and matter forms the foundation of quantum optics,
and an efficient light-matter interface serves as a building block for developing
quantum technologies [10]. Cavity quantum electrodynamics (cavity QED) [11]
provides a systematic method to achieve such an interface via enhanced light-matter
interaction. In cavity QED, emergent phenomena may also arise as light and matter
are confined in a small volume, given that the behavior of quantum emitters highly
depends on their electromagnetic environment.

The field of cavity QED has enjoyed great experimental advancements in the past
decades, as the rapid development of micro- and nano-scopic devices and laser
trapping techniques have revealed a diverse and rich set of phenomena [12, 13].
Such progress has also led to cavity QED’s use in quantum technology applications,
including quantum information processing [14, 15], light field manipulation [16,
17], single photon generation [18], and quantum communication [19–21], as the
ability to change the emitters’ properties with light (and vice versa) has proven to
be an indispensable tool for highly controlled quantum operations.

While many works in cavity QED have focused on one or a few cavity-coupled
emitters [15–18, 21–26], there has been growing interest in the study of cavity
QED with a macroscopic ensemble of emitters [27–30], as the increased complexity
offers deeper fundamental insights as well as expanded technological capabilities.
Cavity-coupled ensembles of rare-earth ions doped in solids are an ideal platform
for such a study [31, 32], as they offer highly stable transitions in both the optical
and microwave domain at cryogenic temperatures [33] and can be readily integrated
into nanoscale devices [34]. In contrast to atomic gas systems [27, 29], the solid-
state implementation offers the added benefit of on-chip integration for quantum
applications such as high bandwidth quantum memories and transducers [35, 36].
In such applications, the high bandwidth is necessary for frequency multiplexing in
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memories and high speed conversion in transducers and is achieved as a result of the
natural spectral inhomogeneity of the solid-state emitters. In order for such devices
to operate efficiently, one must engineer a system with high cooperativity, which is a
dimensionless figure of merit that describes the ratio between the collective coupling
strength of the cavity-emitter system to dissipation, decoherence, and disorder. As
improvements to material and device parameters are made towards increasing this
cooperativity, it becomes critical to fully understand any associated cavity QED
phenomena that may emerge.

Here, we will introduce some basic concepts from single-emitter cavity QED to
multiple emitters [37].

Single-emitter cavity QED
A single two-level system interacting with a quantized mode of an optical cavity
(Fig. 1.4a) is described by the Jaynes-Cumming model [38] with the governed
Hamiltonian

𝐻 = ℏ𝜔𝑐𝑎
†𝑎 + 1

2
ℏ𝜔𝜎𝑧 + ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+). (1.1)

Here, 𝑎 is the bosonic cavity field operator, 𝜎± and 𝜎𝑧 are the spin ladder operators
and the Pauli-Z operators describing the atomic coherence and inversion of the
emitter, respectively. 𝜔𝑐 is the cavity resonant frequency, 𝜔 is the atomic transition
frequency, 𝑔 is the atom-cavity coupling rate. 𝑔 depends on the local electric field
such that it is position ®𝑟 dependent:

𝑔(®𝑟) = −
√︄

𝜔𝑐

2ℏ
∫
everywhere 𝜖 (®𝑟) | ®𝐸 (®𝑟) |2𝑑®𝑟3

®𝑑 · ®𝐸 (®𝑟) (1.2)

where ®𝑑 is the electric dipole moment of the atom, ®𝐸 (®𝑟) is the electric field at
location ®𝑟 and 𝜖 is the permittivity. Sometimes 𝑔(®𝑟) is also written in terms of mode
volume 𝑉 where

𝑉 =

∫
everywhere 𝜖 (®𝑟) | ®𝐸 (®𝑟) |

2𝑑®𝑟3

max{𝜖 (®𝑟) | ®𝐸 (®𝑟) |2}
(1.3)

such that

𝑔(®𝑟) = −
√︄

𝜔𝑐

2ℏ𝑉max{𝜖 (®𝑟) | ®𝐸 (®𝑟) |2}
®𝑑 · ®𝐸 (®𝑟). (1.4)

When the electric field and material inside the cavity is uniform, 𝑔 will be simplified
as

𝑔 = −
√︂

𝜔𝑐

2ℏ𝑉𝜖
®𝑑 · 𝐸̂ (1.5)
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where 𝐸̂ is the unit direction vector of the cavity field. We can further move to
the laser frame with a frequency 𝜔𝐿 and focus on the slow-varying part of the
operators (rotating-wave approximation in the Heisenberg picture): 𝑎 → 𝑎𝑒−𝑖𝜔𝐿 𝑡

and 𝜎− → 𝜎−𝑒−𝑖𝜔𝐿 𝑡 . This gives us:

𝐻 = Δ𝑐𝑎
†𝑎 + 1

2
Δ𝜎𝑧 + 𝑔(𝑎†𝜎− + 𝑎𝜎+) (1.6)

where Δ𝑐 = 𝜔𝑐 − 𝜔𝐿 , Δ = 𝜔 − 𝜔𝐿 , and ℏ = 1 for brevity.

In addition to the Hamiltonian, both the cavity and the atom have dissipative rates
(Fig. 1.4a). For the cavity, we define the cavity energy decay rate as 𝜅 = 𝜅𝑐 + 𝜅𝑖,
including the intrinsic decay rate 𝜅𝑖 and the coupling rate 𝜅𝑐 of the input channel.
When we look at the cavity reflection spectrum, both the input and output coupling
can be described by 𝜅𝑐. In the more general case where there are other coupling
channels, additional coupling terms should be included in 𝜅. For example, in cavity
transmission measurements, one should consider the output coupling rate to the
transmitted port, denoted by 𝜅t, such that the total coupling rate can be written as
𝜅 = 𝜅𝑐 + 𝜅𝑖 + 𝜅t. The intrinsic coupling 𝜅𝑖 indicates the incoherent loss rate of the
cavity energy, which can be caused by the material absorption or scattering. The
ratio 𝜅𝑐

𝜅
reflects how well the cavity is coupled to a specific channel, and it is usually

referred as under-coupled when 𝜅𝑐
𝜅

< 0.5 , critical-coupled when 𝜅𝑐
𝜅

= 0.5 and
over-coupled when 𝜅𝑐

𝜅
> 0.5. For the emitter, the decoherence rate is definied as

𝛾 =
𝛾𝑠
2 + 𝛾𝑑 , including the spontaneous decay rate 𝛾𝑠 and the excess dephasing rate

𝛾𝑑 . This 𝛾 indicates the relative energy level fluctuation of the two level system,
and it will be reflected in the linewidth of the emitter in the probe spectrum (probe
power should be small enough to avoid power broadening).

The performance of the system depends on the competition between 𝑔, 𝜅 and 𝛾,
which is described by cooperativity

𝐶 =
4𝑔2

𝜅𝛾
. (1.7)

Many-body cavity QED
A cavity mode interacting with multiple atoms can be described by the Tavis-
Cummings Hamiltonian (in the laser frame) [39]:

𝐻 = Δ𝑐𝑎
†𝑎 + 1

2

𝑁∑︁
𝑗=1

Δ 𝑗𝜎
𝑗
𝑧 +

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝑎†𝜎 𝑗
− + 𝑎𝜎

𝑗
+). (1.8)
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Figure 1.4: a. Single-emitter cavity QED. b. Many-body cavity QED.

Here, we consider the coupling strength disorder (distribution of 𝑔 𝑗 ) and frequency
inhomogeneity (distribution of Δ 𝑗 ).

The total coupling of the ensemble to the cavity field is determined by the total
interaction strength 𝑔tot =

√︃∑
𝑗 𝑔

2
𝑗
and their frequency detuning relative to the probe

field with frequency, which can be described by collective absorption rate 𝑊 (𝜔𝐿)
[40, 41],

𝑊 (𝜔𝐿) = 𝑔2
tot

∫
𝜌(𝜔)

𝜔𝐿 − 𝜔 + 𝑖𝛾
𝑑𝜔, (1.9)

where 𝜌(𝜔) is defined as 𝜌(𝜔) = 1
𝑔2

tot

∑
𝑗 𝑔

2
𝑗
𝛿(𝜔 − 𝜔 𝑗 ). We can see that when 𝑔

and frequency are uncorrelated, 𝜌(𝜔) is the spectral density distribution with a
center frequency 𝜔0 and inhomogeneous linewidth Δinh (Fig. 1.4b). The collective
cooperativity is then defined as the ratio between the absorption rate and the cavity
decay 𝐶 =

|𝑊 (𝜔𝐿=𝜔0) |
𝜅/2 ,

𝐶 =
2𝑔2

tot
𝜅

∫
𝜌(𝜔)

𝜔0 − 𝜔 + 𝑖𝛾
𝑑𝜔 = 𝛼

2𝑔2
tot

𝜅Δinh
, (1.10)

where the prefactor𝛼 depends on the specific distribution. For example, a Lorentzian
distribution gives𝛼 = 2, a Gaussian distribution gives𝛼 = 2

√
𝜋 ln 2 and a rectangular

distribution gives 𝛼 = 𝜋 (note that Δinh is defined as the full width at half maximum
of each distribution).

1.5 Outline of the thesis
In this thesis, we are utilizing a rare-earth ions platform to engineer quantum ap-
plications, specifically quantum memory, and exploring many-body physics in both
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the optical and spin domains. The structure of the thesis is shown in Figure 1.5.

Rare-earth ions

Nanophotonics

Chapter 2: Multifunctional on-chip quantum memory

Chapter 3: Collectively induced transparency: a many-body cavity 
QED effect based on an ensemble of strongly cavity-coupled ions

Chapter 4: Cavity-mediated 
superradiance and subradi-

Chapter 5: Many-body spin dynamics
Chapter 6: Discrete time crystal: an application in a many-body 

Chapter 1: Introduction

Chapter 7: Future directions

Figure 1.5: Structure of this thesis.
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C h a p t e r 2

ON-CHIP QUANTUM MEMORIES BASED ON ERBIUM
ENSEMBLES

In this chapter, we demonstrate multifunctional on-chip quantum memories at
telecommunication wavelengths. The content is adapted from [42].

2.1 Introduction
Optical quantum memories will enable long distance quantum communication using
quantum repeater protocols [43–45]. A quantum memory device which can control
the bandwidth and frequency of stored light is additionally useful, as it can interface
between optical elements which have different optimal operating points. Erbium-
doped materials are a promising solid-state platform for ensemble-based optical
quantum memories because of their long-lived optical transition in the telecommu-
nication C-band that is highly coherent at cryogenic temperatures [46, 47]. This
allows for integration of memory systems with low-loss optical fibers, opening up
opportunities for repeaters over continental distances, as well as integration with
silicon photonics [41, 48] one of the most advanced platforms for integrated pho-
tonics. Spin transitions in 167Er3+-doped yttrium orthosilicate (167Er3+:Y2SiO5)
have also been shown to have long relaxation and coherence lifetimes at cryogenic
temperatures and high magnetic fields [49] which opens the possibility for long term
spin wave memories.

There have been several demonstrations of optical storage in erbium-doped materials
[50–55], including storage at the quantum level [50, 51, 55], and on-chip storage
[51, 55]. These results are part of a larger body of optical quantum memory research
[45, 56], using rare-earth-ion-doped crystals [57–60], atomic gases [61, 62], and
single atoms or defects [63, 64]. In parallel with efforts to increase the efficiency
[61] and storage time [59, 60] of quantum memories, several works have focused
on new types of multifunctional devices [65–68] in which control fields are used to
modify the state of the light during storage.

In many quantum repeater protocols [69], quantum memories act as interfaces be-
tween emitters such as quantum dots [70] or individual atoms [48]. Dynamic control
of the optical pulses stored in these memories can correct for differences between
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individual emitters, leading to higher indistinguishably for Bell State measurements
at the entanglement swapping stage of quantum repeater protocols [43]. In addition,
with control over the frequency of stored light, one can map an input mode to a
different output mode in a frequency multiplexed quantum memory, which enables
quantum networks with fixed-time quantum memories [71].

In this work, we use a silicon resonator evanescently coupled to 167Er3+:Y2SiO5 ions
and gold electrodes to realize a multifunctional on-chip device which can not only
store light, but also dynamically modify its frequency and bandwidth. Electrodes
create a DC electric field that can be rapidly switched, which enables control of
the 167Er3+ ions’ optical transition frequency via the DC Stark shift [72]. Using
a resonator increases the interaction between light and the ion ensemble, allowing
on-chip implementation of the atomic frequency comb (AFC) memory protocol
[20]. This protocol allows multiplexing in frequency, which offers a significant
advantage in quantum repeater networks [73]. Additionally, the on-chip electrodes
are patterned close together to achieve the high electric fields required for Stark shift
control with CMOS compatible, applied voltages. We demonstrate dynamic control
of memory time in a digital fashion, as well as modification of the frequency and
bandwidth of stored light.

2.2 Hybrid 𝛼Si-167Er3+:Y2SiO5 resonator with electrodes
The multifunctional device consists of an optical resonator coupled to 167Er3+:Y2SiO5

ions between gold electrodes. Using the AFC quantum storage protocol [74] and
the ions’ Stark shift, light can be stored and manipulated in this device. Figure 2.1a
shows a schematic of the device and the three functionalities demonstrated in this
work: memory time control, frequency control, and bandwidth control. Different
electric field configurations are created by applying a positive (blue) or negative
(red) bias to each electrode. For the true device dimensions, see the micrograph in
Fig. 2.2d.

The optical resonator used in this work is a Fabry-Perot resonator comprised of a 100
𝜇m amorphous silicon (𝛼Si) waveguide on 167Er3+:Y2SiO5 with photonic crystal
mirrors on either end. Figures 2.3a-c show simulations and micrographs of this
resonator. The waveguide is ℎ = 310 nm tall and 𝑤 = 605 nm wide. Ten percent
of the energy of the transverse-magnetic optical waveguide mode penetrates into
the 167Er3+:Y2SiO5 and evanescently couples to the 167Er3+ ions. Photonic crystal
mirrors on either side are formed by a repeating pattern of elliptical air holes in
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Figure 2.1: Multifunctional quantum storage device. Schematic of device func-
tionality showing the optical resonator (pink), electrodes (blue and red), and memory
output.

the 𝛼Si waveguide with period 𝑎◦ = 370 nm. A grating coupler is used to couple
light from a free-space mode into and out of the resonator. The amorphous silicon
resonator is fabricated on top of an 167Er3+:Y2SiO5 chip using a deposition and
etching process similar to Ref. [41]. The 167Er3+:Y2SiO5 substrate is doped with
isotopically purified 167Er3+ ions at 135 ppm, measured by secondary ion mass
spectrometry, and cut perpendicular to the 𝐷1 crystal axis, such that the electric
field of the transversal magnetic (TM) optical mode is polarized along this axis.
The 𝑥, 𝑦, and 𝑧 axes in Fig. 2.2 and Fig. 2.3 correspond to the 𝐷2, 𝑏 and 𝐷1 Y2SiO5

crystal axes, respectively.

Quality factors of up to 105 were measured for weakly coupled resonators, where
the photonic crystal mirrors on both sides were designed to be highly reflective.
The device used in this work is made one-sided for more efficient quantum storage
[55, 74] by using fewer photonic crystal periods in one mirror to make it less
reflective. Light is sent into and measured from the side with the lower reflectivity
mirror. The intrinsic quality factor for this device is also lower than the weakly
coupled resonators, leading to a quality factor of 3 × 104 and a coupling ratio of
𝜅in/𝜅 = 0.2, where 𝜅in is the coupling rate through the lower reflectivity mirror and
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Figure 2.2: Electrodes on quantum storage device. a-c, 3D finite element sim-
ulation of on-chip electrodes. a, b, 2D slice at 𝑧 = 0 showing electric potential
(blue-red gradient) in the parallel (a) and quadrupole (b) biasing configurations.
c, Electric field 𝐸𝑦 (𝑥) along optical resonator in the parallel (green solid line) and
quadrupole (orange solid line) configurations; 𝐸𝑦 (𝑥) was measured at 𝑧 = 0, 𝑦 = 0,
−56 𝜇m < 𝑥 < 56 𝜇m (green lines in a and orange lines in b); dashed lines indicate
ideal parallel (green) and quadrupole (orange) electric field distributions. d, Op-
tical micrograph showing an optical resonator, gold electrodes, and gold wires for
electrical contact.

𝜅 is the total decay rate [76]. The lower (higher) reflectivity mirror consists of 6
(30) regularly spaced holes, with an additional 15 holes in the tapers on either side.
Several one-sided devices with different numbers of regularly spaced holes on the
lower reflectivity side were fabricated on the same chip, and the device with the best
combination of quality factor and 𝜅in/𝜅 was chosen.

Electrodes are used to apply electric fields to those ions coupled to the optical
resonator. There are four independently biased gold electrodes, each comprised
of a 70 𝜇m diameter circle connected to a 20 𝜇m × 60 𝜇m rectangle. They are
patterned onto the 167Er3+:Y2SiO5 after the 𝛼Si resonators using electron-beam
lithography followed by electron-beam gold evaporation and lift-off. Figures 2.2a-d
show simulations of the two electrode biasing configurations: parallel, which applies
a nearly constant electric field to all ions (𝐸 (𝑥) = 𝑎), and quadrupole, which applies
an electric field gradient along the resonator (approximating d𝐸 (𝑥)

d𝑥 = 𝑏), where 𝑎
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Figure 2.3: 𝛼Si resonator quantum storage device. a, cross-section of waveguide
(black outline) showing 2D finite element simulation of the transverse-magnetic
waveguide mode. Purple-white gradient indicates the 𝐸𝑧 component of the optical
field. b, Band diagram showing waveguide mode (solid red line), band gap of a
photonic crystal mirror (solid blue lines), and the design frequency of 195 THz
(dashed red line). Blue areas indicate the Y2SiO5 light cone containing extended
modes propagating in bulk Y2SiO5 (both sides for photonic crystal, left side only
for waveguide). c, Scanning electron micrograph showing a grating coupler and
photonic crystal mirror including tapered sections on either side to reduce scattering
[75].

and 𝑏 are constants. The electrode geometry was designed to best approximate these
two electric field profiles with four independently biased electrodes, while providing
a large electric field for a given applied bias (𝐸/𝑉). In the 167Er3+:Y2SiO5 region
where ions are coupled to the optical mode, the 𝐸𝑦 component of the electric field is
dominant (𝐸𝑦 ≫ 𝐸𝑥 , 𝐸𝑧), and it does not vary significantly in the 𝑧 and 𝑦 directions.
Therefore only 𝐸𝑦 (𝑥), which is aligned to the 𝑏-axis of the Y2SiO5 crystal, is
considered.

The device is thermally connected to the coldest plate of a dilution refrigerator, the
temperature of which is ∼ 100 mK. A static magnetic field of 0.98 T is applied along
the Y2SiO5 𝐷1-axis with a superconducting electromagnet. Trim coils are used to
cancel any magnetic field component along the 𝑏-axis. Two function generators
with 120 MHz bandwidth and a total of 4 channels were used to apply pulses with
amplitudes up to ±5 V to the electrodes. The remainder of the measurement setup
was similar to the one described in Ref. [55].



15

2.3 DC Stark shift in 167Er3+:Y2SiO5

Er3+:Y2SiO5 has been extensively studied for quantum applications [46–48, 52–55,
77, 78], including demonstrations of AFC storage [53, 55]. Erbium ions substitute
for yttrium ions in Y2SiO5 in 2 crystallographic sites, each of which has four
different orientations due to the 𝐶6

2ℎ crystal symmetry [79]. In this work, we use
crystallographic site 2, which has an optical transition near 1539 nm [46]. 167Er3+

has a nuclear spin 𝐼 = 7/2, which together with an effective electron spin, leads to
16 hyperfine levels in both the optical ground and excited states. At high fields and
low temperatures, the electron spin is frozen, allowing the lowest 8 ground-state
hyperfine levels to be long-lived [49, 55], thereby enabling the spectral holeburning
that is required to create atomic frequency combs. Aligning the magnetic field with
the 𝐷1 crystal axis enhances this effect because the ground state electron 𝑔-tensor
of 167Er3+:Y2SiO5 is nearly maximized in that direction for site 2 [79].

Dynamic control is enabled by the DC Stark shift. When a rare earth ion in a crystal
interacts with a DC electric field ®𝐸 , its optical transition frequency is shifted due to
the difference between the permanent electric dipole moments in the optical excited
and optical ground states 𝛿 ®𝜇 = ®𝜇e − ®𝜇g. For non-centrosymmetric sites such as the
yttrium sites in Y2SiO5 for which Er3+ ions substitute, the linear Stark shift term
𝛿 𝑓 = − 1

ℎ
𝛿 ®𝜇 ·

↔
𝐿 · ®𝐸 dominates, where

↔
𝐿 is the local field correction tensor [72].

The Stark shift is dependent on the orientation of the applied field relative to 𝛿 ®𝜇
[80]. Without knowing 𝛿 ®𝜇 or

↔
𝐿, the Stark shift can be empirically characterized for

an electric field applied in a particular direction 𝑛̂ (𝑛̂ is a unit vector) using the Stark
shift parameter 𝑠𝑛̂ given 𝛿 𝑓 = 𝑠𝑛̂𝐸𝑛̂. We measured 𝑠𝑛̂ = 11.8 ± 0.2 kHz/(V/cm) for
𝑛̂ nominally aligned with the Y2SiO5 crystal 𝑏-axis (Fig. 2.4). Specifically, spectral
hole burning was firstly used to create a comb consisting of four narrow teeth, and
the frequency shift under a certain applied electric field was then measured with
electrodes biased in the parallel configuration (Fig. 2.2a).

In an ensemble of 167Er3+:Y2SiO5 ions, four different Stark shifts will be observed
for an arbitrary electric field due to the four orientations of each crystallographic site
[79]. For electric fields parallel or perpendicular to the 𝑏-axis, the Stark shifts of the
four subclasses are pair-wise degenerate, resulting in two Stark shifts 𝛿 𝑓± = ±𝑠𝐸 .
In this work, all electric fields are applied parallel to the 𝑏-axis, so we will simply
refer to two 167Er3+ subclasses.
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Figure 2.4: Holeburning spectroscopy measurement of DC Stark shift. a,
Frequency profile of a four-tooth comb as a function of electric field. White-black
gradient represents cavity reflectance. Both subclasses of ions are present, leading
to a two-fold splitting. Inset shows an example sweep with 𝐸𝑦 = 283 V/cm, the
location of which is indicated with a dashed line on the main plot. b, Splitting versus
electric field. Black circles are splitting data obtained by fitting the traces in a with
four sets of two-fold split Gaussians. A negative splitting means the positions of the
two subclasses are reversed. Error bars, which are smaller than markers, represent
95% confidence intervals from the fits. Solid line is a linear fit to the data without
an offset. The top axis shows 𝑉applied, one output of the function generator used to
generate electric pulses (the other outputs are either𝑉applied or−𝑉applied). The bottom
axis shows 𝐸𝑦, the electric field applied along the Y2SiO5 𝑏-axis, calibrated using
the average value from simulation 𝐸𝑦 = 314.8 V/cm when ±1 V is applied to each
electrode (dashed green line in Fig. 1g in main text). There is an additional factor
of 2 in the calibration due to the impedance mismatch between the 50 Ω output of
the function generator and the open-circuit electrodes.

2.4 Atomic frequency comb storage with dynamic memory time control
After a photon is absorbed by an ensemble of ions, the ensemble of ions is described
by a Dicke state [74]:

|Ψ⟩ =
𝑁ions∑︁
𝑗=1

𝑐 𝑗 𝑒
𝑖2𝜋( 𝑓 𝑗+ 𝛿 𝑓 𝑗 (𝑡)) 𝑡 𝑒−𝑖𝑘®𝑟 𝑗

��0...1 𝑗 ...0𝑁

〉
. (2.1)

Each ion has a different transition frequency 𝑓 𝑗 and position ®𝑟 𝑗 . For AFC storage,
the transition frequencies { 𝑓 𝑗 } form a frequency comb with period Δ. When a
photon is absorbed at 𝑡 = 0, the ensemble of ions first dephase then rephase every
𝑡 = 𝑚

Δ
, 𝑚 ∈ N, leading to a coherent re-emission of the light [74]. A Stark shift

𝛿 𝑓 𝑗 (𝑡) enables dynamic control of light stored in the AFC by changing the optical
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transition frequencies of the ions. 𝛿 𝑓 𝑗 (𝑡) can be varied over time by changing the
amplitude of the applied electric field (slowly relative to optical frequencies). This
enables two types of control: electric field pulses applied between the absorption
and emission of light modify the phase of the output, while electric field pulses
applied during emission of light modify the frequency profile of the output light.

To achieve dynamic control of storage time, the electrodes are biased in a parallel
configuration as shown in the top panel of Figure 2.1 (Fig. 2.2a). When an electric
pulse is applied, the two 167Er3+:Y2SiO5 subclasses experience opposite frequency
shifts,±𝛿 𝑓 (𝑡) = ±𝑠𝑏𝐸 . By appropriately choosing the length in time 𝑡 and amplitude
𝐸 of the electric pulse, a 𝜋 phase difference between subclasses can be introduced
𝜋 = 2𝜋 × (+𝑠𝑏𝐸 − (−𝑠𝑏𝐸)) × 𝑡, which will prevent any coherent emission from
the ensemble. An equal-area electric pulse with opposite sign can then rephase the
two subclasses, and allows coherent re-emissions from the AFC. This procedure of
dephasing and rephasing the ensemble works even if the electric field distribution
is not perfectly homogeneous, as shown in the context of Stark Echo Modulation
Memory in Reference [81]. Recently, dynamic control of memory time in AFC
was demonstrated using this same procedure in Pr3+:Y2SiO5 [82]. Reference [53]
proposed a similar protocol but using an electric field gradient.

The pulse sequence used to achieve dynamic control of AFC storage is shown in
Figure 2.5a. Not shown is the initialization to move most of the population into one
hyperfine state, which is performed before every experiment [42, 49, 55]. First, an
AFC with period Δ is created by repeatedly burning away population between the
teeth of the comb, 𝑛comb = 20 times. Then, an input pulse indicated by the red laser
pulse is sent into the resonator at 𝑡 = 0 and is absorbed by the AFC. Shown in light
red are possible emissions corresponding to rephasing events of the AFC at times
𝑡 = 𝑚

Δ
. Without electric field control, the output of the memory (the first and largest

emission), would be centered at 𝑡 = 1
Δ

(𝑚 = 1). The schematic shows instead an
emission in red at 𝑡 = 3

Δ
(𝑚 = 3), obtained when a first electric pulse is applied

before the first emission and a compensating pulse is applied immediately before
the third emission.

Figure 2.5b shows the AFC used in this experiment. The period of the comb,
extracted from the fit, is 19.7 ± 0.1 MHz, which corresponds to a minimum storage
time of 𝑡 = 1

Δ
= 50 ns. Figure 2.5c shows dynamically controlled storage for various

values of 𝑚. The input pulse is a weak coherent pulse corresponding to an average
photon number in the resonator of ⟨𝑛cav⟩ = 1.9. Two electric pulses were used to
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Figure 2.5: AFC storage with dynamic memory time control. a, Pulse sequence
(not to scale, details in main text). b, Atomic frequency comb. Cavity reflectance
(black points) and fit to six Gaussians (solid black lines). All teeth are fit together,
with the finesse fixed to the value from d. Detuning is measured from 194822 GHz.
Grey Gaussian with dashed outline represents the input pulses in frequency space.
c, Emission of stored light at different times 𝑡memory = 𝑚

Δ
. Partly reflected input

pulse are shown in grey at 𝑡 = 0. On-demand memory outputs are shown in blue
(darkest shade). Subsequent emissions (green to red) are discussed in the main text.
Electric pulses are not shown. d, Energy emitted in the time bin at 𝑡 = 𝑚

Δ
for each

value of 𝑚. Black data points represent the normalized counts when all previous
emissions are suppressed with electric pulses (blue pulses in c). Grey data points
represent normalized counts when previous emissions are not suppressed, meaning
no electric pulses are used (all pulses on line 𝑚 = 1 in c). Error bars, representing√
𝑁counts, are smaller than the markers. Solid line is a fit to theory, fitting only for

comb finesse.
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control memory time. The first was a 10 ns long pulse with amplitude 2 kV/cm
centered at 𝑡pulse 1 = 25 ns. The second was 10 ns long with an opposite amplitude
of -2 kV/cm, and its center position was varied as 𝑡pulse 2 = 25 ns + (𝑚 − 1) × 50
ns to allow the emission at 𝑡memory = 𝑚

Δ
. The electric pulses were calibrated to

ensure optimal suppression of the emission[42]. Between the two electric pulses,
emission was suppressed down to the dark counts level, a factor of 100 lower than
peak emission counts. For the 𝑚 = 1 case, no electric pulses were applied. The
presence of multiple smaller pulses following the output pulse is a feature of the
high finesse and low efficiency of the memory (section 2.9). For higher efficiency,
high finesse AFCs, subsequent emissions are significantly suppressed [82].

Figure 2.5d shows the energy emitted in the 𝑚𝑡ℎ time bin for 𝑡memory = 𝑚
Δ

. The
data is fit to the dephasing term in the theoretical storage efficiency for a comb with
Gaussian teeth: exp

(
− 𝜋2

2ln2
𝑚2

𝐹2

)
[53, 74], where 𝐹 = Δ/𝛾 is the comb finesse, and 𝛾

is the full-width at half maximum (FWHM) of each tooth. The 𝑚 = 1 data point
is excluded from the fit because the approximately 100 ns dead time of the single
photon detector after the input pulse is thought to lead to undercounting in that time
bin. A comb finesse of 𝐹 = 12.2±0.2 (𝛾 = 1.6 MHz) is extracted from this fit. This
corresponds to a 1/𝑒 point of 240 ns (𝑚 = 4 for digital storage time). To improve
on this scaling requires a smaller tooth width 𝛾. The grey data in Fig. 2.5d show the
total counts in the 𝑚𝑡ℎ time bin when the previous output pulses are not suppressed.

2.5 Dynamic frequency control
The frequency of light stored in an AFC can be dynamically modified during
emission. The atomic frequency comb is shifted in frequency during the emission
of stored light by biasing the electrodes in the parallel configuration as shown in
the middle panel of Figure 2.1 (Fig. 2.2a). The pulse sequence used to achieve
AFC storage with frequency control is shown in Figure 2.6a. The first step is to
eliminate one of the two 167Er3+ subclasses from the spectral window, leaving only
ions which experience a positive Stark shift, 𝛿 𝑓+ = +𝑠𝑏𝐸 (the choice of subclass is
arbitrary). This is accomplished using a two-part comb burning procedure. With
the first burning step, a normal AFC containing both subclasses is created using
a sequence of laser pulses. For the second burning step, the two subclasses are
split by Δ/2 using a parallel electric field, and a similar sequence of laser pulses is
used, but with a frequency shift of Δ/4. This burns away ions with a negative shift
𝛿 𝑓− = −𝑠𝑏𝐸 .
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Figure 2.6: AFC storage with frequency control. a, Pulse sequence (not to
scale, details in main text). b, The output detuning as a function of electric field
applied during emission. Circles are the centers of Gaussian fits (as shown in (b-c)).
Error bars, which are smaller than the markers, are 95% confidence intervals for
those fits. The solid line is a linear fit to the data, yielding a slope of 13.0 ± 0.3
kHz/(V/cm), similar to the Stark shift value measured by holeburning spectroscopy.
c,d, Examples of AFC output pulses with (green, lighter) and without (blue, darker)
a frequency shift. Filled in area is a Gaussian fit to the data (circles). Detuning is
measured from 194822 GHz. Frequency shifts of 9 MHz in c and 30 MHz in d are
shown, with corresponding points in b circled.

Repeating the comb burning procedure 𝑛comb = 5 times, an AFC with width 145
MHz, and a periodΔ = 5 MHz is created. An input pulse is sent in and the rephasing
of the AFC causes an emission at 𝑡 = 1

Δ
= 200 ns. During this emission, an electric

field pulse with amplitude 𝐸pulse applied in the parallel configuration will cause
the ions to emit with a frequency shift of 𝑓 = +𝑠𝑏𝐸pulse. Figures 2.6b-c show the
light emitted from the memory, with and without a frequency shift. A heterodyne
measurement is used to measure the frequency of the output pulse directly. To
detect the output pulse with this lower-sensitivity detection method, bright input
pulses were used

(
⟨𝑛cav⟩ = 46 × 103) . Figure 2.6d shows the linear frequency shift
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as a function of electric field. The decrease in output amplitude with frequency
shift evident in Figures 2.6b-c is mainly due to the broadening of the teeth width,
which is caused by inhomogeneity of Stark shifts experienced by the ions[42]. This
broadening results in a decrease in efficiency via the dephasing term introduced in
the previous section.

2.6 Dynamic bandwidth control
The bandwidth of stored light can be dynamically controlled by biasing the electrodes
in a quadrupole configuration as shown in the bottom panel of Figure 2.1 (Fig. 2.2b).
In the quadrupole configuration, electric pulses create a gradient electric field across
the ions so that each ion experiences a different Stark shift. Figure 2.7a shows the
pulse sequence used to achieve AFC storage with bandwidth control. First, an AFC
with Δ = 1.6 MHz and bandwidth 144 MHz is created by repeatedly burning away
population 𝑛comb = 20 times. Next, an input pulse (⟨𝑛cav⟩ = 1.9) is sent into the
device, leading to an output pulse at 𝑡 = 1

Δ
= 630 ns. A gradient field applied during

the AFC emission causes the bandwidth of the absorbing ion ensemble to broaden,
such that the emitted pulse is also broader in frequency relative to the input pulse.
However, the gradient field also alters the phase evolution of each ion by changing
its resonant frequency. If not compensated, the different phases accumulated across
ions in the ensemble could prevent emission altogether. For this reason, three electric
pulses are applied, during the input and output optical pulses, and also during the
wait time. These three pulses have the same area but can have different amplitudes.
The first and second pulses are used to add phase compensation such that the net
electric-field-induced phase shift is zero for each ion, accounting for the fact that
AFC storage is first-in-first-out [65, 83].

Figure 2.7b shows AFC storage with no broadening (top) and with the maximum
achieved bandwidth broadening (bottom). A broadening in frequency space is seen
as a narrowing of the output pulse in time. By fitting the output pulses to Gaussians,
the temporal FWHMs (Δ𝑡) of input and output pulses are extracted and converted to
bandwidth or frequency FWHMs (Δ 𝑓 ) using: Δ 𝑓 = 4ln2

2𝜋 (Δ𝑡)−1. Figure 2.7c shows
the trend of output bandwidth as a function of the maximum electric field applied
during the third pulse 𝐸max (the electric field across the resonator ranges from
−𝐸max to 𝐸max). To confirm that the trend observed in the data is expected given the
atomic frequency comb profile, the input pulse, and the electric field distribution
𝐸𝑦 (𝑥), a simulation of the experiment was performed by numerically integrating the
time-evolution equations of the atoms and cavity (section 2.9). The simulation data
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Figure 2.7: AFC storage with bandwidth control. a, Pulse sequence (not to scale,
details in main text). b, AFC storage with (bottom) and without (top) bandwidth
broadening. Colored areas are Gaussian fits to photon counts data (circles) from
which widths are extracted. The partially reflected input pulse with FWHM 77.4 ns
(5.7 MHz FWHM in the frequency domain) is shown in grey (lighter color) in both
traces at 𝑡 = 0, demagnified by a factor of 103. The top trace shows the case without
bandwidth broadening: 𝐸max(𝑡 = 630 ns) = 𝐸max(𝑡 = 0) = 0.67 kV/cm, where the
width of the output (blue, darker) is 77.1±2.0 ns (5.7±0.1 MHz). The bottom trace
shows the maximum bandwidth broadening, 𝐸max(𝑡 = 630 ns) = 4 × 𝐸max(𝑡 = 0) =
2.8 kV/cm, where the width of the output (blue, darker) is 24.3 ± 0.5 ns (18.1 ± 0.4
MHz). Insets show schematics of electrode pulse sequences. c, Bandwidth of pulses
as a function of the 𝐸max

output. In all cases, 𝐸max
input = 0.67 kV/cm. Filled black circles

are FWHM data. Error bars, which are smaller than the markers, represent 95%
confidence intervals from fits. Unfilled grey circles are simulation data (section 2.9).

reproduces the trend in FWHM as a function of field. The only previously unknown
parameter used in this simulation was the distance that the optical mode penetrates
into the photonic crystal mirrors, which modifies the effective resonator length and
changes the value of 𝐸max. This parameter was found to be 𝑥eff = 6 𝜇m for each
mirror by coarsely sweeping 𝑥eff in 1 𝜇m increments in the simulation to find the
best fit to the data.

2.7 Discussion
In this work, we have demonstrated the capabilities of an on-chip optical storage
device with DC Stark shift control. Taking this technology on-chip has two main
advantages. First, it allows miniaturization and future integration with other optical
components on chip. Second, it enables simple generation of large electric fields.
Because the distance between electrodes across the resonator is small (a minimum
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of 20 𝜇m), electric fields of 3 kV/cm are generated with just ±5 V of applied bias in
the parallel configuration. Such biases were easily supplied by a function generator
with no additional amplification. In the quadrupole configuration, electric field
gradients of up to 50 V/cm/𝜇m were generated, corresponding to gradient of 0.58
MHz/𝜇m in 167Er3+:Y2SiO5 transition frequencies.

For the dynamically controlled memory times in Fig. 2.5d, an excellent match was
found between the amplitude of stored light as a function of time and the theoretical
limit due to the dephasing of a comb with finesse 𝐹 = 12.2, indicating that the two
electric field control pulses did not introduce any irreversible dephasing. This was
also confirmed using a two pulse photon echo measurement, where inserting two
electric field pulses with equal area and opposite sign between the first and second
optical pulses was found not to decrease the optical coherence time 𝑇2, which was
measured in this device to be 108 ± 13 𝜇s.

Frequency control was demonstrated for up to±39 MHz. In this work, the maximum
shift was set by the maximum applied electric field of 3 kV/cm. One technical
difficulty is that ions from the other subclass that are outside of the comb will act
as an absorbing background when the comb is shifted in frequency and the other
subclass experiences an opposite frequency shift. Assuming that the comb can be
sufficiently separated in frequency from the other subclass using high electric fields,
a more fundamental limit is set by the inhomogeneity of the Stark shifts, which leads
to a decrease in storage efficiency with increasing frequency shift. In this device, the
Stark shift inhomogeneity was dominated by an electric field distribution that was
not perfectly homogeneous (see Fig. 2.2c). Even in a perfectly homogeneous field,
however, some inhomogeneity in Stark shifts will exist due to crystal field variations
throughout the crystal [72].

The bandwidth of stored light was changed by a factor of three from 6 MHz to
18 MHz. The maximum broadening demonstrated was limited by the maximum
electric field gradient of 50 V/cm/𝜇m. With higher gradients, stored pulses could be
broadened up to half the bandwidth of the comb and the bandwidth of combs in this
material is limited to ∼ 150 MHz [55]. Decreasing the bandwidth of a stored pulse
is not possible with this procedure, because the AFC cannot be made narrower with
a gradient electric field, only wider. Narrowing the AFC could be accomplished
with a frequency selective shift such as the AC Stark shift. The storage efficiency
was observed to decrease when changing the bandwidth of the stored pulse. This
decrease in efficiency, which was also seen in simulation, was stronger when the
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bandwidth change was larger, and was not present when the three electric pulses
had equal amplitude (corresponding to no change in pulse bandwidth).

An on-chip resonator allows for storage efficiencies approaching unity if the impedance
matching condition is met [20]. In this device, the storage efficiency was up to 0.4%,
depending on the finesse of the comb created, and was limited by the low coupling
between the ensemble of ions and the optical mode of the resonator, characterized
by an ensemble cooperativity 𝐶 < 1, and the small coupling ratio of the lower
reflectivity mirror, 𝜅in/𝜅 = 0.2 (see efficiency discussion in Appendix D of Refer-
ence [55]). The storage time on an optical transition is ultimately limited by the
optical coherence time 𝑇2. However, in 167Er3+:Y2SiO5, superhyperfine coupling to
yttrium nuclear spins in the crystal prevents the creation of narrow spectral features,
which means a low storage efficiency for storage times longer than ∼ 500 ns [55].
Superhyperfine coupling is a major limitation to high-efficiency long lived storage
in 167Er3+:Y2SiO5 when using memory protocols based on spectral tailoring such
as AFC.

For quantum repeater applications, the efficiency and duration of on-chip storage
must be improved. The storage efficiency in hybrid 𝛼Si-167Er3+:Y2SiO5 devices
can be increased by using thinner silicon to increase the fraction of the optical mode
energy in the 167Er3+:Y2SiO5, which would increase the ensemble cooperativity,
and by optimizing the resonator nanofabrication procedure to decrease scattering
and absorption loss in order to achieve higher intrinsic quality factors. For example,
using crystalline silicon could mitigate absorption loss. Higher intrinsic quality
factors would increase both the ensemble cooperativity and the coupling ratio 𝜅in/𝜅,
both of which affect storage efficiency. To overcome the superhyperfine limit to
storage time, creative solutions such as using clock transitions in 167Er3+:Y2SiO5[78,
84, 85], which are less sensitive to superhyperfine coupling, or finding new crystal
hosts for erbium ions can be used. Longer storage times can also be realized
by combining AFC storage with spin-wave storage, where the optical excitation is
reversibly transferred to a hyperfine level [74]. Spin-wave storage could be combined
with the bandwidth and frequency control demonstrated here, and it would eliminate
the need for memory time control with electric fields. Another requirement of
quantum memories is to store quantum states of light with high fidelity. This has
already been demonstrated with the AFC protocol [50]. Storage of weak coherent
states using the AFC protocol with DC Stark shift control of storage time has also
been recently demonstrated [82]. Future work should include demonstrations of on-
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chip storage of light at the quantum level with dynamic frequency and bandwidth
control. More generally, this type of device could work with different absorbers that
experience linear Stark shifts, or with other quantum storage protocols that do not
require spectral tailoring such as Stark echo modulation memory [81].

The functionality of the device is not limited to the demonstrations in this work.
For example, a gradient field could be used instead of a homogeneous field to
dynamically control the storage time. The bandwidth or frequency of emissions
at any time 𝑡 = 𝑚

Δ
could be modified, frequency and bandwidth control could be

combined, and the order of two pulses could be reversed. A device which enables
Stark shift control of an ion’s transition frequency is useful for other technologies as
well. For example, a gradient electric field could be used to tune two 167Er3+ ions
coupled to the same resonator into resonance with one another. This would enable
entangling gates between the two ions, a key step in quantum repeater protocols
using single ions [86].

2.8 Conclusion
In this work we demonstrated a multifunctional on-chip device that can store light
while dynamically modifying its storage time, frequency and bandwidth. Dynamic
control of the memory time and the frequency profile of the output light was achieved
via the linear DC stark shift of 167Er3+ ions in Y2SiO5 . We demonstrated dynamic
control of memory time in a digital fashion with storage times that were multiples
of 50 ns, for up to 400 ns. The frequency of stored light was changed by up to
±39 MHz, and the bandwidth of stored light was increased by up to a factor of
three, from 6 MHz to 18 MHz. This on-chip platform, comprising a resonator
evanescently coupled to an ensemble of atoms that experience a DC Stark shift and
on-chip electrodes, can be adapted to other materials and other quantum memory
protocols.

2.9 Theory of higher-order memory efficiency and simulation of time evolu-
tion

In this section, we provide more detail on deriving the mth quantum memory effi-
ciency in the AFC protocol and developing the simulation method for time evolution.

Amplitude of the mth light emission
The following section expands upon the analysis by Afzelius et al. in References
[20, 74] to consider multiple emissions. An ensemble of ions is coupled to a cavity
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with field decay rate 𝜅. An AFC is created in this ensemble of ions, which leads ion
distribution to be 𝑛(𝜔), where

∫
𝑛(𝜔)𝑑𝜔 = 𝑁 , and 𝑁 is the number of ions. Each

ion has a detuning 𝜔 relative to cavity center frequency, coherent decay rate 𝛾ℎ, and
ion-cavity coupling rate 𝑔. After sending a photon into the cavity that is resonant
with it, the dynamic equations [20, 87] of cavity field E and atomic polarization 𝜎𝜔

in the rotating frame of photon frequency are

¤E = −𝜅E +
√︁

2𝜅inEin + 𝑖𝑔

∫
𝑛(𝜔)𝜎𝜔𝑑𝜔, (2.2)

¤𝜎𝜔 = −(𝑖𝜔 + 𝛾ℎ)𝜎𝜔 + 𝑖𝑔E . (2.3)

The input output formalism gives

Eout = −Ein +
√︁

2𝜅inE (2.4)

where 𝜅in is the cavity decay rate to the input channel. We can solve Eq. 2.3 and get

𝜎𝜔 (𝑡) = 𝑖𝑔

∫ 𝑡

−∞
𝑒−(𝑖𝜔+𝛾ℎ) (𝑡−𝑡

′)E(𝑡′)𝑑𝑡′. (2.5)

Then, inserting Eq. 2.5 into Eq. 2.2, we find

¤E(𝑡) = −𝜅E(𝑡) +
√︁

2𝜅inEin(𝑡)

− 𝑔2
∫ 𝑡

−∞
𝑒−𝛾ℎ (𝑡−𝑡

′)
∫

𝑛(𝛿)𝑒−𝑖𝜔(𝑡−𝑡′)𝑑𝜔E(𝑡′)𝑑𝑡′

= −𝜅E(𝑡) +
√︁

2𝜅inEin(𝑡)

− 𝑔2
∫ 𝑡

−∞
𝑒−𝛾ℎ (𝑡−𝑡

′) 𝑛̃(𝑡 − 𝑡′)E(𝑡′)𝑑𝑡′

(2.6)

where 𝑛̃(𝑡) is the Fourier transform of 𝑛(𝜔) [74].

We have an atomic frequency comb with period Δ, and each tooth has a shape
described by 𝑓 (𝜔), so 𝑛(𝜔) can be written as

𝑛(𝜔) ∝
+∞∑︁

𝑘=−∞
𝑓 (𝜔 − 𝑘Δ)

∝
+∞∑︁

𝑘=−∞
𝑓 (𝜔) ∗ 𝛿(𝜔 − 𝑘Δ).

(2.7)

The Fourier transform of 𝑛(𝜔) is 𝑛̃(𝑡):

𝑛̃(𝑡) ∝
+∞∑︁

𝑘=−∞
𝑓̃ (𝑡)𝛿

(
𝑡 − 𝑘

Δ

)
∝

+∞∑︁
𝑘=−∞

𝑓̃ ( 𝑘
Δ
)𝛿

(
𝑡 − 𝑘

Δ

)
.

(2.8)
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Inserting Eq. 2.8 into Eq. 2.6, we find

¤E(𝑡) = −𝜅E(𝑡) +
√︁

2𝜅inEin(𝑡) − ΓcombE(𝑡)

− 2Γcomb

+∞∑︁
𝑘=1

𝑒−𝛾ℎ
𝑘
Δ 𝑓̃

(
𝑘

Δ

)
E

(
𝑡 − 𝑘

Δ

) (2.9)

where Γcomb is the absorption rate of atomic frequency comb [55], and Γcomb ∝ 𝑔2.

Consider the time after the ensemble of ions absorb the light (𝑡 > 0). There are no
input pulses after 𝑡 = 0, so Ein(𝑡 > 0) = 0. Applying adiabatic elimination of the
cavity mode ( ¤E(𝑡) = 0) leads to

E(𝑡) = − 2Γcomb
𝜅 + Γcomb

+∞∑︁
𝑘=1

𝑒−𝛾ℎ
𝑘
Δ 𝑓̃

(
𝑘

Δ

)
E

(
𝑡 − 𝑘

Δ

)
. (2.10)

The cavity field at time 𝑡 = 𝑚
Δ

goes as

E
(
𝑡 =

𝑚

Δ

)
= − 2Γcomb

𝜅 + Γcomb

𝑚∑︁
𝑘=1

𝑒−𝛾ℎ
𝑘
Δ 𝑓̃

(
𝑘

Δ

)
E

(
𝑚 − 𝑘

Δ

)
. (2.11)

From this, we can see that the amplitude of the cavity field at time 𝑡 = 𝑚
Δ

is determined
by the cavity field at all earlier times 𝑡 = 𝑘

Δ
, where 𝑘 = 0, 1, ..., 𝑚 − 1. We can

theoretically find the amplitude of the cavity field at any time, which depends on
how we modulate the cavity field at previous times. In our case, 𝛾ℎ is much smaller
than the teeth width [55], so we can ignore the term 𝑒−𝛾ℎ

𝑘
Δ . We assume each tooth

has Gaussian shape, which gives

𝑓̃

(
𝑘

Δ

)
= exp

(
−1

2

(
𝑘

Δ

)2 (
𝜋𝛾

√
2 ln 2

)2
)

= exp
(
− 𝜋2

4ln2
𝑘2

𝐹2

) (2.12)

where 𝛾 is the FWHM of the Gaussian peak, and 𝐹 = Δ/𝛾 as we defined in the main
text, Eq. 2.11 becomes

E
(
𝑡 =

𝑚

Δ

)
= − 2Γcomb

𝜅 + Γcomb

𝑚∑︁
𝑘=1

exp
(
− 𝜋2

4ln2
𝑘2

𝐹2

)
E

(
𝑚 − 𝑘

Δ

)
. (2.13)

We also know from Eq. 2.4 that the amplitude of the 𝑘 th emission (for 𝑘 > 0) is

Eout

(
𝑡 =

𝑘

Δ

)
=

√︁
2𝜅inE

(
𝑡 =

𝑘

Δ

)
. (2.14)
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At time 𝑡 = 0 we have

E(𝑡 = 0) =
√

2𝜅in
𝜅 + Γcomb

Ein(𝑡 = 0). (2.15)

From the above three equations, the emission at time 𝑡 = 𝑚
Δ

has the following
amplitude

Eout

(
𝑡 =

𝑚

Δ

)
= − 2Γcomb

𝜅 + Γcomb
×(

𝑚−1∑︁
𝑘=1

exp
(
− 𝜋2

4ln2
𝑘2

𝐹2

)
Eout

(
𝑚 − 𝑘

Δ

)
+exp

(
− 𝜋2

4ln2
𝑚2

𝐹2

)
2𝜅in

𝜅 + Γcomb
Ein(𝑡 = 0)

)
.

(2.16)

The 𝑚th emission is the sum of 1st to (𝑚 − 1)th emission and the input. In the case
where we do not apply electric fields to prevent any emissions, the first and second
emitted field amplitudes are

Eout

(
𝑡 =

1
Δ

)
= − 4𝜅inΓcomb

(𝜅 + Γcomb)2 exp
(
− 𝜋2

4ln2
1
𝐹2

)
Ein(𝑡 = 0) (2.17)

Eout

(
𝑡 =

2
Δ

)
= − 4𝜅inΓcomb

(𝜅 + Γcomb)2 exp
(
− 𝜋2

2ln2
1
𝐹2

)
Ein(𝑡 = 0)

(
exp

(
− 𝜋2

2ln2
1
𝐹2

)
− 2Γcomb
𝜅 + Γcomb

)
.

(2.18)

As Eq. 2.18 shows, the amplitude of the second emission is composed of two parts.
The first part is from the light absorbed at 𝑡 = 0, and the second part is from the
light reabsorbed at the first emission time 𝑡 = 1/Δ. The competition between these
two terms determines the amplitude and the phase of the output at 𝑡 = 2

Δ
. When

we operate in the high finesse regime (since we always want the dephasing term
exp

(
− 𝜋2

2ln2
1
𝐹2

)
to be close to 1), if the amplitude of the first output is small, the

amplitude of the second output will be dominated by the first term in Eq. 2.18, so it
will still have an observable amplitude. If the amplitude of the first output is high,
the amplitude of the second output will be small due to the minus sign between the
two terms in Eq. 2.18. In particular, when the impedance matching condition[20]
holds where 2Γcomb

𝜅+Γcomb
→ 1, the second emission will be zero. This trend also holds

for higher order emissions, as can be seen by extending the analysis of Eq. 2.16.

In the case where we apply an electric field to suppress all the lower order emissions
(from 1 to 𝑚 − 1), we find the 𝑚th output amplitude to be

Eout

(
𝑡 =

𝑚

Δ

)
= − 4𝜅inΓcomb

(𝜅 + Γcomb)2 exp
(
− 𝜋2

4ln2
𝑚2

𝐹2

)
Ein(𝑡 = 0). (2.19)



29

Then, we can find the efficiency of the 𝑚th output pulse to be

𝜂 =

����Eout(𝑡 = 𝑚
Δ
)

Ein(𝑡 = 0)

����2
=

(
𝜅in
𝜅

4Γcomb/𝜅
(1 + Γcomb/𝜅)2

)2
exp

(
− 𝜋2

2ln2
𝑚2

𝐹2

)
.

(2.20)

Time evolution simulations
Simulations of the cavity-ion system were performed to confirm the trends observed
in the bandwidth control experiment. These simulations involved numerically solv-
ing the discrete form of Eq. 2.2 and Eq. 2.3 for the cavity field E and the atomic
polarization 𝜎𝑖 of a number 𝑛 of ions in the rotating frame, following Reference
[40]:

¤E(𝑡) = − (𝜅 + 𝑖Δ𝜔𝑎) E(𝑡) +
√︁

2𝜅inEin(𝑡) + 𝑖

𝑛∑︁
𝑖=1

𝑔𝜎𝑖 (𝑡), (2.21)

¤𝜎𝑖 (𝑡) = − (𝛾ℎ + 𝑖Δ𝜔𝑖 (𝑡)) 𝜎𝑖 (𝑡) + 𝑖𝑔E(𝑡), (2.22)

where Δ𝜔𝑎 is the cavity detuning and Δ𝜔𝑖 (𝑡) is the detuning of each ion, which
can vary in time as a function of applied electric field at the location of the ion
Δ𝜔𝑖 (𝑡) = Δ𝜔𝑖,0 ± 𝑠𝐸𝑦 (𝑥𝑖, 𝑡). Δ𝜔𝑖,0 is the detuning of each ion in the absence of an
applied electric field and the ± sign depends on which subclass the ion is in. The
cavity field is coupled to external fields as described by input-output formalism (see
Equation 2.4). The initial conditions are E(0) = 0, 𝜎𝑖 (0) = 0.

For the simulation, a system of 𝑛 + 1 differential equations (Equations 2.22 and
2.21) are numerically solved. To keep the number of equations to a reasonable size,
the number of ions simulated 𝑛 ∼ 104 is significantly smaller than the true number
of ions coupled to the cavity ∼ 107. To accurately represent the strength of the
interaction between the ion ensemble and the cavity, 𝑔 in the simulation is chosen
such that 𝑔2

total = 𝑛𝑔2, where 𝑔total = 2𝜋 × 0.6 GHz is measured from the cavity
reflectance curve [55]. The time-independent frequency distribution of the ions
(frequency comb) is described as a continuous distribution, and 𝑛 values of Δ𝜔𝑖,0

are sampled from it. A time dependent scalar±𝑠𝐸𝑦 (𝑥𝑖, 𝑡) representing the Stark shift
is added to all ion detunings. 𝐸𝑦 (𝑥𝑖, 𝑡) for each ion is given by randomly sampling
the 𝑥-position along the resonator, and obtaining the corresponding electric field
from Figure 1g in the main text, then varying it in amplitude and time to represent
each electric pulse.
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Using this simulation, the output pulse profile Eout(𝑡) can be computed given Ein(𝑡),
the input pulse profile centered around 𝑡 = 0, and certain set of electric field control
pulses.
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C h a p t e r 3

COLLECTIVELY INDUCED TRANSPARENCY (CIT)

In this chapter, we will discuss the experimental discovery and theoretical proof of a
novel phenomenon in many-body cavity QED, which we name collectively induced
transparency (CIT) [88]. This chapter is adapted from the [88].

3.1 Overview
We study an ensemble of approximately 106 171Yb3+ ions embedded in YVO4 cou-
pled to a nanophotonic cavity (Fig. 3.1a, Fig. 3.3c), subjected to a strong driving
field such that the resonant ions are excited. The relatively low spectral inhomo-
geneity, the strong transition dipole moment [8], and the cavity coupling lead to a
high optical cooperativity of up to 24 (Table 3.1). This allows for strongly enhanced
light-matter interactions, enabling the probing of complex collective and many-body
phenomena [89]. In particular, we discover a sharp transparency window in the cav-
ity reflection spectrum which we call CIT (Fig. 3.1b, d). We find that the quantum
interference of many inhomogeneously broadened emitters plays a critical role in
producing the CIT window, mechanistically distinguishing itself from other types
of transparencies [90].

3.2 Experimental observation
To explore cQED phenomena for a driven, inhomogenous many-body system, we
first characterize the cavity-ion coupling by measuring the cavity reflection spectrum.
Scanning with low laser power, the spectrum reveals broad peaks centered around
the atomic resonances reaching unit reflection with about 3 GHz width, larger than
the ensemble inhomogeneous linewidth of 150 MHz (Fig. 3.1b, middle, Fig. 3.3d).
These peaks are known as dipole induced reflectivity (DIR), resulting from strong
ion-cavity coupling [91]. Specifically, in steady state under continuous driving, the
cavity field ⟨𝑎⟩ depends on the sum of the atomic coherences ⟨𝜎−

𝑗
⟩ of individual

emitters as ⟨𝑎⟩ ∝ ∑𝑁
𝑗=1⟨𝜎−

𝑗
⟩, where 𝜎−

𝑗
= |𝑔⟩ 𝑗 ⟨𝑒 | for the 𝑗 th ion. As such, even if

most ions remain in the ground state at weak excitation, the Yb ions still modify the
internal cavity field due to the nonzero atomic coherence. This in turn influences
the cavity reflectivity, leading to DIR. However, when the laser power is increased,
we observe the formation of a sharp dip around the center of the DIR, which both
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Figure 3.1: Cavity QED with driven inhomogeneous emitters. a, Schematic
description of the cavity-ion interaction. An inhomogeneous ensemble of ions is
coupled to a one-sided cavity with total decay rate 𝜅. The input field 𝐴in is coupled
into the cavity with rate 𝜅𝑐. The interaction strength between the cavity field and
a single ion is 𝑔. Each Yb ion can be regarded as an effective two-level system
consisting of a ground (|𝑔⟩) and excited (|𝑒⟩) state, whose transition wavelength is
around 984 nm (grey dotted box). b, Reflection spectrum of a cavity without ions
showing the bare cavity resonance (left), with ions under weak drive showing DIR
(middle), and with ions under strong drive showing DIR and CIT (right). c, The
atomic distribution of ions with inhomogeneous linewidth Δinh. d, Zoom in of the
right panel of b, showing CIT. CIT opens a transmissive window narrower than the
inhomogeneous linewidth, and allows for the excitation of ions in the center of the
ion distribution.

deepens and narrows with increasing power (Fig. 3.2b). A Lorentzian fit to the dip
gives a minimum width of 50 MHz, and a maximum normalized depth approaching
1 (Fig. 3.2d).

We find that the origin of such a transparency window can be understood as the
collective contribution of the inhomogeneous ensemble to the cavity field (Fig. 3.2a).
For clarity the individual contributions of on- and off-resonance ions (with respect
to the laser) should be considered separately. For resonant ions, strong driving
saturates their steady-state populations to the completely mixed state, where both
atomic inversion and coherence vanish, thus having no influence on the cavity field.
In contrast, the off-resonant ions are only weakly excited, such that their atomic
coherence is inversely proportional to the ion detuning Δ 𝑗 , that is, ⟨𝜎−

𝑗
⟩ ∝ Δ−1

𝑗

(section 3.5). This means that ions at equal and opposite detunings are out of phase
with equal amplitude, such that their pairwise contributions to the cavity field will
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Figure 3.2: Experimental observation of CIT. a, Physical origin of CIT, showing
the phase distribution of atomic coherence of the inhomogeneous ensemble. The
ions far-detuned from the laser frequency are out of phase on the two sides, denoted
in red and blue. The resonant ions are denoted in white. The left and right Bloch
spheres contain the Bloch vectors of the red- and blue-detuned ions, respectively.
Three scenarios with different laser frequencies are shown. If the laser is detuned
from the ensemble center (top, bottom), there is imbalance in the ion phases, while
if the laser is centered (middle), the ion phases cancel and lead to CIT. b, Measured
cavity reflection spectra at three different powers, vertically shifted for clarity. Sharp
dips due to CIT appear at the center of the DIR peaks, which get deeper and narrower
with increased power. c, Corresponding simulated cavity reflection spectra. d,
Extracted Lorentzian fit width (blue) and depth (orange) with power, error bars
represent the standard errors of the fit. The CIT depth is normalized with respect to
the cavity depth. Solid lines are the fits from our theoretical prediction.

destructively interfere. In particular, when the laser frequency is in the center of
the inhomogeneous line, all of the contributions from the detuned ions cancel with
each other (Fig. 3.2a, center). Thus, the combination of these two effects, (1) the
saturation of the on-resonance ions and (2) the pairwise destructive interference of
the off-resonant ions, leads to a transparency (the CIT) that emerges at the center of
the inhomogeneous line. It is worth noting that CIT is unique to systems consisting of
a large ensemble of emitters with fixed frequency and an appreciable inhomogeneous
broadening [92], and does not occur for just a few emitters (section 3.5).

Going beyond the qualitative description, we derive an analytical expression for the
width of CIT (ΔCIT) using the 𝑁-atom Tavis-Cummings Hamiltonian [39] under
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appropriate approximations (section 3.5):

ΔCIT ≈ Δinh
𝐶

1(
1 − 𝐶

√︃
𝛾𝑠𝛾

4𝑔2𝜇

) (3.1)

where 𝛾 =
𝛾𝑠
2 +𝛾𝑑 is the total decoherence rate, comprised of the spontaneous decay

rate 𝛾𝑠 and the excess dephasing rate 𝛾𝑑 , 𝑔 is the single ion-cavity coupling rate,
𝐶 = 4𝑁𝑔2/(𝜅Δinh) is the ensemble cooperativity, and 𝜇 is the cavity mean photon
number in the absence of ions, representing the rescaled driving laser power. The
measured CIT widths and depths show excellent agreement with the predicted power
dependence (Fig. 3.2d). Crucially, at high powers we expect the dip width to be
narrowed by the ensemble cooperativity, reaching ΔCIT ≈ Δinh/𝐶. Intuitively, this
is because higher cooperativity leads to a larger contribution towards DIR for even a
small number of imbalanced ions, effectively increasing the sensitivity to the imbal-
ance near the ensemble center, which narrows the CIT. This indicates that if 𝐶 ≫ 1,
the CIT width can be significantly narrower than the inhomogeneous broadening of
an ensemble, ultimately limited by the homogeneous linewidth (section 3.6). Given
our 𝐶 and Δinh, the expected minimum linewidth is 13 MHz, narrower than the
measured value of 50 MHz. This discrepancy can be partially attributed to spectral
diffusion, which effectively increases 𝛾 and causes a breakdown of some of the
assumptions made in order to derive the approximate analytical expression Eq. 3.1.
To account for this, numerical simulations of the cavity reflection (without the above
approximations) provides a better match to the experimental width (Fig. 3.2c, more
detail in section 3.6).

3.3 Device and system parameters
Device
The substrate is a 3×3×0.5 mm piece of 171Yb3+:YVO4 (a × a × c), measured to
have a Yb doping concentration of 86 parts-per-million using glow discharge mass
spectrometry [93]. The device is fabricated directly in the substrate using focused
ion-beam milling. The optical cavity is formed by periodic grooves milled into a
triangular nanobeam waveguide, with a slight aperiodicity in the center which forms
a defect creating the cavity mode. A 45-degree angled coupler couples the light
from free-space to the waveguide with an efficiency of ≈ 25%. Further details on
the device fabrication can be found in [34].
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Figure 3.3: Cavity-ion coupling. a, Energy level spectrum of 171Yb3+:YVO4 at
zero external magnetic field. The optical transitions whose polarizations are along
the cavity mode are shown in blue (A, E, I). Since the three transitions are separated
by ∼ GHz, larger than the inhomogeneous broadening, each transition is spectrally
well-resolved and can be regarded as an isolated, effective two-level system; for
example the levels labelled |𝑒⟩ and |𝑔⟩ form a two-level system for the A transition.
b, Schematic showing the relative population of ions in each transition, where the
I transition has double the population due to a doubly-degenerate ground state. c,
Scanning electron microscope image of the device. d, Cavity reflection spectrum
at weak laser power reveals three DIR peaks corresponding to the A, E, and I
transitions. The peak corresponding to A is marked with orange, as we focus on this
transition. e, Theoretical cavity reflection as a function of laser detuning in the low
excitation regime (DIR), showing ion-cavity coupling. Three DIR peaks (orange)
corresponding to the A, E, and I transitions of a Yb ion are identified using Eq. 3.9,
showing high cavity reflectivity.

System parameters
Based on the concentration of Yb ions and the cavity volume, we estimate that about
𝑁 ≈ 7 × 105 ions are coupled to the cavity with varying coupling strengths. The
cavity is tuned into resonance with the 2F7/2 to 2F5/2 transition of Yb around 𝜆 = 984
nm using nitrogen gas condensation. The large cavity linewidth (𝜅 = 2𝜋 × 44 GHz)
covers all three transitions aligned along the cavity polarization (labelled as A, E, I,
Fig. 3.3b). The narrow optical inhomogeneous linewidths (Δinh = 2𝜋 × 150 MHz)
compared to the separation between those transitions (a few GHz) enables each
transition to be addressed as independent two-level systems. The nanoscale cavity
allows for tight confinement of the electromagnetic field, resulting in a small mode
volume of about a cubic wavelength (≈ 1(𝜆/𝑛)3, where 𝑛 is the refractive index). In
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conjunction with the relatively strong dipole moment of Yb in YVO4 [8, 33], these
factors enable high vacuum Yb ion-cavity coupling 𝑔 up to ≈ 2𝜋 × 35 MHz, leading
to a large collective ensemble cooperativity 𝐶 = 4𝑁𝑔2/(𝜅Δinh) > 1 in the optical
regime.

The ion-cavity coupling rate 𝑔 has a particular distribution, arising from inhomo-
geneity of the cavity field across the device. Simulating the cavity structure in
COMSOL, the total YVO4 volume is 3.058 um3, with total coupling rate Ω = 2𝜋×9
GHz, calculated assuming uniformly distributed Yb ions across the YVO4. In or-
der to obtain the distribution of 𝑔, we generate the histogram of varying 𝑔 across
the entire nanobeam volume of 3.058 um3. Since there are many ions with very
small 𝑔, we ignore ions with 𝑔 < 1.39 MHz which retains 98.4% of Ω, result-
ing in a total coupling rate of Ω = 2𝜋 × 8.86 GHz and the distribution shown in
Fig. S1. The considered ions occupy a physical volume of 0.636 um3 and their
total number is ≈ 7 × 105. From this, the root mean square of 𝑔 is estimated to be√︁
⟨𝑔2⟩ = Ω√

𝑁
≈ 2𝜋× 10.6 MHz. Additionally, we calculate the optical mode volume

to be 𝑉mode = 0.0918 um3, based on the maximum field strength.
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Figure 3.4: The simulated probability distribution of cavity-ion coupling
strength 𝑔 in the device.

3.4 Theoretical analysis: from DIR to a few driven emitters
In this and the next section, we will give a more detailed theoretical analysis of CIT.
Due to the fact that the CIT dip is observed within the broad DIR peak, we will
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Parameter Description Symbol Value
Optical Frequency 𝜔 2𝜋×304500 GHz
Spontaneous decay rate 𝛾𝑠 2𝜋 × 0.6 kHz
Excess dephasing rate 𝛾𝑑 2𝜋 × 6 kHz
Optical inhomogeneous linewidth (FWHM) Δinh 2𝜋 × 150 MHz
Cavity energy decay rate 𝜅 2𝜋 × 44 GHz
Cavity external coupling rate 𝜅𝑐 2𝜋 × 8.8 GHz
Maximum Yb ion-cavity coupling rate 𝑔 2𝜋 × 35 MHz
Number of Yb ions in cavity 𝑁 700000
Cavity mode volume 𝑉mode 0.0918𝜇m3

Ensemble cooperativity 𝐶A(𝐶I) 12(24)

Table 3.1: Relevant system parameters.

start by introducing the DIR at the weak-excitation limit and then proceed to analyze
some simple cases with only a few driven ions.

General formalism
We start with the Tavis-Cummings Hamiltonian for 𝑁 two-level systems coupled
to a single cavity field under the rotating-wave approximation in the laser frame
(setting ℏ = 1):

𝐻 = Δ𝑐𝑎
†𝑎 + 1

2

𝑁∑︁
𝑗=1

Δ 𝑗𝜎
𝑧
𝑗
+

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝑎†𝜎−
𝑗 + 𝜎+

𝑗 𝑎) − 𝑖
√
𝜅𝑐𝐴in(𝑎† − 𝑎). (3.2)

In our case, the two-level system consists of the ground (|𝑔⟩) and excited state of
the A (E, I) transition. Here 𝑔 𝑗 is the 𝑗 th ion-cavity coupling strength, 𝑎 is the
bosonic cavity field operator, 𝜎±

𝑗
, 𝜎𝑧

𝑗
are the 𝑗 th spin ladder operators and the Pauli-

Z operators, respectively. Note that here we consider the general case where each
ion has a different coupling strength 𝑔 𝑗 . Δ𝑐 is the cavity-laser detuning and Δ 𝑗 is
the 𝑗 th ion-laser detuning, accounting for inhomogeneous broadening. Compared
to Eq. 1.8, √𝜅𝑐𝐴in is added to include the coupling from the input power 𝑃in, which
is associated with the cavity mean photon number in the absence of ions 𝜇, as:

√
𝜅𝑐𝐴in =

𝜅

2
√
𝜇 (3.3)

where 𝜇 is defined as

𝜇 =
𝜅𝑐

(𝜅/2)2 + Δ2
𝑐

𝑃in
ℏ𝜔

≈ 𝜅𝑐

(𝜅/2)2
𝑃in
ℏ𝜔

. (3.4)
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Here, three variables 𝐴in, 𝑃in, and 𝜇 all represent the excitation power, and they are
related to each other by system parameters. We will use 𝜇 to represent power in the
following theoretical analysis for brevity.

Starting with Eq. 3.2, we obtain the equations of motion for 𝑎, 𝜎−
𝑗

and 𝜎𝑧
𝑗

in the
Heisenberg picture, with dissipation terms, given as (we need to be careful here,
especially 3.7, see more detailed analysis in Appendix A):

¤𝑎 = −(𝑖Δ𝑐 +
𝜅

2
)𝑎 − 𝑖

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
−
𝑗 − 𝜅

2
√
𝜇 (3.5)

¤𝜎−
𝑗 = −(𝑖Δ 𝑗 + 𝛾)𝜎−

𝑗 + 𝑖𝑔 𝑗𝜎
𝑧
𝑗
𝑎 (3.6)

¤𝜎𝑧
𝑗
= 2𝑖𝑔 𝑗 (𝑎†𝜎−

𝑗 − 𝜎+
𝑗 𝑎) − 𝛾𝑠 (1 + 𝜎𝑧

𝑗
) (3.7)

where 𝛾 =
𝛾𝑠
2 + 𝛾𝑑 . Using Eq. 3.3 and input-output formalism, 𝐴out =

√
𝜅𝑐𝑎 + 𝐴in,

we obtain the cavity reflection:

𝑅 =

���� ⟨𝐴out⟩
⟨𝐴in⟩

����2 =

���� 2𝜅𝑐
𝜅
√
𝜇
⟨𝑎⟩ + 1

����2 (3.8)

where cavity field 𝑎 is determined by solving Eqs. 3.5-3.7 and thus depends on the
state of ions.

Weak-excitation case (DIR)
Under the weak-excitation condition (⟨𝜎𝑧⟩ ≈ −1), an analytical expression for the
cavity reflection 𝑅(𝜔) as a function of laser frequency 𝜔 is derived in [40] as:

𝑅(𝜔) =
����1 − 𝑖𝜅𝑐

𝜔 − 𝜔𝑐 + 𝑖𝜅/2 −𝑊A(𝜔) −𝑊E(𝜔) −𝑊I(𝜔)

����2 (3.9)

where 𝑊X accounts for the coupling of an X (X = A,E, I) transition to each of the
inhomogeneously broadened ensembles:

𝑊X(𝜔) =
Ω2

X
𝜔 − 𝜔X + 𝑖𝛾𝑋 + 𝑖ΔX/2

. (3.10)

Here, Δ𝑋 is the full-width half-maximum (FWHM) of a Lorentzian distribution,
ΩX =

√︃∑
𝑔2

X is the total ion-cavity coupling rate, 𝛾X is the dephasing rate, and 𝜔X

is the center frequency of an 𝑋 transition. From COMSOL simulations, we estimate
that ΩA = ΩE = ΩI/

√
2 = 2𝜋 × 4.4 GHz, where the 1/

√
2 factor in ΩI comes from

the double degeneracy in that ground state of the I transition. We plot the cavity
reflection using Eq. 3.9 in Fig. 3.3e, which qualitatively matches the experimental
data in Extended Data Fig. 2c. From this, the cooperativity 𝐶X =

|𝑊X (𝜔=𝜔0) |
𝜅/2 [41] of

the three transitions is computed as 𝐶A,E ≈ 12, 𝐶I ≈ 24.
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Driven single-ion case
We would now like to see if CIT appears for just a few ions, starting by considering
a single ion coupled to the cavity. Since there is only one ion, the subscript 𝑗 is
dropped. In the fast-cavity limit, we adiabatically eliminate the cavity mode by
setting ¤𝑎 = 0, and using the fact that Δ𝑐 ≪ 𝜅 we get

𝑎 =
−𝑖𝑔𝜎− − 𝜅

2
√
𝜇

𝑖Δ𝑐 + 𝜅
2

≈ −𝑖𝑔𝜎−

𝜅
2

− √
𝜇. (3.11)

Substituting Eq. 3.11 into Eq. 3.6 and Eq. 3.7, we obtain linear differential equations
for 𝜎𝑧 and 𝜎−:

¤𝜎− = −(𝑖Δ + 𝛾 + 2𝑔2

𝜅
)𝜎− − 𝑖𝑔𝜎𝑧√𝜇 (3.12)

¤𝜎𝑧 = −(𝛾𝑠 +
4𝑔2

𝜅
) (1 + 𝜎𝑧) + 2𝑖𝑔

√
𝜇(𝜎+ − 𝜎−). (3.13)

Then we solve the expectation value of the operators in the steady-state ⟨ ¤𝜎𝑧⟩ =

⟨ ¤𝜎−⟩ = 0 as:

⟨𝜎𝑧⟩ = − 1

1 + 4𝑔2𝜇(
𝛾𝑠+ 4𝑔2

𝜅

) (
𝛾+ 2𝑔2

𝜅

)(
Δ2+

(
𝛾+ 2𝑔2

𝜅

)2)
(3.14)

⟨𝜎−⟩ =
𝑖𝑔
√
𝜇(

𝑖Δ + 𝛾 + 2𝑔2

𝜅

) 1©­«1 + 4𝑔2𝜇(
𝛾𝑠+ 4𝑔2

𝜅

) (
𝛾+ 2𝑔2

𝜅

)(
Δ2+

(
𝛾+ 2𝑔2

𝜅

)2) ª®¬
. (3.15)

The cavity reflection is

𝑅 =

����−4𝑖𝜅𝑐
𝜅2√𝜇

𝑔⟨𝜎−⟩ − 𝜅𝑐

𝑖Δ𝑐 + 𝜅
2
+ 1

����2 (3.16)

where −4𝑖𝜅𝑐
𝜅2√𝜇

𝑔⟨𝜎−⟩ is the contribution from the ion, which is related to the power, and
− 𝜅𝑐
𝑖Δ𝑐+ 𝜅

2
+ 1 is the contribution from the bare cavity. We plot the cavity reflection for

varying √
𝜇 using Eq. 3.16 in Fig. 3.5a. We see that in the weak-excitation regime

(√𝜇 → 0, black), there is a DIR centered at the ion frequency, reaching unit cavity
reflection. Upon increasing the power, the entire DIR profile decreases, and finally

disappears, as the cavity reflection reaches the bare cavity value of 𝑅 =

���−2𝜅𝑐
𝜅

+ 1
���2

(𝑅 ≈ 0.36 for our case). This occurs when we fully saturate the ion.
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Figure 3.5: Cavity reflection spectrum of one, two, and three atoms. a, Cavity
reflection spectrum of a single ion coupled to the cavity with rate 𝑔 = 2𝜋× 35 MHz,
using Eq. 3.16. DIR is observed for small powers, and decreases with increasing
powers. b, Simulation of the cavity reflection spectrum of two symmetrically
detuned ions at ±2𝜋 × 0.048 MHz. There are two DIR peaks at each of the ion
frequencies, and destructive interference between two ions form a dip at 0 MHz.
c, Three ion simulation, adding an ion at 0 MHz. The dip from the two-ion case
disappears at low powers due to DIR from the added third ion.

Driven two- and three-ion cases
Since there is no dip for the single ion case, we add another ion, where the ions
are now symmetrically detuned around 0 MHz, with detunings ±2𝜋 × 0.048 MHz.
The cavity reflection for √𝜇 → 0 is plotted using an analytical expression under
the weak-excitation condition, similar to Eq. 3.9. Additionally, we sweep the power
from √

𝜇 = 10−4 to √
𝜇 = 10−2 and simulate using the master equation (Section 4.5).

First, we note that √𝜇 = 10−4 is very close to the weak-excitation limit. In this case,
we observe two DIRs centered around each ion frequency. The two DIRs overlap
at zero detuning where the ions destructively interfere, producing a narrow window
even with low excitation, indicating that this is not exactly CIT (Fig. 3.5b). When
√
𝜇 is increased, both DIRs decrease, similar to the single ion case.

We now add a third ion between the two ions at zero detuning, where a third DIR
peak appears (Fig. 3.5c). At the same time, two sharp dips appear between the
first/second ion and second/third ion. When √

𝜇 is increased, all three DIR peaks
decrease where the center peak decreases the fastest. This eventually leads to a
single, wide dip at √𝜇 = 10−2.5. From the results of the two- and three-ion cases, we
see hints of the origins of CIT, from the destructive interference between different
ions.
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3.5 Theoretical analysis: driven multi-ion coupling leading to CIT
In this section, we will extend our discussion to the multi-ion case, where we can see
that CIT results from a large ensemble of ions with an inhomogeneous distribution.

Analytical derivation
From the simple cases analyzed in the last section, we get the intuition that an
inhomogeneously broadened ensemble of ions is required for a narrow dip to form.
To see this more rigorously, we derive the analytical expression for CIT under certain
conditions. We first set the steady state of Eqs. 3.5 – 3.7 ( ¤𝑎 = ¤𝜎𝑧 = ¤𝜎− = 0), which
gives 2𝑁 + 1 equations for 2𝑁 + 1 variables:

−(𝑖Δ𝑐 +
𝜅

2
)⟨𝑎⟩ − 𝑖

𝑁∑︁
𝑗=1

𝑔 𝑗 ⟨𝜎−
𝑗 ⟩ −

𝜅

2
√
𝜇 = 0 (3.17)

−(𝑖Δ 𝑗 + 𝛾)⟨𝜎−
𝑗 ⟩ + 𝑖𝑔 𝑗 ⟨𝜎𝑧

𝑗
⟩⟨𝑎⟩ = 0 (3.18)

2𝑖𝑔 𝑗 (⟨𝑎†⟩⟨𝜎−
𝑗 ⟩ − ⟨𝜎+

𝑗 ⟩⟨𝑎⟩) − 𝛾𝑠 (1 + ⟨𝜎𝑧
𝑗
⟩) = 0. (3.19)

Note that here we adopt the hypothesis that quantum correlation between atomic and
cavity field operators can be neglected (⟨𝜎𝑧

𝑗
𝑎⟩ = ⟨𝜎𝑧

𝑗
⟩⟨𝑎⟩ and ⟨𝑎†𝜎−

𝑗
⟩ = ⟨𝑎†⟩⟨𝜎−

𝑗
⟩)

[94]. Eliminating ⟨𝜎−
𝑗
⟩, we get the equation relating ⟨𝜎𝑧

𝑗
⟩ and ⟨𝑎⟩ as:

⟨𝑎⟩ =
−√𝜇

1 − ∑𝑁
𝑗=1

2𝑔2
𝑗
⟨𝜎𝑧

𝑗
⟩

𝜅(𝛾+𝑖Δ 𝑗 )

(3.20)

⟨𝜎𝑧
𝑗
⟩ = − 1

1 +
4𝑔2

𝑗
⟨𝑎†⟩⟨𝑎⟩
𝛾𝑠

(
𝛾

𝛾2+Δ2
𝑗

) . (3.21)

We define ⟨𝑎⟩ = −
√
𝜇

1+𝑥 , where

𝑥 = −
𝑁∑︁
𝑗=1

2𝑔2
𝑗
⟨𝜎𝑧

𝑗
⟩

𝜅(𝛾 + 𝑖Δ 𝑗 )
=

∑𝑁
𝑗=1 2𝑖𝑔 𝑗 ⟨𝜎−

𝑗
⟩

𝜅⟨𝑎⟩ (3.22)

which represents the ions’ response to the cavity field. Here, we also ignore Δ𝑐 for
simplicity based on the fact that Δ𝑐 ≪ 𝜅. We can get an implicit equation for 𝑥 as:

𝑥 =

𝑁∑︁
𝑗=1

2𝑔2
𝑗

𝜅(𝛾 + 𝑖Δ 𝑗 )
1(

1 +
4𝑔2

𝑗
𝜇

|1+𝑥 |2𝛾𝑠

(
𝛾

𝛾2+Δ2
𝑗

)) (3.23)

where the distribution of coupling strength 𝑔 𝑗 is not correlated with the distribution of
ion frequency detuningΔ 𝑗 , as the physical position of the ion in the cavity is unrelated
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to its resonance frequency. We first consider 𝑔 𝑗 = 𝑔 and define 𝑦(𝑥) = 4𝑔2𝜇𝛾
|1+𝑥 |2𝛾𝑠

for
simplicity, and convert the summation to integral in the limit of large 𝑁:

𝑥 =
2𝑁𝑔2

𝜅

∫
𝜌(𝜔)𝑑𝜔

(𝛾 + 𝑖(𝜔 − 𝜔𝐿))
(
1 + 𝑦(𝑥)

𝛾2+(𝜔−𝜔𝐿)2

) (3.24)

where 𝜔𝐿 is laser frequency and 𝜌(𝜔) is the probability distribution of a given ion
frequency 𝜔. Given 𝑥, the cavity reflection is now simply

𝑅 =

����−2𝜅𝑐
𝜅

1
(1 + 𝑥) + 1

����2 . (3.25)

We consider a Lorentzian distribution of ions with 𝜌(𝜔) =
Δinh/2

𝜋
1

(Δinh/2)2+(𝜔−𝜔0)2

where Δinh is the FWHM and 𝜔0 is the center frequency of the ion distribution,
which gives us:

𝑥 =
𝑁Δinh𝑔

2

𝜋𝜅

∫ +∞

−∞

(𝛾 − 𝑖(𝜔 − 𝜔𝐿)) 𝑑𝜔(
𝛾2 + (𝜔 − 𝜔𝐿)2 + 𝑦(𝑥)

) (
(Δinh/2)2 + (𝜔 − 𝜔0)2) . (3.26)

Making the approximations Δinh ≫ |𝜔𝐿 − 𝜔0 |, 𝛾,
√︁
𝑦(𝑥) and 𝑦(𝑥) ≫ 𝛾2 as well as

√
𝜇 >

2𝑁𝑔
√
𝛾𝑠𝛾

𝜅Δinh
(summarized and justified below), allows us to solve for 𝑥 explicitly:

𝑥 =
1

Δinh𝜅
2𝑁𝑔

√︃
𝜇

𝛾𝑠𝛾
− 1

+ 8𝑖(𝜔𝐿 − 𝜔0)
Δ2

inh𝜅

𝑁𝑔2

. (3.27)

Plugging Eq. 3.27 into Eq. 3.25, we get the explicit expression of the reflectivity
relative to the laser frequency 𝜔𝐿 as:

𝑅 = 1 +
𝜅𝑐
𝜅
(Δinh

𝐶
)2

(
𝜅𝑐
𝜅
− 𝐶ΔCIT

Δinh

)
(
ΔCIT

2

)2
+ (𝜔𝐿 − 𝜔0)2

(3.28)

where 𝐶 =
|𝑊 (𝜔=𝜔0) |

𝜅/2 (= 4𝑁𝑔2

𝜅Δinh
when Δinh ≫ 𝛾) and

ΔCIT =
Δinh
𝐶

1(
1 − 𝐶

√︃
𝛾𝑠𝛾

4𝑔2𝜇

) . (3.29)

According to Eq. 3.28, it is apparent that the profile of the CIT dip is a Lorentzian
function with width ΔCIT and depth 𝜂CIT, which is determined by the reflectivity at
𝜔𝐿 = 𝜔0 as

𝜂CIT =
𝐴(

ΔCIT
2

)2
𝜂bare

=
1

(1 − 𝜅𝑐
𝜅
)

(
1 − 𝐶

√︂
𝛾𝑠𝛾

4𝑔2𝜇
− 𝜅𝑐

𝜅

(
1 − 𝐶

√︂
𝛾𝑠𝛾

4𝑔2𝜇

)2
) (3.30)



43

where the depth has been normalized against the bare cavity depth 𝜂bare = 1 −(
1 − 2𝜅𝑐

𝜅

)2
. The lower bound of ΔCIT is ΔCIT, min =

Δinh
𝐶

, as the laser power 𝜇

becomes large. Additionally in the same limit, the depth reaches 1. Here we
summarize the assumptions made to derive the analytical expressions of the CIT
width and depth.

High cooperativity:

𝐶 ≫ 1. (3.31a)

Intermediate power:(
Δinh
4𝑔

)2
𝛾𝑠

𝛾
≫ 𝜇 ≫ 𝛾𝛾𝑠

4𝑔2 . (3.31b)

Appreciable inhomogeneity and good coherence:
Δinh
𝛾

≫ 𝐶. (3.31c)

We note that for a uniform (rectangular) ensemble distribution, the CIT depth and
width have the same power and cooperativity dependence up to a factor of 𝜋

2 . From
this we anticipate CIT to be a ubiquitous phenomenon for any distribution satisfying
Eq. 3.31.

Inhomogeneity of 𝑔 distribution
For simplicity, we have so far assumed that all ions are coupled equally to the cavity
(𝑔 𝑗 = 𝑔). Now we consider inhomogeneously distributed 𝑔, with a probability
distribution given by 𝑝(𝑔). Using the fact that 𝑝(𝑔) is uncorrelated with 𝜌(𝜔),
Eq. 3.24 can be written as:

𝑥 =
2
𝜅

∫
𝑁𝑔2𝑝(𝑔)𝑑𝑔

∫
𝜌(𝜔)𝑑𝜔

(𝛾 + 𝑖(𝜔 − 𝜔𝐿))
(
1 + 𝑦(𝑥,𝑔)

𝛾2+(𝜔−𝜔𝐿)2

) . (3.32)

Note that 𝑦(𝑥, 𝑔) is now also a function of 𝑔. We can first calculate the integral over
frequency 𝜔, then over 𝑔 to get the solution of 𝑥 similar to Eq. 3.27:

𝑥 =
1

Δinh𝜅
2𝑁𝑔avg

√︃
𝜇

𝛾𝑠𝛾
− 1

+ 8𝑖𝜔𝐿

Δ2
inh𝜅

Ω2

(3.33)

where Ω2 =
∫
𝑁𝑔2𝑝(𝑔)𝑑𝑔, and we define 𝑔avg =

∫
𝑔𝑝(𝑔)𝑑𝑔. Now, we obtain the

width

ΔCIT = Δinh

Δinh𝜅
4Ω2

1 − 2𝑁𝑔avg
Δinh𝜅

√︃
𝛾𝑠𝛾

𝜇

. (3.34)
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From this, we can see that the CIT profile and the minimum width do not depend on
the specific distribution of cavity-ion coupling strength, but only the total coupling
strength. Ensemble cooperativity 𝐶 ∝ Ω2

𝜅Δinh
also only depends on the total coupling

strength Ω2, so the expression of the minimum FWHM relative to the cooperativity
will still be ΔCIT, min ∼ Δinh

𝐶
, regardless of the specific distribution of 𝑔.

Intuitive understanding
From the above derivations, we see that for high cooperativity (𝐶 > 1), we will get
a CIT dip with width approximately equal to the inhomogeneous linewidth divided
by 𝐶. Looking back at Eq. 3.22, the contribution of each ion to 𝑥 can be extracted
using Eq. 3.18 (still assuming 𝑔 𝑗 = 𝑔 since 𝑔 𝑗 and Δ 𝑗 are uncorrelated):

⟨𝜎−
Δ 𝑗
⟩

⟨𝑎⟩ =
𝑖𝑔𝜎𝑧

Δ 𝑗
(𝛾 − 𝑖Δ 𝑗 )

𝛾2 + Δ2
𝑗

. (3.35)

Here, we use notation ⟨𝜎−
𝑗
⟩ = ⟨𝜎−

Δ 𝑗
⟩ and ⟨𝜎𝑧

𝑗
⟩ = ⟨𝜎𝑧

Δ 𝑗
⟩, where the subscript now

denotes the ion-laser detuning. For ions with detuning much larger than a homoge-
neous linewidth |Δ 𝑗 | ≫ 𝛾, if a ion is blue-detuned (Δ 𝑗 > 0), its atomic coherence

phase arg
( ⟨𝜎−

Δ 𝑗
⟩

⟨𝑎⟩

)
→ −𝜋 while its red-detuned pair has arg

( ⟨𝜎−
−Δ 𝑗

⟩
⟨𝑎⟩

)
→ 0. Their

amplitudes are
��� ⟨𝜎−

Δ 𝑗
⟩

⟨𝑎⟩

��� = ��� ⟨𝜎−
−Δ 𝑗

⟩
⟨𝑎⟩

��� ∼ 𝑔

|Δ 𝑗 | |⟨𝜎
𝑧
|Δ 𝑗 |
⟩|. We can see that for the above pair of

ions with ±Δ 𝑗 , the phase difference will be 𝜋, such that their phases will cancel and
their contribution to the cavity field will be

⟨𝜎−
Δ 𝑗
⟩

⟨𝑎⟩ +
⟨𝜎−

−Δ 𝑗
⟩

⟨𝑎⟩ =
𝑖𝑔⟨𝜎𝑧

|Δ 𝑗 |
⟩(2𝛾)

𝛾2 + Δ2
𝑗

∼ 2𝑔𝛾
Δ2

𝑗

|⟨𝜎𝑧
|Δ 𝑗 |
⟩|. (3.36)

Note that the phase we talk about here is the phase of ⟨𝜎−
𝑗
⟩ relative to ⟨𝑎⟩. For the

Fig. 3.2a, we add a global phase of 𝜋
2 to the ion phases for visual clarity.

To summarize:

1. The contribution from any ion to cavity reflection will decrease as the ion gets
excited (⟨𝜎𝑧

𝑗
⟩ > −1), and finally disappear when the ion is saturated to the

completely mixed state where ⟨𝜎𝑧
𝑗
⟩ = ⟨𝜎−

𝑗
⟩ = 0.

2. The phase of each ion relative to the cavity field is determined by the detuning
of an ion relative to the laser frequency. For blue-detuned ions (Δ 𝑗 > 0), the
phases are between − 𝜋

2 to −𝜋, while for the red-detuned ions (Δ 𝑗 < 0), the
phases are between − 𝜋

2 to 0.
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3. A pair of symmetrically detuned ions relative to the laser frequency will have
a reduced contribution to the cavity field compared to a single ion due to
the phase cancellation, by a factor of ∼ 𝛾

Δ 𝑗
. This is obtained by comparing

Eq. 3.36 to Eq. 3.35 in the case of |Δ 𝑗 | ≫ 𝛾.

Validity of Mean-Field Approximation
In the above derivation of CIT, we have used the mean-field approximation [95, 96]
where the mean values of the products of the operators 𝑎 and 𝜎𝑧

𝑗
are factorized:

⟨𝜎𝑧
𝑗
𝑎⟩ = ⟨𝜎𝑧

𝑗
⟩⟨𝑎⟩. In the following, we will justify why such an approximation

can be made for this system when considering CIT. To start, we introduce the
term ⟨𝜎𝑧

𝑗
𝑎⟩ − ⟨𝜎𝑧

𝑗
⟩⟨𝑎⟩ which considers the correlations between 𝑎 and 𝜎𝑧

𝑗
, and

we would like to show that this term is negligible. Using adiabatic elimination
𝑎 ≈ −2𝑖

𝜅

∑𝑁
𝑘=1 𝑔𝑘𝜎

−
𝑘
− √

𝜇, we expand this as:

⟨𝜎𝑧
𝑗
𝑎⟩ − ⟨𝜎𝑧

𝑗
⟩⟨𝑎⟩ = −2𝑖

𝜅

𝑁∑︁
𝑘=1

𝑔𝑘

(
⟨𝜎𝑧

𝑗
𝜎−
𝑘 ⟩ − ⟨𝜎𝑧

𝑗
⟩⟨𝜎−

𝑘 ⟩
)

= −2𝑖
𝜅

©­«𝑔 𝑗

(
⟨𝜎𝑧

𝑗
𝜎−
𝑗 ⟩ − ⟨𝜎𝑧

𝑗
⟩⟨𝜎−

𝑗 ⟩
)
+

𝑁∑︁
𝑘≠ 𝑗

𝑔𝑘

(
⟨𝜎𝑧

𝑗
𝜎−
𝑘 ⟩ − ⟨𝜎𝑧

𝑗
⟩⟨𝜎−

𝑘 ⟩
)ª®¬ .

(3.37)

The first term is the self-correlation between𝜎𝑧
𝑗
and𝜎−

𝑗
of ion 𝑗 , and the second term

is the cross-correlation between different ions. Setting the second term ⟨𝜎𝑧
𝑗
𝜎−
𝑘
⟩ −

⟨𝜎𝑧
𝑗
⟩⟨𝜎−

𝑘
⟩ = 0 (𝑘 ≠ 𝑗) indicates that the final states of different ions are not entangled.

For the first term (self-correlation), we use the commutation rule between 𝜎𝑧
𝑗

and
𝜎−
𝑗

(𝜎𝑧
𝑗
𝜎−
𝑗
= −𝜎−

𝑗
) to rewrite it as

−
2𝑖𝑔 𝑗

𝜅

(
⟨𝜎𝑧

𝑗
𝜎−
𝑗 ⟩ − ⟨𝜎𝑧

𝑗
⟩⟨𝜎−

𝑗 ⟩
)
=

2𝑖𝑔 𝑗

𝜅

(
1 + ⟨𝜎𝑧

𝑗
⟩
)
⟨𝜎−

𝑗 ⟩. (3.38)

It is true that this term can be nonzero based on the solution in CIT. However, we
now want to show that the influence of this term of the final cavity field ⟨𝑎⟩ is very
small. To do this, we introduce 𝛿(⟨𝜎−

𝑗
⟩), which is the modification to ⟨𝜎−

𝑗
⟩ if we

were to consider this self-correlation term. Using Eq. 3.18,

𝛿(⟨𝜎−
𝑗 ⟩) = −

2𝑔2
𝑗

(𝑖Δ 𝑗 + 𝛾)𝜅

(
1 + ⟨𝜎𝑧

𝑗
⟩
)
⟨𝜎−

𝑗 ⟩. (3.39)
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We can then plug this back into our expression for the cavity field 𝑎 using Eq. 3.17,
and get the modification to the cavity field introduced by this self-correlation:

𝛿(⟨𝑎⟩) = −2𝑖
𝜅

𝑁∑︁
𝑘=1

𝑔𝑘𝛿(⟨𝜎−
𝑘 ⟩

=
4𝑖
𝜅2

𝑁∑︁
𝑘=1

𝑔3
𝑘

𝑖Δ𝑘 + 𝛾

(
1 + ⟨𝜎𝑧

𝑘
⟩
)
⟨𝜎−

𝑘 ⟩

= − 4
𝜅2

𝑁∑︁
𝑘=1

𝑔4
𝑘

(𝑖Δ𝑘 + 𝛾)2

(
1 + ⟨𝜎𝑧

𝑘
⟩
)
⟨𝜎𝑧

𝑘
⟩⟨𝑎⟩. (3.40)

If we plug solution Eq. 3.21 into Eq. 3.40, we get

𝛿(⟨𝑎⟩) = 4
𝜅2

𝑁∑︁
𝑘=1

𝑔4
𝑘

(𝑖Δ𝑘 + 𝛾)2

4𝑔2
𝑘
|⟨𝑎⟩|2𝛾

𝛾𝑠 (𝛾2+Δ2
𝑘
)(

1 + 4𝑔2
𝑘
|⟨𝑎⟩|2𝛾

𝛾𝑠 (𝛾2+Δ2
𝑘
)

)2 ⟨𝑎⟩. (3.41)

Assuming 𝑔𝑘 = 𝑔 for all the ions, we can obtain the relative change of ⟨𝑎⟩ is����𝛿(⟨𝑎⟩)⟨𝑎⟩

���� < 16𝑔6𝛾

𝜅2𝛾𝑠

𝑁∑︁
𝑘=1

|⟨𝑎⟩|2

(𝑖Δ𝑘 + 𝛾)2(𝛾2 + Δ2
𝑘
)
∼ 16𝑁𝑔6𝛾

𝜅2𝛾𝑠Δ
4
inh

|⟨𝑎⟩|2 ∼ 16𝑁𝑔6𝛾

𝜅2𝛾𝑠Δ
4
inh

𝜇.

(3.42)
Using Eq. 3.31b where 𝜇 ≪

(
Δinh
4𝑔

)2
𝛾𝑠
𝛾

we can then get
��� 𝛿(⟨𝑎⟩)⟨𝑎⟩

��� ≪ 𝐶𝑔2

4𝜅Δinh
≪ 1, which

is validated both in experiment and simulation for our system. The conclusion is that��� 𝛿(⟨𝑎⟩)⟨𝑎⟩

��� ≪ 1, or that the fractional change in the cavity field due to the self-correlation
term will be very small.

Validity of the Tavis-Cummings model
It has been shown in [30] that large collective coupling rates can lead to a breakdown
of the standard Tavis-Cummings model. The relevant condition for the validity of
the Tavis-Cummings model is FSR ≫ 𝑊 , where FSR is the free-spectral range of
the cavity, and 𝑊 is the ensemble absorption derived in Eq. 3.10. Plugging in the
parameters of our system, we find FSR = 2𝜋 × 25 THz, and 𝑊 = 2𝜋 × 0.5 THz,
thus satisfying the above inequality, and validating our use of the Tavis-Cummings
model.

3.6 Analysis of CIT widths and depths
In this section, we will provide a more detailed analysis of fitting the experimental
data, comparing CIT widths and depths for different transitions. We will also
discuss the numerical simulation of CIT when some approximations in Eq. 3.31
break down, and thus the analytical expression of CIT in Eq. 3.1 does not hold.
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The fits for CIT widths and depths
As the distribution of ions in our experimental system is approximately Lorentzian,
based on Eq. 3.29 and Eq. 3.30, we use the following functions to fit the power
dependent CIT width and the depth

ΔCIT,fit =
𝑝1

1 − 𝑝2√
𝑃

(3.43)

𝜂CIT,fit = 𝑝4

(
1 − 𝑝2√

𝑃
− 𝑝3

(
1 − 𝑝2√

𝑃

)2
)

(3.44)

where 𝑝1,2,3,4 are free fitting parameters and 𝑃 is the excitation power. The fit
parameters are left floating as the purpose of these fits are to validate the analytically
derived power scaling, which contains some approximations that may make it inexact
in certain regimes. This is already apparent in the discrepancy of the minimum CIT
width, where the analytical value is a few times smaller than the experimental and
numerically simulated values.

Comparison between A and I transition
We find that the extracted fit parameters from Fig. 3.2d and Fig. 3.6 are physically
reasonable based on our system parameters, for both the A and I transitions. First 𝑝1,
representing the minimum CIT width, is fit to 42(36) MHz for the A(I) transitions.
𝑝2, the prefactor to the excitation power, is fit to 0.08(0.25), where the larger value for
the I transition reflects both the larger cooperativity and dephasing. The analytical
expression of 𝑝2 is 𝐶

√︃
ℏ𝜔𝛾𝑠𝛾𝜅

2

𝑔2𝜅𝑐
, and plugging in system parameters we obtain about

0.07(1.4), accounting for optical losses and the factor of 4 discrepancy found in
the numerical simulations. We attribute the discrepancy of 𝑝2 for the I transition to
an overestimation of the dephasing rate, which we assumed to be a hundred times
worse than the A transition. 𝑝3 is the extracted fit for the cavity in-coupling ratio
𝜅𝑐/𝜅, fit to 0.3(0.1), a good match to the estimated value of 𝜅𝑐/𝜅 ∼ 0.2 measured in
similar devices. Correspondingly, 𝑝4 is fit to 1.2(1.1), consistent with its analytical
expression 1

(1−𝜅𝑐/𝜅) .

We note that the measured CIT depths in Fig. 3.2d and Fig. 3.6 are normalized
against the bare cavity depth, determined by 𝜅𝑐. For the experiment data, we set the
cavity resonance minimum to be 0 (which we take to be the minimum of the edge
of the DIR, since the cavity is broad), and the DIR maximum to be 1. This is done
to eliminate the background counts of reflected light that do not enter the cavity.
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Figure 3.6: CIT width and depth comparison between the A and I transitions. a,
Measured CIT width and b, depth with power and corresponding fits for the A (red)
and I (blue) transitions. We expect the I transition to have different width and depth
values, as the cooperativity is twice as high, but the dephasing rate is expected to be
more than 100 times larger than A. While we find similar depth values, the width
differs between the two. In particular, the I transition starts out much broader than A,
as expected from the worse coherence properties. Despite this, the minimum width
is slightly narrower for the I transition, indicating that indeed the cooperativity is
larger for the I transition.

Numerical simulation
While the analytical expressions above give the intuition behind CIT , an arbitrary
distribution can be numerically solved without making the assumptions listed in
Eq. 3.31. The simulation model still follows the mean-field approximation, thus
solving the 2𝑁 + 1 equations of 2𝑁 + 1 variables in Eq. 3.17-3.19. The simulation
method is very similar to the steady-state solution in [97].

This is how the results in Fig. 3.2c are obtained. This gives CIT widths closer to
the experimental values. Note that the power used in simulation in Fig. 3.2c is four
times smaller than the experiment in Fig. 2b, which is attributed to discrepancy of the
realistic distribution of ions and power calibration errors in experiment. Specifically,
we found that making the simulated ion distribution imperfect or asymmetric resulted
in requiring more power to effectively reach the high power regime, where the CIT
width reaches its minimum.

From the derivation in section 3.5, we note that the lower limit of CIT width does not
depend on homogeneous linewidth 𝛾 as long as Δinh

𝐶
≫ 𝛾. When the cooperativity

is high enough such that Δinh
𝐶

∼ 𝛾, Eq. 3.29 and Eq. 3.30 do not hold anymore; In
such a high cooperativity regime, numerical simulation is neede and shows that the
CIT will finally be limited by homogeneous linewidth (Fig. 3.7a,b).

From the simulation, we can also look at the phase of the cavity field, and we found
that the phase has a sudden shift (Fig. 3.8c).
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Figure 3.7: Numerical simulation for a higher cooperativity in CIT a, Simulated
cavity reflection showing narrow CIT for Δinh/(2𝜋𝐶) = 1 kHz and 𝛾/2𝜋 = 0.3 kHz.
b, CIT width with varying 𝛾 in this high cooperativity system, showing a strong
dependence on 𝛾.
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Figure 3.8: Phase shift in CIT a. The simulated cavity phase Arg(𝑎) (red) across
the CIT for a laser power of 0.5 nW, exhibiting a relative 𝜋 phase shift. The
corresponding cavity reflection spectrum (blue) as a function of laser frequency for
reference, identical to Fig. 2c purple. Note that this phase shift can be reproduced
either by numerical simulation or by the analytical expression in Eq. 3.27. Here, we
are presenting the numerical simulation results to better match experimental data.

3.7 Potential applications for CIT
In this section, we will discuss two potential applications for CIT.

Description of CIT in the good-cavity regime
We have so far focused on the resonant bad-cavity regime, such thatΔ𝑐 = 𝜔𝑐−𝜔𝐿 , the
cavity detuning from the laser, was ignored. Here we generalize the CIT derivation
to the case where Δ𝑐 is considered, and 3.24 becomes:

𝑥 =
2𝑁𝑔2

𝜅 + 2𝑖Δ𝑐

∫
𝜌(𝜔)𝑑𝜔

(𝛾 + 𝑖(𝜔 − 𝜔𝐿))
(
1 + 𝑦(𝑥)

𝛾2+(𝜔−𝜔𝐿)2

) (3.45)
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where now 𝑦(𝑥) =
4𝑔2𝜇𝛾

|1+𝑥 |2𝛾𝑠 (1+4Δ2
𝑐/𝜅2) ≈ 4𝑔2𝜇𝛾

|1+𝑥 |2𝛾𝑠
, keeping the first order of Δ𝑐/𝜅.

Solving for 𝑥:

𝑥 =
1

2𝑔
𝐶

√︃
𝜇

𝛾𝑠𝛾
− 1

(
1 − 2𝑖(𝜔𝑐 − 𝜔𝐿)

𝜅

)
+ 2𝑖(𝜔𝐿 − 𝜔0)

Δinh
𝐶

. (3.46)

Using this, we can write our cavity reflection coefficient as

𝑟 = 1 − 2𝜅𝑐
(𝜅 + 2𝑖(𝜔𝑐 − 𝜔𝐿)) (1 + 𝑥)

= 1 − ΔCIT,min𝜅𝑐/𝜅
ΔCIT/2 + 𝑖(𝜔𝐿 − 𝜔center)

. (3.47)

From this the center of CIT and width of CIT are:

𝜔center =

(
𝜔0𝐶

Δinh
− 𝜔𝑐

𝜅

) Δinh
𝐶(

1 − Δinh
𝐶𝜅

) =
1(

1 − Δinh
𝐶𝜅

)𝜔0 −
Δinh
𝐶𝜅(

1 − Δinh
𝐶𝜅

)𝜔𝑐, (3.48)

ΔCIT =

Δinh
𝐶(

1 − 𝐶
2𝑔

√︃
𝛾𝑠𝛾

𝜇

) (
1 − Δinh

𝐶𝜅

) → ΔCIT,min =

Δinh
𝐶(

1 − Δinh
𝐶𝜅

) . (3.49)

In the experiment, we measure the CIT for different cavity resonance frequencies,
as shown in Fig. 3.9, where we can observe the linear dependence as expected.

The above derivations show the following:

1. The CIT spectrum is similar to a cavity resonance, with ΔCIT linewidth and
input relative coupling ratio ΔCIT,min𝜅𝑐

ΔCIT𝜅
→ 𝜅𝑐

𝜅
. This means that CIT is a mecha-

nism in which a new resonance can be produced from a cavity, where this new
resonance will be much narrower than the original cavity, whilst maintaining
the input relative coupling ratio.

2. This narrow feature can be used for precision sensing. The effective cavity

(CIT) fluctuation is reduced by a factor of
Δinh
𝐶𝜅(

1−Δinh
𝐶𝜅

) → Δinh
𝐶𝜅

compared to the

original cavity fluctuation.

3. The above derivation requires Δinh
𝐶𝜅

≪ 1 (besides the conditions in Eq. 3.31),
which gives Δinh ≪ 2

√
𝑁𝑔. However, we can see that there is no individual

requirement for 𝜅, so the CIT phenomenon is not necessarily restricted to the
bad cavity regime, and can work for cavities with higher quality factors. We



51

-50 0 50 100 150
Detuning (MHz)

0.4

0.6

0.8

1

R
ef

le
ct

io
n

c/2π = -60 GHz

c/2π = -21 GHz

c/2π = 1 GHz

a b

-100 -50 0 50 100
Cavity detuning (GHz)

-100

-50

0

50

100

C
IT

 d
et

un
in

g 
(M

H
z)

Figure 3.9: CIT dependence on cavity resonance frequency. a, CIT spectrum
for different cavity detunings, fit to a Fano resonance. b, Relation between CIT
detunings and cavity detunings, showing the expected linear dependence. The error
bar is from the fit.

note that if the cavity becomes extremely narrow, the mean-field approxima-
tion may not hold and a more exact model may be required. It is unclear,
however, if we must be in the mean-field regime for CIT to occur.

Response time of CIT and application for optical switch
In the previous sections, CIT has been investigated in the steady state regime.
However, CIT has a finite response time, which is important to explore for certain
applications such as an optical switch. To this end, we park the laser at the center of
the CIT, and measure the reflection as a function of time (Extended Data Fig. 10).

We find a fast response time of 600 ns, and posit that a two-port optical switch
with an integrated filter can be realized using CIT. This current device has not
been optimized for this particular application, hence we are unable to measure the
other port (transmission) nor apply a transverse pump. Additionally, the contrast
suffers from reflection due to an imperfect beam overlap with our optical coupler
and our cavity being under-coupled. However, this problem can be solved by
critically coupling and coupling the laser better into the cavity. This will result in
increased contrast, important for improving the extinction ratio of the switch. For
the best extinction ratio, the cavity should be designed as critical-coupled where
𝜅1/𝜅 = 𝜅2/𝜅 = 0.5 where 𝜅1 and 𝜅2 are the coupling rate from ports 1 and 2. We
note that the pump light is to create the CIT, which is an absorptive process where
the ions absorb light and get excited. In contrast, as long as the signal is weak
enough, the optical switch can be non-absorptive. Furthermore, we believe the
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Figure 3.10: Optical switch based on CIT. a, CIT response time. We park the
laser at the center of the CIT, and measure the reflection as a function of time after
turning the pump on. The reflection signal decreases as the CIT is created in sub-𝜇s
timescales. b, Schematic of an ideal two-port optical switch with an integrated
filter with CIT. A transmission port and a transverse pump port are added to realize
this application. For the best extinction ratio, the cavity should be two-sided and
critically coupled such that 𝜅1/𝜅 = 𝜅2/𝜅 = 0.5 where 𝜅1 and 𝜅2 are the coupling
rates from ports 1 and 2. The top schematic shows that when the pump is off and
DIR is formed, the signal is entirely reflected (port 1). The bottom schematic shows
that when the pump is on and CIT is created, the signal is transmitted (port 2) within
the CIT window (spectral filter).

current switching time is limited by how fast the ions can reach saturation, which
can be faster by engineering a larger 𝑔.

3.8 Discussion and outlook
In this work we have investigated the spectral response and open quantum dynamics
of a large cavity QED system, revealing a sharp CIT appearing in the reflection spec-
trum. Notably, the CIT width is found to be narrowed by cooperativity, indicating
that improvements in fabrication and material properties towards increasing coop-
erativity can lead to much narrower transparencies, potentially useful as frequency
references. The sudden cavity phase shift across the CIT (Extended Data Fig. 3.8)
can provide a novel mechanism to achieve optical nonlinearities and the storage of
light [98]. In particular, we demonstrate a proof-of-principle optical switch using
CIT, and posit that with further optimization a fast, high contrast two-port optical
switch can be realized (Fig. 3.10).
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C h a p t e r 4

DISSIPATIVE MANY-BODY DYNAMICS: CAVITY-MEDIATED
SUPERRADIANCE AND SUBRADIANCE

In chapter 3, we demonstrate the newly discovered CIT appearing in a many-body
cavity QED system with high ensemble cooperativity. This phenomenon can be
well explained under the mean-field approximation (section 3.5), which holds in the
relatively small power1, and quantum correlation can be ignored. Furthermore, as
we increase the optical driving, such highly cooperative systems can exhibit many-
body phenomena [89]. One example is Dicke superradiance and subradiance [99],
the collective enhancement and suppression of radiation due to quantum interference
between identical emitters, respectively. Indeed, thanks to the transparency window
opened by CIT, we are able to send enough power into the cavity and study the
dissipative many-body dynamics–cavity-mediated superradiance and subradiance–
which will be the topic in this chapter. This chapter is adapted from [88], and all
simulation results in this chapter are provided by Riku Fukumori.

4.1 Introduction
Previously, superradiance has mostly been explored with cold atoms [27, 100–102],
microwave resonators coupled to spins [28] and superconducting qubits [24, 103].
In particular, optical superradiance in the solid state has only been studied for few
emitters [104–106] and signatures have been observed only with very few examples
for larger ensembles [32]. This is because superradiance is a coherent process that
requires cooperative decay to overcome disorder, which is typically challenging
to achieve in solid state systems due to large optical inhomogeneities [31]. Phe-
nomenologically similar to superradiance, the so-called superfluorescence (SF) has
been observed in several solid-state platforms, including quantum dots [107] and
rare-earths doped in crystals [108, 109]. However, SF is distinct from superradiance
as an initially incoherent system that self-evolves to build up a coherent polariza-
tion. Superradiance, on the other hand, happens when the coherent polarization is
deterministically generated by external coherent excitation.

Furthermore, in the presence of dissipation, subradiance can also emerge as a
1We call it intermediate power in Eq. 3.31 since it has an upper and a lower bound. The overall

experimental power regime discussed in chapter 3 is smaller than in this chapter.
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result of the interplay between interatomic interaction and decoherence. Due to
its intrinsically weak coupling to the environment, however, subradiance has been
demonstrated only a few times, mostly in cold atom systems [102, 110, 111]. Unique
experimental systems that exhibit both superradiance and subradiance can provide
fundamental insights into the dynamics of complex open quantum systems, leading
to multiple emerging applications including narrow linewidth superradiant lasers
[112] and long-lived subradiant memories [113, 114].

4.2 System overview
We study an inhomogeneously broadened ensemble of Yb ions embedded in a crystal
coupled to a nanophotonic cavity with high cooperativity. The cavity-mediated
dissipation allow us to control the population distribution within the Dicke space
[99] and observe many-body dynamics in the form of superradiance and subradiance
(Fig. 4.1). The features of the observed dynamics are well explained by numerical
simulations based on a many-body master equation. In the single-ion case, the
Purcell effect enhances the ion’s emission by increasing the decay rate by 4𝑔2/𝜅
when coupled to a cavity. When an ensemble of ions is coupled to the same cavity,
we will see that 4𝑔2/𝜅 acts as a collective decay channel, ultimately leading to
many-body dissipative dynamics.

Our system consists of an ensemble of Yb ions embedded in YVO4, with approxi-
mately 106 ions coupled to a nanophotonic cavity (Fig. 4.1a). The cavity is tuned
into resonance with 𝜆 = 984 nm optical transition of Yb, where the large cavity
linewidth (𝜅 = 2𝜋 × 44 GHz) covers all three transitions aligned along the cavity
polarization (A, E, I in Fig. 4.1). The narrow optical inhomogeneous linewidths
(Δinh = 2𝜋 × 150 MHz) compared to the separation between those transitions (a few
GHz) enables each transition to be addressed as independent two-level systems. The
high ensemble cooperativity (𝐶𝐴 = 𝐶𝐸 = 𝐶𝐼/2 = 12) opens a CIT window around
the center of the inhomogeneous line and enables the investigation of the rich dy-
namics of a driven subensemble near the transparency window. This is because the
effect of the off-resonant ions on the cavity field is cancelled, allowing more light
to enter the cavity, and we will able to isolate the resonant ions. More details about
the system parameters can be found in section 3.3.

4.3 Experimental observation and analysis
To probe the dynamics, we tune the laser to the center of the CIT, and detect the
cavity emission after pulsed excitation (Fig. 4.2a). For state initialization, the system
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Figure 4.1: Cavity-mediated suprradiance and subradiance. a, Schematic de-
scription of the cavity-ion interaction. An inhomogeneous ensemble of ions is
coupled to a one-sided cavity with total decay rate 𝜅. The input field 𝐴in is sent into
the cavity, and the dynamics is detected through the same channel. The interaction
strength between the cavity field and a single ion is 𝑔. Two spectrally indistinguish-
able ions have an effective cavity-mediated dissipation rate Γ𝑐 = 4𝑔2/𝜅. Each Yb
ion has an energy structure, as shown in the zoomed-in dashed frame. The 𝐴, 𝐸 , and
𝐼 transitions are around 984 nm and coupled to the cavity mode. Each transition,
such as 𝐴, forms an effective two-level system, consisting of a ground state (|𝑔⟩) and
an excited (|𝑒⟩) state. b, The Dicke space for 4 two-level systems in the |𝐽, 𝑀⟩ basis
[115], where the 𝐽 = 2 manifold forms the superradiant ladder and the rest form the
subradiant subspace. c, Schematic of superradiance (orange) and subradiance (blue)
which are enhanced (suppressed) decays where emissions from ions constructively
(destructively) interfere.



56

is driven to a non-equilibrium steady state using a long pulse. Varying the excitation
power prepares the system into different initial states, followed by distinct emission
dynamics (Fig. 4.2b). Analyzing the peak counts of the emission, we find that the
trend of peak counts with power is strongly non-monotonic, forming an S-shaped
curve (Fig. 4.2c).

To systematically characterize the observed nonlinear dynamics, we classify three
power regimes (I, II, III) based on the slope of the S-curve. In regime I with low
powers, the decay is predominantly fast. A characteristic 1/𝑒 decay time is measured
to be ≈ 150 ns, faster than the fastest expected Purcell decay of a single ion coupled
to the cavity (≈ 1.4 𝜇s, Fig. 4.2b inset). In regime II, with intermediate powers,
both a fast and a slow decay compared to the Purcell-enhanced rate are observed. In
regime III, with higher power, a continuum of different decay lifetimes are observed,
leading to a stretched exponential decay.

To gain a microscopic understanding of this nonlinear power dependence, we use
a master equation to describe driven dynamics in the presence of decoherence and
dissipation. The numerical simulation of the entire inhomogeneous ensemble of
𝑁 ∼ 106 ions is not tractable. However, the phase cancellation in CIT negates the
influence of the off-resonance ions on cavity field, which allows us to initially only
consider the dynamics of the resonant ions. Additionally, we note that the cavity
mediates photon exchange between ions, which triggers collective dissipation with
rate proportional to Γ𝑐 = 4𝑔2/𝜅 (section 4.5). As the system dissipation is dominated
by Γ𝑐, a smaller number of ions that sit within a spectral window whose width is about
Γ𝑐 can be treated as indistinguishable ions. To this end, we first simulate a small-scale
homogeneous ensemble. Specifically, we study a toy model of 6 identical ions whose
dynamics can be described using the Dicke states, the coupled basis defined for
indistinguishable two-level systems [99]. As shown in Fig. 4.1b and Fig. 4.3, vertical
decays between the Dicke states are enhanced and superradiant, and diagonal decays
are suppressed and can only decay through individual dissipation channels, which
we call subradiance (section 4.6). To effectively capture the existence of multiple
decay rates among the various Dicke states, as well as a clear separation between
fast (superradiant) and slow (subradiant) decays, we employ a phenomenological
stretched bi-exponential fit and extract the relevant fit parameters, which also clearly
reveals the presence of the distinct three regimes discussed earlier (Fig. 4.2d).

By simulating this system’s dynamics using the master equation, we find that the
peak emission is a good indicator for the population distribution of the Dicke states
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Figure 4.2: Observation of dissipative many-body cavity emission. a, Measure-
ment schematic. After a 50 𝜇s long excitation pulse, peak counts are obtained by
integrating the counts within the first 128 ns. b, Three representative cavity emis-
sion time traces from each of the three power regimes with equal peak counts (3,
14, 26 nW). All traces are fit to a phenomenological stretched bi-exponential fit,
𝐴1 exp[−(𝑡/𝜏1)𝑥1] + 𝐴2 exp[−(𝑡/𝜏2)𝑥2] + 𝑏 (section 4.6). Inset: single exponential
fit for the first 500 ns of the emission excited with 3 nW, with higher time resolution.
The fitted decay lifetime of ≈ 150 ns (solid line) shows an enhancement beyond
the fastest expected Purcell decay of ≈ 1.4 𝜇s (gray dashed). c, Peak counts with
varying excitation power. The three labelled points correspond to the data shown
in b. d, Fit parameters, 𝐴1,2, 𝜏1,2, and 𝑥1,2, of the time traces. The transparency
of the data points in the decay times 𝜏1,2 and stretch factors 𝑥1,2 are weighted by
their relative amplitudes 𝐴1,2

𝐴1+𝐴2
to emphasize the significance of the parameters. In

regime III (for powers greater than 20 nW), 𝑥1 is set to 1, as there is no longer a
distinct fast decay (section 4.6).

prepared by the drive (Methods). The simulated peak emission matches the trend
measured in regimes I and II, where distinct temporal dynamics are attributed to
decays from different parts of the Dicke space (Fig. 4.4). In regime I we attribute
the fast decay to superradiance, dominantly from the collective dissipation within
the superradiant ladder, as we expect to have populated only the low-excitation su-
perradiant states within a narrow bandwidth of the ensemble (Fig. 4.5). From the
measured fast decay rate, we estimate the number of ions participating in superradi-

2Note that the x-axis is different from what we presented in [88]. For this paper, we rescaled the
x-axis to match the experiment for simplicity.
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Figure 4.3: Decay rates between Dicke states in a bad cavity regime [116].
Here, Dicke states are formed by 6 identical two-level systems. a, Collective decay
(red) governed by Γ𝑐 = 4𝑔2/𝜅 decays vertically, preserving total spin 𝐽. b, d, e,
Individual decay (green) governed by spontaneous emission 𝛾𝑠 decays diagonally,
and c, f, individual dephasing (beige) 𝛾𝑑 couples neighboring 𝐽 states with the same
𝑀 . With higher 𝑀 , the diagonal decay rates are faster towards larger 𝐽, and slower
towards smaller 𝐽.

ance to be on the order of ∼ 50 (section 4.6). With increased power, we expect that
the system climbs up the superradiant ladder and reaches Dicke states with larger
decay rates, leading to even faster emission. This is consistent with the observed
trend of decreasing 𝜏1 in regime I as shown in Fig. 4.2d. At even higher powers,
strong driving of the superradiant ladder allows for significant population to diffuse
into the subradiant space via decoherence processes, resulting in the slow decay
observed in regime II (Fig. 4.5) [101, 102]. Populating multiple dark subradiant
states exhibiting different decay rates manifests as a stretched exponential decay in
the emission dynamics.

In regime III a completely mixed state of equal population in each Dicke state can be
reached (Fig. 4.5). Further increasing the power excites more of the off-resonance
ions, while the subensemble of the on-resonance ions addressed in regimes I and
II remains in the completely mixed state. This leads to the emergence of interme-
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Figure 4.4: Master equation simulation of dissipative many-body dynamics. a,
Simulation of 6 identical ions excited with a long (50 𝜇s) pulse. The peak of total
squared atomic polarization ⟨𝐽+𝐽−⟩ (red) is plotted as a function of excitation power
along with individual (blue) and correlation (orange) terms from Eq. 4.11, where
the peak amplitudes are calculated from the values right after the excitation pulse,
to emulate the peak counts measurements. b, Simulated population dynamics of
different subspaces in the Dicke basis as a function of excitation power. Note that
the superradiant ladder here refers to all of the states in the 𝐽 = 3 manifold except
the ground state. We find that the evolution of the superradiant population with
power aligns with the correlation term in a. c, Simulated Dicke state population
distribution for different powers. The size of the black circles represents the relative
population weights at the end of the excitation pulse. With low power (Power =
0.5 a.u., left), primarily the lower excitation superradiant ladder (orange bars) is
populated. With increased power (Power = 1 a.u., middle), the subradiant subspace
(blue bars) begins to populate, including the long-lived dark subradiant states. At
high power (Power = 2 a.u., right) the system approaches a completely mixed state.
Here, the population distribution appears to be unequal among the Dicke states due
to the varying degeneracies of the states in the subradiant subspace.

diate decays, departing from the homogeneous Dicke subensemble picture, which
suggests that a wider excitation bandwidth at high powers should be considered
in numerical simulations. To this end, we simulate a larger number of emitters
by including a Lorentzian distributed ensemble of ions with experimental inhomo-
geneous linewidth (Methods). Specifically, the dynamics of each subensemble is
computed separately and incoherently added, by assuming that the subensembles
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Figure 4.5: Simulation of dissipative many-body cavity emission with 𝑁 = 569
ions. a, b, Schematics of excitation bandwidth and Dicke space occupation in
the three power regimes. In regime I, only a narrow bandwidth is excited, and
primarily the low-excitation superradiant states are occupied. In regime II, the
bandwidth increases, and the subradiant subspace becomes populated. In regime
III, the bandwidth further increases, and the off-resonant subensembles get excited
while leaving the on-resonance subensemble in a completely mixed state. c, Master
equation simulation of 91 subensembles of identical ions, for a total of 𝑁 = 569
ions. Incoherently adding the peak emission of detuned subensembles qualitatively
reproduces the S-curve observed in experiment (section 4.5)2. d. Subsensemble
distribution, where each subensemble is separated by 5 MHz (inset).

are effectively non-interacting (more detail section 4.5 Fig. 4.9). The emergence
of the upturn of the peaks counts at high powers is reproduced by the simulation
(Fig. 4.5c), consistent with the experimental observation in regime III.

4.4 Control over coherent emission
To demonstrate control over the dissipative many-body dynamics, and to show
further evidence of the beyond-single atom nature of the cavity emission, we first
modify the decay dynamics by changing the number of ions. Specifically, we tune
the number of ions resonant with our excitation laser 𝑁res via optical hole burning,
and then observe the changes in the S-curve (Fig. 4.6a,b). Upon increasing 𝑁res,
the S-curve shifts towards higher power in regimes I and II, along with an increase
in the maximum of peak counts (Fig. 4.6c). The shift implies the formation of a
larger superradiant ladder when the number of local homogeneous ions increases,
which requires more excitation power to optically pump into the subradiant subspace
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Figure 4.6: Control and characterization of dissipative many-body dynamics via
hole-burning. a,b, Schematic representations of hole-burning (a: no hole burning,
b: with hole burning). The C transition connects another state |Aux⟩ in the ground-
state manifold to the excited state |𝑒⟩. Optical pumping on the C transition transfers
population from |Aux⟩ to |𝑔⟩, introducing an anti-hole in the original distribution
of the A transition. This increases the local ion density of the A transition at the
probe frequency (colored thin bars), and expands the Dicke space (shaded areas).
See Methods for the detailed description of the A, C transitions and the |Aux⟩ state.
c, Peak emission counts measured as a function of excitation laser power with (red)
and without (blue) hole burning. S-curve shifts towards higher power when the
burning is on. d, Normalized beat note amplitude 𝐴beat for burning off (blue) and
on (red). The two data sets are separately normalized, as the amplitude strongly
depends on the local oscillator polarization, which can vary between experiments.
Inset shows the experimental characterization of width Γbeat and amplitude 𝐴beat of
a beat signal from a heterodyne measurement (Methods). e, Single exponential fit
Γ1 (filled markers) from the time-dynamics measurement and extracted width Γbeat
from a Lorentzian fit (open markers) from coherence measurements for burning off
(blue) and on (red). Error bars represent standard errors of the fits. In b-d, vertical
dotted lines indicate the turning points between regimes I and II.
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(section 4.6). However, regime III is observed to be largely insensitive to a change
in 𝑁res, as indicated by the overlap of the S-curves, since spectral hole-burning only
changes the population locally in frequency without affecting the number of detuned
ions as illustrated in Fig. 4.6b.

We provide additional evidence of the traversal of the Dicke space by measuring
the coherence of the emission via heterodyne detection (Methods). The beat-note
between the emission and the excitation laser provides the rate and amount of
coherent decay through its width Γbeat and amplitude 𝐴beat, respectively (Fig. 4.6d,
inset). We first note the rise of 𝐴beat in regime I, indicating the increase in population
of the superradiant ladder. Later, 𝐴beat decreases in regime II, corresponding to the
incoherent coupling to the subradiant subspace. Finally in regime III, 𝐴beat vanishes
because of the absence of coherent decay, as the population has undergone incoherent
processes to reach the completely mixed state.

Since only decays within the superradiant ladder are coherent with respect to the
excitation, Γbeat represents the rate of superradiance within the superradiant ladder.
For comparison, we extract the fast decay part of the time dynamics of photon
emission as a single exponential with the rate Γ1, which captures all of the enhanced
decays from both superradiant and subradiant subspaces (Fig. 4.6e, filled markers).
The comparison between Γbeat and Γ1 can then be used to evaluate the relative decay
contributions from the two subspaces. We find that Γ1 overlaps with Γbeat for low
powers, confirming that all of the fast decays in regime I are within the superradiant
ladder. However, entering regime II, Γ1 deviates from Γbeat (for powers beyond
dashed lines in Fig. 4.6e). This observation of Γ1 < Γbeat in regime II indicates
that Γ1 also includes some incoherent decays slower than Γbeat, which point to the
enhanced decays within the subradiant subspace (Fig. 4.3a).

Lastly, we vary the frequency of the probe laser near the 𝐴 transition to control the
number of driven ions and observe that the nonlinear S-curve shifts in the expected
direction (Fig. 4.7). We can also extend this variation of frequency to cover all the
transitions (Fig. 4.8). The laser frequency is swept from the lower frequency side of
the A transition to the higher frequency side of I. In Fig. 4.8a we plot the reflected
pulse amplitude and in Fig. 4.8b we show the integrated total emission counts.
There are two aspects of the plot in Fig. 4.8b. Firstly, we find three tall peaks
corresponding to A, E, and I. Zooming into one of these transitions, we can see that
the spectral width of the emission is narrower than the inhomogeneous linewidth
of the ensemble, and resembles more a flat top rather than a Gaussian/Lorentzian
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Figure 4.7: Frequency and power dependence of peak counts. a, Peak counts with
excitation power and laser detuning. We repeat the pulsed excitation measurement at
different frequencies along the inhomogeneous line in the A transition, and observe
that the S-curve shifts to higher power. b, Horizontal cuts of a at different detunings.
Red dashed line indicates the maximum peak counts for different detunings. c,
Extracted local maximum of peak counts as a function of laser detuning. The
maximum of peak counts decreases with increased detuning from the center. We
note that this behavior differs from Fig. 4.6c, where while the S-curve also shifted
towards higher powers, the maximum of peaks counts increased with laser detuning.
Here, the S-curve shifts towards higher powers because of the CIT profile; as the
laser is detuned from the center, less power enters the cavity, resulting in effectively
more power being required to excite the ions. At the same time, the decrease of the
maximum of peak counts indicates there are less ions resonant with the laser when
detuned from the center.

(see zoom in of Fig. 4.8b). This is because CIT creates a transparency window
in the center of the inhomogeneous line, allowing more light to enter through that
window. Thus, the CIT shapes the incoming light with width approximately equal
to the CIT width (zoom in for Fig. 4.8a). Secondly, between the A and E, and E
and I transitions, at detuning around 1.5 and 5.5 GHz, there are elevated counts
where there are no resonant ions. This is related to the phase cancellation effect
observed in CIT. Specifically, when there are balanced ions on either side of the
laser frequency, more light can enter the cavity, resulting in enhanced off-resonant
excitation for the same input power.

Similar to CIT, we have also confirmed that the experimental findings for sub-
and superradiance are reproducible and consistent with our theoretical predictions,
independent of the choice of the optical emission lines between the A, E, and I
transitions. All of these complementary experiments lend strong support to our
microscopic understanding and control of an inhomogeneous ensemble.
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Figure 4.8: Cavity emission and reflection of the entire spectrum. Pulsed ex-
citation with 47 nW as a function of laser detuning, where the a, reflected pulse
amplitude and b, integrated emission counts after the pulse are extracted. The x-axis
denotes the laser detuning relative to A transition. The other sharp peaks at ∼ 4
and ∼ 7 GHz correspond to E and I transitions, respectively. The green shaded area
indicated the inhomogeneous ion distribution, clearly showing that the emission is
nonlinear and narrower than the ion distribution due to phase cancellation.

4.5 Theoretical modelling for dynamics
Master equation formalism
For simulating the dynamics of a driven inhomogeneous ensemble, we use the same
Hamiltonian in Eq. 3.2, and introduce various dissipative mechanisms through the
Lindblad operators:

Lcav = 𝜅(𝑎𝜌𝑡𝑎† −
1
2
𝑎†𝑎𝜌𝑡 −

1
2
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†𝑎) (4.1)
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𝑧
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𝑗
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𝑁∑︁
𝑗=1

(𝜎𝑧
𝑗
𝜌𝜎𝑧

𝑗
− 𝜌𝑡) (4.3)

where Lcav is the cavity dissipation, Lem is the free-space spontaneous emission,
Ldeph is the local dephasing, and 𝜌𝑡 is the total density operator consisting of cavity
field and the atoms.
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We operate in the fast cavity limit, where 𝜅 ≫ 𝑔, 𝛾𝑠, 𝛾𝑑 , and adiabatically eliminate
the cavity mode by setting ¤𝑎 = 0 (Appendix A). This allows us to replace the cavity
field operator 𝑎 with atomic operators as:

𝑎 =
−𝑖∑𝑁

𝑗=1 𝑔 𝑗𝜎
−
𝑗
− 𝜅

2
√
𝜇

𝑖Δ𝑐 + 𝜅
2

. (4.4)

We then rewrite 𝐻 and L𝑐𝑎𝑣 to 𝐻at and Lcol (collective dissipation) in terms of
atomic operators3:

𝐻at = − Δ𝑐

(𝜅/2)2 + Δ2
𝑐

𝑁∑︁
𝑗=1
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𝑔 𝑗 𝜅
√
𝜇
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(
𝜎+
𝑗

𝜅/2 + 𝑖Δ𝑐

+
𝜎−
𝑗

𝜅/2 − 𝑖Δ𝑐

)
− 𝜇Δ𝑐𝜅

2

4Δ2
𝑐 + 𝜅2

(4.5)

Lcol =
𝜅

(𝜅/2)2 + Δ2
𝑐

𝑁∑︁
𝑗 ,𝑘

𝑔 𝑗𝑔𝑘 (𝜎−
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2
𝜎+
𝑗 𝜎

−
𝑘 𝜌 − 1

2
𝜌𝜎+

𝑗 𝜎
−
𝑘 ). (4.6)

We can further simplify 𝐻at and Lcol by noting that 𝜅 is large and the cavity is tuned
to be on resonance with our atomic transition (Δ𝑐 → 0) as4:

𝐻at ≈
1
2

𝑁∑︁
𝑗=1

Δ 𝑗𝜎
𝑧
𝑗
−

𝑁∑︁
𝑗=1

𝑔 𝑗

√
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𝑗 ) (4.7)

Lcol ≈
4
𝜅

𝑁∑︁
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𝑔 𝑗𝑔𝑘 (𝜎−
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𝜎+
𝑗 𝜎

−
𝑘 𝜌 − 1

2
𝜌𝜎+

𝑗 𝜎
−
𝑘 ). (4.8)

The system master equation now reads:

¤𝜌 = −𝑖[𝐻at, 𝜌] + Lcol + Lem + Ldeph. (4.9)

Here Lem and Ldeph can be reduced to the many-body atomic density operator 𝜌,
obtained by taking the trace over the cavity field subspace.

However, since this requires atoms to be identical, we stick to the full simulation in
cases where we add inhomogeneities or want to look at correlations between ions.

3We note that Eq. 4.5 represents the correct form of the atomic Hamiltonian, while the same
expression shown in Eq. S51 in [88] contains some typos.

4We note that Eq. 4.7 represents the correct form of the atomic Hamiltonian under Δ → 0, while
the expressions shown in Eq. 10 and Eq. S53 in [88] both contain a typo, specifically a missing
square root.
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Master equation simulations of dynamics
For modelling the dynamics, we solve the master equation in Eq. 4.9 using QuTIP
[117]. Assuming ions with identical coupling strengths 𝑔, we have:

Lcol = Γ𝑐 (𝐽−𝜌𝐽+ −
1
2
𝐽+𝐽−𝜌 − 1

2
𝜌𝐽+𝐽−) (4.10)

where 𝐽± =
∑𝑁

𝑗=1 𝜎
±
𝑗

is the collective atomic coherence and Γ𝑐 = 4𝑔2/𝜅 is the
Purcell-enhanced decay rate of a single ion. Here, Γ𝑐 describes the cavity-mediated
collective dissipation rate among ions, defining an effective spectral bandwidth
within which the ions are considered to be indistinguishable. Hence, we simulate a
mesoscopic, homogeneous ensemble to aid in the qualitative understanding of our
system dynamics.

In simulating our system, we must first establish a connection between experimental
measurements and simulatable quantities. We note that the peak counts reflects the
cavity population at the end of the excitation pulse (section 4.5). In the fast-cavity
regime, and in the absence of an input field, the cavity population depends on the
atomic states as ⟨𝑎†𝑎⟩ = Γ𝑐⟨𝐽+𝐽−⟩, where ⟨𝐽+𝐽−⟩ can be written as:

⟨𝐽+𝐽−⟩ =
𝑁∑︁
𝑖=1

⟨𝜎+
𝑖 𝜎

−
𝑖 ⟩︸        ︷︷        ︸

Individual

+
𝑁∑︁
𝑖≠ 𝑗

⟨𝜎+
𝑖 𝜎

−
𝑗 ⟩︸       ︷︷       ︸

Correlation

. (4.11)

Here the first term is the sum of the emission of individual ions, and the second
term represents the correlation between different ions. We simulate different parts
in Eq. 4.11 with a toy model of 6 identical ions with experimental coupling and
dissipation rates (Fig. 4.4a). The trend of ⟨𝐽+𝐽−⟩ indeed qualitatively matches the
experimental observations for regimes I and II. The initial increase of ⟨𝐽+𝐽−⟩ is due
to the build-up of positive correlations, or superradiance. With higher power, the
correlations decrease, due to an increase of population in the subradiant subspace.
This is substantiated by the evolution of the population in the superradiant and
subradiant subspaces with power (Fig. 4.4b, c).

While the modelling of a small, homogeneous ensemble qualitatively captures the
experimental behavior in regimes I and II (Fig. 4.4a), regime III cannot be modelled
in this way. To this end, we include some frequency inhomogeneity to our model to
capture the fact that as we increase power, we increase our excitation bandwidth, and
thus excite more ions detuned from the laser. In order to incorporate more ions in our
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Figure 4.9: Comparison of simulated uncoupled and coupled ensembles. Mas-
ter equation simulation of the peak counts with power for a single homogeneous
ensemble of 5 ions (red), two coupled subensembles of 5 ions at 0 MHz and 2 ions
detuned by 5 MHz (blue), and two uncoupled subensembles of 5 ions at 0 MHz
and 2 ions detuned by 5 MHz (orange). Here uncoupled refers to the fact that the
peak emission is simulated separately for the subensembles of 5 and 2 ions, and
later added together. Note that the peak emission reflects the cavity population
⟨𝑎†𝑎⟩ (Methods). The qualitatively similar behavior of the uncoupled and coupled
subensemble cases motivates the simulation of an inhomogeneous ensemble via
incoherent addition of many uncoupled smaller subensembles in Fig. 4.5c.

simulation, we first exploit the permutational symmetry of identical particles using
Permutational Invariant Quantum Solver (PIQS, [118]) to decrease our computation
time, allowing upwards of 30 identical ions to be readily simulated.

Additionally to incorporate inhomogeneity, we would ideally like to approximate
sufficiently detuned ions as separate ensembles whose contribution to the cavity
population ⟨𝑎†𝑎⟩ can be incoherently summed. To this end we compare two cases
with 7 ions in Fig. 4.9. One case is simulating the full system of 7 ions, with 2 ions
detuned by 5 MHz. Another case is the incoherent addition of 5 ions on resonance
and 2 ions detuned by 5 MHz, where each system is solved separately and the peak
emission summed after. While there is an offset in the values of the peak emission
at certain powers, the qualitative behavior remains the same.

Combining the above two assumptions, we simulate an inhomogeneous ensemble
of ions following a Lorentzian distribution. We indeed qualitatively reproduce the
experimentally observed behavior in regime III, where the excitation of off-resonant
ions leads to the increase of peak emission at high powers, giving rise to the nonlinear
S-shaped profile.
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a b

Figure 4.10: Excitation pulse length dependence. a, Simulation of the cavity field
population ⟨𝑎†𝑎⟩ during a 50 𝜇s pulse applied to a system of 𝑁 = 6 identical ions,
for different powers. The power increases from red (0.6 a.u.) to blue (1 a.u.) to
yellow (1.5 a.u.) curves. Regardless of the power, here 50 𝜇s is long enough for
the cavity to enter steady state. b, Experimental data for pulse length dependence
of peak counts, with 10 nW of power, showing steady-state behavior at 50 𝜇s.

Excitation pulse length dependence
Here we study the non-steady state regime where the driving pulse length is short.
We first theoretically investigate the atomic states during the driving period. In
the case of 6 identical atoms, we plot the normalized cavity mean photon number
⟨𝑎†𝑎⟩ ∝ ⟨𝐽+𝐽−⟩ during the drive for three different powers (Fig. 4.10a).

For a low drive (Fig 4.10a, red), we see that ⟨𝑎†𝑎⟩ quickly and monotonically
increases to reach steady state. The steady-state population at this power consists
primarily of lower excitation states, as the system is unable to be excited into the
higher Dicke state manifolds. As we increase our drive, we see the appearance of
Rabi-like oscillations among the Dicke states (Fig. 4.10a, yellow) and then a decay
into steady state. The origin of this decay is two-fold: one is the dampening of the
oscillations. This is due to collective decays (which go as 𝑔2/𝜅) that drive the system
towards equal population within a single vertical Dicke ladder. In other words, even
in the absence of individual decay and dephasing, collective emission will spread the
population out evenly among the superradiant states, leading to damped oscillations.
Another decay type is the overall decay of the magnitude of ⟨𝑎†𝑎⟩. This is due to
the coupling to the subradiant subspace through individual decay and dephasing,
similar to the experimentally observed decrease in peak counts with power in regime
II.

We explore this experimentally by measuring the excitation pulse length dependence
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Figure 4.11: 𝑁-dependence of S-curve. a, Extended data of Fig. 4.6c, showing
more burning powers. For higher burning power, 𝑁res is larger and S-curve shifts
towards the higher probe power. b, Simulation of varying ion number for the S-
curve, showing a shift of the S-curve to higher powers. We find that, as expected,
the turning point between regimes I and II shifts towards larger power, as our Dicke
space expands and it requires more power to populate the subradiant subspace. As
a result, at smaller powers, larger number of ions will have smaller peak emission,
while the global maximum of peak emission increases for more ions.

of peak counts, shown in Fig. 4.10b. We find a qualitative match to the simulation of
the initial build up of photons as we populate the superradiant states, and then a decay
towards a steady state as we pump into the subradiant subspace. However, despite
increasing the pump power, we do not observe the oscillations seen in Fig. 4.10a for
high power (yellow). We attribute this to an averaging effect over our ensemble, as
the oscillation frequency depends on 𝑔 and ion detuning, both inhomogeneous in
our system.

𝑁-dependence of S-curve
Using PIQS, we simulate the dependence of the S-curve with varying system size
𝑁 (Fig. 4.11b). We find that as expected, the turning point between regimes I and II
shifts towards larger power, as our Dicke space expands and it requires more power
to populate the subradiant subspace. As a result, at smaller powers, larger number of
ions will have smaller peak emission, while the global maximum of peak emission
increases for more ions. This qualitatively matches what we see in the experiment
(Fig. 4.11a). We note that regime III is not reproduced in this simulation as we do
not consider the detuned ions.
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4.6 Methods
Considering the complexity of the experiment and simulation results, we will provide
more details on the experimental setup, decay data fitting method, and additional
analysis.

Experimental setup

Laser A

Laser C

Wavemeter

Locking

Locking

1
2

3
40mK

900mK

PM

Beamsplitter

Polarization
controller

Power meterAcousto-optic
modulator (AOM)

Variable
attenuator

Circulator

PM

RF SW TTL AWG

AOM Driving

RF SW RF Switch

Signal generator

Superconducting nanowire single
photon detector (SNSPD)
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Waveform
generator

On-chip device

Burn

Probe
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Figure 4.12: Experimental Setup. Laser A addresses the A transition. Optical
pulses are generated using AOMs, which are driven with gated RF sources. Part of it
can be split off for use as a local oscillator for heterodyne measurements. A second
laser, Laser C can be used to perform optical hole burning on the C transition. The
combined light is sent through a circulator, to the device, and the reflected light is
sent to a superconducting nanowire single photon detector for time-resolved photon
counting.

The optical setup for the experiments is shown in Fig. 4.12. Not all parts of the
setup are used in all of the measurements. The lasers addressing transitions A and
C are both Toptica DL Pro, tunable around 980 nm. Both lasers can be frequency
locked (not shown in Fig. 4.12) to a stable reference optical cavity using the Pound-
Drever-Hall method, and we measure a laser linewidth of approximately 600 Hz
over 10 𝜇s using the delayed homodyne method. The lasers can also be frequency-
swept by modulating the internal piezo-electric actuator. In this mode the laser is
free-running, where the linewidth is measured to be 50 kHz, with a slower drift in
the center frequency on the order of a few MHz over tens of seconds. A Thorlabs
S130 photodiode power sensor is used to measure excitation powers. The actual



71

powers that reach the cavity are calibrated by measuring round-trip losses from the
cavity. We measure approximately 10% of the light reaches the device, including the
angled coupler efficiency of ≈ 25%. However, we note that due to slight differences
between measurements of the laser polarization and device coupling, there is likely
slight discrepancies in all calibrated powers.

Acousto-optic modulators (AOMs) are used to gate optical pulses for pulsed mea-
surements. Two AOMs are used in series for the probe laser giving an extinction of
≈ 100 dB. The light is sent to the device via an optical circulator (Precision Micro-
Optics), and focused onto the angled coupler with an aspheric lens doublet, which
is mounted on a 3-axis piezo nano-positioner stack (Attocube) for fine alignment.
The device itself is mounted on the mixing chamber plate of a Bluefors dilution
refrigerator with a base temperature of around 40 mK with no external magnetic
field applied. The reflected signal from the circulator is sent to a superconducting
nanowire single photon detector (SNSPD) held at 900 mK, and photon counts are
time-tagged with a Swabian Time Tagger 20. A gating AOM is used before the
SNSPD to selectively attenuate the intense reflected input pulses.

The coherence measurements of the cavity emission were taken by splitting off
part of the input laser as a local oscillator to beat with the emission [119]. The
beat signal was subsequently detected by the SNSPD and Fourier transformed to
obtain the power spectra. All of the RF drives used to drive the AOMs were phase
synchronized. To maximize the signal-to-noise ratio, it is desirable to integrate for a
long time. However, long integration time requires phase stability of all of the parts
of the experiment, particularly the fibers. Due to this, we found that an integration
time of 1 second provides sufficient signal-to-noise ratio while maintaining the phase
stability. To further improve the signal-to-noise ratio, we repeatedly integrated the
signal for 1 second and averaged the power spectra. An example of the power spectra
is shown in Fig. 4.6d inset, where the beating frequency is around 408 MHz, given
our chosen frequency difference between our probe and local oscillator.

Decay data fits method
To characterize the power-dependent, non-single exponential decay profiles in
Fig. 4.2, we employ the following phenomenological stretched bi-exponential fit

𝑦(𝑡) = 𝐴1 exp[−(𝑡/𝜏1)𝑥1] + 𝐴2 exp[−(𝑡/𝜏2)𝑥2] + 𝑏 (4.12)

with a fast stretched exponential decay with time constant 𝜏1, amplitude 𝐴1, and
stretch factor 𝑥1 and a slower stretched exponential decay with time constant 𝜏2,
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amplitude 𝐴2, stretch factor 𝑥2, and background 𝑏. The fit parameters (Fig. 4.2d)
reflect the distinct decay behaviors in each of the three regimes consistent with the
observations in Figs. 4.2b and 4.2c. In particular, we see a clear transition in the
fitted decay time from superradiance to subradiance at around 20 nW of power, as
there is an emergence of slow decay (𝜏2) and increase of 𝜏1.

Here we provide justification for the above fitting function (Eq. 4.12). To find
the best fit, one could start with a naive guess of a bi-exponential, to capture the
superradiant and subradiant decays. A representative curve with a bi-exponential fit
is shown in Fig. 4.13a. We see that the fit fails due to the strong multi-exponential
nature of the subradiant decay. We then try a single stretched exponential fit in
Fig. 4.13b. However, we still see that the fit fails at the crux between the slow and
fast decay, shown in the inset.

To capture both the multi-exponential fast and slow decay, we now attempt a fast
stretched exponential + slow stretched exponential (Fig. 4.13c). In particular, the fit
function is 𝐴1 exp[−(𝑡/𝜏1)𝑥1] + 𝐴2 exp[−(𝑡/𝜏2)𝑥2] + 𝑏, where there is a fast decay
with subscript 1 and slower decay with subscript 2. We find that this fits the data
well in all power regimes, and most importantly does so with fit parameters that
match our qualitative expectations from the picture provided in Fig. 3f in the main
text. Additionally, while there are 7 fit parameters, we take several steps to minimize
any overfitting of the data. First, the background 𝑏 is set to be the count level at
a time much longer than the longest observed lifetime, essentially the dark counts
and any leakage through our setup. Second, the existence of two decays is only
relevant in regime II where there is a clear distinction between a fast and slow decay.
In both regime I (III), the fast (slow) decay component is dominant over the other,
effectively resulting in just a single stretched exponential.

We note that we employ two different data taking methodologies to capture both the
fast decay (which requires fine timing resolution at the nanosecond level) and the
slow decay (which requires data out to 100s of microseconds after the excitation).
To first capture the fast decay, we zoom into the first few microseconds of the decay
with 1 ns resolution. This allows us to fit the decay to a stretched exponential in
regimes I and II. At the same time, a separate data set with a timing resolution of
128 ns is taken such that we can probe out to longer timescales. We use this data set
to fit the slow decay in blue. However in regime III, as shown in Fig. 3b, the decay
is smoother without a clear distinction between fast and slow decay. Because of this
we only use the 128 ns timing resolution dataset, and force 𝑥1 = 1 as here the fast
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a b c

Figure 4.13: Fit function justification. Fit of an emission curve to a a, Bi-
exponential, b, Stretched exponential, and c, Addition of two stretched exponentials.
The blue and orange lines are from experiments and fits, respectively. Insets show
early-time comparisons between the data and the fits.

decay simply samples the fastest decay in the smooth, multi-exponential profile.

Dicke states
The Dicke states can be described in the |𝐽, 𝑀⟩ basis, with 𝐽 = [𝑁/2, 𝑁/2 − 1,
...] (𝐽 ≥ 0) and 𝑀 = [−𝐽, −𝐽 + 1, ..., 𝐽], where 𝑀 is is the projection quantum
number associated with the number of atomic excitations (Fig. 4.1b). The states
with maximum 𝐽 are symmetric under permutation of atoms, forming the so-called
superradiant ladder. Decays between states with the same 𝐽 (Fig. 4.3a) are all
collectively enhanced beyond Γ𝑐, and in particular, we call such decays within the
superradiant ladder superradiance. Meanwhile, any process that does not conserve
𝐽 is forbidden by symmetry to occur collectively, and must occur via individual
dissipation such as spontaneous emission (Fig. 4.3b, d, e) or dephasing (Fig. 4.3c,
f) [116]. Since the system starts in the ground state and the coherent laser drives
the system up the superradiant ladder, the states with 𝐽 < 𝑁/2, which form the
subradiant subspace, can only be populated through decoherence. In particular, the
states |𝐽,−𝐽⟩ in the subradiant subspace cannot collectively decay, and thus are the
long-lived dark subradiant states.

Here we also clarify our reasoning for the nomenclature used for the Dicke states.
The superradiant ladder is comprised of the states with 𝐽 = 𝑁/2, and decays between
them are all superradiant. Technically, Dicke defined the 𝐽 = 𝑁/2, 𝑀 = 0 state to
be the superradiant state [99], however for our purposes we consider all of the
enhanced, coherent decays within the ladder to be superradiant as they are enhanced
beyond the single-atom decay. Meanwhile, the subradiant subspace is defined as the
space formed by the rest of the states, as such states cannot be driven collectively
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with a coherent drive. We note that decays within the subradiant subspace are not
always slower than Γ𝑐. In fact, all of the decays within the same 𝐽 are faster than Γ𝑐

even in the subradiant subspace, as shown in Fig. 4.3a for 𝐽 ≤ 2.

Strictly speaking, subradiance is defined as inhibition of emission due to the destruc-
tive interference among indistinguishable emitters. By this definition, subradiant
decay is forbidden and cannot be observed. However, there are some processes that
can break subradiance in order for us to observe that there was suppression of decay.
Hence, the experimentally observed slow decay is due to dephasing and individual
spontaneous emission processes from the dark subradiant states (𝐽 < 𝑁/2, 𝑀 = −𝐽).
For simplicity, in the main text we refer to this decay as subradiant decay or subra-
diance, as they provide evidence of subradiance.

Comparison to the saturation effect
An increase and subsequent decrease in emission can also occur due to the saturation
of the atomic coherence (below, saturation effect), which occurs even for a single
atom and is unrelated to the Dicke model. Here, we will show that we do not see
the saturation effect, and explain the difference and the connection to the saturation
effect. First, let us consider the single ion case, where we have already derived the
analytical solution in Eq. 3.12 and Eq. 3.13.

We can see that the intensity of the coherence (|𝜎− |2) first increases and then
decreases with power where power 𝑃 ∝ 𝑔2𝜇. However, what is measured from
cavity emission is

⟨𝑎+𝑎−⟩ = 4𝑔2⟨𝜎+𝜎−⟩
𝜅2 =

4𝑔2

𝜅2
(⟨𝜎𝑧⟩ + 1)

2
. (4.13)

Here we have applied Eq. 3.11 and the commutation rule. Then, by plotting both
|𝜎− |2 and | 𝜎𝑧+1

2 |, we can see that while |𝜎− |2 has the non-monotonic trend, our
measure | 𝜎𝑧+1

2 | does not (Fig. 4.14). In other words, since we are not directly
measuring the coherence by detecting the cavity emission, our S-curve cannot be
explained by saturation of coherence.

Once we move to the multiple ions case, the measure becomes ⟨𝑎+𝑎−⟩ =
4𝑔2𝐽+𝐽−

𝜅2 ,
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Figure 4.14: Comparison to the saturation effect. Comparison between excited
state population, | ⟨𝜎𝑧⟩+1

2 |, and the intensity of coherence, |⟨𝜎−⟩|2, of a single atom
as a function of excitation power.
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as we analyzed in Eq. 4.11 in section 4.5. The first term is monotonically increasing
relative to driving power, so the existence of the second term is necessary to observe
S-curve shape. This second term is correlation between distinct ions, and will be
absent for the single ion case, hence distinct from the saturation effects.

Estimation of the number of ions participating in superradiance
From Fig. 4.2d, we see that 𝑥 approaches 1 as the decay becomes single exponential
for very low powers. In this case, we expect to be primarily exciting the single-
excitation manifold, leading to a decay rate of 𝑁Γ𝑐, where 𝑁 is the number of atoms
in our Dicke space, and Γ𝑐 is the Purcell enhanced decay rate of a single atom.
While 𝑁 (and thus 𝜏) changes continuously in this regime due to power broadening,
we still can estimate an effective Dicke space.
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Figure 4.15: Different methods of calculating the average of 𝑔. Master equation
simulation of the decay of 𝑁 = 6 ions with inhomogeneous 𝑔 (red) with low
excitation. The three dashed lines (pink, black, green) are single exponential decays
with decay rate 4𝑁 ⟨𝑔⟩2

𝜅
, 4𝑁 ⟨𝑔2⟩

𝜅
, 4𝑁 ⟨𝑔3⟩2/3

𝜅
, respectively. The results show that, as

expected, the superradiant decay from the single excitation manifold is governed by
the average of 𝑔2 for the case of inhomogeneous 𝑔.

In order to estimate 𝑁 , we first show that the superradiant decay rate is 𝑁 times the
average Purcell decay rate, given that our system has inhomogeneous 𝑔. To this end,
we simulate the time dynamics of 6 ions with varying 𝑔, excited with low power
(Fig. 4.15). We find that as expected, the superradiant decay time from the lowest
manifold is given by 4𝑁 ⟨𝑔2⟩

𝜅
, indicated by the overlap of the simulation and analytical

time decay curves. From Section 1, we estimate the average Purcell enhancement
by using

√︁
⟨𝑔2⟩ = 2𝜋 × 10.6 MHz, giving an average Purcell decay time of 15.6 𝜇s.

Meanwhile, we measured a decay time of 270 ns in the low power regime with 𝑥 ≈ 1
(Fig. 3d), from which we can estimate the effective number of ions participating in
superradiance at this particular power to be ∼ 50.

Cooperativity required to observe superradiance
For a general symmetric distribution of ions, 𝑖𝑊 (𝜔=𝜔0)

𝑁𝜌(𝜔=𝜔0) = 𝜋𝑔2 [40] where 𝜌(𝜔 = 𝜔0)
is the ion probability distribution at 𝜔 = 𝜔0, from which we obtain 𝐶 =

|𝑊 (𝜔=𝜔0) |
𝜅/2 =

2𝜋𝑔2𝑁𝜌(𝜔=𝜔0)
𝜅

. This ensemble cooperativity represents the ratio of the absorption rate
to the cavity decay rate, which indicates the number of ions a photon can interact
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with before it leaks out of the cavity. The condition to observe superradiance
in an inhomogeneous ensemble is roughly given by 𝜏𝑅 < 𝑇∗

2 [31], where 𝜏𝑅 is
the slowest superradiant decay time in the absence of inhomogeneity, and 𝑇∗

2 is
the inhomogeneous dephasing time. Assuming there are 𝑁eff ions participating
in superradiance, spanning a frequency Δeff, this leads to the requirement that the
superradiance decay rate 𝑁eff

4𝑔2

𝜅
must be larger than the effective bandwidth Δeff

of the participating ions. For the ions around 𝜔0, we know 𝑁eff = Δeff𝑁𝜌(𝜔 =

𝜔0). Using 𝑁eff
4𝑔2

𝜅
> Δeff, we obtain 4𝑔2𝑁𝜌(𝜔=𝜔0)

𝜅
> 1, giving an estimate of the

cooperativity required to observe superradiance as 𝐶 > 𝜋
2 .

4.7 Outlook
The observed optical superradiance and subradiance represent a key step towards
enabling narrow linewidth superradiant lasers [112] and long-lived subradiant mem-
ories [113, 114] in solid-state, while the control over the population of the Dicke
space opens the door for dissipation-based engineering of state preparation [120,
121]. In addition, operating with a detuned cavity may allow the probing of coherent
photon-mediated interaction between the ions (Eq. 4.5 in section 4.5), opening new
possibilities for studying coherent spin exchange effects and quantum simulations
[27, 122] in a solid-state platform. Finally, the improved understanding in this
regime of collective and many-body cQED phenomena informs the development of
high-cooperativity solid-state quantum memories and transducers [20, 123].
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C h a p t e r 5

MANY-BODY SPIN DYNAMICS

In this chapter, we will transition from the optical regime to the spin regime, focusing
on direct spin-spin interaction.

5.1 Introduction
A strongly interacting ensemble of spins serves as a potential platform for exploring
many-body physics. The addition of coherent manipulation and control enables the
investigation of fundamental scientific concepts, such as the mechanisms of quantum
thermalization [124] and the emergence of out-of-equilibrium phases of matter [3].
This capability further allows quantum engineering for the development of a system
robust against decoherence and noise.

Among the plethora of systems exhibiting many-body physics, solid-state spin en-
sembles have emerged as a rich system to study. This is due to their inherent
capability to scale to a large number of emitters, and motivated by their poten-
tial usefulness as quantum devices. In particular, researches in vacancy centers in
diamond have demonstrated significant advancements in performing quantum sim-
ulations, quantum sensing, and realizing exotic phases of matter such as discrete
time crystals (DTC) [4, 125].

Rare-earth ions (REIs) doped in solids can inject new vitality into studies of many-
body physics due to their highly coherent optical and spin transitions at cryogenic
temperatures, as well as their potential for long-range interactions [126]. Because
of their remarkable properties in coherence, REIs have been investigated to develop
quantum technologies such as quantum transducers, memories and sensors [42, 93,
127]. Although there have been numerous fundamental studies on REIs, they typi-
cally characterize the decoherence process via macroscopic angles and semiclassical
methods with the sole intention of extending coherence times for engineering quan-
tum applications [128–130]. However, a more microscopic and quantum approach
is necessary for a deeper understanding of decoherence mechanisms, not only to
provide insight for improving the performance of quantum technologies but also to
open the door for the study of many-body physics.
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Figure 5.1: Many-body spin systems. a, An ensemble of 3D spins is coupled
to an optical cavity for initialization and fast readout and to a coplanar waveguide
for microwave drive 𝜔𝑚. Zoom in: two spins (𝑖 and 𝑗) interact with a strength
of 𝐽𝑖 𝑗 . b, The full energy levels of each spin include optical ground states and
excited states, where the ground states consist of qubit manifolds (|1⟩, |0⟩) and the
double degenerate state |Aux⟩. c, Upper: The ensemble distribution of spin detuning
relative to the microwave drive 𝜔 − 𝜔𝑚 exhibits inhomogeneity (disorder) with a
linewidth of𝑊 . Lower: For each spin, the qubit manifolds feature a clock transition
that is insensitive to the magnetic field.

5.2 System overview
We focus on an ensemble of 171Yb3+ ions doped in yttrium orthovanadate (YVO4),
where 171Yb3+ replaces yttrium sites in a 3D lattice at a concentration of 86 ppm
(Fig. 5.1a). The 980 nm optical transitions of Yb ions couple to the optical cavity,
enabling emergent phenomena as discussed in chapter 3 and chapter 4, and also
facilitating initialization and fast readout for the spin systems. The microwave drive
is transmitted through coplanar waveguides for both initialization within excited
states manifolds at around 3.37 GHz and spin control over qubit manifolds (|1⟩ ↔
|0⟩) at around 675 MHz (Fig. 5.1b).

Focusing on the qubit manifolds |1⟩ , |0⟩ among the optical ground states, each spin
exhibits a clock transition that is insensitive to the magnetic field to the first order
(or ZEFOZ transition, zero first-order Zeeman), resulting in a narrow spin inhomo-
geneity (on-site disorder) 𝑊 within the ensemble (see fig. 5.1c). Among the spins,
the long-range magnetic dipole-dipole interaction leads to a certain distribution of
interaction strengths 𝐽𝑖 𝑗 . The ratio between interaction strength and disorder is
essential, as their interplay results in rich spin dynamics.
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5.3 Spin exchange interaction and on-site disorder
Firstly, let us start with the magnetic dipole-dipole interaction and derive an effective
spin-spin interaction within the qubit manifolds.

The qubit states (|1⟩,|0⟩) can be written as [19]:

|0⟩ = 1
√

2
( |↑⇓⟩ − |↓⇑⟩) (5.1)

|1⟩ = 1
√

2
( |↑⇓⟩ + |↓⇑⟩) (5.2)

where {|↑⟩ , |↓⟩} are effective electron spins and {|⇑⟩ , |⇓⟩} are nuclear spins.

The magnetic dipole-dipole interaction Hamiltonian between spins 𝑖 and 𝑗 is as
follows:

𝐻𝑑𝑑 = − 𝜇0

4𝜋𝑟3
𝑖 𝑗

(3( ®𝜇𝑖 · 𝑟𝑖 𝑗 ) ( ®𝜇 𝑗 · 𝑟𝑖 𝑗 ) − ®𝜇𝑖 · ®𝜇 𝑗 ) (5.3)

where ®𝑟𝑖 𝑗 = 𝑟𝑖 𝑗𝑟𝑖 𝑗 is the vector from ion 𝑖 to ion 𝑗 . The magnetic dipole moment
operator for our system is

®𝜇 𝑗 = 𝜇𝐵g · S̃ = 𝜇𝐵

©­­«
𝑔⊥

𝑔⊥

𝑔//

ª®®¬
©­­«
𝑆
𝑗
𝑥

𝑆
𝑗
𝑦

𝑆
𝑗
𝑧

ª®®¬ = 𝜇𝐵

©­­«
𝑔⊥𝑆

𝑗
𝑥

𝑔⊥𝑆
𝑗
𝑦
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𝑗
𝑧

ª®®¬ . (5.4)

Here, the S̃ = {𝑆𝑥 , 𝑆𝑦, 𝑆𝑧} are defined in the effective electron spin basis {|↑⟩ , |↓⟩},
which is different than the {|1⟩ , |0⟩} basis. We can see the zero sensitivity to
the magnetic field along the z-direction from the fact that ⟨0| 𝑆𝑧 |0⟩ = ⟨1| 𝑆𝑧 |1⟩ =

⟨0| 𝑆𝑧𝑛 |0⟩ = ⟨1| 𝑆𝑧𝑛 |1⟩ = 0 where 𝑆𝑧𝑛 is the nuclear spin operator.

Then we can calculate the magnetic dipole moment within the qubit manifolds
{|1⟩ , |0⟩}.

⟨0| 𝑗 ®𝜇 𝑗 |1⟩ 𝑗 = 𝜇𝐵

©­­«
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𝑔// ⟨0| 𝑗 𝑆
𝑗
𝑧 |1⟩ 𝑗

ª®®¬ =
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𝜇𝐵

©­­«
0
0
𝑔//

ª®®¬
⟨0| 𝑗 ( ®𝜇 𝑗 · 𝑟𝑖 𝑗 ) |1⟩ 𝑗 =

1
2
𝜇𝐵𝑔//𝑟𝑖 𝑗 ,𝑧

⟨0| 𝑗 ®𝜇 𝑗 |0⟩ 𝑗 = 0.
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𝐻𝑑𝑑 is a 4x4 matrix, so there are 16 elements. Among these, only 4 terms are
non-zero, allowing 𝐻𝑑𝑑 to be expressed as:

𝐻𝑑𝑑 = −
𝜇0𝜇

2
𝐵
𝑔2
//

16𝜋𝑟3
𝑖 𝑗

(3𝑟2
𝑖 𝑗 ,𝑧 − 1) (𝑆𝑖+𝑆 𝑗

− + 𝑆𝑖−𝑆
𝑗
+ + 𝑆𝑖+𝑆

𝑗
+ + 𝑆𝑖−𝑆

𝑗
−). (5.5)

Here, 𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦, and we use 𝑆𝑥,𝑦,𝑧 to denote spin operators in the {|0⟩ , |1⟩}
basis. We can see that we get flip-flop, flop-flip, flip-flip, and flop-flop terms. Using
secular approximation, the last two terms should be neglected. Considering the fact
that 𝑆𝑖+𝑆 𝑗

− + 𝑆𝑖−𝑆
𝑗
+ = 2(𝑆𝑖𝑥𝑆

𝑗
𝑥 + 𝑆𝑖𝑦𝑆

𝑗
𝑦), we have:

𝐻𝑑𝑑 = −
𝜇0𝜇

2
𝐵
𝑔2
//

8𝜋𝑟3
𝑖 𝑗

(3𝑟2
𝑖 𝑗 ,𝑧 − 1) (𝑆𝑖𝑥𝑆

𝑗
𝑥 + 𝑆𝑖𝑦𝑆

𝑗
𝑦). (5.6)
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Figure 5.2: Average interaction strength 𝐽 and disorder 𝑊 for various solid-
state electronic spin systems. a, The positions of our work and other electronic
spin systems on the 𝐽-𝑊 map. 1: Non-ZEFOZ REIs [131, 132]; 2: Defects in hBN
[133]; 3: Pink diamond [133]; 4: Black diamond [134]; 5: P1 centers [135]. b, The
bar chart shows the ratio between average interaction strength 𝐽 and disorder 𝑊 for
different systems in a.

As a result, the systems can be described by a full Hamiltonian

𝐻 =

𝑁∑︁
𝑖

Δ𝑖𝑆
𝑖
𝑧 +

𝑁∑︁
𝑖, 𝑗

𝐽𝑖 𝑗 (𝑆𝑖𝑥𝑆
𝑗
𝑥 + 𝑆𝑖𝑦𝑆

𝑗
𝑦) (5.7)

where Δ𝑖 = 𝜔𝑖 − 𝜔𝑚 is the ion spin detuning relative to the microwave drive

frequency, 𝐽𝑖 𝑗 = −
𝜇0𝜇

2
𝐵
𝑔2
//

8𝜋𝑟3
𝑖 𝑗

(3𝑟2
𝑖 𝑗 ,𝑧

− 1) is the interaction strength between a pair of
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spins, and generates a distribution based on the position of the spins in the lattice.
The combination of clock transitions and long-range spin exchange interaction thus
provides us with a comparable magnitude of on-site disorder and interaction strength,
resulting in a high 𝐽/𝑊 ratio among different electronic spin systems (Fig. 5.2).

5.4 Controllable many-body system: tunability of 𝐽

A
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Figure 5.3: Initialization for spin systems. a, The energy levels of Yb ions. The
optical 𝐴 and 𝐸 transitions, 𝑓𝑔 and 𝑓𝑒, are labeled for use in the pulse sequences. b,
Pulse sequences for the experiment include three parts: initialization, spin operation,
and readout. Initialization involves optical driving on the 𝐹 transition to move
population from |Aux⟩ to |1⟩, followed by a combination of driving on the 𝐴

transition and a 𝜋 pulse on 𝑓𝑒 to transfer population from |0⟩ to |1⟩. Spin operation
represents different spin control on 𝑓𝑔. Readout is a short optical pulse on 𝐴 and we
collect fast superradiance afterwards. c, Population changes within ground states
during initialization part of the pulse sequences. By controlling the amplitude
of burning on the 𝐹 transition, the amount of population transferred from |Aux⟩
to |1⟩ varies. A larger amplitude results in more population within |1⟩ after the
initialization within the qubit manifolds, leading to a larger interaction strength 𝐽.
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In order to explore system behaviors, having tunability over certain parameters (such
as 𝐽, 𝑊) broadens the study of spin dynamics by providing more data points. This
deepens understanding and increases the versatility of a many-body platform for
potential applications. Thanks to the multiple energy levels provided by rare-earth
ion systems, we have designed some initialization sequences to shift population
among different ground states (Fig. 5.3b).

Specifically, |1⟩, |0⟩, and |Aux⟩ are initially populated with a certain number of ions
following Boltzmann distribution. Firstly, we pump the optical 𝐹 transition with
a chirping frequency across the entire inhomogeneous line to transfer population
from |Aux⟩ to |0⟩. After repeating this process 10 times, we then apply a similar
chirped pump on the 𝐴 transition, followed by a microwave 𝜋 pulse on the excited
spin transition 𝑓𝑒. This combination is also repeated 10 times, and thus, we obtain
polarized spins within the qubit manifolds (Fig. 5.3c). The amplitude of burning on
the 𝐹 transition controls the amount of population we transfer from the |Aux⟩ state,
thus determining the final population in the |1⟩ state. As we recall the expression
for the interaction strength between a pair of spins 𝐽𝑖 𝑗 ∝ 1

𝑟
𝑖 𝑗3

, more population
within the qubit manifolds indicates a smaller distance 𝑟𝑖 𝑗 , consequently resulting in
a larger interaction strength 𝐽𝑖 𝑗 . Since 𝐽𝑖 𝑗 has a distribution, we define the average
interaction strength 𝐽 using the average nearest neighbor distance 𝑟 and 𝑟2

𝑧 = 1. We
find that

𝐽 =
𝜇0𝜇

2
𝐵
𝑔2
//

4𝜋𝑟3 =
2𝜋 × 467.4

𝑟3 MHz (5.8)

where 𝑟 is in the unit of nm and can be calculated using the lattice structure and
doping concentration. Here, 𝑔// = 6 for our system, while 𝑔 = 2 for NV systems,
which leads to 𝐽 · 𝑟3 = 2𝜋 × 52 MHz · nm3 as a comparison [135].

The combination of a strongly interacting spin system along with robust controls,
including coherent microwave drive, fast readout, and system parameter control
(interaction strength 𝐽), showcases our system as a platform for studying many-body
spin dynamics under Hamiltonian engineering, leading to various applications,
including exotic phases of matter such as discrete time crystals (DTC), quantum
sensing, and quantum simulation (Fig. 5.4).

5.5 Experimental characterization of many-body spin interaction using spin
echo and Ramsey sequences

We characterize the spin interaction in our system using spin echo and Ramsey
measurements. To begin, we apply the spin echo sequence during the spin operation
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Figure 5.4: Many-body platform. Our platform consists of a strongly interacting
ensemble (green spins) and robust controls (triangular frame), which include co-
herent microwave drive, fast optical readout, and the ability to change the effective
density. This enables us to study many-body dynamics under Hamiltonian engi-
neering and has applications such as DTC (chapter 6), quantum sensing, quantum
simulation, and so on.

(Fig. 5.3b) to decouple the disorder to the zeroth order and focus solely on the
interaction (Fig. 5.5a). For a given free evolution time 𝜏, the phase 𝜃 of the last 𝜋/2
pulse is swept from 0 to 2𝜋. We collect the fast photoluminescence (superradiance)
after a readout pulse on the 𝐴 transition to measure the population projected onto
the |1⟩ state as a function of 𝜃. A cosine dependence of population counts on 𝜃

is then obtained as 𝑃 = 𝑃amp cos 𝜃 + 𝑃offset, and the coherence is extracted using
𝐶 = 𝑃amp/𝑃offset. The coherence at 𝜏 = 0 is related to the polarization rate 𝜂pol

as 𝐶 (𝜏 = 0) = 2𝜂pol − 1. From this, we extract our polarization rate within qubit
manifolds to be around 75%. Afterward, we divide the coherence by 𝐶 (𝜏 = 0) to
obtain the normalized coherence for different 𝜏 as a decoherence profile (Fig. 5.5a).

Focusing on the first 1us, we observe that the decay rate significantly exceeds the
rate observed in the single-ion case, due to the interaction-dominated dynamics. As
we increase J, the decay becomes even faster. By matching the simulation to the
experiment, we extract the effective concentration of ions within qubit manifolds as
46 ppm for the large 𝐽 case and 25 ppm for the small 𝐽 case, with corresponding
average interaction strengths of 2𝜋 × 0.34 MHz and 2𝜋 × 0.19 MHz, respectively
(section 5.6).

Next, we perform the Ramsey measurement to account for the influence of disorder
at an early time scale (Fig. 5.5b). The decoherence profile is obtained using the
same method as in the echo measurement. Within the same time window of 1𝜇𝑠,
the coherence decays faster under the Ramsey sequence compared to the echo
sequence for both small and large 𝐽 cases (Fig. 5.5). By aligning the simulation
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Figure 5.5: Spin echo and Ramsey measurement. a, Spin echo measurement
decouples disorder to the zeroth order and isolates the interaction. The coherence
after the free evolution time 𝜏 under the spin echo sequence is measured for the large
𝐽 (blue) and small 𝐽 (orange) cases and then normalized relative to the maximum
coherence for each trace. The data are represented by filled circles with error bars,
and the solid line represents the simulation (section 5.6). The single ion case is
plotted in gray as a reference. Inset: An example of the collected readout counts
for the swept phase 𝜃 of the last 𝜋/2 pulse. b, Ramsey measurements include the
influence of disorder and the interaction. The data is taken and normalized using a
similar method to that used in a.

with experimental data, we extract a common disorder for both the small and large
𝐽 cases as 𝑊 = 2𝜋 × 0.65 MHz (section 5.6). We do not expect tuning J to change
W; thus, the common W supports our use of this method for extracting parameters.

In our coherence measurements (for both spin echo and Ramsey sequences), the first
𝜋/2 pulse along the 𝑥 axis prepares all the spins to align along the 𝑦̂ direction1, such
that the decoherence profile essentially describes the depolarization process along

1We use the convention of the rotation operator 𝑈 = 𝑒−𝑖
𝜃
2 𝑛̂· ®𝜎 here, which indicates counter-

clockwise rotation relative to the laser unit vector 𝑛̂ by an angle 𝜃.
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the 𝑦̂ axis. In the Ramsey measurement, the system evolves under both interaction
and disorder (Eq. (5.7)), Δ𝑖𝑆

𝑖
𝑧 acts as a pinning field along the 𝑧 axis with strength

Δ𝑖, and 𝐽𝑖 𝑗𝑆
𝑖
𝑥𝑆

𝑗
𝑥 acts as a pinning field along the 𝑥 axis with a strength of 𝐽𝑖 𝑗 . Due

to the finite width of the distribution of Δ𝑖 and 𝐽𝑖 𝑗 , the total polarization along the 𝑦̂

axis starts to decay over time. In contrast, a spin echo sequence adds an additional
𝜋 pulse in the middle of the system evolution, where the pinning field introduced
by Δ𝑖𝑆

𝑖
𝑧 cancels out both before and after the 𝜋 pulse, while the influence of 𝐽𝑖 𝑗𝑆𝑖𝑥𝑆

𝑗
𝑥

remains.

Having established the dominant role of dipolar interactions in the short time scales
(< 1𝜇𝑠) of the spin echo sequence, we include the longer time scales (> 1𝜇𝑠) in
our discussion, where the coherence profile now exhibits two distinct decay rates
(Fig. 5.6). In the next two sections, we will provide a detailed analysis of how the
second, slower decay is attributed to the system’s disorder. Put simply, while the
detuning Δ𝑖𝑆

𝑖
𝑧 is canceled by the middle 𝜋 pulse in the echo sequence, the relative

detuning between a pair of spins, Δ𝑖 −Δ 𝑗 , determines how resonant they are, thereby
affecting the way that interaction 𝐽𝑖 𝑗𝑆

𝑖
𝑥𝑆

𝑗
𝑥 depolarizes the spins.

N
or

m
al

iz
ed

 C
oh

er
en

ce Small J

Large J

0 5 10 15 20
Evolution time  ( s)

10-1

100

Figure 5.6: Spin echo measurement extending to longer time scales. The data
are represented by filled circles with error bars, and the solid line represents the
simulation (section 5.6). A log scale is used to show two distinct rates.

5.6 Microscopic numerical simulation
In this section, we present the method of microscopic numerical simulations for
many-body dynamics. This simulation was conducted by Riku Fukumori.
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We start with the realistic lattice structure of YVO4 and position a number, 𝑁 ,
of Yb ions in the Y sites based on the doping concentration. We then randomly
assign each ion a frequency detuning Δ𝑖 based on the Lorentzian distribution with
a certain linewidth, 𝑊 , and calculate the interaction strength 𝐽𝑖 𝑗 between each pair
according to their relative positions using Eq. 5.6. For a given free evolution time,
𝜏, a complete solution of spin states is obtained for a system under Hamiltonian
Eq. (5.7) and a certain pulse sequence (such as spin echo or Ramsey). Note that
we only read out the final state of the center spin to avoid finite size effects. The
above process is then repeated with many Monte-Carlo runs to obtain the ensemble
dynamics. A convergence test has been conducted to investigate the dependence of
the decay profile on the simulated Yb number 𝑁 in order to determine a reasonable
value for 𝑁 . We find that 8 ions are sufficient when only reading out the central
spin, as adding more ions only includes those far away, which do not significantly
contribute to the dynamics (Fig. 5.7a).

From the simulation, we deduce that the decay for a short time scale depends
solely on the interaction strength by comparing the cases with and without disorder
(Fig. 5.7b). Although the doping concentration of Yb in this sample has been
measured to be approximately 86 ppm [93], the ion concentration within the qubit
manifolds remains unknown. This concentration largely depends on the temperature
of the system and can be tuned via initialization sequences. By matching the
decay rate at small time 𝜏 < 1𝜇𝑠 of simulation to that of the experiment, we can
extract the ion concentration within the qubit manifolds for different cases, ranging
from 25 ppm for the small 𝐽 case to 46 ppm for the large 𝐽 case (Fig. 5.5a).
Subsequently, introducing the common disorder variable 𝑊 = 2𝜋 × 0.65 MHz into
the simulation enables us to align the simulation results with the experimental data in
the Ramsey sequence across all cases (Fig. 5.5b). Moreover, this same disorder value
𝑊 successfully matches the decay rates at large time 𝜏 in the spin echo measurement
as well (Fig. 5.6), which indicates that decay at a longer time scale can be predicted
by a closed Hamiltonian without excess dephasing.

We also find that the initial polarization rate 𝜂pol only scales the overall decoherence
profile by a factor of 2𝜂pol − 1 without influencing the decay rate (Fig. 5.7b,c).
Therefore, for brevity in state representations, we set 𝜂pol = 1 in the following
analysis.
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Figure 5.7: Many-body simulation. Simulation of decoherence profile for a, differ-
ent numbers of simulated spins 𝑁; b, different disorder 𝑊 ; c, different polarization
rate 𝜂𝑝𝑜𝑝. d, Normalized coherence for c.

5.7 Theoretical analysis: from a pair of spins to many spins with frequency
disorder

In this section, we will use some toy models to deepen the understanding of how
interactions and disorder influence the dynamics in the echo measurement.

A pair of spins with interaction strength 𝐽 and detuning Δ

For a pair of spins with interaction strength 𝐽 and detuning Δ, we can derive the total
polarization along 𝑦̂ at time 𝜏 under the echo sequence as follows (section B.1).

𝑃(𝜏) = Δ2

Δ2 + 𝐽2 + 𝐽2

Δ2 + 𝐽2 cos(
√
Δ2 + 𝐽2

2
𝜏) (5.9)

For the resonant spins with Δ = 0, 𝑃(𝜏) = cos( 𝐽2𝜏). This implies that the two spins
oscillate between pointing 𝑦̂ and −𝑦̂ with a frequency of 𝐽/2. The corresponding
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Figure 5.8: Evolution of a pair of spins with interaction strength 𝐽 and detuning
Δ. a, For a fixed 𝐽 = 2𝜋 × 0.3 MHz, we compare Δ = 0 (blue) and Δ = 𝐽 (red). b,
We average different 𝐽 and Δ values, where 𝐽 follows a Gaussian distribution with a
FWHM of 2𝜋×0.65 MHz for both without disorder (𝑊 = 0, blue) and with disorder
(𝑊 = 2𝜋 × 0.65 MHz, red). c, Longer time scale for b.

measured 𝑃(𝜏) ranges from 1 to -1 where 1 is defined relative to the initial state.
Averaging a distribution of J will lead to a spin polarization decay to 0.

However, when the detuning is introduced with Δ ≠ 0, the total spin ranges from
1 to Δ2−𝐽2

Δ2+𝐽2 with an offset of Δ2

Δ2+𝐽2 (Fig. 5.8a). Although the oscillation frequency
increases from 𝐽/2 to

√
Δ2 + 𝐽2/2, the decay rate at small 𝜏 remains the same:

𝑑𝑃(𝜏)
𝑑𝜏

����
𝜏→0

= − 𝐽2

2
√
Δ2 + 𝐽2

sin(
√
Δ2 + 𝐽2

2
𝜏)

�����
𝜏→0

= −𝐽2

4
𝜏. (5.10)

From this, we can see that the decay rate at small 𝜏 depends only on 𝐽. Consequently,
after averaging different 𝐽 values, the decoherence profiles at small 𝜏 overlap,
regardless of the presence of disorder (Fig. 5.8b).
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What changes is that with disorder, the spins have a preferred direction of 𝑦̂, and
averaging a distribution of 𝐽 will result in a residual polarization (Fig. 5.8b, c). In
this two-atom model, the residual polarization does not decay at a longer time scale
(Fig. 5.8c). This implies more atoms need to be involved to explain our experimental
observation of a second decay in the decoherence profile.

From two spins to three spins
Next, let us introduce a third spin to see what happens. Given that the interaction
strength scales as 𝐽𝑖 𝑗 ∝ 1

𝑟3
𝑖 𝑗

, the third spin is likely to have a much smaller interaction
compared to the first pair. Let us consider the case without disorder for simplicity.
The three-atom Hamiltonian is given by

𝐻 = 𝐻0 +𝑉 = 𝐽0(𝑆1
𝑥𝑆

2
𝑥 + 𝑆1

𝑦𝑆
2
𝑦) + 𝐽1(𝑆1

𝑥𝑆
3
𝑥 + 𝑆1

𝑦𝑆
3
𝑦) + 𝐽2(𝑆2

𝑥𝑆
3
𝑥 + 𝑆2

𝑦𝑆
3
𝑦), (5.11)

where 𝐻0 = 𝐽0(𝑆1
𝑥𝑆

2
𝑥 + 𝑆1

𝑦𝑆
2
𝑦) and |𝐽0 | ≫ |𝐽1 |, |𝐽2 |, so 𝑉 is a perturbation relative

to 𝐻0. By solving the problem using second-order perturbation theory, we obtain
the final population under the echo sequence. Let us only measure spin 1 at the
end to avoid finite size effects (section 5.6): 𝑃1 = ⟨𝜙(𝜏) | 2𝑆1

𝑥 |𝜙(𝜏)⟩. The value
should range from −1 to 1. We can list terms with different frequencies separately
(section B.2).

𝑃𝐷𝐶
1 =

𝐽2
2𝐽0

+
3𝐽2

1 + 𝐽2
2 + 4𝐽1𝐽2

2𝐽2
0

(5.12)

𝑃

𝐽1𝐽2
𝐽0

1 = −1
2

(
𝐽2
𝐽0

− 𝐽2(𝐽1 + 𝐽2)
𝐽2

0

)
cos

𝐽1𝐽2
𝐽0

𝜏 (5.13)

𝑃
𝐽0
1 =

𝐽1(𝐽1 − 𝐽2)
2𝐽2

0
cos (𝐽0 +

𝐽2
1 + 𝐽2

2
2𝐽0

)𝜏 (5.14)

𝑃
𝐽0/2,1
1 =

1
2

(
1 − 𝐽1 + 𝐽2

2𝐽0
−

13𝐽2
1 + 7𝐽2

2 + 12𝐽1𝐽2

4𝐽2
0

)
cos ( 𝐽0

2
+
𝐽2

1 + 𝐽2
2 + 6𝐽1𝐽2

4𝐽0
)𝜏

(5.15)

𝑃
𝐽0/2,2
1 =

1
2

(
1 + 𝐽1 + 𝐽2

2𝐽0
−
𝐽2

1 + 3𝐽2
2 + 4𝐽1𝐽2

4𝐽2
0

)
cos ( 𝐽0

2
+ (𝐽1 + 𝐽2)2

4𝐽0
)𝜏 (5.16)

𝑃
𝐽0/2,3
1 =

1
2

(
𝐽1 − 𝐽2

2𝐽0
+

3(𝐽2
2 − 𝐽2

1 )
4𝐽2

0

)
cos ( 𝐽0

2
+
𝐽2

1 + 𝐽2
2 − 6𝐽1𝐽2

4𝐽0
)𝜏 (5.17)

𝑃
𝐽0/2,3
1 =

1
2

(
𝐽2 − 𝐽1

2𝐽0
+
𝐽2

1 − 𝐽2
2

4𝐽2
0

)
cos ( 𝐽0

2
+ (𝐽1 − 𝐽2)2

4𝐽0
)𝜏 (5.18)
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Figure 5.9: Comparison between numerical simulation and perturbation theory
for three resonant spins. For 𝐽0 fixed at 2𝜋 × 0.3 MHz, we compare numerical
simulations (Num., blue), obtained using the same method as in section 5.6, with
predictions by perturbation theory (PT, orange) at different values of 𝐽1/𝐽0 and
𝐽2/𝐽0.

a b

Figure 5.10: Slowly varying component in three resonant interaction spins. For
𝐽0 fixed at 2𝜋 × 0.3 MHz, we compare numerical simulations (Num., blue) with
𝑃slow

1 (slow varying, orange) at different values of 𝐽1/𝐽0 and 𝐽2/𝐽0.

where 𝑃1 = 𝑃𝐷𝐶
1 +𝑃

𝐽1𝐽2
𝐽0

1 +𝑃𝐽0
1 +𝑃𝐽0/2,1

1 +𝑃𝐽0/2,2
1 +𝑃𝐽0/2,3

1 . The validity of Eqs. 5.12
- 5.18 can be verified by comparing them to numerical simulations, and we can
see that they match to a good extent (Fig. 5.9). Similar to the case when we add
detuning to a pair of spins, adding a third spin makes the polarization prefer the
initial direction and never reach -1. Moreover, by looking at a larger time scale, a
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new slowly varying term appears, as predicted by Eqs. 5.12-5.13.

𝑃slow
1 = 𝑃𝐷𝐶

1 + 𝑃

𝐽1𝐽2
𝐽0

1 =
𝐽2

2𝐽0
+

3𝐽2
1 + 𝐽2

2 + 4𝐽1𝐽2

2𝐽2
0

+ 𝐽1(𝐽1 − 𝐽2)
2𝐽2

0
cos (𝐽0 +

𝐽2
1 + 𝐽2

2
2𝐽0

)𝜏

(5.19)
This slowly varying term indicates that adding a third spin will introduce a slow time
scale into the system dynamics (Fig. 5.10). Finally, when comparing the three-atom

Figure 5.11: Comparison of different interaction strengths for three resonant
spins. 𝐽0 is fixed at 2𝜋×0.3 MHz. 𝐽1/𝐽0 = 𝐽2/𝐽0 = 0 represents the two-atom case.
Curves are generated by numerical simulation.

case with the two-atom case, we observe in the numerical simulation that the decay
rate at small 𝜏 changes only minimally (Fig. 5.11), as predicted by:

𝑑𝑃(𝜏)
𝑑𝜏

����
𝜏→0

= −
𝐽2

0 + 𝐽2
1

4
𝜏. (5.20)

Decoherence profile explanation by dividing into three time regimes
After understanding the above toy model well, we can now return to our experimental
data and gain a deeper insight into the dynamics. Here, we plot the experimental
data together with three different simulation cases (Fig. 5.12). Case I and Case II
are without disorder. In Case I, only the nearby spin with the largest |𝐽 | is included
for a given readout spin (two-atom case), while in Case II, all surrounding spins are
considered (8 atoms are sufficient, as proven by the convergence test; further details
are provided in section 5.6). Case III is the same simulation as Case II but with the
addition of disorder to the system.

As mentioned earlier, Case III closely matches the experimental results. For the
three simulations, they all overlap at a very early timescale with 𝜏 < 0.6 𝜇𝑠. This
means the early-time dynamics of a spin can be described by a pairwise process,
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Figure 5.12: Three time regimes in decoherence profile of echo measurements.
All of the solid lines are generated by numerical simulation using the real lattice
(section 5.6). Case I (purple): Without disorder, for a given readout spin, choosing
the nearby spin with the largest |𝐽 |. Case II (red): Many-body simulation without
disorder. Case III (orange): Many-body simulation with disorder. Filled circles
with error bars are experimental data.
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Figure 5.13: Illustration for the 𝜖-CPMG sequence2. Pulse sequence: middle 𝜋

pulse with a rotation offset 𝜖 . As |𝜖 | increases from 0 to 𝜋/2, the decoherence from
interaction is decoupled more, while the disorder decouples the best at |𝜖 | = 0 but
worse at |𝜖 | = 𝜋/2.

where decoherence is dominated by interacting with the nearby spin with the largest
interaction strength. We can call this time regime I. At 𝜏 ≈ 0.6 𝜇𝑠, Case I and
Case II start to diverge. Now, we enter time regime II, where the spin can interact
with more than one spin. As we have seen in the three-atom case, this would slow
down the decoherence (depolarization). Later, at 𝜏 ≈ 1 𝜇𝑠, Case II and Case III
start to diverge. This is the time regime III when disorder begins to play a role, and
detuning between spins makes depolarization difficult to occur, as we have seen in
the detuned two-atom case. This gives rise to an overall double-exponential-like
behavior, with interaction-dominated dynamics in the early time period and disorder
slowing the dynamics later.

5.8 Experimental characterization of many-body spin interaction using 𝜖-
CPMG sequence

2We note that the decoupling of influence from interaction and disorder is not independent.
Therefore, it is not strictly correct to simply ‘add’ the influence from disorder and interaction, as
there exist higher-order coupling terms between them. We provide an illustration like this to start
with, for intuitive understanding.
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Figure 5.14: Time-domain transformations of the single-body 𝑆𝑧 operator in
the toggling frame. The pulse sequence and the corresponding 𝑆𝑥 transformation
in the toggling frame for a, − 𝜋

2 -CPMG sequence and b, CPMG sequence.

As we gain a comprehensive understanding of echo measurement, we now turn to
more complicated pulse sequences to study many-body interactions. Here, we firstly
introduce a recently demonstrated sequence called 𝜖-CPMG sequence [136]. On the
basis of the normal CPMG sequence [137], a rotation offset 𝜖 is added to the middle
𝜋 pulse (Fig. 5.13). This effectively adds a pinning field proportional to 𝜖 along the
𝑦̂ direction, which can alter the interplay between interaction and disorder.

Introduction to 𝜖-CPMG sequence
Let us analyze the effective Hamiltonian for two extreme cases with 𝜖 = 0 and
𝜖 = − 𝜋

2 in the toggling frame [138]. It is well-known that under the CPMG
sequence, the single-body operator alternates between 𝑆𝑖𝑥,𝑦,𝑧 and −𝑆𝑖𝑥,𝑦,𝑧, while the
two-body operators such as 𝑆𝑖𝑥𝑆

𝑗
𝑥 remain the same (Fig. 5.14). As a result, the

disorder is decoupled while the interaction is not. In contrast, for the − 𝜋
2 -CPMG

sequence, the 𝜋/2 pulse transforms the 𝑆𝑧 operator to −𝑆𝑥 .The effective zeroth-order
approximation of the parent Hamiltonian (Eq. 5.7) then becomes:

𝐻0 =

𝑁∑︁
𝑖, 𝑗

𝐽𝑖 𝑗

2
(𝑆𝑖𝑦𝑆

𝑗
𝑦 + ®𝑆𝑖 · ®𝑆 𝑗 ) (5.21)

where ®𝑆𝑖 · ®𝑆 𝑗 = 𝑆𝑖𝑥𝑆
𝑗
𝑥 +𝑆𝑖𝑦𝑆

𝑗
𝑦 +𝑆𝑖𝑧𝑆

𝑗
𝑧 is the Heisenberg interaction. We can see that the

state after the initial 𝜋/2 pulse is the eigenstate of 𝐻0. Thus, both the interaction and
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Figure 5.15: 𝜖-CPMG measurement. For this set of experiments, 𝜏/2 = 200 ns,
and a large 𝐽 is chosen (46 ppm). a, For a fixed 𝜖 ≈ 0 (yellow) and 𝜖 ≈ −𝜋/2
(purple), we change the loop number 𝑘 to obtain the normalized coherence relative
to the total time 𝑇 , including the middle pulse length. Here, the coherence is
normalized to a constant value, which is the maximum coherence in the spin echo
measurement (Fig. 5.5a). Filled dots with error bars represent experimental data,
and solid lines are phenomenological stretched exponential fits. b, For 𝑘 = 5,
the normalized coherence is measured at different 𝜖 values. Filled dots with error
bars represent experimental data, and solid lines are simulated results scaled with
a prefactor < 1, independent of 𝜖 . Dashed vertical lines indicate the location of 𝜖
for the time traces in a. c, The 𝜖-CPMG measurement in the single-ion case for
reference.

disorder are decoupled to zeroth order under the − 𝜋
2 -CPMG sequence3. However,

higher-order terms related to 𝐽𝑖 𝑗 and Δ𝑖, under Magnus expansion [138, 139], could
still depolarize the spins and lead to a decay of the coherence profile. This is
indicated by the cross sign with certain transparency in Figure 5.13.

Experimental observation
We then apply an 𝜖-CPMG sequence to our platform. Firstly, we study the case with
a large 𝐽, with 𝜏/2 = 200 ns in the pulse sequence (Fig. 5.15). The coherence is
extracted by sweeping the rotation axis 𝜃 of the last 𝜋/2 pulse to obtain the contrast
and normalizing it to the contribution from the polarization rate 2𝜂pol − 1, similar
to the echo measurement. With a fixed 𝜖 , we sweep the loop number 𝑘 to obtain the
time traces of normalized coherence, where the total time 𝑇 includes the varying
middle pulse lengths for different 𝜖 . Comparing 𝜖 ≈ 0 and 𝜖 ≈ −𝜋/2, we observe

3This analysis holds when 𝑘 is an integer multiple of 4.



97
a

ε≈-π/2

ε≈0

x y θ
ετ/2 = 50 ns

k b τ/2 = 50 ns, k = 20

τ/2 = 200 ns, k = 5

0 20 40 60 80 100 120 140
Total time T ( s)

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 c

oh
er

en
ce

-1 -0.5 0 0.5 1
 ( )

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 c
oh

er
en

ce

T

Figure 5.16: 𝜖-CPMG measurement for different 𝜏 and 𝑘 . a, 𝜏/2 = 50 ns, and a
large 𝐽 is chosen (46 ppm). Normalized coherence relative to total time 𝑇 is plotted
for 𝜖 ≈ 0 (yellow) and 𝜖 ≈ −𝜋/2 (purple). b, For 𝜏/2 = 50 ns and 𝑘 = 20, the
normalized coherence is measured at different 𝜖 values. The corresponding curve
or 𝜏/2 = 200 ns and 𝑘 = 5 are plotted for reference.

that the decay time extends as we change 𝜖 from 0 to −𝜋/2, which is attributed
to better decoupling for the interaction (Fig 5.15a). Then, with a fixed 𝑘 = 5, we
sweep 𝜖 to observe the double-humped feature [136], as the coherence is maximized
at non-zero 𝜖 (Fig 5.15b). We note that the experimental data matches simulated
results well up to a rescale factor, which we attribute to decay due to finite pulse error
and excess dephasing. Furthermore, in comparison with the normalized coherence
dependence on 𝜖 for a single ion case (Fig. 5.15c), we can observe that our system
exhibits strong interaction characteristics.

The choice of 𝜏 and 𝑘 will affect how effectively the interaction and disorder are
decoupled (in other words, how many terms in the Magnus expansion we should
retain), thereby influencing the sensitivity to 𝜖 . As an extreme case, when 𝜏 → 0, the
𝜖-CPMG sequence becomes a spin locking sequence (more details in section 5.9),
and coherence becomes independent of 𝜖 . Conversely, when 𝜏 or 𝑘 are too large,
the coherence has already vanished, such that almost no features could be observed.
Intermediate values of 𝜏 and 𝑘 should be selected to achieve the double-humped
feature in the coherence-𝜖 dependence. For comparison, a similar measurement to
that in Figure 5.15 but with a shorter 𝜏/2 of 50 ns has been conducted (Fig. 5.16a).
Compared to the case with 𝜏/2 = 200 ns, the extension of coherence time is even
more prominent from 𝜖 ≈ 0 to 𝜖 ≈ 𝜋/2 for 𝜏/2 = 50 ns, as the interaction has
been decoupled more rapidly once |𝜖 | is leveraged. Especially, the decoherence
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profile measured at 𝜏/2 = 50 ns and 𝜖 = −𝜋/2 shows a decay time of around 43
𝜇s (Fig. 5.16a), reaching 𝑇1,𝜌, as measured by the spin locking experiment (see
section 5.9). In terms of the coherence-𝜖 curve, we choose 𝑘 = 20 for the 𝜏/2 = 50
ns condition to ensure that the total free evolution time (excluding pulse length) is
the same as in Figure 5.15b. A sharper dip in the center of the double-humped
feature has been observed for smaller 𝜏, indicating a greater sensitivity of coherence
to 𝜖 (Fig. 5.16b).

Next, let us examine the difference between large 𝐽 and small 𝐽 in the 𝜖-CPMG
measurement. We pick 𝜏/2 = 150 ns and choose 𝑘 = 8 to satisfy the integer
multiple of 4 condition (Fig. 5.17). Firstly, the overall normalized coherence is
lower for the large 𝐽 case. This occurs because, theoretically, even at optimized 𝜖 ,
interaction and disorder cannot be perfectly decoupled; hence, it leads to smaller
coherence, qualitatively illustrated by simulations (Fig. 5.17b). Experimentally,
this difference is even more pronounced, as reflected by the fact that the prefactor
required to match the simulation to the experiment is far smaller than 1. We attribute
this discrepancy to the larger excess dephasing associated with large 𝐽 (section 5.9).
Secondly, the optimal 𝜖 for the largest coherence should be slightly further away
from 0 for the large 𝐽 case (Fig. 5.17b), but this difference is too small to be observed
in experiment.

5.9 Hamiltonian engineering for exploring rich dynamics
To explore the many-body dynamics in our systems under different Hamiltoni-
ans, we further apply various pulse sequences, such as the Waugh-Huber-Haberlen
(WAHUHA) echo [138, 140] and spin locking sequences, to probe the decoherence
profile.

Engineering Hamiltonian via different pulse sequences
For all of the pulse sequences, the system is initially prepared in the |𝜓(0)⟩ state
using a rotation around 𝑥 by 𝜋/2, where |𝜓(0)⟩ is the fully polarized state along
𝑦̂: |𝜓(0)⟩ = |𝑦1...𝑦𝑖 ...𝑦 𝑗 ..⟩. After an evolution time 𝑇 , the system transforms into
|𝜓(𝑇)⟩ = 𝑈 (𝑇, 0) |𝜓(0)⟩. The final state is then read out by sweeping the rotation
axis 𝜃 of the last 𝜋/2 pulse to obtain the remaining polarization along 𝑦̂ (Fig. 5.18a).

The time evolution operator 𝑈 (𝑇, 0) = 𝑒−𝑖𝐻av𝑇 is determined by the applied pulse
sequences using average Hamiltonian theory [138, 141]. Here, we only consider
the leading-order contribution (zeroth-order Magnus expansion) and assume that the
pulses are perfect and infinitely short. Let us then calculate the effective Hamiltonian
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Figure 5.17: Comparison between large 𝐽 and small 𝐽 case for 𝜖-CPMG mea-
surement. For 𝜏/2 = 150 ns and 𝑘 = 8, normalized coherence is measured at
different 𝜖 values for large 𝐽 (blue) and small 𝐽 (orange). a, Filled dots with error
bars represent experimental data, and solid lines are simulated results scaled with a
prefactor. b, Simulated coherence without rescaling. 𝜖 steps increment by 0.02 and
are smoothed every 7 values.

for each pulse sequence (Fig. 5.18b).

For the Ramsey sequence, the effective Hamiltonian remains the same as the parent
Hamiltonian shown in Eq. 5.7, but we can rewrite it as

𝐻
Ramsey
av = 𝐻𝑧

disorder + 𝐻Heis − 𝐻𝑧
Ising (5.22)

where 𝐻𝑧
disorder =

∑𝑁
𝑖 Δ𝑖𝑆

𝑖
𝑧 represents the disorder, 𝐻Heis =

∑𝑁
𝑖, 𝑗 𝐽𝑖 𝑗

®𝑆𝑖 · ®𝑆 𝑗 represents
the Heisenberg interaction, and 𝐻𝑧

Ising =
∑𝑁

𝑖, 𝑗 𝐽𝑖 𝑗𝑆
𝑖
𝑧𝑆

𝑗
𝑧 represents the Ising interaction

along 𝑧. Since |𝜓(0)⟩ is the eigenstate of 𝐻Heis (shown in gray in Fig. 5.18b), in
the Ramsey sequence, depolarization is caused by disorder and the Ising interaction
along 𝑧.

For the spin echo sequence, the disorder is decoupled to the zeroth order, while the
interaction remains the same, which gives us:

𝐻
spin echo
av = 𝐻Heis − 𝐻𝑧

Ising. (5.23)

In the WAHUHA echo sequence, not only is the disorder decoupled to the zeroth
order by the middle 𝜋 pulse, but the interaction has also been symmetrized through
four 𝜋/2 rotations along 𝑥 and 𝑦̂. We have that:

𝐻WAHUHA echo
av =

2
3
𝐻Heis. (5.24)
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Figure 5.18: Pulse sequence design for Hamiltonian engineering. a, Pulse
sequence for Ramsey, spin echo, WAHUHA echo and spin-locking sequences. b,
The composition of different components in the leading-order average Hamiltonian
𝐻av. The lengths of the bars represent the corresponding strengths.

The initial state should be an eigenstate of the above Hamiltonian so that it remains
unchanged during the evolution over time.

In the spin locking sequence, a strong Rabi drive Ω𝑦 is applied along 𝑦̂, resulting in
the original Hamiltonian:

𝐻 = Ω𝑦

𝑁∑︁
𝑖

𝑆𝑖𝑦 +
𝑁∑︁
𝑖

Δ𝑖𝑆
𝑖
𝑧 +

𝑁∑︁
𝑖, 𝑗

𝐽𝑖 𝑗 (𝑆𝑖𝑥𝑆
𝑗
𝑥 + 𝑆𝑖𝑦𝑆

𝑗
𝑦). (5.25)

We provide two methods here to obtain the effective Hamiltonian while remaining
in the same rotating frame. One way is to first apply a unitary transformation with
𝑈1 = exp(−𝑖Ω𝑦

∑𝑁
𝑖 𝑆𝑖𝑦), such that we obtain 𝐻1 =

∑𝑁
𝑖, 𝑗

𝐽𝑖 𝑗
2 ( ®𝑆𝑖 · ®𝑆 𝑗 + 𝑆𝑖𝑦𝑆

𝑗
𝑦) using the

rotating-wave approximation. We then transform back by applying 𝑈
†
1 , which gives

us 𝐻0 = Ω𝑦

∑𝑁
𝑖 𝑆𝑖𝑦 +

∑𝑁
𝑖, 𝑗

𝐽𝑖 𝑗
2 ( ®𝑆𝑖 · ®𝑆 𝑗 + 𝑆𝑖𝑦𝑆

𝑗
𝑦). Another way is to follow the procedure

as in [142], where we define a new quantization axis along 𝑦̂ with 𝑆± = 𝑆𝑧 ± 𝑖𝑆𝑥 .
𝑆𝑖𝑥𝑆

𝑗
𝑥 thus can be expressed as 1

4 (𝑆
𝑖
+𝑆

𝑗
− + 𝑆𝑖−𝑆

𝑗
+ − 𝑆𝑖+𝑆

𝑗
+ − 𝑆𝑖−𝑆

𝑗
−). Using the secular

approximation, we discard energy non-conserving terms 𝑆𝑖+𝑆
𝑗
+, 𝑆𝑖−𝑆 𝑗

− and 𝑆𝑖𝑧. We
also get the same 𝐻0 as:

𝐻
spin locking
av = 𝐻0 = 𝐻

𝑦̂

Ω𝑦
+ 1

2
(𝐻Heis + 𝐻

𝑦̂

Ising) (5.26)

where we define 𝐻
𝑦̂

Ω𝑦
= Ω𝑦

∑𝑁
𝑖 𝑆𝑖𝑦 and 𝐻

𝑦̂

Ising =
∑𝑁

𝑖, 𝑗 𝐽𝑖 𝑗𝑆
𝑖
𝑦𝑆

𝑗
𝑦. The initial state is

also an eigenstate of the this effective Hamiltonian. The coherence time measured
by spin locking sequence is called 𝑇1,𝜌 relaxation time [143]. Using the above
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Figure 5.19: Decoherence profiles for different Hamiltonian engineering. Filled
circles with error bars represent experimental data for the small 𝐽 case. The solid
lines are simulations for Ramsey (yellow) and spin echo (green) measurements,
and are single exponential fits for WAHUHA echo (blue) and spin locking (red,
Ω𝑦 ≈ 2𝜋 × 10 MHz) measurements.

expressions, we can clearly see that only the Hamiltonian related to 𝑧, indicating a
pinning field along 𝑧, could introduce depolarization.

Experimental results
We now examine the decoherence profile to study the system dynamics under differ-
ent Hamiltonians. We have previously analyzed the Ramsey and echo measurements
(refer to section 5.5), where the depolarization sources are 𝐻𝑧

disorder and 𝐻𝑧
Ising in

Ramsey, and 𝐻𝑧
Ising in spin echo. For WAHUHA echo and spin locking measure-

ments, theoretically, depolarization should not occur, as the initial state |𝜓(0)⟩ is
the eigenstate of the Hamiltonian shown in Eq. 5.24 and Eq. 5.26. This is further
supported by the fact that numerical simulation shows no decay in the decoherence
profile using the method outlined in section 5.6. However, experimentally, decays
of 20 𝜇𝑠 and 73 𝜇𝑠 are extracted by fitting the data to a single exponential decay for
the WAHUHA echo and spin locking measurements, respectively (Fig. 5.19). We
attribute the decay in the spin locking measurement to excess dephasing, such as
nuclear spin noise, while additional factors should be considered for the WAHUHA
echo measurement.

Firstly, the higher-order terms in the Magnus expansion are non-zero for the current
WAHUHA echo sequence and need to be added to the effective Hamiltonian. Indeed,
a symmetrized WAHUHA echo sequence can be designed to cancel higher-order
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effects [138]. Secondly, finite pulse duration and spin-manipulation error could lead
to imperfect control [138]. Additionally, there is a sweep parameter in the WAHUHA
echo sequence, which is the pulse separation 𝜏. The current decoherence profile
under the WAHUHA echo sequence is obtained by fixing 𝜏 and increasing 𝑘 to
extend 𝑇 . Different values of 𝜏 will lead to decay times in the decoherence profile,
and theoretically, a smaller 𝜏 is preferred. From the perspective of Hamiltonian
engineering, as 𝜏 is decreased, Eq. 5.24 becomes more valid since the 𝑚th order
in the Magnus expansion scales as 𝜏𝑚, resulting in reduced contributions. From
the viewpoint of dynamical decoupling, the interaction has been decoupled more
rapidly for smaller 𝜏. However, in the experimental implementation, for a fixed𝑇 , the
imperfections from finite pulse duration and spin-manipulation errors accumulate
more for smaller 𝜏 since more pulses are needed. Experimentally sweeping 𝜏 to
find a decay time dependence is usually necessary to determine the optimized 𝜏

(Fig. 5.20a). In our experimental results, with a 𝜋/2 pulse duration of 22 ns, the
value of 𝜏 that provides the longest coherence time is 22 ns for small 𝐽 and 33 ns for
large 𝐽. In the case of small 𝐽, the coherence time could be extended if we could
implement shorter 𝜋/2 pulse lengths.

Lastly, we compare the decoherence profiles in the spin-locking measurement for
large 𝐽 and small 𝐽.We observe a 50 𝜇𝑠 decay time for large 𝐽 and a 73 𝜇𝑠 decay
time for small 𝐽. This difference might be due to an increased dephasing rate in the
case of large 𝐽, caused by extra heating introduced during the optical initialization
when transitioning population from |Aux⟩ to qubit manifolds.

In summary, this platform provides us with a testbed for various Hamiltonian engi-
neering, enabling us to observe the dynamics under the interplay between different
types of interactions and disorder.

5.10 Conclusion and outlook
Our results introduce an ensemble of rare-earth ions as a many-body platform with
plenty of future possibilities and applications. Firstly, we probe the interaction-
dominated dynamics and observe two distinct decoherence processes, for which we
provide a comprehensive analysis using microscopic many-body modeling and toy
models. This methodology can be transplanted to other disordered and interacting
spin ensembles. Additionally, controlling the interaction strength through optical
pumping and modifying the interaction format via Hamiltonian engineering enables
us to study the system’s response under various conditions, laying the foundation
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Figure 5.20: WAHUHA echo and spin locking measurements for large 𝐽 and
small 𝐽. a, The single exponential fit times for the decay in WAHUHA echo
measurements as a function of 𝜏 are extracted for large 𝐽 (blue) and small 𝐽 (orange).
b, Decoherence profiles for large 𝐽 (blue) and small 𝐽 (orange) in the spin locking
measurement. Filled circles with error bars represent experimental data, and the
solid lines are phenomenological single exponential fits.

for more advanced quantum engineering and quantum simulation.

Rare-earth ion systems have their own specialties for serving as many-body platforms
to study fundamental physics and develop quantum simulation. Firstly, operating
with rare-earth ion ensembles provides great flexibility, offering a variety of choices
for species, host crystal, as well as various doping concentrations, ranging from very
dilute samples of tens of ppb to stoichiometric samples. These flexibilities allow
us to integrate the ensemble with nanotechnology and scale the system to a large
size. Secondly, co-doping different rare-earth ions makes it possible to engineer two
species of many-body systems simultaneously and study their interplay [144–146].
Thirdly, we can also form another many-body platform by making use of the nearby
nuclei. For example, each Yb ion in our system is surrounded by four protected
vanadium registers with longer coherence time and lifetime [147]. Although the
vanadium nuclei do not interact with each other directly, the Yb ions interact with
each other and with the vanadium. The interaction between the vanadium is then
mediated through the Yb ions. Manipulating the interaction and changing the states
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of Yb ions are equivalent to controlling the interaction between vanadiums. The
vanadium ensemble then forms a highly coherent many-body system with a decent
level of interaction.

Reciprocally, many-body studies of rare-earth ions help to understand the mecha-
nism of decoherence and engineer techniques to decouple the interaction, adding
significant knowledge to rare-earth ion-based quantum technologies.
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C h a p t e r 6

DISCRETE TIME CRYSTAL

In this chapter, we will discuss one of the applications we implemented on the
many-body platform that we characterized and discussed in chapter 5. Specifically,
we observe the signature of discrete time crystals (DTC), a robust phase of matter
in driven systems, resulting from many-body interactions and playing an important
role in understanding complex many-body systems. There are a few comprehensive
or concise reviews on this topic, such as [4–6]. Here, we will provide a relatively
simple introduction and focus more on our experimental observations.

6.1 Introduction
Starting with the well-known space crystal, the Hamiltonian exhibits continuous
spatial translation symmetry, remaining invariant under continuous translations in
space, while periodic crystals only have discrete translation symmetry. This is an
example that the existence of crystals manifests spontaneous symmetry breaking. In
the time domain, for a periodically driven system, the Hamiltonian exhibits discrete
time-translation symmetry. If this system evolves with a different periodicity, such
as subharmonics, then the broken discrete time-translation symmetry indicates the
formation of a DTC. We notice that subharmonic behaviors are ubiquitous, such as
in spin echo measurements and parametric down conversion. However, the existence
of a DTC requires the subharmonic behavior to be robust in the parameter space
without requiring fine-tuning [148–151].

There are different mechanisms for achieving DTCs. The canonical ones are realized
by many-body localization (MBL), which has been experimentally demonstrated in
one-dimensional systems such as trapped ions [152], 13C nuclear spins in diamond
[153], and superconducting qubits [154]. Other types include prethermal DTC [155,
156], dissipative DTC [157, 158], and slow-decaying DTC [125, 159].

In our study, we focus on rare-earth ions doped in solids, specifically 171Yb3+:YVO4,
to probe the signatures of discrete time crystals. Our system, comprised of three-
dimensional spins interacting via long-range dipolar interaction, exhibits certain
similarities to the NV centers in diamond [125], enabling us to realize the same type
of DTC [160]. Meanwhile, the inherent existence of spin-exchange interaction in
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our system provides some special features to the field.

6.2 Experimental demonstration
As shown in section 5.9, we can engineer different Hamiltonians through pulse
sequence design. Especially, the spin locking sequence gives us 𝑇1,𝜌 of 50 𝜇s for
large 𝐽 and 73 𝜇s for small 𝐽. This long relaxation time provides us with a good
starting point to observe system behavior at longer time scales after periodically
inserting 𝜋(1 + 𝜖) rotations into the spin-locking sequence to perform Floquet
driving. Starting with a 𝜋/2 rotation around 𝑥 to prepare the spins along 𝑦̂, we
then apply a Floquet pulse sequence as illustrated in Figure 6.1 and observe the spin
dynamics along 𝑦̂. The Floquet operation includes continuous microwave driving
along 𝑦̂ and a rotation of 𝜋(1 + 𝜖) around 𝑥. During continuous microwave driving
(spin locking) with a Rabi frequency of Ω𝑦 = 2𝜋 × 11.7 MHz for a period of time 𝜏

(interaction time), the system is governed by the effective system Hamiltonian:

𝐻eff = 𝐻
𝑦̂

Ω𝑦
+ 1

2
(𝐻Heis + 𝐻

𝑦̂

Ising), (6.1)

as derived in Eq. 5.26. The following rotation around the 𝑥 axis flips the spin
polarization between 𝑦̂ and −𝑦̂ for every period, with an additional angle of 𝜋𝜖 .
After repeating this Floquet operation 𝑘 times, the remaining polarization along 𝑦̂

is finally read out.

Floquet driving sequence

-xyx x

ε

a b

k

y

Figure 6.1: Schematics for DTC. a, Illustration of spin interactions along 𝑦̂ under
periodic driving. b, All spins are initialized into states along the 𝑦̂ axis by a rotation
of 𝜋/2 around 𝑥, followed by the Floquet operation repeated 𝑘 times. This operation
involves spin locking along the 𝑦̂ axis for a time 𝜏 and a 𝜋(1 + 𝜖) rotation around 𝑥.
The system is then read out by rotating back to the 𝑧 direction using a 𝜋/2 rotation
around −𝑥.

We analyze the final polarization for different values of 𝜏 and 𝜖 in both the time
and frequency domains (Fig. 6.2). Here, frequency spectra are obtained by taking
the Fourier transform of the time traces and normalized to the entire area of each
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Figure 6.2: Representative time traces and Fourier transform spectra. a, Time
traces using nearly 𝜋 pulse with 𝜏 = 0 ns (light blue) and 𝜏 = 425 ns (light red). b,
Corresponding Fourier transform spectra for c, which have been normalized to the
area of the spectra. a, Time traces using nearly 1.03𝜋 pulse with 𝜏 = 0 ns (dark
blue) and 𝜏 = 425 ns (dark red). d, Corresponding Fourier transform spectra for c.

spectrum. We choose 𝜏 to satisfy Ω𝑦𝜏 = 2𝜋𝑛, where 𝑛 is an integer number, to avoid
accidental dynamical decoupling [125, 160]. Figure 6.2 shows the representative
time traces and Fourier transform spectra in experiments. The straightforward
case is that when nearly perfect 𝜋 pulses are applied, different values of 𝜏 exhibit
similar behavior. We observe the total polarization alternating between positive and
negative values in time traces, with a corresponding subharmonic peak at 𝜈 = 1/2
in the frequency domain. In contrast, when a certain amount of perturbation 𝜖 (e.g.,
𝜖 ≈ 0.03) is added to the 𝜋 pulse, the spin dynamics becomes highly dependent on
𝜏. For 𝜏 = 0 ns, there appears the beating on the basis of 2T-periodic response,
resulting in a splitting of peaks at 𝜈 = 1/2 ± 𝜖/2. As 𝜏 increases, the subharmonic
behavior is recovered, corresponding to a stabilized 𝜈 = 1/2 peak in the frequency
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domain (Fig. 6.2c, d).

The stabilization of this subharmonic behavior is then systematically studied by
sweeping 𝜏 and 𝜖 . In the Fourier spectrum, the normalized intensity at 𝜈 = 1/2
(|𝑃(𝜈 = 1/2) |2), which indicates the crystalline fraction, is extracted for a given
𝜏 and 𝜖 . A phase diagram is thus obtained to show the degree of the periodic
order in the parameter space (Fig. 6.3). We roughly draw the red dashed line in
Figure 6.3 to denote the phase boundary, where the system becomes more robust to
the perturbation 𝜖 as the interaction time 𝜏 increases.

-0.05 0 0.05
 ( )

0

200

400

600

800

1000

1200

 (n
s)

0

0.2

0.4

0.6

0.8

1

Figure 6.3: DTC phase diagram.

To understand the role of the interaction in stabilizing the subharmonic behavior, we
notice that the Ising interaction 𝐻

𝑦̂

Ising appears in the effective Hamiltonian during
the time period 𝜏 (Eq. 6.1). Based on previous studies on 3D dipolar interaction
spins [125, 160], we know that the Ising interaction stabilizes the DTC phase. The
addition in our system is the Heisenberg interaction 𝐻Heis, and it turns out that
the existence of both Ising and Heisenberg interactions can also stabilize the DTC
phase.

6.3 Comparing phase boundaries for different interaction strengths 𝐽
Next, let us take a closer look at the phase boundary by quantitatively defining it at
|𝑃(𝜈 = 1/2) |2 = 0.4 point and comparing it for the different interaction strengths
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Figure 6.4: Phase boundaries for large and small 𝐽. a, |𝑃(𝜈 = 1/2) |2 in Fourier
transform spectra at different 𝜖 for 𝜏 = 340 ns in large 𝐽 (blue) and small 𝐽 (orange)
cases. The dashed red line indicates |𝑃(𝜈 = 1/2) |2 = 0.4. b, Extracted phase
boundary in large 𝐽 (blue) and small 𝐽 (orange) cases. The transparent red line
indicates the condition where a is shown.

𝐽. Specifically, the normalized intensity at 𝜈 = 1/2, |𝑃(𝜈 = 1/2) |2, in the Fourier
transform spectrum is plotted as a function of 𝜖 for a given 𝜏. By intersecting it with
|𝑃(𝜈 = 1/2) |2 = 0.4, we find the 𝜖𝑐 value at the phase boundary for this 𝜏, where
linear interpolation is applied to the |𝑃(𝜈 = 1/2) |2-𝜖 dependence curve (Fig. 6.4a).
In the comparison of the phase boundaries for large and small 𝐽, we can observe
that the large 𝐽 case has a wider DTC phase area (Fig. 6.4b). This is because
larger interactions have a better ability to prevent the system from thermalization,
thus making it more robust to perturbations. The above observation supports the
argument that interaction is the cause of stabilizing the subharmonic behavior, and
reciprocally provides further examination of our strongly interacting system.

6.4 Robustness to the initial states
Finally, we investigate the robustness of our DTC phase relative to the initial states.
Different initial states are prepared by rotating a varying angle 𝜙 of the first pulse in
the spin control sequence (Fig. 6.5a). For each initial state, we then sweep 𝜖 and 𝜏

to generate a phase diagram (Fig. 6.5b-f). In the experimental results, a robust DTC
phase appears for those initial states with |𝜙 − 𝜋/2| ≤ 𝜋/4 (Fig. 6.5d-f). For 𝜙 = 0
and 𝜙 = 𝜋/8, the subharmonic pattern only exists in a small area of the parameter
space (Fig. 6.5b,c). In these cases, it is likely that the temperature determined by
the initial state is too high for the interaction to stabilize the subharmonic behavior.
Furthermore, for the cases of 𝜙 = 𝜋/4, 3𝜋/8, and 𝜋/2, the corresponding phase
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Figure 6.5: Robustness of DTC phase to the initial states. a, Spin control
sequence with different initial rotations of 𝜙 to prepare various initial states. b-f,
Phase diagram for different initial rotations of 𝜙. g, Phase boundaries for d-f. We
note that b-g share the same x-axis and y-axis ranges.

boundaries are extracted using the condition |𝑃(𝜈 = 1/2) |2 = 0.4 (Fig. 6.5g). We
can see that the slope of the phase boundaries is similar for different 𝜙, indicating a
robustness relative to the initial states.
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6.5 Conclusion and outlook
To conclude, we observe a signature of DTC in the rare-earth ions system, which
serves as an example of the applications in our system as a many-body platform. The
inherent spin-exchange interaction, the large ratio between interaction strength and
disorder, and the tunability of interaction strength distinguish our system from other
solid-state spins, and provide new possibilities in the field of DTC. Here, we focus on
spin locking driving in the Floquet operation, while other pulse designs have been
implemented for Hamiltonian engineering (section 5.9), enabling us to integrate
them for studying subharmonic behavior under periodic driving. For example, we
can also study the system’s phase diagram under the spin exchange interaction or
the Heisenberg interaction, with or without disorder. Those studies can broaden the
mechanism for realizing DTC.
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C h a p t e r 7

FUTURE DIRECTIONS

From chapter 3 to chapter 6, we investigate many-body physics in an ensemble of
rare-earth ions, specifically 171Yb3+:YVO, ranging from novel optical cavity QED
phenomena to dynamics of strongly interacting spins. Different from conventional
methods for studying rare-earth ions, such as engineering highly quantum memories
or characterizing the spectroscopy of materials, we provide insights for studying
these systems from a more fundamental perspective, thus opening the door to several
future directions. In this chapter, we will briefly enumerate some possible directions
to explore.

7.1 Narrower structure using CIT
The sharp feature (CIT) we discovered in chapter 3 occurs under the most basic
conditions, where continuous wave driving is applied and the ions start with a
natural distribution with inhomogeneous broadening. To extend this work, we can
prepare the ions with some spectral structure, such as using hole-burning technique
to create a narrow feature. When we probe this hole via cavity reflection, an
even narrower structure is expected, referring to the fact that the inhomogeneous
linewidth has been narrowed by a factor of C, the ensemble cooperativity, in CIT.
Indeed, we have utilized optical pumping in chapter 4 and chapter 5 to modify the
ion population, providing grounds for further spectral tailoring.

7.2 Cavity-mediated interaction in the detuned cavity regime
The superradiance and subradiance studied in chapter 4 arise through dissipative
interactions mediated by the cavity field. This occurs when the cavity is in resonance
with the frequencies of the ions. When the cavity is tuned off resonance, coherent
interactions between ions can be engineered (Eq. 4.5). Indeed, we have demonstrated
a tens of GHz increment in our cavity tunability (Fig. 3.9), such that controlling this
coherent interaction is possible.

7.3 Discrete time crystal for spins in optical excited states
The 𝑓𝑒 transition in Figure 5.3 is also a clock transition and could be controlled
using microwaves at 3.37 GHz. We currently only use this transition for initialization
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using a 𝜋 pulse, but more complicated spin control can be implemented. The dipolar
interaction strength between these spins is 𝐽 · 𝑟3 = 2𝜋 × 81.8 MHz (Eq. 5.8 for spins
in ground states). Although the spin lifetime will be limited by the optical lifetime,
thanks to the subradiance regime, the spins can remain in the optical excited state
for up to the bulk lifetime (267 𝜇s). To this end, it will be interesting to look at
the interaction-induced dynamics for those spins and the possibility of realizing a
discrete time crystal.
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A p p e n d i x A

ADIABATIC ELIMINATION OF CAVITY FIELD

In this appendix, we will discuss the adiabatic elimination of the cavity field, which
we have been using frequently in chapter 3 and chapter 4. We will point out a
potential confusion when performing adiabatic elimination, then present a rigorous
derivation, and finally offer a simplified procedure — the formula that we use in
chapter 3 and chapter 4.

A.1 Setting up the confusion
Starting with the Tavis-cumming model (Eq. 3.2), we rewrite the Hamiltonian here:

𝐻 = Δ𝑐𝑎
†𝑎 + 1

2

𝑁∑︁
𝑗=1

Δ 𝑗𝜎
𝑧
𝑗
+

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝑎†𝜎−
𝑗 + 𝜎+

𝑗 𝑎) − 𝑖
𝜅

2
√
𝜇(𝑎† − 𝑎). (A.1)

We can write the quantum Langevin equation in the Heisenberg picture as in Eq.
3.5-3.7 (Equivalently, we can use the master equation to calculate the evolution of
𝜌 and the expectation of the operators, and then drop the expectation symbol.):

¤𝑎 = −(𝑖Δ𝑐 +
𝜅

2
)𝑎 − 𝑖

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
−
𝑗 − 𝜅

2
√
𝜇 (A.2)

¤𝜎−
𝑗 = −(𝑖Δ 𝑗 + 𝛾)𝜎−

𝑗 + 𝑖𝑔 𝑗𝜎
𝑧
𝑗
𝑎 (A.3)

¤𝜎𝑧
𝑗
= 2𝑖𝑔 𝑗 (𝑎†𝜎−

𝑗 − 𝜎+
𝑗 𝑎) − 𝛾𝑠 (1 + 𝜎𝑧

𝑗
). (A.4)

We note that in Eq.A.4, some people write it as (𝑎†𝜎−
𝑗
− 𝜎+

𝑗
𝑎) while others write

it as (𝑎†𝜎−
𝑗
− 𝑎𝜎+

𝑗
), (𝜎−

𝑗
𝑎† − 𝑎𝜎+

𝑗
) or (𝜎−

𝑗
𝑎† − 𝜎+

𝑗
𝑎). These four choices make no

difference at this point since [𝑎, 𝜎−
𝑗
] = 0. But we should remember that it implicitly

contains the information [𝑎, 𝜎−
𝑗
] = 0 (you will see it more clearly if you are deriving

through master equation).

When the cavity field is adiabatically eliminated, we ignore the dynamics of the 𝑎

operator by setting ¤𝑎 = 0, which gives

𝑎 =
−𝑖∑𝑁

𝑗=1 𝑔 𝑗𝜎
−
𝑗
− 𝜅

2
√
𝜇

𝑖Δ𝑐 + 𝜅
2

. (A.5)
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If we directly plug Eq. A.10 back to Eq. A.4, we will see that four choices give
different results:

𝑎†𝜎−
𝑗 − 𝜎+

𝑗 𝑎 =

∑𝑁
𝑘=1 𝑔𝑘

(
𝑖 𝜅2

(
𝜎+
𝑘
𝜎−
𝑗
+ 𝜎+

𝑗
𝜎−
𝑘

)
− Δ𝑐

(
𝜎+
𝑘
𝜎−
𝑗
− 𝜎+

𝑗
𝜎−
𝑘

))
Δ2
𝑐 + 𝜅2

4

+ 𝑓 (𝜇)

(A.6a)

𝑎†𝜎−
𝑗 − 𝑎𝜎+

𝑗 =

∑𝑁
𝑘=1 𝑔𝑘

(
𝑖 𝜅2

(
𝜎+
𝑘
𝜎−
𝑗
+ 𝜎−

𝑘
𝜎+
𝑗

)
− Δ𝑐

(
𝜎+
𝑘
𝜎−
𝑗
− 𝜎−

𝑘
𝜎+
𝑗

))
Δ2
𝑐 + 𝜅2

4

+ 𝑓 (𝜇)

(A.6b)

𝜎−
𝑗 𝑎

† − 𝑎𝜎+
𝑗 =

∑𝑁
𝑘=1 𝑔𝑘

(
𝑖 𝜅2

(
𝜎−
𝑗
𝜎+
𝑘
+ 𝜎−

𝑘
𝜎+
𝑗

)
− Δ𝑐

(
𝜎−
𝑗
𝜎+
𝑘
− 𝜎−

𝑘
𝜎+
𝑗

))
Δ2
𝑐 + 𝜅2

4

+ 𝑓 (𝜇)

(A.6c)

𝜎−
𝑗 𝑎

† − 𝜎+
𝑗 𝑎 =

∑𝑁
𝑘=1 𝑔𝑘

(
𝑖 𝜅2

(
𝜎−
𝑗
𝜎+
𝑘
+ 𝜎+

𝑗
𝜎−
𝑘

)
− Δ𝑐

(
𝜎−
𝑗
𝜎+
𝑘
− 𝜎+

𝑗
𝜎−
𝑘

))
Δ2
𝑐 + 𝜅2

4

+ 𝑓 (𝜇).

(A.6d)

When 𝑗 ≠ 𝑘 , the order of 𝑗 and 𝑘 in terms of operators is changeable. So, the
difference between the four expressions occurs in those terms where 𝑘 = 𝑗 , and we
use 𝛿 to represent this difference.

𝛿(𝑎†𝜎−
𝑗 − 𝜎+

𝑗 𝑎) =
𝑖𝑔 𝜅

2

(
𝜎𝑧
𝑗
+ 𝐼

)
Δ2
𝑐 + 𝜅2

4

(A.7a)

𝛿(𝑎†𝜎−
𝑗 − 𝑎𝜎+

𝑗 ) =
𝑔

(
𝑖 𝜅2 𝐼 − Δ𝑐𝜎

𝑧
𝑗

)
Δ2
𝑐 + 𝜅2

4

(A.7b)

𝛿(𝜎−
𝑗 𝑎

† − 𝑎𝜎+
𝑗 ) =

𝑖𝑔 𝜅
2

(
𝐼 − 𝜎𝑧

𝑗

)
Δ2
𝑐 + 𝜅2

4

(A.7c)

𝛿(𝜎−
𝑗 𝑎

† − 𝜎+
𝑗 𝑎) =

𝑔

(
𝑖 𝜅2 𝐼 + Δ𝑐𝜎

𝑧
𝑗

)
Δ2
𝑐 + 𝜅2

4

(A.7d)

If we choose to plug Eq. A.10 back to Hamiltonian to get effective Hamitonian, we
have similar issue
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Δ𝑐𝑎
†𝑎 +

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝑎†𝜎−
𝑗 + 𝜎+

𝑗 𝑎) = − Δ𝑐

Δ2
𝑐 + 𝜅2

4

𝑁∑︁
𝑘=1

𝑔𝑘𝜎
+
𝑘

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
−
𝑗 + 𝑔1 (A.8a)

Δ𝑐𝑎
†𝑎 +

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝑎†𝜎−
𝑗 + 𝑎𝜎+

𝑗 ) =
𝑖𝜅

2Δ2
𝑐 + 𝜅2

2

𝑁∑︁
𝑗=1

𝑔2
𝑗𝜎

𝑧
𝑗
− Δ𝑐

Δ2
𝑐 + 𝜅2

4

𝑁∑︁
𝑘=1

𝑔𝑘𝜎
−
𝑘

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
+
𝑗 + 𝑔1

(A.8b)

Δ𝑐𝑎
†𝑎 +

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝜎−
𝑗 𝑎

† + 𝑎𝜎+
𝑗 ) =

Δ𝑐

Δ2
𝑐 + 𝜅2

4

𝑁∑︁
𝑘=1

𝑔𝑘𝜎
+
𝑘

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
−
𝑗 − 2Δ𝑐

Δ2
𝑐 + 𝜅2

4

𝑁∑︁
𝑘=1

𝑔𝑘𝜎
−
𝑘

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
+
𝑗 + 𝑔1

(A.8c)

Δ𝑐𝑎
†𝑎 +

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝜎−
𝑗 𝑎

† + 𝜎+
𝑗 𝑎) = − 𝑖𝜅

2Δ2
𝑐 + 𝜅2

2

𝑁∑︁
𝑗=1

𝑔2
𝑗𝜎

𝑧
𝑗
− Δ𝑐

Δ2
𝑐 + 𝜅2

4

𝑁∑︁
𝑘=1

𝑔𝑘𝜎
−
𝑘

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
+
𝑗 + 𝑔1.

(A.8d)

Note that we only keep the second-order terms (the product of two operators) since
other terms do not have commutation issues. We can already see that Eq. A.8b and
d are not Hermitian.

A.2 Effective Hamiltonian in the Schrödinger picture: Reiter and Sorenson’s
procedure

In this section, we will follow the procedure of Reiter and Sorenson [161]. Similar
procedures have been applied to [162, 163].

To set up the problem more completely, we write down the Lindblad terms related
to cavity decay as in Eqs. 4.1 in terms of Lindblad operator 𝐿̂cav

Lcav = 𝐿̂cav𝜌𝐿̂
†
cav −

1
2
( 𝐿̂†

cav 𝐿̂cav𝜌 + 𝜌𝐿̂
†
cav 𝐿̂cav)

= 𝜅(𝑎𝜌𝑎† − 1
2
𝑎†𝑎𝜌 − 1

2
𝜌𝑎†𝑎) (A.9)

where 𝐿̂cav =
√
𝜅𝑎. Note that, unlike 𝜌𝑡 used in section 4.5, here 𝜌 represents the

total density operator, consisting of both the cavity field and the atoms.

We should emphasize that, in order to use Reiter and Sorenson’s procedure, the elim-
inated field has to be weakly excited (rather than just reaching the steady state).Due
to the laser drive (𝜇), the photon occupation inside the cavity is not small, thus the
weakly driven condition is not satisfied. However, we can subtract the classical term
related to the external drive from the operator 𝑎 to obtain a new operator 𝑏, which
represents the quantum fluctuations. The relation between 𝑎 and 𝑏 is as follows:
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𝑎 = 𝑏 + 𝛼 (A.10)

where 𝛼 = −
𝜅
2
√
𝜇

𝑖Δ𝑐+ 𝜅
2
. Mathematically, 𝑏 is just a displacement of 𝑎. We can rewrite

the Hamiltonian Eq.A.1 in terms of 𝑏 as

𝐻 = Δ𝑐𝑏
†𝑏 + (Δ𝑐𝛼 − 𝑖

𝜅

2
√
𝜇)𝑏† + (Δ𝑐𝛼

∗ + 𝑖
𝜅

2
√
𝜇)𝑏 +

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝑏†𝜎−
𝑗 + 𝑏𝜎+

𝑗 )

+ 1
2

𝑁∑︁
𝑗=1

Δ 𝑗𝜎
𝑧
𝑗
+

𝑁∑︁
𝑗=1

𝑔 𝑗

(
𝛼∗𝜎−

𝑗 + 𝛼𝜎+
𝑗

)
+ Δ𝑐 |𝛼 |2 − 𝑖

𝜅

2
√
𝜇(𝛼∗ − 𝛼)

(A.11)

and plug Lindblad operators 𝐿̂cav =
√
𝜅(𝑏 + 𝛼) back to Eq. A.9. We find that:

Lcav = 𝜅(𝑏𝜌𝑏† − 1
2
𝑏†𝑏𝜌 − 1

2
𝜌𝑏†𝑏) − 𝑖

𝜅

2
[𝑖𝛼∗𝑏 − 𝑖𝛼𝑏†, 𝜌]] . (A.12)

To simplify this, we know that master equation is:

¤𝜌 = −𝑖[𝐻, 𝜌] + Lcav (A.13)

such that we can absorb the second term in Eq. A.12 into Hamiltonian. Using the
equality Δ𝑐𝛼 − 𝑖 𝜅2

√
𝜇 − 𝑖 𝜅2𝛼 = 0, we get know Hamiltonian and Lindblad operators:

𝐻′ = Δ𝑐𝑏
†𝑏 +

𝑁∑︁
𝑗=1

𝑔 𝑗 (𝑏†𝜎−
𝑗 + 𝑏𝜎+

𝑗 )+
1
2

𝑁∑︁
𝑗=1

Δ 𝑗𝜎
𝑧
𝑗
+

𝑁∑︁
𝑗=1

𝑔 𝑗

(
𝛼∗𝜎−

𝑗 + 𝛼𝜎+
𝑗

)
+ Δ𝑐 |𝛼 |2 − 𝑖

𝜅

2
√
𝜇(𝛼∗ − 𝛼) (A.14)

and 𝐿̂′
cav =

√
𝜅𝑏.

Now, following reference [161], we will calculate the effective Hamiltonian 𝐻eff and
Lindblad operators 𝐿̂eff.

𝐻′
𝑁𝐻 = 𝐻′

𝑒 −
𝑖

2
𝐿′†

cav 𝐿̂
′
cav = (Δ𝑐 −

𝜅

2
𝑖)𝑏†𝑏 (A.15)

and

𝑉+ =

𝑁∑︁
𝑗=1

𝑔 𝑗𝑏
†𝜎−

𝑗 . (A.16)
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Thus

𝐻′
eff = −1

2
𝑉−

(
𝐻′−1

𝑁𝐻 + (𝐻′−1
𝑁𝐻)†

)
𝑉+ + 𝐻′

𝑔

= −1
2

𝑁∑︁
𝑘=1

𝑔𝑘𝜎
+
𝑘 𝑏

(
𝑏−1(𝑏†)−1

Δ𝑐 − 𝜅
2𝑖

+ 𝑏−1(𝑏†)−1

Δ𝑐 + 𝜅
2𝑖

)
𝑏†

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
−
𝑗 + 𝐻′

𝑔

= − Δ𝑐

Δ2
𝑐 + 𝜅2

4

𝑁∑︁
𝑘=1

𝑔𝑘𝜎
+
𝑘

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
−
𝑗 + 𝐻′

𝑔 (A.17)

where 𝐻′
𝑔 =

1
2
∑𝑁

𝑗=1 Δ 𝑗𝜎
𝑧
𝑗
+ ∑𝑁

𝑗=1 𝑔 𝑗

(
𝛼∗𝜎−

𝑗
+ 𝛼𝜎+

𝑗

)
+ Δ𝑐 |𝛼 |2 − 𝑖 𝜅2

√
𝜇(𝛼∗ − 𝛼). And

𝐿̂′
eff = 𝐿̂′

cav𝐻
′−1
𝑁𝐻𝑉+ =

√
𝜅

Δ𝑐 − 𝜅
2𝑖

𝑁∑︁
𝑗=1

𝑔 𝑗𝜎
−
𝑗 . (A.18)

A.3 Simplified procedure
Comparing Eq. A.8 and Eq. A.17, we can see that Eq. A.17 is the correct one. For

Lindblad operators it is equivalent to replace quantum fluctuation 𝑏 with
−𝑖∑𝑁

𝑗=1 𝑔 𝑗𝜎
−
𝑗

𝑖Δ𝑐+ 𝜅
2

,
and

L′
eff =

𝜅

𝜅2

4 + Δ2
𝑐

𝑁∑︁
𝑗 ,𝑘

𝑔 𝑗𝑔𝑘 (𝜎−
𝑗 𝜌𝜎

+
𝑘 − 1

2
𝜎+
𝑗 𝜎

−
𝑘 𝜌 − 1

2
𝜌𝜎+

𝑗 𝜎
−
𝑘 ). (A.19)

Let us use the master equation to derive the evolution of ⟨𝜎𝑧
𝑗
⟩ after adiabatically

eliminating the cavity field to determine the correct choice in Eq. A.6. For brevity,
we drop the expectation symbol to show the equation of motion in the Heisenberg
picture.

¤𝜎𝑧
𝑗
= −

2𝑖𝑔 𝑗Δ𝑐

Δ2
𝑐 + 𝜅2

4

𝑁∑︁
𝑘=1

𝑔𝑘 (𝜎+
𝑘 𝜎

−
𝑗 − 𝜎+

𝑗 𝜎
−
𝑘 ) −

𝜅𝑔 𝑗

𝜅2

4 + Δ2
𝑐

𝑁∑︁
𝑘=1

𝑔𝑘 (𝜎+
𝑘 𝜎

−
𝑗 + 𝜎+

𝑗 𝜎
−
𝑘 ) + 𝑓 (𝜇, 𝛾𝑠)

= 2𝑖𝑔 𝑗

∑𝑁
𝑘=1 𝑔𝑘

(
𝑖 𝜅2 (𝜎

+
𝑘
𝜎−
𝑗
+ 𝜎+

𝑗
𝜎−
𝑘
) − Δ𝑐 (𝜎+

𝑘
𝜎−
𝑗
− 𝜎+

𝑗
𝜎−
𝑘
)
)

Δ2
𝑐 + 𝜅2

4

+ 𝑓 (𝜇, 𝛾𝑠) (A.20)

We can see that Eq. A.6a is the correct one to use! Let us summarize the simple
procedure here:

1. For the Hamiltonian, we write it in the this order: 𝑎†𝜎−
𝑗
+ 𝜎+

𝑗
𝑎.

2. For the 𝜎𝑧
𝑗

dynamics, we write it in the following order: 𝑎†𝜎−
𝑗
− 𝜎+

𝑗
𝑎.
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3. We can see that the general rule is to keep the creation operator first, followed
by annihilation operators, whether it is for the cavity field or the atom.

4. When adiabatic elimination of the cavity field is applied, we can substitute
the operator 𝑎 with its steady-state solution in the expressions that follow the
above order.

5. For the Lindblad terms, we will also perform the same substitution, but the
constant needs to be dropped.

Due to this reason, we maintain the order of operators as described above throughout
the thesis.



136

A p p e n d i x B

ANALYTICAL SOLUTIONS FOR TWO AND THREE
INTERACTING SPINS

In this appendix, we will include the full derivation for two and three interaction
spins.

B.1 Two spins with interaction strength 𝐽 and detuning Δ

For the two-atom case, we can theoretically solve the system’s evolution under spin
echo sequence. Let us transition to the toggling frame after the first 𝜋/2 pulse; the
Hamiltonian in the first and second periods is as follows:

𝐻1 = Δ𝑆𝑧2 + 𝐽 (𝑆𝑥1𝑆
𝑥
2 + 𝑆

𝑦

1𝑆
𝑦

2), (B.1)

𝐻2 = −Δ𝑆𝑧2 + 𝐽 (𝑆𝑥1𝑆
𝑥
2 + 𝑆

𝑦

1𝑆
𝑦

2). (B.2)

We want to solve the eigenstates of the above Hamiltonians in the uncoupled basis
{|↑1↑2⟩ , |↓1↑2⟩ , |↑1↓2⟩ , |↓1↓2⟩}, where {|↑1⟩ , |↓1⟩} represent the eigenstates of 𝑆𝑧1,
and {|↑2⟩ , |↓2⟩} represent the eigenstates of 𝑆𝑧2. It is easy to see that |↑1↑2⟩ and |↓1↓2⟩
are still the eigenstates of 𝐻1 (𝐻2) with respective eigenenergies of ±1

2Δ(∓1
2Δ).

Therefore, we only need to deal with the evolution in the subspace {|↑1↓2⟩ , |↓1↑2⟩}.
Let us define new 𝑆𝑧 =

1
2 ( |↓1↑2⟩ ⟨↓1↑2 | − |↑1↓2⟩ ⟨↑1↓2 |) such that the Hamiltonians

can be written as
𝐻̃1 = Δ𝑆𝑧 + 𝐽𝑆𝑥 (B.3)

𝐻̃2 = −Δ𝑆𝑧 + 𝐽𝑆𝑥 (B.4)

where we have used the fact that

𝑆𝑥1𝑆
𝑥
2 + 𝑆

𝑦

1𝑆
𝑦

2 =
1
2

(
𝑆+1𝑆

−
2 + 𝑆−1 𝑆

+
2
)
=

1
2
( |↑1↓2⟩ ⟨↓1↑2 | + |↓1↑2⟩ ⟨↑1↓2 |) = 𝑆𝑥 .

This is exactly the Rabi oscillation with detuning, and the sign of the detuning
flips in the later half of the evolution time. We know that the eigenstates of these
Hamiltonians are dressed states.

For 𝐻̃1, the eigenstates and eigenenergies are as follows

𝐸± = ±1
2

√︁
Δ2 + 𝐽2 (B.5)
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|+⟩ = sin 𝜃 |↑1↓2⟩ + cos 𝜃 |↓1↑2⟩ (B.6)

|−⟩ = cos 𝜃 |↑1↓2⟩ − sin 𝜃 |↓1↑2⟩ (B.7)

where 𝜃 is defined by
tan 2𝜃 =

𝐽

Δ

(
0 ≤ 𝜃 <

𝜋

2

)
. (B.8)

The inverse solution is

|↑1↓2⟩ = sin 𝜃 |+⟩ + cos 𝜃 |−⟩ ,

|↓1↑2⟩ = cos 𝜃 |+⟩ − sin 𝜃 |−⟩ .

For 𝐻̃2, we just need to set Δ′ = −Δ, and thus we obtain 𝜃′ = −𝜃 + 𝜋
2 , 𝐸′

± = 𝐸±,

|+⟩′ = cos 𝜃 |↑1↓2⟩ + sin 𝜃 |↓1↑2⟩ ,

|−⟩′ = sin 𝜃 |↑1↓2⟩ − cos 𝜃 |↓1↑2⟩ ,

and the corresponding inverse solution as:

|↑1↓2⟩ = cos 𝜃 |+⟩′ + sin 𝜃 |−⟩′ ,

|↓1↑2⟩ = sin 𝜃 |+⟩′ − cos 𝜃 |−⟩′ .

We get the relations between egenstates for 𝐻̃1 and 𝐻̃2 as:

|+⟩ = sin 2𝜃 |+⟩′ − cos 2𝜃 |−⟩′ , (B.9)

|−⟩ = cos 2𝜃 |+⟩′ + sin 2𝜃 |−⟩′ . (B.10)

The initial state in the full space after the first 𝜋/2 pulse around 𝑥 axis is

1
√

2
(−𝑖 |↑1⟩ + |↓1⟩)

1
√

2
(−𝑖 |↑2⟩ + |↓2⟩) =

1
2
(− |↑1↑2⟩ − 𝑖( |↓1↑2⟩ + |↑1↓2⟩) + |↓1↓2⟩) .

(B.11)
After the total evolution time 𝜏:

|↑1↑2⟩ → |↑1↑2⟩ 𝑒−𝑖
1
4 (Δ−Δ)𝜏

|↓1↓2⟩ → |↓1↓2⟩ 𝑒−𝑖
1
4 (−Δ+Δ)𝜏

and
|↓1↑2⟩ + |↑1↓2⟩ → |𝜙(𝜏)⟩

where |𝜙(𝜏)⟩ is as follows

|𝜙( 𝜏
2
)⟩ = (sin 𝜃 + cos 𝜃) |+⟩ 𝑒−𝑖

𝐸+𝜏
2 + (cos 𝜃 − sin 𝜃) |−⟩ 𝑒−𝑖

𝐸− 𝜏
2 (B.12)
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|𝜙(𝜏)⟩ = (sin 𝜃 + cos 𝜃) (sin 2𝜃 |+⟩′ 𝑒−𝑖𝐸+𝜏 − cos 2𝜃 |−⟩′)
+ (cos 𝜃 − sin 𝜃) (cos 2𝜃 |+⟩′ + sin 2𝜃 |−⟩′ 𝑒−𝑖𝐸−𝜏)

= 𝐴1 |↑1↓2⟩ + 𝐴2 |↓1↑2⟩ (B.13)

where

𝐴1 = cos 2𝜃 (cos 2𝜃 − sin 2𝜃) + sin 2𝜃 (sin 2𝜃 + cos 2𝜃) cos(𝐸+𝜏) − 𝑖 sin 2𝜃 sin(𝐸+𝜏)
(B.14)

and

𝐴2 = cos 2𝜃 (cos 2𝜃 + sin 2𝜃) + sin 2𝜃 (sin 2𝜃 − cos 2𝜃) cos(𝐸+𝜏) − 𝑖 sin 2𝜃 sin(𝐸+𝜏).
(B.15)

The final 𝜋/2 rotation along 𝑥 and measurement on the 𝑧 basis is equivalent to
measuring the expectation value of 𝑆𝑦.

𝑃1 =
1
4
(− ⟨↑1↑2 | + 𝑖 ⟨𝜙(𝜏) | + ⟨↓1↓2 |) 𝑆𝑦1 (− |↑1↑2⟩ − 𝑖 |𝜙(𝜏)⟩ + |↓1↓2⟩) (B.16)

=
1
8
(𝐴2 + 𝐴∗

1 + 𝐴∗
2 + 𝐴1)

=
cos2 2𝜃

2
+ sin2 2𝜃

2
cos(

√
Δ2 + 𝐽2

2
𝜏)

=
Δ2

2(Δ2 + 𝐽2)
+ 𝐽2

2(Δ2 + 𝐽2)
cos(

√
Δ2 + 𝐽2

2
𝜏)

It is easy to know that 𝑃1 = 𝑃2

B.2 Perturbation theory calculation for adding a third spin to a pair of
strongly interaction spins

In this appendix, we provide the full derivation of second-order perturbation theory
for the evolution of three resonantly interacting spins under an echo sequence. In
the case without disorder, the three-atom Hamiltonian is given by

𝐻 = 𝐻0 +𝑉 = 𝐽0(𝑆1
𝑥𝑆

2
𝑥 + 𝑆1

𝑦𝑆
2
𝑦) + 𝐽1(𝑆1

𝑥𝑆
3
𝑥 + 𝑆1

𝑦𝑆
3
𝑦) + 𝐽2(𝑆2

𝑥𝑆
3
𝑥 + 𝑆2

𝑦𝑆
3
𝑦) (B.17)

where 𝐻0 = 𝐽0(𝑆1
𝑥𝑆

2
𝑥 + 𝑆1

𝑦𝑆
2
𝑦) and |𝐽0 | ≫ |𝐽1 |, |𝐽2 |, so 𝑉 is a perturbation relative to

𝐻0.

To begin, the eigenstates of 𝐻0 =
𝐽0
2

(
𝑆1
+𝑆

2
− + 𝑆1

−𝑆
2
+
)

are as follows:

|+⟩ = 1
√

2
( |↑1↓2⟩ + |↓1↑2⟩) (B.18)
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|−⟩ = 1
√

2
( |↑1↓2⟩ − |↓1↑2⟩) (B.19)

with eigenvalues of ± 𝐽0
2 and |↑1↑2⟩, |↓1↓2⟩ with eigenvalues of 0. The final eight

eigenstates are formed by taking the direct product of these four eigenstates with the
states of the third spin, |↑3⟩ , |↓3⟩.

First-order correction

𝑉 =
𝐽1
2
(𝑆1

+𝑆
3
− + 𝑆1

−𝑆
3
+) +

𝐽2
2
(𝑆2

+𝑆
3
− + 𝑆2

−𝑆
3
+) (B.20)

It is easy to see that the first-order correction to the eigenenergies is zero due to
the fact that ⟨↑3 |𝑉 | |↑3⟩ = ⟨↓3 |𝑉 | |↓3⟩ = 0. Let us now calculate the first-order
correction for the eigenstates.

|+⟩ |↑3⟩ (1) =
𝐽1 + 𝐽2√

2𝐽0
|↑1↑2⟩ |↓3⟩ (B.21)

|+⟩ |↓3⟩ (1) =
𝐽1 + 𝐽2√

2𝐽0
|↓1↓2⟩ |↑3⟩ (B.22)

|−⟩ |↑3⟩ (1) =
𝐽1 − 𝐽2√

2𝐽0
|↑1↑2⟩ |↓3⟩ (B.23)

|−⟩ |↓3⟩ (1) =
𝐽2 − 𝐽1√

2𝐽0
|↓1↓2⟩ |↑3⟩ (B.24)

|↓1↓2⟩ |↑3⟩ (1) = −𝐽1 + 𝐽2√
2𝐽0

|+⟩ |↓3⟩ +
𝐽1 − 𝐽2√

2𝐽0
|−⟩ |↓3⟩ (B.25)

|↑1↑2⟩ |↓3⟩ (1) = −𝐽1 + 𝐽2√
2𝐽0

|+⟩ |↑3⟩ +
𝐽2 − 𝐽1√

2𝐽0
|−⟩ |↑3⟩ (B.26)

|↓1↓2⟩ |↓3⟩ (1) = |↑1↑2⟩ |↑3⟩ (1) = 0 (B.27)

Second-order correction

|+⟩ |↑3⟩ (2) =
(𝐽2

2 − 𝐽2
1 )

4𝐽2
0

|−⟩ |↑3⟩ −
(𝐽1 + 𝐽2)2

4𝐽2
0

|+⟩ |↑3⟩ (B.28)

|+⟩ |↓3⟩ (2) =
(𝐽2

1 − 𝐽2
2 )

4𝐽0
|−⟩ |↓3⟩ −

(𝐽1 + 𝐽2)2

4𝐽2
0

|+⟩ |↓3⟩ (B.29)

𝐸
(2)
|+⟩|↑3⟩ = 𝐸

(2)
|+⟩|↓3⟩ =

(𝐽1 + 𝐽2)2

4𝐽0
(B.30)
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|−⟩ |↑3⟩ (2) =
(𝐽2

2 − 𝐽2
1 )

4𝐽2
0

|+⟩ |↑3⟩ −
(𝐽1 − 𝐽2)2

4𝐽2
0

|−⟩ |↑3⟩ (B.31)

|−⟩ |↓3⟩ (2) =
(𝐽2

1 − 𝐽2
2 )

4𝐽2
0

|+⟩ |↓3⟩ −
(𝐽1 − 𝐽2)2

4𝐽2
0

|−⟩ |↓3⟩ (B.32)

𝐸
(2)
|−⟩|↑3⟩ = 𝐸

(2)
|−⟩|↓3⟩ = − (𝐽1 − 𝐽2)2

4𝐽0
(B.33)

|↓1↓2⟩ |↑3⟩ (2) = −
𝐽2

1 + 𝐽2
2

2𝐽2
0

|↓1↓2⟩ |↑3⟩ (B.34)

|↑1↑2⟩ |↓3⟩ (2) = −
𝐽2

1 + 𝐽2
2

2𝐽2
0

|↑1↑2⟩ |↓3⟩ (B.35)

𝐸
(2)
|↓1↓2⟩|↑3⟩ = 𝐸

(2)
|↑1↑2⟩|↓3⟩ = −𝐽1𝐽2

𝐽0
(B.36)

|↓1↓2⟩ |↓3⟩ (2) = |↑1↑2⟩ |↑3⟩ (2) = 0 (B.37)

𝐸
(2)
|↓1↓2⟩|↓3⟩ = 𝐸

(2)
|↑1↑2⟩|↑3⟩ = 0 (B.38)

Thus, we have our eight new eigenstates and their eigenenergies to the second order.

Eigenstates Eigenvalues

|1⟩ = (1 − (𝐽1+𝐽2)2

4𝐽2
0

) |+⟩ |↑3⟩ + 𝐽1+𝐽2√
2𝐽0

|↑1↑2⟩ |↓3⟩ +
(𝐽2

2−𝐽
2
1 )

4𝐽2
0

|−⟩ |↑3⟩ 𝐽0
2 + (𝐽1+𝐽2)2

4𝐽0

|2⟩ = (1 − (𝐽1+𝐽2)2

4𝐽2
0

) |+⟩ |↓3⟩ + 𝐽1+𝐽2√
2𝐽0

|↓1↓2⟩ |↑3⟩ +
(𝐽2

1−𝐽
2
2 )

4𝐽0
|−⟩ |↓3⟩ 𝐽0

2 + (𝐽1+𝐽2)2

4𝐽0

|3⟩ = (1 − (𝐽1−𝐽2)2

4𝐽2
0

) |−⟩ |↑3⟩ + 𝐽1−𝐽2√
2𝐽0

|↑1↑2⟩ |↓3⟩ +
(𝐽2

2−𝐽
2
1 )

4𝐽2
0

|+⟩ |↑3⟩ − 𝐽0
2 − (𝐽1−𝐽2)2

4𝐽0

|4⟩ = (1 − (𝐽1−𝐽2)2

4𝐽2
0

) |−⟩ |↓3⟩ + 𝐽2−𝐽1√
2𝐽0

|↓1↓2⟩ |↑3⟩ +
(𝐽2

1−𝐽
2
2 )

4𝐽2
0

|+⟩ |↓3⟩ − 𝐽0
2 − (𝐽1−𝐽2)2

4𝐽0

|5⟩ = (1 − 𝐽2
1+𝐽

2
2

2𝐽2
0
) |↓1↓2⟩ |↑3⟩ − 𝐽1+𝐽2√

2𝐽0
|+⟩ |↓3⟩ + 𝐽1−𝐽2√

2𝐽0
|−⟩ |↓3⟩ − 𝐽1𝐽2

𝐽0

|6⟩ = (1 − 𝐽2
1+𝐽

2
2

2𝐽2
0
) |↑1↑2⟩ |↓3⟩ − 𝐽1+𝐽2√

2𝐽0
|+⟩ |↑3⟩ + 𝐽2−𝐽1√

2𝐽0
|−⟩ |↑3⟩ − 𝐽1𝐽2

𝐽0

|7⟩ = |↑1↑2⟩ |↑3⟩ 0

|8⟩ = |↓1↓2⟩ |↓3⟩ 0
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We can solve inversely up to second-order accuracy.

|↓1↓2⟩ |↑3⟩ = (1 −
𝐽2

1 + 𝐽2
2

2𝐽2
0

) |5⟩ + 𝐽1 + 𝐽2√
2𝐽0

|2⟩ + 𝐽2 − 𝐽1√
2𝐽0

|4⟩ (B.39)

|↑1↑2⟩ |↓3⟩ = (1 −
𝐽2

1 + 𝐽2
2

2𝐽2
0

) |6⟩ + 𝐽1 + 𝐽2√
2𝐽0

|1⟩ + 𝐽1 − 𝐽2√
2𝐽0

|3⟩ (B.40)

|+⟩ |↑3⟩ = (1 − (𝐽1 + 𝐽2)2

4𝐽2
0

) |1⟩ − 𝐽1 + 𝐽2√
2𝐽0

|6⟩ +
𝐽2

2 − 𝐽2
1

4𝐽2
0

|3⟩ (B.41)

|+⟩ |↓3⟩ = (1 − (𝐽1 + 𝐽2)2

4𝐽2
0

) |2⟩ − 𝐽1 + 𝐽2√
2𝐽0

|5⟩ +
𝐽2

1 − 𝐽2
2

4𝐽2
0

|4⟩ (B.42)

|−⟩ |↑3⟩ = (1 − (𝐽1 − 𝐽2)2

4𝐽2
0

) |3⟩ + 𝐽2 − 𝐽1√
2𝐽0

|6⟩ +
𝐽2

2 − 𝐽2
1

4𝐽2
0

|1⟩ (B.43)

|−⟩ |↓3⟩ = (1 − (𝐽1 − 𝐽2)2

4𝐽2
0

) |4⟩ + 𝐽1 − 𝐽2√
2𝐽0

|5⟩ +
𝐽2

1 − 𝐽2
2

4𝐽2
0

|2⟩ (B.44)

System evolution
Let us then look at the system evolution. The initial state after the 𝜋/2 rotation along
𝑦̂1 gives |𝜙(0)⟩ = 1√

2
( |↑1⟩ + |↓1⟩) 1√

2
( |↑2⟩ + |↓2⟩) 1√

2
( |↑3⟩ + |↓3⟩), expressed in terms

of the new eigenstates as

|𝜙(0)⟩ = 1
2
√

2
( (√

2 + 𝐽1 + 𝐽2√
2𝐽0

− (𝐽1 + 𝐽2)2

2
√

2𝐽2
0

)
( |1⟩+|2⟩)+

(
𝐽1 − 𝐽2√

2𝐽0
+
𝐽2

2 − 𝐽2
1

2
√

2𝐽2
0

)
( |3⟩−|4⟩)

+
(
1 − 𝐽1 + 𝐽2

𝐽0
−
𝐽2

1 + 𝐽2
2

2𝐽2
0

)
( |5⟩ + |6⟩) + |7⟩ + |8⟩

)
. (B.45)

Since there is no detuning, the middle 𝜋 pulse will not change the final polarization
along 𝑥, so we can ignore it. After time 𝑡, the system state becomes:

|𝜙(𝑡)⟩ = 1
2
√

2
( (√

2 + 𝐽1 + 𝐽2√
2𝐽0

− (𝐽1 + 𝐽2)2

2
√

2𝐽2
0

)
( |1⟩ + |2⟩)𝑒−𝑖(

𝐽0
2 + (𝐽1+𝐽2 )2

4𝐽0
)𝑡

+
(
𝐽1 − 𝐽2√

2𝐽0
+
𝐽2

2 − 𝐽2
1

2
√

2𝐽2
0

)
( |3⟩ − |4⟩)𝑒𝑖(

𝐽0
2 + (𝐽1−𝐽2 )2

4𝐽0
)𝑡

+
(
1 − 𝐽1 + 𝐽2

𝐽0
−
𝐽2

1 + 𝐽2
2

2𝐽2
0

)
( |5⟩ + |6⟩)𝑒𝑖

𝐽1𝐽2
𝐽0

𝑡 + |7⟩ + |8⟩
)
. (B.46)

1In this derivation, note that we rotate relative to the 𝑦̂ axis instead of the 𝑥 axis to avoid using 𝑖.
The results should be the same regardless of the choice of 𝑥 and 𝑦̂ axes.
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Measure spin 1 at the end: 𝑃1 = ⟨𝜙(𝑡) | 2𝑆1
𝑥 |𝜙(𝑡)⟩. The value should range from −1

to 1. Keep terms up to second order of 𝐽1/𝐽0 and 𝐽2/𝐽0.

2𝑆1
𝑥 ( |1⟩ + |2⟩) = 𝐽1 + 𝐽2

𝐽0
( |1⟩ + |2⟩) + 𝐽1

𝐽0
( |3⟩ − |4⟩)

+
(

1
√

2
−

4𝐽2
1 + 𝐽2

2 + 3𝐽1𝐽2

2
√

2𝐽2
0

)
( |5⟩ + |6⟩) + ( 1

√
2
−
𝐽2

2 + 𝐽1𝐽2

2
√

2𝐽2
0

) ( |7⟩ + |8⟩) (B.47)

2𝑆1
𝑥 ( |3⟩ − |4⟩) = 𝐽1

𝐽0
( |1⟩ + |2⟩) + 𝐽1 − 𝐽2

𝐽0
( |3⟩ − |4⟩)

+
(

1
√

2
−

4𝐽2
1 + 𝐽2

2 − 3𝐽1𝐽2

2
√

2𝐽2
0

)
( |5⟩ + |6⟩) − ( 1

√
2
−
𝐽2

2 − 𝐽1𝐽2

2
√

2𝐽2
0

) ( |7⟩ + |8⟩) (B.48)

2𝑆1
𝑥 ( |5⟩ + |6⟩) =

(
1
√

2
−

4𝐽2
1 + 𝐽2

2 + 3𝐽1𝐽2

2
√

2𝐽2
0

)
( |1⟩ + |2⟩)

+
(

1
√

2
−

4𝐽2
1 + 𝐽2

2 − 3𝐽1𝐽2

4
√

2𝐽2
0

)
( |3⟩ − |4⟩) − 2𝐽1

𝐽0
( |5⟩ + |6⟩) − 𝐽2

𝐽0
( |7⟩ + |8⟩) (B.49)

2𝑆1
𝑥 ( |7⟩ + |8⟩) =

(
1
√

2
−
𝐽2

2 + 𝐽1𝐽2

2
√

2𝐽2
0

)
( |1⟩ + |2⟩)

−
(

1
√

2
−
𝐽2

2 − 𝐽1𝐽2

2
√

2𝐽2
0

)
( |3⟩ − |4⟩) − 𝐽2

𝐽0
( |5⟩ + |6⟩) (B.50)

Based on the orthogonality of different eigenstates, we can calculate the contribution
from each eigenstate up to second order as follows:

𝑃12
1 =

1
4
(2(𝐽1 + 𝐽2)

𝐽0
+ 2(𝐽1 + 𝐽2)2

𝐽2
0

+ 𝐽1(𝐽1 − 𝐽2)
𝐽2

0
𝑒
𝑖(𝐽0+

𝐽2
1 +𝐽2

2
2𝐽0

)𝑡

+
(
1 − 𝐽1 + 𝐽2

2𝐽0
−

13𝐽2
1 + 7𝐽2

2 + 12𝐽1𝐽2

4𝐽2
0

)
𝑒
𝑖( 𝐽0

2 +
𝐽2
1 +𝐽2

2 +6𝐽1𝐽2
4𝐽0

)𝑡

+
(
1 + 𝐽1 + 𝐽2

2𝐽0
−
𝐽2

1 + 3𝐽2
2 + 4𝐽1𝐽2

4𝐽2
0

)
𝑒
𝑖( 𝐽0

2 + (𝐽1+𝐽2 )2
4𝐽0

)𝑡) (B.51)
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𝑃34
1 =

1
4
( 𝐽1(𝐽1 − 𝐽2)

𝐽2
0

𝑒
−𝑖(𝐽0+

𝐽2
1 +𝐽2

2
2𝐽0

)𝑡 +
(
𝐽1 − 𝐽2

2𝐽0
+

3(𝐽2
2 − 𝐽2

1 )
4𝐽2

0

)
𝑒
−𝑖( 𝐽0

2 +
𝐽2
1 +𝐽2

2 −6𝐽1𝐽2
4𝐽0

)𝑡

−
(
𝐽1 − 𝐽2

2𝐽0
+
𝐽2

2 − 𝐽2
1

4𝐽2
0

)
𝑒
−𝑖( 𝐽0

2 + (𝐽1−𝐽2 )2
4𝐽0

)𝑡) (B.52)

𝑃56
1 =

1
4
(
(
1 − 𝐽1 + 𝐽2

2𝐽0
−

13𝐽2
1 + 7𝐽2

2 + 12𝐽1𝐽2

4𝐽2
0

)
𝑒
−𝑖( 𝐽0

2 +
𝐽2
1 +𝐽2

2 +6𝐽1𝐽2
4𝐽0

)𝑡

+
(
𝐽1 − 𝐽2

2𝐽0
+

3(𝐽2
2 − 𝐽2

1 )
4𝐽2

0

)
𝑒
𝑖( 𝐽0

2 +
𝐽2
1 +𝐽2

2 −6𝐽1𝐽2
4𝐽0

)𝑡

− 2𝐽1
𝐽0

+ 4𝐽1(𝐽1 + 𝐽2)
𝐽2

0
−

(
𝐽2
𝐽0

− 𝐽2(𝐽1 + 𝐽2)
𝐽2

0

)
𝑒
−𝑖 𝐽1𝐽2

𝐽0
𝑡) (B.53)

𝑃78
1 =

1
4
(
(
1 + 𝐽1 + 𝐽2

2𝐽0
−
𝐽2

1 + 3𝐽2
2 + 4𝐽1𝐽2

4𝐽2
0

)
𝑒
−𝑖( 𝐽0

2 + (𝐽1+𝐽2 )2
4𝐽0

)𝑡

+
(
𝐽2 − 𝐽1

2𝐽0
+
𝐽2

1 − 𝐽2
2

4𝐽2
0

)
𝑒
𝑖( 𝐽0

2 + (𝐽1−𝐽2 )2
4𝐽0

)𝑡

−
(
𝐽2
𝐽0

− 𝐽2(𝐽1 + 𝐽2)
𝐽2

0

)
𝑒
𝑖
𝐽1𝐽2
𝐽0

𝑡). (B.54)

And 𝑃1 = 𝑃12
1 + 𝑃34

1 + 𝑃56
1 + 𝑃78

1 . We can list terms with different frequencies
separately:

𝑃𝐷𝐶
1 =

𝐽2
2𝐽0

+
3𝐽2

1 + 𝐽2
2 + 4𝐽1𝐽2

2𝐽2
0

(B.55)

𝑃

𝐽1𝐽2
𝐽0

1 = −1
2

(
𝐽2
𝐽0

− 𝐽2(𝐽1 + 𝐽2)
𝐽2

0

)
cos

𝐽1𝐽2
𝐽0

𝑡 (B.56)

𝑃
𝐽0
1 =

𝐽1(𝐽1 − 𝐽2)
2𝐽2

0
cos (𝐽0 +

𝐽2
1 + 𝐽2

2
2𝐽0

)𝑡 (B.57)
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𝑃
𝐽0/2,1
1 =

1
2

(
1 − 𝐽1 + 𝐽2

2𝐽0
−

13𝐽2
1 + 7𝐽2

2 + 12𝐽1𝐽2

4𝐽2
0

)
cos ( 𝐽0

2
+
𝐽2

1 + 𝐽2
2 + 6𝐽1𝐽2

4𝐽0
)𝑡
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𝑃
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2
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2𝐽0
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𝐽2

1 + 3𝐽2
2 + 4𝐽1𝐽2

4𝐽2
0

)
cos ( 𝐽0

2
+ (𝐽1 + 𝐽2)2

4𝐽0
)𝑡 (B.59)

𝑃
𝐽0/2,3
1 =

1
2

(
𝐽1 − 𝐽2

2𝐽0
+

3(𝐽2
2 − 𝐽2

1 )
4𝐽2

0

)
cos ( 𝐽0

2
+
𝐽2

1 + 𝐽2
2 − 6𝐽1𝐽2

4𝐽0
)𝑡 (B.60)

𝑃
𝐽0/2,3
1 =

1
2

(
𝐽2 − 𝐽1

2𝐽0
+
𝐽2

1 − 𝐽2
2

4𝐽2
0

)
cos ( 𝐽0

2
+ (𝐽1 − 𝐽2)2

4𝐽0
)𝑡. (B.61)
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