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ABSTRACT

Electron-phonon (𝑒-ph) interactions play a critical role in determining material
properties, such as charge and heat transport, optical response, and superconduc-
tivity. Recent advances in first-principles calculations based on density functional
theory (DFT) enable quantitatively predictive studies of 𝑒-ph interactions and charge
transport in a wide range of simple semiconductors and metals. However, certain
technologically important materials, such as organic crystals and transition metal
oxides (TMOs), remain less explored. Organic molecular crystals, known for their
versatile electronic and mechanical properties, typically require high charge carrier
mobility for practical applications. Yet accurately predicting the mobility and en-
gineering approaches to improve it are challenging in organic crystals, because of
their complex crystal structures with large unit cells and various charge transport
regimes induced by 𝑒-ph interactions. Similarly, TMOs, both conventional and
strongly correlated, are materials with broad applications and unique physics. A no-
table example are copper oxides (cuprate) superconductors, which are central to the
study of high-temperature superconductivity and other exotic physical phenomena.
Extensive experimental studies, particularly using photoemission techniques, have
been employed to indirectly probe the 𝑒-ph interactions in TMOs. Nevertheless,
many results are not fully understood, and calculations of 𝑒-ph coupling in TMOs
are still scarce. This is mainly due to the strong correlation induced by 𝑑- and
𝑓 -electrons posing a significant challenge to modeling.

This thesis aims to develop state-of-the-art first-principles calculations to accurately
describe 𝑒-ph interactions and the associated physical properties in organic crystals
and TMOs. We focus on three research topics. First, we investigate the high-
mobility bandlike transport regime in organic crystals. Using the formalism of the
Boltzmann transport equation with electronic collisions computed from first princi-
ples, we study the mobility and its temperature dependence in benzene, anthracene,
tetracene, pentacene, and biphenyl. Our results are in excellent agreement with
experiments in all cases, and our pentacene calculation (72 atoms per unit cell) sets
the record for the largest first-principles 𝑒-ph calculation to date. We find that the
mobility is mainly regulated by 𝑒-ph scattering from low-frequency intermolecular
phonons. Our analysis evidences the effectiveness of strain-based engineering to
improve the mobility of organic crystals. Second, we propose a computational ap-
proach to study the intermediate polaronic transport regime in organic crystals. This
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method combines a finite-temperature cumulant-expansion approach for calculating
electron spectral functions with the Kubo formula to compute the electronic con-
ductivity and mobility. We show calculations of electron mobility in a naphthalene
crystal in excellent agreement with experiments, and find that polaron effects, en-
coded in the satellites of the spectral functions, are induced by strong 𝑒-ph coupling
of intramolecular hydrogen-atom vibrations. In the third and final topic, we study
quantitatively the 𝑒-ph interactions in cuprate superconducting materials. Using
the framework of Hubbard-corrected DFT, we focus on the prototypical parent (un-
doped) cuprate compound La2CuO4, which becomes superconducting upon doping.
We show the first quantitative evidence of strong Fröhlich-type 𝑒-ph interactions be-
tween holes and oxygen atomic vibrations, as well as polaron effects in hole spectral
functions. Our findings explain a range of observations in photoemission experi-
ments on both undoped and doped cuprates, suggesting the strong 𝑒-ph coupling is
an intrinsic feature of the parent compounds rather than being induced by doping.
The computational workflow presented in this work can be easily extended to a broad
class of strongly-correlated oxides and insulators more generally. In summary, this
thesis pushes the boundaries of first-principles calculations of 𝑒-ph interactions and
transport, paving the way for a microscopic understanding of materials with large
and complex unit cells, strong electronic correlations, and strong 𝑒-ph interactions.
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C h a p t e r 1

INTRODUCTION

1.1 Overview
Electron-phonon (𝑒-ph) interactions play a critical role in determining the properties
of conventional metals, semiconductors, and insulators, as well as novel quantum
materials. First, 𝑒-ph interactions act as a major limiting factor for the efficiency of
many solid-state applications. For example, phonons, the quanta of atomic vibra-
tions, impede the movement of charge carriers (electrons and holes) in traditional
semiconductors and metals, resulting in restricted electrical conductivity [1]. They
also cause electron spins to undergo spin-flip scattering and decoherence, posing a
challenge to implement spintronic devices and spin-based quantum technologies [2].
In addition, 𝑒-ph interactions govern key properties linked to material performance,
for example by assisting optical absorption in indirect-gap semiconductors widely
employed in solar cells [3], as well as reducing heat transport [4] to improve ther-
moelectric performance. Finally, conventional superconductivity is due to 𝑒-ph
interactions, where electrons are attracted by forces mediated by phonons to form
Cooper pairs and condense into a superfluid that is able to carry electric current
without dissipation [5]. Unconventional (or high-temperature) superconductivity,
on the other hand, is believed to arise from the interplay between 𝑒-ph interactions
and electron correlations [6], although the microscopic details of these interac-
tions remain a major unsolved problem in condensed matter physics. Therefore,
understanding 𝑒-ph coupling in materials is crucial for tasks ranging from optimiz-
ing modern electronics to designing renewable energy, low-dissipation wires, and
quantum technologies.

Organic crystals are a class of technologically important materials with proper-
ties heavily influenced by 𝑒-ph interactions. These crystals are formed by stacked
molecules, which makes them mechanically flexible and environmentally benign
compared to their inorganic counterparts. Their electronic properties range from
insulating to semiconducting, with versatility such as hosting ferroelectricity [7],
magnetism [8] and superconductivity [9]. Organic semiconductors find applica-
tion in stretchable electronics [10], bioelectronics [11], batteries [12], optoelec-
tronics [13], solar cells [14], spintronics [15], and more. However, the limited
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efficiency of these devices has been a bottleneck for real-world applications. The
charge carrier mobility, a key figure of merit for semiconductors, is commonly
below 10 cm2V−1s−1 [16] in organic crystals. This is significantly lower than the
∼ 103 cm2V−1s−1 in traditional semiconductors like silicon and germanium. The
low mobility is due to electron motions being hindered by the interactions with
intra- and inter-molecular atomic vibrations (phonons). Furthermore, such complex
𝑒-ph interactions lead to a wide range of charge transport regimes [17]. Even in the
same organic crystal, electron and hole carriers in different crystallographic direc-
tions may exhibit mobilities differing by orders of magnitude and with significantly
distinct temperature dependence. This makes modeling the mobility notoriously
difficult, with simulated results often differ from experimental values by orders of
magnitudes. Moreover, the inherent structural complexity and low symmetry of
organic crystals result in unit cells comprising a few tens to a few hundred atoms,
making simulations prohibitive. These challenges call for accurate predictions of
charge carrier mobility as a central effort for organic materials research.

Transition metal oxides (TMOs) are another class of materials critical to condensed
matter physics and devices for various applications. The TMOs host a plethora of
exotic physical phenomena, including multiferroicity [18], colossal magnetoresis-
tance [19], and unconventional states of matter such as strange metal [20] and charge
density wave [21]. Among the TMO family, copper oxides (cuprates) are the most
well-known for holding the record for the highest superconducting critical temper-
ature at ambient pressure to date (135 K) [22]. Cuprates exhibit a complex phase
diagram in the charge doping versus temperature design space [23]. This behavior
is believed to result from the intricate interplay between strong electron correlations
(electron-electron interactions) imparted by the localized 𝑑- and 𝑓 -electronic or-
bitals, and 𝑒-ph interactions between the localized charges and the lattice with polar
covalent or ionic bonds [24]. Over the past few decades, angle-resolved photoe-
mission spectroscopy (ARPES) [25] experiments have been extensively conducted
to study the electronic structures in cuprates. The measured electron spectral func-
tions provided indirect evidence of strong 𝑒-ph interactions [26]. However, these
results have yet to be fully understood theoretically, mainly due to the correlation
effects posing a challenge to modeling even the ground state. Therefore, devel-
oping accurate calculations of 𝑒-ph interactions and electron spectral functions in
strongly-correlated TMOs is essential for advancing our grasp of high-temperature
superconductivity and fundamental understanding of materials physics.
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Conventional analytical approaches to treat 𝑒-ph interactions parametrize various
mechanisms for 𝑒-ph interactions, including the deformation potential, piezoelectric,
and polar couplings [27]. System-targeted models have also been developed to de-
scribe specific classes of materials. For example, the Peierls and Holstein models are
used to describe the intermolecular and intramolecular phonons in organic crystals,
respectively [28, 29]. When combined with appropriate transport formalisms, these
models can qualitatively reproduce experimental observations. However, they often
incorporate only a few phonon modes, treat phonons on unequal footings, or require
fitting parameters to experimental data. Such restrictions introduce ambiguity into
calculations and limit the predictive power.

First-principles methods have demonstrated increasing efficiency and accuracy
in predicting material properties [30]. By leveraging density functional theory
(DFT) [31, 32] and density functional perturbation theory (DFPT) [33], these meth-
ods calculate electron and phonon data self-consistently, taking only crystal struc-
tures and atomic positions as input, and without the use of any empirical parameter.
The 𝑒-ph matrix elements are constructed accordingly, where the coupling of all
electronic states with all phonons is taken into account on equal footing [34]. In
the last decade, transport calculations using ab initio 𝑒-ph matrix elements have
achieved tremendous success in simulating the charge carrier mobility in semicon-
ductors, as well as revealing microscopic details of 𝑒-ph dynamics at the phonon
mode-resolved level [35–42]. However, the majority of these first-principles 𝑒-ph
calculations have focused on simple inorganic compounds, particularly elemental or
III-V semiconductors [35–37, 40, 41]. Calculations on organic crystals and TMOs
are still scarce, primarily due to the computational and theoretical complexity.

This thesis aims to develop and apply first-principles 𝑒-ph calculations to study
organic crystals and TMOs. We focus on computing the 𝑒-ph coupling, charge car-
rier mobility, and electron spectral function in these materials, carefully comparing
computed results to experiments. We study both the bandlike and polaron charge
transport mechanisms in organic crystals, and suggest new routes toward achieving
higher mobility. Our calculations evidence the polaronic nature of undoped lan-
thanum cuprate, and draw a connection between the 𝑒-ph coupling in doped and
undoped compounds. Through these studies, this thesis pushes the boundaries of
first-principles calculations and also deepens our understanding of 𝑒-ph interactions
in structurally and/or electronically complex crystals, thus advancing condensed
matter physics, materials engineering, and electronic technology.
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1.2 Physical picture of electron-phonon interactions

Figure 1.1: Charge transport regimes and their corresponding electron spectral
functions [𝐴(𝐸), purple] due to 𝑒-ph interactions. Red represents electrons and
blue indicates phonon effects. The black circles represent lattice sites in a crystal.

Depending on the strength of the 𝑒-ph coupling, materials exhibit a variety of charge
transport regimes [43], each dominated by a unique transport mechanism that needs
to be described by a specific level of theory. These different regimes exhibit distinct
temperature dependence of the mobility, which is a macroscopic quantity measuring
how fast charges can move on average under an applied electric field. For the
microscopic behavior of a charge carrier, the electron spectral function 𝐴(𝐸) is
typically studied. As a distribution function over the energy 𝐸 , the spectral function
indicates how closely a charge carrier behaves like that in a non-interacting ideal
electron gas. To illustrate how these quantities are influenced by 𝑒-ph interactions,
we first consider an ideal electron gas with no interactions, and then gradually turn
on 𝑒-ph interactions to observe how the system evolves [44].

In the absence of interactions, electrons form Bloch waves that extend periodically
throughout crystal lattice, with their spectral functions being Dirac delta functions.
Since no mechanism is present for electrons to lose energy, once an electronic
state is excited by an external electric field, the state has an ideally long lifetime,
resulting in an effectively infinite mobility in the collision picture. When 𝑒-ph
interactions are weak, the band transport regime emerges (Figure 1.1), where carriers
are still delocalized waves but their spectral functions acquire a finite width, deviating
from the delta function and indicating the presence of quasiparticles (QPs) with
a finite lifetime [44]. In contrast to the long-lived electronic states in the non-
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interacting system, QPs have finite lifetimes (or relaxation times) due to phonon-
induced scattering, which occasionally kicks a charge carrier out of the current state
into another electronic state. The scattering rate is proportional to the QP peak
width, and can be calculated from lowest-order perturbation theory using Fermi’s
golden rule [30]. This semi-classical 𝑒-ph scattering mechanism is described by
the Boltzmann transport equation (BTE) [1], which describes charge transport in
the band picture when interactions are weak and result in isolated collision events.
This regime applies to many simple solid-state materials, such as elemental [45]
and III-V semiconductors [46] and a wide range of metals like aluminum and
copper [47]. The charge carrier mobility in the band transport regime is typically
> 10 cm2V−1s−1 at room temperature, and exhibits a 𝑇−𝑛 power-law decrease with
respect to temperature. Identifying the exponent 𝑛 in the power-law is important to
characterize the mechanism governing charge transport in this regime.

As 𝑒-ph interactions get stronger, a charge carrier becomes surrounded by a cloud of
phonons while traveling through the crystal, becoming “heavier” and more localized,
forming a so-called large (or delocalized) polaron (Fig. 1.1) [48]. The corresponding
electron spectral function exhibits significant weight transfer from the QP peak to
the phonon-induced satellite peaks (or sidebands), which emerge on the shoulders
of the spectral function. To capture such weight transfer, computational methods
incorporating higher-order 𝑒-ph interactions are needed to calculate the spectral
function, such as the cumulant expansion approach [49, 50] and diagrammatic Monte
Carlo [51] among others [48]. Since the electronic state resides not only in the QP
peak but also in the satellites, an accurate description of charge transport should
take into account full spectral function, which can be accomplished for example
using the Kubo formalism within linear response theory [27]. Large polarons are
commonly found in halide perovskites [52] and oxides [53, 54]. Their mobility
is typically 1–10 cm2V−1s−1 near room temperature and also follows a power-law
decrease with temperature, although usually with a weaker temperature dependence
than that in the band transport regime.

In the presence of even stronger 𝑒-ph interactions, a charge carrier forms a small
polaron trapped on and hopping between lattice sites (Fig. 1.1) [48]. Small polarons
are commonly present in TMOs [55] and organic crystals [56], with their corre-
sponding self-trapping lattice sites being atoms and molecules, respectively. In this
regime, the QP peak in the electron spectral function becomes indistinguishable, and
its weight is distributed over a series of phonon-induced excitation peaks [57]. The
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small polaron states can be qualitatively understood using the Holstein model [58],
and their hopping processes, which are thermally activated, can be described by Mar-
cus theory [59]. The hopping mobility is typically < 1 cm2V−1s−1 and is constant
or increases with temperature.

1.3 First-principles calculations
First-principles calculations based on DFT have been a workhorse for studies of the
electronic structure in materials for several decades. The foundation of DFT lies
in the Hohenberg-Kohn theorem, which states that the ground-state energy of an
interacting many-electron system is a unique functional of its ground-state charge
density [31]. Soon after this theorem’s formulation, Kohn and Sham introduced
an ansatz, proposing that the true ground-state charge density of the interacting
system can be reproduced from a fictitious non-interacting electron system, or
the Kohn-Sham (KS) system [32]. The theorem and ansatz together lead to a
Schödinger-like equation. By approximating the exchange-correlation energy term,
the KS equation can be solved self-consistently, yielding the ground-state energies
and single-particle wave functions, also known as the KS electron orbitals. In
particular, when calculated with suitable approximations of the exchange-correlation
functional, these orbital energies can be viewed as QP wave functions describing the
addition or removal of electrons in solids and molecules. Nowadays, first-principles
studies are increasingly focused on leveraging KS orbitals to investigate excited states
and nonequilibrium phenomena, including optical response and charge transport.
This thesis explores the use of first-principles calculations to study the band and
large polaron transport regimes in materials.

Electron, phonon, and electron-phonon coupling
Throughout this thesis, we the ground-state electron Bloch wave functions |𝑛k⟩
and band energies 𝜀𝑛k using DFT, where 𝑛 and k are the band index and crystal
momentum, respectively. These calculations are carried out using the Quantum
ESPRESSO code [60, 61]. When dynamical screening effects are considered, the
GW approximation [62] as implemented in the Yambo code [63] is employed to
correct the DFT band structure. For Mott insulators, where strong correlation arises
from the Coulomb repulsion between localized 𝑑 or 𝑓 orbitals, plain DFT is not
suitable. In these cases, Hubbard-corrected DFT (DFT+𝑈) [64], in which an extra
𝑈 term is added to the energy functional to capture on-site Coulomb repulsion, is
employed to obtain the correlated electron ground state. The 𝑈 parameters for the
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Hubbard atoms are determined ab initio by iteratively relaxing the crystal structure
with DFT+𝑈 and calculating𝑈 from linear response [65, 66], until self-consistency
is achieved between the crystal structure and𝑈 parameters. As such, our calculations
remain free of adjustable parameters.

We compute lattice dynamics using density functional perturbation theory
(DFPT) [33], a linear response extension of DFT. We obtain phonon energies 𝜔𝜈q,
eigenvectors e𝜅𝛼𝜈q , and perturbation potentials 𝜕q𝜅𝛼𝑉 , where 𝜈 and q are the phonon
mode index and momentum, while 𝛼 and 𝜅 label the Cartesian directions and the
atoms in a unit cell, respectively. For Mott insulators, we employ Hubbard-corrected
DFPT (DFPT+𝑈) [67] calculations, based on the corresponding DFT+𝑈 calcula-
tions, to compute lattice dynamics. In these cases, the change in the Hubbard-like
potential due to lattice pertubation is included in the 𝑒-ph perturbation potential.
For systems with anharmonic effects that result in unphysical soft phonon modes
in DFPT(+𝑈), we employ the stochastic self-consistent harmonic approximation
(SSCHA) [68] to obtain an effective harmonic representation for the anharmonic
phonons at finite temperature; this is achieved by constructing ensembles of random
atomic configurations [68].

The 𝑒-ph matrix elements are obtained by combining the electron and phonon data,
and are given by [30]

𝑔𝑚𝑛𝜈 (k, q) =
√︄

ℏ

2𝜔𝜈q

∑︁
𝜅𝛼

e𝜅𝛼𝜈q√
𝑀𝜅

⟨𝑚k + q|𝜕q𝜅𝛼𝑉 |𝑛k⟩, (1.1)

where 𝑀𝜅 is the mass of atom 𝜅. In practice, due to computational cost, DFT(+𝑈)
and DFPT(+𝑈) calculations are performed using coarse momentum k- and q-grids.
Consequently, the 𝑒-ph matrix elements are also formed on these coarse grids. How-
ever, to converge integrals and summations in transport calculations, one usually
needs matrix elements on a finer grid that is 103–104 times denser. These correspond
to coarse grids of 10 × 10 × 10 and fine grids of 100 × 100 × 100 in the Brillouin
zone (BZ) for typical systems with a few atoms in the unit cells. Since this thesis
is focused on complex systems with larger unit cells including more than ten atoms,
our calculations require coarse and fine grids of orders 4 × 4 × 4 and 50 × 50 × 50,
respectively. Therefore, we employ the Wannier interpolation technique, as imple-
mented in the Perturbo code [34], to interpolate 𝑒-ph matrix elements from coarse
grids to arbitrarily fine grids. The maximally localized Wannier functions [69]
necessary for this interpolation are obtained using the Wannier90 code [70].
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Electron-phonon dynamics and charge transport
In quantum field theory, the dynamics of an interacting many-body system is encoded
in its self-energy. The lowest-order (Fan-Migdal) 𝑒-ph self-energy is given by [27]

Σ𝑛k(𝐸,𝑇) =
∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2

×
[

𝑁𝜈q + 𝑓𝑚k+q

𝐸 − 𝜀𝑚k+q + 𝜔𝜈q + i𝜂
+

𝑁𝜈q + 1 + 𝑓𝑚k+q

𝐸 − 𝜀𝑚k+q − 𝜔𝜈q + i𝜂

]
, (1.2)

where 𝐸 is the electron energy, 𝑇 is the temperature, and 𝜂 is a real positive
infinitesimal. 𝑓𝑛k and 𝑁𝜈q are the electron Fermi-Dirac and phonon Bose-Einstein
occupations in thermal equilibrium, respectively, which account for the temperature
dependence of the self-energy.

In the weakly-coupled band transport regime, the 𝑒-ph scattering mechanism domi-
nates the transport dynamics. The 𝑒-ph scattering rate can be obtained using Fermi’s
golden rule, which corresponds to calculating the imaginary part of the self-energy
on-shell, given by [30]

Γ𝑛k(𝑇) =
2
ℏ

ImΣ𝑛k(𝜀𝑛k, 𝑇)

=
2𝜋
ℏ

∑︁
𝑚𝜈q

|𝑔𝑛𝑚𝜈 (k, q) |2

× [(𝑁𝜈q + 1 − 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑛k+q − 𝜔𝜈q)
+ (𝑁𝜈q + 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑛k+q + 𝜔𝜈q)] . (1.3)

The charge carrier mobility is given by the BTE within the relaxation time approxi-
mation [71]:

𝜇𝛼𝛽 (𝑇) =
2𝑒

𝑛c𝑉uc

∫
d𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)∑︁
𝑛k

𝜏𝑛k(𝑇)𝑣𝛼𝑛k𝑣
𝛽

𝑛k𝛿(𝐸 − 𝜀𝑛k), (1.4)

where 𝑒 is the electronic charge, 𝑓 the Fermi-Dirac distribution, 𝑛𝑐 the carrier
concentration, and 𝑉u𝑐 is the unit cell volume. 𝜏𝑛k = Γ−1

𝑛k are the 𝑒-ph relaxation
times, and v𝑛k = 𝜕𝜀𝑛k/𝜕k are the electron band velocities.

To address stronger 𝑒-ph interactions, full electron spectral functions including
higher-order interactions need to be computed to capture phonon side bands and
polaron effects. We employ an finite-temperature cumulant approach, in which the
retarded electron Green’s function in the time domain is written using the exponential
ansatz [39, 72, 73]

𝐺R
𝑛k(𝑡, 𝑇) = 𝐺

R,0
𝑛k (𝑡)e𝐶𝑛k (𝑡,𝑇) , (1.5)
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where 𝐺
R,0
𝑛k is the non-interacting Green’s function, and 𝐶𝑛k(𝑡, 𝑇) is the cumulant

function, defined as

𝐶𝑛k(𝑡, 𝑇) =
∫

d𝐸
|ImΣ𝑛k(𝐸 + 𝜀𝑛k, 𝑇) |

𝜋𝐸2 (e−i𝐸𝑡 + i𝐸𝑡 − 1). (1.6)

The exponential ansatz, although computed using the lowest-order self-energy, effec-
tively include contributions from higher-order terms. The electron spectral function
is obtained via the usual relationship from the retarded Green’s function,

𝐴𝑛k(𝐸,𝑇) = −Im𝐺R
𝑛k(𝐸,𝑇)/𝜋. (1.7)

The charge carrier mobility, in the absence of vertex corrections, can be computed
with the electron spectral functions using the linear-response Kubo formula [27, 39,
74]:

𝜇𝛼𝛽 (𝑇) =
𝜋ℏ𝑒

𝑛c𝑉uc

∫
d𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)∑︁
𝑛k

𝑣𝛼𝑛k𝑣
𝛽

𝑛k |𝐴𝑛k(𝐸,𝑇) |2. (1.8)

This cumulant-Kubo (CK) approach thus can describe the charge transport in the
presence of large polarons due to stronger 𝑒-ph interactions.

1.4 Thesis outline
This thesis consists of three separate studies, each leveraging the first-principles
approaches described above to investigate 𝑒-ph interactions and charge transport
dynamics in organic crystals and TMOs.

Chapter 2 presents a comprehensive investigation of bandlike charge transport in
organic crystals, which additionally reveals new strategies to achieve higher mo-
bility. We conduct accurate BTE calculations in the bandlike transport regime in
several crystals including benzene, anthracene, tetracene, pentacene, and biphenyl.
The 𝑒-ph calculations on pentacene (72 atoms per unit cell) are the largest first-
principles 𝑒-ph calculations reported to date, exceeding the previous record on
methylammonium lead iodide (48 atoms per unit cell) [75]. Our computed mo-
bilities show a power-law temperature dependence, achieving excellent agreement
with experiments between 100–400 K in all five materials. We find that scattering
from low-frequency (LF) phonon modes below 150 cm−1 predominantly limits these
mobilities, even though the LF modes are not modes with strongest coupling, and
the phonon spectra includes many modes and extends to 3,100 cm−1. These LF
modes primarily consist of intermolecular vibrations, with increasing long-range
intramolecular character in crystals made up by larger molecules. Furthermore, we
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find that the LF-mode scattering rates are distinctively responsive to strain, sug-
gesting that strain engineering can effective modulate bandlike charge transport and
enhance the mobility.

In Chapter 3, we show that the so-called intermediate charge transport regime in
organic crystals is characterized by the presence of large polarons. Traditionally,
charge transport in organic crystals has long been categorized into two limiting
regimes: band transport and charge hopping. While both limits are described by
well established models, their intermediate regime remains less understood. A
notable example of the intermediate regime is the electron mobility in naphthalene,
which exhibits a bandlike power-law temperature dependence, while BTE fails to
reproduce the correct dependence. Here we demonstrate that the CK approach can
accurately predict carrier mobility in this intermediate regime. Our CK predictions
of the electron mobility in naphthalene are within a factor of 1.5–2 of experiments
between 100–300 K. Our analysis reveals the formation of a broad satellite peak in
the electron spectral function induced by strongly-coupled intramolecular phonons,
indicating large polaron effects and explaining the breakdown of BTE.

In Chapter 4, we examine the strong 𝑒-ph interactions and polaron effects in the
parent (undoped) phase of cuprates, which are supported by ample experimental
observations but are not yet fully understood. Our study focuses on the prototypical
parent compound La2CuO4 (LCO), leveraging DFT+𝑈 with the Hubbard-parameter
𝑈 computed directly rather than fitted to experiments. For the first time in a parent
cuprate, we predict a ground state with a band gap and Cu magnetic moment in
near-exact agreement with experiments. Our computed 𝑒-ph coupling reveals two
classes of longitudinal optical (LO) phonons coupling strongly with hole states in
LCO, consistent in energy with experimental signatures in doped compounds. Addi-
tionally, we calculate the hole spectral functions using the cumulant approach. The
results exhibit a significant broadening due to large-polaron effects and reproduce
features observed ARPES. Our analysis finds a substantial portion of the strong
coupling associated with apical O and Cu-O bond-bending vibrations, which are not
well captured in the conventional models for cuprates. These results show that the
universal strong 𝑒-ph coupling found experimentally in LCO is an intrinsic feature
of the parent compound, and elucidates its microscopic origin.

Finally, Chapter 5 summarizes the main achievements of this thesis and discusses
potential future research directions.



11

References

[1] J. Ziman, Electrons and phonons: The theory of transport phenomena in
solids (Oxford University Press, Oxford, 2001).

[2] J. Park, J.-J. Zhou, Y. Luo, and M. Bernardi, Phys. Rev. Lett. 129, 197201
(2022).

[3] J. Noffsinger, E. Kioupakis, C. G. Van De Walle, S. G. Louie, and M. L.
Cohen, Phys. Rev. Lett. 108, 167402 (2012).

[4] J. Zhou, H. D. Shin, K. Chen, B. Song, R. A. Duncan, Q. Xu, A. A. Maznev,
K. A. Nelson, and G. Chen, Nat. Commun. 11, 6040 (2020).

[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175–1204
(1957).

[6] M. L. Kulić, Phys. Rep. 338, 1–264 (2000).

[7] S. Horiuchi and Y. Tokura, Nat. Mater. 7, 357–366 (2008).

[8] J. S. Miller, Mater. Today 17, 224–235 (2014).

[9] D. Jérome, J. Supercond. Nov. Magn. 25, 633–655 (2012).

[10] T. Q. Trung and N.-E. Lee, Adv. Mater. 29, 1603167 (2017).

[11] D. Ohayon and S. Inal, Adv. Mater. 2001439 (2020).

[12] S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka, and U. S. Schubert,
Chem. Rev. 116, 9438–9484 (2016).

[13] O. Ostroverkhova, Chem. Rev. 116, 13279–13412 (2016).

[14] O. Inganäs, Adv. Mater. 30, 1800388 (2018).

[15] V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nat. Mater. 8, 707–716
(2009).

[16] S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, and H. Sirringhaus, Nat.
Mater. 19, 491–502 (2020).

[17] H. Oberhofer, K. Reuter, and J. Blumberger, Chem. Rev. 117, 10319–10357
(2017).

[18] C. Lu, W. Hu, Y. Tian, and T. Wu, Appl. Phys. Rev. 2, 021304 (2015).

[19] A. P. Ramirez, J. Phys. Condens. Matter 9, 8171 (1997).

[20] R. L. Greene, P. R. Mandal, N. R. Poniatowski, and T. Sarkar, Annu. Rev.
Condens. Matter Phys. 11, 213–229 (2020).

[21] H. Miao, G. Fabbris, R. J. Koch, D. G. Mazzone, C. S. Nelson, R. Acevedo-
Esteves, G. D. Gu, Y. Li, T. Yilimaz, K. Kaznatcheev, E. Vescovo, M. Oda,
T. Kurosawa, N. Momono, T. Assefa, I. K. Robinson, E. S. Bozin, J. M.
Tranquada, P. D. Johnson, and M. P. M. Dean, npj Quantum Mater. 6, 31
(2021).

https://doi.org/10.1103/PhysRevLett.129.197201
https://doi.org/10.1103/PhysRevLett.129.197201
https://doi.org/10.1103/PhysRevLett.108.167402
https://doi.org/10.1038/s41467-020-19938-9
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1016/S0370-1573(00)00008-9
https://doi.org/10.1038/nmat2137
https://doi.org/10.1016/j.mattod.2014.04.023
https://doi.org/10.1007/s10948-012-1475-7
https://doi.org/10.1002/adma.201603167
https://doi.org/10.1002/adma.202001439
https://doi.org/10.1021/acs.chemrev.6b00070
https://doi.org/10.1021/acs.chemrev.6b00127
https://doi.org/10.1002/adma.201800388
https://doi.org/10.1038/nmat2510
https://doi.org/10.1038/nmat2510
https://doi.org/10.1038/s41563-020-0647-2
https://doi.org/10.1038/s41563-020-0647-2
https://doi.org/10.1021/acs.chemrev.7b00086
https://doi.org/10.1021/acs.chemrev.7b00086
https://doi.org/10.1063/1.4921545
https://doi.org/10.1088/0953-8984/9/39/005
https://doi.org/10.1146/annurev-conmatphys-031119-050558
https://doi.org/10.1146/annurev-conmatphys-031119-050558
https://doi.org/10.1038/s41535-021-00327-4
https://doi.org/10.1038/s41535-021-00327-4


12

[22] P. A. Lee, Rep. Prog. Phys. 71, 012501 (2008).

[23] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature
518, 179–186 (2015).

[24] O. Gunnarsson and O. Rösch, J. Phys. Condens. Matter 20, 043201 (2008).

[25] J. A. Sobota, Y. He, and Z.-X. Shen, Rev. Mod. Phys. 93, 025006 (2021).

[26] A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu,
T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S.
Uchida, Z. Hussain, and Z.-X. Shen, Nature 412, 510–514 (2001).

[27] G. D. Mahan, Many-Particle Physics (Springer US, New York, 2000).

[28] J. H. Fetherolf, D. Golež, and T. C. Berkelbach, Phys. Rev. X 10, 021062
(2020).

[29] W. Li, J. Ren, and Z. Shuai, Nat. Commun. 12, 4260 (2021).

[30] M. Bernardi, Eur. Phys. J. B 89, 239 (2016).

[31] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864–B871 (1964).

[32] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133–A1138 (1965).

[33] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys.
73, 515–562 (2001).

[34] J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong, and M. Bernardi, Comput.
Phys. Commun. 264, 107970 (2021).

[35] W. Li, Phys. Rev. B 92, 075405 (2015).

[36] T.-H. Liu, J. Zhou, B. Liao, D. J. Singh, and G. Chen, Phys. Rev. B 95, 075206
(2017).

[37] J. Ma, A. S. Nissimagoudar, and W. Li, Phys. Rev. B 97, 045201 (2018).

[38] N.-E. Lee, J.-J. Zhou, L. A. Agapito, and M. Bernardi, Phys. Rev. B 97, 115203
(2018).

[39] J.-J. Zhou and M. Bernardi, Phys. Rev. Res. 1, 033138 (2019).

[40] G. Brunin, H. P. C. Miranda, M. Giantomassi, M. Royo, M. Stengel, M. J.
Verstraete, X. Gonze, G.-M. Rignanese, and G. Hautier, Phys. Rev. B 102,
094308 (2020).

[41] V. A. Jhalani, J.-J. Zhou, J. Park, C. E. Dreyer, and M. Bernardi, Phys. Rev.
Lett. 125, 136602 (2020).

[42] C. Zhang and Y. Liu, Phys. Rev. B 106, 115423 (2022).

[43] A. S. Mishchenko, N. Nagaosa, G. De Filippis, A. de Candia, and V. Cataudella,
Phys. Rev. Lett. 114, 146401 (2015).

https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1088/0953-8984/20/04/043201
https://doi.org/10.1103/RevModPhys.93.025006
https://doi.org/10.1038/35087518
https://doi.org/10.1103/PhysRevX.10.021062
https://doi.org/10.1103/PhysRevX.10.021062
https://doi.org/10.1038/s41467-021-24520-y
https://doi.org/10.1140/epjb/e2016-70399-4
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1016/j.cpc.2021.107970
https://doi.org/10.1016/j.cpc.2021.107970
https://doi.org/10.1103/PhysRevB.92.075405
https://doi.org/10.1103/PhysRevB.95.075206
https://doi.org/10.1103/PhysRevB.95.075206
https://doi.org/10.1103/PhysRevB.97.045201
https://doi.org/10.1103/PhysRevB.97.115203
https://doi.org/10.1103/PhysRevB.97.115203
https://doi.org/10.1103/PhysRevResearch.1.033138
https://doi.org/10.1103/PhysRevB.102.094308
https://doi.org/10.1103/PhysRevB.102.094308
https://doi.org/10.1103/PhysRevLett.125.136602
https://doi.org/10.1103/PhysRevLett.125.136602
https://doi.org/10.1103/PhysRevB.106.115423
https://doi.org/10.1103/PhysRevLett.114.146401


13

[44] L. D. Landau, Sov. Phys. JETP 3, 920–925 (1957).

[45] C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, Solid-State
Electron. 20, 77–89 (1977).

[46] D. L. Rode, Phys. Rev. B 2, 1012–1024 (1970).

[47] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, 1976).

[48] C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Nat. Rev. Mater. 6,
560–586 (2021).

[49] O. Gunnarsson, V. Meden, and K. Schönhammer, Phys. Rev. B 50, 10462–
10473 (1994).

[50] P. J. Robinson, I. S. Dunn, and D. R. Reichman, Phys. Rev. B 105, 224304
(2022).

[51] A. Mishchenko, N. Prokof’ev, A. Sakamoto, and B. Svistunov, Phys. Rev. B
62, 6317–6336 (2000).

[52] K. Miyata, D. Meggiolaro, M. T. Trinh, P. P. Joshi, E. Mosconi, S. C. Jones,
F. De Angelis, and X.-Y. Zhu, Sci. Adv. 3, e1701217 (2017).

[53] H. P. R. Frederikse, W. R. Thurber, and W. R. Hosler, Phys. Rev. 134, A442–
A445 (1964).

[54] S. Moser, L. Moreschini, J. Jaćimović, O. S. Barišić, H. Berger, A. Magrez,
Y. J. Chang, K. S. Kim, A. Bostwick, E. Rotenberg, L. Forró, and M. Grioni,
Phys. Rev. Lett. 110, 196403 (2013).

[55] A. Bosman and H. Van Daal, Adv. Phys. 19, 1–117 (1970).

[56] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz,
Science 272, 1462–1464 (1996).

[57] J. M. Robin, Phys. Rev. B 56, 13634–13637 (1997).

[58] T. Holstein, Ann. Phys. 8, 343–389 (1959).

[59] R. A. Marcus, Rev. Mod. Phys. 65, 599–610 (1993).

[60] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de
Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis,
A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello,
S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero,
A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.
Condens. Matter 21, 395502 (2009).

http://www.jetp.ras.ru/cgi-bin/dn/e_003_06_0920.pdf
https://doi.org/https://doi.org/10.1016/0038-1101(77)90054-5
https://doi.org/https://doi.org/10.1016/0038-1101(77)90054-5
https://doi.org/10.1103/PhysRevB.2.1012
https://doi.org/10.1038/s41578-021-00289-w
https://doi.org/10.1038/s41578-021-00289-w
https://doi.org/10.1103/PhysRevB.50.10462
https://doi.org/10.1103/PhysRevB.50.10462
https://doi.org/10.1103/PhysRevB.105.224304
https://doi.org/10.1103/PhysRevB.105.224304
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1126/sciadv.1701217
https://doi.org/10.1103/PhysRev.134.A442
https://doi.org/10.1103/PhysRev.134.A442
https://doi.org/10.1103/PhysRevLett.110.196403
https://doi.org/10.1080/00018737000101071
https://doi.org/10.1126/science.272.5267.1462
https://doi.org/10.1103/PhysRevB.56.13634
https://doi.org/https://doi.org/10.1016/0003-4916(59)90003-X
https://doi.org/10.1103/RevModPhys.65.599
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502


14

[61] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli,
M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna,
I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio,
A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F.
Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli,
M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A.
Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M.
Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari,
N. Vast, X. Wu, and S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017).

[62] L. Hedin, Phys. Rev. 139, A796–A823 (1965).

[63] A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput. Phys. Commun.
180, 1392–1403 (2009).

[64] B. Himmetoglu, A. Floris, S. De Gironcoli, and M. Cococcioni, Int. J. Quan-
tum Chem. 114, 14–49 (2014).

[65] I. Timrov, N. Marzari, and M. Cococcioni, Phys. Rev. B 103, 045141 (2021).

[66] I. Timrov, N. Marzari, and M. Cococcioni, Comput. Phys. Commun. 279,
108455 (2022).

[67] A. Floris, I. Timrov, B. Himmetoglu, N. Marzari, S. de Gironcoli, and M.
Cococcioni, Phys. Rev. B 101, 064305 (2020).

[68] L. Monacelli, R. Bianco, M. Cherubini, M. Calandra, I. Errea, and F. Mauri,
J. Phys. Condens. Matter 33, 363001 (2021).

[69] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod.
Phys. 84, 1419–1475 (2012).

[70] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari,
Comput. Phys. Commun. 178, 685–699 (2008).

[71] G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, Comput. Phys.
Commun. 185, 422–429 (2014).

[72] S. M. Story, J. J. Kas, F. D. Vila, M. J. Verstraete, and J. J. Rehr, Phys. Rev.
B 90, 195135 (2014).

[73] J. J. Kas, J. J. Rehr, and L. Reining, Phys. Rev. B 90, 085112 (2014).

[74] E. N. Economou, Green’s Functions In Quantum Physics, Vol. 7, Springer
Series in Solid-State Sciences (Springer Berlin, Heidelberg, 2006).

[75] M. Schlipf and F. Giustino, Phys. Rev. Lett. 127, 237601 (2021).

https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1016/j.cpc.2009.02.003
https://doi.org/10.1016/j.cpc.2009.02.003
https://doi.org/10.1002/qua.24521
https://doi.org/10.1002/qua.24521
https://doi.org/10.1103/PhysRevB.103.045141
https://doi.org/10.1016/j.cpc.2022.108455
https://doi.org/10.1016/j.cpc.2022.108455
https://doi.org/10.1103/PhysRevB.101.064305
https://doi.org/10.1088/1361-648X/ac066b
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2013.09.015
https://doi.org/10.1016/j.cpc.2013.09.015
https://doi.org/10.1103/PhysRevB.90.195135
https://doi.org/10.1103/PhysRevB.90.195135
https://doi.org/10.1103/PhysRevB.90.085112
https://doi.org/10.1103/PhysRevLett.127.237601


15

C h a p t e r 2

BANDLIKE CHARGE CARRIER MOBILITY
IN ORGANIC CRYSTALS

This chapter is a slightly modified version of the manuscript: B. K. Chang and M.
Bernardi, “Bandlike charge carrier mobility in organic crystals from first-principles
calculations”, submitted (2024).

2.1 Introduction
The commonly low charge carrier mobility in organic molecular crystals (OMCs) is
a bottleneck for bringing organic materials into real-world electronic applications.
OMCs typically have a charge carrier mobility below 10 cm2V−1s−1 [1, 2], which
is significantly lower than the ∼103 cm2V−1s−1 seen in traditional semiconductors
like silicon and germanium. In addition, due to the complex electron-phonon (𝑒-ph)
interactions and crystal structures, OMCs host a wide range of charge transport
mechanisms, including bandlike, hopping, and intermediate regimes [3–5], each
exhibiting a different magnitude and temperature dependence of mobility. Even in
the same OMC, electron and hole carriers in different crystallographic directions
may exhibit various transport regimes [6].

Predicting the charge carrier mobility in OMCs is challenging yet critical to the
development of high-performance organic electronics [7]. Typical modeling tech-
niques [8, 9] start with a model 𝑒-ph Hamiltonian and, based on the transport regime,
compute the mobility with suitable transport formalisms, such as the Boltzmann
transport equation (BTE) [10], Kubo formula [11], transient localization [12], and
hybrid formulations [13]. These methods have offered significant insights, such as
identifying the roles of intra- and intermolecular phonons in 𝑒-ph dynamics [14] and
exploring potential engineering approaches [15]. Nonetheless, calculations based
on simplified models usually rely on fitting model parameters to experiments and do
not include all phonon modes, which limit their predictability. In response to these
limitations, first-principles (parameter-free) approaches that account for all phonon
modes and 𝑒-ph couplings are emerging, and have shown promising accuracy and
explanatory power in studies of charge transport in OMCs [6, 16–19].

Among the charge transport regimes in OMCs, the bandlike regime is pivotal for
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achieving high charge carrier mobility [20–22]. Typically found in ultrapure OMCs,
the bandlike charge carriers are characterized by mobilities with a magnitude near
or greater than 1 cm2V−1s−1 at room temperature and with a power-law temperature
dependence [20]. Their charge transport mechanism is governed by the scattering
of delocalized electronic states [17, 18, 23, 24], similar to the charge transport
mechanism in conventional inorganic semiconductors. However, while the charge
carrier mobility in a wide range of simple inorganic materials can be accurately
predicted using first-principles BTE approaches [25–28], similar calculations for
OMCs remain scarce [6, 16], mainly due to the large unit cells (ranging from a few
tens to a few hundred atoms) of OMCs that make computation challenging.

In this study, we apply first-principles 𝑒-ph and BTE calculations to investigate
the bandlike charge transport in the crystals of benzene, anthracene, tetracene,
pentacene, and biphenyl. Our computed charge carrier mobilities are within a factor
of 2–3 of experimental averages and accurately reflect the power-law temperature
dependence throughout 100–400 K, achieving the accuracy previously demonstrated
on naphthalene [6]. Focusing on studying four of the computed OMCs, we discover
that the bandlike mobilities are predominantly limited by the 𝑒-ph scattering from the
low-frequency (LF) phonons below 150 cm−1, despite the phonon spectra extending
beyond 3000 cm−1. These LF phonons, while inducing the highest 𝑒-ph scattering
rates, exhibit significantly weaker coupling to charge carriers compared to the most
strongly-coupled C=C bond-stretching modes at 1,500–1600 cm−1. We develop
a method to quantify the inter- and intramolecular characters of phonon modes
in momentum space, and show that the LF phonons are primarily intermolecular
vibrations with an increasing long-range intramolecular traits, such as backbone
torsion and bending, as the size of molecule increases.

Finally, we examine the effects of strain on bandlike charge carriers. We show that
moderate compressive strain induces modulations in the electronic structure and 𝑒-
ph scattering rate that both contribute to the enhancement of mobility. Furthermore,
the scattering rates of LF modes are particularly responsive to strain, more so than
those of other modes, providing evidence of the effectiveness of strain engineering in
OMCs—a research area that has attracted growing interest recently [29–32]. Taken
together, this work offers a rigorous understanding of the microscopic details of
bandlike transport mechanism and provides insights toward achieving high-mobility
charge transport in OMCs.
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2.2 Methodology
We compute the ground state electronic structure of benzene, anthracene, tetracene,
pentacene, and biphenyl crystals, using plane-wave density functional theory (DFT)
calculations with the Quantum ESPRESSO code [33, 34]. We use a kinetic energy
cutoff of 90 Ry and employ the generalized gradient approximation [35] and norm-
conserving pseudopotentials [36] from Pseudo Dojo [37]. The lattice parameters
and initial atomic positions are adopted from experiments for each OMC, as detailed
in the supplementary material (SM) in Sec. 2.5. The atomic positions are relaxed us-
ing DFT including the Grimme van der Waals correction [38, 39]. The Wannier90
code [40] is employed to obtain Wannier functions and the corresponding trans-
formation matrices, using the selected-columns-of-the-density-matrix method [41].
We obtain the lattice dynamics and 𝑒-ph perturbation potentials from density func-
tional perturbation theory (DFPT) [42]. The momentum grids for DFT and DFPT
used for each OMC are provided in the SM (Sec. 2.5). We note that quantum
nuclear effects and finite-temperature effects, which are not directly addressed in
the DFPT calculations, can contribute to lattice dynamics. These effects play a
critical role in determining the thermal properties of organic crystals and can be
captured using approaches such as the temperature-dependent effective potential
method (TDEP) [43].

Using the Perturbo code [44], we compute the 𝑒-ph interactions and the charge
transport. The electron and phonon data are combined to form the 𝑒-ph coupling
matrix elements [26, 44]

𝑔𝑚𝑛𝜈 (k, q) =
√︄

ℏ

2𝜔𝜈q

∑︁
𝜅𝛼

e𝜅𝛼𝜈q√
𝑀𝜅

⟨𝑚k + q|𝜕q𝜅𝛼𝑉 |𝑛k⟩, (2.1)

which quantifies the probability amplitude for an electron Bloch state 𝜓𝑛k, with
band index 𝑛 and crystal momentum k, to scatter into a final state 𝜓𝑚k+q by emitting
or absorbing a phonon with mode index 𝜈, wavevector q, energy 𝜔𝜈q, perturbation
potential 𝜕q𝜅𝛼𝑉 , and displacement eigenvector e𝜈q [26, 34, 44]. Here 𝛼 is the
Cartesian direction and 𝑀𝜅 is the mass of atom 𝜅. The 𝑒-ph scattering rate for each
electronic state is calculated using the interpolated matrix elements as [26, 44]

Γ𝑛k(𝑇) =
∑︁
𝜈

Γ
(𝜈)
𝑛k (𝑇), (2.2)
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where 𝑇 is the temperature, and Γ
(𝜈)
𝑛k is the mode-resolved scattering rate:

Γ
(𝜈)
𝑛k (𝑇) = 2𝜋

ℏ

∑︁
𝑚q

|𝑔𝑚𝑛𝜈 (k, q) |2

× [(𝑁𝜈q + 1 − 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑛k+q − 𝜔𝜈q)
+ (𝑁𝜈q + 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑛k+q + 𝜔𝜈q)] . (2.3)

Here 𝜀𝑛k is the electron band energy, and 𝑓𝑛k and 𝑁𝜈q are the electron Fermi-
Dirac and phonon Bose-Einstein occupations in thermal equilibrium, respectively,
that account for the temperature dependence of the scattering rate. The charge
carrier mobility tensor is obtained within the BTE framework in the relaxation time
approximation [26, 44]:

𝜇𝛼𝛽 (𝑇) =
𝑒

𝑛c

∫
𝑑𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)
Σ𝛼𝛽 (𝐸,𝑇), (2.4)

where 𝛼 and 𝛽 are Cartesian directions parallel to the crystal principal axes, 𝑒 is the
electronic charge, 𝐸 the electron energy, 𝑓 the electronic Fermi-Dirac distribution,
and 𝑛c is the carrier concentration fixed at 1017–1018 cm−3, a typical value for both
inorganic [44] and organic semiconductors [45]. Σ𝛼𝛽 is the transport distribution
function (TDF) defined as

Σ𝛼𝛽 (𝐸,𝑇) =
2
𝑉uc

∑︁
𝑛k

𝜏𝑛k(𝑇)𝑣𝛼𝑛k𝑣
𝛽

𝑛k𝛿(𝐸 − 𝜀𝑛k), (2.5)

where 𝑉uc is the unit cell volume, 𝑣𝑛k are the electron band velocities, and 𝜏𝑛k(𝑇) =
Γ−1
𝑛k (𝑇) are the 𝑒-ph relaxation times. The mobility calculations use 105–106 ran-

domly selected q-points and a fine k-grid of about 503 (see Sec. 2.5 for additional
computational details).

2.3 Results
Charge carrier mobility
We validate the accuracy and applicability of the first-principles BTE approach by
extensively comparing the computed mobilities to experiments. For an OMC, we
label the mobility as 𝜇(𝑞)

𝛼 , where 𝑞 is the charge carrier type that is either 𝑒 (electron)
or ℎ (hole), and 𝛼 indicates the direction along which the mobility is computed or
measured. 𝛼 can be the crystal principal axis of 𝑎, 𝑏, or 𝑐∗, or 𝑎𝑣𝑔 indicating
the mobility averged over three spatial directions. Here we compare the calcula-
tions and the experimental measurements for six OMC charge carrier mobilities:
benzene’s 𝜇

(𝑒)
𝑎 , naphthalene’s 𝜇

(ℎ)
𝑎 , anthracene’s 𝜇

(ℎ)
𝑐∗ , tetracene’s 𝜇

(ℎ)
𝑐∗ , pentacene’s
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Figure 2.1: Charge carrier mobilities for (a) benzene’s electron in the 𝑎-direction, (b)
naphthalene’s hole in the 𝑎-direction, (c) anthracene’s hole in the 𝑐∗-direction, (d)
tetracene’s hole in the 𝑐∗-direction, (e) pentacene’s hole averaged over the three crys-
tal principal directions, and (f) biphenyl’s electron in the 𝑏-direction. Data points
represent BTE-calculated (colored) and experimental (black) mobilities. Solid and
dashed lines indicate fits to the power law 𝑇−𝑛, with the exponent 𝑛 noted for each.
BTE data for naphthalene [6] are obtained with temperature-dependent lattice pa-
rameters and GW correction. Experimental data are adopted from Refs. [46–54].
The melting point of benzene (𝑇m=279 K) and the phase-transition temperature of
tetracene (𝑇PT=180 K) [50] are indicated by vertical dashed lines.
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𝜇
(ℎ)
𝑎𝑣𝑔, and biphenyl’s 𝜇(𝑒)

𝑏
. These mobilities are chosen as examples due to that they

have experimentally measured mobilities that span a wide temperature range be-
tween 100–400 K and exhibit the bandlike power-law temperature dependence, such
that both the magnitude and the temperature dependence can be comprehensively
compared to our calculations.

Figure 2.1(a), (b), (c), and (f) show the experimental and computed mobilities
for benzene, naphthalene, anthracene, and biphenyl. Our calculations are highly
accurate, in agreement with the experiments within a factor of 2–3 throughout the
temperature range of 100–300 K. In particular, the computed mobilities for naphtha-
lene are adopted from Ref. [6], in which the calculations for the other two directions
show similar accuracy [6]. In the case of benzene, the calculations are almost in
exact agreement with the experiments. The computed mobilities in all four cases are
slightly above the experimental values, as expected for the case of phonon-limited
mobility. The exponent 𝑛 of the power-law temperature dependence 𝑇−𝑛 is in excel-
lent agreement with experiments for benzene, naphthalene, and anthracene, with a
less than 7% error. For biphenyl, the computed exponent is slightly overestimated
compared to the experiment, with a 29% error. This might be due the electron charge
transport in biphenyl being close to the boundary between the bandlike and the inter-
mediate regimes [6], where the mobility exhibits a weaker power-law temperature
dependence.

The mobilities for tetracene are shown in Fig. 2.1(d). The experimental mobili-
ties [49, 50] from multiple samples show a consistent decrease in mobility above
the phase transition temperature at 180 K [50]. Although they do not strictly fol-
low a power-law temperature dependence, photoconductivity experiments [55, 56]
showed strong evidence of coherent bandlike transport in tetracene. As shown in
Fig. 2.1(d), our computed mobilities are in great agreement with the experimen-
tal average within a factor of 2 throughout 200–400 K, exhibiting a power-law
temperature dependence.

Pentacene has received major attention due to its potentially high charge carrier
mobilities. As shown in Fig. 2.1(e), Jurchescu et al. [51] observed a hole mobility of
around 35 cm2V−1s−1 between 220–340 K. Additionally, due to the near-power-law
temperature dependence, the hole mobility in pentacene is considered bandlike [51].
However, separate experiments by Minari et al. [52] and Lee et al. [53] have observed
much lower mobilities of around ∼1 cm2V−1s−1 between 150–300 K, also shown in
Fig. 2.1(e). Here we compute the hole mobilities in pentacene and obtain results that
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Figure 2.2: Scattering rates and their impact on mobility. The left column [(a)–(d)]
displays the mode-resolved scattering rates for benzene’s electron, anthracene’s
hole, pentacene’s hole, and biphenyl’s electron, respectively. The scattering rates
are computed at 260 K for benzene and at room temperature for the others. Red
represents the low-frequency (LF) modes, and blue denotes the extended-spectrum
(ES) modes, each with their mode index (𝜈) range specified. Energy zero corre-
sponds to the valence band maximum for holes and the conduction band minimum
for electrons, increasing deeper into the bands. The black curves represent the
transport distribution functions (TDFs, Eq. 2.5) for comparison. The right column
[(e)–(h)] presents the mobility calculations, showing the original (black), LF-only
(red), and ES-only mobilities (blue).
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lie in the middle of the two experimental extremes, with a value of ∼5 cm2V−1s−1 at
room temperature [Fig. 2.1(e)]. Our results suggest that pentacene indeed exhibits a
particularly high mobility compared to all other OMC systems studied in this work
(< 3 cm2V−1s−1 at room temperature), but might not be as high as that reported by
Jurchesc et al. [51]. As a brief summary, we have shown that first-principles BTE
calculations are able to provide highly accurate predictions to the charge carrier
mobilities in OMCs.

Electron-phonon scattering rate
Having confirmed the accurate prediction of charge carrier mobilities, we explore
the characteristics of the bandlike transport mechanism. To concisely elucidate the
relationship of molecular structure, 𝑒-ph interactions, and charge transport dynam-
ics, the remainder of this chapter will focus on benzene’s 𝜇

(𝑒)
𝑎 , anthracene’s 𝜇

(ℎ)
𝑐∗ ,

pentacene’s 𝜇
(ℎ)
𝑎𝑣𝑔, and biphenyl’s 𝜇

(𝑒)
𝑏

, as shown in Fig. 2.1(a), (c), (e), and (f),
respectively. Henceforth, these four crystals and charge carriers will be collectively
referred to as “the systems”, and the 𝜇

(𝑞)
𝛼 notation will be omitted in the discussions

for brevity.

In OMCs, which usually consist of tens to hundreds of atoms per unit cell and
therefore hundreds of phonon modes, understanding the impact of each mode on
charge transport is crucial for developing efficient engineering strategies to enhance
mobility. The mode-resolved 𝑒-ph scattering rate (Eq. 2.3) quantifies individual
phonon modes’ contributions to the overall scattering rate of an electronic state.
For the band-edge electronic states in the systems, we find that phonons with lower
frequencies generally contribute to higher 𝑒-ph scattering rates. To differentiate the
phonons, we use the lowest-energy gap in the phonon spectra to divide the modes into
two groups: those below the gap are termed low-frequency (LF) modes, and those
above are termed extended-spectrum (ES) modes. This energy gap is consistently
found between 100–150 cm−1 across the systems. For context, the highest phonon
mode frequency in these systems is around 3,100 cm−1 (see SM in Sec. 2.5 for the
complete phonon spectra of the systems).

Fig. 2.2(a)–(d) present the mode-resolved scattering rates (Eq. 2.3) as a function
of charge carrier energy computed at or near room temperature for the systems,
alongside their corresponding TDFs (Eq. 2.5). The TDFs indicate that the mobilities
are mainly contributed by charge carriers within 150 meV from the band edges. In
this energy range, the scattering rates from LF modes can be multiple times higher
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than those from ES modes. Specifically, the highest LF-mode scattering rates are
approximately 65, 60, 35, and 115 ps−1, while the highest ES-mode scattering rates
are around 50, 20, 10, and 25 ps−1 for benzene, anthracene, pentacene, and biphenyl,
respectively. Notably, pentacene shows particularly low scattering rates for both LF
and ES modes, consistent with its high mobility observed in experiments and in our
calculations. For charge carriers over 150 meV away from the band edges, ES-mode
scattering rates surpass LF mode’s due to the energies of charge carrier becoming
comparable to those of ES phonon modes, enabling scattering processes of ES-
phonon emissions [16]. However, these carriers contribute minimally to mobility
within the relevant temperature range, as indicated by the TDFs.

Comparing the LF- and ES-mode scattering rates with the TDFs qualitatively in-
dicates that the LF modes play a greater role in limiting the charge carrier mobil-
ities than the ES modes. However, quantifying their exact contributions to charge
transport is not trivial, as mobilities are inversely related to the sum of scattering
rates (Eqs. 2.2–2.5). Here we calculate partially-limited mobilities by consider-
ing the scattering rates of only the LF or the ES modes. The difference between
the partially-limited mobilities and the original mobilities inversely quantifies the
significance of the scattering processes in consideration. Specifically, a smaller dif-
ference signifies greater importance of these scattering processes in limiting charge
transport. As shown in Fig. 2.2(e)–(h), the LF-only mobilities are nearly identical
to the original mobilities, with the largest difference being 16% for anthracene at
300 K. In contrast, the ES-only mobilities are significantly higher than the original
mobility, with the largest difference ranging from 900% for anthracene at 300 K
to 120,000% for benzene at 100 K. These results show that LF-mode scattering
processes predominantly limit the overall charge transport. Notably, the discrep-
ancies between the ES-only and original mobilities are less pronounced at higher
temperature. This trend is expected, since the ES phonon modes are significantly
more populated at higher temperatures, thus contributing more to limiting mobility.

The mode-resolved analysis reveals that, at or near room temperature, bandlike
charge carrier mobilities in OMCs are predominantly limited by the 𝑒-ph scattering
from LF modes. Considering that the LF modes constitute phonons below 150 cm−1

in a spectrum extending beyond 3,000 cm−1, our findings point to the potential of
engineering strategies that target LF modes to tune the mobitilies of bandlike charge
carriers in OMCs.
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Figure 2.3: Low-frequency (LF) phonon modes in the systems. Panels (a)–(d)
show the LF phonon dispersions for benzene, anthracene, pentacene, and biphenyl,
respectively. The color gradient from blue to red indicates increasing intramolecular
character (𝜎intra, Eq. 2.6). Grey regions represent the energy gaps separating the LF
modes from others. The high-symmetry points follow the definition in Ref. [57].
Panels (e)–(j) visualize the intramolecular motions in the LF modes: (e) anthracene’s
out-of-plane bending, (f) pentacene’s out-of-plane bending, (g) pentacene’s out-of-
plane double-bending, (h) pentacene’s in-plane bending, (i) pentacene’s torsioning,
and (j) biphenyl’s torsioning. Carbon and hydrogen atoms are represented by black
and blue spheres, respectively, with displacement vectors shown as yellow arrows.

Low-frequency phonon modes
Insights into vibrational patterns of phonons help inform the development of engi-
neering techniques for OMCs [58]. Phonons in OMCs are typically categorized into
two groups: 1) intermolecular modes, characterized by rigid-body movements of
the molecules at lower frequencies, and 2) intramolecular modes, involving higher-
frequency atomic vibrations that deform the molecules. These two types of phonons
distinctly influence charge transport [14, 59], and their 𝑒-ph interactions are often
described by specific models, such as Peierls- and Holstein-type 𝑒-ph Hamiltoni-
ans [14]. Although LF phonons are predominantly intermolecular, it is recognized
that phonons can exhibit both inter- and intramolecular characteristics [58, 60],
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resulting in a hybridization of molecular rigid-body movements and deformations.
This goes beyond the description of simplified models, but can be captured in our
first-principles calculations.

Here we present a method to quantify the intramolecular character of phonons in
momentum space. In cheminformatics and bioinformatics, the minimal root-mean-
square deviation (RMSD) of atomic positions is a well-known metric for measuring
differences between molecule and protein structures [61]. This is computed by first
aligning the centroids of two molecules to remove relative translational difference,
then applying the Kabsch algorithm [62, 63] to obtain the optimal relative rotation of
the molecules. Based on this metric, we define the intramolecular character 𝜎intra of
a phonon (𝜈, q) as the time-averaged minimal RMSD of atomic positions between
the phonon-displaced structure of a molecule and its original structure. This is
formally written as

𝜎intra(𝜈, q) =
〈√√√

min
R

[
1

𝐴2 · 𝑁apm

∑︁
𝜅∈Φ

∥Rr̃𝜅 (𝜈, q, 𝑡) − r𝜅 ∥2

]〉
, (2.6)

where Φ denotes a selected molecule in the OMC, 𝑁apm is the number of atoms per
molecule, r𝜅 is the equilibrium position of atom 𝜅 in Φ, 𝐴 is the vibration amplitude,
and 𝑡 is the time. R is the 3D rotation operator, ⟨·⟩ denotes the time average, and

r̃𝜅 (𝜈, q, 𝑡) = r𝜅 + Re
[
𝐴

𝑀𝜅

e𝜅𝛼𝜈q𝑒
𝑖(q·r𝜅−𝜔𝜈q𝑡)

]
− 1
𝑁apm

∑︁
𝜅′∈Φ

r𝜅′ (2.7)

is the position of atom 𝜅 after Φ is displaced by the phonon (𝜈, q) at time 𝑡 and
its centroid aligned. The Kabsch algorithm [62, 63] is employed for the mini-
mization with respect to R in Eq. 2.6. With these definitions, 𝜎intra quantifies the
intramolecular character of a phonon by excluding its intermolecular components.

Fig. 2.3(a)–(d) display the LF-mode dispersions and intramolecular characters for
the systems. The LF-modes in one-ring benzene [Fig. 2.3(a)] exhibit no intramolec-
ular characters, a trait shared with two-ring naphthalene [16, 58], where the LF
modes below the lowest-energy phonon gap are completely intermolecular. In
three-ring anthracene [Fig. 2.3(b)], the LF modes above 125 cm−1 start to show in-
tramolecular features associated with out-of-plane backbone bending, as depicted in
Fig. 2.3(e). For five-ring pentacene [Fig. 2.3(c)], similar bending exists at 75 cm−1,
as illustrated in Fig. 2.3(f). Additionally, from 75 to 150 cm−1, more intramolecu-
lar features emerge, including out-of-plane double-bending, in-plane bending, and
backbone torsioning, as illustrated in Fig. 2.3(g)–(i), respectively. Nevertheless,
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the LF modes in pentacene below 75 cm−1 remain purely intermolecular. Finally,
biphenyl [Fig. 2.3(d)], unlike its acene counterpart naphthalene, exhibits intramolec-
ular characters in the LF-phonons at low frequencies of 25–50 cm−1. This is due
to the C–C single bond linking the two rings that facilitate tortioning motion, as
shown in Fig. 2.3(j). The complete phonon spectra overlaid with their intramolecular
characters for the systems are provided in the SM (Sec. 2.5).

Our findings indicate that LF modes are predominantly intermolecular, with in-
creasing long-range intramolecular characteristics as structural degrees of freedom
increase. The LF intramolecular vibrations occur on a molecular scale, unlike
the bond-scale intramolecular vibrations typically observed in infrared (IR) spec-
troscopy. For oligoacenes, the minimum chain length to permit in-plane backbone
bending in LF modes appears to be two to three aromatic rings, as evidenced by
anthracene (three rings) being the smallest acene showcasing out-of-plane bending
and pentacene (five rings) demonstrating at most double bending. In-plane bending
and backbone torsioning become available in the LF modes only with a minimal
chain length of 4–5 rings. The presence of a phenyl group, or a C–C single bond
linking two rings, readily introduces torsioning along the ring linkage at low frequen-
cies. These analyses establish the relationship between structural and vibrational
properties in OMCs and provide insights into designing engineering approaches.

Electron-phonon coupling
To investigate why LF modes contribute significantly to the 𝑒-ph scattering rates, we
analyze the 𝑒-ph coupling using the coupling distribution function, akin to a density
of states for 𝑒-ph interactions, defined as

𝛾k(𝜔) =
∑︁
𝜈q

|𝑔𝜈 (k, q) |2 𝛿(𝜔 − 𝜔𝜈q), (2.8)

where

|𝑔𝜈 (k, q) | =
√︄∑︁

𝑚𝑛

|𝑔𝑚𝑛𝜈 (k, q) |2/𝑁b (2.9)

is the gauge-invariant 𝑒-ph coupling with𝑁b being the number of Wannier bands [44].

Figure 2.4 (a)–(d) present the 𝑒-ph coupling distribution functions calculated at
the band edges for the systems. Peaks within these curves align with vibrational
modes of specific functional groups. All systems feature a large energy gap between
1,700–3,000 cm−1 and a weak coupling peak at 3,100 cm−1 associated with C–H
stretching modes. The region from 500–1,500 cm−1 is characterized by a series of
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Figure 2.4: Electron-phonon (𝑒-ph) coupling distribution function 𝛾k (Eq. 2.8)
computed at the band edges for (a) benzene electrons, (b) anthracene hole, (c)
pentacene holes, and (d) biphenyl electrons. The colors indicate different energy
ranges of phonon modes: pink for low-frequency (LF) modes, blue for C–H bending,
red for C=C stretching, and green for C–H stretching.
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moderate coupling peaks, which mainly correspond to C–H bond bending modes.
Notably, the strongest coupling peaks are at 1,500–1,700 cm−1, attributed to C=C
stretching. Contrary to expectations, the LF modes below 150 cm−1, despite being
the primary contributors to the 𝑒-ph scattering rates, show minimal coupling, even
weaker than those of moderate strength.

Our results suggest that near room temperature, the pronounced 𝑒-ph scattering
rates from LF modes for the bandlike charge carriers are not caused by strong 𝑒-ph
coupling. Instead, they arise from the great scattering phase space, determined by the
interplay of electronic band structure, phonon dispersion, and thermal populations
of electrons and phonons (Eq. 2.2).

Strain effects
The application of strain engineering to enhance charge carrier mobilities in OMCs
has been validated experimentally [29–32], yet the underlying mechanisms remain
debated [15]. Here we study the strain effects on the bandlike charge transport by
computing the mobilities under 2.5% homogeneous compressive strain, achieved by
reducing the cell sizes. As shown in Fig. 2.5(a)–(d), compressive strain consistently
improves mobilities across the 100 to 300 K temperature range by factors of 1.5
to 3, aligning with experimental findings that moderate compressive strain boosts
mobilities in OMCs [29, 30, 32]. Furthermore, the strain can increase the mobility’s
power-law temperature dependency, which is particularly pronounced in anthracene.

Within the BTE framework (Eqs. 2.4 and 2.5), at a fixed temperature and constant car-
rier concentration, strain influences mobility through modulations of 𝑒-ph relaxation
times (𝜏𝑛k) and parameters determined solely by electronic structure (band velocities
𝑣𝑛k and energies 𝜀𝑛k). To disentangle the contributions from 𝑒-ph scattering and
purely electronic factors, we compute “fictitious” mobilities using a combination of
parameters from both strained and unstrained calculations. Let 𝜏 represent the set
of 𝑒-ph relaxation times, 𝜀 the electronic structure, and ·̂ their strained counterparts,
we assess the 𝑒-ph scattering contribution with fictitious mobility 𝜀𝜏, computed
from unstrained electronic structures and strained relaxation times, and electronic
contribution with fictitious mobility 𝜀𝜏, computed from strained electronic struc-
tures and unstrained relaxation times. As shown in Fig. 2.5(a)–(d), these fictitious
mobilities surpass the original mobility across all temperatures, indicating that both
𝑒-ph scattering and electronic modulations contribute to enhance mobility under
the compressive strain. Additionally, 𝜀𝜏 is comparable to [Fig. 2.5(a) and (c)] or
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Figure 2.5: Impact of 2.5% homogeneous compressive strain on mobilities and
electron-phonon (𝑒-ph) scattering. The left column [(a)–(d)] displays computed
mobilities for benzene, anthracene, pentacene, and biphenyl. Black markers rep-
resent original mobility 𝜇, purple indicates mobility under strain (�̂�), blue denotes
fictitious mobility computed from strained electronic structure and unstrained 𝑒-ph
relaxation times (𝜀𝜏), and red shows fictitious mobility calculated with strained
𝑒-ph relaxation times and unstrained electronic structure (𝜀𝜏). The right column
[(e)–(h)] illustrates changes in average mode-resolved 𝑒-ph scattering rates [ΔΓ(𝜈)]
due to strain. Blue bars indicate a reduction, and red bars an enhancement in scat-
tering rates. Vertical dashed lines separate the low-frequency (LF) phonon modes
(left of the lines) from the extended spectrum (ES) modes (right of the lines).
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slightly exceeds [Fig. 2.5(b) and (d)] than 𝜀𝜏 in all cases, implying that 𝑒-ph scat-
tering plays a role as substantial as, or even greater than, electronic structure in the
strain-induced mobility modulations.

We explore the mechanisms behind the observed mobility enhancements. The
enhancement due to electronic structure can be ascribed to band stretching under
compressive strain, which increases the electron band velocity. The strain-stretched
band structures for the systems are available in the SM (Sec. 2.5). To understand
the enhancement from 𝑒-ph scattering, we define the average mode-resolved scat-
tering rates as Γ(𝜈) =

∑
𝑛k Γ

(𝜈)
𝑛k , and investigate their response to strain, ΔΓ(𝜈) .

Fig. 2.5(e)–(h) present these calculations, highlighting a significant reduction in
scattering rates for the LF modes by 1 to over 5 ps−1, contrasting with the inconsis-
tent and minimal changes in the ES-mode scattering rates. This can be understood
by considering the forces governing the modes: LF phonons are mostly intermolec-
ular and long-range intramolecular, which are regulated by weaker van der Waals
forces. This makes LF phonons more susceptible to strains than ES phonons, which
are mostly short-range intramolecular and are controlled by strong covalent bonds.
Further analysis suggests that the decrease in LF-mode scattering rates due to the
compressive strain is a result of reductions in both 𝑒-ph coupling and scattering
phase space, as detailed in the SM (Sec. 2.5).

While compressive strain decreases LF-mode scattering rates and enhances charge
carrier mobility, tensile strain is expected to have the opposite effect. This is
confirmed by our calculations for anthracene under a 2.5% homogeneous tensile
strain, which, as detailed in SM (Sec. 2.5), increases LF-mode scattering rates
and decreases mobility. Our analysis assumes that a 2.5% homogeneous strain is
moderate such that the charge transport remains in the bandlike regime. Too strong
of a strain could cause severe deformation of electronic band structure and carrier
trapping [64], which may alter the transport regime and require a different transport
model for a more accurate description. Nonetheless, our findings support that strain
engineering is an effective method to modulate bandlike charge carrier mobility
in OMCs, due to the distinct sensitivity of LF phonons—which govern bandlike
transport—to applied strain.

2.4 Conclusions
In summary, our first-principles BTE calculations, which incorporate all phonon
modes on an equal footing, provide a comprehensive analysis of bandlike charge
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transport in OMCs. Our computed charge carrier mobilities for multiple OMCs are
in very good agreement with experiments between 100–400 K. We determined that
low-frequency (LF) phonons, those below 150 cm−1 and characterized by mainly
intermolecular and some long-range intramolecular vibrations, are the dominant
contributors to the 𝑒-ph scattering that limits bandlike mobility. Additionally, we
found that LF-phonon scattering rates are especially sensitive to strain, underscoring
the potential of strain engineering to optimize charge transport in OMCs. Our study
demonstrates the efficacy, predictability, and explanatory strength of first-principles
BTE calculations. Future work includes extending these calculations to a broader
range of OMCs, potentially in a high-throughput manner, and integrate the results
with machine learning techniques [65] to expedite the discovery of design principles
for high-performance organic electronics.

2.5 Supplementary materials
Computational details

Benzene Anthracene Tetracene Pentacene Biphenyl
chem. formula C6H6 C14H10 C18H12 C22H14 C12H10
space group Pbca P21a P1̄ P1̄ P21a
#atom/cell 48 48 60 72 44
atomic pos. [66] [67] [68] [69] [70]

lattice params. [71] (103 K) [67] (94 K) [68] [69] [54]
studied carrier 𝑒 ℎ ℎ ℎ 𝑒

k-grid (scf) 3×2×3 2×4×2 2×4×2 2×2×2 2×4×2
k-grid (nscf) 3×2×3 4×4×4 4×4×4 4×4×4 4×4×4

#wannier band 8 2 2 2 4
q-grid 3×2×3 2×4×2 2×4×2 2×2×2 2×4×2

k-grid (BTE) 503 603 603 503 503

Table 2.1: Crystallographic properties and numerical settings used in the calcu-
lations. scf and nscf refer to self-consistent calculations and non-self-consistent
calculations, respectively.
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Phonon dispersion and intramolecular characteristics

Figure 2.6: Phonon dispersions of (a) benzene, (b) anthracene, (c) pentacene, and
(d) biphenyl. The color gradient from blue to red indicates increasing intramolecular
character (𝜎intra in Eq. 2.6).
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Strained electronic structure and phonon dispersion

Figure 2.7: Left column: Electronic band structures of (a) benzene electron, (b)
anthracene hole, (c) pentacene hole, and (d) biphenyl electron, with energy zero at
the conduction band minimum for electrons and valence band maximum for holes.
Right column: Phonon dispersions of (e) benzene, (f) anthracene, (g) pentacene,
and (h) biphenyl. The black solid lines represent the original data, and the red
dashed lines represent 2.5% compressively strained data.
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Anthracene under tensile strain

Figure 2.8: (a) Hole mobility of anthracene in the 𝑐∗-direction. Red: mobility
under 2.5% compressive strain. Blue: mobility under 2.5% tensile strain. Black:
original mobility. The exponent of the power-law temperature dependence 𝑇−𝑛 is
indicated for each mobility. (b) Change in the average mode-resolved electron-
phonon scattering rates of anthracene due to 2.5% homogeneous compressive (red)
and tensile (blue) strain.
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Electron-phonon coupling and scattering phase space

Figure 2.9: Distribution functions of electron-phonon coupling (𝛾, Eq. 2.8, upper
panels) and scattering phase space (Ω, Eq. 2.12, lower panels) for the LE phonons
at the electron band edge of (a) benzene electron, (b) anthracene hole, (c) pentacene
hole, and (d) biphenyl electron. Blue and red fillings indicate the original and 2.5%
compressively strained data, respectively.

We rewrite the 𝑒-ph scattering rate defined in Eqs. 2.2 and 2.3 as

Γ𝑛k(𝑇) =
2𝜋
ℏ

∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2𝜉𝑚𝑛𝜈 (k, q), (2.10)

where we have defined the scattering phase space factor

𝜉𝑚𝑛𝜈 (k, q) = (𝑁𝜈q+1− 𝑓𝑚k+q)𝛿(𝜀𝑛k−𝜀𝑛k+q−𝜔𝜈q)+(𝑁𝜈q+ 𝑓𝑚k+q)𝛿(𝜀𝑛k−𝜀𝑛k+q+𝜔𝜈q).
(2.11)

To isolate 𝑒-ph coupling’s contribution to scattering rate, in Eq. 2.8 we have defined
the coupling distribution function. Similarly, here we isolate the phase space contri-
bution to scattering rate by defining the phase space distribution function that sums
over the phase space factor:

Ω𝑛k(𝜔) =
∑︁
𝑚𝜈q

𝜉𝑚𝑛𝜈 (k, q)𝛿(𝜔 − 𝜔𝜈q). (2.12)

The calculated coupling and phase space distribution functions for the LF modes in
the systems, both unstrained and under 2.5% homogeneous compressive strain, are
shown in Fig. 2.9. Strain alters the distributions, shifting peaks along the phonon fre-
quency axis due to the stretching of phonon dispersions shown in Fig. 2.7(e)–(h). Un-
der the strain, benzene’s coupling distribution peaks maintain their heights, whereas
the highest coupling distribution peak is reduced for the other three systems. A
reduction is observed in the highest peak (between phonon frequencies of 0 and 25
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cm−1) of phase space distribution for all systems under the strain. These indicate
that the compressive strain generally reduces the scattering contributions from both
𝑒-ph coupling and phase space.
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C h a p t e r 3

INTERMEDIATE POLARONIC CHARGE TRANSPORT
IN ORGANIC CRYSTALS

This chapter is a slightly modified version of the published article: B. K. Chang,
J.-J. Zhou, N.-E. Lee, and M. Bernardi, “Intermediate polaronic charge transport in
organic crystals from a many-body first-principles approach”, npj Comput. Mater.
8, 63 (2022).

3.1 Introduction
Charge transport in organic molecular crystals (OMCs) is often classified into two
limiting cases: the band transport and polaron hopping regimes, each entailing spe-
cific transport mechanisms [1]. In band transport, charge carriers are delocalized, the
𝑒-ph coupling is weak, and the mobility is correspondingly high (> 10 cm2V−1s−1)
and characterized by a power-law decrease with temperature. Band transport in
OMCs is usually governed by scattering of carriers with low-energy acoustic and
intermolecular phonons, with the corresponding 𝑒-ph interactions often modeled by
the Peierls Hamiltonian [2]. These weak 𝑒-ph interactions can be described with
lowest-order perturbation theory, and the OMC mobility can be accurately predicted
using the Boltzmann transport equation (BTE) [3, 4], including all phonon modes
on the same footing.

In the polaron hopping regime, the charge carriers interact strongly with phonons,
forming self-localized (small) polarons, which are often modeled with the Holstein
Hamiltonian to describe intramolecular 𝑒-ph interactions [5]. The resulting charge
transport is dominated by thermally activated polaron hopping and is often described
with Marcus theory [6, 7]. The mobility in the polaron hopping regime is relatively
small, usually below 0.1 cm2V−1s−1, and is more challenging to predict from first
principles.

Between these two limiting scenarios, OMCs also exhibit an intermediate transport
regime, for which neither the band transport nor the polaron hopping pictures are
fully adequate [1, 7]. In the intermediate regime, the mobility exhibits a bandlike
power-law temperature dependence [7–9], yet polarons can be present and low
mobility values (< 1 cm2V−1s−1) are common [1]. A signature of intermediate
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transport is the violation of the Mott-Ioffe-Regel limit [10], whereby the carrier
mean-free-paths become smaller than the intermolecular distance [7], making the
BTE description inadequate.

Various approaches have been employed to study intermediate transport in OMCs;
they typically employ a Holstein Hamiltonian or a (Peierls-type) dynamical disorder
Hamiltonian, or a combination of both, and obtain the mobility via linear-response
theory [11–14], diffusion simulation [15, 16], surface hopping method [17], or
transient localization calculation [18, 19]. These methods are highly valuable
for studies of OMCs, although they usually rely on simplifying assumptions such
as including only specific phonon modes and 𝑒-ph interactions, or fitting model
parameters to experiments. To date, first-principles approaches to predict charge
transport in the intermediate regime with quantitative accuracy are scarce, especially
within rigorous treatments based on many-body perturbation theory.

In this work, we develop rigorous calculations of the mobility in the intermediate
charge transport regime in OMCs. Focusing on naphthalene crystal as a case study,
we employ a finite-temperature cumulant approach [8] to capture the strong 𝑒-ph
interactions and polaron effects of the intermediate regime, and employ Green-Kubo
theory to compute the electron mobility. All phonon modes are included and treated
on equal footing.

This cumulant plus Kubo (CK) approach is shown to predict the electron mobility
in the intermediate regime with a high accuracy, within a factor of two of experi-
ment between 100–300 K for crystallographic directions parallel to the naphthalene
molecular planes. We additionally show the failure of the BTE to describe the mo-
bility in the intermediate regime. Our analysis of the electronic spectral functions
reveals the presence of a broad satellite next to the quasiparticle (QP) peak, explain-
ing the breakdown of the BTE and the band transport picture. The broadening of the
QP peak is mainly due to coupling with low-energy intermolecular phonons, while
the polaron satellite peaks are due to strong coupling with intramolecular phonons.
Therefore, the intermolecular modes are directly responsible for scattering the elec-
trons and limiting the mobility, whereas the intramolecular modes limit the mobility
indirectly, by transferring spectral weight from the QP peak to the polaron satellites.
For charge transport normal to the molecular planes, we find that both the BTE
and CK approaches cannot correctly predict the mobility, which experimentally
is nearly temperature independent and governed by small-polaron hopping [20–
22]. This finding restricts the applicability of the CK method to intermediate 𝑒-ph
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coupling strengths.

Taken together, our work provides an accurate first-principles method to study
polaron transport in OMCs, and unravels the interplay of low- and high-energy
phonon modes in the intermediate regime. Our results provide a blueprint for
studying charge transport in a wide range of organic crystals.

3.2 Results
Computational approach
We compute the ground state electronic structure of naphthalene crystal using plane-
wave density functional theory (DFT) calculations with the Quantum ESPRESSO
code [23, 24]. We employ the generalized gradient approximation [25] and norm-
conserving pseudopotentials [26] from Pseudo Dojo [27]. The DFT band structure
is refined using GW calculations (with the Yambo code [28, 29]) to better capture
dynamical screening effects. Maximally localized Wannier functions [30] are gen-
erated with the Wannier90 code [31] following a procedure similar to Ref. [3]. We
compute the 𝑒-ph interactions and charge transport separately at four temperatures
(100, 160, 220, and 300 K), using different experimental lattice parameters at each
temperature [32] and relaxing the atomic positions with DFT. We obtain the lattice
dynamics and 𝑒-ph perturbation potentials from density functional perturbation the-
ory (DFPT) [33], and compute the 𝑒-ph interactions with the Perturbo code [34].
Additional numerical details are provided in the Methods section.

Using the computed 𝑒-ph interactions, we study charge transport in the BTE and
CK frameworks with the Perturbo code [34]. In the BTE, the mobility tensor 𝜇𝛼𝛽
is computed in the relaxation time approximation (RTA):

𝜇𝛼𝛽 (𝑇) =
2𝑒

𝑛c𝑉uc

∫
d𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)∑︁
𝑛k

𝜏𝑛k(𝑇)𝑣𝛼𝑛k𝑣
𝛽

𝑛k𝛿(𝐸 − 𝜀𝑛k), (3.1)

where 𝛼 and 𝛽 are Cartesian directions parallel to the crystal principal axes, 𝑇
is the temperature, 𝑒 the electronic charge, 𝑛c the carrier concentration, 𝑉uc the
unit cell volume, 𝑓 the electronic Fermi-Dirac distribution and 𝐸 is the electron
energy. Here and below, 𝑛 is the band index and k the crystal momentum of the
electronic states. The BTE mobility depends on the electron band energies 𝜀𝑛k, the
corresponding band velocities 𝑣𝑛k, and the state-dependent 𝑒-ph relaxation times
𝜏𝑛k obtained within lowest-order perturbation theory [34, 35]. As a sanity check, we
compute the mobility at 220 K by solving the full linearized BTE with an iterative
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approach (ITA) [34, 36], and find that in naphthalene it gives results identical to the
RTA, justifying our use of the RTA.

To properly treat strong 𝑒-ph interactions and include polaron effects in the mobility,
we employ a finite-temperature cumulant approach in which the retarded electron
Green’s function 𝐺R

𝑛k is written using the exponential ansatz [8, 37–41]

𝐺R
𝑛k(𝑡, 𝑇) = 𝐺

R,0
𝑛k (𝑡)e𝐶𝑛k (𝑡,𝑇) , (3.2)

where𝐺R,0
𝑛k is the non-interacting Green’s function and𝐶𝑛k is the cumulant function,

obtained here at finite temperatures from the lowest-order 𝑒-ph self-energy (see
Methods). The electron spectral function is obtained from the Green’s function at
each electron energy 𝐸 using

𝐴𝑛k(𝐸,𝑇) = −Im𝐺R
𝑛k(𝐸,𝑇)/𝜋. (3.3)

In the CK method, the mobility tensor is computed directly from the spectral function
using the linear-response Green-Kubo formula [8, 38, 42]:

𝜇𝛼𝛽 (𝑇) =
1
𝑛c𝑒

∫
𝑑𝐸 Φ𝛼𝛽 (𝐸,𝑇), (3.4)

where the integrand is the transport distribution function (TDF). Under the approx-
imation of neglecting vertex corrections, the TDF reads [42]

Φ𝛼𝛽 (𝐸,𝑇) =
𝜋ℏ𝑒2

𝑉uc

∑︁
𝑛k

𝑣𝛼𝑛k𝑣
𝛽

𝑛k |𝐴𝑛k(𝐸,𝑇) |2
(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)
,

(3.5)

where 𝑣𝑛k are the unperturbed electron band velocities, the same as those used
in Eq. (3.1) [42]. The CK mobility defined in Eq. (3.4) is obtained from the
cumulant spectral function, therefore it takes into account the strong 𝑒-ph coupling
and polaron effects. The CK calculations have been shown to provide results in close
agreement with the BTE-RTA in the limit of weak 𝑒-ph interactions (see Ref. [8]
for a calculation on GaAs).

Electron mobility
The crystal structure of naphthalene consists of molecular planes in the 𝑎 and 𝑏

crystallographic directions, stacked along the plane-normal 𝑐∗ direction [Fig. 3.1(a)].
We first discuss charge transport in the molecular planes. For hole carriers, we have
previously shown that such in-plane transport is bandlike and well described by
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Figure 3.1: (a) Monoclinic crystal structure of naphthalene, with molecular 𝑎–𝑏
planes stacked in the plane-normal 𝑐∗ direction. (b) Band structure of naphthalene,
showing the two lowest-energy electron (LUMO and LUMO+1) and hole (HOMO
and HOMO-1) bands.

the BTE [3]. In this work, we focus on the mobility of the electron carriers,
which due to their flatter electronic bands with greater effective masses compared to
holes [Fig. 3.1(b)] are expected to exhibit lower mobilities and a range of transport
regimes. Only the electronic bands formed by the lowest unoccupied molecular
orbital (LUMO) and the next-higher-energy orbital (LUMO+1) contribute to electron
transport in the 100–300 K temperature range studied here, so we consider only these
two bands in our mobility calculations.

Figure 3.2 shows the in-plane electron mobilities computed with the BTE and CK
methods, and compares them with experimental data [20]. We fit each mobility curve
with a 𝑇−𝑛 power-law temperature trend and give the exponent 𝑛 next to each curve.
The results show that the BTE predicts a much stronger temperature dependence
of the mobility than in experiment, with errors in the computed exponents for
transport along the 𝑎 and 𝑏 crystallographic directions (mobilities 𝜇𝑎 and 𝜇𝑏 in
Fig. 3.2, respectively) of over 100% for 𝜇𝑎 and 270% for 𝜇𝑏 relative to the exponent
𝑛 obtained by fitting the experimental results. Due to this error, the BTE greatly
overestimates the mobility at low temperatures – for example, 𝜇𝑎 at 100 K from the
BTE is an order of magnitude greater than the experimental value.

These results are a strong evidence of the failure of the Boltzmann equation to
describe electron transport in naphthalene; the physical origin of this failure is
examined below. Note that the BTE failure is not a consequence of our use of the
RTA, as the full solution of the BTE [34] gives results nearly identical to the RTA
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Figure 3.2: (a) Electron mobility in direction 𝑎. (b) Electron mobility in direction
𝑏. Results obtained from BTE and CK calculations are compared with experimental
data from Ref. [20].

(see the ITA points at 220 K in Fig. 3.2). The fact that the mobility has a power-law
temperature dependence but is not correctly predicted by the BTE is a hallmark of
the intermediate transport regime [7, 9].

The CK calculations give significantly improved results (Fig. 3.2). The CK mo-
bilities are within a factor of 2 of experiment for 𝜇𝑎 and 1.3 for 𝜇𝑏 in the entire
100–300 K temperature range. The error in the 𝑇−𝑛 exponent is reduced to 20% for
𝜇𝑎 and 45% for 𝜇𝑏 relative to experiment, a five-fold improvement in accuracy over
the BTE results. Achieving this level of accuracy for quantitative predictions of the
mobility in OMCs has recently become possible in the band transport regime [3]
but has so far remained challenging in the intermediate regime. As we discuss
below, by combining the cumulant and Green-Kubo frameworks, our CK approach
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Figure 3.3: (a) Spectral functions computed at three temperatures for the CBM
electronic state. Results from the cumulant approach (𝐴C

CBM) are compared to the
Dyson-Migdal spectral function (𝐴DM

CBM). The QP peak is chosen as the zero of the
energy axis for each spectral function. The transport distribution function (TDF) in
arbitrary units is also shown at each temperature. (b) Electron spectral function for
the LUMO and LUMO+1 bands along a high-symmetry path, computed at 100 K
using the cumulant method. The solid line is the GW band structure and the dashed
line shows the renormalized cumulant band structure obtained by connecting the
QP peaks of the spectral functions. (c) Gauge-invariant 𝑒-ph coupling strength as
a function of phonon energy. The energies 𝜔1 and 𝜔2 of the two phonon modes
with strongest 𝑒-ph coupling are shown with vertical dashed lines. (d) Atomic
displacements for the two intramolecular modes with the strongest 𝑒-ph coupling.

can capture key polaron effects in the intermediate regime such as higher-order 𝑒-ph
coupling and spectral weight transfer, resulting in improved mobility predictions.

Electron spectral function
The electron spectral function is central to understanding polaron effects [8] and
intermediate charge transport. The spectral function can be viewed as the density
of states of a single electronic state, and it integrates to one over energy due to a
well-known sum rule [38]. In Fig. 3.3(a), we show the spectral function at three
temperatures, using results obtained with our cumulant method for the electronic
state at the conduction band minimum (CBM) [Γ point in Fig. 3.1(b)]. At 100 K,
next to the main QP peak we find a broad spectral feature associated with the
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combined excitation of an electron QP plus one or two phonons. This broad satellite
combines contributions from multiple satellite peaks, as shown by the arrows in
Fig. 3.3(a), and is a signature of polaron formation [8]. At higher temperatures, the
QP and satellite peaks broaden and ultimately merge into a continuum at 300 K.
The coexistence of a well-formed QP peak and broad satellites shows that large-
polaron effects, characteristic of 𝑒-ph interactions with intermediate strength, are a
key characteristic of the intermediate transport regime.

The cumulant spectral functions for multiple electronic states in the LUMO and
LUMO+1 bands can be combined to obtain a polaron band structure renormalized
by the 𝑒-ph interactions. Figure 3.3(b) compares the band structures at 100 K
computed with the GW method and with our cumulant calculations that use the
GW band structure as input. The cumulant band structure, obtained by connecting
the QP peaks of the cumulant spectral functions at neighboring k-points, captures
polaron effects such as QP mass and weight renormalization.

At 100 K, where the QP peaks are well-defined, we calculate the renormalized
effective masses from the cumulant band structure, and find a moderate effective
mass enhancement of 15–35% compared to the effective masses in the GW band
structure in the in-plane directions. This shows that the cumulant approach can
capture the bandwidth-narrowing due to strong 𝑒-ph interactions and polaron effects
in OMCs [43].

The physical origin of the polaron satellite in Fig. 3.3(a) is of key importance. In
the prototypical case of a polar inorganic material with strong 𝑒-ph coupling with
longitudinal optical (LO) phonons, the satellite peaks are located at the LO-mode
energy 𝜔LO (and its multiples) relative to the QP peak [8, 44]. Here, due to the
presence of a large number of phonon modes in OMCs (108 in napthalene), the
satellites merge into a broad spectral feature resembling a long tail of the QP peak,
with contributions from various phonon modes. To explain the origin of this broad
satellite, in Fig. 3.3(c) we analyze the 𝑒-ph coupling strength for an electronic
state near the CBM, as quantified by the absolute value of the gauge-invariant 𝑒-ph
coupling, |𝑔 | (see Methods).

In naphthalene, the 12 lowest-energy phonon modes are intermolecular, and the
remaining 96 modes are intramolecular vibrations [3]. In Fig. 3.3(a), the mode with
the strongest 𝑒-ph coupling, an intramolecular phonon with energy 𝜔1 ≈ 0.1 eV,
generates a satellite peak in the spectral function at energy 𝜔1 relative to the QP
peak. The intramolecular phonon with the second strongest 𝑒-ph coupling, with
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energy 𝜔2 ≈ 0.2 eV, gives a second contribution to the broad satellite, followed
by a plateau at higher energy. Finally, the inflection point in the spectral function
at energy 𝜔1 + 𝜔2 is due to higher-order 𝑒-ph coupling from the two modes with
energies 𝜔1 and 𝜔2.

The atomic displacements associated with these two intramolecular modes are shown
in Fig. 3.3(d). Both modes involve vibrations of the hydrogen atoms, in one case in
the carbon ring plane and in the other case normal to the carbon rings. Our analysis
demonstrates that these intramolecular phonons are responsible for the formation of
polarons in naphthalene. This strong coupling with intramolecular phonons and the
associated satellite peak in the spectral function are consistent with recent results
from the Holstein-Peierls model [13].

Interestingly, lowest-order theory is wholly inadequate to describe this polaronic
regime with intermediate 𝑒-ph coupling strength. To show this point, we compute
the Dyson-Migdal (DM) spectral function [see Eq. (3.11)], which is obtained from
the lowest-order 𝑒-ph self-energy and therefore does not include polaron effects.
From the comparison of the cumulant and DM spectral functions in Fig. 3.3(a)
it is clear that the DM spectral functions have a Lorentzian shape and lack any
satellite structure. As a result, the subtle interplay between inter- and intramolecular
phonons in the QP and satellite peaks cannot be captured in lowest-order theory. As
we discuss below, this is the origin of the failure of the BTE to describe transport in
the intermediate regime.

Failure of the Boltzmann equation
It is important to understand the microscopic origin of the failure of the BTE, and the
success of the CK method, to describe transport in the intermediate regime. In the
Green-Kubo framework, the mobility is given by an integral over electron energies
[see Eq. (3.4)], which in principle combines contributions from all features of the
spectral function. To quantify the contributions of the QP and satellite peaks to
charge transport, we analyze the mobility integrand, the TDF in Eq. (3.5), and plot
it together with the spectral functions in Fig. 3.3(a). We find that the TDF decays
rapidly outside the QP peak, within an energy 𝜔1 of the QP peak at low temperature
and 𝜔2 at 300 K. Therefore any spectral function feature with energy greater than
𝜔2 does not overlap with the TDF and cannot contribute to charge transport between
100–300 K. In this temperature range, although the mobility is mainly governed by
the QP peak, polaron effects still contribute in important ways.
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Figure 3.4: Full width at half maximum of the QP peak shown at two temperatures
for both the cumulant and DM spectral functions. The energy zero is set to the
conduction band minimum.

First, due to higher-order 𝑒-ph coupling with both inter- and intramolecular phonons,
the linewidth of the QP peak in the cumulant spectral function is different than in
the DM spectral function from lowest-order theory (see Fig. 3.4), whose linewidth
is the scattering rate entering the BTE mobility calculation. This QP linewidth
discrepancy is temperature and energy dependent (Fig. 3.4), which explains why the
BTE cannot correctly predict the value and temperature dependence of the mobility
in the intermediate regime, corroborating our results in Fig. 3.2. Second, the broad
satellite in the cumulant spectral function limits the carrier mobility indirectly,
by transferring spectral weight away from the QP peak (recall that the spectral
function integrates to one over energy). The satellite peak at 𝜔1 contributes directly
to transport only above ∼200 K, where the QP peak broadens, merging with the
satellite and overlapping with the TDF.

The picture that emerges is that electron transport in the naphthalene molecular
planes is mainly governed by the scattering of QPs with renormalized weight, which
couple directly (via the main QP peak) with low-energy intermolecular phonons and
indirectly (via weight transfer to the satellites) with higher-energy intramolecular
phonons. The latter can also contribute directly to charge transport as the tem-
peratures increases above 200 K. The ability of our CK approach to address these
subtle 𝑒-ph interactions enables accurate predictions of the mobility and its temper-
ature dependence in the intermediate regime, where the BTE with lowest-order 𝑒-ph
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Figure 3.5: Hole carrier mobilities in naphthalene (𝜇ℎ) shown for the three crystal-
lographic directions 𝑎, 𝑏, and 𝑐∗, computed both with the BTE in the relaxation time
approximation (gray solid line) and with the CK approach (blue, green, and red).
The computational settings are the same as in the electron mobility calculations.
The BTE results presented in Ref. [3], which were obtained using a previous im-
plementation of 𝑒-ph interactions with less accurate Wigner-Seitz cell summations,
are shown as dashed lines for comparison. The exponent 𝑛 from a 𝑇−𝑛 power-law fit
of the temperature dependence is given next to each curve. The experimental data
(black) are from Ref. [20].
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coupling fails to capture these essential polaron effects.

Comparison with hole mobilities
Finally, we present mobility results for hole carriers in naphthalene to contrast their
behavior with electron carriers. We compute the hole mobility in naphthalene
between 100–300 K using the CK approach, and compare the results to BTE cal-
culations and experiments (see Fig. 3.5). The BTE calculations are a refinement of
those we presented in Ref. [3], obtained here using a more accurate Wigner-Seitz
cell summation procedure, as implemented in Perturbo and described in detail in
Ref. [34]. The revised BTE mobilities follow an identical temperature trend as in
our previous results in Ref. [3], but their value is now greater than experiment, a
physically meaningful trend for phonon-limited mobilities.

For hole carriers, both the BTE and CK methods give accurate predictions of the hole
mobility, within a factor of 2–3 of experiment at all temperatures. The temperature
dependence is nearly identical for the CK and the BTE mobilities, as shown by
fitting the mobility curves with a 𝑇−𝑛 power-law and giving the exponent 𝑛 next to
each curve in Fig. 3.5. These findings demonstrate that the band transport picture of
the BTE, which is inadequate for electron carriers, is sufficient to describe transport
for hole carriers due to their more dispersive bands (see Fig. 3.1) and overall weaker
𝑒-ph coupling (see Fig. 3.7 of supplementary material in Sec. 3.5).

3.3 Discussion
In naphthalene, measurements of the mobility in the direction normal to the molec-
ular planes (𝑐∗ direction in Fig. 3.1) point to a transport regime different from the
in-plane directions. In experiments, the mobility along 𝑐∗ is lower than 1 cm2V−1s−1

and is nearly temperature independent between 100–300 K [20–22]. These trends
suggest that charge transport normal to the molecular planes may occur in the small-
polaron hopping regime, where the carriers are strongly localized and the 𝑒-ph
interaction is so strong that a diagram-resummation technique such as the cumulant
method is not expected to give accurate results.

We calculate the plane-normal mobility using both the BTE and CK methods, and
compare the results with experiments in Fig. 3.6. The computed mobility decreases
with temperature in both the CK and BTE approaches, deviating substantially from
the nearly temperature independent mobility found in experiment. It is encouraging
that the CK mobility agrees well with experiment at 100 K and its temperature
dependence is weaker than in the BTE; fitting the temperature dependence with a
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Figure 3.6: Electron mobility in the plane-normal direction in naphthalene. The
plot compares CK and BTE calculations with experimental data from Ref. [20].

𝑇−𝑛 power law gives an exponent 𝑛 = 1.72 in the CK and 𝑛 = 3.78 in the BTE
method, versus 𝑛 = 0.04 in experiment. However, although the CK provides a
significant improvement over the BTE, it is clear that neither method can accurately
describe charge transport normal to the molecular planes.

The electron bands in the GW band structure are nearly flat in the plane-normal 𝑐∗-
direction [Γ−Z direction in Fig. 3.3(b)], with large effective masses of order 15𝑚e for
the GW calculation done on the 100 K structure, and greater at higher temperatures.
Combined with the absence of a power-law temperature trend in the experimental
mobility, this relatively flat band suggests that electrons are nearly localized to a
single molecular plane and that transport in the plane-normal direction occurs via
small-polaron hopping. The failure of the CK approach in this regime highlights
the need for predictive first-principles approaches to study charge transport in the
small-polaron hopping regime in OMCs.

In summary, we studied the electron mobility in naphthalene crystal as a paradig-
matic case of intermediate charge transport in OMCs. Combining a finite-temperature
cumulant method and Green-Kubo transport calculations, we demonstrated accurate
predictions of the electron mobility and its temperature dependence in the interme-
diate regime. Our results reveal a subtle interplay between inter- and intramolecular
phonons: the low-energy intermolecular phonons determine the broadening of the
QP peak, while the intramolecular phonons are responsible for forming polarons
and the associated satellite peaks. Both types of phonons contribute to limit the
mobility. The broad satellite removes spectral weight from the QP peak, modifying
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the mobility and its temperature dependence. By capturing these subtle polaron
effects, our CK approach addresses the shortcomings of the BTE for modeling the
intermediate transport regime. We also highlighted the limitations of the CK ap-
proach to describe polaron-hopping between molecular planes. Taken together, our
work advances microscopic understanding of the intermediate transport regime and
paves the way for accurate first-principles calculations of the carrier mobility in
OMCs.

3.4 Methods
First-principles calculations
We carry out first-principles density functional theory (DFT) calculations of the
ground state and electronic structure of naphthalene using the Quantum ESPRESSO
code [23, 24]. Thermal expansion of the lattice is taken into account by employing
lattice constants [32] taken from experiments at four different temperatures of 100,
160, 220, and 300 K. All calculations are carried out separately at these four
temperatures. The initial atomic positions are also taken from experiment [45, 46].
We use a kinetic energy cutoff of 90 Ry together with 2×4×2 and 4×4×4 k-point grids
for self-consistent and non-self-consistent calculations, respectively. The Grimme
van der Waals correction [47, 48] is included during structural relaxation of the
atomic positions. To improve the description of dynamical electronic correlations,
we correct the DFT electronic band structure with G0W0 calculations, which include
500 bands in the polarization function and a cutoff of 10 Ry in the dielectric
screening using the Yambo code [29]. The Wannier90 code [31] is employed to
obtain Wannier functions and the corresponding transformation matrices, using the
selected-columns-of-the-density-matrix method [49]. The lattice dynamics and 𝑒-
ph perturbation potential are computed with density functional perturbation theory
(DFPT) [33] calculations on a 2 × 4 × 2 q-point grid (here and below, q is the
phonon wavevector). Using our Perturbo code [34], the electron and phonon data
are combined to form the 𝑒-ph coupling matrix elements [34]:

𝑔𝑚𝑛𝜈 (k, q) =
√︄

ℏ

2𝜔𝜈q

∑︁
𝜅𝛼

e𝜅𝛼𝜈q√
𝑀𝜅

⟨𝑚k + q|𝜕q𝜅𝛼𝑉 |𝑛k⟩, (3.6)

where |𝑛k⟩ are electronic Bloch states, 𝜔𝜈q are phonon energies, 𝜕q𝜅𝛼𝑉 are 𝑒-ph
perturbation potentials, e𝜅𝛼𝜈q are phonon displacement vectors, and 𝑀𝜅 is the mass of
atom 𝜅. The absolute value of the gauge-invariant 𝑒-ph coupling strength shown in
Fig. 3.3(b) is computed for each phonon mode 𝜈 and phonon wavevector q as [34]
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|𝑔𝜈 (k=0, q) | =
√︄∑︁

𝑚𝑛

|𝑔𝑚𝑛𝜈 (k=0, q) |2/𝑁b , (3.7)

f where 𝑁b is the number of selected bands. The mobility calculations use a fine
k-grid of 60 × 60 × 60 for the BTE and 30 × 30 × 30 for the CK method. Both
methods use between 105–106 randomly selected q-points.

Electron-phonon scattering rate
The relaxation time 𝜏𝑛k used in the BTE is computed as the inverse of the scattering
rate, defined as [35]

Γ𝑛k(𝑇) =
2𝜋
ℏ

∑︁
𝑚𝜈q

|𝑔𝑛𝑚𝜈 (k, q) |2

× [(𝑁𝜈q + 1 − 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑛k+q − 𝜔𝜈q)
+ (𝑁𝜈q + 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑛k+q + 𝜔𝜈q)], (3.8)

where 𝑓𝑛k and 𝑁𝜈q are electron Fermi-Dirac and phonon Bose-Einstein occupations
in thermal equilibrium, respectively.

Cumulant method
The cumulant ansatz assumes that the retarded electron Green’s function in the time
domain takes the exponential form in Eq. (3.2), where the cumulant function 𝐶𝑛k is
defined as [8, 37]

𝐶𝑛k(𝑡, 𝑇) =
∫ ∞

−∞
d𝐸

|ImΣ𝑛k(𝐸 + 𝜀𝑛k, 𝑇) |
𝜋𝐸2 (e−i𝐸𝑡 + i𝐸𝑡 − 1). (3.9)

Here, 𝜀𝑛k is the electron band energy, 𝐸 the electron energy, and Σ𝑛k is the lowest-
order (Fan-Migdal) 𝑒-ph self-energy [38]:

Σ𝑛k(𝐸,𝑇) =
∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2
[

𝑁𝜈q + 𝑓𝑚k+q

𝐸 − 𝜀𝑚k+q + 𝜔𝜈q + i𝜂
+

𝑁𝜈q + 1 + 𝑓𝑚k+q

𝐸 − 𝜀𝑚k+q − 𝜔𝜈q + i𝜂

]
,

(3.10)
whose temperature dependence is due to the occupation factors 𝑁𝜈q and 𝑓𝑛k. Our
cumulant Green’s function includes 𝑒-ph Feynman diagrams of all orders: it sums
over all the improper diagrams in which, at order 𝑛, the Fan-Migdal 𝑒-ph self-energy
is repeated 𝑛 times and weighted by a 1/𝑛! factor [38]. After Fourier-transforming
the retarded Green’s function in Eq. (3.2) to the energy domain, we obtain the
electron spectral function using Eq. (3.3). We compute ImΣ𝑛k(𝐸) off-shell, using
a fine energy 𝐸 grid, and ReΣ𝑛k on-shell at the band energy 𝜀𝑛k, and use them as
input to obtain the spectral function 𝐴𝑛k [8] as a function of electron energy 𝐸 .
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Dyson-Migdal spectral function
The Dyson-Migdal (DM) spectral function is given by

𝐴DM
𝑛k (𝐸,𝑇) = −ImΣ𝑛k(𝑇)

[𝐸 − 𝜀𝑛k − ReΣ𝑛k(𝑇)]2 + [ImΣ𝑛k(𝑇)]2 , (3.11)

where Σ𝑛k(𝑇) is the lowest-order 𝑒-ph self-energy [Eq. (3.10)] computed on-shell
at the band energy 𝜀𝑛k. The DM spectral function has a Lorentzian shape as a
function of energy, with a linewidth of 2 ImΣ𝑛k(𝑇) which is proportional to the 𝑒-ph
scattering rate in Eq. (3.8), Γ𝑛k(𝑇) = 2 ImΣ𝑛k(𝑇)/ℏ [35].

3.5 Supplementary material

Figure 3.7: Comparison of the 𝑒-ph coupling strength, quantified by the absolute
values of the 𝑒-ph matrix elements, |𝑔 |, for the valence band maximum (VBM)
hole state and the conduction band minimum (CBM) electron state. The electrons
exhibit an overall stronger coupling with phonons with energies between 0–200 meV,
which, combined with the greater electron effective mass [see Fig. 3.1(b)], leads
to a polaronic transport regime and the failure of the bandlike picture for electron
carriers.
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C h a p t e r 4

ELECTRON-PHONON INTERACTIONS AND POLARONS
IN THE PARENT CUPRATE La2CuO4

This chapter is a slightly modified version of the preprint: B. K. Chang, I. Timrov,
J. Park, J.-J. Zhou, N. Marzari, and M. Bernardi, “First-principles electron-phonon
interactions and polarons in the parent cuprate La2CuO4”, arXiv:2401.11322, under
review in Phys. Rev. Lett.

4.1 Introduction
Angle-resolved photoemission spectroscopy (ARPES) has provided ample evidence
for broad spectral functions in several cuprate compounds [1–5]. This spectral
broadening has been associated with strong electron-phonon (𝑒-ph) interactions and
polaronic behavior in doped and undoped cuprates [2, 3, 5]. Existing models can
account phenomenologically for the observed spectral broadening [1, 2, 6]. Yet
developing a deeper understanding based on rigorous theory and quantitative calcu-
lations has been difficult, mainly due to the strong electron correlations governing
cuprate physics [7, 8].

In parent (undoped) cuprate compounds, the strong Coulomb repulsion of local-
ized Cu 3𝑑 electrons induces an antiferromagnetic (AFM) Mott insulating ground
state [9, 10] which can be described qualitatively using Hubbard-like or 𝑡–𝐽 mod-
els [11, 12]. These Hamiltonians can also be combined with model 𝑒-ph interactions
to predict the broadening of electron spectral functions [3, 13–17]. However, key
microscopic quantities needed for a realistic description of 𝑒-ph coupling in most
high-temperature superconductors remain unknown, including the strength of the
𝑒-ph interactions, their dependence on electron and phonon momenta, their effects
on electron spectral functions, and which atomic vibrations dominate the coupling.
Owing to recent progress, first-principles calculations are able to characterize 𝑒-ph
interactions and electron spectral functions also in correlated metals and insula-
tors [18–20]. For cuprates, such quantitative studies have so far focused on metallic
(doped) compounds relying on the local-density approximation (LDA) [21–23],
which cannot correctly describe the Mott insulating ground state of parent cuprates.
Recent work has studied parent cuprates using improved functionals [24–27] or
Hubbard-corrected density functional theory (DFT+𝑈) [28–30] to obtain reliable
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ground state and phonon spectra [30, 31]. Even within these improved schemes,
𝑒-ph interactions in parent cuprates remain unexplored.

In this chapter, we show fully ab initio calculations of 𝑒-ph interactions and electron
spectral functions in a prototypical parent cuprate, La2CuO4 (LCO). We employ
a combination of advanced first-principles techniques, including linear-response
DFT+𝑈 and recently developed treatments of anharmonic phonons [32], strong 𝑒-
ph interactions, and polarons [33, 34]. Starting from an accurate ground state, we
show that 𝑒-ph interactions in LCO are governed by two families of longitudinal
optical (LO) phonons with strong Fröhlich-type coupling. These LO modes consist
of stretching and bending of Cu-O bonds and vibration of apical O atoms. The
computed valence band spectral functions exhibit significant peak broadening and
renormalization, as well as pronounced phonon sidebands. These features are
governed by the strongly-coupled LO phonons, with a smaller contribution from
lower-energy polar modes. Our results provide a quantitative evidence for strong
𝑒-ph interactions and polarons in parent cuprates mediated by multiple optical
phonons, thus deepening our microscopic understanding of cuprate physics beyond
analytical models.

4.2 Results
We compute the ground state of LCO in the low-temperature orthorhombic phase [35–
37] using collinear spin-polarized DFT+𝑈 calculations in a plane-wave basis with
the Quantum ESPRESSO package [38, 39]. The Hubbard-𝑈 parameter for the Cu
3𝑑 states is calculated (rather than fitted) self-consistently with the relaxed crystal
structure [40–42], thus removing any tunable parameter in our calculations. We
employ the SSCHA method [32] to compute effective harmonic phonon dispersions
at 150 K, a temperature where LCO is in its antiferromagnetic (AFM) state [37,
43]. The 𝑒-ph perturbation potentials, obtained on a coarse irreducible q-point
grid with DFPT+𝑈 [39, 44], include both the Kohn-Sham and Hubbard pertur-
bation terms [18]. We use the Perturbo code [45] to compute the 𝑒-ph matrix
elements [18, 45], 𝑔𝜎𝑚𝑛𝜈 (k, q), and interpolate them using Wannier functions from
Wannier90 [46]. (These matrix elements represent the probability amplitude for an
electron in a Bloch state 𝜓𝜎

𝑛k, with band index 𝑛, spin 𝜎, and crystal momentum k,
to scatter into state 𝜓𝜎

𝑚k+q by emitting or absorbing a phonon with mode index 𝜈 and
wave-vector q [39, 45, 47].) The electron spectral functions are computed at finite
temperature with a cumulant approach described in Ref. [34]. This method can cap-
ture strong 𝑒-ph interactions and polaron effects, such as the broadening and weight
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Figure 4.1: Band structure of LCO in its AFM phase computed with DFT+𝑈.
The inset shows the in-plane Brillouin zone of the nonmagnetic (NM, blue) and
antiferromagnetic (AFM, red) phases, with high-symmetry points Γ, 𝑀 , 𝑁 , and 𝑋

labeled. The right panel gives the total density of states (DOS) and its contributions
from O 2𝑝 and Cu 3𝑑 atomic states. The energy zero is set to the top of valence
band.

renormalization of the quasiparticle peak and the emergence of phonon sidebands,
as we have shown in recent studies on oxides [18, 34] and organic crystals [48].
Additional computational details are provided in the supplementary material (SM)
in Sec. 4.4.

Figure 4.1 shows the band structure of LCO computed with DFT+𝑈. The valence
band dispersion near the gap resembles conventional 𝑡–𝐽 model results for insulating
cuprates [49, 50], with the valence band maximum (VBM) at the nodal point
𝑁 [k = ( 𝜋2 ,

𝜋
2 )] and additional lower-energy valleys near the antinodal point 𝑀

[k= (𝜋, 0)]. The computed band gap is 𝐸𝑔 =2.04 eV and the Cu magnetic moment
is 𝜇Cu = 0.62𝜇B, in excellent agreement with the respective experimental values,
𝐸

exp
𝑔 =2.0 eV [51, 52] and 𝜇

exp
Cu =0.60–0.64𝜇B [36, 53] (see additional discussion in

the SM in Sec. 4.4).

Starting from this accurate ground state, we compute the phonon dispersions (inclu-
sive of anharmonic effects) and map out the mode-resolved strength of the 𝑒-ph in-
teractions in Fig. 4.2(a). The experimental frequency of a Cu-O bond-stretching LO
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Figure 4.2: (a) Calculated phonon dispersion overlaid with the 𝑒-ph coupling
strength |𝑔𝜈 (k, q) | computed at the nodal point k = 𝑁 . Experimental LO-mode
energies are given for comparison with hollow circles [54]. The four most strongly-
coupled LO modes (LO1𝑎,𝑏 and LO2𝑎,𝑏) are indicated with black arrows, and lower-
energy (LE) strongly-coupled modes with gray arrows. (b) Atomic displacements
for the four strongly-coupled LO modes, with blue and pink spheres representing
Cu and O atoms, respectively.
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mode, measured by neutron scattering [54] and given for comparison in Fig. 4.2(a),
is in very good agreement with our calculations. As the high-symmetry 𝑋-point
in the nonmagnetic (NM) phase is equivalent to the zone center (Γ point) of the
AFM phase, we find multiple discontinuities in the phonon dispersion near 𝑋 due to
LO–TO splitting combined with orthorhomic 𝑎𝑏-anisotropy, similar to the behavior
observed in orthorhombic YBa2Cu3O6+𝑥 [55, 56]. We highlight the importance of
temperature and anharmonic effects included in our SSCHA calculation; conversely,
zero-temperature DFPT+𝑈 phonons exhibit unphysical dynamical instabilities (see
the SM in Sec. 4.4).

Figure 4.2(a) also shows the 𝑒-ph coupling strength for each phonon mode [45],
|𝑔𝜈 (k, q) |, computed at the electron nodal point k= 𝑁 . We identify two groups of
LO phonons with strong Fröhlich-type coupling [57], named here LO1 and LO2, with
respective energies 𝜔1 ≈85 meV and 𝜔2 ≈55 meV. We further distinguish between
strongly coupled modes at opposite sides of the AFM zone center (𝑋 point), labeling
them with indices 𝑎 and 𝑏 respectively. At small wave-vector (Δ𝑞≈0.015 Å−1) near
𝑋 , these LO modes exhibit large 𝑒-ph coupling strengths, with values |𝑔2 | ≈5.5 eV
for the LO2𝑎,𝑏 and |𝑔1 | ≈ 3.9 eV for the LO1𝑎,𝑏 phonons. These long-wavelength
modes govern the 𝑒-ph physics in LCO as their 𝑒-ph coupling strengths are orders of
magnitude greater than the Brillouin-zone average value (44 meV). Such coupling
strengths exceed those in strongly correlated metals (highest |𝑔 | ≈ 100 meV in
Sr2RuO4) [20], and have the same order of magnitude as the Fröhlich coupling
strengths in insulating oxides with polaron effects, including CoO and SrTiO3 [18,
34, 58].

Notably, the energies of the LO1 and LO2 modes coincide with those of strongly-
coupled phonons observed experimentally in several doped cuprates, as evidenced
by a universal kink in their quasiparticle (QP) band dispersion found in ARPES
measurements [59–61]. So far, these features have not been observed experimentally
in undoped cuprates due to their broader ARPES spectra [4]. Our results show
quantitatively that strong 𝑒-ph interactions are already present at these energies in
the parent cuprate LCO.

The four strongly-coupled LO modes are associated with O-atom vibrations, as
shown in Fig. 4.2(b). The LO1𝑎 and LO1𝑏 modes correspond to vibrations in the
CuO2 plane consisting of oxygen breathing motions. These Cu-O bond-stretching
modes have been shown to couple strongly with holes in neutron scattering mea-
surements [62] and are linked to Cu-O charge transfer [55] and formation of charge-
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Figure 4.3: (a) Spectral function of the VBM hole state in LCO computed at 150 K.
The satellite peak is centered at 𝜔L𝑂 , the average of the LO1 and LO2 phonon
energies. A second overtone feature at 2𝜔L𝑂 is also shown. The energy zero is set
to the QP peak energy. (b) Temperature-dependent spectral function of the VBM
state computed at three temperatures, with the QP peak energies shown with dashed
lines. The spectral functions are aligned at their energy onsets.

ordered phases [56]. The LO2𝑎 and LO2𝑏 modes, on the other hand, involve both
in-plane Cu-O bond-bending, with O atoms moving normal to the Cu-O bonds [56],
and motion of the apical O atoms outside the CuO2 planes [63]. The ∼55 meV
energy of the LO2a,b modes is consistent with bond-bending modes measured in the
doped LCO compound La2−𝑥Sr𝑥CuO4 (LSCO) [62].

We find additional lower-energy (LE) modes, with energies between 15–50 meV,
whose 𝑒-ph coupling strengths are significant (|𝑔 | ≈ 1–2 eV at Δ𝑞 from 𝑋) but
weaker than those of the LO1,2 modes. These strongly-coupled LE modes consist
mainly of Cu-O bond-bending and apical O vibrations, with modes at lower energies
associated with higher-amplitude oscillations of Cu and La atoms. Importantly,
while Cu-O bond-stretching modes have received the most attention in the cuprates,
our results show that bond-bending and apical oxygen motions possess the strongest
𝑒-ph coupling and govern 𝑒-ph physics in LCO.
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The spectral functions exhibit clear signatures of strong 𝑒-ph coupling. Figure 4.3(a)
illustrates this result for the valence band maximum (VBM) hole state. The
𝑒-ph interactions broaden the QP peak and significantly decrease its spectral weight
to 𝑍 =0.25. In addition, we find a satellite peak at hole energy𝜔L𝑂 ≈70 meV accom-
panied by a less pronounced overtone at 2𝜔L𝑂 ≈140 meV relative to the QP peak 1.
These phonon sidebands form as a result of strong 𝑒-ph coupling with the LO1

and LO2 modes, whose average energy equals the satellite energy 𝜔L𝑂 ≈ 70 meV.
Other phonons with appreciable 𝑒-ph coupling, such as the LE modes, can also
redistribute spectral weight and modify the spectral function. Yet due to their lower
energy and weaker 𝑒-ph coupling, their satellites carry less weight and merge into a
broad incoherent background.

Our spectral function calculations can be viewed as a quantitative version of the
Franck-Condon broadening (FCB) model, which describes the spectral functions in
(un)doped cuprates as a superposition of multiple incoherent peaks [1, 2, 6]. The
QP-peak broadening and renormalization in our calculations is consistent with both
experimental results and the FCB model. Yet our computed spectral functions ex-
hibit well-defined QP peaks, which are typically missing in experiments on undoped
cuprates [1, 2]. We attribute this discrepancy to the small QP weight (𝑍 = 0.25),
as predicted here, which makes the QP peak easily washed out in real samples by
defect- and magnon-induced broadening not considered in this work [64–66]. One
difference with the FCB model is that the phonon sidebands decay rapidly with
hole energy in our calculations, similar to previous results for large polarons in
oxides [18, 34], and are not visible beyond the second overtone at 2𝜔L𝑂 . In contrast,
the FCB model predicts a series of intense satellites.

Our calculations can also explain an anomalous shift with temperature of the spectral
function peak [1]. A model proposed by Kim et al. [1] predicts that the peak energy
𝐸𝑝 of the spectral function shifts with temperature according toΔ𝐸𝑝≈𝜋𝑘BΔ𝑇 , where
𝑘B is the Boltzmann constant. This formula provides only a crude estimate—for
example, the measured temperature dependence is twice greater than predicted
by this model in undoped Sr2CuO2Cl2 and Ca2CuO2Cl2 between 100–400 K. In
contrast, our calculations on LCO can predict with a high accuracy the temperature
dependence of the peak observed experimentally. Figure 4.3(b) shows the computed

1Our results are given in terms of hole energies, which correspond to negative electron energies
relative to the QP peak. Note also that phonon satellites appear at electron energies lower than the
QP peak for 𝑝-doped materials, as we assume here; the sign of the satellite energy would be reversed
in the 𝑛-doped case [34].
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Figure 4.4: Electron-phonon coupling distribution function, 𝛾(𝐸), computed using
Eq. (4.1) (solid curve). For comparison, we show 𝑡–𝐽 model results from Ref. [3]
(dashed curve) and the range of the experimental self-energy peaks in LSCO from
Ref. [67] (shaded regions). The distribution curves are normalized to the same
maximum height.

spectral functions of the VBM hole state at three temperatures between 150–200 K.
For an initial temperature of 150 K, increasing the temperature to 170 K and 200 K
gives, respectively, a peak shift of 5 and 13 meV when using the simple model,
versus 9 and 21 meV in our calculation, which corresponds to a ∼0.45 meV/K peak
shift. Our computed values are twice greater than the model and are in very good
agreement with the ∼0.5 meV/K peak shift extracted from ARPES experiments on
undoped cuprates [1].

Conventional analysis of 𝑒-ph interactions in cuprates focuses on the 𝑒-ph coupling
distribution function [3], which combines contributions to 𝑒-ph coupling from all
phonons (with energies ℏ𝜔𝜈q) at a given energy 𝐸 :

𝛾(𝐸) =
∑︁
𝜈q

|𝑔𝜈 (k, q) |2 𝛿(𝐸 − ℏ𝜔𝜈q). (4.1)

This quantity has been computed using a 𝑡–𝐽 model [3] to interpret the measured
electron self-energy in underdoped LSCO [67]. This model calculation gives a
distribution function that captures the experimental self-energy peaks at 25, 60, and
80 meV (see Fig. 4.4). However, the peak observed in experiments at ∼40 meV



68

is absent in the model calculations. Previous work attributed this missing peak to
surface effects or distortions due to doping in real samples [3].

We compute the 𝑒-ph coupling distribution function for the nodal point k=𝑁 in our
first-principles settings. As shown in Fig. 4.4, our computed distribution function
agrees with 𝑡–𝐽 model results above 60 meV and brings the position of the 25-meV
peak closer to experiments [67]. Importantly, our calculations recover the missing
peak at 40 meV, which is due to 𝑒-ph interactions with LE modes associated with
bond-bending and apical O vibrations. This demonstrates that the 40-meV feature
observed in LSCO [67] is already present in the undoped parent phase and is not a
consequence of doping. The 40-meV feature is absent in the 𝑡–𝐽 model because it
considers only the Cu 𝑑𝑥2−𝑦2 and O 𝑝𝑥,𝑦 orbitals [11, 13], so 𝑒-ph interactions from
Cu-O bond-bending and apical O vibrations are not properly described. Our results
suggest that an accurate effective model of 𝑒-ph physics in cuprates would need to
take into account additional electronic orbitals and phonon modes.

4.3 Discussion
In summary, we study 𝑒-ph interactions in the parent cuprate LCO using state-of-
the-art first-principles calculations. We show that strong 𝑒-ph interactions are an
intrinsic feature of the undoped phase and are mediated by two classes of LO phonons
with Fröhlich coupling, both consisting of Cu-O bond-bending, bond-stretching
and apical O-atom vibrations, with smaller contributions from LE polar modes.
Capturing this physics allows us to explain key features of the valence band spectral
functions, including their significant broadening and QP weight renormalization, the
presence of phonon sidebands with a broad incoherent background, and the origin
of a 40 meV peak in the energy distribution functions not accounted for by existing
models. As many parent high-temperature superconductors are ionic insulators, we
believe that strong Fröhlich-type 𝑒-ph coupling may be a general feature of parent
phases, and plan to investigate this point in broader classes of superconductors in
the future.
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4.4 Supplementary material
Computational details
We use Hubbard-corrected density functional theory (DFT+𝑈) to compute the elec-
tronic ground state of La2CuO4 (LCO) with a 14-atom antiferromagnetic (AFM)
primitive unit cell in the low-temperature orthorhombic phase (space group𝐶𝑚𝑐𝑎) [35–
37, 43, 68]. Our calculations employ the PBEsol exchange-correlation func-
tional [69] and ultrasoft pseudopotentials [70] from the GBRV library [71], together
with kinetic energy cutoffs of 65 Ry and 520 Ry for the wave functions and charge
density, respectively, and a 4 × 4 × 4 k-point grid. Atomic orbitals are used as the
basis for the Hubbard manifold.

We calculate the Hubbard-𝑈 parameter and the relaxed crystal structure from first
principles in a self-consistent way [40]. Starting from𝑈=0 and a given initial crystal
structure, we use a density functional perturbation theory (DFPT) approach [42], as
implemented in the HP code [41], to compute the Hubbard-𝑈 parameter on a 4×4×4
q-point grid. We then use DFT+𝑈 with the newly computed 𝑈 value to relax the
cell and obtain a new crystal structure, which in turn we use to recalculate 𝑈. We
repeat this process until convergence, where the Hubbard-𝑈 parameter and crystal
structure stop changing appreciably. The final self-consistent Hubbard-parameter
for the Cu 3𝑑 states is 𝑈sc = 10.00 eV and the fully relaxed lattice parameters are
𝑎 = 5.524 Å, 𝑏 = 5.335 Å, and 𝑐 = 12.891 Å.

The electron-phonon (𝑒-ph) perturbation potential is obtained with Hubbard-corrected
density functional perturbation theory (DFPT+𝑈) [39, 44] on a coarse irreducible
2 × 2 × 2 q-point grid. We compute the phonon dispersion using the stochastic
self-consistent harmonic approximation (SSCHA) [32] with an ensemble of 750
configurations, each consisting of a 2×2×2 supercell with random atomic displace-
ments. The interatomic forces and total energy of each configuration are evaluated
using DFT+𝑈.

Following standard convention from the literature [50, 72], the calculated band
structure and phonon dispersion of the AFM primitive cell are folded to the Brillouin
zone of the nonmagnetic (NM) conventional unit cell. Therefore, the Brillouin zone
labeling in the main text and below refers to the NM conventional unit cell.
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Band gap and magnetic moment as a function of Hubbard-𝑈 parameter

Figure 4.5: (a) Electronic band gap and (b) Cu magnetic moment (in Bohr magneton
units) computed using collinear spin-polarized DFT+𝑈 with different Hubbard 𝑈

values. The experimental band gap [51, 52] and Cu magnetic moment [36, 53] are
shown with red horizontal lines in the respective plots (for the magnetic moment,
the shaded region corresponds to a range of values found in the literature). The
Hubbard-𝑈 value determined self-consistently (𝑈sc) and used for all calculations in
the main text is indicated with a blue dashed line in each panel.

Phonon dispersions from DFPT+𝑈 and SSCHA
Figure 4.6(a) below compares phonon dispersions computed with DFPT+𝑈 and
with the SSCHA method employed together with DFT+𝑈. The dispersions from
the two methods are in close agreement at energies greater than 15 meV, but differ
significantly at lower energy due to the presence of soft phonons. Inelastic neutron
scattering (INS) experiments [73–75] have shown that La2CuO4 and La2−𝑥Sr𝑥CuO4

possess soft phonons associated with tilting and rotation of the CuO6 octahedra.

Accordingly, we find two branches of soft phonons [labeled S1 and S2 in Fig. 4.6(a)],
which are not described correctly in zero-temperature DFPT+𝑈 calculations. These
modes are visualized in Fig. 4.6(b): the soft phonon S2 is a well-known CuO6-
octahedron tilting mode responsible for the orthorhombic-to-tetragonal phase tran-
sition [73, 74], while the S1 phonon is a Cu shear mode discussed less often in
literature.
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Figure 4.6: (a) Phonon dispersion of La2CuO4 in the low-temperature orthorhombic
phase. The plot compares DFPT+𝑈 (pink dotted curves) and SSCHA calculations
(blue solid curves). The two soft modes are indicated with arrows in the DFPT+𝑈
dispersion. (b) Visualization of the two soft phonons, with arrows representing
atomic displacements. Mode S1 is shown in the Cu-sublattice of the conventional
unit cell, and mode S2 in a CuO6 octahedron. Pink and blue spheres represent O
and Cu atoms, respectively.
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C h a p t e r 5

SUMMARY AND FUTURE DIRECTIONS

In summary, this thesis shows detailed quantitative studies of electron-phonon (𝑒-
ph) interactions in organic crystals and cuprates, pushing the boundaries of first-
principles calculations and advancing the knowledge of charge transport, polarons,
and high-temperature superconductivity, thus offering new insights toward high-
performance and novel electronic technologies.

Organic crystals
In Chapter 2, we carry out in-depth studies of the high-mobility charge transport in
organic crystals. We conduct Boltzmann transport equation (BTE) calculations for
the bandlike charge carrier mobilities in benzene, anthracene, tetracene, pentacene,
and biphenyl, with pentacene (72 atoms per unit cell) setting the record of the largest
system ever analyzed using first-principles 𝑒-ph calculations. The accuracy of our
calculations are verified by comprehensive comparisons with experimental results.
Our findings show that the bandlike mobilities are regulated predominantly by the
𝑒-ph scattering from phonons with frequencies below 150 cm−1. This frequency
range constitutes less than 5% of the entire phonon spectrum frequency range, which
exceeds 3,000 cm−1. These low-frequency phonons, predominantly intermolecular
in nature, are distinctively sensitive to strains. Our results highlight the potential
of phonon mode-targeting engineering methods for enhancing the performance of
high-mobility organic electronics. Additionally, our work marks a significant step
towards efficient and ultra-large-scale first-principles 𝑒-ph calculations.

In Chapter 3, we study polaronic charge transport in organic crystals, with a focus
on examining electron mobilities in naphthalene. We show that the mobility is
polaronic, as evidenced by the breakdown of the BTE and the presence of satellites
and a long tail in electron spectral functions. These spectral features, captured
by cumulant calculations, are induced by strong 𝑒-ph coupling of intramolecular
phonon modes, which involve hydrogen atoms vibrating both within and out of the
molecular planes. Accordingly, we employ the Kubo formula to compute charge
transport. Our computed in-plane electron mobilities show very good agreement
with experimental measurements, and exhibit highly accurate power-law temper-
ature dependencies. Furthermore, we demonstrate that our cumulant-Kubo (CK)



77

formalism achieves similar prediction accuracy to the BTE for the bandlike transport
regime, as illustrated using the hole mobilities in naphthalene. Our work presents a
generally applicable approach for accurately predicting polaron transport in molec-
ular crystals and is a first step towards ab initio identification of charge transport
regimes in organic semiconductors.

Our work on organic crystals opens several promising research directions. The first
involves developing first-principles methods to model charge transport in the hop-
ping regime, which remains unexplored in this thesis. This regime is characterized
by thermally activated transport of self-trapped (small) polarons. Advancements in
calculating small polaron energies and wave functions, as reported in recent stud-
ies [1–3], can facilitate this exploration. The second direction is to expand current
calculations to additional organic crystals. For instance, some technologically im-
portant crystals like TIPS-pentacene (100 atoms per unit cell) [4] were previously
challenging to compute due to their large size, but are now potentially within reach.
Moreover, investigating molecules with diverse functional groups and stacking pat-
terns will further our understanding of the relationship between crystal structure and
charge transport properties, expediting the design of novel engineering approaches.
The third path is related to data-driven studies, which have received increasing
interest in both inorganic and organic materials research [5, 6]. Given the demon-
strated efficiency and accuracy of first-principles 𝑒-ph and transport calculations in
Chapters 2 and 3, we can pursue high-throughput investigations and create datasets
to train machine learning models, enabling extensive discovery of organic crystals
with desirable properties. In summary, the research directions proposed here will
significantly advance materials science and chemical physics, contributing to the
ultimate goal of accelerating the discovery of new materials and the realization of
next-generation electronic technologies.

Cuprate superconductors
In Chapter 4, we present the first quantitative calculations of 𝑒-ph interactions in a
parent-compound cuprate, using the prototypical case of La2CuO4 (LCO) as an ex-
ample. We find strong Fröhlich interactions between holes and phonons associated
with oxygen vibrations, and show that the strong coupling leads to significant broad-
ening in the hole spectral functions. Our findings provide explanations for several
phenomena observed in photoemission experiments. These include the dispersion
kink in doped cuprates and the polaronic spectral broadening and peak shift in the
parent phases. Our calculations also capture a feature in experimental self-energy
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that cannot be described by existing models. We show that this feature is due pri-
marily to O vibrations out of the Cu-O bond axis. Since conventional models are
typically constructed upon the Cu-O bonds using Cu 𝑑𝑥2−𝑦2 and O 𝑝𝑥,𝑦 orbitals, our
results underscore the importance of incorporating additional orbitals into effec-
tive models for a more comprehensive description of experimental findings. Taken
together, this work presents compelling evidence that the universal strong 𝑒-ph cou-
pling found experimentally in lanthanum cuprates is an intrinsic feature of the parent
compound, and provides a broadly applicable computational workflow for accurate
studies of 𝑒-ph interactions in a wide range of strongly-correlated transition metal
oxides (TMOs).

Our study points to multiple important research directions. The first is the orbital-
resolved analysis of 𝑒-ph coupling. Since our work has shown that atomic orbitals
not addressed in existing models (e.g. Cu 𝑑𝑥𝑦, 𝑑𝑥𝑧, 𝑑𝑦𝑧, 𝑑𝑧2 and O 𝑝𝑧) can sig-
nificantly contribute to phenomena observed in experiments, quantifying and com-
paring 𝑒-ph coupling strengths of individual atomic orbitals will provide critical
insights into the limits of existing models and how to improve them. This can
be achieved by investigating the orbital projections of the electron Bloch states
in our calculations. The second research path is to extend current calculations
to other important cuprate high-temperature superconductors, such as YBa2Cu3O7

(YBCO) [7] and Bi2Sr2CaCu2O8 (Bi-2212) [8, 9]. This will allow a deeper under-
standing of the universal properties of cuprate materials, which helps identifying
common patterns across materials for high-temperature superconductivity. The
third direction is to apply our computational workflow to other families of TMOs,
including manganese oxides (manganites), nickel oxides (nickelates), vanadium ox-
ides (vanadates), and titanium oxides (titanates). Understanding 𝑒-ph interactions
in these strongly-correlated materials will greatly facilitate the use of complex cor-
related oxides for energy and computing applications [10, 11]. Moving forward,
these extensions of our work in Chapter 4 will continue to advance our fundamental
understanding of correlated materials and their potential for novel technologies.
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