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A METHODOLOGY FOR THE SYNTHESIS OF 

ROBUST CONTROL SYSTEMS FOR 

MULTIVARIABLE SAMPLED-DATA PROCESSES 

by 

Evanghelos Zafiriou 

ABSTRACT 

The problem of the synthesis of multivariable controllers which are robust 

with respect to model-plant mismatch is addressed. A two-step design procedure 

based on the Internal Model Control (IMC) structure is used. In the first step the 

IMC controller is designed assuming no modeling error, and in the second step 

the IMC filter is designed to preserve the closed-loop characteristics in spite of 

model-plant mismatch. 

Two alternatives are provided for the first step. One of them allows the 

designer to satisfy structural performance specifications, in terms of the structure 

of the closed-loop interactions, their magnitude and duration. The closed-loop 

transfer function matrix is directly designed. The method requires only standard 

linear algebra operations and includes the construction of the IMC or the feedback 

controller in state-space. The second approach invoives the minimization of the 

appropriately weighted H2-norm of the sensitivity transfer function matrix, that 

relates the errors to the external inputs (setpoints or disturbances). A method is 

given for the meaningful selection of a full matrix weight so that the H 2-error 

is minimized for a set of external input directions and their linear combinations. 

The procedure is extended to open-loop unstable systems. In both approaches, 

special care is taken to avoid intersample rippling. 

The design of the filter in the second step is formulated as an optimization 

problem over the filter parameters. The objective function is constructed by using 
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the Structured Singular Value theory so that the maximum singular value of the 

sensitivity transfer function remains bounded in spite of modeling error. The 

selection of the frequency bound is based on the properties of the design that was 

obtained in the first step. Analytic gradient expressions have been developed for 

the objective function. The optimization problem is an unconstrained one, solved 

with standard gradient search techniques. An iterative method for the selection 

of the appropriate sampling time is proposed, which explicitly takes into account 

model uncertainty information and performance specifications. 
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CHAPTER I 

INTRODUCTION 
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The first section of this chapter discusses very briefly the past and current 

trends in process control. The discussion is far from being complete and it is 

merely intended to point out the need for research in the topics presented in this 

thesis. The second section presents an overview of the contents of the thesis. 

1. Past and Current Trends in Process Control Theory and Appli

cations. 

The vast amount of work that has been published in the area of control theory 

in the last 30 years gives rise to some questions: 

- Haven't most of the practical control problems been solved by now? 

- If not, then what problems did this work address? 

The answer to these questions lies in the fact that the problems that the 

practicing engineer required control theory to provide answers to, have changed 

with time. For the first half of this time period, the reality in the chemical 

industry was that gains from control were very small compared to those from 

other tasks, like for example, steady-state optimization of operating conditions. 

The mere stability of the process was often satisfactory and since single-loop PID 

controiiers were usuaiiy able to provide that, the use of more advanced techniques 

did not seem necessary. On the other hand, designs obtained with the Optimal 

Control Theory tended to behave very differently when applied to the real systems 

than to their mathematical models. The reason for that is that the models do not 

exactly describe the actual process and the inaccuracies associated with them were 

not taken into account by the theory (Foss, 1973; Kestenbaum et al., 1976). As a 

result, practitioners sooner or later lost their faith in the theoretical developments, 

but were satisfied with the fact that their semi-empirical tools were sufficient. At 

the same time theoreticians from a number of disciplines proceeded to describe 

almost every conceivable control problem as an optimization problem based on the 

known process model and then solve it. Although very few successfull applications 
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came out of this work because of the model uncertainties, this wc.:rk made control 

theory a hard science by creating the mathematical foundation, which most of 

today's developments build on. 

In the late 1970's a much greater need for improved control became present in 

the chemical industry. Tighter product specifications and increased competition 

contributed to this. The steep energy cost increase made it more important to 

remain close to efficient operating conditions in spite of disturbances, and it also 

led to integrated process designs. Such processes have many uncertain variables 

and suffer from increased interactions between the units, facts that make them 

inherently difficult to control, to the point that control considerations at the stage 

of process design are often necessary. As the control requirements increased, it 

became clear that the semi-empirical tools available to the practitioner were not 

sufficient any more. The pressing need to control their processes led the industry to 

the development of new approaches, like the Model Algorithmic Control (Richalet 

et al., 1978) and the Dynamic Matrix Control (Cutler and Ramaker, 1979) The 

initial success of these algorithms led to the study of the underlying principles 

and the development of the Internal Model Control (IMC) structure (Garcia and 

Morari, 1982). At the same time in other disciplines, similar considerations led 

to the quantification of conditions for robustness with respect to model-plant 

mismatch (Doyle and Stein, 1981) and the H 00-type of approach (Zames, 1981). 

The introduction of the Structured Singular Value (SSV) theory (Doyle, 1982) 

opened the way for the development of methods for the direct synthesis of robust 

controllers by quantifying the concept of robust performance in a non-conservative 

way. 

Today the need for good control of the industrial processes is greater than 

ever because of the continuously changing economic environment in which the 

industry operates. Such changes force the plant to operate at conditions different 
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from the ones for which it was originally designed, with inefficient operation as the 

result. The modification of the process design would require the market to remain 

unchanged for a substantial period of time in order to produce a profit. Since this 

period is usually longer than what can be expected of the market, the alternative 

is the use of optimization systems to maintain optimal operation for the existing 

equipment, an approach that drives the processes over a wider range of operating 

conditions than ever before (Garcia and Prett, 1986). This fact adds significantly 

to the already pressing need for control systems that perform reasonably well in 

the presence of model-plant mismatch. 

2. Thesis Overview. 

The objective of this thesis is the development of a synthesis methodology for 

control systems that are robust with respect to modeling error. A major consid

eration in this work was the fact that in process control applications it is highly 

desirable or required that the operators are provided with tuning parameters with 

clear physical meaning and effect. This is not necessarily the case for applications 

of control theory in other disciplines, as, for example, in the aerospace indus-

try v1here online tuning of the control system is clearly out of the question . .. A .. s 

a result, the synthesis procedure had to be streamlined in ways appropriate for 

applications to process control, a fact that posed a number of restrictions. 

Since an advanced control algorithm will be implemented on a digital com

puter, it was decided to formulate the procedure with sampled-data processes in 

mind. Chapter II reviews a number of well-known digital control algorithms for 

single-input single-output (SISO) systems. The IMC structure is used to illus

trate and study their respective problems as a function of the sampling time. A 

new algorithm is then proposed that combines their advantages and is free of 

their problems. Chapter III builds on the results of Chapter II and it provides 

a method for the synthesis of a control system that is robust with respect to 
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modeling error. The limitation that modeling error poses on the achievable per

formance is quantified and compared with the one that the sampling poses. The 

result is a procedure for the selection of the appropriate sampling time, which 

takes explicitly into account model uncertainty. 

Chapter IV examines multi-input multi-output (MIMO) processes. The algo

rithm that was developed in Chapter II is extended to MIMO systems. The effect 

of inherently limiting characteristics like time delays and undesirable zeros and 

their directions is quantified for the multivariable case and a procedure is proposed 

for the direct synthesis of the desired closed-loop transfer function matrix. The 

designer can select among different structures of the closed-loop interactions by 

using a quantitative method that requires only linear algebra operations. Chapter 

V is set in the continuous domain. It presents a two-step synthesis method for 

MIMO continuous sytems, which uses an Integral Squared Error type of objective 

in the first step and incorporates robustness properties by minimizing an appro

priate SSV objective function over the parameters of a low pass filter in the second 

step. The method also extends the IMC procedure to open-loop unstable plants. 

Chapter VI extends the procedures of Chapters III and V to MIMO sampled-data 

systems and presents an alternative to the method of Chapter IV, which can be 

used for open-loop unstable systems. The SSV is used to achieve robustness to 

modeling error. Chapter VII includes the conclusions and suggestions for future 

research. 
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Digital controllers for SISO systems: a reYiew and a new algorithm 

EVANGHELOS ZAFIRIOUt and MANFRED MORARit 

Several digital control algorithms for linear single-input single-output systems are 
examined and the effect of the sampling period on their performance is analysed in 
terms of rippling. overshoot and settling time. The problem is addressed in the 
frequency domain (z-transform) and it is shown tliat each controller works for some 
classes of systems but that none works for all. The similarities and differences of 
these controllers are established and an explanation of their deficiencies is given 
based on the location of the zeros of the discrete system. The insight gained leads 
to a simple new rule for the design of a controller which combines the advantages of 
the different algorithms but at the same time is free of their problems. A single 
tuning parameter is included which directly affects the closed-loop speed of response 
and bandwidth. The parameter can be used to detune the controller in the event 
that the real system differs from the model on which the controller design is 
based. No tuning is necessary when the available model is exact, unless smaller 
values for the manipulated variable, at the cost of a slower response, are preferred. 

l. Introduction 
In the literature one can find a very large number of digital control algorithms for 

single-loop systems. Numerous design criteria are used and often they are form
ulated so as to satisfy the special requirements of a specific process. The synthesis of 
many of those controllers is quite complicated and it is usually very difficult to know 
when and why problems may occur. 

A common property of the control algorithms examined in this paper is the 
computational simplicity of their synthesis: it so happens that all of them can in fact be 
described as pole-zero placement controllers, though that may not be the way they 
were initially designed. Each of them tries to satisfy some commonly accepted 
criteria, such as: 

(i) A performance criterion for the discrete output of the system (for example, 
minimization of the sum of squared errors). 

(ii) Behaviour between the sampling points: hidden oscillations in the system 
output can be caused by ringing of the manipulated variable or by unob
servable oscillatory open-loop modes. 

(iii) Settling time (for example, the requirement to reach the set-point in a finite 
number of time steps). 

(iv) Overshoot and/or undershoot. 

(v) Manipulated variable: large values must be avoided because they usually 
cannot be implemented due to saturation of the manipulated variable. 

In this paper we compare the set-point step responses obtained with various 
controllers. In the first part, an analysis of the problems is given for the case of no 

Received 20 November 1984. 
t Department of Chemical Engineering, California Institute of Technology, Pasadena, 

California 91125, U.S.A. 
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modelling error and a new algorithm which avoids the disadvantages of the examined 
controllers is proposed. The second part deals with stability issues of the new 
algorithm when a mismatch between the model and the plant exists. 

2. Evaluation of the control algorithms 
In the case of no modelling error, the classical feedback (Fig. 1 (a)) is equivalent, for 

command following, to the open-loop structure shown in Fig. 1 (b), where Gc(z) may 
be considered as the controller to be designed. 

There is a simple relation between Gc(z) and the controller of the classical feedback 
structure C(z): 

C(z) 
Gc<z) = 1 + C(z)G(z) (1) 

where G(z) is the transfer function of the plant. We can similarly obtain C(z) from 
GcCz) by 

Gc(z) 
C(z) = 1 - Gc(z)G(z) (2) 

Designing Gc(z) and then obtaining C(z) by eqn. (2) is an established technique 
(see, for example, Jury and Schroeder (1956)). This technique will be used through
out the paper because it allows presentation of the results in a transparent manner. 

For the pulse transfer function of the plant we shall use the expression 

G
.) K(z-a;) ... (z-a.-)(z-a:+ 1) •.• (z-a:_ 1) -N 
(z = z 

(z - P1) ... (z - Pn) 
(3) 

where N is the largest integer such that NT is less than or equal to the dead-time (T 
being the sampling time). The superscripts' - 'and'+' denote the zeros inside and 
outside the unit circle respectively and k is the number of zeros inside the unit 
circle. G(z) is assumed to be open-loop stable. 

rs + 

rs 

c 
CONTROLLER 

(a) 

Ge 
CONTROLLER 

FILTER 

(b) 

CONTROLLER 
(c) 

y 
G 

PU~NT 

y 
G .. 

PLANT 

y .. 
PLANT 

Figure l. (a) Classical feedback structure. (b) Open-loop structure equivalent to the feed
back for the exact model. (c) The open-loop structure with the filter included. 
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Digital controllers for SISO systems 

2.1. Digital control algorithms 

(i) Dahlin 's controller 

This is a well known controller included in current textbooks like Smith (1972) and 
Kuo (1977). It was introduced by Dahlin (1968), who proposed a method for 
designing the controller by specifying the closed-loop transfer function V(z) to be first 
order with a dead-time equal to that of the plant and a steady-state gain of 1 ·0, thus: 

V(z) = [1 - exp (-T/A.)]z-l-N 

1 -exp (- T/A.)z- 1 
(4) 

where ). is the time constant of the closed-loop response and T is the sampling 
interval. From V(z) and G(z), the classical feedback controller is found to be 

C (z) = [1 -exp (-T/J..)]z-l-N 1 
oc 1 - exp (- T/).)z- 1 - [1 - exp (-T/J.)]z- 1 -N G(z) (S) 

The time constant of the closed-loop response serves as a tuning parameter for 
adjusting the speed of the response. 

If we take the equivalent structure of Fig. 1 (b) the controller is found from eqn. (1) 
to be 

G 
1-exp(-T/).) 

oc(z) = -------
1 - exp ( - T/ ).)z-1 K z(z-a1) ... (z-an- 1) 

(z-p1) ... (z-p.) 
(6) 

where the expression for G(z) given by (3) is used. Hence we can rearrange to get the 
structure of Fig. I (c) with controller 

(7) 

and a filter 

F(z) =;: 1 - exp ( -T/).) 
1 - exp (-T/).)z- 1 

(8) 

The reason for separating out F(z) and calling it a 'filter' will become apparent in 
§ 4 of the paper dealing with modelling errors. Note that for).= 0 (no filter), Dahlin's 
controller becomes a deadbeat controller which brings the output to the set-point 
value after one sampling period. The stability problems are discussed in § 22. 

Dahlin also proposed a modification to be used when there are problems with the 
initial algorithm; we will examine this modified controller in detail in § 2.2, after the 
reasons for the problems are explained. 

(ii) The controller that minimizes the sum of the squared errors of the output 

This controller is designed so as to minimize the objective function 

00 

ct>= I <Yi - r)2 
j=O 

where Yi is the value of the system output at t = jT and r the desired set-point. The 
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problem is solved in the z-domain by Chang (1961) and in the state space of Kucera 
(1972). 

The controller for the structure of Fig. 1 (b) is (Kucera 1972): 

( 1 ) ( 1 ) 1--+- ... 1--+-
GsE(z)= 1 a":1 ~..-1 (z-p1) ... (z-p") 

K (1-a«+ 1 ) ••• (l-a,,_ 1) z( __ ) ( _ -)( __ 1_) (--1-) z a 1 ... z a. z + ... z + 
Ot+l an-1 

(9) 

(iii) Output and state deadbeat controllers 

The uutput deadbeat controller is defined as the contro1ler that drives the discrete 
output of the system to the set-point value and keeps it there, after a minimum number 
of time steps. The earliest discussion of this kind of controller was given by Bergen 
and Ragazzini (1954). Kalman (1954) raised the question of the behaviour of the 
continuous output between the sampling points. Jury and Schroeder (1956) and Jury 
(1958) studied the problem by using the modified z-transform and Kalman and 
Bertram (1959) in the state-space. 

The design of the state deadbeat controller is based on the idea of having the states 
of the system at equilibrium when the discrete output reaches the set-point so that the 
continuous output will remain there as well. The minimum number of time steps 
required for all the states to be at equilibrium is at most equal to the number of the 
states, which is equal to the order of the system. For SISO systems it is easier to 
design this controller using the z-transform. As a design criterion, the manipulated 
variables are required to remain constant after the output of the system has reached 
the set-point (minimal prototype controllers; see, Ragazzini and Franklin (1958) and 
Luyben (1973)). 

Increasing the specified settling time by one or more sampling intervals introduces 
additional degrees of freedom which allow one to prescribe a value for the 
manipulated variable (Isermann 1981) or to optimize an objective function or to 
prescribe the system output (Janiszowski 1983). 

Output deadbeat 

The controller for the open-loop structure of Fig. 1 (b) is (Kucera 1972) 

G (z) = _!_ (z - P1) ··· (z - Pn) (IO) 
0° K (z - a}) ... (z - a; )z"-k(l - a:+ 1) ... (1 - a:_ 1) 

State deadbeat 

The controller for the open-loop structure is 

1 (z - P1) ··· (z - Pn) 
Gso(z)=-------

K (1 - a 1) .•. (1 - a,,_ 1)z" 
(11) 

Note that for state deadbeat control the closed-loop characteristic equation has 
(n + N) roots at the origin (Astrom and Wittenmark 1984). 

(iv) Vogel-Edgar controller 

Vogel and Edgar (Vogel 1982) derived a control algorithm by using the general 
pole-zero placement controller design procedure presented by Astr6rn and Witten-
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mark ( 1980). For the conventional feedback structure, the Vogel- Edgar controller is 

CvE(z) = 

1 (1 - exp(- T/A.)](z - p1) ... (z - p,,) 
K z"[1 - exp (- T/i.)z- 1](1 - a 1) ... (1 - a._ 1)- [1 - exp (- Tj).)](z -a1) .•. (z - a,,_ 1)z-N 

(12) 

For the equivalent structure of Fig. 1 (b), this controller becomes 

G ( )- 1-exp(-T/).) l (z-p1) ••• (z-p,,) 
vEz - 1-exp(-T/i.)z- 1 K(l-a1) ••• (l-a,,_1)z" 

(13) 

Comparing (13) with (8) and (11) we note that the Vogel-Edgar controller is 
equivalent to the state deadbeat controller (11) with an added filter (8). The filter 
parameter i. is used for tuning, as in the case of Dahlin's controller. By comparing 
this controller with Dahlin's, Vogel and Edgar (Vogel 1982) found their's to be 
superior for second-order systems. 

The expressions for the controller G c<z) of the open-loop structure (Fig. 1 (b)) are 
summarized for the discussed control algorithms in Table 1. 

Dahlin 

Output deadbeat 

1 (z-pi) ... (z-p.) 
Goc(z) = F(:)-

-K z(z-ai) ... (z-a.- 1) 

1 (z - P1) ... (z - p.) 
Goo(z) = -K (l + ) (l + )(- ) (- )-" l -a•+1 ··· -a.-1 ~-~1 ··· .. -al"" 

1--+- ... 1--+-

Minimum sum of squared errors 
( 1 ) ( 1 ) 

1 a•+ 1 a._ 1 
GsE(z) = - + + 

K (I - aH il ... (1 - a.-1) 

x z(z - a~) ... (z - a; )(z --+-) ... (= --+-) 
a•+1 a,,_, 

State deadbeat 

Vogel-Edgar 
l (z-p 1) ••. (z-p,,) 

GvE(z) = F(z) K (I _ ) (l _ )z" a1 ... a,,-1 

Where 

1-exp(-T/).) 
F(z)= . 

I-exp (-T/,i.)z 1 

the plant is 

(z-a;) ... (z-a,-)(z-a.\i) ... (z-a;_ 1 ) _,., 
G(z) = K z 

(z-p1 ) .•. {z-p.) 

and the superscripts • - ' and ·+'denote 'inside' and 'outside' the unit circle, respectively. 

Table 1. Controller GcC:) of the open-loop structure of Fig. 1 (b). 
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2.2. Analysis of the deficiencies of the algorithms 

From Table 1, it is apparent that all these control algorithms are in fact pole-zero 
placement controllers and that the poles of the controller and the closed-loop transfer 
function are explicitly related to the zeros of the plant. Hence, the performance of 
these controllers is strongly related to the location of the zeros of G(z) on the complex 
plane. 

Astrom et al. (1984) have proved the following theorems regarding the effect of the 
sampling period on the location of the zeros of sampled systems. 

For the system shown in Fig. 2 the pulse transfer function G(z) between y and u is 

G(z) = (1-z-1).2"2-1 {A~s)} 

r 
Z.O.H. ~------' R ISl 

Figure 2. Pulse transfer function: G{z) = (1- z- 1)- !!' .5"- 1{A(s)/s}. 

Theorem 1 (Astrom et al. 1984) 
Let A(s) be a strictly proper (m < n) rational function: 

A(s) = K (s - V1) ... (s - vm) 
(s - w1) ••• (s - w11 ) 

(14) 

(15) 

Then as T--+ 0, m zeros of G(z) go to 1 as exp (v, T) and the remaining (n - m - I) zeros 
of G(z) go to the zeros of Bn-m(z), where 

(16} 

and 

i (k + 1) b7 = .L c-1)i-tzk . · , ; = 1, 2, ... , k 
/;J i-1 

(17) 

Some of the zeros of the polynomials Bk are outside or on the unit circle. The 
'unstable' zeros for a few values of k are listed in Table 2. 

k Unstable zern of B1 

2 -1 
3 -3·732 
4 -1, -9·899 
5 -2·322, -23·20 
6 -1, -4·542, -51·22 
7 -1-868, -8·160, -109·3 
8 -1, -3·138, -13-96, -228·5 
9 -1·645, -4·957, -23·14, -471·4 

Table 2. Unstable zeros of the polynomial B.(z) of eqn. (16). 

Theorem 2 (Astrom et al. 1984} 
Let A(s) be a strictly proper rational transfer function with A(O) #- 0 and 

Re (w;) < 0. Then all zeros of the pulse transfer function G(z) given by eqn. (14) go to 
zero as the sampling period T goes to infinity. 
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(i) Dahlin 's controller 

There are two problems associated with this controller: 

(a) When there exist zeros of G(z) outside the unit circle then it follows from (5) or 
(6) that the transfer function between the set-point and the input to the plant is 
unstable. As for the transfer function between the output and the set-point, it will be 
unstable unless exact cancellation occurs between the unstable poles of Goc(z) and the 
unstable zeros of G(z). 

It is important to notice that G(z) may have unstable zeros not only when there are 
RHP zeros in the Laplace transfer function of the plant, but even for systems with only 
LHP zeros or no zeros at all. As we can see from Theorem 1 and Table 2, a system 
with three poles and no zeros in the Laplace transfer function, for example, will have a 
zero outside the unit circle for 'small' sampling periods. 

(b) Even when all the zeros are inside the unit circle, there will still be problems if 
there are zeros close to -1. That would cause ringing of the controller output 
(oscillations with period twice the sampling period) and its effect on the system output 
would be rippling between the sampling instants. In addition, the ringing of the 
manipulated variable may cause unnecessary equipment wear. This problem is 
illustrated in Example 1. 

Example 1 

For T= 3, 

G(s) = 
1 

=> G(z) = 0.0157 (z + 0·869) 
(10s + 1)(25s + 1) (z - 0·887)(z - 0·741) 

For A.= 0 the response is shown in Fig. 3. For }. = 3 the response is shown in 
Fig. 4. As ). increases, the response becomes slower but the oscillations remain, 
though their amplitude is reduced. 

100 

so .... 
:::> 

0 ~ 
z 

-so 
-100 

2 

1.S .... 
:::> 
~ .... 
:::> 
0 o.s 

0 

0 20 

I I 
" 

0 20 

110 

110 
TIME 

60 80 

60 80 

Figure 3. G(s) = l/(lOs + 1)(25s + 1), T= 3, ). = 0: ---Dahlin's controller (also the one that 
minimizes the sum of squared errors); ···modified Dahlin; -- the new algorithm; 
-·-set-point. 
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50 

,_ 
::::> 

0 CL z 

-so 
0 20 ijQ 60 80 

2 

,_ 1. 5 
::::> 
CL ,_ 
::::> 
0 o.s 

0 ' I 
0 60 80 

Figure 4. G(s) = l/(lOs + 1)(25s + 1), T= 3, i. = 3:--- Dahlin's controller;··· modified Dahlin; 
-- the new algorithm; -·-set-point. 

Note that zeros near -1 may occur, depending on G(s), not only for small Ts but 
also for intermediate Ts. This will be the case, for example, for a third-order system 
with no zeros in the Laplace transfer function (see Table 2 and Theorems I and 2). 

Modified Dahlin controller 

The modification introduced by Dahlin (1968) is to substitute zeros at the origin 
for the zeros of G(:::) (in (5)) which are unstable or cause ringing, while keeping the same 
steady-state gain for C0 c(z). 

Assume that there are m zeros of G(z) that have to be discarded (unstable or those 
that cause ringing). The expression for the modified Dahlin controller can be derived 
from eqn. (5). 

C' (z)= [I -exp(-T/J.)]z- 1 1 
oc 1 - exp (-T/).)z- 1 - [1 -exp (-T/J.)]z- 1 -N K 

(z-p1) ••• (z-pn) 
x---------------~ 

z"'(l - ai) ... (1 - am)(z -am+ 1) ... (z -an-1) 
(18) 

For the system of Example 1, the modified controller will give the response shown 
in Fig. 3, which is clearly better than that obtained with the unmodified 
algorithm. By increasing )., the response can be improved significantly (Fig. 4). 

As we will see in§ 3 of this paper, the modification would be much more effective if 
the substitution of the 'ringing' zeros of G(z) with zeros at the origin were applied 
to the controller Goc(z) (eqn. (6)) of the equivalent structure of Fig. 1 (b). When 
the modification is made on Coc(z), the problem may remain, as Example 2 
illustrates. An additional disadvantage is that we do not know beforehand for which 
systems problems will appear. 
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For T= 1, 
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G(s)= exp(-s) =G(.:)=0·0398 (z+0·792) =-1 
(2s+ l)(Ss+ 1) (z-0·819)(z-0·607) 

The responses with both the unmodified and the modified Dahlin controllers are 
shown in Fig. 5. Although the modification is supposed to eliminate ringing, the 
time during which the oscillation of the manipulated variable persists, increases 
significantly when the modification is made. 

Let us now examine the performance of the modified Dahlin controller when 
unstable zeros are present. 

It follows from eqn. (18) that as exp ( - T/ ).)- 1 ().-+ oo ), (m + N) of the roots of the 
closed-loop characteristic polynomial go to the origin and one goes to + 1 (from 
inside the unit circle). Hence, there is no doubt that a sufficiently large ). can be 
found to stabilize the system. The problem is that this tuning is necessary even when 
the model is exact and we do not know beforehand where to look for exp ( - T/).). 

A system with an unstable zero is examined in Example 3 . 

..... 
::i 
0... 
:z 0 

0 

- -1 :.:! 
I I _J 
1_1 

s 10 IS 20 

..... 1.:t ,.. - I ::i I \ / "· o... -I 1 , I 1 • - -r"\. ,- . = -.. _ ... . 
; 1 - 1!\j \./ , .... ·':? ....... .. - ...,,. • 
0 

··: i l I ' I ' ' I " " I 
0 s 10 1 s 20 

TIME 

Figure 5. G(s) =exp (-s)i(2s + 1)(5s +I), T= 1, ;. = 0: --- Dahlin's controller; ... modified 
Dahlin; -- the new algorithm; -·-set-point. 

Example 3 

For T= 0·1, 

G(s)=3·333 (-s+1·5) =G(z)=-0·01316 (z-1·162)(z+0·792) 
(s + l)(s + 2)(s + 2·5) (.: - 0·905)(z - 0·819)(z -0·779) 

Both zeros (one is unstable, and one causes ringing) have to be substituted by zeros at 
the origin when applying eqn. (18). Then 

l.=0 
i. = 0·718 (exp (-T/).) = 0·87) 

I.= 1 ·95 (exp ( - T/).) = 0·95) 

unstable. 
stable (at the edge of instability, i.e. undamped 
oscillations of the discrete, as well as of the 
continuous output). 
response shown in Fig. 6. 
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2 

2 
TIHE 

3 

3 

Figure 6. G(s) = 3·333(-s + 1·5)/(s + l)(s + 21(s + 2·5), T= CH:··· modified Dahlin, l = 1·95; 
--- the new algorithm, ;. = O; -- the new algorithm, ;. = 0·25; -·-set-point. 

For ;. = I ·95, the roots of the closed-loop characteristic polynomial are at 0·30, 
0·56 and 0·91. Hence, one of them is close to 1/1·162 (i.e. the inverse of the unstable 
zero). The other two are near enough to the origin for their effect on the response to 
be close to the effect that two roots at the origin would have. These observations 
form part of the basis of the new algorithm introduced in § 3. 

(ii) Output deadbeat 

There are two problems associated with this controller. 

(a) Potentiai ringing of the controller output. This will happen when there are 
zeros with negative real part inside the unit circle; the closer they are to -1 the worse 
the rippling. 

(b) The second problem is associated with the way the control system handles the 
unstable zeros. Since those zeros cannot be used as poles of GcCz}, in order to have 
steady-state gain 1 for the closed-loop transfer function, i.e. V(l) = 1, the terms 
(1 - a:+ 1), ... , (1 - a:_ 1) have to be included in the denominator of the controller and 
they remain in the closed-loop transfer function V(z), too. We have 

(z - a:+ 1) ... (z - a:_ 1) -N 
V(z)= n-k + + z z (l-at+ 1) .•. (l-an-1) 

(19) 

From eqn. (19) we find that for a set-point step change the first non-zero value of 
the system output will occur at time t = (N + l)T and will be of magnitude 

1 

Yi = (1 - a:+ 1) ... (1 - a:_ 1) 
(20) 

Equation (20) implies that if some of those zeros are near + l, y 1 will be large and 
significant undershoot or overshoot will occur. From Theorem 1, we see that this 
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happens for small sampling times when the zeros outside the unit circle are introduced 
by RHP zeros of the Laplace transfer function. 

The response for the system of Example 3 is shown in Fig. 7, where oscillations, as 
well as large undershoot and overshoot, occur. 

(iii} The controller that minimizes the sum of the squared errors of the output 

There is only one problem with this controller, but it is nevertheless important. i.e. 
ringing of the manipulated variable and, as a result, rippling of the system output 
between the samples when there are zeros with negative real part near the unit circle. 

On the other hand, this controller does not suffer the second problem of the output 
deadbeat controller, illustrated in Fig. 7. The first non-zero value of the system 
output is 

(1-+) ... (1-+) 
Gk+ 11 a•-1 

Yi= (1-at+ 1) .•• (l -a:_ 1) 
(21) 

Hence when one of those a+ s is near + 1, then its inverse, l/a +, is also near + 1, in 
fact it is closer to + 1 so that IY11<1. 

3 
t< 10 

2 

.... 
:::> 

0 Q.. 
z 

-1 

-2 

10 

.... 
:::> 
Q.. .... 
:::> 
0 

-10 

0 

0 

2 

2 
TIME 

3 

3 

Figure 7. G(s) = 3·333(-s + 1·5)/(s + l)(s + 2)(s + 2·5), T= 0·1: --output deadbeat con
troller; -·-set-point. 

For the case of Example 1, this controller is identical to Dahlin's (its response can 
be seen in Fig. 3). Another case is examined in Example 4. 

Example 4 

For T= 1·65, 

G(s) == 2 = G(z = 0.4168 (z + 0·0708)(z + l ·058) 
(s2 + 1 ·2s + 1 )(s + 2) ) (z 2 - 0· 184z + 0· 138)(z - 0·0369) 
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By using the inverse of -1-058 as a pole for the controller Gc(z) (according to eqn. (9)), 
we get the oscillatory response shown in Fig. 8. 

In both Figs. 3 and 8 we see that this controller clearly minimizes the sum of the 
squared errors of the discrete output, but at the same time no attention is paid to the 
system output between the samples. 

(iv) State deadbeat 

Equation (11) shows that the ringing problem of the controller output will not 
occur. Nevertheless, the state deadbeat controller frequently suffers from large 
overshoot or undershoot of the discrete output itself before equilibrium is 
reached. The reason is similar to that discussed for the output deadbeat controller, 
but now the problem arises not only for zeros of G(z) outside the unit circle, but also 
for zeros inside the unit circle. 

The closed-loop transfer function is 

V(z) = (z - a1) ... (z - a,,_ 1) z-N 
(l-a1) ••. (I-a.-1)z" 

The first non-zero value of the discrete output for a set-point step change is 

1 
Yi= 

(1-a1) ... (l-a.- 1) 

(22) 

(23) 

Equation (23) implies that when there are zeros near + 1, y 1 will be large, which results 
in significant overshoot or undershoot or both. 

From Theorem I we know that this will happen for small Ts whenever the Laplace 
transfer function of the system has zeros either in the LHP or the RHP. Also note 
that for systems with more than one zero in the Laplace transform, all the zeros 
contribute to the large value of Yi· 

The problem is illustrated in Example 5 . 

.. ---, 
' ' . ' 

~---, .----
• f I I 

----, ' . .----. . ' , ____ , ' . !. ___ , !. ___ , :., ___ : 
0 

-5 
0 5 10 15 20 

2 

1. 5 .... ' ' ,. 
'' ::> . 

' 
, ' ,-. --Q.. ' ' ', : \ ' ' ' ,' ' .... ' , , : . ' , . ::> ' , , . 

" 
, ·-· --· 0 ·-· 0.5 

0 
0 5 10 15 20 

TIHE 

Figure 8. G(s) = 2/(s2 + l ·2s + 1 )(s + 2), T = 1-65, A.= 0: ···the controller that minimizes the 
sum of squared errors; -- the new algorithm;-·- set-point. 
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Example S 
For T=O·l, 

_ . (s + 2) =:;. _ ·l 
6 

(z -0·819) 
G(s)- l 5(s+ J)(s+3) G(z)-O 3 (z-0·905)(z-0·741) 

The response is given in Fig. 9; the overshoot is about 450%. 
A case with a RHP zero is the following . 

.... 
=> 0 Q.. 
z 

-so 
0 

8 

6 ..... 
=> 
a.. ll ..... 
=> 
0 

2 

0 
0 

. . . . . ---------· 

o. l 

'• ,' '\. 
' ' . ' 

' ' ' ' ' . 

0.2 

,, ' ......... 

0.3 

0. l 0.2 0.3 
TIHE 

0." 

0.5 

0.5 

Figure 9. G(s) = 1 ·S(s + 2)/(s + 1 )(s + 3), T = 0· 1; ... state deadbeat (also Vogel-Edgar, i. = 0); 
-- the new algorithm,).= 0 (also Vogel-Edgar, i. = 0·5); -·-set-point. 

Example 6 
For T=O·l, 

G(s) =0·5 (-s + 2) =:;.G(z) = -0·0416 (z- t·223l 
(s2 +1·5s+l) \z2 -1·851z+0·861) 

The response with an extremely large undershoot is shown in Fig. 10. 

(v) Vogel-Edgar controller 

This controller is identical to the state deadbeat controller when the tuning 
parameter }. is equal to zero. The tuning parameter can only help in certain cases to 
eliminate the overshoot/undershoot problem of the state deadbeat controller. 

The closed-loop transfer function is 

1-exp(-T/A.) (z-a1) •.. (z-a,,_ 1) -N 
V(z) = z 

1 - exp ( - T/ }.)z- 1 (1 - a1) ... (1 - a,._ 1)z" 
(24) 

and the first non-zero value of the discrete output is 

1-exp(-T/A.) 
Y1 = (l-a1) .•• (l-a,,_ 1) 

(25) 
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0.5 

0.5 

1.5 

1.5 
THIE 

2.5 

2 2.5 

Figure 10. G(s)=0·5(-s+2)/(s2 +1-5s+l), T=O·l:···state deadbeat (also Vogel-Edgar, 
). = O); -- the new algorithm, }. = 0 (also Vogel-Edgar, }. = 0-497); -·- set-point. 

The tuning parameter can always be made sufficiently large so that y 1 is as small as 
desired. However for large). the term I - exp (- T/).)z- 1 in the denominator of the 
closed-loop transfer function will slow down the response significantly, unless it is 
cancelled by one of the zeros of the system. Hence, if there is only one zero near + 1 
and inside the unit circle, by selecting). such that exp ( - Tj).) is equal to that zero, not 
only the overshoot is eliminated, but, at the same time, the response becomes 
faster. This is illustrated in Fig. 9 for the system of Example 5, where by selecting 
). = 0·5, exp (-T/).) becomes equal to the zero at 0·819. 

In the case where there is only one zero near + 1 but it is outside the unit circle, 
the best selection for ,~~ \vould be such that exp (- T/,~) is equal to the inverse 
of that zero. We can see the result for the system of Example 6, in Fig. 10 
(). = 0·497=exp (-Tj).) = 1/1·223). 

Vogel and Edgar did not provide any guidelines for the selection of J. They 
suggest gradually increasing ). until the response becomes satisfactory. 

In the case where there are two or more zeros near + 1, ). has to be made very large 
in order to bring the overshoot or undershoot down to acceptable values (cancellation 
with only one of the zeros is not sufficient). The result is that the response becomes 
too slow to be acceptable. This will happen for systems with two or more zeros in the 
Laplace transfer function, either in the LHP or the RHP. The problem is illustrated 
in Example 7. 

Example 7 

For T=O·l, 

s =2·25 (s+ l)(s+2) 
G( ) (s + 0·5)(s + 1 ·5) (s2 + 2·5s + 6) 

= G(z) = 0.01067 (z - 0·905)(z - 0·819)(z + 0·951) 
(z - 0·95l)(z - 0·86I)(z2 

- 1·726z+0·779) 
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Two of the zeros are close enough to + 1 to produce the extremely large overshoot 
shown in Fig. 11 (for l = 0). By selecting ). such that exp ( - T/ ).) is equal to one of 
the zeros ().=0·5, exp(-T/).)=0·819), the response shown in Fig.11 is 
obtained. For exp (-T/l) equal to the other zero().= l, exp (-T/).) = 0·905), the 
response is given in Fig. 12. The overshoot is still clearly unacceptable. In order to 
reduce it to 75%, ). has to be increased to 2·5 and extremely sluggish behaviour results 
(Fig. 12). 
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Figure 11. G(s) = 2·25(s + l)(s + 2)/(s + 0·5)(s + 1 ·5)(s2 + 2·5s + 6), T =CH: ···state deadbeat 
(also Vogel-Edgar,).= OJ; -- Vogel-Edgar,).= 0·5; -·-set-point. 

.... 
:::> e: 2.S 
:::> 
0 

0 

r, 
I I 
I I 

I ' ,,,\ 
: \ \ 

u ·-----------------------------------------

2 
TIHE 

3 

Figure 12. G(s) = 2.25(s + l)(s + 2)/(s + 0·5)(s + 1·5)(s2 + 2·5s + 6), T= 0·1: --- Vogel-Edgar, 
A.= l; ···Vogel-Edgar,).= 2·5; -- the new algorithm, A.= O; -·-set-point. 
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2.3. Discussion 
There are two basic problems associated with the performance of the controllers 

examined. One is rippling of the system output between the samples due to ringing 
of the manipulated variable and the other is large overshoot and/or undershoot of the 
discrete output itself. Dahlin's controller will also be unstable when the system has 
zeros outside the unit circle and the modified Dahlin controller has to be stabilized in 
this case by appropriate selection of the tuning parameter. 

The transfer functions of the controller G.(z) of the open-loop structure (Fig. 1 (b)) 
are given in Table 1. In § 2.2 we explained how the problems are related to the 
location of the zeros of the model and how the location depends on the continuous 
system Laplace transfer function and on the sampling period T (Theorems 1 and 2). 

The relations between the continuous system, the discrete controller, the sampling 
period and the associated problems are given in Table 3. The entries in the first 

Continuous 
system 

LHP zero 

RHP zero 

Excess zeros 
n-m event 

Excess zeros 
n-m odd 

(~ 3) 

Control 
algorithm 

DC 
OD 
SE 
SD 
VE 

DC 
OD 
SE 
SD 
VE 

DC 

OD 
SE 
SD 
VE 

DC 
OD 
SE 
SD 
VE 

t Two or more zeros (see § 2.3). 

Small T 

Overshoot 
One zero: -

More: overshoot 

Unstable 
Undershoot 

Undershoot 
One zero: -

More: undershoot 

n - m = 2: rippling 
n - m ~ 4: unstable 

Rippling 
Rippling 

Unstable 

t For n - m = 2 only the column for small T applies. 
DC Dahlin's controller 
OD Output deadbeat controller 
SE Minimizes sum of squared errors of the output 
SD State deadbeat controller 
VE Vogel-Edgar controller 

Yo,-AT 

-t 
-t 
-t 

Overshoott 

Overshoott 

Unstable 

Rippling 

Unstable 

Rippling 

Unstable 

Rippling 

Yo,+ AT 

Unstablet 
Overshoott 

-t 
Overshoott 

Overshoott 

Rippling 
Rippling 
Rippling 

Rippling 
Rippling 
Rippling 

Rippling 
Rippling 
Rippling 

T., Sampling period at which the zero of the discrete system crosses the unit circle 
!J. T Range around T., for which the corresponding problem occurs 
m, n Degrees of numerator and denominator of G(s) 

Table 3. Summary, of the problems of the examined control algorithms. 
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column refer to the Laplace transfer function of the system; hence the table shows 
what effect a LHP or a RHP zero or a pole excess (n - m) of 2 or more, can have on the 
performance of each controller for various ranges of the sampling period T. 

How small Thas to be in order for the problems in Table 3 to arise, depends on the 
continuous system and the type of problem. An overshoot of 100% caused by a 
LHP zero at small Ts can occur for T:;:;:; O· 7 5r for a real zero and for T:;:;:; 0·9r for a pair 
of complex-conjugate zeros, where r is the inverse of the distance of the zero from the 
origin. Similarly for a RHP zero, we may get a significant undershoot for T:;:;:; 0·75r 
for a real zero and for T:;:;:; 0·9r for complex zeros. The rippling caused by excess 
zeros at small Ts (when (n - m) is even) can occur for T up to 0·75r0 , where r0 is the 
dominant time constant of the system, but usually the problem appears for smaller Ts 
which can start as low as 0·2r0 . 

r.,, denotes the critical sampling period at which a zero crosses the unit 
circle. Rippling may occur around r;,, for a range from r;,, - !:i T to r;,, + !:i T. The 
vaiue of T.,, for each zero of G(z) has to be calculated from the Laplace transfer 
function G(s). ~Tappears to be a fraction of T.,,: it is about 0·37;,, when we have a 
zero of G(z) corresponding to a RHP zero of G(s) and about 0·7T.:, when we have an 
excess zero crossing the unit circle. The reason for the difference is that a zero 
corresponding to a RHP zero covers a greater distance on the complex plane than an 
excess zero, as T goes from zero to infinity, and therefore it moves faster with T. 

When G(s) has more than one zero in the LHP and when these zeros are much 
smaller than the poles (by an order of magnitude or more), then the corresponding 
discretized system G(z) can have a zero either inside or outside the unit circle, 
depending on the sampling time. From Theorems 1 and 2, it follows that if such a 
zero crosses the unit circle, then there are two 7;,,s for which a crossing occurs. For 
the smaller 7;,, at which the zero leaves the unit circle, the problems of the examined 
algorithms are listed in Table 3. For the larger 7;,, (at which the zero returns to the 
unit circle), all algorithms will generate significant overshoot before t = T and, in 
addition, have all the other problems particular to each algorithm. The reason is 
that the open-loop step response of systems of this type shows large overshoot and the 
second 7;,, is larger than the time t at which this overshoot occurs. This problem is 
not of practical importance since such a large T would result in a folding frequency 
rr/T smaller than the bandwidth of G(s) and would therefore not be selected. 

From an inspection of the open-loop step response, it can easily be determined if 
any of the zeros of G(z) arising from LHP zeros of G(s) cross the unit circle as 
follows. Assume that G(s) has been scaled so that G(O) > 0. If the unit step response 
is negative for some t' and if T = t' then G(z) has an odd number of zeros on the real 
axis between + 1 and + oo. The converse is also true. The reason is that Kin (3) is 
the value of the open-loop step response at t = T. For all the systems tested with such 
crossings there was always a range of T for which the number of zeros between + 1 
and + oo was odd. Hence, the above condition on the step response seems to be both 
necessary and sufficient for the existence of such crossings. However no proof is 
available. 

3. A new algorithm 
In§ 2 it became clear that the controller G.(z) of the structure of Fig. 1 (b) should 

not have poles with negative real part close to the unit circle. These poles cause 
oscillation of the controller output (with period equal to twice the sampling period if 
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the poles are negative reals) and as a result the process output exhibits intersample 
rippling. 

Hence, when there are zeros of G(z) with negative real part, one should not use 
those zeros, or their inverses, as poles of Ge(z), but use poles at the origin instead. 

When there are unstable zeros of G(z) with positive real part, one should use their 
inverses as poles of Ge(z). If zeros close to + 1 were substituted with poles at the 
origin, then, in order to avoid steady-state offset (i.e. in order to have Gc(l) = G(l)- 1 

), 

large undershoot or overshoot would have to be accepted. 
In addition, for all the control algorithms examined in§ 2, the zeros of Gc(z) are 

chosen to be equal to the poles of G(z). 
Hence a simple rule to design the controller Gc(z) is the following. 

(1) Use as zeros of Ge, the poles of G(z) (they are assumed to be stable. 

(2) Use as poles of Ge, the zeros of G(z) with positive real part which are inside the 
unit circle, the inverses of those with positive real part which are outside the 
unit circle and as many at the origin as there are zeros with negative real part. 

(3) An additional pole of Ge at the origin must be present because of the inherent 
time delay of a discrete system. 

(4) The steady-state gain of Ge should be: 

1 
Gc(l) = G(l) 

Let the superscripts ' - ' and '+' denote 'inside' and 'outside' the unit circle, 
respectively, and the subscripts '+' and ' - ' denote 'positive' and 'negative' real 
part. We have 

( 1) ( 1) 1--+-- ... 1--+-
Ge(z)=_!_ + a+.~+1 a+.1 

K (1 - a+,k+ 1) ••. (1- a+,1)(1 - a-,1+ 1) ••• (l -a-,w-1) 

(z - P1) ... (z - Pn) x--------------------
z"-1(z-a~.1) ... (z-a~.1)(z--+-1 -) ... (z-~) 

a+.«+ 1 a+.1 

(26) 

where k zeros (a~. 1 , ... ,a~.d have positive real part and are inside the unit circle, 
1- k (a!.k+ 1, ... , a!.1) have positive real part and are outside the unit circle and 
n - 1 - I (a_ ,1+ 1 , •• ., a_ ,n- 1 ) have negative real part. 

A filter of the form F(z) = (1 - O'.)/(l - O'.Z- 1
) (where 0:::;; O'. < 1) should also be 

included. Theoretical justification for the inclusion of the filter will be given in 
§ 4. At this point one can, nevertheless, note that the tuning parameter can be used 
to lower the values of the manipulated variable. This of course will be accomplished 
at the cost of a slower response. 

The classical feedback controller C(z) for the structure of Fig. 1 (a) can be obtained 
from 

F(z)Gc(z) 
C(z) = 1 - F(z)Ge(z)G(z) 

(27) 

The behaviour of the new algorithm was examined for the examples of§ 2 and, as 
the corresponding plots show, it performs very well (Figs. 3-12). 
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The algorithm is expected to work well all the time, unless of course there are 
unobservable open-loop oscillatory modes (Astrom and Wittenmark 1984). This 
will happen if the sampling period matches the frequency of any oscillatory mode of 
the continuous open-loop system. The problem can be met by appropriate selection 
of the sampling period (for example, less than half the period of oscillations of the 
continuous system impulse response (Jury 1957)). The controller Gc(z) can then be 
designed from G(z) as above. 

It should also be noted that this design procedure can be extended to external 
system inputs other than steps. One might already have observed that one can 
obtain the new algorithm of eqn. (26) by writing the controller transfer function GsE(z) 
(structure of Fig. 1 (b)) that minimizes the sum of the squared errors and substituting 
the poles with negative real part with poles at the origin, while keeping the same 
steady-state gain. The same procedure can be used for inputs other than steps to 
yield a problem-free controller. One should first obtain the transfer function of the 
controller (structure of Fig. 1 (b)) that minimizes the sum of the squared errors for the 
specified input and then make the correction mentioned above. 

4. Stability in the presence of modelling error 

For no modelling error, the classical feedback structure of Fig. 1 (a) is equivalent 
to the open-loop structure of Fig. 1 (b), where eqns. (1) and (2) relate the controllers 
C(z) and Gc(z). In the case where the model is not exact, let us denote the model by 
G(z) and the actual plant by G(z). Then the feedback structure is equivalent to that of 
Fig. 13 (a) where the two added G(z) blocks cancel each other. This structure can be 
simplified to that in Fig. 13 (b). 

The relationships between the controller Gc(z) in Fig. 13 (b) and the classical 
feedback controller C(z) are 

C(z) 
GcCz) = l + C(z)G(z) 

~· . G.(z) 
qz} = 1 - Gc(z)G(z) 

(28) 

(29) 

For an exact model, the structure of Fig. 13 (b) simplifies for command-following 
to that shown in Fig. 1 (b), i.e. it becomes open-loop, which makes the design of Ge 
transparent. For example, if Dahlin had substituted the zeros which cause ringing in 
the corresponding GcCz) instead of C(z) he would have got the desired result regarding 
ringing, without the complications and problems of the modified Dahlin controller. 

On the other hand, when the model G(z) is not exact, the structure of Fig. 13 (b) is 
not effectively open-loop and stability problems can arise. 

A very useful property of this structure is that any controller Gc(z) which satisfies 
Gc(l) = G(l)- 1 yields zero offset (Garcia and Morari 1982). From Fig. 13 (b), we find 

Gc(z) 
u(z) = 1 + Gc(z)[G(z)- G(z)] y,(z) (30) 

G(z)GcCz) 
y(z) = 1 + Gc(z)[G(z)- G(z)] y.(z) (31) 

where u is the manipulated variable. 
For stability, it is necessary and sufficient that both of the following characteristic 

equations have their roots strictly inside the unit circle: 
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Figure 13. (a} Structure equivalent to the classical feedback. (b) Simplification of the 
structure shown in (a). (c) The equivalent structure with the filter included. 

l . . . - - -- + [G(z)- G(z)j = U 
Gc(z) 

l 1 -
G(z)Gc(z) + G(z) [G(z)- G(z)] = 0 

(32) 

(33) 

By adding a filter F(z) to the controller Gc(z) we get the structure in 
Fig. 13 (c). The importance of the filter is shown by the following theorem (Garcia 
and Morari 1985). 

Theorem 3 

Let G(z) and G(z) be stable, Gc(l) = 1/G{l) and 

1-cx 
F(z)= 

1 
_ 1 , O~cx<l 

-cxz 
(34) 

Then there exists an o:* (0 ~ o:* < 1) such that the system is closed-loop stable for 
all o: in the range o:* ~ o: < l if and only if G(z) and G(z) satisfy 

G(t)G(t) > o (35) 

Hence, by using the structure of Fig. 13 (c) and a Gc(z) such that Gc(l) = l/G(l), 
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stability can always be achieved for any mismatch of model and plant, as long as the 
steady-state gain of the model has the correct sign. 

This structure does not have to be actually implemented, since it is entirely 
equivalent to the classical feedback. The conventional feedback controller C(z) can 
be obtained from 

C(z) = F(z)Gc{z) 
1 - F(z)Gc{z)G(z) 

(36) 

An advantage of using the structure of Fig. 13 (c) for design purposes is that it 
provides a clear physical meaning to the tuning parameter ex. 

5. Conclusions 
The purpose of this paper was to present and expiain, in a transparent manner, the 

problems of some well known digital controllers for SISO systems. Based on the 
results of this study, a simple rule was derived for the design of a controller which will 
always perform well. The reason for trying to establish a simple rule is to make sure 
that this design procedure is of use to the practicing engineer. 

The algorithm developed is free of the basic problems of the controllers examined, 
i.e. intersample rippling and overshoot or undershoot. In the case where all the 
unstable zeros of the pulse transfer function of the system G(z) have negative real part, 
it yields a deadbeat controller which drives the discrete output of the system to the set
point in a finite number of time steps. When G(z) has unstable zeros with positive 
real part, the controller drives the output to the set-point asymptotically in order to 
avoid large overshoot or undershoot. When all the zeros, stable or unstable, have 
positive real part, it minimizes the sum of the squared errors of the output. 

An advantage of the proposed structure is that a tuning parameter is included 
(filter of Fig. 13 (c)) whose physical meaning and effect is clear to the designer. If the 
model is.exact, no tuning is necessary in contrast with the Dahlin and Voge!~Edgar 
controllers. In the case of a mismatch between the system and the model, stability can 
always be guaranteed when some simple conditions hold. It is also important to 
note that the same tuning parameter can be used to reduce the values of the 
manipulated variable at the cost of a slower response. 
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Design of robust digital controllers and sampling-time selection for 
SISO systems 

EVANGHELOS ZAFIRIOUt and MANFRED MORARit 

The stability of a digital control system and its performance in terms of the 
continuous plant output are studied. A two-step controller design is proposed. In the 
first step, the assumption of no modelling error is made and a controller that 
combines properties of the algorithm that minimizes the sum of squared errors and a 
deadbeat-type algorithm is designed so that no intersample rippling appears. In the 
second step, a filter is designed so that appropriate conditions which guarantee 
robust stability and performance in the presence of model-plant mismatch are 
satisfied. The effect of the sampling time on the achievable performance and the 
robustness properties of the system is examined and the results are incorporated in 
a complete procedure for sampling-time selection and robust controller design. 
Finally, the procedure and some theoretical implications are illustrated with 
examples. 

1. Introduction 
The importance of obtaining control designs which are robust with respect to 

model-plant mismatch has been well emphasized in the literature in the last few years. 
For sampled-data systems, although information on the plant output is available only 
at the sample points and the manipulated variable is discrete, it is important that 
robust performance is guaranteed in terms of the continuous plant output. The 
internal model control (IMC) structure will be used to make some qualitative aspects 
of the problem clear and to derive quantitative robustness conditions. A synthesis 
method that makes use of these conditions will also be developed. 

The selection of the sampling time is an integral and very important part of any 
control system design. The sampling time directly affects the achievable performance 
and the robustness properties of the control system. A clear qualitative understanding 
and a quantification of these relations will be attempted, which will then lead to a 
criterion for sampling-time selection built into the controller synthesis method. 

Finally, the theoretical results will be incorporated into a compiete step by step 
procedure for robust controller design and sampling-time selection. 

2. System description and design goals 

2.1. Structure 

The classical feedback structure is shown in Fig. 1 (a). Wave lines are used to 
represent paths along which the signals are digital. The transfer function of the zero
order hold is 

Received 28 October 1985. 

H(s) = 1 -exp (-sT) 
s 

(1) 

t Chemical Engineering, 206--41, California Institute of Technology, Pasadena, California 
91125, U.S.A. 
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PREFILTER 

(a) 

L,__________., 
PREFILTER 

(b) 

HODEL 

d 
+ y 

+ 

Figure 1. (a) Classical feedback structure. (b) Internal model control structure. 

where T is the sampling time. A(s) is an analogue anti-aliasing prefilter. A detailed 
explanation of the problem of aliasing can be found in digital control books (see, for 
example, Astrom and Wittenmark 1984, and Franklin and Powell 1980). Briefly one 
can see the problem by looking at (2) which relates a continuous signal a(s) to its 
z-transform a*(z): 

1 "' 
a*( exp iw n = T t=~ "° a(iw + ik 211:/T) (2) 

Equation (2) shows that the value of a* at a frequency w is the sum of the values of the 
continuous signal a at the frequencies w + k 2n/T divided by T. The result is that 
after sampling, a high-frequency disturbance or measurement noise cannot be 
distinguished from an equivalent low-frequency one. The prefilter serves the function 
of cutting off high-frequency components from the analogue signals before sampling, 
when that is necessary. It is clear from (2) that a*( exp iwT) is periodic in w with period 
2n/T. It is also important to note that for a rational function a*(:) we have a*(:)= 
a*(i), where the overbar indicates the complex conjugate, and therefore for n/T < w < 
2n/T we have 

a*(exp iwT) = a*(exp -iwT) = a*(exp i(2n/T-w)T) (3) 

Hence in addition to the periodicity, a rational z-transform a*(z) has the property that 
its values for frequencies greater than 11:/T are uniquely determined by those for 
0 ~ ru ~ n/T. 

The IMC structure was introduced by Garcia and Morari (l 982). This structure is 
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a theoretical tool that simplifies the design of a controller which is robust to 
plant-model mismatch. This will become dear in the following sections of this paper. 
In Fig. I (b) an IMC structure which includes both digital and analogue signals is 
given. P(s) is the process model and P(s) the actual process. Note that though the 
block P(s) appears in the structure, one will not have to implement an analogue block 
for the model. The structure that will be implemented is that of Fig. 1 (a) and the 
feedback controller C(z) can be obtained from the IMC controller Q(:) and filter F(z) 
by 

C(z) = F(z)Q(z) _ 
1 - F(z)Q(z)PA(z) 

(4) 

where 

PA(z) = f!l .!f'- 1 { H(s)P(s)A(s)} (5) 

When (4) holds the mappings between the inputs r, d and the output y are the same 
for the two structures. 

Let 

P*(z) = !l .!f'- 1{H(s)P(s)} 

P*(:) = !l .!f'- 1{H(s)P(s)} 

P~(z) = .?l .!f'- 1 {H(s)P(s)A(s)J 

d*(z) = !l .!f'- 1{d(s)} 

dA(z) = f!l y- i { A(s)d(s)} 

y*(:) = !l .!f'-1{y(s)} 

Then the continuous plant output _i~s) is given by 

F(exp sTJQ(exp sT)H(s)P(s) 
v(s) = -
· l + F(exp sT)Q(exp sT)[PA(exp sT) - P~(exp sT)] 

x [r*(exp sT) - d~(exp sT)] + d(s) 

In the above the transformation z =exp sT is used. Sampling of (12) yields 

·* _ _ F(z)Q(z)P*(z) rr*'.,)- d*( 9 )] d*(") 
) (-)-l+F(z)Q(z)[PA(z)-PA(z)]l \- A~+ -

The digital controller output u(:) is given by 

u - - F(z)Q(z) [r* z)- d*( )] 
(~) - 1 + F(z)Q(:)[PA(:)- PA(z)] ( A z 

2.2. Plant uncertainty description 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

In order to be able to design a control system which is robust with respect to 
model-plant mismatch one should have some bounds on this mismatch, in other 
words one should know how 'far' the actual process can be from the model. 

The most commonly used descriptions of plant uncertainty for control purposes is 
the additive and multiplicative uncertainty (Doyle and Stein 1981). This kind of 
description can be obtained from bounds on the values of the estimated parameters of 
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the process model, either analytically, as illustrated in the examples of § 6, or 
numerically. 

We can write 

P(s) = P(s) + E.,(s) 

P(s} = P(s)[l + Em(s}] 

where for the additive and the multiplicative uncertainty, Ea and Em, we have 

IEa(iw)! ~ la(w) Vw 

I Em(iw)I ~ lm(w) Vw 

and the bounds l.(w) and lm(w) are known. Note that 

I.(w} =I P(iw)l • lm(w) 

(15) 

(16} 

(17) 

(18) 

(19) 

Typically, lm(w) becomes equal to 1 or greater for high frequencies where nothing is 
known about the phase characteristics. 

Equation (12) indicates that we need to obtain a bound for P~(exp sT)
P~(exp sT). We have from (5), (8), and (15) 

PA(z) - PA(z) = 11 ff'- 1 {H(s)[P(s) - P(s)]A(s)} = 11 ff'- 1 { H(s)E.(s)A(s)} 

and from (2) it follows 

- l 00 

PA( exp iwT) - PA( exp iwT) = Tt=~ 
00 

H E8 A(iw + ik 2n/T) (20) 

Equations (17) and (20) can now be used to obtain the following bound 

- l 00 

IPA( exp iwT)- PA( exp iwT)I ~ - L IH A(iw + ik 2n/T)ll.(w + k 2n/T) A I:(w) 
Tt=-oc 

(21} 

Since the plant is a physical system, P(s) and P(s) are strictly proper and so !E.(iw}I - 0 
at least as fast as l /w, as w-+ oo. Hence we can aiways obtain a bound l.(w) in (17) 
such that I.(w)-+ 0, as w-+ a:.. Also !HA(iw)I - 0 at least as fast as l/w as w--+ oo even 
if A(s) = 1 and therefore IHA(iw)ll8(w)- 0 faster than l/w as w--+ oo, which implies 
that the sum in (21} converges. Still, note that if a prefilter A(s) is used, the property 
l.(w) - 0 as w--+ oc is not needed for convergence. Finally, note that for computational 
purposes only a few terms in (21) need be considered. The reason for this is that A(s) is 
small for w larger than n/T in order to cut off the high-frequency components. Also 
from (1) it follows that H(iw)/T is small for w ~ n/T. Hence for computational 
purposes one need only consider two or three terms in (21). Actually there is one 
dominant term in (20) and (2 I), which is the one for which - n/T ~ w + k 2n/T ~ n/T. 
Hence for 0 ~ w ~ n/T, the dominant term corresponds to k = 0. 

2.3. Design goals and procedure 

2.3.1. Zero offset 
The property of zero steady-state offset for some class of external inputs is an 

essential property of the control system. The conditions that have to be satisfied in 
order for this to happen impose certain requirements on the controller Q(z), the filter 
F(z) and the anti-aliasing prefilter A(s), described by the following theorem. 
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Theorem 1 
For an open-loop stable plant and provided that the closed-loop system is stable, 

the necessary and sufficient conditions for no offset for the class of external inputs r(s) 
and d(s) with all poles in the open left-half plane except I poles at s = 0where1 ~ m and 
m is specified, are the following: 

F(l)Q(l)P*(l) = 1 (22) 

dk I dzk (F(z)Q(z)P*(z)) • = 
1 

= 0, k= 1, ... ,m-1 (23) 

A(O) = 1 (24) 

dk I di A(s) s=O = O, k=l, ... ,m-1 (25) 

Form= 1, only (22) and (24) apply. 

Proof 

See Appendix A. 

The implications of the above relations on the design of Q and F will be considered 
in subsequent sections. Let us discuss only briefly the design of the prefilter A(s), whose 
performance specification is quite simple, namely to cut off high-frequency compo
nents. Most digital control books (Astrom and Wittenmark 1984, Franklin and 
Powell 1980) discuss different types of anti-aliasing prefilters, which satisfy (24). In the 
case of m > 1, a simple modification can be used; Jet us write 

(26) 

where 

Cm_ 1s"'- 1 + ... +c1s+ 1 
A..,(s) = (rs+ 1r- 1 ' 

m~2 (27) 

and A 1(s) is an appropriate prefilter form= l. Then for a specified r, (25) can be used 
to compute the coefficients c1, ••. , c,,, _ 1 . Qualitatively it is clear that the use of A..,(s) to 
satisfy (25) should not significantly change the behaviour of A 1(s). The reason is that 
(25) simply adds some properties at w = 0 and this can be done without affecting the 
high-frequency properties of A 1(s). A larger should be used to push the effect of A"'(s) 
towards w = 0. Indeed for a usual second-order A1(s) = w5/(s2 + 2w0 's + wl) and for 
m = 2 (ramp inputs), (25) yields c1 = r + 2'/w0 and therefore for a sufficiently larger, 
A..,(s) does not significantly affect the high-frequency performance of A(s). 

2.3.2. IMC design procedure 

The purpose of the control system is to guarantee stability and good performance 
not only when the model is exact but also in the presence of model-plant mismatch. 
The IMC structure gives rise naturally to a two-step design procedure. From Fig. 1 (b) 
it is clear that when no modelling error is present, the design of the IMC controller 
Q(z) reduces to the design of an open-loop controller. Indeed for P~ = P~ and P = P, 
(12) becomes 

y(s) = Q(exp sT)H(s)P(s)(r*(exp sT)- d~(exp sT)) + d(s) (28) 
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where the filter F is assumed to be the identity. Hence in the first step, Q(z) can be 
designed so that some desired response is achieved. Inherent performance limitations 
exist, imposed by non-minimum-phase elements and potential intersample rippling, 
but the simple form of (28) simplifies the design considerably. For example, stability is 
not an issue if P = P, since then for an open-loop stable plant, a stable Q is all that is 
required for overall stability. Section 3 deals with the design of Q and the effect of 
sampling time on the achievable performance. 

A mismatch between the model and the plant will generate a feedback signal which 
may cause performance deterioration or instability. The IMC filter F(z) is used to take 
care of this problem by acting on this signal before it is fed to Q(z). The filter should be 
designed so that stability and acceptable performance are guaranteed for a given set of 
possible plants. Section 4 of the paper deals with the derivation of the robustness 
conditions that have to be satisfied, and the filter design. 

The fact that in the first step of the procedure Q is designed so that no offset is 
produced for a given class of inputs when F(z) = 1, means that according to 
Theorem 1, Q(z) has to satisfy 

Q(l)P*(t) = 1 (29) 

::k (Q(z)P*(z))L 
1 

= 0, k = 1, ... , m - 1 (30) 

Then clearly a filter F{:) will satisfy (22) and (23) for a Q(:) that satisfies (29) and (30) !f 
and only if 

F(l) = 1 

Jk I 
d

_k F(z) = 0, k = 1, ... , m - 1 
~ z=l 

3. Controller design for no modelling error 

3.1. Effect of sampling on performance 

(31) 

(32) 

In § 1, it \.Vas mentioned that sampling puts a !imitation on the achievable 
performance. We shall now demonstrate this fact quantitatively. Consider (28) 

------------------------~-;_--; _:~>\ /\: 
..--.,,.,, ' \ : I \; --- " ' ' ',' ---------- \<"". ". 

""-' ' . 
\' 
\ 

1r IT 21r IT 41r IT 

FREQUENCY <RAOIANS1TIHE> 

Figure 2. Effect of sampling on performance (logarithmic plot): 
IQ( exp iwnl; ----IQ( exp iwT)P(iw)I. 

IP(iw)I;-·-



37 

Robust controllers and sampling-time selection for SJSO systems 

obtained from (12) for no modelling error. H(s)r*(exp sT) and H(s)d~(exp sT) are zero
order-hold reconstructions of the set-point r(s) and output disturbance d(s). Though 
these are not exact, we shall assume that they are, in order to demonstrate the 
limitation that comes from the periodicity of Q. Then (28) implies that for good 
performance P(s)Q(exp sT) should be close to one. 

In Fig. 2 a typical Bode plot of P(s) is shown. For perfect performance we need a Q 
equal to the inverse of P(s). However, as described by (3), Q is periodic in w with period 
2rr./T and its values for frequencies greater than rr./T are uniquely determined by those 
for w ~ n/T. In Fig. 2, an ideal Q is plotted which inverts P(s) for w up to rr./T. In order 
for this to be accomplished, Q has actually to be of infinite order. However even for 
this Q, it is clear in Fig. 2 that the closed-loop transfer function P(s)Q(exp sT) cannot 
have a bandwidth larger than n/T. 

3.2. The controller Q 
We have seen that sampling limits the achievable performance. The question that 

arises is how to design Q so that for a given sampling time T we obtain the 'best' 
possible performance. In addition, the design method should be simple enough so that 
designing Q for more than one sampling time is not time-consuming. The necessity for 
repeating the design for more than one T will become apparent in § 5. 

A detailed study of the advantages and disadvantages and the theoretical reasons 
behind them, for a number of well-known digital control algorithms led Zafiriou and 
Morari (1985) to a simple method for designing Q from the model P*(=). To do so one 
should first obtain the controller QsE which minimizes the sum of squared errors 
between the sampled system output y* and a specified external input. Then to obtain 
Q(:) one should substitute the poles of Q5E(:) which have a negative real part with 
poles at the origin while preserving the property of zero steady-state offset. The reason 
for the substitution is that poles with a negative real part produce undesirable 
intersample rippling in the continuous plant output, which does not reveal itself in the 
sum of squared errors, computed only at discrete points in time. The introduction of 
poles at the origin, aims at incorporating in the design some of the advantages of a 
deadbeat-type response, whiie at the same time avoiding known probiems of deadbeat 
controllers like overshoot and undershoot (Zafiriou and Morari 1985). 

We can always write P*(z) as 

P*(:)=K(z-a1) ... (z-an-1) z-N 
(z-p1) ••• (z-p") 

(33) 

where N is the largest integer such that NT is less than or equal to the dead 
time. All the poles are assumed to be stable. 

Let t{s) be the external input which we want our system to follow (for v a setpoint) 
or reject (for ran output disturbance). All poles of v(s) are assumed to be in the open 
left-half plane, except possibly some at s = 0. It is important however to note that in 
order for the control system to yield zero steady-state offset for all inputs with m or 
less poles at s = 0, the controller Q(z) must have been designed for an input v(s) which 
has m such poles. Let 

(34) 

Write 

(35) 
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where v1, I= 0, 1, ... ,are the values of 9'- 1{v(s)} at time t =(N,, + l)T, v0 :;!: 0. Define 

v~z) = [zN•v*(z)-(v0 + v1z- 1 + ... + vNz-N)]zN+ 1 

(36) 

This represents the part of .:z-- 1{v*(z)} for time points greater than the dead-time of 
the plant, moved by (N + 1 )T to the left on the time axis. Another way to compute v~z) 
is to find from y- 1 { Li(s)} the Laplace transform of the continuous time function that 
corresponds to these points and then take the z-transform from tables. 

Without loss of generality, assume that a1, ... , af and avi, ... , a,.h are the zeros of 
P*(:) and r*(z) respectively, which are outside the unit circle. Define 

P!(z)= rl (1-aj1)(z-ai) (37) 
i=dl -a)(z-aj 1

) 

and 

Then Q5E(:) is given by 

• ( ) - n" (1 - a;.j1 )(z - a,,j) 
V+ Z -

i= 1 (1 - a.)(z - a,:/) 

P!(z) = (P!(z))- 1 P*(z)zN 

P!(:) = (1·!(z))- 1v*(z)zN" 

QsE(:) = (P'!.(:)r'!.(z))- 1 { (P!(:)r!(z))- 1 r~(:)z- 1 }-

(38) 

(39) 

(40) 

(41) 

where { · }- is obtained by taking a partial fraction expansion of { ·} and discarding 
the terms with poles outside the unit circle. Terms with poles at z = 1 are retained. The 
constant term is zero because {·}is strictly proper. The steps used to arrive at (41) are 
given in Appendix B. 

In the case of set-point following, one often has available and supplies to the 
controller future values of the set-point, which one wants the system output to follow 
after some time steps. By doing so, better servo behaviour is accomplished. In this 
case, Q5E(z) can be obtained by using r~0(z) instead of r~{z) in (41), where v~0 is defined 
as follows: 

(42) 

with 

N 0 =max{N-NP,O} (43) 

and NP the number of time steps ahead for which the set-point is supplied. How this 
conclusion is reached, is discussed in Appendix B. 

Q(z) can now be obtained from QsE(z) as 

Q(z) = q(z)QsE(z)B(z) (44) 

where 

( ) -" Ji (z - 7t i) q Z =Z 
j=1(l-7tj) 

(45) 

m-1 
B(z)= L b_;Z-i (46) 

j=O 

and n i•j = 1, .. ., K, are the poles of Q5E(z) with a negative real part. The coefficients bi, 

j = 0, ... , m - 1, will be determined so that the controller produces zero steady-state 
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offset for all inputs v(s) with m or less poles at s = 0. By its construction, Q5~z) 
produces no offset and therefore it satisfies (29) and (30). Then clearly Q(z) will satisfy 
(29) and (30) if and only if 

q(l)B(l) = 1 (47) 

d" I 
d
-r (q(z)B(z)) = 0, k = 1, ... , m - 1 

z :=l 
(48) 

Equation (47) yields 

b0 = 1-(b1 + ... + b,,.- 1) (49) 

Note that form= 1, only (47) need be considered and then (46) and (49) yield B(z) = 1. 
Equation (48) is equivalent to 

:; .. (q(i. - 1)B(i. -i))ll=t = 0, k = 1, .•. , m -1 (50) 

Note that q(i. - 1
) is a polynomial in i. and therefore its derivatives with respect to i. can 

be computed easily. Hence simple successive substitution will reduce (50) to 

dk I -d .• B(i.- 1
) =1't• k=l, ... ,m-1 

I. .i.= 1 
(51) 

where the ')'S are known. Equation (51) can be written in terms of the bs as 

(52) 

where the matrix N •is defined for some k as a matrix of dimension (m - 1) x k whose 
elements ru are 

V-·={ ]~ I) • 

(j - i)! 

for i > j 

for i ~j 
(53) 

Equation (52) can be solved by successive substitution. Note that for the simple case of 
m = 2 we get 

" 7r. 
b1 = }' 1 = L (1 

1 
) , for m = 2 

j=l -n:j 
(54) 

The case of v(s) = 1/s is of special interest because this is the most commonly 
considered input. In this case t*(z) = t:~{:) = v!(z) = z/(z - 1) and i:~(z) = 1. Then (41) 
yields Q5E(z)=(:F!(:))- 1 and therefore the Q(z) obtained from (44) for B(z)= 1 can 
actually be constructed by using the following rules (Zafiriou and Morari 1985). 

(i) Use as zeros of Q(z) the poles of F*(z). 

(ii) Use as poles of Q(z) the zeros of F*(z) with a positive real part that are inside 
the unit circle, also the inverses of those with a positive real part which are 
outside the unit circle, and as many at the origin as there are zeros with a 
negative real part. 
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(iii) An additional pole of Q(:) at the origin must be present because of the inherent 
time delay of a sampled-data system. 

(iv) The steady-state gain of Q(:) should be Q(l) = 1/I'*(l). 

This controller designed for step inputs combines the advantages of the algorithm 
that minimizes the sum of squared errors and of deadbeat-type algorithms. In the case 
where all the unstable zeros of P*(:) have a negative real part, it yields a deadbeat 
controller which drives the discrete output of the system to the set-point in a finite 
number of time steps. When P*(z) has unstable zeros with a positive real part, the 
controller drives the output to the set-point asymptotically in order to avoid large 
overshoot or undershoot. When all the zeros, stable or unstable, have a positive real 
part, it minimizes the sum of the squared errors of the output. The same properties are 
maintained for a controller designed for inputs other than steps according to (41 ), (44), 
(45) and (46), when the minimum number of coefficients bi necessary to satisfy (47) and 
(48) is used. 

4. Filter design for model-plant mismatch 
In this section conditions for stability and good performance in the presence of a 

modelling error are derived and a method for designing a filter so that these 
conditions are satisfied is proposed. Also the effect of sampling time on robustness is 
discussed. 

4.1. Robust stability 

As mentioned earlier, the plant is assumed to be open-loop stable and therefore, 
when P = P, all that is required for overall stability is that Q and F are also stable. 
Application of the 'small gain' theorem to (13) and (14) and use of (21) will then yield 
the following stability condition for P =f. P (see Doyle and Stein 1981). 

Theorem 2 

Let P(s), Q(z) and F(z) be stable. Then the system in Fig. 1 (b) is stable 

V P(s) s.t. IP~(exp iwT)- P~(exp iwT)I::;;; t:(w) for 0::;;; w::;;; rr/T 

if and only if 

IQ(exp iwT)F(exp iwT)l · l:(w) < 1 for 0 ~ w::;;; rr/T (55) 

Note that the periodicity and (3) imply that if (55) holds for 0 ~ w ~ rr/T, then it holds 
for all w. Note also that stability of the system in Fig. 1 (b) is equivalent to stability of 
the classical feedback structure in Fig. l (a), provided that C(z) is related to Q and F 
through (4). 

The above condition is both necessary and sufficient if stability for all the plants in 
the set described by (21) is required. Any conservativeness comes only from the fact 
that thif> set is, in general, larger than that of the plants which one actually needs 
to consider. For a specified sampling time, r:(w) is obtained from (21) and Q(z) 
constructed according to§ 3.2. If one then selects F(z) = 1, the condition (55) may or 
may not be satisfied. If not, one should use an F(z) =f. 1 to achieve it. The simplest filter 
F(z) is a first-order one: 

(56) 
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This filter satisfies (31) but not (32) and therefore it can be used only for external inputs 
r(s) with one or less poles at s = 0 (m = l) when no offset is required. We shall assume 
here that this is the case. The structure of the filter form~ 2 will be discussed in§ 4.3. l. 

It is clear from (S6) that by changing !X we can affect the value of IF(exp iwnl 
at every frequency except w = 0. Hence it is important to examine (SS) at w = 0. 
From (21) we get 1:(0)=1.(0) since H(i(2nk)/T)=0 for k=±l, ±2, ... ,and 
H(O)/T = A(O) = I. Then (29), ( l 9) and the fact that P'*(l) = P'(O) imply that (55) will be 
satisfied for w = 0 and an F(:) given by (56) if and only if lm(O) < 1. All that this means 
is that the error between the steady-state gain of the actual plant and that of the model 
should not be more than 100% of the gain of the model, which is a rather easily 
satisfied condition. For example, if all the possible plants have steady-state gains with 
the same sign, then one can always choose an appropriate gain for the model so that 
/m(O) is less than one. 

Hence if (55) is not satisfied we can always increase the time constant of the filter 
until it does. Clearly such an rx will always exist provided that IQ(exp iwT)ll:(w) is 
finite for all 0 ~ w ~ n/T and of course that lm(O) < 1. However increasing the filter 
time-constant means that we are simply reducing the closed-loop bandwidth of the 
nominal system (i.e. no modelling error) and in§ 3.1 we saw that this is equivalent to 
using a larger sampling time T. This becomes clearer if we write (55) as 

jP(iw)Q(exp iwT)F(exp iwT)i ~ jP(iw)),!J:(o.l) (57) 

One can see that the bandwidth of the left-hand-side term can be reduced by either 
increasing ':J. in F(:) or leaving F(:) = I and increasing T. A graphical depiction of the 
above is given in Fig. 3. Note that in Fig. 3 the righ1chand-side term of (56) is assumed 
to be independent of T by using the approximation 1:(w) ~ l.(w). For illustrative 
purposes. this is a reasonable approximation for 0 ~ w ~ n,'T but it should not be used 
to check (55); l:(w) should be computed from (21). 

FREQUENCY 

Figure 3. Effect of sampling on robust stability (logarithmic plot): - -- - 1//m(w); 
-- IQ(exp iwT)P(iw)I. T= T 1; ------ IQ(exp iwT)P(iw)I, T= T2 < T1; --

IF1(exp iwTJQ(exp iwT)P(iw)j, T= T2 • 

4.2. Robust performance 

In§ 3.1 it was demonstrated that since the values of Q(:) for frequencies larger than 
n/T are uniquely determined from its values for 0 ~ w ~ n/T, by using a digital 
controller one can only try to guarantee good performance for frequencies less than 
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n/T. The same holds for F(z), of course, since it is a rational function in z. Therefore, 
we shall now proceed to obtain a condition for acceptable performance in the presence 
of model-plant mismatch by considering all frequencies such that 0 ~ ro ~ 
n/T. According to§ 2.2, there is one dominant term in the infinite sum in (20) which for 
0 ~ w ~ n/T is the term corresponding to k = 0. Hence (20), yields the following 
approximation: 

- l 
PA( exp iw T) - PA( exp iw T) ~ T H(iw)Ea(iw)A(iw) for 0:;;;. w:;;;. n/T (58) 

Similarly, from (10) we obtain 
1 

dA(exp iwT} ~ TA(iw)d(iw) for 0 ~ w ~ n/T (59) 

Note that if no prefilter is used, i.e. if A(s) = 1, then in order to obtain (59), T must be 
such that d(s) is small for w > n/T. 

Substitution of (15), (58) and (59) into (12) yields for the response of the system J'(s) 
to a disturbance d(s): 

y(
. ) _ 1 - P(iw)Q(exp iwT)F(exp iwT)H(iw)A(iw)/T d(" ) 
IW - IW, 

1 + E0 (iw)Q(exp iwT)F(exp iwT)H(iw)A(iw)/T 

1r: 
for 0 ~ w ~ - (60) 

T 

Note that the transfer function between the error (y(s) - r(s)) and the setpoint 
r(s) is the same as in (60) with A in the numerator substituted by the identity. 

A limitation on the performance deterioration caused by model-plant mismatch 
can now be set by requiring that the magnitude of the function connecting y and din 
(60) is bounded by a designer-specified function of w. This transfer function is similar 
to the sensitivity function defined between the error y(s) - r(s) and r(s) or d(s) for 
continuous control systems. For sampled-data systems however one cannot obtain an 
equation in the form of (60) without making the approximations in (58) and (59), 
because (12) describes a time-varying relation between y(s) and d(s). Let us use the 
notation 

K(s) = Q(exp sT)F(exp sT)H(s)A(s)/T (61) 

For robust performance we require 

1

1 - P(iw)K(iw) I 
. . ~S(w) 'V Ea s.t. IEa(iw)! ~la(w) for O~w~n/T 

1 + Ea(1w)K(1w) 
(62) 

where S(w) is designer-specified. Note however that S(w) cannot be chosen arbitrarily 
small because even for Ea= 0, the left-hand side of (62) may be non-zero. The selection 
of S(w) will be discussed in § 4.3.2. 

We shall now proceed to write (62) in a different form without making any 
conservative steps. The idea behind the following steps is based on the concept of the 
structured singular value, introduced by Doyle (1982). 

We can write (62) <=> 

1 - P(iw)K(iw) l 
1 + 1 + E.(iw)K(iw) S(w) A(w) -:f:. O, 

'V Ea s.t. !E.(iw)I:;;;. l.(w) and 'VA s.t. !A(w)I < 1 for 0 ~ w ~ n/T 

E.(iw) 1 - P(iw)K(iw) 
<=> 1 + K(iw)l.(w)-

1
- + S( ) A(w) -:f:. 0 

.( (J)) (J) 
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'r/ E. s.t. IE.(iw)/l.(w)I ~ 1 and V fl s.t. lll(w)I < 1 for 0 ~ w ~ n/T 

l 1 - P(iw)K(iw)I 
<=> L(w) ! IK(iw)ll.(w) + S(w) ~ 1 for 0 ~ w ~ n/T (63) 

Hence the above condition is non-conservative. It may however be somewhat 
optimistic because of the approximations in (58) and (59). Any such optimism though 
is related only to performance. Robust stability is guaranteed from (55). Finally, note 
that (63) is different from (55) in the sense that increasing the sampling time does not 
lead to satisfaction of (63). An optimization over the filter time-constant in an effort to 
satisfy (63) is necessary at each T and the result is improved as Tis reduced. 

4.3. Filter design 

This section deals with the design of a filter so that the robustness conditions 
derived in §§ 4.1 and 4.2 are satisfied. 

4.3.l. Filter structure 

In the case where m ~ 2 a filter described by (56) is not sufficient. However we can 
write 

(64) 

where the coefficients {30 , ... , /3 ... are such that F(z) satisfies (31) and (32), for some 
specified ex. Equation (31) implies that we must have 

Po = t - (/31 + ... + /3,..) (65) 

The following theorem allows the computation of /3 1, .. ., /3,. .. 

Theorem 3 

Equation (32) is satisfied for an F(z) given by (64) and (65) if and only if the 
coefficients /31, ... , P ... (w ~ m - 1) satisfy 

/31 -cx/(1 - ex) 

/32 0 
N..., (m -1) (66) 

/3,.. 0 

where the elements of the matrix N..., of dimension (m - 1) x ware defined in (53). 

Proof 

See Appendix C. 

For a choice of w > m - 1, there are more than one solution to (66) and then one 
can obtain /31, .. ., /3,., as the minimum-norm solution (see Stewart 1973). Then, as 
w-+ oc the norm of this solution goes to zero and from (64) and (65) it follows that the 
properties of F(z) are not significantly different from those of F 1(z). Finally, note that 
for m = 2, one should choose a w ~ 2 in order to avoid the trivial solution F(z) = 1. 
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Then the minimum-norm solution for m = 2 and w ~ 2, is 

pk= - 6klX ' k = 1, ..• , w 
(1 - 1X)w(w + 1)(2w + 1) 

(67) 

4.3.2. Selection of the weight S(w) 

The choice of S(w) depends on the performance requirements set by the designer. 
However, one can use as a guide a function S0(w) determined by the model P(s). Let 
' 1, •. ., '~ be the right half-plane zeros of P(s) and r0 its time delay. Define 

(68) 

Then the optimal sensitivity function in terms of minimizing the integral squared error 
for a step input is 1 - P +{s)(Frank 1974;see also Kwakemaak and Sivan 1972). Hence a 
reasonable choice is 

S(w) ~ S0(w) = 11 - P +Ciw)I (69) 

The above sensitivity function however is achieved only by a non-proper con
troller. The properness requirement simply adds to (69) the condition that S(oo) ~ 1, 
even if there are no right half-plane zeros and time delays. Also note that though 
S0(0) = 0, there is no need to choose S(O) = 0, since Q(z) and F(z) have been designed so 
that the conditions (22}-(25} are satisfied, which guarantee no steady-state offset under 
modelling error, provided that stability is maintained. 

4.3.3. Computation of IX 

The filter parameter IX has to be adjusted in an effort to satisfy (55) and (63). 
Equation (55) is equivalent to placing a lower bound ix* on IX. This can be obtained 
from a Bode plot of (I Q(exp iwT)l l:{w))- 1

• If this quantity is never less than one, then 
o:"' = 0. If it attains vaiues iess than one, then et* can be found from the Bode plot of 
a first-order filter so that (55) is satisfied. For example, if w1 is the frequency at which 
the above quantity becomes equal to 0·7, then IX should be larger than approximately 
exp ( - Tw1), i.e. 

IX*= exp ( - Tw1) (70) 

Note that as explained in§ 4.3.1, the properties of F(z) in (64) are practically the same 
as those of F 1(z) in (56) for a sufficiently large w. Subsequently one should obtain 

t/J(T) = min ( max L(w)) 
(tt ~a< 1 O~w'l!f: 1cJT 

(71) 

where L(w) is defined in (63). 
The above minimization can be done by simply computing L(w) for a number of 

values for IX. The computational effort is very small. It is advisable however that one 
write o: =exp ( - T/r) where r is in [ r*, oo) with o:* =exp ( - T/r*) and minimize over r. 
Then it is, in general, sufficient to only examine rs such that 1/r is in the frequency 
range where any significant changes in the value of S(w) occur. The optimal r will be 
denoted by r 0 P1 and the corresponding IX by 1Xopt· Both r 0 P1 and 0:0 P1 are functions of T. 
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5. Sampling-time selection 
5.1. Sampling-time bounds 

These are imposed from the following: 

(a) Open-loop bandwidth: Let w8 be the frequency at which IF(iw8 )/F(0)1=0·7. 
Then letting n/T be less than w8 , clearly makes no engineering sense. For 
example, it may not be possible to take care of undesirable open-loop response 
characteristics like overshoot described by a peak at a frequency Jess than w8 , 

since the controller can only guarantee good performance up to n/T. Therefore 
one should choose 

(72) 

(b) Expected disturbances: Let the frequency content of any expected disturbances 
be negligible for frequencies larger than wd. Then Shannon's sampling theorem 
(Astrom and Wittenmark 1984) implies that if one wants to reconstruct those 
disturbances then one has to use a n/T at least as large as wd. If not then the 
aliasing problem will appear unless an anti-aliasing analogue prefilter is used. 

(c) Pre.filter: Since this is an analogue device, hardware and cost considerations 
put a limit wA on how small the prefilter cut-off frequency can be. Hence one 
should choose 

(73) 

(d) Digital computer: It is clear that, depending on the particular machine to be 
used and the total load that it should accommodate, there exists a lower bound 
Tcomp on the possible sampling times. Combination with (72) and (73) yields: 

(74) 

5.2. Initial choice for T 

The discussion in § 4.l on (57) which is illustrated in Fig. 3, indicates that a 
reasonable starting point would be a Tinii such that 

(75) 

where we is the smallest frequency at which IP(iw)l/l.(w)=0·7(<=>1/lm(w)=0·7), since 
such a Twould tend to satisfy the robust stability condition (57) for F(z) =I. If there is 
no w at which this happens, then one can choose as we the corner frequency at which 
1//m(w) settles to its value for w-+ oo. Tini• of course should be kept within the limits 
specified by (74). 

5.3. Iteration on the sampling time. 

The first step in each iteration is to design Q(z) and F(z) for a given T. Then 
depending on the value of the quantity l/J(T) defined in (71), either a new value for Tis 
determined or the decision is taken to terminate the iteration. Two cases are possible: 

(a) l/l(T) > 1: Then the performance condition (63) is not satisfied; stability 
however is guaranteed through satisfaction of (55). A smaller T should be used 
next. If there has been no trial at a Twhere i/J ~ 1, then a Tncx• = T/10 (moving 
n/T to the right by one decade) is a reasonable choice. If the bounds of (74) are 
violated, T should be set equal to the corresponding bound. 
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(b) t/J{T) ~ 1: Both the robust stability and performance requirements are satisfied 
and therefore the design is an acceptable one. However, it may be that the same 
requirements are also satisfied for a larger sampling time. To find the largest T 
where the conditions are satisfied, defined as 

T0 =max {T:t/J(T) ~ l} (76) 

one should increase T. If no larger T has been tried, then a reasonable choice is 
to move n/T by one or one-half decade to the left. If a larger T where I/! > 1 is 
known, then Toext can be chosen as the geometric mean of the two values. 

Finally if no T can be found within the limits of (74), for which t/J{T) ~ 1, that 
means that the performance requirements set by the designer through the choice of 
S(w) are too strict to be satisfied. The only course of action is to choose a different S(w) 
and repeat the procedure. A plot of U,w) as a function of w for /1. = 11.0 P1 at the smallest 
T that was used can help locate the frequency range where S(w) was too strict. 

6. Illustrations 
The controller design for two systems will be presented. The first example will 

serve as an illustration of the design procedure. In the second, the procedure will be 
applied on a system that is difficult to control and a high-frequency external input will 
be considered in order to demonstrate that fast sampling does not necessarily help to 
achieve good performance. 

6.1. Example l 

Let 

- . 3 
P(s) = -(s_+_l_)(_s_+_3_) 

A delay-type uncertainty is assumed, i.e. 

P(s) = P(s) exp (-roS) 

where 

then (16) and (78) = IEm(iw)I = .J2 (1 - cos (wr 0 )) 112 =(from (79)) 

lm(w) = {

2 for w ~ 20n 

.J2 (1- cos (0·05w))112 for 0 ~ w ~ 20n 

and l.(w) can be obtained through (19). 

(77) 

(78) 

(79) 

(80) 

Bounds on T can now be obtained from (74). For the system of(77), w8 = 0·92. The 
assumption will be made that no high-frequency disturbances are expected (rod= w8) 
and that Tcomp-+O. Finally, no prefilter will be used (wA = oo). Then (74) yields 

0 < T ~ n/w8 = 3·4 (81) 

Since P +(s) = I, the only restriction on S(w) is that it is larger than 1 at w = oo. Its 
shape depends on how strict a performance requirement one wishes to set. A Bode 
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plot of IP(iw)I is helpful in this respect. For this design, a choice of 

[
(w2;22+t)J112 

S(w)=0·4 (w2;102+1) (82) 

is made based on the observation that at w = 2, I P(iw)I is small enough (:::; O· 35) to 
justify a relaxation of the performance requirement. Also S( oc) = 2 > 1. It should be 
noted that the above choice is a rather strict performance requirement, but it is 
justified because the system is not inherently difficult to control and the uncertainty is 
small. 

Equation (80) yields a value we= 31 and then from (75) we get T;0 ;1 = 0·101. An 
iteration on T according to the outline in § 5.3 yields the values shown in Table 1. 

T "1<n l/rop1 w, 

0·1013 1·22 7·713 (:x* = 0) 
0-0101 0-90 6-581 31·9 
0·0320 0-98 7-124 41·0 

Table I. 

At the final choice of T = 0·032, the controller Q(z) designed according to the rules 
in § 3.2 is given by 

345·9(.:2 - I ·877z + 0·8797) 
Q(z) = 2 

z 

and the filter for r:t = :x0 P, =exp ( - T/r0 P,) is 

0·204lz 
F(z) = z -0·7959 

(83) 

(84) 

The controller for the classical feedback structure of Fig. 1 (a) can be obtained 
through (4). 

In Fig. 4 (a) the response to a step set-point input is given for P(s) = P(s). In 
Fig. 4 (b) a model-plant mismatch is assumed and P(s) = P(s) exp ( -0·05s) is used. For 
comparison, simulations are also given for a continuous controller 

1 (s + 1 )(s + 3) 
QFcont(s) = 3(0·0737s + 1)2 (85) 

designed with the same performance condition and bound S(w). Also the controller 
obtained by a Tustin approximation at T= 0·032 of the classical feedback controller corre
sponding to QFc00.(s) is simulated. It is clear that the design obtained with the 
proposed design procedure performs robustly under modelling error. On the other 
hand, the discrete approximation of the continuous controller tends not to be robust 
and a smaller sampling time would be required to improve it. It should, however, be 
repeated that this is a system which is rather easy to control and which was chosen 
solely to illustrate the design procedure. 
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0.S 
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(a) 

LS 

0 0.5 
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Figure 4. Example I, step set-point response: (a) P = P, (h) P # P, r 0 = 0·05; -- Q(.:)F(.:), 
T = 0·032; ---- QFc001(s); - • - Tustin approximation of QFc00,(s) for T = 0·032. 

6.2. Example 2 

Let 

where 

-0·5s +I 
P(s) = K (s + l)(0·255 + l) exp (-t0 s) (86) 

0·95 :::.;; K :::.;; l ·05 (87) 

0·35:::.;; t 0 :::.;; 0·45 (88) 

and the nominal values K = I, t 0 = 0·4 are used for the model P(s). 
The IEm(iw)I = IK exp [i(0·4 - r 0 )w]- l I and after some algebra 

{

2·05 for w > 20rr 

lm(s) = [2· 102. 5 - 2· 1 cos (0·05w)] 1 '
2 for IOrr:::.;; w:::.;; 20rr (89) 

J2· l0.25 - l ·9 cos (0·05w)] 1 2 for 0:::.;; w:::.;; I On 

For this system w8 = 1·2. High-frequency disturbances requiring an rod= 63 
(rr/wct = 0·05) are considered possible and Tcomp is assumed to be practically zero. Two 
cases will be distinguished with respect to the use of a prefilter: 

Case I. No limitations on the use of a prefilter, i.e. wA = 0. Then (74) yields 

0 < T~ rr/wB = 2·6 

Case II. No prefilter can be used. Hence wA = oc and from (74) 

0 < T:::.;; rr/wd = 0·05 

In Fig. 5 a plot of S0(w) is shown. S(w) is chosen as 

[
(w2/0·l2 + 1)]112 

S(w) = 0·4 -(-w-2 _+_I_) -

(90) 

(91) 

(92) 
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Figure 5. Example 2: --S0(w); ---- S(w). 

so that (69) is satisfied. It is clear that the non-minimum-phase elements in P(s) limit 
the achievable performance even for no modelling error (Holt and Morari 1985 a, b). 

Equation (89) yields we= 30 and then from (75) we obtain Tini• = 0·105. This Tini• is 
outside the bound in (91) and therefore in Case II a T;0 ;1 = 0·05 will be used. 

Case I: A second-order Butterworth prefilter with a cutoff frequency of n/2T is 
selected for each sampling time. The iteration on T yields the values shown 
in Table 2. 

T t/t(T) J /top! :r* 

0·105 0·963 2·157 0 
0·331 1·027 2·603 0 
0·186 0·986 2·317 0 
0·248 1 {)()() 3·070 0 

Table 2. 

For the final choice of T = 0·248, the controller Q(z) and the filter F(z) 
are given by 

z2 
- 1·150z+0·2889 

QF,(z) = l ·458 z 2 - 1·088z+0·2900 

The anti-aliasing prefilter is 

1 
A(s)-------

- 0·02499s2 + 0·2236s + 1 

(93) 

(94) 

Case II: For T = Tini• = 0·05, t/!(T) = 0·936 < 1 and therefore this is the final 
choice since (91) allows no larger T. We have l/r0 P1 = 2·062 < w1 =27 
which yields 

z2 - 1·770z+0·7788 
QFu(z) = l ·0585 z2 - 1 ·8065z + 0·8159 (95) 
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The response of the two control systems to a high-frequency disturbance 

1 l 
d(s) = ~ . -(0-·00-100-3-=s2c--+-0_·_00_6_3_34_s_+_1_) (96) 

justifying an wd = 63, is shown in Fig. 6 (a) for P(s) = P(s) (K = 1, t 0 = 0·4) and in 
Fig. 6 (b) for K = 1 ·05 and t 0 = 0·45. The two designs are robust to model-plant 
mismatch and behave quite similarly. This was to be expected because the faster 
sampling in Case II does not aim at a faster response, but at avoiding the aliasing 
problem that would appear if no prefilter were used. The speed of response is 
determined by the robustness requirements. To demonstrate this, we shall proceed to 
design the controller Q(z) for the particular input v(s) = d(s) for T = 0·05 and ignore 
any robustness requirements. Equations (33H41) are used to obtain QsE(z) and then 
(44) yields 

Q ( ) 
= 

6
.
247 

0·8000z4 
- 1 ·250z3 + l-093z2 

- 1·222z+0·5947 
d z z3(z - 0-9045) (97) 

One can see in Fig. 6 (a) that the response is faster, though not much, since as 
mentioned earlier the non-minimum-phase elements limit the achievable perfor
mance. However, even this small improvement for the nominal case (P = P) is paid for 
by instability in the presence of modelling error as Fig. 6 (b) shows. Note that for 
Q = Qd and IX= 0, (55) is not satisfied, therefore indicating potential instability. 

2 
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Figure 6. Example 2, response to d(s): (a) P = P, (b) P #. P, K = 1 ·05, r 0 = 0·45; -- QFtz); 
T = 0·248; ---- QF1~:), T = 0·05; - • - Qh), T = 0·05. 

7. Conclusions 
Two main goals were accomplished in this paper. The first was the derivation of 

conditions that guarantee robust stability and performance for sampled-data systems 
and the development of a controller synthesis method. The conditions that were 
obtained can easily be checked and the computation effort required for the design is 
small. Any particular external input (set-point or disturbance) can be considered and 
the performance requirements are defined through a designer-specified frequency 
weight for the selection of which guidelines are given. 
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The second goal was the illustration of the effect of the sampling time on the 
achievable performance and the robustness properties of the control system. These 
relations were quantified in an iterative procedure for robust controller design and 
sampling-time selection. This design procedure has the advantage that it can easily be 
programmed on the computer in an interactive form. 

Appendix A. Proof of Theorem J 
The disturbance d(s) is fed through A(s) before it is sampled and therefore for no 

offset it is clear that we need 

lim 2- 1 
{ d(s) - A(s)d(s)} = 0 

timc-cx:i 

Application of the final-value theorem on (A 1) yields 

lim (s[l - A(s)]d(s)) = 0 
.... o 

(A 1) 

(A 2) 

Since (A 2) must be satisfied for all d(s) with m or less poles at s = 0, we need [1 - A(s)] 
to have m zeros at s = 0, which will be the case if and only if (24) and (25) hold. 

Equation (Al) implies that lim ~- 1 {d*(z)-d~(z)}=0 or lim((l-z- 1)x 
timt-cc z-1 

[d*(z)- dA(:)]) = 0. Hence for offset considerations, d~(z) can be substituted for d*(z) 
in (13 ). Consider an external input t~s) and let 

(A 3) 

Then for both cases: (i) t*(z) = - r*(z), d~(z) = O; (ii) r*(z) = d~(z}, r*(z) = 0, (13) yields 
after substitution of dA ford*: 

·*(z) _ r*(z):::: 1 - F(z)Q(z)PA(z) + F(z)Q{z)[~~(z)- P*(z)] v*(z) (A 4) 
} I + F(:)Q(:)[P~(:) - PA(z)] 

Assume P = P; then (A 4) becomes 

y*(z) - r*(z) = [1 - F(z)Q(z)P*(z)]v*(z) 

The final-value theorem implies that for no offset we need 

lim ((1 -z- 1)[1 - F(z)Q(z)P*(z)]v*(z)) = 0 

(A 5) 

(A 6) 

If 11(s) has l poles at s = 0, then from (A 3) it follows that r*(z) has I poles at z = 1. Hence 
(A 6) will be satisfied for all I~ m if and only if (l - F(z)Q(z)P*(z)) has m zeros at z = 1, 
i.e. if and only if (22) and (23) hold. Note that (A 1) means that the steady-state value of 
a signal in the class of inputs considered, going through [l - A(s)] is zero. This will 
remain zero even after passing through some other stable systems, say P or P. Hence 

lim (( l - z- 1 )[PA(z) - P*(z)Jv*(z)) = lim ((1 - z- 1)[PA(z) - P*(z)]v*(z)) = 0 

and therefore 

lim ((1 - z- 1)[1 - F(z)Q(z)PA(z) + F(z)Q(z)[P~(z)- P*(z)]]v*(z)) 
..... 1 

= lim ((l -z- 1)[1 - F(z)Q(z)P*(z)]v*(z)) = 0 (A 7) 

Then from (A 4) and (A 7) it follows that the offset is zero even when P -:! P. Hence 
conditions (22), (23), (24) and (25) are all that is needed. 
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y*(z) = P*(z)Q(z)r*(z) + [l - P*(z)Q(z)]d*(z) (B 1) 

Note that to obtain (B 1) from (28) we have to assume A(s)::::: l. If this is not the 
case, then we should use d~(z) instead of d*(z) in (B 1), which yields 

y*(z) = P*(z)Q(z)r*(z) + [1 - P*(z)Q(z)]dA(z) (B 2) 

This equation cannot be obtained from (28) by sampling. However it can be used 
for control purposes because using an A(s) :f. 1 means that we opted for the rejection of 
A(s)d(s) instead of d(s). 

QsE(z) is the stable proper rational function which minimizes Cl>: 
<JO 

<I>= L (5- 1{r*(z)-y*(z)})2 (B 3) 
t=O 

Then by substituting (B 1) or (B 2) into (B 3) we obtain 
ex; 

<I>= L (5- 1{[1-P*(z)Q(z)]v*(z)})2 (B 4) 
t=O 

whether r is a set-point (r = r, d = 0) or a disturbance (r = 0, v = d or v =Ad). 
We now have to perform the following to assure that we shall obtain a proper Q. 

From (33) we see that because of the time delay, Q does not affect the first N +I terms 
in (B 4). If r*(z) also contains a delay N,~ i.e. z""r*(z) is semi-proper, then this 
introduces an additional number of N,, terms in (B 4) which are not affected by Q. By 
using (35) we obtain 

[l - P*(z)Q(z)]r*(z) = z-"'"[zN•r*(z)-P*(z)Q(z)z"'•r*(z)] 

=Z-N"(Vo+r1z-l + ... +r,.z-N)+z-N"Z-N-1 

x [v,H 1 + VN+ 2z- 1 + ... - ZN+ 1 P*(z)Q(z)zN,.r*(z)] (B 5) 

It is clear that in (B 5) the first term of the right-hand side involves only the first 
N, + N + 1 terms in (B 4) whiie the second, which contains Q, involves only the 
remainder of the terms. Hence minimizing ct> is equivalent to minimizing <Ii: 

OC• 

<i> = L (5- 1 {z-N, -N- i [v~(z) - zN+ 1 P*(z)Q(z)zN'l'*(z)J} )2 
k~N,+N+l 

oc 

= L (5- 1{rt(z)-zN, +N+ 1 P*(z)Q(z)r*(z)})2 (B 6) 
i=O 

where vt{z) is defined in (36). 
By applying Parsevars theorem on the right-hand side of (B 6) we obtain 

- 1 f" - 2 <I>= -
2 

I r~exp iO) - exp [i(N .. + N + 1 )8]P*(exp i8)Q(exp iO)v*(exp iB)I dB 
n - .. 

For the P!(z) and v!(z) defined by (37) and (38) we can easily check that 

IP!(exp iO)I = 1 for -n ~ (} ~ n 

lv!(exp iB)I = 1 for -n ~ (} ~ n 

(B 7) 

(B 8) 

(B 9) 
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since any complex zeros of P*(z) and u*(z) come in complex conjugate pairs. 
Use of (39), (40), (B 8) and (B 9) in (B 7) yields 

Define 

~ 1 J" - 1 Cl>=- l[P'!(exp iO)t''!(exp iO)]- v~{exp iO) exp(-iO) 
2n: - .. 

- P!(exp iB)r!(exp iB)Q(exp iB)l 2 d() 

fi(z) = (P'!(z)v'!(z))- 1 v~z)z- 1 

f 2(z) = P!(z)v!(z) 

(B 10) 

(B 11) 

(B 12) 

Thenf2(=)Q(z) is strictly proper and stable (poles strictly inside the unit circle) except 
possible for some poles ofJ;(z) at z = l.f1(z) is strictly proper but not stable. Write 

(B 13) 

where {!1 } + contains only the unstabie poies (strictly outside the unit circle), and 
{!1 }- only the stable poles. Any poles at z = 1 are included in {!1} _.The reason is that 
we shall assume at this point that the optimal Q(z) is such that these poles are 
cancelled in both Ji - f 2Q and {!1 }- - f 2Q. It should, however, be verified that the 
optimal Q has this property. We can obtain {fi}+ and {f;J_ from / 1 , by partial
fraction expansion. The constant term is zero since / 1(z) is strictly proper. 

Let L 2( - n:, n:) be the space of functions/ (exp iO) which are square-integrable with 
respect to e, i.e. for which 

J~ .. lf(exp i0)12 dB< oo 

The inner product in this space is defined by 

1 J" (f..,fb) = 
2

n _"J..(exp iO)fh(exp iB) dB 

(B 14) 

(B 15) 

where the overbar indicates complex conjugate. Then by using (B iO) to (B 15) we 
obtain 

<i> = < Ud + + Ud- - f2Q. {Ji}+ + Ud- - fiQ > 
=<{ii}+. Ud+> + <Ud- -f2Q, U1}- - f2Q> 

+<{ii}+. UJ- -fiQ> + <{fi}- -fiQ, U1}+> (B 16) 

Note that the first of the four terms in the right-hand side of (B 16) is independent 
of Q. As for the last two, they are both zero because they represent the inner products 
between a strictly proper stable and a strictly proper but totally unstable function and 
these two subspaces of L 2(-n, n) are orthogonal (Francis and Zames 1983). 

Hence our problem reduces to minimizing ({Ji}_ - J;Q, Ud- - f 2Q ). The 
obvious solution to this is 

(B 17) 

Note that the above QsE(z) is stable and proper. Also we have {!1 }- - f 2QsE = 0 
and / 1 - f 2QsE = {!1} +,which has no poles at z = I and therefore the assumption that 
Q is such that the poles at z = l cancel out in both f 1 - f2Q and Ud- - f2Q holds. 
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Hence the above Q5dz) is acceptable and therefore it is the solution we were seeking. 
In the case of set-point-following where future values of the set-point are supplied 

to the controller, which we want our system output to follow after NP time steps, the 
objective function <1> in (B 3) should be written 

<I) 

<1>= L (~- 1 {z-NPr*(z)-y*(z)})2 (B 18) 
l=O 

By following the same steps used to find Qsdz), we can easily see that (B 17) is 
obtained, but with v~{z) substituted with vi

0
(z) in (B 11), where v~0(z) is defined by (42). 

Appendix C. Proof of Theorem 3 
The following lemma will be used. 

Lemma 
Let h(i.) = (1 - a:)/(1 - a:).). Then 

h(kl(i.) = (1 _ a:)k!a:i(l _ a:).)-(H 1) 

where the superscript (k) denotes the kth derivative. 

Proof (by induction) 

k = 1 dd. h(i.) = (1 - a:):x(l - a:i.)- 2 

I. 

k=n Let h<•l(i.) = (1 - a:)n!a:"(l - a:i.)-<•+l) 

k = n + 1 From (C 2) we get 

(C 1) 

(C 2) 

h<•+ !J(i.) = (1 - a:)n!iX"dd. (I - a:i.)-<n+ 1l = (1 - a:)(n + l)!a"+ 1(1 - a:).)-<11 +2 ) 0 
). 

Proof of Theorem 3 
Equation (32) is equivalent to 

dk ·-1)) 0 
d ·k F(). = ' 

). ..l=l 
k = l, ... ,m-1 (C 3) 

From (57) we get 

F().- 1) = r(i.)h().) (C 4) 

where 

(C 5) 

From the Lemma we get 

(C 6) 

then (C 3) for k = 1 yields 

r' 11(I)h(l) + r(IW11(1) = o 
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or 
(C 7) 

We shall now show that (C 3) for k = 2, ... , m - 1 yields r<t1(1) = 0 for k = 2, ... , 
m -1. The proof will be by induction. 

k = 2 Equation (C 3) fork= 2 yields 

k ~ n for 2 ~ n < m - I 

r<21( 1 )h(l) + 21° 1( 1 w no) + ro )h< 21
( 1 > = o 

or by using (C 6) and (C 7) 

p2l(l) = 0 

(C 8) 

k=n+l 

Hence by induction 

Equation (C 3) for k = n + l yields, because of (C 8) 

r<"+ ll(I)h(l) + (n + l)P1'(1)h<">(t)+1(1)h<"+i;(l) = 0 

or by using (C 6) and (C 7) 

pn+ ll(l) = 0 

r<kJ(l)=O, k=2, ... ,m-1 (C 9) 

But one can easily see that 

(C 10) 

and therefore Theorem 3 follows from (C 7), (C 9) and (C 10). D 
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Addendum to Chapter III. 

The following equation is entirely equivalent to (41), but rather simpler to 

use. It is obtained as a special case of the general MIMO controller, described by 

Theorem 2.2.2 of Chapter VI for open-loop stable or unstable systems. 

(41') 

where the notation {.h indicates that after a partial fraction expansion is taken, 

only the strictly proper terms corresponding to the poles of v .'.'.'... ( z) are retained. 
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SYSTEMS WITH STRUCTURAL CLOSED-LOOP 

PERFORMANCE SPECIFICATIONS 

Abstract 

Evanghelos Zafiriou 

Manfred Morari 

California Institute of Technology 

Chemical Engineering, 206-41 

Pasadena, CA 91125 

The problem of the direct design of the closed-loop transfer function matrix is 

addressed for multivariable discrete systems. The limitations imposed by unstable 

zeros, time delays and the structure associated with these are quantified. A design 

procedure is formulated that provides the designer with quantitative measures for 

evaluating the tradeoffs between different closed-loop interaction structures and 

durations. The problem of intersample rippling is also considered. The proce

dure requires only linear algebra operations, includes the eventual construction 

of the feedback controller in state space and is presented in a way that allows its 

straightforward computer implementation. 
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1. Introduction 

One can find in the control literature numerous different types of criteria for 

synthesizing or evaluating a control system. In most cases a number of perfor

mance considerations is lumped together into some objective function, which is 

then optimized with respect to the control system. Such approaches have been 

proven satisfactory in many cases. However there are situations in which one can

not simply optimize a single scalar objective function. In process control, such a 

case is that of setpoint tracking for multivariable systems. Quite often it is neces

sary to look at the closed-loop transfer function matrix relating the setpoints to 

the process outputs and require that certain elements of the matrix are equal to 

zero, so that setpoint changes in some outputs do not upset other important ones. 

Also, one may sometimes wish to allow such closed-loop interactions in order to 

improve setpoint tracking for the important outputs at the expense of upsetting 

less valuable ones. The same arguments carry over to certain cases of distur

bance rejection. The paper treats setpoint tracking and disturbance rejection in 

a uniform way. 

2. Achievable Input/Output Mappings 

The discretized plant is described by the transfer matrix P(z), which is ob

tained by adding a zero order hold in front of the continuous plant and then taking 

the z-transform P ( z) is assumed to be square. 

Let H 0 i(z) denote the transfer matrix between output o and input i. We can 

define the following relations with respect to Fig. 1. 

Hur= C(I + PC)- 1 

Hyr = PC(I + PC)- 1 = PHur 

(2.0.1) 

(2.0.2) 

(2.0.3) 
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Figure 1 . Feedback control structure. 
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Hyd = (I+ PC)- 1 =I - Hyr =I - p Hur (2.0.4) 

From (2.0.4) it follows that if the control system provides good setpoint tracking 

(HyrT ~ r) then one has also good disturbance rejection (Hydd ~ 0), provided 

that the disturbance d is of a type similar to the setpoint r. If this is not the case, 

then one has to design a Two- Degree-of-Freedom controller (Vidyasagar, 1985), 

whose design can actually be separated into designing two different controllers C, 

one for setpoint tracking and one for disturbance rejection and then appropriately 

combine them in one unified block structure (see, e.g., Morari et al., 1987). Hence, 

it is sufficient to cover here only the design of C (Fig. 1) for good setpoint tracking 

or disturbance rejection. 

From (2.0.1) we can obtain 

(2.0.5) 

and so designing C is equivalent to designing Hun which is the IMC controller 

(Garcia and Morari, 1982) or the parameter of the Q -Parametrization (Zames, 

1981). It can be shown (e.g., Callier and Desoer, 1982) that necessary and suffi

cient conditions for the internal stability of the system in Fig. 1 are 

Condition Cl: 

i) Hur stable 

ii) P Hur stable 

iii) HurP stable 

iv) (I - P Hur )P stable 

Cl.ii,iii,iv are implied by Cl.i if P is stable. Hence the following assumption, 

which will be made throughout this paper allows to consider only Cl.i: 

Assumption Al: P is stable. 

It should be pointed out however, that for setpoint tracking, the above assumption 

need not be made. In that case, the use of the Two-Degree-of-Freedom structure 
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makes it sufficient to consider Cl.i only, even when P is unstable. The problem 

is then reduced to the one discussed in this paper in which Al holds (Vidyasagar, 

1985; Morari et al. 1987). 

The controller C(z) has to be causal since future measurements of the plant 

output are not known. It follows from (2.0.5) that an equivalent condition is 

Condition C2: Hur causal 

One can see from the above discussion that the control objective can be 

reduced to finding an Hyr(z) with the desired structure and properties, which can 

be produced through (2.0.3) by an Hur(z) that satisfies Cl.i and C2. However 

looking only at Hyr(z) for checking the performance of the control system may be 

insufficient because of the phenomenon of intersample rippling. This phenomenon 

is present when Hur(z) has poles near (-1,0) which are cancelled by zeros of P(z) 

in (2.0.3). Hence, in order to make it sufficient to judge performance by looking 

at H yr ( z) only, H u.r ( z) must also satisfy the following condition. 

Condition C3: Hur cancels no zeros of P that are "near" (-1,0). 

One can use a number of different regions on the z-plane to define "near" 

(-1,0) (Astrom and Wittenmark, 1984). A simple and satisfactory in practice way 

to do that, is to include all zeros with negative real part (Zafiriou and Morari, 

1985). 

3. Characterization of All Permissible Hyr(z) 

From (2.0.3) it follows 

Hur= p-l Hyr (3.0.1) 

Hence the conditions of section 2 on Hur can be translated into the following 

condition on Hyr: 

Condition C4: Hyr is a stable, causal transfer matrix that makes p-l Hyr 

causal and cancels the poles of p-I (zeros of P) that are outside the unit circle 

or near (-1,0). 
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The time delays in P(z), which make p-l non-causal, appear as zeros at 

infinity. We shall now exploit this fact to make the treatment of time delays and 

undesirable zeros of P uniform. The transformation,\= z- 1 will be used. Define 

p ( ,\) ~f p ( ,\ -1) +-+ p ( z) 

Hyr(,\) def Hyr(.\- 1) +-+ Hyr(z) 

(3.0.2) 

(3.0.3) 

Let a 1 , ... , a f be the zeros of P ( z), which according to C4 we do not wish to appear 

as poles of P(z)- 1 H11r(z). These will appear in P(>.)-1 as poles at b1, ... , b1 where 

i = 1, ... 'f (3.0.4) 

The time delays in P(z) will give rise to zeros at 0 in P(.\) and consequently 

the non-causal terms in P(z)- 1 will produce poles at 0 in P(>.)- 1 • Hence C4 is 

equivalent to: 

Condition C5: 

i) H11r(z) is a stable, causal transfer matrix 

ii) P(>.)-1 H11r(,\) has no poles at bo, b1, ... , b1. 

In the above the following notation was used: 

bo = 0 (3.0.5) 

Some additional notation and definitions are now needed. P(z) (and P(.\)) is 

assumed to have dimension r x r and to be of normal rank r. In the following it 

will be assumed that P(.\) has no poles at bo, ... , bf. This is certainly the case 

for b0 since all elements of P(z) are proper, but in general P(z) may have poles at 

a1, ... , a1 resulting in poles at bi, ... , b1 in P(.\). The existence of poles and zeros 

at the same location is a clearly multivariable characteristic (Kailath, 1980). The 

assumption that this is not the case for P(z) serves in considerably simplifying 
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the notation and it is not restrictive since such a phenomenon is caused by exact 

cancellations in det[P(z)] which will not happen if a slight perturbation in the 

terms of P(z) is introduced. Let {n0 , ni, ... , n1} be a set of integers greater or 

equal to zero, such that 

p(k)(bi)=O, ((k=O, ... ,ni-1),i=O, ... ,f) 

i = o, ... ,f 

(3.0.6) 

(3.0.7) 

where p(k)(>.) is the kth derivative of P(>.). Also let mi,i = o, ... ,f, be the 

order of the zero bi of P(>.) as this order is defined from the Smith-McMillan 

form of P(>.) (Desoer and Schulman, 1974). The computation of mi without 

going through the Smith-McMillan form is briefly discussed in Section 4.2. From 

(3.0.6), (3.0. 7) and the definition of the order of a zero, it follows that 

i = o, ... ,f 

The following theorem quantifies CS.ii: 

Theorem 1. 

Condition CS.ii hoids if and oniy if both (a) and (b) hold: 

i = o, ... ,f 

where Hi(>.) is a rational r x r matrix in>., with no poles at bi. 

b) for any i = 0, ... , f such that mi > ni, the columns of 

are in the column space of 

_1 p(n;)(b·) 
n; I ' 

0 

M . def 
' -

1 p(n;+l)(b·) 
(n;+l)I ' 

_l p(nd(b·) 
n; ! ' 

0 

0 

1 p(m;-l)(b·) 1 p(m;-2)(b·) 
(m,-1)1 ' (m;-2)1 ' 

_l p(nd(b·) 
n; I ' 

(3.0.8) . 

(3.0.9) 
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where the superscript (k) indicates kth derivative and T the transpose of a matrix. 

Proof: See Appendix A. 

The value of Theorem l lies in the fact that it provides a characterization of all 

acceptable Hyr(>..) without requiring the inversion of P(> .. ). The theorem applies 

to the general case. However in practice one is usually faced with a situation 

where the order of the zeros a 1 , ••• ,af of the model P(z) is equal to 1. Hence 

of the zeros b0 , b 1 , ••• , bf of P ( ,\) only bo has an order larger than 1. The fact 

that b0 is equal to zero (Eq. (3.0.5)) can then be used to obtain a simpler form 

of Theorem 1. The following two Corollaries describe these situations: 

Corollary 1. 

Let the order of the zero ai of P(z) be equal to one. Then P(>.)- 1 Hyr(>.) 

has no poles at bi if and only if the columns of Hyr(bi) are in the column space 

of P(bi)(= P(ai)). 

Proof: It follows directly from Theorem 1 for mt = 1. 

Corollary 2. 

Let P(z) have the impulse response coefficient description 

where 

rank[Ao]-:/= 0 

Then 

no=N 

Mo= [Am:;l-N 

(3.0.10) 

(3.0.11) 

(3.0.12) 

(3.0.13) 

(3.0.14) 



66 

and P(A)- 1 Hyr(A) has no poles at b0 = 0 if and only if both (a) and (b) hold: 

a) Hyr(A) = AN Ho(A) where Ho(A) is a rational matrix in .X with no poles 

at bo = 0. 

b) if mo> N, the columns of [iig0>(o)T ... (mo-k-i)!iigmo-N-l)(o)T]T are 

in the column space of Mo. 

Proof: From (3.0.2) we get P(A) = P(.X- 1 ) = ,AN(Ao + A1 A + A2 A2 + ... ). 

Equations (3.0.13) and (3.0.14) can now be obtained by repeated differentiation 

and evaluation at A = 0. The rest follows as a restatement of Theorem 1 for this 

special case. 

4. Construction of Hyr(z). 

4.1 The Form of Hyr(z). 

Theorem 1 and its Corollaries quantify the restrictions that are imposed on 

Hyr from the zeros and time delays. The designer can select any overall transfer 

function Hyr he considers appropriate for the particular system, provided that 

it satisfies those restrictions. The choice can be made between decoupled and 

non-decoupled response and the location of the non-zero elements of Hyr(z) can 

be directly specified. A detailed procedure for doing so will be developed in this 

section and quantitative criteria for the evaluation of different designs will be 

obtained. Before proceeding, the form of the non-zero elements of Hyr(z) should 

be discussed. The possibilities are of course infinite but three simple rules will be 

stated and the reasoning behind them briefly explained. 

Rule 1. For a given set of locations for the non-diagonal elements of Hyr 

which are allowed to be non-zero, the design should be such that in each diagonal 

element of Hyr(A), every term (.X-bi)it•,i = O, ... ,f, has the smallest possible 

power Ki. 

Rule 2. If in a diagonal element of Hyr(A), a factor (A - bi)it• has to appear, 

then one should use the factor ~~=::):.~~'.:~b;~:: if bi has positive real part and 
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th t (~-bi)'°• th . e erm (l-b.},.• o erw1se. 

Rule 3. The non-zero, non-diagonal elements of H11r(>.) should have the form 

The reasoning behind Rule 1 is that one wishes the effect of the undesirable 

zeros and time delays on the response of an element of the output vector to the 

corresponding setpoint or disturbance, to be as small as possible. 

The problem that Rule 2 addresses is exactly the same as the one for the 

SISO case. Rule 2 is a rule obtained by Zafiriou and Morari (1985). Briefly, it 

introduces the pole at the inverse of the zero in order to minimize the sum of the 

squared errors to an external step input. In the case where the zero has negative 

real part this action would introduce intersample rippling, which is avoided by 

making a deadbeat type selection. At the same time no significant overshoot or 

undershoot appears. It is also possible to do the design for external inputs other 

than steps. This would result in a different expression for the factor in Rule 2 

(Zafiriou and Morari, 1986a), which however can be used without any changes in 

the procedure that will be developed in the following sections. 

Rule 3 makes sure that the steady-state gain of the non-diagonal elements 

of H 11r(z) is zero, by including the term (1- >.) +-+- (1- z- 1 ). Also the parameters 

/30, ... , f3v have physical meaning because z-6 (/30 + f31z- 1 + ... + /3;"') is the step 

response for the corresponding pair of system output and external input. Hence 

one wishes to have v small and at the same time the magnitudes of (30 , ••• , f3v 

to be small. The trade-off between these two goals will be discussed in section 

4.3.iii. 

The above three rules are not really restrictive and they will simplify the 

design procedure. It should be noted that as a result of those rules, the closed

loop steady-state gain will be 

H 11r(l) =I (4.1.1) 
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Hence the control system will be such that no steady-state offset is produced for 

external inputs r (or d) with one pole at z = 1 (step-like inputs). For inputs 

with more poles at z = 1 (ramp-like, etc.), the no-offset property holds when the 

appropriate factor is used in Rule 2 (Zafiriou and Morari, 1986). 

4.2. Zeros of P(z) 

The first step towards the construction of Hyr is clearly the computation of 

the zeros of P(z) and of their respective orders as well as the computation of the 

order mo of the zero b0 = 0 of P(> .. ). For a square system P(z) the zeros can be 

computed as the roots of det[P(z)] = 0, provided that there are no cancellations 

with any poles. Numerically better techniques for the computation of the zeros 

can be found in the literature (Laub and Moore, 1978) and a number of software 

packages for this computation exist. 

The following theorem provides a method for computing the order of a zero 

without having to find the Smith-McMillan form. 

then 

Theorem 2. (Van Dooren et al., 1979; rephrased) 

Let 
n, ! i r
_l p(nd(b·) 

~ l 
l ,!1fa<i>(bi) _1 p(~i) (b·) J n, ! i 

mi= min{k!rank[Mi:,k] - rank[Mi,k-1] = r}, i =0, ... ,f 

f• n l' l ':l: • .G. } 

(4.2.2) 

It was mentioned in Section 3 that usually in practice the order of the zeros 

b1, ... , bf is one. Theorem 2 is then useful in computing the order mo of b0 • In 

this case Mo,k can be written in terms of the impulse response matrices defined 

in (3.0.10): 

Mok= 
' 

(4.2.3) 
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The discussion of some computational aspects is necessary at this point. 

Theorem 2 explicitly requires the computation of the rank of Mi,k for all k = 

ni, ... , mi. Also in order to use Theorem 1 effectively in a design procedure it is 

necessary to reduce Mi(= Mi,m,-i) in (3.0.9) to a form with linearly independent 

columns so that a basis for its column space is available. The Singular Value 

Decomposition (SVD) is a very reliable method for both purposes. However, its 

application on the matrices Mi,k whose dimension can grow very large might 

be difficult and time-consuming. Van Dooren et al. (1979) have exploited the 

Toeplitz matrix form of Mi,k to develop a fast recursive algorithm that performs 

the rank search in a numerically stable way. In each step the rank of Mi,k is 

computed for some k by obtaining the SVD of an r x r matrix. At the same time 

Mi,k is reduced to a form with linearly independent columns. Hence to obtain mi 

and an orthonormal basis for the column space of Mi one has to obtain the SVD 

of only (mi - ni + 1) matrices of dimension r x r. 

4.3 Design of a Column of Hyr(z) 

The requirements of Theorem 1 apply to each column of Hyr separately and 

so each column can be designed independently. Let us write 

Hyr(z) = [ hi(z) (4.3.1) 

where hi(z) has dimension r x 1,j = 1, ... , r. Also let 

j = 1, ... , r (4.3.2) 

We shall now proceed with the design of hi(>.) for some j. Let Ui be a matrix 

whose columns form an orthonormal basis for the column space of Mi given in 

(3.0.9). Ui can be obtained from Mi with the procedure of Van Dooren et al. 

(1979) briefly discussed in Section 4.2. Also let 

(4.3.3) 
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According to Theorem 1 we must have 

i = 0, ... 'f (4.3.4) 

where 

{4.3.5) 

is a linear combination of the columns of Ui, i.e., 

{4.3.6) 

where x1 is any vector of dimension Pi· The freedom allowed in the choice of x} 

will now be gradually reduced by requiring certain properties for h;(>..), according 

to the designer's specifications and decisions. First, the limitations imposed by 

the desired structure of h; will be quantified. Then, the undesirable zeros and 

time delays that have to be present in the diagonal element will be determined 

and the design of this element will be reduced to that of a SISO system. Finally, 

the non-diagonal elements will be designed so that the closed-loop interactions are 

minimized. It should be pointed that if for some i we have mi = ni, then part (b) 

of Theorem 1 and therefore (4.3.6) do not appiy for that i and so aii equations in 

this section corresponding to that particular i should be ignored. 

i) Structure of h; 

Let the design specification be that the £1, l2, ... , lg elements of h;(z) be 

identically equal to zeros, where 

g:::; r-1 (4.3.7) 

k = l, ... ,g (4.3.8) 

We shall use l to denote the set 

(4.3.9) 
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Define 

l def {1, 2, ... , r} - {j} - l 

Let 

def [ jT ek = 0 ... 0 1 0 ... 0 

where the 1 is the kth element and ek has dimension r X 1. 

Define 

' l def ,, . r l ll ai = UliagLe , ... , e , 
'--.,.--' 

(m,-n.) 

•• - 1 .r • - ... , ••• 'J 

(4.3.10) 

(4.3.11) 

(4.3.12) 

In order for the specified elements of hj to be zero, the vector x! must solve: 

or 

(4.3.14) 

Let 

(4.3.15) 

Then Pi ::'.::pf. Hence the null space of AfUi has dimension 

(4.3.16) 

Let V/ be a matrix whose columns form an orthonormal basis for the null space of 

AlUi. Both V/ and Pl can be obtained from an SVD of AlUi. Then the solutions 

to (4.3.14) are: 

1 - yl 2 Xi - i Xi (4.3.17) 

where xt can be any vector of dimension ef when ef =!=- 0. If ef = 0 then of course 

v.t = 0 and x~ = 0. 
' i 
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Hence we must have 

(4.3.18) 

where 1'/i,i was defined in (4.3.5). Note that (4.3.18) includes the case ef = O, 

where v/ = 0 yields 1'/j,i = 0. 

ii) Diagonal element of h; 

We shall now proceed with the determination of the jth element of h;. Up to 

this point no assumption has been made on the order of the zeros bo, b1, ... , bf. 

However if more than one zero has order larger than 1, then the number of possible 

choices to be examined at this point could grow enormously. On the other hand, 

in practice one is usually faced with a situation where the order and degree (as 

defined from the Smith-McMillan form (Desoer and Schulman, 1974); also see 

Lemma A.1 in Appendix A) of the zeros ai, ... ,af of P(z) and therefore of the 

zeros b1 , ... , bf of P ( >.), is equal to 1. The following assumption will be made 

here to simplify the procedure. 

Assumption A2: The degree of the zeros ai, ... ,af of P(z) is equal to 1. 

No assumption is made however about the zero b0 = 0 of P(>.) corresponding 

to time delays in P(z). We shall examine the two cases separately. 

a) bi,i= 1, ... ,/ 

It follows from A2 that for the order of the zeros mi we have mi = 1. Also 

since r 2:: 2, A2 implies that ni = 0. Then from (4.3.4), (4.3.5), (4.3.6) it follows 

that since 0 is a linear combination of the columns of Ui, the highest power of 

(>. - bi) that is sufficient to include in the elements of h; (>.) is (>. - b,) 1 • However 

according to Rule 1 we wish to have the smallest possible power in the jLh element, 

and that is (>. - bi) 0 = 1. In order for this to be possible, the following equation 

must have a solution 

eJ' Y/j,i = 1 
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or 

(4.3.19) 

where ei is defined in (4.3.11). Eq. (4.3.19) will have no solution only if the matrix 

e]Ui V/ is identically zero. If this happens for some i, then the factor (A- bi) must 

be included in the jth element of hj(A). Let us assume that this matrix is zero 

only for i = 1, ... , ¢1. Also let the zeros bi, ... , b4>2 ( ¢2 :'.S ¢1) have positive real 

part and the zeros b4> 2 +1 , •.• , b4> 1 have negative real part. Then according to Rule 

2, the factor 

(4.3.20) 

should be included in the j!h element. 

Note that one does not always have to follow Rule 1. One may wish to include 

the factor (>.-bi) for some i in the j!h element even when one does not have to do 

it, if that will result in significantly smaller interactions (non-diagonal elements) 

and if the jth output is not so important. The procedure for determining the 

magnitude of the interactions will then be exactly the same (see Section 4.3.iii) 

and at the end the designer can decide whether inclusion of (A - bi) pays off. A 

simple qualitative way to figure out a priori whether it may pay off, without going 

through the whole design procedure, is the following. For mi = 1 and ni = 0 

we have rank[Ui] = r - 1. Ui consists of the first (r - 1) columns of the left 

singular vector matrix in an SVD of Mi. The rth column Ui is orthogonal to all 

the columns of Ui. If the jth element of Ui is large compared to the kth elements 

where k belongs to the set l defined in (4.3.10), then it is likely that inclusion of 

(>. - bi) in the J·th element will result in significantly smaller interactions in the 

non-zero non-diagonal elements of hj. 

b) bo(= 0) (Time delays) 
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Define 

(4.3.21) 

where T is an integer. Then according to Rule 1 we need to find the smallest T 

such that s"r(>.) is possible as the ith element of h;,0 (>.). From (4.3.5), (4.3.6) it 

follows that in order for a T to be possible, the following equation must have a 

solution 

or 

where 

and 

f.j'f/j,O =Zr 

f.j = diag[eJ', ... , eJJ 
~ 

(mo-no) 

Hence one can obtain the smallest possible T as 

where N 0 is the set of positive integers, including zero. 

(4.3.22) 

{4.3.23) 

(4.3.24) 

(4.3.25) 

Still, contrary to Rule 1, one may wish to choose a T larger than To if that 

results in smaller interactions for a given set l. Eq. (4.3.22) should, of course, 

have a solution for this T, i.e., the rank condition in (4.3.25) should hold. In 

the following paragraph To is used, but any other possible T can be used instead, 

without affecting the procedure for determining the magnitude of the interactions 

in Section 4.3.iii. 

The ith element of h;(>.) has been completely determined at this point as 

T" N e; h;(>.) = A s"ro (>.) (4.3.26) 
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Let us now quantify the limitations that the selection of this diagonal element 

imposes on Xl, i = 0, 1, ... , f. The following equations have to be satisfied. 

Tu.vt 2 _ bno (b ·) ei , i Xi - i !:'ro • ' i = 1, ... 'f (4.3.27) 

(4.3.28) 

Let x?, i = 0, ... , f, be a particular solution for each corresponding equation, 

obtained with some method for solving systems of linear equations. Also let 

Wl, i = 1, ... , f be a matrix whose columns form an orthonormal basis for the null 

space of eJUiV/, and WJ the corresponding matrix for eiU0VJ. These matrices 

and their ranks wf, can be obtained from an SVD. Then the xl's that solve the 

set of equations (4.3.27), (4.3.28) are: 

X~ = x9 + W~x~ 
' ' i i ' 

i = o, 1, ... ,f (4.3.29) 

where xr is any vector of dimension wf, when wf f. 0. ff wf = O then Wl = O 

and Xl = x?· 
From (4.3.18) and (4.3.29) we obtain 

i = o, 1, ... 'f (4.3.30) 

iii). Non-diagonal elements of hi 

The part of the procedure that was developed in Section 4.3.i makes sure that 

the elements of hi corresponding to the set l defined in (4.3.9), are identically equal 

to zero. We shall now proceed to compute the terms in the non-zero non-diagonal 

elements of hi, i.e., the elements corresponding to the set l, defined in (4.3.10). 

To do so the freedom allowed in the choice of xr will be used. 

Let f1, f2, ... , l~ be the elements of the set l. According to Rule 3 the lih 

element of hi(>.) should be of the form 

k = 1, ... ,q 

(4.3.31) 
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From Corollary 2.a it follows: 

Sk =no= N, k = 1, ... ,q (4.3.32) 

The values of f3k,o, ... , f3k,v, k = 1, ... , q will be computed from ( 4.3.5) and 

(4.3.30). Note that any of the (J's can be zero, including the first ones, f30,f31, etc. 

Define 

l def [ e~] e - . 

e~ 
lq 

r f.t.~ l _l def 

t = l J f.~q 

( 4.3.33) 

(4.3.34) 

where f.l,. is defined as in (4.3.23) for lk instead of j. As explained in Section 

4.3.ii.a, we have ni = 0 for i = 1, ... , f. From (4.3.4), (4.3.5), (4.3.31), (4.3.32) it 

follows: 

i = 1, ... ,f (4.3.35) 

where 

def [ ( ) N /i,v = 1 - bi bi 

def [ Ok,v = f3k,O k = 1, ... ,q 

It also follows that 

[ B~] [81,v] 
iT/j,O = :O = diag ~ : 

Bq q Oq,v 

where 

B2 = [ fh,o (f3k,1 - f3k,o) • • • (f3k,mo-N-1 - f3k,m0 -N-2) f, 

i = 1, ... 'f 

(4.3.36) 

(4.3.37) 

(4.3.38) 

k = 1, ... 'q 

(4.3.39) 
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f3k,µ = 0 for µ > v, k = 1, ... 'q (4.3.40) 

and r.,,, is a matrix containing the first v + 1 columns of [rooo ... ] with 

1 0 0 0 0 0 
-1 1 0 0 0 0 

r= 0 -1 1 0 0 0 (4.3.41) 

0 0 0 0 -1 1 (mo-N)x(mo-N) 

Then the use of (4.3.30) in (4.3.35), (4.3.38) and combination of the resulting 

equations yields: 

where 

K def 
v -

[

81 v] 
().,,, def :' 

() q,v 

diag[r .,,,, ... 'r .,,,] 
diag[l1,v,··· ,")'1,v] 

diag[/f,v, ... ,/J,v] 

q 

(xif ... (xj)Tf 

elUoVJx8 
iU1Vlx~ 

Equation (4.3.42) can also be written as 

(4.3.42) 

(4.3.43) 

(4.3.44) 

(4.3.45) 

(4.3.46) 

(4.3.47) 

(4.3.48) 

Hence the smallest possible v for hj and for the particular choice of set l, can be 

obtained as the smallest v for which (4.3.48) has a solution, i.e., 

(4.3.49) 
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However instead of trying to minimize v, a better alternative to use a larger v 

and use the extra degrees of freedom to minimize the sum of the squared errors 

for the step response of the l 1, ••• , lq system outputs to the jth external input 

(J·th element of r or d). This means minimizing 

(4.3.50) 

where </>k, k = 1, ... , q are optional weights (positive real numbers) and 

(4.3.51) 

where lv+l is the (v + 1) x (v + 1) identity matrix. 

Equation (4.3.42) can be written as 

(4.3.52) 

Hence the ~Ov that minimizes Jv can be obtained as the minimum norm solution 

to (4.3.52). For v large enough, Kv is full rank, i.e., rank[Kv] = q(f +mo - N), 

and for a given X, the solution is 

(4.3.53) 

where 

(4.3.54) 

and the superscript * indicates complex conjugate transpose. Note that although 

the matrices involved may be complex, the solution Ov will be real because any 

complex zeros of P(z) come in complex conjugate pairs. However the form in 

which the solution is given in (4.3.53) may cause numerical problems in some 

cases. One can avoid them by computing the pseudo-inverse FJ = F:(FvF:)- 1 

from an SVD of Fv (Stewart (1973), p. 324). 
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One can now compute X by minimizing Jv(X) for the solution Ov(X) of 

(4.3.53). From (4.3.53) we get 

Jv(X) = (T1 + T2X)*(FvF;)- 1 (T1 + T2X) 

(4.3.55) 

By setting the gradient of Jv(X) equal to zero we get 

r;(FJ)* FJT2X = -T;(FJ)* FJT1 (4.3.56) 

from which a solution X which minimizes Jv(X) can be obtained. The optimum 

Ov can then be computed from (4.3.53). 

It is clear that by increasing v, the value of the obtained minimum of Jv 

will either be reduced or it will remain the same. Hence the designer has the 

option to choose interactions with smaller magnitude in exchange for a longer 

duration of the interactions. The knowledge of the value of this minimum at the 

limit as v ~ oo would be quite helpful in making this decision. From ( 4.3.55) 

we see that we need to compute FvF; as v ~ oo. The fact that the elements of 

/i,v, i = 1, ... , f, are terms in a geometric progression, allows us to do so easily 

when b1 , .•. , bf are inside the unit circle. We cannot do so however if some of them 

are outside the unit circle, i.e., when some of the undesirable zeros of P(z) are 

inside the unit circle. This is actually a situation, where for numerical reasons it 

would be strongly recommended to compute FJ from an SYD of Fv as mentioned 

above. 

5. Construction of Hur(z) and C(z) 

After the desired Hyr(z) has been designed, Hur(z) can be obtained from 

(3.0.1): 

Hur(z) = P(z)- 1 Hyr(z) 

Substitution of (3.0.1) into (2.0.5) yields: 

C(z) = Hur(z)[I - Hyr(z)]-l 

(3.0.1) 

(5.0.1) 
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If one attempted to construct Hur(z) and C(z) from (3.0.1), (5.0.1) by doing 

the computations in terms of transfer function matrices, the procedure would 

be extremely tedious. Instead, the computations can be made quite simply by 

working in the state space. One can obtain realizations of P(z), H11r(z) to get the 

state space descriptions: 

P(z) = C(zI - A)- 1 B + D (5.0.2) 

H11r(z) = Co(zI - Ao)- 1 Bo+ Do (5.0.3) 

P(z) represents a physical system and so it can be assumed to be strictly proper, 

i.e., D = 0. Then from Corollary 2 it follows Do = 0. Construction of H11r(z), 

C(z) involves the following steps. 

Step 1. Inversion of P(z). 

Silverman (1969) developed a computationally simple algorithm for the in-

version of a linear multivariable system, whose state space description is known. 

The result of the inversion will be 

where 

(5.0.5) 

(5.0.6) 

(5.0.7) 

(5.0.8) 

mo is the order of the zero bo of P(>.) obtained from Corollary 2 and N is defined in 

(3.0.10). The matrices C, D, Ko, ... , Km
0 

are determined with Silverman's (1969) 

procedure. 
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Step 2. Computation of Hur(z). 

The following Theorem will be used. 

Theorem 3 

Let 

G(z) = C(zl - A)- 1 B + D (5.0.9) 

then 

k 

G(z)zk = C(zl - A)- 1 Ak B + L CAt-l Bzk-t + Dzk, V k 2: 1 (5.0.10) 
l=l 

Proof. See Appendix B. 

We can now apply Theorem 3 to P(z)- 1 , to obtain 

where 

mo 

P(z)- 1 =C1 (zl - Al)-1 (L A~+N B1Ki) 
i=O 

mo i+N mo 

+LL C1A~-l B1Kizi+N-t + L D1Kizi+N 
i=O l=l i=O 

mo 

D2,k = L C1AN-l-k+i B1Ki, 
i=O 

k = 0, ... ,N -1 

(5.0.12) 

(5.0.13) 

(5.0.14) 

(5.0.15) 

C AN-1-k+i B K· 
1 1 " k = N, ... ,N + m 0 (5.0.16) 

i=k-N+l 

Then from (3.0.1), (5.0.3), (5.0.11) we get 

mo+N 

+ ( L D2,izi)Co(zl - Ao)- 1 Bo (5.0.17) 
i=l 
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Application of Theorem 3 on the second term of the right-hand side yields the 

term 

m 0 +N m 0 +N mo+N-1 

( L D2,iCoA~)(zI - Ao)- 1 Bo+ L D2,iCoA~-l Bo+ L Wizi 
i=l i=l i=l 

where the fact ( zl - A )-1 A k = A k ( zl - A )- 1 was used. However, by construction, 

P(z)- 1 Hyr(z) is proper. Therefore Wi = 0 for all i = 1, ... , mo+ N - 1. Hence 

Hur(z) = (C2(zl - A2)- 1 B2Co + D2,0Co 

mo+N 

+ L D2,iCoA~)(zI - Ao)- 1 Bo 
i=l 

mo+N 

+ L D2,iCoA~-l Bo 
i=l 

(5.0.18) 

All that is necessary now is to compute the product of two proper transfer function 

matrices, whose state space descriptions are known. The following Theorem takes 

care of that: 

Theorem 4. (Doyle, 1984) 

Let 

then 

G1(z)G2(z) = C(zl - A)- 1 B + D 

where 

(5.0.19) 

(5.0.20) 

(5.0.21) 

Application of Theorem 4 on (5.0.18) yields a state space description for Hur· 

Step 3. Computation of C(z) 
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All that is needed is to compute a state space description of (I - Hyr(z))- 1
• 

After that, application of Theorem 4 on (5.0.1) will give a state-space description 

for C(z). From (5.0.3) we get 

I - Hyr(z) = -Co(zI - Ao)- 1 Bo+ I (5.0.22) 

and a state space description of (I - Hyr(z))- 1 can be easily computed as 

(I - Hyr(z))- 1 = Co(zI - (Ao+ BoCo))- 1 Bo+ I (5.0.23) 

The result of the described procedure is state space descriptions of Hur(z) and 

C(z). One can always obtain a matrix transfer function form, but since the control 

law can be easily implemented with a state space description it would be advisable 

to avoid further computations by implementing it as such. It is important to point 

out however that the realizations obtained for Hur(z) and C(z) are not minimal. 

It is essential to obtain minimal realizations of them before the implementation 

so that the undesirable zeros a1, ... , a f of P ( z) do not appear as poles of Hur (z). 

6. Illustrations 

The first exampie in this section is used to iliustrate the tradeoff between the 

time duration of the closed loop interactions and the magnitude of the sum of 

squared errors that they cause. This simple example is also used to demonstrate 

the procedure step by step. The second example examines different structures for 

Hyr and illustrates how the structure associated with a zero outside the UC can 

produce large or small closed-loop interactions, depending on the structure chosen 

for Hyr· 

6.1 Example 1 

Consider the system 

[ 

0.6 
P(z) = z-0.4 

12_Q,_L 
· z-0.5 

0.5 l z-0.5 
0.6 

z-0.4 

(6.0.1) 
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Computation of the roots of det[P(z)] shows that the system has one zero outside 

the UC, at z = 1.547. Garcia and Morari (1985) pointed out that an acceptable 

lower triangular H yr is 

-z+l.~47 z-1] 
1.547z-1 

(6.0.2) 

Clearly the interactions in output 2 for a setpoint change in output 1, are very 

large in magnitude (over 300% the setpoint change) although of short duration. 

We shall now use the procedure of Section 4.3, to design a lower triangular 

Hyr(z). For the time delays (bo = 0) we have no = m 0 = 1. Hence part (b) of 

Theorem 1 (or Coroilary 2) does not apply for i = 0 and therefore (4.3.6) does 

not apply for i = 0. Thus none of the equations or subsections of Section 4.3 that 

correspond to i = 0 should be considered. For the zero a 1 = 1.547 (b1 = a! 1
) we 

have ni = 0, m1 = 1. Also 

Ui = [0.675] def [u1 l 
0.739 U2 

(6.0.3) 

and P1 = 1. 

i) Design of h1(z). 

In this case, l is the empty set and l = {2}. Hence pf = 0 and therefore 

ef = 1, Vl = 1. Thus (4.3.19) has a solution for i = 1 and as a result b1 should 

not be included in ~0 (..\). Thus from (4.3.20) it follows that ~0 (.\) = 1. The case 

of b0 should not be considered as mentioned above. Hence ~ro (.\) = ~o(.\) = 1 and 

from (4.3.26) it follows that the first element of the column (diagonal element) is 

equal to .\(= z-1 ). Then (4.3.27) need be satisfied for i = 1. Since the null space 

of efU1 Vl is the empty set, it follows that Wf = 0 and 

.. (6.0.4) 

We shall now proceed with the design of the second element of the column. In 

(4.3.31), (4.3.32) we have q = 1,l1 = 2,61 = 1. In (4.3.44),(4.3.46) the part 
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corresponding to bo is omitted and so from (4.3.36), (4.3.44), (4.3.46), (6.0.4), it 

follows: 

(6.0.5) 

(6.0.6) 

From Wf = 0 and (4.3.47) it follows that T2 = 0. In this case ~ = I and from 

(4.3.53) we get 

(6.0.7) 

(4.3.37), (4.3.50), (6.0.5), (6.0.6), (6.0.7) yield 

j = o, ... ,v (6.0.8) 

J _ (1 + b1)u~ 
,,. - (1 - b1)(l - biv+2 )uf 

(6.0.9) 

For v = 0 we get /31,0 = 3.095, i.e., the design in (6.0.2). However the error caused 

by the interactions in this case is Jo = 9.58, which is quite large. Increasing the 

duration v of the interactions reduces J,,. as (6.0.9) indicates. Since b1 < 1 we can 

_l 1, , . . J cornpute tne nmn: 

lim J,,. = (l + bl)u~ = 5.58 
v-+oo (1 - bi)u~ 

(6.0.10) 

The designer can of course select a relatively small v, for which J,,. is sufficiently 

close to the limit given by (6.0.10). A plot of J,,. as a function of vis given in Fig. 

2. One can see that a selection of v = 4, is satisfactory. It yields J,,. = 5.65. For 

v = 4, the second element of h 1 (z) becomes equal to (1.82 + l.l8z- 1 +0.76z-2 + 

0.49z-3 + 0.32z-4 )(1 - z- 1 )z- 1 • 

ii) Design of h2(z). 

Since we require the first element of the column to be zero, we have l = {l} 

and therefore l is the empty set. Hence pf = 1, €f = 0, Vl- = 0. Then (4.3.19) does 
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Figure 2 . Example l; Jv for column 1. 
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not have a solution for i = 1. As a result the second element (diagonal element) 

has to have a zero at >. = b1 . From (4.3.20) we get 

(>. - (1 - b}
1 )(>. - b1) 

~o ) - (1- b1)(>. - b}1) 
(6.0.11) 

Then, since ~ro (>.) = ~o(>.), (4.3.26) implies that the diagonal element is >.~o(>.). 

Substitution of z- 1 for >. and ai(= 1.547) for b} 1
, produces the expression in 

(6.0.2). 

6.2 Example 2. 

Consider the system: 

r o.90 o.5o z-1 i.oo l 
z-0.35 z-0.35 z-0.35 

P(-z) = l 2.10 z-1 5.so z-1 0.60 z-l J 
z-0.60 z-0.60 z-0.60 

0.40 -0.45 i.oo z-1 
z-0.50 z-0.50 z-0.50 

(6.0.12) 

The computation of the roots of det[P(z)] yields one zero outside the UC at 

z = a1 = 1.3088. We shall limit ourselves to the design of the first column of Hyr· 

Two different structures will be examined: 

or (6.0.13) 

The SVD of P(a1 ) yields the following left singular vector matrix: 

r 0.125 -o. 100 -o. 1031 
u = l 0.992 0.0689 0.107 J (6.0.14) 

-0.0267 -0. 711 0. 703 

The two first columns of U form U1 . The third, u, is orthogonal to U1 . Then 

from Corollary 1 it follows that u* Hyr(a1) = 0 for all acceptable Hyr's. (6.0.14) 

suggests that if the first structure of (6.0.13) is selected, the value of the non

diagonal element at z = a 1 will have to be larger than the one for the second 

structure, because of the smaller corresponding element in u. 

The consideration of the time delays (bo) makes the situation even more 

favorable for the second structure. We have n0 = 1, m 0 = 2 and 

Uo = [~ n (6.0.15) 
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The fact that the second row of Uo is zero, allows in the case of the second 

structure satisfaction of (4.3.14) for i = 0 without using any of the available 

degrees of freedom. This results in a nonzero w& and T2 and the additional 

freedom in choosing x5 through (4.3.56) reduces Jv even more. 

The above qualitative observations are confirmed from the quantitative re

sults of the design procedure. The corresponding plots of Jv vs. v shown in 

Fig. 3 for both structures of (6.0.13) show a huge difference in the closed-loop 

interactions for the two structures. 

'1. Conclusions 

The results in this paper quantify the effects of the undesirable zeros and time 

delays of a multivariable discrete system on its closed-loop performance, in a way 

that can be used for the direct design of the closed loop transfer function matrix. 

The designer is provided with quantitative criteria for comparing different designs 

and evaluating the tradeoffs. The entire procedure is based on linear algebra 

operations and its implementation on the computer is straightforward. 

The design is based on the knowledge of a system model. Hence it may not 

be robust to model-plant mismatch. However it can be used in the first step 

of the controller design for the standard two-step Internal Model Control design 

procedure, in which robustness properties are incorporated in the second step with 

the design of a low pass filter. Details on the filter design can be found in the 

literature (Zafiriou and Morari, 1986b,c). 
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APPENDIX 

A) Proof of Theorem 1 

The following Lemma will be used in the proof: 

Lemma A.1. (Van Dooren et al., 1979; Vandewalle et al., 1974). Let a rational 

matrix A(..\) of normal rank r have the following Laurent expansion at a: 

Define 

00 

A(A) = I: (>. - a)k Ak(a) 
k=-t. 

0 

Ak(a) l 
Ak-1(a) 

A_!(a) J 
Pk(a) def rank[Tk(a)] - rank[Tk-1(a)] 

(A.1) 

(A.2) 

(A.3) 

Let p and z be a pole and a zero respectively of A(..\) of orders Wp,Wz and degrees 

Dp, Dz, as these are defined from the Smith-McMillan form of A(..\) (Van Dooren 

et al., 1979; Desoer and Schulman, 1974). 

The following hold: 

i) Wp = -min{klPk i= O} 

ii) Wz = min{k!Pk = r} 

••• ) r: "'-1 
111 Up = L..;k=-wp Pk 

iv) Dz= L:~~0 (r - Pk) 

Proof of Theorem 2. P(.A)-1 has as its poles exactly the zeros of P(..\) with 

the same order and degree (Desoer and Schulman, 1974). Hence since bi is a zero 

of P(..\) of order mi, it is also a pole of P(.A)- 1 and we can write 

m, 
P(.\)-1 =I)"' - bi)-k Ri,k + Gi(..\), i = 0, 1, ... ,f (A.4) 

k=l 

where 

rank[Ri,m,] f. O, i = o, 1, ... , f (A.5) 
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and Gi(>.) has no poles at bi, i = 0, 1, ... , f. 

Postmultiplication of {A.4) with Hyr(,\) yields 

m, 
P(..\)-l Hyr(A) =I)>.. - bi)-k Ri,kHyr(,\) + Gr:(>..)Hyr(A) (A.6) 

k=l 

Now take a partial fraction expansion for each term in the sum of the right-hand 

side of (A.6) to obtain: 

m, k-1 
A -1 A '""' '""' -k+h 1 A (h} H A P(>.) Hyr(>..) = L.)L,..;(>.. - bi) Ri,k h!Hyr (bi)+ Ri,kGk (..\)] + Gi(..\)Hyr(>.) 

k=lh=O m, m, 
1 

= 2:((,\ - bi)-k L Ri,h (h ~ k)!"H~~-k)(bi)) 
k=l h=k 

(A.7) 

where Gf! (>.) has no poles at bi. Also recall that Gi(>..) has no poles at bi either. 

Hence in order for Condition CS.ii to hold we must have for all i = 0, ... , /: 

~ • 1 A (h-k) ( •) -L,..; R,,h (h _ k)!Hyr b, - O, 
h=k 

k = 1, ... ,mi (A.8) 

Satisfaction of (A.8) is equivalent to requiring that the columns of 

[HA (O) (b )T 1 n" (m,-l) (b )T]T . h 11 f N h yr i ... (m,-l)! yr i are mt e nu space o i' w ere: 

Ri,mi 0 0 
R· Ri,m, 0 

Ni 
def i,m,_ 1 

(A.9) 

R· 1 ,, R·2 ,, Ri,m, 

We shall now proceed to determine the null space of Ni. 

Postmultiply both sides of (A.4) with P(>..) to obtain: 

m& 

I= L(>.. - bi)-k Ri,kP(..\) + Gi(..\)P(..\) (A.10) 
k=l 
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Since I has no poles at b0 , ••• , b1, taking a partial fraction expansion leads to a 

condition similar to (A.8), in exactly the same manner. Hence (A.10) yields 

k = 1, ... ,mi (A.11) 

The equations implied by (A.11) for k = l, ... , mi can be put together in the 

matrix form: 

Ni[o ... o .P<0>(bi)T ..___, l = 1, ... ,mi 
l-1 

(A.12) 

The equations obtained from (A.12) for l = 1, ... , mi can be written together as: 

where 

L . def 
' -

p(O) (bi) 
p(l) (bi) 

i = o, ... ,f 

0 
0 

p(O)(bi) 

(A.13) 

(A.14) 

Hence the column space of Li is a subspace of the null space of Ni. It will now 

be shown that it is exactly the null space of Ni. 

As explained earlier, the order Wp of the pole bi of P(A)- 1 is equal to the 

order mi of the zero bi of P(A), i.e., equal to mi: 

(A.15) 

Lemma A.1 will now be applied on A(A) = P(A)-1 , for a= bi. From (A.1), (A.4), 

(A.5) it follows that l = mi and A-k = Ri,k for k = 1, ... , mi. By using (A.15) 

and Lemma A.1.iii we get 

-1 

6p(bi) = L Pk(bi) = rank[T-1(bi)] = rank[Ni] (A.16) 
k=-m• 
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since Tm,-i(bi) = 0 and T-1(bi) can be obtained from Ni by simply permuting 

its rows and columns. 

By definition the order Wz of the zero bi of F(>,) is equal to mi: 

(A.17) 

Lemma A.1 will now be applied on A(.A) = F(>,), for a: = bi. In this case, since 

F(>,) is assumed to have no poles at bi, we have l ~ 0 and Ak = f1.fa(k)(bi) for 

k = 1, ... , m - 1. By using (A.17) and Lemma A.Liv we obtain 

m, m 0-l 

hz(bi) = L(r - Pk(bi)) = J: (r - Pk(bi)) 
k=O k=O 

= mir - rank[Tm,-1(bi)] = mir - rank[Li] (A.18) 

since from Lemma A.I.ii we have Pm,(bi) = r, and we also have T-1(bi) = 0 and 

Tm,-1(bi) can be obtained from Li by permutting its rows and columns. 

The degree 6z of the zero bi of P(>.) is the same as the degree 6p of the pole 

bi of P(>.)-1 and so from (A.16), (A.18) we get 

(A.19) 

But Ni and Li are matrices of dimension mir x mir. Therefore (A.13) and (A.19) 

imply that the column space of Li is exactly the null space of Ni· 

Hence from (A.8) it follows that Condition CS.ii is satisfied if and only if the 

1 f [HA (O)(b )T 1 HA (m,-l)(b )TJT • h 1 f L co umns o yr i ••. (m,-l)! yr i are m t e co umn space o i· 

From (3.0.6) it follows that the first nir rows and the last nir columns of Li are 

identically zero. Hence 

HA (k) (b·) = 0 
yr i ' k = 0, ... ,ni -1 

which implies that 

(A.20) 
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where Hi(>.) has no poles at bi. (A.20) completes the proof of part (a) of Theorem 

1. If mi = ni, then this is the only requirement since then Li = 0. If however 

mi > ni then rank[Li] =/=- 0 and additional requirements on Hi(>.) are necessary. 

We have for l = ni, ... , mi - 1: 

!_H(l)(b·) = !_ ( l) .1ft~l-n.)(b·) = 1 ft~l-ni)(b·) 
o1 yr ' o1 n. n,. ' ' ( o - ·)I • ' (., (., I (, n, , 

and so the requirement on Hi(>.) is that the columns of 

[HA(O)(b)T 1 HA(m1-n1-l)(b)T]T · th 1 fM h i i • • · (m,-n,-l)! i i are m e co umn space o i, w ere 

Mi is defined in (3.0.9). QED 

B) Proof of Theorem 3 

The proof is by induction 

k 1: 

k n: Let 

G(z)z = C(zI - A)- 1 zB +Dz 

= C(zl -A)- 1 (A + zl - A)B +Dz 

= C(zI-A)- 1AB+CB+Dz 

n 

G(z)zn = C(zl - A)- 1 An B + L CAl-l Bzn-l + Dzn (B.l) 
l=l 

hold. 

k = n + 1: From {B.l) it follows that 
n 

G(z)zn+l = C(zl - A)- 1 An zB + L CAl-l Bzn+l-l + Dzn+l 
l=I 

and by using the result for k = 1 we obtain 

n+l 
G(z)zn+l = C(zl - A)-1 An+l B + L CAl=l Bzn+l-l + Dzn+l QED 

l-1 
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ROBUST H 2 -TYPE IMC CONTROLLER DESIGN 

VIA THE STRUCTURED SINGULAR VALUE 

Abstract. 

Evanghelos Zafiriou 

Manfred Morari 

Department of Chemical Engineering, 206-41 

California Institute of Technology 

Pasadena, CA 91125 

The two-step Internal Model Control procedure is used for the synthesis of 

robust controllers for multivariable open-loop stable or unstable plants. In the 

first step the controller is designed so that the Integral Squared Error (ISE) is 

minimized for every external input (setpoint or output disturbance) direction in 

a set and their linear combinations. Open-loop stable and unstable plants are 

treated in a uniform way. In the second step a low-pass filter is designed so that 

stability and good performance characteristics are maintained in the presence of 

model-plant mismatch. The problem is formulated as a minimization of the Struc

tured Singular Value (SSV) for robust performance over the filter parameters. The 

optimization problem is unconstrained and analytic computation of the gradients 

is in general possible. Special filter structures are used for open-loop unstable or 

ill-conditioned plants. A method is also given for computing the worst over all 

possible plants ISE, for a particular external input. 
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1. Preliminaries 

1.1. Internal Model Control 

The Internal Model Control (IMC) structure, introduced by Garcia and 

Morari (1982), has been widely recognized as very useful in clarifying the issues 

related to the mismatch between the model used for controller design and the 

actual process. The IMC structure (Fig. la), is mathematically equivalent to the 

classical feedback structure (Fig. lb). The IMC controller Q and the feedback C 

are related through 

where P is the process model. 

P=P. 

Q = c(I + f>c)- 1 

c = Q(I - PQ)-1 

(1.1.1) 

(1.1.2) 

In this case the overall transfer function connecting the set-points r and 

disturbances d to the errors e = y - r, where y are the process outputs, is 

e = y - r = (I - PQ)(d - r)defE (d - r) (1.1.3) 

Hence the IMC stucture becomes effectively open-loop (Fig. 2a) and the 

design of Q is simplified. Note that the IMC controller is identical to the parameter 

of the Q-parametrization (Zames, 1981). Also the addition of a diagonal filter F 

by writing 

Q=QF (1.1.4) 

introduces parameters (the filter time constants) which can be used for adjusting 

on-line the speed of response for each process output. 

P:f-P. 

The model-plant mismatch generates a feedback signal in the IMC stucture 

which can cause performance deterioration or even instability. Since the relative 
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modeling error is larger at higher frequencies, the addition of the low-pass filter 

F (Fig. 2b) adds robustness characteristics into the control system. In this case 

the closed-loop transfer function is 

e = y - r = (1 - PQF)(l - (P - P)QF)- 1(d- r)def E (d- r) (1.1.5) 

Hence the IMC structure gives rise rather naturally to a two-step design 

procedure: 

- -Step 1: Design Q, assuming P = P. 

Step 2: Design F so that the closed-loop characteristics that Q produces in 

Step 1, are preserved in the presence of model-plant mismatch (P # P). 

Note that the feedback controller C, given from (1.1.2), includes integral 

action if and only if Q inverts at steady-state the model P, i.e., 

Q(o) = P(o)- 1 (1.1.6) 

F(O) = l (1.1. 7) 

1.2. Internal Stability 

A linear time invariant control system is internally stable if the transfer func

tions between any two points of the control system are stable. A more detailed 

discussion of the concept of internal stability can be found in the literature (e.g., 

Morari et al., 1987). 

Examination of the feedback structure of Fig. lb results in the requirement 

that all elements in the matrix 181 in (1.2.1) are stable. 

181 = ( C(l + PC)- 1 PC(l + PC)- 1 C(l + PC)- 1 P (1 + PC)- 1 P) 

(1.2.1) 

For the remainder of this section we shall assume that P = P. The additional 

requirements to take care of modeling error are discussed in Section 3.3. Use of 
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(1.1.1) or (1.1.2) in (1.2.1) yields 

181 = ( Q PQ QP (I - PQ)P) (1.2.2) 

Note that stability of each element in (1.2.2) implies internal stability when the 

control system is implemented as the feedback structure in Fig. lb, where C is 

obtained from the Q used in (1.2.2) through {1.1.2). 

In order for the control system to be stable when implemented in the IMC 

stucture of Fig. la, internal stability arguments (Morari et al.,1987) lead to the 

requirement that all elements of IS2 are stable. 

IS2=(Q PQ QP (I-PQ)P PQP P) (1.2.3) 

Hence if the process P is open-loop unstable, I 82 will also be unstable and the 

control system has to be imlemented in the feedback stucture of Fig. lb. Still, the 

two step IMC design procedure can be used for the design of Q, as described in 

the following sections. C can then be obtained from (1.1.2) and the structure in 

Fig. lb implemented. However special care has to be taken in the construction of 

C so that all the common RHP zeros of Q and (J - PQ) are cancelled in (1.1.2). 

Minimal or balanced realization software can be used to accomplish that. 

Note that when the process is open-loop stable, it follows from (1.2.2) and 

(1.2.3) that the only requirement for internal stability is that Q is stable. 

2. Step 1: Design of Q. 

Throughout this section the assumption is made that P = P. 

2.1. Performance Objectives. 

The performance objective adopted in this paper is to minimize the Integral 

Squared Error (ISE) for the error signal e given by (1.1.3). This is an H 2 -type 

objective. Other objectives like an H 00 -type can be used (Zafiriou and Morari, 

1986) but they will not be discussed here. 
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For a specified external system input v (v = d for r = O; v = -r ford= 0), 

the ISE is given by the square of the L2-norm of e: 

q>(v) def llell~ = _!__ f +oo e*(iw)e(iw) dw 
271" -oo 

(2.1.1) 

where the superscript * denotes complex conjugate transpose. 

From (1.1.3) we get 

q>(v) = llell~ = llEvll~ = ll(J- PQ)vll~ (2.1.2) 

Hence one objective could be 

min q>(v) - \ , {01) 
Q 

for a particular input v = ( v1 v2 . . . Vn ) T, where Q satisfies the internal 

stability requirements of section 1.2 and the superscript T denotes transpose. 

Minimizing the ISE just for one vector v however is not very meaningful, 

because of the different directions in which the disturbances enter the process or 

the setpoints are changed. What is desirable is to find a Q, that minimizes q>(v) 

for every single v in a set of external inputs v of interest for the particular process. 

For an n x n P this set can be defined as 

V = {vi(s)li = 1, ... ,n} (2.1.3) 

where v1(s), ... ,v"(s) are vectors that describe the expected directions and fre

quency content of the external system inputs, e.g., steps, ramps or other types of 

inputs. 

The objective can then be written as 

V'v EV (02) 

under the constraint that Q satisfies the internal stability requirements. It should 

be noted however that a linear time invariant Q that solves (02) does not neces

sarily exist. In Section 2.3, it will be shown that this is the case for some V's. An 
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alternative objective in such a case would be: 

mJn [ ~ ( v 1) + ~ ( v 2) + ... + ~ ( v n)] 
Q 

(03) 

In this case the objective is to minimize the sum of the ISE's that each of the 

inputs vi would cause when applied to the system separately. One should note 

that this is a deterministic interpretation of a similar stochastic optimal control 

problem (Youla et al., 1976). 

2.2. Parametrization of All Stabilizing Q's. 

The process P can in general be open-loop unstable. The following assump

tion simplifies the solution of the optimization problem: 

Assumption A. l. If 11" is a pole of the model P in the open RHP, then: 

a. The order of 7r is equal to 1. 

b. P has no zeros at s = 11". 

c. The residual matrix that corresponds to 7r is full rank. 

Assumption A.1.a is made to simplify the notation and it is the usual case. 

The results in this paper can be extended to higher order poles. A.1.b is true 

for SISO systems but not necessariiy for MIMO. However, the assumption is not 

restrictive because the presence of a zero at s = 11" implies an exact cancellation 

in det[P(s)], which usually does not happen after a slight perturbation in the 

coefficients of P is introduced. A.l.c is always true for SISO systems, but it can 

be quite restrictive for MIMO systems. Instead of A.l.c however, an additional 

assumption can be made on the external input for which the optimal controller is 

designed. This is discussed in Section 2.3. 

Assumption A.1 is not made for poles at s = 0 because more than one such 

poles may appear in an element of P, introduced by capacitances that are present 

in the process. The following assumption true for all practical process control 

problems is made: 
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Assumption A.2. Any poles off> or Pon the imaginary axis are at s = 0. Also f> 

has no finite zeros on the imaginary axis. 

Let 7ri, ... , 11"k be the poles of each element off> in the open RHP. Define the 

all pass 
k 

b (s) = IT -s + 11"i 
p 8 + ?r! 

i=l ' 

(2.2.1) 

If A.1.c does not hold, then define 

(2.2.1') 

The following Theorem holds: 

Theorem 2.2.1. 

Assume that Qo(s) satisfies the internal stability requirements of section 1.2, 

i.e., it produces a matrix ISl with stable elements. Then all Q's that make ISl 

stable are given by 

where Q1 is any stable transfer matrix such that: 

i) If A.1.c holds, PQ 1P has no poles at s = 0. 

ii) If A.1.c does not hold, PQ 1P has no poles in the closed RHP. 

Proof: See Appendix A.1. 

2.3. Objective (01) 

(2.2.2) 

This is the first step towards obtaining a solution to (02), if such a solution 

exists. In this section we only consider one particular input v. For every external 

input v that will be considered in this paper, the following assumption can be 

made without loss of generality: 

Assumption A.3. 

a. The poles of each nonzero element of v in the open RHP (if any) are the first 

k' poles 11"i of the plant in the open RHP, each with degree 1. 
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b. If A.Le does not hold, then every nonzero element of v (or v) includes all the 

open RHP poles of P, each of them with degree 1. 

To simplify the arguments in the paper, we shall assume that if A.3.b is 

satisfied, then A.Le is not. In this way the proper choices in the definitions and 

the proofs will be made on the basis of A.1.c. If both A.1.c and A.3.b hold, then 

the results that apply to the case where A.Le does not hold but A.3.b does, are 

still correct. 

Define 

(2.3.1) 

If A.1.c does not hold, then define 

bv(s) = 1 (2.3.1') 

A different assumption is made for the poles of v at s = 0: 

Assumption A.4. Let 1, be the maximum number of poles at s = 0 that an element 

of the ith row of P has. Then vi(s) has at least li poles at s = 0. Also v has 

no other poles on the imaginary axis and its elements have no finite zeros on the 

imaginary axis. 

The above assumptions are not restrictive in the case where v is an output 

disturbance d, because in a practical situation we want to design for an out-

put disturbance produced by a disturbance that has passed through the process. 

Hence, d usually includes the unstable process poles (e.g., an output disturbance 

d produced by a disturbance in the manipulated variables). Note that the con

trol system will still reject other disturbances with fewer unstable poles, without 

producing steady-state offset. The assumption is different for poles at s = 0 be

cause their number in each row of P can be different, since capacitances may be 

associated with only certain process outputs. Also the output disturbance may 
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have more poles at s = 0 than the process (e.g., a persistent disturbance in the 

manipulated variables). 

The assumptions may be restrictive in the case of setpoints though. However 

for setpoint tracking the use of the Two-Degree-of-Freedom structure, which will 

be discussed briefly in Section 2.5, allows us to disregard the existence of any 

unstable poles of P and therefore this assumption need not be made for setpoints. 

Let v0 ( s) be the scalar all pass that includes the common RHP zeros of the 

elements of v. Factor v as follows: 

v(s) = vo(s) ( v1(s) . . . vn(s) )T def vo(s)v(s) (2.3.2) 

The plant P can be factored into a stable allpass portion PA and a minimum 

phase (MP) portion PM such that 

(2.3.3) 

The term MP used for a system in the context of this paper basically means 

that the inverse of the system is stable. Hence PA is stable and such that 

P..:_(iw)PA(iw) = I. Also P-i:/ is stable. This "inner-outer" factorization can 

be accompiished through the spectrai factorization of P(-s)T P(s). Details on 

these problems can be found in the literature (Anderson, 1967; Chu, 1985; Doyle, 

1984). When Pis strictly proper, then one has to add a small constant term in P 

in order to apply these methods. This approach works satisfactorily in practice. 

The following theorem holds: 

Theorem 2.3.1. 

The set of controllers Q that solve (01) satisfy 

Qv = bpb;; 1 Pi/{b; 1bvP_A 1v}. (2.3.4) 

where the operator {.} ... denotes that after a partial fraction expancion of the 

operand all terms involving the poles of P_A 1 are omitted. Furthermore, for n 2::: 2 
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the number of stabilizing controllers that satisfy (2.3.4) is infinite. Guidelines for 

the construction of such a controller are given in the proof. 

Proof: See Appendix A.2 

Note that not every controller that satisfies (2.3.4) is a stabilizing one. Im

proper stabilizing controllers that satisfy (2.3.4) are accepted because the use of 

a filter with an appropriate zero-pole roll-off in the second step of the design 

procedure will produce a proper Q(s). 

2.4. Objectives (02) and (03) 

We shall consider objective (03) first. Define 

V ( 8) def ( V 1 ( 8) V 2 ( 8) v"(s)) (2.4.1) 

where v1 , ... , v" satisfy assumption A.3. An additional assumption on V is needed: 

Assumption A.5. 

a. V has no zeros at the location of its unstable poles or on the imaginary axis 

and v- 1 cancels the poles off> at s = o in v- 1 f>. 

b. If A.1.c holds, the residual matrices for the open RHP poles of V are full rank; 

if A.1.c does not hold, then v-1 cancels the open RHP poles of P in v-1 P. 

Note that satisfaction of assumptions A.3.b and A.4 for each coiumn of V 

does not necessarily imply satisfaction of A.5. However such a V can be easily 

constructed. One way is to obtain V as P times a matrix with no open RHP 

poles and no zeros on the imaginary axis. This case corresponds to the physically 

meaningful situation, where the output disturbances are produced by disturbances 

in the manipulated variables. Another simple way is to use a diagonal V, in which 

case satisfaction of A.3 and A.4 by every column of V implies satisfaction of A.5 

by V. This situation is discussed further in Corollary 2.4.1. 

Factor V similarly to P (use V(s)VT(-s) if spectral factorization theory is 

used): 

(2.4.2) 



The following Theorem holds: 

Theorem 2.4.1. 

The con troll er 

is the unique solution to (03). 

Proof: See Appendix A.3. 
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(2.4.3) 

Let us now consider the more meaningful objective (02). Clearly, a Q that 

solves (02) will also solve (03). Hence from Theorem 2.4.1, it follows that if a 

solution to (02) exists, it is given by (2.4.3). Factor each of the vi in the way 

used in (2.3.2): 

(2.4.4) 

Define 

v def ( i)l -02 • • • v") (2.4.5) 

Theorem 2.4.2. 

i) If V(z) is non-minimum phase, then there exists no solution to (P3). 

ii) If V(z) is minimum phase, then use of V instead of VM in (2.4.3) yields 

exactly the same Q, which also solves (02) and it minimizes ~(v) for any v 

that is a linear combination of vi's that have the same vb's. 

Proof: See Appendix A.4. 

The following corollary to Theorem 2.4.2 holds: 

Corollary 2.4.1. 

Let 

(2.4.6) 

where v1 (s), ... , vn(s) are scalars. Then use of V instead of VM in (2.4.3) yields 
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exactly the same Q, which minimizes '1.>(v) for the following n vectors: 

(2.4.7) 

and their multiples, as well as for the linear combinations of those directions that 

correspond to Vi's with the same open RHP zeros in the same degree and the 

same time delays. 

2.5. Two-Degree-of-Freedom Structure 

From the discussion of the Internal Stability requirements in Section 1.2, 

it follows that RHP poles in the plant limit the possible choices of Q and thus 

the achievable performance. This however need not be so for setpoint tracking. 

Consider the general feedback structure of Fig. 3. For the disturbance behavior 

it is irrelevant if the controller is implemented as one block C as in Fig. lb, or as 

two blocks as in Fig. 3. Hence the achievable disturbance rejection is restricted 

both by the RHP zeros and poles of P as the quantitative results of the previous 

sections indicate. 

Let us now proceed from the point where a stabilizing Q and the correspond

ing C have been found through the results of the previous sections, which produce 

a satisfactory disturbance response. We can then split C into two blocks C1 and 

C2 such that C1 is minimum phase and C2 is stable. Then one can easily see that 

the only RHP zeros of the stabilized system PC1(I + PC1C2)-1 are those of the 

process P. Thus C3 can be designed without regard for the RHP poles of P and 

the achievable setpoint tracking is restricted by the RHP zeros of P only. 

In summary, the achievable disturbance response of a system is restricted by 

the presence of the plant RHP zeros and poles regardless of how complicated a 

controller is used. If the Two-Degree-of-Freedom controller shown in Fig. 3 is 

employed, the achievable setpoint response is restricted by the RHP zeros only. 



1 1 2 

d 

r p 

Figure 3. Two-degree-of-freedom feedback structure. 
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A more rigorous discussion can be found in Vidyasagar (1985). 

3. Model Uncertainty. 

3.1. Structured Singular Value. 

Potential modeling errors, described as uncertainty associated with the pro-

cess model, can appear in different forms and places in a multivariable model. 

This fact makes the derivation of non-conservative conditions that guarantee ro-

bustness with respect to model-plant mismatch difficult. The Structured Singular 

Value (SSV), introduced by Doyle (1982), takes into account the structure of the 

model uncertainty and it allows the non-conservative quantification of the concept 

of robust performance. 

For a constant complex matrix M the definition of the SSV µt::J.. (M) depends 

also on a certain set A. Each element A of A is a block diagonal complex matrix 

with a specified dimension for each block, i.e., 

(3.1.1) 

Then 
1 

-- =min {o-(A)jdet(I-MA) = O} 
µ1::!..(M) .6.EA 

(3.1.2) 

and µA(M) = 0 if det(I - MA) =/:- 0 'if A E A. Note that 0- is the maximum 

singular value of the corresponding matrix. 

Details on how the SSV can be used for studying the robustness of a control 

system can be found in Doyle (1985), where a discussion of the computational 

problems is also given. For three or fewer blocks in each element of A, the SSV 

can be computed from 

(3.1.3) 

where 

(3.1.4) 
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and Im; is the identity matrix of dimension m; x m;. For more than three blocks, 

(3.1.3) still gives an upper bound for the SSV. 

3.2. Block Structure. 

In order to effectively use the SSV for designing F, some rearrangement of 

the block structure is necessary. The IMC structure of Fig. la can be written as 

that of Fig. 4a, where v = d - r, e = y - r and 

G=(~ ~ p~) 
-I -I 0 

(3.2.1) 

where the blocks 0 and I have appropriate dimensions. 

The structure in Fig. 4a can always be transformed into that in Fig. 4b, 

where A is a block diagonal matrix with the additional property that 

u(A) ::; 1 \:/w (3.2.2) 

The superscript u in Gu denotes the dependence of Gu not only on G but also 

on the specific uncertainty description available for the model P. Only some of 

the more common types will be covered here to demonstrate how this is done, 

but it is straightforward to apply the same concepts to other types of uncertainty 

descriptions, like parametric uncertainty. 

i) Multivariable Additive Uncertainty. 

The information on the model uncertainty is of the form 

u(P - P) ::; la(w) {3.2.3) 

where la is a known function of frequency. In this case we can easily write P- P = 

laA where u(A) ::; 1 and so obtain 

(3.2.4) 
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Figure 4. Model uncertainty bloc~ diagrams. 
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ii) Multivariable Input Multiplicative Uncertainty. 

(3.2.5) 

where li is known. Then 

(3.2.6) 

iii) Multivariable Output Multiplicative Uncertainty. 

(3.2.7) 

(

loP 0 0) 
Gu= G 0 = 0 I 0 G 

O 0 I 
(3.2.8) 

iv) Element by Element Additive Uncertainty. 

For each element Pii of P we have 

Ip .· -p-· ·I< z. ·(w) ,, ,, - ., ' i = 1, ... , n; j = 1, ... , n (3.2.9) 

Then 

(3.2.10) 

where 

(3.2.11) 

Ji=(! 
1 0 0 0 

D 
0 1 1 0 

0 0 0 1 

(3.2.12) 

J,= (D (3.2.13) 
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From (3.2.10) it follows that 

0 0) (Ji 
I O G 0 
0 I 0 

0 0) 
I O 
O I 

(3.2.14) 

Note that all the above relations yield a au already partitioned as 

(3.2.15) 

Then Fig. 4b can be written as Fig. 5 with 

(3.2.16) 

3.3. Robust Stability. 

We now require that the matrix ISl as given by (1.2.1) is stable for all 

possible plants P. The design of Q according to Section 2 resulted in a stable ISl 

for P = P. In order for IS! to remain stable we need to satisfy the requirements 

that as we move in a "continuous" way from the model P to the plant P, no 

closed-loop poles cross the imaginary axis and no such poles suddenly appear in 

the RHP. The latter requirement is satisfied if we assume that the model and the 

plant have the same number of RHP poles. If this is not true, a different sufficient 

condition is that QF is a stable matrix and only stable ~ 's are possible. The SSV 

can be used to determine if any crossings of the imaginary axis occur. Then we 

can say that the system is stable for any of the plants in the set defined from the 

bounds on the model uncertainty and which have the same number of RHP poles 

as the model, if and only if (Doyle, 1985) 

Vw (3.3.1) 

3.4. Robust Performance. 
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Figure 5. SSV block diagram. 
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In the first step of the IMC design procedure a controller Q is obtained, 

which produces satisfactory disturbance rejection and/or setpoint tracking. This 

response is described by the "sensitivity" function E given by (1.1.3). Since 

E connects the external inputs to the error e, a well-designed control system 

produces a relatively "small" E. A measure of the magnitude of the known E is 

its maximum singular value. Let b(w) be a frequency function such that 

u(E(iw)) < b(w) Vw (3.4.1) 

When P # P, the sensitivity function Eis described by (1.1.5). Note that E = E 

when P = P. In order for the performance of the control system to remain robust 

with respect to model-plant mismatch we have to keep E small in spite of the 

modeling error. Hence we require that 

supa(b(w)- 1 E(iw)) < 1 V~EA (3.4.2) 
w 

We can now use the properties of the SSV (Doyle,1985) to obtain 

supa(b(w)- 1 E(iw)) < 1 V fl. E A <==> sup µ.6.o ( Gb) < 1 (3.4.3) 
w w 

where 

(3.4.4) 

(3.4.5) 

The worst possible ISE that any plant within the uncertainty bounds can 

produce for a particular input v is given by the following theorem. 

Theorem 3.4.1. 

For a specified v define 

(3.4.6) 
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where xis a scalar function of wand the blocks 0 have the appropriate dimensions 

(in general non-square). Augment ax, which is in general a "tall" matrix, to 

obtain a square matrix: 

(3.4.7) 

Then 

µt:t..o (G/uu(iw)) = 1 -<====> x(w) = xo(w) Vw (3.4.8) 

defines a function x 0 of frequency and 

(3.4.9) 

Proof: See Appendix B.l. 

Note that as it turned out x01 = supaEA u(Ev), but the only way to compute 

it is through (3.4.8). Also without loss of generality x can be assumed to be 

positive since the value of µAo (G/uu) depends only on lxl. The following theorem 

simplifies the problem of computing xo. 

Theorem 3.4.2. 

Let 

(3.4.10) 

where x a positive scalar. 

Then infDED u(DMZ n- 1 ) is a non-decreasing function of x, where D -

Proof: See Appendix B.2. 

Note that G/ull is a special case of the above M and so Theorem 3.4.2 applies 

to (3.4.8). 

4. Step 2: Design of F. 

4.1. Filter Structure. 

The filter parameters can now be computed so that the robustness conditions 

that were discussed in Section 3 are satisfied. To do so, some structure will 
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have to be assumed for F, which can be of any general type that the designer 

wishes. However in order to keep the number of variables in the optimization 

problem small, a rather simple structure like a diagonal F with first or second 

order terms would be recommended. In most cases this is not restrictive because 

the potentially higher orders of the model P have been included in the controller Q 

that was designed in the first step of the IMC procedure and which is in general 

a full matrix. Some additional restrictions on the filter exist in the case of an 

open-loop unstable plant. Also the use of more complex filter structure may be 

necessary in cases of highly ill-conditioned systems (u(P)/Q.(P) very large). 

i) Open-loop unstable plants. 

The IMC filter F(s) is chosen to be a diagonal rational function that satisfies 

the following requirements. 

a. Pole-zero excess. The controller Q = QF must be proper. Assume that the 

designer has specified a pole-zero excess of K', for the filter F(s). 

b. Internal stability. ISl in (1.2.2) must be stable. 

c. Asymptotic setpoint tracking and/or disturbance rejection. (I-PQF)v must 

be stable. 

Write 

F(s) = diag(f1(s), ... ,fn(s)) (4.1.1) 

Under assumptions A.1,2,3,4,5, (b),(c) are equivalent to the following conditions. 

Let 7r i ( i = 1, k) be an open RHP pole of P and ?To = 0 and m 01 the largest 

multiplicity of such a pole in any element of the zth row of V. From assumptions 

A.l, 2, 3, 4, 5 and the fact that Q makes ISl, (I - PQ)V stable, it follows that 

the zth element , /1 of the filter F must satisfy: 

!1(7ri) = 1, i = 0,1, ... ,k 

di 
-d .fi(s)ls=7ro = 0, j = l, ... ,moz-1 s1 

(4.1.2) 

(4.1.3) 
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(4.1.2) clearly shows the limitation that RHP poles place on the robustness 

properties of a control system designed for an open-loop unstable plant. Since 

because of (4.1.2) one cannot reduce the nominal (P = P) closed-loop bandwidth 

of the system at frequencies corresponding to the RHP poles of the plant, one can 

only tolerate a relatively small model error at those frequencies. 

Experience has shown that the following structure for a filter element fz(s) 

is reasonable: 

(4.1.4) 

where 

vi= mot+ k (4.1.5) 

and then compute the numerator coefficients for a specific tuning parameter >. 

from (4.1.2), (4.1.3). This involves solving a system of Vt linear equations with Vt 

unknowns. 

Example 4.1.1. Assume that we have a pole-zero excess of y;:, and there is only 

one pole 7r. Then 

f(s) = (.\7r + l)" 
(>.s + l)" 

(4.1.6) 

If 7r = 0, (4.1.9) reduces to the standard filter for stable systems f(s) = (>.s+ 1)-". 

Example 4.1.2. Assume that y;:, = 2 and the only pole is a double pole at s = 0. 

Then 

ii) Ill-conditioned plants. 

3.\s+ 1 
f(s) = (>.s + 1)3 (4.1.7) 

The problems arise because the optimal controller Q designed for P tends to 

be an approximate inverse of P and as a result Q is ill-conditioned as well. The 

result is that although robust stability is achieved through significant detuning 

of the diagonal filter, the robust performance condition is usually not satisfied. 

For example, Skogestad et al. (1986) have shown that an ill-conditioned P or C 
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(and therefore an inverting ill-conditioned Q as well, because of (1.1.2)) can cause 

problems when input uncertainty is present. A way to address this problem is to 

try to use a filter that acts directly on the singular values of Q, at the frequency 

where the condition number of Q is highest, say w•. Let 

(4.1.8) 

be the SVD of Q at w• and let Ru, Rv, be real matrices that solve the pseudo

diagonalization problems: 

(4.1.9) 

(4.1.10) 

Then for the IMC controller Q that includes the filter, use the expression 

(4.1.11) 

or 

(4.1.12) 

where F1(s), F2(s) are diagonal filters, such that F1 (0) = F2(0) = I if integral 

action is desired. Note for Fi, mo should be used in (4.1.3), (4.1.5), for all l, 

instead of mOl, where mo= maxi moz. 

It should be pointed out that the success of this approach depends on how 

good any of the pseudo-diagonalizations (4.1.9) or (4.1.10) is. The diagonalization 

will be perfect if U Q or V Q is real. This will happen if w• = 0, which is the case 

when the problems arise because the plant is ill-conditioned at steady-state, as 

for example high purity distillation columns are. 

One can put this control structure in the form of Fig. 4, as follows. Define 

F(s) = diag(F1 (s), F2 (s)) (4.1.13) 
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or Q(s)Rv (4.1.14) 

or (4.1.15) 

depending on whether (4.1.11) or (4.1.12) is used. Obtain Gu by substituting Q 

with QA in (3.2.1). Then in Fig. 4 use instead of Gu, Gu,ill, where 

(4.1.16) 

4.2. Objective 

We can write 

F ~r F(s;.A) (4.2.1) 

where A. is an array with the filter parameters. 

The problem can now be formulated as a minimization problem over the 

elements of the array A. A constraint is that the part of A corresponding to 

denominator time constants should be such that F is a stable transfer function. 

However the problem can be turned into an unconstrained one by writing the 

denominator of each element of F as a product of polynomials of degree 2 and one 

of degree 1 if the order is odd, with the constant terms of the polynomials equal 

to 1. Then the stability requirement translates into the requirement that the co-

efficients (elements of A) are positive, which is a constraint that can be eliminated 

by writing,\~ or I.Aki instead of Ak for the corresponding filter parameters. 

Our goal is to satisfy (3.4.3). The filter parameters can be obtained by solving 

(04) 

It may be however that the optimum values for ( 04), still do not manage to satisfy 

(3.4.3). The reason may be that an F with more parameters is required, but more 

often that the performance requirements set by the selection of b(w) in (3.4.1) 
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are too tight to satisfy in the presence of model-plant mismatch. In this case one 

should choose a less tight bound band resolve (04). Note that satisfaction of the 

Robust Performance condition (3.4.3) implies satisfaction of the Robust Stability 

condition (3.3.1) as well. 

A different objective can be set in the case where the ISE for a particular 

external input direction v is of special interest to the designer. The objective is 

then to minimize (3.4.9) for a specified v (set-point or disturbance). Hence the 

filter parameters are obtained by solving 

(05) 

It should be pointed that contrary to the problems addressed in Section 2, where 

a minimization for a set of v's could be carried out, (05) cannot be solved for a 

set of v's. The reason is the presence of modeling error in the problem definition. 

Finally one should note that in both (04) and (05), the objective functions 

are not convex. Hence a local minimum could be the result of solving (04) or 

(05). Use of a number of different initial values for A can help circumvert this 

problem. Also, good initial guesses can usually be obtained for the filter param

eters (elements of A) by mathcing them with the frequencies where the peaks of 

µ.t::..o ( Gb) appear for F = I. 

4.3. Computational Issues. 

i) Objective (04). 

The computation ofµ in (04) is made through (3.1.3); details can be found 

in Doyle (1982). As it was pointed out in Doyle (1985), the minimization of the 

Frobenius norm instead of the maximum singular value yields D's which are very 

close to the optimal ones for (3.1.3). Note that the minimization of the Frobenius 

norm is a very simple task. In the computation of the supremum in (04) only a 



126 

finite number of frequencies is considered. Hence (04) is transformed into 

(04') 

where n is a set containing a finite number of frequencies and D 0 is the set 

corresponding to ~ 0 according to (3.1.1) and (3.1.4). Define 

~00 (A) def max inf c(DGb D-1) 
wEO DEDO 

(4.3.1) 

The analytic computation of the gradient of ~00 with respect to .A. is in general 

possible. This is not the case when the two or more largest singular values of 

DGb n-1 are equal. However this is quite uncommon and although the computa-

tion of a generalized gradient is possible, experience has shown the use of a mean 

direction to be satisfactory. A similar problem appears when the maxwEO is at-

tained at more than one frequencies, but again the use of a mean direction seems 

to be sufficient. We shall now proceed to obtain the expression for the gradient 

of ~00 (A.) in the general case. 

Assume that for the value of A where the gradient of ~00 (.A.) is computed, the 

maxwEO is attained at w = wo and that the inf DEDo a(DGb(iw0 )D-1 ) is obtained 

at D =Do, where only one singuiar value u 1 is equal to a. Let the singular value 

decomposition (SVD) be 

D 0 Gb(iw0 )D01 = ( u 1 U) ( ~1 ~) ( ;i.) (4.3.2) 

Then for the element of the gradient vector corresponding to the filter parameter 

>..k we have under the above assumptions: 

a a ( b(. ) -1) a>..k ~oo = a>i.k u1 DoG iwo D0 (4.3.3) 

because V' Do ( ui) = 0 since we are at an optimum with respect to the D's. To 

simplify the notation use 

(4.3.4) 
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By using the properties of the SVD we obtain from (4.3.2) 

AA*= UAE~U.A * uia~k (AA*)u1 = uiUAa~k (E~)U.Au1 

*ui(a~k (A)A* +A8~k (A*))u1 = uiUA(2EAa~k (EA))U,Au1 

*ui 8~k (A)v1u1 +u1vi 8~k (A*)u1=2u1 8~k (ui) 

* a~k (u1) =Re [ ui a~k (DoGb(iwo)D0
1 
)v1] 

Use of (4.3.3), (3.2.16), (3.4.4), (4.3.5), and of the property 

where M(z) is a matrix, yields after some algebra 

a~k ~oo =Re [ uiDo ( b-f~b::3 ) (I - FG33 )-
1 a~k (F(iwo)) 

(4.3.5) 

(4.3.6) 

(I - FG33)-
1 

( G~1 G~2 ) D01v1] (4.3.7) 

where F, G't;, b, w are computed at w = wo. The d~~rivatives of F with respect to 

its parameters (elements of A) depend on the particular form that the designer 

selected and they can be easily computed. 

ii) Solution of ( 05). 

The first issue in this case is the computation of x0 , Note that this com-

putation has to be made at every frequency w. In practice 11nly a s~t 0 with a 

finite number of frequencies is used, from which llx01 ll2 can be computed ap

proximately. Theorem 3.4.2 indicates that any basic descent method should be 

sufficient. The fact that it is possible to obtain an analytic expression for the 

gradient of µAo (Gjuu(iw)) with respect to x, simplifies the problem even further. 

This is possible when (3.1.3) is used for the computation ofµ and the two largest 

singular values of DGjuuD-1 for the optimal D's at the value of x where the 
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gradient is computed, are not equal to each other. If this not the case a mean 

direction can be used as mentioned in the H 00 case above. 

Let the infvEDo u(DGjuu(iw)D- 1 ) be attained for Do = Do(w; x) and let 

o-1 be the maximum singular value and ui, v1 the corresponding singular vectors. 

Then the same steps for obtaining (4.3.5) are valid. Hence by using (3.4.6) and 

(3.4. 7) we get after some algebra 

:x (µAo(Gjuu(iw))) = Re[uiDo ( W~fi 

D01vil 
J 

~) 
(4.3.8) 

The second computational issue is the solution of ( 05). To obtain the gradient 

of llx01 ll2 with respect to the filter parameters, we need to compute the gradient 

of x 0 (w) with respect to these parameters for every frequency w E n. From the 

definition of x 0 in (3.4.8) we see that as some filter parameter >..k changes, x 0 (w) 

will also change so that µAo (Gjull(iw)) remains constantly equal to 1. Hence we 

can write 
8µ 
axo 

8xo _ 8µ 
1

aµ 
8'Ak - - 8'Ak xo (4.3.9) 

where µ is computed through (3.1.3). The denominator in the right hand side 

of (4.3.9) is given from (4.3.8). As for the numerator, it can be computed in the 

same way as ( 4.3.5) and ( 4.3. 7) but with Gjull instead of Gb: 

a~k (µAo(Gjuu(iw))) =Re[uiDo (xig~3 ) (I-FG~3)- 1 

a~k (F(iw))(I - FG~3)- 1 
( G~1 G~2 v 0) D01

v1 l (4.3.10) 

Hence 8xo/8>..k can be computed from (4.3.8), (4.3.9), (4.3.10). 

5. Illustration. 

The design of a robust IMC controller will be demonstrated for a 2 x 2 high 

purity distillation column. Skogestad and Morari (1986) suggested that a very 
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simple model can be used to underline the control problems inherent in the LV

configuration. For the particular example they examined, the following model was 

used: 

P( ) 1 (o.878 -o.864) 
s = 75s + 1 1.082 -1.096 

(5.0.1) 

The problems arise from the fact that high purity distillation columns are ill

conditioned at steady-state. For the case in (5.0.1) the condition number is equal 

to 142. Hence any controller Q based on the inverse of P will also be ill-conditioned 

and this might result in an unrobust control system. 

The P above is MP and so 

Q(s) = P(s)- 1 (5.0.2) 

The IMC filter has now to be designed for robustness. To do so we need to 

have some uncertainty description as explained in Section 3.2. Input uncertainty 

will assumed in this case. This type of uncertainty is defined in Section 3.2.ii. 

Skogestad and Morari (1986) proposed the following uncertainty bound li and 

performance bound b (used in (3.4.2)): 

5s + 1 
li(s) = 0.2--

0.5s + 1 

b(s) _ 20s 
10s + 1 

(5.0.3) 

(5.0.4) 

First contrary to Section 4.1.ii, a simple diagonal filter will be used to demon-

strate the problem. A gradient search procedure based on the analytic gradient 

expressions in Section 4.3, is used to solve (04') for a one parameter A, i.e., a 

scalar times identity filter is employed. The result is 

1 
F(s) = I 

7.28s + 1 
(5.0.5) 

Plots ofµ for robust stability (given by (3.3.1)) and robust performance (given 

by (3.4.3)) are shown in Fig. 6a. Clearly, although the system is guaranteed to 
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remain stable in the presence of modeling error (within the bound in (5.0.3)), 

the performance is expected to deteriorate. This is confirmed by the simulations 

shown in Fig. 7. A step setpoint change in output 1 is made: 

(5.0.6) 

Note that the actual magnitude of the change in not important since the system 

is linear. The value 1 is used to facilitate the comparisons. For the nominal case 

(P = P), the outputs are decoupled and the performance is acceptable (Fig. 7a). 

However in the case where 

P(s) = P(s) (' 10.2 0 ) 
0.8 

(5.0.7) 

the performance deteriorates to the point where it is totally unacceptable (Fig. 

7b). Note that the plant in (5.0.7) includes a 20% error in each plant input and 

it is within the bound in (5.0.3). The same plant is used in all other simulations 

in this section when model-plant mismatch is assumed. Filters with different 

elements and higher orders and zeros were also used in the optimization but the 

results showed that these filters produce no worthwhile difference for the one-filter 

controller. The reason is that one diagonal filter cannot in general significantly 

affect the condition number of Q. 

We shall now proceed and use the filter structure suggested for ill-conditioned 

systems in Section 4.1.ii. In this case w• = 0 and therefore the diagonilizations 

(4.1.9) and (4.1.10) are exact. Hence (4.1.11) and (4.1.12) produce the same 

Q. Objective (04') was solved with a gradient search method using the analytic 

gradient expressions of Section 4.3. Different filter orders were used and a few 

different initial guesses were tried to avoid local minima. The final result for 

filters with two parameters in each element, was: 

0.002~4s+l ) 
(8.72s+1)2 

(5.0.8) 
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0 ) 
0.213s+l 

(0.476s+1)2 

(5.0.9) 

The values of µ for robust stability and performance are shown in Fig. 6b. The 

clear improvement over the diagonal filter is verified by the simulations in Fig. 8. 

It is interesting to note that the responses in Figs. 7 and 8 are similar for the 

nominal case. Hence, as expected, the increase in robustness was not the result 

of additional detuning, which is something that if it was sufficient it would have 

been accomplished by the minimization problem solved for the diagonal filter. 

The reason for the improvement is that the two-filter structure acted directly on 

the singular values of Q and, in addition to appropriate detuning, it also reduced 

its condition number at the critical frequency range. 

Finally, a last comparison will be made between the performance obtained by 

the two-filter IMC controller and the "true" µ-optimum controller, defined as the 

result of minimizing sup"" µL::..o ( Gb) over not a specified filter structure but over 

any stabilizing controller Q or C. However, the iterative approach suggested by 

Doyle (1985) for solving this problem is not guaranteed to converge and indeed, 

it has often failed to converge. For this particular example though, Skogestad 

and Morari (1986) obtained this µ-optimal controller. The values ofµ for robust 

performance and stability are shown if Fig. 6c for the same bounds as in (5.0.3) 

and (5.0.4). Clearly the difference is not significant and this is verified by the 

simulations shown in Fig. 9. 

6. Concluding Remarks. 

The work presented in this paper extends the two-step IMC design procedure 

to open-loop unstable systems. It proposes a meaningfull way for the selection 

of the "weight" in the H 2-minimization problem solved in the first step of the 

synthesis procedure, through Theorem 2.4.2 and Corollary 2.4.1. The method 

quantifies the problem of the design of the IMC filter via the use of the Structured 
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Singular Value and provides analytic expressions for the gradients of the objective 

functions. The special filter structures needed for open-loop unstable plants and 

ill-conditioned plants are given. The promise of the approach as a practical way 

for the design of robust multivariable controllers is demonstrated by the high 

purity distillation column example examined in the paper. 
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- Dashed lines: Setpoints; Solid lines: Outputs. 
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Figure 7. Time response for the one-filter IMC controller. 
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Figure 8. Time response for the two-filter IMC controller. 
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Figure 9. Time response for the µ-optimal controller. 
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Appendix A 

A.1. Proof of Theorem 2.2.1. 

i) We shall show that any Q given by {2.2.2) makes /Sl stable. From 

substitution of (2.2.2) into {L2.2) it follows that all that is required is that 

( Pb~Qi b~QiP Pb~QiP) be stable. From the properties of Qi, it follows 

that the third element in the above matrix is stable. Stability of the other two 

follows by pre- and post-multiplication of that element by p-i, since according 

to assumptions A.l, A.2, P has no zeros at the location of its unstable poles and 

these are the only possible unstable poles in the above matrix. 

ii) Assume that Q makes /Sl stable. Then the difference matrix 

/Sl(Q) - ISl(Qo) = { {Q - Qo) P(Q - Qo) (Q - Qo)P P(Q - Qo)P) 

(A.Ll) 

is stable. The fact that P has no zeros at the location of the unstable poles makes 

the stability of the matrix in (A.Ll) equivalent to the stability of (Q - Q0 ), 

P(Q - Qo)P. Then, when assumption A.Le holds, we can write P = bpP, where 

fa has no zeros at the unstable poles of P and its only unstable poles are at s = 0. 

So, it follows that (Q - Q0 ) = b~Qi v1ith Q1 stable and such that PQ 1P have no 

poles at s = 0. If A.Le does not hold, Qi should also have the property that it 

makes PQiP stable. 

A.2. Proof of Theorem 2.3.1. 

We shall assume that a Q0 exists, which in addition to the properties men

tioned in Theorem 2.2.1, it also produces a matrix (I - PQ0 )Y0 with no poles 

at s = 0, where yo is a diagonal matrix with lv poles at s = 0 in every element, 

with lv the maximum number of such poles in any element of v. If assumption 

A.Le does not hold, then each column of yo also satisfies assumption A.3.b and 

Qo makes (I - PQo)Y0 stable. Its existence will be proven by construction. Sub

stitution of {2.2.2) into (2.L2) and use of the fact that pre- or post-multiplication 
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of a function with an all pass does not change its L2 -norm, yields: 

~(v) = llb; 1bvP.A 1(I - PQo)v - bpbvPMQ1vll~ 

def ll!i - '2Q1 vi I~ (A.2.1) 

L 2 , the space of functions square integrable on the imaginary axis, can be decom-
, 

posed into two subspaces, H2 the subspace of functions with analytic continuations 

in the LHP (strictly unstable functions) and its orthogonal complement Hf that 

includes all stable functions. Then, if Ji is an L2 function, it can be uniquely 

decomposed into two orthogonal functions {Ii}+ E H2 and {/i}- E Hf: 

Ii = {Id++ {Id- (A.2.2) 

From (A.2.1) one can see that if improper Q's are allowed, then Ji may not be 

an L 2 function. However, in order for ~(v) to be finite, the optimal Q1 has to 

make Ji - '2Q1 v strictly proper. The assumption will be made that is the case 

and it will be verified at the solution has this property. Hence to proceed we 

shall use the convention that when a decomposition as in (A.2.2) of a function 

is obtained through a partial fraction expansion, all improper and the constant 

terms are included in {. }- . 

When A.l.c holds, inspection of (A.2.1) shows that '2Qiv can have no poles 

in the closed RHP except possibly for some poles at s = 0 introduced by v. Ji 

however has no poles at s = 0 because (I - PQo)V 0 has no such poles. Hence for 

~(v) to be finite, '2Qiv should have no poles at s = 0. Hence the optimal Q 1 has 

to be such that these poles are cancelled. When A.l.c does not hold, then the fact 

that (I - PQ0 )V0 is stable and A.l.b imply that an acceptable Qi and therefore 

the optimal Qi is such that '2Qi v is stable. We shall assume that Qi has this 

property. It should be verified at the end however that the solution indeed has 

the property. We can then write 

~(v) = ll{!il+ll~ + 11{/i}_ - '2Qivll~ (A.2.3) 
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The first term in the right hand side of (A.2.3) does not depend on Q1. Hence for 

solving (01) we only have to look at the second term. The obvious solution is 

(A.2.4) 

Clearly such a Q1 produces a stable hQ1 v as it was assumed. Also Ii -

f2Q 1v = {Ii}+, which has no improper or constant terms. It should now be 

proved that Q1 's that satisfy the internal stability requirements exist among those 

described by (A.2.4) so that the obvious solution is a true solution. For n = 1, 

(A.2.4) yields a unique Q1, which can be shown to satisfy the requirements by 

following the arguments in the Proof of Theorem 2.4.1 in Appendix A.3. For 

n ~ 2 write 

v:A def (A 
2 = V2 

A )T • •• Vn 

(A.2.5) 

(A.2.6) 

where without loss of generality the first element of v is assumed to be nonzero. 

Also qi is n x 1 and q2 is n x (n - 1). Then from (A.2.4) it follows that 

(A.2.7) 

We now need to show that a stable q2 exists such that Q1 is stable and 

produces a PQ 1P with no poles at s = 0 (or in the closed RHP, when A.Le does 

not hold). Select a q2 of the form: 

k 

q2(s) = Q2(s)s31" IT (s - 1ri)3 (A.2.8) 
i=l 

where Q2 is stable. Then from (A.2.7) it follows that in order for PQ 1P not to 

have any poles at s = 0 it is sufficient that Pv} 1 f2 1{fi}-{P}i.trow have no such 

poles. This holds because the poles in the P on the left cancel with the Pi:/ in 

f2 1 and V1 (and so vi as well) has by assumption A.4 at least as many poles 
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at s = 0 as the 1st row of P. When A.Le does not hold, then the same type of 

argument and the fact that A.3.b holds imply that PQ1P has no poles in the open 

RHP either. Let us now examine the stability of Q1 . The only poles in the open 

RHP may come from v1 1 • Let a be such a pole (zero of v1). Then for stability 

we need to find tl.2 such that 

k 

tl.2(a)V2(a) = a-3
lv fi(a -1ri)-3 /2 1 (a){fi}-(a) (A.2.9) 

i=l 

The above equation always has a solution because the vector V2 (a) is not identi-

cally zero since any common RHP zeros in v were factored out in v0 • 

We shaU now proceed to obtain an expression for Qv. (2.2.2) and (A.2.7) 

yield 

(A.2.10) 

where {. }o+ indicates that in the partial fraction expansion all poles in the closed 

RHP are retained. For (A.2.10), these poles are the poles of b; 1bvv in the closed 

RHP; Pi1 PQ0 = PMQo is strictly stable because Q0 is a stabilizing controller. 

\X/hen A.Le holds, the stability of (I - PQ0 )P and the fact that the residues of P 

at the open RHP poles are full rank imply that at these poles I - PQo = 0. Also 

the fact that (I - PQ0 )Y0 has no poles at s = 0 implies that (I - PQ0 ) and its 

derivatives up to and including the (lv - l)th are also equal to zero at s = 0. When 

A.Le does not hold, the fact that (I - PQ0 )Y0 is stable and that the columns 

of this diagonal yo satisfy A.3.b, imply that I - PQo = 0 at O, 11"1 , ... , 11"k· Hence 

(A.2.10) simplifies to (2.3.4). 

We now need to show that a stabilizing controller Q0 with the property that 

(I -PQ0 )Y0 is stable exists. The selection of a yo with the properties mentioned 

in the beginning of this section and its use instead of Y in (2.4.3) yields such a 

controller. 
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A.3. Proof of Theorem 2.4.1. 

The L 2-norm for a matrix G(s) analytic on the imaginary axis is given by 

llGll2 = __.!:._ trace[G*(iw)G(iw)] 
( 

/

00 dw)l/2 
27r -oo 

(A.3.1) 

Then from (2.L2), (A.3.1) it follows that 

(A.3.2) 

The minimization of ~(V) follows the steps in the proof of Theorem 2.3.1 in 

Appendix A.2 up to (A.2.4), with VM used instead of v. In this case lv is the 

maximum number of poles at s = 0 in any element of V. From the equivalent to 

(A.2.4) equation we obtain 

(A.3.3) 

where VM is used instead of v in Ji. We now have to establish that Q1 is stable 

and produces a PQ1P with no poles at s = 0 (or in the closed RHP, when A.Le 

does not hold). In the case where bp, bv are not equal to identity, the stability of 

Q1 follows from the full rank conditions in A.Le and A.5.b. In PQ1P the poles 

at s = 0 of the P on the ieft cancei with the P'};/ in /21
• As for the P on the 

right, the same follows from assumption A.5.a. When A.Le does not hold, the 

same arguments are true for the open RHP poles as well. Then in the same way 

that (2.3.4) follows from (A.2.7), (2.4.3) follows from (A.3.3). 

A.4. Proof of Theorem 2.4.2. 

A stabilizing controller that solves (02) has to solve (01) for all vi, i = 

1, ... , n. Satisfying (2.3.4) for every vi is equivalent to 

(A.4.1) 

Hence the above Q is the only potential solution to (02). However it is not 

necessary a stabilizing controller since not only stabilizing Q's satisfy (2.3.4) for 
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some v. Indeed if v is non-minimum phase, v- 1 is unstable and this results in 

an unstable Q, which is therefore unacceptable. Hence in such a case, there exists 

no solution to (02), which completes the proof of part (i) of the theorem. 

In the case where v-1 is stable (V minimum phase), the controller given by 

(A.4.1) is stable and therefore it is the same as the one given by (2.4.3). This fact 

can be explained as follows. We have 

v =VVo (A.4.2) 

where 

Vo= diag(vJ,v5, ... ,v0) (A.4.3) 

Since v-1 is stable, (A.4.2) represents a factorization of V similar to that in 

(2.4.2). From spectral factorization theory it follows that 

V(s) = VM(s)A (A.4.4) 

where A is a constant matrix, such that AA* = I. Then from (2.4.3) it follows 

that the use of V instead of VM does not alter Q because A cancels. 

Let us now assume without loss of generality that the first j vi's have the 

same vb 's. Consider a v that is a linear combination of v 1, ••• , vi: 

Then it follows that 

vo(s) = vJ(s) = ... = v~(s) 

v(s) = a1v1(s) + ... + a;vi(s) 

(A.4.5) 

(A.4.6) 

(A.4.7) 

One can easily check that a Q that satisfies (2.3.4) for v 1 , ... , vi, will also satisfy 

(2.3.4) for the v given by (A.4.7) because of the property 

{a1/1 (s) + ... + a;f;(s)}. = a1 {Ii (s)}. + ... + a;{f;(s)}. (A.4.8) 
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But then from Theorem 2.3.l it follows that if a stabilizing controller Q satisfies 

(2.3.4) for v, then it minimizes the ISE ~(v). 

Appendix B 

B.1. Proof of Theorem 3.4.1. 

For a matrix K partitioned as 

define 

(B.1.1) 

(B.1.2) 

Then the transfer function relating v to e in Fig. 5 is R( GF, A) and since Fig. la 

and Fig. 5 are equivalent, we get by using (1.1.5) 

(B.1.3) 

The properties of the SSV and (3.4.8) imply (Doyle,1985) that 

(B.1.4) 

From (3.4.6), (3.4.7), (B.1.2), (B.1.3), it follows after some algebra that 

R(Gj~ll' A)= ( xoEv O) (B.1.5) 

Then from (B.1.4),(B.1.5) and the definition of the singular values, it follows, since 

xoEv is a vector: 

sup (x5v* E* Ev)= 1 Vw 
AE.0.. 

===> sup /+oo v• E* Ev dw 
AE.0.. -oo 

~ (3.4.9) 

B.2. Proof of Theorem 3.4.2. 

!
+oo 

= x02 dw 
-00 

QED 
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Let 0 < x 2 ::=; x1. Then we can write x2 = x1/3, where 0 < /3 ::=; 1. From 

(3.4.10) we have 

(B.2.1) 

Then the properties of the singular values yield 

(B.2.1) =====? u(DMX2 n-1
) ::; it ( ~ :1) u(DMX 1 n-1

) 

=====? u(DMx2 n-1):::; u(DMx 1 n-1) VD ED 

QED 
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The two-step Internal Model Control procedure is used for the synthesis of 

multivariable discrete controllers for open-loop stable or unstable plants. The 

plant models used in the proposed method are transfer function matrices. In the 

first step the controller is designed so that the L 2-error (sum of squared errors) 

is minimized for every setpoint or disturbance vector in a set and their linear 

combinations. A modification is then introduced to avoid the potential problem 

of intersample rippling. In the second step a low-pass filter is designed so that 

stability and good performance characteristics are maintained in the presence 

of model-plant mismatch. The continuous plant output is considered in order 

to avoid bad intersample behavior. The filter parameters are obtained as the 

result of a minimization of a non-conservative robustness measure, the Structured 

Singular Value. Special filter structures have to be used for open-loop unstable 

or ill-conditioned plants. 
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The design of a control system requires the use of a process model, either 

explicitly or implicitly. However, modeling error is unavoidable and it results 

in a mismatch between the model and the actual plant. Other reasons for such 

a mismatch are nonlinearities that manifest themselves as modeling error when 

a linear model is used for the controller design. Whatever the reasons for the 

modeling error, the result is that a controller designed for a particular model may 

perform quite differently when it is implemented on the actual process. Modern 

control theory addresses this problem with the design of controllers that are robust 

with respect to model-plant mismatch, i.e., of control systems that will perform 

within certain design specifications, provided that the modeling error does not 

exceed certain bounds. 

The Internal Model Control (IMC) structure, introduced by Garcia and 

Morari (1982), has been widely recognized as very useful in clarifying the is

sues related to the mismatch between the model used for controller design and 

the actual process. An important characteristic of the structure is that it gives 

rise to a two step controller synthesis procedure. In the first step the assumption 

is made that the model and the plant are the same, and as a result the design 

of an IMC controller with desired performance characteristics in this first step is 

significantly simplified. The second step deals with the design of a low-pass filter 

such that robustness with respect to model-plant mismatch is guaranteed, in the 

sense that the system performance will remain close to the one for the nominal 

case (no modeling error), even when such a mismatch exists. 

1. Internal Model Control. 

The IMC structure (Fig. la), is mathematically equivalent to the classical 

feedback structure (Fig. lb). P(z) represents the model and P(z) the actual 

discretized plant. P(z) is obtained by adding a zero order hold in front of the 

continuous plant and then taking the z-transform. P(z) is assumed to be a square 
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n x n matrix of full normal rank, i.e., it may be singular only at a finite number 

of z's. The IMC controller Q(z) and the feedback C(z) are related through 

Q = C(I + PC)-1 {1.0.1) 

c = Q(I - PQ)- 1 (1.0.2) 

where P is the process model. Note that throughout this paper, unless otherwise 

pointed, all the transfer function matrices are z transforms. 

Some advantages of using the IMC structure can be seen by examining the 

- -structure for P = P and P # P: 

P=P. 

In this case the overall transfer function connecting the setpoints r(z) and 

disturbances d(z) to the errors e = y - r, where y(z) are the process outputs is 

def -e = y - r = (I - PQ)(d - r) = E(d - r) (1.0.3) 

Hence the IMC structure becomes effectively open-loop (Fig. 2a) and the design 

of Q is simplified. Note that the IMC controller is identical to the parameter of 

the Q-parametrization (Zames, 1981). Also the addition of a diagonal filter F by 

writing 

Q=QF (1.0.4) 

introduces parameters (the filter time constants) which can be used for adjusting 

on-line the speed of response for each process output. 

P-=j:.P. 

The model-plant mismatch generates a feedback signal in the IMC structure 

which can cause performance deterioration or even instability. Since the relative 

modeling error is larger at higher frequencies, the addition of the low-pass filter 

F (Fig. 2b) adds robustness characteristics into the control system. In this case' 



r 

d 

r 

150 

d 

F p 

(a) 

d 

F p 

-p 

(b) 

Figure 2. IMC structure with the filter F. 

(a) P = 1'. 

(b) P ¥- 1'. 

y 



151 

the closed-loop transfer function is 

- - - def e = y - r =(I - PQF)(I - (P - P)QF)- 1(d- r) = E(d- r) {1.0.5) 

Hence the IMC structure gives rise rather naturally to a two-step design proce-

dure: 

- -Step 1: Design Q, assuming P = P. 

Step 2: Design F so that the closed-loop characteristics that Q produces in 

Step 1, are preserved in the presence of model-plant mismatch (P # P). 

In previous IMC work, Garcia and Morari (1985a) proposed for open-loop 

stable plants the direct design of the closed-loop transfer function. In Step 1 this 

approach was rigorously quantified in its general form by Zafiriou and Morari 

(1986b) by using the concept of zero directions, who also took into account inter

sample rippling and modified the approach so that time delays and outside the 

unit circle (UC) zeros were considered in one single step. However, the exten-

sion of the above approach or of the impulse response formulation of the problem 

(Garcia and Morari, 1985b) to open-loop unstable systems is very awkward. The 

method proposed in this paper takes care of both open-loop stable and unstabie 

plants in a general way by minimizing the Sum of Squared Errors (SSE) for a set 

of setpoints or disturbance vectors and their linear combinations, if possible. 

With respect to the second step, this paper proposes the design of the IMC 

filter by minimizing an appropriate robustness condition. Potential modeling er-

rors, described as uncertainty associated with the process model, can appear in 

different forms and places in a multivariable model. This fact makes the derivation 

of non-conservative conditions that guarantee robustness with respect to model-

plant mismatch quite difficult. The Structured Singular Value (SSV), introduced 

by Doyle (1982), has gained a lot of popularity recently, because it takes into 

account the structure of the model uncertainty and it allows the non-conservative 
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quantification of the concept of robust performance. The objective function for 

the minimization problem is formulated in such a way so that the continuous plant 

output is considered and the problem of intersample rippling does not occur. 

2. Step 1: Design of Q. 

Throughout this section the assumption is made that P = P. Details on 

the definition of multivariable zeros and poles and their degrees and orders can 

be found in the literature (Desoer and Schulman, 1974). In general a pole of an 

element of P(z) is also a pole of P(z) and the roots of det[P(z)] = 0 are the zeros 

of the matrix P(z). 

2.1. Stabilizing Q's. 

It will be assumed that there are no open-loop unstable poles of the continuous 

plant, which after sampling do not appear in the discretized plant, i.e., no open

loop poles become unobservable because of sampling. If this is not the case, then 

a small change of sampling time will make those poles observable. 

2.1.1 Internal Stability. 

The concept of Internal Stability can be motivated by pointing out that the 

signals between blocks constituting a control system are subject to (possibly very 

small) errors. In practice it cannot be tolerated that these small errors lead to 

unbounded signals at some other location in the control system. 

Definition 1: A linear time invariant control system is internally stable, if the 

transfer functions between any two points of the control system are stable, i.e., 

have all poles inside the UC (for discrete systems). 

In a control system many different points can be selected for signal injection 

and observation but most of the choices are equivalent. For example, for the 

system in Fig. 3a, y and e differ only by a bounded signal r and their observation 

reveals the same information about internal stability. Also, from the point of view 

of internal stability the effect of d and r on u is equivalent. Simple arguments 
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of this type reveal that there are only two "independent" outputs, which can be 

chosen as y and u and two "independent" inputs which can be chosen as r and 

u'. Thus the classic feedback system is stable if and only if all elements in the 

transfer matrix in (2.1.1) have all their poles inside the UC. 

(y) _ (PC(I + PC)-1 

u - C(I + PC)-1 
(I+ Pc)-1 p ) ( r ) 

-C(I + PC)- 1 P u' (2.1.1) 

Equivalently the internal stability requirements for the classical feedback structure 

is that all elements in the matrix ISl in (2.1.2) are stable: 

IS!= ( C(I + Pc)- 1 PC(!+ PC)-1 C(I + Pc)-1 p (I+ Pc)-1 p) 

(2.1.2) 

The internal stability condition clarifies the fact that mere cancellation of unstable 

poles by zeros is not enough to guarantee the stability of the system. It becomes 

evident that instability arising from unstable pole-zero cancellations is not due to 

inexact cancellation (as it has been argued in the past) but is solely due to the 

fact that the cancellation does not satisfy the internal stability requirements. 

Use of (1.0.1) or (1.0.2) in (2.1.2) yields 

IS!= ( Q PQ QP (I - PQ)P) (2.1.3) 

Note that stability of each element in (2.1.3) implies internal stability when the 

control system is implemented as the feedback structure in Fig. lb, where C is 

obtained from the Q used in (2.1.3) through (1.0.2). 

In order for the control system to be stable when implemented in the IMC 

structure of Fig. la, we have to examine the transfer functions between all possible 

system inputs and outputs. From the block diagram in Fig. 3b we note that there 

are three independent system inputs r, u1 and u2 and three independent outputs 

y, u and y. For no model error (P = f>) the inputs and outputs are related through 
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the following transfer matrix. 

(1- PQ)P P) ( r ) 
-QP 0 U1 

-PQP P u2 

(2.1.4) 

In order for the matrix in (2.1.4) to be stable we need that the matrix IS2 be 

stable: 

IS2 = ( Q PQ QP (I - PQ)P PQP P) (2.1.5) 

Hence if the process P is open-loop unstable, I S2 will also be unstable and the 

control system has to be implemented in the feedback structure of Fig. lb. Still, 

the-two step IMC design procedure can be used for the design of Q, as described 

in the following sections. C can then be obtained from (1.0.2) and the structure 

in Fig. lb implemented. In this case, special attention should be paid to the 

construction of C, so that all the common on or outside the UC zeros of Q and 

(I - PQ) are cancelled in (1.0.2). Minimal or balanced realization software can 

be used to accomplish that. 

Note that when the process is open-loop stable, it follows from (2.1.3) or 

(2.1.5) that the only requirement for internal stability is that Q is stable. 

2.1.2. Parametrization of All Stabilizing Q's. 

The process P can in general be open-loop unstable. The following assump-

tion simplifies the solution of the optimization problem: 

Assumption A.1. If 7r is a pole of the model P outside the UC, then: 

a. The order of 7r is equal to 1. 

b. P has no zeros at z = 11". 

c. The residual matrix that corresponds to 7r is full rank. 

Assumption A.La is made to simplify the notation and it is the usual case. 

The results in this paper can be extended to higher order poles. A.Lb is true 

for SISO systems but not necessarily for MIMO (Kailath, 1980). However, the 
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assumption is not restrictive because the presence of a zero at z = 7r implies 

an exact cancellation in det[P(z)], which usually does not happen after a slight 

perturbation in the coefficients of P is introduced. A.1.c is always true for SISO 

systems, but it can be quite restrictive for MIMO systems. Instead of A.1.c 

however, an additional assumption can be made on the external input for which 

the optimal controller is designed. This is discussed in Section 2.2.1. 

Assumption A.1 is not made for poles at z = 1 because more than one such 

poles may appear in an element of P, introduced by capacitances that are present 

in the process. The following assumption true for all practical process control 

probiems is made: 

Assumption A.2. Any poles of P or P on the UC are at z = 1. Also P has no 

zeros on the UC. 

Let 7r1, ••• , 7rk be the poles of each element of P outside the UC. Define the 

all pass 

(2.1.6) 

where the superscript(*) denotes complex conjugate (and transpose when applied 

to a matrix). If A.1.c does not hold, define 

(2.1.6') 

The following Theorem holds, where "proper" means that the degree of the nu-

merator in any element of P(z) is less than or equal to that of its denominator. 

Theorem 2.1.1. 

Assume that Q0 (z) is a proper transfer matrix that satisfies the internal 

stability requirements of Section 1.2, i.e., it produces a matrix ISl with stable 

elements. Then all proper Q's that make ISl stable are given by 

(2.1. 7) 
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where Q1 is any proper and stable transfer matrix such that: 

i) If A.l.c holds, PQ 1 P has no poles at z = 1. 

ii) If A.l.c does not hold, PQ 1P has no poles on or outside the UC. 

Proof: See Appendix A.l. 

Note that if P(z) is stable, then Theorem 2.1.1 implies that any proper and 

stable Q(z) is acceptable, as it was remarked in Section 2.1.1. 

2.2. H 2 -0ptimal Q(z). 

2.2.1. Definitions. 

We define L 2 as the Hilbert space of complex valued functions f(z) defined 

on the unit circle (UC = { ei8
1 - 7r ~ 0 < 7r}) and square-integrable with respect 

to 0. For a vector function f, the norm on L2 is given by: 

d(:} 
) 

1/2 

(2.2.1) 

L 2 can be decomposed into two subspaces, H 2 the closed subspace of functions 

having analytic continuations inside the UC and its orthogonal complement Hf. 

Note that with these definitions a constant function is in H2. H2 also includes 

all rational z-transfer functions that are strictly unstable, i.e., which have all 

their poles strictly outside the UC (including poles at z = oo (improper transfer 

functions)). All strictly proper (numerator degree less than denominator degree), 

stable rational z-transfer functions, are in H;}. 

If f(z) is proper, stable and {fk} is the time domain sequence of vectors 

corresponding to it, i.e., 

(2.2.2) 

then we also have 

( 

00 ) 1/2 

111112 = "fa![fk (2.2.3) 

where the superscript (T) denotes transpose. Hence if the error signal e(z) is 

stable, then the square of its L 2-norm is equal to the SSE. 
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For a specified external system input v (v = d for r = O; v = -r for d = 0), 

define by using (1.0.3) 

¢(v) def llell~ = llEvll~ = ll{I - PQ)vll~ {2.2.4) 

Then ¢(v) is the SSE for the particular input v. For every external input v that 

will be considered in this paper the following assumption can be made without 

loss of generality: 

Assumption A.3. 

a. The poles of each nonzero element of v outside the UC (if any) are the first k' 

poles 7ri of the plant outside the UC, each with degree 1. 

b. If A.Le does not hold, then every nonzero element of v (or v) includes all the 

outside the UC poles of P, each with degree 1. 

To simplify the arguments in the paper, we shall assume that if A.3.b is 

satisfied, then A.1.c is not. In this way the proper choices in the definitions and 

the proofs will be made on the basis of A.1.c. If both A.1.c and A.3.b hold, then 

the results that apply to the case where A.Le does not hold but A.3.b does, are 

still correct. 

Define 

(2.2.5) 

If A.1.c does not hold, define 

bv(z) = 1 (2.2.5') 

A different assumption is made for the poles of v at z = 1: 

Assumption A.4. Let l, be the maximum number of poles at z = 1 that an element 

of the ith row of P has. Then the ith element of v has at least li poles at z == 1. 

Also v has no other poles on the UC and its elements have no zeros on the UC. 

The above assumptions are not restrictive in the case where v is an output 

disturbance d, because in a practical situation we want to design for an out-
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put disturbance produced by a disturbance that has passed through the process. 

Hence, d usually includes the unstable process poles (e.g., an output disturbance 

d produced by a disturbance in the manipulated variables). Note that the con

trol system will still reject other disturbances with fewer unstable poles, without 

producing steady-state offset. The assumption is different for poles at z = 1 be

cause their number in each row of P can be different, since capacitances may be 

associated with only certain process outputs. Also the output disturbance may 

have more poles at z = 1 than the process (e.g., a persistent disturbance in the 

manipulated variables). 

The assumptions may be restrictive in the case of setpoints though. However 

for setpoint tracking the use of the Two-Degree-of-Freedom structure, which will 

be discussed briefly in Section 2.5, allows us to disregard the existence of any 

unstable poles of P and therefore this assumption need not be made for setpoints. 

The plant P can be factored into an allpass portion PA and a minimum phase 

(MP) portion PM: 

PA ;S s+al--1.o and ""UCh tha+ P* feiB) p · fei8) - T 
• u v .... u "' L L ~ .. A\ , .. A\ } - .I.. A l p-1 . .L b' 1so M is si,a le. 

(2.2.6) 

PM has 

the additional property that both PM and Pi/ are proper. In the case where 

P is scalar, this factorization can be easily accomplished by writing PA as a 

scalar allpass (similarly to bp or bv) containing as zeros the outside the UC zeros 

of P, times the time delays of the plant so that PM is semi-proper (numerator 

degree = denominator degree). In the general multivariable case, this "inner

outer" factorization can be accomplished through the spectral factorization of 

P(z-1 )T P(z), where (T) denotes transpose. Details on these problems can be 

found in the literature (Motyka and Cadzow, 1967; Anderson et al., 1974; Chu, 

1985; Doyle et al., 1984). 

2.2.2. Minimization of ¢(v) for One Specific v. 
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The objective in this section is to consider only one specific input v(z) and 

solve the problem: 

:rp.in <f>(v) 
Q€Q 

where Q denotes the set of all stabilizing Q's described by Theorem 2.1.1. 

(Pl) 

Let v0 (z) be the scalar allpass with the property vo(l) = 1, which includes 

the common outside the UC zeros and time delays of the elements of v(z). Write 

v(z) = vo(z)v(z) (2.2.7) 

where v(z) is a vector. Hence fJ is proper with at ieast one eiement semi-proper 

and there is no point z on or outside the UC where v becomes identically zero. 

The following theorem holds: 

Theorem 2.2.1. 

Any stabilizing Q that solves (Pl) satisfies 

Q- ... - b b-lp-1{ -lb-lb p-1 "} V-Zpv M Z p vAV* (2.2.8) 

where the operator {·}. denotes that after a partial fraction expansion of the 

operand, only the strictly proper terms are retained except for those corresponding 

to poles of PA_ 1
• Furthermore, for n 2: 2 the number of stabilizing controllers that 

satisfy (2.2.8) is infinite. Guidelines for the construction of such a controller are 

given in the proof. 

Proof: See Appendix A.2. 

Note that not every Q satisfying (2.2.8) is necessarily a stabilizing controller. 

2.2.3. Minimization of <f>(v) for a Set of v's. 

Minimizing the SSE just for one vector v is not very meaningful, because of 

the different directions in which the disturbances enter the process or the setpoints 

are changed. What is desirable is to find a Q, that minimizes <f>(v) for every single 
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v in a set of external inputs v of interest for the particular process. For an n x n 

P, let us consider the n vectors vi ( z), i = 1, ... , n. Define 

(2.2.9) 

where v1 , ••• , vn satisfy assumption A.3. An additional assumption on V is 

needed: 

Assumption A.5. 

a. V has no zeros at the location of its unstable poles or on the UC and v-1 

cancels the poles off> at z = 1 in v-1 f>. 

b. If A.Le holds, the residual matrices for the outside the UC poles of V are full 

rank; if A.Le does not hold, then v-1 cancels the outside the UC poles of P in 

v-1.P. 

Note that satisfaction of assumptions A.3.b and A.4 for each column of V 

does not necessarily imply satisfaction of A.5. However such a V can be easily 

constructed. One way is to obtain V as P times a matrix with no outside the UC 

poles and no zeros on the UC. This case corresponds to the physically meaningful 

situation, where the output disturbances are produced by disturbances in the 

manipulated variables. Another simple way is to use a diagonal V, in which case 

satisfaction of A.3 and A.4 by every column of V implies satisfaction of A.5 by 

V. This situation is discussed further in Corollary 2.2.L 

Factor V similarly to P (use V ( z) V ( z- 1) T if spectral factorization theory is 

used): 

(2.2.10) 

Let us now consider the problem: 

(P2) 
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Hence the Q that solves (P2) minimizes the sum of the squares of the L2-

errors (SSE) that each of the inputs vi would cause when applied to the system 

separately. 

Theorem 2.2.2. 

The controller 

Q- _ b b-1p-1{ -1b-1b p-1v } v-1 
-Zpv Mz P VA M•M 

is the unique solution to (P2). 

Proof: See Appendix A.3. 

A more meaningful objective would be to solve: 

Vi= 1, ... ,n 

(2.2.11) 

(P3) 

However a Q that solves (P3) will also solve (P2). Then from Theorem 2.2.2 it 

follows that if a solution to (P3) exists, it is given by (2.2.11). Factor each of the 

vi in the way used in (2.2.7): 

Define 

Theorem 2.2.3. 

V i(z' _ .,i (z'·..,i tz\ J - vo J v \ J (2.2.14) 

(2.2.15) 

i) If V(z) is non-minimum phase (i.e., v-1 is unstable or improper), then there 

exists no solution to (P3). 

ii) If V(z) is minimum phase, then use of V instead of VM in (2.2.11) yields 

exactly the same Q, which also solves (P3) and it minimizes ¢(v) for any v 

that is a linear combination of vi's that have the same vb's. 

Proof: See Appendix A.4. 
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The following corollary to Theorem 2.2.3 holds: 

Corollary 2.2.1: 

Let 

(2.2.16) 

where v1 (z), ... , Vn (z) are scalars. Then use of V instead of VM in (2.2.11) yields 

exactly the same Q, which minimizes <f>(v) for the following n vectors: 

(2.2.17) 

and their multiples, as well as for the linear combinations of those directions that 

correspond to Vi's with the same outside the UC zeros in the same degree and the 

same time delays. 

2.2.4. Setpoint Prediction 

In the case of setpoint tracking, future values of r are often known and sup

plied to the computer ahead of time. Then if at time t the setpoint value that is 

fed to the control algorithm as z- 1{r(z)} is the one we wish the plant output to 

reach at time t + NT, when T is the sampling time, the objective function has to 

be modified to: 

<f>N(v) = li{z-N I - PQ)rll~ (2.2.18) 

When the above objective function is used in the minimization problems (Pl), 

(P2), (P3), the resulting expressions for the H2-optimal controller are the same 

as in Theorems 2.2.1, 2.2.2, 2.2.3, but with the term z-N-l used instead of z- 1 

inside {·} •. All the steps in the proofs remain the same when (2.2.18) is used 

rather than (2.2.4). 

2.3. Intersample Rippling. 

The H2-optimal controller minimizes the SSE. Therefore it completely disre

gards the plant output's behavior between the sample points. The result is that 
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the H 2-optimal controller may produce an excellent performance at the sample 

points but suffer from severe intersample rippling. Zafiriou and Morari (1985) 

examined this type of controller for SISO systems and showed that the problem 

is caused by zeros of P(z) that are close to the point (-1,0) on the z-plane, which 

give rise to poles of the H2-optimal Q that are close to (-1,0). A modification was 

introduced to substitute such poles in Q with poles at z = 0. The new Q was 

shown to be free of the problem of intersample rippling and to combine desirable 

deadbeat type characteristics to those of the H2-optimal. This section extends the 

modification to MIMO systems and general open-loop stable or unstable plants. 

It should be pointed out that this modification is sufficient only if there are no 

open-loop oscillatory poles in the continuous plant transfer function, which have 

become unobservable after sampling. 

Let Q H ( z) be an H roptimal Q obtained according to the previous sections. 

Also let c5 ( z) be the least common denominator of P ( z), and Ki, i = 1, ... , p be 

the roots of b'(z) close to (-1,0) (or in general with negative real part). Define 

q_(z) = z-P ITP (z - Kj) 

(1 - K, ·) 
i=l ' 

(2.3.1) 

Then Q H is modified as follows: 

Q(z) = QH(z)q-(z)b(z) (2.3.2) 

where the scalar b(z) is selected so that ISl in (2.1.3) and (1-PQ)V remain stable. 

?ri, i = 0, 1, ... , k are the unstable roots (including 7ro = 1) of the least common 

denominator of P(z), V(z). Let the multiplicity of each of them be mi. Note that 

the multiplicity of the ones that are outside the UC is equal to 1, according to A.1, 

A.3. Remember that according to assumptions A.3, A.4, V has at least as many 

poles at z = 1 as P and each pole of V outside the UC is also a pole of P. Then 

since QH makes ISl and {I - PQH )V stable, it follows that the requirements on 
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b(z) are: 

di -
-d . (1- q_(z)b(z))lz=1ro = 0, 

zJ 
(i = O, ... , mi - 1), i = 0, 1, ... , k 

We can write 
m-1 

b(z) = L bjz-i 

where 

j=O 

k 

m=:Lmi 
i=O 

(2.3.3) 

(2.3.4) 

(2.3.5) 

and then compute the coefficients bj,j = 0, ... , m - 1 from (2.3.3). Note that 

since none of the 11"i's is 0 or oo, (2.3.3) is equivalent to 

(j = 0' ... ' ffii - 1)' i = 0' 1, ... ' k 

(2.3.6) 

Both q _ (>. - I) and b( >.. - l) are polynomials in >.. and therefore their derivatives 

with respect to >.. can be computed easily. Then (2.3.6) yields a system of m 

linear equations with m unknowns (b0 , bi, ... , bm- 1). The resulting controller Q 

combines the desirable properties of the H2-optimal controller and deadbeat type 

controllers. 

2.4. Q for Specific Cases. 

This section looks at simplified forms of the general expressions for the H2-

optimal controller, for specific systems and external inputs. 

2.4.1. Stable P. 

We have bp = bv = 1. Then (2.2.11) simplifies to 

Q- p-1{ -lp-ly } y-1 
H=ZM Z A M•M (2.4.1) 

2.4.2. Minimum phase P. 

P(z) cannot truly be MP for a physical system. Even if the Laplace transfer 

matrix representing the continuous plant is MP but strictly proper (as a physical 
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system), the discretized plant P(z) will still have a delay of one unit because of 

the sampling. Hence PA= z- 1 I, PM= zP and (2.2.11) yields 

(2.4.2) 

where K is the constant term in a partial fraction expansion of b; 1bv VM or since 

b;1 , bv, VM are semi-proper, K is the product of the constant terms of the PFE's 

of b; 1 ,bv, VM. After some algebra we get 

k 

K = VM,O II (-?r;}m' (2.4.3} 
i=k'+l 

where k, k', ?rj are defined in assumptions A.2, A.3, and VM,o is the first non-zero 

matrix in the impulse response description of V(z), which can be obtained by long 

division and is equal to the constant term in the PFE of VM(z). 

2.4.3. Example. 

Consider the continuous MP system 

b 
Pc(s) = b, -s+ 

b>O (2.4.4) 

and assume that a step disturbance acts at the process input, i.e., the continuous 

externai input Ve ( s) is 
b 

Vc(s) = dc(s) = ( b) s -s+ 

Then for a sampling time T we have 

1- ebT 
P(z) = bT z-e 

(1 - ebT)z 
V ( z) - _______;_ _ _____;__ 

- (z - l)(z - ebT) 

VM(z) = zV(z) 

(2.4.5) 

(2.4.6) 

(2.4. 7) 

(2.4.8) 

Note that ebT > 1 since b > 0. The H2-optimal controller can be obtained from 

(2.4.2). We have bp = bv and so from (2.4.8) 

K = V Mo = 1 - ebT 
' 

(2.4.9) 
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Substitution of (2.4.6), (2.4.7), (2.4.8), (2.4.9) into (2.4.3) yields 

(2.4.10) 

From Section 2.3 it follows that in this case we have Q(z) = QH(z) 

2.5. Two-Degree-of-Freedom Structure. 

From the discussion of the Internal Stability requirements in Section 2.1, it 

follows that unstable plant poles limit the possible choices of Q and thus the 

achievable performance. This however need not be so for setpoint tracking. Con-

sider the general feedback structure of Fig. 4. For the disturbance behavior it 

is irrelevant if the controller is implemented as one block C as in Fig. lb, or as 

two blocks as in Fig. 4. Hence the achievable disturbance rejection is restricted 

both by the outside the UC zeros and poles of P as the quantitative results of the 

previous sections indicate. 

Let us now proceed from the point where a stabilizing Q and the correspond

ing C have been found through the results of the previous sections, which produce 

a satisfactory disturbance response. We can then split C into two blocks C1 and 

C2 such that Ci is minimum phase and C2 is stable. Then one can see that the 

only outside the UC zeros of the stabilized system PC1(I + PC1C2)- 1 are those 

of the process P. Thus C3 can be designed without regard for the unstable poles 

of P and the achievable setpoint tracking is restricted by the outside the UC zeros 

of P only. 

In summary, the achievable disturbance response of a system is restricted by 

the presence of the plant zeros and poles that lie outside the UC regardless of how 

complicated a controller is used. If the Two-Degree-of Freedom controller shown 

in Fig. 4 is employed, the achievable setpoint response is restricted only by the 

zeros. A more rigorous discussion can be found in Vidyasagar (1985). 

3. Step 2: Design of F. 
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d 

r p 

Figure 4. Two-degree-of-freedom feedback structure. 
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This section deals with the design of the IMC filter F(z) so that the perfor-

mance characteristics obtained in Step 1 are preserved in the presence of model-

plant mismatch. 

3.1. Robustness Conditions. 

3.1.1. Structured Singular Value. 

Potential modeling errors, described as uncertainty associated with the pro-

cess model, can appear in different forms and places in a multivariable model. 

This fact makes the derivation of non-conservative conditions that guarantee ro-

bustness with respect to model-plant mismatch difficult. The Structured Singular 

Value (SSV), introduced by Doyle (1982), takes into account the structure of the 

model uncertainty and it allows the non-conservative quantification of the concept 

of robust performance. 

For a constant complex matrix M the definition of the SSV µA (M) depends 

also on a certain set A. Each element .6. of A is a block diagonal complex matrix 

with a specified dimension for each block, i.e. 

(3.1.1) 

Then 

~M) = min {u(-6.)jdet(I - M-6.) = O} 
µA ..6.EA 

(3.1.2) 

and µA(M) = 0 if det(I- M-6.)-:/= 0 V .6. E A. Note that u is the maximum 

singular value of the corresponding matrix. 

Details on how the SSV can be used for studying the robustness of a control 

system can be found in Doyle (1985), where a discussion of the computational 

problems is also given. For three or fewer blocks in each element of A, the SSV 

can be computed from 

(3.1.3) 
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where 

(3.1.4) 

and Imi is the identity matrix of dimension m; x m;. For more than three blocks, 

(3.1.3) still gives an upper bound for the SSV. 

3.1.2 Model Uncertainty 

In order to effectively use the SSV for designing F, some rearrangement of 

the block structure is necessary. The IMC structure of Fig. la can be written as 

that of Fig. Sa, where v = d- r,e = y - rand 

G= 
0 Q \ 
I PQ) 
-I 0 

(3.1.S) 

where the blocks 0 and I have appropriate dimensions. The block (P - P) rep-

resents the model-plant mismatch. In order to design a control system that takes 

into account this modeling error, we need to have some information on how large 

this mismatch can be. For example we might know a bound la(w), where w is the 

frequency (z = eiwT), on the additive error: 

'3 1 ,.., l .. OJ 

where a(·) is the maximum singular value of(·). However (3.1.6) represents only 

a very simple way to describe model uncertainty. For multivariable systems, 

such uncertainty may appear in many different places in the matrix, like specific 

parameters, elements of P, the inputs or outputs of P, etc. It may then be very 

conservative to lump this information into (3.1.6). However, provided that we can 

write P as a linear fractional transformation of its uncertain points, the structure 

in Fig. Sa can always be transformed into that in Fig. Sb, where ~ is a block 

diagonal matrix with the additional property that 

Vw (3.1. 7) 
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The superscript u in au denotes the dependence on au not only on a but also 

on the specific uncertainty description available for the model P. We shall not 

demonstrate in detail here, how au can be obtained from a. For some com-

mon cases of model uncertainty, the expressions can be found in the literature 

(Zafiriou and Morari, 1986c). For the simple case described by (3.1.6), this can 

be accomplished by simply multiplying the first row of a with la. 

Let au be partitioned as 

Then Fig. 5b can be written as Fig. 6 with 

a~2) + ( a~3) (I - Fau )-1 F(au au au 33 31 
22 23 

def ( Gf1 - aF 
21 

(3.1.8) 

(3.1.9) 

Note that for P,P, z-transforms and therefore periodic in w, the block .6. will 

also be periodic. Hence in this case only the frequencies from 0 to 71" /T need be 

considered in (3.1.7). However in Section 3.1.4 it will become apparent that in 

order to avoid bad intersample behavior, we also have to consider the continuous 

plant, described by some Laplace transfer function Pc(s) (and Pc(s) for the model). 

Clearly the modeling error in the description of the discretized plant is related to 

that in the continuous plant description. For example, let us assume that we have 

a bound on the additive uncertainty for the continuous plant: 

a(Pc(iw) - Pc(iw)) ~ lc(w) (3.1.10) 

Then for the discretized plant we have 

P(z) - P(z) = Z .c-1{H(s)(Pc (s) - Pc(s))} (3.1.11) 
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Figure 5. Model uncertainty block diagrams. 
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Figure 6. SSV block diagram. 
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where H(s) is the zero order hold. Then from the property of any z transform 

a(z) = Z .c-1{ac(s)}: 

00 

a( eiwT) = ~ L a( iw + ik27r /T) 
k=-oo 

(3.1.12) 

the singular value property a(A + B) ::; a(A) + a(B), and {3.1.10), {3.1.11), it 

follows that 

00 

a(P(eiwT) - P(eiwT)) ::; ~ L IH(iw + ik27r /T)llc(iw + ik27r /T) {3.1.13) 
k=-oo 

H(s) is small at frequencies higher than 7r/T and goes to 0 as fast as 1/w as 

w -+ oo. Therefore only a few terms around k = 0 are important in the infinite 

sum. Also note that for a physical system, le ( w) -+ 0 at least as fast as 1 / w, as 

w -+ oo, and hence the sum converges. Then the bound la in (3.1.6) can be set 

equal to the right hand side of (3.1.13). 

However, it is not always possible to obtain in a non-conservative way a 

mathematical description for the uncertainty in the z-domain, starting from the 

uncertainty in the s-domain. If first principles models are not available, these 

descriptions may be the result of experiments conducted with different sampling 

times, of which one is small enough to approximate the continuous system. A 

discussion of identification techniques is beyond the scope of this paper. Details 

on such methods and the resulting modelling error can be found in the literature 

(e.g., Jenkins and Watts {1969), Astrom and Wittenmark (1984)). 

3.1.3. Robust Stability 

We now require that the matrix IS! as given by (2.1.2) is stable for all possible 

plants P. The design of Q according to Section 2 resulted in a stable 181 for 

P = P. In order for 181 to remain stable we need to satisfy the requirements 

that as we move in a "continuous" way from the model P to the plant P, no 

closed-loop poles cross the UC and no such poles suddenly appear outside the' 
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UC. The latter requirement is satisfied if we assume that the model and the plant 

have the same number of poles outside the UC. If this is not the case, another 

sufficient condition is that GF is a stable matrix and only stable D.'s are possible. 

The SSV can be used to determine if any crossings of the UC occur. Then we 

can say that the system is stable for any of the plants in the set defined from the 

bounds on the model uncertainty and which have the same number of outside the 

UC poles as the model, if and only if (Doyle, 1985) 

O ::; w ::; 1r /T (3.1.14) 

3.1.4 Robust Performance 

The problem of intersample rippling was addressed for the first step of the de

sign procedure in Section 2.3. There, a simple modification was sufficient because 

the model P ( z) was known exactly. In this section however we have to consider the 

situation where P # P and as a result we have to examine the continuous plant 

output Yc(s) in order to avoid bad intersample behavior. The obstacle in doing so 

is the fact that the relation between Yc(s) and rc(s) or dc(s) (continuous setpoint 

and disturbance descriptions) is linear but time varying because of the sampling, 

and so no transfer function exists that describes this relation. The approach that 

will be followed in this paper is to obtain a transfer function approximation for 

the frequencies of interest. 

The digital control system is actually implemented as shown in Fig. 7a. 

The thick lines in the block diagram represent paths along which the signals are 

described by Laplace transforms, while the thin lines represent digital signals. 

The block 1(s) is an anti-aliasing analog prefilter. Details on the problem of 

aliasing can be found in the literature (Astrom and Wittenmark, 1980). If the 

IMC structure is implemented, the block diagram is described in Fig. 7b. The 
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following notation is used: 

(3.1.15) 

d(z) = Z .c-1{dc(s)} (3.1.16) 

r(z) = Z .c-1{rc(s)} (3.1.17) 

P-r(z) = Z .c-1
{ 1(s)H(s)Pc (s)} (3.1.18) 

Note that when one wishes to use a 1(s) =/. 1 in the case of an open-loop unstable 

plant, the simplest way to avoid any internal stability problems is to use P-r(z) 

instead of P(z) in Step 1. For the rest of this section we shall assume that 1(s) = 1 

in order to simplify the notation. From Fig. 7b it follows that 

ec(s) = Yc(s) - rc(s) 

= (dc(s) - rc(s)) - Pc(s)H(s)Q(e8 T)F(e 8 T) 

(! - (P(e 8 T) - P(e8 T))Q(e 8 T)F(e 8 T))- 1 (d(z) - r(z)) (3.1.19) 

We shall now obtain an approximation to (3.1.19) by considering the frequencies 

0::; w ::; 7r/T. Note that because of the periodicity of Q(z), these are the only 

frequencies that one can influence independently by using a digital controller. 

From (3.1.12) it follows that if ac(s) is small for w > 7r /T, then 

. T 1 a(e'w ) ~ -ac(iw), 
T 

O:::; w:::; 7r/T (3.1.20) 

Use of (3.1.20) for all the z-transforms in (3.1.19) yields the approximation 

ec(iw) ~(I - Pc(iw)Q(eiwT)F(eiwT)H(iw)/T) 

(I - (Pc(iw) - Pc(iw))Q(eiwT)F(eiwT)H(iw)/T)-1 (dc(iw) - rc(iw)) 

(3.1.21) 



177 

dc(s) 

H(s) wu~Jr Yc(s) 

....... ~~~~~~-n~.U.h7~.h7DW'/h¥.A 

u(z) 

(a) 

(b) 

Figure 7. Control system implemented on the continuous plant. 

(a) Feedback structure. 

(b) IMC structure. 
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Note that the above approximation is valid when the input signals re, de are small 

for w > 'Jr /T. Clearly, for setpoints one should always select a sampling time small 

enough to allow tracking of re. Note that in reality one does not really have an 

rc(s). We can always however assume that rc(s) represents in the time domain a 

staircase function that corresponds to the points of z-1{r(z)}. For disturbances, 

if one expects high frequency content at w > 7r /T and one cannot reduce T any 

more, then one should use an anti-aliasing prefilter, whose function is to cutoff 

frequencies higher than 7r /T. 

Let us use the notation Ec(iw) Ec(iw) when Pc = Pc(# P - P). In 

the first step of the IMC design procedure, Q is obtained so that it produces 

satisfactory disturbance rejection and/or setpoint tracking. Since Ee connects the 

external inputs to the error ec, a well-designed control system produces a relatively 

"small" Ee. A measure of the magnitude of the known Ee is its maximum singular 

value. Let b( w) be a frequency function such that 

a(Ec(iw)) < b(w), O ~ w ~ 7r/T (3.1.22) 

When P =f:. P, the "sensitivity" function Ee is described by (3.1.21). In order for 

the performance of the control system to remain robust with respect to model-

plant mismatch we have to keep ec small in spite of the modeling error. Similarly 

to the discussion in Section 3.1.2, we can represent the relation between ec and 

Ve ( = de - r c) in block diagrams of the form of Figures 5 and 6. The only difference 

is that we now use (H(s)Pc(s)/T) instead of P(z)(= P(e8 T)) in G and that the 

block A is obtained from the modeling error in H(s)(Pc(s) - Pc(s))/T and so au 
depends on the continuous plant uncertainty as well. We shall use the subscript 

c to indicate that. 

Then we require: 

max a(b(w)- 1 Ec(iw)) < 1 
05,wS,tr/T 

'VAEA (3.1.23) 
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We can now use the properties of the SSV (Doyle, 1985) to obtain 

max u(b(w)-1 Ec(iw)) < 1 VA EA<===> max µ4o(G~) < 1 (3.1.24) 
OSwS~/T OSwS~/T 

where 

(3.1.25) 

A 0 = {diag(A,A0 )!A E A,A.0 E cnxn} (3.1.26) 

3.2 Solution to the Filter Synthesis Problem 

In this section the filter design problem is formulated and solved as a param-

eter optimization problem. 

3.2.1 Filter Form. 

At this point some structure has to be assumed for F, which can be of any 

general type that the designer wishes. However in order to keep the number 

of variables in the optimization problem small, a rather simple structure like a 

diagonal F with first or second-order terms would be recommended. In most cases 

this is not restrictive because the potentially higher orders of the model P have 

been included in the controller Q that was designed in the first step of the IMC 

procedure and which is in general a full matrix. The use of more complex filter 

structure may be necessary in cases of highly ill-conditioned systems (u(P)/Q.(P) 

very large). The filter structure for such systems is discussed in detail in Zafiriou 

and Morari ( 1986c). 

Some additional restrictions on the filter exist in the case of an open-loop 

unstable plant. The filter F(z) is chosen to be a diagonal rational function that 

satisfies the following requirements. 

a. Internal Stability. ISl in (2.1.3) must be stable. 

b. Asymptotic setpoint tracking and/or disturbance rejection. (1-PQF)v must 

be stable. 
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Write 

F(z) = diag(/1(z), ... ,fn(z)) (3.2.1) 

Then, assumptions A.1, 2, 3, 4, 5 and the facts that Q(z) is designed to make ISl 

and (I - PQ)V stable, imply that the requirements on an element ft of F are: 

d
di. (1 - fl ( z)) lz=11"; = O, i = 0, ... , ffii - 1 ( ( m0 1 - 1) for i = 0), i = O, 1, ... , k 
zJ 

(3.2.2) 

where 7ro = 1 and m 0 1 is the highest multiplicity of 7ro as pole of an element of 

the Jth row of V. Note that for i = O, (3.2.2) yields 

i = 0, 1, ... 'k (3.2.3) 

(3.2.3) clearly shows the limitation that poles outside the UC place on the robust

ness properties of a control system designed for an open-loop unstable plant. Since 

because of (3.2.3) one cannot reduce the nominal (P = P) closed-loop bandwidth 

of the system at frequencies corresponding to the unstable poles of the plant, one 

can only tolerate a relatively small model error at those frequencies. 

One can now select for a filter element, the form 

f(z) = ~(z)fi (z) (3.2.4) 

where 

fi(z) = (1- a)z 
z-a 

(3.2.5) 

w 
~(z) = Lf3;z-i (3.2.6) 

j=O 

and the coefficients f3o, ... , f3w are computed so that (3.2.2) is satisfied for some 

specified a. The parameter o: can be used as a tuning parameter. 

Note that fork= O, 7ro = 1, m0 1 = 1, we only need ~(z) = 1. For the general 

case, (3.2.2) can be transformed into a system of Vt linear equations with (30 , ••• f3w 
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as unknowns where vi is given by 

vz = mol + m1 + ... + mk (3.2.7) 

Since none of the 7ri is 0 or oo, (3.2.2) is equivalent to 

j = 0,1, ... ,mi -1 ((m0 z - l) for i = 0), i = 0,1, ... ,k (3.2.8) 

Then the fact that ~(_A-l) is a polynomial in .A, and the following theorem can 

help simplify the necessary algebra. 

Theorem 3.2.1. (Zafiriou and Morari, 1986a). 

For the Ji (z) given by (3.2.5) we have 

di 1 . (. ) 
d)...ifi(>..- ) = (1- a)j!a1 (1- a>..)- 3+1 (3.2.9) 

One should select w 2:: vz -1 so that the system of linear equations has one or more 

solutions. When w 2:: vi we have an underdetermined system and then {30 , ••• , f3w 

can be obtained as the minimum norm solution. Note that for vz = 2 one sould 

select w 2:: 2 in order to avoid the trivial solution f(z) = 1. 

Let us now examine the usual situation where mi = 1 for i = 1, ... , k. Then 

(3.2.2) is equivalent to: 

di 
dzi (1 - f(z))lz=1ro=l = o, j = o, ... 'moz - 1 (3.2.10) 

i = 1, ... 'k (3.2.11) 

Then for this special case, the following theorem holds: 

Theorem 3.2.2 
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When mi = 1 for i = 1, ... , k, the coefficients f3o, ... , f3w, have to satisfy 

Ii (7rk)-1 

(~) (;D Ii (7ro)-1 
def 

-a/(1 - a) =x 
0 

(3.2.12) 

0 

where 

rr = r; 
-1 

~~wl 'Jrk ... 
. . . . . . 
-1 -w 

'Jr" . . . 7ro .... .. v 

(3.2.13) 

and the elements Vij of the (m0 1 - 1) x (w + 1) matrix N are defined by 

{ 
0 for i 2: j 

1.lij = (j-1)! c . . 
(j-l-i)! ior i < J 

(3.2.14) 

Proof: It follows directly from Theorem 3 of Zafiriou and Morari (1986a) and 

(3.2.11). 

In general a w 2: vz - 1 should be selected and f3o, f31, ... , f3w be obtained as 

the minimum norm solution to (3.2.12): 

(3.2.15) 

where 

(3.2.16) 

Note that in general it is numerically preferable to compute the pseudo-inverse in 

(3.2.15) from a singular value decomposition (SYD) of A. 

Example 3.2.1: Assume that P and V have one common unstable pole at 1r # 1, 

and that m 0 1 = 0. Then 

(3.2.17) 
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71"-0: 
x=---(1 - o:)7r 

1 - 71"-2 (7r - o:)7r-j-1 

/3; = 1 _ 7r-2(w+l) 1 _ o: 

Note that 

w ( )2 1 -2 71"-0: -71" 

~ f3} = (1 - o:)7r 1 - 7r-2(w+l) 
3=0 

(3.2.18) 

j = 0, ... ,w (3.2.19) 

(3.2.20) 

since 7r > 1. Hence when 7r is close to (1, 0), the properties of f(z) in (3.2.4) are 

similar to those of f 1 ( z). 

Example 3.2.2. (Zafi.riou and Morari, 1986a): 

Assume that k = 0 and that m 0 z = 2. Then the minimum norm solution is 

6jo: 
f3; = - (1 - o:)w(w + 1)(2w + 1)' 

j = 1, ... ,w (3.2.21) 

w 

f3o = 1- Lf3; (3.2.22) 
j=l 

The norm of this solution goes to 0 as w --+ oo and so the properties.of f(z) in 

(3.2.4) are similar to those of Ji (z) when w is large enough. 

3.2.2 Objective 

We can write 

F def F(z;A) (3.2.23) 

where A is an array with the filter parameters. 

The problem can now be formulated as a minimization problem over the 

elements of the array A. A constraint is that the elements of A corresponding 

to denominator poles should be such that F is a stable transfer function. Note 

that if a diagonal filter with elements given by (3.2.4) is used, then each element 

of A corresponds to same o:;, which has to be inside the UC for F to be stable. 
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Then the problem can be turned into an unconstrained one by using some Aj as 

an element of A and writing 

or 

(3.2.24) 

Hence any A.; in (-oo, oo) produces an a; in (0,1]. Note that if one wishes to use in 

(3.2.4) a higher order Ji (z) with more parameters, one can write the denominator 

of each element of F as a product of polynomials of degree 2 and one of degree 

1 if the order is odd. Then similarly to (3.2.24) one can write the roots of the 

polynomials of degree 2 as eTPi, eTP2 , where pi,p2 are the roots of A.~x2 +>.~x+l = 

0 or J>. 2 lx2 +JA. 1 lx+1 = 0 and in doing so turn the problem into an unconstrained 

Our goal is to satisfy (3.1.24). The filter parameters can be obtained by 

solving 

(P4) 

It may be however that the optimum values for (P4), still do not manage to 

satisfy (3.1.24). The reason is usually that the performance requirements set by 

the selection of b(w) in (3.1.22) are too tight to satisfy in the presence of model

plant mismatch. In this case one should choose a less tight bound b and resolve 

(P4). Note that satisfaction of the Robust Performance condition (3.1.24) does 

not necessarily imply satisfaction of the Robust Stability condition (3.1.14). Hence 

when a solution to (P4) is found, one should check if (3.1.14) holds. Note that 

if the uncertainty description for the continuous plant (used in (3.1.24)) and the 

discretized plant (used in (3.1.14)) are equivalent, then satisfaction of (3.1.24) is 

usually sufficient for satisfaction of (3.1.14). If this does not happen then one 

can always substitute the objective function in (P4) with theµ function given in 
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(3.1.14) and proceed with the minimization only up to the point where (3.1.14) is 

satisfied. The computational issues remain the same as those discussed in Section 

3.2.3 for (P4). Note however that the result of (P4) may often be a local minimum. 

To circumvert this problem, (P4) should be solved for a number of starting points. 

Good initial guesses can often be obtained for the filter parameters by matching 

them with the frequencies where the peaks of µao ( G~) appears for F = I. 

3.2.3 Computational Issues 

The computational ofµ in (P4) is made through (3.1.3); details can be found 

in Doyle (1982). As it was pointed out in Doyle (1985), the minimization of the 

Frobenius norm instead of the maximum singular value yields D's which are very 

close to the optimal ones for (3.1.3). Note that the minimization of the Frobenius 

norm is a very simple task. In the computation of the maximum in (P4) only a 

finite number of frequencies will be considered. Hence (P4) is transformed into 

(P4') 

where 0 is a set containing a finite number of frequencies in [O, 11" /T] and n° is 

the set corresponding to Delta0 according to (3.1.1) and (3.1.4). Define 

(3.2.25) 

The analytic computation of the gradient of ~00 with respect to A is in general 

possible. This is not the case when the two or more largest singular values of 

DGb n-1 are equal. However this is quite uncommon and although the compu-

tation of a generalized gradient is possible, experience has shown the use of a 

mean direction to be satisfactory. A similar problem appears when the maxweo 

is attained at more than one frequencies, but again the use of a mean direction 

seems to be sufficient. 

Assume that for the value of A where the gradient of ~00 (A) is computed, the 

maxweo is attained at w = w0 and that the inf DEDo u(DG~(iw0)D- 1 ) is obtained 
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at D = D 0 , where only one singular value o-1 is equal to l'i. Let the singular value 

decomposition (SVD) be 

D0G~(iw0)D0 1 = ( u 1 U) ( ~1 ~) ( ;~) (3.2.26) 

Then from Zafiriou and Morari (1986 c,d) we have, under the above assumption, 

that the element of the gradient vector corresponding to the jth element of A, Aj, 

is given by 

a~-~oo = Re[u~Do (b-~~~ ) (J-FG~,33)- 1 0~_Flw=wo J c,23 J 

(I - FG~133)- 1 (G~,31 G~,32)D0 1 v1] (3.2.27) 

where F, G~,ii' b are computed at w = wo. The derivatives of F with respect to 

its parameters (elements of A) depend on the particular form that the designer 

selected and they can be easily computed. 

4. Illustration. 

In this section an example is presented to demonstrate the problem of in-

tersample rippling in the H 2 -optimal controller and the modification that was 

discussed in Section 2.3. Consider the continuous system 

( 

0.50 1.42 \ 

P. t \ s-l-1 6s-l-l 
cl8 J = 1.00 1.00 ) 

2s+l 4s+l 

(4.0.1) 

The discretized system (zero order hold included) for a sampling time of T = 1, 

lS 

( 

0.316 0.218 ) 
P(z) = z0_~-g~s z0_~·~{6 

z-0.607 z-0. 779 

(4.0.2) 

Computation of the roots of det[P(z)] show that the system in (4.0.2) has two 

finite zeros, at a 1 = -0.95 and a2 = 0.75. The first zero is close to (-1,0) and it is 

expected to cause intersample rippling when the H 2 -optimal controller is used. 

From (4.0.2) it follows that PA = z- 1 I, PM = zP. We shall consider step 

setpoint changes as external inputs, i.e., 

z 
V(z) =-I 

z-1 
(4.0.3) 
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Then (2.4.1) yields 

(4.0.4) 

Fig. Sa shows the time response of this control system for a unit step change in 

the setpoint of output 1: 

v(z) = ( z/(zo- 1)) (4.0.5) 

The prediction of intersample rippling is verified. Note that at the sample points 

the outputs are indeed exactly at the setpoints producing the minimum SSE. 

The IMC controller is now obtained from (2.3.2) where b(z) = 1 and 

q_(z) = z + 0.95 
1.95z 

(4.0.6) 

The response for this control system is shown in Fig. Sb. Clearly the problem 

has disappeared. Finally note that all responses show an inverse response charac-

teristic. This is due to the fact that the continuous system Pc(s) has a right half 

plane zero. 

5. Concluding Remarks. 

The results presented in this paper provide a direct synthesis procedure for 

digital multivariable controllers. The two-step IMC design concept is extended 

to open-loop unstable systems and the limitations imposed by open-loop unstable 

poles on achievable performance and robustness are quantified. In the first step 

the controller is designed for a whole set of external inputs (setpoints or distur

bances) and it combines desirable properties of the H2-optimal and deadbeat type 

controllers. In the second step the parameters of the low-pass IMC filter are ob

tained as the result of the optimization of an SSV based objective function, which 

reflects the performance of the continuous plant outputs, so that bad intersample 

behavior is avoided. The use of the SSV allows the treatment of general types of 

model-plant mismatch. 
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(b) 

Figure 8. Time response. 

- Dashed lines: Setpoints; Solid lines: Outputs. 

(a) H2-optimal controller QH. 

(b) IMC controller Q. 
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APPENDIX A 

A.I. Proof of Theorem 2.1.1. 

The fact that Q 1 has to be proper in order for Q to be proper and vice versa, 

follows from the properness of Qo and bp. 

i) We shall show that any Q given by (2.1. 7) makes ISl stable. From 

substitution of (2.1.7) into (2.1.3) it follows that all that is required is that 

( Pb;Q1 b;Q1P Pb;Q1P ). be stable. From the properties of Qi, it follows 

that the third element in the above matrix is stable. Stability of the other two 

follows by pre- and post-multiplication of that element by p-1 , since according 

to assumptions A.1, A.2, P has no zeros at the location of its unstable poles and 

these are the only possible unstable poles in the above matrix. 

ii) Assume that Q makes ISl stable. Then the difference matrix 

ISl(Q) - ISl(Qo) = ( (Q - Qo P(Q - Qo) (Q - Qo)P P(Q - Qo)P) 

(A.1.1) 

is stable. 

The fact that P has no zeros at the location of the unstable poles makes 

the stability of the matrix in (A.1.1) equivalent to the stability of ·(Q - Q0 ), 

P(Q - Q0 )P. Then, when assumption A.1.c holds, we can write P = bpP, where 

P has no zeros at the unstable poles of P and its only unstable poles are at z = 1. 

So, it follows that (Q - Qo) = b;Q1 with Qi stable and such that PQ1P have no 

poles at z = 1. If A.1.c does not hold, Qi should also have the property that it 

makes PQ1P stable. 

A.2. Proof of Theorem 2.2.1. 

We shall assume that a Q0 exists, which in addition to the properties men

tioned in Theorem 2.1.1, it also produces a matrix (I - PQ0 )V0 with no poles 

at z = 1, where v 0 is a diagonal matrix with lv poles at z = 1 in every element, 

with lv the maximum number of such poles in any element of v. If assumption 
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A.Le does not hold, then each column of V 0 also satisfies A.3.b and Qo makes 

(I - PQ0 )V0 stable. Its existence will be proven by construction. Substitution of 

(2.L7) into (2.2.4) and use of the fact that pre- or post-multiplication of a function 

with an allpass does not change its L2-norm, yields: 

ef>(v) = llz- 1b;1bvP_A 1 (I - PQo)v - z- 1 bpbvPMQ1vll~ 

der I Iii - '2Q1 vi I~ (A.2.1) 

Ji has no poles at z = 1 because (I - PQ0 )V0 has no such poles. Any rational 

function fi (z) with no poles on the UC, can be uniquely decomposed into a strictly 

proper, strictly stable part {/i}- in Hf and a strictly unstable part {/i}+ in 

H2: 

Ii = {Ii}- +{Ii}+ (A.2.2) 

When A.Le holds, inspection of (A.2.1) shows that '2Q1 v can have no poles 

on or outside the UC except possibly for some poles at z = 1 introduced by v. 
Since Ji has no poles at z = 1, in order for ¢( v) to be finite, '2Qi v should have 

no poles at z = L Thus the optimal Qi has to cancel any such poles. When A.Le 

does not hold, then the fact that (I - PQ0 )V0 is stable and A.Lb imply that an 

acceptable Qi and therefore the optimal Qi is such that '2Qi vis stable. We shall 

assume that Qi has this property. It should be verified at the end however that 

the solution indeed has the property. Since '2Qi v is strictly proper in addition 

to being stable, we can write 

(A.2.3) 

The first term in the right hand side of (A.2.3) does not depend on Q1 • Hence for 

solving (Pl) we only have to look at the second term. The obvious solution is 

(A.2.4) 
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Clearly such a Q 1 produces a stable /2Q1 v as it was assumed. It should now 

be proved that Q1 's that satisfy the internal stability requirements exist among 

those described by (A.2.4), so that the obvious solution is a true solution. For 

n = 1, (A.2.4) yields a unique Qi, which can be shown to satisfy the requirements 

by following the arguments in the proof of Theorem 2.2.2 in Appendix A.3. For 

n 2: 2 write 

A def (A 
V = V1 

v:A def (A 
2 = V2 

A )T 
••• Vn 

,. )T ••• Vn 

(A.2.5) 

(A.2.6) 

(A.2.7) 

where without loss of generality the first element of v is assumed to be nonzero. 

Also q1 is n x 1 and q2 is n x (n - 1). Then from (A.2.4) it follows that 

(A.2.8) 

We now need to show that a proper, stable q2 exists such that Q1 is proper, stable 

and produces a PQ 1P with no poles at z = 1 (and no poles outside the UC, when 

A.1.c does not hold). Select a q2 of the form: 

k 

q2(z) = Q2(z)(l - z- 1
)

31
" IT (1- ?riz- 1) 3 (A.2.9) 

i=l 

where q2 is proper, stable. Then from (A.2.8) it follows that in order for PQ 1P 

not to have any poles at z = 1 it is sufficient that P-01 1 f:2 1{fi}-{P}i.trow have 

no such poles. This holds because the poles at z = 1 in the P on the left cancel 

with the PJ:/ in /21 and v1 (and v1) has by assumption A.4 at least as many 

poles at z = 1asthe1st row of P. When A.1.c does not hold, then the same type 

of argument and the fact that A.3.b holds imply that PQ 1P has no poles outside 

the UC either. Let us now examine the stability of Q1 • The only poles outside 
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the UC may come from vi- 1
. Let a: be such a pole (zero of v1). Then for stability 

we need to find q2 such that 

k 

q2(o:)V2(0:) = (1- a-l)-31v Il(l-1!".;a-1)-3/21(0:){/i}-(o:) (A.2.10) 
i=l 

The above equation always has a solution because the vector V2 (o:) is not identi-

cally zero since any common outside the UC zeros in v were factored out in v0 • 

We now need to examine the properness of Q1 • Since r;/ is proper and {fi}- is 

strictly proper, /2 1{/i}- is proper. Then if v11 is improper (v1 strictly proper) 

there exist at least one element in V2 that is semi-proper. Hence by solving a sys-

tem of linear equations we can always select a q2 (z) such that of the first impulse 

response coefficients of /2 1{/i}- - q2 V2 , as many are zero as we need to make 

the first element of the matrix in (A.2.8) proper. 

We shall now proceed to obtain an expression for Qv. (2.1.7) and (A.2.8) 

yield 

Q A = b b-lp-1 [ -lb-lb p-lpQ A - { -lb-lb p-lpQ A} v z p v M z p v A oV z p v A oV -

+ {z- 1 b_; 1bvP_A 1v}-] 

=zbpb-;; 1 P-;/ [{z- 1 b_; 1 bvP_A1 PQov}o+ + {z- 1 b_; 1bvP.4 1 v}-] (A.2.11) 

where { · }o+ indicates that in the partial fraction expansion all poles on or outside 

the UC are retained. For (A.2.11), these poles are the poles of b; 1bvv on or 

outside the UC; P.4 1 PQ0 = PMQo is strictly stable and proper because Q0 is a 

stabilizing controller. When A.1.c holds, the stability of (I - PQo)P and the fact 

that the residues of P at the outside the UC poles are full rank imply that at 

these poles I - PQ0 = 0. Also the fact that (I - PQ0 )V0 has no poles at z = 1 

imply that (I - PQ0 ) and its derivatives up to the (lv - l)th are also equal to 

zero at z = 1. When A.1.c does not hold, the fact that (I - PQ0 )V0 is stable and 
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that the columns of this diagonal yo satisfy A.3.b, imply that I - PQo = 0 at 

1, 7ri, ••• , 11'"k· Thus (A.2.11) simplifies to (2.2.8). 

We simply need to establish now that a stabilizing controller Qo with the 

property that (I - PQ0 )Y0 has no poles at z = 1 exists. The use in (2.2.11) of a 

yo with the properties mentioned at the beginning of this section, instead of Y, 

yields such a controller. 

A.3. Proof of Theorem 2.2.2. 

The L 2-norm for a matrix G(z) analytic on the UC is given by 

llGll2 = c~ l'. trace[G'(e;6)G(e'6)] de) 112 

Then from (2.2.1), (A.3.1) it follows that 

¢(v1 ) + ¢(v2
) + ... + ¢(v") = ll(I - PQ)Yll~ def ¢(V) 

(A.3.1) 

(A.3.2) 

The minimization of ¢(Y) follows the steps in the proof of Theorem 2.2.1 in 

Appendix A.2 up to (A.2.4), with YM used instead of v. In this case lv is the 

maximum number of poles at z = 1 in any element of V. From the equivalent to 

(A.2.4) equation we obtain 

(A.3.3) 

We now have to establish that Q 1 is stable, proper and produces a PQ 1 P with 

no poles at z = 1 (nor outside the UC, when A.Le does not hold). 

In the case where bp, bv are not equal to identity, the stability of Q1 follows 

from the full rank conditions in A.Le and A.5.b. In PQ 1 P the poles at z = 1 of 

the Pon the left cancel with the P-;;/ in /2 1
• As for the Pon the right, the same 

follows from assumption A.5.a. When A.Le does not hold, the same arguments 

are true for the outside the UC poles as well. 

Then in the same way that (2.2.8) follows from (A.2.8), (2.2.11) follows from 

(A.3.3). 
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A.4. Proof of Theorem 2.2.3. 

A stabilizing controller that solves (P3) has to solve (Pl) for all vi, i 

1, ... , n. Satisfying (2.2.8) for every vi is equivalent to 

(A.4.1) 

Hence the above Q is the only potential solution to (P3). However it is not 

necessary a stabilizing controller since not only stabilizing Q's satisfy (2.2.8) for 

some v. Indeed if Vis non-minimum phase, v-1 is unstable and/or improper and 

this results in an unstable and/or improper Q, which is therefore unacceptable. 

Hence in such a case, there exists no solution to (P3), which completes the proof 

of part (i) of the theorem. 

In the case where v-1 is stable and proper (V minimum phase), the controller 

given by (A.4.1) is stable and proper and therefore it is the same as the one given 

by (2.2.11). This fact can be explained as follows. We have 

v =VVo (A.4.2) 

where 

(A.4.3) 

Since v-1 is stable and proper, (A.4.2) represents a factorization of V similar to 

that in (2.2.10). From spectral factorization theory it follows that 

V(z) = VM(z)A (A.4.4) 

where A is a constant matrix such that AA* = I. Then from (2.2.11) it follows 

that use of V does not alter Q because A cancels. 

Let us now assume without loss of generality that the first j vi's have the 

same vb 's. Consider a v that is a linear combination of v 1 , ••• , vi: 

(A.4.5) 
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Then it follows that 

vo(z) = v~(z) = ... = v~(z) 

v(z) = a1v 1(z) + ... + a;vi(z) 

(A.4.6) 

(A.4.7) 

One can easily check that a Q that satisfies (2.2.8) for v1, ••• , Vi, will also satisfy 

(2.2.8) for the v given by (A.4.7) because of the property 

(A.4.8) 

But then from Theorem 2.2.1 it follows that if a stabilizing controller Q satisfies 

(2.2.8) for v, then it minimizes the L 2-error <P(v). 
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CHAPTER VII 

CONCLUSIONS 
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1. Discussion of the Thesis Results. 

The objective of this thesis was to provide a rigorous methodology for the 

direct synthesis of multivariable controllers, which are robust with respect to 

modeling error. Most of the work was carried out in the sampled-data systems 

framework since all but the simplest control algorithms are implemented on digital 

computers. The Internal Model Control Structure (Garcia and Morari, 1982) was 

selected as the basis on which to build this methodology, because it allows the 

incorporation of tuning parameters with clear physical meaning in the controller. 

H 2-type objectives were set because they are more meaningful for process control 

problems than H 00-type objectives, which consider an external input (setpoints 

or disturbances) set that is much larger than it usually need be for a chemical 

process. The developed methodology however, can be used with such objectives 

as well (Zafiriou and Morari, 1987). 

In summary, the following contributions were made in this thesis: 

SISO sampled-data systems control. 

The behavior of a number of well-known digital control algorithms was ex

amined and its relation to the sampling time was explained through the effect of 

the sampling time on the zeros of the discretized process. This study resulted in 

the development of a new and quite simple algorithm, which combines the advan

tages of the examined algorithms and which is free of the problems of intersample 

rippling, overshoot and/or undershoot, independently of the sampling time that 

is used. One might consider an indication of the practical need for such a simple, 

yet effective algorithm, the fact that researchers at Kodak (Rochester, NY) were 

willing to test it on pilot-plant processes and after very good results to program 

it on software used routinely for controller design (Juba, 1985; Hamer, 1986). 

A procedure was developed for the design of a low-pass IMC filter that guar

antees robust stability and performance with respect to model-plant mismatch. 
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The criteria used in the design take explicitly into account the continuous process 

output, so that the problem of intersample rippling does not appear. The pro

posed method includes an iterative procedure for the selection of the appropriate 

sampling time. This was accomplished by quantifying the effect of the sampling 

time on robustness and by showing that the limitations imposed by sampling on 

the achievable performance are similar to those imposed by model uncertainty. 

As a result, the performance specifications and the model uncertainty informa

tion (frequency bounds) are explicitly involved in the selection of the sampling 

time, which thus becomes an integral part of the controller design. 

MIMO systems. 

In the first step of the IMC design procedure, the achievable performance is 

limited by certain inherent characteristics of the process model, like time delays 

and zeros outside the unit circle or close to (-1,0) on the z-plane. For multivariable 

processes, there is a structure associated with such zeros and delays, which has to 

be preserved in the closed-loop transfer matrix. A characterization of this struc

ture was obtained, in the form of linear equation constraints. This characterization 

was used for the development of a procedure, which addresses structural closed-

loop performance specifications. The designer can compare different closed-loop 

achievable transfer matrices, in terms of the structure, magnitude and duration 

of the interactions and choose on the basis of quantitative measures. This proce

dure uses only linear algebra operations and is formulated in a way that allows 

straightforward computer implementation. Also, time delays and undesirable ze

ros are handled in a unified way in this method, while past approaches (Garcia 

and Morari, 1985) attempted to treat them separately, resulting in "suboptimal" 

designs. 

An alternative to the above procedure is to minimize some weighted norm 

of the transfer matrix relating the errors to the setpoints or disturbances. The 
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problem with such approaches in the control literature has always been the mean

ingful selection of the weight. The results obtained in this thesis provide a way 

to choose a full matrix weight for the H 2-norm, by specifying a set of external 

inputs of interest (setpoints or disturbances). The optimal controller minimizes 

the H 2-error (Integral Squared Error for continuous systems; Sum of Squared Er

rors for discrete) for the specified set of external input directions and their linear 

combinations, when this is possible. In the case of sampled-data systems, a mod

ification is introduced to avoid intersample rippling. This work also extended the 

IMC design concept to open-loop unstable systems. 

Robustness properties are incorporated in the IMC controller by designing a 

low-pass filter. The Structured Singular Value (SSV) theory (Doyle, 1982) was 

used to obtain an appropriate objective function. The goal set at this step is to 

keep the performance of the control system in the presence of model-plant mis

match as close as possible to the one for which it was designed in the first step. 

The nominal (no model error) performance was used to provide guidelines for the 

selection of the weight that is used in this step. The filter design problem was 

then formulated as a minimization over the filter parameters. Special filter struc

tures for open-loop unstable and for ill-conditioned systems were obtained. The 

complexity of the "min max min" optimization problem made the computation of 

analytic expressions for the gradient necessary. Such expressions were developed 

for the general case and the approach was successfully programmed on the com

puter and tested for a number of cases. The problems caused by the existence 

of local minima can be overcome in most cases via good initial guesses available 

because of the clear physical meaning of the filter parameters. For sampled-data 

systems, the continuous process output and model uncertainty were taken explic

itly into account to avoid bad intersample behavior. 
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2. Research Suggestions. 

It is the purpose of this last section of the thesis, to suggest research direc

tions for certain topics directly or indirectly related to the work presented here. 

Research in some of these topics can improve or extend the applicability of the 

end product of the thesis, i.e., of the proposed methodology for robust control 

system design. For some other topics, research in them is either motivated or can 

be assisted, in the author's opinion, by some of the partial results and experience 

obtained in the course of the thesis work. 

Let us now consider each of these research issues: 

- Ill-conditioned systems. The special two-filter structure that was proposed 

for the case of ill-conditioned systems has been shown to be satisfactory in a num

ber of examples. The advantage of this approach is its simplicity. However, a 

disadvantage exists in the fact that one is actually correcting in the second step 

of the design procedure, a "mistake" made in the first step. The problem is that 

unless model uncertainty is taken into account in the first step, one cannot be 

certain to avoid this mistake. A reasonable approach that preserves the spirit of 

the two-step design procedure, would be to consider in the first step the uncer-

tainty structure, but not the actual magnitudes of the uncertainty bounds. Then 

by taking into account the sensitivity of the control system to modeling error, bad 

designs in the first step would be avoided. 

- Weight modification during the filter design. Meaningful weight selection 

in the objective functions that are optimized in control problems is one of the 

most important issues in control theory. In the methodology presented in this 

thesis, guidelines are given for the selection of physically meamingful weights in 

both steps of the design procedure. However, one point that is not very clear, is 

how to best modify the "bound" b(w) in the second step, when the solution of 

the filter optimization problem fails to satisfy the robust performance condition.' 
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The designer has to "relax" the performance specification and it is usually simple 

to adjust b(w) at the appropriate frequency ranges. Still, experience has shown 

that this is not always so. Work is needed in order to figure out how to automate 

this adjustment so that the best achievable performance specification is eventually 

used. Results in this topic will both improve the effectiveness of the method and 

make its implementation in an "expert system" form easier. 

- SSV-optimization problems. The approach proposed for the IMC filter syn

thesis is the first successful solution of a parameter optimization problem with a 

Structured Singular Value (Doyle, 1982) objective function. This is very encour

aging in the sense that as it turned out, standard gradient search techniques with 

minor modifications were adequate for solving a seemingly extremely complicated 

problem, the basic reason being the understanding of the physical meaning of the 

optimization parameters. Hence it seems reasonable to attempt to solve other 

control problems by formulating them as such parameter optimizations of an SSV 

objective function. Candidates for this treatment are problems that require a spe

cific structure for the control system. An obvious case is the problem of synthezing 

robust decentralized controllers. 

- Parametric model uncertainty. In the case where the model uncertainty can 

be traced to some parameters that are known to be real numbers, the conserva

tiveness, when using the SSV, can be reduced by avoiding to consider the entire 

disk that encircles them in the complex plane (Doyle, 1985). The author has been 

involved in work in the computation of the SSV for real parameter uncertainty and 

it seems that it should be straightforward to extend the filter synthesis procedure 

of Chapters V and VI to this case. 

- Control implications in process design. The need for control considerations 

at the stage of process design has been recognized in the literature in the last 5-10 

years. The results presented in Chapter IV have the potential of being very useful 
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in this area of research, because they quantify the performance limitations imposed 

by inherent characteristics of the process design, like time delays, unstable zeros 

etc. These results have already prompted some work in that direction (Morari et 

al., 1986), dealing with the analysis aspect of the problem. Although a lot of work 

still has to be done in the analysis part, much more important is the synthesis part 

of the problem. The descriptions of the imposed limitations that were obtained 

in Chapter IV have the simple form of linear equations and they may allow the 

deduction of properties of the interconnected process structure from the properties 

of the individual units. 
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