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ABSTRACT

This thesis presents a novel FC-SDNN (Fourier Continuation Shock-detecting Neu-
ral Network) spectral scheme for the numerical solution of nonlinear conservation
laws in general domains and under arbitrary boundary conditions, without the lim-
iting CFL constraints inherent in other spectral schemes for general domains. The
approach relies on the use of the Fourier Continuation (FC) method for spectral rep-
resentation of non-periodic functions in conjunction with smooth artificial viscosity
assignments localized in regions detected by means of a Shock-Detecting Neural
Network (SDNN). Like previous shock capturing schemes and artificial viscosity
techniques, the combined FC-SDNN strategy effectively controls spurious oscilla-
tions in the proximity of discontinuities. Thanks to its use of a localized but smooth
artificial viscosity term, whose support is restricted to a vicinity of flow-discontinuity
points, the algorithm enjoys spectral accuracy and low dissipation away from flow
discontinuities, and, in such regions, it produces smooth numerical solutions—as
evidenced by an essential absence of spurious oscillations in contour levels. The
FC-SDNN viscosity assignment, which does not require use of problem-dependent
algorithmic parameters, induces a significantly lower overall dissipation than other
methods, including the Fourier-spectral versions of the previous entropy viscosity
method, especially in the vicinity of contact discontinuities. The approach, which
does not require the use of otherwise ubiquitous positivity-preserving limiters, en-
joys a great geometrical flexibility on the basis of an overlapping-patch discretization.
This allows its application for the simulation of supersonic and hypersonic flows and
shocks, including Euler simulations at significantly higher speeds than previously
achieved, such as e.g. Mach 25 re-entry flow speeds, impinging upon complex phys-
ical obstacles. This multi-domain approach is suitable for efficient parallelization on
large computer clusters, and the MPI implementation proposed in this thesis enjoys
high parallel scalability and in particular perfect weak scaling, as demonstrated by
simulations on general complex domains. The character of the proposed algorithm
is demonstrated through a variety of numerical tests for the linear advection, Burgers
and Euler equations in one and two-dimensional non-periodic spatial domains, with
results in accordance with physical theory and prior experimental and computational
results up to and including both supersonic and hypersonic regimes.
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C h a p t e r 1

INTRODUCTION

This thesis presents a novel FC-SDNN (Fourier Continuation Shock-detecting Neu-
ral Network) spectral scheme for the numerical solution of nonlinear conservation
laws in general domains and under arbitrary boundary conditions, without the lim-
iting CFL constraints inherent in other spectral schemes. The proposed approach
relies on use of the FC-Gram Fourier Continuation method [1, 2, 3, 4] for spectral
representation of non-periodic functions in conjunction with smooth artificial vis-
cosity assignments localized in regions detected by means of the Shock-Detecting
Neural Network (SDNN) method proposed in [5] (in a slightly modified form;
cf. Section 4.4.2). The neural network approach introduced in that reference,
which utilizes Fourier series to discretize the gas dynamics and related equations in
two-dimensional periodic rectangular domains, eliminates Gibbs ringing at shocks
(whose locations are determined by means of an artificial neural network) by means
of an assignment of artificial viscosity over a small number of discrete points in a
close vicinity of the shocks. The use of the classical Fourier spectral method in that
contribution restricts the method’s applicability to periodic problems (thus preclud-
ing, in particular, applicability to geometries containing physical boundaries), and
its highly localized viscosity assignments give rise to a degree of non-smoothness,
resulting in certain types of unphysical oscillations manifested as serrated con-
tour levels in the flow fields. As demonstrated in this thesis via application to a
range of well known 1D and 2D shock-wave test configurations, in contrast, the
overall FC-SDNN approach yields accurate and essentially oscillation-free solu-
tions for non-periodic problems involving arbitrary boundary conditions in general
domains—with illustrations including Euler simulations at re-entry flow speeds past
obstacles at e.g. Mach 25 (Section 4.5.2.5).

As indicated above, the FC-SDNN method presented in this thesis provides a gen-
eral solver for shock-wave problems governed by conservation laws by incorporating
1) The shock-detection methodology mentioned above; in conjunction with 2) The
aforementioned rapidly convergent FC-Gram Fourier Continuation representations
(which, eliminating the Gibbs phenomenon that would otherwise arise from lack
of periodicity, provide rapidly convergent Fourier expansions of non-periodic func-
tions); as well as 3) Smooth artificial viscosity assignments [6] based on use of
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certain newly-designed smooth viscosity windows—which result in (a) smooth flow
profiles away from discontinuities as well as (b) sharp shock resolution, and (c) en-
able applicability to gas-dynamics problems including very strong shocks, without
recourse to positivity-preserving limiters for the density and pressure fields (see
Remark 13). Unlike polynomial spectral approaches such as the Chebyshev spectral
method, the proposed approach does not give rise to quadratically refined meshes
near interval endpoints, and it utilizes viscosity assignments that decay proportion-
ally to the spatial mesh size, resulting in 4) CFL restrictions that decay linearly
with the spatial meshsize. Finally, in view of its use of an overlapping-patch [1, 2,
7] discretization method 5) the approach enjoys significant geometrical flexibility,
afforded by the loose connectivities between overlapping-patch computational sub-
domains, leading to a lesser geometry-processing overhead than other discretization
approaches.

The computational solution of systems of conservation laws has been tackled by
means of a variety of numerical methods, including low-order finite volume [8, 9]
and finite difference methods equipped with slope limiters [8, 9], as well as higher
order shock-capturing methods such as the ENO [10] and WENO schemes [11,
12]. An efficient FC/WENO hybrid solver was proposed in [13]. The use of
artificial viscosity as a computational device for conservation laws, on the other
hand, was first proposed in [14, 15] and the subsequent contributions [16, 17,
18]. The viscous terms proposed in those papers, which incorporate derivatives
of the square of the velocity gradient, may induce oscillations in the vicinity of
shocks [18] (since the velocity itself is not smooth in such regions), and, as they do
not completely vanish away from the discontinuities, they may lead to significant
approximation errors in regions were the fluid velocity varies rapidly. On the basis of
convolution of the spatial derivatives of the unknowns with a compactly supported
kernel, the spectral viscosity method [19, 20, 21, 22, 23] similarly acts throughout
the computational domain, once again potentially resulting in oversmearing. In the
context of a Discontinuous Galerkin scheme, reference [24] proposes the use of a
shock-detecting sensor (which relies on problem-dependent parameters) in order to
localize the support of the artificial viscosity. In this method a piecewise-constant
artificial viscosity profile is used (which vanishes except on “troubled” elements
around shocks), leading to a non-smooth overall artificial viscosity profile.

The entropy viscosity method [25] (EV), an approach which is also explored in
this thesis in conjunction with an FC-based discretization method, incorporates a
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nonlinear viscous “entropy-residual” term which essentially vanishes away from
discontinuities—in view of the fact that the flow is isentropic over smooth flow
regions—and which is thus used to limit non-zero viscosity assignments to regions
near flow discontinuities, including both shock waves and contact discontinuities.
This method, however, relies on several problem-dependent algorithmic parameters
that require tuning for every application. Additionally, this approach gives rise
to a significant amount of dissipation even away from shocks, in particular in the
vicinity of contact discontinuities and regions containing fast spatial variation in
the flow-field variables. Considerable improvements concerning this issue were ob-
tained in [26] (which additionally introduced a Hermite-based method to discretize
the hyperbolic systems) by modifying the EV viscosity term. Like the viscous
term introduced by [15], the EV viscosity assignments [25, 26] are themselves dis-
continuous in the vicinity of shocks, and, thus, their use may introduce spurious
oscillations. The C-method [27, 28, 29], which augments the hyperbolic system
with an additional equation used to determine a spatio-temporally smooth viscous
term, relies, like the EV method, on use of several problem dependent parameters
and algorithmic variations.

Recently, significant progress was made by incorporating machine learning-based
techniques (ML) to enhance the performance of classical shock capturing schemes [30,
31, 32, 5]. The approach [30, 31, 5] utilizes ML-based methods to detect discon-
tinuities which are then smeared by means of shock-localized artificial viscosity
assignments in the context of various discretization methods, including Discontin-
uous Galerkin schemes [30, 31] and Fourier spectral schemes [5]. The ML-based
approach utilized in [32] for 1D Burgers and Euler problems, in turn, modifies the
finite volume coefficients utilized in the WENO5-JS scheme: by learning slightly
perturbed values of the coefficients the method may yield improved accuracies,
but it could unfortunately also result in decreased accuracies, depending on the
discretization sizes used.

The FC-SDNNmethod proposed in this thesis relies problem-independent Artificial
Neural Network based (ANN) approach to discontinuity detection and assignment of
localized viscosity 𝜇[e] (which, in particular, does not rely on selection of problem-
dependent parameters), that was introduced in [5] and was subsequently modified
and extended to the non-periodic FC-based context in [6] (Chapter 3 in this thesis).
Briefly, the approach relies on a single pre-trained neural network for detection of
discontinuities on the basis of Gibbs oscillations in Fourier series, together with
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the spectral resolution provided by the FC method in the fully general context of
non-periodic problems with given boundary conditions—allowing for sharp resolu-
tion of flow features such as shocks and contact discontinuities and smooth accurate
evaluation of flow fields away from discontinuities. In view of its innovative smooth
viscosity assignments, further, this procedure effectively eliminates Gibbs oscil-
lations while avoiding introduction of a type of flow-field roughness that is often
evidenced by the serrated contour levels produced by other methods. And, impor-
tantly, as discussed in the first paragraph in Section 4, the algorithm does not require
use of positivity-preserving limiters to prevent the occurrence of negative densities
and pressures.

The artificial-viscosity assignment methods utilized in this thesis are first presented,
in Sections 3.1.2 and 3.1.3, in the context of domains that can be discretized by
means of a single 1D or 2D Cartesian grid. The capabilities of the proposed
algorithm for such simple domains are illustrated in Section 3.2 via a variety of 1D
and 2D numerical results for the Linear Advection, Burgers and Euler equations.
The (non-trivial) extension of this methodology to the general-domain multi-patch
context, in turn, is presented in Section 4.3, and numerical results for the solution
of the 2D Euler equations on complex geometries are then presented in Section 4.5,
demonstrating the applicability of the method for supersonic and hypersonic flows,
and for general non-smooth geometries, and demonstrating solutions for some of
the fastest flows and shock-wave problems ever considered.

In order to provide a useful reference point, Chapter 3 in this thesis also presents
an FC-based version, termed FC-EV, of the EV algorithm [25]. We find that
the FC-SDNN algorithm generally provides significantly more accurate numerical
approximations than the FC-EV, as the localized artificial viscosity in the former
approach induces a much lower dissipation level than the latter.

A Message Passing Interface (MPI) massive parallel implementation of the FC-
SDNN method is introduced in Section 4.4. On the basis of the patch/subpatch
general-geometry domain decomposition methodology presented in Section 4.1,
the FC-SDNN parallelization strategy enjoys high parallel scalability. In particular,
a perfect weak scaling is demonstrated in the context of problem enlargement and
mesh refinement, as illustrated by the complex-geometry test problems presented in
Section 4.5.1, as the number of cores utilized is

progressively increased up to a maximum of 1620 cores. High quality strong
parallel scaling is also demonstrated by increasing the number of computing cores
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on a geometry containing a fixed number of approximately 8.8 million discretization
points, and 35.2 million unknowns.

This thesis is organized as follows. Chapter 2 presents necessary preliminaries
concerning the hyperbolic problems under consideration, as well as the Fourier
Continuation method, and including basic background on the artificial-viscosity
strategies we consider. Chapter 3 then describes the proposed FC-SDNN approach
in the context of simple geometries, and demonstrates the algorithm’s performance
for a variety of non-periodic linear and nonlinear hyperbolic problems. In particular,
test cases are considered in that chapter for the linear advection equation, Burgers
equation and Euler’s equations in one- and two-dimensional rectangular and non-
rectangular spatial domains, including cases in which shock waves meet including
smooth and non-smooth physical boundaries. The proposed extension of themethod
to general complex domains via an overlapping-patch approach is presented in
Chapter 4, together with the parallel

implementation strategies used and the method’s parallel scalability tests. A number
of applications presented in that chapter, including hypersonic shocks and flows
interacting with physical obstacles, further illustrate the method’s performance.
Chapter 5 finally presents a number of concluding remarks, and proposes a number
of extensions and applications of the present methodology.
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C h a p t e r 2

PRELIMINARIES

2.1 Conservation laws
This thesis proposes novel spectral methodologies, applicable in general non-
periodic contexts and with general boundary conditions, for the numerical solution
of conservation-law equations of the form

𝜕

𝜕𝑡
e(x, 𝑡) + ∇ ·

(
𝑓 (e(x, 𝑡))

)
= 0 (2.1)

on a bounded domain Ω ⊂ R𝑞, where e : Ω × [0, 𝑇] → R𝑟 and 𝑓 : R𝑟 → R𝑟 × R𝑞

denote the unknown solution vector and a (smooth) convective flux, respectively.

The proposed spectral approaches are demonstrated for several equations of the
form (2.1), including the Linear Advection equation

𝜕𝑢

𝜕𝑡
+ 𝑎 𝜕𝑢

𝜕𝑥
= 0 (2.2)

with a constant propagation velocity 𝑎, where we have e = 𝑢, and 𝑓 (𝑢) = 𝑎𝑢; the
one- and two-dimensional scalar Burgers equations

𝜕𝑢

𝜕𝑡
+ 1
2

(𝜕𝑢2
𝜕𝑥

)
= 0 (2.3)

and
𝜕𝑢

𝜕𝑡
+ 1
2

(𝜕𝑢2
𝜕𝑥

)
+ 1
2

(𝜕𝑢2
𝜕𝑦

)
= 0, (2.4)

for each of which we have e = 𝑢 and 𝑓 (𝑢) = 𝑢2

2 ; as well as the one- and two-
dimensional Euler equations

𝜕

𝜕𝑡

©­­­«
𝜌

𝜌𝑢

𝐸

ª®®®¬ +
𝜕

𝜕𝑥

©­­­«
𝜌𝑢

𝜌𝑢2 + 𝑝
𝑢(𝐸 + 𝑝)

ª®®®¬ = 0 (2.5)

and

𝜕

𝜕𝑡

©­­­­­­«

𝜌

𝜌𝑢

𝜌𝑣

𝐸

ª®®®®®®¬
+ 𝜕

𝜕𝑥

©­­­­­­«

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

𝑢(𝐸 + 𝑝)

ª®®®®®®¬
+ 𝜕

𝜕𝑦

©­­­­­­«

𝜌𝑣

𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝑣(𝐸 + 𝑝)

ª®®®®®®¬
= 0 (2.6)
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for each of which we have

e = (𝜌, 𝜌u, 𝐸)𝑇 , 𝑓 (e) = (𝜌u, 𝜌u ⊗ u + 𝑝I, u(𝐸 + 𝑝))𝑇 , (2.7)

where 𝜌, u, 𝑝 and 𝜃 denote the density, velocity vector, pressure and temperature,
respectively, and where 𝐸 denotes the total energy:

𝐸 =
𝑝

𝛾 − 1 +
1
2
𝜌 |u|2. (2.8)

Noting that
𝑝 = 𝜌𝜃, (2.9)

we may also write
𝐸 =

𝜌𝜃

𝛾 − 1 +
1
2
𝜌 |u|2. (2.10)

The temperature 𝜃, which is not an unknown in equation (2.6), is mentioned here in
view of the important role it plays in regard to enforcement of adiabatic boundary
conditions.

Here I denotes the identity tensor, a ⊗ b = (𝑎𝑖𝑏 𝑗 ) denotes the tensor product of the
vectors a = (𝑎𝑖) and b = (𝑏 𝑗 ), and 𝜌, u, 𝐸 and 𝑝 denote the density, velocity vector,
total energy and pressure, respectively. The speed of sound [8]

𝑎 =

√︂
𝛾𝑝

𝜌
(2.11)

for the Euler equations plays important roles in the various artificial viscosity as-
signments considered in this thesis for Euler problems in both 1D and 2D.

Remark 1. As an example concerning notational conventions, note that in the case
of the 2D Euler equations, for which 𝑓 is given by (2.7), ∇·

(
𝑓 (e)

)
can be viewed as a

three coordinate vector whose first, second and third coordinates are a scalar, a vector
and a scalar, respectively. Using a super-index notation for the velocity vector u (i.e.,
𝑢1 = 𝑢 and (𝑢1, 𝑢2) = (𝑢, 𝑣) for the 1D and 2D equations, respectively), together
with the Einstein summation convention, these three components are respectively
given by ∇· (𝜌u) = 𝜕𝑖 (𝜌𝑢𝑖),

(
∇· (𝜌u⊗u+ 𝑝I)

)
𝑗
= 𝜕𝑖 (𝜌𝑢 𝑗𝑢𝑖+ 𝑝) and ∇· ((𝐸 + 𝑝)u) =

𝜕𝑖 ((𝐸 + 𝑝)𝑢𝑖).

2.2 Artificial viscosity
As is well known, the shocks and other flow discontinuities that arise in the context
of nonlinear conservation laws of the form (2.1) give rise to a number of challenges
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from the point of view of computational simulation. In particular, in the framework
of classical finite difference methods as well as Fourier spectral methods, such
discontinuities are associated with the appearance of spurious “Gibbs oscillations”.
Artificial viscosity methods aim at tackling this difficulty by considering, instead of
the inviscid equations (2.1), certain closely related equations which include viscous
terms containing second order spatial derivatives. Provided the viscous terms are
adequately chosen and sufficiently small, the resulting solutions, which are smooth
functions on account of viscosity, approximate well the desired (discontinuous)
inviscid solutions. In general terms, the viscous equations are obtained by adding
a viscous term of the form ∇ ·

(
𝑓v [e]

)
to the right hand side of (2.1), where the

“viscous flux” operator
𝑓v [e] = 𝜇[e]D[e], (2.12)

(which, for a given vector-valued function e(𝑥, 𝑡), produces a vector-valued function
𝑓v [e] (𝑥, 𝑡) defined in the complete computational domain), is given in terms of a
certain “viscosity” operator 𝜇[e] (𝑥, 𝑡) (which may or may not include derivatives
of the flow variables e), and a certain matrix-valued first order differential operator
D. Once such a viscous term is included, the viscous equation

𝜕e(x, 𝑡)
𝜕𝑡

+ ∇ ·
(
𝑓 (e(x, 𝑡))

)
= ∇ ·

(
𝑓v [e] (x, 𝑡)

)
(2.13)

results.

Per the discussion in Section 1, this thesis exploits and extends, in the context
of the Fourier-Continuation discretizations, two different approaches to viscosity-
regularization—each one resulting from a corresponding selection of the operators
𝜇 andD. One of these approaches, the EV method, produces a viscosity assignment
𝜇[e] (𝑥, 𝑡) on the basis of certain differential and algebraic operations together with
a number of tunable problem-dependent parameters that are specifically designed
for each particular equation considered, as described in Section 2.2.2. The resulting
viscosity values 𝜇[e] (𝑥, 𝑡) are highest in a vicinity of discontinuity regions and
decrease rapidly away from such regions. The neural-network approach introduced
in Section 2.2.1, in turn, uses machine learning methods to pinpoint the location of
discontinuities, and then produces a viscosity function whose support is restricted
to a vicinity of such discontinuity locations. As a significant advantage, the neural-
network method, which does not require use of tunable parameters, is essentially
problem independent, and it can use a single pre-trained neural network for all the
equations considered. Details concerning these two viscosity-assignment methods
considered are provided in what follows.
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2.2.1 Artificial viscosity via shock-detecting neural network (SDNN)
The SDNN approach proposed in this thesis is based on the neural-network strategy
introduced in [5] for detection of discontinuities on the basis of Gibbs oscillations
in Fourier series, together with a novel selection of the operator 𝜇 in (2.12) that
yields spatially localized but smooth viscosity assignments: per the description in
Section 3.1.3, the FC-SDNN viscosity 𝜇[e] (x, 𝑡) is a smooth function that vanishes
except in narrow regions around flow discontinuities. The differential operator D,
in turn, is simply given by

D[e] (x, 𝑡) = ∇(e(x, 𝑡)), (2.14)

where the gradient is computed component-wise. As indicated in Chapter 1, the
smoothness of the proposed viscosity assignments is inherited by the resulting flows
away from flow discontinuities, thus helping eliminate the serrated contour level
lines that are ubiquitous in the flow patterns produced by other methods.

2.2.2 Entropy viscosity methodology (EV)
The operators 𝜇 and D employed by the EV approach [25] are defined in terms of
a number of problem dependent functions, vectors and operators. Indeed, starting
with an equation dependent entropy pair (𝜂, 𝜈) where 𝜂 is a scalar function and 𝜈 is
a vector of the same dimensionality as the velocity vector, the EV approach utilizes
an associated scalar entropy residual operator

𝑅𝐸𝑉 [e] (x, 𝑡) =
𝜕𝜂(e(x, 𝑡))

𝜕𝑡
+ ∇ · 𝜈(e(x, 𝑡)) (2.15)

together with a function 𝐶 = 𝐶 (e) related to the local wave speed, and a normaliza-
tion operator 𝑁 = 𝑁 [𝑒] (𝑥, 𝑡) obtained from the function 𝜂.

In practice, reference [25] proposes 𝜂(e) = 𝑢2

2 , 𝜈(e) = 𝑎 𝑢
2

2 and 𝐶 (e) = 𝑎 for
the Linear Advection equation (2.2), 𝜂(e) = 𝑢2

2 , 𝜈(e) = 𝑢3

3 and 𝐶 (e) = 𝑢 for the
1D and 2D Burgers equations (2.3) and (2.4), and 𝜂(e) =

𝜌

𝛾−1 log(𝑝/𝜌
𝛾), 𝜈(e) =

u 𝜌

𝛾−1 log(𝑝/𝜌
𝛾) and 𝐶 (e) = |u| + 𝑎 (where 𝑎 denotes the speed of sound (2.11))

for the 1D and 2D Euler equations (2.5) and (2.6). As for the normalization
operator, reference [25] proposes 𝑁 = 1 for the Euler equations and 𝑁 [𝑒] (𝑥, 𝑡) =

|𝜂(𝑒) (𝑥, 𝑡) −𝜂(𝑒) (𝑡) | for the Linear advection and Burgers equations, where 𝜂(𝑒) (𝑡)
denotes the spatial average of 𝜂(𝑒) at time 𝑡.

For a numerical discretization with maximum spatial mesh size ℎ, the EV viscosity
function is defined by

𝜇[e] (x, 𝑡) = min(𝜇max [e] (𝑡), 𝜇𝐸 [e] (x, 𝑡)) (2.16)
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where the maximum viscosity 𝜇max is given by

𝜇max [e] (𝑡) = 𝑐maxℎmax
𝑥∈Ω

|𝐶 (e(x, 𝑡)) | (2.17)

and where
𝜇𝐸 [e] (x, 𝑡) = 𝑐𝐸ℎ2

|𝑅𝐸𝑉 [e] (x, 𝑡) |
𝑁 [e] (x, 𝑡) . (2.18)

In particular, the EV viscosity function depends on two parameters, 𝑐max and 𝑐𝐸 ,
both of size O(1), that, following [25], are to be tuned to each particular problem.

Finally, the EV differential operator D for the Linear Advection and Burgers equa-
tions is defined by

D[e] (x, 𝑡) = ∇(e(x, 𝑡)), (2.19)

while for the Euler equations it is given by

D[e] (x, 𝑡) =
©­­­«

0
1
2 (∇u + (∇u)𝑇 )

1
2 (∇u + (∇u)𝑇 )u + 𝜅∇(𝑝/𝜌)

ª®®®¬ (2.20)

where, using once again the Einstein convention,
{
(∇u + (∇u)𝑇 )u

}
𝑖
= (𝜕𝑖𝑢 𝑗 +

𝜕𝑗𝑢
𝑖)𝑢 𝑗 , and where 𝜅 = P

𝛾−1 , with the Prandtl number P taken to equal 1.

2.3 Spatial approximation via Fourier Continuation
The straightforward Fourier-based discretization of nonlinear conservation laws
generally suffers from crippling Gibbs oscillations resulting from two different
sources: the physical flow discontinuities on one hand, and the overall generic
non-periodicity of the flow variables on the other. Unlike the Gibbs ringing in flow-
discontinuity regions, the ringing induced by lack of periodicity is not susceptible to
treatment via artificial viscosity assignments of the type discussed in 2.2. In order
to tackle this difficulty we resort to use of the Fourier Continuation (FC) method for
equispaced-grid spectral approximation of non-periodic functions.

The basic FC algorithm [1], called FC-Gram in view of its reliance on Gram polyno-
mials for near-boundary approximation, constructs an accurate Fourier approxima-
tion of a given generally non-periodic function 𝐹 defined on a given one-dimensional
interval—which, for definiteness, is assumed in this section to equal the unit interval
[0, 1]. Thanks to its high order approximation capacity and low dispersion prop-
erties (see Section 3.2.1.2), the Fourier continuation method has been used in high
order solvers [1, 2, 3, 4, 33, 34], and more recently in the field of ML based PDE



11

d = 5

1 - 

C = 27

d = 5

Figure 2.1: Fourier Continuation of the non-periodic function 𝐹 (𝑥) = 𝑥 on the
interval [0, 1]. With reference to the text, the red triangles (resp. squares), represent
the 𝑑 = 5 left (resp. right) matching points, while the blue circles represent the
𝐶 = 27 continuation points.

solvers [35, 36]. The algorithm relies on the use of the function values 𝐹𝑗 = 𝐹 (𝑥 𝑗 )
of the function 𝐹 : [0, 1] → R at 𝑁 points 𝑥 𝑗 = 𝑗 ℎ ∈ [0, 1] (ℎ = 1/(𝑁 − 1)) to
produce a function

𝐹𝑐 (𝑥) =
𝑀∑︁

𝑘=−𝑀
𝐹̂𝑐𝑘 exp(2𝜋𝑖𝑘𝑥/𝛽) (2.21)

which is defined (and periodic) in an interval [0, 𝛽] that strictly contains [0, 1],
where 𝐹̂𝑐

𝑘
denote the FC coefficients of 𝐹 and where, as detailed below, 𝑀 is an

integer that, for 𝑁 large, is close to (but different from) the integer b𝑁/2c.

In order to produce the FC function 𝐹𝑐, the FC-Gram algorithm first uses two subsets
of the function values in the vector F = (𝐹0, . . . , 𝐹𝑁−1)𝑇 (namely the function values
at the“matching points” {𝑥0, .., 𝑥𝑑−1} and {𝑥𝑁−𝑑 , ..., 𝑥𝑁−1} located in small matching
subintervals [0,Δ] and [1−Δ, 1] of lengthΔ = (𝑑−1)ℎ near the left and right ends of
the interval [0, 1], where 𝑑 is a small integer independent of 𝑁), to produce, at first,
a discrete (but “smooth”) periodic extension vector F𝑐 of the vector F. Indeed, using
the matching point data, the FC-Gram algorithm produces and appends a number 𝐶
of continuation function values in the interval [1, 𝛽] to the data vector F, so that the
extension F𝑐 transitions smoothly from 𝐹𝑁−1 back to 𝐹0, as depicted in Figure 2.1.
(The FCmethod can also be applied on the basis of certain combinations of function
values and derivatives by constructing the continuation vectorF𝑐, as described below
in this section, for a given vector F = (𝐹0, . . . , 𝐹𝑁−2, 𝐹′

𝑁−1)
𝑇 , where 𝐹𝑗 ≈ 𝐹 (𝑥 𝑗 )

for 1 ≤ 𝑗 ≤ 𝑁 − 2 and where 𝐹′
𝑁−1 ≈ 𝐹′(𝑥𝑁−1). Such a procedure enables

imposition of Neumann boundary conditions in the context of the FC method.)
The resulting vector F𝑐 can be viewed as a discrete set of values of a smooth and
periodic function which can be used to produce the Fourier continuation function



12

𝐹𝑐 via an application of the FFT algorithm. The function 𝐹𝑐 provides a spectral
approximation of 𝐹 throughout the interval [0, 1] which does not suffer from either
Gibbs-ringing or the associated interval-wide accuracy degradation. Throughout
this thesis we assume, for simplicity, that 𝑁 + 𝐶 is an odd integer, and, thus, the
resulting series has bandwidth 𝑀 = 𝑁+𝐶−1

2 ; consideration of even values of 𝑁 + 𝐶
would require a slight modification of the index range in (2.21).

To obtain the necessary discrete periodic extension F𝑐, the FC-Gram algorithm
first produces two polynomial interpolants, one per matching subinterval, using, as
indicated above, a small number 𝑑 of function values or a combination of function
values and a derivative near each one of the endpoints of the interval [0, 1]. This
approach gives rise to high-order interpolation of the function 𝐹 over the matching
intervals [0,Δ] and [1 − Δ, 1]. The method for evaluation of the discrete periodic
extension is based on a representation of these two polynomials in a particular
orthogonal polynomials basis (the Gram polynomials), for each element of which the
algorithmutilizes a precomputed smooth functionwhich blends the basis polynomial
to the zero function over the distance 𝛽−1 [1, 2]. Certain simple operations involving
these “blending to zero” functions are then used, as indicated in these references,
which, using a number 𝑑 of discretization points near the endpoint intervals, as
illustrated in Figure 2.1, obtain smooth transitions-to-zero from the left-most and
right-most function values to the extension interval [1, 𝛽]. The values of this
transition function at the points 𝑁/(𝑁−1), (𝑁+1)/(𝑁−1), . . . , (𝑁+𝐶−1)/(𝑁−1)
provide the necessary𝐶 additional point values fromwhich, as mentioned above, the
discrete extension F𝑐 is obtained. The continuation function 𝐹𝑐 then easily results
via an application of the FFT algorithm to the function values 𝐹𝑐 in the interval
[0, 𝛽].

The discrete continuation procedure can be expressed in the matrix form

F𝑐 =

(
F

𝐴ℓ𝑄
𝑇Fℓ + 𝐴𝑟𝑄𝑇F𝑟

)
(2.22)

where the 𝑑-dimensional vectors Fℓ and F𝑟 contain the point values of 𝐹 at the
first and last 𝑑 discretization points in the interval [0, 1], respectively; where 𝑄 is a
𝑑 × 𝑑 matrix, whose columns contain the point values of the elements of the Gram
polynomial bases on the left matching intervals; and where 𝐴ℓ and 𝐴𝑟 are 𝐶 × 𝑑,
matrices containing the 𝐶 values of the blended-to-zero Gram polynomials in the
left and right Gram bases, respectively. These small matrices can be computed once
and stored on disc, and then read for use to produce FC expansions for functions
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𝐺 : [𝑎, 𝑏] → R defined on a given 1D interval [𝑎, 𝑏], via re-scaling to the interval
[0, 1].

A minor modification of the procedure presented above suffices to produce a Fourier
continuation function on the basis of data points at the domain interior and a deriva-
tive at interval endpoints. For example, given the vector F = (𝐹0, . . . , 𝐹𝑁−2, 𝐹′

𝑁−1)
𝑇 ,

using an adequately modified version 𝑄 of the matrix 𝑄, an FC series 𝐹𝑐 (𝑥) can
be produced which matches the function values 𝐹0, . . . , 𝐹𝑁−2 at 𝑥 = 𝑥0, . . . , 𝑥𝑁−2,
and whose derivative equals 𝐹′

𝑁−1 at 𝑥𝑁−1. The matrix 𝑄 is obtained by using the
matrix 𝑄 to obtain a value 𝐹𝑁−1 such that the derivative 𝐹′(𝑥𝑁−1) equals the given
value 𝐹′

𝑁−1. Full details in this regard can be found in [2, Sec. 3.2].

Clearly, the approximation order of the Fourier Continuation method (whether
derivative values or function values are prescribed at endpoints) is restricted by
the corresponding order 𝑑 of the Gram polynomial expansion, which, as detailed in
various cases in Section 3.2, is selected as a small integer: 𝑑 = 2 or 𝑑 = 5. The
relatively low order of accuracy afforded by the 𝑑 = 2 selection, which must be used
in some cases to ensure stability, is not a matter of consequence in the context of
the problems considered in the present thesis, where high orders of accuracy are not
expected from any numerical method on account of shocks and other flow disconti-
nuities. Importantly, even in this context the FC method preserves one of the most
significant numerical properties of Fourier series, namely its extremely small numer-
ical dispersion. In fact, with exception of the cyclic advection example presented in
Section 3.2.1.2, for which errors can accumulate on account of the spatio-temporal
periodicity, for all cases in Section 3.2 for which both the 𝑑 = 2 and 𝑑 = 5 sim-
ulations were performed (which include those presented in Sections 3.2.1.1 (1D
linear advection), 3.2.2.2 (2D Burgers equation) and 3.2.3.1 (1D Euler equations),
the lower and higher order results obtained were visually indistinguishable.

The low dispersion character resulting from use of the FC method is demonstrated
in Figure 3.7, which displays solutions produced by means of two different methods,
namely, the FC-based order-5 FC-SDNN algorithm (Section 3.1) and the order-6
centered finite-difference scheme (both of which use the SSPRK-4 time discretiza-
tion scheme), for a linear advection problem. The FC-SDNN solution presented in
the figure does not deteriorate even for long propagation times, thus illustrating the
essentially dispersion-free character of the FC-based approach. The finite-difference
solution included in the figure, in turn, does exhibit clear degradation with time,
owing to the dispersion and diffusion effects associated with the underlying finite
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difference discretization.

An online repository containing containing basic Matlab implementations and test
codes for the 1DFC algorithm is available at https://github.com/oscarbruno/
FC.git.
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C h a p t e r 3

FC-SDNN I: SINGLE-PATCH FC-BASED
SHOCK-DYNAMICS SOLVER WITH

NEURAL-NETWORK SHOCK DETECTION
AND LOCALIZED ARTIFICIAL-VISCOSITY

As indicated in Chapter 1, the FC-SDNN solver [6] detects shocks by exploiting
the associated discontinuity-induced Gibbs oscillations in the FC expansions of the
flow variables. The method assigns a shock-localized smooth viscous term of the
form (2.12) on the basis of the viscosity operator 𝜇 = 𝜇[e] (𝑥, 𝑡) developed in Sec-
tions 3.1.2 and 3.1.3 below and encapsulated in equations (3.17) (1D) and (3.22)
(2D). By relying on smooth viscosity assignments, further, the algorithm effectively
eliminates Gibbs oscillations (while still detecting incipient oscillatory behavior in
the smooth but sharp-near-shocks flow fields), while avoiding introduction of flow-
field roughness—that is often evidenced by the serrated contour levels resulting
from the non-smooth viscosities utilized by other methods. In view of its use of
the FC-based Fourier expansions, further, the proposed algorithm enjoys spectral
accuracy away from shocks (thus, delivering, in particular, essentially vanishing
dispersion in such regions; see Section 2.3 and Figure 3.7) while enabling solu-
tion under general (and, in particular, non-periodic) boundary conditions. Unlike
other techniques, finally, the approach does not rely on use of problem-dependent
algorithmic parameters.

This chapter presents the FC-SDNN solver in a simple geometrical context, for
which the computational domain can be discretized using a single Cartesian grid (a
single FC patch). A variety of numerical illustrations produced by the FC-SDNN
algorithm in this simple context are presented in Section 3.2—including single-patch
results for one- and two-dimensional Linear-Advection, Burgers and Euler-equation
problems. (A general-domain multi-patch version of the FC-SDNN algorithm is
presented in Chapter 4.) In order to provide a useful reference point, this chapter
also presents an FC-based version, termed FC-EV, of the entropy-viscosity (EV)
algorithm [25]. (The modified version [26] of the entropy viscosity approach, which
was also tested as a possible reference solver, was not found to be completely reliable
in the FC-based context, since it occasionally led to spurious oscillations in shock
regions as grids were refined, and the corresponding results were therefore not
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included in this thesis.) We find that the FC-SDNN algorithm generally provides
significantly more accurate numerical approximations than the FC-EV approach,
as the localized artificial viscosity in the former method induces a much lower
dissipation level than the latter.

This chapter consists of two sections: Section 3.1 describes the proposed single-
patch FC-SDNN approach, and Section 3.2 then demonstrates the algorithm’s per-
formance for a variety of non-periodic linear and nonlinear hyperbolic problems.
The numerical results include test cases for one- and two-dimensional rectangular
and non-rectangular single-patch spatial domains, as well as cases in which shock
waves meet smooth and non-smooth physical boundaries.

3.1 FC-based time marching under neural network-controlled artificial vis-
cosity

3.1.1 Spatial grid functions and spatio-temporal FC-based differentiation
We consider in this work 1D problems on intervals 𝐼 = [𝜉ℓ, 𝜉𝑟] as well as 2D
problems on open domains Ω contained in rectangular regions 𝐼 × 𝐽, where 𝐼 =

[𝜉ℓ, 𝜉𝑟] and 𝐽 = [𝜉𝑑 , 𝜉𝑢] (𝜉ℓ < 𝜉𝑟 , 𝜉𝑑 < 𝜉𝑢). Using a spatial meshsize ℎ, the spatially
discrete vectors of unknowns and certain related flow quantities will be represented
by means of scalar and vector grid functions defined on 1D or 2D discretization
grids of the form

𝐺 = {𝑥𝑖 : 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0, . . . , 𝑁 − 1} (𝑥0 = 𝜉ℓ, 𝑥𝑁−1 = 𝜉𝑟),

and

𝐺 = Ω ∩
{
(𝑥𝑖, 𝑦 𝑗 ) : 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑦 𝑗 = 𝑦0 + 𝑗 ℎ, 0 ≤ 𝑖 ≤ 𝑁1 − 1, 0 ≤ 𝑗 ≤ 𝑁2 − 1

}
,

respectively. Here Ω denotes the closure of Ω, 𝑥0 = 𝜉ℓ, 𝑥𝑁1−1 = 𝜉𝑟 , 𝑦0 = 𝜉𝑑 and
𝑦𝑁2−1 = 𝜉𝑢. In either case a function

𝑏 : 𝐺 → R𝑞

will be called a “𝑞-dimensional vector grid function”. Letting

I =
{
(𝑖, 𝑗) ∈ {0, . . . , 𝑁1 − 1} × {0, . . . , 𝑁2 − 1} : (𝑥𝑖, 𝑦 𝑗 ) ∈ 𝐺

}
,

we will also write 𝑏(𝑥𝑖) = 𝑏𝑖 (0 ≤ 𝑖 ≤ 𝑁 − 1) and 𝑏(𝑥𝑖, 𝑦 𝑗 ) = 𝑏𝑖 𝑗 ((𝑖, 𝑗) ∈ I). The
set of 𝑞-dimensional vector grid functions defined on 𝐺 will be denoted by G𝑞.

It is important tomention that, although the two-dimensional setting described above
does not impose any restrictions on the character of the domain Ω, for simplicity,
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the FC-SDNN solver presented in this chapter assumes that the boundary of Ω is
given by a union of horizontal and vertical straight segments, each one of which
runs along a Cartesian discretization line; see e.g. the Mach 3 forward-facing step
case considered in Figure 3.21a. Extensions to general domains Ω, which could
rely on either an embedded-boundary [3, 4, 37] approach, or an overlapping patch
boundary-conforming curvilinear discretization strategy [1, 2, 33], is left for future
work.

A spatially-discrete but time-continuous version of the solution vector e(x, 𝑡) con-
sidered in Chapter 2 for 1D problems (resp. 2D problems) can be viewed as a
time-dependent 𝑞-dimensional vector grid function e𝑖 = e𝑖 (𝑡) (resp. e𝑖 𝑗 = e𝑖 𝑗 (𝑡)).
Using eℎ = eℎ (𝑡) to refer generically to the 1𝐷 and 2𝐷 time-dependent grid functions
e𝑖 and e𝑖 𝑗 , the semidiscrete scheme for equation (2.13) becomes

𝑑eℎ (𝑡)
𝑑𝑡

= 𝐿 [eℎ (𝑡)], (3.1)

where 𝐿 denotes a consistent discrete approximation of the spatial operator in (2.13).

The discrete time evolution of the problem, on the other hand, is produced, through-
out this thesis, by means of the 4-th order strong stability preserving Runge-Kutta
scheme (SSPRK-4) [38]—which, while not providing high convergence orders for
the non-smooth solutions considered in this thesis, does lead to low temporal dis-
persion and diffusion over smooth space-time regions of the computational domain.
The corresponding time step is selected adaptively at each time-step 𝑡 = 𝑡𝑛 according
to the expression

Δ𝑡 =
CFL

𝜋(maxx∈Ω |𝑆[e] (x,𝑡))) |
ℎ

+ maxx∈Ω 𝜇[e] (x,𝑡)
ℎ2

)
. (3.2)

Here CFL is a constant parameter that must be selected for each problem considered
(as illustrated by the various selections utilized in Section 3.2), and 𝜇[e] (x, 𝑡)
and 𝑆 = 𝑆[e] (x, 𝑡) denote the artificial viscosity (equations (3.17) and (3.22)) and
a maximum wave speed bound (MWSB) operator (which must be appropriately
selected for each equation; see Section 3.1.3) at the spatio-temporal point (x, 𝑡). (To
avoid confusion we emphasize that equation (3.2) utilizes themaximum value for all
x ∈ Ω of the selected bound 𝑆[e] (x, 𝑡) on the maximum wave speed.)

To obtain FC-based approximate derivatives of a function 𝐹 : 𝐾 → R defined on
a one-dimensional interval 𝐾 = [𝑥0, 𝑥𝑁−1], whose values (𝐹0, 𝐹1, . . . , 𝐹𝑁−1)𝑇 are
given on the uniform mesh {𝑥0, 𝑥1, . . . , 𝑥𝑁−1}, the interval 𝐾 is re-scaled to [0, 1]
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and the corresponding continuation function 𝐹𝑐 is obtained by means of the FC-
Gram procedure described in Section 2.3. The approximate derivatives at all mesh
points are then obtained by applying the IFFT algorithm to the Fourier coefficients

(𝐹̂𝑐)′𝑘 =
2𝜋𝑖𝑘
𝛽

𝐹̂𝑐𝑘 (3.3)

of the derivative of the series (2.21) and re-scaling back to the interval 𝐾 .

All of the numerical derivatives needed to evaluate the spatial operator 𝐿 [eℎ (𝑡)] are
obtained via repeated application of the 1D FC differentiation procedure described
above. For a function 𝐹 = 𝐹 (𝑥, 𝑦) defined on a two-dimensional domain Ω and
whose values 𝐹𝑖 𝑗 ((𝑖, 𝑗) ∈ I) are given on a grid 𝐺 of the type described above
in this section, for example, partial derivatives with respect to 𝑥 along the line
𝑦 = 𝑦 𝑗0 for a relevant value of 𝑗0 are obtained by differentiation of the FC expansion
obtained for the function values (𝐹 (𝑥𝑖, 𝑦 𝑗0))𝑖 for integers 𝑖 such that (𝑖, 𝑗0) ∈ I.
The 𝑦 differentiation process proceeds similarly. Mixed derivatives, finally, are
produced by successive application of the 𝑥 and 𝑦 differentiation processes. Details
concerning the filtered derivatives used in the proposed scheme are provided in
Section 3.1.4.

The boundary conditions of Dirichlet and Neumann considered in this chapter are
imposed as part of the differentiation process described above. Dirichlet boundary
conditions at time 𝑡𝑛,𝜈 (𝑡𝑛 < 𝑡𝑛,𝜈 ≤ 𝑡𝑛+1) corresponding to the 𝜈-th SSPRK-4 stage
(𝜈 = 1, . . . , 4) for the time-step starting at 𝑡 = 𝑡𝑛, are simply imposed by overwriting
the boundary values of the unknown solution vector eℎ obtained at time 𝑡 = 𝑡𝑛,𝜈 with
the given boundary values at that time, prior to the evaluation of the spatial deriva-
tives needed for the subsequent SSPRK-4 stage. Neumann boundary conditions are
similarly enforced by constructing appropriate continuation vectors (Section 2.3)
after each stage of the SSPRK-4 scheme on the basis of the modified pre-computed
matrix 𝑄 mentioned in Section 2.3.

It is known that enforcement of the given physical boundary conditions at interme-
diate Runge-Kutta stages, which is referred to as the “conventional method” in [39],
may lead to a reduced temporal order of accuracy at spatial points in a neighborhood
of the boundary of the domain boundary. This is not a significant concern in the
context of this thesis, where the global order of accuracy is limited in view of the
discontinuous character of the solutions considered. Alternative approaches that
preserve the order of accuracy for smooth solutions, such as those introduced in [39,
40], could also be used in conjunction with the proposed approach. Another alterna-
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tive, under which no boundary conditions are enforced at intermediate Runge-Kutta
stages [41], can also be utilized in our context, but we have found the conventional
method leads to smoother solutions near boundaries.

3.1.2 Neural network-induced smoothness-classification
3.1.2.1 Smoothness-classification operator and data pre-processing

The method described in the forthcoming Section 3.1.3 for determination of the
artificial viscosity values 𝜇[e] (x, 𝑡) (cf. also Section 2.2) relies on the “degree of
smoothness” of a certain function Φ(e) (x, 𝑡) (called the “proxy variable”) of the
unknown solution vector e. In detail, following [5], in this thesis a proxy variable
Φ(e) is used, which equals the velocity 𝑢, Φ(e) = 𝑢, (resp. the Mach number,
Φ(e) = ‖u‖

√︃
𝜌

𝛾𝑝
) for equations (2.2) through (2.4) (resp. equations (2.5) and (2.6)).

The degree of smoothness of the functionΦ(e) at a certain time 𝑡 is characterized by
a smoothness-classification operator 𝜏 = 𝜏[Φ(e)] that analyzes the oscillations in an
FC expansion of Φ(e)—which is itself obtained from the discrete numerical values
φ = Φ(eℎ), so that, in particular, 𝜏[Φ(e)] = 𝜏[φ] for some discrete operator 𝜏. The
determination (or, rather, estimation) of the degree of smoothness by the operator 𝜏
is effected on the basis of an Artificial Neural Network (ANN). (We introduce the
operators 𝜏 and 𝜏 for the specific function Φ(e), but, clearly, the algorithm applies
to arbitrary scalar or vector functions, as can be seen e.g. in the application of these
operators, in the context of network training, in Section 3.1.2.2.)

We first describe the operator 𝜏 = 𝜏[φ] for for a conservation law over a one-
dimensional interval 𝐼 = [𝜉ℓ, 𝜉𝑟] discretized by an 𝑁-point equispaced mesh
(𝑥0, . . . , 𝑥𝑁−1) of mesh-size ℎ, and for which FC expansions are obtained on the
basis of the extended equispaced mesh {𝑥0, . . . , 𝑥𝑁+𝐶−1}. (Note that, in accordance
with Section 2.3, this extended mesh includes the discrete points {𝑥0, . . . , 𝑥𝑁−1} in
the interval 𝐼 as well as the discrete points {𝑥𝑁 , . . . , 𝑥𝑁+𝐶−1} in the FC extension
region.) In this case, the evaluation of the operator 𝜏 proceeds as follows.

(i) Obtain the FC expansion coefficients (φ̂𝑐−𝑀 , . . . , φ̂
𝑐
𝑀
)𝑇 ofΦ(e) by applying the

FC procedure described in Section 2.3 to the column vector (φ0, . . . ,φ𝑁−1)𝑇 .
(Note that in the present 1D case we have φ 𝑗 = Φ(e 𝑗 ).)

(ii) For a suitable selected non-negative number 𝛿 < ℎ, evaluate the values φ(𝛿)
𝑗

(0 ≤ 𝑗 ≤ 𝑁 + 𝐶 − 1 ) of the FC expansion obtained in point (i) at the shifted
grid points 𝑥0 + 𝛿, 𝑥1 + 𝛿, . . . , 𝑥𝑁+𝐶−1 + 𝛿. This is achieved by applying the FFT
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algorithm to the “shifted” Fourier coefficients φ̂𝛿 = (φ̂𝛿−𝑀 , . . . , φ̂
𝛿
𝑀
) where

φ̂𝛿
𝑗
= φ̂𝑐

𝑗
exp( 2𝜋𝑖 𝑗𝛿

𝛽
). Here, as in Section 2.3 and equation (2.21), 𝛽 denotes the

length of the FC periodicity interval. Throughout this work, the value 𝛿 = ℎ
10 is

used for classification of flow discontinuities. As indicated in Section 3.1.2.2,
different values of 𝛿 are used in the training process.

(iii) For each 𝑗 ∈ {0, . . . , 𝑁 − 1}, form the seven-point stencil

φ(𝛿, 𝑗) =
(
φ(𝛿)
𝑚( 𝑗−3,𝑁+𝐶) , . . . ,φ

(𝛿)
𝑚( 𝑗 ,𝑁+𝐶) , . . . ,φ

(𝛿)
𝑚( 𝑗+3,𝑁+𝐶)

)𝑇
of values of the shifted grid function obtained per point (ii). (Here, for an in-
teger 0 ≤ 𝑗 ≤ 𝑃, 𝑚( 𝑗 , 𝑃) denotes the remainder of 𝑗 modulo 𝑃, that is to say,
𝑚( 𝑗 , 𝑃) is the only integer between 0 and 𝑃−1 such that 𝑗 −𝑚( 𝑗 , 𝑃) is an inte-
ger multiple of 𝑃. In view of the extended domain inherent in the continuation
method, use of the remainder function 𝑚 allows for the smoothness classifica-
tion algorithm to continue to operate correctly even at points 𝑥 𝑗 near physical
boundaries—for which the seven-point subgrid (𝑥 𝑗−3, . . . , 𝑥 𝑗 , . . . , 𝑥 𝑗+3) may
not be fully contained within the physical domain.)

(iv) Using the previously selected stencils, obtain the modified stencils φ̃(𝛿, 𝑗) =(
φ̃(𝛿)
𝑚( 𝑗−3,𝑁+𝐶) , . . . , φ̃

(𝛿)
𝑚( 𝑗 ,𝑁+𝐶) , . . . φ̃

(𝛿)
𝑚( 𝑗+3,𝑁+𝐶)

)𝑇 given by
φ̃(𝛿)
𝑚( 𝑗+𝑟,𝑁+𝐶) = φ(𝛿)

𝑚( 𝑗+𝑟,𝑁+𝐶) − ℓ 𝑗+𝑟 (−3 ≤ 𝑟 ≤ 3), (3.4)

that result by subtracting the “straight line”

ℓ 𝑗+𝑟 = φ(𝛿)
𝑚( 𝑗−3,𝑁+𝐶)+

𝑟 + 3
6

(φ(𝛿)
𝑚( 𝑗+3,𝑁+𝐶)−φ

(𝛿)
𝑚( 𝑗−3,𝑁+𝐶)) (−3 ≤ 𝑟 ≤ 3) (3.5)

passing through the first and last stencil points.

(v) Rescale each stencil φ̃(𝛿, 𝑗) so as to obtain the ANN input stencils

φ̌(𝛿, 𝑗) =
(
φ̌(𝛿)
𝑚( 𝑗−3,𝑁+𝐶) , . . . , φ̌

(𝛿)
𝑚( 𝑗 ,𝑁+𝐶) , . . . φ̌

(𝛿)
𝑚( 𝑗+3,𝑁+𝐶)

)𝑇
,

given by

φ̌(𝛿)
𝑚( 𝑗+𝑟,𝑁+𝐶) =

2φ̃(𝛿)
𝑚( 𝑗+𝑟,𝑁+𝐶) − 𝑀

(+)
𝑗

− 𝑀 (−)
𝑗

𝑀
(+)
𝑗

− 𝑀 (−)
𝑗

(−3 ≤ 𝑟 ≤ 3) (3.6)

where

𝑀
(+)
𝑗

= max
−3≤𝑟≤3

φ̃(𝛿)
𝑚( 𝑗+𝑟,𝑁+𝐶) and 𝑀

(−)
𝑗

= min
−3≤𝑟≤3

φ̃(𝛿)
𝑚( 𝑗+𝑟,𝑁+𝐶) . (3.7)

Clearly, the new stencil entries satisfy satisfy −1 ≤ φ̌(𝛿)
𝑚( 𝑗+𝑟,𝑁+𝐶) ≤ 1.
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Figure 3.1: Mach number proxy variable for the Sod problem in Section 3.2.3.1 at
time 𝑇 = 2.

(vi) Apply the ANN algorithm described in Section 3.1.2.2 to each one of the
stencils φ̌(𝛿, 𝑗) =

{
φ̌(𝛿)
𝑚( 𝑗−3,𝑁+𝐶) , . . . , φ̌

(𝛿)
𝑚( 𝑗 ,𝑁+𝐶) , . . . φ̌

(𝛿)
𝑚( 𝑗+3,𝑁+𝐶)

}
, to produce

a four-dimensional vector 𝑤 𝑗 of estimated probabilities (EP) for each 𝑗 ∈
[0, . . . , 𝑁−1], where𝑤 𝑗

1 is the EP thatΦ(e) is discontinuous on the subinterval
𝐼 𝑗 = [𝑥 𝑗 − 3ℎ, 𝑥 𝑗 + 3ℎ], where, for 𝑖 = 2, 3, 𝑤 𝑗

𝑖
equals the EP that Φ(e) ∈

C𝑖−2 \ C𝑖−1 on 𝐼 𝑗 , and where, for 𝑖 = 4, 𝑤 𝑗

𝑖
equals the EP that Φ(e) ∈ C2 on

𝐼 𝑗 . Define 𝜏[φ] 𝑗 as the index 𝑖 corresponding to the maximum entry of 𝑤 𝑗

𝑖

(𝑖 = 1, . . . 4):

𝜏[φ] 𝑗 = argmax
1≤𝑖≤4

(𝑤 𝑗

𝑖
) (0 ≤ 𝑗 ≤ 𝑁 − 1). (3.8)

(Note that, for points 𝑥 𝑗 close to physical boundaries, the interval 𝐼 𝑗 = [𝑥 𝑗 −
3ℎ, 𝑥 𝑗+3ℎ], withinwhich the smoothness of the functionΦ(e) is estimated, can
extend beyond the physical domain and into the extended Fourier Continuation
region; cf. also point iii above.) As an illustration, Figure 3.1 displays the
Mach number proxy variable for the numerical solution of the Sod problem
presented Section 3.2.3.1, at time 𝑇 = 2, which includes all major Euler flow
features, namely a shock (near 𝑥 = 4), a contact (near 𝑥 = 2), and a rarefaction
fan (slope in the interval −2 ≤ 𝑥 ≤ 0).

This completes the definition of the 1D smoothness classification operator 𝜏.

For 2D configurations, in turn, we define a two-dimensional smoothness classifica-
tion operator 𝜏𝑥𝑦 [Φ(e)] = 𝜏𝑥𝑦 [φ], similar to the 1D operator, which classifies the
smoothness of the proxy variable Φ(e) on the basis of its discrete values φ = φ𝑖 𝑗 .
Note the 𝑥𝑦 subindex which indicates 2D classification operators 𝜏𝑥𝑦 and 𝜏𝑥𝑦; cer-
tain associated 1D “partial” discrete classification operators in the 𝑥 and 𝑦 variables,
which are used in the definition of 𝜏𝑥𝑦, will be denoted by 𝜏𝑥 and 𝜏𝑦, respectively.
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In order to introduce the operator 𝜏𝑥𝑦 we utilize certain 1D sections of both the set I
and the grid function φ = φ𝑖 𝑗 (see Section 3.1.1). Thus, the 𝑖-th horizontal section
(resp. the 𝑗 vertical section) of I is defined by I𝑖: = { 𝑗 ∈ Z : (𝑖, 𝑗) ∈ I} (resp.
I: 𝑗 = {𝑖 ∈ Z : (𝑖, 𝑗) ∈ I}). Similarly, for a given 2D grid function φ = φ𝑖 𝑗 ,
the 𝑖-th horizontal section φ𝑖: (resp. the 𝑗 vertical section φ: 𝑗 ) of φ is defined by
(φ𝑖:) 𝑗 = φ𝑖 𝑗 , 𝑗 ∈ I𝑖: (resp.

(
φ: 𝑗

)
𝑖
= φ𝑖 𝑗 , 𝑖 ∈ I: 𝑗 ). Utilizing these notations we define

𝜏𝑥𝑦 [φ]𝑖 𝑗 = min
{
𝜏𝑥 [φ𝑖:] 𝑗 , 𝜏𝑦 [φ: 𝑗 ]𝑖

}
, (3.9)

where, as suggested above, 𝜏𝑥 (resp. 𝜏𝑦) denotes the discrete one-dimensional
classification operator along the 𝑥 direction (resp. the 𝑦 direction), given by (3.8)
but with 𝑗 ∈ I𝑖: (resp. 𝑖 ∈ I: 𝑗 ). In other words, the 2D smoothness operator 𝜏𝑥𝑦
equals the lowest degree of smoothness between the classifications given by the two
partial classification operators.

Remark 2. Small amplitude noise in the proxy variable can affect ANN analysis,
leading to misclassification of stencils and under-prediction of the smoothness of
the proxy variable. In order to eliminate the effect of noise, stencils φ̌(𝛿, 𝑗)

𝑗
for which

𝑀
(+)
𝑗

− 𝑀 (−)
𝑗

≤ 𝜀, for a prescribed value of 𝜀, are assigned regularity 𝜏[φ] 𝑗 = 4.
Throughout this thesis we have used the value 𝜀 = 0.01.

3.1.2.2 Neural network architecture and training

The proposed strategy relies on standard neural-network techniques and nomencla-
ture [42, Sec. 6]. Following common practice in the field of machine learning,
the construction of the neural-network shock-detection algorithm used in this thesis,
which follows the corresponding shock-detection algorithm introduced in [5], relies
on the use of a number of architectural and training-strategy selections, as well
as associated parameters, including selection of the number of hidden layers, the
activation function, the size of the input stencil of function values, the number of
discretization points utilized for the representation of the functions used in the train-
ing set, the value of the shift parameter 𝛿, the backward propagation algorithm, the
batch size, the learning parameter, and the initialization procedure for the weights
and biases. In the spirit of the field, the selections used in this thesis, which are
detailed in what follows, are based on the extensive experimentation and resulting
recommendations provided in [5], and they additionally include certain adjustments,
mentioned in Sections 4.4.2 and below in this section, that were found beneficial in
the context of the FC based implementation proposed in this thesis.
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In detail, the shock-detection algorithm utilized in this thesis is based on use of
an ANN with a depth of four layers, including three fully-connected hidden layers
of sixteen neurons each, as illustrated in Figure 3.2. The ANN takes as input a
seven-point “preprocessed stencil” 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6, 𝑧7)𝑇—namely, a stencil
𝑧 that results from an application of points (i) to (v) in the previous section to the
401-coordinate vector F of grid values obtained for a given function 𝐹 on a 401-
point equispaced grid in the interval [0, 2𝜋]—in place of the grid values of the proxy
variable Φ(e)—resulting in a total of 401 stencils, one centered around each one
of the 401 grid points considered; cf. points (i) to (iii) and note that, on the basis
of the FC-extended function, the stencils near endpoints draw values at grid points
outside the interval [0, 2𝜋]. (A variation of point (ii) is used in the training process:
shift values 𝛿 = ℎ

10 ,
2ℎ
10 . . .

10ℎ
10 are used to produce a variety of seven-point stencils

for training purposes instead of the single value 𝛿 = ℎ
10 used while employing the

ANN in the classification process.) The output of the final layer of the ANN is a
four-dimensional vector 𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4)𝑇 , from which, via an application of
the softmax activation function [42, Sec. 4.1], the EP mentioned in point (vi) of the
previous section, are obtained:

𝑤𝑖 =
𝑒𝑤𝑖∑4
ℓ=1 𝑒

𝑤ℓ

, 1 ≤ 𝑖 ≤ 4. (3.10)

(The values 𝑤 𝑗

𝑖
(1 ≤ 𝑖 ≤ 4) mentioned in point (vi) result from the expression (3.10)

when the overall scheme described above in the present Section 3.1.2.2 is applied
to 𝑧 = φ̌(𝛿, 𝑗) .) The ELU activation function

ELU(𝑥;𝛼0) =
{

𝑥 if 𝑥 > 0
𝛼0(𝑒𝑥 − 1) if 𝑥 ≤ 0,

(3.11)

with 𝛼0 = 1, is used in all of the hidden layers.

In what follows we consider, for both the ANN training and validation processes,
the data set DF of preprocessed stencils resulting from the set F =

{(
𝐹𝑘 , 𝐷𝑘

)
, 𝑘 =

1, 2, . . .
}
of all pairs

(
𝐹𝑘 , 𝐷𝑘

)
, where 𝐹𝑘 is a function defined on the interval [0, 2𝜋]

and where 𝐷𝑘 is a certain “restriction domain”, as described in what follows. The
functions 𝐹𝑘 are all the functions obtained on the basis of one of the five different
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Figure 3.2: Four-layer ANN used in the shock-detection algorithm, including three
sixteen-neuron fully-connected hidden layers as well as the ELU an Softmax acti-
vation functions.

parameter-dependent analytic expressions

𝑓1(𝑥) = sin(2𝑎𝑥)
𝑓2(𝑥) = 𝑎 |𝑥 − 𝜋 |

𝑓3(𝑥) =
{
𝑎1 if |𝑥 − 𝜋 | ≤ 𝑎3
𝑎2 if |𝑥 − 𝜋 | > 𝑎3

𝑓4(𝑥) =
{
𝑎1 |𝑥 − 𝜋 | − 𝑎1𝑎3 if |𝑥 − 𝜋 | ≤ 𝑎3
𝑎2 |𝑥 − 𝜋 | − 𝑎2𝑎3 if |𝑥 − 𝜋 | > 𝑎3

𝑓5(𝑥) =
{

0.5𝑎1 |𝑥 − 𝜋 |2 − 𝑎1𝑎3 if|𝑥 − 𝜋 | ≤ 𝑎3
𝑎2 |𝑥 − 𝜋 |2 − 𝑎2 − 0.5𝑎23(𝑎1 − 𝑎2) if|𝑥 − 𝜋 | > 𝑎3

(3.12)

proposed in [5], for each one of the possible selections of the parameters 𝑎, 𝑎1, 𝑎2, 𝑎3,
as prescribed in Table 3.1. The corresponding parameter dependent restriction
domains 𝐷𝑘 are also prescribed in Table 3.1; in all cases 𝐷𝑘 is a subinterval of
[0, 2𝜋].

The restriction domains 𝐷𝑘 are used to constrain the choice of stencils to be used
among all of the 401 stencils available for each function 𝐹𝑘—so that, for a given
function 𝐹𝑘 , the preprocessed stencils associated with gridpoints contained within
𝐷𝑘 , but not others, are included within the set DF . The set DF is randomly
partitioned into a training set DT

F containing 80% of the elements in DF (which
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is used for optimization of the ANN weights and biases), and a validation set DV
F

containing the remaining 20%—which is used to evaluate the accuracy of the ANN
after each epoch [42, Sec. 7.7] and thus to provide the user with an indication of
whether overfitting has occurred.

The network training and validation processes rely on use of a one-hot encoded label
function𝐶 defined onDF which takes one of four possible values. Thus each stencil
𝑧 ∈ DF is labeled by a class vector 𝐶 (𝑧) = (𝐶1(𝑧), 𝐶2(𝑧), 𝐶3(𝑧), 𝐶4(𝑧))𝑇 , where
for each 𝑧, 𝐶 (𝑧) = (1, 0, 0, 0)𝑇 , (0, 1, 0, 0)𝑇 , (0, 0, 1, 0)𝑇 or (0, 0, 0, 1)𝑇 depending
on whether 𝑧 was obtained from a function 𝐹𝑘 that is C2, C1 \ C2, C0 \ C1, or
discontinuous over the subinterval 𝐼𝑧∩[0, 2𝜋], where 𝐼𝑧 denotes the interval spanned
by the set of seven consecutive grid points associated with the preprocessed stencil
𝑧.

The ANN is characterized by a relatively large number of parameters contained in
four weight matrices of various dimensions (a 16 × 7 matrix, a 4 × 16, and two
16 × 16 matrices), as well as four bias vectors (one 4-dimensional vector and three
16-dimensional vectors). In what follows a single parameter vector 𝑋 is utilized
which contains all of the elements in these matrices and vectors in some arbitrarily
prescribed order. Utilizing the parameter vector 𝑋 , for each stencil 𝑧 the ANN
produces the estimates 𝑤𝑖, given by (3.10), of the actual classification vector 𝐶 (𝑧).
In order to account for the dependence of 𝑤𝑖 on the parameter vector 𝑋 for each
stencil 𝑧, in what follows we write 𝑤𝑖 = 𝐴𝑖 (𝑋, 𝑧) (1 ≤ 𝑖 ≤ 4).

The parameter vector 𝑋 itself is obtained by training the network on the basis of
existing data, which is accomplished in the present context by selecting 𝑋 as an
approximate minimizer of the “cross entropy” loss function [42, Sec. 6.2]

L(𝑋) = − 1
𝑁T

∑︁
𝑧∈DT

F

4∑︁
𝑖=1

𝐶𝑖 (𝑧) log(𝐴𝑖 (𝑋, 𝑧)) (3.13)

over all 𝑧 in the training set DT
F , where 𝑁T denotes the number of elements in the

training set. The loss function L provides an indicator of the discrepancy between
the EP 𝐴(𝑋, 𝑧) = (𝐴1(𝑋, 𝑧), 𝐴2(𝑋, 𝑧), 𝐴3(𝑋, 𝑧), 𝐴4(𝑋, 𝑧)) produced by the ANN
and the corresponding classification vector 𝐶 (𝑧) = (𝐶1(𝑧), 𝐶2(𝑧), 𝐶3(𝑧), 𝐶4(𝑧))𝑇

introduced above, over all the preprocessed stencils 𝑧 ∈ DF . The minimizing
vector 𝑋 of weights and biases define the network, which can subsequently be used
to produce 𝐴(𝑋, 𝑧) for any given preprocessed stencil 𝑧.
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𝑓 (𝑥) Parameters restriction domains 𝜏

𝑓1 𝑎 =
{
− 20,−19.5, . . . , 19, 5

} [
0, 2𝜋

]
4

𝑓2 𝑎 =
{
− 10,−9, . . . , 10

} [
3.53, 5.89

]
4

𝑓3

𝑎1 =
{
− 10,−9, . . . , 9

}
𝑎2 =

{
− 10,−9, . . . , 9

}
𝑎3 =

{
0.25, 0.5, . . . , 2.5

}
s.t. 𝑎1 ≠ 𝑎2

[
𝜋 + 𝑎3 − 0.05, 𝜋 + 𝑎3 + 0.05

]
1

𝑓4

𝑎1 =
{
− 10,−9, . . . , 9

}
𝑎2 =

{
− 10,−9, . . . , 9

}
𝑎3 =

{
0.25, 0.5, . . . , 2.5

}
s.t. 𝑎1 > 2𝑎2 or 𝑎1 < 0.5𝑎2

[
𝜋 + 𝑎3 − 0.05, 𝜋 + 𝑎3 + 0.05

]
2

𝑓5

𝑎1 =
{
− 10,−9, . . . , 9

}
𝑎2 =

{
− 10,−9, . . . , 9

}
𝑎3 =

{
0.25, 0.5, . . . , 2.5

}
s.t. 𝑎1 > 5𝑎2 or 𝑎1 < 0.2𝑎2

[
𝜋 + 𝑎3 − 0.05, 𝜋 + 𝑎3 + 0.05

]
3

Table 3.1: Data set.

The Neural Network is trained (that is, the loss function 𝐿 is minimized with respect
to 𝑋) by exploiting the stochastic gradient descent algorithmwithoutmomentum [42,
Secs. 8.1, 8.4] (which was found to yields higher validation accuracy in the context
of our FC implementation than the ADAM optimizer used in [5]), with mini batches
of size 128 and with a constant learning rate of 10−6. The weight matrices and bias
vectors are initialized using the Glorot initialization [43] (instead of the initialization
strategy utilized in [5]). The training set is randomly re-shuffled after every epoch,
and the validation data is re-shuffled before each network validation. The network
with the highest validation accuracy that was obtained over a few neural network
retrains, which is used for all the illustrations presented in this thesis, has a training
accuracy of 99.61% and validation accuracy of 99.58%.

3.1.3 SDNN-localized artificial viscosity algorithm
As indicated in Chapter 1, in order to avoid introduction of spurious irregularities
in the flow field, the algorithms proposed in this thesis relies on use of smoothly
varying artificial viscosity assignments. For a given discrete solution vector eℎ,
the necessary grid values of the artificial viscosity, which correspond to discrete
values of the continuous operator 𝜇 = 𝜇[e] in (2.12), are provided by a certain
discrete viscosity operator 𝜇̃ = 𝜇̃[eℎ]. The discrete operator 𝜇̃ is defined in terms
of a number of flow- and geometry-related concepts, namely the proxy variable
φ defined in Section 3.1.2.1 and the smoothness-classification operator given by
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equations (3.8) and (3.9) for the 1D and 2D cases, respectively, as well as certain
additional functions and operators, namely a “weight function” 𝑅 and “weight
operator” 𝑅, an MWSB operator 𝑆 (see Section 3.1.1) and its discrete version 𝑆, a
sequence of “localization stencils” (denoted by 𝐿𝑖 with 0 ≤ 𝑖 ≤ 𝑁 − 1 in the 1D
case, and by 𝐿𝑖, 𝑗 with (𝑖, 𝑗) ∈ I in the 2D case) , and a “windowed-localization”
operator Λ. A detailed description of the 1D and 2D discrete artificial viscosity
operators 𝜇̃ = 𝜇̃[eℎ] is provided in Sections 3.1.3.1 and 3.1.3.2, respectively.

3.1.3.1 One-dimensional case

The proxy variable φ and 1D smoothness-classification operator 𝜏 that are used in
the definition of the 1D artificial viscosity operator have been described earlier in
this chapter; in what follows we introduce the additional necessary functions and
operators mentioned above.

The weight function 𝑅 assigns a viscosity weight according to the smoothness
classification; throughout this thesis we use the weight function given by 𝑅(1) = 2,
𝑅(2) = 1, 𝑅(3) = 0, and 𝑅(4) = 0; the corresponding grid-function operator 𝑅,
which acts over the set of grid functions 𝜂 with grid values 1, 2, 3 and 4, is defined
by 𝑅[𝜂]𝑖 = 𝑅(𝜂𝑖).

As indicated in Section 3.1.1, the proposed artificial viscosity we use is produced in
terms of a MaximumWave Speed Bound (MWSB) operator 𝑆 : G𝑞 → G, which, as
is known, plays a significant (albeit different) role in Rusanov’s local Lax-Friedrichs
flux-splitting method [44]. The MWSB operator 𝑆 maps the 𝑞-dimensional vector
grid function eℎ onto a grid function corresponding to a bound on the maximum
eigenvalue of the flux Jacobian (𝐽e 𝑓 )𝑘ℓ = (𝜕eℓ 𝑓𝑘 ) at e = eℎ, where eℓ, (resp. 𝑓𝑘 )
denotes the ℓ-th (resp. 𝑘-th) component of the unknowns solution vector e (resp. of
the convective flux 𝑓 (e)). For the one-dimensional problems, the MWSB operator
𝑆(e) (resp. the discretized operator 𝑆[eℎ] on the grid {𝑥𝑖}) is taken to equal the
maximum characteristic speed (since the maximum characteristic speed is easily
computable from the velocity in the 1D case), so that 𝑆(e) = 𝑎 (resp 𝑆[eℎ]𝑖 = 𝑎𝑖)
for the 1D Linear Advection equation (2.2), 𝑆(e) = |𝑢 | (resp 𝑆[eℎ]𝑖 = |𝑢𝑖 |) for the
1D Burgers equation (2.3), and 𝑆(e) = |𝑢 | + 𝑎 [8] (resp 𝑆[eℎ]𝑖 = |𝑢𝑖 | + 𝑎𝑖) in the case
of the 1D Euler problem (2.5) (in terms of the sound speed (2.11)).

The localization stencil 𝐿𝑖 (0 ≤ 𝑖 ≤ 𝑁 − 1) is a set of seven points that surround
𝑥𝑖: 𝐿𝑖 =

{
𝑥𝑖−3, . . . , 𝑥𝑖, . . . 𝑥𝑖+3

}
for 4 ≤ 𝑖 ≤ 𝑁 − 4, 𝐿𝑖 =

{
𝑥0, . . . 𝑥6

}
for 𝑖 ≤ 3, and

𝐿𝑖 =
{
𝑥𝑁−7, . . . 𝑥𝑁−1

}
for 𝑖 ≥ 𝑁 − 3.
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Figure 3.3: Left: Windowing function𝑊 𝑗 (𝑥) (with 𝑗 = 100, on the domain [0, 1],
and using 𝑁 = 200 discretization points) utilized in the definition of the windowed-
localization operator Λ. Right: Windowing function 𝑞18,9(𝑥 − 𝑧) utilized for the
localized filtering of the initial condition on the domain [0, 1] (using 𝑁 = 200
discretization points) for a discontinuity located at 𝑧 = 0.5.

The windowed-localization operator Λ is constructed on the basis of the window
function

𝑞𝑐,𝑟 (𝑥) =


1 if |𝑥 | < 𝑐ℎ/2

cos2
(
𝜋( |𝑥 |−𝑐ℎ/2)

𝑟ℎ

)
if 𝑐ℎ/2 ≤ |𝑥 | ≤ (𝑐/2 + 𝑟)ℎ

0 if |𝑥 | > (𝑐/2 + 𝑟)ℎ,
(3.14)

depicted in Figure 3.3 left, where 𝑐 and 𝑟 denote small positive integer values, with 𝑐
even. (Note that the 𝑞𝑐,𝑟 notation does not explicitly display the ℎ-dependence of this
function.) Using the window function 𝑞𝑐,𝑟 , two sequences of windowing functions,
denoted by 𝑊 𝑗 and 𝑊̌ 𝑗 (0 ≤ 𝑗 ≤ 𝑁 − 1), are defined, where the second sequence
is a normalized version of the former. In detail𝑊 𝑗 (𝑥) is obtained by translation of
the function 𝑞𝑐,𝑟 with 𝑐 = 0 and 𝑟 = 9: 𝑊 𝑗 (𝑥) = 𝑞0,9(𝑥 − 𝑥 𝑗 ); the corresponding
grid values of this function on the grid {𝑥𝑖} are denoted by 𝑊 𝑗

𝑖
= 𝑊 𝑗 (𝑥𝑖). The

normalized windowing functions 𝑊̌ 𝑗 and the windowed-localization operator Λ,
finally, are given by

𝑊̌
𝑗

𝑖
=

𝑊
𝑗

𝑖∑𝑁−1
𝑘=0 𝑊

𝑗

𝑘

, (3.15)

and

Λ[𝑏]𝑖 =
𝑁−1∑︁
𝑘=0

𝑊̌ 𝑘
𝑖 𝑏𝑘 , (3.16)

respectively. Using these operators and functions, we define the 1D artificial vis-
cosity operator

𝜇̃[eℎ]𝑖 = Λ[𝑅(𝜏[φ])]𝑖 ·max
𝑗∈𝐿𝑖

(𝑆[eℎ] 𝑗 )ℎ; (3.17)

as mentioned in Chapter 1 and demonstrated in Section 3.2, use of the smooth
artificial viscosity assignments produced by this expression yield smooth flows
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away from shocks and other discontinuities. Note that the localization stencils 𝐿𝑖

(0 ≤ 𝑖 ≤ 𝑁) used in equation (3.17) were designed to differ from those defined in
point (iii) of Section 3.1.2.1: unlike the latter, the former ones do not use values
of the FC-extension of the solution outside the physical domain. This difference
relates to the nature of the functionality required in each case: viscosity assignment
in the first case, which should be based on the local character of the solution in
physical space, and detection of solution discontinuities in the second case, which
can be gleaned from consideration of the FC extension.

It is important to note the essential role of the windowed-localization operator in
the assignment of smooth viscosity profiles. The smooth character of the result-
ing viscosity functions is illustrated in Figure 3.4, which showcases the viscosity
assignments corresponding to the second time-step in the solution process. (This
run corresponds to the Sod problem described in Section 3.2.3.1.) The left image
displays the viscosity profiles used in [5] (which do not utilize the smoothing win-
dows (3.16)) and the right image presents the window-based viscosity profile (3.17).
The right-hand profile, which is comparable in size but, in fact, more sharply fo-
cused around the shock than the non-smooth profile on the left-hand image, helps
eliminate spurious oscillations that otherwise arise from viscosity non-smoothness,
and allows the FC-SDNNmethod to produce smooth flow fields, as demonstrated in
Section 3.2.3.1. The functions 𝑞𝑐,𝑟 used to construct the windowed-localization op-
erator are translated and scaled versions of the Hann window functions, also called
“lag windows” [45, Sec. 5], which are commonly used as frequency filters in the
field of signal processing. The normalized form used in this chapter, equation (3.15),
combines several such window functions to produce a “partition of unity” in the
sense of differential geometry—that is, a set of non-negative functions whose sum
equals one throughout the domain.

Remark 3. For the case of a 1D periodic problem, such as those considered in
Section 3.2.1.2, the localization stencils and the windowing functions are defined by
𝐿𝑖 =

{
𝑥𝑚(𝑖−3,𝑁) , . . . , 𝑥𝑚(𝑖,𝑁) , . . . 𝑥𝑚(𝑖+3,𝑁)

}
, where the modulo function 𝑚 is defined

in Section 3.1.2.1, and where 𝑊 𝑗

𝑖
= 𝑞𝑐,𝑟 ( |𝑥 𝑗 − 𝑥𝑚(𝑖, 𝑗 ,𝑁) |). Here, for 𝑠 = 𝑐

2 + 𝑟 and
0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1, we have set

𝑚(𝑖, 𝑗 , 𝑁) =


𝑗 + 𝑁 − 𝑖 if 𝑗 < 2𝑠 and 𝑁 − 2𝑠 + 𝑗 ≤ 𝑖 ≤ 𝑁 − 1
𝑗 − 1 − 𝑖 if 𝑁 − 1 − 𝑗 < 2𝑠 and 𝑖 ≤ 2𝑠 − (𝑁 − 𝑗)

𝑖 else.
(3.18)
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Figure 3.4: Comparison of the viscosity functions arising at the first viscous time-
step for the Sod problem, using 𝑁 = 500 discretization points. Left: viscosity used
in [5]. Right: viscosity used in the present FC-SDNN method (equation (3.17)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

-0.5

0

0.5

1

1.5

2

2.5

3
10

-3

Figure 3.5: Viscosity assignment (orange dashed line) resulting from application
of the SDNN-localized artificial viscosity algorithm to the initial condition (3.19)
(blue solid line), using 𝑁 = 500 discretization points.

The values 𝑐 = 0 and 𝑟 = 9 considered previously are once again used in the periodic
context.

As an example, Figure 3.5 displays the viscosity assignments produced, by the
method described in this section for the function

𝑢(𝑥) =



10(𝑥 − 0.2) if 0.2 < 𝑥 ≤ 0.3
10(0.4 − 𝑥) if 0.3 < 𝑥 ≤ 0.4

1 if 0.6 < 𝑥 ≤ 0.8
100(𝑥 − 1) (1.2 − 𝑥) if 1 < 𝑥 ≤ 1.2

0 otherwise

(3.19)

in the interval [0, 1.4]. Clearly, the viscosity profiles are smooth and they are
supported around points where the function 𝑢 is not smooth.
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3.1.3.2 Two-dimensional case

The definition of the 2D viscosity operator follows similarly as the one for the 1D
case, with adequately modified versions of the underlying functions and operators.
In detail, in the present 2D case we define 𝑅 and 𝑅 (𝑅[𝜂]𝑖 𝑗 = 𝑅(𝜂𝑖 𝑗 )) as in the
1D case, but using the values 𝑅(1) = 1.5, 𝑅(2) = 1, 𝑅(3) = 0.5, and 𝑅(4) = 0.
We note that, while the definition of the 1D weight function 𝑅 led to stable 2D
simulations, it was found through experimentation that use of the modified 2D
definition yields smoother flow profiles away from shocks for all the 2D problems
considered (and, conversely, while the 2D definition can stably be used for the 1D
problems, sharper resolutions of shocks and contact discontinuities were obtained
with the 1D definition). Additional comments in this regard can be found in the
paragraph entitled “Higher spatial dimensionality” in Section 3.3). The 7 × 7
localization stencils 𝐿𝑖, 𝑗 ((𝑖, 𝑗) ∈ I) are defined in terms of the 1D localization
stencils 𝐿𝑖 and 𝐿 𝑗 via the relation 𝐿𝑖, 𝑗 = 𝐿𝑖 × 𝐿 𝑗 . For the 2D scalar Burgers
equation, the MWSB operator 𝑆[e] (resp. the discrete operator 𝑆[eℎ]) is taken to
equal the maximum characteristic speed, that is 𝑆[e] = |𝑢 | (resp. 𝑆[eℎ]𝑖 𝑗 = |𝑢𝑖 𝑗 | for
(𝑖, 𝑗) ∈ I). In the case of the 2D Euler problem, the MWSB operator 𝑆 used in this
thesis assigns to e the upper bound 𝑆(e) = |𝑢 | + |𝑣 | + 𝑎 on the speed of propagation
u · ®𝜅 +𝑎 of the wave corresponding to the largest eigenvalue of the 2D Flux-Jacobian
(which, in a direction supported by the unit vector ®𝜅, equals u · ®𝜅 + 𝑎 [46, Sec. 16.3
and 16.5]), so that the discrete operator 𝑆 we propose is given on the grid by

𝑆[eℎ]𝑖 𝑗 = |𝑢𝑖 𝑗 | + |𝑣𝑖 𝑗 | + 𝑎𝑖 𝑗 . (3.20)

It is relevant to note that the MWSB operator (4.44), which equals 𝑎 plus the sum of
the absolute values of the components of the velocity vector u, differs slightly from
the upper-bound selected in [25, 26], where the (equivalent) Euclidean-norm of u
was used instead. The two-dimensional local-window operator, finally, is given by

Λ[𝑏]𝑖 𝑗 =
∑︁

(𝑘,ℓ)∈I
𝑊̌ 𝑘
𝑖 𝑊̌

ℓ
𝑗 𝑏𝑘ℓ, (3.21)

which, clearly, can be obtained in practice by applying consecutively the 1D local
window operator introduced in Section 3.1.3.1 in the horizontal and vertical direc-
tions consecutively. As in the 1D case, using these operators and functions, we
define the 2D artificial viscosity operator

𝜇̃[eℎ]𝑖 𝑗 = Λ[𝑅(𝜏𝑥𝑦 [φ])]𝑖 𝑗 · max
(𝑘,ℓ)∈𝐿𝑖 𝑗

(𝑆[eℎ]𝑘ℓ)ℎ. (3.22)
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3.1.4 Spectral filtering
Spectral methods regularly use filtering strategies in order to control the error growth
in the unresolved high frequency modes. One such “global” filtering strategy is
employed in the context of this chapter as well, in conjunction with FC [1, 2], as
detailed in Section 4.2.3.1. Additionally, a new “localized” filtering strategy 4.2.3.2
is introduced in this chapter, in order to regularize discontinuous initial conditions,
while avoiding the over-smearing of smooth flow-features. Details regarding the
global and localized filtering strategies are provided in what follows.

3.1.4.1 Global filtering strategy

As indicated above, the proposed algorithm employs spectral filters in conjunc-
tion with the FC method to control the error growth in unresolved high frequency
modes [1, 2]. For a given Fourier Continuation expansion

𝑀∑︁
𝑘=−𝑀

𝐹̂𝑐𝑘 exp(2𝜋𝑖𝑘𝑥/𝛽)

the corresponding globally-filtered Fourier Continuation expansion is given by

𝐹𝑔 =

𝑀∑︁
𝑘=−𝑀

𝐹̂𝑐𝑘𝜎

( 2𝑘
𝑁 + 𝐶

)
exp(2𝜋𝑖𝑘𝑥/𝛽) (3.23)

where
𝜎

( 2𝑘
𝑁 + 𝐶

)
= exp

(
− 𝛼 𝑓

( 2𝑘
𝑁 + 𝐶

) 𝑝 𝑓
)

for adequately chosen values of the positive integer 𝑝 𝑓 and the real parameter
𝛼 𝑓 > 0. For applications involving two-dimensional domains the spectral filter is
applied sequentially, one dimension at a time.

In the algorithmproposed in this chapter, all the components of the unknown solution
vector e are filtered using this procedure at every time step following the initial time,
using the parameter values 𝛼 𝑓 = 10 and 𝑝 𝑓 = 14, as indicated in Algorithm 1.

3.1.4.2 Localized discontinuity-smearing for initial data

In order to avoid the introduction of spurious oscillations arising fromdiscontinuities
in the initial condition, the spectral filter considered in the previous section is
additionally applied, in amodified form, before the time-stepping process is initiated.
A stronger filter is used to treat the initial conditions, however, since, unlike the flow
field for positive times, the initial conditions are not affected by artificial viscosity.
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In order to avoid unduly degrading the representation of the smooth features of the
initial data, on the other hand, a localized discontinuity-smearing method, based on
use of filtering and windowing is used, that is described in what follows.

We first present the discontinuity-smearing approach for a 1D function 𝐹 : 𝐼 → R,
defined on a one-dimensional interval 𝐼, which is discontinuous at a single point
𝑧 ∈ 𝐼. In this case, the smeared-discontinuity function 𝐹sm, which combines
the globally filtered function 𝐹𝑔 in a neighborhood of the discontinuity with the
unfiltered function elsewhere, is defined by

𝐹sm(𝑥) = 𝑞𝑐,𝑟 (𝑥 − 𝑧)𝐹𝑔 (𝑥) + (1 − 𝑞𝑐,𝑟 (𝑥 − 𝑧))𝐹 (𝑥). (3.24)

Remark 4. Throughout this chapter, windows 𝑞𝑐,𝑟 with 𝑐 = 18 and 𝑟 = 9 and
globally filtered functions 𝐹𝑔 with filter parameters 𝛼 𝑓 = 10 and 𝑝 𝑓 = 2, which is
depicted in Figure 3.3 right, were used for the initial-condition filtering problem,
except as noted below in cases resulting in window overlap.

In case multiple discontinuities exist the procedure is repeated around each dis-
continuity point. Should the support of two or more of the associated windowing
functions overlap, then each group of overlapping windows is replaced by a single
window which equals zero outside the union of the supports of the windows in the
group, and which equals one except in the rise regions for the leftmost and rightmost
window functions in the group.

In the 2D case the localized discontinuity-smearing strategy for the initial condition
is first performed along every horizontal line 𝑦 = 𝑦 𝑗 : for 0 ≤ 𝑗 ≤ 𝑁2 − 1. The
resulting “partially” filtered function is then filtered along every vertical line 𝑥 = 𝑥𝑖
for 0 ≤ 𝑖 ≤ 𝑁 − 1 using the same procedure. For PDE problems involving vectorial
unknowns, further, the discontinuity-smearing strategy is applied to each component
separately.

Remark 5. As indicated in line 10 of Algorithm 1, only initial data that are spatially
discontinuous are treated by the discontinuity-smearing procedure. Note that, for
such data, the spatial positions of the initial-data discontinuities are explicitly known,
as required by the filtering procedure used.

3.1.5 Algorithm pseudo-code
A pseudo-code for the complete FC-SDNN numerical method for the various equa-
tions considered in this chapter, and for both 1D and 2D cases, is presented in
Algorithm 1.



34

Algorithm 1 FC-SDNN algorithm
1: \\Initialization.
2: Input the trained ANN weights and biases (Section 3.1.2.2).
3: Initialize the unknown solution vector eℎ (Section 2.1) to the given initial-condition
values over the given spatial grid.

4: Initialize time: 𝑡 = 0.
5: while 𝑡 < 𝑇 do
6: Evaluate the proxy variable φ corresponding to eℎ at all spatial grid points.
7: Obtain the smoothness classification operator values (𝜏[φ], equation (3.8), in the
1D case, or 𝜏𝑥𝑦 [φ], equation (3.9), in the 2D case) at all grid points by applying steps (i)
through (vi) in Section 3.1.2.1 as required in each case, 1D or 2D.

8: Evaluate the MWSB operator 𝑆[eℎ] at all spatial grid points (Section 3.1.3.1 in the
1D cases, and Section 3.1.3.2 in the 2D cases).

9: Determine the artificial viscosity assignments 𝜇̃[eℎ] (Equation (3.17) in the 1D case
or equation (3.22) in the 2D case) at all spatial grid points.

10: (Case 𝑡 = 0, discontinuous initial data only) Apply localized discontinuity-smearing
(Section 4.2.3.2) to the solution vector eℎ and overwrite eℎ with the resulting values.

11: (Case 𝑡 > 0) Apply global filtering (Section 4.2.3.1) to the solution vector eℎ and
overwrite eℎ with the resulting values.

12: Evaluate the temporal step-size Δ𝑡 by substituting the discrete version 𝑆[eℎ] and
𝜇̃[eℎ] of 𝑆[e] and 𝜇[e] in equation (3.2).

13: Perform the FC-based spatial differentiations required for time-stepping for given
(Dirichlet or Neumann) boundary conditions (Sections 2.3 and 3.1.1) and use them to
time-step the discrete version of the viscous system of equations (2.12)-(2.13), with
𝜇[e] substituted by 𝜇̃[eℎ], in accordance with the SSPRK-4 time stepping scheme.

14: Update time: 𝑡 = 𝑡 + Δ𝑡

15: end while

It may be useful to emphasize that the FC procedure introduced in Section 2.3,
without modifications, is used in Algorithm 1 even as shocks or other solution
discontinuities exist at or around domain boundaries; cf. also the paragraph entitled
“FC order” in Section 3.3. Additionally, we note a point of contrast with the related
publication [5]: unlike the algorithm presented in Section 4 of that paper, the FC-
SDNN use of the shifting procedure described in point (ii) in Section 3.1.2.1 is not
limited to the training stage of the neural network, but is also performed at every time-
step, as indicated in line 7 of Algorithm 1, as part of the evaluation of the smoothness
classification operator. This strategy exploits the fact that Gibbs oscillations in the
proxy variable can be detected on the shifted grid before spurious oscillations
affect the solution vector grid function eℎ, and thus allows for up-front “corrective”
viscosity assignments in that region—thus avoiding both spurious oscillations and
necessary subsequent use of larger viscosity values and more frequent viscosity
assignments. Experiments have shown that use of the shifting procedure during the
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time-stepping phase leads to reduced discontinuity smearing and sharper solution
profiles.

3.2 Numerical results
This section presents results of application of the FC-SDNN method to a number
of non-periodic test problems (with the exception of a periodic linear-advection
problem, in Section 3.2.1.2, demonstrating the limited dispersion of the method),
time-dependent boundary conditions, shock waves impinging on physical bound-
aries (including a corner point and a non rectangular domain), etc. All of the
examples presented in this section resulted from runs on Matlab implementations of
the various methods used. Computing times are not reported in this chapter in view
of the inefficiencies associated with the interpreter computer language used but,
for reference, we note from [13] that, for the types of equations considered in this
chapter, the FC implementations can be quite competitive, in terms of computing
time, for a given accuracy. Our experiments indicate, further, that the relative cost
of application of smooth-viscosity operators of the type used in this chapter do not
vary substantially as the mesh is refined, and that for large enough discretizations the
relative cost of the neural network algorithm becomes insignificant. We thus expect
that, as in [13], efficient implementations of the proposed FC-SDNN algorithm will
prove highly competitive for general configurations.

3.2.1 Linear advection
The simple 1D linear-advection results presented in this section demonstrate, in a
simple context, two main benefits resulting from the proposed approach, namely
1) effective handling of boundary conditions (Section 3.2.1.1), and 2) essentially
dispersionless character (Section 3.2.1.2). For the examples in this section FC
expansions with 𝑑 = 5 were used.

3.2.1.1 Boundary conditions

Figure 3.6 displays the FC-SDNN solution to the linear advection problem (2.2),
in which three waves with various degrees of smoothness emanate from the left
boundary and travel within the spatial interval [0, 1.4], with an initial condition
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𝑢(𝑥, 0) = 0 and boundary condition at 𝑥 = 0 given by

𝑢(0, 𝑡) =



100𝑡 (𝑡 − 0.2) if 0 < 𝑡 < 0.2
1 if 0.2 < 𝑡 < 0.4

10(𝑡 − 0.8) if 0.8 < 𝑡 < 0.9
1 − 10(𝑡 − 0.9) if 0.9 < 𝑡 < 1

0 otherwise.

(3.25)

At the outflow boundary 𝑥 = 1.4, the solution was evolved in the same manner as
the interior points, as befits an outflow boundary. The solution was computed up to
time 𝑇 = 2.3, using the adaptive time step given by (3.2), with CFL = 2. As shown
in Figure 3.6, the waves travel within the domain matching the exact solution. The
induction of waves and discontinuities at times 𝑡 = 0, 𝑡 = 0.2, 𝑡 = 0.4, 𝑡 = 0.6,
𝑡 = 0.8, 𝑡 = 0.9, 𝑡 = 1 through the left boundary is automatically accompanied
by the assignment of artificial viscosity on a small spatio-temporal area near that
boundary. The FC-SDNN algorithm stops assigning viscosity shortly after these
induction events, once the associated discontinuities are smeared, as illustrated in
Figures 3.6d-e. Note that the waves exit the domain without producing undesired
reflection artifacts around the physical exit boundary.
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Figure 3.6: Upper row: Solution of the non-periodic one dimensional linear advec-
tion problem at three different points in time, using 𝑁 = 500 discretization points.
Exact (black solid line), FC-SDNN (blue dashed line). Lower row: Time history
of FC-SDNN artificial viscosity assignments. (d) Full space-time range, showing
that zero viscosity values are assigned in most of the spatio-temporal domain, and a
small rectangular region delimited by red sides, whose detail is shown on panel (e).
(e) Zoomed-in range on the small spatio temporal region for which non-zero vis-
cosities are assigned.

3.2.1.2 Limited dispersion

To demonstrate the limited dispersion inherent in the FC-SDNN algorithm we
consider a problem of cyclic advection of a “bump” solution over a bounded 1D
spatial domain—thus effectively simulating, in a bounded domain, propagation over
arbitrarily extended spatial regions. To do this we utilize the smooth cut-off “bump”
function 𝜔 = 𝜔(𝑥, 𝑞1, 𝑞2) (𝑞1 ≠ 𝑞2) defined by

𝜔(𝑥, 𝑞1, 𝑞2) =


exp(2 𝑒−1/𝜉

𝜉−1 ) if 𝑞1 ≤ |𝑥 | ≤ 𝑞2
1 if |𝑥 | ≤ 𝑞1
0 if |𝑥 | ≥ 𝑞2,

where 𝜉 =
|𝑥 | − 𝑞1
𝑞2 − 𝑞1

. (3.26)

For this example we solve the equation (2.2) with 𝑎 = 1, starting from a smooth
initial condition given by 𝑢(𝑥, 0) = 𝜔(𝑥 − 0.5, 0, 0.2), over the domain [0, 1] under
periodic boundary conditions. In order to enforce such periodic conditions, the FC
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Figure 3.7: Numerical solutions to the periodic one-dimensional linear advection
problem with 𝑎 = 1 up to time 𝑇 = 500: Exact solution (solid black line), fifth order
FC-SDNN method (blue circles) and sixth order centered finite-difference scheme
(red squares). Both numerical solutions were obtained using 𝑁 = 90 discretization
points. In view of its nearly dispersionless character, the FC-based solution remains
significantly more accurate than its higher order finite-difference counterpart.

differentiation scheme is adapted, by using the same precomputed matrices 𝐴ℓ, 𝐴𝑟
and 𝑄 (see Section 2.3) in conjunction with the "wrapping" procedure described
in [1, Sec. 3.3]. Using the FC-SDNN algorithm of order 𝑑 = 5 and SSPRK-4, the
solution was evolved for five hundred periods, up to 𝑇 = 500; the resulting 𝑡 = 500
solution 𝑢(𝑥, 500) is displayed in Figure 3.7. For comparison this figure presents
numerical results obtained by means of a 6-th order central finite-difference scheme
(also with SSPRK-4 time stepping). The finite-difference method uses a constant
time-step Δ𝑡 = 0.0034, while the FC-SDNN uses the adaptive time step defined in
(3.2) for which, in the present case, with 𝜇 = 0 and 𝑆 = 1, we have Δ𝑡 = 0.0036.
Clearly, the FC-SDNN solution matches the exact solution remarkably well even
after very long times, showcasing the low dissipation and dispersion afforded by the
FC-based approach. In contrast, the higher-order finite difference solution suffers
from noticeable dispersion effects.

3.2.2 Burgers equation
The 1D and 2D Burgers equation tests presented in this section demonstrate the
FC-SDNN solver’s performance for simple nonlinear non-periodic problems. In
particular, the 2D example showcases the ability of the algorithm to handle multi-
dimensional problems where shocks intersect domain boundaries (a topic that is
also considered in Section 3.2.3.2 in the context of the Euler equations).



39

3.2.2.1 1D Burgers equation

Propagating shock wave. Figure 3.8 displays solutions to the 1DBurgers equation
(2.3), where a shock forms from the sharp features in the initial condition

𝑢0(𝑥) =
1

exp(𝑥 − 3
20 ) [tanh(10𝑥 − 3) + 1] − tanh(10𝑥 − 3) + 1

. (3.27)

Results of simulations produced by means of the FC-SDNN and FC-EV algorithms
are presented in the figure. In both cases Dirichlet boundary conditions at the inflow
boundary 𝑥 = 0 were used, while the solution at the outflow boundary 𝑥 = 2𝜋 was
evolved numerically in the same manner as the interior domain points. The FC-EV
viscosity parameters defined in equations (2.17) and (2.18) were set to 𝑐𝑚𝑎𝑥 = 0.2
and 𝑐𝐸 = 0.1; cf. Table 3.2. As shown in the figure, the shock is sharply resolved
by both algorithms, with no visible oscillations. In both cases the shock eventually
exits the physical domain without any undesired reflections or numerical artifacts.
For this example FC expansions with 𝑑 = 2 were used. The reference solution
(black) was computed on a 10000-point domain, with the FC-SDNN method.
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Figure 3.8: Solutions to the non-periodic one dimensional Burgers equation pro-
duced by the FC-SDNN and FC-EV algorithms of order 𝑑 = 2 at three different
times 𝑡. Black solid line: finely resolved FC-SDNN (𝑁 = 10, 000, for reference).
Blue dashed line: FC-SDNN with 𝑁 = 500. Green dot-dashed line: FC-EV with
𝑁 = 500. Note that the 𝑁 = 500 FC-SDNN and FC-EV solutions are virtually
indistinguishable from each other in this case.

Convergence test. To demonstrate the FC-SDNN accuracy for FC expansions of
order 𝑑 = 5 before and after the formation of a shock in an initially smooth solution,
we consider the 1D Burgers equation (2.3) in the domain [0, 2], with an initial
condition given by

𝑢0(𝑥) =
1
2
𝑥 + sin(𝜋𝑥) (3.28)

and with an identically vanishing Dirichlet boundary condition at 𝑥 = 0. The
solution at times 𝑡 = 0.3 (before the formation of the shock) and 𝑡 = 0.8 (after the
formation of the shock) are displayed in Figures 3.9a and b. As demonstrated in
Figure 3.10, a high order of convergence is obtained both in 𝐿1 and 𝐿2 norms before
the time 𝑡 = 1

𝜋− 12
at which the shock forms. (An order 8.23 is reported in the figure

for the pre-shock solution, which is higher than the FC order 5 used in this case.
We attribute this discrepancy to the fact that the error is concentrated in the region
near the point of highest gradient, where the solution is smooth, and not near the
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boundary, where the fifth-order FC error is smaller in magnitude than the error near
the highest gradient point.) After the shock-formation time, convergence of orders
ℎ and ℎ 12 in the 𝐿1 and 𝐿2 norms, respectively, is observed—as expected, in view of
the order-1 solution errors that exist in a spatial region of order ℎ around the shock.
Figures 3.9a and b also show that a faster error decay and overall smaller 𝐿1 and
𝐿2 errors are observed in spatial regions away from the shock. Finally, we note that
both before and after the formation of the shock, a selection of a higher order 𝑑 = 5
for the FC algorithm yields noticeably smaller errors away from the shock regions
than the lower order 𝑑 = 2, thus underscoring the benefit of the use of a higher order
scheme, even in the context of an order ℎ (resp. ℎ 12 ) global accuracy in 𝐿1 norm
(resp. 𝐿2 norm).

0 0.5 1 1.5 2

0

0.5

1

(a) 𝑡 = 0.2
0 0.5 1 1.5 2

0

0.5

1

(b) 𝑡 = 0.6

Figure 3.9: Solutions to the non-periodic one dimensional Burgers equation pro-
duced by the FC-SDNN algorithm of order 𝑑 = 5 at two different times 𝑡, with
𝑁 = 6400.
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Figure 3.10: Convergence of the FC-SDNN solution for the Burgers 1D test in the
𝐿1 and 𝐿2 norms (left and right panels, respectively), before (𝑡 = 0.1) and after
(𝑡 = 0.6) the shock forms (empty and full symbols, respectively). The reference
data was obtained by solving the exact implicit form of the solution [47, p.99] by
Newton’s method, using a fine-grid numerical solution as an initial guess. Full
and empty red dots: errors at 𝑡 = 0.6 and 𝑡 = 0.1, respectively, on the complete
domain, using FC order 𝑑 = 5. Full and empty blue squares: errors at 𝑡 = 0.6 and
𝑡 = 0.1, respectively, away from highest gradient point (𝑥 ∈ [0, 1.1] ∪ [1.7, 2] and
𝑥 ∈ [0, 1] ∪ [1.6, 2], respectively), using FC order 𝑑 = 2. Full and empty green
diamonds: errors at 𝑡 = 0.6 and 𝑡 = 0.1, respectively, away from the highest gradient
point (𝑥 ∈ [0, 1.1] ∪ [1.7, 2] and 𝑥 ∈ [0, 1] ∪ [1.6, 2], respectively), using FC order
𝑑 = 5.

3.2.2.2 2D Burgers equation

To demonstrate the solver’s performance and correct handling of shock-boundary
interactions for 2D problems, we consider the 2D Burgers scalar equation (2.4) on
the domain D = [0, 1] × [0, 1], with an initial condition given by the function

𝑢0(𝑥) =


−1 if 𝑥 ∈ [0.5, 1] and 𝑦 ∈ [0.5, 1]
−0.2 if 𝑥 ∈ [0, 0.5] and 𝑦 ∈ [0.5, 1]
0.5 if 𝑥 ∈ [0, 0.5] and 𝑦 ∈ [0, 0.5]
0.8 if 𝑥 ∈ [0.5, 1] and 𝑦 ∈ [0, 0.5],

(3.29)

and with vanishing normal derivatives at the boundary. This problem admits an ex-
plicit solution (displayed in Figure 3.11b at time 𝑡 = 0.25)which includes three shock
waves and a rarefaction wave, all of which travel orthogonally to various straight
boundary segments. Figures 3.11c, 3.11d, and 3.11e present the corresponding
numerical solutions produced by the FC-SDNN algorithm at time 𝑡 = 0.25 resulting
from use of various spatial discretizations and with adaptive time step given by (3.2)
with CFL = 2. Sharply resolved shock waves are clearly visible for the finer dis-
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cretizations, as is the rarefaction wave in the lower part of the figure. The viscosity
assignments, which are sharply concentrated near shock positions as the mesh is
refined, suffice to avert the appearance of spurious oscillations. It is interesting to
note that non-vanishing viscosity values are only assigned around shock disconti-
nuities. (The SDNN algorithm assigns zero viscosity to the rarefaction wave for all
time—as a result of the discontinuity-smearing introduced by the algorithm on the
initial condition for the velocity, described in Section 4.2.3.2, which the FC-SDNN
then preserves for all times in regions near the rarefaction wave on account of the
resulting smoothness of the numerical solution in such regions). For this example
FC expansions with 𝑑 = 5 were used. As shown in Figure 3.12, and per the discus-
sion in Section 3.2.2.1, the expected convergence of orders ℎ and ℎ 12 in the 𝐿1 and
𝐿2-norms respectively are obtained.
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Figure 3.12: Convergence of the FC-SDNN solution for the Burgers 2D test at
𝑡 = 0.25 in the 𝐿1 and 𝐿2 norms (left and right panels, respectively), using FC order
𝑑 = 5. Red dots: errors on the complete domain. Green diamonds: errors away
from the shocks ((𝑥, 𝑦) ∈ ([0, 0.4] × [0, 0.35]) ∪ ([0, 0.25] × [0, 0.6]) ∪ ([0.6, 1] ×
[0.6, 1]).)

3.2.3 1D and 2D Euler systems
This section presents a range of 1D and 2D test cases for the Euler system demon-
strating the FC-SDNN algorithm’s performance in the context of a nonlinear systems
of equations. The test cases include well-known 2D arrangements, including the
shock-vortex interaction example [48], 2D Riemann problem flow [49], Mach 3
forward facing step [50], and Double Mach reflection [50]. In particular the results
illustrate the algorithm’s ability to handle contact discontinuities and shock-shock
interactions as well as shock reflection and propagation along physical and compu-
tational boundaries.
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Figure 3.11: Fifth-order (𝑑 = 5) FC-SDNN numerical solution to the 2D Burgers
equation with initial condition displayed on the upper-left panel, whose exact solu-
tion at 𝑡 = 0.25 is displayed on the upper-right panel. The middle and left-lower
panels display the FC-SDNN numerical solutions at 𝑡 = 0.25 obtained by using
𝑁 × 𝑁 spatial grids with three different values of 𝑁 , as indicated in each panel. The
FC-SDNN numerical viscosity at 𝑡 = 0.25 for the case 𝑁 = 1000 is presented in the
lower-right panel.
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3.2.3.1 1D Euler problems

The 1D shock-tube tests considered in this section demonstrate the solver’s ability
to capture not only shock-wave discontinuities (that also occur in the Burgers test
examples considered in Section 3.2.2) but also contact discontinuities. Fortunately,
in view of the localized spectral filtering strategy used for the initial-data (Sec-
tion 4.2.3.2), the algorithm completely avoids the use of artificial viscosity around
contact discontinuities, and thus leads to excellent resolution of these important flow
features. This is demonstrated in a variety of well known test cases, including a
diverging rarefaction waves [51], the Sod [52], Lax [53], Shu-Osher [54] and Blast
Wave [30] problems, with flows going from left to right—so that the left boundary
point (resp. right boundary point) is the inflow (resp. outflow) boundary. Follow-
ing [46, Sec. 19], inflow (resp. outflow) boundary condition were enforced at the
inflow boundaries (resp. outflow boundaries) by setting 𝜌 and 𝑢 (resp 𝑝) identically
equal, for all time, to the corresponding boundary values of these quantities at the
initial time 𝑡 = 0. For the examples in this section FC expansions with 𝑑 = 5 were
utilized. For each one of these problems, the FC-EV solutions are provided for
reference; the selected EV parameters are provided in Table 3.2. For each test case
and each algorithm (FC-SDNN and FC-EV), the value of the constant CFL in (3.2),
which is included as part of each description, was selected so as to obtain the largest
time-step Δ𝑡 which preserves stability.

Problem Burgers 1D Div. raref. Sod Lax Shu-Osher Blast Wave
𝑐𝑚𝑎𝑥 0.2 0.1 0.1 0.15 0.85 1
𝑐𝐸 0.1 10 15 20 10 0.05

Table 3.2: FC-EV parameters for the 1D Burgers and 1D Euler problems.

Diverging rarefaction waves. We first consider the problem of two rarefaction
waves traveling in opposite directions for the 1D Euler equations (2.5) on the interval
[−0.5, 0.5] with initial conditions

(𝜌, 𝑢, 𝑝) =
{

(1,−2, 0.4) if 𝑥 < 0
(1, 2, 0.4) if 𝑥 > 0.

This simulation highlights the difficulty that arises as the equal but opposite velocities
(i.e., the diverging rarefactions waves) result in a region of a very low density and
pressure around the middle of the interval. The solution was computed up to
𝑇 = 0.15 by means of both, the FC-SDNN and the FC-EV solvers—for which
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Figure 3.13: Solutions to the “diverging rarefaction waves” problem produced by
the FC-SDNN and FC-EV algorithms of order 𝑑 = 5 at 𝑡 = 0.15, using 𝑁 = 500 and
𝑁 = 1000 discretization points (upper panels and lower panels, respectively). Left,
middle and right panel-pairs display the density, velocity and energy, respectively.
Exact solution: solid black line. FC-SDNN solution: Blue dashed-line. FC-EV
solution: Green dot-dashed line.

adaptive time steps (3.2) were used with CFL = 3 and CFL = 2, respectively. The
results presented in Figure 3.13 showwell resolved rarefaction waves, with a low, but
positive density and pressure values for the both FC-SDNN and FC-EV algorithms.
Notably, the energy component of the solution accurately approximates the exact
solution on the complete interval for both the FC-SDNN and FC-EV algorithms.
(As is well known, in contrast, the energy values show significant deviations from
the exact solution around the middle of the interval for certain types of Godunov
schemes (e.g., the one based on certain Riemann solvers such as Osher’s (see [51,
Sec 2.5]), which result from numerical errors at low density and pressures.)

Sod problem. We consider a Sod shock-tube problem for the 1D Euler equa-
tions (2.5) on the interval [−4, 5] with initial conditions

(𝜌, 𝑢, 𝑝) =
{

(1, 0, 1) if 𝑥 < 0.5
(0.125, 0, 0.1) if 𝑥 > 0.5,
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a setup that gives rise (from right to left) to a right-moving shock wave, a contact
discontinuity and a rarefaction wave (left images in Figure 3.14(a) and (b)). The
solution was computed up to time 𝑇 = 2. The results presented in Figure 3.14 show
well resolved shocks (upper and middle right) and contact discontinuities (center
images in Figure 3.14(a) and (b)), with no visible Gibbs oscillations in any case.
The FC-SDNN and FC-EV solvers (for which adaptive time steps (3.2) were used
with CFL = 3 and CFL = 2, respectively) demonstrate a similar resolution in a
vicinity of the shock, but the FC-SDNNmethod provides a much sharper resolution
of the contact-discontinuity. As shown in Figure (3.14c), after a short time the
FC-SDNN algorithm does not assign artificial viscosity in a vicinity of the contact
discontinuity, leading to the significantly more accurate resolution observed for this
flow feature.

Lax problem. We consider a Lax problem on the interval [−5, 5], with initial
condition

(𝜌, 𝑢, 𝑝) =
{

(0.445, 0.698, 3.528) if 𝑥 < 0
(0.5, 0, 0.571) if 𝑥 > 0

which results in a combination (from right to left) of a shock wave, a contact
discontinuity and a rarefaction wave (left images in Figure 3.15(a) and (b)). The
solution was computed up to time 𝑇 = 1.3. The results are presented in Figure 3.15,
which shows well resolved shocks (upper and middle right) without detectable
Gibbs oscillations. The viscosity time history displayed in Figure 3.15c shows that
the FC-SDNN method only assigns artificial viscosity in the vicinity of the shock
discontinuity but, as discussed above, not around the contact discontinuity, leading
to a sharper resolution by the FC-SDNN method in this region (center images in
Figure 3.15(a) and (b)). The FC-EV and FC-SDNN algorithms, (for which adaptive
time steps (4.38) were used with CFL = 2 and CFL = 4, respectively) demonstrate
a similar shock resolution, but the latter approach is significantly more accurate
around the contact discontinuity.

Shu-Osher problem. We consider the Shu-Osher shock-entropy problem on the
interval [−5, 5], with initial condition given by

(𝜌, 𝑢, 𝑝) =
{

(3.857143, 2.6929369, 10.33333) if 𝑥 < −4
(1 + 0.2sin(5𝑥), 0, 1) if 𝑥 > −4.

(3.30)

The solution is computed up to time 𝑇 = 1.8. In this problem, a shock wave
encounters an oscillatory smooth wavetrain. This test highlights the FC-SDNN
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(c) Time history of assigned artificial viscosity for N = 1000, for FC-EV (left) and FC-SDNN
(right).

Figure 3.14: Solutions to the Sod problem produced by the FC-SDNN and FC-EV
algorithms of order 𝑑 = 5 at 𝑡 = 0.2. Exact solution: solid black line. FC-SDNN
solution: Blue dashed-line. FC-EV solution: Green dot-dashed line. Numbers of
discretization points: 𝑁 = 500 in the upper panels and 𝑁 = 1000 in the middle
panels. Bottom panels: artificial viscosity assignments.
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Figure 3.15: Solutions to the Lax problem produced by the FC-SDNN and FC-EV
algorithms of order 𝑑 = 5 at 𝑡 = 1.3. Exact solution: solid black line. FC-SDNN
solution: Blue dashed-line. FC-EV solution: Green dot-dashed line. Numbers of
discretization points: 𝑁 = 500 in the upper panels and 𝑁 = 1000 in the middle
panels. Bottom panels: artificial viscosity assignments.
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solver’s low dissipation, as artificial viscosity is only assigned in the vicinity of the
right-traveling shock as long as the waves remain smooth, allowing for an accurate
representation of the smooth features. In particular, Figure (3.16c) shows that the
support of the FC-SDNN artificial viscosity is much more narrowly confined around
the shock position than the artificial viscosity resulting in the FC-EV approach. As a
result, and as illustrated in the right images in Figure 3.16(a) and (b), the FC-SDNN
method provides a more accurate resolution in the acoustic region (behind the
main, rightmost, shock). For this problem, the FC-EV and FC-SDNN algorithms,
(for which adaptive time steps (4.38) were used with CFL = 3 and CFL = 4,
respectively).

Blast Wave problem. Finally, we consider the Blast Wave problem as presented
in [30], on the interval [0, 1], with initial conditions given by

(𝜌, 𝑢, 𝑝) =
{

(1, 0, 1000) if 𝑥 < 0.5
(1, 0, 0.01) if 𝑥 > 0.5,

(3.31)

up to time 𝑇 = 0.012. This setup is similar to the one considered in the Sod
problem, but with a much stronger right-moving shock. In order to avoid unphysical
oscillations at the boundaries, which could result from the presence of the strong
shock, the value of the operator 𝜏 is set to 1 on the leftmost and rightmost nine
points in the domain, thus effectively assigning a small amount of viscosity at
the boundaries at every time step of the simulation. The FC-EV and FC-SDNN
algorithms, (for which adaptive time steps (3.2) were used with CFL = 2 and CFL =

2, respectively) provide a sharp resolution of the shock, as shown in Figure 3.17. As
the mesh is refined the contact discontinuity is resolved more sharply by the former
method which, as in the previous examples, does not assign viscosity around such
features.

Remark 6. As shown in the left panel of Figure 3.17, the FC-EV method assigns
a non-vanishing artificial viscosity everywhere ahead of the shock for this example.
This undesirable feature results from the term 𝜕𝜂

𝜕𝑡
in the entropy residual (2.15)

which, in view of the relation 𝜂(e) = 𝜌

𝛾−1 log(𝑝/𝜌
𝛾) given in Section 2.2.2, contains

an additive contribution of the form 𝜌

𝑝

𝜕𝑝

𝜕𝑡
—which is large ahead of the shock in view

of the small pressure value in that area, together with the numerically non-vanishing
values of 𝜕𝑝

𝜕𝑡
that result from the global character of the Fourier expansions used and

the non-smooth global viscosity profiles that underly the Entropy Viscosity method.
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(c) Time history of assigned artificial viscosity for N = 1000, for FC-EV (left) and FC-SDNN
(right).

Figure 3.16: Solutions to the Shu-Osher problem produced by the FC-SDNN and
FC-EV algorithms of order 𝑑 = 5 at 𝑡 = 1.8. Solid black line: finely resolved FC-
SDNN (𝑁 = 10, 000, for reference). Blue dashed line: FC-SDNN with 𝑁 = 500
and 𝑁 = 1000 (middle panels). Green dot-dashed line: FC-EV with 𝑁 = 500
(upper panels) and 𝑁 = 1000 (middle panels). Bottom panels: artificial viscosity
assignments.
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(c) Time history of assigned artificial viscosity for 𝑁 = 1000, for FC-EV (left) and FC-
SDNN (right).

Figure 3.17: Solutions to the Blast wave problem produced by the FC-SDNN and
FC-EV algorithms of order 𝑑 = 5 at 𝑡 = 0.012. Solid black line: exact solution.
Blue dashed line: FC-SDNN with 𝑁 = 1000 (upper- and middle-left panels),
𝑁 = 2000 (upper- and middle-center panels), and 𝑁 = 3000 (upper- and middle-
right panels). Green dot-dashed line: FC-EVwith 𝑁 = 1000 (left panels), 𝑁 = 2000
(center panels), and 𝑁 = 3000 (right panels). Bottom panels: artificial viscosity
assignments.
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3.2.3.2 2D Euler problems

The test cases considered in this section showcase the FC-SDNN method’s ability
to handle complex shock-shock, as well as shock-boundary interactions, including
shocks moving orthogonally to the boundaries as in the Riemann 2D and the Shock
vortex problems, or moving obliquely to the boundary of the domain, after reflecting
on a solid wedge, in the Double Mach reflection problem, or reflecting multiple
times on the solid walls of a wind tunnel with a step, in the Mach 3 forward facing
step problem. For the examples in this section FC expansions with 𝑑 = 2 were
used. As a result the FC method can provide significantly improved accuracy over
other approaches of the same or even higher accuracy orders. In all cases the
solutions obtained are in agreement with solutions obtained previously by various
methods [50, 49, 25, 55, 56]. As indicated in the introduction, the proposed approach
leads to smooth flows away from shocks, as evidenced by correspondingly smooth
contour levels for the various flow quantities, in contrast with corresponding results
provided by previous methods.

Riemann4 problem (Riemann problem, configuration 4 in [49]). We consider
a Riemann problem configuration on the domain [0, 1.2] × [0, 1.2], with initial
conditions given by

(𝜌, 𝑢, 𝑣, 𝑝) =


(1.1, 0, 0, 1.1) if 𝑥 ≥ 0.6 and 𝑦 ≥ 0.6

(0.5065, 0.8939, 0, 0.35) if 𝑥 < 0.6 and 𝑦 ≥ 0.6
(1.1, 0.8939, 0, 0.35) if 𝑥 < 0.6 and 𝑦 < 0.6

(0.5065, 0, 0.8939, 0.35) if 𝑥 ≥ 0.6 and 𝑦 < 0.6,

(3.32)

and with vanishing normal derivatives for all variables on the boundary, at all
times. The solution is computed up to time 𝑇 = 0.25 by means of the FC-SDNN
approach. The initial setting induces four interacting shock waves, all of which
travel orthogonally to the straight segments of the domain boundary. The results,
presented in Figure 3.18, show a sharpening of the shocks as the mesh is refined
and an absence of spurious oscillations in all cases. As shown on the left image in
Figure 3.19, the FC-SDNN viscosity assignments are sharply concentrated near the
shock positions.

Shock vortex problem [48]. We next consider a “shock-vortex” problem in the
domain [0, 1] × [0, 1], in which a shock wave collides with an isentropic vortex.
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Figure 3.18: Second-order (𝑑 = 2) FC-SDNN numerical solution to the Euler 2D
Riemann problem considered in Section 3.2.3.2, at 𝑡 = 0.25, obtained by using a
spatial discretization containing 𝑁 × 𝑁 grid points with three different values of 𝑁 ,
as indicated in each panel. For each discretization, the solution is represented using
thirty equispaced contours between 𝜌 = 0.5 and 𝜌 = 1.99.

Figure 3.19: Artificial viscosity profiles for the Euler 2D Riemann problem consid-
ered in Figure 3.18 at 𝑡 = 0.25 (left) and for the Shock vortex problem considered
in Figure 3.20 at 𝑡 = 0.35 (right).
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The initial conditions are given by

(𝜌, 𝑢, 𝑣, 𝑝) =
{

(𝜌𝐿 + 𝜌̃, 𝑢𝐿 + 𝑢̃, 𝑣𝐿 + 𝑣̃, 𝑝𝐿 + 𝑝) if 𝑥 ∈ [0, 0.5)
(𝜌𝑅, 𝑢𝑅, 𝑣𝑅, 𝑝𝑅) if 𝑥 ∈ [0.5, 1]

(3.33)

where the left state equals the combination of the unperturbed left-state (𝜌𝐿 , 𝑢𝐿 , 𝑣𝐿 , 𝑝𝐿) =
(1,√𝛾, 0, 1) in the shock wave with the isentropic vortex

𝑢̃ =
𝑥 − 𝑥𝑐
𝑟𝑐

Φ(𝑟), 𝑣̃ = −𝑥 − 𝑥𝑐
𝑟𝑐

Φ(𝑟),

𝛾 − 1
4𝜁𝛾

Φ(𝑟)2 = 𝑝𝐿

𝜌𝐿
− 𝑝𝐿 + 𝑝
𝜌𝐿 + 𝜌̃

, 𝑝𝐿 + 𝑝 = (𝜌𝐿 + 𝜌̃)𝛾,
(3.34)

centered at (𝑥𝑐, 𝑦𝑐) = (0.25, 0.5) (where 𝑟 =
√︁
(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2, Φ(𝑟) =

𝜖𝑒𝜁 (1−(𝑟/𝑟𝑐)
2)). As in previous references for this example we use the vortex pa-

rameter values 𝑟𝑐 = 0.05, 𝜁 = 0.204, and 𝜖 = 0.3. The initial right state is given
by

𝜌𝑅 = 𝜌𝐿
(𝛾 + 1)𝑝𝑅 + 𝛾 − 1
(𝛾 − 1)𝑝𝑅 + 𝛾 + 1

, 𝑢𝑅 =
√
𝛾 +

√
2

1 − 𝑝𝑅√︁
𝛾 − 1 + 𝑝𝑅 (𝛾 − 1)

,

𝑣𝑅 = 0, 𝑝𝑅 = 1.3.

Vanishing normal derivatives for all variables were imposed on the domain boundary
at all times.

The solution was obtained up to time 𝑇 = 0.35, for which the vortex has completely
crossed the shock. The solutions displayed in Figure 3.20 demonstrate the conver-
gence of the method as the spatial and temporal discretizations are refined: shocks
become sharper with eachmesh refinement, while the vortex features remain smooth
after the collision with the shock wave—a property that other solvers do not enjoy,
and which provides an indicator of the quality of the solution. The right image in
Figure 3.19 shows that, as in the previous examples, the support of the artificial
viscosity imposed by the SDNN algorithm is narrowly focused in a vicinity of the
shock.

Mach 3 forward facing step [50]. We now consider a “Mach 3 forward facing
step problem” on the domainΩ = ( [0, 0.6] × [0, 1]) ∪ ([0.6, 3] × [0.2, 1]), in which
a uniform Mach 3 flow streams through a wind tunnel with a forward facing step,
of 0.2 units in height, located at 𝑥 = 0.6, whose vertical boundary we denote by
Γ𝑠 = {0.6} × [0, 0.2]. The initial condition is given by

(𝜌, 𝑢, 𝑣, 𝑝) =
{

(1.4, 3, 0, 1) if (𝑥, 𝑦) ∈ Ω \ Γ𝑠
(1.4, 0, 0, 1) if (𝑥, 𝑦) ∈ Γ𝑠,

(3.35)
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Figure 3.20: Second-order (𝑑 = 2) FC-SDNN numerical solution to the Euler 2D
Shock-vortex problem considered in Section 3.2.3.2, at 𝑡 = 0.35, obtained by using
a spatial discretization containing 𝑁 × 𝑁 grid points with three different values of
𝑁 , as indicated in each panel. For each discretization, the solution is represented
using thirty equispaced contours between 𝜌 = 0.77 and 𝜌 = 1.42.

and the solution is computed up to time 𝑇 = 4. An inflow condition is imposed
at the left boundary at all times which coincides with the initial values on that
boundary, while the equations are evolved at the outflow right boundary. Reflecting
boundary conditions (zero normal velocity) are applied at all the other boundaries.
(Following [50, 25], no boundary condition is enforced at the node located at the
step corner.) The simulation was performed using the adaptive time step (3.2) with
CFL = 1. The density solution is displayed in Figure 3.21.

Double Mach reflection [50]. We then consider the “Double Mach reflection
problem” on the domainΩ = [0, 4] × [0, 1]. This problem contains a reflective wall
located on the 𝑥 ≥ 𝑥𝑟 part of the bottom boundary 𝑦 = 0 (here we take 𝑥𝑟 = 1/6),
upon which there impinges an incoming shock wave forming a 𝜃 = 𝜋/3 angle with
the positive 𝑥-axis. Denoting by Ω𝑠 B {(𝑥, 𝑦) ∈ Ω|0 ≤ 𝑥 ≤ 𝑥𝑟 + 𝑦

sin(𝜃) } (resp.
Ω𝑢 B {(𝑥, 𝑦) ∈ Ω|𝑥𝑟 + 𝑦

sin(𝜃) ≤ 𝑥 ≤ 4}) the shocked (resp. unshocked) region at
time 𝑡 = 0, the initial condition e(𝑥, 𝑦, 0) is given by

(𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸) =
{

(8, 57.1597,−33.0012, 563.544) if (𝑥, 𝑦) ∈ Ω𝑠

(1.4, 0, 0, 2.5) if (𝑥, 𝑦) ∈ Ω𝑢

(3.36)

and the solution is computed up to time 𝑇 = 0.2. This setup, introduced in [50],
gives rise to the reflection of a strong oblique shock wave on a wall. (Equivalently,
upon counter-clockwise rotation by 30◦, this setup can be interpreted as a vertical
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Figure 3.21: Top panel: Second-order (𝑑 = 2) FC-SDNN numerical solution to
the Mach 3 forward facing-step problem considered in Section 3.2.3.2, at 𝑡 = 4,
obtained by using 1200 × 400 spatial grid. Bottom panel: Viscosity assignment.

shock impinging on a 30◦ ramp.) As a result of the shock reflection a number of flow
features arise, including, notably, two Mach stems and two contact discontinuities
(slip lines), as further discussed below in this section.

The initial and boundary values used in this context do not exactly coincide with
the ones utilized in [50]. Indeed, on one hand, in order to avoid density oscillations
near the intersection of the shock and the top computational boundary, we utilize
“oblique” Neumann boundary conditions on all flow variables e = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸).
More precisely, we enforce zero values on the derivative of e with respect to the
direction parallel to the shock, along both the complete upper computational bound-
ary and the region 0 ≤ 𝑥 ≤ 𝑥𝑟 (that is, left of the ramp) on the lower computational
boundary. This method can be considered as a further development of the approach
proposed in [57], wherein an extended domain in the oblique direction was utilized
in conjunction with Neumann conditions along the normal direction to the oblique
boundary. In order to incorporate the oblique Neumann boundary condition we
utilized the method described in [2], which, in the present application, proceeds
by obtaining relations between oblique, normal and tangential derivatives of the
flow variables e. Inflow boundary conditions were used which prescribe time-
independent values of 𝜌, 𝑢 and 𝑣 on the left boundary; outflow conditions on the
right boundary, in turn, enforce a time independent value of 𝑝.
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Additionally, following [57], we utilize a numerical viscous incident shock as an
initial condition in order to avoid well-known post-shock oscillations, as noted
in [58], that result from the use of a sharp initial profile. Such a smeared shock
is obtained in our context by applying the FC-SDNN solver to the propagation
of an oblique flat shock on all of space (without the ramp) up to time 𝑇 = 0.2,
including imposition of oblique Neumann boundary conditions throughout the top
and bottom boundary. The solution êℎ amounts to a smeared shock profile on the
(𝑥, 𝑦) plane which, at time 𝑡, is centered on the straight line 𝑥 = 𝑥𝑠 (𝑦, 𝑡) where,
letting 𝑈𝑆 denote the theoretical value of the incident shock speed (𝑈𝑆 ≈ 10 for the
initial condition (3.36)) considered in the present context) we have set 𝑥𝑠 (𝑦, 𝑡) =

𝑥𝑟 + 𝑈𝑆

sin(𝜃) 𝑡 +
𝑦

tan(𝜃) . This shock is followed by some back-trailing oscillations, as
has been observed in [58, 57]. In order to eliminate these artifacts from the initial
condition, a diagonal strip of 𝑁𝑑 points centered around the shock location is utilized
and slightly recentered, as described in what follows.

In detail, the shock values on a strip of discretization points that is parallel to the
shock and contains 𝑁𝑑 discretization points along each discretization line parallel
to the 𝑥 axis around the shock are selected, and the backtrailing oscillatory artifacts
are discarded. The integer 𝑁𝑑 , which depends on the meshsize ℎ, is taken to be
small enough to exclude the aforementioned back-trailing artifacts from the strip,
but large enough as to include the complete structure of the actual numerical shock.
The resulting discrete shock structure is then used as the incident shock. In order
to avoid numerical errors that would arise if the numerical incident shock were
placed exactly at the edge of the reflecting wall at the initial time the initial discrete
shock structure is taken to equal a translation of the numerical shock to a position
slightly behind the initial shock position (by a distance 𝑑0 = 𝑁𝑑−1

2 ℎ in the horizontal
direction), so that the initial condition eℎ is taken to equal

eℎ (𝑥, 𝑦, 0) = 𝑞𝑐,𝑟 (𝑥𝑠 (𝑦, 0) − 𝑑0 − 𝑥)êℎ (𝑥 + 𝑑0 − 𝑥𝑠 (𝑦, 0) + 𝑥𝑠 (𝑦, 𝑇), 𝑦, 𝑇)
+ (1 − 𝑞𝑐,𝑟 (𝑥𝑠 (𝑦, 0) − 𝑑0 − 𝑥))e(𝑥 + 𝑑0, 𝑦, 0),

(3.37)

where 𝑞𝑐,𝑟 is the window function defined in (4.41). To account for the delay arising
from the aforementioned translation in the initial shock location, the final simulation
time is taken to be 𝑇 = 𝑇 + 𝑡0, where 𝑡0 = 𝑑0 sin(𝜃)

𝑈𝑆
denotes the time needed for the

translated oblique shock to reach the edge of the reflecting wall. The incident-
shock mesh-size dependent parameter values 𝑁𝑑 = floor( 125800ℎ ), 𝑐 = floor(

25
800ℎ ) and

𝑟 = floor( 50800ℎ ) (where for 𝑡 ∈ R
+, floor(𝑡) denotes the integer smaller than 𝑡 that is

closest to 𝑡) were used to produce the double-Mach solution depicted in Figures 3.22
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Figure 3.22: Top and middle panels: Second-order (𝑑 = 2) FC-SDNN numerical
solution to the Double Mach reflection problem considered in Section 3.2.3.2, at
𝑇 ≈ 0.2065, obtained by using 3200 × 800 spatial grid. Bottom panel: Viscosity
assignment.

through 3.25. It is to be noted that, in view of these definitions, the time 𝑡0 depends
slightly on the mesh discretization. Thus, for the discretizations considered in this
thesis, namely 400×1600, 600×2400, 800×3200 and 1200×4800 (see Figure 3.24),
the corresponding 𝑡0 values are, respectively, 𝑡0 ≈ 0.0065, 𝑡0 ≈ 0.0065, 𝑡0 ≈ 0.0067,
𝑡0 ≈ 0.0066.

Among several notable features in the 𝑡 = 𝑇 solution (depicted for two different
resolutions in Figure 3.22(a) and in the bottom panel of Figure 3.24) we mention
the clearly visible density-contour roll-ups of the primary slip line in the density
component of the solution (highlighted in Figure 3.23a) aswell as the extremelyweak
secondary slip line, that is most easily noticeable in the variable 𝑣 (Figure 3.22b)
as a dip in the contour lines highlighted in Figure 3.23b but which is also visible
in this area as a blip in the density contour lines (Figure 3.22a). The accurate
simulation of these two features has typically been found challenging [50, 59, 57].
The elimination of back-trailing shock oscillations, which was accomplished, as
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Figure 3.23: Zoom-in on two features displayed in Figure 3.22: (a) Density-contour
roll-ups in Figure 3.22(a); and, (b) Secondary slip line in Figure 3.22(b).

discussed above, by resorting to use of a numerically viscous incident shock, is
instrumental in the resolution of the secondary slip line—which might otherwise be
polluted by such oscillations to the point of being unrecognizable.

Self-similarity and KH instability in the Double Mach reflection problem. It is
relevant to highlight two important features in the FC-SDNN solution just considered
for the double-Mach problem, namely, its scale invariance and its rendering of the
associated Kelvin-Helmholtz instability (KH) along the double-Mach primary slip
line and associated roll-up, as discussed in what follows.

For certain geometric and initial flow settings the Euler equations admit self-similar
solutions [60]. This is the case, in particular, for the Mach and Double Mach
reflection problems [61, 62], with self-similarity centered at the wedge’s tip (𝑥𝑟 , 0)
and at the time 𝑡0 at which the incoming shock impinges upon the tip. More precisely,
the change of variables

𝜉 =
𝑥 − 𝑥𝑟
𝑡 − 𝑡0

𝜂 =
𝑦

𝑡 − 𝑡0
, (3.38)

embodies the scale-invariance property of the problem under consideration. As
illustrated in Figure 3.25, which presents scaled versions of numerical Double-
Mach solutions at various times and for various discretization levels, the FC-SDNN
Double-Mach solutions amply satisfy the self-similarity property—within the asso-
ciated numerical error, which, most notably for the smaller times, is amplified in the
self-similar blow-up process—as is evident by consideration of the vast variations
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Figure 3.24: Double Mach density profile obtained by means of a 4800 × 1200
spatial spatial grid, at times 𝑡 ≈ 0.0207 (top), 𝑡 ≈ 0.1033 (middle) and 𝑡 ≈ 0.2066
(bottom). Note that e.g. at the earliest time the self-similar double-Mach features
are effectively resolved by a much coarser grid than at later times.

in the shock widths in Figure 3.25, which result from adequate blow-up of images
such as the ones presented in Figure 3.24.

Figure 3.25 illustrates the scale-invariance property of the solution through solution
plots at different points in the time, for different levels of discretization but in the
same scale-invariant coordinates. The various plots show visibly consistent flow
features in all cases, but with various levels of resolution. In particular, for any given
mesh resolution used, features such as the shocks and the roll-up are more sharply
resolved in the later times plots. This is explained by the fact that, while the solutions
display the scale-invariance property, at early times the flow features resulting from
the shock reflection on the wedge are concentrated in a small area, and are thus
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resolved with fewer points than at later times, as illustrated in figure 3.24.

Notably, for later times and on the finest mesh discretizations, we can see that a
vortex sheet starts to develop along the primary slip line. This phenomenon, which
was previously observed in [55, 60], in different contexts and for the highest mesh
refinements, was described in [60] as a deviation (a KH instability) from a purely
inviscid solution—whichwas itself obtained, in time-independent fashion, from self-
similarity. This instability may be attributed to a combination of two phenomena: on
one hand, inevitable numerical errors, of the order of those observed in Figure 3.12,
perturb the numerical solution in the vicinity of the primary slip line by introducing
small oscillations in the profile of this contact discontinuity. On the other hand, as
the mesh is refined, the magnitudes of the viscosity assignments (3.22) are reduced,
thus leading to higher Reynolds numbers, and thus, to flows evolving from a laminar
to a more turbulent behavior. In time, the initially small oscillations along the
primary slip line grow in amplitude until they enter an initial roll-up phase [63] that
can be appreciated in Figures 3.24 and 3.25. These oscillations are not visible in any
of the images for coarser discretizations, which present, instead, a clearly laminar
character—that as suggested by the numerical experiments reported in [60], would
not appear when solving the time-independent 2D Euler equations re-expressed in
terms of the scaled variables (3.38).

3.2.4 Computational cost
This section presents an analysis of relative computing costs, averaged over many
time steps, that are required by the various elements of the FC-SDNN and FC-EV
algorithms for a sample of tests cases—namely the four Euler 1D problems and
the 2D Euler Riemann and Shock-vortex problems considered in Sections 3.2.3.1
and 3.2.3.2. All simulations were run and timed using Matlab scripts on an Intel(R)
Core(TM) i7-9750H @ 2.60GHz computer. Relative computing costs for the Euler
1D problems, using 𝑁 = 500 spatial points (resp. 𝑁 = 1000 spatial points) are
presented in Table 3.3 (resp. Table 3.4), while those for the Euler 2D problems,
simulated on square 𝑁 × 𝑁-point grids with 𝑁 = 200 (resp. 𝑁 = 400) are presented
in Table 3.5 (resp. Table 3.6). These tables display the fractions of the computing
times required by the code elements in FC-SDNN Algorithm 1 that incur the main
computational costs of the method, namely, (a) the FC-based differentiations and
other operations unrelated to viscosity calculations that are necessary to time-step
the algorithm according to the SSPRK-4 time-stepping scheme (line 13); (b) the
filtering procedure (line 11); and (c) the artificial viscosity-assignment procedure
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(a) 1600 × 400 spatial grid. (b) 2400 × 600 spatial grid.

(c) 3200 × 800 spatial grid. (d) 4800 × 1200 spatial grid.

Figure 3.25: FC-SDNNsolutions to theDoubleMach reflection problem represented
in scale invariant coordinates, at different points in time and for various domain
discretization sizes as described in the text.
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(lines 6 through 9). For reference, the tables also present computing costs incurred by
related elements in the FC-EV algorithm. Additionally, in view of potential interest,
the tables list the relative time required for evaluation of the ANN smoothness
classification procedure (point (vi) in line 7 of Algorithm 1); inspection of the
various tables shows this portion of the algorithm generally requires a small fraction
of the artificial viscosity-assignment cost.

The following computing-time components are listed in Tables 3.3 to 3.6. Times
reported for each problem are computed as the times required by various sections
of Algorithm 1 for the problem considered, per time-step, and relative to the time
required by one FC-SDNN time-step for the problem considered. The computing
time per time-step for each algorithmic section was computed as the quotient of the
total time required by that section divided by the number of time steps. To reduce
the impact of random timing fluctuations, each algorithmic-section time provided in
Tables 3.3 to 3.6 was obtained as the average of each quantity over twenty separate
runs.

– Tot: total computational time.

– AV: Computing time required by the Artificial Viscosity calculation: Lines 6
through 9 in Algorithm 1 for FC-SDNN, and Section 2.2.2 for FC-EV.

– Tot - AV: Self explanatory. Lines 11 through 14 in Algorithm 1 for FC-SDNN.

– ANN: Computing time required for evaluation of the ANN smoothness clas-
sification procedure (for the FC-SDNN method only): Point (vi), line 7 in
Algorithm 1.

– TS: number of time steps required by the simulation.

A number of general observations emerge from the results presented in Tables 3.3
to 3.6.

– For each of the examples considered in these tables, the required FC-EV
and FC-SDNN computing times per time-step are essentially the same. A
slight but systematic higher cost is incurred per time-step by the FC-SDNN
method—which can be attributed to a somewhat larger value of the AV cost
inherent in this method.
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– Importantly, however, the number of time-steps necessary to complete the
simulation can be much lower for the FC-SDNN approach, which results in
significantly faster overall FC-SDNN performance. (The significantly smaller
time-steps required by the FC-EV method result from this method’s use of
larger viscosity values—which are needed to smooth oscillations arising,
precisely, from the non-smoothness of the FC-EV viscosity distribution used.)

– It should be noted that the relative cost of the SDNN artificial viscosity
method is problem dependent: it is higher for problems with multiple shocks
(such as the Shu-Osher problem and the Riemann 2D problem presented in
Sections 3.2.3.1 and 3.2.3.2, respectively) which require larger numbers of
neural network evaluations. The FC-EV cost, in contrast, is not affected by
the number of shocks involved.

– The various timings show that the relative cost of the artificial viscosity
algorithm does not vary substantially as the gridsizes grow.

– The relative cost of the neural network evaluations is modest, less than 10%,
resp. 2% for the 1D, resp. 2D problems, and this relative cost diminishes as
the gridsize is increased.

Problem Method Tot AV Tot - AV ANN TS

Sod SDNN 1.00 0.23 0.77 0.01 317
EV 0.98 0.09 0.89 - 433

Shu Osher SDNN 1.00 0.21 0.79 0.09 432
EV 0.94 0.09 0.85 - 1387

Lax SDNN 1.00 0.19 0.81 0.06 284
EV 0.92 0.09 0.83 - 668

Blast Wave SDNN 1.00 0.22 0.78 0.08 613
EV 0.99 0.09 0.90 - 2346

Table 3.3: Computing-time components for Euler 1D problems on an 𝑁-point grid
with 𝑁 = 500.
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Problem Method Tot AV Tot - AV ANN TS

Sod SDNN 1.00 0.18 0.82 0.04 634
EV 0.95 0.04 0.91 - 865

Shu Osher SDNN 1.00 0.15 0.85 0.05 864
EV 0.96 0.05 0.92 - 2774

Lax SDNN 1.00 0.14 0.86 0.04 568
EV 0.95 0.04 0.91 - 1337

Blast Wave SDNN 1.00 0.16 0.84 0.06 1224
EV 0.94 0.04 0.90 - 4736

Table 3.4: Computing-time components for Euler 1D problems on an 𝑁-point grid
with 𝑁 = 1000.

Problem Method Tot AV Tot - AV ANN TS
Shock-vortex SDNN 1.00 0.18 0.82 0.01 585
Riemann4 SDNN 1.00 0.19 0.81 0.02 650

Table 3.5: Computing-time components for Euler 2D problems on an 𝑁 × 𝑁-point
grid with 𝑁 = 200.

Problem Method Tot AV Tot - AV ANN TS
Shock-vortex SDNN 1.00 0.20 0.80 0.01 1417
Riemann4 SDNN 1.00 0.21 0.79 0.01 1594

Table 3.6: Computing-time components for Euler 2D problems on an 𝑁 × 𝑁-point
grid with 𝑁 = 400.

3.3 Algorithm design considerations
In order to facilitate consideration of the proposed algorithms in related but differ-
ent application areas, including, for example, applications concerning systems of
nonlinear conservation laws in 1D, 2D and 3D, this section briefly presents a few
rationales inherent in the design of the proposed methods, whose validity should
extend beyond the test cases considered in this thesis.

FC order. As illustrated in Section 3.2.2, and, in particular, in Figure 3.10, use of
a high FC order 𝑑, say 𝑑 = 5, yields increased accuracy, even after the formation of
shocks, even though limited asymptotic 𝐿1 and 𝐿2 convergence rates, of order ℎ and
ℎ
1
2 , respectively, are observed after shock formation. It has been found, however,
that, for problems where shocks impact upon domain boundaries, use of an FC order
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𝑑 > 2 may lead to development of spurious oscillations near the impact points, and,
even, to overall numerical instability and blow-up, and therefore should be avoided
for such applications. The higher-order FC methods are valuable, nevertheless. For
example, ongoing efforts concern use of an overlapping-patch setup [1, 33], which
could allow the application FC procedures of lower (resp. higher) order in boundary
(resp. interior) patches, thus enabling high accuracy-order and improved dispersion
character in the domain interior and away from shocks (cf. Figure 3.7)—which
could be exploited, by using different resolutions near and away from boundaries,
to obtain low dispersion and uniformly small errors throughout the computational
domain at reduced computational cost.

Higher spatial dimensionality. Higher-dimensional FC-SDNN solvers can be
obtained by straightforward extension of the 1D and 2D algorithms and operators
presented Section 3.1. On one hand, the FC time-marching scheme presented in
Section 3.1.1 can simply be adapted to the 3D context by emulating the algorithmic
prescriptions along a third spatial coordinate direction. The determination of a 3D
smoothness classification operator, in turn, could be based on use of one-dimensional
partial discrete classification operators, such as those introduced in Section 3.1.2,
on a three-dimensional stencil of points; as in that section, the overall smoothness-
classification operator at a given point, for a given proxy variable φ used, would
then be defined as the lowest degree of smoothness among those resulting from the
partial classification operators. Similarly, the localization stencils and windowed
localization operators defined in Section 3.1.3 for the 1D and 2D cases can be
trivially extended to three dimensions. The definition of a 3D artificial viscosity
operator (cf. Section 3.1.3), finally, requires the empirical selection of values of
the weight function 𝑅 and associated weight operator 𝑅̃ appropriate for hyperbolic
systems in the 3D context. In this regard we recall that, as indicated in Section 3.1.3,
while use of the 1D weight operator yields stable 2D simulations, the modified 2D
operator introduced in Section 3.1.3.2 leads to smoother flow profiles away from
shocks for all the 2D problems considered. We therefore suggest use of the 2D 𝑅

function values as a starting point for an empirical selection of suitable values of
the function 𝑅 in the 3D case.

Proxy variable. The extension of the FC-SDNN algorithm to other systems of
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conservation laws requires, in each case, identification of an appropriate proxy vari-
able φ (Section 3.1.2.1). The proxy variable should be a dimensionless quantity
which is discontinuous whenever any one of the system’s conservative variables
is discontinuous. As an example, a reasonable candidate for the Magnetohydro-
dynamic (MHD) system could be a function φ of both, the fluid-dynamic Mach
number and the Magnetic Mach number. The empirical selection of this function
should probably be conducted in tandem with the aforementioned selection of the
function 𝑅 and associated operator 𝑅̃, to achieve overall stability as well as desired
levels of smoothness and accuracy.



69

C h a p t e r 4

FC-SDNN II: GENERAL-DOMAIN MULTI-PATCH
FC-BASED SHOCK DYNAMICS SOLVER

This chapter describes a general-domain multi-patch generalization of the single-
patch FC-SDNN method presented in Chapter 3. Based on a multi-domain decom-
position and an overlapping patch/subpatch strategy, the proposed discretization
method, described in Section 4.1 below, is applicable to general spatial domains,
including domains containing smooth and non-smooth boundaries. Importantly,
the assignment of artificial viscosity at and around obstacles (which is illustrated
in Figure 4.11; see also Remark 13), is closely correlated with the algorithm’s
enforcement of boundary conditions for both the tangential and normal velocity
components as well as the temperature (e.g. adiabatic conditions), and thus the
energy. The FC-SDNN algorithm thus produces natively a setting that incorpo-
rates both inviscid flow away from boundaries and flow discontinuities, as well
as boundary layers as proposed in Prandtl’s boundary-layer theory [64]. We have
additionally found that, as a significant by-product of the proposed use of boundary
conditions on all velocity components and resulting boundary-viscosity assignments
and boundary-layers, the algorithm does not require use of limiters to prevent the
occurrence of negative densities and pressures and associated numerical instabili-
ties. We hypothesize that the need to utilize positivity limiters in other approaches
to ensure positivity and stability may arise from a failure of well-posedness asso-
ciated with use of incomplete boundary conditions in an effectively (numerically)
viscous environment—particularly on the aft obstacle-boundary portions. All of
the numerical results presented in this chapter (Sections 4.5.2.4 through 4.5.2.10)
enjoy such stability properties without the use of positivity preserving limiters. This
include the examples in Section 4.5, which presents test cases at hypersonic speeds,
up to and including significantly higher speeds than previously achieved, such as
e.g. Mach 25 re-entry flow speeds.

Remark 7. The literature on compressible flows at high Mach number, including
simulation and experiment, is somewhat sparse. An early reference is provided
by [65]. In particular, this reference mentions that “real-gas effects will affect the
shock-wave shape only atMach numbers 8 and above, and then not too significantly”.
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But the reference also implies that such real-gas effects do lead to important devi-
ations on physical observables such as density ratios across the shock—including,
e.g., a variance from an experimental ratio of 14.6 compared to a perfect-gas ratio of
5.92 for a flow past a blunt body at Mach number 19.25. Similarly, the much more
recent computational reference [66] presents numerical computations demonstrating
significant differences between perfect-gas solutions and solutions that incorporate
certain chemical reactions that are triggered at the high pressures observed in high
Mach number configurations (a numerical experiment at Mach 16 on a limited sec-
tion ahead of the cylindrical obstacle is presented in that reference). Perfect-gas
flow simulations at high Mach numbers have nevertheless been considered repeat-
edly, including the early contribution [67] which uses the method presented in [68]
(Navier-Stokes with Mach number 22), as well as [69] (Mach 10), [55] (Mach 10),
and [50] (Mach 10). We thus suggest that perfect gas simulations at high Mach
numbers remain relevant as mathematical and computational testbeds even if they
are not physically accurate. Possibly, for example, an extension of the FC-SDNN
solver proposed in this thesis to a multi-species context may provide similar perfor-
mance (albeit at the increased cost inherent in the multi-species context) as it does
in the perfect gas case.

This chapter is organized as follows, Section 4.3 presents an adaptation to the present
context of the artificial viscosity method introduced in Chapter 3; of particular note
in this connection is the novelwindowed-viscosity propagation procedure introduced
in Section 4.3.2. The corresponding time-marching algorithm, including necessary
inter-patch and intra-patch data exchanges, is described in Section 4.2. A Message
Passing Interface (MPI) parallel implementation of the algorithm, which mirrors
the spatial patch/subpatch decomposition used, is then proposed in Section 4.4.
As suggested in Section 4.5.1, which presents illustrations for which perfect weak
parallel scaling was observed, the proposed parallel implementation enjoys high
weak and strong parallel scalability. The practical capabilities of the novel multi-
patch FC-SDNN strategy are demonstrated in Section 4.5, including test cases
demonstrating the parallel performance of the method (Section 4.5.1) as well as
illustrations concerning challenging physical problems for a variety of complex
geometries (Section 4.5.2)—including cylinders with circular as well as triangular-
wedge and prismatic cross-sections, and for test cases involving supersonic and
hypersonic flow.
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4.1 Overlapping-patch/subpatch geometry description and discretization
4.1.1 Domain decomposition: patches and their parametrizations
Following [7, 1, 2, 33], in order to obtain an FC-based discretization of equation (2.6)
for general 2D domainsΩ which may feature curved and/or non-smooth boundaries
Γ = 𝜕Ω, the proposed method relies on the decomposition of the connected open
set Ω as a union of a number 𝑃 = 𝑃S + 𝑃C1 + 𝑃C2 + 𝑃I of overlapping patches (see
Remark 8), each one of which is an open set, including, a number 𝑃S of S-type
patches ΩS

𝑝 (smooth-boundary patches); a number 𝑃C1 of C1-type patches Ω
C1
𝑝 ; a

number 𝑃C2 of C2-type patchesΩ
C2
𝑝 ; and a number 𝑃I ofI-type patchesΩI

𝑝 (interior
patches):

Ω =
©­«
𝑃S⋃
𝑝=1

ΩS
𝑝

ª®¬ ∪ ©­«
𝑃C1⋃
𝑝=1

ΩC1
𝑝

ª®¬ ∪ ©­«
𝑃C2⋃
𝑝=1

ΩC2
𝑝

ª®¬ ∪ ©­«
𝑃I⋃
𝑝=1

ΩI
𝑝

ª®¬ . (4.1)

Here C1-type patches (resp. C2-type patches) are defined to contain a neighborhood
within Ω of boundary corner points of “Type C1” (also called C1 corner points in
what follows), namely corner points formed by two smooth arcs meeting at 𝐶 with
interior angles 𝜃 > 180◦ (resp. corner points of “Type C2”, or C2 corner points,
namely corner points with interior angles 𝜃 satisfying 0 < 𝜃 < 180◦). S-type
patches and I-type patches, on the other hand are used to cover areas along smooth
boundary regions and regions away from boundaries, respectively.

Remark 8. As detailed in the following sections, each patch ΩR
𝑝 (R = S, I, C2,

C1; 𝑝 = 1, . . . , 𝑃R) is constructed as the image under a smooth parametrization
of a polygonal parameter domain P. A requirement imposed on the patches ΩR

𝑝 ,
which is satisfied in all cases by the patches constructed in the following sections,
is that the image of each of the sides of the polygonal parameter domain is either
fully contained within Γ or it contains at most one point of intersection with Γ (the
latter case occurring as the image of one of the parameter polygon sides meets Γ
transversally.)
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Figure 4.1: Patch types used in the overlapping-patch decomposition of a general
domain Ω, including (a) a corner patch of type C2 (orange); (b) a smooth-boundary
patch of type S (red); (c) an interior patch of type I (green); and (d) a corner patch
of type C1 (blue). The Q parameter space is used for (a) through (c) and the L
parameter space is used for (d).

As detailed in what follows, S-type patches, I-type patches and C2-type patches
(resp.C1-type patches) are discretized on the basis of smooth invertible mappings,
each one of which maps a canonical parameter space onto the closure of a single
patch. For patches of type S, I and C2 the canonical parameter space is taken to
equal to the unit square

Q B [0, 1] × [0, 1], (4.2)

whereas for patches of type C1 the 𝐿-shaped parameter space

L B ( [0, 1] × [1
2
, 1]) ∪ ([1

2
, 1] × [0, 1

2
]) (4.3)

is used (Figure 4.1). Simple Cartesian discretizations of Q and L induce, via the
corresponding parametrizations used, the necessary discretizations of each one of
the patches ΩR

𝑝 for R = S, C2, C1 and I, and for all relevant values of 𝑝. The
patch overlaps are assumed to be “sufficiently broad”—so that, roughly speaking,
except for discretization points near physical boundaries, each discretization point
x, associated with a given patchΩR

𝑝 , (R = S, I, C2, C1; 𝑝 = 1, . . . , 𝑃R) is contained
in a “sufficiently interior” region of at least one other patch, say ΩR

𝑝′ (𝑝
′ ≠ 𝑝). This

overlap condition is imposed so as to ensure adequate interpolation ranges between
patches as well as creation of sufficiently smooth viscosity windows near patch
boundaries—as detailed in Sections 4.1.2.3 and 4.3.2, respectively.
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In order to facilitate parallelization while avoiding the use of Fourier expansions of
extremely high order (so as to control differentiation errors in the context of sharp
flow features such as shock waves and other solution discontinuities), the proposed
algorithm allows for partitioning of the patches ΩR

𝑝 (R = S, I, C2, C1) into sets of
similarly overlapping “subpatches” introduced in Section 4.1.2.

The proposed domain-decomposition algorithmconstructs at first boundary-conforming
patches ΩR

𝑝 , 𝑝 = 1, . . . , 𝑃R (C1-type patch), each one of which is mapped via a do-
main mapping

MR
𝑝 : R̃ → ΩR

𝑝 (4.4)

where, for R = S, I and C2 (resp. R = C1) we set R̃ = Q (resp. R̃ = L); see
equations (4.1.2.1) and (4.3).

Using these notations and conventions the proposed general strategy for construction
of patch subdomains can be outlined as a sequence of four steps.

(i) C1-type patches: Patches around any existing C1 corner points are first con-
structed following the procedure described in Section 4.1.1.1.

(ii) C2-type patches: Patches around any existing C2 corner points are then con-
structed following the procedure described in Section 4.1.1.2.

(iii) S-type patches: Patches in the vicinity containing portions of smooth physi-
cal boundaries are then constructed, insuring a sufficiently wide overlap with
the previously constructed C1-type and C2-type patches, as indicated in Sec-
tion 4.1.1.3.

(iv) I-type patches: Interior patches, away from boundaries are finally constructed
so as to cover the remaining interior of the domain Ω, typically using affine
mappings, and insuring a sufficiently wide overlap with existing C1-type, C2-
type and S-type patches designed in steps (i), (ii) and (iii), as detailed in
Section 4.1.1.4.

(v) Subpatches: The patches introduced in steps (ii), (iii) and (iv) can subsequently
be further decomposed into overlapping subpatches within each patch, as
described in Section 4.1.2.4—in order to ensure a sufficiently fine gridsize
is achieved in each subpatch while using a constant number of discretization
points per subpatch, as discussed in Section 4.1.2.4.
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4.1.1.1 C1- type patches

Let 𝐶 ∈ Γ denote a C1 corner point. By definition, in a neighborhood of 𝐶 the
boundary Γ can be represented as the union of two smooth arcs

⌢

𝐴𝐶 and
⌢

𝐵𝐶 meeting
at 𝐶, as illustrated in Figure 4.2. We assume, as we may, that smooth and invertible
1D maps ℓ𝐴 : [0, 1] → Ω and ℓ𝐵 : [0, 1] → R2 are available that parametrize
suitable extensions of the curves

⌢

𝐴𝐶 and
⌢

𝐵𝐶 beyond the point𝐶, in such a way that,
with reference to Figure 4.2, we have

ℓ𝐴 ( [0,
1
2
]) =

⌢

𝐴𝐶, ℓ𝐴 ( [
1
2
, 1]) =

⌢

𝐶𝐷,

ℓ𝐵 ( [0,
1
2
]) =

⌢

𝐵𝐶, ℓ𝐵 ( [
1
2
, 1]) =

⌢

𝐶𝐸,

(4.5)

(and, thus, in particular, ℓ𝐴 ( [0, 1]) =
⌢

𝐴𝐷 and ℓ𝐵 ( [0, 1]) =
⌢

𝐵𝐸). Using these curves
a 2D parametrizationMC1

𝑝 : L → Ω
C1
𝑝 as in (4.4) for a C1-type patch ΩC1 around

the point 𝐶 as in Figure 4.2 can be defined by

MC1
𝑝 (𝜉, 𝜂) = ℓ𝐴 (𝜉) + ℓ𝐵 (𝜂) − 𝐶. (4.6)

Figure 4.2: Mappings for a 𝐶1-type patch (left image pair), 𝐶2-type patch (middle
image pair) and 𝑆-type patch (right image pair).

To conclude this section it is relevant to note that a straightforward patching strategy
around a C1 corner point obtained as a union of two patches extruded separately
from the curves

⌢

𝐴𝐷 and
⌢

𝐵𝐸 results in a pair of patches that cannot satisfy the
inter-patch overlap-size conditions required per Section 4.1.2.3 (and motivated by
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the commentary in Remark 10 and illustrated in Figure 4.6, with additional details
in Section 4.1.4.1)—which, relating to the interpatch interpolation algorithm that is
a part of the overset decomposition strategy, requires that points in one patch that are
recipients of interpolation data from a second patch cannot themselves be donors of
interpolation data onto the second patch.

4.1.1.2 C2-type patches

Let us now consider a C2 corner point 𝐶 ∈ Γ. By definition, in a neighborhood
of 𝐶 the boundary Γ can be represented as the union of two smooth arcs

⌢

𝐴𝐶 and
⌢

𝐵𝐶 meeting at 𝐶, which may be parametrized by smooth and invertible 1D maps
ℓ𝐴 : [0, 1] → R2 and ℓ𝐵 : [0, 1] → R2 in such a way that, with reference to
Figure 4.2, we have

ℓ𝐴 ( [0, 1]) =
⌢

𝐴𝐶, ℓ𝐵 ( [0, 1]) =
⌢

𝐵𝐶. (4.7)

Using these parametrized curves,we obtain the 2D parametrizationMC2
𝑝 : Q → Ω

C2
𝑝

given by
MC2

𝑝 (𝜉, 𝜂) = ℓ𝐴 (𝜉) + ℓ𝐵 (𝜂) − 𝐶 (4.8)

for a C2-type patch ΩC2 around the point 𝐶.

4.1.1.3 S-type patches

Turning to smooth portions of Γ, for a given smooth arc
⌢

𝐴𝐵 ⊂ Γ joining two selected
points 𝐴, 𝐵 ∈ Γ and parametrized by a smooth and invertible map ℓ𝐴 : [0, 1] → R2

such that
ℓ𝐴 ( [0, 1]) =

⌢

𝐴𝐵, (4.9)

a 2D S-patch parametrization along
⌢

𝐴𝐵 is obtained simply by extruding a patch
along the normal direction. In detail, letting 𝜈 : [0, 1] → R2 denote the unit normal
vector to the boundary arc

⌢

𝐴𝐵, so that, for 𝑡 ∈ [0, 1], 𝜈(𝑡) is the unit normal vector
at the point ℓ𝐴 (𝑡) pointing towards the interior of Ω, and letting 𝐻 > 0 denote an
adequately selected parameter, as described below, the desired 2D S-type patch
parametrizationMS

𝑝 : Q → ΩS
𝑝 , illustrated in Figure 4.2, is defined by

MS
𝑝 (𝜉, 𝜂) = ℓ𝐴 (𝜉) + 𝜂𝐻𝜈(𝜉). (4.10)
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4.1.1.4 I-type patches

Finally, we considerI-type patches covering portions ofΩ at a positive distance from
Γ, which, per point (iv) above, are constructed on the basis of affine parametrizations
MI

𝑝 : Q → ΩI
𝑝 .

4.1.2 Patches, subpatches and their grids
An overall overlapping-patch decomposition of the form (4.1) for the domain Ω is
obtained on the basis of adequately selected sets of patches, including patches of
types C1, C2,S andI, as described in Section 4.1.1, in such a way that equation (4.1)
is satisfied. Since Ω is a connected open set, and since all patches are themselves
open sets, each patch ΩR

𝑝 (R = S, C1, C2, or I and 1 ≤ 𝑝 ≤ 𝑃R) must necessarily
overlap one or more other patches ΩR ′

𝑝′ (R′ = S, C1, C2, or I and 1 ≤ 𝑝′ ≤ 𝑃R ′).
In fact, an efficient implementation of the proposed algorithm additionally requires
that a “sufficient amount of overlap” exists, in the sense that every point 𝑥 ∈ ΩR

𝑝

that lies “in the vicinity” of the boundary of ΩR
𝑝 must lie “sufficiently deep” within

some patch ΩR ′

𝑝′ (i.e., within Ω
R ′

𝑝′ and away from a vicinity of the boundary of Ω
R ′

𝑝′ )
for some (𝑝′,R′) ≠ (𝑝,R). The vicinity and depth concepts alluded to above are
defined and quantified in Sections 4.1.2.3, 4.1.4.1 and 4.1.4.2.

For flexibility in both geometrical representation and discretization refinement, the
patching structure we use incorporates a decomposition in “sub-patches” ΩR

𝑝,ℓ
of

each patch ΩR
𝑝 (R = S, C1, C2, or I):

ΩR
𝑝 =

𝑟𝑝⋃
ℓ=1

ΩR
𝑝,ℓ
,

on each of which a patch-type dependent number of discretization points is used,
as indicated in Sections 4.1.2.1 and 4.1.2.2. Like the patches themselves, the
subpatches we use are required to display sufficiently large amounts of overlap
between neighboring subpatches. Subpatches are defined, simply, via overlapping
decomposition of the canonical parameter spaces P = Q and P = L, as described
in Sections 4.1.2.1 and 4.1.2.2. The following description utilizes detailed notations
for the discretizations used for the various patch and subpatch types. Such level
of detail, which involves several sub- and super-indexes, is needed in the context
of the description of the multi-patch viscosity assignment and propagation strategy
presented in Section 4.3.
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4.1.2.1 Q parameter space discretization (for S-, I- and C2-type patches)

In order to obtain discretizations for each one of the patches ΩR
𝑝 (R = S, C2, I;

1 ≤ 𝑝 ≤ 𝑃R), we introduce the parameter space grids

𝐺R
𝑝 = Q ∩

{
(𝑞R,1

𝑝,𝑖
, 𝑞

R,2
𝑝, 𝑗

) : 𝑞R,1
𝑝,𝑖

= 𝑖ℎR,1𝑝 , 𝑞
R,2
𝑝, 𝑗

= 𝑗 ℎR,2𝑝 , (𝑖, 𝑗) ∈ N20
}
, (4.11)

of grid sizes ℎR,1𝑝 = 1
𝑁

R, 𝜉
𝑝 +2𝑛𝑣−1

and ℎR,2𝑝 = 1
𝑁

R,𝜂
𝑝 +2𝑛𝑣−1

along the 𝑞1 (abscissa)

and 𝑞2 (ordinate) directions in parameter space, respectively, and denoting N0 =

N ∪ {0}. Here 𝑁R,𝜉
𝑝 (resp. 𝑁R,𝜂

𝑝 ) denotes the number of discretization points, in
each discretization line along the 𝑞1 (resp. 𝑞2) direction, that lie outside a certain
“boundary vicinity” layer of discretization points. The boundary vicinity is itself
characterized by the positive integer 𝑛𝑣 equal to the number of discretization points
along the boundary-vicinity width, as illustrated in Figure 4.3. The value 𝑛𝑣 = 9
was used in all of the implementations presented in this chapter.

Figure 4.3: Patch decomposition (inQ parameter-space) for a patchΩR
𝑝 (withR = S,

C2, or I) into preliminary non-overlapping rectangular subpatches (with boundaries
shown in black), associated overlapping rectangles (two examples highlighted, with
boundaries shown in red) and discretization lines (shown in gray). Geometric
parameter values 𝑟𝑝 = 4, 𝑠𝑝 = 3, 𝑛0 = 9 and 𝑛𝑣 = 3 were used for this illustration.

As indicated in Section 4.1.1, the proposed discretization algorithm additionally
relies on use of subpatches to limit the order of the FC expansions used. To describe
the sub-patch decomposition approach for of S-, I- and C2-type patches, we first
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introduce, for a given assignment of positive integers 𝑟R𝑝 and 𝑠R𝑝 for each (R, 𝑝), a
set of non-overlapping rectangles strictly contained within Q:⋃

(𝑟,𝑠)∈ΘR
𝑝

[𝑎̃𝑟 , 𝑏̃𝑟] × [𝑐𝑠, 𝑑𝑠] ( Q (4.12)

where we define

ΘR
𝑝 = {(𝑟, 𝑠) ∈ N20 | 0 ≤ 𝑟 ≤ 𝑟

R
𝑝 − 1 and 0 ≤ 𝑠 ≤ 𝑠R𝑝 − 1}. (4.13)

In what follows we select 𝑁R,𝜉
𝑝 = 𝑟R𝑝 (𝑛0+1) −1 and 𝑁

R,𝜂
𝑝 = 𝑠R𝑝 (𝑛0+1) −1, where 𝑟R𝑝

and 𝑠R𝑝 are given positive integers, and where 𝑛0 denotes the number of points used
in the discretization of certain preliminary non-overlapping subpatches introduced
below along both the parameter space 𝑞1 and 𝑞2 directions. The procedure used
for selection of the integers 𝑟R𝑝 and 𝑠R𝑝 is described in Section 4.1.2.4. The ((R, 𝑝)-
dependent interval endpoints 𝑎̃𝑟 , 𝑏̃𝑟 , 𝑐𝑠 and 𝑑𝑠 are selected, using certain integer
parameters 𝑛0 (number of discretization points along both the parameter space 𝑞1

(abscissa) and 𝑞2 (ordinate) directions in the discretization of certain preliminary
non-overlapping subpatches introduced below) and 𝑛𝑣 (number of discretization
points along both the parameter space 𝑞1 (abscissa) and 𝑞2 (ordinate) directions
contained in the discretization of a certain “vicinity” of the preliminary subpatches),
in accordance with the relations

𝑎̃0 = (𝑛𝑣 − 1)ℎR,1𝑝 ,

𝑏̃𝑟 − 𝑎̃𝑟 = (𝑛0 + 1)ℎR,1𝑝 , (0 ≤ 𝑟 ≤ 𝑟R𝑝 − 1),
𝑎̃𝑟+1 = 𝑏̃𝑟 , (0 ≤ 𝑟 < 𝑟R𝑝 − 1),
𝑐0 = (𝑛𝑣 − 1)ℎR,2𝑝 ,

𝑑𝑠 − 𝑐𝑠 = (𝑛0 + 1)ℎR,2𝑝 , (0 ≤ 𝑠 ≤ 𝑠R𝑝 − 1),
𝑐𝑠+1 = 𝑑𝑠, (0 ≤ 𝑠 < 𝑠R𝑝 − 1).

(4.14)

In all of the implementations presented in this chapter the value 𝑛0 = 83 was used.

The overlapping subpatches associated with a given patch are characterized, via the
patch parametrization, by the decomposition of Q as the union

Q =
⋃

(𝑟,𝑠)∈ΘR
𝑝

[𝑎𝑟 , 𝑏𝑟] × [𝑐𝑠, 𝑑𝑠], (4.15)

of overlapping rectangles, whose vertices are given by
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𝑎𝑟 = 𝑎̃𝑟 − (𝑛𝑣 − 1)ℎR,1𝑝 , (0 ≤ 𝑟 ≤ 𝑟R𝑝 − 1),
𝑏𝑟 = 𝑏̃𝑟 + (𝑛𝑣 − 1)ℎR,1𝑝 , (0 ≤ 𝑟 ≤ 𝑟R𝑝 − 1),
𝑐𝑠 = 𝑐𝑠 − (𝑛𝑣 − 1)ℎR,2𝑝 , (0 ≤ 𝑠 ≤ 𝑠R𝑝 − 1),
𝑑𝑠 = 𝑑𝑠 + (𝑛𝑣 − 1)ℎR,2𝑝 , (0 ≤ 𝑠 ≤ 𝑠R𝑝 − 1).

(4.16)

Note that for the patches of type R = S, C2 and I considered in this Section, all of
whose subpatches utilize Q parameter-space discretizations, each subpatch contains
a total of

𝑁Q = (𝑛0 + 2𝑛𝑣)2 (4.17)

discretization points.

For ℓ = (𝑟, 𝑠) ∈ ΘR
𝑝 , we denote by𝐺R

𝑝,ℓ
the parameter space grid for the ℓ-th subpatch

of the patch ΩR
𝑝 ; we clearly have

𝐺R
𝑝,ℓ

= 𝐺R
𝑝 ∩ ([𝑎𝑟 , 𝑏𝑟] × [𝑐𝑠, 𝑑𝑠]) .

Using the mappings MR
𝑝 (R = C2, S, I) described in Sections 4.1.1.2, 4.1.1.3

and 4.1.1.4, respectively, we obtain the desired subpatches ΩR
𝑝,ℓ

= MR
𝑝 ( [𝑎𝑟 , 𝑏𝑟] ×

[𝑐𝑠, 𝑑𝑠]) (ℓ = (𝑟, 𝑠)) and the physical grids

GR
𝑝 = MR

𝑝

(
𝐺R
𝑝

)
and GR

𝑝,ℓ
= MR

𝑝

(
𝐺R
𝑝,ℓ

)
. (4.18)

The set of indices DR
𝑝,ℓ
of parameter space grid points contained in 𝐺R

𝑝,ℓ
, finally, is

denoted by

DR
𝑝,ℓ

= {(𝑖, 𝑗) ∈ N20 | (𝑖ℎ
R,1
𝑝 , 𝑗 ℎR,2𝑝 ) ∈ 𝐺R

𝑝,ℓ
}, R = C2,S,I. (4.19)

4.1.2.2 L parameter space discretization (for C1-type patches)

In analogy to the approach utilized in the previous section, in order to obtain
discretizations for each one of the patches ΩC1

𝑝 ; 1 ≤ 𝑝 ≤ 𝑃C1 , we introduce the
parameter space grids

𝐺C1
𝑝 = L ∩

{
(𝑞C1,1

𝑝,𝑖
, 𝑞

C1,2
𝑝, 𝑗

) : 𝑞C1,1
𝑝,𝑖

= 𝑖ℎC1,1𝑝 , 𝑞
C1,2
𝑝, 𝑗

= 𝑗 ℎC1,2𝑝 , (𝑖, 𝑗) ∈ N20
}
, (4.20)

which, in the present case, we take to be equiaxed—that is, with parameter spacegrid
sizes along the 𝑞1 and 𝑞2 directions given

ℎC1,1𝑝 = ℎC1,2𝑝 =
1

𝑁
C1
𝑝 + 2𝑛𝑣 − 1

, (4.21)
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and denoting N0 = N ∪ {0} Here 𝑁C1
𝑝 denotes the number of discretization points,

in each discretization line along either the 𝑞1 or 𝑞2 directions, that lie outside the
𝑛𝑣-point wide patch boundary vicinity, where 𝑛𝑣 is the parameter introduced in
Section 4.1.2.1 (as indicated in that section, the value 𝑛𝑣 = 9 is used throughout this
chapter).

Figure 4.4: Patch decomposition (inL parameter-space) for a patchΩR
𝑝 withR = C1

into preliminary non-overlapping rectangular subpatches (with boundaries shown in
black), associated overlapping rectangles (two examples highlighted, with bound-
aries shown in red), corner set 𝐻0 = 𝐿

C1
𝑝 (shown as a blue dashed polygon), and

discretization lines (shown in gray). Geometric parameter values 𝑟𝑝 = 4, 𝑠𝑝 = 4,
𝑛1 = 9 and 𝑛𝑣 = 3 were used for this illustration.

Remark 9. To enable use of a single L parameter space for all C1-type patches,
as in the approach used for the Q parameter space in the previous section, it is
assumed here that each C1-type patch is constructed in such a way that its two arms
are approximately equal in width and length. Under this assumption it is reasonable
to define a single grid size parameter ℎC1𝑝 for C1-type patches, as opposed to the two
grid size parameters ℎR,1𝑝 and ℎR,2𝑝 used in section 4.1.2.1 for S-, I- and C2-type
patches.

The strategy used for sub-patch decomposition of 𝐶1-type patches, in turn, is based
on a decomposition of the corresponding parameter space P = L, and is illustrated
in Figure 4.4. Following the lines of the P = Q decomposition presented in the
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previous section here we utilize, for a given even integer 𝑟C1𝑝 , a union of non-
overlapping squares strictly contained within the canonical L-shaped domain L:

⋃
(𝑟,𝑠)∈Θ̃C1

𝑝

[𝑎̃𝑟 , 𝑏̃𝑟] × [𝑐̃𝑠, 𝑑𝑠] ( L, (Θ̃C1
𝑝 = Θ̃C1,1

𝑝 ∪ Θ̃C1,2
𝑝 ∪ Θ̃C1,3

𝑝 ), (4.22)

where

Θ̃C1,1
𝑝 = {(𝑟, 𝑠) ∈ N20 | 0 ≤ 𝑟 ≤

𝑟
C1
𝑝

2
− 1 and

𝑠
C1
𝑝

2
≤ 𝑠 ≤ 𝑠C1𝑝 − 1},

Θ̃C1,2
𝑝 = {(𝑟, 𝑠) ∈ N20 |

𝑟
C1
𝑝

2
≤ 𝑟 ≤ 𝑟C1𝑝 − 1 and

𝑠
C1
𝑝

2
≤ 𝑠 ≤ 𝑠C1𝑝 − 1},

Θ̃C1,3
𝑝 = {(𝑟, 𝑠) ∈ N20 |

𝑟
C1
𝑝

2
≤ 𝑟 ≤ 𝑟C1𝑝 − 1 and 0 ≤ 𝑠 ≤

𝑠
C1
𝑝

2
− 1}.

(4.23)

In what follows we select 𝑁C1
𝑝 = 𝑟

C1
𝑝 (𝑛1 + 1) − 1, where 𝑟C1𝑝 is a given positive

integer, and where 𝑛1 denotes the number of discretization points along both the
parameter space 𝑞1 and 𝑞2 directions in the discretization of certain preliminary
non-overlapping subpatches introduced below.

The (𝑝-dependent) interval endpoints 𝑎̃𝑟 , 𝑏̃𝑟 , 𝑐̃𝑠 and 𝑑𝑠 are selected, using the integer
parameters 𝑛1 and 𝑛𝑣 (number of discretization points along either the parameter
space 𝑞1 and 𝑞2 directions contained in the discretization of a “vicinity” of the
preliminary subpatches, which coincides with the integer 𝑛𝑣 used in the previous
section), in accordance with the relations

𝑎̃0 = (𝑛𝑣 − 1)ℎC1,1𝑝 ,

𝑏̃𝑟 − 𝑎̃𝑟 = (𝑛0 + 1)ℎC1,1𝑝 , (0 ≤ 𝑟 ≤ 𝑟C1𝑝 − 1),
𝑎̃𝑟+1 = 𝑏̃𝑟 , (0 ≤ 𝑟 < 𝑟C1𝑝 − 1),
𝑐0 = (𝑛𝑣 − 1)ℎC1,2𝑝 ,

𝑑𝑠 − 𝑐𝑠 = (𝑛0 + 1)ℎC1,2𝑝 , (0 ≤ 𝑠 ≤ 𝑠C1𝑝 − 1),
𝑐𝑠+1 = 𝑑𝑠, (0 ≤ 𝑠 < 𝑠C1𝑝 − 1).

(4.24)

Typically the selection 𝑛1 ≈ 1
2𝑛0 is utilized, where 𝑛0 denotes the integer parameter

used in the previous section; in particular, the value 𝑛1 = 43 ≈ 83/2 is used
throughout the test cases considered in this chapter.

As for the previously considered patch types, the overlapping subpatches associ-
ated with a given C1 patch are characterized, via the patch parametrization, by an
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overlapping decomposition of L as the union of closed subpatches. In the present
case, in addition to overlapping rectangular subpatches an “L-shaped” subpatch 𝐿C1𝑝
is utilized. In detail, the overlapping sub-patch decomposition of a C1 patch is
constructed on the basis of the parameter-space decomposition

L =
⋃
𝑞∈ΘC1

𝑝

𝐻𝑞, (ΘC1
𝑝 = ΘC1,1

𝑝 ∪ ΘC1,2
𝑝 ∪ ΘC1,3

𝑝 ∪ {0}) (4.25)

where

𝐻𝑞 = [𝑎𝑟 , 𝑏𝑟] × [𝑐𝑠, 𝑑𝑠] for 𝑞 = (𝑟, 𝑠) ∈ ΘC1,1
𝑝 ∪ ΘC1,2

𝑝 ∪ ΘC1,3
𝑝

𝐻𝑞 = 𝐿
C1
𝑝 for 𝑞 = 0,

(4.26)

where the (𝑝-dependent) set of vertices 𝑎𝑟 , 𝑏𝑟 , 𝑐𝑠 and 𝑑𝑠 is given by

𝑎𝑟 = 𝑎̃𝑟 − (𝑛𝑣 − 1)ℎC1𝑝 , (0 ≤ 𝑟 ≤ 𝑟C1𝑝 − 1),
𝑏𝑟 = 𝑏̃𝑟 + (𝑛𝑣 − 1)ℎC1𝑝 , (0 ≤ 𝑟 ≤ 𝑟C1𝑝 − 1),
𝑐𝑠 = 𝑐𝑠 − (𝑛𝑣 − 1)ℎC1𝑝 , (0 ≤ 𝑠 ≤ 𝑠C1𝑝 − 1),
𝑑𝑠 = 𝑑𝑠 + (𝑛𝑣 − 1)ℎC1𝑝 , (0 ≤ 𝑠 ≤ 𝑠C1𝑝 − 1),

(4.27)

and where the index sets

ΘC1,1
𝑝 = Θ̃C1,1

𝑝 \
{
(
𝑟
C1
𝑝

2
− 1,

𝑠
C1
𝑝

2
)
}
,

ΘC1,2
𝑝 = Θ̃C1,2

𝑝 \
{
(
𝑟
C1
𝑝

2
,
𝑠
C1
𝑝

2
)
}
,

ΘC1,3
𝑝 = Θ̃C1,3

𝑝 \
{
(
𝑟
C1
𝑝

2
,
𝑠
C1
𝑝

2
− 1)

}
,

(4.28)

where used. The corner set 𝐻0 = 𝐿C1𝑝 in (4.26), finally, is defined by

𝐿C1𝑝 = 𝐿
C1
𝑝,1 ∪ 𝐿

C1
𝑝,2 ∪ 𝐿

C1
𝑝,3, (4.29)

where
𝐿
C1
𝑝,1 = [𝑎 𝑟R𝑝

2 −1
, 𝑏 𝑟R𝑝

2 −1
] × [𝑐 𝑟R𝑝

2

, 𝑑 𝑟R𝑝
2

],

𝐿
C1
𝑝,2 = [𝑎 𝑟R𝑝

2

, 𝑏 𝑟R𝑝
2

] × [𝑐 𝑟R𝑝
2 −1

, 𝑑 𝑟R𝑝
2 −1

],

𝐿
C1
𝑝,2 = [𝑎 𝑟R𝑝

2 −1
, 𝑏 𝑟R𝑝

2 −1
] × [𝑐 𝑟R𝑝

2

, 𝑑 𝑟R𝑝
2

] .

(4.30)

Note the three single-index sets subtracted in (4.28), which correspond to three
squares whose union makes up the corner subpatch 𝐻0 = 𝐿C1𝑝 .
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For ℓ ∈ Θ
C1
𝑝 , we denote by 𝐺C1

𝑝,ℓ
the parameter space grid for the ℓ-th subpatch of

the patch ΩC1
𝑝 :

𝐺
C1
𝑝,ℓ

= 𝐺C1
𝑝 ∩ 𝐻ℓ .

Using the mapping MC1
𝑝 described in Section 4.1.1.1 we obtain the desired sub-

patches ΩC1
𝑝,ℓ

= MC1
𝑝 (𝐻ℓ) as well as the physical grids

GC1
𝑝 = MC1

𝑝

(
𝐺C1
𝑝

)
and GC1

𝑝,ℓ
= MC1

𝑝

(
𝐺

C1
𝑝,ℓ

)
, (4.31)

with subpatch parameter space grid points DC1
𝑝,ℓ
is denoted by

DC1
𝑝,ℓ

= {(𝑖, 𝑗) ∈ N20 | (𝑖ℎ
C1,1
𝑝 , 𝑗 ℎC1,2𝑝 ) ∈ 𝐺C1

𝑝,ℓ
}. (4.32)

4.1.2.3 Minimum subpatch overlap condition and special S-C1 patch
overlaps

As motivated in Remark 10 below and detailed in in Sections 4.1.4.1 and 4.1.4.2,
and as alluded to previously in Section 4.1.1, in order to properly enable inter-
patch data communication and multi-patch viscosity assignment propagation, the
overlap between patches ΩR

𝑝 must be sufficiently broad. The required overlap
breadth is quantified in terms of a parameter associated with the selected subpatches
of each patch (namely, the integer parameter 𝑛𝑣 introduced in Sections 4.1.2.1
and 4.1.2.2) as well as the patch-boundary “sides”. (The “sides” of a patch (resp. of
a subpatch) are defined as the images under the patch parametrization of each one
of the straight segments that make up the boundary of the corresponding parameter
polygon Q or L, cf. Remark 8 (resp. each one of the sides of the rectangles
in equations (4.15) and (4.26), or the L-shaped polygons (4.29)). Utilizing these
concepts, the minimum-overlap condition is said to be satisfied for a given patch
ΩR
𝑝 if and only if for each side of ΩR

𝑝 that is not contained in 𝜕Ω (cf. Remark 8), a
(2𝑛𝑣 + 1)-point wide layer of grid points adjacent to that side in the ΩR

𝑝 grid is also
included in a union of one or more patches ΩR ′

𝑝′ with (𝑝′,R′) ≠ (𝑝,R). (Note that,
per the construction in Sections 4.1.2.1 and 4.1.2.2 at the parameter space level,
subpatches of a single patch satisfy the minimum overlap condition embodied in
equations (4.27) and (4.24): neighboring subpatches share a (2𝑛𝑣 + 1)-point wide
overlap.)

A particular note is necessary in regard to the overlap of C1- and S-type patches.
Numerical experiments have shown that spurious oscillations may emanate from
boundary regions in the C1 patch near the corner point unless the overlap with S-
patch is sufficiently broad. Specifically, numerical experimentation for the wedge
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and prism geometries (Figures 4.13 and 4.14) suggests that spurious oscillations
may be eliminated provided the S-type patch extends along the boundary up to and
including the corner point (e.g. including the complete arcs

⌢

𝐴𝐶 and
⌢

𝐵𝐶 in the left
panel of Figure 4.2).

4.1.2.4 Subpatches and grid refinement

Very general overlapping patch decompositions, satisfying the minimum overlap
condition introduced in Section 4.1.2.3, can be obtained on the basis of the proce-
dures described in Section 4.1.1. As briefly discussed below in this section, further,
the strategies presented in Sections 4.1.2.1 and 4.1.2.2 can be used to produce sets
of overlapping subpatches, each one endowed with a subpatch grid, in such a way
that, 1) The set of all patches (namely, all (S-, C1-, C2- and I-type patches) satisfies
the overlap conditions introduced in Section 4.1.2.3; 2) Each subpatch contains no
more than 𝐹 = (𝑛0 + 2(𝑛𝑣 − 1))2 discretization points; and, 3) All of the subpatch
parameter space grid sizes ℎR,1𝑝 and ℎR,2𝑝 (R = S, C1, C2, I; 1 ≤ 𝑝 ≤ 𝑃R) are such
that the resulting physical grid sizes (defined as the maximum distance between two
consecutive grid points in physical space) are less than or equal to a user-prescribed
upper bound ℎ > 0.

As indicated in Section 4.1.2.3, the sets of patches and subpatches constructed per
the descriptions in Sections 4.1.2.1 and 4.1.2.2 satisfy points 1) and 2), but, clearly,
they may or may not satisfy point 3). In the latter case, the integers 𝑟R𝑝 and 𝑠R𝑝
(R = S, C2, I; 1 ≤ 𝑝 ≤ 𝑃R) and 𝑟C1𝑝 (1 ≤ 𝑝 ≤ 𝑃C1) are increased by a uniform
constant factor—thus proportionally increasing the numbers of subpatches and the
number of gridpoints while leaving the overall patch decomposition and mappings
MR

𝑝 unchanged—until the physical grid size upper bound condition in point 3) is
satisfied, as desired.

4.1.3 Governing equations in curvilinear coordinates
In the multi-patch setting described in this section, the solution vector e(x, 𝑡) can
be viewed as a family of vectors eR

𝑝,ℓ
(x, 𝑡) (with R = S, C1, C2, or I, 1 ≤ 𝑝 ≤ 𝑃R

and ℓ ∈ ΘR
𝑝 ), defined on ΩR

𝑝,ℓ
× R+. To evolve the solution on the curvilinear grids

GR
𝑝,ℓ
associated to the smooth invertible mappingMR

𝑝 , the Jacobian matrix 𝐽
R,𝑝
q (x)

of the inverse mapping
(
MR

𝑝

)−1 is utilized. Thus, using the chain rule expression
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∇x = [𝐽R,𝑝q (x)]𝑇∇q for x ∈ ΩR
𝑝,ℓ
, we obtain the curvilinear form

𝜕eR
𝑝,ℓ

(x, 𝑡)
𝜕𝑡

+
[
𝐽
R,𝑝
q (x)

]𝑇∇q ·
(
𝑓 (eR

𝑝,ℓ
(x, 𝑡))

)
=

[
𝐽
R,𝑝
q (x)

]𝑇∇q ·
(
𝑓v
(
eR
𝑝,ℓ

(x, 𝑡)
) )
(4.33)

of the artificial viscosity-augmented hyperbolic system (2.13).

4.1.4 Patch/subpatch communication of solution values
The overlap built into the patch/subpatch domain decomposition approach described
in the previous sections enables the exchange, or communication, of subpatch grid-
point values of the solution e in the vicinity of boundaries of subpatches, which is a
necessary element in the overlapping-patch time-stepping algorithm introduced in
Section 4.2; see Remark 10 below. The communication of solution values relies on
the concept of “𝑛-point fringe region” of a subpatch. To introduce this concept we
consider the sides of any subpatch ΩR

𝑝,ℓ
(defined in Section 4.1.2.3), and we note

that, per the constructions in that section, each side of a subpatch is either contained
within Γ or it intersects Γ at most at one point. In the first (resp. the second) case we
say that the side is “external” (resp. “internal”). Then, denoting by IR

𝑝,ℓ
the set of

all grid points in GR
𝑝,ℓ
that are contained in the internal sides of ΩR

𝑝,ℓ
, we define the

𝑛-point fringe region F R
𝑝,ℓ,𝑛
of ΩR

𝑝,ℓ
as the set of all grid points x𝑖 𝑗 = (𝑥𝑖, 𝑦 𝑗 ) ∈ GR

𝑝,ℓ

whose distance toIR
𝑝,ℓ
(in the sense of the “maximum index norm” distance 𝑑 defined

below) is less than or equal to 𝑛. In detail, the fringe region

F R
𝑝,ℓ,𝑛
B {x𝑖 𝑗 ∈ GR

𝑝,ℓ
, 𝑑 (x𝑖 𝑗 ,IR

𝑝,ℓ
) < 𝑛} (4.34)

where the maximum index norm distance 𝑑 (x𝑖 𝑗 ,IR
𝑝,ℓ
) from the point x𝑖 𝑗 ∈ GR

𝑝,ℓ
to

the set IR
𝑝,ℓ
is defined by

𝑑 (x𝑖 𝑗 ,IR
𝑝,ℓ
) B min

x𝑟𝑠∈IR
𝑝,ℓ

max {|𝑖 − 𝑟 |, | 𝑗 − 𝑠 |} , (4.35)

is illustrated in Figure 4.5.
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Figure 4.5: Illustration of subpatches (union of blue and red) and their fringes (red)
for various kinds of subpatches. For simplicity this illustration uses the value 𝑛 𝑓 = 2
(𝑛 𝑓 = 5 was used for all the numerical examples presented in this Chapter). Left
panel: all the sides of the subpatch are internal sides. Four rightmost panels, from
left to right: subpatches containing one, two, three and all four external sides, all of
which, by design, are contained in the domain boundary Γ (black).

As described over the next few sections, as part of the time-stepping process each
subpatchΩR

𝑝,ℓ
receives solution data (from neighboring subpatches) on its 𝑛 𝑓 -fringe

region F R
𝑝,ℓ,𝑛 𝑓

. In all implementations presented in this chapter the value 𝑛 𝑓 = 5 was
used. In fact, the time-stepping method we use utilizes two different algorithms for
the communication of solution data between pairs of subpatches, including “inter-
patch” communication (that is, communication between two subpatches of different
patches, which requires polynomial interpolation of grid-point values of the solution
e) and “intra-patch” communication (which only involves exchange of grid-point
values of e between two subpatches of the same patch). Details concerning these
two procedures are presented in Sections 4.1.4.1 and 4.1.4.2, respectively. The
minimum overlap condition is required to ensure that donor points are not recipients
of solution data.

Remark 10. The overlapping patch decomposition and discretization should be set
up in such a way that data donor grid points are not themselves receivers of data
from other patches. If this condition is not satisfied then the well-posedness of the
problem and, thus, stability of the time stepping method, are compromised [7]. This
donor-receiver condition is generally satisfied by requiring that donor grid points
are located sufficiently deeply within the subpatch, while receiving grid points are
located next to the boundary of the subpatch, as detailed in Section 4.1.4.1 for the
case of solution-value communication between subpatches of different patches, and
in Section 4.1.4.2 for the case of communication between subpatches of a single
patch. Additionally, use of donor data from regions well separated from subpatch
boundaries is advantageous since, as is expected from any discretization scheme
used, the FC representations of the solution are more accurate and smoother away
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from the boundary of the representation region—which in this case are the subpatch
boundaries themselves.

4.1.4.1 Inter-patch data communication

As indicated above, the proposed time-stepping algorithm requires communication
of values of the solution vector e = e(x, 𝑡) at grid points in certain boundary-vicinity
regions of each subpatch ΩR

𝑝,ℓ
; in this section we consider only communication

between subpatches ΩR
𝑝,ℓ
and ΩR ′

𝑝′,ℓ′ with (R′, 𝑝′) ≠ (R, 𝑝) (that is, between sub-
patches of different patches). In detail, for every subpatch ΩR

𝑝,ℓ
, an “𝑛 𝑓 -point fringe

region”, namely, a 𝑛 𝑓 -point wide layer of points adjacent to each one of the four
sides of ΩR

𝑝,ℓ
(with the exception of sides adjacent to Γ), is set to receive solution

data from neighboring subpatches. (The concepts of side of a subpatch ΩR
𝑝,ℓ
is

defined in Section 4.1.2.3.) In all the implementations presented in this chapter the
value 𝑛 𝑓 = 5 was used. By construction, each point located in a subpatch fringe
region must be contained in at least one other donor subpatch, and, as indicated
above we consider here the case the donor subpatch is contained in different patch.
Prior to every time step (or, more precisely, prior to each time-stage in the SSPRK-4
time-stepping method we use, see Section 4.2.1), for every point x in the fringe
region of the subpatch ΩR

𝑝,ℓ
the solution value e(x) is overwritten with the value

obtained for the same quantity by interpolation from an adjacent donor subpatch
ΩR ′

𝑝′,ℓ′. (Among the possibly multiple neighboring donor subpatches Ω
R ′

𝑝′,ℓ′ contain-
ing x, with (R′, 𝑝′) ≠ (R, 𝑝), a donor subpatch is selected for which x is the farthest
from the boundary of (R′, 𝑝′).) A 3× 3-point stencil of GR ′

𝑝′,ℓ′ grid points surround-
ing x and iterated 1D second order polynomial interpolation [70, Sec. 3.6], enacted
on the basis of the Neville algorithm, is used to produce the necessary interpolated
values, as illustrated in Figure 4.6.

With reference to Remark 10, the algorithm developed in this chapter includes a
testing phase which, for a given patch/subpatch decomposition and grid assignments
checks whether, as indicated in that remark, any data donor points in any patch are
themselves receivers of solution data. If this donor-receiver condition is not satisfied,
possible remedies include 1) Refining the grids by proportionally increasing the
number of subpatches for all patches while keeping fixed the number of grid points
per subpatch, as described in Section 4.1.2.4, or 2) Modifying the offending patches
so as to adequately increase the sizes of the relevant overlap regions. An initial
assignment of grid sizes aiming at satisfying the donor-receiver condition might be
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selected by ensuring that for each side of each patch ΩR
𝑝 that is not contained in Γ,

a 2𝑛𝑣 + 1-point wide layer of grid points adjacent to that side is also included in a
union of one or more patches ΩR ′

𝑝′ (with (R′, 𝑝′) ≠ (R, 𝑝).

Figure 4.6: Illustration (with 𝑛 𝑓 = 3, for graphical simplicity) of the inter-patch
data communication effected via exchanges between the blue and brown subpatches
(which, as befits inter-patch communications, are subpatches of different patches).
Dashed-line regions: receiving fringe regions for each subpatch. Red dot: a receiver
point in the fringe region of the brown subpatch, set to receive solution data from
the blue subpatch, via interpolation. Blue dots: the 3 × 3 donor-point stencil in
the blue subpatch used for interpolation to the red receiver point. As indicated in
Remark 10, none of the points in the donor stencil are located in the fringe region
of the blue subpatch.

4.1.4.2 Intra-patch communication

Unlike the communication between pairs of adjacent patches considered in the
previous Section 4.1.4.1, which proceeds via interpolation from one subpatch fringe
region to another, the “intra-patch” communication, namely, communication of
data among pairs of neighboring subpatches of a single patch, relies on the set
of fringe points that are shared between such neighboring subpatches—in such a
way that communication amounts merely to exchange of solution values as shown
in Figure 4.7. As in the inter-patch case, intra-patch solution communications are
subject to the donor-receiver condition outlined in Remark 10. Clearly, the donor-
receiver condition is satisfied for a given patchΩR

𝑝 provided every pairΩR
𝑝,ℓ
andΩR

𝑝,ℓ′

((ℓ, ℓ′) ∈ ΘR
𝑝 ) of adjacent subpatches shares a 2𝑛 𝑓 -point wide layer of grid points
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along the side common to both subpatches, where the notion of side of a subpatch
is introduced in Section 4.1.2.3. We note that, in view of the patch decomposition
procedures described in Sections 4.1.2.1 and 4.1.2.2 (according to which subpatches
of the same patch share a (2𝑛𝑣 + 1)-point wide overlap region with their neighbors),
the subpatch donor-receiver condition is satisfied for the parameter values 𝑛 𝑓 = 5
and 𝑛𝑣 = 9 used in this chapter.

Figure 4.7: One dimensional illustration of intra-patch communication between two
subpatches ΩR

𝑝,ℓ
and ΩR

𝑝,ℓ′ of the same patch . Red dots: receiver points in the
fringe regions of subpatches ΩR

𝑝,ℓ
and ΩR

𝑝,ℓ′. Blue dots: donor points in subpatch
ΩR
𝑝,ℓ
(resp. ΩR

𝑝,ℓ′) used for solution data communication with the receiving points
of subpatch ΩR

𝑝,ℓ′ (resp. Ω
R
𝑝,ℓ
).

4.2 FC-based time marching
4.2.1 Spatio-temporal discretization
The proposed algorithm spatially discretizes the solution vector e = e(x, 𝑡) on the
basis of 𝑞-dimensional families of vector grid functions

𝑏 : G → R𝑞

with 𝑞 = 4 (other values of 𝑞 are used in what follows to discretize other quantities).
Here, with reference to (4.18) and (4.31), the overall spatial computational grid is
given by

G =
⋃
R∈T

⋃
1≤𝑝≤𝑃R

⋃
ℓ∈ΘR

𝑝

GR
𝑝,ℓ
, T = {S, C1, C2,I}. (4.36)

For each vector grid function 𝑏, further, we write

𝑏 = (𝑏R
𝑝,ℓ
) and 𝑏R

𝑝,ℓ,𝑖, 𝑗
= 𝑏R

𝑝,ℓ
(x𝑖 𝑗 ), where x𝑖 𝑗 = MR

𝑝 (𝑞R,1𝑝,𝑖 , 𝑞
R,2
𝑝, 𝑗

), (𝑖, 𝑗) ∈ DR
𝑝,ℓ
,

in terms of the parameter space grid points 𝑞R,1
𝑝,𝑖
and 𝑞R,2

𝑝, 𝑗
defined in (4.11) and (4.20),

whereDR
𝑝,ℓ
is defined in (4.19) and (4.32). In particular, a spatially-discrete but time-

continuous version eℎ = eℎ (𝑡) of the solution vector e(x, 𝑡) is obtained as a 𝑞 = 4
vector grid-function family eℎ (𝑡) = (eR

ℎ,𝑝,ℓ
(𝑡)) over all relevant values of R, 𝑝 and

ℓ; in accordance with the conventions above we may write eR
𝑝,ℓ,𝑖, 𝑗

(𝑡) = eR
ℎ,𝑝,ℓ

(x𝑖 𝑗 , 𝑡).
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Like [6, Sec. 3.1], the proposed algorithm produces the necessary spatial derivatives
on the basis of FC-based differentiation. In detail, approximations of the parameter-
space partial derivatives of e are obtained via the sequential application of one-
dimensional FC-differentiation (Section 2.3) in the 𝑞1 or 𝑞2 parameter variables
(see Sections 4.1.2.1 and 4.1.2.2) on the basis of the point values eR

𝑝,ℓ,𝑖, 𝑗
(𝑡) =

eR
ℎ,𝑝,ℓ

(MR
𝑝 (𝑞R,1𝑝,𝑖 , 𝑞

R,2
𝑝, 𝑗

), 𝑡). Using such 1D discrete spatial differentiation operators
to obtain each one of the q derivatives in the curvilinear equation (4.33), the resulting
discrete equation may be expressed in the form

𝑑eℎ (𝑡)
𝑑𝑡

= 𝐿 [eℎ (𝑡)], (4.37)

where 𝐿 = 𝐿R
𝑝,ℓ
denotes a family of discrete operators that incorporate the product

of the Jacobian matrices and the difference of the divergences of the viscous and
convective fluxes in that equation.

Following [5, 6], on the other hand, the algorithm’s time-stepping proceeds via
the 4-th order strong stability preserving Runge-Kutta scheme [38] (SSPRK-4).
This scheme, which leads to low temporal dispersion and diffusion in smooth flow
regions, is employed in conjunction with an adaptive time-step Δ𝑡 selected at each
time 𝑡 = 𝑡𝑛 according to the expression

Δ𝑡 =
1
𝜋
min
(R,𝑝)

min
ℓ∈ΘR

𝑝

CFL

maxx∈GR
𝑝,ℓ

{
|𝑆[e] (x, 𝑡) |/ℎ̃R,𝑝

}
+maxx∈GR

𝑝,ℓ

{
𝜇[e]x, 𝑡)/( ℎ̃R,𝑝)2

} ,
(4.38)

which generalizes the corresponding single patch version used in [5, 6]. Here
ℎ̃R,𝑝 denotes the minimum mesh size in the patch ΩR

𝑝 (a lower-bound close to
that minimum can be used, which can be obtained via consideration of the patch
parametrization gradients), CFL denotes a problem-dependent constant parameter
selected to ensure stability, and 𝑆[e] (x, 𝑡) and 𝜇[e] (x, 𝑡) denote the maximum wave
speed bound (MWSB) and artificial viscosity operators introduced in Sections 4.3.1
and 4.3.2.

4.2.2 Enforcement of boundary conditions and overlap communications
Following the “conventional method” described in [39], boundary conditions are
enforced at each intermediate stage of the Runge-Kutta scheme, and both Dirichlet
and Neumann boundary conditions are incorporated as part of the differentiation
process described in the previous section. Dirichlet boundary conditions at the
time-stage 𝑡𝑛,𝜈 (𝑡𝑛 < 𝑡𝑛,𝜈 ≤ 𝑡𝑛+1) for the 𝜈-th SSPRK-4 stage (𝜈 = 1, . . . , 4) of
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the time-step starting at 𝑡 = 𝑡𝑛, are simply imposed by overwriting the boundary
values of the unknown solution vector eℎ obtained at time 𝑡 = 𝑡𝑛,𝜈 with the given
boundary values at that time, prior to the evaluation of the spatial derivatives needed
for the subsequent SSPRK-4 stage. Neumann boundary conditions, in turn, are
enforced by constructing appropriate Fourier continuations after each stage of the
SSPRK-4 scheme on the basis of the modified pre-computed matrix𝑄 mentioned in
Section 2.3; see also Remark 11 below. Similarly, patch/subpatch communication
is enforced at every SSPRK-4 stage, by enacting both the inter- and intra-patch data
exchanges described in Section 4.1.4 and overwriting the corresponding solution
values. In particular, we have found that imposing patch/subpatch communication
at every stage leads to smoother numerical solutions, particularly at patch-boundary
regions, than are obtained from a single enforcement at the end of every SSPRK-4
time step.

Remark 11. The proposed algorithm enforces adiabatic boundary conditions (van-
ishing of the normal gradient of the temperature 𝑇) at all obstacle boundaries (as
illustrated in Section 4.5.2). Since the temperature is not one of the unknowns
utilized in the equation (2.6), the enforcement of an adiabatic condition requires
consideration of (2.10). The proposed algorithm thus proceeds as follows: 1) at the
beginning of each SSPRK-4 time stage, the solution eℎ is used in conjunction with
equation (2.10) to obtain the grid values of 𝑇 at all grid points in the interior of the
computational domain, and then the adiabatic boundary condition is employed to
obtain the values of 𝑇 at the physical boundaries by producing, on the basis of the
method described in [2, Sec. 6.3], a Fourier Continuation expansion that matches
the interior data and is consistent with a vanishing normal gradient of the tempera-
ture 𝑇 ; 2) the Fourier Continuation expansion of 𝑇 obtained per point 1 is then used
together with the values of the density 𝜌 and the horizontal and vertical momenta
𝜌𝑢 and 𝜌𝑣 that are part of the existing vector eℎ (but ignoring the the values of 𝐸
that are also part of eℎ) to evaluate the derivatives of 𝐸 and 𝑝 with respect to 𝜉 and 𝜂
by differentiation of equations (2.9) and (2.10) on the basis of the sum and product
differentiation rules. Having obtained spatial derivatives of 𝐸 and 𝑝 with respect to
𝜉 and 𝜂 that are consistent with the adiabatic boundary conditions, the time stage
proceeds by 3) evaluating the spatial derivatives of the remaining components of
eℎ (namely, 𝜌, 𝜌𝑢, 𝜌𝑣) on the basis Fourier Continuations of the existing values of
these quantities under the existing boundary conditions for 𝑢 and 𝑣 (no boundary
conditions are imposed on 𝜌 at physical boundaries where, in accordance with the
physics of the problem, this quantity is evolved in the same manner as at the interior
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grid points).

4.2.3 Spectral filtering
Spectral methods regularly utilize filtering strategies in order to control the error
growth in the unresolved high frequency modes, and the present method is not an
exception: like the approaches [1, 2], the proposed algorithm incorporates a multi-
patch spectral filter in conjunction with the Fourier Continuation expansions at the
level of each subpatch. Additionally, a localized initial-data filtering strategy (which
is only applied at the initial time, and then only at subpatches that contain discontinu-
ities in the initial data), is used to regularize discontinuous initial conditions, while
avoiding over-smearing of smooth flow-features. (The localized filtering approach
was introduced in [6] in the context of a single-grid FC-based shock-dynamics
solver.) Details regarding the aforementioned multipatch and localized filtering
strategies are provided in Sections 4.2.3.1 and 4.2.3.2.

4.2.3.1 Subpatch-wise filtering strategy

To introduce the subpatch-wise filtering method we use we first consider filtering of
a one-dimensional Fourier Continuation expansion of the form

𝑀∑︁
𝑘=−𝑀

𝐹̂𝑐𝑘 exp(2𝜋𝑖𝑘𝑥/𝛽),

for which the corresponding filtered expansion is given by

𝐹 =

𝑀∑︁
𝑘=−𝑀

𝐹̂𝑐𝑘𝜎

( 2𝑘
𝑁 + 𝐶

)
exp(2𝜋𝑖𝑘𝑥/𝛽) (4.39)

where
𝜎

( 2𝑘
𝑁 + 𝐶

)
= exp

(
− 𝛼 𝑓

( 2𝑘
𝑁 + 𝐶

) 𝑝 𝑓
)

with adequately chosen values of the positive integer 𝑝 𝑓 and the real parameter
𝛼 𝑓 > 0. In order to filter a function defined on a two-dimensional subpatch of
the type that underlies the discretizations considered in this chapter, the spectral
filter is applied sequentially, one dimension at a time—thus filtering in accordance
with (4.39), in the 𝑞1 subpatch parameter variable for each value of 𝑞2, and then
applying the reverse scheme to the resulting function, filtering with respect to 𝑞2 for
each value of 𝑞1.

In the strategy proposed in this chapter, Fourier Continuation expansions of the
density 𝜌, the horizontal and vertical momenta 𝜌𝑢 and 𝜌𝑣 and the temperature 𝑇 are
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computed and filtered independently on each grid 𝐺R
𝑝,ℓ
, at every time step following

the initial time (but not at individual SSRPK-4 stages), and using the parameter
values 𝛼 𝑓 = 10 and 𝑝 𝑓 = 14. The energy 𝐸 component of the solution vector eℎ
is not directly filtered: per Remark 11, the quantities 𝐸 and 𝑝 are re-expressed in
terms of the filtered versions of 𝜌, 𝜌𝑢 and 𝜌𝑣 and 𝑇 , and the necessary derivatives
of 𝐸 and 𝑝 are obtained via direct differentiation of equations (2.9) and (2.10).
Thus, the quantities 𝐸 and 𝑝 filtered indirectly, by means of the filters applied to the
other flow variables. This approach makes it possible to incorporate the adiabatic
boundary conditions (while simultaneously filtering 𝐸 and 𝑝) even in absence of
the temperature 𝑇 in the vector e of unknowns.

4.2.3.2 Localized discontinuity-smearing for initial data

To avert the formation of spurious oscillations originating from a discontinuous
initial conditionswithout unduly smearing smooth flow features, before the initiation
of the time-stepping procedure the initial data is filtered (using a strong form of the
spectral filter (4.39)) in all subpatches where initial data discontinuities exist. This
procedure, which generalizes the localized initial-data filtering approach introduced
in [6, Sec. 3.4.2] to the present multi-patch context, proceeds as follows.

For each subpatch ΩR
𝑝,ℓ
within which the initial condition e(x, 0) is discontinuous,

the localized filtering is performed one dimension at a time in the parameter-space
grid 𝐺R

𝑝,ℓ
and for the physical quantities 𝐹 ∈ {𝜌, 𝜌𝑢, 𝜌𝑣, 𝑇}, in an approach sim-

ilar, but different, to the one used in the previous section. In detail, considering
each restriction of 𝐹 to the parameter-space direction 𝑞𝑖 (𝑖 = 1, 2), containing a
discontinuity at a single point 𝑧, the smeared-discontinuity function 𝐹sm combines
the 1D filtered function 𝐹 in a neighborhood of the discontinuity with the unfiltered
function elsewhere by means of the expression

𝐹sm(𝑥) = 𝑤R,𝑚
𝑝,𝑐,𝑟 (𝑥 − 𝑧)𝐹 (𝑥) + (1 − 𝑤R,𝑚

𝑝,𝑐,𝑟 (𝑥 − 𝑧))𝐹 (𝑥) , 𝑚 = 1, 2. (4.40)

Here, the filtered function 𝐹 is obtained by applying (4.39) with filter parameters
𝛼 𝑓 = 10 and 𝑝 𝑓 = 2, and by using, for 𝑚 = 1, 2, the window functions 𝑤R,𝑚

𝑝,𝑐,𝑟 given
by

𝑤R,𝑚
𝑝,𝑐,𝑟 (𝑥) =


1 if |𝑥 | < 𝑐

2ℎ
R,𝑚
𝑝

cos2
(
𝜋( |𝑥 |− 𝑐

2 ℎ
R,𝑚
𝑝 )

𝑟ℎ

)
if 𝑐

2ℎ
R,𝑚
𝑝 ≤ |𝑥 | ≤ ( 𝑐2 + 𝑟)ℎ

R,𝑚
𝑝

0 if |𝑥 | > ( 𝑐2 + 𝑟)ℎ
R,𝑚
𝑝 ,

(4.41)
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with 𝑐 = 18 and 𝑟 = 9. As in [6, Sec. 3.4.2], in case multiple discontinuities
exist along a given 1D parameter direction in a given subpatch, the procedure is
repeated around each discontinuity point. Should the support of two or more of the
associated windowing functions overlap, then each group of overlapping windows
is replaced by a single window which equals zero outside the union of the supports
of the windows in the group, and which equals one except in the rise regions for the
leftmost and rightmost window functions in the group.

4.3 Multi-patch artificial viscosity assignment
The proposed strategy for assignment of artificial viscosity values 𝜇[e] = 𝜇[e] (x, 𝑡)
relies on an extension of the method described in [6, Secs. 3.2, 3.3] to the multi-
patch setting utilized in the present contribution. The proposed artificial-viscosity
algorithm proceeds by producing, at first, a preliminary subpatch-wise viscosity
assignment, on the basis of a variation of the aforementioned method [6]; the
details of the new multi-patch algorithm are presented in Section 4.3.1. In order to
ensure smoothness of the artificial viscosity assignment across subpatches (and, in
particular, at the interfaces of neighboring subpatches), a novel windowed-viscosity
propagation procedure introduced in Section 4.3.2 is used in conjunction with the
preliminary viscosity assignment mentioned above.

4.3.1 Subpatch-wise preliminary viscosity assignment
The subpatch-based viscosity assignment procedure described in what follows,
which determines preliminary artificial viscosity values 𝜇[e] (x, 𝑡) independently
for each subpatch ΩR

𝑝,ℓ
(with R = S, C1, C2, or I, 1 ≤ 𝑝 ≤ 𝑃R and ℓ ∈ ΘR

𝑝 ),
proceeds on the basis of the “degree of smoothness” of a certain “proxy variable”
functionΦ(e) (x, 𝑡) of the unknown solution vector e onΩR

𝑝,ℓ
. Following [6] and [5]

we use the proxy variable Φ(e) equal to the Mach number Φ(e) = ‖u‖
√︃

𝜌

𝛾𝑝
. As

detailed in what follows, utilizing this proxy variable, a smoothness-classification
operator 𝜏 = 𝜏[Φ(e)] characterizes the degree of smoothness of the function Φ(e)
at a certain time 𝑡 and over each subpatch ΩR

𝑝,ℓ
by analyzing the oscillations of

restrictions of Φ(e) to certain subsets of the subpatch grid GR
𝑝,ℓ
(where the grid

subsets used are contained in regions including interior portions of the subpatch
ΩR
𝑝,ℓ
as well as certain subpatch regions near physical domain boundaries).

The smoothness-classification operator 𝜏 for each such region is obtained via
consideration of approximations of FC expansions of Φ(e) = Φ(eR

𝑝,ℓ
) over ΩR

𝑝,ℓ

(see Section 4.1.3) that are obtained from the discrete numerical solution values
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φR
𝑝,ℓ

= Φ(eR
ℎ,𝑝,ℓ

) on GR
𝑝,ℓ
—and we thus use the approximation 𝜏[eR

𝑝,ℓ
] ≈ 𝜏[φR

𝑝,ℓ
]

that defines the discrete operator 𝜏. For each grid GR
𝑝,ℓ
the discrete operator 𝜏 is pro-

duced on the basis of an application of the 2D algorithm presented in [6, Sec. 3.2.1].
When applied to the subpatch ΩR

𝑝,ℓ
in the present multi-patch context, however, the

previous algorithm [6, Sec. 3.2.1] is used to obtain smoothness classification of the
solution eR

𝑝,ℓ
only for a certain “viscosity-generation subgrid” G̃R

𝑝,ℓ
⊂ GR

𝑝,ℓ
described

in what follows. The fact that smoothness classification is only carried out over the
subgrid G̃R

𝑝,ℓ
relates to the overlap of patches and subpatches in the discretization

structure we use: in the present context, in order to properly account for overlaps,
the algorithm [6, Sec. 3.2.1] is only applied to stencils of points centered at grid
points in the set G̃R

𝑝,ℓ
. Per the prescriptions in [6, Sec. 3.2.1], the values of the

operator 𝜏 are produced numerically on the basis of an Artificial Neural Network
(ANN) whose architecture and training procedure are described in [6, Sec. 3.2.2].
(The ANN weights and biases are loaded from disc at the FC-SDNN initialization
stage; see Algorithm (5).)

The motivation for the introduction of the viscosity-generation subgrid G̃R
𝑝,ℓ
is

twofold. On one hand smoothness classification values, which must be produced
for all patch discretization points GR

𝑝 (equations (4.18) and (4.31)), are produced on
the basis of FC expansions at the level of subpatch grids GR

𝑝,ℓ
, and, since subpatches

overlap, a decision must be made as to which classification value is used at a grid
point in GR

𝑝 that belongs to the sets GR
𝑝,ℓ
for two or more values of ℓ. The decision

is dictated on the basis of accuracy: since the FC approximation, and, thus, the
smoothness classification algorithm, provide more accurate results at interior points
of the subpatch ΩR

𝑝,ℓ
than at points near its boundary, for R = S, C1, C2 and I we

define the subgrid G̃R
𝑝,ℓ
as the set of all points in GR

𝑝,ℓ
that are not contained in the

fringe region F R
𝑝,ℓ,𝑛𝑣

defined in (4.34):

G̃R
𝑝,ℓ
B GR

𝑝,ℓ
\ F R

𝑝,ℓ,𝑛𝑣
. (4.42)

The integer 𝑛𝑣 used here equals the one utilized in Sections 4.1.2.1 and 4.1.2.2; as
indicated in those sections, the value 𝑛𝑣 = 9 is used throughout this chapter. The set
of all indices of grid points in G̃R

𝑝,ℓ
is denoted by D̃R

𝑝,ℓ
: using the notations (4.11)

and (4.20) we have

D̃R
𝑝,ℓ

= {(𝑖, 𝑗) ∈ DR
𝑝,ℓ

| MR
𝑝 (𝑞R,1𝑝,𝑖 , 𝑞

R,2
𝑝, 𝑗

) ∈ G̃R
𝑝,ℓ
}. (4.43)

The introduction of the preliminary subpatch-wise viscosity assignment mentioned
in the first paragraph of Section 4.3, which is themain objective of the present section
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and is given in (4.45), is based on use of the viscosity-generation subgrid introduced
above together with slight variants, summarized in what follows, of a number of
functions and operators introduced in [6, Sec. 3.3]. In detail, the definition (4.45)
utilizes

1. The weight function 𝑅, which assigns viscosity weights to the smoothness
classification, and is given by 𝑅(1) = 1.5, 𝑅(2) = 1, 𝑅(3) = 0.5, and
𝑅(4) = 0;

2. The grid function operator 𝑅 defined by (𝑅[𝜂]𝑖 𝑗 = 𝑅(𝜂𝑖 𝑗 ));

3. The MWSB operator 𝑆[e] defined as the upper bound 𝑆(e) = |𝑢 | + |𝑣 | + 𝑎 on
the speed of propagation u · ®𝜅 + 𝑎 of the wave corresponding to the largest
eigenvalue of the 2D Flux-Jacobian (which, in a direction supported by the
unit vector ®𝜅, equals u · ®𝜅 + 𝑎 [46, Sec. 16.3 and 16.5]);

4. The discrete version 𝑆[eℎ] of the operator introduced in pt. 3 above, defined
by

𝑆[eR
ℎ,𝑝,𝑙

]𝑖 𝑗 = |𝑢R𝑝,𝑖, 𝑗 | + |𝑣R𝑝,𝑖, 𝑗 | + 𝑎
R
𝑝,𝑖, 𝑗 ; (4.44)

5. The 7× 7 localization stencils 𝐿𝑖, 𝑗 ((𝑖, 𝑗) ∈ D̃R
𝑝,ℓ
) (with (R, 𝑝, ℓ)-dependence

suppressed in the notation) defined as the sets of points in GR
𝑝,ℓ
that surround

the grid point with index (𝑖, 𝑗) in GR
𝑝,ℓ
. Their definition is identical to the

localization stencils defined in [6, Sec. 3.3];

6. The discretization parameter ℎ̂R,𝑝 equal to the maximum spacing between
two consecutive discretization points in the patch ΩR

𝑝 (an upper-bound close
to that maximum can be used, which can be obtained via consideration of the
patch parametrization gradients).

Using these operators and functions, the preliminary artificial viscosity operator
𝜇[eR

𝑝,ℓ
] is defined by

𝜇[eR
𝑝,ℓ
]𝑖, 𝑗 = 𝑅(𝜏[φR

𝑝,ℓ
]𝑖, 𝑗 ) · max

(𝑘,ℓ)∈𝐿𝑖, 𝑗
(𝑆[eR

𝑝,ℓ
]𝑘ℓ) ℎ̂R,𝑝, (𝑖, 𝑗) ∈ D̃R

𝑝,ℓ
. (4.45)

4.3.2 Overall viscosity operator 𝜇R
𝑝,ℓ

= 𝜇R
𝑝,ℓ

[e]
The overallmulti-patch artificial viscosity operator used in this chapter is obtained by
exploiting a certain smoothing-blending (SB) operatorΛ that smoothes the viscosity
values provided by the subpatch-wise preliminary artificial viscosity operator (4.45),
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and that additionally combines the smooth values thus obtained in the various
subpatches. The application of the SB operator ensures a well-defined and spatially
smooth time-dependent artificial viscosity profile over the complete multi-patch
computational domain Ω.

To introduce the SB operator Λ we first utilize the window functions 𝑤R,𝑚
𝑝,𝑐,𝑟 (4.41)

to define, for R = S, C1, C2 and I, and for each (𝑖, 𝑗) ∈ D̃R
𝑝,ℓ
(that is to say, for each

pointMR
𝑝 (𝑞R,1𝑝,𝑖 , 𝑞

R,2
𝑝, 𝑗

) in the viscosity-generation subgrid G̃R
𝑝,ℓ
of GR

𝑝,ℓ
), the family

of subpatch windowing functions

𝑊R
𝑝,ℓ,𝑖, 𝑗

(x) = 𝑤R,1
𝑝,0,9(𝑞

1 − 𝑞R,1
𝑝,𝑖

)𝑤R,2
𝑝,0,9(𝑞

2 − 𝑞R,2
𝑝, 𝑗

) (4.46)

where q = (𝑞1, 𝑞2) = (MR
𝑝 )−1(x) for x ∈ GR

𝑝,ℓ
We then introduce the family of

multi-patch windowing functions

WR
𝑝,ℓ,𝑖, 𝑗

(x) =
{
𝑊R
𝑝,ℓ,𝑖, 𝑗

(𝜁R
𝑝,ℓ

(x)) if x ∈ ΩR
𝑝,ℓ

0 if x ∉ ΩR
𝑝,ℓ

, (4.47)

where 𝜁R
𝑝,ℓ

(x), denotes the point in the real-space grid GR
𝑝,ℓ
that is “closest” to

x in the following sense: 𝜁R
𝑝,ℓ

(x) equals the image of the point in the grid 𝐺R
𝑝,ℓ

which is the closest to the pre-image of x under the patch mappingMR
𝑝 . In some

cases this definition requires disambiguation, which is achieved as follows: letting
q = (𝑞1, 𝑞2) = (MR

𝑝 )−1(x) we define

𝜁R
𝑝,ℓ

(x) = MR
𝑝 (rnd(𝑞1/ℎR,1𝑝 )ℎR,1𝑝 , rnd(𝑞2/ℎR,2𝑝 )ℎR,2𝑝 ), x ∈ ΩR

𝑝,ℓ
, (4.48)

where for 𝑡 ∈ R+, rnd(𝑡) denotes the integer that is closest to 𝑡, disambiguated by
rnd(𝑛 + 12 ) = 𝑛 + 1 for every integer 𝑛.

Using these notations, finally, the normalized multi-patch windowing functions
W̃R

𝑝,ℓ,𝑖, 𝑗
, and, generalizing the windowed-localization operator (3.21) and the viscos-

ity operator (3.22), the multi-patch windowing operator Λ, and the overall viscosity
operator 𝜇R

𝑝,ℓ
are defined by

W̃R
𝑝,ℓ,𝑖, 𝑗

(x) =
WR

𝑝,ℓ,𝑖, 𝑗
(x)∑

R ′
∑
1≤𝑝′≤𝑃R

∑
ℓ′∈ΘR′

𝑝′

∑
(𝑖′, 𝑗 ′)∈D̃R′

𝑝′,ℓ ′
WR ′

𝑝′,ℓ′,𝑖′, 𝑗 ′ (x)
, x ∈ Ω, (4.49)

Λ[𝑏] (x) =
∑︁
R

∑︁
1≤𝑝≤𝑃R

∑︁
ℓ∈ΘR

𝑝

∑︁
(𝑖, 𝑗)∈D̃R

𝑝,ℓ

W̃R
𝑝,ℓ,𝑖, 𝑗

(x)𝑏R
𝑝,ℓ,𝑖, 𝑗

and (4.50)

𝜇R
𝑝,ℓ

[e] (x) = Λ[𝜇(e] (x), x ∈ GR
𝑝,ℓ
, (4.51)

respectively.
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Remark 12. We note that the viscosity operator 𝜇R
𝑝,ℓ
is constructed on the basis

of the preliminary viscosity operator 𝜇, which relies on an associated smoothness
classification operator 𝜏— that is computed over grids G̃R

𝑝,ℓ
contained in subpatch

interiors, except for subpatches that are adjacent to the boundary of Ω, for which
smoothness classification near subpatch boundaries cannot be avoided. Numerical
experiments have shown that favoring smoothness classification values produced
by stencils located in subpatch interiors helps eliminate spurious oscillations that
would otherwise arise as shocks or contact discontinuities travel from one subpatch
to the next. Clearly, the use of such interior values requires reliance on window
functions with a relatively large support, as well as a sufficiently large overlap region
between neighboring subpatches.

4.4 Multi-domain strategy: Parallelization
Sections (4.4.1) and (4.4.2) describe our parallel implementation of the FC-SDNN
algorithm presented above in this chapter. The description assumes the algorithm
is run in a number 𝑁𝑟 of parallel MPI ranks, where each rank (that is to say, each
individual parallel MPI process) is assumed to be pinned to a single compute core.
Of course the code can be run in serial mode, simply by selecting 𝑁𝑟 = 1.

4.4.1 Parallelization strategy
The structure of the proposed algorithm, which is based on use of multiple patches
and subpatches, as outlined in Section 4.1.2 (with potentially arbitrarily large allow-
able numbers of subpatches for a fixed patch decomposition of a given geometry),
wherein each subpatch is essentially independent of all other subpatches (with
exception of a minimal amount of required communication between neighboring
subpatches), was designed with a triple goal of 1) Enabling applicability to general
geometries, and 2) Limiting the size of the required Fourier-continuation expan-
sions, while 3) Lending itself to effective parallelization in a distributed parallel
computing environment. Concerning point 3), in particular, relying on the under-
lying overlapping patch-decomposition, the main algorithmic components of the
method are embarrassingly parallel, including:

(i) The computation of the subpatch-wise preliminary viscosity 𝜇[eR
𝑝,ℓ
] (equa-

tion (4.45)) described in Algorithm 2 below, which requires the evaluation of
the proxy variable φR

𝑝,ℓ
, the smoothness classification values 𝜏[φR

𝑝,ℓ
], and the

MWSB operator 𝑆[eℎ] (see Section 4.3.1 and, in particular, equation (4.44)).
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(ii) The computation and filtering of the FC-expansions of the solution followed by
subpatch-wise filtering (Section 4.2.3.1) required by the time-stepping proce-
dure (Section (4.2)), and the computation, filtering and windowing of the FC-
expansions of initial data for localized discontinuity smearing (Section 4.2.3.2),
as detailed in Algorithm 3.

(iii) The evaluation of each stage of the SSPRK-4 time stepping scheme (Sec-
tion 4.2.1) using FC-based spatial differentiations incorporating the required
Dirichlet and/or Neumann boundary conditions (Section 4.2.2), as indicated
in Algorithm 4.

These parallel segments are delimited by the necessary MPI inter-rank data commu-
nications, namely, the communication of solution values (Sections 4.1.4.1 and 4.1.4.2)
and the communication of viscosity data (Section 4.3.2)—which allow for the paral-
lelization of themulti-patch FC-SDNNprocedure in a distributed parallel computing
environment.

Algorithm 2 Parallel evaluation of the preliminary artificial viscosity operator
1: for every MPI rank 𝑛𝑟 do
2: for every subpatch ΩR

𝑝,ℓ
distributed to rank 𝑛𝑟 do

3: Evaluate the proxy variable φ corresponding to eℎ at all spatial grid
points (Section 4.3.1).

4: Obtain the smoothness classification values (𝜏[φ] (Section 4.3.1).
5: Evaluate the MWSB operator 𝑆[eℎ] at all spatial grid points (Equa-
tion (4.44)).

6: Evaluate the artificial viscosity operator 𝜇[eR
𝑝,ℓ
] (Equation (4.45)).

7: end for
8: end for

Algorithm 3 Parallel filtering of the solution vector eR
ℎ,𝑝,ℓ

1: for every MPI rank 𝑛𝑟 do
2: for every subpatch ΩR

𝑝,ℓ
distributed to rank 𝑛𝑟 do

3: (Case 𝑡 = 0) Apply localized discontinuity-smearing (Section 4.2.3.2)
to the solution vector eR

ℎ,𝑝,ℓ
and overwrite eR

ℎ,𝑝,ℓ
with the resulting values.

4: (Case 𝑡 > 0) Apply the subpatch-wise filtering strategy (Section 4.2.3.1)
to the solution vector eR

ℎ,𝑝,ℓ
and overwrite eR

ℎ,𝑝,ℓ
with the resulting values.

5: end for
6: end for
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Algorithm 4 Parallel stage evolution and enforcement of boundary conditions for
the solution vector eR

ℎ,𝑝,ℓ

1: for every MPI rank 𝑛𝑟 do
2: for every subpatch ΩR

𝑝,ℓ
distributed to rank 𝑛𝑟 do

3: Compute the spatial gradient of the viscosity 𝜇R
𝑝,ℓ
(Equation (4.51)) via

FC-based differentiation (Section 2.3).
4: Compute the first- and second-order spatial partial derivative of the
density 𝜌, horizontal and vertical momenta 𝜌𝑢 and 𝜌𝑣 and temperature 𝑇 via
FC-based differentiation while enforcing the relevant Dirichlet or Neumann
boundary conditions (Remark 11).

5: Using the derivatives obtained in lines 3 and 4 together with the Jacobian
and the product differentiation rule, evaluate the discrete differential operator
𝐿R
𝑝,ℓ
(Equation (4.37)) by combining these derivatives and the Jacobian 𝐽R,𝑝q of

the inverse mapping
(
MR

𝑝

)−1 (Equation (4.33)).
6: Evaluate the next stage of the SSPRK-4 scheme.
7: end for
8: end for

4.4.2 Initialization and overall multi-patch FC-SDNN algorithm pseudo-codes
A pseudo-code for the complete multi-patch FC-SDNN algorithm is presented in
Algorithm 6, with a preliminary initialization stage outlined in Algorithm 5.

4.5 Numerical results
This section presents computational results produced by means of the multi-patch
FC-SDNNmethod in a number of challenging test cases, including problems involv-
ing interactions between supersonic/hypersonic flow and obstacles, and including
multiple moving-shocks and contact discontinuities, as well as shock collisions with
obstacles, domain boundaries, contacts, and other shocks, etc. The efficiency of the
parallel implementation of the algorithm in terms of weak scaling is demonstrated
in Section 4.5.1, and a number of illustrative numerical examples produced by the
multi-patch FC-SDNN algorithm are presented in Section 4.5.2.

The numerical tests presented in this chapter were run on our Wavefield cluster,
which consists of 30 dual-socket nodes connected via HDR Infiniband. Each socket
incorporates two 28-core Intel Xeon Platinum 8273 processors, for a total of 56 cores
per node, and 384 GB of GDDR4 RAM per node. While supported by the Xeon
processors, the hyper-threading capability was not utilized in any of the numerical
examples presented in this chapter.
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Algorithm 5Multi-patch FC-SDNN initialization
1: for every MPI rank 𝑛𝑟 do
2: Initialize the complete patch/subpatch structure, detailing explicit mapping
functions, the subpatch decomposition, the subpatch discretization sizes, and the
subpatch numbering, but not including assignments of arrays of discretization
points. (The resulting data repetition across ranks is not memory-demanding
and is thus used.)

3: Assign the subpatches ΩR
𝑝,ℓ
to the various ranks so as to ensure as close to

equidistribution of subpatches per rank as possible.
4: for every subpatch ΩR

𝑝,ℓ
distributed to rank 𝑛𝑟 do

5: Allocate the data arrays necessary for storage of discretization points,
viscosity values, stage solution values, and solution and viscosity data commu-
nication.

6: Compute the physical grids GR
𝑝,ℓ
(Sections 4.1.2.1 and 4.1.2.2) using

the mappings on the parameter grid points (𝑞1
𝑖
, 𝑞2

𝑗
) ∈ 𝐺R

𝑝,ℓ
(that are solely

determined by the patch/subpatch decomposition and the discretization sizes
initialized in line 2).

7: Allocate, compute and store the values of the Jacobian 𝐽R,𝑝q of the inverse
mapping

(
MR

𝑝

)−1 (Section 4.1.3) over all grid points in GR
𝑝,ℓ
.

8: Load the trained ANN weights and biases (Section 4.3.1).
9: Initialize the unknown solution vector eℎ = eR

ℎ,𝑝,ℓ
(Section 2.1) to the

given initial-condition values over all spatial discretization grid GR
𝑝,ℓ
.

10: Compute (through communication with the other subpatches) the values
of the normalized multi-patch windowing function W̃R

𝑝,ℓ,𝑖, 𝑗
(x) (equation (4.49))

for all x ∈ GR
𝑝,ℓ
.

11: end for
12: end for

4.5.1 Parallel performance: Weak and strong scaling
This section demonstrates the weak and strong parallel scalability enjoyed by our im-
plementation of themulti-patch FC-SDNN algorithm. In particular, Sections 4.5.1.3
and 4.5.1.4 present weak scaling results: in Section 4.5.1.3 the sizes of the problems
are increased by increasing the size and complexity of the physical problems consid-
ered, whereas in Section 4.5.1.4 the problem sizes are increased via discretization
refinement for a fixed physical problem. Section 4.5.1.5, in turn, demonstrates the
strong scaling of the algorithm using the physical problem utilized in Section 4.5.1.4.
The two types of physical problems considered are described in Section 4.5.1.1, and
parallel scalability metrics used are introduced in Section 4.5.1.2.
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Algorithm 6Multi-patch FC-SDNN algorithm
1: begin
2: \\Initialization.
3: Initialize the mesh and the multi-patch FC-SDNN solver. (Algorithm 5.)
4: Initialize time: 𝑡 = 0.
5: \\Time stepping.
6: while 𝑡 < 𝑇 do
7: In parallel, evaluate the preliminary artificial viscosity operator 𝜇[eR

𝑝,ℓ
]

(Algorithm 2.)
8: In parallel, communicate the preliminary artificial viscosity values ob-
tained in line 7 to all patches and subpatches, as needed for evaluation of the
overall artificial viscosity 𝜇R

𝑝,ℓ
[e] (equation (4.51)) in each subpatch grid,

9: In parallel, combine, for each subpatch grid, the values communicated
in line 8 to produce 𝜇R

𝑝,ℓ
[e] on the subpatch grid.

10: Filter the solution vector eR
ℎ,𝑝,ℓ
in parallel. (Algorithm 3.)

11: Evaluate of the temporal step-size Δ𝑡 (equation (4.38)).
12: for each stage of the SSPRK-4 time stepping scheme do
13: In parallel, evolve the solution vector eR

ℎ,𝑝,ℓ
for the SSPRK-4 stage

and enforce boundary conditions. (Algorithm 4.)
14: In parallel, communicate the solution values between neighbor-
ing patches and subpatches via exchange and interpolation, as relevant (Sec-
tions 4.1.4.1 and 4.1.4.2).

15: end for
16: Update time: 𝑡 = 𝑡 + Δ𝑡

17: Write solution values to disk at specified time steps 𝑡.
18: end while
19: end

4.5.1.1 Scaling I: Test problems

Test Problem 1: Mach 10 shock mitigation by matrices of cylindrical obstacles.
Test Problem 1 actually comprises a set of problems in which aMach 10 shock-wave
(a shock wave traveling at 10 times the speed of sound of the unperturbed fluid)
impinges upon a rectangular array of circular cylinders containing 𝑛col columns and
𝑛row rows of cylinders, as depicted in the left panel of Figure 4.8. The computational
domain considered is divided into three zones, namely, an obstacle-free front region
ahead of the rectangular array; a middle region containing the rectangular array
of obstacles; and an obstacle-free wake region. The middle 𝑛col × 𝑛row-cylinder
region is constructed as a corresponding array of identical overlapping rectangular
subdomains of horizontal and vertical sides of lengths ℓ𝑥 = 3 and ℓ𝑦 = 2, respectively,
each one of which consists of 54 subpatches arranged around a single cylinder of
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radius 0.25. One such rectangular subdomain is depicted in the right panel of
Figure 4.8. The front and wake region comprise a vertical array of 𝑛row rows of
rectangular cylinder-free patches spanning an area of length 𝐿𝑥 = 2.5 and 𝐿𝑦 = ℓ𝑦 =
2, each one of which once again contains 54 rectangular subpatches.

The problem prescriptions are completed by incorporating the following initial
conditions and boundary conditions. The initial conditions utilized are given by

(𝜌, 𝑢, 𝑣, 𝑝) =
{

(4.0816, 8.25, 0, 116.5) if 𝑥 ≤ 0.6
(1.4, 0, 0, 1) if 𝑥 > 0.6.

(4.52)

An inflow condition with (𝜌, 𝑢, 𝑣, 𝑝) values coinciding with the 𝑥 ≤ 0.6 initial
values, on the other hand, are imposed on (𝜌, 𝑢, 𝑣, 𝑝) at the left boundary at all
times. Further, outflow conditions consisting of the time-independent pressure
value 𝑝 = 1 is imposed at the right boundary. Slip-wall (zero-normal velocity)
boundary conditions are imposed at the bottom and topwalls. No slip (zero velocity)
and adiabatic (zero normal component of the gradient of the temperature) boundary
conditions, finally, are imposed at the boundaries of the cylinders at all times—since,
as detailed as part of the Test-Problem-2 description below, a viscous problem
is solved near the cylinder boundaries whenever non-zero velocities occur at the
cylinder boundaries.

Figure 4.8: Illustration of the types of geometries used for the test problems in
Section 4.5.1.1. Left panel: domain decomposition utilized in Test Problem 1 in
the case 𝑛row = 3 and 𝑛col = 3. Right panel: patch decomposition of each cylinder-
containing subdomain in the left panel. The right panel also depicts the complete
computational domain used for Test problem 2.

Test Problem 2: Hypersonic flow past a cylindrical obstacle. Test Problem 2
concerns a hypersonic (Mach 10) flow past a cylinder of diameter 0.25 and centered
at (𝑥𝑐, 𝑦𝑐) = [1.1, 0], where the computational domain corresponds exactly to a
single instance of a subdomain containing a cylinder as previously described as
part of Test Problem 1 and shown in the right panel of Figure 4.8. An initial
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configuration with 54 subpatches is considered, which is then refined in accordance
with the method described in Section 4.1.2.4 in order to perform weak and strong
scaling tests. The initial condition considered is a Mach 10 flow given by

(𝜌, 𝑢, 𝑣, 𝑝) = (1.4, 10, 0, 1). (4.53)

As in Test Problem 1, an inflow condition with (𝜌, 𝑢, 𝑣, 𝑝) values coinciding quan-
titatively with the initial values is imposed at the left boundary at all times, and
no boundary conditions are imposed on the right outflow boundary, as befits a su-
personic outflow. Reflecting boundary conditions, corresponding to zero-normal
velocity, are imposed at the bottom (𝑦 = −1) and top (𝑦 = 1) walls. No slip (zero
velocity) and adiabatic (zero normal component of the gradient of the temperature)
boundary conditions are imposed at the boundaries of the cylinder at all times—as
befits the viscous-like problem that is solved in a neighborhood of cylinder on ac-
count of the artificial viscosity which, as illustrated in Figure 4.11, is assigned by
the artificial-viscosity algorithm in that region.

4.5.1.2 Scaling II: Parallel performance metrics

In order to quantify the parallel scaling efficiencies of the FC-SDNN algorithm in
multi-patch settings, for given numbers 𝑁 of discretization points and 𝑁𝐶 of compute
cores (or 𝑁0

𝐶
of reference compute cores), we denote by 𝑇𝑆 (𝑁𝐶 , 𝑁) and 𝑇𝑆 (𝑁0𝐶 , 𝑁)

as the number of seconds required by the FC-SDNN to advance 4𝑁 unknowns for
one time-step using 𝑁𝐶 cores or 𝑁0𝐶 cores, respectively. The strong (resp. weak)
scaling efficiencies 𝐸 𝑠

𝑁0
𝐶
,𝑁𝐶

(resp. 𝐸𝑤
𝑁0
𝐶
,𝑁𝐶

) are then defined by

𝐸 𝑠
𝑁0
𝐶
,𝑁𝐶

=
𝑇𝑆 (𝑁0𝐶 , 𝑁)𝑁

0
𝐶

𝑇𝑆 (𝑁𝐶 , 𝑁)𝑁𝐶
, 𝐸𝑤

𝑁0
𝐶
,𝑁𝐶

=
𝑇𝑆 (𝑁0𝐶 , 𝑁)

𝑇𝑆 (𝑁𝐶 , 𝑁𝑁𝐶/𝑁0𝐶)
. (4.54)

An alternative measure of the parallel computing time required by the algorithm to
advance the 4𝑁 unknowns associated with an 𝑁-point discretization grid in a given
computational experiment is provided by the number 𝑆𝑁𝐶

of CPU-seconds required
to advance the simulation for one time-step in a number 𝑁𝐶 of CPU cores per 106

unknowns, that is,

𝑆𝑁𝐶 ,𝑁 =
𝑁𝐶 × (total computation time) × 106

4 × 𝑁 × (Time steps) . (4.55)

In particular, the strong and weak efficiencies can be re-expressed as a function of
𝑆𝑁𝐶
:

𝐸 𝑠
𝑁0
𝐶
,𝑁𝐶

=
𝑆𝑁0

𝐶
,𝑁𝑁

0
𝐶

𝑆𝑁𝐶 ,𝑁𝑁𝐶
, 𝐸𝑤

𝑁0
𝐶
,𝑁𝐶

=
𝑆𝑁0

𝐶
,𝑁

𝑆𝑁𝐶 ,𝑁𝑐/𝑁0𝐶𝑁
. (4.56)
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Section 4.5.1.3 uses the Test Problem 1 described in Section 4.5.1.1 to illustrate the
weak scaling in a context where the number of discretization points is increased
so as to tackle increasingly larger physical problems—in that case, through the
progressive addition of rows and/or columns of cylindrical obstacles in a rectangular
array of cylinders. Section 4.5.1.4 then utilizes Test Problem 2 in Section 4.5.1.1
to illustrate the weak scaling properties of the algorithm in the context in which
increasing discretizations result frommesh refinement. Finally, Section 4.5.1.5 uses
Test Problem 2 once again to study strong scalability—by solving a fixed physical
problem defined on a fixed mesh on the basis of increasingly larger numbers of
computing cores.

The very high, essentially perfect, weak scalability demonstrated by the tests pre-
sented in Sections 4.5.1.3 and 4.5.1.4 indicate that both, the communication and the
average computing-cost per subpatch required by the algorithm remain essentially
fixed as the numbers of cores and the sizes of the problems increase proportionally.
The high but less-than-perfect strong scalability illustrated in Section 4.5.1.5, on the
other hand, reflects the fact that the computing time per subpatch varies between
subpatches—owing to differences in the communication costs required to various
subpatches. The strong scaling could be further improved by incorporating an al-
gorithm that distributes a combination of subpatch types to each computer node,
including adequate proportions high and low communication-cost subpatches. Such
additional algorithmic developments are beyond the scope of this thesis, however,
and are left for future work.

4.5.1.3 Scaling III: Weak scaling under problem enlargement

This section illustrates the weak scalability of the FC-SDNN algorithm by enlarging
the problem size via a progressive addition of columns and/or rows of cylindrical
obstacles in rectangular array of cylinders of the type described in Test Problem 1,
Section 4.5.1.1, and advancing the solution up to time T = 0.1 (with space and time
units such that the speed of sound in the unperturbed flow state is 𝑎 = 1, and the
distance between the centers of two vertically consecutive cylinders is 1.25). As
showcased in Table 4.1, the FC-SDNN algorithm enjoys essentially perfect weak
scaling as the number of discretization points and cores are proportionally increased
(𝑁/𝑁𝐶 = 𝑁Q with 𝑁Q = 1012, see (4.17)), starting with an 𝑁𝐶 = 9 × 54 = 486
computing-core initial configuration (at 54 cores per node) for a Test Problem-1
array containing a single three-cylinder column in addition to the front and wake
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regions.

𝑁 𝑛row 𝑛col 𝑁𝐶 Nodes 𝑇 (𝑠) 𝑆𝑁𝐶
(𝑠) 𝐸𝑤486,𝑁𝐶

(%)
4,957,686 3 1 486 9 74.4 0.97
6,610,248 3 2 648 12 74.4 0.97 100
6,610,248 4 1 648 12 75.0 0.98 99
8,262,810 3 3 810 15 74.2 0.97 100
8,262,810 5 1 810 15 74.4 0.97 100
8,813,664 4 2 864 16 74.8 0.98 99
9,915,372 3 4 972 18 74.0 0.97 101
11,017,080 4 3 1080 20 74.0 0.97 101
11,017,080 5 2 1080 20 74.8 0.98 99
11,567,934 3 5 1134 21 74.0 0.97 101
13,220,496 4 4 1296 24 73.9 0.97 101
13,771,350 5 3 1350 25 74.5 0.97 100
15,423,912 4 5 1512 28 74.8 0.98 99
16,525,620 5 4 1620 30 75.0 0.98 99

Table 4.1: FC-SDNN weak parallel scaling for various rectangular arrays of cylin-
ders (Test Problem 1 in Section 4.5.1.1), containing 𝑛row rows and 𝑛col columns of
cylindrical obstacles, and using 𝑁𝐶 cores, with 𝑁𝐶 ranging from 486 to 1620 (9 to
30 computer nodes).

4.5.1.4 Scaling IV: Weak scaling under mesh refinement

This section once again illustrates the weak scalability of the proposed FC-SDNN
parallel implementation, but this time in the context of mesh refinement—wherein,
as described in Section 4.1.2.4, decreases in discretization sizes are obtained via
corresponding increases in the number of subpatches used while simultaneously
and proportionally increasing the number 𝑁𝐶 of cores—in a setting where the
number of cores equals the number of subpatches. We do this here by solving
Test Problem 2 up to time 𝑇 = 0.1 (with space and time units such that the speed
of sound in the unperturbed flow state is 𝑎 = 1, and the distance between the top
and bottom boundaries of the computational domain equals 2). As the mesh is
refined the time-step decreases in an approximately proportional fashion (following
equation (4.38)), thereby increasing in a (roughly) linear manner the number of
simulation time-steps—as illustrated in Table 4.2.

Table 4.2 displays the runtimes 𝑇 , the numbers 𝑆𝑁𝐶
and the efficiencies 𝐸𝑤54,𝑁𝐶

as
the total number of cores and discretization points are increased proportionally, as
noted in the table, using 54 cores per computer node and increasing the number of
discretization points 𝑁 proportionally to the number of computer nodes used.



107

𝑁 𝑁𝐶 Nodes 𝑇 (𝑠) Time steps 𝑆𝑁𝐶
(𝑠) 𝐸𝑤54,𝑁𝐶

(%)
550,854 54 1 23.0 563 1.00
2,203,416 216 4 44.41 1106 0.98 102
4,957,686 486 9 64.96 1650 0.96 104
8,813,664 864 16 86.20 2194 0.96 104
13,771,350 1350 25 107.46 2738 0.96 104

Table 4.2: FC-SDNN weak parallel scaling in a mesh refinement context (Test
Problem 2 in Section 4.5.1.1) using 𝑁𝐶 cores, with 𝑁𝐶 ranging from 54 to 1350 (1
to 25 computer nodes).

As illustrated in Table 4.2, the weak scaling efficiency of the procedure in the present
mesh-refinement context is excellent, steadily rising above 100% with respect to the
coarsestmesh before stabilizing for finermeshes. We attribute this better than perfect
scalability to slightly diminishing workloads associated to the ranks carrying the
heaviest workloads as the mesh is refined. In detail, for initial, coarse, subpatch
partitions, a number of boundary subpatches play the roles of both donors and
recipients of interpolated solution data. As the subpatch refinements take place,
donors tend not to be receivers and viceversa, and thus the maximum interpolation-
data workload per MPI rank that occurs in such patches is decreased. This process
eventually stabilizes, as illustrated in Table 4.2, once most subpatches engaged in
communication of interpolated data only play the roles of either donor or recipient.

4.5.1.5 Scaling V: Strong scaling

This section illustrates the strong parallel scalability of the FC-SDNN algorithm
in a context in which the number of allocated processing cores is increased for a
given physical problemand for fixed patch/subpatch decomposition of the problem—
namelyTest Problem2discretized on the basis of 864 subpatches, which corresponds
to a number 𝑁 = 8, 813, 664 of discretization points. (This example thus utilizes
the same physical problem considered in Section 4.5.1.4, using the next-to-finest
discretization considered in that section, but assigning multiple subpatches to each
computer core, as needed for each given number of computers cores used to deal
with the fixed number of subpatches considered.) Strong scaling is studied in the
Wavefield cluster by progressively increasing the number of nodes used to solve the
problem up to time 𝑇 = 0.1, and using a constant number of 54 cores per node. The
associated times𝑇 (𝑠) in seconds and parallel efficiencies 𝐸 𝑠54,𝑁𝐶

with respect to a run
of 54 cores are displayed in Table 4.3. The observed decrease in the strong scaling
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efficiency as the number of cores is increased may be attributed to differences in
communication costs and associated computational workloads assigned to various
subpatches.

𝑁 𝑁𝐶 Nodes 𝑇 (𝑠) 𝑆𝑁𝐶
(𝑠) 𝐸 𝑠54,𝑁𝐶

(%) 𝐸 𝑠
𝑁𝐶/2,𝑁𝐶

(%)
54 1 1126.0 0.79
108 2 598.8 0.84 94 94

8,813,664 216 4 330.1 0.92 85 91
432 8 167.0 0.93 84 99
864 16 86.4 0.96 81 97

Table 4.3: FC-SDNN strong parallel scaling (Test Problem 2 in Section 4.5.1.1)
using 𝑁𝐶 cores, with 𝑁𝐶 ranging from 54 to 864 (1 to 16 computer nodes).

4.5.2 Applications
This section presents numerical results of the application of the FC-SDNN to a
number of physical problems on various degrees of geometric complexity, and
involving strong shocks, as well as supersonic and hypersonic flows. The new
results clearly accord with previous numerical simulations, theory and experimental
data, and they include simulations significantly beyond regimes previously tackled
computationally, such as is the case for e.g. Mach 10 shocks and flows—for which,
nevertheless, good agreement is observed with certain flow details predicted by
previous theory as well as extrapolations from experimental data such as e.g. the
distance between an obstacle and a reflected bow shock. To facilitate visualization
of the position of shock waves, following [71] and [72] displays of the Schlieren
diagram of the quantity

𝜎 = exp
(
−𝛽 |∇𝜌(x) | −minx∈Ω |∇𝜌(x) |
maxx∈Ω |∇𝜌(x) | −minx∈Ω |∇𝜌(x) |

)
(4.57)

with 𝛽 = 10 are presented for each test case. The time-stepping constant CFL = 0.25
in (4.38) was used for all the simulations involving 𝐶1-type corners and patches, as
in Section 4.5.2.7 and 4.5.2.10 (which, for the problems considered, involve rather
stretched meshes and thus small distances between spatial discretization points),
while the value CFL = 0.5 was used in all other cases.

4.5.2.1 Multi-patch method validation

In order to validate the accuracy of the multi-patch method presented in this chapter
we consider once again the test case presented in Section 3.2.3.2. The left panel in
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(a) Single subpatch, 𝑁 = 600 (b) 7 × 7 subpatches

Figure 4.9: Second-order (𝑑 = 2) Multi-patch FC-SDNN numerical solution to the
Euler 2D Riemann problem considered in Section 3.2.3.2, at 𝑡 = 0.25. The solution
is represented using thirty equispaced contours between 𝜌 = 0.5 and 𝜌 = 1.99.

Figure 4.9 reproduces the single-patch 600×600-point solution previously presented
in the middle panel of Figure 3.18. The right panel in Figure 4.9, in turn, displays
the solution produced, for the same problem, on the basis of a 7 × 7 subpatch
decomposition (the subpatch concept is introduced in Section 4.1.2) with a similar
meshsize: ℎ ≈ 0.002. The two images in Figure 4.9 present closely matching
flow features, with errors consistent with the underlying error level—which may be
gleaned from the red error curves in Figure 3.12. In particular, the smoothness of
the contour levels is maintained, and the shocks are equally well resolved in both
cases.

4.5.2.2 Energy conservation.

Several mechanisms used by the FC SDNN algorithm, such as the introduction
of artificial viscosity (Section 4.3) to avoid spurious oscillations, and the use of a
spectral filtering at every time-step (Section 4.2.3) to control the error growth in
unresolved high frequency modes, are dissipative in nature, but, as demonstrated
below, do not lead to excessive energy loss. To quantify the effect we studied
a 2D multi-patch version of the Sod Problem (Section 3.2.3.1), in the domain
[0, 1] × [0, 0.25], with initial conditions given by

(𝜌, 𝑢, 𝑣, 𝑝) =
{

(1, 0, 0, 1) if 𝑥 < 0.5
(0.125, 0, 0, 0.1) if 𝑥 ≥ 0.5.

(4.58)
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As no energy enters or exits the domain via inflow or outflow, the exact value
𝐸̄exact =

∫ 0.25
0

∫ 1
0 𝐸exact(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 of the energy contained in the complete domain

is constant—as it can be easily verified e.g. by differentiation with respect to time
of the integral of 𝐸 followed by use of the energy equation (2.6) together with the
velocity vanishing boundary values; it is easy to check that for the exact solution
we have 𝐸̄exact = 1.375. Thus any observed departures Δ𝐸̄ of the computed energy
𝐸̄ from this exact value provide an indication of the dissipative character of the
algorithm.

To test such dissipative effects we discretized the domain by using a unique patch
decomposed into an arrangement of 4 horizontal subpatches, and reflecting boundary
conditions 𝑢 = 0 were imposed at 𝑥 = 0 and 𝑥 = 1. Vanishing normal derivatives
for all variables were enforced on the top and bottom boundaries at all times so as to
simulate a vertically infinite domain. The solutionwas computed up to time𝑇 = 100,
during which the shock, contact discontinuity and rarefaction wave were reflected 60
times per boundary, for a total of 120 wall reflections. As showcased in Figure 4.10,
the numerical values 𝐸̄ of the complete energy content remain essentially constant,
𝐸̄ ≈ 1.37 ± 0.01, where the errors are consistent with the underlying error level
indicated by the red error curves in Figure 3.12. Noticeable features of the energy
and energy error curves include an early-time increase in the energy values (with a
total increase that diminishes in size as the discretization are refined, as it was found
on the basis of an additional set of tests not included in this thesis for brevity) as
well as a slow energy decrease attributable to the dissipative processes mentioned
above in this section.

4.5.2.3 Flow initialization

In the remainder of this chapter we consider two types of application problems,
arising from two distinct types of initial conditions. The first type is the interaction
of a supersonic/hypersonic “Mach 𝑀” flow with an obstacle (for 𝑀 values such as
1.4, 3.5, 10 etc.), which is considered in Sections 4.5.2.4 through 4.5.2.7. The initial
condition, given by

(𝜌, 𝑢, 𝑣, 𝑝) = (1.4, 𝑀, 0, 1), (4.59)

indeed corresponds to a uniform Mach 𝑀 flow with speed of sound 𝑎 = 1. The
second type of problems, discussed in Sections 4.5.2.8 through 4.5.2.10, corresponds
to the interaction of a shock initially located at 𝑥 = 𝑥𝑠 and traveling toward the region
𝑥 ≥ 𝑥𝑠 at a speed 𝑀 that is supersonic/hypersonic with respect to the speed of sound
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Figure 4.10: Numerical values of the total energy 𝐸̄ (left panel) and its defect
Δ𝐸̄ from the exact value 𝐸̄exact = 1.375 (right panel) as functions of time in the
time interval 0 ≤ 𝑡 ≤ 100—within which the shock, contact discontinuity and
rarefaction wave were reflected 60 times per boundary, for a total of 120 wall
reflections. The figures show that the numerical energy 𝐸̄ remains essentially
constant (𝐸̄ ≈ 1.37 ± 0.01) for the duration of the time-interval considered, with
defect values consistent with the algorithm’s error levels illustrated in Figure 3.12.

𝑎 = 1 ahead of the shock. For such a Mach 𝑀 shock the initial condition is given by

(𝜌, 𝑢, 𝑣, 𝑝) =
{

( (𝛾+1)𝑀2
(𝛾−1)𝑀2+2 ,

𝜁−1
𝛾𝑀
, 0, 𝜁) if 𝑥 < 𝑥𝑠

(1.4, 0, 0, 1) if 𝑥 ≥ 𝑥𝑠,
(4.60)

where 𝜁 =
2𝛾𝑀2−𝛾+1

𝛾+1 denotes the strength of the shock; see e.g. [73].

4.5.2.4 Supersonic flow past cylinder in a wind tunnel

We consider a set of problems involving supersonic and hypersonic flows of varying
Mach numbers, in a wind tunnel of dimensions [0, 4.5] × [−1, 1] over a stationary
cylinder of radius 𝑅𝑐 = 0.25 and centered at the point (𝑥𝑐, 𝑦𝑐) = (1.25, 0). The
geometric setting is close to the one considered in Test Problem 2 in Section 4.5.1.1,
but here additional empty front and wake regions are included. As in that section,
reflecting boundary conditions are imposed at the bottom and top walls, together
no-slip and adiabatic boundary conditions on the cylinder. Initial conditions (4.59)
with Mach numbers 𝑀 = 3, 𝑀 = 6 and 𝑀 = 10 are considered.

Schlieren diagrams of the solutions at 𝑇 = 2 are displayed in Figure 4.11. Particular
challenges posed by the configuration include the strong shock (with very high
pressure next the front of the cylinder) as well as the possible formation of vacuum
states in the wake region, particularly for high Mach number flows. Mach 2,
Mach 3, and Mach 3.5 simulations for similar geometric setting were considered
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(a) Mach 3 flow.

(b) Mach 6 flow.

(c) Mach 10 flow.

Figure 4.11: Supersonic flows past a cylindrical obstacle at various Mach num-
bers, at time 𝑇 = 2, obtained on a 𝑁 = 6.2𝑀-point mesh. Left panels: density
Schlieren images. Right panels: Artificial viscosity profiles. The insets on the right
panels display the artificial viscosity profiles (in an appropriate color scale) in the
immediate vicinity of the cylindrical obstacle—which illustrates the boundary-layer
resolution provided by the method, and which motivates the use of no-slip/adiabatic
boundary conditions, as discussed in the Test Problem 2 description presented in
Section 4.5.1.1.

in [72] and [74] and [73], respectively. It is worthwhile to emphasize here that, as
noted in Chapter 4 and as illustrated in the present section and, indeed, in all of the
numerical-example Sections 4.5.2.4 through 4.5.2.10, and unlike the methods [72,
74, 73], the present approach does not incorporate limiters or other artificial devices
to prevent the formation of negative-density regions, which, in the present case,
could manifest themselves in areas behind the cylinder. Generally the solver has
lead to non-negative (possibly quite small albeit numerically positive) values of the
density 𝜌; cf. e.g. the density plot in Figure 3.13. Additional considerations in this
regard are presented as part of the first paragraph in Chapter 4.
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Remark 13. As mentioned in Chapter 1 and further discussed in the first paragraph
of Chapter 4, and as illustrated in Figure 4.11, for flow-past-obstacle problems the
vanishing-velocity boundary condition at obstacle boundaries gives rise to sharp
boundary layers—which causes the SDNN algorithm to assign artificial viscosity
at boundaries at all times. As suggested in the first paragraph of Chapter 4 the
presence of such boundary viscosity may explain the preservation of positivity of
the density and pressure without use of positivity limiters that is observed to result
from the FC-SDNN algorithm.

4.5.2.5 𝑀 = 25 hypersonic flow past a cylinder

We next consider a set of problems involving flows at supersonic (Mach 3.5), and re-
entry (Mach 25) speeds past a cylindrical obstacle of radius 𝑅𝑐 = 0.25 and centered at
the point (𝑥𝑐, 𝑦𝑐) = (1, 0). For the supersonic (resp. the re-entry) velocity problem,
the computational domain considered consists of the portion of the rectangle [0, 2]×
[−1.75, 1.75] (resp. [0, 2.5] × [−1.5, 1.5]) located outside the cylinder. Initial
conditions (4.59) with Mach numbers 𝑀 = 3.5 and 𝑀 = 25 are considered. An
inflow condition with (𝜌, 𝑢, 𝑣, 𝑝) values coinciding quantitatively with the initial
values is imposed at the left boundary at all times, and no boundary conditions
are imposed on the right boundary, as befits a supersonic outflow. No-slip and
adiabatic boundary conditions are imposed on the cylinder, while vanishing normal
derivatives for all variables are imposed at the top on bottom domain boundaries.
Schlieren diagrams of the solutions at 𝑇 = 2.0 are displayed in Figure 4.12.

A notable feature in these simulations is the formation of a reflected bow shock ahead
of the cylinder. An existing parametric fit to experiment [65] of the distance 𝑑0 =
𝑑0(𝑀) between the bow shock and the cylinder’s leading edge as a function of the
Mach number𝑀 is used inwhat follows (as was used previously [75, 73]) to validate,
at least partially, the quality of the proposed gas-dynamics solver. According to [65]
the distance 𝑑0 is given by

𝑑0
2𝑅𝑐

≈ 0.193 exp
(4.67
𝑀2

)
. (4.61)

Numerical values of the ratio 𝑑0
2𝑅𝑐
produced by our solver for various Mach numbers

are provided in Table 4.4; these data show that, for each Mach number considered,
the numerical value of 𝑑0 converges towards the empirical value given in (4.61) as
the mesh is refined.
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Figure 4.12: Supersonic flow past a cylindrical obstacle in a wide channel, at time
𝑇 = 2.0, for two different Mach numbers, Mach 3.5 (left) and Mach 25 (right),
obtained on meshes containing 𝑁 ≈ 8.8𝑀 and 𝑁 ≈ 9.8𝑀 discretization points,
respectively.

𝑀 = 3.5 𝑑0
2𝑅𝑐

𝑀 = 25 𝑑0
2𝑅𝑐

Exper. parametric fit 0.283 Exper. parametric fit 0.194
𝑁 = 2, 203, 416 0.32 𝑁 = 2, 448, 240 0.21
𝑁 = 8, 813, 664 0.30 𝑁 = 9, 792, 960 0.20
𝑁 = 19, 830, 744 0.30 𝑁 = 22, 034, 160 0.20

Table 4.4: Bow-shock/cylinder distance in the supersonic flow past a cylinder in a
wide channel, including data corresponding to the experimental parametric fit [65,
Fig. 2] (eq. (4.61) above) and computational results for various values of 𝑁 . The
differences between the simulations and the experimental parametric fit appear
consistent with experimental error levels reported in [65].

4.5.2.6 Supersonic flow past a triangular wedge

Wenext consider supersonic and hypersonic flows past the triangular wedge depicted
in Figure 4.13, whose tip is located at the point (𝑥𝑡 , 𝑦𝑡) = (0.013, 0.015), and whose
interior angle equals 𝛼𝑡 = 40◦. The computational domain consists of the portion
of the rectangle [0, 0.024] × [0, 0.03] located outside the wedge. Initial conditions
given by equation (4.59) with supersonic Mach number 𝑀 = 3.5 and hypersonic
Mach number 𝑀 = 10 are considered in what follows. An inflow condition with
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Figure 4.13: Supersonic flow past a triangular wedge, at time 𝑇 = 0.02, for two
different Mach numbers, Mach 3.5 (left) and Mach 10 (right), obtained on an
𝑁 = 31.5𝑀-point mesh.

(𝜌, 𝑢, 𝑣, 𝑝) values coinciding quantitatively with the initial values is imposed at
the left boundary at all times, and no boundary conditions are imposed on the
right boundary, as befits a supersonic outflow. Vanishing normal derivatives for
all variables are imposed at the top on bottom domain boundaries. No slip and
adiabatic boundary conditions are imposed on the wedges at all times. The results
at time 𝑇 = 0.02 for Mach 𝑀 = 3.5 and 𝑀 = 10 flows and for a mesh containing
approximately 31 million points are presented in Figure 4.13.

Notably, a straight oblique shock forms starting at the tip of the triangular wedge,
with a deflection angle 𝛼𝑑 with respect to the horizontal. A closed form relation
between 𝛼𝑑 , the wedge angle 𝛼𝑡 and theMach number𝑀 of the incoming flow can be
obtained (for an infinite wedge) in closed form on the basis of the Rankine-Hugoniot
jump conditions [73]; the result is

tan(𝛼𝑡
2
) = 2 cot(𝛼𝑑)

𝑀2 sin2(𝛼𝑑) − 1
𝑀2(𝛾 + cos(2𝛼𝑑)) + 2

. (4.62)

The numerical results presented in Figure 4.11 show a deflected shock which starts
slightly ahead of the tip of the wedge, and it slightly curves around it to eventually
form a straight shock. The slightly-curved near-tip shock region can be attributed to
the formation of a fine viscous boundary layer at the wedge boundaries (in line with
our use of artificial viscosity (4.51) and associated no-slip and adiabatic boundary
conditions at the obstacle, as prescribed above in this section). The deflection angle
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𝑀 = 3.5 𝑀 = 10
Inviscid theory 34.6◦ 25.8◦
𝑁 = 520, 251 36.8◦ 21.9◦
𝑁 = 2, 356, 431 36.0◦ 23.0◦
𝑁 = 10, 007, 181 35.7◦ 23.8◦
𝑁 = 31, 500, 688 35.2◦ 24.3◦

Table 4.5: Deflected shock angle for the problem of a supersonic flow past a wedge,
including inviscid-theory values and computational results for various values of 𝑁 .

corresponding to the computational simulation was calculated by fitting a straight
line to the shock starting from 𝑥 = 0.024 (the rightmost abscissa shown in the figure)
which, in view of the aforementioned slight near-tip curvature, meets the 𝑥 axis at an
abscissa 𝑥𝑑 slightly ahead of the tip abscissa 𝑥𝑡 . Numerical values of the deflection
angles for various meshes used are compared in Table 4.5 to the corresponding
theoretical values. As demonstrated in that table, the deflection angle approaches
closely the expected theoretical value as the discretization is refined. The 𝑀 = 3.5
shock problem was previously considered in [73]; that contribution calculates a
deflection angle of 34.5◦ on the basis of a mesh of approximately one million
discretization points, which more closely approximates the theoretical deflection
angle than any of the predictions presented in Table 4.5. We suggest that further
work is warranted in this connection however, as the coarser discretization used
in [73, Fig. 4] results in a wider shock profile and an associated imperfect match
to a straight line showing noticeable departures from the shock for extended shock
sections near the wedge vertex.

4.5.2.7 Supersonic flow past triangular prism

In this section we consider flow problems in a wind tunnel similar to the one
considered in [73], of dimensions [0, 0.06] × [0, 0.03], over a stationary triangular
prism of length ℓ = 0.011 from left to right, whose front vertex has coordinates
(𝑥𝑡 , 𝑦𝑡) = (0.013, 0.015) and front angle 𝛼𝑡 = 40◦. Two different initial value
problems are considered for this geometry, namely those resulting from supersonic-
and hypersonic-flow initial conditions given by equation (4.59) with Mach numbers
𝑀 = 3.5 and 𝑀 = 10, respectively. Reflecting boundary conditions are imposed at
the bottom and top walls, together with no slip and adiabatic boundary conditions
at the prism’s boundaries. An inflow condition with (𝜌, 𝑢, 𝑣, 𝑝) values coinciding
quantitatively with the initial values is imposed at the left boundary at all times, and
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no boundary conditions are imposed on the right boundary, as befits a supersonic
outflow. Schlieren images as well as a contour plots of the density 𝜌 for both
test cases at time 𝑇 = 0.02 are presented in Figure 4.14. As in Section 4.5.2.6,
oblique shocks are reflected off the front facing sides of the triangular prism. As
shown in the figures, these shocks are reflected by the top and bottom wind-tunnel
boundaries, and the reflected shocks, in turn, interact with the wake at the back of
the prism. Clearly, the FC-SDNN method allows for a fine resolution of the shock
structures, and as demonstrated by the contour plots in Figures 4.14, smooth density
profiles are preserved away from shocks. This problem presents certain challenges
concerning the possible formation of vacuum states in the wake of the prism, in
particular for high Mach number flows, but, unlike previous spectral and finite-
element approaches, no density limiters were used to preserve density positivity. To
the best of the author’s knowledge, the fastest wind-tunnel flows past a prism are the
Mach 3.5 problems considered in [73, 76].

Figure 4.14: Supersonic flows past a triangular prism, at time 𝑇 = 0.02, for two
different Mach numbers, Mach 3.5 (top row) and Mach 10 (bottom row), obtained
on a 𝑁 = 10.5𝑀-point mesh in both cases. Left column: density Schlieren images.
Right column: density contour plots.
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4.5.2.8 Shock-cylinder interaction

This section concerns shock-cylinder interaction problems for the geometry utilized
in Section 4.5.2.4 with two different shock speeds of Mach numbers 𝑀 = 3 and
𝑀 = 10. The corresponding initial conditions are given by (4.60), with initial shock
position at 𝑥𝑠 = 0.5. An inflow condition with (𝜌, 𝑢, 𝑣, 𝑝) values coinciding with
the 𝑥 ≤ 𝑥𝑠 initial values is imposed at the left boundary at all times, and an outflow
condition consisting of the time-independent pressure value 𝑝 = 1 is imposed at the
right boundary, also at all times. Slip-wall boundary conditions are imposed at the
bottom and top walls, while no-slip and adiabatic boundary conditions, finally, are
imposed at the boundaries of the cylinders at all times.

Schlieren and density contour plots for the Mach 3 solution (resp. the Mach 10
solution) at time 𝑇 = 0.45 (resp. 𝑇 = 0.15) are displayed in Figure 4.15. The Mach
3 Schlieren diagrams display flow features in close agreement with the experimental
and numerical results presented in [77, Fig. 4] and [73, Fig. 17], respectively,
including the reflected shock and symmetricMach shocks and contact discontinuities
starting at the back of the cylinder and intersecting the incident shock at two triple
points. Similar features are observed for the Mach 10 problem that is also illustrated
in Figure 4.15. (A single shock-cylinder interaction problem, with Mach 2.8 shock
speed, is presented in [73].) The contour plots in Figure 4.15 display smooth density
contours, without spurious oscillations.

4.5.2.9 Shock-wave mitigation by a matrix of solid cylindrical obstacles

This section presents results for a Mach 10 shock propagating through an array of
cylindrical obstacles—a significantly stronger shock than previously considered for
this type of problem: Mach 1.8 and Mach 3 problems for similar geometries are
considered in [78, 79]. The study of such interactions of shocks mitigation is one
of paramount importance for the design of shielding systems [78]. The geometry
considered, depicted in Figure 4.8 results as a slight modification of the one used
in Test Problem 1 (Section 4.5.1.1) with 𝑛row = 3 and 𝑛col = 3; the modifications
introduced here concern the front and the wake region, both of which have been
extended: the new front (resp. wake) region considered here contains a 3 × 3
array of rectangular cylinder-free patches (resp. a 4 × 3 array of cylinder-free
patches), instead of the corresponding 1 × 3 front and wake arrays considered in
Section 4.5.1.1. The initial conditions considered here are given by equation (4.60)
with shock traveling at Mach numbers 𝑀 = 3 and 𝑀 = 10, and starting at the
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Figure 4.15: Shock-cylinder interaction for two different shock speeds and at two
different times, namely, Mach 3.5 at time 𝑇 = 0.45 (top) and Mach 10 at time
𝑇 = 0.15 (bottom), obtained on an 𝑁 ≈ 6.2𝑀-point mesh. Left panels: density
Schlieren images. Right panels: density contour plots.

Figure 4.16: Mach 10 shock-wavemitigation by a 3x3matrix of cylindrical obstacles
at time 𝑇 = 1.4, obtained on 𝑁 ≈ 16.5𝑀-point mesh. Density Schlieren image.

position 𝑥𝑠 = 0.5; the boundary conditions used are identical to those described in
Test Problem 1. Figure 4.16 presents a Schlieren diagram of the solution at time
𝑇 = 1.4.
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4.5.2.10 Shock-prism interaction

We finally consider the interaction of a shock with a stationary triangular prism in
a [0, 0.08] × [0, 0.06] wind tunnel. In this case an equilateral triangular prism of
length ℓ = 0.011 from left to right is considered, with a front vertex at coordinates
(𝑥𝑡 , 𝑦𝑦) = (0.013, 0.03) and front angle 𝛼𝑡 = 𝜋

3 . The initial conditions for the two
tests considered here are given by equation (4.60) with 𝑀 = 1.5 and 𝑀 = 10,
respectively, and with 𝑥𝑠 = 0.007. A test for a similar geometry, the Schardin
problem, was introduced in [80] for a Mach 1.34 shock, and studied numerically
in [81] and in [73]. An inflow condition with (𝜌, 𝑢, 𝑣, 𝑝) values coinciding with the
𝑥 ≤ 𝑥𝑠 initial values are imposed at the left boundary at all times. Further, outflow
conditions consisting of the time-independent pressure value 𝑝 = 1 are imposed
at the right boundary. Slip-wall boundary conditions are imposed at the bottom
and top walls, while no-slip and adiabatic boundary conditions are imposed at the
boundaries of the prism at all times. Solutions at times 𝑇 = 0.025 for the Mach
1.5 shock and 𝑇 = 0.00375 for the Mach 10 shock are displayed in Figure 4.17.
The numerical solution correctly displays transmitted and reflected shocks, as well
as slip lines and vortices at the back of the prism. As in previous examples, the
density contour plots in Figure 4.17 displays smooth contour levels away from flow
discontinuities (such as, e.g., the contact discontinuities that start at the the upper
and lower triple points and that, in the 𝑀 = 1.5 images, continue up to the upper
and lower vortices (as evidenced also in the 𝑀 = 1.5 Schlieren diagram).
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Figure 4.17: Shock-prism interaction for two different shock speeds and at two
different times, namely, Mach 1.5 at time 𝑇 = 0.02 (top) and Mach 10 at time
𝑇 = 0.00375 (bottom), obtained on an 𝑁 ≈ 10.5𝑀-point mesh. Left panels:
density Schlieren images. Right panels: density contour plots.
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C h a p t e r 5

CONCLUSIONS

This thesis introduced a novel computational algorithm for general gas-dynamics
problems, namely, the FC-SDNN spectral shock-dynamics solver which, without the
taxing CFL constraints inherent in other spectral schemes, is applicable to general
domains, up to and including supersonic and hypersonic flows and non-smooth
domain boundaries. Relying on the Fourier Continuation method (FC) for accurate
Fourier expansion of non-periodic functions, together with a neural network-based
shock-detection methodology, as well as an innovative smooth artificial-viscosity
concept and amulti-patch discretization strategy, the proposedmethodology delivers
accurate numerical simulations, with sharp definition of shocks and other flow
discontinuities, as well as accurate and smoothly contoured flow profiles away
from flow discontinuities, and including shock-wave simulations at significantly
higher Mach numbers than previously reported for certain important experimental
configurations and physical obstacles. In particular, test cases presented in this
thesis illustrate the method’s accurate shock detecting capability and concentration
of artificial viscosity near shocks, while essentially avoiding viscosity assignments
away from shocks, up to and including at contact discontinuities—with significant
impact on the resulting resolution of the latter often-oversmeared flow features.

1) The new multi-patch approach enables the application of the FC-SDNN method
for evaluation of flows and shock-dynamics in general 2D domains, including bound-
aries containing corners, and in the context of both supersonic and hypersonic flows.
Further, the new method 2) introduces a smooth and localized artificial-viscosity
quantity of the type utilized as part of a previously existing, single-domain FC-
SDNN strategy, that is additionally compatible with the multi-patch general-domain
discretization strategy used presently, and 3) incorporates an MPI-based parallel
implementation based on the multi-domain discretization used, which enjoys high
weak and strong parallel scaling in large present-day computer clusters. And, finally,
4) the proposed multi-patch implementation exhibits numerical results in close ac-
cordance with physical theory and prior experimental and computational results up
to an including both the supersonic and hypersonic regimes.
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C h a p t e r 6

FUTURE WORK

Significant extensions of the FC-SDNN methodology are envisioned in a number
of promising directions. On one hand, the implementation of the methodology in
the 3D context, which could be highly impactful, can be pursued by appropriately
generalizing the multi-domain decomposition strategy described in Section 4.1, and
by adapting the associated overall smooth artificial viscosity assignment procedure
(Section 4.3), shock-detection and time-marching schemes. Similarly, the applica-
tion of the FC-SDNNmethod to other systems of conservation laws, particularly the
Magnetohydrodynamics (MHD) equations [34], which requires an adaptation of the
choice of regularity proxy (cf. Section 3.3), might provide a significant impact in the
area of energy research. An additional important extension concerns the design of
an efficient hybrid implicit/explicit scheme to facilitate the discretization of domains
including irregular boundaries (which require fine discretizations) and/or sharp an-
gles (which give rise to stretched meshes and thus small distances between spatial
discretization points, cf. Section 4.5.2) without taxing CFL time-step constraints,
while maintaining a less costly explicit capability to manage simulations away from
challenging boundary regions. Further, the development of an adaptive mesh re-
finement procedure for shock dynamics on the basis of the multi-domain strategy
employed in Chapter 4, which has previously been considered in the context of the
overset grid method [82], would allow for a finer resolution of shocks and other flow
discontinuity features, as well as an increased accuracy of the solution in regions
behind shocks, without requiring use of fine meshes throughout the computational
domain. Finally, the implementation of the proposed methods on computer archi-
tectures that incorporate graphical processing units (GPUs) is highly promising.
In particular, the GPU distribution of the numerous but relatively small FFT calls
associated with the FC discretization should result in massively accelerated com-
putations for both highly challenging 2D and (specially) 3D contexts, with highest
promise associated with localization of large subdomain regions within single GPUs
in a multi-GPU system, with limited interdomain solution communication.
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