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ABSTRACT 

The elementary treatment of electron streams in vaC"Uum 
tubes is based on the assumption that the velocity of the stream 
can be represented by a single valued function of the spatial 
coordinate. The Lagrangian method of treating the resulti11g 
electronic equations was introduced by Mulle·r and extended by 
Llewellyn to general boundary conditions. In part III, this method 
is carried to the second order solution, which is important in the 
computation of distortion and detection properties of vacuum tu.bes 
at medium frequencies. 

With the refinement of electronic techniques in the past 
decade, the useful radio frequency range for conmn:mication has been 
increased. In treating very high frequency tunes, the assumption of 
single valued velocity electron streams in close spaced vacuum tubes 
diverges sharply from physical fact. There arises a need for an 
electronic theory which includes the velocity spread of the electron 
stream. In part IV, the foundation of a multi-velocity theory is 
laid. Though in part IV treatment has been confined to one dimen­
sional electron motion with only an electric field, the method can 
be readily extended to two or three dimensional flow with magnetic 
fields. The multi-velocity theory is based on a combination of 
Maxwell's equations and Liouville's Theorem of classical statistical 
mechanics. This fundamental approach in treating vacuum tubes, by 
focusing attention on the electron motion instead of boundary para­
meters, has been bypassed by prior investigators. The theory contains 
within its structure the explanation of all previously obtained 
results on one dimensional electron flow plus new answers to multi­
velocity ~roblems. In part V, some examples of stationary electron 
flow are treated; and in part VI, the time dependent solutions are 
formulated (though not carried out in complete detail). 

In part VII, an interesting high frequency loading 
phenomena, observed by a number of investigators, is treated. From 
the results of the stationary flow in part V, this problem can be 
solved without the general theory developed in part VI. The 
solution obtained suggests a modification in the construction of v0ry 
high frequency close spaced vacuum tubes. 
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Statement of ~roblem 

1 

:Part I 

INTRODUCTION 

Turto infinite parallel planes are separated a distanced 

in a vacuum to form a generalized* diode (Fig. l). Plane.!! is at a 

potential Va; plane J!. is at a potential Vb. A beam of electrons is 

injected across the.§ plane into the region d. What is the relation­

ship between the current flowing in the external circuit C and the 

Assumptions 

The following assumptions will be made in the course of 

the solution. 

1. The planes.,! and~ are at uniform potentials, so that the 

electric field is everywhere perpendicular to the planes. Consequently, 

if these planes are grids, they must be made of very fine wire closely 

meshed, so that the electric field will be uniform over the entire 

grid. 

2. Electron motion is always :perpendicular to the planes.! and~; 

i.e., the problem is one dimensional. The only spatial variable that 

will appear is the x coordinate which will be measured from the.! plane. 

3. The angular frequency of the time dependent :part of the poten­

tials is of such magnitude that propagation time for the electric 

*Neither plane is to be regarded as constituting a thennionic emitter 
or cathode. 



2 

field and potential from planes,!! to _e. is instantaneous. 

4. The forces acting on the electrons will be produced by electric 

fields. No externally applied magnetic fields will exist. The magnetic 

field produced by electron convection current and displacement current 

can be neglected because of the small current density used. 

5. The potentials Va and Vb are of such magnitude that relativistic 

influences oa.n be neglected. 

Once the solution for a generalized diode is obtained the 

behavior of multi-element tubes (triodes, tetrodes, and etc.) is 

obtained by cascading diode* solutions.(l) In particular, the solution 

of the above problem is desired to explain the behavior of microwave 

disk-seal vacuum tubes. This class of microwave tubes, the best known 

members being called "lighthouse tubes", are of planar structure.( 2 ) 

The only assumptions given above that would not be strongly satisfied 

by these tubes are 1 and 2. Some of the earlier model ttlighthouse 

tubes" have vary coarse grids so that the fields are far from unifonn.( 3 ) 

However, more recent tubes built at the M.I.T. Radiation Laboratory, 

in pa.rtioular the Neher amplifier tubes,(4 } satisfy the first two 

assumptions closely. 

Classification of Solution 

The solution of the general problem can be elassified 

according to the velocity eomnosition of the electron stream, namely, 

single valued velocity electron streams or multi-velocitied electron 

streams. For a single valued velocity stream all the electrons in a 

*ffh.e first diode represents the cathode-grid space, the _second diode 
the grid-screen grid space, and etc. to the last grid-anode region. 
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plane parallel to the J! orb plane have the same momentary velocity.• 

A further solution specification would be the time behavior of the 

potentials. More detailed classification will become apparent in the 

sections that follow where these two types of electron streams are 

treated. 

Maxwell's Equations and Units 

The relationship between the fields and currents acting 

in the generalized diode is given by Maxwell's equations. The equations 

will be wri tt.en in cgs - practical uni ts. In this unit system, 

electrical quantities are measured in practical units, volts, amperes, 

coulombs, and ohms; while length, mass, and time are measured in 

centimeters, grams, and seconds. 

~E 
r,•!J=Q+tit 

JH 
V ~ ( "' /{ Jt 

v • f.( " f 

')dl=O 

(1.1) 

In the above equations, 1! is the magnetic field strength (amperes per 

centimeter}, _Ethe electric field strength (volts per centimeter), 

.9. the convection current density (amperes per square centimeter), 

e the charge density (coulombs per cubic centimeter), f the permittivity 

of vacuum { farads per can timeter·) , and /1 the permeability of vacuum 

(henrys per centimeter). Because of the fourth assumption, terms 

involving the magnetic field may be cancelled. Because the problem 

is one dimensional, all quantities will have only x direction components. 

*The velocity is a single valued function of x and t. 
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Consequently, the vector equations reduce to scalar equations. 

Writing only the remaining terms in {1.1) there results* 

J£ 
- I (tJ = Q 1- f ii 
E ~£ ,._ f ~, and 

where I is the total current density (amperes per square centimeter). 

It is to be noted that I is not a function of the spatial coordinate 

(x}, but can only be constant or a function of time. This can be 

shown by taking the divergence of the left side of the first equation 

of (1.1). The convection (Q) and displacement current (Ej{J are, 

however, f'unotions of x and t. The force law, in the above system of 

units, for the electric field acting on an: electron is 

d'~ 'l F-= m - = - 10 e£ 
edt2 

(1.3) 

where Fis the force in coulomb-volts per centimeters, »ie is the 

electron mass in grams, and e is the absolute value of the electron 

charge. A table of the above quantities and others to be introduced 

in subsequent pages is given in appendix 1. 

*The total current density is written with a negative sign to conform 
with the usual custom in measuring currents in the opposite direction 
of negative electron flow. This is also useful in that the negative 
sign associated with the electron charge is cancelled in some equations. 



5 

Part II 

smGLE VAIDED VELOCITY SOLUTION 

Introducti9n 

In the next section, the generalized diode will be treated 

under the condition that all electrons in a plane parallel to planes 

1! or]! have the same velocity. This condition restricts the electrons 

motion from the left to the right plane (Fig. 1) with no electrons 

passing each other. The criterion that the electron stream must 

satisfy to have a single valued velocity will be stated on pagelO. 

A review of the papers on this problem prior to 1938 is 

given by Benham.{ 5) Most of the earlier :papers assumed that the 

A plane was a thermionic emitter and electrons were liberated with 

zero velocity. However, for ~raetieal vacuum tubes the condition of 

single valued velocity and zero velocity emission is not satisfied 

for a number of reasons. They are: 

1. Physical emitters eject electrons with a velocity distribution. 

2. Tubes are generally operated space charge control so a nega­

tive field exists at the cathode with an accompanying potential minimum 

a short distance from the cathode ( compare 1Part IV ). 

3. Because of the :potential minimum, the major :portion of the 

electrons emitted is returned to the cathode. Consequently, in the 

region between the cathode and the potential minimum, electrons are 

traveling away from and toward the emitter. 
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4. For very high frequency* tubes close element spacing must be 

used because of the effects of transit time. Consequently. the distance 

between the cathode and the potential minimum ean be a major portion of, 

if not all, the distance between the cathode and the :first grid. In 

addition, the velocity distribution will give different transit times 

-r·or different electrons. 

The above conditions practically void~the single valued 

velocity solution when applied at very high :frequencies to ex.plain the 

behavior of the cathode .... control grid region of tubes. An example o:f 

this divergence between experimental results for disk-seal miero-wave 

tubes and single valued velocity theory has been given in a recent 

paper.(S) The solution can be applied to medium :frequency** tube 

analysis, however, since wider tube spacings are used and the potential 

minimum distance occupies then only a small portion of the cathode­

control grid region.( 7) In the output regions of tubes where the 

electron velocities are high (so that the emitter thermal velocity 

spread can be neglected), the single valued solution can be applied 

with some success even to microwave tubes. As was previously mentioneq, 

if the diode is treated with general boundary conditions for the two 

planes, then the solution can be used for multi-element tubes by 

cascading. This possibility was first realized by Llewel1yn! 8)( 9) 

who extended Benham's(lO) original diode solution first and then later 

Muller's(ll) solution. The procedure in these solutions is to consider 

the potentials, currents, and other quantities as being composed of 

*In the order of 109 cycles per second or higher. 
**Less than 108 cps. 
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time independent (d.c.) plus time dependent (a.c.) components. The 

a.e. components are considered as small eompared to the d.c. components, 

so that a.c. behavior is a perturbation on the d.o. solution. The 

resultant theory is called a "small signal theory". 

Four different ways of solving the electronic equations 

have been developed. These methods are known by the form in which 

the differential equations are placed prior to solution or by the 

physical principle used in their formulation. They are known as the 

Eulerian,*(lO) Lagrangian,*(ll} electrostatie,( 121 and the conservation 

of charge. (S) Llewellyn's most important paper(l4 ) on small signal 

theory, which was later extended to a booklet, (lB) is the generalization 

of the boundary conditions used by Muller.(ll) He formulated the 

equations so that not only could the d.o. and small signal a.c. solution 

be obtained, but also higher order solutions. Unfortunately, Llewellyn 

has left out an important higher order term, so a closed form expression 

(circular function$) can not be obtained for a second order solution. 

In the section to follow, Muller's method of setting up the electronic 

equations will be used with Llewellyn's generalization of the boundary 

conditions. After the general theory has been formnlated, Llewellyn's 

solution will be briefly given for the small signal case, namely, the 

zero and first order solution. Next, the as yet unpublished second 

order solution in closed form will be carried out in detail.** It mu.st 

be re-emphasized that application of the single valued velocity theory 

*This designation comes from the analogous form of the equations to the 
hydrod~ie equations.( 15 ) 

**Benhaml 5 J has carried out a second order solution by the conservation 
of charge method. However, his unorthodox use of complex notation 
reflects some apprehension on his results. 
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to practical vacuum tubes must always be done with utmost care, so 

that the basic assumptions of t his theory are not violated.{G) 

Single Valued Velocity Theory 

The general theory of single valued velocity electron 

streams starts with (1.1) and (1.2). In (1.1), pv is written for the 

convection current, where v is the velocity of the electrons in the x 

direction. In (1.2), -eE is written for the force Fon a electron; 

and e, m8 , a.nd 10-
7 are written as the constant i, =/0~/me 

-T )E 
.t(t) = pv +-E- Ji 

* • 

(2.2) 

Using ( 1. 2 ) , 

then 

in (2.1) can be written in terms of the electric field, 

The bracket term on the right side of the above equation is the total 

derivative of E, since v= dtt for single valued velooi ty streams. 

If the stream was not single valued then for a given x, the velocity 

of different electrons would give different v's in the above expression; 

so identifying the right side of (2.3) as the total derivative of the 

electric field could not be done. Consequently for single valued 

streams 
-J(t) =' tjf (2.4) 

Using (2.2), the electric field can be written in terms of the 

electron acceleration as 
!: I = qtl 
€ dt 

(2.5) 

*Wherever e appears it will mean the absolute magnitude of the electron 
charge. The negative sign of the charge will be written into the 
equations. 
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This is the :fundamental equation that must be solved. The right 

side is the total rate of change of acceleration that an electron 

will experience as it moves from the.§ to the .h plane. Note that 

the left side of this equation can only be a function oft or a 

constant. This suggests defining 

f I: K + ¢ "'ctJ 
00 

where and ¢ '"(tJ ~ E {ttJ 
1t ., 

* , 

K: is the sum of the even order independent currents multiplied by 

1/ € ; while ¢"'ct] ** is the sum of the time dependent currents 

multiplied by 1/ e . 'l'he higher order contribution to Kisto be noted 

since even harmonics of the f'Undamental frequency current result in a 

change in the d.c. Currant. These higher order d.c. contribution 

to Kare not included in Llewellyn's analysis. They obviously do not 

affect the zero or first order results, but will have pronounced 

influences on the higher order solutions. \Vriting (2.6) in (2.5) 

gives 
(2.7) 

:Multi-plying this equation by dt and integrating t = ta to t = t, where 

when t = ta the electron is at the Ji plane, result in 

fitdt O tUtJ -<l'.(t._)•f[,o¢"{ti)dt ·(t-taJK1--¢'(t1-rj'(t;,_J (2.8) 
tR. til., 

The acceleration at the J! plane, a(ta} can be written as the sum of 

a time independent plus a time dependent acceleration. 

a..(ta.J :::a_tt. r <X(t4 J 

Substituting this expression in (2.8) results in 
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a(t,t4 ) == (t-ta.JK -1-q/'(tJ -¢"(t
4

J 1- a~ 1-0(.(tal 

Integrating again over the same limits gives 

(2.9) 

where v a is the velocity at t =- ta and is not a :function of ta, 

while v(~J is the time dependent velocity at the~ plane. A third 

integration gives 

The single valued velocity criterion can be obtained from 

(2.11). The initial conditions at plane~ must not be assigned so that 

electrons overtake each other anywhere between the two planes§: and .R.• 

If electron passing occurs, then the velocity would not be a single 

valued function o~ x and the above derivation would be void. 

Muller( 11 ) and recently Brillouin {16) have shown that the necessary and 

sufficient condition of single valued velocity is 

(d~) <O 
J~ l 

(2.12) 

Physically this condition means that electrons crossing the A plane at 

a given time cannot overtake electrons that have crossed the,& plane 

at some previous time. A plot of x versus t for different ta.'s 

readily shows the above requirement. If the time independent parts of 

v and a are large compared with the fluctuating components, then the 

above condition is usually satisfied. However, if there is any region 

in o ~x kd where the electrons are being decelerated (retarding electric 

field), then the criterion must be carefully investigated. 
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Equations (2.9), (2.10), and (2.11) give the acceleration, 

velocity, and position at any time t ) ta of the electrons that cross 

the.! plane a.t t = ta• However, since the electric field, the potential, 

and other quantities as a :function of x and tare desired, the 

expressions (2.9) and (2.10) are not useful in their present form. 

In principle, (2.11) could be solved for ta in terms of x and t and 

then substituted in (2.9) and (2.10). The formitable appearance of 

(2.11), with the additional complication that the time dependent 

functions for a steady state solution will be trigometrio, precludes 

all possibilities of this direct approach. A method of perturbation 

on the time independent solution can be used. 

If all the fluctuating components in (2.11) are zero 

and setting t - ta :::: T, then 

(2.13) 

Solving this cubic equation for T and substituting in (2.9) and 

(2.10), the acceleration and velocity as a function of x and T would 

be obtained, ,if the fluctuating components are zero. When the 

fluctuating components are not zero, then let 

t- ta. ~ T + b 

where Tis still defined by (2.13). 

( 2.14) 

6 is then the perturbation on 

the transit time T produced by the fluctuating quantities ¢, _ ~, ii; 

and as they approach zero, 6 also approaches zero. Using (2.14), 

then any function of (t-ta) or ta can be expanded in a Taylor series 

in terms of powers of 6 . For a function oft-ta• 
«> 

-- >' g_,n f Cttl(T'' f(t - tQ.,) ;: f ('f t6) = f(rJ -t f'{1')b + • • • • L ,. 1 (2.15) 
't =O 
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In a like mar..ner, for a function of ta 

f r r (- I) )t n. r <ri, < l r r ta, J = ct- r -o J = It t - r 1 - r 't t - r; o .,. • • • = ~ nT & a -r J 2. 16 
rl•O 

Substituting (2.13 ,) to (2.16) inclusive in (2.11) results in an 

expression involving t, T, 6 , K., 1, and the acceleration and velocity 

at the ..! plane. 

+ ~ {61 '1') +</;CtJ -[rj;(t - 'f'J -¢'{t- 7'/b + l! f'(t-f)t/-

.] - (Tt6)[¢'(t - 'f) -¢"(t-7'}6 t /;¢"'(t-T}b2._ (2.17) 

· j - i('hzro t o•;j [rpt-rJ -qi'(t-rJo + 

I rJ. "" a_ j r I 2, l!..,,tt -7'Jo - • • • -,o1.ct-rJ -«'(t-rJo rz1~"<t-rJo 

· · · 1} + ('l' +OJ[ v{t-'f) - i,'(t-'f)O t j, JJ '~t- 'f}h'- • • ·] 

Though (2.17) can be arranged in a power series in 6, it can not be 

solved for 6 as it stands. The important result of (2.17) is that 6 , 

the perturbating transit time, has been removed from the fluctuating 

quantities ¢ , O£ , and .v . To solve (2.17), let 6 , K, <jJ , ot. , and J) 

each be written as a series.* 

(2.18) 

After these quantities are substituted in (2.17), the resultant 

expression is resolved into groups such that the sum of the subscripts 

of ea.ch term of any particular group is the same. 

*Compare (2.6). 
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0 = [o,(iKo'f 2
-fQ."-'f 1- ~) f¢,(tJ -¢,(t-'F) -'1'¢,'(t-7'} 

-l f(t -rJ + f r~.tt-rJ + r,,,, {t- n J + / 02- (f K. rz 

+ ) !. 2 I ( I ] r i ,., 
aa..'f -,. t1t_ f ~ i KJ' f o.(,(.J +, K2 r + 6, t 'f'-¢,ct-'l'J 

-i f!, '(t-7') r lot,{t- 'f) - 7' v, '{t- 'f) -f V, ( t-'l'J} I ¢~J t) 

-¢~ct- rJ - r¢; u-1 J - i r\A_ ''(t-'f J 1- i r"C(2Jt -r1 

+ r1tt-r1J f /¢iw -rAct-TJ -'l<4'tt-'fJ (2.19) 

- .!.. 'f2rl. ''( 1 l / .pZ I :L z "'3 t-'1'/ .,. t; «3 {t-rJ ,. r"}tt-1'J ,01 (2~r .,. 

ra4 r ~ ) ,- h2 [f 7' 7p, "'(t - TJ - f rt,'( t -'l'J t- 7' rt, {t-TJ 

- i J))t -rJ t JJ, a-rJ} 1 ~[ i Kz r~ + f 12rA "'tt- •rJ 

-i,i!t,_'{t-7) t 'fDt1_(t-T) - r'i'tt-r) -f1(t-1'Jj +-

:l r_ I 2,/, .,,, I 111 I ~ 

~ L - i ·r y,,, (t-'fl .,. I Tep, lt-'rJ r ci 'f "', 'rt-1') - 'f ~,'0-'fJ 

I I ,, I 7 
1- I ot, l t- 'f) + i 'fv, { t- 'f J -.v, 'lt-'f) J I b, b2 ( K/1' + 

a.) ,. .!..t/K. J fr- ••• 
Q. ~ I 0 

Since the left side of (2.19) is zero, then for the right side to 

be zero for all values oft, each group of terms on the right side 

of the same order must be zero. F4_uating the first group to zero 

and solving for b, result in 
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The second group gives 

/<h(tJ -¢;_a-n- rt_'ct-'fJ - i ,~-(/J:/ft-7) 1 i r~a-n 

1 
r ~ tt -r J + /J, ft r 2¢, "(t-'rJ - f r ~,'ct- ·r 1 

1 rct,(t-r) - 'fv,'{t-'f) -fJJ,{t-fJ}-t -i, f/[KJ' r 

a.(4 } + f K2. 'f 3 J 
The third group gives 

b. = -
'3 

f I :Z If I fl 
~{tJ-¢/t-'f/ -7'ftt-tJ - 2 7' ~ (t-7') + l ,xJCt - 'l'J 

I J •I I ,; [ I 'f 2, Ill 

+t«,(t-T) t-z'fJJ, (t-'l')-J1,(t-'lJ 1-6£ z c/J,Ct-'f) 

I 2 ] - 2 i ct.
1

1(t-rJ -f irx,(t-7'} - i,v,'(t-'l') -tP,{t-'l'J 

The above expressions with {2.18), (2.16), {2.15), and (2.14) can 

now be used to express the acceleration {2.9} and the velocity (2.10) 

as a function of x and t, since Tis a function only of x (2.13). 

Resolving the acceleration (2.9) in a series and combining terms in 

the manner used in {2.19) result . in 

(2.23) 



15 

where* 

(2.26) 

a3 ""l(b3 f</>/ltJ-¢/(t-rJ +a-3(t-'fJ -to1.[</>,"ct-rrJ-«,'(t-'l'Jj (2.27) 

1 K2_b, . -/rt/(¢,''ct-'l1/ -rx,"rt-'fJ} +b,[¢2-"ct~'fJ-a/(t-'fJ} 

Using the same procedure for the velocity {2.10) results in 

where• 

(2.29) 

v 2 =(oz ( K/fra.4 J - 7'¢/tt-'t) -rA_'(t- '/11 +¢2
1

(t) -f 7'~(t- 'f) r~(t-T) ( 2. 31) 

.J_ m~ I 2. f. 111 , 
1

/ 

+ z Kt~ + zJ<oo, + cu i¢,(t-TJ -,. °',(t- n - re1.,'(t-rJ -)I ct-rJ_; 

v3 = [63 (Ko 'ffa.(I.) - '¢/ct-'f) -¢it-'f) f<4
1

{t) + 7'r.t.3(t-'l') ·nj(t-7') (2.32) 

1 bz [r¢;,'"(t-'fJ - 7'ot,'(t-'f) + r:t,(t-rJ-v,'(t-'f/] + K,. 0/);__ 

ir . .' 111 
I 

1111 
I L II 

I II J + o, l Z<p,{t- 'fl - l i </>, (t- 7'J - ti., {t- 'fl t l J1 Ct - 'f) 1-i. 'f Q(, (t-'f/ 

+b,[K1, r + rrA_"'tt-'f) + ~2.(t-rJ - rctj_(t-'FJ -v2'(t-r;} / 

After the 6s are substituted in the above expressions, the accelera-

tion and velocity as a function of x and t and the initial conditions 

*In Llewellyn's(I7) expressions £or the above quantities, the K2 
terms are omitted. 
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at plane.§: will be obtained. Since there is only one spatial variable, 

the electric field can be written as the negative of the partial 

derivative of the potential, 

£< tJ ::: _ Jtl<~t1I 
~ J, It • 

Integrating from the.§; to.£ plane at a constant value oft, 

(2.34) 

From {2.2), 
I 

£(.x, t J = -7 a(~ t) 

Since (2.23) expresses the acceleration in terms of T and t, {2.13) 

can be used to change the integration variable in (2.34) and x to T. 

From (2.13) and {2.29} 

d f = { f K0 'f z + 1'att. t Va_ ) d 'f " ~ d 7' 

Substituting in (2.34} and writing W for 1 V give 

T 

wh-~::Ja~dr 
0 

Using (2.23), (2.36) can be written as 

'1' 

(Wb -~ Jo =/a.o Vo dT 
0 

'1' 

(wb-it.J, =la,~ d 'f 
0 

'I' 

(J11,-~tJ =f az ~d7' 
0 

'i' 

(Wb -W,,4 •! ti; V,,d7' 
0 

(2.35) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

In evaluating these integrals, the proper OJ mu.st be subs ti tu tad in 

the accelerations before the integrations are performed. 

Integrals (2.37) to (2.40) formally complete the single 
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valued velocity solution up to the third order. Substituting 

particular :functions for the current density (2.6) and the initial 

conditions at plane J!, integrals (2.37) to (2.40) give the relation 

between the total current density and the :Potential dif:ference 

between planes J! and b. 

Zero Order Solution 

Many papers have been written on the time independent 

solution for a parallel plate diode.{lS)(l 9)( 20) Consequently, in 

this section only the expressions which will be of use for the 

higher order solutions will be given. Substituting (2.24) and (2.29) 

in (2.37) gives 

(2.41) 

Note, the right side of this expression in terms of the veloeity at 

plane bis by the use of (2.29) 

icv/-~J = (~-Wa)' 

in terms of potentials Va and Vb 

(2.42) 

c 10 
7 
( 'i -~ J = i me, ( v/- v/ J , ( 2.43) 

which is the energy equation for d.c. electron flow. When Va is 

zero (aa and va then also zero), using (2.13) to solve for x in 

terms of T, substituting in (2.41), and using (2.6) give the familiar 

expression for Child's Law, i.e., 
• , -z J12, 
1a = 2.JJ ~ 16 'cl ~0 amps/cm~ (2.44) 

4 ,! 

where the numerie is 9 E (ZJ./2-

Another important equation is the value for the maximum current 

density that can be injected aeross the~ plane for a given Va and Vb. 

This expression may be called the generalized Child's Law. Using 
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(2.13) in (2.29) to eliminate aa results in 

' 2 s! vb :J-~ = iJ<o'f + Zr (2.45) 

For a constant value of Va and Vb, the left side is a constant; since 

from (2.43). tne potential and velocity are related by 

{2.46) 

Differentiating the right side of (2.45) with d constant and solving 

for dK:/dT result in 

cl/( -'I -I 

d'f : 7' 12 d - 't Z /(0 
{2.47} 

Setting the left side zero gives 

V ::: (,,d ,,-J:: ::! L 
ll.o € o ma~ may 

(2.48) 

This is the value for the maximum injected current in terms of d 

and T. Substituting (2.48) in (2.45) gives 

7;
0 

: 3d(Va_-,.'1,f' 
>ti.a.,. 

(2.49) 

TN.hen the convection ourrent density is very small, space charge 

density {e ) approaches zero, and a linear potential exists between 

the ;a and J2. plane, then 

T -, z r 
I

. == ld ( Va., f Vb) : J I 
i vt.ea.y- c,,u:i.t,. 

(2.50) 

Consequently, the transit time for complete space charge is 

increased by .fifty percent over the transit time for zero space charge. 

Solving (2.48) for T ma~., substituting in (2.49), and using {2.46) give 

-1,, -i ll< 'lz13 L = 2.33" JO d (11,/' f- Jto 1 (2.51) 
ma.t. 

For this value of I;, , there will exist a :potential minimum between 
ma.1,. 

the.§ and J2. planes. Setting a0 equal to zero in (2.24), (since the 

field at the potential minimum is zero), gives the transit time to 

the potential minimum _1 
'f. = -a (~ ) 

pot . rni,c C<. Ma.~ 
(2.52) 
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Substitute (2.48) in (2.13) with x set equal to d, solving for aa, 

and substituting T from {2.49) give 

{2.53) 

'l'his expression shows that a retarding field exists at the!:, plane. 

Substituting (2.53) in (2.52) and using the resultant value of Tpot .min. 

in (2.29) give. the electron velocity at the potential minimum as 

(2.54) 

tlsing (2.46), this can be written in tenns of the potentials 

(2.55) 

This expression then relates the potential minimum and the l! and]! 

plane voltages for the maximum current density given by (2.51). 

Substituting (2.52) in (2.13), using (2.48), (2.50), and {2.53), the 

distance to the potential minimum for the maximum current density 

(2.51) is 

(2.56) 

or in tenns of the potentials of the A and b planes 

{2.57) 

In writing the ~irst order solution, it is convenient 

to introduce a space charge factor 

f = J { I _ 'fhiteay J 

i (2.58) 

Equation {2.50) shows that s equals one for complete space charge, 

maximum injected current density (2.51), and zero for zero injected 

current density. Using (2.50) in ·(2.58) to eliminate T,i,uar- and 
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substituting in (2.45} give 

K = Z l; ( vet + vb J 7t i. (2.59) 

Dividing (2.59) by itself, where ~ is set equal to one, results in 

"/K = L11 ,,: r ( rWlct¥.Jrl· 
om. a.t. O,rl((f. ( 2e 60) 

Eliminating the t .ransi t time ratio by (2.58} gives 
L/ 9 ;,, ~ 

• 
0 I = 4 t;,(,-j) • 

omo.1-. 

For a given value of current density I, (2.61) gives the space charge 

factor; and using {2.58} and (2.50), the transit time is 

This equation is particularly useful in calculating the transit time. 

First Order Solution 

Llewellyn in his earlier papers(l4 )(lS) and in a recent 

paper(l) has thoroughly investigated the first order solution. In 

this section, a brief description of the ~rocedura and the final 

results will be given as the first order solution is required for the 

second order calculations. 

Equation (2.37) shows that the first order potential and 

first order current density are linearly related;** and consequently, 

the principle of superposition holds for first order quantities of 

different frequencies. The linearity between current density and 

potential makes it possible to use the convenience of complex notation 

for time dependent quantities. To first order quantities only 

*Equation (2.61) is plotted in appendix 2. 
**Note, however, that the total potential and current density are 

not linearly related. 
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(2.6) gives 

f I = K0 f- ¢, ";_ t I (2.63) 

Let 
Ill pt _j'_ pt 

¢, ctJ = J, e = r I; e 
(2.64) 

then 
di <nJ r J, /, o-n; le pt and 
't', {t) ~L p '../< 

lYl) [J-/ . J p{t-'f} ¢, (t- r): I ;J-,,u_;e, ( 2.65) 

Using the expression given by (2.65) in b (2.20), 
'. I 

substituting in a1 (2.25), multiplying by v0 (2.29), substituting in 

(2.37), and integrating give the first order potential. The terms 

in the potential expression involve the zero and first order current 

densities, accelerations, and velocities at the.§ plane. A more 

oonvenient parameter than the time dependent acceleration ~, at the 

.i plane is the convection current density. Multiplying (2.1} by 113 

using (2.6) for the left side of the expression, expanding the convec­

tion current velocity by (2.28) and the charge density (p ) in an 

analogous manner, and using (2.2) for the electric field in the dis­

placement current density term give 

-[1<
0

1-J, +J;_ +- • ·]= /frea-1-e.1-· -Jflfi,.V,+· .J]-JJ[~+a,1-··] (2.66) 

The first order terms of (2.66} are 

where 

-J, = .! n - la, 
I t 71 Jt 

q,=-eav, +-e. Vo 
All terms of (2.57) must have the same time dependence. 

(2.67) 

(2.67a) 

Then since 

J's time dependence is specified by (2.54), (2.67) becomes (when ept 

is suppressed since it a~pears in all tenns) 

*p = j UJ , where j ; (-1 )2 and w is the angular frequency. 

, 



22 

.1 pa, = r q, + J, (2.68) 

At the .§ plane, a,= ix, so (2.68) becomes 

at, = (f C/a + J, )-p-l 

where 9~ is the first order oonveotion current at the,!! plane. 

Substituting (2.69) for a, , in the potential integral mentioned above, 

and letting (3:pT give the first equation of (2.70). Substituting 

(2.69) in (2.25) and using (2.20) and (2.55) give. the second equation 

in (2.70). Repeating the same operations on (2.30) gives the third 

equation in (2.70). 

Vi, - ~ = !J. I -t (j q~ + t ~ 

9h =- (} I I f. ia. + E Va 

vb = g I + lj f/a. + l ~ 

(2. 70) 

Equations (2.70) are known as the first order electronics equations.* 

The potential (Vb-Val, current density (I), convection current density 

(q ), and velocity (v) in (2.70) are all first order quantities of 

frequency w .** The subscripts a and bare the respective first 

order values .. at the ..§ and }. planes. The bars under the coefficients 

in (2.70) indicate that the quantity may be complex. Because of 

the principle of superposition applies to first order quantities, 

(2.70) relates the various quantities for each different frequency. 

For example, if an injected current of one frequency and a 

*The values of the coefficients are given in appendix 3. 
**Since the time dependence is the same for all te~ns, the quantity 

e pt is suppressed. 
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different frequency applied voltage (Va-Vb) were placed aeross the 

A and b planes, then the resulting voltage produced by the injected 

current and the resulting current produced by the applied voltage 

would be independent as far as first order effects are concerned. 
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Part III 

SEC011D ORDER SINGLE VALUED VELOCITY DIODE SOIDTION 

Introduction 

In the sections to follow, the second order solution 

for a completes-pace charge diode, Va = O, will be obtained. The 

zero and first order -potential, acceleration, and velocity at the 

!: plane will be set equal to zero. The importance of the second 

order diode solution is in the computation of distortion and 

detection properties at medium frequencies.* In fact, transit 

time effects in diodes at moderately high frequencies were first 

observed in the behavior of rectification efficiency.( 2l) 

Zero Transit Angle Second Order Solution 

At very low frequencies where the transit angle of 

electrons is practically zero,** the relation between voltage and 

current density is given by {2.44}, namely, 
3/z 

/4 = C ~o ampS/cm2 

or 
L .z1 

~o = ( 0 /c) 'J volts 
-6 -z where c ~ l. 3 3 11 10 'd 

If there is a small increment in the current density so tha.t 

I=<{ 1-ol 

where tJl/1 « 1 
0 

*Note material that follows assumption 4 on page 2. 
**The transl t angle (e) is w times the transit time, e=w T . 

See appendix 3. 

(3.00) 

{3.00a.) 

(3.01) 
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then the corresponding change in the voltage can be obtained by a 

Taylor series expansion for (~+.il ) as 

V = f ( Io -t!Jl) = f ( Io) f f'f IaJ LJI + i., f''(Jo)( LJI/ + • 

The coefficients of this expansion are obtained by differentiating 

{3.00a) f{I
0

) :(Iolc)j, f'(4,J = j (c 2 .l)-J 
I 

f"(fo)= -j(cizf}J 

~ 

( 0 ) ( L )J Substituting in 3. 2, factoring out ~ from the terms on the 

right side, and using (3.00a) result in 

V _ 11 r1 g ( £JI) _ 1-{IJJ)z -1- 4- ( nI)J f . . • J 
- Yo l J f J la 7 ~ t)/ Io {3.03) 

Expanding the left side of (3.03) as 

the following def'initions can be made. 

(3.05) 

The factor f ( ~} in the v1 expression is the inverse slope of the 
0 

static characteristic of a diode operating with complete space charge, 

and is called the zero-frequency value of the diode resistance, and 

can be written Yoe * • Compare appendix 3 and (2.70). If nl in 

(3.01) is written as I, ~oswt, ** then (3.05) becomes 

Y, = Yoe I, cos wt , ~ = - f ( [ )\ co/w·t = - i§ ([ /-t [If Co5 lwt} 

~ : 8~ rt l~ cos 3wt = 8; { })TJ Co5tvt + cos Jwt] {3.06) 

Note that the second order voltage ~ has a time independent component. 

*The subscripts are for zero order (0), complete space charge diode 
(o}, respectively. i 

**Note I1 is the maximum value or 2~times therms value. In all 
equations to follow fluctuating components will also be written in 
terms of maximum values. 
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Equation (3.06) shows that to maintain a zero and a small* first 

order current density of a single frequency through the diode, 

voltage of a fundamental and higher hannonic frequency must be 

applied. In addition, if the d.c. value of the current density 

is to remain constant as r1 increases in magnitude, a negative 

second order voltage also mu.st be added. If the frequency is 

such that the transit angle is not zero, then the right side of 

each equation of (3.06) will be multiplied by a function of 9, 

the transit angle, or a function of ~ , the complex transit angle 

(jQ) • 

V, = Yoe 'l, re1 I, cos wt 

l'z = - I~ ( t / Va [ '1;0 (0) f l;z(~) cos 2wt] 

~ = 8~ ( J: J3~ [ J rJ, ((3) cos wt f ½3 (e) C05 Jwt] •• 

The factor Yoe r, {~) is given in append ix 3. T,_0 (e) and 'rz2 (~) 

will be calculated in the sections that follow. The bar under Tur~) 

indicates that it may be complex; i.e., the second and first order 

voltages do not pass through zero simultaneously. The subscripts on 

the 4mt and 'fnm (next paragraph) functions are n for the order and m 

for the frequency dependence. For example, r'z0 indicates second 

order, zero frequency transit angle coefficient, while ¼z indicates 

second order, twice fundamental frequency coefficient. 

*If the first order current is not small compared to I 0 , then more 
terms in the expansion (3.03) will be needed. 

** r11m(Q)➔ I and 'l' reJ ➔ I , for any n,m. 
- ~➔O zn1m0 ➔0 



27 

Using (3.00), an expansion for the case 

V = Vo f IJ V ~here n v/v.: << 1 
0 

can be performed in an analogous manner to that given above for an 

increment in the current density. The current density components 

that will result from the voltage {3.08} will be 

l =-4,[I J(11v) f '1-("v)z_.J...(t1ll)Jf . • ] 
t- l. ~ 8 f 48 ~ • (3.09) 

Ex-panding the left side of (3.09) as 

I == ] 0 +-1, + lz -f 13 +- • • • (3.10} 
the following definitions can be made* 

- 1(tJV)zl l - - ..!.. (lJV)3L. lz - c3 '1c o , J - 1a Vo o 
(3.11) 

r2 can be written in terms of I, by eliminating the voltage ratio 

giving 
(3.12) 

If nV , in (3.08) is written as V, coswt , then (3.12) becomes 

.li.1z. = t (L1f cos'l.tot : I~ ( L1,J2~r, + cos 2.wt] (3.13) 
O O O 

When the transit angle for the electrons can not be neglected then 

(3.13) can be written as 

- _!_ I,~ [ ] Iz - 1R. { 1c/ 'tz0 (0) f ½z (~) cos Zwt {3.14) 

where ~ 0 (0) and 't,2 ** equal one, when Q is zero. The values of 

lf will be calculated in the sections that follow. 

Finite Transit Angle Second Order Diode Solution 

Equation (2.39} gives the relationship between the second 

order voltage and current density. Since the second order solution 

*Van der PQl has carried out this expansion to terms _of the tenth 
order.( 22 1 

**Bar indicates ~7... is complex. 
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is to be carried out for a complete space charge diode with Va =o,• 

all quantities at the.! plane must be set equal to zero. Consequently, 

the second order acceleration a2 (2.26) and the 6 's that are 

substituted in it will be those shown in (2.20) a.nd (2.21), where ~ , 

J/ , a , and v are set equal to zero. Multiplying the resultant 
a a 

a2 by v0 (2.29), where aa and vain v
0 

are set equal to zero and 

substituting in (2.39), the potential integral can be written as 
1' 1' 7' 

w.z =/ r;dr + Jr, d'F f j 1(,)(2 I r;Jr ( 3.15 J 
0 O 0 

where 
r 1' 

/r;_d, =1<o/[¢;_(t-rJ-~rt; + r¢,_ '/t-rJ + i r~"rtl}dr 
() 0 z 

(3.16) 

and 
T T 

/r,dr ~ -zj 13[ ¢,ttJ -¢Jt-r!ld, 
0 0 '1' 

+4 /f:t¢,'(t-rJ[¢,rt1 -¢, 'rt-n_/crr 
0 'f 

-1 I; r 1 ¢,'rt- rJJZ- </>.''rt-n/¢,tt, -¢, rt- 7'J/Jc11' 
0 'I' 

(3.17) 

-/ ¢, ''(t-11/2<1, 'ft-n + f i<), ''{t- r1J}dr 
0 

Note, the r;_ integral is composed of terms involving the second 

order current, while the r, integral has only the first order current. 

As was shown in the zero transit angle second order 

solution, there are two distinct cases that oan be treated in a 

second order solution. They are: A. Total current density composed 

of a small, single frequency, time dependent current (I1 ) super­

imposed on a steady current (I
0

). The problem is to determine the 

voltage that must be applied to the diode to satisfy this current 

~v = o 
a 
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density. B. Voltage impressed on diode is composed of a small, 

single frequency, time dependent voltage v1, superimposed on a steady 

voltage V
0

• The problem is to determine the currents that flow as 

a result of this impressed voltage.* 

:Problem A 

The answer to problem A, when the transit angle for the 

electrons is zero, is given by (3.00a) and (3.06). When the transit 

angle is finite, (3.15) must be used, with fl_ and K
2 

set equal to zero, 

since the current density is composed only of !
0 

and I 1• Equation {3.15) 

will also contain the zero transit solution (3.06). To evaluate (3.17), 

let ¢, "?tJ ;J, cos wt so that** 

¢, '(t) = J s , ·rt, wt 

¢, '{t) == 6 co5wt 

A. 1, · - t 
"f', {t) =- iiJ3 SH1. W 

rj;, 
11
(t-f) = f, COJUJ(t - 'fl 

rl," m') J, .,, ft-I ==w sinw/t-TJ 

r/J,'(t- r) == - £ Cos w(t- 'f) 

¢,tt-'f) = -i sinw{t-T) 

Substituting the proper expressions of (3.18) in (3.17} and 

(3.18) 

*Problem B seems to be of more experimental interest than Problem A. 
However, Dr. J.R. Pierce of the Bell Telephone Laboratories has in­
formed the author that an experiment under the conditions of problem 
A has been performed. The divergence between the experimental re­
sults and Benham's published results on the frequency dependence of 
the d.c. second order voltage developed across the diode was the moti­
vation for carrying out this general second order solution. 

**The convenience of complex notation can not be readily used in the 
second order solution since the first order current terms apnear as 
squares. 
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integrating give 
T 

/r,dr 2,/...!_ r_ I I IJ 7' I · ? • ? 7' J; / w 6
7'zL I- I Co5 2wt - z cos Z wt cos A UJ - z Stn 1.. wt .5 m ,\, w 

0 

-I- j .lY{. i.wt sin w r + CO.j 1-wt cos wr - t.,{)j w rl 
I [ • 

+ tu"T s,·11. Zwt cos ?.w·r - cos lwt sm 2.w 'f 
{3.19) 

- .sinwT +- cos2wtsirt wT - sinZwt cosw'f J 

The value of the integral at the upper limit is just the expression 

given on the right side of (3.19). However, in determining the value 

of the integral at the lower limit, T = 0 can not be directly substi­

tuted because of the inverse power of T. Before substitution is made, 

all terms involving Tare expanded in a :power series of T. Letting T 

in these expressions go to zero leaves only the terms 

z~~r, -d coslwt] (3.20) 

Substituting in ( 3.15), writing 0 = w r (transit angle), and dividing 

both sides by (2.41) (in which a
8 

and va have been set equal to zero), 

give 

~ 2lv. = - 1-8
1 111/[r: {0J -1-lt0Jcos2wtfYi01s1n2/,()t} 

bo O 20 
(3.21) 

where 

(3.22) 

A/eJ 7Z e'{,- Zcose -tcosZe -2esjne t1es'm2e 

-Je:zcos2e +g-0 2 -,fe.Js/nl.e] 

Yt0J = -144 0 6[s/>1..e - i .sjn 2.e -ecose -1 ecos 2e (3. 24) 
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For small transit angles, (3.22), (3.23), and (3.24) can be expanded 

in :powers of 0 giving* 

(3.25) 

(3.26) 

v [.12. J7 3 ~ s 16 7 j 
1(0) = s-e- ,os e +9z40 e - ,1sz., 0 • • • (3.27) 

Using the complex transit angle p ='j0 , (3.26) and (3.27} can be 

combined so that {3.21) can be written as•* 

*** {3.28) 

where 

l'(eJ-J Y(e) =- l;/fJ = l44t3/f {i{1-1.e-P+ (;-ipJ +ii(e-
2

~efJJ (3.29) 
+ I~ r I ( CJ e - l(J - /) + t e- l. (3 J 

When (3 is small, 

l'ur~) = I 1- t P + #i l- ,ff. l + lld'o l- 1ll~ {' + 

,f;Jol- ,/fzsl+4jf,Je,~~o ~8 
• • ·] {3.30} 

With the writing of (3.21) to (3.29), problem A**** of the second 

order solution is completed. The procedure in using these answers 

for a particular problem is as follows. The given data would be the 

spacing d, current densities I
0 

and I 1, and the frequency w of 11. 

*Note that (3.21) gives (3.06) when T+ O. 
**(a cos 2wt + b sin 21V t) • (a-Jb)cos2wt.Compare (40L:zd 23 l 

***Compare (3.07). 
****See page 29 . 
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V for the particular I
0 

would be given by (3.00a}. The transit 
bO 

angle required for the first and second order solution would be 

calculated by (2.62), which simplifies for complete space charge to 

-9 d .!.. 
e =wr = 144•10 w(r j< (2.62a) 

0 

The required (Vb)l would be given by the first order electronic 

equations (2.70);* {Vb)2 would be obtained from (3.22) and (3.29), 

or for small transit angles** (3.25), (3.26}, and (3.27}. Figure 3 

shows a plot of (3.22) and (3.29) for O !, Q ~ 13. 

Problem B 

The answer to problem B*** when the transit angle for 

the electrons is zero is given by (3.00) and (3.13). When the transit 

angle is finite, {3.15) mu.st be used with Wb2 set equal to zero, 
r '11 

0 = /fl.dr 1r,dr t,"lkoKzr4- (3.31) 
0 0 

or 
1' T 

f fldT +ii ~1(2 'f 4 = -/r,d'f 
O 0 

For a first order current density ¢,"tt) = J, cos wt 

(3.31a) 

, the right 

side of (3.31a) is given by (3.19) and (3.20), or in terms of l'z
0

(e) 

and T22 f(JJ ' 
'f' 

/r,d, = -,:4 J,
2
T4[T;_

0
(0J + ½itfJ cos 2wt]. {3.32) 

0 

Using (3.16), the r;_ integral can be calculated after substitutin.g 

¢/{t) = J;_ cos 2 ud • However, integration is unnecessary since the value 

of (3.16) has already been indirectly calculated. Note that the r;_ 

*See ap-pendix 2a. 
** . Q < 2.5 

*~*See page 29. 
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integral and the first order potential integral (2.37} with aa and va 

set equal to zero are identical with the exception of the subscripts.• 

Consequently, the value of (3.16) can be written immediately from the 

coefficient r, ** with {2Q) substituted everywhere for Q 

rr I ~ 
J fldT:: ii. Ko J;_ r 'l(lf) <!OS Zwt 
0 

(3.33) 

where 'f, {2.p) = f e- 4
[ I - fj f }~

3 - c -i,(~ 1-1)] 

or r J - t1r z .1 • ,, 
_,(2.p)::: 2 e L(J-cos2.e -esin.20J-j(0+3 e -sm~s 

+ e cos Ze) J 

Substituting (3.33) and (3.32} in (3.31a) and using {2.6) give 

1 '(L1.,~ 1 '{I/-1 Tu. 
20 = 12 j

0

1 
I 12ol0) and 21{t) = i2 1 Ir- cos 21Vt 

0 -, 
(3.35) 

l -1 1 t J - _!_ (I/ 1 [ r,, t2. {~J ] or t - zo + zzl - IZ Io I zo(0} f- f,(2p) C05 ,(l,ljt (3.36) 

Comparing with {3.14) gives 

IV 1)11 lP _ ru(@) 
120 (0) = .120 (0) and lz2 <pJ - 'l',ap) 

Equation (3.36) can be written in terms of the applied potentials** 

VO and V1*** as 

J { v,}z -z fry, lzz{f3) _,_ J lz == ,, ~ L ( 11'((3)/ J .110 (0/f- l,tzpJ cos.Zwlj (3.37) 

where / l,(t3JI is the absolute value of '!', (~) . 'l;.i0) and ¼J~) are 

given by (3.22) and (3.29) respectively. For small transit angles 

(3.25) and (3.30) can be used. 1'20(0) and n
2

t(3J are also plotted in 

figure 3. Using '!, ((1) (appendix 2a} and 7;/~J (Fig. 3), the ratio 

is plotted in figure 4. 

With the writing of (3.36) or {3.37), problem B of the 

second order solution is com~leted. The procedure in using these 

**See appendix 2a. 
***Compare (3.11) and appendix 2a. 
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answers for a particular problem is as follows. The given data would 

be the spacing a, the potentials V
0 

and v1, and the frequency w of v1 . 

I
0 

for a particular V0 would be given by (3.00}, and {2.62a)* would be 

used to calculate the transit angle. The first order current r
1 

would 

be obtained from the first order electronics equations (2.70).*•The 

second order current I 2 would be given by (3.36). 

The above answers (3.28} and (3.37) for the second order 

solutions are in complete agreement with the results of the conservation 
(5) 

of charge method used by Benham. Though the conservation of charge 

method seems to involve slightly less labor, the Lagrangian method 

illustrated here seems to be more systematic once the f'undamental expres­

sions for the O's are obtainea. The agreement between the two results 

for the completely different procedures gives assurance as to the 

correctness of the final results. 

For higher order solutions, a similar but longer procedure 

than that shown above for the second order solution would be followed. 

The contributions of the higher expressions to the current density and 

voltage for the zero transit case can be obtained by continuing the 

expansions {3.06) and {3.11).( 22 ) For the third order solution, (2.40) 

would be used with the 6, , bz , and b3 substitutions. The a.mount of 

labor required in performing these higher order calculations is of such 

magnitude that a strong motivation to explain some accurate experimental 

data would be required. 

*Page 32. 
**See appendix 2a. 
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Part IV 

MULTI-VELOCITY ELECTRON STREAMS 

As was stated previously,• ·the cathode-control grid 

region behavior of microwave tubes cannot be deduced in general 

from a single valued velocity electron stream theory. An exception 

to this statement would be the case when a tube is operated almost 

temperature limited** so that the potential minimum is small in 

magnitude and very close to the cathode compared to the cathode-

grid spacing. Because of cathode surface irregularities, operation 

close to temperature emitted conditions are undesirable since an 

accelerating field acting on any part of the cathode surface 

seriously reduces cathode life. In addition, by this mode of 

operation the beneficial space charge reduction of the shot noise 

in the emitted electron stream would be lost. A theory to explain 

the behavior of microwave tubes must then take into account multi­

velocitied electron streams since with the existence of a potential 

minimum electrons are traveling away and toward the cathode. Since 

microwave tubes must bave very close element spacing to reduce the 

electron transit time, the distribution in electron velocities would 

in itself cause the electron stream to behave differently tban a 

single valued theory would predict since different velocity groups 

*See introduction of :Part I. 
**Temperature limited o~eration would ocour when all the electrons 

emitted are drawn away so that none return to the cathode. 
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of the electron stream would have appreciably different transit 

times. 

In the sections to follow, a nmlti-velocitied electron 

stream theory will be formulated. The method of approach is similar 

to that Richardson used many years ago in his investigation of emission 

of electrons from hot metallic surfaces.( 25 )( 26 ) More recently, 

Dr. F. Gray, Bell Telephone Laboratories, in an unpublished memorandum 

has made a similar approach to the problem. Though the theory to be 

stated is not complete in all details, the method of approach 1s 

believed to be pregnant for further investigation of multi-velocity 

streams. The particular emphasis of the theory is in the meohanical 

properties, density, momentum, and kinetic energy of the electrons 

and their interaction with the electric field. In the single valued 

velocity theory, the approach has been to obtain relationshi~s between 

. boundary quantities, as applied voltage, total current density, 

conduction current density and velocities at the.! and J1, planes. 

The interaction between the electrons and the electric field in the 

intervening space between the boundary planes is placed in the back­

ground in the steps to solution. The multi-velocitied stream theory 
I 

to be formulated will be given in terms of quantities representing 

the electron stream and electric field interaction. This procedure 

brings to the foreground the fundamental physics of the problem and 

may make possible general conclusions in problems where exact solutions 

would be difficult. 

To evaluate the mechanical properties of the electron 

stream, the procedure used in classical statistical mechanios{
27

) of 
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introducing a distribution function seams to be the logical approach. 

Consider a function D(x,v,t,)* such that D(x,v,t,)dv gives the number 

of electrons per unit volume in the velocity range v to v + dv at the 

spatial position x and at the time t.** Following Gibb's( 27 ) 

notation, D(x,v,t,) will be called the density-in-phase.*** Multiplying 

the density-in-phase by the electron mass and integrating over all 

electron velocities at spatial position x give the total mass density 

{N) of the electron stream. 

N( K,t) == me/Dr x, ~ t) dv grams/cm3 ( 4. 01) 

The momentum of the electrons per unit volume, the momentum density, 

at space 'I)Osition x and time tis 

P(x1 tl = me/ D(x.1 ~ t) vdv- gra:ms/cm2/sec (4.02) 

The kinetic energy of the electrons per unit volume, the kinetic 

energy density, at space position x and time tis 

grams/cm/sec2 
{4.03) 

Using (4.01), the charge density of the electron stream 

is**** 

e = -rff- N(Xit) = -e/O(x,-y,t}d11 (4.04) 
'( 

Using {4.02), the convection current density (Q) at space position x 

and time tis 
Q(x tJ = - ..f_ P(x- tJ 

J ~ J 
amp/cm2 {4.05) 

Equation (4.05) can be used to define a.n effective velocity (U) for 

the stream; that is, multiplying U by the charge density f , {4D4} 

* D(x,v,t,) = [TH LJ- 4 

**If positive ions are present, analogous quantities, as that shown 
for electrons above, can be introduced. 

***In what is to follow, the density-in-phase will, however, be used 
in the Maxwell and Boltzman sense. The density in phase will represent 
the distribution of the electrons of the stream in a two dimensional 
configuration and velocity -phase space. 

****See footnote on page 8. 
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gives the same value of Q as (4.05). 

(){X t) =-ot/"' - ~ ll N(t t) 
' r me ' 

From (4.05) and (4.06) 

ll = [ P(x)tJ/N(~,tJ j 

{4. 06) 

Using (1.2), the total current density, convection plus displacement 

currant density, is 

JE e JE 
-lf-tJ = Q + € .rt = - ~ PrxJJ +€it amps/cm2 (4. 08) 

Using (4.04), Gauss' Law {1.2) can be written as: 

J£ e 
EJt ==e=-mNO,tJ 

e 
(4. 09) 

The relations that exist between P, N, and K can be 

determined in the following way. Consider a unit area parallel to 

the l! and b planes of the space contained between the space positions 

x and x + o x {Fig. 5). The total mass of electrons contained in this 

volume in N4x, which can oh.an..~e by having electrons flow into or out 

of this region by crossing the two boundaries. The electron mass 

flow into the• region across the left border for the velocity packet 

v to v + dv is {mel)dv)v. The total electron mass flow across the left 

border is 

,n J Dvdv: P 
e 

(4.10) 

The total mass flow across the right boundary out of the region is 

I JPt~t) .. I 
- p ( K, t) + Jf /) .t_/ ( 4 • 11 ) 

Since a x is constant, it can be removed out of the time derivative 

on the left side of (4.12} and cancelled from both sides giving 
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J}J(K,f} + :}_f(x,f) :: 
0 Jt J,- (4.13) 

Equation (4.13) is the conservation of charge for multi-velocitied 

streams. It is not a new relation between N and l' since it is implicit 

in (4.08}. By differentiating (4.08) with res~ect to x and using 

(4.09), (4.13) follows. The procedure used above to derive (4.13) is 

more desirable since the mode of ·thinking will be useful in obtaining 

further relations. 

A new relation between N, P, and Knot previously written 

into the equations can be supplied by applying the conservation of 

momentum to the Ll x region (Fig. 6). The momentum of the electrons 

contained in the ~ x region is Pax. The momentum contained in 11 x 

can change by momentum flowing into or out of the region or by the 

electric field acting on the electrons contained in a x. The momentum 

flowing into n x across the left boundary for the velocity packet v 

to v + dv is (m8 Dvdv )v. The total momentum crossing the left boundary 

is 

~J Dv~v = 2.K (4.14) 

The momenitum flowing out of the a x region is 

{4.15) 

The electric force acting on the electrons in the ox region is* 
? le 

F == 10 £ p n,x =- - 10 fie £ N tJ,,r = - ,i EN tM ( 4 .16) 

Using (4.14), (4.15), and (4.16), the change of momentum in the 

x region is 

J I JK ~l Jt (Pax) = t K - t K r J ~ 0 xi -1£ N tJ t 

•see (1.3) for force equation in practical-cgs units. 
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Since Ll JC is time independent, 

JP JK 
St, + Z J} + J,£N-= 0 (4.17) 

The mass density (N) in (4.17) can be eliminated by use of {4.09) so 

that (4.17} becomes 

JP ~ [ 1 7 , } 
Ji +-Si ZK-z!0c£Z1=0 (4.18) 

The electric field energy density in the cgs-practical unit system is 

WE=fJ0 7£z ergs/cm3 , so (4.18) can be written as 

JP J [ ] Ji +Ji 2K-~ =O (4.19} 

Equations (4.19) or (4.18) in combination with (4.08) are the multi­

velocitied stream equations. As the density-in-phase is completely 

general, these expressions hold for any kind of electron velocity 

distribution including the limiting case when the stream becomes 

single valued.* The two independent equations (4.1~ and (4.08) have 

three unknown P, K, and E. Since P and Kare integrals of the 

density-in-phase D, they are immediately determined when the form of 

D and the limits of the integrals for P and Kare known. Thus, P and 

K can be considered as one unknown and (4.08) and (4.19) for a 

complete set. The density-in-phase D satisfies the fundamental 

equation of classical statistical mechanics, namely, Liouville's 

Theorem. For matter of completeness, Liouville's Theorem will be 

derived since it will point out some fundamental properties of the 

density-in-phase.** 

*For the single valued velocity stream, the density-in-phase becomes 
the impulse function (Dirac delta function). 

**In the customary proof of Liouville's Theorem, the equations of 
motion in the eanonioal Har11iltonian form are used with a momentum­
configuration phase s~ace. However, for the one dimensional flow 
under investigation here, this generality is not necessary. 
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The total differential of the density-in-phase is 

dD(x,~tJ _ ~D + JDcJv JDdx 
dt - Jt JVdt + J~dt 

Using (2.2} and v = dx/dt, (4.20) can be written as 

c/0 == ~ _ ~£ JD ,- JD 
dt Jt /4, JV VJ X (4.21) 

JI) 
To calculate Jt , consider the two dimensional phase space shown in 

figure 7. The total number of electrons contained in the elemental 

phase space ~ vox situated at v and x at time t isD(x,v,t,)fl v tix. If 

the boundaries of the elemental phase space are kept constant, the 

variation of the number of electrons contained within its boundaries 

w as a -function of time will determine Jt • 

The number of electrons contained in ovox can change 

by means of electrons crossing the four boundaries of the elemental 

phase space. The number of electrons crossing boundaries {l) and (3) 

is (Dov) dx/dt or Dv~v, and v{o + jf n.x)av respectively, The net 

flow across these two boundaries is 

fl V D V - V ( D -;, jf DX) L} y 
JD 

= - V JJ {J,K lJ V {4.22) 

The net electron flow across boundaries (2) and (4) can be written 

with the aid of (2.2) as 
dv JD dv JD -:;o 

DJi IJJ - ( D t iv ./JV )dt = - D1£ tJJ tl.E( D.,. Jv llv)IJX= -1£ Jv nVJJJ (4. 23) 

The total flow across the border of the elemental phase s:pace area 

AVOX is 

J ~O JD 
JtJ Doxnv) = -v J-, lJ,HJV + 1£ JV LlVLJY (4.24) 

Since the boundaries are time constant, a x ov can be removed outside 

the time differential giving 

JO - JP JP 
:ft - -v Jy .,,. 1£ Jv {4.25) 

Substituting (4.25) in (4.21) gives 
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c::/D(x, v, tJ _ 
d-t - 0 

Equation (4.26) states that the total time rate of change 

of the density-in-phase vanishes. This expression is lmown as 

Liouville's Theorem and is of fundamental importance in treating multi­

velocitied electron streams. Integrating {4.26) gives 

The physical implication of (4.27} are as follows. Consider a group 

of electrons at time t', with a velocity range v' to v' + dv' and 

spatial position x' to x' + dx'. At some later time t">t' the electrons 

will have executed a motion such that they will occupy an elemental 

phase area at v" and x". Equation (4.27) states that the density of 

electrons at v 0 and x" will be the same as that at the prior :position 

x' and v'. * 

Another way of stating the physical i,mplications of (4.26) 

has been shown by Gibbs, (~a) and is called by him the 0 conservation of 

extension-in-pha.sen. The number of electrons contained in a phase 

area is given by 

J/D( ~ v, t) d~dv (4.28) 

If the phase area is small, D can be regarded as a constant and moved 

outside the integral in (4.28). 

As the electrons execute their motion, (4.29) remains constant since 

no electrons enter or leave the phase area. because the motion of the 

limits is identical with that of the electrons. However, (4.27) shows 

*Because of this physical behavior, Gibb's refers to (4.27) as the 
"conservation of density-in-phase". 
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that D remains constant. Consequently, the integral 

Jld~dv (4.30} 

which Gibbs calls the "extension-in-phase", is also constant in time.* 

Equations (4.08), (4.18), and (4.26) form the multi­

velocitied stream equations. To summarize, they are repeated below. 

-l{tJ = - ~ P t- € }[ ( 4. 08 ) 

JP J [ 10' 27 
Jt + JJ tK- T £-£ J = 0 ( 4 .18) 

di) 
cit = 0 

where 

(4. 02) 

and 
( 4. 03} 

The similarity of the multi-velocity and the single 

valued velocity equations can be easily shown. Using (4.07}, (4.08) 

can be written as 

( 4. 31} 

Using (4.07) again, the continuity equation (4.13) can be written as 

- -1 ( llN) - J {_f' 1 
Jx -Si u 1 (4. 32) 

Performing the indicated differentiations in (4.32) gives 

JP_ _f' JJI J.-ll z JN 
Jt - JI Jt -Nu J~ -JI Jf (4.33) 

Using (4.07) for the first term on the right side of the equal signs, 

JJ/ 
adding, and subtracting NU J){ give 

JP_ JI,/ JJI JJ,/ 1..JN 
Jt - N Jt -1-NU "1 -tNll Jy -J,t J~ (4.34) 

The effective velocity U can be written as dx/dt reducing (4.34) to 

*Gibb's definition is in terms of momentum and configuration coordin­
ates. In the strict sense (4.30) should be multiplied by m

0 
before 

applying the designation of "extension-in-phase''. 
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Substituting in (4.17} and dividing through by N give 

dll + Z l [K .! N "1. 7 - -.1£ dt N JJ - 2 Sf J -

(4. 35) 

(4.36) 

Equation (4.36) differs from the single-valued equation 

(2.2) only in the second term on the left side.* This tenn expresses 

the difference between the mean and the actual kinetic energy density 

of the stream. When the spread in velocity of the electrons in the 

stream becomes small, this term approaches zero and the behavior of 

the stream can be ealculated neglecting the velocity spread. 

Density-in-Phase Examples 

Since the focal point of the multi-velocity theory is the 

density-in-phase, a number of examples of its behavior will be 

illustrated. For stationary fields,** the density-in-phase is only a 

function of the total energy (potential plus kinetic) of the electrons. 

This can be shown in a number of ways, but the most straight forward 

proof is obtained when the canonical Hamiltonian equations of motion 

are used. These equations for one dimension motion are 

d JH - - d (AM v,, 
an J~ - cit ''~ .1 {4.37) 

where H(mv,x}, the Hamiltonian, is the total energy of the electron. 

For a stationary ~ield, the density-in-phase at any x and vis time 

JD 
independent so ii =O • Liouville's Theorem (4.26) with the aid of 

(4.37} is 

JO JH JO JH 
- Jv rx + JJ. j{rnvJ = 0 

e 

(4.38) 

*Equation (4.36) was first derived in a memorandum by Dr. F. Gray . 
** Time dependent f ields. 
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Equation (4.38) is a first order homogeneous linear partial differential 

equation with the general solution* 

0 = ft HJ (4.39) 

Consequently, for the stationary fields the density-in-phase is only 

a function of the total energy. Since electron trajectories for 

stationary fields are along constant energy paths in phase space, 

(4.39} states that the density-in-phase is constant along every 

trajectory. 

A simple example to illustrate the extension-in-phase 

(4.30) and (4.39) is given in figure 8. Electrons are injected across 

the x0 plane into a region of retarding field. It is assumed that the 

electron space charge is small so that the field is linear. The 

magnitude o.f the retarding field '(E) is 112.5 volts/cm.* The electron 

trajectories are parabolas and are drawn in steps of 0.1 electron 

volts. Consider the electrons enclosed in the extension-in-phase 

abed at a time t, which are bound by the energies H2 and H1, and the 

velocities v2 and v1• At some later time t 2 >t 1, the extension-in­

~hase will have moved to a'b'c'd' bound by the velocities v 2• and v1 •. 

The extension-in-~hase ~ at t 1 is 

(4.40} 

and at t 2 
? -, 

oc = (10 e,£) (Ht-H,)(Vz'-v,') {4.41) 
t=tz 

From the force equation (2.43) the primed and unprimed velocities are 

{4.42) 

*This ean(be
1
readily verified by substituting in {4.38) and using {4.37). 

Compare 29. -
**One volt applied across plate spacing of 8.89 x 10-3 cm. (3.5 x l0-3in.). 
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and 

7 
me ( v, ' - v, J = - IO e £ (t 2 - t, ) 

Equating (4.42} and (4.43) 

vz'-v,' = v2 -v, 

(4.43) 

(4.44} 

and substituting in (4.40) and (4.41} show that the extension-in­

phase is constant as (4.30) demands. It is to be noted that though 

the extension-in-phase is constant, the shape varies along the phase 

paths. (Fig. 8). 

If the plane x is a thennionic cathode, the emitted - 0 

electrons will have a Maxwell-Boltzmann distribution,* 

(4 .45) 

where k is Boltzmann's constant and Tis the absolute temperature of 
~: 

the emitter.** Using (2.43} and (4.39), the distribution for x, x0 is 

[ 
!!k.Yl 10 ~ fl(x) J 

D(x,v) = f?i e~p -Vt.'T' + .Je.7' J (4.46) 

where V~J is the potential at x. Defining 

- -It 'f/0-7 - 1' 
Vr, - e - 11',0S volts {4.47} 

(4.46} can be written as 

D(x v) = 0. exp[- ..x! + _!"(x) l 
J o 2111r vr J (4.48) 

Equation (4.48) will be extensively used in Part V; further remarks 

will be included there. 

The equation which is the basis of the conservation of 

charge method of treating single valued velocity electron streams in 

diodes( 32 Jand velocity modulation tubes can be readily derived from 

the conservation of extension-in-phase. For a single valued velocity 

•strictly speaking, the distribution is a Fenni-Dirac one; however, 
for the densities involved(th~ two distributions are indistinguishable. 

**See appendix 1. Compare 30l,(31). 
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electron stream with a stationary accelerating field, the phase space 

plot will be similar to that shown in f igure 9. The phase space electron 

flow is tube-like or solenoidal. The electrons entering the tube at 

the phase coordinates v and x at a time t will be found at a later 
O O 0 

time t
1 

at the phase coordinates v
1 

and x1• When the electric field is 

time dependent, the boundaries of the flow will pulsate with the funda­

mental and higher harmonics of the f requency of the electric field. For 

example, the fundamental frequency :pulsating velocity at x1 will be given 

by the third equation of {2.70) for t he case of a very small time 

dependent field perturbing a much larger stationary field. Higher order 

pulsating velocities can be calculated from (2.31) and (2.32). The 

number of electrons crossing x (Fig. 9} in the time dt is 
0 0 

D(Ya,l{;,"°)d~ v;,dt0 (4.49) 

or 

The number of electrons crossing x
1 

in the time dt
1 

is 

Dl ~J v,, t, J dv, v, dt, 

or 

since v, dt, = dx, 

(4.50) 

{4.51) 

(4.52) 

From the conservation of extension-in-phase, (4.30 ) and (4.27), 

(4.53) 

consequently, (4.49) and {4.51) are equal 

(4. 54) 
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From (4.02) and (5.04) for a single valued velocity stream, (4.54} 

becomes 

or 
(4.55) 

This is the conservation of charge equation which relates the convec­

tion current at x
1 

and t 1 to that at a previous position x
0 

and t
0

• 

Though the above development is for the one dimensional electron flow 

between parallel planes, the same result can be obtained for other 

configurations {for example, coaxial circular cylinders), since the 

conservation of extension-in-phase anplies for generalized coordinates 

and momenta. 
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PART V 

STATIONARY ELECTRmr STREAM SOLUTIONS 

General Theory . 

For a stationary electric field,* the multi-velocity 

equations (4.08), (4.19), and (4.26} simplify to the following: 

I=~ p 
e 

J 
Jx [ZK-Wc}=O 

~O<i.J: + W rj_y = O 
J~ cJt JV cit 

(5.00) 

(5.01) 

(5. 02) 

Since the current density {I) is constant for a stationary field, 

(5.00) shows that the momentwn density is independent of the space 

:position x (conservation of momentum density). The terms of {6.01) 

are only a function of x so that the partial derivative can be 

written as a total derivative. Integrating (5.01) gives 

Defining 

and 

(5.03} can be written as 

(5.04) 

(5. 05) 

(5.06) 

Equations (5.06) and (5.00) are the fundamental equations for stationary 

field electron flow. They apply to any type of electron velocity dis­

tribution, multi-velocitied or the limiting case of single-valued 

*In the electronic literature, this would be referred to as a d.o. 
solution. This is a.n erroneous designation since the solution can 
be applied to any frequency provided the electron transit time is 
very small compared to the periodicity of the applied fields. 
Compare (2.70) and appendix 2 for the single valued velocity flow 
case. 
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velocity. The solution of (5.06) can be treated gra~hically ste~ by 

step or analytically. Which method is chosen will depend on the 

accuracy desired and the form of LI~ and nK . Equation (5.06) gives a 

physical interpretation so readily that it will be called the theorem 

of stationary one dimensional electron flow. 

Theorem 

For a one dimensional electron flow acted on by a stationary 

electric field. the difference between the electric field energy density 

for two spatial positions is equal to twice the difference between the 

kinetic energy density of the electrons for the two spatial positions.• 

Equation (5.06) with the use of (5.05) and the definition 

of Wr can be written as 

/0
7 r .7 4 € [ EfxJ - ElXoJJ = K ( X} - K{Xo) 

Writing the electric field in terms of the potential gives 

-Jd: ~ ex,, _ _,,, ; / !ct 9 + l '0-[ K - K ( >;,1]f tv (5. 08) 
Ko it 

The relation between potential and distance in terms of the boundary 

value of electric field and kinetic energy density is given by (5.08}. 

Using (5.00), the conservation momentum density, and (5.08), the 

stationary electron flow problem is solved for a.ny electron velocity 

distribution, for example, Fermi-Dirac, Maxwellian, or the limiting 

case of single valued velocity. 

*Fowler states the following theorem,(33) "The equilibrium state of 
the electron atmosphere is characterized by a minimum value of the 
ratio of the electrostatic energy to the kinetic energy of trans­
lation of the electrons. n However. the electric and kinetic energy 
referred to are the total energies contained between the parallel 
plates and not the energy densities. Oompare(34). 
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As was mentioned in part IV, for a single valued velocity 
\ 

. stream, the velocity dependence of the density-in-phase becomes the 

impalse :function. Using (5.00}, (4.02) and {4.03) become 

and 

P = me/ Dvdv = menv =? I 

K = '!/ Dv 2dv = ;'e n.v 2 

where n is the electron number density (eleetrons/cm3 ). 

Single Valued Velocity Electron Stream Example 

(5.09) 

(5.10} 

To illustrate (5.08) for a single valued velocity stream, 

consider the configuration shown in figure 1 where the A plane is at 

a potential Va, the~ plane at a potential Vb. Assume all the electrons 

injected across the .!l plane move to the .R. plane (Vb 7Va) and that the 

electric field at the A plane is zero. From (2.43) and {5.09), (5.10) 

becomes 
K = fe 1 ( f V}~ (5.11) 

Substituting (5.11} in (6.08) and setting E(~)=O give 

If Va~o, this reduces to Child's law (2.44). If the s! plane has a 

field acting on it different from zero and a :potential minimum exists 

between the~ and .R. planes, (5.12) gives the relation between Vb and 

the potential minimum voltage V. Two expressions of the form of 
. a 

(5.12) can be combined (one relating the potential minimum voltage to 

the.! plane voltage, and the other relating the potential minimum 

voltage to the .R. plane voltage) to give the relation between I, Va, 

and Vb. For the maximum injected current, this expression reduces to 

(2.51). Any other :potential combinations for the J! and}. planes can 

be solved by application of (5.08). The relations (5.12) a.nd (2.51) 
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have been obtained by a number of writers(lB),(l9} by the double 

integration of Poisson's equation. The method illustrated above is 

believed to be more straight forward and simple in application. 

Aside from the fact that (5.08) can be applied to any electron velocity 

distribution, its merit lies in the fact that attention is drawn to 

the mechanical properties of the electron stream. This is of parti­

cular importance in bringing forth the physics of the problem. For 

vacuum tube operation, in particular when time varying fields are 

considered, can only be properly understood in terms of field and 

electron interaction and not in terms of boundary properties as 

current and applied voltage. 

Multi-Velocitied Electron Stream Examnles 

Consider figure 1 again, with the J! plane a thennionic 

cathode ejecting electrons with a Maxwell-Boltzmann velocity distri­

bution (4.45), and the .l?. ~lane an anode at a negative voltage -Vb 

with respect to the cathode such that there is a retarding field 

everywhere between the A and .:b. planes.* For an electron just to 

reach the anode,** it must be emitted from the cathode with a velocity 

in terms of Vb given by*** 

(5.13) 

If an electron's emission velocity is greater than ~ , it will reach 

the anode with a finite velocity; if it is less than ~ , it will 

return and strike the cathode. The phase space picture of the above 

*For large values of retarding voltage, the field between the.§ and b ~ 
planes will be very close to linear and the phase space will be 
similar to that shown in figure 6. 

**Zero velocity at the anode. 
***See (2.43). 
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is given by ~igure 10. The velocity with which a returning electron 

strikes the cathode is of the same magnitude as its emission velocity 

but of opposite sign since it is moving in the -x direction. For any 

position x, there will be electrons returning to the cathode whose 

emission velocity lies in the velocity range O~v<v~ (Fig. 10). The 

electrons which leave the cathode with a velocity Y_t- ,• and consequently 

return to the cathode, will determine the border between the density­

in-phase given by (4.48) and D =- o. This border velocity (v') will 

determine the lower limit for the N, P, and K integrals, the upper 

limits being infinity. 

The constant D0 , that appears in the density-in-phase 

(4.48), can be determined from the emission current density of the 

cathode. Since the off-cathode field is positive** (decelerating 

electron field), the emission current is only a function of the 

physical properties of the surface and its operating temperature, 

and is given by Dushman's equation(35} 
2 h 

~ ==-- 11r e~p (- rl *** (5.14) 

The relation between the emission current density**** and the emission 

momentum density is given by (5.00). Using (4.48) with V set equal 

to zero and (4.02} gives***** 

* ~ - =l,'m C~-t) 
t,➔O 

**This excludes the Schottky effect.( 35 ) However, for thermionic tubes 
with negative off-cathode fields, the field is never of such magnitude 
that the Schottky effect must be considered. 

***A and bare constants characteristic of the cathode surface; Tis the 
absolute temperature of the surface. 

****Note this is not the total current density at the cathode but only 
the current density :produced by electrons leaving the surface. The 
total current density would have to take into consideration the return­
ing electrons. See (5.18). 

*****See appendix 3. 
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_ 1: vl 
{ - c; ¼ e;K-p(-11 ll.r) vdv (5.15) 

0 

Integrating (5.15) and solving for D
0 

result in 

[>o = { (e1ll.,.} 
- / 

{5.16) 

The conservation of momentum density (5.00) states that 

the momentum density is constant (independent of x). Using {4.02) 

and (4.48) gives 

P=m r; e;tp{-y_Z -1- .Yrxnvdv (5.17) 
e J '- o .tl V,, Vr I 
-v' 

The border velocity v' equals v; at the cathode and approaches zero 

at the a.node. Integrating (5.17) gives* 

I O /~/) (5 18) p ~ Za..,1- ~ o eJ1p{- II,. • 

vvhere if, =- Z1 Vr . Equation (5.18) verifies the constancy of the 

momentum density. Substituting (5.18) in (5.00) and using (5.16) 

result in / V,_,/ 
I={ eJtp(- !_!iz.!,) {5.19) 

Vr 
Equation (5.19) is known as Boltzmann's equation, (37 ) and shows that 

the anode and emission current density are related by exp{ -/ ~1/ V,.,, ) • 

For further calculations, it will be convenient to define 

a potential (V'} measured relative to the a.node. The relation between 

V' and V (the potential measured relative to the cathode) is 

{5.20) 

Note V' = Vb at the cathode where V = O; and V' = 0 at the anode where 

V; - JVb l • Comparing v' (the border velocity) and V', it is seen that 

they are related by Z I 
V' = 2-1 V (5.21) 

Though the mass density N is not necessary in determining 

*See appendix 3. 



55 

the potential distribution, it will be calculated since it is of 

physical interest. Using (4.01) and {4.48) gives 

f,oo ( vl II 
N = m D e ~p - - + - ) dv 

e o 2LYr Yr 
-v' 

Using the integrals given in appendix 3, (5.22) integrates to 

N = 2 ;
1 mJ? e~pf v•;:V,,!_J/i f erl(·{/.J 

At the anode, x == d and V' = O, so 
I 

N(d) = 2;i me £l e~p(- /~/) 
vf> 

Using (5.16) and (5.19), (5.24) can be written as 

I 

where the numeric is (-,, m/ / 1.Jul) 
1 

Using {5.25) in (5.23), 

V' V' .!.. 

N = N(d) e Kp( v;,) [1 fer/ { v,,.) 'l grams/om3 

(5.22) 

(5.23) 

(5. 24) 

(5.26) 

Multiplying {5.26) by -J gives the charge density f in oou.lombs/cm3 
e 

(com-pare (4.04}. Using (4.07), (5.18), (5.25), and (5.26), the 

effective velocity (U) of the stream is 
, -J 

r 1 11' v' i-1 l 
/j = L a.,r 2 e,xp( v.,.J [1 r er I { v.,.J J .I (5.27) 

From (4.03) and (4.48), the kinetic energy density is 
00 

YYI j vz V ( ) K = ze 11, eJtp(-2LU + v,.,,} vYv 5.28 
_.,. 7' 'I 

Resolving the above integral into two parts and using the formulae 

given in appendix 3, (5.28) integrates to 
1 1

' v· .!. v' 
K:: R"J m O e¼p( V~/li11{t 1- erl( {) 2 -z(;,-u )zexp(-;z )'} (5.29) 

va. e <> r,p I r r f 

at X = d, 

,,1 !J1,J -3 i 
K(d) = ia:3 m/l eKp(- Vr,) = 139· /0 Ir (5.30) 

I 

where the numeric is (~ff lt/rez) I 
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In terms of N(d), 

K(dJ = 7.58·to'0
N(dJ r (5.31) 

where 758 • 10'
0 

= .::!! 
Zme 

Substituting (5.30) in (5.29}, the kinetic energy density is 

Equation (5.32) gives the kinetic energy per unit volume. Dividing 

(5.32) by . (5.26), the number of electrons per unit volume will give 

the mean kinetic energy per electron. The actual kinetic energy of 

any electron will differ from the mean kinetic energy and will depend 

on its emission velocity. 

In {5.26) and {5.32), the potentials V' and VT always 

appear together and suggest the introduction of a new dimensionless 

variable V , defined as 

lf _ .X' _ V 1- I Iii (5. 33) 
- v7' - Vr 

Using (5.33), the mass and kinetic energy density can be·' written as 

(5.34) 

(5.35) 

Since K is written in terms of Y , it will be convenient 

to take x 0 and V
0 

in (5.08) as the anode position and potential and to 

integrate (5.08) from the anode to the cathode. The final r·orm of 

(5.08) can be simplified if the new variable 5 is introduced for x, 

where 

and 

5 = r K-d) 
-~-

I 

(5.36) 

(5.3.7) 
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/
K-l<(d! l 

Introducing f1(lt) = K(d JI 

' I lf r j_ 
or in extenso P{ lf) = ( I -f erf 'f i.) e - Z {,,.) - I (5.38) 

(5.08) becomes* 

(5.39) 

where 

ct,Z =(!E(d1/2 
5 lf:0 'r 

(5.40) 

and the upper limits 

s = - cl 
tt fJ and (5.41) 

Integrating the left side of (5.39) and using (5.41}, (5.37), and 

(5.19) give 

/5"­
-;ds 
0 

Substituting (5.42) in (5.39) results in 

{5.42) 

5' - J .I. ¼ r[~ cl'f. <, Iii 
?./9•/0 f 4d{zc-z =j j Q~{

0 
-,.P{r)Jdlf (5•43 ) • 

The integrand on the right side of {5.43) is of such form that numerical 

integration mu.st be used. To evaluate (5.43), values for T, d, and I 

would be assumed. The left side of (5.43) would then be tabulated in 

terms of Y . This can be done by plotting on logarithm graph paper. 

e 

I rjlf)Z • .A value for the off-anode field is assumed whioh then determines 'd 
~ 'f'"O 

Using (5.38}, the right side of {5.43) is numerically integrated and 

1 ts value as a :f'unct ion of 'f is tabulated or drawn on the above 

mentioned graph. When the right and left side of (5.43) are numerically 

equal, the value of Ya gives, by (5.41), the retarding potential IVb l 

for the particular assumed off-anode field E(d). Choosing a range of 

*An extensive t abulation has recently been given by Kleynen(39)for 
(5.39), when the off-a.node field is zero (cllf{;~) . 

't=O 
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values for E(d), the potential distribution, retarding potential, and 

a.node current can be determined . 

Figure 11 shows the potential distributions for the 

following values of the quantities appearing in (5.43}.* 

I
8 

= o. 1 amp/ cm2 , T = 103 deg., d = 8. 89 x 10-3cm. :;;; 3. 5 x 10-31n. 

Substituting the above values in (5.43) gives 

~ , 

/4.5e-f ~ /ud~t I- f'NJ/~'f {5.44) 

where ~ == IU,OS/~/ 

and 
d ti) -J S: ffO.Z I ~I 

(d 5 f/::O = - 7143 .. /0 e, c(d) 

For 'f ?- 5, F( lf ) can be approximated by 2 / 1
• At lf = 5, this approxima­

tion gives a value of F( ~) 0.82°fo too large; for q= 6, 0.25% too 

large. , the right side of (5.44) can be written as 

%. 

/[Pmf1
[1 - dft(zPc,-J/]d'f 

0 

or when P('f) «: {dq)z as 
d ~llf=O 

~ rm:; /[1- i PM[rj/'J,.,f]d'f (5.46} 

After (5.44) is tabula.tea, the rela t ion between V and x 
,· 

makes it possible to evaluate the number density (5.34), the kinetic 

energy density (5.35}, and the electric field (5.07) as a fUnction of x. 

In appendix 4, the retarding voltage, the off-a.~ode field, and the 

off-cathode field are tabulated. In addition, the field at 0.254 x 10-3 

cm. (0.l x l0-3in.) from the cathode** and the linear· field that would 

exist if no electrons were present are given for comparison. The 

*In part VII, this example will be used for a. calculation of high 
frequency loading. -. 

**2.86% of cathode-anode spacing. 
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retarding voltage for a zero off-anode field is -0.3155 volts. As 

the retarding voltage is increased in magnitude, the electric field 

throughout the diode approaches linearity rapidly. Figure 12 shows 

a plot of the off-anode, off-cathode, 0.254 x 10-3 cm from the 

cathode, and linear field versus retarding voltage. The above 

mentioned rapid approach to linearity is clearly exhibited. 

As the retarding potential is decreased in magnitude, 

below -0.3155, the zero field moves away from the cathode producing 

a potential minimum at a distance xm from the cathode. The equations 

derived above for the retarding field diode can be used if (5.20) 

and (5.36} are re-defined as 

and 

·(5.47) 

(5.48) 

where IV~I is the potential minimum voltage and~ is the distance 

of the :potential minimum from the cathode. In addition, in the N and 

K expressions dis replaced by x. The anode current will be given by 
m 

(5.19) with IVt1J substituted for IVb l • The definition {5.48) shows 

5 < 0 X11 > X t 0 

For convenience, the diode space where ~)o will be called the A 

(accelerating field) space; where 5 <O , the R (retarding field) s:paee. 

The phase space given by figure 10 will hold now only for the R spaee. 

The total phase space for the present field configuration is given in 

figure 13. 

The lower limit for the number density integral in the A 

space will now be v' instead of the previous -v'. Consequently, the 
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seoond term in {5.34) for the A space will have an opposite sign.* 
l.f I 

N~Nrx"1J e [1 - erll/1] (5.49) 

By noting the change produced in the integrals in {5.28) when the sign 

of the lower limit is reversed, the kinetic energy in the A space will 

be given by 

(5.50) 

The N and K expressions for both A and R space can be written as 

and 

(5.51) 

{5.52) 

where the upper sign is used in the A space and the lower sign in 

the R space. 

The potential distribution integral {5. 39) can be written 

for the A and R space as** 

(5 . 53) 
() (l 

Equati on (5.53) is exactly the same expression that Professor 

P.s. Epstein( 39 ) obtained for the above problem by double integration 

of Poisson's equation. Langmuir later obtained the same 8A'1)ression 

when he repeated the problem.(4o) The method illustrated above using 

{5.08) is more straight forward and gives a better physical picture. 

Attention is focused on the electron behavior and the interaction 

between the electrons and the field is emphasized as it should be for 

*This is physically obvious since the electrons in the velocity range 
0 to -v' added to the number density in the R space, while in the A 
space there are no electrons in the velocity range Oto v•. ~"he 
first term in (5.49) represents the density contribution for electrons 
in the velocity range zero to infinity. 

** (c:1¥/d5) ==- O since the field at the potential minimum is zero. 
'f:0 
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proper understanding of vacuum tu.be operation. Once the kinetic energy 

density is written, this step not being an unnecessary one since the 

quantity is of physical interest, the potential distribution {5.08) 

is given by one integration. 

As was previously mentioned, Kleynen has recently published 

an extensive tabulation of {5.53).( 3S} In the calculation of electron 

transit time, an expression for the potential versus distance would be 

necessary. A series solution for this :purpose can be obtained from (5.53) 

by a laborious calculation which will be briefly outlined. For conven-
I 

ience in writing, a new variable 1; rt is introduced in the intargrand 

on the right side of (5.53) which is then expanded in a power series 

in 1 . Next, the negative one half power of the series is taken, and 

the resultant series is integrated term by term. Resubstituting gives 

(5.54) 

The coefficients an are given in appendix 5. By inversion and squaring 

of (5.54), the series expansion for 'f in terms of 5 is obtained. 

(5.55) 

The coefficients bn are given in appendix 5. In figure 14, the mass 

density ratio N/N(:x=in), the kinetic energy density ratio K/K{~), and r 
are plotted against $ . Because ~ and f are dimensionless, these 

curves can be applied to any value of the parameters I, T, V, and d. 

As figure 14 shows, the mass density and consequently the electron 

charge density decreases rapidly as x moves away from the cathode. 

In the A space, for large values of i * the mass density 

*Since l.f =: V' /vT• lf can be large for small values of V'. For example, 
for T ,. 103 , VT-l = ll.605. 
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ratio, with the use of the semiconvergent series for the error 

function, (23 ) can be written as 

J {5.56) 

The error in using a given number of terms in this expansion is less 

than the last term used. For voltages V' greater than one or two volts 
N ~ -f 

N{XM) - (,rlf) {5.57} 

Using (4.07), (5.00), (5.57), and (5.25), the effective velocity in 

the A space for large values of '-f becomes 

ll == ( ~: rr)i (5.58) 

With the use of (4.47~, (5.33), and (5.47), (5.58) can be written as 
7 .1. 

t( = ( 1~/0 [JI+ IY,.,1/) z (5.59) 

The average kinetic energy of an electron in the stream is 

I )Jz 7 ) 
Z me u = e IO ( V -t I Vn I (5.60) 

An electron starting from the potential minimum with zero velocity 

would have a velocity U at the potential V given by (5.60). 

Consequently, for values of V+I V~I in the order of a few volts, the 

multi-velocitied stream behaves as if it were single valued. In 

analyzing vacuum tube behavior in the regions beyond the first grid, 

the electron stream can be usually treated as having a single valued 

velocity. The accuracy of this approximation for any case can be 

checked by the above equations. By a close examination of N, K, and U 

for different values of x; for example: at the cathode, potential 

minimum, and intervening positions, a complete picture of the electron 

stream behavior is revealed. Space limitation, however, prevents 

further discussion at this time. 

For any other electron velocity distribution, the procedure 

in using (5.08) would be similar to that given above. Given the 
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density-in-phase at the 1! plane, its value for any position through­

out the diode is given by Liouville's Theorem. Calculating the 

kinetic energy density and substituting in (5.08), the potential 

distribution is obtained. 
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Part VI 

TIME DEPENDENT ELECTROn STREAJ.\iS 

The electron stream equations for a time dependent 

electric field are summarized on page 43. The first and second 

equations in the set are rewritten below. 

JP 
Taking the time derivative of {6.00),* solving for Jt 

substituting in {6.01) give 
me dI JJ'l.£. Ji.£+ J [ e dt + cc JtZ ,Ji 2 K - ~ J = o 

Integrating (6.02) from x = a to x = b at a time t gives 

Steady State Small Signal Theory 

and 

{6.00) 

{6.01) 

For a steady state small signal theory, the quantities 

appearing in (6.03) can be written as 

I= L +f,(t) 

£::: ~(,cJ f-£,(~t) 

K(x1 t)~ l~{x) 1- K,(x,t) 

~(x,t) = WJx) f ~e(X1 t) 

In {6.04), the subscripts (o) refer to the stationary part or zero 

order component, while the subscript (1) refers to the time dependent 

*The partial time derivative of I can be written as a total derivative 
since- I can only be a function of time. 
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or first order component. For every term, the first order pa.rt 

must be very small compared· to the zero order term ( time dependent 

quantities are a perturbation on their stationary counterparts). For 

a steady state solution, the first order terms can be written as the 

real parts of .11ejwt, E1 (x)ejwt, E1(x)ejwt, and w1E(x)aj ~t. 

The bar under each tenn indicates it can be time complex. With the 

introduction of the exponential time function, a time derivative is 

replaced by multiplication by j w. Substituting (6. 04) in (6.03) 

with the above time dependence for the first order solution gives 

b b 

j~me(b -a)f, f Y!1/(Jw>
2/f,J~ -t[tK,-~IE{"'0 
a.. 

(6. 05) 

The bracket term contains only first order terms since the stationary 

part is equal to zero.• The electric field integral is 

The complex admittance (Y) between the.§ and b plane can be defined as 

r "° 1, r r, {b) - r, (a.I} 
-I 

mhos/cm2 (6.07) 

Dividing (6.05) by (6.06), using (6.07), and solving for Y give 

(6. 08) 

The first term on the right side of (6.08) is the susoeptance of the 

condenser fanned by the parallel 1! and b planes when no electrons 

are present in the intervening space. The second tenn of (6.08) is 

admittance introduced by the electron flow. An equivalent circuit 

*Compare (5.03). 
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for the diode formed by the.§ ahd ! planes would be the diode capacity 

shunted by an admittance representing the electron flow. Using (6.08), 

the admittance can be written as the sum of two terms, Y
0 

plus Y8 , where 

Y0 is the capacitive susceptanoe, and Y
8 

is the strea~ admittance. 

Yc ( 6. 09) 

b 
v . e [2.!.(, -¥Y,Ela. :::. !(1 _ . 

8 15 = J wme lb-a.}[1/,(bJ-Jl,raJ} s J s 
(6.10) 

The stream admittance (Y8 ) clearly shows the electron stream and 

electric field interaction. Because of electron inertia, the kinetic 

energy and field energy densities will not be in time phase. 

Consequently, (6.10) will be compos·ed of a real plus an imaginary 

term. The imaginary term will have a negative sign while the real 

term can have either a positive or negative sign. A positive real 

term would represent energy removed from the electric field, and 

consequently from the external circuit since steady state operation 

is being considered, and given to the electrons in the form of kinetic 

energy. An opposite sign for t he stream conductance would represent 

energy given to the external circuit from the electrons. 

A series im~eda.nce fonrru~ation analogous to (6.08) can be 

obtained by dividing (6.05), by l.l and using the inverse of (6.07) as 

the definition for impedance. 

I [ ,j -I f = f = Y, { b) - Y, ( tl) -f = g I- €s (6.11) 

where 
( 6.12) 

t: b -, ( 6.13) 
Zs = rn twz [2!f, -W,,) l, = t ~ t- j .As 

r. a. 

This formulation gives a series equivalent circuit where t he diode 
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capacity is connected in series with the stream impedance. Physically, 

the admittance representation given by {6.08) is preferable. 

To use (6.10) or (6.ll) the first order kinetic energy 

density and electric field energy density would have to be determined. 

From (6.04) 

bfc = tto~ ct = f 10 
7t[ Co f !?i( ft /U;V 

or to the first order 

The energy interchange term in (6.10) and {6.13) becpmes 

(6.14) 

(6.15) 

Using (4.03), the kinetic energy density can be evaluated by integrating 

the density-in-phase. The density-in-phase would be the particular 

solution of the general solution of (4.26) which would satisfy the 

given distribution at the _g plane. If the.§ plane is a thermionic 

emitter, the Maxwellian distribution given by {4.45) would be used. 

Note, however. (4.39) can not be used since the energy for an electron 

at a particular space position can not be evaluated in terms of the 

potential at that position. The energy that an electron will b.ave 

at any position will be determined by the interchange of energy with 

the electric field that the electron had formerly eXJ;>erienced. 

For single valued velocity streams, this is clearly shown by the third 

equation of (2.70). For the analysis of shot noise produced by the 

cathode, the Maxwellian distribution would contain a function which 

would express the randomness of the number of electrons emitted for 

each velocity packet. The treatment of these above-mentioned problems 

will be reserved for future papers. 
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Part VII 

HIGH FREQUENCY LOADING 

Description of Experiment 

.An interesting high frequency loading phenomena 

occurring in very close spaced tubes is reported by a number of 

investigators.( 4l),( 42 ),(43 ) The experimental set-up is as follows. 

The ''Q'' of the input gap between the cathode and the first grid of a 

triode is measured as a function of the retarding voltage on the 

grid (cathode anode region for a diode). (Fig. 1) The frequency 

used is 3 x 109 cps( 41},(43) with the tube having a cathode grid 

-3 i spacing of 3.6 x 10 n. At very large retarding voltages, the 

shunt resistance across the input gap is the same whether the cathode 

is heated or not. With the cathode operating the Q is measured as 

the retarding voltage is decreased in rnag-nitude. The Q sharply 

decreases and reaches a minimum value before any electrons pass 

through the first grid in the triode or are collected by. the anode 

for the diode case. 

Clearly, the loading of the input gap must be produced 

by the electrons that are returned to the cathode by the retarding field. 

On an average, the returning electrons must have an energy greater 

than their emission energy, this extra energy being supplied by the 

high frequency field which is converted into heat when the returning 

electrons strike the cathode. For the diode or a very fine grid 

triode, the stationary potential distribution would be that given by 

figure 11. For potentials greater than l or 2 volts, the field is 
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very close to linear. A good approximation for the oalculation of the 

electron motion would be to assume a linear field. This assumption 

is justified since the maximum loading occurs before any appreciable 

number of electrons strike the anode of the diode, so that the charge 

density of the electron is negligible beyond a very short distance 

from the cathode. 

To calculate the energy of the returning electrons, 

(1.3}* must be integrated to determine the transit time. 

dtt 7 ? r U. ~ . 7 ( 7 00) 
medtl =:-1oeE= -/Oe.[<:[ 60 

-c7b
1 Cos(t,Qt-tif)j • 

The stationary voltage at the b plane is written as Vbo' the time 

dependent voltage as Vbl. At the cathode (x == 0), the initial conditions 

are v = v
0 

at time t"" 0. Integrating (7.00) once and using the initial 

conditions cited, the velocity at time tis 

dx ~ ~ 17 
d t - Yo = -d [ ~o t + dbl [ 5 i Yl. </ ~ - Si fl (Wt -f lf} }J ( 7. 01) 

The position at time tis 

x = v_ t - 1 [f V,b t 2 t- ,!,ti, t sin lf + /t1 
[ cos{wt fl/)-coslf}/ (7. 02) 

0 d O .-v 

The stationary transit time** will be determined by (7.02) when x :::: o. 

_f 2 
0 = ~ to - 2d ~o ~ 

Equation (7.03) has two solutions, a trivail one being t ~ 0, and the 
0 

other being the to and fro time for the electron emitted from the 

cathode with a velocity v0• The subscript {o) on tis to indicate it 

is the transit time when Vbo acts alone. Solving (7.03) gives 

to "" l ] Yi_d { 7 • 04 ) 
bo 

*This method of calculati:Q.g th~ t:ransit time has been used by a 
number of investigators.t44J,l45J 

**Transit time when Vbl = o. 
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With Vbl different from zero, the transit time T can be written as 

( 7. 05) 

where 

Clearly , pis t~e proper parameter for the transit time expansion 

since the ratio of Vbl to Vbo will have a direct influence on the per­

turbation of the transit time t. Using the parameter p, {7.02) aan 
0 

be written as 

X'" ~t -zf[ft1-1 £[co5(wt+'l)-co.sl.f1-wtsinlf}J (7.06) 
0 

Writing (7.05) fort in {7.06) with x set equal to zero and grouping 

the resultant expression in terms of powers of p give, to the second 

order in p , 

0 = p [ ~ b, + J ~ S fr1. 'f - J.t Vo/ cos lf - cos ( wto r lf J/] 
0 

Since the left side of (7.07) is to be equal to zero for any value 

of p, the bracket term for each power o~ p must be separately equal 

to zero. Setting the bracket quantities equal to zero and solving 

for b, and bz give 

( 7. 08) 

(7.09} 

The velocity of the returning electrons emitted with a velocity v 
0 

will be given by {7.01), where (7.05) is substituted fort. Squaring 

(7.01} and calling the velocity of the returning electrons at the 

cathode v1 give 
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v, 2-v/ = 4p(f:l/r6,t0 f }[sin 'I - sin{l,/Jt
0 
f'IJj] r pf toOz tb,' 

- b, to cos r wt
0 

+ l/) 1- i/;z Is ,n ct- sin( wt
0 

.,. r)j 1-

, !J/'-[s1lt 'f - sln{UJt
0 

f 'fJ} Jj 
(7.10) 

Using (7.08) and (7.09}. after some laborious algebra the following 

results 

v,Z-~Z = 4p(~//4(sin 'fo - 4Jlo cos U/0 )[sin(1J/0 -1C/) 

.,. p sin '1° j f p{ wt - SJnwt()Y sin [Z'f +tv{JJj (7.11) 

tvt Defining y 0 
== 0 (where Q is the one way transit angle)• and 

V1 (~} = {sinQ - Q cosQ}~ (7.11) can be written as 

l Z ( ~,z/11~ • p · · V, - ~ =- <Ip ?j°/ ( T(0} Sh1.(e-1-?f) -f 4 (ze --Jm Ze) sot 2{e-ttf} 

+ p lf{e) s/n ej (7.12) 

Multiplying (7.12) by m
8
/2 will give the difference in the emitted and 

returning kinetic energy for an electron leaving the cathode with a 

velocity v0 and phase angle r for the potential Vbl at the time of 

exit. The average energy interehange per electron for electrons 

leaving the cathode with a velocity v will be 
0 

(7.12 Y over a complete cycle of ¥ • 

l
lf-1-Z,r 

f me (v,Z- v/J = E,- i me c~/-v,/}dlf 
lf 

the integration of 

(7.13) 

*Transit angle from cathode to position in field where electron 
velocity is zero. 
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Substituting (7.12) in (7.13} and integrating, the only remaining 

term will be the last one given in (7.12) since it is not a :function 

of <f • 

(7 .14) 

The border emission velocity, the velocity of emission 

which separates the electrons reaching the anode from those returning 

to the cathode, is 
(7.15) 

When Vbl is different from zero, (7.15) should be modified. However, 

as will be seen shortly, this will be an unimportant correction.** The 

number of electrons per sec per cm2 (an/nt) leaving the cathode in the 

velocity range v0 to v
0 

+- dv0 is given by (5.15) and (5.16} as 

,m _ dJ; _ ..:!.e_ v, z } 
at - e - --leVr evp(-~) ~dllo {7.16 . 

The energy interchange per sec per cm2 (nX/ ot) between the cathode and the 

emitted and returning electrons in the velocity range v
0 

to v
0

+ dv
0 

is (7.14} multiplied by {7.16). 

LJK _ J. i, t1n 
fJt - z me ( V, - ,/) 11t ergs/sec/cm2 (7.17) 

Dividing {7.17) by 107 and substituting {7.16), the energy interchanged 

2 par sec per cm for the velocity packet dv
0 

is given as 

P ,2-fe (!ilJ'l lV. • (- ~) d /J = v.,, 10 T'(0)J,ne e;xp Zf{f Vo ~ watts/om2 (7.18) 

Since the transit angle Q is a function of v0 , it will be more 

convenient to write (7.18} completely in terms of Q instead of v. 
0 

Introducing the foHowing :parameters 

*Compare {5.13). 
**Com1?are (7.30). 
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{7.19) 

and 
0( = {7.19a) 

(7.18) can be written as 
-ke2 

13p = 4 l h J!...z ~{eJ sine e. ede 
e ,,fo(2 

(7.20) 

The upper limit of integration for (7.20) is 

where f is the frequency of vb1• Integrating (7.20) and using (7.19) 

and (7.19a) give 
34- ~ V. Z L re.£ · -he2 

P = 7188•10 ( ::.jt) rel Yfe) sme e ede (7.22) 
0 

The power can be written in terms of a stream conductance G
8 

and 

2 
Vbl as* 

I 2, /'I p = z Vi,, l1s (7.23) 

Using (7.23} for t he right side of (7.22) and solving for G
8 

give 

(7.24} 

By repeated integration by -parts, the integral in (7.24) 

oan be written as 

e~ 2. t 

I . -ke , -ha-1: • ,1 
lf(e) ::,111.e c ede = 4 hz e -:i L ( hf/} co5 20_.t + h(0.J sm Z e_, - 1)J 

o '/e1 
I {h..1-t) . -ke2.. . 

- 4hz +- 4hi S/J'l 20 e cle (7 .25) 
0 

Because of the rapid decay of the exponential in the sin2Q integral 

*The half appears because Vbl is the maximum value whil• :, is in 
r.m.s. watts/cm2. 
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in (7.25}, the u pper limit can be replaced by infinity. The 

maximum possible error introduces by this change of the u p:per limit 

can be evaluated by setting sin29 equal to one and integrating from Q 

to infinity. The value of this integral is given in tenns of the 

error function as 

00 , 

/e-h
8

: 9 • i{ f / [ I - erf ( q_h f )j O i{ /! /'erfc ( e, k iJ (7.26) 

8_£ 

The sin29 integral in (7.25) with infinity as the upper limit is 

evaluated in appendix 6 and can be written as 

(7.27) 

or I 

,_-I - "f; r,( , . 3 . 1-J = n e ,r; z 1 2 1 h 

The exponential integral in (7.27) is tabulated in Jahnke and :Finae!46 } 

page 32. The 1F1 :fU.notion appearing in (7.28) is the confluent hyper­

geometric function.(
47

) A curve is given on page 279 for 

1F1 (1/2;3/2;1/h) in Jahnk.e and :Ehiae.* 

Substituting (7.25) and {7.27) in {7.24), the stream 

conductance is 

/1 -4 -1 -he 2f 
{;[J ::: 3. 44x/0 { '1 ~o e, -:fl (h11) COYL~ f- h ( ~ sm2~ 

)] , -*rr' 1.,J.1 - I - / f h ( k+ Z) e , 1 z .,· z., h 'J 

where Q~ is given by (7.21) and h by (7.19). 

*In Jahnke and Emde's notation 1F1 (1/2;3f2;1/h} is written as 
M ( 1 / 2 ; 3 / 2 ; 1 /h) • 
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Exarrmles 

1. To illustrate (7.29), the constants given by Kuper( 43 ) 

for the frequency and spacing will be used. 

f = 3 x 109 ops; d = 8.89 x 10-3 cm; T = 103 deg.*; Ie = O.l amp/ cm.* 

2 l.. 
The value of the parameters hand gt are 0.3625Vbo ' and 5.66 ( IVb l )2 

respectively.** In figure 15, the electron stream resistance Rs 

(ohn1s/cm2 ) (the reciprocal of G8 ), 1s plotted against the retarding 

potential Vbo• The behavior of the curve and order of magnitude of 

R is the same as that given by Kuper(43) and Smyth{ 4l) It is to be 
s 

noted that figure 15 is a plot of the stream resistance per square 

centimeter (ohms/cm2 ), while t he curve given by Kuper is the gap 

2 and stream resistance for an area of 0.08 cm. 

2. Another interesting example is the variation of 

loading with frequency for a constant value of retarding voltage. 

8 The range of frequency used in this cal culation is from 3 x 10 cps• 

to 1.05 x 1010 cps, or in terms of wavelength from 100 ems to 2.86 cm. 

The constant value of retarding voltage was - 3 volts. Figure 16 

shows G
8

(mho/om2 ) plotted against the frequency. Note that the loading 

increases practically linearly from 1.5 x 109 to 4.5 x 109 cps and 

has a ma.xinrum value at 6.4 x 109 eps. Kuper states that the loading 

should decrease as the frequency increases though experimental 

results seem to indicate the opposite. As figure 16 shows, this 

*These values are assumea as being representative values for T and I
8

• 

**For these values of hand 9', the term involving exp(-h92 ) is 
completely negligible so the loading is given by 

½ = J. 4 4 ~, o i~ r ~/z [ f ( h I z J (_ - 1 , ,; ( f ; J ,· t J - I} < 7. 30 l 
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calculation is in agreement with the experiments cited. 

3 • .Another interesting calculation is on the distance 

the electrons that produce the maximum loading penetrate in the re­

tarding field. This can be obtained by differentiating (7.20} with 

respect to Q and setting the resultant equal to zero. Performing this 

operation, the following transcendental equation is obtained for the 

transit angle producing maximum loading. 

The constants used were those given in example 1. Results of this 

toilsome calculation are shown in figure 17. On the phase space 

diagram (Fig.11), the arrows on the curves for retarding potential 

-1 and -2 volts indicate the distance the maximum loading electrons 

travel. It is to be noted that these maximum loading distances 

are sufficiently far out from the cathode that the assumption of 

linear field is very good. Thus, the loading plotted in figure 15 

for one volt retarding potential (57.1 obms/cm2 ) should be in 

agreement with experimental results.* 

The large magnitude of loading calculated above indicates 

that, for close spaced high frequency tubes, the cathode-first grid 

region should not be in the radio frequency circuit. By using the 

first and second grids as the input gap** with the potential minimum 

residing in the cathode-first grid region, shot noise reduction can 

be obtained{ 24 } without undesirable loading. 

*Compare(41}. 
**Triode operation of tetrode. 
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Appendix l 

rnINCrPAL SYMBOLS 

Meaning and Dimension First Aupearance 
(equation no.) 

2 
x directed electron acceleration, ,cm/sec (2.1) 

Constant (21VT)-1 , sec2/cm2 (5.18) 

Quantity ( ) evaluated at.§ plane (2.8) 

Time dependent electron acceleration at a 
plane, cm/sec2 - (2. 9) 

Extension in phase used only in part IV,cnn2/seo (4.40) 

Constant used in part VII, (wd/iVb
0

) (7.19a} 

Quantity ( ) evaluated at! plane (2.34) 

Electron stream susceptanoe (6.10) 

Complex transit angle (jwT) (2.70) 

Parameter, cm-l (5.37} 

Numeric, 2.33 x 10-6a-2 mhos/cm2/volts½ (3.00) 

Integrand in second order potential (3.15} 

Spacing between 1! and! planes, cm (2.44) 

Density-in-phase, sec/om4 (4.01} 

Perturbation on electron stationary transit time (2.14) 

Absolute value of electronic charge, 1.59 x 10-19 
coulombs (1.3) 

Electric field strength, volts/cm (1.1) 

Permittivity of vacuum, 8.85 x 10-14f arods/cm (1.1) 

Frequency, sec-l 

Confluent hypergeometric function (7.28) 



I:, 

G 
s 

li 

H 

h 

I 
e 

j 

k 

K 

K 

1 

m 
e 

N 

5 

p 

p 
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Space charge factor 

Electron stream conductance ~er om2 , rrihos/om2 

Magnetic field strength, amps/cm 

Hamiltonian, ergs 

Constant 

Transit angle 

Transit angle corresponding to v1 

Total current density, amps/cm2 

»nission current density, arn~s/cm2 

1 
(-1}2 

Boltzmann constant, 1.380 x 10-16 ergs/deg 

(2.58) 

(6.10) 

(1.1) 

{4.37} 

(7.19) 

(2.70) 

(7.21) 

(1.2) 

(5.14) 

(2.64) 

(4.45) 

Kinetic energy density of electrons, grams/cm/sec2 (4.03) 

Time independent ,Part of current density 
multiplied by l/e, cm/sec3 

ElectroR and field energy interchange per sec 
per cm 

Constant, 107e/m
8 

1.76 x 1015 coul/grams 

Electronic mass, 9.03 x 10-28 grams 

-Permeability of vacuum, 1.257 x 10-8 henrys/em 

"n,.th order of { ) 

Number ~f electrons per second leaving cathode 
per om 

iia.ss density of electrons, grams/om3 

Time dependent electron velocity at~ plane, 
cm/sec 

Dimensionless parameter (x-d}/~ 

complex angular frequency (jw), sec-1 

Dimensionless parameter, Vbl/v"bo (part VII) 

(7.17) 

(2. 2) 

{1.3) 

{ 1.1) 

(7.16) 

(4.01) 

(2.10) 

(5.36) 

(2.64) 

(7. 05) 



p 

p 

Q 

T 

u 

V 

v' 

V 

V' 

r 

w 

X 
m 
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Momentum density of electrons, grams/cm2/sec (4.02) 

Power in watts/cm2 (7.18) 

Convection current density, amps/cm2 (1.1) 

Complete space charge, zero frequency diode 
resistance {3.06} 

Resistance of electron stream ohms/cm2 (6.11) 

Charge density, coulombs/cm3 (1.1) 

Stationary electron transit time (7.03} 

Stationary electron transit time(pa.rts I,II,III) (2.13) 

Absolute tem~erature of cathode, degrees 
(parts IV to VII) (4.45} 

Effective velocity of electron stream (4.07) 

nth order, mth harmonic of :fundamental frequency 
transit angle coefficient. m ::: 0 indicates zero 
frequency (3.07) 

x directed electron velocity, cm/sec (2.1) 

Phase space border emission velocity at cathode (5.13) 

Phase space border emission valoci ty at x > O {5.17) 

Potential, volts {2.34) 

Voltage measured. from :potential minimum or anode (5.20} 

-7; Thermal voltage kTlO e T/11606, volts (4.47) 

Voltage of potential minimum referred to cathode (5.47) 

Time dependent part of current density 
multiplied by i /e (2.6) 

Dimensionless parameter, V'/VT (5.33) 

l V, vol t-cm2 /sec2 (2. 36) 

Electric field energy density, ergs/om3 

• (:parts IV to VI) (4.19) 

Value of x at potential minimum (5.48} 



X(Q) 

Y(9) 

y 
-s 

z 

w 
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Real part of !zz <e,> 

Imaginary part of 'f 2.2 ( e>) 

2 2 
Diode admittance per cm, mhos/cm 

2 Diode admittance per em produced by capacity 
of.§. and]! planes 

2 Diode admittance per cm produced by electron 
stream 

sin Q - Q cos Q 

Diode impedance per cm2, ohms/cm2 

Diode impedance per crm2 produced by capacity 
of.§. and]! planes 

Diode impedance per cm2 produced by electron 
stream 

Angular frequency 

Appendix 2 

FIRST ORDER ELE,'CTRONIC COEFFICIENTS 

(3.29) 

(3.29) 

(6. 07) 

(6.09) 

(6.10} 

(7.12} 

(6.09) 

(6.10) 

{6.11) 

(2.64) 
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Q - - Hi' [ ( p - (l Q) - t p + ~ ( I d::,l p] 

1! ~ - f t ( I t ~:~ )( I - i; ) C 

where ~ "je 

The spaee charge factor ~ is defined in (2.58). v
0

a and v
0
b are 

the zero order velocities at the l!: and~ planes, respectively. 

For small values of (3 

p = i e, Z _ J ~3 t g ~ 4 + 

Appendix 2a 

COMPLETE SPACE CHARGE IlIPED.ANCE COEFFICIENT 

For complete space charge with V ao 0, 

where 

and 

A_ 3- Ybo [ ~ + !ZS] "" 
- 3 1

0 
~ ~ 4 == tc ! 1 (~) 

1',(f,) = [t + 14
5]"' ~4 [(2-Zto5e - es,·ne) +j(Z=>.me-e -ecose-l;-e3

)] 

~ Ybo y :: 
oc 3 10 
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Appendix 3 

TABLE OF INTEGRALS FOR FART V 

The following integrals were used in the evaluation of equations 

in part V. The integrals are listed in ap~roximately the order 

they are used in the text. 

0 

0 

oc, 

J z. ~ 
2. -(I. V I 

'{_ e, oV 
0 

where erf x 

l( Z, 

2.. f -t 
-i.. e dt rr ~ 

0 

The error integral (erfl is tabulated on pages 23 to 32 in 

Jahnke and Emde.(45 ) 
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Appendix 4 

RETARDING FIELD DIODE TABLE 

(1:to lfo. * E,._ 
-IVbl Ea.'rtode ca.ti-lode 

0 3.<o"4 o.3155 0 0_4q4 

4.55' S.84 0. 503 0.0854 0.508 

140 \ I. 5q ,.o 0.1.1.,2. 0.511 
s 

l.3 . l '3 0. 'S<o3 1.1s • IO l .O 0.154 

3.5 1.0 1. 12. 

5.0 1.43 I.S2.. 

1.5' 1.42.'5 2. 2.2. 

,o.o 2.8G. l .'\OS" 

-3 
*volts/10 _41n. 
**Field 10 in. from cathode in volts/10-31n. 

Appendix 5 

E .. ~ c--
l i..,t<lv-

0. 3745 0.0'lol.. 

0.3&1 0.1436 

0.448 o.z.ass 
0.to34 0.511 

1.0 

L'\-3 

2.125 

1.8(. 

SERIES EXPAMSION COEFFICIENTS FOR ~ AND ~ FOR DIODE SOIDTION 

where 

=o 

= 'l 

= ~ /rri 

4 I 
= <fn.-i: 

+ S-l. 1 
= - 33rr f + 5" -3-2.2.rri 

1 
-t a.~ Lf l. t (5.54) 
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a 
6 

Coefficients a.
0 

to a7 inclusive were obtained by two different 

methods of expansion; a8 and a9 were not rechecked. 

where 

Let 

lf 

~o = bl = 0 

b2 = ¼ 

Appendix 6 

EVA!lJATION OF (7.27) AND (7.28) 

Differentiating with respect top gives 

~ - (" -kl 
dp - Z. J x e. c.o:d.p:x dx 

0 

The integrand can be written as ~ 

(5.55) 

(a) 

(b) 

( C) 
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Substituting (c} in (b) gives 

du _ [ 1 -h.x.1 ]co 
d p - - ~ e, t05 .lpx 

0 

or ~~ + f u = ~ (d) 

Equation (d) is a linear differential equation of the first order 

whose solution is 
:t 1. 

-~ [ ' r f J u = c. n h J t hdp + C 

The constant of integration C is zero since from {a) u : O, when 

p = o. Changing the integration variable 
z. f 

, - .r= r R°'.. t t.. 

u = ht e ~ j e, dt (e} 
0 

For p = 1 ' k'':z.. 

(~t)~tJ et~t (7.27) 
() 0 

Multiplying (7.27) by hand using (850.4) in Dwight(
23

) result in 

By use of the Legendre's duplication formula given on page 225 

of Copson(47 ) 
3 

r(im+l) = 'l.. r(m+"[) 
f'(l~+-1) Plm+ i:) 

Substituting {g) in {f) gives 

The confluent hypergeometric function is defined on page 247 

and 260 of Copson(47 ) as 

(f) 

(g) 

(h) 

{i) 
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Comparing (i) and (h) and using (850.6) and (850.7) in Thvight( 23 ) 

(j) 

(7 .28) 
0 
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