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ABSTRACT

The elementary treatment of electron streams in vacuvum
tubes is based on the assumption that the velocity of the stream
can be represented by a single valued function of the spatial
coordinate. The Lagrangian method of treating the resulting
electronic equations was introduced by luller and extended by
Llewellyn to general boundary conditions. In part III, this method
is carried to the second order solution, which is important in the
computation of distortion and detection proverties of vacuum tubes
at medium frequencies.

With the refinement of electronic techniques in the vpast
decade, the useful radio frequency range for cormmnication has been
increased. In treating very high freqguency tubes, the assumption of
single valued velocity electron streams in close spaced vacuum tubes
diverges sharply from physical fact. There arises a need for an
electronic theory which includes the velocity spread of the electron
streams In part IV, the foundation of a multi-velocity theory is
laide. Though in part IV treatment has been confined to one dimen-
sional electron motion with only an electric field, the method can
be readily extended to two or three dimensional flow with magnetic
fieldse The multi=-velocity theory is based on a combination of
Maxwell's equations and Liouville's Theorem of classical statistical
mechanics. This fundamental approach in treating vacuum tubes, by
focusing attention on the electron motion instead of boundary para=-
meters, has been bypassed by prior investigators. The theory contains
within its structure the explanation of all previously obtained
results on one dimensional electron flow plus new answers to multi-
velocity vroblems. In part V, some exampnles of stationary electron
flow are treated; and in part VI, the time dependent solutions are
formulated (though not carried out in complete detaill.

In part VII, an interesting high frequency loading
phenomena, observed by a number of investigators, is treated. From
the results of the stationary flow in part V, this problem can be
solved without the general theory developed in part VI. The
solution obtained suggests a modification in the construction of very
high frequency close spaced vacuum tubes.
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Part I

INTRODUCTION

Statement of Problem

Two infinite parallel planes are separated a distance d
in a vacuum to form a generalized* diode (Fige 1). 7Plane a is at a
potential Vg3 plane b is at a potential Vb. A beam of electrons is
injected across the a plane into the region d. What is the relation=-
ship between the current flowing in the externmal circuit C and the

potentials Va and Vb?

Assumptions
The following assumptions will be made in the course of
the solutioﬁ.

l. The planes a and b are at uniform potentials, so that the
electric field is everywhere perpendicular to the planes. Consequently,
if these planes are grids, they must be made of very fine wire closely
meshed, so that the electric field will be uniform over the entire
grid. |

2. Electron motion is always perpendicular to the planes & and b;
i.8¢., the problem is one dimensional. The only spatial variable that
will appear is the x coordinate which will be measured from the a plane.

3« The angular frequency of the time devendent part of the poten=~

tials is of such magnitude that propagation time for the electric

*Neither plane is to be regarded as constituting a thermionic emitter
or cathode. ‘
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field and potential from planes & to b is instantaneous.

4. The forces acting on the electrons will be produced by electric
fields. No extermally applied magnetic fields wiil exist. The magnetic
field produced by electron convection current and displacement current
can be neglected because of the small current density used.

5 The potentials V, and V, are of such magnitude that relativistic
influences can be neglectede.

Once the solution for a generalized diode is obtained the
behavior of multi-element tubes (triocdes, tetrodes, and etc.) is
obtained by cascading diode* solutions.(l) In particular, the solution
of the above problem is desired to explain the behavior of microwsve
disk-seal vacuum tubes. This class of microwave tubes, the best known
members being called "lighthouse tubes", are of planar structure.(z)

The only assumptions given above that would not be strongly satisfied

by these tubes are 1 and 2. Some of the earlier model'"lighthouse
tubes™" have very coarse grids so that the fields are far from unifonn.(z,
However, more recent tubes built at the M.I.T. Radiation Laboratory,

(4)

in particular the Neher amplifier tubes, satisfy the first two

assumptions closely.

Classification of Solution

The solution of the general problem can be classified
according to the velocity comvosition of the electron stream, namely,
single valued velocity electron streams or multi-velocitied electron

streams. For a single valued velocity stream all the electrons in a

*The first diode represents the cathode-grid space, the second diode
the grid-screen grid space, and etece. to the last grid-anode region.
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plane parallel to the a or b plane have the same momentary velocity.*
A further solution specification would be the time behavior of the
potentials. More detailed classification will become apparent in the

sections that follow where these two types of electron streams are

treated.

Maxwell's Equations and Units

The relationship between the fields and currents acting
in the generalized diode is given by Maxwell's equations. The equations
will be written in cgs = practical units. In this unit system,
electrical quantities are measured in practical units, volts, amperes,
coulombs, and ohms; while length, mass, and time are measured in

centimeters, grams, and seconds.

v H =9*6;'t'€

b £ = o }H (1.1)
Vel g

r-)(ﬁ=0

In the above equations, H is the magnetic field strength (amberes per
centimeter), E the electric field strength (volts per centimeter},

O the convection current density (amperes per square centimeter),

¢ the charge density (coulombs per cubic centimeter), e the vermittivity
of vacuum (farads per centimeter), and A the permeability of vacuum
(henrys ver centimeter). Because of the fourth assumption, terms

involving the magnetic field may be cancelled. Because the problem

is one dimensional, all gquantities will have only x direction componentse.

*The velocity is a single valued function of x and te.
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Consequently, the vector equations reduce to scalar equations.
Writing only the remaining terms in {1.1) there results*

“Ict)=Q * G}f
and e%f -p {1.2)
where I is the total current density (amperes per square centimeter).
It is to be noted that I is not a function of the spatial coordinate
(x}, but can only be constant or a function of time. This can be
shown by taking the divergence of the left side of the first equation
of (1.1). The convection (Q) and displacement current (e 3) are,
however, functions of x and t. The force law, in the above system of

units, for the electriec field acting on an electron is

= TINT .
where F is the force in coulomb=-volts per cemtimeters, m, is the
electron mass in grams, and ¢ is the absolute value of the electron

charge. A table of the above quantities and others to be introduced

in subsequent pages is given in appendix 1.

*The total current density is written with a negative sign to conform
with the usual custom in measuring currents in the opposite direction
of negative electron flow. This is also useful in that the negative
sign associated with the electron charge is cancelled in some equations.



Part II

SINGLE VALUED VELOCITY SOLUTION

Introduction
In the next section, the generalized diode will be treated
under the condition that all electrons in a plane parallel to planes
2 or b have the same velocity. This condition restricts the electrons
motion from the left to the right plane {Fig. 1) with no electrons
passing each other. The criterion that the electron stream must
satisfy to have a single valued velocity will be stated on pagelO.
A review of the papers on this problem prior to 1938 is

given by Benham.(5) Most of the earlier papers assumed that the
& plane was a thermionic emitter and electrons were liberated with
zero velocity. However, for practical vacuum tubes the condition of
single valued velocity and zero velocity emission is not satisfied
for a number of reasons. They are:

l. Physical emitters eject electrons with a velocity distribution.

2. Tubes are gemerally operated space charge control so a nega~
tive field exists at the cathode with an accompanying potential minimum
a short distance from the cathode ( compare Part IV j.

3. Because of the potential minimum, the major portion of the
electrons emitted is returned to the cathcde. Comsequently, in the
region between the cathode and the potential minirmum, electrons are

traveling away from and toward the emitter.
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4., TFor very high frequency* tubes close element spacing must be
used because of the effects of transit time. Consequently, the distance
between the cathode and the potential minimum can be a major portion of,
if not all, the distance between the cathode and the first grid. In
addition, the velocity distribution will give different transit times
for different electrons.

The above conditions practically void the single valued
velocity solution when applied at very high frequencies to explain the
behavior of the cathode~control grid region of tubes. An example of
this divergence between experimental results for disk-seal micro-wave
tubes and single valued velocity theory has been given in a recent

rapers ( & )

The solution can be applied to medium frequency** tube
analysis, however, since wider tube spacings are used and the potential
minimum distance occupies then only a small portion of the cathode=

(7)

control grid region. In the output regions of tubes where the
electron velocities are high (so that the emitter thermal velocity
spread can be neglected), the single valued solution can be applied
with some success even to microwave tubes. As was previously mentioned,
if the diode is treated with general boundary conditions for the two
planes, then the solution can be used for multi-element tubes by
cascading. This possibility was first realized by Llewellynse)(g)
who extended Benham's(lo) original diode solution first and then later
(11)

lmller's solution. The procedure in these solutions is to consider

the potentials, currents, and other quantities as being composed of

*In the order of 10° cycles per second or higher.
**Tess then 108 cps.
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time independent (d.c.) plus time dependent (a.c.) components. The
a.Ce components are considered as small compared to the d.c. components,
so0 that a.c. behavior is a perturbation on the d.c. solution. The
resultant theory is called a "small signal theory".

Four different ways of solving the electronic equations
have been developed. These methods are known by the form in which
the differential equations are placed prior to solution or by the
physical principle used in their formulation. They are known as the

)

Eulerian,*(IO} Lagrangian,*(ll electrostatic,(lz, and the comnservation

5
of charge.( ) Llewellyn's most important paper(14’ on small signal

theory, which was later extended to a booklet,(ls)

is the generalization
of the boundary conditions used by Muller.(ll) He formmlated the
equations so that not only could the d.c. and small signal a.c. solution
be obtained, but also higher order solutions. Unfortunately, Llewellyn
has left out an important higher order term, so a closed form expression
(eircular functions) can not be obtained for a second order solution.

In the section to follow, kMuller's method of setting up the electronie
equations will be used with Llewellyn's generalization of the boundary
conditions. After the general theory has been formmlated, Llewellyn's
solution will be briefly given for the small signal case, namely, the
zero and first order solution. Next, the as yet unpublished second

order solution in closed form will be carried out in detaile.** It must

be re-emphasized that application of the single valued velocity theory

*This designation comes from the analogous form of the equations to the
hydrod ic equations.

**Benham(®! has carried out a second order solution by the conservation
of charge method. However, his unorthodox use of complex notation
reflects some apprehension on his results.
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to practical vacuum tubes must always be done with utmost care, so

(6)

that the basic assumptions of this theory are not violated.

Single Valued Velocity Theory

The general theory of single valued velocity electron
streams starts with (1l.1) and (1.2). In (1.1}, pv 1s written for the
convection current, where y is the velocity of the electrons in the x

direction. In (1.2), =eE is written for the force F on a electron;

and e, Mes and 10-7 are written as the constant l=/0§%he o *
t) = pv +e}££ (2.1)
2
SE-LE g (2.2)

Using (1.2), 1in {2.1) can be written in terms of the electric field,
ERaE Iy - el v T (2.3)

The bracket term on the right side of the above equation is the total
derivative of E, since v=‘ﬁ5[ for single valued velocity streams.

If the stream was not single valued then for a given x, the velocity

of different electrons would give different v's in the above expression;
so identifying the right side of (2.3) as the total derivative of the
alectric field could not be done. Consequently for single valued

streams

“Iet) =55 (2.4)

Using (2.2), the electric field can be written in terms of the

electron acceleration as
Ly - da {(2.5)
€ ot

*Wherever e avpears it will mean the absolute magnitude of the electron

charge. The negative sign of the charge will be written into the
equations.
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This is the fundamental equation that must be solved. The right
side is the total rate of change of acceleration that an electron
will experience as it moves from the & to the b plane. Note that
the left side of this equation cen only be a function of t or a

constant. This suggests defining

-k + g7t o (2.6)
© oo
where K= ".Zo'/(zn and ¢ ") g Jy(2)

K is the sum of the even order indevendent currents mmltiplied by
1/(—:; while ¢”’(t} ** is the sum of the time' dependent currents
multiplied by l/e. The higher order countribution to K is to be noted
since even harmonics of the fundamental frequency current result in a
change in the d.c. Current. These higher order d.c. contribution

to K are not included in Llewellyn's analysis. They obviously do not
affect the zero or first order results, but will have pronounced
influences on the higher order solutions. Writing {2.6) in (2.5)

gives o.
Jta Kt (2.7)

Iultiplying this equation by dt and integrating t =t, to t =t, where

when t =t, the electron is at the g plane, result in

¢ ¢
t/o%“c’t - aces —acty < flKr @ lrfdt < (-t K +@te - ity (2+8)
4 ta.
The acceleration at the g plane, a(ta) can be written as the sum of
a time independent vnlus a time dependent acceleration.

a(t,) =a, *+a(t)

Substituting this expression in (2.8) results in

*: Y =200 10*°™/sec?
$ct) - Yy
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a(tt,) = (¢~ )K +@() -@'(4) +a +ars,) (2.9)
Integrating again over the same limits gives
V(t2,) 7 L4 0K + §') ~F'(4) ~(t-4)B(1) +(t-40a  (2.10)
-2 ),y v, + 2(2)
where L is the velocity at t =ta and is not a function of ta,
while v(t) is the time dependent velocity at the a plane. A third

integration gives

,(%Fé—'(z—za;’:f rPee) ~@(t,) ~(¢-t, )P (4)-7C¢-4 )% @) (2011)
tlt-t)a, +F0-L ) (e +Ct-4) v, *(¢-4)0(¢,)

where when t - ta, =0,
The single valued velocity criterion can be obtained from

(2.11). The initial conditions at plane g must not be assigned so that
electrons overtake each other anywhere between the two planes a and h.
If electron passing occurs, then the velocity would not be a single
valued function of x and the above derivation would be void.
Muller(ll) and recently Brillouinps) have shown that the necessary and
sufficient condition of single valued velocity is

{}tf)z 0 (2.12)
Physically this condition means that electrons crossing the a plane at
a given time cammot overtake electrons that have crossed the & plane
at some previous time. A plot of x versus t for different ty's
readily shows the above requirement. If the time independent parts of
v and a are large compared with the fluctuating components, then the
above condition is usually satisfied. However, if there is any region
in Os«x«d where the electrons are being decelerated (retarding electric

field), then the criterion must be carefully investigated.
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Bquations (2.9), (2.10}, and (2.11) give the acceleration,
velocity, and position at any time t > ta of the electrons that cross
the a plane at t - t,. However, since the electric field, the potential,
and other quantities as a function of x and t are desired, the
expressions (2.9) and (2.10) are not useful in their present form.
In prineiple, (2.11) could be solved for tg in terms of x and t and
then substituted in (2.9) and (2.10). The formitable appearance of
(2.11}, with the additional complication that the time dependent
functions for a steady state solution will be trigometric, precludes
all possibilities of this direct approach. A method of perturbation
on the time independent solution can be used,

If all the fluctuating components in (2.11) are zero

and setting t - tg =T, then

x- 27K +iTa +7y, (213)
Solving this cubic equation for T and substituting in {2.9) and
(2.10), the acceleration and velocity as a function of x and T would
be obtained, if the fluctuating components are zero. When the
fluctuating components are not zero, then let

t-t, - T+6 (2.14)
where T is still defined by (2.13). 0 is then the perturbation on
the transit time T produced by the fluctuating quantities ¢, «, 3
and as they approach zero, O also approaches zero. Using (2.14),
then any function of (t-ta) or ta can be expanded in a Taylor series
in terms of powers of O . TFor a function of t=t,,

Fet-t) = F(T+6) = F(P) + FETIS +- - - =) ,%" F™%mr)  (2.15)

n-=0
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In a like manner, for a function of ta

= (-I)n

/(Z,L)=/(t—7’-6) ~fle-T) ~Fle-7)6+ - -~ = L.l 6" f G- (2416)
Substituting (2.13) to (2.16) inclusive in (2.11) results in an
expression involving t, T,éi,l§,¢, and the acceleration and velocity
at thé_g plane.

X = EK[Tr37% r3762 48] + Fa [7F 4276 + 6Y

*y(5+7) +@(z) —[¢(t—7’} ~@t-T)5 G B -T)6 -
/- (7’+5)[¢’(¢—T} @ (t-7)5 + 7P (¢-1)8-  (2.17)
1 " "y
- ] = z(/“zfz'réfé‘)/[gs (t-7) - (t-T)6 +
2@l-me- - [ [act-7) -a'te-16 + L te-1)8?

o -Z/ +(P48)[ vit-7) -V 1e-)5 + B0 -T)E- - -/

Though (2.17) can be arranged in a power series in 0, it can not be
solved for O as it stands. The important result of (2.17) is that ¢,
the perturbating transit time, has been removed from the fluctuating
quantities ¢, «, and Y. To solve (2.17), let 6, X, ¢ , « , and »
each be written as a series.*

d’gé” 3 /{:/(o fZ/(Zn)¢=g¢’l Jq:Zd’L)u:Z/_')/"l (2;18)
=1 n= : nsr

h=

After these quantities are substituted in {2.17), the resultant
expression is resolved into groups such that the sum of the subscripts

of each term of any particular group is the same.

*Compare {2.6).
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0 =/5,(z'”o7”'*417' ty) rg(t) -G (t-7) ~Tg'(t-T)
-zz'qi,"(z—r) +7 T t-1) + Ty (t-mf +/5z(z’/r° rt
faT ry) +8 FKTra) ¢ KT 6/ 1THiT)
-7 75,’0—7’) #Ta,(t-T) - Tu'(2-7) + y(t-71] 4, (t)
G (-7) ~T@ (+-T) -7 T°4"(¢-T) +7 Payct-7)
*Tyet-71f f/%(t) ~#,(¢-7) -T¢/(+-7) (2.19)
LT T) F TR (Tt Ty t-T) +E(ZK TR
Ta, +v,) + 8, [47°3 12-7) -7 7% (4-9) + T (2-T)
TTyle-1) ty0-r)f 182077 45T 1t T)
TZTRUET) # Pay(2-T) - Toy'e-9) 13 t-T)] +
8- TR (-1 +Z TP (e-T) #E T Ct-T) - T (4-7)
$T0LET) + TR (T -3'e-T)] + 8,8, (K, T+

a, ) éé/(/ /

Since the left side of (2.19) is zero, then for the right side to
be zero for all values of t, each group of terms on the right side
of the same order must be zero. Equating the first group to zero

and solving for §, result in

5 - - (B G- Th(e-1) -3 75, 14-) 22 Ta e BN ] (590
KT +Ta, +y
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The second group gives

/ B -B(t-T)-Tg'(t-7) - 7 T4, (¢-7) +7 T ct-7
Ty (t-7) + 65T, 1) - 1T, (- 7) (2.21)
*Ta,(¢-7) -~ Ty'(¢-T) +5(¢-T)] + 7 §*[K, T +

a,] + ¢ K 773/

éh;?zf ﬂ% ty

&= -
The third group gives
f@m—@(r—r) TgCt-7) - F 7’z¢3 w-7) + 1Pyt -7)
*Ty-1) +6,6[KTra ] +7 51T +{ &K,
L6 G TRl +F T8 Ce-7) 432 7o t-W - Ta /(- 7)
J " ’ & ;Wi
PI (T +Z T -7) 51T + 6, [ZTGET)  (2.22)
i mZ ) )
2%, -7) + T (t-7) - Ty'ct-7) +5(t-7)]

+8,[ 274, ts-m-a/ (- 73f +Tfatyct-2) -3 ce-mf +&a<7’)1/
7T +Ta +y,

% = -

The above expressions with (2.18), (2.16), (2.15), and (2.14) can
now be used to express the acceleration (2.9) and the velocity (2.10)
as a function of x and t, since T is a function only of x (2.13),
Resolving the acceleration (2.9) in a series and combining terms in

the manner used in {2.19) result in

a= a°+ a1+ 8,2+ az.f.‘. (2025)
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where*
&, = KT +a, (2.24)
a, =Ko +$W -4 (t-T) +a,(t-T) (2.25)

8y =K 0T t3(t)-4,(¢-T) 464, (¢t-T) ~6,/(t-T) +ay(¢-T7) (2.26)

8y T K0+ () 4, (t-T) +ay(¢-7) *ézf¢,"(lt'7’)‘°‘,'(t'7'lf (2.27)

thyb - 718G -7 -0 - 5,09, t-7)-a,(t-1)}

Using the same procedure for the velocity (2.10) results in

V= Vot Vit Vot Vg4 - - - {2.28)
where*
e =ZKT + Ta, +y (2.29)

1 ‘/@(/(,,qu} - TG (-7 +4/(2)-@/t-T) fTa,(t-T)fA{(i-T{/ (2430)

> =/62 (KT+a,) - T4 (¢-7) =@ (2-T) +@,(2) + Poy(2-T) +3(¢-7)  (2431)
/ w
2T G S [TEE M) +at-7) - Tojte-7) -»'(f—r)/

v, = /(53 (K,T+a,) - 7‘¢J"(t-7') -¢J,‘(z-7’} *@(2) + Tay(¢-T) +3(2-7) (2.72)

(M)

6, [7‘¢ “-T) - Ta(2-1) +ot-7)-4'(2-T)] * K86,
* T2 T2 TH - T) - 1) Enle-1)+ L Tt T

*6,L 1T + T4, (¢-7) + oy (-7) - Ta(t-T) -2 (¢-T)] /
After the 6's are substituted in the above expressions, the accelera-

tion and velocity as a function of x and t and the initial conditions

*In Llewellyn's (17!} expressions for the above quantities, the K,
terms are omitted.
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at plane g will be obtained. Since there is only one spatial variable,
the electric field can be written as the negative of the partial

derivative of the potential,

IV .
Eint) = - J_;u,ut ‘ (2.53)
Integrating from the & to b plane at a constant value of t,
b b
_ [V
./Jl [dy = y-y, =/[(X.tic/t/ (=l
a a 2

From (2.2),

/
Etxt)=-7 amxt)
Since (2.23) expresses the acceleration in terms of T and t, (2.13)

can be used to change the integration variable in (2.34) and x to T.
From (2.13) and {2.29)
dy =(FKT*+ Ta + 4 )T - 4o 7 (2.35)

Substituting in {(2.34) and writing W for LV give

T
W,-w, =/4 yd7 (2.36)
o
Using (2.23), {(2.36) can be written as

(W, W)y =f2,,d7 (2.37)
i

W,-,), =/a,a{,</7’ (2.38)
r

(W,-W, ), =fazt{,d7’ (2.39)

(W,-W )y =] 44T (2.40)

In evaluating these integrals, the proper<§3mmst be substituted in
the accelerations before the integrations are performed.

Integrals (2.37) to (2.40) formally complete the single



17
valued velocity solution up to the third order. Substituting
particular functions for the current density (2.6) and the initial
conditions at plane a, integrals (2.37) to (2.40) give the relation
between the total current density and the potential difference

between planes a and Db.

Zero Order Solution

Many pavers have been written on the time independent

solution for a parallel plate diode.(le’(lg)(zo)

Consequently, in
this section only the expressions which will be of use for the
higher order solutions will be given. Substituting (2.24) and (2.29)
in (2.37) gives

(W,~-W, ), = g’ /{,,z7'4+2—’/{0a07’3+}af7“" tZ KT ray T (2.41)
Note, the right side of this expression in terms of the veloecity at
plane b is by the use of (2.29)

ZCni-y) = (W,-W,), | (2.42)
in terms of potentials Va and Vb

0" (Y, Y ) = Fm(yr-y2) (2.43)
which 1s the energy equation for d.c. electron flow. When V, is
zero {a, and v, then also zero), using (2.13) to solve for x in
terms of T, substituting in (2.41), and using (2.6) give the familiar
expression for Child's Law, i.e.,

L= 23316 0,2 amps/em? (2.44)
where the numeric is E;‘Le(,u)i
Another important equation is the value for the maximum current
density that can be injected across the & plane for a given Va and Vb‘

This expression msy be called the generalized Child's Law. Using
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(2.13) in (2.29) to eliminate a, results in

4*,2:5,(072”7-?’ (2.45)
For a constant value of Va and Vb, the left side is a constant; since
from (2.43}, the votential and velocity are related by .

Vo =% 810"t - 77 %* (s
Differentiating the right side of (2.45) with d constant and solving
for dK/d’l‘ result in

;'/7,’( 2 Tied - 7K, {2.47)
Setting the left side zero gives

b, 7’ ¢4, . (2.48)

This is the value for the maximum injected current in terms of d

and T Substituting (2.48) in (2.45) gives

T - 3d(%f—'/b)_/ (2.49)
may,

When the convection current density is very small, space charge

density (¢} approaches zero, and a linear potential exists between

the a and b plane, then

= ol s = 05
linear Zd(V«' d Vb) o J 7}"'"4)" (2 0)
Consequently, the transit time for complete space charge is
increased by fifty percent over the transit time for zero space charge.
Solving (2.48) for T,,, , substituting in (2.49), and using {2.46) give

o 2y % )3
L =2330°S (h2+l,") (2.51)

may

For this value of / ,.» there will exist & potential minimum between
akg.

the a and b planes. Setting a, equal to zero in (2.24), (since the

field at the potential minimum is zero), gives the transit time to

the potential minimum .
T &= "'aa' (Ko ) (2-52)

pPot. min. max
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Substitute (2.48) in (2.13) with x set equal to d, solving for a_,
and substituting T from (2.49) give
@ =257 - § vlurnyd’ (2453)
This expression shows that a retarding field exists at the & plane.
Substituting (2.53) in (2.52) and using the resultant value of 7, ...

in (2.29) give the electron velocity at the potential minimum as

=~

Vv,
Vot min. = v (1 + F:) . {2.54)
Using (2.46), this can be written in terms of the potentials
(%Pﬂi.min./l/ )= ( Voo W1+ ('V”")’%_]"2 (2.55)
ao lé.o Va.o ’

This expression then relates the potential minimum and the a and b
plane voltages for the maximum current density given by (2.51).
Substituting (2.52) in (2.13), using {2.48), (2.50), and (2.53), the
distance to the potential minimum for the maximum current density
(2.51) is

g . (%’4)3(3 + Yery )1 ,(K/%f]'j (2.56)

or in terms of the potentials of the a and b planes
© Xpol.mun. 5 Y7
d,.P mn =(‘i/%){3 f[‘{:/%flj(,*[&/%/’z)' (2.57)

In writing the first order solution, it is convenient
to introduce a space charge factor

§=3(01 - —7,7—;"'"’”) (2.58)
Equation (2.50) shows that & equals one for complete space charge,
maximum injected current density (2.51), and zer§ for zero injected

current density. Using {2.50) in {2.58) to eliminate 7;;'“6, and
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substituting in (2.45) give

K= 2850y +vw) 7" (2.59)
Dividing (2.59) by itself, where 5 is set equal to one, results in

/(’//(m,. - J;/]«’m«/. =4 Tnsp)? (2.60)
Eliminating the transit time ratio by (2.58) gives

L/]vm,_ - ‘77 g(,_Jé’)2 * (2.61)

For a given value of current density I, (2.61) gives the space charge

factor; and using (2.58) and (2.50), the transit time is

, -1/ GEd, 5 - 1 %
7=203-85)( e/zjow ) = 2885%3-¢) Y1 | (2.62)
may

This equation is particularly useful in calculsting the transit time.

First Order Solution

(14)(15)

Llewellyn in his earlier papers and in a recent

paper‘l) has thoroughly investigated the first order solution. In
this section, a brief description of the procedure and the final
results will be given as the first order solution is required for the
second order calculations.

Equation (2.37) shows that the first order potential and
first order current density are linearly related;** and consequently,
the principle of superposition holds for first order quantities of
different frequencies. The linearity between current density and

votential makes it possible to use the convenience of complex notation

for time dependent quantities. To first order quantities only

*Equation (2.61) is plotted in appendix 2.

**Note, however, that the total potential and current density are
not linearly related.
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(2+6) gives
g‘f[ =K, +4(t) (2.63)
Let
* (2.64)
i ¢ " A plt-7)
§ %0 =L pom e ana B[V e (2.65)
Using the expression given by (2.65) in 6 (2.20},
substituting in a, (2.25), multiplying by v, (2.29), substituting in
(2.37), and integrating give the first order potential. The terms
in the potential expression involve the zero and first order current
densities, accelerations, and velocities at the g plane. A more
convenient pesrameter than the time dependent acceleration o, at the
& plane is the convection current density. Multiplying (2.1) .'by j’e g
using (2.6) for the left side of the expression, expanding the convec-
tion current velocity by (2.28) and the charge demnsity ((7) in an
analogous mamner, and using (2.2) for the electric field in the dis-
placement current density term give
LKy TG v T = Eligrgr Hgryrd-3larar ] (2.66)

The first order terms of (2.66) are

-] = fj ’ _Jgta, (2.67)
where
QIzgayl +p' VO (20673)

All terms of (2.67) must have the same time dependence. Then since
J's time dependence is specified by (2.64), (2.67) becomes (when cPt

is suppressed since it appears in all terms)

*n=jW , where j=(~1)7 and w is the angular frequency.
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pa, =¥q, +J (2.68)
At the a plane, g,=a, so (2.68) becomes

v, =(£q,+J) p’ (2.69)
where ¢, is the first order convection current at the 2 plane.
Substituting (2.69) for ®,, in the potential integral mentioned above,
and letting g:,oT give the first equation of {2.70). Substituting
(2.69) in (2.25) and using (2.20) and (2.65) give the second equation

in (2.70). Repeating the same operations on {2.30) gives the third

equation in (2.70).
Vo-W = A1 +Bq, +Cy,

g =01 tEq +Fy, (2470)

v, =61 +Hg +1y,

Equations (2.70) are kmown as the first order electronics equations.*
The potential (Vy,-V,), current demsity (I), convection current density
(q), and velocity (v) in (2.70) are all first order quantities of
frequency w ** The subscripts a and b are the respective first

order valuesrat the 2 and b planes. The bars under the coefficients
in (2.70) indicate that the quantity may be complex. Because of

the vrinciple of superpositioﬁ aﬁplies to first order quantities,
(2.70) relates the various quantities for esach different freguency.

For example, if an injected current of one frequency and a

*The values of the coefficients are given in appendix 3.
**Sigce the time dependence is the same for all terms, the quantity
e”" is suppressed.
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different frequency applied voltage (Va-Vb) were placed across the
& and b planes, then the resulting voltage produced by the injected
current and the resulting current produced by the applied voltage

would be independent as far as first order effects are concerned.
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Pgrt III

SECOND ORDER SINGLE VALUED VELOCITY DIODE SOIUTION

Introduction

In the sections to follow, the second order solution
for a complete space charge diode, Va= 0, will be obtained. The
zero and first order potential, acceleration, and velocity at the
& plane will be set equal to zero. The importance of the second
order diode solution is in the computation of distortion and
detection properties at medium frequencies.* In fact, transit
time effects in diodes at moderately high frequencies were first

21)

cbserved in the behavior of rectification efficiency.(

Zero Transit Angle Second Order Solution

At very low frequencies where the transit angle of

electrons is practically zero,** the relation between voltage and
current density is given by (2.44), namely,

L =& Vbo% AMPS 02 (3.00)
or l/bo = (IO/C) K volts (3.00a)
where = 2.33* 10 “d*

If there is a small increment in the current density so that

I-=-1 +al (3.01)

where aI/[o <7

*Note material that follows assumption 4 on vage 2.
**Mhe transit angle (o) is w times the transit time,oe-wT.
See appendix 3.
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then the corresvonding change in the voltage can be obtained by a
Taylor series expansion for ([ +sl ) as
V = (I, +8I) = F(L) +F(L)al + 21 FUNal) - - - (3.02)
The coefficients of this expansion are obtained by differentiating

(5.008)  #(1,)=( %) , f(L)= f(czlf,)—j , F)=-2Cc147,

2
L. i3
Substituting in (3.02), factoring out (%) from the terms on the

right side, and using (3.00a) result in
a1 aly3
[/fj("!) 7( 42 *a/( }+ _/ (3.03)
Fxpanding the left side of (3.03) as
V=y+r ¥V +y + s+ - (3.04)
the following definitions can be made.

V= $ (D nat, GG, -G8 (305

The factor %(’é&} in the V, expression is the inverse slope of the
static characteristic of a diode overating with complete space charge,
and is called the zero-frequency value of the diode resistance, and
can be written 1, .* Compare appendix 3 and (2.70). If o/ in

(3.01) is written as Jcosut,** then (3.05) becomes

“roe Ly coswt | V= =7 (£) 'Y coswt =~ (F) [1+cos 2ut]

A
b= g(f) l coswt ‘5}(}5’)3[3cwwt+ cos Jwt] (3.06)

Note that the seecond order voltage ¥, has a time 1ndepenaent component.,

*The subscripts are for zero order (O), complete space charge diode
(¢}, respectively.
**Note I; is the meximum value or 2% times the rms value. In all
equations to follow fluctuating components will also be written in
terms of meximum values.
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Equation (3.06) shows that to maintain a zero and a small* first
order current density of a single frequency through the diocde,
voltage of a2 fundamental and higher harmonic freguency must be
applieds In addition, if the d.c. value of the current density
is to remain constant as Il increases in magnitude, a negative
second order voltage also must be added. If the frequency is
such that the transit angle is not zero, then the right side of
each equation of (3.06) will be multiplied by a function of o,
the transit angle, or a function of g , the complex transit angle
(o) .

V =1 Xp) 1, coswt

I, = "/é(f?)z% [ %000 + Lotpy cos 2wt/ (3.07)
3
Y = g ()0 [3 2 coswt + Ty50p)cos Jut] **

The factor i, '!"(6) is given in appendix 3. 7, (6) and 2"22(5)
will be calculated in the sections that follow. The bar under ?}2Qg)
indicates that it may be complex; i.e., the second and first order
voltages do not pass through zero siﬁultaneously. The subscripts on
the T,'m and Y;zm {next paragraph) functions are n for the order and m
for the frequency dependence. For example, ?20 indicates second
order, zero frequency transit angle coefficient, while zalindicates

second order, twice fundamental frequency coefficient.

*If the first order current is not small compared to I,s then more
terms in the expansion (3.03) will be needed.
**lam@)>land 7 co)>1, for eny mn,me
80 Z"/me__)o
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Using (3.00), an expansion for the case
V=t +aV where 4 V/% “d (3.08)
can be performed in an analogous manner to that given above for an
inerement in the current density. The current density components
that will result from the voltage (3.08) will be
[o[/fg( 2 +3(”V) aé?(‘,’/j’/)jr"j {3.09)
Expanding the left side of (3.09) as
=L eLel, #l, ¥ + ° (3.10)
the following definitions can be made*
=35, L-36L, L--F('L  (e)

I2 can be written in terms of I, by eliminating the voltage ratio

?

giving
0

If aV, in (3.08) is written as V coswt , then (3.12) becomes

L, _1/L,\2 AV VR

=27 costut = 7 (7)1 # cos 2t] (3.13)
When the transit angle for the electrons can not be neglected then

(3.13) can be written as

Z, z(ff/[ NCEBANC)) cos 2wt ] (3.14)
where 7,,(6) and 5[;2 ** gqual one, when © is zero. The values of

Y will be calculated in the sections that follow.

Finite Transit Angle Second Order Diode Solution

Equation (2.39) gives the relationship between the second

order voltage and current density. ©Since the second order solution

*Van der'P?l has carried out this expansion to terms of the tenth
order.

**Bar indicates fzz is complex.
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is to be carried out for a complete space charge diode with Vé==0,*
all quantities at the a plane must be set equal to zero. Consequently,
the second order acceleration a, (2.26) and the & 's that are
substituted in it will be those shown in (2.20) and (2.21), where « ,
y, aa, and va are set equal to zero. IMultiplying the resultant
a, by v, (2.29), where a, end v, in v, are set equal to zero and

substituting in (2.39), the potential integral can be written as
Vi

7 7
W, =//Zc/7 +/f,’o/7’f3“'/z:/g/7i/7’ (3.15)
where
T 7
//EO’T "Q/[sé(t—f) “B() +TY'(e-7) + 2 TG ) IT (3.16)
and

f/?’dT - -2/;"3[¢(z) ~g(t-m)f o7
*4f ¢z¢ (-1 @ (t)-§ (t-TId T
'3/7°[/¢ (- T~ B C-Tifdee) - (¢ 7/ J47 (3.17)
/ @le- 7//2¢ (t-1) +7 T4 (- 7’}/0/7’

Note, the EZ integral is composed of terms involving the second

order current, while the ﬁ’ integral has only the first order current.
As was shown in the zero transit angle second order

solution, there are two distinet cases that can be treated in a

second order solution. They are: A. Total current density composed

of a small, single frequency, time dependent current (Il) super=

imposed on a steady current (Io). The problem is to determine the

voltage that must be applied to the diode to satisfy this current

W= 0
a
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density. Be Voltage impressed on diode is composed of a small,
single frequency, time dependent voltage Vl, superimposed on a steady
voltage Vo' The problem is to determine the currents that flow as

a result of this impressed voltage.*

Problem A

The answer to problem A, when the transit angle for the
electrons is zero, is given by (3.002) and (3.06). When the transit
angle is finite, (3.15) must be used, with /; and Ké
since the current density is composed ohly of Io and Il' Bquation (3.15)

set equal to zero,

will also contain the zero transit solution (3.06)s To evaluate (5.17),

let ¢,"?t) =J coswl  so that**

¢70=33th Q?ﬁﬁ‘ﬁa&wﬂ—ﬁ

j?sin wlt-T) (3.18)

@(t) =2 coswt ¢'tt-7)=
@) = s sinwt @'-1) = _;}f,z cosw(t-T7)

B (t-T) =2 sinw(t-7)

Substituting the prover expressions of (3.18) in (3.17} and

*Problem B seems to be of more exverimental interest than Problem A.
However, Dr. J.R. Pierce of the Bell Telephone Laboratories has in=-
formed the author that an exveriment under the conditions of problem
A has besn performed. The divergence between the experimental re-
sults and Benham's published results on the frequency dependence of
the d.c. second order voltage develoned across the diode was the moti-
vetion for carrying out this general second order solution.

**The convenience of complex notation can not be readily used in the
second order solution since the first order current terms avnear as
squares.
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integrating give
7
2 )L ‘ L ‘- :
//,70’7’ = J %}"7'2["2'00525(/[ -z cosRwt cosRwT -7 Ssindwtsm AwT
0
*smRwitsimwT +cosRwt coswT = ¢os w7’j

l .
"'F?’[Sirzzwt cosRwT - cos 2wt sm 2wT
(3.19)
“simwT +cos2wisinwT -smlwt cosw’7’]

/6w4[5ln2wtsm.2w7’ + cos 2wt cos 2w7’] +

+ 7
w0 3[C<752wt smAwT - sin 2wt cos2wT] =& w* /}/

The value of the integral at the upper limit is just the expression
given on the right side of (3.19). However, in determining the value
of the integral at the lower limit, T=0 can not be directly substi-
tuted because of the inverse power of T. Before substitution is made,
all terms involving T are expanded in a power series of Te. Letting T
in these expressions go to zero leaves only the terms

st l1- & cosawt/ (3.20)
Substituting in (3.15), writing ¢-w7 (transit angle), and dividing

both sides by (2.41) (in which a, and A have been set equal to zero),

give
w, 2 .
bz/wbo = %2/1{0 = ik (l{') 4 L@+ Ne)cos 2wt + ey sin 2wt / (3.21)
where
2;0(9)-’-‘/449-6[/-(1056 -osine + 6% - ;0% (3.22)
A) = 1R 6-‘[’— 2056 +cos 20 ~2osme t2esmle (3.23)

’gezcw.?e +3 0% -7675in 29]
}/(9) = ‘/446'6[5;}19 -75m2e -0cose +6cosR6 (3.24)

9 )
*ic 6%sinle -g’e%os,?e]
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For small transit angles, (3.22), (3.23), and (3.24) can be expanded

in powers of © giving *
4 o4 L e, ..
Zo(® =/; “40 0* * 300 ©° ~Gaz400 ©°* azseacoo ©° 7 (z.25)

3! 351 563 18923
Ato) =[/ ~ 70 9 * 3350 6%~ coas0 0“*dcsieea0 6° - _/ (3.26)

Yoy =L b0~ 3} o+ 3fth o'~ iz o”- -~ ] (5.27)

Using the complex transit angle g =<6, (3.26) and (3.27) can be

combined so that (3.21) can be written as**

v L s1)2
V:j ] (fa) [720(9) # Z,,8) cos 2wt [ e {5.28)

where

He)-jree) = 1,6) = 194 5‘3[2—’5"30 26t ) +geE?)  (3.29)
+ig 6(9-1) + 5 et/
When 8 is small,
Liw=li-fo+ Hd—iki+ & ol 5’

J6d £ 16 1, 18923 ,8 . . . .
¢0980 ¢ ~ 73256 " iesc9co0 b ] (3.30)

With the writing of (3.21) to (3.29), problem A**** of the second
order solution is completed. The procedure in using these answers
for a particular problem is as follows. The given data would be the

spacing d, current densities I0 and Il’ and the frequency w of Il'

*Note that (3.21) gives (3.06) when T-0. )
**(a cos 2wt + b sin 2uvt) = (a=jb)cos2ut.Compare (4012)£‘5)
***Compare (3.07).
*¥***See page 29 .
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Vbo for the narticular I0 would be given by (3.00a). The transit
angle required for the first and second order solution would be
calculated by (2.62), which simplifies for complete space charge to
<9=w7’=/44-/o'7w(f)é (2.62a)

The required (Vb)l would be given by the first order electronic
equations (2.70)3* (Vy), would be obtained from (3.22) and (3.29),

or for small transit angles** (3.25), (3.26), and (3.27). Figure 3

shows a plot of (3.22) and (3.29) for 0+ 0% 13,

Problem B
The answer to problem B*** when the transit angle for
the electrons is zero is given by (3.00) and (3.13). When the transit

angle is finite, (3.15) rmst be used with W,, set equal to zero,
T

7
@ = //;’d?’ f//?d?’ A (3.31)
o o
or
7 7

//ZdT ‘f‘/,-al- A:,Kz T4= —//,_,dr (5031&)

[ /]
For a first order current density ¢,"('t} = [cos wi o the right

side of (3.31a) is given by (3.19) and (3.20), or in terms of 220(9)
and 1%, (8) ’,

//70'7, = '[4,4 [ L0 + 1, p) Cos Zwt_/ (3.32)
Using (3. 16), the /" integral can be calculated after substituting
¢z @) - cos 2wt . However, integration is unnecessary since the value

of (3.16) has already been indirectly calculated. Note that the /;

*See appendix 2a.
*¥* @< 2.5
*¥**See page 29.
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integral and the first order potential integral (2.37) with aa and L
set equal to zero are identical with the exception of the subseripts.®
Consequently, the value of (3.16) can be written immediately from the

coefficient T ** with (20) substituted everywhere for o

f/’c/T i K Jy T T(2g) cos 2wt (3.33)
whers  1(26) = 76 "[/ -6+ 2¢°- ]
or _Z'(Z@) = 2—39“’[(; -cos26 -esin 20)- (o +3’—Z¢93— sin e (3e34)

+0Ocosie) ]

Substituting (3.33) and (3.32) in (3.31la) and using (2.6) give

L, = I %,0) and I,(¢): iz (, Lz, cos 2wt (3.35)
or [2 =120 +‘l;z('t) = {[ }[ (@) * T(ZZ}}@ Cos Zwt] (3.36)
Comparing with (3.14) gives
_ L@
tote) = 2, (6) and  f,(p) = Te26)

Equation (3.36) can be written in terms of the applied potentials**

Vo and Vl*‘* as

7%
(y) (/?'(5)//[7270(6}7*7,(;;605&0!/  (3.37)

where /_7,'(5)/ is the absolute value of 2(g). %,(8) and Z,() are
given by (3.22) and (3.29) respectively. For small transit angles
(3.25) and (3.30) cen be used. 1,,(0) and ]2’2(5) are also plotted in
figure 3. Using —7:(5) (aprendix 2a) and 2’;2(6) (Fige 3), the ratio
%,®/72p is plotted in figure 4.

With the writing of (3.36) or (3.37), problem B of the

second order solution is completed. The procedure in using these

%k

Wy =/c,°/ 7¢,ct~w)—¢(z/ # T4 (¢-7) +Z 774, (t-T)]IT

**See appendix 2a.
***Compare (3.11) and appendix 2a.



34
answers for a particular problem is as follows. The given data would
be the spacing d, the potentials Vo and Vl, and the frequency w of Vl.
I, for a particular V, would be given by (3.00), and {2.622)* would be
used to calculate the transit angle. The first order current I1 would
be obtained from the first order electronics equations (2.70).*=*The
second order current Iz would be given by (3.36).

The above answers (3.28) and (3.37) for the second order
solutions are in complete agreement with the results of the conservation
of charge method used by Benham.(s) Though the conservation of charge
method seems to involve slightly less labor, the Lagrangian method
illustrated here seems to be more systematic once the fundamental expres-
sions for the 0's are obtained. The agreement between the two results
for the completely different procedures gives assurance as to the
correctness of the final results.

For higher order solutions, a similar but longer procedure
than that shown above for the second order solution would be followed.
The contributions of the higher expressions to the current demsity and
voltage for the zero transit case can be obtained by continuing the

).(22’ For the third order solution, (2.40)

expansions (3.06) and {3.11
would be used with the ¢, 6, » and 63 substitutions. The amount of
labor required in performing these higher order calculations is of such

magnitude that a strong motivation to explain some accurate experimental

data would be required.

*Poga 32.
**See appendix 2a.
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Part IV

MULTI-VELOCITY ELECTRON STREAMS

Introduction

As was stated previously,* the cathode-control grid
region behavior of microwave tubes cannot be deduced in general
from a single valued velocity electron stream theory. An exception
to this statement would be the case when a tube is operated almost
temperature limited** so that the potential minimum is small in
magnitude and very close to the cathode compared to the cathode-
grid spacing. Because of cathode surface irregularities, operation
close to temperature emitted conditions are undesirable since an
accelerating field acting on any part of the cathode surface
seriously reduces cathode life. In addition, by this mode of
operation the beneficial space charge reduction of the shot noise
in the emitted electron stream would be lost. A theory to explain
the behavior of microwave tubes must then take into account multi-
velocitied electron streams since with the existence of a potential
minimum electrons are traveling away and toward the cathode. Since
microwave tubes must have very close element spacing to reduce the
electron transit time, the distribution in electron velocities would
in itself cause the electron stream to behave differently than a

single valued theory would predict since different velocity groups

*See introduction of Part I.
**Temperature limited overation would occur when all the electrons
emitted are drawn away so that none return to the cathode.
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of the electron stream would have appreciably different transit
times.
In the sections to follow, a multi-velocitied electron
stream theory will be forrmlated. The method of approach is similar
to that Richardson used many years ago in his investigation of emission

25
of electrons from hot metallic surfaces.( _)(26)

lMore recently,

Dr. F. Gray, Bell Televhone Laboratories, in an unpublished memorandum
has made a similar approach to the problem. Though the theory to be
stated is not complete in all details, the method of approach is
believed to be pregnant for further investigation of multi-velocity
streams. The particular emphasis of the theory is in the mechanical
properties, density, momentum, and kinetic energy of the electrons

and their interaction with the electric field.s In the single valued
velocity theory, the approach has been to obtain relationships between
~boundary quantities, as applied voltage, total current'density,
conduction current density and velocities at the g and b planes.

The interaction between the electrons and the electric field in the
intervening space between the boundary planes is placed in the back-
ground in the steps to solution. The multi-velocitied stream theory
to be formulated will be given in terms of quantities representing

the electron stream and electric field interaction. This vrocedure
brings to the foreground the fundamental physics of the problem and
may make possible general conclusions in problems where exact solutions
would be difficulte.

To evaluate the mechanical properties of the electron

27
stream, the procedure used in classical statistical mechanics( ) of
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introducing a distribution function seems to be the logical approach.
Consider a funection D(x,v,%t,)* such that D(x,v,t,)dv gives the number
of electrons per unit volume in the velocity range v to v+ dv at the
spatial vosition x and at the time t.** Following Gibb's(27)
notation, D(x%,v,t,) will be called the density-in-phase.*** lultiplying
the density-in-phase by the electron mass and integrating over all
electron velocities at spatial position x give the total mass density
() of the electron stream.

N(xt) = me/D(x,l;t)o’v grams/cm® (4.01)
The momentum of the electrons per unit volume, the momentum density,
at space position x and time t is

P(x,z) = mc/D("‘)U) volvy grams/cmg/sec (4.02)
The kinetic energy of the electrons per unit volume, the kinetic

energy density, at space position x and time t is

K(xt) =g'mefD(x, yt) viv grams/om/sec” (4.03)

Using (4.01), the charge density of the electron stream

is****

p=—,;,€/V(x,i)=‘6/D(Mi)dV (4.04)
4
Using (4.02), the convection current demsity (Q)} at space position x

and time t is p 5
QUi t) =~ iy A1) amp/em (4.05)

Equation (4.05) can be used to define an effective velocity (U) for

the stream; that is, multiplying U by the charge demsity e (404 )

* D(x,v,t,) = [P}IL]-*

**If positive ions are present, analogous quantities, as that shown
for electrons above, can be introduced.

***%In what is to follow, the demsity-in-phase will, however, be used
in the Maxwell and Boltzman sense. The density in phase will represent
the distribution of the electrons of the stream in a two dimensional
configuration and velocity phase snace.

****See footnote on page 8 .
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gives the same value of Q as (4.05).

Ocxt) =pld = =~ i U N ) (4.06)
From (4.05) and (4.06)
U=y, (4.07)

Using (1.2), the total current demsity, convection plus displacement
current density, is
2 e
“let) =Q+ €4 = Pixt) feft[ amps /em® (4.08)
&

Using (4.04), Gauss' Law (1l.2) can be written as

s
€57 70~ " Nnt) (4.09)

The relations that exist between P, N, and K can be
determined in the following way. Consider a unit area parallel to
the a and b planes of the space contained between the space positions
x and x+0x (Fige. 5}« The total mass of electrons contained in this
volume in Nax, which can change by having electrons flow into or out
of this region by crossing the two boundaries. The electron mass
flow into the' region across the left border for the velocity packet

v to v+dv is (mede)v. The total electron mass flow across the left

border is

mefpvdv - P (4.10)
The total mass flow across the right boundary out of the region is

-/ Pexer + KD pif (4.11)
Consequently,

JZJ{/VAX) = Pex ) - /P(x,t) * 3‘5("“0{/ (4.12)

Since 8 x is constant, it can be removed out of the time derivative

on the left side of (4.12) and cancelled from both sides giving
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%V(x,t) + (;)_{(x,t) =0 (4.13)
Equation (4.13) is the conservation of charge for multi-velocitied
streams. It is not a new relation between N and P since it is implicit
in (4.08). By differentiating (4.08) with resvect to x and using
(4.09), (4.13) follows. The procedure used above to derive (4.13) is
more desirable since the mode of thinking will be useful in obtaining
further relations.

A new relation between N, P, and K not previously written
into the equations can be supplied by applying the comnservation of
momentum to the A x region (Fige 6} The momentum of the electrons
contained in the ax region is Pax. The momentum contained in ax
can change by momentum flowing into or out of the region or by the
electric field acting on the electrons contained in a x. The momentum
flowing into A x across the left boundary for the velocity packet v
to v+ dv is (meDvdv)v. The total momentum crossing the left boundary
is

m [Dvid - 2K (4.14)
The momentum flowing out of the ax region is

z/h:(x, ¢) * jf"’“ax/ (4.15)

The electric force acting on the electrons in the ax region is*

F=10"Epax = -1077 ENax --LENax (4.16)

Using (4.14), (4.15), and (4.16), the change of momentum in the

x region is

J K
5t (Pox) = ZK—Z/K)‘;; axf -LEN oy

*See (1.3} for force equation in practical-cgs units.



40

Since ax is time independent,

ip*z *LEN =0 {(4.17)
The mass density (N) in (4.17) can be eliminated by use of {4.09) so
that (4.17) becomes

¥ +E L2k -F10%E? = 0 (4.18)
The electric field energy density in the cgs-practical unit system is
;'1/£=25/07[z ergs/cms, so (4.18) can be written as

o’P .)[2,{ wJ-o (4.19)
Equations (4.19) or (4.18) in combination with (4.08) are the multi-
velocitied stream equations. As the density=-in-phase is completely
general, these expressions hold for any kind of electron velocity
distribution including the limiting case when the stream becomes
single valued.* The two independent equations (4.19) and (4.08) have
three unknown P, K, and E, Since P and X are integrals of the
density-in-phase D, they are immediately determined when the form of
D and the limits of the integrals for P and K are known. Thus, P and
K can be considered as one unknown and (4.08) and (4.19) for a
complete set. The density=-in-phase D satisfies the fundamental
equation of classical statistical mechanics, namely, Liouville's
Theorem. For matter of completeness, Liouville's Theorem will be

derived since it will point out some fundamental properties of the

density=-in=phase.**

*For the single valued velocity stream, the density-in-phase becomes

the imvulse function (Dirac delta function].

**In the customary proof of Liouville's Theorem, the egquations of
motion in the canonical Hamiltonian form are used with a momentum-
configuration phase snace. However, for the one dimensional flow
under investigation here, this generality is not necessary.
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The total differential of the density-in-phase is
JdDxvt) D + 2Ddv , IDJx

dt T at IVt T Jxdt (4,20)
Using (2.2) and v=dx/dt, (4.20) can be written as

<O _ D _, D, 3D

gt 9t Abgv TV (4.21)

To calculate j}D , consider the two dimensional phase space shown in
figure 7. The total number of electrons contained in the elemental
vhase space AvAx situated at v and x at time t isD(x,v,t,)avax. If
the boundaries of the elemental vhase space are kept constant, the
variation of the number of electrons contained within its boundaries
as a function of time will determine ;}D .
The number of electrons contained in pvax can change

by means of electrons crossing the four boundaries of the elemental
phase space. The number of electrons crossing boundaries (1) and (3)
is (Dov) dx/dt or Dvav, and v(D+ j—fax)ov respectively, The net
flow across these two boundaries is

avOv - v(D+ j—fax) ay = - v JQ}'{D oxav (4.22)
The net electron flow across boundaries (2) and (4) can be written
with the aid of (2.2) as

thynx -(D+ (%)av)ﬁv = ~DLEpx ME(D+j);DaV)0x=-IEf;Dovnx(4.23)
The total flow across the border of the elemental phase space area
avax is

j%(Doxnv) = —v};o oaxov + lff;onvax (4.24)
Since the boundaries are time ‘constant, pxXov can be removed outside

the time differential giving
D _ JD

0
32 - TViay tUhESY (4.25)

Substituting (4.25) in (4.21) gives
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JD(x,v, t)

Jdt T o (4.26)

Equation (4.26) states that the total time rate of change
of the density-in-phase vanishes. This expression is known as
Liouville's Theorem and is of fundamental importance in treating multi-
velocitied electron streams. Integrating (4.26) gives

D(x!vit") =0D(x\v¢') (4.27)
The physical implication of (4.27) are as follows. Consider a group
of electrons at time t', with a velocity range v' to v'+ dv! and
spatial position x' to x'+ dx'. At some later time t">t' the electrons
will have executed a motion such that they will occupy an elemental
phase area at v" and x". Equation {4.27) states that the density of
electrons at v'" and x" will be the same as that at the prior position
x' and v'.*

Another way of stating the physical implications of (4.26)

has been shown by Gibbs,(?s’

and is called by him the "conservation of
extension-in-phase™. The number of electrons contained in a phase
area is given by

//D(x, ye)dxdv (4.28)
If the phase area is small, D can be regarded as a constant and moved
outside the integral in (4.28).

D //dxo/‘, (4.29)
As the electrons execute their motion, (4.29) remains constant since

no electrons enter or leave the phase area, because the motion of the

limits is identical with that of the electrons. However, (4.27) shows

*Because of this physical behavior, Gibb's refers to (4.27) as the
"conservation of density-in=-phase'.
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that D remains constant. Consequently, the integral
//dx e (4.30)
which Gibbs calls the "extemsion-in-phase", is also coustant in time.v*»_
Equations (4.08), (4.18), and (4.26) form the multi-

velocitied stream equations. To summarize, they are repeated below.

“I(t) = ,,18 P +¢€ J‘ff (4.08)

Jt [Z/l" C—E/ 0 (4.18)

oD

Jdgz =0 (4.26)
where

p = )‘”E‘/‘Dydy (4.02)
and

K= é%/szc/V (4.03)

The similarity of the multi-velocity and the single
valued velocity equations can be easily shown. Using (4.07), (4.08)

can be written as

“I(t) = pH + €} J[ (4.31)

Using (4.07) again, the continuity equation (4.13) can be written as

-2 un) =2 Gt/ (4.52)
Performing the indicated differentiations in (4.32) gives

JtP ”Pjt” - Ny d;l ”za)ylv (4.35)

Using (4.07) for the first term on the right side of the equal signs,

Y
adding, and subtracting AU/@; give

J/’
/VJt */Vl(;}/ ‘Z/Vl/,;/g _”l)/l/ (4.34)

The effective velocity U can be written as dx/dt reducing (4.34) to

*Gibb's definition is in terms of momentum and configuration coordin-
ates. In the strict sense (4.30) should be multinlied by m, before
applying the designation of "extension-in-phase.
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iz =~ Ny _J,%/(/VZI‘Z} (4.35)

Substituting in (4.17) and dividing through by ¥ give
i’”",vz)’%[K-‘e”/Vl{{/:‘l[ (4.36)
Equation (4.36) differs from the single-valued equation
(2.2) only in the second term on the left side.* This term expresses
the difference between the mean and the actual kinetic energy density
of the stream. When the spread in velocity of the electrons in the

stream becomes small, this term approaches zero and the behavior of

the stream can be calculated neglecting the velocity svread.

Density-in-Fhase HExamples

Since the focal point of the multi-velocity theory is the
density-in-phase, a number of examples of its behavior will be
illustrated. For stationary fields,** the density-in-phase is only a
function of the total energy (potential plus kinetic) of the electrons.
This can be shown in & number of ways, but the most straight forward
proof is obtained when the canonical Hamiltonian ecuations of motion

are used. These equations for one dimension motion are
H J

Amy) ~ dt and gy 7 ot

where H(mv,x}, the Hamiltonian, is the total energy of the electron.

{4.37)

For a stationary field, the density-in-phase at any x and v is time

independent so j{=0 « Liouville's Theorem (4.26) with the aid of

(4.37) is
_ 9D JH D IH __ _ 4,38
ov o T ok spmw) "9 IS

€

*Bquation (4.36) was first derived in a memorandum by Dr. F. Gray.
**Time dependent fields.
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Equation (4.38) is a first order homogeneous linear partial differential
equation with the general solution*

D= Ff(H) (4.39)
Consequently, for the stationary fields the density-in-phase is only
a function of the total energy. ©Since electron trajectories for
stationary fields are along constant energy paths in phase svace,
(4.39) states that the density-in-phase is constant along every
trajectory.

A simple example to illustrate the extemsion-in-phase
(4030} and (4.39) is given in figure 8. Electrons are injected across
the x, plane into a region of retarding field. It is assumed that the
electron space charge is small so that the field is linear. The
magnitude of the retarding field (E) is 112.5 volts/cm.* The electron
trajectories are parabolas and are drawn in steps of 0.1l electron
volts. Consider the electrons enclosed in the extension=in=-phase
abed at a time t, which are bound by the energies H2 and Hl' and the
velocities A and Vq. At some later time to>ty, the extension~-in-
vhase will have moved to a'b'c'd' bound by the velocities vz' and vi'e

The extension-in-pvhase « at tl is

O(.t_t = (/0755‘)_'[/-/2 —/'/I)(l{z —V,) (4040)
and at t2
w = (10%eE) (H-H)(v-v") {4.41)
2

From the force equation (2.43) the primed and unprimed velocities are

related by m, (v -y) = “/10cE(4-t,) (4.42)

*This can be readily verified by substituting in (4.38) and using (4.37}.
Compare (29}, :
**One volt applied across plate spacing of 8.89 x 10~% cm. (3.5 x 10'31n.).
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and

M (v'-v) = 10eE(t,-t,) (4.43)
Equating (4.42) and (4.43)

W -v' = %oy (4.44)
and substituting in (4.40) and (4.41) show that the extension-in-
phase is constant as (4.30) demands. It is to be noted that though
the extension-in-phase is constant, the shape varies along the phase
paths. (Fig. 8).

If the plane xo is a thermionic cathode, the emitted
electrons will have a Maxwell-Boltzmemn distribution,*

D =0 exp(- 2%;2) (4.45)
where k is Boltzmann's constant and T is the a?solute temperature of

the emitter.** Using (2.43) and (4.39), the distribution for x x

o is
V- Ty Loy (4.46)
D(x,v) = O expl~ inr * 27 y
where lx) is the potential at x. Defining
-7
. kTI0"_ 7 .
b= "¢ = o Falin bided
(4.46) can be written as
- vt V)
DOy = O expligy * 7 (4.48)

Equation (4.48) will be extensively used in Part V; further remarks
will be included there.

The equation which is the basis of the conservation of
charge method of treating single valued velocity electron streams in

(32)

diodes and velocity modulation tubes can be readily derived from

the conservation of extension=-in-phase. For a single valued velocity

*Striectly speaking, the distribution is & Fermi-Dirac one; however,
for the densities involved(th? 0. distributions are indistinguishable.
**See appendix 1. Compare \307!,(31),
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electron stream with a stationary accelerating field, the phase space
plot will be similar to that shown in figure 9. The phase space electron
flow is tube-like or solencidal. The electrons entering the tube at

the phase coordinates vo and x_ at a time to will be found at a later

o

time tl at the phase coordinates v1 and Zqe When the electric field is

time dependent, the boundaries of the flow will pulsate with the funda-
mental and higher harmonics of the frequency of the electric field. For

example, the fundamental frequency pulsating velocity at x, will be given

1
by the third equation of (2.70) for the case of a very small time
devendent field perturbing a much larger stationary field. Higher order
pulsating veloeities can be calculated from (2.31) and (2.32). The
number of electrons crossing xo (Fig. 9) in the time dto is

D(x,5,8)dv ydt, (4.49)

or
D(x,y, t,) Jv,dx, © (4.50)

°) %0y

since y dZ =dz,

The number of electrons crossing xl in the time dtl is

D(x, v, t)dv, v,dt, (4.51)
or

Dix,v, ¢t,)dvdx, (4.52)

since vy d¢ =dyx,
From the conservation of extension-in-phase, (4.30) and (4.27),

Dl v, ¢,)d5,dv = Dx, v, ) dxdy, ; (4.53)

consequently, (4.49) and (4.51) are equal

Dix v 2 (4.54)

0y "0 ) 0

) y,dy,dE, = D(x,v, t) vy, dE, .
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From (4.02) and (5.04) for a single valued velocity stream, (4.54)
becomes  @(x, ¢, )0t = Q(x,¢,)J¢,
or vy
— 0

QL) = Wlo,é)dz,/ (4.55)

X = constant
This is the conservation of charge equation which relates the convec~
tion current at xl and tl to that at a previous vposition X, and to.
Though the above develovment is for the one dimensional electron flow
between parallel planes, the same result can be obtained for other
configurations (for example, coaxial ecircular cylinders}, since the

conservation of extension-in-phase anplies for generalized coordinates

and momenta.
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PART V

STATIONARY ELECTRON STREAM SOLUTIONS

General Theory

For a stationary electric field,* the multi-veloecity

equations (4.08), (4.19), and (4.26) simplify to the following:

I= V”i P (5.00)
9

g L2k -w)=0 (5.01)
W0dx , Wd

HE o (5.02)

Since the current density (I) is constant for a stationary field,
(5.00) shows that the momentum density is independ;nt of the space
position x (conservation of momentum density). The terms of (5.01)
are only a function of x so that the partial derivative can be

written as a total derivative. Integrating (5.01) gives

2[ Kex) K] = W) - Woix) (5.03)
Defining
K(x) - K(x) = 0K (5.04)
and W) - W (x)= W (5.05)
(5,03} can be written as oW
a—,(f= (5.06)

Equations (5.06) and (5.00) are the fundamental equations for stationary
field electron flowe They apply to any type of electron velocity dis=-

tribution, multi-velocitied or the limiting case of single-valued

*In the electronic literature, this would be referred to as a d.c.
solution. This is an erroneous designation since the solution can
be applied to any frequency provided the electron transit time is
very small compared to the periodicity of the applied fields.
Compare (2.70) and appendix 2 for the single valued velocity flow
case. :
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velocity. The solution of (5.06) can be treated gravhically step by
step or analytically. Which method is chosen will depend on the
accuracy desired and the form of aw, and oK. Equation (5.08) gives a
physical interpretation so readily that it will be called the theorem

of stationary one dimensional electron flow.

Theorem
For a one dimensional electron flow acted on by a stationary
electric field, the difference between the electric field energy density
for two spatial positions is equal to twice the difference between the
kinetic energy density of the electrons for the two spatial positions.*
Equation (5.06) with the use of (5.05) and the definition

of Wy can be written as

10
F€[E%) - Ebuy] = Kix) K (5.07)
Writing the electric fiel%lin terms of the potential gives
’ 07 3
‘/dx = (4 %) =/[E?m + 20 [r -k )] IV (5.08)
% ¥

The relation between potential and distance in terms of the boundary
value of electric field and kinetic energy density is given by (5.08}.
Using (5.00}, the conservation momentum density, and (5.08), the
stationary electron flow problem is solved for any electron velocity
distribution, for example, Fermi-Dirac, Maxwellian, or the limiting

case of single valued velocity.

*Fowler states the following theorem,(ggT "The equilibrium state of
the electron atmosphere is characterized by a minimum value of the
ratio of the electrostatic energy to the kinetic energy of trans—
lation of the electrons.” However, the electric and kinetic energy
referred to are the total energies contained between the parallel
plates and not the energy demsities. Compare(34).
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As was mentioned in vart IV, for a single valued velocity
stream, the velocity demendence of the density-—in—ﬁhase becomes the
impulse function. Using (5.00), (4.02) and (4.03) become
P=m¢,/DVo’v=menv=g?‘l (5.09)
and K= 3/ Dvidv = 5 nv? (5.10)

where n is the electron rumber density (electrons/cmz).

Single Valued Velocity Electron Stream Example

To illustrate (5.08) for a single valued velocity stream,
consider the configuration shown in figure 1 where the g plane is at
a potential Va, the b plane at a potential Vb. Assume all the electrons
injected across the a plane move to the b plane (Vb>Va) and that the
electric field at the g plane is zero. From (2.43) and {5.09), (5.10)

becomes m B
K = Eel(% V)z (5.11)

Substituting (5.11) in (6.08) and setting E(x)=0 give

7= 260000yt + 2y v emps /em? (5.12)
If V, =0, this reduces to Child's law (2.44). If the a plane has a
field acting on it different from zero and & potential minimum exists
between the g and b planes, (5.12) gives the relation between Vv, and
the potgntial minimum voltage Va. T™wo expressions of the form of
(6.12) can be combined (one relating the potential minimum voltage to
the & plane voltage, and the other relating the potential minimum
voltage to the b plane voltage) to give the relation between I, Va,
and Vp. For the maximum injected current, this expression reduces to
(2.51)s Any other potential combinations for the & and b planes can

be solved by application of (5.08). The relations (5.12) and (2.51)
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have been obtained by & number of writers(le)’(lg) by the double
integration of Poisson's equation. The method illustrated above is
believed to be more straight forward and simple in application.
Aside from the fact that (5.08} can be applied to any electron velocity
distribution, its merit lies in the fact that attention is drawn to
the mechanical properties of the electron stream. This is of parti-
cular importance in bringing forth the vhysics of the problem. For
vacuum tube operation, in particular when time varying fields are
considered, can only be properly understood in terms of field and
electron interaction and not in terms of boundary properties as

current and applied voltage.

Multi-Velocitied Electron Stream Exsmples

Consider figure 1 again, with the & plane a thermionie
cathode ejecting electrons with a Maxwell-Boltzmann velocity distri-
bution (4.45), and the b plane an anode at a negative voltage -Vh
with respect to the cathode such that there is a retarding field
everywhere between the g and h planes.* For an electron just to
reach the anode,** it must be emitted from the cathode with a velocity
in terms of V, given Byt

=24/, (5.13)

If an electron's eﬁission velocity is greater than Yy s it will reach

the anode with a finite velocity; if it is less than Y% s it will

return and strike the cathode. The phase space picture of the above

*For large values of retarding voltage, the field between the g and b
planes will be very close to linear and the phase space will be
similar to that shown in figure 6.

**Zero veloecity at the anode.

***See (2.43),
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is given by figure 10. The velocity with which a returning electron
strikes the cathode is of the same magnitude as its emission velocity
but of opposite sign since it is moving in the -x direction. For any
position x, there will be electrons returning to the cathode whose
emission velocity lies in the velocity range O¢v<v, (Fig. 10). The
electrons which leave the cathode with a velocity g[,* and consequently
return to the cathode, will determine the border between the density-
in-phase given by (4.48) and D=0. This border velocity (v'} will
determine the lower limit for the N, P, and K integrals, the upper
1limits being infinity.
The constant D,, that appears in the density-in-phase

(4.48), can be determined from the emission current density of the
cathode. Since the off-cathode field is positive** (decelerating
electron field}, the emission current is only a function of the
vhysical properties of the surface and its operating temperature,
and is given by Dushman's equation(zﬁ)

L =Arexp(-7) rxx (5.14)
The relation between the emission current density**** and the emission
momentum density is given by (5.00}s Using (4.48) with V set equal

to zero and (4.02) gives***x**

* - .

v, =12f2(5'6)

**This excludes the Schottky effect.(55) However, for thermionic tubes
with negative off-cathode fields, the field is never of such magnitude
that the Schottky effect must be considered.

***A and b are constants characteristic of the cathode surfaces T is the
absolute temperature of the surface.

****Note this is not the total current density at the cathode but only
the current density produced by electrons leaving the surface. The
total current density would have to take into consideration the return-
ing electrons. See (5.18).

*kk**See appendix 3.
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_ 2
L=c 8 expl-iy. ) vov (5.151
Integrating (5.15) and solving for Do result in
-/
0 = L (L) (5.16)
The conservation of momentum density (B.00) states that
the momentum density is constant (indevendent of x}. Using (4.02)
and (4.48) gives
4]
_ e Vex
P'”%/Do cxp(-zay, 7 i, vy : (5.17)
-V
The border velocity v' equals 7[ at the cathode and approaches zero
at the anode. Integrating (5.17) gives*
. L %/ 5.18
P2 n exp(- ) (6.1¢]
where ;Zz =le§, « Eguation (5.18) verifies the constancy of the
momentum density. Substituting (5.18) in (5.00) and using (5.16)

result in v/
I=I cxp(- ._VL) (5.19)

T
(37)

Equation (5.19) is known as Boltzmann's equation, and shows that
the anode and emission current density are related by exjp(—/%,yvr }s
For further calculations, it will be convenient to define
a potential (V') measured relative to the anode. The relation between
V' and V (the potential measured relative to the cathode) is
V”"V*‘/Vb/ (5.20)
Note V' = Vy at the cathode where V=0; and V'=0 at the anode where
V= -]Vy|s Comparing v' (the border velocity) and V', it is seen that
they are related by vii=20v' (5.21)

Though the mass density N is not necessary in determining

*See apnendix 3.
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the potential distribution, it will be calculated since it is of

physical interest. Using (4.01) and {4.48) gives

- P 4
N = meof / fxp(‘zn + E—/dy (5.22)
Using the integrals given in appendix 3, (5.22) integrates to
_ i v'-1v/ Vi .
N =z m@ exp] =27 [1+ erf ()Y (5.23)
At the anode, x=4d and V'= 0, so
_ n? 1Y)
N@) = 55 m B exp(- ) Lol
Using (5.16) and (5.19), (5.24) can be written as
Nei) = 1831071 T% (5.25)
where the mumeric is (rrme‘y/zjzez}z
_ v vz 3
N =N() exp(%}[/ # er/'(”r ] grams/em (5.26)
Multiplying (5.26) by —,;;3 gives the charge density e in coulombs/cm5
4
(compare (4.04). Using (4.07), {5.18), (5.25), and (5.26), the

effective velocity (U) of the stream is
‘ o
4 74 v z’/
= 2 — — 5027’
[an C}t/)((/r/[/ fcr/[l,r}] {

From (4.03) and (4.48), the kinetic energy density is

3 p/exp/ 2y, V}Vé/:/ (6.28)
Resolving the above integral into two varts and using the formulae
given in appendix 3, (5.28) integrates to

2 = L V'z’ v
K=o m 2 exp( "—yﬁf"’/[/fer/(,{/"'—z/;,,;/ exp(-i)] (529

at x=4d,

Ke) = mD ckp(- —b/) - 139107 1T? (5.30)

2.
where the numeric is (me/rﬁ/gez)
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In terms of N(d),

K() = 75810°Nw) 7 (5e31)
. o A
where 75810 = ~
Zm,

Substituting (5.30) in (5.29), the kinetic energy density is

K= Kdl) cyp(,—,f)[/ * er/(;r—//'é— z/ryi,/ilp(— 7’-;,}] (5.32)
Equation (5.32)} gives the kinetic energy per unit volume. Dividing
(5.32) by (5.26), the rumber of electrons per unit volume will give
the mean kinetic energy per electron. The actual kinetic energy of
any electron will differ from the mean kinetic energy and will depend
on its emission velocitye.

In (5.26) and (5.32), the potentials V' and Vp always

aprear together and suggest the introquction of a new dimensionless

variable 7Y , defined as

¥ VeI (5.33)
(f_ V'I' - V77
Using (5.33), the mass and kinetic energy density can be written as
N =Ne) ell1verf vt/ ' (5.34)
2 5 _Y
/(=/((o/)c‘f[/+cr/l/"’-2/,-;f‘e / (5.35)

Since X is written in terms of ¥ , it will be convenient
to take x, and Vo in (5.08) as the anode position and potential and to
integrate (5.08) from the anode to the cathode. The final form of
(5.08) can be simplified if the new variable £ is introduced for X4

§= (X'OU

where ; (5.36)

and

R T A T T s LI 0 R g
s e
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H-K()
Introdueing F(¥) = | ~xry)
) 0t )i
or in extenso F(¥) = (1 terf¥i)e’ - 2(L) -/ (5.38)
(5.08) becomes*
g’( ?é ’
3
%’5 =//Q9’g2ifﬁ(w/o/‘/ (5.59)
where ’ ’
JdO2E B Ew))*
th{_o ‘/cf %) (5.40])
and the upper limits
..o /Y
65 and ¢ - —,;J (5.41)

Integrating the left side of (5.39) and using (5.41}, (5.37), and

{(6.19) give
g«. 5 3 « ’Z‘K
S ol
-/dé‘ = 91804 T°L ¢ (5.42)
Substituting (5.42) in (5.39) results in
%
P B . . 1 =
21510 7’@{ c =/[Q—,§4__o+/’(<{//d$ﬂ (5.43)
The integrand on the right side of {5.43) is of such form that numerical
integration must be used. To evaluate (5.43}, values for T, d, and Ie

would be assumed. The left side of (5.43) would then be tabulated in

terms of 7. This can be done by plotting on logarithm graph paper.
A value for the off-anode field is assumed which then determines Cﬁgzj;.
Using (5.38), the right side of (5.43) is numerically integrated and

its value as a function of ¥ is tabulated or drawn on the above
mentioned graph. When the right and left side of (5.43) are numerically
equal, the value of ¥ gives, by (5.41), the retarding potential (Vy)

for the particular assumed off-anode field E(d). Choosing a range of

*An extensive tabulation has recently been given by Kleynen!(o8!for
(5.39), when the off-anode field is zero (*iﬁgg).
%-0
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values for E(d), the potential distribution, retarding potential, and
anode current can be determined.
Figure 11 shows the potential distributions for the
following values of the quantities aprearing in (5.43).*
I, =0.1 amp/em?, T=10% deg., d=8.89 x 1075cm. = 3.5 x 107 1n.

Substituting the above values in (5.43) gives

/45 ¢ -4 /[( / + ﬁ(e//o/? (5.44)
where 7 = 1605yl
5l (%) =-rms10” T gy
5 %-0

For ¢¥25, P(¢v) can be approximated by 2efe At ¥- 5, this approxima-
tion gives a value of F(¥) 0.82% too large; for %< 6, 0.25% too

[72%3
large. When F(¥) » dgja , the right side of (5.44) can be written as

/ /. P(?)/-z[ /= ffg?;fo (2Fe0) JIY (5445)
or when Fl(y) << [ T8 o as
(}’gl/;/f; /[/ : Fe (), ] ot (5.46)

After (5.44) is tabulated, the relation betwsen V and x
makes it possible to evaluate the mmber density (5.34), the kinetic
energy density (B.35), and the electric field (5.07) as a function of x.
In appendix 4, the retarding voltage, the off-anode field, and the
off-cathode field are tabulated. In addition, the field at 0.254 x 10"5

(0.1 x 10 in.) from the cathode** and the linear field that would

exist if no electrons were present are given for comparison. The

*In part VII, this example will be used for a calculation of high
frequency loading. .
**2,86% of cathode-anode spacing.
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retarding voltage for a zero off-anode field is =0.3155 volts. As
the retarding voltage is increased in magnitude, the electric field
throughout the diode appnroaches linearity ravidly. Figure 12 shows
a plot of the off-anode, off-cathode, 0.254 x 10™3 cm from the
cathode, and linear field versus retarding voltage. The above
mentioned rapid approach to linearity is clearly exhibited.

As the retarding potential is decrsased in magnitude,
below ~0,3155, the zero field moves away from the cathode producing
a potential minimum at a distance X from the cathode. The equations
derived above for the retarding field diode can be used if (5.20)
and (5.36) are re-defined as

V=V + 1/ (5.47)
and £ - iﬂ'—’M (5.48)
where lﬂﬂ is the potential minimum voltage and X, is the distance
of the potential minimum from the cathode. In addition, in the N and
X expressions d is replaced by X o The anode current will be given by

(5.19) with IV,) substituted for |V The definition (5.48) shows

bl
€20 d2x2xy

§<0  x,0x20
For convenience, the diode space where §°0 will be called the A

(accelerating field) space; where ¢ <o , the R (retarding field) space.
The phase space given by figure 10 will hold now only for the R space.
The total phase space for the present field configuration is given in
figure 13,

The lower limit for the number density integral in the A

space will now be v' instead of the previous =-v'. Consequently, the
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second term in (5.34) for the A space will have an opposite sign.*
N =N(x,) € Ti-ent 487 (5.49)
By noting the change produced in the integrals in (5.28) when the sign
of the lower limit is reversed, the kinetic energy in the A space will
be given by
/(=/((X,.,)e(([/—er/’/zl+2(,-,-(’)ic'{'7 (5.50)

The N and K expressions for both A and R space can be written as

N = N(x,) c?/ 7 erf 4”7 (5.51)
and K = K(x,,)cl,[lifrf‘/’é-*/?/ﬁ‘( éc-(f/ (5.52)
where the upper sign is used in the A space and the lower sign in
the R spacs.
The potential distribution integral (5.39) can be written

for the A and R space as **
3 14 s
+ . 74 A 2
'A? =//[/ Ferfv*/e !2/;?—’ ‘—//o’V (5453)
o ¢

Equation (5.53) is exactly the same expression that Professor
PeSe Epstein(sg) obtained for the above problem by double integration
of Poisson's equation. Langmuir later obtained the same expression

when he repeated the problem. (40)

The method illustrated above using
(5.08) is more straight forward and gives a better physical picture.
Attention is focused on the electron behavior and the interaction

between the electrons and the field is emphasized as it should be for

*This is physically obvious since the electrons in the velocity range
0 to =v' added to the number density in the R space, while in the A
space there are no electrons in the velocity range 0 to v'. The
first term in (5.49) represents the density contribution for electrons
in the velocity range zero to infinity.

- (d‘f/dgzg 0 since the field at the potential minimum is zero.
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proper understanding of vacuum tube operation. Once the kinetic energy
density is written, this step not being an unnecessary one since the
guantity is of physical interest, the potential distribution {5.08)
is given by one integration.
As was previously mentioned, Kleynen has recently published

an extensive tabulation of (5.55).(58)

In the calculation of electron
transit time, an expression for the potential versus distance would be
necessary. A series solution for this vurpose can be obtained from (5.53)
by a laborious calculation which will be briefly outlined. For conven=-
ience in writing, a new variable y- ‘f’é is introduced in the intergrand
on the right side of (5.53) which is then expanded in a power series
inn. Next, the negative one half power of the series is taken, and
the resultant series is integrated term by term. Resubstituting gives
§ - a9+a,§’;,+az$”+ - . *a’?f/;f-* . (5.54)
The coefficients a, are given in appendix 5. By inversion and squaring
of (5.54), the series expansion for ¥ in terms of £ is obtained.
b +5E+ 58 - - £ (5.55)
The coefficients bn are given in appendix B. In figure 14, the mass
density ratio N/l\T(xm), the kinetic energy density ratio K/K(:gn), and ¢
are plotted against & . Because 7 and £ are dimensionless, these
curves can be applied to any value of the parameters I, T, V, and d.
As figure 14 shows, the mass density and consequently the electron

charge density decreases rapidly as x moves away from the cathode.

In the A space, for large values of ¥ * the mass density

*Since ¢ V'/Vp, ¥ can be large for small values of V'. For example,
for ?-10%, V,7l= 11.605.
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ratio, with the use of the semiconvergent series for the error

function,(ZS) can be written as

- SR S _ -3
Nixy) awil! - 77 fegr T J (5.56)

The error in using a given number of terms in this expansion is less
than the last term used. For voltages V' greater than one or two volts

M E )t | (5.57)
Using (4.07), (5.00), (5.57}, and (5.25), the effective velocity in
the A space for large values of ¥ becomes

U= (5re) (5.58)
With the use of (4.47}, (5.33), and (5.47), (5.58) can be written as

e (2,,—5;3’07[1/ t1vi]) (5.59)
The average kinetic energy of an electron in the stream is

Im i 10" (vt 1vyt) (5.60)

An electron starting from the potential minimum with zere velocity
would have a velocity U at the potential V given by (5.60).
Consequently, for values of V+IVyl in the order of a few volts, the
milti-velocitied stream behaves as if it were single valued. In
analyzing vacuum tube behavior in the regions beyond the first grid,
the electron stream can be usually treated as having a single valued
velocity. The accuracy of this approximation for any case can be
checked by the above equations. By & close examination of N, K, and U
for different values of x3; for example: at the cathode, potential
minimm, and intervening positions, a complete picture of the electron
stream behavior is revealed. ©Space limitation, however, prevents
further discussion at this time.

For any other electron velocity distribution, the procedure

in using (5.08) would be similar to that given above. Given the
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density-in-phase at the a plane, its value for any position through-
out the diode is given by Liouville's Theorem. Calculating the
kinetic energy density and substituting in (5.08), the potential

distribution is obtained.
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Part VI

TIME DEPENDENT ELECTRON STREAMS

The electron stream equations for a time dependent
electric field are summarized on page 43. The first and second

equations in the set are rewritten below.

£
—[(f/ = —yilpféjz (6000)
&D
I ‘)i[ZK W.J=o (6.01)

JP
Taking the time derivative of (6.00),* solving for ); and
substituting in (6.01) give
We I, € JE , 3
ey T et jpi a,z[ZK”Wg]=0 (6.02)

Integrating (6.02) from x=a to x=Db at a time t gives

w JdI , me
Fetv-a) i+ ¥ JtL/J; e %/ / (6.03)

Steady State Small Sigmal Theory
For a steady state small signal theory, the quantities

appearing in (6.03) can be written as

I =1+ 1)

£=E()+E(xn¢E)

K, )= K (x) + K, (x,2) (6.04)
W lot)= W) + W (x, )

In (6.04), the subseripts (o) refer to the stationary vart or zero

order component, while the subscript (1) refers to the time dependent

*The partial time derivative of I can be written as a total derivative
since I can only be a function of time.
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or first order component. For every term, the first order part
mist be very small compared to the zero order term (time dependent
quantities are a perturbation on their stationary counterparts). For
& steady state solution, the first order terms can be written as the
real parts of ;le'jwt, _E_l(x)ejwt, _K_lix)ejwt, and ¥y, (x}ed"t.

The bar under each term indicates it can be time complex. With the
introduction of the exponential time function, a time derivative is
replaced by multiplication by jw. Substituting (6.04) in (6.03)

with the above time devendence for the first order solution gives

b
I
W€ , .
J%mc(b-a.)!l + _C‘L(Jw)z/_E’ X f-/:ZL(l —ZVIE-Z =0 (6.05)

The bracket term contains only first order terms since the stationary

part is equal to zero.* The electric field integral is

/5J1:=-/ =y = Via)-V(b) (6.06)

The complex admittance (Y) between the g and b plane can be defined as

Y=L/[¥w) -_V,(a/]—l mhos/em2  (6.07)

Dividing (6.05) by (6.06), using (6.07}, and solving for Y give

. ; b
Yoo LwE 4 Je L[4, '—"—Vze_]a_ (6.08)
= (b-a) Wl (b-a)[ ¥ (1) -V (a)]

The first term on the right side of (6.08) is the susceptance of the
condenser formed by the parallel g and b planes when no electrons
are present in the intervening space. The second term of (6.08) is

admittance introduced by the electron flow. 4n equivalent circuit

*Gompare (5.03).
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for the diode formed by the & ahd b planes would be the diode capacity
shunted by an admittance representing the electron flow. Using (6.08),
the admittance can be written as the sum of two terms, Yc rlus Yy, where
Yc is the capacitive susceptance, and Y8 is the stream admittance.
Yo B = jwe (6.09)

b
- . _e_ [’zl(l—w/f]a, = *6’ _ .B
= o, (b-a)[ve) Vi) ~ % Es

(6410)

N

The stream admittance (Ys) clearly shows the electron stream and
electric field interaction. Because of electron inertia, the kinetiec
energy and field energy densities will not be in time phase.
Consequently, (6.10) will be comvosed of a real plus an imaginary
terme. The imaginary term will have a negative sign while the real
term can have either g positive or negative signe A positive real
term would represent energy removed from the electric field, and
consequently from the externmal circuit since steady state operation
is being considered, and given to the electrons in the form of kinetic
energy. An opposite sign for the stream conductance would represent
energy given to the external circuit from the electrons.

A series imvedance formudation analogous to (6.08) can be
obtained by dividing (6.05), by I] and using the inverse of (6.07) as

the definition for impedance.

Loyl 7212 o
where (b-a)
% "7V ew (6.12)
b .
Z < e (2w [ L= R S (6.15)

This formulation gives a series equivalent circuit where the diode



67
capacity is connected in series with the stream impedance. Thysically,
the admittance representation given by (6.08) is preferable.

To use (6.10) or (6.13) the first order kinetic energy
density and electric field emergy density would have to be determined.
From (6.04)

W, =210%E8 = 20/, ¢ ruce &) (6.14)
or to the first order
W, £10%E} ;W ~10EEE & (6.15)

The energy interchange term in (6.10) and (6.13) becomes

X

b
[26,-W,] = 2] K.(8) K (o)) 10 e[ Ey ) Eict) ~Exa) E (a)] (6.16)
Using (4.03), the kinetic energy density can be evaluated by integrating

the density-in-phase. The density=-in-phase would be the particular
solution of the general solution of (4.26) which would satisfy the
given distribution at the g plane. If the g plane is a thermionic
emitter, the Maxwellian distribution given by (4.45) would be used.
Note, however, (4.39) can not be used since the energy for an electron
at a particular space position can not be evaluated in terms of the
potential at that position. The energy that an electron will have

at any position will be determined by the interchange of energy with
the electric field that the electron had formerly experienced.

For single valued velocity streams, this is clearly shown by the third
equation of (2.70). For the analysis of shot noise produced by the
cathode, the Maxwellian distribution would contain a function which
would express the randomness 0f the mumber of electrons emitted for
each velocity packet. The treatment of these above-mentioned problems

will be reserved for future papers.
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Part VII

HIGH FREQUENCY LOADING

Description of Experiment
An interesting high frequency loading phenomena
occurring in very close spaced tubes is reported by a number of

investigators. (411, (42),(43)

The experimental set-up is as follows.
The "Q" of the input gap between the cathode and the first grid of a
triode is measured as a function of the retarding voltage on the
grid (cathode anode region for a diode). (Fig. 1) The frequency
used is 3 x 10° cps(41),(43) with the tube having a cathode grid
spacing of 3.6 x 10""5 in. At very large retarding voltages, the
shunt resistance across the input gap is the same whether the cathode
is heated or note With the cathode operating the § is measured as
the retarding voltage is decreased in magnitude. The Q sharply
decreases and reaches a minimum value before any electrons pass
through the first grid in the triode or are collected by the anode
for the diode case.

Clearly, the loading of the input gap must be produced
by the electrons that are returned to the cathode by the retarding field.
On an average, the returning electrons must have an energy greater
than their emission energy, this extra energy being supplied by the
high frequency field which is converted into heat when the returning
electrons strike the cathode. For the diode or a very fine grid

triode, the stationary potential distribution would be that given by

figure 11l. For potentials greater than 1 or 2 volts, the field is
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very close to linear. A good approximation for the calculation of the
electron motion would be to assume & linear field. This assumption
is justified since the maximum loading occurs before any appreciable
number of electrons strike the anode of the diode, so fhat the charge
density of the electron is negligible beyond a very short distance
from the cathode. |

To calculate the energy of the returning electrons,

(1.3)* must be integrated to determine the transit time.

mc%f = -10%E < - 10 [Foo =¥ cosut vyf (7.00)
The stationary voltage at the b plane is written as vbo’ the time
devendent voltage as vbl‘ At the cathode (x =0}, the initial conditions
are V=V, at time t=0. Integrating (7.00) once and using the initial

conditions cited, the velocity at time t is

dx A
dt ¥ = ‘J—e[lzot +d-’/b/[5m (/".Slﬂ(wtf‘/’)j] (7.01)

The position at time t is

X =yt -f[éL K, t° f’;},"/b/f.siﬂzf+[oyzb,fC05(wZ+¢)'C'05‘//] (7.02)

The stationary transit time** will be determined by (7.02) when x=0.

0 =%, =5 %t V7]

[

Equation (7.03) has two solutions, a trivail one being to= 0, and the
other being the to and fro time for the electron emitted from the
cathode with a velocity Voo The subseript (o) on t is to indicate it
is the transit time when Vi, acts alone. Solving (7.03) gives

£, =2 %,,9/ (7.04)
bo

*This method of calculati?i Eh? tfansit time has been used by a
number of investigators.'44!,145
**Tponsit time when Vp1= 0
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With vbl different from zero, the transit time T can be written as

T =t +4p +&p%+- - - (7.08)
where P Vo
Voo

Clearly, p is the proper parameter for the transit time expansion
since the ratio of Vb1 to Vbo will have g direct influence on the per-
turbation of the transit time to. Using the varameter p, (7.02) can

be written as

X =yt —Zg‘{’[z'tz + 5[c05(wt+</’)—c:054/’ fwtsm’f/] (7.06)
Writing (7.05) for t in (7.06) with x set equal to zero and grouving
the resultant expression in terms of powers of p give, to the second

order in p,

0 = p[t{,&, +L§u{,am</—‘,;€;zo %/cas‘/’-cw(wto,»&/}f]

&

tp 08y r 780+ A Lsint - sin cutyra) f ] (7.07)

Since the left side of (7.07) is to be equal to zero for any value
of p, the bracket term for each power of p must be separately equal
to zero. Setting the bracket quantities equal to zero and solving

for 6 and 6, give

b =- J%to[(wto-sinwg}s/h ¢ # (coswt,~1)cos q] (7.08)

2
& = —té’ 'wg-f’[(/—Coswé,)JM‘f - Ssmuwt cos‘f] (7.09)

0

The velocity of the returning electrons emitted with a velocity vo
will be given by (7.01), where (7.05) is substituted for t. Squaring

(7.01) and calling the velocity of the returning electrons at the

cathode vy give
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l;z- téz = 4P(g:)%<5,z; r“f"fﬂk ¢ - Sl'n(wto fé/j/] +P[tbéz félz
~ 84, cos(wt, +) + igx fsin ¥-sinwt, #O)f (7.10)

¢ ;%@fsm 7 =sm(wt, + 2/)][/

Using (7.08) and (7.09), after some laboricus algebra the following
results

z . ‘
vty = 9p(at) /4(sm Wl - b o5 W )f sin( 5% +4)

tpsin wzt"f + plwt, = simwt X sin [2!/+wt0])/ (7.11)

¢
Defining L'}i—° =9 (where © is the one way transit angle)* and

Y/(Q) = (sin® - © cos8), (7.11) can be written as
ATAE 4/’(5“”)7?’(9) sme+¥) ff(ze ~5In26)sin2et+¥)

*p¥e)sinef (7.12)

Maltiplying (7.12) by me/z will give the difference in the emitted and
returning kinetic energy for an electron leaving the cathode with a
velocity Yo and phase angle 7 for the vrotential vbl at the time of
exits The average energy interchange per electron for electrons
leaving the cathode with a velocity vo will be the integration of

(7.12) over a complete cycle of ¥ .

, Y+am
2 Me (vE-y?) =5’,/z’mf (yr-y*)JdY (7.13)
¢

*Transit angle from cathode to vosition in field where electron
velocity is zero.
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Substituting (7.12) in (7.13) and integrating, the only remaining
term will be the last one given in (7.12) since it is not a function

of T .

Fm (v = 2( 8F)°m, Heysine (7.14)

The border emission velocity, the velocity of emission
which separates the electrons reaching the anode from those returning

to the cathode, is

When vbl is different from zero, (7.15) should be modified. However,
as will be seen shortly, this will be an unimportant correction.** The
number of electrons per sec per em® (nn/nt) leaving the cathode in the

velocity range v, to v, +dv, is given by {5.15) and (5.16) as

an _ oL L

2
= = ZE. v,
at = € T dewp cxpCzay) vy | (7.16)
The emnergy interchange per sec per cm2 (aK/ot) between the cathode and the

emitted and returning electrons in the velocity range v_ to voi—dv0

0
is (7.14) multiplied by (7.16).

aK _—

ot éLme(zZ—on) o ergs/sec/em®  (7.17)
Dividing (7.17) by 107 and substituting (7.16), the energy interchanged

per sec per cm2 for the velocity packet dvo is given as

2L /% P)? - . % 2
ﬂp= Vrc’(zce_} L//(G)J”ZQ ezp( Zl%);{/}d’/o watts/om (7018)

Since the transit angle © is a function of v it will be more

o'

convenient to write (7.18) completely in terms of @ instead of vy

Introducing the following parameters

*Compare (5.13).
**Gommare (7.30).
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- Lnl (20 )" = Loz 0 ( o)t (7.19)

and »
. wd {(7.19a)

X7 1,

(7418) can be written as
2 : -he?
4P - 44”2‘% Yte) sine e ede (7.20)
<

The upper limit of integration for (7.20) is

7

= " - "z 7021
6, = «y, = 21510 fd (V;,) ( }

where f is the frequency of V Integrating (7.20) and using (7.19)

p1°
and (7.19a) give

7
P = 718810 / L] ‘° I/}”{e) sme e ede {7.22)
The power can be written in terms of a stream conductance GS and
Vb12 as®

P=zV G (7.23)
Using (7.23) for the right side of (7.22) and solving for Gy give

G - 1438400 7» [w )/We)sme e ede (7.24)

By repeated integration by parts, the integral in (7.24)

can be written as

/‘/’(e)sme ¢ eo’e 4hz 3 /?/z;*/}cosZe Hz(e 6/)’&29 —/)]

/ h+R)
ant” (4112 511129 e de (7.25)
[¢]

Because of the rapid decay of the exnonential in the sin20 integral

*The half appears because V is the maxirum value while P is in
reme.s. watts/em?.
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in (7.25)}, the upver limit can be replaced by infinity. The
maximum possible error introduced by this change of the upper limit
can be evaluated by setting sin26 equal to one and integrating from ©
to infinity. The value of this integral is given in terms of the

error function as

&

-he?
& de

9y

OBV ert (n¥)] - 2OF) erfe(or® (7.26)

The sin26 integral in (7.25) with infinity as the upper limit is

evaluated in appendix 6 and can be written as

00

4 hé
2 _
/sm 20 cﬂhede - hce ;/t (7.27)
o [
or
f?k idii) (7.28)

The exvonential integral in (7.27) is tabulated in Jahnke and }'}ndeg%)
pvage 32. The 1F, function appearing in (7.28) is the confluent hyper-
(47)

geometric function. A curve is given on page 279 for

F,(1/2:3/2;1/h) in Jahnke and Emde.*
Substituting (7.25) and {7.27) in (7.24), the stream

conductance is

65 = 3.44*/0-4./;7'%;7 ‘/(/N/)coyZGI h
“1)] -1 #5 hr2) e E,F/z’;zz;é)/

where 8, is given by (7.21) and h by (7.19).

*In Jahnke and Emde's notation (F1(1/2;3/2;1/h) is written as
1(1/2;3/2:1/n).
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Examples
l. To illustrate (7.29), the constants given by ther(45)
for the frequency and spacing will be used.

£=3x 10° cps; d=6489 x 107 com; T=10° deg.*; Ig=0.1 amp/em.*

2 ‘and 5.66 (IVbl)%

The value of the parameters h and 8' are 0.5625Vb0
respectively.** In figure 15, the electron stream resistance Rs
(ohmm/%mz) (the reciprocal of Gs), is plotted against the retarding
potential Vbo' The behavior of the curve ard order of magnitude of
R, is the same as that given by Kuper (43) ang Smyth£41) It is to be
noted that figure 15 is a plot of the stream resistance per square
centimeter (ohms/cmz), while the curve given by Kuper is the gap
and stream resistance for an area of 0.08 cm®.

2+ Another interesting examnle is the variation of
loading with frequency for a constant value of retarding voltage.
The range of frequency used in this calculation is from 3 x 108 CPS o
to 1.05 x 1010 cps, or in terms of wavelength from 100 ems to 2.86 ecm.
The constant value of retarding voltage was =3 volts. Figure 16
shows Gs(mho/cmzl plotted against the frequency. Note that the loading
increases practically linearly from l.5 x 109 to 4.5 x 109 ¢ps and
has a maximum value at 6.4 x 109 eps. Kuper states that the loading

should decrease as the frequency increases though experimental

results seem to indicate the opposite. As figure 16 shows, this

*These values are assumed as being representative values for T and Ie'
**For these values of h and ', the term involving exp(-h@z) is
completely negligible so the loading is given by

G -3940 LTy [t (neey F R(FIEGE) 1 (7.50)
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calculation is in agreement with the experiments cited.
3. 4nother interesting calculation is on the distance
the electrons that produce the maximum loading penetrate in the re-
tarding field. This can be obtained by differentiating (7.20) with
respect to © and setting the resultant equal to zero. Performing this
operation, the following transcendental equation is obtained for the

transit angle producing maximum loading.

cosZs[/ +Zez(/-/¢)] =/ + 2n0*[ 051 20-1] (7.31)

The constants used were those given in example le Results of this
toilsome calculation are shown in figure 17. On the phase space
diagram (Fig.ll), the arrows on the curves for retarding potential
-1 and -2 volts indicate the distance the maximum loading electrons
travel. It is to be noted that these maximum loading distances

are sufficiently far out from the cathode that the assumption of
linear field is very good. Thus, the loading plotted in figure 15
for one volt retarding potential (57.1 ohms/cmz) should be in
agreement with experimental results.*

The large magnitude of loading calculated above indicates
that, for close spaced high frequency tubes, the cathode-first grid
region should not be in the radio frequency circuit. By using the
first and second grids as the input gap** with the potential minimum
residing in the cathode-first grid region, shot noise reduction can

be obtained(24) without undesirable loading.

**Priode operation of tetrode.
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Appendix 1

PRINCIFPAL SYMBOLS

lleaning and Dimension First Appearance
(equation no. )

2
x directed electron acceleration, cm/sec
Constant (ZLVT)'l, secz/cmz
Quantity ( ) evaluated at g plane

Time dependent_electron accelerzation at a
plane, cm/sec

Extension in phase used only in part IV,amZ/sec
Constant used in part VII, (wd/&Vbo)

Quantity ( ) evaluated at b plane

Electron stream susceptance

Complex transit angle (juT)

Parameter, om -
Kumeric, 2.33 x 10~8d=2 mhos/em?/volts®
Integrand in second order potential
Spacing between g and b planes, cm

Density-in=-phase, sec/cm4

Perturbation on electron stationary transit time

Absolute value of electronic charge, 1.59 x 10-19

coulombs
Electric field strength, volts/hm
Permittivity of vacuum, 8.85 x 10-14farods/cm
1

Frequency, sec

Confluent hypergeometric function

(2.1)
(5.18)

(2.8)

(2.9)
(4440)
(7.19a)
(2.34)
(6.10)
(2.70)
(5437)
(3.00)
(3.15)
(2.44)
(4,01}

(2.14)

(1.3)
(1.1}

(1.1)

(7.28)
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M
( )n
(an/ot)

N

u(ta)
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Space charge factor
Electron stream conductance per cmz, mhos/cm2
Magnetic field strength, amps/bm
Hamiltonian, ergs
Constant
Transit angle
Transit angle corresponding to v
Total current density, amps/cm2
¥mission current density, amns/cmz

1
(-1)7

16

Boltzmann constant, 1.380 x 10 ° ergs/deg

(2.58)
(6410)
(1.1)

(4.37)
(7.19)
(2.70)
(7.21)
(1.2)

(5.14)
(2.64)

(4445)

Kinetic energy density of electrons, grams/cm/sec®(4.03)

Time independent part of current density
multiplied by /e, cm/sec

Electrog and field energy interchange per sec
per cm

Constant, 107e/me 1.76 x 101° coul/grams
Electronic mass, 9.03 x 10~28 grams
Permeability of vacuum, le257 x 1078 henrys/em
"n"th order of ( )

Number Bf elactrons per second leaving cathode
ver cm

llass density of electrons, grams/cm3

Time devendent electron velocity at a plans,
em/sec

Dimensionless parameter (x—d)/b
comnlex angular frequency (jw), sec™!

Dimensionless parameter, vbl/vbo (part VII)

(2+6)

(717}
(2.2)
{1.3)

{1.1)

(7.16)

(4,01)

(2.10)
(536)
(2.64)

(7.05)
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" s 2
Momentum density of electrons, grams/bm /sec
Power in Watts/bmz
Convection current density, amps/cm2

Comnlete space charge, zero fregquency diode
resistance

Resistance of electron stream ohms/émz

Charge density, coulombs/cm3

Stationary electron transit time

Stationary electron transit time(parts I,II,III)

Absolute temmerature of cathode, degrees
(parts IV to VII)

Effective velocity of electron stream

nth order, mth harmonic of fundamental frequency
transit angle coefficient. m =0 indicates zero
frequency

x directed electron velocity, cm/%ec

Phase space border emission velocity at cathode

Phase space border emission velocity at x>0

Potential, volts

Voltage measured from potential minimum or anode

Thermal voltage kT10"7/e 7/11606, volts

Voltage of potential minimum referred to cathode

Time dependent part of current density
mltiplied by /e

Dimensionless parameter, V'/VT
v, volt-cmz/éecz

Electric field energy demsity, ergs/cm5
(parts IV to VI)

Value of x at potential minimum

(4.02)
(7.18)

(1.1)

(3.06)
(6.11)
(1.1)

(7.03)

(2.13)

{(4.45)

(4.07)

(3.07)
(2.1)

(5.13)
(5.17)
(2.34)
(5.20)
(4447)

{5.47)

(2.6)
(5.33)

(2.36)

(4.19)

(5+48)
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Real part of T,,(p) (3.29)
Imaginary part of Yy (p) (3.29)
2
Diode admittance per cm , mhos/bmz (607)
Diode admittance ver cmz produced by capacity
of a and b planes (6.09)
Diode admittance per cmz produced by electron
stream (6.10)
sin © - & cos © (7.12)
Diode impedance per cm2, ohms/bmz (6.09)
Diode impedance per cm2 produced by capacity
of 2 and b planes (6.10})
Diode impedance per cmz produced by electron
stream (6.11)
Angular frequency (2.64)
Appendix 2

FIRST ORDER ELECTRONIC COEFFICIENTS

-% é (\olo\ * Voh)elZ

i}

P
2500+ ) g

b

[1- 50+ ¥ e

25, Vo -
=§-ﬁﬁL:+—1§]@c@
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g -~ tplee@-PasarPl
2 -
B = 2Tae de-98
= Voa !oq 'Q
i —[Voh+§(|+"°|,)]e’

where @ =j6 , ?=‘_€-6_@e—@ ,Q,=t-c'e and S =2P-¢Q

The space charge factor § is defined in (2.58). Vog 804 V. are

the zerc order velocities at the g and b planes, respectively.

For small values of ¢

L3 Lpd_ L5, \ 6
S =-ze6 +iz0 0% "180©

Appendix 2a

COMPLETE SPACE CHARGE ILPEDANCE COEFFICIENT

For complete space charge (§: 1) with vao= 0,

o

N

4!

QIns

4] =‘5c

LY
<

A=31, I Y@
where L . 1S 2 _ . o
'r'(e) = [g 52 g:»] s 64[(2-2 tose -05ma) +j(2sme -9 -0C0s50 - © )]
and - Z Ybo
Yoo 31

©
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Appendix 3

TABLE OF INTEGRALS FOR PART V

The following integrals were used in the evaluation of equations
in part V. The integrals are listed in approximately the order

they are used in the text.

*
X2 L

sze—(kvd _ _]1&_2;

o

-

[ ey . ot ot

Jve dv= 75 ef(a) - 7@ ¢

3
where erf x = ;;',:J‘G dt
[}

The error integral (erf]) is tabulated on pages 23 to 32 in

Jahnke and Emde. (26!
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Appendix 4
RETARDING FIELD DIODE TABLE

d_if * * * % -

(4% Y-0 2{4 “1V Eamode Emthode € e
0 3.064 0.315Y% 0 0.494 0.3745 0.0902
455 5.84 0.503 0.0854 0.508 0.381 0.1438

140 11.59 1.0 0.262 0.5 0.448 0.2855
L1510 23.23 2.0 0.563 0.154 0.634 0.5

3.5 .0 112 1.0

5.0 1.43 L52 .43
1.9 2425 2.22 2425
10.0 2.86 2.40% 2.86

-3
"‘volts/lo in.

**Field 107~ in. from cathode in volts/10™°in.

Appendix 5

SERIES EXPANSION COEFFICIENTS FOR 5 AND 4 FOR DIODE SOIUTION

where

iS ; 3
= z z
E=a +a¥ ta,¥ +a ¥+

.

v a Y

7

w

{5.54)




o, 37

8.6 S 377(5/1- + 34"1_' "5 3% Z4ﬂ'1

Zo oz 3 no3 .,
a’? Frd 3Pt Tsh3taaw o 1328

o 32 — 181% i . 15 i
8.8 =k 32 + 37..2}“/2 - 7,5.34.2‘3"% " 735.35.28n2

2

— 3ny-2 w72 _ S3-7 _ s _ o

8.9 - 38“,4 - 5_3?_“3 5’_35_13.ﬁ7~ »1'57..3@_15'“, 5‘31‘1.

Coefficients ao to ) inclusive were obtained by two different

methods of expansion; ag and ag were not recheckede.

3
TR IIN O N (5.55)
where
- S SRR i
by = By = 8 by T w30
= 3 _ 13 +
bz 4 bs = 4 5.3.77w2
=Y 3
bs -t a 41
1 o 7
bg =37k Ty AN T5an vt
Appendix 6
EVAIUATION OF (7.27) AYD {7.28)
L)
[ St
Let us= Je Smlpxdx (2)

Differentiating with resmect to p gives

d h*
Jg =Z$xe xcoslpxdx (b}

o

The integrand can be written as

2 ~kx2.

-hx 2p -hx*
Ixe coslpxcl)(‘—d[““;c cos’lpx]'flpi sm2pxdx (e}
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Substituting (¢} in (b) gives

du o ohd 2

X
i -l
dp ht COSlPX]o - RPSQ “sin Lpxdx

o

or HrFu-g (a)

Equation (d) is a linear differential equation of the first order
whose solution isl §

u = {ﬁ[ﬁjCaW+c]
The constant of integration C is zero since from (a) u =0, when

&

p=0. Changing the integration variable

-7 q"’— 1>
Y= ﬁ;e " j et dt (e)
For p=1 ;—L’L o0 ,
LI -t
Ga) e f etdt - ( ¢ sindxdx (7.27)

23
Multiplying (7.27) by h and using (850.4) in Dwight( ) result in

%Ihil 5§ ) ii (trszm+n
W e dt - wm! (med W T M(zm+2) P(m 1) (£)

w0 mwm:=0

By use of the Legendre's duplication formula given on page 225
(47)

CQms2) _ , Mmrz)

of Copson

M(am+ 1) Pim+ 7) (g)
Substituting (g} in (f) gives

edt =2 M:OP(MH) Mwm+ 3)

-;?L © tam ot
hij & \ 2: ()™ P(m+z) (1)

The confluent hypergeometric function is defined on page 247

and 260 of Copson(47) as

INCS) > 2™ Mo+ m) .
AN CON S Il e ;:of'(em) M(men {1)
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Comparing (i) and (h) and using (850.6) and (850.7) in Dwight(?%)

give

Col

x ’ )
cdt = B(Z)17 W) (J)
in (7.27) gives

\

ge-kxsinlxdx = ﬁ e F(

o

hi
Substituting (J
o0

B O Summ——

i) (7.28)

ol

LI
29
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Plot of Equation (Z¢l)
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