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Thus says God the Lord,
who created the heavens ..
T will lead the blind by a way they do not know,
In paths they do not know I will guide them.
I will make darkness into light before them
And rugged places into plains.
These are the things I will do,

and I will not leave them undone.

Isaiah 42:5a,16 NAS
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Eduardo y Carmen Lina.
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MODELING REQUIREMENTS FOR PROCESS CONTROL
by
Daniel Eduardo Rivera
ABSTRACT
Modeling and control system design have traditionally been viewed

as distinct, independent problems. Not all model characteristics,
however, are relevant to the control system design problem. One can
expect, then, that parsimonious, more effective controllers are
possible if control considerations are incorporated in the modeling

stage.

The synergism of dynamic modeling and process control, as
pertaining to the fields of low-order controller design, model
reduction, and model identification, is investigated in this thesis.
The guiding theoretical framework is the robust control paradigm using
the Structured Singular Value, which addresses controller design in the

presence of model uncertainty.

The main contribution of this thesis is the development of a
control-relevant model reduction methodology. The effectiveness of
reduction is increased by incorporating the closed-loop
performance/robustness specifications, plant uncertainties, and
setpoint/disturbance characteristics explicitly as weights in the
reduction procedure. The efficient computation of the control-relevant
reduction problem is indicated and illustrated with examples taken from

the control of a methanation reactor and a binary distillation column.
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ABSTRACT (Continued)

A low-order controller design methodology for single-input,
single-output plants is also presented. The basis for this methodology
is the combination of the control-relevant reduction problem with the
Internal Model Control (IMC) design procedure. The relationship between
low-order IMC controllers and classical feeback compensators is
examined. It is shown that for many models common to the process
industries, the controllers obtained from the low-order compensator

design technique are of the PID type.

Finally, a model identification methodology is established using
spectral time series analysis to obtain plant transfer function and
uncertainty estimates directly from experiments. The control-relevant
model reduction procedure can then be used to fit the "full-order"
frequency response to a "reduced-order" parametric model. Model validation

for control purposes is achieved by insuring that the robustness condition

is satisfied.
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CHAPTER I: INTRODUCTION



1. Motivation

Today's chemical industry is faced with new and significant
challenges to its once glorious past. While many segments of the
industry experienced substantial growth during the 60's and early 70's,
American chemical and refining companies during the late 70's and 80's
have witnessed drastic changes in the economic climate. Among the
factors that have affected chemical manufacturers are detrimental
exchange and interest rates, production overcapacity, heightened
competition, and fluctuating feedstock prices (e.g., petroleum). Many
companies have had to abandon the heady expectations of the past and
learn to "ride the tiger" (Hirsig and Schlanger, 1984), that is, learn

to cope with up and down business cycles.

The need for improved process control has emerged as one of the
crucial requirements for success in an uncertain economic environment.
As indicated by Shell Development's Garcia and Prett (1986), modifying
process designs to achieve maximum profitability requires that market
conditions remain unchanged for a substantial period of time (usually
in excess of five years) in order to achieve a return on investment. A
much more cost~effective alternative is to apply advanced control and
optimization strategies on existing equipment in order to identify and
maintain optimal process conditions. Shell is not the only major
corporation that has recognized the merits of advanced control. At
Du Pont, for example, a recent company-wide survey estimates that
savings amounting to $ 500,000,000.00 per year can be obtained through

improved control (Smith, 1986).



-3 -

The benefits of advanced control extend to both the specialty and
bulk chemical businesses. One example is Amoco Chemicals, where the
manufacture of a wide variety of specialty acids is accomplished using
the same process equipment (Ali, 1986). Advanced control strategies are
needed to provide the flexibility necessary for achieving optimum

performance for each  reaction system.

Faced with such a vast challenge, the control engineer must be
equipped with adequate tools that meet the fundamental needs of
industrial practice. In particular, these tools must generate
controllers that are robust to plant uncertainty and input constraints,
are easily adjustable on-line, and are parsimonious, that is, they are
expressed as compactly as possible. Furthermore, these tools must be
simple enough (either computationally or through user-friendly,
possibly "expert" computer-aided design software) such that plant

personnel can confidently perform the designs.

A good model is the first requirement for a successful design
strategy that meets the objectives outlined in the previous paragraph.
In chemical engineering systems, dynamic models vary greatly in terms
of size and complexity. While the temperature response of a stirred
tank, for example, can be described by simple first-order lag with
deadtime model, the concentration response of a staged separation
process, such as a distillation column, is fundamentally modeled by a
large system of differential equations., Distributed parameter systems,

such as tubular reactors, also give rise to complex modeling problems



(Mandler et. al, 1986).

High-order, complex process models present difficulties for both
control system design and implementation. The need for simple,
practical controllers has spawned a number of research areas in control

system engineering. These are:

Low-Order Controller Design. Efforts most commonly associated with
this field are simple tuning rules for PID controllers, such as those
provided by Ziegler and Nichols (1942), which require a only a minimal
amount of information regarding the plant (e.g., the frequency response
at crossover). Other more general procedures, involving nonlinear
programming or the reduction of a high-order compensator, also

characterize this area.

Model Reduction. The traditional model reduction problem
consists of reducing the number of states of a high-order linear model
either by matching the predominant features of the full model
(statistical moments, dominant poles, etc.) or by minimizing a
functional objective, such as the integral square error between full
and reduced models. Based on the reduced-order model, control system
design is more readily achieved. Designing controllers from reduced-

order plants is also a common low-order controller design technique.

A good summary of model reduction literature is found in Bosley

and Lees (1972).

Model Identification. This field bypasses the need for first-
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principles modeling by indicating how a suitable process model can be

generated from experiments. A good survey paper on the subject is that

by Astrom and Eykhoff (1971).

The problems of low-order controller design, model reduction, and
model identification have received extensive treatment in the
literature. What motivation is there, then, for any further study of
these topics ? The main issue is that the relationship between the
modeling and control problems has not been examined to a satisfactory
level. In many cases, mathematical convenience has given second place
to a fundamental understanding of what constitutes an adequate model

for control purposes.

The interrelationship between control and modeling is particularly
significant in the the fields of model reduction and identification,
where the tendency is to view the control and reduction/identification
problems as mutually exclusive. Most work in this area incorrectly
assumes that a "separation principle'" holds between both problems. The
effectiveness of these techniques, however, can be improved if control

considerations are incorporated in the problem statement.

The desire to study the aforementioned problems from the
viewpoint of robust control (Doyle, 1984) is also a motivating factor
for this study. In particular, we wish to define reduction,
identification, and low-order controller design methodologies which are

derived directly from the robust control paradigm.

Finally, we do not wish to lose sight of the needs of the
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practicing engineer. It is intended that the proposed reduction,
identification, and low-order design methodologies be simple to code
and computationally efficient. Physically meaningful quantities should
be requested from the users of this software, and the resulting
controller designs should be robust, parsimonious, and easily

adjustable on-line.

2. Thesis Overview

The main focus of this thesis centers on developing a control-
relevant model reduction and identification methodology, based on the
robust control paradigm. The extension to the low-order controller
design arises naturally by applying the Internal Model Control (IMC)
design procedure (Morari et al., 1987) to a control-relevant reducéd

model.

The thesis is organized as follows. Chapter II introduces the IMC
design procedure and examines its relation to classical feedbgck. It
is seen that for most models common to the process industries, the
"optimal" controller is of the PID type. Chapter III defines control-
relevant plant and controller reduction problems for single-input,
single-output (SISO) systems and outlines the efficient solution of
these problems using quadratic and linear programming. In Chapter IV,
the control-relevant reduction procedure is extended to multivariable
systems. Chapter V combines Chapters II and III, resulting in a
comprehensive low-order controller tuning methodology for SISO systems.

Chapter VI represents ground-breaking efforts on the control-relevant
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model identification problem, outlining the use of spectral analysis to
obtain the plant frequency response and an associated uncertainty
description directly from experiments. Control-relevant reduction
serves a dual purpose as a parameter estimation procedure for control

purposes. Conclusions and suggestions for future research are given in

Chapter VII.
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INTERNAL MODEL CONTROL: PID CONTROLLER DESIGN

Daniel E. Rivera
Manfred Morari
Sigurd Skogestad
Chemical Engineering, 206-41
California Institute of Technology

Pasadena, California 91125

Abstract

For a large number of single input-single output (SISO) models
typically used in the process industries, the Internal Model Control
(IMC) design procedure is shown to lead to PID controllers, occasionally
augmented with a first-order lag. These PID controllers have as their
only tuning parameter the closed-loop time constant or equivalently,
the closed-loop bandwidth. On-line adjustments are therefore much
simpler than for general PID controllers. As a special case, PI and PID
tuning rules for systems modeled by a first-order lag with deadtime
are derived analytically. The superiority of these rules in terms of

both closed-loop performance and robustness is demonstrated.
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1. Introduction

Synthesis and tuning of control structures for SISO systems
comprises the bulk of process control problems. In the past, hardware
considerations dictated the use of the PID controller, but through the
use of computers controllers have now advanced to the stage where
virtually any conceivable control policy can be implemented. Despite
these advances, the most widely used controller is still of the PID=
type. Finding design methods which lead to the optimal operation of
PID controllers is therefore of significant interest.

For controller tuning, simplicity, as well as optimality, is
important. The three modes of the ordinary PID controller, kg, T1, and
p, do not readily translate into the desired performance and
robustness characteristics which the control system designer has in
mind. The presence of simple rules which relate model parameters
and/or experimental data to controller parameters serves to simplify
the task of the designer.

The literature contains a number of these "tuning rules"; possibly
the best known are the Ziegler-Nichols rules proposed in 1942. Given
the wide use of the first-order lag/deadtime model for chemical
processes, tuning rules for PID control of this structure have received
wide attention in the literature. Most common are the rules proposed by
Cohen and Coon (1953). Smith (1972) contains a good summary of efforts
in this area.

Our intention is to present a clearer and more logical framework
for PID-controller design which is simple to understand and implement
while pbssessing a sound fundamental basis. Instead of fixing a

control structure and then attempting to "extract" optimality from this
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controller (as is usually the case with classical methods), our
approach will be to postulate a model, state desirable control
objectives, and from these proceed in a straightforward manner to
obtain both the appropriate controller structure and parameters.

The Internal Model Control (IMC) structure provides a suitable
framework for satisfying these objectives. IMC was introduced by
Garcia and Morari (1982) but a similar concept has been used previously
and independently by a number of other researchers. Using the IMC
design procedure, controller complexity depends exclusively on two
factors: the complexity of the model and the performance requirements
stated by the designer. The goal of this article is to show that for
the objectives and simple models common to chemical process control,
the IMC design procedure leads naturally to PID-type controllefs;
occasionally augmented by a first~order lag. Furthermore, the proposed
procedure provides valuable insight regarding controller tuning effects
on both performance and robustness.

2. Performance and Robustness Measures
Probably the best indicator of performance is the sensitivity

function

1 e
S = Tigs = yoa (1)

(The nomenclature should be apparent from Fig. 1). It is desirable to
keep the sensitivity function small over as wide a frequency range as
possible. For any proper system, |S| will approach unity as the
frequency becomes large. Instead of the sensitivity function, the

closed loop bandwidth can be used as a simple performance measure; it

is the frequency wp at which |S| first reaches 1/V2



- 13 -

]’
e u y'
y—r 8¢ 4 9 v e e o
A B
Jd
] U
us ~ gc ll"-‘ 9 Yy ys - _[ C -J[— g
§ - [} ] .
d d
c D
d

[~ 8]

Figure 1. Evolution of the IMC structure.
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[S] < 1 ¥ w < wp 2)

vz

Increasing the bandwidth implies less attenuation of the reference

signal, more effective disturbance rejection, and a faster response.

For a phase margin (PM) less than or equal to %~(the most common

situation) the bandwidth is less than or equal to the (gain) crossover
frequency wq, defined as the frequency at which the open-loop gain
first drops to unity
[ge| > 1 ¥w < we (3)
QOccasionally, we will also refer to the Integral Square Error
(ISE) and to the Integral Absolute Error (IAE) for a specified setpoint

or disturbance change to compare the performance of different

controllers:
J = ISE = J (y-yg)®dt (1)
0
J' = IAE = | ‘y—ys‘dt (5)
0]

It is crucial in control system design to insure the stability and
performance of the closed-loop system in the presence of plant/model
mismatch, i.e.,to guarantee robustness. We will use a superscript (™)
to distinguish the (known) model and its properties from the (generally
unknown) "real" plant. Plant/model mismatch can be caused, for
example, by model reduction, (the representation of a high-order system
by a low-order approximate model) or by system parameters which depend
on the operating conditions. Though we do not know the real plant g it
is often reasonable to assume it to be a member of a family I of

linear plants defined by a norm bounded multiplicative error e
m
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I = {g! ,em‘ ‘S Q,m} (6)

09 1

h
where 7

em= :
g

Usually lem| approaches a value equal to or greater than 1 for high
frequencies.

We will also establish in the following that the complementary

sensitivity function H

i- & (8)
1+gc

is a good robustness measure. The name "complementary sensitivity"
follows from the equality

H+S =1 (9)
Let us assume that g, é and ¢ have no poles in the open right-half
plane (RHP) and that the closed-loop system with the "nominal" plant g
and the controller c is stable. Then Doyle and Stein (1981) have shown
that the closed-loop system is stable for all plants in the family I if

and only if
7] < == W (10)

Because & increases with frequency and eventually exceeds 1, fﬁ[ has
to drop below 1 at some frequency. Because of (9),|§| has to be close
to 1 in this frequency range. Thus the achievable closed-loop
bandwidth is limited by the bandwidth over which the process model is
good. The smallest uncertainty fp(w) is allowed at the frequency
where lﬁ(ﬁnl has its maximum peak. As a consequence the M-value
defined by (11) (e.g.,Rosenbrock, 1974)

M = m%flﬁ, ' (1)

is a suitable robustness indicator.
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M is convenient and widely accepted as more useful than gain
margins (GM) or phase margins (PM). Gain and phase margins only
measure robustness with respect to model uncertainties which are
independent of w, and thus tend to be overly optimistic. The following

relationships indicate how M establishes lower bounds on GM and PM:

(12)

< B

GM > 1 +

PM > 2 sin™ (o) & g (13)
For the special case of M=1, (12) and (13) become
GM > 2 (14)
PM > 60° (15)
One must note that M by itseif yields only a qualitative

indication of robustness. The allowable uncertainty in specific model
parameters can be deduced from M only when the bandwidth wp is known.
Consider, for example, an analysis of the allowable deadtime error in a
closed-loop system (the plant deadtime exceeds that of the model by
the quantity §):

g = ge~898 (16)
Because the deadtime error introduces a phase lag of wé at frequency w,

the system will remain stable for the deadtime error § if

PM
§ < o (17)

Substituting (13), this exact condition can be replaced by the more

conservative condition

§ < 1 (18)

For PM = 90°, wp = we and (18) becomes

1
6 < T (19)
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Equation (19) clearly illustrates the trade-off between performance and
robustness. Good performance (high wp) is obtained only at the expense
of robustness (small allowed deadtime error).
Our study is aimed at systems of "type-1" and "type-2" (Wiberg,
1971):
Type 1: %im sgec # 0O (20)
s+0
Type 2: %im s?gc # 0 1)
s5+0
Type 1 and Type 2 systems exhibit no offset to step and ramp changes

on (yg-d) respectively. Furthermore, the following limits hold:

1 (22)

f

£im H(s)
520

0 (23)

2im S(s)
s>0
3. Internal Model Control (IMC)

3. 1. Fundamentals

The goal of control system design is fast and accurate setpoint
tracking
Yy =1Ys ¥ t, ¥d (24)
This implies that the effect of external disturbances should be
corrected as efficiently as possible (good regulatory behavior)
y'Sys~-d ¥t, ¥d (25)

Furthermore, the control system designer wishes to obtain (24) and
(25) while also being assured of insensitivity to modeling error.

It is well known that an open-loop (feedforward) arrangement (Fig.
1A) represents the optimal way to satisfy (24). For the open-loop
scheme, the stability question is trivial (the system is stable when
both the controller and the system are stable); also the controller is
easy to design (gc=§"). The disadvantages are the sensitivity of the

performance to plant/model mismatch and the inability to cope with
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unmeasured disturbances. With the feedback arrangement (Fig. 1B) the
situation is reversed. Plant/model mismatch and unmeasured
disturbances can be dealt with effectively, but tuning is complicated
by the closed-loop stability problem.

We can now augment the open-loop and cloéedéloop systems as
indicated in Fig. 1C and 1D without affecting performance: In Fig. 1C,
d = 0, and therefore the system is still open loop, in Fig. 1D the two

blocks é cancel each other. Relating Fig. 1C and 1D through the

definitions
8o = — (26)
1+cg
. e @1
1-g8¢

we arrive at the general structure in Fig. 1E which has the advantégés
of both the open-loop and closed-loop structures: When the model of
the plant is perfect (g=g) and there are no disturbances (d=0), feedback
is not needed and structure E behaves identically to structure A.
Because the plant model é appears explicitly in E, this structure is
referred to as the Internal Model Control (IMC) structure. As a
simplification we can say that the controller in E can be designed
with the ease of an open-loop controller while retaining the benefits
of a feedback system. It is our goal to describe, in detail, such a
design procedure.

From the block diagram for the IMC structure (Fig. 1E) follow the
relationships

u-—5¢ )] (28)

1+go(g-g)
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g8c

= — (y “d) +d = H( 'd) +d 29)
1+gc(g-g) s ’s (
1'gcé
= = d = ——— -d) = S ~d O
e Vs 1+gc(g—g) (¥s ) (¥s ) (30)

Four properties can be shown which suggest the advantages of this

structure:

P1: Dual Stability. Assume g = é. Then the system is effectively

open-loop and "closed=loop stability" is implied by the stability of g
and geg:

y = 88c(yg~d) + d (31)
While for the classical structure (Fig. 1B) it is not at all clear what
type of controller ¢ and what parameter choices lead to closed-loop
stable systems, the IMC structure guarantees closed-loop stability for
all stable controllers gg.

P2: Perfect control. Assume that the controller is equal to the model

inverse (gc=é“) and that the closed-loop system in Fig. 1E is stable.
Then y = yg for all t > 0 and all disturbances d(t).

P3: Type 1 system. Assume that the controller steady-state gain is

equal to the inverse of the model gain’

g:(0) = g(0)™ (32)
and that the closed-loop system in Fig. 1E is stable. Then the system
is of type 1 and the control error vanishes asymptotically for all
asymptotically constant inputs ys and d. This property implies no
offset at steady-state, and follows from (30) via the Final Value
Theorem.

Pli: Type 2 system. Select go to satisfy P3 and

& @] -0 (33)
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Then the system is of type 2 and the control error vanishes
asymptotically for all asymptotically ramp shaped inputs yg and d
(Brosilow, 1983). (P4 also follows from (30) via the Final Value
Theorem).

P1 simply expresses the fact that in the absence of plant/model
mismatch the stability issue is trivial, as long as the open-loop
system is stable. P2 asserts that the ideal open-loop controller leads
to perfect closed=loop performance when the IMC structure is employed.
P3 and P4 state that inherent integral action can be achieved without
the need for introducing additional tuning parameters. P2, however,
represents an idealized situation. We know intuitively that P2 requires
an infinite controller gain; this is confirmed by substituting g. = é"‘
in (27). By setting go(0) = g(0)"! as postulated for P3 we find c(0) =
», which implies integral control action, as expected.

There are several reasons why the "perfect controller" implied by
P2 cannot be realized in practice.

1. Right half plane (RHP) zeros: If the model has a RHP zero, the

controller gp = é“ has a RHP pole and if é = g the closed-1loop
system will be unstable according to P1.
2. Time delay: If the model contains a time delay, the controller

gc = & ! is predictive and cannot be r’ealizedT

3. Constraints on the manipulated variables: If the model is

-~

strictly proper, then the perfect controller g, = g 'ois
improper, which implies %uiglm lgcl = . Thus infinitely small high-
frequency disturbances would give rise to infinitely large
excursions of the manipulative variables which are physically

unrealizable.
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k, Modeling error: If g # é, P1 does not hold and the closed-loop

system will generally be unstable for the controller g, = é'%
In resolving these four issues, the ideal of perfect control must
be abandoned. The IMC design procedure handles this in two steps;
first, performance is addressed with no regards to robustness or input
constraints. Next, a filter is introduced and designed for properness
(input constraints) and robustness without looking at how this affects
the performance. Though there obviously does not exist any separation
principle which makes this approach "optimal", the design procedure is
very simple and direct. Also, there seem to be very few cases where
other more complicated and indirect procedures (e.g.,LQG) give better
results. The freedom which the designer is given to choose the filter
makes it possible to take into account considerations which may be
difficult to pin down mathematically.
Step 1: Factor the model
g = 8:+8- (34)
such that é+ contains all the time delays and RHP zeros; consequently
g=! is stable and does not involve predictors.
Step 2: Define the IMC controller by
go = g=' (35)
where f, a low=pass filter, must be selected such that g, is proper or,
if "derivative"raction is allowed (as in the ideal PID controller), such
that g, has a zero excess of at most 1. By definition of the
factorization in (34), ge is realizable.
Having introduced these definitions, the closed-loop relationships

(29) and (30) become
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gL (1+em) H(1+ep)
Y = B (yo#d) + d = —=— (ygnd) + d (36)
1+g.fep 1+Hep
1-g.f 1-H
e = - = e ——— ( "d) = = ( _d)
Ys ~ ¥ Tea.for Ys Tihen Vs~ (37)

For the special case of a perfect model (ey=0) (36) and (37) reduce to
y = g.f(ys=d) + d = H(yg~d) + d (38)
e = (1-E.0)(ys=d) = S(yg-d) (39)
Egs. (38) and (39) demoﬁstrate clearly that for the case of no
plant/model mismatch, the nominal closed-loop transfer function H =
é+f is at the designer's discretion except that 1) é+ must contain all
the delays and RHP zeros and 2) f must be of sufficiently high order to
avoid physically unrealizable control action. Thus the closed-loop
transfer function can be designed directly and not ambiguously via ¢ as
in the classic controller design procedure (Fig. 1B).
Our treatment is not complete without indicating how to select §+

and f.

3.2. Factorization of g

Assume g = g. For step inputs in yg and d, selecting g, and f
such that |§+f| = 1 ¥ minimizes the ISE (Holt and Morari, 1984, 1985).
This implies that f must be unity and that §+ has the form of an

allpass

~ ;GS ‘=‘8iS+1
where B;~! are all the RHP zeros and & is the time delay present in Z.
As a consequence of this factorization, poles corresponding to the LHP

image of the RHP zeros have been added to the closed-loop response.
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For step inputs in ygq and d selecting f to be unity and é+ as
g+ = €795 TT (-Bjs+1) Re(Bi) > 0 (41)
i _

minimizes the IAE (Holt and Morari, 1984, 1985).

When g is a minimum phase model, g, = 1.

3.3. Filter gelection
In order to satisfy P3 (zero offset to step inputs) we adopt the
following convention for g,(s) and f(s) = p(s)/q(s)
g+(0) = p(0) = q(0) = 1 (42)

The simplest filter f satisfying (42) is of the form

£(s) = —1— (43)
(es+1)

where r is sufficiently large to guarantee that the IMC controller gq
is proper. If g = g and g, = 1 (i.e., the model is minimum phase) then
y/ys = H=f. The parameter € , which can be adjusted by the operator,
determines the speed of response. For a minimum phase system, the
bandwidth is proportional to 1/¢
wh = we = /e forr =1 (44)

1/7¢ > wp >1/re > we forr > 1 (45)
For nonminimum phase systems, the achievable bandwidth is inherently
limited by the plant. For example, consider the following

representative factorizations with € = 0

é+ = e"-'SG: wc = % wb = 0.224 = 0.69(»0(}46)

~ ~Bs+1 1 1

g+ = i we = —— Wh = — = 0.650.)0 (47)
Bs+T 83 7

-~ 1

g+ = =Bs+1: We = @ Wp = —— (48)

+ c B‘/E
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For ¢ > 0, we and wp decrease from the bounds established through
(U6)-(48). For r = 1, exact formulas for the bandwidth and crossover

are included in Appendix A; these are effectively approximated by

~ e™30 - 1
&f = o7 we = wp = g (49)
~ o =Bs+1 1 ] ~ ~ 1
g+f = Bs+1 (es+1) ° We = Wb = 3E3¢ (50)
~ =Bs+1 ~ ~ 1
g+f = H (.UC = wb = B+€ (51)

es+1

One notices from these expressions that until 1/e¢ is of an order of
magnitude comparable to & or B respectively, we and wp are virtually
unaffected by the presence of the filter. Thus making € very small for
non-minimum phase systems has little effect on the bandwidth and
performance but is very detrimental to the robustness, as we will see
later. For ¢ large compared to ® or B approximately the same
proportionality holds as for MP systems (Eq. 44).

e is directly related to important closed-loop characteristics,
unlike the parameters available in the general lead/lag network c of
the classical structure (e.g., PID controllers). The larger e is, the
slower the response and the smaller the actions of the manipulated
variable. With (43), the maximum peak for [f| is 1, i.e. , the
robustness characteristics are good.

For r > 1, filter forms other than (43) can lead to faster

2 the filter

response, For example, for r

1
f = omogestT 52)

€
with damping factor z = 0.5 minimizes the ISE (Frank, 1974); however,
with this filter [f|pax = 1.15, thus performance improvement occurs at
the expense of a reduced robustness margin. In practice, choosing

filters with structures more general than (43) is usually not
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worthwhile.

Additional conditions on f are necessary in order to satisfy P4
(zero offset to ramp inputs). With the adopted conventions (42), (33)
becomes

g+'(0) = q'(0) ~ p'(0) (53)
where the prime denotes differentiation with respect to s. An example
of a filter satisfying (53) is

(2e=g+'(0))s+1

(es+1)* G

where, as before, the adjustable parameter e is, for minimum phase
systems the closed-loop time constant and 1/¢ is proportional to the
closed~1loop bandwidth. Values of g,'(0) for representative

factorizations are

d —

s (e Se)lS=O = -0 (55)
d

d—s- (‘“834‘1),5:0 = =f (56)
d ,=Bs+i _ =
s (—m)ls=o = =28 (57)

Because in general g,'(0) < 0, one obtains

M = maL)X|ITII > 1, (58)
i.e., M is strictly greater than unity for all filters satisfying (53).
Again, the tighter performance specification (no offset for ramps) is
paid for with decreased robustness margins.

3.4, Accounting for Modeling Error

Thus far, all the discussion on filter selection has assumed a
perfect model, in which case & can be selected freely; this is not the
case in practice where plant/model mismatch exists. It follows from

(10) that for robust stability of the closed-loop system
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m
Assuming for simplicity ‘§+, = 1 it becomes clear that the filter
magnitude [f| must be small wherever the plant/model mismatch ep is

large. Because & approaches or exceeds 1 for high frequencies in all

practical situations, we find again that the allowable range for e is

limited by the degree of plant/model mismatch. As stated previously,

the closed-=loop bandwidth can never be larger than the bandwidth over
which the process model is valid. The models used in process control
are usually good enough to set 1/e at least equal to the open-loop
bandwidth.

In the presence of plant/model mismatch, the structure of f fails
to automatically guarantee the shape of the response. However, for the
suggested IMC design procedure (g.(0)f(0) = 1 and f = (es+1)°F) and

using the Triangle Inequality

=8 f N
le] < 744§§j§;£T |vs=4| (60)

one can discern general frequency intervals for which (60) and the
ideal error function
le] = [1-8:f ||ys~a]| = |§]|ys-q (61)

are very similar. At low frequency, (w << 1/g), g.f =1 and e = 0.
For w > 1/e, |f| is exceedingly small, Ié+fem| 2 0 and (60) and (61)
become close to each other. For w = 1/¢ the situation is uncertain.
We conclude that for e sufficiently large the closed-loop response to
high frequency or low frequency inputs (e.g., steps) will become similar
to the response of the nominal system é+f.

In summary, the key advantage of the IMC design procedure is that

all controller parameters are related in a unique, straightforward
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manner to the model parameters. There is only one adjustable
parameter € which has intuitive appeal because it determines the speed
of response of the system. Furthermore, ¢ 1is approximately
proportional to the closed-loop bandwidth which must always be smaller
than the bandwidth over which the process model is valid. This leads
to a good initial estimate of e, which can be adjusted on-line if
necessary.
4, IMC in the Context of Classical Control

For linear systems the IMC controller g, represents an alternate
parametrization of the classic controller c, albeit with very useful

properties. Through the transformation

o~ ]

g g-
= — = — (62)
1-8c8 =gy

Fig. 1B and 1E become equivalent. If there is no delay in g, c is
rational and can be implemented as a lead/lag network. Indeed, for
minimum phase systems (g,=1) and a first-order filter (f=(es+1)7%), c

becomes

_1lg!
C—'E—S (63)

4,1. IMC Implemented as a PID Controller (Table 1)

Naturally, one would expect that for certain process models, the
lead/lag network c¢ obtained from (62) via the IMC design procedure is a
PID controller. Indeed, we find that IMC leads to PID controllers for
virtually all models common in industrial practice (Table 1). Note
that Table 1 includes systems with pure integrators and RHP zeros.
Occasionally, the PID controllers are augmented by a first-order lag

with time constant Tp. A few remarks regarding Table 1 are
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Table 1: IMC-based PID controller parameters

Controller form:

1 1
© = Topsry Ke Ut g+ )

e is the only adjustable parameter; for most cases € is equivalent
to the closed-loop time constant, 1/¢ is approximately the closed-loop
bandwidth.

In all cases there exists no offset for step setpoint/disturbance

changes.

Comments:

1. ISE optimal for step setpoint changes when € = 0.

2. IAE optimal for step setpoint changes when € = 0.

3. ISE optimal for step setpoint changes when € = B.

b, Filter/factorization option 1. (64) Practical recommendation e >
B/2.

5. Filter/factorization option 2. (66) Practical recommendation & >
B-

6. No offset for ramp setpoint/disturbance changes.
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appropriate:

Remark 1: When the PID controller of the specified form is applied to
the model é,the closed-loop system is stable for all values of € > 0.
Remark 2: For about one=third of the cases studied € appears only in
the expression for the controller gain k.. For cases A,B,C,H, and J,
the controller gain is inversely proportional to g, thus demonstrating
that on-line PID controller adjustment is effectively achieved by
simply manipulating ke. These are minimum phase models, for which wp =
we = 1/e and the model itself imposes no limitations on the bandwidth.
For cases D,F,L, and P, the controller gain k. is the only parameter
dependent on &, but because of the presence of a RHP zero, there is a
maximum gain which cannof be surpassed no matter how small e is.

Cases D,F,L, and P correspond to systems factored according to (41), in

which case wyp is limited by approximately E—l-g (recall eq. (51)); the
IMC design pr'oce\dur*e recognizes naturally that increasing the gain
beyond a certain value leads to performance deterioration and
eventually stability.

For a significant number of the considered models € appears in all
the parameters of the classic feedback controller, e.g.,K and R. It is
not surprising then that for such processes trial and error tuning of
PID controllers is notoriously difficult. However, the IMC

parametrization shows how all the controller parameters may be

adjusted simultaneously in an effective manner.

Remark 3: In all cases there is no offset for setpoint and/or
disturbance step changes. If the process has an integrator, a step

disturbance entering through the integrator becomes a ramp, thus

requiring that there should be no offset for ramp changes. This



-32 -

performance specification is met in cases I,K,N,O,R, and S by selecting
the filter f to be of the form shown in (54).

Remark U4: For systems with RHP zeros, two options for choosing é+f are
available.

Option 1: g.f follows (40):

= ~Bs+]1 1
B = (o) oot (64

(64) is optimal in the ISE sense to step changes when € = 0 (Holt
and Morari, 1985). For no offset to ramps f has to be selected in
accordance with (54):

~ o _ =Bs+1 (2(B+e)s+1)
g+f - BS"'T (ES+1)2 (65)

(64) and (65) require augmenting the PID controller with a lag
term (tps+1). The filter constant e¢ may, in principle, be chosen

freely. However, as already pointed out in Eq. (47), a single RHP zero

factored according to (40) limits the bandwidth to 1/8/7. Therefore

selecting & << BY7 has very little effect on the response. We

recommend that to improve robustness, € > B/2.

Option 2: g.f follows (41)

g, - —Bs (66)

+ £S+1
For step inputs (66) is IAE optimal when € = 0 and ISE optimal
when ¢ = B (Holt and Morari, 1985). For no offset to ramps:

~ (=Bs+1)((B+2€)s+1)
g+f = (e5+1)2 (67)

Option 2 gives a simpler controller and is favorable for
situations where € > B is acceptable. It results in a PID controller
without the need for an additional lag (as shown in cases D,F,L,N,P and

R). However, noting that the closed-loop transfer function is not
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strictly proper, one must require that

pm |g.r| <1 (68)
or (59) will be violated for high frequencies (where &y > 1) and
instability is bound to occur in all practical situations. This explains
why € > B is required for D,F,L,N,P, and R. The effect of this
practical recommendation is that the RHP zero is pushed outside the
bandwidth of the closed-loop system.

In practice, there exists no ideal PID controller as required in
Option 2. An additional lag is always present in the controller to
provide roll-off at high frequencies. Option 1 suggests a "practical"
PID controller with an "optimal" roll-off element (tps+1)7'.

Remark 5: No systems with LHP zeros are listed in Table 1. As seen
from (62), LHP zeros translate into lags in the feedback controller
structure when the IMC design procedure is used. Therefore, for models
with LHP zeros, the PID-controller from Table 1 should be augmented
with the corresponding lags.

Remark 6: Controller complexity, as stated in the introduction, depends
on the model and the control system objectives. Consider the cases H
(a pure integrator), A (a first-order model) and B (a second-order
noninteracting model), for which the desired closed-loop response 1is
that of a first-order lag. Only a proportional controller is necessary
for H, a PI-controller must be used for A, while a PID controller is
needed for B. Likewise, consider cases P-S, where the process model is
the same: as the demands on the control system increase (as in
requiring no offset to ramp changes), so does the complexity of the
controller.

Remark 7: Table 1 can also be used for systems with delays by
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approximating the deadtime with a Pad€ element; the entry for the

rational approximate model then provides the controller parameters.

This procedure is illustrated with two examples.

Example 1
1~k,e"0s
g(s) = ——— (69)
Using a first+order Pad€ approximation
¢
1—k1+§-(1+k1)s
g(s) = (70)

s(% s+1)

If k; > 1 then (70) has a RHP zero and a controller from entries P-S
can be selected. If k, < 1 the resulting LHP zero should be removed by
a simple lag, as explained in Remark 5. PID parameters can then be
obtained from entries J or K.

Example 2:

-6s
S (71)

g(s) =
A "zeroth-order" Pad€ approximation (e~95 = 1) yields

(72)

g(s) = T8+]1
Entry A in Table 1 provides a PI controller for this structure. The
"zeroth-order" Padé approximation is equivalent to designing a

controller with no information on the deadtime.

A first-order Pad€ approximation yields

o
kK( == s+1)
2 (73)

g(s) = 5
(Ts+1)(-§ s+1)

Entries F and G (PID controller, PID controller with firstsorder lag)
are applicable to this problem. This problem is discussed in more

detail in Section 5.
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4.2, Effects of the Padé Approximation

Examples 1 and 2 are interesting because they indicate
circumstances under which three term lead-lag controllers can be used
to control processes with deadtime. The use of the Padé approximation,
however, introduces modeling error, which consequently limits the
achievable bandwidth wp and the minimum value for e. From (59), one
obtains a good guess on the smallest value of e which still maintains a
stable control system.

lem‘ for the zeroth and first-order Padé approximations are shown
in Fig. 2f For the first-order Padé approximation, lem’ =1 at w = 3/0
and thus a sufficient condition for stability is to choose € > 6/3. For
the zeroth-order approximation Iem| =1 at w = 1/6 and therefore € > 90
is required. Because wp is inherently limited by 0.724/6 (recall (46)),
one can expect that using the first-order Padé approximation will yield
designs very close to optimal (i.e., if no approximation were present).
The zeroth-order approximation will be adequate, however, when small
bandwidths and low-frequency inputs are involved.
5. IMC Based PID Control For a First-Order Lag With Deadtime

The important role of the first-order lag/deadtime model (71) in
process control mandates a more detailed discussion of Ex. 2. Our
attention is directed to a further understanding of the PI and PID rules
generated by cases A and F; the advantages of the augmented PID

controller (case G) are also indicated.

5.1. Tuning Procedures
The IMC-based controllers obtained using first and zeroth-order

Pade” approximations for the time delay are (cases A and F in Table 1)
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U+TSX1+% s)

PD: ¢ = — (74)
k(—2- + E)S
. _ (1+18)
ﬂ- C = kES (75)

Option 2 (Eq. 66) was chosen for the filter for the first-order Pade
approximation in order to get a PID controller without an additional
lag term. These controllers are represented compactly in Table 2. The
closed-loop transfer functions for system (71) with these controllers

indicate a number of advantages:

e-es
(£ + $)os
PID: y = ———a"——+ 708 (y5-d) + d (76)
1+ § 8s
e"es
PI: y = (yg=d) + d (77)

(§)6s + e708
- The closed-loop response is independent of the system time
constant 1 (the process lag (1+ts) is cancelled by the
controller).
- Time 1s scaled by 6.
- The shape of the response depends on /8 only.

In other words, specifying one value of ¢/6 for any first-order
lag with deadtime model results in an identical response when time is
scaled by 8, regardless of k, 8, and t. For instance, if the deadtime
in system I is twice as long as the deadtime in system II, then for a
specific e/6, the response characteristics will be identical except that
it will take the response of system I exactly twice as long to reach
the same point as system II. The choice of the "best" ratio /6 must

be based on performance and robustness considerations.
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Controller kko 11 19 Recommended
e/0
> O‘e” always)
21+9 6 10
PID Ze7 T3 P >0.8
T —
PI E— T - >1 -7
Improved
21+0 )
PI 52 T+ s : >1f7

Table 2: IMC-based PID parameters for

and practical recommendations for /6.
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For the PID controller Figure 3 demonstrates the dependence of the
step response on e/6. €/6 = 0.4 is fairly close to the value where
instability occurs (e/6=0.145), and the large overshoot and poorly
damped oscillations are therefore not surprising. Note that e/6 = 0.5
is the lower value recommended in Table 1 for models with a RHP zero
factored according to (66). For /8 = 0.8 the response looks very
good: the rise time is about 1.56 and the settling time is 4.56; the
overshoot is about 10% and the decay ratio is quite good. For e/6 =
2.5 the response becomes highly overdamped and almost identical to that
of a first-order system with time constant €/6 and delay 6.

The scaled form of the closed-loop transfer functions (76) and
(77), allows convenient design plots to be made (Figs. 4 and 5). The
performance measure J, the integral square error to a step
disturbance/setpoint change, and the robustness measure M have been
plotted as a function of e/6. In Figs. 4 and 5, J is normalized by
Jopt» the error corresponding to the optimum response y/yg = e 08, In
theory, a Smith Predictor with infinite gain (kg==) accomplishes this
response.

For PID control (Fig. 1), J/Jopt reaches a minimum of 1.092 for
e/6 = 0.68. At this point, M = 1.3. For practical purposes a better
compromise between performance and robustness is attained for e/6 =
0.8; here the ISE is almost minimum but M has dropped to 1. For PI
control (Fig. 5), €/6 = 1.4 results in the minimum J/Jopt value 1.55. M
for this setting is approximately 1.3. M = 1 first occurs at e/6 = 2,
where J/Jopt = 1.7f

Figure 4 also confirms that the first-order Padé approximation

leads to relatively little performance deterioration. For /8 = 0.8
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the result is a PID controller that performs with only 10% greater ISE
than the optimal Smith Predictor, while retaining favorable robustness
characteristics. Compared to the PI controller, however, the Smith
Predictor provides significant performance improvement; one must
realize that the PI rule originates from a reduced model with no
dependence on the process deadtime; an alternate rule is described in
Section 5.3 which takes into account this deficiency.

Figures 4 and 5 have been obtained under the assumption of no
plant uncertainty; only the model error induced by the Padé
approximation is considered. Significant plant uncertainty within the
bandwidth of the controller will require the designer to select a
larger value of e. This consideration is of particular concern when
/6 << 1. Because for the process industries the closed-loop bandwidth
can rarely exceed ten times the open-loop bandwidth (10/1), a practical
requirement is to always select € > 1/10. ’For the IMC-PID parameters
this inequality is dominant for 6/t < 1/7; for the PI parameters it
will become important for 6/t < 1/14.

5.2. Comparisons with Other Methods

Next we compare the IMC~PID parameters with the classic Ziegler-
Nichols and Cohen-Coon tuning rules (Figs. 6a & b). The first notable
difference between these rules and those from IMC is that J and M
depend strongly on 6/1, while for the IMC rules the performance and
robustness measures are independent of this ratio. The Cohen-Coon
rules give reasonable performance (J/Jgpt < 1.3) for 0.6 < 8/1 < L.5.
In this range M varies between 2.7 and 1.0, i.e.,robustness is quite
poor, especially for small ratios of 8/1. The performance obtained

with the closed-loop Ziegler~Nichols parameters is good for the range
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0.2 < 6/t < 3.5 but again the robustness is poor except for 6/t = 0.3.
Indeed, for 8/1 > 4 the closed-loop system is unstable with the c-1
Ziegler=Nichols parameters. In terms of performance the open=loop
Ziegler-Nichols parameters are only useful in the range 0.2 < 6/1 <
1.4. The advantages of the IMC tuning rules are further demonstrated
through simulations (Fig . 7)

It should be emphasized, however, that by themselves the higher M
values for the Ziegler-Nichols and Cohen-Coon settings do not imply
that these control systems can tolerate less plant/model mismatch than
IMC before becoming unstable. As was explained in Section II, model
error tolerance depends on both M and the closed-loop bandwidth wp.
Thus only for a particular bandwidth/performance specification is IMC
more robust than Ziegler-Nichols and Cohen-Coon. Comparing Ziegler-
Nichols and Cohen-Coon with a small bandwidth/poor performance and IMC
with a larger bandwidth/better performance can demonstrate a larger
robustness of the former despite larger M values.

In Figs. Ta-c, the presence of pure derivative action (which is
physically unrealizable) leads to a somewhat jerky response and to even
more violent moves in the manipulated variable. If the proper IMC
controller implied by entry G is used, the consequences are an increase
in the ISE and a slower speed of response (Fig. 8); the response,
however, is smooth and looks more attractive (Fig. 9). Here /8 = 0.45

was chosen to obtain good robustness characteristics (M=1).
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5. 3. Development of an Improved PI Rule

The IMC PI rule (from entry A, Table 1), despite its compactness
and simplicity (as evidenced by Table 2 and Fig. 5) has at best 55%
greater performance cost than the optimal Smith Predictor and is not
overall superior to the Z-N and C-C expressions. This is a consequence
of the zeroth-order Pad€é approximation, and can be remedied by
incorporating the deadtime in the internal model through other means.

The IMC design procedure prescribes that first a process model é
should be established which closely approximates the real process; the
controller structure and parameters follow directly from é. As a
second step, the filter parameters are adjusted to compensate for the
plant/model mismatch. 1In the context of the present example it is
clear that a zeroth-order Padé approximation is inadequate. If, in
order to obtain a PI controller, a first-order lag is used to
approximate a first-order lag with deadtime, it appears reasonable to
increase the model's lag over that of the process in order to account

for the presence of the delay. Thus we postulate the model

=~ K
N CNE (78)

where A depends on the process time delay. A must be chosen such that
"best" approximates the first-order lag/delay process. Rivera (1984)

has established

A

i

1 + 0.5(8/1) (79)
as suitable.
The PI rules obtained using (79) appear in Table 2. Comparing the

"improved" PI controller

1+(1+68/2)s
C = —R—ég—— (80)
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with the PID controller (74) and the PI-controller (75) based on the
zeroth-order Padé approximation, the following becomes clear
= For small time delays (t/6 >> 1) the improved PI rule and the
original one are the same.

- For very large time delays (1/6 << 1) the term (1+ts) in (74)
will be outside the closed-loop bandwidth, and the improved PI
controller and PID controller are equivalent when the following

relationship is used:

£ >
(5 = (@

5 Of5 (81)

= +
PI PID
Thus for very large time delays the PID controller approaches the PI

controller with some gain correction according to (70), i.e., derivative
action becomes ineffective.

So far, no rules have been given on how to select € for the
improved IMC-PI controller. To provide an idea of the performance and
robustness properties Fig. 10 was constructed. This plot indicates the
maximum values of J/Jopt and M (over the entire 8/t1 range) as a
function of &/6. From Figs. 4, 5, and 10 one finds that /6 = 1.7
provides a reasonable compromise between performance and robustness

((J/Jopt) = 1.58, M = 1.15). Note that this is slightly higher than e/6

= 1.3 which is suggested from (81) based on the PID rule ((%0 PID=O.8).

Fig. 11 demonstrates that with this choice one obtains performance and
robustness properties equal or superior to those of the Ziegler-Nichols
and Cohen-Coon PI rules. Simulation results (Figs. 12a-c) confirm this.
Not only do the improved IMC-PI parameters lead to better
performance and robustness than the traditional methods, the IMC design

procedure also makes the search for the appropriate parameters
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simpler. In the IMC context, the PI controller is reparametrized with
the parameters A and e€. While in general it is necessary to search
over Ko and 11 simultaneously, IMC allows to search first for i to
obtain a good model fit and then for ¢ to obtain good performance and
recbustness.

5.4. Robustness to Deadtime Errors

The following criterion which is sufficient for stability in the

face of deadtime error was derived in Section 2

1
§ < ool (82)

For the IMC-PID controller and /8 > 0.8 (M = 1), the following

crossover frequency approximation holds (see Appendix B)

(83)

n
| @
+
™

1

We
Likewise, for the improved PI controller (e/6 2 = 1.7, M varies with T,

as shown in Fig. 11), one can approximate w, as

L z ¢ (84)

We
(83) and (84) lead to convenient expressions for the allowable deadtime

error in terms of the design parameters ¢, 8, and M

PD:  §<e+ 3 (85)
Improved PI: § < {% (86)

Table 3 confirms that (85) and (86) provide extremely accurate
predictions for the allowable deadtime error. Furthermore, it shows
that the suggested PI and PID settings provide deatime error robustness

in excess of 100%.

5.5 Tuning Based on Crossover Information
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Allowable deadtime error &/9

Controller Deadtime
Range Approximate Bound Exact Bound

PID
£ . 0.8 0<2<¢a 1.30 1.36
6 : T ot ot

]

T = 0.1 1.54 1.55
Improved ' ‘ )

PI

S -0 1.46 1.46
. ) ) .
5 - 1.7 -

T = 1.0 1.50 1.52

]

== 10.0 1.70 1.97

Table 3: Allowable deadtime error 6/6 for IMC-based PID and PI
parameters. The exact bound is obtained from (17) while the
approximate bounds are obtained from (85) and (86) for the PID and
improved-PI rules, respectively.
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The classic Ziegler-Nichols identification procedure (1942) and its
modern counterpart by Astrom and coworkers (1983) do not provide a

parametric model directly but only the ultimate gain K and the

ultimate period Py. Py is related to the phase crossover frequency wg,

by
_an
Ky is the inverse of the process gain at wy
Ku = |glug)[™ (88)

Generally a good estimate of the process time delay 6 is also available
from step tests. As Shinskey (1979) argues, it is reasonable to model

processes with
26 < Py < s (89)
as a first-order lag with deadtime as denoted by (71). If 8 is known, Kk

and 1 can be estimated from K, and P, through the formulas

Putan(Istfégglz)
u

T = 2n

(90)

(91)

With the aid of (90) and (91) the PI and PID tuning rules from
Table 2 can be applied when Ky, Py and & are available and a model of

the form (71) is assumed.
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6. Summary

IMC derived PID controller parameters are listed in Table 1 for
most models commonly used in process control. In some cases, the IMC
design procedure leads naturally to the need for a first-order lag to
augment the PID controller structure. The single adjustable parameter
e is directly related to the speed of response, with 1/¢ approximately
equal to the bandwidth of the closed-loop system. When the PID
controller with the specified structure is applied to the model the
closed~-loop system is stable for all € > 0. In practice 1/¢ should be
chosen to be smaller than the bandwidth over which the process model
is valid. A good generally conservative initial guess is to set € equal
to the dominant time constant of the open-loop system.

If the model includes LHP zeros, these zeros should be cancelled
first by an appropriate lag and then the entries from Table 1 can be
used. If the system includes deadtime, Pad€ approximations may be used
to simplify the model; the result is a simple, lead-lag type
controller. The zeroth-order approximation requires € > 6, for the
first-order approximation € > 6/3.

When a 1st-order Padé approximation is used for a first-order lag
with deadtime, the IMC design technique yields the PID parameters
listed in Table 2. The ISE to a step change is minimal for €/6 = 0.68.
A better tradeoff between performance and robustness is reached for
e/6 = 0.8. For small deadtimes (8/1t < 1), robustness considerations
(unmodeled dynamics) will dictate a larger e.

By approximating a first-order lag with deadtime model by a first-
order lag without deadtime, the IMC procedure leads to the "improved"

PI parameters in Table 2. For a choice of €/6 = 1.7 the lower bound on
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performance, over the entire 6/1 range, is J/Jopt = 1.58 and M = 1.15.
Furthermore, simple expressions for the allowable deadtime error §
are available in terms of the parameter e. For the IMC-PID rule this
expression is
< (e + 2) (85)
and for the improved PI rule

(86)

Z|m

7. Conclusions

We have shown that for most of the models used to describe the
dynamics of chemical process systems the PID controller is the natural
choice. In the absence of nonlinearities, constraints, or multivariate
interactions it is infeasible to improve the performance with more
complex controllers unless higher order, more accurate process models
are available.

Furthermore, by substituting Pade” approximations, these PID rules
have been extended to models with deadtime. For the particular case of
a first order lag with deadtime process. the improvement of the ISE for
a step setpoint/disturbance by the Smith Predictor over a PID
controller is at most 10% regardless of 6/t. For small values of 8/1
this 10% improvement is generally not attainable because of model
uncertainties. For large values of 6/t some improvement is possible if
the process model is valid over a large enough bandwidth.

Although we show that PID-type controllers are adequate for most
common process models, we find that the classical feedback structure
is inadequate for a clear understanding of control system design. IMC

formed the basis of all the rules in Tables 1 and 2. If one were to
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use IMC directly and not insist on the traditional PID parameters, no

rules and no involved tables would be needed. The IMC design procedure
is generally applicable regardless of the system involved. No special
provisions are required to deal with every single type of system. The
complexity of the rules in Tables 1 and 2 demonstrates that the PID
parameters kg, 11, and tp are the consequences of a long hardware
tradition rather than because they represent the most practical tuning
tools., The unfortunate parametrization of the PID controller might
also explain why some modern control methods (possessing structures
that fall under that of IMC) have claimed improvements in control
quality over PID for simple systems where a properly tuned PID
controller would have yielded an equally good result. The results
presented here also clearly point out the limitations of PID
controllers. The practical occurrence of systems where no
nonlinearities, constraints, or multivariate interactions are present
are very rare. In all other situations the PID controller must be
"patched up" with anti-reset windup, deadtime compensators, and
decouplers, while the IMC technique allows a unified treatment of all
cases.

Finally, we must acknowledge (Lau and Balhoff, 1984) that the
discrete form of IMC (Garcia and Morari, 1982), because of the increased
number of tuning parameters and the added flexibility allowed by the
discrete representation in formulating control objectives, can lead to
performance and robustness improvements not possible with the PID

parameters suggested here.
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Appendix A
Analytical forms for wp and we can be found for the following:

~Bs+1 1
Bs+1 (es+1) (64)

Option 1: g.f =

The sensitivity operator is:

(A.1)

which yields

vg(7Bz+88€+€2)+V(762+88€+€2)l+5(86)2

wp = — (A.2)
V2 Be )

Using the asymptote approximation for the amplitude of (A.1) one
obtains

~
b T ZEve

To obtain the cross-over frequency, we have cg:

é+ —Bs+1

8" T, T EET v (evepks (4.3)
from which one obtains:
V- (c5t5ee36)+/ (e TBEr S IR "
wc = %:‘ (A.u)

V72 £

Again, using the asymptote approximation for the amplitude of (4.3)

orie obtains the simpler expression

~ 1
“e ® Zgee

Option 2: g.f = :ggé%l (66)

The sensitivity operator is

s - {exB)s (8.5)
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which leads to
1
wb D e ————————— (A.6)
V2(e+B)-€?2
or, from the asymptote amplitude approximation to (4.5),

1
e+B

wh =
For the cross-over frequency the expressions are

_ =Bs+]
%€~ Tevp)s .7

from which one obtains

L (4.8)
/( €+8 52-'1-32

We =

and from the asymptote amplitude ratio

~
We =

£+8
. ~ g~ 0s
Option 3: g.f = i

For this case it is not possible to write the bandwidth or cross-
over expressions in explicit form. One can obtain approximate

expression by representing the deadtime as a Pade” approximation

_ 8
1 E-s 1

1+ 58 (es+1)

and then proceeding according to Option 1. The resulting expressions
are
= z 1
“b = e = Bie

Appendix B: Cross-over Approximation for PI and PID Rules

The expression for cg arising from the use of the IMC-PID rule to

a first-order lag with deadtime process is



- 65 -

9 -
(1+ = s)e™0s
2 (B.1)

cg =
(% + €)8

One can solve explicitly for the crossover frequency to obtain

! (B.2)
L € IRTAEY ‘
egig + 5) <§)

For e/6 > 0.8, it is reasonable to neglect the latter (%)2 term

We =

and thus approximate we as

R

We
oy(5 + 2
N 1
e+ g

For the IMC~improved PI rule, cg is

(1+(1+ % )s)e=08

8 - es(1+13) (B.3)

As 8 » 0, it is clear that the crossover frequency reaches the

value

(B.4)

which implies

R}

1
Assuming, however, that 1 = 0 (the worst case), we see that (B.5)
is still a good approximation. Consider that for 1t = 0, the crossover

frequency is determined explicitly by

1

oSy -

wc=
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For /86 > 1.7, (e/6)% >> (1/2)? and therefore

1]

1
w —
c €

is a suitable approximation for the crossover frequency.
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CHAPTER III:
CONTROL-RELEVANT MODEL REDUCTION PROBLEMS FOR SISO H, , H
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Abstract

The problem of model reduction in the context of control system
design is investigated. Starting from closed-loop objectives (H,, Ha,
and y), equivalent weighted "open-loop" plant and controller reduction
problems are developed. The control-relevant weight function
incorporates explicitly all the important characteristics of the
control problem, such as the setpoint/disturbance spectrum and the
designer requirements for the sensitivity/complementary sensitivity
functions. Furthermore, these control-relevant reduction problems are
complimented with validation procedures that indicate rigorously the
effects of the reduction problem on the desired performance objectives.
A simple algorithm that uses standard regression routines is presented

to solve these problems.
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1. Introduction

Model reduction techniques seek to derive from a "full" order
model (that is, a complete process model derived from fundamental
principles or identified experimentally) a "reduced" order model (i.e.,
one containing fewer states) which best approximates the behavior of
the complete model for a given application. In a general mathematical
sense, the model reduction problem (MRP) is an optimization problem
which requires minimizing a function of the weighted error between full
and reduced models:

MRP = ngnoicrjlel f(Weight, Error) (1)
Reduced-order mecdeling is a significant tool for simplifying the design
and implementation of control systems; for this reason reduction
methods have received a considerable amount of attention in the past 20
years.

Historically, the selection of functionals, weights, and error
description for model reduction has been done with greatest emphasis on
computational convenience. The traditional methods attempt to match
certain predominant features of the full model (statistical moments,
dominant poles, etc.) or minimize a functional objective such as the
integral square error, the maximum error, or the integral absolute
error between full and reduced models. Recent advances, most
particularly model reduction through balanced realization, have
revolutionized the computational aspect of the reduction problem while
leaving a basic question unanswered: is the reduction objective relevant
to the closed-loop control problem? Implicitly stated in these efforts
is the belief that a good "open-loop" matching serves well for all

applications in dynamic simulation and control system design. The
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review papers of Bosley and Lees (1972) and Decoster and van
Cauwenberghe (1976a,b) provide a good summary of these "open-loop"
procedures.
In contrast to the fervent activity on "open-loop" model reduction,
the link between the reduction objective and closed-loop control

(henceforth referred to as control-relevant model reduction) has

received comparatively 1little attention in the systems literature,
although its importance has begun to be emphasized in recent years
(Enns, 1984, Hyland and Bernstein, 1984, Skelton and Owens, 1986). In
the absence of a "separation principle" guiding the control-relevant
reduction problem (that is, reduction followed by control system
design, or vice versa, will always be suboptimal compared to the
integrated process of reduction and design) there is much to be gained
from understanding this link, as it can lead to obtaining smaller
parsimonious models and, consequently, result in simpler yet more
effective control systems. The most common approach to this technique
has been an indirect one; usually a proposed reduction technique will
account for control applications by incorporating a user-defined
weighting function. The problem remains, however, of finding a

relevant weighting function systematically rather than on an ad hoc

basis.

Recently, Enns (1984) and Anderson (1985) have proposed weights
and computaticnal techniques which consider the stability issue of
model reduction, that is, assuring that the reduced plant or controller
model will result in a stable control system despite reduction error.
Performance degradation effects have been studied by a number of

investigators (Mitra, 1969; Hyland and Bernstein, 1984), but are of
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limited usefulness because they usually imply a specific controller
design paradigm and the conditions presented for "control-optimal"
reduction are complex and numerically involved. The efforts in this
paper, while also centered on preserving performance in the face of
model reduction error, attempt to be as independent as possible of a
control system design procedure and address a variety of control
objectives, including robust performance (Doyle, 1984, 1985) which has
been a subject of recent theoretical and practical interest.
Furthermore, the resulting control-relevant reduction problems are
expressed in terms of physically meaningful quantities. The framework
for this analysis is the Q-parametrization/Internal Model Control
structure (Fig. 1b), which relates reduced models directly to feedback
compensators. As a consequence, it is possible to define model
reduction problems directly from the control objectives; this in turn
will lead to defining weighted "open-loop" reduction problems which are
easy to solve through standard regression algorithms.

2. Preliminary: Control Objectives Considered

This work will focus on single-input, single-output systems and
will assume that the plant p with u as its input and y as its output is
open-loop stable. 5 represents the full-order model, while ﬁ refers to
the reduced-order model.

A number of control objectives will be of interest in this study.
The first we will consider is the 2-norm (H,), evaluated in the

frequency domain through Parseval's Theorem:

0

| le] lz=<—3; J |e(w) [Pdw)1/2 )

o}

e(jw) is the error signal for the classical feedback controller (Fig.
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(A)
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(B)
Figure 1

Classical feedback structure (A) and the Internal Model Control

structure (B).
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1a), represented mathematically as the product of the sensitivity
function € and the setpoint/disturbance characteristics of the problem

e(s) = e(s)(r(s) -~ pa(s)d(s)) (3)
The other objective of interest is the infinity norm on the
weighted sensitivity function (H,) (Zames, 1981)
| |Wpel o = s%)p pre(jw)‘ (4)
From (4) one finds that the following property applies to the infinity
norm:1/ |wp| represents an upper bound on the sensitivity function, that
is
le(iw)| < 1/lwp(jw), Yo (5)
if and only if
||wpe| lo <1 (6)
The previous two control objectives assume implicitly the absence
of plant uncertainty (p=;~>). If uncertainty plays a significant effect
in the control design problem, a more meaningful objective is that
obtained from the p-synthesis theory developed by Doyle and co-workers
(1984). The robust performance theorem presented by these
investigators is the following:
Theorem 1: Condition (5) is satisfied for all members of the family of
plants 7
m: {p:|(0-p)p7!| < 2} (M
if and only if
W= sup (|nem| + |wpe] <1 (8)

n is the complementary sensitivity function, related to € according to

~

N+ € =1, Both n and € are based on the full-order model. The
uncertainty description (7) is generic for SISO systems in the sense

that all other norm-bounded uncertainty descriptions (additive, input or
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output multiplicative uncertainty) can be lumped into a single 1ip
description without conservativeness; furthermore, comparing (4) and (8)
it is clear that for the case of no uncertainty, y and the infinity norm
are equal. We will therefore consider u in the rest of the analysis of
this paper and assume that the reader will understand that it
incorporates the H, problem as specified in (4).

3. Internal Model Control -- Relating Reduced Models to Feedback
Compensators

Tne lack of a convenient framework linking modeling to control
system design has been a continuing obstacle towards understanding the
consequences of reduced-order modeling in the control context. Given
the diversity of controller design methodologies available -- LQG, pole
placement, and loopshaping, to name a few, -- one would generally
expect that the control implications of model reduction are greatly
dependent on the design technique chosen and therefore difficult to
assess in a general sense. These difficulties are avoided if, as a
basis for control-relevant reduction analysis, the classical feedback
structure is reparametrized into a form that allows for more insight,
particularly, one that allows that the control problem be addressed
with a minimal amount of information regarding the controller design
procedure. Specifically, this parametrization should be able to express
the reduction problem in terms of designer-specified performance
requirements, the plant uncertainty description, and the
setpoint/d_istur'bance characteristics of the problem.

Such benefits are obtained by examining the reduction problem
through the Internal Model Control structure. The IMC structure,

introduced by Garcia and Morari in 1982 (it is equivalent to the Q-
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parametrization (Zames 1981) for stable systems) is an alternate albeit
equivalent representation of the classical feedback structure. The
relationship is denoted by the equations

q = c(1+epy)™! (9)
¢ = q(1-ppa)™* (10)
and illustrated in Figures 1a and 1b. q represents the IMC controller.
We first consider the case of no model uncertainty (&p = 0, p = 5,
i.e., the full-order model describes the plant perfectly) and use the
full-order model to design the control system (pp = 5, i.e., no model
reduction is performed). This case is important because it allows one
to define the plant-inherent limitations to control which in turn will
influence the choice of the reduced model. From (10) it becomes clear
that incorporating the plant inverse in the IMC controller as q = 5“ﬁ
leads to a closed-loop system possessing the desired transfer
functions:
e = e(r-pgd) = (1-n)(r-pgd) (11)
y = n(r-pgd) + pgd (12)
The system is effectively open-loop and closed-loop stability is
implied by the stability of 5 and q. ﬁ, the complementary sensitivity
function, is mostly at ﬁhe designer's discretion, subject to the
following limitations:
Limitation 1. Model-Inherent Limitations: Nonminimum phase elements in
the plant will limit the best achievable performance for any system.
Deadtime in 5 could cause q to be non-causal, while Right-Half Plane
zeros could result in unstable poles in q. This is avoided by requiring

that the plant be factored according to



D = PP~ (13)
with §+ containing all the nonminimum phase behavior. Setting n as

n = ps (14)
results in a causal and internally stable controller.

Limitation 2. Input magnitude/robustness limitations: The control

action must be bounded, which implies that q must be proper. If ﬁ is
proper, n must be proper with a sufficiently steep roll-off. The
definition of n must thus be complemented with a low-pass filter f
such that

N = psf (15)

Detailed discussion of procedures for computing n from plant
models can be found in Morari, Zafiriou and Economou (1987).

When 5, the reduced-order model, is used to design the control
system (see Fig. 2), the limitations on control system stability and
performance created by the full/reduced model mismatch must be
considered. Representing this mismatch in terms of the multiplicative
error ep

em = (p-P)p”* (16)
and determining q on the basis of the reduced-order model (q = ﬁ“ﬁ,
with a obtained from B) results in expressions for the sensitivity and
complementary sensitivity functions that incorporate the reduction
error:
€ = (1=-n)(1+emn)™* a7
1= (l+ep)n(l+enn)™ (18)
the full/reduced model mismatch forces the designer to reconsider the

following:

1. Stability. A stable system is no longer assured if 5 and q are
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s 3

{ P20

Figure 2

IMC structure for control-relevant model reduction.



- 78 -~

stable. It follows from (17) and (18) that for closed-loop

stability the Nyquist plot of emﬁ should not encircle (-1,0). A

sufficient condition (obtained through the Small Gain Theorem)

establishes bounds on the magnitude of 'emﬁ,

lemﬁl <1 Y (19)

2. Performance. ep corrupts the performance expected from a This

effect can be assessed quantitatively by evaluating the

performance objectives (2) and (8) using (17) and (18):

2 gy)1/2 (20)

lell = (2 | |(-R)(1+eqm) i (r-pga)
T o]

W= Slfup(l(1+em)ﬁ(1+emﬁ)"l£m+|wp(1—ﬁ)(1+emﬁ)“|) (21)

The previous two equations indicate the usefulness of the IMC
parametrization as a reduced model assessment tool; from a specifi'edﬂ
(which reflects desired/attainable performance based on the reduced
model), ep (the model reduction error), &p (the multiplicative plant
uncertainty description), Wp (the sensitivity function bound), and r-pgd
(the setpoint/disturbance characteristics), an objective function of
choice can be readily evaluated and compared with the objective
evaluated on the basis of 7 obtained from full-order model
characteristics. Furthermore, for the robust performance objective
defined by (21), Theorem 1 can be used to rigorously determine that the
performance specification has been met, despite reduction error.

The expressions denoted by (20) and (21) agree with the definition
of the generalized MRP defined in (1). The functionals to be minimized
are the integral and the maximum of the weighted

sensitivity/complementary sensitivity functions; most importantly, the

multiplicative error ep, rather than the commonly utilized additive
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error ey (ea=ﬁ-ﬁL is the relevant reduction error measure for control
applications. It is also clear from these expressions that the
relationship between the reduction and control error is not a linear
one; because of this arrangement, the solution to the model reduction
problems posed by (20) and (21) is numerically difficult and requires
the use of nonlinear programming routines for computation. Generalized
statements regarding convergence and existence of solutions are
difficult, if not impossible to state in general. Rivera (1984) has
implemented a programming solution for the problem defined by (20) and
found it to be practical only when a limited number of model
parameters need to be obtained.
b, Obtaining Open-Loop Reduction Criteria from Closed-Loop
Control Objectives

The numerical difficulties associated with a rigorous solution to
the control-relevant model reduction problem make it desirable to
obtain computationally convenient formulations in the spirit of the
"open-loop" methods which have predominated the model reduction
literature. Our purpose in this section will be to indicate the
analysis that leads to stating the MRP's defined by (20) and (21) in the

following form:

MRP = min f(Weight lemlk) (22)
model

The first step in deriving near-equivalent "open-loop" reduction
problems is to conveniently approximate the functions n and €.
Assuming that condition (19) holds (which, as discussed in the previous
section, implies stability of the closed-loop system despite reduction

error), then (17) and (18) can be expanded into geometric series
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e = (1-n)(1-epn + (egn)? = (epn)® + ...) (23)
A= (l+ep)n(i-epn + (eqn)? = (epn)® + ...) (24)
Further simplification is achieved by neglecting second-order terms and
higher; this approximation is valid if Iemﬁ' << 1 over the bandwidths of
(1-n) and 1, respectively

£

[

(1-1)(1~eqn) (25)

~

72 at+(1-n)ey) (26)

fl 1l

Having obtained the simplified expressions (25) and (26), one is
now able to relate the multiplicative error in a linear fashion to the
functions n and e; the first term of (25) and (26) incorporates the
reduced-model inherent limitations to control, while the second term
denotes the degradation occurring from full/reduced model mismatch.
The control-relevant reduction problem requires obtaining a model such
that the degradation resulting from the multiplicative error is
minimized.

Substituting (25) and (26) into the control objectives defined by

(2) and (8) one obtains

1"'ema

~ 'l ~
llell: = |lellz,approx = (;‘J (1-n? *|r=Pad * dn)1/2  (27)
0

W Wapprox = sup (|RC1+(1=nleg) |tm + |wp1-m) (1-em) ) (28)
From the property
llalloa = ol la < [la*b] e < T[alla *+ [PHar @ = 15 v Py = (29)
it is possible to separate the effect of ey on the 2-norm/u objectives:
||(1~ﬂ)(r-pdd)|k - IK1-3)(P-pdd)aemlb < |lel lz,approx £

|10 (r=pgd)| |2 + | |(1-1)(r=pad)Ten] | (30)
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|| [nem| * [wp@=m] [1= = [1(1=0]tm + [wp(i-1) Preq] = < wapprox <
1 [nea] + [up@=m [[a + [[(1=0ltn + [wp-m)pren|l. @D
Control-relevant model reduction problems of the form (22) are

obtained by minimizing this degradation term:

P1:  min( |(1—ﬁ)2(r-pdd)2 nepq [Fdw = mip J, (32)
P P

P2: inf sup (‘(1—6)9%' + lwp(1—ﬁ)l)|ﬁem| = inf J, (33)
p v p

The weight functions of these MRP's incorporate the following aspects

of the control system design problem:

1. The nominal sensitivity function (1—3): this portion of the weight
attenuates the low frequencies.

2. The nominal complementary sensitivity ﬁ: this function attenuates
the high frequencies and provides a roll-off point for the
multiplicative error.

3. The setpoint/disturbance characteristics of the problem (r-pgd):
In most cases, the setpoint/disturbance spectrum will attenuate
the error at high frequencies. Certain inputs, such as step
changes, will place greater emphasis on the low-frequency
component of the error.

h, The sensitivity function bound 1/lwpl: this function attenuates
the low frequencies.

5. The uncertainty description 4. Depending on the nature of the
problem, the effect of uncertainty could extend to all
frequencies. In general, &y tends to be small at low

frequencies, increasing towards infinity for unstructured cases.
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The associated problem of controller reduction can also be
addressed in a fashion similar to that of the plant reduction problem.
This is achieved by re-writing the sensitivity function as:

(1+pe)™* = €(1-Ep(c-c))~! (34)
with € representing the sensitivity function obtained from the full-
order controller.

Requiring that

lepie-o)] <1 W (35)
and expanding (34) into a geometric series results in the following
expressions for the sensitivity and complementary sensitivity functions

(1+pe)™" = (1-1) + (C-C)p(1-1)? (36)
pc(1+pe)™F = 1 - (c-e)p(1-m)? (37)

and to the controller reduction problems

P3: min J | (1= % (r-pqd) ?|6-¢|Pdw = min J, (38)
C o) C

P4: inf sup (£m+|wp|)|1—ﬁ'2|5HE—8| = inf J, (39)
c W ¢

As before, the weights in (38) and (39) directly incorporate the
sensitivity/complementary sensitivity functions, the
setpoint/disturbance spectrum, the sensitivity function bound, and the
uncertainty description. Contrary to the plant reduction problem,
however, the additive error (5—8) between full and reduced controllers
is the suitable error description.

It is of interest to compare the proposed model reduction problems
with those presented by Enns (1984). Enns' control-relevant criterion
is to assure stability in the face of reduction error in an environment
free from plant uncertainty. The relevant functional is thus the

infinity norm, and the specific MRP's are
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Plant-order reduction:
inf sup lﬁeml (40)
D w
Controller-order reduction:
inf sup |(1-n)p||c-¢| 1)
s w
The problems defined by (40) and (41) correspond closely to
problems (33) and (39) defined for the u objective; the extra factor
(4 + [wp]) 1] w2)
n = a: plant reduction n = r~1: controller reduction
is included, indicating the frequency range over which ,ﬁem, or
| (1-7)B(e-C)| must be kept much less than one.

An issue that remains to be addressed is the computational aspect
of the problem. Minimizing the functionals that appear in the proposed
problems has been discussed previocusly in the literature; for the
2-norm (ISE) in the frequency domain, one can refer to the work of
Noldus and Decoster (1976); with regards to the u problem, the method
of frequency-weighted balanced realizations (Enns, 1984) can be used.
Two obstacles, however, are encountered in the case of plant reduction.
The first is that most literature approaches consider the additive
error e, while the criterion of interest is the multiplicative error
ep. The second is the presence of ﬁ in the control-relevant weight;
the nonminimum phase characteristics of the reduced model (represented
in f>+) are not known a priori. Both of these obstacles are recognized
by Enns, who indicates that in such cases the additive error problem
can be stated as a fixed point problem (the reduced model inverse ﬁ"l
now forms part of the weight) with the method of successive

approximation used to obtain a solution. The reduced model resulting

from each iteration is factored (for the purposes of updating ﬂ) and
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introduced in the weight; assuming existence of a solution and that the
functional of the weighted error is a contraction, the method will
converge.

5. Synthesis Methods for Control-Relevant Model Reduction

Despite the availability of computational methods for solving the
problems developed in the previous section, there are still motivating
reasons for exploring alternate computational schemes. First of all,
the problems presented in the previous section are still nonlinear
programming problems and require significant computational effort.
Furthermore, when using the balanced realization technique it is
required that the weights and models be in state-space form, thus
forbidding the use of models with deadtime. Systems with poles on the
Jjw-axis are also excluded. As an added drawback, error bounds for.the
frequency-weighted case are currently not available. Our goal, then,
is to present simpler, regression-style computational schemes for
solving the proposed problems which are easy to implement using widely
accessible software packages.

The computational procedure presented in this section is patterned
after the generalized framework for frequency response matching
proposed by Stahl (1984). The philosophy behind this method is that the
nonlinear programming problem can be reformulated as an iterative
linear one.

The first step towards developing this alternate computational
scheme is to consider the full-order model 5 or ¢ nonparametrically in
terms of its frequency response (z triplets consisting of the full-
order plant or controller evaluated at a frequency with its associated

real (R) and imaginary (I) parts).
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((U)I,RI,II),.-.,(wi,Ri,Ii),.o-,(wz,Rz,Iz)) (LI'B)

Because of this full-order plant representation, the previously stated
MRP's must thus be defined in terms of discrete, rather than continuous

operators. For plant reduction we have
z
Pl: J,=Jdl= 2 | (=nIN(r-pad) Pomjug em(Gup)?aug (44)
i=1

Awi = wi = Wi-1
P2: g, = It = max ((plup)+[wpUup) Pl (O-Mnfseju; [enud])  45)
1

and for controller reduction the discretized objectives are

Z
P3: J, = dl= 2 | (1=7)25(rPaa) [rs= juy [ecug)[? Aug (46)
i=1
P4: J, = J! = max ((zm(wi)+|wp(jwi)})|(1—5)2ﬁls=jmi leoUwi)] (47)
1
ecliu) = S(jwy) - o(jug)

It should be clear to the reader that as z increases, (44)-(47)
more closely match their continuous counterparts, (32), (33), (38), and
(39). We will consider reduced models of the form

A A @,+a;S+...+apsh —os _ N(s) -ps
or ¢ = e = e 48
P bo+b,S+...+bpysl D(s) 48

where b, = 1 for a model without integrator and b, = 0, b, = 1 for a
model with a single integrator. Combining the definitions (43) and (48)

leads to representing ep and ep as follows:

o (jur) o DO)BIFIL-N(s)em89 _ %L (49)
miJei) = N(s)e~68 s=ju;  N(s)e™8S |s=ju;
_ D(s)(Rj+jIj)-N(s)e~6s e
ec(jui) = - ok 0
c\Jwi D(s) 5= o IO s=Jug (50)




where

e,(jui) = (bo*b;s+...+bps™)Rj+31) - (a°+aos+...+ansn)e‘es[S_jm,
- ~ =Jwi
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(51)

e[, is a linear function of the parameters [b,,b,,...,bp] andlag,a,...,anl,

and can therefore be represented in matrix form as follows:

e{ = [Re(e,(Ju1)),...,Reler,(Jui)), .. .,Reler,(Juz)),

Im(e,(Gwi)),. .., Imler,(Gwi)),...,Imler, (Juwz)) ]

eL=Mp-v,M=L

(52)

. VR—
J s V = ]:-V—fJ (53)

For a system without integrator (b, = 1), the form for p, Mg, M1, VR,

and vj is the following:

cos(Bw;) ...
cos(Bwi) ..

cos(Bwy) ...

-sin{fw,) ...
-sin(fwi) ...

-sin(6wy) In((ju )t e 230z)

T

Vg =

(R, ...

pT = [ao,...,an,bl,...,bm:l

Re((Gu)n e 891
Re((Juw; M o~ 8Jui
Re((Jut e 299z

Im( ()0 e~ 8391y
Im((jwi)n ¢~ 0wy

) Ri, ceny RZ]

(54)
T.w, ... Re((=ju )M (R,+JI,))
Iijwj ... Re((~jwi)™ (Ri+JI;))
IZ‘*’Z ...Re((~jwz)m (RZ+~jIZ))

“Ruw; ... Im(C=jw,)™ (R,+3L,))
“Rjwg ... Im((-Ju)™ (Ri+J1))
“Rywz ovo IM((=jwz)M (Ry+ily))

VI = [Il’ "0', Ii’ lo." IZ]

For a system with integrator (b,=0, b,=1), we have

cos(6w;) ...
cos(Buwi) ...

cos(fwz) ...

pT = [am

Re((ju )R e 93¥1)

Re((Jup)t e 8341)
Re((Juy)l e 8392)

seey an, bz, e

.+» bp] (55)

Riw? ... Re((=Jw)® (R,+iL,))
Ri‘”; ... Re((=Jwi)™ (Rj+JI1))
Rgwy -+» Re((-juy)® (Ry+,))
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~sin(6w,) oo In(GudM € ) e (i Rei)
My - -sin(6wi) ... Im((Jw;)" e_ejl.”i) Lmzi2 oo Im((=Juid)™ Ri+J5))
-sin(-8ug) ... Im((juy ) e %J9z) Liwg «oo Im((-jugz)® (Ry+ilz))
Vg = [-Twy, ey <Tjg, ooy =Ty v = [Ruw, ves Ry, euey Rpug]

The matrix representation for e, can be extended to preassign
values of specific reduced model parameters and thus account for
previous knowledge of the process. If pp is the portion of p to be
preassigned to a desired value and pjq is the portion that remains to

be identified, M must be partitioned according to

e, = [Mjq | Mrl [%_QJ -V (56)
where Mjq and Mg contain the column vectors corresponding to the
coefficients in pjq and pp, respectively. Rearranging, (56) becomes

eL,id = Mid Pid ~ Vid (57)
with
Vid = Vv - Mppp (58)
Our objective is tc obtain expressions for Ieml and 'ecl based on

ep,; wishing to conserve a real-valued matrix representation, we

introduce a factor which preserves the magnitude but alters the phase

AT PR TR T I
' er,(Jwi)
ol (jug) = T%%T ousy, CcluD) - Lo - (60)
= l -

To incorporate er;l and eé into the matrix representation of ey, we define
emT = [Re(em(jw,)), ..., Re(ep(ju1)), ..., Releh(juy)),
Im(ep(jw.)), +ovy Im(eg(iwi))s <., Im(ep(jug))] (61)

ep = Wy (Mp-v) (62)
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ecT = [Re(el(dw)), ..., Re(ed(dwi)), ..., Reled(iuy)),
Im(eg(Jwy)), -v., Im(eg(dwi)), cers Im(es(Jwg))] (63)
e¢ = Wo(Mp-v) (64)

In all cases the weight matrix has the general form

Wn o | [wa 0]
c

The appropriate weight submatrices are
(66)

w; = diag(l/lN(jw) e—ejw‘,, cees 1/[N(jwi) e—ejwi', cees 1/'N(jmz) eﬁejwzl
Wo = diag(1/|D(qws) |5 «ves 1/|DCI01) |5 wery 1/|DCug) ) (67)

To obtain a weighted error description compatible with that derived in

the previous section, we must define a second weight matrix which

contains the control-relevant weight. This weight is defined as:

w*
W,Q, = [OZ ;-EJ L = 1’2:3au (68)

with submatrices defined according to

W = diagqu-a)a(r-pdm;S ; VBu, , een,
=Jjw,
|G=mntr-pad)|_,  VEug , .., (69)
S=Jjuwj
|-Pne-pad)| . VBug

S=sz

WY = diag((4g(w,) + lwp(jw|)l(1—ﬁ>ﬁls_ﬂ,(u ) oo

() + [wplup Pla=mnl o .., (70)
=J0i

(i) + Jupluz) PlG=mn]__ )
: =Wz

Yo, .

sey

WS = diag(|(1-7)*(r-pgd) |
S=Jw,

(1-n)?p(r-pad)| .
l IS=Jwi VAwi 5 vees (71)
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|-0)%B(r-pad) | VBu

S=sz

Wl = diag((p(wy) + [wple) PlO-m2B] ., ...,
5=Jjw, :
(amug) + [wpup pla-nyp| ., (72)
S=Jw{
(Amluz) + [Wplduz) Pl-m%B] )
S=JUJZ
The relationship between the weighted error and the discrete objectives

44)-U7) are

Jy = | W, em||s (73)
| W2 egllo < J2 < V2 | W2 eg s (74)
Ji = | W, es| s (75)
| W. ecllo < Ji < V2 | W, ec [« (76)

|||| = p-vector norm
The generalized problem solved by using this representation is
err’%n | [ WeWp(Mp-V)||q @ = 2,25 % = 1,2,3,4; h =mor ¢ (77)

From (77) one realizes the benefit of the defined weighted error
representation. The original problem, nonlinear in nature, can now be
decomposed into a single parameter nonlinear search for the deadtime
and an iterative quadratic (for the 2-norm case) or linear (for the u
case) programming problem for the parameters of the rational portion
of the model, as illustrated in Figure 3.

Figure 3 charts the proposed computational procedure. The
programming problem is embedded in the nonlinear search routine for
deadtime. The input sequence of the program requires that the user

specify the problem at hand (plant or controller reduction), the

objective of interest (H, of u), the desired closed=loop performance (ﬂ

and Wp), the uncertainty description fm, the setpoint/disturbance



t - specify plant or
I Input 1 I controlier reduction

- enter 5 andlor ¢

h - specify objective :

| Input 2 l H-2 0r

-it p , specify w
y g and | P

A
|Input 3 l - specify structure of 6

- specify setpoint/disturbance
characteristics (H-2 only)

- enter 1-1 (controller reduction)
or,specify f and the structure
of p+ {plant reduction)

input 4 | - specify TOL1 and TOL2,
as weli as parameters
related to the deadtime
search

9
A
| Set-up | - set up vectors/matrices

- for programming problem.
Compute (53),(65), and (68).

- obtain 6
and upd'a"te
(68)

Factor

y - solve (77) for the

‘ Solve I parameter vector p

- is the problem
plant reduction ?

- update (65)
based on
new values
for p

Update 1 -

- are conditions (78) and
(79) or (80) satisfied ?

Yes

- have termination criteria
been met for the deadtime
search ?

- update guess for 8 Yes

Control-relevant validation :

- have stability ((19), (35))
and performance ({2),(8))
requirements been met ?

Yes

Figure 3
Flowchart for the control-relevant model reduction algorithm.
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characteristics (r-pgd), the structure of the reduced-order model, a
guess for the deadtime (if desired), and various tolerances which
indicate termination of the computational procedure. This information
is sufficient to define the weight Wy. 1Initially, the weight functions
We and Wy are defined on the basis of user-supplied values for N(s) and
D(s) (our experience has shown that setting N(s) or D(s) equal to 1 is
adequate). For a given value of 6, the problem defined by (77) is
readily solved as a least-squares problem (for the H, criterion), or by
the simplex method (for the u criterion). The authors were successful
in utilizing the IMSL routines LLSQF and RLLMV for this purpose. Having
obtained an initial sclution vector p,, the results are then used to
update the weight matrices We or Wp; termination is determined when
the elements of p do not vary appreciably with added iterations. In
our application, we require that two termination criteria be satisfied;

one is the maximum relative change in the parameters

I p_k*_gji‘i |[o < TOLT (78)
K+1

The other is the relative error in the residuals

k+1
| e o] Wlep |,
TS < ToL2 (79)
I ‘Wi em/ [o
for controller reduction
k+1
| e o e Iy
T < TOL2 (80)
[W;™  Teel o

The reader will note from Figure 3 and the previous discussion
that the plant reduction problem carries an intermediate step. Because
an a priori knowledge of the reduced model is not available, initially

the user can only define the low pass filter portion f in n.
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Internally, the program must compute the factor §+ based on a

previously defined formula. The most convenient one is the allpass,

defined as

+

The final step in the control-relevant reduction procedure is the

validation of the resulting reduced model. This involves two steps:

1. Stability Validation. One must insure that the reduced-order
controller (obtained directly or implied by 5 and the choice of n)
leads to a stable closed-loop system when applied to the full-
order plant (i.e., nominal stability). This is confirmed in the
plant reduction problem by verifying that the Small Gain Theorem,
condition (19), be satisfied. Its equivalent for the controller

reduction case is (35).

2. Performance Validation. Performance validation requires being

able to ascertain the degradation caused by reduction. For the
p-synthesis problem, performance degradation is rigorously
assessed by confirming that Theorem 1 is satisfied. For the
2-norm case, performance degradation can be measured Dby
computing the H, objective (20).

The effectiveness of the proposed techniques hinges on satisfying
the previously specified diagnostics. In the case that an obtained
model fails the validation criteria, the designer can either decrease
the bandwidth and/or increase the allowable resonance peak implied by
WBI and n (i.e., make the response more sluggish or tolerate more
oscillation and overshoot) or increase the number of parameters in the

model by making new choices for n and m (i.e., decrease the mismatch).
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6. Examples

The following examples demonstrate the usefulness of the proposed
methods.
Example 1: Mandler et al. (1986) have considered the problem of outlet
temperature control of a 49th-order methanation reactor, whose impulse
response to inlet gas temperature is presented in Figure 4.
The process is subject to step decreases in the entering carbon
monoxide concentration; this effect is adequately approximated by the

transfer function

~ -0.333
Pgd = IGETE (82)

It was desired to obtain a fourth-order semiproper model to

describe the reactor

~ a,+a,S+a,s%+a,s’+a,s"
b= 1+b,s+b,s%+b,5%+b,s*

(83)

The H, model reduction problem was chosen for this case study. A

reasonable weight function for this problem is

Vo = () (s+1)(518+1) (81)

(84) incorporates two main features which affect the nature of the
control problem. The first term, 120s/(60s+1), denotes the inherent
limitation caused by the 60 second deadtime ont he bandwidth of the
sensitivity function. The two lead terms, (s+1) and (51s+1),
incorporate our knowledge of the process disturbance and recognize that
at frequencies higher than 0.02 rad/sec, the sensitivity function will
become significantly attenuated by the disturbance.

The details of the control-relevant reduction procedure are as

follows: The full-order model was represented by 150 points in the

frequency interval [0.0001,1]. The complementary sensitivity function n
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Impulse response for full-order reactor model, Example 1.
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was chosen according to formula

“315+1 1
= T:l’ ( Bio ) (o) (85)

The value A = 20 was chosen because it corresponds to three times the
closed-loop bandwidth implied by the 60-second deadtime. The feedback
controller corresponding to a model according to (83) and n from (85)
is readily obtained from (10).

The final model parameters were obtained after 6 linear program
iterations. The validation criteria (represented in Table 1) indicate
that both stability and performance requirements have been satisfied.

For comparison purposes, unweighted frequency response matching

according to the objective

T . 1/2
JoL = lJ | 5tiw)-plw) [2dw (86)
(0]

and the reduction problem proposed by Enns (Eq. 40) were examined.
(86) represents the integral of the squared impulse response energy
which traditionally has been considered as an adequate objective for
both model reduction and identification. The solution technique used to
solve (86) is that proposed by Sanathanan and Koerner (1962), which also
falls under the generalized framework presented by Stahl (1984). The
solution to (40) was achieved by using the method presented in Section
5, with the weight submatrices of (68) defined according to

Wt - diag(lﬁls=jwl, vees '”'s=jwi’ o ,nls=jwz) (87)
In the process of obtaining a solution, limit cycle problems were
encountered. As recommended by Enns, all plants composing the limit

set were examined, and the one resulting in the lowest residual was

chosen.
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The reduced models, along with the corresponding values for the
He norm, are shown in Table 1; closed-loop responses are shown in
Figure 5. The most notable difference is that the response obtained
from the control-relevant reduced model rapidly settles to the steady-
state, while the others lag significantly longer.

Figures 6 and 7 provide clues towards understanding the benefits
of the control-relevant weight. In Figure 6, the open-loop frequency
responses of the full and reduced models (from (33) and (86)) are
compared. Because of the control-relevant weight, the model obtained
from (33) has a good fit at the low frequencies, which are most
relevant to the control problem; the model obtained from unweighted
error minimization is unsatisfactory because it attempts to match the
plant at all frequencies, even those that have no bearing on the
control problem. Based on examining the open-loop frequency responses,
it would appear as if a higher order reduced model is necessary; a
higher-order controller is thus implied. In fact, the H, norm for the
control system obtained from (86) exceeds one, requiring that either
the model order be increased or the weight specification relaxed.

Greater insights are obtained by examining the multiplicative error
(Figure T7), which, as stated previously, represents the adequate error
criterion for control-relevant model reduction. The control-relevant
model has low error at the important frequency interval. The
unweighted problem has significant low-frequency error, thus causing
deterioration of the response at final time.

Control-relevant plant reduction of the reactor takes on an added
dimension when model uncertainty is considered. Figure 8 shows the

Bode plot of the multiplicative uncertainty 2p arising from model
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Closed-loop responses for control systems generated from various

reduced-order models, Example 1. &—-) unweighted; (----)Ho
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nonlinearity. From the fact that the sensitivity function is bounded

for a set of plants according to

le] < T__}%— s nlim <1 Vo (88)
m

one can redefine Wp, as follows

i '(E%§§§%>(51s+1)(s+1)
wp21 = - (89)

1- [20s+T]

leading to a new model, as described in Table 1. Although this model

results in lower u than that obtained from the competing methods, one
notes that it exceeds one. In order to satisfy Theorem 1, the problem
must be re-computed using a higher order for the reduced model or the
restrictions posed by wp, must be relaxed. In our case, we wish to

ascertain the performance attainable from the models in Table 1.

Substituting (17) into (88) to obtain the formula

- [1=n]
= x x (90)
P | 1+nen [{ n(1+en)in |

yields the weight function required to make u = 1. The two-norm bound
for the entire set of plants &, can be computed according to

[+ ]

1/2
lell < [+

TTJO

From Table 1, one observes that this bound is significantly reduced by

(91)

‘wB%r—pdd)zdw

the reduced model resulting from the proposed control-relevant

procedure.
Example 2. Controller reduction -- four-disk example.
Enns (1984) presents the example of the control of a four disk

system, that consists of "four disks (unity inertia), connected by a

flexible wire (unity spring constant) with a motor for applying torques
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to the third disk and a sensor for measuring angular displacement of

the first disk". The model describing this system is

~ (s2+0.0U4s+1)(0.207s+1)(0.031325%-0.14165+1) (92)
b= [s?(1.709s%+0.05235+1)(0.5035%+0.02835+1)(0.292s%+0.,0216s+1)

A full-order compensator designed using LQG loop shaping is

o - 0.02916(19.88s+1)(1.70952+0.05235+1)(0.50352+0.0283s+1)
- (0.1285%+0.078s+1)(0.118s%+0.134s+1)(s*+0.04s+1)

0.292s2%+0.0216s+1
X [707335%0.6935+ ) (1.9795+1) (93)

The challenge of this problem is the fact that any reduced-order

controller obtained from an internally balanced realization (or any
unweighted reduction method, for that matter) results in an unstable
closed-loop system. Solving the problem posed by (41), Enns obtains

the sixth-order controller

~ (19.417s+1)(1.7085%+0.078435+1)(0. 4635%+0.0408s5+1)
¢ = 0.0232 o5 0ls+1)(3.715%35+1)(0.092052+0.01 215+ 1) (94)

Wishing to obtain an even more parsimonious description for this
controller, we have used the H,~ optimal controller reduction problem
defined by (38) which results in the following 4th order controller

(step setpoint changes considered)

_0.0290+0.57645+0.0723s%+0.93541s3 (95)
T 7+3.1705s+1+3.5229s%+3,2390s%+2.3928s™

Q>

Figure 9 compares the closed-loop responses from (93) and (95),
indicating that a fourth-order controller obtained from the control-
relevant analysis performs adequately. In contrast, attempts to solve
for a fourth-order controller using the method of Section 5 and Enns'
weight failed to provide a stable controller. Figure 10 compares the
additive error (!E(iw) - a(iw)l) resulting from models (94) and (95).
The added parsimony of the 4th order controller is obtained by the fact

that the error is still kept small (less than 0.0001 in magnitude) over
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the relevant frequency interval.
7. Summary and Conclusions

Despite the vast amount of interest in model reduction during the
last two decades, the control and systems literature lacks a clear,
simple framework for understanding the effectiveness of reduced models
in the control context. The IMC structure provides an answer to this
dilemma by relating the controiler parameters in a unique,
straightforward manner to those of the reduced model. These features
lead naturally to using IMC as a control-relevant reduced model
assessment procedure. A reduced-order model is readily incorporated
into a feedback compensator by a simple algebraic relationship (10);
furthermore, the designer can directly specify a desired achievable
closed-1loop response and bounds (ﬁ,wp), the setpoint/disturbance
characteristics, and the uncertainty description &y and readily evaluate
how the control system performance (H,, He, Or u) is affected by the
mismatch between full and reduced models (ep).

The IMC parametrization also provides the necessary insight for
defining a control-relevant weight for model reduction. This weight in
turn allows developing model reduction problems which are near optimal
with respect to the closed-loop performance. For the case of plant
reduction, these problems require minimizing a weighted multiplicative
error; for controller reduction, the weighted additive error between
full and reduced-order models is minimized. The presented weights
incorporate explicitly all the aforementioned characteristics of the
closed-loop control problem. This philosophy contrasts that of most
traditional methods for which the error criterion and the weighting

functions are selected in an ad hoc manner. Furthermore, the presented
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problems can be formulated as simple-to-compute programming problems,
and can be implemented readily through widely available software. Two
examples were presented which attest to the improvements possible by
using the control-relevant weights.

The implications of this work extend beyond the problem of model
reduction. IMC demonstrates that any feedback compensator can be re-
written in terms of a model and a filter; therefore, whenever a high-
order plant is controlled by a low-order compensator, a model
reduction problem is involved. The presented methods are thus low-
order controller design tools as well as model simplification tools.
Furthermore, because the full-order plant is represented by a set of
frequency dependent real and imaginary parts, the presented methods can
serve for parameter estimation in process identification as well; this

is the subject of current work (Rivera, 1987).
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Abstract

Model reduction problems which consider preserving closed-loop
performance in the presence of uncertainty are presented. These are
formulated as weighted multiplicative error problems (for plant
reduction) and weighted additive error problems (for controller
reduction), with the weight function incorporating explicitly such
control information as the desired sensitivity operator bound, the
setpoint/disturbance spectrum, and the process uncertainties. The
solution to these problems using currently available methodologies,
such as frequency-weighted balanced realization, is considered.
Finally, the benefit of the proposed problems is illustrated with

examples taken from the control of a binary distillation column.
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1. Introduction

The problem of model reduction is of significant practical
importance in control system design, and has been a subject of
continuing study since the early 60's. The vast number of references
cited by Genesio and Milanese (1976) attests to the fervent activity
conducted on this problem.

Sorting through the multitude of suggested approaches, one can
identify two recent significant contributions: the first is the
simplified computation of the reduction problem by means of balanced
realizations and Hankel-norm approximations (Moore, 1981; Glover, 1984)
while the second is the development of control-relevant weight
functions for plant and controller reduction which consider preserving
nominal stability of the control system in spite of reduction error
(Enns, 1984; Anderson, 1985). Given the importance of the field of
robust control to the design of practical controllers, the focus of
this paper is on developing weighted reduction problems which maintain
desired levels of closed-loop control performance in the presence of
both plant uncertainty and reduction error. The basis for our analysis
is the structured singular value p (Doyle, 1982) which allows the
assessment of robust stability and performance in the presence of
structured uncertainty (Doyle, 1985 a&b). The computational aspect of
the proposed problems is addressed, particularly the use of the
frequency-weighted balanced realization algorithm described by Enns
(1984).

2. Theoretical Development
The methodology presented applies to linear, time-invariant, and

stable multivariable plants subject to norm-bounded perturbations, such
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as those described by Doyle, Wall, and Stein (1982) and summarized in
Table 1. Any combination of these perturbations in the classical
feedback structure can in turn be represented as a block-diagonal
perturbation problem according to the GA interconnection structure
(Figure 1) for which the u analysis theorem applies:

Theorem 1 (Doyle, 1982): Robust Stability, Structured.

The generalized plant G is stable for all perturbations described
by the set

Xo = U Xj (M

m1 mz mn
B e

Xd = diag(Al,Al,...,A“ AQ,Azy-ov,Az,Ag,A3,..‘,An—,1, An,An,---,An)

aje CF4I 5(ap <6, 6 € [0,%) , for each j = 1,2,...m

iff
(6] ]y < 1 2)
where
o]l & sup uIGGW] (3)
with p defined as
i -, {5(8) |det(1-Ma) = O} , M = G(ju) (4)

The results of Theorem 1 must be qualified. First of all, (4) is
not a convenient formula for computing u, as the implied optimization
problem is cumbersome and not unimodal. An upper bound for u which
has significantly better computational properties is (Doyle, 1982)

16/ by < 1D~ a5 1] & sup () 5)
where D is the set of real diagonal matrices defined as

@ - {diag(dIk,,dIk,se++20m Ik »dm,, Tk,re+-»dmlk ) |di€RY = (0,=)}  (6)
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Description Representative Types of Representative Types of
Uncertainty Characterized Performance Specs
P' = (I+A)P - output (sensor) error -~ Sensor noise
attenuation
- neglected HF dynamics ~ output response to
~ changing numbers of rhp zeros output commands
P' = P(I+A) ~ input (acuator) errors - input response to
~ neglected HF dynamics input commands
- changing numbers of rhp zeros
P'" =P + A - additive plant errors - input response to
=~ uncertain rhp zeros output commands
P' = (I+A)77'P - LF plant parameter errors - output sensitivity
- changing numbers of rhp poles « output errors to
output
commands and
disturbances
P' = P(I+A)7! - LF plant parameter errors - input sensitivity
' - changing numbers of rhp poles - input errors to
input
commands and
disturbances
P' = (PT1+A)T? - uncertain rhp poles - output errors to
input
commands and
disturbances

Table 1. Representative robustness/performance conditions.
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Figure 1. G-A interconnection‘structure.

Figure 2. Classical Feedback Structure.
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n
m = JE my D> nf S(DMD™?)
(5) is an exact bound when A has three or fewer blocks.

Secondly, it must be understood that Theorem 1 also incorporates
the robust performance problem. The performance conditions are
incorporated in the GA structure in the form of additional
perturbations (Doyle, 1985 a&b). The GA structure thus allows for the
performance and uncertainty aspects of the feedback problem to be
captured in a unified manner.

We now consider the full-order model P subject to control using
the compensator C, as illustrated in Figure 2. The output
sensitivity/complementary sensitivity operators are, respectively,

S = (I+PC)™! (7)
H=Pca+bc)t =1- 38 (8)
(7) and (8) represent the nominal performance characteristics of the
control system.

The first step towards developing the control-relevant reduction
problems is to perform an affine parametrization of M in terms of S

M = N, + Np,SN,, (9)
N,;, N5, and N,, are independent of the feedback controller C. For the
feedback structure subject to the perturbations listed in Table 1,
obtaining the parametrization (9) can be done by inspection without need
for detailed computation, as shown by Skogestad and Morari (1986c).
The link with the reduction problem is made by relating the controller
designed on the basis of the reduced-model P to the nominal

performance represented by §, and consequently, as indicated by (9) and

Theorem 1, to the closed-loop robust performance. Representing the



- 117 -

full-order model in terms of the reduced-order model as
B = (I+Ep)P (10)
and substituting (10) into (7) and (8) results in the following
expressions for the complementary sensitivity/sensitivity operators:
§ = (-E)I+EH)™ (1)
A = (T+Ep HT+ELA) (12)
En denotes the multiplicative error between the full and reduced~order
models
Ep = (P-P)F~! (13)
and is the suitable error measure for control-relevant plant reduction.
Its presence in (11) and (12) indicates the degradation occurring in the
closed-loop system as a result of full/reduced model mismatch.
Substituting (11) in expression (9), one obtains
M = Ny, + No(I-H) T+EgH) =N, (14)
M is now expressed in terms of the reduction error Ep, and substituting
this into (5), a control-relevant reduction problem is obtained.
Solving the associated optimization problem, however, remains‘a complex
task. Further analysis is thus needed to simplify the problem into a
form amenable for computation.
One can show from (11) and (12) that
3ELH <1 ¥u (15)
is a sufficient condition for nominal stability of the reduced-order
control system if P and C lead to an internally stable control system.
Assuming (15) holds, (14) can be expanded into a Neuman series according
to:
M o= Ny o+ Np(@-BT-Egfis (B> Egf)s+ .. 0N, (16)

The matrices Nzlf (I—ﬁ), and Ny31 define a bandwidth, or "control-relevant
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frequency interval", over which the reduction should be performed.
Assuming that E(Emﬁ) << 1 over this frequency interval, it is then safe
to neglect the higher-order terms to obtain an approximate M
M = Mapprox = Nu + Np(I-FN;, = Nip(I-A)EHN,, (17)
Mapprox = M * Merror (18)
The benefit of an expression of the form (18) is that the problem is
now decomposed into a linear combination of the M obtained on the basis
of the reduced model P and an error/degradation term, consequence of
reduction. Substituting (18) into the simplified formula for computing
u stated in (5), and using the properties of function norms one observes
that
[P o = | [PMerpord™[|s < [IPMapproxd™ [ fe < | [P + a9
| PMerrorD™| [«
One can then formulate a control-relevant plant reduction problem of
the desired form by minimizing the term that incorporates the degrading
effects of the multiplicative error Ep

| [DN o (T-D)EgfAN,D™Y | (20)

S'
055,

(20) is a frequency-weighted problem whose weight functions incorporate
explicitly control system design information; this represents a
refreshing change from previous efforts which suggest weights based on
ad hoc considerations.

The previous analysis extends itself in a straightforward manner
for the case of contrcller reduction. This is achieved by first re-
writing (11) as

(1+B8)™ = (1-(1-H)B(E-C))~H(1-f) (21)

As before, requiring that the Small Gain Theorem holds
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| KI-HPEC-C)| | < 1 (22)
leads to a Neuman series, which, truncated after the first term
M = Mapprox = Ni + N (I+(@-D)B(E-C)a-fN,, (23)

produces the controller reduction problem
inéf | [DN . (3-H)B(C-C)(T-HIN,,D™!| |m (24)
Example 1:

For purposes of example consider the control pfoblem represented
in Fig. 3. This is a‘r’obust performance problem, in which the
performance specifications are represented in terms of weights on the
output signal, and the plant model is subject to output, input, and

additive uncertainties. The form of A and G are

G = W,GIW, (26)
where

W, = diag(Wqi1,Wq4,W10,W1p) (27)
W, = diag(Woy,Wop,Wop,Wop) (28)

[ -B-41p -P~'H -P~'H S

p~13pP ~P™'H <P ~P™'H

oI.-| P S i - (29)

SP S S S .

W, and W, are frequency-dependent functions which are used to determine
the specific character of the perturbation deltas. The parametrization

(9) of M in terms of § is

~I 'ﬁ—L “‘1—5_‘ "'ﬁfl
Nu = W, | O b T (30)
0 0 0 0
NT - (PPt I I)w}‘ (31)

N, = (P IIIW (32)
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Ay = W2IAIW(T
By = WopApW1p
B4 = W20A0W10
Ay = WopApWip

1
Al A'A A'o A'
- I P I
C
Figure 3.  Feedback structure, Example 1,
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The control-relevant plant reduction problem is therefore

'15—1

. p—1 ~ A~

e jpw, P | REGAP I 1 DUD™ (33)
I

while the equivalent controller reduction problem is

f;-—x
g [jow, | T | @-BBE-O@RE I 1 DD (34)
C

I

At this point it is worthwhile to compare problems (20) and (24)
with those proposed by Enns (1984) and Anderson (1985). As stated
previously, these investigators consider maintaining nominal stability
of the closed-loop system despite reduction error; this is achieved by
insuring that conditions (15) and (22) are met:

Plant reduction:

inf | [Enf] o (35)
P
Controller reduction:

inf | (T-F)PE-C)|]w (36)
C

One notices that problems (20) and (24) incorporate problems (35)=(36)
with some extra factors. This can be readily explained by recalling
the derivation of the performance-relevant reduction problems. While
problems (35) and (36) require that the Small Gain condition be kept
uniformly small over all frequency, the performance-relevant problem
only demands that the Small Gain condition be satisfied (i.e., be less
than one) with the performance weights defining the bandwidth over
which the condition should be minimized. Clearly, the performance

problem is superior, as over this relevant bandwidth an even lower-
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order model (compared to that obtained from (35), (36), or any of the
wide variety of unweighted reduction procedures) might be suitable,
resulting in added parsimony without compromising the closed-loop
properties of the system.

A special note regarding the H,~optimal control problem:

Convenient control=relevant reduction problems can also be
formulated for the H,~optimal control problem, defined by minimizing

the objective:

r “41/2

J = | o], & [ { trf (WoSWi ) (WoSW; ) Jdw (37)

w
o)
Wo and Wi represent matrix valued frequency-dependent weights on the

* denotes the complex conjugate transpose.

sensitivity operator;
Assuming, as done previously, that (15) and (22) hold and are much less
than 1 over the relevant frequency bandwidth, the derivation of
control-relevant plant and controller problems for the H, objective
follows through exactly as before, resulting in the following problem
definitions:
Plant reduction:
inﬁf | W (T-F)E W] |, (38)
Controller reduction:
i%f | Wo(@-H)B(E-C)(x~Howy] | (39)
As with the p-synthesis problems (20) and (24), (38) and (39) incorporate
explicitly all information required for the closed-loop design.
3. Computational Issues
The subject of frequency-weighted model reduction computation

remains one of the foremost research problems in the field of reduced~
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order modeling. While the focus of our study centers on formulating
control-relevant problems, we wish to indicate how some currently
available techniques can be utilized to solve the problems presented in
Section 2.

Moore (1981) first proposed the method of internally balanced
realizations, which, despite being suboptimal with respect to the H, and
H. obJectives, is computationally convenient and provides information
(second-order modes) which are readily translated into useful error
bounds. Enns (1984) has extended the method of balanced realizations
to include input and output weights

Anf | MoroEaWori| [R (40)

E, = P - P (plant reduction); C - C (controller reduction)

Difficulties with (40) arise from the fact that, unlike the internally
(unweighted) balanced realization problem, the reduced models obtained
may not be stable if both input and output weights are non-unity.
Furthermore, no simple error bounds based on the "second-order modes"
of the balanced grammians have been proposed. The computational
intensity of the problem also increases with increasing order of the
weight functions.

An alternate computational technique is obtained by representing
the plant P in terms of its frequency response, using the properties of
equivalent norms (Stone, 1962), such as

i 12 |213] £ 30 < Z |2ij| 5 n = order of A 41)
] l,J

to rewrite the control-relevant reduction problems in terms of the

programming problem (Stahl, 1984)
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nf | WOtp-v)] g (12)

| !.I

p represents a vector of reduced-model parameters, while W, M, and v

a — a-vector norm; o = 2, «

incorporate the control-relevant weight and plant information. A
detailed description of the development of problem (42) for the scalar
case is provided by Rivera and Morari (1986); for multivariable systems,
however, a number of restrictions apply, such as maintaining the same
poles for all elements in the reduced model transfer function matrix.

Several considerations must be addressed prior to solving problems
(20), (24), (38) and (39) with the methods denoted by (40) and (42).
First we examine the inherent difficulties associated with the plant
reduction problem. Because of the lack of previous knowledge on the
reduced model 13, ﬁ, and hence the control-relevant weights, cannot be
fully specified a priori. Using i based on the full-model is out of the
question, as that essentially involves computing the full-order
controller. To complicate matters, the multiplicative error Ep, rather
than the additive error Eg (the error criterion used in (40)) must be
minimized, for which few efficient methods exist.

Enns (1984) recognizes these difficulties, and suggests that the
problem be formulated as a fixed-point problem and the method of
successive approximation used to obtain a solution. The reduced model
obtained at each iteration is used to update the weight; assuming
existence of a solution and that the functional of the weighted error
is a contraction, the method will converge. Applying these
recommendations to our problem results in the following procedure:

1. For the initial iteration step i = 1, specify H as f - F, where F
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is a matrix of low-pass filter elements that determine the
bandwidth of the nominal reduced-order closed-=loop response.

Set 131 = P, and compute y based on (5) with the D scales obtained
through Osborne's method (1960). (This step is not necessary for
the H, plant reduction problem (38)).

Solve problem (20) or (38) either using the frequency-weighted

balanced realization technique to obtain the model 1'51+1
jin | [WoroEaWbri| [BR (43)
Pi+q
H-2 problem: Wppo = Wo(I-H)  Wppi = P; HW;
u problem: Wppg = DN, (I-H)  Wppi = PifN, D™
or the iterative programming problem denoted by (42).
Recompute i to take into account any non-minimum phase elements
in ﬁ. The factor f’+, which contains all nonminimum phase
behavior, can be obtained as described by Zafiriou and Morari
(1985), or through spectral or inner/outer co-prime factorizations
(Anderson, 1967; Enns, 1984). The factor P, is used to update the
function O according to
H = PyF (44)
Obtain Ej according to (13). From Ep update H (12); re=compute u
and D-scales. If
,Ui+1'ui,,§ TOL u5)
or
,Ji+1“Ji'_S TOL (46)
holds, where TOL is a user-specified tolerance, terminate the

procedure. Otherwise, increment i by 1 and return to step 3.
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Following successful completion of the reduction procedure, one
must verify that 1) the reduced model does not contain RHP poles and 2)
the Small Gain condition (15) has been satisfied. Failure to satisfy
these criteria usually implies that control specifications need to be
relaxed, or the reduced plant order needs to be increased.

Solving the controller reduction problem, on the other hand, is
significantly less complicated (in making this statement we ignore the
amount of effort that might have been required to obtain the full-order
controller). i is know a priori, the D scales need only be computed
once, and the mismatch between full and reduced controllers is
adequately expressed as an additive error. The weight function is thus
completely well-defined at the beginning of the problem, eliminating
the need for any successive substitution.

The benefits of the proposed problems are further illustrated
through case studies.

4, Case Studies

Case Study 1. H,~relevant plant reduction.

We consider the H.,-optimal control of a 40-tray, high-purity binary
distillation column, as described by Skogestad and Morari (1986 a&b).
Of interest is the regulation of top and bottom composition (yp and xg,
respectively) using the reflux (L) and boilup (V) rates. The resulting
linearized plant model presented by Skogestad and Morari is a 41-order

model,

dyD_ -
l_deJ = GLy LS{;J (47)

with the distinguishing feature that Gy is ill-conditioned (ratio of

maximum to minimum singular values = 141); this is a consequence of the
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high composition sensitivity to product flowrates.
Two-state models using internally, stability-weighted (35), and
performance-weighted (38) balanced realizations were obtained.

Initially, F was set to a bandwidth of 0.05 rad/sec

F - st L (%)

The step setpoint changes considered were represented in Wi as

- T1.0/s 0
Wi = [ 0 -O.5/s] (49)

The output weight (Wy) was set to identity. For an identity W, and the
setpoint change indicated by (49), the form of the H,-optimal
factorization P, needed to update f is indicated by Morari ‘et al. (1987)
as

P, = BpPr'(0) (50)
ﬁA(s) is an all-pass matrix obtained directly from spectral or inner=
outer factorizaﬁion.

The first benefit of using the performance-relevant weights was
noted while conducting the reduction procedure. The stability#weighted
problem required six iterations before the objective functioﬁ value
varied by less that 1 percent, while the performance-weighted problem
took only three iterations to reach the same level of convergence.
This represents tremendous time savings, as each iteration involves the
balancing of the full-order model with weights, an extremely time
consuming procedure. Having computed the reduced-order models, the
resulting closed-loop responses can be obtained from (12), (44), and
(50)7

Figures ba&b compare the closed-loop responses obtained from

controllers designed on the basis of the Q-parametrization/Internal
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Model Control procedure (Morari et al., 1987)

c - B, P, OFT-F,F, (51)
ﬁM denotes the minimum-phase portion of ﬁ, obtained from spectral
factorization. The control resulting from the internally balanced
model is unsatisfactory, as its responses are clearly inferior,
particularly that of the bottoms composition. Control based on the
stability=weighted model is significantly better, while the
performance-weighted model provides additional improvements,
particularly in the middle and final segments of the response.

These results are readily Jjustified when one examines the
variation in E(Emﬁ), as noted by Figure 5. The inadequacy of the
unweighted internal balancing procedure is evident, as E(Emﬁ) exceeds 1
at low frequencies. Unweighted balancing considers all frequencies
equally important, and hence most effort is devoted to fitting over the
high-frequency range which has little influence on the control problem.
Based on an unweighted criterion, it would appear as if a higher-order
model is necessary for successful control system design. The-stability
weight improves the low-frequency fit, but not as significantly as the
performance weight hence the faster integral action in the performance-
weighted model's response. Comparing (35) and (38) one notes that for
the problem specifications, the performance weight is essentially the
stability weight with an extra degree of "roll-off"; this narrows the
relevant frequency interval and is most likely the cause for the
improved numerical properties of the performance-weighted problem.

Case Study 2. p-relevant controller reduction

Skogestad and Morari (1986a) present the p-optimal controller

synthesis of the distillation column described in Case Study 1. The
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control problem calls for satisfying performance despite multiplicative
input uncertainty. This robustness problem is a special case of

Example 1, with the plant model

~ 1 J0.878  =0.864
P = 1758 L1.082 —1;096J (52)

the input uncertainty description

5s+1

W‘]I = 0.2 -(—).—5—8-:_—:1- IZ H WZI = Iz (53)
and the performance weight
Wip = 0.5 2301 1, 5 e = I, (54)

On the basis of (52)-(54), Skogestad and Morari obtain a seventh-order
u-optimal controller (See Appendix A). Table 2 and Figures 6 and 7
indicate the performance degradation resulting from controller
reduction employing the internally-balanced, stability- and
performance-weighted balanced realization techniques. The performance=
weighted problem leads to clearly superior controllers, with no
degradation experienced while going from a Tth to a 6th order
controller. An interesting phenomenon occurs when using the stability-
preserving weights: p resulting from the 5th and 4th-order controllers
is greater than that obtained from unweighted balancing. Unlike Case
Study 1 where preserving nominal stability led to improvements in the
nominal performance, the robust performance problem presented here
requires performance-oriented weights to obtain an improved result.
5. Comparison with Modal Reduction Techniques

Besides the method of balanced realization, system diagonalization
followed by state residualization (more generally known as aggregation

or modal reduction) was also attempted in reducing the controller

model of Case Study 2. It is worthwhile to comment on the relative
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Internal Balancing Stability-Weighted Performance-

Weighted
U % increase u % increase u % increase
1.62 44.6 1.25 11.6 1.12 0
1.62 Ly.6 1.90 6916 1.31 17
2.71 ?1&2 7.50 569.6 2.00 78.6

Table 2. p-optimal controller reduction, Example 3. u for full-order,
seventh#order controller: 1.12. % increase refers to percent increase
over the full-order optimal u.
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merits and disadvantages of both techniques.

The basis for aggregation techniques is that if plant eigenvalues
are far apart, those that are most negative contribute the least to the
open-100p response of the system and hence can be safely neglected.
The steady-state is conserved in the process. Balanced realization, on
the other hand, consists of equating the system observability and
controllability grammians. These "balanced" grammians are diagonal
matrices which are related to the energy transmitted from states to
outputs and from inputs to states, respectively. The balancing method
consists of solving two Lyapunov equations, followed by two symmetric
eigenvalue problems for obtaining the balancing transformation;
asymptotic stability of all reduced-order models is assured for the
unweighted and one-side weighted cases. H, and H, error bounds are
also readily generated from the balanced grammian elements, but
steady-state agreement is not necessarily maintained.

Both methods are useful because of their relative computational
simplicity; however, both are suboptimal because what is really desired
is to minimize the weighted H, and u objective functions presented in
earlier sections of this paper. As noted by Sinha and Lastman (1985),
certain limiting situations can arise where these methods fail: for the
aggregation method, if all system eigenvalues are closely-~spaced, the
choice of retained dominant modes is not clear. For balanced
realization, the removal of weakly observable or controllable modes
does not necessarily remove the non-dominant system poles. As a
consequence, a common ad hoc reduction procedure is obtain a balanced
reduction model, then perform aggregation to remove the high—frequency

poles that were "skipped" by the balancing procedure,
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The phenomenon of high-frequency pole retention was observed in
Case Study 2, as one can notice by examining the controllers presented
in Appendix A. We decided to confirm the importance, from a
controllability/observability standpoint, of the high=frequency poles
retained. Our test consisted of aggregating the full-order controller
to 6th, 5th, and 4th order, followed then by computing the balanced
grammians for each of these controllers. The results are summarized
in Appendix B. One notices from the resulting grammians that there did
not exist a one-to-one correspondence between the high-frequency poles
and the weakly controllable observable states. It is interesting to
note that the second example in Lastman and Sinha (1985) also exhibits
this behavior.

Clearly, while the balanced realization is a computational'lyv
convenient method, it is not a panacea for all model reduction.
Additional investigation into improved computational techniques is still
warranted. A promising method, which would deal directly with the H,
and H, objectives, is the multivariable extension of the quadratic ahd
linear programming methods described by Rivera and Morari (1986). Such
a ﬁechnique would be useful for the following reasons:

1. Because the full-order model is represented nonparametrically in
terms of its frequency response, speed of computation would be
dependent mostly on the desired reduction order. With balanced
realization/aggregation techniques, the dimensions of the full-
order model are the most limiting factor.

2. Error bounds are readily obtainable from the residual of the
quadratic/linear program.

3. The theory and practice of large-order quadratic and linear
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programming is fairly well understood. Standard software
packages could be used without modification to solve the
reduction problems.
6. Concluding Remarks
In this paper we have developed a variety of control-relevant
model reduction problems derived directly from the closed-loop H, and u
objectives. The proposed problems can be solved through existing
techniques, such as frequency-weighted balanced realizations, and
resulted in improved performance with less or equivalent computational
effort than comparable methods. However, the development of more
effective weighted reduction schemes (with non-conservative error
bounds, assurances of reduced-model stability, and the possible use of
a multiplicative as well as additive error criteria) would be a welcome
addition to the field and would greatly increase the usefulness of the
proposed problems.
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Appendix A
Full=order controller state-space description:
X = Ax + Bu
y = Cx + Du
A = diag(-1.0x10"7, -1.0x10"7, =0.1064, -0.151, -8.993, -583.8, =586.7)

T . [ 3:245 ~1.762 2.245 5.478 ~20.33 1867 900.6]
T [-2.635 3.408 2.804 -4.380 -25.42 -1493 1126

c - 1.774 1,102 2.478 4.962 22.42 -1692 -232.3
" | =b.686x10-2 -1.069 ~-2.483 4956 -22.45 ~1689 232.6
o [5866 -3816]

~ | 5002 -u4878

Reduced-order controllers from performance-weighted balanced
realization:
6th-order controller:

A = diag(-1.002x1077, ~3.272x10"¢, -0.1510, ~9.032, =583.8, ~586.8)

T . [765.13 72.24 5.492 -90.86 1867  67.22
© [-90.09 90.31 -4.394 =~113.6 -1L494 8403

c - [0.6564 0.7171 4.949  5.033 =1691 =311.2]
T 10.6555 0.5425 4941  ~5.040 -1689  311.6

D - 5866 =3816']
- [ 5002 ~-4878

5th=order controller:

A = diag(-1.0x1077, -1.0x1077, -0.1510, ~372.3, -583.8)

gT _ | 3:245 -1.762 -5.505 632 1867
© |-2.635  3.408  4.4o4  790.2 -1484

c. [ .74 1.102  =4.938 -233.2 =1691]
Tl -4.686x102 =1.069 ~L4.930 233.6 =1689

D = [5866 -38167
5002 -u878_l
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4th-order controller:

A= diag(—k1.'0x10"'7, ﬂ1..OX10'7, '-O.‘1510, 7583._8)

BT - 3.245 -1.762 5.509 1867
-2.635 3.408 -4.399 ~1494

o[ 1 1.102 4.926 =1691
~).686x10~2 ~1.069 4,942 ~-1698

b . [5866  -3816
- | 5002 -4878
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CHAPTER V:
LOW-ORDER SISO CONTROLLER TUNING METHODS FOR THE H, ,

H., , AND u OBJECTIVE FUNCTIONS

(To be submitted to Automatica)
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Abstract

A methodology for synthesizing low-order compensators that
addresses the need for closed-loop robustness, allows for on-line
controller adjustment, and is computationally simple is outlined. The
method consists of applying the Internal Model Control (IMC) design

procedure to a control-relevant reduced-order model, that is, a model

obtained by incorporating features of the closed-loop problem as
weights in the reduction procedure. As a consequence, lower-order yet
better performing controllers, as compared to those resulting from
equivalent methods, are obtained. The computational algorithm is
outlined, and it is shown that the model reduction problem can be
solved efficiently through standard linear or quadratic programming
algorithms, while only the IMC filter parameters and process deadtime
need to be obtained through more elaborate search techniques. The

benefits of the proposed algorithm are shown through examples.
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1. Introduction

Process control problems are characterized by models of widely
varying complexity. While the temperature response of a stirred tank,
for example, might be fully described by a first-order lag with
deadtime model, staged separation processes, such as a distillation
column, are fundamentally modeled by large systems of differential
equations. For low-order models, the optimal controller is of low-order
and easy to design (Rivera et al., 1986), but for high-order models,
the corresponding optimal compensator can be numerically difficult to
obtain and implement. In these cases, the problem of low-order
controller tuning is of significant practical value, allowing the
possibility of ease of implementation without substantial degradation
from optimal performance.

Historically, The low-order controller tuning problem has been
attacked using a wide variety of approaches. The literature on this

subject can be classified into three broad categories, which are:

1. Direct low-order controller tuning. Featured in this category are
the vast array of PID tuning rules based on minimal knowledge regarding
the plant, such as its step response (Cohen and Coon, 1953) or its
frequency response at the cross-over frequency (Ziegler and Nichols,
1942; Astrom and Hagglund, 1984). Also included are more general
techniques which are either closely linked to a particular design
methodology, such as pole placement (Davison, 1972; Rao and Lamba,
1975) or which formulate the low-order controller tuning problem as an
optimization problem (Harris and Mellichamp, 1985), this usually
requiring the solution of a nonlinear programming problem to obtain the

controller parameters.
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2. Controller order reduction. This approach requires first designing

the optimal, high-order controller and then reducing it to a desired
order. Controller order reduction is discussed by Wilson, Seborg, and
Fisher (1974), Rivera and Morari (1986), and Enns (1984).

3. Plant corder reduction. This represents the most common approach to

low-order controller tuning. In this two-step procedure, the plant
model is first reduced, then, on the basis of the reduced model, a low-
order controller is obtained. The literature on plant-order reduction
is vast; the reader can refer to a number of surveys (Genesio and
Milanese, 1975 ; Bosley and Lees, 1972; Decoster and van Cauwenberghe,
1976) which present the diversity of the field.

With so many approaches postulated for this problem, why then,
another low-order controcller tuning methodology? The reason is that a
number of significant issues required for satisfactory control have not
been suitably addressed by previous efforts. Particularly, the low-
order controller be robust to model uncertainty; it must be suitable
for on-line adjustment and furthermore, it must be parsimonious with
respect to the control problem at hand, that is, it must allow for the
lowest compensator order possible by capturing the important features
of the control problem and no more. Furthermore, the methodology must
be flexible to deal with controller structures beyond the PID
controller, and must not constitute a sophisticated nonlinear
programming exercise.

The Internal Model Control (IMC) design procedure (Morari et. al.,
1987) offers a convenient framework for addressing these issues. The
basis for the IMC design procedure is the transformation of the

classical feedback structure to an alternate yet equivalent structure
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that replaces the controller c (Figure 1a) with the simpler-to-design g

(Figure 1b). Because the design of q incorporates the plant model
directly, IMC results in an unambiguous relationship between a plant
model and an appropriate feedback compensator.

When IMC is applied to a high-order model, a high-order q results.
The extension to low-order controller tuning results from designing q
based on a reduced-order description of the plant model. However, the
blind application of any of the diverse techniques proposed for model
reduction can be very inefficient. Because there exists no "separation
principle" between the reduction and control design problems, the
process of reduction followed by controller design (or vice versa) can
be highly suboptimal. Without an understanding of the link between
both problems, higher order than necessary reduced models may be
required to obtain satisfactory control. Secondly, tests that indicate
the attainable closed-loop stability and performance from a reduced-
order model must be available. Rivera and Morari (1986) have developed
a "control-relevant" reduction procedure which incorporates these
considerations, enabling the designer to obtain the most parsimonious
description possible for a particular set of closed-loop specifications.

This paper integrates the control-relevant model reduction
procedure developed by Rivera and Morari (1986) with the IMC design
procedure to obtain a low-order controller tuning methodology for the
H,, He, and py objective functions. The efficient solution of the
problems posed in this paper is presented, along with examples

demonstrating the usefulness and flexiblitity of the proposed methods.
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(A)

pmod - )

(B)

Figure 1
Classical feedback structure (A) and the Internal Model Control

structure (B).
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2. Performance and Robustness Objectives
This work will focus on single~input, single-output systems and
will assume that the plant p with u as its input and y as its output is
open-1loop stable. 5 represents the full-order model, while ﬁ refers to
the reduced-order model.
A number of control objectives will be of interest in this study.

The first is the H, (2-norm), evaluated in the frequency domain through

Parseval's Theorem:

o

J=lle|) = (%J le(iw) ] dw)1/2 (1
o}

e(jw) is the error signal for the classical feedback controller (Fig.
1a), represented mathematically as the product of the sensitivity
function € and the setpoint/disturbance characteristics of the problem
e = e(r-pgd) = (1+pc)™(r-pgd) (2)
The second objective of interest is the infinity norm on the
weighted sensitivity function (Zames, 1981)
| [vipe] o = s%? |wp€(jw)| (3)
From (3) one finds that 1/|w| represents an upper bound on the
sensitivity function, that is
[e(iw)| £ 1]wp(iw)| Yo (4)
if and only if
| [wpe]fa < 1 5)
The problem formulated by (3) allows the control system designer
much flexibility in specifying performance. For instance, selecting Wp
as a constant
Wp =« (6)

is equivalent to requiring that the maximum amplification in the
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sensitivity function not exceed 1/a. Another more versatile, yet

simple expression for wp is

2 wp - a| 15l | @

in which the user specifies two parameters: 1/Y denotes the closed-

loop system bandwidth, while 1/a sets a limit on the maximum
amplification in the sensitivity function. Furthermore, the integrator
in (7) indicates that the sensitivity function must have one-pole roll-
of T,

The H, and H. control objectives assume implicitly the absence of
plant uncertainty (p = 5). If uncertainty plays a significant effect in
the control design problem, a more meaningful objective is that
obtained from the p synthesis theory developed by Doyle and co-workers
(1984). The robust performance theorem presented by these
investigators is the following:

Theorem 1: Condition (4) is satisfied for all members of the family of

plants I
m: {p:|(p-2)p™*| < 2} (8)
if and only if
U= s%?(lﬁzml+lwpgl)_§ 1 9)
n is the complementary sensitivity function, related to according
toen+¢e =1.Both nand € are obtained on the basis of the full-

order model:
£ = (1+pc)~* (10)
n = pe(1+pe)™ (11)
The uncertainty description (8) is generic for SISO systems in the sense

that all other norm-bounded uncertainty descriptions (additive, input,
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or output multiplicative uncertainties) can be lumped into a single 1m
description without conservativeness; furthermore, comparing (3) and (9)
it is clear that for the case of no uncertainty, y and the infinity norm
are equal. We will therefore consider only the 2 and p norm objectives
in the rest of the analysis of this paper, assuming the reader
understands that the p analysis incorporates the infinity norm problem
as well.

One should alsc note that in the case of no performance
specification (wp = 0), Theorem 1 reduces to

[fem] <1 Wo (12)

This is the robust stability condition (Small Gain Theorem) and places
an important practical restriction on the closed-loop system bandwidth.
3. The Internal Model Control Design Procedure

The Internal Model Control design procedure, introduced by Garcia
and Morari (1982) and further elucidated by Morari et al., (1987) forms
the basis for this study. The Internal Model Control structure, shown
in Figure 1b, is equivalent to the Q-parametrization structure used by
Zames (1981) and is related to the classical feedback structure (Fig.

1a) according to the equations

q C('x"'Cpmod)m1 (13)

C q<1‘pmon)_l )

Pmod represents the nominal plant model. For a full-order controller
design, Ppod = 5; to obtain a reduced-order controller, ppod = ﬁ.

The IMC design procedure consists of two steps; the first
considers H, performance without regard for robustness or constraints,
while the second involves detuning the optimal controller such that

robustness and input constraint limitations are met. Though, as in the
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case of the control-relevant reduction problem, there is no separation
principle which makes this approach "optimal," the design procedure is
very simple and direct. Also, there appear to be very few cases where
other more complicated and indirect procedures (e.g., LQG) give better
results.

This section summarizes the two-step procedure which is more
adequately explained in Morari et al. (1987). Section 4 develops the
control-relevant reduction problem, which is then more fully integrated
with the IMC design procedure in Section 5. The steps entailing the IMC
design procedure are as follows:

STEP 1: Nominal performance

a is designed to yield a "good" system response for the input(s) of
interest, without regard for constraints or model uncertainty. We thus
choose a such that it is H, optimal, which entails the following sub-
steps:

A. Factor the plant and input models according to

~

D = DADM (15)
d'" = dpdy d' = pgd or r(s) (16)
py and dp are all-pass functions containing all the process nonminimum

phase behavior (deadtime and RHP zeros)

N
=Bis+1
pa, dp = TT -ﬁ;-? Re(8i) > 0 (17)
i=1

As a consequence of the factorization (16), py and dv are minimum-phase
functions.
B. Synthesize q according to

- =1

q-= py dmip, dm}x (18)
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{ }% is the operator which denotes that after a‘partial fraction
expansion of the operand, all terms involving the poles of le are
omitted. Note that q parametrized according to (18) assures nominal
stability. Table 1 summarizes the form of (18) for some common input
forms.

STEP 2: Robust Stability and Performance
The presence of uncertainty and input constraints will require

that a be rolled off. Therefore a is augmented by a low-pass filter f

TP i (19)
Q—Q»,-—afjg)'

The order of f 1is determined by the requirement that gq be
(strictly) proper and the degree of roll-off required to satisfy the
robust performance and stability constraints (Egns. 9 and 12). The
structure of f is determined by the asymptotic properties of d& for
asymptotically step setpoints/disturbances, the filter must satisfy

ne(0) = de(0) = £(0) = 1 (20)

A one-parameter filter achieving this is

1
T Gs)n @)

If the problem calls for no offset to ramp setpoint/disturbances, the
filter requirements are, in addition to (20),

ne(0) = de(0) (22)
where the prime denotes differentiation with respect to s. A one

parameter filter structure satisfying (22) is

(nAs+1)
" Geenn @)

The parameters of f must be determined such that (9) and (12) are
satisfied. While this selection might be clear for the cases when lp =

0 or when only robust stability (12) needs to be satisfied, the
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Form of 4! q
‘] -1
s Py
-1
1 Py
Ts+1 ]
pal _T_)

‘] -1 -1 1
S(se ) py |1+(1-p, ) 18
! ~(1-p'(0)s)
2 Py V7P

‘| -1 -1 1 DA(O) .
STase1) Py [128%(py ()~ —— = 1) =~ 5p,(0) + 1

Table 1. H,~optimal factorizations for common input forms. ' denotes

differentiation with respect to s.
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selection for robust performance is not obvious. In this case, a
gradient search (as discussed by Zafiriou and Morari (1986)), might be
useful.

Having completed the two-step design, the nominal complementary
sensitivity function is defined from n = ﬁq. The equivalent classical
compensator implied by this design is expressed as

¢ = np~t (1-n)7 (24)
For many process models common to industrial practice (e.g., first and
second-order lags), the structure of (24) is that of a PID-type
controller. Full details on this equivalence are presented by Rivera
et al. (1986).
4, Defining the Control-Relevant Plant Reduction Problem

The previous discussion indicated how an IMC controller is obtained
from a full-order linear plant model; to design a low-order controller
for a high-order system, the IMC design procedure must be performed on
a reduced-order model ﬁ. Model reduction, however, places additional
restrictions on control system stability and performance. Qur goal,
then, is to formulate model reduction problems that 1) take advantage
of the fact that the ultimate goal of the reduction procedure is
closed-loop design, and 2) are computationally convenient.

The first step is to represent the mismatch between full and
reduced models in some convenient form. A suitable description is the
multiplicative error ep

eq = (-p)p (25)
which along with q determined on the basis of the reduced model (q =
af, with a obtained from ﬁ) results in expressions for the sensitivity

and complementary sensitivity functions that incorporate the reduction
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error:
€ = (1-n)(1+epn)™ (26)
n = (l+ep)n(1+eyn)! @)
ey affects the IMC design procedure in the following manner:

1. Nominal Stability. A stable system is not assured by the
parametrization of q (Equation 18). It follows from (26) and (27)
that for closed-loop stability the Nyquist plot of ﬂem should not
encircle (-1,0). A sufficient condition (obtained through the
Small Gain Theorem) establishes bounds on the magnitude of ep

|ﬁem| <1 Ya (28)

2. Performance. ep corrupts the performance expected from ﬂ This

effect can be assessed quantitatively by evaluating the

performance objectives (1) and (9) using (26) and (27):

2qy)1/2 (29)

llell. = (’:'r' J |(1—ﬁ)(1+emﬂ)"(r—pdd)
0O

b= sup (| (1rem)nTreqn) ™| 2y + |wp(1-1)(1+eqn)™]) (30)

(29) and (30) indicate the usefulness of the IMC structure for
assessing the "control-adequacy" of a reduced models; low-order
controller tuning; from a specified ﬂ (which reflects
desired/attainable nominal performance based on the reduced model), ep
(the model reduction error), and r-pgd (the setpoint/disturbance
characteristics), an objective function of choice can be readily
evaluated and compared with that obtained on the basis of n thained
from the full model. Furthermore, for the robust performance
objective defined by (9), Theorem 1 can be applied to rigorously
determine that the performance specification has been met, despite

reduction error.
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While (29) and (30) are rigorous statements of the control-
relevant reduction problem, the nonlinear relationship between the
control error e and the model reduction error ep makes their solution
numerically difficult and requires the use of nonlinear programming
routines for computation. Generalized statements regarding convergence
and existence of solutions are difficult, if not impossible to state in
general. Rivera (1984) has implemented a programming solution for the
problem defined by (29) and found it to be practical only when a
limited number of parameters need to be obtained.

A computational convenient problem formulation is the form

min ||(Weight) x ep||y » @ = 2, (31)
A model reduction progaem written according to (31) can be solved using
the methodology presented by Stahl (1984); this is discussed in Section
5.

The first step towards rewriting (29) and (30) in the form of (31)
is the need for convenient approximations of ﬁ and e. Assuming that
condition (28) holds (which, as discussed in the previous section,
implies nominal stability of the closed-loop system despite reduction
error), then (26) and (27) can be approximated by the truncated
geometric series
= (1-n)(1-epn) (32)

2 A+(1-ndepy) (33)

[yl
1

fan 0}
[}

This approximation implies that laeml << 1 over the bandwidths of (1-5)
and ﬂ, respectively.
Substituting (32) and (33) into the objective expressions (1) and

(9) one obtains
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2 qu)1/2  (34)

| lel | - [ le| Iz,approx = (%J' |(1-a)(1—emﬁ)(r~pdd)
o

M = Mapprox = SUP (|n(1+(-new)| 2 + [wp(1-n)(1-epn) | (35)
From the property
allo = 16lla < 12+l lo < Tfalla * [ofla » @ = 1o wes Dy ooy = (36)
it is now possible to separate the degradation caused by ep on the
2-norm/y objectives
| [(1=n)(r-pad)] | = | |(1=n)(r=pacnen| |z < |le] |s,approx <
[(1=n)(e-pad) | | + ||(1-n)(r-pgd)nen]| |- (37)

+

wp(=m] [le = [] (|A=M)ag| + |wp(1=n)]) fien] o < Happrox <

!l'”lm
[ |nem| + [wp=m)| 1o + || JO=-M)]ag + |wp=-n)pnen| | (38)
Control-relevant plant reduction problems of the form (31) are

obtained by minimizing this degradation term:

P1:  min (J l(1*a)(r’-pdd)ﬂem ? dw) = min J, (39)
P p

P2:  inf sup (|(1—a)zm| + [wpti-m) ) ‘ﬂem’ - inf J, (40)
p v D

(39) and (40) represent frequency-weighted reduction problems, with
weights that incorporate specifically the nominal
sensitivity/complementary sensitivity functions, the
setpoint/disturbance characteristics, the sensitivity function bound,
and the plant uncertainty description.
5. Synthesis Methods for Low-Order Controller Design

In this section, we integrate the IMC design procedure and the
control-relevant model reduction problem to develop a comprehensive
low-order controller design technique. The first step requires that

the user select the model and filter structures. Among the
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considerations involved in selecting a suitable structure for 5 include
the limitations of the control hardware and the features of the full-
order model (whether integrators or significant deadtime is present,
for example). Selecting the appropriate filter structure is influenced
by the model structure (properness must be maintained) and on the
setpoint/disturbance characteristics (no offset for exponentially ramp
or setpoint changes). For the case that a user wishes to tune a PID-
type controller, the paper by Rivera et al. (1986) indicates what
model/filter combinations are appropriate. Following the choice of
structure, the tuning problem ensues. This consists of 1) a search for
the control-relevant reduced model parameters and 2) a search for the
optimal filter parameters.

5.1 Solving the Control-Relevant Model Reduction Problem

The computational procedure for finding the model parameters is
patterned after the generalized framework for frequency-response
matching proposed by Stahl (1984). The philosophy behind this method is
that nonlinear problems such as (39) and (40) can be reformulated as
iterative quadratic or linear programs. The application of Stahl's
methodology to this problem is exhaustively discussed in Rivera and
Morari (1986). This section highlights some of the major points.

The first step in developing this alternate computational scheme
is to consider the full-order model 5 nonparametrically in terms of its
frequency response (z triplets consisting of the full-order plant or
controller evaluated at a frequency with its associated real (R) and
imaginary (I) parts).

((wy, Riy I.), cees (wis Riy Ii)s «ses (wgzy Rz, Iz)) (41)

Because of this full-order plant representation, problems (39) and (40)
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must be defined in terms of discrete, rather than continous operators

z
Pl Jy 20t = 2 (=MAepad) g, [emGun) [ (42)
i=1
Awi = wi ~ wi-1
p2: Jo = J1 = max ((p(wi) + lwp(jmi)P|(1~a)ﬁls=jm1 ,em(jwi)P(M3)

wi
Assuming some uniform spacing with respect to frequency, increasing z

results in (42) and (43) becoming a closer match to their continuous
counterparts.

The reduced-order model structure considered is

~  8,ta;S+...+aps’
p - o] 1 143 e_es - N(S) e —es (uu)
bo+b,s+...+bpysh D(s
where b, = 1 for a model without integrator and b, = 0, b, = 1 for a

model with a single integrator. Combining (41) and (44) leads to
representing ey as follows:

o (i) o DISEHIT)N(S)em 0 I (u5)
m\Jwi/ = N(s) e~6s S=jwi - N(s)e™0s S=Jjwj

where

eL(Jui) = (bo+ba+...+bys™)(Ri+il;)-(as+a,s+...+ansh) e‘95]8=jwi (46)
el is a linear function of the parameters (bo,blv..,bm) and
(ag,as,...5ap), and can therefore be represented in matrix form as
follows:

e{ = [Re(ep,(Juw.)), ..., Relep(Jus)), ..., Reler,(Juz)),

Im(eL(ij)’ R Im(eL(J‘-Ul))y ey Im(eL(sz))] (47)
Mo - =
e, = Mp-v ; M = [ﬁgj vV = [%%J (48)

The essence of the computational technique is that problems (42) and

(43) can be written according to the general form
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errz:i)n]]WQHm(Mp4v)} o @ =2,=32=1,2 (49)

Wp is a weight matrix that contains 1/N(s)e~9S, the nonlinear
factor in ep. Wy is the control-relevant weight. Solving for p in (49)
is achieved by iteratively solving a linear least squares problem (for
the H, objective) or a min max problem (for the u objective). At every
iteration, Wp is updated with the parameters from previous problem
solution. Because a previous knowledge of the reduced-model's
nonminimum phase behavior cannot be obtained, initially ﬁ in Wy is set
to f, and then updated according to Table 1 at every iteration.
Convergence is determined after both the residual and parameter
estimates error between successive iterations reaches a user-specified
tolerance.

The deadtime parameter, however, must still be computed by a
direct nonlinear search. OQur experience has been that this search need
not be very elaborate, and can be effectively accomplished through the

use of a Golden Section Search.

5.2. Solving for the Optimal Filter Parameters

As with the deadtime parameter, the search for filter parameters
does not call for a sophisticated algorithm. Because in most practical
situations a single filter parameter would be most convenient, a simple
search procedure such as the Golden Section search would be all that is
required. For the general case, however, a gradient search would be

useful. Recalling that
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dla]® _ dla] da* ¥ da ¥ da ]
g " 2]a| an a + VY a+a vl 2Re[a EXI_J

*

gradient expressions for the objectives (1) and (9)

aJ _ 1 Iv,(-my* 95 i pmpaape
T " Tr JO Re[YJ1 n) an Jlr Pddl dw

% T~ W ~
R . Reln*Yx ar } + —LB— Re[(1-n)Y¥, é%% 1

wg = frequency at which sup is evaluated

where
pa(i+en) g
" (T+mep)? dM
YZ = -Yl
%%; for the filter (21) is
dar ~I8
dA  (ps+1)n+]

and for (23)
df _ -n(n-1)rs?

da - (As+‘])n+1

5.3. Mode of Operation for the Model and Filter Parameter

Searches

Combining the algorithms discussed in 5.1 and 5.2 can be very

flexible, and will vary greatly according to problem requirements.

stands for the complex conjugate. One can obtain corresponding

(50)

(51)

(52)

(53)

(54)

(55)

(56)

For

example, in the control-relevant reduction problem, the user may elect

to fix the deadtime to a particular value, hence eliminating the need

for the Golden Section search. Because of the close relationship

between the filter parameters and the closed-loop response, the user

could also avoid the filter parameter search and get adequate
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controllers simply from solving the control-relevant reduction problem.

TWwo general operating schemes are proposed in Figure 2. The first
considers a gradient search for f with the model reduction problem
(MRP) embedded in the nonlinear programming problem. In this
"integrated"  approach, the top=level optimization is the filter
parameter search, with the contfol—relevant reduction problem solved
at every evaluation of the filter parameters. The second scheme, the
"decomposed" approach, first solves for the control-relevant model,
then for the filter parameters. The decomposed scheme, while not
optimal, can be executed much faster than the integrated approach and,
provided good initial filter parameter estimates are given, without
substantial performance degradation.

The final step in the design procedure is the validation of the
resulting low-order control system. This involves two steps:

1. Stability Validation. The loop gain transfer function 58 must
satisfy the Nyquist Stability criterion.

2. Performance Validation. Performance validation requires being
able to ascertain the degradation caused by reduction. For the u
synthesis problem, performance degradation is rigorously assessed
by confirming that Theorem 1 is satisfied. For the 2-norm case,
performance degradation can be measured by computing (1).

The effectiveness of the proposed techniques hinges on satisfying
the previously specified diagnostics. In the case that the designed
controller fails the validation criteria, the designer can either
decrease the bandwidth and/or increase the allowable resonance peak
implied by ﬁ and/or Wp (the performance specs) (i.e., make the response

more sluggish or tolerate more oscillation and overshoot) or increase
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"Integrated” "Decomposed”

CStart_> CStart_>

Initial Initial
Guess Guess

; l

Filter Gradient
Search Solve MRP

At every objective l

function evaluation:
Filter Gradient

Search (fixed
Solve MRP model)
\ 4
Validate Validate

Figure 2. Schemes for conducting the low-order
controller design procedure. MRP
stands for "model reduction problem"
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the number of parameters in the reduced model by making new choices
for n and m (i.e., decrease the mismatch).
6. Examples

We will compare the proposed low-order controller tuning
methodology with the results of direct low-order controller tuning
(Example 1), and with the IMC design procedure applied to models
obtained from unweighted reduction (Example 2).
Example 1. Consider the control of the following fourth-order model,

proposed by Astrom and Hagglund (1984):

~ 1
P = 55(0.25+1)(0.055+1)(0.075+1) Sl

(57) contains four widely spaced poles, at -1,-5,-20, and ~100. Astrom
and Hagglund compare the Ziegler-Nichols settings with those derived
from their "dominant pole" design procedure for the "bumpless" PID

Note that e = r-y, ep = Br-y with 0 < B < 1, and e = -y. Both the
Astrom-Hagglund and Ziegler-Nichols design utilize plant frequency
response information close to or at the crossover frequency as the
basis for their design. The Ziegler-Nichols settings are

K =15.15, 11 = 0.314, 1p = 0.0785, B =1 (59)
while those of the Astrom-Hagglund controller are

K = 14.17, 11 = 0.407, tp = 0.1018, B= 0.17 (60)
Corresponding closed-loop output and manipulated variable responses to
a unit step setpoint change are shown in Figures 3 a & b. The Ziegler-
Nichols controller produces large oscillations in both the output and

input responses, while the dominant pole design results in a marked
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Figure 3. Output responses (A) and input policies (B) for Example 1.
(—) IMC, A = 0.1; (--=) IMC, A = 0.2; =

Astrom/Hagglund; (== =) Ziegler-Nichols settings.
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performance improvement.

An equivalent low-order H,~ optimal IMC design entails different
considerations than those of the Astrom-Hagglund and Ziegler-Nichols
procedures. First, we select a second-order model structure:

~ ao+8.1$ 6
P = T95,57b,57 (61)

The need for a smooth input policy starting from the origin leads to
the requirement that the filter f result in g with a pole excess
greater than 1; a suitable choice is a second-order filter with a single

adjustable parameter A

- ?Flﬂ’f 62)

From Rivera et. al. (1986), it is clear that, for step inputs,
the model (61) and the filter (62) lead to a PID controller with two
additional lags.

As stated earlier, A is an indicator of the closed-loop time
constant and therefore intelligent choices can be made based on process
characteristics. The filter parameter will be fixed in this exgmple,
requiring only the search for the four rational model parameters, all
accomplished by the iterative least-squares procedure discussed in
Section 5.1.

IMC designs were performed for A = 0.1 and 0.2. The resulting
reduced models and feedback controllers are

A= 0.1:
~ 0.96636-0.0410s (63)

P1 = 5.23079s2+71.16225+1

c, = 0.2301952+1.1622s+1 (64)
4, 11x107*s3+1.79x1072s2+0.275s
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n 0.9928-0.0L45
P: = 57553055+1.203hs+1 (65)
. - 0.2239552+1.2034s5+1 (66)

1.76x1073%3%+5,73x1072s2+0.485s

Closed~-loop output and input responses are shown in Figure 3. By
manipulating A, the speed of response, as well as the input magnitude
can be set at will. Once implemented, on-line adjustment can be
readily accomplished by re-specifying A and re-computing the feedback
controller law.

Example 2. Mandler et al. (1986) have considered the problem of
outlet temperature control of a 49th-order methanation reactor, whose
impulse response to inlet gas flowrate is presented in Figure 4. We
will design H, optimal controllers for unit step setpoint changes,
applying the IMC design procedure with optimal filter search to fourth-

order models of the form

- a,+a,s+a,s*+a,s’+a,s"
b= 1+b,s+b,s%+b,s%+b,s"

67)

A reasonable performance weight function is the form suggested by (7),

augmented with an extra term:

_ 0.5(100s+1)
"D, = T700s(s+1) (68)

The bandwidth requirement is 0.01 rad/sec, the maximum amplification is
2, and the extra lag factor reflects (s+1) the fact that the step
setpoint change attenuates the sensitivity function after w > 1; beyond
w > 1, the amplification condition is relaxed.

A first-order filter structure according to (21) was chosen, with
the "decomposed" approach applied twice for obtaining the optimal A.
Initially, the filter guess was set to A = 20, then repeated with the

optimal A from the first iteration, X = 34.1.
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Figure 4

Impulse response for full-order reactor model, Example 2.
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For comparison purposes, unweighted frequency response matching

according to the objective

JoL, - %J |5 iw)-pli) fdu |12 (69)
o]

was examined. (69) represents the integral of the squared impulse
response energy which traditionally has been considered as an adequate
objective for both model reduction and identification. The solution
technique used to solve (69) is that of Sanathanan and Koerner (1962),
which also falls under the generalized framework presented by Stahl
(1984). The model obtained by solving (69) was then "fed" to the
optimal filter search.

These reduced models, along with the corresponding values for the
H., norm, are shown in Table 2. Closed-loop responses are shown in
Figure 5. The improvement caused by the use of control-relevant
reduction is obvious, with the performance obtained from the control-
relevant reduced-order model showing significantly less overshoot and a
faster settling time.

Examining the multiplicative error, which, as stated earlier, is
the suitable measure for determining a model's effectiveness for
control applications, provides the clue that explains the benefits of
the control-relevant reduction procedure. As noted in Figure 6, the
control-relevant model has low multiplicative error at the important
frequency interval for the control problem, defined by the bandwidth
0.02 rad/sec. The unweighted model, on the other hand, has significant
low-frequency error, which is the "compromise" that the unweighted
reduction procedure must make for an improved fit at the high

frequencies, which have little effect on the control problem. Based on
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an unweighted criterion, it would seem as if a higher order model is
necessary for satisfactory control, but such is not the case.

The design of a reduced-order control system was also attempted
for the case that uncertainty is present. A plot of the uncertainty
description 1y is shown in Figure 7; as discussed by Mandler et al.
(1986), it accounts for system nonlinearity. The first step is to
redefine the performance weight (68) to take into account the added
limitations imposed by uncertainty; from the fact that the sensitivity

function is bounded for a set of plants according to

-~

€

et [nem < 1 (70)

le] <
one can re-specify (68) as follows

0.5(100s+1) 1
"p, = Tfoos(s+1y ('~ ’ 685+T l Yo} (71)

The choice of n comes from the filter constant obtained in the H, case.
A new model, using the "decomposed" procedure, is presented in Table 2,
and is compared with the optimal filter parameter from the unweighted
model. As with the H., case, Theorem 1 is satisfied for the control
system derived from the control-relevant model, while the unweighted
model fails to meet specifications. Figure 8 compares how u varies
with frequency for both designs. Again we see that the unweighted
model results in increased p at low frequencies, while u at high
frequencies is unnecessarily low. The control-relevant model possesses
a better fit over the frequency interval of importance to the control
problem, and therefore yields an improved result. Table 2 also
compares the 2-norm error bounds for both designs. This error bound is
obtained by evaluating (70) using (26), then substituting into the two-

norm expression (1). A 13% decrease in the error bound is achieved,
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thanks to the control-relevant weight.
7. Summary and Conclusions

A low-order controller tuning methodology, based on the IMC design
procedure and satisfying the H,, He, and u control objectives has been
presented. The essence of the method is the use of a control-relevant
model reduction procedure, which incorporates closed-loop
considerations to obtain more accurate, parsimonious model
representations for design purposes. The IMC design procedure,
consisting of two simple steps, relates the reduced model and closed-
loop performance requirements unambiguously to a feedback compensator.

The usefulness of the proposed methodology consists in its great
flexibility and ease of computation. While the rational model
parameters are computed through quadratic and linear programming
algorithms, only the model deadtime and filter parameters need to be
computed through Golden Section or gradient search techniques.

Because the computational methods presented require that the
full-order model be described by its frequency response, the low-order
tuning tools discussed in this paper can be extended to the problem of
autotuning as well. Through the use of spectral time series analysis
(Jenkins and Watts, 1969), the process frequency response and
uncertainty description can be obtained from experiments; this problem

is the subject of current investigation (Rivera, 1987).
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Abstract

Dynamic model identification when the purpose is robust control
system design is considered. Through the use of spectral time series
analysis, a nominal plant frequency response and an uncertainty
description suited for robustness analysis are obtained. For a user-
specified model structure, parameter estimation is achieved through a
control-relevant procedure that incorporates the uncertainty
description and designer requirements for the closed-loop system to
obtain a parsimonious fit of the frequency response to an s-domain
model. The robustness theory further serves as validation tool for

determining the control worthiness of the parametric model.
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1. Introduction

The subject of dynamic model identification is an important one in
process control, particularly when designing control systems for
processes that are difficult to model from fundamental principles.
Classical approaches to identification consist of fitting experimental
data (from a pulse, step, or pseudo-random binary input) to a linear
parametric model through an optimization procedure (e.g., least-squares,
maximum likelihood); the absence of correlation in the residuals is the
usual measure for determining the adequacy of the fitted model.
Classical techniques are "open-loop" procedures in which control system
design considerations are usually ignored. A good survey of classical
identification methods is found in Astrom and Eykhoff (1971).

The classical identification approach is inherently deficient when
the purpose of the identification is control-system design. This occurs
because the identification objective is unrelated to the control
objective; in the optimization step, an attempt is made to fit the data
over all regions of time and frequency, some of which are meaningless
to the control system design problem. As a result, classical
identification techniques produce models of unnecessarily high order,
Furthermore, most plants are inherently nonlinear, hence a linear
description is adequate only over a narrow operating region. The plant
is better represented by a family of linear plants, or equivalently, by
a nominal linear plant with an associated uncertainty description. The
control system design of uncertain plants is the focus of robust
control paradigm developed by Doyle (1985), which establishes the

conditions for maintaining both stability and performance for a variety

of uncertainty descriptions.
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The purpose of this paper 1is to present an identification
methodology that is control-relevant because it originates from the
robust control paradigm. The initial portion of the paper introduces
the Structured Singular Value (SSV) as a suitable measure for
robustness. The identification procedure is then formulated with the
robustness condition in mind. The proposed methodology involves three
aspects: 1) the use of spectral time series analysis to obtain the
nominal plant frequency response and an uncertainty description, 2) the
use of frequency-weighted parameter estimation for fitting the nominal
plant frequency response to a designer-specified model structure, and
3) validation procedures that evaluate the control-adequacy (i.e.,
establish achievable closed-loop performance) arising from the
identified model. The result of the control-relevant approach is that
lower-order, yet better performing controllers, are possible as
compared to those designed on the basis of classically-identified
models. Furthermore, the control-relevant procedure is simple and can
be implemented using widely available signal processing software.

2. Robust Stability and Performance Measures

Our concern in this paper is fitting experimental data to
multivariable linear time-invariant models. A linear model, in most
cases, does not provide a complete description of the plant dynamics.
The effects arising from nonlinearity, parameter variations, or
unmodeled dynamics, which we will refer to generically as
"uncertainty," can be captured in terms of norm-bounded perturbations
on the linear plant model. The issue of robustness, then, centers on
being able to ascertain that control-loop stability and performance are

maintained despite uncertainty. The structured singular value u
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represents a useful tool for robustness assessment. As shown by Doyle
(1985), any linear interconnection of inputs, outputs, transfer
functions and perturbations can be rearranged to fit the GA structure
(Figure 1), for which the robustness theorem applies:
Theorem 1. Robust Stability, Structured.
Consider the set of perturbations defined by
A = {diag(Ay,Bseenrdy)| b; € CTXFKI) (1)
and its bounded subset
BA = {Aea| ©(A) < 1} 2
The generalized plant G is stable for all perturbations described
by (2) iff
ety < 1 3
where
6] ], & sup 1{G(ju)] ()
with u, the Structured Singular Value, defined as

RTW - pmin {5(A) |det(I-MA)=0} , M = G(Jw) (5)

It must be understood that Theorem 1 also incorporates the robust
performance problem. The performance conditions are incorporated 1in
the GA structure in the form of additional perturbations. The GA
structure thus allows for the performance and uncertainty
characteristics of the feedback problem to be captured in a unified
manner.,

3. Spectral Time Series Analysis

The field of spectral time series analysis is concerned with

obtaining frequency-domain information from records of time-domain

data. Exhaustive treatment of this topic is presented in the texts by
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- G

Figure 1. G-Delta Interconnection Structure
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Jenkins and Watts (1969) and Koopmans (1974). This section highlights
the main aspects of the theory, and we encourage the interested reader
to review the aforementioned texts for more information on the
statistical details involved.

We consider two vector processes, Xt and Y¢

T
Xp = X1ty eves Xty e Xqt) (6)
T
Yt = (Y'It, seey Vit ey yr‘t) (7

Xy is the vector of plant inputs, while Y¢ is the vector of outputs.
{xjt} and {yit} are records (time series) of data assumed to be
stationary, (i.e., each series has a constant mean), of equal length,
and obtained by sampling at an interval of § seconds. Furthermore, it
is assumed that no external disturbances are corrupting the output time
series. The steps involved in obtaining the transfer function estimate
P for the plant P from Xt and Y are as follows:

1. Compute the auto- and cross-covariances for the augmented vector

process:

X
Ag = [YEJ (8)
{ajt} = element in Ay

using the formula
N-k
cji(k) = -11\7 2 (ajt-8i)(aj(g+k)-aj) 0 < k < L-1 9)
t=1

N is the record length, L are the number of covariance lags (usually
chosen between 20 to 30% of N), and the overbar represents the mean

value of each element in At. The resulting covariance matrix has

(g+r)x(q+r) dimensions and is represented as



- 186 -

Cxx (k) Cxy (k)
Clk) = [CYx(k) ny(k)J (10)

2. Take the smooth Fourier transform of the covariance matrix to

obtain the (g+r)x(q+r) spectral matrix (containing the auto- and cross-

spectral estimates)
re _
F(n) = [ XX XYJ 0 < n < Np (11)

Nr indicates the number of linearly-spaced frequencies (recommended
number is 2 to 3 times L). {fij}, the elements of F, are complex
quantities

fi35(n) = Riy + Jlij (12)

with real and imaginary parts estimated by the formulas

L-1
Rij = 25{lij(0) + 2 Z SLij(k)W(k) cos -%T};]ﬁ } 0<n< Ny (13)
k=1
L-1 K
Iij= 4 2 qp3(w(k) sin 25 1 <n < Np - 1 ()
k=1 F -
I;3(0) = Ij3(Np) = O
where
2i5(k) = %-{Oij(k+8) + cji(k=8)}

qijk) = % {e13(k+8) - cji(k-3)}

|

The spectral estimates are spaced 1/(2 Ne8) frequencies apart, ranging
from frequencies 0 to 1/26.

Step 2 requires that w(k), the lag "window" and S, the number of
"alignment" lags be specified. A summary of the properties of common
lag windows is found in Table 1. Having selected a window type, the

parameter M, called the truncation point, must be specified. While
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Description Lag Window v, Degrees of
Freedom
1, Jul <M
Rectangular w(u) = %
0, ful > M
L ETRS
Bartlett w(u) = iMI\l
0, |ul>M
—;— (1+COS[-T-;4EJ) » Jul <M
Tukey wiu) = 2.667 1
0, |ul>M
PR P -3
1-%1 : 6“” ul< 8
— -3
Parzen wu) = 2[1- -I%LJ , % < Jul <M 3.71 —g—
0, |ul>M

Table 1. Properties of Common Lag Window. M: Truncation point for
window; N: record length.
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increasing M decreases the bias in the estimate, the variance associated
with the estimate increases. Choosing the appropriate lag window and
truncation parameter requires a trade-off between estimate "fidelity"
(bias) and "stability" (variance). Practical guidelines are provided by
Jenkins and Watts in Chapter 7.

The selection of alignment lags is important for systems that
exhibit pronounced phase lag (i.e., systems with deadtime). By
selecting S corresponding to the process time delay (deadtime = S§),
the smoothing process is significantly improved.

3. Obtain the transfer function estimate from
~ -1

P = FyyFyy (15)

and the residual spectrum from

Fy7 = Fyy - PFyy (16)
where

Z = Y(jw) - PX(jw)
The residual spectrum is a consequence of smoothing ; it is zero if no
smoothing (i.e., w(k) = 1 for M=N) is applied.

From the literature, one notices that the residual spectrum is
utilized in two distinct ways. The most common is to label the
residual spectrum as the power spectral density of an external
disturbance. The second is to define "confidence intervals'" for the
transfer function estimate; this latter choice considers the residual as
an indicator of plant uncertainty. The most general case presented by
Jenkins and Watts (1969) is the multi-input, single-output (MISO) case,

for which the joint confidence distribution applies
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Faizy (Vi(P-B)Ex(P-B)*vD) < v_zga £2q,v-2q (1-a) A7)
fzq,\)_gq = Fisher statistic for 2q and v-2q degrees of freedom,
evaluated at a (1-a)% confidence level.
vy =[1, 0, ..., 0] vp = [0, «.., 0, 1]
The vector vj specifies the ith row of the error transfer function P-P.
(17), however, is not written in a form suitable for Theorem 1; a
singular value bound is needed. Noting that Fyy is a Hermitian matrix,
it can be decomposed according to
Fyx = UAT/2 p1/2 yH (18)
A = diag(Amaxs «++s Amin)
U is a unitary matrix, while A is the matrix of eigenvalues. As a
result of (18), one can perform the following manipulations
vi(P—ls)FXX(P-ﬁ)*VE = || vi(P-P)UAY/2 || = §(vi(P-P)UAT/2)  (19)
(recall that the Euclidean norm and the maximum singular value are

identical for vectors). A singular value bound of suitable form is thus

obtained

-1/2 f.—1/2

S(vs (P=PYUp 172
5(vi(P-P)UA F ooz | 2qv-24

(1~a)) <1 (20)
which is assembled into a weighted A perturbation problem compatible
with Theorem 1 through the following definition for the matrices L and

E

LT = [La,s -+» Lais +-+s Lar] (1)

F1/2f'1/2

.= p-1/2 yH -
Lai = A v Zizi 29,v-2q (1~a)

Aa = diag(Aly seey Ai’ seey Ar\)
' -

E = diag (U, ..., u) , u= (1, 0, ..., 0) : 1 x q vector

Figure 2 presents the block diagram for this uncertainty description.
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-n

Block diagram description for the plant P,
in terms of P, the nonparametric model, and

L and E, the uncertainty description.
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Equation (20) generates some helpful physical insights regarding
the control-relevant identification problem:

1. The Noise-to-Input Signal (N/IS) Ratio as an Indicator of the

Extent of Plant Uncertainty.

From the expression
S(vi(P-B)) o (WAV/2 E1/26-1/2) ¢ 5(vi(p-BYUNT/2 £ 1/2p-1/2)  (22)
- Z2i2j - 2j2

one obtains the singular value bound
-FZ'Z“1/2
5(vi(P-P)) < [T‘l“l‘J r1/2 (23)
- min

The quantity FZiZi/Amin is, in effect, the noise-to-input signal ratio
evaluated at a particular frequency, and serves as a simple indicator
of the significance of uncertainty for the chosen set of experimental
conditions. For most physical systems, the N/IS ratio is likely to be a
function of the input characteristics. A reasonable conjecture appears
to be that if, for a large magnitude input signal, the N/IS ratio
remains small over the frequency range of interest, uncertainty effects
can be neglected and control-system designs that do not incorporate
robustness explictly (such as standard H,~ optimal control) can be
expected to perform adequately.

The importance of the N/IS ratio has also been noted by Ljung
(1984), although his treatment is restricted to SISO systems.

2. Usefulness of a Multivariable Normal Input Signal.

The derivation of (23) entailed the conservative step denoted by
(22). If a multivariable-normal input signal is used, such as the
multivariable pseudo-random input signal (Briggs and Godfrey, 1966), the

input spectrum Fyy is conveniently expressed as a scalar times

identity.
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Fyxx = Y(jn)Iq o)
Using (24), expressions (20) and (23) are equivalent. Other
considerations, however, must be incorporated in the choice of a
suitable input signal. One example is whether a multilevel pseudo-
random random sequence, as opposed to a binary one, will be more
effective for control purposes.

The interpretation given to the residual spectrum has serious
conseguences on the control problem, and therefore this decision must
be based on a careful physical understanding of the process. To label
the residual exclusively as an external disturbance when significant
uncertainty is present will lead to an unstable closed-loop system.
Alternatively, using the residual spectrum strictly to define plant
uncertainty when significant external disturbances are present can lead
to unpredictable results, depending on the character of the
disturbance.

A comprehensive identification methodology for control purposes
must recognize the presence of both uncertainty and external
disturbances. The details of such a methodology are, unfortunately,
beyond the scope of this paper; more investigation on this problem is
definitely warranted. One reasonable approach is to perform more than
one experiment on the plant. In the first experiment, the plant input
is held fixed, and the resulting output spectrum is treated as the
disturbance power spectral density. In the second, the plant input is
manipulated with a sufficiently wide magnitude signal such that the
contribution of the disturbance to the plant output is negligible. As
stated previously, one can conjecture that a larger magnitude will draw

out more of the nonlinear character of the process, and hence a better
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uncertainty description will be obtained.
4. Control-Relevant Parameter Estimation

The parameter estimation problem consists of curvefitting the
frequency response P obtained from spectral analysis to a user-defined
model structure. While very elementary approaches can be used for this
purpose (such as estimating the model parameters directly from a Bode
plot), a more elegant and useful approach is to incorporate the
description of the control problem to define what features of the
frequency response need to be conserved. In this manner, the most
parsimonious model description (with respect to the control problem at
hand) is obtained.

The problem of control-relevant parameter estimation can be
viewed as equivalent to the control-relevant model reduction problem
(Rivera and Morari, 1986a). The frequency-response P is represents the
"full-order" model, while ﬁ, the parametric model, is the "reduced-
order" model. The uncertainty description from Section 3, as well as
designer requirements for the nominal and robust performance of the
closed-loop system, are integrated to define a "control-relevant'
weight.

The particular case considered in this paper is the robust
performance of a closed-loop system with the plant uncertainty
description (21) subject to output sensitivity requirements, represented
by the weight functions wp1 and wpz. The corresponding block diagram is
shown in Figure 3. Theorem 2 is the re-statement of Theorem 1 for this
problem:

Theorem 2: Robust Performance, Structured
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P

Figure 3 . Feedback structure for control-relevant
identification.
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For the set of perturbations defined by
A = diag(Ag Ap) (25)
where Ap represents the performance A. The generalized plant G
exhibits robust performance iff

1G]y <1 (26)

where

L (A E T E) LB THIsER AT ER )T,

A A A n 27)
WpI(I“H)(I""EmH)_ JlE WPI(I—H)(I+EmH)— lez

A and I-f are the nominal complementary sensitivity and sensitivity
operators, respectively
I-8 - (+he) (28)
f = Pc(r+fc)~ (29)
while Ep denotes the multiplicative error
Ep = (P-P)P~ (30)
The model reduction problem corresponding to Theorem 2 is shown

by Rivera and Morari (1986a) to be

3 Lﬁ"l s ] -1
lﬂﬁf | D¢ Wpl) (I-H) EpHE Wp 1 D7 [w (31

with D defined according to
@ - diag(d,Iq,d.Ig, «-+» dplgs dps1lgld; € RY = (0,=)} (32)
D 2 inf GS(OMD™Y) , M = G(jw)
ped
An iterative algorithm for solving (31) for a single-input, single-
output plant is discussed by Rivera and Morari (1986b). For the general
multivariable case, the solution to (31) with P described by its

frequency response remains a research issue. In such a case, one

possible option is to obtain a high-order P using the general frequency-



- 196 -

response matching methodologies discussed by Noldus and Decoster (1976)
or Stahl (1984), followed then by the use of frequency-weighted
balanced realization, as discussed by Rivera and Morari (1986a), to
obtain a low-order P.
5. Control-Relevant Model Validation

Control-relevant model validation involves ascertaining that P
(obtained from whatever means) can be used to design a control system
satisfying the user's robust performance requirements. From the
discussion in Section 4, it becomes evident that u is also useful as a
model validation measure. For example, model validation for the
problem described by Figure 3 is achieved by insuring that Theorem 2 is
satisfied. Note that a convenient way of defining the complementary
sensitivity operator i is through the formula |

H = P4F (33)

§+ contains all the nonminimum-phase behavior in ﬁ, while F is a matrix
of low-pass filter elements. Computing i according to (33) is
discussed in Morari et al. (1987).
6. Summary and Conclusions

A control-relevant identification procedure, based on the robust
control paradigm, has been formulated. The field of spectral time
series analysis (Jenkins and Watts, 1969) and the control-relevant
model reduction problem (Rivera and Morari, 1986a,b) have been utilized
to obtain plant and uncertainty descriptions compatible with the
structured singular value framework of Doyle (1984). The end result of
this methodology is that parsimonious control structures satisfying

desired performance levels can be achieved.
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The treatment provided in this paper is by no means complete.
Additional investigation on experimental design, uncertainty
descriptions, and computational issues related to the parameter
estimation problem is still warranted.
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1. Summary
The synergism of modeling and control, as pertaining to the fields
of low-order control design, model reduction, and model identification

has been investigated. A summary of the main contributions of this

thesis follows:

Model Reduction: Starting from the H, , H_, and ucontrol objectives,
control-relevant plant and controller reduction problems have been
formulated. These are weighted optimization problems with weights that
incorporate explicitly the control problem description and designer
requirements for closed-loop performance. The efficient solution of
these problems, using the method of balanced realizations as well as
linear and quadratic programming, is outlined. Examples demonstrating
the effectiveness of the control-relevant analysis include the control

of a methanation reactor and a binary distillation column.

Low-Order Controller Design: The Internal Model Control design
procedure was used to relate process models common to industrial
practice to the PID controller. The IMC parametrization offers
significant insights regarding the on-line adjustment of these
controllers through the use of a single adjustable parameter which has

a direct effect on the closed-1loop bandwidth.

PID tuning rules for the first-order lag with deadtime model were
developed. These were shown to be, for all practical purposes, equally

performing to the optimal Smith Predictor.
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The control-relevant model reduction problem was integrated with
the IMC design procedure to provide a more general low-order controller
design methodology. PID control of a high-order system, for example,
can be achieved by using control-relevant reduction to obtain a model
belonging to Table 1, Chapter II. The selection of the filter parameter
is accomplished either through a simple search or from physical

arguments.

Model Identification: Introductory efforts on a comprehensive, control-
relevant identification methodology were presented. It was shown how
the results of spectral time series analysis can be translated to meet
the requirements of the robust control theory. The control-relevant
reduction problem serves a dual purpose as a control-relevant parameter
estimation problem, with the Structured Singular Value acting as a

model validation measure for control purposes.

2. Applications of the Thesis

This work was partly motivated by the need to provide analysis and
synthesis tools useful to the plant-level engineer. Along these lines,
a number of computer programs have been written that implement the
results of this thesis. The programs REDUCE, TUNE, REAL (BALANCE
option), and SPECTRAL all form part, or will be forming part, of the
CONSYD software package (Holt, et al., 1986). REDUCE implements the
‘control-relevant reduction methodology outlined in Chapter III. The
BALANCE subroutine in REAL allows the user to compute weighted balanced

realizations and thus carry out the results of Chapter IV. TUNE allows
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the user to execute the low-order controller tuning strategy developed
in Chapter V. The mu-optimal design option in TUNE has been
incorporated as the main controller design routine for the prototype
version of the expert system ROBEX (Heersink, 1986). A preliminary
version of the program SPECTRAL, which performs spectral time series

analysis, has been drafted.

The PID tuning rules, developed in Chapter II, have had a
significant impact. At Shell 0Oil, these rules have become a favorite
design tool among plant engineers (Garcia, 1986). Others have used
them successfully in both simulated and actual plant environments

(O'shima, 1984 ; Brambilla, 1984 ; Levien and Morari, 1985).
3. Suggestions for Future Research

It seems that an immutable characteristic of research is that new
questions always arise to replace the old ones that were answered. As
indicated in the conclusion segment of Chapter IV, such is the case
with the model reduction problem. Improving the effectiveness of the
computational techniques would be a welcome addition to the literature.
One reasonable approach would be to develop a less restrictive
multivariable generalization of the programming approach of Stahl
(1984). The resulting methodology would also be useful for solving the
control-relevant parameter estimation problem of Chapter VI, which was

not addressed in this thesis.

The development of a comprehensive, control-relevant

identification methodology merits a complete thesis. The control
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problem considered in Chapter VI addressed robust weighted sensitivity
to additive uncertainty perturbations (under the assumption that the
uncertainty and disturbance descriptions have been accurately obtained
from separate experiments); the real problem at the plant, however, is
more complicated: the uncertainty is more structured and not limited to
the process but to the plant sensors and actuators as well. The multi-
input, single-output uncertainty description presented should be
generalized for multiple outputs. Furthermore, more research is
required on the design of experiments, keeping in mind the restrictions
imposed by industrial practice. It should also be established for what
types of processes will identification be useful. Some systems, like
ill-conditioned plants, might be inherently difficult to identify. Case
studies performed on simulated and actual plants will also be necessary

to test the effectiveness of the theory.
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