A General Study of Diffusion Pumps--Langmuir Type

Thesis
by

Tseng-Loh Ho

In Partial Fulfillment of the Requirements for the Degree of Master of Science, California Institute of Technology, Pasadena, California, 1931

Introduction

1. General Mechanism.
2. The Principle of P roduction of a High Vacuum.
3. Theoretical Consideration of the Factors Concerning Speed.

Discussion of the Fxperimental Facts

1. Effect of Fore Pressure on Speed.
2. Effect of Fore Pressure on High Vacuum.
3. Effect of Vapor Pressure in Boiler on High Vacuum.
4. Critical Fore Pressure.
5. Effect of Molecular Weight of Gas Pumped on Speed.
6. Indirect Verification of Knudsen's Law of Molecular Flow.
7. Effect of Vapor Pressure in Boiler on Speed.
8. Independence of Speed and Gas Pressure.
9. Temperature of Cooling System and Speed.
10. Comparison of ffficiencies of Mercury Vapor and of $n-$ butyl Phthalate Vapor Pumps.
11. Shape of Nozzle and Speed.
12. Speeds of Diffusion Pumps of Different Size and Forms Used in this Laboratory.

Diagrams of Pumps
A ppendix I
A Low Pressure Gas Flowmeter

1. For Measuring the Speed of a Vacuum Pump.
(a) Absolute Method.
(b) Calibration Method.
2. For Maintaining Automatically a Constant High Vacuum -Another Method of Measuring the Speed of Vacuum Pump.
I. To Locate Leak by Two Gauges.
3. To Make an Ordinary Stop-cock suitable for High Vacuum use.
4. A Rubber Tubing Valve.
5. An Electric Mercury Valve.
6. A Small McLeod Gauge.
7. A Pressure Increaser.
8. A Heating Current Circuit Breaker. References

Summary

Gaede invented the diffusion pump and published his theory of the diffusion of gas through mercury vapor in 1915. Langmuir in 1916 independently constructed a new type of dif(2) fusion pump. The Langmuix type of diffusion pump, because of its high speed and simple construction, has become an important item in modern science research laboratories.

1. General Mechanism: Fig. I shows a longitudinal section
 of the main part of the Langmuir type of diffusion pump. Vapor of heavy molecular weight from a boiler (not shown in the figure) passes through tube T, expands at jet P, and after being condensed on the cooling wall $S_{1} S_{2}$ returns back as Iiquid to the boiler through M. S uch a distilling process produces a pressure difference of contained gas at R and M. Accord ingly, if the original gas pressure
is low, a high vacuum will be produced in R.
2. The principle of production of a high vacuum: Suppose that the system is originally in low vacuum. The vapor escapes at P in all directions and with velocity which is the same as molecular verocity of thermal agitation at T. The mean vapor molecular velocity is given by

$$
\bar{V}_{m}=\sqrt{\frac{8 p}{\pi \rho}}=\sqrt{\frac{8 R T}{\pi m}},
$$

where p, ρ, T, \mathbb{M} are respectively pressure, density, temperature, molecular weight of the vapor, and R equals gas constant.

The mean momentum of each vapor molecule is then

$$
V_{m} \frac{M}{N}=\frac{1}{N} \sqrt{\frac{8 R M T}{\pi}}
$$

where N is Avogadro's number. This shows that the momentum of escaping vapor is directly proportional to the square root of the molecular weight and temperature of the vapor. Although the vapor molecules escape at the jet in all directions, the intensity of the vapor stream is different in different directions, because the effective area from which the vapor starts to escape in different directions is different; generally, the ina tensity of the stream is greatest directly under the jet, gradually becoming smaller on getting away from the downward direction and becoming very small in the upward direction. That is, there is a greater total momentum of vapor in the downward direction, and consequently more gas molecules are driven downward by vapor. It is possible by adjusting the temperature of the boiler to make the downward vapor stream so dense that very few of the total gas molecules caught by it can get back and the intensity of the upward vapor stream is still so weak that it can not prevent the gas molecules from diffusing downard through it. In other words, the gas molecules diffuse downward through the upward vapor stream and are washed away by the downward vapor stream. A high vacuum in R . therefore results.
3. Theoretical consideration of the factors concerning the speed of the diffusion pump: We define the opening between the tip of the nozze and the cooling wall as the slit. In the space above the slit the vapor, according to its different states of motion, is to be considered as of two types; namely, directional vapor and non-directional vapor. The directional vapor is directly radiated in from the slit and has its upward component of momentum, while the nonmirectional vopor is prom duced by reeevaporation and collision, and possesses thermal agitation which depends on the temperature of the wall.

We first consider that the gas molecules diffuse through the directional vapor alone. Gaede analytically treated this kind of diffusion process. He reached the conclusion that the number of gas molecules striking per unit time on the slit of area q is

$$
\begin{equation*}
z=\frac{1}{4} \propto q N \Omega \tag{1}
\end{equation*}
$$

where $N=$ concentration of gas molecules,
$\Omega=$ mean velocity of gas molecules,
$\alpha=f\left(\frac{\lambda}{d}\right)$, where $\lambda=$ mean free path of gas mole. cules in vapor, and $d=$ width of the slit.

But, N cannot be the same throughout the space containing vapor, especially due to the presence of the non-directional vapor. So, we should also consider the diffusion of the gas molecules through the nondirectional vapor. There is an analogy as noticed by Gaede, at low pressure, between the diffusion of the gas through capillary tube and that through the vapor. Thus, (3) from Knudsen's expression for the rate of flow of the gas at low pressure through ε tube of length ℓ and diameter D,

$$
\begin{equation*}
U=A \frac{D^{3}}{l}, \tag{2}
\end{equation*}
$$

where A is a constant which depends on the molecular weight and the temperatureof the gas only, we can easily deduce the following expression for the gas pressure (partial) gradient along the path of diffusion through vapor,

$$
\begin{equation*}
\frac{d p}{d x}=-p_{0} k \tag{3}
\end{equation*}
$$

where P_{0} is the partial pressure of the gas at a section of reference in the path, and k is a constant which depends only on the porousity of the vapor and does not involve A in (2).

Since N is proportional to p, we have, from (3),

$$
\begin{equation*}
\frac{d N}{d x}=N_{0} k \tag{4}
\end{equation*}
$$

Where \mathbb{N} is the gas molecular concentration corresponding to β_{0}. Integrating (4), we get the gas molecular concentration near slit,

$$
\begin{equation*}
N=N_{0}(1-\hbar S) \tag{5}
\end{equation*}
$$

where $S=$ whole path from N_{0} to N.
Putting $\beta=1-k \$$, and substituting in (1), we have

$$
\begin{equation*}
z=\frac{1}{4} \alpha \beta q N_{0} \Omega \tag{6}
\end{equation*}
$$

If there were no chance for gas molecules which enter the slit to return, there would be z gas molecules per unit time carried away by the vapor stream C. Actually there are some gas molecules which rebound from some vapor molecules whose downward component of velocity is small.

Let $n_{1}=$ number of gas molecules which rebound from vapor C per unit time, and assume this is directly proportional to z; i.e., $n_{1}=k_{1} z$.

Let $n_{2}=$ number of gas molecules diffusing back per unit time because of the pressure in the fore vacuum and assume that this depends on the fore pressure only.

Then the total number of gas molecules extracted per unit time is

$$
\begin{align*}
Z & =z-n_{1}-n_{2} \\
& =\frac{1}{4} \alpha \beta \gamma N_{0} q \Omega-n_{2} \tag{7}
\end{align*}
$$

where $\gamma=1-k_{1}$, which is equivalent to Gaede's "extracting power" of the vapor.

If the fore pressure is low in comparison with the vapor pressure, r_{2} is practically zero, then

$$
\begin{equation*}
Z=\frac{1}{4} \alpha \beta \gamma N_{0} q \Omega \tag{8}
\end{equation*}
$$

To express the speed of the pump, substituting $N_{0}=\frac{\rho}{m}$ and $\Omega=\sqrt{\frac{8 P}{\pi \rho}}$, where ρ, p, m are density, pressure, mass per molecule, of the gas respectively, in (8), and using the perfect gas law, we obtain the volume of the gas extracted per unit time

$$
\begin{equation*}
\nabla=\alpha \beta \gamma q \sqrt{\frac{R T}{2 \pi M}} \tag{9}
\end{equation*}
$$

This is called the speed of the pump.
Equation (9) shows that the ideal maximum speed of a pump cannot exceed the speed of escape of a gas into a perfect vacuum. For, the ideal maximum values of α, β and γ are all unity (ie., in case there is no vapor dispersed through the slit and no gas molecules rebound from the vapor stream C). When they are unity,
the speed is

$$
T=q \sqrt{\frac{R T}{2 \pi M}},
$$

which is the speed of a gas escaping into a vacuum through an opening of area q, obtained by considering the well-known expression for number of gas molecules striking per unit time on area $q, z=\frac{1}{4} N \Omega q$.

Discussion of the Experimental Facts

1. Effect of fore pressure on speed:

Table 1.
Pump I, Mercury, working at 10 mmFg.
Wattage $=229 \mathrm{watts}$
Vapor Pressure $=4.4 \mathrm{~mm} \mathrm{Hg}$.
Cooling Temperature $=24^{\circ} \mathrm{C}$ Tube Resistance $1 / 8130$
Fore Press. Apparent Speed
in mmHg . in cc (air)
$2.9 \times 10^{-3} 860$
$3.2 \times 10^{-3} \quad 860$
$9.0 \times 10^{-3} 885$
$.35 \quad 890$
1.07860
$1.26 \quad 840$
$1.18 \quad 785$
1.20390

1. 22

5

Before verifying the speed expression (9) we should first justify the assumption that the number of gas molecules disfusing back per unit time, n_{2} in equation (7), is negligible at low fore pressure. As Langmuir's own investigation shows,
"In nearly all the cases the speed of a pump is practically independent of the exhaust (fore) pressure against which it operates unless this is raised to a certain rather critical value at which the pump ceases operating satisfactorily" the same result is shown in Table 1.

This shows that, under the specified conditions, this pump works equally well at all the fore pressures below 1.18 mmHg . The rapid decreasing of the speed at a fore pressure above 1.18 mmHg will be discussed in 4.
2. Effect of fore pressure on high vacuum:

The mable 1 alone is not sufficient to show that the Table 2.

Pump I, Mercury.
Wattage $=229 \mathrm{wath}$
Vapor Pressure $=4.4 \mathrm{mmitg}$ Cooling Temperature $=24^{\circ} \mathrm{C}$

Fore Press. in mm
0.30
0.56
0.81
1.04

1. 18
1.20
2. 22
1.23
1.25
3. 30

High Vacuum
in mm
below 10^{-5}
"
111
0.11×10^{-4}
0.19×1
0.67 x "
1.40×10^{-2}
3.40×11
$9.10 \mathrm{x} \mathrm{"}^{\prime \prime}$
decressing of the speed at high fore pressure is due to the large magnitude of n_{2} in equation (7). To supply this information, the relation between fore pressure and vacuum must be investigated. The result is shown ih Table 2.

There is a similarity between Table 1 and Table 2, especially the sudden change in vacuum as well as speed at Iore pressure about 1.22 mmHg .
3. Effect of vapor pressure in boiler on high vacuum:

Dushman experimentally showed the dependence of the vacuum (5)
on the vapor velocity . This is also an alternative proof that n_{2} in equation (7) depends on the magnitude of the fore pressure in comparison with the vapor pressure. So, the important condition specified here is the constant fore pessure. Table 3 shows an example.

Table 3.
Pump I, Mercury.
Fore Press. $=0.30 \mathrm{~mm} \mathrm{Hg}$ Cooling Temperature $=24^{\circ} \mathrm{C}$

Watts	Vapor Press. in mm	High Vacuum in mm
333	11.0	below 10^{-5}
261	6.0	" 1
171	3.5	" "
151	2.0	" "
133	1.7	" "
114	1.4	0.124×10^{-4}
96	1.3	0.73 x "
87	1.2	1.36 x \quad
76	1.1	6.3 x "
67	1.0	66.0 x
60	0.9	320.0

4. Critical fore pressure:

From the above experiments it is noticed that at certain fore pressures, when keeping vapor pressure constant, or at certain vapor pressure, when keeping fore pressure constant, both speed and vacuum are unstable, and if we change by a few per cent this fore pressure or vapor pressure, the corresponding speed and vacuum will change their magnitudes ten or a hundredfold. Call this fore pressure "critical fore pressure". The critical fore pressure has practical importance. It increases
with the vapor pressure in the boiler and is nearly directly proportional to the difference of pressure between the nozzle and fore side. Table 4 shows the proportionality. For a divergent nozzle such as that of Pump II, the critical fore pressure is not so sharp.

Table 4.
Pump I, Mercury.
Cooling Temperature $=23^{\circ} \mathrm{C}$

Watts	Vapor Press in mm	Critical Fore Pressure	
76	1.1	0.30	$\frac{1.1-.3}{.3}=2.66$
229	4.4	1.20	$\frac{4.4-1.2}{1.2}=2.67$
261	6.0	1.72	$\frac{6.0-1.72}{1.72}=2.49$
333	11.0	2.80	$\frac{11-28}{28}=2.93$

5. Effect of molecular weight of ges pumped on speed:

Consider that the partial pressure of the gas in the vapor is so low that there would be no collision between gas molecules therselves and that the vapor above the slit is not so dense that the mean free path of the gas molecules in the vapor would differ little for different sizes of ordinary gas molecules. So, the factor α as well as β in equation (9) would be the same for different gases. Then, by equation (9), the speed of the pump is inversely proportional to the square root of the molecular weight of the gas. From Tables 5-7, which show the speeds of the pump for H_{2}, air, CO_{2} respectively,

Table 5.
Pump II, Marcury.
Watts $=229$
Vapor Press. $=4.5 \mathrm{mmHg}$
Cooling Temperature $=24^{\circ} \mathrm{C}$
Tube Resistance $=1 /\left(8130 \times \sqrt{M_{\text {air }} / M_{H_{2}}}\right)$

p^{\prime} Flowmeter Pressure in mm	p Pump Pressure in mm	Apparent Speed for H_{2} in cc	$\frac{p \times 10^{-5}}{p 1}$
$\begin{aligned} & 19.0 \\ & 12.5 \\ & 9.2 \\ & 6.0 \\ & 4.25 \\ & 3.09 \\ & 2.09 \\ & 1.41 \\ & .766 \\ & .377 \end{aligned}$		5220 4850 4800 4350 4400 4370 4100 4140 4300 4180 4470	$\begin{aligned} & 3.08 \\ & 2.72 \\ & 2.55 \\ & 2.41 \\ & 2.48 \\ & 2.41 \end{aligned}$

Table 7.
Pump II, Mercury.
Watts $=229$
Vapor Press. $=4.5 \mathrm{mmHg}$
Cooling Temperature $=23^{\circ} .5 \mathrm{C}$
Tube Resistance $=1 /\left(8130 \times \sqrt{\mathrm{Mair}^{\mathrm{r}} / \mathrm{McO}_{2}}\right)$

we have to compare the ratios

$$
\frac{\bar{V}_{\mathrm{H}_{2}}}{V_{\mathrm{air}}}=3.40 \quad \text { and } \quad \frac{\bar{V}_{\text {air }}}{V_{C O_{2}}}=1.12
$$

with $\frac{\sqrt{M_{\text {air }}}}{\sqrt{M_{H_{L}}}}=3.81$ and $\frac{\sqrt{M_{\mathrm{CO}_{2}}}}{\sqrt{\mathrm{Mair}^{2}}}=1.22$,
And from Gaede and Keesom's data, $\bar{V}_{\text {He }}=422$ liters and $\nabla_{\text {air }}=130$ liters, the corresponding ratios are

$$
\frac{\bar{V}_{\text {He }}}{V_{\text {air }}}=3.22 \quad \frac{\sqrt{\text { Mair }}}{\sqrt{M_{\text {He }}}}=2.70 .
$$

These show that the speed is nearly inversely proportional
to the square root of the molecular weight.
Gaede had an explanation for his different experimental
(7)
results.
6. Indirect verification of Knudsen's Law of molecular flow:

Knudsen's law of molecular flow through a tube is expressed. by equation (2), or by writing out the value of A, we have

$$
U=\frac{\sqrt{2 \pi}}{6} \frac{D^{3}}{l} \sqrt{\frac{R T}{M}}
$$

and the speed of the pump is given by

$$
\nabla=\alpha \beta \gamma \sqrt{\frac{R T}{2 \pi M}} .
$$

By the present method of measuring the speed of the pump (see Appendix I), we have, if the flow as shown in

Fig 2
Fig. 2 is steady,

$$
\begin{aligned}
P V & =\frac{p^{\prime}+p}{2} U \\
\text { or } \quad \frac{p}{p^{\prime}+p}=\frac{U}{2 \sigma} & =\frac{1}{12 \alpha \beta \gamma} \frac{D^{3}}{\ell}, \quad \text { by }\left(2^{\prime}\right) \text { and (9'). }
\end{aligned}
$$

But p is negligibly small in comparison with p'.

$$
\therefore \quad \frac{p}{p^{\prime}}=\frac{1}{12 \alpha \beta \gamma} \frac{D^{3}}{l}
$$

This shows that (1) $\frac{p}{p^{\prime}}$ at low p^{\prime} (since equation (2^{\prime}) is true only for low pressure) is a constant; and, (2) $\frac{p}{p^{\prime}}$ at low p is independent of the gas used.

The last columns of Tables 5, 6, and 7 verify that, as p^{\prime} decreases, not only does the ratio p / p^{\prime} approach a constant for each gas, but also that this constant is the same for if. ferret gases.
7. Effect of vapor pressure on speed:

The factors α and γ in equation (9) depend on the vapor pressure. α decreases as the vepor pressure increases, because the increasing of vapor pressure intensifies the dise persion of vapor through the slit; γ probably increases as vapor pressure increases because the high velocity of the vapor stream would prevent the gas molecules from rebounding; and ${ }^{n_{2}}$ in equation (7) is large at low vapor pressure as shown in 3 . Hence, there is a maximum speed at a certain vapor pressure. Tables 8 to 11 show respectively the four different speeds corresponding to four different vapor pressures. The maximum speed is at vapor pressure somewhere around 4.4 mmHg . Table 13 shows the different speeds at different vapor pressures and the maximum speed at 5.0 mm butyl phthalate. From these and

Molthan's result on measuring the pump speeds at different mercury vapor velocities and different rates of condensation of mercury, we can conclude; the speed decreases as vapor pressure increases except at low vapor pressures, at which it has a maximum.

Table 8.
Pump I, Mercury
Watts $=171$
Vapor Press. $=3.5 \mathrm{~mm} \mathrm{Hg}$.
Cooling Temp. $=23^{\circ} \mathrm{C}$
Tube Resistance $=1 / 8130$
$\begin{array}{cc}\text { p. } \\ \text { in } 10^{-4} \mathrm{~mm} & \begin{array}{c}\text { Apparent } \\ \text { Speed for Air } \\ \text { in cc }\end{array} \\ & \end{array}$

23.0	916
9.17	905
6.85	847
3.72	843
1.96	830
1.19	848
.44	850
.18	820

Table 10.

Pump I, Mercury
Watts $=261$
Vapor Press. $=6.0 \mathrm{mmHg}$
Cooling Temp. $=230.5 \mathrm{C}$
Tube Resistance $=1 / 8130$
$\begin{array}{cl}{ }^{p}-4 & \begin{array}{l}\text { Apparent } \\ \text { in } \\ 100_{m m}\end{array} \\ & \begin{array}{l}\text { Speed for Air } \\ \text { in co }\end{array}\end{array}$
13.1
6.43
5.42
4.03
2.63
1.25
.50
.40
.30
830
855
795
807
800
820
825
790
800

Table 9.
Pump I, Mercury
Watts $=229$
Vapor Press. $=4.4 \mathrm{mmHg}$ Cooling Temp. $=23^{\circ}: 5 \mathrm{C}$
Tube Resistance $=1 / 8130$
D.
in mm $\begin{gathered}\text { Apparent } \\ \text { Speed for Air } \\ \text { in cc }\end{gathered}$

17.6	878
9.2	858
4.83	890
2.92	913
1.88	930
1.02	915
.67	890
.46	890
.30	920

Table 11.
Pump I, Mercury
Watts $=333$
Vapor Press. $=11.0 \mathrm{mmHg}$
Cooling Temp. $=22.5^{\circ} \mathrm{C}$
Tube Resistance $=1 / 8 / 30$

$$
\begin{array}{ll}
\text { in } 10^{-4} \mathrm{~mm} & \begin{array}{l}
\text { Apparent } \\
\text { Speed for Air } \\
\text { in cc }
\end{array} \\
&
\end{array}
$$

22.9	791
9.4	819
3.94	786
3.09	778
1.56	786
.62	740
.37	760
.23	780

8. Independence of speed and gas pressure:

According to equation (9), the speed is independent of the partial pressure of the gas to be extracted. Gaede experimentally verified it by his first diffusion pump. Tables 5 to 11 show the independence of the speed and the pressure at which the pump works.
9. Temperature of cooling system and speed:

The p_{1}^{r} rence of non-directional vapor both above and below the slit lowers the efficiency of the pump. This vapor is ladgely produced by reevaporation on the wall $S_{1} S_{2}$ (Fig. 1) which in turn depends on the temperature on the wall. So, the factor β in equation (9) can be greatly increased by lowering the temperature of $S_{1} ;$ this is the reason why in Gaede and Keesom's high speed pump a special cooling system round the outer wall of the nozzle is necessary . By lowering the temperature of S_{2} the factor γ in equation (9) is also increased. Table 12 shows the importance of the low temperature of the cooling system. It is interesting to note that if the pump specified in table 12 operates in open air, the cooling system running by water of open air temperature, the speed in winter will be twice as lare as that in summer.

Tabee 12. Cooling Temp. Apparent Speed In degrees C. for Air in cc.

Pump I, Mercury working at $10^{-4} \mathrm{mmHg}$

Vapor Fress. $=6.0 \mathrm{mmHg}$ Tube Resis. $=1 / 8130$

41.9	540
37.2	610
32.0	680
29.0	728
26.0	755
23.0	807
18.3	853
11.9	1010
3.0	1050
-1.0	1060
-4.0	1060

10. Comparigon of efficiencies of mercury vapor and nbutyl phthalate vapor pumps:

As recommended by Hickman and Sanford , nobutyl phthalete is among one of the most efficient substitutes for mercury. Besides retaining all the characteristics of the mercury vapor pump, the n-butyl phthalate vapor pump is proved to have much

$$
\text { Table } 13
$$

Pump I, n-butyl Phthalate
Fore Pressure $=.09 \mathrm{mmitg}$ Cooling Temp. $=25^{\circ} \mathrm{C}$

Watts Vapor Press. Speed for in mm butyl Air in cc. phthalate

80	2.0	2180
110	3.5	2420
142	5.0	2500
175	8.0	2040
210	11.0	1840
250	14.0	1640
300	18.0	1260

higher speed, as shown in Table 13 , which is nearly twice as large as that of mercury vapor pumps. The only objection is the slow production of volatile matter, especially when operating with high fore pressure of air. The gas thus produced seems to be incompletely trapped even at liquid air temperature.
11. Shape of nozzle and speed:

The shape of the nozzle directly affects the characteristics of the jet of the vapor stream and hence the factor in equation (9). The divergent nozzle with narrow throat, (11) first introduced by Gravford in his pump, then adopted in other designs of pump as Gaede and Keesom's high speed pump, and recently investigated by Hickman and Sanford , is proved
to be the most efficient. By this form of nozzle, the vapor expands at throat A (fig. 4) instead of expanding at the mouth as in the case of a straight nozzle. Accordingly, we get greater downward momentum of the vapor before leaving the nozzle; thus, on leaving the nozzle, the relative amount of the vapor dise persed through the slit is reduced so as to increase the factor α. Tables 6 and 9 show respectively the speeds with divergent nozzle and with straight nozzle.
12. Speeds of diffusion pumps of different size and form used in this laboratory:

Results are shown in the following tables.

Table 15.
Pump IV, Nercury
Watts $=2000$ watts
Fore Press. $=.002 \mathrm{mmHg}$ Cooling Temp. In. $=23{ }^{\circ} \mathrm{C}$ * OUt. $=28^{\circ} \mathrm{C}$

Tube Resistance $=1 / 8130$
Trap Temp. (Iiquid air)

Table 16.
Pump III, Mercury

Vapor Press. $=705 \mathrm{~mm}$	
Cooling Temp. $=23^{\circ} \mathrm{C}$	
Tube Resis.	$=1 / 9810$
${ }^{p}-4$	Speed (air)
in $10^{-4} \mathrm{mmHg}$	Apparent in cc
45.0	534
28.3	530
19.6	502
11.1	493
8.08	450
6.85	431
2.60	392
1.47	313

Fore Press. $=0.1 \mathrm{~mm}$ Watts $=145$ Cooling Temp. $=23^{\circ} \mathrm{C}$ Tube Resis. $=1 / 9810$ in ${ }^{p} 10^{-4} \mathrm{mmHg} \quad \begin{gathered}\text { Speed (air }) \\ \text { Apparent } \\ \text { in cc }\end{gathered}$
45. 0
28.3
19.6
11. 1 8.08 $2.60 \quad 392$ 1.47313

Table 17.
Pump V, Mercury
Vapor Press. $=1.45 \mathrm{~cm}$ Fore Press. $=0.1 \mathrm{~mm}$. Watts $=270$ Cooling Temp. $=22^{\circ} \mathrm{C}$ Tube Resis. $=1 / 2720$

20.3644
6.6 630 4.0 2.91 .83 $.72 \quad 628$.44595 . 22 600 .21

The decreasing of speed with pressure of Pump III shown in Table 16 is due to the leaking Back" from fore vacuum because of the small nozzle and high fore pressure. The constant quantity of "leaking back" can be easily estimated from the table.

DIAGRAMS OF PUMPS

Fige 3
\curvearrowright
$\frac{\Omega}{0}$
7
\pm
0
\cdots

Fig 5

Fig 6

APPENDIX I

A Low Pressure Gas Flowmeter

1. For measuring the speed of a vacuum pump.
(a) Absolute method: The flowmeter is schematically shown in Fig. 8. Any vacuum pump whose speed is to be measured is connected to A^{\prime}. Through C the gas is allowed to leak into the vacuum system. The gas pressure on the right side of C is first regulated by E and then kept constant by I (or by a pressure-increaser connected at K) when it is observed that there is no change of galvanometer deflection of gauge B.

Let $V=$ volume of the gas leaking in during a time interval t. This is measured by the known volume of mercury raised in F.

Let $P^{\prime \prime}=$ pressure of the gas on the right side of C. This is measured by G when it is low, or by the difference of the mercury surfaces in F and H when it is high.

Les $P=$ pressure of the gas in the vacuum system at which pressure the speed of the pump is determined. This is measured by B.

Then the apparent speed of the pump at pressure P is

$$
S=\frac{P^{\prime} \sigma}{t P} .
$$

(b) Calibration method: To avoid the tedious work of keeping the pressure constant and of recording the rate of flow we calibrate the capillary leak for each gas.

A glass bulb of volume about 8000 cc.
A' glass tube about 3 cm . in diameter.
B hot wire gauge (or ionization gauge).
C capillary leak.
D mercury trap.
E reducer.
F tube of known dimension.
G small McLeod gauge.
H mercury reservoir.
I screw device for slow upeand-down motion of H .
I stop cock.

To each pressure p^{\prime} at F, when A is in high vacuum, the corresponding rate of flow is determined either by process of (a) or by noting the increase of pressure in known volume of A (when it is closed at A^{\prime}), and then plotting a V - p^{\prime} curve.

By such calibration curves we can determine the speed of any diffusion pump merely by measuring the pressures on both sides of C simultaneously at any instant when they are either slowly decreasing or steady. The process of measuring the rate of flow is dispensed with and a Mcleod gauge could be used in place of B.

The following example shows the calibration data of a capillary leak for air.

p^{\prime}	∇ in $c c$	∇ in ce	p^{\prime}	\bar{V} in cc	∇ in cc
in mm	at $10^{-4} \mathrm{~mm}$	at p^{\prime}	in mm	at $10^{-4} \mathrm{~mm}$	at p^{\prime}
20.2	24600	. 122	2.66	928	. 0349
17.2	18400	. 107	2.19	705	. 0323
14.5	13900	. 096	1.79	573	. 0320
13.1	11400	. 087	1.40	440	.0315
11.4	8720	. 0765	0.91	290	. 0319
9.5	6380	. 0672	0.62	195	. 0314
5.88	3400	. 0577	0.531	167	. 0325
4.80	2260	. 0470	0.342	106	. 0310
4.10	1790	. 0437	0.257	77.5	. 0300
$3 \cdot 35$	1300	.0388			

The above data is sufficient to show that at high p'. V_{p} is directiy proportional to p^{\prime} (Poisenille's law on the flow of fluid through a capillary tube), and at low p', is independent of p^{\prime} (Knudsen's law of molecular flow).
2. For maintaining automatically a constant high vacuum -o another method of measuring the speed of vacuum pump.

The constant pressure in A (Fig. 8) is kept by gas in F, in which the pressure in turn is regulated by an electric mercury
valve automatically.
Since a hot wire gauge B (or an ionization gauge) is used to measure pressure in A, this pressure is indicated by the deflection of the galvanometer, so the galvanometer, owing to its deflection, can be used as a contact key. Name it gal= vanometer contact". By the action of the "galvanometer contact" and a system of relays, it is easy to operate the electric mercury vaive.

To form a "galvanometer contact", as shown in Fig. 9, g being the galvanometer coil and mirror (the author used a Leeds and Northrup Co. Type P galvanometer), use two pieces of fine platinum wire Pt, one attached horizontally to the lower side of the galnanometer coil, the other fixed vertically on the side of the lower suspension, both should be carefully insulated from the galvanometer circuit, and their relative positions should be such that at certain required deflection positions of the mirror (1.e., at certain required pressure in A) they make contact with each other.

But a very small current in the "galvanometer contact" will cause two wires to stick together. This kind of difficulty usually occurs in small current relays as pointed out and (13) eliminated by Roberts . To eliminate this, let the "galvanometer contact" control a vacuum tube amplifier. When the two platinum wires are in contact, they produce a sufficient negative voltage on the grid to reduce the plate current nearly to zero, and this to operate the relay in plate circuit. For amplifier, tube 201A, plate voltage 120 volts, $I_{1}=10,000$ ohms, $I_{2}=10$ megohms, grid voltage $=-20$ volts are used. The following care
should be taken: Do not put too many volts in the plate circuit, because a high plate voltage will produce an ionization current in the grid circuit, and hence in the "galvanometer contact", so reviving the difficulty of sticking.

The electric mercury valve is a U-tube half filled with mercury. An iron cylinder N, floating on the mercury surface in one limb of the U-tube can be held and released by an electromagnet $M_{\text {. }}$. When N is released, the mercury surface in the limb will raise and close the mouth of the tube P, and when N is held the mercury will then open the mouth of P. This forms a valve. Above the mercury surface the pressure, which is different from that in F, is maintained by a reservoir R. The function of the capillary tube $C l$ is to prevent the sudden rush of the gas.

Suppose that the pressure in the vacuum system A is gradually decreasing, A being connected to a diffusion pump. The "galvanometer contact" is then made. The action of the contact will open the mercury valve to increase the pressure. In this case R should have higher pressure than F. When the pressure is restored, the "galvanometer contact" breaks and the valve is then closed again. The method of measuring the speed of the diffusion pump is simply to record the change of pressure in R during a long time interval. For, assume the temperature constant and let $P_{1}=$ initial pressure, $P_{2}=$ final pressure, $V=$ volume of $R, t=$ time interval, $P=$ pressure in vacuum system A, then the speed will be

$$
S=\frac{\left(P_{1}-P_{2}\right) \nabla}{P t}
$$

The higher the sensitivity of the gauge B, the smaller the magnitude of the fluctuation of the pressure in A would be.

For more accurate work, it is suggested that a selenium cell (or a photoelectric cell) be exposed to the image of a strongly illuminated source reflected at the galvanometer mirror, instead of using the platinum wire "galvanometer contact". The remaining part of the electric circuit is exactly the same. This is similar to Van den Akker's attachment used in this laboratory.

A PP:GNDIX II

Some Simple Vacuum Technique

1. To locate leak by two gauges:

In case a leak of a vacuum system can not be tested by spark coil, the following method is found to be applicable. Suppose two gauges a and b (Fig. 10) first connected at A and B of a vacuum system, pump working on the right-hand side of B, and consider that there must be a pressure gradient along
A

$\dot{a}$$\longrightarrow$| B |
| :--- |
| \dot{b} |\longrightarrow pump Fig 10

the path of the gas from the leak to the pump. Then: (a) if there is no pressure difference between A and B, the leak must be on the right-hand side of $B ;(b)$ if there is a pressure difference between A and B and if, on moving gauge a to the leftohand side of A, the pressure difference of the two gauges increases, the leak must be on the left-hand side of A; (c) if there is a pressure difference between A and B, and if, on moving gauge a to the left-hand side of A, there is no increasing of pressure difference of the two gauges, the leak must be between A and B.
2. To make an ordinary stop cock suitable for high vacuum use:

It is expensive to make specially a high vacuum stop cock as (15) described by Travers and by Trivelli . So, unless a large opening is needed, the ordinary stop cock is used to connect two vacuum systems. To prevent the entering of atmospheric air into the ∇ acuum system, a glass ring (a short piece of glass tube) is sealed to its upper (larger) end for holding mercury, and a glass boss) a short glass tube with one end closed) is sealed to its lower (smaller) end, both being the same sizes as the corresponding ends. It is satisfactory that both are darefully sealed by hard sealing wax.
3. A rubber tube valve:

This simple valve is to regulate the admittion of the atmospheric air into a vacuum as in operating a shortened type McLeod gauge. Two pieces of short small glass tube, one with open end and one with closed end, are held together as shown in Fig. 11 by a piece of short thickwalled rubber tube with their ends 1 or 2 mm apart, thus forming a gap inside the rubber tube. Around the gap, the rubber tube is pricked by a pin from outside to inside. The pricked holes are so small that, when the rubber tube is its natural length, a very small amount of gas can pass through them. When
it is bent, the holes on the convex side are enlarged and this let the air in. So, the rate of air flowing in is easily regulated by hand.
4. An electric mercury valve:

This has been described in 2 of Appendix I. For ordinary use in transferring a small amount of gas from one vacuum system to another, this can be operated by a key in place of the relay.
5. A small McLeod gauge:

This simple McLeod gauge needs no calibration and needs little mercury, is used to measure the pressure of low vacuum from one atmosphere to a few thousandths of a mm. The only difference between this and a high vacuum McLeod gauge is that this has merely a glass tube "a" of uniform small bore (Fig. 12) instead of a large bulb and a fine capillary tube. The leading tube "b" is chosen to have the same size as "a".

Let p be the pressure to be measured. Then, from the iagram

$$
P L A=(h+P) l A \text {, }
$$

A being the area of the cross-section of a, w

$$
p \cdot(L-l)=l h
$$

$$
p=\frac{l h}{L-l}
$$

6. A pressure increaser:

A flask, a single way stop cock and a double way stop cock fused together as shown in Fig. 13 form a simple pressure increaser. For example; to increase the pressure of the vacuum system, the gas is first introduced into a small volume v, then its pressure is reduced by expanding it into a large volume V, finally letting this low pressure gas confined in v get into the vacuum system.
7. Heating current circuit breaker:

To prevent the burning up of the ionization gauge or hot wire gauge and the oxidation of the vapor of diffusion pump due to an accidental crack of the glass of the vacuum system, an automatic device to break the heating current circuit is prom vided. This is simply a V-shaped mercury manometer connected to the fore vacuum side of the pump system as shown in Fig. 14. The leak of a crack will increase the pessure of the fore vacuum side. Then the rise of mercury in the left-hand side limb of the manometer will complete the circuit of the relay and thus break the heating current circuits.

REFERENCES

(1) W. Gaede, Ann. d. Phys. 46, (1915), P. 357-392.
(2) I. Langmuir, Phys. Rev. 8, (1916), P. 48-51.
(3) M. Knudsen, Ann. d. Phys. 28, (1909), P. 75-130.
(4) I. Langmuir, Gen. EI. Rev. 19, (1916), P. 1060-1071.
(5) Dushman, Gen. El. Rev. 23, (1920), P. 672-683.
(6) Gaede and Keesom, Commun. Leiden 18, no. 195 a.
(7) W. Gaede, Zeits. f. Tech. Phys. 4, (1923), P. 348.
(8) Molthan, Zeits. f. Tech. Phys. 7, (1926), Po 3974-388 and P. 453-460.
(9) Gaede and Keesom, loc. cit.
(10) Hickman and Sanford, R.S.I. I, (1930), P. 140.
(11) Grawford, Phys. Rev. 10, (1917), P. 557-563.
(12) Hickman and Sanford, loc. cit.
(13) Howard S. Roberts, J.O.S.A. \& R.S.I. II, (1925), P. 179.
(14) J. A. Van den Akker, R.S.I. 1, (1930), P. 684.
(15) Travers, The Experimental Study of Gases, P. 25, 1901.
(16) Trivelli, J.O.S.A. \& R.S.I. 16, (1928), P. 367.

SUMMARY

It has not been possible to calculate theoretically the speed of the currently used diffusion pumps after Langmuir, because, unlike the Gaede's original type of diffusion pump, they have the vapor jet and the wide slit which prevent us from formulating the exact condition of the dispersed vapor through the so-called slit. The factors concerning the speed have been theoretically discussed and qualitatively verified by experiments. The experimental investigation is chiefly on the dependence of speed on vapor pressure, fore pressure, temperature of cooling system, kind of vapor used, kind of gas to be extracted, size of pump and form of jet; and the related experimental facts of previous workers are also discussed and referred to. Some of the results on speed can be stated definitely as follows: The speed is independent of the fore pressure when it is far from critical. The speed decreases as vapor pressure increases except at low vapor pressure, at which it has a maximum. The speed is nearly inversely proportional to the square root of the molecular weight of the gas to be extracted. The speed is independent of the pressure at which the pump works. As the temperature of the cooling system deceeases the speed first increases and then reaches a constant. The speed of n butyl phthalate vapor pump is greater than that of the mercury vapor pump. The speed of pump with divergent nozzle is greater than that with straight nozzle.

