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ABSTRACT

Reliability is a crucial aspect for the successful deployment of deep learning systems
across various domains. In generative modeling, it is essential to create content
that adheres to specific rules. In the field of control, ensuring that robots operate
safely without falling or entering hazardous areas is paramount. Similarly, in visual
perception, the robustness of perception results against perturbations are vital.

In this thesis, we explore the reliability of inference dynamics in deep neural net-
works such as ResNet, neural Ordinary Differential Equations (ODEs), and diffusion
models. We begin by examining the inference dynamics in standard networks with
a discrete sequence of hidden layers, applying self-consistency and local Lipschitz
bounds to enhance robustness against input perturbations. Our exploration then
extends to neural ODEs, where the neural network specifies a vector field that con-
tinuously transforms the state. We employ forward invariance to achieve robustness,
marking the first instance of training neural ODE policies with non-vacuous certified
guarantees. The focus shifts next to diffusion models and their inference processes,
particularly in adhering to symbolic constraints. For this, we introduce a novel
sampling algorithm inspired by stochastic control principles. This algorithm not
only guides these models in generating rule-specific content but also sets a new
benchmark in symbolic music generation. Our work offers a cohesive understand-
ing of inference dynamics in various deep learning architectures and propose new
algorithms to significantly improve their reliability.
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C h a p t e r 1

INTRODUCTION

1.1 The Reliability Issue in Deep Learning
Deep neural networks have been widely applied in many real-world problems.
Their proficiency in learning intricate patterns and executing complex predictions or
decisions is remarkable. Yet, a persistent concern remains their reliability.

In this thesis, we explore the reliability issue within three distinct domains: generative
modeling, control, and visual perception.

Generative Modeling. Diffusion models, while powerful, sometimes generate
images that deviate from specific text prompts, particularly in adhering to rule-based
specifications such as binding attributes to objects (Liu et al., 2023). In this scenario,
reliability is being consistent with the rules used to guide the diffusion. This thesis
introduces novel algorithms designed to steer diffusion models towards generating
content that complies with these rule specifications in a flexible, plug-and-play
manner.

Control. In control systems, reliability means the ability of controllers to maintain
safety guarantees under perturbations. For instance, ensuring a Segway robot remains
upright on uneven terrain, or a drone maintains steady flight in turbulent winds.
Although the field of robust control (Zhou and Doyle, 1998) have succeeded in
designing controllers that are provably robust even under the worst conditions, the
resulting policies tend to be often linear, constraining their effectiveness. Our work
proposes innovative methods for training nonlinear control policies parameterized
by neural networks, with verifiable robustness guarantees.

Visual Perception. Despite the significant achievements of deep neural networks in
visual perception, they are known to be vulnerable to adversarial attacks (Szegedy
et al., 2014). For example, imperceptible alterations to an image can mislead a
model into incorrect classifications. Reliability in this sense means that the visual
perception system still makes correct predictions under input perturbations. This
thesis presents strategies to bolster the adversarial robustness of image classifiers,
both empirically and through provable methods.

To enhance the reliability of deep learning systems, a fundamental understanding
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of the inherent unreliability of neural networks is essential. This is challenging
because neural networks are comprised of layers of highly over-parameterized
neurons. This over-parameterization contributes to the complexity of the networks,
making it particularly challenging to dissect and understand the behaviors of such
high-dimensional computational systems.

This thesis aims to deepen our understanding and enhance the reliability of deep
learning systems through the lens of inference dynamics. We will delve into the
inference dynamics of several prominent deep learning models in the following
section, seeking breakthroughs to improve reliability through innovative learning
and inference algorithms.

1.2 Inference Dynamics of Deep Learning Systems
In this section, we examine the inference dynamics of three prominent deep learning
models: feedforward neural networks, neural ordinary differential equations (neural
ODEs), and diffusion models.

Feedforward Neural Networks. Feedforward neural networks are foundational
building blocks of deep learning systems. In a feedforward neural network, the
information always flow in one direction from input to the output. Due to this one-
way flow, these networks lack the ability to revise outputs post-generation, posing
a challenge in cases of erroneous predictions. In Chapter 2, we introduce novel
algorithms to that empower these networks to refine predictions during testing time.
Figure 1.1 shows the composite layers of feedforward deep neural networks.

More formally, considering ηn ∈ Rd as the hidden states of layer n, the states of the
subsequent layer are determined through:

ηn = f(ηn−1,θn) (1.1)

where n ranges from 1 to N , and θn represents the model parameters at layer n. A
fundamental architecture in deep neural networks is the residual network (He et al.,
2016), which incorporates skip connections between layers to facilitate network
optimization. The update rule in residual neural networks is:

ηn = ηn−1 + f(ηn−1,θn) (1.2)

While this sequence of transformations (f ) endows the feedforward network with
the capability to approximate complex functions, it can also amplify input noise.
This amplification can transform minor noise into significant errors in output. This
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(a) Deep neural networks

(b) Residual neural networks

Figure 1.1: Deep Learning Architectures. (a) Composite layers in a deep neural
network. x, y are the input and output respectively. f stands for per-layer functions,
and η stands for the hidden states. (b) Illustration of a ResNet architecture. There
are skipping connections between layers.

amplification can transform minor noise in input into significant errors in output. In
Chapter 3, we propose efficient bounds to mitigate noise amplification at each layer,
thereby offering certified robustness guarantees for the network.

Neural ODEs. In contrast to the discrete layer structure of feedforward networks,
neural ODEs model the continuous dynamics of hidden states using ordinary differ-
ential equations. The output is derived as the numerical solution of the ODE, starting
from an initial condition to a terminal time T . The derivative of the hidden states is
formally expressed as:

dηt

dt
= f(ηt, t,θ) (1.3)

with ηT being the solution to the ODE given the initial condition η0.

Neural ODEs are particularly useful in applications involving continuous dynamics,
such as generative modeling (Chen et al., 2018), time series analysis (Rubanova
et al., 2019), and control (Böttcher and Asikis, 2022). They also provide a novel lens
to understand the inference dynamics of residual networks (He et al., 2016), viewed
as an Euler discretization of a continuous transformation (Lu et al., 2018).

The continuous nature of neural ODEs enables incorporating control-theoretic con-
cepts such as forward invariance to boost their reliability. Forward invariance
guarantees that NODE trajectories never leave a specified set, which can be trans-
lated into various robust safety guarantees. In Chapter 4, we introduce a general
framework for training certifiably robust forward invariant neural ODEs.
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Diffusion Models. Diffusion models, as detailed in key works (Sohl-Dickstein
et al., 2015; Ho et al., 2020), represent a powerful class of generative models
that create data by reversing a diffusion process. A continuous perspective of this
process is provided by the use of stochastic differential equations (SDEs) to describe
both the forward diffusion and its reverse-time counterpart (Song et al., 2021).
This reverse-time SDE relies on a neural network approximated score function,
with sample generation achieved through numerical SDE solvers. Formally, the
generative process is defined as:

dηt = f(ηt, t, sθ)dt+ g(t)dw̄ (1.4)

where dt is an infinitesimal negative time step and w̄ is a standard reverse-time
Wiener process. f represents the transformation leveraging the neural network-
parameterized score function sθ.

In Chapter 5, we study how to guide the generative process of diffusion models
to conform to rule specifications via stochastic control. This involves integrating
the optimal control ut into the drift term of the SDE, resulting in f(ηt, t, sθ,ut).
Solving this modified SDE facilitates the production of samples that adhere to
predefined rules.

Visualizing the Hidden States. Figure 1.2 presents a visualization of the one-
dimensional hidden states corresponding to the inference dynamics previously dis-
cussed. In the case of ResNet, the x-axis represents the number of layers, and the
updates are defined only at discrete layers. For neural ODEs, the x-axis denotes
time, with the trajectory being obtained by integrating an ODE over this temporal
dimension. In the context of neural SDEs (the function class of diffusion models),
the trajectory is influenced at each step by a diffusion term, adding noise to the
process.

ResNet Neural ODEs Neural SDEs

Figure 1.2: Visual representation of the one-dimensional hidden states for
ResNet, neural ODE, and neural SDE.
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1.3 Thesis Structure and Contributions
This thesis delves into the inference dynamics of deep learning systems, showcasing
enhanced reliability across several applications such as generative modeling, control,
and image classification.

Chapter 2 & Chapter 3 – Enhancing Neural Network Robustness
Chapters 2 and 3 are dedicated to improving the adversarial robustness of standard
neural networks. In Chapter 2, we present a novel approach, Convolutional Neural
Networks with Feedback (CNN-F). This method integrates generative feedback
with latent variables into existing feedforward architectures, enabling consistent
predictions through iterative maximum a posteriori inference. CNN-F demonstrates
significantly enhanced empirical adversarial robustness compared to traditional
feedforward CNNs.

Chapter 3 shifts focus to providing neural networks with a certified robustness
guarantee. We introduce a trainable and efficient local Lipschitz upper bound,
factoring in the interactions between activation functions (like ReLU) and weight
matrices. This approach consistently surpasses current leading methods in terms of
both clean and certified accuracy on established benchmarks.

Chapter 4 – Control-Theoretic Tools in Neural ODEs
In Chapter 4, we explore the application of control theory in neural ODEs (NODEs)
to establish robust safety guarantees. Our interest centers on a control theory concept
known as forward invariance, used to ensure a dynamical system remains within a
certain state set indefinitely, even under perturbations. This chapter demonstrates
certified robustness in both nonlinear Neural ODE control and image classification,
marking a step towards certifying complex NODEs across various domains.

Chapter 5 – Guiding Diffusion Models with Symbolic Constraints
Chapter 5 addresses the challenge of directing diffusion models to produce content
that adheres to specific symbolic constraints. In fields like symbolic music generation,
creating rules that define desired output characteristics (such as note density or chord
progressions) is relatively straightforward. However, incorporating these rules during
the training phase presents substantial computational hurdles. Recognizing the need
for a more efficient approach, we introduce Stochastic Control Guidance (SCG), a
novel method offering plug-and-play guidance for non-differentiable rules. This
represents the first instance of such an approach being successfully applied.
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C h a p t e r 2

INTRODUCING RECURRENT GENERATIVE FEEDBACK TO
FEEDFORWARD NEURAL NETWORKS

Yujia Huang, James Gornet, Sihui Dai, Zhiding Yu, Tan Nguyen, Doris Tsao, and
Anima Anandkumar (2020). “Neural Networks with Recurrent Generative Feed-
back”. In: Advances in Neural Information Processing Systems 33, pp. 535–545.
URL: https://proceedings.neurips.cc/paper_files/paper/
2020/file/0660895c22f8a14eb039bfb9beb0778f-Paper.pdf.

2.1 Introduction
Conventional deep neural networks (DNNs) often contain many layers of feedfor-
ward connections. With the ever-growing network capacities and representation
abilities, they have achieved great success. For example, recent convolutional neural
networks (CNNs) have impressive accuracy on large scale image classification bench-
marks (Szegedy et al., 2016). However, current CNN models also have significant
limitations. For instance, they can suffer significant performance drop from corrup-
tions which barely influence human recognition (Dodge and Karam, 2017). Studies
also show that CNNs can be misled by imperceptible noise known as adversarial
attacks (Szegedy et al., 2014).

To address the weaknesses of CNNs, we can take inspiration from of how human
visual recognition works, and incorporate certain mechanisms into the CNN design.

Cat

Internal Model

Feedforward

Feedback

Figure 2.1: An intuitive illustration of recurrent generative feedback in human
visual perception system.

https://proceedings.neurips.cc/paper_files/paper/2020/file/0660895c22f8a14eb039bfb9beb0778f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0660895c22f8a14eb039bfb9beb0778f-Paper.pdf
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While human visual cortex has hierarchical feedforward connections, backward
connections from higher level to lower level cortical areas are something that current
artificial networks are lacking (Felleman and Essen, 1991). Studies suggest these
backward connections carry out top-down processing which improves the represen-
tation of sensory input (Kok et al., 2012). In addition, evidence suggests recurrent
feedback in the human visual cortex is crucial for robust object recognition. For
example, humans require recurrent feedback to recognize challenging images (Kar
et al., 2019). Obfuscated images can fool humans without recurrent feedback (El-
sayed et al., 2018). Figure 2.1 shows an intuitive example of recovering a sharpened
cat from a blurry cat and achieving consistent predictions after several iterations.

Computational neuroscientists speculate that Bayesian inference models human
perception (Knill and Richards, 1996). One specific formulation of predictive coding
assumes Gaussian distributions on all variables and performs hierarchical Bayesian
inference using recurrent, generative feedback pathways (Rao and Ballard, 1999).
The feedback pathways encode predictions of lower level inputs, and the residual
errors are used recurrently to update the predictions. In this paper, we extend the
principle of predictive coding to explicitly incorporate Bayesian inference in neural
networks via generative feedback connections. Specifically, we adopt a recently
proposed model, named the Deconvolutional Generative Model (DGM) (Nguyen
et al., 2018), as the generative feedback. The DGM introduces hierarchical latent
variables to capture variation in images, and generates images from a coarse to fine
detail using deconvolutional operations.

Our contributions are as follows:

Self-consistency. We introduce generative feedback to neural networks and propose
the self-consistency formulation for robust perception. Our internal model of the
world reaches a self-consistent representation of an external stimulus. Intuitively,
self-consistency says that given any two elements of label, image and auxillary
information, we should be able to infer the other one. Mathematically, we use a
generative model to describe the joint distribution of labels, latent variables and
input image features. If the MAP estimate of each one of them are consistent with
the other two, we call a label, a set of latent variables and image features to be
self-consistent (Figure 2.4).

CNN with Feedback (CNN-F). We incorporate generative recurrent feedback mod-
eled by the DGM into CNN and term this model as CNN-F. We show that Bayesian
inference in the DGM is achieved by CNN with adaptive nonlinear operators (Figure
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2.2). We impose self-consistency in the CNN-F by iterative inference and online
update. Computationally, this process is done by propagating along the feedforward
and feedback pathways in the CNN-F iteratively (Figure 2.3).

Adversarial Robustness. We show that the recurrent generative feedback in CNN-F
promotes robustness and visualizes the behavior of CNN-F over iterations. We find
that more iterations are needed to reach self-consistent prediction for images with
larger perturbation, indicating that recurrent feedback is crucial for recognizing
challenging images. When combined with adversarial training, CNN-F further
improves adversarial robustness of CNN on both Fashion-MNIST and CIFAR-10
datasets. Code is available at https://github.com/yjhuangcd/CNNF.

2.2 Self-Consistency and Recurrent Generative Feedback
In this section, we first formally define self-consistency. Then we give a specific
form of generative feedback in CNN and impose self-consistency on it. We term
this model as CNN-F. Finally we show the training and testing procedure in CNN-F.
Throughout, we use the following notations:

Let x ∈ Rn be the input of a network and y ∈ RK be the output. In image
classification, x is image and y = (y(1), . . . , y(K)) is one-hot encoded label. K is
the total number of classes. K is usually much less than n. We use L to denote
the total number of network layers, and index the input layer to the feedforward
network as layer 0. Let h ∈ Rm be encoded feature of x at layer k of the feedforward
pathway. Feedforward pathway computes feature map f(ℓ) from layer 0 to layer

CNN DGM Inference in DGM CNN-F

…

Initialization Iteration 1 Iteration 2

Figure 2.2: Inference in CNN-F. Left: CNN, Graphical model for the DGM
and the inference network for the DGM. We use the DGM to as the generative
model for the joint distribution of image features h, labels y and latent variables z.
MAP inference for h, y and z is denoted in red, green and blue, respectively. f and
g denotes feedforward features and feedback features, respectively. Right: CNN
with feedback (CNN-F). CNN-F performs alternating MAP inference via recurrent
feedforward and feedback pathways to enforce self-consistency.

https://github.com/yjhuangcd/CNNF
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ẑP

Resize
�ẑP
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ẑR ft

�ẑR
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ŷ

Linear

Wfcf

g
Wfc

|ŷ
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Figure 2.3: Feedforward and feedback pathway in CNN-F. a) ŷ and ẑ are com-
puted by the feedforward pathway and ĥ is computed from the feedback pathway. b)
Illustration of the AdaReLU operator. c) Illustration of the AdaPool operator.

L, and feedback pathway generates g(ℓ) from layer L to k. g(ℓ) and f(ℓ) have the
same dimensions. To generate h from y, we introduce latent variables for each layer
of CNN. Let z(ℓ) ∈ RC×H×W be latent variables at layer ℓ, where C,H,W are the
number of channels, height and width for the corresponding feature map. Finally,
p(h, y, z; θ) denotes the joint distribution parameterized by θ, where θ includes the
weight W and bias term b of convolution and fully connected layers. We use ĥ, ŷ
and ẑ to denote the MAP estimates of h, y, z conditioning on the other two variables.

𝑦"ℎ$ 𝑧̂

ℎ
External Internal
𝑥

Figure 2.4: Self-consistency among ĥ, ẑ, ŷ and consistency between ĥ and h.
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Generative Feedback and Self-consistency
Human brain and neural networks are similar in having a hierarchical structure. In
human visual perception, external stimuli are first preprocessed by lateral geniculate
nucleus (LGN) and then sent to be processed by V1, V2, V4 and Inferior Temporal
(IT) cortex in the ventral cortical visual system. Conventional NN use feedforward
layers to model this process and learn a one-direction mapping from input to output.
However, numerous studies suggest that in addition to the feedforward connections
from V1 to IT, there are feedback connections among these cortical areas (Felleman
and Essen, 1991).

Inspired by the Bayesian brain hypothesis and the predictive coding theory, we
propose to add generative feedback connections to NN. Since h is usually of much
higher dimension than y, we introduce latent variables z to account for the infor-
mation loss in the feedforward process. We then propose to model the feedback
connections as MAP estimation from an internal generative model that describes
the joint distribution of h, z and y. Furthermore, we realize recurrent feedback by
imposing self-consistency (Definition 2.2.1).

Definition 2.2.1. (Self-consistency) Given a joint distribution p(h, y, z; θ) parame-
terized by θ, (ĥ, ŷ, ẑ) are self-consistent if they satisfy the following constraints:

ŷ = argmax
y

p(y|ĥ, ẑ), ĥ = argmax
h

p(h|ŷ, ẑ), ẑ = argmax
z

p(z|ĥ, ŷ).

(2.1)

In words, self-consistency means that MAP estimates from an internal generative
model are consistent with each other. In addition to self-consistency, we also impose
the consistency constraint between ĥ and the external input features (Figure 2.4).
We hypothesize that for easy images (familiar images to human, clean images in the
training dataset for NN), the ŷ from the first feedforward pass should automatically
satisfy the self-consistent constraints. Therefore, feedback need not be triggered.
For challenging images (unfamiliar images to human, unseen perturbed images for
NN), recurrent feedback is needed to obtain self-consistent (ĥ, ŷ, ẑ) and to match ĥ

with h. Such recurrence resembles the dynamics in neural circuits (Kietzmann et al.,
2019) and the extra effort to process challenging images (Kar et al., 2019).

Generative Feedback in CNN-F
CNN have been used to model the hierarchical structure of human retinatopic
fields (Eickenberg et al., 2017; Horikawa and Kamitani, 2017), and have achieved
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state-of-the-art performance in image classification. Therefore, we introduce gen-
erative feedback to CNN and impose self-consistency on it. We term the resulting
model as CNN-F.

We choose to use the DGM (Nguyen et al., 2018) as generative feedback in the
CNN-F. The DGM introduces hierarchical binary latent variables and generates
images from coarse to fine details. The generation process in the DGM is shown in
Figure 2.3 (a). First, y is sampled from the label distribution. Then each entry of
z(ℓ) is sampled from a Bernoulli distribution parameterized by g(ℓ) and a bias term
b(ℓ). g(ℓ) and z(ℓ) are then used to generate the layer below:

g(ℓ− 1) = W (∗⊺)(ℓ)(z(ℓ)⊙ g(ℓ)). (2.2)

In this paper, we assume p(y) to be uniform, which is realistic under the balanced
label scenario. We assume that h follows Gaussian distribution centered at g(k) with
standard deviation σ.

Recurrence in CNN-F
In this section, we show that self-consistent (ĥ, ŷ, ẑ) in the DGM can be obtained
via alternately propagating along feedforward and feedback pathway in CNN-F.

Feedforward and Feedback Pathway in CNN-F. The feedback pathway in CNN-
F takes the same form as the generation process in the DGM (Equation (2.2)). The
feedforward pathway in CNN-F takes the same form as CNN except for the nonlinear
operators. In conventional CNN, nonlinear operators are σReLU(f) = max(f, 0) and
σMaxPool(f) = maxr×r f , where r is the dimension of the pooling region in the
feature map (typically equals to 2 or 3). In contrast, we use σAdaReLU (Equation 2.3)
and σAdaPool (Equation 2.4) given in in the feedforward pathway of CNN-F. These
operators adaptively choose how to activate the feedforward feature map based on
the sign of the feedback feature map. The feedforward pathway computes f(ℓ) using
the recursion f(ℓ) = W (ℓ) ∗ σ(f(ℓ− 1))}+ b(ℓ) 1.

σAdaReLU(f) =

σReLU(f), if g ≥ 0

σReLU(−f), if g < 0
(2.3)

σAdaPool(f) =

σMaxPool(f), if g ≥ 0

−σMaxPool(−f), if g < 0
(2.4)

1σ takes the form of σAdaPool or σAdaReLU.
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MAP inference in the DGM. Given a joint distribution of h, y, z modeled by
the DGM, we aim to show that we can make predictions using a CNN architecture
following the Bayes rule (Theorem 2.2.1). To see this, first recall that generative
classifiers learn a joint distribution p(x, y) of input data x and their labels y, and
make predictions by computing p(y|x) using the Bayes rule. A well known example
is the Gaussian Naive Bayes model (GNB). The GNB models p(x, y) by p(y)p(x|y),
where y is Boolean variable following a Bernoulli distribution and p(x|y) follows
Gaussian distribution. It can be shown that p(y|x) computed from GNB has the
same parametric form as logistic regression.

Assumption 2.2.1. (Constancy assumption in the DGM).

A. The generated image g(k) at layer k of DGM satisfies ||g(k)||22 = const.
B. Prior distribution on the label is a uniform distribution: p(y) = const.
C. Normalization factor in p(z|y) for each category is constant:

∑
z e

η(y,z) =

const.

Remark. To meet Assumption 2.2.1.A, we can normalize g(k) for all k. This
results in a form similar to the instance normalization that is widely used in image
stylization (Ulyanov et al., 2016). See Appendix A.1 for more detailed discussion.
Assumption 2.2.1.B assumes that the label distribution is balanced. η in Assumption
2.2.1.C is used to parameterize p(z|y). See Appendix A.1 for the detailed form.

Theorem 2.2.1. Under Assumption 2.2.1 and given a joint distribution p(h, y, z)

modeled by the DGM, p(y|h, z) has the same parametric form as a CNN with
σAdaReLU and σAdaPool.

Proof. Please refer to Appendix A.1.

Remark. Theorem 2.2.1 says that DGM and CNN is a generative-discriminative
pair in analogy to GNB and logistic regression.

We also find the form of MAP inference for image feature ĥ and latent variables ẑ in
the DGM. Specifically, we use zR and zP to denote latent variables that are at a layer
followed by AdaReLU and AdaPool, respectively. 1(·) denotes indicator function.

Proposition 2.2.1 (MAP inference in the DGM). Under Assumption 2.2.1, the
following hold:

A. Let h be the feature at layer k, then ĥ = g(k).
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B. MAP estimate of z(ℓ) conditioned on h, y and {z(j)}j ̸=ℓ in the DGM is:

ẑR(ℓ) = 1(σAdaReLU(f(ℓ)) ≥ 0) (2.5)

ẑP (ℓ) = 1(g(ℓ) ≥ 0)⊙ argmax
r×r

(f(ℓ))

+ 1(g(ℓ) < 0)⊙ argmin
r×r

(f(ℓ)). (2.6)

Proof. For part A, we have ĥ = argmaxh p(h|ŷ, ẑ) = argmaxh p(h|g(k)) = g(k).
The second equality is obtained because g(k) is a deterministic function of ŷ and ẑ.
The third equality is obtained because h ∼ N (g(k), diag(σ2)). For part B, please
refer to Appendix A.1.

Remark. Proposition 2.2.1.A show that ĥ is the output of the generative feedback
in the CNN-F. Proposition 2.2.1.B says that ẑR = 1 if the sign of the feedforward
feature map matches with that of the feedback feature map. ẑP = 1 at locations that
satisfy one of these two requirements: 1) the value in the feedback feature map is
non-negative and it is the maximum value within the local pooling region or 2) the
value in the feedback feature map is negative and it is the minimum value within
the local pooling region. Using Proposition 2.2.1.B, we approximate {ẑ(ℓ)}ℓ=1:L by
greedily finding the MAP estimate of ẑ(ℓ) conditioning on all other layers.

Iterative inference and online update in CNN-F. We find self-consistent (ĥ, ŷ, ẑ)
by iterative inference and online update (Algorithm 1). In the initialization step,
image x is first encoded to h by k convolutional layers. Then h passes through
a standard CNN, and latent variables are initialized with conventional σReLU and
σMaxPool. The feedback generative network then uses ŷ0 and {ẑ0(ℓ)}ℓ=k:L to gen-
erate intermediate features {g0(ℓ)}ℓ=k:L, where the subscript denotes the number
of iterations. In practice, we use logits instead of one-hot encoded label in the
generative feedback to maintain uncertainty in each category. We use g0(k) as the
input features for the first iteration. Starting from this iteration, we use σAdaReLU

and σAdaPool instead of σReLU and and σMaxPool in the feedforward pathway to infer ẑ
(Equation (2.5) and (2.6)). In practice, we find that instead of greedily replacing the
input with generated features and starting a new inference iteration, online update
eases the training and gives better robustness performance. The online update rule
of CNN-F can be written as:

ĥt+1 ← ĥt + η(gt+1(k)− ĥt) (2.7)

ft+1(ℓ)← ft+1(ℓ) + η(gt(ℓ)− ft+1(ℓ)), ℓ = k, . . . , L (2.8)
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where η is the step size. Greedily replacement is a special case for the online update
rule when η = 1.

Algorithm 1 Iterative inference and online update in CNN-F
Require: Input image x, number of encoding layers k, maximum number of itera-

tions N
1: Encode image x to h0 with k convolutional layers
2: Initialize {ẑ(ℓ)}ℓ=k:L by σReLU and σMaxPool in the standard CNN
3: while t < N do
4: Feedback pathway: generate gt(k) using ŷt and ẑt(ℓ), ℓ = k, . . . , L
5: Feedforward pathway:
6: Use ĥt+1 as the input (Equation (2.7))
7: Update each feedforward layer using Equation (2.8)
8: Predict ŷt+1 using the updated feedforward layers
9: end while

10: return ĥN , ŷN , ẑN

Training the CNN-F
During training, we have three goals: 1) train a generative model to model the data
distribution, 2) train a generative classifier, and 3) enforce self-consistency in the
model. We first approximate self-consistent (ĥ, ŷ, ẑ) and then update model parame-
ters based on the losses listed in Table 2.1. All losses are computed for every iteration.
Minimizing the reconstruction loss increases data likelihood given current estimates
of label and latent variables log p(h|ŷt, ẑt) and enforces consistency between ĥt and
h. Minimizing the cross-entropy loss helps with the classification goal. In addition
to reconstruction loss at the input layer, we also add reconstruction loss between
intermediate feedback and feedforward feature maps. These intermediate losses
helps stabilizing the gradients when training an iterative model like the CNN-F.

Table 2.1: Training losses in the CNN-F.

Form Purpose

Cross-entropy loss log p(y | ĥt, ẑt; θ) classification
Reconstruction loss log p(h | ŷt, ẑt; θ) = ||h− ĥ||22. generation, self-consistency

Intermediate reconstruction loss ||f0(ℓ)− gt(ℓ)||22 stabilizing training

2.3 Experiment
Generative Feedback Promotes Robustness
As a sanity check, we train a CNN-F model with two convolution layers and one
fully-connected layer on clean Fashion-MNIST images. We expect that CNN-F
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reconstructs the perturbed inputs to their clean version and makes self-consistent pre-
dictions. To this end, we verify the hypothesis by evaluating adversarial robustness
of CNN-F and visualizing the restored images over iterations.

Adversarial Robustness. Since CNN-F is an iterative model, we consider two
attack methods: attacking the first or last output from the feedforward streams.
We use “first” and “e2e” (short for end-to-end) to refer to the above two attack
approaches, respectively. Due to the approximation of non-differentiable activation
operators and the depth of the unrolled CNN-F, end-to-end attack is weaker than first
attack (Appendix A.2). We report the adversarial accuracy against the stronger attack
in Figure 2.5. We use the Fast Gradient Sign Attack Method (FGSM) (Goodfellow et
al., 2015) Projected Gradient Descent (PGD) method to attack. For PGD attack, we
generate adversarial samples within L∞-norm constraint, and denote the maximum
L∞-norm between adversarial images and clean images as ϵ.

Figure 2.5 (a, b) shows that the CNN-F improves adversarial robustness of a CNN on
Fashion-MNIST without access to adversarial images during training. The error bar
shows standard deviation of 5 runs. Figure 2.5 (c) shows that training a CNN-F with
more iterations improves robustness. Figure 2.5 (d) shows that the predictions are
corrected over iterations during testing time for a CNN-F trained with 5 iterations.
Furthermore, we see larger improvements for higher ϵ. This indicates that recurrent
feedback is crucial for recognizing challenging images.

a b c d

Figure 2.5: Adversarial robustness of CNN-F with standard training on Fashion-
MNIST. CNN-F-k stands for CNN-F trained with k iterations. a) Attack with FGSM.
b) Attack with PGD using 40 steps. c) Train with different number of iterations.
Attack with PGD-40. d) Evaluate a trained CNN-F-5 model with various number of
iterations against PGD-40 attack.

Image Restoration. Given that CNN-F models are robust to adversarial attacks,
we examine the models’ mechanism for robustness by visualizing how the generative
feedback moves a perturbed image over iterations. We select a validation image
from Fashion-MNIST. Using the image’s two largest principal components, a two-
dimensional hyperplane ⊂ R28×28 intersects the image with the image at the center.
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Vector arrows visualize the generative feedback’s movement on the hyperplane’s
position. In Figure 2.6 (a), we find that generative feedback perturbs samples
across decision boundaries toward the validation image. This demonstrates that the
CNN-F’s generative feedback can restore perturbed images to their uncorrupted
objects.

a b

c CNN-F (iter. 1) CNN-F (iter. 4)
d

Image

Spatial
Frequency

Original
image

Corrupted
image

Reconstructed
image

Original
image

Corrupted
image

CNN-F (iter. 1)
incorrect prediction

CNN-F (iter. 2)
correct prediction

Figure 2.6: The generative feedback in CNN-F models restores perturbed im-
ages. a) The decision cell cross-sections for a CNN-F trained on Fashion-MNIST.
Arrows visualize the feedback direction on the cross-section. b) Fashion-MNIST
classification accuracy on PGD adversarial examples; Grad-CAM activations visu-
alize the CNN-F model’s attention from incorrect (iter. 1) to correct predictions
(iter. 2). c) Grad-CAM activations across different feedback iterations in the CNN-F.
d) From left to right: clean images, corrupted images, and images restored by the
CNN-F’s feedback.

We further explore this principle with regard to adversarial examples. The CNN-
F model can correct initially wrong predictions. Figure 2.6 (b) uses Grad-CAM
activations to visualize the network’s attention from an incorrect prediction to a
correct prediction on PGD-40 adversarial samples (Selvaraju et al., 2017). To correct
predictions, the CNN-F model does not initially focus on specific features. Rather, it
either identifies the entire object or the entire image. With generative feedback, the
CNN-F begins to focus on specific features. This is reproduced in clean images as
well as images corrupted by blurring and additive noise 2.6 (c). Furthermore, with
these perceptible corruptions, the CNN-F model can reconstruct the clean image
with generative feedback 2.6 (d). This demonstrates that the generative feedback is
one mechanism that restores perturbed images.
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Adversarial Training
Adversarial training is a well established method to improve adversarial robustness
of a neural network (Madry et al., 2018). Adversarial training often solves a minimax
optimization problem where the attacker aims to maximize the loss and the model
parameters aims to minimize the loss. In this section, we show that CNN-F can be
combined with adversarial training to further improve the adversarial robustness.

Training Methods. Figure 2.7 illustrates the loss design we use for CNN-F ad-
versarial training. Different from standard adversarial training on CNNs, we use
cross-entropy loss on both clean images and adversarial images. In addition, we add
reconstruction loss between generated features of adversarial samples from iterative
feedback and the features of clean images in the first forward pass.

Experimental Setup. We train the CNN-F on Fashion-MNIST and CIFAR-10
datasets respectively. For Fashion-MNIST, we train a network with 4 convolution
layers and 3 fully-connected layers. We use 2 convolutional layers to encode the
image into feature space and reconstruct to that feature space. For CIFAR-10, we use
the WideResNet architecture (Zagoruyko and Komodakis, 2016) with depth 40 and
width 2. We reconstruct to the feature space after 5 basic blocks in the first network
block. For more detailed hyper-parameter settings, please refer to Appendix A.2.
During training, we use PGD-7 to attack the first forward pass of CNN-F to obtain
adversarial samples. During testing, we also perform SPSA (Uesato et al., 2018)
and transfer attack in addition to PGD attack to prevent the gradient obfuscation
(Athalye et al., 2018) issue when evaluating adversarial robustness of a model. In

Adversarial
Clean

Adversarial Adversarial
x

h

v

g g

v v

Reconstruction loss(gadv, hclean)

Adversarial
Clean

Adversarial
Clean

Figure 2.7: Loss design for CNN-F adversarial training, where v stands for
the logits. x, h and g are input image, encoded feature, and generated feature,
respectively.



19

the transfer attack, we use the adversarial samples of the CNN to attack CNN-F.

Main Results. CNN-F further improves the robustness of CNN when combined
with adversarial training. Table 2.2 and Table 2.3 list the adversarial accuracy of
CNN-F against several attack methods on Fashion-MNIST and CIFAR-10. On
Fashion-MNIST, we train the CNN-F with 1 iterations. On CIFAR-10, we train
the CNN-F with 2 iterations. We report two evaluation methods for CNN-F: taking
the logits from the last iteration (last), or taking the average of logits from all the
iterations (avg). We also report the lowest accuracy among all the attack methods
with bold font to highlight the weak spot of each model. In general, we find that the
CNN-F tends to be more robust to end-to-end attack compared with attacking the
first forward pass. This corresponds to the scenario where the attacker does not have
access to internal iterations of the CNN-F. Based on different attack scenarios, we
can tune the hyper-paramters and choose whether averaging the logits or outputting
the logits from the last iteration to get the best robustness performance (Appendix
A.2).

Table 2.2: Adversarial accuracy on Fashion-MNIST over 3 runs. ϵ = 0.1.

Clean PGD (first) PGD (e2e) SPSA (first) SPSA (e2e) Transfer Min

CNN 89.97± 0.10 77.09± 0.19 77.09± 0.19 87.33± 1.14 87.33± 1.14 — 77.09± 0.19
CNN-F (last) 89.87± 0.14 79.19± 0.49 78.34± 0.29 87.10± 0.10 87.33± 0.89 82.76± 0.26 78.34± 0.29
CNN-F (avg) 89.77± 0.08 79.55± 0.15 79.89± 0.16 88.27± 0.91 88.23± 0.81 83.15± 0.17 79.55± 0.15

Table 2.3: Adversarial accuracy on CIFAR-10 over 3 runs. ϵ = 8/255.

Clean PGD (first) PGD (e2e) SPSA (first) SPSA (e2e) Transfer Min

CNN 79.09± 0.11 42.31± 0.51 42.31± 0.51 66.61± 0.09 66.61± 0.09 — 42.31± 0.51
CNN-F (last) 78.68± 1.33 48.90± 1.30 49.35± 2.55 68.75± 1.90 51.46± 3.22 66.19± 1.37 48.90± 1.30
CNN-F (avg) 80.27± 0.69 48.72± 0.64 55.02± 1.91 71.56± 2.03 58.83± 3.72 67.09± 0.68 48.72± 0.64

2.4 Related Works
Robust Neural Networks with Latent Variables. Latent variable models are
a unifying theme in robust neural networks. The consciousness prior (Bengio,
2019) postulates that natural representations—such as language—operate in a low-
dimensional space, which may restrict expressivity but also may facilitate rapid
learning. If adversarial attack introduce examples outside this low-dimensional
manifold, latent variable models can map these samples back to the manifold. A
related mechanism for robustness is state reification (Lamb et al., 2019). Similar to
self-consistency, state reification models the distribution of hidden states over the
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training data. It then maps less likely states to more likely states. MagNet and De-
noising Feature Matching introduce similar mechanisms: using autoencoders on the
input space to detect adversarial examples and restore them in the input space (Meng
and Chen, 2017; Warde-Farley and Bengio, 2017). Lastly, Defense-GAN proposes a
generative adversarial network to approximate the data manifold (Samangouei et al.,
2018). CNN-F generalizes these themes into a Bayesian framework. Intuitively,
CNN-F can be viewed as an autoencoder. In contrast to standard autoencoders,
CNN-F requires stronger constraints through Bayes rule. CNN-F—through self-
consistency—constrains the generated image to satisfy the maximum a posteriori on
the predicted output.

Computational Models of Human Vision. Recurrent models and Bayesian in-
ference have been two prevalent concepts in computational visual neuroscience.
Recently, Kubilius et al. (2018) proposed CORnet as a more accurate model of
human vision by modeling recurrent cortical pathways. Like CNN-F, they show
CORnet has a larger V4 and IT neural similarity compared to a CNN with similar
weights. Linsley et al. (2018) suggests hGRU as another recurrent model of vision.
Distinct from other models, hGRU models lateral pathways in the visual cortex to
global contextual information. While Bayesian inference is a candidate for visual
perception, a Bayesian framework is absent in these models. The recursive cortical
network (RCN) proposes a hierarchal conditional random field as a model for visual
perception (George et al., 2017). In contrast to neural networks, RCN uses belief
propagation for both training and inference. With the representational ability of neu-
ral networks, we propose CNN-F to approximate Bayesian inference with recurrent
circuits in neural networks.

Feedback Networks. Feedback Network (Zamir et al., 2017) uses convLSTM
as building blocks and adds skip connections between different time steps. This
architecture enables early prediction and enforces hierarchical structure in the label
space. Nayebi et al. (2018) uses architecture search to design local recurrent cells
and long range feedback to boost classification accuracy. Wen et al. (2018) designs
a bi-directional recurrent neural network by recursively performing bottom up and
top down computations. The model achieves more accurate and definitive image
classification. In addition to standard image classification, neural networks with
feedback have been applied to other settings. Wang et al. (2018) propose a feedback-
based propagation approach that improves inference in CNN under partial evidence
in the multi-label setting. Piekniewski et al. (2016) apply multi-layer perceptrons
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with lateral and feedback connections to visual object tracking.

Combining Top-down and Bottom-up Signals in RNNs. Mittal et al. (2020)
proposes combining attention and modularity mechanisms to route bottom-up (feed-
forward) and top-down (feedback) signals. They extend the Recurrent Independent
Mechanisms (RIMs) (Goyal et al., 2019) framework to a bidirectional structure such
that each layer of the hierarchy can send information in both bottom-up direction
and top-down direction. Our approach uses approximate Bayesian inference to
provide top-down communication, which is more consistent with the Bayesian brain
framework and predictive coding.

Inference in Generative Classifiers. Sulam et al. (2019) derives a generative
classifier using a sparse prior on the layer-wise representations. The inference is
solved by a multi-layer basis pursuit algorithm, which can be implemented via
recurrent convolutional neural networks. Nimmagadda and Anandkumar (2015)
propose to learn a latent tree model in the last layer for multi-object classification. A
tree model allows for one-shot inference in contrast to iterative inference.

Target Propagation. The generative feedback in CNN-F shares a similar form as
target propagation, where the targets at each layer are propagated backwards. In
addition, difference target propagation uses auto-encoder like losses at intermediate
layers to promote network invertibility (Meulemans et al., 2020; Lee et al., 2015).
In the CNN-F, the intermediate reconstruction loss between adversarial and clean
feature maps during adversarial training promotes the feedback to project perturbed
image back to its clean version in all resolution scales.

References

Anish Athalye, Nicholas Carlini, and David A. Wagner (2018). “Obfuscated Gra-
dients Give a False Sense of Security: Circumventing Defenses to Adversarial
Examples”. In: International Conference on Machine Learning.

Yoshua Bengio (2019). “The consciousness prior”. In: arXiv:1709.08568.

S. Dodge and L. Karam (2017). “A Study and Comparison of Human and Deep
Learning Recognition Performance under Visual Distortions”. In: International
Conference on Computer Communications and Networks.

Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, and Bertrand Thirion
(2017). “Seeing it all: Convolutional Network Layers Map the Function of the
Human Visual System”. In: NeuroImage.

Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Ku-
rakin, Ian Goodfellow, and Jascha Sohl-Dickstein (2018). “Adversarial Examples



22

that Fool Both Computer Vision and Time-Limited Humans”. In: Advances in
Neural Information Processing Systems.

Daniel J. Felleman and David C. Van Essen (1991). “Distributed Hierarchical Pro-
cessing in the Primate Cerebral Cortex”. In: Cerebral Cortex.

Dileep George, Wolfgang Lehrach, Ken Kansky, Miguel Lázaro-Gredilla, Christo-
pher Laan, Bhaskara Marthi, Xinghua Lou, Zhaoshi Meng, Yi Liu, Huayan Wang,
Alex Lavin, and D. Scott Phoenix (2017). “A Generative Vision Model that Trains
with High Data Efficiency and Breaks Text-based CAPTCHAs”. In: Science.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy (2015). “Explaining and
Harnessing Adversarial Examples”. In: International Conference on Learning
Representations.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine,
Yoshua Bengio, and Bernhard Schölkopf (2019). “Recurrent Independent Mecha-
nisms”. In: arXiv:1909.10893.

Tomoyasu Horikawa and Yukiyasu Kamitani (2017). “Hierarchical Neural Repre-
sentation of Dreamed Objects Revealed by Brain Decoding with Deep Neural
Network Features”. In: Frontiers in Computational Neuroscience.

Kohitij Kar, Jonas Kubilius, Kailyn Schmidt, Elias B Issa, and James J DiCarlo
(2019). “Evidence that Recurrent Circuits are Critical to the Ventral stream’s
Execution of Core Object Recognition Behavior”. In: Nature Neuroscience.

Tim C Kietzmann, Courtney J Spoerer, Lynn KA Sörensen, Radoslaw M Cichy,
Olaf Hauk, and Nikolaus Kriegeskorte (2019). “Recurrence is Required to Capture
the Representational Dynamics of the Human Visual System”. In: the Proceedings
of the National Academy of Sciences.

David C Knill and Whitman Richards (1996). Perception as Bayesian Inference.
Cambridge University Press.

Peter Kok, Janneke FM Jehee, and Floris P De Lange (2012). “Less is More: Expec-
tation Sharpens Representations in the Primary Visual Cortex”. In: Neuron.

Jonas Kubilius, Martin Schrimpf, Aran Nayebi, Daniel Bear, Daniel LK Yamins,
and James J DiCarlo (2018). “CORnet: Modeling the Neural Mechanisms of Core
Object Recognition”. In: bioRxiv preprint: 10.1101/408385.

Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis Mitliagkas,
Denis Kazakov, Yoshua Bengio, and Michael C. Mozer (2019). “State-Reification
Networks: Improving Generalization by Modeling the Distribution of Hidden
Representations”. In: International Conference on Machine Learning.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio (2015). “Differ-
ence Target Propagation”. In: European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases.



23

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas
Serre (2018). “Learning Long-range Spatial Dependencies with Horizontal Gated
Recurrent Units”. In: Advances in Neural Information Processing Systems.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu (2018). “Towards Deep Learning Models Resistant to Adversarial
Attacks”. In: International Conference on Learning Representations.

Dongyu Meng and Hao Chen (2017). “MagNet: a Two-pronged Defense against
Adversarial Examples”. In: ACM Conference on Computer and Communications
Security.

Alexander Meulemans, Francesco S Carzaniga, Johan AK Suykens, João Sacra-
mento, and Benjamin F Grewe (2020). “A Theoretical Framework for Target
Propagation”. In: arXiv:2006.14331.

Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guil-
laume Lajoie, Michael Mozer, and Yoshua Bengio (2020). “Learning to Combine
Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention
over Modules”. In: International Conference on Machine Learning.

Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sus-
sillo, James J DiCarlo, and Daniel L Yamins (2018). “Task-driven Convolutional
Recurrent Models of the Visual System”. In: Advances in Neural Information
Processing Systems.

Tan Nguyen, Nhat Ho, Ankit Patel, Anima Anandkumar, Michael I. Jordan, and
Richard G. Baraniuk (2018). “A Bayesian Perspective of Convolutional Neural
Networks through a Deconvolutional Generative Model”. In: arXiv:1811.02657.

Tejaswi Nimmagadda and Anima Anandkumar (2015). “Multi-object Classification
and Unsupervised Scene Understanding using Deep Learning Features and Latent
Tree Probabilistic Models”. In: arXiv:1505.00308.

Filip Piekniewski, Patryk Laurent, Csaba Petre, Micah Richert, Dimitry Fisher,
and Todd Hylton (2016). “Unsupervised Learning from Continuous Video in a
Scalable Predictive Recurrent Network”. In: arXiv:1607.06854.

Rajesh P. N. Rao and Dana H. Ballard (1999). “Predictive Coding in the Visual Cor-
tex: a Functional Interpretation of Some Extra-classical Receptive-field Effects”.
In: Nature Neuroscience.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa (2018). “Defense-GAN:
Protecting Classifiers against Adversarial Attacks using Generative Models”. In:
International Conference on Learning Representations.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra (2017). “Grad-CAM: Visual Explanations from
Deep Networks via Gradient-based Localization”. In: International Conference
on Computer Vision.



24

Jeremias Sulam, Aviad Aberdam, Amir Beck, and Michael Elad (2019). “On Multi-
layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna (2016). “Rethinking the Inception Architecture for Computer Vision”. In:
IEEE / CVF Computer Vision and Pattern Recognition Conference.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus (2014). “Intriguing Properties of Neural
Networks”. In: International Conference on Learning Representations.

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli
(2018). “Adversarial Risk and the Dangers of Evaluating against Weak Attacks”.
In: International Conference on Machine Learning.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky (2016). “Instance Normal-
ization: The Missing Ingredient for Fast Stylization”. In: arXiv:1607.08022.

Tianlu Wang, Kota Yamaguchi, and Vicente Ordonez (2018). “Feedback-prop: Con-
volutional Neural Network Inference under Partial Evidence”. In: IEEE / CVF
Computer Vision and Pattern Recognition Conference.

David Warde-Farley and Yoshua Bengio (2017). “Improving Generative Adversarial
Networks With Denoising Feature Matching”. In: International Conference on
Learning Representations.

Haiguang Wen, Kuan Han, Junxing Shi, Yizhen Zhang, Eugenio Culurciello, and
Zhongming Liu (2018). “Deep Predictive Coding Network for Object Recogni-
tion”. In: International Conference on Machine Learning.

Sergey Zagoruyko and Nikos Komodakis (2016). “Wide Residual Networks”. In:
arXiv:1605.07146.

Amir R. Zamir, Te-Lin Wu, Lin Sun, William B. Shen, Bertram E. Shi, Jitendra Malik,
and Silvio Savarese (2017). “Feedback Networks”. In: IEEE / CVF Computer
Vision and Pattern Recognition Conference.



25

C h a p t e r 3

CERTIFIABLY ROBUST NEURAL NETWORKS WITH
EFFICIENT LOCAL LIPSCHITZ BOUNDS

Yujia Huang, Huan Zhang, Yuanyuan Shi, J. Zico Kolter, and Anima Anandku-
mar (2021). “Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds”. In: Advances in Neural Information Processing Systems 34,
pp. 22745–22757. URL: https://proceedings.neurips.cc/paper_
files/paper/2021/file/c055dcc749c2632fd4dd806301f05ba6-
Paper.pdf.

3.1 Introduction
With the ever-growing deployment of deep neural networks, formal robustness
guarantees are needed in many safety-critical applications. Strategies to improve
robustness such as adversarial training only provide empirical robustness, without
formal guarantees, and many existing adversarial defenses have been successfully
broken using stronger attacks (Athalye et al., 2018). In contrast, certified defenses
give formal robustness guarantees that any norm-bounded adversary cannot alter the
prediction of a given network.

Bounding the global Lipschitz constant of a neural network is a computationally
efficient and scalable approach to provide certifiable robustness guarantees (Cissé et
al., 2017; Qian and Wegman, 2019; Leino et al., 2021). The global Lipschitz bound
is typically computed as the product of the spectral norm of each layer. However,
this bound can be quite loose because it needs to hold for all points from the input
domain, including those inputs that are far away from each other. Training a network
while constraining this loose bound often imposes to high a degree of regularization
and reduces network capacity. It leads to considerably lower clean accuracy in
certified training compared to standard and adversarial training (Huster et al., 2018;
Madry et al., 2018).

A local Lipschitz constant, on the other hand, bounds the norm of output pertur-
bation only for inputs from a small region, usually selected as a neighborhood
around each data point. It produces a tighter bound by considering the geometry
in a local region and often yields much better robustness certification (Hein and
Andriushchenko, 2017; Zhang et al., 2019). Unfortunately, computing the exact local

https://proceedings.neurips.cc/paper_files/paper/2021/file/c055dcc749c2632fd4dd806301f05ba6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c055dcc749c2632fd4dd806301f05ba6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c055dcc749c2632fd4dd806301f05ba6-Paper.pdf
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Lipschitz constant is NP-complete (Katz et al., 2017). Obtaining reasonably tight
local Lipschitz bounds via semidefinite programming (Fazlyab et al., 2019) or mixed
integer programming (Jordan and Dimakis, 2020) is typically only applicable to
small, previously trained networks since it is difficult to parallelize the optimization
solver and make it differentiable for training. On the other hand, many existing
certified defense methods have achieved success by using a training-based approach
with a relatively weak but efficient bound (Gowal et al., 2018; Mirman et al., 2018;
Zhang et al., 2020). Therefore, to incorporate local Lipschitz bound in training, a
computationally efficient and training-friendly method must be developed.

Our contributions. We propose an efficient method to incorporate a local Lipschitz
bound in training deep networks, by considering the interactions between an activa-
tion layer such as a Rectified Linear Unit (ReLU) layer and a linear (or convolution)
layer. Our bound is calculated per data point, leading to activation function outputs
that are either constant or vary with input perturbations. If the outputs of some acti-
vation neurons are constant under local perturbation, we eliminate the corresponding
rows in the previous weight layer and the corresponding columns in the next weight
layer, and then compute the spectral norm of the reduced matrix.

Our main insight is to use training to make the proposed local Lipschitz bound
tight. This is different from existing works that find local Lipschitz bound for a
fixed network (Zhang et al., 2019; Fazlyab et al., 2019; Jordan and Dimakis, 2020).
Instead, we aim to enable a network to learn to tighten our proposed local Lipschitz
bound during training. To achieve this, we propose to clip the activation function
with an individually learnable threshold θ. Take ReLU for example, the output of a
“clipped” ReLU becomes a constant when input is greater than this threshold (see
Figure 3.1). Once the input of the ReLU is greater than the threshold or less than 0,
then this ReLU neuron does not contribute to the local Lipschitz constant, and thus
the corresponding row or column of weight matrices can be removed. We also apply
this method to non-ReLU activation functions such as MaxMin (Anil et al., 2019)
to create constant output regions. Additionally, we also use a hinge loss function
to encourage more neurons to have constant outputs. Our method can be used as
a plug-in module in existing certifiable training algorithms that involve computing
Lipschitz bound. Our contributions can be summarized as:

• To the best of our knowledge, we are the first to incorporate a local Lipschitz
bound during training for certified robustness. Our bound is provably tighter than
the global Lipschitz bound and is also computationally efficient for training.
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Figure 3.1: Illustration of tighter (local) Lipschitz constant with bounded ReLU.

• We propose to use activation functions with learnable threshold to encourage more
fixed neurons during training, which assists the network to learn to tighten our
bound. We show that more than 45% rows and columns can be removed from
weight matrices.

• We consistently outperform state-of-the-art Lipschitz based certified defense meth-
ods for ℓ2 norm robustness. On CIFAR-10 with perturbation ϵ = 36

255
, we obtain

54.3% verified accuracy with ReLU activation function and 60.7% accuracy
with MaxMin (Anil et al., 2019), outperforming the SOTA baselines, and also
achieve better clean accuracy. Our code is available at https://github.com/
yjhuangcd/local-lipschitz.

3.2 Related Works
Bounds on Local Lipschitz Constant. A sound upper bound of local Lipschitz
constant (simply referred to as “local Lispschitz bound” in our paper) is a crucial
property to determine the robustness of a classifier. Finding an exact local Lipschitz
constant for a neural network is generally NP hard (Virmaux and Scaman, 2018),
so most works focus on finding a sound upper bound. Hein and Andriushchenko
(2017) derived an analytical bound for 2 layer neural networks and found that local
Lipschitz bounds could be much tighter than the global one and give better robustness
certificates. RecurJac (Zhang et al., 2019) is a recursive algorithm that analyzes the
local Lipschitz constant in a neural network using a bound propagation (Zhang et al.,
2020) based approach. FastLip (Weng et al., 2018) is a special and weaker form of
RecurJac. Fazlyab et al. (2019) used a stronger semidefinite relaxation to compute a
tighter bound of local Lipschitz constant. Jordan and Dimakis (2020) formulated the
computation of Lipschitz as an mixed integer linear programming (MILP) problem
and they were able to solve the exact local Lipschitz constant. Although these
approaches can obtain reasonably tight and sound local Lipschitz constants, none

https://github.com/yjhuangcd/local-lipschitz
https://github.com/yjhuangcd/local-lipschitz
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of them have been demonstrated effective for training a certifiably robust network,
where high efficiency and scalability are required. Note that although an empirical
estimate of local Lipschitz constant can be easily found via gradient ascent (e.g., the
local lower bounds reported in (Leino et al., 2021)), it is not a sound bound and does
not provide certifiable robustness guarantees.

Certifiably Robust Training using Lipschitz Constants. The Lipschitz constant
plays a central role in many works on training a certifiably robust neural network,
especially for ℓ2 norm robustness. Since naturally trained networks usually have very
large global Lipschitz constant bounds (Szegedy et al., 2014), most existing works
train the network to encourage small a Lipschitz bound. Cissé et al. (2017) designed
networks with orthogonal weights, whose Lipschitz constants are exactly 1. As this
can be too restrictive, later works mostly use power iteration to obtain per-layer
induced norms, whose product is a Lipschitz constant. Lipschitz Margin Training
(LMT) (Tsuzuku et al., 2018) and Globally-Robust Neural Networks (Gloro) (Leino
et al., 2021) both upper bound the worst margin via global Lipschitz constant
with different loss functions. LMT constructs a new logit by adding the worst
margin to all its entries except the ground truth class. Gloro construct a new logit
with one more class than the original logit vector, determines whether the input
sample can be certified. However, these approaches did not exploit the available
local information to tighten Lipschitz bound and improve certified robustness. Box
constrained propagation (BCP) (Lee et al., 2020) achieves a tighter outer bound than
global Lipschitz based outer bound, by taking local information into consideration
via interval bound (box) propagation. They compute the worst case logit based
on the intersection of a (global) ball and a (local) box. Although box propagation
considers local information, the ball propagation still uses global Lipschitz constant,
and its improvement is still limited with low clean accuracy.

Other Certified Defenses. Besides using Lipschitz constants, one of the most
popular certifiable defense against ℓ∞ norm bounded inputs is via the convex outer
adversarial polytope (Wong and Kolter, 2018; Wong et al., 2018). Mirman et al.
(2018) takes a similar approach via abstract interpretation. These methods uses
linear relaxations of neural networks to compute an outer bound at the final layer.
However, because the convex relaxations employed are relatively expensive, these
methods are typically slow to train. A simple and fast certifiable defense for ℓ∞ norm
bounded inputs is interval bound propagation (IBP) (Gowal et al., 2018; Mirman
et al., 2018). Since the IBP bound can be quite loose for general networks, its
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good performance relies on appropriate hyper-parameters. CROWN-IBP (Zhang
et al., 2020) outperforms previous methods by combining IBP bound in a forward
bounding pass and a tighter linear relaxation bound in a backward bound pass. Shi et
al. (2021) improved IBP with better initialization to accelerate training. Additionally,
randomized smoothing (Cohen et al., 2019; Li et al., 2019; Lecuyer et al., 2019) is a
probabilistic method to certify ℓ2 norm robustness with arbitrarily high confidence.
The prediction of a randomized smooth classifier is the most likely prediction
returned by the base classifier that is fed by samples from a Gaussian distribution.
Salman et al. (2019) further improves the performance of randomized smoothing via
adversarial training.

3.3 Efficient Local Lipschitz Bound
We begin with notations and background for Lipschitz bound. We introduce our
method for local Lipschitz bound computation in Section 3.3. Then we introduce
how to incorporate our efficient local Lipschitz bound in robust training (Section
3.3).

Notation and Background
Notations. We denote the Euclidean norm of a vector x as ∥x∥ and ∥A∥ is the
spectral norm of matrix A. Subscript of vector x denotes element, i.e., xi is the i-th
element of x. We use LBl and UBl to denote lower bounds and upper bounds of
pre-ReLU activation values for layer l.

Definition 3.3.1. The Lipschitz constant of a function f : Rd → Rm over an open
set X is defined as,

L(f,X ) := sup
x,y∈X ,x ̸=y

||f(y)− f(x)||
||x− y|| .

If L(f,X ) exists and is finite, we say that f is Lipschitz continuous over X . Suppose
X = dom(f), L(f,X ) is the global Lipschitz constant of f ; if X is defined as the
ϵ-ball at point x, i.e., X := {x′|||x− x′|| ≤ ϵ}, then L(f,X ) is the local Lipschitz
constant of f at x.

Global Lipschitz bound in existing works. Consider a L-layer ReLU neural net-
work which maps input x to output zL+1 = F (x;W ) using the following architecture,
for l = 1, ..., L− 1

z1 = x; zl+1 = ϕ(W lzl); zL+1 = WLzL (3.1)
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where W = {W 1:L} are the parameters, and ϕ(·) = max(·, 0) is the element-wise
ReLU activation functions. Here we consider the bias parameters to be zero because
they do not contribute to the Lipschitz bound. Since the Lipschitz constant of ReLU
activation ϕ(·) is equal to 1, a global Lipschitz bound of F is,

Lglob ≤ ||WL|| · ||WL−1|| · · · ||W 1|| (3.2)

where ||W l|| equals the spectral norm (maximum singular value) of the weight matrix
W l. However, the global Lipchitz bound ignores the highly nonlinear property of
deep neural networks.

In what follows, we introduce our method that considers the interaction between
ReLU and linear layer to obtain a tighter local Lipchitz bound in a computationally
efficient way, that allows us to train a certifiably robust network using local Lipschitz
bounds.

Our Approach for Efficient Local Lipschitz Bound
In this section, we use ReLU as an example to describe how we compute our efficient
local Lipschitz bound. We will discuss how to apply our method on other types of
activation functions in Section 3.3. To exploit the piece-wise linear properties of
ReLU neurons, we discuss the outputs of ReLU case by case. Intuitively, if the input
of a ReLU neuron is always less or equal to zero, its output will always be zero,
which is a constant and not contributing to Lipschitz bound. If the input of a ReLU’s
can sometimes be greater than zero, the ReLU output will vary based on the input.

We define diagonal indicator matrices I lV(z
l) to represent the entries where the ReLU

outputs are varying and I lC(z
l) for entries where the ReLU outputs are constant

under perturbation. Here zl ∈ Rdl denotes the feature map of input x at layer l.
Throughout this paper, unless otherwise mentioned, the indicator matrix is a function
of the feature value zl, evaluated at a given input x.

Given an input perturbation ∥x′ − x∥ ≤ ϵ, suppose zl(x′) is bounded element-wise
as LBl ≤ zl(x′) ≤ UBl, we define diagonal matrix I lV and I lC as:

I lV(i, i) =

1 if UBl
i > 0

0 otherwise
, I lC(i, i) =

1 if UBl
i ≤ 0

0 otherwise
. (3.3)

By this definition, the ReLU output can either be constant or vary with respect to
input perturbation. Hence we have I lV + I lC = I , where I is the identity matrix. LB
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and UB can be obtained cheaply from interval bound propagation (Gowal et al.,
2018) or other bound propagation mechanisms (Wong and Kolter, 2018; Zhang et al.,
2018).

A crucial observation is that to compute the local Lipschitz bound, we only need
to consider the ReLU neurons which are non-fixed. The fixed ReLU neurons are
always zero (locally, in the prescribed neighborhood around x) and thus have no
impact to final outcome. We define a diagonal matrix DV to represent the ReLU
outputs that are varying. Then, a neural network function (denoted as F (x;W )) can
be rewritten as:

F (x;W ) = WLDL−1
V WL−1 · · ·D1

VW
1x

= (WLIL−1
V )DL−1

V (IL−1
V WL−1IL−2

V ) · · ·D1
V(I

1
VW

1)x (3.4)

where

Dl
V(i, i) =

1(ReLU(zli) > 0) if I lV(i, i) = 1

0 if I lV(i, i) = 0
, (3.5)

where 1 denotes an indicator function.

Note here that we ignore bias terms for simplicity. Based on (3.4), an important
insight used in our approach is that by combining the ReLU function with weight
matrix, we have the opportunity to tighten Lipschitz bound by considering I lVW

lI l−1
V

as a whole based on whether there are ReLU outputs stay at constant under perturba-
tion. Importantly, since Dl

V depends on UB, (3.4) only holds in a local region of x,
which leads to a local Lipschitz constant bound at input x:

Llocal(x) ≤ ∥WLIL−1
V ∥∥IL−1

V WL−1IL−2
V ∥ · · · ∥I1VW 1∥ . (3.6)

The following theorem states that the local Lipchitz bound calculated via (3.6) is
always tighter than the global Lipchitz bound in Eq (3.2), for all inputs.

Theorem 3.3.1 (Tighter Lipchitz Bound). For any input x ∈ Rn and L-layer

ReLU neural network F (x;W ), the local Lipchitz bound calculated via (3.6) in

any neighborhood of x is no larger than the global Lipchitz bound in Eq (3.2), i.e.,

∀x, Llocal(x) ≤ Lglob.

The proof of Theorem 3.3.1 leverages the following proposition.
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Proposition 3.3.1. If a column and/or row is added to a matrix, then the matrix

spectral norm (maximum singular value) will be no less than the spectral norm of

the original matrix. That is, given matrix A ∈ Rm×n, and y ∈ Rm, z ∈ Rn, then

σmax([A|y]) ≥ σmax(A) , σmax(

[
A

z

]
) ≥ σmax(A). (3.7)

Proof of Proposition 3.3.1. Let A′ =

[
A

z

]
. The singular value of A′ is defined as

the square roots of the eigenvalues of A′TA′, where A′TA′ = ATA+ zT z ≥ ATA,
that simply imply ||A′|| = σmax(A

′) ≥ σmax(A) = ||A||. Similar holds for A′ =

[A|y].

By Proposition 3.3.1, it is straightforward to show that ∥IL−1
V WL−1IL−2

V ∥ ≤ ∥WL−1∥
since the left hand side is the spectral norm of the reduced matrix, after removing
corresponding rows/columns in WL−1 where the neuron output under local perturba-
tion is constant. Therefore, the product of spectral norm of the reduced matrices is
no larger than the product of the spectral norm of raw weight matrices, which leads
to ∀x, Llocal(x) ≤ Lglob.

Training for Tight Local Lipschitz
To encourage the network to learn which rows and columns need to be eliminated to
make local Lipschitz bound tighter, we combine our local Lipschitz bound computa-
tion with certifiably robust training. This is different from existing works leveraging
optimization tools to find local Lipschitz bound for a fixed network (Fazlyab et al.,
2019; Jordan and Dimakis, 2020). By training with the proposed local Lipschitz
bound, we can achieve good certified robustness on large neural networks.

More precisely, using our local Lipschitz bound, we can obtain the worst case logit
z∗ that is used to form a robust loss for training: E(x,y)∼DL(z∗(x), y), where L is
the cross entropy loss function, (x, y) is the image and label pair from the training
datasets. A simple way to compute the worst logit is z∗i = zi +

√
2ϵLLocal for i ̸= y,

z∗y = zy (see (Tsuzuku et al., 2018)). Our approach is also compatible with tighter
bounds on the worst case logit, such as the one used in BCP (Lee et al., 2020). To
give the network more capability to learn to tighten our proposed local Lipschitz
bound, we propose the following approaches:

Allowing More Eliminated Rows via ReLUθ . The key to tighten our local
Lipschitz bound is to delete rows and columns in weight matrices that align with
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singular vectors corresponding to the largest singular value. To encourage more rows
and columns to be deleted, we need to have more ReLU outputs to be at constant
under perturbation. Standard ReLU is only lower bounded by zero, but is not upper
bounded. If we can set an “upper bound” of ReLU output, we can have more neurons
have fixed outputs at this upper bound. An upper bounded ReLU unit called ReLU6
is proposed in (Howard et al., 2017), where the maximum output is set to a constant 6.
Different from ReLU6 that sets a constant maximum output threshold, we make the
threshold to be a learnable parameter. We name the new type of activation function
ReLUθ , which is defined as:

ReLUθ (zi; θi) =


0, if zi <= 0

zi, if 0 < zi < θi

θi, if zi >= θi

(3.8)

where θi is a learnable upper bound of the ReLU output.

Similar to (3.3), the indicator matrices for the varying outputs of ReLUθ are

I lV(i, i) =

1 if UBl
i > 0 and LBl

i < θi

0 otherwise
(3.9)

Depending on the ReLUθ activation status, the output of a ReLUθ neural network is,

F (x;W, θ) = WL(DL−1
V WL−1 · · · (D1

VW
1x+D1

θ) · · ·+DL−1
θ ) , (3.10)

where Dl
θ denotes the ReLU output fixed at the maximum output value,

Dl
θ(i, i) =

θi if I lθ(i, i) = 1

0 if I lθ(i, i) = 0
, I lθ(i, i) =

1 if LBl
i ≥ θi

0 otherwise
(3.11)

The local Lipchitz bound is still calculated as (3.6). However, the bound can be
potentially learned tighter because we encourage ReLU outputs to be constant in
both directions, and there could be less varying outputs in Eq (3.9) than in Eq (3.3).

Extension to Non-ReLU Activation Functions. Our local Lipschitz bound can
be applied on non-ReLU activation functions. The key is to create constant output
regions for the activation function and delete the corresponding rows or columns
in the weight matrices. Since the MaxMin activation function (Anil et al., 2019)
has been shown to outperform ReLU on certified robustness (Leino et al., 2021;
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Trockman and Kolter, 2021), we take MaxMin as an example to explain how to
apply our local Lipschitz bound. Let x1 and x2 be two groups of the input, the output
of MaxMin is max(x1, x2),min(x1, x2). To exploit local Lipschitz, we created a
clipped version of MaxMin, similar to ReLUθ. The output of the clipped MaxMin is
min(max(x1, x2), a),max(min(x1, x2), b), where a is a learnable upper threshold
for the max output in MaxMin and b is a learnable lower threshold for the min output
in MaxMin. Box propagation rule through MaxMin is straightforward to derive,
so we can get the box bound on each entry after MaxMin. If the lower bounds of
the Max entries are bigger than the upper threshold a, or the upper bounds of the
Min entries are smaller than the lower threshold b, we can delete the corresponding
columns in the successive matrix (similar to the procedure for ReLU networks).

Encouraging Fixed Neurons via a Sparsity Loss. To encourage more rows and
columns to be deleted in the weight matrices, we design a sparsity loss to regularize
the neural network towards this goal. For a ReLU neural network, assuming that the
i-th entry of the feature map at layer l is bounded by LBl

i ≤ zli ≤ UBl
i, we hope the

neural network can learn to make as many UBi to be smaller than zero and LBi to be
larger than θi without sacrificing too much of classification accuracy. For a MaxMin
neural network, let LBmax be the lower bounds of the Max entries, and UBmin be the
upper bounds of the Min entries. We hope the neural network can learn to make as
many LBmax to be larger than the upper threshold a and UBmin to be smaller than
the lower threshold b. The sparsity losses for ReLU and MaxMin networks are as
follows:

LReLU
sparsity = max(0,UBl

i) + max(0, θi − LBl
i) (3.12)

LMaxMin
sparsity = max(0,UBmin − b) + max(0, a− LBmax) . (3.13)

Finally, our full training procedure is presented in Algorithm 2.

Computational Cost. To obtain the local Lipschitz bound, we must perform power
iterations to compute the spectral norm of reduced weight matrices for every input
and its feature maps at each layer. Compared to other methods that use optimization
tools (e.g., SDP, MILP) to bound local Lipschitz, our method is computationally
efficient since only matrix vector multiplication is used.

During training, compared to methods that only use global Lipschitz bound, the
local Lipschitz bound varies based on the inputs. For global Lipschitz bound, a
common practice is to keep track of the iterate vector u in power iteration, and use it
to initialize the power iteration in the next training batch. With this initialization,
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Algorithm 2 Local Lipschitz based Certifiably Robust Training

Require: Training data (x, y) ∼ D, perturbation size ϵ, number of iterations for
power method n, a neural network with L layers.

1: repeat
2: Compute the box outer bound [LBl,UBl] for layers 1 to L.
3: Compute indicator matrix IV using Eq (3.9).
4: ▷ Compute local Lipcthiz bound L(x) for every input x using Eq (3.6)
5: for layer from 1 to L do
6: ▷ Power method
7: Initialize ul with the updated ul from the previous training episode.
8: for i < n do
9: if layer is conv then

10: v ← I lVconv(W l, I l−1
V ul)/∥I lVconv(W l, I l−1

V ul)∥.
11: u← I l−1

V conv⊺(W l, I lVv)/∥I l−1
V conv⊺(W l, I lVv)∥.

12: else if layer is linear then
13: v ← I lVW

lI l−1
V ul/∥I lVW lI l−1

V ul∥.
14: u← I l−1

V W l⊺I lVv/∥I l−1
V W l⊺I lVv∥.

15: end if
16: end for
17: if layer is conv then
18: σl(x)← vlI lVconv(W l, I l−1

V ul).
19: else if layer is linear then
20: σl(x)← vlI lVW

lI l−1
V ul.

21: end if
22: end for
23: Compute the worst logits using our local Lipschitz bound.
24: Update model parameters based on some loss functions (e.g., Cross-entropy

loss).
25: until training ends
Ensure: Parameters of a robust neural network

only a few number of iterations is performed during training (typically the number
of iterations is between 1 to 10 (Lee et al., 2020; Leino et al., 2021)). To extend the
initialization strategy for u to compute local Lipschitz, we need to keep track of the
iterate vectors based on every input and its feature maps for every layer. Fortunately,
this vector only provides an initialization for power iteration so it does not need to be
stored accurately, and can be stored using low precision tensors. Further extensions
could use dimension reduction or compression methods to store these vectors, or
learn a network along the way to predict a good initializer for power iteration. An
alternative approach is to random initialize u in every mini-batch, but we find that
more power iterations need to be performed during training for this approach to have
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comparable performance as the using saved u.

During evaluation, to minimize the extra computational cost, we can avoid bound
computation for two types of inputs: inputs that can already be certified using global
Lipschitz bound or can be attacked by adversaries (e.g., a 100-step PGD attack).
In practice, this typically rules out more than 80% samples on CIFAR-10 or larger
datasets, and greatly reduce computational cost required to compute local Lipschitz
constants. In Section 3.4 we will show more empirical results on this aspect.

3.4 Experiment
In this section, we first show that our method achieves tighter Lipschitz bounds
in neural networks. When combined with certifiable training algorithms such as
BCP (Lee et al., 2020) and Gloro (Leino et al., 2021), as well as training algorithms
using orthogonal convolution and MaxMin activation function (Trockman and Kolter,
2021), our method achieves both higher clean and certified accuracy.

Experiment Setup. We train with our method to certify robustness within a ℓ2 ball of
radius 1.58 on MNIST (LeCun et al., 2010) and 36/255 on CIFAR-10 (Krizhevsky,
Hinton, et al., 2009) and Tiny-Imagenet 1 on various network architectures. We
denote neural network architecture by the number of convolutional layers and the
number of fully-connected layers. For instance, 6C2F indicates that there are 6
convolution layers and 2 fully-connected layers in the neural network. Networks
have ReLU activation function unless mentioned otherwise. For more details and
hyper-parameters in training, please refer to Appendix B.3.

Tighter Lipschitz Bound. We compared the training process of our method and
BCP (Lee et al., 2020) in Figure 3.2 (a-c). During training, our method uses local
Lipschitz bound while BCP uses global Lipschitz bound for robust loss. We also
tracked the global Lipschitz bound during our training and the average local Lipschitz
bound (computed by our method) during BCP training for comparison. We can
see from Figure 3.2 (a) that our local Lipschitz bound is always tighter the global
Lipschitz bound. Furthermore, it is crucial to incorporate our bound in training to
enable the network to learn to tighten the bound. We can see that if we directly apply
our method to a BCP trained network after training, the local Lipschitz bound has
much less improvement over global Lipschitz bound. In addition, a tighter local
Lipschitz bound by our method allows the neural networks to have larger global
Lipschitz bound in the beginning of training. This potentially provides larger model

1https://tiny-imagenet.herokuapp.com

https://tiny-imagenet.herokuapp.com
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capacity and eases the training in the early stage. As a consequence, we see a large
improvement of both clean loss (Figure 3.2 (b)) and also robust loss (Figure 3.2 (c))
throughout the training.

Sparsity of Varying ReLU Outputs. We examine our 6C2F model trained on
CIFAR-10 and report the proportion of varying (non-constant) ReLU outputs at all
layers except the last fully-connected layer (Figure 3.3). We compared the proportion
with that of a standard CNN (trained with only cross entropy loss on unperturbed
inputs) and a robust CNN trained by BCP. As we can see, the standard neural network
has the most varying ReLU neurons, indicating that dense varying ReLU outputs
may provide larger model capacity for clean accuracy but reduce robustness. Our
method has more varying ReLU outputs than BCP, while achieving tighter local
Lipschitz bound than BCP. This indicates that our training method encourages the
neural network to learn to delete rows and columns that contribute most to local
Lipschitz constant during training, while keeping ReLUs for other rows or columns
varying to obtain better natural accuracy.

a) b) c)

zoom in

Figure 3.2: Certifiable training with our method and BCP on CIFAR-10. a)
Global and average local Lipschitz bound during training. Cross entropy loss b) on
natural and c) on the worst logits.
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Figure 3.3: Proportion of ReLU neurons that vary (ReLU outputs are not
constants, see definition in Section 3.3) under perturbation.

Certified Robustness. Our method can be used as a plug-in module in certifiable
training algorithms that involves using ℓ2 Lipschitz constant such as BCP (Lee
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Mean=137

Figure 3.4: Histogram for the number of power iterations to ensure convergence
for the second last linear layer of the 6C2F CIFAR-10 network.

et al., 2020) and Gloro (Leino et al., 2021). We use Local-Lip-G and Local-Lip-
B to denote our method trained with the Gloro loss and BCP loss, respectively
(detailed formulation for each loss can be found in Appendix B.2). We compare
the performance of our method against competitive baselines on both ReLU neural
networks (Lee et al., 2020; Leino et al., 2021; Tsuzuku et al., 2018; Gowal et al.,
2018; Wong et al., 2018; Xiao et al., 2019) and MaxMin neural networks (Leino et al.,
2021; Trockman and Kolter, 2021). For each method, we report the clean accuracy
(accuracy on non-perturbed inputs), the PGD accuracy (accuracy on adversarial
inputs generated by PGD attack (Madry et al., 2018)), and the certified accuracy
(the proportion of inputs that can be correctly classified and certified within ϵ-ball).
For PGD attack, we use 100 steps with step size of ϵ/4. In our experiments, we use
box propagation (as done in BCP) to obtain the lower bound and upper bound of
every neuron. With our tighter Lipchitz bound, we further improve clean, PGD, and
certified accuracy upon BCP and Gloro, and achieve the state-of-the-art performance
on certified robustness (Table 3.2). On CIFAR-10 with ReLU activation function,
we improved certified accuracy from 51.3% (SOTA) to 54.3%. When MaxMin
activation function is used, our local Lipschitz training approach also consistently
improves clean, PGD and verified accuracy over baselines on both CIFAR-10 and
TinyImageNet datasets.

To demonstrate the effectiveness of incorporating our bound in training, we also use
our local bound to directly compute certified accuracy for pretrained models using
BCP. Our bound improves the certified accuracy of a pretrained BCP model from
51.3% (reported in Table 3.2) to 51.8%. The improvement is less than training with
our bound (54.3% in Table 3.2). Therefore, it is crucial to incorporate our bound in
training to gain non-trivial robustness improvements.
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Initialization Strategy for Power Method. We used two initialization strategies
for singular vectors u in power method during training. One option is to store u for
all the inputs and feature maps and initialize u in the current training epoch with
u from the previous epoch, which requires storage. The other option is to random
initialize u. Table 3.1 shows the performance of these two approaches on CIFAR-10
with the 6C2F architecture. The number of power iterations during training is listed
in the bracket. Although random initialization is memory-efficient, it needs more
power iterations during training to achieve comparable performance compared to
the approach of storing u. Too few iterations tend to cause inaccurate singular value
and overfitting, resulting in lower certified accuracy.

Table 3.1: Influence of initialization strategy used in power method. All numbers
represent the accuracy of the 6C2F architecture on CIFAR-10.

Method Clean (%) PGD (%) Certified (%)

Random init. (2 iters) 76.7 69.0 0.5
Random init. (5 iters) 73.7 66.8 46.0
Random init. (10 iters) 72.0 65.8 51.6
Using saved u (2 iters) 70.7 64.8 54.3

Computational Cost during Evaluation Time. Since local Lipschitz bound needs
to be evaluated for every input and global Lipschitz bound does not depend on the
input, our method involves additional computation cost during certification. Let
u(t) be the singular vector computed by power iteration at iteration t, we stop
power iteration when ||u(t + 1) − u(t)|| ≤ 1e−3. To analyze the computational
cost during evaluation time, we plot the histogram of number of iterations for
power method to converge for the second last layer in the 6C2F model in Figure
3.4. The average number of iterations for convergence is 137. The histograms for
other layers are in Appendix B.3. To reduce the computational cost, we only need
to compute local Lipschitz bound for samples that cannot be certified by global
Lipschitz bound or cannot be attacked by adversaries. The proportion of those
samples is (100% − PGD Err − Global Certified Acc). For the 6C2F model on
CIFAR-10, the proportion of samples that can be certified using global Lipschitz
bound is 51.0%, and the error under PGD attack is 35.2%. Hence we only need
to evaluate local Lipschitz bounds on the remaining 13.8% samples, which greatly
reduces the overhead of computing the local Lipschitz bounds.
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Table 3.2: Comparison to other certified training algorithms. Best numbers are
highlighted in bold.

Method Model Clean (%) PGD (%) Certified(%)

MNIST (ϵ = 1.58)

Standard 4C3F 99.0 45.4 0.0
LMT (Tsuzuku et al., 2018) 4C3F 86.5 53.6 40.5
CAP (Wong and Kolter, 2018) 4C3F 88.1 67.9 44.5
CROWN-IBP* (Zhang et al., 2020) 4C3F 82.3 80.4 41.3
GloRo (Leino et al., 2021) 4C3F 92.9 68.9 50.1
Local-Lip-G (ours) 4C3F 96.3 78.2 55.8
BCP (Lee et al., 2020) 4C3F 92.4 65.8 47.9
Local-Lip-B (ours) 4C3F 93.0 66.7 48.7

CIFAR-10 (ϵ = 36/255)

Standard 4C3F 85.3 41.2 0.0
IBP (Gowal et al., 2018) 4C3F 34.5 31.8 24.4
LMT (Tsuzuku et al., 2018) 4C3F 56.5 49.8 37.2
CAP (Wong and Kolter, 2018) 4C3F 60.1 55.7 50.3
CROWN-IBP* (Zhang et al., 2020) 4C3F 54.2 52.7 41.9
ReLU-Stability† (Xiao et al., 2019) 4C3F 57.4 52.4 51.1
GloRo (Leino et al., 2021) 4C3F 73.2 66.3 49.0
Local-Lip-G (ours) 4C3F 75.7 68.6 49.7
BCP (Lee et al., 2020) 4C3F 64.4 59.4 50.0
Local-Lip-B (ours) 4C3F 70.1 64.2 53.5

Standard 6C2F 87.5 32.5 0.0
IBP (Gowal et al., 2018) 6C2F 33.0 31.1 23.4
LMT (Tsuzuku et al., 2018) 6C2F 63.1 58.3 38.1
CAP (Wong and Kolter, 2018) 6C2F 60.1 56.2 50.9
CROWN-IBP* (Zhang et al., 2020) 6C2F 53.7 52.2 41.9
GloRo (Leino et al., 2021) 6C2F 70.7 63.8 49.3
Local-Lip-G (ours) 6C2F 76.4 69.2 51.3
BCP (Lee et al., 2020) 6C2F 65.7 60.8 51.3
Local-Lip-B (ours) 6C2F 70.7 64.8 54.3

GloRo + MaxMin (Leino et al., 2021) 6C2F 77.0 69.2 58.4
Caylay + MaxMin (Trockman and Kolter, 2021) 6C2F 75.3 67.7 59.2
Local-Lip-B + MaxMin (ours) 6C2F 77.4 70.4 60.7

Tiny-Imagenet (ϵ = 36/255)

Standard 7C1F 35.9 19.4 0.0
GloRo (Leino et al., 2021) 7C1F 31.3 28.2 13.2
Local-Lip-G (ours) 8C2F 37.4 34.2 13.2
BCP (Lee et al., 2020) 8C2F 28.7 26.6 20.0
Local-Lip-B (ours) 8C2F 30.8 28.4 20.7

Gloro + MaxMin (Leino et al., 2021) 8C2F 35.5 32.3 22.4
Local-Lip-B + MaxMin (ours) 8C2F 36.9 33.3 23.4

* CROWN-IBP was originally designed for ℓ∞ norm certified defense but its released code also supports
ℓ2 training. We use the same hyperparameters as ℓ∞ training setting.
†

(Xiao et al., 2019) was designed for ℓ∞ norm with a MIP verifier. We extend it to the ℓ2 norm setting
and verify its robustness using the SOTA alpha-beta-CROWN verifier (see Section B.3).
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C h a p t e r 4

CERTIFIABLY ROBUST FORWARD INVARIANCE IN NEURAL
ODES

Yujia Huang, Ivan Dario Jimenez Rodriguez, Huan Zhang, Yuanyuan Shi, and
Yisong Yue (2023). “FI-ODE: Certified and Robust Forward Invariance in Neural
ODEs”. In: arXiv preprint arXiv:2210.16940. URL: https://arxiv.org/
abs/2210.16940.

4.1 Introduction
We study the problem of training neural networks with certifiable performance
guarantees. Example performance criteria include safety in control (Jin et al., 2020),
and adversarial robustness in classification (Wong and Kolter, 2018; Raghunathan
et al., 2018; Cohen et al., 2019), where even impressive empirical robustness often
fails under unforeseen stronger attacks (Athalye et al., 2018). As such, having
formal performance certificates can be valuable when deploying neural networks in
high-stakes real-world settings.

In this paper, we are interested in performance criteria characterized by a property
called forward invariance. Forward invariance has been extensively used in control
theory to certify dynamical systems for safety (Ames et al., 2016) and robustness
under adversarial perturbations (Khalil et al., 1996). To use this concept for machine
learning, we focus on the Neural ODE (NODE) function class (Haber and Ruthotto,
2017; E, 2017; Chen et al., 2018), which is a natural starting point for incorporating
control-theoretic tools (cf. (Yan et al., 2020; Kang et al., 2021; Liu et al., 2020;
Jimenez Rodriguez et al., 2022a)). Forward invariance guarantees that NODE
trajectories never leave a specified set, which can be translated into various robust
safety guarantees. Given the increasing interest in using NODE policies for robotic
control (Böttcher and Asikis, 2022; Lin et al., 2021), including those that are forward
invariant (Jimenez Rodriguez et al., 2022b), having certified NODE controllers will
become important as those methods are more widely adopted.

Our Contributions. We present FI-ODE, a general approach for training certifiably
robust forward invariant NODEs.1 Our approach is based on defining forward

1Note that training certifiably forward invariant NODEs even in the non-robust setting itself is a
contribution.

https://arxiv.org/abs/2210.16940
https://arxiv.org/abs/2210.16940
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invariance using sub-level sets of Lyapunov functions. One can train a NODE such
that a task-specific cost function (e.g., state-based cost in continuous control, or
cross-entropy loss in image classification) becomes the Lyapunov function for the
ODE. We train with an adaptation of Lyapunov training (Jimenez Rodriguez et al.,
2022a) that focuses on states that are crucial for certifying robust forward invariance.
To make certification practical, we constrain the hidden states of a NODE to evolve
on a compact set by projecting the dynamics of NODE to satisfy certain barrier
conditions. We provably verify our method through a combination of efficient
sampling and a new interval propagation technique compatible with optimization
layers.

We evaluate using a canonical unstable nonlinear system (planar segway). We
demonstrate certified robust forward invariance of the induced region of attraction,
which to our knowledge is the first NODE policy with such non-vacuous certified
guarantees. To show generality, we also evaluate on image classification, and show
superior ℓ2 certified robustness versus other certifiably robust ODE-based models.
Our code is available at https://github.com/yjhuangcd/FI-ODE.git.

4.2 Preliminaries
Neural ODEs. We consider the following Neural ODE (NODE) model class,
where x are the inputs to the dynamics, and η ∈ H ⊂ Rn are the states of the NODE
(H is compact and connected). Let θ ∈ Θ ⊆ Rl denote the parameters of the learned
model. In general, we assume the overparameterized setting, where θ is expressive
enough to fit the dynamics.

η(0) = η0, (initial condition) (4.1a)
dη

dt
= fθ(η(t),x) (continuum of hidden layers). (4.1b)

An important setting for NODEs is continuous control, where we can explicitly
compose the known dynamics of the physical system with a neural network controller
parameterized by θ. The closed-loop system is denoted by fθ(η(t),x), where θ is
the neural controller and x are the system parameters. Other settings include image
classification, where x are the images, and we evolve the system over t ∈ [0, T ] to
get the final prediction η(T ).2

2In this setting, one can think of a NODE as a ResNet (He et al., 2016) with a continuum of
hidden layers.

https://github.com/yjhuangcd/FI-ODE.git
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Forward Invariance & Robust Forward Invariance. Forward Invariance refers
to sets of states of a dynamical system (e.g., Equation (4.1b)) where the system can
enter but never leave. Formally:

Definition 4.2.1 (Forward Invariance). A set S ⊆ H is forward invariant with respect
to the system (Equation (4.1b)) if η(t) ∈ S ⇒ η(t′) ∈ S,∀t′ ≥ t.

Forward invariance can be applied generally in NODEs: we can choose the dynamics
in Equation (4.1b) to render almost any set we choose forward invariant. For instance,
in control we often want to keep the states of the system within a safe set, while
in classification we will be concerned with the set of states that produce a correct
classification. Mathematically, these settings can be captured by shaping the ODE
dynamics fθ to achieve forward invariance within a specified set (i.e., training the
ODE to satisfy Definition 4.2.1 for some specified set S).

Definition 4.2.2 (Robust Forward Invariance). A set S ⊆ H is robust forward
invariant with respect to x if S is forward invariant with respect to the system
fθ(η(t),x+ ϵ), ∀ϵ ∈ Rn with ∥ϵ∥ ≤ ϵ.

Robust forward invariance is attractive when one seeks performance guarantees
under input perturbations. Here, we consider norm-bounded perturbations. In
control, when there are mis-specifications for system parameters, we still hope the
controller to be able to keep the system safe. In classification, we would want the
system to classify correctly despite noisy inputs.

Trajectory-wise versus Point-wise Certification Analysis. Figure 4.1 depicts two
ways of certifying forward invariance. On the left, we consider entire trajectories that
result from running the ODE (i.e., running the forward pass) and determine forward
invariance by checking whether the trajectories leave the target set. Such trajectory-
level analyses are computationally expensive due to running ODE integration to
generate trajectories. This approach also poses a challenge for verification since
trajectories can only be integrated for finite time T and the dynamics may be close
to leaving the set shortly thereafter (T + ε), which translates into vulnerability to
perturbations.

An alternative approach, depicted on Figure 4.1(right), relies on point-wise condi-
tions: we look at the dynamics point-wise over the state-space and infer whether
the set within the yellow line is forward invariant. Here, robust certification can be
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Figure 4.1: Depicting trajectories (Left) and dynamics (Right) of the state-space
of a NODE. The contours show a quadratic potential, and the yellow-line is the
target sublevel set. Left: trajectories that violate (red) or satisfy (blue) forward
invariance. Right: flow field (dynamics) of the NODE, under both nominal and
perturbed inputs. The perturbed flow field still satisfies forward invariance, implying
robust forward invariance.

significantly easier because we only need to verify that the perturbed dynamics are
point-wise still pointing in the right direction, rather than analyzing the perturbed
dynamics over an entire trajectory (i.e., we do not need to do ODE integration).

Lyapunov Functions & Sublevel Sets. As discussed further in Section 4.3, we
use Lyapunov potential functions from control theory to define sets to render forward
invariant. A potential function V : H → R≥0 is a Lyapunov function for the ODE if
for all reachable states η we have:

V̇ ≡ d

dt
V (η(t)) ≡ ∂V

∂η

⊤
fθ(η,x) ≤ 0. (4.2)

Intuitively, Equation (4.2) means that the dynamics of the ODE within the statesH
are always flowing in the direction that reduces V , i.e., Equation (4.2) establishes a
contraction condition on ODE. Note that for the system to be strictly contracting,
the RHS of Equation (4.2) needs to be strictly negative.

Since V is always decreasing in time, we can use it to define a forward invariant set
(Definition 4.2.1): V (η) ≤ c for some constant c, which is known as a Lyapunov
sublevel set. Once a state enters a Lyapunov sublevel set it remains there for all
time. The potential function depicted in Figure 4.1 can be viewed as a Lyapunov
function, and the yellow line the boundary of the corresponding sublevel set. At
training time, one would specify a desired forward invariance condition using a
potential function V and threshold c, and optimize the NODE to satisfy the forward
invariance condition.



48

Forward Invariance 
via Lyapunov Sublevel Sets

Robust Lyapunov Training

𝜃 min
✓

L (✓)

Violation of Lyapunov condition
• Restricting Lipschitz
• Adaptive Sampling

Certification
• Sampling over the level set

• Verifying condition holds in 
a neighborhood

upper 
bound

0

V̇

[ ]
Correct classification 

set.
Safe region for control 

tasks.

High

Low

Robust FI condition
<latexit sha1_base64="DOwn8MREnWcS/ipxOjvCsB2tR+c="></latexit>

@V

@⌘

>
f✓(⌘, x)  �

Figure 4.2: Overview of our FI-ODE framework. We first pick a Lyapunov
function based on the shape of the forward invariant set: the boundaries of the
Lyapunov sublevel sets are parallel to the boundary of the forward invariant set.
Then we show that robust forward invariance implies robust control and classification.
We train the dynamics to satisfy robust FI conditions via robust Lyapunov training.
To certify the forward invariance property, we sample points on the boundary of the
forward invariant set and verify conditions hold everywhere on the boundary.

4.3 FI-ODE: Robust Forward Invariance for Neural ODEs
We now present our FI-ODE framework to enforce forward invariance on NODEs
(Figure 5.1). We define forward invariance using Lyapunov sublevel sets (Sec-
tion 4.3), and show that robust forward invariance implies robust control and classifi-
cation (Section 4.3) To enforce forward invariance, we first train to encourage the
Lyapunov conditions to hold on the boundary of the target Lyapunov sublevel set
(e.g., yellow line in Figure 4.1), and then verify. We develop a robust Lyapunov train-
ing algorithm (Section 4.3) that extends the LyaNet framework (Jimenez Rodriguez
et al., 2022a) to enable efficiently training NODEs that provably satisfy forward
invariance. Finally, we develop certification tools to verify the Lyapunov conditions
everywhere in the region of interest (Section 4.3).

Forward Invariance via Lyapunov Sublevel Sets
We first define the set that we would like to render forward invariant, and then choose
a Lyapunov function whose level sets are parallel to the boundary of the set.3 For our
main application in control, we define the forward invariant set to be a region around
an equilibrium point (i.e., straying far from the equilibrium point can be unsafe), and
use the standard quadratic Lyapunov function:

V (η) = η⊤Pη, (4.3)
3Usually, Lyapunov stability uses a potential function to prove the stability of a given dynamical

system. In our setting, the potential function is pre-defined to be positive definite, and we find a
dynamical system (e.g., by training a Neural ODE) that is stable with respect to this potential function
(i.e., making this potential function a Lyapunov function). This is possible because the NODEs are
typically overparameterized.
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where P is a (learnable) positive definite matrix, and assuming WLOG that the
equilibrium point is at the origin. The forward invariant set has the form S =

{η|V (η) ≤ c}, for c > 0. The level sets of this quadratic Lyapunov function are
shown in Figure 4.1. The boundary is then D = ∂S = {η|V (η) = c}. This forward
invariance condition is commonly used in safety-critical control (Ames et al., 2019).

We also explore an application to multi-class classification. Here, we define the
forward invariant set to be the correct classification region. For an input x with label
y, the output of a NODE after integrating for T time is η(T ). The NODE correctly
classifies x if y = argmaxη(T ). Then the correct classification region for class y is
Sy = {η|η ∈ △, y = argmaxη} (Figure 5.1, left panel) where△ stands for the n-
class probability simplex: {η ∈ Rn|∑n

i=1 ηi = 1,ηi ≥ 0}. The boundary of this set
is known to be the decision boundary for class y: Dy = {η ∈ △|ηy = maxi ̸=y ηi}.
We define a Lyapunov function whose level sets are parallel to the decision boundary:

Vy(η) = 1− (ηy −max
i ̸=y

ηi) . (4.4)

We can check that Vy is positive definite: since 0 ≤ ηi ≤ 1 for all i, we have Vy ≥ 0.
In addition, Vy = 0 only when ηy = 1 and ηi = 0 for i ̸= y. For the simplicity of
notations, we use V to refer to the Lyapunov function, but note that the Lyapunov
function for classification depends on class y.

Robust Forward Invariance for Robust Control and Classification
A NODE satisfies robust forward invariance if the forward invariance condition
holds despite (norm-bounded) perturbations on the dynamics (e.g., due to perturbed
inputs). Our framework uses x for system parameters in control, and for input

images in classification. To ensure robust forward invariance for perturbed x, the
dynamics for the perturbed input fθ(η,x+ ϵ) needs to satisfy the standard forward
invariance condition in (4.2) (as informally depicted in Figure 4.1, right). In other
words, the condition in (4.2) needs to hold in a neighborhood of x for robust control
or classification. Thanks to the Lipschitz continuity of the Lyapunov function V and
the dynamics fθ, this can be achieved by a more strict condition than (4.2) on the
dynamics (Theorem 4.3.1).

Theorem 4.3.1 (Robust Forward Invariance). Consider the dynamical system in

Equations (4.1a) and (4.1b), the set S will be robust forward invariant with respect

to x if the following conditions hold:

∂V

∂η

⊤
fθ(η,x) ≤ −ϵ̄LVL

x
f , ∀η ∈ ∂S (4.5)
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where ϵ̄ is the perturbation magnitude on x (i.e., ∥ϵ∥ ≤ ϵ), ∂S is the boundary of S ,

LV is the Lipschitz constant of V and Lx
f is the Lipschitz constant of the dynamics

with respect to x.

Remark (Implications). With S defined as in Section 4.3, if the dynamics satisfy

(4.5), then we have a robust controller that always keeps the system in the desired

region despite perturbed system parameters and inputs.

Remark (Non-Robust Variant). The non-robust version of Theorem 4.3.1 is where

the RHS of Equation (4.5) is 0 instead of −ϵ̄LVL
x
f . I.e., Equation (4.5) need not be

a strictly contracting condition.

Robust Lyapunov Training
We now present our robust Lyapunov training approach to satisfy the conditions in
Theorem 4.3.1 (Algorithm 3). Our method extends the LyaNet framework (Jimenez
Rodriguez et al., 2022a) in two ways: 1) restricting the Lipschitz constant of the
NODE with respect to the input; and 2) adaptive sampling to focus learning on the
states necessary for forward invariance certification.

Training loss. Our training loss encourages the dynamics to satisfy the conditions
in Theorem 4.3.1. Specifically, we use a modified Monte Carlo Lyapunov loss from
(Jimenez Rodriguez et al., 2022a):

L (θ) ≈ E
η∼µ(H)

[
max

{
0,

∂V

∂η

⊤
fθ(η,x) + κ(V (η))

}]
, (4.6)

which can be interpreted as a hinge-like loss on the Lyapunov contraction condition
for each state η of the NODE (i.e., the loss encourages (∂V/∂η)⊤f ≤ −κ(V (η)) <

0 for some non-negative non-decreasing function κ). Intuitively, if the loss in
Equation (4.6) is 0 for some given x, then we know that the contraction condition
is satisfied with the RHS being κ(V (η)). As long as κ(V (η)) ≥ ϵ̄LVL

x
f , then

Theorem 4.3.1 holds. If instead κ(V (η)) ≥ 0, then the non-robust variant holds.

Restricting the Lipschitz constant. To obtain a non-vacuous guarantee from
Theorem 4.3.1, we need to restrict the Lipschitz of fθ(η,x) with respect to both
η and x. For image classification, we can estimate Lx

f easily by the product of
matrix norms of the weight matrices in the neural network (Tsuzuku et al., 2018).
Then we certify that condition Equation (4.5) holds for the clean image x. For
control problems, since the dynamics of the physical system is usually known, the
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Algorithm 3 Robust Lyapunov Training
Require: Lyapunov function V , Sampling scheduler, dataset D, hinge-like function

κ.
1: Initialize: Model parameters θ, Lyapunov parameters P and system parameters

x (for control).
2: for i = 1 : M do
3: ▷ Sample η based on the training progress and the level sets of V :
4: η ∼ Sampling_scheduler (i, V )
5: ▷ For control, find adversarial samples of x and η
6: For classification, sample (x, y) ∼ D
7: ▷ Update model parameters to minimize Lyapunov loss L (θ) (Equation (4.6)).
8: P ← P − β′∇PL (θ)
9: θ ← θ − β∇θL (θ)

10: end for
Ensure: θ

closed loop dynamics is not purely parameterized by neural networks and it is not
straightforward to estimate Lx

f . Therefore, instead of directly certifying condition
Equation (4.5), we certify the LHS of it to be smaller than 0 for η ∈ ∂S and
all x within the perturbation range (not only on the nominal parameter). We use
adversarial training to make fθ(η,x) smooth with respect to both η and x, and in
fact certifiable.

Adaptive sampling. To minimize the Lyapunov loss (Equation (4.6)), we need
to choose a sampling distribution µ. A simple choice is uniform (as was done in
(Jimenez Rodriguez et al., 2022a)), but that may require an intractable number
of samples to guarantee minimizing Equation (4.6) everywhere in the state space.
We address this challenge with an adaptive sampling strategy that focuses training
samples on the region of the state space necessary for forward invariance: the
boundary of the Lyapunov sub-level set. For control problems, since we jointly
learn matrix P in the Lyapunov function, the shape of its level set changes during
training, and the sampled points change accordingly. For classification, we switch
from uniform sampling in the simplex to sampling only within the forward invariant
set, with the switching time being a hyper-parameter of the sampling scheduler.

Certification
In the previous section, we minimize the empirical Lyapunov loss (Equation (4.6))
on some finite set of samples to encourage the dynamics to satisfy conditions in
Theorem 4.3.1. However, zero empirical Lyapunov loss on a finite sample is not
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necessarily a certificate that the conditions hold everywhere on the boundary of
the forward invariant. This section develops tools to certify the forward invariance
conditions hold everywhere on the boundary of the safe set.

Certification procedures. The certification procedures are as follows: 1) sample
points on the boundary of the forward invariant set (blue dots in Figure 4.3), and
check Lyapunov condition holds on all the sampled points; 2) verify the condition
holds in a small neighborhood around those points.

Procedure 1: Sampling techniques. Rigorous certification is challenging because
it requires the set of samples and their neighborhoods to cover the whole boundary
of the forward invariant set (not guaranteed by random sampling). We construct a set
for the quadratic Lyapunov function (Equation (4.3)) and the classification Lyapunov
function (Equation (4.4)) respectively, and show that the proposed set can cover the
level set of the corresponding Lyapunov function in Theorem 4.3.2 below, i.e., for
any point on the level set (red dot in Figure 4.3), there exists a sampled point nearby
(blue dot).

To sample on the level set of the quadratic Lyapunov functionD = {η ∈ Rn|η⊤Pη =

c}, we first create a uniform grid G (with spacing r) in the ambient space that covers
the Lyapunov level set. We pick r to be at most

√
c
λ1

, where λ1 is the maximum
eigenvalue of P . Then we do rejection sampling to keep the points that are close to
the Lyapunov level set via G ∩ B for B defined below:

B = {η|c ≤ η⊤Pη ≤ c} (4.7)

where c = (
√
c −

√
n
2
r
√
λ1)

2 and c = (
√
c +

√
n
2
r
√
λ1)

2. We show that B ∩ G
(points inside dashed lines in Figure 4.3, Left) covers the c-level set of the quadratic
Lyapunov function (Theorem 4.3.2 (a)).

Figure 4.3: Sampling to cover the level sets of the Lyapunov functions.
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To sample on the 1-level set of the n-class classification Lyapunov function (the
decision boundary), we consider the following set S̃y (Figure 4.3, Right) (Theorem
4.3.2 (b)):

S̃y = {s̃ ∈ Rn|s̃ =
s

N
, s ∈ Sy} (4.8)

where Sy = {s ∈ Zn|∑n
i=1 si = N, sy = maxi ̸=y si, si ≥ 0,∀i = 1, ..., n}, and N

represents sample density, and needs to be a positive even integer and N ̸≡ 1 (mod
n).

Theorem 4.3.2. (Sampling on the boundary of a FI set).

(a) For any η ∈ D, there exist an s ∈ {B ∩ G} such that |ηi − si| ≤ r
2

for all
i = 1, ..., n.

(b) For any η ∈ Dy, there exists an s̃ ∈ S̃y such that |ηi − s̃i| ≤ 1
N

for all
i = 1, ..., n.

Procedure 2: Verification in a neighborhood around the sampled points. Since
we only sample a finite number of points on the level set, certifying robust forward
invariance requires verifying that the condition holds in a small neighborhood around
each of the points. We do so by bounding the range of the output given the range
of the input. This bound can be obtained by estimating the Lipschitz constant of
the LHS of Equation (4.5), and the norm of output difference can be bounded by
the norm of the input difference. This is convenient for cases where it is simple
to bound the Lipschitz of the Lyapunov function and the dynamics. For instance,
for classification problems, the Lipschitz constant of the Lyapunov function (4.4)
is
√
2, and the Lipschitz constant of the dynamics with respect to both η and x is 1

because we use orthogonal layers in the neural network. For more general Lyapunov
functions and dynamics, the Lipschitz bound is often either intractable or vacuous.
Instead, we use a popular linear relaxation based verifier CROWN (Zhang et al.,
2018) to bound the output of any general computation graph. In the control case, we
verify both x and η since we want the robustness robustness for a set of perturbations
over a set in the state-space.

4.4 Experiments
Our main evaluation is in an application of certified robust forward invariance
in nonlinear continuous control (Section 4.4). We also explore the generality of
our approach by studying a second application in certified robustness for image
classification (Section 4.4).
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Certifying Safety for Robust Continuous Control
Setup. We evaluate our framework on a planar segway system, which is a highly
unstable nonlinear system whose dynamics is sensitive to its system parameters and
therefore hard to train certifiably robust nonlinear controllers (see Appendix C.5 for
the details). We train a neural network controller (a 3-layer multi-layer perceptron
(MLP)) to keep the system forward invariant within the 0.15-sublevel set of a jointly
learned Lyapunov function under±2% perturbations on each system parameter. This
guarantees that the segway will not fall under adversarial system perturbations. We
evaluate the its performance under both nominal and adversarial system parameters
for 1000 adversarially selected initial states within the safe set. The adversarial
parameters and states are optimized jointly via projected gradient descent for 100
steps to maximize violations of the forward invariance condition. We also provide
provable certificates using certification approach in Section 4.3.

Results. We compare with two competitive robust control baselines, and perform
ablation studies on different training algorithms in Table 4.1. We make three main
observations. First, it is difficult to certify even non-robust forward invariance using
previous methods, highlighting the need for more advanced methods. Second, our
robust Lyapunov training approach (Algorithm 3) is able to train NODE controllers
with robust forward invariance certificates. Third, certifying non-robust forward
invariance is easier than certifying robust forward invariance. Overall, these results
suggest that our approach is able to train nonlinear ODE controllers in non-trivial
settings where existing approaches cannot. To our knowledge, this is also the first
instance of training NODE policies with such non-vacuous certified guarantees.

Table 4.1: Robustness of controllers trained with different methods. The numbers
are the percentage of trajectories that stay within the forward invariant set under the
nominal and adversarial system parameters on 1000 adversarially selected initial
states. The certificate column indicates whether the (robust) FI property is certified.

Method Empirical Certificate
Nominal Adv FI Robust FI

Robust LQR 96.2 92.8 ✗ ✗

Robust MBP (Donti et al., 2020) 94.3 93.6 ✗ ✗

Standard Backprop Training 58.0 50.4 ✗ ✗

Basic Lyapunov Training (Jimenez Rodriguez et al., 2022a) 90.2 52.6 ✗ ✗

+ Adaptive Sampling 100 68.9 ✓ ✗

+ Adversarial Training 100 97.8 ✓ ✗

+ Both (Robust FI-ODE, Ours) 100 100 ✓ ✓
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Visualizations. We show trajectories that start within the safe set (gray ellipse) and
the corresponding Lyapunov functions in Figure 4.4. The left shows the trajectories
of a certifiably non-robust FI controller. While the system is safe 100% under
nominal system parameters, it fails for adversarial system parameters. The right
shows the trajectories of a certifiably robust FI controller. Even under adversarial
system parameters, it keeps the trajectories within the safe set 100% of the time.

(a) (b)

Figure 4.4: Showing Lyapunov function value V along the trajectories of a
planar segway. The forward invariant set is the 0.15-sublevel set. All trajectories
start within the forward invariant set (gray ellipse). Each system parameter are
perturbed adversarially within ±2% of their original value. (a) Shows the Lyapunov
function values and system trajectories of a certifiably non-robust FI controller. (b)
Shows the Lyapunov function values and system trajectories of a certifiably robust
FI controller.

Certified Robustness for Image Classification
We also apply our approach to train certifiably robust NODEs for image classifica-
tion to explore the generality of the framework. We treat the input image as system
parameters, and set all the initial states to be η(0) = 1

1
n

. Table 4.2 shows the results.
The main metric is certified accuracy, the percentage of test set inputs that are certifi-
ably robust. Our approach achieves the strongest overall certified robustness results
compared to prior ODE-based approaches. We also reported clean and adversarial
accuracy for references. In addition, the ablation studies shows similar trends as
in the robust control experiments: all the learning components: Lyapunov training,
Lipschitz restriction and adaptive sampling are needed for good performance, and
the model that is trained with all of them (Robust FI-ODE) achieved the highest
certified accuracy.

4.5 Related Works
Robust control and robust learning-based control methods. Robust control
involves creating feedback controllers for dynamic systems that sustain performance
under adverse conditions (Zhou and Doyle, 1998; Başar and Bernhard, 2008), of-
ten relying on basic (linear) controllers. Our work learns nonlinear controllers
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Table 4.2: Evaluating certified robustness for image classification. ϵ is the ℓ2 norm
of the input perturbations. We report the classification accuracy (%) on clean &
adversarial inputs, and the percentage of inputs that are certifiably robust (Certified).
Semi-MonDeq results are on 100 test images [95% CI in bracket] due to high cost,
and other results are on all test images (10,000).

Dataset Method ϵ Clean Adversarial Certified
Lipschitz-MonDeq (Pabbaraju et al., 2020) 0.1 95.60 94.42 83.09
Semi-MonDeq (Chen et al., 2021) † 0.1 99 [>94] 99 [>94] 99 [>94]

MNIST Robust FI-ODE (Ours) 0.1 99.35 99.09 95.75

Lipschitz-MonDeq (Pabbaraju et al., 2020) 0.2 95.60 93.09 50.56
Robust FI-ODE (Ours) 0.2 99.35 98.83 81.65

Lipschitz-MonDeq (Pabbaraju et al., 2020) 0.141 66.66 50.51 <7.37
NODE w/o Lyapunov training 0.141 69.05 56.94 16.81

CIFAR-10 LyaNet (Jimenez Rodriguez et al., 2022a) + Lipschitz restriction 0.141 73.15 64.87 41.43
LyaNet (Jimenez Rodriguez et al., 2022a) + Sampling scheduler 0.141 82.83 74.81 0
Robust FI-ODE (Ours) 0.141 78.34 67.45 42.27

parameterized by neural networks, while maintaining the robust forward invariance
guarantees. There have been recent works for learning-based control with robustness
guarantees, such as focusing on H∞ robust control (Abu-Khalaf et al., 2006; Luo
et al., 2014; Friedrich and Buss, 2017; Han et al., 2019; Zhang et al., 2020), or
linear differential inclusions systems (Donti et al., 2020). In comparison, our frame-
work could be used for general nonlinear systems and norm-bounded input/system
parameter perturbations.

Learning Lyapunov functions and controllers for nonlinear control problems.
Various studies focus on learning neural network Lyapunov functions, barrier func-
tions, and contraction metrics for nonlinear control (Dawson et al., 2023). For
stability or safety certification, Chang et al. (2019) employ SMT solvers (Gao et al.,
2013), Jin et al. (2020) use Lipschitz methods, and Dai et al. (2021) apply mixed
integer programming. Our approach uses a linear relaxation-based verifier (Zhang
et al., 2018), balancing tightness and computational efficiency, to certify nonlinear
control policies (unlike the linear policies in Chang et al. (2019) and Jin et al. (2020))
on actual dynamics, contrasting with Dai et al. (2021)’s neural network dynamic
approximations.

Verification and Certified robustness of NODEs. Many studies (e.g., Yan et
al. (2020), Kang et al. (2021), and Huang et al. (2022)) demonstrate improved
empirical robustness of NODEs, yet certifying this robustness is challenging. Prior
NODE analyses primarily address reachability: Grunbacher et al. (2021) proposes a
stochastic bound on the reachable set of NODEs, while Lopez et al. (2022) computes
deterministic reachable set of NODEs via zonotope and polynomial-zonotope based
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methods implemented in CORA (Althoff, 2013). However, these methods are limited
to low-dimension or linear NODEs. MonDEQ (Winston and Kolter, 2020), akin to
implicit ODEs, has seen ℓ2 robustness certification efforts (Pabbaraju et al., 2020;
Chen et al., 2021), but these struggle beyond MNIST. Xiao et al. (2023) propose
invariance propagation for stacked NODEs that provides guarantees for output
specifications by controller/input synthesis. While their approach focuses more on
interpretable causal reasoning of stacked NODEs, our work provides a framework
for training and provably certifying general NODEs.

Formal verification of neural networks. Formal verification of neural networks
aim to prove or disprove certain specifications of neural networks, and a canonical
problem of neural network verification is to bound the output of neural networks
given specified input perturbations. Computing the exact bounds is a NP-complete
problem (Katz et al., 2017) and can be solved via MIP or SMT solvers (Tjeng et al.,
2019; Ehlers, 2017), but they are not scalable and often too expensive for practical
usage. In the meanwhile, incomplete neural network verifiers are developed to give
sound outer bounds of neural networks (Salman et al., 2019; Dvijotham et al., 2018;
Wang et al., 2018; Singh et al., 2019), and bound-propagation-based methods such
as CROWN (Zhang et al., 2018) are a popular approach for incomplete verification.
Recently, branch-and-bound based approaches (Bunel et al., 2020; Wang et al., 2021;
De Palma et al., 2021) are proposed to further enhance the strength of neural network
verifiers. Our work utilizes neural network verifiers as a sub-procedure to prove
forward invariance of NODEs, and is agnostic to the verification algorithm used.
We used CROWN because it is efficient, GPU-accelerated and has high quality
implementation (Xu et al., 2020).
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C h a p t e r 5

RULE-GUIDED DIFFUSION MODELS VIA STOCHASTIC
CONTROL

Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chan-
dramouli Sastry, Siddharth Gururani, Sageev Oore, and Yisong Yue (2024). “Sym-
bolic Music Generation with Non-Differentiable Rule Guided Diffusion”. In:
arXiv preprint arXiv:2402.14285. URL: https://arxiv.org/abs/2402.
14285.

5.1 Introduction
We are interested in developing methods for controllable symbolic music generation.
There has been rapid progress in the development of modern generative models for
symbolic music (Huang et al., 2018; Huang and Yang, 2020; Hsiao et al., 2021;
Min et al., 2023). To facilitate interaction between human composers and these
models, it is crucial for these models to adhere to specific musical rules, such as
chord progression, during the composition process. Moreover, these rules can be
quite nuanced (e.g., the difference between a major chord and minor chord is very
small).

A common method to incorporate rules in generative models is to train with rule
labels (Choi et al., 2020; Wu and Yang, 2023; Rütte et al., 2022). However, integrat-
ing multiple musical rules during the training phase poses a significant challenge.
Continuously updating model parameters to accommodate each new rule is not only
costly but also will soon become impractical for compositions that involve many
rules. Hence, there is a growing need for a method to guide pre-trained genera-
tive models in generating samples that conform to specific rules in a more flexible,
light-weight, or plug-and-play manner.

Diffusion models (Ho et al., 2020; Song et al., 2021b) have emerged as a powerful
generative modeling approach in many domains including images (Dhariwal and
Nichol, 2021), audio (Huang et al., 2023) and video (Ho et al., 2022). A key
feature of diffusion models is that they allow for post-hoc guidance of pre-trained
models. Recent works have demonstrated success in guiding diffusion models with
differentiable losses in a plug-and-play manner (Chung et al., 2023; Song et al.,

https://arxiv.org/abs/2402.14285
https://arxiv.org/abs/2402.14285
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2023). Starting from Gaussian noise, diffusion models generate samples from coarse
to fine. The key idea of guidance is to update each intermediate step with the gradient
of the loss. However, there are still two challenges to generate symbolic music with
rule guidance: First, many rules (e.g., note density) are not differentiable. Second,
they may be black box APIs that hinder backpropagation.

To this end, we propose Stochastic Control Guidance (SCG), a new algorithm that
enables plug-and-play guidance in diffusion models for non-differentiable rules.
Our algorithm is inspired by stochastic control, where we pose the problem of
generating samples that follow rule guidance as optimal control within a stochastic
dynamical system. We obtain the analytical form of optimal control via path integral
control theory (Theodorou et al., 2010), and adapt it to an efficient implementation
within diffusion models. Specifically, we generate multiple realizations at each
sampling step, and select the one that best follows the target (Figure 5.1). This
process only requires forward evaluation of rule functions, making it applicable to
non-differentiable rules.

To develop a practical overall framework, we also introduce a latent diffusion
architecture with a transformer backbone for symbolic music generation. This
architecture is able to generate dynamic music performances at 10ms time resolution,
which is a significant challenge for standard pixel space diffusion models.

Our framework demonstrates state-of-the-art performance in various music gen-
eration tasks, offering superior rule guidance over popular methods and enabling
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Stochastic Control Guidance (SCG)

def find_chords(notes):
. . .
return [I, IV, V, …]

Figure 5.1: Overview of Stochastic Control Guidance (SCG) for plug-and-play
non-differentiable rule guided generation. At each sampling step, we sample
several realizations of the next step, and select the one yielding the most rule-
compliant clean sample.
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musicians to effectively use it as a compositional tool. Our code is available here.

In summary, our contributions are as follows:

• We introduce Stochastic Control Guidance (SCG), which achieves plug-and-
play guidance in diffusion models for non-differentiable rules.

• We provide a theoretical justification of SCG from a stochastic control per-
spective.

• We introduce a latent diffusion model architecture for symbolic music genera-
tion with high time resolution.

• We demonstrate that our framework enables flexible, interpretable and control-
lable symbolic music generation in a variety of tasks.

5.2 Related Works
Current symbolic music generation methods are mainly divided into MIDI token-
based and piano roll-based approaches. MIDI-based methods treat music as se-
quences of discrete tokens, often using transformers for MIDI token generation
(Huang et al., 2018; Huang and Yang, 2020; Ren et al., 2020; Hsiao et al., 2021).
Piano roll representations, resembling image formats with time on the horizontal
axis and pitches vertically, have inspired the use of image generative models like
GANs (Yang et al., 2017; Dong et al., 2018) for their generation. Recent efforts
(Atassi, 2023; Min et al., 2023) apply diffusion models to generate binary, quantized
piano rolls. Our work extends this by incorporating velocity and pedal information
into piano rolls and employing a finer time resolution of 10 ms, thereby facilitating
the generation of more dynamic piano performances.

Another line of research seeks to enhance control over certain attributes in the
generated music. Some studies (Brunner et al., 2018; Roberts et al., 2018) have
leveraged VAE models to learn a disentangled latent space, achieving controllability
over specific attributes by manipulating latents in designated directions. Further,
various works have conditioned LSTMs (Meade et al., 2019) or transformers on
different factors like style (Choi et al., 2020), note density (Wu and Yang, 2023), or
attributes like time signature, instruments, and chords (Rütte et al., 2022). However,
these methods are limited to predefined attributes and are not easily extendable to
new attributes due to the necessity of conditioning on labels during training.

Recent developments in the use of diffusion models for symbolic music generation
have adapted controllable image generation techniques. Examples include generating

https://github.com/yjhuangcd/rule-guided-music
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complementary parts given melody/accompaniment (inpainting), bridging two music
segments (infilling) (Min et al., 2023), extending existing music pieces (outpainting),
and generating piano rolls from stroke piano rolls (Zhang et al., 2023a). Yet, when it
comes to rule-based guidance, existing approaches still require training on specific
attributes, such as chord progression (Min et al., 2023; Li and Sung, 2023), limiting
their adaptability for composers desiring to incorporate new rules. Our work enables
flexible rule-based guidance via SCG. Additionally, our method is compatible with
other diffusion model techniques like inpainting, outpainting, and editing, further
enhancing its versatility in music generation.

The conceptualization of stochastic optimal control in diffusion models has spurred
theoretical advancements and practical applications. Zhang and Chen (2021) em-
ployed celebrated path integral theory to transform a simple Ornstein–Uhlenbeck
process to a novel process whose target distribution matches given marginal distribu-
tion. Further extending this framework, Berner et al. (2022) and Vargas et al. (2023)
established a novel link between stochastic optimal control problems and generative
models, interconnected through stochastic differential equations.

5.3 Background
Score-based diffusion models. Diffusion models generate data by reversing a
diffusion process. Let p(x) be the unknown data distribution, the forward diffusion
process {xt}t∈[0,T ] diffuse p(x) to a noise distribution that is easy to sample from
(e.g., standard Gaussian distribution). Song et al. (2021b) models the forward
diffusion process as the solution to an SDE:

dx = f(x, t)dt+ g(t)dw, (5.1)

where the initial condition x0 := x ∼ p(x), f : Rd×R→ Rd is the drift coefficient,
g : R→ R is the diffusion coefficient and w ∈ Rd is a standard Wiener process.

Let pt(x) denote the marginal distribution of xt. The diffusion and drift coefficient
can be properly designed such that pT (x) ≈ N (0, Id). In this paper, we consider the
VP-SDE (Song et al., 2021b), where f(x, t) := −1

2
β(t)x and g(t) :=

√
β(t), where

β(t) is a noise schedule. DDPM (Ho et al., 2020) can be regarded as a discretization
of VP-SDE.

Samples are generated using the reverse-time SDE:

dxt =
[
f(xt, t)− g(t)2∇xt log pt(xt)

]
dt+ g(t)dw̄t, (5.2)
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where f(xt, t) : Rd → R is the drift coefficient, g : R → R is the diffusion
coefficient, dt is an infinitesimal negative time step and w̄t is a standard reverse-time
Wiener process. Sampling xT ∼ pT (x) = N (0, I) and solving the above SDE from
t = T to t = 0 produces samples from the data distribution: x0 ∼ p0(x) = p(x).

Since the data distribution is unknown, it is popular to approximate the score function
∇xt log pt(xt) via a neural network sθ(x, t) and train it with a weighted sum of
denoising score matching objectives (Song et al., 2021b).

Classifier and Classifier-free Guidance. Guided diffusion models generates sam-
ples from p(x|y) given label y. Classifier guidance (Dhariwal and Nichol, 2021)
achieves this by training a classifier pt(y|xt) on the noisy sample and label pair,
and mix its gradient with the score of the diffusion model during sampling. The
conditional score function becomes ∇xt log pt(xt) + ω∇xt log pt(y|xt), where ω

is called guidance scale. This approximates the samples from the distribution
p̃(xt|y) ∝ p(xt)p(y|xt)

ω. Classifier guidance is able to guide a pre-trained genera-
tive model at the cost of training an extra classifier on the noisy data.

Classifier-free guidance (Ho and Salimans, 2022) avoids training classifiers by
jointly training conditional and unconditional diffusion models, and combining
their score estimates during sampling. The mixed score function becomes (1 +

ω)∇xt log pt(xt|y) − ω log p(xt), where ω is the guidance strength. Despite easy
implementation, it is expensive to extend classifier-free guidance to unknown or
composite labels, because it requires re-training the diffusion model.

Loss-Guided Diffusion. To reduce the need of additional training for conditional
generation, methods have been proposed to guided diffusion models to generate
samples in a plug-and-play way. Instead of training a classifier to approximate
p(y|xt), Diffusion Posterior Sampling (DPS) (Chung et al., 2023) uses p(y|x̂0),
where x̂0 := E[x0|xt] is obtained through the Tweedie’s formula (Efron, 2011):

x̂0 =
1√
ᾱ(t)

(xt + (1− ᾱ(t))∇xt log pt(xt)). (5.3)

Recall that p(y|xt) can be factorized as:

p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0 = Ex0∼p(x0|xt)p(y|x0).

DPS uses a point estimation of this quantity. Later work (Song et al., 2023) proposes
to use Monte-Carlo estimation of this by sampling from approximated p(x0|xt).
However, these methods requires the loss function used to specify the condition to be
differentiable. Many symbolic rules we consider in this paper are non-differentiable.
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5.4 Non-Differentiable Rule Guidance
We now present Stochastic Control Guidance for non-differentiable rule guidance in
diffusion models. We start with defining rule guidance in Section 5.4. Inspired by
stochastic control (Section 5.4), we define a value function as a loss measuring (lack
of) rule adherence, and show that optimal control steers the reverse diffusion to the
target distribution. We then discuss practical algorithms (Section 5.4). We conclude
by establishing a general theoretical connection that enables many guidance methods
to be viewed through the lens of stochastic optimal control (Section 5.4).

Rule Guidance Problem
Assume that we have a pre-trained diffusion model that can sample from the data
distribution p(x), and a loss function ℓy : X → R that characterizes how well a
sample follows some conditions y: p(y|x) ∝ e−ℓy(x). Our goal is to sample from
the following distribution:

p(x|y) = p(x)
e−ℓy(x)

Z
∝ p(x)p(y|x), (5.4)

where Z =
∫
x
p(x)e−ℓy(x)dx.

A central challenge that we tackle is that many musical rules are non-differentiable,
which makes sampling from Eq. 5.4 difficult. For instance, let x = [x1, x2, ..., xn] ∈
[0, 1]n be a vector where each xi represents the volume of a note, so that the note
density is computed as ND(x) =

∑n
i=1 1(xi > ϵ), where ϵ is a small number. Then

the loss is defined as ℓy(x) = |y − ND(x)|, which is non-differentiable.

Guidance via Stochastic Control
The pre-trained diffusion model generates samples using the reverse-time SDE
(Eq. 5.2). Let ηt = xT−t, and f̃(ηt, t) = f(ηt, t) − g(t)2∇ηt log pt(ηt). We can
rewrite Eq. 5.2 as:

dηt = f̃(ηt, t)dt+ g(t)dwt, (5.5)

where dt is an infinitesimal time step and dw is a standard Wiener process. Sampling
η0 ∼ N (0, I) and solving the above SDE from t = 0 to t = T produces samples
from the data distribution.

We want to find a control u(ηt, t), such that solving the following SDE yields
samples from target distribution p(η|y):

dηt = f̃(ηt, t)dt+ g(t)(u(ηt, t)dt+ dwt). (5.6)
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We use ut := u(ηt, t) and f̃t := f̃(ηt, t) for brevity, noting they are state-dependent.

Considering the stochastic dynamical system in Eq. 5.6 for 0 ≤ t ≤ T and initial
state η0 = η̄0, we address the optimal control problem associated with the cost
function Cu(ηt, t), which is defined as the expectation over all stochastic trajectories
starting at ηt with control function ut:

Cu(ηt, t) = E
[
ϕ(ηT ) +

∫ T

t

1

2
∥ut∥2dt

]
. (5.7)

It is known that the optimal control policy admits an analytical solution (Pavon,
1989):

u∗
t = −g(t)∇ηV (η, t), (5.8)

where function V (η, t), known as the value function, is the solution to celebrated
stochastic Hamilton-Jacobi-Bellman (HJB) equation (Evans, 2022):

−∂tV (η, t) = −1

2
g(t)2(∇ηV )⊤(∇ηV )

+ (∇ηV )⊤f̃t +
1

2
g(t)2Tr(∇2

ηηV ), (5.9)

with boundary condition V (η, T ) = ϕ(η).

Path Integral Control. Although solving HJB in Eq. 5.9 is nontrivial due to its
non-linearity w.r.t. V , using an exponential transformation Ψ(η, t) = e−V (η,t) yields
a linear HJB equation in Ψ:

−∂tΨ(η, t) =

(
f̃⊤t ∇η +

1

2
g(t)2Tr(∇2

ηη)

)
Ψ(η, t), (5.10)

with boundary condition Ψ(η, T ) = e−ϕ(η). We call Ψ the desirability function as it
is inversely related to the value V .

Let Ω = C([0, T ];Rd) be the space consisting of all possible continuous-time
stochastic trajectories τ = {ηt, 0 ≤ t ≤ T}, and Q0 be the measure induced by
an uncontrolled stochastic process (Eq. 5.5). Then the linear HJB equation has the
following solution according to the Feynman-Kac formula (Øksendal, 2003):

Ψ(η, t) = EQ0

[
e−ϕ(ηT )|ηt = η

]
. (5.11)

Eq. 5.11 shows that the value function can be computed by only forward sampling the

uncontrolled process without knowing the optimal control policy. Plugging Eq 5.11
into Eq 5.8 yields the analytic optimal policy, which aligns with the well-known path
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integral control approach (Theodorou et al., 2010; Theodorou, 2015; Fleming and
Mitter, 1982):

u∗
t (η)dt = g(t)∇η log Ψ(η, t)dt (5.12)

=
EQ0

[
e−ϕ(ηT )dwt|ηt = η

]
EQ0 [e−ϕ(ηT )|ηt = η]

. (5.13)

Next, we show that using the above optimal control, we can guide the generation
process to produce samples from the target conditional distribution p(η|y).

Theorem 5.4.1 (proof in Appendix D.1). Consider the dynamical system in Eq. 5.6.

For a terminal cost defined as ϕ(ηT )
∆
= ℓy(ηT )

∆
= − log p(y|ηT ) + const, and

initial condition η0 ∼ N (0, I), the terminal distribution induced by the optimal

control policy u∗
t (Eq. 5.13) is:

Q∗(ηT ) = p(ηT |y). (5.14)

Algorithm 4 Stochastic Control Guided DDPM sampling
Require: Loss function ℓy, rule target y, number of samples n.
xT ∼ N (0, I)
for t = T to 1 do

▷ Compute the posterior mean of xt−1.
x̂t−1 =

1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ (xt, t)

)
if t > 1 then

▷ Sampling possible next steps.
xi
t−1 = x̂t−1 + σtz

i, with z1, ..., zn ∼ N (0, I)
▷ Estimate the clean sample from noisy sample.
x̂i
0 =

1√
ᾱt−1

(
xi
t−1 −

√
1− ᾱt−1ϵθ

(
xi
t−1, t− 1

))
▷ Find the direction that minimizes the loss.
k = argmaxi log p(y|x̂i

0) = argmaxi−ℓy(x̂i
0)

xt−1 = xk
t−1

else
xt−1 = x̂t−1

end if
end for
return: x0

Practical Algorithms
Approximation of the Optimal Control. In practice, it is expensive to compute
Eq. 5.13, because one needs to unroll the whole trajectory to get ηT . Instead of using
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Eq. 5.13 as our optimal control, we set utdt+ dw to the following:

argmax
dwt

−ℓy(η̂T ), (5.15)

where η̂T = E [ηT |ηt+dt] can be obtained via Tweedie’s Formula (Eq. 5.3), which is
a one-step computation and much cheaper than solving the whole trajectory.

Eq. 5.15 is an approximation to a tempered version of Eq. 5.13. Consider the terminal
cost is defined with a scaling factor K, i.e., ϕ(ηT ) = ℓy(ηT )/K. When K → 0,
Eq. 5.13 becomes:

argmax
dwt

max
τ
−ℓy(ηT |ηt+dt), (5.16)

where ηt+dt = ηt + f̃(ηt, t)dt + g(t)dwt, and τ : [t + dt, T ] → Rd represents a
trajectory. The solution of Eq. 5.15 optimizes a lower bound of the objective in
Eq. 5.16:

max
dwt,τ
−ℓy(ηT |ηt+dt) ≥ max

dwt

−ℓy(E [ηT |ηt+dt]). (5.17)

Intuition. Our SCG algorithm implemented with DDPM sampling (Ho et al., 2020)
is outlined in Algorithm 4 and illustrated in Figure 5.1, where we use xt

∆
= ηT−t to

denote the intermediate states following conventions of diffusion model notations.
The intuition is that we select the direction that leads to the most probable sample at
each step. For every step t in the sampling process, given xt, we compute multiple
realizations of the next step xt−1, estimate the corresponding clean sample x̂0, and
choose the xt−1 that leads to the lowest loss ℓy(x̂0). Notably, we only need to
evaluate the forward pass of the rule function, and there is no need to evaluate or
estimate its gradient, making our method suitable for non-differentiable and black-
box rule functions. Furthermore, it is also compatible with other stochastic sampling
procedure in diffusion models (Appendix D.2).

General Theoretical Connection
In this section, we show a general connection (Proposition 5.4.1) that enables many
guidance methods to be viewed through the lens of stochastic optimal control.

Proposition 5.4.1 (proof in Appendix D.1). Consider the dynamical system in Eq. 5.6

with terminal cost ϕ(ηT )
∆
= − log p(y|ηT )+const. We have: Ψ(ηt, t) = c ·p(y|ηt).

Proposition 5.4.1 says that the desirability function equals to the likelihood function.
Then many popular guidance techniques can be seen as different implementations of
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the optimal control following Eq. 5.12):

g(t)∇ηt log p(y|ηt) = g(t)∇ηt log Ψ(ηt, t) = u∗
t (ηt).

Classifier guidance (Dhariwal and Nichol, 2021) trains a neural network on noisy
data pair {ηt,y} to approximate Ψ(ηt, t), and differentiate through it to obtain
u∗
t (η).

DPS (Chung et al., 2023) avoids training a surrogate model by approximating
Ψ(ηt, t) with Ψ(η̂T , T ), where η̂T is the posterior mean that can be obtained through
the Tweedie’s formula (Eq. 5.3). Since ∇ηtΨ(η̂T , T ) = ∂Ψ(η̂T ,T )

∂η̂T

∂η̂T

∂ηt
, it requires

Ψ(η̂T , T ) ∝ e−ℓy(η̂T ) to be differentiable.

In contrast, our approach is inspired by path integral control, and only needs the
forward evaluation of the rule function (Eq. 5.15). Therefore, our method does not
require the rule function to be differentiable.

5.5 Latent Diffusion Architecture
To arrive at a practical overall framework, we develop a latent diffusion architecture
tailored towards symbolic music generation, and in particular able to generate at
10ms time resolution. This architecture can be combined with Stochastic Control
Guidance in a plug-and-play fashion.

Data Representation. We represent symbolic music as a 3-channel tensor. Each
column in this representation accounts for a 10 ms timeframe. The first channel
is the piano roll, where horizontal axis represents time and vertical axis represents
pitch. Each element takes value from 0-127, indicating the velocity (volume) of the
note. The second channel is the onset roll, consisting of binary values that denote the
presence of note onsets. The third channel is the pedal roll, representing the sustain
pedal control for each timeframe.

Model architecture. We first use a VAE model to encode short segments of piano
rolls of shape 3 × 128 × 128 into a latent space. Then we concatenate the latent
codes and train a diffusion model to capture their joint distribution (Figure 5.2). For
the VAE, we use the U-Net backbone following (Rombach et al., 2022). The training
involves a denoising objective in conjunction with KL regularization: we introduce
musically semantic perturbations (such as adding adjacent notes) to the data and train
the model to revert to the original, unperturbed data. Both KL regularization and the
denoising objective have proven indispensable for developing diffusion models with
robust generative capabilities in subsequent stages.
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Piano roll data 
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Shorter excerpt x 8
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Figure 5.2: We use a VAE to encode piano roll segments to latent space and
concatenate them for the next stage of diffusion training.

For the diffusion model, we use the DiT architecture (Peebles and Xie, 2023). In
contrast to the standard U-Net, the transformer backbone is more adept at handling
sequences of latent tokens. Rather than absolute position encoding, we use rotary
position embedding (Su et al., 2023) to better generalize across various input lengths.
We train the diffusion model on piano rolls of length 1024 (10.24 s). To generate
musical excerpts of arbitrary length, we apply DiffCollage (Zhang et al., 2023b) to
aggregate the score function of shorter music segments.

5.6 Experiments
We evaluate our method on a wide range of symbolic music generation tasks: un-
conditional generation (Sec 5.6), individual rule guidance (Sec 5.6), composite rule
guidance (Sec 5.6) and editing (Appendix D.3). We perform ablation studies in
Sec 5.6 and subjective evaluation in Sec 5.6. In addition, we demonstrate that our
method can be used as a compositional tool for musicians in Sec 5.6.

Experimental Settings
Data. We train our model on several piano midi datasets that cover both classical
and pop genres. The MAESTRO dataset (Hawthorne et al., 2019) has about 1200
pieces of classical piano performances with expressive dynamics, resulting in about
200 hours of music performance. In addition, we crawled about 14k MIDI files from
Muscore in classical, religion and soundtrack genres across all skill levels, yielding
about 700 hours of data. We also used two Pop piano datasets: Pop1k7 (Hsiao et al.,
2021) and Pop909 (Wang et al., 2020) that contain 108 hours and 60 hours of pop
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piano midi translated from audio respectively.

Training and Inference Setup. We first train a VAE model to encode piano rolls
to latent space, then fix the VAE and train a diffusion model on this space. The
diffusion model is trained with dataset-based conditioning: classical performance
(Maestro), classical sheet music (Muscore) and Pop (pop1k7 and pop909), following
Classifier-free Guidance (Ho and Salimans, 2022) with a dropout rate of 0.1. We
train the model for 1.2M steps and use DDPM (Ho et al., 2020) with 1000 steps as
the default sampling method unless stated otherwise. All experiments are run on
NVIDIA A100-SXM4 GPUs.

Unconditional Generation
Baselines. We compare with state-of-the-art symbolic music generators trained on
various datasets (Table 5.1).

Method Model Dataset Representation

MusicTr (Huang et al., 2018) Transformer Maestro MIDI-like
Remi (Huang and Yang, 2020) Transformer Pop775 REMI
CPW (Hsiao et al., 2021) Transformer Pop1k7 CP
PolyDiff (Min et al., 2023) Diffusion POP909 Piano roll

Table 5.1: Baselines for unconditional music generation.

Objective Metrics. It is worth mentioning that quantitative evaluation of music
quality remains an open problem (Yin et al., 2023). Nevertheless, we use the average
overlapping area (OA) between the intra-set and inter-set distribution of 7 musical
attributes (pitch range, note density, etc.) proposed in (Yang and Lerch, 2020) as the
objective metric for music quality. As a sanity check, we compare a subset of the
training dataset with another subset (denoted by GT in Table 5.2), and find that GT
on all the datasets achieves the highest average OA. This indicates that this metric is
a reasonable necessary condition for good generated music quality.

Results. The evaluation results are in Table 5.2, highlighting the highest values
(excluding GT) in bold. Our method achieves the highest average OA on all the
datasets. The baselines are trained on individual dataset, and do not generalize
well across datasets. MusicTr has the second-best overall rating for classical music
(Maestro and Muscore), while it holds the lowest rating for pop music. CPW, on the
other hand, ranks second in pop music but has the lowest rating in classical music. In
contrast, our model delivers strong performance consistently across all the datasets.



74

Dataset GT MusicTr Remi CPW PolyDiff Ours

Maestro 0.944± 0.002 0.903± 0.005 0.847± 0.005 0.801± 0.006 0.842± 0.007 0.943± 0.003
Muscore 0.945± 0.004 0.901± 0.004 0.879± 0.006 0.843± 0.007 0.845± 0.004 0.934± 0.003
Pop 0.957± 0.002 0.845± 0.004 0.866± 0.004 0.899± 0.005 0.883± 0.004 0.939± 0.004

Table 5.2: Average Overlapping Area (OA) across seven music attributes for uncon-
ditional generation, with highest non-GT OA bolded.

Individual Rule Guidance
Setup. We consider three rules: pitch histogram, note density (vertical and horizon-
tal) and chord progression, where pitch histogram is differentiable and the other two
are non-differentiable (see Appendix D.4 for the full definition of each rule). In our
evaluation of the guidance performance, we default to conditioning on the Muscore
dataset unless otherwise specified, owing to its comprehensive variety and extensive
coverage of a broad spectrum of rule labels. For each rule, we randomly select 200
samples from the test dataset, and extract their attributes as the target for guided
generation. We choose the number of samples to be 16 for SCG if without explicit
mentioning.

Baselines. We compare with two popular post-hoc guidance methods: classifier
guidance (Dhariwal and Nichol, 2021) and Diffusion Posterior Sampling (DPS)
(Chung et al., 2023). For classifier guidance, we train a classifier on noisy latent and
target pair for each rule. DPS only requires the loss to be defined on clean data x0 so
we can directly plug in the rule in the loss if the rule is differentiable (DPS-Rule)
without any additional training. However, it still requires the gradient of the rule,
and therefore we train a surrogate model (a neural network) for non-differentiable
rules (DPS-NN).

Results. Table 5.3 shows the loss between the generated attributes and the target at-
tributes, which measures the adherence to the rule. We make three main observations.
First, our method significantly outperforms the other methods on non-differentiable

rules (note density and chord progression). It achieves the lowest loss, without need
for training any surrogate model, which is mandatory for classifier guidance and
DPS-NN.

Second, we find it challenging to train neural network surrogate models to ap-
proximate non-differentiable rules (Appendix D.5), leading to poor performance
of guidance methods that rely on surrogate models. For differentiable rules (pitch
histogram), the surrogate model learns well and DPS-NN achieves the lowest loss.

Third, to the best of our knowledge, our method is the first plug-and-play guidance
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Method Pitch Histogram ↓ Note Density ↓ Chord Progression ↓
No Guidance 0.018± 0.010 2.486± 3.530 0.831± 0.142
Classifier 0.005± 0.004 0.698± 0.587 0.723± 0.200
DPS - NN 0.001± 0.002 1.261± 2.340 0.414± 0.256
DPS - Rule 0.010± 0.008 2.508± 2.798 -
SCG (ours) 0.003± 0.004 0.131± 0.325 0.2725± 0.1637

Table 5.3: Loss between the target and the generated attributes for individual rule
guidance. SCG significantly improves the controllability of non-differentiable rules.

method that supports non-differentiable and black-box loss functions. In contrast,
DPS-rule fails to guide on note density because the gradient is zero almost every-
where. It also does not apply to chord progression because the loss involves a
black-box API that cannot be back-propagated through. Overall, our method proves
especially beneficial for guiding the generation process with non-differentiable loss
functions, or for achieving guidance without the need for additional training.

Composite Rule Guidance

Method Pitch Histogram ↓ Note Density ↓ Chord Progression ↓
No Guidance 0.018± 0.010 2.486± 3.530 0.831± 0.142
Classifier 0.006± 0.006 0.822± 0.844 0.724± 0.205
DPS-NN 0.004± 0.006 1.366± 2.265 0.661± 0.257
SCG 0.014± 0.009 0.466± 0.648 0.446± 0.205
SCG + DPS-NN 0.002± 0.007 0.238± 0.531 0.313± 0.231
SCG + Classifier 0.003± 0.005 0.148± 0.203 0.284± 0.197

Table 5.4: Loss between the target and the generated attributes for individual rule
guidance. SCG + Classifier achieves significantly lower losses for all three rules
simultaneously.

We apply our method to generate samples that follow composite rules, following
the same setup in Section 5.6, and assuming that the rule labels are conditionally
independent given the sample. For classifier and DPS-NN, we train a surrogate model
for each rule, and combine the gradient of each classifier to obtain the guidance term:
Σiωi∇xt log pt(yi|xt). For our method, we use a weighted loss function Σiωiℓyi

(x)

to select the best direction for each step. We set the weights on pitch histogram, note
density and chord progression to be 40, 1, 1 respectively so that their loss is on the
same order of magnitude.

The results are presented in Table 5.4. Our method achieves much lower loss on non-
differentiable rules compared to other methods, similar to the case of individual rule
guidance. However, it compromises control over the pitch histogram. Additionally,



76

the loss associated with each rule is higher than in scenarios of individual rule
guidance, which aligns with expectations. This increase in loss occurs because it is
more challenging to identify a direction that satisfies multiple rules simultaneously,
as opposed to a single rule, within the same computational budget.

To enhance the controllability of composite rules, we integrate our SCG approach
with gradient-based guidance methods. In this framework, the gradient of the
surrogate model provides a preliminary guidance signal. SCG then identifies the
optimal directions along these initially guided trajectories. As indicated in Table 5.4,
this combination of our method with the baseline gradient method results in improved
controllability for each rule, compared to the baseline method alone. Furthermore,
we achieve a level of controllability comparable to that of individual rule guidance,
while using the same number of samples.

Ablation Studies
Controllability and Computational Time Trade-off. Table 5.5 shows the loss
achieved by SCG with different number of samples at each step. The time is reported
for generating 4 samples in a batch. As anticipated, more samples results in lower
loss, but requires more time. To achieve a balance between controllability and com-
putational efficiency, we integrate classifier guidance with SCG. This combination
yields interesting results: number of samples of 4, when used in conjunction with
classifier guidance, delivers similar performance to number of samples of 16 with
SCG alone, but is approximately four times faster.

Controllability and Quality Trade-Off. We observe a trade-off between control-
lability (measured by loss) and quality (measured by OA) in Table 5.5, where we
guide the model to generate music following given note density. This is because
there are more constraints on the generated music. For instance, a generative model
could generate music that follows the note density exactly, but completely ignore
the pitch of the notes. SCG achieves significant lower loss than the other guidance
methods while maintaining reasonably high music quality. In addition, one can tune
the balance between controllability and quality by tuning the number of samples at
each step.

Impact of Sampling Strategy. By default, we use DDPM with 1000 steps as the
base sampling algorithm, and apply SCG for rule guidance after 250 steps (t = 750).
The reason that we do not start SCG from the beginning is that the decoded piano rolls
at the beginning are quite sparse after thresholding the background. Consequently,
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Method n Loss ↓ OA ↑ Time (s)

Classifier 1 0.698± 0.587 0.914± 0.006 47.8
DPS-NN 1 1.261± 2.340 0.735± 0.012 109.3

4 0.318± 0.770 0.895± 0.006 277.7
SCG 8 0.214± 0.368 0.877± 0.006 531.6

16 0.131± 0.325 0.880± 0.003 1242.6

4 0.151± 0.298 0.906± 0.006 301.9
Classifier + SCG 8 0.098± 0.179 0.893± 0.004 555.6

16 0.064± 0.159 0.899± 0.007 1253.9

Table 5.5: Trade-offs between controllability, quality and computational time. n
refers to number of samples at each step.

the losses between the generated attributes and target attributes are almost the same
among different realizations at this stage, making it ineffective for selecting the best
directions.

To reduce the computational cost, we explore various sampling strategies, as detailed
in Table 5.6. Firstly, we experimented with applying SCG intermittently, every k

steps (k = 2, 5), and specifically during either the initial phase (750-400) or the
latter phase (400-0) of the DDPM-1000 process. Among these variants, conducting
SCG every 2 steps yielded the lowest loss. While the loss remains higher than in our
default setting, this approach is about twice as fast. Additionally, we observed that
applying SCG during the early phase of the process is more effective than in the later
phase, likely due to greater perturbations early on, which enhance the likelihood of
identifying optimal directions (see Appendix D.6 for more details).

Secondly, we considered early stopping of the DDPM-1000 process after k steps
(k = 800, 700). This is motivated by our use of post-processing techniques like
thresholding and smoothing note velocity on piano rolls, which reduces the need
for fine-tuning in the latter stages of the generation process. Early stopping at 200
steps resulted in only marginally inferior outcomes but cut computational time by a
quarter.

Finally, we explore the compatibility of SCG with other popular sampling algorithm
for diffusion models, such as DDIM (Song et al., 2021a). By default, DDIM is
deterministic. However, our SCG algorithm needs stochasticity to search for the best
direction. Therefore, we set stochasticity η = 1 in the DDIM algorithm and refer
the modified algorithm as stochastic DDIM (sDDIM). We tested sDDIM with 100,
50 and 25 steps. More steps offers lower loss and better music quality at a cost of
longer sampling time.
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Method Guided Steps Loss ↓ OA ↑ Time (s)

DDPM-1000

750-0 0.131± 0.325 0.880± 0.003 1242.6
every 2 0.365± 0.559 0.893± 0.006 635.4
every 5 0.632± 0.577 0.879± 0.005 269.8
750-400 0.458± 0.647 0.902± 0.009 594.7
400-0 1.297± 1.772 0.912± 0.007 674.6

DDPM†-800 750-200 0.183± 0.341 0.864± 0.005 912.6
DDPM†-700 750-300 1.950± 1.344 0.737± 0.011 747.3

sDDIM-100 all 0.303± 0.509 0.887± 0.005 164.3
sDDIM-50 all 0.372± 0.915 0.879± 0.008 81.9
sDDIM-25 all 0.428± 0.683 0.859± 0.005 40.7

Table 5.6: Impact of sampling strategy. The numbers that follow the method names
are the total sampling steps. †: early stopping.

Subjective Evaluation
To compare performance of our SCG algorithm and baselines (classifier guidance
and DPS), we carried out a listening test. We crafted four sets of rules (each set
comprised of PH, ND, and CP), and use each method to generate samples that follow
the rules, yielding a total of 12 samples, each 10.24 seconds long. Experienced
listeners assess the quality of samples in 4 dimensions: rule alignment, musical
creativity, musical coherence, and overall rating. In figure 5.3, SCG consistently
outperforms the baselines in all dimensions. For details of our survey, please see
Appendix D.8.

Examples of Our System as a Compositional Tool
To demonstrate how our system can be used effectively as a compositional tool,
we provide links to three example videos, available through this website. For each
video, a musician first indicated desired musical characteristics in terms of the rules
(e.g. fairly sparse excerpt, following a simple I-V chord progression in C major, etc).
The musician’s plan was to then loop this and use that as an accompaniment over

Figure 5.3: Subjective evaluation scores.

https://scg-rule-guided-music.github.io/
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which they would then improvise. The system generated 3-5 options (i.e. samples)
for each such request, and the musician chose their preferred sample with which to
work, from each set. They sent the generated MIDI output to a Disklavier piano and
then recorded a second track over top of that. In the accompanying videos (linked
below), you can see what the musician is playing, and everything “else” that you
hear is from the material that was generated by the system.

In Video 1, the model generated material that suggested a melody. Since the musician
wanted to play the second track in the upper register, they first allowed the excerpt to
play in full, as generated, and then removed the upper notes from the accompaniment
to give room for themselves to play overtop. They chose to use the model’s generated
melody as a motif, and further improvise based on it.

In Video 2, the model generates an excerpt with a steady accompanying triplet
ostinato behind a slower-moving descending melody in C minor (that suggests a
progression that moves between the I and the V).

In Video 3, the model generates a sample with a changing note density and texture,
and a slightly ambiguous harmonic quality that allowed flexibility in the improvising
over it.
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C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have delved into the inference dynamics of various deep learning
architectures and proposed methods to improve their reliability. In Chapter 2 and 3,
we studied the inference dynamics in standard neural networks with discrete layers,
and applied self-consistency and Lipschitz analysis to improve robustness against
input perturbations. In Chapter 4 and 5, we leveraged control theoretic tools to
shape the inference dynamics of continuous-depth neural networks, including neural
ODEs and diffusion models. Chapter 4 shows the advantage of forward invariance
analysis over Lipschitz bound analysis, noting its independence from integration
time. This feature facilitates the certification of robustness in neural ODEs over
extended integration time, akin to neural networks with an increased number of
discrete layers. In Chapter 5, we introduced stochastic control tools to shape the
inference dynamics of diffusion models. This new approach eliminates the need for
training surrogate models to steer diffusion models and provides the state-of-the-art
performance in guiding diffusion models to follow non-differentiable rules. Looking
ahead, we believe that leveraging control theoretic tools to shape inference dynamics
in neural networks presents numerous promising research directions and applications,
as elaborated below.

Improving Computational Efficiency. Despite of achieving the state-of-the-art
performance in guiding diffusion models to follow non-differentiable rules, our
Stochastic Control Guidance algorithm (Chapter 5) suffers from higher computa-
tional cost compared to alternative methods because it requires multiple samples
at each step. Addressing this computational demand is of significant interest. A
promising strategy to mitigate these costs involves policy iteration. Essentially, we
are solving an optimal control problem through Monte Carlo estimation. It has
been shown that the variance of the path weights will decrease as the control gets
closer to the optimal control for path integral control (Thijssen and Kappen, 2015).
Therefore, initiating the process with a better preliminary control can reduce the
number of samples needed to estimate the optimal control. Our preliminary efforts
in this direction, utilizing classifier guidance as a preliminary control, have shown
that it is possible to reduce the sample count needed for comparable levels of guid-
ance efficacy. Nonetheless, there remains much room for improvement, including
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the adoption of online learning techniques to refine the control policies during the
sampling process in diffusion models.

Certified Guarantees in Diffusion Models. Current guidance strategies for diffu-
sion models, including those presented in our work, lack a mechanism to guarantee
that the generated content adheres strictly to predefined requirements. This limitation
becomes particularly critical in safety-sensitive fields like medical imaging, where
it may be essential to certify the fidelity of generated content. A straightforward
solution might involve iterative sampling at each step, proceeding to the next step
only once the output satisfies the criteria. However, this approach is prohibitively
costly in computational terms, underscoring the necessity for more sophisticated and
adaptive methods.

Theoretical Analysis. The integration of control-inspired algorithms into deep
learning systems requires adaptations to accommodate their high dimensionality
and complexity. For example, the SCG algorithm, detailed in Chapter 5, uses a
one-step estimation of terminal costs instead of unrolling entire trajectories. This
simplification introduces a discrepancy between the theoretically optimal control
and the control achieved in practice. Quantifying this gap and evaluating the devia-
tion between the algorithm’s induced measure and that of the optimal control will
enhance our understanding of the method, improving confidence in its application.
Furthermore, analyzing the variance in the estimates of optimal control will allow us
to gain insights into the optimal sample size for the practical implementation.

Applications. Throughout this thesis, our evaluation of proposed methods have
predominantly centered on image classification, nonlinear control, and symbolic
music generation. Nonetheless, in principle, these methods can be applied to other
applications. For instance, the FI-ODE framework discussed in Chapter 4 could be
used in providing certified guarantees for streaming perception (Li et al., 2020). This
scenario involves continuous perception tasks rather than a single perception task on
a static image, which is suitable to the neural ODE architecture where prediction
is made every step. Similarly, the SCG algorithm introduced in Chapter 5 extends
beyond the realm of symbolic music generation. Its capability to enforce diffusion
models to follow non-differentiable constraints makes it suitable for diverse fields, in-
cluding protein design, which demands adherence to specific topological constraints,
and astronomy imaging, which often relies on black-box physics simulators.
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A p p e n d i x A

APPENDIX TO CHAPTER 2

A.1 Inference in the Deconvolutional Generative Model
Generative model
We choose the deconvolutional generative model (DGM) (Nguyen et al., 2018) as
the generative feedback in CNN-F. The graphical model of the DGM is shown in
Figure 2.2 (middle). The DGM has the same architecture as CNN and generates
images from high level to low level. Since low level features usually have higher
dimension than high level features, the DGM introduces latent variables at each level
to account for uncertainty in the generation process.

Let y ∈ RK be label, K is the number of classes. Let x ∈ Rn be image and h ∈ Rm

be encoded features of x after k convolutional layers. In a DGM with L layers in total,
g(ℓ) ∈ RC×H×W denotes generated feature map at layer ℓ, and z(ℓ) ∈ RC×H×W

denotes latent variables at layer ℓ. We use zR and zP to denote latent variables at
a layer followed by ReLU and MaxPool, respectively. In addition, we use (·)(i) to
denote the ith entry in a tensor. Let W (ℓ) and b(ℓ) be the weight and bias parameters
at layer ℓ in the DGM. We use (·)(∗⊺) to denote deconvolutional transpose in
deconvolutional layers and (·)⊺ to denote matrix transpose in fully connected layers.
In addition, we use (·)↑ and (·)↓ to denote upsampling and downsampling. The
generation process in the DGM is as follows:
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y ∼ p(y) (A.1)

g(L− 1) = W (L)⊺y (A.2)

zP (L− 1)(i) ∼ Ber

(
eb(L−1)·g(L−1)

(i)
↑

eb(L−1)·g(L−1)
(i)
↑ + 1

)
(A.3)

g(L− 2) = W (L− 1)(∗⊺){g(L− 1)↑ ⊙ zP (L− 1)} (A.4)
...

zR(ℓ)
(i) ∼ Ber

(
eb(ℓ)·g(ℓ)

(i)

eb(ℓ)·g(ℓ)(i) + 1

)
(A.5)

g(ℓ− 1) = W (ℓ)(∗⊺){zR(ℓ)⊙ g(ℓ)} (A.6)
...

x ∼ N (g(0), diag(σ2)) . (A.7)

In the above generation process, we generate all the way to the image level. If we
choose to stop at layer k to generate image features h, the final generation step is
h ∼ N (g(k), diag(σ2)) instead of (A.7). The joint distribution of latent variables
from layer 1 to L conditioning on y is:

p({z(ℓ)}ℓ=1:L|y) = p(z(L)|y)ΠL−1
ℓ=1 p(z(ℓ)|{z(k)}k≥ℓ, y)

= Softmax

(
L∑

ℓ=1

⟨b(ℓ), z(ℓ)⊙ g(ℓ)⟩
)

(A.8)

where Softmax(η) = exp(η)∑
η exp(η)

with η =
∑L

ℓ=1⟨b(ℓ), z(ℓ)⊙ g(ℓ)⟩.

Proof for Theorem 2.2.1
In this section, we provide proofs for Theorem 2.2.1. In the proof, we use f to
denote the feedforward feature map after convolutional layer in the CNN of the same
architecture as the DGM, and use (·)a to denote layers after nonlinear operators.
Let v be the logits output from fully-connected layer of the CNN. Without loss
of generality, we consider a DGM that has the following architecture. We list the
corresponding feedforward feature maps on the left column:
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g(0) = W (1)(∗⊺)ga(1)
Conv f(1) = W (1) ∗ x+ b(1) ga(1) = g(1)⊙ zR(1)

ReLU fa(1) = σAdaReLU(f(1)) g(1) = W (2)(∗⊺)ga(2)
Conv f(2) = W (2) ∗ fa(1) + b(2) ga(2) = g(2)↑ ⊙ zP (2)

Pooling fa(2) = σAdaPool(f(2)) g(2) = W (3)⊺v

FC v = W (3)fa(2)

We prove Theorem 2.2.1 which states that CNN with σAdaReLU and σAdaPool is the
generative classifier derived from the DGM by proving Lemma A.1.1 first.

Definition A.1.1. σAdaReLU and σAdaPool are nonlinear operators that adaptively choose
how to activate the feedforward feature map based on the sign of the feedback feature
map.

σAdaReLU(f) =

σReLU(f), if g ≥ 0

σReLU(−f), if g < 0
(A.9)

σAdaPool(f) =

σMaxPool(f), if g ≥ 0

−σMaxPool(−f), if g < 0
(A.10)

Definition A.1.2 (generative classifier). Let v be the logits output of a CNN, and
p(x, y, z) be the joint distribution specified by a generative model. A CNN is a
generative classifier of a generative model if Softmax(v) = p(y|x, z).

Lemma A.1.1. Let y be the label and x be the image. v is the logits output of

the CNN that has the same architecture and parameters as the DGM. g(0) is the

generated image from the DGM. α is a constant. η(y, z) =
∑L

ℓ=1⟨b(ℓ), z(ℓ)⊙ g(ℓ)⟩.
Then we have:

αy⊺v = g(0)⊺x+ η(y, z) . (A.11)
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Proof.

g(0)⊺x+ η(y, z)

={W (1)(∗⊺){g(1)⊙ zR(1)}}⊺x+ (zR(1)⊙ g(1))⊺b(1) + (zP (2)⊙ g(2)↑)
⊺b(2)

=(zR(1)⊙ g(1))⊺{W (1)(∗⊺)x+ b(1)}+ (zP (2)⊙ g(2)↑)
⊺b(2)

=g(1)⊺(zR(1)⊙ f(1)) + (zP (2)⊙ g(2)↑)
⊺b(2)

={W (2)(∗⊺){g(2)↑ ⊙ zP (2)}}⊺(zR(1)⊙ f(1)) + (zP (2)⊙ g(2)↑)
⊺b(2)

={g(2)↑ ⊙ zP (2)}⊺{W (2) ∗ (zR(1)⊙ f(1)) + b(2)}
=(W (3)⊺y)⊺↑{zP (2)⊙ f(2)}
=α(W (3)⊺y)⊺(zP (2)⊙ f(2))↓

=αy⊺W (3)(zP (2)⊙ f(2))↓

=αy⊺v .

Remark. Lemma A.1.1 shows that logits output from the corresponding CNN of the

DGM is proportional to the inner product of generated image and input image plus

η(y, z). Recall from Equation (A.7), since the DGM assumes x to follow a Gaussian

distribution centered at g(0), the inner product between g(0) and x is related to

log p(x|y, z). Recall from Equation (A.8) that conditionoal distribution of latent

variables in the DGM is parameterized by η(y, z). Using these insights, we can use

Lemma A.1.1 to show that CNN performs Bayesian inference in the DGM.

In the proof, the fully-connected layer applies a linear transformation to the input

without any bias added. For fully-connected layer with bias term, we modify η(y, z)

to η′(y, z):

η′(y, z) = η(y, z) + y⊺b(3) .

The logits are computed by

v = W (3)(f(2)⊙ z(2)) + b(3) .

Following a very similar proof as of Lemma A.1.1, we can show that

αy⊺v = g⊺(0) + η′(y, z) . (A.12)

With Lemma A.1.1, we can prove Theorem 2.2.1. Here, we repeat the theorem and
the assumptions on which it is defined:
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Assumption 2.2.1. (Constancy assumption in the DGM)

A. The generated image g(k) at layer k of DGM satisfies ||g(k)||22 = const.
B. Prior distribution on the label is a uniform distribution: p(y) = const.
C. Normalization factor in p(z|y) for each category is constant:

∑
z e

η(y,z) = const.

Theorem 2.2.1. Under Assumption 2.2.1, and given a joint distribution p(h, y, z)

modeled by the DGM, p(y|h, z) has the same parametric form as a CNN with
σAdaReLU and σAdaPool.

Proof. Without loss of generality, assume that we generate images at a pixel level.
In this case, h = x. We use p(x, y, z) to denote the joint distribution specified by
the DGM. In addition, we use q(y|x, z) to denote the Softmax output from the CNN,
i.e., q(y|x, z) = y⊺ev∑K

i=1 e
v(i)

. To simplify the notation, we use z instead of {z(ℓ)}ℓ=1:L

to denote latent variables across layers.

log p(y|x, z)
= log p(y, x, z)− log p(x, z)

= log p(x|y, z) + log p(z|y) + log p(y)− log p(x, z)

= log p(x|y, z) + log p(z|y) + const. (*)

=− 1

2σ2
||x− g(0)||22 + log Softmax(η(y, z)) + const.

=
1

σ2
g(0)⊺x+ log Softmax(η(y, z)) + const. (Assumption 2.2.1.A)

=
1

σ2
g(0)⊺x+ log

eη(y,z)∑
z e

η(y,z)
+ const.

=
1

σ2
g(0)⊺x+ η(y, z) + const. (Assumption 2.2.1.C)

=αy⊺v + const. (Lemma A.1.1)

=α(log q(y|x, z) + log
K∑
i=1

ev
(i)

) + const.

=α log q(y|x, z) + const. (**)

We obtain line (∗) for the following reasons: log p(y) = const. according to Assump-
tion 2.2.1.B, and log p(x, z) = const. because only y is variable, x and z are given.
We obtained line (∗∗) because given x and z, the logits output are fixed. Therefore,
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log
∑K

i=1 e
v(i) = const.. Take exponential on both sides of the above equation, we

have:

p(y|x, z) = βq(y|x, z) (A.13)

where β is a scale factor. Since both q(y|x, z) and p(y|x, z) are distributions, we
have

∑
y p(y|x, z) = 1 and

∑
y q(y|x, z) = 1. Summing over y on both sides of

Equation (A.13), we have β = 1. Therefore, we have q(y|x, z) = p(y|x, z).

We have proved that CNN with σAdaReLU and σAdaPool is the generative classifier
derived from the DGM that generates to layer 0. In fact, we can extend the results to
all intermediate layers in the DGM with the following additional assumptions:

Assumption A.1.1. Each generated layer in the DGM has a constant ℓ2 norm:
||g(ℓ)||22 = const., ℓ = 1, . . . , L.

Assumption A.1.2. Normalization factor in p(z|y) up to each layer is constant:∑
z e

η(y,{z(j)}j=ℓ:L) = const., ℓ = 1, . . . , L.

Corollary A.1.1.1. Under Assumptions A.1.1, A.1.2 and 2.2.1.B, p(y|f(ℓ), {z(j)}j=ℓ:L)

in the DGM has the same parametric form as a CNN with σAdaReLU and σAdaPool start-

ing at layer ℓ.

Proof for Proposition 2.2.1.B
In this section, we provide proofs for Proposition 2.2.1.B. In the proof, we inherit
the notations that we use for proving Theorem 2.2.1. Without loss of generality, we
consider a DGM that has the same architecture as the one we use to prove Theorem
2.2.1.

Proposition 2.2.1.B. Under Assumption 2.2.1, MAP estimate of z(ℓ) conditioned
on h, y and {z(j)}j ̸=ℓ in the DGM is:

ẑR(ℓ) = 1(σAdaReLU(f(ℓ)) ≥ 0) (A.14)

ẑP (ℓ) = 1(g(ℓ) ≥ 0)⊙ argmax
r×r

(f(ℓ)) + 1(g(ℓ) < 0)⊙ argmin
r×r

(f(ℓ)) . (A.15)
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Proof. Without loss of generality, assume that we generate images at a pixel level.
In this case, h = x. Then we have

argmax
z(ℓ)

log p(z(ℓ)|{z(j)}j ̸=ℓ, x, y)

= argmax
z(ℓ)

log p({z(j)}j=1:L, x, y)

= argmax
z(ℓ)

log p(x|y, {z(j)}j=1:L) + log p({z(j)}j=1:L|y) + log p(y)

= argmax
z(ℓ)

log p(x|y, {z(j)}j=1:L) + η(y, z) + const. (Assumption 2.2.1.B,C)

=argmax
z(ℓ)

1

σ2
g(0)⊺x+ η(y, z) + const. (Assumption 2.2.1.A)

Using Lemma A.1.1, the MAP estimate of zR(ℓ) is:

ẑR(ℓ) = argmax
zR(ℓ)

(zR(ℓ)⊙ g(ℓ))⊺f(ℓ)

= 1(σAdaReLU(f(ℓ)) ≥ 0) .

The MAP estimate of zP (ℓ) is:

ẑP (ℓ) = argmax
zP (ℓ)

(zP (ℓ)⊙ g(ℓ)↑)
⊺f(ℓ)

= 1(g(ℓ) ≥ 0)⊙ argmax
r×r

(f(ℓ)) + 1(g(ℓ) < 0)⊙ argmin
r×r

(f(ℓ)) .

Incorporating instance normalization in the DGM
Inspired by the constant norm assumptions (Assumptions 2.2.1.A and A.1.1), we
incorporate instance normalization into the DGM. We use (·) = (·)

||·||2 to denote
instance normalization, and (·)n to denote layers after instance normalization. In
this section, we prove that with instance normalization, CNN is still the generative
classifier derived from the DGM. Without loss of generality, we consider a DGM
that has the following architecture. We list the corresponding feedforward feature
maps on the left column:
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g(0) = W (1)(∗⊺)ga(1)
Conv f(1) = W (1) ∗ x ga(1) = gn(1)⊙ zR(1)

Norm fn(1) = f(1) gn(1) = g(1)

ReLU fa(1) = σAdaReLU(fn(1) + b(1)) g(1) = W (2)(∗⊺)ga(2)
Conv f(2) = W (2) ∗ fa(1) ga(2) = gn(2)↑ ⊙ zP (2)

Norm fn(2) = f(2) gn(2) = g(2)

Pooling fa(2) = σAdaPool(fn(2) + b(2)) g(2) = W (3)⊺v

FC v = W (3)fa(2)

Assumption A.1.3. Feedforward feature maps and feedback feature maps have the
same ℓ2 norm:

||g(ℓ)||2 = ||f(ℓ)||2, ℓ = 1, . . . , L

||g(0)||2 = ||x||2 .

Lemma A.1.2. Let y be the label and x be the image. v is the logits output of

the CNN that has the same architecture and parameters as the DGM. g(0) is the

generated image from the DGM, and g(0) is normalized g(0) by ℓ2 norm. α is a

constant. η(y, z) =
∑L

ℓ=1⟨b(ℓ), z(ℓ)⊙ g(ℓ)⟩. Then we have

αy⊺v = g(0)
⊺
x+ η(y, z) . (A.16)
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Proof.

g(0)
⊺
x+ η(y, z)

={W (1)(∗⊺){gn(1)⊙ zR(1)}}⊺
x

||g(0)||2
+ (zR(1)⊙ g(1))⊺b(1)

+ (zP (2)⊙ g(2)↑)
⊺b(2)

=(zR(1)⊙ gn(1))
⊺{W (1)(∗⊺)x}+ (zR(1)⊙ g(1))⊺b(1)

+ (zP (2)⊙ g(2)↑)
⊺b(2) (Assumption A.1.3)

=g(1)⊺{zR(1)⊙ (fn(1) + b(1))}+ (zP (2)⊙ g(2)↑)
⊺b(2) (Assumption A.1.3)

={W (2)(∗⊺){gn(2)↑ ⊙ zP (2)}}⊺(zR(1)⊙ f(1)) + (zP (2)⊙ g(2)↑)
⊺b(2)

={gn(2)↑ ⊙ zP (2)}⊺{W (2) ∗ (zR(1)⊙ f(1))}+ (zP (2)⊙ g(2)↑)
⊺b(2)

=g(2)⊺{zP (2)⊙ (fn(2) + b(2))} (Assumption A.1.3)

=(W (3)⊺y)⊺↑{zP (2)⊙ f(2)}
=α(W (3)⊺y)⊺(zP (2)⊙ f(2))↓

=αy⊺W (3)(zP (2)⊙ f(2))↓

=αy⊺v .

Theorem A.1.3. Under Assumptions A.1.3 and 2.2.1.B and 2.2.1.C, and given

a joint distribution p(h, y, z) modeled by the DGM with instance normalization,

p(y|h, z) has the same parametric form as a CNN with σAdaReLU, σAdaPool and instance

normalization.

Proof. The proof of Theorem A.1.3 is very similar to that of Theorem 2.2.1 using
Lemma A.1.2. Therefore, we omit the detailed proof here.

Remark. The instance normalization that we incorporate into the DGM is not

the same as the instance normalization that is typically used in image stylization

(Ulyanov et al., 2016). The conventional instance normalization computes output y

from input x as y = x−µ(x)
σ(x)

, where µ and σ stands for mean and standard deviation

respectively. Our instance normalization does not subtract the mean of the input and

divides the input by its ℓ2 norm to make it have constant ℓ2 norm.

CNN-F on ResNet
We can show that CNN-F can be applied to ResNet architecture following similar
proofs as above. When there is a skipping connection in the forward pass in ResNet,
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we also add a skipping connection in the generative feedback. CNN-F on CNN with
and without skipping connections are shown in Figure A.1.

A.2 Additional Experiment Details
Standard Training on Fashion-MNIST
Experimental Setup. We use the following architecture to train CNN-F: Conv2d(32,
3× 3), Instancenorm, AdaReLU, Conv2d(64, 3× 3), Instancenorm, AdaPool, Re-
shape, FC(128), AdaReLU, FC(10). The instance normalization layer we use is
described in Appendix A.1. All the images are scaled between [−1,+1] before
training. We train both CNN and CNN-F with Adam (Kingma and Ba, 2015), with
weight decay of 0.0005 and learning rate of 0.001.
We train both CNN and CNN-F for 30 epochs using cross-entropy loss and recon-
struction loss at pixel level as listed in Table 2.1. The coefficient of cross-entropy
loss and reconstruction loss is set to be 1.0 and 0.1 respectively. We use the projected
gradient descent (PGD) method to generate adversarial samples within L∞-norm
constraint, and denote the maximum L∞-norm between adversarial images and clean
images as ϵ. The step size in PGD attack is set to be 0.02. Since we preprocess
images to be within range [−1,+1], the values of ϵ that we report in this paper are
half of their actual values to show a relative perturbation strength with respect to
range [0, 1].

FC

ReLU

IN

Conv

ReLU

IN

Conv

𝑥

FC

𝑣

IN

ReLU

Conv

IN

ReLU

Conv

𝑔(0)

𝑣

…

FC

ReLU

IN

Conv2

Conv1

ReLU

IN

ReLU

IN

Conv2

ReLU

IN

FC

IN

ReLU

Conv2

IN

ReLU

Conv1

IN

ReLU

Conv2

IN

ReLU

…

VGG/Allconv/…

ResNet

Figure A.1: CNN-F on CNN with and without skipping connections.
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Adversarial Accuracy against End-to-end Attack. Figure A.2 shows the results
of end-to-end (e2e) attack. CNN-F-5 significantly improves the robustness of CNN.
Since attacking the first forward pass is more effective than end-to-end attack, we
report the adversarial robustness against the former attack in the main text. There
are two reasons for the degraded the effectiveness of end-to-end attack. Since
σAdaReLU and σAdaPool in the CNN-F are non-differentiable, we need to approximate
the gradient during back propagation in the end-to-end attack. Furthermore, to
perform the end-to-end attack, we need to back propagate through unrolled CNN-F,
which is k times deeper than the corresponding CNN, where k is the number of
iterations during evaluation.
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(a) Standard training. Testing w/ FGSM.
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Figure A.2: Adversarial robustness on Fashion-MNIST against end-to-end
attack. CNN-F-k stands for CNN-F trained with k iterations; PGD-c stands for a
PGD attack with c steps. CNN-F achieves higher accuracy on MNIST than CNN
for under both standard training and adversarial training. Each accuracy is averaged
over 4 runs and the error bar indicates standard deviation.

Adversarial training
Fashion-MNIST. On Fashion-MNIST, we use the following architecture: Conv2d
(16, 1×1), Instancenorm, AdaReLU, Conv2d (32, 3×3), Instancenorm, AdaReLU,
Conv2d (32, 3×3), Instancenorm, AdaReLU, AdaPool (2×2), Conv2d (64, 3×3),
Instancenorm, AdaReLU, AdaPool (2×2), Reshape, FC(1000), AdaReLU, FC(128),
AdaReLU, FC(10). The intermediate reconstruction losses are added at the two
layers before AdaPool. The coefficients of adversarial sample cross-entropy losses
and reconstruction losses are set to 1.0 and 0.1, respectively. We scaled the input
images to [-1,+1]. We trained with PGD-7 attack with step size 0.071. We report
half of the actual ϵ values in the paper to show a relative perturbation strength with
respect to range [0, 1]. To train the models, we use SGD optimizer with learning
rate of 0.05, weight decay of 0.0005, momentum of 0.9 and gradient clipping with
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magnitude of 0.5. The batch size is set to be 256. We use polynomial learning rate
scheduling with power of 0.9. We trained the CNN-F models with one iteration for
200 epochs using the following hyper-parameters: online update step size 0.1, ind 2
(using two convolutional layers to encode images to feature space), clean coefficients
0.1.

CIFAR-10. On CIFAR-10, we use Wide ResNet (WRN) (Zagoruyko and Ko-
modakis, 2016) with depth 40 and width 2. The WRN-40-2 architecture consists of
3 network blocks, and each of them consists of 3 basic blocks with 2 convolutional
layers. The intermediate reconstruction losses are added at the layers after every
network block. The coefficients of adversarial sample cross-entropy losses and
reconstruction losses are set to 1.0 and 0.1, respectively. We scaled the input images
to [-1,+1]. We trained with PGD-7 attack with step size 0.02. We report half of the
actual ϵ values in the paper to show a relative perturbation strength with respect to
range [0, 1]. To train the models, we use SGD optimizer with learning rate of 0.05,
weight decay of 0.0005, momentum of 0.9 and gradient clipping with magnitude of
0.5. The batch size is set to be 256. We use polynomial learning rate scheduling
with power of 0.9. We trained the models for 500 epochs with 2 iterations. For the
results in Table 2.3, we trained the models using the following hyper-parameters:
online update step size 0.1, ind 5, clean coefficients 0.05. In addition, we perform an
ablation study on the influence of hyper-parameters.

Which Layer to Reconstruct to? The feature space to reconstruct to in the genera-
tive feedback influences the robustness performance of CNN-F. Table A.1 list the
adversarial accuracy of CNN-F with different ind configuration, where “ind” stands
for the index of the basic block we reconstruct to in the first network block. For
instance, ind=3 means that we use all the convolutional layers before and including
the third basic block to encode the input image to the feature space. Note that
CNN-F models are trained with two iterations, online update step size 0.1, and clean
cross-entropy loss coefficient 0.05.

Table A.1: Adversarial accuracy on CIFAR-10 over 3 runs. ϵ = 8/255.

Clean PGD (first) PGD (e2e) SPSA (first) SPSA (e2e) Transfer Min

CNN-F (ind=3, last) 78.94± 0.16 46.03± 0.43 60.48± 0.66 68.43± 0.45 64.14± 0.99 65.01± 0.65 46.03± 0.43
CNN-F (ind=4, last) 78.69± 0.57 47.97± 0.65 56.40± 2.37 69.90± 2.04 58.75± 3.80 65.53± 0.85 47.97± 0.65
CNN-F (ind=5, last) 78.68± 1.33 48.90± 1.30 49.35± 2.55 68.75± 1.90 51.46± 3.22 66.19± 1.37 48.90± 1.30

CNN-F (ind=3, avg) 79.89± 0.26 45.61± 0.33 67.44± 0.31 68.75± 0.66 70.15± 2.21 64.85± 0.22 45.61± 0.33
CNN-F (ind=4, avg) 80.07± 0.52 47.03± 0.52 63.59± 1.62 70.42± 1.42 65.63± 1.09 65.92± 0.91 47.03± 0.52
CNN-F (ind=5, avg) 80.27± 0.69 48.72± 0.64 55.02± 1.91 71.56± 2.03 58.83± 3.72 67.09± 0.68 48.72± 0.64

Cross-entropy Loss Coefficient on Clean Images. We find that a larger coefficient
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of the cross-entropy loss on clean images tends to produce better end-to-end attack
accuracy even though sacrificing the first attack accuracy a bit (Table A.2). When
the attacker does not have access to intermediate output of CNN-F, only end-to-end
attack is possible. Therefore, one may prefer models with higher accuracy against
end-to-end attack. We use cc to denote the coefficients on clean cross-entropy. Note
that CNN-F models are trained with one iteration, online update step size 0.1, ind 5.

Table A.2: Adversarial accuracy on CIFAR-10 over 3 runs. ϵ = 8/255.

Clean PGD (first) PGD (e2e) SPSA (first) SPSA (e2e) Transfer Min

CNN-F (cc=0.5, last) 82.14± 0.07 45.98± 0.79 59.16± 0.99 72.13± 2.99 59.53± 2.92 67.27± 0.35 45.98± 0.79
CNN-F (cc=0.1, last) 78.19± 0.60 47.65± 1.72 56.93± 9.20 66.51± 1.10 61.25± 4.23 64.93± 0.70 47.65± 1.72
CNN-F (cc=0.05, last) 78.68± 1.33 48.90± 1.30 49.35± 2.55 68.75± 1.90 51.46± 3.22 66.19± 1.37 48.90± 1.30

CNN-F (cc=0.5, avg) 83.15± 0.29 44.60± 0.53 68.76± 1.04 72.34± 3.54 68.80± 1.18 67.53± 0.48 44.60± 0.53
CNN-F (cc=0.1, avg) 80.06± 0.65 46.77± 1.38 63.43± 7.77 69.11± 0.77 66.25± 4.40 65.56± 1.08 46.77± 1.38
CNN-F (cc=0.05, avg) 80.27± 0.69 48.72± 0.64 55.02± 1.91 71.56± 2.03 58.83± 3.72 67.09± 0.68 48.72± 0.64
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A p p e n d i x B

APPENDIX TO CHAPTER 3

B.1 Method Details
A Toy Example
In this section, we provide a toy example to walk through the tighter local Lipschitz
bound calculation method in a three-layer neural network step by step. Consider a
3-layer neural network with ReLUθ activation:

x→ W 1 → ReLUθ → W 2 → ReLUθ → W 3 → y ,

where input x ∈ R3 and output y ∈ R.

Suppose at a certain training epoch t, weight matrices have the following values,

W 1 = W 2 =

3 0 0

0 2 0

0 0 1

 ,W 3 =
[
1 1 1

]
, θ = 1.

Consider an input x = [1,−1, 0]⊤ and input perturbation ||x′ − x|| ≤ 0.1. Directly
using the global Lipschitz bound, we have the following result,

Lglob ≤ ||W 3||||W 2||||W 1|| = 9
√
3. (B.1)

Consider our approach for local Lipschitz bound computation. Given input x =

[1,−1, 0]⊤ and bounded perturbed input ||x′−x|| ≤ 0.1, the feature map after W1 is
[[2.7, 3.3], [−2.2,−1.8], [−0.1, 0.1]]⊺, where we use [LB,UB] to denote the interval
bound for every entry. After ReLUθ , the feature map turns into [1, 0, [0, 0.1]]⊺,
where the first entry is a constant because it is clipped by the upper threshold θ,
and the second entry is a constant because it is always less than zero. The third
entry varies under perturbation. Using these interval bounds, we can compute the
indicator matrices I1C, I1θ and I1V. After the second weight matrix W2, the feature
map is [3, 0, [0, 0.1]]⊺. We can compute the local indicator matrices at this layer
accordingly. Specifically, the local indicator matrices are as follows,

I1C =

0 0 0

0 1 0

0 0 0

 , I1θ =

1 0 0

0 0 0

0 0 0

 , I1V =

0 0 0

0 0 0

0 0 1

 ,
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I2C =

0 0 0

0 1 0

0 0 0

 , I2θ =

1 0 0

0 0 0

0 0 0

 , I2V =

0 0 0

0 0 0

0 0 1

 ,

and the local Lipschitz bound around input x = [1,−1, 0]⊤ follows,

Llocal(x) ≤ ∥W 3I2V∥∥I2VW 2I1V∥∥I1VW 1∥

= ∥
[
0 0 1

]
∥∥

0 0 0

0 0 0

0 0 1

 ∥∥
0 0 0

0 0 0

0 0 1

 ∥ = 1 (B.2)

which is significantly tighter than the global Lipschitz bound obtained in Eq (B.1).

Why Not Consider Linear ReLU Outputs?
Our approach for tighter local Lipschitz bound separate ReLU outputs to two classes:
constant ReLU outputs and varying ReLU outputs under perturbation. In fact, there
is another case of ReLU outputs, where the outputs of ReLU equal to the inputs. We
refer to these outputs as linear ReLU outputs. In this section, we derive the local
Lipschitz bound when considering linear ReLU outputs, and we will find this bound
is not necessarily smaller than the global Lipshitz bound.

For simplicity, let us consider the standard ReLU activation. There are three different
types of ReLU outputs (linear, fixed, varying). We inherit the notations from the
main text, and use IL to denote the indicator matrix for linear ReLU outputs. The
indicator matrices for the three different types of ReLU outputs are:

I lL(i, i) =

1 if LBl
i > 0

0 otherwise
, I lC(i, i) =

1 if UBl
i ≤ 0

0 otherwise
, I lV = I − IL − IC ,

(B.3)
where I is the identity matrix.

In addition, we use DL and DV to denote the slope of ReLU outputs for the linear
and varying neurons. The elements in DL and DV can either be 0 or 1 due to
the piece-wise linear property of ReLU. We omit the constant ReLU outputs here
because they are all zero.

Dl
L(i, i) =

1 if I lL(i, i) = 1

0 if I lL(i, i) = 0
, Dl

V(i, i) =

1(ReLU(zli) > 0) if I lV(i, i) = 1

0 if I lV(i, i) = 0
,

(B.4)
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where 1 denotes an indicator function.

Let us consider a 3-layer neural network with ReLU activation:

x→ W 1 → ReLU→ W 2 → ReLU→ W 3 → y.

Then, the neural network function (denoted as F (x;W )) can be written as:

F (x;W ) = (W 3(D2
L +D2

V)W
2(D1

L +D1
V)W

1)x

= (W 3D2
LW

2D1
LW

1 +W 3D2
LW

2D1
VW

1 +W 3D2
VW

2D1
LW

1

+W 3D2
VW

2DVW
1)x (B.5)

Bounding the local Lipschitz constant from Eq (B.5), we get

L′
local = ∥W 3D2

LW
2D1

LW
1 +W 3D2

LW
2D1

VW
1 +W 3D2

VW
2D1

LW
1

+W 3D2
VW

2D1
VW

1∥
≤ ∥W 3D2

LW
2D1

LW
1∥+ ∥W 3D2

LW
2D1

VW
1∥+ ∥W 3D2

VW
2D1

LW
1∥

+ ∥W 3D2
VW

2D1
VW

1∥ (B.6)

≤ ∥W 3D2
LW

2D1
LW

1∥+ ∥W 3D2
LW

2I1V∥∥I1VW 1∥+ ∥W 3I2V∥∥I2VW 2D1
LW

1∥
+ ∥W 3I2V∥∥I2VW 2I1V∥∥I1VW 1∥ , (B.7)

where Eq (B.6) uses triangular inequality, and Eq (B.7) uses Cauchy–Schwarz
inequality and the fact that the Lipschitz constant of ReLU is smaller than 1.

The key observation from this approach is that we can “merge” the weight ma-
trices together for linear neurons (the first term in Eq (B.7)). Then we have
∥W 3D2

LW
2D1

LW
1∥ ≤ ∥W 3∥∥W 2∥∥W 1∥. Furthermore, if the singular vectors

for the weight matrices are not aligned, ∥W 3D2
LW

2D1
LW

1∥ will be much tighter
than ∥W 3∥∥W 2∥∥W 1∥.

However, there are three other non-negative terms in Eq (B.7) from the triangular
inequality. Even though the first term could be smaller than the global Lipschitz
bound, the summation can be larger than the global Lipschitz bound. In comparison,
our approach always guarantees tighter Lipschitz bound as proved in Theorem 3.3.1.

B.2 Review of Other Robust Training Methods
During training, we combine our method with state-of-the-art certifiable training
algorithms that involves using L2 Lipchitz bound such as BCP (Lee et al., 2020) and
Gloro (Leino et al., 2021). In this section, we first introduce the goal of certifiable
robust training and then describe BCP and Gloro in more detail.



102

Consider a neural network that maps input x to output z = F (x), where z ∈ RN .
The ground truth label is y. The goal of certifiable training is to minimize the the
certified error R. However, computing the exact solution of R is NP-complete
(Katz et al., 2017). So in practice, many certifiable training algorithms compute an
outer bound of the perturbation sets in logit space ẑ(B(x)), and find the worst logit
z∗ ∈ ẑ(B(x)) to obtain an upper bound of R,

R = E(x,y)∼D[ max
z∈F (B2(x,ϵ))

1(argmax z ̸= y)]

≤ E(x,y)∼D[ max
z∈ẑ(B(x))

1(argmax z ̸= y)]

= E(x,y)∼D[1(argmax z∗ ̸= y)] (B.8)

where B2(x, ϵ) denotes the ℓ2 perturbation set in the input space, B2(x, ϵ) = {x′ :

∥x′ − x∥2 ≤ ϵ}, and F (B2(x, ϵ)) ⊂ ẑ(B(x)). In the subsequent text, we use B(x) in
place of B2(x, ϵ) for short. The main difference between BCP and Gloro is how they
compute ẑ(B(x)) and find the worst logits.

BCP. In BCP, the perturbation set in the input space is propagated through all layers
except the last one to get the ball outer bound Bl

2 and box outer bound Bl
∞ at layer

l. Specifically, the l-th layer box outer bound with midpoint ml and radius rl is
Bl

∞(ml, rl) = {zl : |zli−ml
i| ≤ rli,∀i}. To compute the indicator matrix in Equation

(3.3) and (3.9) for our local Lipschitz bound, we need to bound each neuron by
lbli ≤ zli ≤ ubli, where

ubl = min(ml
∞ + rl∞,ml

ball + rlball) (B.9)

lbl = max(ml
∞ − rl∞,ml

ball − rlball) . (B.10)

In the case of linear layers, it follows

ml
∞ = W lml−1 + bl, rl∞ = |W l|rl−1;ml

ball = W lzl−1 + bl, rball
l
i = ∥W l

i,:∥ρl−1

(B.11)
where ρl−1 = ϵ

∏l−1
k=1 ∥W k∥,ml−1 = (ubl−1 + lbl−1)/2, and rl−1 = (ubl−1 −

lbl−1)/2.

Then an outer bound of the perturbation sets in logit space ẑ(B(x)) is computed via
the ball and box constraints on the second last layer: ẑ(B(x)) = WL(BL−1

∞ ∩ BL−1
2 ).

Finally, the worst logit is computed as

z∗i = Fy(x)− min
z∈ẑ(B(x))

(zy − zi) (B.12)
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where Fy(x) denotes the y th entry of F (x) that corresponds to the ground truth
label.

Gloro. Unlike BCP, Gloro does not use the local information from box propagation
to compute ẑ(B(x)) for computation efficiency. In addition, Gloro creates a new class
in the logits indicating non-certifiable prediction. The worst logit is computed as
by appending the new entry after original logits output z̃(x) = [F (x)|maxm ̸=y z

∗
m],

where z∗m is computed by (B.12) with only ball constraints ẑ(B(x)) = WL(BL−1
2 ).

However, when we combine our method with Gloro, we use their way to construct
the new class in the worst logit, but keeps the box constraint when computing
ẑ(B(x)).

The loss in certifiable training algorithms is a mixed loss function on a normal logit
z = F (x) and the worst logit z∗(x):

L = E(x,y)∼D[(1− λ)L(z(x), y) + λL(z∗(x), y)] (B.13)

where L denotes cross entropy loss, and λ is a hyper-parameter.

B.3 Experimental Details
Training Details
Computing Resources. We train our MNIST and CIFAR models on 1 NVIDIA
V100 GPU with 32 GB memory. We train our Tiny-Imagenet model on 4 NVIDIA
V100 GPUs.

Architecture. We denote a convolutional layer with output channel c, kernel size
k, stride s and output padding p as C(c, k, s, p) and the fully-connected layer with
output channel c as F(c). We apply ReLUθ activation after every convolutional layer
and fully-connected layer except the last fully-connected layer.

• 4C3F: C(32,3,1,1)-C(32,4,2,1)-C(64,3,1,1)-C(64,4,2,1)-F(512)-F(512)-F(10)

• 6C2F: C(32,3,1,1)-C(32,3,1,1)-C(32,4,2,1)-C(64,3,1,1)-C(64,3,1,1)-C(64,4,2,1)-
F(512)-F(10)

• 8C2F: C(64,3,1,1)-C(64,3,1,1)-C(64,4,2,0)-C(128,3,1,1)-C(128,3,1,1)-C(128,4,2,0)-
C(256,3,1,1)- C(256,4,2,0)-F(256)-F(200)

Loss. We train with the standard certifiable training loss from Eq (B.13) and the
sparsity loss from Eq (3.12) used to encourage constant neurons. The total loss for
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ReLU networks is:

L = E(x,y)∼D[(1− λ)L(z(x), y) + λL(z∗(x), y)]
+ λsparsity(max(0,UBl

i)

+ λθ max(0, θi − LBl
i)) (B.14)

where λ, λsparsity and λθ are hyper-parameters. The total loss for MaxMin networks
is defined similarly with LMaxMin

sparsity from Eq (3.13).

Hyper-parameters. The hyper-parameters that we use during training is listed in
Table B.1. Power iters. stands for the number of power iterations that we use during
training. Intial threshold for ReLUθ is the initialization value of the upper threshold
in ReLUθ . For all our experiments, we use the Adam optimizer (Kingma and Ba,
2015). For CIFAR experiments, we use the same hyper-parameters for both ReLU
and MaxMin activations.

Learning rate scheduling We train with the initial learning rate for m epochs and
then start exponential learning rate decay. Let T be the total number of epochs.
Learning rate (LR) for epoch t is:

LR(t) =

Initial_LR if t ≤ m

Initial_LR( End_LR
Initial_LR)

t−m
T−m if t > m .

(B.15)

ϵ scheduling We gradually increase ϵ during training to a target value ϵtarget over n
epochs. The target value is set to be slightly larger than the ϵ that we aim to certify
during evaluation time to give better performance (Leino et al., 2021). ϵ for epoch t

is:

ϵ(t) =

 t
n
ϵtarget if t ≤ n

ϵtarget if t > n .
(B.16)

mixture loss scheduling When combined with BCP, we train with the mixed loss of
clean cross entropy loss and robust cross entropy loss. We increase λ in Equation
B.13 from 0 to 1 linearly over n epochs. λ for epoch t is:

λ(t) =

 t
n

if t ≤ n

1 if t > n .
(B.17)
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Table B.1: Hyper-parameters used in certifiable training.

Dataset MNIST CIFAR Tiny-Imagenet (ReLU) Tiny-Imagenet (MaxMin)

Initial LR 0.001 0.001 2.5e−4 1e−4
End LR 5e−6 1e−6 5e−7 5e−7

Batch Size 256 256 128 128
ϵtrain 1.58 0.1551 0.16 0.16
λsparse 0.0 0.0 0.01 0.01
λθ 0.0 0.0 0.1 0.1

Warm-up Epochs 0 20 0 0
Total Epochs 300 800 250 250

LR Decay Epoch (m) 150 400 150 150
ϵ Sched. Epochs (n) 150 400 125 125

Power Iters. 5 2 1 3

Ablation Studies
Reproducibility. We train each model with 3 random seeds and report the average
accuracy and the standard deviation in Table B.2. For MNIST, we train with our
local Lipscthiz bound and the Gloro loss. CIFAR and Tiny-Imagenet, we train with
our local Lipscthiz bound and the BCP loss. In the main text (Table 3.2), we report
the best accuracy out of 3 runs.

Comparison to Techniques Designed to Certify a Fixed, Post-training Network.
We used the state-of-the-art NN verifier (alpha-beta-CROWN (Zhang et al., 2018;
Xu et al., 2021; Wang et al., 2021)) from the VNN challenge (Bak et al., 2021)
to certify a fixed, post-training network trained. The trained network is trained by
techniques proposed by Xiao et al. (2019). Xiao et al. (2019) proposed a ℓ∞ norm
certified defense by imposing ReLU stability regularizer with adversarial training,
and verifying the network using a mixed integer linear programming (MILP) verifier.
The original approach in Xiao et al. (2019) is not directly applicable to our setting,
as they relied on the MILP verifier which cannot scale to the large models evaluated
in our paper, and they focused on ℓ∞ norm robustness. To make a fair comparison to
their approach, we made a few extensions to their paper:

Table B.2: Average accuracy and standard deviation over 3 runs. The performance
of our method is consistent across different runs.

Data ϵ Model Clean (%) PGD (%) Certified (%)

MNIST 1.58 4C3F 96.29 ± 0.07 78.31 ± 0.08 55.79 ± 0.23
CIFAR-10 36/255 4C3F 69.78 ± 0.30 63.95 ± 0.26 53.40 ± 0.08
CIFAR-10 36/255 6C2F 70.64 ± 0.05 64.81 ± 0.05 53.96 ± 0.60

Tiny-Imagenet 36/255 8C2F 29.78 ± 0.08 27.7 ± 0.13 20.5 ± 0.13
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• We use ℓ2 norm adversarial training to replace their ℓ∞ norm adversarial
training.

• We use the same large CIFAR network (4C3F with 62464 neurons) as in our
other experiments.

• We use the best NN verifier in the very recent VNN COMP 2021 (Bak et al.,
2021), alpha-beta-CROWN (Zhang et al., 2018; Wang et al., 2021), to replace
their MILP based verifier.

Additionally, we tried different regularization parameters and reported the best
results here. The clean accuray is 57.39%, PGD accuracy is 52.41% and the verified
Accuracy is 51.09%. This approach produces a reasonably robust model, thanks to
the very recent strong NN verifier. However, its clean, verified and PGD accuracy
are worse than ours. Additionally this approach is much less scalable than ours - the
verification takes about 150 GPU hours to finish, while our approach takes only 7
minutes to verify the entire dataset.

Comparison to Adversarial Training. We compared our method with adversarial
training (AT) (Madry et al., 2018) and TRADES (Zhang et al., 2019) methods as
these are known to regularize the Lipschitz constant of neural networks and provide
robustness. Although AT and TRADES regularize the neural network Lipschitz
compared to a naturally trained neural network, it is still not enough to provide
certified robustness. We train with AT and TRADES on CIFAR-10 with the 6C2F
architecture and report their accuracies, global and local Lipschitz bounds in Table
B.3. The certified accuracy is calculated using local Lipschitz bound. As we can
see from the table, although the models trained via AT and TRADES have much
smaller Lipschitz bound than naturally trained models (we only use cross entropy
loss on clean images in natural training), the Lipschitz bound is still too large to give
certified robustness. We also used alpha-beta-CROWN to certify the adversarially
trained CIFAR-10 4C3F network. The verified accuracy is still 0%.

Influence of Sparsity Loss on Certified Robustness. To encourage the sparsity
of varying ReLU neurons, we design a hinge loss to regularize the neural network
(Eq B.14). To study the effectiveness of this sparsity loss, we vary the coefficient
of this loss when training a 8C2F model on Tiny-Imagenet. In addition, we find
that down-weighting the hinge loss on the upper threshold improves performance.
Hence we keep λθ as 0.1 for all the models. We report the clean, PGD and certified
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Table B.3: Comparison to adversarial training methods on CIFAR-10 with the 6C2F
architecture.

Methods Global Lipschitz bound Local Lipschitz bound Clean (%) PGD (%) Certified (%)

Standard 1.52× 109 4.81× 108 87.7 35.9 0.0
AT 2.27× 104 1.85× 104 80.7 70.76 0.0

TRADES 1.82× 104 1.32× 104 80.0 72.3 0.0
BCP 11.35 11.08 65.7 60.8 51.3
Ours 7.89 6.68 70.7 64.8 54.3

accuracy in Table B.4. As we can see, too large coefficients on the sparsity loss
tends to over-regularize the neural network. When λsparse = 0.01, we obtain the best
performance.

Table B.4: Influence of sparsity loss on certified robustness on the TinyImageNet
dataset with the 8C2F model.

λsparse Clean (%) PGD (%) Certified (%)

0.0 30.6 28.3 19.9
0.01 30.8 28.4 20.7
0.03 29.7 27.3 20.2
0.1 28.9 26.7 19.8

Time Cost in Training. Since our method needs to evaluate local Lipschitz bound
on every data point during training, we pay additional computational cost than Gloro
(Leino et al., 2021) and BCP (Lee et al., 2020). However, our local Lipschitz bound
is still much more computational efficient than convex relaxation methods such as
CAP (Wong et al., 2018). We report the computation time (s/epoch) in Table B.5.

Table B.5: Comparison of training time per epoch.

Computation time (s/epoch)
———————————————–

Data Model CAP Gloro BCP Ours

MNIST 4C3F 689 9.0 17.3 45.5
CIFAR-10 4C3F 645 - 23.5 38.2
CIFAR-10 6C2F 1369 6.5 26.0 69.8

Tiny-Imagenet 8C2F - - 343.5 398.8

Number of Power Iterations for Convergence. To analyze the computational cost,
we plot the histogram of number for power method to converge at each convolutional
layer in Figure B.1. We used the 6C2F model on CIFAR-10. Let u(t) be the singular
vector computed by power iteration at iteration t, we stop power iteration when
||u(t+ 1)− u(t)|| ≤ 1e−3.
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Mean=580 Mean=355 Mean=762

Mean=928 Mean=797 Mean=788

Conv 1 Conv 2 Conv 3

Conv 4 Conv 5 Conv 6

Figure B.1: Number for power method to converge at each convolutional layer
in the 6C2F model.

Lipschitz bounds and Sparsity of Varying ReLU Outputs during Training. We
track the global and Local Lipschitz bound during training for a standard trained
CNN, a CNN trained with BCP and global Lipschitz bound, and a CNN trained
with BCP and our local Lipschitz bound. All the models are trained with the 6C2F
architecture on CIFAR-10. For BCP and our method, we train with ϵtrain = 36/255.
We used the hyper-parameters found by BCP (Lee et al., 2020) to train. The total
epochs is 200, and first 10 epochs are used for warm-up. We decay learning rate by
half every 10 epochs starting from the 121-th epoch. The Lipschitz bound change
during training is shown in Figure B.3. Meanwhile, we track the proportion of
varying ReLU outputs for all the layers during training in Figure B.2. We can see
that the models trained for certified robustness have much fewer varying ReLU
outputs than the standard trained model. The sparsity of varying ReLU outputs is
desired to tighten our local Lipschitz bound since we can remove more redundant
rows and columns in weight matrices.
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Conv 1 Conv 2 Conv 3

Conv 4 Conv 5 Conv 6

FC 1

Figure B.2: Proportion of varying ReLU outputs for all the layers in 6C2F model
during training.

Conv 1 Conv 2 Conv 3

Conv 4 Conv 5 Conv 6

FC 1

Figure B.3: Lipschitz bound for all the layers in 6C2F model during training.
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A p p e n d i x C

APPENDIX TO CHAPTER 4

C.1 Definitions for Class K Functions

Definition C.1.1 (Class K Function). A continuous function α : [0, a)→ [0,∞) for
a ∈ R>0 ∪ {∞} belongs to class K (a ∈ K) if it satisfies:

1. Zero at Zero: α(0) = 0

2. Strictly Increasing: For all r1, r2 ∈ [0, a] we have that r1 < r2 ⇒ α(r1) <

α(r2)

Definition C.1.2 (Class K∞ Function). A function belongs to K∞ if it satisfies:

1. α ∈ K

2. Radially Unbounded: limr→∞ α(r) =∞

Definition C.1.3 (Extended Class Ke
∞ Function). A continuous function α : R→ R

belongs to extended Ke
∞ if it satisfies:

1. Zero at Zero: α(0) = 0

2. Strictly Increasing: For all r1, r2 ∈ [0, a] we have that r1 < r2 ⇒ α(r1) <

α(r2)

Definition C.1.4 (Class KL Function). A continuous function β : [0, a)× [0,∞)→
[0,∞) belongs to KL if it satisfies:

1. Class K on first argument: ∀s ∈ [0,∞)β(·, s) ∈ K

2. Asymptotically 0 on second argument: ∀r ∈ [0, a) lims→∞ β(r, s) = 0
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C.2 Forward Invariance on a Probability Simplex
For the purposes of certification and training, it is often useful to make the state
spaceH be a bounded set, as certifying over unbounded sets is typically intractable.
For multi-class classification, a natural choice is the probability simplex. Since we
initialize η within the simplex, it suffices to render the simplex to be forward invariant.
We explicitly constrain the states to a probability simplex using a Control-Barrier
Function based Quadratic Program (CBF-QP)1 (Ames et al., 2016), implemented as
a differentiable optimization layer (Agrawal et al., 2019).

Figure C.1: The color contours show level-sets of a barrier function in a 3-class
probability simplex.

Barrier functions can be viewed as a variant of Lyapunov functions that only require
the state to stay within a set rather than always make progress towards some mini-
mum. Specifically, we choose a potential function h with a 0-super level set (i.e.,
{η ∈ H|h(η) ≥ 0}) equal to the desired forward invariant set S (see Figure C.1
for an example). Similarly to the Lyapunov case, there is a point-wise inequality
condition that must be true over the forward invariant set:

d

dt
h(η(t)) ≥ −α(h(η)) (C.1)

where α : R≥0 → R≥0 is a class K∞ function. Intuitively, all the flows on the
boundary of the forward invariant set must have a positive time-derivative (otherwise
there could be a point on the boundary that decreases the value of h and thus exits
the forward invariant set). This is the essence of Nagumo’s theorem (Nagumo, 1942).
Barriers extend this idea with a condition that can be applied everywhere in the target
forward invariant set without being overly conservative. As trajectories approach
the boundary of the set, Equation (C.1) ensures the time derivative increases until it
is positive at the boundary. We use a variation of barrier functions called Control
Barrier Functions (CBF). We formalize this concept with Theorem C.3.3.

1This is analogous to projected gradient descent (PGD) where we project the dynamics instead
of the states.



113

In our case, the unconstrained dynamics is the output of a neural network and we
denote it as f̂(η,x). To make the dynamics satisfy the barrier conditions, we use a
Control Barrier Function Quadratic Program (CBF-QP) Safety Filter (Gurriet et al.,
2018):

f(f̂) = argmin
f∈Rn

1

2
∥f− f̂∥22 (C.2a)

s.t 1
⊤f = 0 (C.2b)

f ≥ −α(η) (C.2c)

where the arguments to the function f̂ are omitted for brevity.

Recall that an n-class probability simplex is defined as△ = {η ∈ Rn|∑n
i=1 ηi =

1,ηi ≥ 0}. Now we show that Equation (C.2b) ensures that the sum of the state
stays to be 1 and Equation (C.2c) guarantees the state to be non-negative.

First, we need the sum of η stays the same as the initial condition. Taking time deriva-
tive of both sides of

∑n
i=1 ηi = 1, we have d

dt
(
∑n

i=1 ηi(t)) =
∑n

i=1 fθ(η,x)i =

1
⊤fθ(η,x) = 0, which is Equation (C.2b). This is natural because the dynamics

summing up to zero means the changes from all dimensions summing up to zero,
and thus the sum of all dimensions stays the same.

Next, we need each dimension of the state to be non-negative. Since the initial
condition has non-negative entries, we just need the set {η|η ≥ 0} to be forward
invariant. We define forward invariance via barrier functions. For each dimension i,
we define hi(η) = ηi. Then the 0-superlevel set of hi equals the safe set {η|ηi ≥ 0}.
As long as the condition in Equation (C.1) holds, i.e., dhi

dη
fθ(η,x) ≥ −α(hi(η)) for

some class K∞ function α, the set {η|ηi ≥ 0} is forward invariant. Plugging in
hi(η), we have fθ(η,x) ≥ −α(η), which is Equation (C.2c).

To learn in this setting we differentiate through the QP layer using the KKT con-
ditions as shown in (Agrawal et al., 2019). Given the simple nature of the QP, we
implemented a custom solver that uses binary search to efficiently compute solutions,
detailed in the supplymentary materials.

To demonstrate the effectiveness of the CBF-QP layer, we visualize the learned
trajectories on the CIFAR-3 dataset (a subset of CIFAR-10 with the first 3 classes)
in Figure C.2. Each colored line represents a trajectory of an input image from a
specific class. As training progresses, the trajectories are trained to evolve to the
correct classes. All the trajectories stay in the simplex, implying that the learned
dynamics satisfy the constraints in Equation (C.2b) and Equation (C.2c).
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Epoch: 1 Epoch: 300

Figure C.2: Depicting ODE trajectories that satisfy the simplex constraint for
CIFAR-3 on epochs 1 and 300. Each colored line represents the trajectory of an
input example of a specific class, and the stars at the corners are colored with the
ground-truth class.

C.3 Theorems with Proof

Theorem C.3.1 (ES-CLF Implies Exponential Stability (Ames et al., 2014)). For

the ODE in Equations (4.1a) and (4.1b), a continuously differentiable function

V : Rk → R≥0 is an Exponentially Stabilizing Control Lyapunov Function (ES-

CLF) if there are class K∞ functions σ and κ such that:

V (η) ≤ σ(∥η∥), (C.3)

min
θ∈Θ

[
∂V

∂η

⊤
fθ(η,x) + κ(V (η))

]
≤ 0 (C.4)

holds for all η ∈ R ⊆ H and t ∈ [0, 1]. The existence of an ES-CLF implies that

there is a θ ∈ Θ that can achieve:

∂V

∂η

⊤
fθ(η,x) + κ(V (η)) ≤ 0, (C.5)

and furthermore the ODE using θ is exponentially stable with respect to V , i.e.,

V (η(t)) ≤ V (η(0))e−κt for some κ > 0.

Proof. Since Θ is compact, minimums are attained within Θ.
Let θ∗(η) = argminθ∈Θ

∂V
∂η

⊤
fθ(η,x). Therefore, from Equation (C.4) we can

conclude that:

∂V

∂η

⊤
fθ∗(η)(η,x) ≤ −κ(V (η)) ∀η ∈ H (C.6)

For simplicity we will omit the arguments of θ∗. Furthermore, in the case where θ∗

is a set we will select only one. SinceH is compact then

σ∗ = max
η∈H

σ(∥η∥). (C.7)
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This in turn implies that V in bounded inH which helps us conclude that

V = max
η∈H

V (η) (C.8)

is well defined which in turn implies

κ = min
r∈[0,V ]

dκ(r)

dr
(C.9)

is well defined. Since κ is strictly increasing, then κ > 0. Notice that α(r) = κr

satisfies α ∈ K∞ and, by the comparison lemma, ∀r, κr ≤ κ(r). Therefore:

∂V

∂η

⊤
fθ∗(η)(η,x) ≤ −κ(V (η)) ≤ −κV (η), ∀η ∈ H (C.10)

In preparation for applying the comparison lemma we will consider the following
Initial Value Problem (IVP):

y(0) = V (η0) (C.11)

ẏ = −κy (C.12)

Since this is a linear system solutions for y exist, are unique and take the form
y(t) = V (η0)e

−κt. Furthermore, by the comparison lemma we can conclude that:

V (η(t)) ≤ y(t) = V (η0)e
−κt (C.13)

Lemma C.3.2 (Solution of Class K function systems (See Lemma 4.4 in (Khalil,
2002))). Let α ∈ Ke

∞. Then consider the following IVP for t ∈ [0, 1]:

y(0) = y0 (C.14)

ẏ = −α(y) (C.15)

This IVP has unique solutions y(t) = β(y0, t) where β ∈ KL.

Theorem C.3.3 (CBF Existence Implies Forward Invariance (Xu et al., 2015;
Nagumo, 1942)). Let the set S ⊂ H be the 0 superlevel set of a continuously

differentiable function h : H → R, i.e., S = {η ∈ H|h(η) ≥ 0}. The set S is

forward invariant with respect to the ODE Equations (4.1a) and (4.1b), if h is a

Control Barrier Function (CBF) i.e., it satisfies either of the following conditions:
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1. (Xu et al., 2015) There exists a function α for all η ∈ S so that:

max
θ∈Θ

[
∂h

∂η

⊤
fθ(η,x) + α(h(η))

]
≥ 0, (C.16)

where α is a class Ke
∞ function (this means α : R→ R is strictly increasing

and satisfies limr→∞ α(r) =∞).

2. (Nagumo, 1942) For all η ∈ {η ∈ S|h(η) = 0}:

∂h

∂η
̸= 0 (C.17a)

max
θ∈Θ

[
∂h

∂η

⊤
fθ(η,x)

]
≥ 0. (C.17b)

Proof. Both conditions follow from fundamentally different arguments. Condition 1
follows from the comparison lemma. Condition 2 uses Nagumo’s theorem. In either
case we rely on the compactness of Θ to solve the following optimization problem:

θ∗(η) = argmax
θ∈Θ

[
∂h

∂η

⊤
fθ(η,x)

]
. (C.18)

We will omit the parameters of θ∗ for brevity and choose a random solution in the
case where θ∗ returns a set of solutions.

1. Consider the following IVP:

y(0) = h(η(0)) (C.19)

ẏ = −α(y) (C.20)

which satisfies the conditions of lemma C.3.2. This implies that y(t) is unique
and y(t) = β(h(η(0)), t) where by the assumption of forward invariance
h(η(0)) ≥ 0. The by a trivial variant of the comparison lemma we have
that ḣ(η(t)) ≥ −α(h(η)) implies h(η(t)) ≥ β(h(η(0)), t) which implies
h(η(t)) ≥ 0 for t ∈ [0, 1].

2. This is a direct application of Nagumo’s theorem (Nagumo, 1942).
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Proof of Theorem 4.3.1
Proof. Define barrier function h as h = c − V , then S is a 0-superlevel set of
h. According to Nagumo’s theorem (Nagumo, 1942), if ḣ(x + ϵ;η) ≥ 0 on
∂D := S, then S is forward invariant. Since V̇ (η;x) ≤ −LVL

x
f ϵ̄ on D, we have

ḣ(η;x) ≥ LhL
x
f ϵ̄ on D (where Lh is the Lipschitz constant of h and notice that

LV = Lh). Then for the perturbed input, we have

ḣ(η;x+ ϵ) = ḣ(η;x) + ḣ(η;x+ ϵ)− ḣ(η;x) (C.21)

≥ ḣ(η;x)− ∥ḣ(η;x+ ϵ)− ḣ(η;x)∥ (C.22)

≥ ḣ(η;x)− LhL
x
f ϵ̄ (C.23)

≥ κV − LhL
x
f ϵ̄ ≥ 0 . (C.24)

Therefore, S is still forward invariant for the perturbed inputs with perturbation
magnitude smaller than ϵ̄.

Proof of Theorem 4.3.2
Proof. (a) Sampling on the level set of a quadratic Lyapunov function. Consider
the Lyapunov function of the form V (η) = η⊤Pη, where P is a positive definite
matrix. Let D = {η ∈ Rn|η⊤Pη = c} be the c-level set of the Lyapunov function,
and let G be a uniform grid (with spacing r) that covers the Lyapunov level set,
i.e., minη∈D ηi ≥ minη∈G ηi and maxη∈D ηi ≤ maxη∈G ηi, ∀i = 1, ..., n. Then
∀η ∈ D, there exists at least a point g ∈ G such that |ηi − gi| ≤ r

2
for all

i = 1, ..., n. Let GD denote those grid points that are close to the decision boundary,
i.e., GD = {g ∈ G||ηi − gi| ≤ r

2
, for all i = 1, ..., n, ∀η ∈ D}.

Now we show that GD ⊆ {B ∩ G}, where B is defined in Equation (4.7). Notice that
the maximum ℓ2 distance between a point η ∈ D and its closest point g ∈ GD is

√
n
2
r.

Then we find the maximum and minimum Lyapunov function value by perturbing
η ∈ D within

√
n
2
r distance.

Consider the following maximization problem:

max (η + v)⊤P (η + v) (C.25a)

s.t. η⊤Pη = c (C.25b)

v⊤v = d2 . (C.25c)

Let the eigenvalue decomposition of P be P = UΛU⊤, where U is an orthonormal
matrix, and Λ = diag{λ1, λ2, ..., λn} with λ1 ≥ λ2 ≥ ... ≥ λn. Then the solution
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of the above problem equals to the solution of the following problem (rotating the
coordinates by U ):

max (η + v)⊤Λ(η + v) (C.26a)

s.t. η⊤Λη = c (C.26b)

v⊤v = d2 . (C.26c)

Then we can find the upper bound of the objective by the following:
n∑

i=1

(ηi + vi)λi = c+
n∑

i=1

λiv
2
i + 2

n∑
i=1

λiηivi (C.27)

≤ c+ λ1d
2 + 2

n∑
i=1

λiηivi (C.28)

≤ c+ λ1d
2 + 2

√√√√ n∑
i=1

(
√
λiηi)2

n∑
i=1

(
√
λivi)2 (C.29)

= c+ λ1d
2 + 2

√√√√c
n∑

i=1

λiv2
i (C.30)

≤ c+ λ1d
2 + 2d

√
cλ1 (C.31)

= (
√
c+ d

√
λ1)

2 := c . (C.32)

Similarly, we can find the lower bound of the objective by:
n∑

i=1

(ηi + vi)λi = c+
n∑

i=1

λiv
2
i + 2

n∑
i=1

λiηivi (C.33)

≥ c+
n∑

i=1

λiv
2
i − 2

√√√√c

n∑
i=1

λiv2
i (C.34)

=

√c−
√√√√ n∑

i=1

λiv2
i

2

(C.35)

≥ (
√
c− d

√
λ1)

2 := c . (C.36)

Therefore, the maximum and minimum Lyapunov function value the points in GD
can attain are c and c with d =

√
n
2
r, and thus we have GD ⊆ {B ∩ G}.

By definition of GD, we have that for any η ∈ D, there exist an s ∈ GD such that
|ηi − si| ≤ r

2
for all i = 1, ..., n. Since GD ∈ {B ∩ G}, we have that for any η ∈ D,

there exist an s ∈ {B ∩ G} such that |ηi − si| ≤ r
2

for all i = 1, ..., n.
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(b) Sampling on the decision boundary. For any η ∈ Dy, let z = [Nη1, ..., Nηn].
By definition of Dy, in addition to

∑
i zi = N , we have∑

i

zi = N (C.37)

zy = max
j ̸=y

zj . (C.38)

Define z̃ = [z1 − ⌊z1⌋, ...,zn − ⌊zn⌋] to be the vector that contains the fractional
part of each element in z. Then we sort z̃ in a non-decreasing order. For the tied
elements that equals to z̃y, we put z̃y as the last. We denote the sorted vector as
z̃′ = [z̃i1 , ..., z̃in ], where z̃i1 ≤ ... ≤ z̃in . Let v : Z+ → Z+ to be a function that
maps the indices in z̃ to the indices in z̃′. For instance, if z̃1 becomes the third
element in z̃′, then v(1) = 3. If z̃j = z̃y, we have v(y) > v(j).

Notice that
∑

i z̃
′
i =

∑
i z̃i =

∑
i zi −

∑
i⌊zi⌋ = N −∑i⌊zi⌋, and

∑
i z̃

′
i < n

since 0 ≤ z̃′
i < 1 for i = 1, ..., n. Let k = n− (N −∑i⌊zi⌋), we have

z̃′
1 + ...+ z̃′

k = (1− z̃′
k+1) + ...+ (1− z̃′

n) . (C.39)

Define vector q as follows:

qij =

{
⌊Nηij⌋, j = 1, ..., k

⌈Nηij⌉, j = k + 1, ..., n .
(C.40)

Then we have |qi − zi| < 1 for all i = 1, ..., n. Now we check q satisfies Equa-
tion (C.37) and a relaxed version of Equation (C.38). First, we have

∑
i qi = N be-

cause of Equation (C.39). Next, we show qy ≥ maxi ̸=y qi by contradiction. Suppose
there exists an index j such that qj > qy, then it has to be the case where ⌊zj⌋ = ⌊zy⌋
and we take ceiling on zj and take floor on zy, i.e., v(j) > k and v(y) ≤ k. This
means z̃j > z̃y, because v is the sorted indices of z̃ in a non-decreasing order and
this gives z̃j ≥ z̃y, and if z̃j = z̃y, we have v(y) > v(j), which is contradictory
to v(j) > k and v(y) ≤ k. Then we have zy = ⌊zy⌋ + z̃y < zj = ⌊zj⌋ + z̃j ,
which is contradictory to Equation (C.38). Therefore, there does not exist a j such
that qj > qy, i.e., qy ≥ maxi ̸=y qi. For the cases where qy = maxi ̸=y qi, we have
q ∈ Sy, i.e., q is a sampled point.

For the cases where qy > maxi ̸=y qi, we show that we can modify q to q̃ such that
q̃ ∈ Sy and |q̃i − zi| ≤ 1 for all i = 1, ..., n. Let I = {i ∈ Z+|z ̸= y, zi = zy} be
the set that contains the indices of all runner-up elements in z. If qy > maxi ̸=y qi,
then we must have qy = ⌈Nηy⌉, and qi = ⌊Nηi⌋ for all i ∈ I. We first let q̃ = q,
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and then pick an i∗ from I. Let J = {j ∈ Z+|qj ≥ 1, j ̸= i∗, j ̸= y}. Notice that
qi∗ + qy = 2⌊zy⌋+ 1, which is an odd number. Since

∑
i qi = N and N is an even

number, J ̸= ∅. We discuss how to obtain q̃ case by case.

Case 1: If there exists a j ∈ J such that v(j) > k, we set q̃j = ⌊Nηj⌋, and set
q̃i∗ = ⌈Nηi∗⌉. Then we have

∑
i q̃ =

∑
i ̸=i∗,i ̸=j qi + qi∗ + 1 + qj − 1 = N and

|q̃i − zi| ≤ 1 for all i = 1, ..., n.

Case 2: If v(j) ≤ k for all j ∈ J , there must exist a j such that qj < qi∗ . Otherwise,
qy = qi∗ + 1, and qi = qi∗ for all i ̸= y. Then

∑
i qi = N = nqi∗ + 1, which is

contradictory to the assumption that N ̸≡ 1(mod n). Then set q̃j = ⌈Nηj⌉ and
q̃y = ⌊Nηy⌋. Since qj < qi∗ , we have q̃j = qj + 1 ≤ q̃y = qi∗ .

Remark. The assumption that N ̸≡ 1(mod n) is easy to satisfy. Since we also

require N is an even number, as long as n is also an even number, we have N ̸≡
1(mod n). We can also relax this assumption by adding [N

n
, ..., N

n
] to Sy.

Custom solver for the CBF-QP
Consider a CBF-QP in the following form:

f(f̂) = argmin
f∈Rn

1

2
∥f− f̂∥22 (C.41)

s.t 1
⊤f = b

f(η) ≤ f ≤ f(η)

where f and f are non-increasing function of η. By the Karush–Kuhn–Tucker (KKT)
conditions, the solution of (C.41) is as follows:

f(f̂) =
[
f̂ + λ∗

1

]f
f

(C.42)

where [·]ff stands for lower and upper clipping by f and f, and λ∗ is the Lagrangian
multiplier. We find λ∗ such that 1⊤f(f̂) = b using binary search. Since f(f̂) is
clipped by f and f, the search range of λ∗ is [mini(f̂i−fi),maxi(fi− f̂i)], where f̂i

stands for the ith element in f̂ , and fi, fi stand for the ith element in f(η) and f(η)

respectively. Here we consider a general constraint where there are both lower and
upper bounds on f. If there is only a lower bound constraint on f as in eq. (C.2c), we
search λ∗ in [mini(f̂i − fi),−mini f̂i], because if λ∗ > −mini f̂i, then 1⊤f > 0,
violating eq. (C.2b).
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To differentiate through the solver in training, we derive the derivatives based on the
binding conditions of the inequality constraints. First, we define the binding and not
binding sets as follows:

S = {i|fi = fi or fi = fi}, Sc = Ω\S (C.43)

Sl = {i|fi = fi}, Sc
l = Ω\Sl (C.44)

Su = {i|fi = fi}, Sc
u = Ω\Su (C.45)

where Ω = {i ∈ Z+|i ≤ n}. Then the derivatives of f with respect to the inputs f̂ ,
f and f are as follows:

dfi

df̂j
=


0, i ∈ Sc or j ∈ Sc

1− 1
n(S) , i = j ∈ S

− 1
n(S) i ̸= j, i ∈ S, j ∈ S

(C.46)

dfi
dfj

=


0, j ∈ Sl,∀i ∈ Ω

0, j ∈ Sc
l , i ∈ Sc

l \{j}
1, j ∈ Sc

l , i = j

− 1
n(Sl)

j ∈ Sc
l , i ∈ Sl

dfi
dfj

=


0, j ∈ Su,∀i ∈ Ω

0, j ∈ Sc
u, i ∈ Sc

u\{j}
1, j ∈ Sc

u, i = j

− 1
n(Su)

j ∈ Sc
u, i ∈ Su .

(C.47)

Interval Bound Propagation through CBF-QP
The dynamics of our NODE is parameterized by a neural network followed by a
CBF-QP layer. Let f̂(η) be the dynamics output by the neural network, and let
f(f̂) be the dynamics after CBF-QP layer. Given perturbed input in an interval
bound ηi ≤ ηi ≤ ηi, we first use a a popular linear relaxation based verifier named

CROWN (Zhang et al., 2018) to get an interval bound for f̂ : f̂i ≤ f̂i ≤ f̂i. However,
CROWN does not support perturbation analysis on differentiable optimization layers
such as our CBF-QP layer and deriving linear relaxation for CBF-QP can be hard.
However, it is possible to derive interval bounds (a special case of linear bounds in
CROWN) through CBF-QP. Consider a QP in the form of Equations (C.2a) to (C.2c),
we bound each dimension of f(f̂) inO(n) by solving the QP with the corresponding
element of the input set to the lower or upper bound (Proposition C.3.1).

Proposition C.3.1. Consider a CBF-QP in the form of C.41. Define function hi to

be hi : η, f̂ 7→ f(f̂)i. Given perturbed input in an interval bound ηi ≤ ηi ≤ ηi,

and f̂i ≤ f̂i ≤ f̂i, we have

hi(η
i
ub, f̂

i
lb) ≤ f(f̂)i ≤ hi(η

i
lb, f̂

i
ub) (C.48)
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where ηi
ub,η

i
lb and f̂ i

ub, f̂
i
lb are defined as follows:

ηi
ub =

{
ηj, j = i

ηj, j ̸= i
ηi
lb =

{
ηj, j = i

ηj, j ̸= i
(C.49)

f̂ i
ub =

{
f̂j, j = i

f̂j, j ̸= i
f̂ i
lb =

{
f̂j, j = i

f̂j, j ̸= i .
(C.50)

Proof. We prove by contradiction. For the upper bound f(f̂)i ≤ hi(η
i
lb, f̂

i
ub),

suppose f(f̂)i > hi(η
i
lb, f̂

i
ub). Plug in Equation (C.42), we have[
f̂i + λ

]f(ηi)

f(ηi)
>
[
f̂i + λ′

]f(ηi)

f(ηi)
. (C.51)

Since f and f are non-increasing function of η, we have f(ηi) ≥ f(ηi) and f(ηi) ≥
f(ηi). Then f̂i + λ > f̂i + λ′. Since f̂i ≤ f̂i, we have λ > λ′. Then for all j ̸= i,
we have [

f̂j + λ
]f(ηj)

f(ηj)
≥
[
f̂j + λ′

]f(ηi)

f(ηi)
. (C.52)

Sum on both sides of C.51 and C.52, we have

1
⊤f(η, f̂) > 1

⊤f(ηlb, f̂ub) (C.53)

which is contradictory to the equality constraint in C.41. Therefore, we have f(f̂)i ≤
hi(η

i
lb, f̂

i
ub). The lower bound in C.48 can be proved in the same way.

C.4 Sampling Algorithms for Certification
We describe the process of generating samples on the decision boundary in Algorithm
5. The trick is to break down the n-class decision boundary sampling problem to 2 to
(n− 1)-class sampling problems. For instance, to generate samples with k non-zero
elements on an n-class decision boundary with density T , one can sample points on
an k-class decision boundary with density T − k first, adding 1 to each dimension to
make each element non-zero, and assign each element to an n dimensional vector.
This operation is denoted by function G in Algorithm 5. G takes two list inputs a
and c, increases each element in a by 1, rearranges the elements in a according to
the indices given by c, and output a new list w of shape k. Equation C.54 gives the
form of the output of G. If the inputs are y = 0, a = (3, 2, 3, 0), c = {2, 3, 7} and
k = 8 (y is the label, a corresponds to a point on 4-class decision boundary, and c



123

Algorithm 5 Sample the points on the decision boundary by dynamic programming.
Require: Number of classes K, sample density T , solution set sol with dimension

T ×K.
1: Initialize each element of sol to be ∅.
2: sol[0][k] = {0k}, where 0k = [0, .., 0] ∈ Rk.
3: sol[j][2] = {[j/2, j/2]}.
4: for j from 2 to T do
5: for k from 3 to K do
6: for l from 0 to k − 2 do
7: if j − k + l ≥ 0 and k − l ≥ 0 then
8: Let C be the set that contains k − l − 1 combinations of
{1, 2, ..., k − 1}.

9: sol[j][k] = sol[j][k]∪{G(y, a, c, k)|a ∈ sol[j−k+ l][k− l], c ∈
C}.

10: end if
11: end for
12: end for
13: end for
Ensure: S̃y = sol[T ][K]/T

specifies the non-zero dimension except for the label dimension in an 8-dimensional
vector), then the output is w = (4, 0, 3, 4, 0, 0, 0, 1).

wi =


a0 + 1, i = y

a|{1,2,··· ,i}∩c| + 1, i ∈ c

0. o/w

(C.54)

C.5 Experiment Details
Nonlinear control
Baselines. Although there are many baselines in robust control/RL, the settings
and goals are not the same as our work (certified robust forward invariance) and thus
not directly comparable (Table C.1). We found the setting and goal in [3] is the most
similar to us, and thus we compare with their method in Table 4.1.

Experiment details. The dynamics for the segway system is (Gurriet et al., 2018):

d

dt

 ϕ

v

ϕ̇

 =


ϕ̇

cosϕ(−1.8u+11.5v+9.8 sinϕ)−10.9u+68.4v−1.2ϕ̇2 sinϕ
cosϕ−24.7

(9.3u−58.8v) cosϕ+38.6u−234.5v−sinϕ(208.3+ϕ̇2 cosϕ)
cos2 ϕ−24.7

 . (C.55)

All the constants except the acceleration of gravity g = 9.8 are system parameters.
We enforce robust forward invariance under ±2% perturbation on each of the param-
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Paper Setting Goal Certified or not

Robust MPO (Mankowitz et al., 2020)
Continuous MDP.
model mis-specification

Maximize worst case
RL performance. No

CROP (Wu et al., 2022)
Discrete MDP.
Input state perturbations

Certification of per-state
actions and lower bound of
cumulative rewards

Yes for action and
cumulative reward

Robust MBP (Donti et al., 2020)

Norm-bounded linear
differential inclusions.
Disturbance is norm-bounded
and added to the dynamics

Train a nonlinear controller
that satisfies the exponential
stability condition under
perturbed dynamics

Yes for stability

Robust FI-ODE (ours)

Continuous nonlinear
dynamics. Norm-bounded
system parameter
perturbations.

Train a nonlinear controller
that satisfies the forward
invariance (safety) condition
under perturbed dynamics

Yes for forward invariance
(safety)

Table C.1: Settings of baseline methods.

eters. We use a 3 layer MLP as the controller and use the Adam optimizer (Kingma
and Ba, 2015). First, we train the controller to imitate a Linear Quadratic Regulator
(LQR) controller. Then we jointly learn the Lyapunov function and the controller.
We use adversarial training on x and η to encourage the smoothness of fθ(η,x) with
respect to x. Specifically, we find ϵx and ϵη that maximizes ∂V

∂η

⊤
fθ(η + ϵη,x+ ϵx)

and train on η + ϵη and x+ ϵx. We set κ(V (η)) in Equation (4.6) to be a constant:
κ(V (η)) = κ′ ≤ ϵ̄LVL

x
f (κ′ is smaller than the requisite lower bound since we train

with adversarial inputs and the requisite lower bound is for nominal inputs). We use
learning rate of 0.02 for the Lyapunov function and 0.01 for the controller. Next,
we jointly learn the controller and finetune the lyapunov function from the previous
stage via adversarial training on both the system states and system parameters. We
use learning rate of 0.01 for the controller and 0.002 for the lyapunov function.

To certify forward invariance, we use rejection sampling on the state space to cover
the boundary of the forward invariant set. The spacing of the ambient grid is set
to 0.01 for all 3 dimensions, and the rejection criteria is Equation (4.7). For robust

forward invariance, we certify in 2 phases. In phase 1, we set the spacing of the
ambient grid to be 0.005, and we also sample a grid on the system parameter space
to cover the±2% perturbation range on the parameters with the spacing in Table C.2.
In phase 2, we sample denser states and system parameters around the states that
cannot be certified in phase 1. We set the spacing along each state dimension to be
0.0025, and the spacing of the parameters to be those in brackets in Table C.2.

We run all the control experiments on Intel Core i9 CPU. The certification time for
forward invariance is 3.1 seconds, while for robust forward invariance, it is 3285.3
seconds. We also report the training time and the standard deviation of forward
invariant rate of each method in Table C.3.
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Table C.2: Spacing of the sampled grid on the system parameter space in terms of
percentage of each parameter value. Spacing for phase 2 is in the bracket.

Parameter 1.8 11.5 10.9 68.4 1.2 9.3 58.8 38.6 234.5 208.3 24.7
Spacing (%) 4 (4) 4 (4) 4 (4) 1 (1) 4 (4) 4 (4) 2 (1) 1 (1) 1 (0.25) 4 (4) 4 (4)

Table C.3: Robustness of controllers trained with different training methods. The
numbers are the percentage of trajectories that stay within the forward invariant set
under the nominal and adversarial system parameters on 1000 adversarially selected
initial states. We report the mean and standard deviation over 3 runs. The certificate
column indicates whether or not we can certify the (robust) FI property.

Training Method Training Time (s) Empirical FI rate (%) Certificate
Nominal Params Adv Params FI Robust FI

Standard Backprop Training 191.3 58.0 ± 1.9 50.4 ± 1.1 ✗ ✗

Basic Lyapunov Training (Jimenez Rodriguez et al., 2022) 1.5 90.2 ± 0.3 52.6 ± 0.6 ✗ ✗

+ Adaptive Sampling 3.3 100 ± 0.0 68.9 ± 0.3 ✓ ✗

+ Adversarial Training 67.7 100 ± 0.0 97.8 ± 0.3 ✓ ✗

+ Both (Ours) 96.7 100 ± 0.0 100 ± 0.0 ✓ ✓

Image classification
Useful techniques for classification problems. Typically the decision boundary
{η ∈ Rn|ηy = maxi ̸=y ηi} is not compact on the logit space (η ∈ Rn). However,
we need the Lyapunov level set to be compact for certification because we can only
sample finite points and verify the conditions hold in their neighborhoods. Therefore,
we restrict the states to evolve on a probability simplex for classification problems.
To do so, we use a Control-Barrier Function based Quadratic Program (CBF-QP)
(Ames et al., 2016), implemented as a differentiable optimization layer (Agrawal
et al., 2019) in the dynamics (Appendix C.2). However, the linear relaxation based
verifier that we use (CROWN) (Zhang et al., 2018) does not support perturbation
analysis on differentiable optimization layers such as our CBF-QP layer. Since
deriving linear relaxation for CBF-QP is hard, we derive an interval bound (a special
case of linear bounds in CROWN) through CBF-QP (Appendix C.3).

Experiment settings. For image classification tasks, we use orthogonal layers
(Trockman and Kolter, 2021) in the neural network so that the dynamics has 1
Lipschitz constant with respect to both the state and the input. Specifically, we have
f̂(η, x) = W3σ(W2σ(W1η + g(x)) + b2) + b3, where g is a neural network with
4 orthogonal convolution layers and 3 orthogonal linear layers, and W1,W2,W3

are orthogonal matrices, σ is the ReLU activation function. We set κ(V (η)) =

ϵ̄LVL
x
fV (η) in the training loss (Equation (4.6)). Note that on the decision boundary,

V (η) = 1.
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In the CBF-QP, we need to pick a class Ke
∞ function α for the inequality constraint

f ≥ −α(η). Here we use α(η) = c1(e
c2η − 1), where c1 = 100, and c2 = 0.02.

Comparing with a linear function, this α(η) leads to a higher margin over Lipschitz
ratio, resulting in better certified accuracy.

During training, we train with batch size of 64. For each image, we sample 512 states.
From epoch 1 to 10, all the states are uniformly sampled in the simplex. From epoch
11 to epoch 60, we linearly decay the proportion of uniform sampling in the simplex
and increase the portion of uniform sampling within the correct classification set
for each class. To sample uniformly in the simplex, we first sample n points from
exponential distribution Exp(1) independently, then we normalize the n dimensional
vector to have sum 1. To sample uniformly in the correct classification region for
each class, we first uniformly sample from the simplex, then we swap the maximum
element with the element corresponding to the correct label. We choose κ to be 2.0
in the loss function (eq. (4.6)). We use Adam optimizer with learning rate 0.01, and
train for 300 epochs in total.

For certification, we choose N = 40 when sampling on the decision boundary. A
larger N will lead to better certified accuracy but increases the computational cost
dramatically. We ran the experiments on an NVIDIA RTX A6000 GPU.

For baseline methods (Pabbaraju et al., 2020; Chen et al., 2021), the adversarial
accuracy is evaluated with PGD attack. For our methods, we use AutoAttack (Croce
and Hein, n.d.) to evaluate the empirical adversarial robustness.

Table C.4: Computational costs for certification on CIFAR-10.

Certification
Method

Sampling
density (N ) # samples Time (s) Certified

Lipschitz 20 3.67× 105 1.03 0
Lipschitz 30 5.50× 106 1.37 27.40
Lipschitz 40 4.13× 107 2.8 33.46
CROWN 40 4.13× 107 240 42.27

Computational cost. The main computational costs of our method comes from
the number of samples that are needed to cover the boundary of the forward invariant
set. Table C.4 compares the computational costs and performance for different
certification methods on CIFAR-10. We first compare the results of certifying with
Lipschitz bounds and CROWN (Zhang et al., 2018). Certifying with Lipschitz
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bounds is faster. Since we can pre-compute the Lipschitz bound of the dynamics,
the certification time equals to the inference time on all the states. Certifying with
CROWN provides a tighter bound and thus higher certified accuracy but is more
computationally expensive than using the Lipschitz bound. We also compare the
performance of different sampling density by choosing different N in Equation (4.8).
With larger N , we can cover the region of interest with smaller neighborhood around
each sampled point. We vary N using the Lipschitz certification method because it is
faster to evaluate, but the pattern should remain the same for CROWN. As expected,
we get better accuracy with larger sampling density, but the computational time is
longer since we have more samples.
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A p p e n d i x D

APPENDIX TO CHAPTER 5

D.1 Proofs.
Proof of Theorem 5.4.1.
Lemma D.1.1 (Dai Pra, 1991; Pavon, 1989). The transition probability for the

stochastic dynamical system Eq 5.6 with cost Eq 5.7 and optimal control u∗ is:

Q∗
s,t(ηs,ηt) = Q0

s,t(ηs,ηt)
Ψ(ηt, t)

Ψ(ηs, s)
(D.1)

where Q∗
s,t(ηs,ηt) denotes the transition probability from state ηs at time s to state

ηt at time t, and Q0
s,t(ηs,ηt) denotes the transition probability of the uncontrolled

system Eq 5.5.

Now we prove Theorem 5.4.1.

Proof. Consider the SDE in Eq 5.6 with initial condition η0 ∼ δη̄0
, where δη̄0

is a Dirac distribution centered at η̄0. Define the terminal cost to be ϕ(ηT ) =

log
pη̄0 (ηT )

pη̄0 (ηT |y) , where pη̄0(ηT ) denotes the terminal distribution of the uncontrolled
SDE in Eq 5.5 with initial condition η0 ∼ δη̄0

, and the target terminal distribution
pη̄0(ηT |y) := p(y|ηT )pη̄0(ηT )/p(y). Then we have

Ψ(η̄0, 0) = EQ0

[
e−ϕ(ηT )|ηt = η̄0

]
=

∫
ηT

pη̄0(ηT |y)
pη̄0(ηT )

pη̄0(ηT )dηT = 1 (D.2)

Ψ(ηT , T ) = e−ϕ(ηT ) =
pη̄0(ηT |y)
pη̄0(ηT )

. (D.3)

Then from Lemma D.1.1, we have

Q∗
0,T (η̄0,ηT ) = Q0

0,T (η̄0,ηT )
Ψ(ηT , T )

Ψ(η̄0, 0)

= pη̄0(ηT )
pη̄0(ηT |y)
pη̄0(ηT )

= pη̄0(ηT |y) . (D.4)
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From the properties of reverse-time SDE, we know that if p0(η) = N (0, I), then
pT (η) = p(η), i.e.,

∫
pη̄0(ηT )p0(η̄0)dη̄0 = p(ηT ). It follows that

Q∗(ηT ) =

∫
Q∗

0,T (η̄0,ηT )p0(η̄0)dη̄0

=

∫
pη̄0(ηT |y)p0(η̄0)dη̄0

=

∫
p(y|ηT )pη̄0(ηT )

p(y)
p0(η̄0)dη̄0

=
p(y|ηT )

p(y)

∫
pη̄0(ηT )p0(η̄0)dη̄0

=
p(y|ηT )

p(y)
p(ηT )

= p(ηT |y) . (D.5)

Finally, we show that the optimal control for ϕ̃ = ℓy(ηT ) is the same as that for
ϕ(ηT ) = log

pη̄0 (ηT )

pη̄0 (ηT |y) , because

ϕ(ηT ) = log
pη̄0(ηT )

pη̄0(ηT |y)
= log

p(y)

p(y|ηT )
= − log p(y|ηT )+const = ℓy(ηT )+const .

(D.6)
The last equality follows from our assumption that p0(y|η) ∝ e−ℓy(η). Plugging
ϕ̃(ηT ) and ϕ(ηT ) into Eq 5.13 leads to the same optimal control.

Proof of Proposition 5.4.1
Proof.

Ψ(η, t) = EQ0

[
e−ϕ(ηT )|ηt = η

]
= EQ0 [p(y|ηT ) · c|ηt = η]

= c ·
∫

p(y|ηT )p(ηT |ηt = η)dηT (D.7)

where p(ηT |ηt = η) := Q0
t,T (η,ηT ) is the transition probability from state η at

time t to state ηT at time T for the uncontrolled SDE, and it is differentiable with
respect to η for all 0 ≤ t < T . In addition, notice that in diffusion models,

p(y|ηt) =

∫
p(y|ηT ,ηt)p(ηT |ηt)dηT

=

∫
p(y|ηT )p(ηT |ηt)dηT (D.8)

where the second equality comes from that ηt and y are conditionally independent
given ηT . Then from Eq D.7, we have Ψ(ηt, t) = c · p(y|ηt).
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Remark. Although ϕ(ηT ) could be non-differentiable when we choose non-differentiable

loss functions, the desirability function Ψ(η, t) is differentiable with respect to η for

all 0 ≤ t < T .

D.2 Compatibility of SCG with Various Sampling Procedures
SCG is compatible with many stochastic sampling procedures in diffusion models.
The key of SCG is to sample multiple xt−1 given xt, and select the one that leads to
the sample that follows the rule best. One can choose different sampling procedure
to obtain xt−1 given xt. Algorithm 6 shows how to use SCG with replacement-based
editing. Algorithm 7 shows how to use SCG with stochastic DDIM (Song et al.,
2021).

Algorithm 6 Editing with SCG.
Require: Encoding of the source music x̃0, mask M (1 for unaltered part and 0 for

editing region), noise level K, sampling algorithm (e.g., SCG), desired label y
(optional, do not need if want to create a variant).
z ∼ N (0, I)
xK =

√
ᾱKx̃0 +

√
1− ᾱKz

for t = K to 1 do
▷ Estimate the clean sample from noisy sample.
x̂0 =

1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt, t)

)
▷ Replacement projection based on the mask.
x̃0 = M⊙ x0 + (I−M)⊙ x̂0

▷ Predict ϵ from x̃0.
ϵ̃ = 1√

1−ᾱt
(xt −

√
ᾱtx̃0)

▷ Sampling using corrected ϵ.
xt−1 = sampling_algorithm(xt, t, ϵ,y)

end for
return: x0

D.3 Additional Experiment Results
Unconditional Generation
In Table D.1, we report the overlapping area between the intra-set and inter-set
distribution for all 7 musical attributes as proposed in (Yang and Lerch, 2020).
The highest and second highest value except for GT are high- lighted in bold and
underline respectively. Our method achieves the highest average OA on all the
datasets, and achieves the top 2 OA for most of the individual attributes.
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Algorithm 7 Stochastic Control Guided stochastic DDIM sampling
Require: Loss function ℓy, rule target y, number of samples n, stochasticity
η > 0, number of steps S.
xT ∼ N (0, I)
for s = S to 1 do

▷ Compute the posterior mean of xτs−1 .

στs = η
√

1−ᾱτs−1

1−ᾱτs
(1− ᾱτs

ᾱτs−1
)

x̂τs−1
=
√
ᾱτs−1

(
xτs−

√
1−ᾱτsϵθ(xτs ,τs)√

ᾱτs

)
+
√

1− ᾱτs−1 − σ2
τsϵθ (xτs , τs)

if s > 1 then
▷ Sampling possible next steps.
xi
τs−1

= x̂τs−1
+ στsz

i, with z1, ..., zn ∼ N (0, I)
▷ Estimate the clean sample from noisy sample.
x̂i
0 =

1√
ᾱτs−1

(
xi
τs−1
−√1− ᾱτs−1ϵθ

(
xi
τs−1

, τs−1

))
▷ Find the direction that minimizes the loss.
k = argmaxi log p(y|x̂i

0) = argmaxi−ℓy(x̂i
0)

xτs−1 = xk
τs−1

else
xτs−1 = x̂τs−1

end if
end for
return: x0

Dataset Method Used Pitch IOI Pitch Hist Pitch Range Velocity Note Duration Note Density Avg

Maestro

GT 0.960± 0.007 0.901± 0.007 0.980± 0.003 0.962± 0.004 0.971± 0.004 0.884± 0.011 0.953± 0.005 0.944± 0.002
MusicTr 0.954± 0.004 0.896± 0.018 0.948± 0.011 0.961± 0.005 0.967± 0.005 0.647± 0.022 0.948± 0.007 0.903± 0.005
Remi 0.934± 0.018 0.794± 0.017 0.897± 0.010 0.903± 0.015 0.906± 0.007 0.542± 0.021 0.952± 0.004 0.847± 0.005
CPW 0.941± 0.012 0.641± 0.025 0.866± 0.010 0.962± 0.005 0.830± 0.014 0.436± 0.030 0.933± 0.007 0.801± 0.006
PolyDiff 0.852± 0.006 0.843± 0.026 0.888± 0.016 0.871± 0.006 0.805± 0.031 0.777± 0.016 0.856± 0.005 0.842± 0.007
Ours 0.961± 0.006 0.901± 0.009 0.960± 0.010 0.963± 0.006 0.971± 0.004 0.910± 0.012 0.934± 0.005 0.943± 0.003

Muscore

GT 0.959± 0.009 0.928± 0.019 0.980± 0.005 0.965± 0.006 0.896± 0.008 0.925± 0.008 0.963± 0.004 0.945± 0.004
MusicTr 0.952± 0.012 0.916± 0.008 0.891± 0.009 0.958± 0.005 0.790± 0.008 0.851± 0.020 0.949± 0.005 0.901± 0.004
Remi 0.924± 0.008 0.917± 0.016 0.955± 0.010 0.944± 0.007 0.731± 0.024 0.748± 0.028 0.934± 0.003 0.879± 0.006
CPW 0.879± 0.012 0.839± 0.020 0.941± 0.008 0.900± 0.006 0.750± 0.025 0.715± 0.030 0.879± 0.010 0.843± 0.007
PolyDiff 0.888± 0.009 0.831± 0.006 0.927± 0.012 0.864± 0.007 0.693± 0.014 0.822± 0.015 0.891± 0.008 0.845± 0.004
Ours 0.963± 0.004 0.915± 0.009 0.962± 0.009 0.964± 0.004 0.890± 0.006 0.900± 0.012 0.946± 0.005 0.934± 0.003

Pop

GT 0.956± 0.007 0.949± 0.006 0.983± 0.002 0.955± 0.003 0.954± 0.004 0.940± 0.009 0.963± 0.002 0.957± 0.002
MusicTr 0.807± 0.016 0.880± 0.010 0.852± 0.005 0.833± 0.011 0.865± 0.014 0.871± 0.008 0.809± 0.011 0.845± 0.004
Remi 0.870± 0.014 0.839± 0.007 0.979± 0.002 0.827± 0.008 0.853± 0.013 0.826± 0.012 0.867± 0.005 0.866± 0.004
CPW 0.921± 0.011 0.803± 0.022 0.942± 0.010 0.927± 0.008 0.853± 0.006 0.891± 0.011 0.953± 0.008 0.899± 0.005
PolyDiff 0.941± 0.003 0.924± 0.012 0.964± 0.005 0.937± 0.006 0.648± 0.007 0.912± 0.020 0.855± 0.012 0.883± 0.004
Ours 0.927± 0.009 0.952± 0.004 0.969± 0.002 0.928± 0.013 0.948± 0.003 0.911± 0.019 0.941± 0.009 0.939± 0.004

Table D.1: Objecetive evaluation of unconditional generation. The overlapping area
(OA) for 7 music attributes and the average OA are reported. The highest and second
highest OA excluding GT are bolded and underlined respectively.

Editing
Our framework also supports editing. Given an existing music piece, we can modify
it within any given time window: either create a new variant or guide it to satisfy new
rules. To achieve this, we mainly follow the SDEdit framework (Meng et al., 2022):
first we add Gaussian noise of a chosen noise level to the latent music representation
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and then progressively remove the noise by reversing the SDE. During the reverse
process, we use a mask to distinguish the parts that we want to preserve unaltered
and the portion we want to modify, and we condition on the unaltered parts via
replacement-based conditioning methods as in (Choi et al., 2021; Kawar et al., 2022).
Please refer to Appendix D.2 for the detailed guided editing algorithm.

We benchmark our music editing performance against two estabilished methods:
MuseMorphose (Wu and Yang, 2023) and PolyDiffusion (Min et al., 2023). Since
these baselines are trained on Pop piano music, we condition on the Pop dataset
when evaluating our method. Unlike these baselines, which restrict editing to one
specific attribute, our method offers the flexibility to edit any attribute. The editing
task involves creating a new music piece that adheres to predefined rules based on
an original source music piece (for detailed settings, see Appendix D.4). To assess
controllability, we evaluate the error rate between the target and generated attributes.
Additionally, we measure the similarity in chroma and groove between the generated
piece and the source to gauge their resemblance. The goal is to generate music
that not only complies with the desired rules but also closely resembles the original
source music.

Table D.2 shows the results. For note density, we experiment with two noise levels:
400 and 500. For chord progression, we use a noise level of 500. We can see
that there is a trade-off between controllability and resemblance: higher noise
level results in better controllability (lower error) but reduced resemblance (lower
similarity metrics).

Rule Method Error (%) ↓ Simchr ↑ Simgrv ↑

Note Density
MuseMorphose 29.34 0.9130 0.9184
Ours-400 35.62 0.9119 0.8511
Ours-500 27.87 0.8173 0.7153

Chord Progression
PolyDiffusion 70.48 0.5902 0.7515
Ours 12.62 0.8236 0.6974

Table D.2: Editing performance. For note density, we experimented with noise level
of 400 and 500. For chord progression, we used noise level of 500.

D.4 Detailed Experiment Setup
Music Rules
We consider three music rules and give their definitions below.

Pitch Histogram: We compute the histogram of 12 pitch classes over the whole
piano roll. Pitch velocity is considered when computing the histogram. The target y
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is a 12-dimensional vector specifying the desired pitch histogram.

Note Density: We control both vertical and horizontal note density. We compute
note density within 128× 128 windows. For a piano roll of shape 128× 1024, the
target y is a 16-dimensional vector, the first 8 dimension are for vertical note density
and the last 8 dimension are for horizontal note density.

Vertical note density NDvertical is computed by

NDvertical =
1

T

T∑
t=1

non(t) (D.9)

where non(t) stands for the number of on-notes at time t, and T is the window size,
we set T = 128.

Horizontal note density NDhorizontal is computed by

NDhorizontal =
T∑
t=1

1(nstart(t) ≥ 1) (D.10)

where nstart(t) stands for the number of notes that start at time t.

Chord Progression: We extract chords using chord analysis tool from the music21

(Cuthbert and Ariza, 2010) package, and group them into 7 classes. We extract 8
chords in total for the 128× 1024 piano roll, each chord is the longest chord within
a 128× 128 window. The target y is an 8-dimensional vector specifying the desired
chord for each 128× 128 window.

Training Setup
Data Augmentation. We use the same data augmentation for both VAE and diffusion
model training.

• Key shift: Entire piano rolls were shifted by up to 6 pitches, effectively
functioning as a key switch.

• Time shift: We load in a piano roll of 2 times the desired length, and randomly
select a starting time to obtain the actual piano roll for training.

• Tempo shift: Tempo of the piece was shifted by a factor of [0.95, 1.05].

VAE. Utilizing the standard autoencoder architecture from (Rombach et al., 2022),
we compressed piano roll segments (dimension 3× 128× 128) into a latent space
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of 4 × 16 × 16. The three dimensions of the piano roll include onset and pedal
information, in addition to the standard piano roll data.

Let x represent the piano roll in pixel space and z the latent code. We denote the
encoder and decoder as E and D, respectively. The training objective for our VAE
model is formulated as follows:

LV AE =∥D(E(x))− x∥1
+ λKL(t)DKL(N (z; Eµ, Eσ2)∥N (z; 0, I))

+ λdenoise(t)∥D(E(Noisy(x)))− x∥1 .
(D.11)

The first term is the standard reconstruction loss, where we used L1 loss to encourage
sparsity. The second term is the standard KL regularization term weighted by a
scheduler λKL(t). The third term is a denoising reconstruction loss, influenced by
the scheduler λdenoise(t). Here, Noisy refers to a perturbation operator applied to the
piano roll, encompassing:

• Note shift: Some fraction of notes were randomly selected by uniform distri-
bution to be perturbed. Perturbed notes were shifted by up to 2 pitches higher
or lower.

• Adjacent note addition: Some fraction of notes were randomly selected by
uniform distribution. A second identical note was added just one pitch higher
or lower to the original note. These adjacent notes are quite discordant to the
ear.

• Rhythm shift: Some fraction of notes were randomly selected by uniform
distribution to be perturbed. Perturbed notes were shifted by up to 100 ms
earlier or later.

• Note deletion: Some fraction of notes were randomly selected by uniform
distribution to be deleted.

We capped the maximum fraction of perturbed notes at 25% for all perturbations.
The model was trained over 800k steps. The KL scheduler, λKL(t), was a linear
scheduler increasing from 0 to 1e− 2 across 400k steps. The denoising scheduler,
λdenoise, linearly increased the perturbation fraction from 0 to 25% over 400k steps.
We employed a cosine learning rate scheduler with a 10k-step warmup, peaking at a
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learning rate of 5e− 4. The optimizer used was AdamW (Loshchilov and Hutter,
2019), with weight decay of 0.01 and a batch size of 80.

Diffusion Model. We train our diffusion model with a transformer backbone on
the latent space of a pretrained VAE. First we rescale the latent representation E(x)
by its standard deviation, computed using a batch of 256 training samples as per
the methodology described in (Rombach et al., 2022). Then we reshaped the latent
representation from 4× 16× 128 to 32× 256, followed by a transformation of the
32-dimensional vector to match the hidden dimension of the transformer backbone.
We employed the DiT-XL architecture from (Peebles and Xie, 2023), which has a
hidden dimension of 1152. In addition, we use rotary positional embedding (Su et al.,
2023) to accommodate for various length of input (e.g., when generating longer
sequence of music).

Given our use of data augmentation during diffusion model training, it was neces-
sary to compute E(x) dynamically, a process that is typically time-consuming. To
optimize this, we employed a strategy to avoid encoding each sample from scratch.
During data loading, we initially loaded a piano roll of length 2560 and then encoded
each 128-length segment using the pretrained encoder, resulting in 20 latent codes.
By concatenating subsets of these latent codes, we generated 4 training samples
(segments 1-8, 5-12, 9-16, and 13-20), each measuring 8× 128 = 1024 in length.

We train our model on three datasets using the training procedure of classifier-free
guidance (Ho and Salimans, 2022). Specifically, we set y = 0 for Maestro, y = 1

for Muscore and y = 2 for Pop. We jointly train a conditional model ϵθ (xt, t, y) and
an unconditional model ϵθ (xt, t, null) with a dropout rate of 0.1.

We adhered to the training hyper-parameters outlined in (Peebles and Xie, 2023).
Specifically, we used a constant learning rate of 1e− 4, no weight-decay and a batch
size of 256 with the AdamW optimizer (Loshchilov and Hutter, 2019). We use linear
noise scheduling and trained the model for 1.2M steps.

Objective Evaluation Setup
Unconditional Generation. In our study, we generated 400 music segments, each
lasting 10.24 seconds, for all the methods under consideration. For baseline methods
that utilize bars as the time unit, we produced 8-bar sequences from which we
randomly extracted segments of 10.24 seconds in duration. We used the official
released models for Remi (Huang and Yang, 2020), CPW (Hsiao et al., 2021) and
PolyDiff (Min et al., 2023). Unfortunately, an official implementation for the music



137

transformer (Huang et al., 2018) was not available. Consequently, we resorted to an
unofficial implementation1 and trained a music transformer by ourselves.

The overlapping area (OA) for seven music attributes was computed following the
methodology described in (Yang and Lerch, 2020). To accurately evaluate OA, it is
typically required that the two datasets being compared contain an equal amount of
data. Therefore, we randomly selected 400 samples from the test dataset to align
with the number of generated samples. This evaluation process was repeated five
times to calculate the mean and standard deviation of the results in Table 5.2.

Individual Rule Guidance. For each rule, we randomly selected 200 samples from
the Muscore test dataset and computed their corresponding rule labels to serve as
targets. Subsequently, we generated 200 samples conditioned on each rule label.
The rule labels for these generated samples were computed, and the loss between the
generated rule label and the target was calculated. The mean and standard deviation
of this loss across the 200 samples are presented in Table 5.3.

Composite Rule Guidance. We randomly selected 200 samples from the Mus-
core test dataset and compute their rule labels for each of the three rules under
consideration. Then we generated 200 samples conditioned on all three rule labels
simultaneously, with the intention that the generated samples adhere to all three rules
concurrently.

Ablation Studies. For all the ablation studies, we follow the individual rule guidance
set up and guide the diffusion model to generate music following given note density.
The computational time is for generating 4 samples in a batch. Regarding the quality
metric, we randomly chose 200 samples from the test dataset and calculated the
average OA similar to the process used for unconditional generation. This procedure
was repeated five times to calculate the mean and standard deviation.

Editing. To facilitate a comparison with MuseMorphase (Wu and Yang, 2023), we
adopted their approach for computing the note density label. Initially, we randomly
selected 200 samples from the Pop test dataset and calculated both vertical and
horizontal note density vectors for each sample, using a window size of 1.28 seconds.
Consequently, for each 10.24-second sample, we obtained 8 vertical and 8 horizontal
note density values. We then flattened these note density vectors and categorized
them into 8 bins, ensuring approximately an equal number of samples in each bin
for both vertical and horizontal densities. During generation, we randomly chose

1Available at https://github.com/gwinndr/MusicTransformer-Pytorch

https://github.com/gwinndr/MusicTransformer-Pytorch
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a shift value of -1, 0, or 1 to adjust the note density classes of a sample, using the
center value of the resultant bin as the target note density.

We also considered PolyDiff (Min et al., 2023) as another baseline. In their approach,
a new musical piece is generated based on the piano roll with basic chords extracted
from the current piece, which is seen as an editing task since it creates a variation of
the existing music with the same chord progression. In our framework, we extracted
chords from the source music, added noise to the source, and then generated new
music guided by the extracted chords.

For both baseline methods, we generated 8-bar music segments and extracted rule
labels for each bar. In contrast, our method involved generating 10.24-second
music segments and using a 1.28-second time window to extract rule labels, thereby
aligning the number of rule labels across all methods.

In terms of similarity metrics, we calculated chroma and grooving similarity be-
tween the generated samples and their respective source samples, following the
methodology outlined in (Wu and Yang, 2023).

D.5 Training Surrogate Models for Music Rules
For classifier guidance (Dhariwal and Nichol, 2021) and DPS-NN (Chung et al.,
2023), we need to train surrogate models to approximate various music rules. We
used the DiT-S architecture in (Peebles and Xie, 2023) as the backbone for classifiers
2. Following the ViT approach (Dosovitskiy et al., 2021), we appended a class token
to the latent codes and utilized a multi-layer perceptron (MLP) for the classification
head. For rules like pitch histogram and note density, our classifier produces a vector
of corresponding rules, and we train it using L2 loss. For chord progression, we
incorporated two classifier heads: one to predict the key logits and the other for
chord logits for each 128-length segment. We treated key and chord as categorical
variables and trained the model using cross-entropy loss.

Figure D.1 illustrates the training and validation loss/accuracy for the three rules
under study. Notably, training a surrogate model for chord progression proved
to be particularly challenging, with the final accuracy hovering around only 33%.
This lower accuracy partly accounts for the diminished performance of rule-guided
methods that depend on surrogate models.

2We use classifiers to refer to the surrogate models, even if they are not necessarily trained using
a classification objective
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Figure D.1: Training and validation curves of the classifiers trained on various
rules.

D.6 Losses over Stochastic Control Guided Sampling Process
We recorded the lowest loss and the variation in losses at each step throughout the
sampling process of a representative sample using SCG, with note density as the
conditioning rule. As depicted in Figure D.2 (a), we observed that the loss remains
consistent until approximately t = 750. This early-stage constancy is attributed to
the fact that, initially, the decoded piano rolls are essentially empty following the
background thresholding, leading to a zero note density and, consequently, a stable
loss. However, as the decoded piano rolls begin to populate, various realizations
yield different note densities, resulting in a diversity of losses. By selecting the
lowest loss at every step, we achieved a decrease in overall loss.

Figure D.2 (b) illustrates the range of the losses at each step. The largest range occurs
around t = 750, the point where the piano roll starts to gain semantic meaning and
the best loss drops drastically. This suggests that applying guidance early, soon after
the piano roll acquires semantic content, is crucial for successful guidance.

(a) (b)

Figure D.2: Best loss (a) and loss range (b) over stochastic control guided DDPM
sampling on a representative sample with note density as the conditioning rule.
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D.7 More Ablation Studies
Unconditional Generation
Our model is capable of generating samples reflective of the distributions from
three distinct datasets. This is accomplished through classifier-free guidance 3 (Ho
and Salimans, 2022), with conditioning based on the specific dataset. We tuned
the strength of the classifier-free guidance for each dataset and discovered optimal
settings for achieving the highest music quality (Table D.3). Specifically, for the
Maestro and Pop datasets, a guidance strength of ω = 0 yielded the best results.
In contrast, for the Muscore dataset, setting ω = 4 proved to be most effective in
enhancing musical quality.

Dataset w Used Pitch IOI Pitch Hist Pitch Range Velocity Note Duration Note Density Avg

Maestro

0 0.961± 0.006 0.901± 0.009 0.960± 0.010 0.963± 0.006 0.971± 0.004 0.910± 0.012 0.934± 0.005 0.943± 0.003
1 0.948± 0.002 0.915± 0.011 0.946± 0.004 0.931± 0.009 0.956± 0.008 0.910± 0.007 0.937± 0.008 0.935± 0.003
2 0.953± 0.004 0.878± 0.006 0.964± 0.003 0.946± 0.006 0.963± 0.008 0.892± 0.009 0.953± 0.004 0.935± 0.001
4 0.925± 0.005 0.891± 0.008 0.940± 0.007 0.934± 0.011 0.958± 0.010 0.890± 0.010 0.932± 0.005 0.924± 0.001

Muscore

0 0.941± 0.003 0.890± 0.019 0.950± 0.014 0.946± 0.006 0.886± 0.010 0.922± 0.011 0.925± 0.006 0.923± 0.003
1 0.956± 0.008 0.870± 0.014 0.942± 0.007 0.962± 0.009 0.885± 0.006 0.911± 0.007 0.934± 0.007 0.923± 0.003
2 0.942± 0.009 0.899± 0.014 0.940± 0.014 0.954± 0.008 0.884± 0.014 0.911± 0.007 0.924± 0.008 0.922± 0.005
4 0.963± 0.004 0.915± 0.009 0.962± 0.009 0.964± 0.004 0.890± 0.006 0.900± 0.012 0.946± 0.005 0.934± 0.003

Pop

0 0.927± 0.009 0.952± 0.004 0.969± 0.002 0.928± 0.013 0.948± 0.003 0.911± 0.019 0.941± 0.009 0.939± 0.004
1 0.921± 0.004 0.917± 0.003 0.975± 0.003 0.937± 0.009 0.939± 0.007 0.926± 0.015 0.935± 0.005 0.936± 0.003
2 0.929± 0.008 0.885± 0.010 0.970± 0.005 0.926± 0.013 0.935± 0.007 0.926± 0.012 0.950± 0.011 0.932± 0.003
4 0.933± 0.011 0.897± 0.004 0.965± 0.007 0.920± 0.010 0.940± 0.007 0.914± 0.015 0.962± 0.007 0.933± 0.005

Table D.3: Unconditional generation on three datasets with different classifier-free
guidance strength.

Latent vs Pixel Space
Our approach employed a latent diffusion model for symbolic music generation and
compared its performance with a diffusion model trained in pixel space. The pixel
space model was configured with a time resolution of 0.08 seconds per column in
the piano roll, as opposed to the 0.01-second resolution in latent space. This choice
was primarily driven by computational constraints; a 0.01-second resolution for a
10.24-second music piece would result in a piano roll of size 3× 128× 1024, posing
significant computational demands. In contrast, a 0.08-second resolution yields a
more manageable size of 3×128×128. For training the pixel space diffusion model,
we utilized a standard U-Net backbone.

Table D.4 presents a comparison of the models in the task of unconditional genera-
tion. An intriguing trend emerged: the latent space model excelled with complex,
dynamic-rich music (e.g., Maestro), whereas the pixel space model showed superior
performance with simpler music (e.g., Pop). The Muscore dataset, predominantly

3Despite this approach, we refer to it as ‘unconditional generation’ because it does not involve
rule-based guidance.
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featuring classical sheet music, sits between Maestro and Pop in terms of complexity,
and here, both models performed comparably. This observation aligns with the
notion that time resolution has a less pronounced impact on the expressiveness of
simpler music, making a lower resolution viable for training the diffusion model.

dataset method Used Pitch IOI Pitch Hist Pitch Range Velocity Note Duration Note Density Avg

Maestro
pixel 0.919± 0.005 0.877± 0.018 0.983± 0.005 0.959± 0.007 0.969± 0.003 0.897± 0.013 0.896± 0.003 0.929± 0.006
latent 0.961± 0.006 0.901± 0.009 0.960± 0.010 0.963± 0.006 0.971± 0.004 0.910± 0.012 0.934± 0.005 0.943± 0.003

Muscore
pixel 0.962± 0.005 0.903± 0.009 0.965± 0.009 0.964± 0.007 0.893± 0.007 0.928± 0.011 0.926± 0.008 0.934± 0.005
latent 0.963± 0.004 0.915± 0.009 0.962± 0.009 0.964± 0.004 0.890± 0.006 0.900± 0.012 0.946± 0.005 0.934± 0.003

Pop
pixel 0.935± 0.011 0.957± 0.004 0.976± 0.003 0.952± 0.004 0.945± 0.006 0.935± 0.011 0.946± 0.013 0.949± 0.005
latent 0.927± 0.009 0.952± 0.004 0.969± 0.002 0.928± 0.013 0.948± 0.003 0.911± 0.019 0.941± 0.009 0.939± 0.004

Table D.4: Comparing pixel vs latent space for unconditional generation.

Table D.5 shows the loss for individual rule guidance using the pixel space-trained
diffusion model. Mirroring the findings in Table 5.3, SCG consistently achieved the
lowest loss, underscoring its effectiveness in rule guidance. However, a noticeable
decline in music quality (measured by OA) was observed for the model trained on
pixel space, particularly in aspects like pitch histogram and note density (Table D.6).
This decline can be attributed to the nature of Gaussian noise addition in pixel space,
which often results in random, musically nonsensical notes that nevertheless align
with rule targets. Conversely, noise addition in latent space tends to induce more
meaningful alterations, thereby preserving the higher music quality.

Method Pitch Histogram ↓ Note Density ↓ Chord Progression ↓
No Guidance 0.019± 0.011 2.367± 2.933 0.841± 0.142
Classifier 0.020± 0.015 0.287± 0.330 0.783± 0.208
DPS - NN 0.020± 0.013 0.615± 1.188 0.788± 0.170
DPS - Rule 0.002± 0.006 2.349± 3.425 -
SCG 0.0001± 0.0008 0.103± 0.570 0.344± 0.212

Table D.5: Loss between the target and the generated attributes for individual rule
guidance using the pixel-space trained diffusion model.

Model Pitch Histogram ↑ Note Density ↑ Chord Progression ↑
Pixel 0.848± 0.005 0.797± 0.005 0.892± 0.009
Latent 0.897± 0.006 0.880± 0.003 0.883± 0.002

Table D.6: Comparison of Average Overlapping Area (OA) for individual rule
guidance between diffusion models trained on pixel and latent space.

Composite Rule Guidance
In the task of composite rule guidance, the allocation of suitable weights to each
rule is crucial for effective rule-based guidance. Table D.7 shows the performance
associated with various weight assignments. Generally, we observed that amplifying
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the weight assigned to a specific rule tends to decrease the loss pertinent to that
rule. However, excessively concentrating the weight on a single rule can lead to a
deterioration in performance, as evidenced by the configuration with a 40-1-4 weight
assignment with an overly heavy emphasis on chord progression (CP).

Weight PH ↓ ND ↓ CP ↓ Quality ↑
40-1-1 0.004± 0.005 0.218± 0.243 0.447± 0.226 0.901± 0.003
40-1-2 0.004± 0.004 0.215± 0.193 0.392± 0.206 0.905± 0.007
40-1-4 0.004± 0.004 0.251± 0.236 0.418± 0.216 0.884± 0.011
100-1-1 0.003± 0.002 0.236± 0.244 0.434± 0.229 0.903± 0.005

Table D.7: Composite rule guidance using Classifier + SCG-4 with different weight
on each rule. The weight column displays the weight in the order of PH, ND and CP.

Additionally, we investigated the impact of the sample count n on composite rule
guidance, as shown in Table D.8. The observed trend is consistent with that in
individual rule guidance: using a greater number of samples at each step results in
a lower loss. Another noteworthy observation is that combining SCG with other
guidance methods (e.g., classifier guidance) and using a smaller sample count n
(such as 4) can yield better outcomes than using SCG alone with n = 16. This
improvement occurs because classifier guidance provides a coarse guidance signal,
making it easier to identify advantageous directions based on these preliminary
signals. As expected, the hybrid approach with a larger sample count n = 16

achieves the lowest loss. Remarkably, the losses in this case are similar to those in
individual rule guidance, despite being achieved simultaneously.

Method n PH ↓ ND ↓ CP ↓ Quality ↑
SCG 16 0.014± 0.009 0.466± 0.648 0.446± 0.205 0.909± 0.005
DPS-NN + SCG 4 0.003± 0.004 0.392± 0.612 0.486± 0.270 0.826± 0.005
Classifier + SCG 4 0.004± 0.005 0.218± 0.243 0.447± 0.226 0.901± 0.003
DPS-NN + SCG 16 0.002± 0.007 0.238± 0.531 0.313± 0.231 0.844± 0.007
Classifier + SCG 16 0.003± 0.005 0.148± 0.203 0.284± 0.197 0.894± 0.007

Table D.8: Effect of number of samples n on composite rule guidance.

D.8 Rule-Guided Generation Survey
Details
To evaluate the rule alignment of our approach SCG compared to two baseline
methods, we designed a listening test. We extracted three musical rules (Pitch
Histogram, Note Density, and Chord Progression) from various segments in our
dataset. Next, we created music samples lasting 10.24 seconds each, adhering to
these three rules. We produced four samples for each guiding method, including our
own, resulting in a total of 12 samples.
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We recruited 15 participants with substantial musical experience for our survey.
We gathered information on their musical backgrounds, including the number of
years they have been playing music, their years of formal music education, and the
instruments they play. A significant portion of the participants have over 10 years
of experience in both playing music and formal musical study, as shown in figures
D.3 and D.4. Figure D.5 displays a diverse range of instrument expertise among
participants, with a notable prevalence of piano players, aligning with our model’s
focus on piano music. This diversity and level of experience make the participants
well-suited for analyzing the music’s rule alignment and musicality.

Figure D.3: Years of
playing music

Figure D.4: Years of for-
mal music study

Figure D.5: Instruments
of participants

The dimension we evaluate about the sample quality are rule alignment, creativity,
coherence and overall rating. Question 1-3 are about rule alignment, which evaluates
the performance of guidance. Creativity refers to whether samples are musically
interesting or not. For example, if one segment is static, then such sample is not
creative. Coherence refers to whether the samples align with basic musical common
knowledge. For instance, if one segment contains many random notes, then such
sample sounds chaotic and it is not coherent to human’s sense of good music. The
overall rating is evaluated by participants, where they give a score solely based on
their preference to the samples.

Each evaluation dimension is rated on a scale up to 5 points. For rule alignment,
a Likert scale is used, where "completely unaligned" is rated as 1 and "perfectly
aligned" as 5. The average score from questions 1-3 determines the rule alignment
score. Creativity is initially scored out of 3 points, which is then normalized to a
5-point scale. The average of questions 4 and 5 calculates the creativity score. In
question 4, "No" scores 1 point, "Maybe" 2 points, and "Yes" 3 points. For question
5, both "Too Simple" and "Too Complex" score 1 point, while "Moderate" scores 3
points.

For coherence, the maximum score is 4 points, later normalized to 5 points. The
average from questions 6-8 gives the coherence score. In question 6, "Many" errors
score 1 point, "Some" 2 points, "A Few" 3 points, and "None" 4 points. In question 7,
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"Mainly incoherent harmonic motion" scores 1 point, "Mainly incoherent harmonic
motion with some coherence" 2 points, "Mainly coherent harmonic motion with
some incoherence" 3 points, and "Coherent harmonic motion" 4 points. Question 8
uses a tailored scoring system to fit the 4-point scale: "Poor" is valued at 4/3 points,
"Moderate" at 8/3 points, and "Highly Engaging" at 4 points.

The overall rating also utilizes a Likert scale, with "Poor" equating to 1 point, "Fair"
2 points, "Good" 3 points, "Very Good" 4 points, and "Excellent" 5 points.

Regarding the music rules (Pitch Histogram, Note Density, and Chord Progression),
we generated the entire sample conditioned on pitch histogram. To assess note
density and chord progression, the music segment is divided into 8 equal-length
segments or windows. We then analyze and compute the note density and chord
progression within each of these windows. The survey consists 9 questions in total,
investigating SCG’s rule alignment and sample’s musicality.

Survey
The first three questions of the survey are studying the rule alignment of guidance
mechanisms. The answer of these three questions are all classified into 5 categories
instead of binary choices because rule alignment can be effective for parts of the
music sample. For example, given a 10 second music sample, the first 5 seconds
of the sample has the perfect alignment, and the last 5 seconds of the sample does
not align with provided rules at all. In this case, only binary classification on how
effective the guidance is would not be enough to distinguish such sample. Thus, we
construct 5 options instead of binary choices.

Question 1: On a scale of 1 to 5, how well does the pitch histogram in the sample
music match the provided histogram? (1 indicating the least alignment, with 5
indicating the most alignment)

The options are:

• Completely unaligned (1): The pitch histogram in the sample music is com-
pletely different from the provided pitch histogram.

• Somewhat unaligned (2): The pitch histogram in the sample music is some-
what different from the provided pitch histogram, with a small portion of the
segment aligned.
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• Moderately aligned (3): The pitch histogram in the sample music is somewhat
aligned with the provided pitch histogram, with a small portion of the segment
not aligned.

• Mostly aligned (4): The pitch histogram in the sample music is mostly aligned
with the provided pitch histogram.

• Perfectly aligned (5): The pitch histogram in the sample music is perfectly
aligned with the pitch histogram.

Besides the generated, we show the participants the image of pitch histogram that are
used for guidance. Note that Pitch histogram is the distribution of notes. Question 1
focuses on the alignment of pitch histogram, which means whether distribution of
notes in the given sample follows the given pitch histogram. The question directly
evaluates how effective the conditioning on pitch histogram is.

Question 2: On a scale of 1 to 5, how would you rate the alignment of the note
density of the sample music compared to the note density provided in the above
youtube video? (1 being the least aligned, 5 being the most aligned, take a look at
the piano roll image would be a good idea)

The options are:

• Completely unaligned (1): The note density in the sample music significantly
differs from the provided music segment, leading to a large disparity in musical
texture and pacing.

• Somewhat unaligned (2): The note density in the sample music somewhat
differs from the provided music segment, causing a noticeable disparity in
musical texture and pacing.

• Moderately aligned (3): The note density in the sample music is somewhat
aligned with the provided note density, but with a perceptible mismatch in
musical flow and rhythm.

• Mostly aligned (4): The note density of the sample music closely matches
the provided note density, with slight differences in how notes are spaced and
arranged.
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• Perfectly aligned (5): The note density of the sample music aligns perfectly
with the provided note density, reflecting a very similar density pattern in the
distribution of notes.

Question 2 evaluates the alignment of note density. Note density refers to the
frequency and distribution of musical notes in a piece, indicating how many notes
occur over a specific time or within a certain section of the music. In other words,
note density reflects the texture and pacing in music segments. Thus, under a
successful guidance of such rule, the texture and pacing of generated samples would
be similar to the density pattern of corresponding segments in the distribution of
notes.

Question 3: On a scale from 1 to 5, how well does the chord progression in the
sample music match the provided chord progression, focusing on their functional
harmony and general sequence rather than specific chord inversions. (1 indicates
minimal alignment, with pronounced differences in chord progression, 5 signifies
complete alignment, with the chord progressions being very similar or identical)

The options are:

• (Completely Unaligned): The bass line of the chord progression in the sample
music significantly deviates from the provided progression, resulting in a clear
disparity in harmonic structure and musical direction.

• (Somewhat Unaligned): Observable differences in the chord progression
between the sample music and the provided example lead to a discordant
sound and a disrupted musical flow.

• (Moderately Aligned): The chord progression in the sample music is somewhat
consistent with the provided progression, with only minor discrepancies in the
sequence or harmony.

• (Mostly Aligned): The chord progression in the sample closely mirrors the
provided progression, with only negligible variations that don’t substantially
affect the overall harmonic continuity.

• (Perfectly Aligned): The chord progression in the sample music perfectly
matches the provided progression, ensuring a cohesive and harmonious har-
monic structure throughout.
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Chord progression guides the music segment sounding more reasonable. Such ques-
tions asks about the alignment of chords, where effectively evaluates the controllable
generation based on given chord progression.

The subsequent five questions explore the musicality of the generated samples, en-
compassing both creativity and coherence. The primary aim of rule-based guidance
is to enhance the auditory appeal of the samples, making them more enjoyable to
listeners. A generation is not considered successful if it fails to be aesthetically
pleasing, regardless of achieving perfect alignment with all three specified rules.

Questions 4 and 5 focus on evaluating the creativity of the music sample.

Question 4: Do you like the music based on your personal taste?

The options are:

• Yes

• No

• Maybe

Questions 4 directly asks whether the participants like the music based on their
personal taste. The evaluation from listeners with substantial musical experience
illustrates the quality of model generation.

Question 5: What do you think of the complexity of this music?

The options are:

• Too Simple

• Moderate

• Too Complex

Question 5 assesses the complexity of the music, indicating that a moderate level of
complexity is optimal. Music that is either too simple or too complex is considered
to detract from the quality of the sample.

Questions 6 to 9 are designed to assess the coherence of the music sample.

Question 6: How many elements in the sample that seem out of place or random?

The options are:
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• None

• A Few

• Some

• Many

Question 6 aims to evaluate on the generation quality of the model. Because the
sample is composed by the model instead of human, such sample might have random
notes. The random elements would break the entity of the music segment and the
pleasure of listening for participants.

Question 7: How coherent do you find the harmony in the excerpt to be?

The options are:

• Coherent harmonic motion

• Mainly coherent harmonic motion with some incoherence

• Mainly incoherent harmonic motion with some coherence

• Mainly incoherent harmonic motion

Question 7 assesses the harmonic coherence of the generated sample, specifically
evaluating if the music segment appears harmonically random or structured.

Question 8: How would you rate the appropriateness and engagement of the texture
in the sample music, considering the layers and how they combine?

The options are:

• Highly Engaging

• Moderate

• Poor

Question 8 examines the texture of the sample music, focusing on whether the music
presents an overly complex or disordered structure.

Question 9 solicits the overall rating of the music, where participants rate the sample
according to their personal preferences.
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Question 9: Overall Rating: On a scale of 1 to 5, how would you rate this sample?
(1 being lowest, 5 highest)

The options are:

• Poor: The music lacks appeal in many aspects and does not engage the listener.

• Fair: The music has some redeeming qualities but falls short in several areas.

• Good: The music is enjoyable and well-composed, though it may have a few
minor flaws.

• Very Good: The music is engaging and impressive, showing high levels of
creativity and skill.

• Excellent: The music is outstanding in all respects, offering a deeply satisfying
and memorable listening experience.
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