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ABSTRACT

This thesis addresses the critical challenge of ensuring safety in autonomous explo-
ration within unknown, unstructured, dynamic environments, a domain filled with
various types of uncertainties. These include model uncertainties in system dynam-
ics, localization uncertainties stemming from measurement noises, and the risks of
collision in environments with dynamic obstacles. Traditional models for vehicle
planning and control are often simplified for computational feasibility, but this sim-
plification without careful analysis can compromise safety and system stability. My
research introduces a novel, comprehensive framework to provide probabilistically
safe planning and control for robot autonomy, structured around three components:

Probabilistic Uncertainty Quantification for Model Mismatches
This segment focuses on identifying model discrepancies given closed-loop tracking
data in an unstructured environment where a reduced-order robot model is used for
planning and control. The disturbance is modeled as a scalar-valued stochastic
process of a norm on the difference between the reduce-order robot model and
actual system evolution. In an online and risk-aware framework, Gaussian Process
Regression is employed to extract the probabilistic upper bound to such stochastic
process, referred to as the Surface-at-Risk. Theoretical guarantees on the accuracy
of the fitted discrepancy surface are analyzed and verified to the data sets collected
during system operation. In an offline setting, conformal prediction, a statistical
inference tool, is employed to obtain probabilistic upper bounds of matched and
unmatched model disturbance in the system from data, without any assumption
of the latent probability distribution governing these discrepancies. Building on
these bounds, the robot’s nominal ancillary controller is augmented for extending
robustness and stability guarantees of the closed-loop system in the face of such
discrepancies. Additionally, a maximum tracking error tube is constructed along
the planned trajectory using the reduced-order model. Such error tubes describe the
maximum permissible deviation in actual trajectory tracking under the augmented
ancillary controller and the worst-case matched and unmatched model uncertainties,
thereby delineating safe operational boundaries for the system.

Data-Driven Unsafe Set Prediction for Dynamic Obstacles
This thesis topic develops an online, data-driven predictive model for dynamic obsta-
cles, accounting for measurement noise and low-frequency data rates. First inspired
by singular spectrum analysis (SSA), a time-series forecast technique, obstacle
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models characterized by linear recurrence relationships are extracted from real-time
position observables. Using the statistical bootstrap technique, a set of predicted ob-
stacle trajectories are constructed, which in turn are reformulated into deterministic
distributionally robust obstacle avoidance constraints, reflecting a user-defined risk
tolerance. Further refining the obstacle predictor for intention-unknown obstacles,
a linear, time-varying model is learned from data using time-delay embedding of
obstacle position observables. Additive process and measurement noises are antic-
ipated in the learned model, where their intensities are estimated from data. For
inferring prediction uncertainties, a companion data-driven Kalman Filter (DDKF)
is constructed to forecast obstacle positions and uncertainties. This “heuristic unsafe
set” from DDKF is then dynamically calibrated using adaptive conformal predic-
tion, ensuring safety without relying on any distribution assumptions regarding the
uncertainties or model accuracy. The calibrated sets, called conformal prediction
sets, are then reformulated into convex state constraints.

Safety-Critical Planning
The thesis proposes two methods for ensuring safety in planning and navigation:
Probabilistic-Safe Model Predictive Control (MPC) and Probabilistic-Safe Model
Predictive Path Integral (MPPI) given uncertainties arising from operating in un-
known, unstructured, and dynamic environments. The MPC approach integrates
the quantified obstacle avoidance constraints into a convex program to balance
computational tractability while providing probabilistic safety guarantees. In con-
trast, the MPPI method, a sampling-based strategy, incorporating unsafe sets into a
cost map derived from sensory data, optimizes reference tracking trajectory while
guaranteeing collision avoidance up to a user-defined risk tolerance.

In unknown and cluttered environments automatically, the proposed framework
learns an upper bound on model residuals from data and systematically calculates
the safety buffers needed to provide the desired probabilistic safe navigation of
robotics systems. Additionally, in the presence of dynamic obstacles, the proposed
data-driven predictor systematically extracts an obstacle model and makes obstacle-
occupied unsafe set forecasts. These features largely eliminate the “hand tuning”
of the underlying planner and controller that is normally required in heuristic-based
algorithms. The efficacy of these proposed frameworks is empirically validated
through Monte Carlo Simulations, alongside hardware validations on both ground
and aerial vehicles, demonstrating their robustness, versatility, and applicability in
real-world scenarios.
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C h a p t e r 1

INTRODUCTION

In recent decades, the field of robotics has garnered significant public interest
as it transitions from factory and laboratory settings into more urban, human-
centric environments. Recent applications range from autonomous vehicles offering
taxi services to robot vacuums that clean floors, kitchen manipulators preparing
food, and exoskeleton robots enhancing or rehabilitating human movement. These
innovations, particularly relevant in cluttered, uncertain, and potentially challenging
environments, highlight the crucial role of online path planning, integrated with
obstacle behavior classification and avoidance [1].

The motion planning of autonomous systems in dynamic environments necessitates
an acute awareness of environment-induced uncertainties. For example, a self-
driving car must predict the erratic movement of other vehicles, and a mobile robot
in a crowded space must assess the uncertainties of pedestrian movements. These
applications are safety-critical, given the unknown intentions of surrounding agents
and unstructured environments. Robotic systems must be adept at planning reactive
behaviors. Confidence-based motion planning is a leading approach in this domain,
integrating high-level path planning and data-driven model refinement based on
robot-environment interactions [2]–[4], along with robust ancillary controllers for
disturbance rejection.

Moreover, safety must also be enforced in environments that are unknown and
unstructured. This concern extends across various fields, including agriculture [5],
search and rescue operations [6], package delivery [7], and mining [8]. Challenges
in these sectors often stem from incomplete or unknown terrain and obstacle data
[9], [10] and model mismatches due to the inherent unstructured nature of these
environments [11], [12]. For instance, a self-driving car must navigate effectively
on icy roads or rough terrain where its trajectory tracking accuracy is significantly
compromised, and aircraft autopilots need to stabilize themselves against random
wind gusts and weathering to provide safe and comfortable flights. Similarly,
search and rescue missions typically occur in unknown settings where robots must
intelligently discern traversal paths.

Given the intricacies presented by these environments, the creation of systematic
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and verifiable probabilistic frameworks for robot traversal becomes imperative. Es-
tablishing such frameworks is crucial for ensuring safety in scenarios characterized
by unknown, unstructured, and dynamic conditions. This thesis categorizes these
scenarios into two primary classes, each underscoring a distinct aspect of robotic
autonomy: (1) Unknown and Unstructured Autonomy (UUA), focusing on navi-
gating environments where terrain and obstacle characteristics are not predefined,
and (2) Moving Obstacle Avoidance (MOA), emphasizing the dynamic aspect of
environments where moving entities with unknown intentions, such as pedestrians
or other vehicles, pose variable challenges to robot autonomy.

This chapter was adapted from: [13] [14], [15], [16], [17].

1.1 Motivations
This thesis centers around synthesizing planning and control frameworks for robotic
autonomy when facing unknown, unstructured, and dynamic environments. Ensur-
ing system stability and safety in the presence of these uncertainties necessitates
robust vehicle planning and control strategies. Addressing these challenges, my
research has established a comprehensive framework by answering the following
key questions:

Q1 How to quantify uncertainty arising from model mismatches?

Q2 What is the impact of unstructured uncertainties on system performance and
stability?

Q3 What methods can be employed to predict dynamic obstacles’ future trajecto-
ries?

Q4 How to reason about prediction accuracy given a probabilistic risk tolerance?

Q5 How to synthesize planners and controllers, considering the quantified un-
certainties and models, to ensure probabilistic safety and stability for robot
autonomy?

1.2 Literature Review
Disturbance Modeling and Robust Planning

Prior research has studied the impact of unmodeled disturbances on vehicle planning
and control using frameworks such as input-to-state safe control [18], [19] and risk-
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aware control [20], [21]. However, these methods often assume a priori model
knowledge or require a minimum understanding of the disturbances’ magnitudes
or distributions. Bayesian Optimization and Reinforcement Learning methods can
bypass the uncertainty or model identification steps, directly learning risk-aware
control policies in a model-free fashion [22], [23]. These approaches still come
with the assumption of a priori knowledge of the disturbances, or that they can be
sampled. More recently, the union of Neural Networks with adaptive control [24] has
demonstrated remarkable tracking improvements in drone control given unknown
residual dynamics. However, the theoretical robustness guarantees in [24] rely on
knowledge of wind disturbance upper bounds, and they do not consider obstacles or
actuation constraints.

A learned control policy can be combined with an optimal path planner, as demon-
strated in robust model predictive control [25], [26] and chance-constrained stochas-
tic optimal control [2], [27]. Although these methods construct a deterministic
problem surrogate to the original probabilistic one, they often require constraint
convexification, such as sequential constraint linearization around fixed points, and
optimality can only be reached in infinite sequential iterations. For instance, Monte
Carlo Sample propagation [3], [28] and scenario-based approaches [29] can require
a very large number of samples to reach the desired obstacle avoidance probability
guarantees.

The sampling-based Model Predictive Path Integral control (MPPI) method has
proven versatility in off-road racing applications [30]. As a model-based strategy,
MPPI may exhibit suboptimal performance in the face of modeling uncertainties and
disturbances. Tube-based [31] and robust MPPI variants [32] have been proposed
to address these challenges. Both of these methods integrate an ancillary controller,
such as iterative Linear Quadratic Gaussian (iLQG), to improve tracking perfor-
mance with measurement feedback and robustness to uncertainties. These methods’
assumptions on sequential linearization and the additive process and measurement
noise being Gaussian limits their applicability to nonlinear systems with generalized
additive model uncertainties.

In unknown environments, robot navigation often relies on sensor-based occupancy
grid maps [33], [34], which are commonly used for global path planning [35]. Grid
maps can be used for local optimization-based path planning by converting the maps
into signed distance functions [36], [37], which can be locally convexified to serve as
the collision-avoiding state constraints. Alternatively, occupancy-based risk maps
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have been used for sampling-based local planners [9], [38]–[40]. To alleviate the
computation and convexity burden, the MPPI algorithm allows direct grid-map-
based assessment for trajectory costs [40]. However, systematic parameter and cost
tuning is required to avoid the algorithm making undesirable decisions [41], [42].
Lastly, direct estimation of traversability from sensors is also a popular technique for
robotic navigation in complex environments leveraging expert heuristics [9], [43]
or self-supervised learning [44]. However, it is not straightforward to extend these
hardware successes to provide provable safety guarantees.

Obstacle Avoidance

This overview covers the diverse and complex strategies for dynamic obstacle avoid-
ance, highlighting the challenges and opportunities in developing a novel framework
with safety guarantees with minimal assumptions about obstacle behaviors and data
access. Dynamic obstacle avoidance has garnered substantial attention in research
because it plays an essential role in field robotics and autonomy, including urban au-
tonomous driving, defense applications, and robot delivery systems [45], [46]. From
dynamic obstacle modeling and behavior characterization to control and planning
policy synthesis, there are numerous existing approaches to finding collision-free
safe maneuvers. The related works are reviewed under the following criteria:

1. The obstacle’s type, behavior, intent, and quantity are unspecified.

2. Obstacle position measurements, obtained at a fixed rate of approximately
20 − 30 Hz using LiDAR sensors, are the sole source of information. These
measurements are subject to corruption by Gaussian White Noise, with an
unknown covariance matrix.

3. Provable Safety Guarantees are provided with Hardware Validations.

Obstacle model-free approaches like artificial potential fields (APF) and relative
velocity methods are common. For instance, Lam et. al. [47] apply APF with
stochastic reachable sets in Human-Centered environments. Or, one can plan the
agent’s path offline using a Probabilistic Roadmap (PRM) in a field of static obstacles
and then replan when dynamical behaviors are observed [48]. However, lacking prior
knowledge of the obstacle behaviors can lead to overly conservative (worst-case-
based) safe maneuvers.
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Control barrier functions (CBFs), another popular solution to obstacle avoidance
problems, phrase collision avoidance as a controller synthesis problem [49]–[51].
The collision-preventing safety constraints are typically affine with respect to the
control input, enabling the use of convex optimization for safe and optimal in-
put synthesis. Nevertheless, major theoretical advancement in CBFs for obstacle
avoidance often presumes perfect knowledge of the robot and obstacle dynamics or
rely on worst-case bounds that can be overly conservative [52]–[54]. The recent
surge of backup CBF strategies under torque constraints [55] has shown promise in
multi-agent obstacle avoidance settings. However, in situations where the dynam-
ics, control, and intentions of the obstacle remain unknown, CBF-based strategies
require accurate obstacle trajectory or rates estimate. [56] ingeniously leveraged
velocity cones and CBFs to decouple the control of linear speed and steering in
ground vehicles to produce effective obstacle avoidance strategies. Yet, this ap-
proach uses a fixed upper bound on the dynamics of all moving obstacles to provide
robustness which can be excessively cautious, especially when obstacles move at
different speeds.

For UAVs, Tordesillas and How presented a state-of-the-art 3D decentralized tra-
jectory planner, which has shown robustness against communication delays and
efficacy in dynamic environments and has been validated on hardware [57], [58].
These planners achieve real-time dynamic obstacle avoidance by representing their
trajectories each with an outer polyhedral convex hall, demonstrating computational
superiority and efficiency in scenarios with numerous obstacles. Nonetheless, these
planners require the establishment of agent-to-agent communications in multi-agent
obstacle avoidance or an accurate obstacle trajectory predictor for extrapolating ob-
stacle future behaviors. The trajectory predictor is polynomial extrapolation with a
3D Gaussian position uncertainty [59]. However, the accuracy of such extrapolation
can be compromised in the presence of measurement noise and limited real-time
data, leading to potential collision risks. Such predictions may be of limited value
in the presence of uncooperative obstacle agents.

Chance-constrained Model Predictive Control (CCMPC) addresses obstacle uncer-
tainties through chance constraints, such as those related to position uncertain-
ties [60]–[63], and has been hardware-validated with perception-based obstacle de-
tection and localization [64]. Wakabayashi et. al. have further enhanced CCMPC
by incorporating velocity uncertainties, thereby improving noise resistance. How-
ever, the simplification of obstacle dynamics to chained integrator models in these
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approaches could result in suboptimal predictions of obstacle behavior and overly
conservative maneuvers.

Extracting a dynamics model from data is challenging [65], especially when the
available data is limited, noisy, and partial. To tackle partial measurements, Takens’
embedding theorem [66]) offers a solution that uses partial observations to produce
an attractor that is diffeomorphic to the full-state attractor. Koopman-inspired
model identification methods [67]–[69] have shown success in obtaining linear
time-invariant models from time-series data using time-delay embedding. Yet, it
is not evident how to derive an obstacle model from real-time obstacle position
measurements as well as quantify the learned model accuracy in the presence of
measurement noises.

Recent research introduces prediction monitors [70], [71] which employ conformal
prediction to provide one-step guarantees on false negative rates of predictors, which
are useful in synthesizing point-wise obstacle-avoiding control inputs.

When offline training datasets are available, a variety of methods have been pro-
posed to learn high-fidelity obstacle dynamics models for pedestrians [72], [73].
Intent-driven models for planning among human agents have estimated agent un-
certainty using Bayesian inference [74]–[77]. Additionally, constructing offline
motion libraries and performing reachability-set analysis [78], [79] can enrich the
set of available motion primitives for identifying obstacle-avoiding maneuvers or
assist online planners in synthesizing safe trajectories. Switching-based planning
methods, which detect and classify dynamic obstacle behavior against a set of trajec-
tories, such as constant speed, linear, and projectile-like motions [80], [81], require
distinguishable obstacle behaviors and the knowledge about the classes of obstacle
behaviors. Data-driven trajectory predictors can provide mean and variance infor-
mation of the predictions, which can be approximated as a Gaussian distribution [82]
and used within stochastic planning frameworks [83]–[85]. However, under the cri-
teria defined earlier, these methods require large training sets with ground truth for
model calibrations. This characteristic makes it difficult to translate this method
to real-time obstacle avoidance. Furthermore, these approaches quantify prediction
uncertainty in a heuristic manner, such as making assumptions about the prediction
algorithms, and agent models, and their uncertainty distribution is Gaussian.
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1.3 Summary of Contribution
The core elements of the proposed data-driven safety-critical autonomy framework
are data-driven model identification, uncertainty quantification of model prediction
accuracy, and the transformation of risk-aware chance constraints into deterministic
state constraints for optimization. The individual contributions presented in this
thesis are summarized as follows:

Model Uncertainty Identification and Quantification - Online Framework:
Chapter 3 details a risk-aware model augmentation approach via learning distur-
bance models online that does not require a priori disturbance knowledge. The
approach is sample-efficient, where the method requires less than a minute of flight
data to make risk-aware control improvements on a drone mid-flight. By treating
the norm discrepancy between the reduce-order model and true system evolution as
a scalar stochastic process, this method proposed to learn a Surface-at-Risk using
Gaussian Process Regression which provides theoretical and experimentally veri-
fiable probabilistic guarantees. Hence, augmenting the controller with the learned
disturbance bounds yields an efficient risk-aware controller.

Model Uncertainty Identification and Quantification - Offline Framework:
Chapter 4 introduces a discrepancy-aware planning and control framework for
the safe traversal of unmanned ground vehicles (UGVs). Specifically, there are
unknown model discrepancies between the simplified nominal model used for plan-
ning and the true vehicle dynamics. The proposed method augments the vehicle’s
controller using learned discrepancies given offline training data sets and applies
rigorous uncertainty quantification to provide provably safe operation. Example
model discrepancies include wheel slipping and skidding, actuation dynamics and
delays, and communication delays. The proposed framework automatically learns
an upper bound on model residuals from data and systematically calculates the col-
lision buffers needed to provide the desired probabilistic safe traversal of robots in
cluttered and unstructured environments.

The proposed framework consists of the following key contributions:

• Data-Driven Discrepancy Identification: Using conformal prediction ([86]),
a probabilistic upper bound of matched (controllable input) discrepancies and
unmatched (uncontrollable drift) discrepancies are identified from training
data, without any assumptions on the discrepancy distributions.
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• Controller Augmentation: The identified upper bounds are then used to aug-
ment the vehicle’s nominal ancillary controller to ensure closed-loop stabiliz-
ability and robustness against uncertainties.

• Collision Buffer Construction: To ensure safety given model uncertainties, a
maximum trajectory tracking deviation of the closed-loop system is deduced
under the augmented controller. This collision buffer delineates the bound-
aries within which the system can operate safely, despite mismatches between
the nominal and true vehicle models.

• Discrepancy-Aware Planner: A discrepancy-aware cost map is constructed
from the identified collision buffer and a sensory-derived occupancy map.
This cost map can be seamlessly used with Model Predictive Path Integral
(MPPI) to generate optimal finite-horizon trajectories that provably adhere to
user-chosen risk tolerance.

The effectiveness of the framework is experimentally validated for autonomous
high-speed trajectory tracking in a cluttered environment with four different vehicle-
terrain configurations. This chapter also showcases the framework’s versatility by
reformulating it as a driver-assist program, providing collision avoidance corrections
based on user joystick commands.

Moving Obstacle Avoidance - Bootstrapping Forecasting: As a proof-of-concept
to merge data-driven obstacle trajectory forecast and receding horizon planning,
a data-driven moving obstacle avoidance framework is developed and presented in
Chapter 5. Such a framework consists of the following steps: (1) discovering the dy-
namics of a priori unknown moving obstacles, (2) forecasting their trajectories, and
(3) providing risk-aware optimal avoidance strategies. This framework replaces the
need for obstacle trajectory/model classification while allowing online computation.

Singular Spectrum Analysis (SSA) ([87], [88]) is employed to separate noise from
the underlying signal and to extract a predictive model of obstacle behavior. In-
spired by Fasel et. al. [89], a set of obstacle trajectory predictions are made using
bootstrapping. An MPC planner then incorporates the set of obstacle forecasts as
an affine conservative approximation of a distributionally robust chance constraint
(DRCC). This constraint is then efficiently recast in a risk-aware manner, allowing
an MPC optimization based on sequential convex programming [90], [91].
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Monte Carlo simulations verify the planner’s ability to uphold the user-chosen
chance constraint. The risk-aware reformulation not only gives provable proba-
bilistic collision avoidance guarantees but also allows an online execution of the
planner.

Moving Obstacle avoidance - Probabilistic Guarantees: To provide probabilis-
tic obstacle avoidance guarantees, a refined framework with rigorous prediction
uncertainty quantification is developed, detailed in Chapters 6 and 7. This novel
framework consists of three main components: (1) a Data-Driven Horizon Predic-
tor, (2) Heuristic and Conformal Unsafe Sets, and (3) the Prediction-Aware Planner.
An optimization-based model predictive planner is formulated that tactically incor-
porates deterministic predicted unsafe sets constructed from rigorous uncertainty
quantification.

(1) Data-Driven Horizon Predictor: Using past noisy obstacle position measure-
ment, a data-driven model learning framework is built using ideas from time-delay
embedding and Koopman operators. Specifically, this method obtains a lifted
linear, time-varying input-output model with additive noises for characterizing ob-
stacle dynamics from data. Obstacle trajectory future predictions can be obtained by
forward-propagating the learned model. By employing an optimal hard threshold-
ing technique, the proposed algorithm effectively separates the desired signal from
measurement noises, thereby improving the prediction accuracy and robustness to
noise corruption.

(2) Heuristic and Conformal Unsafe Sets: A pairing Data-Driven Kalman Filter is
proposed for the learned obstacle model to make unsafe set predictions for future time
instances given a user-defined risk tolerance. Initially considered as heuristic due
to the Gaussian assumption of noise estimations, this limitation is lifted by using
adaptive conformal prediction to calibrate the prediction uncertainty rigorously.
The proposed conformal unsafe set algorithm offers provable probabilistic coverage
without relying on assumptions about obstacle behaviors or noise distributions.

(3) Prediction-Aware Planner: For practical implementation, the probabilistic
heuristic and conformal unsafe sets are reformulated into sequentially affine state
constraints. This reformulation casts the chance-constrained moving obstacle avoid-
ance problem into a deterministic convex optimal control. Most importantly, any
feasible solution to the proposed prediction-aware planner is theoretically proven to
ensure probabilistic obstacle avoidance on average.
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To validate the efficacy of this framework, extensive Monte Carl simulations are
conducted to scrutinize the framework’s ability to navigate through obstacles ex-
hibiting various behaviors, all while adhering to a predefined risk tolerance. Further,
real-world experiments using two distinct hardware platforms are performed to attest
to the proposed framework’s practical utility. These experiments showcase a drone
successfully dodging a moving obstacle in confined spaces and a differential-driven
ground rover tracking predefined waypoints while circumventing multiple obstacles
with unknown intentions.

1.4 Thesis Structure and Organization
Organization
The thesis adheres to the following notational convention for clarity and precision.
Scalar quantities are denoted using standard, lowercase letters, while vector quanti-
ties are represented in boldface lowercase. Capital letters are reserved for matrices,
and Greek letters may also be utilized. Sets and spaces are distinctly indicated using
calligraphic and blackboard bold capitalized alphabets.

The set of integers, positive integers, natural numbers, real numbers, positive reals,
and non-negative reals are denoted as Z,Z>0, N, R, R>0, and R≥0, respectively. The
sequence of consecutive integers, such as {𝑖, · · · , 𝑖 + 𝑘}, is denoted as Z𝑖+𝑘

𝑖
. A finite

sequence of scalars 𝑎, {𝑎1, · · · , 𝑎𝑘 }, is represented as {𝑎𝑖}𝑘𝑖=1 and for vectors of a
as {a𝑖}𝑘𝑖=1. General indicators are defined as 1𝑏(𝑎) : R → {0, 1} which returns 1 if
𝑏(𝑎) is true, and 0 otherwise.

Time dependent variables use a subscript (·)𝑡 to abbreviate (·) (𝑡), and all time de-
pendent variables are causal, i.e. 𝑡 ∈ Z≥0. To reflect random variable dependencies,
subscript 𝑥𝑡 |𝑡−𝑎:𝑡−𝑏 ≜ 𝑥(𝑡 |𝑡 − 𝑎 : 𝑡 − 𝑏) denotes that the variable 𝑥(𝑡) depends on
the time sequence {𝑥(𝑘)}𝑡−𝑏

𝑘=𝑡−𝑎 where 𝑎, 𝑏 ∈ Z>0 and 𝑎 > 𝑏. The parameters that
depend on the available data captured after 𝑡 = 0 are abbreviated as 𝑥𝑡+1|𝑡 = 𝑥𝑡+1|0:𝑡 .

Structure
Chapter 2 provides an in-depth review of the foundational theories underpinning
this thesis. Subsequent chapters, 3 and 4, present two complementary frameworks
addressing robot autonomy in unstructured environments with unknown model
uncertainties. In an online setting, Chapter 3 proposes a method to efficiently learn
a priori unknown disturbances that a system faces during operation. It presents the
Surface-at-Risk, a scalar-valued stochastic process derived from the norm difference
between the theoretical system model and its actual evolution. Gaussian Process
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Regression is employed to establish a probabilistic upper bound for the Surface-at-
Risk, enhancing controller performance through augmentation. Chapter 4 delves into
probabilistic safety guarantees for unmanned ground vehicles traversing unknown
and unstructured terrains. Leveraging offline data, a robust model predictive planner
coupled with an ancillary controller is proposed. This framework ensures collision-
free navigation and robustness against matched and unmatched model uncertainties,
identified using conformal prediction techniques without presuming the underlying
probability distribution.

Chapters 5-7 focus on safety-critical robot autonomy in environments with dynamic
and unknown obstacles. Chapter 5 introduces a data-driven, risk-aware framework
for moving obstacle avoidance by predicting the paths of moving obstacles and
avoiding them using a model predictive control (MPC) scheme. A bootstrapping
technique is employed to predict a set of obstacle trajectories from linear obstacle
predictors extracted from data. The bootstrapped predictions are incorporated in the
MPC optimization using a risk-aware distributionally robust formulation to provide
probabilistic guarantees on obstacle avoidance. Chapter 6, building on the preceding
chapter, formalizes and extends the process of acquiring prediction uncertainty
using the statistical inferences technique adaptive conformal prediction. Leveraging
adaptive conformal prediction, a rigorous technique is proposed to dynamically
quantify the prediction uncertainty of any model predictors from an online data
stream. Particularly, probabilistic coverage is made for multistep-ahead prediction
which is used within an MPC to safely navigate among moving obstacles. Chapter
7 extends the ideas from the previous chapters by providing a refined data-driven
technique inspired by Koopman operators that learn dynamic obstacle models with
unknown intentions. Relying solely on noisy obstacle position measurements, this
finalized framework guarantees probabilistic safety, by deducing an obstacle model
from data, forecasting future obstacle-occupied unsafe sets, performing rigorous
uncertainty quantification of the predictors, and planning trajectories that ensure
collision-free traversal.

Finally, Chapter 8 revisits the thesis contributions by addressing the initial motiva-
tional questions presented in Chapter 1. It concludes with a discussion of future
research directions to refine the proposed frameworks for achieving safety-critical
robot autonomy in complex environments.
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C h a p t e r 2

PRELIMINARIES

This chapter reviews theoretical foundations that are used in the remainder of the
thesis. A comprehensive overview of several critical building blocks is provided,
each playing an important role in the development of my frameworks.

The review begins by exploring the Koopman Operator and the concept of Time-
Delay Embedding. These data-driven techniques are instrumental in the identifica-
tion of dynamic obstacle models, enabling complex behaviors to be extracted and
predicted from limited observational data. The chapter next summarizes the con-
formal prediction method and its variants. These statistical tools are essential for
calibrating the uncertainty in data-driven models. Finally, a discussion on the finite-
time optimal control problem is provided, focusing on three variants: sequential
convex programming for nonlinear model predictive control, the model predictive
path integral approach for general nonlinear control problems, and robust model
predictive control in the face of additive model uncertainties. These methodologies
are crucial for synthesizing trajectories that ensure probabilistic safe autonomy.

This chapter was adapted from: [13] [14], [92], [15]. [16], [17].

2.1 Koopman Operator
Koopman operator theory is a mathematical framework to transform finite-dimensional
nonlinear state-space systems into infinite-dimensional linear systems in a Hilbert
space of scalar observables (functions on the state) [67], [93]–[95]. Since linear dy-
namical systems are well-characterized and understood, Koopman-inspired model
identification has become a popular method in the field of fluid mechanics [96] and
neuroscience [97] to identify a linear dynamic model from observables. A brief
review of the Koopman operator is provided in the context of data-driven model
reduction. More extensive introductions can be found in [95], [98].

Consider the autonomous, possibly nonlinear, dynamical system

¤𝒙 = 𝑓 (𝒙), (2.1)

with state 𝒙 ∈ X ⊂ R𝑛𝒙 , and the function 𝑓 : X → X is assumed to be Lipschitz
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continuous on X. Denote the flow of the system given an initial state 𝒙0 ≜ 𝒙(0) as
𝜙𝑡 (𝒙0) where 𝑑

𝑑𝑡
𝜙𝑡 (𝒙0) = f (𝜙𝑡 (𝒙0)) for all 𝒙0 ∈ X, 𝑡 ≥ 0.

The Koopman operator 𝐾𝑡 where 𝑡 ≥ 0 is defined as:

𝐾𝑡𝜑 = 𝜑 ◦ 𝜙𝑡 , (2.2)

for all 𝜑 ∈ C(X), where C(X) is the space of continuous observables 𝜑 : X → C,
and ◦ denotes function composition where

𝐾𝑡𝜑(𝒙0) = 𝜑(𝜙𝑡 (𝒙0)) = 𝜑(𝒙(𝑡)). (2.3)

Most importantly, each 𝐾𝑡 : C(X) → C(X) is a linear operator, which is equiva-
lently the state transition matrix over the space of the observable functions of the
nonlinear system (2.1).

An eigenfunction of the Koopman operator associated to an eigenvalue 𝜆 ∈ C is any
function 𝜑 ∈ C(X) such that

(𝐾𝑡𝜑) (𝒙0) = 𝜑(𝜙𝑡 (𝒙0)) = 𝑒𝜆𝑡𝜑(𝒙0). (2.4)

The Koopman eigenfunctions, a special type of observable, evolve linearly in time,
and therefore they can be used as a basis for the space of observables. Suppose
the Koopman operator 𝐾𝑡 has a pure point spectrum [99], the dynamics of any
vector-valued observable function 𝑔 can be decomposed as follows

𝑔(𝒙(𝑡)) = 𝐾𝑡𝑔(𝒙0) =
∞∑︁
𝑖=0

𝜆𝑖𝜑𝑖 (𝒙0)𝑒𝜆𝑖𝑡 (2.5)

which is known as the Koopman mode decomposition [95] which can be infinite in
dimension.

Similar to these works [100], [101], it is desirable to obtain a finite-dimensional
approximation of the Koopman operator to practically model and identify a sys-
tem given data sets derived from that system. Specifically, the finite-dimension
truncation error can be viewed as a stochastic model uncertainty as

𝑔(𝒙(𝑡)) = 𝐾̃𝑡𝑔(𝒙0) + 𝜖𝑔 (𝑡) =
𝑛𝜆−1∑︁
𝑖=0

𝜆𝑖𝜑𝑖 (𝒙0)𝑒𝜆𝑡 𝑡︸               ︷︷               ︸
𝐾̃𝑡𝑔(𝒙0)

+
∞∑︁
𝑖=𝑛𝜆

𝜆𝑖𝜑𝑖 (𝒙0)𝑒𝜆𝑡 𝑡︸              ︷︷              ︸
𝜖𝑔 (𝑡)

, (2.6)

where {𝜑𝑖}𝑛𝜆−1
𝑖=0 are the 𝑛𝜆 data-driven Koopman eigenvectors that correspond to the

𝑛𝜆 largest of data-driven Koopman eigenvalues, denoted as {𝜆𝑖}𝑛𝜆−1
𝑖=0 . Explicitly,

the finite eigenvalue-eigenvector truncation error is aggregated in the term 𝜖𝑔 (𝑡) as
model mismatches.
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2.2 Time-Delay Embedding
Time-delay embedding is a popular technique from system identification [102] lit-
erature and the time series forecasting community [87] to characterize dynamical
systems given partial measurements. Partial measurements are used to reconstruct
a representation of the partially observed high-dimensional system by extending the
present measurement with a time history of its previous measurements. More con-
cretely, Takens’ method of delays embedding [66] is shown to reconstruct qualitative
features of the full-state phase-space from delayed partial observations.

For this thesis, time-delay embedding is leveraged for obstacle modeling for moving
obstacles with unknown intentions and partial observations (position measurements
only). Let 𝑥 be the 𝑥-position measurement of an obstacle. Define an 𝐿-delay
embedding 𝒉𝑥,𝐿𝑡 ∈ R𝐿 for such measurement at time 𝑡 as

𝒉𝑥,𝐿𝑡 =

[
𝑥𝑡−𝐿+1 𝑥𝑡−𝐿+2 · · · 𝑥𝐿

]𝑇
(2.7)

which is comprised of the most recent 𝐿 measurements concatenated based on its
acquired time. In another word, the vector 𝒉𝑥,𝐿𝑡 encodes the 𝑥-position trajectory of
the obstacle in the time interval [𝑡 − 𝐿 + 1, 𝑡].

By horizontally stacking the 𝐿-delay embedding vector, a 𝐿-embedding Hankel
matrix 𝐻𝑥,𝐿,𝑁𝑡 ∈ R𝐿×𝑁 is contructed for position measurement 𝑥 as:

𝐻
𝑥,𝐿,𝑁
𝑡 =

[
𝒉𝑥,𝐿
𝑡−𝑁+1 𝒉𝑥,𝐿

𝑡−𝑁+2 · · · 𝒉𝑥,𝐿𝑡

]
(2.8)

where 𝑁 is the total time window in which the Hankel matrix is constructed that
satisfies the inequality 𝑡 ≥ 𝑁 >> 𝐿. The repeating patterns in the Hankel ma-
trix represent underlying trends and oscillations, which can be extracted from its
covariance matrix: 𝑋𝑥𝑡 = 𝐻

𝑥,𝐿,𝑁
𝑡

(
𝐻
𝑥,𝐿,𝑁
𝑡

)𝑇
. More importantly, the singular value

decomposition of the Hankel matrix can produce 𝐴 (state-transition), 𝐵 (actua-
tion), and 𝐶 (observation) matrices in state-space realization, a popular technique
in classical state-space system identification [103].

2.3 Conformal Prediction
Conformal prediction provides model- and assumption-free uncertainty quantifi-
cation to black-box models [104], [105]. As illustrated in Fig. 4.3, conformal
prediction can produce set guarantees to contain the desired ground truth on any
pre-trained model upholding a user-specified confidence level.
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Figure 2.1: Conformal Prediction schematics adapted from [105] that illustrates its appli-
cation in producing a prediction set of a data-driven model based on a specified confidence
1 − 𝜖 .

Definition 1. ([106]) The random variable {𝑌0, 𝑌1, . . . , 𝑌𝑛} are exchangeable if the
joint probability distribution of the random vector [𝑌0, 𝑌1, . . . , 𝑌𝑛] is the same as the
joint probability distribution of [𝑌𝜋0 , 𝑌𝜋1 , . . . , 𝑌𝜋𝑛] for any permutation {𝜋0, 𝜋1, . . . , 𝜋𝑛}
of the indices {0, 1, . . . , 𝑛}.

Let 𝑌0, . . . , 𝑌𝑛−1 be 𝑛 exchangeable random variables where 𝑌𝑖 ∈ R is a nonconfor-
mity score. The nonconformity score is typically chosen to express the difference
between the pre-training model of an unknown system and calibration data obtained
from the unknown system. Using a prediction model of a black box system as
an example. Example nonconformity scores 𝑌𝑖 can be the difference between the
predicted outcomes and the true outcomes of sample inputs to the black box system.
The conformal prediction algorithm uses these nonconformity scores to calibrate
the model’s prediction regions. Roughly speaking, the prediction region can be
viewed as an uncertainty set along the predicted output where the size of the set is
correlated with the desired confidence (1− 𝜖) ∈ [0, 1] guarantees. In particular, the
conformal prediction algorithm outputs a value 𝑌 𝜖 ∈ R≥0 measuring the size of the
prediction region such that

P[𝑌 ≤ 𝑌 𝜖 ] ≥ 1 − 𝜖

given 𝜖 ∈ (0, 1).

In the context of dynamical systems with uncertainties, consider the following
autonomous system with system state 𝒙:

𝒙𝑘+1 = 𝑓 (𝒙𝑘 ) = 𝑓 (𝒙𝑘 ) + 𝑓 (𝒙𝑘 ) (2.9)

where the functions 𝑓 , 𝑓 , and 𝑓 are the true system model, nominal system model,
and model discrepancy between the nominal and the true system, respectively. In
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this case, the norm difference between the true, 𝑓 (𝒙𝑘 ) and nominal 𝑓 (𝒙𝑘 ) model
evolution given initial condition 𝒙𝑘 over timeΔ𝑡measures the discrepancy magnitude
given sample state 𝒙𝑘 . By selecting 𝑌𝑖 ≜ ∥ 𝑓 (𝒙𝑘 ) − 𝑓 (𝒙𝑘 )∥ = ∥ 𝑓 (𝒙𝑘 )∥ as the
nonconformity score, a large 𝑌 𝑖 can be interpreted as a large model discrepancy,
indicating that there is a from poor matching between the nominal and true model. In
the context of making obstacle position predictions for time 𝑡 + 𝑘 given current time
𝑡, one can use the norm difference between the prediction made at time 𝑡, denoted
as 𝒑̃𝑡+𝑘 |𝑡 , and the measured obstacle position at time 𝑡 + 𝑘 , denoted as 𝒑̂𝑡+𝑘 , as the
nonconformity score, i.e., 𝑌𝑖 = ∥ 𝒑̃𝑡+𝑘 |𝑡 − 𝒑̂𝑡+𝑘 ∥. Similarly, a large nonconformity
score means a large prediction error which requires a large prediction set to contain
the true obstacle position.

Conformal prediction is an uncertainty quantification framework built on top the
empirical statistics. Let the cumulative distribution function 𝐹𝑋 ≜ P(𝑌 (𝑋) ≤ 𝑌 𝜖 ) =
𝑝. Let 𝑄 : [0, 1] → R be a Quantile function, the (1 − 𝜖)𝑡ℎ quantile returns the
value 𝑌 𝜖 such that 𝑌 ≤ 𝑌 𝜖 for all 𝑋 ∈ Ω as

𝑄(1 − 𝜖) = 𝐹−1
𝑋 (1 − 𝜖).

[107, Lemma 1] relates that the desired 𝑌 𝜖 is equivalently the (1 − 𝜖)𝑡ℎ quantile of
the empirical distribution formed by nonconformity scores {𝑌0, . . . , 𝑌𝑛−1, ∞} with
an additive ∞. To calculate the (1 − 𝜖)𝑡ℎ quantile, let {𝑌(0) , . . . , 𝑌(𝑛)} be a non-
decreasing sorting of {𝑌0, . . . , 𝑌𝑛−1,∞} where 𝑌(𝑖) ≤ 𝑌(𝑖+1) ,∀𝑖 ∈ Z𝑛0, also known
as the the order statistics of {𝑌𝑖}𝑛𝑖=0. The integer 𝑞𝜖 ≜ ⌈(𝑛 + 1) (1 − 𝜖)⌉ is the
order index that corresponds to the (1 − 𝜖) percent confidence level empirically,
where the multiplier (𝑛 + 1) is the finite sample adjustment. The (1 − 𝜖)𝑡ℎ quantile,
𝑌 𝜖 ≜ 𝑌 𝑠,𝑞 𝜖 defines the desired 1 − 𝜖 prediction region satisfying the following
probability statement:

P[∥ 𝑓 (𝑋)∥ ≥ 𝑌 𝜖 ] ≤ 𝜖 (2.10)

for any random variable 𝑋 ∈ 𝑄 and 𝑌 𝜖 = 𝑍 𝑓𝜖 as desired. The set

𝐶 𝑓 (𝑋) ≜ {𝒚 ∈ R3 | ∥𝒚∥ ≤ 𝑌 𝜖 }

is commonly referred to as the (1 − 𝜖) confidence conformal prediction set.

For the tightness of the conformal probabilistic upper bound, [108] shows the
conformal prediction set𝐶 𝑓 , given 𝜖 ∈ (0, 1), achieves the smallest average set of all
possible prediction schemes C that offer the desired coverage guarantee if the sample
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nonconformity scores {𝑌0, · · · , 𝑌𝑁−1} reflects the true conditional probability:

min
𝐶∈C
E[𝐶 (𝑋)], subject to (2.10). (2.11)

Adaptive Conformal Prediction [14], [109], [110]

In the domain of safety-critical motion planning and control, accurately quantifying
the uncertainty of the prediction of an obstacle’s future behavior is of paramount
importance. Conformal prediction methods, however, cannot rigorously make un-
certainty quantifications for time-series predictions due to their inherent assumption
of exchangeability in the nonconformity scores {𝑌0, . . . , 𝑌𝑛−1,∞}. Because ele-
ments of the later portion of a time series signal may depend upon the specific
values of preceding time series members, the temporal ordering of the time series
is not exchangeable. The exchangeability assumption similarly does not hold when
the nonconformity scores {𝑌 𝑘𝑡 }𝑛𝑘=1 represents prediction errors for time 𝑡 + 𝑘 made
at time 𝑡 where 𝑛 ∈ Z>0. Addressing this limitation, adaptive conformal prediction
has been introduced and explored in recent studies [109]–[112] for its applicability
to time series and stochastic scenarios with distribution shifts.

The core concept of adaptive conformal prediction is to adaptively adjust the pre-
diction region𝑌𝑡+1 ≤ 𝜌𝑡+1 so that P(𝑌𝑡+1 ≤ 𝜌𝑡+1) ≥ 1− 𝜖 is true for each time 𝑡. This
requirement is achieved by setting 𝜌𝑡+1 ≜ 𝑌(𝑞𝑡+1) , where 𝑞𝑡+1 is an adaptive index
computed based on the most recently acquired data.

Define a time varying desired (1− 𝜖) confidence prediction region 𝜌𝑡 ≜ 𝑌𝑞 𝜖 ,𝑡 where
𝑞𝜖,𝑡 ≜ ⌈(𝑡 + 1) (1 − 𝜖𝑡+1)⌉ where the realized risk-level at time 𝑡 denoted by variable
𝜖𝑡 , is adapted online. In this way, the prediction region 𝜌𝑡 becomes a tuneable
parameter by the choice of 𝜖𝑡 . To adaptively obtain the parameter 𝜖𝑡 , ideas from
online learning are used, as

𝜖𝑡+1 ≜ 𝜖𝑡 + 𝛾(𝜖 − 1𝑌𝑡>𝜌𝑡 ) (2.12)

where 𝑌𝑡 denotes the observed realization of 𝑌𝑡 at time 𝑡 and where 𝛾 is a learning
rate and 𝜖 ∈ [0, 1] is the desired risk level. The idea is that 𝜖𝑡+1 adapts to changes
in the distribution of {𝑌0, 𝑌1, . . . , 𝑌𝑡} over time by using the information on how
much the prediction region 𝜌𝑡 overcovered (𝑌𝑡 ≪ 𝜌𝑡) or undercovered (𝑌𝑡 ≫ 𝜌𝑡) in
the past. In terms of collision risks for the moving obstacle avoidance problem, the
overcovered cases mean the prediction model is becoming more accurate thus the
prediction region along the predicted values should contract to reflect. Conversely, if
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the prediction region is undercovered, the confidence of the unsafe set being correct
should decay as well as an increase to the prediction region over time.

In [111], the authors present a fully adaptive conformal prediction (FACP) algorithm
where a set of learning rates {𝛾𝑘 }

𝑛𝛾

𝑘=1 is used in parallel from which the best 𝛾 is
selected adaptively. The FACP algorithm takes a candidate set of learning rates
{𝛾0, 𝛾1, · · · } and runs multiple versions of ACI in parallel with the candidate 𝛾𝑘 to
obtain the optimal learning rate 𝛾∗ that produces the best conformal prediction sets.

Based on past performance (using a reweighting scheme that evaluates which
{𝛾𝑘 }

𝑛𝛾

𝑘=1 provided the best coverage), the authors maintain a belief 𝑝𝑘𝑡 at each time
step 𝑡 for each {𝜖 𝑘𝑡 }

𝑛𝛾

𝑘=1. The new update law for realized risk-level 𝜖 𝑘𝑡 for learning
rate 𝛾𝑘 is

𝜖 𝑘𝑡+1 ≜ 𝜖 𝑘𝑡 + 𝛾𝑘 (𝜖 − 1𝑦𝑡>𝜌𝑘𝑡 )

where 𝜌𝑘𝑡 ≜ 𝑌(𝑞𝑘𝑡 ) with a time varying conformal index 𝑞𝑘𝑡 ≜ ⌈(𝑡 + 1) (1 − 𝜖 𝑘𝑡 )⌉.
The conformal prediction set size at time 𝑡 becomes 𝜌𝑡 ≜ 𝑌(𝑞𝑡 ) with a weighted
conformal index using the beliefs as

𝑞𝑡 ≜ ⌈(𝑡 + 1) (1 −
𝑛𝛾∑︁
𝑘=1

𝑝𝑘𝑡 𝜖
𝑘
𝑡 )⌉ .

2.4 Finite-time Optimal Control Problem
Given control input 𝒖 ∈ U ⊂ R𝑛𝒖 , this thesis studies the following continuous-time
controlled nonlinear dynamical system

¤𝒙 = 𝑓 (𝒙, 𝒖), (2.13)

given states 𝒙 ∈ X ⊂ R𝑛𝒙 . The function 𝑓 : X×U → R𝑛𝒙 is a Lipschitz continuous
function. Similarly, the governing dynamics for the discrete-time system is

𝒙𝑘+1 = 𝑓 𝑑 (𝒙𝑘 , 𝒖𝑘 ), (2.14)

where the function 𝑓 𝑑 : X × U → R𝑛𝒙 is the discretized nonlinear dynamics of 𝑓
given time discretizationΔ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 and the input 𝒖𝑘 is assume to be at zero-order
hold from 𝑡𝑘 to 𝑡𝑘+1. Let the positive integer 𝑛ℎ be the planning horizon.

Considering the following finite-time optimal control problem (FTOCP) for discrete-
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time systems given current time 𝑡 and current state 𝒙𝑡 ,

{𝒖∗𝑘 }
𝑛ℎ−1
𝑘=0 = min

{𝒖𝑘}
𝑛ℎ−1
𝑘=0

𝑛ℎ−1∑︁
𝑘=0
L𝑘 (𝒙𝑘 , 𝒖𝑘 ) + L𝑇 (𝒙𝑛ℎ) (2.15)

s.t. 𝒙𝑘+1 = 𝑓 𝑑 (𝒙𝑘 , 𝒖𝑘 ) (2.16)

𝑓𝑒𝑞 (𝒙𝑘 , 𝒖𝑘 ) = 0 (2.17)

𝑓𝑖𝑛𝑒𝑞 (𝒙𝑘 , 𝒖𝑘 ) ≤ 0 (2.18)

𝒙𝑘+1 ∈ X (2.19)

𝒖𝑘 ∈ 𝑼 ∀𝑘 ∈ Z𝑛ℎ−1
0 (2.20)

𝒙0 = 𝒙𝑡 (2.21)

𝒙𝑛ℎ ∈ X𝑇 , (2.22)

where the convex functionL𝑘 : X×U → R is the stage cost (cost-to-go) and convex
function L𝑇 : X → R is the terminal cost. The equality constraint (2.16) describes
the controlled system dynamics. Constraints (2.42) and (2.18) represent general
equality and inequality constraints of the system states and inputs, respectively.
Constraints (2.19), (2.20), (2.21), and (2.22) are state, input, initial state, and terminal
state constraints. The solution to the above FTOCP, input sequences {𝒖∗

𝑘
}𝑛ℎ−1
𝑘=0 , is

the desired control inputs given current state 𝒙𝑡 that minimizes the control objective,
such as reference tracking. Being a nonlinear, nonconvex optimization program,
the solution’s optimality and its computational tractability heavily depend on the
initial guess used by the iterative solving techniques and the problem dimension.
For practical real-time applications, a convex reformulation or a sampling-based
reformulation of the nonlinear FTOCP is commonly employed to acquire a locally
optimal solution in fixed controlling intervals [30], [90]–[92].

Sequential Convex Programming [90], [91]

Sequential convex programming (SCP) is a local optimization method for nonconvex
optimization problems. As an overview, the method seeks to reformulate nonconvex
constraints and costs by locally accurate convex approximations. Specifically, the
nonconvex FTOCP (2.40)-(2.22) is an example of finding sub-optimal solutions.

For a general nonlinear discrete-time system with dynamics (2.14), linearization
around its nominal trajectory {𝒙𝑡+𝑘 , 𝒖𝑡+𝑘 }𝑛ℎ−1

𝑘=0 can be applied. The trajectory
{𝒙𝑡+𝑘 , 𝒖𝑡+𝑘 }𝑛ℎ−1

𝑘=0 is termed the warm start trajectory. The general linearized dy-
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namics can take the following form

𝒙𝑡+1 = 𝐴𝑡𝒙𝑡 + 𝐵𝑡𝒖𝑡 + 𝒄𝑡 , (2.23)

where the matrices 𝐴𝑡 , 𝐵𝑡 , and 𝒄𝑡 can be obtained from finding the local dynamics
Jacobian given {𝒙𝑡+𝑘 , 𝒖𝑡+𝑘 }𝑛ℎ−1

𝑘=0 as:

𝐴𝑡 ≜ 𝐼𝑛𝑥 + Δ𝑇
𝜕 𝑓

𝜕𝒙𝑡

�����
(𝒙𝑡 ,𝒖𝑡 )

, 𝐵𝑡 ≜ Δ𝑇
𝜕 𝑓

𝜕𝒖𝑡

�����
(𝒙𝑡 ,𝒖𝑡 )

, (2.24)

𝒄𝑡 ≜ 𝑓 (𝒙𝑡 , 𝒖𝑡) − 𝐴𝑡𝒙𝑡 − 𝐵𝑡𝒖𝑡 . (2.25)

The local Jacobian reformulation (2.24) can also be applied to general (possibly-
)nonlinear inequality and equality constraint maps 𝑓𝑒𝑞 and 𝑓𝑖𝑛𝑒𝑞 in (2.42) and (2.18)
to acquire their local affine representation, respectively. Such affine (first-order
Taylor expansion) approximation of the original constraint is only valid in a region
close to the warm start reference. Trust region methods can be implemented to
confine the convexified optimization program to search only in a reducing “ball"
near the warm start and also ensure that SCP algorithms converge to a solution.
Typically, the trust region at time integration 𝑤 is chosen as

T (𝑤) = {𝒙 ∈ R𝑛𝑥 | ∥𝒙 − 𝒙 (𝑤−1) ∥ ≤ 𝜏0𝜏
𝑤
1 } (2.26)

where 𝜏0 ∈ R+ is the initial trust region and 𝜏1 ∈ (0, 1) is the trust reduction
multiplier that dictates the shrinkage and refinement of the optimization feasible set.
𝒙 (𝑤−1) is the warm start trajectory which is conveniently selected to be the (𝑤 − 1)𝑡ℎ

iteration of the SCP solution.

Model Predictive Path Integral [30]

Model Predictive Path Integral (MPPI) is a sampling-based method, leveraging a
duality condition from information theory, to obtain local optimal controllers given
potentially nonlinear cost and constraints. Consider input sequence {𝒖𝑖}𝑡𝑖=0 where
𝒖 ∈ R𝑛𝒖 , define 𝒗𝑖 ≜ 𝒖𝑖 + 𝜹𝑖, ∀𝑖 ∈ {0, . . . , 𝑡} as the sequence of perturbed inputs
where 𝜹𝑖 are zero mean Gaussian input perturbations {𝜹𝑖}𝑡−1

𝑖=0 ∈ N (0, Σ𝒖). Denote
the input trajectories to the algorithm as the following sequences

𝑉𝑡−1 ≜ [𝒗0, 𝒗0, · · · , 𝒗𝑡−1] ∈ R𝑛𝒖×𝑡 , (2.27)

Δ𝑡−1 ≜ [𝜹0, 𝜹1, · · · , 𝜹𝑡−1] ∈ R𝑛𝒖×𝑡 , (2.28)

𝑈𝑡−1 ≜ [𝒖0, 𝒖1, · · · , 𝒖𝑡−1] ∈ R𝑛𝒖×𝑡 . (2.29)
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Following the result [113], the probability density function for𝑉𝑡 , denoted as 𝑑𝑉 |𝑈,Δ,
is

𝑑𝑉 |𝑈,Δ = ((2𝜋)𝑛𝒖 |Σ𝒖 |)
−𝑡
2 exp

(
−1

2

𝑡∑︁
𝑖=1

𝜹𝑇𝑖 Σ
−1
𝒖 𝜹𝑖

)
, (2.30)

with corresponding probability distribution Ω𝑈,Σ. Similarly, the probability distri-
bution corresponding 𝑈𝑡 = 0 denotes as Ω0,Σ, commonly referred to as the base
distribution. Consider the stochastic trajectory optimization problem [113]:

𝑈∗𝑡−1 = min
𝒖𝑖∈U
∀𝑖∈Z𝑡1

EΩ(𝑈,Σ)
[
L𝑇 (𝒙𝑡) +

𝑡−1∑︁
𝑖=0
L(𝒙𝑖, 𝒖𝑖)

]
, (2.31)

where L𝑇 and L, respectively, denote terminal and stage costs.

Let 𝜙𝒙0 (𝑉𝑡−1) be the flow of system (4.1) generated by applying input sequence
{𝒗𝑖}𝑡−1

𝑖=0 from initial condition 𝒙0.

From an information theoretic perspective, optimization (2.31) can be converted
into a probability-matching problem. Define the Free Energy FE , a metric for
performance as

FE = log

(
EΩ0,Σ

[
exp

(
−𝑆(𝑉𝑡 , 𝒙0)

𝜆

) ])
,

where 𝜆 > 0 is commonly referred to as the inverse temperature, and the function
𝑆(𝑉𝑡 , 𝒙0) results the cost of the trajectory generated using input sequence 𝑉𝑡 from
initial state 𝒙0.

Suppose Ω𝐹 and Ω𝐷 are two probability distributions that are absolutely contin-
uous with each other which means that if the probability density for probability
distribution Ω𝐹 is zero, the probability distribution Ω𝐷 is also zero [30]. The
KL-Divergence, denoted as KL, between Ω𝐹 and Ω𝐷 are defined as

KL(Ω𝐹 ∥Ω𝐷) ≜ EΩ𝐹

[
log

(
𝑑 𝑓 (𝑉)
𝑑𝑑 (𝑉)

)]
, (2.32)

where 𝑑 𝑓 and 𝑑𝑑 are the probability density function corresponding to distributions
Ω𝐹 and Ω𝐷 , respectively. Using the KL-Divergence properties between two prob-
ability distributions that are absolutely continuous with each other, [113] showed
that a lower bound to the optimal control problem (2.31) can be obtained using the
free energy:

−𝜆FE ≤ EΩ𝑈,Σ

[
L𝑇 (𝒙𝑡) +

𝑡−1∑︁
𝑖=0
L(𝒙𝑖, 𝒖𝑖)

]
. (2.33)
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Further, Williams et. al. [113] showed that a lower bound to the optimal control
problem (2.31) can be obtained using free energy as:

−𝜆FE ≤ EΩ𝑈,Σ

[
L𝑇 (𝒙𝑡) +

𝑡−1∑︁
𝑖=0
L(𝒙𝑖, 𝒖𝑖)

]
. (2.34)

In other words, the negative free energy is a lower bound to the finite-time trajectory
optimization problem (2.31).

Summarizing the results [30], [114], the following iterative update law, building
upon importance sampling,

𝑈∗𝑡 = 𝑈𝑡 +
𝑁𝑠𝑎𝑚𝑝𝑙𝑒∑︁
𝑗=1

𝑤(Δ 𝑗
𝑡 )Δ

𝑗
𝑡 , (2.35)

𝑤(Δ 𝑗
𝑡 ) =

1
𝜂

exp

(
−𝐶𝒙

𝜆
−

𝑡−1∑︁
𝑖=0

𝒖𝑇𝑖 Σ
−1
𝒖 (𝒖𝑖 + 2𝜹 𝑗

𝑖
)
)
, (2.36)

produces a locally optimal solution to the problem (2.31). The weighting term𝑤 ∈ R
characterizes the “importance” of each sampled input perturbation {Δ 𝑗

𝑡 }
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑗=1 ,
where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the number of sampled input perturbations. The parameter 𝜂 can
be approximated as

𝜂 ≈
𝑁𝑠𝑎𝑚𝑝𝑙𝑒∑︁
𝑖=1

exp

(
−𝐶𝒙

𝜆
−

𝑡−1∑︁
𝑖=0

𝒖𝑇𝑖 Σ
−1
𝒖 (𝒖𝑖 + 2𝜹 𝑗

𝑖
)
)

using Monte-Carlo estimation [30].

In general, MPPI is a sampling-based alternative to optimization-based MPC algo-
rithms, flexible to general cost functions and system dynamics. The aggregation
law (2.35)-(2.36) is highly parallelizable for online receding-horizon planning, as
demonstrated in UGV racing applications [30].

Warm Start

Both MPC-SCP and MPPI algorithm requires an initial guess of the solution
{𝒖𝑖}𝑛ℎ−1

𝑖=0 . Selecting an initial guess that is sufficiently close to the true optimal
solution is essential for the algorithm to converge fast and reliably [115]. It is well
known that the receding horizon nature of MPC and MPPI can be exploited to obtain
excellent initial guesses. At a time instant 𝑖, this can be achieved by shifting the
optimization program solution from the previous timestep 𝑖 − 1 and by updating the
guess of the final control input. Under certain conditions, a locally stable controller
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enforcing state and actuation constraints can be designed allowing the feasibility of
the initial guess to be guaranteed [116]. Typically, simpler approaches are taken. By
duplicating the final control input, i.e., 𝒖𝑛ℎ−1 = 𝒖𝑛ℎ−2, a final state can be computed
using the dynamics model and the shifted input sequence {𝒖0, 𝒖1, · · · , 𝒖𝑛ℎ−2, 𝒖𝑛ℎ−2}
from initial state 𝒙0 = 𝒙𝑡 . If the previous solution 𝒖𝑖−1 is a feasible solution to the
optimization problem, the shifted input sequence will also be feasible for all but the
last time step.

If the system is differentially flat, such as a differential-drive wheeled ground vehicle,
a multirotor aerial system, or an aerial manipulator, the input sequence given the
desired reference 𝒑𝑑 (𝑡) can be readily found using the flat outputs. More details can
be found in [117]. The differential-driven ground vehicle example has the following
kinematic model

¤𝒙 =

[
cos(𝜃) sin(𝜃) 0

0 0 1

]𝑇 [
𝑣

𝜔

]
= 𝑔(𝒙)𝒖 = 𝑓 (𝒙, 𝒖), (2.37)

where the system state 𝒙 = [𝑥, 𝑦, 𝜃]𝑇 ∈ X ⊂ R3 is comprised of the robot’s inertial
𝑥, 𝑦 position and its heading angle 𝜃. The control inputs 𝒖 = [𝑣, 𝜔]𝑇 ∈ U ⊂ R2 are
the vehicle’s linear and angular velocity with respect to the body frame 𝑥-axis and
𝑧-axis, respectively. Denote the differentially flat input sequence given a position
reference 𝒑𝑑 (𝑡) as the desired flatness-based input reference 𝒖𝑑 = [𝑣𝑑 , 𝜔𝑑], which
can be computed as

𝑣𝑑 =


¤𝑥𝑑

cos(𝜃𝑑) , if sin(𝜃𝑑)=0
¤𝑦𝑑

sin(𝜃𝑑) , otherwise
, 𝜔𝑑 =


𝑎𝑑
𝑣𝑑
, if 𝑣𝑑 ≠ 0

0 otherwise
, (2.38)

where 𝑎𝑑 =
− sin(𝜃𝑑) ¥𝑥𝑑+cos(𝜃𝑑) ¥𝑦𝑑

𝑣𝑑
and 𝜃𝑑 = ATAN2( ¤𝑦𝑑 , ¤𝑥𝑑). The differentially flat

state and input trajectories can be used as a warm-start if there are no additional
equality and inequality constraints.

Robust MPC and MPPI [26]

As model-based methods, standard MPC and MPPI may exhibit suboptimal per-
formance in the face of modeling uncertainties and disturbances. Tube-based [26],
[31] and robust [32] model predictive planners have been proposed to address these
challenges. Both of these methods integrate an ancillary controller, such as iter-
ative Linear Quadratic Gaussian (iLQG), to improve tracking with measurement
feedback and robustness to uncertainties. These methods rely on the use of sequen-
tial linearization and the assumption of additive white Gaussian noise limits their
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applicability to nonlinear systems with non-Gaussian model uncertainties. A brief
review of key concepts and terminologies is provided in this section.

Consider a continuous-time nonlinear control affine system

¤𝒙 = 𝑓 = ℎ(𝒙) + 𝑔(𝒙)𝒖︸           ︷︷           ︸
𝑓

+ 𝒅(𝑡)︸︷︷︸
𝑓

(2.39)

where 𝒙 ∈ X ⊆ R𝑛𝒙 is the system state, 𝒖 ∈ U ⊆ R𝑛𝒖 is the control input, and
𝒅 ∈ D ⊂ R𝑛𝒙 is an external disturbance.

The standard Robust MPC formulation involves a minimization-maximization (min-
max) optimization to construct a policy 𝜋 : X × R→U as follows [118]:

𝜋𝑘 = {𝒖∗𝑘 }
𝑛ℎ−1
𝑘=0 = min

{𝒖𝑘}
𝑛ℎ−1
𝑘=0

max
{𝒅𝑘}

𝑛ℎ−1
𝑘=0

𝑛ℎ−1∑︁
𝑘=0
L𝑘 (𝒙𝑘 , 𝒖𝑘 ) + L𝑇 (𝒙𝑛ℎ) (2.40)

s.t. 𝒙𝑘+1 = 𝒙𝑘 + (ℎ𝑑𝑘 (𝒙𝑘 ) + 𝑔
𝑑
𝑘 (𝒙𝑘 )𝒖𝑘 + 𝒅𝑘 )Δ𝑇 (2.41)

𝒙𝑘 ∈ X, 𝒖𝑘 ∈ U, 𝒅𝑘 ∈ D, (2.42)

where 𝒅𝑘 is a discrete-time realization of the model discrepancy 𝑓 given nominal
state 𝒙𝑘 and input 𝒖𝑘 . Parameters 𝑛ℎ ∈ Z>0 andΔ𝑡 ∈ R>0 are the finite-time planning
horizon length and time discretization step size. The stage cost L𝑘 can be a general
function such as the squared distance between the vehicle position and the desired
reference. The solution to (2.40)-(2.42) can be computationally intractable [26].
Nevertheless, the resulting robust FTOCP policy may lead to overly conservative
control sequences.

An alternative solution, which still provides robustness to uncertainty, is to pair an
ancillary controller 𝜅 for disturbance rejection, with the open-loop MPC control
input as:

𝜋 = 𝒖∗ + 𝜅(𝒙, 𝒙∗), (2.43)

where 𝒖∗(𝑡) and 𝒙∗(𝑡) are the optimal open-loop input and state trajectories com-
puted using the nominal dynamics ¤𝑥 = 𝑓 , respectively. The ancillary controller
ensures the realized states 𝒙̂ of the uncertain system remain in a robust control
invariant (RCI) tube around the nominal trajectory (𝒙∗, 𝒖∗) from the initial state 𝒙0.

Definition 2. Let X be the set of allowable state and define 𝒙̃ ≜ 𝒙 − 𝒙∗. The
set Ω𝑅𝐶𝐼 ⊂ X is a robust control invariant (RCI) tube if there exist an ancillary
controller 𝜅(𝒙, 𝒙∗) such that if 𝒙̃(𝑡0) ∈ Ω𝑅𝐶𝐼 , for all realizations of the disturbance
and model uncertainties, 𝒙̃ ∈ Ω𝑅𝐶𝐼 , ∀𝑡 ≥ 𝑡0.
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To complete the Robust MPC, a constraint-tightened version of the nominal MPC
problem (based on the model without the additive disturbance, i.e., ¤𝒙 = 𝑓 instead of
(2.39)) can be solved to generate the open-loop trajectory pair (𝒙∗

𝑅𝐶𝐼
, 𝒖∗

𝑅𝐶𝐼
).
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C h a p t e r 3

ONLINE UUA: DATA-DRIVEN MODEL UNCERTAINTY
QUANTIFICATION

The models used for control synthesis are insightful, though oftentimes inaccurate
and heavily reduced in dimension and complexity. Nevertheless, these models are
the foundation for synthesizing controllers and planners for complex robotic systems
even in unstructured environments, e.g., quadrupeds, bipeds, drones, etc [1], [10],
[119], [120]. Robustification to disturbances (e.g., to compensate for the gap between
the reduced and full order models) is required for control and planning frameworks
to function reliably on these complex systems [18], [121]–[124].

This chapter details a risk-aware model augmentation approach via learning distur-
bance models online that does not require a priori disturbance knowledge. This
approach is sample-efficient as shown in Section 3.4, where less than a minute of
flight data is required to make risk-aware control improvements on a drone mid-
flight.

This chapter was adapted from: [125]

3.1 Preliminaries
Recent studies on the robust control of nonlinear systems center around input-to-
state-safe control [123], [126], [127] and risk-aware control [11], [20], [21], [124],
[128] among other techniques. These methods typically assume a priori knowledge
of a model and possible disturbances (or at least the magnitude thereof) and employ
control techniques designed to reject those known disturbances. On the other hand,
learning-based approaches attempt to identify the underlying model [92], [129]–
[134], in many cases through Gaussian Process Regression (GPR) [135].

However, assuming a priori knowledge of disturbances might not be accurate in
real-world settings, and Gaussian process regression for model determination tends
to be sample-complex and only uncover expected system behavior. While learning
expected behavior is indeed useful, control predicated on expected models of system
behavior might yield problematic behavior in safety-critical settings where risk-
sensitive approaches are preferable [136], [137]. Skipping the model identification
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Figure 3.1: Online Unknown Uncertainty Quantification Overview. (Top Left) A general
overview of the proposed procedure, (Top Right) a photo of the experimental setup, and
(Bottom) snippets of flight paths taken by the drone during the second set of experiments
run — the experiments depicted on the left in Figure 3.3. First, a nominal controller is
implemented where the discrepancies between predicted model evolution and true system
evolution are calculated. Then, Gaussian Process Regression is used to fit a risk-aware
disturbance model for the disturbances that the nominal system experiences. Section 3.4
shows that the procedure dramatically improves baseline controller performance. Lastly,
section 3.2 provides a statement on the theoretical accuracy of the learned model.

step, recent work in Bayesian Optimization and Reinforcement Learning aims to
identify such risk-aware policies in a model-free fashion [22], [23], [138]–[141].
However, these prior works assume an ability to sample disturbances directly, assume
a priori knowledge of disturbances, or are sample-complex.

A Brief Aside on Gaussian Process Regression (GPR)
A key concept developed in the chapter is the notion of Surfaces-at-Risk which is
fitted via GPR as part of the procedure. GPR typically assumes the existence of an
unknown function 𝑓 : 𝑋 → R that is desirable to represent by taking noisy samples 𝑦
of 𝑓 at points 𝑥 ∈ 𝑋 where the noise 𝜉 is typically assumed to be sub-Gaussian [135],
[142], [143]. Let X ≜ {𝑥𝑖}𝑁𝑖=1 be a set of 𝑁 scalars 𝑥 ∈ 𝑋 and Y = {𝑦𝑖}𝑁𝑖=1
be the corresponding set of noisy observations, i.e., {𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜉, ∀ 𝑥𝑖 ∈ X}.
Furthermore, let 𝑘 : 𝑋 × 𝑋 → R be a positive-definite kernel function. Then,
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a Gaussian Process is uniquely defined by its mean function 𝜇 : 𝑋 → R and
its variance function 𝜎 : 𝑋 → R. These functions are defined as follows, with
𝑘𝑁 (𝑥) = [𝑘 (𝑥, 𝑥𝑖)]𝑥𝑖∈X , K = [𝑘 (𝑥𝑖, 𝑥 𝑗 )]𝑥𝑖 ,𝑥 𝑗∈X , 𝑦1:𝑁 = [𝑦𝑖]𝑦𝑖∈Y , and 𝜆 = (1 + 2

𝑁
):

𝜇𝑁 (𝑥) = 𝑘𝑁 (𝑥)𝑇 (K + 𝜆𝐼𝑁 )−1 𝑦1:𝑁 , 𝜎𝑁 (𝑥) = 𝑘𝑁 (𝑥, 𝑥), (3.1)

𝑘𝑁 (𝑥, 𝑥′) = 𝑘 (𝑥, 𝑥′) − 𝑘𝑁 (𝑥)𝑇 (K + 𝜆𝐼𝑁 )−1 𝑘𝑁 (𝑥′), (3.2)

where 𝐼𝑁 denotes an identity matrix of size 𝑁 .

Lastly, each kernel function has a space of functions it can reproduce to point-wise
accuracy, it is a Reproducing Kernel Hilbert Space (RKHS). Under the assumption
that the function to-be-fitted 𝑓 has bounded norm in the RKHS of the chosen kernel
𝑘 , GPR guarantees high-probability representation of 𝑓 as formalized in the theorem
below [143]:

Theorem 1. Let 𝑓 : 𝑋 → R, X = {𝑥𝑖}𝑁𝑖=1 be a set of 𝑁 points 𝑥 ∈ 𝑋 , Y = {𝑦𝑖 =
𝑓 (𝑥𝑖) + 𝜉}𝑥𝑖∈X be a set of noisy observations 𝑦𝑖 of 𝑓 (𝑥𝑖) with 𝑅 sub-gaussian noise
𝜉, and 𝑘 : 𝑋 × 𝑋 → R be a positive-definite kernel function. If 𝑓 has 𝐵-bounded
RKHS norm for some 𝐵 > 0, i.e., ∥ 𝑓 ∥𝑅𝐾𝐻𝑆 ≤ 𝐵, then, with 𝜇𝑁 and 𝜎𝑁 as per (3.1)
and with minimum probability (1 − 𝜖),

|𝜇𝑁 (𝑥) − 𝑓 (𝑥) | ≤
©­­­­­«
𝐵 + 𝑅

√√√√√
2 ln

√︂
det

(
(1 + 2

𝑁
)𝐼𝑁 + K

)
𝜖

ª®®®®®¬
𝜎𝑁 (𝑥), ∀ 𝑥 ∈ 𝑋, (3.3)

where operator det(·) is the matrix determinant.

Surfaces-at-Risk for Scalar Stochastic Processes
This section formally defines a Surface-at-Risk for a scalar stochastic process —
the specific structure fitted via GPR. Given a probability space (Ω, F , P) with Ω a
sample space, F a 𝜎-algebra over Ω defining events, and P a probability measure,
defining a scalar stochastic process 𝑆 over the indexed space X as a collection
of scalar random variables 𝑆𝑥 : Ω → R, i.e., 𝑆 = {𝑆𝑥}𝑥∈X . Here, each scalar
random variable 𝑆𝑥 has a (perhaps) different distribution 𝜋𝑥 : R→ [0, 1] such that
probability of 𝑆𝑥 taking values in 𝐴 ⊆ R, i.e., P𝜋𝑥 [𝑆𝑥 ∈ 𝐴 ⊆ R], is well-defined.

Risk measures are functions of these scalar random variables, and Value-at-Risk is
a specific type of risk measure stemming from the financial literature [144].
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Figure 3.2: Example Surfaces-at-Risk at risk-levels 𝜖 ∈ [0.1, 0.05, 0.01] for a Weiner
Process (Left) and Binomial Process (Right). Distributions for the indexed scalar random
variables 𝑆𝑥 comprising each process 𝑆 are provided on the axes. Sample realizations of the
stochastic processes are shown in black, with Surfaces-at-Risk shown via colored lines.

Definition 3. The Value-at-Risk level 𝜖 ∈ [0, 1] of a scalar random variable 𝑋
defined over the probability space (Ω, F , P) with distribution 𝑝 is defined as the
(1 − 𝜖)𝑡ℎ quantile of 𝑋:

VaR𝜖 (𝑋) ≜ 𝑐 s. t. 𝑐 = inf{𝑧 ∈ R | P𝑝 [𝑋 ≤ 𝑧] ≥ 1 − 𝜖}. (3.4)

Then, the Surface-at-Risk for a scalar stochastic process is a similar collection of
the Values-at-Risk of the underlying scalar random variables constituting the scalar
stochastic process.

Definition 4. The Surface-at-Risk level 𝜖 ∈ [0, 1] of a scalar stochastic process 𝑆
indexed by the set X is the indexed collection of the Values-at-Risk level 𝜖 of each
random variables 𝑆𝑥 comprising 𝑆:

SaR𝜖 (𝑆, 𝑥) = VaR𝜖 (𝑆𝑥). (3.5)

Figure 3.2 shows a few examples of Surfaces-at-Risk for varying risk-levels 𝜖 overlaid
on realizations of common (Weiner and Binomial) stochastic processes.

3.2 Learning Surface-at-Risk
The Risk-Aware Disturbance-Norm Identification Problem
From a risk-aware standpoint, the objective of this work is to identify a Surface-
at-Risk as per Definition 4 for a scalar stochastic process 𝑆 indexed over the model
state-spaceD𝒙 . Sample realizations of this process correspond to disturbance norms
the system might experience at any given model state 𝒙 ∈ D𝒙 . To formally state
this problem, the true system state is denoted via 𝒙̂, and the sim (reduced-order)
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model state is denoted via 𝒙, i.e., ∀ 𝑘, 𝑗 = 0, 1, 2, . . . , (perhaps) different state
and input spaces, and process noise 𝝃 with (unknown and perhaps) state-dependent
multivariate distribution Π

True: 𝒙̂𝑡+1 = 𝑓 = 𝑓 (𝒙̂𝑡 , 𝒖̂𝑡) + 𝝃 𝑡 , §̂𝑡 ∈ D̂𝒙 , 𝒖̂𝑡 ∈ D̂𝒖, 𝝃 ∼ Π,

Sim: 𝒙𝑡+1 = 𝑓 (𝒙𝑡 , 𝒖𝑡), 𝒙𝑡 ∈ D𝒙 , 𝒖𝑡 ∈ D𝒖 .
(SYS)

As an example consistent with the demonstration to follow, the true system would
be a drone with a single integrator sim model. Specifically, the true state would be
the drone’s position and orientation, and the true input would be the rotor torques.
Meanwhile, the model state would be the drone’s position in 3-space, and the model
input would be the desired velocity.

To identify the discrepancy between the systems in (SYS), two maps are defined -
𝑃𝒙̂→𝒙 which projects the true state 𝒙̂ to the model state 𝒙 and 𝑃𝒖→𝒖̂ which extends
the model input 𝒖 to the true input 𝒖̂, e.g., 𝑃𝒖→𝒖̂ provides rotor torques to realize
the desired velocity in 3-space:

𝑃𝒙̂→𝒙 : D̂𝒙 → D𝒙 , 𝑃𝒖→𝒖̂ : D𝒖 × D̂𝒙 → D̂𝒖 . (MAPS)

To note, the only assumption made is the existence of these maps and the ability
to use them, there are no assumptions on the maps’ uniqueness properties or the
knowledge of the maps’ analytic form, etc. To put these maps in the context of
the drone example, the drone’s underlying controller operates at 1 kHz making the
true-system time step 1 ms. Since the typical model inputs are provided at 50 Hz
frequency, 𝐾 = 20. 𝑃𝒙̂→𝒙 is just the projection of the drone’s position in 3-space,
and 𝑃𝒖→𝒖̂ is the on-board controller that takes in a commanded 3-space velocity
— model input 𝑢̂ — and updates rotor speeds at 1 kHz to achieve that velocity.
These maps will be further explained in Section 3.4. Finally, an assumption is made
that after some amount of true system time-steps 𝐾 > 0, the observed projected
true system evolution is observable. 𝐾 denotes the time-dilation parameter and the
observation function 𝑂 is defined as follows:

𝒙̂𝑡+1 = 𝑓 (𝒙̂𝑡 , 𝑃𝒖→𝒖̂ (𝒖𝑡 , 𝒙̂𝑡)), 𝑂 (𝒙̂0, 𝒖) = 𝑃𝒙̂→𝒙 (𝒙̂𝐾). (OBS)

Using these maps, the true system’s projected evolution can be formally stated, i.e.,
the evolution of 𝒙 𝑗 = 𝑃𝒙̂→𝒙 (𝒙̂𝐾 𝑗 ), when driven by a feedback controller 𝑝𝑖 : D𝒙 →
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D𝒖. Comparing projected and sim model evolution results in the discrepancy 𝑑:

𝒙𝑡+1 = 𝑓 (𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡), 𝜋(𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡)))+
𝑂 (𝒙̂𝐾𝑡 , 𝜋(𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡)) − 𝑓 (𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡), 𝜋(𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡)))︸                                                                     ︷︷                                                                     ︸

≜𝒅, and 𝛿=∥𝒅∥ has distribution Δ𝒙:R→[0,1]

. (3.6)

Then, inspired by the input-to-state-safe barrier and input-to-state-stable Lyapunov
works whose robust controllers only require information on the 2-norm of this
disturbance 𝒅, it is desirable to learn a probabilistic upper bound on ∥𝒅∥ by taking
samples of indexed random variables 𝑆𝒙 comprising a disturbance-norm stochastic
process 𝑆 indexed by D𝒙 as in (SYS).

Definition 5. The disturbance-norm stochastic process 𝑆 = {𝑆𝒙}𝒙∈D𝒙 where sam-
ples of each random variable 𝑆𝒙 correspond to norms 𝛿 of disturbances 𝒅 as defined
in equation (3.6). The variability in norm samples 𝛿 arises through the assumed
process noise 𝝃 in the true system dynamics in (SYS).

Remark on Residuals: If one only considers a deterministic discrepancy between
the true and sim models, then the disturbances 𝒅 as per (3.6) would correspond to
residual dynamics, and the procedure would fit a surface to the norm of the residual
dynamics (learning residual dynamics has a well-studied history, see [12], [145]–
[147] and citations within). The discrepancy between these approaches and the
proposed one is the learning of a probabilistic bound on the norm of any stochastic,
model-state-dependent disturbances that affect the system during operation. This
is the reason for representing the discrepancies as a stochastic process and fitting a
Surface-at-Risk, which provides a natural way to reason about risk-aware disturbance
rejection in a context including model errors and stochastic uncertainty.

Furthermore, the disturbance-norm stochastic process is assumed to be indexed
over the model state space D𝒙 as opposed to the true state space D̂𝒙 . Moreover,
this method assumes the ability to measure the projected state 𝒙𝑡 = 𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡).
Therefore, sampled disturbance norms 𝜹 can be matched to points in the projected
state space D𝒙 . Then, the goal is to identify a “close” upper bound to the Surface-
at-Risk for this disturbance-norm stochastic process at some risk-level 𝜖 ∈ [0, 1].

Problem 1. Identify an upper bound to the Surface-at-Risk at some risk-level
𝜖 ∈ [0, 1] for the disturbance-norm stochastic process 𝑆 as per Definition 5 with
Surfaces-at-Risk as defined in Definition 4. Specifically, identify an estimate SR𝜖
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such that,
SR𝜖 (𝑆, 𝒙) ≥ SaR𝜖 (𝑆, 𝒙), ∀ 𝒙 ∈ D𝒙 . (3.7)

While the aforementioned upper bound SR𝜖 could be arbitrarily large and sat-
isfy (3.7), the objective is to find a “close” upper bound to the true Surface-at-Risk
level 𝜖 to facilitate risk-aware control.

Fitting a Disturbance-Norm Surface-at-Risk
For identifying such an upper bound SR𝜖 , noting that even for stochastic processes
whose sample realizations are non-differentiable, their Surfaces-at-Risk is relatively
smooth — see Figure 3.2 for examples. Intuitively, the disturbance norms 𝛿𝑖, 𝛿 𝑗 at
“close” model states 𝒙𝑖, 𝒙 𝑗 ∈ D𝒙 is expected to be similarly “close”:

Assumption 1. For the disturbance-norm stochastic process 𝑆 in Definition 5, the
Surface-at-Risk at a given risk-level 𝜖 ∈ [0, 1] has bounded discrepancy. I.e.,
∃ 𝛼, 𝛽 ∈ R≥0 such that,

∀ 𝒙𝑖, 𝒙 𝑗 ∈ D𝒙 , ∥𝒙𝑖 − 𝒙 𝑗 ∥ ≤ 𝛼 =⇒ | SaR𝜖 (𝑆, 𝒙𝑖) − SaR𝜖 (𝑆, 𝒙 𝑗 ) | ≤ 𝛽. (3.8)

Notably, this assumption only implies a bounded discrepancy, and not continuity,
e.g., a bounded piecewise continuous function would have bounded variance as per
the assumption. This assumption is verified to hold for the data set collected on
hardware in Section 3.4.

Second, (perhaps noisy) unbiased samples of SR𝜖 (𝑆, 𝒙) for a given model state
𝒙 ∈ D𝒙 need to be considered. By equation (3.7), SR𝜖 (𝑆, 𝒙) ≥ VaR𝜖 (𝑆𝒙). Define
one sample 𝛿 𝑗 of 𝑆𝒙 𝑗

as follows, where 𝑂 is as per (OBS), and 𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡) is as
per (MAPS):

𝛿𝑡 = ∥𝑂 (𝒙̂𝐾𝑡 , 𝜋(𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡)) − 𝑓 (𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡), 𝜋(𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡))∥,
𝒙𝑡 = 𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡). (3.9)

Then, multiple samples 𝛿 𝑗 for sequential model states visited during operation are
grouped, i.e., 𝛿 𝑗 , 𝛿 𝑗+1, . . . for 𝒙 𝑗 , 𝑥 𝑗+1, . . . to produce an upper bound to at least one
Value-at-Risk level 𝜖 of a sampled random variable, i.e., VaR𝜖 (𝑆𝑥 𝑗 ),VaR𝜖 (𝑆𝑥 𝑗+1), . . . .
To do so, the following theorem is stated for 𝑁 scalar random variables 𝑋 with (per-
haps) different distributions 𝜋.
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Algorithm 1: Fitting a Disturbance-Norm Surface-at-Risk
Data: 𝛼, 𝛽 for Assumption 1, an integer NRV > 0 for Proposition 1

corresponding to the number of random variables to sample, time-step
dilation parameter 𝐾 > 0 between true system evolution and model
evolution as per (OBS), and 𝑘 : D𝒙 × D𝒙 → R a kernel function

Initialize: s = 0, X = [], Y = [] ;
References: Disturbance Norm samples 𝛿 𝑗 as per (3.9) and projector 𝑃𝒙̂→𝒙 as
per (MAPS) ;

while True do
Initialize empty data-set, i.e., Ss = [ ] ;
for 𝑗 = NRV · s,NRV · s+1, . . . ,NRV(s+1) − 1 do

Collect state-indexed disturbance norm samples, i.e.,
Ds ← Ds ∪ (𝛿 𝑗 , 𝒙 𝑗 = 𝑃𝒙̂→𝒙 (𝒙̂𝐾 𝑗 ));

end
Augment GP state dataset with Ss: X← X∪ 𝒙NRV (s+1)−1;
Augment GP norm dataset with Ss: Y← Y∪ max{𝛿ℓ ∈ 𝐷} + 𝛽 ;
Fit 𝜇s, 𝜎s as per (3.1) with data sets X,Y. s++ ;

end

Proposition 1. Let {𝑋𝑖}𝑁𝑖=1 be a collection of 𝑁 scalar random variables with
(perhaps) different distributions {𝜋𝑖}𝑁𝑖=1, and let {𝑥𝑖}𝑁𝑖=1 be a set of 𝑁 samples of
these random variables, one sample per each random variable, i.e., 𝑥𝑖 is a sample
of 𝑋𝑖. Then, for any 𝜖 ∈ [0, 1], the probability that at least one sample 𝑥ℓ ∈ {𝑥𝑖}𝑁𝑖=1
is greater than the Value-at-Risk level 𝜖 of its corresponding random variable 𝑋ℓ is
equivalent to 1 − (1 − 𝜖)𝑁 , i.e., with VaR as per Definition 3 and ∀ 𝜖 ∈ [0, 1],

P𝜋1,𝜋2,...,𝜋𝑁

[
∃ 𝑥ℓ ∈ {𝑥𝑖}𝑁𝑖=1 s. t. 𝑥ℓ ≥ VaR𝜖 (𝑋ℓ)

]
≥ 1 − (1 − 𝜖)𝑁 . (3.10)

Proof. Consider a random variable 𝑋ℓ ∈ {𝑋𝑖}𝑁𝑖=1. The probability of taking a sample
𝑥ℓ of 𝑋ℓ such that 𝑥ℓ ≥ VaR𝜖 (𝑋ℓ) is less than or equal to 𝜖 by Definition 3. The
same line of reasoning holds∀ 𝑋ℓ ∈ {𝑋𝑖}𝑁𝑖=1. As such, the probability that no sample
𝑥ℓ ∈ {𝑥𝑖}𝑁𝑖=1 is greater than the corresponding Value-at-Risk level 𝜖 is less than or
equal to (1 − 𝜖)𝑁 , yielding the result.

The procedure for generating unbiased samples of the upper bound SR𝜖 stems
directly from Proposition 1 and Assumption 1. Let the system evolve for NRV

model time-steps and collect one norm sample 𝛿 𝑗 per model state 𝑥 𝑗 visited during
operation. This norm sample 𝛿 𝑗 is calculated as per (3.9). Second, Proposition 1
guarantees that the largest norm sample 𝛿∗𝑗 is greater than the Value-at-Risk level 𝜖
for its corresponding indexed random variable 𝑆𝒙∗

𝑗
with some minimum probability.
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Third, if all norm samples were drawn from indexed random variables 𝑆𝒙 𝑗
whose

indices 𝒙 𝑗 were “close", i.e., ∥𝒙𝑠 − 𝒙𝑟 ∥ ≤ 𝛼 ∀ 𝒙𝑟 ≠ 𝒙𝑠 ∈ {𝒙 𝑗+𝑖}𝑁−1
𝑖=0 and for some

𝛼 > 0, Assumption 1 can be leveraged to augment the largest norm sample 𝛿∗𝑗 by a
constant 𝛽 > 0. The sum is, with minimum probability 1 − (1 − 𝜖)𝑁 , an unbiased,
non-noisy sample of SR𝜖 (𝑆, 𝒙 𝑗 ). Algorithm 1 formalizes this procedure and the
main theoretical result follows.

Theorem 2. Let 𝛼, 𝛽,NRV, s, 𝜇s, 𝜎s, and 𝑘 be as defined in Algorithm 1, let 𝐵 > 0,
let SaR be the Surface-at-Risk measure as per Definition 4 for some risk-level
𝜖 ∈ [0, 1], let 𝑆 be the disturbance-norm stochastic process as per Definition 5, and
let Assumption 1 hold for each data set Ss in lines 5-7 of Algorithm 1 with respect to
the given parameters 𝛼, 𝛽. If ∥ SR𝜖 (𝑆)∥𝑅𝐾𝐻𝑆 ≤ 𝐵, then with minimum probability(
1 − (1 − 𝜖)NRV

)s the following holds ∀ 𝒙 ∈ D𝒙 and ∀ s = Z∞1 :

|𝜇s(𝒙) − SR𝜖 (𝑆, 𝒙) | ≤ 𝐵𝜎s(𝒙), 𝜇s(𝒙) + 𝐵𝜎s(𝒙) ≥ SaR𝜖 (𝑆, 𝒙). (3.11)

Proof. First, by the assumptions above, for each data set Ss in lines 5-7 of Algo-
rithm 1, one sample 𝛿 𝑗 of NRV (potentially) different random variables 𝑆𝑥 𝑗 is taken.
By Proposition 1 and with minimum probability 1−(1−𝜖)NRV , the maximum sample
𝛿∗𝑗 ≜ max{𝛿ℓ ∈ 𝐷} is greater than the Value-at-Risk of its corresponding random
variable VaR𝜖 (𝑆𝒙∗

𝑗
) (VaR is defined in Definition 3). If assumption 1 holds for each

such set of random variables, then with minimum probability 1 − (1 − 𝜖)NRV , the
sum 𝛿∗𝑗 +𝛽 is greater than the value-at-risk level 𝜖 of any sampled random variable,
i.e., the sum 𝛿∗𝑗 +𝛽 is a non-noisy estimate of SR𝜖 (𝑆, 𝒙), ∀ 𝒙 ∈ Ss. Hence, repeating
this same argument for each data point in X,Y and setting 𝑅 = 0, as each sampled
point is a non-noisy sample of the upper-bounding surface, the results of Theorem 1
with minimum probability (1 − (1 − 𝜖)NRV)s is recovered:

|𝜇s(𝒙) − SR𝜖 (𝑆, 𝒙) | ≤ 𝐵𝜎s(𝒙), ∀ 𝒙 ∈ D𝒙 . (3.12)

The final result holds by unraveling the absolute-value inequality in (3.12), asSR𝜖 (𝑆)
is an upper-bounding surface for SaR𝜖 (𝑆).

3.3 Hardware Validation
Implementation Specifics
All flight tests are performed at the Caltech Center for Autonomous Systems and
Technology arena which is equipped with an Optitrack motion capture system that
samples and streams the rotor-craft pose at 190 Hz. A safeguard tether is attached to
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Figure 3.3: Depictions of the two types of periodic trajectories implemented in the drone
experiments described in Section 3.4. These trajectories approximate difficult types of
behaviors commonly asked of drones.

the drone (weights 2.46 kg) with a ∼200 g passive weight attached on the other end
to partially eliminate tether slack, which is another source of uncertainty. Figure 3.3
depicts the two types of flight paths taken, wherein the objective is to realize complex
behaviors commonly asked of drones, e.g., ascent and descent with both headwind
and tailwind, circulating low to the ground, and taking off vertically in the presence
of transverse wind. All disturbing winds were realized by The Caltech Real Weather
Wind Tunnel, and windspeed information was not made available to the baseline
controller to be augmented. This baseline controller was developed against a single
integrator model, and as such, it outputs 3-space velocities at 50 Hz for the drone to
follow. The velocities provided by this controller are tracked by the drone’s onboard
flight controller, a Hex Cube Orange running a PX4 autopilot [148].

With respect to the mathematical setting in Section 3.2, the true system dynamics
are unknown though a single integrator model is employed as the sim model:

𝒙𝑡+1 = 𝒙𝑡 + 𝒖𝑡 (Δ𝑡 = 0.02),
𝒙𝑡 ∈ [−2, 2]2 × [1.2, 2]︸                 ︷︷                 ︸

D𝒙

, 𝒖 𝑗 ∈ [−0.8, 0.8]2 × [−0.5, 0.5]︸                            ︷︷                            ︸
D𝒖

. (EXP-SYS)

The state projection map 𝑃𝒙̂→𝒙 as in (MAPS) reads the drone’s position in 3-space.
The input map 𝑀𝑢 corresponds to the onboard PX4 controller that maps true drone
states 𝒙 ∈ D𝒙 and commanded 3-space velocities 𝒖 ∈ D𝒖 to rotor speeds at 1
kHz. As the controller updates these desired velocities at 50 Hz, the time-dilation
parameter 𝐾 = 20 for Algorithm 1. Finally, the observation function𝑂 as per (OBS)
outputs the projected true-system 3-space position after 𝐾 true-system time-steps,
and the disturbance-norm samples 𝛿 as per (3.9) are defined as follows:

𝛿𝑡 = ∥𝑂 (𝒙𝐾𝑡 , 𝜋(𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡))) − (𝒙 𝑗 + 𝜋(𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡))Δ𝑡)∥,
𝒙 𝑗 = 𝑃𝒙̂→𝒙 (𝒙̂𝐾𝑡). (3.13)
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The baseline controller 𝜋 : D𝒙 → D𝒖 is a discrete-time Lyapunov controller
designed to send the single-integrator system to a provided waypoint and does
not take into account complex aerodynamic effects, e.g., ground effects, transverse
wind, and tethered disturbances, which are challenging to model and can degrade
flight performance when ignored [92], [149]. Furthermore, the number of random
variables sampled per data-collection step NRV = 60 was kept constant. The squared-
exponential kernel function with length-scale parameter ℓ = 1.0 is used for all
experiments.

The desired outcomes were twofold. First, an upper bound to the disturbance-norm
Surface-at-Risk level 𝜖 = 0.05 is acquired throughout one traversal of the desired
flight path. In this initial flight path, only the baseline controller is implemented
and augmented if the system takes longer than 10 seconds to reach within 0.1
m of the subsequent waypoint along the desired path. As each path comprises
fewer than 6 waypoints, this ensures that the learned model considers less than a
minute of data for all experiments on both flight paths. These cutoff times were
specifically chosen to highlight the efficiency of the method with limited data.
Second, on all subsequent flight paths, the fitted surface on the norm of disturbances
that the Lyapunov controller should reject is provided while providing velocity
commands. As such, performance improvements are expected using the augmented
controller in the form of traversal time speedups through the series of waypoints,
as subsequent waypoints are provided once the drone reaches within 0.1 m of the
current, commanded waypoint, and the drone’s controller should account for the
vast majority of disturbances caused by wind, ground, and tether effects as an upper
bound to the disturbance-norm Surface-at-Risk level 𝜖 = 0.05 is fitted.

3.4 Results and Discussion
Four sets of experiments are conducted: (A) Hovering and moving while maintaining
a 0.15 m height above ground (see right in Figure 3.3); (B) Ascent, descent, and
vertical take-off without any wind (see left in Figure 3.3); (C) The same flight
path as (B) but with a 0.6 m/s transverse wind. The wind flows from left to right
when looking at the setup in Figure 3.3. A graphical example is also provided in
Figure 3.1; (D) The same flight path as (B) and (C) but with a 2 m/s transverse wind.

Figure 3.4 shows the fitted SaR𝜖=0.05 for each of the four experiments (A)-(D) ran on
the drone, as labeled prior. As mentioned, in all cases there is at least a 2× speedup
in flight path times when implementing the augmented controller, with as much as a



37

Figure 3.4: Fitted SaR𝜖=0.05 for the four experiments depicted in Figure 3.3, with 𝛼𝐷 the
maximum distance between two sampled states for GPR, and 𝛽𝐷 the maximum discrepancy
between two sampled disturbance norms. Over all four experiments, there is a consistent
2× speedup in flight path times after implementation of the augmented controller — a
qualitative result expected as per Theorem 2, as an upper bound is fitted to disturbance
norms at 95% probability. This information is further explained in Section 3.4.

5× speedup in the hovering case (A). Furthermore, assumption 1 with respect to the
data sets collected can be verified to hold for each experiment. Specifically, for (A),
an assumption is made for states within 𝛼 = 1m their Values-at-Risk level 𝜖 = 0.05
would not change by more than 𝛽 = 0.05. As can be seen in the title of the associated
subfigure in Figure 3.4, the reported values from data are smaller than their assumed
counterparts, indicating that Assumption 1 held over this experiment, at least with
respect to the collected data. For the remaining experiments, the assumed𝛼, 𝛽 values
were as follows: (B) 𝛼 = 3m, 𝛽 = 0.05; (C) 𝛼 = 3m, 𝛽 = 0.1; (D) 𝛼 = 3m, 𝛽 = 0.2.
Therefore, as observed from the associated titles in Figure 3.4, assumption 1 can be
similarly verified to hold over each of these cases as well — at least with respect
to the data collected. As such, a significant increase in performance according to
Theorem 2 is expected as was realized in all four cases with respect to flight path
time speedups. All experiments can also be seen in the supplementary video here:
[150].

Concluding Remarks
The results were threefold. A formal definition of the concept, Surfaces-at-Risk,
is an extension of Value-at-Risk to scalar-valued stochastic processes. Second,
the discrepancy between simulator and true-system evolution can be realized as a
stochastic process, and a method to fit an upper bound to this process’s Surface-
at-Risk is provided. Third, a theoretical statement on the accuracy of the proposed
approach with respect to fitting such an upper bound is carefully stated. Finally,
the utility of the procedure is showcased in facilitating risk-aware control by imple-
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menting the procedure on a drone mid-flight and exhibiting dramatic performance
improvements as a result.
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C h a p t e r 4

OFFLINE UUA: MATCHED AND UNMATCHED MODEL
DISCREPANCIES

This chapter presents a novel data-driven multi-layered planning and control frame-
work for the safe navigation of unmanned ground vehicles (UGVs) in the presence
of unknown stationary obstacles and additive modeling uncertainties. The foun-
dation of this framework is a novel robust model predictive planner, designed to
generate optimal collision-free trajectories given an occupancy grid map, and a
pairing ancillary controller, augmented to provide safety and robustness against
model uncertainties extracted from data.

To tackle modeling discrepancies, both matched (input discrepancies) and un-
matched (uncontrollable drift) model residuals between the true and the nominal
reduced-order models using closed-loop tracking errors are identified from training
data. Utilizing conformal prediction, probabilistic upper bounds for the model resid-
uals are extracted which serve to augment the ancillary controller. Further, maximum
tracking discrepancies are formulated, also known as the robust control invariance
tube, under the augmented policy, which is used as collision buffers. Employing
a LiDAR-based occupancy map to characterize the environment, a discrepancy-
aware cost map is constructed, using these collision buffers, and integrated into a
sampling-based model predictive path planner. The proposed framework in this
chapter generates optimal and safe trajectories that can be tracked by the augmented
ancillary controller robustly in the presence of model mismatches.

The effectiveness of the framework is experimentally validated in two applications:
(1) autonomous high-speed trajectory tracking in a cluttered environment with four
different vehicle-terrain configurations and (2) driver-assist application providing
collision avoidance corrections based on user joystick commands.

This chapter was adapted from: [17]

4.1 Problem Statement
This chapter investigates the traversal of autonomous ground vehicles, encompassing
differential drive robots, tracked vehicles, and skid steer vehicles. A widely used
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Figure 4.1: Offline Unknown Uncertainty Quantification Overview. (Top) An overview of
the three-step procedure of the proposed framework, summarizes the safety-critical frame-
work: (1) offline data-driven model discrepancy identification and learning, (2) augmenta-
tion of the control policy based on the learned upper bounds and the associated collision
buffers, and (3) a discrepancy-aware MPPI algorithm provides receding-horizon safe trajec-
tory and input pairs. (Bottom) snapshots of the UGV movement in high-speed trajectory
tracking in a cluttered environment, given unsafe desired trajectories.

model of such a vehicle is adopted for controller design and motion planning. This
model, as seen in [151], [152], is a kinematic model described as:

¤𝒙 =

[
cos(𝜃) sin(𝜃) 0

0 0 1

]𝑇 [
𝑣

𝜔

]
= 𝑔(𝒙)𝒖 = 𝑓 (𝒙, 𝒖), (4.1)

where the system state 𝒙 = [𝑥, 𝑦, 𝜃]𝑇 ∈ D𝒙 ⊆ R3 consists of the robot’s inertial 𝑥, 𝑦
position and its heading angle 𝜃. The control inputs 𝒖 = [𝑣, 𝜔]𝑇 ∈ D𝒖 ⊆ R2 are the
vehicle’s linear and angular velocity in the body 𝑥- and 𝑧-axes, respectively. The
sets D𝒙 and D𝒖 denote the set of allowable states and inputs.

The nominal model (4.1) is a reduced-order description of a general differential-
driven ground vehicle: it assumes that the wheels or tracks contact the ground at all
times, ignoring phenomena such as slipping, skidding, motor dynamics, and com-
munication delays. A more comprehensive model, accounting for these neglected
factors, can be formulated as:

¤𝒙 = 𝑓 (𝑋) = 𝑓 (𝒙, 𝒖) + 𝑓 (𝒙, 𝒉, 𝒖, 𝒅(𝑡)), (4.2)

where the true dynamics 𝑓 : 𝑄 → R3 maps state space𝑄 to the vehicle’s true linear
and angular velocities, 𝑓 (𝒙, 𝒖) is the nominal model (4.1), and 𝑓 : 𝑄 → R3 is an a
priori unknown additive disturbance, that models the discrepancies–it is possibly a
function of state 𝒙, input 𝒖, process noise 𝒅(𝑡), and hidden states 𝒉. The variable
𝑋 ∈ 𝑄 in equation (4.2) can be interpreted as a vehicle operating state that includes
inputs that correspond to the vehicle velocity ¤𝒙 via function 𝑓 . To note, projections
from the vehicle operating state space Q to the nominal state spaceD𝒙 and nominal
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system input space D𝒖 are defined for analyzing the discrepancy between the not
fully observable true dynamics (4.2) and the nominal model (4.1).

Definition 6. Let 𝒙𝑋 be the projection of sample 𝑋 onto D𝒙 , denoted as 𝑃𝑋→𝒙 , is
defined as

𝑃𝑋→𝒙 (𝑋) ≜ 𝒙𝑋 ∈ D𝒙 , (4.3)

whereD𝒙 is the nominal (reduced-order) admissible states and 𝑋 ∈ 𝑄 is a sampled
vehicle true state.

Note, only the existence projections 𝑃𝑋→𝒙 and 𝑃𝑋→𝒖 is assumed. Most importantly,
this work does not assume these projections are unique nor knowledge of their
analytic forms, etc. Now, the true dynamics (4.2) given operating state 𝑋 satisfies
Now, the true dynamics (4.2) given operating state 𝑋 satisfies

¤𝒙𝑋 = 𝑓 (𝑋) = 𝑓 (𝒙𝑋 , 𝒖𝑋) + 𝑓 (𝑋). (4.4)

For notation simplicity, the subscripts 𝑋 for 𝒙𝑋 and 𝒖𝑋 are omitted and referred to
as the nominal state given any operating sample 𝑋 .

Adhering to many robust optimal control works ([26]), the following type of additive
model uncertainties, satisfying Assumption 2, is studied.

Assumption 2. The true system dynamics 𝑓 can be expressed as 𝑓 = 𝑓 + 𝑓 where
𝑓 is the nominal dynamics and 𝑓 represents all model uncertainties.

The proposed approach is based on the notion that the vehicle aims to follow a
desired (denoted by (·)𝑑) reference path 𝒑𝑑 (𝑡) = [𝑥𝑑 (𝑡), 𝑦𝑑 (𝑡)]𝑇 , which is designed
without considering obstacles or model simplifications and mismatches. Since the
nominal model (4.1) is differentially flat, the input sequence given the desired refer-
ence 𝒑𝑑 (𝑡) = [𝑥𝑑 (𝑡), 𝑦𝑑 (𝑡)]𝑇 can be readily found using (4.5), without considering
obstacles. Denote the differentially flat input sequence given a position reference
𝒑𝑑 (𝑡) as the desired flatness-based input reference 𝒖𝑑 = [𝑣𝑑 , 𝜔𝑑], which can be
computed as

𝑣𝑑 =


¤𝑥𝑑

cos(𝜃𝑑) , if sin(𝜃𝑑)=0
¤𝑦𝑑

sin(𝜃𝑑) , otherwise
, 𝜔𝑑 =


𝑎𝑑

𝑣𝑑
, if 𝑣𝑑 ≠ 0

0 otherwise
, (4.5)

where 𝑎𝑑 = − sin(𝜃𝑑) ¥𝑥𝑑+cos(𝜃𝑑) ¥𝑦𝑑
𝑣𝑑

and 𝜃𝑑 = ATAN2( ¤𝑦𝑑 , ¤𝑥𝑑)).
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Figure 4.2: (Left) Definition of the polar coordinate. Subscripts (·)𝑏, (·)𝑒 denote the body
and inertial frames, respectively. The pose with superscript (·)∗ is the desired pose. (Right)
Four experimentally validated scenarios. Config. A: UGV with flipper on rubber flooring.
Config. B: UGV with flipper on foam flooring. Config. C: UGV without flipper on rubber
flooring. Config. D: UGV without flipper foam flooring.

Ancillary Controller - Nominal Model
Since the open-loop inputs 𝒖𝑑 (𝑡) or 𝒖∗(𝑡) can exhibit poor tracking when applied to
the actual vehicle due to model simplifications and mismatches, the tracking error
feedback is incorporated using [152] as the nominal ancillary controller,

𝜅(𝒆) = 𝛿𝒖 ≜


𝑣 = 𝑘1𝜌 cos 𝛾

𝜔 = 𝑘2𝛾 + 𝑘1
sin(𝛾) cos(𝛾)

𝛾
(𝛾 + 𝑘3𝛿)

, (4.6)

where 𝑘1, 𝑘2, and 𝑘3 are positive constants. This ancillary controller drives the
polar coordinates tracking error to zero with respect to the nominal model (4.1).
The tracking error polar coordinates

𝒆 = [𝜌, 𝛾, 𝛿]𝑇 ≜ 𝑓𝒆 (𝒙, 𝒙∗)

is a function of the current vehicle state 𝒙 and the optimal state 𝒙∗, see Fig. 4.2.

Polar coordinate tracking error 𝜌 ≜
√︁
(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 is the distance from the

vehicle’s current (𝑥, 𝑦) position to a desired way point (𝑥∗, 𝑦∗). Polar tracking error
𝛾 ≜ tan−1 𝑦−𝑦∗

𝑥−𝑥∗ − 𝜃 denotes the angle between the vehicle’s body-fixed 𝑥-axis (the
longitudinal axis) and a vector that points from the vehicle’s body-fixed frame origin
to the desired waypoint (𝑥∗, 𝑦∗). Similarly, 𝛿 = 𝛾 + 𝜃 − 𝜃∗ is the analogous angle
between the vehicle’s body-fixed 𝑥-axis to the optimal 𝑥-axis given by 𝜃∗. The time
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derivative of the polar coordinates tracking error 𝒆 ≜ [𝜌, 𝛾, 𝛿]𝑇 satisfies:

¤𝒆 =

[
− cos(𝛾) sin(𝛾)

𝜌

sin(𝛾)
𝜌

0 −1 0

]𝑇
𝛿𝒖 ≜ 𝑔𝑝 (𝒆)𝛿𝒖. (4.7)

The vehicle operates in the domain D𝒆 = D𝜌 × D𝛾 × D𝛿 ⊂ R3 where D𝜌 =

(𝑑𝑧, 𝜌𝑚𝑎𝑥), D𝛾 = (−𝜋/2, 𝜋/2), and D𝛿 = (−𝜋/2, 𝜋/2). 1 Within domain D𝒆, the
function 𝑔𝑝 (𝒆) is bounded and Lipschitz continuous with Lipschitz constant 𝑙𝑔𝑝 .
The ancillary controller (4.6) is selected because of the following result given the
operating domain D𝒆.

Lemma 1. ([152], [153]) Consider system (4.7), control law (4.6), and positive
constants 𝑘1, 𝑘2, and 𝑘3. The nominal closed-loop system is globally asymptotically
stabilizing to 𝒆∗ = 0.

Lemma 5 can be proved by the following valid and positive definite control Lyapunov
function (CLF):

𝑉 (𝒆) = 1
2
(𝜌2 + 𝛾2 + 𝑘3𝛿

2). (4.8)

Here are several properties of 𝑉 (𝒆) which support the main theorem in Section 4.3.
For quadratic form (4.8), there exist 𝛼1, 𝛼2 ∈ R>0 where 𝛼1∥𝒆∥2 ≤ 𝑉 ≤ 𝛼2∥𝒆∥2,
∀𝒆 ∈ D𝒆. Its time derivative

¤𝑉 = −𝑘1 cos2(𝛾)𝜌2 − 𝑘2𝛾
2 = −𝛼3(∥𝒆∥)

is negative semi-definite. Adhering to the Lyapunov framework, there exists a
class K∞ [154] function 𝛼3 such that ¤𝑉 ≤ −𝛼3(𝑉). Parameters 𝛼1, 𝛼2 ∈ R>0, and
function 𝛼3(·) play an important role in system safety and stability when model (4.7)
is perturbed by unknown discrepancies, see Section 4.3.

The nominal trajectory tracking control policy

𝒖 = 𝜋(𝒆) = 𝒖∗ + 𝜅(𝒆) = 𝒖∗ + 𝛿𝒖 (4.9)

is employed which asymptotically tracks 𝒙∗ without any model mismatches. The
goal is to construct trajectories and control policies that are robust to model discrep-
ancies and provide probabilistic guarantees to avoid a priori unknown obstacles.

1The vanishingly small interval (0, 𝑑𝑧) is a “deadzone” where the polar coordinate representation
(4.7) is ill-conditioned as 𝑑𝑧 → 0.
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Modeling Discrepancies
A probabilistic framework is employed to describe model discrepancies and to define
a probabilistic upper bound on the sum of all model discrepancies.

Definition 7. Let function 𝑓 : 𝑄 → R3 measure the difference between the nominal
model (4.1) and the true model (4.2). Let 𝑋 ∈ 𝑄 denote a vehicle operating state
where 𝑄 is the vehicle’s true state space and 𝑓 (𝑋) ∈ R3 denote the additive distur-
bance at operating state 𝑋 . Assuming the additive disturbance random variable has
a probability space (Ω, F , P), a sample space Ω, a 𝜎-algebra F over Ω defining
events, and a probability measure P. Define the minimal model discrepancy upper
bound, 𝑧 𝑓𝜖 , given a risk level 𝜖 ∈ [0, 1] over Ω for function 𝑓 as:

𝑧
𝑓
𝜖 ≜ 𝑎𝑟𝑔min

𝑧∈R
{P[∥ 𝑓 (𝑋)∥ ≤ 𝑧] ≥ 1 − 𝜖}, ∀𝑋 ∈ 𝑄. (4.10)

The value 𝑧 𝑓𝜖 can be interpreted as the (1 − 𝜖) percentile of all possible model
discrepancies norms, ∥ 𝑓 (𝑋)∥, for all 𝑋 ∈ 𝑄. Such differences, i.e. the residual
dynamics, arise from too simplistic vehicle modeling. The nominal model (4.1)
disregards some robot configurations (such as different flipper angles) and terrain
types (rubber and foam in the experiments) as illustrated in Fig. 4.2.

The minimum value in (4.10) may only be reached given infinite samples of 𝑓 (𝑋)
or knowing the probability measure of 𝑋 on Ω, which cannot be realized in practice.
Instead, the objective is to identify positive values 𝑍 𝑓𝜖 ≥ 𝑧

𝑓
𝜖 given finite samples

of 𝒙𝑋 , defined in (4.3), while making no assumptions on the distribution over Ω
or the explicit form or uniqueness of the projection 𝑃𝑋→𝒙 . That is, 𝑍 𝑓𝜖 is a model
discrepancy bound ∥ 𝑓 (𝑋)∥ for any 𝑋 ∈ 𝑄 given 𝜖 ∈ (0, 1). It is not necessarily the
tightest bound but a realizable bound from a limited data set.

Obstacle Avoidance
The safety-critical autonomy of ground vehicles traverses through incompletely
known terrains populated with stationary but a priori unknown obstacles is discussed
in this section. Assume that a 2-D occupancy grid map (O𝑡 derived from sensor
data) is available to the vehicle. The map, defined in inertial coordinates, has a width
and length of 𝑤𝑚𝑎𝑝, 𝑙𝑚𝑎𝑝 ∈ Z>0, respectively, and a grid resolution of 𝑟𝑚𝑎𝑝. Each
grid cell is associated with an integer value between 0 and 100 that describes the cell
occupancy probabilities where 0 indicates a 0% chance of obstacle occupancy and
vice versa. Unobserved cells are assigned a risk-neutral 50% occupancy probability.
The construction of the map is described in Section 4.4 which is built incrementally
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as the robot moves. This work is only interested in the dynamic uncertainties from
model residuals and ignores possible sensing uncertainties. The proposed method
can be extended to include measurement uncertainties.

Given this sensor-based grid map of the unknown environment, the proposed frame-
work allows a ground vehicle with terrain modeling discrepancies to track a reference
trajectory within the map while having probabilistic safety guarantees on collision
avoidance. The criterion is:

P[ 𝒑𝑡 ∉ O] > 1 − 𝜖 ∀𝑡, (4.11)

for any 𝒑𝑡 ∈ V𝑡 where V𝑡 denotes a uniform probability distribution over bounded
set of 𝑥, 𝑦 positions occupied the vehicle geometry at time 𝑡. The statement (4.11)
is equivalent to collision-free with confidence 1 − 𝜖 given occupied space O for all
time.

Remark 1. This chapter focuses on flat terrains populated with stationary obstacles.
Nevertheless, the proposed framework can be readily extended to uneven surfaces
using model (4.1) or a higher-fidelity model for rough terrain applications, such as
the ones developed in [155], as the nominal model.

Matched and Unmatched Discrepancies
Because the reduced-order model (4.1) is perturbed by an additive model discrep-
ancy 𝑓 , the discrepancy is decomposed into a matched component that lies in the
range space of the actuation and an unmatched component that lies in the null space
of the actuation matrix [156]–[158].

sw Let the range space of the differential-driven ground vehicle be

match(𝑔) ≜ span(𝑔1, 𝑔2) (𝒙),

where 𝑔1, 𝑔2 are the columns of the actuation matrix 𝑔(𝒙). The null subspace for
system (4.1) is similarly defined as

umatch(𝑔) ≜ {𝒙 ∈ D𝒙 | 𝑔(𝒙) = 0},

the null space of the actuation matrix.

Definition 8. The additive model uncertainty 𝑓 can be decomposed into matched
( 𝑓𝑚) and unmatched ( 𝑓𝑢𝑚) discrepancies with respect to reduced-order model (4.1).
Specifically, the matched discrepancy is the function 𝑓𝑚 : 𝑄 → R3 satisfying

𝑓𝑚 (𝑋) ∈ match(𝑔(𝒙𝑋)), ∀ 𝑋 ∈ 𝑄. (4.12)
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The unmatched discrepancy is defined as the function 𝑓𝑢𝑚 : 𝑄 → R3 satisfying

𝑓𝑢𝑚 (𝑋) ∈ umatch(𝑔(𝒙𝑋)), ∀ 𝑋 ∈ 𝑄. (4.13)

More importantly, for all samples 𝑋 ∈ 𝑄 and their respective reduced-order state
𝒙𝑋 ∈ D𝒙 , the summation 𝑓 (𝑋) = 𝑓𝑚 (𝑋) + 𝑓𝑢𝑚 (𝑋) holds.

4.2 Data-Driven Discrepancy Identification
This section summarizes the data-driven identification of a model discrepancy bound
𝑍
𝑓
𝜖 , where 𝑓 captures model mismatches in (4.2) from sources like slipping, skid-

ding, change in surface traction properties, input delays, etc. Discrete-time data is
captured from the continuous system at sampling interval Δ𝑇 . Time is indicated by
an integer: variable 𝒙𝑖 denotes the value of state 𝒙 at time 𝑡𝑖 = 𝑖Δ𝑇 . 𝑁𝑇 tuples of
training data are gathered from running the system with the nominal tracking control
law 4.9 and each tuple has the form

𝑆𝑖 = {𝒙𝑖−1, 𝒙̂𝑖, 𝒙
∗
𝑖 , 𝒖𝑖−1, 𝒖

∗
𝑖−1}, (4.14)

where 𝒙𝑖−1 is the state at time 𝑡𝑖−1, and the pair (𝒙∗
𝑖
, 𝒖∗

𝑖−1) is the optimal state and
the optimal input at 𝑡𝑖 with respect to the cost in (2.31). This data set can be
collected from multiple vehicle trajectories that result from an optimal trajectory
planner (e.g., by a model predictive control planner for dynamics (4.1)) of the form
(𝒙∗
𝑖
, 𝒖∗

𝑖−1) given current state 𝒙𝑖−1.

The actual control input 𝒖𝑡−1 applied to the vehicle in the interval [𝑡𝑖−1, 𝑡𝑖] is the sum
of the optimal input 𝒖∗

𝑡−1 and and a correction term applied by the ancillary controller
(4.6), 𝛿𝒖𝑡−1, given the polar coordinate tracking error at: 𝒖𝑖−1 = 𝒖∗

𝑖−1 + 𝛿𝒖𝑖−1 =

𝒖∗
𝑖−1 + 𝜅(𝒆𝑖−1). 𝑥𝑖 is the system’s actual state arising from the control input 𝒖𝑖−1

when it is held constant during 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]. The propagation of state 𝒙𝑖−1 with
input 𝒖𝑖−1 through nominal model (4.1), the expected state 𝒙𝑖−1 might be different
from the measured 𝒙̂𝑖−1 because of unmodeled discrepancy 𝑓 . Assuming that the
optimal planner and ancillary controller are recomputed at each time step, and more
specifically for the 𝑗 tuples 𝑆 𝑗 , 𝒙 𝑗−1 = 𝒙̂ 𝑗 holds. Figure 4.3 demonstrates the
proposed identification process from training data as an overview.

Discrepancy Identification
To identify the matched and unmatched discrepancy, the polar coordinate tracking
error 𝒆𝑖−1 can be computed using 𝒙𝑖−1 and 𝒙∗

𝑖
at time 𝑡𝑖−1. Then, the feedback

(measured) tracking error at time 𝑡𝑖, denoted as 𝒆̂𝑖, is a function of 𝒙̂𝑖 and 𝒙∗
𝑖
.
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Figure 4.3: An outline of the proposed data-driven discrepancy identification method. From
training data S𝑖 (left panel), the closed-loop tracking errors are separated into matched and
unmatched model discrepancies (center panel). Given a user-specified risk tolerance 𝜖 ,
conformal prediction is applied to obtain their probabilistic upper bounds (right).

Using (4.7), the polar coordinate tracking error can be calculated using the nominal
error dynamics (4.7) at 𝑡𝑖 given initial condition 𝒆𝑖−1 and assuming 𝛿𝒖𝑖−1, generated
by the ancillary controller, is the input as

𝒆𝑖 =

∫ 𝑡𝑖

𝑡𝑖−1

𝑔𝑝 (𝒆(𝜏))𝛿𝒖𝑖−1𝑑𝜏 + 𝒆𝑖−1, (4.15)

where 𝛿𝒖𝑖−1 is zero-order hold during the interval [𝑡𝑖−1, 𝑡𝑖].

Let 𝛿𝒆̂𝑖Δ𝑇 ≜ 𝒆̂𝑖 − 𝒆𝑖 be the measured tracking error between the true system (4.2)
against the nominal system (4.1) given the same initial condition, 𝒆𝑖−1, and the same
input over the interval, 𝛿𝒆̂𝑖Δ𝑇 which can be decomposed as follows

𝛿𝒆̂𝑖Δ𝑇 =

∫ 𝑡𝑖

𝑡𝑖−1

(
𝑓 ( 𝒆̂(𝜏))−𝑔𝑝 (𝒆(𝜏))𝛿𝒖𝑖−1

)
𝑑𝜏+ 𝛿𝒆(𝑖−1)Δ𝑇︸    ︷︷    ︸

=0

=

∫ 𝑡𝑖

𝑡𝑖−1

𝑔𝑝 (𝒆(𝜏))𝒅𝒖𝑑𝜏 +
∫ 𝑡𝑖

𝑡𝑖−1

𝒅𝒖⊥𝑑𝜏, (4.16)

where 𝒅𝒖 ∈ R2 represents the matched discrepancy similar to an input disturbance.
The error 𝒅𝒖⊥ = 𝑑⊥ 𝒏̂⊥𝑔𝑝 ∈ R

3 lies in the null space of 𝑔𝑝, which is spanned by the
unit vector 𝒏̂⊥𝑔𝑝 . Parameter 𝑑⊥ ∈ R is the magnitude of the unmatched disturbance.
By numerical differentiation with Δ𝑇 → 0, the perturbed polar coordinate error
dynamics in continuous time becomes:

¤̂𝒆 = ¤𝒆 + 𝛿 ¤𝒆 = 𝑔𝑝 ( 𝒆̂) (𝛿𝒖 + 𝒅𝒖) + 𝑑⊥ 𝒏̂⊥𝑔𝑝 (4.17)

with initial condition 𝒆(0) = 𝒆̂(0). For a physical robotic system, the expected
dynamics discrepancy is bounded as stated in the following assumption.

Assumption 3. The input (matched) disturbance 𝒅𝒖 : D̂𝒆 → R2 and the unmatched
drift (unmatched) 𝑑⊥ : D̂𝒆 → R are bounded.
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For safety, the system must be robust up to a user-defined risk tolerance against
the worst-case discrepancies. Therefore, it is desirable to identify the matched and
unmatched discrepancy bounds for both ∥𝒅𝒖∥ and |𝑑⊥ | using conformal prediction
from the finite training data. Despite [108] addresses that conformal prediction can
produce the desired minimum model discrepancy upper bounds (4.10), the assump-
tion that the sampled nonconformity score satisfying (2.11) is not necessary valid
given expected non-zero model residuals. Nevertheless, conformal prediction set
coverage guarantees to hold regardless of the accuracy of the sampled nonconfor-
mity scores computed assuming zero model discrepancy, as they are designed for
uncalibrated models [159].

Specifically, the desired probabilistic bounds on the matched and unmatched distur-
bances should satisfy the following:

𝑍𝜖 ≥ min
𝑧∈R
{PΩ̂ [|∥𝒅𝒖 (𝐸)∥ ≤ 𝑧] ≥ 1 − 𝜖}, (4.18)

𝑍⊥𝜖 ≥ min
𝑧∈R
{PΩ̂ [|𝑑⊥(𝐸) | ≤ 𝑧] ≥ 1 − 𝜖}, (4.19)

where 𝜖 ∈ (0, 1) is the user-defined risk for all random variables 𝐸 ∈ Ω̂. Physically
speaking, 𝐸 denotes a random sample of polar tracking error over the set of all
possible polar tracking errors represented as Ω. The following subsection details
how to extract ∥𝒅𝒖∥ and |𝑑⊥ | from the training data and how to calculate 𝑍𝜖 and 𝑍⊥𝜖
using conformal prediction.

Conformal-Driven Discrepancies
For each training state-input tuple, a tracking error 𝛿𝒆̂𝑖Δ𝑇 is computed to obtain an
estimate of the discrepancy bounds, ∥𝒅𝑖𝒖∥ and ∥𝑑𝑖⊥∥. Specifically, the discrepancy
bounds given samples 𝑖 are the solution to the following equations in the given order:

∥𝒅𝑖𝒖∥= max
𝒅𝑢∈R2






|𝛿𝒆̂𝑖Δ𝑇 |− ��� ∫ 𝑡𝑖

𝑡𝑖−1

𝑔𝑝 (𝒆(𝜏))𝑑𝜏𝒅𝒖
���






2

, (4.20)

|𝑑𝑖⊥ | =





|𝛿𝒆̂𝑖Δ𝑇 | − ��� ∫ 𝑡𝑖

𝑡𝑖−1

𝑔𝑝 (𝒆(𝜏))𝑑𝜏𝒅𝑖𝒖
���






2

. (4.21)

Since input disturbance 𝒅𝒖 can be actively compensated by control input 𝒖, the largest
possible input discrepancy is prioritized and the remaining model mismatches will
be allocated to the unmatched drift.

Assume that the training data is sufficiently rich. A 𝐿 number of ∥𝒅𝑖𝒖∥ and ∥𝒅𝑖𝒖⊥ ∥
is randomly sub-sampled without replacement where 0 ≪ 𝐿 < 𝑁𝑇 . Algorithm
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is developed which 2 uses training data set 𝑆𝑁𝑇
to identify a (1 − 𝜖) upper bound

(𝑍𝜖 , 𝑍⊥𝜖 ) defined in (4.18), (4.19) using the non-conformity scores {∥𝒅𝑖𝒖∥}𝐿−1
𝑖=0 and

{∥𝒅𝑖𝒖⊥ ∥}𝐿−1
𝑖=0 .

Algorithm 2: Conformal-Driven Discrepancies
Data: Risk 𝜖 , sub-sample 𝐿, training set {𝑆𝑖}𝑁𝑇

𝑖=1.
Result: 𝑍𝜖 , 𝑍⊥𝜖 defined by (4.18)-(4.19).
Compute index 𝑞 𝜖 = ⌈(𝐿 + 1) (1 − 𝜖)⌉.
for 𝑗 from 1 to 𝐿 do

Sample 𝒆̃ without replacement and use (4.20) and (4.21) to compute ∥𝒅 𝑗
𝒖 ∥, |𝑑

𝑗
⊥ |.

end
Add∞ to the non-conformity scores {∥𝒅 𝑗

𝒖 ∥}𝐿−1
𝑗=0 and {∥𝒅 𝑗

𝒖⊥ ∥}
𝐿−1
𝑗=0 .

Sort {∥𝒅 𝑗
𝒖 ∥}𝐿+1𝑗=1 and {|𝑑 𝑗

⊥ |}𝐿+1𝑗=1 in a non-decreasing orders.
𝑍𝜖 , 𝑍⊥𝜖 are the 𝑞𝑡ℎ𝜖 smallest value in the sorted lists.

Implicitly, the choice of the non-conformity score assumes the discrepancy noise is
uncolored and zero mean. Such an assumption always leads to more conservative
estimates of the discrepancy upper bound for safety-critical applications. If the
noise is known to be colored, a new nonconformity score that offsets the expected
discrepancies, ∥ 𝑓 (𝑋)−EΩ [ 𝑓 (𝑋)] ∥2, could lead to less conservative identified upper
bounds.

In summary, a distribution-free method is introduced to identify the probabilistic
upper bounds for closed-loop tracking input discrepancies 𝑍𝜖 and the unmatched
drift 𝑍⊥𝜖 . The following section augments the ancillary controller using the data-
driven discrepancy bounds to identify the associated maximum trajectory tracking
error.

4.3 Maximum Tracking Error Tubes
In addition to identified error dynamics (4.17), this section introduces the following
perturbed variations of the nominal error dynamics (4.7) as intermediate cases to
study to problem in the presence of both matched and unmatched disturbances,

¤̃𝒆 = 𝑔𝑝 ( 𝒆̃) (𝛿𝒖 + 𝒅𝒖), (4.22)
¤𝒆 = 𝑔𝑝 (𝒆)𝛿𝒖 + 𝑑⊥ 𝒏̂⊥𝑔𝑝 , (4.23)

where 𝒆(0) = 𝒆̃(0) = 𝒆(0) = 𝒆̂(0). The perturbed dynamics (4.22) corresponds to
the case where there are no unmatched discrepancies, i.e., 𝑑⊥(𝑡) = 0,∀𝑡. Similarly,
the dynamics of 𝒆 corresponds to the case where there is no matched uncertainty
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along the controllable subspace, i.e., 𝒅𝒖 (𝑡) = 0,∀𝑡. To study the effect of the
discrepancies, the following lemmas are provided which leverage ideas from input-
to-state stability.

Lemma 2. Consider the perturbed error dynamics (4.22). Assume a positive con-
stant 𝑍𝜖 exists and satisfies Eq. (4.18) for 𝑡 ∈ [0,Δ𝑇] as 𝜖 → 0. Define the
set:

Ω𝐼𝑆𝑆 =

{
𝒆̃ ∈ D̂ 𝒆̃

���𝑉 ( 𝒆̃) ≤ 𝑍2
𝜖 /4

}
, (4.24)

where 𝑉 is the positive definite function (4.8). Consider the augmented ancillary
control law,

𝜅𝐼𝑆𝑆 ( 𝒆̃) = 𝜅( 𝒆̃) −
1
𝜆1
𝑔𝑝 ( 𝒆̃)𝑇 𝒆̃. (4.25)

For any 𝒆̃(0) ∈ Ω𝐼𝑆𝑆, if there exists a 𝜆1 > 0 such that applying the augmented
control law (4.24) yields the inequality −𝛼3(𝛼−1

2 (𝑉 ( 𝒆̃))) + 𝜆1𝑉 ( 𝒆̃) ≤ −𝛼̃3(𝑉 ( 𝒆̃)),
where 𝛼̃3 is a classK∞ function, for all 𝒆̃ ∈ Ω𝐼𝑆𝑆, then𝜓𝒆̃ (𝑡, 𝜅𝐼𝑆𝑆 ( 𝒆̃), 𝒆̃(0)) ∈ Ω𝐼𝑆𝑆 (𝑡)
2 for all 𝑡 ∈ (0,Δ𝑇).

Proof. From the definition of the positive definite function 𝑉 (4.8) and with the
augmented controller 𝜅𝐼𝑆𝑆, the following inequalities holds

¤𝑉 ≤ −𝛼3(∥ 𝒆̃∥) −
1
𝜆1

𝒆̃𝑇𝑔𝑝 ( 𝒆̃)𝑔𝑝 ( 𝒆̃)𝑇 𝒆̃ + 𝒆̃𝑇𝑔𝑝 ( 𝒆̃)𝒅𝒖

≤ −𝛼3(∥ 𝒆̃∥) −
1
𝜆1
∥𝑔𝑝 ( 𝒆̃)𝑇 𝒆̃∥22 + | 𝒆̃

𝑇𝑔𝑝 ( 𝒆̃)𝒅𝒖 |

≤ −𝛼3(∥ 𝒆̃∥) −
1
𝜆1




𝑔𝑇𝑝 𝒆̃ + 𝜆1
2
𝒅𝒖




2

2
+ 𝜆1(𝑍𝜖 )2

4

≤ −𝛼3(∥ 𝒆̃∥) +
𝜆1(𝑍𝜖 )2

4
.

Given 𝜆1 > 0 exists, the following inequalities hold

¤𝑉 ≤ −𝛼3(∥ 𝒆̃∥) + 𝜆1𝑉 ( 𝒆̃)
≤ −𝛼3(𝛼−1

2 (𝑉 ( 𝒆̃)) + 𝜆1𝑉 ( 𝒆̃) ≤ −𝛼̃3(𝑉 ( 𝒆̃))

given perturbed dynamics (4.22). With 𝑉 (𝒆(0)) ≤ 𝑍2
𝜖

4 , it can be shown that
𝑉 ( 𝒆̃(𝑡)) ≤ 𝑍2

𝜖

4 ,∀𝑡, i.e., 𝜓𝒆̃ (𝑡, 𝜅𝐼𝑆𝑆 (𝒆), 𝒆̃(0)) ∈ Ω𝐼𝑆𝑆.
2𝜓𝒆̃ (𝑡, 𝜅𝐼𝑆𝑆 ( 𝒆̃), 𝒆̃(0)) is the solution (flow) of 𝒆̃ governed by eqn. (4.22) under the augmented

control law 𝜅𝐼𝑆𝑆 with the initial value 𝜓(0) = 𝒆̃(0).
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It is important to recognize the set Ω𝐼𝑆𝑆 is a Robust Control Invariant (RCI) set
defined in section 2.4. Lemma 2 only considers the case where all disturbances lie
in the controllable subspace. For the complementary case governed by (4.23), the
Gronwall-Bellman inequality [160], is used to deduce the following result.

Lemma 3. Under the nominal dynamical system (4.7), the perturbed dynamical
system (4.23) controlled by the nominal feedback control law 𝒖 = 𝜅(𝒆) in Eqn. (4.6)
has the closed-loop dynamics

¤𝒆 = 𝑔𝑝 (𝒆)𝜅(𝒆) = 𝑓𝑐𝑙 (𝒆),
¤𝒆 = 𝑔𝑝 (𝒆)𝜅(𝒆) + 𝑑⊥ 𝒏̂⊥𝑔𝑝 = 𝑓𝑐𝑙 (𝒆) + 𝑑⊥ 𝒏̂⊥𝑔𝑝 .

Let 𝑍⊥𝜖 ∈ R>0 satisfy (4.19). Suppose there exists a Lipschitz constant 𝑙𝑐𝑙 with respect
to the domain D̂𝒆 for function 𝑓𝑐𝑙 . Let 𝜓𝒆 (𝑡, 𝜅(𝒆), 𝒆(0)) and 𝜓𝒆 (𝑡, 𝜅(𝒆)), 𝒆(0)) be
the flows of the systems (4.7) and (4.23). The following inequality holds for all
𝑡 ∈ [0,Δ𝑇]:

∥𝜓𝒆 (𝑡, 𝜅(𝒆), 𝒆(0)) − 𝜓𝒆 (𝑡, 𝜅(𝒆)), 𝒆(0))∥ ≤
𝑍⊥𝜖 𝑡𝑒

𝑙𝑐𝑙𝑡 + ∥𝒆(0)) − 𝒆(0))∥𝑒𝑙𝑐𝑙𝑡 . (4.26)

Proof. By forward integration, the flows satisfy

∥𝜓𝒆 (𝑡, 𝜅(𝒆), 𝒆(0)) − 𝜓𝒆 (𝑡, 𝜅(𝒆)), 𝒆(0))∥

≤ ∥𝒆(0)) − 𝒆(0))∥ +
∫ 𝑡

0



 𝑓𝑐𝑙 (𝒆) − 𝑓𝑐𝑙 (𝒆) − 𝑑⊥ 𝒏̂⊥𝑔𝑝

𝑑𝜏
≤ ∥𝒆(0)) − 𝒆(0))∥ +

∫ 𝑡

0
𝑙𝑐𝑙 ∥𝒆(𝜏) − 𝒆(𝜏)∥𝑑𝜏 + 𝑍⊥𝜖 𝑡.

The Gronwall-Bellman Inequality [160] yeilds (4.26).

Intuitively speaking, the result of Lemma 6 states that if there are uncontrollable drift
present, then the closed-loop system trajectory between the perturbed and nominal
system grows exponentially in time. Building on Lemma 2 and 6, the stability
and robustness in the presence of both input discrepancy and uncontrollable drift
is studied next. As the main contribution, an augmented ancillary controller is
derived which ensured closed-loop stability in the presence of the identified matched
uncertainties and the associated maximum discrepancy tube for the full perturbed
system (4.17).
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Figure 4.4: Given reference path 𝒑𝑑 (𝑡) and optimal trajectory {𝒙∗
𝑘
, 𝒖∗

𝑘
}𝑛ℎ
𝑘=1, the maximum

tracking error under augmented policy 𝜋𝐼𝑆𝑆 is depicted. By converting the optimal state
𝒙∗1 and current state 𝒙0 into polar coordinate error 𝒆0, the tracking problem reduces to the
stabilization of the error 𝒆𝑒𝑞 = 0. Theorem 3 proves that if ∥𝒆0∥2 ≤ 𝑟0, then the maximum
tracking deviation during 𝑡 ∈ [0,Δ𝑇] is sup𝑡∈[0,Δ𝑇 ] ∥𝒆(𝑡)∥2 is upper bounded by 𝑟Δ𝑇 .

Theorem 3. Suppose the system (4.7) is perturbed by input disturbance 𝒅𝒖 and
uncontrolled drift 𝑑⊥, as in (4.17), where the disturbances 𝒅𝒖 and 𝑑⊥ satisfy As-
sumption 3 given domainD𝒆. Given 𝜖 → 0, let 𝑍𝜖 and 𝑍⊥𝜖 for 𝑡 ∈ [0,Δ𝑇] being the
discrepancy upper bounds that also satisfy (4.18) and (4.19), respectively.

Let 𝑙𝑉 be the Lipschitz constant for the function 𝑉 in Eqn. (4.8) on the bounded set
D̂𝒆. Let Δ𝑇 be small enough to satisfy

𝑍⊥𝜖 Δ𝑇 exp(𝑙𝑉Δ𝑇) ≤ 𝛼1.

Consider a time varying radius 𝑟 (𝜏) that satisfies

𝑟 (𝜏) = 𝑟𝜏 ≜
(𝑍𝜖 )2

4(𝛼1 − 𝑍⊥𝜖 𝜏𝑒𝑙𝑉𝜏)
. (4.27)

Consider the augmented ancillary controller (4.25) and error dynamics

¤𝒆 ≜ 𝑔𝑝 (𝒆) (𝜅𝐼𝑆𝑆 (𝒆) + 𝒅𝒖),

¤̂𝒆 ≜ 𝑔𝑝 ( 𝒆̂) (𝜅𝐼𝑆𝑆 ( 𝒆̂) + 𝒅𝒖) + 𝑑⊥ 𝒏̂⊥𝑔𝑝 ,

where 𝒅𝒖 (0) = 0, 𝑑⊥(0) = 0 and ∥𝒆(0)∥ ≤ 𝑟 (0). The existence of a 𝜆̂1 > 0 such
that −𝛼3(𝛼−1

2 (𝑉 ( 𝒆̂))) + 𝜆̂1𝑉 ( 𝒆̂) ≤ −𝛼̂3(𝑉 ( 𝒆̂)) is true for all 𝑡 ∈ [0,Δ𝑇], where 𝛼̂3 is
a classK∞ function, implies that the flow of the closed-loop 3 tracking error 𝒆̂(𝑡) is
bounded by ∥ 𝒆̂(𝑡)∥ ≤ 𝑟 (𝑡) over 𝑡 ∈ [0,Δ𝑇].

3Referring to the error dynamics under augmented control law 𝒖 = 𝜅𝐼𝑆𝑆 (𝑒) (4.25) with 𝜆̂1
replacing 𝜆1.
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Proof. The continuous and differentiable function ¤𝑉 is bounded over compact set
D̂𝒆 from Assumption 3. Therefore, 𝑉 is Lipschitz continuous over domain D̂𝒆. If
there exist 𝜆̃1 > 0, then under 𝜅𝐼𝑆𝑆 yields

¤𝑉 (𝑒) ≤ −𝛼3(∥ 𝒆̂∥) +
𝜆̂1𝑍

2
𝜖

4
+ | 𝒆̂𝑇 𝒅⊥𝒖 | ≤ −𝛼̂3(𝑉 ( 𝒆̂)) + ∥ 𝒆̂∥2𝑍⊥𝜖 .

The first inequality follows the proof of Lemma 2 with the addition of 𝒆̂𝑇 𝒅⊥𝑢 ≤
| 𝒆̂𝑇 𝒅⊥𝑢 |. The second inequality holds from a combination of the existence of 𝜆̂1, the
definition of 𝑍⊥𝜖 (4.19), and Holder’s inequality.

From Lemma 6, the flow of the Lyapunov function 𝑉 satisfies

sup
𝜏∈[0,𝑡]

|𝑉 (𝒆(𝜏)) −𝑉 ( 𝒆̂(𝜏)) | ≤
(

sup
𝜏∈[0,𝑡]

∥ 𝒆̂∥2 𝑍⊥𝜖 𝜏
)
𝑒𝑙𝑉𝜏,

where |𝑉 (𝒆(0)) − 𝑉 ( 𝒆̂(0)) | = 0 because 𝒆(0) = 𝒆̂(0). By adding and subtracting
zero and triangle inequalities, the inequalities hold

𝑉 ( 𝒆̂(𝜏)) ≤ |𝑉 ( 𝒆̂(𝜏)) | ≤ |𝑉 (𝒆(𝜏)) | + |𝑉 ( 𝒆̂(𝜏)) −𝑉 (𝒆(𝜏)) |.

Recall the robust control invariance set (4.24). Let the initial error radius 𝑟 (0) take
the explicit value

𝑟 (0) = (𝑍𝜖 )
2

4𝛼−1
1
. (4.28)

Further, since ∥𝒆(0)∥ ≤ 𝑟 (0) and there exists a 𝜆̂1 > 0, the unperturbed error
dynamics satisfies ∥𝒆(𝑡))∥ ≤ 𝑟 (0) for all 𝑡 ∈ [0,Δ𝑇], by Lemma 5. The following
inequalities can be derived by combining these inequalities:

sup
𝜏∈[0,𝑡]

𝑉 ( 𝒆̂(𝜏)) ≤ 𝛼1𝑟0 +
(

sup
𝑡∈[0,Δ𝑇]

∥ 𝒆̂(𝑡)∥𝑍⊥𝜖 Δ𝑇
)
𝑒𝑙𝑉Δ𝑇 (4.29)

because 𝑉 ( 𝒆̂) ≥ 𝛼1∥ 𝒆̂∥. Substituting this inequality into equation (4.29), the fol-
lowing inequality holds

sup
𝜏∈[0,𝑡]

∥ 𝒆̂(𝜏)∥ ≤ 𝑟0 + sup
𝜏∈[0,𝑡]

∥ 𝒆̂(𝜏)∥
𝑍⊥𝜖 𝜏𝑒

𝑙𝑉𝜏

𝛼1
. (4.30)

Lastly, combining equations (4.30) and (4.28) leads to the desired maximum tracking
error bound (4.27).
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The increasing tube (radius-wise) defined by time-dependent radius 𝑟 (𝑡) (4.27) in
the interval 𝑡 ∈ [0,Δ𝑇] is the maximum tracking error tube, illustrated in Figure
4.4. Note, every planned desired trajectory 𝒙∗(𝑡) resulting from desired inputs 𝒖∗(𝑡)
starting at state 𝒙0 is equivalent to stabilizing the tracking error from 𝒆0 to [0, 0, 0]𝑇 .
Leveraging the result of Theorem 3, the perturbed model tracking error 𝑒(𝑡) within
each planning interval 𝑡 ∈ [0,Δ𝑇] will be inside a growing tube along the planned
trajectory 𝒙∗(𝑡) for 𝑡 ∈ [0,Δ𝑇] under the augmented controller 𝜅𝐼𝑆𝑆, if the initial
tracking error 𝒆0 is inside a ball of radius 𝑟0 (4.28), as illustrated in Fig. 4.4.

Remark 2. The condition 𝜖 → 0 can lead to 𝑍𝜖 , 𝑍⊥𝜖 → ∞ which is unpractical
for robotic applications. Therefore for 𝜖 ∈ (0, 1), one can translate the result of
Theorem 3 as the inequality (4.27) is true for (1 − 𝜖) confidence level.

4.4 Discrepancy-Aware Planning
Because differential-drive ground vehicles are underactuated, the unmatched uncer-
tainties cannot be compensated in a controller synthesize problem. Nevertheless,
the closed-loop trajectory drift (Lemma 6) can be effectively modulated through
trajectory re-planning such as through heading adjustments, as demonstrated by the
tube-MPC method [161].

To complete the framework, this section proposes a novel Discrepancy-Aware Plan-
ning algorithm that optimizes reference tracking while providing safety constraint
satisfaction at a desired risk tolerance. There are two challenges studied: integrating
maximum tracking error into the occupancy map to infer probabilistic safe traversal
and finding optimal trajectories and inputs for the policy (2.43).

Probabilistic Safety-Critical Planning
Given a desired trajectory, the optimal tracking input can be found using a deter-
ministic FTOCP with the following cost:

L𝑡𝑟𝑎𝑐𝑘 =L𝑇 (𝛿 𝒑𝑡+𝑛ℎ)+
𝑛ℎ−1∑︁
𝑘=0

(
L𝑠 (𝛿 𝒑𝑘 ) +

1
2
𝒖𝑇𝑘𝑅𝒖𝑘

)
(4.31)

where 𝛿 𝒑𝑘 = 𝒑𝑘 − 𝒑𝑑
𝑘

is the output (position) tracking error in the inertial frame.
Functions L𝑇 ≜ 𝛿 𝒑𝑇

𝑡+𝑛ℎ𝑄𝑇𝛿 𝒑𝑡+𝑛ℎ and L𝑠 ≜ 𝛿 𝒑𝑇
𝑘
𝑄𝛿 𝒑𝑘 for 𝑘 ∈ {0, . . . , 𝑛ℎ − 1}

are convex terminal and stage costs, respectively. Matrices 𝑄𝑇 , 𝑄, 𝑅 ∈ R2×2 are
positive definite. Note, maximum tracking cost threshold, L𝑡𝑟𝑎𝑐𝑘 ∈ R>0 is applied.
The parameter L𝑡𝑟𝑎𝑐𝑘 stops the cost-to-go from becoming unbounded as the output
tracking error increases as L𝑡𝑟𝑎𝑐𝑘 = min(L𝑡𝑟𝑎𝑐𝑘 ,L𝑡𝑟𝑎𝑐𝑘 ). The authors infer L𝑡𝑟𝑎𝑐𝑘
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Figure 4.5: Experimental Set up Schematics. (Left) Configuration B test set up capture
where three stationary obstacles are placed such that the vehicle needs to deviate from
its reference trajectory to avoid. (Right) An overlay of the raw occupancy map and the
discrepancy-aware cost map C𝜖 with 𝜖 ∈ (0.0013, 0.0016) resulting a 𝑁𝜖 = 16 composed
by 𝑟𝑒𝑔𝑜 = 0.40 m and 𝑟𝑏𝑢 𝑓 𝑓 = 0.15 m with 𝑟𝑚𝑎𝑝 = 0.05 m.

from the system’s input limits and the planning horizon such that the maximum
stage cost corresponds to the physical limits imposed by the robotic hardware.

Given a vehicle operating state 𝑋𝑡 and its projected nominal state 𝒙𝑡 , the solution to
the following discrete-time optimization problem yields the desired probabilistically
safe input sequence

{𝒖∗𝑡+𝑘 }
𝑛ℎ−1
𝑘=0 = min

{𝒖𝑡+𝑘 }
𝑛ℎ−1
𝑘=0

𝑛ℎ−1∑︁
𝑘=0
L𝑡𝑟𝑎𝑐𝑘 (4.32a)

s.t. 𝑋𝑡+𝑘+1 = 𝑓 𝑑𝑡+𝑘 (𝑋𝑡+𝑘 ) (4.32b)

𝒙𝑡+𝑘+1 = 𝑃𝑋→𝒙 (𝑋𝑡+𝑘+1) ∈ D𝒖 (4.32c)

𝒖𝑡+𝑘 = 𝑃𝑋→𝒖 (𝑋𝑡+𝑘 ) ∈ D𝒖, ∀𝑘 ∈ Z𝑛ℎ−1
0 (4.32d)

𝒙𝑡 = 𝑃𝑋→𝒙 (𝒙𝑡) (4.32e)

PΩ [𝑀𝒙𝑡+1 ∈ O] ≤ 𝜖, (4.32f)

that avoids all occupied grids in the map O at a minimum probability (1−𝜖) percent.
Equation (4.32b) represents a discrete-time update of the true system operating state
𝑋 with time discretization step size Δ𝑇 . The matrix 𝑀 ∈ R2×3 maps from nominal
states 𝒙 to vehicle positions 𝒑, and constraint (4.32e) means the initial condition is
set by the current state. Inequality (5.3d) constrains the probability of the planned
vehicle’s position, at time 𝑡 + 1 given the current nominal state 𝒙𝑡 , to be inside an
augmented occupied set, denoted as O ⊆ R2, is less than 𝜖 . The set O is constructed
from O with the addition of the vehicle geometry such that if the point mass at
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position 𝒑 ∈ R2 satisfied 𝒑 ∉ O, then the vehicle occupied points given center
position 𝒑 denoted as the set S𝒑 ⊂ R2 satisfied S𝒑 ∩ O = ∅. Physically speaking,
the vehicle should not enter the obstacle-occupied grids given by the map O more
frequently than the specified risk tolerance.

The optimization problem (4.32) is difficult to solve because the true system dynam-
ics (4.32b) is unknown and unobservable, constraint (5.3d) is nondeterministic, and
the map O outputs discontinuous values given continuous positions. As a solution,
(4.32) is reformulated into a deterministic optimization program while providing
the same or lower obstacle collision tolerance 𝜖 .

Recall that polar coordinates state 𝜌 represents the displacement between the vehi-
cle’s actual position and the planned one. The result of Theorem 3 yields

sup
𝑡∈[0,Δ]

| 𝜌̂(𝑡) |= sup
𝑡∈[0,Δ𝑇]

|𝒊𝑇 𝒆̂(𝑡) | ≤ ∥ 𝒊∥ sup
𝑡∈[0,Δ𝑇]

∥ 𝒆̂(𝑡)∥ ≤ 𝑟Δ𝑇 ,

where 𝒊 = [1, 0, 0]𝑇 . Given the current nominal state 𝒙𝑡 , if the initial tracking
error arising from the planned state 𝒙∗

𝑡+1 satisfies ∥𝒆0∥ ≤ 𝑟0, then this constraint
guarantees up to 1 − 𝜖 confidence that vehicle position 𝒑𝑡+1, at time 𝑡 + Δ𝑡, is an
element of the following set

S𝐼𝑆𝑆 = { 𝒑 ∈ R2 | ∥ 𝒑𝑡+1(𝒙𝑡 , 𝜅(𝒆0)) − 𝒑∗𝑡+1∥ ≤ 𝑟Δ𝑇 }. (4.33)

That is, if the constraint ∥𝒆0(𝒙𝑡 , 𝒙∗𝑡+1)∥ ≤ 𝑟0 is satisfied, then enforcing an added
distance gap of 𝑟Δ𝑡 between the ego vehicle and the obstacle is sufficient to guarantee
obstacle avoidance with a (1 − 𝜖) confidence.

Theorem 4. Consider a differential-driven UGV with nominal dynamics (4.1), true
dynamics (4.2), and reference trajectory 𝒑𝑑 (𝑡). Denote the current vehicle operating
state as 𝑋𝑡 and its projected nominal state as 𝒙𝑡 . The polar tracking error satisfies
nominal dynamics (4.7). Consider the tracking control policy (2.43) where the
nominal ancillary controller 𝜅 (4.6) is used for stabilizing the tracking error 𝒆.

Suppose (4.7) is perturbed by an additive matched disturbance, 𝑔𝑝 (𝒆)𝒅𝒖, and an
additive unmatched model disturbance 𝑑⊥ 𝒏̂⊥𝑔𝑝 to (4.17), and there exist 𝑍𝜖 ∈ R>0

satisfying (4.18) and 𝑍⊥𝜖 ∈ R>0 satisfying (4.19) given a risk tolerance 𝜖 ∈ [0, 1].
Suppose there exists 𝜆̃1 ∈ R>0 in Theorem 3. Let {FS∗𝑡+𝑘 }

𝑛ℎ−1
𝑘=0 be the set of
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admissible inputs 4 for the following optimization problem.

{𝒖∗𝑡+𝑘 }
𝑛ℎ−1
𝑘=0 = min

{𝒖𝑡+𝑘 }
𝑛ℎ−1
𝑘=0

𝑛ℎ−1∑︁
𝑘=0
L𝑡𝑟𝑎𝑐𝑘 (4.34a)

s.t. 𝒙𝑡+𝑘+1 = 𝑓 𝑑𝑡+𝑘 (𝒙𝑡+𝑘 , 𝒖𝑡+𝑘 ,Δ𝑡) (4.34b)

𝒆𝑘 = 𝑓𝒆 (𝒙𝑡+𝑘 , 𝒙𝑡+𝑘+1) (4.34c)

∥𝒆𝑘 ∥ ≤ 𝑟0 (4.34d)

𝐶 ( 𝒑𝑡+𝑘+1, 𝑟 (𝑘+1)Δ𝑇 ) ∩ O = ∅ (4.34e)

𝒖𝑡+𝑘 + 𝜅𝐼𝑆𝑆 (𝒆𝑘 ) ∈ D𝒖, ∀𝑘 ∈ Z𝑛ℎ−1
0 (4.34f)

𝒙𝑡 = 𝒙𝑡 , (4.34g)

where equality constraint (4.34b) is the discrete-time version of nominal model (4.1).
The set 𝐶 ( 𝒑𝑘+1, 𝑟Δ𝑇 ) in (4.34e) denotes the closed disc with center 𝒑𝑘+1 ∈ R2 and
radius 𝑟Δ𝑇 (𝑘+1) ∈ R>0. Let {FS𝑘 }𝑛ℎ−1

𝑘=0 be the sequence of feasible input sets to the
optimization problem (4.32). If 𝑟𝑡 is computed using (4.27), then FS∗𝑡+𝑘 ⊆ FS𝑡+𝑘 ,
for all 𝑘 ∈ Z𝑛ℎ−1

0 .

Proof. As an overview, set inclusion is shown using a standard approach, showing
every element of the setFS∗𝑘 also belongs to the setFS𝑘 for all 𝑘 ∈ Z𝑛ℎ−1

0 . Consider
𝑘 = 0. From Theorem 3, under the augmented ancillary controller 𝜅𝐼𝑆𝑆, the position
flow of the perturbed system 𝝍 𝒑 (𝜏) for 𝜏 ∈ [𝑡, 𝑡 +Δ𝑇] under any input 𝒖𝑡 ∈ FS∗𝑡 + 𝑘
with initial position 𝒑𝑡 and (1 − 𝜖) confidence, satisfies the following,

𝝍 𝒑 (𝜏)− 𝒑∗(𝜏) ≤ sup
𝜏∈[𝑡,𝑡+Δ𝑇]

∥𝛿 𝒑(𝜏)∥ ≤ sup
𝜏∈[𝑡,𝑡+Δ𝑇]

|𝜌(𝜏) | ≤ 𝑟Δ𝑇 .

The above inequality implies, for all 𝒖𝑡 ∈ FS∗0, satisfaction of the inequality
constraints (4.34d) and (5.3c) is equivalent to the statement that the perturbed
system’s position flow 𝝍 𝒑 (𝜏) for 𝜏 ∈ [𝑡, 𝑡 + Δ𝑇] does not intersect an occupied
grid with (1 − 𝜖) confidence. Therefore, control inputs 𝒖𝑡 ∈ FS∗𝑡 are also feasible
solutions to optimization problem (4.32) yielding 𝒖𝑡 ∈ FS𝑡 , meaning FS∗0 ⊆ FS0.
For 𝑘 = 1, the flow generated by the composite following input can be similarly
inspected

𝒖(𝜏) =

𝒖𝑡 ∈ FS∗𝑡 , 𝜏 ∈ [𝑡, 𝑡 + Δ𝑇]

𝒖𝑡+1 ∈ FS∗𝑡+1, 𝜏 ∈ [𝑡 + Δ𝑇, 𝑡 + 2Δ𝑇] .

4If a input sequences {𝒖𝑡+𝑘}𝑛ℎ−1
𝑘=0 satisfies the constraints (4.34b) - (4.34f) given current state 𝒙𝑡

then such input sequence is an element of the set {FS∗𝑡+𝑘}
𝑛ℎ−1
𝑘=0 , 𝒖𝑡+𝑘 ∈ FS∗𝑡+𝑘 for all 𝑘 ∈ Z𝑛ℎ−1

𝑘=0 .
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Building on the result for 𝑘 = 0, the position flow of the system satisfies 𝝍 𝒑 (𝜏) ≤
𝒑∗(𝜏)+𝑟2Δ𝑇 for 𝜏 ∈ [𝑡, 𝑡+2Δ𝑇] with confidence 1−𝜖 . Therefore,∀𝒖𝑡+1 ∈ FS∗𝑡+1 are
also member of set FS𝑡+1, yielding FS∗𝑡+1 ⊆ FS𝑡+1. The proof for the remaining
𝑘 ∈ Z𝑛ℎ−1

𝑘=2 follows by induction.

Based on Theorem 4, solving the deterministic optimization problem (4.34) with
an inaccurate but known nominal model guarantees the desired obstacle avoid-
ance behavior from solving the original optimization problem (4.32). Lastly, the
optimization-based planner is assumed to update and recompute at everyΔ𝑇 seconds
with latest state update such that constraints (4.34d) and (4.34d) are only applied at
𝑘 = 0 5.

Remark 3. In Theorem 4, a circular robot shape (4.34e) can be replaced by tighter
polytopic boundary. In this case, the cost map introduced in the following section
may become orientation-dependent.

Discrepancy-Aware MPPI
The nonlinear program (4.34) can still be numerically challenging to solve, especially
with the set O represented as a grid map. Therefore, a discrepancy-aware cost map
is proposed to encode the obstacle avoidance constraint (4.34e). This map facilitates
cost minimization, ensuring robust obstacle avoidance amid model inaccuracy and
vehicle geometry. Specifically, consider the following augmented cost function
which combines the reference tracking cost (4.31) with a collision penalty,

L = L𝑡𝑟𝑎𝑐𝑘 +
𝑛ℎ∑︁
𝑘=1
L𝐶 ( 𝒑𝑘 , C𝜖 ) + 𝛼𝐼𝑆𝑆1∥ 𝒑𝑡+1− 𝒑𝑡 ∥≥𝑟0 , (4.35)

where L𝐶 : R2 × R𝑙𝑚𝑎𝑝×𝑤𝑚𝑎𝑝 → R is a map induced cost function which takes in a
position 𝒑 ∈ R2 and a 𝑙𝑚𝑎𝑝 × 𝑤𝑚𝑎𝑝 sized discrepancy aware cost map to produce a
collision cost. The parameter 𝛼𝐼𝑆𝑆 ∈ R>0 is chosen to enforce the algorithm to plan
a trajectory satisfying the requirement ∥𝒆0∥ ≤ 𝑟0 6.

Using the discrete-time nominal model (4.34b), MPPI is applied to derive sub-
optimal trajectory and input sequences ({𝒙∗

𝑡+𝑘 , 𝒖
∗
𝑡+𝑘 }

𝑛ℎ
𝑘=1) using the importance sam-

5Enforcing trajectory level safety, by adding safety distance of 𝑟 (𝑘+1)Δ𝑇 at future horizon steps,
𝑘 ∈ Z𝑛ℎ−1

1 , can lead to overly conservative behavior.
6The term 𝛼𝐼𝑆𝑆1∥𝒑𝑡+1−𝒑𝑡 ∥≥𝑟0 can be dropped if sample trimming is incorporated where a MPPI

sampled trajectory is omitted when the inequality ∥ 𝒑𝑡+1 − 𝒑𝑡 ∥ ≥ 𝑟0 holds. A replanning scheme
instead of sample trimming is being implemented in the experimental validation section where if the
inequality ∥ 𝒑𝑡+1 − 𝒑𝑡 ∥ ≥ 𝑟0 holds, a new set of input discrepancies are sampled until the converse
is true.
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pling aggregating law (2.35)-(2.36) and the proposed discrepancy-aware cost func-
tion (4.35). To manage input constraints, an element-wise clamping function
𝒖𝑐𝑙𝑎𝑚𝑝 = max(min(𝒖𝑚𝑎𝑥 , 𝒖), 𝒖𝑚𝑖𝑛) is recommended, which does not affect the
MPPI algorithm’s convergence [31]. The initial input sequence (warm start) is
obtained using the nominal dynamics and flatness properties as (4.5). Algorithm 3
details this process, including the construction of the cost map C𝜖 .

Discrepancy-Aware Cost Map
To account for the vehicle footprint in obstacle avoidance, given the nominal model
(4.34b) focuses on the UGVs’ center of mass, the smallest circumscribing circle’s
radius, 𝑟𝑒𝑔𝑜, is computed see Fig. 4.6 which is used to enlarge each occupied
grid by 𝑟𝑒𝑔𝑜 for center-focused obstacle avoidance. Additionally, to accommodate
model mismatches, the occupied grids are also enlarged by a radius 𝑟Δ𝑇 , creating
a “collision buffer” around each occupied grid. To encode this collision buffer on
a nominal grid map, the positive integer 𝑁𝜖 ≜ ⌈(𝑟Δ𝑇 + 𝑟𝑒𝑔𝑜)/𝑟𝑚𝑎𝑝⌉ denotes the
buffer’s grid size. The discrepancy-aware cost map can be interpreted as a 𝑁𝜖 grid
“inflation” on top of the occupancy map as an additive safety buffer zone between the
ego vehicle and surrounding obstacles, see Fig 4.6 as an example of such inflation.
The construction of the cost map is detailed in Algorithm 3 where a description of
the process is provided.

Discrepancy-Aware Cost Map Construction Details

For every occupied grid, its neighboring grids within a distance of (𝑟Δ𝑇 + 𝑟𝑒𝑔𝑜),
referred to as the safety buffer, will also be considered as occupied grids to ensure
robust obstacle avoidance given model inaccuracy and vehicle geometry.

An enlarged grid map Ô ∈ R𝑙𝑚𝑎𝑝+2𝑁𝜖×𝑤𝑚𝑎𝑝+2𝑁𝜖 is initialized, and the nominal map
is shifted and aggregated to form the collision buffer grid map (4.36) and visualized
in Figure 4.1. Specifically, the nominal occupancy map is shifted by 𝑁𝜖 grids in
both column-wise and row-wise positive and negative directions, as described in
Algorithm 3. In total, there are 4𝑁𝜖 + 2 shifted grid maps which are grid-wise
aggregated to obtain the grid map with collision buffer,

Ô𝑏𝑢 𝑓 𝑓 𝑒𝑟 ≜
1

4𝑁𝜖 + 2

𝑁𝜖∑︁
𝑖=−𝑁𝜖

𝑁𝜖∑︁
𝑗=−𝑁𝜖

Ô𝑠
𝑖, 𝑗

100
, (4.36)

where Ô𝑠
𝑖, 𝑗

≜ Ô(𝑁𝜖 + 𝑖 : 𝑁𝜖 + 𝑙𝑚𝑎𝑝 + 𝑖 − 1, 𝑁𝜖 + 𝑗 : 𝑁𝜖 +𝑤𝑚𝑎𝑝 + 𝑗 − 1) is an example
grid shifting operation. The normalization factor 100 is applied on the enlarged
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occupancy maps to obtain a value within [0, 1].

The discrepancy-aware cost map C𝜖 is constructed by applying an adjustable cost
multiplier 𝛼𝑠ℎ𝑖 𝑓 𝑡/𝑁𝑠ℎ𝑖 𝑓 𝑡,𝜖 to this enlarged occupancy map Ô𝑏𝑢 𝑓 𝑓 𝑒𝑟 The multiplier
𝛼𝑠ℎ𝑖 𝑓 𝑡/𝑁𝑠ℎ𝑖 𝑓 𝑡,𝜖 to the 𝑁𝜖 -shifted occupancy maps is a design parameter where
𝛼𝑠ℎ𝑖 𝑓 𝑡 ∈ R>0 is a cost multiplier similar to 𝛼𝐼𝑆𝑆 in (4.35) and the positive inte-
ger 𝑁𝑠ℎ𝑖 𝑓 𝑡 ∈ {1, . . . , 𝑁𝜖 } serves as a cost decay. This cost adjustment accounts for
both conservative obstacle avoidance and model mismatches, ensuring that the true
and uncertain system flow remains collision-free given the risk tolerance. The final
cost map balances obstacle collision penalties and tracking costs (Algorithm 3). The
design parameter 𝛼𝑠ℎ𝑖 𝑓 𝑡/𝑁𝜖 needs to be lower bounded by the maximum tracking
cost 𝐿𝑡𝑟𝑎𝑐𝑘 to penalize unsafe trajectories. A larger 𝛼𝑠ℎ𝑖 𝑓 𝑡 leads to more conservative
obstacle avoidance behavior, and a smaller 𝛼𝑠ℎ𝑖 𝑓 𝑡 reduces the cost associated with
the avoidance of the safe buffer due to model mismatches. The discrepancy-aware
cost map, denoted as C𝜖 (See Algorithm 3), is the centering 𝑙𝑚𝑎𝑝 and 𝑤𝑚𝑎𝑝 grids of
the following enlarged cost map:

C𝑏𝑢 𝑓 𝑓 𝑒𝑟 ≜
𝑁𝜖∑︁

𝑖=−𝑁𝜖

𝑁𝜖∑︁
𝑗=−𝑁𝜖

𝛼𝑠ℎ𝑖 𝑓 𝑡/
√︃
𝑖2 + 𝑗2︸    ︷︷    ︸

≜𝑁𝑠ℎ𝑖 𝑓 𝑡 , 𝜖

Ô𝑠𝑖, 𝑗 . (4.37)

Lastly, a maximum cost map threshold C𝜖 = min(C𝜖 , 𝐿𝑡𝑟𝑎𝑐𝑘 ) is enforced with the
maximum tracking cost grid-wise to even the cost penalty for obstacle collision.

As a result, a discrepancy-aware cost map, denoted as C𝜖 , is constructed that satisfies
the following property:

C𝜖 ( 𝒑) ≥ L𝑡𝑟𝑎𝑐𝑘 iff 𝐶 ( 𝒑, 𝑟Δ𝑇 + 𝑟𝑒𝑔𝑜) ∩ O ≠ ∅ (4.38)

for all positions 𝒑 ∈ R2 that is within the range of the occupancy map.

For MPPI cost evaluation, the position 𝒑 = [𝑥, 𝑦]𝑇 is mapped to the corresponding
grid indices on C𝜖 , calculating L𝐶 ( 𝒑, C𝜖) as the cost map entry at those indices 7.

As an extension to the results in Theorem 3 and 4, one can make the following
guarantees of the proposed data-driven planning and control framework.

Corollary 1. Suppose sufficient training samples 𝑆, given in the form (4.14), are
available to obtain 𝑍𝜖 , 𝑍⊥𝜖 offline using Algorithm 2 given a user-defined risk-level

7Explicitly, the index 𝑋C = ⌊ 𝑥
𝑟𝑚𝑎𝑝
+ 𝑙𝑚𝑎𝑝

2 ⌋ and 𝑌C = ⌊ 𝑦

𝑟𝑚𝑎𝑝
+ 𝑤𝑚𝑎𝑝

2 ⌋ can be computed given 𝒑𝑘 .
Then, L𝐶 ( 𝒑𝑘 , C𝜖 ) is the (𝑋C , 𝑌C)𝑡ℎ entries of C𝜖 .
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Figure 4.6: A pictorial overview of the construction of the Discrepancy-Aware Cost Map.

𝜖 ∈ (0, 1). Suppose there exist 𝜆̃1 > 0 such that Theorem 3 holds. Under the same
conditions and assumptions as Theorem 4, a local minimum trajectory {𝒙∗

𝑡+𝑘 }
𝑛ℎ
𝑘=1

given by input sequence {𝒖∗
𝑡+𝑘 }

𝑛ℎ−1
𝑘=0 is obtained using the discrepancy-aware MPPI

algorithm, given by Algorithm 3. Applying control input

𝒖𝑡 = 𝒖∗𝑡 + 𝜅𝐼𝑆𝑆 (𝒆0) (4.39)

is sufficient to avoid the occupied grids in map O with a minimum (1−𝜖) confidence,
if the following conditions are satisfied:

• The control inputs 𝒖𝑡 from Eqn. (4.39) satisfy input constraint, i.e., 𝒖𝑡 ∈ D𝒖.

• The trajectory cost L({𝒙∗
𝑘
, 𝒖∗

𝑘
}𝑛ℎ−1
𝑘=0 ) < L𝑡𝑟𝑎𝑐𝑘 .

Proof. Based on the cost assignment of C𝜖 , if the total cost of the planned trajec-
tory L({𝒙∗

𝑘
, 𝒖∗

𝑘
}𝑛ℎ−1
𝑘=0 ) is less than L𝑡𝑟𝑎𝑐𝑘 , the inequality L𝐶 ( 𝒑∗𝑡+1, C𝜖 ) ≤ L𝑡𝑟𝑎𝑐𝑘 is

automatically guaranteed, i.e., collision safety with confidence 1 − 𝜖 . Given the
control policy (4.39) also satisfies the control input limit, the flow of the perturbed
system (4.17) will be within an expanding maximum track error tube of radius 𝑟𝑡 ,
calculated using (4.27), along the planned position trajectory { 𝒑∗

𝑡+𝑘 }
1
𝑘=0 with (1− 𝜖)

confidence.

The theoretical guarantees from Corollary 1 can serve as planning safety validation
and verification in addition to synthesizing a safe controller as shown in the driver-
assist application in Section 4.4. Most importantly, the MPPI planned trajectories
always perform cost minimizing which returns to the collision-free regions even if
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there are no feasible safe input sequences, more convenient relative to optimization-
based MPC algorithms which require back-up strategies when the optimization
problem becomes infeasible.

Algorithm 3: Discrepancy-Aware MPPI
Data: Map parameters 𝑁𝜖 , 𝑟𝑚𝑎𝑝, 𝑥O,𝑐, 𝑦O,𝑐, occupancy map O, current

nominal state 𝒙𝑡 , goal position 𝒑𝑑𝑡 , cost function parameters: 𝑄, 𝑄𝑇 , 𝑅,
𝛼𝑐𝑜𝑠𝑡 , 𝛼𝑠ℎ𝑖 𝑓 𝑡 , MPPI parameters Σ𝒖, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒,𝜆,𝛼𝐼𝑆𝑆, initial control
sequence {𝒖}𝑛ℎ−1

0 , and horizon 𝑛ℎ.
Result: {𝒙∗

𝑖
}𝑛ℎ
𝑖=1, {𝒖∗

𝑖
}𝑛ℎ−1
𝑖=0 , 𝒖𝑠𝑒𝑛𝑑

Create 𝑙𝑚𝑎𝑝 + 2𝑁𝜖 by 𝑤𝑚𝑎𝑝 + 2𝑁𝜖 grid map Ĉ𝑏𝑢 𝑓 𝑓 𝑒𝑟 .
Create 𝑙𝑚𝑎𝑝 + 2𝑁𝜖 by 𝑤𝑚𝑎𝑝 + 2𝑁𝜖 enlarged occupancy map Ô based on O.
while task not completed do

for 𝑖 = −𝑁𝜖 , 𝑖 < 𝑁𝜖 , 𝑖 + + do
for 𝑗 = −𝑁𝜖 , 𝑗 < 𝑁𝜖 , 𝑗 + + do

𝐶𝑏𝑢 𝑓 𝑓 𝑒𝑟 (𝑁𝜖 + 𝑖 : 𝑁𝜖 + 𝑙𝑚𝑎𝑝 + 𝑖 − 1, 𝑁𝜖 + 𝑗 : 𝑁𝜖 + 𝑤𝑚𝑎𝑝 + 𝑗 − 1)+ =
𝛼𝑠ℎ𝑖 𝑓 𝑡 Ô𝑠

𝑖, 𝑗

100(
√
𝑖2+ 𝑗2+1)

.

end
end
C𝜖 = ⌈C𝑏𝑢 𝑓 𝑓 𝑒𝑟 (𝑁𝜖 : 𝑁𝜖 + 𝑙𝑚𝑎𝑝 − 1, 𝑁𝜖 : 𝑁𝜖 + 𝑤𝑚𝑎𝑝 − 1),L𝑡𝑟𝑎𝑐𝑘⌉.
for 𝑘 = 0, 𝑘 < 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 − 1, 𝑘 + + do

Draw 𝛿𝒖 from N(0, Σ𝒖) 𝑛ℎ times. for 𝑖 = 0, 𝑖 < 𝑛ℎ − 1, 𝑖 + + do
𝒙𝑖+1 = 𝒙𝑖 + 𝑔(𝒙𝑖) (min(max(𝒖𝑖 + 𝛿𝒖𝑖, 𝒖𝑚𝑖𝑛), 𝒖𝑚𝑎𝑥)Δ𝑡

end
Evaluate the 𝑘 𝑡ℎ MPPI trajectory cost L𝑘 using (4.35).

end
Compute the optimal MPPI input sequence {𝒖∗

𝑖
}𝑛ℎ−1
𝑖=0 using equations

(2.35)-(2.36) with L𝑘 as the flow costs.
Compute best sampled state trajectory {𝒙∗

𝑖
}𝑛ℎ
𝑖=1 and use 𝒙∗1 and 𝒙0 to

compute polar tracking error 𝒆̂.
Use (4.41) to compute the input that will be sent to actuators.
For 𝑖=0 : 𝑛ℎ − 2: 𝒖𝑖 = 𝒖∗

𝑖+1. Fill 𝒖∗𝑛ℎ−1 using flatness relationship (4.5).
end

4.5 Hardware Validation: Autonomy in Clustered Environment
The proposed framework is first validated through experiments focusing on high-
speed trajectory tracking given stationary obstacles. These experiments are con-
ducted using four ground and vehicle configurations, as depicted in Fig. 4.2.

Specifically, the Flipper Pro by Rover Robotics is chosen as the ego UGV which has
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Figure 4.7: Data-driven discrepancy identification results from configuration B with
𝑇𝑙𝑎𝑝 = {20, 30, 40, 50} seconds. From the training set, the absolute uncontrollable drift
is plotted against the input discrepancy norm, observing non-negligible model discrepancy
upper bounds. Outliers are observed due to incorrect 𝜋 wrapping which can skew the
empirical distribution formed by the nonconformity scores as well as the conformal-driven
discrepancies.

𝑟𝑒𝑔𝑜 = 0.39 m in flipper configuration and 𝑟𝑒𝑔𝑜 = 0.3 m in no flipper configuration.
There are three stationary crates in the test field acting as obstacles, strategically
placed to test the robot’s obstacle avoidance capabilities (refer to Fig. 4.5 for layout
details).

A 2D occupancy map is contracted which centers at (0, 0) with a 0.05 m grid size,
updated at 2 Hz, using a LiDAR sensor (VLP-16 by Velodyne) mounted on the robot.
The standard occupancy grid mapping algorithm [162] is employed to construct the
occupancy map with robot poses provided by an OptiTrack motion capture system.
An input limit of 𝑣𝑚𝑎𝑥 = [−2, 2] m/s and 𝜔𝑚𝑎𝑥 = [−2, 2] rad/s is enforced. The
dead zone is selected to be 𝜌𝑚𝑖𝑛 = 0.05 m, and the maximum position error is set
to 𝜌𝑚𝑎𝑥 = 0.5 m, considering the input limits. All processes are executed by an
onboard companion computer, powered by an AMD Ryzen𝑇𝑀 9 6900HX CPU,
within a ROS 1 environment.

Training Details

Given that both terrains exhibit uniform characteristics, model discrepancies are
primarily coupled with linear and angular velocities and input time delays. To obtain
training data that effectively captures these discrepancies, a “Figure 8” trajectory is
tracked at four different desired lap timings without obstacles, denoted as𝑇𝑙𝑎𝑝, for all
four configurations. Specifically, the trajectory as: 𝑥𝑑 (𝑡) = 2.5 cos(2𝜋𝑡/𝑇𝑙𝑎𝑝) and
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𝑦𝑑 (𝑡) = 1.25 sin(4𝜋𝑡/𝑇𝑙𝑎𝑝) is prescribed, where 𝑇𝑙𝑎𝑝 takes values of 20, 30, 40, and
50 seconds. The data collection process involves gathering approximately 5 minutes
of data at each configuration, with a sampling rate of 20 Hz. A scatter plot of the
identified unmatched and matched disturbances from the training data is displayed
in Fig. 4.7 which showed non-negligible model discrepancies, mainly arising from
input delays and track slipping. Subsequently, the conformal-driven upper bounds
are computed to establish the maximum tracking deviation radii, presented in Table
5.1 using a sub-sample count of 𝐿 = 3000.

Choice of Parameters

For the control algorithm, a frequency of 20 Hz was selected. the MPPI planning
horizon is selected to 1.5 seconds, with an input noise covariance matrix defined as
𝜎𝒖 = diag(0.2, 0.2). The sample size for the MPPI was chosen to be𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 2000.
The MPPI costs in (4.31) were selected to be 𝑄 = diag(50, 50), 𝑅 = diag(1, 1),
𝑄 𝑓 = diag(200, 200), and 𝛼𝑜 = 𝛼𝐼𝑆𝑆 = 10000. The MPPI inverse temperature
parameter 𝜆 is chosen to be 0.1. For the cost map, 𝛼𝑠ℎ𝑖 𝑓 𝑡 = 0.1, 𝑤𝑚𝑎𝑝 = 𝑙𝑚𝑎𝑝 = 200,
and 𝑟𝑚𝑎𝑝 = 0.05 m, with the map being stationary and centered at the position (0, 0).

Controller Specifics

The effectiveness of the controller, as outlined in Theorem 3, is contingent on
the existence of the parameter, 𝜆̃1. However, the time derivative of the Lyapunov
function in (4.8) does not depend on the polar error state 𝛿, which implies that 𝜆̃1’s
existence cannot be assured. Focusing on the primary objective of tracking the
desired positions 𝒑𝑑 (𝑡), the reduced polar coordinate error dynamics are considered
as follows:

¤̂𝒆 =
𝑑

𝑑𝑡

[
𝜌

𝛾

]
=

[
− cos(𝛾) 0

sin(𝛾)
𝜌

−1

]
𝛿𝒖 = 𝑔̂𝑝 ( 𝒆̂)𝛿𝒖. (4.40)

Specifically, the input of the above dynamics is now 𝒖 = 𝜅( 𝒆̂) = [𝑣̂, 𝜔̂]𝑇 , where
𝑣̂ = 𝑘1𝜌 cos 𝛾 and 𝜔̂ = 𝑘2𝛾 + 𝑘1 sin(𝛾) cos(𝛾). With the Lyapunov function 𝑉̂ =

1
2 (𝜌

2 + 𝛾2), the controlled system (4.40) is exponentially stabilizing to (0, 0) within
domainD𝜌 \D𝑑𝑧×D𝛾 with ¤̂𝑉 ≤ −𝛼3∥ 𝒆̂∥ and 𝛼3 =

𝑘2𝜌𝑑𝑧

2
√
(𝜋/2)2+𝜌𝑑𝑧

. Choosing 𝑘1 = 0.3

and 𝑘2 = 0.15, the perturbed closed-loop system has a Lipschitz constant 𝑙𝑉̂ = 𝜋/2,
which is obtained numerically over an input domain. For tracking purposes, the
convergence of 𝒆̂ to zero implies achieving the desired output tracking, i.e., 𝒑 → 𝒑∗.
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Figure 4.8: Experimental results of 30-second laps “Figure 8” tracking in the presence of sta-
tionary obstacles with test configurations A, B, C, and D. The black pixels in the backgrounds
for each configuration are the obstacle-occupied grids from LiDAR measurements. The ob-
stacles are placed to obstruct the vehicle if not avoided. The unsafe probability 𝜖 ranges
for the four configurations are 𝜖𝐴1 = 0.1760, 𝜖𝐴2 = 0.0029, 𝜖𝐴3 = 0.0010, 𝜖𝐴4 = 0.0005,
𝜖𝐵1 = 0.1409, 𝜖𝐵2 = 0.0016, 𝜖𝐵3 = 0.0013, 𝜖𝐵4 = 0.0011, 𝜖𝐶1 = 0.1321, 𝜖𝐶2 = 0.0024,
𝜖𝐶3 = 0.0011, 𝜖𝐶4 = 0.0009, 𝜖𝐷1 = 0.0031, 𝜖𝐷2 = 0.0016, 𝜖𝐷3 = 0.0012, and 𝜖𝐷1 = 0.001.
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Config. | 𝜖 Param. 0.001 0.005 0.01

A 𝑍𝜖 | 𝑍⊥𝜖 0.710 | 0.448 0.423 | 0.025 0.393 | 0.019
𝑟0 | 𝑟Δ𝑇 0.252 | 0.255 0.090 | 0.090 0.077 | 0.077

B 𝑍𝜖 | 𝑍⊥𝜖 2.153 | 0.034 0.419 | 0.030 0.381 | 0.026
𝑟0 | 𝑟Δ𝑇 2.318 | 2.320 0.088 | 0.088 0.073 | 0.073

C 𝑍𝜖 | 𝑍⊥𝜖 1.113 | 0.032 0.413 | 0.027 0.369 | 0.020
𝑟0 |𝑟Δ𝑇 0.619 | 0.620 0.085 | 0.085 0.068 | 0.068

D 𝑍𝜖 | 𝑍⊥𝜖 1.878 | 0.095 0.429 | 0.032 0.401 | 0.031
𝑟0 | 𝑟Δ𝑇 1.763 | 1.768 0.092 | 0.092 0.080 | 0.081

Table 4.1: Summary of the offline conformal discrepancy training results and the augmented
controller tracking guarantees where autonomous trajectory tracking is performed without
obstacles in the four configurations. The training 1 − 𝜖 confidence upper bounds for ∥𝒅𝒖 ∥
and |𝑑𝑑⊥ | is provided at three 𝜖 levels using Algorithm 2. Under the augmented control
policy 𝜅𝐼𝑆𝑆 , the maximum tracking error tube radii 𝑟0 and 𝑟Δ𝑇 with the choices of 𝜖 levels
are tabulated. Note, the identified radii 𝑟0, 𝑟Δ𝑡 are in meters.

Applying Theorem 3 to the reduced polar coordinate error dynamics in (4.40), and
with the parameter choices, 𝛼1 = 𝛼2 = 0.5 is chosen. The class 𝐾∞ function
𝛼3(𝑉) = 0.0024𝑉 is affine. Most importantly, there exists 𝜆̂1 = 1000 which leads
to 𝛼̃3(𝑉) = −0.0038𝑉 . With the augmented ancillary controller 𝜅𝐼𝑆𝑆 = 𝜅( 𝒆̂) −
1
𝜆̃1
𝑔̂𝑝 ( 𝒆̂)𝑇 𝒆̂, the radii 𝑟0 and 𝑟Δ𝑇 are computed for the 4 configurations consolidated

in Table 5.1. The overall policy that is sent to the vehicle is:

𝒖𝑐𝑚𝑑 = min(max(𝒖∗0 + 𝜅𝐼𝑆𝑆, 𝒖𝒎𝒊𝒏), 𝒖𝑚𝑎𝑥). (4.41)

Results

The proposed discrepancy-aware MPPI is validated by tracking the same “Figure
8” trajectory used for collecting training data, denoted as 𝒑𝑑 = (𝑥𝑑 (𝑡), 𝑦𝑑 (𝑡)),
with a lap time of 𝑇𝑙𝑎𝑝 = 30 sec 8. The experimental setup can be found in Fig.
4.5. As highlighted in the supplementary video [163], the nominal MPPI planner
combined with the nominal controller without accounting model mismatches, failed
to ensure safety, resulting in a collision with the stationary crates. In contrast, the
proposed framework in this chapter completed the trajectory tracking tasks across all
four vehicle-ground configurations, effectively handling model mismatches while
providing a verifiable safe traversal confidence level. The corresponding hardware

8Despite the validation desired trajectory’s geometry matches with the training set, the vehicle
must deviate from the reference trajectory to avoid the stationary obstacles, covering untrained
positions
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results are detailed in Fig. 4.8 given the four vehicle-ground configurations, see Fig.
4.2.

A key feature of the proposed approach is the augmentation of the cost map on a
grid basis. By associating each increment in 𝑁𝜖 with a specific range of 𝜖 values,
the framework exhibits risk-aware tunability. It was observed that lower values
of 𝜖 (approaching zero) induce a conservative obstacle-avoiding behavior, akin to
traditional robust control methods. Conversely, as 𝜖 nears one, the risk-neutral case,
the vehicle tracks closely with the reference path, shows improvements in tracking
performance at the cost of safety confidence.

During the post-experiment analysis, particularly with configurations B and D,
Large model discrepancies for 𝜖 = 0.001 are observed. These discrepancies were
predominantly found in datasets characterized by lower lap speeds, suggesting a
correlation with specific state or input conditions. This observation signals the
possibilities of a state and input-dependent discrepancy [13], which could potentially
provide a more accurate safety buffer compared to the upper bounds 𝑍𝜖 and 𝑍⊥𝜖 .

4.6 Hardware Validation: Driver-Assist with Collision Avoidance
Human-in-the-Loop Setup

In this section, the application of the proposed framework in collision driver assist
scenarios is explored. Consider a driver remotely operating a UGV robot via a
joystick, with linear velocity command in the body frame’s 𝑥 axis (𝑣 𝑗𝑜𝑦) and angular
velocity command in the 𝑧 axis (𝜔 𝑗𝑜𝑦), same as the input commands in (4.1). The
driver assist program aims to follow the joystick commands while providing avoiding
obstacles up to the specified risk tolerance.

Drawing from Hugemann et. al. [164]’s study on driver reaction times in road traffic,
a conservative reaction time of 1.5 seconds is considered for collision avoidance.
This 1.5 seconds can be interpreted as the reaction time as a 1.5 second ZOH to the
most recent joystick commands. Specifically, the desired reference generated using
the joystick trajectory {𝒙𝑡+𝑘 }𝑛ℎ𝑘=1, can be computed as

𝒙 𝑗𝑜𝑦
𝑡+𝑘 = 𝒙𝑡 +

𝑘∑︁
𝑖=0

𝑔(𝒙𝑡+𝑖)
[
𝑣 𝑗𝑜𝑦

𝜔 𝑗𝑜𝑦

]
Δ𝑇, (4.42)

where 𝑘 ∈ Z𝑛ℎ1 . To ensure maximum teleportation control in collision-free envi-
ronments, the proposed framework is modified to only provide trajectory correction
when a collision is imminent based on the joystick trajectory.
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Figure 4.9: Experimental results of using the proposed framework performing collision
avoidance assistance for human drivers. Based on human-provided joystick commands and
a user-chosen risk tolerance 𝜖 , the collision risk of joystick trajectory based on current
state feedback is evaluated on the proposed discrepancy-aware cost map. If the collision is
projected based on the evaluated cost, the proposed planning and control framework will
activate to provide overriding safe commands. Sub-figure (a) is a diagram that summarizes
the driver-assist logic flows. Sub-figures (b1) and (b2) illustrate the scenario for safe joystick
inputs where no collision assist is inactive. Sub-figures (c1) and (c2) illustrate the scenario
where the projected joystick trajectory is unsafe and where the collision assist program is
active to provide optimal and safe commands. Sub-figures (d1)-(d6) are the six test subjects’
trajectories in manual mode and driver assist mode.

In this experiment, human subjects drive the UGV in configuration A without a direct
view of the test course. The test drivers rely solely on a 2D occupancy map for
navigating among obstacles, matching the perception capability of the framework.
The human drivers are tasked to finish the narrow test course without collision as
quickly as possible.

Note, the same training set presented in section 4.5 is used in the driver assist appli-
cation despite the vehicle trajectory does not match the training Figure 8 trajectory
to highlight the learned upper bounds 𝑍𝜖 and 𝑍⊥𝜖 is training trajectory independent.
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Driver-Assist Implementation

Using the training result tabulated in table 5.1, the discrepancy-aware cost map is
constructed with a risk value 𝜖 ranges in (0.0029, 0.0010). the joystick trajectory
against the cost map is first evaluated to determine a joystick trajectory cost:

L 𝑗𝑜𝑦 =

𝑛ℎ∑︁
𝑘=1

𝛼 𝑗𝑜𝑦LC ( 𝒑 𝑗𝑜𝑦𝑡+𝑘 , C𝜖 ), (4.43)

where 𝛼 𝑗𝑜𝑦 ∈ R>0 is an adjustable parameter default to be 1.0. The cost-to-
go and input cost are set to zero, considering the joystick trajectory itself is the
desired reference. If L 𝑗𝑜𝑦 is less than L𝑡𝑟𝑎𝑐𝑘 , the joystick trajectory is deemed
safe with a confidence level of 1 − 𝜖 for the immediate 1.5 seconds. Conversely, if
L 𝑗𝑜𝑦 ≥ L𝑡𝑟𝑎𝑐𝑘 , there is a potential collision, requiring a safety override.

The proposed framework is shown to be capable of producing such safety override.
The MPPI algorithm is initialized with the joystick input as a warm start, and
the MPPI input perturbation covariance set as a diagonal matrix of 0.25 𝑚/𝑠 and
0.25𝑟𝑎𝑑/𝑠 for linear and angular velocities. Since the maximum joystick linear and
angular speeds are 2 𝑚/𝑠 and 2 𝑟𝑎𝑑/𝑠, a zero-speed (stopping) command cannot be
guaranteed to be sampled. As a solution, the turn-in-place (TIP) motion primitives
are synthesized and added to the flow sampling and input aggregation in addition
to the joystick trajectory. Specifically, the joystick turning command with 0 linear
velocity as {𝒖𝑇 𝐼𝑃

𝑘
}𝑘=𝑛ℎ−1
𝑘=0 = [0, 𝜔 𝑗𝑜𝑦]𝑇 are used which allow the driver to perform

heading adjustment freely but not the vehicle positions because of potential collision
risks in the current heading direction.

With a total MPPI sample size of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 5000 and inverse temperature 𝜆 = 0.05,
80% of sampled input discrepancies are allocated to the joystick input sequences,
and the remaining samples are aggregated on top of the TIP motion primitives.
Following Algorithm (3) to compute the associated costs of each sampled flow, the
collision-assist safety override 𝒖𝑠𝑎 𝑓 𝑒

𝑐𝑚𝑑
is the MPPI solution. 9 A detailed diagram of

the collision-assist program is presented in Fig. (4.9).

The user-selected parameter 𝛼 𝑗𝑜𝑦 is set to be 𝛼 𝑗𝑜𝑦 = 1/𝑘2, inversely proportional
to the prediction horizon squared. As the collision-assistance program recalculates
at 20 Hz, this cost decay over future horizon steps is chosen to reduce planner
conservatism.

9It is always desirable to use the joystick trajectory as a warm start without using the previous
MPPI solution. Such engineering decision is made to ensure maximum adherence to the driver’s
command which can be discontinuous and far from the previous projected joystick trajectory.
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Subj. Seq. # C (M) 𝑇𝑡 (M) # C (CA) 𝑇𝑡 (CA)
1 M/DA 2 63.7 0 38.8
2 M/DA 0 50.7 1 40.3
3 DA/M 0 41.5 0 44.8
4 M/DA 7 107.5 3 63.6
5 DA/M 0 45.6 0 30.1
6 DA/M 1 35.6 1 28.3

Table 4.2: Summary of the diver assist program with 6 different human drivers. Each subject
is assigned to attempt to complete the task with either manual mode (M) or the collision
assistance mode (CA). The mode experience order is indicated in the second column. The
number of collisions (#𝐶) during the test drives is recorded and the test drive duration 𝑇𝑡 .

Results and Discussion

An experimental comparison with six human drivers navigating a narrow pathway
is conducted, with various experience levels for driving the vehicle remotely. Each
test subject will drive the same test course twice, once with and once without the
proposed collision assistive program. The order of the testing is randomized to
minimize any bias due to the driver’s familiarity with the test course. The test
results are tabulated in Table 4.2, with comparative drive trajectories depicted in
Fig. 4.9.

Based on the tabulated results, it is observed that the proposed collision-assistive
program showed minor improvements for rather inexperienced drivers (such as
drivers 1 and 4) who faced challenges during their initial manual run. Despite the
driving sequence being assigned randomly, a consistent reduction in driving time
was observed, likely attributable to the gradual accumulation of track and vehicle
knowledge. Notably, subjects who initially experienced manual driving followed
by the driver-assist program exhibited percent drive time improvements of 39.1%,
20.5%, and 40.8%. Conversely, subjects who first used the assistive program and
then switched to manual mode showed improvements of −8.0%, 34.0%, and 20.5%.
This variance in performance improvement may be attributed to enhanced driver
confidence in collision avoidance due to the assistive program.

The feedback from test subjects on the driver-assist program was mixed. Posi-
tive remarks primarily center around the program’s effectiveness and the ability
to provide collision-avoiding heading adjustments automatically. However, sev-
eral drivers noted instances where the vehicle, under driver-assist control, executed
minor reverse maneuvers despite receiving forward velocity commands being coun-



71

terintuitive. This behavior is the result of the model mismatches, where the nominal
model predicts a trajectory leading into high-risk or collision-prone areas, prompt-
ing the program to revert to a safer region. To improve user experience and program
interpretation, the development of a more intuitive driver interface is recommended.
Furthermore, integrating user-preference-based cost tuning could better tailor indi-
vidual drivers’ preferences in balancing between reference tracking and collision
safety, as suggested in recent studies such as [165], [166]. It is important to note that
due to the limited number of participants, there will be no statistically significant
conclusions drawn from this study.

4.7 Results and Discussion
In summary, this chapter provides a novel multi-layered framework designed to pro-
vide safety-critical autonomy in the presence of obstacles and model discrepancies.
The framework’s core involves data-driven discrepancy identification, extracting
both matched and unmatched model residuals from offline data with minimal as-
sumptions. These identified discrepancies are then used to augment the vehicle’s
ancillary controller, offering stability assurances for the closed-loop system. The
framework is completed with a discrepancy-aware MPPI planner that generates
(sub)optimal and safe reference tracking paths, taking into account imperfection in
actual trajectory tracking due to model discrepancies.

The proposed framework is theoretically supported throughout its construction.
By deducing the maximum tracking error resulting from matched and unmatched
model discrepancies, safety and robustness are rigorously ensured by assessing the
interactions between the planner and controller layers. The proposed framework is
validated through extensive hardware experiments, demonstrating its effectiveness
in trajectory tracking in cluttered environments. Additionally, the framework is
successfully adapted to a driver-assist program, providing optimal, safe assistive
commands in potential collision scenarios.

Limitation and Future Works
The current limitations of the proposed framework include potential safety viola-
tions in importance sampling aggregation law, a tendency towards planning overly
conservative trajectories, and vulnerability to training outliers in model discrepan-
cies. Based on the choice of the inverse temperature 𝜆, 𝜆 → ∞ plans smoother
trajectories with equal weighting, and 𝜆→ 0 equates to sample rejection that could
lead to instability [113]. However, sampled input aggregation as 𝜆 → ∞ could
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lead to an unsafe aggregated trajectory where safe and unsafe trajectories are less
distinguished. Nevertheless, 𝜆 → 0 prioritizes picking safe trajectories but may
lead to overly conservative and chattered trajectories from randomly sampled input
sequences.

On the discrepancy identification front, conformal prediction relies on empirical
distribution quantiles instead of concentration inequalities allowing it to be more
sample-efficient. However, in the presence of large samples, potential outliers, and
small risk tolerance, the identified 𝑍𝜖 and 𝑍⊥𝜖 can be falsely large yielding overly
conservative results. Sufficient data set prepossessing might also be required to
remove outliers.

Looking ahead, future work aims to refine the offline conformal-driven discrepancy
upper bound component into an online algorithm. Adaptive conformal prediction
methods, akin to the one detailed by [14], to actively detect distribution shifts from
training sets due to terrain or environmental changes, exhibit promising potential.
Moreover, a higher fidelity nominal model such as a learning-based model can
be used to enhance tracking performance. Another future research involves the
theoretical analysis of the discrepancy-aware MPPI in terms of optimality and re-
cursive feasibility. The authors are also investigating the possibilities rejecting of
unsafe MPPI trajectory samples, incorporating motion primitives, and incorporating
generalized state constraints beyond obstacle avoidance constraints.
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C h a p t e r 5

MOA: LINEAR RECURRENCE AND BOOTSTRAPPING

This chapter presents a new framework for discovering the dynamics of a priori
unknown moving obstacles, forecasting their trajectories, and providing risk-aware
optimal avoidance strategies. The proposed framework replaces the need for obstacle
trajectory/model classification while allowing online computation. Extracting a
dynamics model from data is challenging [65], especially when the available data
is limited, noisy, and partial. Takens’ embedding theorem [66] is a technique
for tackling partial measurements, which uses partial observations to produce an
attractor that is diffeomorphic to the full-state attractor. Singular Spectrum Analysis
(SSA) [87], [88] is a time series technique for separating noise from the underlying
signal and extracting a predictive model of obstacle behavior. Inspired by [89], set
obstacle trajectories forecast is made by bootstrapping obstacle models extracted
using obstacle measurements from different time snapshots.

An MPC planner then incorporates the set of obstacle forecasts as an affine conser-
vative approximation of a distributionally robust chance constraint (DRCC). This
constraint is then efficiently recast in a risk-aware manner, allowing an MPC opti-
mization based on sequential convex programming [90], [91].

This chapter was adapted from: [15]

5.1 Problem Statement
Consider the linear, discrete-time ego vehicle dynamics model:

𝒙𝑡+1 = 𝐴𝒙𝑡 + 𝐵𝒖𝑡 , 𝒚𝑡+1 = 𝐺𝒙𝑡+1 (5.1)

where 𝒙𝑡 ∈ D𝒙 ⊆ R𝑛𝒙 , 𝒖𝑡 ∈ D𝒖 ⊆ R𝑛𝒖 , and 𝒚𝑡 ∈ R𝑛𝒚 , for all 𝑡 ∈ N, correspond
to the system states, controls, and outputs at time index 𝑡, respectively. The state
transition, actuation, and measurement matrices are 𝐴 ∈ R𝑛𝒙×𝑛𝒙 , 𝐵 ∈ R𝑛𝒙×𝑛𝒖 , and
𝐺 ∈ R𝑛𝒚×𝑛𝒙 , respectively. Constant matrix 𝐶 ∈ R3×𝑛𝒙 maps the system’s states (5.1)
to the system’s 𝑥, 𝑦, 𝑧 positions with respect to inertial frame 𝐸 . The 𝑘 th obstacle,
𝑘 ∈ Z1:𝑁obs , is modeled as a sphere. The obstacle occupies the point set

O𝑘 (𝒄𝑘 , 𝑟𝑘 ) = {𝒙 ∈ R3 : ∥𝒄𝑘 − 𝒙∥2 ≤ 𝑟𝑘 },
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where 𝒄𝑘 ∈ R3 and 𝑟𝑘 ∈ R+ are the 𝑘 th obstacle’s center and radius.

Considering the case where the agent (5.1) is tasked with following a reference output
trajectory 𝒚ref which need not consider obstacle information. While following this
path, the agent may encounter 𝑁obs spherical, stationary or moving obstacles. The
obstacle-free region is the open set:

S ≜
{
R3 \ ∪𝑁obs

𝑘=1 O𝑘
}
. (5.2)

Assumption 4. Obstacles can be detected and localized at the same rate ( 𝑓 + Hz)
as the planner update. Only measurements of an obstacle’s geometric center with
respect to frame E are assumed, and they are corrupted by a zero-mean noise.
Suppose a radius, 𝑟𝑘 , of the 𝑘 th obstacle as 𝑟𝑘 , can be estimated which satisfies
𝑟𝑘 ≥ 𝑟𝑘 . Note, Assumption 4 does not imply full state measurement.

Assumption 5. All obstacle measurements, admit an L-decomposition of order 𝑑,
are governed by LRFs (5.5) whose LRF coefficients can be uniquely defined.

Assumption 6. The obstacles’ velocities are assumed to be bounded by 𝑣max, and
the initial distances between all obstacles and the agent are significantly greater
than 𝑑𝑣max

𝑓 + .

Problem 2. [Prediction] Consider a multivariate stochastic process where observ-
ables {𝑥}𝑁1 , {𝑦}𝑁1 , and {𝑧}𝑁1 denote the spherical obstacle’s true center location in
reference frame, E.

The measurements are corrupted by independent, zero-mean noises {𝛾1}𝑁1 , {𝛾2}𝑁1 ,
and {𝛾3}𝑁1 (see Fig. 5.1). Under Assumptions 4-6, the problem objective is to
predict the obstacle position at times 𝑁 + 1 to 𝑁 + 𝑛ℎ using these measurements
where 𝑛ℎ ∈ Z>0.

Due to limited and noisy partial data and the lack of explicit dynamics models,

Preserving the stochastic nature of the problem, it is desirable to estimate a Bootstrap
distribution of the obstacle predictions, denoted by the random set Opred, from time
index 𝑁 + 1 to 𝑁 + 𝑛ℎ and calculate its first and second moments. More specifically,
the discrepancies in the forecast due to inadequate signal and noise separation and
bandwidth limits (both for the case of not enough training data and incorrect window
length L for embedding) are expected. This leads to the following chance constraint
model predictive planning problem formulation, the DRCC MPC problem.
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Problem 3. [Planning] Consider the system (5.1) and free-space (5.2). Given a
discrete-time reference trajectory 𝒚ref

𝑡+𝑖 ∀𝑖 ∈ Z
𝑛ℎ
1 where 𝑛ℎ ∈ Z>0 is the length of the

horizon, convex state constraints D𝒙 ⊆ R𝑛𝒙 , convex input constraints D𝒖 ⊆ R𝑛𝒖 ,
and a convex stage cost L𝑖 : R𝑛𝒙 × R𝑛𝒖 → R≥0, a total of 𝑁obs spherical obstacles
each approximated by a set Opred

𝑘
, and risk tolerance 𝜖 ∈ (0, 1], the problem

objective is to compute a receding horizon controller {𝒖∗
𝑡+𝑖}

𝑛ℎ−1
𝑖=0 that avoids the

unsafe set Opred ≜
⋃𝑁obs

𝑘=1 O
pred
𝑘

via the following non-convex optimization:

{𝒖∗𝑡+𝑖}
𝑛ℎ−1
𝑖=0 = min

{𝒖𝑖 }𝑛ℎ−1
𝑖=0 ∈ R𝑛𝒖

𝑛ℎ∑︁
𝑖=0
L𝑖 (𝒚𝑟𝑒 𝑓𝑡+𝑖+1 − 𝒚𝑡+𝑖+1, 𝒖𝑖) (5.3a)

s.t. 𝒙𝑖+1= 𝐴𝒙𝑖+𝐵𝒖𝑖 𝒚𝑡+𝑖+1=𝐺𝒙𝑖+1 (5.3b)

𝒙𝑖+1 ∈ D𝒙 , 𝒖𝑖 ∈ D𝒖, 𝒙0 = 𝒙𝑡,𝑖𝑛𝑖𝑡 (5.3c)

P(𝒙𝑖 ∈ Opred) ≤ 𝜖, ∀𝑖 ∈ Z𝑛ℎ−1
0 . (5.3d)

5.2 Singular Spectrum Analysis
Consider a discrete-time multivariate stochastic process {𝒐𝑚𝑡 }𝑁𝑡=1 where 𝑚 denotes
the 𝑚th observable measurement of the process, and 𝑁 is the total number of
available observations. i.e., 𝒐𝑚𝑡 denotes the 𝑚𝑡ℎ observation variable at process
sampling index 𝑡. Suppose that the true stochastic process model of the observables
is 𝒐̂𝑚𝑡 = 𝒐𝑚𝑡 +𝜸𝑚𝑡 , where 𝜸𝑚𝑡 denotes a random discrete-time zero-mean measurement
noise, and 𝒐𝑚𝑡 is the noiseless observable that captures the governing laws, which
can be composed of trends, seasons, and stationary time series. Singular Spectrum
Analysis [87] separates the true signal 𝒐𝑚 and the noise 𝜸𝑚 and extracts a recursive
governing dynamic model of 𝒐𝑚 that can generate a short term accurate forecast.
Fig. 5.1 describes this method.

Time Delay Embedding

Takens’ method of delays, introduced by [66], can reconstruct qualitative features
of the full-state phase-space from delayed partial observations. The 𝑚th-state ob-
servables 𝒐̂𝑚𝑡 are delay embedded into a trajectory (Hankel) matrix 𝐻𝑚,𝐿,𝑁

𝑡 , Fig.
5.1 gives an example of the Hankel matrix for state 𝑥. Parameter 𝐿 is the time
delay length, and 𝑁 is the time series length. Repeating patterns in the Hankel
matrix represent underlying trends and oscillations, which can be extracted from its
covariance matrix:

𝑋𝑚𝑡 = 𝐻
𝑚,𝐿,𝑁
𝑡 (𝐻𝑚,𝐿,𝑁

𝑡 )𝑇 .
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Figure 5.1: A description of bootstrap-SSA-forecast architecture in forecasting the trajectory
of a Frisbee where the stochastic observables (corrupted by zero-mean, noise) consist of
{𝒐̂𝑡 }𝑁𝑡=1 = [{𝑥𝑡 }𝑁𝑡=1, {𝑦̂𝑡 }

𝑁
𝑡=1, {𝑧𝑡 }

𝑁
𝑡=1], the Frisbee’s center positions with respect to an inertial

frame. The SSA analysis and bootstrap forecast are applied to every observable state.
Despite its 12-state governing dynamics [167] and with only center position measurements
of the Frisbee, an example 𝑁strap forecasts of the Frisbee trajectory for future time steps
{1, 2, · · · , 𝑛ℎ} is depicted using the proposed framework.

More details regarding time-delay embedding and the construction of the Hankel
matrix can be found in Chapter 2.

Eigen Decomposition

To recover the true signal 𝒐𝑚, a low-rank matrix approximation of this signal by
thresholding the eigenvalues of 𝑋𝑚 [168] is desirable. The symmetric covariance
matrix 𝑋𝑚 has a spectral decomposition 𝑈Σ𝑈𝑇 , where Σ is a diagonal matrix
with real eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · 𝜆𝐿 . The matrix of left eigenvectors 𝑈 =[
𝝁1, · · · , 𝝁𝐿

]
is orthogonal. The truncated right eigenvectors𝑉 = [𝝂1, · · · , 𝝂𝐿]𝑇 ∈

R𝐿×𝑁 of 𝑋𝑚 can be found as 𝑉 = 𝑈Σ . Suppose 𝜆∗ is the optimal threshold for
separating the signal 𝒚𝑚 from the noise 𝜸𝑚, and 𝜆𝑛 ≥ 𝜆∗ ≥ 𝜆𝑛+1, which partitions
the Hankel matrix 𝐻

𝑚,𝐿,𝑁
𝑡 as:

𝐻
𝑚,𝐿,𝑁
𝑡 =

𝑛∑︁
𝑝=1

√︁
𝜆𝑝𝝁𝑝𝝂

𝑇
𝑝︸          ︷︷          ︸

≜𝐻𝑜,𝐿,𝑁
𝑡

+
𝐿∑︁

𝑝=𝑛+1

√︁
𝜆𝑝𝝁𝑝𝝂

𝑇
𝑝︸             ︷︷             ︸

≜𝐻𝛾,𝐿,𝑁
𝑡

. (5.4)

Unlike standard SSA [87], which aims to separate a time series’ trends and periodic
structures, noiseless obstacle’s behavior is required which allows us to extract its
governing dynamics. To account for incomplete noise and signal separation and
low data limits, a technique of progressively relaxing singular value threshold and
sample bootstrapping is proposed in Section 5.3.
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Hankelization

Matrix 𝐻
𝑜,𝐿,𝑁
𝑡 in (5.4) should maintain a Hankel structure: minor variations in its

𝑘 th secondary diagonals result from insufficient noise removal. The 𝑘 th secondary
diagonals of a matrix 𝑀 are also the 𝑘 th diagonals of 𝑀 flipped horizontally with
respect to its middle column. A Hankelization step performs secondary diagonal
averaging in order to find the matrix H𝑂 that is closest to 𝐻

𝑜,𝐿,𝑁
𝑡 with respect

to the Frobenius norm among all 𝐿 × 𝑁 Hankel matrices [87]. The operator H
acting on 𝐿 × 𝑁 matrix 𝐻

𝑦,𝐿,𝑁
𝑡 entry wise is defined as: for the (𝑖, 𝑗)𝑡ℎ element

of matrix 𝐻
𝑜,𝐿,𝑁
𝑡 and 𝑖 + 𝑗 = 𝑠 , define a set

𝐷𝑠 ≜ {(𝑙, 𝑛) : 𝑙 + 𝑛 = 𝑠, 𝑙 ∈ Z𝐿1 , 𝑛 ∈ Z
𝑁
1 },

is mapped to (𝑖, 𝑗)th element of the Hankelized H𝐻𝑜,𝐿,𝑁
𝑡 via the expression in

Fig.5.1 (for the case of 𝒐𝑚 = 𝒙 ), where |𝐷𝑠 | denotes the number of elements in
set 𝐷𝑠.

Forecast with Linear Recurrence Formula

Definition 9. A time series 𝑌𝑁 = {𝑦}𝑁1 admits an L-decomposition of order not
larger than d, denoted by ord𝐿 (𝑌𝑁 ) ≤ 𝑑 , if there exist two systems of functions
𝜚𝑘 : Z𝐿−1

0 → R, 𝜗𝑘 : Z𝐿−1
0 → R, such that

𝑦𝑖+ 𝑗 =
𝑑∑︁
𝑘=1

𝜗𝑘 (𝑖)𝜚𝑘 ( 𝑗), {𝑖, 𝑗} ∈ Z𝐿−1
0 × Z𝐿−1

0

∀𝑘 ∈ Z𝑑1 .

If ord𝐿 (𝑌𝑁 ) = 𝑑, then the series𝑌𝑁 admits a L-decomposition of the order d and both
systems of functions (𝜚1, · · · , 𝜚𝑑) and (𝜗1, · · · , 𝜗𝑑) are linearly independent [169].

Definition 10. A time series {𝑦}𝑁1 is governed by a linear recurrent relations/formula
(LRF), if there exist coefficients {𝜙}𝑑1 and 𝜙𝑑 ≠ 0 such that

𝑦𝑖+𝑑 =
𝑑∑︁
𝑘=1

𝜙𝑘 𝑦𝑖+𝑑−𝑘 , ∀𝑖 ∈ Z𝑁−𝑑0 , 𝑑 < 𝑁 . (5.5)

Real-valued time series governed by LRFs consists of sums of products of polyno-
mials, exponentials and sinusoids [87].
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Theorem 5. [87] Let 𝝁1:𝐿−1
𝑖

be the vector of the first 𝐿 − 1 components of a left
eigenvector 𝝁𝑖 of 𝐻𝑚,𝐿,𝑁

𝑡 , and let 𝜋𝑖 be the 𝐿th component of eigenvector 𝝁𝑖. Let
𝑣2 ≜

∑𝑑
𝑖=1 𝜋

2
𝑖
. Under Assumptions 5 and 6 (see below), the LRF coefficients 𝜙𝑖

where 𝑖 ∈ [1, 𝐿 − 1] can be computed as:[
𝜙𝐿−1 𝜙𝐿−2 · · · 𝜙1

]𝑇
=

1
1 − 𝑣2

𝑑∑︁
𝑖=1

𝜋𝑖𝝁
1:𝐿−1
𝑖 , (5.6)

and 𝒚 evolves as the LRF:

𝒚𝑁+1 =

𝐿−1∑︁
𝑗=1

𝜙 𝑗 𝒚𝑁− 𝑗 .

5.3 Bootstrap Forecasting
Despite empirical successes in reconstructing and forecasting [88], the theoretical
accuracy of SSA is strenuous to obtain, see [170]. Inspired by [89], bootstrapping
can be used to improve model discovery and to produce probabilistic forecasts.

The real-time bootstrap forecast, Algorithm 4, assumes time series measurements
corrupted by noise. The user-defined parameters 𝑁 train and 𝑁step represent the
number of initial training samples, and the number of newly accumulated samples
during an initial bootstrap. Further, one must choose parameters 𝛿𝑡 and 𝑁𝜎 , where
threshold 𝛿𝑡 is used to separate signal from noise, and 𝑁𝜎 is the number of steps
of progressive relaxation of threshold 𝛿𝑡 . The parameters 𝛿𝑡 and 𝑁𝜎 are dictated
by measurement noise levels, which can be characterized off-line in a controlled
experimental setting. In the desired signal/noise separation (5.4), the unknown
theoretical optimal threshold 𝜆∗ must be estimated. Let 𝑌𝜆1:𝜆𝑑

𝑁
be the Hankelization

reconstructed 𝒚̂ with the eigenvalues {𝜆}𝑑1 and their corresponding right and left
eigenvectors. Note, if 𝑑 > 𝑛 where 𝜆𝑛 ≤ 𝜆∗ ≤ 𝜆𝑛+1 , then the norm values

∥𝑌𝜆1:𝜆𝑑+𝑡
𝑁

− 𝑌𝜆1:𝜆𝑑+𝑡+1
𝑁

∥2 ≈ ∥𝑌𝜆1:𝜆𝑑+𝑡+1
𝑁

− 𝑌𝜆1:𝜆𝑑+𝑡+2
𝑁

∥2

since they are comprised of the residual measurement noise. the difference between
two consecutive reconstructions with 𝛿𝑡/𝑁 needs to be separated, i.e. finding the
smallest threshold 𝑡 ∈ Z>0 such that:

∥𝑌𝜆1:𝜆𝑡
𝑁
− 𝑌𝜆1:𝜆𝑡+1

𝑁
∥2 − ∥𝑌𝜆1:𝜆𝑡+1

𝑁
− 𝑌𝜆1:𝜆𝑡+2

𝑁
∥2 ≤

𝛿𝑡

𝑁
. (5.7)

Since the selection of the threshold 𝛿𝑡 is crucial, an additional parameter 𝑁𝜎 is
added to ensure no principle components are lost in 𝑌𝜆1:𝜆𝑑

𝑁
because of bad choice
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of 𝛿𝑡 , i.e. to avoid 𝑑 < 𝑛. The next 𝑁𝜎 largest eigenvalues is recommended to be
included after the first 𝑡 eigenvalues in the bootstrapping process. Most importantly,
the number of bootstraps, 𝑁strap, needs to be determined a priori, considering the
computation capacity, number of obstacles, and the expected noise level The effec-
tiveness of Algorithm 4 depends highly on the time delay length 𝐿, the number of
training measurements 𝑁 train, the number of bootstraps 𝑁strap, and the MPC horizon
length, 𝑛ℎ. It is recommended that the number of measurements used 𝑁 train be at
least 10𝑛ℎ and that 𝐿 = 𝑁 train

4 . Bootstrap parameters 𝑁strap and 𝑁step should be as
large as allowed by the computing platform.

Algorithm 4: Bootstrap Forecast Algorithms (Per Obstacle)
Data: Obstacle center position measurements {𝒙̂𝑖}𝑁𝑖=1, { 𝒚̂𝑖}

𝑁
𝑖=1, { 𝒛̂𝑖}

𝑁
𝑖=1,

User-defined constants: 𝑁 train,𝑁step, 𝛿𝑡 , 𝑁𝜎, 𝑁strap

Result: Forecast:{ 𝑗𝒙𝑖}𝑁+𝑛ℎ𝑖=𝑁+1, {
𝑗 𝒚𝑖}

𝑁+𝑛ℎ
𝑖=𝑁+1, {

𝑗 𝒛𝑖}𝑁+𝑛ℎ𝑖=𝑁+1,∀ 𝑗 ∈ Z
𝑁straps

1
Use {𝒙̂𝑁+1, 𝒚̂𝑁+1,𝒛̂𝑁+1} to update Hankel matrix
while istrap ≤ 𝑁strap do

while 𝑁 + 1 ≥ 𝑁 train do
for states = 𝑥, 𝑦, 𝑧 do

while (5.7) holds do
𝑡 ++

end
obtain ({𝜆istrap

𝜏 }𝑡
𝜏=1, {𝝁istrap

𝜏 }𝑡
𝜏=1, 𝝓istrap) for each states

end
istrap ++ ;
for 𝑡𝑡 = 𝑡 + 1 : 𝑡 + 𝑁𝜎 do

obtain ({𝜆istrap
𝜏 }𝑡𝑡

𝜏=1, {𝝁istrap
𝜏 }𝑡𝑡

𝜏=1, 𝝓istrap) for each states, istrap ++
end
𝑁 train = 𝑁 train + 𝑁step

end
Back-up Strategy

end
Apply the tuples ({ 𝑗𝜆istrap

𝜏 }𝑡 𝑗
𝜏=1, { 𝑗 𝝁istrap

𝜏 }𝑡 𝑗
𝜏=1, 𝑗𝝓istrap) ∀ 𝑗 ∈ ZNstraps

1 for 𝑥, 𝑦, 𝑧 to
the updated Hankel, where 𝑡 𝑗 denotes number of eigenvalues post truncation
for the 𝑗 𝑡ℎ bootstrap. Perform a 𝑛ℎ step forecast using 𝑗𝝓istrap to obtain
{ 𝑗𝒙𝑖}𝑁+𝑛ℎ𝑖=𝑁+1, {

𝑗 𝒚𝑖}
𝑁+𝑛ℎ
𝑖=𝑁+1, {

𝑗 𝒛𝑖}𝑁+𝑛ℎ𝑖=𝑁+1,∀ 𝑗 ∈ Z
𝑁straps

1 .
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5.4 Bootstrap Planning
This section introduces an MPC-based path planner to solve Problem 6. First,
the obstacle avoidance constraint (5.3d) is formulated in terms of the mean and
variance of the bootstrap predictions. Next, this constraint is incorporated in the
MPC optimization to provide probabilistic guarantees given constraint satisfaction.

Algorithm 4 produces 𝑁strap copies of 𝑛ℎ length predictions of the 𝑘 th obstacle’s
location. Denote the 𝑗 th copy of the bootstrap prediction as

{ 𝒚̂ 𝑗
𝑘
}𝑁ℎ

1 = { 𝒚̂ 𝑗1,𝑘 , 𝒚̂
𝑗

2,𝑘 , · · · , 𝒚̂
𝑗

𝑛ℎ,𝑘
}.

The collision avoidance set constraint (5.3d) can be reformulated based on the
obstacle shape and center as

∥𝐶𝒙𝑖 − 𝒚̂ 𝑗
𝑖,𝑘
∥2 ≥ 𝑟𝑘 + 𝑟𝑝 ≜ 𝑟 𝑘 ,

for each 𝑖 ∈ Z1:𝑛ℎ , 𝑘 ∈ Z1:𝑁obs , and where 𝑟𝑝 is the agent’s safety radius (5.1). This
collision constraint can be reexpressed as the following concave (in the state 𝒙𝑖)
constraint,

(𝐶𝒙𝑖 − 𝒚̂ 𝑗
𝑖,𝑘
)𝑇 (𝐶𝒙𝑖 − 𝒚̂ 𝑗

𝑖,𝑘
) ≥ 𝑟 𝑘 ∥(𝐶𝒙𝑖 − 𝒚̂ 𝑗

𝑖,𝑘
)∥2. (5.8)

Constraint (5.8) can be approximated as an affine constraint through the use of
Sequential Convex Programming (SCP) [90], [91]

(𝐶𝒙𝑖 − 𝒚̂ 𝑗
𝑖,𝑘
)𝑇 (𝐶𝒙𝑖 − 𝒚̂ 𝑗

𝑖,𝑘
) ≥ 𝑟 𝑘 ∥(𝐶𝒙𝑖 − 𝒚̂ 𝑗

𝑖,𝑘
)∥2, (5.9)

where 𝒙𝑖 is approximated with the solution from previous SCP iterations. Note
that (5.9) over-approximates constraint (5.8) (see [90] for proof).

Lemma 4. If there are 𝑁strap forecasts of the 𝑘 th obstacle’s position from time
𝑖 ∈ Z1:𝑛ℎ and the previous SCP trajectory {𝒙}𝑛ℎ1 , the 𝑗 th bootstrap lumped colli-
sion avoidance coefficients 𝛼 𝑗

𝑖,𝑘
, 𝛽 𝑗

𝑖,𝑘
and the standard deviation of the collision

avoidance constraint Δ𝑖,𝑘 must satisfy the following:

𝛼
𝑗

𝑖,𝑘
≜ −𝐶𝑇 (𝐶𝒙𝑖 − 𝒚̂ 𝑗

𝑖,𝑘
) (5.10)

𝛽
𝑗

𝑖,𝑘
≜ 𝑟 𝑘 ∥(𝐶𝒙𝑖 − 𝒚̂ 𝑗

𝑖,𝑘
)∥2 − (𝐶𝒙𝑖)𝑇 (𝐶𝒙𝑖 − 𝒚̂ 𝑗

𝑖,𝑘
) (5.11)

Δ𝑖,𝑘 ≜
√︃
𝒑𝑇
𝑖
Σ𝛼𝑖,𝑘 𝒑𝑖 + 2 𝒑𝑇

𝑘
Σ𝛼𝛽𝑖,𝑘 + Σ𝛽𝑖,𝑘 , (5.12)
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where

Σ𝛼𝑖,𝑘 ≜ cov
(
𝛼
𝑗

𝑖,𝑘
, 𝛼

𝑗

𝑖,𝑘

)
(5.13)

Σ𝛽𝑖,𝑘 ≜ cov
(
𝛽
𝑗

𝑖,𝑘
, 𝛽

𝑗

𝑖,𝑘

)
(5.14)

Σ𝛼𝛽𝑖,𝑘 ≜ cov
(
𝛼
𝑗

𝑖,𝑘
, 𝛼

𝑗

𝑖,𝑘

)
(5.15)

are sample covariance matrices computed using the bootstrapped coefficients {𝛼𝑖,𝑘 }𝑁
strap

1
and {𝛽𝑖,𝑘 }𝑁

strap

1 and 𝒑𝑖 ≜ 𝐶𝒙𝑖 ∈ R3. Let the dimension of the null space of Σ𝛼𝑖,𝑘 be
𝑛𝑖,𝑘 ≥ 0. 1 The standard deviation Δ𝑖,𝑘 has the following upper bound,

Δ𝑖,𝑘 ≤ 1𝑇 |Σ̃
1
2
𝛼𝑖,𝑘

(
𝒑𝑖 − 𝒉𝑖,𝑘

)
| +

√︁
3𝑘𝑖,𝑘 ≜ 𝜁𝑖,𝑘 , (5.16)

where

Σ̃𝛼𝑖,𝑘 = Σ𝛼𝑖,𝑘 + 𝐼null
𝑖,𝑘 (5.17)

𝐼null
𝑖,𝑘 =

[
0 0
0 𝐼𝑛𝑖,𝑘×𝑛𝑖,𝑘

]
∈ R3×3 (5.18)

and [
𝒉𝑖,𝑘

𝑘𝑖,𝑘

]
≜


−

(
Σ𝛼𝑖,𝑘 + 𝐼null

𝑖,𝑘

)−1
Σ𝛼𝛽𝑖,𝑘

Σ𝛽𝑖,𝑘 − Σ𝑇𝛼𝛽𝑖,𝑘
(
Σ𝛼𝑖,𝑘 + 𝐼null

𝑖,𝑘

)−1
Σ𝛼𝛽𝑖,𝑘

 . (5.19)

Proof. Let the eigendecomposition of Σ𝛼𝑖,𝑘 be the following:

Σ𝛼𝑖,𝑘 =

[
𝑈𝑟 𝑈𝑛

] [
Λ𝑟 0
0 0

] [
𝑈𝑟 𝑈𝑛

]𝑇
,

where𝑈𝑟 ∈ R3×(3−𝑛𝑖,𝑘) is comprised of the eigenvectors ofΣ𝛼𝑖,𝑘 that are orthonormal.
The columns of𝑈𝑛 ∈ R𝑛𝑖,𝑘 are the complementary orthonormal basis that spans the
null space of Σ𝛼𝑖,𝑘 . By substituting (5.19) one can verify the following inequality:

Δ𝑖,𝑘 ≤
√︃
( 𝒑𝑖 − 𝒉𝑖,𝑘 )𝑇 Σ̃𝛼𝑖,𝑘 ( 𝒑𝑖 − 𝒉𝑖,𝑘 ) + 𝑘𝑖,𝑘 ≜ Δ̃𝑖,𝑘 (5.20)

1In all numerical simulations, Σ𝛼𝑖,𝑘
is strictly positive definite. However, when one or more

measurable states are noiseless, Σ𝛼𝑖,𝑘
can be ill-conditioned. Instead of adding 𝐼null

𝑖,𝑘
, which can be

numerically expansive to determine, it is recommended to apply Algorithm 4 only to states with
measurement noise and to adapt Theorem 6 with deterministic forecasts for the noiseless states and
the DRCC formulation for the noisy ones.
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where Σ̃𝛼𝑖,𝑘 is a positive definite matrix because

Σ̃𝛼𝑖,𝑘 =

[
𝑈𝑟 𝑈𝑛

] ( [
Λ𝑟 0
0 0

]
+

[
0 0
0 𝐼𝑛𝑖,𝑘×𝑛𝑖,𝑘

]) [
𝑈𝑟 𝑈𝑛

]𝑇
.

The desired upper bound (5.20) holds by adding a positive constant,

𝜾𝑖,𝑘 ≜
2
√

3
1𝑇 |Σ̃1/2

𝛼𝑖,𝑘 𝒑𝑘 − 𝒉𝑘 |,

to Δ̃2
𝑖,𝑘

which satisfied the following inequalities

Δ̃2
𝑖,𝑘 ≤ Δ̃2

𝑖,𝑘 +
2
√

3
1𝑇 |Σ̃1/2

𝛼𝑖,𝑘 ( 𝒑𝑘 − 𝒉𝑘 ) | ≤
√︃
𝜉𝑇
𝑖,𝑘
𝜉𝑖,𝑘

where

𝜉𝑖,𝑘 ≜ |Σ̃1/2
𝛼𝑖,𝑘 ( 𝒑𝑘 − 𝒉𝑖,𝑘 ) | + 1

√︂
𝑘𝑖,𝑘

3
∈ R3.

For the inequality to hold, the expression 𝜾𝑖,𝑘 must always be non-negative which is
true by construction. Further, let 𝜁𝑖,𝑘 = 1𝑇𝜉𝑖,𝑘 ∈ R, then

𝜁2
𝑖,𝑘 = (𝜉

𝑇
𝑖,𝑘1) (1

𝑇𝜉𝑖,𝑘 ) = 𝜉𝑇𝑖,𝑘𝜉𝑖,𝑘 + 2𝜖𝜉 .

If 𝜖𝜉 ≥ 0, the conditionΔ𝑖,𝑘 ≤ 𝜁𝑖,𝑘 is true which completes the proof. By construction

𝜉𝑖,𝑘 = [𝜉𝑥𝑖,𝑘 , 𝜉
𝑦

𝑖,𝑘
, 𝜉𝑧
𝑖,𝑘
] ∈ R3,

one can show mathematically

𝜖𝜉 = 𝜉
𝑥
𝑖,𝑘𝜉

𝑦

𝑖,𝑘
+ 𝜉𝑥𝑖,𝑘𝜉

𝑧
𝑖,𝑘
+ 𝜉𝑦

𝑖,𝑘
𝜉𝑧
𝑖,𝑘
> 0

because 𝜉𝑥
𝑖,𝑘
, 𝜉
𝑦

𝑖,𝑘
, 𝜉𝑧
𝑖,𝑘
∈ R>0.

It is costly to incorporate each boostrap as a separate obstacle constraint, as the
number of constraints grow linearly with 𝑁strap. Instead, the ensemble mean and
covariance of the distance from the obstacle are estimated. A DRCC accounts for
all bootstrap distributions that can have this mean and covariance. This approach
results in a significantly fewer obstacle constraints, whose cardinality remains fixed
regardless of the number of bootstrap predictions 𝑁strap.
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Figure 5.2: Four Monte-Carlo simulations with agent dynamics (5.24) and a Frisbee obsta-
cle (see Fig.5.1) are compared. The same obstacle behaviors are simulated while the agent
tracks the same figure ’8’ reference trajectory with four risk levels 𝜖 = {0.05, 0.25, 0.5, 1}.
The simulation is designed to be difficult: the vehicle must deviate from its reference trajec-
tory as the obstacle trajectory is designed to intersect the agent’s reference trajectory with
noise obstacle trajectory measurements. All measurement noises are sampled uniformly
between [−0.125, 0.125] meters. The bootstrap obstacle forecast uses the parameters:
𝐿 = 24, 𝑁 train = 100, 𝑁step = 5, 𝛿𝑡 = 20, 𝑁𝜎 = 8, 𝑁strap = 40. SSA-MPC uses the constants
𝑛ℎ = 10, 𝜒 = 50 and 𝜏 = 0.25 with fixed 4-step SCP iterations. The tuple ({𝜆 𝑗}𝑡 𝑗1 , {𝝁 𝑗}𝑡 𝑗1 ,
𝝓 𝑗),∀ 𝑗 ∈ Z1:40 in Algorithm 4 is computed with observables measured at 20 Hz. The four
sub-diagrams show the planned trajectory at 4 risk levels; the planner is more conservative
as 𝜖 → 0, and aligns with the results shown in Table 5.1 and 5.2.

Theorem 6. (SSA-MPC) Consider Problem 6 under Assumptions 4-6 with system
dynamics (5.1) and bootstrap SSA forecasts of all obstacles’ center positions. Given
a risk tolerance 𝜖 , the solution to the following optimal control problem is a feasible
solution of Problem 6 as 𝑤 −→ ∞. The SCP optimization problem at iteration 𝑤 is:

{𝒖∗𝑖 }
𝑛ℎ
1 = min

𝒖𝑖 ∈ R𝑛𝒖
𝒔𝑖,𝑘 ∈ R3

𝑛ℎ∑︁
𝑖=1
L𝑖 (𝒚𝑟𝑒 𝑓𝑖

− 𝐺𝒙𝑖, 𝒖𝑖) (5.21a)

s.t. 𝒙𝑖+1 = 𝐴𝒙𝑖 + 𝐵𝒖𝑖 (5.21b)

𝒙𝑖 ∈ D𝒙 , 𝒖𝑖 ∈ D𝒖, 𝒙1 = 𝒙𝑖𝑛𝑖𝑡 (5.21c)

Λ𝑖,𝑘

[
𝒙𝑖 𝒔𝑖,𝑘

]𝑇
≤ Γ𝑖,𝑘 (5.21d)

∥𝒙𝑖 − 𝒙𝑖∥ ≤ 𝜒𝜏𝑤 ∀(𝑖, 𝑘) ∈ Z𝑛ℎ1 × Z
𝑁obs

1 (5.21e)

where {𝒙̄}𝑛ℎ1 is the solution to the (𝑤 − 1)th iteration of the SCP optimization,
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Λ𝑖,𝑘 ∈ R7×11 and Γ𝑖,𝑘 ∈ R7 encode the risk-based collision avoidance relationships,

Λ𝑖,𝑘 =


E[𝛼𝑖,𝑘 ]𝑇𝐶 1𝑇𝜈𝜖𝑛
Σ̃

1/2
𝛼𝑖,𝑘𝐶 −𝐼3×3

−Σ̃1/2
𝛼𝑖,𝑘𝐶 −𝐼3×3

 , Γ𝑖,𝑘 =


−E[𝛽𝑖,𝑘 ] − 𝜈𝜖𝑛

√︁
3𝑘𝑖,𝑘

Σ̃
1/2
𝛼𝑖,𝑘 𝒉𝑖,𝑘

−Σ̃1/2
𝛼𝑖,𝑘 𝒉𝑖,𝑘

 ,
where 𝜖𝑛 ≜ 𝜖

𝑁obs and 𝜈𝜖𝑛 ≜
√︃

1−𝜖𝑛
𝜖𝑛

. Lastly, 𝜒 ≥ 0 is the initial trust region
and 𝜏 ∈ (0, 1) the worst-case rate of convergence.

Proof. Denote the 𝑗 th random bootstrapped obstacle forecastsas

𝒛 𝑗
𝑖,𝑘

≜ (𝛼 𝑗
𝑖,𝑘
)𝑇𝒙𝑖 + 𝛽 𝑗𝑖,𝑘 ,

where 𝛼 𝑗
𝑖,𝑘

and 𝛽 𝑗
𝑖,𝑘

are defined in (5.10) and (5.11). The obstacle avoidance con-
straint (5.8) has an affine over approximation (5.9), which is equivalently given by
𝒛 𝑗
𝑖,𝑘
< 0. Hence, the chance constraint (5.3d) is,

P(𝒙𝑖 ∈ Opred) = P
( 𝑁obs⋃
𝑘=1
{𝒛𝑖,𝑘 ≥ 0}

)
≤
𝑁obs∑︁
𝑘=1
P(𝒛𝑖,𝑘 ≥ 0).

Enforcing P(𝒛𝑖,𝑘 ≥ 0) ≤ 𝜖𝑛, ∀𝑘 ∈ Z1:𝑁obs also satisfies (5.3d). This constraint
satisfaction is equivalent to a DRCC:

sup
𝜿∼

(
E[𝒛𝑖,𝑘],Σ𝒛𝑖,𝑘

) P{𝜿 ≥ 0} ≤ 𝜖𝑛, ∀𝑖, 𝑘 ∈ Z𝑛ℎ1 × Z
𝑁obs

1 ,

where E[𝒛𝑖,𝑘 ] and Σ𝒛𝑖,𝑘 are the sample mean and covariance of the boot-
strapped {𝒛𝑖, 𝑗 ,𝑘 }𝑁

strap

𝑗=1 . The above statement can be reformulated as a deterministic
constraint as shown in [171],

E[𝒛𝑖,𝑘 ]︸ ︷︷ ︸
E[𝛼𝑖,𝑘]𝑇𝐶𝒙𝑖+E[𝛽𝑖,𝑘]

+𝜈𝜖𝑛
√︃
Σ𝒛𝑖,𝑘︸ ︷︷ ︸
Δ𝑖,𝑘

≤ 0,∀𝑖 ∈ Z1:𝑛ℎ , 𝑘 ∈ Z𝑁obs

1 . (5.22)

Constraint (5.22) is not affine in the optimization variable, as is desirable for real-
time application. By Lemma 4, Δ𝑖,𝑘 ≤ 𝜁𝑖,𝑘 , and the following tighter inequality
constraint can be deduced as a numerically appealing alternative to (5.22),

E[𝛼𝑖,𝑘 ]𝑇𝐶𝒙𝑖 + E[𝛽𝑖,𝑘 ] + 𝜈𝜖𝑛
(
1𝑇 |Σ1/2

𝛼𝑖,𝑘 𝒑𝑖 − 𝒉𝑖,𝑘 | +
√︁

3𝑘𝑖,𝑘
)
≤ 0. (5.23)
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To account for the absolute value term, the auxiliary optimization variables 𝒔𝑖,𝑘 are
introduced that satisfy the following inequalities:

Σ
1/2
𝛼𝑖,𝑘 𝒑𝑖 − 𝒉𝑖,𝑘 ≤ 𝒔𝑖,𝑘 , −Σ1/2

𝛼𝑖,𝑘 𝒑𝑖 + 𝒉𝑖,𝑘 ≤ 𝒔𝑖,𝑘 .

Therefore, satisfying (5.21d) is equivalent to satisfying (5.23).

Convergence of the SCP is proven in [172] which is based on implementing a trust
region via second-order cone constraints (5.21e). The authors also show the solution
to the SCP as𝑤 →∞ is a feasible solution to Problem 6. To be numerically feasible,
𝑤 is usually bounded above by a finite integer, resulting in a sub-optimal but still
feasible solution.
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5.5 Results and Discussion
Considering the problem of a quadcopter follows a reference trajectory 𝒚ref while
avoiding unknown moving obstacles and respecting state and control constraints. Its
position and Euler angles (roll, pitch, yaw) in frame 𝐸 are denoted 𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓.

Example 1: Fully-actuated multirotor with attitude controller
Assume there exists a low-level attitude controller that tracks given attitude com-
mands within 20 Hz. As a result, the following linear dynamic model is employed
to extract a high-level motion planner that outputs attitude and thrust inputs:

¥𝑥 = −𝑔𝜃, ¥𝑦 = 𝑔𝜑, ¥𝑧 = 𝑢1 − 𝑔, ¥𝜓 = 𝑢4, (5.24)

where the planner control inputs are given by 𝑢1, 𝜃, 𝜑, 𝑢4 which are thrust, roll angle,
pitch angle, and yaw rate, and where 𝑔 = 9.81𝑚/𝑠2 is the gravitational acceleration.

Example 2: Multirotor operating in small angle regime
A mixer maps thrust and moment inputs into electronic speed controller PWM
commands at 8kHz. Since the multirotor is constrained to operate within the state
constraints 𝜃 ∈ [−0.45, 0.45] radians and 𝜑 ∈ [−0.45, 0.45] radians, the following
standard multirotor linear dynamics is used,

¥𝑥 = −𝑔𝜃, ¥𝑦 = 𝑔𝜑, ¥𝑧 = 𝑢1 − 𝑔, (5.25)

¥𝜑 =
𝑢2
𝐼𝑥𝑥
, ¥𝜃 = 𝑢3

𝐼𝑦𝑦
, ¥𝜓 =

𝑢4
𝐼𝑧𝑧
, (5.26)

where the planner control inputs 𝑢1, 𝑢2, 𝑢3, 𝑢4 corresponds to the thrust force in
the body frame and three moments. The vehicle’s moments of inertia are 𝐼𝑥𝑥 =

0.0075 𝑘𝑔𝑚2, 𝐼𝑦𝑦 = 0.0075 𝑘𝑔𝑚2, 𝐼𝑧𝑧 = 0.013 𝑘𝑔𝑚2.

For both examples, the desired reference trajectory consists of positions, {𝑥𝑟𝑒 𝑓 },
{𝑦𝑟𝑒 𝑓 }, {𝑧𝑟𝑒 𝑓 } and yaw angles {𝜓𝑟𝑒 𝑓 }.

Monte-Carlo (MC) simulations of the proposed planner are conducted as it avoids
three differently behaved obstacles which are introduced once in each run for both
examples. Case 1 uses a constant-speed spherical obstacle without drag. Case 2 is a
thrown spherical obstacle with drag. In Case 3, a Frisbee is thrown at various initial
positions, velocities, and rotation speed. The sphere dynamics are captured by a 6-
state ODE with drag penalties proportional to its velocities. The Frisbee is modeled
following [167], using a 12-state model identical to Fig. 5.1 with aerodynamic
drag. The Frisbee is modeled as a sphere with the same radius as the Frisbee
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disk. The method was compared against an artificial potential field alternative. A
supplementary video (https://youtu.be/6s8pfRZ171Q) provides more details.

A total of 1000 MC simulations per 𝜖 level are conducted to compare the numerical
feasibility, percent success in obstacle avoidance (if the MPC planner is feasible),
and the planner’s conservativeness, as measured by the minimum distance between
the obstacle and agent centers. For the three cases, the obstacle speed ranges are
[0.41, 8.43], [3.41, 6.37], and [5.76, 6.68] m/s, respectively. The MPC planning
and measurement rates are fixed at 20 Hz. With a 10-step horizon and 40 bootstraps,
the average per planner update rate is 0.030±0.0014 sec, using [173] on an Intel i7-
9700K CPU @3.6GHz processor, using a dynamic simulation written in MATLAB.

The results in Tables 5.1 and 5.2 show the applicability of the SSA-MPC algo-
rithm, despite vast differences in obstacle behavior. Further, as the risk tolerance 𝜖
shrinks, the percentage success in obstacle avoidance (when the solution is feasible)
increases, with a trade-off in the feasibility of optimization (5.21). Parameters 𝑑𝑚𝑖𝑛
and 𝜎(𝑑𝑚𝑖𝑛) are the average minimum distance between the agent and the obstacle
and the standard deviation of this minimum distance across 1000 MC simulations,
respectively. Based on Table 5.1 and 5.2, the risk tolerance 𝜖 can also viewed as
a robustness parameter which is inversely proportional to the distance between the
agent and obstacles. However, the cost of more robustly avoiding the obstacles
is reflected in the numerical feasibility, a parameter describing the chances of the
SCP formulation (5.21) being feasible for the entire simulation. The feasible set
of the polytopic collision avoidance constraints (5.21d) shrinks as 𝜖 (and hence 𝜖𝑛)
decreases.

There are limitations of this approach. It degrades as more noise is injected into
the system, which calls for more robust denoising methods than hard thresholding.
The horizon length also matters. Note, that insufficient denoising may lead to a
poor bootstrap forecast that compounds with increasing horizon length. A similar
phenomenon is also observed in [174]. While risk-aware MPC handles a poor
forecast internally, it could lead to numerical infeasibility.

Summary and Future Work
The proposed data-driven, risk-aware obstacle avoidance planner showcased near-
perfect results in avoiding moving obstacles with limited, noisy measurements and
no prior knowledge about the obstacle behaviors. This work offers a new paradigm
that can extract obstacle dynamics online in a reasonable time and a compatible risk-

https://youtu.be/6s8pfRZ171Q
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Cases 𝜖 0.05 0.1 0.25 0.5 0.75 1
%Feas. 97.5 98.2 98.9 99.6 99.9 100

Const. %Succ. 100 100 100 100 100 59.0
Speed 𝑑𝑚𝑖𝑛 2.26 1.85 1.41 1.12 0.94 0.64

𝜎(𝑑𝑚𝑖𝑛) 0.42 0.33 0.25 0.22 0.24 0.35
%Feas. 99.5 99.6 99.9 100 100 100

Ball %Succ. 100 100 100 100 100 79.3
w/drag 𝑑𝑚𝑖𝑛 2.60 2.14 1.63 1.27 1.04 0.64

𝜎(𝑑𝑚𝑖𝑛) 1.08 0.93 0.70 0.50 0.37 0.27
%Feas. 90.3 97.4 98.3 98.6 97.5 97.8

Frisbee %Succ. 100 100 100 100 99.7 58.0
w/drag 𝑑𝑚𝑖𝑛 4.97 3.97 2.85 2.01 1.44 0.78

𝜎(𝑑𝑚𝑖𝑛) 1.97 1.53 1.15 0.91 0.76 0.77
Table 5.1: Summary of results from MC simulations of system (5.24)

Cases 𝜖 0.05 0.1 0.25 0.5 0.75 1
%Feas. 83.9 84.2 85.6 86.5 88.6 99.8

Const. %Succ. 100 100 100 100 100 61.2
Speed 𝑑𝑚𝑖𝑛 10.42 8.67 6.59 4.88 3.57 0.46

𝜎(𝑑𝑚𝑖𝑛) 2.47 2.28 1.86 1.43 1.16 0.14
%Feas. 92.8 91.8 90.9 91.1 90.7 82.8

Ball %Succ. 100 100 100 100 100 0.1
w/drag 𝑑𝑚𝑖𝑛 6.95 5.82 4.25 3.04 2.13 1.82

𝜎(𝑑𝑚𝑖𝑛) 2.52 2.55 2.27 1.98 1.59 N/A
%Feas. 92.2 94.5 92.9 92.3 86.9 100

Frisbee %Succ. 100 100 100 100 100 40.5
w/drag 𝑑𝑚𝑖𝑛 12.5 11.3 9.10 6.59 4.24 0.34

𝜎(𝑑𝑚𝑖𝑛) 2.47 2.84 3.00 2.81 2.27 0.05
Table 5.2: Summary of results from MC simulations of system (6.9)
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aware MPC formulation that also works in real-time. However, there are limitations
in the current formulation that suggest future work. As a major limitation, the use
of a linear MPC formulation significantly restricts the multirotor from performing
agile maneuvers. Appealing to nonlinear model predictive methods could reduce
the numerical infeasibility due to roll and pitch state constraints. In terms of
computational efficiency, the number of auxiliary optimization variables 𝒔𝑖,𝑘 and
the number of collision-avoiding inequality constraints all scale linearly with the
number of obstacles. There is significant room for improvement of this efficiency
by assigning obstacle priorities. This approach also needs to be benchmarked in
high-fidelity environments like GAZEBO and/or validated by hardware experiments
in the future. The simulation results show that adjusting the risk level, which is also
the probability of constraint violation, 𝜖 can implicitly adjust the safety distance
between the agent and obstacles. This observation can be further strengthened by
empirical correlations and/or theoretical results.
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C h a p t e r 6

MOA: UNCERTAINTY-INFORMED CONTROL

Motion planning of autonomous systems in dynamic environments requires the sys-
tem to reason about uncertainty in its environment, e.g., a self-driving car needs to
reason about uncertainty in the motion of other vehicles, and a mobile robot navi-
gating a crowded space needs to assess the uncertainty of nearby pedestrians. These
applications are safety-critical, as the agents’ intentions are unknown, and systems
must be able to plan reactive behaviors in response to an increase in uncertainty.

Chapter 5 shows a method that solves the challenging problem of extracting a
dynamics model from real-time attainable data that is limited, noisy, and partial.
Yet, it is difficult to prove prediction accuracy from these data-driven models since
they are effectively out-of-sample extrapolations without ground truth for model
calibration. Therefore, it is essential from a safety perspective to understand the
uncertainty associated with the predicted obstacle trajectories.

This chapter details an algorithm that adaptively quantifies the uncertainty of trajec-
tory predictions using adaptive conformal prediction. This algorithm is distribution-
free and applies to a broad class of trajectory predictors, providing probabilistic
coverage on average. Leveraging the quantified prediction uncertainties, a pairing
model predictive controller is proposed to plan probabilistically safe paths around
dynamic obstacles.

This chapter was adapted from: [14]

6.1 Problem Statement
The discrete-time dynamical system governs the dynamics of the autonomous sys-
tem,

𝒙𝑡+1 = 𝑓 (𝒙𝑡 , 𝒖𝑡), (6.1)

where 𝒙𝑡 ∈ D𝒙 ⊆ R𝑛𝒙 and 𝒖𝑡 ∈ D𝒖 ⊆ R𝑛𝒖 denote the state and the control input
at time 𝑡 ∈ Z≥0, respectively. The sets D𝒖 and D𝒙 denote the set of permissible
control inputs and the workspace of the system, respectively. The measurable
function 𝑓 : R𝑛𝒙 × R𝑛𝒖 → R𝑛𝒙 describes the system dynamics. Let 𝒙0 ∈ D𝒙 be
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the initial condition of the system. For brevity, let 𝑋 ≜ [𝒙0, 𝒙1, . . .] denote the
trajectory of (6.1) under a given control sequence𝑈 ≜ [𝒖0, 𝒖1, . . .].

The system operates in an environment with 𝑁 dynamic agents whose trajectories
are a priori unknown. Let D be an unknown distribution over agent trajectories,
i.e., let 𝑌 ≜ [𝑌0, 𝑌1, . . .] ∼ D describe a random trajectory where the joint agent
state 𝑌𝑡 ≜ (𝑌𝑡,1, . . . , 𝑌𝑡,𝑁 ) at times 𝑡 ∈ N ∪ {0} is drawn from R𝑁𝑛𝒙 , i.e., 𝑌𝑡, 𝑗 is the
state of agent 𝑗 at time 𝑡. For instance, 𝑌𝑡 can denote the uncertain two-dimensional
positions of 𝑁 pedestrians at time 𝑡. Modeling dynamic agents by a distribution
Δ provides great flexibility, and Δ can generally describe the motion of Markov
decision processes.

There are no other assumptions on the distribution Δ, and in the proposed algorithm
predicts states (𝑌𝑡+1, . . . , 𝑌𝑡+𝑛ℎ) for a prediction horizon of 𝑛ℎ from (𝑌0, . . . , 𝑌𝑡) and
quantifies prediction uncertainty using ideas from ACP.

Problem 4. Given the system in (6.1), the unknown random trajectories 𝑌 ∼ Δ,
and a failure probability 𝜖 ∈ (0, 1) (referred to as risk level or risk tolerance),
design the control inputs 𝒖𝑡 such that the Lipschitz continuous constraint function
𝑐 : R𝑛𝒙 ×R𝑁𝑛𝒙 → R is satisfied1 with a probability of at least 1− 𝜖 on average, i.e.,
that

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1
P

[
𝑐(𝒙𝑡 , 𝒚𝑡) ≥ 0

]
≥ 1 − 𝜖 . (6.2)

Note, the prior work ([175]) considers a similar problem formulation, but where
in this case of pointwise satisfaction of the constraint function 𝑐 is desired, i.e.,
P [𝑐(𝒙𝑡 , 𝑌𝑡) ≥ 0] ≥ 1 − 𝜖 for all 𝑡 ≥ 0. In [175], however, it is assumed that an
offline calibration data set drawn from Δ is available, which is not being assumed
here. This makes the problem more challenging so it is desirable for the average
probabilistic guarantee in equation (6.2). Additionally, this formulation allows the
distribution Δ to depend on 𝒙, e.g., a pedestrian’s behavior may change if a car
comes too close, which is not possible in [175]. This work is a step towards the
implementation of a general framework that can adapt to such changes in the agent
distribution.

To address Problem 4, trajectory predictors are used to predict the motion of the
agents (𝑌0, 𝑌1, . . .) to enforce the constraint (6.2) within a MPC framework. In

1For an obstacle avoidance constraint, like 𝑐(𝒙, 𝒚) ≜ ∥𝒙 − 𝒚∥ − 0.5 ≥ 0, the Lipschitz constant
is 1. It is implicitly assumed that the constraint function is initially satisfied, i.e., that 𝑐(𝒙0, 𝒚0) ≥ 0.
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[175], The availability of calibration data from D is assumed to build prediction
regions that quantify the uncertainty of trajectory predictors. In this setting, one can
collect data online to adapt the uncertainty sets based on the past performance of the
predictor using ACP without any assumptions on the distribution of the uncertainty
and exchangeability of the validation and training data set.

Trajectory Predictors: Given observations (𝑌0, . . . , 𝑌𝑡) at time 𝑡, the objective of
the trajectory predictor is to predict future states (𝑌𝑡+1, . . . , 𝑌𝑡+𝑛ℎ) for a prediction
horizon of 𝑛ℎ. Assume that Predict is a function that maps observations (𝑌0, . . . , 𝑌𝑡)
to predictions (𝑌1

𝑡 , . . . , 𝑌
𝑛ℎ
𝑡 ) of (𝑌𝑡+1, . . . , 𝑌𝑡+𝑛ℎ). Note that 𝑡 in𝑌 𝜏𝑡 denotes the time at

which the prediction is made, while 𝜏 indicates how many future steps are predicted.
In principle, Predict can be a classical auto-regressive model or a neural network
based method.

While the proposed problem solution is compatible with any trajectory predictor
Predict, this work studies the case where real-time updating strategies like sliding
linear predictors with extended Kalman filter. Extracting a dynamics model from
data is challenging, especially when the available data is limited, noisy, and partial.
[66] showed that the method of delays can be used to reconstruct qualitative features
of the full-state, phase space from delayed partial observations. By building on the
prior work (Chapter 5) using time delay embedding in dynamic obstacle avoidance,
a linear predictor based on spatial-temporal factorization of the delayed partial
observations can be used as the pairing trajectory predictor.

6.2 Adaptive Conformal Prediction Regions
Recall that the predictions (𝑌1

𝑡 , . . . , 𝑌
𝑛ℎ
𝑡 ) are not measurable at time 𝑡 of future

agent states (𝑌𝑡+1, . . . , 𝑌𝑡+𝑛ℎ) from past observations (𝑌0, . . . , 𝑌𝑡) using the Predict
function. Note, however, that these point predictions contain no information about
prediction uncertainty and can hence not be used to reason about the safety constraint
(6.2). To tackle this issue, prediction regions for (𝑌𝑡+1, . . . , 𝑌𝑡+𝑛ℎ) is constructed
using ideas from ACP, reviewed in Section 2.3.

The nonconformity score ∥𝑌𝑡+𝜏 − 𝑌 𝜏𝑡 ∥ at time 𝑡 is consider to obtain prediction
regions for (𝑌𝑡+1, . . . , 𝑌𝑡+𝑛ℎ) that captures the multi step-ahead prediction error for
each 𝜏 ∈ {1, . . . , 𝑛ℎ}. A large nonconformity score indicates that the prediction 𝑌 𝜏𝑡
of𝑌𝑡+𝜏 is not accurate, while a small score indicates an accurate prediction. For each
𝜏, it is desirable to obtain a prediction region using 𝐶𝜏𝑡 that is again defined by an
update variable 𝜖𝜏𝑡 . Note, however, that the quantity ∥𝑌𝑡+𝜏−𝑌 𝜏𝑡 ∥ can not be evaluated
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at time 𝑡 as only measurements (𝑌0, . . . , 𝑌𝑡) are known, but not (𝑌𝑡+1, . . . , 𝑌𝑡+𝑛ℎ).
Consequently, the update rule (2.12) is not applicable to update 𝜖𝜏𝑡 , as the prediction
error would depend on checking if ∥𝑌𝑡+𝜏 − 𝑌 𝜏𝑡 ∥ ≤ 𝐶𝜏𝑡 . To address this issue, we
define the time-lagged nonconformity score as

𝑅𝜏𝑡 ≜ ∥𝑌𝑡 − 𝑌 𝜏𝑡−𝜏∥

that this quantity is available at time 𝑡 using the update rule (2.12). This nonconfor-
mity score 𝑅𝜏𝑡 is time-lagged in the sense that, at time 𝑡, the 𝜏 step-ahead prediction
errors are assessed that were made 𝜏 time steps ago. Now, by update the parameter
𝜖𝜏
𝑡+1, the 𝜏-lagged prediction region is defined 𝐶𝜏

𝑡+1 as

𝜖𝜏𝑡+1 ≜ 𝜖𝜏𝑡 + 𝛾(𝜖 − 1∥𝑌𝑡−𝑌 𝜏
𝑡−𝜏 ∥≥𝐶𝜏

𝑡
). (6.3)

Let 𝐶𝜏
𝑡+1 be the ⌈(𝑡 − 𝜏 + 1) (1 − 𝜖𝜏

𝑡+1)⌉
th smallest value of (𝑅𝜏𝜏 , . . . , 𝑅𝜏𝑡 )2.

By obtaining a prediction region for 𝑅𝜏
𝑡+1 using ACP, a prediction region for the 𝜏

step-ahead prediction error can be computed that was made 𝜏 − 1 time steps ago,
i.e., for ∥𝑌𝑡+1 − 𝑌 𝜏𝑡+1−𝜏∥. Under the assumption that 𝑅𝜏

𝑡+1 and 𝑅𝜏𝑡+𝜏 are independent
and identically distributed, 𝑅𝜏

𝑡+1 serves as a prediction region for 𝜏 step-ahead
prediction error that was made 0 time steps ago (now at time 𝑡), i.e., for 𝑅𝜏𝑡+𝜏 which
encodes ∥𝑌𝑡+𝜏 − 𝑌 𝜏𝑡 ∥. Naturally, in the setting 𝑅𝜏

𝑡+1 and 𝑅𝜏𝑡+𝜏 are not independent
and identically distributed. However, by adapting the prediction regions based
on the performance of the multi-step predictions using ACP, on-average coverage
guarantees are obtained, albeit weaker than the point-wise guarantees provided by
conformal predictions. It is important to note that for the theoretical guarantees
provided in the next section, only the one-step-ahead prediction errors are relevant.

Corollary 2. Let 𝛾 be a learning rate, 𝜖1
0 ∈ (0, 1) be an initial value for the recursion

(7.42), and 𝑇 be the number of times that the recursion (7.42) is computed. Then,
for the one-step-ahead prediction errors, it holds that

1 − 𝜖 − 𝑝1 ≤
1
𝑇

𝑇−1∑︁
𝑡=0
P

[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ ≤ 𝐶1
𝑡+1

]
≤ 1 − 𝜖 + 𝑝2 (6.4)

with constants

𝑝1 ≜
𝜖1

0 + 𝛾
𝑇𝛾

,

2Instead of keeping track of all data, a sliding window of the 𝑁 most recent data is selected
to generate the nonconformity scores. For all prediction regions, it is recommended to consider
(𝑅𝜏

𝑡−𝑁 , . . . , 𝑅
𝜏
𝑡 ) and to compute 𝐶𝜏

𝑡+1 as the ⌈(𝑁 + 1) (1 − 𝜖 𝜏
𝑡+1)⌉

th smallest value.
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𝑝2 ≜
(1 − 𝜖1

0 ) + 𝛾
𝑇𝛾

so that lim𝑇→∞ 𝑝1 = 0 and lim𝑇→∞ 𝑝2 = 0.

Proof. Since the probability of an event is equivalent to the expected value of the
indicator function of that event, it follows by the definition of the error 1∥𝑌𝑡+1−𝑌1

𝑡 ∥≥𝐶1
𝑡+1

that

P
[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ ≤ 𝐶1
𝑡+1

]
= E[1 − 1∥𝑌𝑡+1−𝑌1

𝑡 ∥≥𝐶1
𝑡+1
] = 1 − E[1∥𝑌𝑡+1−𝑌1

𝑡 ∥≥𝐶1
𝑡+1
] . (6.5)

For a given initialization 𝜖𝜏0 and learning rate 𝛾, [109, Proposition 4.1] showed that
the following bound holds (with probability one) for the misclassification errors

−(1 − 𝜖1
0 ) + 𝛾

𝑇𝛾
≤ 1
𝑇

𝑇−1∑︁
𝑡=0

1∥𝑌𝑡+1−𝑌1
𝑡 ∥≥𝐶1

𝑡+1
− 𝜖 ≤

𝜖1
0 + 𝛾
𝑇𝛾

implies ��� 1
𝑇

𝑇−1∑︁
𝑡=0

1∥𝑌𝑡+1−𝑌1
𝑡 ∥≥𝐶1

𝑡+1
−𝜖

��� ≤ max(𝜖1
0 , 1 − 𝜖

1
0 ) + 𝛾

𝑇𝛾
.

Hence, taking the expectation of the above two-sided inequality, the following
inequalities hold

−(1 − 𝜖1
0 ) + 𝛾

𝑇𝛾
≤ 1
𝑇

𝑇−1∑︁
𝑡=0
E[1∥𝑌𝑡+1−𝑌1

𝑡 ∥≥𝐶1
𝑡+1
] − 𝜖 ≤

𝜖1
0 + 𝛾
𝑇𝛾

,

(𝑎)
⇔

−(1 − 𝜖1
0 ) + 𝛾

𝑇𝛾
≤ 1
𝑇

𝑇−1∑︁
𝑡=0

(
1 − P

[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ ≤ 𝐶1
𝑡+1)

]
− 𝜖 ≤

𝜖1
0 + 𝛾
𝑇𝛾

,

⇔ 1 − 𝜖 +
(1 − 𝜖1

0 ) + 𝛾
𝑇𝛾

≥ 1
𝑇

𝑇−1∑︁
𝑡=0
P

[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ ≤ 𝐶1
𝑡+1

]
≥ 1 − 𝜖 −

𝜖1
0 + 𝛾
𝑇𝛾

,

where equation (6.5) is used for getting the equivalence in (a).

Remark 4. The above result can be similarly extended to the FACP case with a set
of candidate learning rates, 𝛾, in [111, Theorem 3.2].

To illustrate these multistep-ahead prediction regions, consider a planar double
pendulum whose dynamics are governed by chaotic, nonlinear dynamics that are
sensitive to the initial condition [176]. The predictions made by a linear pre-
dictor that uses noisy observations of the position of the double pendulum [177,
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Appendix] are studied where ACP is used to predict the uncertainty in the pre-
dictions. Both the trajectory predictor and the uncertainty quantification using
ACP use online data from a single trajectory. ACP provides the multi-step er-
rors in the linear predictions with a coverage level of 𝜖 = 0.1, and learning rates
𝛾 =

(
0.0008 0.0015 0.003 0.005 0.009 0.017 0.03 0.05 0.08

)
.

Figure 6.1 compares the 1-step and 6-step ahead error prediction regions to the true
multi-step errors for two states, the second mass position, 𝑥2, 𝑦2. The percentages of
one-step errors that are incorrectly predicted, i.e., 1∥𝑌𝑡−𝑌1

𝑡−1∥≥𝐶
1
𝑡
= 1, for the positions

of each mass, 𝑥1, 𝑥2, 𝑦1, 𝑦2 are 2.36%, 0.94%, 1.57%, 1.73% , respectively. The
effects of adaptation as the ACP prediction regions are observed to be larger in areas
of poor performance of the linear predictor (and consequently higher error in the
prediction) and smaller in regions where the linear predictor performs well. Note,
the miscoverage levels are lower than the expected miscoverage when 𝜖 = 0.1. This
is because the learning rates 𝛾 used are small, because of which the adaptation
is slower. As the learning rate becomes larger, the adaptation is faster and the
miscoverage levels will be closer to 10%. In practice, higher learning rates lead to
high variations in the prediction sets.
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Figure 6.1: The multi-step prediction errors are shown for two of the six states of a double
pendulum (𝑥2, 𝑦2). ACP can correctly predict regions of high and low error (90% coverage
regions) by adjusting the prediction quantile using update law (2.12). The orange lines are
the true multi-step prediction errors and the blue areas are the error regions predicted by
ACP.
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6.3 Uncertainty-Informed MPC
Based on the obtained uncertainty quantification from the previous section an
uncertainty-informed model predictive controller (UI-MPC) is proposed that uses
predictions 𝑌 𝜏𝑡 and adaptive predictions 𝐶𝜏

𝑡+1. The underlying optimization problem
that is solved at every time step 𝑡 is:

min
(𝒖𝑡 ,...,𝒖𝑡+𝑛ℎ−1)

𝑡+𝑛ℎ−1∑︁
𝑘=𝑡

L(𝒙𝑘+1, 𝒖𝑘 ) (6.6a)

s.t. 𝒙𝑘+1 = 𝑓 (𝒙𝑘 , 𝒖𝑘 ), 𝑘 ∈ {𝑡, . . . , 𝑡 + 𝑛ℎ − 1} (6.6b)

𝑐(𝒙𝑡+𝜏, 𝑌 𝜏𝑡 ) ≥ 𝐿𝐶𝜏𝑡+1, 𝜏 ∈ {1, . . . , 𝑛ℎ} (6.6c)

𝒖𝑘 ∈ D𝒖, 𝒙𝑘+1 ∈ D𝒙 , 𝑘 ∈ {𝑡, . . . , 𝑡 + 𝑛ℎ − 1} (6.6d)

where 𝐿 is the Lipschitz constant of the constraint function 𝑐, L is a step-wise cost
function, and {𝒖𝑡 , . . . , 𝒖𝑡+𝑛ℎ−1} is the control sequence. The optimization problem
in (6.6) is convex if the functions L and 𝑓 are convex, the function 𝑐 is convex in
its first argument, and the sets D𝒖 and D𝒙 are convex.

Based on this optimization problem, a receding horizon control strategy is developed
in Algorithm 5. Line 1 of Algorithm 5 initializes the parameter 𝜖 𝑡0 simply to 𝜖 . Lines
2-11 present the real-time planning loop:

1. Updating the states 𝒙𝑡 and calculating new predictions 𝑌 𝜏𝑡 (lines 3-4).

2. computing the adaptive nonconformity scores 𝐶𝜏
𝑡+1 (lines 5-9), and 3) solving

the optimization problem in (6.6) of which only 𝒖𝑡 is applied (lines 10-11).

Remark 5. While Algorithm 5 uses a single learning rate, one can similarly extend
the above algorithm to be fully adaptive using a candidate set of {𝛾𝑖}1≤𝑖≤𝑘 without
loss of generality.

Remark 6. [109] assume that when 𝜖𝑡+1 ≤ 0, 𝐶𝑡+1 → ∞. This means that when
the algorithm requires robust behavior, the ∞-prediction region ensures that any
prediction at the next time-step should be correctly classified. For a physical system,
there are limits on how much the dynamic obstacle can accelerate in one time-step
which gives an upper bound 𝑅max < ∞ on the worst-case error. In practice, in
equality 0 ≤ 𝜖𝑡+1 ≤ 1 should be enforced with 𝐶𝑡+1 ≤ 𝑅max.

Theorem 7. Let 𝛾 be a learning rate, 𝜖1
0 ∈ (0, 1) be an initial value for the recursion

(7.42), and 𝑇 be the number of times that the recursion (7.42) is computed. If the
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Algorithm 5: Uncertainty Informed MPC (UI-MPC)
Data: Failure probability 𝜖 , prediction horizon 𝑛ℎ, learning rate 𝛾
Result: Control input 𝒖𝑡 (𝒙𝑡 , 𝑌0, . . . , 𝑌𝑡) at each time 𝑡
𝜖𝜏0 ← 𝜖 for 𝜏 ∈ {1, . . . , 𝑛ℎ}.
for 𝑡 from 0 to∞ do

#real-time motion planning loop
Update 𝒙𝑡 and 𝑌𝑡
Obtain predictions 𝑌 𝜏𝑡 for 𝜏 ∈ {1, . . . , 𝑛ℎ}
for 𝜏 from 1 to 𝑛ℎ do

# compute ACP regions
𝜖𝜏
𝑡+1 ← 𝜖𝜏𝑡 + 𝛾(𝜖 − 1∥𝑌𝑡−𝑌 𝜏

𝑡−𝜏 ∥≥𝐶𝜏
𝑡
)

Get 𝑅𝜏𝑡 ∥𝑌𝑡 − 𝑌 𝜏𝑡−𝜏∥
𝑞 ←

⌈
(𝑡 + 1) (1 − 𝜖𝜏

𝑡+1)
⌉

Set 𝐶𝜏
𝑡+1 as the 𝑞th smallest value of (𝑅𝜏𝜏 , . . . , 𝑅𝜏𝑡 )

end
Calculate controls {𝒖𝑡 , ..., 𝒖𝑡+𝑛ℎ−1} as the solution of (6.6)
Apply 𝒖𝑡 to (6.1)

end

optimization problem (6.6) in Algorithm 5 is recursively feasible, then Algorithm 5
will lead to

1
𝑇

𝑇−1∑︁
𝑡=0
P
(
𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0

)
≥ 1 − 𝜖 − 𝑝1 (6.7)

with constant 𝑝1 ≜
𝜖1

0+𝛾
𝑇𝛾

so that lim𝑇→∞ 𝑝1 = 0.

Proof. By assumption, the optimization problem in (6.6) is feasible at each time
𝑡 ∈ {0, 1, . . .}. Due to constraint (6.6c) and Lipschitz continuity of 𝑐, it hence holds
that

0 ≤ 𝑐(𝒙𝑡+1, 𝑌1
𝑡 ) − 𝐿𝐶1

𝑡+1 ≤ 𝑐(𝒙𝑡+1, 𝑌𝑡+1) + 𝐿∥𝑌𝑡+1 − 𝑌
1
𝑡 ∥ − 𝐿𝐶1

𝑡+1 (6.8)

at each time 𝑡 ∈ {0, 1, . . .}. Consequently, note that ∥𝑌𝑡+1−𝑌1
𝑡 ∥ ≤ 𝐶1

𝑡+1 is a sufficient
condition for 𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0. In a next step, the followings can be derived

P [𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0]
(𝑎)
= P

[
𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0

�� ∥𝑌𝑡+1 − 𝑌1
𝑡 ∥ ≤ 𝐶1

𝑡

]
P

[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ ≤ 𝐶1
𝑡

]
+ P

[
𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0

�� ∥𝑌𝑡+1 − 𝑌1
𝑡 ∥ > 𝐶1

𝑡

]
P

[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ > 𝐶1
𝑡

]
(𝑏)
≥ P

[
𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0

�� ∥𝑌𝑡+1 − 𝑌1
𝑡 ∥ ≤ 𝐶1

𝑡

]
P

[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ ≤ 𝐶1
𝑡

]
(𝑐)
= P

[
∥𝑌𝑡+1 − 𝑌1

𝑡 ∥ ≤ 𝐶1
𝑡

]
,
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where the equality in (a) follows from the law of total probability, while the inequality
in (b) follows from the nonnegativity of probabilities. The equality in (c) follows as

P[𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0 s.t. ∥𝑌𝑡+1 − 𝑌1
𝑡 ∥ ≤ 𝐶1

𝑡 ] = 1

since ∥𝑌𝑡+1−𝑌1
𝑡 ∥ ≤ 𝐶1

𝑡 implies 𝑐(𝒙𝑡+1, 𝑌𝑡+1) ≥ 0 according to (6.8). The result from
Corollary 8 completes the proof.
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6.4 Results and Discussion
The simulation-based empirical performance of the MPC with ACP uncertainty
prediction regions is compared with prior work that uses a distributionally robust
approach to uncertainty quantification (see Chapter 5). The same multirotor operat-
ing in the presence of a moving obstacle example is studied with a MPC planner. The
multirotor is constrained to operate within the state constraints 𝜃 ∈ [−0.45, 0.45] ra-
dians and 𝜑 ∈ [−0.45, 0.45] radians. The following standard multirotor linear
dynamics is used,

¥𝑥 = −𝑔𝜃, ¥𝑦 = 𝑔𝜑, ¥𝑧 = 𝑢1 − 𝑔, ¥𝜑 =
𝑢2
𝐼𝑥𝑥
, ¥𝜃 = 𝑢3

𝐼𝑦𝑦
, ¥𝜓 =

𝑢4
𝐼𝑧𝑧
, (6.9)

, where the planner control inputs 𝑢1, 𝑢2, 𝑢3, 𝑢4, corresponds to the thrust force
in the body frame and three moments. The vehicle’s moments of inertia are 𝐼𝑥𝑥 =
0.0075𝑘𝑔𝑚2, 𝐼𝑦𝑦 = 0.0075𝑘𝑔𝑚2, 𝐼𝑧𝑧 = 0.013𝑘𝑔𝑚2. The MPC planner has a horizon
length of 10 steps and the planner is updated at 20 Hz. It is implemented through a
Sequential Convex Programming approach [90].

Numerical simulations of the proposed MPC planner with ACP regions and dy-
namics (6.9) are presented as it avoids a Frisbee that is thrown at the drone from
various initial positions, velocities, and rotation speeds. The Frisbee is modeled
following [167], and linear predictions of the trajectory arising from its nonlinear
dynamics are considered.

A total of 1000 Monte Carlo simulations are conducted per allowed failure proba-
bility level 𝜖 to compare the numerical feasibility, percentage of success in obstacle
avoidance (if the MPC planner is feasible), and the planner’s conservativeness, as
measured by the minimum distance between the obstacle and agent centers, i.e., 𝑑𝑚𝑖𝑛
and 𝜎(𝑑𝑚𝑖𝑛) describe the average and standard deviation of this minimum distance
across simulations, respectively. Three uncertainty quantification techniques are
compared and tabulated in Table 5.1, (1) The proposed ACP method (Algorithm 5),
(2) empirical bootstrap prediction that accounts for the prediction uncertainty using
the empirical bootstrap variance (see Chapter 5), and (3) the sliding linear predictor
with an Extended Kalman Filter (EKF) that provides Gaussian approximations of
the obstacle prediction uncertainty (see Chapter 7).

Table 5.1 shows that the proposed method can successfully avoid the Frisbee while
using a significantly smaller average divergence distance (𝑑𝑚𝑖𝑛, 𝜎(𝑑𝑚𝑖𝑛)) from the
Frisbee. To wit, the proposed approach avoids the conservatism of other approaches
due to the adaptivity of the uncertainty sets. The proposed method can usefully
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Case 𝛿 0.025

UQ method Proposed [15] w/EKF
%Feas. 83.8 87.4 97.1

Frisbee %Succ. 99.2 100 100
w/drag 𝑑𝑚𝑖𝑛 2.91 14.2 5.27

𝜎(𝑑𝑚𝑖𝑛) 1.25 2.04 1.28
Table 6.1: Summary of results from MC simulations of system (6.9).
FACP is implemented for predicting uncertainty sets with learning rates 𝛾 =

{0.0008, 0.0015, 0.003, 0.005, 0.009, 0.017, 0.03, 0.05, 0.08, 0.13} and using the last 30
measurements of the obstacle.

Case 𝛿 0.05
UQ method Proposed [15] w/EKF

%Feas. 80.9 90.3 97.6
Frisbee %Succ. 100 100 100
w/drag 𝑑𝑚𝑖𝑛 2.74 4.97 4.25

𝜎(𝑑𝑚𝑖𝑛) 1.3 1.97 1.11
Table 6.2: Summary of results from MC simulations of system (6.9).
FACP is implemented for predicting uncertainty sets with learning rates 𝛾 =

{0.0008, 0.0015, 0.003, 0.005, 0.009, 0.017, 0.03, 0.05, 0.08, 0.13} and using the last 30
measurements of the obstacle.

adjust the prediction sets when the underlying uncertainty distribution is shifting
(due to discrepancy in the linear dynamic predicted and the true nonlinear obstacle
motion). It is important to note that the feasibility of the MPC optimization is worse
for this approach compared to the results using the bootstrap distributionally robust
formulation in Chapter 5) and the Koopman-inspired predictor with only heuristic
unsafe set in Chapter 7. This issue arises during sudden changes in the size of the
uncertainty sets when the learning rate 𝛾 is chosen too large. This issue is considered
as future direction by considering tools to ensure recursive feasibility [178] or by
providing backup controllers [179], [180] when the MPC is infeasible.

This chapter presents an algorithm for safe motion planning in an environment with
other dynamic agents using ACP. Specifically, this chapter investigates a determinis-
tic control system that uses state predictors to estimate the future motion of dynamic
agents. Leveraging ideas from ACP, the prediction uncertainty is dynamically
quantified from an online data stream. An uncertainty-informed model predictive
controller is proposed to safely navigate among dynamic agents incorporating the
quantified prediction uncertainties. In contrast to other data-driven prediction mod-
els that quantify prediction uncertainty in a heuristic manner, the proposed method
produces true prediction uncertainty in a distribution-free, adaptive manner that
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even allows capturing changes in prediction quality and the agents’ motion.
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C h a p t e r 7

MOA: PROBABILISTIC SAFETY GUARANTEES

The growing deployment of robots in urban environments has significantly amplified
the need for effective online robotic path planning and control strategies, particu-
larly in the context of dynamic obstacle avoidance [45], [46]. Applications include
autonomous driving in the presence of other vehicles [181] and pedestrians [182],
autonomous drone racing while maintaining a safe distance from other competitors
[183], and air traffic control where the imperatives of fuel economy, order, and
safety are enforced [184]. In such unpredictable and complex environments, quan-
tifying uncertainties becomes paramount for ensuring safety in motion planning
frameworks.

Moving obstacle avoidance in a real-world setting is further complicated by hardware
constraints such as limited-time position observations, sensor data at low frequency,
and noise in measurements. Achieving obstacle avoidance guarantees usually re-
quires an understanding of the obstacles’ behavior, in order to define collision-free
safe regions [27], [55], [185], [186]. Koopman operators can learn a lifted linear
representation of nonlinear dynamical systems from data to make obstacle trajectory
predictions [187], [188]. Typically, making obstacle trajectory predictions from a
learned model provides limited safety information, requiring rigorous prediction
uncertainty quantification to establish guarantees [189]. However, constructing de-
terministic robust safe regions that guarantee collision-free movements can lead to
over-conservatism [27], [186]. As a result, probabilistic safe regions have gained
favor, as they offer a balance between reducing conservatism and infeasibility while
offering tunability based on risk preferences [15], [177].

This chapter aims to establish a comprehensive framework for moving obstacle
avoidance, particularly in situations where the dynamics and intentions of obstacles
are unknown and their measurements are noisy. The proposed planning framework
is not only tunable and free from heuristic approaches but also provides provable
safety guarantees. The core of the approach is to estimate collision-free regions,
relying solely on real-time measurements of obstacle positions, and efficiently recast
these prediction regions into a convex and deterministic finite-time optimal control
problem that has probabilistic safety guarantees.
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Figure 7.1: Overall architecture of the proposed framework from data-driven obstacle model
extraction, trajectory forecast, and prediction uncertainty quantification to constructing
collision-free convex state constraints which are incorporated in an MPC to plan collision-
avoiding actions upholding a user-specified risk-tolerance.

The proposed framework is depicted in Fig. 7.1, consists of three main components:
(1) a Data-Driven Horizon Predictor, (2) Heuristic and Conformal Unsafe Sets, and
(3) a Prediction-Aware Planner. This framework centers around an optimization-
based model predictive planner that tactically incorporates deterministic predicted
unsafe sets constructed from rigorous uncertainty quantification.

This chapter was adapted from: [16]

7.1 Problem Statement
This section reviews a general dynamic description of the ego vehicle. This mod-
eling choice can capture general mobile-based systems while keeping analytical
tractability. Consider the following discrete-time linear dynamical system:

𝒙𝑡+1 = 𝐴𝑡𝒙𝑡 + 𝐵𝑡𝒖𝑡 + 𝒄𝑡 (7.1)

𝒑𝑡 = 𝑀𝒙𝑡 (7.2)

where 𝒙𝑡 ∈ D𝒙 ⊂ R𝑛𝒙 is the state of the system and 𝒖𝑡 ∈ D𝒖 ⊂ R𝑛𝒖 denotes the
control input, and D𝒙 and D𝒖 represents the admissible convex state and input
sets. The time-varying matrices at time 𝑡, 𝐴𝑡 ∈ R𝑛𝒙×𝑛𝒙 , 𝐵𝑡 ∈ R𝑛𝒙×𝑛𝒖 , and 𝒄𝑡 ∈ R𝑛𝒙
are the state transition matrix, actuation matrix, and time-varying additive model
residuals (known), respectively. The position vector, 𝒑 ∈ R3, is the system output
in 3D Euclidean space relative to an inertial coordinate. Let the position output
of the vehicle be mapped from the system state 𝒙𝑡 by a constant (time-invariant)
observation matrix 𝑀 ∈ R3×𝑛𝒙 . For simplicity, the ego vehicle is assumed to
be full-state observable. The ego vehicle model is (7.1)-(7.2) which is a general
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nonlinear continuous-time system with dynamics ¤𝒙 = 𝑓 (𝒙, 𝒖) can be reformulated
to (7.1)-(7.2) by linearization and discretization.

Specifically, the matrices 𝐴𝑡 , 𝐵𝑡 , and 𝒄𝑡 in (7.1) can be obtained from linearizing
and taking the first-order linearization and discretization of the dynamics as:

𝐴𝑡 ≜ 𝐼𝑛𝑥 + Δ𝑇
𝜕 𝑓

𝜕𝒙𝑡

�����
(𝒙𝑡 ,𝒖𝑡 )

, 𝐵𝑡 ≜ Δ𝑇
𝜕 𝑓

𝜕𝒖𝑡

�����
(𝒙𝑡 ,𝒖𝑡 )

, (7.3)

𝒄𝑡 ≜ 𝑓 (𝒙𝑡 , 𝒖𝑡) − 𝐴𝑡𝒙𝑡 − 𝐵𝑡𝒖𝑡 . (7.4)

Here, 𝒙𝑡 and 𝒖𝑡 denote the nominal state and input trajectories which the nonlinear
dynamics 𝑓 is linearized around. The parameter Δ𝑇 is the time discretization step
size.

Background
This chapter studies the case where the ego vehicle (7.1)-(7.2) is tasked to track a
time-based reference position trajectory 𝒑ref(𝑡). While following this path, the ego
vehicle may encounter 𝑛obs spherical, static, or dynamic obstacles whose trajectories
and dynamics are a priori unknown. The obstacles occupyO𝑜𝑏𝑠 = ⋃𝑛𝑜𝑏𝑠

𝑖=0 O
𝑜𝑏𝑠
𝑗
⊂ R3,

which is considered as an unsafe set for the ego vehicle. Dynamic obstacles are
categorized into three types based on their interaction with the ego vehicle:

Definition 11. A cooperative obstacle actively maintains a safe distance from the
agent. An indifferent obstacle follows a predefined trajectory without reacting to
the agent’s behavior.1 A hostile obstacle actively pursues the ego vehicle for a finite
period.

The obstacles are generalized as a dynamical system that each follows a trajectory
that is governed by the following unknown discrete-time nonlinear dynamics:[

𝒐𝑡+1

𝜻 𝑡+1

]
= 𝑓 𝑜𝑏𝑠𝑡

(
𝒐𝑡 , 𝜻 𝑡

)
(7.5)

where 𝒐𝑡 ≜ [𝑥𝑜𝑡 , 𝑦𝑜𝑡 , 𝑧𝑜𝑡 ]𝑇 ∈ R3 represents the 𝑥, 𝑦, 𝑧 position of the obstacle in the
inertial frame, and 𝜻 𝑡 ∈ R𝑛𝑜−3, integer 𝑛𝑜 ≥ 3, denotes the unobservable obstacle
states and/or inputs which may or may not include the ego vehicle’s states. These
unobservable states may include unmeasurable states such as the spinning rate of a
Frisbee that plays an important role in the Frisbee’s gilding trajectory. Nevertheless,

1Static obstacles are a subset of indifferent obstacles.
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the function 𝑓 𝑜𝑏𝑠𝑡 , characterizing the dynamics at time 𝑡, is assumed to be locally
Lipschitz continuous with a single fixed point.

Each obstacle is modeled by its bounding sphere. The 𝑗 𝑡ℎ obstacle occupies the set
O 𝑗𝑡 (𝒄𝑡 , 𝑟) = {𝒐 ∈ R3 | ∥𝒄𝑡 − 𝒐∥2 ≤ 𝑟}, where 𝒄𝑡 ∈ R3 and 𝑟 ∈ R>0 represent the
geometric center and constant radius of the 𝑗 th obstacle at time 𝑡, respectively. The
objective of this work is to determine an optimal control input, 𝒖∗𝑡 , at any given time
𝑡. This control input should enable the ego vehicle to track the reference position,
denoted as 𝒑𝑟𝑒 𝑓

𝑡+1 , as closely as possible given its current state 𝒙𝑡 . Simultaneously,
it must comply with state and input constraints, as well as ensure avoidance of any
obstacles as defined above.

Problem Statement
The process of avoiding moving obstacles with unknown trajectories, dynamics,
and intent can often lead to overly cautious behaviors. Researchers have tackled
this challenge by predicting obstacle trajectories or classifying obstacle behaviors
to plan avoidance trajectories [190]. Various efforts attempted to predict obstacle
behaviors as probabilistic distributions [74], [191]. Incorporating the quantified
prediction model uncertainty, this method outputs a probabilistic distribution of the
obstacle position.

The prediction sets, recognized as unsafe sets, can be incorporated into the model
predictive planner as constraints [14], [15], [80] or as artificial potential fields
[192], [193] for generating trajectories. Ideally, these prediction sets should reflect
a risk-liked metric such that the user can balance between conservatism and its
application objectives. As an example, the risk of damaging the vehicle hardware
is less important compared to the time it takes to localize survivors in search and
rescue missions. Autonomous driving, on the contrary, may desire to minimize
collision risks and be receptive to rather conservative paths to avoid pedestrians.

In summary, the objective is to obtain predictions {𝒐 𝑗
𝑡+1|𝑡 , . . . , 𝒐

𝑗

𝑡+𝑛ℎ |𝑡} at time 𝑡 of
future obstacle positions {𝒐 𝑗

𝑡+1, . . . , 𝒐
𝑗
𝑡+𝑛ℎ}, over the planning horizon 𝑛ℎ, from past

observations (𝒐̂ 𝑗0, . . . , 𝒐̂
𝑗
𝑡 ) of the 𝑗 𝑡ℎ obstacle. Specifically, the goal is to obtain

a model characterizing the obstacle’s closed-loop behavior which can be used to
make future obstacle position predictions by forward propagating this model and its
quantified prediction uncertainties.

The obstacle position is assumed to be measurable at a fixed frequency, 𝑓𝑠, after de-
tecting the obstacle. Using a 3D obstacle as an example, the obstacle measurements
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are denoted as 𝒐̂ 𝑗𝑡 = 𝒐 𝑗𝑡 + 𝛿𝒐𝑡 where 𝛿𝒐𝑡 ∈ N (03×1, Σ𝒐, 𝑗 ) and 03×1 ∈ R3 is a zero
vector indicating the expected value (zero-mean) and Σ𝒐, 𝑗 = diag(𝜎𝑥, 𝑗 , 𝜎𝑦, 𝑗 , 𝜎𝑧, 𝑗 ) is
a diagonal covariance matrix of the multivariate normal distribution (white-noise).

Problem 5. [Data-Driven Obstacle Model] Consider a multivariate stochastic pro-
cess where observables {𝑥𝑜, 𝑗

𝑖
}𝑡
𝑖=0, {𝑦𝑜, 𝑗

𝑖
}𝑡
𝑖=0, and {𝑧𝑜, 𝑗

𝑖
}𝑡
𝑖=0 denote the spherical ob-

stacle’s true center location in the ego vehicle’s inertial frame. The measurements
are corrupted by noises {𝛿𝒐𝑖}𝑡𝑖=0, drawn independently from a normal distribution
N(03×1, Σ 𝒑, 𝑗 ) (see Fig. 7.2). The problem objective is to learn a dynamic model
for the closed-loop obstacle behavior which is defined as a time update map ℎ𝑡 that
predict obstacle position at time 𝑡+1 given current time 𝑡, i.e., 𝒐̃𝑡+1 = ℎ𝑡 (𝒒obs

𝑡 ) where
𝒒𝑜𝑏𝑠𝑡 ∈ 𝑄𝑜𝑏𝑠

𝑡 represents the inputs to the map ℎ𝑡 : 𝑄𝑜𝑏𝑠
𝑡 → 𝑂𝑜𝑏𝑠

𝑡 ⊆ R3. Specifically,
the probability space (𝑂𝑜𝑏𝑠

𝑡 , F 𝑜𝑏𝑠𝑡 , P𝑡) with a sample space 𝑂𝑜𝑏𝑠
𝑡 , a 𝜎−algebra F𝑡

over 𝑂𝑜𝑏𝑠
𝑡 events, and a probability measure P𝑡 describes the predictor outcomes at

time 𝑡.

Given the data-driven model, the follow-on question is to obtain probabilistic unsafe
sets given a user-defined confidence/risk level to account for model uncertainties,
including those driven by learning errors.

Problem 6. [Unsafe Set Prediction] Let ℎ𝑡 : Q𝑡 → 𝑂𝑜𝑏𝑠
𝑡 at time 𝑡, be the solution

to Problem 5 given predictor input 𝒒𝑜𝑏𝑠𝑡 , as the data-driven obstacle model. The
problem objective is to identify a time-varying metric 𝑟𝜖

𝑡+1 ∈ R>0 and 𝑟𝜖
𝑡+1 ≥ 𝜌𝜖

𝑡+1
given a risk-level 𝜖 ∈ [0, 1] which is the radius of the risk dependent unsafe set
defined as

𝜌𝜖𝑡+1 ≜ min
𝜌𝑡+1∈R>0

{P𝑡+1 [∥𝒐𝑡+1 − 𝒐̃𝑡+1∥ ≤ 𝜌𝑡+1] ≥ 1 − 𝜖}, (7.6)

where 𝒐𝑡+1 is the true obstacle position at time 𝑡 +1 and 𝒐̃𝑡+1 ∈ 𝑂𝑜𝑏𝑠
𝑡+1 is the predicted

obstacle position at time 𝑡 + 1 made at time 𝑡 using the obstacle model ℎ𝑡 . Denote
the 1 − 𝜖 confidence unsafe set prediction at time 𝑡 as

O𝜖𝑡+1 ≜ {𝒐 ∈ R3 | ∥𝒐𝑡+1 − 𝒐̃𝑡+1∥ ≤ 𝑟𝜖𝑡+1} (7.7)

where 𝑟𝜖
𝑡+1 ≥ 𝜌

𝜖
𝑡+1 is the predicted unsafe radius.

The obstacle position predictions, denoted as 𝒐̃𝑡+1, are the center of the unsafe set.
Ideally, the tightest unsafe radius 𝜌𝜖

𝑡+1 is desirable, given the quantified uncertainty,
to avoid being overly conservative. Due to limited and noisy partial data and the
lack of explicit dynamics models, the tightness guarantees can only be obtained with
additional assumptions.
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Problem 7. [Probabilistic Obstacle Avoidance] Consider the dynamical system
(7.1)-(7.2) with convex state constraint D𝒙 and input constraint D𝒖. A desired
agent position 𝒑𝑟𝑒 𝑓

𝑡+1 is given current at time 𝑡. Suppose there exists a spherical
obstacle, whose the true occupied unsafe set is O𝑡+1. The planner must compute a
control input 𝒖𝑠𝑎 𝑓 𝑒𝑡 ∈ D𝒖 that guarantees obstacle avoidance at with least (1 − 𝜖)
probability at time 𝑡 + 1. This goal can be compactly formulated as the following
constraint

P𝑡+1
[
O𝑡+1 ⊆ O𝜖𝑡+1

]
≥ 1 − 𝜖, (7.8)

The set O𝜖
𝑡+1 is the (1 − 𝜖) confidence unsafe set prediction of the obstacle at time

𝑡 + 1, the result of Problem 6. If constraint (7.8) is satisfied for all 𝑡 ∈ R>0, the
planning algorithm is guaranteed to achieve probabilistic obstacle avoidance. As an
extension to finite 𝑇 , defining probabilistic obstacle avoidance on average, a time-
averaged obstacle avoidance behavior satisfied for all 𝑡, mathematically described
by following constraint,

lim
𝑇→∞

( 1
𝑇

𝑡∑︁
𝑖=𝑡−𝑇+1

P𝑖+1 [ 𝒑𝑖+1 ∉ O𝑖+1]
)
≥ 1 − 𝜖, (7.9)

where 𝑇 < 𝑡 is a time-averaging window. However, the probabilistic avoidance on
average implicitly assumes 𝑡 → ∞ which can be impractical to assert for real-time
obstacle avoidance applications. Alternatively, an algorithm achieves finite-time
probabilistic obstacle avoidance on average if the following holds for a finite 𝑇

1
𝑇

𝑡∑︁
𝑖=𝑡−𝑇+1

P𝑖+1 [ 𝒑𝑖+1 ∉ O𝑖+1] ≥ 1 − 𝜖 . (7.10)

While probabilistic obstacle avoidance on average provides weaker safety guaran-
tees, it is worth highlighting that the proposed framework can provide provable
probabilistic guarantees for the likelihood of the ego vehicle avoiding an obstacle
without making any assumptions about the obstacle’s dynamics or intentions, rely-
ing solely on noisy position measurements. In addition, the probability statements
(7.8),(7.9), and (7.10) can be extended in the presence of multiple moving obstacles
where the true obstacles occupied unsafe set O𝑡+1 and predicted unsafe set O𝜖

𝑖+1
became the unions of the respective sets for all obstacles.

Lastly, a motion planner is constructed that can generate safe maneuvers for the ego
vehicle while satisfying the identified probabilistic obstacle avoidance constraints,
the result of Problem 7.
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Problem 8. [Probabilistic Safe Motion Planning] Let the system dynamics be (7.1)-
(7.2). Suppose there exists a discrete-time position reference trajectory 𝒑ref

𝑡 , ∀𝑡 ∈
Z𝑛ℎ1 where 𝑛ℎ ∈ Z>0 is the length of the horizon, convex state constraintsD𝒙 ⊆ R𝑛𝒙 ,
convex input constraintsD𝒖 ⊆ R𝑛𝒖 , and a convex stage cost L𝑖 : R𝑛𝒙 ×R𝑛𝒖 → R≥0

of the form
L𝑖 = ( 𝒑𝑟𝑒 𝑓𝑖

− 𝒑𝑖)𝑇𝑄( 𝒑
𝑟𝑒 𝑓

𝑖
− 𝒑𝑖) + 𝒖𝑇𝑖 𝑅𝒖𝑖,

where matrices 𝑄 and 𝑅 are positive-definite. Suppose a total of 𝑛obs spherical
obstacles are present in the environment and an ego vehicle has current position 𝒑𝑡 .
Given a risk tolerance 𝜖 ∈ (0, 1], the problem objective is to compute a receding
horizon controller {𝒖∗}𝑛ℎ1 that minimizes

∑𝑛ℎ
𝑖=1 L𝑡+𝑖 while the satisfying state, input,

and probabilistic obstacle avoidance on average in finite time (7.10).

7.2 Horizon Trajectory Predictor
Let noisy observable obstacle positions be {𝒐̂ 𝑗

𝑘
}𝑡
𝑘=0, where the subscript 𝑗 is the

obstacle index and the subscript 𝑘 is the time time index. 2 The objective, viewed
from the perspective of the Koopman operator, is to derive a linear model that
characterizes the evolution of obstacle positions over time. To achieve this, a
variant dynamic mode decomposition (DMD) is proposed to numerically extract the
obstacle model. See Fig. 7.2 as an overview of the horizon predictor.

Time-delay Embedding
In theory, with ample data, computational resources, and knowledge of true eigen-
functions, a lifted Koopman operator 𝐴𝑜 ∈ R∞×∞ can be calculated for any obstacle
that is time-invariant and describes the time-evolution of the system observables.
However, it will be both unattainable and unpractical in a real-time obstacle avoid-
ance setting. Instead, a finite-dimensional approximation of 𝐴𝑜𝑡 ∈ R𝑛𝑙×𝑛𝑙 is desri-
able, where 𝑛𝑙 << ∞, which might be time-varying (time indicated by its subscript
𝑡) linear matrix due to finite-rank truncation. Specifically, the following linear
time-varying input-output model with additive process and measurement noises is
employed to describe the unknown obstacle closed-loop dynamic:

𝒉𝑡+1 = 𝐴𝑜𝑡 𝒉𝑡 + 𝒘𝑜𝑡 , (7.11)

𝒐𝑡 = 𝐶
𝑜𝒉𝑡 + 𝝂𝑜𝑡 , (7.12)

where 𝒉𝑡 ∈ R𝑛𝑙 represents the lifted states of the obstacle at time 𝑡, the additive error
𝝎𝑜
𝑡 ∈ R𝑛𝑙 is a model discrepancy from finite-dimensional truncation, the matrix

2For the rest of this section, the superscript 𝑗 will be dropped since the horizon trajectory
predictor is applied to each obstacles separately.
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𝐶𝑜 ∈ R3×𝑛𝑙 is some constant projection matrix that maps the lifted states to the
obstacle position’s current position, and 𝝂𝑜𝑡 ∈ R3 represents a time-varying additive
measurement noise in the obstacle position. To be explicit, the following assumption
is made regarding the time-delay embedded system behavior.

Assumption 7. The time-varying propagator 𝐴𝑜𝑡 ∈ R𝐿×𝐿 for a time delay-embedded
lifted state 𝒉 ∈ R𝐿 satisfying 𝒉𝑡+1 = 𝐴𝑜𝑡 𝒉𝑡 + 𝝎𝑡 has constant rank 𝑟 ≤ 𝐿 for all 𝑡.
Furthermore, the rank of

∏𝑡
𝑖=0 𝐴

𝑜
𝑘

is 𝑟 for all 𝑡 →∞.

Without assuming the knowledge of 𝑟, by picking a sufficiently large 𝐿, it is critical
to identify 𝑟 such that key spatial-temporal modes are captured.

Time-delay embedding, a classical technique [66] for dealing with partial state in-
formation, is applied to the obstacle position measurements to construct the lifted
states 𝒉𝑡 from position observables. Recent connections between time-delay em-
bedding and the Koopman frameworks [100], [187], [194]–[196] have revealed that
the time-delay embedding representation of state trajectories can serve as a universal
eigenfunction for constructing Koopman operators for autonomous systems. Fur-
thermore, the spectral decomposition of time-delay coordinates has been explored
in other fields, such as Eigensystem Realization Algorithms ([197]) and Singular
Spectrum Analysis ([87], [198]).

Hankel Embedding
Introducing a 𝐿-delay embedding vector at time 𝑡 using the obstacle 𝑥 positions
using the most recent 𝐿 observables 𝒉𝑥,𝐿𝑡 ≜ [𝑥𝑡−𝐿+1, 𝑥𝑡−𝐿+2, · · · , 𝑥𝑡]𝑇 ∈ R𝐿 . The
superscript identifier 𝑥 denotes that the noisy 𝑥 observables are used for constructing
the delay embedding vector. Superscript 𝐿 denotes the embedding time length or
window. Subscript 𝑡 denotes the time instance of the most recent observable used
in the construction of the embedding vector. By stacking time-delay embedded
vectors horizontally with increasing 𝑡, the 𝑥 position 𝐿-embedding Hankel matrix
𝐻
𝑥,𝐿,𝑁
𝑡 ∈ R𝐿×𝑁 can be similarly constructed using the most recent 𝑁 measurements,

where 𝑁 ≥ 𝐿, as:

𝐻
𝑥,𝐿,𝑁
𝑡 =

[
𝒉𝑥,𝐿
𝑡−𝑁+1 𝒉𝑥,𝐿

𝑡−𝑁+2 · · · 𝒉𝑥,𝐿𝑡 .

]
. (7.13)

Repeating patterns in the Hankel matrix represent underlying trends and oscil-
lations which can be extracted from performing Singular Value Decomposition,
𝐻
𝑥,𝐿,𝑁
𝑡 = 𝑈Σ𝑉∗. Matrix 𝑈 =

[
𝝁𝐻1 , 𝝁

2
𝐻
, . . . , 𝝁𝐻

𝐿

]
∈ R𝐿×𝐿 , is a unitary matrix



110

Figure 7.2: Illustration of the proposed data-driven horizon predictor in Section 7.2 for
intention unknown dynamic obstacles. With only noisy past position measurements, a
linear time-varying model is extracted online for making obstacle position forecasts. The
data-driven obstacle model will improve in fidelity and performance as more obstacle
measurements are accumulated. Reaching data threshold 𝑡1 = 2𝐿 − 1 allows minimum
time-delay embedding and model reduction. After reaching threshold 𝑡2 = 𝐿2, optimal
signal and noise separation are available for higher fidelity model reduction and accuracy
forecasts.

comprises of the spatial empirical orthogonal functions of the Hankel matrix, and
𝑉 =

[
𝝂1
𝐻
, 𝝂2
𝐻
, . . . , 𝝂𝑁

𝐻

]
∈ R𝑁×𝑁 is comprised of the temporal modes. The magni-

tude of the singular values 𝜎𝑖 ∈ R, for 𝑖 ∈ Z𝐿−1
0 , indicates the magnitude of the

spatial-temporal mode 𝝁𝐻
𝑖
𝝂𝑇
𝑖
.

Definition 12. The dehankel function 𝐷𝐻 : R𝐿×𝑁 × Z+ × Z+ → R𝑁 𝑓−𝑁𝑖 is a map
that transforms time-delay embedded Hankel matrices into the original time signal
from time index 𝑁𝑖 ∈ Z+ to 𝑁 𝑓 ∈ Z+ where 0 ≤ 𝑁𝑖 < 𝑁 𝑓 ≤ 𝑡. Mathematically, the
𝑖𝑡ℎ element of the 𝒉

𝑥,𝑁 𝑓−𝑁𝑖

𝑁 𝑓
= 𝐷𝐻 (𝐻𝑥,𝐿,𝑁𝑡 , 𝑁𝑖, 𝑁 𝑓 ) is defined as:

[
𝒉
𝑥,𝑁 𝑓−𝑁𝑖

𝑁 𝑓

]
𝑖
=

∑
( 𝑗 ,𝑘)∈D𝐻,𝑖

[𝐻𝑥,𝐿,𝑁
𝑁 𝑓
] 𝑗 ,𝑘

|D𝑖
𝐻
|

(7.14)

where the index set D𝑖
𝐻
≜ {(𝑙, 𝑛) : 𝑙 + 𝑛 = |D𝑖

𝐻
|, 𝑙 ∈ Z𝐿−1

0 , 𝑛 ∈ Z𝑁−1
0 } is the column

and row index corresponds to the 𝑖𝑡ℎ secondary diagonals of the operated Hankel
matrix, and |D𝑖

𝐻
| denotes the number of elements in set D𝑖

𝐻
.

If a matrix has minor variations in its secondary diagonals (not an exact Hankel
matrix), the dehankel function retrieves the time series signal in which its constructed
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𝐿−embedding Hankel matrix is closest to [𝐻𝑥,𝐿,𝑁𝑡 ] 𝑗 ,𝑘 with respect to the Frobenius
norm. The proof can be found in [87].

As more obstacle position measurements are acquired over time, the same-sized
Hankel matrix can be similarly constructed with the most recent 𝑁 measurements
denoted as 𝐻𝑥,𝐿,𝑁𝑡 for the 𝑥 positions at time 𝑡. Hankel matrices are commonly
used in system identification and signal processing to isolate time series data by
frequency modes which is exploited to obtain the time-varying propagator matrix
𝐴𝑜𝑡 in Eqn. (7.11).

Page Matrix and Denoising
A variant of Hankel matrices, the Page matrix is an excellent tool for noise filtering
[199], which is employed in this framework to isolate the true obstacle positions
from the unknown measurement noises. Unlike the Hankel matrix where each
adjacent column contains 𝐿 − 1 repeated entries, Page matrices are constructed as
follows:

𝑃
𝑥,𝐿,𝑇
𝑡 =

[
𝒉𝑥,𝐿
𝑡−(𝑇−1)𝐿 𝒉𝑥,𝐿

𝑡−(𝑇−2)𝐿 · · · 𝒉𝑥,𝐿𝑡

]
∈ R𝐿×𝑇

which is constructed with the most recent 𝑇𝐿 measurements. Suppose the most
recent 𝑇𝐿 true obstacle 𝑥 position measurements are available where 𝑇 ≥ 𝐿 which
is used to construct to Page matrix 𝑃

𝑥,𝐿,𝑇
𝑡 ∈ R𝐿×𝑇 . The matrix 𝑊 𝐿,𝑇

𝑡 ∈ R𝐿×𝑇

is a noise matrix with identically and independently distributed (i.i.d.), zero-mean
entries and unit variance and𝜎𝑥 ∈ R≥0 is the unknown noise level. In this case, Page
matrices composed built from time series noisy measurements can be decomposed
as

𝑃
𝑥,𝐿,𝑇
𝑡 = 𝑃

𝑥,𝐿,𝑇
𝑡 + 𝜎𝑥𝑊 𝐿,𝑇

𝑡 . (7.15)

Since page matrices do not have repeated entries of the same time series observ-
ables, results from random matrix theory can be leveraged to separate signal from
noise. Specifically, the work by Gavish and Donoho [200] provides an optimal hard
threshold framework to recover low-rank matrix (in this case 𝑃𝑥,𝐿,𝑇𝑡 ) from noisy data
Page matrix 𝑃𝑥,𝐿,𝑇𝑡 ). By applying Singular Value Decomposition, the measurement
page matrix can be decomposed as

𝑃
𝑥,𝐿,𝑇
𝑡 =

𝐿∑︁
𝑖=1

𝑠𝑃𝑖 𝝁
𝑃
𝑖 (𝝂𝑃𝑖 )𝑇 , (7.16)

where 𝝁𝑃
𝑡,𝑖
∈ R𝐿 and 𝝂𝑃

𝑡,𝑖
∈ R𝑇 , for 𝑖 = {1, · · · , 𝐿} are the left and right singular

vectors of 𝑃𝑥,𝐿,𝑇𝑡 corresponding to the singular value 𝑠𝑃
𝑡,𝑖
∈ R≥0 and 𝑠𝑃

𝑡,𝑖
≤ 𝑠𝑃

𝑡,𝑖−1
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for all 𝑖 ∈ Z𝐿−1
2 . To isolate the true single matrix 𝑃𝑥,𝐿,𝑇𝑡 , the following problem is

considered: Determine the optimal SVHT value 𝜏∗
𝑃
∈ {𝑠𝑃1 , · · · , 𝑠

𝑃
𝐿
} and define the

𝜏𝑃-threshold Page matrix as

𝑃
𝑥,𝐿,𝑇
𝑡,𝜏𝑥

=

𝐿∑︁
𝑖=1

𝑠𝑃𝑖 1𝑠𝑃
𝑖
≥𝜏∗

𝑃
𝝁𝑃𝑖 (𝝂𝑃𝑖 )𝑇 (7.17)

that minimizes the following cost, the mean square error (MSE) relative to the true
signal Page matrix

𝜏∗𝑃 = min
𝜏𝑥
∥𝑃𝑥,𝐿,𝑇𝑡,𝜏𝑥

− 𝑃𝑥,𝑇,𝐿𝑡 ∥2𝐹

= min
𝜏𝑥

𝜏𝑥∑︁
𝑖=1

𝜏𝑥∑︁
𝑗=1

((
𝑃
𝑥,𝑇,𝐿
𝑡

)
𝑖, 𝑗
−

(
𝑃
𝑥,𝑇,𝐿
𝑡

)
𝑖, 𝑗

)2
,

where the expression (𝐴)𝑖, 𝑗 for matrix 𝐴 means the (𝑖, 𝑗)𝑡ℎ entry of 𝐴. Adapting
from the result in [200], for the case of 𝑇 = 𝐿 where the Page matrix (7.15) is a
square 𝐿-by-𝐿 matrix, the optimal singular value threshold 𝜏∗

𝑃
with unknown noise

level can be approximated as:

𝜏∗𝑃 ≈ 2.858 · 𝑠𝑃⌊𝐿/2⌋ (7.18)

where 𝑠𝑃⌊𝐿/2⌋ is the median singular value of the perturbed matrix 𝑃
𝑥,𝐿,𝐿
𝑡 . The

unknown noise level 𝜎𝑥 can be also approximated from the hard singular value
threshold as

𝜎𝑥 ≈
𝜏∗
𝑃√
𝐿
. (7.19)

In summary, the singular value threshold 𝜏∗
𝑃

from (7.18) separates the Page matrix
parts the desired signal from noise,

𝑃
𝑥,𝐿,𝐿
𝑡 =

𝑛𝑥∑︁
𝑖=1

𝑠𝑃𝑖 𝝁
𝑃
𝑖 (𝝂𝑃𝑖 )𝑇︸            ︷︷            ︸

≈ 𝑃𝑥,𝐿,𝐿
𝑡 =signal

+
𝐿∑︁

𝑖=𝑛𝑥+1
𝑠𝑃𝑖 𝝁

𝑃
𝑖 (𝝂𝑃𝑖 )𝑇︸               ︷︷               ︸

≈ 𝜎 𝑥̂𝑊
𝐿,𝐿
𝑡 =noise

, (7.20)

where 𝑛𝑥 is the index of smallest singular value of 𝑃𝑥,𝐿,𝐿𝑡 that satisfies 𝑠𝑛𝑥 ≥ 𝜏∗𝑥 .

For the case where 𝑇 > 𝐿 (the optimal singular value hard thresholding for non-
square matrices), the approximate optimal threshold when the noise level is provided
is a function of 𝑇/𝐿. For this chapter, only the 𝑇 = 𝐿 case is considered since it
requires the least amount of data given an embedding length 𝐿 to begin the denoising
process.
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Further, the 𝐿−embedding Hankel and Page matrices over the same time-series
signals share the same rank. The optimal hard singular value threshold index 𝑛𝑥
also indicated the rank of the 𝐿−embedding Hankel matrix constructed over the
same time-series signal.

From a linear system theory point of view, Hankel and Page matrix over the same
data length can be built as

𝐻
𝑥,𝐿,𝑇
𝑡 =

[
𝒉𝑥,𝐿
𝑡−𝑇+1 𝐴

𝑥,𝑜

𝑡−𝑇+1𝒉
𝑥,𝐿

𝑡−𝑇+1 . . .
∏𝑇−1
𝑖=0 𝐴

𝑥,𝑜
𝑡−𝑖𝒉

𝑥,𝐿

𝑡−𝑇+1

]
=

[
𝐼 𝐴

𝑥,𝑜

𝑡−𝑇+1 . . .
∏𝑇−1
𝑖=0 𝐴

𝑥,𝑜
𝑡−𝑖

]
︸                                 ︷︷                                 ︸

≜𝐿𝐻∈R𝐿×𝑇𝐿

diag(𝒉𝑥,𝐿
𝑡−𝑇+1, . . . , 𝒉

𝑥,𝐿

𝑡−𝑇+1)︸                          ︷︷                          ︸
≜𝑅𝐻∈R𝑇𝐿×𝑇

,

𝑃
𝑥,𝐿,𝑇𝐿
𝑡 =

[
𝒉𝑥,𝐿
𝑡−(𝑇−1)𝐿

∏𝐿−1
𝑖=0 𝐴

𝑥,𝑜
𝑡−𝑖𝒉

𝑥,𝐿

𝑡−(𝑇−1)𝐿 . . .
∏(𝑇−1)𝐿−1
𝑖=0 𝐴

𝑥,𝑜
𝑡−𝑖𝒉

𝑥,𝐿

𝑡−(𝑇−1)𝐿

]
=

[
𝐼

∏𝐿−1
𝑖=0 𝐴

𝑥,𝑜
𝑡−𝑖 . . .

∏(𝑇−1)𝐿−1
𝑖=0 𝐴

𝑥,𝑜
𝑡−𝑖

]
︸                                            ︷︷                                            ︸

≜𝐿𝑃∈R𝐿×𝑇𝐿

diag(𝒉𝑥,𝐿
𝑡−(𝑇−1)𝐿 , . . . , 𝒉

𝑥,𝐿

𝑡−(𝑇−1)𝐿)︸                                  ︷︷                                  ︸
𝑅𝑃∈R𝑇𝐿×𝑇

.

Under the assumption 7 with lifted state 𝒉𝑥,𝐿
𝑡−𝑇+1 =∈ R𝐿 where the linear propagator

rank 𝑟 ≤ 𝐿, the stacked matrices 𝐿𝐻 and 𝐿𝑃 has rank 𝑟. By construction, 𝑅𝐻 and 𝑅𝑃
always has rank 𝐿 when 𝑇 ≥ 𝐿. By matrix rank properties, the following conditions
hold.

rank(𝐻𝑥,𝐿,𝑇𝑡 ) = rank(𝐿𝐻𝑅𝐻) = rank(𝐿𝐻) = 𝑟
rank(𝑃𝑥,𝐿,𝑇𝑡 ) = rank(𝐿𝑃𝑅𝑃) = rank(𝐿𝑃) = 𝑟.

In summary, the 𝐿− embedding Hankel and Page matrices over the same time-series
signals share the same rank. The optimal hard singular value threshold index 𝑛𝑥 also
indicated the rank of the 𝐿− embedding Hankel matrix constructed over the same
time-series signal.

Data-Driven Transition Matrix
The time-delay embedded Hankel matrices are used to compute the data-driven
state-transition matrix 𝐴𝑥,𝑜𝑡 ∈ R𝐿×𝐿 in (7.11) for lifted observable state 𝒉𝑥,𝐿𝑡 . Since
both Hankel and Page construction share the same rank, the Page matrix can be
employed to recover the rank of the system, and the Hankel matrices for separating
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the signal from noise. Explicitly, a Hankel matrix can be separated as

𝐻
𝑥,𝐿,𝑇
𝑡 =

𝑛𝑥∑︁
𝑖=1

𝜎𝐻𝑖 𝝁𝐻𝑖

(
𝝂𝐻𝑖

)𝑇
︸               ︷︷               ︸

≈ 𝐻𝑥,𝐿,𝑇
𝑡

+
𝐿∑︁

𝜌=𝑛𝑥+1
𝜎𝐻𝑖 𝝁𝐻𝑖

(
𝝂𝐻𝑖

)𝑇
︸                   ︷︷                   ︸

≈Δ𝐻 𝑥̂,𝐿,𝑇
𝑡

. (7.21)

Applying the dehankel function on 𝐻𝑥,𝐿,𝑇𝑡 , the denoised x-position measurement
can be computed as

𝒉𝑥,𝐿
𝑡−1 = 𝐷𝐻 (𝐻𝑥,𝐿,𝑇𝑡 , 𝑡 − 𝐿, 𝑡 − 1),
𝒉𝑥,𝐿𝑡 = 𝐷𝐻 (𝐻𝑥,𝐿,𝑇𝑡 , 𝑡 − 𝐿 + 1, 𝑡),

at time instance 𝑡 after receiving an obstacle position update. Aiming to recover
equation (7.11) with denoise state 𝒉𝑥,𝐿

𝑡−1 and 𝒉𝑥,𝐿𝑡 , the state transition matrix can be
extracted using pseudoinverse:

𝐴
𝑥,𝑜
𝑡 = 𝒉𝑥,𝐿𝑡 (𝒉

𝑥,𝐿

𝑡−1)
† ∈ R𝐿×𝐿 . (7.22)

The desired obstacle position update law (7.11)-(7.12) using time-delay embedding
can be constructed as the following:

𝒉𝑥,𝐿
𝑡+1 = 𝐴

𝑥,𝑜
𝑡 𝒉𝑥,𝐿𝑡 + 𝝎𝑡 (7.23)

𝑥𝑜𝑡+1 =

[
0 · · · 0 1

]
︸             ︷︷             ︸

𝐶

𝒉𝑥,𝐿
𝑡+1 + 𝑣𝑡+1 (7.24)

where 𝒘𝑡 ∈ R𝐿 and 𝑣𝑡+1 ∈ R are the process and observation noises which are both
assumed to be zero mean possibly multivariate Gaussian noises with covariance
W𝑡 and V𝑡 . The constant vector 𝐶 ∈ R1×𝐿 projects the lifted states to the position
observable to obtain future position predictions. The data-driven linear time-varying
update equation (7.23) and (7.24) of an arbitrary obstacle is the proposed solution
to Problem 5.

It is important to note that (7.23)-(7.24) still contains process noise and measurement
noise despite the lifted states being denoised. Such engineering decision is made
to anticipate insufficient denoising, possible poor choices of embedding length 𝐿
and time window 𝑇 , discretization uncertainties, and the difference between the
consecutive state transition matrix 𝐴𝑥,𝑜

𝑡+1 and 𝐴𝑥,𝑜𝑡 resulted from extrapolation errors.

Remark 7. An alternative to (7.22) in obtaining 𝐴𝑥, 𝑗𝑡 using two consecutive denoised
Hankel matrix

𝐴
𝑥,𝑜
𝑡 = 𝐻

𝑥,𝐿,𝑇
𝑡 (𝐻𝑥,𝐿,𝑇

𝑡−1 )
† ∈ R𝐿×𝐿 (7.25)
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which is less sensitive to insufficient signal noise separation and less likely to have
ill-conditioned matrix inversion problems. However, operation (7.25) is numerically
expensive and can ignore sudden dynamic changes since it is performing a numerical
averaging of 𝐴𝑥,𝑜𝑡 for 𝑡 ∈ Z𝑡−𝑇𝐿:𝑡−1.

Further, the optimal singular value noise and signal separation results can also
provide estimates of the process and measurement noise covariance. Apply the
dehankel function, the separated measurement noise becomes

𝒉𝛿𝑥,𝑇𝐿𝑡 = 𝐷𝐻 (Δ𝐻𝑥,𝐿,𝑇𝑡 , 𝑡 − 𝑇𝐿 + 1, 𝑡).

Further, the process and measurement noise covariance matrices can be approxi-
mated conservatively based on the empirical variance of the separated measurement
noise as

W𝑥
𝑡 ≈ diag((𝜎𝑥)2, . . . , (𝜎𝑥)2), V𝑥

𝑡 ≈ (𝜎𝑥)2, (7.26)

where 𝜎𝑥, 𝑗 , the unknown white noise level can be estimated using (7.19). The mean
of the noise vector is omitted since the measurement noise is assumed to have zero
mean. In practice, the mean of the separated measurement noise is not necessarily
zero when directly computed the mean of vector 𝒉𝛿𝑥0:𝑇𝐿−1 due to insufficient signal
and noise separation or insufficient number of samples to infer the true mean.
Nevertheless, by setting the mean to zero, the estimated process and measurement
noise covariance is more conservative than the true covariance yielding which is
desirable in safety-critical applications.

7.3 Data-Driven Heuristic Unsafe Set
The recent work [201] establishes a connection between the Hankel interpretation
of the Koopman operator and with Frenet-Serret frame from differential geometry.
In particular, the authors showed that the linear model extracted from time-delay
embedding corresponds to the intrinsic curvatures in the Frenet-Serret frame. Fol-
lowing this idea, one can also interpret the matrix 𝐴

𝑥, 𝑗
𝑡 as the Jacobian matrix of

the nonlinear system dynamics using a Frenet-Serret coordinate transformation.
With such geometry interpretation in mind, a standard nonlinear state estimation
technique, the Extended Kalman Filter (EKF), is formulated to estimate the uncer-
tainty associated with the obstacle predictions as new measurements are acquired
in streaming data. To clarify notation, indicator ·̃ is used for predicted (estimated)
values (tilde) and ·̂ for the raw measured data (hat).
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Step 1: Horizon Predictions:

𝒉̃
𝑥,𝐿

𝑡 |𝑡−1 = 𝐴
𝑥,𝑜

𝑡−1𝒉
𝑥,𝐿

𝑡−1|𝑡−1 (7.27)

is the state prediction where the state covariance matrix is updated as

Σ̃𝑥
𝑡 |𝑡−1 = 𝐴

𝑥,𝑜

𝑡−1Σ
𝑥
𝑡−1|𝑡−1(𝐴

𝑥,𝑜

𝑡−1)
𝑇 +W𝑥

𝑡 . (7.28)

For all 𝑖 ∈ {2, · · · , 𝑛𝑝} where 𝑛𝑝 is the predictor horizon, the future states and
covariance are predicted as

𝒉̃
𝑥,𝐿

𝑡+𝑖−1|𝑡 = 𝐴
𝑥,𝑜

𝑡−1 𝒉̃
𝑥,𝐿

𝑡+𝑖−2
��𝑡−1

, (7.29)

Σ̃𝑥

𝑡+𝑖−1
��𝑡−1

= 𝐴𝑥𝑡−1Σ̃
𝑥

𝑡+𝑖−2
��𝑡−1
(𝐴𝑥𝑡−1)

𝑇 +W𝑥
𝑡 , (7.30)

using the most recent state transition matrix available at time 𝑡 − 1 and the predicted
states at the previous time instance.

Step 2: Next-step measurement update:

𝑒𝑥𝑡 = 𝑥𝑡 − 𝐶 𝒉̃
𝑥,𝐿

𝑡 |𝑡−1 (7.31)

𝑆𝑥𝑡 = 𝐶 Σ̃𝑥
𝑡 |𝑡−1𝐶

𝑇 + V𝑥
𝑡 (7.32)

𝐾𝑥𝑡 = Σ̃𝑥
𝑡 |𝑡−1𝐶

𝑇 (𝑆𝑥𝑡 )−1 (7.33)

𝒉𝑥,𝐿
𝑡 |𝑡 = 𝒉̃

𝑥,𝐿

𝑡 |𝑡−1 + 𝐾𝑥𝑡 𝑒𝑥𝑡 (7.34)

Σ𝑥
𝑡 |𝑡 = (𝐼 − 𝐾

𝑥
𝑡 𝐶)Σ̃𝑥𝑡 |𝑡−1 (7.35)

where 𝐾𝑥𝑡 is the optimal Kalman gain that minimizes the measurement residual error
𝑒𝑥𝑡 . The term 𝑆𝑥𝑡 is the measurement residual covariance.

The predicted obstacle positions at future time 𝑡 + 𝑖 given current time 𝑡 is a multi-
variate random variable described by the following first and second moment:

𝒐̃𝑡+𝑖 ∼

©­­­­­­­­­­«


𝜇𝑥
𝑡+𝑖 |𝑡
𝜇
𝑦

𝑡+𝑖 |𝑡
𝜇𝑧
𝑡+𝑖 |𝑡

︸  ︷︷  ︸
≜𝝁𝑡+𝑖 |𝑡

,


Σ̃𝑥
𝑡+𝑖 |𝑡 0 0
0 Σ̃

𝑦

𝑡+𝑖 |𝑡 0
0 0 Σ̃𝑧

𝑡+𝑖 |𝑡

︸                     ︷︷                     ︸
≜Σ𝑡+𝑖 |𝑡

ª®®®®®®®®®®¬
(7.36)

for all 𝑖 ∈ Z1:𝑛𝑝 where 𝜇𝑥
𝑡+𝑖 |𝑡 , 𝜇

𝑦

𝑡+𝑖 |𝑡 , and 𝜇𝑧
𝑡+𝑖 |𝑡 are the predicted obstacle’s 𝑥, 𝑦, 𝑧

positions which can be extracted as the following 𝜇𝑥
𝑡+𝑖 |𝑡 = 𝐶 𝒉̃

𝑥,𝐿

𝑡+𝑖 |𝑡 . Similarly, Σ̃𝑥
𝑡+𝑖 |𝑡 ,
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Algorithm 6: Prediction Algorithms (Per Obstacle)
Data: Real-time Obstacle center position measurements obtained at time

instance 𝑡 under 𝑓𝑠 Hz frequency 𝑥𝑡 , 𝑦̂𝑡 , 𝑧𝑡 .
User-defined constants: 𝑛𝑝, 𝐿.

Result: Forecast predicted obstacle distribution {𝝁𝑡+𝑖 |𝑡}
𝑛𝑝

𝑖=1, {Σ𝑡+𝑖 |𝑡}
𝑛𝑝

𝑖=1
while Task is Not Complete do

for Observables 𝑜 = {𝑥, 𝑦, 𝑧} do
Initialized 𝑛𝑜 = −1.
while 𝑡 ≥ 2𝐿 do

Construct 𝐿−embedding lifting vector 𝒉𝑜,𝐿𝑡 and Hankel Matrices
𝐻
𝑜,𝐿,𝐿
𝑡 with the latest 2𝐿 observables.

if 𝑡 == 𝐿2 then
Construct 𝐿−embedding Page Matrix 𝑃𝑜,𝐿,𝐿𝑡 and use (7.18) to
obtain 𝜏∗𝑜 then 𝑛𝑜.

end
if 𝑛𝑜 == −1 then

Compute 𝐴𝑜𝑡 using consecutive noisy lifted states 𝒉𝑜,𝐿𝑡 and 𝒉𝑜,𝐿
𝑡−1

following (7.22).
end
else

Perform SVD and signal noise separation of noisy Hankel
matrix 𝐻𝑜,𝐿,𝐿

𝑡 following (7.21) to obtain matrices 𝐻𝑜,𝐿,𝐿
𝑡 and

𝐻
𝛿𝑜,𝐿,𝐿
𝑡 .

Apply dehankel operator (7.14) to compute denoised lifted
states 𝒉𝑜,𝐿𝑡 with 𝑁𝑖 = 𝑡 − 𝐿 + 1 and 𝑁 𝑓 = 𝑡 as well as 𝒉𝑜,𝐿

𝑡−1 with
𝑁𝑖 = 𝑡 − 𝐿 and 𝑁 𝑓 = 𝑡 − 1.

Compute 𝐴𝑜𝑡 using (7.22).
ComputeW𝑡 andV𝑡 using (7.26)

end
end
Following Steps 1 and 2 to obtain 𝜇𝑜

𝑡+𝑖 |𝑡 and Σ𝑜
𝑡+𝑖 |𝑡 for 𝑖 ∈ Z𝑛𝑝1 .

end
end

Σ̃
𝑦

𝑡+𝑖 |𝑡 , and Σ̃𝑧
𝑡+𝑖 |𝑡 are the predicted 𝑥, 𝑦, 𝑧 position covariance which can be found by

setting Σ𝑥
𝑡+𝑖 |𝑡 = Σ̃𝑥

𝑡+𝑖 |𝑡 .

It is important to recognize that the assumption that process and measurement noise
𝒘𝑡 and 𝑣𝑡 are zero-mean Gaussian noises is not necessarily true for all obstacles. The
covariance structure in (7.36) also assumes 𝑥, 𝑦, 𝑧 measurements are independent.
The authors fully acknowledge the limitations of the predicted obstacle statistics
and will denote them as “heuristic statistics” to differentiate from later results that
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Figure 7.3: Illustration of the construction of the Heuristic Unsafe Set. Using the data-driven
obstacle model, a companion Kalman filter is proposed to make heuristic obstacle prediction
estimates. Assume the data-driven time-varying system is perturbed by Gaussian process
and measurement noises, horizon distributional forecasts are made as N(𝝁𝑡+𝑖 |𝑡 , Σ𝑡+𝑖 |𝑡 ) as
described in (7.36). Notation schematics are provided as clarification.

remove these assumptions.

Obstacle Observation Window
The prediction algorithm 6 has two key timings (2𝐿,𝑇𝐿) based on the number of
obstacle observations available, referred to as the observation window. For the
case 𝑡 < 2𝐿, the observation window is shorter than the activation threshold of the
proposed predictor. To provide a backup strategy, the heuristic backup distributions
are chosen to be

𝒐̃𝑡+𝑖 ∼
©­­«

𝑥𝑡

𝑦̂𝑡

𝑧𝑡

 , 𝛼𝑠𝑎 𝑓 𝑒𝑒
𝑖Δ𝑡 𝐼3×3

ª®®¬ , ∀𝑖 ∈ Z1:𝑛𝑝 . (7.37)

where 𝛼𝑠𝑎 𝑓 𝑒 ∈ R>0 is a linear safety factor making the unsafe set grow exponentially
as the prediction horizon grows, and Δ𝑡 is the planning time step. The back heuristic
unsafe sets (7.37) mimic the standard potential field approach with the dynamic
obstacles approximated to be stationary during the prediction horizon. By com-
pounding the uncertain radius, correlated to the covariance, the unsafe set expands
as longer predictions are made to promote safer obstacle-avoiding behavior until
more observations are acquired over time.

For the time window between 2𝐿 − 1 to 𝑇𝐿, the proposed algorithm has acquired
enough data to deduce the linear propagator 𝐴𝑥,𝑜𝑡 for making position predictions.
However, the limited observations are insufficient to construct the page matrix for
optimal denoising and rank reduction. Given the data-driven transition matrix can
be less accurate and lacks initialization to the process noise covariance, W𝑡 , and



119

measurement noise covariance,V𝑡 , a conservative initial process and measurement
noise covariance is recommended to formulate a more conservative heuristic unsafe
set. Once the number of observables exceeds the desired threshold𝑇𝐿, the proposed
algorithm will be able to perform optimal denoising as well as contracting the process
and measurement noise covariance to avoid being overly conservative.

Heuristic Unsafe Set
Given predicted obstacle position probability distributions (7.36) or (7.37), a de-
terministic unsafe set can be constructed given risk-tolerance 𝜖 using the quantile
function of multivariate normal distributions. Let QN ,1−𝜖 denote the (1 − 𝜖) Quan-
tile Z-score of a normal Gaussian distribution with zero mean and unit standard
deviation. the obstacle heuristic unsafe set becomes

O𝜖
𝑡+𝑖 |𝑡 = {𝒐 ∈ R

3 |∥𝒐 − 𝝁𝑡+𝑖 |𝑡 ∥2 ≤ 𝑟𝜖𝑡+𝑖} (7.38)

where the heuristic unsafe set radius given 𝜖 ∈ (0, 1) is

𝑟𝜖𝑡+𝑖 = QN ,1−𝜖 max{
√︃
Σ𝑥
𝑡+𝑖 |𝑡 ,

√︃
Σ
𝑦

𝑡+𝑖 |𝑡 ,
√︃
Σ𝑧
𝑡+𝑖 |𝑡} (7.39)

for each 𝑖 ∈ Z1:𝑛𝑝 as illustrated in Fig. 7.3.

7.4 Conformal Unsafe Set
In Chapter 6, adaptive conformal prediction is applied to quantify the uncertainty
of arbitrary horizon predictor. In this work, a similar idea is borrowed to provide
one-step prediction uncertainty quantification of the uncalibrated predictor proposed
in Section 7.2, given dependent, time series obstacle position measurements.

The choice of nonconformity score is crucial which needs a metric that reflects pre-
dictor accuracy and the resulting conformity prediction set given user-defined risk
tolerance can be translated into obstacle-avoiding statements. Straightforwardly, the
Euclidean distance between the predicted obstacle position relative to the measure-
ments acquired can be used as the nonconformity score, mathematically

𝛽𝑡+1|𝑡 ≜ ∥𝝁𝑡+1|𝑡 − 𝒐̂𝑡+1∥2. (7.40)

Similarly, multi-step prediction nonconformity score 𝛽𝑡+𝑖 |𝑡 ≜ ∥𝝁𝑡+𝑖 |𝑡 − 𝒐̂𝑡+𝑖∥2 that
captures the prediction error at time 𝑡 made for future time steps 𝑖 ∈ Z𝑛𝑝1 . Intuitively,
a large nonconformity score indicates that the position prediction 𝝁𝑡+𝑖 |𝑡 is inaccurate
based on its measurement feedback, while a small score indicates an accurate
prediction.
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However, it is important to note that there are no obstacle position measurements
available for future measurements for time 𝑡 + 𝑖 given current time 𝑡. To address this
issue, recall time-lagged nonconformity score from Chapter 6:

𝛽𝑡 |𝑡−𝑖 = ∥𝝁𝑡 |𝑡−𝑖 − 𝒐̂𝑡 ∥2, ∀𝑖 ∈ Z𝑛𝑝1 (7.41)

which can be evaluated at time 𝑡 and applied to the update rule (2.12). This
nonconformity scores 𝛽𝑡 |𝑡−𝑖 are time-lagged in the sense that, at time 𝑡, the 𝑖 step-
ahead prediction error is calculated that was made 𝑖 time steps ago.

Naturally, in the time series prediction setting, nonconformity scores 𝛽𝑡+1|𝑡−𝑖 and
𝛽𝑡+1|𝑡− 𝑗 for 𝑖 ≠ 𝑗 are not independent and identically distributed. However, by adapt-
ing the prediction regions based on the performance of the multi-step predictions
using adaptive conformal prediction, on-average coverage guarantees can be made,
albeit weaker than the point-wise guarantees provided by conformal predictions.

For each time step 𝑡, a prediction-driven unsafe radius 𝜌𝜖
𝑡+1 is computed that is

associated by an update variable 𝜖𝑡+1 using update law (2.12). Using algorithm 7,
adaptive from [177], a spherical conformal unsafe set can be constructed for all
𝑡 > 𝑁𝑎𝑐𝑝 for every obstacle.

Theorem 8. [Adapted from [177], Theorem 3] Let 𝛾 be a learning rate, 𝜖0 ∈ (0, 1)
be an initial value for the recursion

𝜖𝑡+1 ≜ 𝜖𝑡 + 𝛾(𝜖 − 1∥𝝁𝑡 |𝑡−1−𝒐̂𝑡 ∥2>𝜌𝜖𝑡 ), (7.42)

where 𝜖 ∈ (0, 1) is the user-specific risk tolerance. Let 𝑇 be the number of times
that the recursion (7.42) is computed. For the one-step-ahead prediction errors, it
holds that

𝑏1 ≤
1
𝑇

𝑇−1∑︁
𝑡=0
P[∥𝝁𝑡+1|𝑡 − 𝒐̂𝑡+1∥2 ≤ 𝜌𝜖𝑡+1] ≤ 𝑏2 (7.43)

where 𝑏1 ≜ 1−𝜖− 𝜖0+𝛾
𝑇𝛾

, 𝑏2 ≜ 1−𝜖+ (1−𝜖0)+𝛾
𝑇𝛾

so that lim𝑇→∞ 𝑏1 = lim𝑇→∞ 𝑏2 = 1−𝜖 .

Proof. See Chapter 6.

However, a greedy learning rate (𝛾 > 1) is required for guaranteeing coverage but
a large learning rate can lead to the rapid expansion of the updated law (2.12) as
observed in the simulation results in Chapter 6. In the robotic application with
torque constraints, the sudden growth of a state constraint (obstacle avoidance) can
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lead to numerical infeasibilities. As a result, only single-step (immediate) prediction
region 𝜌𝜖

𝑡+1|𝑡 is considered for the next step forecasts using the horizon predictor. To
preserve safe obstacle avoidance guarantees, the conformal prediction of the unsafe
set is considered as the safety constraint in synthesizing the obstacle avoidance
controls strategy for 𝑡 + 1. For the remaining planning horizon, the heuristic unsafe
set is accounted for.

Algorithm 7: Conformal Unsafe Set (per Obstacle)
Data: User-defined failure probability 𝜖 , learning rates 𝛾, Obstacle’s one-step

position prediction 𝝁𝑡− 𝑗 |𝑡− 𝑗−1 from past predictors at time instance
𝑡 − 𝑗 − 1 where 𝑗 ∈ Z𝑁𝜏

0 , Obstacle current position measurement 𝒐̂𝑡 .
Result: Conformal Unsafe set O𝜖,𝑐

𝑡+1
while Task is not Complete do

Obtain latest obstacle measurements 𝒐̂𝑡 . Using horizon predictor
Algorithm 6 to predict obstacle position at 𝑡 + 1 noted as 𝝁𝑡+1|𝑡 .

for 𝑗 from 1 to 𝑁𝜏 do
# Compute ACP regions Use recursion (7.42) to compute 𝜖𝑡 ,
Update the nonconformity scores, 𝛽𝑡− 𝑗 |𝑡− 𝑗−1 = ∥𝝁𝑡−𝑖 |𝑡−𝑖−1 − 𝒐̂𝑡−𝑖∥2.
Compute index 𝑞𝑡− 𝑗 ←

⌈
(𝑁𝜏 + 1) (1 − 𝜖𝑡)

⌉
end
The one-step predicted unsafe set radius is 𝜌𝜖

𝑡+1 as the 𝑞𝑡ℎ smallest value of
list {𝛽𝑡 |𝑡−1, . . . , 𝛽𝑡−𝑁𝜏 |𝑡−𝑁𝜏−1}.

The conformal unsafe set can be constructed using (7.44).
end

Using the predicted unsafe set radius at time 𝑡 + 1 from Algorithm 7, the 1 − 𝜖
confidence conformal time-varying unsafe set becomes

O𝜖,𝑐
𝑡+1|𝑡 = {𝒐 ∈ R

3 |∥𝒐 − 𝝁𝑡+1|𝑡 ∥2 ≤ 𝜌𝜖𝑡+1}. (7.44)

Note, the conformal unsafe set O𝜖,𝑐
𝑡+1|𝑡 for time 𝑡 + 1 and the heuristic unsafe sets

{O𝜖
𝑡+𝑖 |𝑡}

𝑛𝑝

𝑖=2 made at time 𝑡 forms the prediction-driven unsafe set. Most importantly,
let 𝜖 ∈ (0, 1) be a risk tolerance, the conformal unsafe set exhibits the following
relation relative to the true unsafe set:

∀𝒐 ∈ O𝜖,𝑐
𝑡+1|𝑡 , P [𝒐 ∈ O𝑡+1] ≥ 1 − 𝜖, (7.45)

which is equivalent to the desired prediction unsafe set inequality (7.8). Therefore,
the conformal unsafe set (7.44) is a solution to Problem 6.

Based on the choice of the risk tolerance 𝜖 ∈ (0, 1), the case of 𝜖 → 0 means to
avoid the obstacle robustly at the cost of conservatism. The 𝜖 → 1 case is equivalent
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to only considering avoiding the predicted trajectory itself. However, the predicted
trajectory accuracy cannot be rigorously proved because of learned model uncer-
tainty due to insufficient data and lack of ground truth. Therefore, set predictions
are made which equips with statistical significance to provide probabilistic safety
guarantees in planning and control in later sections.

7.5 Prediction-Based MPC
Using the proposed data-driven horizon predictor (Algorithm 6), spherical heuristic
unsafe sets at future time instance {𝑡 + 𝑖}𝑛ℎ

𝑖=1 can be acquired given current time 𝑡 for
each obstacle. In addition, following Algorithm 7, a one-step conformal unsafe set
can be acquired for each obstacle that adapts in an online manner while removing the
heuristic assumptions made for formulating the heuristic unsafe sets. In this section,
the main planning algorithm is presented and analyzed which plans safe trajectories
for a prescribed risk-level 𝜖 , the solution to Problems 7 and 8. Based upon ideas from
finite-time optimal control, the proposed optimization-based planning algorithm is
efficiently reformulated into a quadratic program. In the presence of obstacles, the
safe set at time 𝑡, denoted as S𝑡 , being the complement set of the obstacle occupied
set, is defined using the ego vehicle current state 𝒙𝑡 as

S𝑡 = {𝒙𝑡 ∈ D𝒙 |𝑀𝒙𝑡 ∉ ∪𝑛𝑜𝑏𝑠𝑗=1 O
𝑗
𝑡 }. (7.46)

where O 𝑗𝑡 is the true occupied unsafe set by obstacle 𝑗 at time 𝑡 that is not unknown.
Using the proposed data-driven algorithms, a deterministic obstacle unsafe set pre-
diction given a risk-tolerance 𝜖 is made at time 𝑡 for the next time instance O𝜖,𝑐

𝑡+1|𝑡
using conformal prediction (Algorithm 7) for each obstacle. Since each obstacle’s
conformal predicted unsafe sets O𝜖,𝑐

𝑡+1 are spherical, its complement set is concave in
terms of ego vehicle positions. To leverage the efficiency of convex optimization,
the following lemma is introduced to reformulate concave probabilistic obstacle
avoidance constraints into an affine state constraint.

Lemma 5. At current time instance 𝑡, and under risk-tolerance 𝜖 , let the spherical
setO𝑡+1 be the true unsafe set for an obstacle at time 𝑖 for all 𝑖 ∈ Z𝑡𝑡0 where 𝑡−𝑡0 →∞.
The following set is

S𝜖𝑡+1 ≜ {𝒙𝑖+1 ∈ D𝒙
��� 1
𝑡 − 𝑡0

(
𝑡∑︁

𝑖=𝑡0+1
P[𝑀𝒙𝑖+1 ∈ O𝑖+1]

)
≤ 𝜖} (7.47)

an (1 − 𝜖) percent confidence average obstacle-free safe set3. Let 𝒙𝑖+1 ∈ D𝒙 be the
3If the ego vehicle state 𝒙𝑖 where 𝑖 ∈ Z𝑡

𝑡0+1 satisfying the above set, then the ego vehicle is 1 − 𝜖
probability obstacle avoidance on average by definition.
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nominal state at time 𝑖 + 1. Then, if for 𝑖 ∈ Z𝑡
𝑡0+1 the ego vehicle state 𝒙𝑖+1 satisfying

the following affine inequality constraint,

(𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖)𝑇 (𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖)
∥𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖∥2

≥ 𝜌𝜖𝑖+1, (7.48)

where 𝝁𝑖+1|𝑖 is the one-step obstacle prediction using horizon prediction using
Algorithm 6 and 𝜌𝜖

𝑖+1 is obtained by Algorithm 7, is sufficient for the ego vehicle to
guarantee 1 − 𝜖 probability obstacle avoidance.

Proof. Leveraging the result of theorem (8) with 𝑡 − 𝑡0 →∞where 𝑏1 = 𝑏2 = 1− 𝜖 ,
the following statement is true

1
𝑡 − 𝑡0

𝑡∑︁
𝑖=𝑡0+1

P
[
∥ 𝒐̂𝑖+1 − 𝝁𝑖+1|𝑖∥2 ≤ 𝜌𝜖𝑖+1

]
= 1 − 𝜖,

where 𝜌𝜖
𝑖+1 is the conformal unsafe set radius for the one-step prediction made at

time instance 𝑖 using algorithm 7. Then the complement to the conformal unsafe set
O𝜖,𝑐
𝑖+1 in R3, is equivalent to the desired safe set (7.47) using properties (7.45).

Geometrically speaking, the largest convex complement to a spherical set is a half-
space tangential to the spherical set. Exploiting this idea, the half-space constraint
is constructed, i.e. the convex safe set, by making a conservative approximation
of the separating tangent plane using past previous iteration results. Similar to the
sequential convexification reviewed in 2, the parameter 𝜃𝑖+1 is defined as the angle
between the vectors 𝒗𝑖+1 ≜ 𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖 and 𝒗𝑖+1 ≜ 𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖. Leveraging
the definition of the dot product, the following is true

∥𝒗𝑖+1∥ cos(𝜃𝑖+1) =
𝒗𝑇𝑖+1𝒗𝑖+1
∥𝒗𝑖+1∥2

. (7.49)

Since cos(𝜃𝑖+1) ≤ 1, by setting ∥𝒗𝑖+1∥ cos(𝜃𝑖+1) ≥ 𝜌𝜖
𝑖+1, then all 𝒙𝑖+1 ∈ D𝒙 the

following inequality relationship holds

∥𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖∥ ≥ 𝜌𝜖𝑖+1.

Therefore, enforcing affine constraint

(𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖)𝑇 (𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖) ≥ 𝜌𝜖𝑖+1∥𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖∥2,

∀𝑖 ∈ Z𝑡
𝑡0+1 where 𝑡 − 𝑡0 →∞ is a sufficient condition to set constraint (7.47).
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The nominal state 𝒙𝑖+1 can be obtained from previous solutions given at time 𝑖−1 as
the solution. Explicitly, the nominal state satisfies 𝒙𝑖+1 = 𝒙𝑖+1|𝑖 following standard
warm start rules, see Chapter 2 for more details.

Remark 8. In Lemma 5, the convex (affine) safe set given by inequality constraint
(7.48) is the largest possible convex safe set for all 𝒙𝑖+1 ∈ D𝒙 if ∥𝒙𝑖+1 − 𝒙𝑖+1∥ → 0
since cos 𝜃𝑖+1 → 1.

For real-time obstacle avoidance, the averaging sample 𝑡 − 𝑡0 → ∞, in lemma
5, implies the need for infinite time obstacle observations and averaging which is
unpractical. Therefore, the following Lemma is constructed, an extension of lemma
(5) to finite 𝑡 − 𝑡0 ∈ Z>0.

Lemma 6. At current time instance 𝑡, given a user-defined risk-level 𝜖 ∈ (0, 1], a
learning rate 𝛾, let 𝒙𝑖+1 ∈ D𝒙 be the nominal state at time 𝑖 + 1 for all 𝑖 ∈ Z𝑡

𝑡0+1.
Let 𝜖0 ∈ (0, 1) be an initial value for the recursion (7.42), and a finite 𝑡 − 𝑡0 be the
number of times that recursion (7.42) is computed where ⌈ 𝜖0+𝛾

𝛾𝜖
⌉ < 𝑡 − 𝑡0 ≤ 𝑡 + 1.

Consider an augmented risk-level

𝜖 = 𝜖 − 𝜖0 + 𝛾
(𝑡 − 𝑡0)𝛾

(7.50)

where 𝜖 ≤ 𝜖 . Let 𝑡 > 𝑡0, define the probabilistic obstacle avoidance safe set on
average as

S 𝑓
𝑡+1 ≜ {𝒙𝑖+1 ∈ D𝒙

����� 1
𝑡 − 𝑡0

(
𝑡∑︁

𝑖=𝑡0+1
P[𝑀𝒙𝑖+1 ∈ O𝑖+1]

)
≤ 𝜖}. (7.51)

If the ego vehicle state 𝒙𝑖+1 where 𝑖 ∈ Z𝑡
𝑡0+1 satisfying the above set for finite 𝑡 − 𝑡0,

then the ego vehicle is 1 − 𝜖 probability obstacle avoidance on average for finite
time by definition.

Now, using the augmented risk-level 𝜖 in recursion (7.42) instead of 𝜖 , an augmented
the conformal unsafe set radius 𝜌𝜖𝑖+1 is computed. The feasible set of the following
affine inequality constraint is as a subset of S 𝑓

𝑡+1,

(𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖)𝑇 (𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖)
∥𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖∥2

≥ 𝜌𝜖𝑖+1. (7.52)

∀𝑖 ∈ {𝑡0 + 1, 𝑡}.
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Proof. Leveraging the result of (7.43) and empirical quantile function is non-
decreasing, the following inequality holds{

𝒙𝑖+1 ∈ D𝒙

����� 𝑡∑︁
𝑖=𝑡0+1

P
[
∥𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖∥2 ≤ (𝑡 − 𝑡0)𝜌𝜖𝑖+1

]}𝑐
⊆

{
𝒙𝑖+1 ∈ D𝒙

����� 𝑡∑︁
𝑖=𝑡0+1

P[∥𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖∥2 ≤ (𝑡 − 𝑡0)𝜌𝜖𝑖+1]
}𝑐
⊆ S 𝑓

𝑡+1

because 𝜌𝜖
𝑖+1 ≥ 𝜌𝜖

𝑖+1 for each 𝑖 ∈ Z𝑡
𝑡0+1 given 𝜖 ≤ 𝜖 where the superscript {·}𝑐

stands for set complement. Therefore, by making a conservative convexification
over inequality constraint ∥𝑀𝒙𝑖+1 − 𝝁𝑖+1|𝑖∥2 ≥ 𝜌𝜖𝑖+1 suffices the safety requirement.
The remaining proof for obtaining the affine constraint follows the proof of Lemma
5.

Remark 9. There is one implicit requirement in Lemma 6 that is worth remarking.
The augmented risk-level (7.50) must be within (0, 1) where 𝜖 > 𝜖0+𝛾

(𝑡−𝑡0)𝛾 . Based on
the choice of initial risk level 𝜖0, learning rate 𝛾, and desired risk level 𝜖 , Lemma 6
requires 𝑡 − 𝑡0 > ⌈ 𝜖0+𝛾

𝛾𝜖
⌉.

Alternative to using the adaptive conformal prediction to acquire probabilistic obsta-
cle avoidance on average, the extended Kalman filter given in the horizon predictor
also provides a heuristic unsafe set O𝜖

𝑡+𝑖 |𝑡−1 for 𝑖 ∈ Z𝑛ℎ−1
0 given a risk tolerance

𝜖 ∈ (0, 1). Under the assumption that the process and measurement noise in the
lifted model (7.23)-(7.24) are Gaussian random variables. Heuristic affine inequality
constraints can be similarly constructed as

(𝑀𝒙𝑡+𝑖 − 𝝁𝑡+𝑖 |𝑡)𝑇 (𝑀𝒙𝑡+𝑖 − 𝝁𝑡+𝑖 |𝑡)
∥𝑀𝒙𝑡+𝑖 − 𝝁𝑡+𝑖 |𝑡 ∥2

≥ 𝑟𝜖𝑡+𝑖 (7.53)

where 𝑟𝜖
𝑡+𝑖 is defined in (7.39) for each 𝑖 ∈ Z𝑛ℎ1 at current time 𝑡. The assumption

that the joint normal distributions defined by N𝑡 × N𝑡+1 × · · · × N𝑡+𝑛ℎ is largely
not true without stringent assumptions on obstacle behaviors, data availability, and
dependency assumptions. Further, the spherical obstacle unsafe set expands ex-
ponentially as the prediction horizon increases. For practical implementation, the
heuristic obstacle avoidance constraints (7.53) for 𝑡 + 2 to 𝑡 + 𝑛ℎ are considered with
slacking to reduce infeasibility.

In Summary, the affine inequalities constraints (7.48), (7.52), and (7.53) are the
proposed data-driven solution to Problem 7.
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Figure 7.4: Illustration of the sequential convexification using hyperplane of the predicted
unsafe sets. Set spherical set O 𝜖

𝑡+𝑖 |𝑡 is the 𝑡 + 𝑖 time forecast of the obstacle occupied unsafe
set given a risk tolerance of 𝜖 ∈ (0, 1) where the forecast is made at time 𝑡. 𝑟𝑒𝑔𝑜 is the
radius of the smallest spherical convex hall encapsulating the ego vehicle which is added to
the predicted unsafe sets. The hyperplane is selected to be tangential to the spherical unsafe
sets defined by a normal vector pointing from the center of the spherical unsafe set to the
previously computed ego vehicle position 𝒑𝑡+𝑖 .

Single Obstacle Formulation
Given the data-driven unsafe sets and their convex reformulations, the proposed
solution to Problem 7 is a prediction-aware model predictive controller (PA-MPC).
It is synthesized by solving a finite-time optimal control problem constrained by the
data-driven predicted safe sets. Thanks to the affine safety constraints, the linear,
discrete time-varying system governed by (7.1) - (7.2) can guarantee probabilistic
obstacle avoidance on average in finite-time by issuing the solution of the following
sequential Quadratic Program (QP). The following optimization problem is solved
at every time instance 𝑡 for a optimal input sequence {𝒖∗

𝑡+𝑖}
𝑛ℎ−1
𝑖=0 and slack variables

{𝜹∗𝑡+𝑖}
𝑛ℎ−1
𝑖=0 . Such optimal input sequence {𝒖∗

𝑡+𝑖}
𝑛ℎ−1
𝑖=0 are the solution to the proba-

bilistic safe motion planning problem (8). To incorporate state feedback, only the
first input 𝒖𝑡 will be rolled out at time instance 𝑡, and the following QP (7.55) will
be solved again with updated initial conditions and predicted sets.

Theorem 9. Consider Problem 7 with system state and output dynamics (7.1)−(7.2)
where a single moving obstacle is present with unknown dynamics, intention. The
obstacle position measurement is observable in real-time satisfying the described
behaviors in Problem 5. Suppose the ego vehicle is tasked to track a reference posi-
tion trajectory { 𝒑𝑟𝑒 𝑓𝑡 }∞𝑡=0 where 𝒑𝑟𝑒 𝑓𝑡 ∈ R3 that is designed regardless of the moving
obstacle. Given convex state and input admissible sets D𝒙 and D𝒖, respectively. A
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convex stage cost function L𝑖 (𝒙, 𝒖, 𝒑𝑟𝑒 𝑓 ) : R𝑛𝒙 × R𝑛𝒖 × R3 → R of the form:

L𝑖 =
1
2

(
(𝑀𝒙𝑖 − 𝒑𝑟𝑒 𝑓

𝑖
)𝑇𝑄(𝑀𝒙𝑖 − 𝒑𝑟𝑒 𝑓

𝑖
) + 𝒖𝑇𝑖 𝑅𝒖𝑖

)
(7.54)

where matrices 𝑄 ∈ R3×3 and 𝑅 ∈ R𝑛𝒖×𝑛𝒖 are positive definite.

A recursively feasible solution to the following sequential quadratic program pro-
vides probabilistic obstacle avoidance on average in finite time. The quadratic
program at iteration 𝜔𝑡ℎ is the following:

min
{𝒖𝑖}

𝑛ℎ−1
𝑖=0

{𝛿𝑖}
𝑛ℎ−1
𝑖=0

𝑛ℎ−1∑︁
𝑖=0
L𝑖 (𝒙, 𝒖, 𝒑𝑟𝑒 𝑓 ) + 𝜁0,𝑖𝛿

2
𝑖 + 𝜁1,𝑖𝛿𝑖 (7.55a)

s.t. 𝒙𝑖+1 = 𝐴𝑡+𝑖𝒙𝑖 + 𝐵𝑡+𝑖𝒖𝑖 + 𝐶𝑡+𝑖 (7.55b)

𝜶𝑡+𝑖 |𝑡𝒙𝑖+1 + 𝛽𝑡+𝑖 |𝑡 ≤ 𝛿𝑖 (7.55c)

𝒙𝑖 ∈ D𝒙 (7.55d)

𝒖𝑖 ∈ D𝒖 (7.55e)

1𝑇 (𝒙𝑖+1 − 𝒙𝑖+1) ≤ 𝑚𝑥𝜏𝑤𝑥 (7.55f)

1𝑇 (𝒙𝑖+1 − 𝒙𝑖+1) ≤ 𝑚𝑥𝜏𝑤𝑥 (7.55g)

1𝑇 (𝒖𝑖 − 𝒖𝑖) ≤ 𝑚𝑢𝜏𝑤𝑢 (7.55h)

1𝑇 (𝒖𝑖 − 𝒖𝑖) ≤ 𝑚𝑢𝜏𝑤𝑢 ∀𝑘 ∈ Z𝑛ℎ−1
0 (7.55i)

𝒙0 = 𝒙𝑡 (7.55j)

𝛿0 = 0, {𝛿𝑖}𝑛ℎ−1
𝑖=1 ≥ 0 (7.55k)

where {𝒙𝑘 }𝑛ℎ𝑘=1, and {𝒖𝑘 }𝑛ℎ−1
𝑘=0 are the (𝑤 − 1)𝑡ℎ iteration solution of this Quadratic

Program. Parameters 𝑚𝑥 , 𝑚𝑢, {𝜁0,𝑖}𝑛ℎ−1
𝑖=0 and {𝜁1,𝑖}𝑛ℎ−1

𝑖=0 are adjustable positive
constants. Parameters 𝜏𝑥 , 𝜏𝑢 ∈ (0, 1)4. Coefficients 𝜶𝑡+𝑖 |𝑡 ∈ R1×𝑛𝒙 in constraint
(7.55c) can be computed using the predicted obstacle trajectory using the proposed
horizon predictor

𝜶𝑇
𝑡+𝑖 |𝑡 = −𝑀

𝑇
𝑀𝒙𝑡+𝑖+1 − 𝝁𝑡+𝑖+1|𝑡
∥𝑀𝒙𝑡+𝑖+1 − 𝝁𝑡+𝑖+1|𝑡 ∥2︸                      ︷︷                      ︸

≜𝝀𝒕+𝒊+1|𝒕

,

where 𝑖 ∈ Z𝑛ℎ−1
𝑖=0 . For 𝑖 = 0, parameter 𝛽𝑡 |𝑡 ∈ R in constraint (7.55c) is derived using

the one-step conformal unsafe set radius 𝜌𝜖
𝑡+1 given current time 𝑡,

𝛽𝑡+1|𝑡 = 𝝀𝑇
𝑡+1|𝑡𝑀𝝁𝑡+1 + 𝜌𝜖𝑡+1. (7.56)

4At 𝑡 = 0, the 0𝑡ℎ iteration {𝒙𝑘}𝑛ℎ𝑘=1 and {𝒖𝑘}𝑛ℎ−1
𝑘=0 is known as the warm start which can be found

offline.
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For 𝑖 ∈ Z1:𝑛ℎ−1, parameters 𝛽𝑡+𝑖 |𝑡 ∈ R are obtained from the heuristic unsafe set
(7.53),

𝛽𝑡+𝑖 |𝑡 = 𝝀𝑇
𝑡+𝑖+1|𝑡𝑀𝝁𝑡+𝑖+1|𝑡 + 𝑟𝜖𝑡+𝑖+1. (7.57)

Lastly, the coefficients {𝜆0,𝑖}𝑛ℎ−1
𝑖=0 and {𝜆1,𝑖}𝑛ℎ−1

𝑖=0 are positive definite constants.

Proof. Since only the first input of the sequence {𝒖∗
𝑡+𝑖}

𝑛ℎ
𝑖=0 is being implemented at

time instance 𝑡 in a receeding horizon fashion. This proof only assesses the vehicle’s
safety condition at time 𝑡 + 1 given initial state 𝒙𝑡 and control input 𝒖∗𝑡 .

From the result of Lemma 6, the satisfying inequality (7.52) at time 𝑡 + 1 guarantees
the probability of the ego vehicle at time 𝑡 + 1 entering in the unsafe set occupied
by the obstacle on finite-time average over is less than 𝜖 . Therefore, a feasible input
𝒖𝑡 satisfying constraint (7.55c) given initial condition 𝒙𝑡 guarantees probabilistic
obstacle avoidance on average in finite time.

Combining affine inequality constraints (7.55f) - (7.55h) is equivalent to the 1-
norm constraint ∥𝒙𝑡+𝑖+1 − 𝒙𝑡+𝑖+1∥1 → 0 and ∥𝒖𝑡+𝑖 − 𝒖𝑡+𝑖∥1 → 0. By picking an
initial trust region 𝑚𝑥 and 𝑚𝑢 and decay rate 𝜏𝑥 > 1 and 𝜏𝑢 > 1, as 𝜔 → ∞ the
inequality constraints (7.55f) – (7.55h) forces the sequential convexification of the
obstacle avoidance constraint to converge. 5 Further, by the proof of Lemma 5
and summarized in Remark 8, as the iteration counter 𝜔→ ∞ achieves the tightest
convex reformulation.

The positive semi-definite slack variables {𝛿𝑖}𝑛ℎ−1
𝑖=0 for the obstacle avoidance con-

straint (7.55c) at future time instances 𝑡 + 1 to 𝑡 + 𝑛ℎ − 1 are introduced to balance
the safety informed by the heuristic unsafe set and tracking performances. To avoid
overly conservative trajectories as well as lack of feasible inputs balancing trust
regions constraints (7.55f) – (7.55i), state and torque bounds (7.55d) – (7.55e), and
obstacle avoidance constraints (7.55c), the authors strongly recommend an additive
slack variables 𝛿𝑖 for future instances 𝑡 + 𝑖 to 𝑡 +𝑛ℎ−1. The associated slack variable
costs {𝜁0,𝑖}𝑛ℎ−1

𝑖=1 and {𝜁1,𝑖}𝑛ℎ−1
𝑖=1 can be chosen to encourage or discourage the program

to avoid the heuristic unsafe sets over reference tracking.
5Therefore, for real-time robotic applications, the users can terminate the sequential quadratic

program (7.55) in finite iterations.
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Multiple Obstacles Formulation
In the presence of multiple moving obstacles, additional obstacle avoidance con-
straints like (7.55c) can be appended into the PA-MPC optimization for each addi-
tional obstacle. At the expanse of additional affine state constraints and auxiliary
optimization variables for slacking, the QP (7.55c) can be modified to accommodate
multiple dynamic obstacles.

Given an overall obstacle avoidance risk level 𝜖 with the obstacle avoidance on
average in finite time objective, (7.9) with a finite 𝑇 where the conformal unsafe
set becomes O𝑡 =

⋃𝑛obs
𝑗=1 O

𝑗
𝑡 where O 𝑗𝑡 are the almost surely unsafe set occupied by

obstacle 𝑗 at time 𝑡. In particular, the desire probabilistic obstacle avoidance on
average 1

𝑇

∑𝑡
𝑖=𝑡−𝑇+1 P[𝒐̂𝑖+1 ∈ O𝑖+1] ≤ 𝜖 for finite 𝑇 . Using Boole’s inequality, the

following inequality holds for each 𝑖,

P[𝒐̂𝑖+1 ∈
𝑛obs⋃
𝑗=1
O 𝑗
𝑖+1] ≤

𝑛obs∑︁
𝑗=1
P[𝒐̂𝑖+1 ∈ O 𝑗𝑡+1] .

Therefore, enforcing the probabilistic state constraint P[𝒙 ∈ R𝑛𝒙 | 𝒙𝑡+1 ∈ O 𝑗 ,𝜖 ,𝑐𝑡+1|𝑡 ] ≤
𝜖

𝑛𝑜𝑏𝑠
≜ 𝜖𝑛 for each obstacle at each time instance 𝑡, the desired safety requirement is

satisfied. Note, by construction of the conformal prediction unsafe set with risk-level
𝜖𝑛 for obstacle 𝑗 as O𝜖𝑛,𝑐

𝑡+1|𝑡 , the affine state constraint (7.52) is sufficient to provide
safety for each obstacles with a tightened risk-level.

However, consolidating the risk levels does not solve the proposed MPC method (9)
having a polynomial growing number of optimization variables and constraints with
polynomial growing obstacles. If sufficient training data can be acquired to obtain
an obstacle dynamics model, a higher-level trajectory planner like [202] would be
more computationally efficient to implement. However, it is important to note that
algorithms proposed in [202] will not consider individual feasible sets at each future
time instance but the union of all unsafe sets along the prediction horizon. This
simplification can lead to infeasibilities in the optimal path planning problem.

Choosing Parameters
In this section, the choice of tuning parameters in the horizon predictor, the con-
struction of the conformal prediction set, and parameters in the PA-MPC problem
will be discussed. Qualitative behaviors of the framework will be discussed in this
section to provide intuitions. In the later section 7.6, numerical simulations are
conducted in the following section to provide quantitative empirical performance to
support these discussions.
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The accuracy of the horizon predictor heavily depends on the time-embedding
length 𝐿 or equivalently the embedded time window 𝑡𝐿 = 𝐿 (1/ 𝑓𝑜𝑏𝑠) sec where
𝑓𝑜𝑏𝑠 is the obstacle position sampling frequency. The prediction formulation uses
the time delay as the lifted states to extract a local linear model, a recurrence
linear relationship where every next-step prediction depends on the most recent 𝐿
states. If 𝑡𝐿 is too large, the local linearization from pseudo-inverse (7.22) “flatten”
nonlinearities within the time window. On the other hand, if 𝑡𝐿 is too small which
limits the rank of 𝐴 𝑗𝑡 in (7.22), the learned update model can be inaccurate ignoring
higher-order behaviors.

The planning horizon 𝑡ℎ of the MPC is another important time window parameter
where 𝑡ℎ = 𝑛ℎ/ 𝑓𝑐 where 𝑓𝑐 is the controller update frequency. Typically, longer
planning horizons 𝑡ℎ are recommended to approximate the optimality and guarantee
that infinite horizon planner offers. The upper bound of 𝑡ℎ is typically dictated by
the QP solver’s ability to compute a solution given planning interval Δ𝑡. However,
to construct an obstacle avoidance safety constraints (7.52) requires obstacle set
predictions window 𝑡𝑝 = 𝑛𝑝/ 𝑓𝑜𝑏𝑠 ≥ 𝑡ℎ along the horizon. The prediction window
is the number of recursion (7.27) – (7.28) are computed to make future obstacle
forecasts. However, the prediction horizon has the reverse in performance since the
recursive forecast in (7.28) will make the heuristic unsafe set grow exponentially in
prediction time. Therefore, the least prediction window 𝑡𝑝 = 𝑡ℎ is chosen to reduce
making overly conservative horizon forecasts which results in overly conservative
trajectory planning.

Combining the above observations, the embedded time window 𝑡𝐿 should match with
the prediction horizon window 𝑡𝑝 and the MPC planning horizon 𝑡ℎ, 𝑡𝐿 = 𝑡𝑝 = 𝑡ℎ,
which is employed in similar applications ([203]). For all the numerical simulations
and hardware validations conducted in this chapter, only the case where 𝑡𝑝 = 𝑡ℎ = 𝑡𝐿
is studied.

For the adaptive conform prediction algorithm, the learning rate 𝛾 heavily dictates
the algorithm’s ability to adapt to consistent prediction inaccuracy. As observed in
[177], the MPC optimization can suffer from infeasibility due to sudden changes in
the size of the uncertainty sets when the learning rate 𝛾 is too big. But the theoretical
coverage under distribution shift in [109] requires 𝛾 > 1 resulting in rapid expansion
of the prediction set. For practical implementation, the authors select learning rate
𝛾 < 1 despite slower adaptation to avoid numerical infeasibilities. Further, the
heuristic horizon unsafe sets for 𝑘 = 2 to 𝑘 = 𝑛ℎ are expected to allow the vehicle to
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make trajectory corrections in advance to reduce the need for an overly conservative
conformal unsafe set for the immediate step 𝑘 = 1.

Lastly, a maximum conformal unsafe set radius 𝜌𝜖
𝑡+1 in (7.44) on top of the choice

of 𝛾 < 1 is strongly recommended. In particular, the conformal radius is upper
bounded as 𝜌𝜖

𝑡+1 = min{𝜌𝜖
𝑡+1, 𝑟

Δ𝑡
𝑚𝑎𝑥}, where 𝑟Δ𝑡𝑚𝑎𝑥 is the maximum distance that the

ego vehicle can travel for in time 𝑡ℎ given any feasible input and any stationary initial
condition. If the obstacle can step-wise traverse exceeding this limit, such obstacle
will be inevitable because of torque limits.

7.6 Simulation Results
To assess the empirical performance of the proposed control framework, a series of
numerical simulations are conducted with varying parameters and obstacle behav-
iors. The simulations model the ego vehicle as a point mass system, a simplification
chosen for numerical efficiency in representing vehicle dynamics. The ego vehicle
is tasked to follow a reference trajectory, denoted as 𝒑ref while avoiding unknown
moving obstacles upholding a given risk-tolerance 𝜖 ∈ (0, 1). The ego vehicle’s
system state is 𝒙 = [𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧]𝑇 , consists of its position and linear velocities
with respect to a fixed frame. The ego vehicle is controlled by linear acceleration in-
puts, 𝒖 = [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧]𝑇 , also with respect to the same fixed frame. The discrete-time
ego vehicle system dynamics is

𝒙𝑡+1 =

([
𝐼3×3 Δ𝑡 · 𝐼3×3

03×3 𝐼3×3

])
𝒙𝑡 +

[
03×3

Δ𝑡 · 𝐼3×3

]
𝒖𝑡 . (7.58)

Suppose the ego vehicle is controlled by the proposed prediction-based MPC (7.55)
with a planning rate of 20 Hz (Δ𝑡 = 0.05 𝑠), and the obstacle measurements
update at the same frequency. Input limits are set to 𝒖𝑚𝑎𝑥 = [2, 2, 16]𝑇 𝑚/𝑠2 and
𝒖𝑚𝑖𝑛 = [−2,−2,−6]𝑇 𝑚/𝑠2. These limits reflect the reduced-order modeling of the
quadcopter system in acceleration control mode.

In the nominal scenarios with risk-tolerance 𝜖 = 0.01 (illustrated in Fig. 7.6),
the MPC parameters are as follows: stage costs 𝑄𝑘 = diag( [50, 50, 50]) (𝑘 + 1)
for 𝑖 ∈ Z𝑛ℎ−1

𝑘=1 , input cost 𝑅 = diag( [0.1, 0.1, 0.01]), and terminal stage cost 𝑄 𝑓 =

diag( [50, 50, 50])𝑛ℎ. The MPC horizon is set at 0.5 𝑠 with a time step of 0.05 𝑠.
To mitigate numerical infeasibilities and overly conservative predictions, obstacle
avoidance constraints for future time horizons from 𝑘 = 2 to 𝑘 = 𝑛ℎ are relaxed,
as per formulation in (7.55). Slack variable costs are set as 𝜆0,𝑘 = 50(2𝑛ℎ−𝑘 ) and
𝜆1,𝑘 = 20, prioritizing trajectory planning that avoids the heuristic unsafe set in the
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near term while relaxing constraints for future time instances. For the sequential QP
formulation, a finite termination criterion of 𝜔𝑚𝑎𝑥 = 5 iterations is employed, with
trust region parameters selected as 𝑚𝑥 = 100, 𝑚𝑢 = 50, 𝜏𝑥 = 0.5, and 𝜏𝑢 = 0.5.

An obstacle, following the dynamics of a Frisbee as detailed in [167], is introduced
with randomly selected initial conditions. To evaluate the framework’s efficacy, all
obstacle trajectories are synthesized and adjusted with respect to the ego vehicle’s
reference trajectory to induce guaranteed collision scenarios if the vehicle follows
the desired reference closely. Collision timings are randomly set between 12 and 25
seconds, challenging the framework’s capability to varying observation windows.
For real-time obstacle avoidance, only the current time instance’s obstacle posi-
tions in 𝑥, 𝑦, 𝑧 are available to the horizon predictor, with an added Gaussian noise
component sampled from N(0, 0.05) for each 𝑥, 𝑦, and 𝑧 measurements.

The parameters selected for the horizon predictors include an embedding length
of 𝐿 = 10 and a sample size of 𝑁 = 100 for constructing the Hankel and Page
matrix. The extended Kalman filter, as delineated from (7.27) to (7.35), is utilized
for constructing the heuristic unsafe set occupied by the obstacle. This filter is
initialized with a heuristic process noiseW0 = 0.1𝐼𝐿×𝐿 and a measurement noise
covariance V0 = 0.05 for each 𝑥, 𝑦, 𝑧 observables which will be refined based on
the noise estimation (7.20) after reaching data window threshold 𝑁 . To obtain the
conformal unsafe set, a range of learning rates

𝛾 = {0.0008, 0.0015, 0.003, 0.009, 0.17, 0.03, 0.05, 0.08, 0.13}

are employed, selecting the optimal rate at each time 𝑡 following the fully adaptive
conformal algorithm introduced in Chapters 2 and 6. The finite-time averaging
window size 𝑇𝑠𝑎 𝑓 𝑒 is set at 20.

The nominal case results, depicted in (7.6), reveal that despite the varying conser-
vatism given different risk levels given identical obstacle scenarios and all other
parameters. Despite the mean prediction, denoted as the red solid lines, are not
aligned with the actual obstacle’s true path in the future (orange color dotted line),
the unsafe “cone” formed by the prediction unsafe set at future time instances suf-
ficiently captures the obstacle’s future path. The ego vehicle, by enforcing obstacle
avoidance constraints along the MPC horizon, successfully achieves the desired
probabilistic obstacle avoidance (7.8). This is noteworthy, considering that the
MPC program (7.55) theoretically guarantees only average probabilistic finite-time
obstacle avoidance. This safety enhancement is a result of the heuristic unsafe set
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Figure 7.5: Simulation Result and Comparison. [Left] Simulation with agent dynam-
ics (7.58) and a Frisbee obstacle with dynamics adopted from [167]. Result comparison
against prior works for performance comparisons over different risk levels. Method 1 is the
Uncertainty-Informed Model Predictive Control presented in Chapter 6. Method 2 is the
Singular Spectrum Analysis Model Predictive Controller presented in Chapter 5. [Right]
Simulation performance of the proposed framework against obstacles described in table 7.1
where the legends “TIs” stands for type I obstacle with MPC slacking for the heuristic unsafe
sets and “TIVns” stands for type IV obstacle without slacking in the MPC formulation.

integrated along the horizon, which enables the ego vehicle to deviate from the
reference trajectory in the presence of potential future collisions. However, the
heuristic unsafe set, despite its practical effectiveness, does require extensive and
possible invalid assumptions to provide equivalent probabilistic obstacle avoidance
guarantees.

Additionally, Monte-Carlo (MC) simulations were conducted to statistically evaluate
the proposed framework’s performance relative to various scenarios: (1) obstacle
behaviors, (2) obstacle position measurement noise characteristics, (3) planning
horizon window, (4) the impact of slack variables, and (5) the choice of risk-level
and overall framework efficacy. The prediction-aware MPC (7.55) was solved using
Gurobi [173] on an Intel i7-9700K CPU @3.6 GHz. Both the dynamic simulator
and the proposed framework were implemented in MATLAB.

The performance of the proposed prediction-based MPC is compared with prior
works, presented in Chapters 5 and 6. Recall Chapter 5 uses a singular spectrum
analysis-based linear prediction paired with a distributionally robust approach to



134

○

Figure 7.6: Simulation with agent dynamics (7.58) and a Frisbee obstacle with dynamics
adopted from [167]. The same obstacle behaviors are simulated while the agent tracks the
same “Figure 8” reference trajectory with four risk levels 𝜖 = {0.15, 0.05, 0.01, 0.001}. The
simulation is designed to be difficult: the vehicle must deviate from its reference trajectory
as the obstacle trajectory is designed to intersect the agent’s reference trajectory with noisy
obstacle position measurements.

make prediction uncertainty quantification. The method represented in Chapter 6
uses the same linear prediction introduced in Chapter 5 and designs an adaptive
conformal prediction approach to quantify prediction uncertainty. The simulation
details can be found in Chapter 5 where the same obstacle (Frisbee) behaviors
are simulated with an ego vehicle with matching dynamics and input limits. The
empirical obstacle avoidance statistics are plotted in Fig. 7.5 [Left]. The results
show the proposed method outperforms the past works across a wide range of risk-
tolerances and can truly uphold the 𝜖 risk-tolerance as the rate of failure to avoid
obstacles.

The right subplot of Fig. 7.5 summarizes the obstacle avoidance performance
of the proposed method using model (7.58) against the four differently behaving
obstacles described in Table 7.1. Based on the tabulated result, the proposed
method when slacked variables are incorporated (all dotted results) can uphold the
desired probabilistic obstacle avoidance specification at low-risk levels (𝜖 < 0.15).
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I Indifferent

Const.
Spd.

𝒐𝑡+1 = 𝒐𝑡 + Δ𝑡𝒗𝑜 𝒐0 uniformly sampled, 𝒗0 uni-
formly sampled

II Indifferent
Frisbee

𝒐𝑡+1 = 𝒐𝑡 + Δ𝑡 𝑓 𝑑 (𝒐𝑡 + 𝜻𝑜𝑡 ) ([167]) Uniform sample of initial pitch
angle, launching speed, flight
path angle, and initial spin rate.

III Indifferent
Figure 8

𝒑0
𝑡 =[
𝑑𝑜𝑥𝑐𝑜𝑠(𝑡) 𝑑𝑜𝑦 𝑠𝑖𝑛(2𝑡) 𝑑𝑧

]𝑇 Parameters 𝑑𝑜𝑥 and 𝑑𝑜𝑦 dictates
the geometry of the figure “8”
trajectory which is uniformly
sampled between [0.5, 1.5].
The constant parameter 𝑑𝑧 de-
termines the height of the ob-
stacle trajectory.

IV Adversarial
chaser

𝒐𝑡+1 = 𝒐𝑡 − 1𝑘≤0.3Δ𝑡𝑃𝑔𝑎𝑖𝑛 (𝒐𝑡 − 𝒑𝑡 ) The chaser is guided by a
proportional controller where
its 𝑃𝑔𝑎𝑖𝑛 is uniformly sam-
pled from [0.1, 1.0]. Parame-
ter 𝑘 is randomly sampled from
[0, 1] that determines whether
the chaser chases or stops.

Table 7.1: Summary of simulated obstacle and their behaviors.

Obstacle Behaviors

To evaluate the framework’s capability to navigate around obstacles with unknown
intentions and differential behaviors, Monte Carlo (MC) simulations are conducted
where the planner interacts with four distinct types of obstacles. Each obstacle type,
characterized by unique dynamics and behavior, was introduced once per simulation
run. The planner’s success rate in avoiding these adversarial obstacles is presented
in Figure 7.5. These obstacle dynamics, along with their randomized parameters
and initial conditions, are detailed in Table 7.1 with additional performance metrics.

For a comprehensive analysis, there are 1000 MC simulations conducted for each
parameter combination. The primary metrics for assessment were the success rate in
obstacle avoidance and the conservativeness of the planner. The latter was quantified
by measuring the minimum distance maintained between the center of the obstacle
and the agent. It’s important to note that all parameters remained the same across
different simulations, except the obstacle dynamics.

The results of these simulations are collated in Table 7.5. These results depict how
the ego vehicle successfully navigated around each of the four differently behaving
obstacles. Additionally, Fig. 7.6 presents an illustrative example of a simulated
trajectory. This figure highlights the predicted unsafe sets for the ego vehicle
under varying levels of risk tolerance, demonstrating the robustness of the planning
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framework given intention, behavior unknown dynamic obstacles.

Noise type and Intensity

Central to the efficacy of the denoising steps, described in Section 7.2 is the assump-
tion that the additive noise adheres to a Gaussian distribution with a zero mean. To
test this assumption, additional MC simulations are conducted where the planner
navigates around a Frisbee obstacle, adhering to all nominal case parameters except
for variations in noise level (standard deviation) and noise type. This investiga-
tion initially focused on assessing the horizon predictor’s resilience against varying
intensities of measurement noise. These noises were simulated as Gaussian distribu-
tions with standard deviations 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.4𝑚. The framework
maintains the designated risk level (𝜖 = 0.05) effectively for noise standard devia-
tions up to 0.15 𝑚 (Tabulated results can be found in Table 7.2). However, when
noise standard deviation surpasses 0.2𝑚, there is a marked decline in planner perfor-
mance. This deterioration is attributed to inadequate separation between signal and
noise, leading to compromised predictor accuracy. Conversely, at lower noise levels,
more conservative obstacle-avoiding behaviors are observed. This is quantified by a
greater minimum distance (𝑑𝑚𝑖𝑛) both planned and actualized between the obstacle
and the agent. This counterintuitive phenomenon stems from poor conditioning in
the pseudoinverse (see Equation (7.22)), which catalyzes over-fitting and instability
in the reduction of the data-driven transition matrix. 6

Horizon Window

The planning horizon window, denoted as 𝑡ℎ = 𝑡𝑝 = 𝑡𝐿 , is pivotal in determining
the efficacy of the proposed framework. Based on the Monte-Carlo simulation
results in Table 7.4, longer horizon windows are observed to enhance performance,
particularly when slack variables are introduced. While no-slack scenarios exhibit
high success rates and small minimum distances (𝑑𝑚𝑖𝑛), they also present a significant
risk of infeasibility. Such infeasibilities are critical as they render the probabilistic
guarantees of Equation (7.55) void when a previous iteration roll-out is issued,
potentially leading to unsafe trajectories. In contrast, when slacking is incorporated,

6To resolve this issue, controlled additive noise is recommended, particularly in scenarios where
the noise level is uncertain. This approach should improve the condition number of the pseudoinverse.
Alternatively, reducing slack variable costs or incrementally increasing stage and terminal costs as 𝑖
progresses within the range Z𝑛ℎ−1

1 could effectively balance reference tracking with future collision
risks. Additionally, while reducing the embedding length 𝐿 might mitigate over-fitting, care must be
taken to avoid inadequate lifting and consequently a poor obstacle.
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Figure 7.7: Hardware result of UGV following a desired “Figure 8" reference trajectory
while avoiding a human-driven adversarial obstacle. The obstacle objective is to intersect
the vehicle.

the performance shows a decrement, with 𝑑𝑚𝑖𝑛 increasing exponentially with the
horizon length. Additionally, the computational time, encompassing both the MPC
planner and the horizon predictor, scales in polynomial time with the horizon length,
which must be taken into consideration for real-time applications.

Slack variable

The studies on the horizon window indicate that slacking uniformly mitigates the
risk of infeasibilities (see Table 7.4), resolving conflicts among obstacle avoidance
constraints, torque bounds, and trust region constraints. Through empirical anal-
ysis, the choice slack variable costs 𝜆0,𝑖 and 𝜆1,𝑖 are sampled, for 𝑘 ∈ Z𝑛ℎ−1

1 . The
simulation results, tabulated in Table 7.3, reveal a trade-off between the obstacle
avoidance success rate and the collision-avoiding distance where increasing slack
cost asymptotically approaches the unslacked behaviors. The choice of slack vari-
ables contributes most in balancing between maintaining safe distances and adhering
to desired trajectories.

Risk-level versus Tracking Performance

To elucidate the relationship between the planner’s performance with the chosen risk
level, extensive empirical data is compiled in Table 7.5, outlining the performance
across four different obstacles at various risk levels. The empirical results show
that applying slacking at a low-risk level produces the highest obstacle avoidance



138

success rates. However, this risk aversion comes with its costs, notably an increase
in numerical infeasibility rates and larger 𝑑𝑚𝑖𝑛 values, which implies a reduction in
reference tracking accuracy.

Despite the risk level being directly factored into the construction of probabilistic
unsafe sets occupied by obstacles, the framework’s performance at small risk levels
(𝜖 < 0.1), coupled with slacking, surpasses the theoretical guarantees of average
probabilistic obstacle avoidance in finite-time. This enhancement in performance
is attributable to the incorporation of heuristic unsafe sets throughout the horizon,
as demonstrated in Table 7.4, and the systematic use of sequential conservative
convexifications as formulated in Eqn. (7.52).

7.7 Hardware Validation: UGV

Figure 7.8: Hardware Validation Result of UGV following a desired “Figure 8” reference
trajectory while avoiding a human-driven adversarial obstacle. The obstacle objective is to
block the vehicle from its target path without directly intersecting the obstacle.

The proposed framework is tested on hardware, summarized in Fig.7.1, on two
platforms: (1) a ground vehicle (UGV), and (2) a hexacopter drone (UAV) as the
ego vehicle. Both vehicles are tasked to track a reference “Figure 8” trajectory while
avoiding obstacles. There are differently behaving obstacles, guided by humans, are
introduced individually and in combinations. See supplementary video.

Indoor experiments are conducted for both platforms under an Optitrack Motion
Camera to provide position ground true to the ego vehicle as well as the obstacles.
To verify the proposed framework’s robustness to measurement error, noises are
manually added into the obstacle position during all experiments. For UGV tests,
2D rigid body obstacles are considered where 2D obstacle position with respect to
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an inertial frame is streamed to the ego vehicle at 20 Hz frequency. The injected
noise has zero mean and standard deviation of 0.05 𝑚, and all obstacles have a
radius of less than 0.2 𝑚. For UAV tests, 3D rigid body obstacles are considered,
similarly with positions streamed to the ego vehicle at 20 Hz. There are white noises
with a standard deviation of 0.05 𝑚 for each coordinate position added on top of
the motion-captured obstacle positions, mimicking obstacle detecting and tracking
errors using real sensors.

The quadratic program (7.55) is run onboard for both platforms using the open
source solver OSQP [204] with OSQP Eigen C++ interface.

UGV Details
The Army GVR-BOT, differential-drive, is used as the unmanned ground vehicle
platform. For onboard computing, the vehicle is powered by a Jetson AGX Orin
computer running the proposed framework in a ROS environment. The UGV accepts
linear velocity commands with respect to the body 𝑥 axis, denoted as 𝑣, and angular
velocity commands with respect to the body 𝑧 axis, denoted as 𝜔. The following
discrete-time kinematic model is used to describe the vehicle dynamics (the Euler
discretization of the UGV model used for differential-driven vehicles in Chapter 4):

𝑥𝑡+1

𝑦𝑡+1

𝜃𝑡+1

 =


𝑥𝑡

𝑦𝑡

𝜃𝑡

 +

cos(𝜃𝑡) 0
sin(𝜃𝑡) 0

0 1

 Δ𝑇
[
𝑣𝑡

𝜔𝑡

]
︸︷︷︸

𝒖𝑡

. (7.59)

With system states 𝒙 = [𝑥, 𝑦, 𝜃]𝑇 being 𝑥, 𝑦 position, and heading angle. Since
the proposed Prediction-Based MPC (7.55) needs to be solved sequentially to reach
the tightest obstacle convexification, sequential linearization of (7.59) around its
previous iteration optimal solution is performed, following equations (7.3)-(7.4).
More information on sequential convex programming can be found in 2. With a
controlling frequency of 20 Hz and the input range 𝑣 ∈ [−1.0, 1.0] 𝑚/𝑠 and 𝜔 ∈
[−1.4, 1.4] 𝑟𝑎𝑑/𝑠, a conservative single-step tracking error of 0.1 𝑚 is employed,
a heuristic safety buffer, due to linearization and unmodeled model residuals. Such
buffer will be incorporated on top of the radius of the predicted unsafe set of each
obstacle. The vehicle is tasked to track a periodic “Figure 8” trajectory, designed
without considering obstacles, which is kinodynamically feasible given the input
limits. The dynamic obstacles, driven by human researchers to act as the intention
unknown obstacles, are introduced while the ego vehicle is tracking the given
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reference. Only a subset of the experimental results is provided in Fig. 7.7-7.9 to
showcase the proposed planner’s performance on hardware.

Figure 7.9: Hardware result of UGV following a desired “Figure 8” reference trajectory
while avoiding two human-driven adversarial obstacles. The obstacle’s objectives are to
intersect the vehicle or block its current path.

Figure 7.7 consists of time snapshots of the trajectories of both the ego vehicle and
an adversarial obstacle aiming for a head-on collision. Using a predictor horizon of
0.5 𝑠 and a risk tolerance of 0.01, the ego vehicle successfully dodges the obstacle
and returns to reference tracking. Using the predicted unsafe set, the ego vehicle
can make trajectory adjustments before the collision is immediate and optimizes
reference tracking once the predicted unsafe set no longer poses collision threats.

Figure 7.8 depicts the proposed planner’s result given a potentially friendly obstacle
that hovers around its goal points. Given a completely different obstacle behavior
and intent, the proposed planner can successfully mitigate the obstacle and follow
the reference target tightly. With a risk tolerance of 0.1, the predicted unsafe set is
noticeably less conservative. Nevertheless, the ego vehicle guided by the proposed
planner keeps a safe distance from the obstacle without any heuristic tuning.

To showcase the planner’s performance given multiple obstacles, two dynamic
obstacles are introduced simultaneously with unspecified behavior in Fig. 7.9. With
a risk-averse 𝜖 = 0.01 preference, the ego vehicle is still able to dodge aggressive
obstacles without collisions. As provided in the trajectory snapshots, the obstacles
are moving significantly faster with a top speed of 2𝑚/𝑠 exceeding the ego vehicle’s
maximum velocity capability. Benefiting from the rather conservative predicted
unsafe set, the vehicle can plan trajectories to escape without immediate collision.
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Nevertheless, if the obstacle kept chasing the ego vehicle maintaining that top speed
would still lead to an inevitable collision.

7.8 Hardware Validation: UAV
A custom hexacopter is used to validate the obstacle avoidance planner in 3D settings.
This hexacopter is equipped with a single-board companion computer powered by
an AMD Ryzen 5 3550H processor. A Hex Cube Orange flight controller runs
PX4 autopilot [148] to provide a low-level feedback tracking controller for the
hexacopter. A safeguard tether attaches to the multirotor base and a ∼100 g passive
weight eliminates slack which has minimal interference to flight behavior. All flight
tests are conducted in an indoor arena equipped with an Optitrack motion capture
system that samples rotor-craft pose at 50 Hz and obstacle positions at 20 Hz.

Figure 7.10: Hardware result of UAV following a desired “Figure 8” reference trajectory
while avoiding human-driven adversarial obstacles. The obstacle objective is to intersect
with the vehicle multiple times at random instances.

A single integrator model is used as the UAV’s reduced order model to plan obstacle-
free trajectories given 50 Hz measurement feedback. With a constant desired yaw
angle, the control inputs to the systems are inertial frame linear velocities in 𝑥, 𝑦, and
𝑧 directions which are then tracked by the onboard autopilot at Cascaded rates. As
implementation details, the time window parameters are selected as 𝑡ℎ = 𝑡𝑝 = 0.6 𝑠,
where the MPC horizon 𝑛ℎ = 30 and the predictor horizon 𝑛𝑝 = 12. The heuristic



142

obstacle avoidance unsafe sets are obtained at the MPC planning rates by linearly
interpolating between the Gaussian distributions (7.36) with matching timings as
the MPC planner. The heuristic unsafe sets are then constructed following (7.53).

With appropriate tuning and an input range of [−1,−1,−0.5]𝑇 to [1, 1, 1]𝑇 𝑚/𝑠,
a maximum step-wise position tracking error at 50 Hz is 0.10 m with a 99.5%
confidence. To account for the tracking uncertainty as well as the vehicle geometry,
the safety radii 𝜌𝜖

𝑡+1 in Eqn. (7.56) and 𝑟𝜖
𝑡+𝑘 in (7.57) for 𝑘 = {2, · · · , 𝑛ℎ} are

increased by a maximum step-wise tracking error (for more details, see Chapter 4)
and the vehicle radius, which are summed to be 0.2 m. The ego vehicle is tasked to
track a “Figure-8" reference trajectory in the 𝑥 − 𝑦 plane at a constant height of 2 𝑚.

The proposed framework showed promising results of a custom UAV avoiding
human-guided obstacles that approach the ego vehicle at random times while per-
forming reference tracking. As shown in figure 7.10, the experiment results in
different time snapshots showcase the framework’s ability to avoid moving obsta-
cles with unknown intentions. With a risk level of 0.05, the ego vehicle guided by
the proposed planning can also successfully avoid a 3D obstacle approaching the ego
vehicle in various directions. Despite the noisy obstacle trajectory and rather unpre-
dictable behavior, the proposed framework is still able to make relatively accurate
horizon forecasts. Nevertheless, the prediction uncertainty robustness provided by
the predicted unsafe set is sufficient to inform the planner to make path corrections
accordingly.

As the main takeaway from these experimental results, the proposed planner is
dynamics-, dimension-, and behavior-agnostic while offering risk-tolerance intuitive
tunability. For low-speed obstacles, the proposed planner behaves similarly to the
standard potential field method with a rigorously sized repulsive field. For high-
speed obstacles, the proposed planner provides unsafe set previews that are crucial
for finding collision-avoiding maneuvers.

7.9 Results and Discussion
In this chapter, a novel obstacle avoidance framework was formulated using a data-
driven predicted unsafe set for obstacles with unknown dynamics and intentions.
The proposed framework is heuristic-free with intuitive risk-based tunability tailored
for hardware-orientated, real-time feasible applications. Constrained by the limited,
real-time obtained obstacle position measurement, an online obstacle model iden-
tification technique is synthesized using ideas from Koopman and dynamic mode
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decomposition. Instead of relying on the identified model to make perfect behavior
forecasts, the prediction uncertainty is quantified using filtering and statistical infer-
ence techniques. Lastly, an efficient sequential QP-based MPC with a deterministic
obstacle avoidance constraint is constructed based on the obstacle forecasts and
user-chosen risk tolerance.

The proposed framework showed empirical successes in avoiding high-speed, ad-
versarial obstacles with randomized scenarios. The proposed framework has also
been validated regarding its sensitivity to measurement noise, showing its robustness
against low-intensity noise. The proposed framework is also obstacle behavior and
intention agnostic as validated in simulation and hardware. Validation experiments
are conducted on hardware for both ground and aerial platforms to demonstrate
framework versatility. For both scenarios, the ego vehicle successfully dodges
intention-unknown human-guided obstacles while optimizing for its tracking tasks.

Limitations and Future Work
On the note of stochastic uncertainty, the current MPC formulation does not consider
any state and process noise nor the use of a feedback policy. The maximum tracking
error must be quantified from data, as presented in Chapter 4, to provide probabilistic
safe guarantees in the presence of model uncertainties. On the same note, the
method presented in Chapter 4 investigated finding probabilistic maximum tracking
discrepancy upper bound from data as well as a pairing feedback policy with stability
and tracking guarantees. Such tracking discrepancies can be used to construct safe
sets that account for both model discrepancies and dynamic obstacles which is a
natural extension of this work.

This framework can also be extended to use sample-based planners like model
predictive path integral (MPPI), see Chapters 2 and 4, to relax the conservative
convexification in reformulating the obstacle avoidance constraint and sequential
linearization of the system dynamics. Extending the hardware results in a non-
laboratory environment is the immediate future work. In particular, using onboard
sensors to localize the ego vehicle, incorporating measurement feedback, and most
importantly identifying and localizing dynamic rigid body obstacles are important
features for achieving real-world moving obstacle avoidance.
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Cases Methods 𝐶∗
𝜖=0.001 𝐶∗

𝜖=0.01 𝐶∗
𝜖=0.05 𝐶∗

𝜖=0.1 𝐶∗
𝜖=0.15 𝐶∗

𝜖=0.25
Type %Succ. 99.1 97.4 94.6 89.9 85.9 19

I 𝑑𝑎
𝑚𝑖𝑛

1.50 ± 1.93 0.96 ± 1.98 0.73 ± 1.98 0.72 ± 2.20 0.75± 2.71 1.12 ± 2.73
Yes 𝑑

𝑝

𝑚𝑖𝑛
1.44 ± 1.26 0.93 ± 1.27 0.76 ± 1.25 0.76 ± 1.47 0.75 ± 1.44 0.99 ± 1.86

slack Infeas. % 33.8 56.16 85.52 91.77 95.34 63.68
Type %Succ. 97.5 97.9 97.6 97.7 97.6 96.9

I 𝑑𝑎
𝑚𝑖𝑛

0.78 ±0.57 0.70 ± 0.43 0.67 ± 0.29 0.64 ± 0.22 0.60 ± 0.17 0.57 ± 0.14
No 𝑑

𝑝

𝑚𝑖𝑛
1.76 ± 0.30 1.36 ± 0.29 0.98 ± 0.23 0.81 ± 0.22 0.71 ± 0.17 0.67 ± 0.15

slack Infeas. % 84.31 82.94 80.53 78.4 77.56 90.51
Type %Succ. 99.9 99.9 99.7 99.7 98.8 93.9

II 𝑑𝑚𝑖𝑛 actual 5.25 ± 2.79 2.75 ± 2.53 1.16 ± 0.28 0.71 ± 0.17 0.45 ± 0.11 0.374 ± 3.95
Yes 𝑑𝑚𝑖𝑛 planned 5.18 ± 1.22 2.75 ± 2.52 1.19 ± 0.24 0.82 ± 0.18 0.65 ± 0.21 0.57 ± 0.92

slack Infeas. % 0 1.5 18.96 56.97 73.68 80.72
Type %Succ. 87.9 84.9 76.8 70.2 67 53.4

II 𝑑𝑎
𝑚𝑖𝑛

0.34 ± 0.10 0.29 ± 0.08 0.25 ± 0.06 0.24 ± 0.05 0.23 ± 0.05 0.21 ± 0.04
No 𝑑

𝑝

𝑚𝑖𝑛
5.73 ± 1.40 3.39 ± 1.15 1.10 ± 0.64 0.53 ± 0.37 0.46 ± 0.23 0.45 ± 0.21

slack Infeas. % 100 100 100 93.87 82.7 75.28
Type %Succ. 100 100 100 100 99.8 53.6
III 𝑑𝑎

𝑚𝑖𝑛
1.99 ± 0.46 1.47 ± 0.59 0.94 ± 0.65 0.67 ± 0.67 0.49 ± 0.65 0.41 ± 0.95

Yes 𝑑
𝑝

𝑚𝑖𝑛
1.98 ± 0.39 1.45 ± 0.40 0.92 ± 0.45 0.65 ± 0.50 0.48 ± 0.36 0.44 ± 0.68

Slack Infeas. % 0 0 0 2.1 13.63 78.54
Type %Succ. 100 95.6 96.2 95.9 95.2 90.2
III 𝑑𝑎

𝑚𝑖𝑛
1.88 ± 0.28 1.47 ± 0.72 1.09 ± 0.46 0.84 ± 0.30 0.67 ± 0.20 0.41 ± 0.10

No 𝑑
𝑝

𝑚𝑖𝑛
0.66 ± 0.17 0.67 ± 0.84 0.93 ± 0.76 0.82 ± 0.53 0.69 ± 0.37 0.44 ± 0.19

Slack Infeas. % 11.43 13.49 29.52 30.34 28.26 31.82
Type %Succ. 100 100 100 100 100 100
IV 𝑑𝑎

𝑚𝑖𝑛
2.31 ± 1.12 1.80 ± 1.73 1.18 ± 1.57 0.92 ± 1.63 0.80 ± 1.80 0.44 ± 0.54

Yes 𝑑
𝑝

𝑚𝑖𝑛
2.31 ± 1.34 1.80 ± 1.73 1.12 ± 1.57 0.93 ± 1.63 0.82 ± 1.79 0.55 ± 0.36

Slack Infeas. % 0 0 1.2 5.4 10.2 36.4
Type %Succ. 99.5 97.9 95.7 96.8 97.9 99.4
IV 𝑑𝑎

𝑚𝑖𝑛
0.38 ± 0.14 0.34 ± 0.11 0.30 ± 0.08 0.29 ± 0.07 0.30 ± 0.08 0.32 ± 0.07

No 𝑑
𝑝

𝑚𝑖𝑛
4.71 ± 0.29 3.85 ± 0.60 2.61 ± 0.59 1.93 ± 0.47 1.49 ± 0.38 0.84 ± 0.24

Slack Infeas. % 99.9 99.9 100 100 100 98.29

Table 7.5: Summary of results from MC simulations. Each block is generated with 1000
Monte Carlo simulations of the same agent tracking the same reference trajectory avoiding
a single obstacle governed by the same type of dynamics described in Table 7.1. The em-
pirical statistics are generated with increasing obstacle velocities to emphasize the proposed
methods’ ability to uphold the user-chosen risk factor 𝜖 .
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C h a p t e r 8

SUMMARY

Safety is a critical requirement for the autonomous exploration of complex environ-
ments characterized by unknown, unstructured, and dynamic uncertainties. This
thesis has presented a novel planning and control framework for robotic autonomy,
offering probabilistic safety guarantees in such environments. The core elements
of this framework include data-driven model identification, uncertainty quantifi-
cation of model prediction accuracy, and the transformation of risk-aware chance
constraints into deterministic state constraints for optimization.

Ensuring system stability and safety in the presence of these uncertainties necessi-
tates robust vehicle planning and control strategies. Moreover, understanding the
impact of uncertainties on closed-loop system safety and overall performance is
crucial. Addressing these challenges, my research has established a comprehensive
framework for safety, answering these questions posted in Chapter 1:

Q1 How to quantify uncertainty arising from model mismatches?

A1: Data-Driven Uncertainty Quantification from closed-loop tracking
performance.

This thesis contained two possible solution methods: an online method
through learning the key design parameter Surface-at-Risk using Gaussian
Process Regress, as discussed in Chapter 3, and an offline method through
identifying matched and unmatched model discrepancy upper bounds given a
user-specified confidence using conformal predictions, detailed in Chapter 4.

Q2 What is the impact of unstructured uncertainties on system performance and
stability?

A2: Uncertainty Aware Controller Augmentation

Building on the discrepancy upper bounds, it is crucial to robustify the nominal
controller, designed based on a reduced-order model, to guarantee stabiliz-
ability and safety. This is discussed in depth in Chapter 4. The nominal
controller is augmented using an input-to-state stabilizability approach, ex-
tending asymptotic stability to the perturbed system. To ensure safety, I
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analyze and bound the augmented controller’s maximum trajectory tracking
deviation, creating a “safety tube” within which the system can operate safely,
despite model mismatches.

Q3 What methods can be employed to predict dynamic obstacles’ future trajecto-
ries?

A3: Data-Driven Dynamical Obstacle Identification

The proposed methods focus on learning simple obstacle models in real time
which is then analyzed for prediction uncertainty to provide probabilistic
guarantees. Two approaches are covered in this thesis for extracting dynamic
models of moving obstacles with real-time obtained position-only measure-
ments corrupted by Gaussian white noise.

Chapter 5 employs Singular Spectrum Analysis (SSA), assuming that linear
recurrence relationships can describe obstacle trajectories. Chapter 7 pro-
poses a Koopman-inspired approach to learn linear-time varying stochastic
models for each unknown dynamic obstacle, without making assumptions
about their trajectories, dynamics, intentions, or behavior patterns. Both
methods involve time-delay embedding of past position measurements and
forward-propagating the identified model for generating obstacle predictions.

Q4 How to reason about prediction accuracy given a probabilistic risk tolerance?

A4: Unsafe Set predictions occupied by dynamic obstacles

I proposed three methods with various fidelity and assumptions for quantifying
prediction uncertainty upholding the given risk tolerance. A heuristic method
through statistical bootstrapping generates empirical unsafe sets from multiple
obstacle models using Singular Spectrum Analysis, as discussed in Chapter 5.
I also synthesized a data-driven Kalman Filter for obstacle position estimations
using the Koopman-inspired model in Chapter 7. Building on these empirical
successes, a rigorous unsafe set quantification technique is proposed using
adaptive conformal prediction in Chapters 6 and 7, calibrating heuristic unsafe
sets to the given risk-tolerance.

Q5 How to synthesize planners and controllers, considering quantified uncertain-
ties and models, to ensure probabilistic safety and stability for robot autonomy?

A5: Safety-Critical Planning with Probabilistic Guarantees
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To balance safety constraints with the planner’s objective function, model
predictive planning methods like model predictive control (MPC) and model
predictive path integral (MPPI) are selected. Chapters 5, 6, and 7 propose
MPC with provable guarantees for probabilistic obstacle avoidance by refor-
mulating the predicted unsafe set as deterministic inequality state constraints.
This reformulation allows for the development of a real-time feasible sequen-
tial quadratic program while maintaining a user-defined risk level leveraging
convex optimization. Leveraging MPPI, safe trajectories are found based on
"safety tubes" from model mismatches, integrating these into a discrepancy-
aware cost map for optimal trajectory generation under safety constraints, even
with an inaccurate reduced-order model, as detailed in 4.

Future Directions
An immediate extension of this research involves the integration of the moving
obstacle avoidance prediction framework with the uncertainty-aware controller aug-
mentation. This integration is poised to yield a robust model-predictive planning
algorithm, particularly adept at navigating dynamic scenarios. A key facet of this
development is the enhancement of obstacle detection and tracking capabilities,
leveraging sensors such as LIDAR and cameras. My ongoing efforts are focused
on incorporating computer vision techniques for refined obstacle identification and
isolation, coupled with point cloud tracing for precise obstacle position extraction.
This advancement is set to significantly bolster the existing safety-critical autonomy
framework by facilitating the assimilation of real sensor inputs.

Looking forward, future endeavors are directed towards refining the offline conformal-
driven discrepancy upper bound component into a more dynamic online algorithm.
Inspired by the methodologies presented in [14], adaptive conformal prediction
techniques can be modified to actively identify distribution shifts, which may arise
from changes in terrain or environmental conditions. Additionally, there are plans
to implement the proposed planner on GPU architectures and to transition from
reduced-order models to more sophisticated learning-based models. However,
further theoretical analysis is required to ascertain the discrepancy-aware model
predictive path integral (MPPI) optimality and its recursive feasibility.

Another promising avenue is to incorporate higher-fidelity learning-based approaches,
akin to those outlined in [92]. This shift from using simplified reduced-order models
as detailed in 3 and 4 is expected to significantly improve the system’s tracking per-
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formance. This is particularly relevant for ground vehicles operating in rough terrain,
where high-fidelity models can account for variables such as friction, wheel-ground
contact, and slope dependencies. Employing learning-based methods that predict
future states from data sources like point clouds, RBGD images, and other state
and input data is also advantageous. More precise models result in less conserva-
tive maximum tracking tubes derived from uncertainty quantification. Notably, the
sampling-based planning method, MPPI, is highly compatible with learning-based
models, as it does not require the system dynamics to be convex or continuous.
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