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ABSTRACT

A theory is developed which describes the behavior of a
vapor bubble in a liquid. Its phyeical basis is the assumption that
the heat transfer effects which accompany the evaporation occurring at
the bubble wall when the bubble grows, or the condensation that occurs
there when the bubble collapses, are dynamically important. The
basic equations of hydrodynamics are shown to reduce, for the problem
under consideration, to a dynamic equation which describes the behavior
of the bubble wall, and & heat convection equation for the liquid which
is coupled to the dynamic equation by a boundary condition at the bubble
surface. A solution for the heat problem is obtained under the assumption
that significax;t temperature variation in the liquid occurs only in a
thin thermal boundary layer surrounding the bubble wall. An estimate
of the correction to the temperature solution is also derived. Once
the temperature at the bubble wall ie given, the vapor preasure within

the bubble is known and the dynamic problem becomes determinate.

| The theory is applied to the cases of the growth of a vapor
bubble in a superheated liquid, and the collapse of a vapor bubble in
a liquid below its boiling temperature at the external pressure. The
simplifying physical assumptions made in the course of the investigation
are justified for the specific example of vapor bubble behavior in water.

A comparison of the theory with experiment is given for the
observable range of bubble growth in superheated water, and the
agreement 1a found to be very good.
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- I. INTRODUCTION

The term cavitation is used to describe the presence of a
vapor phase in a region filled predominantly with liquid. The condition
necessary for the appearance of cavitation is that locally the wvapor
pressure of the liquid must exceed the external pressure to which the
liquid is subjected; this condition is by no means sufficient to
produce cavitation, however, because of the presence of surface stresses
in the liquid. These stresses, attributable to the short range
attraction of the liquid molecules for one another, tend to reduce any
surface element of the 1iquid to one having the least (mean) curvature
consistent with the mechanical constraints imposed on the liquid. Thus,
an otherwise unconstrained vapor cavity will be spherical. The resultant
of the stressee on an element of surface is a force directed along
the normal drawn from the concave side of the element. For a vapor
cavity to grow, the vapor pressure must compensate not only the external
pressure on the liquid, but also the effective pressure of the surface
stresses.

Since the surface stresses increase with the curvature of
the surface, there is a minimum possible size for an unconstrained pure
vapor bubble existing in the liquid, even at temperatures above the
boiling point of the liquid at the prevailing external pressure,

Smaller bubbles are unstable against collapse. The question thsrefore
arises as to how a bubble could form initially. The problem of the
nmuicleation of vapor bubbles has been extensively studied in recent

years, notably by Harvay(l) and Peaae,(z) in connection with their
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research in animal physiology. The conclusion drawn from these studies
.is that in a moderately superheated liquid, the nuclei for cavitation
bubbles conslst of small permhnsnx gas bubbles in the liquid, or gas
pockets stabilized on solid particles. When these are removed from
the liquid (by agitation, continued boiling, or by compressing the
liquid under pressures great enough to force the gases into solution)
cavitation ceases, and can be reintroduced only by subjecting the
liquid to extreme tension or high temperature. Thus, water put under
a pressure of several hundred atmospheres for a period of a few hours
becomes able to withstand negative pressures as great as 150 atm,
without rupturing, 3 and can be heated to 270°C before it explodes. 4’
The residual nuclei, following degassing, are believed to consist of
hydrophobic substances in the liquid or at its surfhce.(z)

The process involved in the nmucleation of a bubble by a
permanent gas can be explained by a simple model. Suppose the gas
satisfies the perfect gas law., Then the pressure pg of the gaa in

the bubble is given in terms of the temperature T and radius R
of the bubble by

’ (1)

s
n
Rold

where N is a constant, proportional to the number of moles of gas in

the bubble, The pressure Py dus to surface tension is

Ps=2‘£:v (2)
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o beiﬁg the surface tension constant of the liquid. If the bubble

18 in equilibrium, the vapor pressure is a function of T alone, say
peq('l'). Denoting the external pressure by p_, cmne has as the condition
of equilibrium that

Peq(T) =Py + Py, (3)

The equilibrium will be stable if the pressure difference

+
Py + Pq

at the point of equilibrium. These conditions are conveniently

= Pg = Py is a decreasing function of the bubble radius

expressed in terms df a function
4 3 _ _
£q(R) = %‘{ Pt Py = peq('r)} = % { p, - p‘,q('r)]k3 + 20-32} .

(4)
Thus, for a given gas content N, the equilibrium radius (or radii)

R o of the bubble is given by

£,(R ) = N, (5)
and the condition for stability becomes
£3(R ) > 0, (6)

where f1(R) denotes the derivative of f,(R) with respect to R,
Below the boiling point of the liquid, P, " peq > 0, and 80

fT(R) is an increasing function of R. Thus, there is just one

equilibrium radius Ro of a gas mucleated bubble for a given value
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of T below the boiling point of the liquid, according to (5), and
- the equilibrium is stable at that radius by (6). Above the boiling

point of the liquid, the coefficient of R3

in fT(R) is negative.
Hence as R increases for fixed T, fT(R) increases, reaches &
maximum, then decreases. Accordingly, eq. (5) may give two equilibrium
radii, the larger corresponding to unstable equilibrium, or one
equilibrium radius which is stable against collapse but unstable for
growth, or it may afford no equilibrium radius. Inasmach as poq(T)

is an increasing function of T, fT(R) is a decreasing function of

T for any fixed R, so that the curves of fT(R) on an £ - R diagram
form a nonintersecting family, except for the common point at the
origin, and the curves for large T fall below those for small T,

In particular, the maximum of f,r(R), which occurs when the liquid is
heated above its boiling point at the external pressure p_ » decreases
with an increase of T. A typical f - R diagram,drawn for weter at

1 atwm. external pressure,has been presented in Fig. 1 to illustrate
these general remarks.

Consider a gas nucleated bubble which is in stable equilibrium
in a liquid below its boiling point, and suppose the temperature to
rise slowly. The bubble radius will then increase steadily, with the
bubble remaining in stable equilibrium as the temperature increases
past the boiling point, until there is finally reached a critical
temperature, and a corresponding critical radius, above which the bubble
cannot exist in stable equilibrium, A further increase in temperature
releases the bubble for dynamic growth.
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" The nmucleation process described can be understood on the
-basis of the f-R diagram of Fig. 1. The locus of the process for any
given bubble is a horizontal iine, whose ordinate is fixed by the gas
content of the bubble. At the beginning of the process, the bubble is
represented by the intersection of the given horizontal line with the
fT(R) curve for the initial temperature. As the temperature increases,
the point representing the bubble shifts to the right on the f - R
diagram to f.(R) curves drawn for higher temperatures, and corre-
spondingly the bubble radius increases. The process terminates when
the bubble point reaches the fT(R) curve which has a maximum at the
ordinate of the horizontal line. (The locus of maxima is represented
in the diagram by a dashed line, the "locus of critical points".) The
bubble considered is then stable against collapse at the temperature
of this critical rT(R) curve and at the radius R, of its maximum
point, but is in a situation of unstable equilibrium with respect to
growth. A further increase in temperature upsets the equilibrium and
releases the bubble for dynamic growth. Since the surface tension
effects relax with an increase of bubble radius, the bubble (which is
now in superheated liquid) will continue to grow indefinitely.

The nucleation process is qualitatively similar, but from an
analytic standpoint more complex, when the cavitation bubble grows from
a 8olid particle in the liquid, or from a gas pocket stablilized on a
solid particle. The bubble may pass through several intermediate stable
or unstable equilibria, depending on the size and shape of the partiecle.
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Since a ’pure gas bubble will eventually rise because of gravitational
effects and so be removed from the liquid ag a source of nucleation,
the majority of cavitation bubbles may be supposed to grow from muclei
containing solid particles.

The mechanism discussed above for the release of a cavitation
bubble for dynamic growth is the counterpart of boiling, One may
analyze in a similar manner the shift of a bubble from stable to unstable
equilibrium, and its release for growth, by a decrease in the external
preasure. An equivalent process occurs in cavitating liquid flow, the
pressure drop in the vicinity of the bubble nucleus being caused by a
change in the flow pattern due to the presence of a submerged cbstacle.
In this case, however, the bubble does not ordinarily continue to grow,
but is forced to collapse by a pressure rise which follows along the
path of the bubble.*

A different phase of the mucleation problem has been

investigated by Glaser, ' *®)

who used degassed diethyl ether at 1 atm.,
superheated 100°C above its normal boiling point of 3400, as the working
fluid in a Bubble Chamber designed to locate the path of a charged
atomic particle. A series of vapor bubbles appears along the track

of such a particle in the liquid. If photographed a few microseconds
after the detection of the particle, the track is fairly well defined by
the bubbles. The phyasical mechanism of the bubble nucleation in the

Bubble Chamber has not, as yet, been fully explained.

Considerable local pressures can develop at the point of bubble
collapse. If the bubble collapses near the surface of a submerged
object, the sudden unbalance of pressure resulting may be sufficient
to dislodge particles from the surface. For a recent study of cavi=
tation damage, see M.S., Plesset and A. Ellis, Proceedings, Anmual
Meeting ASME, December 1954.
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In treating the problem of bubble growth, it becomes necessary
.to make some assumption concerning the mucleation process. The simplest
assumption to make about the bubble, and the one which will be made
in the analysis to follow, is that the bubble contains initially no
permanent gas or solid particle nucleus. Ib, of course, follows from
this assumption (N = 0) and eqs.(4) and (5) above that there is no
radius of stable equilibrium for such a bubble., Neverthsless, if
the liquid is heated above its boiling point there will still be a
radius R o of unstable equilibrium, which satisfies the equation

fT(Ro) = 0. (7)

The radius R, of the pure vapor bubble given by eq.(7) is related to
the critical radius Rc for unstable equilibrium of a gas filled

bubble at the same superheat by

R°=§Rc. - (8)

While it is not possible, physically, to form a pure vapor bubble at the
radius Ro’ the details of growth of such a conceptual bubble differ

in no essential way fram those of a gaas filled bubble growing from
unstable equilibrium, or from those of a bubble otherwise nucleated.
Equilibrium bubble radii for a pure vapor bubble in water at 1 atm.
external pressure, as a function of the water temperature, will bs

found in Table I below. The equilibrium radius of the pure vapor
bubble and the corresponding critical radius of the gas nucleated

bubble are decreasing functions of temperature (see Fig. 1).
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The method considered in the analysis below for the release
-of an equilibrium vapor bubble for growth will be an increase of
liquid temperature, rather than a decrease of pressure., One reason
for this choice is that the temperature change involved in the heating
of a 1liquid usually proceeds at a sufficiently low rate that it ceases
to influence the bshavior of a bubble soon after the growth of the
bubble has begun. The bubble growth then becomes self-determined, or
"free"., When the bubble growth is initiated by pressure changes, this
may not be the case.

Another reason for the choice is the availabllity of experi~
mental data for the growth of cavitation bubbles in superheated water,
with which the predictions of the theory developed below may be
compared (see Figs. 4, 5, 6)s After the growth of a cavitation bubble
has begun, the details of muclsation become unimportant. The bubble
tends to become spherical, and is adequately represented by the pure
vapor bubble model used here. |

The process of growth of a cavitation bubble in a superheated
liquid may be described as follows: When the bubble is at its critical
radius (R, for a gas nucleated bubble, the radius R of eq.(7)
for a pure vapor bubble), it is unstable against expansion, and a
slight temperature increase will start the bubble growing. The initial
phase of growth is characterized by the relaxation of the effective
- pressure due to surface tension with an increase of bubble radius. The
pressure unbalance causing the bubble growth is thereby increased, and

correspondingly the rate of expansion increases rapidly. In order for



the bubble to grow, however, evaporation must take place at the bubble
wall. Because of the latent heat requiremsnt of evaporation, this
requires the temperature at the bubble wall to drop below that of the bulk
liquid, which in turn decreases the vapor pressure at the bubble surface.
Whether or not the decrease in pressure causes the velocity of the

bubble wall eventually to decrease depends upon the rate of increase of
bubble surface area. It will be shown that such an effect occurs. The
bubble radius ultimately becomes proportional to the square root of

the time of growth. In this asymptotic range of bubble expansion, the
temperature at the bubble wall approaches ths boiling point of the
liquid at the external pressure, and the pressure difference producing
the bubble growth tends to zero with the radial velocity of the bubble
wall,

If the bubble growth is arrested and the bubble forced to
collapse by a sudden increase in the exterior pressure, the flow of
vapor and the flow of heat at the bubble wall are reversed. Condensation
of vapor at the surface of the bubble raises the temperature there,
resulting in an increase of vapor pressure which tends to slow down the
rate of collapse.

It is thus apparent that coupled with the dynamic problem
there is a problem of hsat transfer betwesen the liquid and vapor which
arises when the bubble changes size. The heat problem will be solved
approximately under the assumption that significant heat transfer occurs
in the liquid only in a thin shell surrounding the bubble wall. The
solution is presented in section III, along with an estimate for the
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first order correction. The assumption of a thin thermal boundary
layer in the liquid is reasonable if the thermal diffusivity of the
1liquid is sufficiently low.

Insofar as the liquid is concerned, the bubble grows or
collapses because of pressure variations at the bubble wall, and
possibly at the external surface of the liquid, which set the liquid
in motion, Thus the heat transfer problem involves convection effects.
A treatment of the heat transfer problem which neglects convection
has been given by Forster and Zuber,(7) who use the model of a
stationary liquid containing a moving heat scurce (corresponding to
the moving bubble wall), The diffusion solution for the heat problem
obtained from this model leads to unrealistic predictiona for the rate
of bubble growth. An analysis of the diffusion solution is also pre-
sented in section III,

The dynamic p;-oblams considered here are the growth from
unstable equilibrium of a pure vapor bubble in a superheated liquid, and
the collapse of a vapor bubble in a 1liquid below its boiling point.
The bubble which collapses is taken to be at rest initially, and in
this respect 1s a model for a cavitation bubble whose growth has been
arrested by an incréase in the external pressure on the liquid. The
model used differs from an actual cavitation bubble in that the liquid
temperature is assumed to be uniform when the collapse starts, The
temperature field in the liquid for an actual bubble depends on the
past history of the bubble, and if non-uniform will affect the initial

period of bubble collapse. The solutions for the growth and collapse
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of vapor bubbles are presented in section IV, together with experimental
verification for the case of bubble growth in superheated water.

For the quantitative solution of the heat problem and the
dynamic problem, several simplifying physical assumptions have been
made. The arguments for the validity of the general assumptions are
Justified, as they appear in the text, for the case of cavitation
bubbles in water. Two basic assumptions may be mentioned here, however;
these are that the motion possesses spherical symmetry, and that the
motion is irrotational, The latter assumption is independent of the
former since, for example, it is possible for a swirling, eddy type of
motion to occur within the vapor of a spherical cavitation bubble.

The experimental evidence indicates that such motion, if it occurs,

does not influence the bubble behavior. The assumption of spherical
syumetry is more serious. This requires in principle that theesymmetric
effect of gravity upon the bubble behavior be ignored. Actually, the
rise of a vapor bubble against gravity is extremely slow,so long as

the bubble is small. Thus, for water superheated by about 200, no

great error is introduced by the buoyant force provided the bubble
growth is not followed beyond a radius of the order of 10"'1 cm,

which is mach greater than the equilibrium radius of about 1.5 x 10~ cm
for the 102° vapor bubble in water. Bubbles released at higher super-
heats grow appreciably faster than the 102° bubble, and so are relatively
mich larger before gravitational effects become important. The
collapsing bubble has, effectively, no time to rise against gravity
before its collapse is completed.
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The emphasis in the following treatment 1s laid upon the
‘physical, rather than the mathematical aspect of the problun;. Thus,
a complete table of the integréls appearing in the text has not been
given, although a few of the more obscure integrals are evaluated in
the Appendix. From a mathematical standpoint, however, it is felt
that the equation for the growth of a vapor bubble in a superheated
liquid may be of some interest, inasmuch as it offers a tractable
example of a nonlinear, integro-differential equation.
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II. FORMULATION OF THE PROBLEM

‘Basic Fguations.

In terms of the fluid density ,o » the (vector) fluid
velocity y, the temperature T, the pressure p, the internal energy
e per unit mass of fluid, the stress tensor P, the thermal conductivity
ks the coefficient of viscosity v , the time t, and the heat §
generated per second, per unit volume in the fluid by absorbed
radiation, the fundamental Eulerian equations which describe the

behavior of a fluid (liquid or vapor) are:

The equation of continuity

%€-+v-,oz=0. (1)

The equation of motion (with the neglect of external body=-

forces, such as gravity)
dy, :
Paw="Y"P (2)
The heat equation
PaE=PVE+ VeI +4. (3)
The thermal and caloric equations of state

P =f(P' T)s e =e(py, T)e (4)



For a Newtonlan fluid, the stress tensor is given by*
P=-pl+ gz + @) -£100 . 9. (5)

In these equations, 9 denotes the total derivative with respect to
dt ,
time, as computed in a reference frame at rest in the fluid element under

consideration;** thus,

é% = é% +y-v, (6)

Physically, eq..(1) expresses the conservation of mass. Eq. (2)
relates the inertial reaction of the given elementary fluid mass to
the surface stresses acting upon it (in the absence of external forces).
Eq. (3) is essentially the statement of the first law of thermodynamics,
relating the increase of internal energy of the mass element to the
work done on it by its surroundings in changing its shape and size, the
heat energy conducted into it across its surface,-and the heat
generated in it by absorbed radiation.

The notation used here is essentially that of Gibbs, with ¢

denoting the gradient operator. The symbol v ¢ denotes the divergence,
vX the curl, and in the case of the rate of strain tensor v Yy is

the vector gradient (a dyadic). The term P : Vy in (3) represents
the trace of the product of the stress. and rate of strain tensors.
The term (vy)' in eq. (5) is the transpose of VY.

For the definition of the stress tensor and a derivation of eqs.
(1)5(2),(3), see Milne-Thomscn, Thearetical Hydrodynamics (Macmillen
and Co. Ltd., London, 1949).

*% Other symbols for the total (substantial, convective, particle)
derivat;ve include D/Dt, and a dot placed above the differentiated
term: q.
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By the use of standard vector and tensor identities, the
- terms in (2) and (3) involving ths stress tensor defined by eq. (5)

can be reduced to the forms

Vep=wpt yl[-’; VY e y) UX(VX ¥,
(7)

m!=-p(v.z)+v\{(vu)2+§(v-z>2

+ 2v -[%sz ~yX(vxy-yv- z)]} ’
provided the coefficient of viscosity vl is considered to be constant.
Because of the smallness of the coefficient of viscosity of water and
its vapor, viscosity effects are not expected to play an important
role in the behavior of water vapor bubbles, and will ultimately be
ignored. The viscosity terms have been retained, however, so that
order of magnitude estimates of their importance may be made.

ﬁhen the assumption is made that the fluid flow is

irrotational

YXv=20 (8)
the forms (7) further reduce to

v -P=-vp+§vlv(v *v)s
(9)
Pivy = =p( Ve y) +v1{ vove -%(v-_v_)2 -2y V(v ¢ !)} .



If the further assumption is made, in the case of the
- liquid, of incompressibility ( f) = constant), eq. (1) gives

v ’!=0, (10)

and eqs. (9) becoms simply

VeP -‘,Vp,

(11)
2 2

YLV Ve

It will be observed, on substituting eq. (11) into eq. (2), that the

P:ivy

viscosity terms disappear completely from the equation of motion for
the case of irrotational motion of an incompressible fluid. If the

fluid is viscous, the motion may still be influenced by viscous heat
generation, however, provided significant heat transfer effects take

place .

Ihe Problem in the Iigquid.

It follows from the assumption that the liquid motion is
irrotational (eq. (8)) that there exists a velocity potential g
throughout the liquid, such that

y=m=- V¢0 (12)

Since, further, the liquid is taken to be incompressible (eq. (10)),
the velocity potential is a solution of Iaplace's equation
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The spherically symmetric solution of eq. (13) is of the form

g =200, g, (14)

vhere r 1is the radial coordinate from the center of the bubble,
The liquid velocity corresponding to eq. (14) is purely radial, and
given by eq. (12) as
v=4ad, (15)
r
If the liquid velocity at the bubble wall is denoted by v(R),*

eg. (15) gives the relation
A(t) = B3(t) v(R), (16)

where R(t) is the radius of the bubble surface. Eq. (15) thms

becomes

2
vir,t) = B y(n), (17)

r
and if the velocity potential is normalized to zero at r = =, eq. (14)

becomes

2
#(r,t) = Bl ¥@B) (18)

r

The equation of motion, according to eqs. (2), (11), is

f.[% +!-V!_]'="Vp. (19)

v(R) 4is, in general, not exactly equal to the radial velocity
of the bubble wall (because of evaporation or condensation
occurring there).



=19 -
The vector identity

yx@xy=iw-yg.un

and the asaumption VXy=0 give
| 2
! LIRS 4 = %Vv H

hence, by eq. (12), the equation of motion (19) may be written

8.1 2y
fV[ at+2V]— VPs
from which a Bernoulll relation

-§ﬁ+15v2=--2-+c(t) (20)

follows by integration, the density having been taken constant. From
eas. (17), (18), the left side of eq. (20) vanishes at r = =, so that
C(t) 1n eq. (20) 1is simply the external pressure p_ divided by the
liquid density:

N

o0

P

Eq. (20) thus becomes

M 1 2 p(r,t) - poo
- v -
ot 2 ,O

Because the density of the liquid is assumed constant, the

internal energy e can be a function only of the temperature T. Over
the limited range of temperatures which will be considered here, the
internal energy may be considered to vary linearly with ths temperature.



On neglecting any constant internal energiea, the caloric equation of

state therefore reduces to
e=c, T (22)

where c_ 1is the specific heat (at constant volume) of the liquid.
The thermal conductivity k, like the specific heat, will be taken
constant over the temperature ranges considered. Egs. (3), (11), and
(22) thus combine to give for the internal energy equation of the
liquid

{°°v [%%+v-vT]=kv2T+ylv2 v2+£1. (23)

In the analysis to follow, the viscosity term yl v2 v2

in eq. (23) will be neglected. By using the solutions thus obtained,
it is possible to estimate the contribution of this term to the total
rate of heat generation per unit volume of ligquid. The specification

(17) for v gives

2
2 2 Y
v v =12
V\ Vlrz,

and accordingly, the viscous heat generation is a maximumm at the bubble
wall, where it amounts to
2
12 ¥ (R)
'R
per second, per unit volume., Here v(R) represents the velocity of the

liquid at the bubble wall, which may be approximated by the radial
velocity R of the bubble wall itself.* The coefficient of viscosity

*
This approximation, which is plausible physically, will be shown
to be accurate to about 1 part in 1000.
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of water near the boiling point is about 3 x 107> c.g.s. units.* The
. solution for vapor bubble growth to be presented below gives for a
bubble growing in water at 1 atm., superheated to 103°C, & maximum
radial velocity ima.x = 32 cm/sec when the bubble radius is about
R=3x 10" cu (see Fig. 7). Combining these figures, we find for
the rate of viscous heat generation at this time

L '
Y\vzvz x 12'»1 =4 x 10° erg/ccesec x 1071 cal/cce8ec,

RZ
But the total temperature drop at the bubble wall near the time of
maxioum radial velocity (see Fig. 8) is about 10“’0/5%, corresponding

to a heat loss from the liquid at the bubble wall at this time of

I{.\ev ﬂé?-' ~ 104 cal/ccesec,

due essentially to the evaporation occurring there. The viscous heat
generation drops off sharply away from the velocity maximum. Clearly,
viscosity plays a negligible part in determining the growth of vapor

bubbles in water. Bq. (23) will therefore be written faor solution as

‘ocv[%%+x-VT]-=kv2T+c';. (24)

The faregoing development of the equations for the liquid has
been based essentially on the assumption that the liquid is incompressible.
The validity of this assumption depends upon the ratio of the velocities

A tabulation of physical constants will be found in Appendix A.
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attained by the liquid to the veloeity of sound in the liquid. For
- the growlng vapor bubbie. the maximum veloeity at the bubble wall is
never larger than a few m_eteré per second for the highest superheats
considered, so that compressibility effects in the liquid may be
safely ignored. |

For the case of the collapsing bubble, several of the
assumptions made above may fail near the point of ccllapse, if the
solutionsa are carriéd that far., Thus, the temperature at the bubble
wall, which is initially below the boiling point, rises sharply near
the end of collapse, posaibly apprroaching the critical temperature of
the liquid. The parameters (.\ s ko C.» etc. of the liquid cannot be
taken constant, of course, over such an extreme temperature variation,
nor is 1t valid to consider the liquid incompressible. Perhaps the
most significant error in the basic assumptions, for the case of the
collapsing bubble, lies in the fact that the spherical shape is
inherently unstable near the point of collapae.(s) The collaﬁaing
bubble tends (theoretically and experimentally) to shatter before
collapse. |

For these reasons, although the assumptions made above will
be retained, the calculations for the collapsing bubble will be carried
only far enough to indicate the trend of behavior of the physical
quantities involved.
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The Problem in the Vapor.

| In the case of the vapor, the main simplifying assumptions
are related to the smallness bf the vapor density in comparison with
that of the liquid. Thus, the physical effects of the vapor inertisa
may be expected to have a negligible influence on the rate of bubble
growth or collapse., It will be shown that the vapor may safely be
considered to be in a state of thermal and dynamic equilibrium, insofar
as its internal bebavior is concerned. To do this, it is sufficient
to use order of magnitude estimates.

The equation of motion of the vapor follows from eqs. (2),

(2) and (9), and is given by*

F{;%'FZ’V!]:‘VP*%Y(V(V'!)' (25)

The velocity in the vapor is certainly smaller in megnitude then the
velocity of the bubble wall, bacaﬁse of the evaporation which takes
place when the bubble grows or the condensation of vapor which occurs
when the bubble collapses. The vapor density is smaller than the
liquid density in a ratio of about 1:1000, and the coefficient of
viscosity of the vapor is smaller in a ratio of roughly 1:10, The
pressure gradient in the vapor may therefore be assumed smaller than
the gradient in the liquid by at least an order of magnitude. An
estimate of the pressure gradient in the liquid may be made by again
putting the liquid velocity at the bubble wall equal to the bubble wall

The symbols appearing in this part of section II refer to the
vapor, unless otherwise indicated.
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veloclity R in eq. (17), and using this to evaluate eq. (19) at
. the bubble wall. The result for the liquid is simply that

%14q - .

or (" 1liq ™

r=R(t)

where R 1s the radial acceleration of the bubble wall. For water
at 103°C, the maximum radial acceleration of the bubble wall is about
6 x 10° <:m/sec2 (sqé Fig. 7), giving for the maximum pressure gradient
at the bubble wall 6 x 10° dynes/enz/cm, or about .6 atm./cm. The
maximum pressure gradient in the vapor is not more than about 1/10
of this, on the basis of the above estimate, and it occurs when the
bubble radius is about 2 x 10~ cm. Thus, the pressure variation in
the bubble is at most of the order of 107 atm. But the pressure itself
is of the same order as the external pressure of 1 atm. It is thus
clear that the pressure may be taken as uniform within the bubble,

Prap © p(t). (26)

For order of magnitude purposes it is sufficient to consider
the vapor to be thermally and calorically perfect:

p= PBT, (27)
e = OVT, (28)
where B in (27) is the universal gas constant divided by the molecular

welght of the vapor, and ¢ in (28) is the specific heat (at constant

volume) of the vapor. The heat equation for the vapor beccmes



-25-
f%@%+!fW]=W%~P®°!1
S Ridnt CEE AT R CRE) JC

according to eqs. (3) and (9), if the radiant heating in the vapor

is ignored. The thermal conductivity, specific heat and viscosity
coefficient of the vapor are about an order of magnitude smaller than
the corresponding quantities for the liquid. On making the same
approximations for the heat equation (29) as for the equation of

motion, we obtaln an approximate relation

KVT = pv ¢ ¥,

which reduces to

V(KT + pf) = 0 (30)

if the velocity potential relation for the velocity and the uniformity
of p and k are used. Inasmuch as the pressure, temperature and
velocity potential are all finite at the origin, the only solution

of (30) consistent with spherical symmetry is of the form

kT + pf = C(t). (31)

The velocity potential remains undetermined to an additive function
of time, which can be so chosen that C(t) = 0 in (31). Eq. (31)
then yields the relation

¢=‘%T3 (32)

and if the perfect gas law (27) is used in (32) it gives the further
relation
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= - X, (33)
P2 |

Eq. (33) may now be substituted into theeguation of continuity (1),
giving

.g.E=.v.FI=V‘f’V¢=§V“#Vf ’

9 -1 R
prIgf = 1mp. (34)
Eq. (34) is a diffusion-type equation, which may be compared

with the heat equation written for stationary vapor

fgcv%tT":szT,
or
20 T =
VT-'%%EQ D—ﬁ;‘;. (35)

The function in eq. (34) replacing the thermal diffusivity D of the

vapor in eq. (35) is

8] = X (36)

If the vapor molecules may be supposed to have, say, three trans=
lational and three rotational degrees of freedom, then c, = 3B. Hence

if the vapor were stationary, we should have from (35) and (36)

|#| =« 3D. (37)

Eq. {37) will be of the right order of magnitude even if the density
varies, Now, the thermal diffusivity D of saturated water vapor at

103°C 1s about .3 cmz/sec. The characteristic diffusion length for
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eq. (34‘) is thus about V4Pt =~ 2/t . The significant time for the
103° bubble is about 104 sec, roughly the time between the end of
the relaxation period (wh_en the rate of bubble growth becomes
significant) and the time of the wvelocity maximum (see Fig. T), giving
for the diffusion length 4[At x .02 cm, or about six times the
bubble radius at the velocity maximum, There is, therefore, an
insignificant variation of 1n {J with position in the bubble, so that

the vapor density may be considered a function of time alone,

Prap = (t). (38)

Eqs. (32) and (33) then show that also
Toap = T(t), | (39)
Bopap = BlE)e (40)

It is not legitimate, of course, to argue from eq. (40) that
the vapor is at rest, since it is the small terms in @ which have
alresdy been neglected in arriving at (40) that determine the velocity.
This difficulty can be traced to the normalization chosen for g.
However, an estimate for the velocity is readily cbtained from eq. (38).
Consider a sphere of radius r within the vapor. The mass of vapor
in such a sphere, by (38), is simply

n(rst) = § mp (t). (41)
If, now, the independent variables in (41) are chosen to be m and t,
rather than r and t, eq. (41) may be written in an alternative

notation as



B = g n{a(t) > (m,t) , (42)

* the change corresponding to the adoption of lagrangian rather than
Fulerian coordinates. Differentiation of (42) with respect to t,

holding m fixed, shows that

r%3pF=0

or since %% is now the vapor velocity, that

- a -
vvap(r,t)-—-ggp‘geg —-#% . (43)

Inaamuch as the origin for r in the above development was arbitrary,
eq. (43) implies a uniform dilation or contraction of the vapor within
the bubble, which is consistent with the uniformity of /3 o Eq. (43)
indicates a radial velocity in the vapor at the bubble wall of about
+4 cm/sec for the 103° bubble when the velocity of the bubble wall
reaches its maximum of about 32 cm/sec.

In the discussion of the growing vapor bubble in a superheated
liquid, effects related to the velocity of the vapor will be neglscted,
ths incurring an error of a few per cent in the results. In the
discussion of the collapsing bubble, the large temperature variations
at the bubble wall may be expeeied to cause significant changes in the
vapor density, and s0 the effects of the vapor velocity will be
included.

It may be noted in passing that for a uniform (irrotational)
dilation or contraction of the vapor, such as is indicated by eqs. (38)
or (43), the viscosity terms in the heat equation (29) vanish

identically.
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§ggndar§ Conditions.

If the terms involving viscosity are omitted from the basic
equations (1), (2), (3) and the equations of state are substituted in,
the resulting equations are of first differential order in ¥y and p,
and second order in T. In order to match solutions for the liquid and
vapor across the bubble wall, relations must therefore be provided
connecting the values of ¥ and p, and the value and normal
derivative of T across the interface. Because of the assumption of
spherical symmetry, no further relations are needed if the viscbsity
terms are retained.

Consider a differential cone I’ extending from the center
of the vapor bubble (the origin) to a point indefinitely far away in
the liquid, whose generators are straight lines through the origin,
and whose differential cross section at the bubble wall is 2. .

In this cone, mass is conserved

a—%—/Pde+fPEOf!ds=0. ‘ (44.)

The equation of motion of the cone is*

ya ydav + n* pvvdsS= n * PdaS - =— ndS,
a ) r f r o R

(45)

Since the stress tensor does not account for the molecular
forces resronsible for surface tension, the force due to surface
tension must be written explicitly into eq. (45), and the
corresponding surface energy into eq. (46). For a classical treat-
ment of the theory of surface tension, see Joos, Theoretical Physics
(Hafner Publishing Co., Inc., New York, 1934), Chapt. IX,
section 8,
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and the energy balance equation is

a_} 1.2 ' 1.2
- (e + = vT)ar + /ade} + { ne pvie + < v)as
f| [uperdiur e [esp e fan pror]

=/qd1-+fg-(1>oz+kv'r)ds. (46)
T T

In t;hese equations, n .denotes the outward drawn normal to the cone
in f dS, and t,he'unit normal to &L extending away from the origin
in P/;dS. The surface integrals on the left side of the equations
represent transport terms; these must be added because the elements of
integration do not move with the fluid. To evaluate the integrals we

shall need the differential equations, which may be written

g€+V-Fy_=O, (47)

0
—a££§+v-[fﬂ—f’]=0, (48)
—gz[lo(e+%v2)] +V . [/oz(e+%v2)-1° -y -kT] =&, (49)

eq. (49) being a combination of egs. (2) and (3).
The equations (47), (48), (49) are all of the form

3 _
5%+V0b=c, - (50)

g, b and c¢ being suitable scalars, vectors or tensors. The integral
relations require a knowledge of

d

3t adr.

r
The change in the integral [ adT during a time dt is
r

'
d/ad‘r=/ . [a'+%%-dt] d‘T-[ aldT
r ' r<R+Rd4t <R

+/ . [a+%%dt] d'r-/ adT, (51)
r>R+Rdt r>R



where a' 1is the value of a written for the vapor. The volume element

dr is'here considered fixed in space. To first order in dt, (51) is

- Da! da
d adr = ., (a'=a)ar + dt 3¢ 4T + &- ar {.
r R<r<R+Rdt : r<R

This may be transformed,with the aid of the relation (50) and the

divergence theorem, to

—g—:E adT = / f{(a"- a) ds + / cldy - { n * b'as
T r=R r<R r<R
+/ cdv - f n « bds
r>R r>R
fﬁ(a'- a)ds + /cd’r - f n * bdsS - /g'(b‘-b)ds,
I

z r z
L-[R(at- a)-n « (b'-b)], -5{ n * bdS + / cdr .
r

r

. (52)
Applying (52) to eqs. (44)-(49), one obtains in a straightforward
fashion

’p -/jv) - n°(/,'v'v' - /;vv - P! 4 P)] =-F g (53)

-n- [F'v'(e' + —v'z) -/;v(e +lv ) = Pley! + Pey
- k'UT' + kVT]} .
z
Because of the spherical symmetry,
n* P=n[- V[(‘-"'" (54)

on Y (the same relation holding for P')., The use of (54) in (53)
leads to the results
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{:(ﬁ-v)= f'(ﬁ-v-), | (55)

Pt vovpt B v e iE- D -4 G- P00
e & - k'§?=,:'(E.i-v')[L+32'(ﬁ—v‘)2-15(1.1-17)2

-%%%(-g{i-g—;ng%(g—;’-f)] (57)

at r =R, where in (57) we have put
L=e! -e+—f‘E- ﬁ (58)
according to the first law of thermodynamics, L is the latent heat
of evaporation at the bubble wall. Evidently, eq. (55) expresses
the conservation of momentum at the bubble well. The last terms in
(57), (58) represent kinematic (mass transfer) and viscous corrections
to the vapor pressure and heat transfer relations holding at the
bubble wall.
There is, finally, the condition of temperature continuity
across the bubble surface
™ =T, (59)
A temperature discontinuity would imply an infinite heat conduétion
through the surface.

The momentum condition (55), which may be written
LN [ 4 1
v=R[1-_'f;T (1-1%-)], (60)

shows that the liquid velocity at the bubble wall can differ from
the bubble wall velocity by at most terms of relative order /o‘/g ~ 1/1000.
For all practical purposes, (55) may therefore be replaced by

vliq(R) = Re (61)
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As has been mentioned previously, the vapor velocity is small in com=
parison‘ with the bubble wall velocity. The momentum transport correction
in eq. (56) is thus approximately P 'R%, For this to compare with

p's which is about 1 atm = ‘IC)6 c.g.s units, R must equal about
300 m/sec, i.e. be comparable with sonic velocity in the vapor. Such
large velocities will not be considered here, so that the momentum
transport correction in eq. (56) may be neglected. Similarly, the
kinetic energy transport corrections to the heat transfer rslation (57)
are completely negligible in comparison with the latent heat of evapor-

10 erg/gm).

ation. (For water, L 2 x 10
The viscosity corrections in (56), (57) may be evaluated by
eqs. (17), (43), (60). The contribution of the vapor vanishes

identically. The contribution of the liquid amounts to

4 -al_! = - ¥ = - "i'
3‘18r r'y l’r(r 4V(R

in eq. (56), and this divided by [, in eq. (57). The net effect of

R

viscosity is thus to increase the surface tension ¢ in (56) by ZVlﬁ,":and
to decrease the latent heat L in (57) by Anft/ 'o Re For a vapor bubble
growing in water, the latter correction is entirely negligible. The
surface tension increase amounts to .2 and .9 dynes/cm at the time of
the velocity maximum of the 103° and 106° bubbles, respectively (see
Figs. 7,9). This is of the order of the-thermal variation in ¢~ , which
has already been neglected. For the collapsing bubble, these viscous
effects become important only near the point of collapse,

With the neglect of the kinemetic and viscous corrections,

the pressure relation (56) reduces to

= 2q
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Since the temperature within the vapor is considered to be uniform,
the heat trunsfer relation (57) reduces to

k g'I-'—L‘o'(f.i - v'),

By eq. (43), this may also be written

2k §y =5 i ® P (63)
When the vapor is at rest relative to the interface, the

quantitieé pvap and f’vap are equal to the equilibrium wvapor
pressure and density peq and !oeq of the liquid at the temperature
of the bubble surface. But when a relative velocity exists they will
differ, by an amount depending on the nature of the liquid. A relation
connecting these which holds when the vapor may be considered a perfect
gas in a state of complete equilibrium (vﬁap = 0) has been given by

(9)

Mathews, on the basis of previous work by Plesset.(10) In the

notation used here, Mathews' relation is

Pvap _ Lvap _

peq /’eq c + ﬁ

where ¢ is a characteristic velocity, related to the velocity of

<3 )

’ (64.)

sound ¢ in the vapor and the specific heat ratio Y of the vapor by

¢ = ——t—— g, (65)

Vit

The parameter a appearing in (65) is called the Maccomodation
coefficient® of the liquid, and measures the fraction of the surface
available for evaporation or condensation., For non-poler liquids a

is near unity, but for polar liquidswith hydrogen bonding a may be
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appreciellbly smaller. For a water surface near 10°C, a 1is reported
by Wyllie(") t0o have the value .04. This experimental value was
obtained by measuring the time required for & sample of liquid to
evaporate into a partial vacuum, Due to experimental difficulties, the
value of a for water has not been measured at higher temperatures.

- If the value a = .04 and the values ¥ = 1.33,
¢c=5x10* cm/sec are used in (65), they give for the characteristic
velocity of water ¢ = 7 m/sec. Correspondingly, one might expect a
significant deficiency in vapor pressure and density to occur when a
vapor bubble is growing in water at only a moderate rate. The situation
in the case of a collapsing bubble is even more critical, The large
pressures developed within the collapsing bubble because of the
inaccesibility of the bubble surface for condensation would severely
limit the rate of collapse, and might be expected to result in the
appearance of condensation throughout the vapar.

These conclusions, however, do not appear to be borne out
by experiment. Thus, the pressure-limited collapse described does not
occur (radial velocities of collapse in water which are certainly in
exceas of 25 m/sec have been reported by Ellis“z) )s and condensation
has not been observed to occur within collapsing cavitation bubbles,
except possibly near the point of collapse, These facts indicate that
the value of a for water at even 10°C may be much greater than .04,
and possibly point to a significant increase of a with an increase
of temperature.*

It is not the experimental value of a which is questioned
here, but the determination of the temperature at the surface of
evaporation. In the case of water, the rate of evaporation is
large, and a steep temperature gradient develops at the surface
(possibly reaching 102 or 103 oC/cm).



We shall therefore assume the velocity c¢ in eq. (64)
-to be sufficiently large that vapor pressure and density discrepancies
may be ignored, so that we may take
= = 66
Pyap = Peq’ ("vap {:eq (66)

at the bubble wall.

Conclusion,
From eqs. (17), (61), eq. (21) becomes
2 2 2
(rot) =p_+ R.R+2RR. _ 1 tﬁ.—] . (67)

Stace py; (R) = p, (T) = &by eqs. (62), (66), eq. (67) becomes
at the bubble wall

R§+2ﬁ2=529.(.3'_)_'_'.‘.’9:;.-_.2.9:._, (68)
2 Priq P |

an equation of motion for the radius R of the bubble wall. Eq. (68)
was given by Plesset. (13) P eq(T) in (68) refers to the equilibrium
vapor pressure of the liquid at the temperature of the bubble wall.*

Ag indicated previously in the discussion, eq. (68) may be con-
sidered valid so long as remains small in comparison with the
sonic velocity in the liquid. A correction to the equation of
motion (68) which takes the compressiblility of the liquid into
account (up to terms quadratic in R/cjj,) has been given by
F.R. Gilmore (HDLCIT Report 26=4, April 1952) on the basis of the
Kirkwood —-Bethe hypothesis.
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Coupled with eq. (68) is the heat equation for the liquid,
ceqe (24):
ﬂ . . = 2 3
/° °v[at + v » VT] = kVv°T + §, (69)

with the boundary condition

R &

a =+ 4 Paq ™) (70)

r=R(t)

(eqs. (63), (66)). {’eq('” in (70) 1is the equilibrium vapor density
of the liquid at the temperature of the bubble wall, It will be
assumed that initially the temperature in the liquid is wniform

T(r,0) = T, (71)

Together with the initial conditions for eq. (68), egs.
(68)=(71) determine the problem of vapar bubble behavior.
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'III. THE HEAT PROBLEM

The system of equations II (69), (70), (71) which define
the heat transfer problem in the liquid may be written

v2T=%[-g-Efz-vT]-%<i(t).

a = B F(t), (1)
or r=R(t) >
T(r,O) = TO’ J
= X
where D -Pcv and 2
v= E‘"g" ’

r
(2)
=2 1 4

At r = «» the temperature in the liquid becomes uniform, so that
the first and last of eqs. (1) give on integration

T_Z T(w, t)='.l‘o+£q(t). (3)

if q 1is chosen so that q(0) = 0. To standardize the solution it
is desirable to use instead of T the dependent variable

e=T=T_» (4)

vwhich vanishes at r = o and satisfies the system



)
V29=% [-g-t§+! . vel,
28 _ 2 >
= o RF(T), (5)
8(r,0) = 8(x=, t) = 0. y,

Convection Solution,
Because of the boundary condition at the moving bubble

wall, it is convenient to transform (5) from Eulerian to lagrangian

coordinates. Coordinates appropriate to the present problem are

n=10 - P,
(6)

t =%,

The lagrangian coordinate m measures essentially the mass of

liquid contained within a sphere of radius r about the center of the
bubble, the liquid density having been assumed constant. In terms of
m and t, the system (5) becomes

\
D r. 406 _128
7 5 SD5t
2 =rw), ) ™
m=0
o(my 0) = 0(, t) = 0, J

These equations can be put in more tractable form by intro-
ducing a temperature potential U, defined by



o= | @)

The differential equation

) o) Uy
g_;tr’*le-%%;]-o

may then be integrated once with respsct to m to yleld

rl’i-g-%%%=.!(t),

wvhere J(t) is an arbitrary function of time. From eq. (8),

m
U=[ e dm + K(t),

o

and the function K(t) may be chosen so that J(t) = 0, and also so
that U(m,0) = 0. The system of equations to be solved then reduces
‘o

- = F(t), (9)

ou
U(m,0) = == = 0,
’ amlm-"—eo

The diffusion problem thus defined can be solved by an
iterative procedure if the assumption is made that U varies
appreciably only near m = O, This is equivalent to the assumption
that the temperature variation in the liquid is localized in a thin
“thermal boundary layer" surrounding the bubble wall, which is
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reasonable if (as is the case with water) the thermal diffusivity D
.of the 1liquid is sufficiently emall. To utilize the assumption, we
shall rewrite the differential equation as

R R (10)
m : m -~

and treat the right side of (10) as a perturbing heat source. It is

convenient to use in (10) a new time variable T , defined by

t
T -.-[ B4(s) at, (1)
(o]

in terms of which the differential equation becomes

gz_g-mn,_(:ﬁ-,)@fn

[ ]
om’ D aT Hl’ amz
The system far the unperturbed solution Uo is

8
v, 4 o . )
a2 D T

u "
—3| =FT), ? (12)
o™ =0

b—4 ——g
UO(EQO) = am

. = 0, )

This is readily solved by taking the Iaplace transform of the system
with respect to the variable T ., If

u(m,s) = /me.son(m,'l") d E I[Uo]
o



and ‘
f(S) = I[FL
the transformed system becomes
2
- 4
dmz D
2 &
Q..Q - f(s). A - O.
dmz dm =
m=0
with solution '
=
us=2 f(s) e D,
s
Thus
2 8
-mj— 2 -m
GRS N
giving

mZ
o, =L & =-J§j’r Eif-?-;di- o D=7, (43
2%y

2
2 T - BT
(+] = -1 g * ¥ - m / S LD(T - . )

The system for the perturbation correction U1 may be

written
\
a%u au
3-35% = CmT),
om
} (15)
8%y 3u
-—-% = Uy (my0) = b_nfl = 0,
Om m=o
m=0 j




where ' ‘
?%s_ 8%
G(m.'r)=(§-1) (:'-5;%+-g;%‘\. (16)
It

v(m,s) =£[U1]’ g(mys) = OC[G]3

the transformed equations become

2

dx. T v = glm,s),

dm

dv

- =

m=Q

2
iy
dn?

with solution
8 £ 8 _« 3
vES" % \/g {‘-nJ; Lm ex'/;g(x.s) dx + em‘/gf e-x‘[g g(x,8)dx
m
2 0. = |
- e.m‘/;/ e-xﬁ g(x,8) dx} ’
o
go that |
%=% e-m/%./mex‘/ggdx-em/% [eo e‘-x‘/ggdx
o n
-e-m.j% /oo.» e-x/% gdx}
o

At the bubble wall m = 0, this reduces to

= - [w Q-xgg(x’s) dx’
n=0 +]

dv
am
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giving for the perturbation temperature at the bubble wall¥*

2
- 8,(0,T) =-[°°dx.o

x T olx "1.1)(1?-?5
o i /o s ’

or from (16),

2
1 i ____1:_7_. © By
Vi /o (v- )2 fo e

GI(O’T)="
4 %y o
Loy )| 2 =t ax. 17
X(R” ) ax®  ax? (47

The integral equation for the perturbation potential correction U.'

will be given for completeness. Its Laplace transform v(m,s) can
be written in the form

5 = -Im-'xlf-': ~(mtx) /2
= - % 3 [ [B D -8 D g(x,S) dx.
o
from which one obtains

oo lfE [ [ [

@

(g o) [32] -

ax ox
It is assumed in the following discussion that all limiting
procedures, changes of order of integration, etc., are permissible.




The solutions given above in éqﬁ. (12)=(17) are thus far
_exact, but not useful for computation. The approximationsto be made
depend upon the assumption that the influence of the heat exchange
occurring at the bubble wall does not extend far into the liquid. The

transform of the unperturbed temperature solution may also be written

]

a-g_
which ylelds ' )
T e (0, g) d '5 - 2
o (m,T) = —=2 f N oy IR T3, 18)
°(m ™) VinD Jo (T- $)3 2 ° (

Far either the expanding or collapsing bubble, IGO(Q, 8)| is an
increasing function of § . Hence, if 90(0, €) may be considered
negligible for § < T, ( <T), one obtains from eq. (18) the

inequality

o_(mT)| < 16.(0,T)| ers ! ) > T).
Jogm Tl < Ie, '°”(w.n<1--vo> (x> T,

Since erfe(x) < 1/2 for x > .5, the characteristic diffusion length
in terms of the lagrangian coordinates may be taken to be m =‘\/DZ‘I"-""I;5

for the unperturbed temeraturé solution. The parameter of the
perturbation is

3

which in the region of significant temperature variation is therefore
less than



3VETF=) |4
1+ 3 2 - 1.
R

Thus the perturbation correction may be expected to be small in

comparison with the unperturbed solution when BW/ »2
is small in comparison with unity, which will be the case if D
is sufficiently small., The perturbation correction must vanish when
8, vanishes (e.g. for V< T ) because of the boundary and initial
conditions on the perturbation equation.

For the growing bubble, T = T, < B*(t)(t=t ), so that

3VD1'T‘-‘T’) 3‘Vth -tos
—-————-2‘ <
3 -

R R

The significant heat transfer for the 103° bubble begins at about
t, = .15 nillisec. The bubble radius is 2 x 107 cm about .06 millisec
later. Taking D= 1.9 x 1073 cm2/aec, this gives

3'\/th -t )
-'—-—i—g- = 50

near the beginning of the 103° bubble growth, The ratio drops
asymptotically to .20 at later times. Thus within the boundary layer,
the perturbation parameter lﬁ- 1 4s certainly smaller than .50
during the time of significant heat exchange at the bubble wall. For
larger initial .superheats the bubble grows faster, and the ratio is
accordingly somevhat smaller. For the collapsing bubble considered
here, the ratio z-ﬂ;;z:@_ is much smaller than unity except near

the point of collapse.



When the thin thermal boundary layer assumption is valid,

_ one may approximate the perturbation parameter by

(H?)’*’B-u i

within the region of significant heat transfer, and to a first
approximation neglect the 6201/61:2 term (which vanishes in any

case at the bubble wall) in comparison with the 08U /0x° term within
the perturbation solution integrals, Thus, the perturbation temperature
correction at the bubble wall eq. (17) becomes approximately

. 2
o= [Tt [T P 8 e

or by eq. (14),

2

= - .L -1 N TN

2
S - DGV
o (8-%)
Interchanging the order of the last two integrations gives

2
3 S -—%'EyH.--
o= [T e [ [ P

T 4 2 2 2
=L E ¥, ap(r-9° (5-9°
‘"D/oﬁffﬁl e (v~ ¥
-_-..%P-[ JE__S_ < m. (19)

R>(%)

o (T-%)?




According to eqs. (2), (11),

FT) =g 3 Ped (20)

is proportional to the rate of increase of the mass of vapor within

the bubble, in terms of the time variable

= /: R*(t) dt.

F(7T’) is therefore negligible until a time t = ¢ o & T=T,
when the radius of the bubble begins to change, so that the lower limits
of integration in eq. (19) may be taken tobe 5= 5 = T_
instead of O,

For the collapsing bubble, |F(™v)| d1s itself an increasing
function of Y. For the expanding bubble, R ~ Cy/t as t - = (see
eq. IV(62)), so that after an initial increase F(T) eventually

'l"-1/ 2; however, for a reasonable choice of "r'o ’

tends to gzero as
the product /T~ T, F(T) in this case becomes an increasing
function of T° . Hence, the perturbation temperature correction given

by eq. (19) is bounded by

-6, (0, 1) = 88 ﬂﬁi -‘/‘_"1.- F(E) - - ¥ a4k
! " 3(9) t (-9 Ve T

-
< .Q/ - $-%¥d§
33(5) VESVET (r-9*VE

(21)



for the expanding bubble, or its negative for the collapsing bubble.

. The last integral in (21) can be transformed by the change of variables

(‘l'-'l")(f-'f)ﬂ )
§='T' —Eﬁ?)_ﬁ::;x (0<x<1)

to

.
VETvEeE [ ME=¥d¥
°Jw -9 VET

3/2 3/
=(E.'.:5) "ie -1( 0) 2,
TR o 1=x 2 =T

giving for (21)

T g\ /2
|8, (0, )| 549/ (___e) Ir(€)| o (22)
%" \TT; R (2)

By (20), this may be written as

T [3-v )| 2 al®’
|8, (0, T)| s/ (.,._;‘-.’) — ol ;‘).fﬁll- at
™, o 3R’ (£) s

\/g'-"'l' dg 4DL Poq | ¢ m[r3(<) /o ]
o (7_7)3/— 3k d In(€ - -7, )
]

or if we neglect the variation of /J ecl('1') in comparison with that
of R3 in the estimate, as
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3
dln R (!}
d 1n($-T, , * (23)

For water, the factor
4DL ﬁea
3k
in (23) bas the value .066°C at T = 50°C, and .50°C at T = 100°C,
In the case of the collapsing bubble, the ratic of
logarithmic derivatives in (23) is small except near the point of
collapse, when it increases rapidly in absolute value. Since

ViR ,

(Tgnpk R

for T, <3 <T, a crude bound for |91| for the collapsing bubble

is
4DL T 3
< [ ey )
4DL B
-f= (3. (24)

This has about the value .07°C x 6.9 =~ .5°C for the bubble considered
here when the bubble radius has dropped to 1/10 of its initial value,
which is farther than the collapse was actually followed (ses Fig. 11).
However, the actual temperature rise (ses Fig. 12) at the end of the

time period consideredwas AOOC, in comparison with which the perturbation
correction estimate is completely negligible.
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For the expanding bubble, the ratio of logarithmic derivatives
 appearing in eq. (23) vanishes at € = T,» rises to a maximum of

less than .75 at some value of 3 >‘T;, then drops asymptotically

to the value 1/2. The decrease after the maximum is sufficiently
gradual that it can be dominated by & factor (3 -'r'o)° for a

small value of €. Thus, a bound on |@,| for the expanding bubble

is given by

1/2-

o)) £ 5F /"’ «-T&)/ o (§-7)F s E
1= "3k - (.,._1.0)3/2 o/ dIn(%-T,)
4L p . 3 [T -T2 ag

S5 (=) 3 m%-r-'rog - (- .,.0)3/2
— 4DL Pegq 1 n (T
- 3k 3/2-¢ dlnlr-7) ° (25)

Taking -y, for the 103° bubble to correspond to t, = .15 millisec
(see Fig. 7), we find for the ratio of logarithmic derivatives in
(25) a maximm of .71 at ¢ x .19 millisec., and the value ¢ = .15,
The bound on {@,| thus hes a meximm of about .26°C at .19 millisec,
and drops asymptotically to .18°C. For the 106° bubble (Fig. 9) the
choice t = 28 microsec.gives a maximm ratio of +74 at 34 microsec.
and the value £ = .25. Since 4DL feq/Bk z «60°C at 106°C, the
bound on IG,I for the 106° bubble has a maximum value .36°C and an
asymptotic value .2400.

The conclusions drawn from the analysis above of the

perturbation parameter, and from the bounds derived for the perturbation
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temperature correction at the bubble vail, are thus in agreement.
. They indicate that the thin thermal boundary layer assumption is valid
vwhen the vapor bubble grows of collapses rapidly, and also may be
considered valid when the bubble is nearly in equilibrium. The
assumption becomes scmewhat critical, in the case of water above its ’
boiling point, when the bubble growth occurs at an intermediate rate -
sufficiently rapid that significant heat transfer occurs at the bubble
wall, but slow enough for the liquid to partially adjust to this
transfer. The error incurred at this critical stage, however, does
not amount to more than a few tenths of a degree, and remains a
small fraction of the actual temperature. It is sufficient, therefore,
to use the unperturbed temperature solution in the dynamic problem,
at least for the case of water.

In terms of the original time and radius variables, the

unperturbed temperature solution (13) is

t R (x)

dx
3 2
e (r,t)—'r(r,t)-'r-—-‘/—/ ~lr=h(x) oxp| - —& ;334:_:1)

\/ / ) a %0 [ diydey

which reduces at the bubble wall to

R (x dx

.9 o(Rst) = \/—/t \// 4“ le=R(x). . |
R*(y)dy




The temperature gradient at the bubble wall is given in terms of the
_ evaporation rate by eqs. (1), (2), so that for the present problem,

the unperturbed solution becomes

N
o (Ryt) = = 3 2

t 4 3
b ] &8 Lo & (26)
[+]

t [ ]
ﬂ R (y) &y
x
Diffusion Solutions.

It is of interest to compare with the convection solution
presented above, a diffusion approximation (for the identical physical
problem) proposed by Forater and Zuber. (7514) This approximation may
be developed in the following manner.*

The heat equation (5) for an incompressible fluid may be

written

ch %%:v-[kveoxlocve]. | (27)

In this form, one may identify the last term on the right as repre=
senting the rate of heat influx into an elementary volume fixed in
space due to transport by the fluid., If the fluid velocity is

sufficiently small, the transport effect may be neglected in comparison
*

The presentation given here is not that of the authors. The
original presentation of Forster and Zuber (ref. (7)) is quite
brief; the second (ref. (14)) by Forster purports to give a more
detailed treatment of the problem, but actually treats a different
problem. Neither paper gives an adequate analysis,
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with conduction effects, represented by the firat term on the right.
. With this neglect, the egquation becomes a diffusion eguation,

v2 =

Q)loi
g (]

(D'—'."""' )o (28)

k
P

The initial and external boundary conditions for eq. (28)

. o

6(r,0) = 8(w, t) = 0 (29)

are the same as for the convection equation. The boundary condition
at the moving vapor bubble wall

-k ¢ 2 3¢ = 14 (& .3
k ¢ 4uRS =2 relt) Lyg G /oeq) (30)

is also the same, but becomes extremely difficult to apply in Eulerian
coordinates, and some sort of physical or mathematical artifice must
be resorted to if a solution in closed form is to be obtained. The
approach to the problem given by Forster and Zuber consists of treat=-
ing the heat exchange at the bubble wall as though it were due to a
moving spherical heat source (for the collapsing bubble, or & heat
sink for the expanding bubble) in & stationary infinite fluid.

They start with the elementary solution*

et ...L_t__ff.]
= Q. 4Dt - 4Dt
e = [e e (31)

Eq. (31) 18 readily obtained by the operational methods already
used. It differs from the standard solution given by Carslaw and
Jeeger, Conduction of Heat in Solids (Oxford Univ. Press, 1947),

P. 219, by a factor of two because of the choice 2 P Sves rather than
cyQs for the total heat liberated. The transform 'of (31) is given
alow.
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of equations (28), (29) for the temperaﬁure difference @ in the

- £luld at any radius r and any time + > 0 due to an instantaneous
spherical heat source at r = ¢! s t = 0. The total heat liberated
is 2 f ch. This is to be related to the quantity of heat transferred
out of the bubble by condensation during a time interval dx while
the bubble radius is r' = R(x). The actual heat h transferred
out of the bubble at time t = x 4is given by the right side of

eq. (30),
h=-L d—‘:—{- [='3t w R3(x) Pe‘l] dx, (32)

and this is also the heat transferred into the liquid at + = x.

In accordance with the Forster and Zuber assumption of an infinite
medium, however, the elementary heat source associated with the
solution (31) releases its heat not only to the fluid outside the
shell r = r', but also to that part of the fluild inside the shell.
At the instant of release, half of the heat appears inside the shell,
Therefore, if the solution (31) is to correspond to the heat release
outside the shell at the moment of liberation, the h of eq. (32)
mast be equated to only half of the total heat liberated, giving

b - _dal 4 3
Q-F%;v- --;‘&P'l;;— & [Fpgg) . (33)

This choice introduces an error at later times in the final
solution for two reasons: First of all, the hest flowing through a
later shell is no longer just that due to condensation at that time,
but s;ill has a contribution from the heat diffusing outward from
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the shell r = r', This relaxation efféct is minimal if the radial
- welocity of the bubble wall is large, and/or the thermal conductivity
of the (stationary) fluid is .small. Unfortunately, these are not the
conditions of validity of the diffusion model. Secondly, there is
still the contribution to the heat content of the liquid at later
times by the heat liberated within the shell r =r', The heat re-
leased within the shell ultimately reverses its direction of flow and
adds to the heat content outside the shell. This effect can be
eliminated by a simple device to be described below. Elimination of
the relaxation effect is a more involved matter.

The Forster and Zuber solution is obtained by replacing
t by t =x ineq. (31) (corresponding to a heat release at t = x,
rather than t = 0) and r' by R(x), using (33) to define Q, and
integrating the result over all sources from x =0 to x = t. This
gives for the temperature difference at the bubble wall r = R(t),

t 3
8(R,t) = - L / é (R Pgﬂ) &
BPcv\/ﬁ o R(t) R(x)Vt=x

-m%-g%)ﬁ -L&(&%t&!z;.ﬂf
X1 e 4D(t—=x e AD(t=x

Assuming that, for the dynamic problem under consideration (the growing

. (34)

bubble), the second exponéntial  4in (34) can be neglected and the first
replaced by unity, Forster and Zuber further reduce the above equation
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to the form*

(35)

[ ) ax
3(.,c w/— R(t) R(x)\/ )

A somewhat different approach to the diffusion problem with
the moving boundary, for which the difficulty connected with the heat
release inside the boundary does not arise, is the following: ILet it
be supposed that at' t = 0, a (mathematical) shutter opens at r =r!,
such as to pass through the shell a prescribed quantity of héat h,
then instantaneocusly closes again. The effect of the moving boundary
can then be obtained, as above, by integrating over successive shutters
at r' =R(x), 0<x<¢,

The "shutter condition" can be obtained by noting that the
heat flow through a surface element bounding the fluid is determined
(as for the convection solution) by the temperature gradient there.
The appropriate boundary condition for a shutter at r =rt, t =0
will thus be of the form

“or| =@ § @ (36)
The constant Q! can be related to the heat h passed by the shutter
by a determination of the total heat ocutside the shell at a later time
(t > o)

*
Both papers by Forster attempt to justify the formula (35)
as an approximation to the solution of the diffusion problem, and
then as an approximate solution to the convection problem. The
convection approximation (26) was already available and, in fact,
referred to in both papers.
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The system of equations to be solved is

V9='15-‘g‘% (r>rt)>
(37)
8(r,0) = 8(m t) = 0, gl =8
. r‘.-T"

w= J[6] and taking the laplace transform of the

By putting
system with respect to t, one can reduce it to an equivalent system

=5 (rw) = % (rw),

aw

w(w, 8) =0, ar = - Q'

r=r!

with solution

- (r-r!') 8
e = ‘/; (r >r),

_ﬁ_e'__.. .

w(r,s) =
1+x! \/%_

M o

(38)
The heat liberated outside the shell r =r!' is given by
I{h] / /.;cwourr dr = 4nr'fcqn.-
i.e.
h = Lﬂr'zf.: ¢ Q'D,
so that (38) becomes
-(r-r‘),/g-
’ (39)
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which has the inverse transform

-2

Dt r
- JLE?DT"' em "o ) erfc [Jég' + LX) . (40)
/5
The analogue of the moving source solution (34) can be
obtained from (40) by again writing t - x for ¢, R(x) for r!',
R(t) for r, using eq. (32) for h, and integrating over x. The
moving shutter analogue is thus

2
t 4 o3 _ [B(t)-R
0=~ & F Peg? = |, 15 (omn)

L
3f°v /7D o R(x) R(t)Vt=x
D{t—x) + B
fiblt=] . R° Rix pIC R(t) =
L NEEEL, #w e [:%F?sl . TﬁT;M] _

(41)
This solution has, of course, the seme difficulty with the relaxation
heat flow that the moving source solution has, but the problem
associated with the heat flow from within the moving boundary has. been
eliminated.

It is possible, in principle, to eliminate the relaxation
heat flow from the shutter solution by using the correct boundary
condition at the bubble wall. This can be done, for instance, by
leaving h undetermined in (40), but summing the gradients of the
elementary shutter solutions over the variable x to obtain the
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temperature gradient of the final solution in terms of the unknown

. differential h(x). By using eq. (30) to specify the temperature‘
gradient at the bubble wall, one obtains an integral equation to be
solved for h(x). The same procedure can be carried out for the
moving source solution, leading again tc an integral equation for

h(x)., It is apparent, however, that a more appropriate procedure would
be to return to the original equations and to attempt to solve them,
using the correct boundary conditicns from the beginning.

The moving source solution (34) and the shutter an&logue (41)
differ from one another in the last terms of the respective integrands.
Since this difference accounts for the false heat flow from within
the interior of the bubble in the case of the moving source solution,
it may be expected to become important whenever relaxation effects
become important, i.e. when the thermal diffusivity of the fluid is
large. This may be verified indirectly by showing that the solutions
become identical when the diffusivity is small. (A direct verificatiom
will be given below for the case of the growing vapor bubble.)

Perhaps the easiest way to show this is to examine the Iaplace trans—
forms of the respective elementary solutions. If the transform of
(40) is denoted by w, as above, and that of (31) by u, one haa

w(r,s) = h il e (r>r"),

u(rys) = p=fe o 11 @ — | &> o)



In the equation for u, the substitution Q = u/(o c, has been made.

It will be observed that for r > r!, r'.J % >> 1, both reduce to the

h e-(m' )ﬁ
lchvD - ot _\/% ’

which has the inverse transform

form

e = . :g e 4Dt .
A /:cv rr! +/uDt
The contribution to the boundary temperature by this elementary solution
is
td (B3, ) R(t)=R(x)1%
0=t [ @&x " fea T D) (42)

3,::(:v /7D o R(x) R(t)+/t=x |

i.e. the leading term of the solutions (34), (41).

The solution (42) is s valid approximation to (34) and (41),
however, only for small D. For large D, the remaining terms in (34),
(41) become important; as D tends to finity, the integrands of both
(34) and (41) tend.to: zero,.in facty for x # t. Eqe. (42), on the
other hand, tends to the Forster and Zuber approximation (35) with
large D. It is to be concluded from this that the Forster and Zuber
approximation is never a valid approximation to either of the diffusion
solutions (except in the case of a quasi-stationary bubble R(t) =

constant). When it is permissible to neglect the second exponential
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in eq. (34) in comparison with the first, the first exponentiael
_cannot be set equal to unity; and when the first exponential approaches
unity, so does the second.

General Comparison of the Convection and Diffusion Solutions.

The temperature solutions presented above have not been
restricted thus far by a radius-time relation, and so may be compared
for any assumed behavior of the boundary consistent with the heat
problem (such as may be achieved, for instance, by keeping the
temperature of the bulk liquid at T, but varying the external pressure).

For a growingbble, the convection solution (26) predicts
a temperature drop at the bubble wall which varies inversely as the
square root of the thermsl diffusivity D of the liquid, other factors
(such as the specific R(t) behavior) being held constant. The
diffusion solutions (34), (41) predict a smaller drop than the con-
vection solution for all D, The discrepancy becomes most marked
for small D, when the convection drop becomes large but the diffusion
drops tend (depending upon the law of growth) to vanish,.

These predictions are qualitatively understandable on the
basis of the physical models involved. In the case of the convection
model, the heat source (or sink) is always located at the same fluid
elemsnts, those at the bubble wall. Thus,a decrease in the diffusivity
hag the effect of concentrating the region within which significant heat
transfer occurs nearer to the boundary, and correspondingly the temper-
ature drop will be greater there (if the bubble is growing, or the
temperature rise greater there when the bubble is collapsing) for
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small D then for large D. In the csse of the diffusion model,

- on the other hand, the fluid remains stationary while the heat source

sweeps through it. A decreasé in the diffusivity here may ultimately

be expected to have the effect of insulating the successive elementary
sources from one another, such as to prevent any accumlation of heat

from taking place.

When the diffusivity of the fluid is large, the relative
importance of convection effects in comparison with diffusion effects
should diminish. As has been pointed out above, the discrepimcy between
the convection and diffusion solutions is most marked at low, rather than
high values of the diffusivity. However, both the convection and
diffusion solutions presented here cease to be valid when the
diffusivity is too large, so that a comparison in the limit of large D
is not meaningful.

Comparison for Free Bubble Growth.

When the bubble growth is not forced by external pressure
variations, it becomes limited eventually by the heat transfer at the
bubble wall., The physical relations holding in the heat-~limited growth
will be discussed later,* but may be briefly related here. The
evaporation at the bubble wall necessary for bubble growth forces the
temperature of the liquid there down toward the boiling point of the
liquid at the external pressure. If the boiling point is denoted by
Tb’ and the temperature of the bulk liquid by T o? the late growth of

the bubble must then be such as to satisfy the asymptotic relation

& ~=~ (T, - Ty)e (43)

See the discussion of the asymptotic phase of bubble growth
in section IV,
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For every temperature solution presented here, the relation (43)
-restricts the late bubble growth to a law of the form

R(t) ~ C‘/E— as t - w, (44)

The rate of bubble growth is then essentially specified by the value
of C.

Let the parameters S, A be denoted by

Jr(r -1)
s=£°vL; (gb) b A=l (45)
eq V4D

Then S 1is related to )\ by an equation of the form

S=I(A)s (46)

vhere I(A) denotes the temperature integral involved. For the con=-
vection solution (26), I( A) is given by

1
= A3 _ﬁﬁ_ . ; -
HA) ’ jo -\/1_.—,?- ‘\/_3- }\ (47)

for the moving source solution (34) by*

-)\2[]:.:@} ..)@lliﬁ'_]
14/x -6 1=-vx

1
af —ax. ], Wk vx
1w =Af =
2
=4,\2-\/§;{1-kﬁ e>‘ erfc(,\)}, (470)
JaAEVR G -AA ) s Aeo (D),
2ﬁ(1-;f5+m) as A= (D=0)

The integrals (47b), (47c) are evaluated in Appendix B,
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for the moving shutter solution (41) by

| 1 - a2l
I()\)=¢\/ —-1\/_%—_— e V&

P L S N

2
{ex - -
S E ANV el 2 tf?' ’

2);2\/?:'(1 -\7_%‘_ $eeo) as A+0 (D~ ),

- (47¢c)
2vA(1 = 25 4ee) a8 A-w (D-0);

A

and for the Forster and Zuber approximation (35) by

I()\) = =2)\. (474)

M =

o Vi-x

It will be observed from (47b), (47¢) that the moving source

solution and shutter solution become asymptotically equal in the region
of large A (1.e. of amall D, for a given value of C), but differ by
a factor of two when A\ is small (D large). This factor of two is
to be atiributed to the contribution to the heat content of the liquid
by the false heat flow from within the bubble surface, which occurs
in the case of the moving source solution (47b). This just doubles the
expected content (and temperature diffe_rence) for large D.* It may
also be noted that the Forster and Zuber approximation (47d) behaves
differently in all ranges of ) from the moving source solution (47b)
which it is supposed to approximate.

*

The actual heat content here is negative, corresponding to the
heat loss from the liquid at the surface of the growing bubble due
to evaporation.
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- Physically, bubble growth with a given value of C but

~varicus values of D can be obtained by choosing liquida with differ-
ing thermal diffusivity, and adjusting the superheat in each to give
the specified rate of growth. If one concentrates on a given liquid
(with fixed D), the paremeter which varies with the superheat becomes
Cy 80 that the anslysis of the various temperature solutions for a
given liquid is to be made on the basis of the dynamic situation which
occurs in the respective physical models, and its dependence on the
superheat,

When the law of growth (44), applies, the temperature at
the bubble wall has deopped practically to the boiling temperature
of the liquid at the external pressure. The bubble growth is maintained
by a differential temperature (and therefore pressure) seffect which
vanishes with the radlal veloelty of the bubble wall, and which is
negligible in comparison with the temperature difference To - Tb.*
The physical constants /J ’» Coo L, fu eq and D characteristic of
the liquid may here be given their walues at the boiling point Tb'
The asymptotic rate of bubble growth (the constant C in eq. (44))
for a given model is then determined by the relations (45),(46) and
the superheat 'ro - Tb of the bulk liquid.

The thermal relaxation effects which make the boundary con-
ditions at the bubble wall inaccurate, in the case of the diffusion

solutions, become important if the bubble wall moves too slowly.

If the differential temperature effect were ignored, the bubble
growth required by the theory would appear paredoxical,
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Since I()) 4is in all cases an increasing function of A » this means
- (according to eq. (46)) that the diffusion solutions do not represent
the diffusion model at low superhests. At larger superheats, these
solutions become adequate representations of the diffusion model. But
since the radial velocity of the bubble wall increases with the
superheat, the diffusion model itself beccmes non-physical at larger
superheats. .

The adequﬁcy of the convection solution may be determined
from eq. (25). When the asymptotic law of bubble growth (44) applies,
the ratio of logarithmic derivatives appearing in (25) is equal to 1/2.
The perturbation correction to the convection solution (26) is therefare
not larger than about .2°C for water, and accordingly is negligible
for all but the lowest superheats, once the vapor bubble growth has
reached the asymptotic stage. One may therefore consider ths convection
solution to be accurate in this phase of bubble growth.

A plot of the values of C predicted by the convecfion solution
(478) and the moving shutter solution (47c) for varying degrees of
superheat 'ro will be found in Fig. 2, for the case of water at one
atmosphere external pressure. 'The paremeters [J » Cor L, /Jeq and D

have all been given their values at T, = 100°C, The temperature

b
integral (47c) for the moving shutter sclution was integrated numerically.
The breakdown of the diffusion model for water is clearly shown in Fig.

2. The diffusion model predicts an explosive bubble growth at only

7% superheat, and affords no asymptotic solution at all above this.
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IV. THE DYNAMIC PROBLEM

The equation of motion of the vapor bubble wall is given by
eq. II(68),
“ 2 _P (1) - p,
P1iq f’ 1q"
wvhere R denotes the radius of the bubble wall at time t, R the
radial velocity and R the radial acceleration. The initial conditions
for the bubbles considered here will be that the bubble starts from

rest with radius R o?
R(0) = R, R(0) = O, (2)

In the case of the growing vapor bubble, it will further be assumed
that the bubble is initially in (unstable) equilibrium, in which case
the radius Ro becomes determined by the equation of motion. For the
collapsing bubble, equilibrium conditions will not be assumed, so that
the initial radius remains in this case arbitrary.

The surface tension parameter @~ and the density f of the
liguid will be assumed constant, and equal to their values at the
initial liquid temperature T o° The external pressure will also be
agsumed constant, The equilibrium vapor pressure of the liquid
P, q(T) at the temperature T of the bubble wall cannot be assumed
constant, however, since it is the pressure difference peq. P,
appearing in eq. (1) which supplies the driving force for the expending
bubble, and this has been assumed to be in initial equilibrium with
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the sﬁrfhce tension, For the case of the collapsing bubble, the
. temperature at the bubble wall rises sharply near the point of
collapse, and the corresppnding rise of vapor pressure within the
butble may be expected to influence the rate of collapse.

The dependence of the equilibrium vapor pressure on temperature
can be taken from equilibrium vapor pressure tables, so that peq(T)
may be assumed to be a known function of the temperature at the bubble
wall. The equation of motion then becomes determinate when the bubble
wall temperature is specified in terms of the parameters of bubble
growth or collapse. This specification will here be assumed to be

given by the unperturbed convection solution, eq. III(26):

t-‘-’-(l?@ ) ax
= D dx
T(Rt) = T, - 3 /"/ , (3)

Iy
° \//x R*(y) ay

where, by eq. III(3), the temperature at r = » is

T =T, + & q(t) (q(0) = 0). (4)

The equilibrium vapor density f’eq appearing in (3) is, like the
vapor pressure, a4 known function of the temperature of the bubble wall.
The function q(t) in eq. (4), which represents the accumilative effect
of thermal radiation absorbed by the liquid, may be taken to be a

linear function of time. Its effect is to initiate the growth of the
equilibrium bubble (by raising the vapor pressure), but its influence

is extremely transitory and the term will be neglected once the bubble

growth has begun. It will be omitted from the equations of motion
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for the collapsing bubble. The parameters L, k and D(= k/lo c,)
‘appearing in (3) or (4) will be taken as constant, and equal to their
values at the initial liquid temperature T o*

The error incurred by the neglect of the variation of L,
P s Dy etc., with temperature is not significant in the case of the
expanding' bubble, because of the small temperature variation which
occurs (essentially the initial superheat T o~ Tb). The error involved
may be larger foar the collapsing bubble, depending on the initial ter-
perature and the initial bubble radius, but is not as serious in this
case as the failure of the basic assumptions that the liquid is incom=
pressible and that the bubble remeins spherical. The trend of the
physical quantities which desecribe the collapse of the vapor bubble
is the same, whether L, D, etc., vary or not, however, and is given
correctly by the analysis to follow.

In terms of the constants

L (T )»
S emEmE
(¢}

(which have the dimensions gec”! » °C respectively), we nay define a set

of dimensionless variables

- & =3 gh \
& (Ro) ’ Rf; / (v)dy,
>y (6)
= 7 [pm-.- peq(T)L E 'ﬁi‘(‘:"
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in terms of which the system of equations to be solved becames

3 dz[7/3( )]+—T7§+¢ 0,
g = g(1),
. (Es)dv
..'r +- -
: ‘/ ../;-:';—
B =%(m.

The initial conditions for (7) are

z=1' %30’ at u = 0.

(7)

(8)

(9)

(10}

(11)

The physical quantities we eventually wish to find are then given by

1
g=41 7!__
°/ 3('tr)
R(t) = R, 21/3,
1= 2/3 g F
3 du ?
and
. 4 (Ez) av
e 4D b
T-Toﬂviq—gA Q!T:;__.

(12)
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The Expanding Vapor Bybble,

The pure vapor bubble which is to grow in a superheated
liquid is assumed at some stage of the superheat to be in unstable
equilibrium under the effects of surface tension, vapor pressure
and external pressure. The bubble growth begins as a result of further
superheating, which increases the vapor pressure and upsets the equili-
brium. The condition for equilibrium at the time of release of the
bubble t = O 4s that R(0)= R(0) = 0, and hence by eq. (1) that

Peg(To) = = BT ¢ (13)

Ed. (13) fixes the initiel radius R of the bubble. A4s has been
noted previously, the nucleus fram which an actual bubble grows is
not necessarily spherical, and its surface energy may be appreciably
lese than 4n a‘R%; however, the nucleus from which an actual bubble
grows and the free spherical vapor bubble of radius R o are both in
unstable equilibrium with respect to growth at the temperature T o
and external pressure P, + Table I gives a set of values of R o
for various superheat temperatures in water at an external pressure
P, °f 1 atm, From the definition of M(T), eq. (6), or the differential
equation (7), the equilibrium condition (13) is equivalent to the
condition

g(r,) = 1. (14)

As the bubble grows, the temperature at the bubble wall
decreases toward the boiling point. Inasmuch as liquids will ordinarily
support only a few degrees of superheet, the temperature variation
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involved in the growth is small, and an approximate expression for
"the dependence of vapor pressure on temperature will suffice. For
P, = latm., 8 close fit to eqﬁilibrium vapor pressure data;u for water
between 100°C and 110°C can be obtained by taking

(1) -
e Te og(r-1), (15)

/3

with T, = 100°¢C for water, and A = 40,800 c.g.s. units. By combining

(15) with (5), (6), (9) and (13) or (14), one obtains for @ the

relation
v () aq
-¢(T)=1+-5%9§—-q--‘§15[ dv - (16)
Ro a k Ro a Vu-v

The term involving q in eq. (16) is extremely small, and
therefore of importance only for a minute portion of bubble growth:
it upsets the initial equilibrium, For a temperature rise of 1°C/min
in the 1iquid, this term 1s of order 10, and it will be neglected

once the bubble growth has begun., To fix the model, weshall take

2 q(t) = at, (17)

corresponding (see eq. (4)) to temperature rise of 1°C in ;1; sec. in the

liquid far from the bubble. Then from eq. (12),

(t) = 18)
R a kq -X'/ /‘3(v) (

vhere the constant

X = -2t (19)
3 [ ]
Ri a
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In keeping with the above discussion, eq. (18) may be approximated by

5 “2’ alt) = Xu. (20)
Ro a k

Because of thé small temperature range occurring for the

expanding bubble, we shall further approximate © in eq. (16) by unity,*
and write eq. (16) as

un
“#(T) =1+ Xu - ,;[ zilvldv | (21)
o Vu-v
where z'(v)=%’; and
AS
= . 22)
P22 ‘

The system of equations for the growing bubble thms simplifies to

[27/32.2]_,__}_ »xu_},j 2! dv

u—v

\

F (23)

y
A solution to eq. (23) will be found in four parts, correspond-

ing to four (overlapping) phases of bubble growth, which may be
labeled the "relaxation period", "early phase"™, "intermediate phass"

and "asymptotic phasa®.
*

The error involved here in setting & = 1 ( Peq(T) = Pe (To))
may be estimated from the results given below for %he temperature
varlation. It is found that the ratio .E'. 2! remains less than
5 per cent at any time for the growing § Z” pubbles considered
here. This ratio is identically the ratio of vapor velocity to
liquid velocity at the bubble wall, which has been discussed previously.
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Relaxation Period.
Since the bubble growth starts from equilibrium, we shall put

z2=e, (24)
and assume that initiaily w(u) and its derivatives are small, On
neglecting the second or higher powers of w, w'y <« » Or products of
such terms, one may rewrite eq. (23) in an approximate (linearized)

form as

u
"(u) - w(w) = 3%u - 3 vildv
wt(u) - wiu u r ]o —
(25)
w(0) = w'(0) = 0.
By putting y(s) = o[ [w] and taking the Laplace transform

of (25) with respect to u, one obtains for y(s) the equation

2 = il- . /&
8y(s) - y(s) = 52 3,0 sy(a) .\/; ’
whence

1
s f—1+3rv5

In order to match a later solution, we shall be mainly

y(s) = . (26)

N

interested in the asymptotic form of the solution of (25) a8 u » =,
obtainable from the expansion of (26) about the singularities of y(s).
It is possible to obtain a solution to (25) in closed form by the means
deacribed below, and also to write a series expansion of w(u) in
powers of u from the Laurent expansion of (26) about s = 0O, although
these will not be used here.



_77;
The root_s \/- = -\/F_ s say, of
32+3).|\/;;-1=0 (27)

correspond to simple poles of y(s). Eq. (26) may therefore be
expanded in partial fractions using the factors indicated in (27). For

a given root '/5 = '\/{3 s one obtains terms of the form

1 . 1 ) 3/2,051/2, oal/2 4 3/2
STV I L RS et

(28)
multiplied by constant complex coefficients. By the use of the

laplace inversion integral it may be showun that

£-1 S =-J-+ e + er Aua
‘/;_1/_{;_ = \//?F‘h f('\//_s—)]

(29)
for all complex \/ Ig s+ and hence that for

%': |arg '!/Fl < Wy

(29) vanishes as u =+ « . It follows that the behavior of w(u) as

u + o is determined by those singularities of y(s) for which

larg /5] < 7 . (30)

Actually, there is but one root —\/§ = -/F of (27) satisfying condition
(30) for 0 < ,0 < ® 4 and this root is real.

The residue of y(s) at s = /3 is given by

f o2pe e




or since f satisfies (27), by
3% —2p
[52 3{3 +1
Hence ag s "ﬁ ’
6% i
E (3{42 +1) °° ﬂ

y(s) ~

80, that a8 u =+ w,

w(u) ~——§-2}"—— e/‘“, © o (31)
/4(3/9 +1)

where,again, F in (31) is that root of eq. (27) satisfying condition
(30). Alternatively, eq. (31) may be written

2
1 QQF +1)
u ~ === In * W as w » o, (32)
P [ ® ]

Since the transform

-7] == ug-dl— Zem w8 y(s
Lir-1] !.C[o m] € v/ms y(s)

is asymptotic to - S]/ufg y(s) as s = (3 s it follows that

T-Tm«--;-\/np wiu) as u > w, (33)

Moreover, to the degree of approximation used in the linearization,
u = ot,
(34)

R
w= 3('_'" 1)0
RO
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From (31), (33) we thus obtain the relations

-2)(. apgt

R ~R 1+ e ’ (35)
0 2
F(BP +1)
T~To+at-3'§'\/n—/§-(%~-1.). (36)
[o]
By defining & time t s b7
%
2X o f, (37)
F(BF +1)
one may write eq. (35) as
(t=-t )
R~ (1+el ©°7. (3¢)

Thus the bubble radius remains practically equal to R o until the
time t =t 0o ;1'-' when it begins to increase, reaching 2R o at
about ¢ =t . A tabulation of the significant parameters in egs. (36),
(38) for water at 1 atm. will be found in Table I, with the choice of

a = ,01 OC/sec.*

TABLE I.
Parameters of the Relaxation Period

, On [+]
To Ro cm tQ_ sec 1/ap lec. 3'51/!!(3 c {.01 t’g C.
102%¢ 11.56 x 10 | 7.34 x 10~% |5.05 x 107 1.97 7.34 x 102
104%¢ | 75 x 1072 {8.08 x 107 {4.48 x 1070 3.30 8.08 x 10°7
106°C | .48 x 10~ {3.09 x 107 |1.56 x 107° 3.7 3,09 x 10~/
* This choice for the parameter a corresponds roug to the

rate of the temperature rise observed by Dergarabedian{(15) in his
experiments on bubble growth in superheated water.
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Because 1/a /3 <<‘t6, the bubble growth appears to start abruptly
" near t = to' rather than at the time of release, t = O,

For given initial conditions T , P, the duration

1 2 4
weap [/iﬂﬁﬁ—u-] (39)

of the relaxation period is completely determined by the heat source
funetion q(t), i.e. by the constant X upon which it depends
logarithmically. However, it is evident from Table I that the heat
source term (at) in eq. (36) becomes negligible in comparison with
the other terms near the end of the relaxation period. From a
physical standpoint, this means that at later times the bubble
behavior is independent of the rate of increase of superheat which
initiated the growth.

The asymptotic formulas for the linearized eq. (25) pre-

8ented above are accurate over a range roughly defined by

1
u>o, w<«i,

Because of the smallneas of ¥ , w(u) increases over the range by

a factor of several powers of 10 (about 1 6).

Early Phase.
In terms of w = 1n 2 as independent variable, eq. (23)
may be written



A S ., v
lewdl o3 4y =1-¢ 2= e d¥
6 dw dw /’ . Valw) - a(v)

(40)
with the neglect of the heat source term. For small w, this
reduces to

14 (dn)°2 . ]w —dv R
6 aw ‘aw 3 IJ o u(w) = u(v
which is satisfied by
u=3; In(Xw) (41)
for arbitrary K, provided that
1
\)2=1—3/o]/v [ ""'g!z—'- (42)
o /
In v

Since the integral has the value +/7, eq. (42) is identical with
eq. (27). From the discussion of the relaxation period, it is clear
that of the various roots of (42), the one to be chosen is that ocne
which satisfies condition (30), V¥ = F « In order to match the
previous solution, eq. (32), we must further set

2

__' + 1 :
K= A - (43)
in (41).
It is apparent from (41) that the derivative g—% of the

solution u(w) of (40) has a simple pole at w = 0, which suggests a
solution of the form

%‘::—J—- [1 +a1V+32V2 +ooo], (M)

PV



o | |
- 'u={'}1n[f 2y '."] +%”+;2Fw2+m° “

By substituting (44) into the integral of (40), one obtains*

):f“ o e dv = puvip { 1+ 3212 4 201 - 2V2)
o Uuw,) = u\v
2
+ %-[31/2+ 6(2'/2- 3/%)a, + 3122222 33/2)a? + 3(1-31/2)a,)

e } . (46)
By eq. (40), this must equal

1 - e-w/B - % o~V ad; [313\1/3 (%)"2]

2
=§ (1 —PZ) - !6. [% + (32(11 - 6a1)]

Wil

wil_ .2 - 2, '
+ Zilg = p(15 = 1290y + 54s) 36a,)] + o0, (47)

The parameters 845 859 s.. 8re then found by equating the coefficlents
of corresponding powers of w in (46), (47)s A tabulation of the
first seven of these, for varying superheats, will be found in Table II
for the case of water at 1 atm. external pressure,

The time corresponding to (45) becomes
W

t==
a
°
[ 2 2
= 31[5‘ {ln ﬂ%—,i-u- . w] +(a1- %)w-l-(az'é a4 + g)zz- +--ol. (48)

* See Appendix C for the evaluation of the integral.




Parameters of the Early Phase of Vapor Bubble Growth

TABLE II

T, % 102 103 104 105 106
R,x 100 em | 1.558 1.019 7507 5901 4832
ax10° sec™ | 1797 3391 5.356 7.677 1.035
$ % 1.120 1,023 .9628 9205 .8880
p .5598 G411 2407 1841 1480
p .1101 2632 4168 «5340 1T
., 2.0015  2.0322  1.9763 1.9456  1.9292
s, 2577 2.0547  1.9463 1.8852  1.8526
a, 14633 1.3761  1.2732 1.2129  1.1807
8 V1359 6864 622 .5831 +5620
s 2946 2722 2427 .2236 .2132
8 .09858  .08945 07886 0743 06728
- .02857  .02510  .02205 0190 01819




the logarithmic term having been chosen to match egs. (32), (34).

' The temperature may be found from eq. (46).

Asyuptotic Phase.

During the early phase of bubble growth, characterized by
the relaxation of surface tension, there is a rapid rise in the
radial velocity R of the bubble wall until the cooling effect of
evaporation becomes important, The rate of bubble growth thereafter
is controlled by a balance baetween the rate of evaporation and the
rate of cooling it produces.* Thus, while the vapor cavity grows
by evaparation (since the vaﬁor velocity is negligible), the motion
of the liquid is caused by the difference between internal and external
pressure. However, an increase in the evaporation rate tends to
decrease the pressure difference.

Now, it is clear that the bubble must continue to grow,
_sincé a stationary bubble is at the temperature of liquid superheat
and therefore has a high internal pressure. Hence, the temperature
at the bubble wall must continue to drop because of evapcration. Buat
the temperature cannct drop below the boiling point and still maintain

the pressure difference necessary for growth. It follows that the

¥*
The effects of liquid inertia are important in determining the

bubble growth near the time of maximum radial acceleration. In

the asymptotic phase of bubble growth, however, the inmertisl term
% qu’ 273 212)

in the differential equation is of smaller order than the surface

tension term .. l.. . This point will be returned to below.
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temperature of the bubble wall must appfoach a limitas t » «,
and this fact is sufficient to characterize the ssymptotic phase of
bubble growth.* |

It is perhaps worthwhile to demonstrate at this point that
the limiting temperature predicted by the mathematical model is what
one would expect on physical grounds - the boiling temperature T,
of the liquid et the external pressure, for the sake of consistency
and to justify statements made in section III above. The differential

equation, with the neglect of the heat source term, may be written

! d 1 7/3 .2

If the last term on the right (the inertial term**) tends to vanish
a8 u -+ w, 3 * «, then the limiting value of the temperature
integral on the left side of eq. (49) is unity:

2!
}J/o Z_‘__i!_“‘ ag un - @, ’ (50)

u-=-v

The actual temperature is given by

T"T-![ z! dv

so that by (50),
TO-T-n}- as un- o, (51_)

The slow temperature rise due to irradiation is here neglected.

The kinetic energy of the liquid is given by

fH (2fv2)'l+nr t:lr"(‘r‘"‘-{.\mft)z’?/3 .
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According to the definitions (22) and (5),

R2a2
2.’ __a2c

I.; A‘-f;R‘)A

and so from the definition (13) of R s

£ 1Pl TP,
A

G o

By eq. (15), this states that

( f being considered a constant), and therefore, by comparison with
eq. (51),

T~T, & u-w, (52)

The conclusion (52) depends on the equation of motion only
to the extent that it follows from the asymptotic vanishing of the
inertial term. One can easily show, however, that the inertial term
must vanish whether (52) holds or not, provided only that the temperature

approaches some 1limit as u -+ «», For this implies that

u .
:
fo 2_dv ~const. as u -+ o, . (53)
b -V

Multiplication of (53) by =—L—— and integration from u=0 to x

VEios

yields, after a change in the order of integration,

x (v) dv _
L '\/:—‘:—u/ou z'u-v [ 2'(v) av ];x\/x—u'\%i-v

= n[z(x) - 1], ~ const, * 2vx . (54)
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The vanishing of the inertisl term in (49) then follows from eq. (54),
- which showa in fact that the inertial term is of a smaller order of
magnitude in the asymptotic range than the surface tension term 2~V 3,
The constant in (54) is 1/}.. according to eq. (50), so that eq. (54)
yields
Z(u)'“;;'F as u-w, (55)

Eq. (55) describes the asymptotic bubble growth, but is not
yet useful, since it provides no means of matching the indicated
asymptotic solution of eq. (49) with earlier soluticns. The possibility
of matching solutions depends on the possibility of shifting the asympto=-
tic solution in t (or in u) so as to account for the relaxation
period of bubble growth. It is necessary that one be free to shift
the asymptotic solution since the duration of the relaxation period
depends completely on the choice of the heat source term, while the
subsequent behavior of the bubble is independent of this term.

The means for making an arbitrary time shift is furnished
by noting that, in addition to the asymptotic form of solution (55),
eq. (49) also possesses the solution z(u) = 1. Thus the complete
asymptotic solution may be described by

2(“)=1’ 0<u§u1,

b (56)

' 7 . N
,)L Liz\/'%-::'! 1-'—}- &,du[z/sz 1, u uge 4
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From eq. (12), the time corresponding to eqs. (56) becomes

g =1 ]u—fl!— = 4 (57)
a 1243(7)

u u
‘3"’%/ :2"7" e

vy

\
so that u.'/ a here represents the duration of the relaxation period.

The time ahift may be introduced explicitly into the asymptotic
sclution by using the fact that if z(u) is a solution of eq. (56),
z(u + uo) i3 also & solution, with delay period (u1 - u&/a .

A consistent scheme for continuing the asymptotic solution
may be found by taking the solution to be of the form

z(u) =1, 0<ucguy, )
b b y (52
z(u)éﬂu_zf_\/ﬁ—;-a: 1+(u—-u-J°-;1—73+...+(;i-3W6—
b ln(u-uo) J
* u-u ’ i T

to seven terms, where u, is a constant.* When the coefﬁcienﬁs bk
have been determined, the difference (u, -~ u_ ) is fixed by the
requirement, z(uI) = 1. The matching with earlier solutions is then
accomplished by adjusting u o.**

When (58) is substituted into the integral of (56) the
result ist

*
Higher terms are of the form [1ln(u-u )]n/(u-uo)k/6, where n
and k are integers. °

**  The match is better obtained in practice by shifting the
asymptotic R(t) curves.

See Appendix D for the evaluation of the integral.
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-89 =
b

z2'(y) dv

Voo

(u-uo

b
+ ("‘ b ) '—"'" ""'7' + 047545
') (u--'uo)4 6
; - (59)
+ 27450 +2 —6— 59
(u_uo)5 6 u - uo
By eq. (56), the expression (59) is also asymptotic to
1 4 .7/3 _,2
1 - - [z z'*], (60)
;175 Zi" du

This may be expanded by (58) to give,.

on equating coefficlients of

corresponding powers of (u-u_) in (59), (60), a set of successive
o

equations for the parameters b,y .e. y b,. At each step one has (an

for the early phase coefficients) a linear equation for the unknown

parameter.

A tabulation of these parameters for various superheat

temperatures in weter at an external pressure of 1 atm. is given in

Table III.

Thus

The leading terms in the asymptotlic solution are

z = (R/R )3~—),-va {1+o(u“/6) }

p - LR /3 { 1+ o(u“/")} ,

2.2
T-1 ~2 §° .{ 1+ 0(u°1/6) }- .

o

~R(2)\/_ {1+o(t‘/2)}

~1/2
T-T ~ A°{1+0(t/)}

p (61)
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TABLE III

Parameters of the Asymptotic Phase of Vapor Bubble Growth.

T, G 102 103 104 105 106
R, x 10° e 1.558 1.019 7507 5901 .4832
ax 107 sec™ | 1.797 3.391 5.356 7.677  1.035
§ <% 14120 1,023 9628 «9205 .8880
i .5598 3411 02407 JA841 L1480
b, “1.073 = .9099 - .8101 - J7409 - .6890
b, - 4T09 - 24 =712 1,334 =2.506
b, = 2339 <1.481 - .3586 - .9725 =1.972
b, - 553, 1.258 =~ .1970 4598 =2.510
b <175 3,064 4.298 1850  65.84
b - V423 - 2670 6166 - JLTI6 =4B.65
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or in terms of the original physical constants,

k(T, = Tp) 1/2 -1/2 }
(62)

T-1, -1, -1 {14062}

The asymptotic temperature relation has been discussed previously.
The radius relation has also a simple physical interpretation, which
may be given here. By differentiating the first of eguations (62),

one obtains
. (P - Tb)

which may also be written as

T =T
41132 v k 2 b L (!3‘ WRB).

‘/g_;t__ ~ Lfeq(To) it

In this form, one may readily recognize the heat transfer relation

holding at the bubble wall, the right side giving thsheat gain in the
vapor an@ the left side giving the heat loss from the liquid. The
temperature gradient is here expressed in terms of the ratioc of the
temperature drop occurring asymptotically at the bubble wall to the
thickness of the thermsl boundary layer in which it occurs. The
particular choice 13" Dt for the characteristic diffusion length could
not, of course, have been predicted beforehand.

While the leading terms of the asymptotic expansions given
in (62) show the essential variation of the physical quantities which
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describe the bubble growth, they are of limited usefulness,and may be
. in error by as much as 40 per cent (depending on the superheat) while
the bubble radius is still smb,ll. More accurate expressions may be
found by carrying out the time integration indicated in eg. (57).
and substituting in the coefficients from Table III. The result
of such calculations is presented in Fig. 3, which follows the
asymptetic solutions down to a radius of 4 x 10-3 cm for the indicated
superheats in watef at 1 atm, external pressure. Inasmuch as the
duration of the relaxation period may be chosen arbitrarily so far as
these asymptotic solutions are concerned, the time scale is determined
only to within an arbitrary additive constant (the constant uj/a
mentioned above) which may vary from one curve to another. The actual
spacing of the curves as presented was chosen so that the time inter-
cepts at R = ,004 cm were equally spaced.

The experimental evidence available thus far covers only
the asymptotic range of bubble growth. Observations on the growth of
vapor bubbles in water have been made by Dergarsbedian,'>) and are
presented in Figs. 4,5,6, together with the thecretical predictions.
The theoretical curves were obtalned by graphical interpolation from
the set of curves plotted in Fig. 3. The time origins for both the
thecretical curves and the experimental points are arbitrary, so that
a time translation of the theoretical curve has been made in each case
to give the best fit. The agreement is seen, however, to be very

gOﬁo
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Fig. 3 - Asymptotic radius versus time curves calculated
for water at 1 atm. external pressure and the
indicated superheat temperature.
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04 I
'© EXPERIMENTAL VALUES
—— PRESENT THEORY INCLUDING
HEAT TRANSFER
—— THEORY WITHOUT HEAT TRANSFER
3
2
J
o o)
Q==""
o D=
O =
480 =
_0o-
,40"6
L
) 5 10 5

t —t, — MILLISEC.

Fig. 4 - Comparison of theoretical bubble radius-time values
with experimental values for water at 1 atm. external
pressure, superheated to 103, 1°C. The solid curve is
the Rayleigh growth curve, obtained by neglecting heat
transfer effects; the dashed curve is that predicted by
the asymptotic solution of the text, which takes heat
transfer into account.
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Fig. 5 - Comparison of theoretical radius-time values with
three sets of experimental values obtained in water
at 1 atm. external pressure, superheated to 104.5 C.
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The importance of the heat transfer at the bubble wall is
. shown in Fig. 4, where the .theoretical curve obtained with the neglect
of this effect is also plotted.* The asymptotic form of this solution
is readily obtained from eq. (1) by setting péq('r) = peq('.l‘ o) there.
The differential equation may be written

—L— 4 (s % = 32X (4 -gﬁ)

R2 & Ot P

with the help of the definition (13), and yields on integration from

R, to R, R to R,

[+

3 3 2

R R
2 _ 2.0 o0y _2 -
FeR3) + 3k 1-3) PR (-=3)-

As R -+ o, this gives
1.?. ~ ’3-;%: = Ro a \/_%_ ’

which is a constant.

Experiments have recently been performed by Dergarébedian
on vapor bubble growth in pure CCl 4 If the rates of bubble growth
in this liquid are compared with those of water at the same value of
the tempsrature difference (T 0 = Tb) and at comparable times, they
should be about in the same ratio as k/L f’quV 2 for the two liquids.
This constant 1s 3.5 times greater in water than in carbon tetrachlo=-
ride. Dergarabedian's observations on bubble growths are in good

agreement with this value.
¥

The solution for the motion of a bubb](e ugnder. constant wvapor
pressure conditions was given by Rayleigh 16) and applied by him
to the case of a collapsing bubble.



intermediate Solution.
The early phase and asymptotlc solutions presented above join

in the neighborhood of the maiimum value of dz/du. While the matcho&
these solutions is fairly good for all superheats, it is nevertheless
desirable to have available a solution which covers the critical region,
to facilitate the matching process.

The intermediate solution presented here will be an expansion

about the point u =nu

4 defined by

z"(ui) = Q, (63)

Since the early ﬁhase solution is not assumed to be accurate at this
point, the actual value of u, or z(ui) is unknown. In order to
determine these quantities, we require that the intermediate solution
and its derivative shall coincide with values obtained from the early
phase solution at a point u = u where that solution 1s accurate.
The expansion about the inflection point u, is constructed as

follows:*

*

The difficulties which arise for any such intermediate solution
are comnected with the expansion of the convolution integral in the
differential equation. Thus, a solution about & ¥nown point (such
as ué) which assumes the integral and all of its derivatives to
be known does not actually make use of the information given by the
differential equation, while a solution about a known point which
uses the minimum of data necessary (the value of 2z and 2!, say,
at the point of expansion) involves about the same procedure as
that given below.
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Assume that z(u) has an expansion about u,

3
z(ui +x)=2[1+ ex + ¢y xz_ + ee0] (z & z(“:l))’

so that

' 2
z'(ui +x)= Z[c:1 + 03—5 + eee], (64)

z“(ui +x) = Z[GBX + o],

The expansions (64) are to be substituted into the differential
equation (with the heat source term omitted)

Zzn+%z'2=—%’[ —-7- /;/Lm—@-‘-'-] (65)

u-v

Now, the integral in (65), evaluated at u + x, is

ux u+x

z'(v) dy 2i(v)dy z'(v) dv
! Vu+x-v Vu+x-v 'Vu+x-v
o X

u
f + z'(u+x-v)dl-
Vut+tx-v o Yv

= _alm.u_+°°=.t_j(k+1) oy
L\/rr;:: 28 o

(66)
valid for sufficiently small x. But for small x, 2'(x) ~ O, so that
vhen (66) is valid, the first integral in (66) is negligible. Thus

for u-—-ui,
u,+x

i 2
——-(-L-‘L——-zI +Ix+1 + 00, (67)

° o, X - v 1 22!
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say, where
u
i (k+1)
Ik - [ 2 (v) dv . (68)
) \/ui -v
If u; were known, we could use (67) in eq. (65) to obtain, on

equating coefficients of corresponding powers of x in (65),

a set of relations

\
7 2
- = 1 = - ’
61 =3 U= pi)
P (69)
1
= [(-4+-§-) - pPGI = de, I )], .on
3 = 1073 737 01T PR T A% )

to solve for the parameters c1, c3, +ee o However, the Ik are
not yet determined.
' Since the solution to (65) is assumed known for u < U

ue < ui, let

u
(k+1)
I = ]ez (v) dv , (70)

° u, - v
i

u
[ i z(k+“(v) dv

= (7)
K u, Yo - v ’
so that
L =3 + L (72)
in (68), and set
8=ui-ue, e=u - v (73)
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in the int.egrals.' Then in Lo » for instance,

z‘(V) = Z‘(ui - 5) = Z(O1 + 15 03 £2 } sen )’

e " smler 1.5
_ 2'(v) dv _
I = . Yot = 22§ (o) + 35058 + ++0).
Thus, “
I,=3,(8) + 2VF (o) + 75 0,82+ oo0), \
and similarly L (74)
1, = 3,(8) +22VF (- e, 8+ o0n)y o, )

may be found if 2, Cqs 03, eee 9 and S are known., The feasibility
of this procedure depends on the fact that a good estimate of S is
alresdy available from the early phase solution, and that the

3.(¥) = ) o

Yo + §-v
o e
are slowly varying functions of S . This follows from the relation
" (k+1)
z (u )
o] - s -]
V. §
since in the early phase z(kH) << z(k).

Assuming that the contributions to 1 o? I1 from higher

powers of ® than those written in (74) may be neglected, we terminate
the expansions as written and substitute them into (69). Together with
the conditions
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z(ue) =2(1 - 018 - % 038 3).
2'(a ) = 2(c; + 3 ¢, § %)
from (64), the equations

% c? = T.%B—- { 1 - ;—}5-’:[%(5) + 22\5 (cy+ -115 casz)]} ’
z

o5 = =173 { b+ =) oy = 3 p [5,® + 224F - 1))

+ 4,'01[']0(8) + 223 (31 + ]15 cBS 2)] }j

(76)

constitute a system of four simultaneous equations for the four unknowns

Z, Cqs Cqs 8 +» Inasmach as one and only one point of inflection of
z(u) is known to exist, these equations have a unique solution.

It should be noted that because of the definitions of u
and %, the maximum radial velocity R of the bubble wall does not
occur at the same value of u (or t) as the maximum value of
z'(u). The discrepancy is not great for small superheats, but for
larger superheats the point defined by R = 0 moves onto the

asymptotic end of the z{u) curve.

Solution for the Expanding Bubble.
The results of the above theory for water at initial tem-

peratures To = 103, 106° ¢ and external pressure p_ = 1 atm, have
been plotted in Figs. 7, 8, and 9, 10. The bubble was taken to be in
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equiliﬁrium at time t = O when the heat source q(t) is introduced;
q(t) was arbitrarily chosen to correspond to a temperature rise of

1°C in 100 sec in the water far from the bubble.*

See the footnote on page 79.
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Fig. 9 - Theoretical radius and radial velocity curves for
the growth of a pure vapor bubble in water at 1 atm.
external pressure, superheated to 106 C.
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The Collapsing Vapor Bubble.

Because of the large temperature varlations which occur
when a vapor bubble collapses‘ in water below the bolling temperature;
a simple analytic expression for the vapor pressure or vapor density
variations cannot be found, If we take our data from equilibrium
vapor pressure and density tables, we commit the treatment of the
problem to & numerical ome from the beginning,

The system of equations to be solved, eqs. (7) - (11},
is unchanged, In this case, however, the vapor pressure at the initial
temperature To is less than the external pressure, and initial
conditions of dynamic equilibrium cannot prevail for the pure vapor
bubble, There is therefore no need to reta_in the heat source term
in eq. (9), and we shaell put q(t) = O, We continue to assume that
initially the vapor bubble and surrounding liquid are in thermal equili-
brium at temperature To .

It 1s convenient to transform the temperature equation, By
miltiplying eq. (9) by (x - u)™ 72
to x, one obtains, after an integration by parts, the relation

u
E(u) z(u) -1 -;T-gi- j o' (v) Yu-v av,

o

and integrating it from u =20

where (77)

g=T-T°0

The system of equations to be solved becomes



Ez -1 =-;2:§ #Vu -v dv, (78)

(+]

§ =% (0);

z(0) = 1, z'(0) = 0, O(O)l = 0,

The system (78) was solved numerically for initial temperature
7, = 22°C, external pressure p_ = .544 stm., and initial bubble radius
(which is undetermined for the nom-equilibrium bubble) R = .25 cm.
The method of solution is given in Appendix E. The particular initial
- data chosen here correspond to valueswhich have been obtained
| experimentally.*

Although the temperature effects become significant during
the collapse, the dynamics of the particular bubble considered here
differs very little from that predicted by the Rayleigh solution of
the problem(%) over most of the collapse. The Rayleigh solution,
which neglects heat transfer effects, is readily obtainable from (78)
under the assumption that £ stays constant, and equal to #(T o)’ The

equation of motion is
FE UM s e g, =0,

2
3(0) = 1’ 2'(0) = 0,

. The experiments, performed at the Hydrodynamics Laboratory of
the Gal.’a(.foz)-nia Institute of Technology, were reported by M.S, Flesset
in ref.(13).



which yields

_16_ 27/3 2'2 = ¢°(1 - Z) + %(1 - 52/3) (79)
on :I.ntegfation. Since

R
B, = 30 Pe=p (T )] =2x 10°

is mach larger than 3/2, eq. (79) may be approximated by

16' 27/3 2t? = ¢°(1 -2),

z! = - \/35;‘ . g7/ Vi,

where the negative square root of 6% o mist be chosen to correspond

to the collapsing bubble. From eq. (12)y
E:.b.:uz FA) =-u.@:-.21/6 (1 -2)1/2’

which yields

t = LS —
0‘\/630 Vi -x
1
R -1/6
Velp,, = pgq (T )] (R/R )" /T -x

on integration. The time corresponding to the full system (78) was
found by a mumerical integration of the relation

t=l[u dy
¢ Jo 24;3 (v)
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using the values of 2z obtained from the numerical solution of (78).
A comparison of the two solutions for the collapsing bubble

is given in Fig. 11. The maghitude of the radial velocity of the

bubble wall obtained from the numerical solution is plotted in Fig. 12,

and the corresponding temperature at the bubble wall in Fig. 13.

The numerical solution was not carried out farther than shown in

Figs. 12 or 13, because of the breakdown of the assumptions underlying

the theory presented here: the parameters I, {D s Dy etce begin to

vary significantly near the end of collapse, the liquid velocity

becomes so large that compressibility effects may become important

in the liquid, and the spherical bubble shape becames unatable to

small distorting influences.
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Fig. 11 - Comparison of the numerical solution of the text (which
includes heat transfer effects) with the Rayleigh solution
(which neglects heat transfer effects) for a vapor bubble
of initial radius .25 cm, collapsing in water at 22°C and
an external pressure . 544 atm.
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APPENDIX

-A. List of Physgical Constants.

‘The tables below give representative values taken from
E.N. Dorsey, Propertiee. of Ordinary Water-Substance (Reinhold Publish=
ing Corporation, New York, 1940). Values for the vapor are uncertain
(experimentally) in the third significant figure and are somewhat
dependent on pressure; those cited correspond to pressuresof 1 atm.
or below. Values for the liquid have been arbitrarily limited to
four significant figures.

Water Vapor
T % 0 100 150 200
'V\ x 10% gn/cm ¢ sec «884 1.26 1ol 1.62
k x 107 erg/emegecs °C 2.38 2.68 3.03
¢ X 1077 erg/em s °C 1.39 1.41 142 1.5
Peg ¥ 10* gn/ce 5,98
D(= k/ f’eq °v) cmz/aec 282

Gas constant per gm. of water vapor:

B = 10386 X 107 erg/gm' OC.
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~ Water

T % 0 50 100 150 200
M x 10 gu/cnosec 1794 549 2,84 1.86  1.36
k x 107 erg/cmesec « °C 554 6.43 6,80  6.85 6.66
¢, x 107 erg/egm+ % 4215 4,015 3.757
Lx 1070 erg/em 2,500 2,382 2.256  2.114  1.940
P ew/oo 9999  .9880  .9583
Poq 10 gn/ece 0485 L8302 5.977 25.48  T8.62
Poq * 10 aynes/cn® 006107 .1233  1.013  4.760  15.55
g~ dynes/cm 75 .6 67.9 58.8
D(= k/f. o) x 10° e/sec | 1.31 1.62  1.89
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B. Evaluation of the Diffusion Integrals III (47b), (47¢).
' In terms of the new variable
1 - vx ;
t= (a)
1+ vx ’
the integral III (47b) |
2[1‘_1&] - )ﬁ{]i\é}

100 = vk =Yx N o)

dx
vi=-x
becones

1 ) R
I(N) =2 A f —l:‘t'—e-xt“gi'- L 1-1"et‘@‘§-o(c~.)

(144)2 Vi (14¢)? Vo

o o

The further substitution ¢ = 1/x 1in the second integral gives

1 A2
A=t 0t db . _;._L.. -Nx _dx ,
(16)2 ou , )2 V&

o]

and therefcre

Since
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the integral in (d) may also be written

Y- 5 «© 2
] e—)\ t _dt_ AL S, f o x ax f o (XRATIt dt.
Ve,

o
/o e ” x ,x:X? dx, (e)

after a change in the order of integration, By putting y =x + Az,

one obtains after an integration by parts

o 3) & - N2) &

fJ‘T“/ v

=/ [ I S o7 Ar. 7. )2 © ¥ 4r.
Vi [A+ 3 g = N/ o ’ =
sV (12202 N oY ST |
Wi+ (1 - 2)%) ¢ = (£)

The use of (f) for the integral in (d) then gives

R 2 ©
%ﬁl=2}\ﬁ'-2)\'\/§ e)' Az“e—yvéx_‘ ’

I =4 N7 - 4n )’ e A% erte( ). (g)

. The asymptotic formulas for I(\) follow from the relations
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4 \
A2 1 1 3
£ ~ 1= + —eoely A= o,
e erfe()) W [ 2)\2 4)‘4
» (h)
. 2 4
erf«::()\)*ﬂ--zt‘r “_‘%""%6"""]’ A= 0. y
The integrel III (47c)
1 - A3l
IN= A f S - S B 1+ vx
o Vi-=x
1"2‘ P
-‘%' ,/lf el'kx V; erfc[z /sz«l-h :—:ﬁ]
(1)
may be transformed by the substitution
t = 1_:_]/_;_ (J)

1 +vx

to

L [At + I [
2 2
I(}\)=4)\/_J_:§._ -Atzdt{1_ﬁ_t._2. o A(1=t%)

28
°(1+t)

-t
Xerfc[?\t+)\(1-t)]}, (x)

For A<< 1, t <)\,
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and the trace in (k) becemes
2
1oy &) MM arre) + 0N @)

As ¢ 4n (k) increases beyond )\ , the brace in (k) drops rapidly

to zero ()\ << 1), But fram eq. (h),

2
2
1 _V; (§) e(t/)\) erfc(i) ~% fi a8 t -~ 1, >\<< 1,

80 that for small ) the approximate expression (1) differs from

the brace in (k) only in O( \°) for the full range of t. Since the

factor outside the brace is unity to O( \°) when t £ A s an

approximation to the integral which is valid to terms of relative order
A 2 1s

1 2
4 A / at { 1-va & e(t/)\) erre (%)
o A A

2
=4 -2)\2 "{91/)\ erfc(l)-l 2}.
Ao A

Hence, by (h) again,

1N ~2vA N u—v;‘_ +0(M)] as A-0. (m)

For large )\ the brace in (k) remains near unity until t = 1-0(1/,\2),
2.2
so that the dominant factor in the integral is e )‘ v + It is convenient,

therefore, tc put
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et y= )+l (n)
’ 1-¢2" * A |

"~ in (k), and write the integrzl as

’ ' 1
2 2,2 2
(N = 4A[ ‘1:%)'2 e-)\ at )1 -vn 8 erfc(x)} {o)
o (1#5) A

. 2,2
In the region where e A% is still large, u is of order 1/ A
and x is of order unity. Thus in this region, we may expand

k-1 2
(L&) e

erfe(x) = erfe( At + 2) = erfe(At) = 2 Z“( %1
k)

A k=1

)\ t 0 2
= erfo(At) ~ = [( - AtB) + o0l (p)
Vi A

s0 that
2 2,2
ﬁ 2 X erfc(x) =!;'\ g2ut +u /A {'\/; e X't erfe(At)
, 2 |
- 2[(%) - l\t(ﬁ) + eoe ]}. (a)

By expanding u and the algebraic term in (o) in powers of s E )\t
and combining terms, one obtains finally a relation

2 2
I ~4 [ - ds - —I*- A e ® [/ se® erfe(s) + 3s%]ds
o
, ? f o (5% + 232] as + 0(1/)8). (r)
)

The error involved in extending the integrals of (r) to s = =, rather
2

than s = )\ s 18 of order e A s and so does not change the asymptotic
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expansion indicated by (r). By evaluating the integrals in (r),
one finds

1
I\ ~2/7 [1- % + 4—)?‘7 + o(—;-é)]. (s)
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C. Early Phase Temperature Integral IV(46).
The substitution of the expansion

’ a
u‘=P1-{1n(Kw)+a1w+-§-2-w2+ cos } (a)
into the temperature infegral IV (40) ]
wv
rf o ®
u(w) - u(v o Vua(w) = ulwv)
yields
oo
pof =
F o -Jln%+a1w(1 -v) +§gw2(1 -v2)+'-°
2 2
1+w + !g'L + oo

1
= dv
povf | ey :
{A ° v J1 +a w(——1-7;)+ 5 W ( v)+---
2|
- w1/- f dv +w [ v dv (1
- ) ("ln“"_T% )i72 ] (1n '1"')'1'7‘ 3 e (0 172

2
y_dv v{1-v)d 22 a
| [ [ w1

N ll‘a"-

1
%2
-E.L n_))?%],, , (o)

valid for sufficiently small w.

Now, for Re(r), Re(s) > O,

1
/ w1 (1n = )3-1 2 r(s). (a)
o
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Consider a typical integral in _(c), for example that appearing in the
| within the second bracket,

-
o v

If the exponent of the In % factor were instead 1-8, then for

coefficient of a4

Re(s) > 0, eq. (d) would give for I

| ‘.
[ ) aa b av =11 - ¥ ree ()
+]

But it is readily verified that both sides of eq. (f) are regular
functions of the complex variable s for Re(s) > -1, the singularity
at 8 = 0 being only apparent. Therefore, by the theory of analytic
continuation, the equality (f) remains valid for Re(s) > -1, In
particular, for s = = 1/2, (£) gives

I=[1-2"Y2 r(a/2), - (e)

The other integrals appearing in (c) may be similarly evaluated.
From eqs. (e¢), (d) one thus obtains

v ev dv
}J[o Vu(w) - u(v)

= pevpird+ 22 rd) - - b (-2 )

2
+ 2 72 rd) - rd) @2 <512+ 20 D1 - 223 37/2)2

“iredh -3 e } , ()

which reduces to eq. IV (46) on evaluating the gamma functions.
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D. Asymptotic Phgse Temperature Integral IV (522.

By differentiating eq. IV(58)

. b b
2 1
z(u) ~§’-.\/u-u° 1+'(—-—7g+o--+—-2;57€

1
u-uo) (u--u.0

ln(u-uo)

- ’ u> u1 s (a)

and substituting into the temperature integral IV(59), there results

after a change of variable,

b
6
1 2 1
-:575 3 ‘—1-7-(11_“ )56] -;[lnv+1n(u—uo)-2][;u—} .

0

(b)
The terms in (b), except for the last one, yield hypergeometric~
tyre integrals (incomplete Beta functions)
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AR av _ 1 s .1
Is(x) = / = - [F(z, s; stl; 1) - x F(-z-, s; s+1; x)1, (e)
x V1i-v B8
1
r'(z) T(s) .
~ -'—g--—-—i- *'l'xs as X"0+’ (d)
(s + 2)
valid for 0 < x < 1, Re(s) > O, Hence, by the theory of analytic
contimmtion, (c) is valid prOVided Only that 0 < x < 1’ -] # 0, "1, "'2,--0’
and (d) holds when Re(s) > -1, 0<x <1, For 8 =0, (4) is meaning~-
less, but may be defined by a limiting procedure. By differentiating
(@) with respect to 8 at s = - -;-, one readily finds
1 .
[ in v 4y ~-2n+—g—[2+1nx] as x =0, (e)

x v3:2\/ﬁ- Vx

Thus eqs. (d), (e) give for (b)

fu z2'(y) dv
s Va-v
1
P 2._ r‘(g) b, l 1_-\(5) b,
3 rd) @)’ Frdrd) (e 7
1 2
1 feg by TR b B
Srdrd @) 3 rdird) @ T
2 ur’uo b,, b‘,2 b b5
-5 1+ + + ¢
Ty ua, (u1-u°)1]6 (u.l-um)26 (1;11-1;\0)‘/:7g (u.ruo,)s]6
In(a,=-u
+ by —-1-}“—— } (£)
[+)

after a rearrangement, several terms cancelling. By comparison with
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eqe (a), the last group of terms in (f) is simply

-1 2p -pz@)]=—t— G, -p),
+\/1-1-:E: [u 3 )Jz(u1 1/11_—-1;: (an r

since by assumption z(u.') =1, Eq. (f) reduces to eq. IV(59) of

the text upon evaluation of the gammé functions.
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E. Numerics) Solution for ths Collapsing Bubble.
The system IV(78) may be written

zz"+%z"2+;5§[z—1%§+¢]=o, (a)

g =4(), (b)
€z -1 =;;g§- u9'(\7) Vu - v dv, (c)

/o

E=- ¥ (o) | (@)
z=1, 2'=0, =0 at u=0, (e)

In order to obtain a scheme for numerical integration, subdivide the

range of values of u 1into intervals defined by the points

0=u°<u1<ooos“‘k§ooosun<un+1<oo-. (f)

The intervals corresponding to (f) are in general not equal, but

chosen as the integration proceeds. For convenience write

LNTEL N B h, (g)

and assume that 3, = z(uk), 8 = Q(Uk). Ek = § (8, ), ¢k = ¢(9k)
are known for 0 £ k < n.

If the interval W,q — W is sufficiently short, 6 ' (u)
within the interval may be approximated by

e - @
_k*_‘l._._k (h)

Ak:“kﬂ Y
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The integral in (c) evaluated at the point u = u,, may then be
estimated as |
u
n+1 n Y+
[ e'(v)mdv=g} %[ \/u—n:;'-?dv
° = e
=2 5 3/2 _ 3/2,
=3 L Al O™ - Gy )70 (1)
Define .
I, =0,
n-1 (i)

3/2 3/2
In = 3-1;4!- k§0 Ak[(unﬂ-uk) / - (un+1-“k+1) / ]

Then according to eqs. (1), (J) and (g), eq. (¢) at u = u .4 becomes

1=1 + 48 (g

Enﬂ 2o+t T n - 3nf ‘ot - Gn). (k)

The value of En +1 in (k) may be estimated in terms of 9.4 by

an expansion of E about a value © = 8 near @ which uses

n+1
equilibrium vapor density data, say

§11+1 = E (en+1) = .g [1+ a‘l (en+‘l -8+ az(en-l-l - §)2+."]'
(1)
Thus, for the first few steps of integration, & = 0, and so0

E =1 initially. The temperature integral relation (k) becomes
= 3 Y 3 a 2 [N N J
2,18 (1 +4,(8 ,,-8) + dy(8 g = 8)° + <o)

ey — 8) = (e, - 81, (m)
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in which the only unknowns are 8,4 andz Eq. (m) is most

n+;l'
" easily solved for enﬂ by an iteration procedure based on an

alternative form of (m),

) E+£L3§(Gn-e)~1&-1
%ré%' %y § (&) +8,(0,,0- 80 oo ]

To obtain gz

Con)
[ »)

®1
Sur

n
L]

(n)

nt1’ the differential equation must be used.

At each point u = w » make the approximations

( *nt1” zn) - " 2‘n—] ,

u bd u-n

=v.ntl __n n__n- = o1
z"(un) = - z;; ;

:1?.- (un+1

=

Yt 211n"mn--1

)]’?m

E 51
z! . J
With these approximations, the formila

(u-um)2
z(u)-—z +(u-u)z' + g ot

is exact for u=u

n=-1? \1 » U n+1® When (un - un_1) equals

h = (un_[_1 - un), eqs. (o) give

_ % T Ppa
2y T 2h '
(p)
z"*ig+1-2zn+:§:l
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80 that the differential equation (a) at u = L is approximated by

- the difference equation

2 26, _
R AL T L

2
2 2 2 72 -
+ [ (zn-1 - %g %n + ?% znzn-1) + 72473 {3173 + ¢n) ] = 0.
n n

(a)

Given ©_, eq. (q) may be solved for the positive root 2041
ﬂn = ¢(en) being known from equilibrium vapor pressure data.
In order to keep the differences in 2z and €@ small and

ensure that a positive root 2 of the difference equation (q)

n+1
exists, it becomes necessary to decrease h as the numerical inte=-
gration proceeds. At the step where a new value of h is introduced,
the approximations (o) rather than (p) must be used. The difference
equation which applies at that step is therefore not (q), but one
obtainable from (o).

To start the integration, a fictitious point u_1 = -uy
is used. Corresponding to the initial condition z'(0) = O and the
approximation (p), one must then choose Z_ = Zqe Since L =1,
the difference equation (q) for n = 0 simplifies to the linear

equation

2
s=1=-Be(i+d) (B 2H0,) = 40) . (r)
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The temperature equation becomes

21-1'

(s)

2 1 +ooo)

-1‘3“3%- - 2, (51 +d, e
for n =0, since I =8, = §=o0, "§" = 1, For sufficiently small
h, eq. (s) may be approximated by

| -1
o, = —1 o (8)

It should be noted that §, d;» 3, ... depend on &,
and change with each new expansion of ¥ (©). Because these
parameters, as well as h, may be constant over several steps of
integration, we have not given them indices which depend on u

(i.e« on n),



(1)
(2)

(3
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
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