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SUMMARY

The theory of the application of the temsor calculus
to coﬁservative dynamical systems is well known. However,
the results of the actual application to specific systems
are not. The thesis concerns itself with this aspect of
the subject.

The gyroscope or spinning top is first considered.
Necessary and sufficient conditions are developed in
order that the Riemannian geometric space described by
the system shall have constant Riemannian curvature, be
an Einstein space, have a zero curvature invariant, etc.
It is found that a simple relationship must exist between
the moment of inertia coefficients, It is shown that
the space described by the gyroscope is a special case
of a general class of Riemannian spaces having the above
properties.

A second type of conservative dynamicel system is
comsidered. It is shown that with a suitable chéice of
moment of inertias the above properties hold and that
the geomeﬁric space obtained reduces to the gyroscope
spaces

An investigation is made into the form of the
components ofthe fundamentel metric tensor in order
that general Riemannian spaces of three, four, and n-
dimensions, suggested by the dynamical systems themselves,

shall be Einstein spaces, possess constant Riemannian



curvature and zero curvature invariant, and may be mapped

conformally on a flat-space.
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A so0lid of revolution, having one point of its axis
fixed, and whose initial rotation about its axis is given,
is subject only to the external force of gravity.

Wwe investigate the Riemannian geometry described by
such a top or gyroscope.l

Taking Euler's angles x', x°, x° for independent
coordinates with the axis of spin being z, the position
of a rigid bedy of this sort can be given at anytime
through these angles. 2Let. (fig. 1) G be the center of

gravity and let 0G:= 1.

- ~
x‘\y&/ by X xf’\/
x°a/)f
The Potential Function will be

1.1) U= Mgl cos x'

1. For the general theory of the application of the
tensor calculus to dynamics see Brillouiln (1),
McConnell (1), pp.233=-251, A. D. Michal (1) and (2).

2. For a more complete discussion see Whittaker, (1),
pp. 163-164.



while the kinetic energy will be given by
1.2) 2T:=A(iﬁ_+- iéLsinzk’)—%B(iz+—iacos x')L
where A and B are the moments of inertia about the principal
axes of the body.3
The three Lagrange's equations in x, x~ and x3 are

. . T . . 1
2.2) A dx'- (A - B) sin x'cos x'x® + B sin x' x*x° +¥sin x=0
at

3.3) Bd_ (x"+cos ¥ x%)=0
at

4.2) 4 ((A sin’x' +B cos?x')x°+ B cos ¥ ¥%)=0
at

Using summation convention, the kinetic energy (1l.2)
of the system can be represented in the following manner.
5.2) T=% a x° x'  where 1, 3=1, 2, 3
and
6.2) a,= A, a,, =B, ags = A 8in”x'+ B cos™x'

]
&yq= &gy = B cos x, 8, 83, = &,3 ~ a3 = 0

The quadratic form (5.2) is positive definite and
hence we may define an element of arc-length, dsl, for a
Riemannian geometric space in the following manner:
7.2) ds’-= aqjdxddXJ where the acs's are defined as in
(6.2) .

We shall call this space the "Static Riemannian Space"

3. For the derivations of the equations for the potential
function and the kinetic energy see Akimoff (1)ppl35-136.

4, A complete explanation of the prinicple involved can be
found in 3Brillouin (1), McConnell (1) and Michal (1).



of our dynamical system under investigation and proceed to
develope the Christoffel symbokssfor the Static Riemannian
space.

All the Christoffel symbols of the first kind are
zero with the exception of the following:

[}3,i]=—(B-A) sinxcos x

[12,3] = (21,3] = -#B sin x'
1.3) [13,2] = [31,2]

[13,3] = [31.3]

(23,1] = [32,1] = 4B sin x'

u

-%B sin x'

(A-B) sin x'cos x'

In order to form the Christoffel symbols of the second

kind we first compute the conjugate of a,, where

v P
a = cofactor of apc
lal
A 0 0 3 2,
2.3)’al= 0 B Becos x' |/ =A B sin x
O Beos x' Asin x'+Bcos x
therefore
¥ 2% 2 LR | 33
a=1/A a - A sin x +B cos x a - "}
AB sin*x! Asin*x!
303) 23 3z | . al 3 3¢
a = &-__ _=Cc0sS X a = a =a =a =20

A sin*x'
We calculate the Christoffel symbols of the second

kind.

dGwp Lapm _ dam
N LaP

oA
5. Symbol of the first kind: [‘m‘“)ﬁl‘ &( Lx”
» P
Symbol of the second kind: g;?;-%; o [_anvy P]

)



PAEE T (- Lad= B

2 Bewx
21 ( 2 Aamex

L A amox!

{ A
R I R v
]

We calculate the Riemann symbols of the flrst kind

of the Statlic Riemannian space which are defined in the

following manner:
RA%K ) :\Q’)F[CK/J“]“ iﬁ[‘d;ﬂ +{£{ [t ) ‘{fr&w 4,4

The six distinct components of the Riemann tensor are

as follows:

b

- Ry = %
2.4) .
R,y = 44 + AB - B(A=-B)cos x' - 4A(Acos™x'+Bein’x')

4A

6. For the development and properties of the components

of the Riemann tensor see Eisenhart (1) pp. 20 = 47
(2) p. 101, 103, 120-122.



1.5) Rypgsa = O

In computing the first covariant derivative of the
Riemann symbols we need concern ourselves only with the

covariant derivative with respect to x .

Ry33,) = B(A-B) sin x'cos x/
2.5) Rja3;,) = B(B-A) sin x'
Riaz) = Ruagas,y = Risa, = Ryzags = 0.

8
The components of the Ricci tensor are defined in the

following manner: p JJ%%V_N
B S I o O g{”"’ i M
Wﬂd‘ojxe WA 'Ax"{%} Jr{c Ky | my ‘éi d x™

Since the following relationship is useful in calcu-

lations it is stated also.

d ™ tm

where 1 is a summation index.

2L 2

R,= B=2A R, = =B R_- AB-2A + (24"~ 4B - B*)cos’x’
2A ZAT : A~

3.5)

I

2
- ng X } Rnp=Rq =Ri3=Rs, =0

T+ For the definition and concept of the first covariant
derivative consult Eisenhart (1)pp27-31,(2)ppl0O7-112, and
McConnell (1) ppl4aO=-149.

8. For a complete discussion of the geometrical signiricance
and derivation of the Riceci tensor see Eisenhart (1)pp22-47
(2)pplO3=-112.



g

As we use the curvature invariant, R, in theorems
which follow, 1t is computed here.
4
R:g Rk'é

1.6) R=3B - 44
2AT

10
The conformal curvature tensor, Réy( » 1s defined in

the following manner:

Regx = Regk = Rin g 1—5(_5341_). (8¢ Roy = 8¢ Ryx)

All components of this tensor for the 3tatic Riemannian

space are zero with the exception of the following:

2.6)
Ry, = B(A=-B) gin x'cos x'
AL

The Riemannian space 1n which the dynamical trajectories
for a given energy constant, h, are geodesics, has an element
of arc-length ds? Ziven by
3.6) ds = 2(b-U)ayg ax‘daxt
where U 1s the potential energy or thilconservatlve

dynamical system under consideration, which in our case

is ¥cos x'. Or the element of arc-length may be expressed

9. For the development and properties of the curvature
invariant see Eisenhart (L) p.83.

10. The derivation and significance of the conformal
curvature tensor is treated fully in Eisenhart (1)
p.91.

ll. For a complete discussion of the principle involved see
McConnell (1) pp. 246-251.



in the following form:

1.7) ds’= g%dx‘dxé

where
g, = 2A(h=- ¥cos x') , g, =2B(h- ¥cos x')

2.7) & = 2h(Asin®x'+ Beos®x') - 2Y (Asin’x' cos x'+—BcosBX')
823 = 83 = 2B cos x'(h-¥cos x') , g,=8s-8;5-85=0
The Riemannian space with the above line element we

shall call the "Action Riemannian Space" and now proceed

to develope its properties.

All Christoffel symbols of the first kind of the
Action space are zero with the exception of the following:
[11,1]
[22,1]
(33,1]
(12,2) = [21,2] =B ¥sin x'
3.7) {i2,3]=[;1,i]= ~B(h=2 ¥cos x') sin x'
{13,21=[51,é]= -B(h=2 ¥cos x') sin x'
(13,3]=[31,3] = 2n(a-B)sin x'cos x'+¥ (3B-24)sin XcoTsX+A¥sin’ x'

Ad¥gin x'

-B¥ sin x'

I

oh(B-4)sin x'cos x + ¥ §2A-3B)sin x'cos x =4 ¥Ysin’x’

[23,1]- 32,1 = B(h-2 ¥cos x') sin x'

P
We calculate the conjugate & g of g o where

re
g - cofactor of gpv

|8l 5
4.7) [gl= 8A™B sinx'(h - ¥cos x')

therefore
1] az 2
5+T) & = 1 , & = A sin x'+B cog x'
2A(h - Y cos X) 2ABsin’x' (h- ¥ cos X)




33 - ar 13 a2/
g = 1 ) g = 8 = g = g =0
2A gin*x' (h- ¥cos x!')
1.8) e ., |
g = g = =CO8 X

2A sin*x' (h- Y¥cos x')

All Christoffel symbols of the second kind or the

Action space are zero with the exception of the following.
'ZS_ FamoX. { | z =Byosx’
gl“ ) 2(%—5’&@)(') ) 2L ;A(J{,- Xco@x')

. 3,
{3 3 b (B-A) ovion oo ' ¥ (2A-3Blamox ‘er’x' = A 222
33§ ~

LA (h- ¥ aex)

R
2107 21 . ¥ ( Ay’ Beoon') + B conx!
illk—[ E* 1,4mx‘(JU—VMX')

2.8) qu_}:{'l_g__ (Bﬂfziﬁ?—;:_/}

{,in,ﬁ ) :zA_wa'

S
I3 3t QA oo X' (- ¥ ovx’)




The six distinct components of the Riemann symbols
of the first kind for the Action space are as follows?

Rjjig = 2AB Y ( ¥ =hcos x') +B (- ¥cos x')i
2A(h- ¥ cos x')

Rig3i3 = —BABsinlx‘(h13k¥éosLx‘)1'4A2hsin2x‘(h-36’cos x')
+2ABYh cos x' (4sin*x'-cos™x') + 24 ¥ *sin*x' (sinx+4cosx' )
+2AB X"cosqx'+Blcosix' (h= ¥Ycos x’)L-il'* 2A(h= ¥cos x')
1.9)  Ryqpy = Bsin'x' (B(h-2 ¥cos x') +Ycos x'(B-4)
(2h=3 ¥ cos x') - 4¥*) + 2A(h- Ycos x')

Rjg32 = O
Rigps = O
R,,4 = AB¥ h(3cosx'-1)-AB¥*(1 +cos x')cos x'

-B"(h- ¥Ycos x‘)lcos x' + 2A(h- ¥Ycos x')

The non-zero first covariant derivatives of the
components of the Riemannian tensor are
Rip,, = 2A7Bh ¢ +2AB™W"Y -64"B ¥ %roos x' (44"Bth +87 1)
rcos®x' (#2ABh*Y - 2AB WY =-2B ¥ h'3 6A7B ¥Y)
+cosgx'(-4AlBkﬂh-r83X1h) + 2A7sin x'(h- ¥cos x' )L
Ri33) = 4A"B YN -64°r "+ (-10ABr*h +124° 6™ h-4A5"n3
+4A13h?) cos x'
2.9) feos®x ' (164°r h>=1247B ¥h*-104° ¢ 3+ 6AB™h* v )
tcos x' (TOA* B ¥ h=724°% §*h=2AB™ ¥ h+44B™ 1" 44> Bh®)
+cost x' (~40A*B¥ + 124 By =167 1Y +7047¥> -8aBF h-4ABY’)
+cos x (60875 h-6447B v'h + 4AB>¥*h)
+cosbx'(50A1BK3 -54A3Ya‘4ABlka) B EA%(hr ¥cos x‘)zin x'



Ry, =(24Bh°-24"Bn’ -24™BY) reos x(247B ¥ b =104B'n V)
+cos™x' (24 BY¥ h=-4AB>h*+144B¥>h +247Bn?)
+cos x' (28"BYh™ +16AB¥ h'# 44 B¢ =447 ¥7)
t+cos'x' (-20AB” ¥ "h-84 B¥'h +Bar‘h)
+cosfi'(8AB1X;+2AIBK3) + 24%sin x! (h=- ¥cos x’)z
1.10) o s s .
Ry33,=(3AB™ 0"y +24 Bn’% -A"B¥’)
+cos x' (=6AB h¥*-6A"BY¥’-24*Bhx™)
+cos™x' (3ABr%124™BY =104B™h*¥ 447 Bh™¥ )
+coe’x' (2048 h¥ +10 A”Bn¥*+ 647 B¢?)
tcostx' (~10AB>r® —154>BY % 7AB h*rs-24>Bn™¥ )
ycos’ x' (=14AB™h¥*=124"Bh}”)
+cos‘x'(7ABl?3) + 24 (h- Ycos x‘)zsin x'.

We develbpe the components of the Ricecl tensor for
the Action Space. All components are zero with the exception
of the following.

R, = (2ABh -4A™¥*=8A%h) + cos x' (144" ¥ h-4AB rh)

+cos x' (=247¥ %+ 24BY”~ -2ABh™+ 447 h™)

t+cds’x' (=144 ¥ h + 4AB ¥h)

+cosqx‘(6Am¥L-2ABkL) + 44 sin™x' (h- Ycos x‘)L
2.10)Rn = (-AB¥"-28"n)+eos x' (4ABY'h +4B7 ¥ n)

t+ecos’x' (-2B¥*-34BY>) + 4A1(h- ¥cos x')*

Ryg = 2AB¥ h=2B h” cos x'+cos”x' (-2AB¥h +4B7 ¥ h)

+cos x' (=4AB¥™ -2B7%*) 4 4A" (h- ¥cos x')*



1Ll

L ™3

2 2 > o ¢ U
Ryy = BABh - 4A'h = A & +cOs X (-9AB¥h #14A ¥h)
tcosx’ (<ABh - 3B h #5AB¥ # 44 h -8a"F7)
1.11) s, 4 -
+cos x' (7AB¥h +7B ¥h - 144 ¥h)

= % 2=
+cosqx' (-5AB¥”—4B ¥ +9A™%*) 3+ 4A (h -¥cos x' )L

The curvature invariant for the Action Riemannian space
has the following form.
R = (~6A™¥> 124 h”+ BABh™) +cos x' (~-13AB&h +324°¥h)
ycos*x' (-124%~ + 8A*h™ + 4ABY¥ "B h -ABh™)
2.11) - - >
+cos’x (15AB¥h +3B¥h - 32A%h)

3 3
+cos4x'(18A°5"- °2B’r?) 4+ 8A sin x'(h - ¥Ycos x')

A1l the components of the conformal curvature tensor
are zero for the Action Riemannian space with the exception
of the following.

R,,: 18A°By™aa B’ -12487vn”

+cos x' (-124°8 ¥*h + 384B"¥*h +2B7n° -4a8”n7)
+cos x' (264" B¥’-16A>B¥h -8AB ¥’ + 324B"¥h” -8B ¥ b )
teos x' (394" B ¥ h-1084B%h +88% »'n)

+cos x' (~6A"B¥ 3 84 B¥h” + 2048 ¥ ~2B”¥ *-2048 rh*)
+oos”x’ (-174"B¥"h + 66AB™ "1 +2B ¥’ h)

3,)

3.11) o .
+cos x' (-4AB )"-)-GA‘BA'?’ ~-2B ¥

A3 I 2
+ 16A sin x (h=-dcos x°)

R = =R

2 214



3
Rp.3 = =10AB’h +28A"B¥’h +84™Bh’
t+cos x'(=60A"B ¥ h>+324B>h" Y +26A BY ?)
tcos™x' (=764 B¥ h-8 AB”Y*h +124B°h +48° n'-164"Bn®)
3 2> 2

yeos’x' (=584 BY +4AB*¥’F 112A7B ¥ h™ -64AB h¥-168 h'Y)
teost x' (994 B ¥ h-20AB ¥ "h-6AB*h’+18B ¢ h-7B8 h'+ 84 Bh’)

3 2 2 % 5 3 2
+cos’ x ' (344 BY +44B7)> =524 BY h'+32AB yh™=6B ¥ +8B ¢h™)

b q 2 i A 3 2

tcos x' (=44A"BY¥’h+ 24AB ¥ h-8B ¥* h)

3 3 3 3
+cos7x'(-10AlBK%*2B ' ) 4 16A sin'x (h- ¥cos x')

Ryg = =Rais3

1012) o 3 3 2 3 +
B = ~4A"BYh"+184 ¥ +cos x' (204¥ h-24"B¥*h +284 Bh°-26A8h’ )

+cos®x' (=108A"B¥ h™t 100AB ¥h™ =684 ¥+424™B v ?)

rcos’x' (=454 ¥ h=86AB ¥ h +190A" B ¥ h-44A> Bn' 58ABh+6B°h?)
i 2 a2, 3 3 2 " > g >

toostx' (~126ABY 32248t 1924 ¥>+196ABYL -1684Byh=24B°h Y)

+cos§x‘(-35A3kxh-F112AB1¥2h-123ALBX”h-k36B33”h
=-36AB>h>=4B%*n> + 16A*Bh?)

b 2 3 3 3 2
+cos x' (984 B¥ -124B% 064 ~10B ¢ -84ATBy1 +68AB ¥h*
+16B3%yh*)

7 \ 3 2 2 2L 2 2. 3 a
t+cos x' (604 ¥*h-28AB ¥™h + 424" BY’h-26B ¥'h)
2 3
+cos’x' (-224”BY =248 + 1847 + 68°%°)

3 3
+ 164 sin’x'(h- ycos x')

In the theorems which follow, A and B stand for the

moments of inertia of our spinning top computed with respect

to the prinsipal axes,



<

Theorem 1: A necessary and sufficient condition in order

that the Static Riemannian space be an Einstein space is

that A= B.

Proof:

By anc. Einstein space is meant a space in which the
Ricci tensor and the curvature invariant are related in
the following manner: RC§==R aiy /n wherelg is the
dimension of the geometric space consideeed.

From equations (3.5) and (1.6) , to prove the

sufficiency:
R,= = , Rpa==% , Rg =-F , Rgy=-% coe x’
R==3/2A
From equations (6.2)
anR - =% =Ry azsR - =% =Rys
3 3
_a_y_j_R_ = =3=Ra2 a._233R _ -cog x' -Ras

This proves the sufficiency.

To prove the necessity:

Applying the necessity hypothesis to equations
(3.5), (1.6) and (6.2)

R, = B=2A - A(B-4A) or 2B-2A=0 or A=3B .
2A 3\ 24

12, For a more complete discussion of Einstein spaces,

see Eisenhart (1) pp.92-95, Schouten (1), and
Wweyl (1).



14

We state without proof a well known theorem on Riemannian
curvature.
Lemma 1: A necessary and sufficient condition in order
that the curvature of a Riemannian space be constant 1s
that R*‘V<: b(a,j‘1 aw = 84K &y ) where b is constant and

the &y 's are the components of the fundamental metric
13

tensor.

Theorem 2: A neeessary and sufficient condition for the
Static Riemannian space to have constant Riemannian
curvature is that A = B.

Proof:
To prove the sufficiency.
Assuming A= B using equations (2.4), (l.5) and
(6.2), plus Lemma 1:
a, a- a =Al= 4A Ry
4, as -2t =AT=4A R)sis
2y, &33= By :Azsinzx'= 4A Ra323
a,; 8y = &, a,,=-Acos x = 4A R 23
therefore,
b=1/4A .
Applying the hypothesis of constant Riemannian curvature
to equations (2.4), (1.5) and (6.2)
b =B/4A*

b -4Asin"x' -3AB sin”x +B cos’x’
A(A sin*x'+B cos*x')

Solving these two equations simultaneously, we have

13. For the concept of curvature in a Riemannian space and
the proof of this lemma see Eisenhart (1) pp.79-8l.



A=B and b=1/4A

Theorem 3: A necessary and sufficient condition for the
Static Riemannian space to have the first covariant
derivatives of the distinct components of the Rlemann
tensor equal to zero is that A= B.

Proof':

From equations (2.5) the proof is evident

In what follows a V, geometric space stands for an
n-dimensional Riemannian space. Wwhen the fundamental form
is definite, V,, 1s a Buclidean space of n-dimensions. We
denote by S, a space for which the relationship of lemma 1
is satisfled with b=e® and call it a flat space.,

We state without proéf the following well known result.
Lemma 2: A necessary and sufficient condition that a V.,

can be mapped conformally on an 5, 1s that the conformal

14
curvature tensor RCi* be a zero tensor.

Theorem 4: A necessary and sufficient condition in order

that the Static Riemannian space can be mapped conformally
on an S4 1s that A= B.
Proof:

Applying Lemma 2 to equations (2.6) the proof is

evident.

1l4. For a complete discussion of the principles involved
and the proof of this Lemma see Eisenhart (1)pp.90-92.



ComBining theorems 1, 2, and 4 we have the following
general result.
Theorem 5:¢ A necessary and sufficient condition that the
Static Riemannian space be an Einstein space with constant
Riemannian curvature equal to 1/4A which can be mapped

conformally upon an S+ 1s that A= B.

It can be shown that the Static Riemannian space is
a special case of a general class of Riemannlan spaces
which have the properties of the results of the preceding

theorems. It is developed in the following manner.

Theorem 6: In a Vs for which g, = 8z, = €33 =4, &,,= Af(x),
and g,, - 81 =85 = 8z, = 0, & necessary and sufficient
condition in order that the V5 have constant Riemannian

curvature of value b, is that g13=-A sin 2VbA (x +C)

where C 1s arbitrary and x=x', x5or x°.

Proof:
For the above V; the Riemann symbols of the first

kind have the following form:
2L

Af Rjagy = O

1 = ZR-—_”- FT

‘7——
R’313 = AT R,323 =0

i -1

2
= Af R - Af" Af £
3 = + =
232 —2}—_—— 123 2 !l(l - fl)

We shall go through the proof of Ry, only.

R

2

R

Applying the necessary and sufficient condition for



constant curvature to R,, ., :
%
£! -baA
4(1 - £7)

or \

Solving this differential equation
-1
sin f(x) =2 VbA(x+C)
f(x) =sin 2 |bA (x +C)

or

Corollary: The Static Rlemannian space in which A=B is
a space of constant Riemannian curvature where b= 1/4A
and ¢ - 1T .

Ry

Theorem 7: In a V3 for which g, = 83, = 83, = A, @.3= @5 =Af(X)

and g, = 8, = 83 = 8 =0, a necessary and sufficient
condition in order that the V3 be an Einstein space 1s

that f(x) =sin k(x +C) where k and C are arbitrary and

2 3

x=x', x*or x° .,

Proof:
The Ricci tensors for the above V; are as follows:

2.

o 2f £ - por "

Ru =
2(1 = £4)*
Ry, = Ras = __= £
2(1 - £7)
Ryg=f /2

The curvature invariant R is
S n Il ,2
B =3f' - 4rf'+at’e’ - r7f
2A (1 - £*)*

We shall go through the case of R, only.



Applying the definition of an Einstein space, we obtain

the following differential equation upon setting f(x) =y.

2
a’y(1 - y*)= -y éx)
axz< ax

Making the substitutions dy -p and d y .p dp

dx dx» ay
we have
p%g_ (1-y*)=-yp~
dp =y dy or 1np-=% 1n k' (1-y?)

P 1l-y*

a = dx
k Vl—yL
y =f(x) =8in k(x +C)

Corollary: The Static Riemannian space in which A=B is

an Einstein space in which k=1 and @ =77,

Theorem 8: In a V3 for which g, = 8,, = 833= 4, 823 8 Af(x)
and g ., = 8, = 8.3 = 8, = 0, va necessary and sufficient
condition that the first covariant derivative of the
components of the Riemann tensor of the first kind be
zero is that f(x)= sin k(x+C) where k and C are arbitrary
and x= x', x2?, or x° .

Proof:
We shall go through the case of R,;,; only.

The first covariant derivative of R,3.5 18

) u 7
R_7313/, = Af f ~ £ f

2 2(1-t7%)

Setting this differential equation equal to zero,



we obtain the following:
J 177 3
£'e -2 e £ =0
2

Setting f=-y and dy -p, and d y -p dp
ax dx * dy

we have

dp (1L = y*)==y p
dy

Solving this equation
y =f(x) = sin k(x +C)
Corollary: Setting k=1 and C= 7T , in the Static
Riemannlian space in which A=B the first covariant

derivativesof the Riemann symbols 1s zero.

Theorem 9: In a V; for which g, = 8.1, =83; =4, &= &;7Af(x)

and g, = 8, = 8,; = 8 = 0, a necessary and sufficient
condition that the V3 may be mapped conformally upon a
S5 1s that f(x) =sin k(x+C) where k and C are arbitrary
and x=x', x>, ar x

Proof:

As in the preceding theorems, by calculating R¢§K
and setting the resulting differential equation equal to

zero, the result is obtained.

In attempting to secure a corresponding set of theorems
for the Actlon Riemannian space, insurmountable barriers
are met. In fact, one may say that no relationship exists

(with either physical or mathematical meaning) between



A, B, ¥, and h which will enable one to obtain a set of
theorems.

For example: Using equations (2.10), (1.11), and
(2,11), the following set of é&quations must be satisfied
in order for the Action Space to be an Einstein space.
1.20) -6A"F -124"h*+ 34Bh = O
2.20) 20A ¥ h +AB¥h =0
3.20) 6A ¥ +2ABY¥*=5ABh”+ 4A™h*#B™h*= O
4,20) -20A°¥h =3AB¥h =33 ¥h=0
5.20) -6AB¥ +2B Y =0

Equations (2.20) and (5.20) ame clearly inconsistant
unless A=B=0 .

Similarly in searching for possible conditions to
obtain constant Riemannian curvature, we obtain equations
which are inconsistant unless h =¥ = 0.

The same facts occur if one uses an approximation
by neglecting all terms of higher order than the second.
3y neglecting all terms of higher order than the second,
one can show that the first covariant derivative of R .
will equal zero if h =V and A==-B . However, in the
case of Ry3,3 , ane 1imaginary relatignship must exist

between A and B.



II

A dynamical system which resembles the preceding
spinning top is the followilng.

A Dbody of revolution is mounted on a straight wire
R=5, coinciding with its axis, one end of which can slide
along a vertical 0-Z, while the lower end, 5, can siide in
any way on the horizontal plane X=0-¥; no friction and neo
external forces except gravity.ls

We investigate the Riemannian geometry described

by such a dynamical system.

;/\'7

S <
Once again using Euler's angles as independent

coordinates, the kinetic and potential energies have the

1
following forme.

15. For a complete discussion of this dynamical system
see Akimoff (1) pp. 131-132.

16. For the derivation of these equations see Akimoff
(1) pp. 132-135.



22

1

1.22) 2T = (A+Mr cos x'+M(1l-r) sin*x')x' +Cx*

+((A+Mr™)sin*x' +C cos*x' )X®+2C cos x! x'x’
2.22) V-=Mg(l-r) cos x'

Lagranges equations in terms of x', xl, and x° are

as follows.

e, ol | -

X"+ X"cos X =const.= a

*9
3422) x° sin’x +m cos x'=b where m - a C

A +Mr>
PR

x9sin’x' + (1L +n sin"x)x'=p cos x'+h

where

n-Ml(1=-2r) and p=2M l-E

4 +Mr A + Mr

The kinetic energy (l.22) of the system can be
represented in the following manner.
4.22) T=% agy x¢ %% where 1, J=1, 2, 3 and
a, = A+Mr*+ M1(1-2r) sin’x'
5¢22) a4, =0 n 4, =C cos x'

a,, = (A+Mr*) sin"x' + C cos? x'=C +(A+Mr” = C)sin"x'

We define an element of arc-length ds® in the

following manner.

6.22) ds’ = 2, dx dx where the acy are defined as in (5.22)

We develope the Christoffel symbols for the Riemannian
space with element of arc-length given by (6.22). We shall

call this space the "Static Riemannian Space".



All Christoffel symbols of the first kind are zero
with the exception of the following.
[1l,i}=Ml(1-2r) sin x'cos x'
(12,3] =le1,3]=-C sin x'
[13,21';61,é1=-LGsin x!
(13,3] =B1,3] <(a+ur* - ¢) sinx'cos x'
[23,1) = [32,1]=4C sin x!
[33,i1=-(0 - A - Mr?) sin x'cos x'

1.23)

P
We calculate a = cofactor of apr
lal

2.23) |a] =C(A+Mr?) (4 +Mr*+M1(1-2r) sin®x') sin®x’

therefore
1) 1% T oy 2
a - 1 a - C+ (AtMr-eC)sin x
A+Mr>4+M1(1l-2r)sintx! / C(A+Mr*) sin*x!
a = 1 a - = C08 X
(A+Mr*) sin®*x' (A +Mr*) sin*x!

All Christoffel symbols of the second kind are zero

with the exception of the following.

1 - M2 (L-2n) amox' conX
il I]S A+ M2+ MA(L-22) 4’y

+43)

Sv\ i . ( L-A- MY o x' eoox'
33 A+ M+ ML (L-20) @ X!



(! C
k { % LA+ ML + Mﬂ(l-u),mfx')
9, 27 C coax'
-1l qamiden

2&}3{ ik _ CC’A‘M&i@QLK'~ (A+Ma)
13)
)

2 (A+ M) ok’

" (s T

375_ {3§: (2A+ AMa>- C) o0 X!
. LA+ MA s X

The six distinct components of the Riemann tensor of

the first kind have the following form.
%

R = c
1% © FATNrD)

Riziz = (A +Mr?* =C)(sin*x'- cos?x!)

C(Authl)1-(4y+M *~C) (4A +4Mr* =C) cos’x!
4(A+Mrr)

+ M1 (1=-2r) (A +Mr'—C)sin”x' cos™x
A+Mr*+M1l(l=-2r) sin?*x!
2.24) 2
R = G sin’x'
2323 LA +Mr*+Ml(l-2r)sin x')

Ri232 = O

Ri323 = 0



1.25) R

25

113 = =C cos x' +c(2 2A +2Mr” =C) cos x' _
2

L(A+ Mrz)

+_CMl(l -2r) sin x'cos x'
2(A +Mr*+M1(1-2r) sin’x')

We compute the non-zero components of the Ricci tensor

for the Static Riemannian space.

2025)

3425)

R, = (At+NMr C=2A-2Mp -2Ml(l-2r))‘fCMl(l 2r)sin 5!
2§A—kMr‘§(A-er Y ML(1l-2r)sin>x')
2(Kﬂ—Mr1-le(l-2r)sin1x7(A-+Mr‘)

Ryy = =C (A+Mr?) +M1(1-2r)(2(A +Mr?) (C-A-Mr™)=C*)sin®x'

~CM1(1-2r)(A+Mr™=C) sin'x'
+ 2(A +Mr™) (A +Mr*+M1(1-2r) sin’x‘)l

RH: C(=C(A +Mr>) +M1(1-2r)(A+Mr™>=C)lcos x')
2(A+Mr>) (A +Mr= +M1(1-2r) sin*x')>

The curvature invariant R is as follows.
R= -2CM1(1-2r)(A+Mr*-C)

t+sin*x' ((A +Mr2)*(C-24-2Mr "=2M1(1-2r)) + M1(1-2r)

(2(A +Mpr>) (C-A-Mpr*) -C*) =2C (A +Mr*)
+2CM1(1=-2r) (A+Mr*=C) =C(A+Mr>=C)(A+Mr™)

-¢'M1(1-2r))

+sin’ x' (CM1(1-2r)(2C-A-Mr?))

+ 2(A+Mr*)" (A +Mr™+ M1(1-2r) sin®x') sin’x'.

The Riemannian space in which the dynamical trajectories

for a glven energy constant, h, are geodesics, has an
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element of arc-length given by

1.26) ds*=2(h-V) aydx’ axt

where V is the potential energy given by egquation (2.22).
Or we may say

2.,26) ds = g (f ax©ax?

where

g, = 2(h-Mg(l-r)cos x')(A+Mr’3ML(1l-2r)sin’x"')
84, = 20(h-Mg(1l-r)cos x')
3.26)533::2(h-Mg(1-r)cos x')(C +(A +Mr* ~C)sin’*x')
8,3 =2C(h-Mg(l-r)cos x')cos x'
8, =83 =0
The Riemannian space with element of arc-length (2.26)

we shall call the"Action Riemannian space".

We calculate the Christoffel gsymbols of the Action

space. All non-zero symbols of the first kind are

[11,1) = Mg(1-r) (A +Mr*> -241(1-2r))sin x +241h(1l-2r)sinxcos x'
—FBMllg(l—Qr)(l-i) sin’x'.

Eé2,i]=>-CMg(l-r)sin x'

[33,1]=:-Mg(l-r)(}C-2A-2Mr1)sin x=2h(A +Mr* =C)sin x'cos x'

-3Mg(l-r) (A +Mr* =¢) sin’x'

[12,2]= |21,2] =cug(1-r)sin x'

[i2,3]= 1,3] = -Chsin x'+2CMg(l-r)sin x'cos x'

[13,211[§1,é]:=-0hsin x'+2CMg(1l-r)sin x'cos x'

@3,3]251,3] = Mg(1l-r)(3C-24-24r2)sin x +2h(A +Mr =C)sinxéosx’
+3Mg(l=r) (A +Mr > =C) sin’ x'

[?3,i]=[§2,ﬂ = Chsin x'- 2CMg(l-r)sin x'cos x'

4,26)
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¥ P
We compute g - cofactor of fev

|8l
1.27) |g| =8C(h-Mg(l-r)cos x1)” (A+Mr*+M1(1-2r) sin*x)(AHIX)sin’x'
therefordg

n

_ 1
2(h=-Mg(l-r)cos x')(A +Mr3M1l(1l-2r) sin?*x9)
22

g = C+(A +Mr*-C) sin’x'
2C(A +Mr2) (h-Mg(l-r)cos x') sin*x!
2.27) 23 N
) 2(A +Mr?*)(h-Mg(l-r)cos x') sin*x'
2 - cos x'
2(h-Mg(l=-r)cos x')(A +Mr#*) sinx'
g = g%=0

All Christoffel symbols of the second kind are zero

with the exception of the following.

Sé | 3 _ Mg (JQ"”’)[A*MAL“qufQ(JL‘JA))MX' + U ML (L-22) aviox e
') 43 M“kq (L-22) (L-2) K 2(/2//\73 CX*A)wa)(AW/‘}H’u (La) o)

R _ ¢ Maq (L-2) amox’
| {Q QE 4(%*”1%(1-&)60@)6) (AHVI/:}]LP’M (i—am),omzx‘)
- { l X: ~ My (L) (3¢-2A-2 M arox'= 2k (At Maz-C) e esex
3 - 3Mq (A-n) (A Hia>-¢) o™ X'
= 2 (/2» Mg (L-r) eswx’) (A+MA>+ I‘TN%M)M‘&')
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E‘ oo’ = 2C Mg (L-2) arox erox:
’ 2(A- M%C—Q*&)&WK)(A*—MA + MACL lA)/o,m«.x)

\g: -C Mg (L-1) + M%(JL-JU)(A+ Mo+ C) oo '+ CAotonx!
2 (A+ M) (A-Mg (4-r) taaxr ) s’

> -

}
%

e O

l

C-2A-1Mr* + (A+Mr>-C)am ™!
Q(AﬁLMJb)/gM«:X'

sl
{;ig Q(A+Mm)wmx
Ll

1.28)

Mg (L-2) (¢ -2A - 2Mn%) + o conx (24+ 2Ma>- C)
+My (L-2) (34+3 Ma>- C)/.um X'
“Q(ATLM/L)(J)» Mg (L-n) oo x! ) K

l

We develope the six @istinct components of the Riemann
tensor of the first kind for the Action space.
Ry, = C(h¥-M g (1-r)"(A +Mr™) +h(A +Mr2))
+cos x’(CMg(l—rj(-BA-BMr‘-h-BCh-C(A-er‘))
teos™x' (CM*g2(1-r) (T +2C) &%
jcos x'sin®*x!(CM*gl(l-2r)(l-r)(=I+ Ch-2C +2h(A+Mr?™))
+sinx' (CM(Mg?(1-r) (A +Mr™+C) (A+Mr>)-CM*1g*(1-r)(1-2r)
+Clh(1l-2r) +Mg*(1-r) (A +Mr>) (A +Mr>=2M1(1-2r)))
+einx' (M 1g*(1-r) {1-2r) (4A+ 4Mr*-C)
+ 2(A+ Mr*)(h=-Mg(l-r)cos x!)(A+Mr*+MLl(1l-2r)sin®x')

2.28) 2 - 2 2. 5. o ¥ 2
R,. = 4h (A+Mr*)(A+Mr*-C)+ Ch™ (A +Mr*)+ M g*(1l-r) (A#r?)

1313
tcos x' (Mgh(l-r)(A+Mrr) (11C-154-15Mr?))
+cos*x' (18Mgh(1l-r) (A+Mr>) (A +Mr>-G) +h™ (A +Mr?)
(A+M r™ =C)(-4A-4Mr > =C) +2M *g>*(1-r) (A +Mr>] ™

(54 +5Mr =4G))
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tcos’x! (9M2g?(1-r) " (A +Mr*) *(C-A-Mr*) +Mgh(l-r) (A +Mr™>)
(A+Mr™ -C)(=-8A-8Mr +2C))
tcosix! (M*g™*(1-r)”" (A +Mr>) (C-A-Mr *) (C=0A-9Mr *))
+8in®x' (Mh*1(1-2r) (A + Mr™) (441 }dr* -C)
+M3g1(1-r) "(1-2r) (1 + (A +Mr>)?) +M>g* (1-r) (A +Mr*)7)
4sin’x' cos x' (M glh(l-r}(1-2r) (A +Mr*) (=11A-11Mr #10C)
+2Mgh(l=r)(A+Mr™>) (A+Mr>-C))
+sinx! cos?x' (18M *glh(1-2r)(1l-r) (A +Mr*) (A +Mr > =C)
-CMh*1(1-2r) (A +Mr?=C) +M 1g*(1-r) *(1-2r) (A + Mr?)
(44 +4Mr™ -5C) +3M g*(1-r) *(A +Mr?*) *(C-A-Mr*)
4+ sinfcos? x' (-18Msg“l(l-r)1(l-2r) (A+Mr*) (A +Mr>C)
4M’glh(1-r)(1-2r) (A +Mr > =C) (5C=124-12Mr*)
+M "glh(1l-r) (1-2r) (A +Mr?* =C) (26A +26Mr * =C))
+8in*x costx' (M'g*1(1-r) (1-2r) (CeA-Mr*)(C-18A-18Mr ™))

: + 2(A+Mr?)(h-Mg(l-r)cos x')(A+Mr*%M1l(1l-2r)sin™x")
1.29

R,g3 = Sin’x' (C*n*-cM *g*(1-r) *(3C-24-2Hr ¥))
+8in*x!cos x'(2CMgh(1l-r)(-C-A-Mr?*))
tsinfcos™x' (40 M g*(1-r)™)
+sin®x' (3%g*C(1-r) *(C=A-Nr2))

+ 2(h-Mg(l-r)cos x')(A +Mr¥M1(l-2r) sin’x')

Rpq = CMgh(l-r)(A +Mr2¥(6-A-Mr*) -4CM*1h(1l-r)(1l-2r)(A+MR™)
+ 40M° g*1(1-r) (1-2r) (A+ ¥r*) +CM 1gh(1l-2r) (1-r) (3A+3Mr +7C)
-C Mgh(l-r)(A+Mr*) -C'M ghl(l-r)(1-2r)
4 cos x!' (=2C h* (A +Mr*) =20 "n M1 (1-2r)=CM g*(1-r) (A +Mr=)*
+20M*ghl(1-r) (1-2r) (A +Mr*) + 2CM1h“(1-2r) (A +Mr*)

-50M° g*1(1-r)" (1-2r) (A+Mr*))
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tcos x' (CMgh(l-r) (A+Mr™) (34 + 3Mr ™+ 2C)
+4CM hg(l-r)(1-2r) (A+M r*>) + 8CM1h(1l-r)(1-2r)(A +Mr>)
-126M° g1 (1-r) *(1-2r) (A + Mr?)
+CM 1gh(1-2r) (1-2) (=16A-16Mr *+2C) +C " h*(A+Mr?)
+¢ M1n " (1-2r))
tcos’x' (267 h*ML(1-2r) =CM g*(1-r)? (A +Mr?) (A +Mr*+C)
-2M “Cghl(1l-r)(1-2r) (A + Mr2)-20M1h*(1-2r) (A +Mr™)
+0M3g21(1-r) “(1-2r) (16A +16Mr> =C))
tcostx' (=4CM hg(l-r)(1-2r) (A +Mr®) - 4CM h1(1l-r)(1l-2r)(AtMr®)
+80M%g?1(1-r) (1-2r) (A +Mr?) + CM 1gh(l-2r) (1-r)(13A+13Mr*~2C)
-G Mlh*(1-2r))
teos® x' (CM31g™ (1-2r) (1-r) (=114-11Mr™>-C))
+ 2(A+Mr?*)(h-Mg(l-r)cos x')(A+Mr*M1l(1-2r) sin*x' )
1.30)
Riazn = O
Rigqy = O
All components of the Ricei tensor Rci for the
Action space are zero with the exception of the following.
R, = (A +r2)> (=4niN g™ (1-r)%) + (A +Mr?) (-4M1n+2C-ME1(1-r){1-2r))
+(A+Mr?)(C*M g*(1-r)" -2CM g *(1-r) +2CM1 (1-2r) +2Ch ™)
+(A +Mr*+C) (M2g*(1-r) (A +Mr®) +¥ g 1(1-r) ™

2’30) 3 a 2
+CM g 1(1l-r) (1l-2r)(C=2)

1-2r))

+cos x' (18Mgh(l-r) (A +Mr2)  -44g™h(1-r) (A+Mr?)>
+14 ghl(1-r) (1-2r) (A+ M r*) =41°g?1n(1-r) (1-2r) (A +Mr?)"
+20Mgh(1-r) (A +Mr*)" =204 “ghl(1l-r)(1-2r)
+2CM ghl(1-r) (1-2r) (A +Mr '+ C) =4ChMg(l-r)(A+Mr?)



+2Mgh(1-r) (A +Mr?) (24 +2Mr*-C) +2M “ghl(1-r) (1-2r) (8At2Mr>-C))
+cos x' (4h* (A +Mr*) -18M g *(1-r) " (A +Mr?) +an g7 (1-r) (arur®)?
“4n*Mg(l-r) (A #Mr™>) # 8M1h* (A +Mr*) =13M g*1(1-r)(1-2r) (Atdr*)"
+4M %1 (1-r)° (1-2r) (A+ Mr* ) =40 u"gl (1-r) (1-2r) (A +Mr >}
=21 2g? (1-r)* (& +Mr*)" (4 +Mr™+C) + C B (A Hir?)
+20M g1 (1-r) *(1-2r) =34 *g*1(1-r) “(1-2r) (A + Mr*C)
+20M 2z 1 (1-r) 2(1-2r) (24 +2Mr >C) +C *M1lh*(1-2r)
+2C(A +Mr™) (C-A-Mr*)=2CM1 (1-2r) (A +Mr*) +2CM1(1-2r) (C-A=Mr?)
+2Ch” (C-A-Mr?) +20M°g*(1-r) (A+ Mr2)-2M g’ (1-r) " (AHME) (3A+3Mr=c)
+h"(4 tMr*) (24 +oMrt-C)” ~A4uin® (1-2r) (4 M) ™)+ MARL 22 (2 2 e)
—am3ql (L)% (L-20) (ArMn) (3AF3 M- —C
+cos 3x! ?—18Mgh(l-r) (A+Mr2)’ +16M g™ h(1-r) (A +Mr>)°
=36M%ghl (1-r) (1-2r) (A +Mr*) + 81 °g*1n(1-r) (1-2r) (A +Mr2)™
1242 g*1h(1-r) " (1-2r)-2CMgh(1l-r) (X#Rxx(A + Mr +C) (A+Mr > )
+20¢"M ghl (1-r) (1-2r)-4CM*ghl (1-r)¢1-2r) (A + Mr*+C)
«4ChMg(l=r) (C=A=Mr?*) =2Mgh(l=-r)(A +Mr*>)(24 +2Mr*=C)
(3A +3Mr* -C)=-2M%ghl(1l-r)(1-2r)(24 +2Mr™> -C)
-2M ghl(1l-r)(1-2r) (24 +2Mr2-C) (34 +3Mr>-C))
' '-?-};?:s‘*x‘ (20M* g™ (1-r) *(4 +Mr*)~ -124°g3(1-r)° (A +Mr>)’
+4Mgh ™ (1-r) (A +1v1r1)3-41v11h2 (A+M r 3 +50M°g"1(1-r) (1-2r)
(A +Mr2)*=16Mtg 1(1-r)° (1-2r) (A +Mr2)*
+8M7gh*1(1-r) (1-2r) (A +Mr?) =C*MEh™(1-2r)
7 1 (1-r) (1-2r) (A + Mr™) -2CM1 (1-2r) (C-A-Mr*)
+20M*g*(1-r) *(C-A-Mr*) +4M*g*(1-r) (A +Mr>)*
-Mh®1(24 +2Mr?-C) (1-2r) +4M1h™(1-2r)(aA+Mr?)*
+cos°—x' (-12M*g*n(1-r) (A +Mr’~)3+ 22Mghl (1-r)(1-2r) (A4Mr>)*
-4M 3gil(l-x‘)"(l-zr‘) (A+Mr ’)z -24M *g*1h(1-r) " (1-2r)
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+2CM *ghl(1-r) (1-2r)(A+ Mr*C)
+2M *ghl (1-r) (1=-2r) (2A + 2Mr *-C) (3A + 3Mr>-C) )

+cos®x' (8177 (1-r) % (4 +Mr2) 281 g 1 (1-r) *(1-2r) (A #Mr*) >
yoom g’ 1(1-r)” (1-2r) (A +Mr*) =4 gh* 1(1-r) (1-2r) (A +Mr>) ™
~ai°g™1(1-r) “(1-2r) (A +Mr?))

tcos’x! (12M g*hl(1l-r)?*(1-2r))

+cos®x' ( -en" g’1(1- r) (1-2r) (A +Mr2)?*)

+ 4(A +Mr2)'sin’x' (h-Mg(l-r)cos %)’ (A+Mr+ML(1-2r)sin®*x')

Ry, = 2h(A+Mr*) +2M1h(1-2r) (A +Mr*>)-2CHg(1-r) (4 + Mr*)*
-2CM*gl(1l-r)(1l-2r) (A +Mr*) -2C*n*(A +Mr>)-2C Mh™1(1-2r)
+CM3*g>(1-r) (A +Mr2) +coM3g 1 (1-r) " (1-2r) (A +Mr>)
+cos x‘(-2Mg(l-r)(A-kMrl)L-legl(l-r)(l-2r)(A1—Mr‘)
+CMgh(1l=-r) (A +Mr*) (4C +2A +2Mr?)
+ 4CM *ghl(1l-r)(1-2r)(A +Mr™))
tcos*x! (=2M1h(1-2r)(A+Mr*) + 2CMg (1-r)(A +Mp?)~
1'32i4cmlgl(l-r)(l-2r)(A-+Mr1)-+201Mh11(1-2r)
-CM*g>(1-r)" (A+Mr™*) (2C +3A + 3Mr2)
-20M%g21(1-r)* (1-2r) (34 + 3ur > +C))
teos’x' (2Mgl (1-r) (1-2r) (A + Mr®)=-4CM "ghl(1l-r)(1-2r) (ARIPr>+C))
tcostx' (=20M gl (1-r) (1-2r) (A + Mr?)
+0Mg*1(1-r) " (1-2r) (2C + 54 +5Mr> ))
+ 4(A+Mr*)(h-Mg(l-r)cos x)(A+Hryl(1-2r) sin*x')”

Rypg = =CMgh(1l-r) (A +Mr2)*-cM *glh(1-2r) (1-r) (A + Mr™)
+cos x'(=2C*h™(A +Mr2)*-20M1h™>(1-2r) (A +Mr*~C))
#cosx' (4C™ M glh(1l-r) (1-2r) + CMgh(1l-r) (A +Mr>)$5A + 5Mr34C))
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\cos Ixt (~20M?g2(1-r) (A +Mr™) (24 +24r™+C)
-20 "M %g™ (1-r) *(1-2r) -2CM1h*(1-2r)(A +Mr>=C))
teostx' (cM¥gln (1-r)(1-2r)(A +Mr>-4C))
tcos’ x' (20 M3g%1(1-r)*(1-2r))
+ 4(A+Mr?)(h-Mg(l-r) cos (A + Mr3M1(1-2r) sin®x!)”

1.33)
R,.= =-2h*(a +Mr’-)"(2A + 2Mr*-C)=-2M1h?*(1-2r) (A +Mr>) (24 r2Mr *-6)

33 =
-2 g*(1-r) (A +Mr*)’ -243g*1(1-r)* (1-2r) (A +M r2)*
+eM*g?(1-r)* (A +Mr*) (24 +2Mr>-$6)
Mg (1-r)” (A +Mr?) (A Hir*¥ C) (3C=-24-2Mr?>)
M3 1 (1-r) T(1-2r) (A+Mr>) (54 + 5Mr*-50C)
t+cos x' (Mgh(l-r) (A +Mr?)(16A +16Mr>~14C)
+14Mghl¢l-r)(1-2r) (A +Mr>) (A +Mr>-C)
+CMgh(1-r) (A +Mr?) (8C-A-Mr*) +CM glh(1l-r)(1-2r)(8C-A-Mr?*)
4Mgh(l-r) (A +Mr*) (A +Mr*-C) (3C-24-2Mr )
+M*ghl(l-r) (1-2r) (C-BA-2Ur *) (2C~-A-Mr>)
-4 ghl(1-r) (1-2r) (A+Mr*-C)™
“+cos®x' (2h* (A +Mr?) (24 +2Mr°3C) (A + Mr>-C)
M*g*(1-r) “(A +Mr>) *(9C-10A-10Mr *)
+2M1h*(1=2r) (A+M r2) (4A +4Mr*=3C)
+M3g*1(1-r)* (1-2r) (A +Mr %) (9C=TA-THr 2)
+CM g*(1-r)? (A +Mr?) (30-TA-TNr™)
+30M°g*1(1-r) (1-2r) (3C-4a-4ur L)
Mg (1-r)* (A +M ) (4 +Mr>=C) (9C +14A + 14r>)
+Magzl(l-r)z(1-2r) (C=2A-2Mr™) (44 +4Mr *=3C)

-2M1h™(1-2r) (A4+M r™C) (24 + 2Mr>=C)



% g*1 (1-r) *(1-2r) (34 + 3Mr >=C) (5A +5Mr *=3C)
M g>(1-7) (A +Mr™) (A+ Mr™+C) (3C-24-2Mr>)
+M°g*1(1-1)*(1=2r) (A + Mr>+C) (134 +13Mr>=15C) )
+cos’x' (6Mgh(l-r) (A+Mr®) (A +Mr™=C) (A +M r*-2C)
+28M ghl(1l-r)(1-2r) (A +Mr>) (C-A~Mr>)
+CM glh(1l-r) (1-2r) (10A +10Mr *=17C)
' thzi"’ghl(l-r) (1-2r) (C-24-2Mr*) + 81 Elh(1-r) (1-2r) (A+Mr™=C) *)
roosx! (2 g™(1-r)* (A +Mr>=C) (34 + 3Mr >-C)
+M g 1(1-r) *(1-2r) (3C-24-24r™) (2C-34-3Mr")
+01°g 1 (1-r) > (1-2r) (34 + 3Mr>C)
=348 L (1-r) *(1-2r) (A +Mr™-C) (BA +5Mr™C)=-2CM1h (1-2r) (#+Mr=C))
+co§rk‘(2M131h(1-r)(1-2r)(Ai—Mr’kc)(2A1-2Mr‘=”))
+eos®x' (M%g*1(1~r)*(1-2r) (A +M r™=C) (4C-15A-15Mr2))

+ 4(A+Mr )(h-Mg(l-r)cos x‘)L(A+—Mr"—'+—M1(l-2r)sin‘x')L

The curvature invariant of the Actlon space has the
following form.

R = -4CM1h%(A+Mr*) +2C™(A +Mr*)"+20*M1(1-2r) (A + Mr™)
+2C7h* (A +Mr*>) +¢”M%g 1 (1-2r) (1-r) ™ 2n(A +Mr>)’
+2M1lh(1-2r) (A+Mr*)* -20Mg(l-r)(A +Mr?)”° -20M %l

(1-r) (1-2r) (A +Mr*)* =20M*g*(1-r)* (A +Mr*)”
+CM*g* (1-r)* (A +Mr¥) (A +Mr>+C) (3C=-24-2Mr>) -8Ch™ (AHir>)”
+20° M g™ (1-7)* (4 +Mr®) (A + Mr>=4C)
HFCM g *(1-r) (A +Mr*>) (A +Mr>-C)
+CM%g™(1-r) *(1-2r) (A +Mr *=0) -4CM1h ™(1-2r) (4 +Mr>)"
-CM g *1(1-1r)*(1-2r) (A +Mr™) (TA + TMr =5C)
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toos x' (=4CM¥g*h(1-r) (A +Mr>)  -4CM g 1h(1-r) *(1-2r) (A+Mr=)™
+2CM*ghl(1-1) (1-2r) (24 +2Mpr*=C)-2Mg(1-r) (A +Mr>)>
-2M *g1(1-r) (1-2r) (A +Mr*)"+CMgh(1-r) (A +Mr™) (A+Mr>=C) ( 3C-24-2Mr)
M “ghl (1=r) (1-2r) (C@2A=-2Mr ™) ( 2C=-A-Mr
-4CK "ghl(1l-r) (1-2r){A +Mr*-C)
+C*HMgh (1-r) (A +Mr>) (34 +3Mr>+8C)
+40Mgh(1-1) (A +Mr*) (54 +5Mr>+C) +16CM ghl(1l-r) (1=-2r)
(A +Mr>) (24 +2Mr +C) +20CMgh(l=-r) (A +Mr*)(A+Mr ™ ~C)

+C*M*ghl(1l-r)(1-2r) (8C +A +Mr2))

1.35) 2
ycos*x' (4Ch™(A +Mr"~)3+-4CMBg3(l-r)3 (A +Mr‘)3-4CMgh(l-r) (A+Mr>)

3
+18CM1h™ (A +Mr2) +4cM g% (1-r) 3(1-2r) (A +Mr>)*
~4CH M *gl (1-r) (1=-2r) (A +Mr>) +C°h™* (4 +Mr™)
+2C (A +Mr™) (C=A-Mr?*) +20%h2(C-A-Mr2) +2C°M g (1-r) {A +Mr*)
+2n(A +Mr>)"(G=A-Mr?) +CM g 1(1-r)>(1-2r) ( (C-24-2Mr 2)
(4A FhMr ™ -3C) ¥+ (3A +3Mr™> =C) (5A + 5Mr™ =3C)
+(A +Mr™-C) (134 +13Mr > =15C)) =2¢°h>(A +Mr2)*
18CM ™ g*(1-r) (A +Mr*) “(C-54-5Mr™) +—3GM'Bg’1(1-r)"(1-2r)
(A+Mr ™) (4C-9A-gMr *)=3CM g1 (1-r) (1-2r) (3A +3Mr *=C)
$+6™M g 1 (1-r)* (1-2r)(11C-8A-8Mr?*) + G M1h™(1-2r)
+20"ML(1-2r) (G-24-2Mr ™) +Ch™ (A +Mr>) (8(A +Mr>)" =4C(A+MP)-3C%)
+CM1h™ (1-2r) (24 +2Mr™ -C) (44 +4Mr™ -3C)
+4CM1h” (1-2r) (A+Mr™) (A +Mr™ =C)
+2M1h(1-2r) (A+ Mr™) (C-BA-2Mr™)+20Mg(1-r) (At MB) (24 +2Mr>=C)
+2CM*gl(1~=r) (1=2r) (A+Mr>) (34 + 3Mr > -C)
+CM g2 (1-7)™ (A +Mr™) (=13AC-13CMr™+16A™+32AMr ™+ 141 ' =9C ™))
+cos x ' (16CM g ™ h(1-r) “(A +Mr*)+ 8CM g 1h(1-r) “(1-2r) (AMr>)™
+12CM z*1h(1-r)*(1-2r)=20Mghl(1-r) (1-2r) (24 +2Mr*~C)



=2Mg(1-r) (A +Mr*) "(C-AsMr™)=20Mgh(1l-r) (A +Mr* ) [13A+13Mri9C)
+2M gl (1-r) (1-2r) (A +Mr™) (24 +2Mr™ -C)
+4CM ghl(1-r) (1-2r) (=18(A +Mr*) +6C(A +Mr>)=5C™>))
+cos'+x‘ (=12CM 3553(1-r)3(A +Mr‘)3+ 4CHgh™(1-r) (A -}-Mr")3
~4CHM1IR*(A+M r*) -160u e’ 1(1-r) J(1-2r) (A +M p*)*
+80M°gh ™1 (1-7) (1-2r) (A + Mr™) "+ 40MZL (1-r) (1-2r) (A +Mr>)
-2C*M1(1-2r) (C-A=Mr*)-24M1h(1=-2r) (A +Mr*) (C-A-Mr>)
+2CMg(1-r) (A +Mr2>)" (C-A-Mr™)
$OM g  (1-7) (A +M r2)(23(A+Mr™) +T7C(A+M r*) + 2C>)
oM’ g1 (1) *(1-2r) (A +Mr™) (554 +55Mr =+ 2¢)=C M1h ™ (1-2r)
+2CM *g*(1-r)" (20 "=5C(A +Mr>) +5(A+M r*)™)
+2¢ glh(1l-2r) (A +Mr™) (2C-3A-3Mr >)
1'36420”1v11h*(1-2r) (4A +4Mr™ -C)
+OM g 1(1-r)" (1-2r) (-3(A +Mr*)  -20(A +Mr™) +120%))
+cos§x' (-l2CM"g"h(l-r)z (A + Mrl)3 -!LCMBg".L(l-r) (1-2r)(A+ Mp2)™
-240M° g*h1(1-r) (1-2r) + 2M7 gl (1-7) (1-2r) (A +Mr ™) (C-A=Mr>)
+20M ghl(1-r)(1-2r) (21(A +Mr>) " -8(A +Mr™>) +5C™>))
reos x' (8aM° g (1-r)° (4 + Mr=) " 200 g31 (1-r) 2(1-2r) (A+ Mr*) ™
“4CM*gh™1(1-7) (1-2r) (A +Mr=)"=4CH g 1(1-r) (1-2r) (A + Mr>)
-20M gl (1l-r)(1=2r) (A + Mr ) (C-A-MrZ)
F20M g 1 (1-r) *(1-2r) (=24 (A +Mr>) F11C(A+ Mr™) -20%))
reosTx! (120 °g 01 (1-r) *(1-2r))
rcoa®x (-80MTg31(1-r)3(1-2r) (A +Mr ) *)

2 3 -
+ 8C(A+Mr*) (h-Mg(l-r)cos x')” (A +Mr™#M1l(1-2r)sin’x/ )sin*x'.



In the following theorems C refers to the moment
of inertia of the body about R-5, and A is the moment of
inertia about a prineipal axis in the plane perpendicular
to R-5. M 1s the whole mass considered concentrated at
the center of gravity G, while r 1s the distance RG and
1l is the distance RS,

TheoremlQ: If C=A+Mr™~ and 1=2r, then the Static
Riemannian space is a Riemannian space of constant
Riemannian curvature in which b=1/4C , where b is the
value of the curvature.
Proof':
From equations (2.24) and (1.25), applying the necessary
and sufficient condition for constant Riemannian curvature

(Lemma 1), we have

c = b(A +Mr*+M1(1-2r) sin™x')
A+ Mr>~
if
4(A+Mr>)*
From equation (2.24) for R,3,3
¢ *sin*x! = bC(A +Mr?*) sin x'
4(A+ Mr4Ml(l=-2r) sin®*x!)
it l=2r
b= C
4(A +Mr2)*
Similarly from equation (2.24) for R,,3
c*cos x! = bC(A +Mr™®) cos x'
4(A +Mr>)
or
b - C

4(A+Mr>)*



3%

From equation (1l.25) for R,s.»
¢ sin™x’ (A4 + Mr™= C)(4A +4lrFC)
= 4bC(A +Mr™) +4b(A+Mr*) (4 +1r*C ) sin*x’.
As far as the constant term is concerned

b= C
4(A +Mr=)?*

But for the sin*x' term, we must further impose that

6= A+Mr® , and hence b~ 1/4C

We note that if x' 1is very small and we may neglect
sin x' , Which is the same as letting 1=2r in the case of
R,a » Riay » and Rasag, we then would have a space of

constant Riemannian curvature where b = C
4{A + lNp>)>

Under the hypothesis of C=A +Mr™ and 1= 2r, our
space becomes identical with the Static Riemannian space
of our spinning top or gyroscope discussed in I, Therefore

we may write the following theorems.

Theorem 11: If &= 2r, a necessary and sufficient condition

in order that the Static Riemannien sp=ce be an Einstein
space with constant Riemannian curvature equal to 1/4(}

which can be mapped conformally upon an S, is that C= A +Mr*,

Theorem 12: If 1 =2r, a necessary and sufficient condition

in order that the Static Riemannian space have the first
covariant derivative of the six components of the Riemann

tensor of the first kind equal to zero is that C=4 +Mr™,



Theorem 13: If C=A +Mr™, a necessary and sufficient

condition in order that the Static Riemannian space have
constant Riemannian curvature is that 1 =2r.

Proof:

Under the hypothesis of C =A +MNr™
R c/4 R c/4 , R e
= - = 3 = sSin X
1212 Toomn A x (o =Ts N § PSS LS

= =C cos x' (C-ML(1-2r)sin x')

R
A AZ(C+ 1 (1-2T) sin*x')

By direct calculation, one can show that the condition
for constent Riemannian curvature is satisfied if and

only if 1=2r.

Theorem 14: If C=A+Mr™ , a necessary and sufficient

condition in order that the Static Riemeannian space be
en Einstein space ig that 1= 2r.
Proof:

Under the hypothesis of C= A +Mr*

R, = =C - 210 (1w2r)+0CMi(1-2r) sin’x'
2{C+1M1(1-2r) sin?*x')

R - —C 9 ng = -C-
22 - 2(C +M1(1-2r) sin*x') 2(C+M1(1I-2r)sinaxt) ™

R -C-ECM:LEl-Brg sin® ', R= =3C-41 (1-2r)+M (1-2r)sin’x’
2(C &+M1L(1-2r) sin?*x‘')> 2{(C+ML(1-2r)sin3x?)

83
By direct calculation, one can show that the

definition of an Einstein space is satisfied if and only

if 1 =2r.

In attempting to secure a corresponding set of theorems



for the Action Riemannian spece, we know that a hypothesis

of 1 =227 and C=4 +Mr* will give no results, since under

this hypothesis our space becomes the spinning top Action space.
Concerning an investigation of a general nature, the &m

following occurs.

Applying the condition for constant Riemannian eurvature

to R,,, » We find that either 1=r or 1=2r. Under the
hypothedis of 1= 2r, the following equation must be satisfied:
ac(a +1r>)® u%’r’= 0

None of the solutions to this equation have physical
significeance. Concerning the solution C=0 or A= -Mr™, our
problem is reduced to an absurdity.

If M is extremely small, and we approximate by M=

Rm,\= C {hta) , giving us b=C(h+A)

2 A* 8A® h*

R = 4Ah-4hC +CAh +cos™x' (-4A™h +3ACh + C*h)
l’}l’ ’2‘ A

giving us two conditioms on b

b.4A - 4C+AC_ , b. -4A + BAC+C’
BAh Bi°h (A - C)

Solving these simultaneously,

C-.-z A‘(‘A "Ll
2 - A

which gives us

b-_ A -5
8ah(2-A



Solving this simultaneoudly with the b of R)q5,, we
see that h, the energy constant, no longer remains
arbitrary.

Similarly in all other investigations, we find that a
necessary condition is that either 1 must equal r or 2r.
Imposing this condition, h nolonger remains arbitrary which

makes the necesslity hypothesis untenable.



III

The investigations of the preceding dynamical systems
suggested the following problem.
We investigate the Riemannian geometry of a Vj

in which the components of the fundamental metric have
<

{0 if 17 andg;-—l if 1=},

the form gt§=.S;f(x) where §
and x=x', x*, or x°.
With element of arc-length ds *= &; dx‘dx?, the

non-zero Christoffel gymbols have the following form.

D)= g
111,1]=+1
1
< |

oy il w3 o ol

r—
[E)
jo

el

)
|

S |—

5

1.42)

.
B

=
<
\w
o
Il
|
Lle-

|

The three non-zero components of the Riemann tensor

of the first kind are as followse.

Rian® =7 i—% + Tf—t%é)z

2.42)



All components of the Riccli tensor are zero with the

exception of the following.

Ry 4 é{u%

S JA{HK {n§

Rll

1.43)

The curvature invariant may be expressed as

2.43) R = ‘fi {l'l% 4 {1 {gi

All components of the conformal curvature tensor are

zero with the exception of the follouing.

3443) Ry, =Rgi3 = —3—;{“} il lk

For a Riemannian space with the above structure, one

may prove the following theorems.

Theorem 15: In a V4 Riemannian space in which gtéf=%%(X),
a necessary and sufficient condition in order that the
space have constant Riemannian curvature of value b is
that f(x) = 1 where b= =k and C is an arbitrary
k(x+C)*
constant.
Proof:
By direct calculation the sufficiency of the
condition hmay be shown. Assuming constant Riemannian
curvature we find the two following differential

equations must be satisfied:

From R,,,, and R,3,3 (2.42)



_1 ¥ iﬁ)‘l-_ g{t

L
g xE 14 (CM
From R’2323 (2.42)
R TALER AL
44 (Ax) - K
Solving we have
£f(x) = 1 where k= =b.

k(x3+C)*

Theorem 16: In a V4 Riemannian space in which 8¢}3=-%¥(X)’

a necessary and sufficient condition in order that the

V3 be an Einstein space is that f(x) = 1 where

k(x +C)=
k and C are arbitrary constants.

Proof:
The sufficiency can be shown by direct calculation.

Assuming our necessity hypothesis we find that
R¢¢ will equal gciu R/3 if

J | I}l

A IIRRIE
o {\k:_\‘

I O X+¢
o - o Qﬁ

I
X+C’é JX

Solving this differential equation
f(X): 1

k(x +C)%
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Theorem 17: In a V3 Riemannian space in which gL{:§§%x),
a necesgary and sufficient condition in order that the

gpace can be mapped conformally upon an S3 1is that

f(x)-= 1 where k and C are arbitrary constants.
k(x+ C)>
Proof:

Raiy = Raig = -Raa, it 28, R, =0
which'gives us the differential equation
A U A G
Ix Ell S

or £(x) . l
" k(x+0)2
Theorem 18: In a V3 Riemannian space in which gg = ng(x)
a necessary and sufficient condition in order that the
curvature invariant R=0 1is that f(X)Z-k(X‘fC)+ where
k and C are arbitrary constants.

Proof:

Setting equation(2.43) equal to zero we have
3 '__1{' A
In {1) T2 L
| % 4
i {,1 x+C

aft

1 ar . 2
2 fixj ax X +C

Solving, we get

or

£(x)=k(x+c)*
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We may extend the above theorems to a V4 with a

similarly defined arc-length.

Theorem 19: In a Vy Riemannian space in which 8(32 %Lg(x),
a necessary and sufficient condition in order that it be

a space of constant Riemannian curvature of value b, is

that f(x)= 1 where k= =-b and C is arbitrary.
k(x+ C)-
Proof:

The Riemann sgmbols of the first kind have the

following form:

; 3 __4d {‘ il
1.46)R111'L" Rizs = Ripg= ﬁ ill,l]*“ N l‘} j

|
R325 = Rayay > Rogsy = ~ ;J (} L l,l}
Proceeding as in Theorem 15, the proof is completed.

The results of the theorem may be extended to a

Riemannian space of n-dimensionse.

¢
Theorem 20¢ In a V,, Riemannian space in which g(3==gif(x),
a necessary and sufficient condition in order that the

gspace have constant Riemannian curvature of value b 1is

that £(x)- 1 where k= -b and C is arbitrary.
ka+—C5L
Proof:

The proof is the obvious extension of Theorems 15

and 19,
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Theorem 21: In a V4 Riemannian space in which g¢§: ng(x),
a necessary and sufficient condition in order that the

space be an Einstein space 1is that f(x) = 1

k(x +C)~
where k and C are arbitrary.

Proof:

The Ricci tensor has the following form:
S (!
Ry= 3 Jx {‘ '}

Ray = R33 = Ryy= aéx‘ {4‘4} T 3‘5_"‘&

Proceeding as in Theorem 16, the proof is completed.

1.47)
L

¢
Theorem 22: In a V,, Riemannian space in which &g = Sdf(x),
a necessary and sufficient condition in order that the
space be an Einstein space is that f(x) = 1 where
k(x +C)~
k and C are arbitrary.

Proof:

The proof is optained by the obvious extension of

the proofs in Theorems 16 and 21.

In a similar manner we may obtain the following.

Theorem 23: In a V, Riemannian space in which gistzg;f(x),

a necessary and sufficient condition in order that it may

be mapped on an S, is that f(x)-= 1

kixa—CiL

Theorems 20, 22 and 23 may be combined into the

following general theorem.
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Theorem 24: In a V., Riemannian space in which gtgzz%%(x),
a necessary and sufficient condition in order that

the space be of constant Riemannian curvature of value b,
an Einstein space, and may be mapped conformalliy on an

5, is that f(x)= 1 where k= =b and

ka-fCil

C i1s an arbitrary constante.
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