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ABSTRACT

An arbitrary-function generator, capable of
furnishing an output voltage which may be any given single-
valued function of the input voltage, is described. It was
constructed for use with the Electric Analog Computer at the
California Institute of Technology. In principle it is an
optical follower system containing a cathode-ray tube and a
phototube with an opaque mask representing the desired
arbitrary function.

The working model constructed is accurate to about
one or two percent, has a phase shift of 3% degrees at 2 kc
and a limiting time delay of about 50 microseconds with the
beam traversing a step equal to the maximum height of the
function pattern employed.

Sources of error are analyzed and suggestions are
made for possible improvements. A major problem which has
not been solved yet satisfactorily is the local deterioration
of the cathode-ray tube screen due to fatigue.

A number of non-linear problems are solved with the
aid of this device, all of them dealing with second-order
systems having a single degree of freedom and only one
non-linear term in the equation. Among the systems discussed
are series circuits with a non-linear capacitance, or
mechanical systems with a non-linear spring; non-linear
damping; oscillating systems, including systems behaving
according to Van der Pol's equation; and mechanical systems
made unstable by the presence of static (dry) friction
greater than the dynamic (Coulomb) friction.

The results obtained appear to support the
conclusion that the generator introduces only one or two
percent of distortion, plus a small phase shift at the
higher frequencies. The device makes possible the solution
of many non-linear problems, hitherto inaccessible, at
relatively high natural frequencies and repetition rates.
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INTRODUCTION

The Electric Analog Computer at the California
Institute of Technology consists fundamentally of inductors,
capacitors, resistors, and transformers, together with
driving sources and measuring equipment. With the
addition of amplifiers to provide for unilateral and
active elements one can construct aralogous circuits for
studying systems represented by linear differential
equations with constant coefficients.

To extend the range of application to a large
class of non-linear systems it becomes necessary to have
a device which, in its most general form, is capable of
furnishing an output voltage or current which may be an
arbitrary single-valued function of the input voltage.
The Caltech Analog Computer operates at natural system
frequencies of the order of 100 cps. and its electronic
components are designed to have a phase shift of about
one degree at a frequency of one kilocycle. These
requirements preclude the use of mechanical linkages, and
one is naturally led to look for a cathode-ray tube type
of device.

Both of the arbitrary-function generators to be
described in part I consist of a photomultiplier tube
facing the screen of a cathode-ray tube which is partially
covered by an opaque mask (usually a photographic film).
Like most other electronic instruments used with the
computer they are direct-coupled to avoid low-frequency
instability ("motorboating") when part of a closed
feedback loop.

The first type is described briefly since a
considerable amount of development work was done on it
before the "ancotron" idea came to the writer's attention.
The latter is, however, superior in almost every respect,
and the earlier device has been discarded.



The remaining sections describe some non-linear
problens which were set up on the computer. The systems
are all described by ordinary second-order differential
equations of the type

Po(X) + @y (x) + ¢ (x) = £(t) .
Only one term was made non-linear at a time. There is,
of course, no fundamental difficulty in extending studies
to more complex systems provided enough equipment is
available.
Part II deals with systems described by

X+2€0x+ xx = f(t) , (¢€>0)
corresponding to a mechanical system with a non-linear

' n-1

spring or an electrical single-loop circuit with a non-
linear capacitance, and

o0 . [ -1
2—1? (x + x) + Xlen = £(t) , (§>0)
corresponding to non-linear positive damping.
No practical examples could be found where the

?2(2) term is non-linear. Iron-core coils do not fall into
this category since their voltage drop is given by a%l%(iﬂ .

As the characteristics of iron cores vary widely and no
means were found for representing the all-important
hysteresis properties on the function generator, it would
seem more profitable to use an actual coil as its own
analog.

Part III 1is an extension of part II to negative
non-linear damping so as to cover some self-oscillating
systems. In particular, Van der Pol's equation

5{’-/44(1-X2)5c+x=0
is considered as well as some other types of oscillators.
In part IV the effect of combined static friction
("stiction") and dynamic (or Coulomb) friction on an
otherwise linear system is studied. Strictly speaking,



the friction force is a multi-valued function at the
origin (X = 0) but it is here approximated by a single-
valued analytic function.

A simple thyratron circuit is shown which can
replace the arbitrary-function generator in the idealigzed
system studied.

As only single-degree-of-freedom systems are
dealt with, the device is used here exclusively as a
two-terminal self-impedance.






I THE ARBITRARY-FUNCTION GENERATOR

l. The Earlier Model

The function y = f(x) 1is represented by a
transparent window in an otherwise opaque mask (see Fig.
1.1). The vertical height is made proportional to y ,
the horizontal distance being x . A high-frequency saw-
tooth sweep applied to the vertical plates causes the beam
to spread out into a vertical line of essentially uniform
brightness. As this line is deflected horizontally by the
input voltage x , the window passes only a fraction of
the beam corresponding to y , so that the light output
picked up by the phototube is also proportional to y .

Dc amplifiers at the input and output complete the
instrument.

Since the beam is obscured by the mask during a
fraction of each sweep-frequency cycle, the phototube
output contains a sweep-frequency component as well as the
desired voltage. A filter is therefore required to separate
the two. To avoid excessive phase shifts in the filter,
the cut-off frequency must be considerably higher than the
highest harmonic component frequency to be passed. The
sweep frequency must be higher still to be attenuated
sufficiently.

A 400 kc sweep was found to give fairly good
performance. At high frequencies it becomes increasingly
difficult to obtain a linear saw-tooth.

This device has several obvious disadvantages.
Non-uniformity in the light output of the screen,

aggravated by uneven exposure of the surface to the beam
during use, will cause distortion. The output voltage is
low and has to be amplified. Photomultiplier tubes reduce
the amplification problem but produce considerable noise.
Both phototube and cathode-ray tube contribute a major part
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of the overall distortion and drift in the device.

A model was constructed which proved to be
reasonably successful, nevertheless. A few simple tests
were run, but no quantitative data were taken since many
improvements were planned for a second version. For
further details on this type of function generator the
reader is referred to an article which appeared since this
work was done.(l)

2. The Ancotron

The instrument to be described, which will be
called an "ancotron" *, appears to have been invented in
England independently by D. M. MacKay(Q) and D. J.
Mynall(3’4). It is simply an optical servomechanism in
which the function y = f(x) 4is now represented by the
edge of an opaque mask (Fig. 1.2).

Fig. 1.3 shows an overall schematic diagram of the
ancotron. With the feedback 1odp open the beam of the
cathode-ray tube would rest near the bottom edge of the
screen. The light falls on the phototube whose output is
amplified and connected to the vertical plates of the
cathode-ray tube. The polarity is chosen so that the
light output drives the beam upwards. Given sufficient
gain in the system, the beam will come to an equilibrium
- at the edge of the mask. The spot is partially obscured
by the mask with just enough area "visible" to the
phototube so that the voltage applied to the deflection
plates will keep the spot in that position.

* The word "ancotron" is derived from the Greek "ancon"

@%gkév), meaning curve (the English word anchor is derived
from it), plus the ubiquitous "-tron" ending presumably
obtained by splitting an "electron".



If now a voltage corresponding to x is used to
move the beam horizontally, the beam is constrained to
follow the edge of the pattern, so that the vertical
deflection is always proportional to y . Since the
voltage at the deflection plates is proportional to the
deflection itself, this voltage is the desired function of
the input voltage.

Fig. 1.4 shows a simplified circuit diagram of the
ancotron; a complete circuit is included in appendix F for
reference. A photograph of the working model appears on
page 4.

Due to the feedback loop the output of the ancotron
is relatively independent of the properties of the
cathode-ray tube screen and the phototube. Non-uniformity
of light output, noise and distortion from the phototube
and from amplifier circuits inside the loop are materially
reduced. A major advantage of this scheme, apart from its
simplicity, is that the output voltage is the large voltage
at the deflection plates. Little or no amplification is
needed at the output so that full use can be made of the
low-drift, low-distortion feedback loop voltage.

3. Halo

As in any servo system the spot cannot follow the
mask exactly. The larger the deflection, the greater must
be the area of the spot which is exposed to the phototube
to provide the additional deflection voltage required.
Since the spot is approximately circular the light output
is not a linear function of the distance through which the
spot has moved away from the pattern. For a smallspot
diameter the difference would be small, were it not for the
"halo" surrounding the central spot.
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The halo is due to reflections inside the glass
wall at the boundaries between the glass and the air or
vacuum.<6)
illuminated rings of decreasing brightness to appear around
the central spot. The two most intense rings are indicated
in Fig. 1.5 with dimensions obtained from a DuMont S5LP
tube. The dimensions are a function of glass thickness
and curvature.

Although the halo is hardly visible when a cathode-
ray tube is operated at ordinary intensities, due to the
large area and low brightness relative to the central
beam, the total light emitted from the halo area is a
considerable fraction of the light emitted by the spot
alone. In fact, if the loop gain is made too high, the
light from the bottom part of the halo alone may be
sufficient to give equilibrium so that the center of the
beam may be 1/8 inch or so away from the edge, behind the
pattern. For a total pattern height of one inch this is
a large error.

These reflections cause a set of concentric

If the light output u 1is measured as a function
of the distance & of the center of the beam from the
edge of the pattern, a curve is obtained similar to that
shown in Fig. 1.6. If we assume the opaque edge to be
straight near the point considered, exactly half the
maximum light output U of the beam will fall on the
phototube when the center of the beam is right at the
edge (&£ = 0).

For purposes of analysis this curve will be
- replaced by a straight line with a slope equal to that of
the curve at & = 0 , and extending from £ = - h/2 at
u=0 to €=+ h/2 at u=10U . This is equivalent to
assuming the beam to be a rectangle of uniform brightness
of height h . The equation of the straight line is

B_t(e+D (1-1)
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4. Analysis of Ancotron Operation

For simplicity the pattern is supposed to be a
horizontal straight line in the vicinity of the beam. The
system is assumed to be linear over the entire range of
the variables.

Referring to Fig. 1.7, let

d = actual deflection of center of beam above the reference
position (where the beam is cut off),

Y = height of pattern above the reference position,
Y - d = error in following the pattern,

h = equivalent height of beam when the actual spot is
replaced by an equivalent rectangle of uniform bright-
ness and light output equal to that of the entire beam
(including halo),

(04
]

u = light falling on phototube for a given value of € ,

U = maximum light falling on phototube, with entire beam
exposed,

a = distance, above reference, of center line of pattern,

b = distance, above reference, of "on" position of beam
(where beam is fully exposed, i.e. u =10 ).

For the circuit part of the feedback loop (Fig.
1.8), let
R = phototube load resistor,
C = stray capacitance of phototube,
A = gain of amplifier (assumed to have negligible phase

shift),
KP = phototube sensitivity (current per unit incident
light),
Ky = cathode-ray tube sensitivity (deflection per volt),
TP = RC = phototube time constant,

T, = time constant of light decay on cathode-ray tube
screen (average value),

s = variable of Laplace transformation.
In terms of the Laplace transforms of the
variables(7) the following equations apply:
Phototube current:
i(s) = KP.u(s) (1-2)



14

Voltage input to amplifier:
1

v(s) = T—I—TEE i(s) (1-3)
Deflection:
KDARKP
d(S) KDA.V(S) L W U.(S) (1“4)

In the steady state the 1light output u will be
assumed to be related to the error € by equation (1-1).
Hence the Laplace transform of u when a function of
time may be written as

u(s) = 1—_;'—.1.—5- n [E(S) + é"s'] (1"5)
The factor 1/(1 + TDS) represents approximately the

time delay due to the cathode-ray tube screen when the
spot is moved, that is £ is changed suddenly. This is
actually an oversimplification, but the error is a
second-order effect.

Putting d =y - € , the equations may be solved
for £ . The factor K ARKPU evidently equals the total

D
distance b through which the beam is deflected as the
light output is changed from u =0 to u=U . Thus
(1 + Tp8)(1 + Tps).y(s) - 5o
€(s) = . (1-6)
(1 + Tps)(1 + Tps) + ¢

5. Steady-State Error and Loop Gain

Suppose the beam is suddenly deflected horizontally
to a new point where Yy = ¥y - This can conveniently be
represented by a sudden vertical shift in the pattern at
the original horizontal position. Therefore one can
simply put y(s) = yl/s.

The steady-state error is given by
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£sg = lim [é.é(sﬂ or b
80 1 -2

€ss = T b (1-7)
1+H
It is desirable to adjust the irstrument so that
the error vanishes at the center of the pattern, where
yp = 2a . The condition to be satisfied is

b
a = ‘é‘ (1*8)
Then for any position y , and since b>» h ,
£s = £ (7 - 2) (1-9)

The error is thus proportional to y - a , the
distance from the center of the pattern. This means that
the total height of the pattern must be limited to a value
for which the errcor is not excessive.

Also, to keep down the error, the factor b/h
should be large. It is seen that b/h plays the role of
the ﬁpﬁ"féctor of feedback amplifier theory. This loop
gain b/h includes, as adjustable factors, the amplifier
gain A , the phototube load resistance R , the beam
intensity U , and the effective spot size h . The
practical considerations which limit the magnitude of
these factors will be considered below.

©. Beam Position with Feedback Loop Open

One such consideration is the fact that the beam
should not go off the screen and become "invisible" to
the phototube when the light is interrupted, or else the
feedback loop will remain open. Of course, one could
menually change the circuit condition each time to bring
back the beam. Some British experimenters seem to be
using a manual reset button which allows a pilot light
to shine on the phototube to replace the missing beam.
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This is an interesting but not very satisfactory
soluticn. The system tends to be unstable, for there are
two equilibrium points, one on the edge of the pattern and
one off the screen; a transient which momentarily drives
the beam too far above the edge of the pattern could
easily disrupt the solution if the beam decided to return
to the wrong equilibrium position.

Hence the "off" position of the beam should be near
but above the bottom edge of the "visible" part of the
screen. This requirement is not incompatible with a high
gain in the vicinity of the pattern. It is only necessary
to design the amplifier to cut off at a suitable point near
the bottom or to put a diode voltage limiter in the
circuit.

7. Time Delays

Only two time constants, TD and TP , were included
in the analysis since it was found that the phase shifts in
the rest of the circuit could be kept small in comparison.
To reduce TD the cathcde-ray tube should have a short-
persistence phosphor. The best available phosphor is the
P 15 which is a zinc-oxide coating with a decay time
around one microsecond when used without a filter. The
light output is of a bluish green color.

The P 5 phosphor has a decay time closer to ten
microseconds and a blue color of apparently less intensity
than the P 15. The P 15 phosphor was found not to give
sufficiently improved performance to make the (present)
extra cost worth while.

The major offender is TP due to the multiplier
phototube capacitance. Its effect cannot be reduced by
lowering the load resistor, for this lowers the loop gain
by the same amount. The deflection d =y - &€ is given by
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y(s) + oo
d(S) == 7 (1-10)
1+ - (1 + TPS)(l + TDS)
For small values of s , neglecting terms in 32 "
h
y(s) +
a(s) » LI (1-11)
(1 + %){EL ¢ =D bD.s]
1+ R
Thus the effective time constant is
T, + T
P D
Te = (1-12)
1l + E
or if TP»TD and b>»>h ,
h
Tez ™y TP = hKDAKPU.C (1-13)

R has canceled out. R can therefore be made
large to reduce distortion, but not so large that the
higher terms in s , so far neglected, enter to produce
instability at very high frequencies.

It should be recognized, however, that this theory
applies only as long as the system remains linear.

Suppose the beam is moved past a step ir the pattern, as
shown in Fig. 1.9. If the velocity X 1is high enough the
time delay may cause the beam to leave the edge entirely.
The full light output U incident on the phototube causes

it to charge the capacitance with a constant current K,U .

The voltage rises at a constant rate KPU/C giving theP
beam a constant vertical velocity K UAK, = b/TP until it
reaches the edge of the pattern again. Similarly, going
the other way the beam may disappear entirely so that the
velocity is given by the rate of discharge of C through
R . Both times the feedback loop remains in effect open
during the transition.

Thus, in contrast to linear systems, the limiting

time delay depends on the size of the step, being
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approximately proportional to the height. In the actual
unit constructed this time delay when going across a step
was found to be about 50 microseconds per inch deflection.

On the other hand, with a fairly smooth pattern,
the time delay may be much less. TFor a gradually rising
straight-line pattern (which effectively converts the
ancotron into a linear emplifier) with a sinusoidal input
voltage, a phase shift of 31 degrees was observed at a
frequency of 2 kc, or a time delay of only 5 microseconds.

It was interesting to observe, on an oscilloscope
set up for phase shift measurement, the effect of raising
the frequency. Just above 4 kc orne half of thé ellipse
was seen to expand rapidly to a much larger size. As the
adjustment of the system was not quite symmetrical, the
feedback ceased to be effective on one side when the beam
was still tracking the pattern on the other side.

8. Amplifier Gain

The amplifier gain cannot be increased too far
either. The addition of high-gain stages puts more
1/(1 + Ts) factors into the gain expression. Although
each T may be small compared to TP + TD so that the
phase shift in the operating range is not increased
materially, the higher-order terms become noticeable at
very high frequencies, leading to parasitic oscillations.

This is a major reason also for choosing a
photomultiplier rather than an ordinary phototube which
does not need a high-voltage power supply; the additional
stages required tend to cause instability.

A possible alternative is to construct a larger
number of wide-band low-gain stages, but this was not
considered worth while.



19

9. Beam Intensity

Finally, it is not desirable to try to secure a
larger loop gain by operating at a high beam intensity.

For one thing, even with proper focus, the spot size h
tends to increase with the intensity U , so that the gain,
which is proportional to U/h , does not increase nearly
as much as does the intensity.

Moreover, a high intensity seriously limits the
useful life of the phosphor due to fatigue. It is well
known that continued electron bombardment of one spot on a
cathode-ray tube produces "burning", a permanent discclor-
ation of the screen material. But long before this becomes
visible a drop in phototube output may be noticed when the
beam is stationary.

The phosphor recovers only partially, and a
permanent "dead spot" remains. If the drop in intensity is
enough to reduce the feedback below the level required for
adequate tracking, a "bump" is seen to develop at that
spot: the beam neatly detours the area, as surely as if
the "bump" were permanently inked in on the pattern.

Unfortunately, the beam cannot always be kept
moving. Many problems on the computer are transient
studies where the system is periodically (at a 10 cps.
rate) returned to the initial conditions. Hence the beam
must return to the starting point during each cycle and
remain there for as much as half the period. Thus the beam
may be stationary for half the total time spent on a
problem, which could be many hours. Furthermore, for
symmetrical patterns the point of rest is usually the
center of the pattern, and if the patterr positiorn remains
fixed the effect is clearly cumulative.

The few remedies that come to mind are only partial
ones. One is to keep the intensity as low as possible.

But "dead spots" already in existence will be 1less
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noticeable if the loop gain is high. The reduction in
intensity must therefore be compensated for by raising
the gain elsewhere. It seems also that the P 5 phosphor
may be a little less susceptible to "dead spots" than the
P 15 , but no conclusive data were obtained on this point.

A thorough study of the fatigue problem should be
made. Perhaps a more stable phosphor can be found. The
dead period for transient studies should, of course,
always be kept as short as possible, and the beam should
be turned off when not in use.

10. Cathode-Ray Tube Distortion

So far the cathode-ray tube has been assumed to
have a constant deflection sensitivity KD « Since the
actual output is not the deflection d but the deflecting-
plate voltage d/KD , any non-linearity which makes Ky
a function of the deflection will cause distortion in the
output - and feedback can do nothing about it.

If "single-ended" amplification is used, where the
deflecting voltage vp is applied only to one of a pair
of deflecting terminals, the other being grounded, there
is an average potential between the plates of VD/2 with
respect to the second anode (assumed grounded as is
usually the case). Let the second anode-to-cathode
accelerating voltage be Vao . The effective accelerating
voltage is now

D
Va=Vao * 7 (1-14)
The deflection 15(8)
v
D
d = G == (1-15)
Vé

where G 1is a geometric constant. Hence
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3 vp ( D ) d02 ( 6)
2 G =~ (]l =« =———) = d - 1-1
Vao Qvao 0 2 G

where do is the linear deflection. The distortion thus
adds a square-law term to the deflection.

By using symmetrical "push-pull" deflection such
distortion could be avoided. At the vertical plates this
cannot be donrne since the voltage must be supplied with
respect to ground at the output. As there is no satisfact-
ory way of going from "push-pull" to "single-ended"
operation for dc amplifiers, the whole vertical deflection
system has to be "single-ended". According to equation
(1-16) the distortion for a given tube can be made smaller
only by reducing the maximum deflection.

There is also an interaction between the plates
giving rise to a trapezoidal distortion if one of the
second pair of plates is grounded.(g) Trapezoidal
distortion, as well as distortion in the horizontal
deflection, can be eliminated by making the second pair
(nearest the screen) the horizontal deflecting plates and
supplying them from a balanced "push-pull" amplifier.

Another possible source of distortion is the
post-deflection accelerating potential employed in the
DulMont 5LP series tubes. If this potential is too high,
compared to the potential between second anode and cathode,
the sensitivity will be found to decrease towards the edge
of the screen.

11. Qptics

In the present model the phototube is mounted at
a distance of seven inches from the cathode-ray tube
inside a light-tight housing. A small hole drilled into
the housing permits observing the beam; the stray light
admitted through it does not disturb operation. No lens
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is being used.

The interior of the housing is painted black and
baffles are provided to prevent light reflected from the
walls from reaching the phototube. Otherwise the amount
of light received will depend considerably on the position
of the beam.

For a given distance from the screen the light
intercepted by the phototube from the luminescent spot on
the screen varies approximately as cos4e , where © is
the angle between the axis and the line joining the spot
and the center c¢f the phototube. Thus the effective light
output is reduced as the beam is deflected off the axis
even if the beam is fully exposed. But for a 5:1 ratio of
phototube distance to deflection this effect changes the
loop gain by less than 10 % which is not serious.

Some parallax errors are unavoidable since screen
curvature and thickness both prevent the mask from being
closely adjacent to the luminescent spot. Tubes with
flatter screens than the 5LP series are available but they
usually have a thicker glass face. To reduce parallax to
a minimum the flat film is made to follow a cylindrical
surface which makes contact with the spherical cathode-ray
tube face at least along the horizontal center line; also
the deflection is kept to only a fraction of the available
screen area.

The addition of a collecting lens which would
focus the screen on to the plane of the phototube cathode
would greatly increase the phototube output. This would
serve to raise the loop gain without any loss in stability,
an advantage which might offset mechanical complications.
A large-aperture lens might also reduce optical distortions
by increasing the ratio of direct to indirect (reflected)
light received and by averaging out parallax and the
"cos4e" effects over its larger area. Some experimenting
would be required to establish this point.
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Tracking Errors

There are a number of reasons arising from the

above considerations why the beam may not follow the

pattern accurately:

(1)

(2)

(3)

(4)

On page 17 it was shown that the beam has a maximum
vertical velocity of approximately b/TP which limits
the slope of the pattern that the beam can follow for
a given horizontal velocity. If the horizontal
deflection is a saw-tooth of magnitude X and
frequency f , the horizontal velocity is Xf .
Therefore the maximum slope of the pattern is
b/(XfTP) '

If the system is not adjusted so that a = b/2
(equation 1-8), which causes the beam to be just half
exposed at the center of the pattern, and if the
system has a high gain, the beam may operate on the
halo alone, giving a tracking error of the order of
the radius of the halo, about 1/8 inch for the
5LP tube.

If the gain is insufficient the beam may be unable
to reach the higher points on the pattern. The
multiplier phototube should be mounted with the
cathode surface normal to the axis to avoid losing
gain when the light comes from the side. This would
cause "drooping" of the pattern on one side.

For purposes of analysis, on page 13, it was
assumed that the edge of the pattern was straight.

If the curvature is large the light output may be
materially altered by the fact that either more or
less than half the halo area will be exposed depending
on whether the pattern is convex or concave. The
result is that the beam will tend to cut sharp corners
as shown in Fig. 1.10. Proper adjustment, as in
paragraph (2) above, will reduce the contribution of
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the halo to this effect, but it is evident that the

spot diameter itself gives an ultimate limit to the
resalution which can be achieved.

13. Details of Construction

The cathode-ray tube being used is the 5-inch
Duilont 5LP5A which has a low enough decay time and is
(at present) more easily available at less cost than the
5LP15 . For similar reasons the 931A mnmultiplier
phototube was chosen over the 1P28 , even though the
latter has a greater response to the blue trace of the P 5
phosphor. Moreover, the variations among different
specimens of the 931A were found to be greater than the
difference between the average 931A and the 1P28 (of
which only one was available for test).

The horigontal amplifier is a single grounded-grid
phase inverter stage. A dc voltage applied to the unused
grid serves to position the beam horizontally. A reversing
switch makes it possible to interchange the two grids,
thus changing the sign of the output voltage without the
use of an extra phase reversing amplifier. This is
especially useful when the ancotron is connected to
function as a two-terminal impedance; both positive and
negative impedances can be simulated with the same set of
input and output amplifiers.

The phototube anode is directly connected to a
phase inverter type amplifier. The output is taken off
only one of the plates, since as explained above the
vertical amplifier must remain "single-ended". The major
reason for using this construction is that cathode and
screen degeneration are avoided giving a high gain good to
dc. Also the extra grid provides a convenient way of
inserting a dc voltage into the amplifier for adjustment.
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The use of this "bias adjustment" will be explained later.
The small capacitance between grid and plate of the first
tube was added to stop oscillations. Unfortunately, a
capacitance at this point considerably increases the
effective phototube time constant TP .

The amplifier stage is followed by two consecutive
cathode followers. The first one isolates the deflecting
plate and connecting lead capacitance from the amplifier.
The second one isolates the output terminal from the whole
feedback loop. Without it even a fairly small capacitance
across the output terminals was enough to start oscill-
atiomns.

To provide a means for adjusting the output
voltage to zero when the beam is set to the zero level on
the pattern, a variable dc bias is applied to the unused
deflection plate. If this voltage ie changed, the feedback
loop will provide a compensating voltage on the other
plate, and hence at the output also, in order to keep the
beam at the edge of the pattern.

The remainder of the circuit consists of power
supplies and voltage regulators. In particular, the
negative supply for the photomultiplier and the cathode-ray
tube is regulated at 1000 volts to reduce drift due to
line voltage fluctuations. The TF7 tube with loctal
base has been found to withstand satisfactorily operation
in the regulator circuit at voltages well above normal
ratings.

Details of the mask are shown in Fig. 1.2. For
reasons outlined the working area has been restricted.

The pattern size is limited to 1 inch vertically and 2
inches horizontally. The pattern is produced by first
drawing a graph of the function y = f(x) on rectangular
coordinate paper to four times the final scale, i.e. 4x8
inches, for greater accuracy. The graph is then copied on
a white cardboard. The curve is carefully inked with a
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fine pen. Shoulders are added along the y = O 1line to
facilitate zeroing the output; these are indicated by the
letter S in Fig. 1.2. The part above the curve is filled
in with India ink.

The pattern is then photographed, reduced in size
4:1, on high-contrast low-shrinkage litho film. From the
negative a contact print is made, again on litho film.
Both films are exposed and developed for maximum contrast.
The positive is finally reduced with Farmer's reducer until
the light area is completely clear, as clear as unexposed
film. This avoids unnecessary loss in intensity and loop
gain. It does not matter if the dark area loses some
density in the process so long as the contrast is still
high.

It is possible to compensate for any remaining
distortion, which is a function of the deflecting voltages
only, by pre-distorting the pattern. This scheme has been
abandoned not only because of the .added complications in
preparing a pattern but also because the pre-distortion
is a function of the pattern position. It would seem
desirable to be able to shift the patterns slightly on
the cathode-ray tube screen, in case "dead spots" have
developed in the former position after prolonged use.

But then the pattern corrections would have to be changed
too, and old patterns could not be used again without
losing accuracy.

It is thought that the present model already has
an acceptably low level of distortion, and any further
reductions would be better made at the source of
distortion.

The finished pattern must be accurately positioned
so that its coordinate axes are parallel to those of the
cathode-ray tube. This is done by rotating the mask
holder and phototube assembly and then clamping it into
position with set screws. Vertical and horizontal
positioning is done electrically, however, as described.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)
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Adjustment of Ancotron

Insert a pattern. Set the intensity to a reasonable
value and focus.

Move the spot with the horizontal positioning
control to a point on the pattern which is halfway
between the vertical extremes.

Set the "bias adjustment" until the plates of the
phase inverter (V,, V2) are at the same potential.
(This ensures that the amplifier is balanced and has
maximum gain in the region of the pattern.)

Use the "output zero" control to bring the output
voltage to zero.

Ground the input grid (or remove the phototube) and
check whether the beam is still "visible" to the
phototube. If not, the intensity may have to be
reduced.

Repeat (3), (4), and (5) until conditions are met
simultaneously.

With the beam still in the position it had in
paragraph (2), measure the phototube output voltage
with a dc vacuum-tube voltmeter (a test jack is
provided on the panel).

Remove the vertical-amplifier tubes (V,, V,, V3)
from their sockets and short the two vertical
deflection plates together. Remove the pattern.
Thus, with the beam fully exposed, measure the
phototube output voltage again. This voltage should
read approximately twice the value found in paragraph
(6) to satisfy equation (1-8).

If the voltage in (7) is found to be considerably

high or low this means that the design is rot such that

optimum performance can be realized. It may still be

possible to change the intensity and bias adjustments to

obtain an acceptable compromise such that the beam will
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follow the pattern with sufficient accuracy. Care should
be taken, however, that the phase inverter is not unbal-
anced so far that one of the tubes is cut off.

After the above set of adjustments has been found
to give satisfactory operation it should not be necessary
to touch the intensity, focus, and bias controls unless
tubes have to be replaced. Ageing of tubes and the
cathode-ray tube screen may reguire an occasional trimming
of the controls. OQtherwise for normal operation the
following procedure will suffice:

(8) llove the spot to one of the shoulders S (see
Fig. 1.2) and adjust the output to zero. Move to the
other shoulder. If the output is no longer zero the
pattern has to be rotated. The pattern is positioned
properly when the output reads zero on both shoulders
of the pattern.

(9) Move the beam to the x = 0 position and adjust
the output to the proper voltage corresponding to
x =0

Note: The beam should always be turned off when not in
use. However, this results in a large dc voltage at
the output terminals so that other equipment should
be protected. Also to avoid overloading the
multiplier phototube with stray light, the set should
be turned off before taking the assembly apart to
change patterns, etc.

15. Use and Calibration

In many applications the input voltage available
may not be large enough to drive the ancotron. In such
cases an external input amplifier is required. Also the
output circuit was not designed to provide power at low
impedance, and an output amplifier may have to be added.
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For reasons of simplicity and flexibility such amplifiers
were not incorporated into the present instrument.

As it stands, the ancotron is a three-terminal
device. Since the two pairs of deflection plates are
independent, provided the average potential of each pair
with respect to the second anode is not too high, it is
quite possible to separate the input and output circuits
electrically and make a four-terminal device out of it.
This requires separate power supplies and well-shielded
power transformers. But the impedance between the circuits
would have to be kept low to avoid instability.

A non-linear device is somewhat more difficult
to calibrate than a linear one. It is necessary to know
both input and output voltage at a particular value of the
transfer function. The problem is simplified by using
dimensionless variables.

Instead of y = f(x) the function is better

written
Vo= ¥,-p(3) (1-17)
o
where y =y, when x = x  , i.e. P(1) =1 . qp(x/xo)

represents the non-linearity as a dimensionless normalized
function. The set of specific values (xo, yo) then
determines the numerical level and the dimensions for a
particular problem. (xo, yo) may be any characteristic
point, such as the extreme point beyond which the function
ceases to apply, or an asymptotic point, or a stationary
value along the curve. But any other point will also do
since ¢7(x/xo) is assumed to be single-valued.

Thus for calibration it is only necessary to apply
a voltage corresponding to X and to measure the output
voltage o * For accuracy they should be near the
extreme of the pattern.

To make the results obtained general, they should
always be expressed in terms of dimensionless variables,
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such as x/xo and y/y0 . When applying the results to
predict the performance of an actual system the point

(xo, yo) will be chosen to fit that system. The dimensions
of x and y and the numerical magnitudesmay be entirely
different from those of the analog.

lo. Performance

To test the linearity of the device a step pattern
of accurate dimensions was used. Each step was 1/4 inch
in height and width. 1In fig. 1.11 the corresponding
output voltages are shown at each step. Underneath are
given the input voltages required to go from one step to
the next. All readings were taken with dc meters.

The output voltage is seen to be proportional to
the pattern height with an error of considerably less than
1 % . The horizontal deflection shows a somewhat larger
departure from linearity, but the error is also less than
1% .

As already mentioned, the phase shift with a
straight-line pattern of slope = # and sinusoidal input
was 3% degrees at a frequency of 2 kc. For very steep
slopes the limiting time of rise is about 50 microseconds
per inch of vertical deflection.

The drift is tolerable but still large enough to
require frequent resetting. The major offender appears
to be the horizontal positioning voltage.

Further conclusions about accuracy can be drawn
from the examples discussed in succeeding sections. It
appeared that the errors which occurred were due more to
the recording equipment used than to the ancotron. Lack
of time prevented any attempt to improve the calibration
methods.
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17. Suggestions for Improvements

The present version of the ancotron was intended
only as a working model, and no attempt was made to
perfect the mechanical design, especially of the mask
holder which is of a rather primitive nature.

Since no voltage limiter is incorporated in the
present circuit to keep the beam from leaving the screen,
this design is limited in the maximum loop gain that can
be used without obtaining tracking errors due to halo. If
a simple diode limiter were added it would be feasible to
raise the gain considerably by adding a lens or changing
the circuit, provided oscillations can be avoided. If the
additional gain is not required to improve accuracy, the
intensity eould be reduced correspondingly to avoid "dead
spots" and increase tube life.

The VR tubes should be replaced by a vacuum-tube
regulator with a battery to reduce drift. A beam switch
or relay which would turn off the beam and at the same time
insert a dc voltage to replace the phototube voltage would
simplify operation by avoiding the large dc voltage output
which otherwise occurs when the beam is turned off.

A means for setting the beam horigzontally to a
predetermined position by eye would simplify the zeroing
problem. A mark on the pattern itself is not visible in
the dark. But a mechanical pointer placed in front of
the pattern from above at the desired horizontal position
would force the beam to travel around the tip of the
pointer. After the beam has been positioned at the tip,
the pointer is withdrawn upwards to remove it from the
path of the beam.
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II SOME NON-LINEAR SYSTEMS WITH ONE DEGREE QOF FREEDOM

l. Introduction. Linear Systems with One Degree of
Freedom

Consider as an example a single-loop electrical
R-L-C circuit. In terms of the charge q , capacitance
C , resistance R , inductance L , and driving voltage
e , the differential equation is
e=Li+Rq+g (2-1)
where the dots denote differentiation with respect to the
time ¢t .
Let e=E f(t) , where E 1is a characteristic
value of the voltage e (such as the maximum) and f(t)
is a dimensionless function of time. Also let
X = ¢/(CE) , a dimensionless variable. Then the equation
becomes
f(t) = LC X + RC X + x (2-2)
Let @ = 1/JIC , the natural frequency of
oscillation and & = R/(2L) , the damping coefficient.
Also we shall introduce a dimensionless time variable
T=w,t . Since X = @ -dx/dt , etc., we now have

I(T) = =5+ 20 + X (2-3)

where ¥ = 5£ , the relative damping coefficient, a
o
dimensionless parameter.

All other linear single-degree-of-freedom systems,
whether of electrical, mechanical, or other nature, can be
reduced to this differential equation in terms of
dimensionless variables and the single parameter f .

Wyl 1

In terms of the parameter Q = R = u%CR

frequently used for series resonant circuits (L, R, C in
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R
Q%L
parallel resonant circuits (L, R, C in parallel) the

parameter is given by § = ﬁ% .

series) or its equivalent value Q = = W CR for

The simplest transient forcing function that can
be applied is the unit step:

0 for TXO
£(T) ={1 for T>0 (2-4)

It is well known that
for § <1 the system will be oscillatory (underdamped),
for ¥ >1 the system will be overdamped, and
for ¥ = 1 the system will be critically damped.

For non-linear systems critical damping will occur
at different values of § . The critical value will be
called §, .

An easily measured indication of the "time of
rise" in the critically damped case is the time at which

X = % . In terms of dimensionless "time" this will be

called T% and it can be shown (appendix A) that for a

linear system

’C-C = 1.68 (2'5)

Many practical systems are designed to be slightly
underdamped to obtain a faster response at the expense of
some overshoot. As a typical example the condition for
10 % overshoot was found (appendix B). For the linear
case the value of & turns out to be

o, = 0.591 (2-6)
and the time at which the first maximum occurs is
T{o = 3'90 (2-7)

Similar values will be obtained for the systems with
non-linear capacitance.
For a steady-state sinusoidal forcing function of

angular frequency W ,
£(T) = sin é%‘t (2-8)
o



34

In the linear case resonance occurs at =1 .

o d
Wo

2. Non-linear Elements

Non-linear elements may be characterized by the
fact that the corresponding parameter in the differential
equation is not constant. If we restrict our discussion
to parameters which are a function of a dependent variable
only, this means that for a non-linear capacitance, for
instance, C = C(q) . Hence the voltage across the

capacitance is v = 5{%7 "

This commonly used method of describing the
non-linear element is, however, highly artificial. It
requires the multiplication or division of two functions
of the same variable, here q and C(q) . This extra
step may not be of much consequence in numerical work,
although nothing is gained by it.* But it is a needless
complication in setting up an analog circuit.

Instead we shall always use the function v = v(q)
as describing a non-linear capacitance, etc., and variable
parameters will be avoided in the discussion. The terms
"capacitance","resistance", etc., will be retained,
however, to describe the general character of the impedance
element. In general, then, the voltage across a
capacitance is v = v(q) , across a resistance v = v(q) ,
and so on.

3. Types of Non-linear Elements Considered

In order to choose some particular cases from the

*We have excluded here such cases as C = C(t) which
occur, for instance, in reactance tube circuits. There
the parameter notation is justified.
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infinite number of theoretically possible functions it was
decided to consider functions of the form

y=x [x*
where n may be any positive number, not necessarily
integral, and the sign is that of x . The function can
be written more explicitly

v = xlxln'l , 1nd>0 . (2-9)

Yy is an odd function of x , i.e. it is symmetrical about
the origin. See Fig. 2.1.

Many non-linear elements encountered in practice
can be approximated by such a function if the value of n
is chosen properly. It is only necessary to plot
experimentally obtained curves on log-log graph paper and
to find the average slope of the line.

Examples for which n<1l are elements which tend
to saturate, such as the plate resistance of pentode
tubes. Into the class for which n>1 Dbelong springs
with increasing stiffness, damping which increases with
velocity, etc. Only near the origin does the approximation
break down since there the slope becomes infinite (n<1)
or zero (n>1); but this is not serious if the amplitude
is large and the variables do not remain near the origin
for an appreciable length of time.

Another reason for making this choice is that some
results may be checked analytically without much
difficulty.

4. Representation of Non-linear Two-Terminal Impedances

The circuit used is shown in Fig. 2.2, where the
diamond-shaped symbol represents the ancotron plus input
and output amplifiers. The voltage across the element,

V , is made up of the output of the ancotron plus the
voltage drop v across the linear reference impedance Z .
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The output impedance of the amplifier used was low enough
to be negligible. But the linear term v has to be
compensated for.

This can be done by producing a pattern according
to the function

v = x (1.1 |xI®1 - 0.1) (2-10)
between the limits -1<xg+1 , instead of equation (2-9).
Then the linear term will cancel if the gains are adjusted
so that at the extremes of the pattern (x = 1) the output
voltage is exactly ten times the input voltage, that is,

As an alternative to this procedure the gain can
be made so large that V>»v, provided the high gain does
not lead to parasitic oscillations.

5. System with Non-Linear Capacitance

The equations for the system of fig. 2.3 may be
derived as follows.

e=Ef(t) =L qd+Rq+V (2-11)
Let v = %
- 2
VO
V = Vo P(X)
v
and K = ;9
0

where V = Vi when V = Vo . Vo may be any reference
voltage (see discussion on page 29), but it is convenient

to make Vo = E . Then the equation becomes

£(t) =L g %+R g%+ qx (2-12)

Now let @ = 1//IC/K and T= W,t . Then



38

2

£(T) = %-%-’é‘- + 262 4 p(x) (2-13)

where § = % /%% , the relative damping coefficient.

The parameter € and the form of the function
©(x) completely define the system. Note that ¢(1) = 1
by definition.

The actual functions used were

@(x) = x o *2 (2-14)

with values for n of % ’ % y 2 5, &and 3 .

Fig. 2.5 shows the complete circuit for represent-
ing systems with a non-linear capacitance and a constant
voltage suddenly applied. The switches Sl and 82 are
relays which are opened and closed in synchronism at a
rate of 10 cps. Sl applies the voltage to the circuit and
82 discharges thbe condenser during the off-period to
re-establish the initial conditicns. Most of the transient
studies are thus actually of the form of repeated transients
to facilitate observation on and recording from an
oscilloscope. However, single transients obtained by
manual switching can also be used. The purpose of Ro is
to allow the current to die out during the off-period
without arcing at the switch contacts; it does not
interfere during the on-period since it is in parallel with
a low-impedance source.

6. Results for A Unit Step Suddenly Applied

The conditions for critical damping and for 10 %
overshoot were obtained experimentally for each n .
values of €., T, &, and T,, as described on page 33
for the linear case, were calculated from the known
circuit parameters and the time measurements which were



59

ONVILOYAVD HVENIT-HON HIIA JUISES ¥0J S0TVNV HITILOD 6T "9Hd

o _ ‘ _ dut Y3 eswyd
3o quc qudqno +e°T ‘ursd eArsuSeu yTm JoTFTdMy

(UoT3BOTITIAN® JO UOT}O0ITP SHOYS MOLis) qndup U3TA
eseyd u qndquo ‘e°p ‘ursd saryysod uapn JeTITTAWY
(epts ndano pIemo} S3UTOd MOIIB) UOIZOOUY

DPOsOTO ATTBWmIOU ‘Ud1TAS SNOUCILOUAS

uado A[TewmIou ‘yoqTMS SNOUOIYIUAS

-—

v+

<
=
X3

tsTOquUAg

s ||F|. ACI

+ N _ = 13
-+~ - . »s +
- - - °
7 3 )
v+ oog v+ 8l @um S
: ST
- - <+ hs
g VA ké\



40

(sTTe3ep J03 X0} 99g)
FONVIIOVAVO UVANIT-HOH ¥Od SITASTY

2 Mg L0

9°¢ ‘314
50 Yo

£0

L S

SEPUEY [P N,




41

made on an oscilloscope. To check the experimental method
readings were also taken for a linear circuit and compared
with the theoretical values on page 3%. The results are
summarigzed in the graph of fig. 2.6.

As derived in appendix C, the true value of fc
for these non-linear capacitances is

£, =1 . (2-15)
This curve is also plotted.

It will be seen that the experimental curve for fc
is not too close to the theoretical one. A major reason
for the discrepancy is probably the difficulty of
determining, by looking at an oscilloscope, when critical
damping has been reached. The points for T; were found
not to lie on a reasomable curve, and the line drawn here.
is merely an approximation. (In general the accuracy of
time measurements suffered from a lack of precise
calibration equipment.) The values for &, and T,,
however, were more consistent and reproducible.

As a further check numerical integration was used
to see whether the experimental value of §o= 0.72 for
n =2 actuslly gives 10 % overshoot. The result was an
overshoot of 9.4 % , the maximum occurring at T = 3.35
(compared to the experimental T, = 3.1). Thus the value
of Cﬂois as close as could be expected, since the error is
only 0.5 % of Xpax = 1-100 . The value of T is again
low.

Finally, to check the behavior of the ancotron by
itself, the exponent was obtained experimentally by
plotting output versus input voltage, measured at dc, on
log-log paper. The four actual values of n corresponding
to % 5 % , 2 , and 3 are, respectively, 0.329, 0.504,
1.96, and 2.95.
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7. Oscillograms *

Fig. 2.8, (a) to (c¢), shows some typical results
for a non-linear capacitance, n = 2 , with a step voltage
suddenly applied. (a) is the charge, (b) the current, and
(¢c) the "phase trajectory" which is included as a matter
of theoretical interest.

The phase trajectory for a variable which is a
function of time is a plot of the derivative of the
function, as ordinate, versus the function itself, as
abscissa. These coordinates constitute the "phase plane".
The point corresponding to a given instantanecus state of
the system, the "representative point", will move along
the phase trajectory with time in a clockwise direction,
if the usual sign conventions are observed.

In the case of damped oscillations the phase
trajectory is some form of a spiral. For periodic
(undamped) oscillations the trajectory is a closed curve,
also known as a "limit cycle"; for it is the curve which
the representative point will approach as a limit regard-
less of the starting point, assuming only one stable limit
cycle to exist.

Phase trajectories are frequently used in
theoretical work where it may be easier to solve for the
trajectories than for the variable as a function of time.
With the aid of the trajectory the function itself may then
be found.

Fig. 2.8 (a) differs from the linear case chiefly
in the lack of symmetry of the oscillations about the
final steady-state value. Allowing for damping, the
amplitude is considerably less above the steady-state
value than it is below. This makes the phase trajectory

* The oscillograms as reproduced here are not sufficiently
accurate to permit measurements to be taken from them, sirce
the oscilloscope used had considerable distortion. They are
intended to be illustrations only. Hence it was thought
permissible to do some retouching for better reproduction.
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appear flattened on the right.

2.8 (d) is the charge for a capacitance with n
Here the overshoot has a larger amplitude above the
steady-state value than below. 2.8 (e) is similar to
(d) except for the damping being less. (e) is to be
compared with (f) which was taken for a linear system with
the same frequency of oscillations and the same resistance
as (e). The damping per cycle is much greater for the
linear case.

1
'§o

8. Non-Linear Resistance

Fig. 2.4 shows a system containing a non-linear
resistance to which a linear resistance Rl has been
added. The equation is

e=Ef(t) =L §+Ra+V+g (2-16)
Proceeding as before let
V=R’(i
W o= i
° Jic
w R
02
X = q
Yo
=:Qot
dx
V=VO‘P(d—t:)
Vo
K=—, where v=v,  when V=V
v, o
_Sa e
- 2 JIL
R R
1 /C 1
1=2VI=®R,; S

Then the equation becomes
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Fig., 2.7 RESULTS FOR SQUARE-LAW RESISTANCE

(Additional linear resistance recuired for given
square-lew resistance ‘Q to produce criticel demping)
© - experimental values used for plotting graph
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2 .
f(7)=ﬁ-(%§+x)+;{f%—,}é+?(%—§) (2-17)
Without the linear damping term (if 4 = 0) the character
of the solution would again be determined by the single
parameter r .

Only the case n = 2 with a step function applied
was investigated in some detail. If n<1 the large
slope at the origin tends to cause instability in the
circuit. It was possible, however, to verify qualitatively
that a non-linear resistance with n<1l damps out
oscillations more rapidly than a linear one, due to the
high resistance when the current is small.

The oscillograms of Fig. 2.8 (g) and (h) show the
charge and current for a non-linear resistance, n =2 ,
with a step voltage applied. It may be seen that the
damping initially is very high. But as the current
decreases the damping per cycle becomes very low; the
oscillations die out much more slowly than for the linear
circuit. In fact, it would seem that a condition of crit-
ical damping could not be achieved@ with only a non-linear
resistance of n>1 . Regardless of how high the damping
may be initially, by the time the current approaches zero
the damping will have dropped to too low a value.
Therefore a linear resistance was added to the circuit to
provide damping at low values of current also.

The curve of Fig. 2.7 shows some quantitative
results obtained. They give the additional linear
resistance (%) required to give a critically damped
response to a suddenly applied voltage as a function of
the amount of non-linear resistance (€), for n = 2 .
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9. ©Steady-State Sinusocidal Input

In a linear circuit the response to a sinewave can
only be another sinewave of the same frequency. The
circuit can only change the amplitude and phase.

The behavior with a non-linear circuit is much
more complex. Although a detailed study was not undertaken
some of the more interesting effects, characteristic of
many non-linear circuits, were investigated qualitatively,
and Fig. 2.9 shows two oscillograms taken for the series
circuit with a capacitance having n = 2 .

Fig. 2.9 (a) gives the charge (top) and current
(bottom) in a circuit having a resonant frequency of the
order of ten times the applied frequency. The waveform is
approximately that of a sinewave with damped oscillations,
at a frequency about ten times as high, superimposed.

As resonance is approached the waveform of the
response becomes more nearly sinuscidal. If the damping
is high the current will simply go through a maximum at
some frequency near @ = 1AJEE7E (see page 37), the
exact frequency depending on the magnitude of the applied
voltage.

If the damping is low, however, the current,
which at first increases considerably as the frequency is
raised, will suddenly jump to a lower value.(lo Also if
at a fixed frequency in that region the voltage is
increased the current will suddenly jump to a higher value
at some voltage; on decreasing the voltage, the current
will again jump to a lower value but this occurs at a
lower voltage than before.

Fig. 2.9 (b) is an interesting oscillogram giving
the amplitude of the current as a function of the amplitude
of the input voltage. It was obtained by rectifying both
before applying them to a dc oscilloscope. The input
voltage was slowly varied manually from zero to a maximum
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and back to zero while taking a time exposure of the
oscilloscope screen.

The oscillogram shows the current to be a double-
valued function of the applied voltage. The upper and
lower branch are actually connected by a curve with a
negative slope, but if the voltage source has a low
impedance this connecting branch is unstable, and the
current will jump between the lower and the upper branch
discontinuously.(ll) If, however, the circuit had been
supplied from a high-impedance current generator and the
voltage had been measured, the connecting branch would
have been stable and would have shown up in the
oscillogram.

The small pip evident at the top of the ascending
jump is due to a transient overshoot.

10. Sinusoidal Input Suddenly Applied

Using the same circuit as above, fig. 10 is the
current obtained for a suddenly applied frequency in the
vicinity of circuit resonance. A transient change in
amplitude at a subharmonic frequency of about one-third
the applied frequency is observed.

This may be considered to be a beat between the
applied frequency and the frequency of the transient
caused by the sudden excitation.(IQ) The beat dies out
at a rate depending on the damping.
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IIL SELF-OSCILLATING SYSTEMS WITH ONE DEGREE OF FREEDOM

1. Introduction

The theory of linear circuits is completely
inadequate for analyzing the behavior of oscillators. 1In
fact an oscillating circuit that is linear, even to the
first approximation, over the entire range of the
variables is a physical impossibility; it is the non-linear
element that establishes the amplitude of oscillation
as well as influending frequency and waveform.

The simplest differential equation which adequately
describes the main features of many oscillator circuits
is the well-known Van der Pol Equation. It has been
investigated analytically and graphically by Van der Pol
and several other writers.(13’14’15’16’17’18’19) (Le
Corbeiller, reference 15, gives a good general survey of
the subject.) The derivation of the equation, including
the necessary assumptions, is given in appendix D for a
transformer-coupled oscillator (Fig. 3.1) and ir appendix E
for a multivibrator (Fig. 3.2).

Van der Pol's equation was chosen for study
because soluticns are available for special cases to
check the results obtained. But other systems are just as
easily set up on the computer, and some examples are given.

Van der Pol considered twe types of oscillating
systems. The first has only a single state of equilibrium,
one of periodic oscillations, which it will reach from
rest or any other initial conditicns. This is an
oscillator with "soft excitation". The system has a
negative linear and a positive cubic damping term.

The other system contains a positive linear, a
negative cubic, and a positive fifth-crder term. It is
stable both at rest and in a state of steady oscillations.
The oscillations may be shock-excited but will not start
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by themselves. This method of starting oscillations is
known as "hard excitation". Oscillators may not often be
found to behave in this manner, but the phenomenon is well-
known to those who experiment with high-gain amplifiers.
Such amplifiers are frequently stable by themselves but
will start oscillating when a signal is applied and
continue to oscillate even though the signal is removed
again.

The system with soft excitation was studied in
some detail; also an example of a system with hard
excitation was set up which is somewhat different from
Van der Pol's.

2. Analog for Van der Pol's Equation

The analog used is shown in Fig. 3%.3. The circuit
is actually that of Fig. 2.4 if we put e = 0 and
Ry = - (A -1) R" + R" , where R" includes coil losses
and any other linear positive resistance present in the
circuit. KR R

Again let § = —-§—2- T, and g= %—f% . Then from

equation (2-16)

2
1 [d d d
e (Sex) +EREe@ -0 6D

For Van der Pol's equation a cube-law pattern is used so
3
that ¢(3F) = (F) .

If A 1is large enough, 7 and R, are negative.
Hence let /& = - 241 « Also introduce a new variable

Z2 = /%51 x . This gives Rayleigh's Equation

2
d“z dz 1 dz?,
a——— -/‘ — -3— (—.— 4+ Z = O (3-2)
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Differentiating with respect to T and letting

u = %%-: %gi %% we have Van der Pol's Equation
2
%t%-,u(l-u‘?)%‘%+u=0 (3-3)

As shown in appendixed« D and E, it is the variable
U or the current i in the analogous circuit which
corresponds to the output voltage of an oscillator. The
important relations are summarized below:

¥R
l-_-—ﬁfi Ry = - [(A-1)R' -Rr"]

u = T
iO
i\l
t A"
T= — (o]
JIC K=1x;

(io, Vo) are the reference values for the cube-
law resistance element.

3. Results

Both the frequency and amplitude of the steady-
state oscillations were measured as a function of the
parameter M and the results are plotted in Fig. 3.4.

The frequency is plotted both in terms of %— and
' o

#%— to verify theoretical predictions. As has been
0

shown by several authors(14’15’17’18) the limiting values
should be

M0, F-1.00
(o)

ML 2
/-*'900, F-f-;—)mz 1.24

The results appear to agree with the theoretical values.
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The amplitude L is also plotted. Over the

entire range 0.1</4<10 it is seen to vary by less than
7 % from the value 2.00 . Theory predicts Uox = 2

for both very large and very small values of M . Due to

lack of accuracy in the equipment used for measuring the

amplitude, this curve may be in error by a few percent.

4. OQOscillograms

Van der Pol originally determined by the method of
isoclines the phase trajectories, and from this the
waveforms, of the oscillations for M= 0.1, 1, and 10.
These by now classical diagrams have since been reprinted
by several writers.(16’17’19) It was thought interesting
to try to reproduce them on the computer, and the results
are Figs. 3.5, (a) to (e¢).

Both the growth of oscillations from the time the
circuit is closed (the initial point is marked o ) and
the phase trajectory are shown in each case. The phase
trajectories only show the representative point approaching
the limit cycle from the origin. The scales for the

(14)

dimensionless variables %% and u were made approximate-

ly the same on each diagram, but the three diagrams are
not shown to the same scale. Some of the original
oscillograms do not reproduce well since the changing
velocity of the beam produces a wide range of exposures.
Some retouching was necessary.

There is seen to be general agreement between
these pictures and Van der Pol's diagrams. His diagrams
for M = 0.1 are probably not too accurate due to the
great labor involved in obtaining by graphical methods
the large number of cycles required for the system to
reach the final amplitude.
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The close relation between sinewave and relaxation
type oscillators is not always appreciated. Figs. 3.5,
(d) to (g) are a series of pictures intended to show
that the transition from sinusoidal to relaxation
oscillations is quite graduvual provided the tube does not
cut off toosharply. In the analogous circuit only the
capacitance was changed from one oscillogram to the next.
(According to the equations this affects only the parameter
M not the variable u . Hence the amplitude of the
current remains proportional to u .) The amplitude is
almost the same in each case except for (d) where the
frequency of oscillation was high enough to change the
coil losses materially which of course decreases the current
somewhat.

(h) is an attempt to demonstrate that the limit
cycle, marked L, will be approached both from inside
(here the origin) and outside (here, for convenience,
another stable limit cycle obtained by temporarily changing
the circuit resistance).

(i) shows the behavior of the non-linear
resistance during operation. The desired cube law is
followed quite accurately.

5. Diode-Limited QOscillator

The Van der Pol equation is only an idealized
approximation to the behavior of an actual oscillator.
The cubic damping term is a simple analytic device for
representing the saturation characteristic of the vacuum
tube which limits the amplitude. For purposes of
experimental studies a much simpler, and probably no more
approximate, device would be a diocde limiter which would
prevent the current or voltage from exceeding a certain
value.
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Such a scheme actually makes also a very practical
oscillator with constant amplitude of oscillation. A
diode voltage-limiter,of the type used in Fig. 4.7, is
placed in the grid circuit of a vacuum-tube oscillator to
limit the grid voltage excursion, and it is set to keep
the tube operating on the linear part of its characteristic
The voltage departs from a sinewave at the peaks only, and
this gives rise to harmonics of a high order which are
easily filtered. TFurthermore, the distortion can be kept

small by proper adjustment. - + 40 -
J prop et — i} 11—
An analogous circuit c,\
was set up by replacing the ‘f)
A

cube-law resistance element
(including the ancotron) Fig. 3.8 CURRENT LIMITER
by a simple current limiter

as in Fig. 3%.8. Fig. 3.6 shows some oscillograms. The
upper curve of 3.6 (a) indicates an almost pure sinewave
obtained by setting the negative resistance to a value

just above that necessary to start oscillations. The

lower curve shows the effect of increasing the negative
resistance (making it more negative).

3.6 (b) shows the difference between clipping
both the positive and negative parts of the cycle (top)
and clipping only one half-(bottom), all other conditions
being the same. The negative resistance was increased to
a point of excessive distortion to exaggerate the
differernce which would normally be hardly noticeable.
Evidently only one diode limiter is needed, resulting in
greater economy and ease of adjustment with little increase
in distortion.

The distortion was actually measured on a
distortion analyzer with the negative resistance adjusted
to a lower value, just above the minimum which would give
really stable oscillations. With symmetrical clipping the
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total distortion was 0.37 % ; with clipping on only one
side the distortion rose to 1.35 % .

It is interesting to note that a change in the
level at which the current is limited produces only a
change in amplitude and does not affect frequency or
waveform. This makes an effective volume control which
might also be adapted to automatic operation.

A typical phase trajectory is shown in (c¢) for a
circuit with two symmetrical clippers and considerable
distortion.

©. Hard Excitation

To produce a system with hard excitation as
described by Van der Pol an additional fifth-order damping
term is required. Since only one ancotron was availatle,
such a system could not be set up. Instead the current
limjter was again used to provide saturation. To have a
negative cubic term the ancotron polarity was reversed from
that used for the earlier scheme. The linear term has to
be positive now, hence a resistor suffices.

For small currents the positive linear resistance
is the only damping term which has any effect. Therefore
the system will not start oscillating by itself but will
remain at rest. If the initial current is made large
enough, however, the negative cube-law resistance overcomes
the positive damping and causes the current to grow further,
The oscillations will increase until their growth is
stopped by the limiter (or Van der Pol's quintic damping).

Thus the system as represented in the phase plane
has two stable positions, one the origin and the other
the limit cycle corresponding to stable oscillations. The
system may be transferred from the first to the second
state by shock or "hard" excitation. Another way is to
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start with a sufficiently large dc current. The latter
method was used here. The condenser was first shorted
out, and a dc current was made to flow by unbalancing the
output amplifier of the ancotron circuit. When the short
was removed the system would oscillate. The dc voltage
was blocked by the condenser during operation.

A typical waveform is shown in Fig. 3.7 (a).
Distortion is much higher here, and this sytem would not
seem to have many practical applications.

3.7 (b) shows the phase trajectory for a border-
line case. The initial current with the condenser shorted
caused the system to start off at point P. As soon as the
short was removed the system began to go around the limit
cycle (outer curve). But after one brave revolution the
system decided it was not strong enough to continue on the
merry-go-round, and it collapsed toward the origin. Thus
in a single diagram both the ordinarily stable states are
represented.
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IV STATIC AND DYNAMIC FRICTION IN SIMPLE POSITIQON SERVO

1. Introduction

The problem of "dry" friction in moving systems is
usually simplified by assuming the friction force to te of
constant magnitude and directed such as to oppose the
motion. This so-called Coulomb friction has been
investigated both theoretically(QO’Ql) and by Analog
Computer methods(22). The electrical azrnalog of a Coulomb
friction element is simply a voltage limiter consisting
of diodes and batteries.

Actually, the friction force is known usually to
be greater when the system is standing still than when it
is in motion. That is, a stationary system can have a
friction force preventing the start of motion up to a
maximum value S which we shall call 'static friction",

a term that has been aptly abbreviated to "stiction";
once the system is moving the friction drops to a value
D to be called "dynamic friction" (this is the Coulomb

friction)*. The magnitude of D will again be assumed

to be independent of velocity. Fpr°”’

It will also be assumed +S
that the friction T drops #\
suddenly from the value S - - VELOCITY
to D as soon as the velocity -5
departs from gero. Thus the Fig. 4.1 STATIC (S)

AND DYNAMIC (D)

graph of the idealized friction FRICTION

force (or torque) F versus
velocity is as shown in Fig. 4.1.

By dissipating energy friction usually serves to
damp out oscillations and thus increase the stability of

* A one-word name for Coulomb friction has apparently not
yet been coined. An appropriate term might be "sliption".
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a system. But the presence of static friction which is
greater than the dynamic friction may, in some cases,
actually lead to instability. Many mechanical systems
which are insufficiently lubricated are found to "chatter"®
or "shimmy". The reader is referred to Den Hartog(23) for
a qualitative discussion of several practical examples.

Sometimes the effect is.desirable. Thus the
bowing of string instruments depends on the presence of
stiction which is purposely increased by the application
of rosin. The action is analogous to that of a2 vacuum-tube
oscillator. The power is provided by the steady pull on
the bow, and the friction characteristic provides the
negative resistance.

Chattering may be particularly annoying in position
servomechanisms, and this example is treated in detail
below. The subject seems to have received relatively
little attention in the literature.(24s25)

2. Analog of Position Servo(22)

Let © be the shaft angle of the servo motor
which has a moment of intertia J , a linear (viscous)
damping coefficient B , and a dry-friction torque F
Let the servo be required to follow an angle 61 .
Assume the motor torque T +to be proportional to the

error angle ei -0 , time delays due to inductance in the
armature and field circuits being neglected, so that
Then the equation of the rotating system is
K(6; ~8) =J 6 +B6+F (4-2)
or K6, =J8+B&+K0+F (4-3)

(Note that this equation also applies to a simple
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mechanical system consisting of a mass, a spring, viscous
and dry friction, if © 1is the displacement and a force
Keo; is applied.)

Analogous circuits are shown in Fig. 4.2.

3. Analysis of Position Sexvo Following a Constant Velocity

Let
K 8; = Mt (4-4)
so that M/K 1is the constant velocity to be followed.
The system can be replaced by a linear one having
a moment of inertia J , a viscous friction B , and a
spring constant K , to which a net torque K ei - F is
applied. This torque, as shown in Fig. 4.3%, remains zero,
since the stiction opposes the torque K ei , until K ei
equals the maximum stiction torque S , at a time tl = S/M.
The angle © also remains zero until then. At t = tl
the friction F suddenly drops to D and motion starts.
For 1:>tl , the linear system has applied to it
a net torque Mt -D =M (t - t;) + S - D and equation
(4-3) becomes
M (t -t)) +S-D=J86+B6+KS6 (4-5)

Equation (4-5) continues to apply unless the
velocity © drops to zero. In that case the system
sticks, that is, the velocity remains zero for a while.
Suppose sticking occurs at t = t2 . Then the system will
remain stationary until the error torque exceeds S again

at some time t3 at which X 6y t=t3 -K® t=t, =S .

After that the system moves again according to equation
(4-5) with t, replaced by t3 and © replaced by

e-e e
t=t2
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Not only does the same equation apply, but the
initial conditions at t3 are also the same as at tl

if we subtract the angle o), , from 6 . If the system
Tl

stops once, it will stop again, and the chattering is a
periodic phenomenon.

If, however, the velocity & does not return to
zero after t = tl the system cannot stick. The
oscillations die out, and the system will eventually follow
at the same constant velocity W/K as the input, except
for a constant error angle D + BM/K .

Thus the behavior can be predicted by solving
equation (4-5) and finding the condition for & = 0 .

The equation itself is easily solved.

Let K
Wy =3 T
w K
0
= °
Wo
o= IS
Wy
g- TD
W
A: g - =—D‘T(S-D)
"C’:(L)o (t -t1)=wot -0
_ 1 B
2 fIx
Then equation (4-3) can be written
2
d ax
’C'+X=;—325+ 2:3-1-.+x (4-6)
T
Solving by Laplace transforms:
X (T) = %5 ana X () =2
s
Hence >
1
- L
x(s) = (4-7)

S
(s + €)% + (1 - €2)
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From transform pairs 2.601 and 1.304 in Gardner

and Barnes(7) the solution is

%1
x(t) = T+(X- f/%?: [l+§’(A-2€)] sin(J/i-e*t) |
+ (A -26) IFE* cos (JE o) } (49
Also
w= 0t e&[ et sinff-s7) - cos(f-€70) | a9)
a’x _ -ft
w2- © [, = n( t) + )cos( t)] (4-10)

4, Critical Conditions

The critical value of A for a given § is that
for which the velocity just goes to zero, i.e.

dx d2x
—= = —> =0 . Using the subscript ¢ for these critical
conditions one obtains a set of equations:

e?-t"fc

2 - 62 (4-11)
+an( g’c’c m

Ar -2 A8+ =

Solutions for some special cases, obtained by
trial-and-error methods, are tabulated below.

|~ €T, C. e

2n 0.000 0.000
/4 0.055 0.947
3m/2 0.264 3.78
51/ 4 0.714 56

™ 1.000 e°

It can be seen from these results that a servo
following a constant-velocity input will chatter only if
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(1) static friction exists which is greater than the
dynamic friction by a certain amount (i.e. A2 Ac¢ ),

(2) 1linear (viscous) friction by itself is less than
critical (i.e. € < 1).

Also, if the linear (viscous) friction is very
small, the system is almost certain to chatter since some
stiction is unavoidable. With a given amount of static,
dynamic, and viscous friction there is a minimum velocity
which the system can follow without chattering since A¢
is proportional to the reciprocal of the velocity.

Thus stiction may have the effect of making a
system unstable even though it has some viscous damping.
Physically the instability is due to the sudden force or
torque, S - D , applied to the system when it is ready
to move.

Dynamic (Coulomb) friction alone does not produce
such an effect if the velocity to be followed remains
constant. If the input velocity changes, such as in the
case of a sinusoidal variation, chattering may occur over
part of the cycle with only dynamic friction, since the:
output velocity is forced to go through zero.(22)

5. Computer Solutions for Critical Conditions with
Constant-Velocity Input

Instead of solving equation (4-11) directly, a
linear circuit corresponding to equation (4-6) was set up
as shown in Fig. 4.4.

At the»start of the cycle switch 83 is already
closed, but 82 is open. Sl opens to begin charging C
with the constant current I_ . This current corresponds

0
to the constant input velocity. At a time t°' = S ﬁ D _ é}
' 0

switch 82 closes. This is the start of the solution of
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IX

equation (4-11), for the initial voltage 5%7 on the
()

condenser corresponds to the sudden torque S - D applied
to the system when motion starts (see Fig. 4.3).

After a sufficient time has elapsed, switch S3
opens, Sl closes shortly after, and 82 remains closed.
A large resistance r is thus inserted to cause a rapid
decay in the current. 82 then opens, 53 closes, and
the cycle can start over again.

To find a solution for a given value of resistance
R , the delay time t' is varied until the voltage across
R , as observed on an oscilloscope, just goes to zero,
with zero slope, after the first cycle of oscillation.
This corresponds to the critical condition (see section 4).
By measuring the time delay and knowing L, R, and C the
values of ¥, and M. can be calculated. The resultant
curve is plotted in Fig. 4.6, together with the calculated
values on page 65 and values obtained from the direct
analog (see below).

6. Ancotron Analog for the Complete System

The assumed friction characteristic of Fig. 4.1
is a multi-valued function at the origin. This function
is here approximated by the single-valued function of
velocity shown in Fig. 4.5 (a).

The actual pattern is that of Fig. 4.5 (b). The
gain of the horizontal deflection circuit was made high
so that the center of the pattern would be traversed
rapidly. To avoid going over the edge of the pattern,
voltage limiters were used which stopped the beam at the
positions labeled L . Since the output voltage remains
constant beyond these points the effect of the high gain
is to compress the pattern so that the velocity differs
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only little from zero as the output varies from O to S
to D .

The actual transfer function, which is photographed
in Fig. 4.9 (c¢), thus can approximate Fig. 4.1 as closely
as desired, except for the fact that when the velocity
returns to zero the friction force must go from D to S
first before dropping to zero. This does not occur in a
physical system, but the difference is negligible as the
duration of this "pip" is so short that it takes no
appreciable energy out of the system. The analogy, however,
breaks down when the maximum velocity reached during a
cycle is small.

The complete circuit is shown in Fig. 4.7. C°*
and C" are large integrating condensers used to observe
voltages corresponding to input angle (angle to be followed)
and output (shaft) angle of the servo. C" must be very
large to avoid changing the solution; it is best shorted
out when not in use. S1 is the main timing switch; S
and 83 serve to discharge the condensers after each
on-period. Limiter 1, consisting of two crystal diodes

2

and two equal batteries, limits the horizontal excursion
of the beam; limiter 2, similar to limiter 1, permits
reducing the value of S by clipping the peaks of the
ancotron output voltage at a level equal to the
adjustable battery voltages in the limiter. By changing
these voltages and adjusting the gain of amplifier A3
both S and D may be varied over a wide range.

7. Results for a Constant-Velocity Input

The results obtained with the ancotron are
summarized in the oscillograms of Fig. 4.9. The accuracy
of these pictures again suffers somewhat due to distortion
in the oscilloscope used.



70

DIVHV HOHIVEAHL

8% “9ua

b4
(sToquis Twpoeds J0F G°T °ITI @8g)
AITTIIN0O *DOTYNV HOMIOONY  4°7 314
=T
2\, _ UII..! -3 m
L I- E3 g —
n< k] .4
T RS s
| = || ||



11
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4.9 (a) shows the output or shaft angle (solid) and
the input angle which is being followed. With a constant
velocity the input angle increases linearly with time.
Periodic chattering of the system, which has static and
dynamic friction with but little viscous damping, is
evident. First the servo sticks; then it suddenly breaks
loose and tries to catch up with the input, but before it
reaches the input angle the servo sticks again.

At the top of (b) is the output of the ancotron,
that is, the friction torque, as a function of time, for
the same system. At the bottom ingelocity (upside down)
which is the input to the ancotron. The friction at first
increases with the input angle and the velocity remains
practically unchanged at zero; as it reaches the value S
the friction suddenly drops to D and motion begins. As
the velocity again reaches zero the system sticks, and
friction takes over. The high-frequency transient
oscillations are due to the ancotron but do not affect the
solution.

(c) shows output (vertical) versus input (horizont-
al) of the ancotron during actual operation as in (D).

The result closely approximates the assumed friction
characteristic of Fig. 4.1, but only half the curve
appears since the velocity does not change sign.

(d) is an oscillographic reproduction of the
ancotron pattern with a linear sweep applied horizontally.
The voltage limiters of Fig. 4.7 were removed to show the
pattern itself.

The following pictures show the effect of various
modifications. (e) is similar to (a) except that the
static friction has been made equal to the dynamic friction
(A= 0). No chattering occurs. In (f) both static and
dynamic friction have been reduced to zero so that only
viscous friction remains. The steady-state error is seen
to be less than for case (e).
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The magnitude of the error angle (input minus
output) for the different conditions is illustrated by
(g) and (h). (g) compares the error for viscous friction
alone (top) with that for all types of friction present
(bottom); both records are to the same scale. (h) shows
the error for viscous friction alone (bottom) compared to
that with dynamic friction added (top) where static
friction equals dynamic friction and hence no chattering
takes place.

(1) shows chattering at a much higher frequency
obtained by reducing the viscous damping; it demonstrates
clearly that the phenomenon is periodic and does not
decrease in magnitude.

(j) illustrates the effect of increasing the
viscous damping for the system in (a). The top curwve
(dotted) is the input again, for reference. The next
curve below it is obtained by increasing the damping to
the point where the chattering has just disappeared.

This is the critical case discussed in section 4. The
change from periodic sticking in (a) to the highly damped
oscillations shown here occurs suddenly, as predicted.

If the viscous damping is increased further, the damped
oscillations finally disappear entirely, giving the
bottom curve. Note that § is about twice the value
required to achieve this with linear damping alone.

Oscillogram (k) is a similar sequence for the
error angle. The dotted line corresponds to (a). The
solid curve at the bottom is the critical case where
chattering has just stopped, and the next higher curve
is the limiting case for which all oscillations have just
been damped out; these two correspond to the output
curves of (j). The curve at the top is for an overdamped
systemn.

This last set of oscillograms of Fig. 4.9
demonstrates that any attempt to remove oscillations by
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increasing the damping would result in larger steady-state

errors. Damping should be kept just above the point where
chattering sets in.

8. Sinusoidal Steady-State Input

1f the servo is required to follow a motion which
reverses periodically, the velocity will always go through
zero. Some chattering is thus possible even when it does
not occur for a constant input velocity. Photographic
records are shown in Fig. 4.10 for a case where all three
types of friction are present. In each picture the top
curve is the output and the bottom curve the corresponding
error angle.

In 4.10 (a) the linear damping is rather high ané
the chattering, which develops after the velocity has gone
through zero, is damped out quickly. The damping is less
for case (b) and chattering persists over the greater part
of the sinewave to be followed.

Case (¢), for which the input frequency has been
made considerably higher relstive to the natural frequency
of the undamped system, shows excessive distortion due
to the friction.

9. Step-Function Input

The response of a servo which is made to follow
a sudden step change in the input angle is the same as
if no stiction was present, provided the step is large
enough so that the error causes a torque which exceeds
the stiction. This case then reduces to that discussed
in reference 22.

If the step is too small, the servo will remain at
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rest. The minimum change in angle, of course, depends
on the value of the static friction, and not the dynamic
friction.

10. Thyratron Analog

After the investigation of the previous sections
was completed, it was suggested that the rather complex
ancotron circuit might be replaced by a pair of thyratronsX
Use is made of the fact that the voltage across the
thyratron before firing (corresponding to the static
friction § if the current corresponds to the velocity)
is greater than the voltage after firing (corresponding
to the dynamic friction D ). By changing the grid bias
the value of S can be changed over a wide rarnge, but
D 1is practically constant. No amplifiers are needed if
the input voltage cr current can be made large enough.

The thyratron circuit is given in Fig. 4.8. The
bias on the tubes must be adjusted so that the values of
S are equal. It may be necessary to match the tubes to
obtain equal values of D . But if the input velocity
does not change sign a single tube properly connected
would suffice since the other tube would never conduct,
anyway .

The circuit was tried and found to be satis-
factory on the whole, except for some hash evident
during the conducting period. This need not be serious.

* The writer is indebted to Peilin Luo for this suggestion.
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APPENDIX A Critically Damped Linear Systems

Equation (2-3) with the forcing function of (2-4)
becomes for a critically damped system (¥ = 1)
2

ax dx
525 +2 g +x=1 (A-1)

The solution for initial conditions of x = It = 0 is

XxX=1+«(1+ ‘C)e't (A-2)

Since this resembles an exponential curve, one
might take the characteristic time of rise to be the
value T =1 1in these dimensionless units. Then
X = 0.264 at that point. TFor experimental work it is
much easier and also more accurate to measure the time
when x = % . This value will be denoted by tb and is
given by the equation ”

-T 1
(1+T)e “=3 (A-3)
By trial-and-error,
T, = 1.68 (A-4)

APPENDIX B Underdamped Linear Systems with 10 %
Qvershoot

Equations (2-3%) and (2-4), in general, combine to
2
a°x dx
+ 2=+ x=1 (B-1)
dt§ rdt

J - eprt [cos ,/I—l;" 't:) + ﬁ%; sin |/l~§"‘c)] (B-2)

The extremes of x occur when Jl - ?2 T=nTr
(n = 0,1,2,...) so that

™
"
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€
-nT
= J-¢t
Xpag = 1 + © ¢ (n odd)
¢ (B-3)
-nf
Xpip = L = © Ji-¥ (n eéven)

For a 10 % overshoot put n =1 and

e
e VI-€F _ 0.1000 (B-4)
Hence
f O S Y . L ©. (B-5)

N+ (mw)

.The time at which the first maximum is reached is

m 2
t;ﬂ = /T._-—-Ei;. = fﬂ'Q + (ln 10) = 3-895061 (B-6)

APPENDIX C Critical Damping for Non-Linear Capacitance

Equation (2-13) together with (2-14), for positive
x only, becomes

3-2’25», 2t + 2" -1 (C-1)
The solution for small q'is known to approach
1 after some damped oscillations. In the region near
x=1 let x=1-u and expand x by the binomial
theorem. Neglecting higher terms, equation (C-1) becomes

X

2 ,
du du
—_— 4+ 2C=—= + nu =0 (c-2)
at° Cae
This is a linear equation whose roots are -&=+ (2 -n.

Hence (C-2) is critically damped if
fc = fn— (c-3)
Since the amount of damping is determined by the
behavior of the system in the vicinity of x =1 in
general, the same condition should give critical damping
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for equation (C-1) also.

APPENDIX D Derivation of Van der Pol's Equation for A
Plate-Tuned Transformer-Coupled Oscillator

In the circuit shown in Fig. 3.1 the coil losses
are represented by a parallel conductance G .* 1L 1is the
self-inductance of the plate coil. Grid current is
neglected.

The plate current ip is a function both of the
grid voltage vg and the plate voltage v . But these are
related by

M

Vg=-f V (D-1)

the sign being that required to obtain oscillations.
Therefore one can write

= V(V) . (D"2)
Circuit equation:
. 1
ip = -GV -CV = fv dt (D-3)
or .. .
V*EV"'Edt[Y(V)] "“V=0 (D-4)

Let (UO = l/J s Q =(JOC/G y CT= Qo't .

Let Vo be a characteristic value of v , such as the

"Saturation" plate voltage. Then

2

Expanding ?(v/vo) in a power series up to the

* Van der Pol and other writers use a resistance in series
with the coil which puts another term into the equations.
To obtain the desired result this term must eventually be
neglected. The parallel circuit gives the answer directly.
Furthermore, with iron-core coils, it is doubtful whether a
series resistance represents the losses over a range of
frequencies any more accurately than a parallel one.
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third-order term gives

3
P(L) = - &L + y (L) +... (D-6)
v, v, T4,
The linear term will be negative since, from linear
circuit theory,
M

1, = 8pVg + 8V =" (8,7 - &) V (D-7)
Even-order terms can be neglected by assuming symmetry
about the operating point. Then, putting M= & - 1/Q
and u = /%dt.%;.’ equation (D-5) is transformed into

0
Van der Pol's equation (3-3).

Van der Pol(ls) showed also that if @(v/v,) is
expanded up to the fifth-order term, and if the third-
order term is negative, but the linear and fifth-order
terms are positive, the system has the eharacteristics of
"hard excitation" (page 58).

APPENDIX E Derivation of Van der Pol's Equation for A
Symmetrical Multivibrator

The analysis follows Van der Pol's(l4) in the main
features, except for the use of the stray grid-cathode
capacitance Cg instead of the lead inductance I wused
by him. The effect of Cg would overshadow any effect
due to L at the frequencies used. See Fig. 3.2.

Node equations for the circuit:

g Vv

ol * ( * cg) \'/gl - "’pz + igl = 0 (E-1)

1 =0 (E-2)

iP
Similarly for the other two nodes.
Now assume that C (\'rp - \?g) «i, and i <« i .
Then with symmetrical tubes the plate currents possess
approximately symmetrical half-cycles, so that

iplz - ip2 (E-3)

The tubes alternately saturate (grid current flows)
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and cut off (no grid current). The tube which draws grid
current discharges its condenser quite rapidly. But
nothing more happens until the other tube is ready; its
condenser discharges with the large time constant (/g
as no grid current flows. Thus the tube which is cut off
always determines the start of the next trarnsition. The
grid current, even though it may be quite large
momentarily, does not affect the overall circuit behavior,
and hence one can put ig = 0 1in the circuit equations.
Equation (E-2) thus becomes

- ip2 - ipl = G Vom * C (sz - Vgl) (E-4)
Combining with equation (E-1) gives
C C +C o
“s¢y (___a ¢) 5 S8 5 _

= & Vgl * z + ) Va1 * Vg1 " g6 ipl =0 (E-5)
Now let
_ [8 G
15“00"

/;Q#G pl “’[ “‘g— (25_1_)3

=«(/“-+Fl—

2¥

and u =
0

where Y is the reference value of vgl . Then equation
(C-5) transforms into Van der Pol's equation (3-3).

Note that the variable u now stands for the grid-
cathode voltage of one of the tubes. To the extent that
the plate current expansion represents the tube character-
istics, the solution of Van der Pol's equation will give
the frequency of the oscillation quite accurately. The
waveform will not be that of the grid-cathode voltage,
since grid current makes it decidedly unsymmetriceal.
However, if the grid-cathode voltage of each tube can be
assumed to be essentially zero during the conducting
half-cycle, the variable u does give the grid-to-grid
voltage waveform.
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