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ABSTRACT 

Skin-interfaced electronics is gradually transforming robotic and medical fields by enabling 

noninvasive and continuous monitoring of physiological and biochemical information. 

Despite their promise, current wearable technologies face challenges in several disciplines: 

Physical sensors are prone to motion-induced noise and lack the capability for effective 

disease detection, while existing wearable biochemical sensors suffer from operational 

instability in biofluids, limiting their practicality. Conventional electronic skin contains only 

a limited category of sensors that are not sufficient for practical applications, and 

conventional data processing methods for these wearables necessitate manual intervention to 

filter noise and decipher health-related information. 

This thesis presents advances in electronic skin within robotics and healthcare, emphasizing 

multimodal sensing and data analysis through machine intelligence. Chapter 1 introduces the 

concept of electronic skin, outlining the emerging sensor technologies and a general machine 

learning pipeline for data processing. Chapter 2 details the development of multimodal 

physiological and biochemical sensors that enable long-term continuous monitoring with 

high sensitivity and stability. Chapter 3 explores the application of integrated electronic skin 

in robotics, prosthetics, and human machine interactions. Chapter 4 showcases practical 

implementations of integrated electronic skin with robust sensors for wound monitoring and 

treatment. Chapter 5 highlights the transformative deployment of artificial intelligence in 

deconvoluting health profiles on mental health. The last chapter, Chapter 6, delves into the 

challenges and prospects of artificial intelligence-powered electronic skins, offering 

predictions for the evolution of smart electronic skins. We envision that multimodal sensing 

and machine intelligence in electronic skin could significantly advance the field of human 

machine interactions and personalized healthcare. 
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C h a p t e r  1  

INTRODUCTION 

Materials from this chapter appear in “Xu, C.; Solomon, S. A.; Gao, W. Artificial 

intelligence-powered electronic skin. Nature Machine Intelligence 5, 1344–1355 (2023). 

https://doi.org/10.1038/s42256-023-00760-z” and “Xu, C.; Yang, Y.; Gao, W. Skin-

interfaced sensors in digital medicine: from materials to applications. Matter 2, 1414–1445 

(2020). https://doi.org/10.1016/j.matt.2020.03.020.” 
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1.1 E-skin 

Skin is the largest organ of the human body. It protects the body as a physical barrier and 

harbors sophisticated sensations of touch and heat, enabling us to perceive temperature 

changes, pressure and vibrations, texture and shapes of our surroundings. Mimicking the 

properties of human skin, wearable and flexible electronic devices provide an intimate yet 

noninvasive contact with human body and are capable of digital monitoring of physical and 

biochemical signals. Compared with bulky, wired clinical equipment, these miniaturized on-

skin sensors are featured by real-time diagnosis and continuous monitoring, which open up 

new opportunities for long-term health assessment and disease diagnosis.  

E-skin refers to integrated electronics that mimic and surpass the functionalities of human 

skin. Due to their flexible and conformable nature, e-skins may be placed on various robotic 

and human bodily locations for continuous biosignal monitoring, rivaling bulky medical 

equipment in the fields of robotics and prosthetics1,2. Engineered for self-contained 

operational frameworks, e-skins act as human-machine interfaces for smart bandages3, 

wristbands4, tattoo-like stickers1, textiles5, rings6, face masks7, as well as customized smart 

socks and shoes8 for various applications. The integration of wearable sensors with the 

human body demands that the mechanical properties of the sensors should be soft, 

stretchable, and compliant to curved skin (Fig. 1-1). Compared with conventional rigid 

devices, soft e-skin patches seamlessly interface with the skin, achieving a conformal and 

stable contact that minimizes motion-induced artifacts and wearing discomfort9. The 

convenience and flexibility of applying these electronic patches to any target location, while 

continuously and noninvasively measuring multiplexed signals via mobile connectivity, has 

surpassed conventional point-of-care to become an ideal form of wearable systems. With the 

increasing demands for remote and at-home care, e-skins have been applied for personal 

fitness4,10, VR11,12, telemedicine and early disease detection13,14, as well as COVID-19 tracing 

and monitoring15,16. 
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Figure 1-1. Soft electronic materials for skin-interfaced electronics. Comparison of 

Young’s moduli among representative materials. 

1.2 Emerging sensors landscape in e-skins for data acquisition 

Training of an intelligent ML system requires a substantial amount of high-quality data. 

Unlike conventional clinical laboratory tests that are performed discretely and infrequently, 

emerging wearable sensors provide the ability for continuous acquisition of digitalized data 

with multiplexed sensors, allowing for more personalized care by analyzing deviations in 

individual baselines17. This approach greatly mitigates the biases from environmental factors 

such as diet, age, stress, and drug use, yielding a more appropriate and accurate medical 

diagnostic tool based on the individual rather than population-level statistics. Here we focus 

on the two primary sensing domains in e-skin platforms (Fig. 1-2), namely physical and 

biochemical sensors, highlighting their key usage and applications. 
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Figure 1-2. Emerging sensors in e-skin for health monitoring and robotics. The 

combination of physical and biochemical sensors provides access to force sensing and 

mapping, electrophysiology, as well as biochemical substances in body fluids and 

surroundings. 

1.2.1 Strain and pressure sensing 

A commonly integrated sensor, strain sensors track the resistance of electronic materials 

under deformations. These sensors enable the detection of large distortions from bodily 

motions18 and small deviations for tactile perception19. As another motion sensing 

mechanism, pressure sensors utilize piezoresistive materials or capacitors with a pressure 

cavity. Similar to strain sensors, pressure sensors could be customized to perform pressure 

mapping20,21, user interactive visualization22,23, as well as tactile sensing24,25. 

To fully mimic skin sensations, strain and pressure sensors are often combined for haptic 

interfaces in HMI applications11. When placed near arteries, strain and pressure sensors can 

detect vital signs such as blood pressure and heart rate variability26. Recent studies have also 

utilized piezoelectric sensor arrays, which capture acoustic vibrations from tissue for blood 

pressure monitoring and imaging applications27–29. 
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1.2.2 Temperature monitoring 

While elevated core body temperatures often result from infections and overheating, a 

decreased temperature can lead to faltered physiological systems and even organ failure. 

Although e-skin sensors are commonly applied to monitor skin surface temperature, arrays 

of sensors could be used in conjunction to minimize local deviations and display an accurate 

temperature profile30. Further studies have investigated correlating skin surface temperatures 

to core body profiles31. In addition, temperature data is of significance for calibrating 

biochemical sensors, as chemical reactions are sensitive to their operating temperature32. 

1.2.3 Electrophysiology 

Electrophysiology refers to measuring the electrical activities of tissues and organs. Common 

skin-interfaced biopotential modalities involve ECG33, EMG34,35, and EEG36,37. These 

signals are measured by placing arrays of electrodes on the skin at different locations. E-

skin-based electrophysiology sensors commonly show high performance due to the 

conformal contact between the soft e-skin and body with a low contact impedance. 

1.2.4 Biochemical sensing 

E-skin-based biochemical sensors have been widely applied to analyze molecular biomarkers 

(e.g., electrolytes38, metabolites4, amino acids10, neurotransmitters39, and proteins40) in 

human biofluids including sweat4,10,13,41, saliva42, and interstitial fluids43. Common 

biosensing signal transduction strategies include electrochemical and optical detection 

mechanisms44. These sensors can be applied for a wide range of biomedical applications 

including fitness tracking, metabolic monitoring4, cystic fibrosis diagnosis38, gout 

management13, and stress assessment45. 

1.2.5 Substance monitoring 

In addition to natural biofluid components, e-skins can also detect substances that are 

extrinsic to the normal metabolism such as drugs46 (e.g., vancomycin47 and levodopa48,49), 
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alcohol50,51, caffeine52, and heavy metals53. By focusing on personalized pharmacokinetics 

instead of population studies, continuous therapeutic drug monitoring can improve treatment 

outcomes and reduce side effects through dosage adjustments, which are especially 

important for drugs with narrow therapeutic windows46. Moreover, e-skin sensors can serve 

as a rapid screening tool for drug abuse54,55. 

1.2.6 Gas sensors 

Human breath contains rich molecular information and could provide a noninvasive health 

profile like biofluids. Many VOCs in the breath are diagnostic biomarkers for infectious, 

metabolic, and genetic diseases56,57; for example, breath carbon monoxide is linked to 

neonatal jaundice and breath ammonia and nitric oxide are connected to asthma58. Integrated 

sensor arrays known as electronic noses have been developed to detect humidity, VOCs and 

other gas components in exhaled breath and the surrounding environment59. Combined with 

ML, these sensors can distinguish complex chemical signatures60,61, and have been employed 

for breath-based individual authentication62, soil nitrogen assessment63, and evaluating food 

freshness64. 

1.2.7 Environmental monitoring 

Environmental risk factors, including chemical threats and pathogenic biohazards, pose a 

risk to both the human body and safe robotic operations. AI-powered e-skins have expanded 

their scope to encompass not only monitoring the human body but also the surrounding 

environment. During remote operations, e-skin systems can detect trace amounts of 

dangerous compounds and provide environmental feedback without human exposure2. A 

combination of biochemical sensors was integrated into an e-skin patch attached to a robotic 

arm that could detect hazardous materials including nitroaromatic explosives, pesticides, 

nerve agents, and infectious pathogens with autonomous ML-based decision-making 

algorithms2. 
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1.3 ML pipeline for data analysis 

While emerging e-skin is revolutionizing robotics and medical practices by continuously 

monitoring multimodal data65, data analysis is playing an increasingly important role for 

interpreting the large, complex biological profiles generated from various sensors. 

Conventional analysis of e-skin data largely relies on human supervision, where signal 

processing and data evaluation is time-consuming and interpreted from a restricted point of 

view1,4,5. There is an unmet demand between e-skin hardware and efficient data analysis 

solutions. Recent developments in deep learning have permitted the evaluation and even 

generation of big data for health applications66. AI can reveal medical insights that are 

challenging to acquire with traditional data-analytics while providing accurate predictions 

that can mimic or even surpass human expertise67–69. AI together with the rapidly growing 

interest in health monitoring and remote robotics have become the main catalyst pushing 

forward advanced e-skin innovations. 

In a typical ML pipeline (Fig. 1-3), raw data collected from e-skins will first be preprocessed 

for feature extraction. Popular preprocessing techniques include filtering, smoothing, 

downsampling with a sliding window, dimensionality reduction, as well as baseline removal 

and normalization70. An ML algorithm is then selected for the specific objective, which can 

be supervised or unsupervised, classification or regression, discriminative or generative70. 

During model selection, one needs to account for data availability68. While simple models 

may struggle to represent the expected trends, complex models on simple datasets may lead 

to non-reproducible conclusions, particularly in health applications when a small dataset may 

be specific to a particular demographic. 
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Figure 1-3. Overview of AI-powered e-skin and ML pipelines. E-skin provides access to 

human information or serves as an interface to robotics by continuous and noninvasive 

monitoring of multimodal physical and biochemical sensors. The data stream is constructed 

and transformed into a standard numerical format through data preprocessing and feature 

extraction. Based on the intrinsic data properties, different ML algorithms can be selected 

and trained, allowing for real-world applications. 

1.4 Outline of the thesis 

This thesis consists of two parts. Here we briefly summarize these two parts and their 

organization: 

Part 1: Fundamental Aspects of Wearable Sensors in E-Skin (Chapters 1-4) 

Part 1 consists of Chapter 1 to 4, where the effort is focused on fundamental side of wearable 

sensors in e-skin. Chapter 2 details the development of multimodal physiological and 

biochemical sensors that enable long-term continuous monitoring with high sensitivity and 

stability, with an emphasis on our strategy of significant sensor performance improvement 
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and mechanism analysis. Chapter 3 and 4 explore the application of integrating these 

multimodal and robust sensors in robotics and wound monitoring and treatment. 

Part 2: ML-Assisted Data Analysis and Future Prospects (Chapters 5-6) 

Part 2 consists of Chapter 5 and 6, where the ML-assisted data analysis is implemented in 

addition to the multimodal sensors. Chapter 5 highlights the transformative deployment of 

AI in deconvoluting multimodal data analysis and unveiling health profiles on mental health. 

Chapter 6 discusses challenges and prospects of AI-powered e-skins, offering predictions for 

the evolution of smart e-skins. 
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C h a p t e r  2  

WEARABLE MULTIMODAL SENSORS IN E-SKIN 

Materials from this chapter appear in “Xu, C.; Song, Y.; Sempionatto, J. R.; Solomon, S. A.; Yu, 
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Nature Electronics (2024). https://doi.org/10.1038/s41928-023-01116-6,” “Min, J.; Tu, J.; Xu, C.; 
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2.1 Integrated physiological sensors with high sensitivity 

The CARES platform contains multiple physical sensors to monitor stress-related vital signs. We 

placed a capacitive pressure sensor above the radial artery for pulse waveform monitoring (Fig. 2-

1a-e). Because of the soft PDMS-engraved airgap, the pressure sensor is highly sensitive to soft 

pressure loads (such as a feather), with an impressive sensitivity of 113.1% kPa−1 under the range of 

0–500 Pa. The pressure sensor also displays highly robust performance and mechanical stability 

during a repetitive pressure-loading test involving 5,000 cycles, mimicking daily use on the skin 

(Fig. A-1). A printed resistive temperature sensor was integrated into the CARES for skin 

temperature recording in situ with a sensitivity around 0.115% ºC−1 in physiological temperature 

ranges between 25–50 ºC (Fig. 2-1f and Fig. A-2). Considering that temperature has a strong 

influence on enzymatic activities, the temperature information is used for calibrating the response of 

the three enzymatic biosensors to achieve highly accurate in situ metabolic analysis (Figs. A-3 and 

4). It should be noted that other environmental factors such as humidity showed minimal influence 

on the performance of our chemical sensors (Fig. A-5). Additionally, a pair of printed Ag electrodes 

were used as a GSR sensor which demonstrated high conductivity compared with commercial gel 

electrodes (Fig. 2-1g). Owing to the ultrathin flexible polyimide substrate and strong interfacial 

strength enabled by the medical adhesive, the CARES showed excellent skin contact and mechanical 

resilience against undesirable physical deformations during continuous operations (Figs. A-6 and 7). 

The impermeable polyimide packaging also eliminated the influence of humidity from 

environmental surroundings and sweat (Fig. 2-1h). 
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Figure 2-1. Design and characterization of highly robust physical sensors. a,b, Schematic (a) 

and on-body evaluation (b) of the microfluidic iontophoresis module for autonomous sweat 

induction and sampling at rest. Timestamps in a represent the period after a 5-min iontophoresis 

session. c, Schematic of the pressure sensor and a pulse waveform measured at the wrist. PI, 

polyimide. d, Pressure versus capacitance (C) characterizations of the pressure sensor. C0, flat-state 

C. e, Repetitive response of the pressure sensor upon small pressure loads. Inset, a goose feather 

placed on a sensor. Scale bar, 1 cm. f, Response of the temperature (T) sensor in the physiological 

temperature range. R, resistance. g, Impedance of the skin/electrode interface measured with inkjet-

printed Ag electrodes and commercial electrodes for GSR monitoring. h, Performance of 

encapsulated pulse, T and GSR sensors under environmental humidity and body sweat test. All error 

bars represent the SD from three sensors. 

For in vitro temperature and GSR sensor characterizations, an amperometric method was used with 

an applied voltage of 1 V using a dual-channel electrochemical workstation (CHI 760E). 

For in vitro pulse sensor characterizations, a parameter analyzer (Keithley 4200A-SCS) was applied 

to record the fast-changing capacitive signals at a sampling frequency of around 137 Hz. The 

influence of mechanical deformation on the physical sensor performance was investigated through 

pressing-releasing for 5,000 cycles using a Mark-10 force gauge. The influence of humidity was 

investigated by immersing the subject hand with the CARES in a customized glove box with a 

humidity gauge. 

2.2 Biosensor mechanisms 

2.2.1 Electrochemical potentiometric sensors 

Wearable potentiometric sensors measure the passive open circuit potential between the working 

electrode and reference electrode (Fig. 2-2a). Such electrochemical sensors consist of a sensing 

electrode that is modified with a target-sensitive component and a reference electrode that maintains 

a stable potential in different solutions such as sweat. Most wearable potentiometric sensors are 

based on ISEs, which use a non-destructive measurement that converts ionic signals to electric 

potentials. The measured potential signal follows the well-known Nernst equation1 
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𝐸𝐸 = 𝐸𝐸0 +  
𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛

ln 𝑎𝑎𝐼𝐼 

where E is cell potential, E0 is standard potential when aI = 1, R is the universal gas constant, T is 

absolute temperature, n is the number of electrons involved, F is the Faraday constant, aI is ionic 

activity quotient in aqueous and solid membrane phases. From the Nernst equation, the theoretical 

potential response limit of ISEs is around 59.2 mV at 25 ℃ per decade change of target analyte 

concentration. Due to its low-cost, simple operations, and reliable and continuous measurement, 

ISEs have been widely applied in detection of trace-level metals,2,3 drugs,4,5 and organics.6 

Conventional ISEs are composed of liquid contact, which is unfavorable for miniaturized designs 

and wearable usage. Solid-contact ISEs, on the other hand, have enabled the continuous detection of 

ions such as Na+, K+, H+, Ca2+, using potentiometric sensors in biofluids,7–11 as well as heavy metal 

pollutants.12 

 

Figure 2-2. Sensing mechanisms of electrochemical biosensors. a, Schematic of potentiometry 

operating mechanism, sensor configurations, and ion-to-electron transducers using redox 

electroactive materials as well as nanomaterials. b, Schematic of amperometry operating mechanism, 
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sensor configurations, and three generations of amperometric enzymatic sensors. c, Schematic of 

differential pulse voltammetry/square wave voltammetry operating mechanism and sensor 

configurations. 

The typical structure of an ISE consists of a sandwiched structure including an electron-conductive 

electrode substrate, an ion-to-electron transduction layer, and an ISM layer. A variety of solid-

contact ISE materials have been studied as ion-to-electron transducers, mainly into two categories:13 

redox capacitance using electroactive materials, and double-layer capacitance using nanomaterials. 

ISMs typically contain an ionophore, lipophilic anionic sites, and a polymer matrix with its 

plasticizer. The polymer matrix is ion-permeable and enables strong mechanical stability to protect 

the ionophore and anionic sites from leaching and damage during operation. While primary ions 

could migrate into and out of the ISM, the ionophore binds to specific target ions across the 

solution/membrane interface. Due to such permselectivity, only the target ions can be transduced to 

the electrode substrate. Lipophilic anionic sites, also known as ion-exchangers, facilitate a charge 

neutral state of the ISM in order to attract ion movement. Meanwhile, the reference electrode is 

usually based on Ag/AgCl with saturated Cl– ions in a polymer matrix to keep a stable reference 

potential.14 

2.2.2 Electrochemical amperometric sensors 

Wearable amperometric sensors measure current signals of redox reactions during the target 

substrate to product process at a constant applied potential. Such electrochemical sensors typically 

consist of a 3-electrode configuration, in which a working electrode is immobilized with a target-

sensitive component, a counter electrode that forms a closed circuitry, and a reference electrode with 

a stable potential (Fig. 2-2b). The most common amperometric sensors are enzymatic sensors, in 

which the highly target selective and sensitive enzymes are immobilized onto the electrode surface 

in a hydrophilic porous matrix. For an ideal amperometric sensor, the current density is linearly 

proportional to the target concentration, allowing for immediate quantification for analytes. 

Enzymatic sensors consist of three generations depending on the direct/indirect detection and 

electron transfer mechanism. A 1st generation enzymatic sensor is developed by monitoring 

hydrogen peroxide (H2O2) in the enzymatic reaction at the electrode surface. Most enzymatic sensors 
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utilize oxidases, for instance, GOx complexed with coenzyme flavin adenine dinucleotide (FAD), or 

glucose dehydrogenase (GDH), in conjunction with cofactors (e.g., flavin adenine dinucleotide 

(FAD) and pyrroloquinoline quinone (PQQ)) are widely adopted for enzymatic glucose sensors.15 

GOx oxidizes glucose into gluconic acid in the presence of water and oxygen, and H2O2 is further 

oxidized, during which electron transfer is accomplished through cofactor FAD. 1st generation 

enzymatic sensing is an indirect monitoring method and the oxidase reaction relies on the use of 

oxygen as an electron acceptor. Once the oxygen concentration fluctuates in the solution, error 

readings can occur. 

To eliminate oxygen dependence, 2nd generation enzymatic sensors replace oxygen with a 

synthesized mediator as the electron acceptor, shuttling electrons from GOx to the electrode. A 

representative mediator is PB, which is widely adopted due to its high electrocatalyst of H2O2 

reduction in the presence of O2 relative to conventional electrodes (e.g., platinum) and its low redox 

potential at around 0 V.16 The 3rd generation enzymatic sensors are mediator-free and enable direct 

electron transfer between enzyme and electrodes, which reduces the influence of mediator 

deterioration. This is usually realized by using nanomaterials such as CNTs17,18 and MOFs.19  

2.2.3 Electrochemical direct oxidation 

In addition to chronopotentiometry and chronoamperometry, a number of electrochemical 

techniques, including square wave voltammetry,20 differential pulse voltammetry,21 fast-scan CV,22 

and LSV,23 have been developed to realize direct target detection and bypass the need of target-

sensitive components such as ionophores and enzymes. Square wave voltammetry and differential 

pulse voltammetry are among the most common approaches for detecting electroactive materials. 

Similar to amperometric configurations, differential pulse voltammetry/square wave voltammetry 

based sensing involves a 3-electrode system, including a working electrode with high material 

stability and high surface area, a counter electrode that forms a closed circuitry, and a reference 

electrode with a stable potential (Fig. 2-2c). A time-dependent staircase excitation waveform of 

pulsed step voltammetry was applied between the working and counter electrodes to increase the 

ratio between the faradaic and nonfaradaic currents, and the current response is recorded before and 

at the end of the pulsed voltage. Reduction occurs at the working electrode surface when the potential 

is lower than the redox potential, and at potentials higher than the redox potential, oxidation occurs.24 
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During redox reactions, electroactive materials lose or gain electrons accordingly, resulting in 

current response with a limit of detection down to nanomols.25 

2.3 Biochemical sensors for long-term wound monitoring 

2.3.1 Materials and methodology for sensor fabrication 

Tetrahydrofuran, dimethylformamide, PVB, sodium chloride, ammonium chloride, gelatin (from 

bovine skin), sodium thiosulfate pentahydrate, sodium bisulfite, ammonium ionophore I, aniline, 

chondroitin 4-sulfate, 1,4-Butanediol diglycidyl ether, EDOT, NaPSS, PU, GOx, uricase, chitosan, 

iron (III) chloride, potassium ferricyanide (III), paraformaldehyde, UA, multi-walled CNTs were 

obtained from Sigma Aldrich. LOx was purchased from Toyobo Corp. Hydrochloric acid, acetic 

acid, methanol, ethanol, acetone, urea, and dextrose (D-glucose), and Dulbecco's PBS were acquired 

from Fisher Scientific. The SEBS polymer was obtained from Asahi Kasei Corporation. TCP-25 

(GKYGFYTHVFRLKKWIQKVIDQFGE) (98% purity, acetate salt) and tetramethylrhodamine 

labeled TCP-25 were purchased from CPC Scientific. 

Enzymatic sensors preparation. To increase the electrode surface area for enzymatic sensors, a 

nanostructured Au film were electrodeposited on Au electrodes in a solution containing 50 mM 

chloroauric acid and 0.1 M HCl using multi-potential deposition for 1500 cycles (for each cycle, -

0.9 V for 0.02 s and 0.9 V for 0.02 s). For glucose and lactate sensors, a PB layer was deposited onto 

the Au electrodes by 10 cycles of CV (-0.2–0.6 V vs. Ag/AgCl) with a scan rate of 50 mV s−1 in a 

freshly made solution containing 2.5 mM FeCl3, 2.5 mM K3[Fe (CN)6], 100 mM KCl, and 100 mM 

HCl. For the UA sensor, a PB layer was deposited using the same approach except only one CV 

cycle of electrodeposition. Next, a chitosan solution was prepared by dissolving 1% chitosan in a 

2% acetic acid solution followed by vigorous magnetic stirring for 1 h. The resulting solution was 

then mixed with CNTs (2 mg ml−1) by ultrasonic agitation over 30 min to prepare a chitosan/CNTs 

solution. To prepare all enzymatic sensors, the chitosan/CNTs solution was mixed thoroughly with 

an enzyme solution (10 mg ml−1 in PBS, pH 7.2) with a volume ratio of 2:1. Next, 1 μl of the 

enzyme/chitosan/CNTs cocktail was drop-casted onto the PB/Au electrode and dried under 4 ˚C. 

Finally, the PU layer was prepared by drop-casting 4.5 µl 15 mg ml-1 PU solution in a solvent mixture 
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containing tetrahydrofuran and dimethylformamide (volume ratio 98:2) on the enzyme layer and air-

dried overnight under 4 ˚C. 

pH sensor preparation. The pH sensor was based on pH-sensitive polyaniline film deposited on a 

Au electrode. First, the working electrode was electrochemically cleaned via 10 cycles of CV with 

a scan rate of 0.1 V s-1 in 0.5 M HCl (-0.1–0.9 V). Next, the polyaniline electro-polymerization was 

performed in a 50 µl solution containing 0.1 M aniline and 1 M HCl via 12 CV cycles (-0.2–1.0 V) 

with a scan rate of 0.1 V s-1. The fresh solution was then used for another 12 CV cycles. Finally, pH 

electrodes were air-dried overnight.  

Ammonium sensor preparation. A PEDOT:PSS film was electrodeposited using constant current of 

0.2 mA cm−2 for 10 min in a solution prepared by dissolving ferrocyanide (30 mg), NaPSS (206.1 

mg), EDOT (10.7 μl) in 10 ml DI water. Next, an NH4
+ selective membrane cocktail solution was 

prepared by dissolving 1 mg ammonium ionophore I, 33 mg PVC, and 66 mg DOS in 660 μl 

tetrahydrofuran. A 1.5 μl of the cocktail solution was then drop-casted on the PEDOT layer to create 

an ammonium selective membrane and air-dried overnight. 

Reference electrode preparation. To prepare the Ag/AgCl reference electrode, silver was 

electrodeposited at −0.2 mA for 100 s using a plating solution containing 250 mM silver nitrate, 

750 mM sodium thiosulfate and 500 mM sodium bisulfite. 10 µl solution of 0.1 M FeCl3 was 

dropped on the Ag electrode for 90 s. Next, a solid-state reference membrane cocktail was prepared 

by dissolving 78.1 mg of PVB and 50 mg of NaCl in 1 ml of methanol followed by vigorous agitation 

in an ultrasonic bath for 30 minutes. Next, a 2.5 µl of the reference cocktail membrane was drop-

casted on the Ag/AgCl electrode surface and air-dried overnight. 

In vitro sensor characterization: The multiplex sensor patches were characterized to evaluate their 

sensitivity, stability, and reproducibility in solutions of target analytes in simulated wound fluid 

using a 1000C Multi-Potentiostat (8-channel) (CH Instruments, Inc., Austin, TX, USA). The 

simulated wound fluid solution was prepared by dissolving 584.4 mg NaCl, 336.0 mg NaHCO₃, 29.8 

mg KCl, 27.8 mg CaCl2, and 3.30 g BSA in 100 mL DI water. The enzymatic sensors were 

characterized chronoamperometrically in 0–40 mM glucose, 0–4 mM lactate, and 0–150 µM UA, at 
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a potential of 0 V. The pH sensor calibration was performed in McIlvaine buffer solutions. Both pH 

and ammonium sensors were characterized electrochemically using open circuit potential. 

2.3.2 Results and discussion 

The array of flexible biosensors was custom developed to allow real-time multiplexed monitoring 

of the biomarkers in complex wound exudate. The continuous and selective measurement of 

glucose, lactate, and UA is based on amperometric enzymatic electrodes with GOx, LOx, and 

uricase immobilized in a highly permeable, adhesive, and biocompatible chitosan film, 

respectively (Fig. 2-3A). Electrodeposited PB serves as the electron-transfer redox mediator for 

the enzymatic reaction which allows the biosensors to operate at a low potential (~0.0 V) to 

minimize the interferences of oxygen and other electroactive molecules. Due to the complex and 

heterogeneous composition of wound fluid (e.g., high protein levels, local and migrated cells, and 

exogenous factors such as bacteria) 26, previously reported enzymatic sensors suffer from severe 

matrix effects and fail to accurately measure the target metabolite levels in untreated wound fluid 

(Figs. A-8, A-9 and Note A-1). Moreover, high levels of metabolites in diabetic wound fluid, 

especially glucose (up to 50 mM), pose another major challenge to obtain linear sensor response 

in the physiological concentration ranges. To address these issues and achieve accurate wound 

fluid metabolic monitoring, increase sensor range, and minimize biofouling effects, we explored 

the use of an outer porous membrane that serves as a diffusion limiting layer to protect the enzyme, 

tune response, increase operational stability, as well as enhance the linearity and sensitivity 

magnitude of the sensor. We fabricated our enzymatic GOx/chitosan/MWCNTs glucose sensor 

with additional porous membrane coatings including chitosan, poly(ethylene glycol) diglycidyl 

ether (PEGDGE), Nafion, and PU (Fig. A-9). As expected, the addition of diffusion layers indeed 

improves the sensor’s linear range in simulated wound fluid. However, chitosan, PEGDGE, and 

Nafion coated sensors did not show reliable responses in wound fluid upon the addition of glucose. 

The PU-based enzymatic sensors showed the highest linearity over the wide physiological 

concentration range as well as high reproducibility in complex wound fluid matrix (Fig. A-10). 

The amperometric current signals generated from the PU-coated enzymatic glucose, lactate, and 

UA sensors are proportional to the physiologically relevant concentrations of the corresponding 

metabolites in simulated wound fluid with sensitivities of 16.34, 41.44, and 189.60 nA mM−1, 

respectively (Fig. 2-3B–D). Continuous monitoring of ammonium is based on a potentiometric 
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ISE where the binding of ammonium with its ionophore results in an electrode potential log-

linearly corresponding to the target ion concentration with a sensitivity of 59.7 mV decade-1 (Fig. 

2-3E and F). Similarly, the pH sensor utilizes an electrodeposited polyaniline film as the pH-

sensitive membrane and shows a sensitivity of 59.7 mV per pH (Fig. 2-3G). For all chemical 

sensors, a PVB-coated Ag/AgCl electrode was used as the reference electrode which provides a 

stable voltage independent of the variations of wound fluid compositions 27. A gold microwire-

based resistive temperature sensor is integrated as part of the sensor array and shows a sensitivity 

of approximately 0.21% °C-1 in the physiological temperature range of 25–45 °C (Fig. 2-3H). 

Considering that other electrolytes and metabolites present in wound fluid may negatively affect 

the sensor outputs, we examined the selectivity of the sensor array consisting of all six sensors. As 

illustrated in Fig. 2-3I, the addition of non-target electrolytes and metabolites did not trigger any 

substantial interference to the sensor response. Moreover, all biosensors showed high selectivity 

over non-specific compounds when evaluated in simulated wound fluid (Fig. A-11). It should be 

noted that while temperature has negligible effects on the potentiometric sensors, it significantly 

influences the performance of the enzymatic sensors due to the temperature-dependent enzyme 

activities (Fig. A-12). Moreover, our data show that the medium pH could also impact the 

performance of enzymatic sensors (Fig. A-13). With pH and temperature sensors integrated into 

the wearable patch, we are able to perform real-time adjustments and calibration of the enzymatic 

biosensors based on temperature and pH variations to realize accurate wound metabolite analysis.  

Owing to the soft SEBS substrate and the serpentine-like design of electronic interconnects, the 

wound patch showed excellent mechanical flexibility and stretchability, which are essential to 

maintaining good contact with the skin in vivo during the chronic wound healing process. 

Negligible alterations in the sensor responses before and under unidirectional tensile stretching 

(Fig. 2-3I) and after repetitive mechanical bending (Fig. A-14) were observed, indicating highly 

consistent sensor performance under various physical deformations.  

As the sensor patch is designed for long-term in vivo use, its cytocompatibility and 

biocompatibility are of great importance. Cell viability and metabolic activity of the cells seeded 

on a multiplexed sensor array were analyzed using a commercial live/dead kit, and PrestoBlue 

assay, respectively (Fig. 2-3K–N and Fig. A-15). The high cell viabilities shown in the 
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representative live/dead staining images of human dermal fibroblasts (HDF) and normal human 

epidermal keratinocytes (NHEK) cells (Fig. 2-3K–M and Fig. A-15) along with the consistently 

increased cell metabolic activities (Fig. 2-3N) over multi-day culture periods, indicate the high 

cytocompatibility of the soft sensor patch.  

 

Figure 2-3. Design and characterization of the sensor array for multiplexed wound analysis. 

(A to D) Schematic (A) and chronoamperometric responses of the enzymatic glucose (B), lactate 

(C), and UA (D) sensors in simulated wound fluid. Insets in B–D, the calibration plots with a linear 

fit. Sub, substrate; Prod, product; CE, counter electrode; WE, working electrode; RE, reference 

electrode; I, current. (E and F) Schematic (E) and potentiometric response (F) of an NH4
+ sensor in 

simulated wound fluid. Insets in F, the calibration plot with a linear fit. U, potential. (G) 

Potentiometric response of a polyaniline-based pH sensor in McIlvaine buffer. Insets, the calibration 

plot with a linear fit. (H) Resistive response of an Au-microwire-based temperature sensor under 
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temperature changes in physiologically relevant range in simulated wound fluid. Insets, schematic 

of a temperature sensor and the calibration plot with a linear fit. All error bars in A–H represent the 

standard deviation (s.d.) from three sensors. (I) Selectivity study of the multiplexed sensor array in 

simulated wound fluid. 10 mM glucose, 50 µM UA, 1 mM lactate, and 1 mM NH4
+ was added 

sequentially to the simulated wound fluid. J, Responses of the multiplexed sensor array before and 

during mechanical stretching (15%) in simulated wound fluid (pH 8) containing 10 mM glucose, 50 

µM UA, 1 mM lactate, and 0.25 mM NH4
+. (K and L) Representative live (green)/dead (red) images 

of human dermal fibroblasts (HDF) (K) and normal human epidermal keratinocytes (NHEK) (L) 

cells seeded on the multiplexed sensor array and in PBS (control) after 1-day and 7-day culture. 

Scale bars, 200 µm. (M and N) Quantitative analysis of cell viability images (M) and cell metabolic 

activity (N) over a 7-day period post culture. Error bars represent the s.d. (n=4). 

2.4 Biochemical sensors for long-term sweat monitoring 

We introduce a general approach to prepare highly stable and sensitive electrochemical biosensors, 

which utilizes analogous composite materials for stabilizing and conserving sensor interfaces. The 

obtained biochemical sensors achieved a record-breaking long-term stability of more than 100 hours 

of continuous operation with minimal signal drifts (amperometric signals decaying less than 0.07% 

h−1 and potentiometric signals drift less than 0.04 mV h−1), which greatly exceeds those obtained 

with previous widely adopted wearable sweat sensors. 

2.4.1 Materials and methodology for sensor fabrication 

The SEBS was provided by the Asahi Kasei Corporation. UA, sodium tetraphenylborate, and 

glutaraldehyde (25% aqueous solution) were purchased from Alfa Aesar. Agarose, carbachol, BSA, 

gold chloride trihydrate, hydrochloric acid, iron(III) chloride, potassium ferricyanide (III), potassium 

ferrocyanide (IV), PVB, PVC, DOS, EDOT, NaPSS, aniline, L-lactic acid, sodium ionophore X, 

sodium tetrakis[3,5-bis(trifluoromethyl) phenyl] borate, valinomycin, nonactin, tetrahydrofuran, 

toluene, GOx from Aspergillus niger (216 U mg−1), uricase from Bacillus fastidiosus (15.6 U mg−1) 

were purchased from Sigma-Aldrich. Methanol, ethanol, sodium chloride, potassium chloride, nickel 

chloride, urea, L-ascorbic acid, dextrose (D-glucose) anhydrous, PBS were purchased from Thermo 

Fisher Scientific. LOx (106 U mg−1) was purchased from Toyobo Co. Medical tapes were purchased 
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from 3M (468 MP). PET films (12 μm thick) were purchased from McMaster-Carr. Polyimide (PI-

2611) was purchased from HD MicroSystems, Inc. PDMS (SYLGARD 184) was purchased from 

Dow Corning. Polyimide film (12.5 μm) was purchased from DuPont. STAI questionnaire license 

was purchased from Mind Garden, Inc. 

Enzymatic sensor preparation: An electrochemical workstation (CHI 760E, CH Instruments, USA) 

was used to prepare enzymatic biosensors. Pulsed voltammetry from -0.9 V to 0.9 V (3000 cycles in 

total) in 50 mM HAuCl4 was used to first deposit Au nanoparticles (AuNPs) on the carbon electrode 

at a signal frequency of 50 Hz, in order to increase surface area and enhance sensitivity. A thin PB 

transducer layer was deposited by applying cyclic voltammetry for 2 cycles for glucose and UA, and 

4 cycles for lactate (from -0.2 V to 0.6 V with a scan rate of 50 mV s−1) in a fresh solution consisting 

of 2.5 mM FeCl3, 2.5 mM K3Fe(CN)6, 100 mM KCl and 100 mM HCl. The electrodes were then 

deposited with a NiHCF protection layer by applying cyclic voltammetry for 50 cycles (from 0V to 

0.8 V with a scan rate of 100 mV s−1) in a fresh solution containing 0.5 mM NiCl2, 0.5 mM 

K3Fe(CN)6, 100 mM KCl and 100 mM HCl. The electrodes were then dried before drop-casting 

enzyme cocktail. For all three amperometric enzymatic sensors, the enzyme cocktails were prepared 

as follows: BSA (1% w/w), 2.5% glutaraldehyde (2% v/v), and 10 mg mL−1 enzyme (4% v/v) was 

mixed in 1 mL PBS. 0.5 μL enzyme cocktail was drop-casted onto each enzymatic sensor electrode 

surface and then dried at 4 ˚C overnight. For the lactate sensor, a limit diffusion membrane was 

further drop-casted by applying 0.5 μL solution containing 17 mg PVC and 65 mg DOS in 660 μL 

tetrahydrofuran. 

Reference electrode preparation: To prepare the shared reference electrode, 10 μL of 0.1 M FeCl3 

solution was drop-casted onto the Ag surface for 20 s and rinsed with deionized water, and then 1.5 

μL of PVB reference cocktail was applied on the Ag/AgCl surface by dissolving 79.1 mg PVB and 

50 mg NaCl into 1 mL methanol and left drying overnight. 

ISE sensors preparation: The Na+ selective cocktail was prepared as follows: 1 mg of Na ionophore 

X, 0.55 mg sodium tetrakis[3,5-bis(trifluoromethyl) phenyl] borate, 30 mg PVC, 30 mg SEBS, and 

65 mg DOS were dissolved in 660 μL tetrahydrofuran. The K+ selective cocktail was prepared as 

follows: 2 mg of valinomycin, 0.5 mg sodium tetraphenylborate, 30 mg PVC, 25 mg SEBS, and 70 

mg DOS were dissolved in 350 μL tetrahydrofuran. The NH4
+ selective cocktail was prepared as 
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follows: 1 mg of nonactin, 30 mg PVC, 30 mg SEBS, and 65 mg DOS were dissolved in 660 μL 

tetrahydrofuran. The inkjet carbon electrode was activated in 0.5 M HCl with cyclic voltammetry 

scans of 10 cycles (-0.1 V to 0.9 V with a scan rate of 100 mV s−1). The electrodes were then baked 

in a vacuum oven at 120 ℃ for 1 hour to remove moisture. 2 μL of Na+ selective cocktail, 2 μL of 

K+ selective cocktail, and 2 μL of NH4
+ selective cocktail was drop-casted onto the carbon electrode 

and dried overnight. 

In vitro sensor characterization: To obtain the best performance for long-term continuous 

measurements, all sensors were placed in a buffered solution containing 100 µM glucose, 5 mM 

lactate, 25 µM UA, 40 mM NaCl, 8 mM KCl, 2 mM NH4Cl for 30 minutes to minimize the potential 

drift. All the in vitro biosensor characterizations were performed with cyclic voltammetry and 

amperometric i-t through a multi-channel electrochemical workstation (CHI 1430, CH Instruments, 

USA). For in vitro enzymatic sensor characterizations, analyte solutions were prepared in PBS, with 

glucose ranging from 0−100 µM, lactate ranging from 0−20 mM, and UA ranging from  0−100 µM. 

For in vitro ISE sensor characterizations, analyte solutions were prepared in deionized water, with 

NaCl ranging from 10−160 mM, KCl ranging from 2−32 mM, NH4Cl ranging from 0.5−8 mM. The 

enzymatic sensors were characterized chronoamperometrically at a potential of 0 V, and ISE sensors 

were characterized using open circuit potential measurement. Both potentiometric and 

chronoamperometric responses were set as 1 s sampling interval, except for long-term monitoring 

where the sampling interval was set as 10 s to minimize data overload. To test the pH influence on 

PB-NiHCF-based enzymatic biosensors, McIlvaine buffer solutions were prepared and calibrated 

containing 0–100 μM H2O2. Temperature influence characterizations were carried out on a ceramic 

hot plate (Thermo Fisher Scientific).  

To characterize the stability of the PB and PB-NiHCF electrodes, dissolved Fe2+ concentrations were 

determined by ICP–MS using an Agilent 8800. The sample introduction system consisted of a 

micromist nebulizer, scott type spray chamber and fixed injector quartz torch. A guard electrode was 

used and the plasma was operated at 1500 W. All elements were measured in Helium MS/MS mode. 

The morphology of materials was characterized by field-emission SEM (Nova 600). Cross-sectional 

lamella was prepared by standard focus ion beam cutting (FIB, Nova 600). The STEM 
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characterizations and EDS analyses were performed using a JEOL JEM-ARM300CF S/STEM 

system (300 keV). 

2.4.2 Results and discussion 

A number of electrochemical sensing strategies based on enzymes7, ionophores10, molecularly 

imprinted polymers23, aptamers20, and antibodies28 are reported, where the majority of existing 

wearable chemical sensors are primarily based on amperometric enzymatic sensors or potentiometric 

ISEs as these sensors could offer real-time continuous monitoring with high temporal resolution. 

However, one main bottleneck for the practical applications of these sensors is their limited operation 

lifetime and long-term stability during continuous wearable sensing. Large sensor drifts are evident 

when they are used in body fluids which substantially hinder the long-term continuous usability of 

wearable chemical sensors.  

Most wearable enzymatic biosensors are based on PB, which serves as an efficient electron-transfer 

mediator with a low redox potential of around 0 V. However, PB-based biosensors suffer from poor 

stability during long-term use in biofluids because PB degrades in neutral and alkaline solutions as 

the hydroxide ions (OH−), a product of H2O2 reduction, can break the Fe−(CN)−Fe bond (Note A-

2). In order to stabilize PB while retaining its outstanding catalytic activity, we utilize a PB-analogue 

NiHCF with a similar zeolitic crystal structure that is catalytically inactive but forms a stabilized 

solid solution composite, protecting the PB sensor interface (Fig. 2-4a). Additionally, the enzymes 

were protected in a glutaraldehyde-crosslinked BSA matrix. To fabricate enzymatic sensors, AuNPs 

were first electrodeposited onto an inkjet-printed inert carbon electrode to possess a high 

electroactive area for sensitive electrochemical sensing followed by PB-NiHCF deposition. STEM 

and EDS analyses (Fig. 2-4b and Fig. A-16) indicate that NiHCF forms a thin protective layer on 

PB with an obscure boundary. Our electrochemical characterizations confirmed that, compared to 

PB which suffered from rapid degradation during electrochemical measurement and other transition 

metal hexacyanoferrates (i.e., PB-CoHCF and PB-CuHCF), PB-NiHCF could withstand pH 

corrosion and maintain most consistent electrochemical catalytic activity (Figs. A-17 to 19). This 

could be attributed to two mechanisms (Note A-2): 1) nickel is inert compared with iron and can 

withstand OH− group corrosion (Fig. A-20); 2) Ni ion has a smaller ionic radius compared to other 

transitional metal ions (such as Co and Cu ions), which is preferred to withstand ion insertion (Fig. 
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A-21). Both mechanisms were further supported with SEM characterizations of the electrodes (Fig. 

A-22) and ICP–MS analysis of the dissolved Fe2+ from the electrodes (Fig. A-23) before and after 

electrochemical tests. These results indicated that PB dissolved after tests under different pHs and 

repetitive CV scans, while NiHCF didn’t show any substantial degradation and maintained the 

highest stability among the transition metal hexacyanoferrates for PB stabilization. 

 

Figure 2-4. Design and characterization of highly robust biochemical sensors. a, Mechanism of 

enzymatic metabolite sensors. GA, glutaraldehyde. b, Cross-sectional STEM and EDS images of the 

PB-NiHCF interface. Scale bar, 100 nm. c, Operational long-term stability of enzymatic glucose, 

lactate, and UA sensors in PBS and sweat samples for 30 hours. Glu, glucose; Lac, lactate. d, 

Mechanism of ISE sensors. e, SEBS-PVC ratios in regards to sensor stability. Insets, contact angle 

measurements for different SEBS ratios. f, Operational long-term stability of ion-selective Na+, K+ 

and NH4
+ sensors in standard solutions and sweat samples for 30 hours. 

Highly stable, continuous, and selective monitoring of sweat glucose, lactate, and UA was realized 

amperometrically, and a linear response between current output and target concentrations was 

obtained for all three sensors in physiologically relevant concentration ranges over a 25-hour 

evaluation period (Fig. 2-4c). The sensitivities for glucose, lactate, and UA sensors were 33.65 nA 

µM-1 cm-2, 185.56 nA mM-1 cm-2, and 26.36 nA µM-1 cm-2, respectively. These sensors also showed 

a record-breaking long-term stability of more than 100 hours of continuous operation in PBS 

solutions and untreated human sweat samples, which greatly exceeded those obtained with previous 

widely adopted wearable sweat sensors (Figs. A-24 and 25, and Table A-1). It should be noted that 

as sweat lactate is present in high concentrations (up to 60 mM), an additional diffusion-limited 
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PVC/DOS membrane was introduced on top of the enzyme film to achieve a wide linear range while 

maintaining high sensor stability (Fig. A-26). 

Existing wearable ISEs are based on PVC/DOS membranes and are plagued with a potential drift of 

typically ~2 mV h−1 over time, which is attributed to ionophore leaching and water formation below 

the ISM29. To address this issue during long-term operation, we adopted another analogous 

composite materials design strategy by introducing SEBS into the PVC system, which shares a 

similar long-chain structure but holds more methyl and phenyl groups at the sensor interface to 

promote hydrophobicity and mechanical strength (Fig. 2-4d). High hydrophobicity suppresses 

ionophore leaching and prevents water layer formation at the interface. To fabricate ISEs, the inert 

yet high surface area nature of inkjet-printed carbon NP electrodes was utilized without the need to 

deposit additional ion-charge transducer materials. ISM based on the PVC-SEBS matrix were 

dropcasted onto the carbon electrode, and the ratio of SEBS-PVC was evaluated to identify the 

optimal stability (Fig. 2-4e, Note A-3). The optimized ISEs could obtain prolonged stability of 100 

hours of continuous operation in both standard solutions and human sweat samples with the potential 

value decaying less than 0.04 mV h−1 (Figs. A-27 and A-28, and Table A-2). A logarithmic-linear 

relationship between the potentiometric output of Na+, K+ and NH4
+ with near-Nernstian sensitivities 

of 58.9, 60.6 and 61.2 mV per decade, respectively, was identified during a 25-hour prolonged sensor 

evaluation in physiologically relevant ranges (Fig. 2-4f and Fig. A-29).  

With an analogous composite materials’ approach, our sensors demonstrated high reproducibility 

(Fig. A-30), selectivity (Fig. A-31), and long-term continuous operation stability in both standard 

solutions and untreated human sweat over multiple days (Figs. A-24, 25, 27 and 28). Such sensor 

performance, to the best of our knowledge, was unprecedented in wearable sweat sensing (Tables 

A-1 and 2). The low-cost mass-producible sensor patch is designed to be disposable after use: the 

anticipated wearable usage time for each patch is 24–48 hours and the users could easily replace the 

sensor patch. Thus, our sensors can provide a stable response longer than the expected wearable 

usage time. The general material strategy demonstrated here, based on electrodes prepared by inkjet 

printing, can be applicable to electrodes manufactured by other scalable technologies including laser 

engraving and thin-film evaporation (Fig. A-32). In addition, the sensor preparation approach here 

is also not limited to the six sensors we proposed in this study; it can serve as a universal and readily 
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reconfigurable method for other enzymatic and ionophore-based biosensors toward a broad range of 

practical applications. 

2.5 Noninvasive sweat induction and microfluidic sweat collection 

2.5.1 Sweat induction through iontophoresis 

Iontophoresis gel fabrication: Both anode and cathode of iontophoresis gel were prepared by mixing 

agarose (3% w/w) into deionized water and then heated to 250 ℃ under constant stirring until the 

solution became homogenous. The solution was then cooled down to 165 ℃, during which 1% w/w 

carbachol and 1% w/w NaCl were added to the anode and cathode solution, respectively, and mixed 

thoroughly. The solution was further cooled down and pooled into the iontophoresis gel reservoirs 

41.95 mm2 for anode and 28.19 mm2 for cathode, respectively. Together with iontophoresis gels, 

electrolyte gel (SignaGel, Parker laboratories, INC.) was casted onto the GSR electrodes before 

placing the CARES device on human subjects. 

To realize practical molecular biomarker monitoring without the need for vigorous exercise, 

miniaturized iontophoresis electrodes coated with carbagels were incorporated into the CARES for 

autonomous, local sweat induction (Fig. 2-1a). Sweat can be continuously secreted from the 

surrounding glands over a prolonged period of time due to the nicotinic effects of carbachol 

(transdermally delivered for 5 minutes via a small 50 µA current). Efficient sampling was obtained 

through custom-developed microfluidics for real-time bioanalysis with high temporal resolution 

(Fig. 2-1b, Fig. A-33 and 34). 

2.5.2 Microfluidic evaluation in vitro 

On-body flow tests were conducted to evaluate the sweat flow of dual-reservoir designs. An 

assembled microfluidic patch pre-deposited with black dye in the sweat reservoir was attached to 

a subject’s forearm, followed by in situ sweat induction using iontophoresis. Experimental flow 

tests were also conducted to evaluate the dynamic response of sensors using a syringe pump (78-

01001, Thermo Fisher Scientific). Different fluids were injected into the pre-assembled CARES 

device with a varying flow rate of 1−4 µL min−1 (Fig. A-34). 
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2.6 Continuous daily multimodal monitoring 

Long-term multimodal sensor evaluation during daily activities: A 24-hour continuous monitoring 

of physiological and biochemical signals was recorded via the CARES device. 5-minute periodical 

iontophoresis sweat induction was performed at 7:00 am, 9:30 am, 12:30 pm, 4:00 pm, 7:00 pm, 

11:00 pm, 1:30 am, and 4:30 am. The physiological data was collected continuously while data from 

the biosensors were collected 10 minutes after iontophoresis. 

Data collection in real life activities: The subject was asked to first perform in-door activities, 

including relaxation on the phone, playing a long-term VR game (Superhot VR) by wearing a VR 

headset, and reading journal papers. The subject then performed outdoor activities, including running 

and walking recovery. The STAI-Y questionnaire was used to assess state anxiety levels during each 

activity. 

Owing to the unprecedented long-term stability of wearable sweat biosensors, the CARES enables 

long-term real-time continuous monitoring of physicochemical biomarkers. As illustrated in Fig. 2-

5, the CARES can successfully record the dynamic changes of metabolites and vital signs over 24-

hours of activity, involving casual and vigorous exercise, dietary intakes, lab work, relaxing 

entertainment, and sleep. Glucose and UA levels spiked after food intake, indicating rapidly 

increased metabolic activities. During vigorous exercise, substantial increases in vascular activity 

and skin electrolyte/conductivity were observed, and stable output for both metabolites and vital 

signs were detected during sleep at night. Such powerful capabilities of continuous multimodal 

monitoring will enable a number of personalized healthcare and human performance monitoring 

applications.  
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Figure 2-5. Continuous 24-hour multimodal monitoring during a subject’s daily activities. IP, 

iontophoresis; HR, heart rate; bpm, beats per minute. 
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Note A-1. Optimization of enzymatic sensors for wound fluid analysis 

The past decades have witnessed tremendous success in developing enzymatic sensors (e.g., 

continuous glucose monitors) for continuous monitoring of circulating metabolites in blood, 

interstitial fluid (ISF), or non-invasively accessible alternative fluids (e.g., sweat, saliva, and tears). 

However, complex and heterogeneous composition of wound fluid (e.g., high protein levels, local 

and migrated cells, and exogenous factors such as bacteria) leads to severe and unique matrix 

effects for previously reported enzymatic sensors and failure in accurate measurement of the target 

metabolite levels in untreated wound fluid. There are few reports on biosensors that are able to 

perform continuous long-term wound fluid metabolic analysis 1.  

Taking glucose sensors as the exemplar, we examined a number of glucose sensor configurations 

as demonstrated in Figs. A-8 and 9. Instable or non-responsive glucose sensor responses were 

commonly observed in simulated wound fluid samples or wound fluid samples collected from 

diabetic rats. This indicates that previously reported glucose sensors suffer from severe matrix 

effects and fail to accurately measure the target metabolite levels in untreated wound fluid. 

Moreover, high levels of metabolites in diabetic wound fluid, particularly glucose (up to 50 mM), 

pose another major challenge to obtain linear sensor response in the physiological concentration 

ranges. 

Specifically, various glucose sensors with PB as the redox mediator were prepared based on the 

reported methods. Glucose sensors were first prepared by modifying GOx, GOx/BSA, 

GOx/polyaniline (PANI), and GOx/chitosan on the top of the Au/PB electrodes. The first three 

types showed a poor linear relationship between amperometric responses and the physiological 

diabetic glucose concentration ranges (up to 50 mM) in simulated wound fluid. In contrast, the 

GOx/chitosan/MWCNTs-based sensor showed good linear response, potentially due to the limited 

glucose diffusion in the chitosan matrix. All these sensors did not respond to the addition of glucose 

in wound fluid, indicating the severe matrix influences of complex wound fluid to enzymatic sensor 

performance. 

In order to increase sensor range and minimize biofouling effects, we explored the use of an outer 

porous membrane that serves as a diffusion limiting layer to protect the enzyme, tune response, 



 

 

39 

increase operational stability, as well as enhance the linearity and sensitivity magnitude of the 

sensor. We next fabricated our enzymatic GOx/chitosan/MWCNTs glucose sensor with additional 

porous membrane coatings including chitosan, poly(ethylene glycol) diglycidyl ether (PEGDGE), 

Nafion, and PU (Fig. A-9). As expected, the addition of diffusion layers indeed improves the 

sensor’s linear range in simulated wound fluid. However, chitosan, PEGDGE, and Nafion coated 

sensors did not show good response in wound fluid upon the addition of glucose. We observed 

that PU-based sensor showed the highest linearity over the wide physiological concentration range 

as well as high reproducibility in complex wound fluid matrix (Fig. A-10).  

The optimized enzymatic sensors with PU coating possess several critical design features to 

operate in the wound bed environment for a prolonged period. First, enzymes such as GOx are 

specific for the target analyte in the wound fluid, which minimize the interference of the other 

biochemicals including electrolytes and metabolites. Second, the chitosan/CNT layer allows 

efficient electron transfer but reduces electrode poisoning due to interferences from undesired 

exogenous biochemicals in the wound fluid. Third, the PU layer improves long-term stability of 

sensor for accurate and stable in vivo function. In addition, PU’s biocompatibility improves in vivo 

durability of the sensor and eliminates safety concerns. Moreover, the PU mass transport limiting 

membrane has excellent mechanical strength which improves the sensor physical stability.  

Note A-2. Mechanism of PB-NiHCF based enzymatic biosensors 

PB is a highly efficient and selective mediator of hydrogen peroxide. The oxidation of D-(+)-glucose, 

L-lactate, and UA can be catalyzed by their corresponding enzyme GOx, LOx, and uricase (UOx), 

respectively: 

D-Glucose + H2O + O2 
GOx
�� D-Gluconic Acid + H2O2 (1) 

L-Lactate + H2O + O2 
LOx
�� Pyruvate + H2O2 (2) 

UA + H2O + O2 
UOx
�� Allantoin + CO2 + H2O2 (3) 

The H2O2 is then reduced by the reduced form of PB, known as Prussian white (PW): 
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Fe4
III[FeII(CN)6]3(PB) + 4e− + 4K+ → K4Fe4

II[FeII(CN)6]3(PW) (4) 

K4Fe4
II[FeII(CN)6]3(PW) + 2H2O2 + 4H+ → Fe4

III[FeII(CN)6]3(PB) + 4H2O + 4K+. (5) 

In neutral and alkaline solutions, however, Equation (5) becomes: 

K4Fe4
II[FeII(CN)6]3(PW) + 2H2O2 → Fe4

III[FeII(CN)6]3(PB) + 4OH− + 4K+. (6) 

Conventional PB-based biosensors suffer from poor stability because PB gradually degrades in 

neutral and alkaline solutions as the hydroxide ions (OH−), which is a product of H2O2 reduction, 

can break the Fe−(CN)−Fe bond of PB lattice2: 

Fe4
III[FeII(CN)6]3 + 12OH− → 4Fe(OH)3 + 3[FeII(CN)6]4−.  (7) 

Therefore, NiHCF is introduced, which is catalytically inactive compared with PB (FeHCF) but 

protects the PB NPs from degradation. Of all typical transitional metals (Fe, Co, Ni, Cu, Zn), their 

chemical inertness follows by Zn < Fe < Co < Ni < Cu. NiHCF has been reported to be chemically 

inert and mechanically stable3. Both PB and NiHCF belong to the metal hexacyanoferrate group, 

which share a similar zeolitic crystal structure and thus could form a composite without significant 

lattice mismatch (Figs. A-20 and A-21). Our electrochemical and SEM characterizations of the PB, 

PB-NiHCF, PB-CoHCF, and PB-CuHCF electrodes further confirmed the high electrochemical 

stability of the NiHCF (Figs. A-17 to A-19 and A-22). Upon cyclic oxidation and reduction of the 

PB, K+ ions from the electrolyte solution could incorporate into the interstitial position, while Ni2+ 

ions could substitute nitrogen-coordinated Fe3+ ions due to the wide and negatively charged zeolitic 

channels in the metal hexacyanoferrates crystal lattice, forming substitutional nickel-ion 

hexacyanoferrate (NiFe-HCF): 

Fe4
III[FeII(CN)6]3 + (3+3x)K+ + 3xNi2+ + 3e− → 3K1+xNixFe1-x

III[FeII(CN)6] + 3xFe3+. (8) 

Further deposition will form a thin protective NiHCF layer on the NiFe-HCF surface and cover the 

PB redox center. While the inertness of nickel may be unfavorable for hydrogen peroxide 

transduction, the electronegativity of Ni2+ ion is lower than that of Fe3+, and nickel substitution would 

produce an inductive effect to shift electron cloud of Fe-C, raising C-coordinated Fe ions to a more 

positive valence state and enhancing electrochemical activity as compensation 4. Hence the PB-
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NiHCF bilayer retained catalytic activity inherent to conventional PB, while demonstrating excellent 

long-term stability.  

Besides electrochemical inertness of nickel, the substitution of Fe with Ni increases the stability of 

the PB lattice framework through zero-strain characteristics during ion insertion/extraction 

processes5. During long-term operation, alkali-metal ions/electrolytes will insert into the subcubes 

of the lattice as the transition-metal ions change oxidation state6. Conventional PB suffers from 

electrolyte ions as the crystal structure can distort from cubic to a less symmetric rhombohedral or 

monoclinic geometry (Fig. A-21)5. The general electrochemical equation for the insertion of an alkali 

metal ion into PB follows: 

Fe4
III[FeII(CN)6]3 + 4A+ + 4e− → A4Fe4

III[FeII(CN)6]3 (9) 

where A is the dominant alkali-metal ions in sweat (i.e., Na+, K+). The ion and water insertion process 

may lead to a large volume variation to accommodate structure change, causing the distortion of the 

PB lattice, thus reducing structural stability. After nickel substitution, studies have found that the 

ionic radius of ferrocyanide Fe4
III[FeII(CN)6]3 decreases from 4.55 Å to 4.32 Å in Ni[Fe(CN)6]4. 

Additionally, of all typical transitional metal ions, a smaller ionic radius is preferred to withstand ion 

insertion, where Ni2+ < Cu2+ (0.73 Å) < Co2+ (0.745 Å). Therefore, NiHCF was proved the best 

candidate among the metal hexacyanoferrate group for PB stabilization in our study (Fig. A-19). The 

reduced lattice constant after Ni substitution could withstand ion and water insertion and reinforce 

the lattice effectively, suppressing large structure change during the ion migration process. PB-

NiHCF has been reported to exhibit a low mechanical strain with small lattice distortion during ion 

insertion processes7, indicating high reversibility of rhombohedral-cubic transition and enhanced 

cycling performance for long-term stability5. 

Note A-3. Mechanism of SEBS/PVC/DOS based ISEs 

Our solid contact ISEs (SC-ISEs) consist of inkjet-printed carbon and ISM directly on top. The ISM 

contains ionophore, lipophilic anionic sites, membrane plastics, and its plasticizer. The target ion (I+) 

can reversibly bind to an ion-selective ionophore (L) at the membrane/solution interface in the 

following process according to the phase-boundary potential model, where (aq) and (m) represent 

aqueous phase and membrane phase, respectively8: 
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I+(aq) + L(m) ⇄ I+L(m). (1) 

I+ and lipophilic anionic sites R− (also known as ion-exchangers) could also reversibly transfer across 

the carbon/membrane interface, so that electrons could flow to the conductive substrate in the local 

faradaic process8. The free flow of lipophilic anionic sites ensures a constant ion activity in the ISM 

phase. When the target ion concentration changes, such equilibrium at ISM/solution interface will 

change its potential accordingly following the well-known Nernst equation: 

E = E0 –  RT
F

ln
[I+]aq

[I+]ISM
, (2) 

where E0 is the standard ion transfer potential, R is universal gas constant, T is temperature, F is 

Faraday constant. The ion-to-electron transduction process is generally realized by either conductive 

polymers through redox capacitance or functional materials through an electrical double layer 

capacitance mechanism8. Here, the ISMs are directly placed on top of the inkjet carbon without the 

usage of traditional conductive polymers as SC layers. 

The potential drift ∆E at the carbon/ISM interface can be described as follows: 

∆E = ∆Q
C

, (3) 

where ∆Q is the transported charge and C is the double-layer capacitance. In order to minimize such 

potential drift and approach the theoretical Nernst limit, it can be seen that capacitance C needs to 

be sufficiently large. The inkjet carbon NPs we used have a high surface contact area with the ISM, 

which could form a big double-layer capacitance at the carbon/ISM interface. The cations in the ISM 

will attract the electrons in the carbon to establish an electrical double layer, and the higher interfacial 

contact area, the more efficient this ion-to-electron transduction will be. The natural chemical 

inertness of carbon also enables an unpolarizable interface to provide a stable phase boundary 

potential at the SC/ISM interface.  

The applications of ISEs typically depend on their potential stability. The potential drifts of ISEs can 

be attributed to a number of factors including irreversible ion-to-electron conversion during a number 

of charging/discharging cycles, leaching of ionophore into test solutions and ISM properties. For the 
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ISM membrane, a PVC/DOS matrix has been widely used due to its characteristically faster ion 

diffusion coefficients on the order of 10−8 cm2 s−1, which facilitates fast ion partitioning between the 

organic and aqueous phase9. However, pure PVC/DOS-based ISEs may suffer leaching of ionophore 

and other components from the membrane phase into sample solution as a result of a big diffusion 

coefficient, which could result in a potential drift of ~2 mV h−1 over time10, and thus is unfavorable 

for long-term daily monitoring. These leached materials could cause potential inflammatory 

responses for wearable and in vivo applications as well8. Previous studies have introduced the 

addition of silicone rubber or plasticizers with high lipophilicity into the ISM to improve analytical 

performance and reduce biofouling11, but the potential drift was still high in their studies. Here, we 

introduce thermoplastic elastomer SEBS into the ISM with superior reproducibility and stability. 

The added stretchable SEBS elastomer could significantly improve the mechanical properties, and 

promoted the adhesion between ISM and underlying electrode without delamination. The SEBS is 

highly lipophilic, which will suppress the leaching of active components from the membrane. Such 

hydrophobicity will also inhibit water formation at the SC/ISM interface, which is the main reason 

for the SC-ISEs drift and failure due to the intrinsic water uptake and diffusion in the polymeric 

membrane8. In addition to increasing mechanical flexibility and preventing water penetration and 

leaching, the SEBS polymer has a small ion diffusion coefficient and water diffusion coefficient on 

the order of 10−13 cm2 s−1 12. Such low diffusion coefficient on the one hand ensures that the ion 

concentration within the membrane is relatively stable over a dynamically changing medium, but on 

the other hand may cause a significantly longer conditioning treatment before equilibrium for pure 

SEBS-based ISM. Mixing SEBS together with the PVC/DOS can retain the fast ion diffusion 

coefficients of PVC/DOS matrix relatively and only requires pre-conditioning within an hour, while 

prolonging sensor lifetime significantly with a negligible drift of merely 0.04 mV h−1 over time. 

Table A-1. List of sweat metabolite sensors for on-body monitoring. 

Analyte Analytical 
method     

Detection 
element Layers   Stability   Stability 

in sweat   
Refer
ence 

Glucose, 
lactate 

Electrochemical-
amperometry GOx, LOx Au/PB/chitosan-CNT-

GOx, LOx 2 hours 2 hours 10 

Glucose Electrochemical-
amperometry GOx 

Au/PB/NiHCF/agaros
e-chitosan-glycerol-
GOx 

20 hours 1.25 
hours 

13 

Glucose Electrochemical-
amperometry GOx Graphene/PB/GOx/N

afion 6 hours N/A 14 
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Glucose, 
lactate 

Optical-
colorimetry GOx, LDH GOx with iodide, 

LDH with diaphorase 6 hours N/A 15 

Glucose Electrochemical-
amperometry GOx GOx/carbon PB 1 hour 1 hour 16 

Glucose Electrochemical-
amperometry GOx Au/ZnO/DSP/GOx 

antibody/GOx 4 hours 4 hours 17 

Lactate Electrochemical-
amperometry LOx 

Carbon fiber/CNT-
TTF/BSA-
LOx/chitosan 

8 hours 1 hour 18 

Lactate Electrochemical-
amperometry LOx Graphite-PB/BSA-

LOx/chitosan 2 hours 2 hours 19 

UA 
Electrochemical-
differential pulse 
voltammetry 

Oxidation 
current peak 

Laser-engraved 
graphene 2 hours 2 hours 20 

Glucose, 
lactate, 
UA 

Electrochemical-
amperometry 

GOx, LOx, 
Uricase 

Carbon/PB-
NiHCF/BSA-GA-
GOx, LOx, uricase 

100 hours 100 hours This 
work 

LDH, lactate dehydrogenase; GA, glutaraldehyde. 
 
Table A-2. List of sweat electrolyte sensors for on-body monitoring. 

Analyte Substrate Functional 
materials ISM matrix        Stability   Stability in 

sweat 

Refe
renc
e 

Na+ Screen-
printed carbon Carbon PVC/DOS 2.8 mV h−1 1 hour 21 

Na+, K+ Au PEDOT:PSS PVC/DOS 2–3 mV h−1 2 hours 10 

K+ Glassy carbon PEDOT:PSS Silicone 
rubber/PVC/DOS 0.14 mV min−1 N/A 11 

K+ Screen-
printed carbon 

Ferrocyanide/P
EDOT:PSS PVC/DOS 0.8 mV h−1 N/A 22 

K+ Carbon/Graph
ite 

Single-walled 
CNT 

Poly(n-
butylacrylate) 0.19 mV h−1 N/A 23 

Na+ Au Au 
nanodendrites PVC/DOS 0.22 mV h−1 2 hours 24 

K+, 
Ca2+, 
H+ 

Graphene 
paper Graphene paper PVC/o-NPOE 1.92–2.27 mV 

h−1 N/A 25 

NH4+ Screen-
printed Ag 

Screen-printed 
carbon PVC/o-NPOE N/A 1 hour 26 

Na+, K+ 
PB analogues 
(Na-NiHCF, 
K-FeHCF) 

PB analogues 
(Na-NiHCF, K-
FeHCF) 

PVC/o-NPOE or 
PVC/DOS 

10–50 mV 
day−1 N/A 27 

Na+, 
K+, 
NH4+ 

Inkjet carbon Carbon NPs SEBS/PVC/DOS 0.04 mV h−1 100 hours This 
work 

LEG, laser-engraved graphene; o-NPOE, o-nitrophenyl octyl ether. 
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Figure A-1. Long-term stability of capacitive pressure sensor. a, A repetitive pressure-loading 

test involving 5,000 pressing-releasing cycles was performed. b,c, Dynamic pressure sensor 

response during 600−606 cycles (b) and 4,600−4,606 cycles (c) of pressing-releasing. 

 

Figure A-2. Response of the temperature (T) sensor in the physiological temperature range. 
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Figure A-3. Temperature influence on enzymatic sensors. a–f, Calibration of glucose (a,b), 

lactate (c,d), and UA (e,f) biosensors under physiologically relevant range of temperature.  
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Figure A-4. Temperature calibration of the wearable enzymatic biosensors during the on-body 

experiments. 
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Figure A-5. Performance of PB-NiHCF electrodes and ISEs against environmental factors (i.e., 

humidity). The tests were performed in a plastic chamber with humidity controlled via water mist 

spray. 
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Figure A-6. Characterization of the adhesion of the CARES device to the skin. a, Optical image 

of a CARES device adhered onto the skin. b, Interfacial strength between porcine skin and the device 

adhered by medical adhesive. 

 

 

Figure A-7. Performance of all physical sensors of the CARES under mechanical bending 

strain test. Pulse, GSR and temperature sensors were attached to a healthy subject’s wrist while a 

wide range of 0−60° wrist bending angles were applied. 
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Figure A-8. The performance of enzymatic glucose sensors with different configurations in 
wound fluid. (A to D) Schematic and performance of the glucose sensors based on GOx (A), 
GOx/BSA (B), GOx/polyaniline (PANI) (C), and GOx/chitosan/multi-walled CNTs (D) in 
simulated wound fluid and wound fluid. PB was used as the redox mediator in all cases. The 
wound fluid samples were collected after 24 hours of fasting. 
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Figure A-9. The performance of enzymatic glucose sensors with different diffusion limit 
layers in wound fluid samples. (A to D) Schematic and performance of the GOx/chitosan/multi-
walled CNTs glucose sensors coated with poly(ethylene glycol) diglycidyl ether (PEGDGE) (A), 
Nafion (B), chitosan (C), and PU (D) layers in simulated wound fluid and wound fluid. The wound 
fluid samples were collected after 24 hours of fasting. 
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Figure A-10. Evaluation of the PU-coated glucose sensors in wound fluid samples collected 
from three different mice. The wound fluid samples were collected after 24 hours of fasting. 
 
 

 
 
Figure A-11. Selectivity of the biosensors in simulated wound fluid. (A and B) Selectivity of 
the pH (A) and NH4

+ sensors against other ions in simulated wound fluid. (C and D) Selectivity of 
the glucose (C) and UA (D) sensors against other metabolites and electrolytes in simulated wound 
fluid. AA, ascorbic acid.  
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Figure A-12. The influence of temperature on the responses of multiplex biosensors in 
simulated wound fluid. The simulated wound fluid (pH 8.0) contains 10 mM glucose, 50 
µM UA, 1 mM lactate, and 0.25 mM NH4

+. 
 

 
 
Figure A-13. The influence of pH on the responses of multiplex sensors in simulated 
wound fluid. The simulated wound fluid contains 10 mM glucose, 50 µM UA, 1 mM 
lactate, and 0.25 mM NH4

+. 
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Figure A-14. The mechanical stability of the multiplex sensor array. Data was recorded 
before and after 100 cycles of repetitive mechanical bending (radius of curvature, 1 cm). 
The simulated wound fluid (pH 8.0) contains 10 mM glucose, 50 µM UA, 1 mM lactate, 
and 0.25 mM NH4

+. 

 

Figure A-15. In vitro cytocompatibility of the wearable patch. Representative live 

(green)/dead(red) images of human dermal fibroblasts (HDF) and normal human epidermal 

keratinocytes (NHEK) cells seeded on the multiplexed sensor array after 4-day culture. 

Scale bar, 200 µm. 
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Figure A-16. Characterizations of PB-NiHCF nanostructures. a, STEM and 

corresponding EDS mapping images for inkjet-printed carbon/AuNPs/PB-NiHCF cross-

sectional layers. Scale bar, 100 nm. b,c, Bright field (b) and dark field (c) STEM images of 

Au/PB-NiHCF interfaces. Scale bar, 10 nm. d, Statistical distribution of Fe and Ni atoms 

based on the EDS. 
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Figure A-17. Electrochemical characterizations of PB, PB-NiHCF, PB-CoHCF, and 

PB-CuHCF against degradation. a–d, Chronoamperometric responses of PB (a), PB-

NiHCF (b), PB-CoHCF (c), and PB-CuHCF (d) electrodes in the presence of McIlvaine 

buffer solutions containing 0, 50, and 100 µM H2O2. 

  



 

 

57 

 

Figure A-18. Electrochemical characterizations of PB, PB-NiHCF, PB-CoHCF, and 

PB-CuHCF against ion insertion. a, Cyclic voltammetry (CV) scans of PB and PB-NiHCF 

electrodes from -0.2 V to 0.8 V for 15 cycles. Scan rate, 50 mV s−1. b, CV scans of PB-

NiHCF electrodes from -0.2 V to 0.8 V for 70 cycles. Scan rate, 50 mV s−1. c, CV scans of 

PB electrodes from -0.2 V to 0.2 V for 10 cycles. Scan rate, 50 mV s−1. d, CV scans of PB-

NiHCF electrodes from -0.2 V to 0.2 V for 600 cycles. Scan rate, 50 mV s−1. e,f, CV scans 

of PB-CoHCF and PB-CuHCF electrodes from -0.2 V to 0.8 V for 50 cycles. 
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Figure A-19. The long-term stability test for PB, PB-NiHCF, PB-CoHCF, and PB-

CuHCF based glucose sensors. a–d, Amperometric responses of glucose sensors based on 

PB (a), PB-NiHCF (b), PB-CoHCF (c), and PB-CuHCF (d) in PBS solutions containing 0, 

50, 100 µM glucose. 
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Figure A-20. Schematic of passivation mechanism of PB-NiHCF. Hydroxide ions (OH−) 

can break Fe−(CN)−Fe bond while nickel serves as protection layer to prevent PB 

degradation. 
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Figure A-21. Schematic of ion intercalation mechanism of PB and PB-NiHCF. Cubic 

PB structure can distort from to a less symmetric rhombohedral or monoclinic geometry, 

while nickel substitution could reduce lattice constant and suppress structure distortion. 
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Figure A-22. Microscopic characterizations of the long-term stability of PB-NiHCF, 

PB-CoHCF, and PB-CuHCF. a–c, SEM images of PB deposited on grown AuNPs on 

inkjet carbon electrodes before testing (a), after testing in alkaline McIlvaine buffer solutions 

(b), and after 15 cycles of CV scans between -0.2 V and 0.5 V in PBS (c). d–f, SEM images 

of PB-NiHCF deposited on grown AuNPs on inkjet carbon electrodes before testing (d), after 

testing in alkaline McIlvaine buffer solutions (e), and after 1000 cycles of CV scans between 

-0.2 V and 0.5 V in PBS (f). Scale bars, 100 nm. g–i, SEM images of PB-CoHCF deposited 

on grown AuNPs on inkjet-printed carbon electrodes before testing (g), after testing in 

alkaline McIlvaine buffer solutions (h), and after 15 cycles of CV scans between -0.2 V and 

0.5 V in PBS (i). Scale bars, 100 nm. j–l, SEM images of PB-CuHCF deposited on grown 
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AuNPs on inkjet-printed carbon electrodes before testing (j), after testing in alkaline 

McIlvaine buffer solutions (k), and after 15 cycles of CV scans between -0.2 V and 0.5 V in 

PBS (l). Scale bars, 100 nm. 

 

Figure A-23. ICP–MS analysis of Fe2+ after testing of the PB and PB-NiHCF electrodes. 

The electrodes were tested in the alkaline McIlvaine buffer solutions or in PBS solutions 

with CV scans from -0.2 V to 0.2 V for 10 cycles. 
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Figure A-24. Long-term stability of continuous 100-hour in vitro tests of wearable 

glucose biosensors. a,b, Amperometric response of the glucose sensors tested in standard 

solution (a) and untreated human sweat samples (b) over 100 hours. 
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Figure A-25. Long-term stability of continuous 100-hour in vitro tests of wearable 

lactate and UA biosensors. a,b, Amperometric response of the lactate sensors tested in PBS 

solutions (a) and untreated human sweat samples (b) over 100 hours. c,d, Amperometric 

response of the UA sensors tested in PBS solutions (c) and untreated human sweat samples 

(d) over 100 hours. 
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Figure A-26. Evaluation of the diffusion-limit layer for lactate sensing. a,b, Schematic 

of lactate sensors based on Au/PB-NiHCF (a) and the corresponding amperometric 

performance in lactate solutions (0–20 mM) (b). c,d, Schematic of introduction of diffusion-

limit PVC/DOS membrane over enzyme film (c) and the corresponding amperometric 

performance in lactate solutions (0–20 mM) (d). 
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Figure A-27. Long-term stability of continuous 100-hour in vitro tests of wearable ISE-

based Na+ sensor. a,b, Potentiometric responses of Na+ sensors tested in standard solution 

(a) and untreated human sweat samples (b) over 100 hours. 
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Figure A-28. Long-term stability of continuous 100-hour in vitro tests of wearable ISE-

based K+ and NH4+ sensor. a,b, Potentiometric responses of K+ sensors tested in standard 

solutions (a) and untreated human sweat samples (b) over 100 hours. c,d, Potentiometric 

responses of NH4
+ sensors tested in standard solutions (c) and untreated human sweat 

samples (d) over 100 hours. 
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Figure A-29. The calibration plots of the ISEs. The plots are generated based on the sensor 

data demonstrated in Fig. 2f. 

 

Figure A-30. Reproducibility of biochemical sensors in the CARES. a–l, Batch to batch 

variation of glucose (a,b), lactate (c,d), UA (e,f), Na+ (g,h), K+ (i,j), and NH4
+ (k,l) sensors. 

All error bars represent the SD from 10 sensors. 

  



 

 

69 

 

Figure A-31. Selectivity of enzymatic and ISE sensors. a,b, Interference study for 

enzymatic glucose, lactate and UA sensors (a), and ion-selective Na+, K+, NH4
+ sensors (b). 

Physiologically relevant levels of common sweat components were added to standard 

solution. AA, ascorbic acid.  
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Figure A-32. The performance of biosensors based mass-producible inkjet-printed 

carbon, laser-engraved graphene, and evaporated Au electrodes. a−f, Amperometric 

responses of the glucose sensors based on inkjet-printed carbon (a,b), laser-engraved 

graphene (c,d), and evaporated Au electrodes (e,f) in PBS solutions containing 0−100 μM 

glucose. g−l, Potentiometric responses of the Na+ sensors based on inkjet-printed carbon 

(g,h), laser-engraved graphene (i,j),and evaporated Au electrodes (k,l) in 10−160 mM Na+ 

solutions. The sensing films were prepared using the same approach as Fig. 2c,f. 
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Figure A-33. Evaluation of the iontophoresis microfluidic module for autonomous 

sweat induction and sampling. a, Schematic of microfluidics module. b, Optical images of 

the two-reservoir microfluidic module during an iontophoresis-induced sweat secretion 

process. Scale bar, 5 mm. 

 

Figure A-34. Characterization of continuous microfluidic sensing performance under 

dynamic sweat flow. a–l, Dynamic response with a varying flow rate of 1−4 µL min−1 and 

repeatability of glucose (a,b), lactate (c,d), UA (e,f), Na+ (g,h), K+ (i,j), and NH4
+ (k,l) 

sensors upon switching the inflow solutions. 
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C h a p t e r  3  

BIOFUEL POWERED E-SKIN FOR HUMAN-MACHINE 
INTERFACES 

Materials from this chapter appear in “Yu, Y.; Nassar, J.; Xu, C.; Min, J.; Yang, Y.; Dai, 

A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R.; Ames, A. D.; Gao, W. Biofuel-powered 

soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. 

Science Robotics 5, eaaz7946 (2020). https://doi.org/10.1126/scirobotics.aaz7946.” 
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3.1 Introduction 

Recent advances in robotics have enabled soft electronic devices at different scales with 

excellent biocompatibility and mechanical properties, these advances have rendered novel 

robotic functionalities suitable for various medical applications, such as diagnosis and drug 

delivery, soft surgery tools, human-machine interaction, wearable computing, health 

monitoring, assistive robotics and prosthesis1-6. E-skin can possess similar characteristics 

to human skin such as mechanical durability and stretchability and the ability to measure 

various sensations such as temperature and pressure7-11. Moreover, e-skin can be 

augmented with capabilities beyond those of the normal human skin by incorporating 

advanced bioelectronics materials and devices. For example, the compliance of soft e-skin 

enables wearable sensing of biochemicals from the environment and the human body, 

showing great potential for wearable personalized health monitoring at molecular levels12-

16. 

Sophisticated tasks in practical robotic and biomedical applications including multiplexed 

sensing, on-demand actuation, and wireless data transmission during prolonged operation 

set high standards for energy consumption17. Batteries have currently been used as the 

primary power source of the majority of wireless e-skin systems; however, existing ones 

suffer from inadequate long-term continuous usability, especially when electricity is not 

readily available18-20. Soft e-skins that can directly harvest energy from other accessible 

sources including human motion, body heat, and solar light, are limited by their low power 

density. Thus they fail to power signal processing circuitry and wireless data transmission 

(e.g., Bluetooth or radio frequency communication)21, 22. Battery-free e-skins utilizing near 

field communication for wireless power and data transmission with the user interface have 

been developed recently, however, these approaches are limited by the required proximity 

for data processing and readout23, 24.  

Human biofluids, such as human sweat, could serve as an ideal and sustainable bioenergy 

source for powering future e-skin devices25, 26. Moreover, they contain a wealth of 

chemicals that can reflect an individual’s health status27-29. Recent advances in wearable 
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sweat analysis have enabled a number of fundamental and clinical applications such as 

non-invasive metabolic monitoring and disease diagnosis30-32.  

Here, we report a battery-free PPES that harvests energy from human sweat through lactate 

BFCs, performs continuous multiplexed monitoring of key metabolic biomarkers (e.g., 

glucose, urea, NH4
+, pH), and wirelessly transmits the personalized information to a user 

interface via Bluetooth Low Energy (BLE) (Fig. 3-1A). Built on an ultra-soft polymeric 

substrate, the PPES can comply with the skin’s modulus of elasticity and conformally 

laminate on different body parts for accurate biosensing (Fig. 3-1B and C). Utilizing cross-

dimensional nanomaterial integration, the highly efficient and stable nanoengineered BFC 

array is able to achieve a record-breaking and sustainable high power density, enabling 

continuous self-powered health monitoring. Based on this, we report the use of BFCs to 

fully power an e-skin with both multiplexed sensing and wireless data transmission 

capabilities. The PPES is successfully validated in vivo in a cycling human trial and its use 

toward non-invasive metabolic monitoring is further evaluated in human subjects involving 

dietary and nutrition challenges. Moreover, we demonstrate the use of the PPES as a HMI 

for assistive robotic control: integrated with strain sensors, the self-powered e-skin could 

wirelessly transmit signals to a user interface to direct a human operator to control a robotic 

prosthesis. It is expected that this technology will substantially advance both self-powered 

e-skin and personalized health care. 
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Figure 3-1. PPES for multiplexed wireless sensing. (A) Schematic of a battery-free, 

biofuel-powered e-skin that efficiently harvests energy from the human body, performs 

multiplexed biosensing, and wirelessly transmits data to a mobile user interface through 

Bluetooth. (B and C) Photographs of a PPES on a healthy subject’s arm. Scale bars, 1 cm. 

3.2 Design of the soft PPES for multiplexed sensing 

3.2.1 Materials 

Graphite flake, silver nitrate, were purchased from Alfa Aesar. Sodium nitrate, potassium 

permanganate, hydrogen peroxide, multi-walled CNTs, TTF, citric acid, chloroplatinic 

acid, sodium borohydride, ammonium chloride, nickel chloride, copper acetate, iron(III) 

chloride, copper acetate, zinc nitrate, Nafion® perfluorinated resin solution (5%), sodium 

thiosulfate pentahydrate, sodium bisulfite, PVC, PVB, F127, nonactin, DOS, EDOT, 

NaPSS, chitosan, PDMS, aniline, platinum carbon black (Pt/C) (0.5%), were purchased 

from Sigma Aldrich. Sulfuric acid, hydrochloric acid, ascorbic acid, methanol, ethanol, 

acetone, tetrahydrofuran, sodium chloride, disodium phosphate, urea, dextrose (D-glucose) 

were purchased from Fisher Scientific. MDB was purchased from Combi-Blocks Inc. LOx 

(106 U mg-1) was purchase from Toyobo Co. The CNT film and Ni substrate (h-Ni) were 

purchased from NTL Inc. and MXBaoheng Products, respectively. Medical tapes were 

purchased from Adhesives Research. Polyimide (PI-2611 and PI-2610) were purchased 

from HD MicroSystems, Inc. Silver conductive paint was purchased from SPI supplies. 

3.2.2 Preparation and characterizations of the BFCs 

BFCs, employing the enzymes as biocatalysts to transform the bioenergy into the 

electricity, are attractive power sources for future wearable and implantable electronics33, 

34. Among bioenergy resources, lactate, the main metabolic product of both muscle and 

brain exertion, is present in sweat at tens of millimolar levels and ideally suitable for 

powering future skin-interfaced electronic devices35, 36. However, report of BFCs-powered 

wearable sensing remain very limited. The main bottlenecks/challenges for the practical 
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use of current BFCs to power e-skin are: 1) Limited power density harvested from the 

human body (Table B-1); 2) Poor BFC stability and short lifetime. Here we utilize a BFC 

configuration that consists of LOx immobilized bioanodes to catalyze the lactic acid to 

pyruvate, and Pt alloy NP-decorated cathodes that reduce oxygen to water (Fig. 3-2A). 

Such redox reactions on BFC electrodes yields a stable current to power the electrical loads. 

Monolithic integration of 0 dimensional (0D) to 3 dimensional (3D) nanomaterials is 

employed on the BFC electrodes to obtain optimal energy harvesting performance (Fig. 3-

2B and C). 

To prepare the bioanodes, h-Ni, rGO films, and MDB-TTF-CNTs are sequentially 

modified on a Au electrode array (Fig. 3-2B). GO suspension was firstly prepared 

following the modified Hummer’s method48. Briefly, a mixture of 1 g graphite flake and 

23 ml H2SO4 was stirred over 24 h, and then 100 mg NaNO3 was added into the mixture. 

Subsequently, 3 g KMnO4 was added to the mixture below 5 ̊C in the ice bath. After stirring 

at 40 ˚C for another 30 min, 46 ml H2O was added at 80 ˚C. At last, 140 ml H2O and 10 ml 

H2O2 (30%, w/v) were introduced into the mixture to complete the reaction. The GO was 

washed and filtered with 1 M HCl. The self-supported h-Ni was cut into 2-mm-diameter 

circles using a CO2 laser cutter and cleaned by ultrasonication in 4 M HCl for 30 min until 

the color changed from black to silver. After drying, the h-Ni substrates were immersed 

into a GO suspension with a concentration of 2.0 mg ml-1 in water for 1 h. Then the h-Ni 

substrates were transferred to 5 ml ascorbic acid (10 mg ml-1) overnight and heated at 75 

˚C for 2 h. After cooling down to room temperature, the rGO/h-Ni composite electrodes 

were rinsed with water. The free-standing CNTs were immersed into 2 mM MDB solution 

and then heated to 140 ̊C overnight, followed by rinsing with water for several times. The 

resulted MDB-CNTs were dropcasted onto the rGO/h-Ni electrode to achieve a higher 

electrochemically active surface area. The MDB-CNTs/rGO/h-Ni composite was soaked 

into the 20 mM TTF ethanol/acetone (9:1, v/v) solution. Then bioanodes were obtained by 

immersing TTF-MDB-CNTs/rGO/h-Ni composite into an LOx solution (20 mg ml-1) for 2 

h and dried at 4 ˚C. 2 µl 0.5% Nafion perfluorinated resin solution was dropcasted on the 

LOx/TTF-MDB-CNTs/rGO/h-Ni bioanodes to protect the enzymes during the operation. 
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Figure 3-2. Flexible nanoengineered BFC array for efficient energy harvesting. (A) 

Schematic of a soft BFC array consisting of LOx-modified bioanodes and Pt alloy NPs 

modified cathodes. (B and C) Schematic and SEM images showing modification process 

of bioanode assembled with porous h-Ni, rGO, CNTs, and LOx (B), and cathode assembled 

with CNT film and Pt alloy NPs (C). (D) CV of the Au, h-Ni, rGO/h-Ni, and MDB-
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CNT/rGO/h-Ni electrodes. j, current density; scan rate, 50 mV s-1. (E) CV of the MDB-

CNT/rGO/h-Ni with scan rates of 10, 20, 50, 100, 150 and 200 mV s-1. Inset, calibration 

curve of the current density at -0.1 V vs. scan rate (v). (F) CV of the Pt-Co/MDB-CNT, 

Pt/MDB-CNT, commercial Pt/C, and bulk Pt electrodes recorded in N2-purged 0.1 M 

H2SO4 solutions. Pt/C, platinum carbon black. Scan rate, 100 mV s-1.  (G and H) Power 

density (P) (G) and polar curves (H) of BFCs recorded in 0 to 40 mM lactate. Experiments 

in D–H were repeated three times independently with similar results. (I) Power density 

curves of BFCs in sweat samples from four heathy human subjects. Reference electrodes 

in D–I, Ag/AgCl. 

The extremely high current density and stability of the MDB-TTF-CNT/rGO/h-Ni 

bioanode illustrated in Fig. 3-2D and Fig. B-1 can be attributed to: 1) the high 

electrochemically active surface area (ECSA) that is increased by 3000 times after 

nanomaterial modification (Fig. 3-2E, Fig. B-2); 2) the π-π interaction between the CNTs 

and rGO that enhances the electron transfer rate between LOx and electrodes; 3) the TTF-

MDB redox mediator that decreases the overpotential of the lactate oxidation reaction 

(Note B-1). 

On the other hand, Pt-based NPs are decorated on an MDB-modified CNT network (MDB-

CNT) through electroless plating to form the BFC cathode (Fig. 3-2C). The BFC cathodes 

were prepared as follows: the CNT film was firstly laser cut into 2-mm-diameter disks. The 

CNT pieces were immersed into 2 mM MDB solution, heated to 140 ˚C overnight, and 

then rinsed with water for several times; the MDB-CNT pieces were immersed in 60 mM 

H2PtCl6 solution with 20 mM doping metal ions like Co, Ni, Cu and Zn, and then immersed 

in a 0.1 M NaBH4 solution for seconds followed by several times of water rinsing; 2 µl 

0.5% Nafion perfluorinated resin solution was drop casted onto the Pt or Pt alloy decorated 

MDB-CNT composite surfaces. It should be noted that the MDB modification is crucial to 

achieve uniform NP distribution with controlled sizes (Figs. B-3 and 4). Compared to that 

of the conventional bulk Pt electrode, Pt and Pt-Co NPs coated MDB-CNT electrodes show 

higher ECSA of 170 and 210 times, respectively (Fig. 3-2F, Fig. B-5)37. 
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The assembled BFC array shows excellent performance, with an open circuit potential 

(OCP) at ~0.6 V and maximum power outputs of ~2.0 mW cm-2 and ~3.5 mW cm-2 in 20 

and 40 mM lactate solutions, respectively (Fig. 3-2G and H). Note that the maximum 

power densities shift as the lactate concentrations change due to the varied redox reaction 

of MDB at different pHs (Fig. B-6)38. When operating in human sweat samples, the BFCs 

could provide a power density as high as 3.6 mW cm-2 (Fig. 3-2I). This is, to the best of 

our knowledge, the highest power density for BFCs in untreated human body fluids (Table 

B-1).  

For characterization, the SEM images of the electrodes were obtained by a Field Emission 

SEM (FEI Sirion). HRTEM images were obtained by a TEM (Tecnai TF-20). Cyclic 

voltammetry (CV) and LSV analyses were performed through an electrochemical 

workstation (CHI 660E). The characterizations of BFCs were performed in McIlvaine 

buffer solutions (pH 6.0) unless otherwise noted. Ag/AgCl references electrodes were used 

in the BFC characterization. The Pt electrode was fabricated by photolithography 

(Microchemicals GmbH, AZ 9260) and E-beam evaporation of Cr/Pt (20/100 nm, at a 

speed of 0.2 Å/s and 0.5 Å/s, respectively), followed by lift-off in acetone. The commercial 

Pt/C electrode was fabricated by drop-casting 5 µl Pt/C solution (2 mg ml-1) and 2.5 µl 

Nafion (0.5 %) on the Au electrode (3 mm diameter). To quantify the electrochemically 

active surface area (ECSA) of the bioanode, the electrodes were tested in McIlvaine buffer 

(pH 6.0) with different scan rates ranging from 10 to 200 mV s-1. The slope of the 

calibration curve (the current density at -0.1 V versus scan rate) is used as an estimate of 

the ECSA of each anode. The adsorption/desorption of hydrogen on Pt (here we use 

integral area in the CV in the range of -0.2 to 0.1 V) was used to characterize the ECSA of 

the Pt-based BFC cathode. The polarization curves and power output were achieved by the 

LSV measurement at a scan rate of 2 mV s-1.  

3.2.3 Fabrication and assembly of the soft PPES 

The PPES patch consists of two main parts: 1) A nanoengineered flexible electrochemical 

patch that contains a BFC array and a biosensor array for energy harvesting and molecular 
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analysis in human sweat; biosensing films and biocatalytic nanomaterials are 

immobilized on serpentine-connected electrode arrays (Fig. 3-3A). 2) A flexible electronic 

patch that consolidates the rigid electronics on an ultrathin polyimide (PI) substrate through 

flexible interconnects for power management, signal processing, and wireless transmission 

(Fig. 3-3B). A skin-interfaced microfluidic module is integrated into the PPES in order to 

achieve efficient fresh sweat sampling for stable BFC operation and accurate sweat 

analysis with high temporal resolution (Fig. 3-3C). The independent inlet-outlet design of 

the microfluidics for BFCs and sensors further minimizes the potential influences of the 

BFC byproducts on the sensing accuracy. The electronic components and interconnects of 

the PPES are encapsulated with PDMS to avoid sweat/electronic contact (Fig. 3-3C). 

 

Figure 3-3. PPES for multiplexed wireless sensing. (A and B) Schematic illustrations of 

the flexible BFC-biosensor patch (A) and the soft electronics-skin interface (B). (C) 

System-level packaging and encapsulation of the PPES for efficient on-body biofluid 

sampling. M-tape, medical tape. 

The PPES is patterned on an ultra-soft polyimide substrate through standard 

micro/nanofabrication process to comply with the skin’s modulus of elasticity for accurate 

wearable biosensing. The fabrication process of the PPES platform is illustrated in Figs. 

B-11 to 13. Polyimide (PI-2611) was spin-coated on the silicon handling wafer with a 

speed of 2000 rpm for 30 s. Then the polyimide was cured at 350 ̊C for 1 hour with a 

ramping speed of 4 ̊C min-1. The resulted polyimide substrate thickness is about 9 μm. 

Photolithography (Microchemicals GmbH, AZ 9260) was used to define the inner 

connection wires. The photoresist was spin-coated on the wafer at a speed of 2400 rpm for 

30 s and measured to be around 10 μm thick. For surface treatment, reactive ion etching 
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(Oxford Plasmalab 100 ICP/RIE, O2 80 sccm, SF6 5 sccm, 70 W, 20 mTorr) was used 

for 2 minutes to enhance surface adhesion of polyimide layers. E-beam evaporation of Cu 

(1.5 μm, at a speed of 2.5 Å s-1) was deposited on the polyimide, followed by lift-off in 

acetone for minutes. An insulating layer of polyimide (PI-2610) was spin-coated on the 

surface with a speed of 5000 rpm for 30 s, and then cured at 350 ̊C for 30 minutes with a 

ramping speed of 4 ̊C min-1. The resulted intermediate polyimide layer thickness is about 

1 μm. Another photolithography step was used to define via connections between Cu 

layers. The wafer was selectively dry-etched using inductively coupled plasma (Oxford 

Plasmalab 100 ICP/RIE, O2 50 sccm, 150 W, 80 mTorr, 9 minutes) to form via pattern. 

Photolithography was used to define outer connection wires. The wafer was surface treated 

with reactive ion etching using the same recipe described above prior to metal evaporation. 

E-beam evaporation of Cu (2.5 μm, at a speed of 2.5 Å s-1) was performed and followed 

by lift-off in acetone. Another encapsulation layer of polyimide (PI-2610) (1 μm thick) was 

spin-coated and followed by fully curing. Photolithography was performed to define 

openings of sensors and BFC patterns and then dry etching was performed using 

inductively coupled plasma (Oxford Plasmalab 100 ICP/RIE, O2 50 sccm, 150 W, 80 

mTorr, 9 minutes). 

After wiring system patterning, polyimide was spin-coated on the silicon handling wafer 

with a thickness of 9 μm. Photolithography (Microchemicals GmbH, AZ 9260) was used 

to define the shapes of BFCs and sensor arrays. The polyimide was then surface treated 

with reactive-ion etching to enhance surface adhesion (Oxford Plasmalab 100 ICP/RIE, O2 

80 sccm, SF6 5 sccm, 70 W, 20 mTorr). E-beam evaporation of Cr/Au (20/100 nm, at a 

speed of 0.2 Å/s and 0.5 Å/s, respectively) was performed, followed by lift-off in acetone. 

A thin layer of parylene (ParaTech LabTop 3000 Parylene coater) was deposited (1 μm) 

and followed by photolithography and reactive ion etching (Oxford Plasmalab 100 

ICP/RIE, O2 30 sccm, 100 W, 50 mTorr, 3 minutes) to expose openings for further 

treatments. 
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The fully integrated PPES consists of a nanoengineered BFC array (total bioanode area, 

1 cm2), a boost converter, a biosensor array, instrumentation amplifiers, and a 

programmable system on chip (PSoC) module (integrated with a Bluetooth Low Energy 

(BLE) module, a microcontroller, and a temperature sensor) (Fig. 3-4A, Figs. B-9 and 10). 

The DC-DC boost converter amplifies the signal potential with a small power loss (~20%) 

(Fig. B-9). The output signal (3.3 V) continuously charges a capacitor (660 µF) that 

temporarily stores the energy and powers biosensors and other electronic components. The 

BLE module runs in bursts of activity, periodically waking up from deep sleep mode to 

acquire measurements with the embedded successive-approximation analog-to-digital 

converter then wirelessly broadcasting the data to the user interfaces (Fig. 3-4B). BLE 

advertising is chosen here owing to the small size of the data packets and the low power 

consumption. 
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Figure 3-4. System-level integration and evaluation of the PPES. (A) Schematic 

diagram of the PPES system including the BFC array, sensor array, boost converter, 

instrumentation amplifiers, and Bluetooth Low Energy (BLE) module. SOC, system on a 

chip; ADC, analog-to-digital converter; CPU, central processing unit. (B) Operation flow 
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of the energy control and data transmission processes. (C–E) Schematic (C) and 

microscopic images (D, E) showing the via structure and soft interconnects of the e-skin 

system. Scale bars, 3 µm. (F) A photographic image of a fully integrated PPES. Scale bar, 

2 cm. (G) Real-time potential of the capacitor measured during continuous operation of a 

PPES in 20 mM lactate. (H) Characterization of BFC-powered multiplexed sensing with 

varied electrical inputs in 20 mM lactate. (I and J) Long-term stability of the capacitor (220 

µF) charging process with BFCs through the DC-DC converter over 50 h in 20 mM lactate. 

Potential dynamics from 18 h to 20 h, and from 48 h to 50 h are illustrated in I and J, 

respectively. Experiments in G–J were repeated three times independently with similar 

results. 

The packaging and assembly of the PPES are illustrated in Fig. B-14. Firstly, the electronic 

system pattern was set on 100 µm PDMS and connected with the BFC and sensor array 

pattern by the conductive silver paint (Structure Probe, Inc.). 100 µm PDMS was coated 

on the BFC and electronic system patterns. The bottom layer was cut as the BFC and sensor 

array pattern to expose the electrode area. After electrodes were modified on BFC and 

sensor array, it was combined with the laser-cut microfluidic channels, which were 

assembled with two medical tape layers and a single PDMS layer in the middle. The 

fabricated via connection and serpentine-shaped interconnects in the PPES are illustrated 

in Fig. 3-4C to E. To minimize the overall patch size, reduce the strain, and achieve 

uniform strain distribution of the patch during mechanical deformation, the whole BFC 

electrode array was designed as a serpentine structure (Fig. B-15). The fully encapsulated 

PPES shows excellent transparency, mechanical flexibility and stability (Fig. 3-4F and Fig. 

B-16). 

The core of the sensor sampling and data processing transmission system is the CYBLE-

214009-00 BLE module. This microcontroller provided onboard Bluetooth Low Energy 

(BLE) capability and 12-bit ADC resolution, as well as a minimal power consumption of 

1.3 µA in deep sleep. The open-circuit potential (OCP) of BFCs could hardly reach 1 V, 

which was significantly lower than the regular electronics needed. Thus, a soft integrated 
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electronic patch, which containing energy boost converter for increasing the applied 

voltage, multiplexed sensing channels and Bluetooth broadcast was combined with the 

wearable BFCs. The Texas Instruments BQ25504 Boost Converter forms the core of the 

circuitry used to harvest energy from the BFCs. The BQ25504 is set to draw current from 

the BFC at 75% of its OCP to maximize the power provided by the cell. The output of the 

BQ25504 is connected to a 680 µF capacitor, which is set to charge to 3.3 V before 

triggering an analog switch to close, connecting the charged capacitor to the rest of the 

circuitry and powering the system. Then the instrumentation amplifier and microcontroller 

recorded the response of sensor arrays and sent to the Bluetooth module to broadcast, which 

were all powered under the boost voltage. The module would run in bursts of activity, 

periodically waking up in order to take ADC measurements of the sensors, convert the 

measurement into a voltage, then wirelessly broadcast the data via BLE advertisement 

before re-entering deep sleep mode. The device was programmed through the Cypress 

programmable system-on-chip interface using the MiniProg3 SWD debugger and PSoC 

Creator 4.2 design environment. In order to reduce noise and eliminate the effects of 

impedance mismatching, instrumentation amplifiers are connected as intermediaries 

between the sensor electrode output and the microcontroller ADC input. The Texas 

Instruments INA333 is used as the instrumentation amplifier. The BLE packets 

broadcasted by the microcontroller are received on a computer with a CY5677 CySmart 

BLE 4.2 USB Dongle connected. The computer runs a scanner program written in C# with 

the CySmart 1.3 API which continually searches for an advertising device that matches the 

BLE address of the CYBLE module, then decodes and stores any received data. 

In deep sleep mode, the whole PPES system draws a total current of ~100 µA at 3.3 V, 

primarily from the two instrumental amplifiers (Fig. B-17a). The PPES is programmed to 

wake up periodically from deep sleep for ~10 ms for acquiring and sending the sensing 

data with an average consumption of 9.35 mA (Fig. B-17b). As a result, the capacitor 

discharges when the PPES wakes up and will be recharged within a few seconds by the 

BFCs. In 20 mM lactate, dynamic changes in the potential of the capacitor on the PPES are 

demonstrated in Fig. 3-4G. Wirelessly received BLE data in the user interface shows good 
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agreement with the dual-channel sensor inputs (Fig. 3-4H). Our results demonstrate that 

by using a smaller capacitor (220 or 400 µF), the whole PPES can be continuously powered 

in lactate solutions (5–20 mM) without the need of deep sleep mode (Fig. B-18). Excellent 

long-term stability of the BFCs-based electrical charging/discharging process is 

demonstrated by the continuous charging activity for ~60 h, as shown in Fig. 3-4I and J 

(and Fig. B-19): A capacitor is charged from 1.5 to 3.8 V continuously and repeatedly, and 

the charging periods could remain stable when fresh lactate fuel is supplied (Fig. B-19).  

3.2.4 Preparation and characterization of sensors 

To prepare the shared reference electrode of the potentiometric sensor array, Ag was first 

electrodeposited on the Au electrodes with a potentiostati method (-0.25 V for 600 s) in the 

solution containing 0.25 M AgNO3, 0.75 M Na2S2O3 and 0.43 M NaHSO3; the Ag/AgCl 

electrode was obtained by dropping the 0.1 M FeCl3 solution on top of Ag surface for 60 

s; then the PVB reference cocktail was prepared by dissolving 79.1 mg PVB, 50 mg NaCl, 

1 mg F127 and 0.2 mg MWCNT in 1 ml methanol; 6.6 µl reference cocktail was modified 

on the Ag/AgCl electrode and left overnight. 

The NH4
+ ISE was prepared as follows: 100 mg of the NH4

+ selective membrane cocktail 

consisting of 1 % NH4
+ ionophore (nonactin), 33 % PVC and 66 % DOS (w/w) was 

dissolved in 660 µl tetrahydrofuran. The membrane cocktail was stored at 4 ˚C. A constant 

current of 0.2 mA cm-2 was applied to electrodeposit the PEDOT:PSS membrane on the 

Au electrode in the solution containing 0.01 M EDOT and 0.1 M NaPSS to minimize the 

potential drift of the ISEs. 6.6 µl of the cocktail solution was dropcasted over the PEDOT 

layer to create an NH4
+ selective membrane. The modified electrodes were left drying 

overnight. To prepare urea sensing electrode, 3.7 µL of urease solution (10 mg ml-1) was 

drop-casted onto the an NH4
+ ISE for four times, and then 3.3 µL 0.5% Nafion 

perfluorinated resin solution was dropped over the sensor area. The modified sensors were 

dried at 4 ˚C overnight. 
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To prepare the glucose sensor, differential pulse amperometry (100 cycles in total) was 

used to electrodeposit the Pt on the Au electrode. -0.4 V potential was applied for 1 s and 

1.0 V was used as the cleaning voltage for 0.5 s. 1.1 µl 1% Nafion (prepared by dilution of 

Nafion perfluorinated resin solution in water) was dropped on the Pt surface, and 2 µl 

chitosan-GOx mixture (3:1, v/v) was modified on the electrode. The potentiometric glucose 

sensors were dried at 4 ˚C overnight; then another 1.1 µl 1% Nafion (1 %) was dropped, 

covering the enzymes to form the sandwich structure. For the pH sensor, the polyaniline 

(PANI) was electropolymerized on the Au electrodes in a solution containing 0.1 M aniline 

and 0.1 M HCl using cyclic voltammetry from -0.2 to 1 V for 50 cycles at a scan rate of 50 

mV s-1.  

For the in vitro sensor characterizations, analyte solutions were prepared in McIlvaine 

buffer solutions (pH 6.0 for urea, glucose and NH4
+). To obtain the best performance for 

long-term continuous measurements, the NH4
+ and urea ISEs were placed in a solution 

containing 0.1 M NH4Cl and 20 mM urea for 1 h before measurements. The glucose sensors 

and pH sensors were placed in a solution containing 100 µM glucose and H2O for 1 h, 

separately. This conditioning process greatly helps to minimize the potential drift. 

CNT-PDMS elastomer was produced by the solution-evaporation method. 7% CNTs (w/w) 

was added to SYLGARD™ 184 Silicone Elastomer Base and toluene mixture (1:4 v/v) at 

room temperature. Then the mixture was poured into a culture dish. After toluene 

evaporated, uncured CNT-PDMS was mixed with curing agent (10:1) and poured onto the 

mask made by tape and scraped flat with a glass slide. After the mask was removed, the 

CNT-PDMS was baked at 80 C° for 1 h. Then uncured Ecoflex was spin-coated on it and 

cured at 80 C° for 1 h. The silver paste was utilized to link the pad on the patterned CNT-

PDMS with thin wires. Another layer of Ecoflex was spin-coated for encapsulation and 

protection. The strain sensors were then connected to the PPES through external wires.   
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3.3 Results and discussions 

3.3.1 Characterization of Pt-Co NP BFC cathode for enhanced stability 

Enzymatic BFCs usually suffer from poor long-term stability, primarily because of the 

limited stability of their cathode. Among commonly used cathode materials, PB, Ag2O, 

and MnO2 are consumable and cannot be recovered in situ39, 40. Pt could be easily poisoned 

during the practical uses due to the formation of the –OH groups on the electrode surface 

(Fig. 3-5A, Fig. B-7)41; the dissociated oxidized Pt from the NPs tends to redeposit on the 

larger particles via the Ostwald ripening mechanism (the average cohesive energy of Pt 

atoms in smaller NPs is smaller than that in larger ones)42. To enhance the long-term 

stability of the Pt particles, transition metal dopants (i.e., Co) are introduced through 

electroless co-deposition43, 44. The resulted Pt/Co alloy NPs are characterized using TEM 

(Fig. 3-5B) and EDS (Fig. B-8). The Pt/Co NPs show an average size of ~10–20 nm and 

an edge lattice spacing of 0.22 nm (Fig. 3-5B). The Co dopants could enhance the cohesive 

energy and thus stabilize the NPs, leading to significantly reduced biofouling in body fluids 

and higher onset potential for oxygen reduction45. In sweat samples, the Pt-Co/CNT shows 

a relatively stable onset potential compared to that of Pt/CNT (Fig. 3-5C). To further 

improve the long-term stability of the cathode in biofluids, a permselective Nafion layer is 

modified onto the Pt-Co/CNT (Fig. 3-5D). The Nafion/Pt-Co/CNT cathode shows stable 

performance over 2000 cycles of CV scans (Fig. 3-5E) and a negligible fluctuation in the 

onset potential in a sweat sample for over 30 h (Fig. 3-5F). It should be noted that, in 

addition to high stability, Pt-Co/MDB-CNT cathodes also show highest oxygen reduction 

performance compared to those modified with Pt or other Pt alloys (Fig. B-5), attributed 

to the Sabatier principle46. 
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Figure 3-5. Characterization of role of Pt alloy NPs in the BFC stability. (A) Schematic 

illustration showing the Pt NPs (decorated on CNTs) merge into larger ones during the 

prolonged catalysis. Inset, TEM images of the Pt/MDB-CNT before and after 4000 CV 

cycles between -0.2 and 0.5 V. Scale bars, 50 nm. (B) TEM image showing the crystalline 

structure of a Pt-Co NP. Scale bar, 5 nm. (C) Schematic illustration of the Pt-Co alloy NPs 

on CNT which maintain the uniform size owing to their higher surface cohesive energy 

level. Inset, TEM images of the Pt-Co/MDB-CNT before and after 4000 cycles between -

0.2 and 0.5 V. Scale bars, 50 nm. (D) The onset potentials of Pt/MDB-CNT, Pt-Co/MDB-

CNT, and Nafion/Pt-Co/MDB-CNT modified cathodes measured in sweat over a 1-hour 

period. (E) Repetitive linear sweeping voltammograms (LSVs) of a Nafion/Pt-Co/MDB-

CNT modified cathode obtained during 2000 CV cycles between -0.2 and 0.5 V. (F) Long-

term stability test of a Nafion/Pt-Co/MDB-CNT cathode in sweat over 30 h. Reference 

electrodes in A, C–F, Ag/AgCl. Experiments in D–F were repeated three times 

independently with similar results. 
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3.3.2 Characterization of the PPES for multiplexed biosensing 

The PPES holds great promise for multiplexed sensing, and a particularly attractive one is 

wearable sweat analysis for personalized health monitoring. Important sweat biomarkers, 

such as urea, glucose, pH, NH4
+, contain meaningful information about an individual’s 

physiological status. Despite high interest, only a limited number of sweat analytes can be 

accurately monitored by currently reported wearable sensors12, 13, 47. Given the complicated 

sweat secretion process and the electrochemical sensing mechanisms, multiplexed sensing 

is often essential to achieve an accurate assessment of the specific analyte. As an example, 

two sweat biosensor arrays (urea and NH4
+ sensor array, and glucose and pH sensor array) 

are developed and evaluated toward metabolic monitoring.  

The NH4
+ and urea sensor array is designed on the soft electrochemical patch based on the 

NH4
+ ISEs (Fig. 3-6A). Compared to the NH4

+ sensor, the urea sensor contains an 

additional enzymatic layer where urease converts urea to carbon dioxide and ammonia; the 

increased NH4
+ product reflects the urea level. Fig. 3-6B and C shows the potentiometric 

responses of the urea and NH4
+ sensors, measured in 40 to 2.5 mM NH4

+ solutions and 40 

to 2.5 mM urea solutions, respectively. A linear relationship between potential output and 

logarithmic concentrations of the target analytes is obtained, with near-Nerstian 

sensitivities of 60.3 mV and 60.0 mV per decade of concentration for NH4
+ and urea 

sensors, respectively. The sensors have good selectivity over common analytes in human 

sweat (Fig. B-20). The dependence of urea and NH4
+ concentrations on the sensor response 

is illustrated in Fig 3-6D and Fig. B-21. Considering that NH4
+ level has a significant 

influence on urea sensor reading, it is essential to simultaneously monitor both urea and 

NH4
+ with real-time calibration for accurate sweat analysis. 
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Figure 3-6. Characterization of the PPES for multiplexed biosensing. (A) Schematic 

of a sensor array for simultaneous urea and NH4
+ monitoring. (B and C) Open circuit 

potential (OCP) responses of a NH4
+ sensor (B) and a urea sensor (C) in standard analyte 

solutions. Insets, the corresponding calibration plots of the NH4
+ and urea sensors. Data 

recording was paused for 30 s for each solution change. Error bars represent the SDs from 

five sensors. (D) A color map showing the dependence of the urea sensor response on urea 

and NH4
+ concentrations. (E) Schematic of a sensor array for simultaneous glucose and pH 

sensing. (F and G) OCP responses of a glucose sensor (F) and a pH sensor (G) in standard 

analyte solutions. Insets, the corresponding calibration plots of the glucose and pH sensors. 

Data recording was paused for 30 s for each solution change. Error bars represent the SDs 

from five sensors. (H) A color map showing the dependence of the glucose sensor on the 



 

 

95 
glucose and pH levels. (I) Schematic of the microfluidic design for biofluid sampling. 

(J) Dynamic response of an NH4
+ sensor upon switching the inflow solutions at a flow rate 

of 0.05 ml h-1. (K) A photograph of an integrated PPES under mechanical deformation. (L) 

The performance of a two-channel NH4
+ sensor array under mechanical deformation (with 

a radius of bending curvature of 1.5 cm). (M and N) Potential of the capacitor (M) and 

responses of a urea and NH4
+ sensor array (N) when the PPES operates in a human sweat 

sample. 

The glucose and pH sensor array is prepared using a similar potentiometric sensing 

approach (Fig. 3-6E). A sandwich structure — Nafion/chitosan-GOx/Nafion —is coated 

on the platinum deposited electrode to form highly sensitive and selective glucose sensor; 

an electropolymerized polyaniline film serves as the hydrogen ion-selective film for pH 

sensing.  Fig. 3-6F and G illustrates the responses of the glucose and pH sensors in 40–

200 µM glucose and pH 4–8 solutions, respectively. A linear response between the 

potential output of glucose sensor and glucose concentrations (in physiologically relevant 

range 0–150 µM) is obtained with a sensitivity of 0.1 mV µM-1. A near-Nerstian sensitivity 

of 55.3 mV per pH is observed for the pH sensor. Considering that the glucose sensor 

response is heavily dependent on the solution pH (Fig. 3-6H), multiplexed glucose and pH 

sensing with real-time calibration is also crucial to obtain high sensing accuracy (Fig. B-

22).  

All the sensors show excellent long-term electrochemical and mechanical stabilities during 

continuous operation, indicating their promise for wearable use (Figs. B-23 and 24). 

Considering that skin temperature has a direct influence on the enzymatic biosensors 

(glucose and urea sensors here as shown in Fig. B-25), the on-chip temperature sensor in 

the BLE module could provide the skin temperature information for real-time calibration.   

For wearable on-body use, the integration of a microfluidic module could greatly enhance 

the sweat sampling process and lead to a higher temporal resolution for wearable sensing 

and more stable power output from BFCs (Fig. 3-6I). The laser-patterned microfluidics is 

assembled in a sandwich structure (M-tape/PDMS/M-tape) and contains two reservoirs to 
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minimize the influence of the BFC byproducts on the sensing accuracy (Fig. B-26). In 

vitro flow test shows that when the NH4
+ level in the input solution is switched from 5 to 

10 mM at a physiologically measured sweat rate of 0.05 ml h-1, it takes ~4 minutes for the 

NH4
+ sensor to reach new stable reading (Fig. 3-6J), indicating the small time delay for the 

on-body continuous monitoring. The PPES is mechanically flexible and can conformally 

laminate on a curved substrate (Fig. 3-6K). Under mechanical deformation with a bending 

curvature of 1.5 cm in radius, the PPES maintains consistent sensor readings (Fig. 3-6L). 

During long period operation in human sweat samples, the PPES demonstrates stable 

performance in both energy harvesting (Fig. 3-6M) and analyte monitoring (Fig. 3-6N). 

3.3.3 On-body evaluation of the PPES for wearable sensing 

On-body validation of the PPES is conducted on healthy human subjects toward continuous 

metabolic monitoring during a constant-load stationary biking exercise (Fig. 3-7A). Fig. 

3-7B and C shows the data collected from the PPES for real-time monitoring of sweat urea, 

NH4
+, glucose, and pH. The pH and NH4

+ levels measured here, along with the on-chip 

temperature sensor readings, are also used to calibrate the readings from the glucose and 

urea sensors, respectively. During the biking process, the urea and NH4
+ levels in sweat 

decrease rapidly and then stabilize over time (Fig. 3-7B). A similar trend is observed for 

sweat glucose while a stable pH response throughout the exercise is obtained (Fig. 3-7C). 

The PPES shows good reusability, stability, and biocompatibility during long-term usage 

(Fig. B-27). 

In addition to on-body validation, the use of the PPES in metabolic and nutritional 

management is evaluated through controlled dietary challenges (Fig. 3-7D to I). Fig. 3-7D 

to G demonstrates that, compared to the initial levels, sweat urea and NH4
+ levels measured 

2-hour after a standardized protein intake increase significantly in all three subjects. In 

contrast, decreased trends are obtained during the 2-hour period from all the subjects 

without protein intake. In oral glucose tolerance test (OGTT), sweat glucose levels increase 

dramatically for all subjects after the glucose intake and decrease after 2 hours for subjects 
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without intake. These data indicate the PPES has a great potential in self-powered 

personalized physiological and metabolic monitoring. 

 

Figure 3-7. On-body evaluation of the PPES toward personalized metabolic 

monitoring. (A) Photograph of a subject wearing a PPES during cycling exercise. (B) 

Real-time multiplexed urea and NH4
+ analysis using a PPES on a subject’s forehead. (C) 

Real-time multiplexed glucose and pH monitoring using a PPES on a subject’s forehead. 

(D to I) Evaluation of the PPES in dietary challenges: sweat urea levels with (D) and 

without (E) protein intake; sweat NH4
+ levels with (F) and without (G) protein intake; 

sweat glucose levels with (H) and without (I) glucose intake.  
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The validation and evaluation of the lab-on-skin platform were performed using human 

subjects in compliance with a protocol (ID: 19-0892) that was approved by the institutional 

review board (IRB) at California Institute of Technology (Caltech). The participating 

subjects (age range 18–65) were recruited from the Caltech campus and the neighboring 

communities through advertisement by posted notices, word of mouth, and email 

distribution. All subjects gave written, informed consent before participation in the study. 

In order to validate the PPES, constant-load cycling exercise was conducted on 3 subjects. 

A stationary exercise bike (Kettler Axos Cycle M-LA) was used for cycling trials. The 

subjects reported to the lab with overnight fasting. The subjects’ foreheads were cleaned 

with water and alcohol swabs before the PPES was placed. The subjects cycled at 60 rpm 

for 40 min followed by a 10 min cool down session. When the sweat filled the BFC 

reservoir, the PPES started to transmit the sensing data to the user interface through the 

Bluetooth every 15 s, and the data were further converted to the concentration levels after 

temperature and sweat analyte calibrations. During biking, the sweat would continuously 

refill both the BFC and sensor array reservoir. For each diary challenge study, after the first 

cycling trial, the subjects were given a standardized protein drink (30 g protein) for urea 

and NH4
+ test, and 3 energy bars (66 g total sugars) for glucose, respectively. After two 

hours, the subjects cycled at 60 rpm for 40 min followed by a 10 min cool down session. 

And the PPES would monitor the sweat component change. The first set of data received 

by the PPES was plotted in Fig. 3-7D–I. 

3.3.4 Evaluation of the PPES as a HMI for robotic assistance 

HMI has attracted substantial attention over the past decade owing to its high promise in 

real-world biomedical applications in rehabilitation. On skin detection of strains induced 

by muscle contraction using the soft strain sensors integrated in the e-skin systems is one 

promising approach to enable dynamic HMI. When integrated with soft strain sensors, the 

skin-interfaced soft PPES could function as a HMI toward robotic applications (Fig. 3-8A, 

Fig. B-28 and 29). The strain sensors are designed based on CNTs/PDMS elastomer: the 

resistance of the sensors increase linearly with the applied strain (Fig. 3-8B and C). Two 
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strain sensors are placed on the hand and the elbow, respectively, and connected to the 

PPES (Fig. 3-8D); the bending of the finger and elbow could be monitored from the 

resistance change of the strain sensors (Fig. 3-8E). Each resistive type strain sensor as part 

of a voltage divider consumes a total of ~5 µA. The battery-free e-skin placed on the sweaty 

arm is able to wirelessly control the motion of a robotic arm in real time: the robotic arm 

recognizes the gestures of the human arm, then approaches and grabs the target object (Fig. 

3-8F). The PPES could also be used for robotic assistance in the rehabilitation settings. 

Fig. 3-8G and H demonstrates that prosthesis walking control could be achieved with a 

strain sensor integrated PPES to achieve assistive walking in real-world environments. By 

incorporating more physical sensors for EEG and EMG recording along with the 

continuous metabolic monitoring, the multimodal PPES could facilitate the design and 

optimization of novel prostheses that bring the human in the loop of prosthesis control to 

enable real-time user-specific responses to human intent and behavior. 
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Figure 3-8. On-body evaluation of the PPES as a wireless HMI for robotic assistance. 

(A) Schematic illustration of the PPES for remote human machine interaction. (B) 

Schematic of the CNTs-PDMS elastomer-based stain sensors. (C) Resistance response of 

a CNTs-PDMS strain sensor under different strains. (D) Photograph and Schematic (inset) 

of the PPES integrated with strain sensors. (E) Real-time multi-degree motion tracking 

using a PPES with the strain sensors on subject’s finger and elbow. (F) Time lapse images 

of the wireless robotic arm control using a PPES. (G and H) Time lapse images of front 

view (G) and side view (H) of the use of the PPES for robotic prosthesis control. 
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For robotic arm control, two strain sensors were set on the hand and the elbow of a 

healthy subject with medical tape, respectively. The subject’s arm was cleaned with water 

and alcohol swabs before the PPES was placed. The subject cycled at 60 rpm for 10 min. 

When the sweat filled the BFC reservoir, the PPES wirelessly transmitted the strain sensor 

data to the user interface, and the data were further utilized to control the robotic arm.  

For the PPES-based prosthesis control study, a strain sensor was set on the elbow of a 

healthy subject with medical tape and connected with the PPES. When filled with 20 mM 

lactate, the PPES wirelessly transmitted the measured strain sensor data to the user 

interface. When the sensor reached a certain threshold, a human operator sent a computer 

command through USB to the custom built powered transfemoral prosthesis, AMPRO349, 

to trigger the start of one swing step. With a PD controller, the prosthesis tracked a time-

based trajectory designed with the methods in50. This research was approved by Caltech 

IRB with a protocol (ID: 16-0693) for human subject testing. 

3.4 Conclusions 

Here, we developed a flexible, fully-integrated, and self-powered e-skin platform that can 

provide real-time, continuous, multiplexed sensing and wirelessly transmit the data to the 

user interface through Bluetooth communication. Our e-skin platform provides real-time 

chemical sensing of NH4
+, urea, glucose, and pH, enhancing the capabilities of e-skin with 

multimodal and multi-analyte detection. Moreover, the e-skin platform is able to monitor 

physical parameters such as temperature, strain, and pressure, enabling self-powered wireless 

human-machine interaction for robotic applications such as powered prosthesis walking. The 

incorporation of multiplexed, multimodal chemical and physical sensing could expand the 

potential applications of e-skin for personalized healthcare.    

For an e-skin to perform real-time and continuous sensing, onboard powering is necessary. 

Most e-skin platforms use the battery power supply, which could introduce constraints on 

the duration of use between charging and affect the long-lasting functionality when the 

electricity is not readily available. To circumvent the battery requirements, other wireless 
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platforms use battery-free data transmission/powering strategies such as near field 

communication which require very small readout distance. The use of BLE transmission 

alleviates such constraints and offers a more realistic communication scheme for e-

skin/wearable applications, but would impose a higher power consumption. To 

accommodate the use of BLE, various battery-free powering strategies have been tested, such 

as piezo-based or biofuel-based energy harvesting. However, these strategies either have 

limited power densities for wearable or robotic use which fail to support the BLE 

functionality on a compact e-skin platform, or suffer from short life-time caused by 

biofouling.  

The PPES proposed here has successfully resolved both challenges for on-board integration 

of BLE within the compact yet flexible e-skin format. With a unique integration of 0D–3D 

nanomaterials on bioanodes and cathodes, the BFC designed here yields a record-breaking 

power density (as high as 3.5 mW cm-2 in human sweat) that could support sensing and BLE 

functionalities on a small e-skin patch. The use of carefully designed and selected Pt-Co alloy 

NPs has greatly enhanced the long-term stability of the BFC in sweat and enabled the long-

term continuous use on skin.  

Moreover, the developed e-skin here is a fully-integrated platform with enhanced wearability 

and sensing accuracy. The platform is ultrathin and transparent, using electronics with low 

power consumption and integrating electronics onto the soft substrate with a minimal 

mechanical mismatch, rendering a fully compliant e-skin for maximal comfort and 

wearability. The use of microfluidics significantly improves sweat refreshing and reduces 

interference between BFC and biosensors; a carefully studied correlation between different 

chemical targets yields calibrated sensor readouts that reflect higher accuracy. The system-

level integration of electronics, microfluidics and on-board calibration on a soft e-skin 

provides a much-enhanced accuracy of sensing results for on-body use. Moreover, the 

successful demonstration of the prosthetic control for robotic assistance using the PPES 

indicates the great promise of using such platform for human machine interaction and for 

design/optimization of next-generation prostheses. The development of such a multimodal, 
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fully-integrated and self-powered platform enriches the functionalities and potentials of 

e-skins and opens the door to numerous robotic and wearable healthcare possibilities such as 

personalized medicine. 
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A p p e n d i x  B  

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

Materials from this chapter appear in “Yu, Y.; Nassar, J.; Xu, C.; Min, J.; Yang, Y.; Dai, 

A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R.; Ames, A. D.; Gao, W. Biofuel-powered 

soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. 

Science Robotics 5, eaaz7946 (2020). https://doi.org/10.1126/scirobotics.aaz7946.” 
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Note B-1. Mechanism of TTF-MDB bimediator in BFC 

TTF and MDB can act as electron-transfer relay systems between bioanode and the flavin 

adenine dinucleotide (FAD)/FADH (the redox active centers of LOx protected by the protein 

shell). Generally, L-lactate is oxidized by the FAD of LOx, generating the reduced form 

LOx(FADH) as the following process: 

L-lactate + LOx(FAD) → pyruvate + LOx(FADH)      (1) 

then, the LOx(FADH) is oxidized by the TTF/MDB mediator: 

LOx(FADH) + 2TTF+ → LOx(FAD) + 2TTF + 2H+     (2) 

2TFF → 2TTF+ + 2e-                              (3) 

LOx(FADH) + MDBred → LOx(FAD) + MDBox + 2H+   (4) 

MDBred → MDBox + e-.                            (5) 

Electrons transfer from the mediators to the bioelectrode as shown in equation (3) and (5). 

Without the additional mediator, the O2 would be the oxidizer for the reduced LOx(FADH): 

LOx(FADH) + O2 →LOx(FAD) + H2O2.                (6) 

At low potential, the electron transfer rate between the generated H2O2 and the carbon-based 

electrode is very low (H2O2 oxidation requires a high voltage). Instead, the onset potential of 

the MDB and TTF are -0.2 and 0 V, respectively. Here, bioanode mixed with TTF and MDB 

has higher current and lower onset potential than either of single mediator. 
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Table B-1. List of BFCs for energy-harvesting in body fluids 

BOx, bilirubin oxidase; LDH, lactate dehydrogenase; NQ, 1,4-naphthoquinone; TCNQ, 

tetracyanoquinodimethane; OCP, open circuit potential. 

Physiological range of the biofuels: Glucose: blood, 4.4-7.8 mM; saliva, 0.02-0.06 mM; tear, 

0.2-0.9 mM. Lactate: sweat, 5-60 mM.  

*Acquired from provided figure. 

  

No. Bioanode Cathode Biofluid Biofuel Power output OCP (V) Reference 
1 Pyranose dehydrogenase/graphite BOx/AuNPs/Au Blood Glucose 73 µW cm

-2 0.56 1 
2 LDH/buckypaper BOx/buckypaper Tear Lactate 8.14 µW cm

-2 0.41 2 

3 Cellobiose dehydrogenase/Au NPs/Au BOx/AuNPs/Au 
Sweat 

Glucose 
0.26 µW cm

-2 0.58 3 
  Saliva 0.2 µW cm

-2 0.56 
Tear 1 µW cm

-2 0.57 4 
4 LOx/NQ-CNT CNT-Ag2O Sweat Lactate 1.1 mW cm

-2 0.5 5 
5 CNT/TTF/LOx/chitosan Platinum black Sweat Lactate 44 µW cm

-2 0.5* 6  
6 LOx/TTF·TCNQ/CNT Platinum black Sweat Lactate 100 µW cm

-2 0.67 7 
7 LOx/TTF-MDB-CNT/rGO/h-Ni Pt-Co/MDB-CNT Sweat Lactate 3.5 mW cm

-2 0.65 This work 
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Figure B-1. CV of an MDB-CNT/rGO/h-Ni electrode. Scan rate, 50 mV s−1. 

 

Figure B-2. Characterization of the surface area of the BFC anodes. (A and B) CV of a 

Au electrode (A) and an rGO/h-Ni electrode (B). Scan rate range:10 mV s-1–200 mV s-1. (C) 

Current densities of the Au, rGO/h-Ni, and TTF-MDB-CNT/rGO/h-Ni electrodes at -0.1 V 

plotted against scan rate (v). Error bars represent the SDs from five scan cycles. Cdl, the 

double-layer capacitance per square centimeter. Cdl is calculated as the slope of the linear 

fitting. 

  



 

 

111 

 

Figure B-3. Role of MDB in the preparation of the Pt/CNT BFC cathodes. SEM images 

of the Pt/CNT (A and B) and Pt/MDB-CNT (C and D) electrodes.  

 

Figure B-4. Characterization of the Pt/CNT and the Pt/MDB-CNT cathodes. The linear 

sweeping voltammograms (LSVs) suggest high performance of the Pt/MDB-CNT electrode 

for O2 reduction. Experiments were repeated three times independently with similar results. 



 

 

112 

 

Figure B-5. Characterization of the bulk Pt cathode, Pt/MDB-CNT and Pt alloy/MDB-

CNT cathodes. Linear sweeping voltammograms (LSVs) of bulk Pt electrode, Pt/MDB-

CNT, Pt-M/MDB-CNT (M=Co, Ni, Zn, or Cu). Scan rate, 5 mV s-1. Experiments were 

repeated three times independently with similar results. 

 

Figure B-6. LSV characterizations of the bioanode and the cathodes in lactate solutions. 

(A to C) LSVs of the LOx/TTF-MDB-CNT/rGO/h-Ni (A), Pt-Co/MDB-CNT (B), and 
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MDB-CNT (C) electrodes in 0, 20 and 40 mM lactate solutions. Scan rate, 5 mV s-1. (D) 

The forms of the MDB under different pHs. Experiments were repeated three times 

independently with similar results. 

 

Figure B-7. Characterization of the stability of the Pt/MDB-CNT cathode. (A) 

Repetitive LSVs of a Pt/MDB-CNT cathode for over 2000 cycles. Current density of the 

Pt/MDB-CNT cathode shows significant decrease over time. (B) CV of a Pt/MDB-CNT 

cathode before and after 2000 cycles catalysis recorded in N2-purged 0.1 M H2SO4 solutions. 

Scan rate, 100 mV s-1. The ECSA of the cathode, characterized by the adsorption/desorption 

of hydrogen on Pt (integral area in the range of -0.2 to 0.1 V), decreases significantly after 

2000 cycles. Experiments were repeated three times independently with similar results. 

 

Figure B-8. Characterization of the Pt-Co alloy NPs. STEM image of a Pt-Co alloy NP 

and the corresponding elemental mappings of Pt and Co. 
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Figure B-9. Schematic diagram of the energy-harvesting circuit. 

 

Figure B-10. Schematic illustration and component list of the electronic system of the 

PPES. R1 and R2 are the gain resistors (Rg). The gain G=1+(100kΩ/Rg). 
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Figure B-11. Fabrication process of the electrochemical patch of the PPES. (A) Wafer 

cleaning. (B) Spin-coating of polyimide (9 µm) on the handling wafer. (C) Electrode 

patterning using photolithography, electron-beam evaporation and lift-off in acetone. (D) 

Parylene insulating layer patterning. (E) BFC-sensor patch release from the wafer. (F) 

Photograph of a soft electrochemical BFC-sensor patch on the skin. Scale bar, 2 cm. 

 

Figure B-12. Exploded view of the multi-layered electronic patch. 
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Figure B-13. Fabrication process of the flexible electronic patch of the PPES. (A) Wafer 

cleaning. (B) Spin-coating of polyimide (9 µm) on the handling wafer. (C) Cu patterning 

(1.5 µm) using photolithography, electron-beam evaporation, and lift-off. (D) Insulating 

polyimide layer (1 μm) coating and via etching. (E) Cu patterning using photolithography, 

electron-beam evaporation (2.5 µm) and lift-off in acetone. (F) Insulating polyimide layer (1 

μm) coating and selective etching of the connecting pads. (G) Patch release from the wafer. 

(H) Assembling of the electronic components on the soft electronic patch.  
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Figure B-14. Assembly and encapsulation of the PPES. (A) The flipped electrochemical 

and the electronic patches. (B) The flipped electrochemical patch and electronic patch are 

connected with the conductive paste and encapsulated with PDMS. (C) The sensor array is 

modified with urea/NH4
+ or glucose/pH sensing films and the BFC electrodes are assembled 

on the PPES. (D) Photograph of a fully packaged PPES. 
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Figure B-15. Mechanical deformation study of the BFC patch. Numerical simulation 

of stress distributions of the BFC array with serpentine design (A and B) and the straight-

line design (C and D) under mechanical deformation (0.05% strains).  Scale bars, 3 mm. 

 

Figure B-16. Mechanical deformation study of the electronic patch. (A) Photograph of a 

soft electronic patch of the PPES under mechanical deformation. Scale bar, 1 cm. (B) 

Photograph of typical interconnect patterns on the electronic patch. (C and D) Numerical 

simulation of stress distributions of the wavy cross structure (C) and the straight line structure 

(D) under mechanical deformation (0.05% strain). Scale bars, 0.3 mm.  (E) Dynamics of the 

capacitor potential under strains between 0.45 % and 0.75 % with constant power supply 

(input signal, 0.5 V and 2 mA).  
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Figure B-17. Power consumption breakdown of the PPES. (A) Power consumption of the 

PPES. (B) Power consumption of the PSoC module during the wake-up operation. Operation 

potential, 3.3 V. 
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Figure B-18. Continuous operation of the PPES with small capacitors in 5–20 mM 

lactate. (A) Real-time capacitor potential of the PPES measured during continuous operation 

in 20 mM lactate. Capacitor, 220 μF. (B) Real-time capacitor potential of the PPES measured 

during continuous operation in 20, 10, and 5 mM lactate. Capacitor, 400 μF. 

 

Figure B-19. Long-term stability of the BFCs to charge a capacitor. (A) Performance of 

the BFCs for charging a capacitor (220 µF) for nearly 60 hours in a 20 mM lactate solution. 
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(B) The period to charge the capacitor (220 µF) from 1.8 to 3.8 V. Fresh 20 mM lactate 

fuel was filled after 220th cycle. 

 

Figure B-20. Selectivity of the sensor arrays.  (A and B) Selectivity of the NH4
+ (A) and 

urea (B) sensors. Data recording was paused for 30 s for each solution change. Experiments 

were repeated three times independently with similar results. 
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Figure B-21. Interactive study of the urea/NH4+ sensor array. (A and B) OCP curves 

of an NH4
+ sensor (A) and a urea sensor (B) under various concentrations of urea and NH4

+. 

Data recording was paused for 30 s for each solution change. Experiments were repeated 

three times independently with similar results. 

 

Figure B-22. Interactive study of the glucose/pH sensor array. (A and B) OCP curves of 

a pH sensor (A) and a glucose sensor (B) under various concentrations of glucose and 

different pHs. Experiments were repeated three times independently with similar results. 

 

Figure B-23.  Stability of the sensor arrays.  Long-term stability of the urea (black), 

glucose (red), NH4
+ (blue) and pH (green) sensors in 20 mM urea, 100 µM glucose, and 10 

mM NH4
+, respectively. Experiments were repeated three times independently with similar 

results. 
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Figure B-24. Performance of the sensor arrays under mechanical deformation. (A and 

B) Performance of an NH4
+ sensor (A) and a urea sensor (B) after 0, 100 and 200 cycles of 

bending (radius of bending curvature, 4 cm). Experiments were repeated three times 

independently with similar results.  

 

Figure B-25.  Influence of the temperature on the performance of enzymatic sensors. (A and 

B) OCP responses of a urea sensor (A) and a glucose sensor (B) under different temperatures 
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in the presence of 10 mM urea and 100 µM glucose, respectively. Insets, the 

corresponding calibration plots of the glucose and urea sensors under different temperatures. 

Sensor readings were paused during the temperature change. Experiments were repeated 

three times independently with similar results. 

 

Figure B-26.  Skin-interfaced microfluidic patch in the PPES. (A) Schematic illustration of 

the microfluidic design of the PPES. (B and C) Photographs of a skin-interfaced microfluidic 

electrochemical patch on a human subject’s arm. Scale bars, 1 cm. 
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Figure B-27. Stability, reusability, and biocompability of the PPES. (A)  The charging 

performance of the PPES (680 µF capacitor) in 20 mM lactate before and after 3000 times 

bending cycles (radius of bending curvature: 1.5 cm). (B and C) Repeating use of a PPES 

for sweat NH4+ analysis on a subject’s forehead during the same day. The PPES patch was 

peel off from the skin after the first cycling test; 4 hours later, the patch was reattached on 

the skin for the second cycling test. (D) Real-time capacitor potential of the PPES charged 

by the BFC array in a 20 mM lactate after one-month storage at 4 °C. (E) The biocompability 

test of the PPES. The PPES was worn by a healthy subject for 5 h involving a 40-min cycling 

exercise in the first hour. 
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Figure B-28. Operation flow of data transmission processes and human-machine 

interaction.  

 

Figure B-29. Schematic illustration and component list of the strain sensor integrated 

PPES for human-machine interaction. 
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MULTIMODAL ROBUST E-SKIN FOR WOUND MANAGEMENT 
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4.1 Introduction 

Chronic wounds are characterized by impaired or stagnant healing, prolonged and 

uncontrolled inflammation, as well as compromised extracellular matrix (ECM) function 
1–3. Over 6.7 million people in the United States alone suffer from chronic non-healing 

wounds including diabetic ulcers, non-healing surgical wounds, burns, and venous-related 

ulcerations 4,5, causing a staggering financial burden of over $25 billion per year on the 

healthcare system 6. Chronic wound healing is a highly complex biological process 

consisting of four integrated and overlapping phases: hemostasis, inflammation, 

proliferation, and remodeling 1–3. Current therapies including skin grafts, skin substitutes, 

negative pressure wound therapy and others can be beneficial, but frequently require 

procedures or surgical intervention 7.  Microbial infection at the wound site can severely 

prolong the healing process, and lead to necrosis, sepsis, and even death 3. Both topical and 

systemic antibiotics are increasingly prescribed to patients suffering from chronic non-

healing wounds, but the overuse, abuse, and misapplication of antibiotics often lead to an 

escalating drug resistance in bacteria, causing a drastic increase in morbidity and mortality 

rates 8. As an alternative therapeutic approach, electrical stimulation has shown to have a 

significant effect on the wound healing process, including stimulating fibroblast 

proliferation and differentiation into myofibroblasts and collagen formation, keratinocyte 

migration, angiogenesis and attracting macrophages 9,10. However, currently reported 

electrical stimulation devices usually require bulky equipment and wire connections, 

making them highly challenging for practical clinical use. More effective, fully 

controllable, and easy-to-implement therapies are critically needed for personalized 

treatment of chronic wounds with minimal side effects. 

At each stage of healing process, the chemical composition of the wound exudate changes 

substantially, indicating the stage of healing and even the presence of an infection 11–13. For 

example, increased temperature is associated with bacterial infection and changes in 

temperature can provide information on various factors relevant to healing, inflammation, 

and oxygenation in the wound bed; acidity (pH) indicates a healing state with balanced 
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protease activities and effective ECM remodeling, moreover, elevated pH in wound 

environment can be a sign of infection; elevated UA indicates wound severity with 

excessive reactive oxygen species and inflammation and shows immune system responding 

to inflammatory cytokines 14; lactate and ammonium are crucial markers for soft-tissue 

infection diagnosis and angiogenesis in diabetic foot ulcers 15; wound exudate glucose has 

a strong correlation with blood glucose and bacterial activities 16, providing crucial 

therapeutical guidance for clinical diabetic wound treatment. 

Recent advances in digital health and flexible electronics have transformed conventional 

medicine into remote at-home healthcare 17–23. Wearable biosensors could allow real-time 

and continuous monitoring of physical vital signs and physiological biomarkers in various 

biofluids such as sweat, saliva, and interstitial fluids 18–21,24–30. In general, an ideal wound 

dressing should provide a moist wound environment, offer protection from secondary 

infections, remove wound exudate, and promote tissue regeneration. Despite the promising 

prospects opened by the wearable technologies 31–37, major challenges exist to realize their 

full potential toward practical chronic wound management applications: the chronic non-

healing wounds pose high requirement on the flexibility, breathability, and 

biocompatibility of the wearable devices to protect the wound bed from bacterial 

infiltrations and infection and modulate wound exudate level; the complex wound exudate 

matrix could substantially affect the biosensor performance and thus there are few reports 

on prolonged evaluation of biosensors in vivo 13,31; personalized wound management 

demands both effective wound therapy and close monitoring of crucial wound healing 

biomarkers in the wound exudate; The absence of miniaturized user-interactive fully 

integrated closed-loop wearable systems and the evaluation of such systems in vivo impede 

their practical use. 
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4.2 Design of the fully-integrated stretchable wearable bioelectronic system 

4.2.1 Fabrication of the soft wearable patch 

Briefly, a 300-nm-thick sacrificial layer of copper was first deposited on the silicon wafer 

using e-beam evaporation (CHA Mark 40) at a speed of 2.5 Å s−1, followed by standard 

photolithography (Microchemicals GmbH, AZ 5214) to define the connection wires. 

Cr/Au/Cr (1/100/20 nm) was deposited on the sacrificial copper through e-beam 

evaporation of at a speed of 0.2, 0.5, and 0.2 Å/s, respectively, followed by lift-off in 

acetone. SEBS (200 mg ml-1 in toluene) was then spin-coated with a speed of 300 

revolutions per minute (rpm) for 30 s. The SEBS film was cured at 70 °C for 1 h to remove 

toluene and the resulting SEBS film had a thickness of ~300 μm. The copper sacrificial 

layer was then chemically removed by immersing the silicon wafer in copper etchant (APS-

100) for 12 h. The patch was then picked up by a PDMS stamp and rinsed with deionized 

(DI) water thoroughly. A thin layer of parylene (ParaTech LabTop 3000 Parylene coater) 

was deposited (200 nm), followed by photolithography and reactive-ion etching (RIE) 

(Oxford Plasmalab, 100 ICP/RIE, 30 SCCM of O2, 100 W, 50 mTorr, 90 s) to expose 

openings for sensors modifications and pin connections. Laser patterning via a 50-W 

CO2 laser cutter (Universal Laser Systems, power 20%, speed 50%, points per inch 1,000, 

and vector mode) was used to define the patch shape and outline. After sensor modification, 

a water-soluble tape (AQUASOL) was used to pick up the wound patch from PDMS 

backings for further use. 

4.2.2 Drug-loaded hydrogel preparation and characterization 

Electroactive hydrogel synthesis and 3D printing. 300 mg chondroitin 4-sulfate was 

dissolved in 1.14 ml of 1 M NaOH under vigorous stirring. Next, 279 μl 1,4-Butanediol 

diglycidyl ether cross-linker was added and mixed thoroughly for another 30 min. An 

Anton Paar MCR302 rheometer equipped with a parallel plate to perform rheological 

characterization. Dynamic viscosity of the samples was measured as a function of shear 

rate. 3D hydrogel printing was performed based on a custom-designed 3D printer based on 
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a gantry system (A3200, Aerotech) and a benchtop dispenser (Ultimus V, Nordson 

EFD). 150 µm nozzles were used for the printing. The pump pressure was set to be 2 

pounds per square inch (psi) and the nozzle moving speed was set at 5 mm s-1. The printed 

hydrogel was placed under 60°C for 60 min to form the crosslinked network of the 

electroactive hydrogels. The crosslinked hydrogels were then left in DI water at 4°C for 48 

h (with water replacement every 12 h) to obtain equilibrium swelling.  

Drug loading and release studies. The AMP was loaded into the hydrogel by incubating 

swollen electroactive gel in 1.5 ml AMP solution (2 mg ml-1 in Dulbecco's PBS) in a sealed 

12 well-plate under 4 °C for 24 h. Passive as well as electro-stimulated release was 

examined at room temperature in a Dulbecco's PBS solution using the wearable patch. The 

AMP release was quantified by measuring fluorescence signals using a Synergy HTX 

Multi-Mode Reader (BioTek Instruments) spectrophotometer at 570 and 583 nm. 

Swelling studies. The initial wet weight of each prepared hydrogel was documented. The 

samples were then immersed in DI water, and the hydrated samples were temporarily taken 

out of the water and weighed at 1, 4, 8, 24, and 48 h. The swelling ratio was calculated as 

the weight gain divided by the original weight before hydration. 

4.2.3 Wireless system integration of the wearable patch  

A 4-layer flexible PCB with a rounded rectangle (36.5 mm x 25.5 mm) geometry was 

designed using EAGLE CAD. The sensor patch was interfaced directly underneath the 

flexible PCB through a rectangular cutout (12 mm x 3.8 mm). The power management 

circuitry consists of a magnetic reed switch (MK24-B-3, Standex-Meder Electronics) and 

a voltage regulator (ADP162, Analog Devices). The electrical stimulation and drug 

delivery circuitry consists of a series voltage reference (ISL60002, Renesas Electronics), 

an operational amplifier square wave generator circuit (MAX40108, Maxim Integrated), 

and a switch array (TMUX1112, Texas Instruments). The potentiometric, amperometric, 

and temperature sensor interface circuitry consists of a voltage buffer array (MAX40018, 

Maxim Integrated), a switch array (TMUX1112, Texas Instruments), a voltage divider, and 
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an electrochemical analog front-end (AD5941, Analog Devices). A programmable 

system on chip (PSoC) Bluetooth Low Energy (BLE) module (CYBLE-222014, Infineon 

Technologies) was used for data processing and wireless communication. The fully 

integrated wearable device was attached to the mice or rats using a 3M double sided tape 

and fixed with Mastisol liquid adhesive to enable strong adhesion, allowing the animals to 

move freely over a prolonged period.  

4.3 Characterization of multiplexed biomarker analysis and therapeutic capabilities 

of the wearable patch 

4.3.1 Characterization of adhesion of wearable patch 

The wearable patch was attached to chicken skin (2×2 cm) using Mastisol liquid adhesive 

and 3M double sided tape as described previously. A standard T-peel test was then 

performed according to American Society for Testing and Materials D1876 using a 

mechanical tester to evaluate patch adhesion to skin. Tegaderm adhesive (3M) was used as 

control.  

4.3.2 In vitro cell studies 

Cell lines. Normal Adult human dermal fibroblast cells (HDFs, Lonza) and Normal Human 

Epidermal Keratinocytes (NHEKs, Lonza) were cultured under 37 °C and 5% CO2. Cells 

were passaged at 70% confluency and a passage number of 3–5 was used for all studies. 

In vitro cytocompatibility studies. The electroactive hydrogels were washed and transferred 

to 24-well cell culture inserts (cell culture on permeable supports). The wells were seeded 

with HDFs and NHEKs (1 × 105 cells per well). The inserts were then placed in cell seeded 

24-well plates and cells were treated with appropriate media and incubated under 37 ºC 

and 5% CO2 for the course of study. A similar study was performed for wearable patches 

with the cells directly seeded on the patches.  
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Evaluation of cell proliferation and viability. A commercial calcein AM/ethidium 

homodimer-1 live/dead kit (Invitrogen) and commercial PrestoBlue assays (Thermo 

Fisher) were used to evaluate cell viability and cell metabolic activity, respectively. In the 

live/dead assay, the samples were imaged with an Axio Observer inverted microscope 

(ZEISS); live cells were stained green with calcein-AM whereas dead cells were stained 

red with Ethidium Homodimer-1. Using ImageJ software, cell viability was calculated as 

the percentage ratio of number of live cells to the number of total cells (live + dead).  

In vitro wound healing assay. For in vivo wound healing assay (circular wound), first a 

gelatin solution was prepared by dissolving gelatin in DI water (300 mg ml-1) and filtered 

with a sterile polyethersulfone syringe filter (0.22 µm in pore size). Then 50 µl of the 

solution was dropped in the center of each well in 12 well-plates. Prior to cell seeding, the 

plates were kept at room temperature under sterile conditions to keep gelatin in solid 

condition. Next, HDF cells with a density of 1 × 105 cells per well were seeded in each 

well and incubated at 37 ºC and 5% CO2. The inherent thermoresponsive properties of 

gelatin allowed slow dissolving of the gel into the media, creating a uniform-sized wound 

in the center of cells adhered to the plate. The media was then replaced by fresh media after 

4 h and the wound closure was assessed daily for up to 4 days. 

4.3.3 In vitro evaluation of wearable patch’s antimicrobial properties 

Bacterial cells. Methicillin-resistant Staphylococcus aureus (MRSA, ATCC® BAA-

2313™), Pseudomonas aeruginosa (P. aeruginosa, ATCC® 15442™), and multidrug-

resistant Escherichia coli (MDR E. coli, ATCC® BAA-2452™) and Staphylococcus 

epidermidis (S. epidermidis, ATCC® 12228™) were used for antimicrobial tests. 

Minimum inhibitory concentration (MIC). The MIC of TCP-25 AMP against different 

pathogens was evaluated by measuring bacterial optical density. First, bacteria colonies 

were grown on agar plates containing 15 g l-1 agar and 30 g l-1 Bacto™ BD Tryptic Soy 

Broth (TSB) under 5% CO2 at 37 °C for 24 h. Next, the colonies were transferred and 

dispersed gently to TSB media, grown overnight in a shaker incubator at 37 °C. A bacteria 
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solution of 106 CFU ml-1 was prepared for all antimicrobial tests. For MIC test, 200 µl 

of bacteria solution in TSB was cultured in 96-well plates in the presence of different AMP 

concentrations (0, 5, 25, 50, 100, 250, 500, and 750 µg ml-1) and incubated at 37 °C for 24 

h. Next, the optical density of the solutions was measured, and the relative optical density 

(as compared to the optical density of the control sample incubated in the absence of AMP) 

was reported to calculated MIC.  

Colony forming unit test. Electroactive hydrogels with and without TCP-25 AMP were 

placed in 24-well plates and incubated with 1 ml bacteria solution (106 CFU ml-1) in TSB 

media under 37 °C and 5% CO2 for 18 h. Next, each sample was removed from bacteria 

solution, washed gently with Dulbecco's PBS (3X) and then placed in microcentrifuge 

tubes containing 1 ml Dulbecco's PBS. The tubes were vortexed vigorously at 3000 rpm 

for 15 min to release bacteria trapped inside the hydrogels. A series of logarithmic dilutions 

(10, 102, 103, and 104) was then prepared from each solution. 20 µl diluted solutions were 

then seeded on agar plates, followed by incubation under 37 °C and 5% CO2 for 18 h. The 

number of colonies was then recorded and reported as colony forming units. 

Zone of inhibition. A 100 µl bacteria solution (106 CFU ml-1) was dispersed uniformly each 

agar plate. Next, sterilized electroactive hydrogel disks (6 mm in diameter) loaded with 

AMP or without AMP were placed into 9 mm holes created in agar plates. The zone of 

inhibition was measured after 18 h. 

4.3.4 Numerical electrical field simulation  

Simulation of the electric field generated during electrical stimulation was conducted by 

using the commercial software COMSOL Multiphysics through finite element method 

(FEM). Tetrahedral elements allowed modeling of the electric field in 3D space with 

testified accuracy. The electric field is described by: 

∇ ∙ 𝑫𝑫 = 𝜌𝜌 

𝑬𝑬 = −∇𝑉𝑉 
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where 𝑫𝑫, 𝜌𝜌, 𝑬𝑬 and  𝑉𝑉 denote the electric displacement field, charge density, electric 

field, and electric potential. 

The device was fixed at the middle of a cubic computational domain. The side length of 

the computational domain was 100 mm. The relative permittivity above and below the 

device was set to be 1 and 76.8, respectively. The boundary condition for the computational 

domain was set by: 

𝒏𝒏 ∙ 𝑫𝑫 = 0 

where 𝒏𝒏 indicates the normal-to-surface of the boundary. The potential of the anode was 

set to be 1 V and the potential of the ground electrode was set to be 0 V. 

4.4 Evaluation of the wearable patch in vivo for multiplexed wound biomarker 

monitoring and therapeutic efficacy 

4.4.1 In vivo biodegradation and biocompatibility 

To assess biodegradation and biocompatibility of the wearable patch, a rat subcutaneous 

implantation model was used. After anesthesia and analgesia using 2.5% (v/v) isoflurane, 

1 mg kg-1 Buprenorphine, 5 mg kg-1 Ketoprofen, and 1 mg kg-1 Bupivacaine, 10 mm 

incisions in dorsal skin were created to form subcutaneous pockets on the back of Wistar 

rats (200−250 g, Charles River Laboratories, Wilmington, MA, USA). Next, samples were 

implanted into each pocket according to the protocol approved by the Institutional Animal 

Care and Use Committee (IACUC) (Protocol No. IA20-1800) at California Institute of 

Technology. Animals were then euthanized after 14 and 56 days, and the samples were 

explanted with their surrounding tissues for further analysis. 

4.4.2 Multiplexed wound biomarker monitoring in vivo 

The on-body multiplex wound biomarker monitoring was performed using a diabetic 

wound model in db/db mice (BKS.Cg-Dock7m +/+ Leprdb/J mice, The Jackson Laboratory, 
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Bar Harbor, ME, USA). After anesthesia and analgesia, a 10 mm full thickness wounds 

(through to the level of the panniculus carnosus muscle) was created on the dorsum of mice 

using a surgical blade. A silicon 12 mm-diameter splint (GRACE BIO-LABS, Bend, OR, 

USA) was placed on the wound area, secured with cyanoacrylate glue and then fixed using 

Ethilon 5-0 sterile sutures (Nylon). The wearable patch was then placed on the wound and 

secured on the wound area using Tegaderm™ transparent film dressing (3M). The data 

from the wearable patch was wirelessly recorded. In the case of the infected wound, a 

mixture of bacteria solution (50 µl solution, 106 CFU ml-1 MRSA and 106 CFU ml-1 P. 

aeruginosa) was applied into the wound area on day 4 post-surgery. For the fasting 

experiments, the animals were fasted for 24 h (only water was provided). One group of 

fasting animals were used for injection study. In this case, a 400 mM glucose solution in 

DBPS (based on body weight) was administration into the mice tail-vein to spark ~10 mM 

increase in blood glucose level. The in vivo sensor readings from the wearable patch were 

obtained from 30 min prior to injection and continued until 270 min post injection.  For the 

fasting/feeding experiment, the animals were fasted for 24 h, followed by feeding with 

protein rich laboratory rodent diet 5001 (LabDiet). For the food feeding study, the wearable 

patch was tested before fasting, after 24-hour fasting and 6 hours fasting/feeding.   

4.4.3 Spatial and temporal monitoring of critical-size wounds 

Similar to multiplexed wound biomarker monitoring, critical-size wounds (35 mm in 

diameter) were created in ZDF obese fa/fa diabetic rats (The Jackson Laboratory, Bar 

Harbor, ME, USA). Next, the sensor array patch was applied on the wound and secured by 

using 3M Tegaderm™ dressing. Simultaneous sensor readings were recorded daily for 

both infected and non-infected wounds before and after treatment. For the infection, a 

similar mixture of bacteria solution (100 µl solution, 106 CFU ml-1 MRSA and 106 CFU 

ml-1 P. aeruginosa) was applied into the wound area on day 2 post surgery. During the in 

vivo trial, the data from the wearable patch was wirelessly recorded. 
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4.4.4 Evaluation of wearable patch-facilitated chronic wound healing in vivo 

A 10 mm full thickness wound was created in the ZDF obese fa/fa rat’s dorsal skin and the 

wearable patch was placed on the wound. Four different rat groups were tested with 

different treatments offered by the wearable patch: negative control, drug release, electrical 

stimulation, and combination therapy. The animals were euthanized, and the tissue samples 

were explanted on day 4 and 14 post surgery and processed for further analysis. The 

adhesion of patches on animals during the course of study was monitored. 

4.4.5 In vivo antimicrobial, histological and immunohistofluorescent evaluations 

For in vivo biocompatibility assessment, upon explantation, samples were fixed in 4% 

paraformaldehyde under 4 ºC overnight, washed thoroughly with Dulbecco's PBS (5X), 

and then incubated in 30% sucrose overnight (4 ºC). The samples were then mounted in 

optimal cutting temperature compound (OCT compound, Fisher Scientific) followed by 

flash freezing in liquid nitrogen (N2), and cryosectioning (10 µm sections). Hematoxylin 

and eosin (H&E) and immunohistochemistry (IHC) staining were performed on 

cryosections. For IHC staining, two primary antibodies (anti-CD3 [SP7] (ab16669) and 

anti-CD68 (ab31630), Abcam) and two secondary antibodies (Donkey anti-mouse, Alexa 

Fluor 568, and goat anti-Rabbit, Alexa Fluor 488 conjugated antibodies, Invitrogen) were 

used. Upon antibody staining, the samples were counterstained against DAPI for cell nuclei 

visualization. The stained slides were then mounted with ProLong™ Diamond Antifade 

Mountant (Invitrogen) and imaged using a LSM 800 confocal laser scanning microscope 

(ZEISS). 

For regeneration studies, the bacteria samples were first isolated from the wound bed and 

assessed via CFU assay as described earlier. The wound samples were then explanted with 

the adjacent tissue, processed, sectioned, and stained via Masson’s trichrome (MT) staining 

and IHC. For IHC staining, different primary antibodies including recombinant Anti-

Cytokeratin 5 antibody [SP27] (ab64081, Abcam), Anti-NF-kB p65 (phospho S276) 

antibody (ab194726, Abcam), Human/Mouse/Rat PTEN Alexa Fluor® 647-conjugated 
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Antibody (IC847R, R&D Systems) and Cytokeratin 14 Monoclonal Antibody (LL002, 

ThermoFisher) and similar secondary antibodies were used. Upon staining, the samples 

were mounted with antifade mountant and visualized with a confocal microscope. 

4.4.6 Quantitative real-time PCR analysis 

RNA was isolated from wound tissue samples using RNeasy Plus Micro Kit (QIAGEN). 

The RNA quantity and quality were assessed using a NanoDrop 2000/2000c 

Spectrophotometer at 260/280 nm wavelengths. Next, the complementary DNA (cDNA) 

was synthesized using QuantiTect Reverse Transcription Kit (QIAGEN). Gene expression 

was performed using a TaqMan™ Universal PCR Master Mix (ThermoFisher). TaqMan 

Array Plates for rat wound healing gene expression were used where a library of genes was 

screened. The cDNAs synthesized in the previous step were then added to each plate and 

followed by quantitative analysis using a QuantStudio 3 Real-Time PCR system (Applied 

Biosystems). 

4.5 Results and discussions 

To address these challenges, here we introduce a fully-integrated wireless wearable 

bioelectronic system that effectively monitors the physiological conditions of the wound 

bed via multiplexed and multimodal wound biomarker analysis, and performs combination 

therapy through electro-responsive controlled drug delivery for anti-inflammatory 

antimicrobial treatment and exogenous electrical stimulation for tissue regeneration (Fig. 

4-1A and B). The wearable patch is mechanically flexible, stretchable, and can conformally 

adhere to the skin wound throughout the entire wound healing process, preventing any 

undesired discomfort or skin irritation. Due to the wound’s complex pathophysiological 

environment, compared to previously reported single-analyte sensing, multiplexing 

analysis of wound exudate biomarkers can provide more comprehensive and personalized 

information for effective chronic wound management. In this regard, a panel of wound 

biomarkers including temperature, pH, ammonium, glucose, lactate, and UA were chosen 

based on their importance in reflecting the infection, metabolic, and inflammatory status 
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of the chronic wounds. Real-time selective monitoring of these biomarkers in complex 

wound exudate could be realized in situ using custom-engineered electrochemical 

biosensor arrays (Fig. 4-1C). The wearable system’s capabilities of multiplexed 

monitoring, biomarker mapping, and combination therapy were evaluated in vivo over 

prolonged periods of time in rodent models with infected diabetic wounds. The multiplexed 

biomarker information collected by the wearable patch revealed both spatial and temporal 

changes in the microenvironment as well as inflammatory status of the infected wound 

during different healing stages. In addition, the combination of electrically modulated 

antibiotic delivery with electrical stimulation on the wearable technology enabled 

substantially accelerated chronic wound closure. 

 

Figure 4-1. A wireless stretchable wearable bioelectronic system for multiplexed 

monitoring and treatment of chronic wounds. (A) Schematic of a soft wearable patch 
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on an infected chronic non-healing wound on diabetic foot. (B) Schematic of layer 

assembly of the wearable patch, showing the soft and stretchable poly[styrene-b-(ethylene-

co-butylene)-b-styrene] (SEBS) substrate, the custom-engineered electrochemical 

biosensor array, a pair of voltage-modulated electrodes for controlled drug release and 

electrical stimulation, and an anti-inflammatory and antimicrobial drug-loaded 

electroactive hydrogel layer. (C) Schematic layout of the smart patch consisting of a 

temperature (T) sensor, pH, ammonium (NH4
+), glucose (Glu), lactate (Lac), and UA 

sensing electrodes, reference (Ref) and counter electrodes, and a pair of voltage-modulated 

electrodes for controlled drug release and electrical stimulation. (D and E) Photographs of 

the fingertip-sized stretchable and flexible wearable patch. Scale bars, 1 cm. (F and G) 

Schematic diagram (F) and photograph (G) of the fully-integrated miniaturized wireless 

wearable patch. Scale bar in (F), 1 cm. ADC, analog to digital converter; AFE, analog front 

end; PSoC, programmable system on chip; MUX, multiplexer; BLE, Bluetooth Low 

Energy. (H) Photograph of a fully-integrated wearable patch on a diabetic rat with an open 

wound. Scale bar, 2 cm. 

The disposable wearable patch consists of a multimodal biosensor array for simultaneous 

and multiplexed electrochemical sensing of wound exudate biomarkers, a stimulus-

responsive electroactive hydrogel loaded with a dual-function anti-inflammatory and 

AMP, as well as a pair of voltage-modulated electrodes for controlled drug release and 

electrical stimulation (Fig. 4-1B and C). The multiplexed sensor array patch is fabricated 

via standard microfabrication protocols on a sacrificial layer of copper followed by transfer 

printing onto a SEBS thermoplastic elastomer substrate (Figs. C-1 and 2). The serpentine-

like design of electronic interconnects and the highly elastic nature of SEBS enables high 

stretchability and resilience of the sensor patch against undesirable physical deformations 

(Fig. 4-1D and E). The flexible bandage seamlessly interfaces with a flexible PCB for 

electrochemical sensor data acquisition, wireless communication, and programmed voltage 

modulation for controlled drug delivery and electrical stimulation (Fig. 4-1F–H, Figs. C-

3 to 5). The wireless wearable device can be attached to the wound area with firm adhesion, 

allowing the animals to move freely over a prolonged period (Figs. C-6 and 7). 
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In addition to the multiplexed and multimodal biosensing, the wearable patch is able to 

perform combination treatment of chronic wounds through drug release from an 

electroactive hydrogel layer and electrical stimulation under an exogenic electric field, both 

controlled by a pair of voltage-modulated electrodes (Fig. 4-2A–C). The electroactive 

hydrogel consists of chondroitin 4-sulfate, a sulfated glycosaminoglycan composed of 

units of glucosamine, crosslinked with 1,4-butanediol diglycidyl ether (Fig. C-8). Due to 

the shear-thinning behavior of the prepolymer solution, the hydrogel can be precisely 

fabricated via 3D printing (Fig. C-9). The negatively charged chondroitin 4-sulfate 

hydrogel is an ideal choice for loading and controlled release of positively charged large 

biological drug molecules based on an electrically modulated ‘on/off’ drug release 

mechanism (Fig. 4-2B). Here, an AMP, TCP-25 38, was loaded within the chondroitin 4-

sulfate hydrogel network through the electrostatic interactions with the polymer backbone, 

with up to 15% loading efficiency (Fig. 4-2D). The highly porous hydrogel network under 

equilibrium swelling could further enhance the drug loading efficiency (Fig. C-10). Under 

an applied positive voltage, the electroactive hydrogels will be rapidly protonated, resulting 

in anisotropic and microscopic contraction followed by syneresis/expelling of water from 

the gel 39, and consequently allowing a controlled release of the TCP-25 AMP (Fig. 4-

2E,F, Figs. C-11 and 12). In addition, the electrical field will also facilitate the diffusion 

of positively-charged AMP out of the stimuli-sensitive chondroitin 4-sulfate hydrogel 

towards the cathode due to electrophoretic flow 40. 
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Figure 4-2. Characterization of the therapeutic capabilities of the wearable patch in 

vitro. (A to C) Schematic illustration of the therapeutic modules of the wearable patch (A) 

and the working mechanisms of the controlled drug delivery for antimicrobial treatment 

(B) and electrical stimulation for tissue regeneration (C). (D) Loading efficiency of dual-

functional TCP-25 anti-inflammatory and AMP into chondroitin 4-sulfate electroactive 

hydrogel after 0.5–24-hour incubation. (E) Release amount of AMP from the hydrogel 

under programmed on-off electrical voltage (1 V, 10 min each step). (F) Long term 

cumulative release of the AMP under programmed electrical modulation. (G and H) In 

vitro antimicrobial tests including zone of inhibition (G) and colony forming units (H) 

assays for electroactive hydrogels with and without TCP-25 AMP against multidrug-

resistant Escherichia coli (MDR E. coli), Pseudomonas aeruginosa (P. aeruginosa), and 

Methicillin-resistant Staphylococcus aureus (MRSA). (I to K) In vitro cytocompatibility 

assessment of TCP-25 loaded electroactive hydrogels using live/dead staining (I) and 
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quantification of cell viability (J) and metabolic activity (K) for HDF and NHEK cells 

cultured in the presence of hydrogels. Scale bar, 100 µm. (L and M) Fluorescence images 

(L) and quantitative wound closure analysis (M) to evaluate wearable patch’s therapeutic 

capability via electrical stimulation using an in vitro circular wound healing assay created 

by HDF cells. ES, electrical stimulation. A pulsed voltage was applied for electrical 

stimulation (1 V at 50 Hz, 0.01 s voltage on for each cycle). Scale bar, 500 µm. (N) 

Numerical simulation of the electrical field generated by the custom-designed electrical 

stimulation electrodes during operation. E, electrical field. Scale bar, 500 µm. Error bars 

represent the s.d. (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; n ≥ 3). 

The antimicrobial activity of the TCP-25 AMP-loaded hydrogel was evaluated against 

gram-positive Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas 

aeruginosa (P. aeruginosa), and gram-negative multidrug-resistant Escherichia coli (MDR 

E. coli) and Staphylococcus epidermidis (S. epidermidis), the most common pathogenic 

bacteria associated with microbial colonization of chronic non-healing wounds (Fig. 4-

2G,H and Fig. C-13). The zone of inhibition assay indicates the susceptibility of the MDR 

E. coli, P. aeruginosa, and MRSA towards TCP-25 AMP (Fig. 4-2G) while the standard 

colony-forming assay (CFU) showed that the drug-loaded hydrogel was effectively 

protected from all pathogenic colonization (Fig. 4-2H). For cells cultured on AM-loaded 

hydrogels, the viability of HDF and NHEK cells remained >90% and their metabolic 

consistently increased during the 7-day culture (Fig. 4-2I–K and Fig. C-14), indicating 

that the TCP-25-loaded gels are highly cytocompatible and support cell proliferation.  

The wearable patch’s therapeutic capability toward enhanced tissue regeneration via 

electrical stimulation was assessed using an in vitro wound healing assay (Fig. 4-2L,M and 

Fig. C-15). The model wound treated with electrical stimulation showed substantially 

faster and more consistent migration of HDF cells toward the wound area for 4 consequent 

days post wounding as compared to the control group without electrical stimulation (Fig. 

4-2L). Quantitative analysis of the model wound closure indicates higher wound closure 

rates in the wounds treated with electrical stimulation (Fig. 4-2M). The enhanced tissue 
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regeneration is attributed to the directional electrical field generated from our custom-

designed electrical stimulation electrodes (Fig. 4-2N) which plays a crucial role in cell 

behavior modulation including cell-cell junctions, cell division orientation, and cell 

migration trajectories (galvanotaxis or electrotaxis) 41–43. The electrical potential was 

applied directly to a pair of insulated electrodes to generate electrical field for electrical 

stimulation. It should also be noted that continuous electrical stimulation did not cause 

substantial temperature increase (Fig. C-16).  

To validate the capability and efficacy of our wearable patch, in vivo pre-clinical 

evaluations are essential. In this regard, the in vivo biocompatibility of the wearable patch 

was assessed. The immunohistofluorescent staining of subcutaneously implanted hydrogel 

and electrodes in rats showed negligible signs of leukocyte (CD3) and macrophage (CD68) 

antigens after 56 days, indicating the high biocompatibility of the wearable patch (Fig. C-

17). All custom-developed biosensors on the wearable patch displayed consistent 

sensitivity during a 6-h continuous measurement in simulated wound fluid, indicating the 

high electrochemical stability of the sensors for wound analysis (Fig. C-18). In vivo 

multiplexed sensing study was then performed using an infected excisional wound model 

in diabetic mice. The wound fluid composition was assessed by the wearable patch before 

infection (day 1), after infection (day 4), and after treatment (day 7) (Fig. 4-3A). 

Substantially elevated UA, temperature, pH, lactate, and ammonium levels were observed 

as compared to those before infection. The increase in temperature can be potentially linked 

to inflammation 44. The elevated levels of UA after infection can be due to upregulation of 

xanthine oxidase, a component of the innate immune system responding to inflammatory 

cytokines in chronic ulcers which plays a key role in purine metabolism to produce UA 45. 

pH, lactate, and ammonium are all acidity related and their elevation during the bacteria 

infection has also been widely reported 46. In contrast, the glucose level in infected wound 

fluid showed >35% decrease after infection, attributing to the increased glucose 

consumption of bacteria activities 16. Upon wound treatment, the temperature, pH, lactate, 

UA, and ammonium decreased toward the levels prior to the infection while the glucose 
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level increased significantly after treatment, indicating the successful bacterial 

elimination (Fig. 4-3A). 

 

Figure 4-3. In vivo evaluation of the wearable patch for multiplexed wound biomarker 

monitoring in a wound model in diabetic mice. (A) In vivo multiplexed analysis of the 

chemical composition of wound fluid using a wearable patch in an infected excisional 

wound model in a diabetic mouse. Infection and treatment were performed after the sensor 

recording on days 1 and 4, respectively. (B) In vivo continuous and multiplexed evaluation 

of wound parameters in a 24-hour fasted mouse before and after glucose administration via 

tail-vein. (C) In vivo assessment of metabolic changes in wound microenvironment in 

response to fasting and food feeding in a diabetic mouse. 

Considering that dietary intake may have major impact on the composition of diabetic 

wound fluid, we evaluated the metabolic changes in wound fluid in response to tail-vein 

glucose administration (Fig. 4-3B) and food feeding (Fig. 4-3C). Glucose administration 

via tail-vein into the 24-hour fasted mice sparked ~10 mM increase in the blood glucose 

level. The in vivo sensor readings from the wearable patch were recorded from 30 min prior 

to injection and continued until 270 min post injection (Fig. 4-3B). The glucose level in 
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wound fluid showed a gradual increase throughout the 4 hours after injection, indicating 

a protracted delay with respect to blood glucose. A similar trend was observed for 

temperature values, attributing to an increased metabolic rate to facilitate digestion. No 

apparent change in UA level after injection was detected due to the absence of purine intake 

in the glucose administration. For the food feeding study, the wearable patch was tested 

before fasting, after 24-hour fasting and 6 hours after feeding (Fig. 4-3C). The lactate and 

ammonium levels increased substantially after fasting while glucose and UA levels 

decreased after fasting, consistent with the trend of observed blood level changes 47. In the 

meantime, temperature decreased due to the fasting-induced hypothermia 48. As expected, 

6 hours after feeding, the glucose and UA levels increased from 11.9 mM to 20.3 mM and 

from 45.9 µM to 60.3 µM, respectively. These results indicate that wearable patch-enabled 

wound fluid analysis could be a promising approach to realize continuous and personalized 

metabolic monitoring.  

The wearable patch is mass-producible and readily reconfigurable for various wound care 

applications. In the case of large chronic ulcers, the wound parameters and 

microenvironment may vary from site to site, making localized monitoring crucial for 

optimized assessment and treatment of chronic wound infection. As a proof of concept, we 

demonstrate customized wearable patches for spatial mapping of physiological conditions 

of critical-size wounds during the healing process. As illustrated in Fig. 4-4A and B, we 

could incorporate a sensor array containing seven pH sensors and nine temperature sensors 

onto our wearable platform for monitoring and mapping critical-size full-thickness infected 

chronic wounds in diabetic rats. The pH and temperature sensor arrays showed high 

reproducibility and stability in simulated wound fluid solutions before and after in vivo 

application (Fig. 4-4C,D and Fig. C-19). 
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Figure 4-4. Spatial and temporal monitoring of critical-size full-thickness infected 

wound defects in diabetic rats using the wearable patch. (A and B) Schematic (A) and 

photograph (B) of a soft sensor patch with pH and temperature sensor arrays designed for 

spatial and temporal monitoring of large and irregular wounds. Scale bar in B, 1 cm. (C 

and D) The characterization of pH (C) and temperature (D) sensor arrays on a wearable 

patch in simulated wound fluid solutions. (E and F) Dynamic changes in pH (E) and 

temperature (F) values of each biosensor on a wearable patch for critical-size non-infected 

and infected wounds. (G and H) The mapping of daily local pH (G) and temperature (H) 

sensor readings in the wound area for infected and non-infected wounds on each day over 

the 7-day study period.  

On-body validation of the sensor array for spatial and temporal wound monitoring was 

conducted on critical-size full-thickness wounds (35 mm in diameter) in ZDF rats prior to 

infection, after infection, and after treatment. The dynamic changes in pH and temperature 

values for each biosensor on the wearable patch in non-infected and infected critical-size 

wounds are illustrated in Fig. 4-4E and F. For non-infected wound studies, the pH and 

temperature values did not notably change over the 7-day period. However, for infected 
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wound studies, the pH and temperature values increased daily upon applying a mixed 

infection (MRSA and P. aeruginosa) on day 1 and reached the peak value on days 3 and 

4. Upon treatment on day 4, the pH and temperature values for each sensor decreased 

substantially and recovered toward the levels prior to the infection on day 7. The spatial 

mapping plots of pH (Fig. 4-4G) and temperature (Fig. 4-4H) in the chronic wound area 

on each day over the 7-day period were successfully generated based on localized sensor 

readings. These results are in agreement with previous literature on the changes in the pH 

and temperature values during the healing progress 46. A wide variation was observed in 

both pH and temperature in different regions of the wound upon bacterial infiltration on 

day 2, showing a higher bacteria growth in the wound edges. The infected wound showed 

a more uniform pH and temperature at different regions 2- and 3-days post infection due 

to the formation of uniform biofilm. Upon treatment, the variations increased in the treated 

wounds on days 5 and 6, indicating the disruption and eventually elimination of the biofilm 

after treatment (Fig. 4-4G,H). 

The wearable patch-facilitated combination therapy and wound healing were evaluated in 

a splinted excisional wound model in ZDF rats (Fig. 4-5A). Four different groups were 

tested: negative control, drug release, electrical stimulation, and combination therapy. The 

drug treatment was primarily used to eliminate bacterial infections and regulate immune 

response in early stages of healing. The electrical stimulation was used to facilitate ion 

channel up-regulation and redistribution, resulting in accelerated cell migration and wound 

healing. The wearable patch’s high flexibility and stretchability provided intact and 

comfortable contact with the animal’s back curvature. Over a 14-day period, the animals 

were routinely weighed where infected rats showed a non-substantially lower body weight 

compared to non-infected animals (Fig. C-20), indicating that the study procedures did not 

have any substantial influence on the animals’ health. Moreover, the standard CFU on the 

mixed infection isolated from the wound beds 3 days after drug and combination therapy 

groups showed a significant reduction in bacterial growth as compared to control and 

electrical stimulation groups, suggesting effectiveness of the wearable patch in the 

elimination of pathogenic species from the wound (Fig. C-21). Substantially higher rates 
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of wound closure were observed in the treated wounds as compared to the control 

untreated group, where the group that received combination therapy showed the highest 

wound closure rate, collagen deposition, and granulation tissue formation, suggesting the 

recovery of the wound toward the unwounded state (Fig. 4-5B,C and Fig. C22). We also 

evaluated the use of the wearable system for multiplexed biosensing and the combination 

therapy on the same diabetic rats (Fig. C-23): compared to the individual evaluation as 

shown in Fig. 4-4 and Fig. 4-5B,C, similar sensing results and therapeutic effects to the 

individual evaluation were observed: the continuous sensing data was obtained up to 8 days 

until the wound dried after therapy while the wound fully closed 14 days post-surgery. 
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Figure 4-5. In vivo evaluation of wearable patch-facilitated chronic wound healing 

in full-thickness infected wounds in ZDF rats. (A) Schematic of the wearable patch on 

a diabetic wound and the working diagram of combination therapy. (B and C) 

Representative images (B) and quantitative analysis of wound closure (C) for the control 

wound and wounds treated with drug, ES, and combination therapy on days 3 and 14 post 

application. Scale bar in b, 500 µm. (D) Representative images of Masson’s trichrome 

(MTC) stained sections of the full-thickness skin wounds after 14 days of combination 

treatment. Scale bars, 500 µm. (E) Representative immunofluorescent stained images for 

nuclear factor kappa B (NF-κB) (purple), keratin 14 (Krt14) (green), and phosphatase and 

tensin homolog (Pten) (red) 14 days after the treatment. Scale bars, 500 µm. (F and G) 

Quantitative analysis of scar elevation index (SEI) based on MTC images (F) and Krt14 

marker based on immunofluorescent images (G). (H) Quantitative real-time PCR analysis 

of a library of wound biomarkers for wound biopsies after 3 and 14 days of treatment. (I 

to M) Relative expression of Pdgfa (I), Fgf (J), Serpine1 (K), Il6 (L), and Stat3 (M) genes 

after 3 and 14 days of treatment. Error bars represent the s.d. (*p < 0.05, **p < 0.01, ***p 

< 0.001, and ****p < 0.0001; n = 3). 

In addition, the histopathological analysis of sections of the full-thickness skin wounds via 

Masson’s trichrome (MTC) staining (Fig. 4-5D) and immunofluorescent staining (Fig. 4-

5E) were performed. The MTC images showed a significantly higher collagen deposition 

and granulation tissue formation for treated groups compared to the control group on day 

14 (Fig. 4-5D). Moreover, the control group on day 14 showed a significantly higher scar 

elevation index (SEI) of 175±59%, indicating the formation of hypertrophic scars; in 

contrast, the SEI for combination treatment group was 100±4%, showing uniform dermis 

repair after treatment (Fig. 4-5F). Importantly, the combination therapy was able to 

accelerate the wound-induced hair follicle neogenesis with adjoining sebaceous glands 

within the wound bed (Fig. 4-5D and E, insets) resembling structurally similar glands to 

those of the uninjured skin 49. The immunohistochemical analysis of keratin 14 (Krt), a 

marker of undifferentiated keratinocytes, revealed a delayed re-epithelization in the control 

group (16%) as compared to the substantially accelerated re-epithelization in combination 
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treatment group (99%) after 14 days (Fig. 4-5E,G, Fig. C-22). We further observed a 

significant growth in the expression of tumor suppressor phosphatase and tensin homolog 

(Pten), an indicator of higher electrotactic responses 42, among electrical stimulation and 

combination treatment groups as a direct result of electrical stimulation (Fig. 4-5E and Fig. 

C-22). A higher expression of nuclear factor kappa enhancer binding protein (NF-κB), a 

key signaling factor that promotes remodeling of cellular junctions, cell proliferation, and 

adhesion 50, was also observed in the combination therapy group on day 14, indicating a 

higher cutaneous wound healing (Fig. 4-5E and Fig. C-23).  

We further studied the molecular mechanism behind the beneficial effects of our wearable 

patch’s combination treatment on wound healing using quantitative real-time PCR 

analysis. A library of the most relevant genes associated with wound healing was screened. 

A substantially elevated expression of growth factors was confirmed in the combination-

treated wounds (Fig. 4-5H, Fig. C-24, and Note C-1) while the control group on day 14 

showed a reduced level of these growth factors due to compromised cutaneous wound 

healing which resulted in impaired re-epithelization and the formation of granulation tissue 

and ECM. Considering that platelet-derived growth factor subunit A (Pdgfa) plays crucial 

roles in stimulation of fibroblast proliferation (early function) and induces the 

myofibroblast phenotype (later function) 51, its elevation supports the higher rate of dermis 

and granulation tissue formation in the combination treatment group on day 14, while lower 

or delayed Pdgfa gene expression resulted in impaired wound healing in drug and electrical 

stimulation groups in the same period (Fig. 4-5I). The overexpression of Pdgfa gene in 

control group after 14 days might be due to the pathogenesis of hypertrophic scars and 

increased responsiveness of keloid fibroblasts to Pdgf 52. In addition, the higher expression 

of fibroblast growth factor (Fgf) genes can be due to higher rate of epidermis regeneration, 

renewed capillaries, and in cells infiltrating in the granulation tissue 53 (Fig. 4-5J). There 

was also a significant upregulation of serine protease inhibitor clade E member 1 

(Serpine1) genes in electrical stimulation and combination treatment groups as compared 

to the control and drug groups primarily due to the applied electrical field 54 (Fig. 4-5K). 

Serpine1 regulates the extent and location of matrix restructuring and collagen remodeling 
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while facilitating cell motility and proliferation in the process of wound regeneration. 

Moreover, significant upregulations of proinflammatory cytokine interleukins 6 (Il6) (Fig. 

4-5L) and signal transducer and activators of transcription-3 (Stat3) (Fig. 4-5M) were 

observed in electrical stimulation and combination therapy groups on day 3. The Il6 can 

positively influence different processes at the wound site, including stimulation of 

keratinocyte and fibroblast proliferation, synthesis and breakdown of extracellular matrix 

proteins, fibroblast chemotaxis, and regulation of the immune response 38, while Stats are 

cytoplasmic proteins that can transduce signals from a variety of growth factors and 

regulate target gene expression. Stat3 can be activated upon binding of Il6 to its receptor 

and thus plays a key role in wound healing 55. These results further confirmed the powerful 

combinatorial therapeutic capabilities of the wearable patch to accelerate chronic wound 

healing. 

4.6 Conclusions 

We present the development of a wireless wearable bioelectronic system consisting of a 

multimodal biosensor array for multiplexed monitoring of wound exudate biomarkers, a 

stimulus-responsive drug-loaded electroactive hydrogel, and a pair of voltage-modulated 

electrodes for controlled drug release and electrical stimulation. The wearable patch is fully 

biocompatible, mechanically flexible, stretchable, skin-conformal, and is capable of real-

time selective monitoring of a panel of crucial wound biomarkers including temperature, 

pH, ammonium, glucose, lactate, and UA in multiple rodent models. The wearable patch 

demonstrated here represents a versatile platform for evaluating wound conditions and 

intelligent therapy and can be easily reconfigured to monitor several other metabolic and 

inflammatory biomarkers for various chronic wound care applications.  

Despite remarkable progress in developing wearable electrochemical biosensors for 

continuous monitoring of circulating metabolites in interstitial fluid and human sweat 
24,26,56–58, in situ wound fluid analysis remains a major clinical challenge. This is mainly 

due to the complex and heterogeneous composition of wound fluid (e.g., high protein 

levels, local and migrated cells, and exogenous factors such as bacteria) leads to severe and 
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unique matrix effects for most previously reported biosensors and failure in accurate 

measurement of the target metabolite levels in wound fluid 31. To mitigate such issue, here 

we introduced the use of an outer porous PU-based membrane that serves as an analyte 

diffusion limiting layer to protect the electrode, tune response, increase long-term 

operational stability, linearity, and sensitivity magnitude as well as biocompatibility and 

mechanical stability of the sensor 59. Our results indicate that the wearable patch-enabled 

wound fluid analysis could be a promising approach to realize continuous and personalized 

wound metabolic monitoring in both a temporal and spatial fashion.  

In addition to the multiplexed biosensors, the wearable patch is equipped with an on-

demand electro-responsive drug release system, loaded with an antimicrobial and anti-

inflammatory peptide. Under an applied positive voltage, the electroactive hydrogels will 

rapidly release the dual-function peptide which could effectively eliminate bacteria and 

modulate inflammatory responses in the wound site during the initial stages of healing, in 

a splinted excisional wound model in diabetic rats. The on-demand drug delivery can be 

readily modified with different electroactive hydrogels to deliver several other positively 

or negatively charged drugs and biomolecules (e.g., proteins, peptides, and growth factors). 

The integration of an electrical stimulation therapeutic module could facilitate cell motility 

and proliferation, and ECM deposition and remodeling in the process of wound 

regeneration resulting in rapid and effective cutaneous wound healing.  

We demonstrated promising preliminary data for multiplexed in situ metabolic monitoring. 

However, one limitation of the current study is the lack of a continuous wound fluid 

sampling and circulation system. The mixing of newly secreted analytes with the old ones 

delayed the sensor response, leading to a compromised temporal sensing resolution. In 

addition, the long-term continuous operation stability of the biosensors in wound fluid in 

vivo may need further improvement. Additional anti-fouling protective membranes could 

be explored to minimize the influence of complex would fluid on sensor performance 

during in situ use. Compared to large critical-size wounds in large animals (e.g., pigs), the 

spatial biomarker mapping of wounds in rodent models did not reveal substantial spatial 
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variations. Future investigations can focus on employing a microfluidic wound fluid 

sampling system for efficient capture and continuous delivery of wound fluid to the sensor 

chamber to improve the temporal resolution of in situ biomarker detection 27,56. Moreover, 

to improve wearable patch’s durability, low-power electronics or energy-harvesting 

modules could also be implemented into the wearable platform 60–63. The clinical 

technology transfer of this product will require multiple further in-depth studies including 

preclinical biocompatibility evaluation, long-term multiplexed sensor analysis, and 

efficacy assessment of the closed-loop therapeutic and regenerative modules in pig models 

due to anatomical, physiological, and functional similarities of pig and human skin wound 

healing. Further in-depth studies of the cellular and molecular mechanisms behind wound 

regeneration upon applying the wearable patch’s combination therapy via single-cell RNA 

sequencing (scRNA-seq) would be beneficial. Another further device development 

direction to benefit future evaluation is scale-up manufacturing, packaging, and reliability 

assessment toward first-in-human studies. We envision that the custom-engineered fully-

integrated wearable patch could serve as a more effective, fully controllable, and easy-to-

implement platform for personalized monitoring and treatment of chronic wounds with 

minimal side effects. 
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Materials from this chapter appear in “Sani, E. S.; Xu, C.; Wang, C.; Song, Y.; Min, J.; Tu, 

J.; Solomon, S. A.; Li, J.; Banks, J. L.; Armstrong, D. G.; Gao, W. A stretchable wireless 

wearable bioelectronic system for multiplexed monitoring and combination treatment of 

infected chronic wounds. Science Advances 9, eadf7388 (2023). 
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Note C-1. Analysis of gene expression in the wound healing process 

During wound healing, the extracellular matrix (ECM) at the wound site undergoes 

dramatic reorganization. An elevated expression of collagen type I alpha 1 (Col1a1) and 

collagen type III alpha 1 (Col3a1) was observed in the electrical stimulation (ES) and 

combination therapy groups as compared to control group on day 3 (Fig. C-23A and B). 

This can be mainly attributed to fibroblasts proliferation. In this process, substantial 

quantities of matrix proteins (predominantly collagen types I and III) are synthesized and 

deposited, resulting in improved tensile strength of the regenerated wound skin. 

Interestingly, we also observed a substantial increase in Col3a1 expression in the control 

group as compared to other groups on day 14. This is potentially due to downregulation of 

matrix metalloproteinase-9 (MMP-9) that resulted in ECM accumulation during the wound 

healing process and yielded to keloid or hypertrophic scarring in the control group 1. MMPs 

are calcium-dependent zinc-containing endopeptidases that collectively degrade and resorb 

all major components of the ECM 2. The upregulation of MMPs during the wound repair 

process contributed to scarless healing in the combination therapy group after 14 days (Fig. 

C-23C).  

Higher expression levels of fibroblast growth factor 10 (Fgf10), C-X-C motif chemokine 

ligand 1 (Cxcl1), and vascular endothelial growth factor A (Vegfa) were observed for the 

combination therapy group when compared to other groups (Fig. C-23D and F). Such 

higher expression is associated with early angiogenesis and neovasculature formation 

during chronic wound healing. Angiogenesis is the process of newly formed blood vessels 

and plays a crucial role in supplying necessary nutrients to the new granulation tissue. 

Angiogenesis and neovascularization in the new ECM are triggered by several growth 

factors including Fgf2 and Fgf10. Fgfs generally regulate angiogenesis via the recruitment 

of inflammatory cells that results in up-regulation of various chemokines such as 

chemokine (C-C motif) ligand 2 (Ccl2) and Cxcl1 4. During inflammation, Cxcl 

chemokines regulate the timely recruitment of specific populations of leukocytes to the 

damage site. They are also important in angiogenesis, tumor formation, and tumor 
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metastasis 5. Vegfa is also critical for enhancing angiogenesis in the early stages of 

wound healing, particularly by promoting endothelial cells migration 6. A significant 

expression of Mitogen-activated protein kinase 1/2 (Mapk1/2) was also observed in the 

combination therapy group as compared to other groups (Fig. C-23G). Generally, Vegfa 

plays a key role in multiple endothelial cell-specific functions including activation of the 

downstream Mapk1/2 pathway, therefore promoting cell migration, proliferation, and 

angiogenesis. 

The higher expression of Pten gene also confirms the immunohistochemistry results that 

the positive effect of electrical stimulation on preferential activation of voltage-gated 

channels facilitated cell migration and orientation (electrotaxis) (Fig. 4-5E and Fig. C-

23E,H) 7. 

Collectively, these findings confirmed that, through combination therapy, the wearable 

patch could modulate cell proliferation, migration, and ECM deposition and remodeling, 

enabling an accelerated scarless cutaneous wound healing. 

 

 

Figure C-1. The fabrication process of the stretchable wearable patch. 
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Figure C-2. Optical images of the stretchable wearable patch. (A and B) Photograph of 

stretchable and flexible wearable patches. Scale bars, 1 cm.  

 

Figure C-3. Circuit diagram of the integrated wearable bioelectronic system. 
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Figure C-4. Images of the assembly of the wireless wearable bioelectronic system with 

integrated flexible patch and a flexible PCB. Scale bars, 1 cm.  

 

Figure C-5. Images of a wearable patch assembled on the wound of a diabetic rat. 

Scale bars, 1 cm. 
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Figure C-6. Photos of a fully-integrated wearable patch on a diabetic rat with an open 

wound for 14 days. Scale bar, 2 cm. 

 

Figure C-7. Characterization of patch adhesion to chicken skin using a standard T-

peel test. According to American Society for Testing and Materials D1876. (A) Time lapse 

images of the peel test. (B) Tested peel force under different displacement. Scale bar, 2 cm. 
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Figure C-8. Schematics of the electroactive hydrogel formation and drug loading 

process. (A) Schematic of chemical crosslinking process of chondroitin 4-sulfate with 1,4-

Butanediol diglycidyl ether. (B) Schematic of the drug loading mechanism via the ion pair 

interactions between lysine groups in TCP-25 AMP and sulfate/carboxylate groups in 

chondroitin 4-sulfate. 
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Figure C-9. Rheological properties and printability of electroactive hydrogel. (A) 

Dynamic viscosity of precursor and electroactive hydrogel at different shear rates. (B and 

C) Images of 3D printed electroactive hydrogels before (B) and after (C) crosslinking. 

Scale bars, 3 mm. 

 

Figure C-10. Characterization of drug loading in the electroactive hydrogels. (A) 

Swelling ratios of electroactive hydrogel in DI water at 4˚C. Error bars represent the s.d. 

(**p<0.01, ns: not significant; n=3). (B) Photos illustrating the loading process of TCP-25 

AMP-labeled with tetramethylrhodamine (TAMRA) into the electroactive hydrogel. Scale 

bars, 5 mm. (C) Calibration curve for the loading amount of the TAMRA labeled AAMP 

versus concentration used in the loading process. 
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Figure C-11. Controlled drug release from the wearable patch under electrical field. 

(A) Schematic representation of the electrically accelerated release of positively-charged 

AMP drug molecules (red circles) from negatively-charged chondroitin 4-sulfate hydrogel. 

Under the applied electric field, the chondroitin 4-sulfate hydrogel undergoes protonation 

and shrinkage, as well as neutralization of the negative charge and consequently the release 

of the positively-charged AMP. (B) Calibration curve between the relative fluorescence 

signal and TAMRA-labeled AMP concentration to investigate the drug release. 

 

Figure C-12. Effect of applied potential on drug release from electroactive hydrogel. 

Error bars represent the s.d. (***p < 0.001, and ****p < 0.0001; n=3). 
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Figure C-13. Minimum inhibitory concentration assay for TCP-25 AMP against 

different pathogenic bacteria. (A to D) Relative optical density growth showing the 

minimum inhibitory concentrations for TCP-25 AMP against S. epidermidis (A), MDR E. 

coli (B), P. aeruginosa (C), MRSA (D). ROD, relative optical density.  
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Figure C-14. In vitro cytocompatibility of the electroactive hydrogel. (A to C) In vitro 

cytocompatibility assessment of bare hydrogel and AMP-loaded hydrogel using live/dead 

staining assay (A,B) and metabolic activity analysis (C) for HDF cells seeded on the 

hydrogels after 1-day, 4-day, and 7-day culture. Scale bar, 100 µm. Error bars represent 

the s.d. (*p < 0.05, ***p < 0.001, and ****p < 0.0001; n ≥ 3). 
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Figure C-15. Evaluation of electrical stimulation facilitated wound healing in vitro. (A 

and B) Fluorescence images (A) and quantitative wound closure analysis (B) show wound 

closure facilitated via electrical stimulation using an in vitro scratch wound healing model 

created with HDF cells. A pulsed voltage was applied in a perpendicular direction on a pair 

of parallel electrodes for electrical stimulation (1 V at 50 Hz, 0.01 s voltage on for each 

cycle). Scale bar, 500 µm. Error bars represent the s.d. (*p < 0.05, **p < 0.01, and ****p 

< 0.0001; n=3). 

 

Figure C-16.  Infrared photos of the patch temperature during electrical stimulation. 

Scale bar, 5 mm.  
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Figure C-17. In vivo biocompatibility of the wearable patch. (A and B) Hematoxylin 

and eosin (H&E) staining of AMP-loaded hydrogel (A) and wearable patch (B) with the 

surrounding tissue after 14 days and 56 days of implantation. Scale bar, 1 mm. (C and D) 

Fluorescent immunohistochemical analysis of subcutaneously implanted  AMP-loaded 

hydrogel (C) and wearable patch (D) showing no significant infiltration at days 14 and 56. 

Green, red, and blue colors represent lymphocyte (CD3), macrophages (CD68), and cell 

nuclei, respectively. Scale bar, 100 µm.  
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Figure C-18. Long term stability study of the wearable patch for multiplexed wound 

analysis. The study was performed firstly in simulated wound fluid (pH 8) containing 5 

mM glucose, 50 µM UA, 1 mM lactate, and 1 mM NH4
+ for the first 200 min, and then in 

simulated wound fluid (pH 7) containing 10 mM glucose, 100 µM UA, 2 mM lactate, and 

4 mM NH4
+ for the later the 200 min. The data for enzymatic sensors are calibrated based 

on pH influence.  
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Figure C-19. Stability of pH and temperature sensors before and after incubation in 

simulated wound fluid and in vivo experiments in rats. (A and B) Stability of pH sensors 

before and after incubation in simulated wound fluid (A)  and in vivo experiments in an 

infected wound model in ZDF rats (B). (C and D) Stability of temperature sensors before 

and after incubation in simulated wound fluid (C) and in vivo experiments in an infected 

wound model in ZDF rats (D).  
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Figure C-20. Changes in weights of ZDF rats with non-infected and infected 

wounds. Error bars represent the s.d. from 3 rats.  

 

Figure C-21.  In vivo antimicrobial properties of wearable patch during chronic 

wound healing in full-thickness infected wounds in ZDF rats. The colony forming assay 

on bacteria samples isolated from control, drug, electrical stimulation (ES), and 

combination therapy group on day 3 post treatment. Error bars represent the s.d. (***p < 

0.001, and ****p < 0.0001; n ≥ 3). 
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Figure C-22. In vivo evaluation of wearable patch-facilitated chronic wound healing 

in full-thickness infected wounds in ZDF rats. (A) Representative images of Masson’s 

trichrome (MTC) stained sections of the full-thickness skin wounds after 3 days of 

treatment. Scale bar, 1 mm. (B) Representative immunofluorescent stained images for 

nuclear factor kappa B (NF-κB) (purple), keratin 14 (Krt14) (green), and phosphatase and 

tensin homolog (Pten) (red) 3 days after treatment. Scale bar, 1 mm. (C to E), Quantitative 

analysis of re-epithelization (%) (C) and epidermal thickness index (ETI) (D), and Pten 

marker based on immunofluorescent images (E). Error bars represent the s.d. (*p<0.05, 

**p<0.01, ****p<0.0001; n=3). 
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Figure C-23. Evaluation of the wearable system for multiplexed biosensing and the 

combination therapy on a diabetic rat. Infection and treatment were performed after the 

sensor recording on days 1 and 4, respectively. Scale bars, 1 cm. 
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Figure C-24. Quantitative real-time PCR of a library of wound biomarkers. (A to 

H) Relative expression of Col1a1 (A), Col3a1 (B), Mmp9 (C), Fgf10 (D), Cxcl1 (E), Vegfa 

(F), Mapk1/2 (G), and Pten (H) genes after 3 and 14 days of treatment. Error bars represent 

the s.d. (*p<0.05, **p<0.01, ***p <0.001, ****p<0.0001; n=3). 
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C h a p t e r  5  

AI-POWERED MULTIMODAL E-SKIN FOR STRESS MONITORING 

Materials from this chapter appear in “Xu, C.; Song, Y.; Sempionatto, J. R.; Solomon, S. 

A.; Yu, Y.; Nyein, H. Y. Y.; Tay, R. Y.; Li, J.; Lao, A.; Hsiai, T. K.; Sumner, J. A.; Gao, 

W. An artificial intelligence-reinforced physicochemical sensing electronic skin for stress 

response monitoring. Nature Electronics (2024). https://doi.org/10.1038/s41928-023-

01116-6.” 
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5.1 Introduction of stress assessment 

Stress is a process triggered by demanding physical or psychological events, and may cause 

anxiety as a prototypical psychological response. While acute stress responses in healthy 

individuals can be adaptive and manageable, persistent experiences of stress can have 

deleterious impacts on mental and physical health1,2, and many mechanisms behind the 

stress response are yet unknown3,4 (Note D-1). In the United States alone, over 50 million 

adults suffer from depression, and after the onset of the COVID-19 pandemic, the number 

of people suffering from mental disorders has drastically risen, causing a heavy burden on 

the healthcare system5,6. Elevated levels of stress and anxiety also pose a large burden to 

high-demand occupation workers7, such as athletes8, soldiers9, first responders10, and 

aviation personnel11, potentially interfering with their cognitive performance and decision-

making process12. In response to these impact, understanding and evaluating the stress 

response has become a cornerstone of clinical healthcare. However, current gold standards 

for clinical stress response assessments rely on surveys and performance evaluations, 

which can be highly subjective13–15. Thus, there exists a pressing demand for developing a 

more efficient and effective stress assessment tool that is not characterized by these 

limitations16,17. 

Recent advances in wearable sensors have enabled real-time and continuous monitoring of 

physical vital signs18–22, allowing for a more personalized remote healthcare. Through in 

situ human sweat analysis, wearable biosensors can provide insightful information on an 

individual’s health at the molecular level23–26. Despite these promising prospects, major 

challenges of these sensors exist for clinical applications: a limited set of physical signals 

are not sufficient for condition-specific assessment of psychological and physiological 

stress27; existing wearable biochemical sensors suffer from poor operational stability in 

biofluids, which precludes reliable long-term continuous monitoring28; the access to human 

sweat usually requires physical activity that can affect an individual’s stress; despite recent 

progress on stress hormone analysis, continuous monitoring of sweat stress hormones at 

physiologically-relevant levels using wearable sensor has not yet been achieved due to their 
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extremely low concentrations29–31. Therefore, while understanding and monitoring the 

endocrine response to stress is a promising approach, it is still underdeveloped.  

 

Figure 5-1. CARES platform for stress response monitoring. a, Illustration of the 

CARES that continuously monitors multimodal physiological and biochemical response 

from skin, and performs AI-powered stress assessment. b, Schematic of the flexible 

CARES sensor patch and main functionalities: vital sign monitoring, sweat stimulation and 

sampling, and key metabolite and electrolyte detection. c, Schematic of layered structure 

of the CARES that assembles sensor and microfluidics module. d,e, Optical images of a 

CARES attached to the skin of a human subject. Scale bars, 1 cm. f, ML pipeline for 

CARES-enabled stressor classification and stress/anxiety level assessment. 

Non-invasive biomarkers present themselves as a reliable alternative for monitoring the 

stress response due to the interdependencies between biological and psychological stress. 

In particular, stress induces a complex biological response within the nervous, endocrine, 
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and immune systems (Fig. 5-1a)32,33. The perception of stress activates the HPA axis 

and SAM axis from the hypothalamus in the brain. Acetylcholine in nerve fibers from both 

axes will stimulate the adrenal gland, releasing stress hormones (e.g., epinephrine, 

norepinephrine, and cortisol) into the blood. Acetylcholine can also activate sudomotor 

neurons connected to sweat glands that release ion-rich fluids. This sympathetic activity 

can be indirectly measured through the GSR and sweat electrolyte levels34. The released 

stress hormones inhibit insulin production, affecting the synthesis of metabolites such as 

glucose, lactate, and UA, as well as narrow arteries, boosting cardiac activities. By 

monitoring these stress-relevant biomarkers, it is possible to develop a comprehensive and 

objective health profile relating biophysical and biochemical signals to dynamic stress 

response monitoring35–37. 

5.2 System level integration of CARES platform 

5.2.1 CARES patch fabrication 

Fabricated via a scalable inkjet-printing approach, the wearable device is capable of 

multiplexed, non-invasive monitoring of key stress-related physiological signals — pulse 

waveform, GSR, and skin temperature — along with sweat metabolites — glucose, lactate, 

and UA —  as well as electrolytes — Na+, K+, and NH4
+ — during daily activities (Fig. 5-

1b,c). Through the integration of a miniaturized iontophoresis module, sweat can be 

induced autonomously at rest without the need for vigorous exercise. Built on an ultrathin 

flexible polyimide substrate (4 μm) for flexibility and robustness as well as integrated with 

microfluidics, the CARES device conformally laminates on the wrist for reliable and robust 

sensing.  

The CARES platform consists of a multi-layered sensor patch and a skin-interfaced laser-

engraved microfluidic module (Fig. 5-1d,e). The sensor patch contains carbachol hydrogel 

(carbagel)-loaded sweat stimulation electrodes, three enzymatic biosensors, three ISEs, a 

capacitive pulse sensor, a resistive GSR sensor, and a skin temperature sensor. The 

platform can be mass-fabricated through serial inkjet printing of silver and carbon as the 
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interconnects and electrodes for top and bottom layers (Fig. D-1). A middle PDMS-

based airgap layer was spin coated between top and bottom layers, as the soft PDMS 

facilitates pulse pressure sensitivity and sweat reservoir collection. The microfluidic 

module was assembled in a sandwiched structure (PDMS/PET/medical tape) and contains 

two separate reservoirs that enable fresh sweat sampling and rapid refreshing for accurate 

sweat analysis with high temporal resolution. Carbachol was used for sweat induction as it 

enables long-lasting sudomotor axon reflex sweat secretion from the surrounding sweat 

glands owing to its nicotinic effects38. In this work, six molecular biomarkers (glucose, 

lactate, UA, Na+, K+, and NH4
+) were selected as the detection targets due to their strong 

associations with stress responses (Note D-2)39–43. Together with laser-patterned 

microfluidics, the CARES device can be attached to the subject’s wrist comfortably and 

performs multiplexed metabolic sensing in situ.  

The fabrication process of the CARES is illustrated in Figs. D-2 and 3. Polyimide was 

spin-coated on the silicon oxide wafer at a speed of 5000 rpm for 30 s and then cured at 

350 ℃ for 1 hour with a ramping speed of 4 ℃ min−1. The resulting polyimide substrate 

thickness is about 4 μm. For mass-fabrication, 12.5 μm polyimide film was used for large-

area patterning demonstration. The CARES patch was then patterned with sequential 

printing of silver (interconnects and pin connections, reference electrode, pulse sensor, and 

GSR sensor), carbon (iontophoresis electrodes, counter electrode, temperature sensor, 

working electrodes for biosensors), and polyimide (encapsulation) using an inkjet printer 

(DMP-2850, Fujifilm). The CARES patch was then annealed at 250 ℃ for 1 hour. A 1:12 

mixture of curing agent to PDMS elastomer was prepared and stirred thoroughly for 10 

minutes, after which the solution was spin-coated at the speed of 800 revolutions per 

minute (rpm) for 30 s onto the inkjet-printed bottom layer of CARES patch directly, 

followed by curing at 60 ℃ for 1 h. The resulting PDMS thickness is about 120 μm. Both 

the bottom layer and the top layer of the CARES patch were then laser patterned to define 

outlines and sweat outlets using a 50 W CO2 laser cutter (Universal Laser System) with 

power 25%, speed 50%, pulse per inch (PPI) 1000 in vector mode. The bottom layer was 

further cut to define iontophoresis reservoirs, sweat reservoirs, and airgaps without cutting 
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through the polyimide substrate with an optimized parameter of power 2%, speed 20%, 

PPI 500 in vector mode for 2 times. The PDMS layer was cleaned with ethanol and 

deionized water to remove debris, followed by 30 s of O2 plasma surface treatment using 

Plasma Etch PE-25 (10 cm³ min−1 O2, 100 W, 150 mTorr) to clean its surface and promote 

surface adhesion. The whole CARES patch was then assembled by dry transferring the top 

layer onto the bottom layer using a PDMS stamp. Biosensors were prepared before 

microfluidics integration. Note that the sweat reservoir was pre-defined during 120 μm-

thick PDMS middle layer in CARES patch fabrication, which has a dimension of 17.15 

mm2 and thereby a reservoir volume of 2.06 μL. The small volume allows a fast refreshing 

rate and enables rapid detection of dynamic changes during human performance. 

5.2.2 Microfluidics module fabrication 

The microfluidics layers were fabricated with a laser cutter layer-by-layer by patterning 

double-sided M-tape, PET, and PDMS with iontophoresis gel reservoirs, gel electrolytes 

reservoirs, sweat inlets, flowing channels, and outlets. The optimized laser parameters to 

cut M-tape were set as power 62%, speed 100%, PPI 500 in vector mode for 2 times, and 

the optimized parameters to cut PDMS were set as power 2%, speed 20%, PPI 500 in vector 

mode for 2 times to minimize debris. The iontophoresis gel and gel electrolytes reservoirs 

were patterned by cutting through all microfluidics layers to define gel area and establish 

gel connection with skin. The first microfluidics layer is a PDMS-based sweat channel 

layer, which was spin-coated on a PET petri dish and cured at 60 ℃ for 1 h. The PDMS 

layer was treated with O2 plasma before laminating a thin layer of 12 μm PET, followed 

by laser-defining sweat inlets. Then the third layer of double-sided M-tape was patterned 

and aligned onto PET, which contacts with the skin and forms the sweat accumulation 

layer. After attaching the microfluidics module to the CARES patch, the system was further 

encapsulated with PDMS backings to avoid potential sweat contact and leakage. The 

device was connected with a flexible printed circuit (FPC) connector for further 

characterizations. 
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5.2.3 Microfluidics evaluation in vivo 

To realize convenient data collection for real-life applications, in addition to using flexible 

cables connecting the CARES patch with laboratory instruments (Fig. D-4), we further 

designed a fully integrated wearable CARES system with a flexible PCB for multiplexed 

and multimodal signal processing as well as Bluetooth wireless communication (Figs. D-

5 to 7).  

5.3 Controlled stressor study designs 

5.3.1 Human subject recruitment 

The validation and evaluation of the CARES device were performed on healthy human 

subjects in compliance with the protocols (#19-0892 and #19-0895) that were approved by 

the Institutional Review Board (IRB) at the California Institute of Technology (Caltech). 

Participating subjects were recruited from the Caltech campus and the neighboring 

communities through advertisement by posted notices, word of mouth, and email 

distribution. 10 healthy subjects (8 males and 2 females, age range 23−38 years) were 

included in this study. The participants were healthy without anxiety nor depression issues. 

All subjects gave written informed consent before participation in the study. 

5.3.2 CARES on-body protocols 

The CARES was mounted on the subject’s wrist after skin cleaning with alcohol wipes. 

Participants were requested to refrain from meals, alcohol, caffeine, and exercise within 3 

h prior to the tests. The CARES was sealed in PDMS, leaving output pins exposed with an 

M-tape backing as support for wire connections. We further designed a plug-and-play 

input-output to connect with the flexible flat cable (Fig. D-4). A 50-µA current was 

implemented on both pairs of iontophoresis electrodes for 5 minutes simultaneously for 

sweat induction. The data was collected with a 8-channel multiplexer (CHI Instrument 

1430) and a Keithley 4200A-SCS parameter analyzer. A wireless wearable CARES system 

was also developed for convenient data collection in the real-life settings. 
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5.3.3 Questionnaire for state anxiety evaluation 

State-Trait Anxiety Inventory Form Y (STAI-Y) is a self-evaluation questionnaire that 

consists of two forms Y-1 and Y-2 to measure state and trait anxiety, respectively, which 

has a high internal consistency coefficient of 0.91−0.93 for college students and working 

adults44. In our study, we used short form Y-1, which measures state anxiety, as a key 

psychological response to stress. This measure can be proctored during real-time 

experiments without major intervention during the stress event. One challenge for 

quantifying stress is the subjective nature of the questionnaire, which inherently holds a 

small fluctuations of a couple stress points, with a standard deviation of more than 4 points 

in most cases 44. In our study, we take ±2 points as the confidence interval buffer for state 

anxiety level evaluation. 

5.3.4 Stressor protocols in the controlled stress studies 

Stressor #1: CPT: The participants were asked to wear the CARES and to relaxation for 

10 minutes after iontophoresis sweat induction, during which no sensor signals were 

collected. After the relaxing stage, both physical and biosensors started monitoring 

simultaneously as baseline vital and molecular data. The STAI-Y questionnaire was 

administered to assess state anxiety levels during this relaxed baseline state. The subject 

was asked to relaxation for another 1000 s, after which a 3-minute CPT was conducted. 

Subjects were asked to immerse their other hand without the CARES device into a tank 

containing iced water (0 ℃) up to the forearm for 3 minutes. Another STAI-Y 

questionnaire was then given to evaluate the state anxiety levels and the subjects were 

asked to finish within 20 s. Afterward, the subjects were instructed to remove the hand 

from the iced water, and recover in ambient air. Continuous monitoring of multimodal 

physiological and biochemical data was monitored throughout the stress challenge and 

recovery stage until 1000 s after the CPT was finished. The subjects were seated during the 

whole procedure. 
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Stressor #2: VR test: The sensor data recording process was the same as 

aforementioned, except that the subjects were asked to play a VR game (Beat Saber) by 

wearing a VR headset (Oculus Quest 2, Meta). The game was set as one-handed mode with 

expert difficulty, and the game screen was projected onto a monitor. The subjects were 

strongly encouraged verbally and asked to compete with other participants’ record scores, 

so that a mixed physical and psychological stress could be stimulated. The STAI-Y 

questionnaire was used to assess state anxiety levels. 

Stressor #3: exercise: For exercise-induced stress, the sensor data recording process was 

the same as aforementioned. The subject performed the maximum-load cycling (>70 rpm) 

on a stationary exercise bike (Kettler Axos Cycle M-LA) for 3 minutes or until fatigue, 

during which strong verbal encouragement was given. The STAI-Y questionnaire was used 

to assess state anxiety levels. 

5.3.5 Results and discussions 

To evaluate the use of the CARES for stress response monitoring, controlled experiments 

were performed on ten healthy subjects using three different stressors, namely the CPT, a 

VR challenge, and intense exercise (Note D-3). The dynamic profiles of all individual 

sensors integrated in the CARES were collected during each study, as illustrated in Fig. 5-

2 and Figs. D-8 to 11. State anxiety levels, as measured by the STAI-Y questionnaire with 

scores ranging between 10 – 40 points (10 indicating little to no anxiety)44, were the 

psychological stress response measure for data training (Note D-4). The questionnaire was 

administered before and after each stressor to quantify the induced anxiety levels within a 

subject (Fig. D-12). 



 

 

189 

 

Figure 5-2. On-body evaluation of the CARES under various types of stressors. a–c, 

Multimodal monitoring of a selected subject’s stress response under three different 

stressors: CPT (a) during which the subject was asked to immerse one hand into ice water, 

VR challenge (b) during which the subject was asked to play a VR rhythm game, and 

cycling exercise test (c) during which the subject was asked to perform a maximum-load 

cycling challenge on a stationary exercise bike. 

For each experiment, on-body chemical and physical data showed significant variations in 

response to each stressor. During the CPT experiment, the subjects immersed one hand in 

ice water for 3 minutes. A natural reaction of vasoconstriction occurred where the blood 

vessel constricted in response to cold temperatures45. As a result, immediate physiological 

responses including altered pulse waveform and elevated GSR were observed, consistent 

with previous reports on the variations of physiological signals with cold-stimulated stress 

response46,47. In addition, delayed mild fluctuations in metabolite concentrations of 

glucose, lactate, and UA from some subjects were also observed. During the VR test, 

subjects wore an Oculus VR headset to play a rhythm game (Beat Saber) while the gaming 

screen was mirrored to a computer monitor with an audience, resulting in both 

physiological and social-evaluative psychological stress. We observed substantial 

differences in the pulse waveform and GSR amplitude during and after the stress stimulus, 

along with elevated glucose, lactate and UA levels minutes later39–41. During vigorous 

exercise, profound activation of the HPA axis led to dramatic changes of all physiological 
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signals as well as sweat metabolites and electrolytes (e.g., Na+), in agreement with 

previous studies on exercise induced stress response42,48. These results indicate that the 

CARES can monitor stress-induced biological signals reliably. 

5.4 ML-powered stress assessment 

5.4.1 Data preprocessing and feature extraction 

While all the multimodal sensor signals were monitored in real-time, the data pre-

processing was performed asynchronously to extract features. A pulse feature extraction 

algorithm was developed due to its unique peripheral pulse sampling frequency of T = 

0.007 s. To match other sensors sampling frequency of T = 1s, each pulse waveform was 

autonomously analyzed through our pulse analysis algorithm, with a floor function 

afterwards to select the closest pulse feature within each time interval. Signals of the 

biochemical sensors were manually shifted to align with physical ones due to natural sweat 

delay. The time stamp when each subject express stress was recorded and manual data 

labeling was performed. To minimize the variations for inter-subject response, all features 

were normalized before ML pipeline in regards to each subject during each stress test, in 

order to generalize the model among population. After data collection and analysis, the 

training and testing datasets were shuffled and divided 8:2, respectively, and were 

randomly selected using an equal representation of each class. ML model was developed 

to link the biological and chemical features to the stress detection, stress types, as well as 

state anxiety levels from questionnaire scores. 

5.4.2 Model selection for stress classification 

All training model were built using Python (Python 3.8) based on the data collected from 

ten subjects facing three different stressors with a set of 60,000 s of CARES recordings. 

Segmentation of the sensor signals was done using a sliding window with a sampling 

interval of 1 s, given each stress type representation. A number of ML models were 

evaluated according to precision-recall curve and their F1 score, including linear and radial 
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basis function (RBF) support vector machines (SVM), logistic and ridge regression, 

conventional decision trees, as well as gradient-boosted decision tree XGBoost model. The 

trained XGBoost model outperformed typical ML models for both stress detection and 

stress type classification. 

5.4.3 Model selection for stress regression 

The ML algorithms were developed on a password-protected local computer with 

individual GPU module Nvidia 3080. The training model were built as aforementioned, 

except that the kernel was changed to regressor instead of classifier. For overall stress level 

evaluations, on the other hand, features were extracted from stress region by taking average 

signal changes from the moving average (MA) of sensors rather than segmented at each 

timepoint, and simpler ML models such as linear regression and SVM were evaluated due 

to the reduced size of dataset to prevent overfitting. A brute force examination of features 

was performed to compare the contributions of physicochemical biomarkers. 

5.4.4 Results and discussions 

To quantify the stress response-related features, data-driven stress and anxiety evaluation 

were performed after each experiment was complete, where an ML pipeline was developed 

to extract features and deconvolute connections between physicochemical information and 

stressor types and state anxiety levels (Fig. 5-3a and Note D-5). We undertook this 

challenge using three separate ML analyses: stress detection versus relaxation, stressor 

classification, and anxiety level evaluation, where we trained and tested each model across 

three experiments (VR, CPT, exercise) of all ten subjects for a total of 60,000 s of 

physiological CARES signals. All signals were calibrated and normalized to ensure that 

the features extracted after data pre-processing were stable against patch variations and any 

moderate motion artifacts (Figs. D-13 to 15, Note D-6, and Table D-1). Feature extraction 

was validated before ML analysis through projecting the multidimensional feature-space 

into 2D space via t-distributed stochastic neighbor embedding (t-SNE)49, where data from 
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stress/relaxation naturally formed distinctive clusters, indicating the discriminative 

power of the features (Fig. 5-3b, Fig. D-16a). 

 

Figure 5-3. ML-powered stress response assessment. a, Schematics of the ML 

architecture for data preprocessing, feature extraction, supervised learning and evaluation. 

b, t-distributed stochastic neighbor embedding (t-SNE) plot from the dataset recorded by 

the CARES visually showing feature separation in a 2-dimensional space. c, Precision-

recall curve of different ML models for stressor classification. XGBoost, extreme gradient 

boosting; SVM, support vector machine; RBF, radial basis function. d, Confusion matrix 

displaying the classification accuracy for predicting each type of stressor in test set. e, The 
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overall stress classification accuracy based on macro-averaged F1 score for each 

subject. f, A chord diagram showing the relative correlation between different sensors. ST, 

systolicTime; TT, tidalPeakTime; DT, dicroticPeakTime; PD, pulseDuration; pAIx, 

peripheral augmentation index; RI, reflectionIndex. g, Sankey diagram of SHAP analysis 

depicting the relative contribution of different sensors to stressor classification. h, True 

versus the ML-predicted state anxiety scores. ±2 state anxiety score buffer is shown based 

on the potential error in the anxiety questionnaires. i, Shapley additive explanation (SHAP) 

summary plot for state anxiety level evaluation based on the dataset collected by the 

CARES. Each axis plots the distribution of SHAP values of a given feature for each 

prediction instance. j, SHAP decision plot explaining how the ML model determines the 

state anxiety level using both physiological and biochemical features. 

Different ML models were evaluated, and the trained boosting decision tree model Extreme 

Gradient Boosting (XGBoost) outperformed typical ML models, including linear and 

radial basis function (RBF) support vector machines (SVM), logistic and ridge regression, 

and conventional decision trees (Fig. 5-3c). Combined with features extracted from both 

physiological and metabolic data, it was found that our XGBoost ML model could yield a 

much higher accuracy, with stress response classification accuracy of 99.2% for 

stress/relaxation detection (Fig. D-16) and an accuracy of over 98.0% for stressor 

classification, which to the best of our knowledge is the highest accuracy reported for 

stressor classification (Fig. 5-3d, Table D-2). It should be noted that differentiating 

stressors has high significance, as each stressor carries varying physiological and 

psychological influences and could act as risk factors for coping responses and 

cardiovascular diseases50–52. Distinguishing types of stressors has been recognized as a 

necessary condition for understanding the complex interrelationships among distinct stress 

experiences, as well as the collective impacts of stress on mental health53 (Note D-3). 

Moreover, it resulted in highly consistent overall accuracies of over 99.3% across different 

individuals (Fig. 5-3e, Note D-7). 
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The Pearson correlation coefficients between all sensors in the CARES show the 

interrelatedness between physiological and chemical biomarkers (Fig. 5-3f). The relatively 

homogeneous correlation shows the high independence of the extracted features. To 

evaluate each physicochemical sensor’s contribution to the model, feature importance of 

each biomarker towards each stressor was evaluated using a Shapley additive explanation 

(SHAP) (Fig. 5-3g, Fig. D-17, and Note D-7). Through SHAP analysis, the feature 

importance of GSR, pulse, glucose, and Na+ indicate these biomarkers play a significant 

role in stressor classification. These results support the fact that stress responses involve 

participants’ vascular dynamics, neural stimulation, and metabolism. 

Based on the classification results, we expanded our analysis to state anxiety level 

evaluation. We adopted a similar XGBoost regression model and could predict state 

anxiety levels with a high confidence level of 98.7% and 98.1% coefficient of 

determination of scores from the STAI-Y (with a standard deviation of 4 points or less44) 

(Fig. 5-3h, Note D-4). The relevance of each feature was evaluated using SHAP analysis 

as well (Fig. 5-3i,j). Through SHAP analysis, it was determined that GSR, pulse, Na+, K+, 

and lactate played the most important role in state anxiety level prediction. Note that SHAP 

values show the relative significance of each feature in the ML model.  

The wireless system was successfully used for on-body tests and validation of our CARES 

systems in the laboratory settings (Fig. D-18) and in real-life daily casual activities (Fig. 

D-19). Our ML models obtained from the laboratory tests were able to accurately classify 

the types of stressors and state anxiety levels based on the wirelessly collected sensor data 

in the laboratory (Fig. D-20) as well as real-life settings (Fig. D-21). We anticipate that for 

large-scale human trials, the CARES will surpass the current gold standards for stress 

response quantification, and provide a highly robust stress response monitoring tool that is 

not reliant on subjective reporting with its potential for errors. In this regard, we envision 

a high potential for wearable multimodal physicochemical monitoring of dynamic stress 

response. 
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Additionally, given the intrinsic limitations of questionnaires being able to only 

characterize state anxiety levels within a given time period rather than dynamic stress 

change continuously, we analyzed the stress response event as a whole to mimic 

questionnaire functionalities (Note A-1). In this circumstance, features were extracted from 

the stress region by taking mean signal changes from the moving average (MA) of sensor 

data rather than segmented at each timepoint, and a simple linear regression model was 

trained with fewer features selected to correspond to questionnaire scores and prevent 

overfitting (Fig. D-22). With the reduced size of dataset and analyzing the overall sensor 

responses in CARES, we performed a brute force feature selection within each biomarker 

and found that combined physicochemical features outperformed that of physical and 

chemical sensors alone. 
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Note D-1. Stress, state anxiety, and mental disorders 

Stress is a complex concept that has often been used to capture a wide range of 

phenomena1. For example, the term “stress” has at times been used to refer to life events 

or experiences that occur to individuals (e.g., the break-up of a romantic relationship, losing 

one’s job) and at other times to refer to the response to these types of experiences. Given 

these broad ways in which the term “stress” has often been used, there have been calls to 

increase the specificity with which aspects of stress (e.g., stimulus, response) are defined1,2.  

For the purposes of this paper, we focus on the stress response, defined as occurring when 

demands placed on an individual exceed his or her resources to manage those demands3–5. 

Stress responses occur across multiple levels and systems, including cognitive, affective, 

behavioral, and biological processes. The stress response is relevant to a wide range of 

mental and physical health outcomes, including depression, anxiety disorders, and 

cardiovascular disease6.  In contrast to the stress response, a stressor is an exposure (e.g., a 

stressful event or stimulus) that triggers this response. In the current study, we examined 

three stressors: the CPT, a VR rhythm game with a social-evaluative component, and 

vigorous exercise. 

As described above, affective processes can comprise the stress response, and we measured 

state anxiety as a key psychological response to stress. Indeed, anxiety has been defined as 

the body’s prototypical psychological response to the stress7. Unlike trait anxiety, which is 

a relatively stable characteristic and is not context-specific, state anxiety assesses the 

experience of anxiety in the moment and thus reflects more transitory responses. Assessing 

state anxiety permitted us to examine current experiences of anxiety that could change in 

response to the various stressors.  

Mental disorder is defined as mental illness conditions including depression, anxiety 

disorder, psychosis and post-traumatic stress disorder (PTSD)8. Mental disorders differ 

from normal feelings of nervousness or anxiousness and involve excessive, enduring and 

negative anxiety9. They differ from transient fear or anxiety, often stress-induced, by being 

persistent10. 
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Note D-2. Selection of biomarkers and their links with stress responses 

The stress response involves a complex biological mechanism within the nervous, 

endocrine, and immune systems11,12. The perception of stress activates the HPA axis and 

SAM axis from the hypothalamus in the brain. Acetylcholine in nerve fibers from both 

axes will stimulate the adrenal gland, releasing stress hormones (e.g., epinephrine, 

norepinephrine, and cortisol) into the blood. Acetylcholine can also activate sudomotor 

neurons connected to sweat glands that release ion-rich fluids. This sympathetic activity 

can be indirectly measured through the GSR and sweat electrolyte levels13. The released 

stress hormones from the endocrine system will inhibit insulin production, affecting the 

synthesis of metabolites such as glucose, lactate, and UA, as well as narrow arteries, 

boosting cardiac activities. We list the correlations between the selected biomarkers and 

stress levels and their mechanisms as follows. 

Pulse. The neurotransmitter acetylcholine can cause the stimulation of the nerves 

connected to the skeletal muscles and muscles involved in cardiovascular and respiratory 

function, which results in an amplified force output by the skeletal muscles and an escalated 

pace of both heart and breathing rate14.  In the cardiovascular system there are β1, β2, α1, 

and α2 adrenergic receptors: β1 adrenergic receptors are expressed in the heart and increases 

heart rate as well as contractility; β2 adrenergic receptors are mainly expressed in vascular 

smooth muscle and skeletal muscle to increase blood perfusion to target organs; α1, and α2 

adrenergic receptors are expressed in vascular smooth muscle to elicit vasoconstriction15. 

GSR. Activation of SAM axis in a stress event will promote eccrine glands’ secretion to 

generate sweat on the skin16. GSR measures skin resistance between two electrodes, and is 

a crucial vital sign that monitors skin conductance changes from the variation of the ionic 

permeability of sweat gland membranes generated by the sympathetic activity, which is 

directly related to stress arousal and cognitive states17. Therefore, identification of the 

phasic component of GSR allows for the quantification of stress18. The sweating response 

related to stress is reported to mainly be concentrated in the hands, wrists, arms and feet 
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where the sweat glands exist densely, which is not directly associated with 

environmental temperature but with stressors19. 

Skin temperature. Activation of muscle activity as well as the stimulation of eccrine sweat 

will cause the change in skin temperature, and psychological stress can also affect body 

temperature. Psychogenic fever has been a common psychosomatic disease for which is 

not yet fully understood20. Note that, in addition to its importance to stress, skin 

temperature also has an impact on the signals of many biosensors (e.g., enzyme-based 

sensors), and thus the skin temperature data is often used to perform biosensor calibration.  

Glucose. In addition to physical stress response, stress hormones also induce extensive 

metabolic changes in a living organism21. The secretion of epinephrine and norepinephrine  

from  the  adrenal  gland stimulates glycogenolysis and promotes gluconeogenesis in the 

liver, which breaks down glycogen stored in the liver into glucose, and promotes glucose 

synthesis from non-carbohydrate precursors to enhance the energy necessary for cellular 

respiration. The stress hormone cortisol will also promote gluconeogenesis and inhibit 

insulin production to prevent glucose from being stored. Metabolic biomarkers such as 

glucose have been identified for chronic stress22, and elevated levels of fasting glucose as 

well as post loaded glucose have been found in chronic stress that can cause diabetes23–25. 

Increased levels of glucose have been statistically associated with perceived work stress26, 

and increase in glucose was also observed in animal models under acute physical and 

emotional stress27,28. 

Lactate. Muscle and brain exertion during stress transform glucose into lactate as a 

metabolic product through anaerobic glycolysis. While increased lactate levels can be 

obtained through long-term muscle exercise in the absence of oxygen29, it has also been 

observed recently that lactate plays a significant role at the level of the central nervous 

system30,31. Lactate is an important energy substrate in astrocytes, and the increase in lactate 

after acute exhaustive exercise are associated with cognitive domains such as working 

memory and stress30, in order to serve as a neuromodulator and protect the central nervous 

system from stress. Previous studies have also shown that elevated lactate can be observed 
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in venous blood after both physical and pure psychosocial stress tests, while the method 

was invasive with discrete measurement32–34. Continuous measurement of sweat lactate 

after stressors have not been reported. 

UA. UA is another endogenous compound that impacts the stress response. UA levels can 

impact brain regions that underlie stress reactivity and emotion regulation, and therefore 

directly regulate psychosocial stress and anxiety35. Studies have found that elevated UA is 

associated with daily stress36, body anxiety37 and burnout as well38. Increased UA is also 

commonly observed in patients with chronic stress and mental disorders39–41. 

Sodium ions. The central nervous system has been implicated in electrolyte balance and 

blood pressure regulation as well42. Sweat electrolytes such as Na+ are crucial biomarkers 

for sweat rate indicators. Sodium concentration is also an indicator of hydration state, 

which controls acute stress response43. An increase in sweat sodium concentration has been 

reported in exercise-induced stress44, as well as in mental stress test45. Stress may also cause 

pressure natriuresis, where inadequate increase in urinary sodium excretion in response to 

stress-induced blood pressure increase occurs46. 

Potassium ions. Na+-K+ pump regulation is a crucial mechanism that controls skeletal 

muscle contractility47. Stress hormones such as epinephrine can induce acute hypokalemia 

in plasma48. Potential stress biomarkers also play critical roles in the prognosis and therapy 

guidance of stress-related diseases and disorders49, such as obesity50, inflammatory51 and 

cardiovascular diseases52. For example, both K+ and NH4
+ are known to be correlated with 

cardiovascular health and fatigue53,54. 

Ammonium ions. Ammonium appears in the blood mainly due to the breakdown of 

protein55. Psychosocial stress can negatively affect liver metabolism and contribute to the 

worsening progression of hepatic diseases56, while ammonium is a biomarker since the 

liver converts ammonia to urea prior to its excretion57. Ammonium ions along with lactate 

have also been reported to accumulate during graded exercise in humans58. 
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Note D-3. Significance of differentiating stressors and stressor designs 

Distinguishing types of stressors has been recognized as a necessary condition for 

understanding the complex interrelationships among distinct stress experiences, as well as 

the collective impacts of stress on mental health59–61. The influence of stress type have been 

known to cause varying physiological processes in medical students62, caregivers63, 

employees64, children65, and adolescents66,67, as well as in animal models68. For example, 

VR has been adopted in stress training programs to decrease levels of perceived stress and 

negative affect in military personnel69. As the virtual environment  guides the patient back 

to the scene of their traumatic event, where the original stressor occurred, studies have 

shown that reliving the stressor can help treat PTSD in warfighters70. In terms of 

performance, research has found that adults’ reactivity to daily stressors depends on the 

stressor type, emphasizing the importance in identifying different stressor types for 

characterizing risk factors60. For example, the stressor type has been validated as a 

modifiable risk factor for coping responses and cardiovascular diseases61,71. Therefore, 

identifying the types of stressors, as well as linkages between types of stressors and human 

adjustment is highly desired and a prerequisite for stress management59,66,72. 

The two-way communication between the major effector systems and the brain exist to 

provide feedback and avoid over-reactivity73. Therefore, the biological system activation 

not only depend on objective measures of stressors, but also the subjective perceptions of 

the stressor73. According to the two-factor model on emotions, our body first experiences 

a physiological arousal to a stressor, which the minds interpret as a psychological feeling 

or emotion. The cognitive appraisal in the two-factor model is situation dependent, and 

hence relies on the type of stressor the subject experiences. Our model does not predict an 

individual emotion but the aggregate of multiple emotions in the form of a state anxiety 

score. The features used to predict state anxiety should contain information about the 

stressor given the situational dependance, which is why we tested our platform across 

different activities and demonstrated the capabilities to use our multimodal sensors for 

activity differentiation as well as anxiety prediction. Note that our limited number of 
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activities do not fully represent all possible cognitive experiences, which requires a 

population level of human trials beyond the scope of our study. In our designed stressor 

experiments, we designed three controlled stress studies to monitor and evaluate stress and 

anxiety levels. Our study selected the following three stressors, CPT, VR challenge, and 

vigorous exercise. 

CPT is a validated and reliable acute physiological stressor that triggers immediate HPA 

axis activation without the need for vigorous activities74. CPT has been widely used for 

stress response studies75–77, and in our CPT study, while we only observe mild changes of 

these biomarkers, we did not observe much variations in participants’ levels of state anxiety 

on the STAI questionnaire. 

VR is attracting a growing research interest due to its seamless integration capabilities for 

instilling psychological stress and its highly controllable user experience78–81. Previous 

studies have validated stressful VR environments to generate psychological stress and a 

stronger emotional response82–84, while most studies mainly focused on physical markers 

monitoring, such as GSR, ECG, and EEG78–80. For our VR study, the subjects were required 

to sit on a chair with one hand playing beat saber. While some hand and arm movement 

are inevitable, our design has minimized the variation caused by physical activities such as 

exercise. 

Exercise and intense physical training have been validated stressors by numerous studies85–

89, which is related with both physiological and psychological stress. Specifically, the 

ergometric stress test has been adopted as a standard stress test in many instances87,90,91. 

Previous research has pursued potential biomarkers in sweat that are connected with 

submaximal exercise92, but the intermittent and invasive collection cannot show the 

dynamic change of sweat compositions over time. In our exercise design, the subjects 

performed maximum-load cycling on a stationary exercise bike with strong verbal 

encouragement. Strength training has been concluded to induce physiological stress86. For 

athletes, military and fireman that have an intense physical training and work, stress may 

have serious consequences and impact on performance. Screening potential stress 
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biomarkers in sweat has been studied in sports and exercise, while most studies utilize 

commercial mass spectrometry to attain a discrete profile rather than continuous 

monitoring85. While physical exercise itself may change the levels of biomarkers in the 

study, high levels of state anxiety (a key psychological response to stress) were observed 

on the STAI questionnaire due to acute intense exercise. To further classify and evaluate 

stress response, we designed a ML pipeline accordingly to find the underlying relationship 

between biomarkers and stress/anxiety levels of participants. 
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Note D-4. Selection of questionnaires 

Our pioneering study aims to introduce and quantify acute stress responses within a very 

short period of time without causing experimental interruption, and therefore we seek state 

measures of the stress response to monitor changes with each particular stressor test. We 

list here six questionnaire candidates that have been commonly used for stress and anxiety 

measurement. Each questionnaire and their intentions are discussed below: 

The Perceived Stress Scale (PSS) is a classic measure of stress perceptions, which consists 

of 10 items querying whether individuals perceive their lives to be uncontrollable, 

unpredictable, and overwhelming93. However, the questions in this scale ask about average 

feelings and thoughts during the last month, and thus do not capture the immediate stress 

responses central to our study. 

The Perceived Stress Questionnaire (PSQ) is an instrument for assessing stressful life 

events and circumstances that tend to trigger or exacerbate disease symptoms94. The 

questionnaire consists of 30 items, asking the subject’s general feeling during the last year 

or two, and is not suitable for momentary stress response assessment in our study. 

The Depression Anxiety Stress Scale (DASS) is a self-report instrument for measuring 

depression, anxiety and stress altogether95. The questionnaire consists of 42 items, and 

queries average feelings in the past week. It is therefore not aligned with the momentary 

stress response measures required for our study. 

The STAI-Y is a self-report questionnaire that measures state anxiety. The questionnaire 

consists of two subscales with 20 items each, of which state anxiety scale Y-1 measures 

the subject’s feeling “right now/at this moment”, while trait anxiety scale Y-2 asks for the 

subject’s general feeling. The STAI-Y questionnaire was reported to have a high internal 

consistency coefficient of 0.91−0.93 for college students and working adults96. In practice, 

since stress and state anxiety are closely correlated, a number of stress research papers used 

STAI-Y questionnaire for the assessment of stress82,97–101. 
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The Beck Anxiety Inventory (BAI) is a self-report measure of anxiety102. The 

questionnaire consists of 21 items of common symptoms of anxiety, and asks the level 

subjects have been bothered by each symptom during the past month. Thus, it does not 

capture solely acute stress responses, as required in our study. 

The Hospital Anxiety and Depression Scale (HADS) is a questionnaire that assesses both 

anxiety and depression103. It is intended for a general medical patient population, and items 

measure average feelings in the past week. It is therefore not the optimal tool for assessing 

stress response in our study. 

Thus, we selected the STAI-Y1 as our questionnaire in this study to measure state anxiety 

level—our key psychological response to stress. Our stress study measures the multimodal 

stress response as a demonstration for CARES platform, and use ML to classify different 

stress events. We further use ML to quantify the effect of stress on state anxiety level as a 

demonstration. 
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Note D-5. Role of AI in decoding the links between biomarkers and stress 

Biomarker discovery typically requires a large-scale research effort, diversified across 

activities, especially for complex syndromes such as the stress response due to the 

interactions between multiple hormones and biological systems. Despite the challenges in 

validating novel biomarkers for anxiety, there has been a growing pressure to investigate 

these biomarkers’ influence on stress-related disorders. During stress induced activities, 

multiple systems including physiological vital signs as well as multiorgan-metabolic and 

endocrine systems are involved and intercorrelated49. The stress response is a complex 

biological process which can cause changes in physiological factors, as well as biofluids 

of many hormones, metabolites and electrolytes. Given the interplay between different 

potential biomarkers, analyzing a single marker is therefore not enough to understand the 

complex activity of the autonomic nervous system, and the only way to assess an 

individual’s unique influence on the stress response is to track and compare each potential 

biomarker simultaneously. In addition, the ability for continuous monitoring the important 

stress hormones at physiologically relevant levels has not yet been achieved using wearable 

sensors. A precise understanding of the relationship between the stress response and 

general health would involve the analysis of different biomarkers together, understanding 

the relative importance of each marker, as well as exploring new non-invasive multisystem 

biomarkers19. 

After integrating multiple biomarkers onto a single platform, isolating stress-related trends 

becomes difficult. It is therefore natural to apply AI to deconvolute the biological 

mechanism behind different stress responses, and to study the potential correlations 

between different biomarkers. The multimodal data collected by the CARES platform are 

high-dimensional and consists of 60,000 s, making traditional statistical approaches 

inadequate. ML algorithms, however, excel in these circumstances. They can model 

complex, nonlinear relationships and interactions among variables, thereby helping to 

better identify and understand the underlying associations between physiological 

biomarkers and the stress response. ML models are particularly good at making predictions 
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based on patterns in data. If a reliable connection between physiological biomarkers 

and stress can be identified, ML can help predict stress and state anxiety levels based on a 

combination of raw biomarkers, and identify the most relevant features (in this case, 

biomarkers, as shown in Fig. 4g, i, j) that contribute to the outcome. While it is an unsolved 

problem in ML and fundamental computer science field regarding the ML model 

interpretations and explanability104,105, in our study we adopted ML to derive correlation 

between these biomarkers and state anxiety levels, where clinical STAI-Y questionnaire is 

treated as the gold standard for data training.  
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Note D-6. Pulse analysis and feature extraction 

The pulse analysis algorithm was written as an iterative and adaptive model for analyzing 

arterial pulse in semi-real time (i.e., after each pulse is fully formed). The first step in the 

process was to filter and separate individual pulses. During the experiment, pulse data was 

sampled at a sampling frequency of around 0.007 s. For a typical relaxing heart rate 

between 60 and 100 beats per minute, this yielded approximately 84 to 139 points per pulse, 

respectively. For this sampling frequency, we found that a Savitzky–Golay (SG) filter with 

length 9 and order 2 was sufficient to remove small noise within the dataset. We opted for 

an SG filter over a low pass filter at this stage due to the sharp transitions between pulses 

from the end of the tail wave to the systolic rise. Applying a low-pass filter would cut off 

some of the data due to the superposition of low and high frequency components. In 

particular, the low pass filter at this stage would affect the systolic amplitude as well as the 

systolic rise time – two important features of the pulse. After the SG filter, the pulse data 

was noisy, but showed clear distinct features in its first derivative for pulse separation. 

Individual pulses were isolated based on the slope of their systolic peak. Instead of 

choosing a constant systolic threshold across the dataset, we utilized an adaptive iterative 

method for identifying the systolic rise. We opted for an iterative method as the systolic 

rise can vary due to biological responses (arterial vein tightening) as well as from amplitude 

drift in the sensors. However, between subsequent pulses (around 1.6 to 2 seconds), these 

differences do not significantly affect the systolic slope. After identifying one systolic 

peak, the next peak could be found using two criteria: at least half the systolic slope and 

0.33 seconds (180 beats/min) away from the previous systolic peak. The time duration 

criteria ensured that the dicrotic peak was not accidently labeled as a systolic peak, while 

not overshooting and missing the next systolic rise. To calculate the initial systolic slope’s 

threshold, the first 1.5 seconds was used as calibration, where the maximum slope was used 

as the baseline systolic threshold. After the analysis, each dataset was verified for proper 

pulse separation, and it was noted that all pulses were properly extracted. To discount noise 

from wire movements and motion artifacts, if two systolic peaks were identified greater 
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than 2 seconds (30 beats/min) apart, then the corresponding pulse interval was removed. 

After isolating an individual pulse, second round of filtering was applied to remove the 

remaining noise. An 18 Hz third order low pass filter was applied followed by another SG 

filter. After filtering, first, second, and third order derivatives were calculated using an SG 

filter of length 3 order 2. A linear baseline was subtracted from the start to the end of the 

pulse to remove the remaining background drift. At this point, all pulses and their 

derivatives were smooth and ready for feature extraction. 

To extract features from specific components of the pulse, derivatives instead of 

commonly-used gaussian decomposition were utilized to differentiate and segment the 

pulse waveforms (Fig. D-13a). The peaks detected for each pulse waveform were extracted 

amplitude and time intervals as features for the ML model. Each pulse waveform was first 

normalized according to their systolic peak intensity amplitude, which yielded stable 

feature output against patch variations as well as moderate motion artifacts (Figs.  D-14 

and 15). In previous attempts, we added an extra processing method using four gaussian 

decomposition to further isolate each individual systolic, tidal, dicrotic, and tail wave 

component of the pulse. This method proved to be time costly with high variability between 

pulses due to multiple optimal gaussian combinations that fit the overall waveform. 

Furthermore, even with individual optimization of the decomposition, the features obtained 

through this method were noisier than features extracted from the pulse directly due to 

small amplitude variations in the fit. From the systolic peak, four consistent points across 

all waveforms were identified in the following order of appearance: the systolic peak, the 

maximum slope, the maximum and minimum second derivative. From the tidal wave, two 

consistent points across all waveforms were identified in the following order of 

appearance: the tidal peak and the third derivative maximum after the tidal peak. From the 

dicrotic wave, four consistent points across all waveforms were identified in the following 

order of appearance: the dicrotic notch, the maximum slope of the dicrotic rise, the dicrotic 

peak, and the minimum slope after the dicrotic peak. The tail wave was too noisy to extract 

meaningful features as the wave is not as large and consistent as the others. Each above 

group formed a reliable and consistent set of points to extracts various attributes about each 
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waveform. Additionally, if any set of points were not found in the correct order, the 

pulse was not analyzed, offering a criterion for removing noisy data. 

Of the points mentioned above, the tidal peak is known to be weak, requiring high 

sensitivity to properly measure. Moreover, the tidal peak amplitude can fluctuate within a 

dataset. Correctly identifying the faintest trace of the tidal peak even when the peak is not 

visually present was a challenge. This challenge was investigated due to the importance of 

the tidal feature. There are three main ways we identified the tidal peak. All methods look 

for the tidal wave within a specific section of the pulse, where the start of the tidal region 

was defined after the systolic peak, and the end of the tidal region was defined as the 

dicrotic notch. The algorithm attempted to extract the tidal peak using the following three 

methods in order of attempts: 1) If the tidal peak was large and well-formed then the tidal 

peak maximum is the zero-crossing of the first derivative in the tidal region. 2) As the tidal 

amplitude decreases, the extrema will become a saddle point and is identified by the 

maximum of the first derivative in the tidal region. 3) If no peak is easily identified in the 

first derivative due to noise, then we take the second derivative zero crossing (i.e., the 

maximum of the first derivative peak) in the tidal region. It is important to note that all 

three searching methods refer to the same saddle point but obtain the index through looking 

at the next derivative. Each method comes with its own level of tolerance for finding the 

correct saddle point. In practice, the tidal peak is found mainly through the first derivative, 

sometimes through the second derivative. A visual example of how we found these points 

is further shown in Fig. D-13b. Pulse feature extraction was validated upon finding 

consistent and important features for predicting stress response. 

Other than pulse signals, all other physicochemical biomarkers were sampled at a sampling 

frequency of 1 s. After filtering and normalization, these signals themselves served as a 

feature and directly went through the ML pipeline. 

For overall stress and state anxiety level evaluation, due to the intrinsic limitations of stress 

questionnaires being able to only characterize an overall stress and state anxiety level 

within a given time period rather than dynamic stress change continuously, we analyzed 
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the stress response event as a whole to mimic questionnaire functionalities. In this 

circumstance, the original dataset was reduced, and further feature extraction was 

performed by taking mean signal changes from the moving average (MA) of sensors rather 

than segmented at each timepoint. Features were extracted from the relaxation and stress 

region with a simple MA rolling window of 100 s. Simpler linear ML models, including 

linear regression, SVM, and stochastic gradient descent regressor were evaluated and 

performed better in terms of R2 score and mean squared error given the reduced dataset 

(Fig. D-22a,b). With the reduced size of dataset and simple linear models, we also reduced 

number of features to prevent overfitting by performing a brute force feature selection 

within each biomarker (Fig. D-22c). We found that combination of physicochemical 

features outperformed that of physical and chemical sensors alone, and chemical 

information can supplement pulse data that we are missing to produce a higher accuracy 

than either sensor in isolation, allowing us to reduce the feature numbers to four while 

maintaining a high R2 score of 91.52% (Fig. D-22d). Through SHAP analysis, we found 

that each biomarker category (pulse, GSR, metabolites, and electrolytes) provided non-

overlapping and valuable information for stress and state anxiety level prediction. 
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Note D-7. ML evaluations and metrics 

Metrics for binary and multiclass stress classification: confusion matrix, accuracy, 

precision-recall, and F1 score. 

Confusion matrix, also known as the error matrix, is a table that visualizes the accuracy 

between actual classes and predicted ones (Fig. D-16c,d). For binary classifications, the 

confusion matrix is represented by a positive and a negative class. True positive (TP) is 

defined when the prediction correctly indicates the positive class, and likewise true 

negative (TN) is defined for correctly predicted negative ones. False positive (FP) is 

defined when the prediction incorrectly indicates the positive class, and false negative (FN) 

is defined for incorrectly predicted negative class. For multiclass classifications, the 

confusion matrix is represented by the labeled classes. 

Accuracy represents the total number of correct predictions over all predictions and is 

defined as: 

Accuracy = 
TP + TN

TP + TN + FP + FN
 . 

However, accuracy may not be a good measure when the dataset is imbalanced, as a high 

accuracy in the majority class may lead the model to have a high overall accuracy even if 

other classes were predicted poorly. In our dataset, the relaxation state outweigh the 

stressed state, and using accuracy alone in our scenarios can result in misleading 

interpretation of high results. 

Therefore, precision-recall is introduced along with their combination metric F1 score, and 

is a better measure than accuracy. Precision is a measure of result relevancy, while recall 

is a measure of how many truly relevant results are returned, and they are defined as: 

Precision = 
TP

TP + FP
,  Recall = 

TP
TP + FN

 . 
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F1 score is the harmonic mean of precision and recall:  

F1 score = 2 × 
Precision × Recall 
Precision + Recall

 . 

Precision-recall plot is displayed for model selection in binary stress/relaxation detection 

(Fig. D-16b), and F1 score is displayed for the finalized model across different individuals 

(Fig. D-16d). For multiclass classifications, the precision-recall and F1 score should 

represent across all classes. Two averaging techniques were taken: micro and macro-

averaged precision-recall, where micro quantifies the scores on all classes jointly, and 

macro takes arithmetic mean of per-class. They are defined as: 

Micro:Precision = 
∑ TP(class i)

N
i=1

∑ TP(class i)
N
i=1 +∑ FP(class i)

N
i=1

, Recall = 
∑ TP(class i)

N
i=1

∑ TP(class i)
N
i=1 +∑ FN(class i)

N
i=1

 

Macro:Precision = 
1
N
�Precision(class i)

N

i=1

, Recall = 
1
N
�Recall(class i)

N

i=1

 

where N denotes number of classes. The choices of metric depends on the ranking of the 

classes, since micro-averaging computes the proportion of correctly classified result over 

all observations (i.e., overall accuracy), and macro-average treats all classes in an equally 

weight. Both cases were used in our study. In model selection process, micro-averaged 

precision-recall is utilized for evaluating overall performance regardless of stress 

categories (Fig. 4c). In evaluating classification accuracy, on the other hand, macro-

averaged F1 score is displayed in Fig. 4e which evaluates performance in each stress type 

while micro-average is plagued to misleading interpretation of high results (Fig. D-17a). 

Metrics for state anxiety level regression: mean squared error, R2 score, and confidence 

level. 
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Mean squared error (MSE) measures the average of the squares of the errors between 

predicted and true values, which is one of the most widely used metrics for regression (Fig. 

D-22b). 

R2 score, also named as coefficient of determination, is another crucial statistical measure 

of regression. It measures the proportion of variation in the output dependent attribute that 

is predicted from the input independent variables, and tells how well the regression model 

fits the data. R2 score is upper bounded by the value 1, attained for perfect fit (Fig. D-22a). 

Confidence interval is defined as a range of estimates for an unknown parameter (herein, 

state anxiety level), and is calculated at a designated confidence level. Due to the natural 

standard deviation of questionnaire scores as aforementioned, we take ±2 anxiety points as 

the confidence interval buffer for state anxiety level evaluation. Confidence level is 

calculated accordingly after model training by the proportion of predicted values that falls 

within this range in testing dataset (Fig. 5-3h). We anticipate that for large-scale human 

trials with autonomic physiological signals collected from the CARES device can remove 

this bias, and provide a more robust stress assessment tool as a possible replacement of the 

questionnaires for stress quantification. 

Feature importance evaluations using SHAP: After feature extraction, the feature 

importance of each biomarker was evaluated using Shapley additive explanation (SHAP) 

values, which utilizes a game theory approach to explain a feature’s individual and overall 

contribution to the final prediction. Effectively, the SHAP value of a feature represents the 

average marginal contribution of the feature across the entire dataset (all prediction 

instances). To gain an understanding of how each biomarkers affect stress classification, 

we segmented the SHAP analysis across each stress state (Fig. 4g, Fig. D-17b,c). Similarly, 

the SHAP contributions of each feature is shown in Fig. 4i and Fig. D-22e for state anxiety 

level prediction. Both figures indicate that while individual feature importance can vary 

across a dataset, there is no single feature that dominates the outcome. This SHAP analysis 

is extended in Fig. D-17d, Fig. 5-3j and Fig. D-22f, where the stress contribution of each 

feature starting from an initial average stress state is displayed. In our study, a low GSR 
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profile plays a dominant role in the relaxation state in the ML model, followed by the 

sweat rate indicated by Na+, heart rate indicated by pulse duration, and glucose 

concentration in sweat. For physiological stress induced with vigorous exercise, the pulse 

features such as heart rate, systolic and dicrotic peak waveforms have a major influence on 

stress classification, and lactate concentration in sweat also plays an important role. It can 

be inferred that due to natural sweat induction during extensive exercise, the GSR tracks 

mixed signals of not only sweat gland activity in skin but also sweat fluid conductivity 

itself, and therefore GSR may not be sufficient to distinguish exercise-induced stress for 

the ML model. For physiological stress in CPT that is induced without vigorous activities, 

the electrolyte concentrations including NH4
+ and Na+ as well as GSR have a dominant 

impact on model classification. As for the psychological VR challenge, while the heart rate 

increases similarly with that of vigorous exercise, GSR remains the key feature since no 

intense natural sweating occurred. As seen in the figures, there is no feature that 

dramatically alters or contributes an abnormally high contribution to the final stress 

prediction. Rather, each feature has a relative contribution to predict the final state anxiety 

score. This contribution may be large or small; however, no biomarker drastically 

outweighs the importance of another. This informs us that each feature is individually 

valuable to the final accuracy of the model, carrying relevant information that should not 

be discounted. Through the SHAP values, we gain a more in depth understanding of how 

each biomarker contributes to the stress across each experimental protocol. 

Note that SHAP analysis is designed as a game theory approach in determining a 

biomarker’s individual non-overlapping contribution to the prediction106, and shows the 

relative significance in the model instead of building the absolute contribution to state 

anxiety. SHAP is in combination of all features that we understand what each feature is 

doing relatively to the model and tells us how much the model output changes when we 

change each input feature, instead of each feature’s absolute role to final prediction 

objective. In our study, SHAP shows that these metabolites and electrolytes do hold non-

overlapping information that contribute to the model. 
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Table D-1. List of pulse features extracted for ML pipelines. 

Feature name Feature description 
systolicPeakTime The time duration from the start of the pulse to the systolic peak. 
tidalPeakTime The time duration from the start of the pulse to the tidal peak. 

dicroticPeakTime The time duration from the start of the pulse to the dicrotic peak. 

pulseDuration The time duration from the start to the end of the pulse, which is 
inverse to heart rate. 

pAIx 

The peripheral augmentation index (pAIx) is a measurement of 
arterial stiffness, considering the amplitude ratio of the first reflected 
wave over the systolic waveform. pAIx has been correlated with 
cardiovascular disease and cholesterol. Height, gender, and age may 
all effect pAIx. pAIx may also be referred to as the radial 
augmentation index in the literature. 

pAIx = 
tidalPeakAmp

systolicPeakAmp
 

reflectionIndex 

The reflection index (RIx) is influenced by the vascular tone and the 
endothelium’s (arterial lining’s) condition. Higher RI values indicate 
a stressed endothelium. RI values can be influenced by caffeine and 
exercise. RI may also be referred to as the diastolic augmentation 
index in the literature. 

RIx = 
dicroticPeakAmp
systolicPeakAmp
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Table D-2. List of ML accuracy for stress and state anxiety monitoring using 

wearables. 

Sensors     Model Subjects 
Y/N 
Classify 
Accuracy 

Stressor 
Classify 
Accuracy    

Stress/State 
Anxiety 
Level 
Accuracy 

References 

2 separate 
physical (ECG, 
GSR, EMG, 
Resp, T, Acc) 

linear 
discriminant 
analysis 

15 92.28% 79.57% N/A 98 

Physical (PPG, 
GSR, T, Acc) SVM 5 95% N/A N/A 100 

Physical (ECG, 
SC, Resp) 

Bayesian 
network 13 84% N/A N/A 107 

ECG CNN+RNN 13, 9 87.39%, 
73.96% N/A N/A 108 

Physical (HR, 
GSR) CNN 10 91.8% N/A N/A 109 

GSR SVM 9 73.41% N/A N/A 110 
Physical (HRV, 
Resp) 

logistic 
regression 10 81% N/A N/A 111 

Physical (GSR, 
Acc) 

logistic 
regression 12 91.66% N/A N/A 112 

Physical (HRV, 
GSR, T) random forest 32 94.52% 78.15% 

81.82%, 
82.70% for 
low and high 
stress 

72 

Physical (ECG, 
EMG, GSR, Resp) 

linear 
discriminant 
analysis 

32 94.7%, 
97.4% N/A N/A 113 

Physical (Pulse, 
GSR, T) + 
Chemical 
(glucose, lactate, 
UA, Na+, K+, 
NH4

+) 

random forest 
XGBoost 10 99.2% 98.0% 98.7% This work 

Resp, respiration. T, temperature. Acc, Acceleration. PPG, photoplethysmogram. BVP, blood volume pulse. 
CNN, convolutional neural network. LSTM, long short-term memory. SVM, support vector machine. RNN, 
recurrent neural network. 
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Figure D-1. Characterization of the inkjet-printed CARES electrodes. a, Schematics 

of inkjet printing mechanism. b, Optical image of a flexible CARES sensor array fabricated 

via mass-producible and low-cost inkjet printing. Scale bar, 1 cm. c, Optical image of an 

ultrathin CARES patch on a subject hand. Scale bar, 1 cm. d–f, SEM images of inkjet-

printed Ag (d), carbon (e), and cross-section of Ag-carbon interconnect (f). Scale bars, 500 

nm. 
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Figure D-2. Fabrication process of the flexible CARES patch. 

 

Figure D-3. Layered assembly of microfluidic CARES system. a, Detailed sensor 

configurations and pin assignments of the CARES. b,c, Optical images of CARES sensor 

patch after biochemical sensors preparation (b) and the microfluidics module (c). Scale 

bars, 1 cm. d, The layer breakdown of the CARES system. 
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Figure D-4. Optical image of a healthy subject wearing a CARES patch for 

continuous data collection during the laboratory human studies. The CARES was 

connected to laboratory instruments via flexible cables. Scale bars, 2 cm and 10 cm for a 

and b, respectively. 

 

Figure D-5. Fully integrated wearable wireless CARES system for continuous data 

collection. a, System-level block diagram of the wireless wearable CARES system. BLE, 

Bluetooth Low Energy; GPIO, general purpose input/output; SPI, Serial Peripheral 

Interface; CPU, central processing unit; MCU, microcontroller; ADC, analogue-to-digital 

converter; TIA, trans-impedance amplifier; DAC, digital-to-analogue converter; CDC, 

capacitance-to-digital converter; I2C, Inter-Integrated Circuit; In-Amp, instrumentation 
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amplifier. b,c, Photographs of a flexible PCB for multimodal signal processing (b) and 

an assembled wireless wearable CARES system (c). d, Photograph of a wireless wearable 

CARES system worn on the ventral forearm. Scale bars, 1 cm. 

 

Figure D-6. Circuit schematic of the wireless wearable electronic system of the 

CARES. 
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Figure D-7. In vitro sensor calibration and evaluation using the wireless wearable 

CARES system. 
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Figure D-8. On-body multimodal monitoring of CPT stress response. a–i, Multimodal 

sensor responses of CPT stress response in nine healthy subjects using the CARES. 
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Figure D-9. On-body multimodal monitoring of VR challenge stress response. a–i, 

Multimodal sensor responses of VR challenge stress response in nine healthy subjects 

using the CARES. 
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Figure D-10. On-body multimodal monitoring of exercise stress response. a–i, 

Multimodal sensor responses of exercise stress response in nine healthy subjects using the 

CARES. 
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Figure D-11. Pulse waveform stress response monitoring of three stressors of a 

healthy subject. An autonomous pulse normalization algorithm was adopted, where each 

pulse waveform is normalized according to their systolic peak intensity amplitude. 
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Figure D-12. Subject information involved in the stress human studies and 

corresponding state anxiety scores using STAI-Y questionnaires. a, Subjects health 

profiles including their age, gender, height, weight and body mass index (BMI). b, Raw 

questionnaire score from subjects indicating state anxiety levels during relaxation state. c, 

Raw questionnaire score from subjects indicating state anxiety levels during stressors. 
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Figure D-13. Feature extraction from pulse waveform. a, A peak finding algorithm 

locating systolic, tidal and dicrotic peaks based on their 1st derivative. The algorithm first 

separates and normalizes each pulse waveform, then performs 1st derivative analysis and 

locate the unique peaks. b, An exception consideration to find tidal peaks based on the 2nd 

derivative. In practice, some subjects demonstrated vague tidal peaks, in which the 1st 

derivative cannot find tidal peak, and a 2nd derivative analysis was adopted to locate the 

inflection point. 
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Figure D-14. Different patch placed on the same location of a relaxed subject’s wrist 

and corresponding extracted features. a, Pulse signal variations due to fabrication and 

placement variations, which is inevitable. b, After feature extraction algorithm, the feature 

remained stable with negligible variations against patch variations. 

 

Figure D-15. Pulse signals measured at different wrist angles of a relaxed subject and 

corresponding extracted features. a, Pulse signal variations when the subject bends the 
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wrist from -90° to 90°, which showed big waveform changes and could cause big 

variations during daily activities. b, After feature extraction algorithm, the feature 

remained stable in a moderate angle range from -30° to 30°. 

 

Figure D-16. ML prediction performance of stress detection. a, Precision-recall curve 

of different ML models for stress detection. XGBoost model outperforms other models in 

terms of precision-recall. SVM, support vector machine. RBF, radial basis function. b, 

Confusion matrix of a XGBoost model to the unseen test dataset. XGBoost achieved 

99.25% accuracy of detecting stress and relaxation state, showing that it can generalize to 

classify unseen samples. c, The overall testing accuracy based on F1 score for each involved 

subject. 
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Figure D-17. ML prediction performance of stressor type classification. a, Precision-

recall curve of a XGBoost model for each stressor as well as micro-averaged classification 

result. b, Stacked bar plot of feature importance showing their contribution to each stressor 

type. c, Shapley additive explanation (SHAP) summary plot with respect to a XGBoost 

model based on the dataset collected by CARES. d, SHAP decision plot explaining how a 

XGBoost model arrives at each stressor classification for every data point using both 

physiological and chemical features. Each decision line tracks the features contributions to 

every individual classification. 
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Figure D-18. Continuous data collection using the fully integrated wireless wearable 
CARES patch in laboratory conditions. 
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Figure D-19. Continuous data collection using the fully integrated wireless 

wearable CARES patch in real-life conditions. 

 
Figure D-20. ML-enabled stress response assessment based on the new datasets 
collected with wireless CARES patch in the laboratory setting. a, Confusion matrix 
displaying the classification accuracy for predicting stress and relaxation. b, Confusion 
matrix displaying the classification accuracy for predicting each type of stressor. c, True 
versus the ML-predicted state anxiety scores. ±2 state anxiety score buffer is shown based 
on the potential error in the anxiety questionnaires. 

 

 
Figure D-21. Training and testing generalization of ML model for stress response 
assessment based on the new dataset collected by the wireless CARES in real-life 
settings. a, Confusion matrix displaying the classification accuracy for predicting stress 
and relaxation. b, True versus the ML-predicted state anxiety scores. ±2 state anxiety score 
buffer is shown based on the potential error in the anxiety questionnaires. 
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Figure D-22. ML performance of simple linear models for overall state anxiety level 

evaluation. a, R2 score distribution for representative linear models over 1,000 runs of 

randomly splitting training and testing datasets to reduce uncertainties in reduced size of 

dataset. SGD, stochastic gradient descent. b, Mean-squared error (MSE) distribution for 

representative linear models over 1,000 runs. c, Brute-force feature selection and 

evaluation in a linear regression model with ridge regularization. The combination of 

physicochemical features outperformed that of physical and chemical sensors alone. d, 

True versus ML-predicted state anxiety score based on the linear model. ±2 state anxiety 

score buffer is shown based on the potential error in the state anxiety questionnaires. e, 

SHAP summary plot of the linear regression model based on the dataset collected by 

CARES. f, SHAP decision plot explaining how the linear model determines the state 

anxiety level using both physiological and biochemical features. 
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C h a p t e r  6  

CONCLUSION AND FUTURE OUTLOOK 

Materials from this chapter appear in “Xu, C.; Solomon, S. A.; Gao, W. Artificial 

intelligence-powered electronic skin. Nature Machine Intelligence 5, 1344–1355 (2023). 

https://doi.org/10.1038/s42256-023-00760-z.” 
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This thesis has summarized our efforts to introduce multimodal physiological and 

biochemical sensors into the e-skin. We developed a general approach through materials 

engineering by applying analogous composite materials for stabilizing and conserving 

sensor interfaces, and achieved highly stable and sensitive biochemical sensors including 

both enzymatic and ISE sensors, which has obtained a record-breaking long-term stability 

of more than 100-hour continuous operation with negligible sensor degradation in sweat, 

and withstand complex matrix in wound. With the robust sensor development, we applied 

these sensors for HMI, wound management, and continuous prolonged daily activities 

monitoring. We also developed an ML pipeline that could reveal high accuracy and 

reliability for stress evaluation for the first time. We envision that by capturing a broader 

range of signals through more integrated biosensors, a more complete metabolic profile 

can be achieved for next-generation healthcare and human performance monitoring. Our 

multimodal sensors and machine intelligence pipeline could pave the way for numerous 

practical wearable applications such as intelligent healthcare and personalized medicine. 

In this final chapter, we bring up future directions for these architectures. 

6.1 AI-generated e-skin 

Human skin possesses outstanding mechanical properties, including flexibility, 

stretchability, toughness, along with multifunctional sensing abilities. However, there are 

many unsolved material challenges to replicating key properties in artificial skin1. AI has 

been proposed to optimize materials discovery and sensor designs to autonomously 

redesign new e-skin patches1,2. AI can be integrated into the materials design process in 

three phases (Fig. 6-1). The first phase involves model prediction and patch design based 

on functional requirements: size, weight, lifetime, cost, and other material specifications; 

the second phase entails computational modeling and experimental validation; and lastly, 

the improvement of current databases and model accuracies based on the results. 
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Figure 6-1. ML optimizations for e-skin designs. AI algorithms serve as an alternative 

pathway to optimize and explore materials synthesis, facilitate automatic mass fabrication 

and optimize current sensor limits. 

6.1.1 Emerging materials and e-skin designs 

The conventional selection of substrate materials typically involves natural materials such 

as cotton and silk, which are known for their biocompatibility, low-cost, and comfort. 



 

 

252 
However, natural materials have inherent limitations in stretchability and tunability. 

Material scientists and chemists consequently synthesize soft materials based on a 

combination of manual designs, drawing inspiration from nature, and leveraging previous 

material examples as references3–5. Some material design strategies include ultrathin tattoo-

like substrates6, applying serpentine interconnects7, and using nature-inspired skin 

adhesion to realize high fiducial signal collection8. Meanwhile, these materials and designs 

require extra validation to characterize their properties, and many synthetic processes 

involve toxic precursors and require careful biocompatibility tests. 

With a diverse availability of material candidates, designing or selecting a material with 

desired properties for a specified task is becoming increasingly challenging9. ML provides 

an attractive pathway to explore new materials and identify promising candidates with 

targeted properties, including alloy materials10, NP synthesis11, and electronic materials12. 

To date, a number of publicly available databases have been launched for simulating 

functional materials and recipes1. Moreover, ML can also be used to optimize and explore 

material synthesis, such as extracting text from scientific literature and giving synthesis 

protocol suggestions13,14. 

AI can help select and optimize fabrication methods based on material characteristics. 

Additionally, ML is can assist in quality control during mass fabrication, such as with jet 

printing of electronic circuits15. In addition to materials and fabrication methods, ML is 

also capable of optimizing e-skin designs. For example, a ML-based circuit designer has 

enabled transistor sizing adjustments using graph convolutional neural networks16. While 

conventional e-skin designs from planar designs typically do not conform to curvy 

surfaces17, ML can guide structural designs of e-skins by finding kirigami designs for 3D 

shape-adaptive e-skins and pixelated planar elastomeric membranes more efficiently than 

mechanical simulations18,19.  

As most data from material experiments are discrete and noisy with high variance, it is 

necessary to preprocess the data through interpolating missing data and rebalancing biased 

training sets20,21. Additionally, many material science fields are not data-rich, and 
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anthropogenic biases in the limited dataset may hinder model generalization21. This can 

be particularly true for collecting data about novel materials for human subjects. It is 

anticipated that a more standardized materials dataset and pipeline will speed up materials 

development and discovery2. 

6.1.2 Signal processing and augmented sensor performance 

While traditional intuition-driven sensors are based on situation-specific experimental 

trials and time-consuming numerical simulations, ML algorithms can search for optimal 

sensor architectures as a function of required material properties with an accelerated and 

efficient prediction time22,23. In addition to conventional task-specific and labor-intensive 

signal processing, ML is capable of fast, robust data analysis to provide transferrable 

frameworks under different initial conditions. For example, ML can perform signal 

denoising24, multi-source separation25, artefact identification and elimination26. Two 

crucial guidelines for e-skin sensors are sensitivity and selectivity to the target biomarker. 

Indistinctive signal-to-noise ratios and overlapping detection between targets and 

interferents are two main bottlenecks for applying sensors for trace-level molecular 

detections in complex biomatrices. Substrates with similar structures to the target in 

biofluids could lead to confounding results. ML has been illustrated to improve the 

specificity and sensing limit of detection in multimodal sensing27. Many biochemical 

sensors involve enzymes that have a narrow working range, while AI algorithms could 

surpass signal saturation and calibrate non-linear sensors in a dynamic testing 

environment28. 

Motion artifacts are another major source for background noise in e-skins. While extensive 

analog and digital signal processing techniques have been applied to reduce artifacts and 

improve data quality29,30, they typically involve manual circuit designs and simulations, 

which entail high costs and are not easily expandable to different scenarios. ML can be 

used for precise data acquisition by compensating noise and defects in wearable sensors31. 

In addition, data acquisition hardware can be fundamentally redesigned for optimal sensing 

with an intelligent platform32,33. The improved sensing capabilities as well as compact 
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systems will fundamentally enhance sensor performance through iterative analysis of 

data-driven sensing outcomes23. 

6.2 AI-powered e-skin for human-machine interactions 

HMIs enable the interaction between users and robotics, and have become crucial in remote 

robotic teleoperations. As the demand for precise and intuitive robotic control continues to 

grow, research has been turning its attention from conventional control theory towards a 

more immersive and interactive interfacing platform. The emerging AI-powered e-skins 

are creating new paradigms for robotic control and human commanded perception (Fig. 6-

2)34,35. AI could quickly analyze multimodal data from e-skin patches and make 

autonomous decisions to manipulate robotics and provide human aid, which has already 

bridged the gap between human and machine interactions. 
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Figure 6-2. AI-powered e-skin for HMI. ML bridges the gap between humans and 

machines through task assistance, robotic control, virtual and augmented reality. 

6.2.1 Tactile perception 

Tactile perception decodes and transmits physical information to a computer system about 

hand movements, gestures, and force recognition36. The associated robotics can then 

accomplish tasks such as object grasping37, shape detection38, and object identification39. 

Haptic sensors are therefore widely adopted as a fundamental element for e-skin based 

HMI systems, which are usually built with arrays of strain and pressure sensors or 

electrophysiology electrodes such as surface EMG electrodes to capture complex hand 

movements40,36,41,42, producing a large quantity of continuous data. Real-time haptic 

perception with the aid of AI has made tremendous progress in dynamic whole-body 

movements42, gesture interpretation43, tactile recognition41,44, as well as object 

manipulation and detection45. 

6.2.2 Prosthetics and robotic feedback 

Developing prostheses that rehabilitate motion for people with disabilities is a crucial goal 

in machine intelligence. Prosthetics typically involve a large sensing area with robotic 

feedback, where the e-skin extracts motion or audio data and ML algorithms analyze and 

control robotic operations accordingly. Strain and pressure sensors are fundamental 

components for actuators and grippers in robotics, enabling tactile feedback for enhanced 

functionality41,46. A variety of prosthetic solutions have been developed for different 

scenarios, including facial expressions47, robotic control and feedback38, translation of sign 

language into speech48, personalized exoskeleton walking assistance49, as well as providing 

steering and navigation assistance for people with impaired vision50. 

Smart robotic hands for prosthetics can also be applied for task assistance in healthy people. 

For example, a nanomesh-based e-skin integrated with meta-learning could assist rapid 

keyboard typing with a few-shot dataset37. Smart e-skin also has the potential for driving 
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assistance by monitoring the driver’s state and preventing sleep deprivation-related 

accidents51, which provides an alternative solution for vehicle automation. 

6.2.3 Hearing aid and natural language processing 

Verbal communication with machines is another promising e-skin application that relies 

on AI, where a voice-user interface leveraging natural language processing is highly 

intuitive and convenient. Numerous studies have developed resonant acoustic sensors in e-

skin for voice recognition52, vocal fatigue quantification53, and voice control of intelligent 

vehicles54. These sensors integrate resistive or piezoelectric membranes as sensing 

components52,55,56, which converts human hearing range of around 20 Hz to 20 kHz. The 

customized frequency filtering can identify physical activities with different intrinsic 

frequency bands55, or filter acoustic vibrations against human perspirations and 

background noise57. Voice sensors may also serve as a security device for biometric 

authentication56. 

6.2.4 Virtual and augmented reality 

VR and augmented reality (AR) create a virtual environment where visual and auditory 

stimuli replicate sensations in the physical world58. E-skin provides an additional sensation 

of touch due to its unique skin interface59. For example, wireless actuators could be 

integrated in e-skins for programmed localized mechanical vibrations58. Such mechanical 

feedback can also form a closed-loop HMI system for motion capturing and vivid haptic 

feedback when interacting with virtual objects60,61. To further implement gesture controls 

for VR, a textile glove was developed with ML algorithms to classify hand patterns in 

various VR games62. AI could accelerate machine vision processing by utilizing a simple 

image sensor array matrix63, empowering a high frame rate in VR visualizations. 

Additionally, some pioneering demonstrations have illustrated the potential of odor 

generators for olfactory VR applications64. 
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6.3 AI-powered e-skin for healthcare and diagnostics 

E-skin with arrays of integrated sensors can record the health profile of an individual in 

remote and community settings, detect aberrant physiology over time, and unveil health 

distributions at a population level. ML has aided diagnostics by identifying complex 

relationships between input physiological information and disease states65–67. There is a 

growing trend using AI-powered e-skins to address the growing demands in health 

monitoring and diagnosis (Fig. 6-3). Emerging AI has shown promising capabilities in 

approaching expert-level diagnosis, which could reduce the rate of misdiagnosis and create 

great clinical and market potential. For complex disease syndromes without established 

biomarkers, these ML algorithms could also facilitate our understanding in biomarker 

discovery, psychological predictions, and precision therapy. 

6.3.1 Cardiovascular monitoring 

Heart failure can worsen progressively over days while current telemedicine tools are not 

sufficient to detect acute exacerbations. AI-powered e-skins hold the promise of specialist-

level diagnosis for cardiac contractile dysfunction or arrhythmias68,69. E-skins can integrate 

multiple modalities and facilitate the rapid evaluation of hemodynamic consequences of 

heart failure70. ML has been widely adapted for data analysis to extract cardiac parameters, 

such as blood pressure predictions71,72 and left ventricular volume73. AI-based e-skin is 

anticipated to spot small and gradual cardiovascular changes over time and facilitate 

automatic diagnosis in a timely manner70. Such an approach will also alleviate the clinical 

load of physicians by reducing unnecessary hospital consultations. 

6.3.2 Stress and mental health 

Stress and mental health are significant problems for global health but their assessments 

rely heavily on subjective questionnaires. Pioneering studies for mental health predictions 

have been introduced including stress74–76 and fatigue77–79, but most studies still focus on 

commercial wearables such as watches which only monitor physical vital signs and are 
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prone to motion artefacts. Several pioneering studies have demonstrated dynamic 

monitoring of the stress hormone cortisol using e-skin devices80,81. Next generation e-skins 

will combine physiological data with molecular signatures and perform multimodal data 

analysis82. By identifying previously unrecognized associations between health patterns 

and stress risk factors83, smart multimodal e-skins with the aid of AI have the potential to 

model risk associations and unveil stress outcomes for mental health. 
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Figure 6-3. AI-powered e-skins for personalized healthcare and predictive disease 

diagnostics. a, Cardiovascular health can be investigated through continuous monitoring 

of one’s cardiac activities (ECG, pulse waveforms, etc.) with e-skins. Integrating 

autonomous analysis through AI algorithms creates further potential for screening urgent 

conditions such as arrythmias. b, The application of AI-powered e-skin can extend to 

mental health which is a complex event that involves behavioral and physiological 

responses, metabolic changes, and fluctuations in a number of stress hormones. PTSD, 

post-traumatic stress disorder. c, Biomarker discovery through AI algorithms will further 

aid in finding new missing information potential links between measured sensor data and 

health status of individuals. d, Personalized therapy can be achieved by measuring 

individual’s genetic and metabolic status using e-skins to develop highly targeted medicine 

for medical treatment.  

6.3.3 Biomarker discovery 

The development of AI is driving advances in both medical diagnosis and fundamental 

studies. Given the quantity of data in clinical studies, ML could be a transformative 

technology for data-driven biomarker discovery84. ML-based algorithms perform 

automatic data analysis for biomarker prediction, including skin disease85, dysphagia86, 

seizure87, and COVID-1988, where multiparametric monitoring based on multimodal e-skin 

platforms can reveal correlations between sensors and target outputs89. For diseases such 

as Parkinson’s disease where no known effective biomarker is available, ML has the 

potential to unveil underlying correlations from the multi-dimensional data90. 

6.3.4 Personalized therapy 

The development of drug and metabolic monitoring using e-skins has also aided in 

personalized therapy. AI-powered e-skins could benefit drug dosage personalization, 

where multimodal data coupled with ML models can be applied to evaluate 

pharmacokinetics and pharmacodynamics for personalized dosage91,92. Additionally, 

dynamic treatment of a disease affected by the individual’s history and current course of 
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action is well suited for the sequential decision-making used in reinforcement 

learning93. Prospective cohort studies involving physiological, metabolomic, 

environmental, and genomic data are anticipated to pave the way for the advancement of 

personalized therapy through the integration of AI-powered e-skin. 

With the continued development and innovations in AI-powered e-skin, next generation e-

skin is expected to aid prosthetics and the discovery of diseases, yet there remains several 

major bottlenecks including data acquisition and handling, data security, and data 

generalization. Data handling in both quantity and quality has become a challenge for 

model deployment. AI-driven data analytics are typically data-hungry, and training models 

with high prediction accuracy depends on large amounts of high-quality labeled data. 

Mature models such as decision trees and support vector machines demonstrate great 

accuracy and reproducibility and find extensive applications, yet their reliance on 

structured and manually labeled data poses high acquisition costs. In contrast, unsupervised 

learning unveils hidden patterns in unlabeled data, albeit with reduced accuracy and 

constrained applicability. Recent advanced models such as transformers have shown 

success in language processing and generation, but these models are of high complexity 

and require pre-training over big data sources using resource-intensive computing, with the 

underlying mechanisms still insufficiently understood. The time-continuous datastream 

from e-skin sensors carrying large amounts of unlabeled and heterogeneous data poses high 

demand for data processing and system integration. This necessitates a fast and cost-

effective system for collecting and transmitting data to cloud-computing-based e-skins, 

while high-performance computing and storage units with low latency are required for in-

situ applications66. Despite the growth in AI-driven e-skins, comprehensive regulatory 

frameworks addressing data accessibility, ownership, and security are yet to be fully 

established. This is crucial as public perception of data privacy risks can directly influence 

the adoptability of wearable devices, while user acceptance to disclose their medical 

information is uncertain at present94. While latest ML algorithms such as GPT-4 models 

have been reshaping the world, the success of large language model (LLMs) stems from 

the enormous amount of publicly available Internet data, which may not apply to the 
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privately restricted medical datasets. Accessing regulated medical records and data 

poses significant challenges as they are highly restricted and obtaining them entails 

stringent protocols and privacy considerations95, and data differences may potentially result 

in divergence from training accuracy. The FDA has recently updated its guidelines for 

handling sensitive medical data after announcing a new Office of Digital Transformation 

in 2021. Data generalization originating from built-in bias is another issue that could harm 

marginalized groups of people, which warrants special consideration for adopting ML 

models in medical practice. AI models can often make mistakes, but it is unknown who or 

what will be held responsible for controversial behaviors and outcomes of AI systems. 

Although models will become more powerful and capable over time, to what extent people 

can trust the ML predictions is still unknown95. The ability of fact-checking versus proof-

reading may be beyond the expertise of users without clinical expertise96. Studies on 

interpretation and explanation of AI may be a possible solution97. 

From an e-skin perspective, another challenge is collecting high-quality biochemical data. 

Dealing with enormous amounts of rapidly fluctuating unlabeled data during continuous 

health monitoring may have adverse effects on model learning. Minimizing motion-

induced artifacts from both the human and robotic bodies have required a strong interface 

and wearing comfort, and therefore poses need for strict materials properties, including 

biocompatibility, permeability, durability, mechanical strength, and conformability98,99. 

Biocompatible and non-toxic materials with strong, breathable and reversible skin 

adhesion are highly desirable for prolonged daily wearing, where the durability lifetime 

may depend on the specific use case100. Data accuracy can be improved by implementing 

multimodal sensing using one integrated platform to reduce defects from a single sensor101. 

Moreover, despite their high correlation with multiple potential diseases102, many 

biochemical sensors struggle with low sensor stability, the necessity for frequent 

calibrations, and difficulty in detecting low-concentration biomarkers, which cannot 

provide as high-quality data as electrophysiological ones. Additionally, sensor 

embodiment and system integration is of concern when considering power sources, sensor 

arrays, signal processing and wireless data transmission99. Most integrated e-skins are 
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powered through bulky rechargeable lithium-ion batteries; however, more research into 

wireless and low-power energy harvesting and storage is needed to develop fully flexible 

and sustainable e-skins103,104. These challenges have opened the door to exciting new 

opportunities in improving electronic sensors, optimizing patch designs, integrating cloud 

storage, protecting data privacy105, and interpreting model accuracy97. The interdisciplinary 

collaborations among materials scientists, chemists, engineers, physicians, and data 

scientists are crucial to realize the full potential of the e-skin. The emergence of AI-

powered e-skin marks a new era in the field of robotics and healthcare and is envisioned to 

transform the way human interacts with robotics and revolutionize medical diagnostics. 
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