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ABSTRACT

Optical imaging has gained popularity in life science, biomedical imaging, funda-
mental physics research, and various other fields due to its non-invasive nature. In
a carefully designed optical instrument operating in an ideal environment, the reso-
lution of the optical imaging system is defined by its numerical aperture. However,
practical manufacturing issues and inaccurate lens models make it challenging to
achieve high resolution across a large area. High magnification lenses introduce
aberrations that degrade image quality, prompting the use of complex lens systems
dedicated to mitigating such aberrations. Furthermore, when a scattering medium
is introduced into the imaging system, image formation becomes infeasible as light
follows a complicated trajectory. These challenges pose great obstacles to the use
of optical imaging methods in various scenarios. This thesis primarily consists of
two parts, one aims to deal with aberration and the other tries to solve scattering
induced imaging problems.

In the first part of my thesis, I will discuss a technique called APIC (Angular
Ptychographic Imaging with Closed-form method), which enables high-resolution
imaging across a large field of view. To make APIC applicable in many non-
ideal cases where aberrations (such as defocus) degrade image quality, we equip
APIC with a closed-form aberration correction algorithm. We will demonstrate that
APIC is unprecedentedly robust against aberrations and can retrieve high-resolution
complex light fields using low magnification objectives.

In the second part, we move on to dealing with scattering induced imaging prob-
lems. To form images where a scattering medium is present, we first explore the
application of ultrasound modulation in optical imaging. We show that, by using
ultrasound, we can image a hidden object in a highly scattering medium with ultra-
sonic resolution. Although this technique helps obtain clear images in the presence
of a scattering medium, its resolution is limited. We then demonstrate a method in
addressing another scattering problem, namely the non-line-of-sight (NLOS) imag-
ing problem. In a general NLOS problem, modulation mechanisms such as the
aforementioned ultrasound modulation are infeasible. We demonstrate that light
can be directly focused on the hidden target with an optical diffraction-limited res-
olution by exploring the properties of the hidden target itself. We will show that
this active focusing method possess remarkably improved resolution compared to
existing methods and is able to image objects with large reflectance differences.
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NOMENCLATURE

Aberration. In imaging, aberration describes that some of the light spreads out in
some regions other than the desired focused diffraction-limited spot. This
leads to degradation in image quality such as a lower contrast and distortion.
For coherent imaging system, it can be characterized by the phase of the
coherent transfer function.

Coherent transfer function. A complex function 𝐻 (k) ∈ C lives in the spatial
frequency domain, where k ∈ R2 is the spatial frequency vector. It charac-
terizes a coherent imaging system: its phase denotes the aberration and its
amplitude determines the theoretical resolution of the imaging system.

Diffraction limit. The maximal theoretical resolution that can be achieved by an
optical system. A diffraction-limited spot means the smallest focus spot that
is achievable by an imaging system.

Field of view. The maximal area that can be imaged in an imaging system.

Objective. The lens on a microscope system that is placed near the sample.

Spatial frequency. When Fourier transform is applied to an image, we get a 2D
transformed signal. Similar to Fourier transform applied to a time sequence,
Fourier transform on a 2D image describes different frequency components
of the image. As the transform acts in the spatial domain rather than the time
domain, the frequency for a 2D image is called its spatial frequency.

Speckle. A type of grainy pattern with alternating bright and dark dots. It is
typically observed when a laser is scattered, such as shining on a rough
surface or passing through thick tissue.

Wavefront. A collection of all points sharing the same phase for a monochromatic
light field.
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C h a p t e r 1

INTRODUCTION

Observations of new phenomena lead us to know more about our surrounding world
and drive discovery of new physics. Measurement and sensing are fundamental tools
for making these observations. Our eyes are also one type of such measurement
tools that use light for the measurements. Due to its non-invasive and easy-to-use
nature, light related measurements become a popular method in both our daily life
as well as advance scientific researches.

Among different sorts of light related measuring apparatus, microscope is still one of
the most important tools in biology, biomedical research, and beyond. Since micro-
scope was invented, revolutionary developments in advanced modern microscopy
shed light in imaging samples under complex scenarios with unprecedented reso-
lution. These improvements are brought into reality with the help of development
in various fields, including advances in optical design, sample preparation and la-
beling, light manipulation, post-processing, and various other areas. Such new
development brings the possibility of imaging complex samples that we could never
be able to by solely using conventional microscope objectives.

A core part in a typical microscopic imaging system is its objective lens, which
ultimately determines the maximal resolution and field-of-view (FOV) that can be
achieved in conventional microscopic imaging. However, in cases where a high-
resolution, large FOV images is desired or clear images of sample in a scattering
media is needed, conventional objectives fail to meet such demand.

In this chapter, I will briefly introduce some basic concepts with respect to light itself
and an imaging system. With these established concepts, I will then introduce some
existing problems in current imaging systems and methods I developed in my PhD
in solving problems in optical imaging and improving current imaging techniques.
The implementation of each methods will be discussed in detail in the following
chapters.

1.1 Lens, spatial frequency, and resolution
Lens focuses a plane wave into a tight spot, which is called the focus and the plane
contains for such focused spot is called the focal plane. Compared with the on-axis
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ray, a light ray that is parallel to the optical axis and is further away from the optical
axis has a larger angle 𝛽 after being focused by a lens, as shown in Fig. 1.1.

Figure 1.1: Focusing light using a lens. Here three different light rays are shown.
The orange ray does not encounter the lens. The other two rays (red and purple) are
focused by the lens.

Using Fourier optics, when a sample is placed at the focal plane of a thin lens, its
E-field and the imaged E-field on the other focal plane can be reasonably treated
as Fourier transform pairs [1]. Although such approximation is no longer a good
one in some scenarios, one of such is lenses with an extreme curvature, we take this
approximation to be a valid one in this thesis as most of the objectives used in reality
can be treated as thin lenses. When a sample is placed at the focal plane of a lens,
we call this focal plane the real space. Once this field is Fourier transformed by a
lens, its Fourier transformed field sits on the other focal plane (which is called the
Fourier plane). The space for the Fourier transformed signal is termed as the spatial
frequency domain. To restore the light field, we can use another lens to perform the
“inverse” Fourier transform (up to a constant and point reflection over the origin).
We can see this point when we introduce Fourier transform in the following section.
Performing Fourier transform and its inverse is the basic idea of a 4f system where
two lenses are used for image capturing, as shown in Fig. 1.2.

We can see an ideal lens performs Fourier transform on a sample’s field. However,
due to limited size of a practical lens, not all light from the sample could pass
through the lens: some of the light may not interact with the lens at all, such as the
orange ray in Fig. 1.1. Thus, for a practical lens, the support (non-zero part) of its
Fourier transformed field is confined: In the case of a point source on the sample
plane, it will be converted to a “plane wave” when interacting with the lens and the
width of the “plane wave” is limited.

For an ideal imaging system, we want an ideal point from the sample to be imaged
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Figure 1.2: A typical 4f system. When the sample is placed at the front focal plane
of the first lens and the distance between the two lenses equals to the sum of their
focal lengths, the image of the sample is formed at the back focal plane of the second
lens. The back focal plane of the first lens, which is exactly the front focal plane of
the second lens, is called the Fourier plane as the Fourier transform of the light field
lives in this plane.

onto an ideal point. This means that the sample’s field is reproduced on the image
plane without loss of the information. That is to say, we want the system to transmit
the Fourier pairs without dropping information. Because a point (modeled by a
Dirac delta function) has a Fourier transform which equals a non-zero constant in
the entire domain, an ideal lens should have no constraint on the support of the
Fourier transformed field. However, due to the practical size of a lens, some of the
information was dropped in this process. In reality, thing is a bit more complicated
than this simple example as the light is a form of wave and the maximal information
can be carried by the light is limited as well. We will later introduce a wavelength
dependent characterization for resolution of an imaging system.

Figure 1.3: Light diffraction when interacting with a grating.

To begin, we first give some intuitive examples on plane wave interacting with
different gratings. If we have two types of grating, one with fine structure and the
other with coarse structure, we shine a plane wave onto these two gratings. The
diffracted light is shown in Fig. 1.3. Assume the grating has a period of 𝑑 and the
wavelength of the incident light is 𝜆, the angle 𝛼 between the first-order diffraction
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light and the incident light is given by

sin(𝛼) = 𝜆/𝑑. (1.1)

Thus, a finer grating results in a larger diffraction angle. This suggests that the high
spatial frequency signal is associated with a larger angle. Based on this intuition,
the metric we would use to quantify the resolution of an imaging system should
characterize the angle.

Figure 1.4: Definition of the numerical aperture of a lens.

As light with shorter wavelength can in theory carry more information than that of
the longer wavelength, we should take the refractive index, which leads to changes
in the wavelength, into consideration. We thus define the numerical aperture of a
lens as

NA B 𝑛 sin 𝜃, (1.2)

where 𝑛 is the refractive index of the surrounding medium, and 𝜃 is the maximal
acceptance angle of a lens, as illustrated in Fig. 1.4. The resolution of a coherent
imaging system, which can be calculated using diffraction theory, is given by

Resolution =
𝜆

𝑛 sin 𝜃
=

𝜆

NA
, (1.3)

where 𝜆 is the wavelength of the incident light in vacuum. This formulae matches
well with our intuition: a shorter wavelength in vacuum or a larger refractive index
provides better resolution; and a larger acceptance angle lets more information to
pass through the lens and preserves finer details of a sample.

1.2 Fourier transform and its properties
In this section, a brief introduction on Fourier transform is included. Some important
properties of Fourier transform are presented without going into the derivation.
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These properties are quite useful in understanding the effect of a lens in an imaging
system. We will discuss the 2D Fourier transform as this thesis focuses on imaging
one particular plane of a sample.

Definition 1.1 Let the sample function be 𝑆(x) and F be the Fourier transform
operator. Let 𝑆 be the Fourier transform of the original sample function. The
Fourier transform of 𝑆(x) is defined as

𝑆(k) =
[
F (𝑆)

]
(k) B

∫
𝑆(x)𝑒−𝑖k·x𝑑x, (1.4)

where k ∈ R2 denotes the spatial frequency, x ∈ R2 denote the spatial location, and
𝑖 is the unit imaginary number. The inverse Fourier transform F −1 is given by

𝑆(x) =
[
F −1(𝑆)

]
(x) B 1

2𝜋

∫
𝑆(k)𝑒𝑖k·x𝑑k. (1.5)

From the definition of Fourier transform and the inverse Fourier transform, we can
see these two are similar. Fourier transform has an extra minus sign on the exponent
and does not carry a constant in front compared with the inverse Fourier transform.
When we ignore the constant that is usually unimportant in imaging, we can also say
a thin lens performs inverse Fourier transform by adapting the positive directions of
the coordinate system. This explains why a 4f system can be applied for imaging
purpose.

Fourier transform is extremely useful in optics as the light field from the sample is
Fourier transformed when interacting with a thin lens of a microscope system. Note
that the Fourier transform of a practical light field always exists because its energy
is limited (its L2 norm is finite). Its inverse Fourier transform, as a consequence,
always exists as well. Here, we will list some of the most important properties of
Fourier transform.

Before we introduce its properties, we first define the convolution operator. Let
𝑀 (x) be another field, then the convolution of 𝑆(x) and 𝑀 (x) is given by

[𝑆 ∗ 𝑀] (x) B
∫

𝑆(y) ∗ 𝑀 (x − y)𝑑y, (1.6)

where ∗ stands for the convolution operator and [𝑆 ∗ 𝑀] (x) means the convolution
𝑆 ∗ 𝑀 is evaluated at point x.

Let �̂� (k) be the Fourier transform of 𝑀 (x) and 𝑎, 𝑏 ∈ C be some constants. Using
the same notation used in the definition of Fourier transform, we have the following
properties summarized in Table 1.1.
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Function Fourier transform Remarks
𝑎𝑆(x) + 𝑏𝑀 (x) 𝑎𝑆(k) + 𝑏�̂� (k) linearity
𝑆(x − x0) 𝑆(k)𝑒−𝑖k·x0 shift in real space
𝑆(x)𝑒𝑖k0·x 𝑆(k − k0) shift in spatial frequency space
𝑆(x) ∗ 𝑀 (x) 𝑆(k)�̂� (k) convolution theorem
𝑆(x)𝑀 (x) 1

2𝜋𝑆(k) ∗ �̂� (k) convolution theorem

Table 1.1: Properties of Fourier transform

One interesting example of Fourier transform is the Fourier transform of a Dirac
delta function 𝛿(x), which is defined as

𝛿(x) = 0,∀x ≠ 0 and
∫

𝛿(x)𝑑x = 1. (1.7)

We can see that this is basically the meaning of an ideal point in R2. We can further
calculate its Fourier transform, which is

𝛿(k) =
∫

𝛿(x)𝑒−𝑖k·x𝑑x = 1. (1.8)

For a shifted version of the delta function, namely 𝛿(x − x0), we can use Fourier
transform’s property to obtain the corresponding Fourier transform

𝛿−x0 (k) B F
[
𝛿(x − x0)

]
(k) = 𝑒−𝑖k·x0 . (1.9)

Let us see what happens to the resultant real space signal when we multiply the
function �̂� (k) with 𝛿−x0 (k) in the Fourier domain. This inverse Fourier transform
of the multiplication gives(

F −1 [𝛿−x0 (k)�̂� (k)
] )
(x) =

(
F −1 [𝑒−𝑖k·x0 (k)�̂� (k)

] )
(x) = 𝑀 (x − x0). (1.10)

Thus, the shifted delta function effectively translates 𝑀 (x) by the same amount when
the two are multiplied in the spatial frequency domain. This leads to a powerful
observation: it indicates that if an arbitrary point x on the sample, when interacting
with a linear (imaging) system, is transformed into a particular pattern 𝑀 that has a
fixed offset with respect to the point x, the system can be characterized by �̂� , the
Fourier transform of this pattern.

1.3 Coherent transfer function and aberration
We know that a lens performs Fourier transform on a light field. Due to its limited
size, the support of the Fourier transform is confined. This is one of the constraints of
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a practical lens in terms of the amplitude. So, how about the phase? Will a practical
lens also introduce phase modulation to the Fourier transform of a light field? The
answer is yes, we would also expect phase modulation due to the imperfections
in the design and intrinsic material properties of a lens. In this section, we will
introduce the coherent transfer function associated with an imaging system.

It is natural to assume that the amplitude and phase modulation induced by a practical
lens is invariant with respect to the sample. A general modulation function can then
be written as 𝐻 (k; x), where x ∈ R2 denote the spatial location in real space (the
image plane) and k ∈ R2 denotes the spatial frequency in the Fourier domain (the
Fourier plane). The phase of 𝐻 (k; x) denotes the associated phase modulation, and
its amplitude is the associated amplitude modulation. Note that the argument x
indicates that this function might vary with respect to the spatial location.

To do a further investigation on the properties on the phase and the amplitude of
this modulation function, we first assume that the modulation is independent of the
spatial coordinate. This is based on the idea that we expect an imaging system to
map any given point on the sample plane to a fixed pattern, say another point, on the
image plane (up to some translation depending on where the original point is). With
this assumption, the general modulation function reduces to a complex function
𝐻 (k) independent of the spatial location x. Based on our observation in section 1.2,
the modulation function 𝐻 (k) should multiply with the sample’s Fourier transform
𝑆(k). The resultant light field on the image plane 𝑅(x) is then given by

𝑅(x) = F −1 [𝐻 (k)𝑆(k)
]
(x). (1.11)

From the above equation, we can see that an imaging system can be characterized
by a simple function. We call this function the coherent transfer function (CTF).
Although we can only use CTF to represent an imaging system given the modulation
is invariant with respect to the spatial coordinate, it remains a good approximation
if the modulation function varies slowly within a certain range, which is exactly the
case for a typical imaging system.

For visible light regime, the frequency of light is much larger than the response of
a normal camera. Thus, we cannot directly measure the light field. Instead, we
measure the intensity 𝐼 of the light field

𝐼 (x) = |𝑅(x) |2 = 𝑅(x) · 𝑅∗(x), (1.12)
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where ∗ on the superscript denotes the complex conjugate of a complex number.
Thus, in our real measurement, the phase of the light field is lost and its intensity
(amplitude squared) is recorded by the camera.

We discussed that high spatial frequency is associated with large diffraction angle
(Fig. 1.3), thus, the high spatial frequency part may pass through the imaging system
or being blocked due to the finite lens aperture. With respect to the amplitude of
the CTF, this suggests the amplitude modulation is unity if we assume there is
no attenuation in the light transmitting through the system, and zero when light is
blocked. This turns out to be correct for most microscope system.

For the phase modulation, things are a bit more involving. Different from the
attenuation that is much easier to minimize in reality, phase is way more sensitive as
it depends on the wavelength of the light, which is only several hundred nanometers
for visible light. For an ideal thin lens, the phase modulation should be zero as ideal
lens performs Fourier transforms without altering the field. However, the phase
modulation, termed aberration, always exists for a practical imaging system. This
can be caused by not only the imperfections of manufacturing these lenses but also
the inaccurate lens model (the paraxial approximation for example). To characterize
this imperfection, we can use some basis to represent the phase modulation function
such as the sinusoidal functions used in Fourier transform. However, these basis
might not be efficient in a sense that we might need a great number of them for a
reasonable representation.

Figure 1.5: Two light beams that are symmetric with respect to the optical axis. Due
to the symmetry of our real space, the orange and the magenta beams should have
the same phase change when the sample plane moves in the axial direction.

Let us first focus on one common aberration, namely defocusing, where the structures
in the image plane changes with respect to the defocus distance. In this case, defocus
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distance is the only varying parameter and we want to characterize this change using
one variable instead of changing a large number of variables. For defocus, we may
assume the phase modulation should be rotational invariant when using a thin lens:
If we have a ring that is perpendicular to the optical axis and the center of this ring
coincides with the optical axis, the phase modulation induced by defocus is the same
along this ring (Fig. 1.5). Exploring such properties, these might exist a basis can
be more efficient in representing the aberration.

Figure 1.6: Visualization of the first 15 Zernike polynomials. The rows indicate
different 𝑛 and the columns indicate different 𝑚 (−𝑚).

An efficient basis for characterizing the aberration does exist, which is called the
Zernike polynomials. The Zernike polynomials consist an orthogonal basis on the
unit disk, and the first tens of polynomials can already well represent the aberration
of an typical imaging system in practice. Zernike polynomials can be factorized into
the radial part and the azimuthal angle part: let 𝑚 and 𝑛 be non-negative integers
subject to 𝑛 ≥ 𝑚 ≥ 0, we define the radial function R𝑚

𝑛 as

R𝑚
𝑛 (𝜌) =

{ ∑𝑛−𝑚
2

𝑗=0
(−1) 𝑗 (𝑛− 𝑗)!

𝑗!
(
𝑛+𝑚

2 − 𝑗

)
!
(
𝑛−𝑚

2 − 𝑗

)
!
𝜌𝑛−2 𝑗 , 𝑛 − 𝑚 is even,

0, 𝑛 − 𝑚 is odd.
(1.13)
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The Zernike polynomials are given by

𝑍𝑚
𝑛 (𝜌, 𝜑) = R𝑚

𝑛 (𝜌) cos(𝑚𝜑) and

𝑍−𝑚
𝑛 (𝜌, 𝜑) = R𝑚

𝑛 (𝜌) sin(𝑚𝜑), (1.14)

where 𝑍𝑚
𝑛 denotes the even polynomials and 𝑍−𝑚

𝑛 denotes the odd polynomials. The
visualization of the first few Zernike polynomials can be found in Fig. 1.6.

The first three Zernike terms are typically not of interest as they correspond to a
global phase offset or a shift in the absolute focus position. These do not change the
structural properties of the imaged field. The fifth term, 𝑍0

2 , represent the aberration
associated with the defocus of a sample. It turns to be rotational invariant which
matches well with our previous argument.

We note that due to the refractive index’s wavelength dependency, light of a different
frequency might have a different aberration. Thus, to compensate the aberration in
multi-spectral imaging where lights of multiple wavelengths are used, we need to
consider the aberration for each of the wavelength used in experiments.

1.4 Wavefront, phasor, and scattering
We learnt from optics course that the wavefront of a monochromatic light field
describes a collection of all points which share the same phase. Important examples
of wavefront include plane wave and spherical wave, as shown in Fig 1.7. The solid
red lines denote the points having the same phase and visualize the wavefront of
light.

Figure 1.7: Wavefront of a plane wave and a converging spherical wave.

A typical coherent imaging system replicates the sample’s wavefront on the detector.
However, when the sample is placed inside a scattering medium or sample is thick
and we want to image one plane in the middle of the thick sample, the sample
associated wavefront might be distorted due to scattering. Besides scattering, other
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types of light-matter interactions such as absorption also occur simultaneously.
In most biological samples, however, the effect of absorption is small compared
scattering. We will thus focus on the scattering induced problem in imaging and
ignore many other mild phenomena.

With respect to the wavefront of light, scattering adds random phase modulation
to the forward scattered field of the incident wavefront. Due to the randomness
and stochastic nature of scattering, the resultant phase modulation does not exhibit
symmetry. So, it is no longer efficient to characterize the random phase modulation
using Zernike polynomial. Moreover, we cannot assume the phase variation is
invariant with respect to different points on the sample as light from different points
interacts with different part of the scattering medium. Based on these reasons, we
will no longer use CTF in the presence of highly scattering sample and will instead
focus on its wavefront.

Figure 1.8: Spherical wave passing through a scattering medium.

For the convenience of analysis, we first introduce the phasor of a complex number.
Although light has a fast-changing electric field in time, two points in a monochro-
matic light field nonetheless have a time-invariant phase difference in equilibrium.
We thus define the phasor of light with respect to a global reference. With this
definition, the phasor of the light becomes time-invariant for fixed samples.

Assume the complex field at a point 𝑥 has amplitude 𝐴𝑥 and relative phase 𝜙𝑥 with
respect to the reference, we write the field 𝐸 at point 𝑥 as

𝐸 (𝑥) = 𝐴𝑥𝑒
𝑖𝜙𝑥 . (1.15)

In the complex plane, we can use an arrow to represent this complex number. The
length of the arrow denotes the amplitude and the angle in between the arrow and
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the positive real axis denote the phase of the complex number. We call this arrow
as the phasor, which is shown in Fig. 1.9.

Figure 1.9: Phasor of a complex number 𝐴𝑥𝑒
𝑖𝜙𝑥 . “Im” denotes the imaginary part of

a complex number and “Re” describes its real part. The length of the arrow denotes
the amplitude of a complex number and the angle of the arrow denotes the phase of
this complex number.

Before we talk about scattering, we will talk about the interference of light because
it is essential to understand the scattered light field. When a complex light field
interact with another light field, its resultant amplitude will be the superposition of
the two fields. Let us assume the two fields are given by 𝐸1(𝑥) = 𝐴1, 𝑥𝑒

𝑖𝜙1, 𝑥 and
𝐸2(𝑥) = 𝐴2, 𝑥𝑒

𝑖𝜙2, 𝑥 , the superposition of the two is

𝐸superposition = 𝐸1(𝑥) + 𝐸2(𝑥) = 𝐴1, 𝑥𝑒
𝑖𝜙1, 𝑥 + 𝐴2, 𝑥𝑒

𝑖𝜙2, 𝑥 . (1.16)

A detector measures the intensity of this superpositioned field, which yields

𝐼superposition = |𝐸superposition |2 =
��𝐴1, 𝑥𝑒

𝑖𝜙1, 𝑥 + 𝐴2, 𝑥𝑒
𝑖𝜙2, 𝑥

��2
= 𝐴2

1, 𝑥 + 𝐴2
2, 𝑥 + 2𝐴1, 𝑥𝐴2, 𝑥 cos(𝜙1, 𝑥 − 𝜙2, 𝑥). (1.17)

In terms of the phasor, the above two equations can be visualized by Fig 1.10.

Im

Re

Complex plane

Figure 1.10: Superposition of two fields.
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Based on Huygens principle, we can treat each point of the new wavefront as a point
source. Let us consider a toy case where we put a thin scattering sample and see its
resultant field. In this case, the wavefront of the field exiting the scattering medium
is reshaped. Points on this wavefront in Fig. 1.11 are then treated as multiple point
sources with different amplitudes. The field at a further distance is the superposition
of these spherical waves originated from the corresponding point sources. Due to
the random wavefront where the Huygens principle is applied to, the propagated
phasors should also have random phases. Thus, the resultant field is a superposition
of multiple random phasors in the presence of scattering.

Point sources

Figure 1.11: The Huygens principle.

The speckle, a type of granular pattern associated with scattering, is essentially a
resultant of a random phasor sum. Owing to the randomness of the orientation of
each phasor, their resultant phasor varies in its length. Thus, the captured intensity
pattern exhibits alternating bright and dark grains. Three examples of the random
phasor sums are illustrated in Fig. 1.12.

Figure 1.12: Examples of random phasor sums. Here, the lengths of individual
phasors are fixed and only their angles are randomized in each realization.

As we can see from Fig. 1.12, the length of the resultant phasor varies considerably.
For coherent light, the randomness in phase results in spatially random reconstructive
and destructive interference of light, which ultimately contributes to the random
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spatially varying intensities. Figure 1.13 shows a representative image of a speckle
pattern. Because of the random phase modulation, one point on the image side
will not be imaged onto another point when a conventional imaging system is used.
Thus, the presence of scattering medium in an imaging system greatly obstructs the
restoration of the useful signal.

Figure 1.13: Images of a speckle pattern and a normal focus. When a scattering
medium is inserted, the original wavefront is randomized. A speckle pattern thus
shows up on the screen.

1.5 Thesis outline
This thesis focuses on two main aspects in imaging: dealing with scattering associ-
ated imaging problem and imperfect imaging system (aberration and lost of phase
information) related problem.

In the second chapter, I will discuss a method we developed to simultaneously extract
the lost phase information and correct for aberration using intensity measurements.
By using tilted illuminations, the resolution of an imaging system can be pushed
above the conventional NA limit of an objective. We will establish a closed-form
phase retrieval framework to reconstruct the sample’s complex light field using
intensity measurements from a typical camera, without the use of interferometry.

In the third chapter, method based on light-ultrasound interaction was employed
to circumvent the scattering induced imaging problem. We show that by using
ultrasound as a gating mechanism, we can improve the imaging quality to that
defined by the ultrasound, while maintaining the ability of detecting light absorption
properties.

In the fourth chapter, we focus on a special and important scattering related scenario,
the non-line-of-sight imaging. For the non-line-of-sight imaging, the direct line of
sight is blocked. However, light interacting with the sample of interest can be
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scattered, say by a wall, and then enter our imaging system. Here, the sample’s
information is still in presence in the captured light. However, due to scattering, it
is extremely hard to resort the sample’s information. We showed that, with a proper
design, we can replace the point source with an arbitrary sample of interest to do
wavefront shaping, which compensates for the scattering induced random phase
modulation.

We note that the symbols might differ from chapter to chapter. For the variables
appeared in each chapter, please find their definitions in the corresponding chapter.
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C h a p t e r 2

A CLOSED-FORM, HIGH-RESOLUTION, LABEL-FREE
IMAGING METHOD

In this chapter, we present an analytical method that can simultaneously correct
aberration and reconstruct sample’s complex light field using non-interferometric
intensity measurements. We will first discuss some previously developed imaging
methods that can be used to reconstruct the complex light field from an intensity
measurement. Existing issues with those methods are discussed. To solve such
issues, we are motivated to build a method that is more robust against aberration
and more reliable in terms of the complex field reconstruction.

2.1 Background on the label-free, complex field reconstruction methods
To acquire the complex light field, one straightforward method is to use a refer-
ence beam to obtain an interferogram. In one of such techniques, called off-axis
holography, an interferometry is built and a tilted reference beam is used to interfere
with the sample beam. With the use of interferometry, the complex field can be
easily reconstructed from pure intensity measurement with a guaranteed fidelity in
theory. However, the use of an additional reference arm requires using lasers with
good temporal coherence. In addition, mechanical shifts and air turbulence can be a
problem as they disturb the phase of the light. Those can lead to inaccurate complex
field reconstructions in practice.

There is also non-interferometric way of reconstructing the complex field from
the intensity measurements. Phase retrieval, a type of computational method for
finding the complex field use the intensity image, is the most promising way. In
those computational methods, phase retrieval algorithms such as Gerchberg–Saxton
(GS) algorithm [2] is used to reconstruct the missing phase information. One
typical paradigm of the phase retrieval algorithm is shown in Fig. 2.1. This
algorithm conduct alternating Fourier transform and inverse Fourier transform and
poses different constraints in the real space and the spatial frequency space until we
find the constraints are satisfied or the error is acceptable. Assume the aberration
of the system is minimal, the NA-limited sample’s field can then be retrieved using
the GS algorithm.
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Figure 2.1: Gerchberg–Saxton algorithm. We first take the square root of the
intensity measurement and treated its outcome as the correct amplitude of the
complex field. The Gerchberg–Saxton algorithm conduct Fourier transform and
inverse Fourier transform in an iterative way. In real space, the amplitude of the
reconstructed complex field is replaced by the real measurement, and the phase is
maintained. In the spatial frequency domain, we confine the Fourier transform of
the reconstructed complex field as we know that only places covered by the CTF
can have non-zero signal.

Although the GS algorithm enables recovering a complex field from the intensity
measurement, it nonetheless needs to minimize the imaging system’s aberration.
Moreover, the resolution of the system is limited by the NA of the imaging system.
In order to correct the aberration in an imaging system and obtain images with high
resolution and large FOV, some other methods are desired. There is one special
complex field reconstruction technique, called Fourier ptychographic microscopy
(FPM), that leverages the power of computation to provide high-resolution and
aberration correction abilities to low NA objectives [3, 4]. FPM operates by col-
lecting a series of low-resolution images under tilted illumination and applies phase
retrieval algorithm to reconstructs sample’s high spatial-frequency features and op-
tical aberration, resulting in high-resolution aberration-free imaging that preserves
the inherently large FOV associated with the low numerical aperture objectives. In
Section 1.1, we briefly discussed how high spatial frequency component is con-
nected with the diffraction angle (Fig. 1.3). Here, we will discuss about the tilted
illumination.

Consider a case where we shine a plane wave on a grating with a normal incidence
angle, we expect that the diffracted light to be symmetric with respect to the grating,
as shown on the left side of Fig 2.2. When the incident light is tilted, the diffracted
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light should also tilt towards the same direction. This means the light with large
diffraction angle that cannot be collected by the objective might then enter the
imaging system. This means that light that carries the high spatial frequency
information can now be detected by the imaging system, while it is typically lost in
the conventional microscopy.

1st order

Grating

Objective Objective

Grating
1st order

Incident light
(tilted)

Incident light
(normal)

Figure 2.2: Diffracted light from a grating with different incidence angles. For
normal incidence, we expect the diffracted light to be symmetric. For tilted light,
the light should tilt along with the incident light. Under normal incidence, the
diffracted light cannot be collected by the objective. When the incident light tilts,
we see that the diffracted light enters the imaging system.

From the point of view of the spectrum, the tilted illumination brings the high
spatial frequency spectrum into the detected range. Thus, using tilted illumination,
we can in theory achieve a resolution that is beyond the NA-dependent limit. This
principle is illustrated in Fig. 2.3, which is exactly the mechanism that enables FPM
in achieving high-resolution images using low NA objectives.

Objective

LED array
Real space Spatial frequency space

ith tilted
illumination

ith spectrum

Sample

Illumination sequence
Acquisition sequence

Figure 2.3: Principle of Fourier ptychographic microscopy (FPM). When using a
series of tilted illuminations, we effectively translate the CTF to different place in
the spatial frequency domain. Thus, different regions of the spectrum are sampled
using different illumination angles.

To obtain the spectrum in each measurement, the complex field must be recon-
structed. In order to achieve this, FPM utilizes phase retrieval algorithm for the
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complex field reconstruction. The reconstructed spectrums are then stitched to-
gether, which in turn gives us an improved resolution. To extract the aberration
of the imaging system, FPM treats the aberration as another “complex field” and
reconstructs it along with the complex sample field [4, 5]. This is feasible as the
aberration and the sample’s spectrum behave differently in the imaging process, as
depicted in Eq. 2.6. By taking the difference into consideration, the aberration and
the sample’s spectrum can be isolated from each other. Detailed derivation can be
found in previous works of FPM [5] and we will not go into detail in this thesis. Due
to these attractive traits, FPM has found diverse applications in quantitative phase
imaging, aberration metrology, digital pathology, and other fields [4, 6].

2.2 Principle of APIC, a closed-form field reconstruction method
Although FPM is an important advancement in label-free microscopy, its essential
iterative reconstruction algorithm poses several challenges. First and foremost, the
iterative reconstruction of FPM is a non-convex optimization process, which means
that it is not guaranteed to converge onto the actual solution [2–5, 7–9]. In practice,
the algorithm executes alternating projections between real space and spatial fre-
quency space until certain conditions are met, such as its loss function decreasing
rate reaches a lower bound, or the execution reaches the allowed maximum iteration
number, or the algorithm satisfies other pre-defined metric thresholds [2–4, 7, 8,
10, 11]. As a result, FPM does not guarantee that the global optimal solution is
ever reached. This is problematic for exacting applications, such as digital pathol-
ogy, where even small errors in the image are not tolerable. Furthermore, the joint
optimization of aberration and sample spectrum can fail when the system’s aberra-
tions are sufficiently severe — leading to poor reconstructions [12]. The iterative
nature of FPM reconstruction algorithm has prompted researchers to adapt machine
learning concepts to its implementation, in pursuit of computational load reduction,
artifact abatement and aberration correction [13–16]. These in turn lead to other
problems, such as contextual sensitivity and potentially greater drift away from the
global optimal solution. It is worth considering at this juncture whether it is possible
to develop a closed-form solution to this class of computational imaging problems,
so that all these challenges can be more effectively addressed.

Recent studies have shown that the complex field can be non-iteratively recon-
structed in one specific varied illumination microscopy scenario by matching the
illumination angle to the objective’s maximal acceptance angle (the NA-matching
angle) and exploiting the signal analyticity, for example through spatial-domain
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Kramers-Kronig imaging [17–19]. These findings are important and impactful as
they eliminate the need for an iterative reconstruction framework and do not require
a human-engineered convergence criterion. However, it is worth noting that this
approach does not possess the capability to correct hybrid aberrations nor provide
great resolution enhancement beyond the diffraction limit of the objective NA. As
such, FPM remains a more appealing choice in various scenarios.

In this chapter, we present a novel analytical method, termed Angular Ptychographic
Imaging with Closed-form method (APIC), that weds the strengths of both methods.
APIC builds on complex field reconstruction using Kramers-Kronig relations and
employs analytical techniques to retrieve aberration and reconstruct the darkfield
associated high spatial frequency spectrum. By using NA-matching and darkfield
measurements, APIC is capable of retrieving high-resolution, aberration-free com-
plex fields when a low magnification, large FOV objective is used for data acquisi-
tion. From both simulations and experiments, APIC demonstrates unprecedented
robustness against aberrations while FPM drastically fails. Due to its analytical
nature, APIC is inherently insensitive to optimization parameters and offers a guar-
anteed analytical complex field solution. We additionally show that APIC can
perform better than FPM when subjected to the same constraint on input data size,
as it does not require an overly large data redundancy needed by FPM for a good
convergence. By incorporating darkfield measurements, APIC effectively achieves
the same theoretical resolution enhancement as FPM. The source code of APIC is
available online (github.com/rzcao/APIC-analytical-complex-field-reconstruction).
We believe APIC represents an impactful step forward in the field of computational
imaging.

APIC collects both NA-matching and darkfield intensity measurements for high-
resolution reconstruction. Its reconstruction process begins by analytically solving
for the sample’s spatial frequency spectrum and aberration with the NA-matching
measurements. Then, the darkfield measurements are used to extend the sample’s
spatial frequency spectrum to greatly enhance the resolution of a NA-limited imaging
system. The system setup, data acquisition process and its reconstruction flowchart
are illustrated in Fig. 2.4. In APIC’s data acquisition step, the LEDs whose
illumination angles match up with the maximal acceptance angle of the imaging
system are sequentially lit. The measurements under these NA-matching angle
illuminations constitute the NA-matching measurements of APIC. LEDs whose
illumination angles are greater than the acceptance angle are then successively lit
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for acquiring darkfield measurements. In the following sections, we use the word
“spectrum” as shorthand for spatial frequency spectrum (the Fourier transform of
the sample’s complex field). We note that the spectrum is different from the Fourier
transform of an acquired image, which is the Fourier transform of a purely intensity
measurement.

Figure 2.4: Concept of APIC and its difference compared with FPM. a, Setup of
APIC. The LEDs whose illumination angle matches up with the numerical aperture
(NA) of the objective are lit sequentially to obtain the NA-matching measurements.
Then, the LEDs whose illumination angle is larger than the objective’s receiving an-
gle are successively lit for the darkfield measurements. b, Reconstruction process of
APIC. Once the aberration is extracted, it is used to correct aberration in the image-
wise field reconstruction. The aberration-corrected spectrums are then stitched
together and serves as a prior knowledge in the spectrum extension. Using dark-
field measurements, the spectrum is furtherly extended to obtain a high-resolution,
aberration-free reconstruction. c, Reconstruction process of Fourier ptychographic
microscopy (FPM). FPM iteratively updates the spectrum and the aberration to min-
imize the differences in the measurement and reconstruction output. This iterative
process is terminated upon convergence to obtain the spectrum and coherent transfer
function (CTF) estimate. Pupil in the figure denotes the reconstructed aberrations.

APIC operates by first reconstructing the complex field corresponding to NA-
matching measurements using Kramers-Kronig relations. These measurements
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are taken with LED illumination angles that match with the objective’s maximal
receiving angle. For a realistic imaging system, aberrations are inevitably superim-
posed on the spectrums’ phase. To extract the objective’s aberrations, we focus on
the overlapping region in their spectrums (the overlap of two translated CTFs, as
shown on the left side of Fig. 2.5). As the sample dependent phases are identical in
the overlapped region of the two spectrums (note we assume a thin sample is used),
subtracting their phases cancels out the sample dependent phase term, leaving only
the phase differences between different parts of the pupil function (see Fig. 2.9 for
more information). Consequently, the overlapping regions give us a linear equation
with respect to the aberration term. By solving this linear equation, the aberration
of the imaging system can be extracted, which can then in turn be used to correct
the original reconstructed spectrums. The corrected spectrums are then stitched
together to obtain an aberration-free, two-fold resolution-enhanced sample image.

We can then extend the spectrum by using the darkfield measurements. In this step,
the reconstruction spectrum and the aberration obtained in the first step serve as the
a priori knowledge. The step-by-step reconstruction operates in the following way.
We choose a measurement whose spectrum is closest to the known spectrum (say,
the 𝑖th measurement) and crop out the known spectrum based on what is sampled
in this measurement, as shown in Fig. 2.5. This cropped spectrum, however, only
contains part of the information of the ith measurement. Our goal is to recover the
unknown spectrum so that it can be filled in for spectrum spanning.

We can see that the Fourier transform of our ith intensity measurement consists of
cross-correlation of the known and unknown spectrum and their autocorrelations.
In the following, we show that by using the known spectrum, we can construct a
linear equation with respect to the unknown spectrum, which can be analytically
solved.

First, the autocorrelation of the known part is calculated and subtracted from the
measurement. After subtraction, the autocorrelation of the unknown part and the
cross-correlations are left. One important observation is that these parts are not
fully coincided in the spatial frequency domain (Fig. 2.5). As such, we can focus on
the non-overlap region where the cross-correlation solely contributes to the signal.

We can then construct a linear equation with respect to the unknown spectrum. When
calculating the cross-correlation, one of the signals is shifted and gets multiplied
with another signal. The correlation coefficient is the summation of this product.
Assuming one of the two signal is known, we can essentially use the known signal
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Figure 2.5: Reconstruction pipeline for APIC. By changing the illuminating angle,
we effectively shift the CTF to different positions in the spatial frequency domain,
and samples different regions of sample’s spectrum. For measurements under NA-
matching angle illumination, we first use Kramers-Kronig relation to recover the
corresponding spectrums. The phase differences of two spectrums with overlaps
in their sampled spectrum are used to extract the imaging system’s aberration.
Then, the image-wise reconstructed spectrums are corrected for aberration and
get stitched, which forms our prior knowledge in reconstruction process involving
darkfield measurements. To extend the spectrum using darkfield measurement, the
known spectrum in the ith measurement is used to isolate cross-correlation from
other autocorrelation terms. By solving a linear equation involving the isolated
cross-correlation, the unknown spectrum can be analytically obtained. We then use
the newly reconstructed spectrum to extend the original reconstructed spectrum.

as the weights and calculate the summation of a weighed version of the other signal.
This is a linear operation. Thus, applying the known spectrum, we can construct a
linear operator that takes the unknown spectrum and produces this cross-correlation.
By extracting the non-overlapping part of the cross-correlation term, we can form
and analytically solve a linear equation with respect to the unknown spectrum. That
is, we obtain the closed-form solution of the unknown spectrum by solving this
equation.

For a practical imaging system, we need to consider its aberration in the imaging
process. To match up with the measurement, the recovered aberration is initially
introduced to the cropped out known spectrum. After recovering the unknown
spectrum, the aberration gets corrected, and this corrected spectrum is filled back
into the reconstructed spectrum. This process stops when all darkfield measurement
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has been reconstructed. The detailed derivation of the aforementioned analytical
complex field reconstruction and aberration extraction methods can be found in
Section 2.6.

Once the above steps are completed, we obtain a high-resolution and aberration-
free sample image. The theoretical optical resolution of APIC is determined by
the sum of the illumination NA and the objective NA, which is identical to FPM’s
NA-resolution formulae [3]. We note that FPM requires an iterative process to
recover the spectrum and is sensitive to the choice of the optimization parameters.
On the other hand, APIC analytically recovers the actual spectrum. This direct
and efficient approach sets APIC apart from FPM, offering a more straightforward
and robust spectrum recovery process. In the following section, we will report on
our experimental demonstration that APIC is computationally efficient and achieves
consistent high-quality complex field reconstructions even under large aberrations,
whereas FPM struggles due to the increased complexity in its optimization problem.

2.3 Experiment results of APIC
We used a low magnification objective (10x magnification, NA 0.25, Olympus) for
data acquisition. A LED ring (Neopixel ring 16, Adafruit) glued onto a LED array
(32x32 RGB LED Matrix, Adafruit) served as the illumination unit. The two LED
clusters were mounted on a motorized stage for position and height adjustment, and
they were individually controlled by two Arduino boards (Arduino Uno, Arduino).
In the acquisition process, we lit up one LED at a time, and simultaneously triggered
the camera (Prosilica GT6400, Allied Vision) to capture an image when the LED was
on. This process continued until all usable LEDs was lit once. We then performed
reconstruction using both APIC and FPM.

In our first experiment, we imaged a Siemens star target and chose to acquire a small
dataset to perform reconstruction using APIC and FPM. The dataset acquired in this
experiment consisted of 9 brightfield measurements, 8 NA-matching measurements
and 28 darkfield measurements. We note that there are works that apply multiplexed
illumination scheme to reduce the number of the measurements in FPM [7, 8], these
methods are not as reliable as the conventional FPM data acquisition scheme. Thus,
we only focus on the more reliable acquisition scheme in this study. The nominal
scanning pupil overlap rate was approximately 65%. In our experiments, the second
order Gauss-Newton FPM reconstruction algorithm was applied for reconstruction
as it was found to be the most robust FPM reconstruction algorithm [9]. We also
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note that we used 6 sets of parameters in the reconstruction of FPM and chose the
best result, as the reconstruction quality of FPM heavily depends on its parameters.
Some representative FPM results are also shown in Fig. 2.6, which confirms such
parameter dependency. On contrary, the faithfulness and correctness are guaranteed
in APIC, benefiting from its new analytical phase retrieval framework. We found
that APIC was able to render the correct complex field while FPM failed, as shown
in Fig. 2.6.
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Figure 2.6: APIC and FPM results using a small number of measurements. For
comparison, we also acquired a ground truth (GT) image, which was imaged under a
high-NA, 40x objective. The Kohler illuminated image under the same 10x objective
used in APIC’s data acquisition is shown on the upper left. The reconstructed pupils
are shown on the right side of the figure. For FPM reconstructions, we selected 3
representative results from all 6 parameter sets we used in FPM and trial 1 is the best
result we got. We note that when ground truth is unknown, all FPM reconstruction
results might be treated as the “correct” solution as they all possess good contrast
and fine details. However, apparent discrepancies are noticeable when comparing
these results with the ground truth image. APIC, as an analytical method, is not
prone to parameter selection.

As shown by the result, the reconstructed finer spokes were distorted in all recon-
struction results of FPM. Moreover, noticeable wavy reconstruction artefacts existed
in the phases reconstructed by FPM. When the measurements were given to APIC,
the reconstructed phases and amplitudes were less wavy. The reconstructed ampli-
tude is also closer to the ground truth, which is sampled using a high-NA objective.
We stress that when the ground truth is not given, all the three FPM results shown
in Fig. 2.6 may be perceived as a “good” reconstruction in practice as they preserve
good contrast and are detail rich. However, these reconstructions are of low fidelity
as they all deviate from the ground truth we acquired. We can find some of the
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spokes of the Siemens star target were missing in the FPM’s reconstruction, which
indicates the failure of FPM. This experiment showcased the ability of APIC to
better retrieve a high-resolution complex field when the raw data size is constrained
because it is an analytical method and does not rely as heavily on pupil overlap
redundancy for solution convergence that FPM requires.

It is also worth noting, for input image tile of length 256 pixels on both sides, APIC
reconstruction took 9 seconds on a personal computer (CPU: Intel Core i9-10940X
with 64 GB RAM), while FPM required 25 seconds to finish the reconstruction.
The relative computational efficiency of APIC can again be attributed to the ana-
lytical nature of its approach in contrast to FPM. We note that this computational
efficiency is image tile size dependent — the smaller the tile is, the more efficient
APIC can be (see Section 5 in the supplementary note for more information). As it
is generally preferred to divide a large image into more smaller tiles in parallel com-
puting, APIC’s computational efficiency for smaller tiles aligns well with practical
computation considerations.

In the next experiment, we studied the robustness of APIC and FPM at addressing
optical aberrations. For this experiment, we acquired in total 316 images, which
consisted of 52 normal brightfield measurements, 16 NA-matching measurements
and 248 darkfield measurements. The nominal scanning pupil overlap ratio of our
dataset was approximately 87% and the final theoretical synthetic NA was equal to
0.75 when all darkfield measurements were used. We note that this large degree
of spectrum overlap was chosen to provide sufficient data redundancy for the best
performance of FPM. APIC does not require such a large dataset (examples can be
found in Fig. 2.6, and Fig. 2.14 in Section 2.6). In our reconstruction, APIC only
used the NA-matching and darkfield measurements, whereas FPM used the entire
dataset, including these additional 52 brightfield measurements corresponding to
illumination angles that were below the objective’s acceptance angle.

We deliberately defocused a Siemens star target to assess how the two methods per-
form under different aberration levels. In this experiment, the sample was defocused
to different levels and the defocus information was hidden from both methods. The
results of FPM and APIC are shown in Fig. 2.7a. Clearly, for large aberrations
whose phase standard deviation exceeded 1.1𝜋 (the case when Siemens star tar-
get was defocused by 32 µm, and the maximal phase difference is approximately
3.8𝜋), FPM failed to find the correct solution and the reconstructed images were
considerably different from the ground truth, even when the algorithm indicated its
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convergence criterion was reached. At a lower aberration level, the amplitude recon-
structions of FPM appeared to be close to the ideal case. However, the reconstructed
phases were substantially different from the result when no defocus was introduced.
In contrast, APIC was highly robust to different levels of aberrations. Although
the contrast of APIC’s reconstruction dropped under larger aberrations, it retrieved
the correct aberrations and gave high-resolution complex field reconstructions that
match with the in-focus result. The measured resolution for both FPM and APIC is
approximately 870 nm when the in-focus measurements were used, which is close
to the 840 nm theoretical resolution (Fig. 2.15).
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Figure 2.7: APIC under different levels of aberrations. a, Reconstructed complex
fields and aberrations with different defocus distances. For the reconstruction of
APIC and FPM, the defocus distance is labeled on top of each group. In our
reconstruction, the actual defocus distance is hidden from both algorithms. APIC
reconstructed amplitude and phase are shown on the upper right of each group and
highlighted by the dashed magenta line. FPM reconstructed amplitude and phase
are shown on the lower left of each group and highlighted by the dash cyan line.
b, Reconstruction of a human thyroid carcinoma cell sample using APIC and FPM.
Sum of measurements denotes the summation of all 316 images we acquired, which
can be treated as the incoherent image we would get under the same objective. The
ground truth was acquired using an objective whose magnification power is 40 and
NA equals 0.75. The NA of this 40x objective equals the theoretical synthetic NA
of APIC and FPM. We calculated the square root of the summed image and the 40x
image to match up with the amplitude reconstruction. The zoomed images of the
highlighted boxes are shown on the lower right of b. The Zernike decompositions
of retrieved aberrations using FPM and APIC are shown on the far-right side of b.
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To test the two methods under more complex aberration, we used an obsolete
Olympus objective (10x magnification, NA 0.25) that was designed to work with
another type of tube lens for image measurement in this particular experiment. A
human thyroid adenocarcinoma cell sample was imaged to see their performances.
As the standard deviation of the phase of the imaging system’s aberration was
close to 2𝜋/5, FPM failed to reconstruct a high-resolution image. From Fig. 2.7b,
the reconstructed amplitude of FPM was heavily distorted by the reconstruction
artefacts. APIC recovered all the finer details that were in good correspondence
with the image we acquired using a 0.75 NA objective.

Figure 2.8: APIC result of hematoxylin and eosin (H&E) stained breast cancer cells.
APIC reconstructed color image is shown on the left. The zoomed image of the
highlighted region in the color image is shown on the right. The image with label
“10x” denotes the image acquired using the same 10x magnification objective which
was used for data acquisition. The color image with label “40x (GT)” denotes the
ground truth we acquired using a 40x objective whose NA equals the theoretical
synthetic NA of APIC. We note that we manually focused the image under red, green,
and blue LED illumination when acquiring the ground truth as the best focal planes
for them are different. We picked blue channel of an example in this illustration and
the complex field reconstructions and retrieved aberrations are shown on the bottom
of the rounded box. Scale bar for the zoomed color images: 5 µm.

We then conducted an experiment using a hematoxylin and eosin (H&E) stained
breast cancer cell sample. We used red, green and blue LEDs to acquire dataset for
these three different channels and then applied APIC for the reconstruction. In this
experiment, the sample was placed at a fixed height in the data acquisition process.
As a result, we see different levels of defocus in different channels lying on top
of the chromatic aberrations of the objective (Fig. 2.16). To acquire the ground
truth image, we switched to a 40x objective and manually focused each channel.
We calibrated the illumination angles for the central patch (side length: 512 pixels)
and then calculated the angles for off-axis patches using geometry. This calibrated
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illumination angles were used as input parameter data in our reconstruction.

The reconstructed color image is shown in Fig. 2.8. The comparison of all three
channels can be found in Section 2.6 (Fig. 2.16). From the zoomed images in Fig.
2.8, we can see that the reconstructions of FPM were noisy for the blue channel.
We found that FPM did not work well with this weakly absorptive sample under
a relatively high aberration level. It failed to extract the aberration of the imaging
system. As such, the color image generated by FPM appeared grainy and the high
spatial frequency information were only partially recovered. We also see that the
color reconstruction of APIC retained all high spatial frequency features that were
closely matched up with the ground truth we acquired. This demonstrates that the
aberration and complex field reconstruction of APIC is considerably more accurate
compared with FPM.

2.4 The strengths of APIC and discussion on possible improvements
We showed that APIC can extract large aberrations and synthesize a large FOV and
high-resolution images using low NA objectives. APIC empowers computational
label-free microscopy with high robustness against aberration. Under the same
high-aberration conditions, FPM fails to recover the aberration and its reconstruction
result largely inherits such aberration and thus cannot produce aberration-free, high-
resolution reconstructions.

Moreover, some of the fundamental problems in the conventional phase retrieval
algorithm, such as being prone to optimization parameters and getting stuck in local
minimum, are solved in APIC. Previous results demonstrated that reconstruction
artifacts appear in FPM without properly selected parameters or loss functions[2,
9], which is in consistent with our experiment results shown in Fig. 2.6. Without a
properly engineered metric, the selection of parameters becomes highly subjective.
This again indicates that it is often unclear on whether FPM is even converging
close to the real complex field solution. APIC is robust against this problem as it
does not require an iterative algorithm for reconstruction. It circumvents the need of
choosing optimization parameters or designing metric for convergence. However,
as an analytical method, the knowledge about position of the LEDs, as well as the
alignment of the NA-matching angle illuminations, is important in APIC. When
large calibration errors show up, the solution of APIC will be negatively impacted
(Fig. 2.25). Thus, good calibration is required in APIC to get the correct solution.

As APIC directly solves for the complex field, it avoids the potentially time-
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consuming iterative process. When a reasonable image patch size is chosen, APIC
is computationally more efficient compared with FPM. As such, APIC alleviates
the lengthy processing in FPM, making it a more appealing method (Fig. 2.17 in
Section 2.6).

While this work demonstrates a working APIC prototype, we note that a key aspect
of the prototype would need further design improvements if a larger field of view
is desired. Specifically, in this prototype, we treat the LED illumination as a plane
wave at the sample plane. However, for large field of views, the angle can be quite
different for different patches in the entire FOV. This may lead to noisy reconstruction
of NA-matching measurements, as previous study has indicated. We anticipate that
this problem can be mitigated by increasing the distance of the LED and the sample.
It can also be solved by designing better LED illumination systems. Additionally,
the number of LED illuminations can be reduced in future systems by decreasing
the overlap of two measured spectrums.

In conclusion, we demonstrate that APIC can provide high-resolution and large
field-of-view label-free imaging with unprecedent robustness to aberrations. As an
analytical method, APIC is insensitive to parameter selections and can compute the
correct imaging field without getting trapped in local minimums. APIC’s analyt-
icity is particularly important in a range of exacting applications, such as digital
pathology, where even minor errors are not tolerable. APIC guarantees the correct
solution while FPM like iterative methods cannot. Additionally, APIC brings new
possibilities to label-free computational microscopy as it affords greater freedom in
the use of engineered pupils for various imaging purposes. We anticipate the APIC
concept be can fruitfully adopted for other methods, such as the aberration found by
APIC can potentially be used to correct incoherent imaging. The idea of using the
known spectrum to reconstruct unknown spectrum can be readily adapted for use in
other scenarios.

2.5 Theoretical framework of APIC
In this section, we present the mathematical form of the forward model and recon-
struction step of APIC. We begin by defining the forward model and introducing the
notations in our derivation. Subsequently, we present the mathematical derivation
of APIC, which involves three main steps: reconstructing the field using NA-
matching measurements (measurements acquired under tilted illumination whose
angle matches with the maximal acceptance angle of an imaging system), extracting
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and correcting aberrations, and reconstructing the complex field using darkfield
measurements.

In our derivation, we first present the Kramers-Kronig method, which enables the
reconstruction of complex fields from NA-matching measurements [17–20]. Using
these reconstructed fields, we analytically retrieve the aberration of the imaging sys-
tem. The extracted aberration is then applied to correct the currently reconstructed
aberrated fields and the subsequent darkfield associated field reconstructions. The
aberration-corrected reconstructed complex field serves as our initial a priori knowl-
edge, referred to as the known field, and its Fourier transform as the known spec-
trum. To achieve high-resolution imaging, we incorporate darkfield measurements
and use them to expand the reconstructed sample spectrum in an orderly way. At
each sub-step, we reconstruct the spectrum corresponding to an unused darkfield
measurement whose illumination angle is the smallest among all remaining un-
used measurements. This newly reconstructed spectrum, together with the original
reconstructed spectrum, serves as the new a priori knowledge in subsequent re-
constructions. To recover the field associated with one darkfield measurement, we
focus on the spatial frequency space and form a linear equation with respect to the
unknown spectrum. By solving this equation, we obtain a closed-form solution of
the unknown spectrum sampled in this darkfield measurement. Adding this newly
reconstructed spectrum effectively expands the sample spectrum coverage to achieve
higher resolution.

After all measurements are reconstructed, we obtain a high-resolution, aberration-
free complex field reconstruction in a purely analytical manner.

The forward model
When a thin sample is illuminated by a plane wave emitted by the 𝑖th (𝑖 = 1, 2, · · · , 𝑛)
LED with a transverse k-vector k𝑖 and then imaged by an optical system, the modu-
lated sample spectrum is given by

𝑆𝑖 (k) = �̂� (k − k𝑖)𝐻 (k), (2.1)

where 𝐻 is the coherent transfer function (CTF) associated with the imaging system,
�̂� is the original sample’s spectrum, 𝑆𝑖 is the 𝑖th measured spectrum, and k is the 2D
(transverse) spatial frequency vector. Reciprocally, we denote the spatial coordinate
on the sample plane with x. Without loss of generality, we assume �̂� (0) is a real
number, as the absolute average phase delay is not our interest. For a thin sample,
we can further assume that the majority of the incident illumination light does not
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change its original direction. That is, at any position x we have���(F −1 [�̂� (k)𝛿(k)
] )
(x)

��� > ���� [F −1
(
�̂� (k)

[
1 − 𝛿(k)

] )]
(x)

����, (2.2)

where F −1 is the inverse Fourier transform,
[
F −1(·)

]
(x) means the inverse Fourier

transform is evaluated at x, | · | gives the modulus of a complex number, and 𝛿(k)
is the “Kronecker” delta (We note that this is not a proper definition of a Kronecker
delta function which is defined over integers. To be rigorous, one needs to define a
function equals one in an 𝜀-neighbor around the origin and zero otherwise. Then,
we can proceed from that).

𝛿(k) =
{ 1, k = 0,

0, otherwise.
(2.3)

The physical meaning of this assumption is that the ballistic light exiting from the
sample plane is dominant over the scattering light almost everywhere within the
field of view.

As only the intensity of the light field is directly measured, the signal we get from a
camera is

𝐼𝑖 (x) =
��� [F −1(𝑆𝑖)

]
(x)

���2 =
��𝑆𝑖 (x)��2, (2.4)

where 𝐼𝑖 is the 𝑖th image captured when lighting up the 𝑖th LED, and 𝑆𝑖 denotes the
𝑖th sampled field in real space (the inverse Fourier transform of 𝑆𝑖).

It is worth noting that this intensity measurement is insensitive to phase shift applied
to the inverse Fourier transform��� [F −1(𝑆𝑖)

]
(x)𝑒 𝑗𝜉 (x)

���2 =

��� [F −1(𝑆𝑖)
]
(x)

���2 = 𝐼𝑖 (x), (2.5)

where 𝜉 (x) stands for an arbitrary phase function and 𝑗 is the unit imaginary number.
Thus, we can choose a particular phase ramp, namely −2𝜋k𝑖 · x, which effectively
shifts 𝑆𝑖 along the opposite direction of k𝑖. Using the properties of Fourier transform
when applying this special phase ramp, the measured intensity image is identical to
the intensity of the inverse Fourier transform of the following (translated) spectrum

𝑆′𝑖 (k) =
[
F (𝑆′𝑖)

]
(k) =

[
𝑆𝑖 ∗ F (𝑒− 𝑗2𝜋k𝑖 ·x)

]
(k) = �̂� (k)𝐻 (k + k𝑖), (2.6)

where · is the dot product, 𝑆′
𝑖
(x) B 𝑆𝑖 (x)𝑒−2𝜋 𝑗k𝑖 ·x, and ∗ is convolution. This

model suggests that different components of sample’s spectrum can be measured
with different illumination angles. By increasing the illumination angle, we can
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effectively sample high spatial frequency information which is normally inaccessible
due to limited numeric aperture (NA) of an imaging system.

The CTF support of an imaging system can be reasonably assumed as circular with
a NA-dependent radius 𝑘NA, and its phase 𝜙 of the CTF function fully depicts the
system’s aberrations. For simplicity, we abuse the notation and use NA to represent
this radius 𝑘NA in the following section. We then have

𝐻 (k) = CircNA(k)𝑒 𝑗𝜙(k) = 1( |k| ≤ NA)𝑒 𝑗𝜙(k)

=

{ 𝑒 𝑗𝜙(k) , if |k| ≤ NA,

0, otherwise,
(2.7)

where 𝜙(k) stands for the system’s aberration, and CircNA(k) B 1( |k| ≤ NA) is
an indicator function that gives one when the modulus of the k-vector is below the
system NA and zero otherwise.

We further decompose �̂� (k) to its amplitude and phase. Together with Eq. 2.7, we
can rewrite Eq. 2.6, which gives

𝑆′𝑖 (k) = �̂� (k)𝐻 (k + k𝑖) = �̂�(k)𝑒 𝑗 �̂�(k) CircNA(k + k𝑖)𝑒 𝑗𝜙(k+k𝑖) , (2.8)

where �̂�(k) B
���̂� (k)

�� ∈ R is the amplitude of the sample’s spectrum and �̂�(k) B
arg

[
�̂� (k)

]
∈ R is its phase (the operator arg gives the argument of a complex

number).

In the following two subsections, we proceed with Eq. 2.6 and show that the
closed-form solution of the sample’s spectrum �̂� (k) can be obtained (Sections 2.5
and 2.5), and the aberration of the imaging system 𝜙(k) can also be analytically
retrieved (Section 2.5). This is achieved by only using the NA-matching and darkfield
measurements. For simplicity, in the following discussion, we assume all |k𝑖 | ≥ NA
and k𝑖 is ordered so that |k𝑖 | ≤ |k𝑖+1 |.

Reconstruction under the NA-matching angle illumination
For integrity, we reproduce the main result of recent works on spatial Kramers-
Kronig relations which enables complex field reconstruction when the illumination
angle exactly matches with the maximal acceptance angle of the objective [17–19].
However, the aberration consideration is missing in these existing works. Here,
we take the imaging system’s aberration into consideration. The main result can
be found in Eqs. 2.32 and 2.33. In this subsection, we only consider the first 𝑛0

measurements whose k-vector k𝑖 satisfies

|k𝑖 | = NA, 𝑖 = 1, 2, · · · , 𝑛0, where 𝑛0 B max
{
𝑖 ∈ N

�� |k𝑖 | = NA
}
. (2.9)
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We call these measurements as the NA-matching measurements. Instead of present-
ing this result using directional Hilbert transform and 1D Kramers-Kronig relations,
we take the opportunity to put more focus on the underlying structure of the (loga-
rithm mapped) signal’s Fourier transform. To be specific, we will construct a signal
whose Fourier transform is one-sided (which will be defined later), and show that
this allows us to calculate the imaginary part of the signal from its real part based on
the fact that Fourier transform is a linear operator. This carefully constructed signal
can be mapped back to the complex field we want. We note that the approach pre-
sented here can also be generalized to higher dimensional spaces in an intuitive way.
Although this method allows analytical complex field reconstruction, we found that
both our desired sample’s field and the aberration function of the imaging system
are entangled in the reconstructed field.

As our goal is computing the imaginary part of a complex signal from its real part
using Kramers-Kronig relations, the real part must be known first. However, we only
measure the intensity (squared modulus) of a complex field, which is neither its real
or imaginary part. To solve this mismatch, we apply a nonlinear transformation that
maps the intensity and phase of a complex number to the real and imaginary part
of its output, respectively. This can be done by taking the logarithm of a nonzero
complex number. Applying this to the complex field 𝑆′

𝑖
(x) in a point-wise manner,

we have

log
[
𝑆′𝑖 (x)

]
= log

[��𝑆′𝑖 (x)��] + 𝑗 arg
[
𝑆′𝑖 (x)

]
. (2.10)

The nonzero condition is guaranteed by Eq. 2.2. Note that the first term on the right-
hand side is purely real and the second term is purely imaginary. As the intensity
𝐼𝑖 (x) =

��𝑆𝑖 (x)��2 =
��𝑆𝑖 (x) · 𝑒−2𝜋 𝑗k𝑖 ·x

��2 =
��𝑆′

𝑖
(x)

��2 is measured, we know everything
about the real part of log

[
𝑆′
𝑖
(x)

]
. What remains is to verify that its imaginary part

can be reconstructed using this known real part.

In the remaining part of this section, we will show that the Fourier transform of this
transformed signal is one-sided. Such structure allows us to perform our desired
reconstruction. We first give the definition of a signal being one sided.

Definition 2.1 For any positive integer 𝑚 ∈ Z+, we say 𝑔 : R𝑚 → C is one sided if
there exists a nonzero vector e ∈ R𝑚, e ≠ 0 such that its Fourier transform �̂� satisfies

�̂�(k) = 0, ∀k ∈ R𝑚 s.t. k · e < 0. (2.11)

We say 𝑔 is strictly one sided if �̂�(k) = 0, ∀k ∈ R𝑚 s.t. k · e ≤ 0.
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To show the transform signal is one sided, we are going to factor out the “offset”
field, R(x), which is the field that does not change its direction

R(x) =
(
F −1 [𝑆′𝑖 (k)𝛿(k)] ) (x) = (

F −1 [�̂� (k)𝐻 (k + k𝑖)𝛿(k)
] )
(x) = 𝑟𝑒 𝑗𝜙(k𝑖) ,

(2.12)
where 𝑟 is real. When we factor out this field from 𝑆′

𝑖
(x), we have

𝑆′
𝑖
(x)

R(x) =
𝑆′
𝑖
(x)

𝑟𝑒 𝑗𝜙(k𝑖)
=
𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖)

𝑟
. (2.13)

We can see that 𝜙(k𝑖) serves as a phase offset and 𝑟 can be treated as a normalization
factor. Note that 𝑟 and 𝜙(k𝑖) are unknown in reality, and only the intensity of 𝑆𝑖 (x)
is measured. Thus, we primarily focus on 𝑆′

𝑖
(x)𝑒− 𝑗𝜙(k𝑖) in our following derivation

because adding a phase offset to a complex field does not change its intensity.

Applying the logarithm transformation to the offset field 𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖) , we have

log
[
𝑆′𝑖 (x)𝑒− 𝑗𝜙(k𝑖)] = log

[𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖)

𝑟

]
+ log(𝑟)

= log
[
1 +

𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖) − 𝑟

𝑟

]
+ log(𝑟). (2.14)

With the assumption that the majority of the light does not change its direction (Eq.
2.2), we have the offset field is larger than the sample modulated field 𝑟 =

��R(x)
�� >��𝑆′

𝑖
(x) − R(x)

�� = ��𝑆′
𝑖
(x) − 𝑟𝑒 𝑗𝜙(k𝑖)

��. So, we have 𝑟 >
��𝑆′

𝑖
(x)𝑒− 𝑗𝜙(k𝑖) − 𝑟

����𝑒 𝑗𝜙(k𝑖)
�� =��𝑆′

𝑖
(x)𝑒− 𝑗𝜙(k𝑖) − 𝑟

��. Thus, we can write the first term on the right-hand side in a
convergent Taylor series (we will see this makes it easier to analyze the structure of
its Fourier transform)

𝑇 (x) B log
[
1 +

𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖) − 𝑟

𝑟

]
=

∞∑︁
𝑚=1

(−1)𝑚+1

𝑚

[
𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖) − 𝑟

]𝑚
𝑟𝑚

. (2.15)

Note this applies to all x. For simplicity, we define Δ𝑖 (x) as

Δ𝑖 (x) B 𝑆′𝑖 (x)𝑒− 𝑗𝜙(k𝑖) − 𝑟 =
[
𝑆′𝑖 (x) − 𝑟𝑒 𝑗𝜙(k𝑖)]𝑒− 𝑗𝜙(k𝑖)

=
[
𝑆′𝑖 (x) − R(x)]𝑒− 𝑗𝜙(k𝑖) , (2.16)

and Eq. 2.14 can be rewritten as

log
[
𝑆′𝑖 (x)𝑒− 𝑗𝜙(k𝑖)] = log(𝑟) + 𝑇 (x) = log(𝑟) +

∞∑︁
𝑚=1

(−1)𝑚+1

𝑚

Δ𝑚
𝑖
(x)

𝑟𝑚
. (2.17)

The Fourier transform of Δ𝑖 (x) yields

Δ̂𝑖 (k) =
[
F (Δ𝑖)

]
(k) =

[
F

( [
𝑆′𝑖 (x) − R(x)]𝑒− 𝑗𝜙(k𝑖)

)]
(k)

= 𝑆′𝑖 (k)
[
1 − 𝛿(k)

]
𝑒− 𝑗𝜙(k𝑖) . (2.18)
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Lemma 2.1 For x ∈ R2, let 𝑓1(x) : R2 → C and 𝑓2(x) : R2 → C be two complex 𝑙2
function with Fourier transform 𝑓1(k) and 𝑓2(k), respectively. Assume there exists
a (common) nonzero vector e ∈ R2, e ≠ 0 such that

𝑓1(k) = 𝑓2(k) = 0,∀k s.t. k · e < 0, (2.19)

then their product 𝑓 ′(x) = 𝑓1(x) 𝑓2(x) is one sided. Furthermore, if 𝑓1 and 𝑓2 are
strictly one sided (with the same e), their product is also strictly one sided.

Proof: We take the Fourier transform on both sides, which yields

𝑓 ′(k) =
[
F ( 𝑓 ′)

]
(k) =

[
F ( 𝑓1 𝑓2)

]
(k) =

( [
F ( 𝑓1)

]
∗

[
F ( 𝑓1)

] )
(k) =

[
𝑓1 ∗ 𝑓2

]
(k).

(2.20)
For k0 ∈ R2 such that k0 · e < 0 (e ≠ 0), we have

𝑓 ′(k0) =
[
𝑓1 ∗ 𝑓2

]
(k0) =

∫
𝑑k′ 𝑓1(k′) 𝑓2(k0 − k′)

=

∫
k′·e<0

𝑑k′ 𝑓1(k′) 𝑓2(k0 − k′) +
∫

k′·e≥0
𝑑k′ 𝑓1(k′) 𝑓2(k0 − k′). (2.21)

If k′ ·e < 0, we have 𝑓1(k′) = 0. If k′ ·e ≥ 0, we have (k0−k′) ·e = k0 ·e−k′ ·e < 0.
As 𝑓1 and 𝑓2 are both one sided and share the same e, we can conclude

𝑓 ′(k0) =
∫

k′·e<0
𝑑k′ 𝑓1(k′) 𝑓2(k0 − k′) +

∫
k′·e≥0

𝑑k′ 𝑓1(k′) 𝑓2(k0 − k′)

= 0, ∀k0 s.t. k0 · e < 0. (2.22)

That is, 𝑓 ′ is one sided. The proof for 𝑓1 and 𝑓2 being strictly one sided follows the
same structure. To see that, we calculate the integration for k′ · e ≤ 0 and k′ · e > 0.
Then, we can prove the strict version with the same technique.

We can easily see that Δ𝑖 (x) is one sided. To show this, we choose e = −k𝑖. As the
illumination angle is matched with NA (Eq. 2.9), we can verify that for arbitrary k
such that k · e < 0, we have

|k + k𝑖 | =
√︁
|k|2 + |k𝑖 |2 + 2k · k𝑖 =

√︁
|k|2 + |k𝑖 |2 − 2k · e >

√︁
|k𝑖 |2 = NA. (2.23)

Note the last equality holds because we are interested in the NA-matching angle
illumination condition (Eq. 2.9) in this section (Section 2.5). If we evaluate the
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CTF function 𝐻 at k + k𝑖, we have 𝐻 (k + k𝑖) = 1( |k + k𝑖 | ≤ NA)𝑒 𝑗𝜙(k) = 0 for all
k subject to k0 · e = k · (−k𝑖) < 0. We can then prove Δ𝑖 is one sided:

Δ̂𝑖 (k) = 𝑆′𝑖 (k)
[
1 − 𝛿(k)

]
𝑒− 𝑗𝜙(k𝑖) = �̂�𝑖 (k)𝐻 (k + k𝑖)

[
1 − 𝛿(k)

]
𝑒− 𝑗𝜙(k𝑖)

= 0, ∀k s.t. k · (−k𝑖) < 0. (2.24)

Furthermore, for k · e = −k · k𝑖 = 0, we have k ⊥ k𝑖. When k ≠ 0, the above two
equations still hold. We only need to consider the special case, namely k = 0. At
k = 0, we have

Δ̂𝑖 (0) = 𝑆′𝑖 (0)
[
1 − 𝛿(0)

]
𝑒− 𝑗𝜙(k𝑖) = 𝑆′𝑖 (0) (1 − 1)𝑒− 𝑗𝜙(k𝑖) = 0. (2.25)

That is, Δ𝑖 is strictly one sided. Using lemma 2.1, we conclude the Taylor series
(the last term on the right-hand side of Eq. 2.17) is strictly one sided by induction.

Note that if one wants to directly use 𝑆𝑖 instead, the “offset” field should be modified
as 𝑟𝑒2𝜋 𝑗k𝑖 ·x+ 𝑗𝜙(k𝑖) . This is because the original model uses tilted illumination, so the
unchanged light field is associated with an incident angle. With such modification,
one can verify it gives an identical result.

Here, we have proved that the transformed signal log
[
𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖)

]
is one sided

(It is easy to see that log
[
𝑆′
𝑖
(x)

]
is also one sided, as 𝑒− 𝑗𝜙(k𝑖) is a constant). We

proceed to show that such special structure allows one to reconstruct the imaginary
part from the real part of the signal.

We now get more involved with a modified version of Eq. 2.10

log
[
𝑆′𝑖 (x)𝑒− 𝑗𝜙(k𝑖)] = log

[��𝑆′𝑖 (x)𝑒− 𝑗𝜙(k𝑖)
��] + 𝑗 arg

[
𝑆′𝑖 (x)𝑒− 𝑗𝜙(k𝑖)]

= log
[��𝑆′𝑖 (x)��] + 𝑗

(
arg

[
𝑆′𝑖 (x)

]
− 𝜙(k𝑖)

)
= log(𝑟) + ℜ

[
𝑇 (x)

]
+ 𝑗ℑ

[
𝑇 (x)

]
, (2.26)

where the last equality follows from Eq. 2.17,ℜ(·) denotes the real part of a complex
number, and ℑ(·) denotes the imaginary part. The Fourier transform exhibits even
symmetric for a real signal and odd symmetric for an imaginary signal, so we have[

F
(
log

��𝑆′𝑖 ��) ] (k) = [
F

(
log

��𝑆′𝑖 ��) ]∗(−k), (2.27)

and [
F

(
𝑗
[

arg(𝑆′𝑖) − 𝜙(k𝑖)
] )]

(k) = −
[
F

(
𝑗
[

arg(𝑆′𝑖) − 𝜙(k𝑖)
] )]∗

(−k), (2.28)
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where ∗ in the superscript denotes complex conjugate. Because we have already
proved that log

[
𝑆′
𝑖
(x)𝑒− 𝑗𝜙(k𝑖)

]
is one sided, we have[

F
(

log[𝑆′𝑖𝑒− 𝑗𝜙(k𝑖)]
)]
(k) =

[
F

(
log

��𝑆′𝑖 ��) ] (k) + [
F

(
𝑗
[

arg(𝑆′𝑖) − 𝜙(k𝑖)
] )]

(k) = 0

⇒
[
F

(
𝑗
[

arg(𝑆′𝑖) − 𝜙(k𝑖)
] )]

(k) = −
[
F

(
log

��𝑆′𝑖 ��) ] (k), ∀k s.t. k · (−k𝑖) < 0.

(2.29)

For k · (−k𝑖) > 0, we can use symmetry to conclude[
F

(
𝑗
[

arg(𝑆′𝑖) − 𝜙(k𝑖)
] )]

(k) =
[
F

(
log

��𝑆′𝑖 ��) ] (k), ∀k s.t. k · (−k𝑖) > 0. (2.30)

As 𝑇 (x) is strictly one sided, its Fourier transform is zero for all k such that k ⊥ k𝑖.
Moreover, the Fourier transform of constant log(𝑟) is a real (Dirac delta) function
centered at zero. In other words, the Fourier transform of log(𝑟) has no imaginary
part. So, we have[

F
(
𝑗
[

arg(𝑆′𝑖) − 𝜙(k𝑖)
] )]

(k) = 0, ∀k s.t. k · (−k𝑖) = 0. (2.31)

By collecting all pieces from the above three equations and noticing 𝐼𝑖 (x) =
��𝑆′

𝑖
(x)

��2,
we have[

F
(

log[𝑆′𝑖𝑒− 𝑗𝜙(k𝑖)]
)]
(k)

=


2
[
F

(
log

��𝑆′
𝑖

��) ] (k) = [
F

(
log 𝐼𝑖

) ]
(k), k · k𝑖 < 0,[

F
(
log

��𝑆′
𝑖

��) ] (k) = 1
2
[
F

(
log 𝐼𝑖

) ]
(k), k · k𝑖 = 0,

0, k · k𝑖 > 0.

(2.32)

That is, the complex field can be reconstructed using its real part log
��𝑆′

𝑖

��. We can then
restore the desired field (up to a constant phase offset) with inverse Fourier transform
and apply exponential function to each point of the inverse Fourier transform

𝑆′𝑖 (x)𝑒− 𝑗𝜙(k𝑖) = exp
[(
F −1

[
F

(
log[𝑆′𝑖𝑒− 𝑗𝜙(k𝑖)]

)] )
(x)

]
. (2.33)

Note that if there is no aberration in the system 𝜙(k) ≡ 0, we have 𝑆′
𝑖
(x) =

�̂� (k) CircNA(k + k𝑖) and the phase offset 𝜙(k𝑖) = 0, which reduces to the result
reported in previous literature [17–19].

Aberration extraction
In Eq. 2.33, we end up with the reconstruction of 𝑆′

𝑖
(x)𝑒− 𝑗𝜙(k𝑖) . Now we take a

close look at its spectrum:

𝑆′𝑖 (k)𝑒− 𝑗𝜙(k𝑖) = �̂� (k)𝐻 (k + k𝑖)𝑒− 𝑗𝜙(k𝑖)

= �̂�(k)𝑒 𝑗 �̂�(k) CircNA(k + k𝑖)𝑒 𝑗𝜙(k+k𝑖)− 𝑗𝜙(k𝑖) . (2.34)



39

From this equation, we can see the sample’s spectrum and the system’s aberration
function are superimposed in the reconstruction. For a practical optical system with
aberration, we have not yet reconstructed a clean sample spectrum. Instead, we
reconstructed an aberrated version of the desired spectrum.

Without correction, aberrations of an imaging system, including defocus due to sam-
ple’s height unevenness, would largely degrade the reconstruction quality. Nonethe-
less, we will show that this problem can be tackled by working in the spatial fre-
quency domain (that is, working with the spectrum). We prove that the aberration
of the system is analytically solvable by considering the phases of the reconstructed
spectrum.

To extract the aberration from this reconstructed spectrum, we will need a method
to separate the contribution from the sample itself and the imaging system. We can
achieve this by considering the phases of multiple reconstructed spectrums. We first
define the overlap of two spectrums.

Light up LED on an annulus

ith
illumination

i+1th
illumination

Full spectrum of the sample Individual spectrum Phases of the spectrum
Aberration Sample's phase Offset OffsetAberration Sample's phase

Phases of the overlap

-π π

identical

+ + -- -- = Linear in
aberration-+

Phase difference in the overlapped spectrum

Figure 2.9: Phase difference of two spectrums with overlap. �̂� (k) stands for the
original sample’s spectrum, 𝑆𝑖 (k) is the acquired spectrum under 𝑖th illumination,
and 𝐻 (k) is the coherent transfer function (CTF). For aberration extraction, we only
use LED whose illumination k vector is matched with the maximal receiving angle
of the imaging system k𝑖 = NA. Here we select 𝑙 = 𝑖 + 1 for illustration as the
LEDs are lit up along an annulus shown in the figure. In the overlapped region, the
phase of the object itself cancels out and phase difference of the shifted CTF solely
contributes to the measured phase difference. This means the phase difference is
linearly dependent on the aberration. Thus, we can design a operator that counts
for the shift induced phase difference and use it to recover the imaging system’s
aberration.
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Definition 2.2 For two reconstructed spectrums 𝑆′
𝑖
(k) and 𝑆′

𝑙
(k), we define a set

C𝑖𝑙 as
C𝑖𝑙 B

{
k ∈ R2��𝐻 (k + k𝑖)𝐻 (k + k𝑙) ≠ 0

}
. (2.35)

We say this two spectrums are overlapped if the set C𝑖𝑙 is nonempty C𝑖𝑙 ≠ ∅, and the
overlap between 𝑆′

𝑖
(k) and 𝑆′

𝑙
(k) is C𝑖𝑙 .

Let us consider two spectrums 𝑆′
𝑖
(k) and 𝑆′

𝑙
(k) with (nonempty) overlap C𝑖𝑙 ≠ ∅.

We calculate their phase difference within the overlapped region C𝑖𝑙 . This gives

arg
[
𝑆′𝑖 (k)𝑒− 𝑗𝜙(k𝑖)] − arg

[
𝑆′𝑙 (k)𝑒

− 𝑗𝜙(k𝑙)]
=

[
�̂�(k) + 𝜙(k + k𝑖) − 𝜙(k𝑖)

]
−

[
�̂�(k) + 𝜙(k + k𝑙) − 𝜙(k𝑙)

]
= 𝜙(k + k𝑖) − 𝜙(k𝑖) − 𝜙(k + k𝑙) + 𝜙(k𝑙),
=

[
𝜙(k + k𝑖) − 𝜙(k + k𝑙)

]
−

[
𝜙(k𝑖) − 𝜙(k𝑙)

]
, if k ∈ C𝑖𝑙 . (2.36)

We will refer the first term 𝜙(k+k𝑖)−𝜙(k+k𝑙) on the right-hand side as the aberration
difference, and the last term 𝜙(k𝑖) −𝜙(k𝑙) as the offset. When we consider the phase
difference of the two spectrums, the contribution from the sample spectrum cancels
out and the difference depends solely on the system’s aberration. We can easily see
that the remaining phase difference is linear with respect to the aberration function.
As such, we can construct a linear operator that maps the aberration into phase
differences of two overlapping spectrums. To do so, we first rearrange the 2D
spectrum into a vector.

Definition 2.3 Assume B is a 𝑚× 𝑡 matrix, we define a “flattening” operator Flat𝑚,𝑡

which concatenates every column of B and produces a vector of length 𝑚𝑡. If we
use B to denote this flattened vector, we have

B = Flat𝑚,𝑡 (B) ∈ R𝑚𝑡×1 and B[𝑖1 + (𝑖2 − 1)𝑚] = B(𝑖1, 𝑖2). (2.37)

We also define an inverse operator Flat−1
𝑚,𝑡 , which restores the matrix when applied

to the flattened vector
B = Flat−1

𝑚,𝑡 (B). (2.38)

Assume the sample spectrum we acquired is a 𝑁 ×𝑁 matrix, we write Ŝ′
𝑖
∈ C𝑁×𝑁 as

the matrix form of the sampled spectrum, and 𝝓 ∈ R𝑁×𝑁 as the matrix form of the
aberration. The corresponding flattened version is then Ŝ

′
𝑖 = Flat𝑁,𝑁 (Ŝ′

𝑖
) ∈ C𝑁2×1,

and 𝝋 = Flat𝑁,𝑁 (𝝓) ∈ R𝑁
2×1, respectively.
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We let K𝑢,K𝑣 ∈ R𝑁×𝑁 be the spatial frequency grid (with zero frequency at
[𝑐0, 𝑐0] =

(
⌈𝑁2 ⌉, ⌈

𝑁
2 ⌉

)
, where ⌈𝑁2 ⌉ is the smallest integer that is larger than 𝑁

2 )
for the sampled spectrum, where 𝑢 and 𝑣 denotes two orthogonal direction. Let
𝑲𝑢, 𝑲𝑣 ∈ R𝑁

2×1 be their flattened vectors 𝑲𝑢 = Flat𝑁,𝑁 (K𝑢) and 𝑲𝑣 = Flat𝑁,𝑁 (K𝑣).
For simplicity, we let 𝑲 (𝑚), 𝑚 ∈ {1, 2, · · · , 𝑁2} denotes k vector in grid, which is
defined as

𝑲 (𝑚) B
[
𝑲𝑢 (𝑚), 𝑲𝑣 (𝑚)

]
. (2.39)

Additionally, we define an index set I𝑖𝑙 by

I𝑖𝑙 B
{
𝑚 = 1, 2, · · · , 𝑁2

���𝑲 (𝑚) ∈ C𝑖𝑙
}
. (2.40)

We let |I𝑖𝑙 | be the cardinal of set I𝑖𝑙 and also abuse the notation such that I𝑖𝑙 (𝑚)
indicate the 𝑚th smallest element in I𝑖𝑙 . For the transverse illumination k-vector k𝑖

(𝑖 = 1, 2, · · · , 𝑛), we denote its grid representation as 𝜿𝑖.

With this notation, we design a difference operator D𝑖𝑙 ∈ R|I𝑖𝑙 |×𝑁2 . When acting on
𝝋, we want this operator to calculate the aberration difference 𝜙(k + k𝑖) − 𝜙(k + k𝑙)
associated with Ŝ

′
𝑖 and Ŝ

′
𝑙 (each row corresponds to one specific choice of k). Based

on this principle, we assign value 1 to the place that corresponds to phase 𝜙(k + k𝑖)
and value -1 to the place that corresponds to phase 𝜙(k + k𝑙) for every row of D𝑖𝑙 .
That is to say, the operator D𝑖𝑙 is constructed as

D𝑖𝑙 (𝑖1, 𝑖2) =


1, if 𝑲 (𝑖2) = 𝑲

[
I𝑖𝑙 (𝑖1)

]
+ 𝜿𝑖

−1, if 𝑲 (𝑖2) = 𝑲
[
I𝑖𝑙 (𝑖1)

]
+ 𝜿𝑙

0, otherwise.

(2.41)

We can see this operator indeed calculates the aberration difference

D𝑖𝑙𝝋 =



𝜙

(
𝑲

[
I𝑖𝑙 (1)

]
+ 𝜿𝑖

)
− 𝜙

(
𝑲

[
I𝑖𝑙 (1)

]
+ 𝜿𝑙

)
𝜙

(
𝑲

[
I𝑖𝑙 (2)

]
+ 𝜿𝑖

)
− 𝜙

(
𝑲

[
I𝑖𝑙 (2)

]
+ 𝜿𝑙

)
...

𝜙

(
𝑲

[
I𝑖𝑙 ( |I𝑖𝑙 |)

]
+ 𝜿𝑖

)
− 𝜙

(
𝑲

[
I𝑖𝑙 ( |I𝑖𝑙 |)

]
+ 𝜿𝑙

)

. (2.42)

Let Ŝ′
𝑖

[
I𝑖𝑙

]
(𝑖 = 1, 2, · · · , 𝑛) be a R|I𝑖𝑙 |×1 vector which is defined as

Ŝ
′
𝑖

[
I𝑖𝑙

]
B

[
Ŝ

′
𝑖

[
I𝑖𝑙 (1)

]
, Ŝ

′
𝑖

[
I𝑖𝑙 (2)

]
, · · · , Ŝ

′
𝑖

[
I𝑖𝑙

(
|I𝑖𝑙 |

) ] ]𝑇
, (2.43)

where 𝑇 in the superscript denotes ordinary transpose. We can then simplify the
expression of D𝑖𝑙𝝋

D𝑖𝑙𝝋 = arg
(
Ŝ

′
𝑖

[
I𝑖𝑙

] )
− arg

(
Ŝ

′
𝑙

[
I𝑖𝑙

] )
+

[
𝜙(k𝑖) − 𝜙(k𝑙)

]
. (2.44)
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Note 𝜙(k𝑖) − 𝜙(k𝑙) is a constant. To count for this constant, we define an offset
operator D0

𝑖𝑙
∈ R|I𝑖𝑙 |×𝑁2 , where we assign 1 to place that corresponds to k𝑖 and -1 to

k𝑙 . That is,

D0
𝑖𝑙 (𝑖1, 𝑖2) =


1, if 𝑲 (𝑖2) = 𝜿𝑖

−1, if 𝑲 (𝑖2) = 𝜿𝑙

0, otherwise.

(2.45)

When acting on 𝝋, this offset operator gives

D0
𝑖𝑙𝝋 =


𝜙(k𝑖) − 𝜙(k𝑙)
𝜙(k𝑖) − 𝜙(k𝑙)

...

𝜙(k𝑖) − 𝜙(k𝑙)


. (2.46)

Thus, we can use D𝑖𝑙 and D0
𝑖𝑙

to express the total phase difference between Ŝ
′
𝑖 and

Ŝ
′
𝑙 , which gives

(D𝑖𝑙 − D0
𝑖𝑙)𝝋 = arg

(
Ŝ

′
𝑖

[
I𝑖𝑙

] )
− arg

(
Ŝ

′
𝑙

[
I𝑖𝑙

] )
. (2.47)

For different pairs of spectrums with overlap, we concatenate those equations, which
yields

D𝝋 = 𝜷Δ,

where

D B


D𝑖1𝑙1 − D0

𝑖1𝑙1

D𝑖2𝑙2 − D0
𝑖2𝑙2

...

D𝑖𝑚𝑙𝑚 − D0
𝑖𝑚𝑙𝑚


and 𝜷Δ B arg

©«
Ŝ

′
𝑖1

[
I𝑖1𝑙1

]
Ŝ

′
𝑖2

[
I𝑖2𝑙2

]
...

Ŝ
′
𝑖𝑚

[
I𝑖𝑚𝑙𝑚

]
ª®®®®®¬
− arg

©«
Ŝ

′
𝑙1

[
I𝑖1𝑙1

]
Ŝ

′
𝑙2

[
I𝑖2𝑙2

]
...

Ŝ
′
𝑙𝑚

[
I𝑖𝑚𝑙𝑚

]
ª®®®®®¬
. (2.48)

Instead of directly solving for the aberration term, we use Zernike polynomial
to represent the aberration of the system. Thus, we introduce the Zernike operator
Z ∈ R𝑁2×𝑧, where 𝑧 is the number of Zernike coefficients to be reconstructed and each
column of Z represents a particular Zernike mode. With Zernike decomposition,
the aberration of the imaging system is given by

𝝋 = Zc, (2.49)

where c ∈ R𝑧×1 is the corresponding Zernike coefficient. Using Zernike decompo-
sition, we can rewrite Eq. 2.48 as

𝜷Δ = D𝝋 = DZc. (2.50)
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We can solve the above linear equation (or the associated normal equation) to get the
analytical solution of the Zernike coefficient c. The 2D aberration 𝝓 of the imaging
system is then given by

𝝓 = Flat−1
𝑁,𝑁 (𝝋) = Flat−1

𝑁,𝑁 (Zc). (2.51)

In reality, some spatial frequencies in the spectrum can be stronger than other
frequencies. It is natural to emphasize on those places, as they have a higher signal-
to-noise ratio (SNR). Thus, we use a weight matrix W to emphasize places with
high SNR. This gives

(WDZ)c = W𝜷Δ. (2.52)

In our experiment, we use logarithm of the modulus of the product 𝑆𝑖 (k)𝑆𝑙 (k) as
the weight matrix. Another important thing to note is that the phase difference of
two spectrums might exceed 2𝜋. Thus, we first unwrap their phase differences [21]
and then solve Eq. 2.52 to extract the aberration of our imaging system.

Reconstruction using darkfield measurements
Since aberrations of our imaging system are fully determined, we can remove the
contribution of the aberration term from the reconstructed spectrums. Recall that
when discussing about the NA matching measurements, we have reconstructed the
(modified) sampled spectrums (Eqs. 2.32 and 2.33) under NA-matching angle
illumination. This means the following is known for all |k𝑖 | = NA

𝑆′𝑖 (k)𝑒− 𝑗𝜙(k𝑖) = �̂� (k)𝐻 (k + k𝑖)𝑒− 𝑗𝜙(k𝑖) = �̂� (k) CircNA(k + k𝑖)𝑒 𝑗𝜙(k+k𝑖)− 𝑗𝜙(k𝑖) .

(2.53)
As the last phase factor 𝑒 𝑗𝜙(k+k𝑖)− 𝑗𝜙(k𝑖) entirely depends on the aberration, we can
now correct it and extract a clean sample spectrum, which yields

�̂� (k) CircNA(k + k𝑖). (2.54)

It basically means that we recovered a piece of sample spectrum region covered
by the CTF support for each measurement. Thus, these reconstructed regions can
be stitched for a larger coverage in the spatial frequency domain. That is, we can
gradually expand the coverage of the reconstructed �̂� (k) in the spatial frequency
domain. Let us define the sampled region M𝑚 that denotes the spectrum covered
by the first 𝑚th measurements

M𝑚 B
{
k ∈ R2��∃𝑖 ∈ {1, 2, · · · , 𝑚},CircNA(k + k𝑖) ≠ 0

}
. (2.55)
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We also define the mask 𝑀𝑚 which denotes the effective sampling mask for the first
𝑚th measurements

𝑀𝑚 (k) B 1(k ∈ M𝑚) =


1, if k ∈ M𝑚,

0, otherwise.
(2.56)

Assume we can reconstruct the complex spectrum for every measurement (we will
later show this is feasible), the reconstructed complex sample spectrum R̂𝑚 (k) using
the first 𝑚th measurements can be expressed by

R̂𝑚 (k) B �̂� (k)𝑀𝑚 (k). (2.57)

It is worth noting that, after aberration correction, we have obtained the recon-
structed spectrum, R̂𝑛0 (k) = �̂� (k)𝑀𝑛0 (k), using NA-matching measurements,
𝑖 = 1, 2, · · · , 𝑛0. For 𝑖 > 𝑛0, the corresponding illumination angle exceeds the
maximal acceptance angle of the imaging system and we measure the darkfield (see
Eq. 2.9 for the definition of 𝑛0).

We note that the logarithm transformation technique used for the NA matching
measurements in previous subsection fails as the darkfield may probably contain
null point and the Taylor expansion might not converge. As a consequence, we need
to develop another algorithm to reconstruct the sampled complex spectrum.

In this section, we show that if the sampled spectrum at 𝑖th illumination 𝑆′
𝑖
(𝑖 > 𝑛0)

consists of previously reconstructed (a priori) spectrum and other unknown part,
the unknown part can be reconstructed using the known spectrum.

Let us decompose the sampled spectrum 𝑆′
𝑖

into the unknown and known part,
assuming all previous measurements are reconstructed, which means R̂𝑖−1(k) =

�̂� (k)𝑀𝑖−1(k) is known. The known spectrum P̂𝑖 (k) at this substep is given by

P̂𝑖 (k) = R̂𝑖−1(k)𝐻 (k + k𝑖) = �̂� (k)𝐻 (k + k𝑖)𝑀𝑖−1(k). (2.58)

Then, the unknown part �̂�𝑖 (k) is

�̂�𝑖 (k) = 𝑆′𝑖 (k) − P̂𝑖 (k)
= �̂� (k)𝐻 (k + k𝑖) − �̂� (k)𝐻 (k + k𝑖)𝑀𝑖−1(k)
= �̂� (k)𝐻 (k + k𝑖)

[
1 − 𝑀𝑖−1(k)

]
. (2.59)

Let Supp( 𝑓 ) be the support of function 𝑓 : R2 → C, which is a set given by

Supp( 𝑓 ) B {x ∈ R2�� 𝑓 (x) ≠ 0}. (2.60)
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By construction of P̂𝑖 (k) and �̂�𝑖 (k), it is easy to see that P̂𝑖 (k) ≠ 0 suggests
�̂�𝑖 (k) = 0, and vice versa. Thus, P̂𝑖 (k) and �̂�𝑖 (k) have disjoint support. Based
on Eqs. 2.5 and 2.6, the measured intensity of one darkfield measurement can be
expressed as

𝐼𝑖 (x) =
��� [F −1(𝑆′𝑖)

]
(x)

���2 =

��� [F −1(�̂�𝑖 + P̂𝑖)
]
(x)

���2 =

���𝑈𝑖 (x) + P𝑖 (x)
���2

= 𝑈𝑖 (x)𝑈∗
𝑖 (x) +𝑈𝑖 (x)P∗

𝑖 (x) + P𝑖 (x)𝑈∗
𝑖 (x) + P𝑖 (x)P∗

𝑖 (x), (2.61)

whereP(x) B
[
F −1(P̂𝑖

]
(x) and𝑈 (x) B

[
F −1(�̂�𝑖

]
(x) are the known and unknown

fields, respectively. Using the property of Fourier transform, we can write the Fourier
transform of 𝐼𝑖 as[
F (𝐼𝑖)

]
(k) =

[
�̂�𝑖 ★�̂�𝑖

]
(k) +

[
�̂�𝑖 ★ P̂𝑖

]
(k) +

[
P̂𝑖 ★�̂�𝑖

]
(k) +

[
P̂𝑖 ★ P̂𝑖

]
(k), (2.62)

where ★ denotes correlation. As the known spectrum is a priori, we can subtract
its auto-correlation from the Fourier transform of the intensity measurement. This
yields[
F (𝐼𝑖)

]
(k) −

[
P̂𝑖 ★ P̂𝑖

]
(k) =

[
�̂�𝑖 ★�̂�𝑖

]
(k) +

[
�̂�𝑖 ★ P̂𝑖

]
(k) +

[
P̂𝑖 ★�̂�𝑖

]
(k). (2.63)

We can see that the two cross-terms are linear with respect to �̂�𝑖 as correlation is a
linear operator. If we consider one cross term, it naturally leads to a linear equation
with respect to �̂�𝑖, which can be solved analytically. However, those three remaining
terms cannot be easily separated due to the existence of our desired unknown part.

In the remaining part of this section, we see that the above three terms have different
supports, as depicted in Fig. 2.10. Therefore, the non-overlapping part can be
isolated, which allows us to construct a linear equation with respect to �̂�𝑖.

In experiments, the same camera is used to acquire both darkfield and NA-matching
measurements. Each intensity measurement is a matrix of fixed size. Similar to the
FPM, the matrix representation of the original sample’s spectrum R𝑚 is nevertheless
a much larger matrix [3, 4]. The physical picture is that the tilt illumination translates
the sample spectrum in the spatial frequency domain, as the initial forward model
Eq. 2.1 suggests, so that different spatial frequencies of sample spectrum is moved
into this smaller measurement related grid and then gets sampled. This is equivalent
to cropping out a specific region of the sample spectrum and moving the cropped part
to the center when applying the pupil translation model in Eq. 2.6. In our following
discussion, we assume the matrix representations of both the unknown and the
known spectrum are centered, thus having the same dimension as the measurement.
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Sampled spectrum
(not directly measured)

Intensity measurement
(directly measured)
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Figure 2.10: Complex field reconstruction using darkfield measurements. In this
visualization, the sampled spectrum is centered, which is basically a cropped version
of the spectrum translation model (Eq. 2.6). The sampled spectrum is decomposed
into two disjoint region, namely the unknown and known spectrum. As the spectrum
of the known part is given, the intensity of the corresponding field can be calculated.
When subtracting the Fourier transform of the measured intensity and the Fourier
transform of this calculated intensity, three term are left: the auto-correlation of
the unknown part, and two cross-correlations of the known and unknown part. For
one of the cross-correlation terms that does not overlap with the other two, we
obtain a linear equation with respect to the unknown part. Thus, we can solve this
linear equation for the closed-form solution of the unknown spectrum. That is, the
complex spectrum can be reconstructed by incorporating the known information.

We focus on
[
P̂𝑖 ★�̂�𝑖

]
(k) and let Q𝑖 be the non-intersecting set, which is defined as

Q𝑖 B
{
k ∈ R2

���k ∈ Supp(P̂𝑖 ★�̂�𝑖) \
[

Supp(�̂�𝑖 ★ P̂𝑖) ∪ Supp(�̂�𝑖 ★�̂�𝑖)
]}
. (2.64)

By construction, we have[
F (𝐼𝑖)

]
(k) −

[
P̂𝑖 ★ P̂𝑖

]
(k) =

[
P̂𝑖 ★�̂�𝑖

]
(k), ∀k ∈ Q𝑖 . (2.65)

We define this masked subtraction as 𝐿𝑖, that is

𝐿𝑖 (k) B
( [
F (𝐼𝑖)

]
(k) −

[
P̂𝑖 ★ P̂𝑖

]
(k)

)
1(k ∈ Q𝑖)

=


[
P̂𝑖 ★�̂�𝑖

]
(k), if k ∈ Q𝑖,

0, otherwise.
(2.66)
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Let Û𝑖 ∈ C𝑁×𝑁 be the matrix version of the (centered) unknown part and Û𝑖 ∈ C𝑁
2×1

be its flattened vector Û𝑖 = Flat𝑁,𝑁 (Û𝑖), L𝑖 ∈ C𝑁×𝑁 be the (centered) matrix
version of 𝐿𝑖 and L𝑖 ∈ C𝑁

2×1 be its flattened vector L𝑖 = Flat𝑁,𝑁 (L𝑖), and P̂𝑖 be
the (centered) matrix version of the known part. In general, the correlation of two
matrices of size 𝑁 × 𝑁 would be a matrix of size (2𝑁 − 1) × (2𝑁 − 1). Based on
the Nyquist theorem, the nonzero part of Û𝑖 + P̂𝑖 is contained in a 𝑁

2 × 𝑁
2 box. As a

consequence, we can calculate the correlation of Û𝑖 and P̂𝑖 using a 𝑁 × 𝑁 grid.

Let us construct a (sparse) correlation operator C𝑖 that takes all nonzero elements
in the unknown spectrum Û𝑖 and gives L𝑖. We first focus on the 𝑡1th row and
𝑡2th column of L𝑖, which corresponds to 𝑚th element of vector L𝑖, where 𝑚 =

𝑡1 + 𝑁 (𝑡2 − 1) and 𝑡1, 𝑡2 ∈ {1, 2, · · · , 𝑁}. Let 𝑡′1 = 𝑡1 − 𝑐0 and 𝑡′2 = 𝑡2 − 𝑐0. For
simplicity, we also write 𝜐lower

𝜁
= max{1, 1 + 𝑡′

𝜁
} and 𝜐

upper
𝜁

= min{𝑁, 𝑁 + 𝑡′
𝜁
} for

𝜁 ∈ {1, 2}. Then, we have (recall that in Eq. 2.39 we define 𝑲 as the grid version
of the k vector and also K𝑢 (𝑐0, 𝑐0) = K𝑣 (𝑐0, 𝑐0) = 0)

L𝑖 (𝑚) =

[
P̂𝑖 ★ Û𝑖

] [
𝑲 (𝑚)

]
if 𝑲 (𝑚) ∈ Q𝑖

0, otherwise

=


𝜐

upper
1∑︁

𝑖1=𝜐
lower
1

𝜐
upper
2∑︁

𝑖2=𝜐
lower
2

P̂
∗
𝑖 (𝑖1 − 𝑡′1, 𝑖2 − 𝑡′2)Û𝑖 (𝑖1, 𝑖2), if 𝑲 (𝑚) ∈ Q𝑖,

0, otherwise.

(2.67)

For 𝑲 (𝑚) ∈ Q𝑖, we can construct a matrix G𝑚
𝑖
∈ C𝑁×𝑁 that is defined as

G𝑚
𝑖 (𝑖1, 𝑖2) B


P̂

∗
𝑖 (𝑖1 − 𝑡′1, 𝑖2 − 𝑡′2), if 𝜐lower

𝜁
≤ 𝑖𝜁 ≤ 𝜐

upper
𝜁

, 𝜁 ∈ {1, 2}

0, otherwise.
(2.68)

With this definition, we have

L𝑖 (𝑚) =

[

Flat𝑁,𝑁 (G𝑚
𝑖
)
]𝑇
Û𝑖, if 𝑲 (𝑚) ∈ Q𝑖

0, otherwise.
(2.69)

We define an index set 𝔏𝑖 that denotes this special region that is linear in Û𝑖

𝔏𝑖 B {𝑚 = 1, 2, · · · , 𝑁2��𝑲 (𝑚) ∈ Q𝑖}. (2.70)

As we have done before, we abuse the notation so that 𝔏𝑖 (𝑚) indicates the 𝑚th
smallest element in 𝔏𝑖 and define L𝑖 (𝔏𝑖) as

L𝑖 (𝔏𝑖) B
[
L𝑖

[
𝔏𝑖 (1)

]
, L𝑖

[
𝔏𝑖 (2)

]
, · · · , L𝑖

[
𝔏𝑖 ( |𝔏𝑖 |)

] ]𝑇
, (2.71)
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where |𝔏𝑖 | is the cardinal of 𝔏𝑖. We can then construct a correlation operator. Let
C𝐹
𝑖
∈ C|𝔏𝑖 |×𝑁2 be a |𝔏𝑖 | × 𝑁2 matrix and let its 𝑚th row C𝐹

𝑖
(𝑚, ·) be

C𝐹
𝑖 (𝑚, ·) =

[
Flat𝑁,𝑁 (G𝔏𝑖 (𝑚)

𝑖
)
]𝑇
, (2.72)

we then have
C𝐹
𝑖 Û𝑖 = L𝑖 (𝔏𝑖). (2.73)

Graphically, the construction of the correlation operator C𝐹
𝑖

is shown in Fig. 2.11.

Correlation at

=

x

... ...

... ...

... ...
... ... ...

... ... ...

Equivalent element-wise product

Correlation operator

Figure 2.11: Construction of the correlation operator C𝐹
𝑖

. For vector 𝑲 (𝑚) that
admits a measurement that is linear in the unknown spectrum, we construct an
associated matrix G𝑚

𝑖
. This matrix is constructed such that the correlation of the

unknown and known part at 𝑲 (𝑚) equals
∑𝑁

𝑖1,𝑖2=1 Û𝑖 (𝑖1, 𝑖2)G𝑚
𝑖
(𝑖1, 𝑖2), the summation

of the element-wise multiplication of this matrix and the unknown spectrum. The
flattened vector of G𝑚

𝑖
serves as one row of the correlation matrix C𝐹

𝑖
, as illustrated

in the figure.

By construction of the unknown spectrum �̂�𝑖, we know that the only locations that
it can be nonzero are where the following holds

𝐻 (k + k𝑖)
[
1 − 𝑀𝑖−1(k)

]
≠ 0. (2.74)

Using the above equation, we can easily find the corresponding nonzero elements
in the flattened vector Û𝑖. We define an index set N𝑖 consists of the indices of these
nonzero elements

N𝑖 B
{
𝑚 = 1, 2, · · · , 𝑁2

���𝐻 [
𝑲 (𝑚) + 𝜿𝑖

] (
1 − 𝑀𝑖−1

[
𝑲 (𝑚)

] )
≠ 0

}
, (2.75)

and let N𝑖 (𝑚) be the 𝑚th smallest element in N𝑖, and |N𝑖 | be the cardinal of N𝑖.
To construct the correlation operator C𝑖 that encodes the sparsity of the unknown
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spectrum, we simply keep all columns of C𝐹
𝑖

whose indices belong to set N𝑖 and
throw away all other columns. This gives the definition of C𝑖 ∈ C|𝔏𝑖 |×|N𝑖 |

C𝑖 (𝑖1, 𝑚) B C𝐹
𝑖

[
𝑖1,N𝑖 (𝑚)

]
, 𝑖1 = 1, 2, · · · , |𝔏𝑖 | and 𝑚 = 1, 2, · · · , |N𝑖 |. (2.76)

Then, we have the following linear equation with respect to the nonzero elements of
the unknown spectrum

C𝑖Û𝑖 (N𝑖) = L𝑖 (𝔏𝑖), (2.77)

where Û𝑖 (N𝑖) B
[
Û𝑖

[
N𝑖 (1)

]
, Û𝑖

[
N𝑖 (2)

]
, · · · , Û𝑖

[
N𝑖 ( |N𝑖 |)

] ]𝑇
.

To solve this equation, we require the rank of matrix C𝑖 to be at least |N𝑖 |. We can
show this can be satisfied if the known spectrum covers the semicircle of the circular
CTF. As shown in Fig. 2.12, the autocorrelation of a semicircle is around 4 times
larger than itself. If we assume the CTF is of radius 𝑟0, and the known specturm is
a semicircle, the area of the unknown spectrum is then

1
2
𝜋𝑟2

0 . For a circle (area is
𝜋𝑟2

0), its autocorrelation is strictly 4 times larger in size (area is 4𝜋𝑟2
0). Thus, the

linear region has an area of

Area(Q𝑖) =
1
2
[
4𝜋𝑟2

0 − (4𝑟2
0 + 𝜋𝑟2

0)
]
=

3𝜋𝑟2
0 − 4𝑟2

0
2

, (2.78)

which is approximately 1.7 times larger than the area of the unknown part. That is,
if the known spectrum occupies 50% of the spectrum, the rank of matrix C𝑖 can be
well above |N𝑖 |. Numerically, we find a safe choice is to let the unknown spectrum
occupy over 42% of the measured spectrum, assume the CTF is circular.

r0

r0 r0

2r0

r0

Semicircle Two graphical examples of the calculation Autocorrelation

Calculating autocorrelation

Figure 2.12: Autocorrelation of a semicircle with radius 𝑟0. The shape of the
autocorreltion result has an area of 4𝑟2

0 + 𝜋𝑟2
0 which is around 4.5 times larger than

the area enclosed by the semicircle.

By solving Eq. 2.77, we obtain the closed-form solution of the unknown spectrum.
That is, we reconstruct the following spectrum

�̂�𝑖 (k) = �̂� (k)𝐻 (k + k𝑖)
[
1 − 𝑀𝑖−1(k)

]
. (2.79)
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As the aberration of the system is determined, we can correct for the aberration,
which gives the aberration corrected spectrum �̂� (k) CircNA(k + k𝑖)

[
1 − 𝑀𝑖−1(k)

]
.

Because the intensity of the field is directly measured in the darkfield measurement
and the phase is unknown, we use the square root of this measured intensity as the
modulus of the complex field for maintaining the (point-wise) energy and robustness.

Until now, we show that the complex spectrum sampled with 𝑖th illumination can be
reconstructed using a priori knowledge of the known spectrum. We can expand the
entire reconstructed spectrum by integrating this newly reconstructed spectrum. The
overall reconstructed spectrum using 𝑖th measurement is given by �̂� (k)𝑀𝑖−1(k) +
�̂� (k) CircNA(k + k𝑖)

[
1 − 𝑀𝑖−1(k)

]
, which is exactly �̂� (k)𝑀𝑖 (k) by definition of

𝑀𝑖 (k). That is, we obtain an extended complex spectrum reconstuction R̂𝑖 after
darkfield reconstruction at the 𝑖th sub-step. This reconstructed field serves as our a
priori knowledge in the reconstruction of the (𝑖 + 1)th sub-step.

We note that for a dense LED array, the area of the unknown spectrum can be
quite small because their effective CTFs cover similar area for two closely spaced
LEDs (Eq. 2.6). In such case, we can fill in the new spectrum when it is necessary
to solve the linear equation formed in Eq. 2.77 (e.g., when the system becomes
undetermined if we do not fill in the new spectrum). By doing this, the spectrum
reconstructions prior to the stitching process are independent and they have overlaps
in the spatial frequency domain. Therefore, we can average over the overlap for
improved robustness of the reconstruction algorithm.

Once the darkfield reconstruction is done for all measurements, we have recon-
structed all sampled spectrums and the extended complex spectrum R̂𝑛, which is
our high-resolution, aberration-free complex field reconstruction.

2.6 Supporting materials for APIC
In the following section, we will show some supporting materials based on both
simulation and experiment of APIC.

We demonstrate an system calibration technique that can be used to optimize the
illumination angles in experiments. Resolution of APIC and the full result using the
red, green and blue channels are also presented in this section. To investigate the
performance of APIC under different cases, we conducted multiple simulations and
present those results.
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System calibration
To do reconstruction using APIC, we need to know the transverse illumination vector
k𝑖 for each measurement, as it tells us which area of the whole sample’s spectrum
is measured (Eq. 2.6). This indicates that we need to determine the angle of each
tilted illumination. To do that, we used the previously developed circle-finding
algorithm to find the exact illumination angle for the NA-matching measurements
[22]. The brightfield measurements whose illumination angles were below the
acceptance angle of our imaging system were collected as well. These brightfield
measurements were used for geometrically calibrating the angles associated with
our darkfield measurements. We note that these brightfield measurements are only
for calibration purpose and not for reconstruction in APIC.

The illumination unit consisted of a LED ring and a LED array. The LED ring was
attached on top of the LED array and was used for the NA-matching measurement.
This unit was mounted on a motorized transnational stage for height adjustment.
We adjusted its tilt and height to exactly match the illumination angle of the ring
LED and the acceptance angle of our imaging system. To find the exact height,
we first moved the LED unit close to our sample such that the ring LED produced
the darkfield measurement. Then, we gradually increased the separation between
the LED and the sample until we saw the image under the ring LED illumination
transited from darkfield to brightfield. The transition point is our desired height.
Once the height and tilt of the system were fixed, we acquired all calibration data and
calibrated the illumination angles for all LEDs. We also used a high NA objective
to measure the relative intensity of each LED with a blank slide. The high NA
objective was selected such that the incident light from any LED can directly enter
the system. It needs to be emphasized that the intensity calibration is done only once
with a high NA, small field-of-view objective, we acquired all our actual experiment
data with a low NA, large field-of-view objective. In our experiment, we normalized
the measurements using the measured relative intensities and then conducted the
reconstruction in APIC.

We note that we can reconstruct the calibration data with the geometrically calculated
darkfield LED illumination angle and then use the reconstructed complex field
to further optimize the illumination angle by searching over a pre-defined finer
grid. Once this is done, we fix the calibrated angles and use them for all other
measurements. The entire process is illustrated in Fig. 2.13.
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Figure 2.13: Calibrating the illumination k-vector. By locating the center of the
circle in the Fourier transform of the measurement, we extract the corresponding k𝑖

in the spatial frequency domain. Using the separation of the LEDs on the array and
the estimated brightfield LED illumination angles, we can calculate the darkfield
LED illumination angles using such geometry. With those, APIC could reconstruct
sample’s complex field, which can be used to further optimize the illumination
angles by maximizing the correlation between the real measurement and the image
obtained with the forward model. CTF: coherent transfer function.

Result of FPM and APIC using reduced dataset
In previous sections, we acquired 316 images for one sample. As we explained in
previous sections, this large redundancy was chosen to show the best performance
of Fourier Ptychographic Microscopy (FPM). For APIC, it is not necessary to have
such a large redundancy for an accurate reconstruction. Here, we reduced the dataset
so that there are 9 bright field measurements, 8 NA-matching measurements and 28
darkfield measurements in this reduced dataset. In our reconstruction, FPM used
all these 45 images while APIC used 36 images (8 NA-matching measurements and
28 darkfield measurements). The reconstruction results using this reduced dataset
are shown in Fig. 2.14. For comparison, we also included the reconstruction results
when feeding in the entire dataset.

When FPM is not given the privilege of having a highly redundant dataset, its
reconstruction result can be severely disturbed by the aberration of an imaging
system whose phase variation exceeds

2𝜋
5

(NA of the objective: 0.25). We see
that although FPM partially reconstructed the high spatial frequency information
of the Siemens star target using the full dataset, it failed to maintain even the low
spatial frequency information when a dataset with approximately 7 times fewer
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Figure 2.14: APIC and FPM using the full dataset and a reduced dataset. The full
dataset is largely redundant as the overlap of two spectrum is around 86%. The
nominal overlap ratio reduces to 65% for the reduced dataset. Siemens star target
was defocused by 16 µm in this experiment. The zoomed images of the amplitude
and phase reconstructions of APIC and FPM are shown on the right, respectively.

measurements was provided. In contrast, APIC, retrieved both the high and low
spatial frequency information in either case. As we can see from Fig. 2.14, APIC
generated a reliable reconstructions using both the entire dataset and the reduced
dataset.

Resolution quantification
To quantify the resolution achieved in APIC, we imaged a Siemens star target.
In addition, we utilized LEDs whose illumination angles were smaller than the
acceptance angle of our used objective for FPM. Those are the normal brightfield
measurements required for FPM. We compared the resolution achieved by APIC
and FPM. Here, we performed reconstruction on the in-focus Siemens star target
shown in Fig. 2.7. To compare their resolution, we first calculated the smallest
radius 𝑟 where at least 10% contrast was preserved for any of the two reconstructed
amplitude for the Siemens star target. We then plotted the radial profiles of APIC
and FPM using this radius, respectively.

From Fig. 2.15, we see that APIC and FPM have similar radial profiles. The
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Figure 2.15: The resolution of FPM and APIC. We conducted the reconstruction
using the in focus data and the reconstructed amplitude and phase of FPM and APIC
are shown in the middle. Their radial profiles along the circles highlighted in the
reconstructed amplitude images are shown on the right.

maximal illumination NA in this experiment is approximately 0.5 and the objective
NA equals 0.25. We used red LEDs in the experiment and its central wavelength is
632 nm. Thus, the theoretical resolution of our system is 842 nm. Using the radial
profiles in Fig. 2.15, the resolution we experimentally achieved for both FPM and
APIC are approximately 867 nm, which is close to the theoretical resolution limit.

Reconstruction of a hematoxylin and eosin stained sample
We have included the result of the blue channel in Fig. 2.8. To see the reconstruc-
tions under different LED illumination colors, we showed the full comparison of
reconstruction results of all three channels using FPM and APIC.

As we can see from Fig. 2.16, the reconstructions of FPM appeared grainy and
the high spatial frequency information were only partially recovered. This indicates
that FPM did not work well with this weakly absorptive sample. We also found that
there were places where the sign of quantitative phase reconstructions of FPM for
the green channel appeared to be flipped. In phase reconstruction shown in Fig.
2.16, some of the negative phases in the red and blue channel (phases shown in blue)
become positive in the green channel (phases shown in red). The quantitative phases
of APIC were much more consistent among all three channels. This indicates the
aberration and complex field reconstruction of APIC is considerably more accurate
compared with FPM.



55

Figure 2.16: Full reconstruction, H&E stained breast cancer cells. The complex field
reconstructions and retrieved aberrations of each channel are shown in the red, green
and blue highlighted boxes, respectively. For each group, FPM reconstructions are
shown in the lower left and APIC reconstructions are shown in the upper right. The
zoomed images of the amplitude and phase reconstructions are shown on the right
of each boxes. Scale bar for the zoomed images: 5 µm.

Reconstruction time
We investigated the reconstruction time taken by FPM and APIC under different
patch sizes. In this simulation, the overlap ratio was set to approximately 60%.
The dataset consisted of 76 darkfield measurements and 16 NA-matching measure-
ments. We used the same convergence criterion for first and second order FPM
reconstruction methods as we did in experiments and simulations. We added mod-
erate aberration in our simulation (the phase standard deviation of the simulated
aberration is approximately 0.6 radian) so that FPM could give a reasonable re-
constructions. We note that FPM might run much longer when dealing with more
complicated cases, as the convergence criteria become more difficult to reach in
the reconstruction of FPM. The reconstructions were conducted using a personal
computer with 16 GB RAM (CPU: Intel Core i5-8259U).

Figure 2.17 shows the runtime comparison of FPM and AMIM as a function of
the image patch size. When the side length of the patch equals 256, these three
methods needs approximately the same amount of time to complete. We note that
the reconstruction time of APIC also depends on the overlap ratio of the sampled
spectrums. When using the highly aberrated images of the thyroid sample (Fig.
2.7), the reconstruction time of the second order FPM and APIC was comparable
when reconstructing a square patch with side length of 512 pixels. Nonetheless,
we see that APIC can be much faster when a small patch size is chosen. The
computation efficiency advantage of APIC for small patch size is in line with another
important computational consideration, namely parallel processing. By splitting the
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Figure 2.17: Runtime comparison of different algorithms. The patch sizes used
in this simulation formed an arithmetic sequence ranging from 128 to 512 pixels,
with a common difference of 64 pixels. The reconstruction of each method was
repeated 5 times for each patch size, and the mean and standard deviation were
calculated. The standard deviation is illustrated by the colored area behind the solid
lines. In log-scale, the standard deviation is small compared with the mean value.
Thus, we only see the solid lines showing up in the figure. AP denotes the original
FPM reconstruction algorithm with EPRY and GN denotes the second order Gauss-
Newton reconstruction algorithm.

whole image into smaller patches, more processors can be simultaneously used for
reconstruction.

Result of spatial-domain Kramers-Kronig method and APIC
Here, we reconstructed the complex field using the recently proposed sptial Kramers-
Kronig algorithm, which does not take complex aberration into consideration [17–
19].

We used a USAF target for simulation. The LED illumination angles were assumed
to be known and an aberration-free imaging system was used in our simulation. We
simulated both the darkfield measurements and the NA matching measurements and
fed those measurements into the spatial Kramers-Kronig method and APIC. The
reconstructions of the two different methods are shown in Fig. 2.18.

As the spatial Kramers-Kronig method cannot perform reconstruction with darkfield
measurements, its resolution is limited. APIC is the first of its kind that can do
analytical complex field reconstruction using darkfield measurements. With the
more general phase retrieval framework established in APIC, we can see that the
resolution of APIC is much enhanced compared with the spatial Kramers-Kronig
method.
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Figure 2.18: Comparison of the spatial Kramers-Kronig (spatial KK) method and
APIC. The image under normal incidence is shown on the left and the ground truth
of the USAF target we used in the simulation are shown on the right. The ground
truth of the aberration and APIC recovered aberration are shown on the lower left
of this image. In this simulation, no aberration was introduced. GT: ground truth.

Robustness of APIC with respect to aberration
We conducted simulations under different aberration levels and used APIC to re-
construct the complex field. We simulated a complex USAF target as our object
and added different aberrations in our measurements. We assumed the illumination
angles were known and no noise was simulated. For the NA-matching angle illumi-
nation, 16 evenly spaced LEDs were simulated. The overlap ratio of two adjacent
sampled spectrums is around 60%. The ground truth was generated by cropping
the complex object spectrum using the sampled region 𝑀𝑛 (k). In other words, the
ground truth is the inverse Fourier transform of the spectrum �̂� (k)𝑀𝑛 (k). To visu-
ally perceive different aberration levels, we also simulated the image that would be
obtained by the aberrated imaging system under the normal incidence illumination.
This normal incidence measurement was just for visualization and was not used in
any APIC’s reconstruction process.

The reconstruction results are shown in Fig. 2.19. From this simulation, we can
see APIC is exceptionally tolerant against aberration and can accurately extract the
aberration of the imaging system under extremely high aberration level (the largest
phase standard deviation exceeds 1.5𝜋). The reconstructed phase and amplitude for
all cases matched up with the ground truth.

For comparison, we also used FPM to do reconstruction using two less aberrated
cases above. We note that FPM needs a different set of brightfield measurements
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Figure 2.19: APIC under different levels of simulated aberrations. The first row
shows the corresponding image under normal incidence and is aberrated. The
second and third rows are the reconstructed amplitude and phase, respectively. The
last row is the reconstructed aberration and the actual simulated aberration. The last
column shows the ground truth of object’s amplitude and phase, as well as the image
under normal incidence when captured by an aberration-free imaging system.

to complete the reconstruction. As such, we decided to match the number of
brightfield measurements in FPM and APIC. If there were in total 𝑛0 NA-matching
measurements in APIC, we uniformly sampled 𝑛0 brightfield illumination angles in
our simulation. The darkfield measurements were shared by FPM and APIC. We
adopted two different reconstruction algorithms for FPM, namely the original al-
ternating projection algorithm (the original Gerchberg–Saxton algorithm combined
with EPRY for aberration correction) [3–5] and the second order Gauss-Newton
method [7, 8]. For FPM, we conducted the reconstruction with 6 different sets of
parameters. As we knew the ground truth in our simulation, we manually chose one
of these parameter sets so that its corresponding result is closest to the ground truth.

From the simulation results shown in Fig. 2.20, FPM worked well with mild
aberrations. When the imaging system had a relatively small aberration (its phase
standard deviation is approximately 0.15𝜋), both the original alternating projection
method (implemented with EPRY for aberration correction) and the second order
Gauss-Newton method successfully reconstructed the aberrations. Their amplitude
reconstructions were also closely matched with the ground truth. However, we
can see that the phase reconstruction of the second order method shows better
correspondence to the ground truth. When the aberration in our simulation became
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Figure 2.20: Comparison of FPM and APIC under moderate aberrations. AP
denotes the alternating projection method (combined with EPRY) and GN denotes
Gauss-Newton method. The ground truth of system’s aberrations and the complex
object are shown in the middle. In this simulation, two levels of moderate aberrations
were applied. The results on the left correspond to the case where the gentler one
among the two simulated aberration was used. The results on the right correspond
to the more severe case.

a bit more severe (standard deviation reaches 0.4𝜋), both FPM methods failed
drastically. The second order FPM method works slightly better than the first order
algorithm as it partially reconstructed the high-frequency information. However,
those reconstructed images are severally distorted. APIC, on the contrary, works
well with these different levels of aberrations.

Comparison under different signal-to-noise ratios
Here, we run APIC with different signal-to-noise ratios (SNRs) to see its perfor-
mance under different scenarios. In this simulation, we assumed the illumination
angles were known and an ideal aberration-free imaging system was used. Poisson
noise was added in each measurement. The average number of photons for NA-
matching measurements is shown on the top of Fig. 2.21. All other simulation
parameters were the same.

If no noise was added to the measurement, we can see that APIC produced result
that matched up with the ground truth. When the SNR was low, APIC became
more noisy and exhibited degraded resolution. Nonetheless, it preserved the high
frequency details that were not captured in the normal incidence measurement.

Then we conducted another two simulations to compare APIC with FPM under
different SNRs. As before, we replaced the NA-matching measurements with 𝑛0
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Figure 2.21: APIC under different SNRs. The measurement under normal incidence
is shown on the far left, with no noise added. This measurement is for illustration
purpose and is not used in APIC’s reconstruction. Poisson noise was added to each
measurement in this simulation. The numbers shown on the top are the average
number of photons under NA-matching angle illumination. When the average
photons is 10 for the NA-matching measurements, the average number of photons
for all darkfield measurements is around 0.11.

Figure 2.22: Comparison of FPM and APIC under different noise levels. For each
group, the upper left panel shows the reconstruction result when the average number
of photons of NA-matching measurements is 1,000, and the lower right panel shows
the result when the number is 100. The zoomed version of the result within the box
is shown on the far right of each group. For FPM, we performed the reconstruction
using 6 different parameter sets and demonstrated the best reconstruction result we
obtained.

brightfield measurements to construct the dataset for FPM. All darkfield measure-
ments were shared by APIC and FPM. For FPM, we chose 6 different sets of
parameters and selected the best results in our simulation.

In the first simulation, we simulated a complex Siemens star target and added
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different levels of noise to the simulated dataset. We can see from Fig. 2.22
that the second order FPM algorithm performs well under low SNR (when the
average number of photons equals 100 for the NA-matching measurements). This
iterative algorithm trades the reconstruction speed for the additional tolerance of
noise. The first order FPM reconstruction algorithm, which was much faster than
the second order algorithm, performed worse than the other two in both cases. This
is in accordance with previously reported results, which suggested the second order
algorithm is much more robust than the first order alternating projection method [9].

Figure 2.23: Reconstruction of a weak absorption target using FPM and APIC. The
numbers shown on the left are the average number of photons under the matching
angle. The zoomed version of images inside the highlighted boxes, along with the
zoomed ground truth, are shown on the lower right of this figure. The image under
normal incidence was simulated with a noise-free imaging system. For a complex
sample whose amplitude and phase are different in morphology, cross-talk between
the two is apparent in FPM’s reconstruction. APIC, however, does not suffer from
such severe cross-talk.

In our second simulation, we chose two different patterns for the amplitude and
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phase of the complex object. This complex object was designed to have a weak
amplitude variation while preserving a relatively strong phase variation based on the
common property for unstained biological samples. We see that there were severe
cross-talks between phase and amplitude in both FPM algorithms using low SNR
measurements. When SNR increased, such cross-talk became less prominent in
FPM. Nonetheless, structures of the phases remained visible in those cases. APIC,
on the contrary, did not suffer from such cross-talk. Although the reconstruction
of APIC with low SNR was noisy, it maintained the features of the ground truth
amplitude and phase and showed almost no cross-talk between the two. Another
thing we found in our simulation is that the reconstructed phase of APIC was closer
to the ground truth. While the structural features of the reconstructed phase of FPM
were similar to the ground truth, they quantitatively differed from each other. For
the low SNR dataset, the range of the reconstructed phase of FPM appeared to be
compressed. This indicates that if the reconstruction artifact is undesired and the
fidelity is of concern, APIC is definitely a preferable choice when imaging most
unstained biological samples, even under low SNR conditions.

Number of NA-matching measurements required in APIC
In this section, we simulated different numbers of NA-matching measurements to see
the required measurements for APIC to accurately reconstruct the imaging system’s
aberration. In our simulation, we only introduced aberration to the imaging system
and all other parameters were assumed to be ideal. We assumed the illumination ori-
entations were azimuthally uniformly distributed, which means their corresponding
LEDs were uniformly distributed along a certain ring. The reconstructed aberrations
are shown in Fig. 2.24.

When using 4 images, APIC did not obtain a good aberration estimate. However,
we can see that when there were 6 NA-matching measurements, APIC successfully
reconstructed mild to moderately high aberrations (their phase standard deviation
is below 0.8𝜋). However, residual aberration exists in the reconstructed aberration
under severe aberrations (phase standard deviation exceeds 1.5𝜋), as depicted in
the corresponding error map in Fig. 2.24. When the number of NA-matching
measurements increased to 8, we see that there are no residual aberrations in APIC’s
reconstructions regardless of the severeness of the aberration. In general, 6 to 8 NA-
matching measurements would be sufficient for generating an accurate aberration
estimation in most cases.
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Figure 2.24: Recovered aberration and the number of NA-matching measurements.
The ground truths in the simulation are shown on top of each group. The number
of NA-matching measurements used in the simulation are dented on the far left size
of the image. In addition to the reconstructed aberration, we also included the error
map between this reconstructed aberration and the ground truth. This error map is
placed next to the APIC’s reconstruction and is highlighted by a black dashed circle.

Inaccurate illumination angle estimates
We simulated errors in the angle calibration to see how APIC performs under
different levels of calibration error. In our simulation, random uniformly distributed
estimation error was introduced to the actual illumination angles. For different
levels of severeness of the calibration errors, the maximal amount of error in our
simulation was proportional to the maximal acceptance angle of the imaging system
(that is, the error is proportional to 𝑘𝑁𝐴 of the system). As the illumination angle
was converted to the spatial frequency vector in practice, this maximum error is
denoted by the ratio of the error to the k-vector of the maximal acceptance angle. In
our simulation, we assumed the estimate of the NA-matching angle was no larger
than the acceptance angle of the imaging system.

From the simulation results, we can see that APIC performance was well-maintained
until the error reached 9%. Beyond that, the reconstructions showed obvious arti-
facts. This indicates that the alignment requirement of our proposed APIC is fairly
relaxed. In other words, APIC is tolerant to the LED position errors to a good
extent.
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Figure 2.25: APIC reconstruction with different levels of angle error. In this simu-
lation, we added randomly generated angle errors to the actual illumination angles
and fed this inaccurate angle estimate to APIC when performing the reconstruction.
The numbers on top of each group are the maximal possible error in our simula-
tion. If the maximal possible error is denoted by 𝛾, the simulated angle errors for
both the horizontal and vertical direction were uniformly sampled in [−𝛾, 𝛾]. For
each NA-matching measurement, we forced the corresponding angle estimate to be
smaller than the acceptance angle of the system by tuning the sign of this randomly
generated error.
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C h a p t e r 3

ULTRASOUND AIDED IMAGING THROUGH SCATTERING:
AN APPLICATION

This chapter is adapted from the manuscript, Liu Y., Cao, R., Xu, J., Ruan, H.,
and Yang, C. “Imaging through highly scattering human skulls with ultrasound-
modulated optical tomography,” Optics Letters 45, 2973–2976 (2020).

In this chapter, we start to deal with scattering. We showed in Fig. 1.13 that the
original focus will be destroyed in the presence of scattering medium. Thus, it is
of great difficulty to reconstruct the image we want without extra designs in the
imaging system. Furthermore, in the case of scattering, the CTF is no longer a good
tool to model the image process because points at different locations are typically
imaged to completely different patterns when interacting with a scattering medium.
As a result, some other types of methods should be used in counteracting scattering
and obtaining images of the sample of interest.

To see what are the possible ways to achieve such goal, we dig into the mechanism of
how scattering destroys a conventional focus and try to find some ways from there.
As the ramdom phasor sum is the cause of the speckle patterns (Fig. 1.12), we want
to minimize this random phase modulation introduced by the scattering medium to
“reduce” scattering. Given a certain sample, the difference in the refractive index
is a slow varying function in the visible light regime. Moreover, it turns out that
the absolute path length difference is approximately the same for all visible light
for most samples. For light with a longer wavelength, the phase change induced by
the same path length difference is thus much smaller compared with that of a much
shorter wavelength: Let the path length difference be Δ𝑑 and the wavelength be 𝜆,
the phase change Δ𝜑 induced by the path length difference is given by

Δ𝜑 = 2𝜋
Δ𝑑

𝜆
. (3.1)

Given a fixed path length difference, a larger wavelength then corresponds to a
smaller phase change. This intuition applies to other waves in general. Thus, to
mitigate the negative effect of scattering, one straightforward idea is to use waves
of much longer wavelengths compared with light. When the wavelength is much
larger than the path length difference, the induced phase change becomes negligible
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and scattering effect can be omitted in analyzing this wave. Based on this idea, we
will explore the usage of sound in optical imaging in the following section.

3.1 Background on offaxis hologram and UOT
As the absorption properties of a sample in the visible light regime and the ultrasonic
regime are different, direct usages of the ultrasound will not carry information of
optical properties. Thus, a way to use ultrasound in an optical imaging system
is desired. There are two prominent ways of introducing ultrasound for visible
light: light can induce sound waves and the ultrasound is able to modulate light’s
frequency. When a material, say tissue, absorbs a pulsed light, the material is heated
up first and then cooled down to normal temperature. This thermal change results in
the expansion and contraction of the material and ultimately produces an ultrasonic
wave. This light induced sound process is called the photoacoustic effect. We note
that there are some other mechanisms in the generating of sound and interesting
readers can refer to literature for more information. Previous literature also show
that ultrasound could induce a frequency change in light: when interacting with the
ultrasound, the frequency of the light changes according to the ultrasonic frequency.
By utilizing this frequency change, we can filter out the light that does not interact
with ultrasound.

For photoacoustic effect, the induced sound wave should be detected by sound
transducers, which convert the sound signal to the electric signal that can then be
recorded (in other words, these are “sound detectors”). For ultrasound induced
frequency change, we can still use a light detector as the ultrasound modulates the
light and the information is carried by the light. Two representative methods using
photoacoustic and ultrasound modulation in optical imaging are photoacoutstic
tomography (PAT) [23] and ultrasound-modulated optical tomography (UOT) [24],
respectively. In this section, we focus on the latter as it is easier to integrate in most
optical imaging system.

As light detectors only capture the intensity of the light field and its phase and
frequency information cannot be directly measured, we need to find a way to ex-
tract the frequency shifted light. Here, we demonstrate one popular complex field
detection method: the offaxis hologram. We explained in Section 2.1 that a tilted
reference beam is used in generating the hologram, which enables complex field
reconstruction. Here, its detailed mechanism will be discussed. We know from Eq.
1.17 that when two different fields interfere, the recorded intensity varies based on
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the phase differences of two fields. This can be utilized to extract the complex field.
We will include the time-varying part in the following section as we are going to
deal with multiple frequencies. Without loss of generality, we assume the reference
field to be a plane wave with phase offset zero and let its tilt be k, we can write the
reference field 𝐸𝑟 (x, 𝑡) as

𝐸𝑟 (x, 𝑡) = 𝐴𝑟𝑒
𝑖(k·x−𝜔𝑡) . (3.2)

Let the ultrasound modulated field be 𝐸𝑚 (x, 𝑡) given by

𝐸𝑚 (x, 𝑡) = 𝐴𝑚 (x)𝑒𝑖(𝜙x−𝜔𝑡) , (3.3)

and let the light that does not interact with ultrasound be 𝐸𝑏 (x, 𝑡) with a frequency
𝜔′ that is shifted from 𝜔 (𝜔′ ≠ 𝜔)

𝐸𝑏 (x, 𝑡) = 𝐴𝑏 (x)𝑒𝑖(𝜙
′
x−𝜔′𝑡) . (3.4)

We first look at the time-varing intensity of the interference of 𝐸𝑚 (x, 𝑡) and 𝐸𝑏 (x, 𝑡),
which is given by

𝐼𝑚𝑏 (x, 𝑡) =
��𝐸𝑚 (x, 𝑡) + 𝐸𝑏 (x, 𝑡)

��2 =
��𝐴𝑚 (x)𝑒𝑖(𝜙x−𝜔𝑡) + 𝐴𝑏 (x)𝑒𝑖(𝜙

′
x−𝜔′𝑡) ��2

= 𝐴2
𝑚 (x) + 𝐴2

𝑏 (x) + 2𝐴𝑚 (x)𝐴𝑏 (x) cos
(
𝜙x − 𝜙′x − 𝜔𝑡 + 𝜔′𝑡

)
. (3.5)

As the ultrasound induced frequency shift is also much bigger than the response of
the detector, the detector captures the time-averaged intensity

E𝑡
[
𝐼𝑚𝑏 (x)

]
= 𝐴2

𝑚 (x) + 𝐴2
𝑏 (x) + 2𝐴𝑚 (x)𝐴𝑏 (x)E𝑡

[
cos

(
𝜙x − 𝜙′x − 𝜔𝑡 + 𝜔′𝑡

) ]
= 𝐴2

𝑚 (x) + 𝐴2
𝑏 (x). (3.6)

where E(·) denotes the expectation and its subscript 𝑡 denotes the expectation is
taken with respect to time. Thus, the detected intensity is just the sum of the
intensity of the two fields. Note that this applies to the reference field as well
because the modulated field exhibits the most general form of a complex light field.
This suggests two fields with different frequencies “do not” interfere with each other
when a detector is slower than their frequency difference.

Following the same calculation, the interfered field of the reference and the modu-
lated field is given by

𝐼𝑟𝑚 (x, 𝑡) = 𝐴2
𝑟 + 𝐴2

𝑚 (x) + 2𝐴𝑟𝐴𝑚 (x) cos
(
k · x − 𝜙x

)
. (3.7)
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The cross part can be rewritten as

2𝐴𝑟𝐴𝑚 (x) cos
(
k · x − 𝜙x

)
= 𝐴𝑟𝐴𝑚 (x)𝑒𝑖(k·x−𝜙x) + 𝐴𝑟𝐴𝑚 (x)𝑒−𝑖(k·x−𝜙x) . (3.8)

We can then apply the shift property of Fourier transform (Table 1.1) to conclude that
this cross term shifts the (scaled) Fourier transform of 𝐴𝑚 (x)𝑒𝑖𝜙𝑥 by±k in the spatial
frequency domain. If the shift is larger than the maximal spatial frequency of both
𝐴2
𝑚 (x) and 𝐴2

𝑏
(x), the cross term can be extracted from the intensity measurement, as

shown in Fig. 3.1. This is the mathematical intuition behind the offaxis hologram.
As the sample is typically imaged using an imaging system, the sampled light
field (including light does not interact with the ultrasound and light with ultrasound
modulation) has a maximal spatial frequency that is limited by the NA of this imaging
system. Thus, we can build an imaging system that satisfies the aforementioned
requirement and reconstruct the complex field from the intensity measurement.
Figure 3.1 includes a typical intensity measurement and its Fourier transform in
offaxis holography.

Figure 3.1: Reconstruction in offaxis hologram. When a proper tilting angle is
chosen for the reference field, the two cross terms are away from the central circle
in the spatial frequency domain. As we showed that this cross term is a scaled
version of the ultrasound modulated field, it can be extracted to reconstruct the
modulated light field. The intensity images correspond to the unmodulated light
and the ultrasound modulated light are shown in the bottom left of this figure.

Building upon this method, the light field whose frequency is shifted by the ultra-
sound can be extracted from an intensity measurement. This technique can be used
in detecting the frequency-shifted light in UOT. In UOT, the ultrasound is focused
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on the sample and raster scanned over the sample. As only light interacting with the
ultrasound is extracted, the energy of the extracted light reflects how absorptive the
sample at the ultrasound focus is. Thus, by scanning the ultrasound focus across the
sample, the sample’s optical absorption map can be obtained. Using UOT, optical
properties can be extracted with a resolution that is determined by the ultrasound
focus.

UOT has been utilized in many scattering related applications because sound is
inherent less sensitive to scattering compared with light. However, application of
UOT in ultrahigh scattering regime remains largely unexplored. Here we investigate
the possibility of imaging through highly scattering human skulls with UOT. We
used a single-shot off-axis holography method [25] to detect the UOT signal, which
to our knowledge has not been demonstrated in the UOT field. The large pixel count
of a camera enables parallel detection of multiple speckle grains within a single
shot, which is crucial for this type of applications where the signal-to-noise ratio is
low and the speckle decorrelates rapidly due to physiological motions such as blood
flow [26–28]. In previous work [29], multiple frames were recorded to reconstruct
the UOT signal, making the method vulnerable to the rapid speckle decorrelation
in living tissue. Single-frame UOT measurements have previously been reported
[30–32]. However, some method requires special lock-in cameras in which each
pixel is an analog lock-in detector [31–33]. Although off-axis holography has been
used in heterodyne holography based UOT, multiple frames were required to filter
out the local oscillator beam [34].

3.2 UOT results
In our experiments, we first evaluated the extent by which a human skull distorts
the ultrasonic field. A hydrophone (HNR-0500, ONDA) was used to measure the
ultrasonic field distribution on the focal plane of a spherically focused single-element
ultrasonic transducer (A303S, Olympus; central frequency = 1 MHz, focal length =
15.2 mm, element diameter = 12.7 mm) with and without the presence of a human
skull (3-5 mm thick, human parietal bone, SHN-46, Skulls Unlimited International
Inc, transport mean free path is approximately 1 mm). Figure 3.2a shows a photo
of the setup and Figure 3.2b shows the normalized ultrasonic field distribution. The
full width at half maximum (FWHM) focal spot size was measured to be 3 mm when
the skull was absent. When the skull was present between the transducer and the
hydrophone, depending on the location and orientation of the ultrasonic transducer
relative to the skull, the FWHM focal spot size varied from 3 mm to 6 mm, and the
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ultrasonic pressure at the focus was attenuated to 10%-20%. Although distorted and
broadened, we observed that a focus was still achievable through the human skull
for 1 MHz ultrasound — a result that is consistent with previous literature findings
[30].

a b

Ultrasonic
transducer

Hydrophone

Human
skull

w/o skull

3 mm

1

0

Figure 3.2: Spatial varying ultrasound foci. We measured the ultrasonic field distri-
bution on the focal plane of a spherically focused transducer, with and without the
presence of a human skull. a, Photo of the experimental setup. b, The measured
ultrasonic field distribution (normalized) at different lateral locations of the ultra-
sonic transducer relative to the fixed human skull. Note that the bone thickness is
not uniform across the skull.

Next, we built a camera based UOT system (schematically shown in Fig. 3.3)
to demonstrate the feasibility of imaging an absorptive object buried in between
two pieces of highly scattering human skull. The output of a continuous-wave
laser (671 nm, MSL-FN-671-S, CNI Optoelectronics Tech Co.; ∼35 mW on the
sample) passed through an optical isolator, a variable attenuator composed of a
half-wave plate (HWP1) and a polarizing beamsplitter (PBS1), before it was split
into a reference beam (R) and a sample beam (S) by a polarizing beamsplitter
(PBS2). After passing through a neutral density filter (ND), the reference beam
was expanded to a diameter of 1 inch by two lenses (L1 and L2), and reflected by a
90:10 (T:R) non-polarizing beamsplitter (BS) before it illuminated a camera sensor.
The sample beam passed through a half-wave plate (HWP3), two acousto-optic
modulators (AOM1 and AOM2, which shifted the frequency of the sample beam
by 50 MHz and -49 MHz sequentially), and a beam expander, before it illuminated
the human skulls. An ultrasonic transducer focused 1 MHz ultrasound through the
skull and the focal pressure is ∼0.34 MPa. A portion of the light passing through the
ultrasonic focus was tagged by the ultrasound and its frequency was shifted to the
same frequency as the reference beam. The ultrasonically tagged light and untagged
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light passed through an absorptive object (a strip of 2 mm wide and 3 cm long
black tape, transmittance < 0.1%, attached on the skull), a second human skull (1.5
cm away from the first skull), a 4f system (with an iris in the pupil plane to adjust
the speckle size), a polarizer, and the BS before they interfered with the reference
beam (45° with respect to the x and z axes) and detected by a camera (pco.edge 5.5,
PCO-TECH; global shutter, 2560 × 2160 pixels, 6.5 µm pixel size). Because the
ultrasonically tagged light had the same frequency as that of the reference beam,
their interference pattern was stable on the camera. In contrast, the interference
pattern formed by the untagged light and the reference beam was a 1 MHz beat, and
thus was averaged out during the camera exposure time (5 ms).
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Figure 3.3: Schematic of the UOT setup. Abbreviations: AO, absorptive object;
AOM, acousto-optic modulator; BB, beam block; BS, non-polarizing beamsplitter
(90% transmission, 10% reflection); CAM, camera; HWP, half-wave plate; HS,
human skull; ID, iris diaphragm; ISO, isolator; L, lens; M, mirror; ND, neutral
density filter; P, polarizer; PBS, polarizing beamsplitter; R, reference beam; S,
sample beam; UT, ultrasonic transducer; WT, water tank. The components in the
water tank are enclosed in a dashed box, and a photo is shown.

To obtain an image of the absorptive object, we scanned the ultrasonic focus with
respect to the object along the x direction (see the labeling of axes in Fig. 3.3) and
measured the UOT signal at each scanning position. By plotting the normalized
UOT signal as a function of the ultrasonic focus position, we obtained an image
of the object, which is shown in the blue solid curve in Fig. 3.4. The dip of the
curve at ∼6 mm position manifests the object, because the object absorbed some of
the light. When we removed the object and repeated the measurement (see the red
dotted curve in Fig. 3.4), we did not observe a similar dip and the curve is relatively
flat, showing that the image contrast in the blue solid curve is mainly caused by the
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object, rather than the skull inhomogeneity.
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Figure 3.4: UOT signal as a function of the ultrasonic focus position. The blue
circles denote the signal we acquired with an absorptive object (a black slit in this
case), and the red squares denote the signal without the object. The blue solid curve
denotes the fitting to the experimental data with the forward model shown in Eq.
3.10. Each data point is an average of four measurements and the associated error
bar represents the standard deviation.

In UOT, the point scanning strategy is used to form the final absorption map. As
such, the images acquired at different times do not interfere with each other. Thus,
this system obeys a slightly different model compared with the coherent imaging
model in Eqs. 1.11 and 1.12. In incoherent case, each point on the sample is ought
to be mapped to another “point” and the intensity is directly summed up. This is
to say, the system acts on the intensity of the sample instead of the complex field.
Based on a similar discussion in establishing the CTF, we have the following forward
model for incoherent imaging

𝐼 (x) = F −1 [�̂� (k)𝐻𝑖 (k)
]
(x), (3.9)

where 𝐼 is the acquired intensity, x describes the scanning location, k is the spatial
frequency vector, �̂� (k) denotes the Fourier transform of the sample’s absorption
map𝑂 (x) and𝐻𝑖 (k) is a function that is similar to CTF but instead used in incoherent
imaging. We call function 𝐻𝑖 (k) the optical transfer function and its inverse Fourier
transform the point transfer function (PSF). In terms of the PSF, the imaging system
can be modeled by

𝐼 (x) = 𝑂 (x) ∗ ℎ(x) (3.10)
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where ∗ denotes convolution, 𝑂 (x) represents the object and can be modeled by a
rectangular function with a width of 2 mm in our experiment, and ℎ B F −1(𝐻𝑖)
is the PSF of the imaging system. We note that the PSF in our experiment can be
modeled by a Gaussian function with a FWHM size related to the system resolution
determined by the ultrasonic frequency, numerical aperture, and skull distortion.
By fitting the experimental data with the imaging model (see the blue solid curve
in Fig. 3.4), the FWHM system resolution is found to be 4.1 mm, which is within
the normal range considering the skull induced distortion of the PSF (see Fig. 3.2).
Misalignment of the ultrasonic focus position with respect to the object along the y
direction also degrades the measured lateral resolution.

3.3 Discussion on UOT for imaging through scattering medium
In this work, we use a hybrid technology combining light and sound to image through
highly scattering human skulls. Our method images optical contrast at depths, with
ultrasound determined spatial resolution. Therefore, it can achieve a higher spatial
resolution than that of diffuse optical tomography [26]. Currently, the resolution
along the acoustic axis direction is poor, because we used a continuous-wave (cw)
laser (and thus a long burst of ultrasound) in this experiment. The axial resolution
can be improved by using a pulsed laser and a single cycle of ultrasonic pulse [35].
This can also improve the lateral resolution and image contrast because the tagging
volume is much bigger in the cw case and the beam widths at out-of-focus planes
are larger than that at the focal plane. The dip in Fig. 3.4 is caused by both the
absorption of tagged light and the absorption of the incident untagged light.

In our experiment, we used a single element transducer to generate an ultrasonic
focus through the human skull. Better focusing quality (e.g., smaller focal spot and
higher focus to background pressure ratio) can be achieved with a high numerical
aperture transducer array and acoustic wavefront shaping to correct for the skull
induced aberration (i.e., adjusting the delay of each element to let the fields associated
with different elements constructively interfere at the focus) [36]. Due to reciprocity
of acoustic waves, PAT can in theory achieve the same spatial resolution through
the skull as UOT. It would require PAT methods to correctly find the delay of
each transducer element. One way to find such delays in PAT would be to use a
computational model which incorporates the skull morphology and composition
information obtained from x-ray computed tomography (XCT) [37]. However,
the effectiveness of this method relies on precise registration of the two imaging
modalities involved (i.e., XCT and PAT) and the accuracy of the skull model.
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While this method works well for monkey skulls [37], its effectiveness for adult
human skulls remains to be demonstrated experimentally. In comparison, it may
potentially be easier to find such delays experimentally in UOT experiments. For
example, one can adjust the delay of each element until the nonlinear UOT signal or
the temperature rise at a target location monitored by magnetic resonance imaging
is maximized [38]. In such UOT experiments, we would also avoid the need to
perform registration with XCT — another source of potential error in PAT.

We demonstrate the feasibility of imaging an object through human skulls using
a transmission-mode system. Because human frontal bones and parietal bones
are highly curved, our experiment mimics the case where we illuminate from one
location of the bone and detect the transmitted light at an offset location from the
illumination site. For other non-curved bones, a reflection-mode system should be
used.

The speckle size on the camera and the angle of the reference beam should be
controlled so that the sideband in the Fourier space does not overlap with the zeroth
order, while the area of the sideband should be maximized to capture more speckles
to increase the signal. The speckle size on the camera was 5.6 pixels wide in our
experiment, and it can be further reduced to 4 pixels wide to increase the signal [39].
In addition, rather than using a circular iris, a rectangular iris can be employed to
maximally use the Fourier space (camera pixel count) in off-axis holography [34].

The off-axis holography based UOT detection method has a high sensitivity. Be-
cause interferometry is used to boost the signal above the detector noise, the detec-
tion is shot-noise limited. The expression of the SNR in offaxis based UOT can be
derived and written as (See Appendix A)

SNRcam =
UOTsignal√︁

Var(UOTsignal)
=

√
𝑁𝑃�̄�𝑇√︁

4�̄�𝑇 + 1
, (3.11)

where �̄�𝑇 is the average number of ultrasonically tagged photons per pixel and 𝑁𝑝

is the pixel count of the camera. In deriving Eq. 3.11, we assumed that the number
of reference beam photons per pixel equals the average number of untagged photons
per pixel, and both numbers are much larger than �̄�𝑇 , which is commonly achieved
in experiments. We also assumed a quantum efficiency of 1 and a rectangular iris is
employed. Assuming 𝑁𝑝 = 106, Equation 3.11 shows that the SNR is above one as
long as �̄�𝑇 > 1/

√︁
𝑁𝑝 = 10−3.
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C h a p t e r 4

NON-LINE-OF-SIGHT IMAGING USING ACTIVE FOCUSING

This chapter is adapted from the manuscript, Cao, R., de Goumoens, F., Blochet, B.,
Xu, J. and Yang, C. “High-resolution non-line-of-sight imaging employing active
focusing,” Nature Photonics 16, 462–468 (2022).

In the previous chapter, we investigated the use of ultrasound in optical imaging.
We can see the resolution of this method is primarily determined by the sound wave
and is poorer than most optical methods. In this chapter, we will instead try to
directly focus the light in the presence of the scattering medium. We demonstrate
our method on one interesting problem, namely the non-line-of-sight problem. The
setting of this problem and previous works on addressing this problem are presented
in the following section.

4.1 Introduction of the non-line-of-sight imaging problem
In this section, we introduce the non-line-of-sight (NLOS) imaging problem, which
aims to solve the scattering related image reconstruction problem [40]. We call
places where we can see without any obscure the line-of-sight range. The non-line-
of-sight, on contrary, refers to places where we cannot directly see. A typical NLOS
imaging scenario can be described as follows: The target object is hidden from an
observer’s direct line-of-sight view and only light from the non-line-of-sight path
is detected (see Fig. 4.1). Typically, the light is passively scattered by the wall and
then being detected. The scattering of the wall prevents the observer from collecting
a clear image of the object. Nevertheless, it has been shown that it is possible to
image the object with novel optical approaches, such as speckle correlations [41, 42],
time of flight (ToF) imaging [43–45], phasor field [46–48], and other computational
imaging methods [49]. Here, we will give a short introduction on the time-of-flight
method, as it is one of the most popular method for addressing the non-line-of-
sight problem. Please refer to the corresponding literature for the principle and
implementation of the several other techniques mentioned here.

In the ToF method, a fast time-resolved detector is used to record the traveling time
of light. This traveling time can then be converted to the distance. The core idea
is to use the differences in the distance (in other words, path length differences) to
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locate different points in a three-dimensional space, as shown in Fig. 4.1. This
principle can be seen from the following: When the laser is oriented to the wall, the
distance between the light spot on the wall and the laser is fully determined (and
controllable). Let the detector be imaged on a particular position on the wall, the
distance between this detector and the point that reroute the light into the detector
is also known. By extracting the distance light travels, we know 𝑅0 + 𝑅1. We can
then construct an ellipsoid using this known distance. For an unknown sample,
each point on the sample induces a different light path, which ultimately results
in a different photon arrival time. Thus, by changing the geometry of the system,
many more of those ellipsoids can be determined and then be used for the image
reconstruction.
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Figure 4.1: Concept of a time-of-flight system. In ToF system, a short pulse of
laser is shined onto the wall. The laser is scattered by the wall, bounced back by
the target (say, by a certain point), and then scattered by the wall for a second time.
The fast, time-resolved detector then collects the light and record the time of flight
on the light pulse. Use this information, we know the sum of distance 𝑅0 and 𝑅1.
Thus, with a single pair, we find an ellipsoid that contains the point on that target
that scatters the light. Using multiple pairs to generate multiple different ellipsoids,
we can uniquely identify the location of that point.

Although we can use ToF to image the hidden target in NLOS, there are several
issues with exiting methods. One big problem with existing NLOS methods without
using prior information of the wall is that they do not provide diffraction limited
resolution. These NLOS imaging methods that are implemented at a practical wall-
object distance (> 0.1 m) generally produce modest distance-to-resolution ratios
(approximately the inverse of the angular resolution in radian, the distance here is
the wall-to-object distance) — a factor of approximately 100 is the best number
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being reported so far [44–47]. Moreover, these methods do not directly counteract
scattering. Instead, they extract useful information from complex signals that usually
come with a big background.

These limitations motivate us to investigate ways to directly focus light on the hidden
object in the NLOS setting.

4.2 The wavefront shaping technique
Before we introduce our active focusing based NLOS imaging method, we will first
introduce the wavefront shaping technique, which aims to undo the random phase
modulation induced by a scattering sample [50–63].

We know from Chapter 1 that the original incident wavefront is destroyed after
interacting with a scattering medium (Figs. 1.4 and 4.2a). To generate a focus in
the presence of scattering, we want to obtain a focusing wavefront after the light
interacts with the scattering medium. This is what wavefront shaping can do: it
reshapes the wavefront of an arbitrary optical system, including one with scattering
media.

scatters

incident wave
Without wavefront shaping

scattered wave

With wavefront shaping

scatters
SLM

incident wave

shaped wave

scatters

scattered wave
Find wavefront solution

emitted wave
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Figure 4.2: Principle of wavefront shaping. a, Insert a scattering medium in a
focusing beam. Due to the presence of the scattering medium, the original spherical
wavefront is destroyed. b The scattered wavefront emitted by a point source. Similar
to what happens to a focusing beam, the emitted wavefront from a point source is
modulated by the scattering medium and the modulated wavefront does not possess
a regular shape. c, Employ wavefront shaping to reproduce the spherical wavefront
after interacting with the scattering medium. If we put the scattered wavefront of a
point source shown in b back to the scattering medium, the light should in principle
trace back to a point. Thus, if there is a way to find the scattered wavefront of a
point source, we can shape the wavefront accordingly so that the reshaped wavefront
is transformed into a focusing wave when interacting with the scattering medium.
SLM: spatial light modulator.

Wavefront shaping is developed based on optical reciprocity: if a light ray passes
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through a fixed linear, non-magnetic optical system and shows up at point 𝑌 , then
it will travel back along the same trajectory if we reverse the light at point 𝑌 .
This principle also applies to the wavefront of light. Let us first assume we know
the scattered wavefront of the light emitted by a point source and modulated by a
scattering medium (Fig. 4.2b). Then, if we reverse the scattered light, the reserved
light field should be transformed back to the original spherical wave (with the
opposite propagating direction) when it interacts with the same scattering medium.
Thus, if we use a spatial light modulator (SLM) to reshape the initial incident wave in
Fig. 4.2a to the scattered wavefront from a point source, the engineering wavefront
should now produce a focus when interacting with the scattering medium, as shown
in Fig. 4.2c.

To find the “best” wavefront, we can measure the scattering properties of the random
medium. If we know the phase modulation the scattering medium imposes on
the entire space, we can use that to infer the desired wavefront. In wavefront
shaping field, we use “transmission matrix” to characterize the properties of a
scattering medium and several transmission matrix based approaches demonstrated
the feasibility of focus generation through a scattering medium [53–55].

Another approach is to directly find the scattered wavefront of the point source shown
in Fig. 4.2b, which is one of the most fundamental thing in guidestar based wavefront
shaping [58–63]. In the past few decades, several methods in generating this desired
point source (which is called “guidestar” in wavefront shaping) were proposed. For
a single fluorescence guidestar, we can find the wavefront that leads to a focused
spot by maximizing the fluorescence signal. We can also use the ultrasound as
the guidestar: light interacting with the ultrasound focus will be frequency-shifted
and the frequency modulated wavefront should trace back to the ultrasonic focus.
Other mechanisms in extracting the desired focusing wavefront are also explored
and interesting readers can refer to literature for their detailed implementation [59].

We note that there are prior wavefront shaping based NLOS imaging works that
involve measuring the wall’s wavefront scattering characteristics prior to inserting
a hidden object [64, 65]. One work [64] uses a point source as the initial guidestar,
while the other work [65] uses a camera as a guidestar proxy. Spatial light modulators
are used to correct the scattered wavefront and a linear phase ramp is applied to raster-
scan the generated focus [65–67]. These works assume the scattering properties are
known, which is not a practical assumption in a general NLOS imaging problem.
Thus, we need to develop a method that is applicable in a general NLOS setting.
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4.3 Introduction and principle of UNCOVER
With the benefit of wavefront shaping, we can in principle use wavefront shaping to
solve the aforementioned NLOS imaging issues. However, the straight translation
of wavefront shaping technology for NLOS imaging is infeasible in a general NLOS
setting as we have no access to hidden target’s side and thus cannot implement a
guidestar on the target. Thus, ways to “find” a guidestar in a general NLOS setting
are needed.

Here, we introduce a new wavefront shaping method, termed Unseen Non-line-of-
sight Casted Optical aperture Visibility Enhanced Return (UNCOVER) focusing.
UNCOVER uses the hidden object itself as the guidestar and generates a near-
diffraction-limited focus that is substantially smaller than the object, which can
be raster-scanned to image the object (with its actual 3D coordinates remaining
unknown). We note that there are prior wavefront shaping works that can produce
a focus that is smaller than the guidestar [61–63], UNCOVER differs from these
methods in that it does not require direct modulations (such as ultrasonic modulation)
on the object. Thus, it is well suited for the NLOS settings.

In UNCOVER, we measured the phase variation induced by the wall on the reflected
light, and engineer a wavefront that focuses at the target when reflecting off the wall.
Unlike general wavefront shaping methods, UNCOVER uses the fact that the wall
is a 2D thin scattering object. By imaging the wavefront onto the wall, the angular
aperture of the illumination from the wall to the object can be controlled in the
wavefront shaping process. Through this process, UNCOVER is able to generate a
tight optical focus (smaller than the hidden object) at the object.

An illustration of the UNCOVER system is shown in Fig. 4.3. The system is
optically configured so that the spatial light modulator (SLM), the adjustable input
pupil (implemented with a digital micro-mirror device, DMD, in our experiment)
and the wall are an image-forming conjugate plane set. The light transmitted through
the SLM is imaged onto the wall and its diffuse reflection illuminates the object.
The return light from the object scatters off the wall once again. This return light
is not wavefront-shaped and is diffusely collected by a detector (see Fig. 4.3) —
we can reasonably assume that the detected signal is proportional to the total light
power reflected by the object.

In UNCOVER, our goal is to use the SLM and DMD to project an engineered
wavefront that can counter the spatial varying phase shift associated with reflection
from the wall towards the object. The reflection off the wall will render a tight
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Figure 4.3: Concept of UNCOVER’s system setup. A spatial light modulator (SLM)
is imaged onto the wall and modulates the transmitted wavefront. A adjustable
pupil (implemented with a digital micromirror device, DMD) is used to control
the illuminated area (aperture) on the wall. a, UNCOVER firstly optimizes the
wavefront transmitted by a small pupil (corresponds to a sub-aperture on the wall)
to focus light onto the target. Optimal wavefront is obtained by maximizing the
feedback signal. Size of the sub-aperture is chosen to be small enough so that the
diffraction-limited focus generated by this sub-aperture is substantially larger than
the object itself (nominally by a factor of 2). We repeat the process for a sequence
of sub-apertures. The optimized wavefront for each sub-aperture is then treated as
a macro-mode. b, Next, we select a pair of adjacent sub-apertures and adjust the
(relative) phase offset between their macro-modes to maximize reflection from the
object. The optimized pair create a diffraction-limited focus that is approximately
the size of the object itself. This process is repeated for all sub-aperture pairs and
the optimal phase mask is obtained when this process finishes. c, By transmitting
light through all the sub-apertures simultaneously (i.e., through the full aperture)
with the optimized phase mask, a sharp, diffraction-limited focus is generated at the
“center” of the object. This final focus is significantly smaller than the object and is
raster scanned to obtain an image of the hidden object. The scales and angles shown
in the illustration are different from our actual implementation.

and scannable optical focus at the object where the size of the focus is substantially
smaller than the object itself. From optical geometry, we expect that the achievable
focus spot size is related to the subtended illumination angular aperture at the wall,
which depends on the magnification power of the imaging system, the distance
between the wall and the hidden object, and the pixel size of the SLM/DMD. As
the input pupil and the wall are image-forming conjugate planes, we can control the
achievable spot size by controlling the aperture size on the wall. If the object is too
large and it is unable to achieve the required de-magnification power in practice,
gating methods can be utilized (Section 4.6). A fully opened pupil (corresponds
to full aperture) in combination with the correct pattern displayed on the SLM
should render a diffraction-limited focal spot on the object, as shown in Fig. 4.3c.
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Mathematically, the relationship between the full aperture size at the wall and the
focal spot size (characterized by its full width at half maximum, FWHM) is equal to
𝜆𝑑

𝑠
, where 𝑠 is the lateral size of the full aperture, 𝜆 the wavelength of the light, and

𝑑 the distance from the wall to the target. By leveraging the wall’s optical memory
effect [68] and superposing a suitable spatial phase ramp on the SLM phase pattern,
we should be able to scan the focal spot across the object and its surrounding (Fig.
4.4). The determination of the correct SLM phase pattern is the central goal of
UNCOVER. This is accomplished in UNCOVER through a 3-step process. In the
following discussion, the (sub-) aperture refers to the illuminated area on the wall.

In Step 1, we partition the full aperture into 𝑄 sub-apertures. We select the size of
the projected sub-apertures on the wall so that two adjacent, optimized sub-apertures
would render a diffraction-limited focal spot at the object that is considerably larger
than the object’s size for the correct SLM phase pattern (the reason will become
clear later). That is, one optimized sub-aperture would render a diffraction-limited
spot that is substantially larger than the object itself (nominally by a factor of 2
laterally). In this case, it can be proven that the hidden object can be treated as a
point (detailed requirement and its derivation can be found in the second part of
Section 4.6).

In Step 2, we adjust the DMD to project one such sub-aperture. Our goal in this step
is to find the correct SLM phase pattern which focuses light onto the object. We
further note that the SLM and the DMD are part of the same image-forming conjugate
set. To find the correct wavefront solution for one of the sub-apertures, phases of a
relatively small number of SLM pixels are modulated such that the feedback signal
measured by the detector (Fig. 4.3) is maximized. The determination of the right
SLM phase pattern follows a fairly standard wavefront shaping strategy. In our
experiments, we used a Hadamard pattern based search process [53, 55, 56, 59, 69],
but we can expect most other feedback-based wavefront shaping strategies to work
as well. We repeat this procedure for each of the 𝑄 sub-apertures. At the end of
Step 2, we can treat the determined SLM phase solution for each sub-aperture as a
macro-mode. Each macro-mode should focus light at the object with the focal spot
size that is diffraction limited (approximately twice the size of the object itself).

In Step 3, we need to determine the correct phase relationship between the sub-
aperture macro-modes to synthesize a full aperture, which generates a diffraction-
limited focal spot at the object. To accomplish this, we start by opening up 2 adjacent
sub-apertures and displaying their corresponding phase patterns on the SLM. One
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Figure 4.4: Step by step procedure for UNCOVER. Pupil segmentation is performed
in step 1 such that the focus generated by two adjacent sub-apertures is smaller than
the object. In step 2, phase solutions for each sub-aperture are optimized individually
using iterative feedback-based wavefront shaping methods. In step 3, one of the sub-
apertures (sub-aperture 𝑚 in the figure) are used as the reference and a global phase
offset is added to the other adjacent sub-aperture (sub-aperture 𝑡). By maximizing
the feedback signal, the phase solution 𝑃𝑡 for sub-aperture 𝑡 is updated by adding the
best phase offset Φ𝑡

best. Here, 𝑄, 𝑁 , 𝑖, 𝑚 and 𝑡 are integers. 𝑃𝑘 denotes phase mask
for the 𝑘-th sub-aperture, which is a 𝑁-by-𝑁 matrix. Once the focus is generated on
the target, such focus can be raster scanned, with the help of tilt-tilt memory effect,
in the surrounding of the object to generate an image.

of these patterns will serve as the reference and we will adjust the global phase
offset of the other to maximize the return feedback signal from the object. We note
here that the optimized pair should now render a diffraction-limited focal spot that
is approximately the size of the object itself. More importantly, this focal spot is
definitively no smaller than the target so the target can still be treated as a point.
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Having found the correct global phase relationship for these two sub-apertures, we
will then repeat the process with the next adjacent sub-apertures, and so forth. In
our experiments, we perform this global phase determination process by selecting
sub-apertures in a spiral sequence as shown in step 3 of Fig. 4.4. This process is akin
to the standard feedback-base wavefront shaping procedure, except we are treating
each sub-aperture as a macro-mode and simply adjusting each sub-aperture’s global
phase using pairs consisting of two adjacent sub-apertures, which confine the size of
the focus in the optimization. We do not conduct this optimization for sub-apertures
that are not adjacent to each other.

At the completion of Step 3, light from all sub-apertures should interfere construc-
tively at the center of mass of the object’s reflection function (derivations can be
found in the second part of Section 4.6). By using the pairs in UNCOVER, we can
find the relative phase offsets so that light from all sub-apertures will constructively
interfere at the center of the target. Applying this optimal phase offset and using
the full aperture, the rendered focus should be significantly smaller than the object.
This ability to use the object as the guidestar and yet render a smaller-than-object
and near-diffraction-limited focus at the object is a key innovation in UNCOVER.
The focal spot is then scanned across the object by imposing a spatial phase ramp
on the global phase pattern found in Step 2. The extent by which we can shift the
focal spot is determined by the optical memory effect range associated with the wall
and is related to the wall roughness [67, 68].

4.4 Experiment results of UNCOVER
Our proof-of-concept UNCOVER experiment setup is shown in Fig. 4.5. A
continuous-wave laser diode (DJ532-40, Thorlabs) is used as the light source. The
laser beam passes through two mirrors and a half-wave plate (HWP) and is coupled
into a polarization maintaining fiber (PM fiber) for spatial filtering. The half-wave
plate is used to align the polarization of the laser to the fast axis of the PM fiber and
the mirrors are used to couple the light into the fiber. The filtered light exiting the
fiber is expanded to fully cover the active area of SLM (Pluto NIR II, phase only
SLM, Holoeye). The beamsplitter (BS) and the 4f system (depicted as L3 and L4
in Fig. 4.5) images the wavefront shaped light reflected by the SLM onto the DMD
(DLP lightcrafter 6500 evaluation module, Texas Instrument). The zoom lens (L3;
Canon EF-S 18-55 mm) is used to match the different pixel sizes on SLM and DMD.
DMD is pixel-to-pixel conjugated to SLM and used to select the sub-aperture to use
in the optimization step. A mirror and a second 4f system then project the DMD
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reflection onto the wall. And the reflection from the wall finally impinges on the
object. In our experiment, we use a diffuse reflector (Thorlabs, DG10-1500-P01)
as the wall proxy. A photomultiplier tube (PMT, H9306-03, Hamamatsu) and a
condenser lens (Thorlabs, ACL50832U-A) are used to collect the light that returns
from the object by way of diffuse reflection from the wall. The floor is covered with
black papers to minimize the stray light and ensure the bright object is well-defined.
Signals from both DMD and PMT are recorded using a data acquisition card (DAQ,
PCI-MIO-16XE-10, National Instrument). After the UNCOVER wavefront opti-
mization has been completed, a neutral density filter (ND) is inserted prior to raster
scanning to prevent the light from saturating the PMT. The DMD’s modulation
determines the sub-apertures used in the optimization process. The number of sub-
apertures (𝑄) and number of independent modes (𝑁2) in each sub-aperture will be
specified for each experiment. The optimization process pipeline for UNCOVER
can be found in the first part of Section 4.6.
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Figure 4.5: System setup of UNCOVER. Light is spatially filtered using the po-
larization maintaining fiber (PM fiber) and then gets expanded. The spatial light
modulator (SLM) and digital micro-mirror device (DMD) are pixel-to-pixel conju-
gated using the 4f system consisted of L3 and L4. Then DMD is conjugated onto the
wall by another 4f system (L5 and L6). DMD’s spatial on-off modulation creates
different sub-apertures. BB: beam block, BS: beam splitter, DAQ: data acquisition
device, HWP: half-wave plate, L: lens, M: Mirrors, ND: neutral density filter, Obj:
object, and PMT: photomultiplier tube. In our experiment, SLM/DMD is projected
onto a reflective ground glass (wall proxy). Light passes through L6 is normal to the
wall surface and the angle between this incident light and the scattered light reaching
the target is around 32 degrees in our experiment. The object is also approximately
normal to the incident light. BB3 and BB4 are used to minimize the stray light in
our system. The floor is covered with black papers to ensure the bright object is
well-defined and to minimize the stray light.

After we determine the correct wavefront solution for each sub-aperture (Step 2), we
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would then use sub-aperture pairs to find the phase offset among all the sub-apertures.
The pre-defined sub-aperture pairs are loaded to DMD before the optimization to
improve speed. We then update the relative phase between the pair in use. We
repeat this process until all the relative phases are optimized. (Fig. 4.9) A tight
focus is then generated when we actuate the DMD for full aperture transmission.
We can then impose a linear spatial phase ramp on the SLM wavefront solution
to raster scan the focus at the object. The scan range is determined by the tilt-tilt
memory effect supported by the wall. In our experiments, our wall proxy has a
tilt-tilt memory effect range of 2◦, where the angle is measured when the intensity
of the focus drops by half while using the largest synthetic aperture.

The first experiment is shown in Fig. 4.6. An object target was created by placing a
patterned black mask (the nominal size of the target was 4 mm) on a diffuse reflector
(Thorlabs, DG10-1500-P01). The object was placed 0.3 m away from the wall.
The PMT was placed 0.35 m away from the wall. The object and the PMT’s direct
line of sight was blocked by an obstacle. The mean measurement time for each
feedback signal is 40 ms in Step 2. In this experiment, 𝑄 = 64 sub-apertures and
each with 𝑁2 = 64 independent modes were used. After performing the UNCOVER
optimization process, we were able to render a focus on the object (Fig. 4.6a3-c3).
We then raster scanned the focus across the object and measured the PMT signal
to render a UNCOVER image of the object. For each UNCOVER image pixel, we
measured the PMT signal for 100 ms.

In this experiment, the measured focal spot size (FWHM) at the object is 0.55
mm. This measurement was acquired by replacing the object with a camera. The
measured spot size is close to the diffraction limited spot size (∼ 0.35 mm in this
setting) — indicating that UNCOVER is indeed able to provide close to diffraction
limited focusing. Additionally, the distance-to-resolution ratio was determined to
be 550. For all three target shapes shown in Fig. 4.6, the measured focus spot
size was relatively unchanged. It is additionally worth noting that the spot size
is ∼ 7 times smaller than the targets — clearly demonstrating that UNCOVER is
capable of generating a focus smaller than the object and is thus able to support
imaging. The scanned UNCOVER images are shown in Fig. 4.6, demonstrating
good correspondence to the target shapes.

The peak-to-background ratio (PBR) of the focus was also measured for all three
shapes. The theoretical PBR should only scales as the number of SLM pixels used
by UNCOVER. In this experiment, the theoretical PBR should be equal to 3220.
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Figure 4.6: UNCOVER results using different targets. a1-c1, the ground truth of the
target. a2-c2, results of UNCOVER. The inserted figure on the lower left of a2-c2
is the focus in the dashed square of a3-c3, respectively. And it is adapted to have
the same scale with respect to the scanned image. a3-c3, the image of the optimized
foci. The measured peak-to-background ratio (PBR) is shown as well. The result
is acquired using 𝑄 = 64 sub-apertures, with 𝑁2 = 64 independent modes in each
sub-aperture. A square of 9 by 9 pixels on SLM is treated as one mode. The total
illuminated area is a square with side length of approximately 0.35 mm. Scale bars:
1 mm.

Interestingly, our measured PBR for the three shapes varies significantly, ranging
from 480 to 1030. This variation and discrepancy from the theoretical prediction
is attributable to the fact that our measurements are noisy. In future experiments,
this issue can be mitigated by using a higher power light source and/or by reducing
stray light. The degradation of our measured PBR due to noise is consistent with
our observation that our lowest measured PBR came from the experiment with
the H-shaped target. That target reflected the least light and, as such, gave us the
lowest SNR to work with. To study the PBR one can achieve under different initial
conditions, we performed additional simulations and the results can also be found
in Section 4.6.

As UNCOVER generates a scannable optical focus at the object, it is possible for us
to raster scan the generated focus beyond the object and image neighboring objects
within the range supported by the wall’s memory effect. This is potentially an
advantage for UNCOVER for imaging dim objects in the presence of bright objects.
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Bright objects and their associated higher noise can overwhelm the contributions
of dimmer objects in standard NLOS method, leading to a diminished imaging
dynamic range during image rendering. UNCOVER’s ability to focus light on a
dim object should allow us to exclude contributions from bright objects when we
are attempting to image a dim object.
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Figure 4.7: UNCOVER result of object with large reflectance variation. a1, the
raw image from UNCOVER. Inset on the upper right of a1 is adapted such that the
image and the focus are on the same scale. a2, result with the maximum signal being
capped at 0.07 to make the ‘T’ shape object more visible. b, the focus produced
by UNCOVER. c, the speckle pattern before optimization. d, the target used in this
experiment. The brighter square type object is 0.55 m away from the wall. An OD
= 0.6 ND filter is placed in front of the ‘T’ shape object, which reduces its reflection
coefficient to 6.3% when comparing with its original reflection coefficient. The
arrows in a2 and d show the resolved slot of the retaining ring. In this experiment,
a square of side length ≈ 0.61 mm is illuminated when using the full aperture.

To study this, we prepared a composite object consisting of a square target placed
next to the ‘T’ target. A ND filter was placed in front of the ‘T’ target so that the
diffuse reflection from it is 16 times weaker than the square target’s reflection. In
this experiment, the object was placed 0.55 m from the wall. The PMT is 0.5 m away
from the wall. Here, we used𝑄 = 196 sub-apertures each with 𝑁2 = 64 independent
modes to achieve a higher lateral resolution and a more uniform background. The
mean measurement time for generating one feedback signal in Step 2 is 600 ms.
For each UNCOVER image pixel, we measured the PMT signal for 400 ms. From
the result (Fig. 4.7 a1 and a2), the weaker target is clearly resolved in the scanned
image. In fact, the return signal from the weaker object is 2.5 times higher than the
null background. When both this ratio and the relative reflection difference between
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the weak and primary objects are taken into consideration, this implies the contrast
range of our system is ∼ 40. In terms of resolution performance, the measured
resolution here is 0.57 mm (FWHM) and the measured distance-to-resolution ratio
is 970 in this experiment (the theoretical limit is ∼ 1430 for this experiment).

UNCOVER’s ability to provide large contrast variation accommodation compares
well with the performance of the state-of-the-art ToF based NLOS method, in which
the intensity of the reconstruction artifact can be comparable to the primary object
[46].

4.5 Discussion on UNCOVER
We demonstrated that UNCOVER can be used to generate a scannable diffraction
limited focus that is significantly smaller than the target for NLOS imaging. UN-
COVER deviates significantly from standard NLOS method in that it noninvasively
forms a small scannable focus at the object.

A direct advantage of such an active focusing based NLOS imaging approach is
that it is capable of performing diffraction limited imaging. In our experiment, we
demonstrated a prototype system capable of generating a focus spot of size 0.57
mm at a distance of 0.55 m from the wall. This spot size compares favorably with
the theoretical limit of 0.37 mm. Additionally, we experimentally demonstrated a
distance-to-resolution ratio of 970 in our experiment. This performance specifica-
tion significantly exceeds the best reported distance-to-resolution ratio of ∼ 100 in
previous state-of-the-art NLOS experiments using no prior information of the wall
[44–47].

Our experiments also demonstrated that it is possible to redirect the UNCOVER
generated focus onto a dimmer object to image the dimmer object. In doing so,
we can reduce the return signal from the brighter object and, in turn, allow us
to better isolate the signal contribution from the dimmer object. Furthermore,
we demonstrated a contrast range of 40 in our experiments, which compares well
with standard NLOS methods which suffers from isolating signal contributions
from dimmer object in post-processing. Our demonstration experiments were not
optimized to maximize the image contrast dynamic range. In future experiments, it
would be interesting to explore the bounds of this range, as well as to formalize a
mathematical framework to understand its theoretical limit.

We note that our UNCOVER demonstration prototype was not optimized for speed.
The process of UNCOVER optimization in our experiments was very much limited
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by the low laser power and the slow refresh rate of the SLM. Finding the correct
wavefront solution to render a UNCOVER focus showed in Fig. 4.6 a2–c2 required a
total time of ∼ 40 minutes. Generating the UNCOVER image in Fig. 4.6 a3–c3 took
another 10 minutes. We expect this time can be significantly reduced by switching
to high power lasers and faster wavefront shaping methods, such as those based on
the use of DMDs, ferroelectric SLM, etc.

At first glance, it may appear that UNCOVER has violated one of the tenets of
wavefront shaping — it is not possible to generate a focal spot that is smaller than
the homogeneous guidestar/object [66] with linear feedback. UNCOVER overcomes
this limitation by novelly exploiting the fact that the wall is a 2D scattering object
and that it is possible to control the angular aperture on the wall itself. It is further
worth noting that the singular and well-behaved focused spot is generated at the
object reflection profile’s center-of-mass, even if that location is not reflective at all
(see Section 4.6).

UNCOVER’s field-of-view (or lateral scan range) is limited by the tilt-tilt optical
memory effect range of the wall. The wall proxy in our experiments afforded us
a fairly large memory effect range (2 degrees). At a wall-to-object distance of
0.55 m, this corresponds to a nominal FOV of 4 cm laterally. We caution that
this is a significant underestimation, as the focused peak can persist strongly (PBR
≫ 1) beyond several multiples of memory range using the model established by
Osnabrugge et. al [67]. We additionally note that a rougher wall surface would
provide a much narrower memory effect range (for example, 0.33 degrees for a piece
of paper) [64, 68] . This topic requires a more complete study as UNCOVER’s FOV
is a complex function of the memory effect range, initial focus’ PBR and hidden
targets’ reflection profile. We further note that the UNCOVER’s FOV can be
extended by optimizing for multiple foci at different locations, so that their total
field-of-view will provide a much large constitutive coverage. To generate multiple
foci, we may need to actively confine the spatial range of the photons that UNCOVER
selectively detected. In this context, ToF gating of photons may be quite useful as
a selection mechanism. Gating methods are also needed when there are multiple
large, bright objects, as discussed in Section 4.6.

The angular scattering profile of the wall only impacts UNCOVER in its ability
to collect photons effectively — a weakly scattering wall will reduce the overall
transmission and UNCOVER would have to increase measurement time to compen-
sate. The entire UNCOVER process of generating a focus spot is independent of



90

the wall’s scattering profile.

Finally, as with all other active illumination NLOS imaging methods, UNCOVER
has a detection signal that drops off as a steep 𝑑4 function (𝑑2 from illumination
multipled by 𝑑2 from light diffused back to the wall), where 𝑑 is the distance from
wall to target. This is a fundamental problem that confounds all active illumination
NLOS imaging methods, and that ultimately provides a hard bound on the NLOS
imaging range when light budget and imaging time are specified. UNCOVER has
the potential to extend this range, in comparison to ToF NLOS methods. This is
because ToF methods generally confine the area of detection in order to encode
the shape of the target into the time differences of the arriving photons. This
confinement restricts the photons that are used in the imaging process. In contrast,
UNCOVER can fully utilize almost all the photons (except the one returns back
to the full aperture) returning from the object via the wall. This boost in photon
utilization rate can in turn be traded off for a longer NLOS imaging range. It is
also interesting to note that this ability implies that UNCOVER detection signal
is almost independent of the wall-to-detector distance — another signal advantage
versus most ToF NLOS methods. We report a brief investigation on this point in
Section 4.6. The UNCOVER signal dependency is worth a more extended and
detailed future study.

In conclusion, we report a novel active focusing based NLOS imaging method that is
able to generate a diffraction-limited smaller-than-guidestar focus for raster scanning
the hidden object without any prior manipulation of the hidden scene. UNCOVER
also broke new wavefront shaping ground by demonstrating that by controlled
angular aperture on a scattering surface, it is possible to render a focused spot that
is substantially smaller than the homogeneous guidestar itself. As with other active
illumination NLOS imaging methods, there are still engineering challenges that
need to be addressed for it to become a broadly useful NLOS imaging technique.

4.6 Supporting materials for UNCOVER
Optimization pipeline
To sync the digital micro-mirror device (DMD) and acquire signal coming from the
photomultiplier tube (PMT), we chose to acquire the DMD output trigger and the
signal from the PMT simultaneously. An example of the pipeline for our second
step to find the optimal phase mask for each of the sub-apertures is shown in Fig.
4.8, where 9 sub-apertures were chosen for illustration.
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Figure 4.8: Pipeline for optimizing each of the sub-apertures in UNCOVER. In this
figure, 9 sub-apertures are used for illustration. SLM is used in combination with a
DMD for a higher optimization speed. DMD is applied to select which sub-aperture
to use in the optimization. At sub-step 𝑘 , the same phase modulation is added to all
the optimized phase masks at step 𝑘 − 1. The newly generated phase mask is sent
to SLM for updating. After SLM finishes updating, pre-defined sub-apertures are
displayed sequentially by using the DMD. A small period of dark time is introduced
to the DMD for discriminating signals from different sub-apertures. Signals within
one of the blue window are averaged and the mean value is used in updating the
phase mask. After finishing 4-step phase shift, the phase masks get updated and
are used in step 𝑘 + 1. DAQ, data-acquisition device, 𝑃𝑖

𝑘
denotes the phase mask

at sub-step 𝑘 for sub-aperture 𝑖 (𝑃𝑖
𝑘

is a 𝑁-by-𝑁 matrix), and 𝐻𝑘 denotes the 𝑘-th
Hadamard basis (also a 𝑁-by-𝑁 matrix).

If we want to optimize all the sub-apertures, one way is to simply perform the
iterative algorithm for all sub-apertures sequentially. In this case, if we have 𝑁2

independent modes in each sub-aperture and in total 𝑄 sub-apertures, we need to
update the SLM 4𝑁2 × 𝑄 times using 4-phase shifting method (Hadamard basis
based algorithm) [53, 55, 56, 59, 69]. This is inefficient as, in each sub-step 𝑘 , only
a small part of the SLM gets refreshed, leaving a great number of pixels unchanged.
As optimizing one sub-aperture is independent of optimizing another, we use the
same Hadamard pattern to modulate all the sub-apertures at each sub-step 𝑘 . Thus,
we can update all the phase masks by sending only one image to the SLM. We
note that we still want to get the feedback signal with contribution from only one



92

sub-aperture. Thus, we still need to block light from other sub-apertures when doing
the measurement. This is done by using a much faster DMD (with a refresh rate
of 9500 Hz for displaying binary patterns), which is simply used to select which
sub-aperture to use during the optimizing process. In this case, patterns sent to SLM
need only to be updated 4𝑁2 times. This strategy is used in our experiment.

We first load the pre-defined sub-apertures (SA1 to SA9) into the buffer of DMD,
the exposure time for all the patterns is defined at the beginning. A short period of
dark time is also defined in order to discriminate signals when using different sub-
apertures. All sub-apertures are initiated with zeros at the beginning. At sub-step
𝑘 , the positive entries of the 𝑘-th Hadamard pattern are phase modulated using 0,
𝜋/2, 𝜋, and 3𝜋/2 [53, 55, 56, 59, 69].

Figure 4.8 shows the modulation step for phase modulation 𝜋. The intermediate
phase mask is sent to SLM and signals from all the sub-apertures are acquired
sequentially. After the signals for all the phase modulation are acquired, the phase
mask is then updated. This step is repeated until the number of iterations reaches a
predefined number.

If we write the feedback signal for SA𝑖 under the four different modulations as 𝑆𝑖1,
𝑆𝑖2, 𝑆𝑖3, and 𝑆𝑖4, respectively, the best phase at sub-step 𝑘 is

𝜑
𝑖,𝑘

best = arg
[
(𝑆𝑖1 − 𝑆𝑖3) + 𝑗 · (𝑆𝑖2 − 𝑆𝑖4)

]
, (4.1)

where arg(·) takes the argument of a complex number, 𝑗 is the unit imaginary
number. Then, the phase mask of the 𝑖-th sub-aperture is updated in the following
way:

𝑃𝑖
𝑘 = 𝑃𝑖

𝑘−1 + 𝜑
𝑖,𝑘

best𝐻𝑘 . (4.2)

After the optimal phase solution for each of the sub-apertures has been obtained, we
will start using pairs to optimize the relative phase offset among all the sub-apertures.

For tuning the phase offset among all the sub-apertures, we chose to update the
phase offset along a spiral line, as shown in Step 3 of Fig. 4.4. Here, we showed a
detailed example of the pairs when using 9 sub-apertures in total (Fig. 4.9). These
pre-defined pairs are preloaded into the DMD for higher refresh rate. To update
the 𝑘-th pair, the sub-aperture highlighted in blue, 𝑃𝑡 , is chosen as the reference
and keeps untouched in this step. Phase offset of 0, 𝜋/2, 𝜋, and 3𝜋/2 is added
sequentially to the one to be updated (𝑃𝑚), and generates an intermediate phase
mask. This intermediate phase mask is uploaded to the SLM and feedback signals is
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Figure 4.9: Using pairs to find the phase offset in UNCOVER. The blue color in
the pre-defined sub-apertures denotes the reference in use, and the other highlighted
sub-aperture is the one being updated. To update the 𝑘-th pair, phase offsets of 0,
𝜋/2, 𝜋, and 3𝜋/2 are added to the sub-aperture being updated. For each of the phase
offset, the intermediate phase mask is sent to SLM. After SLM finishes refreshing,
DMD is triggered to display the 𝑘-th aperture-pair, AP𝑘 . The best phase offset
is then calculated and added to the sub-aperture being updated using 4-step phase
shifting method. 𝑃𝑡 is the reference for the 𝑘-th pair (AP𝑘), 𝑃𝑚 us the sub-aperture
to be updated, and 𝐽 is an matrix with all 1’s whose dimension is the same as 𝑃𝑡 and
𝑃𝑚.

then acquired by triggering the DMD to display the 𝑘-th aperture-pair (AP𝑘). Once
the best phase offset that maximizes the feedback signal is obtained, this offset is
directly added on 𝑃𝑚, which may then be used as a reference in the following steps.

If we write the feedback signals for updating the 𝑚-th sub-aperture (𝑃𝑚) as 𝑆𝑚1 , 𝑆𝑚2 ,
𝑆𝑚3 , and 𝑆𝑚4 , respectively, the optimal phase offset for 𝑃𝑚 is:

Φ𝑚
best = arg

[
(𝑆𝑚1 − 𝑆𝑚3 ) + 𝑗 · (𝑆𝑚2 − 𝑆𝑚4 )

]
. (4.3)

And the phase mask of the 𝑚-th sub-aperture is updated:

𝑃𝑚
updated = 𝑃𝑚 +Φ𝑚

best. (4.4)

If the phase offsets have been obtained for all the sub-apertures, a sharp focus is
generated when we open up all the sub-apertures and apply the optimized phase
mask. This focus is then raster-scanned to get an image of the target.

Derivation of UNCOVER
In the following section, we provide a framework for analyzing UNCOVER. We will
start from the simplest example where we want to align two phasors to maximize
the feedback signal. Then, we will extend the approach used in this toy example
to find the solution of the maximizing problem for one of the sub-apertures. The
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intuition comes from the idea that when the size of the sub-aperture is confined in a
way such that the speckle size (which is approximately equal to the focus size after
optimization) is larger than the object, the object can be treated as a fixed point (i.e.,
the location of the point is independent of the selection of sub-aperture).

To synthesize all the sub-apertures, we want the foci generated by the sub-apertures
to interfere constructively at the same point (thus enable us to generate a sharp
focus). We will see that, with constraint on the size of the sub-aperture pairs applied
in the optimization step, the object acts as a fixed point throughout the optimization.
We will show that a final focus is formed on the center of mass of the object function,
which will be defined later on.

The maximizing problem for one of the sub-apertures
Before we dive into the details, we will first state the assumption of UNCOVER and
derive the constraints on the object such that 3D objects can be approximated as 2D
objects. The derivations from Proposition 4.1 to Eq. 4.21 prove that 3D objects can
be treated as 2D objects with constraint on the axial extent of the 3D objects. After
we have proven that 2D approximation is feasible, we will conduct our analysis and
derive the result based on 2D objects.

Assumption 4.1 Assume the distance between the wall and the object is large, so
that light emitting from each mode of one sub-aperture can be approximated as a
plane wave over the (volume of) the hidden objects.

Using the above assumption, the speckle incidents on the object caused by light
interfering from one of sub-apertures can be written as∑︁

𝑛

𝐴𝑛 (kn)𝑒𝑖(knr+𝜙𝑛) , (4.5)

where kn is the wave vector for input mode n, 𝐴𝑛 the amplitude of input mode n, r
the spatial location and 𝜙𝑛 the phase of that mode.

Let us first consider a 3D object function 𝑂 (r) = 𝑂 (𝑥, 𝑦, 𝑧), the signal received by
the detector, 𝐸 , is given by

𝐸 =

∫
𝑂

𝐼 (r) · 𝑂 (r)𝑑r =

∭
𝐼 (𝑥, 𝑦, 𝑧) · 𝑂 (𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧. (4.6)
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Figure 4.10: Variables in proposition 4.1. The angles shown here are for illustration
and do not correspond to the angles in our experiments.

Proposition 4.1 Under assumption 4.1, let us further assume that the size of the
sub-aperture, denoted by 𝑠′, is much less than the distance 𝑑 between the wall and
the object. The illumination pattern is approximately independent of 𝑧, given the
axial extent 𝛿𝑧 satisfies the following constraint:

𝛿𝑧 ≤ min
{
0.2𝑑,

1
10

DOFsub-aperture

}
, (4.7)

where DOFsub-aperture is the depth of field of the sub-aperture, and is defined using
the formula of DOF in microscopy: DOFsub-aperture =

𝜆

NA2 .

Proof: Based on the assumption in Proposition 4.1, we have (𝛼 is the one-half
angular aperture):

NA′ B NAsub-aperture = 𝑛air · sin𝛼 = sin𝛼 ≈ 𝑠′

2𝑑
≪ 1, (4.8)

and

𝛿𝑧 ≤ 1
10

DOFsub-aperture =
1

10
𝜆

NA′2 =
2𝜆𝑑2

5𝑠′2
. (4.9)

Note that Proposition 4.1 is based on Assumption 4.1, so we want the direction of
kn to remain the same over 𝛿𝑧.

Let us first assume
𝛿𝑧

2
≪ 𝑑. To investigate what the constraint is, we will write

the 𝑘-vector of mode n at axial position 𝑧′ as kn(𝑧′) for now (𝑧′ is some arbitrary
value here). The direction change of kn(𝑧′) can be characterized by the change in
the polar angle 𝛼𝑛 (𝑧′) of kn(𝑧′), as the azimuthal angle in spherical coordinates
is independent of 𝑧 in Cartesian coordinates. If the tolerance of the absolute rate
of change in 𝛼𝑛 (𝑧′) is set to 0.1 when 𝑧′ ∈ [𝑑 − 𝛿𝑧

2
, 𝑑 + 𝛿𝑧

2
], we require (we have
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𝛿𝑧 ≪ 2𝑑):����𝛼𝑛 (𝑑) − 𝛼𝑛 (𝑑 ± 𝛿𝑧

2
)
���� ≈ ���� 𝑠2𝑑 − 𝑠

2𝑑 ± 𝛿𝑧

���� = ����� 𝑠2𝑑 − 𝑠

2𝑑
1

(1 ± 𝛿𝑧
2𝑑 )

�����
≈ 𝑠

2𝑑

����1 − (1 ∓ 𝛿𝑧

2𝑑
)
���� ≤ 0.1𝛼𝑛 (𝑑) ≈

𝑠

20𝑑
(4.10)

⇒ 𝛿𝑧 ≤ 0.2𝑑.

To summarize, we get

𝛿𝑧 ≤ min
{
0.2𝑑,

2𝜆𝑑2

5𝑠′2

}
. (4.11)

If the above is satisfied, the Assumption 4.1 holds, and kn is independent of 𝑧. Thus,
in our following derivation, kn can be regarded as a constant vector. The E-field 𝐸 𝑓

of the illumination pattern at (𝑥, 𝑦, 𝑑 + Δ𝑧) is:

𝐸 𝑓 (𝑥, 𝑦, 𝑑 + Δ𝑧) = 𝐸 𝑓 (r + Δz) =
∑︁
𝑛

𝐴𝑛 (kn)𝑒𝑖(kn·(r+𝚫z)+𝜙𝑛)

=
∑︁
𝑛

𝐴𝑛 (kn)𝑒𝑖(knr+𝜙𝑛)𝑒𝑖𝑘𝑛,𝑧Δ𝑧 . (4.12)

Let us focus on the factor 𝑒𝑖𝑘𝑛,𝑧Δ𝑧. For the z-component of kn, we have (𝛼𝑛 is the
polar angle of kn in spherical coordinates):

𝑘𝑛,𝑧 = |kn | cos(𝛼𝑛) =
2𝜋
𝜆

√︃
1 − sin2(𝛼𝑛) ≈

2𝜋
𝜆

− 𝜋

𝜆
sin2(𝛼𝑛), (4.13)

where 𝛼𝑛 ∈ [−𝛼, 𝛼], as 𝛼 is the one-half angular aperture. Thus, we have

|𝑘𝑛,𝑧 − 𝑘𝑚,𝑧 | ≤ max
𝑛

𝑘𝑛,𝑧 − min
𝑚

𝑘𝑚,𝑧

=
2𝜋
𝜆

−
(
2𝜋
𝜆

− 𝜋

𝜆
sin2(𝛼)

)
=
𝜋

𝜆
sin2(𝛼). (4.14)

The absolute phase retardation between input mode n and input mode m over Δ𝑧 is
bounded above by:

|𝑘𝑛,𝑧Δ𝑧 − 𝑘𝑚,𝑧Δ𝑧 | = |𝑘𝑛,𝑧 − 𝑘𝑚,𝑧 |Δ𝑧 ≤
𝜋

𝜆
sin2(𝛼)Δ𝑧. (4.15)
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Plug in Eq. 4.11 and use the fact that Δ𝑧 ∈ [−𝛿𝑧
2
,
𝛿𝑧

2
],

|𝑘𝑛,𝑧 − 𝑘𝑚,𝑧 |Δ𝑧 ≤
𝜋

𝜆
sin2(𝛼)Δ𝑧

≤ 𝜋

𝜆
sin2(𝛼) 𝛿𝑧

2

≤ 𝜋

𝜆
sin2(𝛼) · 1

20
𝜆

NA′2 =
𝜋

20
. (4.16)

That is, the maximum path length difference over the axial extent of the 3D object
function is

𝜆

40
. (Note that this is a strict criterion and can be eased.) Such a small

phase retardation between different input modes can be ignored:

𝑒𝑖𝑘𝑛,𝑧Δ𝑧 ≈ 𝑒𝑖𝑘𝑚,𝑧Δ𝑧 = 𝑒𝑖𝜃0 , ∀𝑛, 𝑚. (4.17)

Then, we have

𝐸 𝑓 (𝑥, 𝑦, 𝑑 + Δ𝑧) =
∑︁
𝑛

𝐴𝑛 (kn)𝑒𝑖(knr+𝜙𝑛)𝑒𝑖𝑘𝑛,𝑧Δ𝑧

≈ 𝑒𝑖𝜃0
∑︁
𝑛

𝐴𝑛 (kn)𝑒𝑖(knr+𝜙𝑛) = 𝑒𝑖𝜃0𝐸 𝑓 (𝑥, 𝑦, 𝑑). (4.18)

The intensity 𝐼 (𝑥, 𝑦, 𝑧 + Δ𝑧) is given by:

𝐼 (𝑥, 𝑦, 𝑑 + Δ𝑧) = 𝐸 𝑓 (𝑥, 𝑦, 𝑑 + Δ𝑧) · 𝐸∗
𝑓 (𝑥, 𝑦, 𝑑 + Δ𝑧)

= 𝐸 𝑓 (𝑥, 𝑦, 𝑑) · 𝐸∗
𝑓 (𝑥, 𝑦, 𝑑) = 𝐼 (𝑥, 𝑦, 𝑑). (4.19)

So, within the range 𝑧 ∈ [𝑑 − 𝛿𝑧

2
, 𝑑 + 𝛿𝑧

2
], the illumination pattern is independent

of 𝑧 and can be written as a function of (𝑥, 𝑦) only:

𝐼 (r) = 𝐼 (𝑥, 𝑦, 𝑧) = 𝐼 (𝑥, 𝑦). (4.20)

The signal 𝐸 can be simplified:

𝐸 =

∭
𝐼 (𝑥, 𝑦, 𝑧) · 𝑂 (𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

=

∬
𝑑𝑥𝑑𝑦

∫ 𝑑− 𝛿𝑧
2

𝑑− 𝛿𝑧
2

𝐼 (𝑥, 𝑦) · 𝑂 (𝑥, 𝑦, 𝑧)𝑑𝑧

=

∬
𝑑𝑥𝑑𝑦𝐼 (𝑥, 𝑦) ·

∫ 𝑑− 𝛿𝑧
2

𝑑− 𝛿𝑧
2

𝑂 (𝑥, 𝑦, 𝑧)𝑑𝑧

=

∬
𝐼 (𝑥, 𝑦) · 𝑂′(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (4.21)
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where 𝑂′(𝑥, 𝑦) B
∫
𝑂 (𝑥, 𝑦, 𝑧)𝑑𝑧 is the projection of 𝑂 (𝑥, 𝑦, 𝑧) onto the xy-plane.

Thus, we prove Proposition 4.1, which means a 3D object is equivalent to a 2D
object when the assumptions in the proposition hold. Note that more sophisticated
maps can be used for the 3D to 2D transformation, such as using cones to map the
3D objective function to a particular xy-plane. More works can be done in this
direction.

In the following derivation, we will assume a 2D object function is used, otherwise
it can be projected onto a 2D plane by using Proposition 4.1. And we are interested
only in the 2D coordinates that involve (𝑥, 𝑦).

In iterative wavefront shaping, we only modulate the phase of each input mode, and
the output field with the phase modulation applied can be written as:∑︁

𝑛

𝐴𝑛 (kn)𝑒𝑖(knr+𝜙𝑛+𝑝𝑛) , (4.22)

where 𝑝𝑛 is the phase modulation we applied, kn = [𝑘𝑥 , 𝑘𝑦]𝑇 and r = [𝑥, 𝑦]𝑇 . We
define the maximum length 𝑙max of an object 𝐴 as:

𝑙max = max{|r1 − r2 | : 𝐴(r1) ≠ 0, 𝐴(r2) ≠ 0}, (4.23)

where | · | is Euclidean norm.

Assumption 4.2 Assume the maximum length of the object 𝑂, 𝑙max, satisfies ∀𝑛, 𝑚 :
|kn − km |𝑙max < 𝜋 (the smallest period of the fringes is larger than 𝑙max).

The total energy detected 𝐸 (p) is given by:

𝐸 (p) =
∫
𝑂

𝑂 (r)𝐼 (r)𝑑r

=

∫
𝑂

𝑂 (r)
(∑︁

𝑛

𝐴𝑛 (kn)𝑒𝑖(knr+𝜙𝑛+𝑝𝑛)
)
·
(∑︁

𝑚

𝐴𝑚 (km)𝑒−𝑖(kmr+𝜙𝑚+𝑝𝑚)
)
𝑑r

=

∫
𝑂

𝑂 (r)
[∑︁

𝑛

𝐴2
𝑛 (kn) + 2

∑︁
𝑛<𝑚

ℜ
(
𝐴𝑛 (kn)𝐴𝑚 (km)𝑒𝑖(Δknmr+Δ𝜙𝑛𝑚+Δ𝑝𝑛𝑚)

)]
𝑑r

∝ 𝑐 +
∫
𝑂

𝑂 (r)
∑︁
𝑛<𝑚

ℜ
(
𝐴𝑛 (kn)𝐴𝑚 (km)𝑒𝑖(Δknmr+Δ𝜙𝑛𝑚+Δ𝑝𝑛𝑚)

)
𝑑r, (4.24)

where p = [𝑝1, 𝑝2, · · · , 𝑝𝑛]𝑇 , Δknm = kn − km, Δ𝜙𝑛𝑚 = 𝜙𝑛 − 𝜙𝑚, Δ𝑝𝑛𝑚 = 𝑝𝑛 − 𝑝𝑚,
ℜ(·) takes the real part of a complex number, 𝑐 ∈ R some constant independent of
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p, and 𝑂 (r) is the fraction of light being diffused by the object at r (in other words,
the object function).

Question What is the best p that maximizes the integral?

In the following section, we will see that maximizing the total energy detected is
equivalent to maximizing the intensity over a certain point, which is the same as
using a point guidestar.

Solution
To find out the solution for Eq. 4.24, we start by considering the interference of
two phasors 𝐴𝑛 (kn)𝑒𝑖(knr+𝜙𝑛+𝑝𝑛) and 𝐴𝑚 (km)𝑒𝑖(kmr+𝜙𝑛+𝑝𝑚) . The interference of the
two point sources results in a sinusoidal pattern on the object. By studying this
simple case, we will know at what point the integral is maximized. If, by some
happenstance, the optimal point is the same for any two phasors we choose, the
global maximum will also be achieved at that point. And we will shortly see that
this is indeed the case. We will first define the center of mass of the object’s reflection
function 𝑂 (r): (we will see, after all these derivations, that this is the point that all
phasors are aligned.)

Definition 4.1 Define the center of mass 𝐶𝑚 of an object 𝑂 as:

𝐶𝑚 =

∫
𝑂
𝑂 (r)r𝑑r∫

𝑂
𝑂 (r)𝑑r

. (4.25)

Without loss of generality, let us focus on Δknm, and set up a Cartesian coordinate
such that the direction of the positive x-axis is the same as the direction of Δknm

(𝑘 B 𝑘𝑥 = |Δknm |), and let the origin be 𝐶𝑚. Given kn and km, we have:∫
𝑂

𝑂 (r)ℜ
(
𝐴𝑛 (kn)𝐴𝑚 (km)𝑒𝑖(Δknmr+Δ𝜙𝑛𝑚+Δ𝑝𝑛𝑚)

)
𝑑r

= 𝐴𝑛 (kn)𝐴𝑚 (km)
∫

𝑑𝑥

∫
𝑂 (𝑥, 𝑦)ℜ

(
𝑒𝑖(𝑘𝑥+Δ𝜙𝑛𝑚+Δ𝑝𝑛𝑚)

)
𝑑𝑦

= 𝑎𝑛𝑚

∫
ℜ

(
𝑒𝑖(𝑘𝑥+Δ𝜙𝑛𝑚+Δ𝑝𝑛𝑚)

) (∫
𝑂 (𝑥, 𝑦)𝑑𝑦

)
𝑑𝑥

= 𝑎𝑛𝑚

∫
𝑓 (𝑥) cos(𝑘𝑥 + Δ𝜙𝑛𝑚 + Δ𝑝𝑛𝑚)𝑑𝑥

= 𝑎𝑛𝑚

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + Δ𝜙𝑛𝑚 + Δ𝑝𝑛𝑚), (4.26)
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where 𝑓 (𝑥) =
∫
𝑂 (𝑥, 𝑦)𝑑𝑦 ≥ 0, 𝑎𝑛𝑚 = 𝐴𝑛 (kn)𝐴𝑚 (km) > 0 (For the last step of Eq.

4.26, note that we have ∀𝑛, 𝑚 : |kn − km |𝑙 < 𝜋 based on Assumption 4.2). Also, as
we define the origin to be 𝐶𝑚, we have:∫

𝑥 𝑓 (𝑥)𝑑𝑥 = 0. (4.27)

Let us study this function:

𝐹 (𝑘, 𝛼) =
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥. (4.28)

Lemma 4.1 ∀ 𝑓 (𝑥), ∃𝛼 :
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥 ≥ 0

Proof: Assume ∀ 𝑓 (𝑥), 𝛼 :
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥 < 0. Let 𝛼′ = 𝛼 + 𝜋 we have:∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼′)𝑑𝑥 =

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼 + 𝜋)𝑑𝑥

= −
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥 > 0. (4.29)

This leads to a contradiction. Thus, we have that for all 𝑓 (𝑥), there exists 𝛼 such
that ∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥 ≥ 0. (4.30)

As we want to maximize 𝐹 (𝑘, 𝛼), let us confine the range of 𝛼 such that ∀𝛼 ∈ 𝑆 :
𝐹 (𝑘, 𝛼) ≥ 0, where 𝑆 is the constraint set:

𝑆 B {∀𝛼 ∈ 𝑆 : 𝐹 (𝑘, 𝛼) =
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥 ≥ 0}. (4.31)

Assume 𝐹 and its first and second order of partial derivatives are all continuous (it
satisfies Leibniz’s rule), let us find the partial derivative of 𝐹 (𝑘, 𝛼) with respect to
𝛼:

𝜕𝐹 (𝑘, 𝛼)
𝜕𝛼

=

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) 𝜕 cos(𝑘𝑥 + 𝛼)
𝜕𝛼

𝑑𝑥

= −
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) sin(𝑘𝑥 + 𝛼)𝑑𝑥; 𝛼 ∈ 𝑆 (4.32)
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𝜕2𝐹 (𝑘, 𝛼)
𝜕𝛼2 = −

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) 𝜕 sin(𝑘𝑥 + 𝛼)
𝜕𝛼

𝑑𝑥

= −
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥 ≤ 0; 𝛼 ∈ 𝑆. (4.33)

The second order partial derivative is non-positive. Thus, to maximize 𝐹 (𝑘, 𝛼), we
simply need to solve for this equation:∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) sin(𝑘𝑥 + 𝛼)𝑑𝑥 = 0. (4.34)

Note that if we want to have a well defined focus (all the phasors are optimized such
that they are all in phase at a certain point), we want Eq. 4.34 holds for all 𝑘 at a
certain 𝑥0 = 𝛼

𝑘
.

Let us look at a extreme case: 𝑘 → 0. In this case, we have

lim
𝑘→0

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) sin(𝑘𝑥 + 𝛼)𝑑𝑥 =

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) sin(𝛼)𝑑𝑥 = 0. (4.35)

We know that 𝑓 (𝑥) =
∫
𝑂 (𝑥, 𝑦)𝑑𝑦 ≥ 0 (light energy returned to detector cannot be

negative), so to solve Eq. 4.35 we get

sin(𝛼) = 0 ⇒ 𝛼 = 0. (4.36)

In the above equation, we limit 𝛼 ∈ (−𝜋, 𝜋] ∩ 𝑆. Thus, another possible solution
𝛼 = 𝜋 is dropped based on the fact that

lim
𝑘→0

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝑘𝑥 + 𝛼)𝑑𝑥 =

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) cos(𝜋)𝑑𝑥 = −
∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥)𝑑𝑥 < 0. (4.37)

Hence it does not belong to the constraint set 𝛼 = 𝜋 ∉ 𝑆.

As Eqs. 4.34 and 4.36 need to hold for all 𝑘 , we need the following equation holds∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) sin(𝑘𝑥)𝑑𝑥 = 0. (4.38)

Condition 4.1 The object 𝑂 (𝑥, 𝑦) has point symmetry with respect to its center of
mass, which means 𝑂 (𝑥, 𝑦) = 𝑂 (−𝑥,−𝑦). And 𝑙max is less or equal to 1

max |Δk| .
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Using the above condition, we have

𝑓 (−𝑥) =
∫

𝑂 (−𝑥, 𝑦)𝑑𝑦 =

∫
𝑂 (𝑥, 𝑦)𝑑𝑦 = 𝑓 (𝑥). (4.39)

We can easily verify that Eq. 4.38 holds in this case.

For a more general case in which the object is of arbitrary shape, let us use Taylor
expansion to rewrite the left hand side of Eq. 4.38. This gives∫ 𝜋

𝑘

− 𝜋
𝑘

𝑓 (𝑥) sin(𝑘𝑥)𝑑𝑥 =

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥)
(
𝑘𝑥 − (𝑘𝑥)3

3!
+ (𝑘𝑥)5

5!
− · · ·

)
𝑑𝑥. (4.40)

Condition 4.2 The maximum length 𝑙max of the object 𝑂 is much smaller than
1

max |Δk|

Using condition 4.2, Eq. 4.40 becomes∫ 𝜋
𝑘

− 𝜋
𝑘

𝑓 (𝑥) sin(𝑘𝑥)𝑑𝑥 ≈ 𝑘

∫ 𝜋
𝑘

− 𝜋
𝑘

𝑥 𝑓 (𝑥)𝑑𝑥 = 0. (4.41)

If we want the error of the approximation sin(𝑘𝑥) ≈ 𝑘𝑥 smaller than 10−3, we need
(max |Δk|𝑙max)3

3! < 10−3. That is, we want 𝑙max < 0.18
max |Δk| .

Conclusion and connection to UNCOVER
If Eq. 4.38 holds, let us go back to the last term of Eq. 4.24:∫

𝑂

𝑂 (r)
∑︁
𝑛<𝑚

ℜ
(
𝐴𝑛 (kn)𝐴𝑚 (km)𝑒𝑖(Δknmr+Δ𝜙𝑛𝑚+Δ𝑝𝑛𝑚)

)
𝑑r

≤
∫
𝑂

𝑂 (r)
∑︁
𝑛<𝑚

ℜ
(
𝐴𝑛 (kn)𝐴𝑚 (km)𝑒𝑖(Δknmr)

)
𝑑r. (4.42)

Thus, we obtain
argmax

p
𝐸 (p) = −𝜙 + 𝑝0, (4.43)

where 𝑝0 is a constant and 𝜙 = [𝜙1, 𝜙2, · · · , 𝜙𝑛]𝑇 .

The sufficient condition that guarantees we will have a well defined focus is given
by Condition 4.1 or Condition 4.2 under Assumption 4.1 and Assumption 4.2.
This indicates that, under certain conditions, if the speckle size generated by one
sub-aperture is larger than the object, the object can be treated as a point.

These two conditions basically mean that if the object is centrosymmetric or the
maximum length of the object is smaller than the smallest period produced by the



103

sub-aperture, then the algorithm described in the beginning would give us a focus.
And the center of the focus coincides with the center of mass (𝐶𝑚, Definition 4.1)
of the object function. The intuition for this is that when the period is larger than
the object (it will not be able to resolve the object), the hidden object can be treated
as a point.

Coming back to UNCOVER, one wants a tight focus that can be raster scanned over
the object itself. To realize a tight focus, we want all the phasors for the full aperture
are aligned at a certain point.

Recall that we have derived that if size of the aperture is carefully selected, the hidden
object can be treated as a point source at 𝐶𝑚. That is, if the size the illuminated area
(aperture) at any instant in the optimization algorithm satisfy a certain constraint
(e.g., the focus size of the optimized aperture is larger than the object), a focus can
be formed at 𝐶𝑚, the position of the equivalent point guidestar.

To optimize the phase masks in Step 2, the sub-apertures are designed such that
they are small enough to satisfy the aforementioned constraints (Note that this is
not the ultimate requirement on the size of sub-apertures, we will discuss a further
constraint in the following two paragraphs). With the constraints being satisfied,
only a single focus with its center at 𝐶𝑚 is obtained for each sub-aperture in Step 2.

The next question is how to synthesize those sub-apertures so that they produce one
tight focus on the object. If a tight focus is desired, we want the hidden object to
act like a point guidestar when adjusting the phase offset among the sub-apertures.
That is, we want the constraints on the size of the aperture to be satisfied at any
instance throughout Step 3 of the optimization algorithm.

The constraint on the size of aperture that is simultaneously used in Step 3 is
satisfied by using pairs. We designed the sub-apertures such that when opening any
two adjacent sub-apertures, the speckle size is still larger than the object size (which
meets the constraints stated above). Following the result we have in the previous
subsection, the hidden object serves as a point. Let us focus on what happens to
this point. If we write �̃�𝑖 and �̃�𝑖 as the amplitude and the phase of the focus of 𝑖-th
optimized sub-aperture, respectively. Maximizing the signal scattered by the hidden
object over the phase offset �̃� is equivalent to

argmax
�̃�

| �̃�𝑡𝑒
𝑖�̃�𝑡 + �̃�𝑚𝑒

𝑖�̃�𝑚+𝑖�̃� |2, (4.44)

where 𝑡 denotes the reference sub-aperture and 𝑚 denotes the sub-aperture to be
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updated in the 𝑘-th pair. Note that this is true only when the hidden target is
equivalent to a point guidestar.

The optimal solution is given by

�̃�𝑚 + �̃�best = �̃�𝑡 . (4.45)

Thus, using Eq. 4.4, the phase of the updated 𝑚-th sub-aperture is

�̃�
updated
𝑚 = �̃�𝑚 + �̃�best = �̃�𝑡 . (4.46)

That is, all the sub-aperture in the reference library share the same phase at 𝐶𝑚.
Thus, when the optimization is performed over all sub-aperture pairs, light from all
sub-aperture interferes constructively at 𝐶𝑚. Thus, after Step 3 is finished, a tight
focus is generated at 𝐶𝑚 when the full-aperture is used (Note that the phase masks
are applied directly and no optimization is needed).

Discussion on the algorithm
To use UNCOVER, we want the sub-aperture pairs to satisfy a certain constraint,
which is related to the size of the hidden objects. Thus, an estimate of the hidden
objects’ size is needed. However, it is worthwhile to point out that, such prior
knowledge is unnecessary if UNCOVER is performed multiple times with different
sub-aperture sizes in each trial. In Fig. 4.14, it is shown that UNCOVER scanned
images converge when UNCOVER generates only one tight focus (which means that
the size satisfies the requirement in UNCOVER). So, we can use the similarity of
the UNCOVER scanned images to identify if the constraint is satisfied or not. Other
metric can be use as well: One can use ToF method to measure the distance that
the returned photons travelled. If UNCOVER generates a single focus, there is only
one strong peak showing up in the measurement. We expect many other detection
methods may serve as the metric as well.

Proposition 4.1 shows 3D objects can be treated as 2D objects via projection, if the
assumption in the proposition is satisfied. A natural question to ask is how strong
these assumptions are. In other words, how small the axial extent should be in
order to enable such projection. Here, we will give some numbers based on our
second experiment (Fig. 4.7). In the second experiment, the side length of the full
aperture is 0.6 mm and the distance from the wall to the object is 𝑑 = 0.55 m. Each

sub-aperture pair has a maximum side length 𝑠′ =
0.6 mm

14
× 2 = 86 𝜇m. Thus, the
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upper bound for the axial extent 𝛿𝑧 of the object is (Eq. 4.11)

𝛿𝑧 ≤ min
{
0.2𝑑,

2𝜆𝑑2

5𝑠′2

}
= min

{
0.2 × 0.55,

2 × 532 × 10−9 × 0.552

5 × (86 × 10−6)2

}
= min{0.11, 8.7} = 0.11 m. (4.47)

Thus, the maximum axial extent is mainly dependent on the distance between the
wall and the object.

If objects in the scene are distributed at significantly different distances, filtering
methods need to be applied to UNCOVER. For instance, time-resolved measurement
can be combined with UNCOVER to confine the axial range of the filtered signal.
With this filtering, the effective axial extent of the object function can be confined
in order to satisfy the condition in Proposition 4.1. Without filtering, UNCOVER
may have degraded performance in generating a tight focus or even fail, depending
on the specific settings. It is worthwhile to point out that the tight focus formed
with filtering can be scanned over larger distances by superposing a defocus phase
term over the phase solution. This range is not limited by the constraint on the axial
extent (Eq. 4.11).

In UNCOVER, it is required that the focus size in optimizing phase offset among
the pairs to be smaller than the hidden object. As the numerical aperture of the
focus in such optimization depends on the size of the sub-apertures and the distance
between the wall and the hidden target (Eq. 4.8), proper demagnifying system
might be required. If there are multiple large objects (or a single large object), it
might be tricky/impossible to de-magnify the sub-apertures such that they meet the
constraints in UNCOVER. In this case, other techniques should be used to filter the
returned signal. Follow the same logic in confining the axial extent of the effective
object function, time gated/coherence gated measurement can be used to restrict the
effective size of the objects such that the size is small and fulfills the constraints
in UNCOVER. We also note that the scan range in UNCOVER is related to the
memory effect range associated with the wall [68]. For object that is larger than this
scan range, the field of view (FOV) needs to be increased in UNCOVER in order to
image the entire object. This can be done by optimizing multiple foci at different
positions. By stitching the FOVs associated with each individual focus, the overall
FOV can be expanded, as stated in the Discussion part of our main manuscript.

We notice there is another paper uses segmented pupil to perform adaptive optics
(AO) that looks similar to UNCOVER [70]. This AO method assumes that light
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from each segment of the pupil can form a focus (with unknown deflection and
phase offset). This focus is raster scanned and the scanned image is compared with
the reference image to now the deflection. In UNCOVER, however, we do not
have such focus to begin with, an reference image is infeasible as well. The focus
generated by one optimized sub-aperture is larger than the object. Thus, image
of the hidden object cannot be formed by raster-scan of this focus. In optimizing
the phase offset, the AO method use a single reference and no constraint is needed
with respect to the distance between the two pupil segments in the optimization. In
contrast, UNCOVER heavily relies on the confined size of the sub-aperture pair to
generate a tight focus. Thus, UNCOVER is fundamentally different from the AO
method.

It is believed that conventional wavefront shaping is unable to generate a focus on
a large, homogeneous sample, as suggested by Katz et. al [66]. Here, we showed
that with constraint on the aperture size in the optimization, a tight focus can be
generated without exploring non-linear feedback. However, it should be noted that
if the sample is too large (say close to infinity in the extreme case), UNCOVER will
not generate a tight focus as well. In this case, UNCOVER is not exempt from the
discussion in [66].

PBR as a function of the initial signal
To investigate the peak-to-background ratio (PBR) that UNCOVER can achieve
under different conditions, we conducted simulations by changing the initial number
of photons received by the detector. In this simulation, the random phase shift (which
characterizes the scattering of the wall) kept unchanged while the input light power
was adapted to different levels. We also used the same target in this simulation.
Apart from the signal reflected by the target, we added a background to the signal
to imitate reflected photons from elsewhere, and Poisson noise was then simulated.

Figure 4.11 shows the simulation result. We iterated through the whole set of
Hadamard basis for 3 times in this simulation.

We expect the PBR grows gradually as the mean initial SNR approaches 1. As
we plotted the final PBR against the mean initial SNR, SNR measured using some
sub-apertures can be higher than the mean SNR. That is why we see an increase that
appears earlier than mean SNR of 1. The PBR increases steeply as the mean initial
signal level approaches the noise level (SNR approaches 1) and then plateaus as we
further increase the mean initial signal.
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Figure 4.11: UNCOVER’s peak-to-background ratio (PBR) vs mean initial SNR. a,
reflection coefficient of the target used in this simulation. b, PBR as a function of the
mean initial SNR (the SNR detected at the beginning of Step 2 in the optimization,
averaged over all sub-apertures). In this simulation, in total 𝑄 = 25 sub-apertures
were used, and 𝑁2 = 82 = 64 independent modes were simulated in each sub-
aperture. The color of the line in the legend representing result for one of such trials
is emphasized for better illustration.

Cumulative error in updating phase offset
As aperture synthesizing is crucial for generating a sharp focus, we investigated the
error in finding the relative phase offset using pairs. We require the sub-apertures
in the pair to be adjacent to ensure generation of a tight focus, thus, phase error in
the reference will “propagate” to the sub-aperture being updated. This means that
noises accumulate when the number of sub-apertures increases. As such, studying
the noise as a function of the number of sub-apertures is useful for us to understand
the limits of UNCOVER.

For a better illustration, we chose to update the phase offset in a more straightforward
but less sophisticated way: we updated the offset along a “snake” trajectory rather
than the “spiral” one that is used in our experiments.

In this simulation, we set the mean signal detected by opening one of the sub-
apertures equal to the mean value where the plateau begins in Fig. 4.11 (i.e. the
mean signal value after optimization with mean initial SNR equals 1). To isolate
the contribution of the noise in optimizing individual sub-apertures, we conducted
the simulation in the following way:

In optimizing the phase mask for an individual sub-aperture, no noise is simulated.
Poisson noise was simulated in tuning the phase offset, and we ran 5000 trials to get
the distribution of the phase error. We also simulated such tuning process in absence
of the noise for obtaining a ground truth of the phase offset. Phase difference in Fig.
4.12d is the difference between the ground truth and the phase offset we obtained



108

Figure 4.12: Cumulative noise in UNCOVER. a, tuning the phase offset along the
snake line. When sub-aperture 𝑖 is being updated, the one which gets updated in step
𝑖 − 1 is chosen as the reference. Thus, the noise accumulates every time we update
the phase offset. b, the normalized reflectance of the object used in this simulation.
c, peak intensity as a function of the number of sub-apertures. The color of the line
in the legend representing result for one of such trials (denoted by “Poisson noise”)
is emphasized for better illustration. d, the phase error for each of the sub-aperture.
The true phase offset is obtained in simulation when no noise is added. Figures
inserted above are the histograms of the phase errors for the 50𝑡ℎ, 150𝑡ℎ, 250𝑡ℎ, and
350𝑡ℎ sub-apertures. “Mean detected signal” in c and d is the mean signal detected
by opening one of the sub-apertures.

when Poisson noise is added.

The probability of the phase difference that falls in range [− 𝜋
2 ,

𝜋
2 ] is around 90% up

to the 240𝑡ℎ sub-aperture, as we found in our simulation. And the peak intensity
when using all 400 sub-apertures is close to the ideal case for most of the trials, as
Fig. 4.12c shows. If we want to keep such fidelity (probability that is greater than
90%), the distance between any sub-aperture and the center sub-aperture should
be less than 240 sub-apertures. Using the the spiral order we discussed in the
paper, this distant limit indicates that we can use ∼ 240-by-240 sub-apertures when
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considering the diagonal direction. Thus, the final focus can be shrunk by over 200
times compared with the one obtained by using one sub-aperture. With a higher
SNR, this can be further increased.

Imaging a hollow target
In the derivation of UNCOVER, we proved that UNCOVER can generate a focus at
the “center” of the target. Here, we conducted an experiment to investigate whether
UNCOVER would produce a focus at the center of a hollow target, which consists
of two squares as shown in Fig. 4.13a.

Figure 4.13: UNCOVER result of imaging a hollow object. In this experiment,
𝑄 = 196 sub-apertures (14 × 14) were used. A square of side length ≈ 0.61 mm
is illuminated when using the full aperture. a, image of the target. b, UNCOVER
result. The focus was initially formed at the white asterisk ∗. c, image of the
UNCOVER focus, and d the speckles without performing optimization.

As shown in Fig. 4.13b, the focus located at the inner black square rather than
the bright area where the reflectivity is much higher. This verifies that UNCOVER
is very different from the conventional feedback based wavefront shaping. The
maximizing problem UNCOVER solves is equivalent to maximizing the intensity
at the center of the object, where the reflection coefficient can be as low as zero, as
shown in this experiment.

UNCOVER focus quality as a function of sub-aperture size
We conclude, in the second part of Section 4.6, that UNCOVER generates a sharp
focus at 𝐶𝑚 given the criterion is satisfied. Here, we want to investigate how the
shape of the final focus changes when the criterion is broken.

In this experiment, we set our parameters such that the full aperture generated by
those parameters corresponded to the same area on the SLM. To be specific, the
products of all the terms on the far left of Fig. 4.14 are the same, meaning that the
ultimate numerical apertures for all the settings are the same. The last row of Fig.
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Figure 4.14: UNCOVER results when using different sub-aperture sizes. a and b
are the results using target 1 and 2, respectively. The number on the far left of the
figure denotes settings used for results in this row: 𝑥2 × 𝑦2 × 𝑧2 means that there
are 𝑥2 sub-apertures, each sub-aperture has 𝑦2 independent modes, and a square of
𝑧-by-𝑧 pixels on the SLM are treated as one independent mode. The side length for
each sub-aperture is proportional to 𝑦 × 𝑧. For better illustration, we set different
exposure time of the camera to capture UNCOVER foci (2 ms) and the speckle
patterns without optimization (40 ms). A square of side length ≈ 0.35 mm is
illuminated when using the full aperture. Length of the scale bars: 1 mm.

4.14 shows the results we get when the constraint of UNCOVER is satisfied. Others
show the results when the constraint is broken.

When the size of the sub-aperture is too large, the “focus” deviates from an ideal one.
Discrepancies between the scanned image and the real target are easy to be noticed
in Fig. 4.14 a3 and b3. As we decrease the size of sub-apertures, we gradually get
a single focus, as shown in Figs. 4.14 a6 and 4.14 b6. Despite of this improvement,
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we noticed that the PBR improvement from Fig. 4.14 b9 to Fig. 4.14 b10 is minor.
This is because less photons are used in optimizing one sub-aperture, resulting a
decreased SNR.

It is worth noting that the shape of the object converges to the ground truth when
we gradually decrease the size of the sub-aperture until it meets the requirement
in UNCOVER. This also indicates that we can use it as a metric to tell whether
UNCOVER generates a single focus when it is infeasible to obtain a rough gauge of
the object size.

Resolution in UNCOVER
To quantify the resolution in UNCOVER, radial profiles were extracted. The radial
profile was fitted by a single Gaussian distribution. Full width at half maximum
(FWHM) of the fitted curves was measured. As shown in Fig. 4.15c, the mean
resolution is measured to be 0.57 mm.

Figure 4.15: Resolution measurement of UNCOVER. This example uses the data
from Fig. 5 of the main paper. a, speckle pattern captured before optimization. b,
UNCOVER focus obtained after optimization. c, the radial profile that is obtained
by averaging over a circle (one example circle is shown in b). Gaussian distribution
is used to fit the curve. And the fitted curve is used to calculate the full width at half
maximum (FWHM). d and e are the auto-correlation maps of a and b, respectively.
f, the correlation radial profiles are averaged along the circles like those shown in d
and e. Scale bar: 1 mm.

To compare the resolution of UNCOVER with the diffraction limit, auto-correlation
of the unoptimized speckle pattern and the focus generated by UNCOVER were
calculated. The correlation coefficient maps are shown in Fig. 4.15d and e. The
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FWHM of the correlation profile of UNCOVER is in general 1.5 times wider than that
of the speckle pattern. Although UNCOVER does not achieve the ideal diffraction
limit, it is close to the diffraction limit, which is a significant improvement over
existing ToF methods.

Collection efficiency in UNCOVER and ToF methods
ToF methods need to confine the area of detection to encode the shape of the target
into the time differences of the arriving photons. This confinement in return limits
the distance that ToF methods can deal with. In contrast, UNCOVER considers only
the power of the detected light. Thus, almost no restriction is needed in the area on
the wall being detected in UNCOVER (expect that light from the full aperture should
be avoided). By imaging the detector onto the wall, we can derive that the number of
photons being detected in UNCOVER is asymptotically independent of the distance
between the wall and the detector. In contrast, in ToF methods, the aforementioned
confinement leads to an inverse-square type drop-off in the number of photons it
can detect with respect to the distance between the wall and the detector.

Here, we calculate the number of photons being detected in UNCOVER and ToF
method while assuming the laser power, detector sensitivity, active area of the
detector, the collecting lens, and the distances are the same in both cases.

As the distance from the wall to the the detection unit 𝐷 is in general far larger than
the focal length 𝑓 of the lens in use, we will assume that 𝐷 ≫ 𝑓 in the following
derivation. Considering the fact that the radius of the lens 𝑟 is also small compared
with 𝐷, we also assume 𝐷 ≫ 𝑟. When the target is far away from the wall, the
photons that are scattered off by the target are approximately uniformly distributed
across all points on the wall. In the following discussion, we will assume this spatial
invariant intensity to be 𝐼0. Refer to Fig. 4.16 for the definition of the different
distances/lengths used in the following derivation.

In ToF method, an area of 1mm × 1mm (𝐴wall = 1 × 10−6 m2) is typically detected.
Let the portion of light being detected by the detector with respect to the total power
shine on an unit area on the wall be 𝑃. We know that 𝑃 depends on the solid angle
Ω as well as the location of the unit area. As we assume that the intensity is spatially
invariant, we will ignore the dependence on the location. Thus, 𝑃 is a function of
Ω, which will be written as 𝑃(Ω). Using Taylor expansion at Ω = 0, we have:

𝑃(Ω) = 𝑎1Ω + 𝑎2Ω
2 + · · · + 𝑎𝑛Ω

𝑛 + · · · , (4.48)
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Figure 4.16: Detection scheme of UNCOVER and ToF. Ω is the acceptance angle of
the collection lens (here Ω is a solid angle). We assume an area of 𝐴wall is detected.
The distance from the lens to the wall is 𝐷, the distance from the lens to the image
sensor is 𝑙 and the radius of the lens is 𝑟. The focal length of the lens is 𝑓 . The
angles shown in the figure are for illustration and are different from the angles in
our experiments.

where 𝑎𝑛 (𝑛 = 1, 2, 3, · · · ) are constant. The constant term is dropped as the ratio
is zero when Ω = 0. If Ω is small, we can keep the leading term and drop 𝑂 (Ω2),
which gives:

𝑃(Ω) ≈ 𝑎1Ω, given Ω ≪ 1. (4.49)

For 𝑟 ≪ 𝐷, we have the following approximation:

Ω ≈ 𝜋𝑟2

𝐷2 ≪ 1. (4.50)

Thus, 𝑃(Ω) can be approximated as

𝑃(Ω) ≈ 𝑎1Ω ≈ 𝑎1
𝜋𝑟2

𝐷2 . (4.51)

Using this approximation, the number of photons being detected per unit time in
ToF methods 𝑁ToF is:

𝑁ToF =
𝐼0𝐴wall𝑃(Ω)

ℎ𝜈
≈

𝐼0𝐴wall𝑎1
𝜋𝑟2

𝐷2

ℎ𝜈
=
𝑎1𝜋𝐼0𝐴wall𝑟

2

ℎ𝜈𝐷2 , (4.52)

where ℎ is the plank constant, 𝐴wall the area being detected on the wall, and 𝜈 the
frequency of the light.

In UNCOVER, we do not need to confine the area of detection (except the apertures
should be excluded), so the area being detected is mainly dependent on the active
area of the detector. Assume the area of the detector is 𝐴Det, and we image the
wall onto the detector. Let us first calculate 𝑙, the distance between the lens and the
image plane:

1
𝑓
=

1
𝐷

+ 1
𝑙
⇒ 𝑙 =

𝑓 𝑑

𝑓 + 𝐷
≈ 𝑓 𝑑

𝐷
= 𝑓 . (4.53)
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Thus, the magnification power 𝑀 is give by:

𝑀 =
𝐷

𝑙
≈ 𝐷

𝑓
. (4.54)

So, in UNCOVER, the area being detected on the wall is

𝐴′
wall = 𝑀2𝐴Det =

𝐷2

𝑓 2 𝐴Det. (4.55)

Thus, we can find the number of photons being detected per unit time in UNCOVER
𝑁UNCOVER is

𝑁UNCOVER =
𝐼′0𝐴

′
wall𝑃(Ω)
ℎ𝜈

≈
𝐼′0
𝐷2

𝑓 2 𝐴Det𝑎1
𝜋𝑟2

𝐷2

ℎ𝜈
=
𝑎1𝜋𝐼

′
0𝐴Det𝑟

2

ℎ𝜈 𝑓 2 . (4.56)

An important finding is that 𝑁ToF is inversely proportional to 𝐷2 while 𝑁UNCOVER

is independent of 𝐷. This implies that the signal that UNCOVER detected is
asymptotically independent of the distance between the detector and the wall. In
contrast, signal in ToF system drops as the distance increases. It is worthwhile
to point out that one cannot move the detector close to the wall in many practical
NLOS settings. Thus, studying the enhancement in the number of photons that can
be detected in UNCOVER compared with ToF type methods is important to find the
operation range improvement of UNCOVER. The ratio of number of photons being
detected in UNCOVER over ToF is given by

𝑁UNCOVER
𝑁ToF

=
𝑎1𝜋𝐼

′
0𝐴Det𝑟

2

ℎ𝜈 𝑓 2
ℎ𝜈𝐷2

𝑎1𝜋𝐼0𝐴wall𝑟2 =
𝐼′0𝐴Det𝐷

2

𝐼0𝐴wall 𝑓 2 . (4.57)

To compare the number of photons being detected in UNCOVER and ToF method,
we did an experiment to verify the signal decay. The results are shown in Fig.
4.17. In the experiment, a collecting lens of focal length 𝑓 = 32mm was used. We
measured the signal starting at a distance of 0.5 away from the wall and increased
the distance gradually. Each data point is the mean of 200 measurements and the
length of error bar means their standard deviation. To match up with our experiment
condition, the intensity for UNCOVER is decreased by 157 times (∼ 50𝜋) as we
use around 100 sub-apertures for most of our experiment. The detector used in our
experiment has an active area of 3.7 mm × 13.0 mm and the area being detected in
ToF is a square with side length of 1 mm.
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Figure 4.17: Power drop-off in UNCOVER and ToF method. The signals are
normalized using their maximum value, respectively. Each point shows the mean
of 200 measurements and the error bar shows the standard deviation of the 200
measurements.

Using Eq. 4.57, we can find that the ratio of signal in UNCOVER over the signal in
ToF method at a distance of 0.5 m is

𝑁UNCOVER
𝑁ToF

=
𝐼′0𝐴Det𝐷

2

𝐼0𝐴wall 𝑓 2 =
1

157
3.7 × 13

1 × 1
0.52

0.0322 ≈ 75. (4.58)

In the actual experiment, we find that the ratio is approximately 87, which is slightly
higher than the value based on our calculation. This is mainly due the fact that the
scatted photon returning to the wall is not evenly distributed. In UNCOVER, a much
larger area is being detected, which covers areas with higher intensities. As shown
in Fig. 4.17, signal in ToF decreases much faster than UNCOVER. This shows that
UNCOVER may potentially provide a larger operation range than the existing ToF
methods. We note that the signals in UNCOVER exhibit a gentle decrease when
the distance from the wall to the detector increases. This might also be caused by
the uneven distribution of the scattered light, which violates the assumption that the
intensity is spatially invariant.

In addition to the direct improvement in the detection efficiency, we want to point
out that conducting feedback based wavefront shaping directly (without using pairs)
also benefits in UNCOVER. Although applying feedback based wavefront shaping
directly without using pairs is not guaranteed to, and probably will not, provide a
focus, it delivers more light onto the target. With this pre-optimization, operation
range of UNCOVER can be further increased.
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A p p e n d i x A

NOISE IN OFFAXIS HOLOGRAPHY

We will calculate the signal power (intensity of the signal) using offaxis holography.
To do this, we will need to know the noise distribution after the process in offaxis.
Thus, we will first find the noise distribution after we perform Fourier transform
to the acquired image. Then, we will use this information to deduce the noise
distribution after cropping and inverse Fourier transform. SNR here refers to SNR
per pixel after we perform offaxis (otherwise it is clarified).

A.1 Noise distribution in the Fourier transform
For the intensity captured by one of the pixel at position x𝑡 on a camera in offaxis
holography, we have

Offaxis(x𝑡) = 𝑅(x𝑡) + 𝑇 (x𝑡) + 2
√︁
𝑅𝑇 (x𝑡) cos(k0 · x𝑡 − 𝜙) + 𝑁 (x𝑡), (A.1)

where 𝑇 and 𝑅 are the signal and reference (reference is assumed to be a plane wave
𝑅(x𝑡) = 𝑅), respectively. k0 is related to the tilt between the reference arm and
signal arm, 𝜙 is the phase of the E-field of the signal arm. When the power of the
reference is large, the noise can be approximated as a Gaussian noise with mean 0
and variance 𝑅

𝑁 (x𝑡) ∼ N (0, 𝜎2 = 𝑅). (A.2)

Note that the sequence {𝑁 (x𝑡)} is i.i.d., so they are jointly Gaussian. The DFT of
the noise term can be written as (𝑁𝑃 is the number of pixels):

𝑁 (k) =
𝑁𝑃∑︁
𝑡=1

𝑁 (x𝑡)𝑒−𝑖k·x𝑡 =
𝑁𝑃∑︁
𝑡=1

𝑁 (x𝑡) cos(k · x𝑡) − 𝑖

𝑁𝑃∑︁
𝑡=1

𝑁 (x𝑡) sin(k · x𝑡). (A.3)

We can deduce that the real and imaginary part are both Gaussian from the fact
{𝑁 (x𝑡)} is jointly Gaussian. To find out if the real and imaginary part are indepen-
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dent, let us calculate the covariance between them, this gives

E

[
−

( 𝑁𝑃∑︁
𝑡=1

𝑁 (x𝑡) cos(k · x𝑡)
) ( 𝑁𝑃∑︁

𝑡

𝑁 (x𝑡) sin(k · x𝑡)
)]

= −E
[ 𝑁𝑃∑︁
𝑡=1

𝑁2(x𝑡) cos(k · x𝑡) sin(k · x𝑡)
]

= −
𝑁𝑃∑︁
𝑡=1
E

[
𝑁2(x𝑡) cos(k · x𝑡) sin(k · x𝑡)

]
= −𝜎2

𝑁𝑃∑︁
𝑡=1

cos(k · x𝑡) sin(k · x𝑡)

= 0. (A.4)

The last equality follows the fact that sin and cos are elements of Fourier basis.
So the covariance of the two Gaussian R.V. is zero, which means the real and
imaginary part are independent. For different k, sin(k1), cos(k1), sin(k2) and
cos(k2) (k1 ∉ {k2,−k2}) are also orthogonal. Thus, 𝑁 (k1) and 𝑁 (k2) are also
independent (k1 ∉ {k2,−k2}). (Eq. A.4 is actually the imaginary part of the Fourier
transform of the constant 𝜎2

2 evaluated at 2k, which is zero.)

Let us then calculate the variance of the centered real and imaginary part

Var
[ 𝑁𝑃∑︁
𝑡=1

𝑁 (x𝑡) cos(k · x𝑡)
]

= E


(
𝑁𝑃∑︁
𝑡=1

𝑁 (x𝑡) cos(k · x𝑡)
)2 −

[
E

(
𝑁𝑃∑︁
𝑡=1

𝑁 (x𝑡) cos(k · x𝑡)
)]2

=

𝑁𝑃∑︁
𝑡=1
E

[
𝑁2(x𝑡) cos2(k · x𝑡)

]
= 𝜎2

𝑁𝑃∑︁
𝑡=1

cos2(k · x𝑡) =
𝑁𝑃

2
𝜎2. (A.5)

Similarly, the variance of the imaginary part is also 𝑁𝑃

2 𝜎2. So the modulus of the

complex number |𝑁 (k) | ∼ Rayleigh(𝜎
√︃

𝑁𝑃

2 ), the angle is uniformly distributed.

The following figure (Fig. A.1) shows the comparison between the distribution of
the noise in the Fourier Transform and the theoretical distribution, which matches
pretty well. The correlation between the imaginary and real part is −6 × 10−4.
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Figure A.1: Noise distribution in offaxis holography (spatial frequency space).
Here, we simulated the noise using the forward model and then conducted the
Fourier transform. The noise was extracted and then plotted against our theoretical
prediction.

A.2 The cropping process in offaxis and its influence
From Section A.1 we know that the real and imaginary part of the FT is i.i.d.
Gaussian with mean 0 and variance 𝜎′2 =

𝑁𝑃

2 𝜎2. Let us write 𝑁 (k 𝑗 ) in the
following way:

𝑁 (k 𝑗 ) = 𝜉𝑅 (k 𝑗 ) + 𝑖𝜉𝐼 (k 𝑗 ), (A.6)

where 𝜉𝑅, 𝜉𝐼 are i.i.d. N(0, 𝜎′2). Let us consider only half of the 2D k-space
𝐴ℎ := {k =

(
𝑘1
𝑘2

)
|𝑘1 < 0}. Note that ∀k1k2 ∈ 𝐴ℎ, 𝑁 (k1) ⊥ 𝑁 (k2). Suppose we

cropped out a rectangle 𝐶 ⊂ 𝐴ℎ. Let 𝑁𝐶 denote the number of k ∈ 𝐶. Consider the
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inverse Fourier transform on the rectangle, the signal we will end up getting is

�̂� (r𝑚) =
1
𝑁𝐶

𝑁𝐶∑︁
𝑗=1

𝑁 (k 𝑗 )𝑒𝑖(k 𝑗−k0)·r𝑚 =
1
𝑁𝐶

𝑁𝐶∑︁
𝑗=1

𝑁 (k 𝑗 )𝑒𝑖k
′
𝑗
·r𝑚

=
1
𝑁𝐶

𝑁𝐶∑︁
𝑗=1

[
cos(k′

𝑗 · r𝑚)𝜉𝑅 (k 𝑗 ) − sin(k′
𝑗 · r𝑚)𝜉𝐼 (k 𝑗 )

]
+ 𝑖

1
𝑁𝐶

𝑁𝐶∑︁
𝑗=1

[
cos(k′

𝑗 · r𝑚)𝜉𝐼 (k 𝑗 ) + sin(k′
𝑗 · r𝑚)𝜉𝑅 (k 𝑗 )

]
, (A.7)

where k′
𝑗

:= k 𝑗 − k′
0, and k′

0 is the center of the rectangle 𝐶. We can also conclude
that the real and imaginary part of �̂� (r𝑚) are Gaussian. (It follows the same logic
as in Section A.1.)

Let us repeat the process we went through in Section A.1. The covariance of the
real and imaginary part is

E
[
ℜ

(
�̂� (r𝑚)

)
ℑ

(
�̂� (r𝑚)

) ]
=

1
𝑁2
𝐶

𝑁𝐶∑︁
𝑗=1
E

[
cos(k′

𝑗 · r𝑚) sin(k′
𝑗 · r𝑚)𝜉2

𝑅 (k 𝑗 )
]

− 1
𝑁2
𝐶

𝑁𝐶∑︁
𝑗=1
E

[
cos(k′

𝑗 · r𝑚) sin(k′
𝑗 · r𝑚)𝜉2

𝐼 (k 𝑗 )
]

=
𝜎′2

𝑁2
𝐶

𝑁𝐶∑︁
𝑗=1

cos(k′
𝑗 · r𝑚) sin(k′

𝑗 · r𝑚) −
𝜎′2

𝑁2
𝐶

𝑁𝐶∑︁
𝑗=1

cos(k′
𝑗 · r𝑚) sin(k′

𝑗 · r𝑚)

= 0, (A.8)

where ℜ(·) denotes the real part of a complex number and ℑ(·) denotes the imag-
inary part of a complex number. This indicates that the real and imaginary part of
�̂� (r𝑚) are independent. Also, for different 𝑚 and 𝑚′, sin(r𝑚 · k′

𝑗
), cos(r𝑚 · k′

𝑗
),

sin(r𝑚′ ·k′
𝑗
) and cos(r𝑚′ ·k′

𝑗
) are orthogonal. So �̂� (r𝑚) and �̂� (r′𝑚) are independent.

Note that if we choose another cropping method, the noise term may become
dependent. A simple way to see this result is observing that if some of the term
are dropped out, the number of degree of freedom in k-space is reduced. As the
total number of freedom will not change in the inverse Fourier transform, {�̂� (r𝑚)}
cannot be independent.

In the following analysis, we will just consider we cropped out the rectangle 𝐶. The
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variance of the real part of �̂� (r𝑚) is

Var
[
ℜ

(
�̂� (r𝑚)

) ]
= E

[( 1
𝑁𝐶

𝑁𝐶∑︁
𝑗=1

[
cos(k′

𝑗 · r𝑚)𝜉𝑅 (k 𝑗 ) − sin(k′
𝑗 · r𝑚)𝜉𝐼 (k 𝑗 )

] )2
]

=
1
𝑁2
𝐶

[ 𝑁𝐶∑︁
𝑗=1
E

[
cos2(k′

𝑗 · r𝑚)𝜉2
𝑅 (k 𝑗 )

]
+

𝑁𝐶∑︁
𝑗=1
E

[
sin2(k′

𝑗 · r𝑚)𝜉2
𝐼 (k 𝑗 )

] ]
=

1
𝑁2
𝐶

[
𝜎′2

𝑁𝐶∑︁
𝑗=1

(
cos2(k′

𝑗 · r𝑚) + sin2(k′
𝑗 · r𝑚)

) ]
=
𝜎′2

𝑁𝐶

=
𝜎2𝑁𝑃

2𝑁𝐶

. (A.9)

Figure A.2: Noise distribution in offaxis holography (after reconstruction). In this
simulation, we performed the entire reconstruction process in offaxis holography.
The cropped spectrum was shifted to the zero spatial frequency and then transformed
back to real space. The histogram of the simulated noise in the reconstruction was
then plotted against the prediction.

For the imaginary part, we will also have Var
[
ℑ

(
�̂� (r𝑚)

) ]
= 𝜎′2

𝑁𝐶
. If we write the
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noise in polar form, we will have

�̂� (r𝑚) = 𝐴(r𝑚)𝑒𝑖𝛼(r𝑚) , (A.10)

where 𝐴(r𝑚) ∼ Rayleigh( 𝜎′
√
𝑁𝐶

), and 𝛼(r𝑚) ∼ Unif[0, 2𝜋]. Figure A.2 shows
the comparison between theory and simulation. Similarly, the average absolute
correlation between two different �̂� (r𝑚) is 0.003. And this simulation result also
supports that {�̂� (r𝑚)} are independent.

A.3 Analysis of the signal
Let us assume the signal is bandwidth limited. Let the Fourier transform of the cross
term, 𝑋 = 2

√
𝑅𝑇 cos(x𝑡 · k0 + 𝜙), not overlap with the zero-order 𝑅(x𝑡) + 𝑇 (x𝑡), in

k-space. If we write the Fourier transform of the field of the signal as 𝑆(k), we will
have

𝑆(k) =
𝑁𝑃∑︁
𝑡=1

(√︁
𝑇 (x𝑡)𝑒𝑖𝜙

)
𝑒−𝑖k·x𝑡 . (A.11)

The Fourier transform of the cross term is

𝑋 (k) =
𝑁𝑃∑︁
𝑡=1

2
√︁
𝑅𝑇 (x𝑡) cos(x𝑡 ·k0−𝜙)𝑒−𝑖k·x𝑡 =

√
𝑅𝑆(k−k0) +

√
𝑅𝑆(k+k0). (A.12)

Assume 𝑆(k − k0) lies inside the cropped region 𝐶, then once we cropped out 𝐶
and do inverse Fourier transform, the signal is given by

𝑆(r𝑚) =
1
𝑁𝐶

𝑁𝐶∑︁
𝑗=1

√
𝑅𝑆(k 𝑗 − k0)𝑒𝑖r𝑚·k

′
𝑗 =

1
𝑁𝐶

𝑁𝐶∑︁
𝑗=1

√
𝑅𝑆(k 𝑗 )𝑒𝑖r𝑚·k 𝑗 𝑒𝑖(k0−k′

0)·r𝑚 .

(A.13)

A.4 SNR calculation
The final signal we will get using this cropping method is

Signal(r𝑚) = 𝑆(r𝑚) + �̂� (r𝑚) = 𝑆(r𝑚) + 𝐴(r𝑚)𝑒𝑖𝛼(r𝑚) . (A.14)

So the squared norm of the signal is:

|Signal(r𝑚) |2 = |𝑆(r𝑚) |2 + 2|𝑆(r𝑚) | · 𝐴(r𝑚) cos(𝛼′(r𝑚)) + 𝐴2(r𝑚), (A.15)

where 𝐴2(r𝑚) ∼ Exponential( 𝑁𝐶

2𝜎′2 ), and 𝛼′(r𝑚) = 𝛼(r𝑚) − 𝐴𝑟𝑔
[
𝑆(r𝑚)

]
which is

uniformly distributed 𝛼′(r𝑚) ∼ Unif[0, 2𝜋]. Note that the argument of 𝑆(r𝑚) is
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deterministic (i.e., the signal is deterministic in one experiment, the only variant is
noise) so 𝛼′ is uniformly distributed.

Let us consider 𝐴(r𝑚) cos(𝛼′(r𝑚)), the expected value is

E [𝐴(r𝑚) cos(𝛼′(r𝑚))] = E [𝐴(r𝑚)] E [cos(𝛼′(r𝑚))] = 0. (A.16)

Its variance is given by

E
[
𝐴2(r𝑚) cos2(𝛼′(r𝑚))

]
= E

[
𝐴2(r𝑚)

]
E

[
cos2(𝛼′(r𝑚))

]
=
𝜎2𝑁𝑃

2𝑁𝐶

. (A.17)

So the mean of |Signal|2 is

E[|Signal(r𝑚) |2] = |𝑆(r𝑚) |2 +
2𝜎′2

𝑁𝐶

= |𝑆(r𝑚) |2 +
𝜎2𝑁𝑃

𝑁𝐶

. (A.18)

The variance of |Signal|2 is

Var( |Signal|2) = E
[��2𝑆(r𝑚)𝐴(r𝑚) cos(𝛼′(r𝑚)) + 𝐴2(r𝑚)

��2]
− E2 [

2|𝑆(r𝑚) |𝐴(r𝑚) cos(𝛼′(r𝑚)) + 𝐴2(r𝑚)
]

= 4|𝑆(r𝑚) |2
𝜎2𝑁𝑃

2𝑁𝐶

+
2𝜎4𝑁2

𝑃

𝑁2
𝐶

−
𝜎4𝑁2

𝑃

𝑁2
𝐶

= 2|𝑆(r𝑚) |2
𝜎2𝑁𝑃

𝑁𝐶

+
𝜎4𝑁2

𝑃

𝑁2
𝐶

. (A.19)

So, the SNR is given by

SNR(r𝑚) =
|𝑆(r𝑚) |2√√√

2|𝑆(r𝑚) |2
𝜎2𝑁𝑃

𝑁𝐶

+
𝜎4𝑁2

𝑃

𝑁2
𝐶

. (A.20)

To verify the theoretical SNR, a simulation was conducted. Poisson noise was added
to the same speckle field and reference. And this process was repeated for 500 times
to calculate the standard deviation of the noise on each pixels. The correlation factor
between theory and simulation is 0.998.

The overall SNR (i.e., SNR for the power on the entire detector) is

SNR𝑎𝑙𝑙 =

∑𝑁𝐶

𝑚=1 |𝑆(r𝑚) |
2√√√∑𝑁𝐶

𝑚=1 2|𝑆(r𝑚) |2
𝜎2𝑁𝑃

𝑁𝐶

+ 𝑁𝐶

𝜎4𝑁2
𝑃

𝑁2
𝐶

=

√
𝑁𝐶𝜇𝑆√√√

2𝜇𝑆
𝜎2𝑁𝑃

𝑁𝐶

+
𝜎4𝑁2

𝑃

𝑁2
𝐶

, (A.21)
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Figure A.3: SNR in simulation vs theoretical prediction in offaxis. In simulation,
Poisson noise is added.

Figure A.4: Linear fitting of offaxis SNR in theory vs in simulation.

where 𝜇𝑆 =
1
𝑁𝐶

∑𝑁𝐶

𝑚=1 |𝑆(r𝑚) |
2. (Note that after cropping, there is only 𝑁𝐶 pixels).

Figure A.5 is the comparison between simulation and theory. The noises are simu-
lated for 500 times to calculate their standard deviations.

A.5 The non-interfering part
Let us consider the case that there is a field that does not interfere with the reference
and the signal arm. One of such example can be seen in ultrasound optical tomog-
raphy (UOT), where the untagged light is frequency shifted and the cross-term will
be averaged out during the integration time of the detector. Let the non-interfering
part at x𝑡 be a non-negative random variable 𝑋 (x𝑡). Let us plug this into Eq. A.1,



132

Figure A.5: Overall offaxis SNR. Here, the reconstructed intensities in the entire
sensor are added together. This gives us the total power of the ultrasound tagged
light. The overall SNR denotes the SNR of this total power.

which gives

Offaxis(x𝑡) = 𝑅(x𝑡) +𝑇 (x𝑡) + 𝑋 (x𝑡) + 2
√︁
𝑅𝑇 (x𝑡) cos(k0 · x𝑡 − 𝜙) + 𝑁 (x𝑡). (A.22)

As 𝑅(x𝑡) is large and 𝑋 (x𝑡) is non-negative, the noise can be also modeled as a
Gaussian random variable with mean zero and variance 𝑅(x𝑡) + 𝑋 (x𝑡). For one
realizations, 𝑋 (x𝑡) is deterministic and we will treat 𝑋 (x𝑡) as deterministic. Given
𝑋 (x𝑡), the noise can be written as

𝑁′(x𝑡) := 𝑁 (x𝑡) |𝑋 (x𝑡) ∼ N (0, 𝑋 (x𝑡) + 𝑅) . (A.23)

The Fourier transform of the noise term can be written as

𝑁′(k) =
𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡)𝑒−𝑖k·x𝑡 =
𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) cos(k · x𝑡) − 𝑖

𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) sin(k · x𝑡). (A.24)
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The covariance between the imaginary and real part of 𝑁′(k) is

E

[
−

( 𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) cos(k · x𝑡)
) ( 𝑁𝑃∑︁

𝑡

𝑁′(x𝑡) sin(k · x𝑡)
)]

= −E
[ 𝑁𝑃∑︁
𝑡=1

𝑁′2(x𝑡) cos(k · x𝑡) sin(k · x𝑡)
]

= −
𝑁𝑃∑︁
𝑡=1
E

[
𝑁′2(x𝑡) cos(k · x𝑡) sin(k · x𝑡)

]
= −

𝑁𝑃∑︁
𝑡=1

[𝑅 + 𝑋 (x𝑡)] cos(k · x𝑡) sin(k · x𝑡)

= −
𝑁𝑃∑︁
𝑡=1

[𝑅 + 𝑋 (x𝑡)]
1
2

sin(2k · x𝑡)

= ℑ
[
1
2

𝑁𝑃∑︁
𝑡=1

𝑋 (x𝑡)𝑒−𝑖(2k)·x𝑡
]

=
1
2
ℑ

[
�̃� (2k)

]
, (A.25)

where �̃� is the Fourier transform of 𝑋 . If 𝑋 is band-limited, which is the usual case
in off-axis, we will write 𝑘𝑐 as the cut-off frequency of 𝑋 . Let k𝑚 be the maximum
frequency in DFT, then the covariance of the imaginary and real part of 𝑁′(k) is
non-zero when k ∈ 𝑍 := {k | ∥2k − 2𝑛k𝑚 ∥2 ≤ 𝑘𝑐, 𝑛 ∈ Z}.

Let us calculate the variance of the real part of 𝑁′(k):

Var
[ 𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) cos(k · x𝑡)
]
= E


(
𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) cos(k · x𝑡)
)2

=

𝑁𝑃∑︁
𝑡=1
E

[
𝑁′2(x𝑡) cos2(k · x𝑡)

]
=

𝑁𝑃∑︁
𝑡=1
E
[1
2
𝑁′2(x𝑡) [cos(2k · x𝑡) + 1]

]
=

𝑁𝑃∑︁
𝑡=1

1
2
[𝑅(x𝑡) + 𝑋 (x𝑡)] [cos(2k · x𝑡) + 1]

=
1
2
ℜ

[
�̃� (2k)

]
+ 1

2
[
�̃�(0) + �̃� (0)

]
. (A.26)
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Similarly, the variance of the imaginary part of 𝑁′(k) is

Var

[
𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) sin(k · x𝑡)
]
= E


(
𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) sin(k · x𝑡)
)2

=

𝑁𝑃∑︁
𝑡=1
E

[
𝑁′2(x𝑡) sin2(k · x𝑡)

]
=

𝑁𝑃∑︁
𝑡=1
E

[
1
2
𝑁′2(x𝑡) (− cos(2k · x𝑡) + 1)

]
=

𝑁𝑃∑︁
𝑡=1

1
2
[𝑅(x𝑡) + 𝑋 (x𝑡)] [− cos(2k · x𝑡) + 1]

= −1
2
ℜ

[
�̃� (2k)

]
+ 1

2
[
�̃�(0) + �̃� (0)

]
. (A.27)

Figure A.6: The image of the non-interfering part and its Fourier transform. In this
simulation, the ‘L’ shape in the Fourier transform is chosen deliberately to better
visualize the correlation in the following section. The Fourier transform on the right
shows only the amplitude.

Figure A.7: Correlation of the real and imaginary part of the noise. Left: simulation,
right: prediction.
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To better quantify the dependence between the imaginary and real part, we will use
the correlation between them (k ≠ 0)

Corr [ℜ (𝑁′(k)) ,ℑ (𝑁′(k))] = Cov [ℜ (𝑁′(k)) ,ℑ (𝑁′(k))]√︁
Var [ℜ (𝑁′(k))] Var [ℑ (𝑁′(k))]

=
ℑ

[
�̃� (2k)

]√︃[
�̃�(0) + �̃� (0)

]2 −ℜ
[
�̃� (2k)

]2
. (A.28)

Figures A.6 and A.7 are the simulation results of adding a artificial 𝑋 term. 4000
samples were simulated in each trial and then the correlation was calculated using
the 4000 samples generated.

For a typical speckle field, the imaginary and real part of �̃� (k) (k ≠ 0) is usually
much smaller than �̃� (0), and the ratio also decreases when the number of |k| < 𝑘𝑐

increases. So for many 𝑋 (e.g., speckles), the real and imaginary part of 𝑁′(k) may
be treated as two independent random variables.

Apart from the dependence of the real and imaginary part, we can also find that
𝑁′(k) and 𝑁′(k′) are dependent even if k ≠ k′.

The covariance between the real part of 𝑁′(k) and 𝑁′(k′) can be written as

E

[( 𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) cos(k · x𝑡)
) ( 𝑁𝑃∑︁

𝑡

𝑁′(x𝑡) cos(k′ · x𝑡)
)]

= E

[ 𝑁𝑃∑︁
𝑡=1

𝑁′2(x𝑡) cos(k · x𝑡) cos(k′ · x𝑡)
]

=

𝑁𝑃∑︁
𝑡=1
E

[
𝑁′2(x𝑡) cos(k · x𝑡) cos(k′ · x𝑡)

]
=

𝑁𝑃∑︁
𝑡=1

[𝑅 + 𝑋 (x𝑡)] cos(k · x𝑡) cos(k′ · x𝑡)

=

𝑁𝑃∑︁
𝑡=1

[𝑅 + 𝑋 (x𝑡)]
1
2

(
cos

[
(k + k′) · x𝑡

]
+ cos

[
(k − k′) · x𝑡

] )
=

1
2
ℜ

[
�̃� (k + k′)

]
+ 1

2
ℜ

[
�̃� (k − k′)

]
. (A.29)
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The covariance between the real part of 𝑁′(k) and the imaginary part of 𝑁′(k′) is

E

[
−

(
𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) cos(k · x𝑡)
) (

𝑁𝑃∑︁
𝑡

𝑁′(x𝑡) sin(k′ · x𝑡)
)]

= −
𝑁𝑃∑︁
𝑡=1

[𝑅 + 𝑋 (x𝑡)]
1
2

(
sin

[
(k + k′) · x𝑡

]
− sin

[
(k − k′) · x𝑡

] )
=

1
2
ℑ

[
�̃� (k + k′)

]
− 1

2
ℑ

[
�̃� (k − k′)

]
. (A.30)

The covariance between the imaginary part of 𝑁′(k) and𝑁′(k′) is

E

[(
𝑁𝑃∑︁
𝑡=1

𝑁′(x𝑡) sin(k · x𝑡)
) (

𝑁𝑃∑︁
𝑡

𝑁′(x𝑡) sin(k′ · x𝑡)
)]

=

𝑁𝑃∑︁
𝑡=1

[𝑅 + 𝑋 (x𝑡)]
1
2

(
cos

[
(k − k′) · x𝑡

]
− cos

[
(k + k′) · x𝑡

] )
=

1
2
ℜ

[
�̃� (k − k′)

]
− 1

2
ℜ

[
�̃� (k + k′)

]
. (A.31)

So actually they are not independent. If we calculate the correlation between them,
then the value in the above three equations will be divided by the square root of the
product of their variances, which is related to �̃�(0) + �̃� (0).

Again, when the imaginary and real part of �̃� (k) (k ≠ 0) is much smaller than �̃� (0),
𝑁′(k) and 𝑁′(k′) can be regarded as two independent random variables. And if this
condition is satisfied, we can just replace 𝜎2 in Sections A.1-A.4 with 𝜎2

2 = 𝑅 + 𝜇𝑋

to calculate the SNR, where 𝜇𝑋 is the mean of 𝑋 (�̃� (0) =
∑𝑁𝑃

𝑡=1 𝑋 (x𝑡) = 𝑁𝑃𝜇𝑋).
The following two figures show the simulation result and the theoretical prediction
which ignores such correlation.

Figure A.8: Pixelwise SNR in theory and simulation (with non-interfering part).
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Figure A.9: Linear fitting of simulated pixelwise SNR and prediction (with non-
interfering part).

By summing over all pixels, we can also get the power on the detector. Here we did
a simulation where the signal power was changed for 150 times. The non-interfering
part used in this simulation was speckle patterns. For a fixed signal power, Poisson
noise was introduced. Again, this process was repeated for 500 times to obtain
the standard deviation of the noise after summation. The theoretical prediction
and simulation match pretty well even though the correlation of the noise term is
ignored.

Figure A.10: Overall SNR after summation (with non-interfering part).
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A.6 Connecting to SNR in UOT
In UOT, we assumed the mean of 𝑋 (𝜇𝑋) equals R. So, we have 𝜎2

2 = 𝑅 + 𝜇𝑋 = 2𝑅.

Note the total energy in the cropped out region of the Fourier transform should be the
same before and after cropping, we can connect it to the total power after processing
(𝑁𝐶𝜇𝑆) via Parseval’s theorem. And we can also establish a similar connection to
the original off-axis image we get. This gives us

𝑁𝐶 (𝑁𝐶𝜇𝑆) = Power in sideband of FT = 𝑁𝑃 (𝑁𝑃�̄�𝑇𝑅), (A.32)

where �̄�𝑇 = 1
𝑁𝑃

∑𝑁𝑃

𝑡=1 𝑇 (x𝑡) is the mean power of the signal arm.

If we use a rectangular aperture to maximize the use of the Fourier space, we will
have

𝑁𝑃

𝑁𝐶

= 4. (A.33)

Thus, we can conclude

𝜇𝑆 =
𝑁2
𝑃

𝑁2
𝐶

�̄�𝑇𝑅 = 16�̄�𝑇𝑅. (A.34)

Substitute what we have now in Eq. A.21, the final SNR expression is

SNRUOT =

√
𝑁𝐶𝜇𝑆√√√

2𝜇𝑆
𝜎2

2 𝑁𝑃

𝑁𝐶

+
𝜎4

2 𝑁
2
𝑃

𝑁2
𝐶

=

√︄
𝑁𝑃

4
16�̄�𝑇𝑅√︁

2 · 16�̄�𝑇𝑅 · 2𝑅 · 4 + (2𝑅)2 · 16

=
8
√
𝑁𝑃�̄�𝑇𝑅√︁

256�̄�𝑇𝑅
2 + 64𝑅2

=

√
𝑁𝑃�̄�𝑇√︁

4�̄�𝑇 + 1
. (A.35)
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