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ABSTRACT

Optical microresonators trap light in compact volumes at discrete resonant frequen-
cies. Benefiting from the ultra-low propagation loss, the electromagnetic wave
intensity is greatly enhanced. Due to the pronounced light confinement, nonlinear
optical effects are significantly magnified in the microresonators. In this thesis,
I investigate various nonlinear optical phenomena using high quality factor silica
wedge and fully-integrated thin film silicon nitride microresonators. The explo-
ration begins with Kerr nonlinearity-induced soliton microcombs followed by their
application in mid-IR band gas spectroscopy. The generation of solitons under
normal dispersion conditions, which frustrate soliton formation, is then considered.
Subsequently, attention is directed towards stimulated Brillouin lasers and their fre-
quency noise performance, including long-term frequency stabilization based on the
built-in temperature reference and validation of two modification factors affecting
short-term fundamental linewidth. Along this journey, a novel method for calibrat-
ing ultra-narrow laser linewidths is introduced. Lastly, this method is employed to
measure the narrow linewidth of a visible laser generated through second harmonic
generation in silicon nitride resonators.
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C h a p t e r 1

INTRODUCTION

1.1 Optical microresonators
Like its acoustic counterpart which can store acoustic energy, the optical microres-
onator (or microcavity) is a structure designed to confine light within small volumes
through resonant recirculation [1]. In contrast to traditional bulky bench-top res-
onators, the term ‘micro’ refers to the small geometric size of such structures,
typically in the range of tens of micrometers. In practical terms, resonators with
dimensions in the millimeter scale are also classified as microresonators, as long as
their mode area is at the micrometer square level.

Within an optical resonator (cavity), electromagnetic waves undergo repeated reflec-
tions or circulations, interfering with themselves. Only electromagnetic waves with
specific discrete frequencies (resonance frequencies) and particular cross-section
patterns exhibit constructive interference, storing energy in the resonator and gener-
ating modes. Due to the periodic conditions of the resonator, modes differing only
in frequency can be categorized as distinct longitudinal modes, where the round-trip
length is an integer multiple (referred to as the mode number) of the laser wave-
length. Conversely, modes with different intensity patterns across the cross-section
are termed different transverse modes.

Microresonators can be realized in various configurations [1], such as the Fabry–Pérot
cavity (composed of two opposing mirrors), whispering-gallery cavity (light circu-
lates around its circumference due to total internal reflection), waveguide ring cav-
ity (where the waveguide cross section confines light and connects its head with its
tail), and photonic crystal cavity (featuring a periodic arrangement of structures with
band gaps and embedded energy levels). In this thesis, we focus on a SiO2 wedge
microresonator (whispering-gallery cavity) and a thin-film Si3N4 microresonator
(waveguide ring cavity). Detailed characterization of these two microresonators is
presented in section 2.2.

The operational principle of microresonators aligns with that of traditional larger
optical resonators. Light with ultra-low propagation loss accumulates a significantly
stronger optical field (enhanced by thousands compared to waveguide propagation)
and demonstrates an extended photon lifetime. This enhanced light-matter interac-
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tion leads to various phenomena, including cavity quantum electrodynamics (cavity
QED) [2, 3], optomechanics [4, 5], and biosensing [6]. Moreover, nonlinear ef-
fects are magnified by orders of magnitude due to the strong light confinement, as
discussed in the subsequent sections.

The compact form factor of the microcavity is advantageous for optical system
integration on a semiconductor chip, offering benefits such as mass production, low
power consumption, and a small footprint. Quantum effects may also manifest due
to the small dimensions of the system. For instance, the small cavity mode volume
and low loss enhance the Purcell effect, altering the spontaneous emission rate and
behavior of atoms [7].

1.2 Optical nonlinearity
Nonlinear optical effects elucidate the behavior of light in nonlinear media and
are often associated with frequency (or wavelength) conversion. Their physics and
applications have garnered substantial interest over the past century, with a notable
breakthrough — optical frequency comb technology — earning the Nobel Prize
in Physics in 2005. Optical nonlinearities manifest in various platforms, including
crystalline materials, optical fibers, and other waveguide devices.

In such media, the material’s response to the electromagnetic field can be described
by the dielectric polarization density P(𝑡) [8]:

P(𝑡) = 𝜖0(𝜒(1)E(𝑡) + 𝜒(2)E2(𝑡) + 𝜒(3)E3(𝑡) + ...), (1.1)

where E(𝑡) is the electric field, and the coefficient 𝜒(𝑛) represent the 𝑛-th order
susceptibility of the medium. The first term corresponds to the linear response of the
material, and the presence of higher-order terms is indicative of nonlinear response.
Strictly speaking, 𝜒(𝑛) is an (𝑛 + 1)-th rank tensor, reflecting the polarization-
dependent nature of the parametric interaction and anisotropic nonlinear response, as
seen in crystalline materials. In the materials covered in this thesis, these coefficients
are typically simplified to scalar values.

Various nonlinear processes entail different levels of light-matter interaction. For
instance, stimulated Raman scattering (SRS) and stimulated Brillouin scattering
(SBS) processes involve the excitation and generation of phonons within the materi-
als. Conversely, in processes like four-wave mixing and second harmonic generation,
energy exchange occurs solely among photons, leaving the quantum state of the non-
linear material unchanged by the interaction with the optical field. In both cases,
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energy and momentum conservation are crucial, a condition referred to as the phase
matching condition, which ensures the efficient accumulation of the frequency con-
version. If the total momentum (or wavevector k) is not conserved, the nonlinear
process becomes oscillatory, and frequency conversion is not efficiently accumu-
lated. In microresonators, wavevectors are typically replaced by the azimuthal mode
number, and the phase matching condition remains a critical consideration. The
phase matching for different processes will be introduced in the following sections.

Kerr nonlinearity and optical frequency comb
The optical Kerr effect refers to the change of the material’s refractive index which
is directly proportional to the intensity of the light field. The term ’Kerr’ is used
analogously to the Kerr electro-optical effect, wherein the change in refractive index
is proportional to the square of the external electric field. The third-order nonlinear
susceptibility 𝜒(3) primarily contributes to the Kerr nonlinearities, and the refractive
index of the material, in the presence of Kerr effect, can be expressed as [8]

𝑛 = 𝑛0 + 𝑛2𝐼, (1.2)

where 𝐼 is the intensity of the electromagnetic wave, 𝑛0 is the linear refractive index,
and 𝑛2 is the nonlinear refractive index of the material. The optical Kerr effect
directly induces self-phase modulation (SPM) and cross-phase modulation (XPM),
with the nonlinear refractive index 𝑛2 in XPM being twice as large as that in SPM.

Assuming two optical frequency components co-propagate in the nonlinear media,
the Kerr-induced refractive index modulation will create additional frequency com-
ponents. This process is known as four-wave mixing, typically occurring within
different longitudinal modes in one transverse mode family in a microresonator.
For example, in degenerate four-wave mixing, two photons in the pump mode 𝑚0

can be annihilated, and two photons will be created at side modes 𝑚0 + Δ𝑚 and
𝑚0 − Δ𝑚. In more general cases, non-degenerate four-wave mixing occurs in four
different modes (mode numbers 𝑚, 𝑛, 𝑝, 𝑞, respectively). For phase matching
condition, energy conservation, and momentum conservation, 𝜔𝑚 + 𝜔𝑛 = 𝜔𝑝 + 𝜔𝑞

and 𝑚 + 𝑛 = 𝑝 + 𝑞, respectively, are required. Starting from one pump mode and
cascading this process, an optical frequency comb [9] with hundreds or thousands
of comb lines will eventually form. Note that Kerr nonlinearity in resonators is
not the only way to obtain frequency combs; other methods, such as electro-optic
modulation, are beyond the scope of this thesis.
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The optical frequency comb is a collection of phase-locked, coherent laser lines
featuring equally spaced frequencies:

𝑓𝑛 = 𝑓0 + 𝑛 𝑓r, (1.3)

where 𝑛 is an integer, 𝑓0 is an offset frequency common to all comb lines, and 𝑓r

is the repetition rate of the comb, the frequency difference between two adjacent
comb lines. Optical frequency combs find applications in science and technology,
including optical frequency synthesis [10, 11, 12], timekeeping [13, 14], microwave
synthesis [15], ranging [16], spectroscopy [17], and astronomical calibration [18].

With appropriate dispersion and nonlinearity, the Kerr frequency comb may satisfy
the soliton solution in the nonlinear Schrödinger equation. Solitons are solitary,
self-reinforcing, localized wave packets that maintain their shape and speed during
propagation. In microresonators, such solitons maintain their shape by balancing
anomalous dispersion with Kerr nonlinearity, while the external pump compensates
for propagation loss. When coupled out from the cavity, pulses from different round
trips form a periodic pulse train, each separated by the round trip time of the soliton
within the resonator. When viewed from the frequency domain, these soliton pulses
form a frequency comb (soliton microcomb) [19]. Soliton microcombs have been
demonstrated in various materials, such as magnesium fluoride [20], diamond [21],
silicon nitride [22, 23, 24, 25], silica [26], III-V semiconductors [27, 28], and lithium
niobate [29].

Brillouin scattering and stimulated Brillouin laser
Stimulated Brillouin scattering (SBS) is an inelastic scattering process wherein light
interacts with acoustic waves. In contrast to the Kerr effect, resulting from the optical
field-induced distortion of the electron cloud, the mechanism of SBS is attributed
to electrostriction [8]. It can be regarded as a third-order nonlinear optical process
and is present in all dielectric materials.

From a classical perspective, when a coherent light wave propagates inside a ma-
terial, the amplitude of the light wave exerts a force on the atoms, causing a local
change in the refractive index. If another light wave with a different frequency prop-
agates in the opposite direction, the interference of the two light waves generates
a moving grating, acting as acoustic waves. This moving refractive index grating,
in turn, reflects the pump and strengthens the Doppler-shifted laser field. From
a quantum mechanical viewpoint, a pump photon may either emit a phonon and
generate a photon with a lower frequency (the Stokes process) or absorb a phonon
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and generate a photon with a higher frequency (the anti-Stokes process). With a
strong optical pump and a relatively short lifetime of phonons, we focus on the
Stokes Brillouin process within the scope of this thesis.

To satisfy the phase matching condition, both energy and momentum should be
conserved from the pump photon to the created phonon and Stokes photon. In a
whispering-gallery mode (WGM) or ring-shaped resonator, light and acoustic waves
can only propagate forward and backward. The scattered light can only travel in
the opposite direction, as photons have much larger energy and smaller momentum
than phonons. The Brillouin shift frequency Ω can be solved as:

Ω =
2𝑣A

𝑣A + 𝑣P
𝜔P, (1.4)

where 𝑣A (𝑣P) is the speed of sound (light) in the material, and 𝜔𝑃 is the angular
frequency of the pump light. Since 𝑣P ≫ 𝑣A, this equation is usually expressed as:

Ω ≈ 2𝑣A
𝑣P

𝜔P =
4𝜋𝑛𝑣A
𝜆P

, (1.5)

where 𝜆P is the pump light wavelength in vacuum. Taking silica as an example,
the Brillouin phonon frequency is around 10.8 GHz, with a bandwidth of 20 - 60
MHz [30]. To enable Brillouin scattering in a resonator, there should be an optical
mode with a resonance frequency close to the Stokes wave frequency. This could
be achieved by carefully selecting the size of the microresonator (matching cavity
free-spectral-range with Brillouin shift frequency) or tuning temperature and pump
wavelength to select a suitable pair of modes.

The Brillouin scattering process is a parametric process. Since the acoustic field
decay rate is much larger than that of the optical field, the damped acoustic phonons
are adiabatically eliminated from the system, and the Stokes photons are ampli-
fied. Therefore, the parametric process turns into a stimulated scattering process.
Coherent SBS photons start to lase when the pump intensity is above the lasing
threshold, generating a Stimulated Brillouin laser (SBL) [31, 32, 33]. SBLs have
been demonstrated in multiple microresonator platforms [34, 35, 36, 37, 38, 39, 40,
41]. Due to their high power efficiency [42], flexible operating wavelengths [43],
and narrow linewidth [42, 41], SBLs have been applied in a range of applications,
including radio-frequency synthesizers [44, 45], ring-laser gyroscopes [46, 41, 47],
atomic clocks[48], and high-coherence reference sources [38].
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𝜒2 nonlinearity and second harmonic generation
As depicted in Eq. 1.1, the second-order optical nonlinearity (𝜒(2)) arises from the
quadratic nonlinear polarization response of the material [8]. Three-wave mixing is
facilitated during light interaction with second-order nonlinear materials, and this
parametric process is commonly employed for generating lasers at new frequencies.
Multiple three-wave mixing processes include sum frequency generation (SFG),
difference frequency generation (DFG), second harmonic generation (SHG), and
optical parametric oscillation (OPO). Among these, SHG [49] can be considered a
degenerate case of SFG where two photons with identical frequency are converted
into one photon at twice the frequency (also known as frequency doubling).

Since second harmonic generation is prohibited in media with inversion symmetry,
most investigations focus on noncentrosymmetric crystalline materials, such as
lithium niobate (LN) [50, 51] and III-V semiconductors [52]. Meanwhile, SHG
also occurs in centrosymmetric materials with asymmetric structures. For instance,
surfaces and interfaces lead to inversion symmetry breaking and serve as good
platforms to study second harmonic generation [53].

In addition to energy conservation, momentum conservation must also be satisfied
in the SHG process. However, due to the existence of broadband dispersion, this
condition is usually not met. In the waveguide, 2𝑘𝜔 = 𝑘2𝜔 is not automatically
satisfied, where 𝑘 is the momentum and 𝜔 is the pump laser frequency. With a
propagation distance 𝑧, a nonzero phase difference (Δ𝜙 = (𝑘2𝜔−2𝑘𝜔)𝑧) accumulates,
preventing efficient energy transfer when Δ𝜙 reaches 𝜋. However, if the sign of 𝜒(2)

is flipped every one period (Λ = 𝜋/(𝑘2𝜔 − 2𝑘𝜔)), then efficient SHG becomes
achievable. This method is referred to as quasi-phase matching (QPM). Periodical
poling on ferroelectric crystals [54] serves as a good method to modulate 𝜒(2) and
achieve QPM.

In a microresonator, the doubly resonant condition significantly enhances SHG
efficiency but also requires the SHG mode frequency to be twice that of the pump
mode frequency. Meanwhile, the phase matching condition is expressed as:

𝑚2𝜔 = 2𝑚𝜔 + Δ𝑚. (1.6)

Here, Δ𝑚 ≠ 0 refers to the quasi-phase matching condition, first demonstrated in LN
in microresonators [55]. Conversely, Δ𝑚 = 0 refers to the critical phase matching
condition and usually has higher efficiency. This is achieved by selecting different
transverse mode families [56].
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1.3 Chapter overview
Chapter 2 provides additional background information on the characterization of
optical microresonators and detailed calibrations on the two types of resonators used
in later sections. The chapter also introduces two common methods for capturing
and stabilizing soliton microcombs.

Chapter 3 explores an application of soliton microcombs in mid-infrared spec-
troscopy. Interleaved difference frequency generation (iDFG) is utilized to convert
near-IR comb light into mid-IR light and also densify the spectral line spacing to
accommodate gas absorption features. Dual comb spectroscopy is implemented for
fast acquisition, and also inherits frequency stability from near-IR combs. Methane
and ethane spectra are measured over intervals as short as 0.5 ms as an demonstra-
tion.

Chapter 4 focuses on the generation of bright soliton pulse pairs in an ultra-low-
loss thin film Si3N4 resonator. Unlike conventional microcombs, pulses in this
system cannot exist alone; instead, they phase-lock in pairs through interaction
at the coupling section. The recurring dispersion also enables the generation of
multi-color pulse pairs in a single coupled resonator.

Chapters 5 to 8 delve into the various characteristics of Brillouin lasers in microres-
onators, emphasizing their linewidth performance. In Chapter 5, the mode-pulling
effect and cascade Brillouin backaction are studied. Brillouin backaction is used to
measure and phase-sensitively lock modal temperature to a reference temperature
defined by the Brillouin phase matching condition. With feedback to environmental
thermal fluctuations, long-term frequency-stable operation is achieved.

Chapter 6 and Chapter 7 verify two correction factors for the fundamental linewidth
formula of stimulated Brillouin lasers (Schawlow–Townes linewidth). Chapter
6 studies the linewidth enhancement factor (also known as the Henry factor) of
the Brillouin laser, showing its equality to the normalized phase mismatch of the
Brillouin process. A large Henry factor significantly increases the laser linewidth
and should be carefully controlled to minimize linewidth. Chapter 7 studies the
Petermann factor which affects the laser linewidth when two or more lasing modes
are present. The larger effective noises can be attributed to the non-orthogonality of
lasing modes. These results are linked to exceptional point sensors, where the signal
enhancement factor is exactly canceled by the increasing noise when working near
an exceptional point, providing no fundamental signal-to-noise ratio improvement.
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Chapter 8 mainly introduces a correlated self-heterodyne (COSH) method to mea-
sure ultra-narrow laser linewidth. This method is capable of measuring frequency
noise as low as 0.01 Hz2/Hz at a 1 MHz offset frequency and also features low
optical power requirements, fast acquisition time, and high-intensity noise rejec-
tion. Ultra-narrow linewidth self-injection-locked laser noises are calibrated as a
demonstration.

Chapter 9 investigates second harmonic generation in silicon nitride microres-
onators. The chapter introduces the photogalvanic effect and its induced second-
order nonlinearity. By self-injection-locking a 1560 nm distributed feedback semi-
conductor laser to a high-𝑄 resonator, a record-low frequency noise floor of 4
Hz2/Hz is achieved for the 780 nm emission using the COSH method.



9

C h a p t e r 2

MICRORESONATOR CHARACTERIZATION AND SOLITON
GENERATION

2.1 Characterization of microresonators
𝑄 Factor and Loss Rate
Nonlinear optics benefits from the high power stored in a microresonator, and the
ability to store energy can be characterized by a dimensionless parameter, the quality
factor (𝑄). For a specific cavity mode, the 𝑄 factor is defined as the ratio of the
initial energy stored in the resonator to the energy lost in one radian of the cycle of
oscillation, and is equal to:

𝑄 =
𝜔

𝜅t
, (2.1)

where 𝜔 is the angular frequency of the pump light, and 𝜅t is the total loss rate of
the cavity mode. The total loss rate 𝜅t has two sources: intrinsic loss rate 𝜅0 and
external loss rate 𝜅ex:

𝜅t = 𝜅0 + 𝜅ex. (2.2)

The intrinsic loss rate usually results from material absorption and scattering, while
external coupling loss rate refers to energy exchange with the environment, such
as transmission from the mirrors in the Fabry–Pérot resonator or light tunneling
from the cavity evanescent field to a nearby waveguide. It is worthwhile to note
that ‘intrinsic’ and ‘external’ are also related to the definition of the system and
environment. Similarly, external quality factor (𝑄ex) and intrinsic quality factor
(𝑄0) can be defined as:

𝑄ex =
𝜔

𝜅ex
, 𝑄0 =

𝜔

𝜅0
. (2.3)

When 𝜅ex = 𝜅0 = 𝜅t/2, all incoming light is coupled into the cavity, and there
is no light bypassing the cavity. This condition is known as the critical coupling
condition. The critical coupling condition leverages the total𝑄 factor and efficiency
of energy coupling, which is crucial in actual practice.

State-of-the-art microresonators typically have a 𝑄 factor ranging from 106 to 109

and accumulate high circulation light intensity under small input power. The circu-
lation power 𝐼circ can be calculated as:

𝐼circ =

∫ 𝑡+𝜏

𝑡

𝑐𝑃in
𝑉mode

𝑑𝑡′ ≈ 𝑄

𝑉mode

𝑐

𝜔
𝑃in. (2.4)
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For instance, in a 3 mm diameter silica wedge resonator (𝑉mode ≈ 5 × 105𝜇𝑚3), at
1550 nm pump wavelength with 1 mW input power (𝑃in), 𝐼 is calculated to be 10
MW/cm2 when 𝑄 = 200 million. This high energy flux is beneficial for triggering
nonlinear optical effects.

Besides a high 𝑄 factor, the power density is greatly enhanced when the light
is confined in a small volume. Here, the effective mode volume in the previous
equation is defined as:

𝑉mode =
(
∫
|E|2𝑑𝑉)2∫
|E|4𝑑𝑉

, (2.5)

where E is the modal field distribution. It is worthwhile to note that when multiple
materials are involved in the resonator, the integral needs to be weighted by material
nonlinearities. Since, in most resonators we are working with, the system possesses
rotational symmetry, the transverse mode family is mainly distinguished by the
cross-section pattern. Similarly, we can define the effective mode area as:

𝐴mode =
(
∫
|E|2𝑑𝐴)2∫
|E|4𝑑𝐴

. (2.6)

FSR and dispersion
Another key parameter of the microresonator is the free-spectral range (FSR), de-
fined as the frequency difference between adjacent modes in the same transverse
mode family. In a microresonator, the FSR can be calculated as:

2𝜋𝑚𝑐

𝜔𝑚

= 𝑚𝜆𝑚 = 𝑛g𝐿, (2.7)

FSR = 𝜔𝑚+1 − 𝜔𝑚 =
2𝜋𝑐
𝑛g𝐿

, (2.8)

where 𝑚 is the azimuthal mode number, 𝜔𝑚 (𝜆𝑚) is the frequency (wavelength) of
the 𝑚-th mode, 𝑐 is the speed of light in the vacuum, 𝑛g is the group refractive index
of the resonator mode, and 𝐿 is the round trip length of the resonator. FSR is also
related to the round trip time of a resonator mode.

In the absence of dispersion (equivalently, 𝑛g is constant at different wavelengths),
the resonance frequencies 𝜔𝑚 are equally separated by the FSR of the microcavity.
However, when dispersion is considered, FSR (equivalently, the group velocity)
changes with wavelength. The resonant frequencies of the mode family are usually
approximated as a Taylor series in mode number:

𝜔𝑚 = 𝜔𝑚0 + 𝐷1(𝑚 − 𝑚0) +
1
2
𝐷2(𝑚 − 𝑚0)2 +

∑︁
𝑗>2

1
𝑗!
𝐷 𝑗 (𝑚 − 𝑚0) 𝑗 , (2.9)
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where 𝐷 𝑗 is the 𝑗-th order dispersion coefficient. Specifically, 𝐷1/2𝜋 equals to the
FSR at mode 𝑚0, 𝐷2 is the second-order dispersion coefficient, and higher-order
terms are often neglected. When 𝐷2 > 0 (𝐷2 < 0), the dispersion relation is referred
to as anomalous (normal) dispersion. The sign of 𝐷2 is not crucial when considering
phase matching between a few cavity modes (such as Brillouin scattering and second
harmonic generation), but it becomes crucial when considering four-wave mixing
and the possible generation of optical frequency comb. Only under the condition
of anomalous dispersion, the nonlinear frequency shift can be compensated by the
dispersion to generate sidebands.

2.2 Silica wedge resonator and thin film silicon nitride resonator
In this section, we will briefly introduce the fabrication and basic characterization
of the two optical microresonators used in our group and this thesis.

Silica Wedge Microresonator
The silica wedge resonator fabrication process was developed in our group in 2012
[37] (see Fig. 2.1). The side views show that it belongs to the whispering-gallery
mode resonator, and the optical field is mainly confined within the wedge area. The
concept of a whispering gallery arose in the late 19th century, in the context of the
propagation of sound waves confined in galleries, with the most famous example
being the dome of St. Paul’s Cathedral in London. Sound can be guided near the
wall of a circular chamber, so a whisper from one side of the room is clearly heard
at the other side.

During the fabrication process, SiO2 is thermally grown to an 8 𝜇m thickness on a
4-inch high-purity float-zone silicon wafer. After photolithography, the unwanted
silica is wet etched with buffered HF, and underneath silicon is dry etched with
XeF2 to form a pillar and reduce optical loss. The detailed fabrication process is
described in Ref. [37].

With a constant finesse and low material loss, the intrinsic 𝑄 factors were charac-
terized by linewidth measurement to be around 400 million. Benefiting from later
process improvement, an intrinsic 𝑄 factor as high as 1 billion was demonstrated
[57]. Based on different photolithography patterns, FSR has been obtained ranging
from around 1 GHz [58] to less than 100 GHz [37]. Leveraging high 𝑄 factors
and suitable repetition rates for radio frequency (RF) generation, an FSR of 10 -
20 GHz (corresponding to a cavity diameter of 3-6 mm) is most frequently used
in soliton generation. On the other hand, in Brillouin laser generation and gyro
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Figure 2.1: Image of silica wedge resonator. (a) Top view of a 1-mm diameter
wedge resonator. (b) Scanning electron micrograph of the side view of the wedge
resonator. Insets: slightly magnified micrographs of resonators with different wedge
angles. (c) Simulated optical mode profiles of the fundamental mode. The figure is
from Ref. [37].

applications, the Brillouin shift should be an integer multiple of FSR to satisfy the
phase matching condition, and high sensitivity benefits from a large surface area.
Thus, an FSR of 1.8 GHz (36 mm diameter) is preferred [59]. Due to the thickness
of the microresonator, a relatively large mode area often lies within 45 - 60 𝜇m2

and the microresonators hold many transverse mode families. Their coupling and
hybridization may distort the mode spectrum and lead the generation of dispersive
waves during soliton formation [60, 26]. Within the telecommunication band (near
1550 nm), the mode dispersion is usually anomalous. Normal dispersion appears at
shorter wavelengths, and a smaller oxide thickness or mode hybridization is needed
to generate a soliton microcomb [61].

Since the refractive index of silica is small compared with most dielectric materials,
cladding materials are not allowed for silica wedge resonators. In most cases and
throughout this thesis, we coupled light into the resonator with fiber tapers [62,
63]. When the taper width is comparable to the laser wavelength, the evanescent
field of the taper will couple to the WGM in the cavity. Detailed taper fabrication
and characterization are described in Ref. [64]. The coupling between the tapered
fiber and the resonator can be tuned by their relative location with a 3-dimensional
translation stage or otherwise fastened in a packaged device [65].

Thin film Si3N4 ring microresonator
In recent years, to enhance the integration capabilities of microresonators, ultra-low-
loss thin film silicon nitride waveguides fabricated in a high-volume complementary
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Figure 2.2: Image and characterization of thin film silicon nitride resonator. (a)
Cross-sectional diagram of the ultra-low-loss waveguide consisting of Si3N4 as the
core material, silica as the cladding and silicon as the substrate. (b) Top: photograph
of a CMOS-foundry-fabricated 200-mm-diameter wafer after dicing. Bottom: a top
view showing the 30 GHz FSR ring resonators and a 5 GHz FSR racetrack resonator.
(c) The average Q factors for each of three 30 GHZ FSR ring resonators on each of
the 26 dies of the wafer. (d) Simulated optical mode profiles of a 30 GHz FSR ring
resonator (top) and a 5 GHz FSR racetrack resonator (bottom). The figure is from
Ref. [66].

metal–oxide–semiconductor (CMOS) foundry have become a hot topic since 2021
[66, 67] (see Fig. 2.2).

In the foundry, thermal silica is first grown on the silicon substrate, and silicon nitride
is deposited on the top (usually 100 nm thickness) using low-pressure chemical vapor
deposition (LPCVD). After photolithography, plasma etching is performed to shape
the layer of silicon nitride into the target geometric structure, such as a ring or a
racetrack. Another layer of silica is then deposited on the top as the guiding material
and also as cladding to protect the waveguide. The whole device is then annealed at
1000 ◦C to let the hydrogen inside the silicon nitride core and cladding silica diffuse
out. The detailed fabrication process is described in Ref. [66].

As shown in the mode profiles (Fig. 2.2(d)), about 90% of the mode is in the silica
cladding. This type of resonator is therefore called a low confinement silicon nitride
resonator. Since silica has much lower loss than silicon nitride, low confinement
silicon nitride waveguides tend to be less lossy than their high confinement counter-
parts, where the majority of the mode is confined inside the silicon nitride core [68].
Over the silicon wafer, these resonators possess consistent and repeatable high 𝑄

factors of over 200 million (Fig. 2.2(c)). Within the scope of this thesis, these kinds
of thin film Si3N4 resonators are mostly single-mode TE resonators. It is worthwhile
to note that single-mode TM resonators with a similar process have been reported
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with higher 𝑄 factors (over 700 million) due to less scattering loss [69].

The dispersion of these low confinement silicon nitride resonators is found to be
normal dispersion across the telecommunication C-band [66]. Due to the single-
mode nature of the waveguide, the dispersion exhibits no avoided mode crossings.
Bright soliton formation is therefore forbidden without any special dispersion engi-
neering. In Chapter 4, we will alter the dispersion by introducing mode coupling
with another nearby resonator. Besides resonators, an integrated waveguide coupler
is also available during fabrication and effectively couples the light into/out of the
cavity with proper simulation. The precision of the lithography guarantees the actual
device resembles the design. Light is coupled into/out of the semiconductor chip
and coupler waveguide through butt coupling on the chip edge with lensed fibers.

2.3 Soliton capture and stabilization
In this section, we will introduce two methods to capture and stabilize soliton states.

Continuous wave pumping
Under an anomalous dispersion relation, the bright soliton state is a stable solution
to the Lugiato-Lefever equation (LLE). However, thermal effects from the resonator
make it challenging to achieve and stabilize the soliton state. As shown in the phase

Figure 2.3: Phase diagram with normalized pump power and laser-cavity de-
tuning. Stable solutions to the Lugiato-Lefever equation at anomalous disperion
are Turing patterns (green area), modulation instability (red area), solitons, soliton
molecules, and breathers (blue area). The figure is from Ref. [70].
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diagram [70] (Fig. 2.3), solitons become solutions to the LLE under the red-detuned
condition (laser frequency smaller than the hot cavity resonance). To achieve the
soliton state, the pump laser frequency needs to scan from the blue side of the cavity
resonance to the red side. Modulation instability (chaos) is first obtained, during
which four-wave mixing creates incoherent comb lines and forms the noisy comb
state. When the laser is further red-detuned, the soliton state is achieved, showing
abrupt, “step-like” features in the intracavity power [20, 71] (Fig. 2.4(a)).

A significant and sudden reduction in intracavity power drop is observed when
entering the soliton step (Fig. 2.4(a)). The resulting thermal effect may lead to
a blue shift of the cavity resonance and cause the laser to operate out of cavity
mode, therefore jeopardizing soliton capture. Several different methods have been
demonstrated to overcome this thermal effect-induced destabilization. When the
thermal effect is relatively weak, such as in magnesium fluoride (MgF2) resonators,
the red-detuned soliton regime can be achieved by changing the sweep speed of
the pump laser [20]. When the thermal effect is stronger, modulation on the pump
power using the ‘power-kicking’ method [24, 71] or adding an auxiliary laser [72]
are developed to compensate for the total intracavity power decrease when entering
the soliton state.

Figure 2.4: Active capture and stabilization of solitons with a continuous wave
laser. (a) Simulated intracavity power change when the pump laser scans over the
resonance from the blue side to the red side. The steps on the red-detuned side
indicate soliton formation. (b) Schematic of experimental setup. (c) Four phases of
feedback-controlled soliton excitation: (I) pump laser scans into cavity resonance
from the blue-detuned side; (II) laser scan stops and pump power is reduced (around
10 𝜇s) to trigger solitons, and then increased (around 100 𝜇s) to extend soliton
existence range; (III) servo control is engaged to actively lock the soliton power
by feedback control of laser frequency; (IV) lock sustains and solitons are fully
stabilized. The figure is from Ref. [71].
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In our group, the ‘power-kicking’ technique is mostly used. The pump laser is first
sent into an acousto-optic modulator (AOM) and then coupled into the resonator
(Fig. 2.4(b)). The function generator produces a waveform and sends it into
the AOM to control the pump power change (red trace in Fig. 2.4(c)). All the
instruments are synchronized. At the beginning of the scanning, not all pump power
is transmitted through the AOM. When the scanning stops at the soliton state, the
pump power quickly drops and then recovers the maximum power, compensating
for the intracavity power drop.

The above methods compensate for the thermal effect and obtain a soliton ‘step’.
However, long-term drifts of the cavity resonance or pump laser frequencies may
still lead to the loss of the soliton state. Therefore, active feedback is necessary to
guarantee long-term stable operation. One key parameter, the laser-cavity detuning
𝛿𝜔, is one-to-one related to the soliton power through the following expression [26]:

𝑃sol =
2𝜂𝐴mode
𝑛2𝑄

√︁
−2𝑛𝑐𝛽2𝛿𝜔, (2.10)

where 𝜂 = 𝑄/𝑄ex is the coupling efficiency, and 𝛽2 = −𝑛𝐷2/𝑐𝐷2
1 is the group

velocity dispersion. In practice, the pump comb line is filtered with a fiber Bragg
grating (FBG), and the remaining comb power is sent to a photodiode (PD). After
subtracting a set point in the servo control box, an error signal is generated and sent
to the piezo controller of the laser for long-term locking.

Self-injection locking
Besides traditional pumping the cavity with a continuous-wave laser, a new and
more integrated method for generating soliton microcombs was reported in 2020
[73].

In the experiment, a high-𝑄 microresonator is butt-coupled to a commercial distributed-
feedback (DFB) laser via inverse tapers (Fig. 2.5(a)). The laser is driven by a DC
current source. Approximately 30-50 mW of optical power from the DFB laser is
launched into the microresonator, and the backscattered pump light couples back
into the resonator mode of the DFB laser. Due to self-injection locking, the semi-
conductor laser is locked to the resonator mode, and the laser linewidth also narrows
down [74]. The operation does not require complex startup and feedback protocols
that necessitate difficult-to-integrate optical and electrical components. Instead, the
detuning between the feedback-locked laser and the cavity resonance can be con-
trolled by the phase 𝜙 accumulated in the feedback path. The air gap between the
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Figure 2.5: Experimental setup for soliton microcomb formation with self-
injection locking. (a) Rendering of the soliton microcomb chip driven by a
DC power source, producing soliton pulse signals at electronic-circuit rates. (b)
Transmission signal when scanning the laser across a cavity resonance (blue).
(c) Frequency noise spectral densities of the DFB laser when it is free-running
(blue) and feedback-locked to a high-𝑄 Si3N4 microresonator. (d) Images of a
pump/microcomb in a compact butterfly package. The figure is from Ref. [73].

chip and the DFB laser is controlled by the underneath translation piezo stages to
change this feedback phase. Given its compact footprint and the absence of control
electronics, the pump-laser/microcomb system was mounted into a butterfly package
(Fig. 2.5(d)) to facilitate measurements and also enable portability.

When considering the nonlinear effect, there is a single operating point at the
intersection of the laser tuning curve and the intracavity power curve. This behavior
enables soliton mode-locking by the simple power-on of the pump laser (i.e., no
triggering or complex tuning schemes). Since the entire soliton initiation and
stabilization are described and realized by the physical dynamics of laser self-
injection locking in combination with the nonlinear resonator response, this kind of
self-injection locking-induced soliton formation is automatic and robust. Without
any external feedback control, the soliton generation is capable of existing for a few
hours. Meanwhile, by periodically switching on and off the laser current, the soliton
resembles the pump laser state and shows turnkey operation.
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C h a p t e r 3

ARCHITECTURE FOR MICROCOMB-BASED
GHZ-MID-INFRARED DUAL-COMB SPECTROSCOPY

3.1 Introduction
1 Over the past two decades, frequency combs have revolutionized numerous appli-
cations spanning from time keeping, frequency synthesis, spectroscopy, low noise
microwave generation, LIDAR, and exoplanet exploration, among other areas. As
an adaptation of frequency combs to spectroscopy, is the dual-comb spectroscopy
(DCS) method. Dual-comb spectroscopy works by mapping an optical comb of
frequencies into radio-frequencies by multi-heterodyne beat with a second comb
having a slightly different repetition rate. Because the two combs sample absorption
spectra with a resolution set by their line spacing (or repetition rate), analysis of
the corresponding comb of radio frequencies reveals these spectra in a multiplexed
fashion without the need for bulky spectrometers or mechanical moving part [77,
78, 79].

And DCS in the mid-infrared (mid-IR) is of keen interest because of inherently strong
molecular spectroscopic signatures in these bands. Comb generation in the mid-
infrared has traditionally used methods that rely upon mode locked pulse generation,
including difference-frequency-generation (DFG), optical parametric oscillation,
and supercontinuum generation [80, 79]; and there is considerable progress using
such systems for mid-IR DCS [81, 82, 83, 84, 85, 86, 87, 88, 89, 90]. More recently,
mid-IR comb generation by DFG using electro-optic frequency combs (EO-comb)
has also been demonstrated [91, 92]. In contrast to conventional mode locking, this
approach offers rate tunability to the X-band range (8-12 GHz) and higher [92].
With the advent of thin-film lithium niobate technology, EO-combs have potential
for chip-integration [93]. Indeed, on-chip lithium niobate microcavity-based EO-
combs have been used for DCS in the near-IR [94].

Also offering high repetition rates and chip integration are soliton microcombs
[20, 19]. On account of their compact size, these devices operate readily in the

1Work presented in this chapter has been published in [75] “Interleaved difference-frequency gen-
eration for microcomb spectral densification in the mid-infrared.” Optica 7.4 (2020), pp. 309–315;
[76] “Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy.” Nature Com-
munications 12.1 (2021), p. 6573.
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X to millimeter-wave bands. Here, we report microcomb-based DCS with GHz
resolution in the mid-IR band. The two GHz-rate mid-IR combs are generated by
interleaved difference-frequency-generation (iDFG) applied to four near-IR combs.
These four combs are linked to counter-propagating (CP) solitons [95] formed within
a single microcavity. Because all four combs required to generate the two mid-IR
combs rely upon stability derived from a single high-Q microcavity, the system
architecture is both simplified and does not require external frequency locking. The
near-infrared phase stability is successfully transferred to the mid-IR for DCS. DCS
measurements of methane and ethane near 3.3 𝜇m are performed and the spectral
resolution can be tuned on demand. Normalized precision as high as 1.0 ppm· m
·
√

s is demonstrated. Although at an early phase of development, the results are a
step towards mid-IR gas sensors with chip-based architectures for chemical threat
detection, breath analysis, combustion studies, and outdoor observation of trace
gases.

3.2 Spectroscopy with GHz resolution and interleaved difference-frequency-
generation (iDFG)

In Ref. [96], the optical frequency resolution for DCS was discussed. On the one
hand, since most gas species have absorption peaks with ∼ 10 GHz bandwidth, too
large line spacing ( > 10 GHz) will cause undersampling of the spectral signatures
for gases (see inset of Fig. 3.1). One the other hand, high repetition rate of the
frequency comb suggests high acquisition rate of spectroscopy with shorter single
frame time and relatively broad bandwidth. Meanwhile, The saturation power for
a certain PD is fixed. With small repetition rate (such as ∼ 100 MHz in fiber
laser combs), high comb line numbers will decrease the average power per comb
line and therefor decrease the maximum signal-to-noise ratio (SNR) per comb line.
For balance between acquisition rate and spectral resolution, DCS at GHz rates is
considered to be relatively optimal for sensing of ambient gases (with linewidths
narrower than 10s of GHz) [96, 97]. In their demonstration [96], a 200 MHz fiber
laser comb was selectively filtered by a fiber cavity to form a 1 GHz repetition rate
comb and performed DCS in the near-IR.

Previously, microcomb-based DCS has been reported at rates of 22 GHz and 450
GHz in the near-IR [98, 99] and 127 GHz in the mid-IR [81]. These high repetition
rates result from their small form factors. While offering extremely short acquisition
times, these rates are too high for spectroscopy of many species. Special efforts
have been directed to reduce near-IR microcomb rates to the single-digit GHz range
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Figure 3.1: Illustration for interleaved difference-frequency-generation (iDFG).
(a) A 3 mm diameter soliton microcomb is pumped by a continuous wave (CW)
1.5 𝜇m laser. The microresonator generates both the soliton optical pulses (green)
with period TS and, upon photodetection (PD), the microwave signal at frequency
fr = 1/TS. This frequency is processed to create the EO-comb drive signal at
frequency fEO

r = (N−1)fr/N = fr−fr/N (i.e.,Δfr = fr−fEO
r = fr/N) which modulates

a 1 𝜇m CW laser to generate the EO-comb pulse stream (blue). The soliton
microcomb and the EO-comb are combined to pump a PPLN crystal to generate the
mid-IR comb. Because the EO-comb is derived from the soliton repetition rate the
corresponding pulses temporally align with a period TMIR = (N − 1)TEO = NTS
where TMIR is the mid-IR pulse period. This creates a mid-IR frequency comb having
a line spacing of fr/N = Δfr. Larger N thereby enables finer spectral sampling of
mid-IR absorption features (see right panel). EOM: electro-optical modulator, BPF:
bandpass filter, WDM: wavelength division multiplexer. (b) iDFG is illustrated in
the frequency domain for slight frequency misalignment (𝛿 𝑓 ) relative to ideal case
N=4. Blue region shows the two near-IR combs with repetition rates (comb line
spacings) indicated. Green region gives the iDFG sub-combs generated by mixing
of a single 1 𝜇m comb line with the lines of the 1.5 𝜇m comb. The composite
mid-IR comb (lower two rows) features an irregular line spacing unless 𝛿 𝑓 =0. The
condition 𝛿 𝑓 =0 is ensured by the generation of TEO = NTS/(N − 1).

[58, 100], but these require very high Q resonators to reduce increased threshold
pumping power associated with larger mode volumes. Thermal tuning of large
spacing microcombs has also been used to improve the resolution for near-IR DCS
at the expense of measurement speed [101]. Aside from microcombs, an on-chip
III-V laser frequency comb with a line spacing of 1 GHz (together with an EO-comb)
has also been used for near-IR DCS [102]. Nonetheless, mid-IR DCS with GHz
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resolution remains quite challenging for chip-based devices, including quantum
cascaded laser frequency combs [103, 104].

To address this problem, a 1.5 micron soliton microcomb [26] and a 1 micron electro-
optic comb (EO-comb) [105] having different repetition rates are used here to provide
pumping for mid-IR comb generation. Due to this repetition rate difference (Δ 𝑓𝑟),
the interaction of soliton and EO-comb pulses generates 3.3 micron light pulses that
(subject to conditions described below) can repeat after 1/Δ 𝑓𝑟 (Fig. 3.1(a)) thereby
creating a temporal interleaving effect. Thus, iDFG not only converts the near-IR
combs into the mid-IR, but also reduces the repetition rate and thereby densifies the
mid-IR comb spectrum, making them suitable for methane spectroscopy. The line
spacing is also tunable by adjustment of Δ 𝑓𝑟 .

During iDFG, a uniform line spacing of the iDFG-generated mid-IR comb requires
that Δ 𝑓𝑟 = 𝑚 𝑓𝑟/𝑛 where 𝑚, 𝑛 are mutually-prime (see Fig. 3.1(b)). To ensure this
condition, the soliton stream is detected to generate a 22 GHz microwave signal
𝑓𝑟 and is then electrically processed to create the EO-comb drive signal frequency
equal to 𝑓 EO

𝑟 = (𝑁 − 1) 𝑓𝑟/𝑁 (Fig. 3.1(a)). This ensures Δ 𝑓𝑟 = 𝑓𝑟/𝑁 where 𝑁 is an
integer (typically 16, 32) and guarantees a strict frequency (and phase) relationship
between the EO-comb and soliton comb repetition rates. Significantly, the approach
also leverages the excellent microwave stability of the soliton microcomb to replace
a bulk microwave source that is normally required to drive the EO-comb.

3.3 Architecture of the DCS system
To perform DCS, two iDFG systems with close but non-identical repetition rates
should be able to work simultaneously. Counter-propagating solitons [95] in silica
resonators act as a good candidate for the two near-IR microcomb sources for both
close repetition rates and high mutual coherence.

The experimental setup is illustrated in Fig. 3.2(a). It shows two 3.3 𝜇m frequency
combs generated in upper and lower branches of the optical train, followed by
combining (far right in the figure) for input to the test gas cell. The two combs
are photodetected after passage through the gas cell, and this multi-heterodyne
process creates a radio-frequency spectrum that contains the mid-IR absorption
spectrum of the gas. The spectrum is obtained by fast Fourier transform (FFT) of
the time-domain interferogram signal of the dual combs. The gas cell (Wavelength
Reference) has a length of 5 cm and contains∼2% methane (CH4) and∼0.5% ethane
(C2H6) buffered by nitrogen to a total pressure of 760 Torr (parameters can have
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Figure 3.2: Experimental setup of the GHz-mid-IR DCS system. (a) Counter-
propagating (CP) solitons at 1.55 𝜇m are generated in a silica microcavity to provide
two of four comb signals. These solitons are photo-detected and the resulting signals
are processed to create the two other comb signals by electro-optic modulation at
1.06 𝜇m. These near-IR combs are combined in pairs to pump PPLN crystals for
generation of GHz line spacing mid-IR combs by interleaved difference frequency
generation. These mid-IR comb sources pass through a gas cell and are detected for
dual-comb spectroscopy. 𝑓 cw

r ( 𝑓 ccw
r ) corresponds to the cw (ccw) soliton repetition

rates. AOM: acousto-optical modulator, circ: circulator, PM: phase modulator, IM:
intensity modulator, EDFA: erbium-doped fibre amplifier, YDFA: ytterbium-doped
fibre amplifier, WDM: wavelength division multiplexer, PPLN: periodically poled
Lithium Niobate. Scale bar: 1 mm. (b) Optical spectrum of 1.55 𝜇m soliton comb.
(c) Optical spectrum of 1.06 𝜇m EO-comb. (d) Multi-heterodyne beat between two
CP soliton microcombs (repetition rate difference, Δ 𝑓r, is 80 kHz). The beat note
produced by the counter-pumps is identified. One of the microcombs is shifted by
55 MHz using the AOM placed after the cavity. (e) Peak LFR of the comb lines in
panel (d)) as a function of averaging time 𝜏. The solid line is a fit of the

√
𝜏 trend.

(f) Measured Allan deviation of Δ 𝑓r is close to the stability of the AOM driver. The
frequency of the AOM driver (a radio frequency function generator) was set to be
Δ 𝑓r in this measurement. The error bar corresponds to the standard deviation of the
Allan deviation.

±5% uncertainty). Such a methane concentration is equivalent to about 1 ppm in
an ambient environment when passing the comb light through a 1 km open path for
field measurements.

Each mid-IR comb is generated by iDFG in a PPLN crystal (4 cm long, NTT
Electronics) of two near-IR combs: a soliton microcomb at 1.55 𝜇m (Fig. 3.3(b)) and
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an EO-comb (Fig. 3.3(c)) at 1.06 𝜇m. Counter-pumped clockwise (cw) and counter-
clockwise (ccw) solitons formed in a single silica resonator [37] are input to upper
and lower branches of the optical train. On account of the silica Raman response,
the soliton repetition rates ( 𝑓 cw

r or 𝑓 ccw
r ) can be independently fine-controlled by

two acousto-optical modulators (AOMs) placed before the resonator [95]. Their
approximate repetition rate is 22 GHz. Another AOM after the microcavity, driven
by a fixed 55 MHz signal, is used to shift the frequencies of one of the microcombs
so as to avoid spectral aliasing upon multi-heterodyne beating of the two combs
in both the near-IR and the mid-IR. Each EO-comb drive frequency is derived
from a corresponding photo-detected soliton repetition frequency and set to be
(𝑁 − 1) 𝑓 cw(ccw)

r /𝑁 (𝑁 is an integer). This results in interleaving of the near-IR
combs and densifies the mid-IR comb line spacing to 22 GHz/𝑁 as described in
the previous section. 2.8 GHz and 1.4 GHz mid-IR line spacings are demonstrated,
corresponding to 𝑁=8 or 16.

For high precision measurements, the two mid-IR comb spectra must have excellent
relative frequency stability. Several features of the current system architecture
ensure this result while also reducing the system complexity. First, the upper and
lower optical trains share common near-IR continuous-wave pumping lasers. These
pumps or their AOM-shifted replicas become comb lines in each of the four near-IR
combs. EO-combs therefore have identical center frequencies, while soliton combs
have offset frequencies that are related by the difference in the AOM frequency shifts
(Δ𝜈P) applied to the soliton pumps. Second, by tuning the relative counter-pumping
frequency Δ𝜈P, the repetition rates of the two microcombs ( 𝑓 cw

r and 𝑓 ccw
r ) become

phase locked such that Δ 𝑓r = Δ𝜈P/𝑀 (Δ 𝑓r = 𝑓 cw
r − 𝑓 ccw

r and 𝑀 is an integer) [95].
Because the EO-comb rates are derived from the soliton comb rates, all four combs,
despite having different repetition rates, have their rates phase locked. This feature
in combination with the common optical pumps means that the two mid-IR combs
have an offset frequency noise equal to the fluctuations in the difference frequency
of the 1.55 𝜇m and 1.06 𝜇m pumps as their primary source of frequency instability.
Significantly, however, this is a common-mode fluctuation to the mid-IR combs and
will therefore cancel out in the multi-heterodyne DCS detection process. As a result,
the frequency stability of the mid-IR comb interferogram is extremely high, being
primarily determined by the relative stability of the two CP solitons. This stability
is accomplished without the need for frequency locking procedures, because of the
above mentioned features of the system architecture.
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To illustrate the frequency stability that is possible using this architecture, a portion
of the Fourier transform of the measured dual-soliton interferogram (measured on
a balanced receiver over 200 ms) is shown in Fig. 3.2(d). Defining the line-to-floor
ratio (LFR) as the square root of the ratio of signal power to the average noise
floor power, Fig. 3.2(e) shows that the highest LFR of the radio-frequency comb
scales as 6.3×104√𝜏/

√
s (𝜏 is the measurement time). This value gives a measure

of dynamic range available for absorption measurement. The mutual stability of
the two microwave signals generated by photodetecting the soliton streams was also
tested by mixing 𝑓 cw

r and 𝑓 ccw
r . The measured Allan deviation of their difference

frequency Δ 𝑓r (Fig. 3.2(f)) shows that the two soliton microwave rates reach a
relative frequency fluctuation less than 1 Hz at around a millisecond of averaging
time. Then, the stability further improves to about 1 mHz at 100 s. This Allan
deviation is found to be close to that of the frequency fluctuation of the AOM driver
when setting its output frequency close to Δ 𝑓r (see Fig. 3.2(f)).

3.4 Characterization of the DCS system
The transfer of mutual coherence of the CP solitons to the mid-IR is verified in Fig.
3.3(a) where measured interferograms of the mid-IR combs are displayed. The mid-
IR interferograms are collected by a fast photodetector (600 MHz bandwidth, PVI-
4TE-4, Vigo System SA), and the optical power is around 60 𝜇W to avoid detector
nonlinearity. For comparison, interferograms are shown using conventional DFG
(EO-comb drives turned off for soliton mixing with the 1.06 𝜇m continuous-wave
laser) as well as iDFG with 𝑁=8 and 𝑁=16. In the DFG case, interferogram pulses
repeat at the rate ofΔ 𝑓r, while in the iDFG case the pulses repeat at the rate ofΔ 𝑓r/𝑁 .
Note that even for the iDFG case, there are pulses appearing at the rate Δ 𝑓r and it
is the envelope modulation of these pulses that reflects the interleaving process.
This non-ideal behavior is mainly the result of three effects that could be corrected
in the future. First, the EO-comb pulses themselves were not fully compressed
(i.e., not tranform limited), because of lack of a second dispersion control system.
The Dual-EO-comb interferogram suggests the extinction ratio of the EO-pulses is
about 8 dB. Second, based on the group refractive index difference and length of
the commercial PPLN crystal, the temporal walk-off between two near-IR pulses is
estimated to be up to ∼4 ps. Third, the PPLN phase-matching bandwidth for this
long crystal is quite narrow (<300 GHz) at 1.5 𝜇m and leads to an effectively wider
soliton pulse width. A criterion for minimal residual pulses in iDFG can be given
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as,
𝑡s + 𝑡EO + |Δ𝑡wkf | < 𝑇s/𝑁, (3.1)

where 𝑡s (𝑡EO) is the effective width of the soliton (EO) pulse, Δ𝑡wkf is the walk-off
between the near-IR pulses in the crystal, and 𝑇s is the 1.55 𝜇m soliton period.
The use of fully compressed EO-combs in combination with a more optimal PPLN
would eliminate the residual RF pulses in the interferograms. In such an optimized
arrangement only one RF pulse would appear in the time period of 𝑁/Δ 𝑓r. This
would also eliminate spectral envelope modulation in the interferogram FFT.

FFT of the interferograms yields the radio-frequency combs shown in Fig. 3.3(b).
Digital correction (CoCoA method) [106] was used here to compensate fluctuations
induced by fibres connecting comb generation and gas cell spectroscopy setups,
which resided in different laboratories. Co-location of the setups to a single table (or
ultimately integration of the components) should avoid this fluctuation and simplify
data processing. In the spectra, the conventional DFG case has a line spacing of Δ 𝑓r,
while the iDFG cases have a line spacing narrowed to Δ 𝑓r/𝑁 . Spectral envelope
modulation appearing for 𝑁=8 and 𝑁=16 (compare to conventional DFG spectrum)
results from the non-ideal residual pulses discussed in Fig. 3.3(a). A zoom in of the
RF comb spectra in Fig. 3.3(c) shows the densification of the comb lines.

To measure the absolute frequency stability of the dual-comb interferogram spectra,
the Allan deviation of a single multi-heterodyne beat frequency is calculated in
Fig. 3.3(d) for mid-IR, CP and EO generated spectra. Using conventional DFG
the frequency stability is comparable to that of the near-IR CP solitons. Here, the
stability is better than 1 Hz within 100 ms averaging time as a result of stability
linked to the single microcavity. A slight degradation is observed for the iDFG
𝑁=8 and iDFG 𝑁=16 cases, that may result from additional noise contributed by
the EO-combs. This is substantiated in Fig. 3.3(d) by Allan deviation measurement
of a single frequency within a multi-heterodyne spectrum produced using only two
1.06 𝜇m EO combs.

To further confirm the mutual phase coherence in the mid-IR, the LFR of the mid-IR
interferogram spectra (calculated using the strongest spectral peak) is analyzed in
Fig. 3.3(e). In all three cases (DFG, iDFG 𝑁=8 and iDFG 𝑁=16), the LFR shows
a
√
𝜏 trend (after digital correction), and scales as 2.0×104√𝜏/

√
s, 6.8×103√𝜏/

√
s,

and 4.0×103√𝜏/
√

s, respectively. Data obtained without digital correction (squares)
for iDFG 𝑁=8 are also presented and show that the mutual coherence is preserved
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Figure 3.3: Interferograms and multi-heterodyne spectra of the iDFG densified
mid-IR combs. (a) Interferogram of the mid-IR combs using DFG and iDFG. (b)
Dual-comb spectra formed by fast Fourier transform of the measured interferograms.
(c) Zoom-in of the radio-frequency combs in panel (b). (d) Allan deviation of the
frequency of a single line measured at the center of the multi-heterodyne spectra
plotted versus the measurement time. The error bar corresponds to the standard
deviation of the Allan deviation. (e) Plot of the LFR versus measurement time 𝜏 for
strongest spectral line using conventional and interleaved DFG. The solid lines are
linear fits (

√
𝜏 trend in the log-log plot). All circular points are digitally corrected.

Squares points show the uncorrected results for 𝑁=8. (f) Plot of the sum- and
average SNR of our mid-IR DCS system versus the measurement time 𝜏. Black
dashed lines are SNR for reported mid-IR DCS systems.

up to 10 ms until the aforementioned fibre fluctuations cause deterioration. The
high LFR can enable high dynamic range spectroscopic measurements.

To further characterize the DCS system, the signal-to-noise ratio (SNR: square
root of the ratio of the signal to the standard-deviation of the fluctuations)[84, 85,
91, 83, 78] of lines in the FFT of the interferogram is calculated. These values
are then used to compute the sum-SNR (upper panel of Fig. 3.3(f)) and average
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SNR (lower panel of Fig. 3.3(f)) versus integration time over lines within 40 dB
of the strongest line[78]. The sum-SNR initially increases as

√
𝜏 within 2 ms,

but then saturates at longer averaging times. For comparison, the sum-SNRs for
other reported mid-IR DCS systems are plotted as dashed lines. Considering the
good frequency stability of the present system, the relatively low sum-SNR is likely
limited by the amplitude noise of the mid-IR combs. It is possible that this could
result from use of fibre-taper optical coupling to the resonator, which can introduce
a mechanism for environmental noise to impact coupling. Use of a fully integrated
microcomb would avoid this problem. Moreover, the use of a reference mid-IR
photodetector would enable monitoring of power fluctuations [98] and could help
to boost the sum-SNR. Although the sum-SNR is relatively low, the average SNR
of the spectrum is relatively high and enables a fast measurement. This results
from fewer usable lines in the current system compared with the fibre-based mid-IR
systems.

3.5 Mid-IR DCS of methane and ethane
The mid-IR DCS system was used to measure the absorbance spectra of a mixture of
methane and ethane gas. The dual-comb spectrum with the gas cell inserted (𝑇) was
first measured and then normalized by the reference spectrum measured without the
gas cell (𝑇0). The absorbance is then calculated as − ln(𝑇/𝑇0). The wavelength of
the 1.06 𝜇m laser (an external cavity diode laser) was tuned to access rovibrational
transitions belonging to different branches in the 𝜈3 band of methane [107]. The
𝑄-branch of methane around 3015 cm−1 was first measured. The absorbance spectra
measured by DFG and iDFG 𝑁=8 DCS are presented in Fig. 3.4(a). We compare
the measured spectra to the HITRAN database using the gas cell information given
above (the absolute frequency offset was used as a free parameter for the best fit).
While both absorbance spectra are in a good agreement with the HITRAN database
[108] the DFG spectrum undersamples the methane spectral features due to its
relatively wide 22 GHz comb line spacing, and only 3 data points (green points)
appear for the zoom-in spectrum in Fig. 3.4(a). On the other hand, this spectral
undersampling is avoided by using iDFG DCS with a reduced comb line spacing of
2.8 GHz corresponding to iDFG with 𝑁=8. The residuals between the measured
spectrum and HITRAN database are plotted in the lower panel.

Additional data obtained for the 𝑃-branch of methane (e.g., 𝑃(3), 𝑃(6) and 𝑃(7))
are presented in Figs. 3.4(b, c). The measured spectra are also in good agreement
with HITRAN database. The ethane absorption spectrum in the 𝜈7 band [109] was
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Figure 3.4: Dual-comb spectroscopy of methane and ethane mixture using iDFG
mid-IR combs. (a) Absorbance spectrum for the methane 𝜈3 band 𝑄 branch using
DFG and iDFG (𝑁=8). iDFG improves the spectral resolution compared to the
22 GHz mid-IR generated by conventional DFG. HITRAN data indicated by the
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DCS absorbance spectrum of the methane 𝑃(6) and 𝑃(7) branches in the 𝜈3 band
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used to further improve the spectral resolution. (d) Top panels are DCS spectra of the
methane 𝑃(3) branch (iDFG 𝑁=8), each measured over 0.5 ms duration within a 200
ms measurement window. 100th and 300th spectra of 400 total are displayed. Fitting
the spectrum to the HITRAN database yields the methane concentration. The lower
panel plots the concentration for the 400 time slots. (e) Normalized measurement
precision of methane concentration evaluated by Allan deviation using different
rovibrational transitions belonging to different branches with iDFG 𝑁=8. The error
bar corresponds to the standard deviation of the Allan deviation. The Allan deviation
of the measured concentration (e.g., lower panel in (d)) is calculated and normalized
to a 1 m optical path. The precision scales nearly as 1/

√
𝜏 and the dashed line is

the corresponding linear fit using a 1/
√
𝜏 trend line (log-log) for the 𝑃(3) branch. A

precision of 1.0 ppm·m·
√

s is fitted.
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also measured in Fig. 3.4(c). Such an ability to measure the methane and ethane
simultaneously is important to distinguish if the methane emission comes from gas
wells [110].

A feature of iDFG DCS is that the spectral resolution can be adjusted by changing
the division ratio 𝑁 . For instance, the full-width at half-maximum (FWHM) of
methane 𝑃(3) to 𝑃(7) transition groups in the 𝜈3 band are within 10 GHz to 26 GHz,
while the FWHM of ethane 𝑃𝑄1 to 𝑃𝑄4 transitions in the 𝜈7 band are within 4.2 GHz
to 6.9 GHz according to the HITRAN database. Improved resolution of the ethane
absorbance via iDFG DCS in the 𝜈7 band (which features narrower absorption in
comparison to methane) is shown as the red dots in Fig. 3.4(c). Here, a finer
resolution of 1.4 GHz is achieved by selecting 𝑁=16. In principle, the resolution
of the DCS system could be adjusted in steps from GHz to 22 GHz, making it
possible to optimize resolution and SNR depending upon the characteristics of the
gas sample.

The GHz DCS system also enabled fast and precise measurement of the absorbance
spectrum. Measurement precision is evaluated using the Allan deviation of the
measured methane concentration in the 5 cm cell. 200 ms interferograms were
separated into 400 slots and the methane concentration was calculated in each
resulting 0.5 ms slot (corresponding to about 5 interferogram periods for iDFG
𝑁=8). Figure 3.4(d) details the evaluation process for the 𝑃(3) branch measurement
with iDFG 𝑁=8. The top panels are representative spectra from two 0.5 ms time
slots (numbers 100 and 300) without any digital correction as mutual coherence
is preserved. They illustrate fast acquisition of the methane absorption spectrum,
which can result from the relative high average SNR achieved in short time.

Fitting each absorbance spectrum to the HITRAN database yields the measured
methane concentration in each time slot (lower panel of Fig. 3.4(d)). Since about
20∼30 comb lines in the absorption spectra are used to fit for the concentration, the
residuals between the observation and HITRAN are found to not significantly de-
grade the measurement precision. This measured concentration sequence was then
used to calculate the Allan deviation of the measured methane concentration, which
was further normalized by the gas cell length to derive the normalized measurement
precision in Fig. 3.4(e) (all for the iDFG 𝑁=8 case). The Allan deviation (𝑃(3)
branch measurement) reaches a precision of ∼2.8 ppm·m within 64 ms. In fitting
the Allan deviation of the 𝑃(3) branch measurement to a 1/

√
𝜏 trend line, a nor-

malized measurement precision of 1.0 ppm·m·
√

s can be obtained. Measurements
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of rovibrational transtions in other branches produce similar results. This sub-ms
measurement time may make this system suitable for studies of transient events in
combustion [111].

The measurement acquisition times of 200 ms for Figs. 3.4(a, c) and 100 ms for Fig.
3.4(b) are shorter than for fibre-comb based mid-IR DCS systems, which generally
require an acquisition time longer than tens of seconds [84, 87, 88] (usually those
systems have a much larger comb line number). Even shorter acquisition times
should be possible that are comparable to EO-comb based systems, where mid-IR
DCS has also been demonstrated [91]. To attain shorter acquisition time, CP solitons
with a larger Δ 𝑓r generated on distinct mode families could be utilized [112].

3.6 Discussion
We have demonstrated microcomb-based DCS in the mid-IR with GHz resolution.
This represents a 100-fold improvement in spectral resolution compared with pre-
vious mid-IR microcomb DCS. Mutual coherence of near-IR CP solitons enables
precise methane absorption measurements reaching a normalized precision of 1.0
ppm·m·

√
s. While the demonstrated system still relies upon fibre optics, further

integration of the system on a photonic chip is feasible. Along this direction, both
near-IR combs as well as the DFG crystal can potentially be monolithically or hy-
bridly integrated in the future. Using solitons as opposed to EO-combs can offer
higher peak power and therefore more efficient iDFG. However, their application for
iDFG may also limit the rate reconfigurability. EO-combs could also be integrated
to retain this reconfigurability. Also, cavity enhanced DCS [113] can be used to
further increase the measurement sensitivity for the proposed mid-IR chip-based
sensor (folding of the light path will be needed to reduce the footprint of the GHz
enhancement cavity).

Moreover, rapid progress in the overall subject of microcomb systems should ulti-
mately address gaps in the current platform required for complete integration. Such
photonic integration can bring opportunities to improve the system performance.
For example, the tight mode confinement of on-chip PPLN waveguides can al-
low dispersion engineering to achieve more optimal phase-matching for increased
broadband spectral coverage in the mid-IR [114]. Tight mode confinement can also
increase the conversion efficiency. Ultimately, integration of the DCS system would
enable miniature (potentially hand-held) gas sensors with high resolution capability
for detection of gases in a cluttered environment. Such a robust sensor technology
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would be suitable for widespread spectroscopy applications in laboratories and field
measurements.
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C h a p t e r 4

SOLITON PULSE PAIRS AT MULTIPLE COLORS IN NORMAL
DISPERSION MICRORESONATORS

4.1 Introduction
1 Soliton microcombs are helping to advance the miniaturization of a range of comb
systems. They exist through a balance of optical nonlinearity and dispersion, which
must be anomalous for bright soliton generation [19, 20, 26]. Moreover, microres-
onators must feature high optical Q factors for low pump power operation of the
resulting microcomb. While these challenges have been addressed at telecommu-
nications wavelengths using a range of material systems [19], ultra-low-loss Si3N4

resonators (introduced in section 2.2) [66, 67] do not yet support bright solitons as
their waveguides feature normal dispersion [66]. Furthermore, all resonators are
dominated by normal dispersion at shorter wavelengths. While it is possible to
form normal dispersion combs [116], the temporally-short pulse nature and highly
reproducible spectral envelopes of anomalous dispersion soliton combs [19] has
generated keen interest in methods to induce anomalous dispersion for bright soli-
ton generation in normal dispersion systems. Such methods have in common the
engineering of dispersion through coupling of resonator mode families, including
those associated with concentric resonator modes [117, 118], polarization [119, 61]
or transverse modes [120, 121]. As an aside, such coupled resonators have also
been used to improve normal dispersion comb formation [122, 123] and to boost the
power efficiency of bright combs [124].

Here, we engineer anomalous dispersion in ultra-low-loss Si3N4 resonators by
partially-coupling resonators as illustrated in Fig. 4.1(a). This geometry intro-
duces unusual new features to bright soliton generation. For example, spectra
resembling single soliton pulse microcombs form instead from coherent pulse pairs
(Fig. 4.1(a)). The pulse pairs circulate in a mirror-image fashion in the coupled rings
to form coherent comb spectra (Fig. 4.1(b)) with highly stable microwave beat notes
(Fig. 4.1(c)). Unlike conventional microcombs, pulses in this system cannot exist
alone, and instead phase lock in pairs wherein pulses in each pair feature different
optical spectra. The interaction of the pulses in the coupling section between the

1Work presented in this chapter has been published in [115] “Soliton pulse pairs at multiple
colors in normal dispersion microresonators.” Nature Photonics 610.11 (2023), pp. 977–98.
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Figure 4.1: Soliton pulse pair generation in two- and three-coupled-ring mi-
croresonators. (a) Schematic showing coherent pulse pairs that form a composite
excitation. Inset: Photomicrograph of the two-coupled-ring resonator used in the
experiments. Rings A and B are indicated. The scale bar is 1 mm. (b) Simul-
taneous measurement of optical spectra collected from the through port (pumping
port) and drop port in the coupled-ring resonator of panel (a). The measured mode
dispersion is also plotted. Two dispersive waves are observed at spectral locations
corresponding to the phase matching condition as indicated by the dispersion curve.
(c) Radiofrequency spectrum of microcomb beatnote (RBW: resolution bandwidth).
(d) Illustration of 3 pulse generation in a three-coupled-ring microresonator wherein
pulses alternately pair. Inset: Photomicrograph of the three-coupled-ring microres-
onator used in the experiments. The scale bar is 1 mm. (e) Measurement of optical
spectrum of the three pulse microcomb. The measured mode dispersion is also
plotted. The pump laser wavelength is several nanometers away from the anoma-
lous dispersion center frequency, and, as a result, the spectrum features only one
dispersive wave at the shorter wavelength side. (f) Radiofrequency spectrum of the
microcomb beatnote.

rings is shown to induce anomalous dispersion that compensates for the overall nor-
mal dispersion of each ring. This pairwise compensation spectrally recurs thereby
opening multiple anomalous dispersion windows for the formation of multi-color
soliton pairs. These windows can be engineered during resonator design. Further-
more, the spectral composition of each pulse in a pair is different. Fig. 4.1(b), for
example, shows through-port and drop-port spectra that reflect the distinct spectral
compositions of pulses in ring A and ring B of Fig. 4.1(a). This peculiar effect
is also associated with Dirac solitons [125] and it is shown that the 2-ring pulse
pair represents a new embodiment of a Dirac soliton as the underlying dynamical
equation resembles the nonlinear Dirac equation in 1 + 1 dimensions. Pulse pairing
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is also extendable to higher-dimensional designs with additional normal dispersion
rings. For example, in Fig. 4.1(d-f), 3 pulses in 3 coupled rings alternately pair to
compensate for the normal dispersion of each ring. In presenting the results, it is
convenient to resolve the ambiguity created by pulse-pair spectra in 2 and 3 coupled
rings that nonetheless resemble single-pulse soliton spectra. To accomplish this, we
denote these cases as bipartite and tripartite soliton microcombs, respectively. The
need for such nomenclature is made clear by the demonstration of multiple pulse-
pair states, including a 2-ring microcomb state containing 4 pulses that behaves as
a 2-pulse soliton crystal, and a 3-ring state with 12 pulses that behaves as a 4-pulse
soliton crystal [126].

Moreover, due to recurring spectral windows, pulse pairs can also form at different
wavelength bands. The ability to generate multi-color pulse pairs over multiple rings
is an important new feature for microcombs. It can extend the concept of all-optical
soliton buffers and memories to multiple storage rings that multiplex pulses with
respect to soliton color and that are spatially addressable. The results also suggest
a new platform for the study of topological photonics and quantum combs.

4.2 Recurring spectral windows
Before addressing pulse pair propagation in the 2-ring and 3-ring systems, the
conventional mode-family coupling approach is considered [117, 61, 118]. As
a representative example, the case of a concentric resonator system is chosen as
illustrated in the upper left panel of Fig. 4.2(a). The characteristics of this system
are identical to other methods. First, a phase matching condition must be satisfied
such that the absolute mode number of each ring (or each coupled mode) must be
equal at the same optical frequency. This mode number determines the wavelength
where soliton formation is possible. Second, the free-spectral-range values, FSR𝐴

and FSR𝐵, of the uncoupled mode families of ring A and ring B must be close in
value compared to their average FSR = (FSR𝐴 + FSR𝐵)/2 so that phase matching
occurs over a large number of modes. With these conditions satisfied, the resulting
dispersion will be as illustrated schematically in the lower panel of Fig. 4.2(a) (green
curves). Comparison to the uncoupled dispersion curves (center dashed blue and
red lines) shows that anomalous dispersion is possible for the upper mode family
branch.

Next, consider the case where two rings are placed side-by-side and coupled together
as illustrated in the upper right panel of Fig. 4.2(a). The two ring cavities differ only
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in length, with ring B slightly longer than ring A so that FSR𝐴>FSR𝐵. Considering
the straight coupling section from a coupled-mode perspective, modes of the two
rings will strongly couple if they have matching wavevectors (or equivalently, reso-
nance frequencies), while there are no requirements on mode number matching of
the rings (i.e., mode number is not conserved). In comparison to the concentric ring
configuration, this dramatically modifies the dispersion relation as illustrated in the
lower panel in Fig 4.2(a), where the orange curves give the resulting dispersion. Due
to the loss of mode number conservation, inter-ring coupling pushes the resonance
frequencies away from that of the individual rings (blue and red dashed lines) at
all frequency degeneracies, so that recurring anomalous dispersion windows with
period 𝑀 = FSR/(FSR𝐴 − FSR𝐵) now appear in the spectrum. These result from
spectral folding that occurs because of the frequency Vernier between the cavity
resonances. As an aside, because mode number is not conserved, modeling of
this dispersion proceeds differently relative to the standard coupled-mode family
approach.

4.3 Dispersion measurements and soliton pulse pair generation
2-ring and 3-ring resonators consist of thin, single-mode Si3N4 waveguides (see
optical images in Fig. 4.1(a) and 4.1(d) insets). For the coupled 2-ring device, the
circumference of ring A is 9.5 mm (FSR ∼20 GHz) and ring B is 0.5% longer than
ring A. For the 3-ring device, the rightmost ring has a circumference of 9.5 mm, and
each other ring is 0.3% longer than its right neighbor. The rings feature high intrinsic
𝑄 factors exceeding 75×106. Individually, each ring does not support bright soliton
formation around 1550 nm due to the strong normal dispersion associated with the
low confinement waveguide structure.

The measured frequency dispersion (green points) for the 2-ring system with compar-
ison to theory (solid lines) is shown in Fig. 4.2(b). The measurement is performed
using a radio-frequency calibrated interferometer in combination with a wavelength-
tunable laser [26]. The coupled resonators feature two frequency bands in which
three anomalous dispersion windows are highlighted. At each window, soliton steps
are observed when scanning the laser frequency over a cavity resonance. Zoom-in
views of the steps are presented as insets in Fig. 4.2(b). Operation at the longest
and shortest wavelength windows (1584.5 nm and 1525.5 nm) was challenging due
to low laser power, and as a result the time duration of the soliton steps for these
wavelengths is relatively shorter.
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Figure 4.2: Mode number non-conservation coupling and dispersion for bright
soliton formation. (a) Dispersion properties for two resonator coupling schemes.
Concentric rings (upper left panel) induce coupling wherein mode number is con-
served. The center blue and red dashed lines (lower panel) represent the resonance
frequencies of the coupled rings having slightly different FSRs. A single coupling-
induced gap is opened at their intersection (mode number 𝑀0) corresponding to
phase matching of the concentric ring modes. Two hybrid mode branches are
thereby created (green curves) with a single anomalous dispersion window. In this
work (top right panel), inter-ring coupling occurs from resonance frequency match-
ing instead of mode number matching (i.e., mode number is not conserved). In
contrast to the concentric case, dispersion is altered at all frequency degeneracies.
Spectral folding (allowed by non-conservation of mode number) is illustrated by the
multiple dashed lines (lower panel) and induces multiple gaps. These recur with
period 𝑀 (set by the Vernier in the FSRs) creating multiple anomalous dispersion
windows. (b) Measured frequency dispersion of the coupled resonator (green cir-
cles) versus relative mode number 𝜇. Here 𝐷1/(2𝜋) = 19.9766 GHz, and 𝜔0 is
chosen so that 𝜇 = 0 is at the crossing center (1552.3 nm). Multiple anomalous
dispersion windows appear around 𝜇 = 0 and 400 for the upper branch and 𝜇 =
−200 and 200 for the lower branch. The anomalous dispersion windows near 𝜇 =
−200, 0 and 200 have been highlighted. The average of the upper and lower branch
mode frequencies is plotted as orange circles and fitted by a second-order dispersion
model (orange curve, described by Eq. 4.1). Inset: transmission observed when
scanning a laser over resonances in the anomalous dispersion windows. Soliton
steps are observed around 𝜇 = −200, 0 and 200. (c) Measured relative frequency
dispersion of the coupled resonator (green circles) versus relative mode number 𝜇.
Here 𝐷2/(2𝜋) = −283.0 kHz, and other parameters are the same as panel b. Solid
curves are the theoretical fittings described by Eq. (4.2). Fitted mode frequency
dispersion diagrams of the single rings without coupling are shown as red and blue
lines.
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Analysis shows that the average frequency of the two bands (i.e., 𝜔𝜇 ≡ (𝜔𝜇,+ +
𝜔𝜇,−)/2) is given by the mode frequency for a length-averaged resonator at the
same mode number. This average frequency can be described by a second-order
dispersion model:

𝜔𝜇 ≈ 𝜔0 + 𝐷1𝜇 + 1
2
𝐷2𝜇

2, (4.1)

where𝜔0 is the mode frequency at 𝜇 = 0 and 𝜇 is a relative mode number referenced
to the frequency degeneracy at 1552.3 nm. 𝐷1 is the length-averaged FSR for the
resonator at 𝜇 = 0, 𝐷2 = −𝑐𝐷2

1𝛽2/𝑛g is the second-order dispersion parameter at
𝜇 = 0 with group velocity dispersion 𝛽2 and waveguide group index 𝑛g. Averaging
the frequencies removes the effect of the coupling entirely, and the resulting aver-
age dispersion (orange points in Fig. 4.2(b)) closely matches a parabolic-shaped
dispersion curve (orange curve).

The effect of the coupling is made clearer by plotting the mode frequencies relative
to the averaged frequency (i.e., relative mode frequency 𝜔𝜇,± − 𝜔𝜇) as shown in
Fig. 4.2(c). The relative mode frequencies of uncoupled rings appear as straight
lines. Their positive and negative slopes result from removing a linear component of
dispersion in this plot given by the average FSR, 𝐷1. Mode number walk-off causes
the lines to vertically wrap at ±𝐷1/2. Because the length of ring B is 0.5% longer
than ring A, frequency degeneracy of the rings occurs every 200 ring A modes (or
every 201 ring B modes). The introduction of coupling opens gaps at frequency
degeneracies, regardless of whether the absolute mode number is matched.

Analysis shows that the gap widths equal 2𝐺 ≡ 𝑔co𝐿co𝐷1/𝜋 where 𝑔co is the
coupling strength per unit length and 𝐿co is the effective coupler length. The full
dispersion relation is [115]:

𝜔𝜇,± = 𝜔𝜇 ±
𝐷1
2𝜋

arccos [cos(𝑔co𝐿co) cos (2𝜋𝜖𝜇)] , (4.2)

where 𝜖 = (𝐿B − 𝐿A)/(𝐿B + 𝐿A) = (2𝑀)−1 is the length contrast of the rings, and
𝐿A (𝐿B) is the length of ring A (B). For the current design 𝜖 = 1/401, and the gap
is modulated with respect to mode number with period 𝜖−1 = 401 (corresponding
to 8 THz in the spectrum). The small length contrast 𝜖 guarantees the wide spectral
range of the anomalous dispersion window. Overall, there is very good agreement
between the model and the measured data in Fig. 4.2(b) and Fig. 4.2(c), and the
fitting allows determination of key resonator parameters (see figure caption). The
fractional energy contribution from ring A is used to color the hybrid modes in Fig.
4.2(b, c).
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Figure 4.3: Stable soliton operation in the two-ring resonator measured over 4 h.
(a) Continuous measurement of the RF beat note of a pulse pair soliton microcomb
over 4 h. The RF beatnote peak drift over 4 h is within 25.7 kHz (1.29 PPM). 𝑓 : RF
frequency, 𝑓c: centre RF frequency, RBW: resolution bandwidth. (b) Simultaneous
measurement of the optical spectrum of the pulse pair soliton microcomb in a over
4 h.

As an aside, the spectral gap is smaller at larger mode numbers, which is attributed
to the wavelength dependence of 𝑔co, as shorter wavelength results in stronger
mode confinement, and hence smaller coupling with the adjacent waveguide. When
combined with the original normal dispersion of each ring, the net dispersion for
coupled system remains anomalous around 𝜇 = 0 and 400 for the upper branch and
around 𝜇 = −200 and 200 for the lower branch.

Besides the observation of soliton steps, soliton was stabilized by measuring comb
power from the through port and feeding back to the pump laser frequency (section
2.3). The microcomb spectra measured around 1550 nm for through port (ring A)
and drop port (ring B) are presented in Fig. 4.1(b). The comb exhibits excellent
stability and measurements of comb spectra and repetition rate over 4 hours of
operation are provided in Fig. 4.3. The theoretical pulse width of the comb spectra
in the figure is estimated to be ∼ 250 fs. Microcomb spectra measured at other
pump-cavity offset frequencies, and using another device are presented in Fig. 4.4.
Comb coherence and soliton pulse behavior were confirmed in several ways. The
radio-frequency spectrum of the soliton beatnote is presented in Fig. 4.1(c).
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Figure 4.4: Additional optical spectra of the solitons in the two-ring coupled
resonator. (a, b) Soliton optical spectra in two-ring coupled resonator at different
pump laser detunings (𝛿𝜔), for comparison to the optical spectra in Fig. 4.1(b)
(where 𝛿𝜔 = 75 MHz). (c) Soliton pulse pair optical spectra generated in another
device wherein the coupling centre wavelength is several nanometres away from the
pump laser wavelength. As a result, the spectra feature only one dispersive wave on
the longer wavelength side.

Comb generation in the 3-ring system is shown in Fig. 4.1(d). Fig. 4.1(e) shows the
soliton spectrum measured from the center ring. The measured dispersion is also in-
cluded in the figure. The pump laser wavelength is several nanometers away from the
anomalous dispersion center frequency, and, as a result, the spectrum features only
one dispersive wave at the shorter wavelength side. The radio-frequency spectrum
of the soliton beatnote is presented in Fig. 4.1(f), indicating good coherence.

Through port and drop port spectra correspond to pulses in ring A and ring B,
and show that these pulses are both different from each other and deviate from the
conventional sech2 shape of Kerr solitons. The through port spectrum is stronger
(weaker) than the drop port at shorter (longer) wavelengths. This is a result of this
system representing a new version of the Dirac soliton [125] as discussed in the
Methods section. In Fig.4.1(b), two strong dispersive waves (DWs) are observed
near 1526 nm and 1577 nm where modes of the coupled resonator phase-match
to the soliton comb. For comparison, the dispersion in the vicinity of the comb
spectrum is overlaid in the figure. The DWs broaden the soliton spectrum and
provide higher power comb lines (1.5 𝜇W on-chip power at shorter wavelength
and 5.4 𝜇W at longer wavelength), which is advantageous for application to optical
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Figure 4.5: Temporal evolution of the soliton pulse pair in the two-ring coupled
resonator. (a) Upper panel: Illustration of the time evolution of the soliton pair
inside the two rings during one round trip time. Lower panel: Snapshots of the pulses
at different positions. In the non-coupled regions (I and IV), pulses accumulate
positive chirp due to nonlinearity and normal dispersion of the waveguide. Pulse in
ring A is leading in time at I due to shorter ring circumference. When the pulses enter
the coupling region (II), the pulses exchange energy, which leads to relative position
shifts as well as chirp compensation (III). The pulses exit the coupled region (IV)
with position shifts and chirping compensated. (b) Simulated pulse pair properties
are plotted versus pulse position in each ring during one round trip. The two rings
are aligned at the coupling region center, and the surplus length in ring B is omitted
in the figure. The yellow shaded area represents the coupling region. The quantities
are, from top to bottom: pulse timing difference (pulse center-to-center), linear
chirp, peak power, and theoretical pulse width 𝜏. The blue (red) lines represent
simulation results for the pulse in ring A (B). The dashed lines are analytical results
from a linear coupling model, and are consistent with simulation results.

frequency division [9].

4.4 Pulse pairs and multi-partite states
Both autocorrelation measurements and simulations show that microcombs form as
phase-locked pulse pairs where the pulses have opposite phases. The pair viewpoint
provides a powerful framework for visualization of mode locking that readily ex-
plains observable multi pulse-pair states and higher dimensional systems comprising
multiple coupled cavities.

Simulations of pulse propagation in the 2-ring system are presented in Fig. 4.5(a).
Here, the ring FSRs and couplings are those of the experimental system studied in
Fig. 4.2(b,c), and excitation occurs for the mode 𝜇 = 0. As shown in Fig. 4.5(b),
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Figure 4.6: Observation of bipartite and tripartite multi soliton states in two-
and three-coupled-ring microresonators. (a, b) Through port optical spectra of
bipartite two-soliton states with different relative soliton positions. The state in
panel (b) is a two-soliton crystal state. Insets: relative position of the two solitons
inside each microresonator. (c, d) Through port optical spectra of tripartite two-
soliton states with different relative positions. Inset: relative position of the two
solitons inside each microresonator. (e) Optical spectrum of a tripartite three-soliton
state. Inset: relative position of the three solitons inside each microresonator. (f)
Optical spectrum of a tripartite four-soliton crystal. Inset: relative position of the
four solitons inside each microresonator.

each pulse undergoes shape, chirp, and pulse width variations that repeat upon each
round trip. Before entering the coupling region (point I in Fig. 4.5(a)), the chirp of
both pulses has increased due to uncompensated Kerr nonlinearity from propagation
in normal dispersion waveguides of each ring. Pulse chirp is indicated in the lower
panel of Fig. 4.5(a), where the color represents instantaneous frequency. The pulse
in ring B (red) also lags behind its counterpart in ring A (blue) due to the difference
in ring lengths. However, upon entering the coupling region (point II), the ring B
(A) pulse accelerates (decelerates) and becomes the leading (lagging) pulse when
exiting the coupling region (point III). The chirp of both pulses decreases through
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the coupling region. Upon exiting the coupling region, the pulses propagate in their
respective waveguides (point IV) where chirp increases as the pulses circle back
through point I. Detailed numerical simulations (see section 4.6) are used to further
explore and confirm the pulse pair evolution (see Fig. 4.5(b)).

This picture of pairwise round-trip compensation of normal dispersion explains
how compensation works for multi-pair systems as well as for higher dimensions
with additional ring cavities. Specifically, it constrains how comb states form. For
example, consider the coupled-ring states in Fig. 4.6(a,b) wherein 2 pulse pairs
circulate in a mirror-image like fashion to form the observed spectra. Here, to
reduce confusion with corresponding multi-pulse soliton systems, we adopt the
nomenclature that a single pulse pair in a 2 ring system is a bipartite single soliton
(see Fig. 4.1(a,b)), while multi-pair states in the same are bipartite multi soliton
systems. Accordingly, the states in Fig. 4.6(a,b) are bipartite 2 soliton states.
The state in Fig. 4.6(b) is moreover a bipartite 2-soliton crystal. Autocorrelation
characterization for this bipartite crystal state is presented in Fig. 4.7 for comparison
to single pulse pair state in the same figure. Notice that the requirements imposed on
pulse pairing allow a one-to-one correspondence between conventional multi-soliton
states and bipartite states, since the pulse configurations in each ring resonator mirror
image the neighboring ring.

The same is true for higher dimensional systems. For example, three pulses com-
pensate normal dispersion by alternating their pairwise coupling as illustrated in
Fig. 4.1(d). Moreover, the pairwise compensation works when additional pulses are
added to each cavity. For example, measurement of tripartite 2 soliton, 3 soliton and
a 4 soliton crystal state (containing respectively 6, 9, and 12 pulses) are presented
in Fig. 4.6(c-f). Notice that the measured comb line spacing (79.93 GHz) for the
crystal state is four times the FSR of a single ring as is consistent with a conventional
4 soliton crystal state. Backscattering inside the cavity and coupling to the external
waveguide might contribute to this self-organization behaviour.

4.5 Additional measurements
To confirm the short pulse nature of the generated pulse pairs, the soliton S-
resonance and C-resonance [127, 128] were measured using a vector network an-
alyzer. Plots of their relative frequencies versus laser-cavity detuning are given in
Fig. 4.7(a). Finally, time domain autocorrelation measurements are also given in
Fig. 4.7.
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Figure 4.7: C andS resonances and autocorrelation measurements of solitons in
the coupled-ring resonator. (a) The relative frequency of the C and S resonances
are measured using a vector network analyzer and plotted versus tuning voltage in
the two-ring resonator. (b-h) Experimental autocorrelation measurements of: (b)
single soliton state in a two-ring resonator (state in Fig. 4.1(b)); (c) two soliton state
in a two-ring resonator (state in Fig. 4.6(a)); (d) two soliton crystal state in a two-
ring resonator (state in Fig. 4.6(b)); (e) single soliton state in a three-ring resonator
(state in Fig. 4.1(e)); (f) two soliton state in a three-ring resonator (state in Fig.
4.6(c)); (g) two soliton state in a three-ring resonator (state in Fig. 4.6(d)); (h) three
soliton state in a three-ring resonator (state in Fig. 4.6(e)). The resolution of the
autocorrelation setup is 100 fs. The zoom-in of each autocorrelation measurements
are shown in corresponding right panel.
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4.6 Dynamics and numerical simulations of the soliton pulse pair
The optical fields in the two rings are governed by the coupled nonlinear wave
equations:

𝜕𝐸A
𝜕𝑡

= −
( 𝜅
2
+ 𝑖𝛿𝜔A

)
𝐸A − 𝑣g

𝜕𝐸A
𝜕𝑧

− 𝑖
𝛽2𝑣

3
g

2
𝜕2𝐸A

𝜕𝑧2

+ 𝑖𝑔co𝑣g𝜒co(𝑧)𝐸B + 𝑖𝑔NL |𝐸A |2𝐸A + 𝐹 (4.3)

𝜕𝐸B
𝜕𝑡

= −
( 𝜅
2
+ 𝑖𝛿𝜔B

)
𝐸B − 𝑣g

𝜕𝐸B
𝜕𝑧

− 𝑖
𝛽2𝑣

3
g

2
𝜕2𝐸B

𝜕𝑧2

+ 𝑖𝑔co𝑣g𝜒co(𝑧)𝐸A + 𝑖𝑔NL |𝐸B |2𝐸B (4.4)

accompanied by periodic boundary conditions in the 𝑧 direction, where 𝐸A,B denotes
the optical field in the two rings normalized to photon numbers in the corresponding
length-averaged ring, 𝜅 = 𝜅0 + 𝜅ex is the loss rate (sum of intrinsic and external
loss) for the individual rings (assumed to be identical for ring A and B). Also,
𝛿𝜔A,B = 𝜔0A,B − 𝜔p is the pump laser detuning, 𝑣g = 𝑐/𝑛g is the group velocity of
the waveguide, 𝑧 ∈ [0, 𝐿A,B) is the resonator coordinate with 𝐿A,B the ring length,
𝛽2 is the waveguide group velocity dispersion, 𝑔co is the coupling strength between
the two waveguides in the coupling region, 𝜒co(𝑧) is the indicator function with
value 1 in the coupling region and 0 elsewhere, 𝑔NL = ℏ𝜔2

0𝐷1𝑛2/(2𝜋𝑛g𝐴eff) is the
nonlinear coefficient with 𝐴eff being the effective mode area, and 𝐹 =

√︁
𝜅ex𝑃in/ℏ𝜔0

is the pump term where 𝑃in is the on-chip pump power. For simplicity, the pump and
loss terms are averaged over the entire resonator without considering the detailed
coupling geometry between the rings and the bus waveguides, and the coupling is
assumed to be wavelength independent (𝑔co = 𝑔co,0). A similar coupled equation
set holds for the three-coupled-ring device.

Numerical simulations have been performed based on the above nonlinear wave
equations. For the evolution of intracavity waveforms, we utilize the fourth-order
Runge–Kutta method to update the fields in slow time 𝑡, in which discrete Fourier
transformation is used to calculate the fast time derivative terms (with respect to
the resonator coordinate 𝑧). The results are used to plot Fig. 4.5(b) and compare
with the optical spectra in Fig. 4.1(b) and e (see Fig. 4.8). Parameters used for
numerical simulations are: 𝜔0 = 2𝜋 × 193.34 THz, 𝑄in = 75× 106, 𝑄ex = 45× 106,
𝛿𝜔A = 𝛿𝜔B = 10𝜅 − 𝐺 where 𝐺 is the half gap created by the coupling (pump is
red-detuned with respect to the upper branch resonance by 10𝜅), 𝐷1 = 2𝜋×19.9766
GHz, 𝐷2 = −2𝜋 × 283.0 kHz, 𝑛g = 1.575, 𝑃in = 200 mW, 𝑔NL = 0.0277 s−1, and
𝑔co,0 = 0.954 mm−1.
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Figure 4.8: Comparisons between simulated soliton spectra and experimental
measurements. (a) Simulated and measured optical spectra in a two-ring coupled
resonator. The experimental results reproduce Fig. 4.1(b). The blue (red) traces
represent the through (drop) port spectrum. (b) Simulated and measured optical
spectrum in a three-ring coupled resonator. The experimental results reproduce Fig.
4.1(e).

4.7 Discussion
In summary, we have observed a new type of microcavity soliton that mode locks
as pulse pairs distributed spatially over multiple ring resonators. The requirement
to compensate overall normal dispersion of the rings requires that the pulses in each
ring arrange themselves as a mirror image of the pulses in neighboring rings. Partial
coupling of the resonators creates a situation in which ring resonator mode number
is not conserved and this enables recurring spectral windows where the pairs can be
formed. The presented bright soliton results use the CMOS-ready process that has
previously been restricted to only dark pulse generation. This methodology can be
generalized to other material platforms.

Critically, the combination of pulsed parametric oscillation, ultra-low optical loss
and full CMOS compatibility brings a high level of integration complexity to many
applications. More complex, optical-frequency-division systems and spectroscopy
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systems are possible using the short pulse combs. Comb dividers could also use
the strong dispersive waves in the soliton spectrum, when locked to a cavity ref-
erence, to produce low-noise radio frequency signals. Meanwhile, high-𝑄 factor
in this platform will benefit quantum comb applications [129, 130, 131] including
squeezed quantum combs [132, 133]. Here, the full CMOS compatibility and ultra-
low-loss waveguides can readily facilitate chip integration of delay line and beam
splitter functions that have been applied recently to create large cluster states by
time domain multiplexing and entanglement [134, 135]. It is also worth noting that
the pulse pair systems demonstrated here exist across multiple coupled rings, sug-
gesting connections to topological photonics [136, 137, 138]. Theoretical studies of
topological phenomena in coupled-ring parametric oscillators showcase the range
of intriguing phenomena that are possible [139]. Finally, the ability to distribute co-
herent pulses over multiple rings with individual taps and with simultaneous pulse
formation at multiple wavelengths presents new opportunities for soliton science
and microcomb applications, including new realizations optical buffers as originally
proposed for coherently pumped solitons [140, 141].
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C h a p t e r 5

BRILLOUIN BACKACTION THERMOMETRY FOR MODAL
TEMPERATURE CONTROL

5.1 Introduction
1 Stimulated Brillouin scattering provides optical gain for efficient and narrow-
linewidth lasers in high-Q microresonator systems. The realization of microresonator-
based Brillouin lasers [35, 34, 37, 143, 39, 46, 40, 41] has generated interest in their
potential application to compact and potentially integrated Brillouin systems [33].
Moreover, high-coherence Brillouin lasers, featuring short-term linewidths below 1
Hz [37, 35, 143, 41], have been used for precision measurement and signal gener-
ation. This includes microwave synthesis [44, 45], interrogation of atomic clocks
[48], and rotation measurement [46, 47, 41]. However, the thermal dependence
of the Brillouin process, as well as the microresonator, impose strict temperature
control requirements for long-term frequency-stable operation.

Here, we demonstrate a new method for temperature stabilization of Brillouin lasers
based on backaction produced by the Brillouin anti-Stokes process. This process
is shown to provide for phase sensitive locking to a temperature set point 𝑇0 given
by the following condition, which expresses the Brillouin phase matching condition
(see Fig. 5.1) [37, 35]:

Ω𝐵 (𝑇0) = 𝑚 × FSR(𝑇0), (5.1)

where Ω𝐵 (𝑇) is the Brillouin shift at temperature 𝑇 (Eq. 1.5) and 𝑚 × FSR(𝑇) is an
integer multiple (𝑚) of the resonator free-spectral-range (FSR(𝑇)) at temperature
𝑇 . The actual temperature 𝑇0 can be set by micro-fabrication control of FSR at a
specified operating wavelength.

The short term frequency stability of a stimulated Brillouin laser (SBL) is set by
fundamental noise associated with the thermal occupancy of photons involved in
the Brillouin process [35]. In high-Q microresonators, this adds a white noise
contribution to frequency noise with an equivalent short time linewidth less than
1 Hz [35, 46, 41]. However, on longer time scales the frequency stability is most
often set by temperature variations. Here, thermo-optical and thermo-mechanical

1Work presented in this chapter has been published in [142] “Brillouin backaction thermometry
for modal temperature control.” Optica 9.7 (2022), pp. 701–705.



48

effects change the cavity resonant frequency [144, 145, 146], while the tempera-
ture dependence of the sound velocity causes drifts in the Brillouin frequency shift
[147]. The latter couples temperature to the lasing frequency through mode pulling
[35] and can also induce short term linewidth variation through the Brillouin 𝛼

parameter [148] (Chapter 6). To compensate temperature drift, measurement of
cavity temperature using modes belonging to different polarizations was demon-
strated [149, 150] and has been recently employed in fiber optic Brillouin laser
systems and silicon-nitride chip-resonator systems to stabilize frequency [151, 48,
152]. These dual-polarization modes feature different frequency tuning rates versus
temperature, thereby providing a way to convert change in modal temperature to
measurement of a frequency change. In contrast to this method which relies upon an
external frequency reference to establish locking, the backaction method described
here features an intrinsic reference temperature 𝑇0 given by Eq. (5.1). Its sensitivity
limit is also determined by the fundamental white frequency noise of the laser as
opposed to the integrated laser linewidth.

Therefore, we study Brillouin back action and use it to both measure and phase-
sensitively lock modal temperature to a reference temperature defined by the Bril-
louin phase-matching condition. At a specific lasing wavelength, the reference
temperature can be precisely set by adjusting resonator free spectral range. This
backaction control method is demonstrated in a chip-based Brillouin laser, but can be
applied in all Brillouin laser platforms. It offers a new approach for frequency-stable
operation of Brillouin lasers in atomic clock, frequency metrology, and gyroscope
applications.

5.2 Illustration for the cascaded Brillouin laser induced backaction
We consider a Brillouin ring laser geometry shown in Fig. 5.1(a) wherein two
pumping waves (dark and light grey arrows) are coupled from a waveguide into
clockwise and counter-clockwise directions of the resonator. The frequencies of
the pumping waves are close to a resonance, but are not necessarily on resonance.
Exact details of this geometry and explanations of the Brillouin process are provided
in reference [59]. Briefly, each pump wave provides power that is sufficient to
excite corresponding Stokes laser waves (SBL1 and SBL2 shown as green and blue
arrows in Fig. 5.1(a) that propagate opposite to their pumping wave and with a
lower (Brillouin-shifted) frequency as a result of the phase matching condition.
Power transfer from the pumping waves occurs by way of the Stokes scattering
process. After laser action occurs, however, a strong anti-Stokes process occurs
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Figure 5.1: Experimental setup and illustrations of the cascaded Brillouin laser
induced backaction. (a) Pump1 (counterclockwise, grey) and Pump2 (clockwise,
black) waves are generated from an external cavity diode laser (ECDL) amplified by
an Erbium doped fiber amplifier (EDFA). Both the pump1and pump2 frequencies are
shifted using acousto-optic modulators (AOM) to create a relative frequency offset.
The frequency of Pump1 is further Pound-Drever-Hall (PDH) locked to the cavity
resonance using a phase modulator (PM). Green (blue) arrow refers to Brillouin
laser waves SBL1 (SBL2) discussed in panel (b). Pump1 has a slightly higher
power so that the cascaded SBL is generated in the counter-clockwise direction
(red). The beat signal of SBL1 and SBL2 is generated by a photodetector (PD)
and its frequency is measured by a frequency counter (FC) and then frequency
discriminated using a frequency tracking circuit (F-V circ) for subsequent phase
sensitive detection by a lock-in amplifier (LIA), and temperature control using a
light emitting diode (LED) and thermal electrical cooler (TEC). (b) Upper panel
(low temperature case, TL): the Brillouin shift Ω𝐵 (TL) is smaller than the mode
frequency difference (𝑚×FSR, where 𝑚 the mode number difference and FSR is the
free spectral range in angular frequency). Backaction on SBL1 pushes its frequency
away from the backaction absorption (purple) maximum, thereby increasing its
frequency. This decreases the SBL1-SBL2 beating frequency (Δ𝜔𝑠/2𝜋), when
the cascaded laser power increases. Note: SBL2’s frequency is not affected by
the mode-pushing effect because the backaction absorption is directional according
to the phase-matching condition. Lower panel (high temperature case, TH): the
Brillouin shift Ω𝐵 (TH) is larger than the mode frequency difference so that SBL1
has its frequency pushed lower. This increases the SBL1-SBL2 beating frequency
(Δ𝜔𝑠/2𝜋), when the cascaded laser power increases.

that is driven by the lasing fields. This anti-Stokes process creates absorption near
the pumps, and the absorption strength is proportional to laser power, and this
absorptive backaction clamps their circulating powers and hence the laser gain. The
exact lasing frequencies can be controlled by tuning of the pumping frequencies,
which causes frequency pulling of the laser frequencies such that about 1 MHz of
pump frequency tuning induces 10s of kHz of Brillouin laser frequency pulling
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(Δ𝜔𝑠/2𝜋). This configuration (non-degenerate, counter-propagating SBLs) is the
starting point for implementation of the back-action temperature control method and
a schematic of the key spectral features is provided in Fig. 5.1(b).

Now suppose that the power of SBL1 is increased so that it begins to function as
a pumping wave for a new laser wave (the cascaded laser wave shown in red in
Fig. 5.1(b)). The power of SBL2 is intentionally kept below threshold so that no
cascading occurs. As noted above for the original pumping waves, the onset of
laser action, now in the cascaded wave, induces absorptive backaction on its pump,
SBL1, that is proportional to the cascaded laser power. It is important to note that on
account of the phase matching condition, this absorption acts only on SBL1 (i.e., it is
directional and does not affect SBL2). The spectrum of the absorption experienced
by SBL1 is shown in purple in Fig. 5.1(b) and compensates SBL1 optical gain (not
shown in the figure) provided by the original Pump1. As a result, SBL1 power is
held constant, which is equivalent to the gain of the cascaded laser field (shown
in orange in Fig. 5.1(b)) being clamped (even if Pump1 power is increased). The
backaction absorption spectrum has a similar spectral profile to the Brillouin gain
and the location of its maximum relative to the frequency of SBL 1 is determined
by the phase matching condition for the backaction process. Specifically, maximum
nonlinear absorption occurs for the condition of perfect phase matching given by
Eq. (5.1).

Associated with the backaction absorption is a dispersion contribution that pushes
the frequency of SBL1 away from the absorption center. At 𝑇 = 𝑇0 the pushing
is zero since this temperature corresponds to perfect phase matching for which the
SBL1 frequency is at the absorption maximum. However, cases where 𝑇 < 𝑇0 and
𝑇 > 𝑇0 (upper and lower panels in Fig. 5.1(b)) result in slight phase mismatch.
Defining a phase mismatch parameter as Δ𝜔 ≡ 𝑚 × FSR − Ω𝐵 (𝑇), for Δ𝜔 > 0
(upper panel) and Δ𝜔 < 0 (lower panel) the SBL 1 frequency is pushed higher and
lower, respectively. Importantly, since the SBL1 and SBL2 are counter-propagating
waves, the frequency of SBL2 is not affected by the cascade laser backaction due
to the phase matching condition. Thus measurement of the frequency difference of
SBL1 and SBL2 gives a direct way to measure 𝑇 −𝑇0. As an aside, in reaching this
conclusion, it is important to note that cavity resonant frequency tuning with respect
to temperature is common mode for SBL1 and SBL2 as they share the same cavity
longitudinal mode.
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5.3 Measurement of Brillouin backaction and active locking
To implement this measurement it is convenient to use the power dependence of
the frequency pushing. Specifically, a weak modulation of the pump 1 power (𝑃)
will induce a corresponding frequency modulation of SBL1 through modulation
of the backaction dispersion. The resulting pump power (𝑃) dependence of the
SBL2-SBL1 beat frequency (Δ𝜔𝑠) is given by the following equation (section 5.4):

𝜕Δ𝜔𝑠

𝜕𝑃
≈ 4𝑔0𝛾𝑒𝑥

ℏ𝜔𝑝𝛾
2Γ

𝑑Ω𝐵

𝑑𝑇
(𝑇 − 𝑇0), (5.2)

whereΔ𝜔𝑠 ≡ 𝜔𝑟−𝜔𝑠, 𝜔𝑠 (𝜔𝑟) is the absolute angular frequency of SBL1 (SBL2), 𝑔0

is the Brillouin gain, 𝜔𝑝 is the pump angular frequency, 𝛾𝑒𝑥 is the external coupling
rate, 𝛾 is the total cavity loss rate, and Γ is the Brillouin gain bandwidth. This
result shows that frequency discrimination of Δ𝜔𝑠 combined with subsequent phase
sensitive detection will provide an error signal whose magnitude and sign vary as
𝑇 − 𝑇0.

In the experiment, we used a 36 mm-diameter silica wedge resonator on silicon [37]
with 8 𝜇m thickness and wedge angle of 30 degrees. The resonator is packaged
(similar to ref. [47]) with a thermal electrical cooler (TEC), a light emitting diode,
and a thermistor. The TEC and thermistor are used for coarse temperature control
and monitoring. The ultra-high-quality factor of the microcavity and the precisely
controlled resonator size enable efficient generation of stimulated Brillouin laser
action in the opposite propagation directions (operating wavelengths close to 𝜆 ≈
1553.3 nm). The intrinsic Q factor is 300 million and the SBL threshold is 0.9
mW. Details on the optical pumping as well as generation of SBL1, SBL2 and the
cascaded laser wave are provided in the Figure 5.1(a) caption.

To setup the phase-sensitive servo temperature control, the beat frequency of SBL1
and SBL2 is dithered by modulating pump1 (and in turn the cascaded SBL power)
using a power modulator (orange dashed line). The frequency of the beat signal
is monitored using a frequency counter. A frequency tracking circuit demodulates
the dithered signal and phase sensitive measurement is performed using a lock-in
amplifier (Stanford Research SR830) to generate the error signal. Temperature
control applies the feedback signal to a light emitting diode (fine control) and a
thermal electrical cooler (coarse control).

Figure 5.2(a) shows the measured SBL1/SBL2 beating frequency (Δ𝜔𝑠/2𝜋) when
sweeping the pump power 1 from below to above cascaded laser operation. Sweeps
are performed at a series of temperatures as indicated. As expected, when the pump
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Figure 5.2: Measurement of Brillouin backaction. (a) The beating frequency
of the counter-propagating SBLs is plotted versus pump1 power at a series of res-
onator temperatures as indicated. Frequencies at all temperatures closely track one
another in the noncascaded regime with a slight power dependence is induced by
the Kerr effect. In the cascaded regime, Brillouin backaction resolves the tempera-
ture differences with beating frequency showing a distinct dependence upon pump
power. The slope of this dependence changes sign at T0 (approximately 26.561 ◦C).
(b) Measured SBL beating frequency change per unit pump power plotted versus
temperature tuning. The temperature at perfect phase matching condition (𝑇0) is
indicated. (c) Measured SBL beating frequency change plotted versus temperature.
Slope is 41 kHz/K at 6.5 mW pump power.

power is low in the non-cascaded regime, all temperatures provide identical traces.
The observed slope on all of these traces is the result of frequency shift provided by
the Kerr effect [153]. On the other hand, for higher pump powers in the cascaded
regime, the back-action effect is apparent with each temperature showing a distinctly
different linear dependence on power. Significantly, the slope of this dependence is
observed to change sign as discussed above, corresponding to temperatures above
and below 𝑇0 in Eq. (5.2). This sign change is essential for implementation of
the phase sensitive detection servo control. An experimental plot showing the
sign change in slope is provided in Fig. 5.2(b), where the absolute temperature
reference T0=26.561 ◦C is also measured. The beating frequency is observed to
show a linear power dependence on temperature over the narrow range measured
(see Fig. 5.2(c) measured at 6.5 mW pump power). The temperature tuning rate
is smaller than the corresponding value provided by the dual-polarization approach
[151]. Nonetheless, it should be possible to substantially increase this rate in
resonators designed for forward-Brillouin scattering, wherein the reduced Brillouin-
shift is accompanied by much narrower linewidths (see section 5.4). By fitting these
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Figure 5.3: Thermal tuning of the backaction with power dithering. (a) The
open-loop SBL beat frequency (backaction regime of Fig. 5.2) is measured versus
time at a series of chip temperatures. A weak saw-tooth power modulation is
applied to Pump 1. Inset: temperature stabilization of the resonator with servo
control activated. (b) Zoom-ins of the plot in panel (a) showing how the polarity
and amplitude of the sawtooth beat frequency modulation depends on temperature.

data sets, the experimental back-action strength 𝜕2Δ𝜔𝑠/(𝜕𝑃𝜕𝑇) is measured to be
2𝜋 × 27.6 MHz/(W·K), and is consistent with the theory from Eq. (5.2) (2𝜋 × 22.5
MHz/(W·K), see section 5.4).

The linear power and temperature dependence of the backaction are further illus-
trated in Figure 5.3(a) where the beating frequency is measured versus time at a series
of temperatures. To illustrate the change in slope with power at each temperature a
weak and slowly-varying saw-tooth power modulation is applied. Zoom-in views of
the corresponding saw-tooth modulation in the beat frequency are presented in Fig.
5.3(b). The change in polarity and amplitude of the backaction-induced modulation
are apparent as the temperature is set to values above and below T0.

Finally, long term temperature stabilization of the system is demonstrated by closing
the servo control loop. Here, a faster sinusoidal power modulation (200 to 500 Hz)
is used to generate a small frequency dither on the SBL beating frequency. It
is demodulated by a frequency to voltage conversion circuit and the error signal is
generated by phase-sensitive detection with a lock-in amplifier as before. The output
of a proportional-integral (PI) servo drives a 1 W white LED (see Figure 5.1(a)) for
faster fine-control of temperature. The temperature is also controlled by a TEC that
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Figure 5.4: Allan Deviation of SBL beating frequency Δ𝜔𝑠. Allan Deviations of
SBL beating frequency with (blue) and without (red) servo control. The error bar
gives the standard deviation. Inset: SBL beating frequency versus time with (blue)
and without (red) servo control.

provides slower feedback. The temperature feedback result is shown in the inset of
Fig. 5.3(a). After an initial relaxation oscillation, the long term temperature drift
(> 10 seconds) is stabilized.

With the servo-control loop disconnected, but with the power dither active, the
beating frequency exhibits a continuous drift as large as 2.3 kHz in an hour, cor-
responding to around 0.13 ◦C temperature change per hour. This is apparent in
both the measured SBL beat frequency (see Fig. 5.4 inset) and its Allan Deviation
(ADEV) measurement presented in the main panel in Fig. 5.4). However, with the
servo-control loop connected there is no observable drift in the beating frequency
over an hour of measurement (see Fig. 5.4 inset). Also, over 1500 s averaging
time (limited by data size of 1 hour) the Allan Deviation remains around 2 Hz,
corresponding to about 0.1 mK temperature variation. In the short term, the drift
suppression is believed to be limited by the thermal response of the cavity to the
LED. In the future, a faster form of temperature feedback (e.g., an integrated resis-
tive heater placed near the resonator) should further reduce this response time. Feed
forward frequency correction could also be employed.
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5.4 Theoretical analysis on cascade Brillouin laser backaction
Below we derive the temperature dependence of the frequency shift in SBL1 induced
by power-dithering of the cascaded SBL. In the cavity-mode rotating frame, we write
the pump, SBL, and cascaded SBL in the following form:

¤𝐴 =

[
𝑖
(
𝜔𝑝 − 𝜔0

)
− 𝛾

2

]
𝐴 − 𝑔∗𝑠 |𝛼 |2 𝐴 +

√︄
𝛾𝑒𝑥𝑃

ℏ𝜔𝑝

, (5.3)

¤𝛼 =

[
𝑖 (𝜔𝑠 − 𝜔1) −

𝛾

2

]
𝛼 + 𝑔𝑠 |𝐴|2 𝛼 − 𝑔∗𝑐 |𝛽 |2 𝛼, (5.4)

¤𝛽 =

[
𝑖 (𝜔𝑐 − 𝜔2) −

𝛾

2

]
𝛽 + 𝑔𝑐 |𝛼 |2 𝛽, (5.5)

where 𝐴, 𝛼, 𝛽 are the normalized photon number amplitudes of the pump, SBL1,
and cascaded SBL, respectively. Here we have adiabatically eliminated the phonon
fields as described elsewhere [35]. We also note that the term involving 𝑔∗𝑐 in Eq.
5.4 results from anti-Stokes scattering of the cascaded laser field 𝛽. The 𝜔𝑝, 𝜔𝑠,
and 𝜔𝑐 are the lasing angular frequencies, and the 𝜔0, 𝜔1, 𝜔2 are the cavity angular
frequencies. 𝑃 is the input pump power (i.e., pump1 in Fig. 5.1). 𝑔𝑠,𝑐 are defined
by:

𝑔𝑠,𝑐 =
𝑔0

1 + 2𝑖ΔΩ𝑠,𝑐

Γ

, (5.6)

ΔΩ𝑠 = 𝜔𝑝 − 𝜔𝑠 −Ω𝑠, (5.7)

ΔΩ𝑐 = 𝜔𝑠 − 𝜔𝑐 −Ω𝑐, (5.8)

Ω𝐵 ≡ Ω𝑠 ≈ Ω𝑐, (5.9)

where Ω𝑠 and Ω𝑐 are the phonon angular frequencies associated with SBL1 and the
cascaded SBL, respectively. Ω𝐵 is the Brillouin shift, which is equal to 4𝜋𝑛𝑐𝑠/𝜆𝑝

(𝑛 is the refractive index, 𝑐𝑠 is the speed of sound in silica, and 𝜆𝑝 is the pump
wavelength). 𝑔0 is the Brillouin nonlinear coefficient [35], 𝛾𝑒𝑥 is the external
coupling coefficient, Γ is the phonon damping rate.

In steady-state, if we assume good phase matching (ΔΩ𝑠,𝑐 ≪ Γ), then the real parts
and imaginary parts of Eq. (5.4) and Eq. (5.5) give:

𝛾

2
= 𝑔0

(
|𝐴|2 − |𝛽 |2

)
= 𝑔0 |𝛼 |2 , (5.10)

𝜔𝑠 − 𝜔1 =
2𝑔0
Γ

(
|𝐴|2 ΔΩ𝑠 + |𝛽 |2 ΔΩ𝑐

)
, (5.11)

𝜔𝑐 − 𝜔2 =
2𝑔0
Γ

|𝛼 |2 ΔΩ𝑐 . (5.12)
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From Eq. (5.10) we get a photon number relation |𝐴|2 = |𝛼 |2 + |𝛽 |2 as well as
the clamping condition for the Stokes wave, |𝛼 |2 = 𝛾/2𝑔0. These can be used to
eliminate |𝛼 |2 and |𝛽 |2 in Eq. (5.11) and Eq. (5.12), which yields,

𝜔𝑠 − 𝜔1 =
2𝑔0
Γ

|𝐴|2 (ΔΩ𝑠 + ΔΩ𝑐) −
𝛾

Γ
ΔΩ𝑐, (5.13)

𝜔𝑐 − 𝜔2 =
𝛾

Γ
ΔΩ𝑐 . (5.14)

To study the dependence of 𝜔𝑠 on the input power, we take the partial derivative
with respect to |𝐴|2. Since 𝜔1, 𝜔2, 𝜔𝑝, Ω𝐵 are independent of power the following
hold,

𝜕𝜔𝑐

𝜕 |𝐴|2
=

𝛾

Γ

𝜕ΔΩ𝑐

𝜕 |𝐴|2
=

𝛾/Γ
1 + 𝛾/Γ

𝜕𝜔𝑠

𝜕 |𝐴|2
, (5.15)

𝜕𝜔𝑠

𝜕 |𝐴|2
=

2𝑔0
Γ

(
𝜔𝑝 − 𝜔𝑐 − 2Ω𝐵

)
+ 2𝑔0

Γ
|𝐴|2 𝜕 (ΔΩ𝑠 + ΔΩ𝑐)

𝜕 |𝐴|2
− 𝛾

Γ

𝜕ΔΩ𝑐

𝜕 |𝐴|2

=
2𝑔0
Γ

𝜔𝑝 − 𝜔𝑐 − 2Ω𝐵

1 + 𝛾/Γ
1+𝛾/Γ

(
1 + 2𝑔0 |𝐴|2

Γ

) . (5.16)

Eq. (5.15) gives the mode pulling induced in the cascaded Brillouin laser frequency
[59] caused by changes in the SBL1 frequency. This effect moves the cascaded
wave’s frequency towards its cavity mode frequency. Next, we assume for simplicity
that operation is only slightly above the cascaded threshold, such that Eq. (5.10)
gives 2𝑔0 |𝐴|2 ≈ 𝛾. In this case Eq. (5.16) simplifies into,

𝜕𝜔𝑠

𝜕 |𝐴|2
=

1
1 + 𝛾/Γ

2𝑔0
Γ

(
𝜔𝑝 − 𝜔𝑐 − 2Ω𝐵

)
. (5.17)

The correction factor 𝛾/Γ is small (𝛾/Γ ≪ 1) in this system since the cavity
linewidth is typically much smaller than the phonon damping rate (i.e., justification
for adiabtic approximation above). Therefore, we drop the correction factor in Eq.
(5.17). Next, the |𝐴|2 can be further replaced by 𝑃 = ℏ𝜔𝑝𝛾

2 |𝐴|2 /𝛾𝑒𝑥 , which is the
input pump power above cascade threshold (obtained by solving the steady state of
Eq. (5.3) with clamping conditions for |𝛼 |2). Then, Eq. (5.17) simplifies to the
following:

𝜕𝜔𝑠

𝜕𝑃
=

2𝑔0𝛾𝑒𝑥

ℏ𝜔𝑝𝛾
2Γ

(
𝜔𝑝 − 𝜔𝑐 − 2Ω𝐵

)
. (5.18)
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The derivative with respect to temperature is now taken in this expression to arrive
at the following,

𝜕2𝜔𝑠

𝜕𝑃𝜕𝑇
≈ − 4𝑔0𝛾𝑒𝑥

ℏ𝜔𝑝𝛾
2Γ

𝑑Ω𝐵

𝑑𝑇
. (5.19)

In writing this expression the temperature dependence of 𝜔𝑝 − 𝜔𝑐 ≈ 𝜔0 − 𝜔2 ≈
2𝑚 × FSR is neglected. This term’s temperature dependence is dominated by the
thermorefractive and thermoexpansion effects, which are much weaker than the
temperature dependence of the Brillouin frequency. For example, in silica glass
the thermoexpansion coefficient is 𝛼𝐿 = 0.51 × 10−6/K and the thermorefractive
coefficient is 𝑑𝑛/𝑑𝑇 = 11.6 × 10−6/K, so that 𝑑

(
𝜔𝑝 − 𝜔𝑐

)
/𝑑𝑇 ≈ 2𝜋 × 180 kHz/K.

This compares to 𝑑Ω𝐵/𝑑𝑇 ≈ 2𝜋 × 1.16 MHz/K at 1550 nm (estimated from 1.36
MHz/K at 1320 nm [146]), and justifies the simplification involved in Eq. (5.19).

Now, if we introduce an independent backward propagating SBL as a reference with
higher angular frequency 𝜔𝑟 , the result is,

𝜕2Δ𝜔𝑠

𝜕𝑃𝜕𝑇
=
𝜕2(𝜔𝑟 − 𝜔𝑠)

𝜕𝑃𝜕𝑇
=

4𝑔0𝛾𝑒𝑥

ℏ𝜔𝑝𝛾
2Γ

𝑑Ω𝐵

𝑑𝑇
, (5.20)

which is the temperature derivative of Eq. 5.2. The silica resonator has 𝑔0/2𝜋 = 0.61
mHz, Γ/2𝜋 = 30 MHz, 𝛾𝑒𝑥/2𝜋 = 110 kHz, 𝛾/2𝜋 = 860 kHz, 𝜔𝑝/2𝜋 = 193 THz,
giving a theoretical estimation of 𝜕2Δ𝜔𝑠/𝜕𝑃𝜕𝑇 = 2𝜋 × 22.5 MHz/(W.K), which
compares favorably with the experimental value in Fig. 5.2 of 2𝜋×27.6 MHz/(W.K).
The difference here mainly originates from the uncertainty of certain parameters.

As an aside, Eqs. (5.19) and (5.20) show that frequency tuning response with respect
to temperature depends inversely upon the Brillouin damping rate Γ. Along these
lines, forward Brillouin scattering in high-Q silica microresonators has produced
damping rates much smaller than for back scattering on account of the smaller
required Brillouin shift for backscattering [34, 154]. We intend to investigate this
approach as a means to increase the backaction response.

To estimate 𝑔0 above (in the unit of rad/s), we use the following equations [155]:

𝑔0 ≈ ℏ𝜔3

2𝑃clamp𝑄𝑇𝑄𝐸

(5.21)

≈
2𝜋Δ𝜈clamp

𝑛𝑡ℎ
, (5.22)

where 𝑃clamp is the clamped power of SBL1 at the cascading threshold, 𝑄𝑇 (𝑄𝐸 )
is the total (external) quality factor, Δ𝜈clamp is the full-width-half-maximum of
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the fundamental SBL1 linewidth under cascaded clamping conditions, 𝑛𝑡ℎ is the
number of thermal phonon quanta at the operating temperature. For the 36 mm
silica resonator at room temperature, we measured Δ𝜈clamp = 0.35 Hz and used the
theoretical 𝑛𝑇 ≈ 577.

5.5 Discussion
In summary, we have investigated Brillouin backaction and shown that it provides
a way to phase sensitively lock an optical resonator to an absolute temperature
defined by the phase matching condition. The back-action has been shown to induce
both linear power and temperature dependences in a readily measured optical beat
frequency. The polarity of the power dependence depends upon operation above
or below the phase matching temperature. This feature and the high stability of
the beat frequency were used to servo control the optical mode temperature to
0.1 mK stability levels. While not yet at the temperature stability level of the
cross polarization method when applied to microcavities (0.008 mK) [156], cross-
polarization stabilization has existed for a decade. And we believe the initial results
presented here can be substantially improved. An important aspect of the phase
sensitive control is that the noise limit is determined by SBL frequency noise at
large offset frequencies set by backaction modulation. Here, the rate is 500 Hz,
but could be set even higher if necessary to avoid laser frequency noise. Moreover,
characterization of the absolute optical frequency stability that is achievable by
this method is a possible area of investigation. The range of material systems on
which Brillouin laser action has been demonstrated (including integrable platforms)
suggests that this method can find wide use.
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C h a p t e r 6

THE LINEWIDTH ENHANCEMENT FACTOR IN A
MICROCAVITY BRILLOUIN LASER

6.1 Introduction
1 The linewidth of stimulated Brillouin lasers (SBLs) has received considerable
attention for some time. SBLs based on optical fiber [157], for example, feature
narrow linewidths that are useful for generation of highly stable microwave sources
[158, 159]. More recently, broad interest in micro and nanoscale Brillouin devices
[33] has focused attention on tiny, often chip-scale, SBLs in several systems [34,
35, 36, 37, 38, 39, 40, 41]. These devices have high power efficiency [42], provide
flexible operating wavelengths [43], and their fundamental linewidth can be reduced
to less than 1 Hz [42, 41]. For these reasons they are being applied in a range of
applications including radio-frequency synthesizers [44, 45], ring-laser gyroscopes
[46, 41, 47] and high-coherence reference sources [38].

SBLs derive gain through a process that is parametric in nature and for which scat-
tering of an optical pump into a Stokes wave from an acoustic phonon must be
phase-matched [160, 8]. When the phonon field is strongly damped, the process
mimics stimulated emission. Nonetheless, phonon participation introduces dramatic
differences into SBL linewidth behavior compared with conventional lasers. For
example, while the conventional Schawlow-Townes laser linewidth [161] is insen-
sitive to temperature, the fundamental SBL linewidth is proportional to the number
of thermo-mechanical quanta in the phonon mode and therefore to the Boltzmann
energy 𝑘B𝑇 [42]. This dependence has been verified from cryogenic to room tem-
perature [155]. Brillouin lasers can also oscillate on multiple lines through the
process of cascade [42], in which an initial Stokes wave can serve to pump a second
Stokes wave and so forth. Cascading introduces additional contributions to the SBL
linewidth [162]. Finally, the parametric nature of the process means that pump phase
noise couples through to the laser linewidth, although it is strongly suppressed by
the phonon damping [163].

The fundamental linewidth of lasers is increased by the well-known linewidth en-
1Work presented in this chapter has been published in [148] “The linewidth enhancement factor

in a microcavity Brillouin laser.” Optica 7.9 (2020), pp. 1150–1153.
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hancement factor 𝛼 that characterizes amplitude-phase coupling of the field [164].
This quantity is best known for its impact on the linewidth of semiconductor lasers
[165], and its understanding, control and measurement have long been subjects of
interest [166, 167, 168]. Here, the linewidth enhancement factor is studied in SBLs.
The parametric nature of Brillouin gain is shown to strongly influence this parame-
ter. Phase mismatch causes a non-zero 𝛼 factor. Measurements of SBL frequency
noise are used to determine 𝛼 versus controlled amounts of phase mismatch, and
the results are in good agreement with theory. Significant enhancements to the
linewidth are predicted and measured even when the SBL is operated only modestly
away from perfect phase matching.

6.2 Experiment setup and illustration for 𝛼 factor
Amplitude-phase coupling occurs at a specified optical frequency when the real and
imaginary parts of the optical susceptibility (equivalently refractive index and gain)
experience correlated variations subject to a third parameter. The ratio of the real to
imaginary variation is the 𝛼 parameter [165]. With a non-zero 𝛼-parameter, noise
that normally couples only into the laser field amplitude can also couple into the
phase. And because phase fluctuations are responsible for the finite laser linewidth
[164], the non-zero 𝛼-factor thereby causes linewidth enhancement. For a physical
understanding of how a non zero 𝛼 parameter arises within the SBL system consider
Fig. 6.1(a).

Optical pumping at frequency 𝜔P on a cavity mode causes a Lorentzian-shaped gain
spectrum through the Brillouin process. The Brillouin gain spectrum is frequency
down-shifted by the phonon frequency Ω (Brillouin shift frequency) relative to the
pumping frequency. Laser action at frequency 𝜔L is possible when a second cavity
mode lies within the gain spectrum, which requires that Δ𝜔 ≡ 𝜔P − 𝜔L is close in
value to Ω. Perfect phase matching corresponds to laser oscillation at the peak of
the gain (i.e., Δ𝜔 = Ω). Also shown in Fig. 6.1(a) is the refractive index spectrum
associated with the gain spectrum according to the Kramers-Kronig relations. It is
apparent that 𝛼 (the ratio of variation of real to imaginary susceptibility) will be zero
for phase-matched operation, while it increases with increased frequency detuning
relative to perfect phase matching.

Analysis (section 6.5) shows that the 𝛼-factor enhancement of the fundamental SBL
linewidth Δ𝜈SBL is,

Δ𝜈SBL = Δ𝜈0(1 + 𝛼2), (6.1)
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Figure 6.1: SBL phase mismatch illustration and experimental setup. (a) Bril-
louin gain process in the frequency domain. Purple (brown) curve refers to pump
(Stokes) cavity mode at frequency𝜔P (𝜔S). Blue curve refers to the SBL laser signal
at frequency 𝜔L. Orange and red curves correspond to gain (g) spectrum and refrac-
tive index (Δn), respectively. Brillouin shift frequency (Ω), gain spectrum linewidth
(Γ), and cavity linewidth (𝛾) are also indicated. Frequency detunings 𝛿𝜔 and 𝛿Ω

are defined in the text. (b) Experimental setup for 𝛼 and linewidth measurement.

where Δ𝜈0 is the non-enhanced (𝛼 = 0) SBL linewidth given below as Eq. 6.3,
and where the linewidth enhancement factor can be expressed using two equivalent
frequency-detuning quantities relative to perfect phase matching:

𝛼 =
2𝛿Ω
Γ

=
2𝛿𝜔
𝛾

. (6.2)

In the first equality, phonon mode detuning 𝛿Ω ≡ Ω − Δ𝜔 is normalized by Γ, the
Brillouin gain bandwidth (i.e., phonon decay rate constant). In the second equality,
optical mode detuning 𝛿𝜔 ≡ Δ𝜔 − FSR (FSR is the unpumped cavity free-spectral-
range) is normalized by 𝛾, the photon decay rate constant. Note that the sign of 𝛼
changes to either side of perfect phase matching. Also, as an aside, 𝛿𝜔 is the mode
pulling induced by the Brillouin gain spectrum [42]. Δ𝜈0 is given by:

Δ𝜈0 =

(
Γ

𝛾 + Γ

)2 ℏ𝜔3
L𝑛th

4𝜋𝑄T𝑄ex𝑃SBL
. (6.3)

where ℏ is the reduced Planck’s constant, 𝑃SBL is the SBL output power, and 𝑛th

is the number of thermal quanta in the phonon mode. This expression is the same
as that derived in ref. [42], except for omission of the zero-point energy terms and
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also inclusion of the near-unity correction factor [Γ/(𝛾 + Γ)]2 relating to the finite
damping rate of the phonons (derivation in section 6.5).

As a first step towards verification of Eqs. (6.1) and (6.2), it is necessary to measure
the phase mismatch detuning at each point where linewidth will be measured. As
shown in Fig. 6.1(b), an external cavity diode laser (ECDL) (Newport, TLB-6728)
near 1550 nm passes through an erbium-doped fiber amplifier (EDFA) and is coupled
to the microcavity using a tapered fiber. Its frequency is Pound-Drever-Hall locked
(not shown) to the center of cavity resonance. Pump power is controlled using an
acousto-optic modulator (AOM) as an attenuator in combination with a feedback
loop (not shown). The resonator diameter is around 7.1 mm, corresponding to an
FSR of 10.8 GHz, which is selected to closely match the Brillouin shift frequency
in silica at 1550 nm. The resonator chip temperature is actively stabilized to
26.5000 ± 0.0005◦C using a temperature controller. The SBL emission propagates
opposite to the direction of pumping on account of the phase-matching condition.
The emission is coupled to a series of measurement instruments through a circulator.
An optical spectrum analyzer (OSA) is used to record the laser and pump spectra
as well as to measure SBL power. Pump and SBL signals are mixed on a fast
photodetector (PD) (Thorlabs, DXM30AF) to measure their frequency difference.
Another PD monitors the pumping power.

6.3 Measurement on 𝛼 factor and Brillouin phase mismatch
To vary the phase mismatch detuning, the pump laser wavelength 𝜆P is tuned, which
is achieved by selecting different longitudinal modes within the same transverse
mode family as pump and Stokes modes. This has the effect of varying Ω through
the relationship Ω = 4𝜋𝑛𝑐s/𝜆P (𝑛: refractive index, 𝑐s: speed of sound in the
microcavity). Since Ω is not directly measurable in the experiment, we instead
obtained information on the phase mismatch using 𝛿𝜔, which requires measurement
of Δ𝜔 and FSR.

The frequency Δ𝜔 is determined by first measuring the beating frequency of the
pump and the SBL using a fast photodetector, followed by measurement of the
detected current on an electrical spectrum analyzer. Beyond being influenced by
mode pulling as noted above, this beating frequency is also slightly shifted via
backaction of the amplitude-phase coupling (section 6.5) and the optical Kerr effect
[153], both of which are proportional to the SBL powers. Therefore, to account
for these effects, the beatnote frequencies were measured at 5 different SBL power
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Figure 6.2: Measured Brillouin gain phase mismatch and 𝛼 factor. (a) Beating
frequency between the pump laser and the SBL is plotted as a function of SBL
power. Linear fitting is applied to eliminate the influence of the Kerr effect and 𝛼

factor backaction, and the y-axis intercept is plotted as Δ𝜔 in panel (b). Blue, red
and yellow traces correspond to measurements at 1545 nm, 1538 nm and 1532 nm,
respectively. (b) The extrapolated beating frequency (squares) and FSR (triangles)
are plotted versus wavelength. The calculated 𝛼 factor (red circles) is plotted versus
wavelength using Eq. (6.2). The Brillouin gain center occurs at around 1548 nm
where FSR = Δ𝜔. (c) Total (𝑄T), intrinsic (𝑄0) and external (𝑄ex) quality factors
are plotted versus wavelength. The values are measured in the same transverse mode
family.

levels. Representative measurements performed at three pump wavelengths are
shown in Fig. 6.2(a). The y-intercept of these plots provides the required beating
frequency in the absence of the above effects and a summary plot of a series of
such measurements is provided as the blue-square data points in Fig. 6.2(b). As an
aside, the data point near 1559 nm is missing because of strong mode crossings at
this wavelength in the SBL microcavity (i.e., higher-order mode families become
degenerate with the SBL mode family).

To determine the FSR at each pumping wavelength, the mode spectrum of the
resonator is measured by scanning a tunable laser whose frequency is measured
using a radio-frequency calibrated interferometer [26]. The measured FSR is plotted
versus wavelength as the dotted line in Fig. 6.2(b). Measurement of the FSR this
way also ensured that pumping was performed on the same transverse mode family
as the pumping wavelength was tuned. This is important since mode volume would
change strongly were mode family to change. In Fig. 6.2(b), the phase-matching
condition (gain center) occurs when FSR equals Δ𝜔 (𝛿𝜔 = 0) at around 1548 nm
pump wavelength. We can also use the Brillouin shift at gain center to infer that
𝑐𝑠 = 5845 m/s, which is consistent with the material properties of silica [169].
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Finally, 𝛾 is determined by measurement of the cavity linewidth at each wavelength
(equivalently, the total Q-factor 𝑄T of the resonator). By measurement of both
linewidth and transmission on cavity resonance it is possible to extract both the
intrinsic Q-factor𝑄0 and external coupling Q-factor𝑄ex at each wavelength (1/𝑄T =

1/𝑄0+1/𝑄ex). A plot of the results is provided in Fig. 6.2(c). The𝑄0 values inferred
this way are relatively constant across the measured modes, while the 𝑄ex exhibits
variation that reflects wavelength dependency of the coupling condition. The 𝑄

factors are significantly lower than state-of-the-art resonators of the same kind [37],
which is intentional and increases the sensitivity of noise measurement that follows.
Using Eq. 6.2, the theoretical 𝛼 factor as a function of wavelength from 1532 nm to
1563 nm is plotted in Fig. 6.2(b) (red circles). Deviations of beating frequency and
the 𝛼 factor from a linear trend are a result of variations of total 𝑄 factor across the
measured wavelengths. The largest 𝛼 factor is greater than 7 so that a fundamental
linewidth enhancement of more than 1 + 72 = 50 is expected at the largest detuning
values.

6.4 Measurement on the 𝛼 factor enhanced fundamental linewidth
A frequency discriminator method [170, 171] (for an updated noise measurement
method, see Chapter 8) is used to measure the noise spectrum of the two-sided white
frequency noise spectral density 𝑆w of the SBL as shown in the Fig. 6.1(b). An
interferometer is used to measure the laser frequency noise. Therein, the laser signal
is sent into an AOM which is split into frequency-shifted (1st order) and unshifted
(0th order) signals. The latter is delayed in a 1-km long fiber and then the two
signals are mixed on a PD (Newport, 1811-FC). The delay sets up a frequency to
amplitude discriminator with discrimination gain proportional to the amount of the
interferometer delay. To measure the frequency noise spectral density, the detected
current is measured using an electrical phase noise analyzer (PNA) and the spectrum
is fit to obtain the two-sided spectral density of the SBL laser (section 6.6).

The fundamental noise component in 𝑆w, defined as 𝑆F, is related to the fundamental
SBL linewidth through 2𝜋𝑆F = Δ𝜈SBL [153] where Δ𝜈SBL is given in Eq. 6.3. And
the inverse power dependence contained in Δ𝜈SBL is used to extract 𝑆F from the
measurement of 𝑆w. Data plots of 𝑆w versus inverse power at three pumping
wavelengths are shown in the inset of Fig. 6.3 and reveal this power dependence.
Of importance to this measurement is that optical pumping power was controlled
by attenuation of the pump so that its phase noise was constant throughout the
measurement. Therefore, only the intrinsic contribution to linewidth could cause the
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Figure 6.3: Measured SBL frequency noise enhancement from the 𝛼 factor.
Measured SBL frequency noise 𝑆F (blue); theoretical 𝑆F (Eqn. 6.3) prediction
(green) with 𝛼 obtained from Fig. 6.2(b); and non-enhanced 𝑆0 formula (𝛼=0) [42]
prediction (yellow); all plotted versus pump wavelength normalized to 1 mW output
power. Error bars on the 𝑆F noise correspond to the error in determining slope
(see inset). Error bars on the Eqn. 6.3 prediction mainly arise from errors in Δ𝜔

and Q measurement errors. Variations of the 𝛼=0 prediction mainly arise from 𝑄ex
differences. Inset: SBL frequency noise 𝑆w is plotted versus the reciprocal of SBL
output power. A linear fitting is applied to determine 𝑆F from the slope, and then
plotted in the main panel. Blue, red and yellow data correspond to measurements at
1545 nm, 1538 nm and 1532 nm, respectively.

observed power dependence. The slope is equal to 𝑆F normalized to an output power
of 1 mW. Linear fitting provides the slopes which are plotted versus wavelength in
the main panel of Fig. 6.3. The corresponding minimum measured fundamental
noise is about 𝑆F =0.2 Hz2/Hz (Δ𝜈SBL = 1.25 Hz) near the phase matching condition
(gain center), and the maximum fundamental noise is more than 𝑆F =10 Hz2/Hz
(Δ𝜈SBL = 63 Hz), corresponding to 50× noise enhancement, at the largest mismatch
detunings. Comparison to Eq. (6.3) is provided as the green plot in Fig. 6.3.
In this plot 𝑄T, 𝑄ex and 𝛼 (Fig. 6.2(b, c)) measurements at each wavelength are
used with no free parameters. 𝛾 can be obtained from 𝑄T, and we can infer Γ/2𝜋
to be 34.7 MHz, assuming it is constant over wavelength. Also, 𝑛th= 572 is used
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(corresponding to the operating temperature of 26.5 ◦C). There is overall good
agreement with the measured linewidth values. The conventional 𝑆0 = Δ𝜈0/(2𝜋)
(with 𝛼=0) is also plotted for comparison.

The nonzero intercept on the 𝑦 axis of the inset to Fig. 6.3 is believed to be associated
with transferred pump phase noise associated with imperfect PDH locking. This
contribution will increase with increasing 𝛼. Both it and the linewidth contribution
of the pump phase noise are analyzed in section 6.5.

6.5 Theoretical analysis
Derivation of the 𝛼 factor in Brillouin lasers
We derive the 𝛼 factor in stimulated Brillouin laser (SBL) systems by starting from
the Hamiltonian of the system:

𝐻 = ℏ(𝜔P 𝐴̃
† 𝐴̃ + 𝜔s𝑎̃

†𝑎̃ +Ω𝑏̃†𝑏̃) + ℏ𝑔B( 𝐴̃†𝑎̃𝑏̃ + 𝐴̃𝑎̃†𝑏̃†), (6.4)

where 𝐴̃, 𝑎̃ and 𝑏̃ are the lowering operators of the pump, Stokes and phonon
modes, respectively; 𝜔P, 𝜔s and Ω are the resonance frequencies of the pump,
Stokes and phonon modes, respectively; and 𝑔B is the single-particle Brillouin
coupling [42]. We have ignored terms that are strongly out of phase match (i.e.,
energy non-conserving) in the Hamiltonian to simplify the discussion. The fast time
dependencies are removed from the operators as follows:

𝐴 ≡ 𝐴̃ exp(𝑖𝜔P,in𝑡), (6.5)

𝑎 ≡ 𝑎̃ exp(𝑖𝜔L𝑡), (6.6)

𝑏 ≡ 𝑏̃ exp(𝑖ΩL𝑡), (6.7)

where 𝐴, 𝑎 and 𝑏 are the slow-varying lowering operators; 𝜔P,in is the pumping
frequency; 𝜔L is the SBL frequency and ΩL is the mechanical vibration frequency.
Replacing the operators with the slow-varying ones results in an effective Hamilto-
nian:

𝐻 = ℏ(𝛿𝜔P𝐴
†𝐴 + 𝛿𝜔𝑎†𝑎 + 𝛿Ω𝑏†𝑏) + ℏ𝑔B(𝐴†𝑎𝑏 + 𝐴𝑎†𝑏†), (6.8)

where 𝛿𝜔P ≡ 𝜔P − 𝜔P,in is the pump mode frequency detuning compared to the
external pump, and 𝛿𝜔 ≡ 𝜔s − 𝜔L (𝛿Ω ≡ Ω − ΩL) is the detuning of Stokes
(phonon) cavity mode compared to the laser (mechanical vibration) frequency. We
note that the slow-varying amplitudes are directly referenced to the true oscillating
frequencies of each mode instead of the resonance frequencies, which removes the
fast time dependence in the interaction terms.
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The Heisenberg equations of motion for the Stokes mode and the phonon mode
are derived. Then, the quantum operators are replaced with classical fields as the
dominant source of noise in this system is phonon thermal noise [42]. Finally,
phenomenological damping terms are inserted as follows:

𝑑𝑎

𝑑𝑡
= −

(𝛾
2
+ 𝑖𝛿𝜔

)
𝑎 − 𝑖𝑔B𝐴𝑏

∗, (6.9)

𝑑𝑏

𝑑𝑡
= −

(
Γ

2
+ 𝑖𝛿Ω

)
𝑏 − 𝑖𝑔B𝐴𝑎

∗, (6.10)

where 𝛾 (Γ) is the energy decay rates for the Stokes (phonon) mode.

We first seek nonzero steady-state solutions to the above equations that represent
SBLs. By writing the equation for 𝑏∗ using Eq. (6.10),

𝑑𝑏∗

𝑑𝑡
= −

(
Γ

2
− 𝑖𝛿Ω

)
𝑏∗ + 𝑖𝑔B𝐴

∗𝑎, (6.11)

the equations (6.9) and (6.11) form a linear system in 𝑎 and 𝑏∗. The requirement
for nonzero solutions (i.e., zero determinant of the coefficient matrix) gives the
equation: (𝛾

2
+ 𝑖𝛿𝜔

) (
Γ

2
− 𝑖𝛿Ω

)
− 𝑔2

B |𝐴|
2
0 = 0, (6.12)

where the subscript 0 indicates steady state. This complex equation can be solved
as:

2𝛿𝜔
𝛾

=
2𝛿Ω
Γ

, (6.13)

𝑔2
B |𝐴|

2
0 =

𝛾Γ

4

(
1 + 4𝛿Ω2

Γ2

)
. (6.14)

For convenience, we define 𝛼 ≡ 2𝛿𝜔/𝛾 = 2𝛿Ω/Γ and later demonstrate that 𝛼 is
indeed the linewidth enhancement factor. With 𝛼 defined, the steady-state pump
photon number is,

|𝐴|20 =
𝛾Γ

4
1 + 𝛼2

𝑔2
B

=
𝛾

2𝑔
(1 + 𝛼2), (6.15)

where the Brillouin gain coefficient 𝑔 = 2𝑔2
B/Γ has been defined. Since Γ ≫ 𝛾 in

our microcavity system, we can adiabatically eliminate 𝑏∗ from Eq. (6.9) by setting
𝑑𝑏∗/𝑑𝑡 = 0 in Eq. (6.11):

𝑑𝑎

𝑑𝑡
=

(
−𝛾

2
+ 𝑔 |𝐴|2

1 + 𝛼2

)
(1 + 𝑖𝛼) 𝑎, (6.16)
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where the definition of 𝛼 has been used. Here, |𝐴|2 implicitly depends on 𝑎 through
the pump mode dynamics and controls the gain saturation. Alternatively, Eqn. 6.16
can be represented using the amplitude |𝑎 | and phase 𝜙𝑎 = ln(𝑎/𝑎∗)/(2𝑖) variables,

𝑑 |𝑎 |
𝑑𝑡

=

(
−𝛾

2
+ 𝑔 |𝐴|2

1 + 𝛼2

)
|𝑎 |, (6.17)

𝑑𝜙𝑎

𝑑𝑡
=

(
−𝛾

2
+ 𝑔 |𝐴|2

1 + 𝛼2

)
𝛼, (6.18)

which illustrates that 𝛼 = |𝑎 | ¤𝜙𝑎/ ¤|𝑎 | represents amplitude-phase coupling.

Henry [165] defined the𝛼 factor as the ratio of the change in real part of the refractive
index and the change in the imaginary part. Below we show that this interpretation
is consistent with that derived from the coupled-mode equations. For a system with
Lorentzian gain, the imaginary part of the gain-induced susceptibility can be written
as

𝜒I(𝜔B) = − 𝜒B

1 + 4𝜔2
B/Γ2

, (6.19)

where Γ is the gain bandwidth, 𝜒B is a positive constant describing the strength of
the gain at the line center, and the angular frequency 𝜔B is referenced to the gain
center (i.e., detuning relative to gain center). By the Kramers-Kronig relations, 𝜒I

necessarily leads to the real part of the susceptibility 𝜒R through the relation,

𝜒R(𝜔B) =
1
𝜋

∫ ∞

−∞

𝜒I(𝜔′
B)

𝜔′
B − 𝜔B

𝑑𝜔′
B = 𝜒B

2𝜔B/Γ
1 + 4𝜔2

B/Γ2
. (6.20)

The refractive index can be written as 𝑛(𝜔B)2 = 𝑛2+ 𝜒R+𝑖𝜒I, where 𝑛 is the material
refractive index (dispersion in 𝑛 has been ignored). Assuming 𝜒B ≪ 𝑛2, we can
find the real part 𝑛′ and imaginary part 𝑛′′ of the refractive index:

𝑛′ = 𝑛 + 𝜒R
2𝑛

= 𝑛 + 𝜒B
2𝑛

2𝜔B/Γ
1 + 4𝜔2

B/Γ2
, (6.21)

𝑛′′ =
𝜒I
2𝑛

= − 𝜒B
2𝑛

1
1 + 4𝜔2

B/Γ2
. (6.22)

The 𝛼 factor can then be obtained as,

𝛼 = − 𝜕𝑛′/𝜕𝜒B
𝜕𝑛′′/𝜕𝜒B

=
2𝜔B
Γ

. (6.23)

Setting 𝜔B = 𝛿Ω recovers the desired result, 𝛼 = 2𝛿Ω/Γ. There are different
conventions regarding the sign of 𝛼, and here we choose the negative sign which
would be consistent with the exp(−𝑖𝜔𝑡) phasor used throughout.
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To further establish the connection of 𝛼 to linewidth broadening, the SBL linewidth
is derived. We will again assume Γ ≫ 𝛾 and defer the more general case to the next
subsection. For this analysis we add classical noise terms to Eqs. (6.9) and (6.10),

𝑑𝑎

𝑑𝑡
= −𝛾

2
(1 + 𝑖𝛼) 𝑎 − 𝑖𝑔B𝐴𝑏

∗ + 𝑓𝑎 (𝑡), (6.24)

𝑑𝑏

𝑑𝑡
= −Γ

2
(1 + 𝑖𝛼) 𝑏 − 𝑖𝑔B𝐴𝑎

∗ + 𝑓𝑏 (𝑡), (6.25)

where 𝑓𝑎 and 𝑓𝑏 are classical noise operators for the Stokes and phonon mode,
respectively, satisfying the following correlations:

⟨ 𝑓 ∗𝑎 (𝑡 + 𝜏) 𝑓𝑎 (𝑡)⟩ = 0, (6.26)

⟨ 𝑓 ∗𝑏 (𝑡 + 𝜏) 𝑓𝑏 (𝑡)⟩ = 𝑛thΓ𝛿(𝜏), (6.27)

and 𝑛th is the number of thermal quanta in the phonon mode (thermal quanta in the
optical modes are negligible at room temperature).

Adiabatically eliminating 𝑏 gives

𝑑𝑎

𝑑𝑡
=

(
−𝛾

2
+ 𝑔 |𝐴|2

1 + 𝛼2

)
(1 + 𝑖𝛼) 𝑎 + 𝑓𝑎 (𝑡), (6.28)

𝑓𝑎 ≡ 𝑓𝑎 −
𝑖𝑔B𝐴

1 − 𝑖𝛼

2
Γ
𝑓 ∗𝑏 , (6.29)

where we defined a composite fluctuation term 𝑓𝑎 for the SBL. Its correlation reads

⟨ 𝑓 ∗𝑎 (𝑡) 𝑓𝑎 (0)⟩ = ⟨ 𝑓 ∗𝑎 (𝑡) 𝑓𝑎 (0)⟩ +
𝑔2

B |𝐴|
2
0

1 + 𝛼2
4
Γ2 ⟨ 𝑓

∗
𝑏 (𝑡) 𝑓𝑏 (0)⟩

= 𝑛th𝛾𝛿(𝑡), (6.30)

which is independent of 𝛼. Applying a standard linewidth analysis, the SBL
linewidth is found as:

Δ𝜔SBL =
𝛾

2𝑁𝑎

𝑛th

(
1 + 𝛼2

)
, (6.31)

where 𝑁𝑎 = |𝑎 |2 is the steady-state photon number in the Stokes mode. This is
readily shown to agree with Eq. 6.3 in the limit of Γ → ∞ when expressed in terms
of output SBL power.

Full analysis of the Brillouin laser noise
Here, a more complete analysis of the SBL frequency noise is presented that in-
cludes both the effect of the pumping noise and also does not make the adiabatic
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approximation (i.e., Γ ≫ 𝛾). The equations of motion for the Stokes, phonon and
pump mode amplitudes, with damping and pumping terms, are:

𝑑𝑎

𝑑𝑡
= −𝛾

2
(1 + 𝑖𝛼) 𝑎 − 𝑖𝑔B𝐴𝑏

∗, (6.32)

𝑑𝑏

𝑑𝑡
= −Γ

2
(1 + 𝑖𝛼) 𝑏 − 𝑖𝑔B𝐴𝑎

∗, (6.33)

𝑑𝐴

𝑑𝑡
= −

(𝛾
2
+ 𝑖𝛿𝜔P

)
𝐴 − 𝑖𝑔B𝑎𝑏 +

√
𝜅𝐴in, (6.34)

where the pump and Stokes mode have the same decay rate 𝛾, 𝜅 is the external
coupling rate, 𝐴in > 0 is the external pumping amplitude (normalized to photon
rate), and the other symbols have the same meaning as in the previous subsection.

It is convenient to work with amplitude (|𝑎 |, |𝑏 |, |𝐴|) and phase (𝜙𝑎 = ln(𝑎/𝑎∗)/(2𝑖),
similar definitions for 𝜙𝑏 and 𝜙𝐴) variables. Their equations can be rewritten as:

𝑑 |𝑎 |
|𝑎 |𝑑𝑡 = −𝛾

2
+ 𝑔B

|𝐴| |𝑏 |
|𝑎 | sin 𝜃, (6.35)

𝑑 |𝑏 |
|𝑏 |𝑑𝑡 = −Γ

2
+ 𝑔B

|𝐴| |𝑎 |
|𝑏 | sin 𝜃, (6.36)

𝑑 |𝐴|
|𝐴|𝑑𝑡 = −𝛾

2
− 𝑔B

|𝑎 | |𝑏 |
|𝐴| sin 𝜃 +

√
𝜅
𝐴in
|𝐴| cos 𝜙𝐴, (6.37)

𝑑𝜙𝑎

𝑑𝑡
= −𝛾

2
𝛼 − 𝑔B

|𝐴| |𝑏 |
|𝑎 | cos 𝜃, (6.38)

𝑑𝜙𝑏

𝑑𝑡
= −Γ

2
𝛼 − 𝑔B

|𝐴| |𝑎 |
|𝑏 | cos 𝜃, (6.39)

𝑑𝜙𝐴

𝑑𝑡
= −𝛿𝜔P − 𝑔B

|𝑎 | |𝑏 |
|𝐴| cos 𝜃 −

√
𝜅
𝐴in
|𝐴| sin 𝜙𝐴, (6.40)

where we defined the phase difference 𝜃 = 𝜙𝐴 − 𝜙𝑎 − 𝜙𝑏. The steady-state solutions
(indicated by a subscript 0) are given by:

cos 𝜃0 = − 𝛼
√

1 + 𝛼2
, (6.41)

sin 𝜃0 =
1

√
1 + 𝛼2

, (6.42)

|𝐴|20 =
𝛾

2𝑔

(
1 + 𝛼2

)
, (6.43)

|𝑏 |20 =
𝛾

Γ
𝑁𝑎, (6.44)

√
𝜅𝐴in cos 𝜙𝐴,0 = |𝐴|0

(
𝛾

2
+ 𝑔𝑁𝑎

1 + 𝛼2

)
, (6.45)
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𝛿𝜔P =
𝛼

1 + 𝛼2𝑔𝑁𝑎 −
√
𝜅
𝐴in
|𝐴|0

sin 𝜙𝐴,0, (6.46)

where we used the definition 𝑔 = 2𝑔2
B/Γ. Also, although we expressed everything

in terms of SBL photon numbers 𝑁𝑎 ≡ |𝑎 |20, it is the input amplitude 𝐴in that
determines 𝑁𝑎.

Because the pump mode is Pound-Drever-Hall (PDH) locked to the cavity resonance
𝜙𝐴,0 = 0. Thus, the input amplitude and detuning can be further simplified as:

√
𝜅𝐴in,0 =

(
𝛾

2
+ 𝑔𝑁𝑎

1 + 𝛼2

) √︂
𝛾

2𝑔

√︁
1 + 𝛼2, (6.47)

𝛿𝜔P,0 =
𝛼

1 + 𝛼2𝑔𝑁𝑎 . (6.48)

We note that the 𝛿𝜔P,0 obtained here is, up to zeroth order of 𝛾/Γ, equal to the neg-
ative of beatnote change between the pump and SBL signals induced by amplitude-
phase coupling, as measured in Fig. 6.2(a).

After the steady-state solutions are obtained, the dynamical equations are linearized
by defining relative amplitude change variables (e.g., 𝛿𝑎 = |𝑎 |/|𝑎 |0 − 1) and phase
change variables (e.g., 𝛿𝜙𝑎 = 𝜙𝑎−𝜙𝑎,0). Also, Langevin terms are added to the right
side of the equations. These are, as before, classical and include only the thermal
noise contributions. The linearized equations with noise terms are:

𝑑𝛿𝑎

𝑑𝑡
=
𝛾

2
(𝛿𝐴 + 𝛿𝑏 − 𝛿𝑎 − 𝛼𝛿𝜃) + 𝑓𝛿𝑎, (6.49)

𝑑𝛿𝑏

𝑑𝑡
=
Γ

2
(𝛿𝐴 + 𝛿𝑎 − 𝛿𝑏 − 𝛼𝛿𝜃) + 𝑓𝛿𝑏, (6.50)

𝑑𝛿𝐴

𝑑𝑡
= −𝛾

2
𝛿𝐴 − 𝑔𝑁𝑎

1 + 𝛼2 (𝛿𝑎 + 𝛿𝑏 − 𝛼𝛿𝜃), (6.51)

𝑑𝛿𝜙𝑎

𝑑𝑡
=
𝛾

2
(𝛼𝛿𝐴 + 𝛼𝛿𝑏 − 𝛼𝛿𝑎 + 𝛿𝜃) + 𝑓𝛿𝜙,𝑎, (6.52)

𝑑𝛿𝜙𝑏

𝑑𝑡
=
Γ

2
(𝛼𝛿𝐴 + 𝛼𝛿𝑎 − 𝛼𝛿𝑏 + 𝛿𝜃) + 𝑓𝛿𝜙,𝑏, (6.53)

𝑑𝛿𝜙𝐴

𝑑𝑡
=

𝑔𝑁𝑎

1 + 𝛼2 (𝛼𝛿𝑎 + 𝛼𝛿𝑏 − 𝛼𝛿𝐴 + 𝛿𝜃) −
(
𝛾

2
+ 𝑔𝑁𝑎

1 + 𝛼2

)
(𝛿𝜙𝐴 + 𝑓𝛿𝜙,𝐴), (6.54)

where 𝑓𝑧 represents noise input to the variable 𝑧. It is convenient to switch to the
frequency domain using 𝑑/𝑑𝑡 → 𝑖𝜔. The power spectral density of each noise term
can be written as:

𝑆 𝑓 ,𝛿𝑎 = 𝑆 𝑓 ,𝛿𝜙,𝑎 = 0, (6.55)

𝑆 𝑓 ,𝛿𝑏 = 𝑆 𝑓 ,𝛿𝜙,𝑏 =
𝑛th
2

Γ

|𝑏 |20
, (6.56)
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𝑆 𝑓 ,𝛿𝜙,𝐴 = 𝑆𝜙,Pump, (6.57)

where 𝑆𝜙,Pump is the input phase noise contributed by the pump, and each noise term
is independent of others. We have ignored the relative intensity noise of the pump,
but it can also be analyzed similarly.

The above linear equations can be directly inverted, and the solution for 𝛿𝜙𝑎 is, to
the lowest order in 𝜔:

𝛿𝜙𝑎 =
𝑖

(𝛾 + Γ)𝜔
(
𝛼Γ 𝑓𝛿𝑎 − 𝛼𝛾 𝑓𝛿𝑏 − Γ 𝑓𝛿𝜙,𝑎 + 𝛾 𝑓𝛿𝜙,𝑏

)
− 𝛾

𝛾 + Γ
𝑓𝛿𝜙,𝐴, (6.58)

where the lowest order of 𝜔 approximation remains valid when 𝜔 ≪ 𝛾. From here
we obtain the phase noise of the SBL,

𝑆𝜙,SBL =
𝛼2Γ2𝑆 𝑓 ,𝛿𝑎 + 𝛼2𝛾2𝑆 𝑓 ,𝛿𝑏 − Γ2𝑆 𝑓 ,𝛿𝜙,𝑎 + 𝛾2𝑆 𝑓 ,𝛿𝜙,𝑏

(𝛾 + Γ)2𝜔2 +
(

𝛾

𝛾 + Γ

)2
𝑆 𝑓 ,𝛿𝜙,𝐴,

(6.59)

𝑆𝜙,SBL =
Γ2 (

1 + 𝛼2)
(𝛾 + Γ)2𝜔2

𝛾

2𝑁𝑎

𝑛th +
(

𝛾

𝛾 + Γ

)2
𝑆𝜙,Pump. (6.60)

Converting to frequency noise gives,

𝑆𝜈,SBL =
Γ2 (

1 + 𝛼2)
4𝜋2(𝛾 + Γ)2

𝛾

2𝑁𝑎

𝑛th +
(

𝛾

𝛾 + Γ

)2
𝑆𝜈,Pump. (6.61)

Thus, the fundamental linewidth of the SBL is given by

Δ𝜔SBL =

(
Γ

𝛾 + Γ

)2 (
1 + 𝛼2

) 𝛾

2𝑁𝑎

𝑛th. (6.62)

Note that the above derivation automatically incorporates non-adiabaticity and the
linewidth enhancement factor. Also, the transduction of the pump phase noise is,
when the pump mode is PDH locked,

𝑆𝜈,SBL =

(
𝛾

𝛾 + Γ

)2
𝑆𝜈,P, (6.63)

and is independent of the 𝛼 factor.

We briefly comment on the noise behavior when 𝛿𝜔P is tuned away from its PDH-
locked value, which happens because the PDH locking can reduce, but not totally
eliminate, the drifting in 𝛿𝜔P. Repeating the previous analyses, we arrive at the
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Figure 6.4: Illustration for SBL noise measurement and fitting. (a) Blue curve
is the measured phase noise spectrum from the self-heterodyne output when pump
wavelength is 1538 nm and SBL power is 1.29 mW. Red curve is the fitting according
to Eq. (6.69) to obtain the frequency noise 𝑆. (b) The converted frequency noise
spectrum from panel (a).

following expression for 𝑆𝜈,SBL and expand it as a series in the relative variation of
detuning:

𝑆𝜈,SBL

𝑆𝜈,P
≈

(
𝛾

𝛾 + Γ

)2
+ 𝛼2

(
𝛾

𝛾 + Γ

) (
𝛿𝜔P
𝛿𝜔P,0

− 1
)
+ 𝛼4

4

(
𝛿𝜔P
𝛿𝜔P,0

− 1
)2

, (6.64)

where we have kept only the lowest-order term in 𝛾/Γ for each coefficient. As the last
term no longer contains the 𝛾/Γ reduction, the phase noise transduction is strongly
dependent upon 𝛼. Thus an imperfect PDH locking increases the transferred pump
phase noise in proportion to 𝛼2.

6.6 Additional measurements and information
Frequency discriminator measurements
Here the frequency noise measurement is studied to arrive at the transfer function
that relates the measured phase noise spectrum (Fig. 6.4(a)) to the frequency noise
spectral density 𝑆 plotted in Fig. 6.3. As shown in the Supplement Information of
the previous work in our group [37], pump noise conversion is believed to be the
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dominant noise source at low offset frequency, while white Schawlow-Townes-like
noise dominants at high offset frequency (usually over 100 kHz).

For white frequency noise, the correlation of the time derivative of the phase satisfies,

⟨ ¤𝜙(𝑡 + 𝜏) ¤𝜙(𝑡)⟩ = Δ𝜔N𝛿(𝜏), (6.65)

whereΔ𝜔N is the Lorentzian full-width-at-half-maximum linewidth in rad/s, includ-
ing both fundamental (Δ𝜔SBL) and technical contributions. The two-sided spectral
density function for the instantaneous frequency 𝜈 ≡ ¤𝜙/(2𝜋) is given by the Fourier
transform of the correlation function:

𝑆w =
1

4𝜋2

∫ ∞

−∞
⟨ ¤𝜙(𝑡 + 𝜏) ¤𝜙(𝑡)⟩𝑒−2𝜋𝑖 𝑓 𝜏𝑑𝜏 =

Δ𝜔N

4𝜋2 , (6.66)

where 𝑆w is the white frequency noise spectral density as in the previous sections.

On account of the time delayed path in the frequency discrimination system, the
detected output returns a signal with a noisy phase 𝜙(𝑡 + 𝜏) − 𝜙(𝑡), where 𝜏 is
the interferometer delay. We are thus interested in the frequency noise of 𝜈(𝜏) ≡
( ¤𝜙(𝑡 + 𝜏) − ¤𝜙(𝑡))/(2𝜋). By the time-shifting property of the Fourier transform,

𝑆𝜈(𝜏) ( 𝑓 ) = 𝑆w(2 − 𝑒2𝜋𝑖 𝑓 𝜏 − 𝑒−2𝜋𝑖 𝑓 𝜏) = 4 sin2(𝜋 𝑓 𝜏)𝑆w. (6.67)

The detected output from the self-heterodyne interferometer is analyzed by a phase
noise analyzer. Therefore, converting to phase noise gives,

𝑆𝜙(𝜏) ( 𝑓 ) =
1
𝑓 2 𝑆𝜈(𝜏) ( 𝑓 ) = 4

sin2(𝜋 𝑓 𝜏)
𝑓 2 𝑆w. (6.68)

A typical measured phase-noise spectrum is shown in Fig. 6.4(a). In fitting the
spectrum, there is both the sinc2-shaped noise spectrum contributed by the SBL
laser, and a noise floor contributed by the photodetector noise equivalent power
(NEP). Thus, the following equation is used to describe the total phase noise,

𝑆Total,𝜙 ( 𝑓 ) = 𝑆NEP + 4𝜋2𝜏2sinc2(𝜋 𝑓 𝜏)𝑆w, (6.69)

where sinc(𝑧) ≡ sin 𝑧/𝑧, 𝑆Total,𝜙 ( 𝑓 ) is the total measured phase noise, and 𝑆NEP

is the NEP contributed phase noise (determined by averaging the measured phase
noise between 8 MHz to 10 MHz). 𝑆w and the time delay 𝜏 are fitting parameters in
the measurement (the fiber delay has around 1 km length and therefore provides an
approximate delay of 𝜏 ≈ 4.67 𝜇s). The fitting is performed within the frequency
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Figure 6.5: SBL frequency noise enhancement measured using a second device.
Measured SBL fundamental frequency noise 𝑆F (blue); theoretical 𝑆F prediction
(green) with 𝛼 obtained from the plot provided in the inset. The non-enhanced
𝑆0 formula (𝛼=0) prediction (yellow) is also shown. All data are plotted versus
pump wavelength and normalized to 1 mW output power. Inset: The extrapolated
beating frequency (squares) and FSR (triangles) are plotted versus wavelength. The
calculated 𝛼 factor (red circles) is plotted versus wavelength.

range between 0.1 MHz and 3 MHz, since technical noise becomes significant below
0.1 MHz, while the fringe contrast is reduced for frequencies higher than 3 MHz on
account of reduced resolution.

To explicitly illustrate the measured noise is approximately white over this frequency
range, we convert the phase noise from discriminator measurement to frequency
noise by dividing out the response function, 4𝜋2𝜏2sinc2(𝜋 𝑓 𝜏). As shown in Fig.
6.4(b), the overall frequency noise is nearly white except for some spikes resulting
from zeros in the response function in combination with the NEP noise contributions.

Noise enhancement measured in a second device
To verify the generality of our findings, we have performed the experiment on
another device and summarized the main data in Fig. 6.5. Data definition and
calculation methods are the same as the previous sections. In the measurement, we



76

have chosen six longitudinal modes in one transverse mode family. This device has
a lowest frequency noise 𝑆F of 0.10 Hz2/Hz and the measured 𝛼 factor is as large as
6. The measured noise enhancement is overall in good agreement with the 𝛼 factor
predictions.

6.7 Discussion
We have studied the linewidth enhancement factor 𝛼 in a Brillouin laser. A mod-
ification to the fundamental linewidth formula that incorporates the 𝛼 factor was
theoretically derived and then tested experimentally in a high-Q silica whispering
gallery resonator. Phase matching of the Brillouin process determines the sign and
magnitude of 𝛼. Under perfect phase-matching conditions, corresponding to laser
oscillation at the Brillouin gain maximum, 𝛼=0. However, measurement and theory
show that the mismatch (induced here by tuning of the pumping wavelength) leads
to 𝛼 factors greater than 7 yielding frequency noise and fundamental linewidth en-
hancement as large as 50×. The sign of 𝛼 can also be controlled through the sign
of the frequency mismatch detuning. Although the phase-matching condition was
controlled here by tuning of pumping wavelength, it should also be possible to vary
phase matching and therefore 𝛼 through control of the temperature. This would
vary the Brillouin shift frequency by way of the temperature dependence of the
sound velocity. The results presented here stress the importance of proper pumping
wavelength selection and observance of temperature control for narrow linewidth
operation of SBLs. These considerations will be important in all applications of
these devices that are sensitive to frequency noise and linewidth.
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C h a p t e r 7

PETERMANN-FACTOR SENSITIVITY LIMIT NEAR AN
EXCEPTIONAL POINT IN A BRILLOUIN RING LASER

GYROSCOPE

7.1 Introduction
1 Non-Hermitian Hamiltonians [172, 173] describing open systems can feature
singularities called exceptional points (EPs) [174, 175, 176]. EPs have been exper-
imentally realized in several systems [177, 178, 179] and applied to demonstrate
non-reciprocal transmission [180, 181, 182] and lasing dynamics control [183,
184, 185, 186]. Moreover, resonant frequencies become strongly dependent on
externally applied perturbations near an EP which has given rise to the concept of
EP-enhanced sensing in photonics [187, 188, 189, 190] and electronics [191, 192].
While increased sensor responsivity has been demonstrated in several systems [193,
194, 59, 195], signal-to-noise performance (sensitivity) has been considered only
theoretically [196, 197, 198, 199, 200].

Recently, strong responsivity improvement near an EP was reported in a Brillouin
ring laser gyroscope by monitoring an increase in the gyroscope scale factor (i.e.,
transduction factor of rotation-rate into a signal) [59]. At the same time, however,
measurement of the gyroscope Allan deviation versus averaging time showed that
short-term laser frequency noise also increased near the EP. This noise was random-
walk in nature, suggesting a fundamental origin. Moreover, it depended upon system
bias relative to the EP in such a way so as to precisely compensate the observed
EP-enhanced transduction. As a result, the gyroscope’s angular random walk, the
metric used to quantify short-term rotation sensitivity, was observed to maintain
a constant value (i.e., independent of gyroscope bias relative to the EP). In effect,
the measurements showed that gyroscope sensitivity (i.e., weakest rotation signal
measurable at a given detection bandwidth) is not improved by operation near the
EP even while the gyroscope responsiveness through improved transduction (scale
factor) increases.

As with all laser gyroscopes, the Brillouin ring laser gyroscope measures rotations
1Work presented in this chapter has been published in [153] “Petermann-factor sensitivity limit

near an exceptional point in a Brillouin ring laser gyroscope.” Nature Communications 11.1 (2020),
p. 1610.
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through the Sagnac effect [201]. Clockwise (cw) and counter-clockwise (ccw) lasing
waves experience opposing frequency shifts when the plane of the gyroscope rotates.
By mixing the two laser fields on a detector, their difference frequency therefore
reveals the rotation-induced frequency shift added onto a constant bias frequency
(which is at audio rates in this case [59]). Frequency noise in the beat frequency
therefore determines the measurement sensitivity. This noise has both a technical
component (observable on longer time scales in the Allan deviation [59]) as well as
a random walk component that, absent the EP, is known to result from fundamental
linewidth broadening of the Brillouin laser waves [59, 42]. Significantly, subsequent
measurement of the random walk component showed that none of the parameters
which normally impact its magnitude (e.g., laser power, cavity Q factor) varied near
the EP, therefore suggesting that frequency noise (and linewidth) is increased by
way of another mechanism.

Laser linewidth can also be broadened by the Petermann factor [202, 203, 204,
205, 206, 207]. This mechanism is associated with non-orthogonality of a mode
spectrum, and its connection to EPs has been considered in theoretical studies of
microresonators [208, 209]. However, despite continued theoretical interest [210,
211], including the development of new techniques for determination of linewidth
in general laser systems [212], the observation of Petermann linewidth broadening
near exceptional points was reported only recently by the Yang group in a phonon
laser system [213]. And the link between Petermann-factor-induced noise and EP
sensor performance is unexplored. Here, it is shown that mode non-orthogonality
induced by the EP limits the gyroscope sensitivity via Petermann-factor linewidth
broadening. Indeed, analysis and measurement confirm near perfect cancellation of
the signal transduction improvement by increasing Petermann-factor noise so that
the gyroscope’s fundamental signal-to-noise ratio (SNR) and hence sensitivity is
not improved by operation near the EP. These results are further confirmed using an
Adler phase locking equation approach [214, 215] which is also applied to analyze
the combined effect of dissipative and conservative coupling on the system.

7.2 Biorthogonal Noise Enhancement Theory
The gyroscope uses a high-Q silica whispering gallery resonator [37] in a ring-laser
configuration [46]. As illustrated in Fig. 7.1(a), optical pumping of cw and ccw
directions on the same whispering-gallery mode index induces laser action through
the Brillouin process. On account of the Brillouin phase matching condition, these
stimulated Brillouin laser (SBL) waves propagate in a direction opposite to their
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Figure 7.1: Brillouin laser linewidth enhancement near an exceptional point.
(a) Diagram of whispering-gallery mode resonator with the energy distribution of
an eigenmode superimposed. The eigenmode energy distribution corresponds to
state III in panel (b). Optical pumps on the coupling waveguide and whispering-
gallery SBL modes are indicated by arrows. (b) Mode energy distributions for three
different states: far from EP (state I) the eigenmodes are traveling cw or ccw waves;
near EP (state II) the eigenmodes are hybrids of cw and ccw waves; at EP (state III)
eigenmodes coalesce to a standing wave. (c) Bloch sphere showing the eigenstates
for cases I, II and III with corresponding cw and ccw composition. (d) Illustration
of the cw-ccw and SBL1-SBL2 coordinate systems. Unit vectors for states I and II
are shown on each axis. As the system is steered towards the EP, the SBL axes move
toward each other so that unit vectors along the SBL axes lengthen as described
by the two hyperbolas. This is illustrated by decomposing a unit vector of the
non-orthogonal SBL coordinate system using the orthogonal cw-ccw coordinates
[e.g., (5/4, 3/4)𝑇 and (3/4, 5/4)𝑇 for state II]. Consequently, the field amplitude is
effectively shortened in the SBL basis. (e) Phasor representation of the complex
amplitude of a lasing mode for states I and II provides an interpretation of linewidth
enhancement. Phasor length is shortened and noise is enhanced as the system is
steered to the EP, leading to an increased phasor angle diffusion and laser linewidth
enhancement.
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corresponding pump waves [42]. Dissipative backscattering [216] couples the SBLs
and the following Hamiltonian governs the above-laser-threshold motion [59]:

𝐻 =

(
𝜔cw 𝑖Δ𝜔EP/2

𝑖Δ𝜔EP/2 𝜔ccw

)
, (7.1)

where 𝐻 describes the dynamics via 𝑖𝑑Ψ/𝑑𝑡 = 𝐻Ψ and Ψ = (𝑎cw, 𝑎ccw)𝑇 is the
column vector of SBL mode amplitudes (square of norm is photon number). Also,
Δ𝜔EP is a non-Hermitian term related to the coupling rate between the two SBL
modes and 𝜔cw (𝜔ccw) is the active-cavity resonance angular frequency of the cw
(ccw) SBL mode above laser threshold. The dependence of 𝜔cw, 𝜔ccw and Δ𝜔EP

on other system parameters, most notably the angular rotation rate and the optical
pumping frequencies, has been suppressed for clarity.

A class of EP sensors operate by measuring the frequency difference of the two
system eigenmodes. This difference is readily calculated from Eq. (7.1) as Δ𝜔S =√︃
Δ𝜔2

D − Δ𝜔2
EP where Δ𝜔D ≡ 𝜔ccw −𝜔cw is the resonance frequency difference and

Δ𝜔EP is the critical value ofΔ𝜔D at which the system is biased at the EP. As illustrated
in Fig. 7.1(b,c) the vector composition of the SBL modes strongly depends upon
the system proximity to the EP. For |Δ𝜔D | ≫ Δ𝜔EP the SBL modes (unit vectors)
are orthogonal cw and ccw waves. However, closer to the EP the waves become
admixtures of these states that are no longer orthogonal. At the EP, the two waves
coalesce to a single state vector (a standing wave in the whispering gallery). Rotation
of the gyroscope in state II in Fig. 7.1 (|Δ𝜔D | > Δ𝜔EP) introduces a perturbation to
Δ𝜔D whose transduction into Δ𝜔S is enhanced relative to the conventional Sagnac
factor [201]. This EP-induced signal-enhancement-factor (SEF) is given by [59]:

SEF =

���� 𝜕Δ𝜔S
𝜕Δ𝜔D

����2 =
Δ𝜔2

D

Δ𝜔2
D − Δ𝜔2

EP
, (7.2)

where SEF refers to the signal power (not amplitude) enhancement. This factor has
recently been verified in the Brillouin ring laser gyroscope [59]. The control of
Δ𝜔D (and in turn Δ𝜔S) in that work and here is possible by tuning of the optical
pumping frequencies and is introduced later.

Δ𝜔S is measured as the beat frequency of the SBL laser signals upon photodetection
and the SNR is set by the laser linewidth. To understand the linewidth behavior
a bi-orthogonal basis is used (Supplementary Note [153]). As shown there and
illustrated in Fig. 7.1(d), the peculiar properties of non-orthogonal systems near the
EP cause the unit vectors (optical modes) to be lengthened. This lengthening results
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in an effectively shorter laser field amplitude. Also, noise into the mode is increased
as illustrated in Fig. 7.1(e). Because the laser linewidth can be understood to result
from diffusion of the phasor in Fig. 7.1(e), linewidth increases upon operation
close to the EP. And the linewidth enhancement is given by the Petermann factor
(Supplementary Note 3 [153]):

PF =
1
2

(
1 +

Tr(𝐻†
0𝐻0)

|Tr(𝐻2
0) |

)
=

Δ𝜔2
D

Δ𝜔2
D − Δ𝜔2

EP
, (7.3)

where Tr is the matrix trace operation and 𝐻0 = 𝐻 − Tr(𝐻)/2 is the traceless part
of 𝐻. As derived in Supplementary Note 2, the first part of this equation is a basis
independent form and is valid for a general two-dimensional system. The second
part is specific to the current SBL system. Inspection of Eq. (7.2) and Eq. (7.3)
shows that SEF = PF. As a result the SNR is not expected to improve through
operation near the EP when the system is fundamental-noise limited.

7.3 Measurement on the Petermann factor enhanced fundamental noise
To verify the above predictions, the output of a single pump laser (∼1553.3 nm)
is divided into two branches that are coupled into cw and ccw directions of the
resonator using a tapered fiber [62, 63]. Both pump powers are actively stabilized.
The resonator is mounted in a sealed box and a thermo-electric cooler (TEC) controls
the chip temperature which is monitored using a thermistor (fluctuations are held
within 5 mK). Each pumping branch has its frequency controlled using acousto-
optic modulators (AOMs). SBL power is also monitored and controlled so that
fluctuations are within 0.6%. Even with the control of temperature and power, the
Allan deviation at longer gate times reflects technical-noise drifting that is observed
to be more pronounced for operation near the EP. As described in Ref. [59], the ccw
pump laser frequency is Pound-Drever-Hall (PDH) locked to one resonator mode
and the cw pump laser can then be independently tuned by the AOM. This pump
detuning frequency (Δ𝜔P) is therefore controlled to radio-frequency precision. It is
used to precisely adjustΔ𝜔D and in turnΔ𝜔S as shown in three sets of measurements
in Fig. 7.2(a). Here, the photodetected SBL beat frequency Δ𝜔S is measured using
a frequency counter. The data sets are taken for three distinct SBL output amplitude
ratios as discussed further below. A solid curve fitting is also presented using
Δ𝜔S = ±

√︃
Δ𝜔2

D − Δ𝜔2
EP, where Δ𝜔D =

𝛾/Γ
1+𝛾/ΓΔ𝜔P + 1

1+𝛾/ΓΔ𝜔Kerr (Supplementary
Note 4 [153]). Also, 𝛾 is the photon decay rate, Γ is the Brillouin gain bandwidth
[42], and Δ𝜔Kerr is a Kerr effect correction that is explained below. As an aside, the
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Figure 7.2: Measured linewidth enhancement of SBLs near the exceptional
point. (a) Measured SBL beating frequency is plotted versus pump detuning for
three distinct locking zones, corresponding SBL amplitude ratios 𝑞: 1.15 (blue), 1
(orange), 0.85 (red). Solid curves are theoretical fittings. Inset is a typical Allan
deviation measurement of frequency (𝜎𝜈 (𝜏)) versus gate time 𝜏. Error bars give the
standard error of the mean. The short-term part is fitted with

√︁
𝑆𝜈/(2𝜏) where 𝑆𝜈 is

the one-sided power spectral density of the white frequency noise plotted in panel
(b). (b) Measured white frequency noise of the beating signal determined using the
Allan deviation measurement. Data point color corresponds to the amplitude ratios
used in panel (a). The Petermann factor PF (solid lines) and NEF (dashed lines)
theoretical predictions use parameters obtained by fitting from panel (a).

data plot and theory show a frequency locking zone, the boundaries of which occur
at the EP.

The frequency counter data are also analyzed as an Allan deviation (Adev) measure-
ment (Fig. 7.2(a) inset). The initial roll-off of the Adev features a slope of −1/2
corresponding to white frequency noise [217]. This was also verified in separate
measurements of the beat frequency using both an electrical spectrum analyzer and
a fast Fourier transform. The slope of this region is fit to

√︁
𝑆𝜈/(2𝜏) where 𝑆𝜈 is

the one-sided spectral density of the white frequency noise. Adev measurement
at each of the detuning points in Fig. 7.2(a) is used to infer the 𝑆𝜈 values that



83

are plotted in Fig. 7.2(b). There, a frequency noise enhancement is observed as
the system is biased towards an EP. Also plotted is the Petermann factor noise en-
hancement (Eq. (7.3)). Aside from a slight discrepancy at intermediate detuning
frequencies (analyzed further below), there is overall excellent agreement between
theory and measurement. The frequency noise levels measured in Fig. 7.2(b) are
consistent with fundamental SBL frequency noise (see Methods). Significantly, the
fundamental nature of the noise, the good agreement between the PF prediction (Eq.
(7.3)) and measurement in Fig. 7.2(b), and separate experimental work [59] that
has verified the theoretical form of the SEF (Eq. (7.3)) confirm that SEF = PF so
that the fundamental sensitivity limit of the gyroscope is not improved by operation
near the EP.

7.4 Adler analysis on the enhanced noise and locking bandwidth
While the Petermann factor analysis provides very good agreement with the mea-
sured results, we also derived an Adler-like coupled mode equation analysis for the
Brillouin laser system. This approach is distinct from the bi-orthogonal framework
and, while more complicated, provides additional insights into the system behavior.
Adapting analysis applied in the noise analysis of ring laser gyroscopes [215], a
noise enhancement factor NEF results (see Supplementary Note 4 [153]):

NEF =
Δ𝜔2

D + Δ𝜔2
EP/2

Δ𝜔2
D − Δ𝜔2

EP
. (7.4)

It is interesting that this result, despite the different physical context of the Brillouin
laser system, has a similar form to one derived for polarization-mode-coupled laser
systems [218]. The PF and NEF predictions are shown on Fig. 7.2(b) and the
Adler-derived NEF correction provides slightly better agreement with the data at
the intermediate detuning values.

The Adler approach is also useful to explain a locking zone dependence upon SBL
amplitudes observed in Fig. 7.2(a). As shown in Supplementary Note 4 [153],
this variation can be explained through the combined action of the Kerr effect
and intermodal coupling coefficients of both dissipative and conservative nature.
Specifically, the locking bandwidth is found to exhibit the following dependence
upon the amplitude ratio 𝑞 = |𝑎ccw/𝑎cw | of the SBL lasers:

Δ𝜔2
EP =

(
Γ

Γ + 𝛾

)2
[(
𝑞 + 1

𝑞

)2
|𝜅 |2 +

(
𝑞 − 1

𝑞

)2
|𝜒 |2

]
, (7.5)
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Figure 7.3: Locking zone bandwidth versus SBL amplitude ratio. Measured
locking zone bandwidth is plotted versus amplitude ratio 𝑞 of the SBL lasers. The
cw power is held constant at four values (see legend) to create the data composite.
The solid black curve is Eq, (7.5). Inset: the measured locking zone boundaries
are plotted versus the SBL power differences (Δ𝑃SBL = 𝑃ccw − 𝑃cw). Colors and
symbols correspond to the main panel. The center of the locking zone is also
indicated and is shifted by the Kerr nonlinearity which varies as the SBL power
difference. Black line gives the theoretical prediction (no free parameters).

where 𝜅 is the dissipative coupling and 𝜒 is the conservative coupling between cw
and ccw SBL modes. The locking zone boundaries in terms of pump detuning
frequency have been measured (Fig. 7.3 inset) for a series of different SBL powers.
Using this data, the locking bandwidth is expressed in pump frequency detuning
(Δ𝜔P) units using Δ𝜔𝐶 ≡ (1 + Γ/𝛾)Δ𝜔EP and plotted versus 𝑞 in the main panel of
Fig. 7.3. The plot agrees well with Eq. (7.5) (fitting shown in black) and gives |𝜅 |
= 0.93 kHz, |𝜒 | = 8.21 kHz.

Finally, the center of the locking band is shifted by the Kerr effect and (in pump
frequency detuning Δ𝜔P units) can be expressed as −(Γ/𝛾)Δ𝜔Kerr, where Δ𝜔Kerr =

𝜂

(
|𝑎ccw |2 − |𝑎cw |2

)
= (𝜂Δ𝑃SBL)/(𝛾exℏ𝜔) is the Kerr induced SBL resonance fre-

quency difference, Δ𝑃SBL = 𝑃ccw − 𝑃cw is the output power difference of the SBLs,
and 𝛾ex is the photon decay rate due to the output coupling. Also, 𝜂 = 𝑛2ℏ𝜔

2𝑐/(𝑉𝑛2
0)

is the single-photon Kerr-effect angular frequency shift with 𝜔 the SBL angular fre-
quency, 𝑛2 the Kerr-nonlinear refractive index of silica, 𝑉 the mode volume, 𝑛0 the
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linear refractive index, and 𝑐 the speed of light in vacuum. If the white frequency
noise floors in Fig. 7.2 are used to infer the resonator quality factor, then a Kerr
nonlinearity value of 558 Hz 𝜇W−1 is predicted (see section 7.5). This value gives
the line plot in the Fig. 7.3 inset (with no free parameters) which agrees with
experiment.

7.5 Additional information
Linewidth and Allan deviation measurement
In experiments, frequency is measured in the time domain using a frequency counter
and its Allan deviation is calculated for different averaging times (Fig. 7.2(a)). The
Allan deviation 𝜎𝜈 (𝜏) for a signal frequency is defined by:

𝜎𝜈 (𝜏) ≡

√√√
1

2 (𝑀 − 1)

𝑀−1∑︁
𝑘=1

(𝜈𝑘+1 − 𝜈𝑘 )2, (7.6)

where 𝜏 is the averaging time, 𝑀 is the number of frequency measurements, and
𝜈𝑘 is the average frequency of the signal (measured in Hz) in the time interval
between 𝑘𝜏 and (𝑘 + 1)𝜏. The Allan deviation follows a 𝜏−1/2 dependence when
the underlying frequency noise spectral density is white [217] as occurs for laser
frequency noise limited by spontaneous emission. White noise causes the lineshape
of the laser to be a Lorentzian. White noise is also typically dominant in the Allan
deviation plot at shorter averaging times where flicker noise and frequency drift
are not yet important. This portion of the Allan deviation plot can be fit using
𝜎𝜈 (𝜏) =

√︁
𝑆𝜈/(2𝜏) where 𝑆𝜈 is the white frequency noise one-sided spectral density

function. This result can be further converted to the Lorentzian full-width at half
maximum (FWHM) linewidth Δ𝜈FWHM (measured in Hz) using the conversion:

𝑆𝜈 = 2𝜎2
𝜈 (𝜏)𝜏 =

1
𝜋
Δ𝜈FWHM. (7.7)

Experimental parameters and data fitting
The resonator is pumped at the optical wavelength 𝜆 = 1553.3 nm, which, subject to
the Brillouin phase matching condition, corresponds to a phonon frequency (Stokes
frequency shift) of approximately Ωphonon/(2𝜋) = 10.8 GHz. Quality factors of the
SBL modes are measured using a Mach-Zehnder interferometer, and a loaded Q
factor 𝑄T = 88 × 106 and coupling Q factor 𝑄ex = 507 × 106 are obtained.

The theoretical formula for the white frequency noise of the beat frequency far away
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from the EP reads:

𝑆𝜈 =

(
Γ

𝛾 + Γ

)2
ℏ𝜔3

4𝜋2𝑄T𝑄ex
( 1
𝑃cw

+ 1
𝑃ccw

) (𝑛th + 𝑁th + 1), (7.8)

which results from summing the Schawlow-Townes-like linewidths of the SBL laser
waves [42]. In the expression, 𝑁th and 𝑛th are the thermal occupation numbers of
the SBL state and phonon state, respectively. At room temperature, 𝑛th ≈ 577 and
𝑁th ≈ 0. For the power balanced case (orange data set in Fig. 7.2), 𝑃cw = 𝑃ccw = 215
𝜇W and the predicted white frequency noise (Eq. 7.8) is 𝑆𝜈 = 0.50 Hz2 Hz−1. For
the blue (red) data set, 𝑃cw (𝑃ccw) is decreased by 1.22 dB (1.46 dB) so that 𝑆𝜈 =

0.58 (0.60) Hz2 Hz−1 is calculated. On the other hand, the measured values for the
blue, orange and red data sets in Fig. 7.2(b) (i.e., white frequency noise floors far
from EP) give 𝑆𝜈 = 0.44, 0.39, 0.46 Hz2 Hz−1, respectively. The difference here
is attributed to errors in Q measurement. For example, the experimental values of
noise can be used to infer a corrected coupling Q factor 𝑄ex ≈ 658×106. Using this
value below yields an excellent prediction of the Kerr nonlinear coefficient which
supports this belief.

The beating frequency in Fig. 7.2(a) is fit using the following relations:

Δ𝜔S = sgn(Δ𝜔D)
√︃
Δ𝜔2

D − Δ𝜔2
EP,

Δ𝜔D =
𝛾/Γ

1 + 𝛾/ΓΔ𝜔P + 1
1 + 𝛾/ΓΔ𝜔Kerr,

(7.9)

where sgn is the sign function and 𝛾/Γ, Δ𝜔Kerr and Δ𝜔EP are fitting parameters.
The fitting gives 𝛾/Γ = 0.076 consistently, while Δ𝜔Kerr and Δ𝜔EP are separately
adjusted in each data set. These parameters feature a power dependence that is fully
explored in Fig. 7.3.

The theoretical Kerr coefficient used in Fig. 7.3 can be calculated as follows.
Assuming 𝑛2 ≈ 2.7 × 10−20 m2/W, 𝑛0 = 1.45 for the silica material, and 𝑉 = 107

𝜇m3 (obtained through finite-element simulations for the 36mm-diameter disk used
here), gives 𝜂/2𝜋 ≈ 10−5 Hz. Using the 𝑄ex corrected by the white frequency noise
data (see discussion above), 𝛾ex/2𝜋 = 299 kHz so that Δ𝜔Kerr/(2𝜋Δ𝑃SBL) ≈ 42 Hz
𝜇W−1. When 𝛾/Γ = 0.076, the center shift of pump locking band is −(Γ/𝛾)Δ𝜔Kerr

= 558 Hz 𝜇W−1. This value agrees very well with experiment (Fig. 7.3 inset).

7.6 Discussion
Prior work has shown that Brillouin laser gyroscopes when operated near an EP have
an improved responsivity (equivalently, an increase in the gyroscope’s scale factor for
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transduction of rotation rate into the Sagnac frequency shift) [59]. At the same time,
these measurements have shown that the gyroscope’s sensitivity did not improve
near the EP. We have verified through measurement and theory that mode non-
orthogonality induced by the EP explains this latter result. Specifically, increasing
mode non-orthogonality occurs when the two system eigenvectors (optical modes)
begin to coalesce near the EP. This, in turn, increases laser frequency noise from
an increasing Petermann factor and thereby reduces sensitivity. Curiously, these
two mechanisms, the enhanced transduction and enhanced noise, feature an almost
identical dependence upon the system’s proximity to the EP. In effect, the increased
signal response in the gyroscope arising from the EP does not lead to an improvement
in the minimum detectable signal (sensitivity).

It is interesting to note that a recent theoretical study of noise limitations in a class of
non-lasing EP sensors showed no fundamental sensitivity advantage for operation
near the EP [198]. Nonetheless it is still possible that other sensing modalities could
benefit from operation near an EP. Moreover, open systems offer other potentially
useful ways for transduction of rotation [219]. Also, the proposal of conservative
nonlinear mode coupling provides a potential way to enhance the Sagnac effect [220,
221, 222]. The apparent divergence of the linewidth near the EP is an interesting
feature of the current model and also one that agrees well with the data (at least
in the range of the measurement). Nonetheless, constraints to this divergence set
by the linewidth of the passive cavity loss are a subject of further study. More
generally, the excellent control of the state space that is possible in the Brillouin
system can provide a new platform for study of the remarkable physics associated
with exceptional points.
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C h a p t e r 8

CORRELATED SELF-HETERODYNE METHOD FOR
ULTRA-LOW-NOISE LASER LINEWIDTH MEASUREMENTS

8.1 Introduction
1 Ultra-low-noise lasers are indispensable ingredients for a wide range of appli-
cations, including optical gyroscopes [47], optical atomic clocks [224], and light
detection and ranging (LiDAR) systems [225]. Accurate measurement of ultra-low-
noise frequency spectra is an essential prerequisite for optimizing their performance
and advancing their applications. Hence, high demands are placed on measure-
ment systems to characterize these lasers with low frequency noise floors and high
intensity-fluctuation isolation.

Several methods have been used for laser linewidth characterization. Incoherent
homodyne detection incorporates a fiber delay line exceeding the coherence length
of the laser under test [226]. While the method measures relatively high frequency
noise levels accurately, it becomes inappropriate as the laser linewidth reaches Hz
levels, where the coherence length is on the order of 105 km. Phase discriminators
with sub-coherent-length delay have been proposed in such cases, either by locking
to a quadrature point [42, 37] or using self-heterodyne detection to shift the signal
to the radiofrequency (RF) domain so as to avoid low-frequency technical noise
[170, 171]. However, optical-to-electrical (OE) conversion at the photodetector
(PD) introduces additional technical PD noise, and relative intensity noise (RIN)
of the laser may also be coupled to the output signal through the OE conversion.
These factors prevent the detection methods from achieving the sufficiently-low
noise floor required for milli-Hertz-linewidth laser characterization. At the same
time, cross-correlation has been applied to frequency noise characterization in the
RF domain as a mature method for measuring ultra-low-noise microwave signals
[227]. This technique compares the signal against two references and correlates
them to suppress the independent noise from the references. Similar techniques
have been introduced in the optical domain to characterize sub-Hertz linewidth
lasers with optical references [228].

1Work presented in this chapter has been published in [223] “Correlated self-heterodyne method
for ultra-low-noise laser linewidth measurements.” Optics Express 30.14 (2022), pp. 25147–25161.
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In this paper, we demonstrate a reference-free self-heterodyne cross-correlator for
ultra-low-noise laser linewidth measurements. By employing two PDs for OE
conversion in the conventional self-heterodyne method, the cross-correlation can
eliminate the need for references while extracting laser noise. In addition, bal-
anced photodetectors (BPDs) are used to minimize the RIN coupling ratio. The
cross-correlator has a noise floor lower than 0.01 Hz2/Hz and 40.4 dBrad2 RIN
suppression at 1 MHz offset frequency. Various commercial and lab-built lasers are
used to benchmark the measurements, including an external-cavity laser (ECL) and
a distributed-feedback (DFB) laser with and without self injection locking. Fac-
tors that may impact cross-correlator performance, including environmental noise
coupling and delay length selection, are also discussed. The measurement can be
readily generalized to other wavelengths [229] and may advance the development
of next-generation laser sources through rapid measurement of noise.

8.2 Measurement setup
The COSH setup is shown in Fig. 8.1(a). A laser under test is split by a three-
port acousto-optic modulator (AOM) into frequency-downshifted (1st order output)
and unshifted (0th order output) portions. The former is polarization-controlled
and then recombined with the latter delayed by a 1-km-long fiber, which forms
a modified Mach–Zehnder interferometer (MZI) with a free spectral range (FSR)
of 214.06 kHz. The three-port AOM acts as a variable splitter that also uses
the unshifted laser power compared to a two-port modulator. On the output side,
instead of one PD, both outputs are divided and received by two identical balanced
photodetectors (BPDs). Using BPDs helps suppress RIN and using two BPDs
allows cross-correlation between the electrical outputs and suppresses independent
BPD noise. The whole optical section of the system is isolated from the external
environment with an acoustic shield. The BPD outputs are recorded using a high-
speed oscilloscope. The AOM is driven with a 55 MHz radio-frequency carrier
which determines the center frequency of the recorded waveforms [Fig. 8.1(b)],
and the sampling rate of the oscilloscope is set to 250 MHz to prevent aliasing. AC
coupling at the oscilloscope is used to block low-frequency components that are
spectrally far away from the carrier. The time delay between the two channels is
estimated to be less than 0.5 ns and will not be considered in the following analyses.
2 seconds of waveforms (500 × 106 points for each channel, 1 × 109 points in total)
are collected and transferred to a computer for data processing. While the record
length is limited by the memory of our oscilloscope, it is sufficient to meet the noise
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Figure 8.1: Schematic of the correlated self-heterodyne (COSH) measurement
setup. (a) Illustration of the setup. AOM, acousto-optic modulator; PC, polariza-
tion controller; BPD, balanced photodetector; HT, Hilbert transform, followed by a
time-domain difference operation; FFT, fast Fourier transform. (b) Self-heterodyne
waveforms recorded by a high-speed oscilloscope. (c) Frequency fluctuations ex-
tracted with Hilbert transform and time-domain difference. The red and blue lines
refer to the frequency fluctuations from two BPD outputs marked by color in accor-
dance with inset (a) (similar hereinafter). Laser frequency noise (common mode)
indicated by the purple line and BPD-induced noise (differential mode) are con-
tained in the extracted results. (d) Power spectral density (PSD) of BPD output
frequency given by FFT. The red and blue lines refer to the total noise PSD while
the purple line indicates the laser frequency noise PSD (common mode). The devi-
ation between them at high frequency is due to the BPD noise. (e) Single-sideband
(SSB) laser noise after cross-correlation and 𝐺 ( 𝑓 ) in which the BPD noise has been
eliminated.

floor requirements for the current measurements (see section 8.4).

In the data processing part, phase fluctuations for each channel are extracted using
Hilbert transforms and then converted to frequency fluctuation through time-domain
difference [Fig. 8.1(c)]. The Hilbert transform causes distortions at the endpoints
of the waveforms, thus the first and last 40 ms (10 × 106 points) for each channel
are discarded after the Hilbert transform. The remaining points are divided into
non-overlapping segments (rectangular windowing, similar to Bartlett’s method for
estimating power spectra [230]), each with a 𝜏𝑅 time length [corresponding to a
resolution bandwidth (RBW) of 1/𝜏𝑅] and fast-Fourier-transformed to obtain the
frequency spectrum at a given offset frequency. For lower frequency offsets, the
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RBWs are made smaller with the segment lengths adjusted accordingly. The power
spectrum density (PSD) of BPD output frequencies suffer from BPD noise [Fig.
8.1(d)]. To suppress this noise, the cross-correlation is calculated as the product
between the Fourier coefficients of the two BPD output frequency spectra, averaged
over all available segments. Owing to the independent nature of the two BPD noise
sources, BPD noise can be suppressed compared to individual PSDs of BPD outputs.
Finally, the cross-correlation spectrum is multiplied by a processing gain 𝐺 ( 𝑓 ) to
compensate the filtering effect from the MZI and recover the single-sideband (SSB)
laser frequency noise result [Fig. 8.1(e)].

8.3 Modeling of the measurement process
In this section, we model the properties of the output signal from the COSH measure-
ments. In the following, all spectral densities refer to two-sided spectral densities
unless indicated otherwise.

Self-heterodyne noise detection
To model the self-heterodyne method for noise measurement, we begin with an
idealized derivation, where a frequency-shifted signal beats against a delayed signal
and the resulting frequency noise is calculated. From the Wiener-Khinchin theorem,
the frequency noise of the original signal can be understood as the Fourier transform
of the phase time-derivative correlation function:

𝑆𝜈 ( 𝑓 ) =
∫ ∞

−∞

〈 ¤𝜙(0)
2𝜋

¤𝜙(𝑡)
2𝜋

〉
e2𝜋𝑖 𝑓 𝑡d𝑡 =

1
4𝜋2

∫ ∞

−∞

〈 ¤𝜙(0) ¤𝜙(𝑡)〉 e2𝜋𝑖 𝑓 𝑡d𝑡. (8.1)

Here 𝑆𝜈 ( 𝑓 ) is the frequency noise PSD of the input signal, 𝑓 is the offset frequency,
𝜙 is the optical noisy phase signal, 𝑡 denotes time, dot indicates derivative with
respect to 𝑡 and ⟨𝑧⟩ denotes the ensemble average of 𝑧.

The self-heterodyne beating outputs a signal with phase −2𝜋 𝑓c𝑡 + 𝜙(𝑡) − 𝜙(𝑡 − 𝜏),
where 𝜏 is the delay time and 𝑓c is the carrier frequency (determined by the AOM).
We are thus interested in the frequency noise of 𝜈(𝜏) = − 𝑓c+ [ ¤𝜙(𝑡) − ¤𝜙(𝑡−𝜏)]/(2𝜋).
By the time-shifting property of the Fourier transform we get:

𝑆𝜈(𝜏) ( 𝑓 ) = [2 − exp(2𝜋𝑖 𝑓 𝜏) − exp(−2𝜋𝑖 𝑓 𝜏)]𝑆𝜈 ( 𝑓 ) = 4 sin2(𝜋 𝑓 𝜏)𝑆𝜈 ( 𝑓 ), (8.2)

thus the frequency noise reads:

𝑆𝜈(𝜏) ( 𝑓 ) = 4 sin2(𝜋 𝑓 𝜏)𝑆𝜈 ( 𝑓 ). (8.3)
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The transfer function in the above equations has zeros at integer multiples of MZI
FSR ( 𝑓 = 1/𝜏, 2/𝜏, 3/𝜏 and so on). At these offset frequencies, destructive
interference eliminates the phase difference at the MZI output. To compensate, the
processing gain 𝐺 ( 𝑓 ) should be chosen as:

𝐺 ( 𝑓 ) = 1
4 sin2(𝜋 𝑓 𝜏)

. (8.4)

We note that 𝐺 ( 𝑓 ) diverges at integer multiples of the MZI FSR. This nonphysical
divergence will be removed after the finite detection resolution bandwidth is properly
considered (see discussion in section 8.3).

It is sometimes convenient to directly measure the phase noise corresponding to
𝑆𝜈(𝜏) ( 𝑓 ), denoted as 𝑆𝜑,𝜈(𝜏) ( 𝑓 ) ≡ 𝑆𝜈(𝜏) ( 𝑓 )/ 𝑓 2 (e.g., by sending the RF signal
directly to a phase noise analyzer). In this case,

𝑆𝜑,𝜈(𝜏) ( 𝑓 ) = 4
sin2(𝜋 𝑓 𝜏)

𝑓 2 𝑆𝜈 ( 𝑓 ) = (2𝜋𝜏)2 sinc2( 𝑓 𝜏)𝑆𝜈 ( 𝑓 ), (8.5)

where sinc 𝑧 ≡ sin(𝜋𝑧)/(𝜋𝑧) is the normalized sinc function.

Self-heterodyne noise detection using an AOM
Here we present a more rigorous derivation based on the setup described previously.
Various non-ideal effects can be incorporated and compared against the experiments.

We assume a laser input signal of the form:

𝐴(𝑡) = exp(−2𝜋𝑖 𝑓0𝑡) [1 + 𝛿𝑎(𝑡)] exp[−𝑖𝛿𝜙(𝑡)], (8.6)

where 𝑓0 is the optical frequency. The 𝛿𝑎 and 𝛿𝜙 are relative amplitude fluctuation
and phase fluctuation, respectively, and are assumed to be small within the time
scale of 1/ 𝑓c, where 𝛿𝜙 = 𝜙 − 2𝜋 𝑓0𝑡. This indicates that the laser would have low
noise, which is the intended regime for the cross-correlator. Discussions on using
the setup to measure a high-noise laser can be found below in section 8.4.

The frequency-shifted signal becomes:

𝐴1(𝑡) =
1
√

2
exp(−2𝜋𝑖 𝑓0𝑡) exp(2𝜋𝑖 𝑓c𝑡) [1 + 𝛿𝑎(𝑡)] exp[−𝑖𝛿𝜙(𝑡)], (8.7)

and the delayed signal becomes:

𝐴2(𝑡) =
1
√

2
exp(−2𝜋𝑖 𝑓0𝑡) exp(2𝜋𝑖 𝑓0𝜏) [1 + 𝛿𝑎(𝑡 − 𝜏)] exp[−𝑖𝛿𝜙(𝑡 − 𝜏)], (8.8)
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where we have assumed that the AOM splits the light equally into two ports (which
can be realized by adjusting the RF power input for the AOM).

The signals from the two arms are mixed at another coupler and form the MZI
outputs. We do not assume a priori that the coupler is perfectly balanced and write
the two output amplitudes as:

𝐴+ = 𝑞1𝐴1 + 𝑖𝑞2𝐴2, 𝐴− = 𝑞∗1𝐴2 + 𝑖𝑞∗2𝐴1, (8.9)

where 𝑞1 and 𝑞2 are complex transmission coefficients. We further assume that the
two couplers just before the BPDs are matched, such that the relative power between
the two arms remains the same at the two BPDs. In this case, powers at individual
PDs can be found from 𝑃± ≡ |𝐴± |2, and the RF power of each BPD output reads,
up to a proportional constant,

Δ𝑃 ≡ 𝑃+−𝑃− = 2Re[𝑖𝑞∗1𝑞2 exp(2𝜋𝑖 𝑓0𝜏) exp(−2𝜋𝑖 𝑓c𝑡) (1+Σ𝑎) exp(𝑖Δ𝜙)]+Δ|𝑞 |2Δ𝑎,
(8.10)

where we have introduced some shorthand notations: Σ𝑎 ≡ 𝛿𝑎(𝑡) + 𝛿𝑎(𝑡 − 𝜏),
Δ𝜙 ≡ 𝛿𝜙(𝑡) − 𝛿𝜙(𝑡 − 𝜏), Δ𝑎 ≡ 𝛿𝑎(𝑡) − 𝛿𝑎(𝑡 − 𝜏), and Δ|𝑞 |2 ≡ |𝑞1 |2 − |𝑞2 |2.

Next, the Hilbert transform is performed on Δ𝑃 to recover the analytic signal and
extract the instantaneous phase. The terms within the brackets consist of the main
part of Δ𝑃 and is itself an analytic signal oscillating at 𝑓c. The Δ𝑎 term may
also influence the phase of the signal. However, only those frequency components
of Δ𝑎 around the carrier frequency 𝑓c contribute to the phase noise at low offset
frequencies. As the self-heterodyne beating shifts the phase noise information to 𝑓c

where the amplitude noise of a laser is extremely low, this effectively isolates the
laser RIN from entering the phase extraction process. We can therefore approximate
the analytic signal by

HΔ𝑃 ≈ 2𝑖𝑞∗1𝑞2 exp(2𝜋𝑖 𝑓0𝜏) exp(−2𝜋𝑖 𝑓c𝑡) (1 + Σ𝑎) exp(𝑖Δ𝜙), (8.11)

and the phase can be extracted as:

𝜑 = Δ𝜙 − 2𝜋 𝑓c𝑡 + 2𝜋 𝑓0𝜏 + Arg[𝑖𝑞∗1𝑞2] . (8.12)

After that, 𝜈(𝜏) is calculated from the time derivative of 𝜙, which can be approxi-
mated with a finite time difference:

𝜈(𝜏) = ¤𝜑
2𝜋

= − 𝑓c +
¤𝛿𝜙(𝑡) − ¤𝛿𝜙(𝑡 − 𝜏)

2𝜋
. (8.13)

From here, the spectral density of 𝜈(𝜏) measured by a single BPD can be estimated
and then used to recover 𝑆𝜈 ( 𝑓 ) with the processing gain from Eq. (8.4). The results
with cross-correlation can be further found in section 8.3.
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Resolution bandwidth
To compute 𝑆𝜈 (𝜏) using the Wiener-Khinchin theorem, an infinite length of 𝜈(𝜏)
would be required to complete the Fourier transform accurately. Using a limited
amount of data leads to a finite resolution bandwidth, which will distort the measured
frequency noise. Segmenting the data into shorter sections has a similar effect.
Below we derive the modified PSD estimate and the corresponding 𝐺 ( 𝑓 ) for the
finite resolution bandwidth case.

In the calculation, 𝑆𝜈 (𝜏) is estimated from the Fourier coefficients of the gated
signal:

𝑆𝜈(𝜏),gated( 𝑓 ) =
|𝜈̂gated(𝜏, 𝑓 ) |2∫ ∞
−∞ 𝑤(𝜏′)2d𝜏′

, (8.14)

where 𝑤(𝜏′) is the window function for gating and 𝜈̂gated(𝜏, 𝑓 ) is the Fourier coeffi-
cient of the gated signal:

𝜈̂gated(𝜏, 𝑓 ) =
∫ ∞

−∞
𝜈(𝜏, 𝑡 = 𝜏′)𝑤(𝜏′) exp(2𝜋𝑖 𝑓 𝜏′)d𝜏′. (8.15)

Viewing 𝜈(𝜏) as random variables, the expectation of 𝑆𝜈(𝜏),gated reads

E[𝑆𝜈(𝜏),gated( 𝑓 )] =
∫ ∞
−∞

∫ ∞
−∞ E[𝜈(𝜏, 𝑡 = 𝜏′)𝜈(𝜏, 𝑡 = 𝜏′ + 𝜏′′)]𝑤(𝜏′)𝑤(𝜏′ + 𝜏′′)e2𝜋𝑖 𝑓 𝜏′′d𝜏′d𝜏′′∫ ∞

−∞ 𝑤(𝜏′)2d𝜏′

=

∫ ∞
−∞ d𝜏′′ ⟨𝜈(𝜏, 0)𝜈(𝜏, 𝜏′′)⟩ e2𝜋𝑖 𝑓 𝜏′′

∫ ∞
−∞ d𝜏′𝑤(𝜏′)𝑤(𝜏′ + 𝜏′′)∫ ∞

−∞ 𝑤(𝜏′)2d𝜏′

=

∫ ∞

−∞
d𝜏′′ ⟨𝜈(𝜏, 0)𝜈(𝜏, 𝜏′′)⟩ e2𝜋𝑖 𝑓 𝜏′′𝑤2(𝜏′′) (8.16)

=

∫ ∞

−∞
𝑆𝜈(𝜏) ( 𝑓 − 𝑓 ′)𝑤2( 𝑓 ′)d 𝑓 ′, (8.17)

where we introduced 𝑤2(𝜏′′) as the normalized autocorrelation of 𝑤 and its associ-
ated Fourier transform 𝑤2( 𝑓 ′):

𝑤2(𝜏′′) =
∫ ∞
−∞ 𝑤(𝜏′)𝑤(𝜏′ + 𝜏′′)d𝜏′∫ ∞

−∞ 𝑤(𝜏′)2d𝜏′
, 𝑤2(0) = 1 (8.18)

𝑤2( 𝑓 ′) =
∫ ∞

−∞
𝑤2(𝜏′′) exp(2𝜋𝑖 𝑓 ′𝜏′′)d𝜏′′. (8.19)

From Eq. (8.17), it can be seen that the effect of gating the signal results in
convolving 𝑆𝜈(𝜏) with 𝑤2, which is equivalent to filtering the frequency domain
trace of 𝑆𝜈(𝜏) with a response function of 𝑤2 in the time domain from the viewpoint
of Eq. (8.16).
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To see how this filtering of 𝑆𝜈(𝜏) impacts signal processing, we rewrite Eq. (8.3) as:

𝑆𝜈(𝜏) ( 𝑓 ) = 4 sin2(𝜋 𝑓 𝜏)𝑆𝜈 ( 𝑓 ) = [2 − 2 cos(2𝜋 𝑓 𝜏)]𝑆𝜈 ( 𝑓 ). (8.20)

If 𝑆𝜈 ( 𝑓 ) varies slowly within the MZI FSR scale (1/𝜏), the gating filter only affects
the term within the brackets. For the rectangular window used here, 𝑤2 becomes a
triangular window, and 𝑆𝜈(𝜏),gated can be found as:

𝑆𝜈(𝜏),gated( 𝑓 ) ≈ [2 − 2(1 − 𝜏RBW)+ cos(2𝜋 𝑓 𝜏)]𝑆𝜈 ( 𝑓 ), (8.21)

where 𝑧+ = max(0, 𝑧) is the ramp function and RBW is the resolution bandwidth
of the rectangular window (equal to the reciprocal of its temporal width). The
associated processing gain becomes:

𝐺gated( 𝑓 ) =
1

2 − 2(1 − 𝜏RBW)+ cos(2𝜋 𝑓 𝜏) . (8.22)

We note that the divergence of 𝐺 ( 𝑓 ) is no longer present in Eq. (8.22) for any
finite RBW, which can be explained as a spectral leakage of noise from other offset
frequencies to integer multiples of MZI FSR. If the RBW is larger than one MZI
FSR such that 𝜏RBW > 1, then Eq. (8.21) and Eq. (8.22) indicate that the fringe
pattern is completely averaged out by the filtering. In this case the systems work in
the same way as an incoherent detection setup.

Suppression of independent noise with cross-correlation
While the optical signals are converted to RF signal at the BPDs, technical BPD
noise (usually characterized by its noise equivalent power) will also be present in
the output and is dominant in the current measurement system. This increases the
phase noise of the output and limits the noise floor of the measurement without
cross-correlation. We model this technical noise by adding noise terms, 𝜑BPD,1 and
𝜑BPD,2, for the extracted phase:

𝜑1 = 𝜑 + 𝜑BPD,1, 𝜑2 = 𝜑 + 𝜑BPD,2. (8.23)

The noise will be transferred to the frequency signal:

𝜈1(𝜏) = 𝜈(𝜏) + 𝜈BPD,1, 𝜈2(𝜏) = 𝜈(𝜏) + 𝜈BPD,2, (8.24)

where 𝜈BPD,1 and 𝜈BPD,2 are the noise terms after time-domain difference. In this
case, calculating the Fourier coefficient of 𝜈(𝜏) leads to:

𝜈̂1(𝜏, 𝑓 ) =
∫ ∞

−∞
[𝜈(𝜏, 𝑡 = 𝜏′) + 𝜈BPD,1]𝑤(𝜏′) exp(2𝜋𝑖 𝑓 𝜏′)d𝜏′. (8.25)
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Assuming 𝜈(𝜏) and 𝜈BPD,1 are independent, the calculated PSD for 𝜈1(𝜏) becomes:

𝑆𝜈(𝜏),1( 𝑓 ) = 𝑆𝜈(𝜏),gated( 𝑓 ) + 𝑆BPD,1, (8.26)

where 𝑆BPD,1 is the gated PSD for 𝜈BPD,1 noise and determines the measurement
floor using only a single BPD.

To remove the BPD technical noise, both BPD outputs are used and cross-correlated
to suppress the contribution of 𝜈BPD,1 and 𝜈BPD,2. The correlated estimate of 𝑆𝜈(𝜏) ( 𝑓 )
is the product of two Fourier coefficients originating from different BPDs:

𝑆𝜈(𝜏),corr( 𝑓 ) =
𝜈̂1(𝜏, 𝑓 ) 𝜈̂∗2(𝜏, 𝑓 )∫ ∞

−∞ 𝑤(𝜏′)2d𝜏′
. (8.27)

Assuming 𝜈(𝜏), 𝜈BPD,1 and 𝜈BPD,2 are all independent, it can be readily shown that:

E[𝑆𝜈(𝜏),corr( 𝑓 )] = 𝑆𝜈(𝜏),gated( 𝑓 ), (8.28)

and includes only the contributions from laser noise. However, BPD noise adds
randomness to the correlation and increases the variance of 𝑆𝜈(𝜏),corr( 𝑓 ). This effect
will be more obvious at high offset frequencies when technical phase noise from
the BPD is converted to larger frequency noise (see section 8.4), or at low offset
frequencies while using a short delay line (where 𝐺 ( 𝑓 ) ≫ 1). This can be improved
by averaging over 𝑁 segments of data, which lowers the standard error of the mean
by

√
𝑁 times and therefore improves the signal-to-noise ratio by

√
𝑁 .

8.4 Characterization of the measurement setup
RIN suppression
As noted in section 8.3, the frequency-shifting process of the self-heterodyne setup
effectively isolates RIN from coupling into the measured frequency noise. In order
to characterize the RIN suppression performance of the cross-correlator, we mea-
sured the RIN conversion ratio with a setup shown in Fig. 8.2(a). The measurement
setup consists of an ECL (RIO ORION 1550 nm laser module) modulated by an
AOM to generate an artificial RIN signal. The AOM carrier generated from the
arbitrary waveform generator is amplitude-modulated by a single-tone sine wave
with manually configured frequency and modulation depth. The carrier frequency
is selected as the optimal modulation frequency of this AOM (here 55 MHz) to min-
imize amplitude-phase coupling during the modulation process. By measuring the
frequency noise with and without the power modulation using the cross-correlator,
the RIN conversion ratio can be determined. The modulation intensity is calculated
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from the modulation depth and calibrated by tapping 10% of the modulated laser be-
fore the cross-correlator. All signals are recorded by the aforementioned high-speed
oscilloscope.

Empirically, the RIN conversion to measured frequency noise can be described by:

𝑆𝜈(𝜏) ( 𝑓 ) = 𝑆𝜈(𝜏),corr( 𝑓 ) + 𝑓 2𝛼 × RIN( 𝑓 ), (8.29)

where 𝑆𝜈(𝜏) ( 𝑓 ) is the measured frequency noise just before the processing gain,
including RIN contributions, 𝛼 is a proportionally constant that converts RIN to
phase noise, and the extra 𝑓 2 factor further converts phase noise to frequency noise.
For the reconstructed laser noise the above equation becomes:

𝑆𝜈 ( 𝑓 ) = 𝑆𝜈 ( 𝑓 ) + 𝐺 ( 𝑓 ) 𝑓 2𝛼 × RIN( 𝑓 ). (8.30)

The single-tone modulations used in the actual measurements could not be quantified
by a spectral density. Instead, the frequency noise intensity can be recovered from:

𝑃𝜈 ( 𝑓AM) = 𝑆𝜈 ( 𝑓AM) × RBW, ( 𝑓AM) (8.31)

where 𝑓AM is the modulation frequency. Similarly, phase noise intensity is related
to the frequency noise intensity by:

𝑃𝜙 ( 𝑓AM) = 1
𝑓 2
AM

𝑃𝜈 ( 𝑓AM). (8.32)

By comparing 𝑃𝜙 ( 𝑓AM) against the amplitude modulation intensity, 𝛼 can be ex-
tracted through a linear fitting process.

The measured 𝑆𝜈 ( 𝑓 ) under different modulation intensity at 963 kHz offset fre-
quency are shown in Fig. 8.2(b). The noise spurs at 29 kHz come from the ECL
itself, which also appear in Fig. 8.5 and Fig. 8.6. The inset of Fig. 8.2(b) shows the
linear fitting between the phase noise intensity and the modulation intensity. Here,
the RIN to measured laser phase noise conversion ratio [𝐺 ( 𝑓 )𝛼] at 963 kHz (i.e.,
the slope of the fitting) is -46.4 dBrad2 (2.29 ×10−5 rad2). From here, 𝛼 can be
found as -40.4 dBrad2 (9.16 ×10−5 rad2).

As shown in Fig. 8.2(c), a -20 dBc modulation intensity is selected for all measure-
ments at different modulation frequencies, which is sufficient as an overestimation
for RIN of a normal laser. The intrinsic laser frequency noise may obscure the
presence of weakly-coupled RIN, and becomes a noise floor for the RIN conver-
sion measurement. The frequency noise intensity without laser power modulation
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Figure 8.2: Characterization on RIN suppression. (a) Experimental setup for RIN
suppression characterization. CW laser: continuous wave laser, AOM: acousto-
optical modulator, XCorr: cross-correlator [as in Fig. 8.1(a)], AWG: arbitrary
waveform generator, PD: photodetector, OSC: oscilloscope. (b) SSB laser frequency
noise spectra under different modulation intensity at 963 kHz offset frequency. Inset:
Phase noise intensity at 963 kHz as a function of modulation intensity. The solid
black line is the linear fitting. (c) Frequency dependence of RIN conversion ratio.
The shaded area stands for the confidence interval (99% confidence probability)
of the frequency noise intensity without power modulation. The frequency noise
intensity baseline has been subtracted for comparison. The red circles are plotted
as the converted frequency noise intensity (measured frequency noise intensity
minus baseline) at different offset frequency corresponding to the power modulation
frequency. The solid (hollow) circles indicate that the converted frequency noise
intensity is inside (outside) the shaded area.

(i.e., the baseline) is measured 10 times and a 99% possibility confidence interval
(shaded area) for the RIN conversion signal is given by assuming that the measured
frequency noise intensity is normally distributed. When amplitude modulation is
applied, the frequency noise intensity (red circles) at the corresponding offset fre-
quency is calculated and compared with the baseline. A measured intensity outside
the confidence interval indicates significant conversion of RIN. RIN conversion has
been tested at 20 kHz, 40 kHz, 80 kHz, 214 kHz (equal to the MZI FSR 1/𝜏0, where
𝜏0 = 4.67 ms is the delay time of the 1-km-long fiber), 321 kHz, 428 kHz, 642
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kHz, 749 kHz, and 963 kHz. The modulation frequencies over 100 kHz match the
integer and half-integer multiples of MZI FSR, corresponding to local maximums
and minimums of 𝐺 ( 𝑓 ), respectively. The measured frequency noises with artificial
RIN coupling only fall outside of the confidence interval at 749 kHz and 963 kHz,
which suggests that the RIN suppression is high enough for lasers at offset frequency
lower than 1 MHz. We note that the 𝐺 ( 𝑓 ) will amplify the RIN conversion at offset
frequencies equal to integer multiples of the MZI FSR. However, as shown by the
experimental data, the overall RIN conversion is not important in most cases.

Below we present a model for the origin of RIN coupling by considering signal
leakage at the AOM within the cross-correlator [Fig. 8.1(a)]. We assume that a
small portion of 0th order light is leaked into the 1st order port at the AOM, which
is supported by experimental observations. The net effect is that the amplitude for
the frequency-shifted arm should be modified as:

𝐴1(𝑡) =
1
√

2
exp(−2𝜋𝑖 𝑓0𝑡) exp(2𝜋𝑖 𝑓c𝑡) [1 + 𝛿𝑎(𝑡)] exp[−𝑖𝛿𝜙(𝑡)]

+ 𝜖
√

2
exp(−2𝜋𝑖 𝑓0𝑡) [1 + 𝛿𝑎(𝑡)] exp[−𝑖𝛿𝜙(𝑡)], (8.33)

where 𝜖 is a complex number that represents the leakage amplitude. The amplitude
on the other arm 𝐴2 remains the same. The BPD power now reads, keeping only
the signals oscillating near frequency 𝑓c,

Δ𝑃̃ = 2Re[𝑖𝑞∗1𝑞2 exp(2𝜋𝑖 𝑓0𝜏) exp(−2𝜋𝑖 𝑓c𝑡) (1 + Σ𝑎) exp(𝑖Δ𝜙)]
+ Re[Δ|𝑞 |2𝜖 exp(−2𝜋𝑖 𝑓c𝑡) (1 + 2𝛿𝑎(𝑡))], (8.34)

where the exponential of phase noise is linearized for convenience. The extra term
results from the same-arm beating detected at the BPD. The analytic signal is given
by, up to first order of 𝜖 and Δ𝜙,

HΔ𝑃 ≈ 2𝑖𝑞∗1𝑞2 exp(2𝜋𝑖 𝑓0𝜏) exp(−2𝜋𝑖 𝑓c𝑡)
[
1 + Σ𝑎 + 𝑖Δ𝜙 + Δ|𝑞 |2 |𝜖 |

|𝑞1𝑞2 |
exp(𝑖𝜃RIN)

(
1
2
+ 𝛿𝑎(𝑡)

)]
.

(8.35)
Here 𝜃RIN is a phase angle that couples amplitude to phase:

𝜃RIN = 2𝜋𝑖 𝑓0𝜏 + Arg[𝜖] − Arg[𝑖𝑞∗1𝑞2] . (8.36)

Performing phase extraction and time difference leads to

𝜈̃(𝜏) = 𝜈(𝜏) + Δ|𝑞 |2 |𝜖 |
|𝑞1𝑞2 |

sin(𝜃RIN)
d𝛿𝑎
2𝜋d𝑡

. (8.37)
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Figure 8.3: Measurement dynamic range (lasers with high frequency noise). (a)
SSB frequency noise and frequency spectral density of a DFB laser. (b) Simulated
𝑆𝜈(𝜏) ( 𝑓 ) output of the system when a laser with high white frequency noise is used
as input. The white noise levels are, from bottom to top: 5 × 105 Hz2/Hz, 1 × 106

Hz2/Hz, 2 × 106 Hz2/Hz, 5 × 106 Hz2/Hz, 1 × 107 Hz2/Hz.

For the worst case (maximal coupling) sin(𝜃RIN) = ±1, and in the case when laser
amplitude and frequency noise are independent, calculating the PSD gives:

𝑆𝜈(𝜏) ( 𝑓 ) = 𝑆𝜈(𝜏),corr( 𝑓 ) + 𝑓 2 (Δ|𝑞 |2)2 |𝜖 |2
|𝑞1 |2 |𝑞2 |2

RIN( 𝑓 )
4

. (8.38)

Comparing with the empirical model Eq. (8.29) gives:

𝛼 =
(Δ|𝑞 |2)2

4|𝑞1 |2 |𝑞2 |2
|𝜖 |2, (8.39)

and is directly proportional to the leaked power at the AOM.

Dynamic range
To quantify the upper limit of noise the COSH setup can measure, we use a DFB
laser for characterization. Limited by the laser cavity length and reflectivity of the
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output facet, the noise of a DFB laser can reach the level of 1 MHz, corresponding
to a coherence length shorter than the 1-km-long fiber delay line. However, the
measurable noise is not directly related by the delay line, but only limited by the
carrier frequency (see below).

Measurement results for a free-running DFB laser are shown in Fig. 8.3(a). The
SSB frequency noise of the DFB laser is around 1.2 × 105 Hz2/Hz at high offset
frequencies, corresponding to a 0.75 MHz Lorentzian linewidth and a 267 m coher-
ence length in fiber (assuming a fiber refractive index of 1.5). As the BPD noise is
far less than the DFB laser noise, performing cross-correlation on the data provides
negligible improvement. Note that the noise peak at 1.2 MHz is from the DFB laser.
Combined with the estimate for the noise floor (see section 8.4), the setup could
reach over 70 dB dynamic range for frequency noise measurements.

To understand how the system behaves for higher laser frequency noise, simulations
have been performed and the results are collected in Fig. 8.3(b). Increasing the
laser frequency noise above 1 × 106 Hz2/Hz leads to a visible decrease of fringe
contrast before multiplying 𝐺 ( 𝑓 ). This can be attributed to the wide broadening of
the carrier signal exp(2𝜋𝑖 𝑓c𝑡). The components that are separated more than 𝑓c from
the carrier cross into the negative-frequency domain and will be reflected by the
Hilbert transform. If such contributions are significant, Eq. (8.11) is invalidated,
and the laser frequency noise can no longer be reliably recovered. Choosing an
AOM with higher modulation frequency and increasing the sampling rate for the
oscilloscope could increase the upper noise limit at the expense of measurement
time or memory. We note that fringes are still visible even if the noise level exceeds
the MZI FSR (i.e., the laser coherent length is shorter than the delay length), unless
the resolution bandwidth is chosen to exceed the MZI FSR [as given by 𝐺 ( 𝑓 )].

Noise floor
Finally, the noise floor of the COSH method is verified using a DFB injection
locked to a high-Q resonator (section 2.3). The laser linewidth coming from the
compound laser-resonator system can be greatly suppressed [231, 232, 74] and have
demonstrated record linewidth levels in integrated photonics platforms comparable
to fiber lasers [233].

Here, the aforementioned DFB laser has been self-injection-locked to a 7-m long,
ultra-high-Q on-chip resonator (with an intrinsic Q factor of 150 million). The SSB
frequency noise of this lab-built laser is then measured by the setup and results are
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Figure 8.4: Measurement noise floor (DFB laser with SIL). Two traces are
measured by the self-heterodyne method with and without cross-correlation. The
deviation between them is due to the BPD noise as illustrated in Fig. 8.1. The cross-
correlator extracts the common mode SIL laser noise and suppresses the individual
BPD noise to reach a 0.01 Hz2/Hz noise floor at 1 MHz offset frequency. The
simulated thermo-refractive noise is plotted in black for comparison. Inset: the
measured frequency noise error bar is interpreted as the measurement system noise
floor here. With increasing averaging segment number 𝑁 , the noise floor is reduced
by

√
𝑁 . The blue trace is the same as the main figure.

shown in Fig. 8.4. Compared with a 1.4-m long spiral resonator [233], larger mode
volume further suppresses the thermo-refractive noise (TRN) and reaches 0.041
Hz2/Hz at 100 kHz offset frequency. The numerically simulated TRN is also plotted
for comparison. The lowest measured frequency noise is 0.015 ± 0.002 Hz2/Hz at
1 MHz offset frequency, comparable with the previous work [233].

The power spectrum density given by a single BPD output frequency without cross-
correlation is also illustrated in Fig. 8.1(d). Since BPD technical noise is ap-
proximately white when characterized as phase noise, the independent BPD noise
contribution to measured frequency noise scales as 𝑓 2 and is more apparent at high
offset frequencies, which is confirmed by comparing the two traces in Fig. 8.4. The
spurs in the single-BPD trace are the BPD technical noise amplified by 𝐺 ( 𝑓 ) and
are also an indication that the BPD noise has significant contributions. By using
cross-correlation and averaging over 𝑁 segments of data, the noise contribution can
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be reduced by
√
𝑁 . Here, for the 20 kHz resolution bandwidth used for high offset

frequencies, we have 𝑁 = 38400, and the signal-to-noise ratio is improved by 22.9
dB. As shown in the inset of Fig. 8.4, the error bar of measured frequency noise
(standard deviation of frequency noise from multiple segments) is interpreted as the
measurement setup noise floor here, and larger N (proportional to the overall data
length used) leads to a lower noise floor. Assuming 0.05 mW optical input power at
the BPD, the technical noise is equivalent to 0.10 Hz2/Hz at 1 MHz offset frequency,
consistent with the blue trace in Fig. 8.4 inset. With 𝑁 = 38400, the noise floor
with cross-correlation is suppressed to be 0.0005 Hz2/Hz, consistent with the purple
trace in the inset. At MZI FSR frequencies, the noise floor is enhanced but remains
below 0.01 Hz2/Hz around 1 MHz offset frequency. The spurs of measured SSB
frequency noise at higher than 1 MHz offset frequency is significantly higher than
the noise floor and are believed to originate from the residual RIN amplified by
𝐺 ( 𝑓 ).

8.5 Discussion
Environmental noise coupling
Acoustic noise may be present in the external environment and can couple to the
measured SSB frequency noise through the fiber delay of the modified MZI. To min-
imize environmental perturbations, the optical section of the measurement setup is
acoustically shielded with a foam box. To calibrate the external noise isolation



104

from the shield box, we have applied additional acoustic noise in the environment
and measured the ECL frequency noise. As is shown in Fig. 8.5, the measured
SSB frequency noise is smooth and no peaks can be found below 10 kHz offset
frequency, compared to the case without the acoustic shield. Above 10 kHz, the
effect of environment noise is not evident for the noise measurement system. Mean-
while, the frequency noise measured with acoustic shield is consistent with the laser
manufacturers specification sheet.

Fiber delay length
A major drawback of the current setup is the decrease of sensitivity at integer
multiples of MZI FSR, where the frequency noise destructively interferes and 𝐺 ( 𝑓 )
reaches its maximum. These frequencies can be adjusted by changing the fiber delay
length. If the destructive interference is undesired over a wide offset frequency range,
the fiber delay length should be short enough such that the first MZI FSR appears
outside the frequency range. For example, a 10 meter fiber (with MZI FSR equal
to approximately 20 MHz) ensures that no fringes appear below 20 MHz offset
frequency.

A major disadvantage of using a short fiber delay length is the large systematic error
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Figure 8.6: Frequency noise measurement with a short delay line. SSB frequency
noise of the ECL calculated with different RBW configurations using 15-meter-long
fiber delay line are plotted as red, yellow and purple traces. The RBWs chosen at
different offset frequency intervals (marked by shading) are shown at the top with
colors in accordance with traces. The gray line using 1-km-long fiber delay line is
plotted as a reference and its RBW configurations are the same as the purple trace.
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of low-frequency noise. To demonstrate this, the 1 km delay line in the MZI is
substituted with a 15 meter fiber and the ECL noise is measured. The results are
presented in Fig. 8.6. We note that there are frequency noise discontinuities when
the RBW changes. For the purple trace in Fig. 8.6, the calculated frequency noise
“jumps” at 20 kHz, 40 kHz and 100 kHz, where different RBWs are chosen for the
offset frequency intervals on both sides. On the other hand, the data measured using
1 km delay length (grey trace) gives a continuous result and is consistent with the
noise data from the laser manufacturers specification sheet.

The strong dependence of calculated noise on the RBW can be attributed to the
non-white frequency noise spectrum of the laser. The gating filter acts differently
on the spectrum compared to the white case and invalidates Eq. (8.21). By using
smaller RBWs, the calculated noise becomes closer to the true laser noise, as seen
from the red trace in Fig. 8.6.

8.6 Conclusion
In this paper we have demonstrated a correlated self-heterodyne (COSH) method to
measure laser frequency noise with 0.01 Hz2/Hz noise floor and high RIN rejection
quantified by the coupling coefficient 𝛼 = −40.4 dBrad2. Commercial ECL and
DFB lasers with/without self-injection-locking are used to verify the performance.
The cross-correlation noise floor is limited by the coupled RIN amplified by the
processing gain 𝐺 ( 𝑓 ) as well as residual BPD technical noise.

The setup described here can be further reconfigured to meet specific measurement
requirements. For example, the RIN suppression can be further enhanced by using
an AOM with higher 0th order to 1st order isolation. Temperature controllers can
be installed to the 50/50 couplers to adjust the coupling ratio precisely and balance
the MZI arms. On the other hand, if the expected laser noise frequency is high,
then cross-correlation is not necessary and the memory depth of the oscilloscope
can be decreased accordingly. A conventional PD can be used in place of a BPD
if RIN is not a concern. Overall, the specific measurement setup and parameters
introduced in Section 2.1 are targeted towards ultra-low-noise laser measurement
mainly at high offset frequencies, while the basic principle remains universal.
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C h a p t e r 9

HIGH-COHERENCE HYBRID-INTEGRATED 780 NM SOURCE
BY SELF-INJECTION-LOCKED SECOND-HARMONIC

GENERATION IN A HIGH-Q SILICON-NITRIDE RESONATOR

9.1 Introduction
1 Highly coherent visible laser sources play a crucial role in the operation of optical
atomic clocks [235], automotive LiDAR [236], and sensing systems [237]. However,
existing bench-top visible lasers are both costly and bulky, limiting their use beyond
laboratory environments including application in future navigation and sensing
systems. Integration of these sources on a semiconductor chip is a necessary step if
the systems that use these devices are to be made compact, portable and low power.

To address this challenge, we generate visible light in a high-𝑄 silicon nitride
microcavity that is hybridly-integrated to a semiconductor laser operating in the near-
infrared band. The cavity both line narrows the laser through self-injection-locking
(SIL) [66, 233] and generates the high-coherence visible signal as a second-harmonic
(SH) signal by way of the photogalvanic field-induced second-order nonlinearity
[238] and the all-optical-poling effect [239, 240, 241] in Si3N4. A record-low
frequency noise floor of 4 Hz2/Hz is achieved for the 780 nm emission. Frequency
noise is reduced by 100-fold compared with previous integrated visible lasers [242,
243, 244, 245].The approach can potentially generate signals over a wide range of
visible and near-visible bands, and thereby help transition many table-top systems
into a fieldable form.

9.2 Characterization on the second-harmonic generation
The resonator is fabricated using the ultra-low-loss silicon-nitride photonic platform
[66, 67] with a 100 nm thick silicon nitride waveguide core and a 2.2 𝜇m thick silica
top cladding. The resonator has a 5 𝜇m waveguide width and a 850 𝜇m radius. The
free-spectral range is 35.52 GHz at 1560 nm. Two pulley couplers are designed for
coupling at both the near-infrared and visible bands. The near-infrared coupler has
a 2.3 𝜇m waveguide width with a 3.5 𝜇m gap that is designed to prevent coupling

1Work presented in this chapter has been published in [234] “High-coherence hybrid-integrated
780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride
resonator.” Optica 10.9 (2023), pp. 1241–1244.
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Figure 9.1: Experimental setups and characterization of the Si3N4 resonator
and SH generation performance. (a) Experimental setup used to determine the
phase matching condition and characterize the SH performance of the Si3N4 res-
onator. ECDL, external cavity diode lasers; EDFA, Erbium-doped fiber amplifier;
PPLN, periodically poled lithium niobate; PC, polarization controller; PD, pho-
todiode; OSC, oscilloscope; TEC, thermoelectric cooler. (b) Measured on-chip
transmission pump power (left axis) and generated SH power (right axis) when
scanning the frequency of the pump laser across a cavity resonance at the phase
matching condition. Inset: measured on-chip SH power (blue dots) plotted versus
pump power levels. (c) Transmission spectrum of the pump resonance at 1560.1
nm. (d) Transmission spectrum of the SH resonance at 780.05 nm. (e) Schematic
of the hybrid-integrated frequency conversion laser, where a DFB laser is endfire-
coupled to a high-Q silicon-nitride microresonator to provide feedback to the laser.
The upper and lower waveguides are designed for coupling at 1560 nm and 780
nm, respectively. The scale bar is 200 𝜇m. (f) Photograph of the hybrid-integrated
frequency conversion laser in panel (e). (g) The time response of the SH power after
the DFB laser frequency is stopped at the operation point. Inset: zoom-in of the
main plot.

to the visible mode. The visible coupler has a 1.6 𝜇m waveguide width with a 0.3
𝜇m gap that is designed to reduce coupling to the near-infrared mode.

The resonator is first characterized using the experimental setup shown in Fig. 9.1(a).
A 4-channel fiber array and a lensed fiber are used to couple to near-infrared and visi-
ble resonances simultaneously. To probe the resonances, the output of a near-infrared
tunable laser is split with one output doubled in frequency using a periodically-poled
lithium niobate (PPLN) crystal. In this way, first and second harmonic probe waves
are generated to characterize resonator spectra in these bands. Because the photo-
galvanic effect induces optical poling to thereby establish the quasi-phase-matching
condition [241], a visible mode having twice the pumping frequency will achieve
SH generation regardless of its propagation constant. To establish this condition, the
Si3N4 chip is temperature controlled to tune the mode spectra. Tuning over no more
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than one free-spectral-range is sufficient, and in the current setup a chip temperature
of 45 ◦C aligns the pump resonance at 1560.1 nm with a visible resonance at 780.05
nm. Photogalvanic-induced second-harmonic generation can be readily observed
when scanning the pump laser across the near-infrared resonance, as shown in Fig.
9.1(b). Continuous-wave SH power measurements with the pump laser frequency
fixed at the cavity resonance are shown in the inset of Fig. 9.1(b).

The frequency conversion efficiency is fit by the red line with a slope of 2. Within
our measurement range, the SHG efficiency (𝜂 in %/W) is found to be constant and
estimated to be 114±31%W (average over measured powers). The SH output power
as high as 24 mW is measured (in the bus waveguide). The total 𝑄 factors (𝑄𝑡)
of the pump and SH modes are determined by transmission spectra measurements
shown in Fig. 9.1(c,d). The experimental measurements are plotted in blue and the
theoretical fittings are plotted in red. Each resonance exhibits backscatter-induced
splitting and total Q factors (𝑄𝑡) are indicated. The leakage of 1560 nm light into
the 780 nm pulley coupler and the multimode nature of the 780 nm waveguide make
determination of the intrinsic (i.e., ring-only) Q factors of the 1560 nm and 780 nm
modes difficult (see section 9.4).

To achieve a high coherence visible light source in a compact foot print, we replace
the bulk tunable laser with a distributed-feedback (DFB) chip laser as shown in
the experimental setup in Fig. 9.1(e,f). The DFB laser is endfire-coupled to the
silicon-nitride chip and can deliver 20 mW pump power to the resonator waveguide
(accounting for 6 dB facet coupling loss). Backscatter-induced feedback from the
resonator to the laser provides self-injection-locking that dramatically reduces the
laser frequency noise [66, 233]. Upon current tuning the DFB laser frequency
into the 1560.1 nm resonance, the optical poling process is initialized through the
field-induced photogalvanic effect. This process can be monitored by scanning the
frequency of the DFB laser around the resonance by modulating the pump current
with a function generator. The produced SH signal power changes periodically
during forward and backward scanning (the blue region in the inset of Fig. 9.1(g)).
The function generator is then turned off, and the DFB frequency self-locks into
the resonance center and SH power builds to steady state. The resulting SH signal
time evolution is shown over short time interval in the inset of Fig. 9.1(g) (red
region) and over several seconds in the main panel. The SH power build-up features
a 0.6s rise time and takes only a few seconds to reach steady state. In steady-state
operation, the SH power at 780 nm reaches over 0.5 mW on-chip as monitored via
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Figure 9.2: Frequency noise measurement for SIL pump laser and generated
SH laser. (a) Frequency noise measurement setups for both the SIL 1560 nm laser
and the SH 780 nm laser. AOM, acousto-optic modulator. (b) Measured single-
sideband frequency noise spectrum. Gray, blue and red traces show the frequency
noise spectra of the free-running DFB signal, SIL pump signal (1560 nm), and
SH signal (780 nm), respectively. The light blue trace shows the SIL pump laser
frequency noise up-shifted by 6 dB. The inset is a photograph of the device under
operation with 780 nm emission visible on the ring resonator.

a lensed fiber (12dB coupling loss).

9.3 Frequency noise charaterization on the generated SIL 780 nm source
The SIL 1560 nm light and SH generated 780 nm light are then further analyzed
to determine their frequency noise performance, as shown in Fig. 9.2(a). The
SH signal is sent to a delayed self-homodyne detection setup with quadrature-
point locking [37] and its measured frequency noise is shown as the red trace in
Fig. 9.2(b). The peak at 18 kHz offset in the spectrum is due to the feedback
loop response of a fiber stretcher used to maintain the quadrature point. At high
offset frequencies, the photodetector (PD) white noise is suppressed using a cross-
correlation technique [227, 223], and achieves 4 Hz2/Hz noise floor above 6 MHz
offset frequency, corresponding to a record-low 25 Hz instantaneous linewidth for
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Figure 9.3: Self-injection locked laser response with pump current induced
frequency tuning. (a) The measured SIL pump power (blue) and second harmonic
power (red) when the pump current is scanned across the resonance. When the DFB
laser frequency is tuned into the cavity resonance, the near infrared laser is initially
in a single frequency state and eventually tunes to a comb state. (b, c) Upper panels:
Measured optical spectra of the near infrared laser in the single frequency state (b)
and comb state (c). Lower panels: corresponding SH 780 nm spectra.

visible on-chip sources. The frequency noise of the self-injection locked pump laser
is characterized with a self-heterodyne approach [223], and the result is shown as
the blue curve in Fig. 9.2. Compared with the free-running DFB laser noise (gray
trace), the SIL process suppresses the noise by 40 (32) dB at 100 kHz (1 MHz) offset
frequency. The generated SH laser noise is 4 times higher than the SIL pump laser
noise due to coherent photon conversion [244]. Specifically, the phase fluctuation of
the pump field is doubled in the SH signal through the squaring of the pumping field.
The corresponding SH spectral density function therefore experiences a factor of 4
increase (6 dB) relative to the pump. The difference in these spectra at high offset
frequencies is due to spontaneous emission noise in the 1560 nm signal resulting
from its measurement at the transmission port of the coupled resonator system.

High intra-cavity photon density and resonant backscattering make this system
prone to Kerr frequency comb generation [66]. SIL comb formation is governed by
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Figure 9.4: Resonator total and intrinsic 𝑄 factor measurements plotted versus
wavelength. The spectral peaks in measured intrinsic 𝑄 factors are believed to
originate from the wavelength-dependent coupling of 1560 nm light to the 780 nm
pulley coupler.

feedback phase and frequency detuning [73, 246], and these parameters also provide
a way to favor single mode lasing over comb generation. In the present device the
laser-to-chip gap (feedback phase) and pump current (frequency detuning) provide
useful controls. The latter is illustrated in Fig. 9.3(a) where the transmitted pumping
power and the SH power are plotted versus DFB laser current scan. Distinct regimes
where the single-frequency SIL state and the comb state appear are indicated. In
the comb state, only the pump comb line can be frequency doubled due to phase
matching condition. The operation point used in the previous power and noise
measurements is indicated. Typical SH spectra in the two regimes are shown in Fig.
9.3(b, c). Reduced SH power is apparent for the comb state since intracavity pump
power is reduced by comb formation.

9.4 Coupler design principle
The 1560 nm pulley coupler waveguide width is chosen to achieve phase matching
to the ring resonator fundamental eigenmode. The coupler occupies an effective arc
length of about 0.1 radian of the resonator with a 3.5 𝜇m minimum gap. This gap
is too large to achieve significant interaction with the 780 nm eigenmode thereby
reduces parasitic coupling of the 780 nm mode to the 1560 nm coupler.

The 1.6 𝜇m width of the 780 nm pulley coupler waveguide is approximately phase-
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matched to the TE10 higher-order mode of the resonator. This substantially phase
mismatches the coupler to the fundamental resonator eigenmode at 1560 nm, thereby
suppressing parasitic coupling of the 1560 nm mode. The coupler gap is narrow
(minimum 0.3 𝜇m) and to further minimize perturbation to the 1560 nm mode, the
gap is adiabatically reduced using the arc of an archimedian spiral. This however
results in a coupler arc-length exceeding 1 radian, so that 780 nm optical power
might undergo several coupling oscillations over the length of the coupler.

Some parasitic coupling of the 1560 nm light to the 780 nm coupler is expected. This
parasitic loss channel contributes to the intrinsic Q factor of the resonator at 1560
nm. And spectral measurements of Q factor around 1560 nm reveal an oscillatory
dependence (see Fig. 9.4) that is believed to result from this dependence.

9.5 Conclusion
In conclusion, we have demonstrated a record-low 4 Hz2/Hz frequency noise floor
for a hybrid-integrated visible light source by self-injection-locking a DFB laser
with a high-𝑄 Si3N4 resonator. The III-V laser and the silicon nitride resonator
can be heterogeneously integrated using the integration technique described in ref.
[247]. The current resonator intrinsic 𝑄 factor is not optimal, and based on prior
work could exceed 250M at 1560 nm [66]. This should further reduce frequency
noise levels since the SIL noise reduction scales as 𝑄2 [74]. This scaling makes
generation of highly coherent signals easier in the near-IR where optical Q factors are
overall much higher. The SH-SIL process therefore extends this advantage into the
visible bands. Finally, the photogalvanic effect makes access to other wavelengths
straightforward. Devices require only waveguide couplers designed for efficient
visible and near infrared operation.
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