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ABSTRACT

The dynamics of charge carriers in semiconductors set the foundation for semi-
conductor device performance. Devices crucial for fields like radio astronomy
rely on transistor amplifiers where hot electron dynamics impact noise sig-
nificantly. The overarching goal of this work is to contribute towards the
development of better transistor amplifiers by investigating electron transport
in existing devices and emerging materials.

The physical mechanisms governing noise in a class of semiconductor devices
called high electron mobility transistors (HEMTs) are not completely under-
stood. HEMTs are transistors that use a junction between two materials of
different band gaps as the channel. HEMTs are used as amplifiers by trans-
lating a small signal applied at the gate terminal to a large current at the
drain terminal or output. The noise added at the input is well-characterized
by the device physical temperature, while the origin of the noise added at
the output is still up for debate. We attempt to fill this knowledge gap by
proposing a theory of noise occurring at the drain terminal of these devices as
a type of partition noise arising from two possible electron paths. This theory
emphasizes the critical role of the conduction band offset between epitaxial
layers of the device: a larger offset maximizes the channel sheet density and
minimizes electron transfer between layers, potentially improving noise perfor-
mance. The theory accounts for the magnitude and dependencies of the drain
temperature and suggests strategies to realize devices with lower noise.

We then investigate phonon-limited charge transport in the semiconductor
boron arsenide. Boron arsenide has drawn significant interest due to reports of
simultaneous high thermal conductivity and ambipolar charge mobility, desir-
able properties for integration in electronic devices. The theoretical prediction
of high electron and hole mobility assumed the dominance of charge carrier
scattering by one phonon. We consider the effects of two-phonon electron and
hole scattering processes in boron arsenide, and find that inclusion of these
higher-order processes reduces the computed room-temperature electron and
hole mobility significantly from the one-phonon value. Despite its potential,
our predictions of electron and hole mobility contradict recent experimental
reports based on photoexcited charge carrier diffusion. Several factors may
explain this discrepancy, including another type of two-phonon scattering not
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considered in this work, superdiffusion of hot carriers, induced carrier concen-
tration, or a combination of all or some of the above elements.

At high carrier concentrations, the phonon system may interact with the elec-
tron system on the timescale of the phonon-phonon interaction. When this
happens, the nonequilibrium state of phonons becomes important for electron
transport, and vice versa as these systems interact in a coupled manner. This
coupled interaction could lead to an inflated value of the experimentally re-
ported mobility. We quantify this effect, known as phonon drag, with a coupled
electron-phonon Boltzmann transport equation framework and demonstrate
that the electron mobility is indeed enhanced significantly at the relevant car-
rier densities.
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C h a p t e r 1

INTRODUCTION

A physical understanding of charge dynamics in semiconductor devices is of
paramount importance across various domains, including telecommunications,
energy conversion, radio astronomy, and quantum computing. As these devices
continue to undergo miniaturization, applied voltages on the order of 1 V or
less can lead to electric fields ∼ 105 V cm−1 [1]. Such high fields are known to
heat charge carriers to temperatures significantly higher than that of the host
lattice, and may ultimately degrade device performance. In particular, fields
such as radio astronomy rely on transistor amplifiers for amplification of very
weak signals, and the quality of signal amplification, or equivalently amplifier
noise performance, is dependent on the dynamics of hot electron transport in
the transistor.

In addition to the contribution from hot electron dynamics to the noise per-
formance, several other properties of the conducting material can influence
the performance of a device. For example, the low-field velocity response of a
material to an electric field is an important parameter: materials possessing
higher drift velocity for a given applied field are typically more desirable for
high-frequency applications. Thermally conductive materials are also more
desirable as they are able to dissipate unwanted heat better to the surround-
ing medium. Poor heat dissipation is of considerable importance and degrades
several device characteristics, including noise performance [2, 3, 4]. Therefore,
we are motivated to not only pursue a deeper understanding of the factors
limiting the noise performance of these electronic devices, but also to seek
out and investigate materials that could ultimately form the foundation for
improved device performance.

This thesis consists of two parts. The first part, covered in Chapter 2 presents
a new explanation for the origin of a type of noise observed in high electron
mobility transistors (HEMTs). The second part, explored in Chapters 2 and 3,
is a first-principles analysis of the charge carrier characteristics of a promising
novel semiconductor material with the potential for integration into various
electronic device categories in the future.
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Figure 1.1: Schematic of HEMT showing the source, gate, and drain
terminals, 2D electron gas, and illustrating the principle of amplification. A
signal to be amplified is added at the input gate terminal, which then
modulates the current observed at the drain terminal when the device is
biased.

In this chapter, we will outline the central problem we aim to tackle and intro-
duce several concepts foundational to our approach. These elements provide
necessary context for subsequent chapters.

1.1 HEMTs and the limits of noise performance

A high electron mobility transistor (HEMT) is a type of transistor that uses
a heterojunction as the conducting channel. The heterojunction is made of
two semiconductors with different bandgaps, such as InAlAs/InGaAs. The
conducting electrons are confined in a quantum well, forming a 2D electron
gas (2DEG). The conducting electrons are physically isolated from dopants to
preserve the high electron mobility. The HEMT has three terminals: source,
gate, and drain. Electrons travel from source to drain under the application of
a drain-source voltage, and the current seen at the drain can be modulated by
the application of a gate-source voltage. Figure 1.1 shows a schematic of the
HEMT that pictorially depicts its basic principle of operation: a small input
signal at the gate is observed as current modulation at the drain end of the
device.

The noise performance of a device is usually characterized with an overall
(noise) temperature. All contributing elements to the noise are captured by
this temperature. The noise temperature is a way to express the noise power
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Figure 1.2: Figure showing that HEMT amplifiers exhbibit state-of-the-art
noise perfornance in the 5–100 GHz frequency range. The best HEMT
low-noise amplifiers (LNAs) have a noise figure 4 to 10 times the quantum
limit in the given range, but applications continue to drive the development
of better amplifiers.

of a component or system as if it were caused by thermal fluctuations at a
certain temperature. Lower noise temperature values indicate less noise and
are generally desirable in electronic systems, but especially in applications like
radio astronomy, where sensitivity to faint signals is crucial. Currently, am-
plifiers based on HEMTs boast state-of-the-art performance below 100 GHZ,
outperforming other amplifiers such as silicon-germanium (Si-Ge) heterojunc-
tion bipolar transistors (HBTs). Figure 1.2 is a plot of the noise temperature
of state-of-the-art HEMTs compared to their SiGe HBT counterparts.

This figure illustrates that although HEMTs provide comparatively good noise
performance, there is still room for improvement as the best devices still pos-
sess a noise temperature ∼ 4× TQL, where TQL is the standard quantum limit
for noise [5]:

TQL =
hf

kB
(1.1)
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Figure 1.3: Figure showing that the noise sources in HEMTs are typically
interpreted using an equivalent circuit proposed by Marian Pospieszalski in
1989 [6]. In this model, the noise properties of an intrinsic chip are treated
by assigning equivalent temperatures Tg and Td to the resistive elements rgs,
the gate source resistance, and gds, the output conductance of the equivalent
circuit.

Here, h is Planck’s constant, f is frequency of operation, and kB is the Boltz-
mann constant.

Since noise in HEMTs is typically interpreted as noise arising from the random
thermal motion of electrons in a resistor, noise models of HEMTs generally as-
sign equivalent physical temperatures to resistors in the HEMT (see Fig. 1.3).
For example, in the widely adopted Pospieszalski model, the noise contribu-
tion from the input (gate) terminal is well represented by setting this noise
temperature to the physical temperature of the device [6]. Therefore, cool-
ing the device generally results in a reduced noise temperature and improved
noise performance. On the contrary, the drain-source resistance which is as-
signed a drain temperature Td is typically employed as a fitting parameter.
The drain noise determines the minimum achievable noise temperature of a
HEMT and despite its significance, there is no consensus yet as to its physical
origin. Understanding the microscopic mechanisms behind Td would be crucial
to effectively mitigate its impact on HEMT noise performance.
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1.2 First-principles approach to semiconductor property prediction

As mentioned in the previous section, the dynamics of electron transport in
devices is significantly influenced by electron-phonon interactions. In recent
years, there has been substantial advancement in first-principles methodologies
to study electron-phonon interactions that integrate density functional theory
[7]. The study of electrons in materials presents a complex many-body prob-
lem that necessitates the application of statistical principles to describe funda-
mental characteristics of materials, and approximations are often required to
make real progress in establishing quantitative theories. The most commonly
employed approximation is the independent-electron approximation. In this
approach, each electron acts in an effective potential, independent of other
electrons.

Density functional theory

Density functional theory (DFT) provides a rigorous way to describe the elec-
tron characteristics of atoms, molecules, and solids, allowing for prediction of a
vast array of properties such as lattice parameters, electronic band structures,
optical absorption, electrical and thermal conductivity, and superconductivity
to name a few. By minimizing the total energy of a system with respect to the
electron density, DFT enables the determination of ground-state properties
and offers valuable insights into the behavior of electrons in matter.

The fundamental principle of DFT is that any property of a many-body system
can be written as a functional of the ground state density of that system. The
modern DFT formulation was proposed by Hohenberg and Kohn in 1964 [8]
when they showed that all properties of a many body system can be viewed
as unique functionals of the ground state density. For a system of interacting
particles the Hamiltonian is of the form:

H = − ℏ2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i ̸=j

e2

|ri − rj|
(1.2)

where the three terms on the right hand side of Eq. 1.2 represent the kinetic
energy term, the potential energy term due to the nuclei, and the electron-
electron interactions, respectively. Hohenberg and Kohn’s formulation is based
on two theorems:

1. For a system of particles interacting within an external potential,
the potential is determined uniquely by the ground state particle
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density of the system.

2. A universal functional for the energy in terms of the density can
be defined for any external potential, and the ground state energy
of the system is the global minimum of this functional. The density
that minimizes the energy is the exact ground state density of the
system.

A consequence of the first theorem is that given the ground state density, the
many-body wavefunctions of all states are determined (since we have deter-
mined the density and thus the Hamiltonian), thus all properties of the system
are determined. From the second theorem, it follows that to determine the
ground state density and energy, the energy functional is sufficient. The proofs
of the theorems are straightforward and can be found in several electronic
structure texts, so we do not repeat them here but highlight the important
points. For the first theorem, the proof relies on considering two different (by
more than a constant) external potentials that result in the same ground state
density. By considering expressions for the energy in both cases, one can arrive
at a contradictory statement which then mandates that there cannot be two
different external potentials that lead to the same ground density.

For the proof of the second theorem, we first define a new quantity F [n] that
is a functional of the density, such that it contains information about the
interacting electron system. We can again show by similar arguments in the
previous case that if F [n] is known, then minimizing the total energy with
respect to the density would lead us to the exact ground state density. Note
that these theories by themselves do not prescribe a way to solve the many-
body problem. This is where the Kohn-Sham approach to the many-body
problem comes in handy.

The Kohn-Sham auxiliary system and electronic band structure

The Kohn-Sham approach proposed in 1965 [9] replaces the original interacting
many-body system with an auxiliary system that is easier to solve, i.e. a non-
interacting system. This approach makes a key assumption: that the ground
state density of the interacting system is equal to that of the auxiliary, non-
interacting system. This leads to a more tractable problem where all the
interaction terms are buried into another functional of the density called the
exchange-correlation functional. Following a variational approach, we obtain
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the Kohn-Sham equations in the form of independent particle equations:

HKS[n(r)]ψi(r) = ϵiψi(r) (1.3)

where i labels an electron, ϵ are the eigenvalues or Kohn-Sham energies, and ϕ
is the Kohn-Sham orbital. Note that the Kohn-Sham eigenvalues and eigenfuc-
tions do not possess physical meaning and thus do not correspond to physical
energies or wavefunctions of the system. The Kohn-Sham Hamiltonian is given
by:

HKS = − ℏ2

2me

∇2 + V KS(r) (1.4)

Here, V KS includes ionic contributions (V ion), Hartree contribution (V H), and
the exchange-correlation potential (V xc) [10]:

V KS = V ion + V H + V xc (1.5)

Phonon properties and electron-phonon matrix elements

The interaction of electrons with lattice vibrations is often the most important
interaction type, and it is the only type we consider in this thesis. For example,
it is well-established that the electron mobility of a defect-free semiconductor
near room temperature is limited by interaction with lattice vibrations [11].
We will investigate electron-phonon interactions using DFT as a backbone.

We can obtain the total potential energy of electrons and nuclei in an “infinite”
solid with periodic boundary conditions using standard DFT techniques. To
study lattice vibrations, we begin by expanding this potential energy in the
ionic displacements at second order. This is the harmonic approximation. In
this expansion, the second derivatives of the energy with respect to the atomic
coordinates define the interatomic force constants, and the Fourier transform
of the force constants is known as the dynamical matrix. Upon diagonalization,
we obtain the normal modes of vibration, also known as polarization of the
wave. Using creation and annihilation operators one can show that these
classical normal modes are related to quanta of lattice vibrations, or phonons
[7].
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For a 3-dimensional crystal with N=2 atoms in the primitive unit cell, the
dynamical matrix is a 6× 6 Hermitian matrix. The eigenvalues of the matrix
are 3×N = 6 phonon frequencies for each wavevector, corresponding to the 6
polarizations and constituting what is known as the phonon dispersion of the
crystal. There are three phonon branches known as the acoustic branches, that
vanish as q → 0, while the other 3 branches are known as optical branches.

We have now discussed electronic bands and phonon dispersion of crystals.
The last major ingredient we need before discussing how to obtain observables
is the electron-phonon matrix element. The electron-phonon matrix element
describes the coupling between an electron and a phonon and has the form:

gmnν(k,q) = ⟨umk+q|∆qνv
KS |unk⟩uc (1.6)

where u are Bloch-periodic components of the Kohn-Sham (KS) wave func-
tions, ∆qνv

KS is the variation in the KS potential due to lattice vibrations
experienced by electrons, and the integral is over one unit cell. Here, the KS
potential is typically expanded to first order in the atomic displacements to
obtain ∆qνv

KS. One approach to obtain the scattering potential ∆qνv
KS in the

DFT framework is to construct a supercell consisting of repeated integer units
of the unit cell, displace an atom by a small amount, and calculate the restoring
forces on the other atoms. This is known as the frozen-phonon method. This
method may not be suitable for calculating matrix elements corresponding to
long wavelength phonons because the supercell may become too large for com-
putational feasibility [7]. Another approach, which we adopt in this thesis, is
using density functional perturbation theory (DFPT) [12], where the dynami-
cal matrices are directly computed at arbitrary phonon momenta. DFPT has
the advantage that ∆qνv

KS can be computed using just the unit cell. Once we
obtain the electron-phonon matrix elements, the electron-phonon scattering
rates can be derived [7]. They have the form:

Γnk(T ) =
2π

ℏN
∑
mνq

|gmnν(k,q)|2
[
(Nνq + 1− fmk+q)δ(ϵnk − ϵmk+q − ℏωνq)

+ (Nνq + fmk+q)δ(ϵnk − ϵmk+q − ℏωνq)
]

(1.7)
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Here, ϵ are quasiparticle or band energies, ωνq is the frequency of a phonon
with wavevector q and branch index ν, and f and N are electron and phonon
occupation functions that describe the probability that a state is occupied. The
relaxation time of a state is the inverse of the scatterig rate, τnk = (Γnk)

−1

Wannier interpolation

The expression in Eq. 1.7 requires a dense electron and phonon grid in the
Brillouin zone, typically ∼ 3 orders of magnitude greater than that used in
DFT and DFPT calculations. This computational cost is not feasible for DFT
calculations, so a typical process is to first calculate the electron and phonon
properties on a coarse k and q grid, e.g. 10× 10× 10, and then interpolate to
a fine grid ∼ 100 × 100 × 100. The most widely used scheme, which we also
adopt in this work, is Wannier interpolation [13, 14]. Wannier functions are
real-space, localized representations of the Bloch states (for example, the Bloch
states obtained from a DFT calculation) and provide a physical picture of the
bonding characteristics in a system. They can be constructed from a unitary
transformation of the initial Bloch states, such that the original Hamiltonian
can be expressed in this basis. A Fourier transform back to reciprocal space
then yields the desired interpolation onto an arbitrary grid.

Boltzmann transport theory

The Drude model, developed by Paul Drude in 1900 [15], is a simple, classi-
cal model that provided a basic framework of understanding the behavior of
electrons in metals. Some of the key features of the model include the incor-
poration of scattering mechanisms with ions that limit the conductivity of the
material, an assumption of free electrons moving in straight lines between col-
lisions, and neglect of electron-electron and electron-ion interactions (except
for collisions). The electrical mobility in the Drude model is given as:

µ =
eτ

m
(1.8)

where τ is a phenomenological relaxation time, e is the elementary charge
and m is the electron effective mass. Since Drude, significant progress has
been made to develop more sophisticated transport models that capture im-
portant physical processes in materials. Following the advent of DFT and
DFPT, some of the earliest ab initio studies on electron mobility employed
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the Boltzmann Transport Equation (BTE) with varying approximations [16,
17, 18, 19]. The BTE describes the evolution of the distribution function of
a particle in the presence of an external field. Boltzmann initially formulated
the equation for dilute gases, where the motion of individual gas molecules
is governed by collisions with other molecules. He considered the probability
distribution of particles in both position and momentum space. The key idea
in Boltzmann’s work was the consideration of particle collisions, which lead
to changes in momentum and position. He introduced the concept of a col-
lision integral to describe how quasiparticles change their momentum due to
interactions. Boltzmann’s initial work was focused on gases, but the equation
could be extended to describe the behavior of particles in a solid. In this
case, quasiparticles are typically electrons, and the collisions are often due to
interactions with other electrons, lattice vibrations (phonons), and impurities.

The distribution function of an electron f(r,k, t) is the probability that it has
wave vector k at time t and position r. We can start by assuming that the
rate of change of f(r,k, t) can be written as:

∂f(r,k, t)

∂t
=

(
∂f

∂t

)
drift

+

(
∂f

∂t

)
coll

(1.9)

where the drift term captures the effect of external forces and the collision
term (coll) captures internal collision processes. One assumption in Eq. 1.9 is
that the external field does not couple directly with collisions in the system, an
assumption that could be invalid in cases of very strong external fields or strong
collisions. The drift term may be obtained by considering the distribution of
particles in a small phase space volume dkdr drifting to a nearby small volume
dk′dr′ in a time ∆t [20]:

(
∂f

∂t

)
drift

= −
[
∂f

∂k
· 1
ℏ

(
eE + v ×B

)
+
∂f

∂r
· v

]
(1.10)

Here, E and B represent applied electric and magnetic fields, respectively,
v = dr

dt
is the time rate of change of r. The collision term describes the effects

of collision or scattering processes on f(r,k, t) and can be derived using Fermi’s
Golden Rule. This term will be discussed in more detail in Chapter 3. The
BTE we are interested in solving is therefore:
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∂f

∂t
+
∂f

∂r
· v +

∂f

∂k
· 1
ℏ

(
eE + v ×B

)
=

(
∂f

∂t

)
coll

(1.11)

The second term on the left hand side of this equation describes diffusion,
and the third term captures effects of the applied external fields. Solution
of Eq. 1.11 for f(r,k, t) leads us to several transport coefficients which are
Brillouin zone integrals of f(r,k, t). Further, some of the coefficients we are
interested in (e.g. electrical conductivity) are steady-state properties, so we
can often ignore the time derivative in Eq. 1.11. The primary difficulty of the
BTE arises from the collision term which ideally should include all relevant
scattering processes in the material.

1.3 Outline of thesis

In Chapter 2, we give an introduction to the principles of operation of HEMTs,
describe its characteristics, important figures of merit, noise sources and review
previous explanations of the physical origin of noise in these devices. We
then propose a new theory of drain noise in HEMTs as a type of partition
noise arising from real-space transfer of hot electrons from the channel to the
barrier. The theory accounts for the magnitude and dependencies of the drain
temperature and suggests strategies to realize devices with lower noise figure.

In Chapter 3, we give an overview of the numerical methods we adapted to
solve the BTE, and apply this ab initio method to investigate two-phonon
electron and hole scattering processes in boron arsenide. We find that inclu-
sion of these higher-order processes reduces the computed room-temperature
electron and hole mobility in BAs by around 40% from the one-phonon value,
resulting in an underestimate of experimental values by a similar percentage.
We discuss the apparent disagreement between our results and experiment and
suggest an experimental approach to test our predictions using luminescence
spectroscopy.

Motivated by our results in Chapter 3, we quantify the effect of phonon drag on
the electron mobility in boron arsenide – an effect that coulld possibly overes-
timate the obtained mobility from recent experiments. We find that at carrier
densities that these experiments are performed, the drag contribution to the
mobility is around 25% and could be partially responsible for the disagreement
of our two-phonon results with experiment.
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C h a p t e r 2

THEORY OF DRAIN NOISE IN HIGH ELECTRON MOBILITY
TRANSISTORS BASED ON REAL-SPACE TRANSFER

This chapter has been adapted, in part, from:

Iretomiwa Esho, Alexander Y. Choi, and Austin J. Minnich. Theory
of drain noise in high electron mobility transistors based on real-space
transfer. Journal of Applied Physics 131.8 (2022).

Low noise microwave amplifiers based on HEMTs are widely used in scientific
applications ranging from radio astronomy [21] to quantum computing [22, 23].
Decades of progress in device fabrication have yielded significant advances in
figures of merit such as transconductance [24, 25, 26], gain [27], unity gain
cutoff frequency [28, 29, 30], maximum oscillation frequency [31], and power
consumption [32, 33, 34].

A HEMT utilizes an interface between two materials of different band gaps
as the channel. The wide band gap material is doped, thus resulting in the
transfer of electrons from the wide band gap material to the conduction band
of the lower band gap material to occupy lower energy states [35]. These
electrons are confined in a potential well and form the two dimensional elec-
tron gas (2DEG). The 2DEG exhibits higher electron mobility as compared
with the electrons in the doped channel of the MOSFET because of reduced
ionized impurity scattering by the dopants. HEMTs typically have channel
mobilities around 104 cm2 V−1 s−1 at room temperature (and 105 cm2 V−1

s−1 at cryogenic temperatures) and a typical dopant concentration of 1019 cm
−3 , compared to Si MOSFETs at 103 cm2 V−1 s−1 [36, 37].

The basic layout of a HEMT is shown in Fig. 2.1. The HEMT is usually grown
by metalorganic chemical vapor deposition (MOCVD) or molecular-beam epi-
taxy (MBE). In MOCVD, growth of crystalline layers is by chemical reaction
in a chamber, leading to deposition of materials on a substrate. In molecular-
beam epitaxy, beams are directed in an ultra-high vacuum environment at a
substrate where they react to create the required layers.

The HEMT is grown on a substrate material such as GaAs, SiC, or InP. A
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Figure 2.1: Epitaxial structure of a HEMT showing the material layers,
metallic contacts, and locations of the delta doping layer and 2DEG. The
barrier consists of a thin, delta-doped layer of donor electrons that migrate
to the channel and form the quantum well. There is a spacer between the
barrier and channel that physically isolates the conduction electrons in the
channel from the ionized dopants in the barrier which acts to reduce
impurity scattering and enhances the mobility. Figure adapted from [38].

buffer is introduced between substrate and channel to mitigate effects of lattice
mismatch such as cracks and dislocations between substrate and channel. The
buffer is typically a few hundred nanometers thick. The channel, about 15
nm thick, is the lower band gap material, and a 3 − 10 nm spacer layer is
typically introduced between the channel and the higher band gap material
(barrier) to separate the 2DEG from ionized donors, thereby reducing ionized
impurity scattering. A thinner spacer layer increases sheet charge density
but also reduces electron mobility due to impurity scattering. A thicker layer
improves electron mobility but reduces electron density in the channel. The
barrier is usually 10 - 30 nm. Introducing the dopants as a delta layer in the
transistor has several advantages including reduced gate-to-channel distance,
high carrier density, and enhanced breakdown voltage [39]. The cap layer
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is highly doped (1018 − 1019 cm−3) to reduce the source and drain contact
resistances. Additionally, it protects the barrier surface from oxidation.

The source, drain, and gate contacts provide a mechanism to control the flow of
electrons from source to drain. The source contact is typically grounded, and a
positive bias is applied to the drain contact. This positive bias induces electron
flow from source to drain. The gate is a Schottky contact that modulates
electron concentration in the channel by shrinking the depletion region under
the gate or extending it into the channel.

HEMTs are depletion mode devices: current flows when the drain is biased
with respect to the source even if there is no voltage applied to the gate.
This is a consequence of electron transfer forming the channel when dissimilar
bandgap materials are brought together, in contrast to enhancement mode
devices like the MOSFET where a threshold gate voltage is needed to form
the channel.

DC and RF characteristics

As with the MOSFET, the drain current increases with drain voltage (linear
regime) up until a certain voltage where it saturates (saturation regime). This
saturation is caused by a restriction on further heating of electrons as they emit
optical phonons. In reality, certain mechanisms such as impact ionization and
presence of traps can cause the current to continue increasing beyond the linear
regime [40, 41, 42, 43]. The drain current also increases as the gate voltage
increases, up to a voltage where it saturates, corresponding to the channel
being completely undepleted. Figure 2.2 shows current-voltage characteristics
of an InGaAs channel HEMT at various temperatures. In Fig. 2.2 we notice
that the drain current shows an initial linear increase with the drain voltage
before it appears to reach a point of saturation, at which instead of saturation,
there is a noticeable kink.

There are a number of important electrical characteristics used to evaluate the
performance of transistors, including the transconductance gm, output conduc-
tance go, current gain h21, and current gain cut-off frequency fT . Transcon-
ductance is defined as:

gm =
∂ID
∂VGS

∣∣∣∣
VDS

(2.1)

Transconductance is a measure of the change in output (drain) current with
respect to a change in input (gate) voltage.
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Figure 2.2: DC IV characteristics of a GaAs HEMT at different
temperatures with an applied gate-source voltage VGS = −0.2 V. The current
initially increases linearly with voltage and then approaches saturation due
to optical phonon emission. The observed kink is likely due to impact
ionization or presence of traps. Data obtained from Bekari Gabritchidze and
used with permission.

The output conductance gds measures the variation of drain current with re-
spect to variations in drain voltage. It is defined as

gds =
∂ID
∂VDS

∣∣∣∣
VGS

(2.2)

Ideally, gds = 0 in saturation since the drain current does not depend on drain
voltage in this regime.

The current gain h21 mentioned above refers to the small-signal current gain,
that is, id/ig when an additional small-signal voltage is applied to the gate,
where id and ig are the small-signal drain current and small-signal gate current,
respectively. h21 is given by

h21 =
gm

jωCgsi

(2.3)
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Cgsi is the intrinsic gate-source capacitance. As the frequency ω of the input
signal increases, the gate current increases, and at a certain frequency, the
gate current equals the drain current. This is because the impedance from the
capacitor becomes small relative to the gate resistance as ω gets large enough.
The current gain cut-off frequency, fT , is defined as the frequency at which
the small-signal current gain becomes unity.

fT =
gm

2πCgsi

(2.4)

fT is a widely used figure of merit because it provides an indication of the high
frequency behavior of transistors. State–of–the–art InGaAs channel HEMTs
with fT > 600 GHz have been reported [44, 45].

Noise measurements

For low noise applications, it is important to accurately determine how much
noise a device adds to an input signal. The noise figure of a device is a figure of
merit that quantifies how much the signal to noise ratio of a signal is degraded.
One can imagine a device with gain G and a signal to noise ratio (SNR) at
the input SNRi = Si/Ni where a signal Si is applied at the input and Ni is the
input noise. We know that the output signal So = SiG, therefore the signal to
noise ratio at the output is SNRo = SiG/No with No being the output noise.
The noise factor is defined as the ratio of these quantities. That is,

F =
SNRi

SNRo

=
No

NiG
(2.5)

The noise figure is defined as

NF = 10log10
SNRi

SNRo

= SNR
i,dB − SNR

o,dB (2.6)

The noise figure is usually measured with a spectrum analyzer using the Y-
factor technique. In this technique, one uses a noise source with two temper-
ature states. The high temperature state has the higher output noise power
and the low temperature state, the reduced noise output. For each of the
noise input states, the noise source is applied to the device input and the noise
power at output measured. The noise figure of the device is then calculated
from these measurements. The Y factor term is defined as the ratio of the
measured noise output power at the high temperature state to the noise out-
put power at the low temperature state. If G remains constant for these two
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states, the device noise temperature can be expressed as [46]:

TN =
TON

source − Y TOFF
source

Y − 1
(2.7)

Strictly speaking, the noise obtained through this procedure is the total sys-
tem noise temperature, including the device noise contribution as well as the
measurement system’s contribution. Since we are typically interested in the
device’s noise temperature, a correction must be applied to isolate its contri-
bution. This correction is done with a cascaded noise factor equation [46],
resulting in an expression for the actual device temperature of the form:

TN,1 = TN − TN,2

G1

(2.8)

where TN,2 is the noise temperature of the measurement system and TN,1 is the
corrected device noise temperature. It is clear from Eq. 2.8 that if device gain
G1 is high, the measurement system’s contribution to Eq. 2.7 will be minimal.

2.1 Noise sources in a HEMT

There are several potential sources of noise when operating a HEMT device
or amplifier. Some of these are thermal noise, hot electron noise, flicker (1/f)
noise, thermal noise, and generation-recombination (G-R) noise. Flicker noise
is associated with traps and defects and has an inverse frequency dependence,
which is why it is also known as 1/f noise. As one may expect, this type of
noise becomes less important at high frequencies. G-R noise is related to trap-
assisted capture and emission of electrons and is only an important source of
noise for frequencies less than 10 MHz [47]. The dominant noise sources across
various frequency ranges are shown schematically in Fig. 2.3. For microwave
frequencies, the important noise mechanisms are hot electron noise, thermal
noise, and shot noise. We discuss each of these in turn.

Hot electron noise

The term “hot electron” refers to an electron gas temperature that is higher
than that of the lattice. In transistors, this high temperature state is usually
a result of high electric fields that can be achieved by the application of a
source-drain voltage on the order of 1 V for a typical source-drain distance of
∼ 1 µm. The observed current fluctuation associated with the hot electron
gas is known as hot electron noise. Hot electron noise can be a result of
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Figure 2.3: Schematic showing primary noise sources across frequency
ranges. 1/f flicker noise is typically dominant in the sub-MHz range, while
generation-recombination noise is dominant in the sub-GHz range. Noise
sources that are thermal in nature and lead to carrier velocity fluctuations
tend to be dominant for frequencies greater than 1 GHz. Figure adapted
from [47].

intervalley processes in multi-valley semiconductors [48] and/or an analogous
process known as real-space transfer (RST) where electrons are excited out of
a confined quantum well into an adjacent layer.

Thermal noise

The random motion of electrons in an electrical conductor due their thermal
energy is known as thermal noise [49, 50], and is one of the most important
noise sources in devices. This noise mechanism is also known as Johnson-
Nyquist noise. The corresponding power spectral density is: [51]:

v2n = 4kBTR∆f (2.9)
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where kB is Boltzmann’s constant, T is the physical temperature of the device,
R is the resistor value, and ∆f is the bandwidth. Thermal noise is proportional
to physical temperature, and for this reason, electronic devices are cooled
to cryogenic temperatures to achieve better noise performance. Note that a
HEMT can be modeled as a single noisy resistor - in this case the temperature
T will represent an elevated characteristic noise temperature, equivalent to the
noise temperature in Eq. 2.7.

Shot noise

Shot noise is a type of noise that arises due to the fact that charge is quantized,
and is a quantification of the statistical nature of the arrival of electrons at a
terminal. The shot noise spectrum is:

i2 = 2qI∆f (2.10)

where q is electronic charge and I is current. Shot noise occurs when there is
a need for a DC current to traverse a potential barrier, and the stochastic or
random nature of this traversal is what gives rise to shot noise.

2.2 Experimental characterization of noise parameters

Determination of the noise parameters of a HEMT requires a small-signal
model. A small-signal model is a simple representation of an electronic circuit
that is used to analyze its behavior under small variations around a specific op-
erating point, and can provide valuable information about device parameters,
including but not limited to resistances, capacitances, and noise parameters.

Small signal models are typically made up of intrinsic and extrinsic compo-
nents. Parasitic effects specifically related to the drain, gate, and source con-
tacts are accounted for by the extrinsic component. These parasitic effects
are categorized into capacitances, inductances, and resistances. On the other
hand, the intrinsic component represents the HEMT’s active region. It is
dependent on the biasing conditions and can also be categorized into capaci-
tances, resistances, conductances, and a transit time. In context of this thesis,
we will narrow our attention to only a subset of these parameters. An impor-
tant intrinsic parameter is the channel resistance, Rds. This is the resistance
of the channel under the gate and can be alternatively represented as the in-
verse of the output conductance in Eq. 2.2. Another important parameter



20

is the gate-source capacitance, Cgs. This is the capacitance formed by the
gate towards the source side and the 2DEG. Note that because this capaci-
tance is directly related to the depletion layer under the gate, it is also known
as depletion capacitance. The gate-drain capacitance Cgd is the capacitance
formed by the gate towards the drain side and the 2DEG. Similarly, the gate-
source resistance is represented as Rgs. These and other parameters can either
be extracted directly or though an optimization procedure. Direct extraction
requires obtaining the voltage dependence of HEMT scattering parameters (S-
parameters) to obtain the intrinsic parameters, and a de-embedding process
to obtain the extrinsic parameters. More details of this type of procedure are
given in Refs. [52]. After acquiring the intrinsic and extrinsic parameters, we
can proceed with modeling to obtain the noise parameters.

2.3 Pospieszalski’s noise model

HEMT noise can be modeled with a two-port network with voltage (vn) and
current (in) noise sources added at the input gate terminal of the transistor,
with no correlation assumed between these noise sources. A schematic of this
two port network is shown in Fig. 2.4. The most widely adopted scheme to
obtain the noise parameters of a HEMT based on a noisy two port network
is the Pospieszalski model [6]. In this model, uncorrelated thermal voltage
and noise sources are assigned to the intrinsic resistive elements of the HEMT,
and are related to the equivalent physical temperatures of the resistors. The
output conductance gds, with a physical temperature represented as the drain
temperature Td, is the only unknown parameter and thus is a fitting parameter.
An equivalent gate temperature Tg is assigned to the resistive element Rgs. The
minimum noise temperature of the device can thus be expressed in terms of
the intrinsic parameters as [6]:

Tmin = 2
f

fT

√
gdsRgsTgTd +

( f

fT

)2

·R2
gsg

2
dsT

2
d + 2

( f

fT

)2

·RgsgdsTd (2.11)

In this expression, Tg is closely related to the gate temperature and is typically
assumed to be equal to the ambient temperature. Therefore, all parameters
in Eq. 2.11 are known except Td, which can be obtained through a fitting
procedure. Nonetheless, given that Td is merely a parameter used for fitting,
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Figure 2.4: Noisy two port representation of a HEMT composed of a
noiseless HEMT with added external noise sources vn and in.

it raises the question of its physical origin, an answer which would eventually
pave way for devices with better noise performance.

2.4 Previous explanations of the origin of Td
Generation of dipole layers

The physical origin of the drain noise, Td, is still up for debate, but there
have been several proposed theories. One explanation given by Statz and
colleagues [53] interprets drain noise in the saturation regime as arising from
the generation of dipole layers that end up drifting to the drain contact. We
start from the expression of the basic noise current density source given by
Shockley and van der Ziel [54, 55, 56]:

Jn(x)Jn(x′) =
4q2Dn∆f

A
δ(x− x′) (2.12)

where Jn is the noise current density at x, D is the high field diffusion coeffi-
cient, n is the carrier density, and A is the cross-sectional area. Assuming that
the noise current may be interpreted as a distribution of mutually uncorrelated
spatial and time impulses, Eq. 2.12 may be written for the autocorrelation of
the current density at point x as:

(AJn(x))2 =
4q2DnA∆f

∆x
(2.13)

Note that we have substituted δ(x − x′) = 1/∆x for x = x′. One then draws
a comparison with the shot noise spectrum given in Eq. 2.10. For shot noise,
current impulses occur at a rate I/q. In Eq. 2.13, one may follow a similar
interpretation and conclude that it represents a sequence of current impulses
occurring at the rate:
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r =
2DnA

∆x
(2.14)

The authors then describe this as each of the current impulses result in a
displacement of charge q over a distance ∆x, and thus the formation of a
dipole layer of strength q∆x/A. Further, they say that since these impulses
occur in the saturated regime, the dipole layers drift unchanged to the drain
contact and conclude that the spontaneous generation of these dipole layers
can be identified as the source of drain noise.

Suppressed shot noise

More recently, drain noise in HEMTs and field effect transistors (FETs) in
general has been attributed to a suppressed shot noise mechanism [57]. The
justification for this attribution is based on the fact that shot noise is propor-
tional to current and experimentally, Td is known to be proportional to the
drain current. The drain current noise spectrum is then represented in a shot
noise form as:

i2ds = 4kBTdgds∆f = 2FqId∆f (2.15)

where Id is drain current and F is a shot noise suppression factor and is known
as the Fano factor. It was posited that in the limit of very short gate lengths,
F approaches 1 and drain noise becomes a pure shot noise mechanism arising
from ballistic transport, but for typical FETs, F ∼ 0.1, suggestive of quasi-
ballistic transport. A few issues arise with this theory. First, one requirement
for this interpretation to be physically correct is that F be independent of
device bias (the shot noise dependence on bias is already captured in Id of
Eq. 2.15) and ambient temperature. However, a few studies have reported
a dependence of Td on physical temperature and bias [58, 59, 60], although
the dependence on physical temperature is disputed [61]. Furthermore, it is
well-established that electrons undergo sufficient disruptive electron-electron
and electron-phonon collisions [62, 63] as they travel from source to drain to
call into question the physical picture of quasi-ballistic transport in a HEMT.

2.5 Real-space transfer and drain noise

None of the previous explanations of drain noise discussed above have been
widely accepted or confirmed experimentally. The explanation based on gen-



23

Figure 2.5: Drain noise temperature versus physical temperature showing
the contribution from the channel thermal noise. This figure indicates there
is another source of drain noise in addition to the thermal contribution.
Figure obtained from Ref. [64].

eration of dipole layers is difficult to confirm experimentally while the expla-
nation based on a suppressed shot noise mechanism is inconsistent with the
modern understanding of hot electron transport in semiconductor materials.
A starting point towards determining the mechanism behind drain noise is to
first account for the thermal noise contribution that arises from the conduc-
tance of the HEMT channel. Should thermal noise predominantly contribute
to the drain noise magnitude, an additional mechanism need not be consid-
ered. Figure 2.5 is a plot of the drain noise temperature Td versus physical
temperature, obtained from Ref. [64]. The trend in this figure indicates that
the channel thermal noise contribution is not sufficient to explain the magni-
tude of Td, and another mechanism should be primarily responsible for the
magnitude of the drain noise.

To determine this additional mechanism, we recognize that there exists a large
body of work that extensively investigated high-field transport [65, 66, 67], en-
ergy relaxation [68, 69, 70, 62, 71, 63, 72], microwave noise [73, 74], and related
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properties in 2D quantum wells [75, 76, 77, 78, 79]. The physical picture of
high-field transport obtained from these studies is that electrons are heated
by the electric field and lose energy primarily by optical phonon emission.
Photoluminescence experiments provide evidence that electrons heated by the
field scatter rapidly enough with each other to maintain a distribution char-
acterized by a temperature that is higher than the lattice temperature [66].
If the electron temperature is sufficiently high, electrons may thermionically
emit over the confining potential at the heterointerface between channel and
barrier and thereby leave the channel in a process known as real-space transfer
(RST). This process was originally proposed as a means to realize heterostruc-
ture devices exhibiting negative differential resistance (NDR), where the NDR
originates from an increased electron population in the lower mobility barrier
layer as the drain voltage is increased [80]. Devices exploiting the effect, such
as charge injection transistors [81] and negative resistance field effect transis-
tors [82], were reported shortly thereafter. RST has also been observed in
HEMTs under forward gate bias and high drain voltage [83, 84].

Observing NDR in a HEMT requires a non-negligible fraction of channel elec-
trons to emit into the low-mobility barrier layer. However, even if RST is
not evident in current-voltage characteristics, it may contribute to microwave
noise as a type of partition noise between two dissimilar current paths, similar
to intervalley noise [85, 86]. Microwave noise in semiconductor quantum wells
and devices has been previously attributed to RST. For instance, Aninkevi-
cius et al. concluded that RST was the origin of noise in an AlGaAs/GaAs
heterostructure at 80 K based on the measured dependencies of noise temper-
ature on electric field and conduction band offset, and they further attributed
intervalley noise suppression to RST at high fields [73]. In HEMTs, Feng et
al. attributed drain noise partially to RST [87], although evidence supporting
the claim was not provided. Other works reported on a RST process dom-
inating low frequency noise characteristics of AlGaAs/InGaAs HEMTs [88].
Monte Carlo simulations have reported RST to affect the transit time [89]
and contribute to gate noise [90]. Despite these prior studies in which noise
in HEMTs was attributed to RST, a systematic examination of whether RST
can account for the reported magnitude and trend of microwave drain noise in
the context of the Pospieszalski model is lacking.
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2.6 Theory

Consider a two-dimensional electron gas (2DEG) with an applied longitudinal
electric field between the source and drain contacts such that electrons flow
from source to drain. We may focus only on the region under the gate by
incorporating the other regions as access resistances [91]. At the low-noise
bias VGS ∼ −0.1 V, the channel is pinched off, leading to an electric field with
peak value ∼ 100 kV cm−1 [92] under the drain side of the gate to maintain the
current of around tens of mAmm−1 [93]. The electric field heats the electrons
to a temperature that may be sufficient for electrons to thermionically emit
out of the channel; if so, current will flow through both the channel and the
barrier to the drain contact. The barrier is typically of much lower mobility
than the channel owing to ionized impurity scattering by the dopants, and
therefore NDR will result from RST if a sufficiently large fraction of electrons
transfer to the barrier.

Even if no changes in the IDS−VDS characteristics due to RST can be detected,
non-negligible current noise may still be generated by RST. The generated
noise can be viewed as a type of partition noise owing to the different mobilities
of the channel and barrier. As given in Eq. 4.21 of Ref. [67], the spectral noise
power of this mechanism can be expressed in terms of frequency ω and electric
field E by:

Sj(ω, E) =
4e2n1n2(vd1 − vd2)

2τ

V0n(1 + ωτ)2
(2.16)

where τ is the characteristic time for electrons to transfer from channel to
barrier; n1, n2, vd1, and vd2 are average carrier concentrations and velocity in
the channel (index 1) and barrier (index 2), respectively; n = n1 + n2; and V0
is the 2DEG volume.

Equation 2.16 can be simplified further with the following considerations.
First, we take n2 ≪ n1 because NDR is not observed at the low-noise bias,
constraining the maximum magnitude of n2. Second, vd2 ≪ vd1 since the
spacer mobility is much less than the channel mobility. Finally, ωτ ≪ 1 in
microwave applications so that Eq. 2.16 becomes:

Sj(E) =
4e2n2v

2
d1τ

V0
(2.17)
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Let V0 = LWd, whereW and d are the gate width and 2DEG thickness, respec-
tively, and L is a characteristic length over which electrons are hot enough to
undergo RST. To facilitate comparison with the Pospieszalski model, we note
that the spectral density of current fluctuations (SI) is related to that of cur-
rent density fluctuations (Sj) as SI = A2Sj where A = Wd. Then, SI can be
expressed as:

SI(E) =
4e2ns2v

2
d1Wτ

L
(2.18)

where ns2 = dn2 is the barrier sheet density and we have assumed that d is on
the order of the barrier thickness.

This partition noise is added at the output of the HEMT. In the Pospieszalski
model, the output spectral noise power SI = 4kBTdgDS is parametrized by a
drain temperature, Td, of the drain conductance gDS. To connect Eq. 2.18 to
the Pospieszalski model, we equate the spectral noise powers and solve for Td.
A simple expression for the drain temperature can then be obtained as:

Td =
e2v2d1ns2τ

kBg′DSL
(2.19)

where g′DS = gDS/W is the drain conductance per width. From Eq. 2.19,
Td is observed to depend on ns2, showing a direct relationship between the
fraction of electrons transferred into the barrier and Td. ns2 in turn depends
on the electron temperature, the conduction band offset between channel and
barrier, and the probability for a hot electron to emit out of the channel. We
note that Td should be regarded as the additional noise contribution from RST
over that contributed by the channel resistance which could be computed using
the methods of Ref. [94].

2.7 Results

We assess the validity of the theory by first presenting experimental evidence
of the RST process in modern HEMTs at cryogenic temperatures. Current-
voltage characteristics of an InP HEMT studied in Ref. [29] were measured at
5 K. The data, courtesy of Junjie Li and Jan Grahn at Chalmers University
of Technology, are shown in Figure 2.6a for −0.42 V ≤ VGS ≤ 1.14 V. Typical
I−V curves are observed for most values of VGS, including those corresponding
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Figure 2.6: Current-voltage characteristics of a HEMT illustrating negative
differential resistance (NDR). (a) IDS − VDS characteristics of a 2 × 100 µm
gate width, 150 nm gate length InP HEMT at 5 K for several VGS. (b)
Magnified view of current-voltage characteristics in (a) under forward bias.
NDR is observed for VGS ≳ 1.05 V and VDS ≳ 1.1 V. Data courtesy of Junjie
Li and Jan Grahn, Chalmers University of Technology.

to depletion (VGS ≲ −0.1 V) at the low noise bias. In particular, a positive
output conductance, gDS > 0, is observed for VGS < 1 V.

As VGS increases above 1 V for VDS ≳ 1.1 V, gDS < 0 is observed. A mag-
nified view of these characteristics is shown in Fig. 2.6b, in which NDR is
clearly present. Self-heating can be excluded as the origin as the three curves
in Fig. 2.6b differ in dissipated power by only a few percent yet exhibit quali-
tatively different I − V trends, depending on the value of VGS.

On the other hand, the observed trends qualitatively agree with those reported
in prior studies of NDR devices [95, 96, 97] and HEMTs [98, 84] at similar bias.
In the case of HEMTs, a negative output conductance at forward gate bias
and high VDS ≳ 1 V was attributed to heating of electrons by the source-drain
voltage, leading to increased emission of channel electrons into the barrier and
through the gate terminal as VDS increased. As a result, the drain current
decreased with increasing VDS, leading to a negative output conductance [98,
84]. The forward-biased gate voltage VGS allows sufficient number of electrons
to be emitted into the barrier so that the negative output conductance is
observed. Although we have presented measurements on one HEMT in this
study, the measurements are in qualitative agreement with trends reported
previously [98, 84], suggesting that similar results are observable in HEMTs
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more generally. These considerations therefore support the hypothesis that
RST occurs and could also produce partition noise in modern HEMTs.

We now examine the predictions of the theory and how they compare to the
reported magnitude and dependencies of drain noise. First, to estimate the
magnitude of Td from Eq. 2.19, we must specify numerical values of the various
parameters. We choose L ∼ 100 and g′DS ∼ 50 mSmm−1 [93]. The channel-
barrier transit time, τ , has been estimated to be on the order of picoseconds by
analyzing current reduction in a test structure devised to measure switching
and storage effects in GaAs/AlGaAs heterojunctions [99]. Following Eq. 5.15
in Ref. [79], we choose τ ∼ 1 ps as a characteristic time for the emission
process.

Next, the sheet density in the barrier due to transferred electrons, ns2, is
required. This parameter depends on the channel sheet density in the pinched
off region under the gate ns1; the hot electron fraction η, or the fraction of
electrons that are energetic enough to thermionically emit over the barrier;
and the probability for a hot electron to actually emit, γ; as ns2 ≡ γηns1. The
typical sheet density obtained from Hall measurements is ∼ 3 × 1012 cm−2

[100]. However, the sheet density of relevance to RST is that near the pinchoff
region of the gate where the electron temperature is highest. This value can
be estimated using the typical current at the low-noise bias and the saturated
drift velocity. Monte Carlo simulations have reported the saturated electron
velocity to be vd1 ∼ 5×107cm s−1 for InGaAs HEMTs [101, 102]. Using a value
of IDS ∼ 75 mA mm−1, a typical value at the low-noise bias [93], we obtain
ns1 ∼ 1011 cm−2. For simplicity, we assume that all electrons with sufficient
energy jump the barrier so that γ = 1.

The hot electron fraction η is determined by the conduction band offset ∆Ec

and VGS for a given electron temperature Te. This fraction can be obtained
using standard theory for the current across a Schottky barrier (see Eq. 61 in
Chapter 3 of Ref. [103]) as η = exp(−(∆Ec − qVGS)/kBTe).

Due to the exponential dependence of η on VGS, we neglect the weaker de-
pendence of ns1 on VGS in our analysis. To compute η, we must specify Te

in the channel. We obtained a numerical estimate of its magnitude for a 100
nm gate InAlAs/InGaAs HEMT with VDS = 0.5 V, VGS = 0 V at a lattice
temperature of 300 K using Synopsys TCAD to solve the hydrodynamic and
Poisson equations in a provided template structure [104]. The result is shown
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Figure 2.7: Electron temperature Te versus position along the channel
computed using Sentaurus TCAD for VDS = 0.5 V, VGS = 0 V. Te peaks at
the drain edge of the gate and decreases towards the drain as electrons lose
energy by optical phonon emission.

in Fig. 2.7. We observe that Te equals the lattice temperature at the source,
increases to a peak value at the drain side of the gate edge due to heating
by the electric field, and decreases towards the drain as electrons lose energy
by optical phonon emission. This calculation shows that peak electron tem-
peratures in the HEMT are on the order of 1000 K around the low-noise bias
point, although this value could vary by several hundred K depending on the
device and bias conditions. With Te estimated, we can now compute η. For
∆Ec ∼ 0.5 eV [91] and Te ∼ 1000 K, we find η ∼ 0.3%.

Using these numerical parameters, we can now use Eq. 2.19 to estimate Td.
We find Td ∼ 260 K. This value is of the same order as those reported in mod-
ern HEMTs [93, 105]. Due to uncertainties regarding the exact values of the
parameters in Eq. 2.19, we note that this value of Td should be regarded as an
order of magnitude estimate rather than a precise value. At a qualitative level,
this estimation shows that a relatively small portion of the electron population
appears capable of explaining an appreciable portion of the drain noise mea-
sured experimentally. At the same time, the effect of RST on mobility would
likely not be observable in a HEMT under normal operating conditions due to
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the small value of η.

Figure 2.8: Calculation of drain noise temperature. (a) Drain noise
temperature Td versus IDS. Increasing VGS and hence IDS lowers the energy
barrier for thermionic emission, leading to higher Td. Transfer characteristics
were obtained from Fig. 4.1 of Ref. [93]. (b) Td versus physical temperature
T for ∆T = 1000 K. The occupation of electronic states above the Fermi
energy increases with temperature, and consequently, Td increases with T as
the hot electron fraction η increases.

We now examine the dependencies of Td predicted from Eq. 2.19. Previous
works have reported a dependence of Td on IDS [21, 105] as well as physical
temperature [106, 60, 59]. The present theory predicts a dependence of Td on
VGS since VGS changes the Fermi level of the electrons under the gate, thus
altering the population of hot electrons able to thermionically emit out of the
channel as experimentally shown in Fig. 2.6b.

To verify that this dependence is predicted by the model, we plot Td versus IDS

in Fig. 2.8a. The values of IDS are estimated from the transfer characteristics
of an InP HEMT for VDS = 0.5 V [93]. We observe a dependence of Td on
IDS which compares reasonably with experiments (see Fig. 5 of Ref. [21],
Figs. 4 and 5 of Ref. [105]). In addition to qualitatively reproducing the
experimental drain temperature–drain current relationship, the theory offers
a physical explanation for this dependence as arising from the dependence of
the hot electron fraction on Fermi level, which is controlled by VGS.

We next examine the dependence of Td on physical temperature. Several au-
thors have reported a temperature dependence of Td, as in Fig. 8 of Ref. [106],
Fig. 8 of Ref. [60], and Fig. 3 of Ref. [59]. On the other hand, other noise
measurements were reported to be consistent with a temperature-independent
Td [61]. Importantly, one key observation from Fig. 2.5 is that the tempera-
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ture dependence of the drain noise temperature is largely accounted for by the
thermal noise temperature dependence, and another mechanism such as RST
may be responsible for the residual weak temperature dependence and overall
magnitude. This idea is supported by studies on electron energy in bulk semi-
conductors using Monte Carlo simulations that suggest that at high electric
fields, electron energy possesses a weak dependence on physical temperature
[107]. Because the physical temperature dependence of Td in our model arises
from the electron temperature as discussed above, a weak electron temperature
dependence on the physical temperature would result in a drain temperature
that is also weakly dependent on physical temperature.

However, if RST does possess a physical temperature, we briefly discuss below
how this dependence, shown in Figure 2.8b, may arise. For a non-degenerate
electron gas, the electronic heat capacity is constant [108] so that Te = T+∆T

where ∆T denotes the electron temperature increase and is independent of T .
In this figure, ∆T was chosen as 1000 K so that the computed Td is consis-
tent with reported cryogenic values in modern HEMTs (see Fig. 10 of Ref. [2]).
The figure shows that Td can vary with physical temperature because Te varies
linearly with physical temperature, which in turn affects Td through η. We
observe that this dependence is more pronounced at higher physical temper-
atures, the parameter range studied in Ref. [60]. At lower temperatures
below 100 K, the dependence is weaker and may be more difficult to dis-
cern experimentally relative to room temperature measurements considering
the challenge of accurately extracting the drain temperature from microwave
noise data. The weaker dependence below 100 K may also account for the
conclusions of Ref. [61] that Td is independent of temperature because that
study did not consider temperatures above 100 K. A quantitative comparison
of the calculated dependence to experiment is difficult because Td data are
often reported with IDS held constant, requiring shifts in VGS to compensate
for changes in mobility, conduction band offset, threshold voltage, and related
quantities with temperature. Due to the lack of availability of certain data,
particularly the variation of conduction band offset with temperature, such
changes are not included in the present calculation and will be addressed in
future work.
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2.8 Discussion

We have presented evidence that drain noise in HEMTs can be attributed to the
partition noise arising from RST of electrons from the channel to the barrier.
We now discuss this finding in the context of prior explanations of drain noise.
The first explanation for drain noise in the saturated region was due to Pucel et
al. [109], who described the noise current in terms of the generation of dipole
layers formed by random electron scattering events. However, their theory
did not make testable predictions and so obtaining evidence to support it is
difficult. Other authors have attributed noise in GaAs FETs [110, 111] and Si
MOSFETs [112] to intervalley scattering. However, in modern InP HEMTs the
Γ − L separation in the InxGa1−xAs channel (0.55 eV at 300 K and x = 0.53

[113]) exceeds the conduction band offset so that RST is expected to occur
prior to intervalley transfer. Experimental evidence for this expectation has
been reported in AlGaAs/GaAs heterostructures, where noise at intermediate
fields, below the threshold for intervalley transfer, is attributed to RST [73].

Several works have suggested that drain noise can be attributed to a sup-
pressed shot noise mechanism in which electrons travel quasiballistically from
source to drain [57, 114]. However, various studies of electron transport in
quantum wells indicate that the electron mean free path is sufficiently short
that the transport is not quasi-ballistic as required for the suppressed shot
noise mechanism. For instance, time-resolved differential transmission spectra
indicate that photo-excited electrons thermalize within around 200 fs, implying
that electron-electron scattering is several times faster than this timescale [63].
Taking the electron-electron scattering time as around 20 fs, the correspond-
ing mean free path is around 40 nm, nearly two orders of magnitude smaller
than the ∼ 1 µm source-drain spacing of modern HEMTs. Further, hot elec-
trons lose energy to the lattice on the drain side of the gate by optical phonon
emission with a mean free path of tens of nanometers [62], further disrupting
quasiballistic transport across the channel. These considerations suggest that
electrons undergo sufficient scattering events to prevent the suppressed shot
noise mechanism from contributing to drain noise.

Finally, we consider the predictions of the theory regarding how drain noise
may be suppressed. A large ∆Ec is desired in HEMTs to maximize the channel
sheet density [91]. Our theory predicts that ∆Ec is also important to suppress
RST and hence drain noise. Minimizing RST requires increasing ∆Ec/kBTe
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Figure 2.9: Drain temperature versus barrier mole fraction, x in
InxAl1−xAs. A reduction in Td is observed as x is decreased due to an
increase in ∆Ec.

so that the hot electron fraction decreases. A lower Te can be achieved by
decreasing the InAs content of the channel and hence increasing the effective
mass, but this change must be balanced against the need for high mobility
and hence higher InAs content. An increase in conduction band offset, on the
other hand, can be achieved without affecting the channel by reducing the
InAs mole fraction of the barrier. Studies of HEMTs with barrier composition
(InAs)x, 0.3 < x < 0.5, reported decreased RST in devices for smaller x [115].
However, x must be chosen accounting for the lattice mismatch between the
channel and barrier that can lead to the formation of misfit dislocations that
negatively impact the noise.

We quantify the impact of varied InAs mole fraction in the barrier on Td by
obtaining ∆Ec for each x [115], using these values to calculate the sheet density
in the barrier, and following the same analysis as described in Sec. 2.7. The
result is shown in Fig. 2.9. We observe a marked decrease in Td as x is reduced
from its lattice-matched value of 0.52 to 0.46, followed by a slower decrease
from 0.46 to 0.4. Following Pospieszalski’s noise model, specifically Eq. 26 in
Ref. [6], a factor of ∼ 2 reduction in Td as seen when x changes from 0.52 to
0.46 translates to a factor of 1.4 reduction in the minimum noise temperature.
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This analysis suggests that further improvements to the noise figure of HEMTs
can be realized by optimizing the barrier InAs mole fraction.

2.9 Summary

We started this chapter by introducing HEMTs and motivating the need for
pursing a deeper understanding of the physical mechanisms governing their
noise performance. We surveyed important elements contributing to device
performance, and identified a gap related to the contemporary understand-
ing of drain noise in HEMTs. Drawing inspiration from decades of work on
real-space transfer in quantum well heterostructures, we formulated a a theory
of drain noise in high electron mobility transistors based on microwave parti-
tion noise arising from real-space transfer of electrons from the channel to the
barrier. The theory successfully explains the reported magnitude and depen-
dencies of Td. The theory predicts that Td can be decreased by altering the
barrier composition to increase the conduction band offset and thus decrease
the occurrence of RST. A reduction in the drain temperature of a HEMT leads
to a corresponding decrease in the minimum noise temperature. These results
may therefore guide the design of HEMTs with lower microwave noise figure.
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C h a p t e r 3

CHARGE TRANSPORT IN BORON ARSENIDE AND THE
ROLE OF TWO-PHONON SCATTERING

This chapter has been adapted, in part, from:

Iretomiwa Esho, and Austin J. Minnich. Charge transport in BAs
and the role of two-phonon scattering. Physical Review B 108 (16),
165202

In addition to investigating hot electron transport phenomena in semiconduc-
tor devices, there’s a need to explore materials that could serve as a basis for
improved noise and overall performance. Thermally conductive materials with
high charge mobility are desired because of their high frequency and heat dis-
sipating characteristics. One such example is boron arsenide (BAs), a material
with high thermal conductivity ∼ 1300 W m−1 K−1 comparable to that of di-
amond [116, 117, 118, 119] and reported simultaneous high electron and hole
mobilities, with computed room-temperature values of 1400 and 2110 cm2 V−1

s−1, respectively [120, 121]. These properties carry important implications for
the semiconductor device landscape. For example, boron arsenide-integrated
gallium nitride HEMTs exhibit state-of-the-art cooling performance, surpass-
ing diamond-integrated HEMTs [122]. Simulations have also demonstrated its
potential uses as a substrate material and as a conducting channel in transis-
tors [121].

Reports of the thermal conductivity of BAs were initially significantly lower
than the predictions due to what was thought to be scattering by As vacan-
cies [123]. Theoretically, four-phonon processes were found to make a non-
negligible contribution to phonon scattering, yielding a lower thermal conduc-
tivity compared to the original predictions [124]. After improvements in syn-
thesis resulting in higher-quality samples, the high thermal conductivity was
confirmed experimentally [117, 118, 119] and was found to be in quantitative
agreement with predictions including four-phonon scattering.

Initial experiments that estimated the mobility from conductivity and thermo-
electric measurements and a single parabolic band model yielded a lower hole
mobility of 400 cm2 V−1 s−1 [125]; recent direct Hall measurements yielded
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∼ 500 cm2 V−1 s−1 on bulk samples [126]. The lower values obtained ex-
perimentally have been attributed to scattering by charged impurities in the
defective samples which could be synthesized. Recent experiments have cir-
cumvented the need for high-quality macroscopic samples by measuring the
ambipolar diffusivity of photoexcited carriers in a local region of the sample
using transient grating experiments [126] or transient reflectivity microscopy
[127]. Using the Einstein relation to convert the measured diffusivity into a
mobility, these experiments obtained ambipolar mobilities of 1500–1600 cm2

V−1 s−1 at some locations on the sample. These values are in good agreement
with those calculated from first principles [120].

Most first-principles studies of the electron-phonon interactions employ the
lowest level of perturbation theory involving one electron and one phonon
(1ph) [128, 7], and this level of theory was also used for BAs [120, 121]. Given
the contribution of higher-order phonon processes to thermal transport in BAs
[124, 119, 118, 117], it is of interest to consider the role of higher-order pro-
cesses in charge transport. Although evidence for the contribution of multi-
phonon processes to electron-phonon scattering has been previously reported
[129, 130, 131], only recently have first-principles studies included the contri-
bution of higher-order scattering processes, such as that of an electron with
two phonons (2ph) in the electron-phonon interaction [132, 133, 134]. In GaAs
at room temperature, the 2ph scattering rates were predicted to be on the or-
der of the 1ph rates [132], resulting in a ∼ 40% reduction in the computed
mobility at 300 K. Good quantitative agreement with experimental mobility
was obtained only considering this correction. Corrections to the high-field
transport properties of GaAs of a similar magnitude were also found [133].
For non-polar semiconductors, Hatanpää et al. reported improved agreement
of the warm electron coefficient in Si over temperatures from 190 to 310 K
with the inclusion of 2ph processes [134]. These studies suggest that inclusion
of 2ph processes for electron-phonon scattering may be necessary to accurately
predict the charge transport properties of semiconductors.

In this chapter, we report an ab initio study of the role of two-phonon scatter-
ing of electrons and holes on the charge transport properties of BAs. We find
that the two-phonon rates may be as large as ∼ 50% of the one-phonon rates,
leading to a marked reduction in the calculated ambipolar mobility from 1420
cm2 V−1 s−1 to 810 cm2 V−1 s−1 at room temperature and a 35–50% correction
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Figure 3.1: Model of the unit cell of boron arsenide showcasing its zinc
blende structure.

to the carrier mobility over temperatures from 150 to 350 K. The experimental
origin of the discrepancy could arise from the super-diffusion of hot carriers
shortly after photoexcitation, an effect which has been observed using scan-
ning ultrafast electron microscopy, leading to an overestimate of the ambipolar
diffusivity. On the theory side, an underestimate of the predicted value is pos-
sible owing to cancellation between the iterated and direct contributions to 2ph
scattering, the latter of which is neglected here. To test our predictions given
the defective samples presently available, we suggest an experimental approach
based on direct measurements of hot carrier lifetimes using the broadening of
photoluminescence spectra.

3.1 Crystal structure of BAs

BAs is a cubic compound semiconductor composed of the III-V elements boron
and arsenic. The unit cell is shown in Fig. 3.1 displaying its zinc blende
structure. The experimentally measured lattice constant in BAs is ∼ 0.4777
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nm [135]. These atomic identities and positions, and an initial guess for the
lattice constant make up all the material-specific information we need for a
first-principles BTE analysis of its transport properties.

3.2 Solution of the BTE for charge transport

We will now build up the method for solving the BTE to study charge transport
properties under the influence of an electric field. The BTE we are interested
in solving is:

eE

ℏ
· ∇kfk = I[fk] (3.1)

where fk is the electron occupation function at wave vector k. Note that we
have dropped the band index here for clarity. The electric field is E and the
electronic charge is e. The collision integral is represented by I and describes
electronic scattering from one state k to another state k′. The collision integral
is derived from Fermi’s Golden Rule (FGR) and is a function of the electron
occupation function because of the dependence of scattering on the initial and
final states. We consider only time-independent processes in this work, such
that fk is the steady-state result. Further, we assume spatial homogeneity
and a non-degenerate carrier concentration. Several observables of interest
can be obtained after a solution of the BTE for fk. For example, the current
density Jα =

∑
β σ

αβEβ, where σαβ is the charge conductivity tensor, can be
expressed as a sum over the Brillouin zone:

J =
2e

V0

∑
k

vkfk (3.2)

where V0 is the supercell volume, vk is the group velocity of the electronic
state k. The major complication in Eq. 3.1 comes from the collision integral
I which we discuss next.

One-phonon collision integral

We focus on scattering from electron-phonon interactions, which are the domi-
nant electron scattering processes near room temperature and at non-degenerate
carrier concentrations. We first discuss the collision integral for electron-one-
phonon (1ph) processes, where electrons scatter from one state k to another
state k′ through interaction with a phonon q. The scattering integral from
FGR is [136]:
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I[fk] =
−2π

ℏN
∑
q

|gk,q|2
(
δ(ϵk−ℏωq−ϵk+q)H

em+δ(ϵk+ℏωq−ϵk+q)H
abs

)
(3.3)

where we have again suppressed the phonon branch indices for clarity. The sum
is only over qs that satisfy momentum conservation, and the delta functions
ensure energy conservation. gk,q is the electron-phonon matrix element, N is
the number of sampled q points in the Brillouin zone, and Hem and Habs are
emission and absorption weights that contain the electron occupation functions
because scattering should depend on the occupation of the respective states.
The weights are in general non-linearly dependent on the occupations and are
given by:

Hem = fk(1− fk+q)(Nq + 1)− (1− fk)fk+qNq

Habs = fk(1− fk+q)(Nq)− (1− fk)fk+q(Nq + 1)
(3.4)

where Nq is the phonon occupation function. Our end goal is to write the
BTE in matrix form so that it can be solved with numerical linear algebra, and
therefore it needs to be linearized. We can make several valid approximations
to get us to this goal.

First, we can expand the distribution functions about equilibrium, an assump-
tion that relies on the electrons not being driven far out of equilibrium and is
valid at low electric fields. We write the occupation function as fk = f 0

k+∆fk.
If we substitute this expansion into Eq. 3.4 and retain terms only linear in ∆fk,
and assume that phonons remain in equilibrium, we obtain after a bit of alge-
bra:

Hem = ∆fk(Nq + 1− f 0
k+q −∆fk+q)−∆fk+q(f

0
k +Nq)

Habs = ∆fk(Nq + f 0
k+q +∆fk+q)−∆fk+q(Nq + 1− f 0

k)
(3.5)

Note that this set of equations is still non-linear because of the ∆fk+q inside the
parentheses. One justifiable assumption to get around this is to recall that we
are in the low-field regime where the system responds linearly to the external
field. Therefore, it is reasonable to assume that the electronic occupations fk
do not deviate far from equilibrium such that ∆fk in fk = f 0

k +∆fk is small
compared to f 0

k. This allows us to neglect terms of the form ∆fk∆fk+q in
Eq. 3.5, resulting in a linear collision integral with the weights:
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Hem = ∆fk(Nq + 1− f 0
k+q)−∆fk+q(f

0
k +Nq)

Habs = ∆fk(Nq + f 0
k+q)−∆fk+q(Nq + 1− f 0

k)
(3.6)

Importantly, we could have reached a similar conclusion from the fact that our
analysis is limited to non-degenerate carrier concentrations, for which fk ≪ Nq

even at high electric fields, allowing us to also safely assume ∆fk ≪ Nq. Our
weights then become:

Hem = ∆fk(Nq + 1)−∆fk+q(Nq)

Habs = ∆fk(Nq)−∆fk+q(Nq + 1)
(3.7)

With this linearization, we can write the collision integral I[fk] in terms of a
scattering matrix Θk,k′ :

I[fk] =
∑
k′

Θk,k′∆fk′ =
−2π

ℏN
∑
q

|gk,q|2
[(
δabs
k,qNq + δem

k,q(Nq + 1)
)
∆fk

+
(
δabs
k,q(Nq + 1) + δem

k,qNq

)
∆fk+q

] (3.8)

Here, the δk,q terms correspond to those given in Eq. 3.3. The diagonal terms
of the matrix are the scattering rates times -1 while the off-diagonal terms are
the in-scattering rates, which are only non-zero when k′ = k+ q.

Electric field term in BTE

Now that we have successfully treated the right hand side of Eq. 3.1, we need to
consider its left hand side which contains the electric field term and reciprocal
space gradients of the occupation functions. The derivative of the equilibrium
occupation with respect to k is an analytical function:

∇kf
0
k =

df 0
k

dϵk

dϵk
dk

= − ℏ
kBT

vkf
0
k(1− f 0

k) (3.9)

However, we still need the reciprocal space gradient of the deviational occupa-
tion, ∇k[∆fk]. This derivative can be obtained with a finite difference method
as shown in Ref. [14]:
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∇k[∆fk] =
∑
b

wbb(∆fk+b −∆fk) (3.10)

where b is a set of vectors that connects a point in the uniformly discretized
Brillouin zone to its neighbors and b = |b| is a constant weight for each set
of vectors. Equation 3.10 is required to be correct to linear order from the
following condition:

N∑
s

ws

Ms∑
i

bi,sα b
i,s
β = δαβ (3.11)

where α, β are the Cartesian directions, N is the total number of required
nearest neighbor "shells," ws is the weight associated with the sth shell, and
Ms is the total number of nearest neighbor vectors in the sth shell. The weights
can be determined by expressing Eq. 3.11 as a matrix equation and inverting
the resulting equation to obtain the weights. The procedure for choosing the
shells starts with adding shells in order of increasing |b| and checking if Eq. 3.11
is satisfied. If so, we stop. Otherwise we add the next shell of nearest neighbors
and keep checking till Eq. 3.11 is satisfied. For a cubic Bravais lattice point
group, the first shell satisfies the required condition. For a one dimensional
function with two nearest neighbors, Eq. 3.10 simply reduces to the central
difference formula as illustrated in Ref. [137]. We can write the finite difference
formula in matrix form, including the electric field term as [137]:

∑
α

∑
k′

eEα

ℏ
Dα

k,k′∆fk′ =
∑
α

∑
b

Eαbαwb(∆fk+b −∆fk) (3.12)

where Dα
k,k′ is only non-zero when k′ = k + b or k′ = k. The setup is now

complete. The current form of the BTE is:

− eE

kBT
·vkf

0
k(1− f 0

k) +
∑
α

∑
k′

eEα

ℏ
Dα

k,k′∆fk′ = I[fk] =
∑
k′

Θk,k′∆fk′ (3.13)

By rearranging terms, we obtain the final form of the BTE:∑
k′

[∑
α

eEα

ℏ
Dα

k,k′ −Θk,k′

]
∆fk′ =

∑
k′

Λk,k′∆fk′ =
eE

kBT
· vkf

0
k(1− f 0

k)

(3.14)
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where we have defined a relaxation operator Λk,k′ that combines the finite
difference and scattering matrices. The solution to the BTE is:

∆fk =
∑
k′

Λ−1
k,k′

(
eE

kBT
· vk′f 0

k′(1− f 0
k′)

)
(3.15)

. We have now completed the formulation to obtain the non-equilibrium steady
state electronic distribution, from which we can obtain several observables of
interest, using matrix algebra. So far, we have only considered one-phonon
processes where electrons scatter from one state k to another state k′ through
interaction with one phonon. Later, we will follow a similar procedure to
include higher order processes where an electron interacts with two phonons.

Iterative scheme to solve the BTE

Now, we will discuss an alternative solution scheme for the BTE which will
come in handy in Chapter IV. We seek an alternative linearization where the
occupation has the form:

fk = f 0
k + f 0

k(1− f 0
k)

eE

kBT
· Fk (3.16)

where Fk is a new dummy variable. Then, we can write ∆f as:

∆fk = f 0
k(1− f 0

k)
eE

kBT
· Fk (3.17)

Following what we have done so far, the BTE of Eq. 3.1 can be written as:

vk =
2π

ℏN
∑
q

|gk,q|2
[(
δabs
k,q(Nq + f 0

k+q) + δem
k,q(Nq + 1− f 0

k+q)
)
Fk

−
f 0
k+q(1− f 0

k+q)

f 0
k(1− f 0

k)

(
δabs
k,q(Nq + 1− f 0

k) + δem
k,q(Nq + f 0

k)
)
Fk+q

] (3.18)

where eE
kBT

f 0
k(1−f 0

k) has been divided out. One approximation to this equation
is to ignore the second part of the right side of Eq. 3.18 and solve for Fk = FRTA

k

; the key assumption being that the occupations of a state k are independent
of the occupation of all the other states. This means that the other states are
assumed in equilibrium and there will be no scattering from k′ to the state k

in consideration. This is known as the relaxation time approximation (RTA),
where the relaxation time τk is defined as:
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τ−1
k =

2π

ℏN
∑
q

|gk,q|2
[
δabs
k,q(Nq + f 0

k+q) + δem
k,q(Nq + 1− f 0

k+q)
]

(3.19)

Here, we see the interpretation of Fk = vkτk as the mean free path of electron.
This is usually a reasonable approximation but a full approximation is required
for most semiconductors.

The iterative solution to the BTE is based on Eq. 3.18. We start by iterating
from the RTA solution, setting all the Fk+q to FRTA

k , evaluating the resulting
sum to obtain the next solution Fi+1

k and keep iterating until convergence.

Two-phonon collision integral

We now discuss two-phonon scattering of the form where an electron is scat-
tered by two consecutive one-phonon events. We emphasize the distinction
between this type of two-phonon scattering and instantaneous two-phonons
scattering which results from the second derivative of the perturbation poten-
tial, the latter which we do not consider in this work. A schematic of the 2ph
process is shown in

The 2ph scattering rate as derived in Ref. [132] is:

Γ2ph
k =

2π

ℏN2

∑
q

∑
p

[
Γ1e1a + Γ2e + Γ2a] (3.20)

where we sum over all pairs of phonons that couple k to k’. The first phonon
is indexed by q, the second phonon is indexed by p and N is the number
of sampled phonon points. Γ1e1a, Γ2a, and Γ2e refer to emission-absorption,
absorption-absorption, and emission-emission electron-phonon processes. The
contribution from each of these sub-types (i) is:

Γi = AiW iδ(ϵk − ϵk′ − αi
pωp − αi

qωq) (3.21)

where k′ = k + q + p, Ai is a weighting factor, W i is the 2ph sub-process
amplitude, and αi = ±1:

α1e1a
p = 1, α2e

p = 1, α2a
p = −1,

α1e1a
q = −1, α2e

q = 1, α2a
q = −1

(3.22)
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Figure 3.2: Schematic of 1ph and 2ph processes. The top panel is a
pictorial representation of the electron-phonon process considered in most
first-principles studies of transport in semiconductors, and is the lowest order
of perturbation theory. Here, electrons scatter from a state k to another state
k′ by emission or absorption of a phonon (phonon absorption is not shown in
the top panel). The bottom panel represents electron-phonon processes of
next-to-leading order (2ph), where an electron may undergo consecutive 1ph
scattering with phonons. These processes can be emission-absorption (1e1a),
emission-emission (2e), or absorption-absorption (2a).

The sub-process amplitude is given by the following expression:

W i =

∣∣∣∣( gν(k,q)gµ(k+ q,p)

ϵk′ − ϵk+q + αi
pωνp + iη − Σk+q

+
gµ(k,p)gν(k+ p,q)

ϵk′ − ϵk+q + αi
qωνq + iη − Σk+p

)∣∣∣∣2
(3.23)

Here, we have included the phonon mode indices µ and ν. gν(k,q is the matrix
element coupling a state k to another state k + q through interaction with a
phonon q with mode ν. The band energy at k is represented by ϵk, ω are
phonon energies, iη is a small term that prevents divergences when the other
terms in the denominator sum to zero, and Σk+q is the self-energy of the state
at k+ q.
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We now discuss several details of the 2ph process we consider this work. Firstly,
the intermediate state reached after interaction with the first phonon does not
have to correspond to a band energy. In the case that this intermediate state
coincides with a band energy, this process is termed on-shell, otherwise it’s
an off-shell process. The off-shell extent is the difference between the off-shell
energy and the corresponding band energy. The off-shell extent must be chosen
carefully, otherwise our task would be computationally intractable since the
intermediate state energy can take any value (see Fig. 3.2). Since the 2ph
rate is inversely proportional to the off-shell extent, we expect a “nearly on-
shell” approximation to capture most relevant 2ph processes. Secondly, the
2ph process amplitude depends on Σ, the self-energy of the intermediate state
for which we only include its imaginary part since the real part acts to correct
the band structure and has minimal effect on the scattering rate [132]. The
calculation for the 2ph scattering rate is then solved in a self-consistent manner
since Σ includes both 1ph and 2ph scattering, |ImΣ| = ℏ/2[Γ1ph + Γ2ph], and
we iterate until the 2ph rate from Eq. 3.20 equals the 2ph contribution to
|ImΣ|. Next, the weighting factors Ai in Eq. 3.21 are given by the following
expressions:

A1e1a = Nνq +NνqNµp +Nνqfk′

A2e =
(1 +Nνq)(1 +Nµp − f ′

k)−Nµpfk′

2

A2a =
Nνq(Nµp + fk′) + (1 +Nµp)fk′

2

(3.24)

We can simplify these expressions by again considering a non-degenerate car-
rier concentration whereby f ′

k ≪ 1 to obtain:

A1e1a = Nνq +NνqNµp

A2e =
(1 +Nνq)(1 +Nµp)

2

A2a =
NνqNµp

2

(3.25)

Although we do not show the effect of high fields on our observables in this
work, these approximations ensure that our formalism can be easily generalized
to obtain high-field properties.
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3.3 Dipole and quadrupole electron-phonon interactions

As discussed in the introduction, the approach to ab initio calculations is to
first carry out DFPT calculations on coarse k and q grids, and then interpolate
the calculated quantities onto fine grids using Wannier functions. However,
the interpolation near q = 0, is challenging because the perturbation potential
can be non-analytic in this region. A long-range multipole expansion of the
perturbation potential yields dipole, quadrupole, octopole, and other higher
order terms. It has been shown that the long-range dipole (also known as
Fröhlich) term diverges as 1/q in polar materials, while the quadrupole term
approaches a constant value [138, 139]. In nonpolar materials, the Fröhlich)
term vanishes as q → 0, and the quadrupole term becomes dominant [140].
The long-range multipole expansion of the cell-integrated charge response to
atomic displacement is [140, 141]:

Cq
k,α = −iqβZκ,αβ −

qβqγ
2
Qκ,αβγ + ... (3.26)

where κ is the atom index, β and γ represent Cartesian indices, and the dots
are octopole and other higher order terms that are not considered in this work.
Here, Zκ is the first-order rank-2 tensor that corresponds to the Born effective
charge (dipole term), and Qκ is the rank-3 quadrupole tensor. Each of these
terms generates macroscopic electric fields in semiconductors. Intuitively, the
dipole effect can be understood as the cell response to a formed dipole mo-
ment, while the quadrupole effect results from a configuration of two oppo-
sitely oriented but equal dipoles. A schematic of the dipole and quadrupole
configurations is shown in Fig. 3.3.

Starting from Eq. 3.26, the dipole and quadrupole matrix elements can be
obtained from the dipole and quadrupole potentials, respectively, as [140]:

gdip
mnν(k,q) =

ie2

Ωε0

∑
κ

(
ℏ

2ωνqMκ

)1/2 ∑
G̸=−q

(Zκe
κ
νq) · (q+G)

(q+G) · ϵ · (q+G)

×⟨mk+ q| ei(q+G)·(r−τ) |nk⟩

(3.27)
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Figure 3.3: Schematic of dipole and quadrupole configurations showing
quadrupole moment resulting from arrangement of equal and oppositely
oriented-dipoles. The electron-phonon interaction arising from quadrupoles is
important in both and polar and nonpolar semiconductors.

gquad
mnν (k,q) =

ie2

Ωε0

∑
κ

(
ℏ

2ωνqMκ

)1/2 ∑
G ̸=−q

1

2

(q+G)α(Qκ,αβγe
κ
νq,γ)(q+G)β

(q+G)αϵαβ(q+G)β

×⟨mk+ q| ei(q+G)·(r−τκ) |nk⟩
(3.28)

where ϵ is the material dielectric tensor, G are reciprocal lattice vectors, ν is
a phonon mode index, and Ω is the unit cell volume. eκνq is the eigenvector
of the dynamical matrix at q and Mκ is the mass of atom κ positioned at
τ . We observe in the limit of long wavelength (q → 0) that Eqs. 3.27 and
3.28 approach 1/q and a constant value, respectively. Similarly, quadrupolar
corrections to the dynamical matrices for small q can be obtained [142, 143].
Note that quadrupole corrections are typically not considered in most ab initio
works, but we separately consider their effect on the 1ph electron mobility in
BAs in section 3.5.
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3.4 Computational details

We computed the mobility of electrons and holes in BAs using established
methods based on density functional theory (DFT) and density functional per-
turbation theory (DFPT) [144, 145, 146, 7]. Briefly, we obtained the electronic
structure and electron-phonon matrix elements using QUANTUM ESPRESSO
[147] with a relaxed lattice constant of 4.819Å, a coarse 12× 12× 12 k grid,
and plane wave cutoff of 80 Ry. A fully relativistic ultrasoft potential with
the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional was used.
For the DFPT calculations, we employed a 6×6×6 phonon q grid. The band
structure and electron-phonon matrix elements were interpolated onto fine
1603 and 803 k and q grids, respectively, using Perturbo [148]. Increasing
the grid density to 2003 and 1003 for the k and q grids, respectively, changed
the mobility by 2%. The Fermi level was chosen so as to obtain a carrier con-
centration of 1015 cm−3 at all temperatures. The energy window was set to 200
meV above (below) the band extremum for electrons (holes). Increasing the
energy window to 250 meV changed the mobility by 0.6%. We explicitly con-
structed the collision matrix and solved the Boltzmann transport equation us-
ing numerical linear algebra, from which transport properties were calculated.
Details of this approach are given elsewhere [144, 133, 134]. The contributions
of the next-to-leading order electron-phonon scattering (2ph) processes origi-
nally derived in Ref. [132] were computed following the implementation used
in Ref. [133]. The 2ph rates were iterated five times. Increasing the number
of iterations to 6 changed the mobility by 2.7%.

For the investigation of the effect of quadrupolar corrections, we compute the
dynamical quadrupoles following the implementation in the ABINIT software
[149] which is currently limited to pseudopotentials with non-linear core cor-
rections and LDA functionals, and compute the electron mobility with the
EPW software [150].

3.5 Results

Band structure and phonon dispersion

The Wannier-interpolated band structure of BAs is shown in Fig. 3.4. The
conduction band minimum (CBM) occurs between the Γ and X points in the
Brillouin zone, and the valence band maximum (VBM) occurs at Γ. The VBM
is doubly degenerate at Γ instead of triply degenerate because of band split-
ting from the inclusion of spin orbit coupling (SOC) in our calculations. In



49

Figure 3.4: Electronic band structure of BAs showing four valence bands
and the four lowest lying conduction bands. The valence band maximum
occurs at the Γ point in the Brillouin zone, and the conduction band
minimum is along the Γ−X direction, making BAs an indirect gap
semiconductor.

the standard time-independent Kohn-Sham description, relativistic effects are
disregarded and therefore SOC is neglected. For electron transport in semi-
conductors, this is typically a good approximation as SOC has little effect near
the the conduction band minimum [151, 121]. However, this is not the case for
the valence band. SOC can be captured by employing the appropriate fully
relativistic pseudopotentials and a noncollinear representation of the electronic
spin degrees of freedom. Because SOC breaks degeneracy at the VBM, seen
more clearly in Fig. 3.5, the number of scattering channels is reduced which
consequently affects the computed value of the hole mobility.

We next discuss properties of the computed phonon dispersion of BAs, shown
in Fig. 3.6. We note two distinct features. First, the optical phonon energy
is ∼ 80 meV, which is ≈ 930 K in temperature units. Second, there is a
large gap between the acoustic and optical branches. The high Debye tem-
perature, in combination with the acoustic-optical gap, is responsible for the
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Figure 3.5: Zoomed in band structure of BAs showing degeneracy breaking
due to spin orbit coupling. Inclusion of spin orbit coupling in our
calculations is important to accurately capture transport properties of holes
due to the reduction in the number of scattering channels near the valence
band maximum.

observed high thermal conductivity in BAs because it restricts the phase space
for three-phonon (phonon-phonon) scattering. Further, the high Debye tem-
perature limits interaction between electrons and longitudinal optical (LO)
phonons at room temperature and low electric field because the thermal en-
ergy of the electron population at 300 K is not sufficient for significant LO
phonon emission of electrons. This has consequences for the electron and hole
mobility since LO phonon emission tends to limit the carrier mobility in polar
semiconductors [7].

1ph and 2ph scattering rates

The calculated scattering rates for electrons and holes are shown in Fig-
ures 3.7a and 3.7b. The trend of the 1ph scattering rates agrees with that re-
ported previously [120]; quantitative differences are due to differing exchange-
correlation functional or pseudopotential necessitated by the use of Perturbo
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Figure 3.6: Phonon dispersion of BAs. The high Debye temperature is
responsible for its exceptional thermal conductivity as it restricts the phase
space for three-phonon phonon-phonon interactions. The Debye temperature
also limits scattering between electrons and longitudinal optical (LO)
phonons at room temperature.

in this work. We observe the characteristic sharp increase in the scattering
rate for electrons and holes near ℏωLO ∼ 80 meV as longitudinal optical (LO)-
phonon emission starts to dominate the electron-phonon interaction. The 2ph
rates largely follow the same trend and are on the order of the 1ph rates,
consistent with previously published 2ph calculations for GaAs [133, 132] and
Si [134]. At 300 K, the 2ph rates are around 50% of the 1ph rates. Prior
works have examined the influence of the exchange-correlation functional on
charge carrier mobilities, finding variations on the order of ∼10-15% in Si [152]
and BAs [120]. Although this uncertainty may influence the predicted absolute
mobility values, we expect the relative contribution of 2ph processes compared
with 1ph processes to be insensitive to the choice of functional.

2ph processes exhibit several different sub-types because the two phonons in-
volved in scattering can each be emitted or absorbed. Following Ref. [132], pro-
cesses where a phonon is emitted and another absorbed are denoted 1e1a, and
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Figure 3.7: Scattering rates vs energy for (a) electrons and (b) holes in BAs
including 1ph (circles) and 2ph processes (triangles) at 300 K. The computed
2ph rates for electrons and holes are around 50% of the 1ph rates. Computed
total 2ph (triangles), 1e1a (squares), 2a (diamonds), and 2e (circles)
scattering rates vs energy for (c) electrons and (d) holes show the
sub-processes that comprise the total 2ph rates. Below 150 meV, the 1e1a
processes have the largest contribution to the 2ph rates at 300 K.
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Figure 3.8: Calculations of electron and hole mobility. (a) Electron and (b)
hole mobility in BAs vs temperature at the 1ph (dashed line) and (1+2)ph
(solid line) level of theory. For holes, the correction to the mobility at room
temperature from including 2ph processes is ∼ 37%, while for electrons this
correction is ∼ 43%, demonstrating the significant contribution of 2ph
processes to the mobility at room temperature.

processes where two phonons are sequentially emitted or absorbed are 2e and
2a, respectively. The individual sub-processes contributing to the total 2ph
rate are shown in Figures 3.7c and 3.7d for electrons and holes, respectively.
Below ℏωLO ∼ 80 meV, 1e1a processes are dominant. Note that the total 1e1a
rate includes processes where a phonon is first emitted and another absorbed,
and processes where a phonon is first absorbed and another is subsequently
emitted. Two-phonon emission (2e) processes are comparatively weak in this
region since LO phonon emission is prohibited until the energy threshold of
2ℏωLO. Two-phonon absorption (2a) processes are generally weak throughout
the energy range studied, except at sufficiently low energies where emission
and therefore 1e1a events become increasingly unlikely such that 2a rates are
comparable to 1e1a rates. Between ℏωLO ∼ 80 meV and 2ℏωLO, the 1e1a
and 2e rates increase as LO phonon emission starts to dominate the electron-
phonon scattering processes, a feature observed in polar semiconductors [19].
Beyond 2ℏωLO, carriers are energetic enough to emit two LO phonons, and 2e
processes have the largest contribution to the total 2ph scattering rate. This
energy dependence of the individual 2ph sub-processes in BAs is consistent
with those reported for GaAs and Si [132, 133, 134].
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Electron and hole mobility

We next examine the effect of 2ph processes on the electron and hole mobil-
ity. The computed 1ph and (1+2)ph mobility versus temperature is shown
in Figures 3.8a and 3.8b for electrons and holes, respectively. With only 1ph
processes, we obtain room-temperature electron mobility µe = 1066 cm2 V−1

s−1 and hole mobility µh = 2000 cm2 V−1 s−1, in quantitative agreement with
previous 1ph predictions that employ the same PBE exchange-correlation func-
tional (see Supplementary Information of Ref. [120] for calculations using the
same functional as in this work). With the inclusion of 2ph processes, µe and
µh decrease to 600 and 1240 cm2 V−1 s−1, respectively, corresponding to a 43
and 37% reduction at room temperature. Over the temperature range from
150 to 350 K, this correction ranges from 36% at 350 K to 41% at 150 K for
holes, and 44% at 350 K to 46% at 150 K for electrons. These corrections
to the electron mobility are of a comparable magnitude to those obtained for
GaAs (∼45%) [133, 132], but slightly higher than those for Si (∼35%) [134].

BAs exhibits several distinct features compared to other polar semiconductors
such as GaAs. In GaAs and other polar materials, LO phonons make the
overwhelming contribution to electron-phonon scattering [19]. In BAs, carrier
scattering relevant to mobility is instead primarily due to acoustic phonons
owing to the high optical phonon energy (80 versus 35 meV in GaAs) that
limits scattering by LO phonon emission as well as the decreased LO phonon
absorption scattering from decreased thermal population [120]. Additionally,
in GaAs, intervalley processes have a negligible effect on low-field charge trans-
port because of the Γ-L energy separation of 300 meV, but scattering processes
in BAs are more similar to those in Si in that they involve intervalley trans-
fers mediated by zone-edge wave vector phonons. Our calculations reveal that
intervalley processes account for 43% of (1+2)ph scattering in BAs at 300 K
and 20% at 150 K. The decrease with decreasing temperature occurs due to
reduced population of zone-edge phonons required for intervalley scattering.
As a comparison, intervalley processes account for 61% of (1+2)ph scattering
in Si at 300 K and 25% at 150 K.

Quadrupole effects on the electron mobility

Significant corrections to the carrier mobility have been found in several semi-
conductors when quadrupole effects are considered. Most notably, in 3C-SiC,
the neglect of quadrupoles led to an underestimation ∼ 45% of the mobility,
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Figure 3.9: 1ph electron mobility versus temperature including quadrupole
corrections to the electron-phonon matrix elements and dynamical matrix.
Near room temperature, the electron mobility is reduced by ∼ 10%. At 150
K, this correction is ∼ 20%.

while for c-BN, neglecting quadrupoles overestimated the mobility by ∼ 70%
[145]. This effect was minimal on other semiconductors such as Si over a wide
temperature range [140, 145]. Given the nature of the impact of quadrupoles
on several semiconductors, it is worthwhile to consider their effect on the 1ph
mobility in BAs. This is particularly important when we later compare our
results to experiments in section 3.6. We computed the quadrupole tensor in
BAs and obtained the corresponding effect on its electron mobility at the 1ph
level of theory. We obtained QB = 7.64 e bohr and QAs = −6.04 e bohr. The
computed electron mobility versus temperature including quadrupole correc-
tions to the electron-phonon matrix elements and dynamical matrix is shown
in Fig. 3.9.

We can see in Fig. 3.9 that neglecting quadrupoles in BAs leads to an overes-
timate of the electron mobility. The correction to the electron mobility from
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including quadrupoles is on the order of 10% near room temperature, and in-
creases as temperature is reduced. At 150 K, the reduction to the electron
mobility is around 20%. This correction is similar to results obtained for Si
[140].

3.6 Discussion

We now consider our calculated mobility values in the context of recent op-
tical experiments on BAs that reported an ambipolar carrier mobility [126,
127]. At the 1ph level of theory, we predict a high ambipolar mobility µa =

2µeµh/(µe + µh) of 1420 cm2 V−1 s−1 at 300 K using 1ph theory, consistent
with a prior computed value of 1570 cm2 V−1 s−1 with the PBE exchange-
correlation functional [120] and in agreement with recent experimental reports
[127, 126]. Including 2ph processes reduces µa to 810 cm2 V−1 s−1, a 43%
reduction. Considering the (1+2)ph mobility value, the apparent agreement
between theory and experiment is substantially degraded, with the experiment
now overestimating the theory.

This discrepancy could arise from several factors. First, the quantity that was
measured in the optical experiments of Refs. [126, 127] was the ambipolar dif-
fusion coefficient of photoexcited charge carriers, from which the mobility was
obtained through the Einstein relation. In Refs. [126, 127], the photoexcitation
wavelength for determination of the ambipolar diffusion coefficient was chosen
to be around the available estimates of the bandgap energy (∼ 2 eV [135, 153,
154, 151]). If the photon energy exceeds the bandgap energy, the photoexcited
carriers will have energy in excess of thermal energies, potentially causing the
extracted transport properties to differ from their linear-response values. This
hot-carrier effect was observed in Ref. [126] and Ref. [127] as a larger mea-
sured electronic diffusivity for pump wavelengths ≲ 500 nm. Evidence for the
absence of the hot carrier effect for the final reported diffusivity values was
presented, for example, in Fig. 1D of Ref. [126], as the plateau of the measured
electronic decay rate with increasing wavelength. On the other hand, scanning
ultrafast electron microscopy (SUEM) studies have reported observations of
super-diffusion of photoexcited carriers in semiconductors persisting over hun-
dreds of picoseconds [155, 156, 157]. This phenomenon has been attributed
to the additional contribution to carrier diffusion of a pressure gradient in the
non-degenerate hot carrier gas after photoexcitation [155]. In Refs. [126, 127],
the diffusivity was extracted from the electronic decay curve over timescales
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from tens to hundreds of picoseconds, conceivably leading to an extracted
diffusivity that was influenced by super-diffusion.

On the theory side, a possible cause of an underestimate for the computed mo-
bility is the cancellation of the two contributions to electron-phonon scattering
at second order. Electron-2ph processes arise from the 1ph term, correspond-
ing to the first derivative of the interatomic potential with respect to lattice
displacements taken to second order in perturbation theory, or a direct 2ph
term involving the simultaneous interaction of an electron with two phonons
with a strength given by second-order derivative of the interatomic poten-
tial [158, 159]. These two terms exhibit a non-trivial interaction owing to a
cancellation in the long-wavelength acoustic phonon limit which arises from
translational invariance of the crystal [160]. In this work and other recent
ab initio studies of 2ph scattering, only the first term is included, and thus
neglect of the second term will lead to an overestimate of 2ph scattering rate.
This cancellation has long complicated the study of 2ph scattering in semicon-
ductors [161, 159]. A recent study of 2ph scattering in Si suggested that the
correction could be on the order of 10–20% in that material [134]. It is possible
that this effect could lead to an underestimate of the computed mobility in
BAs; further study is needed to investigate this hypothesis. Lastly, we rule out
the effects of quadrupoles as contributing to this discrepancy. In 3C-SiC, ne-
glecting quadrupoles resulted in an underestimate of the 1ph electron mobility
by 45% [145]. A similar result in BAs would likely reconcile our 2ph results
with experiments; however, as seen in Fig. 3.9, inclusion of quadrupoles re-
duces the 1ph electron mobility in BAs by around 10% at room temperature,
suggesting that the disagreement of our 2ph results with experimental data is
not due to the exclusion of quadrupole effects.

Absent higher-quality samples, verifying the prediction of the role of 2ph scat-
tering using transport measurements is challenging due to the contribution
of extrinsic defect scattering. We suggest an alternative approach based on
continuous wave luminescence spectroscopy which allows the lifetimes of elec-
tronic states away from the band minimum to be determined [162]. These
states are less influenced by impurity scattering compared to those near the
band edge. While the contribution of these higher-energy states to carrier mo-
bility is negligible, the contribution of 2ph processes to the total scattering rate
is largely independent of energy, as shown in Fig. 3.7. Therefore, evidence of
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Figure 3.10: Calculated broadening vs energy for electrons due to
electron-phonon scattering at 77 K and carrier concentration of 1015 cm−3.
The difference in broadening between 1ph theory (dashed line) and (1+2)ph
theory (solid line) is expected to be distinguishable considering prior reports
of experimental uncertainties ∼1 meV [162].

the influence of 2ph scattering on mobility can be obtained by comparing the
photoluminescence linewidths of these higher energy states to theory. In these
experiments, hot electrons excited by a continuous-wave laser emit photons by
recombination, and the spectrum of the emitted light exhibits a broadening
that is determined by the lifetime of the state. We may predict the differ-
ence in broadening at the 1ph and (1+2)ph levels of theory in BAs using the
same ab initio theory employed for transport calculations. In Fig. 3.10, we
plot the predicted full-width at half-maximum (FWHM) of the luminescence
peak, 2Γ = τ−1, versus energy for electrons. At 0.4 eV above the conduction
band minimum (CBM), we predict 2Γ ∼ 13 and 21 meV for 1ph and (1+2)ph,
respectively. This 8-meV difference is almost an order of magnitude higher
than the experimental uncertainty reported in Ref. [162] and thus should be
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discernible.

3.7 Summary

In summary, we have reported ab initio calculations of ambipolar mobility
in BAs considering 2ph electron-phonon processes. We find that the inclu-
sion of these processes reduces the predicted electron and hole mobility by 43
and 37% at room temperature, respectively, lowering the ambipolar mobility
by 43% and underestimating experimental reports by a similar amount. We
hypothesize that the discrepancy between our results and recent optical ex-
periments could in part arise from the super-diffusion of hot carriers, or an
underestimation of the calculated mobility owing to cancellations at second-
order of perturbation theory. We have suggested an experimental approach
based on hot-electron luminescence to test these predictions.
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C h a p t e r 4

DRAG-ENHANCED CHARGE CARRIER MOBILITY IN
BORON ARSENIDE

The lack of quality bulk BAs samples necessitates the use of unconventional
methods to estimate the carrier mobility. As discussed in the previous chapter,
one such technique exploits the diffusion of photo-excited carriers to estimate
the carrier mobility [126, 127]. In these experiments, a short laser pulse (pump)
of wavelength near the bandgap of the material excites electron-hole pairs,
and the subsequent diffusion of carriers is monitored with a subsequent pulse
(probe). The obtained diffusivity is then converted to ambipolar mobility
using the Einstein relation.

However, two potential complications arise regarding the interpretation of the
obtained mobility. The first complication is related to the hot carrier effect,
as discussed in detail in Chapter 3. The second complication arises from the
effect of the induced excess carrier concentration, typically on the order of 1019

cm−3 [127]. At these carrier densities, approximations which are valid at lower
carrier densities–such as that phonons are in equilibrium–may not be justified.
This approximation was challenged by Von Peierls in 1930 [163] who argued
that the electron-phonon interaction can drag each species out of equilibrium.
Later, Gurevich formulated a theory of electron-phonon drag effects [164].

Experimentally, evidence for the effect of drag on the Seebeck coefficient has
been observed in Si, Ge, ZnO, and others [165, 166, 167, 168]. The drag effect
on mobility is not as easy to observe, due to the fact that the effect on mobility
is only significant at high carrier densities. These high densities are usually
achieved by doping, but at densities > 1018 cm−3, electron-charged impurity
scattering becomes a dominant scattering channel such that the drag effect
on mobility is masked by the presence of impurities. However, note that high
carrier densities can still be achieved without conventional doping methods;
for example in modulation doping, where carriers are spatially isolated from
impurities, and photo-excitation.

Fully capturing the effect of mutual drag of electrons and phonons within the
BTE framework requires solving the fully coupled BTE. In this formalism, the



61

nonequilibrium distribution of the phonon system affects the electronic system
as the nonequilibrium distribution of the electronic system affects the phonon
system. Prior attempts at this problem include an analytic-computational
partially decoupled framework to derive the phonon drag contribution to the
Seebeck coefficient in Silicon [169]. Importantly, this work assumed a non-
degenerate carrier concentration and a phonon system that is unaffected by
the nonequilibrium distribution of the electron system. Ref. [170] utilized a
first-principles approach to compute the electron-phonon and phonon-phonon
matrix elements, but still ignored the phonon BTE dependence on the devi-
ation of the electron distribution. Other authors have also employed a first-
principles approach to solve the partially decoupled BTE [171]. All of these
prior attempts used a partially decoupled framework, where the goal was to
investigate the effect of a non equilibrium phonon distribution induced by a
temperature gradient on the electronic system, while assuming the phonon
BTE to be unaffected by the non equilibrium electron distribution. Recently,
Protik et al. devised a framework to solve the fully-coupled BTE [172], en-
abling the capability to study the interplay between electrons and phonons as
they drive each other out of equilibrium.

There is a growing body of work in the literature on drag in semiconductors
using the fully-coupled Boltzmann transport equations. In Ref. [173], Protik
and Broido employed solutions to the fully coupled BTE to investigate the
mobility, thermal conductivity, and Seebeck coefficient in n-GaAs and found a
significant enhancement in the mobility at degenerate carrier concentrations,
but no significant contribution to the phonon thermal conductivity from the
drag effect. Further, the authors found a significant increase to the absolute
value of the Seebeck coefficient at low temperatures. Li et al. discovered un-
expectedly large increase in the Seebeck coefficient at low temperatures in
lightly-doped diamond due to drag, which was attributed to a collapse of an-
harmonic phonon-phonon scattering rates at low temperatures [174]. Quan
et al. examined the phonon drag effect in wide band gap GaN and AlN and
found prominent enhancements in both the mobility and Seebeck coefficient at
room temperature [175]. Li and coauthors found a room temperature drag en-
hancement of the Seebeck coefficient of p-doped boron arsenide driven by high
frequency acoustic phonons [176]. The emerging narrative from these works is
one that highlights the importance of considering the non-equilibrium state of
electrons and phonons when computing transport coefficients from first prin-
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ciples.

4.1 Coupled electron-phonon BTEs

The coupled electron-phonon Boltzmann transport equations have been given
in previous references [177, 173, 175], but we reproduce them here for com-
pleteness. For electron and phonon systems in steady state, their BTEs read
as:

v(k) · ∇rf(k) +
F

ℏ
· ∇kf(k) =

∂f(k)

∂t

∣∣∣∣
coll

v(q) · ∇rn(q) =
∂n(q)

∂t

∣∣∣∣
coll

(4.1)

where F is an external force, v(k) is a velocity vector for an electronic state
with wave vector k, v(q) for phonons with wavevector q. Here, the electron
band and phonon branch indices have been suppressed. The distribution func-
tions of electrons and phonons are given by f and n, respectively. The collision
terms on the right side of Eq. 4.1 can be generally represented as the following

∂f(k)

∂t

∣∣∣∣
coll

=
∂f(k)

∂t

∣∣∣∣
e-ph

+
∂f(k)

∂t

∣∣∣∣
e-imp

+ ...

∂n(q)

∂t

∣∣∣∣
coll

=
∂n(q)

∂t

∣∣∣∣
ph-ph

+
∂n(q)

∂t

∣∣∣∣
ph-e

+
∂n(q)

∂t

∣∣∣∣
ph-imp

+ ...

(4.2)

Where the e-ph, e-imp, ph-ph, ph-e, and ph-imp terms represent the colli-
sion terms to due to electron-phonon scattering, electron-impurity scattering,
phonon-phonon scattering, phonon-electron scattering and phonon-impurity
scattering. Under the linearized BTE, which assumes that the electron and
phonon distribution functions do not deviate significantly from equilibrium and
thus can be expanded about equilibrium, the collision terms can be generally
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expressed as [177]:

∂f(k)

∂t

∣∣∣∣
coll

= Ak∆f(k) +
∑
k′ ̸=k

Ak′∆f(k′) +
∑
q

Bq∆n(q)

∂n(q)

∂t

∣∣∣∣
coll

= Cq∆n(q) +
∑
q′ ̸=q

Cq′∆n(q′) +
∑
k

Dk∆f(k)

(4.3)

Here, A, B, C, and D are proportionality factors. The deviations in the
distribution functions are given as ∆f(k) = f(k)−f 0(k) and ∆n(q) = n(q)−
n0(q). Note that in Eq. 4.3, the collision terms have been separated into two
parts: one proportional to the deviation of the distribution of the state of
interest, and the second related to the distribution of other states. At one
level of approximation, we may ignore the dependence of the collision term
of a given state on the other states, in which case we obtain for electrons,
∂f(k)

∂t

∣∣∣∣
coll

= Ak∆f(k). This assumes all other states are at equilibrium when

evaluating a given state, and thus we only consider only out-scattering. The
proportionality factor Ak can then be replaced with an inverse characteristic
time, resulting in the familiar relaxation time approximation (RTA). Although
this approximation significantly reduces the complexity of the BTE, it comes
at the cost of ignoring the coupling between the electron and phonon system.
At another level of approximation, we may ignore only the last term on the
right hand side of Eq. 4.3 and consider non-equilibrium of other states of the
same species which we are solving for. This a valid approximation if one species
does not drag the other out of equilibrium. For example, if electrons are at a
sufficiently low density and the electron-phonon coupling is weak enough, the
change in the phonon distribution ∆n(q) can be effectively zero such that the
last term on the right hand side of Eq. 4.3 disappears.

4.2 Phonon-phonon interaction

A phonon mode is a collective excitation in a crystal lattice, where each atom
follows a specific displacement pattern. There is a frequency and wave vec-
tor associated with the phonon mode, so that the collective atomic motion
is described as a wave propagating through the crystal. The crystal lattice
Hamiltonian, including effects of atomic displacements is given as:
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Hl = U0 +
∑
i

p2
i

2mi

+
1
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∑
ij

∑
αβ

Φαβ
ij u

α
i u

β
j +

1

3!

∑
ijk

∑
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ijk u

α
i u
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j u

γ
k + ... (4.4)

This expression is a Taylor expansion of the potential about the atomic equi-
librium positions. The harmonic and anharmonic force constants are given by
Φαβ

ij and Φαβγ
ijk , respectively; i, j, k represent atomic positions in the crystal,

and α, β, γ represent the three Cartesian directions. The n-th order force
constants, n-th derivatives of energy with respect to atomic displacement, de-
scribe how the lattice potential changes with respect to displacements along
the atomic degrees of freedom. The 2nd order force constants, Φαβ

ij , are the
harmonic force constants and are used to obtain the phonon dispersion. Trun-
cating the lattice Hamiltonian at 2nd order gives the phonon eigenstates of the
system; however, these are not true eigenstates since a state with finite velocity
will never scatter and eventually leading to infinte thermal velocity. Therefore,
the higher-order terms (Φαβγ

ijk and above) termed anharmonic force constants,
which act as perturbations, are necessary to correctly describe the system be-
cause they are the source of thermal resistance. The perturbations from Φαβγ

ijk

lead to three-phonon processes where one phonon creates two phonons or two
phonons create one phonon.

Including higher order terms in Eq. 4.4 creates additional scattering channels
like four-phonon processes, and so on. Four-phonon processes have been found
to be important in certain materials, including BAs [178, 124]. The transition
rates due to three-phonon processes can be derived with Fermi’s Golden Rule.
In the linearized BTE formulation, the transition rates are given as [177]:

1

τq
=

π

ℏ2Nq

∑
q1,q2

|Vq,q1,q2 |2
[
(1 + n0

q1
+ n0

q2
)δ(ωq − ωq1 − ωq2) +

(n0
q2

+ n0
q1
)[δ(ωq − ωq1 + ωq2)− δ(ωq + ωq1 − ωq2)]

] (4.5)

where the mode indices have been omitted for clarity. Vq,q1,q2 is the three-
phonon scattering matrix and is constructed from the 3rd order force constants
as:

Vq,q1,q2 =
(ℏ
2

)3/2 ∑
Riτiαi

Φα,β,γ
0τ,R1τ1,R2τ2

ei(q1·R1+q2·R2)eταq eτ1βq1
eτ2γq2

(MτMτ1Mτ2ωqωq1ωq2)
1/2

(4.6)
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Nq is the number of points in the reciprocal space mesh, ωq is the phonon
frequency, n0

q is the equilibrium phonon distribution, eτ1βq describes the phonon
mode displacement pattern, andMτ is the atom mass at sublattice site τ . Note
that crystal momentum conservation is made implicit in these expressions.
Φα,β,γ

0τ,R1τ1,R2τ2
is the 3rd-order force constant and is the third derivative of energy

with respect to the displacement of three atomic sites (0τ,R1τ1,R2τ2) along
the Cartesian directions (α, β, γ).

It is worth mentioning how the force constants are obtained in practice. The
harmonic force constants can be obtained either by DFPT or supercell meth-
ods, as mentioned in the Introduction. In the supercell method for the har-
monic force constants, a supercell is created by replicating the relaxed unit cell
multiple times along the lattice vectors. Within each supercell, a slight dis-
placement of a single atom from its equilibrium position is introduced, and the
restoring forces acting on these atoms are computed. To derive the third-order
anharmonic force constants, we go through the same procedure but displace
two atoms instead.

4.3 Coupled transport of electrons and phonons

Armed with the necessary tools, we may now delve into the procedure to solve
the couple e-ph BTEs. The electron non-equilibrium distribution functions
can be expanded about its equilibrium value in the presence of weak external
fields as:

fk ≈ f 0
k − 1

β
∂ϵkf

0
kΨk = f 0

k[1 + (1− f 0
k)Ψk] (4.7)

where f 0
k is the equilibrium Fermi-Dirac electron distribution, β = 1

kBT
and

kB is the Boltzmann constant, T is temperature, ϵk is electron energy, and Ψk

is a deviation function. The deviation function is given by:

Ψk = −β∇T · Ik − βE · Jk (4.8)

where E is the electric field and Ik, Jk are linear response functions to the
temperature gradient and electric field. We follow the same procedure for
phonons and obtain:

nq ≈ n0
q[1 + (1 + n0

q)Φq] (4.9)
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and:
Φq = −β∇T · Fq − βE ·Gq (4.10)

Here, nq is the equilibrium Bose-Einstein distribution, Φq is the deviation
function, Fq and Gq are the temperature gradient and electric field response
functions. Since phonons are not charged particles and hence cannot couple
directly to the electric field, Gq represents an indirect response that arises
from the electron-phonon interaction.

Recall that the coupled set of equations we would like to solve is given by
Eq. 4.1. The electron drift term is:

e

ℏ
E · ∇kf

0
k − vk · ∇T∂Tf 0

k = βf 0
k(1− f 0

k)
[
−eE− ϵk − µ

T
∇T

]
· vk (4.11)

Similarly, the phonon drift term is:

−vq · ∇T∂Tn0
q = −βn0

q(1 + n0
q)
ℏωq

T
∇T · vq (4.12)

where vq is the phonon group velocity.

The collision terms of Eq. 4.1 are discussed next. For electrons, the e-ph col-
lision processes that occur at lowest order at 1ph processes, where electrons
scatter by absorption(+) or emission(-) of a phonon. The scattering probabil-
ities associated with these processes can be written as:

X+
k,k+q =

2π

ℏ
|gkq|2f 0

k(1− f 0
k+q)n

0
qδ(ϵk+q − ϵk − ℏωq)

X−
k,k+q =

2π

ℏ
|gkq|2f 0

k(1− f 0
k+q)(1 + n0

q)δ(ϵk+q − ϵk + ℏωq)
(4.13)

where gkq is the electron-phonon matrix element that was introduced in Eq. 1.6.
Linearizing Eq. 4.13, we obtain for the electron-phonon collision term:

∂tfk|coll = β
∑
q

(
X+

k,k+q

[
Ik − Ik+q + Fq

Jk − Jk+q +Gq

]
+X−

k,k+q

[
Ik − Ik+q − Fq

Jk − Jk+q −Gq

])
·
[
∇T
E

]
(4.14)

The top line represents the term due to the temperature gradient and the
bottom line represents the term due to the electric field. For phonons, colli-
sion processes can be a result of anharmonic phonon interactions (3-phonon)
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or phonon-electron interactions. There can also be 4-phonon processes but
we ignore them in this work. The scattering probabilities due to 3-phonon
interactions are given by:

W±
q,q1,q2

=
πℏ
4

|Vq,q1,q2|2

ωqωq1ωq2

(n0
q + 1)(n0

q1
+

1

2
± 1

2
)n0

q2
δ(ωq ± ωq1 − ωq2) (4.15)

Similarly, the ph-e scattering probabilities can be computed as:

Yqk =
2π

ℏ
|gkq|2f 0

k(1− f 0
k+q)n

0
qδ(ϵk+q − ϵk − ℏωq) (4.16)

The phonon-phonon and phonon-electron collision terms can then be written
as:

∂tnq|3phcoll = β
∑
q1,q2

(
W+

q,q1,q2

[
Fq + Fq1 − Fq2

Gq +Gq1 −Gq2

]
+

1

2
W−

q,q1,q2

[
Fq − Fq1 − Fq2

Gq −Gq1 −Gq2

])
·
[
∇T
E

] (4.17)

∂tnq|ph-e
coll = 2β

∑
k

(
Yqk

[
Ik − Ik+q + Fq

Jk − Jk+q +Gq

])
·
[
∇T
E

]
(4.18)

Phonon response to ∇T

Before discussing the scheme to solve the coupled BTEs, we first define some
functions that lend each of the BTEs into the form we desire:

Qq =
∑
q1,q2

[
W+

q,q1,q2
+

1

2
W−

q,q1,q2

]
+ 2

∑
k

Yqk (4.19)

∆FS
q =

1

Qq

∑
q1,q2

[
W+

q,q1,q2
(Fq2 − Fq1) +

1

2
W−

q,q1,q2
(Fq2 + Fq1)

]
(4.20)

∆FD
q =

2

Qq

∑
k

Yqk(Ik+q − Ik) (4.21)

F0
q =

ℏωqvqn
0
q(1 + n0

q)

QqT
(4.22)
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The set of equations above defines the phonon response to a temperature
gradient, where we have defined self (S) and drag (D) terms that are functionals
of the phonon electron deviation function, respectively. The phonon BTE due
to the temperature gradient is then:

Fq = F0
q +∆FS

q +∆FD
q (4.23)

An important thing to note in Eq. 4.23 is that the drag term ∆FD,q represents
the effect of non-equilibrium electrons on phonon transport. If it is assumed
that during the e-ph interaction, electrons remain at equilbrium, then ∆FD,q =

0 and there will be no drag contribution to the phonon BTE.

Phonon response to electric field

The phonon system does not respond directly to the electric field. The indirect
effect of the electric field on the phonon system occurs via the e-ph interaction:
that is, the electric field can drive electrons out of equilibrium, which would
then be felt by the phonon system through ph-e scattering. Self and drag
functions can be defined as:

∆GS
q =

1

Qq

∑
q1,q2

[
W+

q,q1,q2
(Gq2 −Gq1) +

1

2
W−

q,q1,q2
(Gq2 +Gq1)

]
(4.24)

∆GD
q =

2

Qq

∑
k

Yqk(Jk+q − Jk) (4.25)

The phonon BTE due to the electric field becomes:

Gq = ∆GS
q +∆GD

q (4.26)

Electron response to electric field

We go through a similar formulation for electrons. We first define the e-ph
scattering probability including both absorption and emission as:

Rk =
∑
k

(
X+

k,k+q +X−
k,k+q

)
(4.27)

Then the self and drag terms:
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∆JS
k =

1

Rk

∑
q

Jk+q

(
X+

k,k+q +X−
k,k+q

)
(4.28)

∆JD
k =

1

Rk

∑
q

(
X−

k,k+qG−q −X+
k,k+qGq

)
(4.29)

The electron BTE due to the electric field is:

Jk = J0
k +∆JS

k +∆JD
k (4.30)

where J0
k = e

Rk
f 0
k(1− f 0

k)vk.

Electron response to ∇T

The self and drag terms for the electron BTE due to the temperature gradient
are:

∆ISk =
1

Rk

∑
q

Ik+q

(
X+

k,k+q +X−
k,k+q

)
(4.31)

∆IDk =
1

Rk

∑
q

(
X−

k,k+qF−q −X+
k,k+qGq

)
(4.32)

The electron BTE for a temperature gradient reads:

Ik = I0k +∆ISk +∆IDk (4.33)

where I0k = ϵk−µ
RkT

f 0
k(1− f 0

k)vk.

We have now developed the set of equations (4.23, 4.26, 4.30, 4.33) we would
like to solve to obtain quantities of interest. In these equations, terms with
“0”, “S”, “D” subscripts are RTA terms, self terms, and drag terms respectively.
The RTA terms include only out-scattering processes and represent a direct
coupling to the external field, which is why there is no RTA term for the
phonon electric field BTE in Eq. 4.26. The self terms are functionals of the re-
sponse function of the respective species and are the in-scattering corrections.
Considering terms only up to the self term is the typical approximation made
in ab initio studies today as the phonons (electrons) are assumed in equilib-
rium in the electron (phonon) BTE. Excluding drag terms renders the BTEs
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a decoupled set of equations. The drag terms are functionals of the response
functions of the other species, lifting the assumption that those species remain
in equilibrium. Within this framework, we are able to investigate the effect of
a non-equilibrium phonon (electron) distribution on electron (phonon) trans-
port. Accordingly, each pair of BTEs (corresponding to each field) must be
solved in a self consistent manner as they become tightly coupled from the
inclusion of drag terms.

4.4 Procedure to solve BTEs

The BTEs are solved using the now-standard iterative scheme that have been
well-described in several works (see, for example, Ref. [179]). Briefly, one
starts with the RTA terms as a zeroth order solution. In the next iteration,
this solution is fed into the BTE to obtain the self and drag terms, and this
process is continued until convergence. The key difference here is that we are
not solving a single BTE. Here, for each coupled BTE and for each phonon
BTE iteration, the electron BTE is first iterated to self consistency. Therefore,
once the phonon BTE is converged, the electron BTE is converged as well.
This approach is physically justified because the electron system is typically
significantly faster than the phonon system.

Once the BTEs are solved for the response functions, we may obtain transport
coefficients such as the electrical conductivity, σ and Seebeck coefficient, S.
The tensors are given by:

[
σ

σS

]
=

2e

V kBT

∑
k

f 0
k(1− f 0

k)vk ⊗
[
Jk

Ik

]
(4.34)

Computational details

The following quantities are required for a full solution of the coupled electron-
phonon BTEs: second and third order interatomic force constants, which were
obtained from Quantum Espresso and thirdorder.py [180], respectively; the dy-
namical matrix, e-ph matrix elements, real space cell maps and degeneracies,
and the electronic Hamiltonian in Wannier space generated from EPW [150].
For Quantum Espresso calculations, we use norm conserving pseudopotentials
with a Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional.
The relaxed lattice constant was 4.8155 Å. We used a 123 k grid for SCF and
NSCF calculations, and a 63 q grid for the phonon calculations. The third
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order force constants were calculated using a 3 × 3 × 3 supercell with five
nearest neighbor cut-off. The elphbolt package was used to to solve the cou-
pled BTEs [172]. The fine k and q grid of 1503 and 503, respectively where
used for the transport calculations, and the energy window was set to 400 meV
below and above the conduction band minimum.

4.5 Results

Scattering rates

Electron scattering rates versus electron energy as shown in Figure 4.1 at 50
K and 300 K. We observe the characteristic kink around the optical phonon
energy of 80 meV, corresponding to the onset of optical phonon emission.
Below 80 meV, the rates are dominated by phonon absorption and emission
processes. The scattering rates at 50 K are lower than at 300 K due to reduced
phonon population at lower temperatures. Finally, note that the 300 K rates
are in quantitative agreement with the 1ph results in Fig. 3.7a, showing that
our approach is relatively robust to choice of pseudopotential and exchange-
correlation functional.

We next discuss the phonon-phonon and phonon-electron RTA scattering rates
versus phonon energy at 300 K and a nondegenerate carrier concentration of 5
× 1016 cm−3 as shown in Fig. 4.2. The black circles are phonon-phonon scat-
tering rates and the red triangles are phonon-electron scattering rates. We
notice that there is a gap on the x axis of Fig. 4.2 which is a result of the
acoustic-optical gap in the phonon dispersion of BAs, so there are no phonons
in that range of energy to participate in scattering processes. The coupled e-ph
system exchange momenta. Momenta received by phonons from the electronic
system can either be dissipated by scattering with other phonons or scattering
with electrons, the latter which will lead to enhancement of electron transport
properties [181]. At the same time, reduced phonon-phonon momentum dis-
sipation due to extra momentum from the electron system can enhance the
phonon transport coefficients. Although we do not consider the electron drag
effect on phonon transport in this work, other studies have shown this effect
to be overall, minimal [181, 173].

Importantly, observe that the phonon-electron scattering rates are orders of
magnitude lower than the phonon-phonon scattering rates at this carrier con-
centration. The strength of phonon-electron scattering relative to phonon-
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Figure 4.1: Electron-phonon scattering rates in BAs at 50 and 300 K. The
rates at 50 K are lower than the rates at 300 K due to a reduced phonon
population at lower temperatures. These calculations using a norm
conserving pseudopotential agree with the results in Chapter 3 where we
employed an ultrasoft pseudopotential, showing the robustness of this
approach to specific choices of pseudopotential.
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Figure 4.2: Phonon scattering rates in BAs at 300 K and a carrier
concentration of 1016 cm−3. Phonon-phonon scattering rates dominate
phonon-electron rates at this temperature and carrier density. The gap on
the x axis is a result of the acoustic-optical gap in the phonon dispersion of
BAs, and there are no phonons in that range of energy to participate in
scattering processes.

phonon scattering determines the magnitude of the drag effect. If phonon-
electron scattering is relatively strong, then there will be significant momen-
tum mixing between the systems and electrons will dissipate less momentum
overall. At this temperature and carrier concentration, phonon-electron scat-
tering rates are relatively weak and thus not expected to result in a significant
enhancement of the electron mobility.

Conversely, the phonon-phonon and phonon-electron RTA scattering rates ver-
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sus phonon energy at a degenerate carrier concentration of 1019 cm−3 are shown
in Fig. 4.3. In comparison to Fig. 4.2, we observe that the phonon-electron
scattering rates in Fig. 4.3 are significant. This is due to the strong electron-
phonon interaction that arises from the position of the chemical potential in
the conduction band, increasing the phase space for electron-phonon scatter-
ing. Thus at high carrier concentrations, flow of momentum back into the
electronic system is more likely.

Qualitatively, we can understand this phenomenon as follows. When we as-
sume an equilibrium distribution of phonons at a particular physical or lattice
temperature, what we are saying is that electron-phonon scattering happens
on a timescale much longer than the time it takes the phonon system to redis-
tribute back to equilibrium, such that the electrons always “see” an equilibrated
phonon system. That means that we have assumed the phonon-phonon scat-
tering rates are much larger than the phonon-electron scattering rates. As
we’ve seen in Fig. 4.3, this is not always the case and in these cases electrons
can “see” a nonequilibrium phonon distribution that needs to be accounted for
in the BTE.
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Figure 4.3: Phonon scattering rates in BAs at 300 K and a carrier
concentration of 1019 cm−3. At this temperature, ph-ph rates dominate ph-e
rates but ph-e rates are also significant. Phonon-electron scattering
facilitates momentum circulation between the electron and phonon system.

We next examine the dependence of the phonon scattering rates on tempera-
ture. The scattering rates at 50 K are shown in Fig. 4.4. We first note that
the scattering rates are lower overall at 50 K compared to the rates at 300
K. This is expected and a consequence of the phonon population decreasing
with temperature. Secondly, the relative magnitude of phonon-electron rates
with respect to the phonon-phonon rates is higher at 50 K versus 300 K. This
indicates that even though the scattering rates decrease with temperature, the
phonon-phonon rates decrease more rapidly than the phonon-electron rates,
suggesting that the drag effect may be stronger at lower temperatures.
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Figure 4.4: Phonon scattering rates in BAs at 50 K and a carrier
concentration of 1019 cm−3. At this temperature, ph-e scattering dominates
ph-ph scattering due to the reduction in phonon population at lower
temperatures.

Phonon drag effect on electron mobility

We now proceed to the effect of phonon drag on the electron mobility. Let’s re-
call that in the typical ab initio treatment of mobility, the effect of phonon drag
is ignored and assumed negligible. Therefore the electron-phonon interaction
is always a momentum-dissipative process for electrons as they lose momenta
to the thermal (phonon) bath. However, when phonons are not assumed in
equilibrium momentum mixing can occur. This picture is closer to the physical
microscopic process because momentum must be conserved as electrons trans-
fer their momenta to phonons. The transfer of momentum can drive phonons
out of equilibrium and the phonons can then dissipate this excess momentum
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through anharmonic phonon-phonon interaction, phonon-electron scattering,
and phonon-defect scattering. Note that in this work we assume a pure sample
and ignore impurity/defect effects.

Figure 4.5: Electron mobility at 300 K versus carrier concentration in BAs,
showing results for drag-included and drag-excluded processes. Without
including drag, we observe a decrease in the mobility with concentration at
degenerate densities. This is a result of the larger phase space for
electron-phonon scattering. When drag is included in the calculation, the
stronger electron-phonon interaction at high densities drives momentum
mixing between the systems and enhances the drag effect, resulting in
competing mechanisms for the drag-included processes and a resulting
increasing trend of the electron mobility with concentration.

Figure 4.5 shows the computed electron mobility as a function of carrier con-
centration in BAs, including and excluding drag effects. Without drag (black
circles), we observe a decrease in the mobility with concentration at these car-
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rier densities. This decrease is a result of the larger phase space for electron-
phonon scattering associated with the degenerate carrier density.

At low carrier concentrations where the chemical potential is in the band gap,
electrons primarily interact with low-energy acoustic phonons in a quasi-elastic
fashion. However, at high carrier concentrations when the chemical potential
is in the conduction band, the phase space for electron-phonon scattering in-
creases as there are contributions from all types of phonons, which in turn
decreases the electron lifetime and mobility. When drag is included (red tri-
angles) however, there is a different trend with carrier density that arises from
two competing factors: stronger electron momentum dissipation processes and
momentum mixing with the phonon system. The mobility increases with den-
sity as a result of the nonequilibrium phonon distribution created by the high
carrier density, and this phonon distribution pumps momentum back into the
electronic system as part of its own momentum-dissipative processes. This
momentum mixing process is what acts to enhance the electron mobility, and
has been observed in other compound semiconductors such as GaAs and GaN
[173, 175].

To quantify this effect, the computed mobilities with and without drag at 5 ×
1016 cm−3 as shown in Fig. 4.5 are 1108 and 1106 cm2 V−1 s−1, respectively,
while at 6.5 × 1019 cm−3, the calculated values are 1290 and 800 cm2 V−1 s−1,
respectively.
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Figure 4.6: Electron mobility versus temperature in BAs, showing results
for drag-included and drag-excluded processes at a carrier concentration of
1019 cm−3. The mobility gain from drag increases as temperature decreases,
and is almost an order of magnitude greater at 50 K than it is at 300 K.

Next, we examine the dependence of the electron mobility on temperature.
We previously discussed the dependence of the phonon RTA scattering rates
on temperature and noticed that the phonon-electron scattering rates were
stronger in relative magnitude to phonon-phonon rates at 50 K compared to
300 K. This indicates that the relative amount of momenta transferred back
into the electronic system is greater at 50 K, and thus should reflect in the
electron mobility. We confirm this expectation in Fig. 4.6. At a carrier con-
centration of 1019 cm−3, the mobility gain from drag increases as temperature
is reduced, and is almost an order of magnitude greater at 50 K than it is at
300 K. The computed electron mobility excluding drag effects at 300 K is 990
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cm2 V−1 s−1, whereas with drag included the mobility is 1230 cm2 V−1 s−1, an
increase of ∼ 25%. At 50 K, the respective values are 21875 cm2 V−1 s−1 and
59375 cm2 V−1 s−1.

It is worth mentioning that due to the computational cost associated with
solving the coupled BTEs (∼ 2000 − 3000 CPU hours per calculation), we
limited our k and q grids to 1503 and 503, respectively. A denser grid may
alter our results somewhat, as shown in Fig. 10 of Ref. [175].

4.6 Discussion

The demonstration of drag-enhanced electron mobility in BAs is an important
development, especially in the context of the results of Chapter 3. In Chapter
3, we found that electron-two-phonon processes played an important role in
the carrier mobility, with corrections around ∼ 40% to the mobility predicted
with only 1ph processes. This is in contrast to experimental reports [127, 126]
that appear in agreement with the 1ph mobility. Our results here indicate, in
addition to the hot carrier effect and the direct 2ph contribution we do not
include in our calculations, another possible contribution to the discrepancy
between our results and the experimental results: at high carrier concentra-
tions for which the experiments were conducted, phonons may be dragged out
of equilibrium thus resulting in an increase of the mobility.

Note that we do not consider electron-two-phonon processes or higher order
phonon-phonon (four phonon) processes in this chapter. Even though we don’t
expect the outcome from this chapter’s results to be significantly affected by
the inclusion of electron-two-phonon processes, it is known that four phonon
processes are important in BAs, and their inclusion could affect the computed
drag-enhanced mobility because of the added phonon-phonon scattering mech-
anism which restore phonons back to equilibrium faster [124, 176]. We also
do not include electron scattering with ionized impurities, which is physically
justified in our case because we assume a carrier concentration obtained by
photoexcitation of a pristine sample.

Further, we have neglected electron-electron interactions in this work. Electron-
electron interactions are important to thermalize an initial unknown degener-
ate carrier distribution to a hot Fermi-Dirac distribution on the fs timescale
[182, 183]. At high carrier concentrations, the low field mobility may also
be influenced by electron-electron interactions, although clear and conclusive
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evidence for this is missing due to the increased strength of carrier-impurity
scattering at these densities. We note that while several works have attempted
to include electron-electron interactions within the framework of the BTE with
varying approximations [183], a full first-principles framework for this prob-
lem has not yet been developed as of this writing. Therefore, a quantitative
understanding of electron-electron scattering on the low field mobility in semi-
conductors is presently lacking.

Let us now conclude by revisiting our motivation for investigating phonon
drag in boron arsenide. Recall that current estimates of the carrier mobility
in boron arsenide are from three primary sources: ab initio calculations em-
ploying the lowest order of perturbation theory (1ph), calculations employing
higher order perturbation theory (2ph, our work, Chapter 3), and pump-probe
experiments that track diffusion of photoexcited carriers. The 1ph theory and
photoexcitation experiments are seemingly in agreement, but our 2ph work un-
derestimates these results by around 40%. We suspect that this disagreement
could be a result of one or a combination of the following factors. One factor
is the potential cancellation of different types of 2ph processes as discussed in
Chapter 3 that could lead to a ∼ 10 − 20% underestimate of the mobility in
our calculations. Secondly, the hot carrier effect could overestimate the carrier
mobility from experiments. Another reason for the discrepancy could be the
induced high carrier concentration, on the order of 1019 cm −3 [127]. In fact,
the hot carrier effect and phonon drag could simultaneously inflate the exper-
imental values. What we have demonstrated in this chapter is that at these
high densities, the obtained experimental carrier mobility may be enhanced
due to momentum circulation between the electron and phonon systems, po-
tentially partly accounting for the discrepancy between our two-phonon results
in Chapter 3 and experiment.

4.7 Summary

In this chapter, we explored the coupled electron-phonon Boltzmann trans-
port equations where the solution to each of the BTEs requires knowledge of
the non equilibrium distribution of the other species. We demonstrated that
the coupled BTEs can be solved in an iterative fashion, where we start with
the zeroth order solution and iterate until we obtain the self and drag terms.
Importantly, because the electron system tends to be overall faster than the
phonon system, the BTEs are solved such that for each phonon BTE itera-
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tion, the electron BTE is first iterated to self consistency. We then showed
from solutions of the coupled electron-phonon BTEs that the assumption of an
equilibrium phonon distribution when solving the electron BTE is not justified
at high carrier concentrations. Particularly, there is a 25% increase in the mo-
bility at 300 K and a carrier concentration of 1019 cm−3 when the drag effect
is included versus when it is not included. The phonon drag enhancement
of electron mobility is temperature-dependent and strongest at low tempera-
tures. At high carrier concentrations, there are two main competing factors
with regard to the mobility. One is the reduction in mobility that comes from a
larger phase space for electron-phonon scattering which leads to electronic mo-
mentum dissipation, and the other is the increased mixing between electrons
and phonons that tends to enhance the mobility. We showed that when drag
is included in our calculations, the mobility increases with carrier concentra-
tion, whereas the mobility decreases with increased concentration when drag
is not included. Our results reveal important phenomena about the coupled
transport of electrons and phonons in boron arsenide.
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C h a p t e r 5

CONCLUSION AND OUTLOOK

This thesis has centered on investigations of transport in semiconductors and
semiconductor devices. In Chapter 1, we introduced a class of semiconductor
devices called HEMTs which are widely used to build low-noise amplifiers in
fields like radio astronomy and quantum computing. We discussed their noise
characteristics and the importance of material properties like carrier mobility
and thermal conductivity on device performance, which then prompts us to
investigate potential materials with desirable properties.

In Chapter 2, we suggested techniques to achieve better noise performance in
HEMTs by proposing a new theory of drain noise based on real-space transfer
of electrons out of the quantum well of the device. This theory is based on a
general formulation of partition noise that occurs when charge carriers have
multiple paths to arrive at a terminal. We found that an explanation based on
this theory was able to account for various dependencies of the observed noise.
In particular, there is a critical dependence of the noise on the magnitude of
the conduction band offset formed between channel and barrier that helps un-
ravel strategies to realize devices with lower noise figure. A larger conduction
band offset in HEMTs helps to maximize the channel sheet density. According
to our theory, a large offset is also beneficial to minimize the transfer of elec-
trons into the adjacent layer, which in turn would possibly improve the noise
performance. To minimize the transfer, the electron temperature could be re-
duced which would reduce the population of electrons able to thermionically
emit out of the quantum well. This can be achieved by adjusting the elemen-
tal composition of the compound semiconductor that makes up the channel.
However, this adjustment must be carefully balanced with the requirement for
high mobility. Alternatively, an increase in the conduction band offset can be
attained without affecting the channel by adjusting the elemental composition
in the adjacent barrier layer, instead of the channel. In any case, these ad-
justments must be made while carefully accounting for the potential of lattice
mismatch that can lead to the formation of misfit dislocations that negatively
impact the noise.
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In Chapter 3, we employed first principles methods to investigate charge trans-
port in boron arsenide, a material which, due to its exceptionally high thermal
conductivity could potentially be integrated into various technological appli-
cations in the future, including HEMTs. By including higher-order electron-
phonon scattering processes (2ph), we find that the predicted electron and
hole mobility is significantly reduced compared to the lowest level of pertur-
bation theory involving one electron and one phonon (1ph). Our results are in
apparent disagreement with recent experimental reports that employ diffusion
of photoexcited charge carriers to estimate the mobility. We proposed that the
experimental origin of the discrepancy could arise from the superdiffusion of
hot carriers shortly after photoexcitation, an effect which has been observed
using scanning ultrafast electron microscopy. Furthermore, the induced excess
carrier concentration in photexcitation could be potentially responsible for an
inflation of the experimentally-obtained mobility. On the theory side, the pre-
dicted value of the mobility could be underestimated as a result of a nontrivial
cancellation between the iterated and direct contributions to 2ph scattering,
the latter of which we neglect in our work. We also consider quadrupolar cor-
rections to the electron-phonon matrix elements and dynamical matrices as
another potential source of error in our work, but we found no significant dif-
ference between the mobility computed by including dynamical quadrupoles
versus when dynamical quadrupoles are excluded. To test our predictions
given the defective samples presently available, we suggested an experimental
approach based on direct measurements of hot-carrier lifetimes using.

As discussed, one of the potential reasons for the disagreement between our
work and experiments could be the effect of the induced excess carrier concen-
tration in photoexcitation on the phonon distribution. Most first-principles
studies of carrier transport assume an equilibrium occupation of phonons at
a given lattice or physical temperature. This approximation is usually well-
justified if the timescale of electron-phonon scattering is much longer than
that of phonon-phonon scattering. In these cases phonons are driven out of
equilibrium on the timescale of the electron-phonon interaction and one would
then need a coupled electron-phonon BTE framework that includes the scat-
tering of phonons by electrons in the phonon BTE. As we saw in Chapter
4, this framework is necessary to compute the mobility in semiconductors at
high carrier concentrations as electrons and phonons “drag” themselves out
of equilibrium. Without including drag in our calculation, we showed that
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the mobility reduced as the carrier concentration increased. This is a result
of an increased phase space for electron-phonon scattering. When drag was
included, the stronger electron-phonon interaction at high densities resulted
in an increasing trend of the electron mobility with concentration.

5.1 Future work

Inclusion of other noise sources in HEMTs

In Chapter 2, we proposed one physical mechanism responsible for drain noise
in HEMTs. Our work suggests measures to decrease the noise figure of HEMTs
by carefully engineering the channel and barrier layers to optimize the con-
duction band offset to decrease the likelihood of thermionic emission out of
the channel. However, our work assumed a peak electron temperature with
a physical temperature dependence. This assumption may not be completely
justified at high electric fields, as suggested in Ref. [107]. More experimental
and modeling work needs to be done to accurately characterize the dependence
of the peak electron temperature on physical temperature. Furthermore, there
could be other mechanisms that contribute to the observed noise. Consider for
example, impact ionization: a process where electrons subject to a high elec-
tric field gain sufficient energy to collide with ions and generate electron-hole
pairs, exciting new charge carriers from the valence band of the material that
then contribute to electrical conduction. Impact ionization is usually recog-
nized as a kink in the DC current-voltage characteristics [40, 43] beyond the
ohmic regime and at high bias. Effects of impact ionization on noise charac-
teristics of HEMTs have been studied with Monte Carlo simulations [184, 185].
An improvement on our work could be an extension of our drain temperature
model to include other potential contributors, such as impact ionization, to
predict the drain noise figure.

Electron-two-phonon interactions

Our work considered one type of 2ph scattering: consecutive one-phonon
events mediated by an intermediate state. This physical picture corresponds to
the first derivative of the interatomic potential with respect to lattice displace-
ments taken to second order in perturbation theory. We did not include 2ph
events involving the simultaneous interaction of an electron with two phonons
which corresponds to the second-order derivative of the interatomic potential.
Further work is required to quantify the extent of the cancellation between
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these two 2ph processes.

Time-resolved evolution of distribution function

Our solution approach to the BTE assumes a steady-state distribution of elec-
trons and phonons. An interesting next step is the development of tools to
solve the time-dependent coupled BTEs for up to hundreds of ps. Some works
have studied the time-dependent phonon BTE without assuming an equilib-
rium electron distribution function (that is, the collision term includes ph-ph
and ph-e scattering) [186]. Tong and Bernardi developed a numerical scheme
to solve the coupled electron-phonon BTEs for up to tens of picoseconds in a
photoexcited graphene sample [187]. Application of such a scheme to study
electron phonon dynamics in boron arsenide would aid in placing our simula-
tion results in context of recent experimental findings. In general, a framework
to investigate time-dependent electron and phonon transport for timescales
long enough to observe equilibration would be useful to understand the dy-
namics of electrons and phonons under photoexcitation in materials.

Electron-electron interactions

In nondegenerate semiconductors, the effect of electron-electron scattering on
transport coefficients is generally considered minimal compared to phonon
and impurity scattering [188, 189]. However, at high carrier concentrations,
the interaction of electrons with a collective electronic excitation—plasmons—
is thought to be nontrivial [190, 191, 183]. Further, it has been established
that for degenerate semiconductors there is a coupling between plasmons and
phonons that challenges the assumption of independent (phonon and plasmon)
excitations in the semiconductor [192, 193]. These effects are not considered
in this thesis, but the inclusion of plasmonic effects within the first-principles
BTE framework is an active area of research that will necessitate ongoing
development in the years ahead.
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