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ABSTRACT

The effect on a wide delta wing in supersonic flight of the
sudden imposition of a small velocity perturbation normal to the
plane of the wing is considered. The resulting pressure field on
the wing is found in closed form in terms of elementary functions,
The corresponding solution for the infinite swept wing with super=-
sonic edges is obtained as a by-product, and for this the terms of
the transient pressure coefficient are shown to have geometric
significance., The force and moment coefficients are obtained by
means of a method of descent, which simplifies the calculations
and shows the nature of the dependence of these coefficients on
the wing planform. Because of the short duration and moderate
strength of the transient effects of the unit-step motion, it is con-
sidered to be of little practical importance. However, because
of the simplicity of the solutions for the motion, it is also con-
sidered to be of possible theoretical value as a basis for Duhamel
integration to obtain solutions for more general time-dependent

motions of the wide delta wing.
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I. INTRODUCTION

In recent years considerable attention has been given to the
aerodynamic problems associated with the flight of airplanes and
missiles at supersonic speed. Because of the difficulty of solution
of the complete hydrodynamical equations, even under the assump-
tion of non-viscous irrotational flow, further assumptions, which
remove in some way the non-linearity of the equations, have gen-
erally been needed to make solution of these problems possible,

For problems involving the flight of wings at supersonic
speed a fruitful procedure has been to assume that the wings are
very thin and move essentially in one plane. Under these assump-
tions the disturbances produced in the gas by the motion of the wing
are small in comparison with suitable reference quantities, In par-
ticular, the disturbance velocities are small compared to the veloc-
ity of the wing. As a result, the hydrodynamical equations govern-
ing the disturbances are\linearizedg and the prcoblems become
tractable. It should be kept in mind, however, that solutions to
these linearized equations may not correspond closely with reality,
particularly for non-steady motions. Nevertheless, when ;1ts re-
sults are applied with discretion, linearized supersonic wing theory
is a useful and important branch of aerodynamics.

Further simplification of the equations results if the motion

of the wing is not time-dependent. Accordingly, problems in which
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this was true, were considered first, and as early as 1925 Ackeret
(Reference 1) treated the problem of steady, supersonic flow past
thin, two-dimensipnal airfoils. Since then, most of the problems
of interest concerning the steady supersonic motion of thin wings
have been solved, and more recently problems in which the motion
is time-dependent have been given much attention. Possio's solu-
tion in 1937 (Reference 2} for an ossillating two-dimensional air-
foil moving at supersonic speed was probably the first of this type.

Among finite wings which have been considered, the delta
wing, whose planform is an isosceles triangle with the base as
trailing edge, is the most common, being both simple mathemati-
cally and of practical interest. A delta wing is classified as wide
or narrow depending on its speed of flight, If its supersonic speed
is low enough for the wing to lie within the cone of disturbance
from the vertex, the wing is a narrow delta. At some higher su-
personic speed this cone of disturbance will be narrow enough for
the wing to extend beyond it, and the wing is then classified as a
wide delta. Among authors treating the wide delta wing are Puck-
ett (1946) (Reference 3) for steady motion and Froehlich (1950)
(Reference 4} for oscillatory motion. The narrow delta wing has
been treated by such authors as Stewart (1946) (Reference 5) for
steady motion and Hipsh (1951} (Reference 6} for oscillatory motion.

It might be thought that the solutions obtained for the oscillatory
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supersonic motion of delta wings would lead to solutions for more
general time-dependent motions through the application of the
Fourier integral. However, the solutions for oscillatory motion
have been of such complexity that this procedure does not appear
very promising,

An alternative procedure is to obtain the effect of a unit-
step motion of the wing, and then seek solutions for other time-
dependent motions through the application of some superposition
integral, Several authors (References 7-12) have applied this
unit-step technique to two-dimensional wings. Miles (1948) (Ref~
erence 7), for example, has treated the problem of a two-dimen-~
sional wing which experiences a unit increase in downwash instan-
taneously over its surface.

In the present paper a similar problem is considered for
the wide delta wing*. More specifically, the problem is that of
finding the pressure distribution over a wide delta wing of zero
thickness which, moving initia‘lllyiin its own plane at supersonic
speed, instantaneously acquires a small downward velocity which
thereafter remains constant. That is, the wing experiences an
instantaneous change in angle of attack without, however, rotating.

This restriction is important, for if the wing experienced an

*Other recent papers on the same problem by Strang (1950} (Ref-
erence 14} and Miles (1950} (Reference 18) are discussed in Part V,
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instantaneous rotation there would result an induced downwash
distribution in addition to the desired step-function distribution,
The induced distribution would be of linear variation chordwise
and a Dirac delta function in time,

Thus the unit-step motion considered in this paper does
not represent a very probable motion of the wing, but is impor-
tant because of the possible use of the solution in a superposition
integral giving solutions for more general time-dependent motions,
Before the specific problem is considered, some small-distur-
bance wing theory will be reviewed in order to clarify the con-

cepts and formulae needed in the analysis of the problem.,
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II, SMALL-DISTURBANCE WING THECRY

a. Linearization of the Hydrodynamical Equations. The isentropic

flow of a non-viscous gas is specified by the following equations:

Q.

Continuity 3‘2}: a V-d?: 9] (1)

a;f i = ‘
Momentum C/é—ff + d? 177 7+ [7/0 g (2)

K
State _g - —O/g/_ =0 (3)

where p, d, g are respectively the static pressure, density, and
vector velocity in an (§,§,Zﬁ) coordinate system. ( )windicates
values at infinity and K is the ratio of the specific heats at constant
pressure and constant volume of the gas. From Egquation (3},

p = p(d) so that

v =(L)vd = g vd 4)

where dj is the local velocity of sound. It is convenient to express

the density in the form

d=d,(/*s) (5)

If now g is taken as the disturbance velocity produced in the
gas, which is undisturbed at infinity, by the motion of a thin wing

moving essentially in its own plane with velocity 6, then it may
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reasonably be assumed that

& /«/

/5/<</

Moreover, the derivatives of?:fand s may be assumed small compared

In the same way:

to suitable reference quantities associated with the wing and its mo-
tion, As a result squares and products of these small quantities may
be assumed negligibly small compared to the quantities themselves,
and terms containing them may be dropped from the equations. Also,
q; may be replaced by a’ s the value at infinity. With the incorpo-
ration of Equations (4} and (5), and the above assumptions, Equations

(1) and (2) become:

Continuity f’;‘g * V? =0 (6)
Momentum i? + 0275 =0 (7)

oF
Finally, the motion of the gas may be assumed irrotational, so that
7 x ?=0 . It is then possible to define a velocity potential ¢Zby the

relation g = ¢/ . Substituting for q in Equation (7) gives:

I7 2+ a's) =0 (8)

the order of differentiation being immaterial. Integration of Equa-

tion (8) yields the equation

2 v a’s =0 )
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The integration gives zero on the right side of the equation because
of the conditions at infinity. Finally, the linearized differential
equation governing the flow is obtained by substituting for s from

Equation (9) in Equation (6):
LY .
v - it =0 (10)

This is of course the wave equation and it, together with the bound-
ary and initial conditions of the problem, determines the flow field
in the (x,y,z,t) system, which is fixed with respect to the fluid at
infinity. In particular the pressure, which may be expressed by a

pressure coefficient Cp defined by

P e ~
G =Ltz (1)
PR

where U is the magnitude of the main velocity of the wing, is given

in terms of ¢/, Using the linearized pressure relation

PP =05

and substituting for a%s from Equation (9}:
2 ¢
- £7 12
C;b 2 a ( )

It is also important to be able to determine the flow in a co-
ordinate system fixed with respect to the main motion of the wing.

This can be achieved by a Galilean transformation. Suppose the wing
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to be moving mainly in the negative x-direction with constant ve-
locity of magnitude U. Then the new coordinate system (x,y,2z,t)

is defined by the relations

X=X+ UF )

———

Y

Z

I

Y

Z

/.

[ (13)

7 /

On the introduction of these new coordinates into Equation (10} it

becomes

2
Y TG LY

/
gt Jx? “@*oxor a7 (14)

Equation (14) and the boundary and initial conditions of the problem
determine the flow in the (x,y,z,t} system. In this system, the pres-

sure coefficient is given by

Go=-52f 2+ 1) 24 (15)

Both coordinate systems will be used in this paper, some of the meth-

ods being more easily developed in the (E,;,E,,t_) system, and more

easily applied in the (x,y,z,t}) system.

b. Linearization of the Boundary Condition on the Wing. The exact

boundary condition on a body in motion through a fluid is that the flow
must be tangent to the body at every point of its surface. This con-

dition is expressed by the relation
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pG=n-Q (16)
where n is the outward normal to the body surface at any point,
and a and 5 are respectively the velocities of the fluid and the body
at that point. In general, all are functions of X, _5;, z, and t. For
small-disturbance wing theory, Equation (16) can be simplified.
Consider a thin wing moving mainly in the negative x-direc-
tion with velocity of magnitude U, but also executing small motions

in and about the plane z = 0, so that

G=(~Uru)i+v] + wk (17)

—r e b

where i, j, k are unit vectors in the directions of positive X, ;, z
respectively, and u, v, w are numerically much smaller than U.

The normal may be decomposed according to the relation

7 = cosgsina | + Singj + cosgcosak (18)

where ¢ and a are as given in Figure 1. It is customary to call a
the local instantaneous angle of attack, positive as shown. For a
thin wing as considered here sina and sin§ are numerically much
less than 1. The fluid velocity d is as defined previously. There-
fore, if products of small quantities are neglected, and tana is re-

placed by a, Equation (16} is reduced to

I¢ _
5% = el +w



=10 =
at the surface of the wing. Moreover, since it is assumed that the
surface of the wing is everywhere and at all times very close to the
plane z = 0, and derivatives of J()g are small, it is permissible to
evaluate ;"‘f on z = 0 instead of on the wing. In general, quantities

may differ on the upper and lower surfaces of the wing, so two

equations result:

2 w50 F) = WG A, F) ~ LR, F) (192

_éz,i’(»zyi 05 D= Wz g b F) = V(R 5.1y, F) (19b)

N\

where bmé, are the z-coordinates of points on the upper and lower
surfaces, respectively. The same form of this boundary condition

holds in the {x,y,z,t) system, since the relative motion of the fluid

and the wing is the same in both systems.

c. The Fundamental Wing Formula. At any instant an edge of a

wing is called a leading edge if air flows across it onto the wing,
and is called a trailing edge if air flows across it off the wing.
Leading and trailing edges of a wing in supersonic flight are called
supersonic when the cones of disturbance (Mach cones) from all
points on these edges lie completely behind them. The wide delta
is such a wing.

It follows that conditions on the upper and lower surfaces

of a wing with supersonic edges are independent of each other,
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and may be considered separately. Moreover, no disturbances
exist ahead of the wing, while those behind cannot affect condi-
tions on the wing. It appears then that a formula giving gﬂ for
z > 0 in terms of the upwash ;;ﬂ over the plane z = 0+ would be

very useful, since the upwash is specified by Equation (19a) over
the part of t};e plane corresponding to the wing, and is zero in
the only other part of the plane which need be considered if Z
is wanted on the wing, as is usually true. Such a formula will
now be obtained,

The intuitive idea behind the formula is that of represent-
ing the wing in motion by a superposition of spherical pulses,
The spherical pulse is an idealization of the effect of a point dis~
turbance which acts for a very short time., As is commonly true
of fundamental solutions of linear differential equations, it has
no physical existence but may be considered either as an approx-
imation to reality or merely as a tool useful for superposition to
obtain solutions which have physical meaning. The velocity po-

tential ¢Z at (;,_;;,_z—) at time t due to a spherical pulse of strength

S emitted at (%7, f) at time ¥ is

wx7.27) =2 §(F-T-£) (20)

where

Fi= (®-F)'+ (7-pp)°+ (2-F)°
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and § is the Dirac delta function, defined by
§x)=0 , Xx0

&
[Scrdz =/
-
The delta function in an integral "picks out' the value of the in-

tegrand at one point, thus:
oo
[ scr-b)g0)ax = gib)
~co
The form of the fundamental solution given by Equation (20) fol-
lows from the assumed nature of the pulse and from the well-

known solution of the wave equation in spherical polar coordinates

for a diverging wave with radial symmetry:

PR =f FOF-£) (21

where
s _ — 2

Fi=x'+y"+2
and f is any twice-differentiable function. This last condition
seems to rule out the delta function, but since unruly behaviour
of a fundamental solution is not unusual, Equation (20) is used
and it is shown later that this heuristic procedure leads to a cor-
rect result.

The spherical pulse,; as defined above, has two important
properties which in fact make it possible to represent the moving

wing by such pulses. These properties, which are illustrated in
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Figure 2, are:
1} Pulses from P, contribute no upwash at Pl, because the
velocity is purely radial for a pulse, Therefore the upwash
at Py is entirely due to the pulses from Py.
2) The pulse from Pl emitted at time ?1, has no effect at Py
at time j5—2, since by Huyghens' principle the wave leaves no
after-effect. Therefore the upwash at P; at time t depends
only on the pulse from P1 att.

Moreover, the relation between the pulse strength S and the upwash

is clearly linear, so that

Sk 7)) = G() (xy,o»;f}
where G is a constant to be determined.

Suppose now there is a continuous distribution of spherical
pulses over the plane z = 0, and the motion under consideration be-
gins at time t = 0. Then the total effect at a point (Q,S;,E)‘ at time
t is obtained by integrating the fundamental solution over the entire
plane z = 0 and over the time history of the disturbances:

f
PRFZT)= // % /Srfjfz E)8(7T-£)dE a4 (22)
lone O
%50 ,
where dA is the area element in z = 0. By use of the properties
of the delta function, Equation (22) is reduced to

P27 = [ [# 587 F-£)dA (23)

; ,a/aﬂe
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Cnly the part of the plane z = 0 for which /=g can contribute to
this integral. It is convenient to introduce polar coordinates p,@

in the plane z = 0, as shown in Figure 3. Now
e=F-2 (24)

and with respect to the integration in Equation (23) z is a constant,

so that

on differentiating Equation (24). It follows that Equation (23) may

be rewritten:

af 2;
=y = = £ AN 5 /= .
Gx gz 7) —//5(@5,7 5,-)6/6’0’/' (25)
Z o
where p is given by Equation (24). It is now possible to determine

G by differentiating Equation (25). Thus
271 ar zji

9‘”/,7:‘, /5{05;‘- Z)ds +// ((Jéf— ”)f-g)a@a’/’

This can be written more simply in the form

df 27

4”/»()/,2/‘/ 278z 7-Z) Z/ 53 @97 Z)dedr (26)

The integral on the right side of the equation is bounded as Z - O»,

so that in the limit the desired result follows:

Stry?) = 2L1x5,057) (27)
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On the introduction of a new integration variable rat 272*57[ , and by

use of Equation (27), Equation (25} is put in the final form
~Z o1
QxR 1) = g//féﬂ/%/i 0: T)dédT (28)

o 0

Z= 7+ [d(FE) -2 cosg , =7 * JAFE) =27 sind

This is the fundamental formula of small-disturbance wing theory.

where

It is a classical solution of the wave equation and is given, although
essentially in the form of Equation (23}, by Rayleigh (Reference 13}.
It gives the specified upwash onz =0, and it satisfies the initial
condition that no disturbances existed for t < 0. Thus the heuristic
approach by which Equation (28} was obtained is justified.

The physical interpretation of Equation (28) is simple. T
is the time at which a disturbance must be propagated from (fz/ZO)
in order to affect (x,y,z) at the later time t. T is therefore constant
for concentric circles in the plane z = 0 with center (_}2,'37,0'} and ra-

dius O = az/f:f)_z—?z . The inner integration in Equation (28}, inclu-

\

ding the factor ;% , gives the average value of upwash over one of

27
these circles, and the outer integration sums over all such circles
which can contribute the effect of their disturbances at (x,y,z} at
time t . The lower limit Z = 0 expresses the fact that no disturbances

existed for T < 0, and the upper limit T=7- 52: expresses the fact

that no disturbances propagated from any point in the plane z =0
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Qg

will have had time to reach (x,y,z) by time t for T > f~
So far Equation (28} is quite general. The application to a
particular wing problem is made by suitably specifying the upwash
function in the integrand. It will be recalled that in the (x,y,%,t)
system the wings considered move essentially in the negative x-
direction with velocity U. For some purposes it is inconvenient to
have the wing moving through the region of integration of Equation
(28), so that it is useful to obtain the corresponding fundamental
formula in the (x,y,z,t) system. After a formal change of vari-

ables, Equation (28) becomes
7=E 20

gﬂ/x,y,z,f)=~2—/f—77/0/j?¢/fa 01 T)cdod (29)

where

B=x-r7) +’/?(f_-——z)z—27casﬂ , y:yf/mnm

The formula is useless, however, in the form of Equation (29) be-
cause the circles on which the inner integration is performed are
no longer concentric. This is clear from Equation (29}, and the re-
gions of integration for the two systems are shown as the shaded
areas in Figure 4 for the case when M :a(—/ is gréater than one,
applicable to the problem of a wing in supersonic flight.

The logical integration variables in the (x,y,z,t} system

are ()g,¢/ as defined by Equation (29). To make the formal change
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of variables from (4,2) to (¥/) it is necessary to obtain the Jacobian

of the transformation, which is found to he

2(at) _ /
(80 a1y ) 2

(30)

Also, when 7 is expressed in terms of ¥/ by eliminating & from
Equation (29) it is seen that in general two values of T correspond to
one point (¥/) . The fundamental wing formula can therefore be

written in the (x,y,z,t) system in the form

/%@“057‘4) * 2 nowrzs)

:—-4_ .
POaD = ”;{ =2 = oz 5% (31)

where

L = [tV Sy —n)?
1 =ik M50 7 Jor =0 ) 27 |
and, for M=>1, R is the shaded region of Figure 4b. R is bounded

partly by the hyperbola
-8 = (2)fty-n)+ 27 (32)

which is the envelope of the circles of the inner integration of Equa-
tion (29). However, for a point (§4)inside the circle with center
(X‘U/:)/, o) Z,=/~% is negative, so that %¢(f¢05 /"]"'2) =0 , and
for a point (f,/]) beyond this circle upstream both 7, and ?; are
negative, so that the integrand vanishes., The effective region R is
thus the interior of the circle of center /X-U/ﬁ)/, 0) and radius

[77°~2* , over which the integrand has a—a—z—q-ﬂ/ﬁ//) s, /'—/;):0 , and
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the closed region bounded by this circle and the above hyperbola,
over which both upwash functions act,

The equations of small-disturbance wing theory will now
be applied to the specific problem of the unit~step motion of a

wide delta wing.
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III. PRESSURE DISTRIBUTION FOR THE WIDE DELTA WING

a. Statement of the Problem. Consider a flat delta wing of zero

thickness and chord c¢. The sweepback angle of the leading edges
is 0. It is convenient to locate the origin of an (x,y,=,t) system
at the vertex of the wing, which points in the negative x~direction,
“as shown in Figure 5. The fact that the wing is a wide delta is
expressed by the inequality

@G>k

where

(J'—‘m Kk = lfano

and M is the Mach number of the free stream, as defined prev-
iously.,

For the unit-step motion of this wing considered in the
(x,¥,2%,t) system, the wing is initially at rest in the plane z = 0,
At time t = 0 it is given a constant velocity of magnitude W, in
the negative z-direction, where —[-/VYE << 1. The problem is to deter-
mine the pressure distribution over the wing resulting from this
motion. As was pointed out in PART II, only the top side of the
wing need be considered. The pressure is obtained simply from
the velocity perturbation potential sﬂ s which will therefore be ob-

tained first,

Now ¢ is given directly by Equation (31} for any point
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(x,y,2z) in the half space z 20 at any positive time t, if the upwash

o .

5z s known over the region of integration R in the plane z = 0.

This is so here, where R includes only points on the wing or ahead

oY

of it. Ahead of the wing 3z is everywhere zero at all times, and

on the wing ,)éz_'w is specified by Equation (19a}, in which here

XX )b, 1) =0 WX Y, b 1) = =W 1(1)

where ](7) is the unit-step function, defined by

It)=0 , 7<0

=/ ,r=0
Therefore §—Z£-/ on the wing is given by
%{X,xaf/):-%]ﬁ) (33)

and §ﬂ is given for points on the wing by the integral

27 LA ) =3%y-n)*

where Ry, is the porticn of the region R shown in Figure 6 which

i) 4 [RLIED ey (55

falls on the wing., R is subdivided into Ryand Ry, It follows from
Equation (31} and the nature of the unit-step function that in Ry |
1(r-1) =1and 1(#7) =0, while in R, I(7-})=1(r1)=].

It can be seen from Equation (34) that at a particular time t,
Qﬂ depends on the particular point of evaluation on the wing (x,y)
only to the extent that this point affects the size and shape of R .

Therefore, in determininggﬂ over the wing the simplest procedure
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is to divide the wing into zones in which R, has the same general
form, and consider the solution of Equation (34} for points in each
zone separately. Since Ry depends only on the relation of the
point of evaluation (x,y) to the leading edges of the wing, the zones
are determined completely by the regions of influence of points on
the leading edges. The region of influence of such a point is merely a
region R as in Figure 6, but extending downstream rather than up-
stream from the point. The resulting zones of the wing are shown
in Figure 7. Only points on the right half of the wing need be con-
sidered, from symmetry.

Before applying Equation (34), however, it is worthwhile
to make some general observations about the problem as it now ap-
pears. First of all it can be shown that the perturbation flow field
is conical in space-time with respect to the wing vertex, This fol-
lows from the known invariance of the governing equations under
uniform dilatation, and the conical shape of the wing, which makes
the boundary conditions conical in space-time,

Thus if the chord c of the wing in Figure 7 is made infinite,
the figure applies to all positive times, since the zones merely ex-
pand uniformly with time. The perturbation velocity components
and the pressure (but not the velocity potential) at points on the
finite delta wing (since the trailing edge does not influence the flow

field over the wing) are then functions of the ratios -77_{ s "]):/ only,
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and not of the coordinates themselves. Use of this property is made
later in the examination of the pressure field, although conical
methods are not used in obtaining the pressure,

Another pertinent observation about the problem is that in
some zones the results are known either from fundamental princi-
ples or from previous applications of thin-wing theory, to which
appropriate reference is made later.

For example, in zone I there is no effect of the wing edges
since the disturbances arising at t = 0 along the leading edges have
not had time to reach the points in zone I. The flow field in zone
I is determined by purely local conditions, and locally the unit-step
motion of the wing is equivalent to the sudden motion in the z-direc-
tion of a one-dimensional piston. The resulting pressure there-
fore has what is commonly called the piston value, which is deter-
mined by elementary considerations of simple one-dimensional
progressive acoustic waves.

However, in what follows, application of the fundamental
wing formula to the solution for each of the seven zones is indicated,
although the solution is not carried out in detail where the results

are known.,

b. Pressure in Zones I, II, and III. It is convenient to group zones

I, II, and III together because points in these zones have in common

[
that they are not influenced by the left leading edge of the wing.
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They are, so to speak, unaware of its existence,
Zone I. In zone I it is clear that R, is the complete region
R. Therefore it follows from Equation (34} that, for a given time
ty ¢ is constant throughout zone I. Evaluation of ¢/ from Equation
(34} is straightforward, but since there is no leading-edge effect
it is even simpler to evaluate ¢/ from Equation (28) in the equiva-~-

lent (;,;r-,—z-,ﬁ system, by which here
7 on

%(A’—,yj@;f)- 2////& {ﬂ/f/f)a zl)daal? (35)

where
2L 5,0, %) == I(F)
Therefore
F
A5 5,007) = %a[]/f)d? = wat
or

Lelxyon7) = wgar (36)
The pressure coefficient Cp in zone I is then given by Equation (15):

Cy (xy,ﬂ 1) == 1/ > W, d

so that the pressure is seen to be constant in zone I, The value
is the piston value, obtainable by elementary considerations as
mentioned above. If an effective angle of attack ag is defined by

a’o=-[—/%- ¢ then
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206
G (xyom 1) =-47 (37)

This may be called the initial pressure coefficient. It acts over
the entire surface of the wing at time t = 0+, and over a shrinking
zone ]l as tincreases, until eventually all points of the wing are in-
fluenced by leading~edge disturbances, and zone I vanishes,

Zone II. Inspection of Figure 7 shows that R, at a given
time t is the same for points on lines parallel to the right leading
edge in zone II. Therefore ¢/ is constant on such lines, which are
the lines

X—=Ky = conslant
It is therefore convenient in evaluating¢/ at a point (x,y} in zone II
to eliminate y by introducing a new origin of coordinates at the point
(ky,y), the new coordinates being denoted by primes.,

For the purposes of the integration in Equation (34}, R, in
zone II appears in six different forms, the variations stemming from
the different ways in which the leading edge can cut through R, as
shown in Figure 8. Intuitively one would expect integration over
any of these variations of Rw‘to lead to the same function for ¢Z in

zone II, and this in fact is true, although six superficially different

forms of ¢f result from integration over the six variations. It appears
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from Figure 8 that the differences arise from the relative positions
of points 1, 2, 4, 5, 6, 7 on the circle bounding the original region
R1 of Figure 6, Points 1 and 2 are the intersection points of this
circle with the leading edge. Points 4 and 6 are the points with
tangents in the x'-direction, and points 5 and 7 are the tangent
points of the lines from the point of evaluation (x',0) bounding the
region RZ of Figure 6., It will be shown later that a change in the
relative positions of these points corresponds to a change in the
branch of an inverse trigonometric function, and that these changes
can be reconciled so that ¢/ is actually given by one function through-
out zone II. Only the first form, corresponding to R, of Figure A8a3
will be worked out in detail here, and it will be shown later that the
other five reduce to the same form as the first.

In applying Equation (34), it is convenient to evaluate the in-
tegral over (R-R} as indicated in Figure 8a, and subtract this

from the integral over R, which is of course gﬂI . Thus
. 7 .
» T Ky oF
%(&ﬂﬂt/‘)-‘%af"ﬁ/d’/ /(xi;')‘—/;’v;ﬂ (38)
# X-Ur-ya’tipt

where

1; = k- 00 7 1) (e }

Therefore, after the inner integration is carried out

7 ——
! = A 4 /U/'fyd‘ﬂy’z)f,/yf,c/g_’?%}.ﬁr

(We)(ar +fat=p” )
(Xkp?) + f(x-kp)>~p"

W, ’
=W, ar- 53 dfy/oy
7,[
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After integration by parts, Equation (39) can be written in the form
/

(mr)(arar=n". j]/& ’ y
2//

Gylri00s)= W~ 57/7 [ T teckpy) +m /oi‘ plarsjary™

2
kn'dy’ /
2// \ochr )y | 2 /ﬁ-h/)‘-/:’f/"/ -/rf/)*/( )57
52 42 7’-
War- 2;1/ /¢ ” 57 (Mf/}/df f,/af 7?) j/ di‘a’ ! 0/

(x-kp') 7'-;//)(—/@)2 ﬁ//' 2// 1/0f I 2// 7

M/o z '4/7%/7 §'e /e )d/ / / ‘ ‘
W 2”///*"/?/]7 =g Z7i d// (40)

In Equation (40}, the logarithmic term vanishes identically because

I

the numerator and denominator of the logarithm are equal at both
limits. Other terms cancel, and the two integrals remaining are

evaluated directly without difficulty, the result being

%
/ — % f /(/X 7"//3 k?/]]]
Slhaost) = %df';//?d/;’”/ ]] 27;’/77?#”7 (41)

‘where all inverse functions are principal values,
With the values of 72, and /7,/ as given by Equation (38), Equa-
tion (41} is rather complicated algebraically. Fortunately it can be

simplified considerably. From Figure 8a it can be seen that

5/‘/7—}2/;2 5//7/} g = 2cos 1//7707‘ (42)

so that the first two terms of Equation (41) can be rewritten:

ot Bl ]]% Ly Ry ) ] Wl oo ) )
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where
7 Yo Xt = 77
> o = (OSW // (43a)

The lower limit corresponds to coincidence of points 2 and 6, and
the upper limit to coincidence of points 1 and 2 on the left side of
the circle.

The last term of Equation (41} is simplified through the use

of trigonometric identities. Thus

AX;(WM} / S s (BRI Ul (B 1007 (XL U7 /2

ax' 73X (1#£%)
— (M) (Mx W?ag//FQ{WWW—(/-W
IR (Bf# VIt X'
or, symbolically,
& =99+~ -
Therefore
sin'S = sin g * cos g,
or
i AXx f/ﬁ”/v)ij = 5//7/ + Cos Mj/jfkf”’/‘)‘”y (44)
Similarly
7 -/ 2 ’a
5//7//("{/1,/”,“’7’} = S/ /;77 (szf/i/;ﬂ({ﬂ /()d)) (45)

All inverse functions in Equations (44) and (45) are principal values,

and in particular
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e/ +RK
S/ ﬁf///_}F = 5//7[/(/\/ ( ) < S —W/{) (442)
and
5”5}[M/(Zm7w M)J)‘f’”/)“( 4;,,7 ﬂ% e

The limit Slﬂ(lfgmj in Equations (44a)} and 45a) corresponds to
coincidence of points 1 and 2 on the left side of the circle, and the

other limits to coincidence of points 6 and 2. It follows that

Mx- (5*4)a [k MED
0 < cos —VTF[XL—‘ < oS rprE) < 3 (46}
‘where
Sk 1Mk t8 MA} 1~ M G )}
S i) = /J’(Mf/r)j exd ﬂm‘ = S} =S} B aaeR)

Therefore, with the application of Equations (43), (44}, and (45) to

Equation (41}, it becomes

Waf Ur-x'l,

MX (7 (B*#)at (47

X
1
%/&407 ,Wf ot} T 7 Bk e 0 VI X' j

where the inverse functions are principal values as specified by
Equations (43a} and (’46)

Equation (47) gives (/E corresponding to the R, of Figure
8a, It was obtained by simplifying Equation (4l). When the equa-
tions for % equivalent to Equation (41) are worked out for the other
five variations of R, each can be expressed in two terms. In all

cases the first term appears either in the form
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wialtop _ wall~ /_’L'j ’/_’/_)}
== F __2_9_7.7_. I +Snizrt + SN {57

or in the form

]

watop _ watf 5] _/?_j]
27 k=75 iar ) T 5 {ar
and the second term appears either in the form of Equation (41} or

in one of the forms

W, x’

Ve A — V%XI ~_ p kX’*(él‘kz)sz— W/—-kX'*(VéEA‘l){Zf—I]
e % = 2l 5’”/ BX S )7

Bx’

or

WX e xR EFMJ} W £ Y ]]
2THBF }: *'2—/7——//”3—?_-7 277 f/ﬂ({ A *+ S *C@_’L

X'+
SX
Again all inverse functions are principal values.,

Now ?/'9 corresponds to variations (b} and (d) of R in Fig-
ure 8. In these, points 6 and 2 have their order on the circle re-
versed from that of variation (a), and it can be seen from the figures

. . . . P fz/ . . .
that the geometric angle given in Figure 8a by 5/ /47 is given in
y /
Figures 8b and 8d by 7/‘—)’/%./;—%] . Thus “flp represents the same
geometric angle as the bracketed term in Equation (43}, and it can
be expressed in the form of Equation (43). The same is true of 0:7‘? s
which corresponds to variations (c}, (e}, and (f) of R, . In these,

points 4 and 1 also have their order reve¥sed on the circle. There-

fore

F =27~y = 2cos fLL (48)
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where

[=/,2 OF COSJ/%;/{]‘ Z4q (48a)

so that %fo}j and %f}: reduce to the first term of Equation
(47}. The lower limit in Equation (48a} corresponds to coincidence
of points 1 and 2 on the right side of the circle, and the upper limit
agrees with the lower limit of Equation (43a}.

The second term of the equations for ¢/ corresponding to
variations (b) and (c} of Ry, in Figure 8 appears in the form of Equa-
tion (41). The analysis leading to Equations (44} and (45) is used

again without change, and the second term reduces to the second

term of Equation (47), Here

S [k ME = (af’/i//x—@’.éz

¥ s Mk
cos (MR, VIrEEX’ 42/-/ =S /ﬁ;//'f—t‘ (49)

The lower limit in Equation (49) agrees with the upper limit in
Equation (46}, and the upper limit corresponds to coincidence of
points 2 and 7.

°_§g corresponds to variations (d} and (e} of R,, in which

points 2 and 7 have their order on the circle reversed from that

of variations (a}, (b}, and (c}. This reversal means a change in

the branch of the angle previously represented by S/ﬂkagi,/é) o

Similarly o}: corresponds to variation (f} of R, in which points 1

and 5 also have their order reversed, resulting in a change in the
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branch of the angle previously represented by -'-5"/17(r )7’}
we X' W, X’ t -
Thus to reduce T % and Zh R ?3 to the sec
ond term of Equation (47}, it is necessary only to observe that in o.}";
- ? -~
fm/,éxf/ﬁ’ A , where -~ % ,_f/ﬂ 52’_/

can be replaced by
7 2 ] A ’
= RX (B re 2 - / = é{
sin / s 2, Where L= sin Y BTHF

Then the analysis leading to Equation (44) goes through as before,

and the condition

- Y Mx-(8*#)al 77
5 rm/%;: < cos o X < /] (50)

results. The lower limit agrees with the upper limit of Equation
(49), and the upper limit corresponds to coincidence of points 1 and
2 on the right side of the circle. Similar statements apply to the
change in branch of the other angle, occurring in oj*: . It follows
that Equation (47) is valid throughout zone II. Finally, the potential

in zone II is written in terms of the original coordinates:

) =62l (Mal-(e-by)] , Wl-ky) - IMeky) ~(Bk)ar
g inon) = 4 cos {HELLH] Ml o AULET] 51

where

0 = (052»(} (51a)
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The limits in Equation (5la) result from Equatinns (43a}, (46),(48a}),
(49), and (50}.

The pressure coefficient in zone II is obtained by applying
Equation (15) to Equation (51). Terms arising from differentiation

of the inverse functions cancel identically, and the result is

L p)mo 2R L HMal-Ceky)] L MOAy) —//33,4‘)01}]
C;:E(,nxo,zy— 77//;4(05 Jrrar +//ﬂ# cos Tl Ay) (52)

where
O < cos‘/j £ 77

Zone III. Inspection of Figure 7 shows that RW in zone III
does not vary with time and is the same for points on lines parallel
to the right leading edge. R is shown in Figure 9, and Equation

(34) takes the form, using primed coordinates again,

, _ W JdEdy’
(/L,—,(Aca,acf)— = / / Tif gy (53)
R

This integral is easily evaluated, and Puckett (Reference 3) has
given the results, which are
4

0 (X0,047) = i 54
& ) YEr (54)

and

/ N-¢” ¢}
C;E(X,O,O»;f)-— W— (55)
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In the original coordinates, then,

géﬁ(/hy/o,/f): M

g ey (56)

and

G

o (h)0n7) =2 (57)

Bk
so that the pressure is constant in zone III. If can be seen from
Figure 7 that zone III is initially a narrow strip along the right
leading edge which expands with time until eventually it covers the
entire right wing outside the Mach cone from the vertex. Thus the
steady-state pressure, reached when the transient effect of the in-
crement in downwash has disappeared, for points on the wing out-
side the Mach cone from the vertex is given by CPIII .
The relation between zones I, II, and III can be seen by
considering such a point (x,y) on the wing as time increases from

zero. Initially the point lies in zone I, and the pressure given by

CPI acts on it. The point remains in zone I during the time interval

X~—Kky
0<fé[/*€7{//7/<’—2

At the upper time limit the point passes into zone II, and it is seen

that Equation (52} reduces to Equation (37} for t =—X-—/<y-——3 so that

U+ afirk®

the pressure is continuous. The point lies in zone II, acted on by

the pressure given by C during the time interval

P11’
XKy <f= X=kyv
raris " alR
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after which it passes into zone III, where it remains. Equation (52)
reduces to Equation (57} for t = l*—kiz so that the pressure is again
U~ aye
continuous.

Thus zones I, II, and III give respectively the initial, tran-

sient, and steady~-state effects at the point.

¢, Pressure in Zones IV, V, and VI. It is convenient to group zones

IV, V, and VI together because the results for them are either al-
ready known or obtainable by superposition of known results,

Zone IV. It can be seen from Figure 7 that points in zone IV
are influenced by disturbances from both leading edges, but not by
disturbances from the neighbourhood of the vertex. Thus R, for a
point in zone IV is as shown in Figure 10a, and Equation (34]1) could
be applied using this Rw directly. However, Figs. 10b, 10c, and
10d show that

R =R+ R —R

W

and the integral in Equation (34) taken over Ry is seen to be gﬂg as
given by Equation (51), while the integral over R is of course % as
given by Equation (36). Moreover , the integral over R, gives the

counterpart of 4{7 for the left wing and is accordingly given, from
the symmetry of conditions about the wing center line, by Equation

(51) with -k replacing k everywhere., Therefore the potential in zone

IV is given immediately by
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Gpayon?) = Glxy,ont k) + Glxyont-k) = fix y,041)

sz ((Mar-(x-ky, / Pl Ma?] (58)
gz ar Ik ar

Micky)=(6F)ar IMierky)- (34 /
i (1Ay)cos Tt (k) RO e e

o= (os”/)} £ 57

The pressure coefficient in zone IV is given in the same way by

2o Mor-Ce-ky) (rky) ~Mat
Copipons) == T ar ;//7/707‘

(59)
206 [ -Mrky)-(8 K)al /+ [ lky) -//f’ik)ai)‘[]
T H] €O (xky) ¢ Y1 k=(Xtky)

O = (aféf} <

Thus the results for zone IV are obtained simply by superposition

where

where

of previous results.

Zone V., It can be seen from Figure 7 that points in zone V
are influenced by disturbances fron} both leading edges, and that R,
for a point does not change with time. R, is shown in Figure 11,

and application of Equation (34} is made without difficulty. Puckett

(Ref. 3) has given the results, which are

. «
G (x.y, 0, /‘/'n\.ﬂf (x-ky)cos E—;—}—% +(Xrky)cos /;’(/rfk/)/] (60)
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where
O < coszf}) i
and
_*4%, M’ﬁy ,
where

1)<l
0 coif] <

The flow is here seen to be conical in space. The pressure,
for example, is constant on conical rays through the vertex in zone
V. Conditions in zone V are not time-dependent, and just as CPIH
gives the steady-state pressure for points on the right wing outside
the Mach cone from the vertex, so does CPV give the steady-state
pressure for points inside, Eventually zone V covers the whole right
wing inside the Mach cone from the vertex,

Zone VI. Points in zone VI are found to be influenced by dis-
turbances from both leading edges, and R, for a point is shown in
Figure l2a. Again, instead of applying Equation (34} directly to R,
it is convenient to use the superposition of zones indicated by Fig-

ures 12b, l2c, and 12d. Thus
F, =t e T Ry

and the integrals from Equation (34) taken over Ry, R, and R4y sep-

Cc?

arately give respectively ¢Z. , gﬂ; , and % . Therefore
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Pylayost) = Lpixyost) + GXyos1) = Gy lxy,o001)

= wmal, Mcﬂ“-(X /ny} WeCxthy) kxr3Yy (62)
T Sk ar T/ BER €92 JBIXTRY)

woox-ky) [ 2 (kx=By - (18K )al - M&f—ky)}]
TTYB* A o5 paix- /fy)f cos VIR (X-Ky)

04;05";[)) <

The pressure coefficient in zone VI is given in the same way by

where

2%’( 5 YMal-(x- /f)/)

(63)
5 )~ Mr-hy) /)
1/ 2[’ 2(05 X ’é}’/ Y+E* /X%y)
where

0 = 505‘/)) =

This completes the results for zones IV, V, and VI,

d. Pressure in Zone VII. It is clear from Figure 7 that R, for points

in zone VII will always have the vertex of the wing inside the circular
region R, of Figure 6, as shown in Figure 13a. Equation (34) can be
applied directly to Rw’ but it is again more convenient to use a super-

position of zones, as indicated by Figures 13a, 13b, and 13c. Thus

sz }?b B ’C\Dc

and the integral from Egquation (34) taken over Ry, is

7 » as given

by Equation (51). The integral taken over R. remains to be calculated.
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Now intuition suggests that ¢Z ought to be given by the same
function throughout zone VII, Nevertheless, because of the several
possible shapes R, may take, six superficially different forms of g/
for zone VII can be obtained. Variations of Rc giving rise to these
six forms are shown in Figures 13d through 13i. It appears from
the figures that the differences arise from the relative positions of
points 1, 3, 4, and 5 on the circle bounding the original region R,
of Figure 6. Point 3 is the intersection point of this circle with
the left leading edge, and points 1, 4, and 5 have the same signifi-
cance as in Figure 8. It will be shown later that a change in the
‘relative posiitions of these points corresponds, as before, to a
change in the branch of an inverse trigonometric function, and that
these changes can be reconciled so that gﬂ is actually given by one
function throughout zone VII.

Integration over R will be carried out in detail only for

the shape shown in Figure 13d. Thus

0 Ay £y
JE
%/*}’077 %&/0 77 27 7//(135) 2511 Z// 7/{%}3) ﬂzé///) (64)
% X—Uf-ﬁ(nyf)z 7 Ky

where

7 =*§;[ 2 k(x-Ur) -/(/f/r‘)dz/z— (x 2ky ~Ur)” ]

When the inner integrations are performed and the result is sim-

plified slightly as in Equation (39), Equation (64) becomes
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_ N me1)(at +,/a7™(y-p)?)
%,_7(/\’))40’3 1) = é%/%%@’ 2///0/ o xw/c/;),#/(,rf,e,,)? 37y ¢)j

fd byflk) #flox-kp) 671
Z n 7 (X*kp) +1/(,r+k¢)’ ﬂ'@/—y)“

(65)

Next integration by parts is carried out for the two integrals in
Equation (65), similar to that leading to Equation (40). Again the
combination of logarithmic terms which results vanishes identically,
and the remaining integrals are of the same type as those in Equa-
tion (40) and either cancel one another or lead to inverse trigono-
metric functions. Thus

%fﬂrya/) ;ﬂ”(ryofd 2”/;//7/2,/// 2///— (Xky);//z/m,k),] [Xr%)/)f/ﬁ ﬂ(»ﬂky)}]
(66)

iR hy)- (BN y- %))) skle-ky) - (826N y-1,)
2”/—21 (/\”% )sin /3(Xtky) /X’é) (/ B(x-ky) }

where all inverse functions are principal values. Like Equation
(41), Equation (66) can be simplified considerably.

From Figure 13j it can be seen that

V) V)
sin {2 ~ sin f = g, (67)

But from the results for zone II, the first term in %_ in Equation

(66), as given by Equation (51}, is the angle /; in Figure 13j mul-

tiplied by 2}4/776‘7/‘ . Therefore all terms in Equation (66) multiplied

y 23/- can be combined in the form

wgal nwgar
217 [//: J,:] 277 /-, (68)
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where /' is shown in Figure 13j. It is desirable to express /” sim~
ply in terms of the coordinates, and this can be done by observing

that also
[T=[-17, (69)

where /:; and QZ are shown in Figure 13j. [; is clearly the
angle corresponding to /k—, but appearing in the first term of the ex-

pression for % on the left wing. Therefore

2= ()

But in Figure 13]

=2/0/757/e/83} , &_;=2f0/7g/92/5’j

Therefore

=4l [} =20 (70)

Thus Equation (68) can be written simply in the form

w -l Mal-(x-Ky) ~(Mar- f/‘f*/f)’/j /
2// [ JIk* ar jf( Jar ) 29 (71)

where the inverse functions are principal values.

The first step in simplifying the remainder of Equation (66)

is to eliminate the unwieldy forms

//(a—éy)—(ﬁw/y—y,)j ' rf~klrehy) ‘-/ﬂiﬁ(y%)}
5”73 B(X-ky) and 577 B xrky)

Comparison of Figure 13j with Figure 8a shows that,with the
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appropriate change of variables, both of these functions are equiva-
lent, one for the right leading edge and the other for the left, to the

function

5//7 k/\’ 7"//)’ A/?/}

discussed in the analysis for zone II. In particular, the analysis
which led to Equation (45) goes through as before, and the two equa-
tions result:

_ifke-ky)=(B KN y-1,) 5 Mc-ky)-(*#a}
si7f== et } s17; ﬁm gy (72

and

e, My g9 )
5”/ Yy = o o V7 k) )

where all inverse functions are principal values. To complete the

simplification of Equation (66}, Equations (72} and (73) are applied

to it, the resulting terms are combined with the remaining term of
% » and all remaining inverse sines are expressed as inverse

cosines. The resulting expression may be written

- maf ~of Mar-(x-ky) /Maf (xk )} ]
Fatonoit) = [ T ar O e ar ) 20
Welx=hy) [z (M=K et ~1f hx-3y i |
*2;72;1/({ / JT(n-ky) )€ 2/ Boxy)) ~COS [Iﬂﬁ / (74)

W xeky)| . - Mky) (82K )at, / / })
TRl () /»’m/(y) - cos f&
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where all inverse functions are principal values.

- Equation (74) gives ¢ for R corresponding to Figure 13d.

17

It was obtained by simplifying Equation (66). That the equations
equivalent to Equation (66} obtained for the other variations of Ry
all reduce to Equation (74) follows readily from the analysis for
zone [I. Thus, as before, whenever the order on the circle of

point 4 in Figure 13 changes with respect to point 1 or point 3 the

branch of one of the inverse functions multiplied by E,V-‘-/;/,q-f changes,
and the term multiplied by~—g§7—:d—f obtained after integration is su-

perficially different from the corresponding term of Equation (66).
In all cases, however, the term is still represented by the geomet-
rical angle a; , and so Equation (71) still results and the inverse
functions in it are still principal values. Similarly, whenever

the order on the circle of point 5 in Figure 13 changes with respect
to point 1 or point 3 the branch of one of the inverse functions on
the left side of Equations (72} and (73) changes, and the terms
multiplied by}}—%//—%—? obtained after integration appear different
from the corresponding terms of Equation (66). Again, however,
the differences are superficial and Equations (72} and (73) still
hold. Moreover, despite the change in branch of the functions on
the left side of these two equations, the functions on the right side
remain principal values. Accordingly, all forms in which %7_/'

is first obtained reduce to Equation (74}, so that this equation
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holds throughout zone VII, and all inverse functions in it are
principal values.

The pressure coefficient in zone VII is obtained simply by

first observing that Equation (74) can be written in the form

G 1 y,057) =z/—[<ﬂj/chf;/() * %Wﬂ*/‘;-/r) * Gy f)]

——-[a}“co.s/{//,‘/r ] +4//J,,kz (05/—1%7;}]

When Equation (15) is applied to this form the result is known for

the first bracketed term and easily calculated for the second.

Thus the pressure coefficient in zone VII is given by

Chp, (6, 047) =21[Cp/7()6y,0*,/‘;/r) a ij(m os1;k) + C},f(x,wf,f)]

‘ /
+——~—— CO.Y///';—;} 7‘-/[77{;;605%1/;7—]

or, by substitution from Equations (52) and (61),

Mar-(x-y) -1 [Mal-(xtky) /
C/)ZZ/'CUM;/ //M OS/WZ #co /Wdf —dco S Yk

75)
o, 'M/’(”@’)‘/ﬂzﬁd}j =t M/X*k}’)—(/f“k)a/y / X5y ]
N7l vy K T2 Y) /X_/r; Dcos _7/:_;

where all inverse functions are principal values,

The pressure given by C may be regarded as the main

PVII

transient pressure for a point on the right wing within the Mach

cone from the vertex. Any such point lies originally in zone I,
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acted upon by Cp . At some later time it passes into zone VII,
where it lies for an interval acted upon by CpVH. Eventually it
passes into zone V, where it remains acted upon by va. In ad-
dition, as can be seen from Figure 7, all points also pass through
one or both of zones II and IV, and some points pass through zone
VI. These zones may be regarded as intermediate transient zones
for points within the Mach cone from the vertex.,

With the pressure given for all the zones of Figure 7 (by
Equations (37), (52}, (57}, (59), (61), (63}, and (75}), the pressure
field is known for the whole wing at any time, Correspondingly,
the pressure is known for any point on the wing at all times. The

pressure field is discussed further in the next section.

e. The Pressure Field on the Wing, The pressure should be con-

tinuous across all the internal boundaries of the seven zoness. This
condition was shown previously to be satisfied at the common
boundaries of zonss I and II, and zones Il and III. In the same way
it is easily shown to be satisfied on all other boundaries except
that of zone VIjl, because the equations for Cp on both sides of these
boundaries reduce by inspection to the same functions on the bound-
aries,

Now zone VII is bounded by zones IV, II, VI, and V in

counterclockwise sequence around the boundary. To show that
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C reduces to C ; Ch» C s and C on the appropriate sec~
Py Pry’ "Pir’ Pvi Py
tions of the boundary, it is convenient to use the polar angle &,
shown in Figure 14a, as a boundary coordinate. Thus
X=(Mrcosg)al y=Ssme-ar 0= <77

As given by Equation (75}, CPVII consists of a term multiplied by
—,gg and one multiplied by "—Qf‘; . It was shown that the first
mm TT9/3%k
term is represented by the angle /7 of Figure 13j. As the point
of evaluation (x,y) moves out of zone VII across the various sec-
tions of the boundary into zones IV, II, and VI, this angle Fchanges
continuously into the angles indicated by the shaded areas of Figures
14b, 14c, and 14d respectively. Also, as the point moves into zone
V, angle /hl becomes zero, as can be seen from Figure l4e.

But it follows readily from previous analysis that the terms

of the equations for Cp C. ,and C multiplied by—/x/:fbi can be

IV’ TPII Py
represented by the angles shown in Figures 14b, l4c, and 14d re-

spectively, and the equation for va has no term multiplied by

- ﬁa/" . Thus the part of the pressure coefficient multiplied by~/=TQ/A—;-

is continuocus across the whole boundary of zone VII. The remain-
ing part: must now be considered.

C C. ,and C
Py’ TP’ TPyl

. .

The terms of CPVII’ C multiplied

Py
3;) z;_,and 3_; respectively.

3—% can be written in terms of & for points on the boundary of

zone VII:
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_ [ M(cosé-ksing)+ | +k° -1 M(cosé +ksing )+ ] +k*
DE/Z - cos SR (M + cosé-ksing) *cos VIR (M+cosé +ksing)
-k [+ Mcoss)/ B —;[/W,( -6
+2cos /3//2/*(05(9)2—/(3/‘/7’6 2 cos BYI*k* (76)

= co5SA + cos B + 2co5C -2cosD

Also the first two inverse cosines can be combined to give

2! oy - fMieoss 'f-zf/@)*(/f/rz)i‘Z(/fk?Mcom-{/J’W)ﬂl— (/ fk’};/‘/r?/
C05/4 *60555605/ (/*,é?[(M*Co;ﬁ)z_/(/zjlﬂzﬁ] (77)

=cosF

Consider first the section of boundary common to zones VII

and IV. Here
— ¥ L
0£86 £8 = Cof/ﬁ——,/rz}

Therefore in Equations (76} and (77):

//*Mcosﬁ/ = |/ *Mcose

and

/k?;(/f%})f//?lﬂ/ - /él-— (/fA/z/j//?zﬂ

Then the last two terms of 3;. can be combined as follows:

- MA"‘//:Mfaiﬁ/ +(B ) (Mrcos6)
3 BYIR (M cose)E Frine

1 M+ (1+£7) Cos6 j
YIE? o (Mecos8) A '5in'E

- cos /M 7‘-//7%2)6‘05(9]2— k(3%£)
- (1R [(Mrcos6)?~k'sin's ]

2cosC-2cosD = Pco

=2cos

(78)

-/ -/ -
—cosf =cosA+cosB

Therefore

N =pcosA tPcos B =

77, g

(79)
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Next is the section of boundary common to zones VII and

II. Here

8= 605{{,7;; <8 <4 caf'/;j

Therefore in Equations (76) and (77):
// chafé’/-‘-' / * Mcosé
and
[k (1##9sime] ==K+ (1+K)sin%e
Here combination of the last two terms of 03;7 leads to a different

result. Thus

(MR cos8] = KB
ZKOJ’C 26050 cos (/,;A/,)[(M,Lcojﬁ)zk //75]

(80)
(M Ycose-Ksin's)+ (1) s 201 FMcose + (B (1+k)sin’s]
(1#4%) (Mrcos8) 'sins [

= (o5

= cosF = cosA -cosB

Therefore

T =2c054 =T (81)

The section of boundary common to zones VII and VI. is

next., Here

= = :./. <=
g=coifir] < 6 < & =coi ]
Therefore in Equations (76} and (77):

// *Mcoss| = =/ chofﬁ

and

/ £- (/f,é‘)sfnzﬁ/ = =g (1K) s
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Then from Equation (80) it follows that

COSA—~COSB = 2coi-C ~2cosD =2 ~2cosC -2cosh

or
COSB = CoSA+2co5s'C =27 +2cos5D (82)
Therefore
D;Tl=2m§21 7‘4(05‘5 =27 = j;_/_ (83)

Finally the section of boundary common to zones VII and V

is to be considered, Here

g cosjit={= 627

Therefore in Equations (76) and (77):

//chosé’/—‘— ~/ = Mcosg

and
/Al-//sz/.r/‘ﬁ?/ = LY (1) sin

Then from Equation (78) it follows that
COSA+COSB = 2T ~COSF = 27T~ 2co5-C *2CoSD = 2c05C +2co5D (84)
Therefore

3;7=4505—/C= j; (85)

Thus the part of the pressure coefficient multiplied by —x
7yer?

is also continuocus across the whole boundary of zone VII, so that
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the pressure is indeed continuocus across all internal zone bound-
aries.

The pressure at any point on the wing at any time can be
obtained simply by a semi~graphical scheme. This scheme is
shown in Figure 15 for a wing of unit chord with k = 1, flying at
M = 2, The zones are drawn on the wing for time t, = ?-[7- . The
curve below the wing gives the spanwise pressure variation at the
trailing edge at time t,, and the curve above fhe wing gives the
spanwise pressure variation at any section across zone V. The
scheme makes use of the superposition properties of the pressure
formulae, as given previously.

The pressure is constant in zone I and in zone III, and the
appropriate values can be read off on scale II of the lower curve.
Pressures in other zones are obtained most directly for time t = t
Thus for a point in zone II use is made of the fact that pressure is
constant on lines parallel to the right leading edge, and for the

point shown:

iBF _ ,
Zm / , O C/‘Dj— 2%// (86)

The value i; is read off on scale II. For the point shown in zone IV,

using the superposition properties, the pressure is given as follows:

B =/ i/ =
LECu it o GEar)) W
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The values i, and i3 are read off on scale IV. iIn zoneV the pres-

sure is constant on conical rays, and for the point shown:

"’2'%&@2: b sor Gp=~2a, (88)

For the point shown in zone VI the pressure is given as follows:

*2§f1@~:/§+/5 s or CpE:“Z/Z—OG(/;f/'é) (89)

7

The value '15 is read off on scale VI. For the point shown in zone

VII the pressure is given as follows:

"12/%?@ 2(/4 }*8) ”C "'%(/*/ ly)  ©90)

The values i, and 18 are read off on scale VII.

To obtain the pressure at points on the wing for times t=\=t0
it is necessary to use the fact that the pressure is conical in space=-
time. Thus consider the point P of Figure 15. At time ty it lies

in zone IV and is acted on by C as given by Equation (87). At

PIV
some later time t; it will lie in zone VII. To find the pressure then
acting upon it it is necessary to find the point which at time t_ cor-
responds to point P, at time tla If this point is denoted by Pl’

then Po and P; lie on the same conical ray through the vertex of

the wing, and

I

% =(7)% o1



=51
The pressure is then obtained directly for point Py at time to’ and
this gives the pressure at P at time t;. For the example shown
in Figure 15, P lies on the conical ray _:Y_)/__ = ,10; and X, = .75,
Time t) is taken as Z/L , so that Equation (91) gives x; = .375, and
P1 is located on the conical ray through P, by means of the scale
to the right of the wing. Thus the pressure coefficient at P, at
time t, CpV _— given by Equation (90}.

Still later Po lies in zone V, where it remains acted on by
constant pressure given by Equation (88} for point F,. Similarly,
at an earlier time t3, P, lay in zone II, acted on by pressure
given by Equation (86) for point P, while still earlier it lay in
zone I acted on by the known initial pressure.

The complete pressure distribution is sketched in Figure
16 for the right wing of Figure 15 at time t . At a given time t
the minimum pressure on the wing occurs at the point x = Ut, y=0,

the center of zone VII. The value is independent of t, from the

conical properties of the pressure, and is given by

2 ! 1) s W7/
C/’m.: 2 A C‘OfW ,/T,T‘“Z@ +505/ )2 cos ﬂ;/77r‘ )] (92)

The maximum pressure is the constant pressure acting on zone III

and given by Equation (57).

f. The Infinite Swept Wing. It was pointed out previously that con-

ditions in zones I, II, and IIl are not influenced by the left leading
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edge of the delta wing. It follows that C., , C and C ive
g wine PI’ “prr’ Py 8
the initial, transient, and steady-state pressuresfor the unit-step
motion of an infinite swept wing with supersonic edges of sweep-
back ¢, as shown in Figure 17a. Conditions are constant on

lines parallel to the leading edge, and it is sufficient to give the

formulae for y = 0. Thus

Co (h0s1)= =45 L (MHRar<x = c (93)

20, -fMat-X) | 5 (Mx-(Bk)ar
Cpnost)== ﬂ4 T o }]
(94)
(M-VFE)al < x = (M +fik)at
Cr 1037 —l/ﬂ—zz:%;— , 0% X< (M-1iF)al (95)

‘where all quantities are defined as before, The limiting form of
the infinite swept wing as k becomes small is the two-dimensional
wing, shown in Figure 17b. The pressure formulae are obtained

by setting k = 0 in Equations (93}, (94)), and (95). Thus

- 24
Gy, 007) = yak (M+1)ar< x £ ¢ (96}
M/‘—X ,1// 8
C:o xa7)~—2”A4 > /*/]605 X””/]
(97)

(M-1)al < X < (M+1)ar
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G, (nowt) == | o<x<(M-1)at (98)

=

These results agree with those obtained before by Miles (Reference
7} and others.

The limiting form of the infinite swept wing as k—/2 is
also of interest, This form is shown in Figure 17c, and the pres-
sure formulae are obtained for it by letting k — /3 in Equations (93),
(94), and (95). Equation (93} is of course unchanged, but in Equa~-
tion (94) it is necessary to apply the rule of L'Hospital to the sec-
ond term. The limit is found to be finite. From Equation (95} it
is seen that the constant pressure acting over zone III becomes in
the limit an infinite pressure along the leading edge. The pressure

distribution is thus given by

C;I(/ﬁﬁgf):‘fjn s U< X £ C (99)

| X
C/;j()r,agf)=‘/-§77-/mf/ ~iF *,/ZL/\{I‘/ ], O£ X= 2UF  (100)

Equation (100} reduces to Equation (99) for x = 2Ut, so the pressure
is still continuous across the boundary between zones I and II. For
x = 0, Equation (100) gives infinite pressure, which agrees with the
limiting value obtained from Equation (95). Moreover, the singu-
larity in Equation (100) at x = 0 is seen to be of the square-root

type, characteristic of the subsonic leading edges of a lifting wing
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in linearized theory.

Since k = /3 is the limiting value of k for which the leading
edge of the infinite swept wing is supersonic (the edge might in fact
be called ''sonic' for k =3}, it seems reasonable to suppose that
the pressure distribution for the unit-step motion of an infinite
swept wing with k >/3 will not be greatly different from that given
by Equations (99) and (100}, and that these equations will be ap-
proached as limits as k—/@F from above. A similar argument
could be given for the limiting form of the wide delta wing as k-7,
although this will not be attempted here. The pressure distribution
for the unit-step motion of the infinite swept wing is plotted in Fig-
ure 18 for k = 0, k =1, and k =/3 , at the same time t and for
M= 2.

It was shown in the analysis for the delta wing that the
terms in the pressure formulae multiplied b __7/__6{_’_/1; could be rep-
resented by geometrical angles occurring naturally in the regions
of integration on the wing. It will now be shown that for the two-
dimensional wing both terms in Equation (97) are capable of ge~-
ometric interpretation, and that the analysis can be extended to
the infinite swept wing.

Figure 19a shows the domain of dependence of a typical point
P for the unit-step motion of the two-dimensional wing. The Mach

cone containing the sphere is bisected by the plane of the wing,
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and only the upper half is shown. The domain is also cut off at
the vertical plane through the leading edge, the yz plane.

First, by inspection of Figure 19a it is seen that

C05/ Mat - X]

o< [ =27

where

Next, in the second term of Equation (97),

Mx-p8%ar _ MX — gar
X - X
V43
and
x _ [OR] _
X - LoF] - rop)
Also .
(o] =[OF] = [~ (x-Mat)?
Therefore |
2
[PR]*= [OPI-[0P]* = (3)-a¥+ (x-Mat)’
Or
[PR] = 2 - pat
Therefore ,D/D] A
ot - 22 f -t /3
cos —————M":Y/” a j cos f:opj
where
o=« /N 27
For X<%§-f7./l>7/’ and points P, and Py lie on the lower half of

the sphere, not shown in Figure 19a.
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Thus Equation {97) can be written in the simple form,

i 1) = - Qe /_' -/I-
CI(%O,/‘) ﬁ/ﬁf—ﬁ,—] (101)

where
o2/ €2l , O£ N €27

For small enough values of t, the sphere is not cut by the yz plane,
so that/l = 0 and /7=277. Thus Equation (101) reduces to Equation
(96)., Ast increases,./L increases and /  decreases until the
sphere lies completely ahead of the yz plane. Then =27 and
/7 = 0, so that Equation (101} reduces to Equation (98}.

To extend this analysis to the infinite swept wing, it is con-
venient to introduce what may be called normal quantities, as fol-

lows:

M _ T VB _ z 7
M’_W » /337—%,2’/_1//71473%_0/'% )%,"W (102)

M, , the normal Mach number, is the component of the Mach num-
ber (here considered as a vector in the free-stream direction) nor-
mal to the wing leading edge. The other quantities are defined to

conform with M and preserve the free-stream velocity U. Thus
U=Ma =Ma

If normal quantities are substituted in Equation {(94) by use of Equa-

tion (102) the result is
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wont) =~ 20 __/_ -1(Ma, f‘/\'j A - M;X"/’:dny‘/
ij( ost) 2 ,/M,, cos —l—’L———oﬂf +/;’”(05 S (103)

But Equation (103) gives the transient pressure coefficient for a
two-dimensional wing flying at Mach number Mn in air with speed
of sound a s and undergoing a unit-step motion resulting in an ef-
fective angle of attack Q’a” . This fictitious wing is shown super-
imposed on the real wing in Figure 19b. The geometrical inter-
pretation of the terms of Equation (103} is obtained as before, but
the results apply to the real wing. Thus the transient pressure
coefficient for the unit-step motion of an infinite swept wing can

be written

Pt LA ,
CPE(X,OJ‘}-— 77[/% # /J;] (104)

where /| and /" are shown in Figure 19b. Eliminating the normal

quantities from Equation (104) puts it in the form

G (host)==%2 F 1/};47 (105)

where

o</ <2y, 0 /N <£2)
It will be recalled that, as previously defined, /” for the infinite
swept wing was the angle subtended at the center of the circle by
the chord representing the leading edge. A little geometiry is suf-

ficient to show that /  as defined in Figure 19b is the same angle
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given by the previous definition. Again Equation (105} reduces
to Equations (93) and (95) at the limits, as it should. It is doubt-

ful that any worthwhile simplification would be obtained by ex~-

tending these ideas to the delta wing.
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IV. LIFT AND PITCHING MOMENT OF THE

WIDE DELTA WING

a. Theoretical Background. It is of course possible to obtain the

lift and pitching-moment coefficients at any time for the unit-step
motion of the delta wing by integrating the pressures found in
PART-IF over the wing. This procedure is not, however, followed
in this paper. Instead, the lift of a spanwise element of the wing
is found directly by means of a method of descent and a manipula-
tion of the fundamental wing formula., The lift and moment coef-
ficients are then obtained simply by suitably integrating this func-
tion over the wing chord. The method is convenient and informa-
tive, the latter because it illustrates the nature of solutions for
lifting wings with entirely supersonic edges.

The velocity potential ¢Z , as considered in the (x,y,z,t)
system, satisfied Equation (10} and the boundary condition that the
upwash is known in the plane of the wing, at least ahead of the
trailing edge. Consider the function ¢ obtained by integrating the

spanwise coordinate ;r- out of ¢/ . Thus
(2]
¢enzh)= [,z 5)dy (106)
-~

Froehlich (Reference 4) has shown that ¢ satisfies the differential
equation

ox?

1y __2?5 _ ,_72 =0 (107)

/
az

Q..
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and the boundary condition
o5 _(2%. _
af(,O*,f/: ‘5’“‘6\’, ,&f,f)d/\/ (108)

If the wing leading edges are supersonic, and the trailing edge is
straight and parallel to the ;—axis » then the integral in Equation

2

(108) can be evaluated, so that 5% is known in the plane of the wing
ahead of the trailing edge.

It was shown previously that the velocity potential satisfying
Equation (10) and giving specified upwash in the plane of the wing
ahead of the trailing edge is given by the fundamental wing formula,
Equation (28). If the flow field has no dependence on vy, Equation
(10} reduces to the form of Equation (107). It follows that the solu-

tion to Equations (107} and (108) is given by the fundamental wing

formula. Thus

F-Z o
¢(/‘Ef,f)=—2% /g{fa; T)d5dT (109)
o 0

where

£ =X + JdlF-T)-Z" cosd (109a)

The variables are the same as those in Equation (28).

o

The next step is to determine ——= in the plane of the wing.

oF

Because the pressure is zero in the plane of the wing off the wing,

j—-—?-¢ is seen to represent the lift of a spanwise element of the wing,
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except for a multiplicative constant, Now Equation (109} cannot be
differentiated formally with respect to t because the integrand and
its derivatives are in general discontinuous across the edges of
the wing, which may lie inside the region of integration. Instead
N 9P . . . .
the limiting procedure defining 37 1is applied to the integral in

Equation (109 with z = 0+. Thus
4 (109). f+df

B(K 0 Frdi) = PR 0. T) = 5% ,, (F/f*dff 0:T)dsd T
2// (110)
/ f Y27 0, F)dodr ]
The first inner integral in Equation (110} is over a circle of center x
and radius a/ffdf-f) in the plane z = 04. It should be kept in mind
that this is still the ;E_}; plane, although the equations are indepen-
dent of y. The second inner integral'is over a circle also of center

x but with radius @(7-7/ . If the integral
7 zr

_2 [ [28(31pai} 0n 7)o
mf/;f F{RdF} on T)dGdT
o 9
is added to and subtracted from the right side of Equation (110}, it

can be written in the form
Frdf 2i7

D% 04 F+df)~ P(x 05 7) = 2”// ¢/ﬁfl‘*di‘/0»‘f)d¢9dz

(111)
T o
- / [ | 2203 1707) 00 F)di - / 2(317) 0, F)de a7

If both sides of Equation (111} are now divided by dt, which is then

made to approach zero, the left side of the equation approaches 3¢
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and both terms on the right side approach finite limits., The result

may be written

wg(x 0-F)= 9 ¢/X o /‘/+ (,wr 7) (112)

%
J

NN

By inspection of the integral in Equation (111} giving 7, it is

4

evaluated readily. Thus

27

9% ¢ 0, f/~—~2,,/ (70:7)d8 =227 0:7) w3)
o4
o7

gives the value of the inner integral for ¢ at the upper limit
of the outer integral. It therefore corresponds to one of the terms

. . . _ . Y
obtained by formal differentiation of the integral for ¢. 57 repre-
sents the differentiation with respect to t of the inner integral for ¢.
It is this term which cannot in general be evaluated by formal differ-
entiation, owing to the discontinuities involved. In the next section,

Equation (112} will be evaluated for the unit-step motion of the delta

wing .

b. Application. For the unit-step motion of the delta wing, the up-

wash function 522? is obtained by substitution of Equation (33), which
oF .

is the same in both coordinate systems, into Equation (108). 3> is

zero in the range of integration except on the wing, so the result is
XrUF

2;67,0’;772‘2%]/72/0/)7 2“]/7‘)(/\’*01‘/ O£ xXrl/f<C  (114)

=0 |, XrUF <0



-63-
Equation (114} may be regarded as specifying the upwash function for
a two-dimensional wing of zero thickness and chord c. This fictitious

wing has a parabolic profile given by

/74/(/\’) = b/(X _—:—kMUé x° (115)

If it is considered to start from rest att = 0 in the (E,;,;,?} system
with supersonic velocity U in the negative x-direction, the resulting
flow field is governed by Equations (107) and (114). The pressure on
99

this wing, given by 37 °

of the delta wing at the same chord point, except for a multiplicative

represents the lift of a spanwise element

constant.

di_}? is found directly from Equations (113} and (114}:

a¢(x 0s7) =269 1Py ut)F) FeUF <

(116)
=0 , x+Ufr<o

J

To determine -—z£f , it is necessary to examine further the second

O
e

9
term on the right side of Equation (111}, The integrand (-)—}g is ob-

— —— —

tained by substituting ¥, 7 for x,t in Equation (114}, where P is

given in terms of X, t, Z, and 8 by Equation (109a). Thus

9(215) 0,F) == 2 1D FealF-Blcosi +UE], 0f )¢ )
=0,/ <0

Accordingly, the second term of Equation (111} may be rewritten:
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I G(Frd?)
B kot Fdr) "@ffﬁtﬁz i‘%d//]ffv*d/ﬁdf— f/cos§+l/2"}d§ (118)
Ay
—/ﬁfa/f-?/cosa"d/z’}a’ﬁ ar
where ¢

X+ a(F-T)cos8 +UT 20 for 040 <37

The conditions represented by Equation (118) are illustrated in Figure
20. Figure 20a shows the time history of the motion of the fictitious
two~dimensional wing, with the domains of dependence of a typical
point x on the wing at times t and t + dt . Figure 20b shows the situ-
ation in the plane z =0+at a typical time Z for which the wing lead-
ing edge falls inside the domain of dependence of x at times t and
t + dt, That is, disturbances produced by the wing at time Z influ-
ence point x at times t and T + dt as specified by the two inner inte-
grals of Equation (118}, It is also clear from Figure 20a that the
outer integration should have the limits 27’ and 7’: instead of 0 and t,
because the wing leading edge lies inside the domain of dependence
of x only during the interval /?';—2—":} s 28 shown in Figure 20a.

After the inner integrations have been performed, Equation

(118} can be written in the form

7

@(%, 01 FrdF) - @/)F,ch/=%%/,§5//}Xfﬁf)/€(f*dﬁ—€(f/j (119)
z

# af (-~ B)sin Q7. ~(F-D)sin G ol 7
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If now both sides of Equation (119} are divided by dt , in the limit as

dt ~ 0 Equation (119) becomes:

neq +c7aff(f~?)5//7<9}]0’?

Sfno)=%

d//;/\/fa/f-r)KOJH + Z/T] + a sin 49]5/2’ (120}

//Z(r—z—/ ~evz) 2T

¢ 2%

since the coeff1c1ent o vanishes identically, as may be seen
from Figure 20b. Equation (120} is integrated easily, the result
being

28(50,7) =~

A

£ 0[/0//—?‘/ “lervE) M x+0f)5/ﬂ(/M/)(’:lr/7:)z;f O/fr)]] 2

121
+2Wc7 (% Uf)f//?///(f )~ /X*ﬂfj/] (2
arr-z)

where all inverse functions are principal values.
In applying the limits 7‘; and ’7; s three different cases arise,
depending on the position of the point of evaluation in the time history

of the motion. The three possibilities are shown in Figure 21. In

zone A, ?_,'=?:'= 0 , so that

é%//\/ 0n7)= 0 (122)

Therefore, from Equations (112} and {116},

2% (7,007) = 22 (7o) ; Fao, oF = < c-UF (123)
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>

In zone B, {, = 0 and Z:‘—'

()@XO,‘]«/ 21/% [/ L gt (pﬂf)ﬁ/m-ms Xféif 605:/;—'}?/}] (124)

Therefore, from Equations (112) and (116},

acfﬁg(—a )= 28 7+ o) o ) o 3«

where

In zone C, ’Z’,—=—X g and 'Z_';=~X_df , so that

5?@ (ko:7) = L2 (e UF)( G 1) (126)
Therefore, from Equations (112) and (116},

0l (r0s7) = Wl (7 ay7) ; F=0 ,~UF<X=-df (127)

The pressure at any point on the fictitious two-dimensional wing at
any time is given by one of the three equations (123}, (125}, or (127).
In combination they give the chordwise pressure distribution. It

is clear from Figure 21 that at t = 0 Equation (123) holds over the
entire chord, and that eventually Equation (127) holds over the entire
chord. At intermediate times each of the three holds over part of
the chord., By inspection of Equation (125) it is seen that it reduces

to Equation (123} on the zone boundary x = at, and to Equation (127)

on the zone boundary x = -at, so that the pressure is continuous across
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the zone boundaries in the time history.

2P

Since these equations for 5F also represent the lift of span-~
wise elements of the delta wing resulting from its unit-step motion,

they can now be used in obtaining the lift and pitching-moment coef-

ficients.

c. Lift. Because the pressure on the underside of the wing is the

negative of that on the top side at every point, the lift is given as
twice the integral of the pressure over the top surface, Thus
/[ =2 / / (P~fa)dydx (128)
wing
On substitution for 60—/0“7) using the linearized pressure relation

and Equation (9), Equation (128} becomes

i «lf
/ =200’0//[/j—;¢/)7,)7,0t770’7j0’/\7 :zdw/}?/x‘,w?di (129)
- "7
-0F i

The limits of the inner integral in Equation (129) are properly written

as infinite because is zero in the plane Z=¢ off the wing. The

o, S

area of the wing is , 50 that in terms of the lift coefficient,

L=4Cd,UE

7 z (130)

It is also convenient to express 2-? in the form

a7

0P 17, F) = CWT [/
5% (X0sT) y F X7 (131)




68~
where F(-)z,?:‘) is independent of k, as may be seen from Equations
(123} . (125}, and (127). Therefore, on relating Equations (129) and

(130), C, is given by:
c-UF

C,(7) C%J/F(Xf)d)( , 720 (132)
-UF

This equation shows that the lift coefficient for the unit-step motion
of a wide delta wing is independent of the sweepback. All wide del-
tas of the same chord undergoing the same unit-step motion produce
the same lift coefficient, although the total lifts will of course vary.
This phenomenon, previously mentioned by Froehlich (Reference 4},
will be considered further later.

The initial lift coefficient, at t = 0+, is obtained first,

F(}z,t—) is obtained from Equation (123}, and the result is:

C, =C o= ‘9”“/)(0’)( = 74“ (133)

The transient lift coefficient is considered next. It can be seen from
Figure 21 that the chordwise integration involves zones A, B, and C

in the time history for the interval

z = <
= P =
0£F< F =7
and zones B and C only during the interval

_<

U-a

—_—

52:6217 ﬁ‘irfg

N
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The coefficient for the first case will be called the initial transient

lift coefficient. The functions F(g,?) for the three zones are obtained

from Equatlons (123) (125), and (127). Thus

Q//f) / /(X UT)dx +///[/afz X (/Y*l/f)/p~ cos X,c[/fj*(O.f/"f}) d/\]

-af
c-U7 (134)

o

The integrals in Equation (134} can either be evaluated directly or

by a single integration by parts. The result is

(f/ 4&2{/+ /(‘7"/)( 0= 4de (135)

The coefficient for the second case will be called the final transient

lift coefficient. Here

ar

e lF)T - //df—,\’ +/X+Ufj M3 X%‘; +605/mt))) ax (136)
L

Again the integrals are evaluated simply, and the result is

é’h"

Z,

Ci=2% {3—M/gf/j/2M/é‘—’7 ~A1Z)-) # oY oA LY o2 —;‘—Wcaf/M—/a—Cf)]] (137)

where all inverse functions are principal values, and

£ L Fe S
Ura U-a
Finally the steady state is reached, and for this
c-UF
= = = Foa 138
C(f/ /z/ a (/Yfo/O’X 5 > T 2 g (138)
~0F
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These lift coefficients are conveniently written in terms of
the dimensionless time variable (%f) s which may be denoted by T.
Thus, on collecting Equations (135}, (137), and (138}, the complete
lift variation with time for the unit-stép motion of the wide delta

can be written:
Initial Transient: 0£ 7'—4-/757 — = / +-21 7"2 (139)
Final Transient: /7,/—17 <7 £377

g:z =L I(3-MT)|2MT-5T=] +2Mm M—/fr] +/z+7’)cos"’M—%} ] (140)

s A G M '
Steady State: 7 = 55 =43 - (141)
M-/ CLO ﬂ

Inspection of Equation (14Q) shows that it reduces to Equation (139)

for T—Mf'/ and to Equation (141} for 7--'-7 , so that the lift varies

continuously with time as it should. -—CQ is plotted versus T for

2o

three Mach numbers in Figure 22.

The above results show that the steady-state lift is always
greater than the transient lift, the difference decreasing with in-
creasing Mach number. It appears from Figure 22, and is proved
easily by differentiation, that not only the ordinate but also the

slope of the lift curve varies continuously with time,

d. Pitching Moment. The pitching moment about the vertex,o777 s

2
I7

can be expressed as an integral of ;3 in a way similar to that used
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for the lift. Thus
~UF @
=2 f(p-ruridyax =~24,[{ (2550171 erias
W y "U -0
cij—//r ¢ (142)
=-24 / (/w//f}—;— X, 01 F)di
-Ur

where a stalling moment is considered positive., In terms of a co-

2
efficient based on the chord ¢ and the area —/-rc— , the moment is

written:

263
(143)

L 2
0777 2e d‘”[//(
Therefore, on relating Equations (142} and (143) using Equation {131},
OC?V is given by
c-UF
G =-2% [z etp)F(RFIde | F2 0
o7 = "1 ) (X s , /2 (144)
~UF
This equation shows that the pitching-moment coefficient also for

the unit-step motion of a wide delta is independent of the sweepback

The initial moment coefficient is obtained first, For this,

C
o (145)

OC?y 6\77(0")‘“ é)a, X-O/-‘ \3M

Again the transient effect is divided into initial and final stages,

and the 1n1t1a1 trans1ent moment coefficient is given by

yMir arf, X <
C?/" -—3” (xr{/f)dx+ ﬂ(/vfl/fg/d“f +(Xf1/f// /(/:(/; +cos /(77})}6//\’]
(146)

:—Hf
/(x*ﬂf) ax

/Vc’
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The integrals in Equation (146) can be evaluated directly or by in-

tegration by parts without difficulty. The result is

oG F==55{ 1+ B(E)'} , 0=

The final transient moment coefficient is given by

o CUF
fUF/’LC“/ai’})}‘/] (148)

C,y/f)‘ ‘W M 6\(+(/f)dx+ /{(wf) a7 X‘v“()(f(/f)z/ 505/
The integrals here are the same as those in Equation (146), but with

(147)

f.

different limits, The result here is

Gyl =G /[ G- Mo N YoM -51Z +6H cos M—ﬂ%’?j]

(149)
~Sel6 r amE eosIn-(3)) < F <55
‘The steady-state coefficient is given by
c~UF |
o%(f/=—/5f§’/%(ﬁ//ﬁ’di = —35;,4/‘ , fe—&-% (150)
-yF

The complete pitching-moment variation with time for the
unit-step motion of the wide delta wing is thus given by Equations
(147), (149}, and (150). These may be written in terms of T, giving

finally the following pitching-moment variation:

Initial Transient: 0 7 < gy °§7’ =/ +2A_.//7‘3 (151)
",

i i . / P __L..
Final Transient: prey, <7 S vay
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G, :_7/4 /g-,w T=(2+ M’)T?/ZM 7-B'T=/ + 6/5‘! CO.%XM‘/J)27j+(5 M cos'%v/—f’ i (152)

oGy,

Steady State: 7 2 HL/' Gy _ M (153)

o —

’ OC’% 3
Both Equation (152) and its derivative with respect to T reduce to
the initial transient values for T :/177{7 and to the steady-state values

for T = L s 50 the piteching-moment variation is continuous in both

M-/

ordinate and slope for all positive times., 067 is plotted versus T
~%
for fhree Mach numbers in Figure 23,

The above results show that for the unit-step motion of a
wide delta the steady-state pitching moment about the vertex is al-
ways greater than the transient pitching moment, the difference de-~
creasing with increasing Mach number.

It is useful to determine the variation of the center of pres-

sure on the wing with time. It falls, of course, on the wing center-

line, and if £ denotes its x-coordinate, A is given by

o 2 225
LD __oGp(T) _ 21 % -
c - g "3 qm/ (154)

——.

2,

This function is plotted for fhreee Mach numbers in Figure 24 by tak-
ing ratios of corresponding values from Equations (139} and (151},
(140) and (152}, and (141) and (153). It is seen that initially the c.p.
lies at the two-thirds chord point; i.e., the centroid of the wing
area. This is of course proper, since the pressure is initially con-

stant over the entire wing. Next the c.p. moves forward, because
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of the influence of the higher steady-state pressures spreading over
the fore-part of the wing. As the steady-state pressure continues
to spread towards the trailing edge, the forward travel of the c.p.
stops and changes to rear‘ward travel. Finally the steady-state po-
sition is reached, and this again turns out to be the two-thirds
chord point, although the pressure is not in this case constant over
the wing. However, the average pressure on each spanwise element

of the wing is the same, as can be seen by forming

3875 3
I e, 2V T
where —Y—R is the y-coordinate of the right leading edge. For the

is given by Equation (127) so that

steady state, j},

9L _ | 2WU o ey = WU
(57).7 2757 4 (U0 =5 -

This explains why the c.p. again lies at the centroid of the wing
area. It can also be seen from Figure 24 that the maximum for-
ward travel of the c.p. decreases with increasing Mach number.
If the center of gravity of the wing is near the two-thirds chord
point, this c.p. travel will be important in determining the sta-

bility of the transient effects of the unit-step motion.
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e, Comparison with Two-Dimensional Wing. It was observed prev-

iously that the lift and pitching-moment coefficients for the unit-step
motion of a wide delta wing are independent of the sweepback. One

is tempted to conclude that the equations obtained for these coeffic-
ients therefore apply also to the unit-step motion of a flat two-dimen-
sional wing, particularly since the correct local pressure coefficient
for such a wing is obtained by setting k = 0 in the corresponding
equation for the delta wing, as shown by Equations (96}, (97}, and
(98), Such a conclusion would, nevertheless, be incorrect:

The sweepback enters into the determination of the local
pressure coeificient only as the inclination to the free-stream direc-
tion of part of the boundary of the zone of integration. Accordingly,
setting k = 0 gives the zone éf integ;-ation for a two-dimensional wing
and so reduces the results of the integration to the two-dimensional
values. However, in determining the total coefficients effects in-
tegrated across the span are important, and the fact that the plan-
form is trianguiar enters in, even though the size of the vertex
angle does not. Thus the limiting value k = 0 is to be regarded as
defining a flat delta wing of finite chord and infinite span, and not
a flat two-dimensional 'wing. In fact, it was seen previously that
in determining the total coefficients, the delta wing could be re-
placed by a two~dimensional wing of the same chord but of para-

bolic profile, the changed profile accounting for the spanwise effects
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of the triangular planform.
Consider a flat two-dimensional wing of chord ¢ which un-
dergoes the same unit-step motion as the wide delta previously
considered. The lift and pitching-moment coefficients are obtained

simply as integrals of the pressure coeffic1ent

B ) VI

In Equation (156) the pitching moment is measured about the lead-
ing edge. The zones in the time history of the motion are the same
as those of Figure 21 and Cp is given in zone A by Equation (96}, in
zone B by Equation (97), and in zone C by Equation (98}. Initial,
initial transient, final transient, and steady~state coefficients are

defined as before, and are therefore given as follows:

c
.= -Céof /c/)( = 4% ;. % /( X = - ZM& (157)
(M-1)al Mr)ar c
6= -5 /@wf M) oM o 2]
’ J M_, (Me1)ar
(M-)at (M#)ar (158)
o~ Cg/ //*g”—%’dx /( ! cos {HTA) ] (05/.£L /Xd/\’ +/( 28 ) oy /
/M /)af (Mri)at
(m-1)at
6,4 // 28] - 28 (1 corf ML) o | cos Mcael)) |
(M—//af (159)

M-fal”

or //{”}de za//@ _’M”f_’y/)v‘/,c"-ﬁé—yxdd
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< C
= ‘Z‘:’/('%Ky‘/x > oS, = 2’220/(“%@*4’( (160)

These integrals are all evaluated without difficulty either directly
or by integration by parts. When the results are expressed in terms
of T, the following lift and pitching-moment variations are obtained

for the unit-step motion of the flat two-dimensional wing.

Initial Transient: g< 7'_4/‘7;/7

(161)

Final Transient: /17/;/75 7'_4/;7.{7‘

S [ fogrrs  feosfit 1)+ cosfu-4]

oG T oM g e o) o) (162)

2 L (1 MToHT BT +2cos s T] +(2T coifin #/

Steady State: Téﬁé‘] % :‘é,j > Z—CC\—;Z? = 7{3,-4 (163)
o ° 7,

It is easily verified that Equations (16 2} reduce to Equations (161)

for T = #7 and to Equations (163) for T :Vé'/‘ » and differentia-

tion of these equations shows the same to be true of the derivatives .

Thus the lift and pitching-moment variations are continuous both

in ordinate and slope throughout the range of T. The results agree

with those obtained previously by Miles (Reference 7) and others,
These results are compared with those for the wide delta

in Figures 25 and 26 for M =4 2. It is seen that both the lift ang
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the pitching moment, normalized to unit initial values, have larger
values for the wide delta wing than for the two-dimensional wing
throughout the transient range. This is explained by the observa-
tion that at any time during the transient state the delta wing has
a larger proportion of its surface acted upon by the higher steady-
state pressure than has the two-dimensional wing. The initial
lift coefficients are the same for both wings, and in fact for all
such wings, because disturbances from the leading edges have not
had time to propagate, and the results are independent of plan-
form att = 0+. The steady-sta:ce lift coefficients are also seen
to be the same for both wings. This is explained by the fact, in-
dicated by Equation (155}, that the average pressure over‘the delta
wing in the steady state is exactly the two-dimensional pressure.
In accordance with this, the normalized pitching-moment coef-

ficients are also the same in the steady state for both wings.
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V. FINAL COMMENTS

It appears to be advantageous to derive the fundamental
formula of linearized wing theory using the concept of spherical
pulses, because this approach avoids the awkward limiting pro-
cedures needed in other approaches. The background of the meth-
od lies in acoustics rather than aerodynamics, and its use in
wing theory was brought to the attention of the author in a course
of lectures by Dr. P. A, Lagerstrom.

Through its chief tool, the fundamental wing formula,
small~-disturbance wing theory leads to simple results for the
unit-step motion of the wide delta wing. Not only the lift and mo-
ment, but also the complete pressure field on the wing resulting
from the motion are obtained in closed form in terms of elemen-
tary functions. The simplicity of these results suggests their
suitability for Duhamel integration to obtain the response to more
general time-~dependent motions, without pitching, of the wide delta
wing,

The pressure caused by the unit-step motion at any point
on the wing at any time can be determined quickly by a semi-
graphical scheme. The pressure fields for the unit—sfep motion
of the infinite swept wing with supersonic edges and its limiting
form, the two-dimensional wing, are obtained as by-products of

the solution for the wide delta wing. For these, the terms of the
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transient pressure coefficient have simple geometric interpre-
tations. The pressure distribution for the unit-step motion of
the other limiting form of the infinite swept wing, in which the
edges may be called sonic, exhibits the square-root leading-
edge singularity characteristic of flow for lifting wings with sub-
sonic edges. It is therefore felt that this limiting form may
give some information about the unit-step motion of the infinite
swept wing with subsonic edges.

Calculation of the force and moment coefficients of a thin
wing with supersonic leading edges and straight trailing edge is
simplified by the use of a method of descent, which also makes
clear the nature of the dependence of these coefficients on plan-
form. For non-uniform motions of the wing, it appears that
this dependence is only on the general shape, such as the tri-
angle, and not on variations within the family of such shapes.

A recent paper by Strang (1950} (Reference 14) has come
to the author's attention, in which the unit-step motion of a wide
delta wing is treated by an extension of the methods used by
Strang in a previous paper (Reference 12). The results obtained
for the pressure field on the wing are in agreement with those
obtained by the author. However, the results for the lift and
moment, although correct, are obtained by a method which masks

the nature of their dependence on the wing planform.



-81-
Thus Strang is led to observe (Reference 14, p. 73) that
the dependence of ‘72{ , his lift-growth function, on sweepback is
not marked, the effect of Mach number being more important.

g on G o the
W7 times the function 7 of the present

(2

Actually %a, is exactly
paper, and accordingly is entirely independent of sweepback for
the wide delta wing.

The same problem is solved by Miles in another recent
paper (Reference 15}, in which he obtains the lift and moment
coefficients by a method of descent and an application of the
Fourier transform to his previous solution (Reference 16} for
the harmonic motion of a wide delta wing. Miles' results agree
with those of the author and correctly show no dependence on
sweepback. He does not determine the pressure field on the wing.

The duration of the transient effects of the unit-—s‘pep mo-
tion is given by (—/‘-4%/—0— , so that it is extremely short for any nor-
mal chord length and any Mach number to which the linearized
theory applies. Moreover, the transient lift is always less than
the steady-state lift and the center of pressure travel is small.
The unit-step motion of the wide delta wing is not, therefore, of
much practical interest or importance. The interest lies in the
simplicity of the solution for the pressure field, forces,; and mo-
ments produced by the motion, and the importance lies in the pos-

sible application of the solution to Duhamel integration.
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TABLE OF NOTATION

Note: Barred space coordinates are stationary. Unbarred Coordinates
move with the main motion of the wing, and for the delta wing

have their origin in the plane of the wing at the vertex,

Primed

coordinates have their origin at an arbitrary point of the leading
edge in the plane of the wing.

Roman numeral subscripts refer to zones of pressure field on

wing.

Capital letter subscripts refer to zones of chordwise time hig-
tory on wing.

Numerical subscripts as applied to force and moment coeffic-
ients refer to time intervals.

SYMBOLS

XV, %
st )

t, T

MEANING
Fixed and running cartesian space coordinates

Fixed and running time coordinate

Spherical polar radius

Cylindrical polar coordinates in plane of wing
Fluid static pressure

Fluid density

‘Values far from the wing

Fluid perturbation velocity vector

Fluid perturbation velocity potential

Fluid condensation

Fluid ratio of specific heats

Fluid local and free-stream velocity of sound

Wing velocity vector

Wing main velocity component



U, VW
1,5, k
a
g
a
a;=f%
-5

dA
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Wing perturbation velocity components

Unit cartesian vectors

Unit normal vector

Small angle

Local instantaneous angle of attack

Wing angle of attack due to unit-step motion

Wing perturbation velocity component due to unit-
step motion

Mach number
M2=-1

z~-coordinates of corresponding points on top and
bottom surfaces of wing

Wing chord

Wing sweepback angle

tano”

Velocity potential for spherical pulse
Pulse strength

Dirac delta function

Unit-step function

Constant of proportionality

Element of area in plane of wing

Point in space; particular points denoted by numer-
ical subscripts

Arbitrary value of x

Region of integration for fundamental wing formula;

particular regions denoted by subscripts
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Angles in region of integration in plane of wing; also
used with subscripts + A

Angle in domain of dependence of point on wing
Velocity potential for fictitious two-dimensional wing
Function independent of sweepback

Dimensionless time variable

Pressure coefficient

Wing lift

Wing lift coefficient based on area of delta wing and
unit span of two-dimensional wing

Wing pitching moment about vertex of delta wing and
leading edge of two-dimensional wing

Wing pitching moment coefficient based on chord
x~-coordinate of center of pressure of wing

Limiting value of g in integration for spanwise lift
Limiting values of T in integration for spanwise lift

"Normal' quantities

Directed distance from P; to Pj

Various function symbols; some used with subscripts
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