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Two roads diverged in a yellow wood, 
And sorry I could not travel both 
And be one traveler, long I stood 
And looked down one as far as I could 
To where it bent in the undergrowth; 
 
Then took the other, as just as fair, 
And having perhaps the better claim, 
Because it was grassy and wanted wear; 
Though as for that the passing there 
Had worn them really about the same, 
 
And both that morning equally lay 
In leaves no step had trodden black. 
Oh, I kept the first for another day! 
Yet knowing how way leads on to way, 
I doubted if I should ever come back. 
 
I shall be telling this with a sigh 
Somewhere ages and ages hence: 
Two roads diverged in a wood, and I— 
I took the one less traveled by, 
And that has made all the difference. 

 

- Robert Frost, The Road Not Taken, 1916  
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ABSTRACT 

This dissertation explores a collection of topics broadly related to the theory, application, and 

measurement of random nanoparticle systems. The underlying motivation is to explore to what 

extent metasurface, and metamaterial concepts could be applied at a massively large scale; by 

identifying emergent properties in systems that do not require careful fabrication. Emphasis is 

placed on exploring theoretical descriptions for systems that do not conform well to existing 

simpler models.  

 

The dissertation is broken into three distinct parts: 

 

Part I uses a rigorous theoretical description to study emergent phenomena in random 

metasurfaces, where multiple scattering, multipole scattering, and nearfield interactions are all 

non-negligible. 

 

Chapter 1 describes the theory behind a custom-built electromagnetic program that solves the 

infinite many-body random particle problem of suitable systems; by estimating the moments of 

a particle’s local field, based on properly defined Monte Carlo simulations. This quasi-analytic 

approach offers a powerful tool to describe multiple scattering and correlations of a wide range 

of particle sizes and spatial distributions; without needing to resort to potentially ill-founded 

ansatz, such as the Born approximation, ladder diagrams, non-self-referencing interactions, and 

others. Besides emphasizing rigor and interpretability, this method explicitly links optical 

properties to particle properties and spatial distribution, which are directly relevant parameters 

in synthesis and fabrication. Correspondingly, the model connects emergent behavior to 

actionable parameters in synthesis/fabrication. 

 

Chapter 2 presents a case study of emergent phenomena in random metasurfaces made of 

Huygens (first order Kerker) particles at packing fractions up to 40% and with Percus-Yevick-

like pair correlations. These films show tailorable reflection and transmission spectra in the 

visible regime, through designing Huygens-like scattering of the constituent particles. The films 

also show completely indistinguishable behavior between TE or TM polarization at all incidence 

angles. Silicon and gallium nitride particle films are shown as real material examples describing 

the two distinct Huygen’s regimes: with and without the ability to support backward Huygens. 

The key insight to the emergent transmission-to-reflection ratio is shown to be the result of 

uniquely different particle-particle coupling behavior of electric and magnetic-type dipoles. The 

magnetic dipoles, arising from strong toroidal fields within the core of the particle, weakly couple 

between particles and act as sharp particle-defined resonances. On the contrary, the electric 

dipoles strongly couple to create a broadband continuum. The macroscopic directionality is then 



 vii 

understood as a Fano-like effect, controlled, in part, by the quality and spectral location of the 

optically induced magnetic resonances. Polarization invariance is understood to arise from the 

unique symmetrical scattering behavior of Huygens particles in the azimuthal plane relative to 

the direction of incidence. This is distinctly different from, for example, dipole scattering, that 

has a characteristic donut pattern. Representing the infinite particle film as an effective particle, 

a macroscopic Kerker condition for the random film system is derived. To the best of my 

knowledge, this represents the first generalization of the Kerker effect to random film systems. 

From this description it can be shown that randomly phased polarization conversion occurring 

from the multiply scattered field always has a deleterious effect on the overall Huygen’s behavior.  

The emergent behavior seen in random films of Huygen’s particles inspired the question: to 

what extent can similar results be seen in particle films exhibiting generalized Kerker? This 

question motivated the work of Chapter 3 and Chapter 4. 

 

Chapter 3 defines a new a mathematical transform from Mie to “Kerker” harmonics, that are 

designed to provide an intuitive understanding of directional scattering. This transform 

maintains nearly all of the benefits of the Mie harmonics while simultaneously providing a 

unified approach to understand all forms of Kerker scattering (generalized, transverse, regular), 

as well as general highly directional scatting, in terms of intuitive contours in the complex plane. 

This represents a paradigm shift in analysis. The Kerker harmonics are decomposed into forward 

and backward-type, where each harmonic order has a clear notion of directionality, with clearly 

defined primary and side lobes. Constructive/destructive interference between same type 

harmonics increases/decreases the directivity in the hemisphere, accordingly. Interference 

between forward and backward type harmonics is weak, so that scattering in the 

forward/backward hemisphere is dominated by the forward/backward coefficients, 

respectively. In summary, interference relationships are intuitive, and this begets intuitive 

geometric descriptions in the complex plane. For example, the theoretically maximum 

directionality of any system supporting a finite number of harmonics can easily be derived from 

geometric arguments. In general, directional scattering/emission is represented as complex 

interference relations in Mie harmonics, because these harmonics represent non-directional 

atom-like field patterns. The Kerker harmonics offer an intuitive framework to simplify 

understanding of directional scattering/emission behavior, even in complex system. This 

transform is of particular importance when representing a random particle film as an effective 

particle. The effective particle representation is generally not rotationally symmetric and can have 

appreciable interference between many polar and azimuthal numbers. The Kerker basis makes 

understating emergent directionality from these systems substantially more intuitive compared 

to the Mie framework. 

 

Chapter 4 uses Bayesian inverse design to show that all four canonical filters (shortpass, 

longpass, bandpass, and bandstop) can be made out of a single layer of randomly sized and 
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randomly positioned particles, based on experimentally realizable conditions. Importantly, all 

filters are realized using a single material, germanium. This represents a distinctly different 

philosophy to design filters, where multiple material compatibilities and fabrication sensitivity 

are no longer a primary concern. Spectral properties are entirely controlled by probability 

distributions. This is unlike traditional methods, which rely on deterministic phase delays and/or 

absorption, usually between multiple different materials. E.g., instead of  optimizing the number 

of  layers and each layer’s material and thickness in a stack of  thin films, you optimize a particle 

size distribution and the packing fraction. Furthermore, systems of  this nature break the primary 

assumptions of  traditional effective medium theories. Single harmonic order (electric dipole), 

non-resonant, and negligible particle-particle coupling are all invalid ansatz. The filters are 

designed in the infrared (4 – 9 µm), well below germanium’s absorption bands, to show that 

filtering can be achieved truly through photon redirection and not simply resonant absorption.  

 

Part II transitions the discussion from single layer to multilayer particle films and effective 

medium representations. Commonly used effective medium theorems are applied to radiative 

cooling applications and a new model for scale-invariant random fractal spatial distributions is 

presented.  

 

Chapter 5 summarizes the theory behind constitutive relations for the mean field. I.e., effective 

mediums. This starts with deriving the Dyson equation and self-energy as a solution to mean 

field problem. It is then shown that the four most commonly known mixing rules, individual 

scattering, Maxwell-Garnett, Bruggeman, and Gyorffy, Korringa, and Mills are applications of 

the quasi-crystalline and coherent potential frameworks. These four well-known approximations 

are discussed as part of a larger class of mixing rules, that can be described by a single equation, 

as shown by Sihvola. Importantly, Sihvola introduces a unifying parameter shown to explicitly 

control the local field assumption. Variational bounds are then discussed to define the 

encompassing restrictions to the solution space. This detailed discussion on existing theorems 

is important to understanding Chapter 6. The remainder of this chapter focuses on the regime 

where Sihvola’s unified equation does not apply. Generalizations of well-known theories to 

support multipoles are presented from the viewpoint of the extinction theorem. Though, these 

do not account for spatial non-locality or scattering asymmetry. Leveraging concepts discussed 

in part I, a new Monte Carlo-based effective medium theory is developed that accounts for both 

spatial non-locality and scattering asymmetry. Scattering asymmetry is resolved through the 

concept of an effective permeability made from toroidal currents in nonmagnetic materials. This 

new model is used in Chapter 7 to study a fractal film in the mean field regime.   

 

Chapter 6 compares an entire class of bilayer effective medium models and thin film 

combinations of silicon dioxide and silicon nitride for radiative cooling applications. In this 

work, it is shown that a bilayer of nanoparticles will always produce an optimal radiative cooler 
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compared to a mixture of nanoparticle and thin film or purely thin film structures. Alternatively 

stated, as long as the particle film satisfies simple fundamental assumptions common to the four 

main effective medium theories, an optimal radiative cooler can be defined no matter the 

specifics of the local field behavior. This provides a powerful conclusion as the subtleties of local 

field effects are often the largest subject of debate when using an effective medium model.  

Optimality is defined as the ability to produce the most cooling power at a target temperature. 

Target temperatures between 270 – 300K in a 300K background are considered. In all cases the 

nanoparticle films are optimal not only in total cooling power at any temperature, but over most 

angles and polarization. It is show that optimality is achieved due to better impedance matching 

to free space as well as the ability to spectrally shift absorption resonances using the local field, 

to better match the atmospheric transmission window. Though both of these phenomena can 

be achieved in thin films, this approach is angle and polarization dependent. In contrast, the 

nanoparticle film is controlled through filling fraction, which is angle and polarization robust. 

The proposed materials are chosen because they are nearly ideal for cooling applications. Silicon 

dioxide is cheap, abundant, transparent in the visible and has proper phonon resonances in the 

infrared. Silicon nitride also has the proper spectral qualities and is already commonly used 

/optimized for solar panel applications. The cooling performance of multiple important works 

of literature at the time are compared to the proposed structures. It is shown that nanoparticle 

films could produce similar or better performance. The hope is that these theoretical results 

inspire experimental study of the cooling applications of these films and their ability to be 

fabricated at a large scale.  

 

Chapter 7 presents an experimental study of a broadband, angle, and polarization invariant 

absorber in the visible regime; achieved through leveraging strong nanoparticle absorptions 

resonances and a fractal-like spatial configuration to trap incident electromagnetic fields. The 

Monte Carlo-based effective medium model discussed in Chapter 5 is applied to describe the 

underlying particle shape and local field effects giving rise to the film’s measurables. It is shown 

that the fractal-like clusters making up the film’s thickness act as effective particles with shifted 

and broadened absorption bands. Absorption broadening is shown to be caused by nearfield 

coupling of electric-type multipoles and is dependent on the number of connected or near 

connected neighbors. 

 

Part III transitions the discussion to single particle and particle film measurement. This provides 

an outline, with case studies, on how particle film concepts discussed in this dissertation can be 

characterized.  

 

Chapter 8 outlines the theory of nanoparticle measurement. Principles of causality, passivity, and 

superposition are discussed as a restriction of the frequency dependence of material models to 

Nevanlinna-Herglotz form. Common oscillator models and their application to the mean field 
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potential (self-energy) are then discussed. A nanoparticle film characterization protocol is 

outlined for films satisfying the traditional effective medium constraints discussed in part II. The 

characterization protocol constitutes a model fit procedure using data from angle and 

polarization resolved Mueller matrix measurements, in combination with normal incidence 

visible/infrared spectroscopy, scanning and transmission electron microscopy, X-ray 

photoelectron spectroscopy, profilometry, and film weight measurements. Direct measurement 

techniques are used to give estimates on model parameters such as filling fraction, film thickness, 

surface roughness, particle size and shape statistics, and material makeup such as core shell, 

crystallinity, elemental constituents, et cetera. These direct estimates are then used to guide an 

optimization procedure to match Mueller matrix and normal incidence spectroscopic data to 

produce a best fit effective medium and material oscillator model. This section also outlines 

Beer-Lambert measurements for single particle characterization. 

 

Chapter 9 presents the characterization of, to the best of my knowledge, the first example of 

Huygens scattering silicon nanoparticles in the visible regime that is synthesized through a 

nonthermal equilibrium dusty plasma synthesis process. It is shown that optically induced 

magnetic resonance can be achieved in individual particles and that size parameters can span 

these resonances across the visible. Particles are shown to maintain strikingly high-quality 

spherical shape, material purity, and crystallinity. Size distributions are primarily Gaussian, with 

standard deviations around 1%. This synthesis result, attributed to the hard work of coauthor 

Ali Eslamisaray, demonstrates the feasibility to make high-quality Huygens particles in a scalable 

synthesis process. This provides preliminary evidence to the potential of realizing the 

metasurface concepts discussed in part I on a massive scale.  

 

Chapter 10 uses the measurement protocol discussed in Chapter 8 to characterize the behavior 

of compact nanoparticle films made of alumina of different phases. This work highlights the 

applicability of commonly used effective medium methods to freestanding nanoparticle films 

made directly from nonthermal equilibrium dusty plasma synthesis. This experimental 

demonstration provides preliminary evidence to the potential of making the radiative cooling 

films discussed in Chapter 6 at scale. 
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C h a p t e r  1   

THEORY OF RANDOM METASURFACES 

1.1 INTRODUCTION  

 

In the mid-1970’s, the stealth revolution ushered in an era of rapid technology development 

around controlling the behavior of electromagnetic interactions with objects. Focusing primarily 

on the radar range, specially designed centimeter to millimeter sized shapes were assembled to 

render objects obscured to probing radar signals. Later the demand of semiconductor computers 

brought new control over designs at the nanometer scale. With this came the implication that 

similar designs used in the radar range could be used to control electromagnetic interactions in 

the infrared to visible spectral range. Though Maxwell’s equations are scale-invariant, light-

matter interactions certainly are not. At such energy, field interactions probe the atomic makeup 

of materials, which manifest as quantized states. Correspondingly, a whole new beast is born 

where material properties are tailored, formed into micro/nanometer sized shapes, then 

patterned to provide control of electromagnetic fields in the infrared to visible. Since the 

patterning is often too small to be seen by eye, the structure gives the illusion of a bulk material 

with seemingly supernatural properties. Gaining traction in the mid-2000’s, these concepts were 

adorned the prefix “meta,” meaning “beyond” in Greek, and the field of metamaterials was 

formalized. Though it is arguable the prefix “engineered” is more technically correct. 

Applications of metamaterials are broad and can exist anywhere where current efforts are limited 

by the behavior of “natural” materials. In 2019, the world economic forum announced optical 

metamaterials the third most important technology to shape tomorrow’s world. General 

research papers on metamaterials have grown at a rate of 17% per year from 2012 – 2022 in the 

Web of Science database.  

 

Over time it was learned that patterning in a single surface layer produced easier designs, easier 

fabrication, and a smaller size footprint compared to volumetric patterning. Termed 

metasurfaces, these structures have come close to controlling nearly every aspect of light in the 

visible and infrared. This is certainly an impressive feat considering a thickness on the order of 

only 100 – 100,000 atoms. Unfortunately, the greatest strength of this technology is also its 

greatest weakness — nanometer control is hard (and expensive) to produce over large length 

scales. A meter area metasurface can require the placement of around 1012 –  1015 elements! This 

certainly poses a problem if desiring to use metasurfaces to coat windows, solar panels, space 

crafts, or fighter jets… If metasurfaces are identified that are robust to disorder, then the Achilles 
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heel of metasurfaces could be removed. After all, precise nanometer control is not necessary if 

the metasurface works the same way over a large range of fabrication error. This is the underlying 

premise of Chapters 1 - 6 in this dissertation, which seeks to develop a theoretical description 

of how random metasurfaces can be used to provide emergent optical phenomena at large scale. 

The idea is that if the metasurface inherently allows a tolerance for disorder, then fabrication 

constraints can be relaxed accordingly. The conceptual framework transitions the thinking from 

studying the effect of precise placement of particular particles, to studying the effect of a 

probability of placements and a probability of particles. The definitive characteristics underlying 

emergent properties are then the underlying characteristics of the film’s probability distribution.  

Of course, not all distributions can be reasonably fabricated. This dissertation was formed in 

close collaboration with five experimental research labs at four district universities all studying 

nanoparticle fabrication and deposition. (Prof. Kortshagen, University of Minnesota; Prof. 

Kushner and Prof. Violi, University of Michigan; Prof. Thimsen, Washington University at St. 

Louis; and Prof. Goree at the University of Iowa.) From these collaborations it was determined 

that nanoparticles fabricated using dusty plasma synthesis operating at non-thermodynamic 

equilibrium could be a scalable technology to grow spherical particles of most semiconductor, 

metallic, and insulating materials used in metasurfaces. Furthermore, the method has shown 

pristine control on particle shape, size, and material purity. It was also determined that this 

method could be coupled to a spray or Langmuir-Blodgett deposition scheme to produce fast 

metasurface coatings at scale. Though the theoretical work of this dissertation is generalizable, 

much of the details are formed with this fabrication pipeline in mind.  

This chapter outlines the rigorous derivation underlying the theory of random metasurfaces used 

in this dissertation. The remainder of the chapter is composed of 8 sections and 5 supporting 

appendices. The first section outlines Maxwell’s equations and conventions. The second and 

third sections derive an exact solution to the multiple scattering problem, from fundamentals, 

and discuss the vital role of basis expansion in understanding the framework. Having this 

background in mind, the fourth section formalizes the problem statement. The fifth and sixth 

sections discuss the role of energy conservation and power flow in understanding the behavior 

of random films. The seventh section extends the main results of the prior sections to the 

distribution of all possible random films. Finally, the eighth section outlines how to calculate the 

reflection, transmission, and absorption of random films as well as their statistical moments 

using a Monte Carlo integration scheme.  
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1.2 MAXWELL AND CONVENTIONS 

 
“From a long view of the history of mankind — seen from, say, ten thousand years 

from now — there can be little doubt that the most significant event of the 19th 

century will be judged as Maxwell’s discovery of the laws of electrodynamics. The 

American Civil War will pale into provincial insignificance in comparison with this 

important scientific event of the same decade.” 

 

- Richard Feynman, The Feynman Lectures on Physics, Vol. II, 1964 

 

 

As discussed in the introduction, light-matter interactions can produce a wide range of changes 

to an impinging electromagnetic field. Correspondingly, it is necessary to define the models used 

to describe such interactions. In this dissertation all interactions can be understood classically 

through Maxwell’s equations and the material constitutive relations. Materials under study are 

passive and isotropic. Impinging fields are assumed in the linear regime for the material and 

oscillating at infrared to visible frequencies. It is common that materials do not appreciably 

respond to magnetic fields at these frequencies, so the magnetic permeability of all materials is 

assumed that of vacuum, 𝜇 = 𝜇𝑜. From Fourier theory, any time pulse can be composed from 

the knowledge of the spectra. Therefore, all electric, 𝓔, and magnetic, 𝓗, vector fields are 

represented in the time-harmonic form as 

 

𝓔 = 𝓔(𝒓,𝜔)𝑒−𝑖𝜔𝑡  

𝓗 =𝓗(𝒓, 𝜔)𝑒−𝑖𝜔𝑡,  
1.2.1 

 

where 𝓔(𝒓, 𝜔) ∈ ℂ3 and 𝓗(𝒓,𝜔) ∈ ℂ3 are complex-valued and spatial, 𝒓 ∈ ℝ3, and 

frequency, 𝜔 , dependent phasors. 𝑡  denotes the time and all units follow the International 

Standard (SI). Following the conventions of others, the time dependence will be implied for all 

fields and will not be written explicitly. Given the stated definitions, Maxwell’s equations in time-

harmonic form are,  

 

𝛻 ∙ (휀𝑜휀𝑟(𝒓,𝜔)𝓔(𝒓)) = 0 

𝛻 ∙ 𝓗(𝒓) = 0
𝛻 × 𝓔(𝒓) = 𝑖𝜔𝜇𝑜𝓗(𝒓)

𝛻 ×𝓗(𝒓) = −𝑖𝜔휀𝑜휀𝑟(𝒓,𝜔)𝓔(𝒓).

  2.2.2 
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where 휀𝑜 is the permittivity of vacuum. Unlike the magnetic field, appreciable atomic and 

molecular interactions do occur with the electric field at infrared to visible wavelengths. The 

result is a conversion of energy between fields and the material, at the relevant energy level 

transitions. For example, vibrational transitions in the infrared and electronic transitions in the 

visible. Clearly, such transitions are time-causal and, consequently, absorption coincides with 

dispersion as dictated by the Kramers-Kronig relations. In the context of Maxwell’s equations, 

these atomic-scale interactions are modeled macroscopically in time-harmonic form as a 

complex relative permittivity, 휀𝑟(𝒓, 𝜔) = ℜ[휀𝑟] + 𝑖ℑ[휀𝑟], where the Fraktur ℜ and ℑ denote 

the real and imaginary part, respectively. At the atomic scale, the classical model for the relative 

permittivity is understood as an excitation of “free” and/or locally “bound” charges responding 

to the field excitation. Away from material transitions 휀𝑟 becomes approximately constant. In 

particular, the sum rules dictate that at frequencies above the material’s highest energy transition 

the permittivity is constant. The physical interpretation is that the response to such a short-time 

impulse constitutes a tiny perturbation where collective effects are negligible. Though, the 

response is not instantaneous due to the inertia of charges. 

 

With regard to computational considerations, both 휀𝑜 and 𝜇𝑜 are a floating-point headache. 

Without loss in generality, all electromagnetic fields will be scaled as  

 

𝓔 → 𝑬/√휀𝑜 

𝓗 → 𝑯/√𝜇𝑜 .
  1.2.3 

 

Under this transform, Maxwell’s equations can be rewritten as  

 

𝛻 ∙ (√휀𝑜휀𝑟(𝒓,𝜔)𝑬(𝒓)) = 0 

𝛻 ∙ 𝑯(𝒓) = 0
𝛻 × 𝑬(𝒓) = 𝑖𝑘𝑜𝑯(𝒓)

𝛻 ×𝑯(𝒓) = −𝑖𝑘𝑜휀𝑟(𝒓, 𝜔)𝑬(𝒓) = 𝑱(𝒓).

  

1.2.4 

1.2.5 

1.2.6 

1.2.7 

 

where 𝑘𝑜 = 𝜔√휀𝑜𝜇𝑜 is the wavenumber in vacuum. This dissertation is not concerned with 

electrostatics, so the domain of interest is divergence free, 휀𝑟(𝒓,𝜔) ≠ 0. The coordinate system 

is defined in figure 1.2.1. 
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Figure 1.2.1. Coordinate system. {�̂�𝑥 , �̂�𝑦 , �̂�𝑧} and {�̂�𝑟 , �̂�𝜙 , �̂�𝜃} are the standard basis in Cartesian and polar 

coordinates, respectively. Spatial vectors are denoted in bold.    
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1.3 LIPPMANN-SCHWINGER AND FOLDY-LAX  

 

The relative permittivity of an inhomogeneous media can be written as 휀𝑟(𝒓,𝜔) = 𝜖 +

𝛿휀(𝒓, 𝜔) ∈ ℂ, where 𝜖 ∈ ℝ is the relative permittivity of the lossless background (so that the 

far field can be defined) and 𝛿휀(𝒓) ∈ ℂ is the fluctuation as a result of material changes within 

the volume. The support of 𝛿휀(𝒓) is the interior volume of the inhomogeneities, 𝑉𝑖𝑛𝑡 ∈ ℝ
3. 

For such a system, Maxwell’s curl equations in time-harmonic form are  

 

𝛻 × 𝑬(𝒓) = 𝑖𝑘𝑜𝑯(𝒓)

𝛻 ×𝑯(𝒓) = −𝑖𝑘𝑜𝜖𝑬(𝒓) + 𝛿𝑱(𝒓) + 𝑱𝑠(𝒓)
  1.3.1 

 

where Ampere’s law makes clear that the permittivity fluctuations cause changes in passive 

current densities, 𝛿𝑱(𝒓) = −𝑖𝑘𝑜𝛿휀(𝒓)𝑬 ∈ ℂ
3, whose oscillations emanate scattered fields. The 

system is excited by an externally driven source current density, 𝑱𝑠.Taking the curl of Faraday’s 

law and substituting Ampere’s law gives the inhomogeneous wave equation is, 

 

𝛻 × 𝛻 × 𝑬(𝒓) − 𝑘2𝑬(𝒓) = 𝑈(𝒓)𝑬(𝒓) + 𝑖𝑘𝑜𝑱𝑠(𝒓), 1.3.2 

 

where 𝑘2 = 𝑘𝑜
2𝜖 is the magnitude of the wavenumber in the background media and  

𝑈(𝒓) = 𝑘2(휂𝑟
2(𝒓) − 1) is the fluctuation potential, defined from the relative refractive index, 

휂𝑟(𝒓) = √휀𝑟(𝒓)/𝜖. The transition to refractive index is done since experimental data of the 

refractive index is more likely to be reported in literature. Again, all materials are assumed to 

have a magnetic permeability of free space. The solution to equation 1.3.2 is  

 
 

𝑬(𝒓) = 𝑬𝑖𝑛𝑐(𝒓) + (�̿� +
1

𝑘2
∇⊗ ∇) ∙ ∫ 𝑑3𝒓′ 𝐺𝑜(𝒓, 𝒓

′)𝑈(𝒓)𝑬(𝒓′)
𝑉𝑖𝑛𝑡

,  1.3.3 

 

where 𝑬𝑖𝑛𝑐  is the incident external field excitation onto the inhomogeneous space,  �̿� is the 

identity dyad, ⊗ is the dyadic product, and 𝐺𝑜(𝒓, 𝒓
′) = 𝑒𝑖𝑘|𝒓−𝒓

′| 4𝜋|𝒓 − 𝒓′|⁄  is the solution to 

the scalar Green wave equation with 𝛿휀 = 0. The corresponding dyadic Green’s function for 

the electric field is  �̿�𝑒𝑜(𝒓, 𝒓
′) = (�̿� +

1

𝑘2
∇⊗ ∇)𝐺𝑜(𝒓, 𝒓

′). The second term of the total field 

is the total scattered field, 𝑬𝑠𝑐𝑎(𝒓) = 𝑬(𝒓) − 𝑬𝑖𝑛𝑐(𝒓), and is a result of the collective excitation 

of all charges in the inhomogeneous media responding to the incident excitation. 
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Correspondingly, the scattered field anywhere in the background, ℝ3 − 𝑉𝑖𝑛𝑡, can be written 

explicitly in terms of the incident field as   
 

𝑬𝑠𝑐𝑎(𝒓) = ∫ 𝑑3𝒓′ �̿�𝑒𝑜(𝒓, 𝒓
′)

𝑉𝑖𝑛𝑡
∙ ∫ 𝑑3𝒓′′ �̿�(𝒓′, 𝒓′′)
𝑉𝑖𝑛𝑡

∙ 𝑬𝑖𝑛𝑐(𝒓′′),  1.3.4 

 

where �̿� is the incident-to-scattering transition dyad defined by the Lippmann-Schwinger 

equation,  

 

�̿�(𝒓, 𝒓′) = 𝑈(𝒓)𝛿(𝒓 − 𝒓′)�̿� + 𝑈(𝒓)∫ 𝑑3𝒓′′ �̿�𝑒𝑜(𝒓,𝒓
′′)

𝑉𝑖𝑛𝑡
∙ �̿�(𝒓′′, 𝒓′),  1.3.5 

 

where 𝒓, 𝒓′ ∈ 𝑉𝑖𝑛𝑡. 

 

For a layer consisting of a mixture of 𝑁 (→ ∞) particles the inhomogeneity in 𝑉𝑖𝑛𝑡 is defined by 

a collection of individually finite, countable, and non-overlapping hard particles, where each 

particle is defined by a shape, 𝑠, relative refractive index, 휂𝑟, and central position in the 𝑥 − 𝑦 

plane, 𝝆. Therefore, 𝑉𝑖𝑛𝑡 can be constrained to extending throughout the 𝑥 − 𝑦 plane centered 

at 𝑧 =  0 and having a finite 𝑧-thickness, ℎ, defined by the largest particle height. Furthermore,  

 

𝑈(𝒓) = ∑ (𝑈𝑎(𝒓) = {
𝑘2(휂𝑟,𝑎

2 (𝒓) − 1) 𝒓 ∈ 𝑉𝑎
0 𝒓 ∉ 𝑉𝑎

 )𝑁
𝑎 ,  1.3.6 

 

where 𝑉𝑖𝑛𝑡 = ⋃ 𝑉𝑎
𝑁
𝑎  and 𝑉𝑎 is the volume occupied by particle 𝑎. Such a system is shown in 

figure 1.3.1. 

 

Any position inside a particle can be written as 𝒓 = 𝝆 + 𝒔 ∈ 𝑉𝑎, where 𝒔 spans the particle’s 

shape with respect to the particle’s center. Correspondingly, 휂𝑟(𝝆 + 𝒔) completely describes the 

particle. Given the partitioned potential, the total field in the background domain is defined by 

the Foldy-Lax relations, 

 
 
𝑬(𝒓) = 𝑬𝑖𝑛𝑐(𝒓) + ∑ ∫ 𝑑3𝒓′ �̿�𝑒𝑜(𝒓, 𝒓

′)
𝑉𝑎

𝑁
𝑎 ∙ ∫ 𝑑3𝒓′′ �̿�𝑎(𝒓

′, 𝒓′′)
𝑉𝑎

∙ 𝑬𝑎
𝑙𝑜𝑐(𝒓′′),  1.3.7 

 

where 

 



 

 

9 
 
𝑬𝑎
𝑙𝑜𝑐(𝒓 ∈ 𝑉𝑎)  

= 𝑬𝑖𝑛𝑐(𝒓) + ∑ ∫ 𝑑3𝒓′ �̿�𝑒𝑜(𝒓, 𝒓
′)

𝑉𝑏

𝑁
𝑏≠𝑎 ∙ ∫ 𝑑3𝒓′′ �̿�𝑏(𝒓

′, 𝒓′′)
𝑉𝑏

∙ 𝑬𝑏
𝑙𝑜𝑐(𝒓′′),  

1.3.8 

 

and the transition operator, �̿�𝑗, is found by replacing 𝑈(𝒓) → 𝑈𝑗(𝒓) in the Lippmann-

Schwinger procedure. The Foldy-Lax paradigm introduces the concept of multiple scattering 

and a local field. The Lippmann-Schwinger procedure now defines how a particle will scatter 

the local field. Equation 1.3.8 defines the local electromagnetic field felt by a particle as the 

superposition from all other fields besides itself at the location of itself.  

 

 
Figure 1.3.1. Example of a countable set of piecewise homogeneous materials embedded in an external 

homogeneous host material.  

 

The Foldy-Lax and Lippmann-Schwinger equations can be written in operator form as 

 

𝑬 = 𝑬𝑖𝑛𝑐 + ∑ 𝔾𝑒𝑜𝕋𝑎𝑬𝑎
𝑙𝑜𝑐𝑁

𝑎   

𝑬𝑎
𝑙𝑜𝑐 = 𝑬𝑖𝑛𝑐 +∑ 𝔾𝑒𝑜𝕋𝑏𝑬𝑏

𝑙𝑜𝑐𝑁
𝑏≠𝑎   

𝕋𝑗 = 𝑈𝑗 +𝑈𝑗𝔾𝑒𝑜𝕋𝑗  

1.3.9 

 

where 𝕋𝑗 is the transition operator for particle 𝑗 and 𝔾𝑒𝑜 is the source free Green’s propagator. 

In operator notation, the form of the Green’s propagator (e.g., electric or magnetic) is implied 

by the context.  This procedure defines a set of coupled linear equations which can be used to 

solve for the unknown scattered fields given a known incident excitation. Under the concept of 

multiple scattering, the local field can be explicitly related to the incident field through an infinite 

series of all multiple scattering terms, 
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𝑬𝑎
𝑙𝑜𝑐   

= (1 + ∑ 𝔾𝑒𝑜𝕋𝑏
𝑁
𝑏≠𝑎 +∑ 𝔾𝑒𝑜𝕋𝑏𝔾𝑒𝑜𝕋𝑐

𝑁
𝑐≠𝑏
𝑏≠𝑎

+

∑ 𝔾𝑒𝑜𝕋𝑏𝔾𝑒𝑜𝕋𝑐𝔾𝑒𝑜𝕋𝑑
𝑁
𝑑≠𝑐
𝑐≠𝑏
𝑏≠𝑎

…)𝑬𝑖𝑛𝑐. 
1.3.10 

 

Substituting this expression into the total field gives 

 

𝑬  

= (1 + ∑ 𝔾𝑒𝑜𝕋𝑎
𝑁
𝑎 +∑ 𝔾𝑒𝑜𝕋𝑎𝔾𝑒𝑜𝕋𝑏

𝑁
𝑏≠𝑎
𝑎

+ ∑ 𝔾𝑒𝑜𝕋𝑎𝔾𝑒𝑜𝕋𝑏𝔾𝑒𝑜𝕋𝑐
𝑁
𝑐≠𝑏
𝑏≠𝑎
𝑎

…)𝑬𝑖𝑛𝑐.  1.3.11 

 

Equations 1.3.10 and 1.3.11 introduce the concept of “order of scattering,” which play an 

important role in random scattering and effective medium theories. The first summation in 

equation 1.3.11 is the scattered field from all particles as if no particles interacted. The next terms 

are the field contribution from all double scattering paths, then triple scattering paths, and so 

forth. Paths above double can return to a prior particle and this distinction is meaningful. The 

concept of order of scattering can be understood in the context of Feynman diagrams, as shown 

in as in figure 1.3.2.  

 

 
Figure 1.3.2. Graphical description of order of scattering. (Left) Diagrammatic expansion of order of 

scattering terms. ← represents the incident field, ∘ is the transition operator, − is the propagator, and ⇠ 

indicates that the transition operator is owned by the same particle, representing a return loop. (Right) Pictorial 

examples of order of scattering terms. (a) Incident field contribution. (b) Single scattering. (c) Double 

scattering. (d) Triple scattering with a self-reference. (e) Quadruple scattering with a single self-reference. 

 

The Foldy-Lax and Lippmann-Schwinger equations defines a self-consistent system of equations that gives an 

exact solution to the multiple scattering problem. This result offers a powerful framework for analysis as it 

distinctly elucidates how particle type (through 𝕋), position (through 𝔾), and the incident field gives rise to 

emergent scattering phenomena.  
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1.4 STRATTON-CHU AND MIE  

 

“The formulation of a problem is often more essential than its solution, which may be 

merely a matter of mathematical or experimental skill.”  

 

- Albert Einstein & Léopold Infeld, Evolution of Physics, 1938 

 

 

In the generalized form the volume integral Foldy-Lax and Lippmann-Schwinger equations 

represent a daunting numerical task, for which approaches such as the coupled-dipole method, 

the dipole-dipole approximation, the method of moments, and others have been used to solve1. 

If the space is piecewise homogeneous, then the volume integrals can be replaced by surface 

integrals at the interface boundary, 𝜕𝑉, in all source free domains. Fields in these regions can be 

described using the Stratton-Chu representation, 

 
 
±𝑬(𝒓 ∈ 𝑉 − 𝜕𝑉)  

= 𝛻 × ∮ 𝒅2𝒓′
𝜕𝑉

𝒋𝒎(𝒓
′)𝐺𝑜(𝒓, 𝒓

′) +
𝑖

𝑘𝑜 𝑟
𝛻 × ∇ × ∮ 𝒅2𝒓′

𝜕𝑉
𝒋𝒆(𝒓

′)𝐺𝑜(𝒓, 𝒓
′),  

 
±𝑯(𝒓 ∈ 𝑉 − 𝜕𝑉)  

= 𝛻 × ∮ 𝒅2𝒓′
𝜕𝑉

𝒋𝒆(𝒓
′)𝐺𝑜(𝒓, 𝒓

′) −
𝑖

𝑘𝑜𝜇𝑟
𝛻 × ∇ × ∮ 𝒅2𝒓′

𝜕𝑉
𝒋𝒎(𝒓

′)𝐺𝑜(𝒓, 𝒓
′)  

1.4.1(a) 

 

 

1.4.1(b) 

 

where 𝒋𝒆 = �̂� × 𝑯 and  𝒋𝒎 = �̂� × 𝑬 are the electric and magnetic surface currents on 𝜕𝑉, from 

the surface equivalence principle. The boundary surface, 𝜕𝑉, of the volume, 𝑉, is approached 

from the inside the volume such that all values are retrieved from inside that domain and all 

derived fields are valid only inside the domain. The ± sign is chosen depending on if the outward 

pointing surface normal is pointing inside (+) or outside (−) the domain 𝑉. Equation 1.4.1 states 

that for any isotropic and homogeneous media, knowledge of the equivalent surface currents on 

a closed surface in the domain is sufficient to know the fields anywhere in the domain. This is a 

direct result of Green’s vector theorem. 

 

The continuity conditions of electromagnetic fields in a source free medium,  

 

�̂� ×
(𝑬1 − 𝑬2)

(𝑯1 −𝑯2)
= 𝟎  

�̂� ∙
(휀1𝑬1 − 휀2𝑬2)

(𝜇1𝑯1 − 𝜇2𝑯2)
= 0,  

1.4.2 

1.4.2 
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demand that the surface currents and the flux are conserved on the surface between two 

domains, 𝑉1, 𝑉2. This provides the link between fields in two dissimilar domains and the problem 

is now reduced to a set of surface integral equations connecting the boundary currents. Though 

the dimensionality of the problem is reduced, it can still be quite expensive to calculate surfaces 

in three dimensions. Furthermore, developing physical insight into the behavior of the system is 

not necessarily straightforward given complex current/field patterns. 

 

To mitigate further the computational complexity as well as to provide potential useful physical 

insight, it would be nice to be able to project the surface currents at every boundary onto a 

suitable basis of vector functions. The surface integral problem would then be mapped to a 

matrix problem connecting basis coefficients between domains. The choice of basis in each sub-

domain serves two purposes. First, it intends to reduce the computational burden of the 

problem. The hope is that the dimension and computational complexity of the coefficient 

equations are substantially smaller compared to the dimension necessary to solve the surface 

integration directly, to a similar level of accuracy. Therefore, the goal is to identify a basis that 

accurately represents the surface fields using the minimal number of elements. From this point 

of view, the basis is an intelligently designed weight function that uses a priori knowledge of the 

behavior of the fields to strongly compress the field representation. The second goal is that the 

basis provides meaningful insight for humans to understand the interaction dynamics. Since the 

basis ascribes a set of priori patterns to the field, complicated field patterns are now decomposed 

into a superposition of “simpler” patterns that may have a well-described physical insight. 

Furthermore, the representation of the transition, propagation, and basis operators may be more 

digestible. Note that a sparse basis is not necessarily an insightful one, as is commonly found in 

machine learning. Clearly the sparsest basis is a single coefficient would mean the basis vector is 

the solution to the problem. This is not insightful at all! 

 

Unfortunately, it is not straightforward to define a vector basis that accurately, sparsely, and 

meaningfully represents surface currents for an arbitrary surface. Fortunately, under the correct 

conditions, the physical boundary of an object can be electromagnetically “extended” into a 

shape where such a basis can be defined. This brings to the analysis the notion of an effective 

particle, whose input-output relation is identical to the actual shape anywhere outside of the 

effective shape’s domain.  This is best understood by returning to the abstract operator notation 

of Foldy-Lax. Ultimately, 𝕋 needs only to map input excitation fields to output scattered fields 

within the domain of interest. For example, if each oddly shaped particle can be isolated by a 

circumscribing sphere where no spheres intersect, then the problem can be transformed into a 

scattering problem of spheres, which has an excellent expansion using the Mie harmonics. All 

field values outside of a sphere would be exactly the same as that solved by the initial problem. 
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In this way, the shape complexity is abstracted into 𝕋. Traditionally, this procedure is known 

as the extended boundary condition method, and the derivation by Waterman shows that the 

method is quite general2,3. Other authors have applied it to particles of non-convex shape, layered 

particles, chiral media, and scattering by more general composites4–7, though any numerical 

method capable of solving Maxwell’s equations can be used to construct 𝕋. Once 𝕋 is known, 

it can be used to solve any coupling problem satisfying the non-intersection condition of the 

effective particle. (Strictly speaking, this condition is actually overly stringent. Extended 

boundaries can overlap, but this requires more effort in defining the input-output relations8,9. ) 

An example of inhomogeneities satisfying the non-overlapping sphere condition is shown in 

figure 1.4.1.  

 

 

Figure 1.4.1. Example of a countable set of inhomogeneities eligible for domain extension to a minimally 

circumscribing ball.  

 

For suitable scattering systems a proper basis projection of equivalent surface currents can substantially reduce the 

computational complexity of the fundamental interaction equations. Furthermore, such an expansion can provide 

a digestible framework for analysis if the basis has a properly defined physical interpretation.  

�

�

�

�

�

�

�

�
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Fields in the Mie Basis 

 

The topics of this dissertation have been formed in connection with advances in the synthesis 

of spherical particles, using the nonthermal dusty plasma synthesis method. Correspondingly, 

the inhomogeneities of interest are random distributions of spheres. Luckily this shape can be 

exactly projected onto the basis of Mie vector harmonics, without the need for domain 

extension. Furthermore, the properties of the basis with respect to distance, |𝒓|, polar, 휃 ∈

[0, 𝜋], and azimuthal, 𝜙 ∈ [0,2𝜋), angle offer multiple convenient relations. For this reason, 

this dissertation adopts the ansatz that the Mie vector harmonics represent a sparse and 

conceptually meaningful basis to describe the scattered fields in question. Outside of the 

particle’s domain, the Mie harmonics are related to the particle’s surface currents through  

 

∇ × (𝒗(𝒓′)𝐺𝑜(𝑘, 𝒓, 𝒓
′))  

=
𝑖𝑘2

𝜋
∑ ∑ (

(𝒗(𝒓′) ∙ Rg 𝑴𝑛,−𝑚(𝑘𝒓
′))𝑵𝑛,𝑚(𝑘𝒓)

+ (𝒗(𝒓′) ∙ Rg 𝑵𝑛,−𝑚(𝑘𝒓
′))𝑴𝑛,𝑚(𝑘𝒓)

)𝑛
𝑚=−𝑛𝑛 𝒓 > 𝒓′  

 

1.4.3 

and  

 

∇ × ∇ × (𝒗(𝒓′)𝐺𝑜(𝑘, 𝒓, 𝒓
′))  

=
𝑖𝑘3

𝜋
∑ ∑ (

(𝒗(𝒓′) ∙ Rg 𝑴𝑛,−𝑚(𝑘𝒓
′))𝑴𝑛,𝑚(𝑘𝒓)

+ (𝒗(𝒓′) ∙ Rg 𝑵𝑛,−𝑚(𝑘𝒓
′))𝑵𝑛,𝑚(𝑘𝒓)

)𝑛
𝑚=−𝑛𝑛 𝒓 > 𝒓′  

1.4.4 

 

Here 𝑴, 𝑵 and Rg𝑴, Rg𝑵 are the outgoing and regular magnetic and electric-type Mie 

harmonics, respectively. The harmonics are defined by their integer polar, 𝑛 ∈ [1,∞), and 

azimuthal, 𝑚 ∈ [−𝑛, 𝑛], quantum numbers. Further detail can be found in section 1.10, 

appendix A. 𝒗 is an arbitrary surface current. Applying equations 1.4.3 and 1.4.4 to equation 

1.4.1 gives the scattered field as  

 

𝑬𝑠𝑐𝑎,𝑎(𝒓 − 𝝆𝑎) = ∑ ∑ 𝑏𝑛,𝑚𝑴𝑛,𝑚(𝒓 − 𝝆𝑎) + 𝑎𝑛,𝑚𝑵𝑛,𝑚(𝒓 − 𝝆𝑎)
𝑛
𝑚=−𝑛𝑛

𝑯𝑠𝑐𝑎,𝑎(𝒓 − 𝝆𝑎) = −𝑖𝑌 ∑ ∑ 𝑏𝑛,𝑚𝑵𝑛,𝑚(𝒓 − 𝝆𝑎) + 𝑎𝑛,𝑚𝑴𝑛,𝑚(𝒓 − 𝝆𝑎)
𝑛
𝑚=−𝑛𝑛 ,

  1.4.5 

 

where 𝑌 = √휀 𝜇⁄  is the admittance of the media and the coefficients encapsulate the current 

distribution on the surface through their projection onto the regular harmonics,  
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𝑎𝑛𝑚
𝑏𝑛𝑚

=
𝑖𝑘2

𝜋
∮ 𝒅2𝒔′
𝜕𝑉𝑎

(𝒋𝒎(𝒔
′) ∙
Rg𝑴𝑛,−𝑚(𝑘𝒔

′)

Rg𝑵𝑛,−𝑚(𝑘𝒔
′)
+
𝑖

𝑌
𝒋𝒆(𝒔

′) ∙
Rg𝑵𝑛,−𝑚(𝑘𝒔

′)

Rg𝑴𝑛,−𝑚(𝑘𝒔
′)
). 1.4.6 

 

Conceptually this expansion transforms a particle (closed inhomogeneity) into an effective 

“atom” positioned at the center of the particle. The state of this fictitious atom is described by 

electric, 𝑵, and magnetic-type, 𝑴, “orbitals.” Type is defined by the form of the field distribution 

emitted by 𝑵 and 𝑴, which mimic the field patterns seen from electric and magnetic multipoles. 

The oscillation strength and phase of these multipoles is determined by the coefficients, which 

are superpositions of electric and magnetic equivalent surface currents giving rise to the 

multipole-like behavior. The local field impinging on a particle is then viewed as driving the atom 

and the resulting scattered field is the field that emanates from the atom’s oscillations. To 

connect with the operator framework, the Mie harmonic expansion will usually be written in the 

matrix notation,  

 

𝜳𝑐 = [𝑵 𝑴] [𝑐
𝐸

𝑐𝑀
],  1.4.7 

 

where  

 

𝑵𝑐𝐸 = [𝑵1,−1 𝑵1,0 … 𝑵2,−2 …][𝑎1,−1 𝑎1,0 … 𝑎2,−2 …]𝑇  

𝑴𝑐𝑀 = [𝑴1,−1 𝑴1,0 … 𝑴2,−2 …][𝑏1,−1 𝑏1,0 … 𝑏2,−2 …]𝑇 .  
1.4.8 

 

As a shorthand, 𝑙 = {𝑡, 𝑛,𝑚} will represent an index for any unique combination of harmonic 

type, 𝑡 = {𝑁,𝑀}, and quantum numbers. The size of all combinations is 𝐿. Correspondingly, 

𝜳 ∈ ℂ3×L and 𝑐 ∈ ℂ𝐿 . 

 

The transition operator, which relates the surface currents to the exciting local field, can now be 

viewed as defining how the “orbitals” of the effective atom arise from a given excitation. As 

discussed, this operator is defined by the shape and material properties of the particle. From the 

multipole framework 𝕋 can be viewed as defining the “spring constants.” When considering a 

Mie harmonic expansion with origin at the center of the particle, then the transition matrix of a 

homogeneous and isotropic sphere is a diagonal form, 𝕋𝑛,𝑚,𝑛′,𝑚′
𝑡,𝑡′ = 𝛿𝑛,𝑛′𝛿𝑚,𝑚′𝛿𝑡,𝑡′𝑇𝑛𝑚

𝑡 ∈

ℂL×L,  with coefficients, 𝑇𝑛𝑚
𝑡 , given directly by Mie theory,  
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𝑇𝑛𝑚
𝐸 =

𝑗𝑛(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗𝑛(𝑘𝑠𝑅))−𝑗𝑛(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅𝑗𝑛(𝑘𝑅))

𝑗𝑛(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅ℎ𝑛(𝑘𝑅))−ℎ𝑛(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗𝑛(𝑘𝑠𝑅))
    

𝑇𝑛𝑚
𝑀 =

𝑘2𝑗𝑛(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗𝑛(𝑘𝑠𝑅))−𝑘𝑠
2𝑗𝑛(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅𝑗𝑛(𝑘𝑅))

𝑘𝑠
2𝑗𝑛(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅ℎ𝑛(𝑘𝑅))−𝑘2ℎ𝑛(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗𝑛(𝑘𝑠𝑅))

  
1.4.9(a) 

1.4.9(b) 

 

where 𝑅 is the sphere’s radius, 𝑘𝑠 is the wavenumber in the sphere, 𝑗𝑛 and 𝑦𝑛 are the spherical 

Bessel functions of the first and second kind, respectively, and ℎ𝑛 = 𝑗𝑛 + 𝑖𝑦𝑛 is the spherical 

Hankel function of the first kind.  

 

Under the Mie basis, the electromagnetic field distribution in any particle that can be represented 

as an effective atom centered about the particle as  

 

 

𝑬𝑖𝑛𝑐,𝑎(𝒓) = Rg 𝜳(𝒓 − 𝒓𝑎)𝑐𝑖𝑛𝑐
𝑬𝑙𝑜𝑐,𝑎(𝒓) = Rg 𝜳(𝒓 − 𝒓𝑎)𝑐𝑎,𝑙𝑜𝑐
𝑬𝑠𝑐𝑎,𝑎(𝒓) = 𝜳(𝒓 − 𝒓𝑎)𝑐𝑎 = 𝕋𝑎𝑬𝑙𝑜𝑐,𝑎.

 

1.4.10(a) 

1.4.10(b) 

1.4.10(c) 

 

To maximally leverage the basis expansion approach, the goal is to represent the Foldy-Lax 

equations solely as a relation between expansion coefficients. I.e., each local field equation, 

𝕋𝑎(𝑬𝑎
𝑙𝑜𝑐 = 𝑬𝑖𝑛𝑐 +∑ 𝔾𝑒𝑜𝕋𝑏𝑬𝑏

𝑙𝑜𝑐𝑁
𝑏≠𝑎 ), should expand so that a common basis can be 

removed, leaving only a coefficient relation. Unfortunately, each particle is best represented as a 

Mie expansion centered at their own origin. This is because, as shown in equation 1.4.6, the 

coefficients are then directly related to the particles’ surface currents. In simple geometries like 

the sphere, this also leads to a sparse representation of the transition matrix. Instead of re-

deriving all fields at each new origin, translation relations are defined so that, when necessary, 

the coefficients of one particle can be represented in an expansion referenced at the center of 

another particle. The Mie translation operators are   

 

Rg 𝜳(𝒓 − 𝒓𝑏)𝑐𝑏 = Rg 𝜳(𝒓 − 𝒓𝑎)𝕁
𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏  

𝜳(𝒓 − 𝒓𝑏)𝑐𝑏 = Rg 𝜳(𝒓 − 𝒓𝑎)ℍ
𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏 |𝒅𝑎𝑏| > |𝒓 − 𝒓𝑎|

𝜳(𝒓 − 𝒓𝑏)𝑐𝑏 = 𝜳(𝒓 − 𝒓𝑎)𝕁
𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏 |𝒅𝑎𝑏| < |𝒓 − 𝒓𝑎|

  

1.4.11(a) 

1.4.11(b) 

1.4.11(c) 

 

where 𝒅𝑎𝑏 = 𝒓𝑎 − 𝒓𝑏 and their explicit form is given in section 1.13, appendix D . The lettering 

system of these operators is intentional as 𝕁𝑎𝑏 → 𝑗𝑛 is reliant on the first spherical Bessel 

function and ℍ𝑎𝑏 = 𝕁𝑎𝑏 + 𝑖𝕐𝑎𝑏 → ℎ𝑛 is reliant on the first spherical Hankel function. The 

𝕁𝑎𝑏 ∈ ℂL×L operator is a true translation. The ℍ𝑎𝑏 ∈ ℂL×L operator not only translates fields 

but also transforms them from outgoing to incoming harmonics at the new location. The 
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corresponding transformation from incoming to outgoing harmonics occurs in the 𝕋𝑎 

operator as it maps incident to scattered fields.  

 

Under this framework the fundamental interaction equation resulting from the solution to the 

Foldy-Lax relations is 

 

𝑐𝑎  = 𝕋𝑎𝕁
𝑎0(𝒅𝑎0)𝑐𝑖𝑛𝑐 + 𝕋𝑎 ∑ ℍ𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏𝑏≠𝑎 . 1.4.12 

 

 

Figure 1.4.2. Schematic representation of the Mie vector harmonic expansion of a sphere as a superposition 

of electric and magnetic type multipoles.   

 

In the Mie basis the Foldy-Lax equations represent a matrix problem solely relating Mie coefficients between 

particles. Correspondingly, all electromagnetic behavior can be studied in coefficient space under the atom-atom 

interaction analogy. This representation also produces a substantial reduction in computational cost compared to 

a system of numerical integral equations.  
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1.5 THE PROBLEM STATEMENT  

 

Consider a monolayer consisting of a mixture of 𝑁 (→ ∞) particles that are dispersed in the x-

y plane at z = 0 and embedded in a lossless media defined by the permittivity, 𝜖. All particles are 

assumed spherical, non-overlapping, and are defined by their shape, 𝑠 (radius), refractive index, 

휂, and center position in the x-y plane, 𝝆. Given the distinct and countable nature of the 

scattering inhomogeneities, the system is well suited for the scattered field formalism, where the 

total electric field, 𝑬𝑡𝑜𝑡, from the film is a superposition of the scattered field from each particle, 

∑ 𝑬𝑠𝑐𝑎,𝑎𝑎 , and the initial field incident on the particle film, 𝑬𝑖𝑛𝑐 . This is written as  

 

𝑬𝑡𝑜𝑡(𝒓) =  𝑬𝑖𝑛𝑐(𝒓) + ∑ 𝑬𝑠𝑐𝑎,𝑎(𝒓 − 𝝆𝑎)
𝑁
𝑎 . 1.5.1 

 

Correspondingly, the local electromagnetic field felt by a particle is the superposition from all 

other fields besides itself at the location of itself,  

 

𝑬𝑙𝑜𝑐,𝑎(𝝆𝑎) =  𝑬𝑖𝑛𝑐(𝝆𝑎) + ∑ 𝑬𝑠𝑐𝑎,𝑏(𝝆𝑎 − 𝝆𝑏)
𝑁
𝑏≠𝑎 . 1.5.2 

 

Let all interactions be in the linear regime, so that the scattering response operator, 𝑬𝑠𝑐𝑎,𝑎 =

𝕋𝑎[𝑬𝑙𝑜𝑐,𝑎], is linear and defined by equation 1.4.9. Let the incident field be a plane-wave in 

order to match the infinite extent of the particle film so that reflection and transmission are well 

defined. (Arbitrary spatial and temporal excitations can then be constructed through Fourier 

transformation.) 

 

Under the proposed framework the problem statement is: 

 

How can spherical particles be engineered to produce emergent transmission, reflection, and absorptions properties 

when dispersed randomly in a single layer?   
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1.6 POWER BALANCE 

 

“The modern view of the world that emerged from Maxwell’s theory is a world with 

two layers. The first layer, the layer of the fundamental constituents of the world, 

consists of fields satisfying simple linear equations. The second layer, the layer of the 

things that we can directly touch and measure, consists of mechanical stresses and 

energies and forces. The two layers are connected, because the quantities in the second 

layer are quadratic or bilinear combinations of the quantities in the first layer. To 

calculate energies or stresses, you take the square of the electric field-strength or 

multiply one component of the field by another… The objects on the first layer, the 

objects that are truly fundamental, are abstractions not directly accessible to our senses. 

The objects that we can feel and touch are on the second layer, and their behavior is 

only determined indirectly by the equations that operate on the first layer.”  

 

- Freeman Dyson, Why is Maxwell’s Theory so Hard to Understand, 2007 

 

 

Power balance relations can be found from the conservation of time average power flux 

formalized using Poynting’s theorem in differential form,  

 

1

2
(𝜎𝑬 ∙ 𝑬∗ + 𝑬 ∙ 𝑱) = ∇ ∙ 𝑺 +

𝑖𝜔

2
(𝜇𝑯 ∙ 𝑯∗ + 𝜖𝑬 ∙ 𝑬∗),  1.6.1 

 

where 𝑺 =
1

2
𝑬 × 𝑯∗ ∈ ℂ3 is the time average Poynting vector. The * superscript denotes the 

complex conjugate. By applying the divergence theorem to equation 1.6.1 over an integration 

surface encompassing the entire particle collection the film-level extinction theorem can be 

derived,  

 

𝑊𝑒𝑥𝑡 = 𝑊𝑠𝑐𝑎 +𝑊𝑎𝑏𝑠. 1.6.2 

 

Equation 1.6.2 states that the proportion of incident power converted to either absorption, 

𝑊𝑎𝑏𝑠, or scattered power escaping into the far field, 𝑊𝑠𝑐𝑎, is equal to the power removed from 

the incident field, 𝑊𝑒𝑥𝑡. This result is completely analogous to the extinction theorem derived 

by Paul Ewald and Carl Oseen when considering the particle collection as a single “particle.” 

The power definitions have the following relations to the individual terms, 
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𝑊𝑒𝑥𝑡 = ∑ (𝑊𝑎,𝑖𝑛𝑐 +𝑊𝑖𝑛𝑐,𝑎)
𝑁
𝑎

𝑊𝑠𝑐𝑎 =  ∑ (𝑊𝑎,𝑎 − ∑ 𝑊𝑎,𝑏
𝑁
𝑏≠𝑎 )𝑁

𝑎

𝑊𝑎𝑏𝑠 =∭𝑑𝑉 
1

2
(𝜎𝑬𝑡𝑜𝑡 ∙ 𝑬𝑡𝑜𝑡

∗ + 𝑬𝑡𝑜𝑡 ∙ 𝑱𝑡𝑜𝑡) ,

  

1.6.3(a) 

1.6.3(b) 

1.6.3(c) 

 

where 𝑺𝑥,𝑦 =
1

2
𝑬𝑥 ×𝑯𝑦

∗  and 𝑊𝑥,𝑦 =  ∮ 𝑑
2𝒓 ∙ ℜ[𝑺𝑥,𝑦], since the power stored in the 

electromagnetic field is completely reactive, ℜ[
𝑖𝜔

2
(𝜇𝑯 ∙ 𝑯∗ + 𝜖𝑬 ∙ 𝑬∗)] = 0.  

 

When treating all particles as a single collective inhomogeneity, the Ewald-Oseen extinction theorem defines the 

power balance. At the “film-level,” the total scattering and absorption results from a removal of power from the 

incident field.  

 

 

Particle-level Power Balance 

 

Similarly, a power conservation relation between an individual particle and the remaining 

environment can be found by integration enclosing the particle of interest. To isolate a power 

balance relation between an individual particle and its environment, it is generally necessary to 

define the integration surface as tracing the particle’s surface on the side of the embedding media, 

𝜕𝑉+. Though if the embedding media is lossless then any surface encompassing the particle and 

no other inhomogeneities will suffice. When possible, integrating over the surface of the smallest 

ball, 𝐵 ∈ ℝ3, encapsulating the particle has the nice property of leveraging the orthogonality of 

the Mie basis. For spherical particles this has the further benefit of representing an exact 

integration over 𝜕𝑉+. By applying the divergence theorem to Poynting’s theorem over an 

integration surface encompassing a single particle the particle-level extinction theorem is,  

 

𝑊𝑎𝑏𝑠,𝑎 +𝑊𝑎,𝑎 = 𝑊𝑖𝑛𝑐,𝑎 +𝑊𝑎,𝑖𝑛𝑐 +∑ (𝑊𝑎,𝑏 +𝑊𝑏,𝑎)
𝑁
𝑏≠𝑎    1.6.4 

 

Equation 1.6.4 states that the power absorbed and scattered to the far field for an individual 

particle is equal to the power the particle transferred to/from the incident and scattered field of 

all other particles.  This constitutes a generalization to the extinction theorem of Ewald-Oseen. 

When considering multiple scattering sites, it is possible that any individual particle may give 

power to another particle or even the incident field. I.e., it is not necessary that 𝑊𝑖𝑛𝑐,𝑎, 𝑊𝑎,𝑖𝑛𝑐, 

𝑊𝑏,𝑎 , or 𝑊𝑎,𝑏  are positive. This is a result of the multiple interaction channels for each particle. 

Only the scattered, 𝑊𝑎,𝑎, and absorbed, 𝑊𝑎𝑏𝑠,𝑎, power of an individual particle are always 
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positive, as these quantities define one-way transitions either to the far field or to a non-

conserved conversion to another form work, respectively. Note that over the surface enclosing 

particle 𝑎, there is no net power flow from the incident field, 𝑊𝑖𝑛𝑐 = 0, the scattered field from 

other particles, ∑ (𝑊𝑏,𝑏 = 0)
𝑁
𝑏≠𝑎 , or the interference of the scattered field from other particles 

and the incident field, ∑ (𝑊𝑏,𝑖𝑛𝑐 +𝑊𝑖𝑛𝑐,𝑏 = 0)
𝑁
𝑏≠𝑎 . This is because none of these fields 

originate inside the enclosing surface, so their net influx is balanced by their net outflux.  

 

Inspection of both the particle and film-level power balance makes clear that adding all particle-

level powers can derive the film-level balance relation,  

 

 (𝑊𝑒𝑥𝑡 = 𝑊𝑠𝑐𝑎 +𝑊𝑎𝑏𝑠) 

= ∑ (𝑊𝑖𝑛𝑐,𝑎 +𝑊𝑎,𝑖𝑛𝑐 = 𝑊𝑎𝑏𝑠,𝑎 +𝑊𝑎,𝑎 − ∑ (𝑊𝑎,𝑏 +𝑊𝑏,𝑎)
𝑁
𝑏≠𝑎 )𝑁

𝑎 ,  
1.6.5 

   

where it should be understood that the (𝑊𝑎,𝑏 +𝑊𝑏,𝑎) pair is integrated over a surface enclosing 

only particle 𝑎.  

 

Particle-level power balance introduces new particle-particle interaction channels necessitating a generalized 

version of the extinction theorem.  Adding all particles recovers the traditional Ewald-Oseen extinction theorem.  

 

 

Connection to Foldy-Lax 

 

The satisfying connection between particle and film-level power conservation provides a quick 

and insightful method to calculate power flows from the Foldy-Lax relations. It brings to the 

conversation a connection to the local field. Right multiplying particle 𝑎’s local electric field by 

×
1

2
𝑯𝑠𝑐𝑎,𝑎
∗  and left multiplying the conjugate of particle 𝑎’s magnetic local field by 

1

2
𝑬𝑠𝑐𝑎,𝑎 × 

gives 

 
1

2
𝑬𝑙𝑜𝑐,𝑎 × 𝑯𝑠𝑐𝑎,𝑎

∗ = 
1

2
(𝑬𝑖𝑛𝑐 ×𝑯𝑠𝑐𝑎,𝑎

∗  + ∑ 𝑬𝑠𝑐𝑎,𝑏 ×𝑯𝑠𝑐𝑎,𝑎
∗𝑁

𝑏≠𝑎 )  

1

2
𝑬𝑠𝑐𝑎,𝑎 ×𝑯𝑙𝑜𝑐,𝑎

∗ = 
1

2
(𝑬𝑠𝑐𝑎,𝑎 ×𝑯𝑖𝑛𝑐

∗  + ∑ 𝑬𝑠𝑐𝑎,𝑎 ×𝑯𝑠𝑐𝑎,𝑏
∗𝑁

𝑏≠𝑎 ).  
1.6.6 

 

Adding the two relations together, adding 𝑺𝑎,𝑎 − 𝑺𝑎,𝑎 to the left-hand side, regrouping terms, 

and integrating the real part over the particle surface gives 
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𝑊𝑎,𝑎 + ∮𝑑
2𝒓 ∙ ℜ[𝑺𝑙𝑜𝑐−𝑎,𝑎 + 𝑺𝑎,𝑙𝑜𝑐−𝑎 − 𝑺𝑎,𝑎]  

=  𝑊𝑖𝑛𝑐,𝑎 +𝑊𝑎,𝑖𝑛𝑐 +∑ (𝑊𝑎,𝑏 +𝑊𝑏,𝑎)
𝑁
𝑏≠𝑎 .  

1.6.7 

 

Clearly, 𝑊𝑎𝑏𝑠,𝑎 = ∮𝑑
2𝒓 ∙ ℜ[𝑺𝑙𝑜𝑐−𝑎,𝑎 + 𝑺𝑎,𝑙𝑜𝑐−𝑎 − 𝑺𝑎,𝑎]. Therefore, the particle’s absorption 

can be calculated directly from a surface integral directly from knowledge of the particle’s local 

and scattered field. Care should be taken as to the interpretation of an “absorption Poynting 

vector,” defined as   

 

𝑺𝑎𝑏𝑠,𝑎 =
1

2
(𝑬𝑙𝑜𝑐,𝑎 ×𝑯𝑠𝑐𝑎,𝑎

∗ + 𝑬𝑠𝑐𝑎,𝑎 ×𝑯𝑙𝑜𝑐,𝑎
∗ − 𝑬𝑠𝑐𝑎,𝑎 ×𝑯𝑠𝑐𝑎,𝑎

∗ ).  1.6.8 

 

There is likely little physical interpretation of equation 1.6.8 outside of integrating it over the 

entire surface.  

 

Deriving power balance from the fundamental interaction equations directly identifies the role of the local field in 

power balance and provides a satisfying consistency check.  

 

 

A Probabilistic Interpretation 

 

With the powers defined, it is also possible to consider electrical cross sections, 𝐶, and 

conversion efficiencies, 𝑄, defined as  

 

𝐶 ≡
𝑊

𝐼𝑖𝑛𝑐
, 𝑄 ≡

𝐶

𝐴
 ,  1.6.9 

 

where 𝑊 denotes any of the prior defined power flows,  𝐼𝑖𝑛𝑐  is the intensity of the incident plane 

wave and 𝐴 is the geometric cross-sectional area of the particle, as seen from the angle of the 

plane wave.  

 

From this definition it is clear that the total conservation of power for the film is in fact a 

conservation of cross sections, 

 

  (𝐶𝑒𝑥𝑡 = 𝐶𝑠𝑐𝑎 + 𝐶𝑎𝑏𝑠) 

= ∑ (𝐶𝑖𝑛𝑐,𝑎 + 𝐶𝑎,𝑖𝑛𝑐 = 𝐶𝑎𝑏𝑠,𝑎 + 𝐶𝑎,𝑎 −∑ (𝐶𝑎,𝑏 + 𝐶𝑏,𝑎)
𝑁
𝑏≠𝑎 )𝑁

𝑎   
1.6.10 
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This defines the notion of a macroscopic, film-level, cross section as being the sum of the 

individual particle-level cross sections. Correspondingly, film-level efficiencies for scattering, 

absorption, and extinction are defined as 𝑄 = ∑ 𝐶𝑎
𝑁
𝑎 /∑ 𝐴𝑎

𝑁
𝑎 . If the film is composed of 

multiple different particle types (defined as a unique shape and/or material), then the summation 

of all particles can be partitioned by particle type, ∑ =𝑁 ∑ ∑  |𝒬𝒯||𝒯| . Here, the total number of 

unique types is denoted as |𝒯| where there are |𝒬𝒯| particles of that type dispersed throughout 

the film. The total area in the plane composed of particles as seen from the external plane wave 

is then 𝐴𝑝 = ∑ 𝐴𝒯|𝒬𝒯|
|𝒯|
𝒯 = 𝑁∑ 𝐴𝒯𝑃𝒯

|𝒯|
𝒯 , where 𝑃𝒯 = |𝒬𝒯|/𝑁 is the probability that any 

chosen particle in the film is of type 𝒯. This second equality is particularly useful because it 

transforms the problem to the language of probability distributions, which is a meaningful 

characteristic parameter in the context of random films. Dividing the apparent particle area by 

the total area of the x-y plane, 𝐴𝑥𝑦 ,  gives the fraction of the space seen by the plane wave that 

is filled with particles, 𝑓𝑓 = 𝐴𝑝/𝐴𝑥𝑦. Correspondingly, the fraction of the space filled with 

particles of type, 𝒯, is 𝑓𝑓𝒯 = 𝐴𝒯|𝒬𝒯|/𝐴𝑥𝑦. Using the definitions above, the film-level cross-

section of a particular particle type is  

 

𝐶𝒯 = 𝑓𝑓𝒯  (
1

|𝒬𝒯|
 ∑ 𝑄𝑎
|𝒬𝒯|
𝑎 ) = 𝑓𝑓 (

𝐴𝒯𝑃𝒯

∑ 𝐴𝒯𝑃𝒯
|𝒯|
𝒯

) (
1

|𝒬𝒯|
 ∑ 𝑄𝑎
|𝒬𝒯|
𝑎 ). 1.6.11 

 

and the total cross section is  

 

𝐶 =  ∑ 𝐶𝒯
|𝒯|
𝒯  . 1.6.12 

 

Therefore, the film-level power balance can be restated as  

 

𝑓𝑓 (
𝔼 [𝔼[𝑄𝑒𝑥𝑡,𝑎|𝒯]] −  𝔼 [𝔼[𝑄𝑎𝑏𝑠,𝑎|𝒯]]

= 𝔼 [𝔼[𝑄𝑎,𝑎|𝒯]] + 𝔼 [𝔼[∑ 𝑄𝑎,𝑏
𝑁
𝑏≠𝑎 |𝒯]]

)  1.6.13 

 

where the conditional expectation is 𝔼[𝜎|𝒯] =  
1

|𝒬𝒯|
 ∑ 𝑄𝑎
|𝒬𝒯|
𝑎  and the outer expectation is 

𝔼[𝔼[𝑄|𝒯]] = ∑ 𝑤𝒯𝔼[𝑄|𝒯]
|𝒯|
𝒯 . In the context of a random film, the weight factor, 𝑤𝒯 =

𝐴𝒯𝑃𝒯/∑ 𝐴𝒯𝑃𝒯
|𝒯|
𝒯 , can be interpreted as the area probability density of the particle type, 𝒯.  
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Interestingly, equation 1.6.13 has the form of the law of total expectation, where 𝑤𝒯  is the 

weight factor. This formulation, arising solely from algebraic manipulation, brings the language 

of probability to a deterministic problem. Summing all contributions to construct the film-level 

response is equivalent to calculating the expected behavior of each unique particle type. Under 

this interpretation, 𝔼[𝜎|𝒯] is understood as the average behavior of a particle’s scattering, 

absorption, or extinction efficiency when considering all possible local fields, a particle of that 

type may experience. Recall that equation 1.6.13 is just an algebraic repackaging of the 

fundamental relations. Therefore, it is still equally valid for an ordered system, such as a periodic 

lattice, or a film of same type particles. In this case the probabilistic interpretation is trivial. 

Distributions and spatial correlations are simply described by delta functions. In this context the 

random system can be regarded as the most general definition. Finally, note that equations 1.6.13 

is not restricted to the behavior of the coherent field. It is a complete description of all power in 

the system. No approximations. 

 

Power flow at the macroscopic level can be shown to arise from to the average power conversion efficiency of 

particles at the nanoscopic level. This is analogous to how permittivity and permeability are related to the average 

behavior of charges at the atomistic level. 

 

 

Power in the Mie Basis 

 

As detailed in section 1.11, appendix B the power between any electric and magnetic field over 

a surface can be written in the Mie basis as 

 

𝑊𝑎𝑏 =  
1

2
ℜ[∫𝑑𝑨 ∙ (𝑬𝑎 ×𝑯𝑏

∗ )]  

= ℜ 𝑡𝑟[∫ 𝑑𝕎(𝒓 − 𝝆) 𝕔𝑎𝑏],  
1.6.14 

 

where 𝑡𝑟 is the trace operation and 𝕔𝑎𝑏 = 𝑐𝑎⊗ 𝑐𝑏
∗ ∈ ℂ𝐿×𝐿 is the outer product, ⊗, matrix 

between the coefficient vectors of the two fields. Each element, 𝕔𝑎𝑏𝑙,𝑙′ = 𝑐𝑎,𝑛,𝑚
𝑡 𝑐𝑏,𝑛′𝑚′

𝑡′∗ , defines 

an interference combination between the two fields in coefficient space. 𝑑𝕎(𝒓 − 𝝆𝑎) ∈ ℂ
𝐿×𝐿 

is a matrix that maps the interference combinations in coefficient space to real space. Each 

element in 𝑑𝕎 takes the form 

 

𝑑𝕎𝑙𝑙′(𝒓 − 𝝆) =
1

2
𝑖𝑌𝑑𝑨 ∙ (𝜳𝑙(𝒓 − 𝝆) × 𝛻 ×𝜳𝑙′

∗ (𝒓 − 𝝆)),  3.6.15 
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where 𝑌 = √𝜖 𝜇⁄  is the admittance at the differential surface area under consideration, 𝑑𝑨 =

𝑑2𝒓 �̂�, which has an outward pointing normal, �̂�. Equation 1.6.15 necessitates that both fields 

are expanded in Mie harmonics about the same reference frame. Otherwise, there is little 

meaning to 𝕔𝑎𝑏, so the coefficients may need to be translated to 𝝆. Correspondingly, equation 

1.6.15 may take the form 𝜳× 𝛻 ×𝜳∗, Rg𝜳× 𝛻 ×𝜳∗, 𝜳× 𝛻 × Rg𝜳∗, or Rg𝜳 × 𝛻 ×

Rg𝜳∗, depending on the chosen reference frame and domain of integration. Finally, it is also 

implied that the harmonics in equation are valid across the integration domain. As discussed, 

this precludes surfaces traversing boundaries.  

 

Given the orthogonality of the Mie basis over a closed surface, Parseval-Plancherel’s theorem 

states that the total power over a closed surface is a suitably normalized sum of the inner product 

of the coefficients. Correspondingly, the film-level power balance in the Mie basis is 

 

𝑊𝑠𝑐𝑎 = 𝐼𝑖𝑛𝑐
𝜋

𝑘2
(∑ 𝑐𝑎

†𝑐𝑎 + ℜ[𝑐𝑎
†∑ 𝕁𝑎𝑏𝑐𝑏𝑏≠𝑎 ]𝑁

𝑎 )

𝑊𝑎𝑏𝑠 = 𝐼𝑖𝑛𝑐
𝜋

𝑘2
∑ ℜ[𝑐𝑎

†𝔸𝑎𝑐𝑎]
𝑁
𝑎

𝑊𝑒𝑥𝑡 = 𝐼𝑖𝑛𝑐
𝜋

𝑘2
∑ ℜ[�̃�𝑎

†𝕁𝑎0𝑐𝑖𝑛𝑐]
𝑁
𝑎

  

1.6.16(a) 

1.6.16(b) 

1.6.16(c) 

 

where the † superscript denotes the Hermitian conjugate, 𝐼𝑖𝑛𝑐 =
1

2
𝑌|𝑬𝑖𝑛𝑐|

2 is the intensity of 

the incident plane wave, and 𝔸𝑎 = ℜ [𝕋𝑎
−1 − 1] ∈ ℂ𝐿×𝐿 is the absorption operator for particle 

𝑎4. Correspondingly, the particle level power balance is  

 

𝑊𝑎,𝑎 = 𝐼𝑖𝑛𝑐
𝜋

𝑘2
𝑐𝑎
†𝑐𝑎

𝑊𝑎𝑏𝑠,𝑎 = 𝐼𝑖𝑛𝑐
𝜋

𝑘2
ℜ[𝑐𝑎

†𝔸𝑎𝑐𝑎]

𝑊𝑎,𝑏 +𝑊𝑏,𝑎 = 𝐼𝑖𝑛𝑐
𝜋

𝑘2
ℜ[𝑐𝑎

†∑ ℍ𝑎𝑏𝑐𝑏𝑏≠𝑎 ]

𝑊𝑖𝑛𝑐,𝑎 +𝑊𝑎,𝑖𝑛𝑐 = 𝐼𝑖𝑛𝑐
𝜋

𝑘2
ℜ[�̃�𝑎

†𝕁𝑎0𝑐𝑖𝑛𝑐].

  

1.6.17(a) 

1.6.17(b) 

1.6.17(c) 

1.6.17(d) 

 

Equation 1.6.17 defines the power balance on the surface of particle 𝑎, with all fields expanded 

using particle 𝑎 as the reference frame. The interference between the other particles and the 

particle of interest, has a form similar to the film-level extinction, except using the ℍ𝑎𝑏 

translation operator instead of 𝕁𝑎𝑏 . This is necessary because 𝕁𝑎𝑏  defines a valid expansion for 

integration out to the far field.  ℍ𝑎𝑏 defines a valid expansion for the integration domain over 

the particle surface. At first glance, it appears these two representations are incompatible, and 

the film-level cannot be derived from the particle-level. This “incompatibility” is incorrect 

because when considering the entire collection, a replacement ℍ𝑎𝑏 → 𝕁𝑎𝑏  occurs. Performing 
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the summation shows this transformation is due to an exact cancelation when considering all 

particles,  

  

∑ 𝑐𝑎
†∑ ℍ𝑎𝑏𝑐𝑏𝑏≠𝑎

𝑁
𝑎

= ∑ ∑ (𝑐𝑎
†ℍ𝑎𝑏𝑐𝑏 + 𝑐𝑏

†ℍ𝑏𝑎𝑐𝑎)
𝑁
𝑏=𝑎+1

𝑁
𝑎

= ∑ ∑ (𝑐𝑎
†ℍ𝑎𝑏𝑐𝑏 + 𝑐𝑎

†ℍ𝑏𝑎†𝑐𝑏)
𝑁
𝑏=𝑎+1

𝑁
𝑎

= ∑ ∑ (𝑐𝑎
†(𝕁𝑎𝑏 + 𝑖𝕐𝑎𝑏)𝑐𝑏 + 𝑐𝑎

†(𝕁𝑎𝑏 − 𝑖𝕐𝑎𝑏)𝑐𝑏)
𝑁
𝑏=𝑎+1

𝑁
𝑎

= ∑ 𝑐𝑎
†∑ 𝕁𝑎𝑏𝑐𝑏𝑏≠𝑎

𝑁
𝑎 .

  1.6.18 

 

Equation 1.6.18 shows that once considering the interference on all particle surfaces the 𝕐 

translation term exactly cancels in the film-level power balance. This naturally brings the 

question, what is the meaning of 𝑐𝑎
†𝑖𝕐𝑎𝑏𝑐𝑏? The interpretation in this dissertation is that 

𝑐𝑎
†𝑖𝕐𝑎𝑏𝑐𝑏 defines power transfer between the portion of particle 𝑎 and particle 𝑏’s fields that 

are trapped inside the film but do not contribute to absorption. By conservation, this 

contribution must then exactly cancel. Unfortunately, due to this exact cancelation, 𝑐𝑎
†𝑖𝕐𝑎𝑏𝑐𝑏 

does not contribute to any physically measurable quantity. Correspondingly, it is hard to solidify 

a physical meaning. The interpretation proposed is a postulate.  

 

Under the Mie expansion, the Foldy-Lax connection offers a very expedient method to calculate 

total power. Simply multiply the Foldy-Lax relation by 
𝜋

𝑘2
�̃�𝑎
†𝕋𝑎

−1 to derive the particle-level 

power balance for every particle! The summation then gives the film-level power. Mie harmonic 

translations are usually a costly computational process. In many cases generating the interaction 

matrix requires more computation effort than solving it! Correspondingly, it is ideal to maximally 

reuse the results of computational effort.  

 

Under the Mie framework, equation 1.6.17 is equivalent to multiplying the coefficient-based Foldy-Lax 

relation by 
𝜋

𝑘2
�̃�𝑎
†𝕋𝑎

−1. This gives a computationally efficient and expedient method to calculate power balance 

for an arbitrary particle and also the particle collection solely through additions and matrix multiplications4. 
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1.7 POWER FLOW TO THE FAR FIELD  

 

Ultimately, the goal is to understand how sub-wavelength inhomogeneities alter the 

transmission, reflection, and absorption spectra of incident radiation. Though section 1.6 

describes this emergent connection in terms of power balance, the results provide no statements 

on the angular redistribution of power.  For this it is necessary to study angle-resolved power 

flow, particularly over the hemisphere in the far field.  

 

In the far field the scalar Green’s functions has the asymptotic relations 

 

lim
𝑟→ ∞

∇ × 𝒗(𝒓′)𝐺(𝒓, 𝒓′) = 𝑖𝑘
𝑒𝑖𝑘𝑟

𝑟
(𝑒−𝑖𝑘�̂�∙𝒓

′
(�̂� × 𝒗(𝒓′)) + 𝑂 (

1

𝑟
))  

lim
𝑟→ ∞

∇ × ∇ × 𝒗(𝒓′)𝐺(𝒓, 𝒓′) = 𝑘2
𝑒𝑖𝑘𝑟

𝑟
(𝑒−𝑖𝑘�̂�∙𝒓

′
(�̂� × (𝒗(𝒓′) × �̂�)) + 𝑂 (

1

𝑟
)).  

1.7.1(a) 

 

1.7.1(b) 

 

Correspondingly, the far field of an arbitrary surface current distribution has the asymptotic 

form 

 

lim
𝑟→ ∞

𝑬𝑠𝑐𝑎(𝒓) =
𝑒𝑖𝑘𝑟

𝑟
(𝑬𝑠𝑐𝑎

∞ (�̂�) + 𝑂 (
1

𝑟
)),  1.7.2 

 

where 

 

𝑬𝑠𝑐𝑎
∞ (�̂�) =

𝑖𝑘

4𝜋
∫ 𝑑2𝒓′
𝜕𝑉𝑎

𝑒𝑖𝑘�̂�∙𝒓
′
(�̂� × 𝑱𝑠(𝒓

′) +
1

𝑌
 �̂� × (𝑴𝑠(𝒓

′) × �̂�)).   1.7.3 

 

Clearly, 𝑬𝑠𝑐𝑎
∞ ∙ �̂�𝑟 = 0 and this means that all fields in the far field are propagating and 

transverse. Applying Faraday’s law to equation 1.7.3 gives a fundamental condition on emanating 

fields in the far field. They must satisfy the Silver-Müller far field radiation condition, 

 

lim
𝑟→ ∞

 �̂�𝑟 × √𝜇𝑯𝑠𝑐𝑎 + √𝜖𝑬𝑠𝑐𝑎 = 𝑂 (
1

𝑟
).  1.7.4 

 

The scattered power flow in the far field at any differential solid angle is 

 

𝑑𝑊𝑠𝑐𝑎
𝑓𝑎𝑟

𝑑Ω
= 𝑌|𝑬𝑠𝑐𝑎

∞ |2 + 𝑂(
1

𝑟
),  1.7.5 
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where the real operator is unnecessary since the far field is composed of a lossless media. 

Equation 1.7.5 can be easily derived from a circular shift of the scalar triple product, �̂�𝑟 ∙

(𝑬𝑠𝑐𝑎
∞ × 𝑯𝑠𝑐𝑎

∞∗ ) = 𝑬𝑠𝑐𝑎
∞ ∙ (𝑯𝑠𝑐𝑎

∞∗ × �̂�𝑟) = 𝑌|𝑬𝑠𝑐𝑎
∞ |2. Again, when the inhomogeneities are 

countable and distinct the currents can be bundled, and the concept of multiple scattering is 

useful to understand particle-particle interactions. In this case, the total scattered power can be 

decomposed into scattered power from each inhomogeneity and the interference terms, 

 

|∑ 𝑬𝑎
∞𝑁

𝑎 |2 = ∑ (|𝑬𝑎
∞|2 +∑ ℜ[𝑬𝑎

∞𝑬𝑏
∞∗]𝑁

𝑏≠𝑎 )𝑁
𝑎 , 1.7.6 

 

and through the same partitioning scheme discussed in section 1.6,   

 

𝑑𝑄𝑠𝑐𝑎
𝑓𝑎𝑟

𝑑Ω
= 𝔼 [𝔼 [

𝑑𝑄𝑎,𝑎
𝑓𝑎𝑟

(�̂�)

𝑑Ω
|𝒯]] + 𝔼 [𝔼 [

∑ 𝑑𝑄𝑎,𝑏
𝑓𝑎𝑟

(�̂�)𝑁
𝑏≠𝑎

𝑑Ω
|𝒯]]. 1.7.7 

 

The monochromatic incident plane wave can be written in a form like equation 1.7.7 by viewing 

it as the superposition of an incoming and outgoing spherical wave in the far field, 

  

lim
𝑟→ ∞

𝑒𝑖𝒌𝑖𝑛𝑐∙𝒓 = lim
𝑟→ ∞

2𝜋𝑖

𝑘
(𝛿(�̂� + �̂�)

𝑒−𝑖𝑘𝑟

𝑟
− 𝛿(�̂� − �̂�)

𝑒𝑖𝑘𝑟

𝑟
). 1.7.8 

 

Therefore, the time-average power resulting from the interference between the incident field 

and the scattered field in the far field is  

 

lim
𝑟→ ∞

𝑑𝑊𝑚𝑖𝑥−𝑖𝑛𝑐

𝑑Ω
=
1

2
𝑌ℜ [

4𝜋

𝑖𝑘
𝑬𝑖𝑛𝑐
∗ ∙ 𝑬𝑠𝑐𝑎

∞ ] 𝛿(𝒌 − 𝒌𝑖𝑛𝑐)𝛿(�̂� − �̂�𝑖𝑛𝑐) + 𝑂 (
1

𝑟
).  1.7.9 

 

Equation 1.7.9 is known as the optical theorem.  It shows that the net scattered (including 

multiply scattered interference) and net absorbed power from all particles can be determined by 

a far field power measurement in the exact direction, 𝒌𝑖𝑛𝑐 , and polarization, �̂�𝑖𝑛𝑐, of the exciting 

plane wave. Furthermore, for multiple scattering, this result holds for each individual particle, 

𝑬𝑖𝑛𝑐
∗ ∙ 𝑬𝑠𝑐𝑎

∞ = ∑ 𝑬𝑖𝑛𝑐
∗ ∙ 𝑬𝑠𝑐𝑎,𝑎

∞𝑁
𝑎 → 𝑊𝑚𝑖𝑥−𝑖𝑛𝑐 = ∑ 𝑊𝑚𝑖𝑥−𝑖𝑛𝑐,𝑎

𝑁
𝑎 . Equation 1.7.9 also shows 

that the reflection direction is composed only of the contribution from the multiply scattered 

field.  
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Therefore, it is not necessary to calculate the total transmission explicitly because it can be 

found through power conservation, 

 

𝑅𝑒𝑓 = 𝑓𝑓 ∫ ∫ (𝔼 [𝔼[𝑑𝑄𝑎,𝑎
𝑓𝑎𝑟(�̂�)|𝒯]] + 𝔼 [𝔼[∑ 𝑑𝑄𝑎,𝑏

𝑓𝑎𝑟(�̂�)𝑁
𝑏≠𝑎 |𝒯]])

2𝜋

𝜙=0

𝜋

𝜃=𝜋/2

𝐴𝑏𝑠 =  𝑓𝑓𝔼 [𝔼[𝑄𝑎𝑏𝑠,𝑎|𝒯]]

𝑇𝑟𝑎𝑛𝑠 = 1 − 𝑅𝑒𝑓 − 𝐴𝑏𝑠.

  1.7.10 

 

The total reflection, transmission, and absorption from an infinite film can be written as the expected value of the 

far field scattering efficiency of all particles. Optical theorem shows that reflection is purely composed of the 

scattered field. Correspondingly, computational effort can be saved by evoking power balance to calculate 

transmission. 

 

 

Order of Power 

 

The concept of order of scattering can be used to understand power flow as a decomposition 

of multiple scattering terms. Given that the power is proportional to the product of the field, 

the order of power is then all combinations of products of scattering paths, 

 

𝑑𝑊𝑠𝑐𝑎
𝑓𝑎𝑟

𝑑Ω
∝  

= |(1 + ∑ 𝔾𝕋𝑎
𝑁
𝑎 +∑ 𝔾𝕋𝑎𝔾𝕋𝑏

𝑁
𝑏≠𝑎
𝑎

+∑ 𝔾𝕋𝑎𝔾𝕋𝑏𝔾𝕋𝑐
𝑁
𝑐≠𝑏
𝑏≠𝑎
𝑎

…)𝑬𝑖𝑛𝑐|2  .  
1.7.11 

 

Figure 1.7.1 describes schematically the order of power. The scattering path on the left of the 

product at the top and the scattering path on the right of the product at the bottom. Same 

particles are again connected through a dotted line. Clearly the order of power has substantially 

more complex behavior as it is a product of all combinations of order of scattering terms.   

 

 

 

Figure 1.7.1. Decomposition of the scattered power into products of order of scattering terms.   
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Far Field in the Mie Basis 

 

The electric angular far field vector can be written in Mie harmonics as  

 

𝑬𝑠𝑐𝑎
∞ (�̂�) =

1

𝑘
𝜳𝑓𝑎𝑟𝑐, 1.7.12 

 

where 𝜳𝑓𝑎𝑟 = [𝑵𝑓𝑎𝑟 𝑴𝑓𝑎𝑟] as detailed in section 1.10, appendix A. Correspondingly, the 

far field scattering efficiency in any differential solid angle is  

 

𝑑𝑄𝑎,𝑏
𝑓𝑎𝑟

=  𝑡𝑟 [ℜ[𝑑𝕎𝑓𝑎𝑟ℚ𝑎𝑏]],  1.7.13 

 

where ℚ𝑎𝑏 = (𝑐𝑎⨂𝑐𝑏
∗)/𝐴𝑎𝐼𝑖𝑛𝑐 weighs the coefficient space to that resembling a partial 

efficiency relative to particle 𝑎.  

 

Total reflection and transmission in the far field arises from the average angle-resolved power conversion efficiency 

of particles at the nanoscopic level. Therefore, from designing the efficiency and directionality of scattering particles 

as well as their response to particle-particle coupling emergent properties can be designed in the far field.   
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1.8 DISTRIBUTIONS OF RANDOM FILMS 

 

Sections 1.3 - 1.7 outline the theory of multiple scattering for a realized film and show that power 

balance can be written in a mathematical form resembling particle-level expected values. This 

section considers the properties of a possible random film from the viewpoint of the statistical 

moments analyzed across the possible configurations. Generally, a random particle film is 

composed of particles having different shapes, materials, and positions, where each parameter 

may be controlled only in the statistical sense. In this case, it is natural to ask how electromagnetic 

fields behave as a function of the governing distribution. This section shows that, in context of 

analyzing power flow, the relevant quantitative measures are the field’s moments.  

 

To this end, it is important to first define the notion of “random” being addressed. After all, a 

crystal lattice is a perfectly fine realization in the space of all configurations. In fact, spatial order 

dominates at high packing fractions of non-penetrable objects, so order cannot be regarded as a 

vanishingly low probability scenario. Clearly, ordered packings are not the intended systems of 

study (many of which are already well described using concepts such as Bloch’s theorem). The 

space of all possible configurations, ℧, is therefore restricted to the set of films having a form 

of strong spatial disorder. The first restriction formally imposed is that the average over all 

potential configurations leads to a constant effective permittivity,  𝔼[𝑈] = 𝑀𝑈 . Second, for any 

realization the spatial covariance between particle centers is a function only of the Euclidean 

distance, 𝐶𝑜𝑣(𝝆𝑎, 𝝆𝑏) =  𝐶𝑜𝑣(|𝝆𝑎 − 𝝆𝑏|). Finally, for any realization there exists a finite 

critical distance, 𝑑𝑐, such that any two central points become uncorrelated, 𝐶𝑜𝑣(|𝝆𝑎 − 𝝆𝑏| ≥

𝑑𝑐) = 0. These conditions enforce that the spatial properties of any realization are not 

dependent on global translations or rotations and that all systems lack long-range spatial order. 

This enforces a form of statistical self-repetition and is a generalization of periodicity, where 

from the properties of one the whole can be reproduced. I.e., a sufficiently large block of a 

particular realization can statistically describe the distribution of all possible realizations (and vice 

versa). Such systems have been found to arise in nature and in particle fabrication/deposition 

schemes, dictated by the nature of the dominant forces and/or growth mechanisms involved10–

17.  

 

As discussed in section 1.4, particle shape and material define the scattering transition operator 

and this operator can be encapsulated as describing a particle “type.” It is then natural to define 

the particle type distribution, 𝑃(�̃�), with corresponding random variable, �̃�. This distribution 

is generally neither strictly discrete nor strictly continuous. For example, material is usually 

considered as categorical, under the assumption that the materials are distinct and countable 

(variations in material doping being a counter example). Alternatively, particle growth usually 
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produces a continuum of particle sizes (often Gaussian or Log Normal). Combinations of 

these are then a piecewise distribution. Another example could be particles of the same material 

and shape, but the shape is not rotationally symmetric. Though all objects are categorically the 

same, any non-degenerate rotation would be assigned a unique “type” since particle rotations 

correspond to a unique scattering behavior. In this context particle type can be synonymous 

with the transition operator 𝒯 ⟺ 𝕋. 

 

Under the constraint of rigid objects, the particle location and type distribution are mutually 

dependent since particles cannot overlap or stack on top one another. The joint distribution 

defines the potential distribution, 𝑃𝑈. If the inhomogeneities are distinct and countable then, 

following a similar framework to Foley, the potential distribution is described as 

 

∫ 𝑃𝑈(�̃�1 = 𝝆1, … , �̃�𝑁 = 𝝆𝑁 , �̃�1 = 𝒯1, … , �̃�𝑁 = 𝒯N)∏ 𝑑𝝆𝑎
𝑁
𝑎=1 𝑑𝒯𝑎 = 1℧

,  1.8.1 

 

where the integrand reads as the probability of the first particle being type 𝒯1 and finding it 

centered in the differential element 𝑑𝝆1, while simultaneously having the second particle be type 

𝒯2 and centered in differential element 𝑑𝝆2, and so on. All positions where particles would 

overlap have zero probability, therefore there are at minimum hard-particle correlations. An 

example of such a correlation is shown in figure 1.8.1.   

 

When considering the moments of an electromagnetic field resulting from the interaction with a random potential, 

it is important to properly define the notion of “random.” This work is concerned with spatial distributions that 

are rotation and translation invariant and have finite correlation lengths.  
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Figure 1.8.1. Progression of hard particle correlation in spherical particles of different radii. Each simulation 

places a particle at the origin (green circle) and randomly generates particles around it (e.g., yellow circle). 

Particle centers are recorded with a yellow dot on a dark blue background. The dots are averaged over 

simulations. As more particle films are added, a pattern emerges. No particle centers can penetrate into where 

particle touch. Lack of access to these inner locations creates local correlation. Outside of this zone is increased 

probability. Progressing radially, the probability oscillates until equilibrium to a uniform distribution.   

 

Defining the Moments of the Field Distribution 

 

It is now straightforward to transition the results from sections 1.1.3 – 1.1.7 to define the field 

moments. Since the fields, Poynting vectors, and conservation relations are defined for each 

individual configuration, they are also defined over the weight of all configurations. The latter 

being the definition of expected value, 𝔼[𝑓(�̃�)] = ∫𝑑𝑃𝑋 𝑓, by the law of the unconscious 

statistician. The wave equation weighed across all possible potentials defines the mean field, 

𝔼[�̃�], as the solution to 

 

∫ 𝑑𝑃𝑈℧
(𝛻 × 𝛻 × �̃� − 𝜔2𝜇𝜖�̃� = 𝑈�̃�),  1.8.2 

 

where 𝑬 = �̃�(𝒓 | 𝑈 = 𝑈). It is important to note that 𝔼[𝑈�̃�] may not be in the support of the 

possible 𝑈�̃� configurations, since there is generally no guarantee that the mean of any 

distribution exist in the distribution. In fact, given sufficient disorder, 𝔼[𝑈�̃�] approximates a 

homogeneous media even when every realization of 𝑈�̃� is inhomogeneous. Due to the 

propensity of 𝔼[𝑈�̃�] to blur into a continuum, the mean field is often called the “coherent” 

field. This interpretation is exact if the distribution is self-averaging. In that case, the spatial 

average of a single film instance is equivalent to the average of all possible realizations. The 

expectation over distributions is then replaced by a truly complete spatial blurring resulting in an 
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effective homogeneous media defined by 𝔼[𝑈�̃�]. Thought, 𝔼[𝑈�̃�] may be continuous, the 

scattered field formalism o still applies as the expectation over film realizations,  

 

∫ 𝑑𝑃𝑉℧
(�̃�𝑡𝑜𝑡 = 𝑬𝑖𝑛𝑐 + ∑ �̃�𝑎

𝑁
𝑎 )  

∫ 𝑑𝑃𝑉℧
(�̃�𝑙𝑜𝑐,𝑎 =  𝑬𝑖𝑛𝑐 + ∑ �̃�𝑏

𝑁
𝑏≠𝑎 ).  

1.8.3 

 

This introduces the concept of order of scattering for the mean field,  

 

 

𝔼[�̃�𝑡𝑜𝑡]  

= 𝔼[1 + ∑ �̃��̃�𝑎
𝑁
𝑎 + ∑ �̃��̃�𝑎�̃��̃�𝑏

𝑁
𝑏≠𝑎
𝑎

+∑ �̃��̃�𝑎�̃��̃�𝑏�̃��̃�𝑐
𝑁
𝑐≠𝑏
𝑏≠𝑎
𝑎

…]𝑬𝑖𝑛𝑐  

= 𝜺𝑒𝑓𝑓𝑬
𝑖𝑛𝑐 , 

1.8.4 

 

where the last equality interprets the expected total field as a displacement field. An analogous 

equation can be derived for the magnetic field. It is the subject of effective medium theories to 

define procedures to truncate the scattering terms in equation 1.8.4 and approximate 𝜺𝑒𝑓𝑓 , 𝝁𝑒𝑓𝑓  

accordingly. Correspondingly, it is also important to note that the mean field is not the same as 

the field from the mean potential. The latter is substantially easier to define as it requires no 

concept of order of scattering. This highlights that thought the underlying potential distribution 

heavily informs the form of the field distribution, the two distributions are not the same.  

 

Equations 1.8.2 - 1.8.4 introduce new concepts and definitions that are useful to understand the 

behavior of random films in a statistical sense. Realized film configurations are related to the 

coherent field through  

 

Δ𝑬𝑠𝑐𝑎 = 𝑬𝑠𝑐𝑎 − 𝔼[�̃�𝑠𝑐𝑎]  

Δ𝑯𝑠𝑐𝑎 = 𝑯𝑠𝑐𝑎 − 𝔼[�̃�𝑠𝑐𝑎],  
1.8.5 

 

where Δ𝑬, Δ𝑯 are the fluctuations in the realization that deviate from expectation. All 

fluctuations arise from the scattered field since the incident field is deterministic. The notion of 

a mean field also gives rise to the notion of a time average Poynting vector for the mean field, 

𝑺𝑚𝑓 =
1

2
𝔼[�̃�] × 𝔼[�̃�∗]. (Note that 𝑺 is in the harmonic time-averaged form and the 

expectation, 𝔼, is over ensembles.) Since the expectation of the square is not the same as the 

square of the expectations, the mean field Poynting vector is not necessarily the same as the 

mean Poynting vector, 



 

 

35 

 

𝔼[�̃�] =
1

2
𝔼[�̃� × �̃�∗] = 𝑺𝑚𝑓 + 2𝑉𝑎𝑟[�̃�]. 1.8.6 

 

The difference between the two is the variance, 

 

2𝑉𝑎𝑟[�̃�] = 2𝔼 [�̃� − 𝐸[�̃�]] = (
1

2
𝔼[�̃� × �̃�∗] −

1

2
𝔼[�̃�] × 𝔼[�̃�∗]),  1.8.7 

 

which is termed the “incoherent Poynting vector.” (Note that the multiplication by 2 preserves 

the 1/2 factor related to the definition of the time average Poynting vector, since 𝑉𝑎𝑟[𝑎�̃�] =

𝑎2𝑉𝑎𝑟[�̃�].) Equations 1.8.6 and 1.8.7 make clear that the conservation of expected power and 

expected angular distribution of power cannot be derived directly from the mean field as the 

field fluctuations about the mean value play an important role in total power flow. Therefore, 

when considering the expected reflection, transmission, and absorption from a random film it 

is necessary to work with the field’s second moment.  This is unfortunate from the mathematical 

point of view, because 𝔼[�̃�] is usually substantially harder to calculate compared to 𝔼[�̃�]. When 

the correlation length of particle positions is comparable or smaller than the particle’s 

electromagnetic cross section, the fluctuations play an importing role in maintaining power 

conservation. From the order of scattering framework, field correlations can be viewed from the 

order of correlation. 

 

Since power conservation occurs for every realization, an analogous conservation occurs for the 

expected power across all realizations. At the individual particle level this conservation is defined 

as, 

 

∫ 𝑑𝑃𝑉℧
(�̃�𝑖𝑛𝑐,𝑎 + �̃�𝑎,𝑖𝑛𝑐 = �̃�𝑎𝑏𝑠,𝑎 + �̃�𝑎,𝑎 −∑ (�̃�𝑎,𝑏 + �̃�𝑏,𝑎)

𝑁
𝑏≠𝑎 ).  1.8.8 

 

Similarly, the total film-level/macroscopic expected power conservation can be built from the 

particle-level, 

 

∫ 𝑑𝑃𝑉℧
(�̃�𝑒𝑥𝑡 = �̃�𝑠𝑐𝑎 + �̃�𝑎𝑏𝑠)  

= ∫ 𝑑𝑃𝑉℧
(∑ (�̃�𝑖𝑛𝑐,𝑎 + �̃�𝑎,𝑖𝑛𝑐 = �̃�𝑎𝑏𝑠,𝑎 + �̃�𝑎,𝑎 −∑ (�̃�𝑎,𝑏 + �̃�𝑏,𝑎)

𝑁
𝑏≠𝑎 )𝑁

𝑎 ).  
1.8.9 

 

Following the same arguments, the expected angle-resolved power flow in the far field is,  
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∫ 𝑑𝑃𝑉℧
(
𝑑�̃�𝑠𝑐𝑎

𝑑Ω

𝑟→∞
→  √

𝜖

𝜇
∑ (|�̃�𝑠𝑐𝑎,𝑎

∞ |
2
+ 2∑ ℜ[�̃�𝑠𝑐𝑎,𝑎

∞ �̃�𝑠𝑐𝑎,𝑏
∞∗ ]𝑁

𝑏≠𝑎 )𝑁
𝑎 ),  

∫ 𝑑𝑃𝑉℧
(
𝑑�̃�𝑒𝑥𝑡

𝑑Ω

𝑟→∞
→  

1

2
ℜ [√

𝜖

𝜇

4𝜋

𝑖𝑘
𝑬𝑖𝑛𝑐
∗ ∙ �̃�𝑠𝑐𝑎

∞ ] 𝛿(𝒌 − 𝒌𝑖𝑛𝑐)𝛿(�̂� − �̂�𝑖𝑛𝑐)).  

1.8.10 

 

1.8.11 

 

Equation 1.8.11 shows that, on average, the expected extinction can be derived purely from the 

knowledge of only the coherent field. Alternatively stated, only the coherent field removes power 

from the incident field, on average. Therefore, at the film-level, the field fluctuations do not 

dictate the expected power extracted from the incident field. Instead, the fluctuations play a role 

in defining the proportion of the removed power going into either expected absorption or 

scattering.     

 

For any configuration of an infinite film, the film-level power must be conserved, 

(𝑊𝑠𝑐𝑎 +𝑊𝑎𝑏𝑠)/𝑊𝑖𝑛𝑐 ≤ 1. Also, the absorbed and scattered power at the particle-level is 

always positive, meaning  

 

1

∫𝑑2𝝆
∑ (𝐶𝑚𝑖𝑥−𝑖𝑛𝑐,𝑎 − 𝐶𝑚𝑖𝑥−𝑠𝑐𝑎,𝑎  = 𝐶𝑠𝑐𝑎−𝑖,𝑎 + 𝐶𝑎𝑏𝑠,𝑎)
𝑁
𝑎 ≤ 1  1.8.12 

 

is a monotonic and bounded sequence on each side of the equality. From the monotonic 

convergence theorem, the sum and expectation can be interchanged,  

 

∫ 𝑑𝑃𝑉℧
(∑ (�̃�𝑖𝑛𝑐,𝑎 + �̃�𝑎,𝑖𝑛𝑐 = �̃�𝑎𝑏𝑠,𝑎 + �̃�𝑎,𝑎 −∑ (�̃�𝑎,𝑏 + �̃�𝑏,𝑎)

𝑁
𝑏≠𝑎 )𝑁

𝑎 )  

= ∑ ∫ 𝑑𝑃𝑉℧
(�̃�𝑖𝑛𝑐,𝑎 + �̃�𝑎,𝑖𝑛𝑐 = �̃�𝑎𝑏𝑠,𝑎 + �̃�𝑎,𝑎 − ∑ (�̃�𝑎,𝑏 + �̃�𝑏,𝑎)

𝑁
𝑏≠𝑎 )𝑁

𝑎 .  
1.8.13 

 

Since 𝑑𝑊𝑠𝑐𝑎 𝑑Ω⁄
𝑟→∞
→  √𝜖/𝜇|𝑬𝑠𝑐𝑎

∞ |2 ≤  𝑊𝑠𝑐𝑎, then by the dominated convergence theorem the 

sum and expectation can also be interchanged for the angle resolved scattered power,  

 

∫ 𝑑𝑃𝑉℧
∑ (|�̃�𝑠𝑐𝑎,𝑎

∞ |
2
+∑ ℜ[�̃�𝑠𝑐𝑎,𝑎

∞ �̃�𝑠𝑐𝑎,𝑏
∞∗ ]𝑁

𝑏≠𝑎 )𝑁
𝑎   

= ∑ ∫ 𝑑𝑃𝑉℧
(|�̃�𝑠𝑐𝑎,𝑎

∞ |
2
+∑ ℜ[�̃�𝑠𝑐𝑎,𝑎

∞ �̃�𝑠𝑐𝑎,𝑏
∞∗ ]𝑁

𝑏≠𝑎 )𝑁
𝑎 .  

1.8.14 

 

Similarly, since |𝑬𝑠𝑐𝑎
∞ |2 ≥ 𝑬𝑠𝑐𝑎

∞ , the same is true for the extinction. The interchange of 

summation and expectation make clear that film-level field moments can be derived from the 
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particle-level field moments then summing all particles. Hence the paradigm of particle-level 

constructing the film-level applies to the moments as well.  

 

The expected reflection, transmission, and absorption is dictated by the behavior of both the coherent and 

incoherent field.  This necessitates an understanding of both order of scattering and order of correlation.   

Fortunately, film-level expectations can be constructed from particle-level expectations, so the study of statistical 

behavior at the particle-level can inform the larger collective.   
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1.9 SAMPLING STRATEGY 

 

“Essentially, all models are wrong, but some are useful.”  

 

- George Box, Science and Statistics, 1976 

 

 

It is a daunting task to analytically study the moments of fields from random potentials. Order 

of scattering analysis shows that the expected field is described by an infinite hierarchy of 

conditional distributions. The expected power flow adds to the complexity a larger and more 

complicated infinite hierarchy of correlates.  Unfortunately, there is no known analytic form for 

the packing distribution of arbitrary particles in a plane. This is true even if all particles are simply 

spheres of different radii. For truly analytic study, authors usually constrain the potential to a 

subspace where approximate formulas of the distribution can be used. With the exception of 

examples such as well separated particles and quasi-crystallinity, restrictions of this form are still 

often not descriptive enough for analytic progress. Authors then resort to constraining the field 

distribution/correlations directly. Clearly the necessity to put the cart in front of the horse in 

this way requires strong justification and can result in a lack of insight as to what underlying 

potential actually produces such a field constraint. Nonetheless, much work has been devoted 

to determining solutions to these problems. For example, the Twersky approximation of non-

self-referencing interactions, Maxwell-Garnett, and Bruggeman approximations have been 

widely used18. The goal of these works is to simplify the expression of the structure factor and 

the local field a particle experiences by a priori neglecting perceived negligible correction terms 

in the order of scattering/correlation analysis18.  

 

As stated in the introduction to this chapter, this work is concerned with the electromagnetic 

response of random monolayers of particles not already well described by prior models. 

Furthermore, the methodology favors model accuracy and fabrication insight over analytic 

and/or computational simplicity. Recall that, the moments of interest form an infinite hierarchy 

that must be simplified through a truncation assumption. The ansatz used in this work is that 

the moments of the local field for each particle are primarily affected only by the behavior of 

their local neighbors and that this dependence can be well described by a suitable Monte Carlo 

scheme. Each Monte Carlo sample is of a finite sized but sufficiently large random distribution 

of particles such that the center particles of interest “feel” as if they are in an infinite film. Since 

the finite film problem can be solved exactly, this enables the ability to exactly capture the effect 

of arbitrary particle shape, material, and position distributions in local regions. In essence, this 

quasi-analytic framework can study particle distributions that do not have an analytic form 
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because it offloads the complexity to the computer, which can realize the distribution through 

a sequence of samples.  

 

 

Justifying the Form of a Sample 

 

The first assumption of this method is that the moments of the local field inside an infinite film 

can be well described by moments sampled in the inner region of a large finite film. From the 

particle point of view, this assumption can be well justified as long as the film is sufficiently sized 

and correlation lengths are finite. In this case, any two scattered fields impinging on a particle 

that originate outside of the correlation length have essentially random relative phase. The power 

of each scattered field decays/spreads as the square of the distance, but the number of additional 

particles is linear with distance. Therefore, the contribution of scattered fields outside of the 

correlation zone falls off as 𝑂(𝜌−1). For order of scattering terms beyond single pass scattering, 

the decay rate is likely even faster as added absorption and/or longer path lengths occur for each 

additional scattering event. To solidify nomenclature, particles in the zone of non-negligible 

contribution are said to exist in the “non-negligible zone.” Of course, this zone is defined relative 

to a particle of interest.  

 

One point of concern is that finite size films suffer from diffraction at the edges. Clearly this is 

an effect not seen in infinite films. Unfortunately, this means that particles close to the edge can 

have dramatically different scattering behavior compared to internal particles. This is because 

the scattered fields of the edge particles are primarily responsible for constructing the edge 

diffraction effect. Since edge particles have their own non-negligible zone, the diffraction effect 

can appreciably alter neighboring particles within the outer annulus defining the edge particle 

non-negligible zone. To ensure that the diffraction effect does not alter simulations for the 

particle of interest deep inside the film, it is necessary that this particle’s non-negligible zone not 

overlap the non-negligible zone of the edge particles. This creates a further size constraint. In 

general, it may be hard to predict the correct finite size for Monte Carlo simulations and this 

dissertation makes no attempts in defining bounds or formulas for such a size. After all, it is 

always possible to increase simulation size progressively until convergence is met.  

 

The reliance on finite sized films also creates another conceptual hurdle. How to deal with the 

sum of all particles? Clearly this is an important requirement as it connects particle-level to film-

level conservation quantities. In the prior section, film-level conservation expressions for the 

field moments were derived from film-level conservation of each realization, which were, in-

tern, derived from particle-level conservation for each particle in each realization. At the onset 

it is clear that the Monte Carlo method does not have access to film-level conservation relations 
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for individual realizations, because it does not simulate infinite films. The ansatz is that 

particle-level quantiles are only locally affected and that therefore film-level field moments can 

be derived directly from estimating this local behavior. So, for each Monte Carlo sample, how 

many particles should be used in the estimate? One method would be to simply add all the 

particles in each finite film. This has the clear benefit that all finite film-level conservation 

quantities are correct for each realization and, therefore, also for the derived moments. Though, 

the interpretation of these moments as surrogates for an infinite film may not hold. For very 

large Monte Carlo samples the area fraction of the diffraction annulus reduces as 𝑂(𝑟−1). So, it 

is feasible that there exists a large enough size that particles strongly altered by diffraction 

phenomena become negligible in the summation of all particles. Another method would be to 

exclude the problematic particles in the final summation of “all” particles. This has the clear 

benefit of not needing to out-compete the contributions from the edges, but film-level 

conservation quantities no longer hold for each individual realization. Clearly any conservation 

quantity reliant on adding all particles will not hold if you do not add all particles. Since the 

inaccuracy of this method also comes from the contribution of the edge annulus, similar 𝑂(𝑟−1) 

scaling arguments in the correction term can be made. When comparing the two approaches, 

the exclusion method is the clear conceptual winner. From the onset the Monte Carlo method 

does not propose to provide film-level conserve quantities of individual realizations for an 

infinite film. The method only seeks to well estimate the moments from studying local field 

behavior. Adding all the particles of a finite film preserves the finite film-level conservation 

relations for each instance, but this is not the conservation of interest. Furthermore, this occurs 

at the expense of accuracy in our desired estimates.  

 

The exclusion method also has a clear benefit in terms of computational efficiency. In the Monte 

Carlo framework information about the system increases from either increasing film size or the 

number of Monte Carlo samples, 𝑁𝑀𝐶 . A film of 𝑁𝑝 particles produce a 2𝑁𝑝𝐿(𝐿 + 2) large 

system of equations, where 𝐿 is the sum of all quantum numbers and harmonic type. For direct 

methods such as Gaussian elimination, the computational cost is ∝ (2𝑁𝑝𝐿(𝐿 + 2))
3
. In the 

limit of large film size, the information gain to computational cost ratio is ∝ 𝑂(1/𝑁𝑝
2). Clearly 

there are diminishing returns in increasing film size, and it is better to increase sample number, 

which is 𝑂(1).  The method which counts edge particles fundamentally relies on large 𝑁𝑝 for 

model accuracy. This is a diametric opposition to computational cost. The accuracy of the 

exclusion method does not dependent on a large 𝑁𝑝 to satisfy accuracy requirements. This is 

because it only records the particles that are accurate for any given 𝑁𝑝. In this case, the smallest 

possible film size is one where only the center particle has a non-negligible region that does not 

overlap the edge non-negligible region.  
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Of course, larger films are likely best suited for indirect methods, which can have a more 

favorable computational cost for large film sizes, given the method/preconditioner. In general, 

the coupled system of equations is a fully populated matrix and particle resonances can result in 

a poor condition number. Therefore, it is not straightforward to estimate computational cost or 

determine what iterative method is best to use. In literature, the biconjugate gradient method 

has been among the best performing4. In this dissertation it was found that the exclusion method 

keeping only the center particle represents a matrix problem which takes seconds to solve using 

direct methods, without the headache of tuning parameters necessary of an iterative method. 

 

 

 

Figure 1.9.1. Examples of sampling methods. (Left) Example of a center observation particle (dotted black 

circle) where the non-negligible zone (blue shaded region) does not overlap with the diffraction zone annulus 

(red shaded region). Furthermore, the non-negligible zone of all particles inside the observation particle’s non-

negligible zone are also outside of the diffraction annulus. (Right) Examples of particles that do not satisfy the 

requirement of a local field which approximates that of an infinite film. In the lower left corner, the green 

observation particle is dependent on a red particle whose non-negligible zone overlaps with the diffraction 

annulus. In the upper right corner, the red observation particle’s non-negligible zone directly overlaps with the 

diffraction annulus.   
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Deriving the Monte Carlo Field Moments 

 

Recall, the coherent field arises from the expectation of the total scattered field, which is the 

sum of the expected scattered field from each particle,  

 

𝔼[�̃�𝑠𝑐𝑎,𝑎] = 𝔼 [�̃�(𝒓 − �̃�𝑎)𝔼[�̃�𝑎�̃�𝑙𝑜𝑐,𝑎|�̃�𝑎 = 𝝆𝑎, �̃�𝑎 = 𝕋𝑎 ]].  1.9.1 

 

Equation 1.9.1 uses the law of total expectation to decompose the problem to first conditioning 

on known properties for particle 𝑎. Given that particle 𝑎’s type and location are known, the 

inner expectation in equation 1.9.1 is an expectation of the surrounding environment. It is this 

inner conditional that is to be estimated using Monte Carlo. The outer expectation then weighs 

this field for all possible particle types and locations. Since the statistical properties of the 

potential are translation invariant and the incident field is translation invariant up to a phase 

shift, the expected scattered field is translation invariant up to the phase shift of the incident 

field. Let the Monte Carlo expectation of different configurations of neighboring particles be 

denoted as  

 

𝔼[�̃�𝑎�̃�𝑙𝑜𝑐,𝑎|�̃�𝑎 = 𝝆𝑎, �̃�𝑎 = 𝕋𝑎 ] = 𝑒
𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂𝔼[𝕋𝑎�̃�𝑙𝑜𝑐,𝑎|�̃�𝑎 = 𝟎, �̃�𝑎 = 𝒯𝑎]  

≈ 𝑒𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂
1

𝑁𝑀𝐶
∑ 𝑐𝑎

𝑀𝐶(𝒯𝑎)
𝑁𝑀𝐶 ≡ 𝑒𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂𝑐𝑎

𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎),  
1.9.2 

 

where 𝑐𝑎
𝑀𝐶(𝒯𝑎) is the scattering coefficient of particle 𝑎, measured from a finite sized but 

sufficiently large sample simulation generated by randomly placing particles around particle 𝑎. 

In each sample, particle 𝑎 is centered at the origin and has type 𝒯𝑎⟺ 𝕋𝑎. The expected value 

of the scattering coefficient is then estimated by the arithmetic mean, 𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅, of 𝑁𝑀𝐶 samples. 

Choosing �̃�𝑎 = 𝟎 has implications to Monte Carlo sampling because aligning particle 𝑎 to the 

global origin writes the entire system of interaction equations relative to particle 𝑎 automatically, 

including the incident field. It is then only necessary to repeat the Monte Carlo process for 

different 𝒯𝑎, as particle 𝑎’s type will change the local scattering behavior of neighboring particles. 

Since each sample is independently generated the law of large numbers guarantees convergence 

as 𝑁𝑀𝐶 → ∞.  

 

After estimating the expected local field, the expected scattered field can be decoupled into two 

independent terms, 
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𝔼[�̃�𝑠𝑐𝑎,𝑎] ≈ 𝔼[𝜳(𝒓 − 𝝆𝑎)𝑒
𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂]𝔼[𝑐𝑎

𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)], 1.9.3 

 

where 𝔼[𝜳(𝒓 − 𝝆𝑎)𝑒
𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂] and 𝔼[𝑐𝑎

𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)] are expectations solely over particle position, 

𝝆𝑎, and particle type, 𝒯𝑎, respectively. The expectation over particle type will again be found 

through Monte Carlo since the choice of particle type will change the local field behavior. The 

type estimation can be written as   

 

𝔼[𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)]  

≈ ∑ 𝑃(𝒯 = 𝒯𝑎)𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)

|𝒯| ≡ 𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅ , 

1.9.4 

 

where 𝑃(𝒯 = 𝒯𝑎) is the probability of particle 𝑎 being type 𝒯𝑎 and is a measurable characteristic 

of the film.  

 

It is now necessary to address 𝔼[𝜳(𝒓 − 𝝆𝑎)𝑒
𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂], which can be calculated directly due to 

the translation invariance of the potential. Since the expected particle location, 𝝆𝑎, involves an 

integration over the particle plane, it is easiest to first transform the Mie harmonics into a plane 

wave representation, 

 

𝜳𝑙(𝑘𝒓) =
1

2𝜋
∑ ∫

𝜕2𝒌∥

𝑘|𝑘𝑧
±|
𝑔𝑙,𝑞
𝑓𝑎𝑟
(�̂�)1

𝑞=0 �̂�𝑞(�̂�)𝑒
𝑖𝒌±∙𝒓 .    1.9.5 

 

The integration 𝑑2𝒌∥ = 𝑘∥𝑑𝑘∥𝑑𝛼 is over the wave vector components parallel to the particle 

plane, where the wave vector is expressed in cylindrical coordinates as  𝒌 =  𝑘∥�̂�𝜌 + 𝛼�̂�𝜙 ±

𝑘𝑧�̂�𝑧. In general, the integration includes the evanescent fields and the ± superscript denotes 

the choice in the root for 𝑘𝑧 = ± √𝑘2 − 𝑘∥
2. Since the Mie harmonics emanate from the 

particle, they admit two separate plane wave expansions. The first expansion, +, is used in the 

transmission hemisphere above the particle plane, 𝑟𝑧 > ℎ/2. In this region the + root 

guarantees traveling fields propagate and evanescent fields decay away from the film in the 

upward direction. The second expansion, −, is used in the reflection hemisphere below the 

particle plane,  𝑟𝑧 < −ℎ/2. The − root guarantees traveling fields propagate and evanescent 

fields decay away from the film in the downward direction. 𝑔𝑙,𝑞
𝑓𝑎𝑟
(�̂�) = 𝝍𝑙

𝑓𝑎𝑟
(�̂�) ∙ �̂�𝑞(�̂�) is the 

projection of the vector Mie harmonic’s angular dependence onto the transverse magnetic (TM),  

�̂�0, and transverse electric (TE), �̂�1, vector directions defined with respect to the particle plane. 
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More information on the plane wave representation of Mie harmonics can be found in section 

1.15, appendix F.  

 

Inserting the plane wave representation into the position expectation shows that the expected 

particle position is equivalent to the Fourier transform, ℱ, of the phase shifted particle position 

distribution,  

 

𝔼[𝜳(𝒓 − 𝝆𝑎)𝑒
𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂] → ℱ±[𝑃(𝝆𝑎)𝑒

𝑖𝒌𝑖𝑛𝑐∙𝝆𝒂]  

=
𝑖

2𝜋
∑ ∫

𝜕2𝒌∥

𝑘|𝑘𝑧
±|
(𝜳𝑓𝑎𝑟(�̂�) ∙ �̂�𝑞(�̂�))𝑞 �̂�𝑞(�̂�)𝑒

𝑖𝒌±∙𝒓 ∫𝑃(𝝆𝑎) 𝑒
−𝑖(𝒌∥−𝒌𝑖𝑛𝑐,∥) ∙𝝆𝒂 .  

1.9.6 

 

Given that there is no bias in the potential to place particle 𝑎 at a particular location, the 

probability of finding particle 𝑎 in any location is uniform, 𝑃(𝝆𝑎) = 1 ∫𝑑
2𝝆⁄ , when no other 

particles have yet been constrained. Therefore,  

 

𝔼[�̃�𝑠𝑐𝑎,𝑎] ≈
1

∫𝑑2𝝆

1

cos𝜃𝑖𝑛𝑐

2𝜋

𝑘2
∑ 𝐸𝑐𝑜ℎ,𝑎

± �̂�𝑞(�̂�𝑖𝑛𝑐
± )𝑒𝑖𝒌𝑖𝑛𝑐

± ∙𝒓
𝑞   1.9.7 

 

where 𝒌𝑖𝑛𝑐
± = 𝒌𝑖𝑛𝑐,∥ ± 𝑘𝑧 and 𝐸𝑐𝑜ℎ,𝑎

± = (𝜳𝑓𝑎𝑟(�̂�𝑖𝑛𝑐
± ) ∙ �̂�𝑞(�̂�𝑖𝑛𝑐

±  )) 𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅. Equation 1.9.7 

shows that in the transmission hemisphere, the particle’s coherent field propagates as a plane 

wave in the same direction as the incident field. In the reflection hemisphere the propagation 

plane wave is in the reverse direction as the incident field. The amplitude and phase of the 

coherent field is defined by 𝐸𝑐𝑜ℎ,𝑎
± . Therefore, the expected scattered field actually behaves as a 

coherent field. This is a satisfying consistency check to the interpretation of the coherent field 

as discussed in the prior section.  

 

Equation 1.9.7 can be written in a form analogous to the algebraic repackaging used to derive 

the probabilistic interpretation of a film instance. Letting  

 

𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅  

= (
∑ 𝐴𝑎
𝑁
𝑎

∑ 𝐴𝑎
𝑁
𝑎
) ∑ (

𝐴𝒯𝑎
𝐴𝒯𝑎
)𝑃(𝒯 = 𝒯𝑎)𝑐𝑎

𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)
|𝒯|   

= (∑ 𝐴𝑎
𝑁
𝑎 )∑ 𝑤𝒯𝑎

𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ (𝒯𝑎)

𝐴𝒯𝑎

|𝒯| , 

1.9.8 
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where 𝑤𝒯𝑎 = (
𝐴𝒯𝑎
∑ 𝐴𝑎
𝑁
𝑎
)𝑃(𝒯 = 𝒯𝑎) is the area probability weight defined in section 1.6. 

𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎) 𝐴𝒯𝑎⁄  is the area normalized coefficient, defined now in preparation for later expressing 

power flows in terms of particle-level efficiencies. 𝑓𝑓 = ∑ 𝐴𝑎
𝑁
𝑎 ∫𝑑2𝝆⁄  is the fraction of the 

space filled with particles. The Monte Carlo procedure is shown in figure 1.9.2. It will also be 

shown later that the samples from this procedure can also be used to calculate the total power.  

 

 

Figure 1.9.2. Schematic representation of the conversion from an expectation across different realizations of 

random films (left) to a Monte Carlo sampling scheme of individual particle types (right). Different particle 

types existing within the film distribution are distinguished as spheres of different size and color. The field 

moments of each particle type are estimated as an ensemble average of film realizations centered around the 

particle type of interest (red dashed circle).  The estimation is then multiplied by a weight, which is the 

proportion of the filling fraction that is filled by that type of particle.  

 

Under this algebraic repackaging, the coherent scattered field using the Monte Carlo sampling 

scheme is  

 

𝔼[�̃�𝑠𝑐𝑎,𝑎] ≈
𝑓𝑓

cos 𝜃𝑖𝑛𝑐

2𝜋

𝑘2
∑ 𝑔𝑙,𝑞

𝑓𝑎𝑟
(�̂�𝑖𝑛𝑐
± )�̂�𝑞(�̂�𝑖𝑛𝑐

± )𝑒𝑖𝒌𝑖𝑛𝑐
± ∙𝒓∑ 𝑤𝒯𝑎

𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ (𝒯𝑎)

𝐴𝒯𝑎

|𝒯|
𝑞  , 1.9.9 

 

where ∑ 𝑤𝒯𝑎 𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎) 𝐴𝒯𝑎⁄|𝒯| ≈ 𝔼[𝔼[𝑐𝑎/𝐴𝑎|𝒯]].  

 

 

For the sake of completeness deriving the coherent field is important as a consistency check. 

Though the primary interest is controlling the total power flow and for this it is necessary only 

to calculate the total absorption and scattered power in the reflection hemisphere. In deriving 
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the total scattered power, it is simpler to first derive the conditions for two arbitrary fields. 

From this the total can be constructed. From section 1.11, appendix B the expected power 

through a differential area resulting from the interference of two arbitrary scattered fields can be 

written as 

 

𝔼[𝑑𝑊𝑎𝑏] =  
1

2
ℜ[𝑑𝑨 ∙ 𝔼[𝑬𝑎 ×𝑯𝑏

∗ ]]  

= ℜ 𝑡𝑟 [𝔼 [𝑑𝕎(𝒓 − �̃�𝑎) 𝔼[�̃�𝑎𝑏|�̃�𝑎 = 𝝆𝑎, �̃�𝑎 = 𝒯𝑎]]],  
1.9.10 

 

where 

 

𝕔𝑎𝑏 = {
𝑐𝑎⊗ 𝑐𝑎

∗ 𝑎 = 𝑏

𝑐𝑎⊗ (𝕁(𝝆𝑎𝑏)𝑐𝑏)
∗ + (𝕁(𝝆𝑎𝑏)𝑐𝑏)⊗ 𝑐𝑎

∗ 𝑎 ≠ 𝑏.
  1.9.11 

 

Recall from section 1.6 that 𝕔𝑎𝑏 ∈ ℂ
𝐿×𝐿 is a matrix resulting from the outer product of the two 

scattering coefficient vectors. Each element, 𝕔𝑎𝑏𝑙,𝑙′ = 𝑐𝑎,𝑛,𝑚
𝑡 𝑐𝑏,𝑛′𝑚′

𝑡′∗ , defines an interference 

combination from the two fields in coefficient space. 𝑑𝕎(𝒓 − �̃�𝑎) ∈ ℂ
𝐿×𝐿 is a matrix that 

maps the interference combinations in coefficient space to real space. Each element in 𝑑𝕎 takes 

the form 

 

𝑑𝕎𝑙𝑙′(𝒓) =
1

2
𝑖𝑌𝑑𝑨 ∙ (𝜳𝑙(𝒓) × 𝛻 ×𝜳𝑙′

∗ (𝒓)),  1.9.12 

 

where 𝑑𝑨 = 𝑑2𝒓 �̂� is the differential surface area under consideration with outward pointing 

normal, �̂�.  

 

Equation 1.9.10 again uses the law of total expectation to decompose the problem to first 

conditioning on known properties for particle 𝑎. Given that particle 𝑎’s type and location are 

known, the inner expectation in equation 1.9.10 is again an expectation of the surrounding 

environment to be estimated using Monte Carlo. Since the statistical properties of the potential 

are translation invariant, this inner conditional is also translation invariant. This is sensible as the 

properties of the surrounding scattered fields onto particle 𝑎’s field should only depend on 

relative distances to particle 𝑎. Correspondingly,  

 

𝔼[𝕔𝑎𝑏|�̃�𝑎 = 𝝆𝑎, �̃�𝑎 = 𝒯𝑎]  

= 𝔼[𝕔𝑎𝑏|�̃�𝑎 = 𝟎, �̃�𝑎 = 𝒯𝑎]. 
1.9.13 
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Choosing �̃�𝑎 = 𝟎 has implications to Monte Carlo sampling because aligning particle 𝑎 to the 

global origin writes the entire system of interaction equations relative to particle 𝑎 automatically, 

including the incident field. Hence, the same samples used for the coherent field also provide all 

information to calculate the multiply scattered coefficient matrix. It is again only necessary to 

repeat the Monte Carlo process for different 𝒯𝑎, as particle 𝑎’s type changes the local scattering 

behavior of neighboring particles. Let the Monte Carlo expectation of different configurations 

of neighboring particles be denoted as  

 

𝔼[𝕔𝑎𝑏|�̃�𝑎 = 𝟎, �̃�𝑎 = 𝒯𝑎]  

≈
1

𝑁𝑀𝐶
∑ 𝕔𝑎𝑏

𝑀𝐶(𝒯𝑎)
𝑁𝑀𝐶 ≡ 𝕔𝑎𝑏

𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)  
1.9.14 

 

where 𝕔𝑎𝑏
𝑀𝐶(𝒯𝑎) is a finite sized but sufficiently large interference matrix calculated from the 

same samples as used for the incident field. I.e., randomly placing particles around particle 𝑎, 

which is centered at the origin and having type 𝒯𝑎 ⟺ 𝕋𝑎. The expected value of the interference 

coefficient matrix is then estimated by the arithmetic mean, 𝕔𝑎𝑏
𝑀𝐶̅̅ ̅̅ ̅, of 𝑁𝑀𝐶 samples, where again 

the law of large numbers guarantees convergence as 𝑁𝑀𝐶 → ∞. 

 

As discussed above the inner expectation of equation 1.9.14 has no 𝝆𝑎 dependence. 

Correspondingly, the estimation of the expected power flow can be decoupled into two 

independent terms, 

 

𝔼[𝑑𝑊𝑎𝑏] ≈ ℜ 𝑡𝑟[ 𝔼[𝑑𝕎(𝒓 − �̃�𝑎)] 𝔼[𝕔𝑎𝑏
𝑀𝐶̅̅ ̅̅ ̅(�̃�𝑎)] ], 1.9.15 

 

where 𝔼[𝑑𝕎(𝒓 − �̃�𝑎)] and 𝔼[𝕔𝑎𝑏
𝑀𝐶̅̅ ̅̅ ̅(�̃�𝑎)] are expectations solely over position, 𝝆𝑎, and type, 

𝒯𝑎, respectively. The expectation over particle type is again be found through Monte Carlo,  

 

𝔼[𝕔𝑎𝑏
𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)]  

≈ ∑ 𝑃(𝒯 = 𝒯𝑎)𝕔𝑎𝑏
𝑀𝐶(𝒯𝑎)

|𝒯| ≡ 𝕔𝑎𝑏
𝑀𝐶̅̅ ̅̅ ̅ . 

1.9.16 

 

It is now necessary to address 𝔼[𝑑𝕎(𝒓 − �̃�𝑎)], which can be calculated directly due to the 

translation invariance of the potential. Since the expected particle location, 𝝆𝑎, involves an 

integration over the particle plane, it is again advantageous to express the Mie harmonics in a 
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plane wave representation. The power operator then admits an upper and lower hemisphere 

form, 𝑑𝕎±(𝒓 − �̃�𝑎), with elements,  

 

𝑑𝕎𝑙𝑙′
± (𝒓 − �̃�𝑎) =  

ℜ
1

2
𝑖𝑌 ∑ ∬𝑑2𝒌𝑎,𝑏,∥𝑞𝑎 ,𝑞𝑏 𝑒𝑖(𝒌𝑎

±−𝒌𝑏
±)∙(𝒓−�̃�𝒂)𝑔𝑙𝑞𝑎(𝒌𝑎

±)𝑔𝑙′𝑞𝑏
∗ (𝒌𝑏

±)𝑑𝐴𝑞𝑎,𝑞𝑏(𝒌𝑎
±, 𝒌𝑏

±).  
1.9.17 

 

𝑑2𝒌𝑎,𝑏,∥ = 𝑑
2𝒌𝑎,∥𝑑

2𝒌𝑏,∥ is a shorthand notation for two double integrals over the wave vector 

components parallel to the particle plane. 𝑔𝑙𝑞(𝒌𝑎
±) = 𝝍𝑓𝑎𝑟,𝑙(�̂�) ∙ �̂�𝑞(�̂�) 2𝜋𝑘|𝑘𝑧

±|⁄  is the plane 

wave spectral map. 𝑑𝐴 = 𝑑2𝝆 �̂�± ∙ (�̂�𝑞𝑎(𝒌𝑎
±) × (𝒌𝑏

± ×  �̂�𝑞𝑏(𝒌𝑏
±))

∗
) defines the component 

of the field normal to the differential area element. Equation 1.9.17 makes clear that the expected 

particle position is equivalent to a form of Fourier transform, ℱ, over the particle position 

distribution,  

 

𝔼[𝑑𝕎(𝒓 − �̃�𝑎)] → ℱ
±[𝑃(𝝆𝑎)]  

= ∬𝑑2𝝆𝑎 𝑃(�̃�𝑎 = 𝝆𝑎) 𝑒
−𝑖(𝒌∥,𝑎

± −𝒌∥,𝑏
± )∙𝝆𝑎 = (2π)2 𝛿2(𝒌𝑎,∥ − 𝒌𝑏,∥) ∫𝑑

2𝝆⁄ .  
1.9.18 

 

The second equality is derived given that there is no bias in the potential to place particle 𝑎 at a 

particular location. Furthermore, since both particle 𝑎 and 𝑏 emanate from the film, they use 

the same choice for the 𝑘𝑧
± root when integrating the plane above or below the particle plane. 

Correspondingly, 𝛿2(𝒌𝑎,∥ − 𝒌𝑏,∥) can be replaced with a more stringent 𝛿3(𝒌𝑎 − 𝒌𝑏). Noting 

that 𝐴𝑞𝑎 ,𝑞𝑏(𝒌
±, 𝒌±) = 𝛿𝑞𝑎,𝑞𝑏𝑘(�̂� ∙ �̂�

∗±)𝑑2𝝆, then the elements in the power operator take the 

final simplified form, 

 

𝔼[𝑑𝕎𝑙𝑙′
± (𝒓 − �̃�𝑎)]  

=
𝑖𝑌

2𝑘

𝑑2𝝆

∫𝑑2𝝆
 ∑ ∬𝑑2𝒌∥𝑞 (�̂� ∙ �̂�∗) (𝝍𝑓𝑎𝑟,𝑙(�̂�) ∙ �̂�𝑞(�̂�)) (𝝍𝑓𝑎𝑟,𝑙′(�̂�) ∙ �̂�𝑞(�̂�))

∗
.  

1.9.19 

 

Equation 1.9.19 states that when looking at all possible film realizations from a translation 

invariant potential using the Monte Carlo approach, the expected power flow is completely 

homogenized across the observation plane. Alternatively stated, any differential area 𝑑2𝝆 in the 

observation plane contains the same expected power flow as its neighbor. This is in contrast to 

ordered systems such as a periodic grating that can have clearly defined grating lobes. Note that 

this result does not preclude phenomena such as speckle, since speckle is a coherence occurring 

within a specific film instance. If the system is translation invariant, then the expectation of all 

speckle patterns will produce a homogenized speckle-less blur. 
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Integrating the area-resolved expected power across the entire observation plane gives the total 

expected power through the plane. A quick comparison to the derivation in section 1.11, 

appendix B shows that integrating equation 1.9.19 over the plane gives the same expression as 

the power operator for a particle at the origin, ∫𝔼[𝑑𝕎±(𝒓 − �̃�𝑎)] = ∫𝑑𝕎
±(𝒓).  

 

Now that the expected power flow in either hemisphere is solved between two arbitrary particles, 

the total film-level power flow is found by simply adding all contributions,  

 

𝔼[𝑊𝑠𝑐𝑎
± ]

𝑊𝑖𝑛𝑐
≈ 𝑓𝑓 ℜ 𝑡𝑟[ ∫𝑑𝕎±(𝒓) (ℚ𝑎𝑎

𝑀𝐶̅̅ ̅̅ ̅̅ + ∑ ℚ𝑎𝑏
𝑀𝐶̅̅ ̅̅ ̅̅

𝑏≠𝑎 ) ],  1.9.20 

 

where again the same partitioning scheme found in section 1.6 can be used to write the ratio of 

total expected scattered to incident power as a function of the film’s fill fraction and expected 

particle scattering efficiencies. 

 

When adding the contribution from both the upper and lower hemisphere the orthogonality 

relations can be evoked to calculate the total power from coefficients alone, ∫ 𝑑𝕎+ + 𝑑𝕎− =
1

2
𝑌
𝜋

𝑘2
𝕀. Therefore, the total expected scattered power from the particle film is  

 

𝔼[𝑊𝑠𝑐𝑎]

𝑊𝑖𝑛𝑐
≈ 𝑓𝑓(𝑄𝑎,𝑎

𝑀𝐶̅̅ ̅̅ ̅̅ + ℜ[∑ 𝑄𝑏,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅

𝑏≠𝑎 ]),  1.9.21 

 

where 𝑄𝑎,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ =

𝜋

𝐴𝑎𝑘2
(𝑐𝑎
†𝑐𝑎)

𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and 𝑄𝑏,𝑎

𝑀𝐶̅̅ ̅̅ ̅̅ =
𝜋

𝐴𝑎𝑘2
(𝑐𝑎
†𝕁𝑎𝑏𝑐𝑏)

𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 are the Monte Carlo 

expectations of both particle type and the local fields for that type. Inspection of equation 1.9.21 

shows that it has the exact same form as the probabilistic interpretation of film-level behavior 

for an individual film instance, 𝑓𝑓(𝔼[𝑄𝑎,𝑎] + 𝔼[∑ 𝑄𝑏,𝑎𝑏≠𝑎 ]), derived in section 1.6. This is 

seen once you recall that the local behavior results in the ℍ𝑎𝑏 → 𝕁𝑎𝑏  transition by exact 

cancelations in the individual instance derivation. The primary difference is then that true 

expectations are now replaced by Monte Carlo estimates of expectations.  

 

Recall from section 1.6 that a particle’s absorption can be calculated directly from the interplay 

of the particle’s scattered field with its own local field. As long as the underlying potential 

characterizing the film is translation invariant, this equation contains no dependence on absolute 

position. Correspondingly, the Monte Carlo estimate of the expected film absorption is,  
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𝔼[𝑊𝑎𝑏𝑠,𝑎]

𝑊𝑖𝑛𝑐
= 𝑓𝑓𝔼 [𝔼[𝑄𝑎𝑏𝑠,𝑎|�̃� = 𝒯𝑎]]  

≈ 𝑓𝑓 ∑ 𝑤𝒯𝑎𝑄𝑎𝑏𝑠,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎)

|𝒯| ≡ 𝑓𝑓𝑄𝑎𝑏𝑠,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅   

1.9.22 

 

where 𝑄𝑎𝑏𝑠,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎) =

1

𝑁𝑀𝐶
∑

𝜋

𝐴𝑎𝑘2
ℜ[𝑐𝑎

†𝔸𝑎𝑐𝑎](𝒯𝑎)
𝑁𝑀𝐶  is the arithmetic average of the 

absorption cross-section calculated for the observation particle, 𝑎, having type 𝒯𝑎 and centered 

at the origin.  

 

It is now possible to calculate the expected transmission, reflection, and absorption spectra from 

an arbitrary random film as 

 

𝔼[𝑅𝑒𝑓] ≈ 𝑓𝑓 ℜ 𝑡𝑟 [∫ ∫ 𝑑𝕎−(𝒓)(ℚ𝑎𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ + ∑ ℚ𝑎𝑏

𝑀𝐶̅̅ ̅̅ ̅̅
𝑏≠𝑎 )

2𝜋

𝜙=0

𝜋

𝜃=
𝜋

2

]

𝔼[𝐴𝑏𝑠] ≈  𝑓𝑓𝑄𝑎𝑏𝑠,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅

𝔼[𝑇𝑟𝑎𝑛𝑠] = 1 − 𝔼[𝑅𝑒𝑓] − 𝔼[𝐴𝑏𝑠].

  1.9.23 
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Conceptual Connection to a Film Instance 

 

The formula for the estimated expected reflection, absorption, and transmission spectra is nearly 

the exact same as the formula for a film instance, when repackaging variables under a 

probabilistic interpretation. The only difference between the two is the replacement of true 

expectations with expectation estimates using Monte Carlo.  This connection is in fact a 

satisfying consistency check as long as the probabilistic interpretation of a film instance is 

properly meaningful. First, a single infinite film should be able to recover the statistical properties 

of the distribution of all possible films, then the self-averaging property holds. Second, 

correlation lengths should be finite, so that the local field contribution to any one particle is 

finite. The Monte Carlo sampling scheme which excludes the diffraction zone can then be 

interpreted as a process of bouncing around an infinite film instance randomly collecting sample 

particles. In this picture, the sampling scheme is analogous to a bounce procedure. Collecting 

only the origin particle is analogous to bouncing to a random location, define a local area, 

collecting a sample, then mark that area as collected for subsequent bounces. In principle it is 

necessary to actually sum of all particles in the film. Clearly then the bounce and sum strategy is 

only approximating the true behavior as it includes only a subset of particles. But, given that the 

sum of all particles is written in the form of an arithmetic average of particle efficiencies, then 

barring low probability locations that disproportionately influence the total film behavior, this 

process should converge to some level of acceptable accuracy given enough samples. 

 

 
Figure 1.9.3.  Schematic representation of the Monte Carlo sampling scheme (right) being an approximate 

for a bounce, sample, sum strategy (left) in an infinite random film.   

 

Under suitable conditions, the Monte Carlo scheme can be viewed as a “bounce, sample, sum” 

strategy on a random film instance. This conceptual viewpoint helps to make clear the consequences of sampling 

and pitfalls of under sampling. 
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Consequences of Sampling 

 

As discussed, the Monte Carlo method needs to address the conceptual hurdle of how to deal 

with the sum of all particles. The rationale of the method is that it is better to record only particles 

that experience a local field mimicking that of an infinite film. This avoids particles tarnished by 

the diffraction effect. Further considerations, such as the scaling of computational burden, justify 

more numerous smaller samples over larger ones. E.g., samples where only a single “observation 

particle” is recorded. After deriving the field moments under the Monte Carlo method and 

discussing the conceptual connection to the “bounce and sample” strategy of a film instance, 

the consequences of such a sampling approach can be discussed more concretely. Namely, the 

consequences inherent to using finite film approximates and under sampling them.  

 

When deriving the expected film-level scattered power, the 𝕁𝑎𝑏  translation operator is used at 

the onset as this is the correct operator for deriving film-level behavior from fundamentals. For 

expected particle-level behavior the ℍ𝑎𝑏 operator is used. Recall from equation 1.6.18 that the 

transition ℍ𝑎𝑏 → 𝕁𝑎𝑏  requires adding every particle in the infinite film. The power transfer from 

𝑎 → 𝑏 added with the transfer of 𝑏 → 𝑎 creates an exact cancelation of the notorious 𝑐𝑎
†𝑖𝕐𝑎𝑏𝑐𝑏 

term that exists at the particle-level but is absent at the film-level. Section 1.8 proved that the 

expectation of film configurations and summation of all particles can be interchanged because 

the power is exactly balanced in every realization. Therefore, expected film-level power can be 

derived from expected particle-level power analogous to how film-level power can be derived 

from particle-level power for an individual realization. As discussed, such a connection is 

formally broken under the proposed sampling scheme. This is because not all particles are 

recorded in a sample. The rationale being that only in the inner region is desired as this is where 

the local environment closely approximates that of an infinite film. In summary, estimating 

expected particle-level power for particle 𝑎 using a Monte-Carlo method, then doing the same 

for particle 𝑏 using its own samples will likely not produce exact cancelation of 𝕐𝑎𝑏 when adding 

the two. Clearly this is expected as the expectations of both particles arise from separate sample 

sets. Using the 𝕁𝑎𝑏  operator directly circumvents this term at the film-level and is equivalent to 

an estimate recording both 𝑏 → 𝑎, 𝑐 → 𝑎, 𝑑 → 𝑎 … and also the 𝑎 → 𝑏, 𝑎 → 𝑐, 𝑎 → 𝑑, … 

terms necessary for the cancelation of 𝕐𝑎𝑏.  

 

The lack of recording all particles in the film also implies that the Monte Carlo estimates have 

no guarantee to obey power conservation at all. This is seen in under sampled estimates. For 

example, consider an estimate of the expected value arising from a single sample, 𝑁𝑀𝐶 = 1, that 

happens to be of a particularly large scattering efficiency ≫ 1 for the observation particle. At a 

high packing fraction, this efficiency would inevitably be balanced by stealing from neighboring 
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particles in order to balance the total power of the collective. Though the Monte Carlo-derived 

moments do not consider this balance as they assume the local field on the observation particle 

is representative. Clearly, the estimated expectation could be well above what is actually capable 

by power conservation! To circumvent this, it is necessary to rely on the convergence of 

expectation as 𝑁𝑀𝐶 → ∞. Fortunately, this can be done in an iterative fashion, scaling as 

𝑂(𝑁𝑀𝐶), until convergence is met. It has been the experience of this dissertation that for lossy 

systems, 25 - 50 samples are within range for accurate estimates. For lossless systems 100 - 500 

samples may be necessary. In all simulation experiments power conservation was reached 

eventually and estimates matched well with full-wave simulations. Though, this may not formally 

preclude the existence of counter examples.   

 

The sampling scheme does not guarantee a local-to-macro connection or power conservation as it is equivalent to 

summing only a subset of particles in a suitably defined infinite film. Conservation properties are approached 

given sufficient sampling. 

 

 

A Computational Tradeoff 

 

Though the Mie harmonics represent an efficient expansion to calculate thousands of random 

film samples, the process is still computationally intensive. For this reason, much work is 

involved in defining the right sample strategy, optimizing computer code, and computing only 

the absolutely necessary equations. As discussed, the decision is to sample only the center particle 

so that the size of each film sample is reduced. Another decision is to calculate transmission 

directly from power conservation as the Mie harmonics are not orthogonal over the hemisphere. 

The film’s expected absorption can rely on orthogonality for expedient calculation. 

Unfortunately, calculating the expected reflection requires a much larger matrix multiplication. 

Since the reflection is solely from the scattered field, it can be rewritten as  

 

𝔼[𝑅𝑒𝑓] ≈
𝑓𝑓𝑄𝑠𝑐𝑎,𝑎

𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅

1 + 𝐹𝐵𝑅𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅,

⁄   1.9.24 

 

where 𝑄𝑠𝑐𝑎,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅  is the Monte Carlo estimate of the scattering efficiency, which utilizes the 

orthogonality conditions. 𝐹𝐵𝑅𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑄𝑠𝑐𝑎,𝑎

𝑀𝐶+̅̅ ̅̅ ̅̅ ̅̅ 𝑄𝑠𝑐𝑎,𝑎
𝑀𝐶−̅̅ ̅̅ ̅̅ ̅̅⁄  is the estimate of the forward-to-backward 

hemisphere scattering ratio. By approximating the hemispherical integration by the value only at 

the poles, 𝐹𝐵𝑅𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 𝑄𝑠𝑐𝑎,𝑎

𝑀𝐶+̅̅ ̅̅ ̅̅ ̅̅ (휃 = 0) 𝑄𝑠𝑐𝑎,𝑎
𝑀𝐶−̅̅ ̅̅ ̅̅ ̅̅⁄ (휃 = 𝜋), the calculation of the expected reflection 

is substantially simplified. This is because 𝑄𝑠𝑐𝑎,𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅  is a vector inner product and 𝑄𝑠𝑐𝑎,𝑎

𝑀𝐶±̅̅ ̅̅ ̅̅ ̅̅ (휃 = 0, 𝜋) 
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considers only the 𝑚 = ±1 terms as azimuthal variations have no meaning at the poles. An 

analysis of the accuracy of this approximation will be delayed until the discussion of the Kerker 

transform in a later chapter. With this transform, the connection between directionality at the 

poles and directionality integrated over the hemisphere is better understood. With that said, 

clearly the approximation for 𝐹𝐵𝑅𝑎
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ is most accurate when particles are dominantly 

forward/backward directional scattering. Finally, calculating 𝑐𝑎
†𝕁𝑎𝑏𝑐𝑏 and/or 𝑐𝑎

†ℍ𝑎𝑏𝑐𝑏 also 

represents a large computational task. In fact, in many cases constructing the interaction matrix 

is more computationally intensive than solving it! For this reason, since calculating 𝑐𝑎
†ℍ𝑎𝑏𝑐𝑏 is 

unavoidable for generating the fundamental interaction matrix, performing the approximation 

(𝑐𝑎
†𝕁𝑎𝑏𝑐𝑏)

𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
≈ (𝑐𝑎

†ℍ𝑎𝑏𝑐𝑏)
𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 when calculating the reflection maximizes the reuse of 

calculations. The implications of this approximation have already been discussed. When 

showcasing Kerker scattering in random films in a later chapter, the use of both of these 

approximations will be shown to produce satisfying estimates matching well to full-wave 

simulation.  

 

Calculating the interaction of all particles and integrating over the hemisphere can represent a bottleneck in 

simulation. Leveraging orthogonality, simplified expressions for scattering at the poles, the fundamental 

interaction equation, and power conservation can provide a further approximation to the reflection, transmission, 

and absorption at a reduced computational effort.   
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1.10 APPENDIX A: MIE VECTOR HARMONIC EXPANSION 

 

In a medium with permittivity, 휀, and permeability, 𝜇, that is linear, isotropic, homogeneous, 

and lacking a net charge or external sources, Maxwell’s equations dictate that any electromagnetic 

field (and corresponding vector potential and Hertz vector) must obey the homogeneous 

Helmholtz equation, 

 

∇2𝑽 = 𝑘2𝑽, 1.10.1 

 

where 𝑘2 = 𝜔2휀𝜇 is the magnitude of the wavevector, 𝜔 is the angular oscillation frequency of 

the field, ∇2𝑽 = −∇ × ∇ × 𝑽 + ∇(∇ ∙ 𝑽) is the vector Laplacian, and 𝑽 is any such vector 

described above.  

 

The goal is to represent any feasible field distribution in this medium as an expansion of 

functions having known integral/differential properties. Furthermore, it is desired that the 

expansion be computationally efficient and physically insightful. An approach to find 

characteristic solutions to 1.10.1 is to reduce the complexity to finding characteristic solutions 

to the scalar Helmholtz equation,  

 

∇2𝜓+ 𝑘2𝜓 = 0,  1.10.2 

 

where ∇2𝜓 = ∇ ∙ (∇𝜓) is the scalar Laplacian. This approach works by recognizing that 

solutions to 1.10.2 can generate solutions to 1.10.1 through a proper vectorization scheme. In 

this regard there are 3 mutually perpendicular characteristic vector functions that can be 

constructed in 𝑅3,  

 

𝑷 = ∇𝜓 𝑴 = −�̂�𝑟 × 𝑷 (= ∇ × (�̂�𝑟𝜓)) 𝑵 =
1

𝑘
∇ ×𝑴.  1.10.3 

 

The vector functions in equation 1.10.3 are each solutions to 1.10.1 as long as the corresponding 

𝜓 is a solution to 1.10.2. For example, from the identity, ∇2∇𝑓 = ∇∇2𝑓, you can conclude 

∇2𝑷+ 𝑘2𝑷 = ∇(∇2𝜓+ 𝑘2𝜓). Since scattered fields are viewed as emanating from the particle 
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and possibly propagating in any direction of 3D space, it is sensible to solve the governing 

scalar wave equation in polar form, 

 

∇2=
1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
) −

1

𝑟2
𝑳 ∙ 𝑳∗,  1.10.4 

 

where 𝑳 = �̂�𝑟 × (−𝑖∇) is the orbital angular momentum operator (equivalent to the one used 

in quantum mechanics without Plank’s constant) and can be viewed as the generator of rotations. 

Similarly, −𝑖∇ is analogous to linear momentum. Though it is not common to derive the Mie 

harmonics using angular momentum operators, this connection illuminates’ important 

properties of the Mie harmonics. Using the separation of variables technique, the complexity of 

the problem can be further reduced by enforcing that the scalar field, 𝜓(𝒓, 𝑡) =

𝑅(𝑟)Θ(휃)Φ(𝜙)𝑒𝑖𝜔𝑡, is a product of 3 spatially dependent functions each separately managing 

the spatial dependence on 𝑟, 휃, 𝜙. Under these conditions, the following eigenfunctions can 

be used to construct solutions to 1.10.2,  

 

𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟

𝑗𝑛(𝑘𝑟)

𝑦𝑛(𝑘𝑟)
) = ((𝑘𝑟)2 − 𝑛(𝑛 + 1))

𝑗𝑛(𝑘𝑟)

𝑦𝑛(𝑘𝑟)
 ,  1.10.5(a) 

 

(𝑳 ∙ 𝑳∗)�̅�𝑛𝑚 = 𝑛(𝑛 + 1)�̅�𝑛𝑚,  1.10.5(b) 

and 

 

𝐿𝑧
2𝑒𝑖𝑚𝜙 =

𝑑2𝑒𝑖𝑚𝜙

𝑑𝜙2
= 𝑚2𝑒𝑖𝑚𝜙, 1.10.5(c) 

 

where  

 

�̅�𝑛𝑚 = �̅�𝑛
|𝑚|(cos(휃))𝑒𝑖𝑚𝜙 ,   휃 ∈ [0, 𝜋], 𝜙 ∈ [0, 2𝜋)  1.10.6 

 

is the normalized spherical harmonic in complex form. �̅�𝑛
|𝑚|

 is the normalized associated 

Legendre polynomial. 𝑗𝑛 and 𝑦𝑛 are the spherical Bessel functions of the first and second kind, 

respectively. The eigenvalues in equations 1.10.5(a)-(c) are formed from discrete integers, termed 

the principal quantum numbers, 𝑛 ∈ ℤ ∩ [0,∞], and azimuthal quantum numbers, 𝑚 ∈ ℤ ∩

[−𝑛, 𝑛]. Equation 1.10.5(c) is necessary to enforce that 𝜓 is composed of an azimuthal-specific 
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function, Φ(𝜙). In the chosen coordinate system, the 휃 ∈ [0, 𝜋] endpoints lie on the z-axis. 

𝐿𝑧 = 𝑳 ∙ �̂�𝑧, is the projection of the angular momentum operator onto the z-axis. 

Correspondingly, this operator generates rotations around the 𝑧-axis. In atomic orbital theory, 

the azimuthal quantum number is often called the magnetic quantum number. Though, the Mie 

harmonics are separated into electric and magnetic type, which are a different property. To avoid 

confusion 𝑚 is denoted as the azimuthal quantum number as this terminology is more explicit 

to the role 𝑚 plays as defining the form of oscillation in the azimuthal plane. The weight factor, 

𝑤𝑛𝑚 is used for convenience to normalize orthogonality relations as detailed in section 1.12, 

appendix C. Under these conditions, equation 1.10.2 admits the eigenfunctions,  

 

𝜓𝑛𝑚(𝒓)

Rg 𝜓𝑛𝑚(𝒓)
=  
ℎ𝑛(𝑘𝑟)

𝑗𝑛(𝑘𝑟)
�̅�𝑛𝑚(휃, 𝜙).  1.10.7 

 

The spherical Bessel function of the first kind, 𝑗𝑛, is used to describe “incoming”/regular (Rg) 

waves. This solution is mathematically valid everywhere in space, but it does not satisfy the 

Silver-Muller radiation condition, lim
𝑟→ ∞

 �̂�𝑟 ×√𝜇𝑯+ √휀𝑬 = 𝑂 (
1

𝑟
), necessary for energy 

conservation of outward emanating fields in three dimensions. Therefore, this form is used for 

fields propagating “inwards” toward a point of interest. E.g., a plane wave starting at infinity and 

converging to a particle. The second option, the spherical Hankel function of the first kind, 

ℎ𝑛
1 = 𝑗𝑛 + 𝑖𝑦𝑛, is singular at the origin, lim

𝑥→0+
𝑦𝑛(𝑥) = −∞, but satisfies the Silver-Muller 

condition in the far field. This form is used for waves that are emanating outward from a particle 

and are valid in the domain 𝑅3 − {0}.  

 

Applying equation 1.10.7 to equation 1.10.3 the Mie vector harmonics are then,  

 

𝑳𝑛𝑚(𝒓)

Rg 𝑳𝑛𝑚(𝒓)
 =

𝑑

𝑑(𝑘𝑟)

𝜓𝑛𝑚
Rg 𝜓𝑛𝑚

�̂�𝑟 +
1

𝑘𝑟

ℎ𝑛
1(𝑘𝑟)

𝑗𝑛(𝑘𝑟)
(�̂�𝑟 ×𝝍𝑛𝑚

𝑓𝑎𝑟
)     1.10.8(a) 

 

𝑴𝑛𝑚(𝒓)

Rg 𝑴𝑛𝑚(𝒓)
=

1

𝑘𝑟

ℛ(𝑘𝑟)

Rgℛ(𝑘𝑟)
𝝍𝑛𝑚
𝑓𝑎𝑟
    1.10.8(b) 

 

𝑵𝑛𝑚(𝒓)

Rg 𝑵𝑛𝑚(𝒓)
= ∇ ×

ℎ𝑛
1(𝑘𝑟)

𝑗𝑛(𝑘𝑟)
𝝍𝑛𝑚
𝑓𝑎𝑟

  

=
1

𝑘𝑟
(𝑛(𝑛 + 1)

𝜓𝑛𝑚
Rg 𝜓𝑛𝑚

�̂�𝑟 +
ℛ̇(𝑘𝑟)

Rgℛ̇(𝑘𝑟)
(�̂�𝑟 ×𝝍𝑛𝑚

𝑓𝑎𝑟
))  

1.10.8(c) 
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where 

 

ℛ(𝑘𝑟)
Rgℛ(𝑘𝑟)

= 𝑘𝑟
ℎ𝑛
1(𝑘𝑟)

𝑗𝑛(𝑘𝑟)
  

 

ℛ̇(𝑘𝑟)

Rgℛ̇(𝑘𝑟)
=

𝑑

𝑑(𝑘𝑟)
(𝑘𝑟
ℎ𝑛
1(𝑘𝑟)

𝑗𝑛(𝑘𝑟)
) = 𝑘𝑟

ℎ𝑛−1
1 (𝑘𝑟)

𝑗𝑛−1(𝑘𝑟)
− 𝑛
ℎ𝑛
1(𝑘𝑟)

𝑗𝑛(𝑘𝑟)
  

1.10.9 

 

define the radial dependence of the toroidal terms in terms of Riccati-Bessel functions and their 

derivatives. The angular dependence of the toroidal terms are defined by the angular Mie vector 

functions,  

 

𝝍𝑛𝑚
𝑓𝑎𝑟

=
𝑖𝑳�̅�𝑛𝑚

√2𝑛(𝑛+1)
 = 𝑒𝑖𝑚𝜙 (𝑖𝑚𝜋𝑛

|𝑚|(θ)�̂�𝜃 − 𝜏𝑛
|𝑚|(θ)�̂�𝜙)  1.10.10(a) 

 

�̂�𝑟 ×𝝍𝑛𝑚
𝑓𝑎𝑟

=
𝑟∇�̅�𝑛𝑚

√2𝑛(𝑛+1)
= 𝑒𝑖𝑚𝜙(𝜏𝑛

|𝑚|(θ)�̂�𝜃 + 𝑖𝑚𝜋𝑛
|𝑚|(θ)�̂�𝜙)     1.10.10(b) 

 

where 

 

√2𝑛(𝑛 + 1)𝜋𝑛
|𝑚|(θ) =

𝑃𝑛
|𝑚|(𝑐𝑜𝑠 𝜃)

sin(𝜃)

√2𝑛(𝑛 + 1)𝜏𝑛
|𝑚|(θ) =

𝑑𝑃𝑛
|𝑚|(𝑐𝑜𝑠 𝜃)

𝑑𝜃

     
1.10.11(a) 

1.10.11(b) 

 

are given explicit variables since their behavior is critical to understanding the angular pattern 

of the field. The angular Mie functions are outlined in detail in section 1.12, appendix C. In the 

far field, the spherical Hankel function has the asymptotic form, 

 

lim
𝑥→ ∞

ℎ𝑛(𝑥) =  
(−𝑖)𝑛+1𝑒𝑖𝑥

𝑥
.  1.10.12 

 

Correspondingly, 

 

lim
𝑟→ ∞

𝑳𝑛𝑚(𝒓) =
(−𝑖)𝑛𝑒𝑖𝑘𝑟

𝑘𝑟
�̅�𝑛𝑚�̂�𝑟       1.10.13(a) 
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lim
𝑟→ ∞

𝑴𝑛𝑚(𝒓) =
𝑒𝑖𝑘𝑟

𝑘𝑟
((−𝑖)𝑛+1𝝍𝑛𝑚

𝑓𝑎𝑟(�̂�)) =
𝑒𝑖𝑘𝑟

𝑘𝑟
𝑴𝑛𝑚
𝑓𝑎𝑟(�̂�)  1.10.13(b) 

 

lim
𝑟→ ∞

𝑵𝑛𝑚(𝒓) =
𝑒𝑖𝑘𝑟

𝑘𝑟
((−𝑖)𝑛(�̂�𝑟 × 𝝍𝑛𝑚

𝑓𝑎𝑟
)) =  

𝑒𝑖𝑘𝑟

𝑘𝑟
𝑵𝑛𝑚
𝑓𝑎𝑟(�̂�)  1.10.13(c) 

 

(Note: When the domain of interest is not explicitly stated, the outgoing harmonics will be 

used to keep a less cumbersome notation. Changing to the regular expansion is as simple as 

appending Rg and rederiving the problem.) 

 

Any feasible field distribution can be found from the vector potential, 𝑨, that is constructed 

through properly assigning the complex weight factors (𝑎𝑛,𝑚 , 𝑏𝑛,𝑚 , 𝑐𝑛,𝑚) associated to each 

characteristic harmonic 

 

𝑨 = −
i

ω
∑ 𝑎𝑛,𝑚𝑵𝑛,𝑚 + 𝑏𝑛,𝑚𝑴𝑛,𝑚 + 𝑐𝑛,𝑚𝑳𝑛,𝑚𝑛𝑚 , 1.10.14 

 

where the Lorentz gauge is used.  

 

The complex weight factor is found through projecting the field onto the characteristic 

harmonic, e.g., 

 

𝑎𝑛,𝑚 = ∫ ∫ 𝑨 ∙ 𝑵𝑛,−𝑚
𝜋

𝜃=0

2𝜋

𝜙=0
𝑠𝑖𝑛(휃) 𝑑휃𝑑𝜙/∫ ∫ |𝑵𝑛,𝑚|

𝟐𝜋

𝜃=0

2𝜋

𝜙=0
𝑠𝑖𝑛(휃) 𝑑휃𝑑𝜙.  1.10.15 

 

The integration domain is chosen to leverage the orthogonality relation of the Mie vector 

harmonics detailed in section 1.12, appendix C and arises from the decision to solve 1.10.2 in 

polar coordinates using the separation of variables technique. Of the three vector types, 𝑳 is 

longitudinal and not divergence free. 𝑴 and 𝑵 are solenoidal (∇ ∙ 𝑴 = ∇ ∙ 𝑵 = 0) if 𝑛 > 0. 

Furthermore, both 𝑴 and 𝑵 are related through the curl, 𝑴 =
1

𝑘
∇ × 𝑵 and 𝑵 =

1

𝑘
∇ ×𝑴. 

Therefore, 𝑴 and 𝑵 satisfy the wave equation, are divergence free, and, by construction, are 

proportional to one another under the curl as necessary to satisfy the Ampere and Faraday 

relations. Recognizing that 𝜇𝑯 = ∇ × 𝑨, then 
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𝑬 = ∑ ∑ 𝑏𝑛,𝑚𝑴𝑛,𝑚 + 𝑎𝑛,𝑚𝑵𝑛,𝑚
𝑛
𝑚=−𝑛𝑛>0

𝑯 = −𝑖𝑌 ∑ ∑ 𝑏𝑛,𝑚𝑵𝑛,𝑚 + 𝑎𝑛,𝑚𝑴𝑛,𝑚
𝑛
𝑚=−𝑛𝑛>0 .

  1.10.16 

 

By looking at the field patterns of 𝑵 and 𝑴 it is apparent that these vector harmonics have field 

distributions mimicking electric (𝑵) and magnetic-type (𝑴) multipoles. Clearly this is a sensible 

conclusion given the form of their pilot function, 𝜓, and their curl relation.  

 

It is often convenient to add an index for the two harmonic types, 𝑡 ∈ {Electric =

0,Magnetic = 1}. Then the fields can be written in compact form as  

 

𝑬 = ∑ ∑ ∑ 𝑐𝑛,𝑚
𝑡1

𝑡=0 𝜳𝑛,𝑚
𝑡𝑛

𝑚=−𝑛𝑛 = ∑ 𝑐𝑙𝜳𝑙𝑙 = 𝜳𝑐

𝑯 = −𝑖𝑌 ∑ ∑ ∑ 𝑐𝑛,𝑚
𝑡1

𝑡=0 𝜳𝑛,𝑚
1−𝑡𝑛

𝑚=−𝑛𝑛 = −
𝑖𝑌

𝑘
∑ 𝑐𝑙(∇ × 𝜳𝑙)𝑙 ,

  1.10.17 

 

where 𝜳𝑛,𝑚
𝑡 = 𝑡𝑴𝑛,𝑚 + (1 − 𝑡)𝑵𝑛,𝑚 and 𝑐𝑛,𝑚

𝑡 = 𝑡𝑏𝑛,𝑚 + (1 − 𝑡)𝑎𝑛,𝑚 . For a further 

compact notation, 𝑙 = 𝑡, 𝑛,𝑚 is a shorthand representing a unique combination of the integer 

polar quantum number, 𝑛, azimuthal quantum number, 𝑚, and harmonic type 𝑡. The size of all 

possible combination is 𝐿. For the most compact notation, vector harmonics without an index 

subscript are in matrix form 𝜳 ∈ ℂ3×𝐿 and the correspond coefficients are in column vector 

form 𝑐 ∈ ℂ𝐿 . The matrix is written as  

 

𝑬 = [𝑵 𝑴] [𝑐
𝐸

𝑐𝑀
]  

𝑯 = −𝑖𝑌[𝑴 𝑵] [𝑐
𝐸

𝑐𝑀
]  

1.10.18 

 

where,  

 

𝑵𝑐𝐸 = [𝑵1,−1 𝑵1,0 … 𝑵2,−2 …][𝑎1,−1 𝑎1,0 … 𝑎2,−2 …]𝑇  

𝑴𝑐𝑀 = [𝑴1,−1 𝑴1,0 … 𝑴2,−2 …][𝑏1,−1 𝑏1,0 … 𝑏2,−2 …]𝑇 .  
1.10.19 

 

It is often useful to derive fields in terms of the Mie vector harmonics through the Green’s 

function approach. From the results discussed above, the Green’s function for the 

homogeneous scalar wave equation defined by 1.10.2 can be written as, 

  

𝐺𝑜(𝑘, 𝒓, 𝒓
′) =

𝑒𝑖𝑘|𝒓−𝒓
′|

4𝜋|𝒓−𝒓′|
=

𝑖𝑘

2𝜋
{
∑ ∑ 𝜓𝑛,−𝑚(𝑘𝒓

′)Rg 𝜓𝑛𝑚(𝑘𝒓)
𝑛
𝑚=−𝑛𝑛 𝑟 < 𝑟′

∑ ∑ Rg 𝜓𝑛−𝑚(𝑘𝒓
′)𝜓𝑛,𝑚(𝑘𝒓)

𝑛
𝑚=−𝑛𝑛 𝑟 > 𝑟′,

  1.10.20 
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where the function is defined for 𝒓 ≠ 𝒓′. The corresponding dyadic Green’s functions are,  

 

 �̿�𝑚𝑜(𝑘, 𝒓, 𝒓
′) =  

𝑖𝑘2

𝜋
{
∑ ∑ 𝑴𝑛,−𝑚(𝑘𝒓

′)Rg 𝑵𝑛,𝑚(𝑘𝒓) + 𝑵𝑛,−𝑚(𝑘𝒓
′)Rg 𝑴𝑛,𝑚(𝑘𝒓)

𝑛
𝑚=−𝑛𝑛 𝑟 < 𝑟′

∑ ∑ Rg 𝑴𝑛,−𝑚(𝑘𝒓
′)𝑵𝑛,𝑚(𝑘𝒓) + Rg 𝑵𝑛,−𝑚(𝑘𝒓

′)𝑴𝑛,𝑚(𝑘𝒓)
𝑛
𝑚=−𝑛𝑛 𝑟 > 𝑟′,

  
1.10.21 

 

and  

 

 �̿�𝑒𝑜(𝑘, 𝒓, 𝒓
′)  

= −
1

𝑘2
�̂��̂�𝛿(𝒓 − 𝒓′) +  

𝑖𝑘

𝜋
{
∑ ∑ 𝑴𝑛,−𝑚(𝑘𝒓

′)Rg 𝑴𝑛,𝑚(𝑘𝒓) + 𝑵𝑛,−𝑚(𝑘𝒓
′)Rg 𝑵𝑛,𝑚(𝑘𝒓)

𝑛
𝑚=−𝑛𝑛 𝑟 < 𝑟′

∑ ∑ Rg 𝑴𝑛,−𝑚(𝑘𝒓
′)𝑴𝑛,𝑚(𝑘𝒓) + Rg 𝑵𝑛,−𝑚(𝑘𝒓

′)𝑵𝑛,𝑚(𝑘𝒓)
𝑛
𝑚=−𝑛𝑛 𝑟 > 𝑟′.

  

1.10.22 

 

Furthermore, the Green’s relation to surface currents makes use of the expansions,  

 

∇ × (𝒗(𝒓′)𝐺𝑜(𝑘, 𝒓, 𝒓
′))  

=
𝑖𝑘2

𝜋
∑ ∑

{
  
 

  
 
(
(𝒗(𝒓′) ∙ 𝑴𝑛,−𝑚(𝑘𝒓

′))Rg 𝑵𝑛,𝑚(𝑘𝒓)

+ (𝒗(𝒓′) ∙ 𝑵𝑛,−𝑚(𝑘𝒓
′)) Rg 𝑴𝑛,𝑚(𝑘𝒓)

) 𝑟 < 𝑟′

(
(𝒗(𝒓′) ∙ Rg 𝑴𝑛,−𝑚(𝑘𝒓

′))𝑵𝑛,𝑚(𝑘𝒓)

+ (𝒗(𝒓′) ∙ Rg 𝑵𝑛,−𝑚(𝑘𝒓
′))𝑴𝑛,𝑚(𝑘𝒓)

) 𝑟 > 𝑟′,

𝑛
𝑚=−𝑛𝑛   

 

1.10.23 

and  

 

∇ × ∇ × (𝒗(𝒓′)𝐺𝑜(𝑘, 𝒓, 𝒓
′))  

=
𝑖𝑘3

𝜋
∑ ∑

{
  
 

  
 
(
(𝒗(𝒓′) ∙ 𝑴𝑛,−𝑚(𝑘𝒓

′))Rg 𝑴𝑛,𝑚(𝑘𝒓)

+ (𝒗(𝒓′) ∙ 𝑵𝑛,−𝑚(𝑘𝒓
′)) Rg 𝑵𝑛,𝑚(𝑘𝒓)

) 𝑟 < 𝑟′

(
(𝒗(𝒓′) ∙ Rg 𝑴𝑛,−𝑚(𝑘𝒓

′))𝑴𝑛,𝑚(𝑘𝒓)

+ (𝒗(𝒓′) ∙ Rg 𝑵𝑛,−𝑚(𝑘𝒓
′))𝑵𝑛,𝑚(𝑘𝒓)

) 𝑟 > 𝑟′.

𝑛
𝑚=−𝑛𝑛   

1.10.24 

 

Note that 𝑴𝑛,−𝑚 ≠ 𝑴𝑛,𝑚
∗  and 𝑵𝑛,−𝑚 ≠ 𝑵𝑛,𝑚

∗  as the radial functions are not conjugated.   



 

 

62 

1.11 APPENDIX B: MIE VECTOR HARMONIC POWER FLOW 

 

“What do you get when you cross and elephant and a grape?  

 Elephant grape sine theta.” 

 

- Unknown, A Joke about Cross Products 

 

 

Power flow analysis with multiple scattering requires calculating the Poynting vector between all 

field pairs. The time-averaged Poynting vector between any two arbitrary time-harmonic fields 

is 𝑺𝑎𝑎 + 𝑺𝑏𝑏 + 𝑺𝑎𝑏 + 𝑺𝑏𝑎, where 𝑺𝑎𝑏 =
1

2
𝑬𝑎 ×𝑯𝑏

∗ =
1

2
𝑖𝑌(𝑬𝑎 × ∇ × 𝑬𝑏

∗ ). The power flow 

through a surface is then 𝑊 = ∫𝑑𝐴 (�̂� ∙ 𝑺), where �̂� is the outward pointing normal of the 

surface. If two time-harmonic fields are written as Mie harmonic expansions referenced to the 

same origin, then the resulting interference can be written as    

 

𝑺𝑎𝑏  =
1

2
𝑬𝑎 ×𝑯𝑏

∗   

=
1

2
∑ 𝑖𝑌𝑛𝑚𝑛′𝑚′

(

  
 

   (𝑵𝑛𝑚 ×𝑴𝑛′𝑚′
∗ )(𝑐𝑎,𝑛𝑚

𝐸 𝑐𝑏,𝑛′𝑚′
𝐸∗ )

+(𝑴𝑛𝑚 × 𝑵𝑛′𝑚′
∗ )(𝑐𝑎,𝑛𝑚

𝐻 𝑐𝑏,𝑛′𝑚′
𝐻∗ )

+(𝑵𝑛𝑚 × 𝑵𝑛′𝑚′
∗ )(𝑐𝑎,𝑛𝑚

𝐸 𝑐𝑏,𝑛′𝑚′
𝐻∗ )

+(𝑴𝑛𝑚 ×𝑴𝑛′𝑚′
∗ )(𝑐𝑎,𝑛𝑚

𝐻 𝑐𝑏,𝑛′𝑚′
𝐸∗ ))

  
 

  

= 𝑡𝑟[𝕊(𝑐𝑎⊗ 𝑐𝑏
∗)],  

1.11.1 

 

where 𝑡𝑟 is the trace operator, ⊗ is the outer product, and the Mie Poynting vector matrix is 

  

𝕊(𝒓, 𝑘) =
1

2
𝑖𝑌 [

𝑵⊗ (×𝑴∗) 𝑵⊗ (× 𝑵∗)
𝑴⊗ (×𝑴∗) 𝑴⊗ (× 𝑵∗)

]  

 

=
1

2
𝑖𝑌

[
 
 
 
 
 
 
𝑵1,−1 ×𝑴1,−1

∗ … 𝑵1,−1 ×𝑴𝑛,𝑛
∗ 𝑵1,−1 ×𝑵1,−1

∗ … 𝑵1,−1 × 𝑵𝑛,𝑛
∗

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑵𝑛,𝑛 ×𝑴1,−1

∗ … 𝑵𝑛,𝑛 ×𝑴𝑛,𝑛
∗ 𝑵𝑛,𝑛 × 𝑵1,−1

∗ … 𝑵𝑛,𝑛 ×𝑵𝑛,𝑛
∗

𝑴1,−1 ×𝑴1,−1
∗ … 𝑴1,−1 ×𝑴𝑛,𝑛

∗ 𝑴1,−1 ×𝑵1,−1
∗ … 𝑴1,−1 ×𝑵𝑛,𝑛

∗

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑴𝑛,𝑛 ×𝑴1,−1

∗ … 𝑴𝑛,𝑛 ×𝑴𝑛,𝑛
∗ 𝑴𝑛,𝑛 ×𝑵1,−1

∗ … 𝑴𝑛,𝑛 × 𝑵𝑛,𝑛
∗ ]
 
 
 
 
 
 
 
 
 
 
 
.

  

1.11.2 

 
Note that in general the Mie harmonics may be outgoing or regular or a mix of the two. The 

form of the Poynting matrix would then change accordingly, dependent on the context. The 
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time-average real power flow over an arbitrary surface of differential area, 𝑑𝐴, and outward 

pointing normal, �̂�, is 

 

𝑑𝑊𝑎𝑏 = 𝑑𝐴�̂� ∙ ℜ[𝑺𝑎𝑏]   

= ℜ [
1

2
𝑖𝑌 ∑ ∑ 𝑐𝑎,𝑛,𝑚

𝑡 𝑐𝑏,𝑛′,𝑚′
𝑡′∗ 𝑑𝐴�̂� ∙ (𝚿𝑛,𝑚

𝑡 ×𝚿
𝑛′,𝑚′
(1−𝑡′)∗

)𝑛′,𝑚′,𝑡′𝑛,𝑚,𝑡 ]  

= ℜ 𝑡𝑟[𝑑𝕎(𝑐𝑎⊗𝑐𝑏
∗)],  

1.11.3 

where the power matrix is 
 

𝑑𝕎(𝒓, 𝑘) =
1

2
𝑖𝑌 𝑑𝑨 ∙ 𝕊(𝒓, 𝑘)  1.11.4 

 

and the dot product, 𝑑𝑨 ∙ 𝕊, is understood as an element wise inner product with 𝑑𝐴�̂�.  

 

 

Far Field Power Flow 

 

In the far field the Poynting vector and power matrix take the form,  

 

𝕊𝑓𝑎𝑟 =
1

2

𝑖𝑌

(𝑘𝑟)2
[
𝑵𝑓𝑎𝑟⊗(×𝑴𝑓𝑎𝑟∗) 𝑵𝑓𝑎𝑟⊗ (×𝑵𝑓𝑎𝑟∗)

𝑴𝑓𝑎𝑟⊗ (×𝑴𝑓𝑎𝑟∗) 𝑴𝑓𝑎𝑟⊗(× 𝑵𝑓𝑎𝑟∗)
]
 

.  1.11.5 

 

Correspondingly, 𝑑𝕎 = ℜ
1

2

𝑌

𝑘2
(�̂�𝑟 ∙ 𝕊

𝑓𝑎𝑟) sin(휃) 𝑑휃𝑑𝜙. 

 

 

Integration over the Ball Surface 

 

Integrating equation 1.11.3 over a closed spherical surface gives,  

 

𝑊𝑎𝑏 = ℜ
1

2
∑ 𝑖𝑌𝑛𝑚𝑛′𝑚′ (

 ∮ 𝑑𝑨 ∙
𝜕𝐵

(𝑵𝑛𝑚 ×𝑴𝑛′𝑚′
∗ )(𝑐𝑎,𝑛𝑚

𝐸 𝑐𝑏,𝑛′𝑚′
𝐸∗ )

+  ∮ 𝑑𝑨 ∙
𝜕𝐵

(𝑴𝑛𝑚 × 𝑵𝑛′𝑚′
∗ )(𝑐𝑎,𝑛𝑚

𝐻 𝑐𝑏,𝑛′𝑚′
𝐻∗ )

)  

= ℜ
1

2
∑ 𝑖𝑌𝑛𝑚

𝜋

𝑘2
(
  −ℛ̇𝑛ℛ𝑛

∗ (𝑐𝑎,𝑛𝑚
𝐸 𝑐𝑏,𝑛𝑚

𝐸∗ )

+ℛ𝑛ℛ̇𝑛
∗ (𝑐𝑎,𝑛𝑚

𝐻 𝑐𝑏,𝑛𝑚
𝐻∗ )

). 

1.11.6 

 

If 𝑎 = 𝑏 and both fields are outgoing harmonic expansions, then from the Wronskian relation, 
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𝑊𝑎𝑎 =
1

2
∑ 𝑌𝑛𝑚

𝜋

𝑘2
(−ℜ[𝑖ℛ̇𝑛ℛ𝑛

∗ ]|𝑐𝑎,𝑛𝑚
𝐸 |

2
+ℜ[𝑖ℛ̇𝑛

∗ℛ𝑛]|𝑐𝑎,𝑛𝑚
𝐻 |

2
)  

=
𝑌

2

𝜋

𝑘2
∑ (|𝑐𝑎,𝑛𝑚

𝐸 |
2
+ |𝑐𝑎,𝑛𝑚

𝐻 |
2
)𝑛𝑚 .  

1.11.7 

 

Equation 1.11.7 uses the simplification,  

 

ℛ̇𝑛ℛ𝑛
∗ = (ℛ̇𝑛

∗
ℛ𝑛)

∗
= (𝑗𝑛

̇ + 𝑖𝑦�̇�)(𝑗𝑛
∗ − 𝑖𝑦𝑛

∗)  

𝑘𝑟∈ℝ
→   (𝑗�̇̇�𝑗𝑛 + 𝑦�̇�𝑦𝑛) + 𝑖(𝑗𝑛𝑦�̇� − 𝑗�̇̇�𝑦𝑛) = (𝑗�̇̇�𝑗𝑛 + 𝑦�̇�𝑦𝑛) + 𝑖,  

 

1.11.8 

where the Wronskian, 𝒲(𝑗𝑛 , 𝑦𝑛) = (𝑗𝑛𝑦�̇� − 𝑗�̇̇�𝑦𝑛) = 1, is used. 

 

If 𝑎 ≠ 𝑏, then both 𝑺𝑎𝑏  and 𝑺𝑏𝑎  terms need to be used to further simplify. First consider the 

case where one of the fields is regular and the other is outgoing. This situation corresponds to a 

particle’s scattered field interfering with a portion of its local field (E.g., either the incident, 

multiply scattered, or both).  Since the designation is arbitrary let field 𝑎 be outgoing and field 𝑏 

be incoming. Then, 

 

𝑊𝑎𝑏 +𝑊𝑏𝑎  

= ℜ
𝑌

2
∑

𝜋

𝑘2𝑛𝑚 (
  −𝑖ℛ̇𝑛Rgℛ𝑛

∗ (𝑐𝑎,𝑛𝑚
𝐸 𝑐𝑏,𝑛𝑚

𝐸∗ ) − 𝑖Rgℛ̇𝑛ℛ𝑛
∗ (𝑐𝑎,𝑛𝑚

𝐸∗ 𝑐𝑏,𝑛𝑚
𝐸 )

+𝑖ℛ𝑛Rgℛ̇𝑛
∗ (𝑐𝑎,𝑛𝑚

𝐻 𝑐𝑏,𝑛𝑚
𝐻∗ ) + 𝑖Rgℛ𝑛ℛ̇𝑛

∗ (𝑐𝑎,𝑛𝑚
𝐻 𝑐𝑏,𝑛𝑚

𝐻∗ )
)  

𝑘𝑟∈ℝ
→   

𝑌

2
∑

𝜋

𝑘2𝑛𝑚 ℜ[𝑐𝑎,𝑛𝑚
𝐸 𝑐𝑏,𝑛𝑚

𝐸∗ + 𝑐𝑎,𝑛𝑚
𝐻 𝑐𝑏,𝑛𝑚

𝐻∗ ].  

1.11.9 

 

Equation 1.11.9 uses the simplifications,  

 

ℛ𝑛Rgℛ̇𝑛
∗𝐴 + Rgℛ𝑛ℛ̇𝑛

∗𝐴∗  
𝑘𝑟∈ℝ
→   Rgℛ𝑛ℛ̇𝑛(𝐴 + 𝐴

∗) +𝒲(ℛ𝑛 , Rgℛ𝑛)𝐴 = 2(Rgℛ𝑛ℛ̇𝑛)ℜ[𝐴] − 𝑖𝐴  

→ ℜ[𝑖(2(Rgℛ𝑛ℛ̇𝑛)ℜ[𝐴] − 𝑖𝐴)] = ℜ[𝐴]  

1.11.10 

 

and 

 

ℛ̇𝑛Rgℛ𝑛
∗𝐴+ Rgℛ̇𝑛ℛ𝑛

∗𝐴∗  
𝑘𝑟∈ℝ
→   Rgℛ̇𝑛ℛ𝑛(𝐴 + 𝐴

∗) −𝒲(ℛ𝑛 , Rgℛ𝑛)𝐴 = 2(Rgℛ̇𝑛ℛ𝑛)ℜ[𝐴] + 𝑖𝐴  

→ ℜ[−𝑖(2(Rgℛ̇𝑛ℛ𝑛)ℜ[𝐴] + 𝑖𝐴)] = ℜ[𝐴].  

1.11.11 
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If both fields are outgoing harmonics, then the simplification from 1.11.8 can be used and  

 

𝑊𝑎𝑏 +𝑊𝑏𝑎  

=
𝑌

2

𝜋

𝑘2
∑ −2ℜ[𝑖ℛ̇𝑛ℛ𝑛

∗ ]ℜ[𝑐𝑎,𝑛𝑚
𝐸 𝑐𝑏,𝑛𝑚

𝐸∗ ] + 2ℜ[𝑖ℛ̇𝑛
∗ℛ𝑛]ℜ[𝑐𝑎,𝑛𝑚

𝐻 𝑐𝑏,𝑛𝑚
𝐻∗ ]𝑛𝑚   

𝑘𝑟∈ℝ
→   𝑌

𝜋

𝑘2
∑ ℜ[𝑐𝑎,𝑛𝑚

𝐸 𝑐𝑏,𝑛𝑚
𝐸∗ + 𝑐𝑎,𝑛𝑚

𝐻 𝑐𝑏,𝑛𝑚
𝐻∗ ]𝑛𝑚 . 

1.11.12 

 

Comparing equations 1.11.12 and 1.11.9 shows that the interference between two outgoing 

harmonics is 2 × that of the equation for the outgoing-incoming equivalent. This validates the 

particle-level versus film-level power flow analysis in section 1.6. Integrating over particle 𝑎 then 

integrating over particle 𝑏 and summing the result gives the same expression as integrating over 

a surface enclosing both particle 𝑎 and particle 𝑏. If both fields are incoming harmonics, then 

ℜ[𝑖𝑗�̇̇�𝑗𝑛] = 0 and there is no net power flow. This also validates the results from section 1.6. 

When integrating over the surface of particle 𝑎, all other multiple scattered fields are incoming 

harmonics. Correspondingly, on that integration surface, 𝑊𝑏𝑏 = 𝑊𝑖𝑛𝑐,𝑏 = 𝑊𝑏,𝑖𝑛𝑐 = 0.  
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1.12 APPENDIX C: USEFULL RELATIONS  

 

This appendix is a reference for definitions, properties, and orthogonality relations related to the 

Mie harmonics. There are multiple different normalization schemes used throughout literature. 

For this reason, this section derives relations irrespective of the chosen weight, then defines the 

weight, 𝑤𝑛𝑚 , for each function used in this dissertation.  

 

Wronskians of the Riccati-Bessel Functions 

 

Let the Wronskian be defined as 𝒲(𝑓, 𝑔) = 𝑓�̇� − 𝑔𝑓̇. It can be readily verified that the 

Wronskian has the properties,  

 

𝒲(𝑓 + 𝑢, 𝑔 + 𝑣) = 𝒲(𝑓,𝑔) +𝒲(𝑓, 𝑣) +𝒲(𝑢, 𝑔) +𝒲(𝑢, 𝑣)  

𝒲(𝑓, 𝑔) = −𝒲(𝑔, 𝑓).  

1.12.1 

1.12.2 

 

When calculating power flow over a closed ball’s surface using the Mie harmonic expansion, the 

Wronskians dictate the radial dependence of the power on the ball’s surface. Therefore, it is 

necessary to understand the Wronskian relations of the Riccati-Bessel functions. This section 

outlines the Wronskian behavior under the constrain that the argument, 𝑥 = 𝑘𝑟 ∈ ℝ, is real. 

This constraint is imposed because all power of interest in this dissertation, with the exception 

of absorption, is in the lossless background.  Correspondingly, the Wronskian of any Riccati-

Bessel function with itself is zero,   

 

𝒲(

𝑥𝑗𝑛(𝑥)
𝑥𝑦𝑛(𝑥)

𝑥ℎ𝑛(𝑥)
,

𝑥𝑗𝑛(𝑥)
𝑥𝑦𝑛(𝑥)

𝑥ℎ𝑛(𝑥)
) = 0.  1.12.3 

 

Furthermore,  

 

𝒲(𝑥𝑗𝑛(𝑥), 𝑥𝑦𝑛(𝑥)) = 1  

𝒲(𝑥𝑗𝑛(𝑥), 𝑥ℎ𝑛(𝑥)) = 𝑖. 

1.12.4 

1.12.5 

 

 

Normalization of the Spherical Vector Harmonics 

 

The orthogonality relation of the spherical harmonics is 
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∫ ∫ 𝑌𝑛,𝑚(휃, 𝜙)𝑌𝑛′,𝑚′
∗ (휃, 𝜙) sin(휃) 𝑑휃𝑑𝜙

𝜋

𝜃=0

2𝜋

𝜙=0
  

= ∫ ∫ 𝑌𝑛,𝑚(휃, 𝜙)𝑌𝑛′,−𝑚′(휃, 𝜙) sin(휃) 𝑑휃𝑑𝜙
𝜋

𝜃=0

2𝜋

𝜙=0
  

= (𝑤𝑛𝑚)
22𝜋

2

2𝑛+1

(𝑛+𝑚)!

(𝑛−𝑚)!
𝛿𝑚,𝑚′𝛿𝑛,𝑛′  

= 2𝜋𝛿𝑚,𝑚′𝛿𝑛,𝑛′  

1.12.6 

 

where the chosen weight factor for the spherical harmonic is 

 

𝑤𝑛𝑚 = (
2

2𝑛+1

(𝑛+𝑚)!

(𝑛−𝑚)!
)
−1/2

 . 1.12.7 

 

This is a result of the orthogonality of Euler’s formula,  

 

∫ 𝑒𝑖(𝑚−𝑚
′)𝜙𝑑𝜙

2𝜋

𝜙=0
= 2𝜋𝛿𝑚,𝑚′,  1.12.8 

 

and of the associated Legendre polynomials,  

 

∫ 𝑃𝑛
|𝑚|(cos(휃))𝑃

𝑛′
|𝑚|(cos(휃)) sin(휃) 𝑑휃

𝜋

𝜃=0
=

2

2𝑛+1

(𝑛+𝑚)!

(𝑛−𝑚)!
𝛿𝑛,𝑛′. 1.12.9 

 

 

Relations of the Angular Functions 

 

The far field Mie vector functions make clear that it is also important to consider the relations 

between the angular vector functions, 𝑌𝑛,𝑚�̂�𝑟, 𝝍𝑛𝑚
𝑓𝑎𝑟

= 𝑳𝑌𝑛,𝑚, and �̂�𝑟 ×𝝍𝑛𝑚
𝑓𝑎𝑟

. The first 

important property is that each of these functions are point-wise orthogonal,  

 

𝑌𝑛,𝑚�̂�𝑟 ∙ 𝑳𝑌𝑛,𝑚 = 𝑌𝑛,𝑚�̂�𝑟 ∙ (�̂�𝑟 × 𝑳𝑌𝑛,𝑚) = 𝑳𝑌𝑛,𝑚 ∙ (�̂�𝑟 × 𝑳𝑌𝑛,𝑚) = 0.       1.12.10 

 

Recalling that 𝑷𝑛𝑚, is not divergence free, the second important relation is 

 

∇ ∙ 𝑌𝑛,𝑚�̂�𝑟 = 𝑷𝑛𝑚 ∙ �̂�𝑟

∇ ∙ 𝑳𝑌𝑛,𝑚 = ∇ ∙ (�̂�𝑟 × 𝑳𝑌𝑛,𝑚) = 0 → ∇ ∙ 𝑴 = ∇ ∙ 𝑵 = 0.
  1.12.11 
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Correspondingly the curl relation 𝑘𝑴 = ∇ × 𝑵 and 𝑘𝑵 = ∇ ×𝑴 also has an analogy for the 

angular vector functions,  

 

−𝑳𝑌𝑛,𝑚 = �̂�𝑟 × (�̂�𝑟 × 𝑳𝑌𝑛,𝑚) = −�̂�𝑟 × 𝑟∇𝑌𝑛,𝑚.  1.12.12 

 

Equation 1.12.12 comes from the vector identity 𝑨 × 𝑩 × 𝑪 = 𝑩(𝑨 ∙ 𝑪) − 𝑪(𝑨 ∙ 𝑩) and 

𝑳𝑌𝑛,𝑚 ∙ �̂�𝑟 = 0.   

 

 

Relations of Mie Vector Functions in the Far Field 

 

The Mie vector functions are mutually perpendicular in the far field,  

  

𝑵𝑛𝑚
𝑓𝑎𝑟
∙ 𝑴𝑛𝑚

𝑓𝑎𝑟
= 0.  1.12.13 

 

Correspondingly, the far field Mie vector functions are related through, 

 

�̂�𝑟 × 𝑵𝑛𝑚
𝑓𝑎𝑟

= (−𝑖)𝑛(�̂�𝑟 × �̂�𝑟 × 𝑳𝑌𝑛,𝑚) = −(−𝑖)
𝑛𝑳𝑌𝑛,𝑚 = −𝑖𝑴𝑛𝑚

𝑓𝑎𝑟
  

�̂�𝑟 ×𝑴𝑛𝑚
𝑓𝑎𝑟

= (−𝑖)𝑛+1(�̂�𝑟 × 𝑳𝑌𝑛,𝑚) = −𝑖𝑵𝑛𝑚
𝑓𝑎𝑟

. 
1.12.14 

 

From the triple product relation 𝑨 ∙ (𝑩 × 𝑪) = (𝑨 × 𝑩) ∙ 𝑪, the following relations are useful 

for calculating power in the far field,  

 

lim
𝑟→∞

 �̂�𝑟 ∙ (𝑵𝑛𝑚 × 𝑵𝑛′𝑚′
∗ )  

=
1

(𝑘𝑟)2
(�̂�𝑟 × 𝑵𝑛𝑚

𝑓𝑎𝑟
) ∙ 𝑵

𝑛′𝑚′
𝑓𝑎𝑟∗

=
−𝑖

(𝑘𝑟)2
𝑴𝑛𝑚
𝑓𝑎𝑟
∙ 𝑵

𝑛′𝑚′
𝑓𝑎𝑟∗

= 0,  
1.12.15 

 

lim
𝑟→∞

�̂�𝑟 ∙ (𝑴𝑛𝑚 ×𝑴𝑛′𝑚′
∗ )  

=
1

(𝑘𝑟)2
(�̂�𝑟 ×𝑴𝑛𝑚

𝑓𝑎𝑟
) ∙ 𝑴

𝑛′𝑚′
𝑓𝑎𝑟∗

=
−𝑖

(𝑘𝑟)2
𝑵𝑛𝑚
𝑓𝑎𝑟
∙ 𝑴

𝑛′𝑚′
𝑓𝑎𝑟∗

= 0,  
1.12.16 

 

lim
𝑟→∞

�̂�𝑟 ∙ (𝑴𝑛𝑚 × 𝑵𝑛′𝑚′
∗ )  

=
1

(𝑘𝑟)2
(�̂�𝑟 ×𝑴𝑛𝑚

𝑓𝑎𝑟
) ∙ 𝑵

𝑛′𝑚′
𝑓𝑎𝑟∗

  
1.12.17 
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=
−𝑖

(𝑘𝑟)2
𝑵𝑛𝑚
𝑓𝑎𝑟
∙ 𝑵

𝑛′𝑚′
𝑓𝑎𝑟∗

  

=
−𝑖

(𝑘𝑟)2
(−𝑖)𝑛(𝑖)𝑛

′
(𝑳𝑌𝑛,𝑚) ∙ (𝑳𝑌𝑛′,𝑚′)

∗
,  

 

and 

 

lim
𝑟→∞

�̂�𝑟 ∙ (𝑵𝑛𝑚 ×𝑴𝑛′𝑚′
∗ )  

=
1

(𝑘𝑟)2
(�̂�𝑟 × 𝑵𝑛𝑚

𝑓𝑎𝑟
) ∙ 𝑴

𝑛′𝑚′
𝑓𝑎𝑟∗

  

=
−𝑖

(𝑘𝑟)2
𝑴𝑛𝑚
𝑓𝑎𝑟
∙ 𝑴

𝑛′𝑚′
𝑓𝑎𝑟∗

  

=
−𝑖

(𝑘𝑟)2
(−𝑖)𝑛(𝑖)𝑛

′
(𝑳𝑌𝑛,𝑚) ∙ (𝑳𝑌𝑛′,𝑚′)

∗
.  

1.12.18 

 

 

Relations of Mie Vector Functions 

 

The Mie harmonics have the following relations when integrated over a spherical surface,  

 

∫ 𝑑2𝒓
𝜕𝐵

∙ (𝑵𝑛𝑚 ×𝑵𝑛′𝑚′
∗ )  

=
1

𝑘2
ℛ̇𝑛ℛ̇𝑛′

∗ ∫ ∫  �̂�𝑟 ∙ ((�̂�𝑟 × 𝝍𝑛𝑚
𝑓𝑎𝑟
) × (�̂�𝑟 ×𝝍𝑛′𝑚′

𝑓𝑎𝑟∗
)) sin(휃) 𝑑휃𝑑𝜙

𝜋

𝜃=0

2𝜋

𝜙=0
  

=
1

𝑘2
ℛ̇𝑛ℛ̇𝑛′

∗ ∫ ∫  (−𝝍𝑛𝑚
𝑓𝑎𝑟
∙ (�̂�𝑟 ×𝝍𝑛′𝑚′

𝑓𝑎𝑟∗
)) sin(휃) 𝑑휃𝑑𝜙

𝜋

𝜃=0

2𝜋

𝜙=0
  

= 0.  

1.12.19 

 

Similarly, 

 

∫ 𝑑2𝒓
𝜕𝐵

∙ (𝑴𝑛𝑚 ×𝑴𝑛′𝑚′
∗ )  

=
1

𝑘2
ℛ𝑛ℛ𝑛′

∗ ∫ ∫  �̂�𝑟 ∙ ((𝝍𝑛𝑚
𝑓𝑎𝑟
) × (𝝍

𝑛′𝑚′
𝑓𝑎𝑟∗

)) sin(휃) 𝑑휃𝑑𝜙
𝜋

𝜃=0

2𝜋

𝜙=0
  

=
1

𝑘2
ℛ𝑛ℛ𝑛′

∗ ∫ ∫  ((�̂�𝑟 ×𝝍𝑛𝑚
𝑓𝑎𝑟
) ∙ 𝝍

𝑛′𝑚′
𝑓𝑎𝑟∗

) sin(휃) 𝑑휃𝑑𝜙
𝜋

𝜃=0

2𝜋

𝜙=0
  

= 0.  

1.12.20 

 

For opposite harmonics the relations are,   

 

∫ 𝑑2𝒓
𝜕𝐵

∙ (𝑴𝑛𝑚 × 𝑵𝑛′𝑚′
∗ )  
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=
1

𝑘2
ℛ𝑛ℛ̇𝑛′

∗ ∫ ∫  �̂�𝑟 ∙ (𝝍𝑛𝑚
𝑓𝑎𝑟
× (�̂�𝑟 ×𝝍𝑛′𝑚′

𝑓𝑎𝑟∗
)) sin(휃) 𝑑휃𝑑𝜙

𝜋

𝜃=0

2𝜋

𝜙=0
  

=
1

𝑘2
ℛ𝑛ℛ̇𝑛′

∗ ∫ ∫  ((�̂�𝑟 ×𝝍𝑛𝑚
𝑓𝑎𝑟
) ∙ (�̂�𝑟 ×𝝍𝑛′𝑚′

𝑓𝑎𝑟∗
)) sin(휃) 𝑑휃𝑑𝜙

𝜋

𝜃=0

2𝜋

𝜙=0
  

=
1

𝑘2
ℛ𝑛ℛ̇𝑛

∗ (𝑤𝑛𝑚)
2 (2𝜋

2

2𝑛+1

(𝑛+𝑚)!

(𝑛−𝑚)!
𝑛(𝑛 + 1)𝛿𝑚,𝑚′𝛿𝑛,𝑛′)  

=
𝜋

𝑘2
ℛ𝑛ℛ̇𝑛

∗𝛿𝑚,𝑚′𝛿𝑛,𝑛′.  

1.12.21 

 

Similarly, 

 

∫ 𝑑2𝒓
𝜕𝐵

∙ (𝑵𝑛𝑚 ×𝑴𝑛′𝑚′
∗ )  

=
1

𝑘2
ℛ̇𝑛ℛ𝑛′

∗ ∫ ∫  �̂�𝑟 ∙ ((�̂�𝑟 × 𝝍𝑛𝑚
𝑓𝑎𝑟
) × (𝝍

𝑛′𝑚′
𝑓𝑎𝑟∗

)) sin(휃) 𝑑휃𝑑𝜙
𝜋

𝜃=0

2𝜋

𝜙=0
  

= −
1

𝑘2
ℛ̇𝑛ℛ𝑛′

∗ ∫ ∫  ((�̂�𝑟 ×𝝍𝑛𝑚
𝑓𝑎𝑟
) ∙ (�̂�𝑟 × 𝝍𝑛′𝑚′

𝑓𝑎𝑟∗
)) sin(휃) 𝑑휃𝑑𝜙

𝜋

𝜃=0

2𝜋

𝜙=0
  

= −
1

𝑘2
ℛ̇𝑛ℛ𝑛

∗ (𝑤𝑛𝑚)
2 (2𝜋

2

2𝑛+1

(𝑛+𝑚)!

(𝑛−𝑚)!
𝑛(𝑛 + 1)𝛿𝑚,𝑚′𝛿𝑛,𝑛′)  

= −
𝜋

𝑘2
(ℛ𝑛ℛ̇𝑛

∗ )
∗
𝛿𝑚,𝑚′𝛿𝑛,𝑛′.  

1.12.22 
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1.13 APPENDIX D: MIE VECTOR HARMONIC TRANSLATIONS 

 

The Mie translation operators are   

 

Rg 𝜳(𝒓 − 𝒓𝑏)𝑐𝑏 = Rg 𝜳(𝒓 − 𝒓𝑎)𝕁
𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏  

𝜳(𝒓 − 𝒓𝑏)𝑐𝑏 = Rg 𝜳(𝒓 − 𝒓𝑎)ℍ
𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏 |𝒅𝑎𝑏| > |𝒓 − 𝒓𝑎|

𝜳(𝒓 − 𝒓𝑏)𝑐𝑏 = 𝜳(𝒓 − 𝒓𝑎)𝕁
𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏 |𝒅𝑎𝑏| < |𝒓 − 𝒓𝑎|

  1.13.1 

 

where 𝒅𝑎𝑏 = 𝒓𝑎 − 𝒓𝑏. Each element of the operator is calculated as 

 

ℍ𝑙𝑙′

𝕁𝑙𝑙′
= 𝛿𝑡𝑡′𝔸𝑚𝑛,𝑚′𝑛′ + (1 − 𝛿𝑡𝑡′)𝔹𝑚𝑛,𝑚′𝑛′   1.13.2 

 

where 

 

𝔸𝑚𝑛,𝑚′𝑛′ =

𝑒𝑖(𝑚−𝑚
′)𝜙𝑑 ∑ 𝑎5(𝑛,𝑚|𝑛

′,𝑚′|𝑦)𝑛+𝑛′

𝑦=|𝑛−𝑛′|

ℎ𝑦
(1)(𝑘𝑑)

𝑗𝑦(𝑘𝑑)
𝑃𝑦
|𝑚−𝑚′|(cos(휃𝑑))      

1.13.3 

 

and 

 

𝔹𝑚𝑛,𝑚′𝑛′ =

𝑒𝑖(𝑚−𝑚
′)𝜙𝑑 ∑ 𝑏5(𝑛,𝑚|𝑛

′,𝑚′|𝑦)𝑛+𝑛′

𝑦=|𝑛−𝑛′|

ℎ𝑦
(1)(𝑘𝑑)

𝑗𝑦(𝑘𝑑)
𝑃𝑦
|𝑚−𝑚′|(cos(휃𝑑)). 

1.13.4 

 

Therefore, 𝕁𝑎𝑏  is the same formula defining ℍ𝑎𝑏, but using the spherical Bessel function of the 

first kind instead of the spherical Hankel function of the first kind. Finally, the transition 

functions are defined as  

 

𝑎5(𝑛,𝑚|𝑛
′,𝑚′|𝑦)  

= 𝑖|𝑚−𝑚
′|−|𝑚|−|𝑚′|+𝑛′−𝑛+𝑦(−1)𝑚−𝑚

′
√

(2𝑛+1)(2𝑛′+1)

2𝑛(𝑛+1)𝑛′(𝑛′+1)
  

(𝑛(𝑛 + 1) + 𝑛′(𝑛′ + 1) − 𝑦(𝑦 + 1))√2𝑦 + 1 ×

(
𝑛 𝑛′ 𝑦

𝑚 −𝑚′ −(𝑚 −𝑚′)
) (
𝑛 𝑛′ 𝑦
0 0 0

)    

1.13.5 

 



 

 

72 

and 

 

𝑏5(𝑛,𝑚|𝑛
′, 𝑚′|𝑦)  

= 𝑖|𝑚−𝑚
′|−|𝑚|−|𝑚′|+𝑛′−𝑛+𝑦(−1)𝑚−𝑚

′
√

(2𝑛+1)(2𝑛′+1)

2𝑛(𝑛+1)𝑛′(𝑛′+1)
  

√((𝑛 + 𝑛′ + 𝑛 + 𝑦)(𝑛 + 𝑛′ + 1 − 𝑦)(𝑦 + 𝑛 − 𝑛′)(𝑦 − 𝑛 + 𝑛′)(2𝑦 + 1))   ×

(
𝑛 𝑛′ 𝑦

𝑚 −𝑚′ −(𝑚 −𝑚′)
) (
𝑛 𝑛′ 𝑦 − 1
0 0 0

)    

1.13.6 

 

where  (
…
…) denotes the Wigner-3j symbols.   
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1.14 APPENDIX E: MIE VECTOR HARMONIC ROTATIONS 

 

The Mie rotation operator is   

 

Rg 𝜳(𝑟, 휃, 𝜙)

𝜳(𝑟, 휃, 𝜙)
𝑐𝑏 =

Rg 𝜳(𝑟, 휃′, 𝜙′)

𝜳(𝑟, 휃′, 𝜙′)
𝔻(휃 − 휃′, 𝜙 − 𝜙′)𝑐𝑏.    1.14.1 

 

Each element of the operator is calculated as 

 

𝔻𝑙𝑙′ = 𝛿𝑡𝑡′𝛿𝑛𝑛′(−1)
𝑚+𝑚′𝑒𝑖𝑚(𝜙−𝜙

′)𝑑𝑚,𝑚′
𝑛 (휃 − 휃′)∆𝑚,𝑚′ ,  1.14.2 

 

where 

 

∆𝑚,𝑚′=

{
 

 
1 𝑚 ≥ 0 𝑚′ ≥ 0

(−1)𝑚
′

𝑚 ≥ 0 𝑚′ < 0
(−1)𝑚 𝑚 < 0 𝑚′ ≥ 0

(−1)𝑚+𝑚
′
𝑚 < 0 𝑚′ < 0

    1.14.3 

 

and 

 

𝑑𝑚,𝑚′
𝑛 (휃 − 휃′)  

= √
(𝑛+𝑚′)!(𝑛−𝑚′)!

(𝑛+𝑚)!(𝑛−𝑚)!
∑ (−1)𝑛−𝑚

′−𝜎𝐶𝑛+𝑚
𝑛−𝑚′𝐶𝑛−𝑚

𝜎
𝜎 ×  

(cos (
𝜃−𝜃′

2
))
𝑚+𝑚′+2𝜎

(sin (
𝜃−𝜃′

2
))
2𝑛−𝑚−𝑚′−2𝜎

. 

1.14.4 

 

are the Wigner d-functions.   
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1.15 APPENDIX F: MIE TO PLANE WAVE TRANSFORM 

 

An arbitrary electromagnetic field can be expanded into a basis of plane waves as  

 

𝑬(𝒓; 𝒌±) =  ∑ ∫ 𝜕2𝒌∥ 𝑔𝑞(𝒌
±) 𝑒𝑖𝒌

±∙𝒓 �̂�𝑞(𝒌
±) 1

𝑞=0   

𝑯(𝒓;𝒌±) = −𝑖𝑌 ∑ ∫𝜕2𝒌∥ 𝑔𝑞(𝒌
±) 𝑒𝑖𝒌

±∙𝒓 (�̂�± ×  �̂�𝑞(𝒌
±))  1

𝑞=0 ,  

1.15.1 

1.15.2 

 

where 𝑔𝑞(𝒌
±) is the continuous coefficient representing the field’s plane wave spectra. The 

wave vector is 𝒌 and 𝒌∥ is the component of the wave vector parallel to the evaluation plane. 

Given that the domain of interest is above and below the particle plane, an evaluation plane will 

be defined as a plane parallel to the particle plane such that 𝜕2𝒌∥ = 𝑑𝑘𝑥𝑑𝑘𝑦 = 𝑘∥𝑑𝑘∥𝑑𝛼 =

𝑘𝑠𝑖𝑛(𝛽)𝑑𝛽𝑑𝛼. The ± superscript denotes the chosen root of 𝑘𝑧 = ± √𝑘2 − 𝑘∥
2 , when 

writing the wavevector in cylindrical coordinates. Waves traveling toward 𝑧 → ∞ are given the 

+ superscript. Waves traveling toward 𝑧 → −∞ are given the − superscript. In the case that 

𝑘2 < 𝑘∥
2 , the wave is evanescent, and the sign enforces the proper exponential decay in the 

direction of travel. �̂�q
± is the polarization state, where 𝑞 = 0 is the unit vector in the azimuth 

direction (TE or s-polarization) and 𝑞 = 1 is the unit vector in the polar direction (TM or p-

polarization). S-polarization is defined in relation to the normal vector of the evaluation plane 

and the direction of the wave vector, 

 

�̂�0(𝒌
±) =

(𝒌±×−�̂�)

‖𝒌±×−�̂�‖
(𝑇𝐸) . 1.15.3 

 

Correspondingly, TM polarization is defined as  

 

�̂�1(𝒌
±) =

(�̂�0(𝒌
±)×𝒌±)

‖�̂�0(𝒌±)×𝒌±‖
(𝑇𝑀) . 1.15.4 

 

The initial choice to define �̂�1(𝒌
±) in terms of −�̂� is c for the convenience of being able to 

write ± in the components of �̂�2(𝒌
±)instead of ∓. The two polarization states are orthogonal 

to the direction of plane wave propagation but �̂�2(𝒌
±) is not orthogonal to the normal of the 

particle plane. The following identities  
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�̂�± × �̂�𝑞(𝒌
±) = (−1)𝑞�̂��̅�(𝒌

±)

�̂�𝑞(𝒌
±) × �̂�1−𝑞(𝒌

±) = (−1)𝑞�̂�±
  

1.15.5 

1.15.6 

 

are useful for calculating power flow. A plane wave with arbitrary polarization can always be 

decomposed to TE and TM polarization states as �̂�(𝒌±) = (�̂� ∙ �̂�1(𝒌
±))�̂�1(𝒌

±) +

(�̂� ∙ �̂�2(𝒌
±))�̂�2(𝒌

±).  

 

Representing the wavenumber in spherical coordinates, 𝒌 = 𝑘�̂�𝑟 + 𝛼�̂�𝜙 + 𝛽�̂�𝜃, the regular 

Mie harmonics can be written in integral representation as  

 

Rg 𝑴𝑚𝑛

Rg 𝑵𝑚𝑛
=

𝑖

4𝜋
 ∫ ∫ sin(𝛽) 𝑑𝛽𝑑𝛼

2𝜋

𝛼=0

𝜋

𝛽=0

𝑴𝑛𝑚
𝑓𝑎𝑟
(�̂�)

𝑵𝑛𝑚
𝑓𝑎𝑟
(�̂�)

𝒆𝑖𝒌∙𝒓.  1.15.7 

 

Since the outgoing harmonics are singular at their reference origin, their integral representation 

is meaningful only in the domain not including this origin point. For the case of an infinite film, 

the domains of interest are above and below the particle plane as singular points exist throughout 

the particle plane. In this context, it is most efficient to write the wavenumber in cylindrical 

coordinates, 𝒌± = 𝑘∥�̂�𝜌 + 𝛼�̂�𝜙 ± 𝑘𝑧�̂�𝑧. Then the integral representation of the outgoing 

harmonics, takes the form   

 

𝑴𝑚𝑛

𝑵𝑚𝑛
=

𝑖

2𝜋
 ∫ ∫

𝑑2𝒌∥

𝑘|𝑘𝑧|

∞

𝑘∥=0

𝜋

𝛼=0

𝑴𝑛𝑚
𝑓𝑎𝑟
(�̂�)

𝑵𝑛𝑚
𝑓𝑎𝑟
(�̂�)

𝒆𝑖𝒌
±∙𝒓  1.15.8 

 

where 𝒌+ is used in the transmission hemisphere and 𝒌− is used in the reflection hemisphere.  

 

It is now clear that the spherical harmonics can be written as a plane wave expansion by 

projecting their integral representation onto the TE and TM polarizations. Correspondingly an 

electric field in the Mie basis can be expanded in a plane wave basis with spectral coefficients,  

 

𝑔𝑞(𝒌
±) =

𝑖

2𝜋𝑘|𝑘𝑧|
[𝑵𝑓𝑎𝑟(�̂�) ∙ �̂�𝑞(𝒌

±) 𝑴𝑓𝑎𝑟(�̂�) ∙ �̂�𝑞(𝒌
±)] [𝑐

𝐸

𝑐𝑀
].  1.15.9 
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C h a p t e r  2   

PRESERVATION OF THE KERKER EFFECT IN RANDOM FILMS 

Wray, P. R.; Atwater, H. A. Light–Matter Interactions in Films of Randomly Distributed 

Unidirectionally Scattering Dielectric Nanoparticles. ACS Photonics 2020, 7 (8), 2105–2114. 

https://doi.org/10.1021/acsphotonics.0c00545. 

 

 

ABSTRACT 

We theoretically investigate the light scattering characteristics of monolayer films composed of 

randomly positioned unidirectionally scattering dielectric nanoparticles that support overlapping 

electric and magnetic dipole modes. We show using generalized Mie theory that the optical 

response of both sparse and dense nanoparticle films can be understood from the scattering 

properties of the individual dielectric nanoparticles, despite random particle-particle coupling 

effects, and validate these results with full wave electromagnetic simulations. The spectral, 

angular, and polarization dependent reflection and transmission scattering characteristics of 

these random particle films are also shown to be strikingly different from those of homogeneous 

dense solid thin films of equivalent dielectric permittivity. 

 

 

 

 

 

 

 

 

 

 

Reprinted with permission from ACS Photonics 2020, 7, 8, 2105–2114. Copyright 2020 American Chemical Society.  

https://doi.org/10.1021/acsphotonics.0c00545
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2.1 INTRODUCTION 

 

Scattering objects made of a high index dielectrics offer the ability to generate low-loss electric 

and magnetic Mie resonances for light manipulation below the free-space diffraction limit19–25. 

Of notable interest, the addition of magnetic Mie resonances in spherical dielectric particles 

enables field distributions not achievable in metal counterparts, which support only resonant 

electric Mie modes 22,23,26–28. This degree of freedom provides a compelling argument for the use 

of high index dielectrics in next generation metamaterial technologies. For example, overlapping 

electric and magnetic Mie modes have shown to produce dramatic unidirectional scattering, 

termed Kerker scattering23,27,29. Through precise particle placement, research in Kerker scattering 

particle films has shown new ways to design antireflective coatings, reflectors, absorbers, and 

other wavefront manipulating metasurfaces19,21,24–26,29–35. We expand on this growing body of 

research by studying the behavior of Kerker metasurfaces composed of randomly positioned 

but uniformly sized particles. We find the spectral, angular, and polarization response of these 

random Kerker metasurfaces are dramatically distinct from dense solid thin films of equivalent 

dielectric permittivity. The particle films exhibit no polarization dependence and transmission 

and reflection peaks can be directly manipulated through proper design of the constituent 

particle. The results suggest that random films of Kerker particles could be used in designs of 

polarization invariant antireflective coatings or reflectors. Notably, random Kerker metasurfaces 

can be synthesized without the need for precise lithographic patterning, self-assembly, or layer 

stacking and thus could be fabricated using low-cost deposition methods such as plasma 

synthesis. 

 

A scattering object with overlapping electric dipole (ED) and magnetic dipole (MD) modes and 

suppressed higher order modes will have a far field scattering distribution which mimics an 

idealized point source (i.e., an only forward or backward propagating spherical wavelet) that is 

described by the Huygens-Fresnel principle36. Objects of this type are characterized by extreme 

forward-to-backward scattering ratios (FBR) dictated by the phase relationship between the ED 

and MD modes. They are also characterized by an even distribution in energy between the two 

modes, which gives rise to polarization invariance; meaning the scattering pattern looks the same 

in the direction parallel and perpendicular to the electric field29,37. The concept of overlapping 

electric and magnetic scattering modes was first introduced by Milton Kerker, in the context of 

elastic scattering from magnetic particles37. For this reason, the unique scattering behavior is 

often called Kerker scattering.  

 

In recent years there has been rapidly expanding interest in Kerker scattering based on small 

dielectric particles. Though not magnetic, these particles support spectrally overlapping electric 
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and magnetic dipole modes in the visible wavelength range. This is done by creating an 

optically-induced magnetic resonance22,23,26–29,32,34,38–40.  The use of Kerker particles in the context 

of antenna arrays has been explored to produce highly directional scattering41. Previous research 

has shown that precise placement of Kerker particles in chains along the plane wave propagation 

direction can lead to a polarization-invariant scattered far field. Backward reflection could be 

substantially suppressed and forward directivity and side lobes could be tuned through particle 

spacing42. Particle clusters have been studied which were shown to collectively exhibit Kerker 

scattering behavior43–45. Random silicon trimer and quadrimer particle clusters in different 

orientations were shown to behave like effective Kerker particles45. The magnetic response was 

attributed to the individual nanoparticle, whereas the electric component was attributed to gap 

modes between particles45. Films composed of Kerker particles have also been studied in 2D 

and 3D ordered periodic arrays. Lattices of various types have been studied in the metasurface 

regime, where the sub-wavelength periodicity produces no diffraction orders, and in the grating 

regime where diffraction is present at various orders46,47. This body of work has led to the 

theoretical predictions and experimental verification of near prefect transmission48,49, 

reflection50,51, and absorption34,52 in ordered arrays, through particle design and lattice spacing.  

 

In this paper, we show that 2D films of randomly placed Kerker particles also give rise to 

behavior which cannot be replicated by equivalent homogeneous dense thin film analogs. The 

key finding is that, in an average sense, nanoparticles will retain their Kerker behavior in the 

presence of random interparticle coupling. This occurs despite the stringent requirement placed 

on both the amplitude and phase of the ED and MD modes. The result is that the optical 

properties of both sparse and dense monolayer films of randomly distributed Kerker particles 

can be accurately predicted from the scattering characteristics of single particle building blocks. 

The specular, angular, and polarization dependent properties are distinctly different from dense 

homogeneous thin film analogs. Our analysis uses generalized Mie theory, which completely 

accounts for particle coupling. This framework creates satisfying parallels between studying 

random Kerker particle films and the use of traditional Mie theory for the design of isolated 

Kerker particles.  
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2.2 DESIGN OF ED/MD OVERLAPING KERKER PARTICLES 

 

The phenomenon of Kerker scattering from a spherical particle can be directly seen from Mie 

theory53. In the far field limit, the amplitude response of elastic scattering from a wave incident 

on a particle can be written in a convenient matrix form  

 

[
𝐸𝑠
∥

𝐸𝑠
⊥] =

𝑒𝑖𝑘𝑅

−𝑖𝑘𝑅
[
𝑆2 𝑆3
𝑆4 𝑆1

] [
𝐸𝑖
∥

𝐸𝑖
⊥
],  2.2.1 

 

where 𝐸𝑠  is the elastic scattered electric field amplitude, 𝐸𝑖 is the incident field amplitude, ∥ and 

⊥ represent the planes parallel and perpendicular to the scattering plane53, 𝑘 is the wavenumber 

in the surrounding media, and 𝑅 is the radial observation distance from the particle’s origin. 𝑆𝑗  

( 𝑗 = 1,2,3,4 ) are the elements of the amplitude scattering matrix. For a single particle under 

plane wave illumination, there is no polarization conversion (𝑆3 = 𝑆4 = 0)
53. If all scattering 

coefficients beyond the first order are negligible, the angle-resolved far field scattering efficiency 

parallel, 𝑄𝑠
∥(휃), and perpendicular, 𝑄𝑠

⊥ (휃), to the scattering plane are given by 

 

𝑄𝑠
∥(휃) =

‖𝑆2‖
2

𝑥2
=

1

𝑥2
 (‖𝑎1‖

2𝜏1
2 + ‖𝑏1‖

2𝜋1
2 + (𝑎1𝑏1

∗ + 𝑏1𝑎1
∗)𝜋1𝜏1)   2.2.2 

 

and 

 

𝑄𝑠
⊥ (휃) =

‖𝑆1‖
2

𝑥2
=

1

𝑥2
(‖𝑏1‖

2𝜏1
2 + ‖𝑎1‖

2𝜋1
2 + (𝑎1𝑏1

∗ + 𝑏1𝑎1
∗)𝜋1𝜏1) ,  2.2.3 

 

where 𝜏n =
𝑑𝑃𝑛

1(cos(𝜃))

𝑑𝜃
 and 𝜋n =

𝑃𝑛
1(cos(𝜃))

𝑠𝑖𝑛𝜃
 are the angle-dependent basis functions, based on 

the associated Legendre polynomial (𝑃𝑛
𝑚) of order 𝑛 and degree 𝑚 = 1. The coefficients for 

this basis are 𝑎𝑛 for transverse magnetic (TM) modes and 𝑏𝑛 for transverse electric (TE) modes. 

These coefficients are found by applying the boundary conditions of field continuity between 

the particle and environment, leading to the well-known Mie solutions53. The asterisk over the 

variable denotes the complex conjugate and the 𝑛 = 1 subscript represent the dipole modes. 

The argument 𝑥 =
2𝜋𝑟

𝜆0
, called the size parameter, is a unitless ratio between the particle radius 

(𝑟) and the free-space wavelength (𝜆0). In the forward (휃 = 0°) and backward (휃 = 180°) 

scattering directions the parallel and perpendicular scattering efficiencies are the same. 
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Therefore, the forward-to-backward ratio (FBR) is defined as 𝐹𝐵𝑅 = 𝑄𝑠(휃 = 0°) /𝑄𝑠(휃 =

180°), where either 𝑄𝑠
∥(휃) or 𝑄𝑠

⊥ (휃) can be used.  

 

Kerker’s condition for forward scattering requires 𝑎1 = 𝑏1 and backward scattering requires 

𝑎1 = −𝑏1 37. The condition ‖𝑎1‖
2 = ‖𝑏1‖

2 creates polarization invariance. Therefore, Kerker 

scattering requires an even distribution of energy between the transverse electric (TE) and 

transverse magnetic (TM) modes, while the propagation direction is directly related to the 

relative phase of the coefficients, due to the interference term. Figure 2.2.1 depicts the entire 

particle parameter space where the Kerker conditions are satisfied for the first order (dipole). 

The contribution of higher order modes is shown in the figure 2.5.1. The plots assume a particle 

with lossless permittivity (𝜖 = 𝜖𝑟) and unity relative permeability (𝜇𝑟 = 1) with a background of 

free space. The assumption of negligible loss is justified in figure 2.5.2. Figure 1a shows the 

difference in energy distribution between the first order TE and TM modes. The dotted and 

dashed magenta line indicate where the TE and TM mode energies are equal. Figure 2.2.1b 

shows the relative phase between these two modes. From the phase profile we see the dashed 

magenta line corresponds to the forward Kerker condition whereas the dotted magenta line is 

approaching the backward Kerker condition with increasing permittivity. Between these two 

regions is an optically-induced artificial magnetic resonance26. Figure 2.2.1c shows the resulting 

FBR that would be achieved as a result of the magnitude and phase relationships from figure 

2.2.1a and 2.2.1b. This figure shows that there are two distinct Kerker regimes for real passive 

materials: (1) a region where forward-scattering is always dominant and (2) a region producing a 

backward-to-forward scattering transition.  

 

As an example of Kerker scattering for passive materials, figure 2.2.2 shows the response of an 

88 nm diameter silicon (Si54) particle illustrating the backward-to-forward scattering regime, and 

a 280 nm diameter gallium nitride (GaN55) particle, as an example of the forward-only scattering 

regime. For the 88 nm diameter Si particle, the wavelength range from 400 nm to 500 nm is 

sufficient to study backward-to-forward scattering. In the case of the 280 nm diameter GaN 

particle, we find forward-only scattering with optimal forward scattering from 675-800 nm. We 

find wavelength ranges from 550 nm to 600 nm are shown to have appreciable second order 

terms. This region is not considered in our analysis, despite maintaining forward dominant 

scattering, since we are primarily interested in overlapping ED and MD modes. All calculations 

for figures 2.2.1 and 2.2.2 were done using a Mie theory scattering formalism56. 
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Figure 2.2.1. Parameter space for the single particle scattering coefficients, showing the different Kerker 

regimes. (a) Normalized difference between the first order TM and TE scattering coefficients, as a function of 

size parameter and lossless permittivity. The dashed and dotted magenta line show the region where ‖𝑎1‖
2 =

‖𝑏1‖
2. The dashed line is under the dotted line. The white region is where the particle supports more than 

one mode, which is defined when the first order modes contribute less than 99% of the scattering cross-

section. (b) The phase difference between the first order TM and TE mode. The dashed and dotted magenta 

lines are transferred from Figure 2.2.1a, to show the phase relationship in the regions where TM and TE mode 

energy is equal. The white region is also transferred from Figure 2.2.1a. (c) Log base 10 of the FBR which 

would occur from the magnitude and phase results in Figure 2.2.1a and 2.2.1b.  The black outline denotes the 

transition region from single to multi-mode. Multi-mode regions are not overlaid with white. The first magenta 

dashed line shows and the forward-only scattering region. The second magenta line shows the region of 

backward-to-forward scattering transitions.  
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Figure 2.2.2. Scattering profiles of a 88 nm diameter Si particle and a 280 nm diameter GaN particle. (a) The 

log base 10 FBR from Figure 2.2.1c, with the permittivity of silicon overlaid in magenta, as a function of size 

parameter (𝑥 = 2𝜋 44 [𝑛𝑚] 𝜆𝑜  [𝑛𝑚]⁄ ) . The dashed magenta line represents the region of Si permittivity 

that is not applicable for the graph, due to material loss. The solid magenta line is the region of Si applicable 

to the graph (𝜖𝑖 < 0.7). (b) Efficiency scaled magnitude response of the dominant scattering coefficients in 

the Si particle’s scattering cross-section (solid lines). he dashed black line plots the log base 10 FRB of the Si 

particle, as a function of wavelength, in the regions showing the backward scattering (blue), the optically-

induced artificial magnetic resonance (red), and the forward scattering (green) regime. (c) The angle-resolved 

far field scattering profiles near the backward and forward Kerker resonances in the Si particle. (d-f) The 

analogous graphs from (a-c) for a 280 nm diameter GaN particle. For 280 nm diameter GaN, only forward-

dominant scattering is present and second order modes become appreciable at shorter wavelengths (𝜆 <

650 𝑛𝑚). All magnitude responses are efficiency scaled based on the formula 
2

𝑥2
(2𝑛 + 1)‖𝛿𝑛‖

2, where 

𝛿𝑛 = 𝑎𝑛 or 𝑏𝑛 and 𝑛 is the mode order.   
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2.3 EFFECT OF RANDOM COUPLING ON KERKER PARTICLES 

 

As described in the previous sections, Kerker scattering requires a particle to satisfy stringent 

magnitude and phase relationships between modes. To study the effect of random nanoparticle 

coupling, we generate random monolayer films of same sized Kerker particles and calculate how 

interparticle coupling alters the scattering behavior of an individual particle within the film. This 

is done using generalized Mie theory, which is a complete analytical solution to the problem of 

multiple scattering and interparticle coupling between particles57,58. Interestingly we find that, the 

average response will continue to satisfy Kerker’s stringent amplitude and phase conditions. This 

is true even when the average nearest neighbor distance is well within the near field coupling 

regime. We then show, in the next section, that this average response has a direct relationship to 

the scattering behavior of an infinite randomly distributed particle film.  

 

When dealing with coupled nanoparticles, polarization conversion can occur. Since this property 

is not seen in isolated Mie theory, it is necessary to work with the full scattering matrix from of 

equation 2.2.1 to define a particle’s scattering response. The particle’s angle resolved scattering 

efficiency is written in general form  

 

𝑄𝑠
∥(휃) =

1

𝑥2
(‖𝑆2‖

2 + ‖𝑆3‖
2 + 𝑆2𝑆3

∗ + 𝑆2
∗𝑆3) ,  2.3.1 

 

and 

 

𝑄𝑠
⊥ (휃) =

1

𝑥2
(‖𝑆4‖

2 + ‖𝑆1‖
2 + 𝑆4𝑆1

∗ + 𝑆4
∗𝑆1).  2.3.2 

 

Furthermore, in generalized Mie theory, it cannot be assumed that degree (𝑚) in the modal 

expansion is unitary. Therefore, the scattering amplitude elements (𝑆1 − 𝑆4) are fully expanded 

with respect to degree (𝑚), order (𝑛), and type (TE or TM). The derivation for converting the 

scattering amplitude elements from isolated Mie theory to generalized Mie theory is presented 

in section two of the supplementary information. 

 

Using the generalized framework, we simulate finite sized random monolayer nanoparticle films 

with 10%, 20%, 30%, and 40% area fill fraction. The packing densities correspond to an average 

nearest neighbor distance ranging from 68nm to 10nm. Gap distances as small as zero (i.e., 

touching particles) are allowed and do occur. Simulations are done for both 88 nm diameter Si 

and 280 nm diameter GaN particles, to study both the forward-to-backward and forward-only 
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Kerker scattering regimes. The method emulates simulating a particle in an infinite film by 

deterministically placing an “observation particle” at the origin, then generating a sufficiently 

large number of particles surrounding it. The surrounding particles are placed based on a 

uniform distribution (i.e., equal probably of finding a particle at any location where particles do 

not overlap) around the observation particle. The spatial autocorrelation of these random 

particle distributions is shown in figure 2.6.3 for Si and figure 2.6.4 for GaN. The generalized 

Mie program is then run on each finite particle film and the resulting scattering coefficients for 

the observation particle is recorded, accounting for all interparticle coupling. This process is 

repeated for 50 unique particle distributions, simulating both parallel and perpendicular incident 

polarization at normal incidence (100 simulations in total). Repeating the simulation procedure 

on unique distributions is designed to mimic randomly sampling particles in an infinite film.  

 

In both the loose and densely packed cases, we find the average response of the observation 

particle is weakly affected by coupling between surrounding particles. The effect of particle 

coupling became more pronounced as fill fraction increased. Though, on average, the resulting 

spectral profile exhibits the same type of Kerker scattering as is seen for isolated particles. We 

find that particle coupling does not excite higher order modes within the Kerker particles, as all 

scattering coefficients having orders greater than one (𝑛 > 1) were shown to be negligible 

(detail for 88 nm diameter Si particles is shown in figure 2.6.5 and for 280 nm diameter GaN 

particles in figure 2.6.6). Therefore, we need only consider 𝑚𝑛 = {11,−11}. Unlike the isolated 

Mie solution, in both Si and GaN, polarization conversion was present. For the scattering 

coefficients associated with polarization conversion, their phase profiles mimicked a uniform 

distribution. Their magnitudes mimicked the parallel-to-parallel or perpendicular-to-

perpendicular coefficients with, on average, an order of magnitude less strength (detail for 88 

nm diameter Si particles is shown in figure 2.6.5 and for 280 nm diameter GaN particles in figure 

2.6.6). In other words, the polarization conversion scattering elements, 𝑆3 and 𝑆4, had random 

phase. They also had magnitudes that were one order of magnitude less than 𝑆1 and 𝑆2 and have 

similar spectral shape. This result simplifies equations 2.3.1 and 2.3.2 with respect to the average 

response since 𝐸[𝑆2S3
∗ + S2

∗𝑆3] ≈ 𝐸[𝑆4S1
∗ + S4

∗𝑆1] ≈ 0. We can intuit the random phase of 

the polarization converted field from the fact that this field is a direct result of the scattered field 

from the surrounding particles impinging on the observation particle. Since these particles are a 

random distance from the observation particle, their phase profiles do not coherently overlap.  

 

In general particle clusters are not rotationally symmetric, so scattering coefficients for parallel 

and perpendicular incident polarization are different. We can intuitively understand this lack of 

symmetry by considering particle dimers. In dimers the electric field distribution can be different 

depending on if particles are aligned on or off axis with respect to the incident polarization. For 
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an infinite film we can remove this polarization dependence, with respect to the average 

response, by including particle distributions rotated by 90 degrees when performing the average.  

Removing the negligible higher order terms and incorporating all relevant simplifications 

discussed above, the average angle-resolved scattering efficiency for a particle in a randomly 

positioned Kerker film can be simplified to  

 

𝔼[𝑄𝑠
∥(휃)] =

1

𝑥2
𝔼[

( ‖𝐴11‖
2 + ‖𝐴11

× ‖2)τ11
2 + 

( ‖𝐵11‖
2 + ‖𝐵11

× ‖2)π11
2 +

(𝐴11𝐵11
∗ + 𝐴11,𝑗

∗ 𝐵11)𝜏11𝜋11

]    2.3.3 

 

 

and 

 

𝔼[𝑄𝑠,𝑗
⊥  (휃)] =

1

𝑥2
𝔼

[
 
 
 
 ( ‖𝐵11,𝑗‖

2
+ ‖𝐵11,𝑗

× ‖
2
) τ11

2 +

(‖𝐴11,𝑗‖
2
+ ‖𝐴11,𝑗

× ‖
2
) π11

2 +

(𝐴11,𝑗𝐵11,𝑗
∗ + 𝐴11,𝑗

∗ 𝐵11,𝑗)𝜏11𝜋11]
 
 
 
 

 .  2.3.4 

 

The variables 𝐴𝑚𝑛 and 𝐵𝑚𝑛 are the TM and TE modes associated with energy transfer between 

same polarization states. The variables 𝐴𝑚𝑛
×  and 𝐵𝑚𝑛

×  account for cross-polarization energy 

transfer. Averaging is taken over observation particles (𝑗), including sets of 90-degree rotations.  

 

Equations 2.3.3 and 2.3.4 show a surprising result. A first order Kerker particle’s average 

scattering response function in a random film is nearly identical to its isolated scattering response 

function shown in equations 2.2.2 and 2.2.3. The difference is only in the addition of first order 

incoherent polarization conversion terms. Consequently, the FBR of the average scattering 

response can be written in similar form to the isolated Mie case, as 𝐹𝐵𝑅𝐴 =
𝔼[𝑄𝑠(𝜃=0°)] 

𝔼[𝑄𝑠(𝜃=180°)]
. Either 

𝔼[𝑄𝑠
∥(휃)] or 𝔼[𝑄𝑠

⊥ (휃)] can be used as long as we are considering all sets accounting for 90-

degree rotations. Justification for the definition of the 𝐹𝐵𝑅𝐴 is provided in section four of the 

supplementary information.    For randomly distributed Kerker particles, the phase relationship 

that determines forward or backward Kerker scattering is given by only the primary first order 

modes, 𝔼[𝐴11𝐵11
∗ + 𝐴11

∗ 𝐵11]. Therefore, for both forward and backward Kerker scattering, it 

is necessary that  𝔼[‖𝐴11‖
2]  =   𝔼[‖𝐵11‖

2] and that 𝔼[‖𝐴11
× ‖2] and 𝔼[‖𝐵11

× ‖2] approach 

zero, since the cross-polarization coefficients are not present in the interference term. The 

condition of polarization invariance is generalized to 𝔼[‖𝐴11‖
2 + ‖𝐴11

× ‖2] =  𝔼[‖𝐵11‖
2 +
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‖𝐵11
× ‖2], indicating that it is not necessary for cross polarization terms to vanish in order to 

satisfy polarization invariance.   

 

Figure 2.3.1 shows the average magnitude response of the prominent scattering coefficients 

found in a randomly coupled Kerker particle as well as the particle’s 𝐹𝐵𝑅𝐴. The results are 

shown for 88 nm diameter Si nanoparticle films with (a) 10% and (d) 40% fill fraction and for 

280 nm diameter GaN nanoparticle films with (b) 10% and (e) 40% fill fraction. Results for 20% 

and 30% fill fraction are shown in figure 2.6.7. We see, for nanoparticles in both the forward-

only and backward-to-forward Kerker scattering regimes (280nm diameter GaN and 88 nm 

diameter Si, respectively), the average scattering coefficients mimic the overall shape of the mode 

profiles for the isolated Mie solution from figure 2.2.2. Furthermore, the 𝐹𝐵𝑅𝐴  for the coupled 

and isolated case follow a similar profile, indicating correct phase behavior. The phase response 

of the primary scattering coefficients is presented in figure 2.6.5 for 88 nm diameter Si and figure 

2.6.6 for 280 nm diameter GaN. From the results above we find that a Kerker particle embedded 

in a random monolayer film of Kerker particles will retain the Kerker scattering behavior of its 

isolated particle solution, in an average sense, despite the effects of random particle coupling. 

All 𝐹𝐵𝑅𝐴’s were calculated using the general formulas from equations 2.3.1 and 2.3.2, assuming 

no simplifications, to validate equations 2.3.3 and 2.3.4. In figure 2.3.1, the mode decomposed 

independent scattering efficiencies are defined as 
2

𝑥2
𝔼 [‖Δ𝑛𝑚,𝑗‖

2
], where Δ = A,B, A×, or 𝐵×. 

These mode decomposed efficiencies will sum to the independent particle’s scattering efficiency. 

This is not the same as the total scattering efficiency due to the interference effect between 

particles. More information about particle efficiencies under the generalized Mie theory 

framework is presented in section three of the supplementary information.   
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Figure 2.3.1. Scattering behavior of Kerker particles embedded in a random monolayer Kerker particle film. 

(a,d) Efficiency scaled magnitude of the dominant scattering modes and FBRA for an 88 nm diameter Si 

particle embedded in a random particle film with fill fractions of (a) 10% and (d) 40%. (c,e) Corresponding 

results for 280 nm diameter GaN particle embedded in a random particle film with fill fractions of (b) 10% 

and (e) 40%. (c,f) Top-view graphical representation of a random particle film with fill fractions of (c) 10%, 

and (f) 40%. The red dashed circle outlines the observation particle. The length and width of the film are given 

as a function of particle radius (R). The solid color lines show the average (N=100) mode contribution to the 

independent scattering efficiency (left y-axis). The dashed black line shows the FBRA for the average scattering 

response (right y-axis). The corresponding shaded areas is the area one standard deviation from the mean.  All 

magnitude responses are efficiency scaled based on the formula 
2

𝑥2
𝔼[‖Δ𝑛𝑚‖

2], where Δ = A,B, A×, or 𝐵×.   
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2.4 MONOLAYER FILMS OF RANDOMLY DISTRIBUTED KERKER 

PARTICLES 

 

To corroborate our results from generalized Mie theory and further study the reflection, 

transmission, absorption (RTA), and polarization-dependent behavior of these films, we 

simulate the random nanoparticle films using full-wave finite-difference time-domain (FDTD) 

simulations59.  

 

Random nanoparticle films with length and width dimensions of 40 times the particle radius was 

repeated using Bloch boundary conditions to model an infinite random structure. Figure 2.4.1a-

c shows the RTA behavior of 88 nm diameter Si random nanoparticle films in the backward-to-

forward Kerker regime. Area fill fractions ranged from 10-40% and illumination was normal 

incidence. Figure 2.4.1d-f shows the corresponding RTA results for 280 nm diameter GaN 

random films in the forward-only regime. In all cases, three distinct random particle distributions 

were simulated using FDTD. The solid lines are the average from the three distinct simulations. 

The shaded region represents the area within one standard deviation of the average. In all cases, 

the reflection and transmission properties of these films were dramatically different from the 

behavior of a corresponding homogeneous dense thin film. The RTA response of a 

homogeneous dense thin film with a thickness equal to the corresponding nanoparticle diameter 

is given by the dashed black line.  

 

We find the dominant scattering feature in these films is like that of an isolated nanoparticle 

building block. To highlight this, we propose the formula  

 

𝑅 =
𝑓𝑓𝔼[𝜎𝑠𝑐𝑎]

1+𝐹𝐵𝑅
,   𝐴 = 𝑓𝑓𝔼[𝜎𝑎𝑏𝑠],   𝑇 = 1 − 𝐴 − 𝑅,  2.4.1 

 

which estimates the film’s spectral reflection (𝑅), absorption (𝐴), and transmission (𝑇) response 

based only on parameters from the average Kerker particle scattering behavior and the particle 

film’s area fill fraction (𝑓𝑓). The 𝐹𝐵𝑅𝐴, average observation particle scattering efficiency 

(𝔼[𝜎𝑠𝑐𝑎]), and average observation particle absorption efficiency (𝔼[𝜎𝑎𝑏𝑠,]) are calculated from 

the simulations performed in section three. The scattering efficiency is determined through the 

equation  

 

𝔼[𝜎𝑒𝑥𝑡] − 𝔼[𝜎𝑎𝑏𝑠] = 𝔼[𝜎𝑠𝑐𝑎−𝑖] + 𝔼[𝜎𝑠𝑐𝑎−𝑑] = 𝔼[𝜎𝑠𝑐𝑎],  2.4.2 
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where 𝜎𝑒𝑥𝑡,𝑗 is the extinction efficiency, 𝜎𝑎𝑏𝑠,𝑗 is the absorption efficiency, 𝜎𝑠𝑐𝑎−𝑖,𝑗 is the 

independent scattering efficiency, and 𝜎𝑠𝑐𝑎−𝑑,𝑗 is the dependent scattering efficiency of the 𝑗’th 

sampled observation particle60.  

 

 

Figure 2.4.1. Reflection, transmission, and absorption of random nanoparticle films made of Kerker particles, 

calculated using FDTD. (a-c) RTA of random particle films made of 88 nm diameter Si particles for area fill 

fractions ranging from 10-40%. The colored solid lines represent the average response over 3 simulations of 

distinct random distributions. The colored shaded region represents the area within one standard deviation of 

the mean. The dashed black line shows the RTA for an 88 nm thick dense homogenous thin film slab of Si. 

(d-f) Corresponding results for random particle films of 280 nm diameter GaN particles. The dashed black 

like shows the corresponding response for a 280 nm thick dense homogeneous thin film slab of GaN.   

 
Figure 2.4.2 compares the result of equation 2.4.1 to the direct calculations from figure 2.4.1. 

The comparison was done for fill fractions of 10% and 40% in 88 nm diameter Si films (figure 

2.4.2a,b) and in 280 nm diameter GaN films (figure 2.4.2c,d). The results for fill fractions of 

20% and 30% are shown in figure 2.6.7. Satisfyingly we find a good agreement between equation 

2.4.1 and the results from full-wave calculations. Alternatively, effective medium theories such 

as the Bruggeman and Maxwell-Garnett mixing formulas did not accurately predict the film’s 

RTA response.  

 

a

d
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Figure 2.4.3 shows the angle- and polarization-dependent RTA responses of both Si and 

GaN nanoparticle films with 20% fill fraction. The response to the random Si Kerker film is 

plotted at a wavelength of 420 nm (figure 2.6.9), for backward-Kerker behavior, and at 459 nm 

(figure 2.4.2a), for forward-Kerker scattering. A comparison to the response of an 88 nm thick 

Si homogeneous dense thin film is shown in figure 2.4.2d. Figures 2.4.2b,c,e,f show the 

analogous comparisons for GaN. Unlike the thin film cases, we see that the RTA response of 

the Kerker particle films are relatively unchanged for angles of incidence lower than 40 degrees. 

At steeper angles, reflection begins to increase and transmission decreases accordingly, while 

absorption stays relatively constant. This effect is most pronounced at wavelengths with 

forward-direction Kerker scattering.  The RTA response of the random Kerker films are also 

invariant to incident polarization state and show no Brewster’s angle suppression of transverse 

magnetic reflective. This behavior is completely different to the case of a homogeneous dense 

thin film.  

 

Figure 2.4.2. Comparison of the reflection, transmission, and absorption (RTA) in random monolayer Kerker 

films at normal incidence. In all cases the solid lines are the average FDTD-based RTA response, taken from 

Figure 2.4.1, and the dashed lines are the average RTA response predicted from equation 2.4.1 using the data 

from section two. (a,b) RTA of 88 nm diameter Si random particle films for (a) 10% and (b) 40% fill fraction. 

(c,d) RTA of the 280 nm diameter GaN random particle films for (c) 10% and (d) 40% fill fraction.  

a b

c d
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Figure 2.4.3. Angular and polarization response of random Kerker films with a fill fraction of 20% and a 

comparison to equivalent thickness thin film analogs. For the random films, the particle distributions are the 

same as the ones used in Figure 2.4.1, for the 20% fill fraction case. For a-c, the lines represent the average 

from the 3 distinct simulations and the shaded area represents the area within one standard deviation from the 

mean. All solid lines represent plane wave excitation with p-polarization. All dashed lines represent s-

polarization.   
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2.5 CONCLUSION 

 

In summary, we show that Kerker scattering achieved by ED and MD overlap in small size 

parameter particles can create either forward-only scattering or scattering with a backward-to-

forward transition as the wavelength is varied. Using 280 nm diameter GaN nanoparticles as an 

example of forward-only scattering and 88 nm diameter Si nanoparticles as an example of a 

backward-to-forward scattering transition, we study the effect of random particle coupling in 

monolayer particle films. The scattering properties of an individual Kerker particles in a random 

film was weakly affected by particle coupling. In an average sense, the scattering properties 

mimic the isolated Mie response with the introduction of an added cross-polarization term. This 

term was roughly an order of magnitude weaker than the dominant terms and had random 

phase. Random films of Kerker particles had reflection and transmission spectra that could be 

predicted from three values: the average particle scattering cross-section, the forward-to-

backward ratio, and the films area fill fraction. In all cases the spectrum was distinctly different 

from thin-film analogs or effective medium predictions. Finally, we showed that the reflection 

and transmission response of random Kerker films does not differentiate between s- and p-

polarizations and that these films do not exhibit a Brewster angle reflection like that of a thin 

film sample.  
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2.6 APPENDIX A: SUPPLEMENTARY FIGURES 

 

 
 

Figure 2.6.1. Mode contribution to the total scattering cross section for a single lossless nanoparticle. (a) 

Normalized contribution of the first order modes to the total scattering cross section. (b) Normalized 

contribution of the second order modes to the total scattering cross section. (c) Normalized contribution of 

the third order modes to the total scattering cross section. All graphs were calculated using Mie theory, up to 

fifth order modes. No non-zero mode contributions were found for modes above the third order.  

 

 

Figure 2.6.2. Effect of material loss on satisfying polarization invariance Kerker condition, and forward-to-

backward ratios. Figure 2.6.2a-c shows the phase difference between the first order TM and TE modes, in the 

regime where the normalized difference in the mode magnitudes is less than one tenth. Figure 2.6.2a-c are 

plotted for imaginary permittivity equal to one, four, and nine, respectively. Figure 2.6.2d-f, shows the 

corresponding log base ten forward-to-backward scattering ratios, with a black line overlay showing the cutoff 

when the first order modes contribute less than ninety nine percent of the scattering cross section.  
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Figure 2.6.3. Average spatial autocorrelation functions of the 50 unique particle distributions and their 90 

degree rotations for Si. (a-d) Average spatial autocorrelation function for 88nm diameter Si particles 

randomly distributed with fill fractions of (a) 10%, (b) 20%, (c) 30%, and (d) 40%. (e-h) Line profile of the 

autocorrelation along the y = 0 direction. The solid black line represents the average autocorrelation. The 

shaded area is one standard deviation from the average.   
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Figure 2.6.4. Average spatial autocorrelation functions of the 50 unique particle distributions and their 90 

degree rotations for Si. (a-d) Average spatial autocorrelation function for 88nm diameter Si particles 

randomly distributed with fill fractions of (a) 10%, (b) 20%, (c) 30%, and (d) 40%. (e-h) Line profile of the 

autocorrelation along the y = 0 direction. The solid black line represents the average autocorrelation. The 

shaded area is one standard deviation from the average.   
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Figure 2.6.5. Contribution of higher order modes to the scattering response and the phase profiles of the 

dominant scattering modes for an 88nm Si particle embedded in a random Kerker film of 88nm Si particles. 

(a-d) Average contribution of the 𝑚𝑛 = {01,02,12, 22} modes to the independent scattering cross-

section for fill fractions of (a) 10%, (b) 20%, (c) 30%, and (d) 40%. (e-h) Phase profile of the dominant 

scattering modes 𝑚𝑛 = {11}, showing the cross-polarization terms have random phase for (e) 10%, (f) 

20%, (g) 30%, and (h) 40% fill fraction. The solid lines represent the average response and the 

corresponding shaded area is the area within one standard deviation of the mean. Statistics were based on 

50 unique particle distributions and their 90-degree rotations (100 simulations in total). 
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Figure 2.6.6. Contribution of higher order modes to the scattering response and the phase profiles of the 

dominant scattering modes for an 280nm GaN particle embedded in a random Kerker film of 280nm GaN 

particles. (a-d) Average contribution of the 𝑚𝑛 = {01,02,12, 22} modes to the independent scattering 

cross-section for fill fractions of (a) 10%, (b) 20%, (c) 30%, and (d) 40%. (e-h) Phase profile of the 

dominant scattering modes 𝑚𝑛 = {11}, showing the cross-polarization terms have random phase for (e) 

10%, (f) 20%, (g) 30%, and (h) 40% fill fraction. The solid lines represent the average response and the 

corresponding shaded area is the area within one standard deviation of the mean. Statistics were based on 

50 unique particle distributions and their 90-degree rotations (100 simulations in total). 
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Figure 2.6.7. Scattering behavior of Kerker particles embedded in a random monolayer Kerker particle film. 

(a,d) Efficiency scaled magnitude of the dominant scattering modes and FBRA for an 88 nm diameter Si 

particle embedded in a random particle film with fill fractions of (a) 20% and (d) 30%. (c,e) Corresponding 

results for 280 nm diameter GaN particle embedded in a random particle film with fill fractions of (b) 20% 

and (e) 30%. (c,f) Top-view graphical representation of a random particle film with fill fractions of (c) 20%, 

and (f) 30%. The red dashed circle outlines the observation particle. The length and width of the film are given 

as a function of particle radius (R). The solid color lines show the average (N=100) mode contribution to the 

independent scattering efficiency (left y-axis). The corresponding shaded area is the area one standard deviation 

from the mean. The dashed black line shows the FBRA for the average scattering response (right y-axis). 
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Figure 2.6.8. Comparison of the reflection, transmission, and absorption (RTA) in random monolayer Kerker 

films at normal incidence. In all cases the solid lines are the average FDTD-based RTA response, taken from 

the, and the dashed lines are the average RTA response predicted from equation (8) using the data from section 

2 in the main text. (a,b) RTA of 88 nm diameter Si random particle films for (a) 20% and (b) 30% fill fraction. 

(c,d) RTA of the 280 nm diameter GaN random particle films for (c) 20% and (d) 30% fill fraction.  
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Figure 2.6.9. Angular response of random Kerker films with a fill fraction of 20%. (a) RTA for randomly 

placed 88 nm Si particles as a function of angle, at a wavelength of 420 nm (backward-Kerker regime). (b) 

Corresponding RTA angular response for an 88 nm Si slab at a wavelength of 420 nm.  
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C h a p t e r  3   

THE KERKER TRANSFORM 

Wray, P. R.; Atwater, H. A. Kerker Transform: Expanding Fields in a Discrete Basis of 
Directional Harmonics. arXiv March 7, 2023. https://doi.org/10.48550/arXiv.2303.03693. 

 

 

ABSTRACT 

We present a linear coordinate transform to expand the solution of scattering and emission 

problems into a basis of forward and backward directional vector harmonics. The transform 

provides intuitive algebraic and geometric interpretations of systems with directional 

scattering/emission across a broad range of wavelength-to-size ratios. The Kerker, generalized 

Kerker, and transverse Kerker effect as well as other forms of highly directional 

scattering/emission are easily understood through open and closed loop contours in the 

complex plane. Furthermore, the theoretical maximum directivity of any scattering/emissive 

system is easily defined. The transformed far field harmonics have coordinates that are polar-

angle invariant, interference between forward and backward harmonics weakly interact, and 

interference of same type harmonics alters directivity. Examples of highly directional scattering 

are presented including a Kerker scattering magnetic sphere, a directional scattering photonic 

nanojet, both under plane wave illumination, as well as generalized backward Kerker and 

transverse Kerker emission from sub-wavelength spheres that are near-field coupled to emitters. 

Solutions of scattering/emission under the Kerker transform are contrasted to the traditional 

Mie expansion for comparison.  

https://doi.org/10.48550/arXiv.2303.03693
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3.1 INTRODUCTION 

 

The spherical harmonics are a set of fundamental modes of vibration on the sphere that provide 

valuable insights for understanding the scattering/emission of electromagnetic waves from 

particles61–63. Though these harmonics are invaluable to our understanding of 

scattering/emission from wavelength-sized objects, their atom-like spatial profile does not create 

a simple representation for describing phenomena such as angular momentum or directional 

scattering/emission. Fortunately, a linear transform of the spherical harmonics offers an 

insightful and mathematically simple method to study optical spin and orbital angular 

momentum64,65. In this manuscript we show that by a different but equally simple linear 

transform, the spherical harmonics can also give an intuitive basis to describe strongly directional 

scattering/emission. The resulting basis therefore provides a framework to study highly 

directional phenomena, which is of great value in many subjects in electromagnetics22,29,34,35,37,66–

71, while maintaining may of the beneficial properties that have popularized the spherical 

harmonics.  

 

Under the Mie (vector spherical harmonic) framework, the Kerker effect is a method of 

achieving large forward-to-backward scattering/emission ratios through near exact cancelation 

of either the forward or backward intensity. This is achieved through the precise interference of 

same order electric (𝜳𝑛𝑚𝑝
𝐸 ) and magnetic-type (𝜳𝑛𝑚𝑝

𝑀 ) atom-like modes, where 𝑛 is the polar 

quantum number, 𝑚 is the azimuthal quantum number, and 𝑝 (0 = even and 1 = odd) is the 

azimuthal parity37. The case where generalized combinations of harmonics leads to (near) exact 

forward or backward cancelation is categorized as a generalized Kerker effect72,29. This requires 

no restriction on relative amplitude or phase between modes, only that they collectively interfere 

for exact cancelation in one direction. Cancelation in both directions is termed the transverse 

Kerker effect34. These conditions of cancelation in the exact forward or backward direction are 

formalized as the null points in the expression of exact forward (휃 = 0) or backward (휃 = 𝜋) 

power flow53,73. In principle, there are an infinite number of these null solutions. Besides a select 

set of simple examples (e.g., 𝑐𝑛1𝑝
𝑀 = 𝑐𝑛1𝑝

𝐸 ), these solutions can be hard to intuit as they come 

from a quadratic polynomial of 𝑛,𝑚, 𝑝, 𝑡 terms. Furthermore, directional scattering is a more 

holistic concept that need not evoke Kerker’s conditions. It encompasses other metrics, such as 

directivity and side lobe behavior. The null conditions of the exact forward and backward power 

flow do not provide insight to these properties. Many works have shown that other 

combinations of interference not satisfying the null conditions (e.g., not evoking a Kerker effect) 

can give highly directional scattering/emission. For example, photonic nanojets typically have 

large number of side lobes with dominant and highly directive forward power flow, but 

backward power flow does not approach zero and can still be non-negligible70. Therefore, it is 
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important to note that though the Kerker transform is named after the inspiring work of 

Milton Kerker, the Kerker basis is intended to efficiently represent all highly directional 

scattering /emission, not just the Kerker conditions. The basis is also intended to provide 

insights to metrics describing directionality such as directivity and side lobes. 

 

To illustrate the general complexity of directional scattering in the Mie basis, consider two 

systems 

 

𝑆𝑦𝑠𝑡𝑒𝑚 1: −2𝑎𝜳111
𝐸 − 2𝑖𝑏𝜳211

𝐸 + 𝑐𝜳311
𝐸 − 𝑖𝑐𝜳310

𝑀

𝑆𝑦𝑠𝑡𝑒𝑚 2: −2𝑎𝜳111
𝐸 − 2𝑏𝜳210

𝑀 + 𝑐𝜳311
𝐸 − 𝑖𝑐𝜳310

𝑀 ,
    

 

where 𝑎, 𝑏, 𝑐 ∈ 𝕫+ ≪ ∞. Are these systems directional? Which has the larger forward-to-

backward ratio?  What is occurring with respect to the side lobes? Can either system be Kerker, 

generalized Kerker, or transverse Kerker? What can we infer about directivity? How do the 

answers to these questions dependent on the choice of 𝑎, 𝑏, and 𝑐? These questions become 

more complex with the introduction of phase and as more harmonics are considered. The 

difficulty stems fundamentally from the Mie harmonics: they are designed to provide intuition 

of atom-like behavior, not directionality. To add further complication, many examples of 

directional scattering occur from particles which straddle the wave and ray-optic regime. E.g., 

photonic nanojets. When inclusions have around 2 appreciable harmonics (e.g., small sized 

inclusions), the conditions of harmonic interference giving rise to directionality is 

straightforward. In the limit of a very large number of harmonics (e.g., inclusions much larger 

than the wavelength) direct harmonic analysis is infeasible, and directionality is understood 

through a ray-optic approximation. Between the two regimes (2 – 50 harmonics) ray optics may 

not be accurate and wave optics not intuitive (e.g., the example of 4 harmonic systems proposed 

above). 

 

The parameter space to achieve directional scattering/emission is vast. Inspired by the Kerker 

effect we propose a linear coordinate transform which seeks to provide a more intuitive basis 

for analyzing directional scattering/emission across all size regimes where wave optics is 

computationally viable, while still maintaining the useful properties which has made the spherical 

vector harmonics indispensable. The linear transform, termed the Kerker transform, and the 

resulting basis, termed the Kerker basis, is composed of forward and backward-type harmonics 

constructed from the Mie harmonics. The Kerker harmonics have the useful properties that 

forward and backward-type harmonics weakly interact with each other, and interference of same 

type harmonics is designed to control directivity and side lobes in the respective direction. The 

algebraic conditions for directional scattering under this framework is found to be simple to 
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understand and have an intuitive geometric interpretation in the complex plane based on 

open and closed contours. Notably the conditions for Kerker scattering, transverse Kerker 

scattering (simultaneous suppression of both forward and backward intensity), and generalized 

Kerker scattering are easily conceptualized. The condition for theoretically maximal directivity 

is also easily conceptualized. 

 

The difference between the Kerker and Mie harmonic expansions are summarized as:  

 

The Kerker framework easily represents directional scattering, while atom-like scattering arises from complicated 

interference. In the Mie framework, atom-like scattering is easily represented, while directional scattering arises 

from complicated interference. 

 

The remainder of this article is comprised of three sections. In the first section the Mie expansion 

is briefly reviewed and the Kerker expansion is presented. In the second section, features of the 

Kerker expansion studied in detail in the context of electromagnetic fields. Areas where the 

Kerker basis provides new beneficial insights for directional systems is emphasized, discussed, 

and contrasted to the Mie basis. The last section presents case studies of a Kerker, transverse 

Kerker, generalized Kerker, and general highly directional scattering/emitting systems, 

comparing the solutions in both the Kerker and Mie basis. Both scattering and emissive systems 

across a wide size-to-wavelength regime are discussed. We also provide an answer to our 

illustrative questions for System 1 and System 2, posed above. Finally, we conclude with a summary 

of the results.  
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3.2 THE KERKER TRANSFORM 

 

Mie theory expands outward propagating scattered or emitted electromagnetic fields in terms of 

electric (𝜳𝑛𝑚𝑝
𝐸 ) and magnetic-type (𝜳𝑛𝑚𝑝

𝑀 ) spherical vector harmonics. As the names suggest, 

electric-type harmonics mimic electric atom-like multipole patterns in the far field, whereas 

magnetic-type harmonics mimic magnetic atom-like multipole field patterns. Time-harmonic 

electric and magnetic fields in the frequency domain are expanded under the Mie framework as 

 

𝑬 = ∑ ∑ ∑ (𝑐𝑛𝑚𝑝
𝑀 𝜳𝑛𝑚𝑝

𝑀 (𝒓, 𝑘) + 𝑐𝑛𝑚𝑝
𝐸 𝜳𝑛𝑚𝑝

𝐸 (𝒓, 𝑘))1
𝑝=0

𝑛
𝑚=0

∞
𝑛=1

𝑯 =
−𝑖𝑘

𝜇𝜔
∑ ∑ ∑ (𝑐𝑛𝑚𝑝

𝐸 𝜳𝑛𝑚𝑝
𝑀 (𝒓, 𝑘) + 𝑐𝑛𝑚𝑝

𝑀 𝜳𝑛𝑚𝑝
𝐸 (𝒓, 𝑘))1

𝑝=0
𝑛
𝑚=0

∞
𝑛=1 ,

  3.2.1 

 

where 𝑐𝑛𝑚𝑝
𝐸  and 𝑐𝑛𝑚𝑝

𝑀  are the complex electric and magnetic-type scattering coefficients, 

respectively. Though the coefficients are termed electric and magnetic-type, both coefficients 

scale either electric or magnetic-type harmonics depending on if one is viewing the electric or 

magnetic field. (E.g., the magnetic field scales the magnetic-type harmonic with the electric-type 

coefficient.) This is because 𝑯 = (
−𝑖

𝜇𝜔
)∇ × 𝑬 and the vector spherical harmonics change type 

under the curl operator: 𝛻 ×𝜳𝑛𝑚𝑝
𝑡 (𝒓, 𝑘) = 𝑘𝜳𝑛𝑚𝑝

1−𝑡 (𝒓, 𝑘), where 𝑡 = 0 = 𝑀 and 𝑡 = 1 = 𝐸. 

The vector spherical harmonics are constructed from the scalar spherical harmonics and the 

spherical Bessel functions, as detailed in the appendix. All expansions in this text are written in 

a form general enough to represent any feasible electromagnetic field distribution in a linear, 

isotropic, and homogeneous host medium, with permeability, 𝜇, and permittivity, 𝜖. All fields 

are assumed time harmonic with angular frequency, 𝜔. Arbitrary time pulses are then generated 

though Fourier transformation. The harmonic time dependence is implied and not written 

explicitly. All bold variables are vectors in ℂ3 or ℝ3, dependent on the physical context, under 

the standard spherical basis �̂�𝑟,  �̂�𝜃 , and �̂�𝜙. Spatial positions are denoted by 𝒓 =

(𝑟�̂�𝑟 +  𝜙�̂�𝜙 +  휃�̂�𝜃), where 𝑟, 𝜙, and 휃 are the radial, azimuthal, and polar coordinates, 

respectively. The wavenumber of the host media is 𝑘2 = 𝜔2𝜖𝜇. In both the Mie and Kerker 

expansions we adopt the convenient approach of assigning a type variable, 𝑡 ∈ [0,1], and a 

parity variable, 𝑝 ∈ [0,1], to write equations in compact form when applicable. Therefore, 1 −

𝑡 is equivalent to flipping the harmonic type and 1 − 𝑝 flips parity. This compact form helps to 

illuminate fundamental differences between the Mie and Kerker basis systems, which we feel is 

a critically important concept to convey as a first introduction to the Kerker transform. 

Correspondingly, we also use the cosine and sine expansion of the Mie harmonics (hence the 

parity variable and 𝑚 ≥ 0), because this also best illuminates’ difference between the Mie and 
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Kerker expansions. Though, we note that the complex azimuthal representation would 

elegantly simplify many of the analytic expressions discussed below. For this reason we 

encourage the reader to write the expansions on paper for each type and parity and also in the 

complex azimuthal form. Doing so will illuminate the simplicity of the Kerker transform, which 

is somewhat obscured by the chosen notation. Throughout the text, the summation bounds for 

𝑛, 𝑚, 𝑝, and 𝑡 are the same as the bounds in equation 3.2.1. We will omit writing summation 

bounds explicitly and instead use the shorthand, nmpt.  

 

The Kerker basis expands the electric and magnetic fields in terms of highly directional forward 

(𝜰𝑛𝑚𝑝
𝑓

) and backward-type (𝜰𝑛𝑚𝑝
𝑏 ) harmonics. The field expansions under the Kerker 

framework are 

 

𝑬 = ∑ (𝑐𝑛𝑚𝑝
𝑓
𝜰𝑛𝑚𝑝
𝑓 (𝒓, 𝑘) + 𝑐𝑛𝑚𝑝

𝑏 𝜰𝑛𝑚𝑝
𝑏 (𝒓, 𝑘))𝑛𝑚𝑝

𝑯 =
𝑘

𝜇𝜔
 ∑ (−1)𝑝 (𝑐𝑛𝑚𝑝

𝑓
𝜰𝑛𝑚1−𝑝
𝑓 (𝒓, 𝑘) − 𝑐𝑛𝑚𝑝

𝑏 𝜰𝑛𝑚1−𝑝
𝑏 (𝒓, 𝑘)) ,𝑛𝑚𝑝

   3.2.2 

 

where 𝑐𝑛𝑚𝑝
𝑓

 and 𝑐𝑛𝑚𝑝
𝑏  are the complex forward and backward scattering coefficients, 

respectively. Unlike the Mie expansion, the Kerker coefficients of one type multiply only the 

harmonics of the same type. (E.g., in both the electric and magnetic field, the forward coefficient 

always multiplies the forward harmonic.) This is because the Kerker harmonics do not alter type 

under the curl operation: ∇ × 𝜰𝑛𝑚𝑝
𝑡 (𝒓, 𝑘) = (−1)t−𝑝𝑖𝑘𝜰𝑛𝑚1−𝑝

𝑡 (𝒓, 𝑘), where 𝑡 = 0 = 𝑓 and 

𝑡 = 1 = 𝑏. Instead, the curl induces a parity change of the Kerker harmonic, and changing 

parity is equivalent to an azimuthal phase shift, 𝜰𝑛𝑚𝑝
𝑡 (𝑟,  휃, 𝜙, 𝑘) = 𝜰𝑛𝑚1−𝑝

𝑡 (𝑟,  휃, 𝜙 +
𝜋

2
, 𝑘). 

This type preservation under the curl operation is an important component to simplifying 

analytic expressions in directional systems. The Kerker harmonics are related to the vector 

spherical harmonics through the linear transform 

 

𝜰𝑛𝑚𝑝
𝑡 (𝒓, 𝑘) = (−1)𝑡(𝑛+𝑚+1)(𝑖)𝑛 (𝜳𝑛𝑚𝑝

𝑀 (𝒓, 𝑘) + (−1)𝑡−𝑝𝑖𝜳𝑛𝑚1−𝑝
𝐸 (𝒓, 𝑘)).   3.2.3 

 

A complete component-wise expansion of the Kerker harmonics is shown in the appendix. The 

Kerker coefficients are related to the Mie coefficients through 

 

c𝑛𝑚𝑝
𝑡 =

1

2
(−1)𝑡(𝑛−𝑚−1)(−𝑖)𝑛(𝑐𝑛𝑚𝑝

𝑀 + (−1)1−𝑡−𝑝𝑖𝑐𝑛𝑚1−𝑝
𝐸 ),  3.2.4 
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where 𝑡 = 0 = 𝑓 and 𝑡 = 1 = 𝑏. Therefore, electromagnetic scattering/emission problems 

can be solved in either the Kerker or Mie basis, then subsequently transformed into the other 

basis when beneficial for analysis. 

 

 It is important to note that though the Kerker harmonics are formed from a superposition of 

electric and magnetic-type Mie harmonics, this basis is not equivalent to the transform used to 

study angular momenta.  The Kerker basis does not preserve circular polarization or helicity 

(e.g., it is not equivalent to 𝜳𝑛𝑚𝑝
𝑀 ±𝜳𝑛𝑚𝑝

𝐸 ). The Kerker harmonics are not eigenvectors of the 

orbital angular momentum operator (
1

𝑘
∇ ×), as evident by the change in parity under the curl 

discussed above. With that said, multiple reports have studied the connection between Kerker’s 

conditions and helicity preservation that exists in suitably rotationally symmetric 

scattering/emissive systems65,74. Such connections can also be studied in the Kerker basis by 

forming Kerker harmonics that also preserve handedness. This is achieved through a linear 

transform of the regular Kerker harmonics to incorporate both parity. E.g., 𝑸𝑛𝑚ℎ
𝑡 (𝒓, 𝑘) =

𝜰𝑛𝑚0
𝑡 (𝒓, 𝑘) + (−1)𝑡−ℎ𝑖𝜰𝑛𝑚1

𝑡 (𝒓, 𝑘), where ℎ = 0 = 𝐿 for left-handed polarization and ℎ =

1 = 𝑅 for right-handed polarization. This basis is an eigenvector of the angular momentum 

operator as, ∇ ×𝑸𝑛𝑚ℎ
𝑡 = (−1)ℎ𝑘𝑸𝑛𝑚ℎ

𝑡 . Therefore, the Kerker harmonics can be used to 

efficiently understand directional scattering in systems with and without angular momentum 

preservation.  
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3.3 FEATURES OF THE KERKER TRANSFORM 

 

A primary benefit of the Kerker basis is having a simplified expression in the far field compared 

to the Mie harmonics. The far field Kerker harmonics are 

 

𝚼𝑓𝑎𝑟,𝑛𝑚𝑝
𝑡 (𝒓, 𝑘) = 𝑖

𝑒𝑖𝑘𝑟

𝑘𝑟
𝑋𝑛𝑚
𝑡 (θ)

[
 
 
 

0 �̂�𝑟

+𝑠𝑖𝑛 (𝑚𝜙 − 𝑝
𝜋

2
+ 𝑡𝜋) �̂�𝜃

+𝑐𝑜𝑠 (𝑚𝜙 − 𝑝
𝜋

2
) �̂�𝜙 ]

 
 
 

+ 𝑂 {
1

(𝑘𝑟)2
},   3.3.1 

 

where  

 

𝑋𝑛𝑚
𝑡 (θ) =

(−1)𝑡(𝑛+𝑚+1)

√𝑛(𝑛+1)
(𝜏𝑛
𝑚(휃) + (−1)𝑡𝑚𝜋𝑛

𝑚(휃))  3.3.2 

 

is a real valued function describing the forward, 𝑋𝑛𝑚
𝑓 (θ), and backward, 𝑋𝑛𝑚

𝑏 (θ), polar-angle 

dependence. Equation 3.3.1 shows that the vector components differ only by simple 

trigonometric relations. Equation 3.3.2 defines the relationship of the Kerker polar angle 

functions to the Mie polar angle functions, 𝜏𝑛
𝑚(휃) and 𝑚𝜋𝑛

𝑚(휃). By construction, all vector 

components of the far field Kerker harmonics share the same polar-angle dependence. This 

polar-angle invariance is a key feature of the Kerker harmonics and allows us to focus on 𝑋𝑛𝑚
𝑡  

in order to understand directional properties. In contrast, the Mie expansion has a different 

polar-angle expansion for each vector component.  

 

Figure 3.3.1 plots both the Kerker (𝑋𝑛𝑚
𝑡 ) and Mie (𝜏𝑛

𝑚 ,𝑚𝜋𝑛
𝑚, upper quadrant) polar angle 

functions up to the quantum numbers 𝑛 = 4 and 𝑚 = 4. From this figure we note three 

features of 𝑋𝑛𝑚
𝑡 , designed for convenience when studying directional systems:  

 

(1) 𝑋𝑛𝑚
𝑡  has a simple relation between the two types: the backward Kerker functions are the 

forward Kerker functions rotated 180∘. (I.e., 𝑋𝑛𝑚
𝑡 (θ) = 𝑋𝑛𝑚

1−𝑡(𝜋 − 휃).) This is not just 

convenient to conceptualize, but also allows only one type to be calculated and stored in 

memory. In contrast, the Mie polar angle functions are not related through a rotation and have 

completely different shapes. This is because 𝜋𝑛
𝑚 is related to the associated Legendre polynomial 

and 𝜏𝑛
𝑚 is related to the derivative of the associated Legendre polynomial. Furthermore, 180∘ 

rotations of the Mie polar functions lead to different inversion parity relations that are dependent 

on the quantum polar numbers. I.e., 𝜏𝑛
𝑚(𝜋 − 휃) = (−1)𝑛−𝑚+1𝜏𝑛

𝑚(휃) and 𝜋𝑛
𝑚(𝜋 − 휃) =
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(−1)𝑛−𝑚𝜋𝑛
𝑚(휃).  This further complicates deriving intuitive interference relations for the 

Mie harmonics because the sign of the lobes alters as a function of polar number and harmonic 

type. The Kerker functions need no such sign relation.  

 

(2) The Kerker polar functions are highly directional and have the clear notion of primary and 

side lobes. Therefore, the functions can easily represent directional fields. This is unlike the Mie 

counterpart, where there is no clear definition of side lobes. For each Kerker harmonic, the total 

number of lobes is given simply by 𝑛 − 𝑚 + 1 and the proportion of the side lobes in the 

nondominant hemisphere is given by 𝑐𝑒𝑖𝑙 (
𝑛−𝑚

2
).§1 Furthermore, harmonics with larger polar 

quantum numbers have narrower beam widths for all lobes. Therefore, from knowing just the 

quantum numbers of a Kerker harmonic you can infer far field directionality, relative beam 

widths, and side lobes, including the side lobe concentration in both the forward and backward 

hemispheres for each harmonic. The Mie polar functions provide no such intuition, as they are 

not designed for this purpose. For example, contrast the field profiles of 𝜏3
1 and 𝜋3

1. The number 

of lobes, amplitude of lobes, width of lobes, and sign of the lobes from these Mie polar functions 

are all different.  

 

(3) The Mie polar functions are neither mutually orthogonal nor orthogonal to each other.  In 

contrast, the Kerker polar functions of the same type and azimuthal number are orthogonal over 

the domain ∫ 𝜕휃sin (휃)𝑋𝑛𝑚
𝑡 (θ)𝑋𝑛′𝑚

𝑡 (θ)
𝜋

0
.  

 

Like Mie theory, the 𝑚 = 1 column in figure 3.3.1 (circled in dashed blue) is the only column 

to have a nonzero exact forward or backward field.  This column is particularly important and 

usually predominant on physical grounds. For example, symmetries of the scattering/emitting 

object, such as being of spherical shape, can preclude 𝑚 ≠  1. In the Kerker basis the primary 

lobes of the 𝑚 = 1 column are exactly centered in either the forward (θ = 0) or backward (휃 =

𝜋) direction, with exactly no field in the opposite direction. We will show later this attribute 

simplifies the analytic expression for calculating forward-to-backward ratios. With that said, the 

Kerker basis is a directional expansion for all 𝑚 ≥  1, as evident in figure 3.3.1. It can describe 

any arbitrary scattering/emissive system as an expansion of directional harmonics, given that the 

fields can be represented by a spherical harmonic expansion.§2 

 
§1 Note that the domain of the polar angle functions is 휃 ∈ [0,𝜋] and lobes are counted within this angular region. 

§2 Just like the Mie harmonics, the Kerker harmonics are defined with respect to a global coordinate system. To efficiently represent a directional beam 

that is off-axis to the globally defined forward/backward direction, either the system can be solved under a new global coordinate system that aligns with 

the direction of interest or the rotation theorem for vector spherical harmonics, based on the Wigner-d functions, can be used.   
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Figure 3.3.1. Table of the Kerker and Mie (upper corner) polar angle functions. Rows and columns designate 

polar and azimuthal quantum numbers, respectively. Forward and backward-type functions and corresponding 

𝑚𝜋𝑛
𝑚 and 𝜏𝑛

𝑚 functions are on the right and left-hand side, respectively.  The functions are plotted in polar 

coordinates where the polar angle is given by the key in the upper left. Positive and negative values of the 

radius are denoted by black and red lines, respectively. The columns encircled by dashed blue lines contain the 

polar functions that have nonzero values in the exact forward or backward direction.  

 

From the surface equivalence principle, the scattered/emitted field can also be represented as 

electric (𝑱 = �̂�𝑟 × 𝑬) and magnetic (𝑴 = −�̂�𝑟 ×𝑯) current densities. Such relations are of 

interest in applications such as near-to-far transformation. The Kerker basis is paired to a 

corresponding basis of forward (𝓳𝑛𝑚𝑝
𝑓

) and backward-driving (𝓳𝑛𝑚𝑝
𝑏 ) current densities, where 

𝓳𝑛𝑚𝑝
𝑡 (𝒓, 𝑘) = �̂�𝑟 × 𝚼𝑛𝑚𝑝

𝑡 (𝒓, 𝑘). Given that  

 

𝓳𝑓𝑎𝑟,𝑛𝑚𝑝
𝑡 (𝒓, 𝑘) = 𝑖

𝑒𝑖𝑘𝑟

𝑘𝑟
𝑋𝑛𝑚
𝑡 (θ)

[
 
 
 

0 �̂�𝑟

−𝑐𝑜𝑠 (𝑚𝜙 − 𝑝
𝜋

2
) �̂�𝜃

𝑠𝑖𝑛 (𝑚𝜙 − 𝑝
𝜋

2
+ 𝑡𝜋) �̂�𝜙]

 
 
 

+ 𝑂 {
1

(𝑘𝑟)2
},   3.3.3 

 

we find that all beneficial properties of the Kerker far field harmonics also equally apply to the 

Kerker far field current densities. In particular, the 𝑋𝑛𝑚
𝑡  dependence is unchanged. This provides 

a method to understand what current distributions give rise to directional scattering in the far 

field.  

 

Using the far field Kerker basis, the time-averaged far field Poynting vector is 
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〈𝑺𝑓𝑎𝑟〉 =
1

2

1

𝜇𝜔𝑘𝑟2
(‖𝐴(𝜙, 휃)‖2 + ‖𝐵(𝜙, 휃)‖2)�̂�𝑟 ,    3.3.4 

 

where 

 

𝐴(휃, 𝜙) =  ∑ 𝑐𝑜𝑠 (𝑚𝜙 − 𝑝
𝜋

2
) (𝑐𝑛𝑚𝑝

𝑓
𝑋𝑛𝑚
𝑓 (θ) + 𝑐𝑛𝑚𝑝

𝑏 𝑋𝑛𝑚
𝑏 (θ))𝑛𝑚𝑝   

𝐵(휃, 𝜙) =  ∑ 𝑠𝑖𝑛 (𝑚𝜙 − 𝑝
𝜋

2
) (𝑐𝑛𝑚𝑝

𝑓
𝑋𝑛𝑚
𝑓 (θ) − 𝑐𝑛𝑚𝑝

𝑏 𝑋𝑛𝑚
𝑏 (θ))𝑛𝑚𝑝 . 

3.3.5 

 

The (𝑐𝑛𝑚𝑝
𝑓
𝑋𝑛𝑚
𝑓 (θ) ± 𝑐𝑛𝑚𝑝

𝑏 𝑋𝑛𝑚
𝑏 (θ)) terms in equation 3.3.5 shows that it is instructive to 

understand how the forward and backward polar angle functions interfere with each other. 

Luckily, the polar angle functions are designed to concentrate energy in their respective 

dominant hemisphere. Therefore, interference between forward and backward harmonics is 

weak. Alternatively stated, primary lobes of one type (forward/backward) interact only with side 

lobes of the other type (backward/forward). Figure 3.3.2 illustrates this concept. From this figure 

we see that weak interaction enables a convenient method to intuit the interference between 

modes of different type. They can be viewed as approximately noninteracting in their respective 

dominant hemisphere.§3 This provides a rule-of-thumb for approximating harmonic interference 

in complicated systems. In contrast, the Mie harmonics have strong interreference between the 

electric and magnetic-types and the resulting scattering/emission lobes have no rule-of-thumb 

behavior.  

 

The right most example in figure 3.3.2 shows the most general form of interference between 

polar angle functions of different type and quantum numbers. The left and center examples in 

figure 3.3.2 show interference of opposite type polar angle functions with the same quantum 

numbers. These two cases are important because they represent the inverse transform that 

recovers the Mie angular functions. This result can be seen by rearranging equation 3.3.2 to show 

that 𝑋𝑛𝑚
𝑓 (θ) + (−1)𝑛+𝑚+1𝑋𝑛𝑚

𝑏 (θ) = 2𝜏𝑛
|𝑚|(𝑐𝑜𝑠 휃) and 𝑋𝑛𝑚

𝑓 (θ) − (−1)𝑛+𝑚+1𝑋𝑛𝑚
𝑏 (θ) =

2𝑚𝜋𝑛
|𝑚|(cos 휃). More generally, atom-like fields are achieved in the Kerker basis through 

interference that gives rise to the inverse Kerker transform: 

 

 
§3 Since side lobes are concentrated closer to the horizontal (휃 = 𝜋/2), interactions between forward and backward harmonics are more pronounced near 

this angular region.  
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𝚿𝑛𝑚𝑝
t (𝒓) = (−1)𝑡(1−𝑝)𝑖−(𝑛+𝑡)

1

2
 𝜰𝑛𝑚𝑡−𝑝
𝑓 (𝒓) − (−1)𝑛+𝑚+𝑡𝜰𝑛𝑚𝑡−𝑝

𝑏 (𝒓)  3.3.6 

where, again, 𝚿𝑛𝑚𝑝
t (𝒓) are the Mie vector harmonics with 𝑡 = 0 = 𝑀 and 𝑡 = 1 = 𝐸. 

Equation 3.3.6 and equation 3.2.3 formalize our italicized summary in the introduction. 

Directional fields require complicated interference in the Mie expansion and atom-like fields 

require complicated interference in the Kerker expansion. 

 

 

Figure 3.3.2. Examples of interference between opposite type Kerker polar angle functions. The color 

convention and angle orientation follow the definition from figure 3.3.1. Therefore, the top and bottom row 

correspond to 𝑋𝑛𝑚
𝑓
− 𝑋𝑛𝑚

𝑏  and 𝑋𝑛𝑚
𝑓
+ 𝑋𝑛𝑚

𝑏  interference, respectively. The shaded region highlights the non-

dominant hemisphere for each function. The left and middle example show how the Mie functions can be 

recovered, while the right example is a more general interference between different polar quantum numbers.  

The functions are plotted in polar coordinates where the polar angle is given by the key in the upper left. 

Positive and negative values of the radius are denoted by black and red lines, respectively. 

 

From the far field Poynting vector, the far field intensity is defined as 𝐼(휃, 𝜙) = 〈𝑺𝑓𝑎𝑟〉 ∙ 𝑟
2�̂�𝑟. 

Integrating this intensity over the azimuthal direction gives  

 

𝐼(휃) = 𝐼0
𝑓
+ 𝐼1

𝑓
+ 𝐼0

𝑏 + 𝐼1
𝑏 =

𝜋

𝜇𝜔𝑘
∑ (1 + 𝛿𝑚0)‖∑ 𝑐𝑛𝑚𝑝 

𝑡 𝑋𝑛𝑚
𝑡 (θ)𝑛 ‖

2
𝑡𝑚𝑝 ,   3.3.6 

 

where the (1 + 𝛿𝑚0) term comes from the fact that 𝑐𝑛01
𝑀 = 𝑐𝑛01

𝐸 = 0. Interestingly equation 

3.3.6 shows that the azimuthally integrated intensity is truly not dependent on interference 

between the forward and backward harmonics or interference between different parity. This is, 

again, another useful feature of the Kerker harmonics. The total azimuthally integrated intensity 

can be viewed as resulting from four noninteracting partial fields, each with intensity 𝐼𝑝
𝑡(휃) =

𝜋

𝜇𝜔𝑘
∑ (1 + 𝛿𝑚0)‖∑ 𝑐𝑛𝑚𝑝 

𝑡 𝑋𝑛𝑚
𝑡 (θ)𝑛 ‖

2
𝑚 . For any given polar angle, these partial intensities have 

the geometric interpretation as being the sum of the distances from the origin occurring from 

the tip-to-tail coherent addition of  ∑ 𝑐𝑛m𝑝
𝑡 𝑋𝑛𝑚

𝑡 (θ)𝑛 . This result allows for an intuitive geometric 

interpretation of directional scattering, which will become more evident later in this section.  It 

+ =

+ =

� �

�

� + =

+ =
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is also worth noting that four partial fields represent the most general form. In systems with 

symmetry, such as plane wave or dipole excitation of a sphere, one forward and one backward 

partial field completely describes the system. Furthermore, it is often the case that only the 𝑚 =

1 terms are appreciable. Therefore, it is common that multiple simplifications to equation 3.3.6 

are applicable. 

 

Equations 3.3.4 and 3.3.6 highlight the importance of understanding interference between 

Kerker polar angle functions of the same type. Figure 3.3.3 defines this relationship for the 

forward polar angle functions. We omit examples of the backward functions because, unlike the 

Mie harmonics, the inversion symmetry implies the results are the same just rotated 180∘. Figure 

3.3.3 shows that constructive interference of same type harmonics results in an increased primary 

lobe and an overall more directive far field. Likewise, destructive interference decreases the 

primary lobe and reduces directivity.  This provides an intuitive interference relationship to 

identify directive systems. Adding coefficients of the same type increases directivity. Subtraction 

reduces directivity. This condition can be easily generalized to complex valued coefficients giving 

an intuitive geometric interpretation based on coefficients as vectors in the complex plane. From 

this picture, same type Kerker coefficients pointing in a similar direction will increase directivity. 

Coefficients pointing in opposite directions will decrease the directivity.  

 

 

Figure 3.3.3. Examples of interference between same type Kerker polar angle functions. The left example is 

a combination of same parity polar numbers when 𝑚 = 1. The right example is a combination of opposite 

parity polar numbers for azimuthal numbers that do not have exact forward scattering/emission (𝑚 ≠ 1). 

 

In the exact forward and backward directions, the Kerker polar angle functions are designed to 

take the simple form  
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𝑋𝑛𝑚
𝑓 (휃 = 0) =

1

2
𝐾𝑛𝛿𝑚1 𝑋𝑛𝑚

𝑓 (휃 = 𝜋) = 0

𝑋𝑛𝑚
𝑏 (휃 = 0) = 0 𝑋𝑛𝑚

𝑏 (휃 = 𝜋) =
1

2
𝐾𝑛𝛿𝑚1,

     3.3.7 

 

where 𝐾𝑛 = √(2𝑛 + 1). Equation 12 formalizes a property of the Kerker harmonics that can 

be inferred from figure 3.3.1. The Kerker harmonics have an exact forward or backward lobe 

only for the 𝑚 = 1 quantum number. Furthermore, these functions have exactly zero field in 

the opposite direction. Therefore, there is always complete noninteraction between forward and 

backward harmonics in the exact forward and backward directions. This property enables a 

simplified and geometrically intuitive expression for calculating exact forward and backward 

intensities and forward-to-backward ratios.  

 

The far field intensity in the exact forward and backward directions is  

 

𝐼(휃 = 0) =
𝜋

2𝜇𝑘𝜔
(∑ ‖∑ 𝐾𝑛𝑐𝑛1𝑝

𝑓
𝑛 ‖

2

𝑝 )

𝐼(휃 = 𝜋) =
𝜋

2𝜇𝑘𝜔
(∑ ‖∑ 𝐾𝑛𝑐𝑛1𝑝

𝑏
𝑛 ‖𝑝

2
) .
    3.3.8 

 

Equation 3.3.8 shows the exact forward and backward intensity can be understood geometrically 

as the magnitude of the vector that results from coherently adding scaled forward and backward 

coefficients in the complex plane, ∑ 𝐾𝑛𝑐𝑛1𝑝
𝑡

𝑛 . The forward-to-backward ratio is then the ratio 

of the lengths of these vectors. This provides a useful geometric connection between the Kerker 

coefficients and the resulting forward and backward intensity. When vectors added together 

approach a closed loop, there is weak scattering/emission in that direction. Equation 3.3.8 is a 

specific example of equation 3.3.6, for the important case where 휃 = 0 or 𝜋. Under this 

condition, the scaling factor 𝑋𝑛𝑚
𝑡  takes the simplified form given by equation 3.3.7. For an 

arbitrary direction, the same vector addition rules apply but the scaling factors are based on 

equation 3.3.6.  

 

Equation 3.3.8 provides intuitive geometric conditions to understand the Kerker effects. 

Forward or backward Kerker scattering can now be viewed as the special case when either all 

𝑐𝑛1p
𝑏 ’s or 𝑐𝑛1p

𝑓
’s are zero, respectively. E.g., a forward Kerker scattering object will have no 

backward Kerker coefficients, 𝑐𝑛1p
𝑏 . This property is why the coefficients are termed “Kerker 

coefficients.” Generalized forward or backward Kerker scattering can also be understood as 

occurring when either ∑ 𝐾𝑛𝑐𝑛1𝑝
𝑏

𝑛 or ∑ 𝐾𝑛𝑐𝑛1𝑝
𝑓

𝑛  are zero, respectively. This corresponds to 

vectors of one type that, when added head-to-tail, form a closed loop in the complex plane. The 
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transverse Kerker effect occurs when both vectors of both types form a closed loop. I.e., 

∑ 𝐾𝑛𝑐𝑛1𝑝
𝑏

𝑛 and ∑ 𝐾𝑛𝑐𝑛1𝑝
𝑓

𝑛  are zero. Forms of directional scattering which do not obtain 

identically zero forward or backward fields are identified by comparing the length of the 

coherently added forward vectors versus the backward vectors. I.e., the forward-to-backward 

ratio is then the ratio of the length to the total forward to the total backward vectors. Note that 

these conditions apply for all relevant parities used to describe the field. Figure 3.3.4 gives a 

schematic of the geometric representations of different types of directional scattering based on 

the Kerker coefficients. These are substantially easier interpretations compared to the complex 

modal interference relationships necessary to satisfy these conditions in the Mie framework. This 

will be further discussed through examples in the next section. 

 

 

Figure 3.3.4. Schematics of different types of directional scattering/emission represented as closed and open-

loop paths in the complex plane. Individual forward and backward modes are given by black and red arrows, 

respectively. Modes of the same type are connected head-to-tail and progressively increment from 𝑛 = 1 (tail 

at the origin) to 𝑛 = 𝑛𝑚𝑎𝑥. The coherent sum of the forward and backward modes is designated by blue and 

green arrows, respectively. These arrows start at the origin and connect to the tip of the max polar number 

vector. The left most schematic is an example of forward Kerker behavior, where no backward modes are 

present. The left middle example is a forward generalized Kerker effect where backward modes coherently 

cancel in the exact backward direction. The right middle example shows the transverse Kerker effect where 

both modes coherently cancel the exact forward and backward direction leaving only transverse (side lobe) 

scattering/emission. The right most schematic is an example of general backward preferential 

scattering/emission. 

 

Finally, it is instructive to consider the expression for total power flow and directivity under the 

Kerker expansion.  Like the vector spherical harmonics, the Kerker harmonics are orthogonal 

on the sphere. Therefore, the total scattered/emitted power is  

 

𝑊𝑠𝑐𝑎𝑡𝑡𝑒𝑟 𝑒𝑚𝑖𝑡⁄ = 𝑊0
𝑓
+𝑊1

𝑓
+𝑊0

𝑏 +𝑊1
𝑏 =  

𝜋

2𝜇𝜔𝑘
∑ (1 + 𝛿𝑚0)‖𝑐𝑛𝑚𝑝

𝑡 ‖
2

𝑡𝑛𝑚𝑝  , 3.3.9 
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where the total power is composed of the forward or backward partial powers, 𝑊𝑝
𝑡 =

 
𝜋

2𝜇𝜔𝑘
∑ (1 + 𝛿𝑚0)‖𝑐𝑛𝑚𝑝

𝑡 ‖
2

𝑛𝑚 . Unlike the Mie harmonics which distribute the total power into 

electric and magnetic-type excitations, equation 3.3.9 shows the Kerker harmonics distribute 

power into forward and backward-type excitations. This helps give intuition on the fraction of 

the total power concentrated into a particular hemisphere. This fraction can also be understood 

geometrically, where each partial power (and therefore the total power) is given by the arclength 

of the scattering coefficients added head-to-tail in the complex plane. I.e., a longer arclength 

means a larger proportion of the total power is concentrated into that harmonic type. Dividing 

the origin-to-tip vector length of equation 3.3.8 by the arclength of equation 3.3.9 then gives an 

intuitive definition of forward or backward directivity as 

 

𝐷𝑡
′
= 4𝜋

∑ ‖∑ 𝐾𝑛𝑐𝑛1𝑝
𝑡′

𝑛 ‖
2

𝑝

∑ (1+𝛿𝑚0)‖𝑐𝑛𝑚𝑝
𝑡 ‖

2
𝑡𝑛𝑚𝑝

 , 3.3.10 

 

where 𝐷𝑓 = 𝐷(휃 = 0) and 𝐷𝑏 = 𝐷(휃 = 𝜋). Equation 3.3.10 formalizes the argument of 

directivity presented in figure 3.3.3 and directly connects directivity to the behavior of Kerker 

coefficients in the complex plane. Directivity is proportional to origin-to-tip length and inversely 

proportional to arclength. From this framework we can rigorously derive the conditions to 

maximize directivity and relate these conditions to intuitive curves in the complex plane. 

   

As more complex coefficients of the same type (each represented as a vector in the complex 

plane) point in a similar direction in the complex plane the numerator of equation 3.3.10 

increases while the arclength remains unchanged. The triangle inequality enforces that the 

numerator of equation 3.3.10 is maximized when all vectors of the same type point in the exact 

same direction, ∑ ‖∑ 𝐾𝑛𝑐𝑛1𝑝
𝑡′

𝑛 ‖
2

𝑝 = ∑ ‖𝐾𝑛𝑐𝑛1𝑝
𝑡′ ‖

2

𝑛𝑝 . I.e., the curve formed by head-to-tail 

addition of the coefficients forms a straight line. The geometric representation of all vectors 

pointing in the same direction is the condition of perfect constructive interference. Though, to 

maximize directivity, the denominator of equation 3.3.10 should also be minimized. To achieve 

this, all coefficients in the denominator that are not present in the numerator should be zero. 

Since 𝐾𝑛 > 1, we can conclude that:  

 

The theoretically maximal directivity for a system with 𝑛𝑚𝑎𝑥 harmonic orders occurs when you satisfy Kerker’s 

condition and all Kerker coefficients constructively interfere. 
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Therefore, Kerker scattering is a necessary but not sufficient condition to achieve the 

theoretical maximum directivity.  Furthermore, generalized Kerker can never achieve the 

theoretically maximal directivity because though the origin-to-tip length in the unwanted 

direction is zero, the arclength for that direction is not zero.   
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3.4 FEATURES OF THE KERKER TRANSFORM 

 

To highlight the usefulness of the Kerker transform, we give four instructive examples of 

directional scattering and study their results under the Kerker and Mie expansions.  The goal in 

this section is to provide examples of when it can be useful to switch from the Mie to the Kerker 

framework. In order to highlight the generality of the Kerker expansion, we study both nearfield 

and far-field excitations of sub-wavelength and larger than wavelength particles. All examples 

are summarized in figure 3.4.1.  

 

The first and second row of figure 3.4.1 shows a schematic of each system and their 

corresponding azimuthally integrated far field polar intensity profile, respectively. The left 

example is the scattering response of a sphere with the material properties initially proposed by 

Milton Kerker to explain Kerker scattering; the case where 𝜖 = 𝜇. The response has exactly no 

backward field and Kerker’s condition is satisfied for all quantum numbers supported by the 

sphere. The middle-left example is of generalized backward Kerker emission, where near 

complete suppression of the forward intensity is achieved. The system achieving this emission 

is composed of the combined response from a 374nm wavelength emitter near-field coupled 

90nm below a 164nm TiO2 sphere (휂 = √𝜖𝑟𝜇𝑟 =  2.42)75. The middle-right example is of 

transverse Kerker scattering from a 120nm Si sphere (휂 = 3.92 + 𝑖2.49𝐸−2)76, achieved by 

coupling two 609nm wavelength emitters to the sphere. One emitter is located 204nm above 

and below the sphere, respectively. The right most example is of highly directional forward 

scattering by creating a photonic nanojet. This scattering is achieved by illuminating a 1200nm 

SiO2 sphere (휂 = 1.43 + 𝑖2.52𝐸−3)77 with a 400nm plane wave. In all cases, the background 

medium is assumed to be air. The solution to the scattering by a sphere illuminated by a plane 

wave or a dipole emitter can be found in citations 53 and 78, respectively.  

 

The third and fourth row of figure 3.4.1 plots the 𝐾𝑛-scaled Kerker (upper row) and Mie (lower 

row) coefficients, respectively, as vectors in the complex plane. This plotting method is 

commonly used as it describes both amplitude and phase, which is necessary to understand 

directional scattering 68,79. The left example clearly shows forward Kerker scattering as the 

backward coefficients (red arrows) satisfy the Kerker condition that all 𝑐𝑛10
𝑏 ’s are zero. The 

forward coefficients (black arrows) constructively interfere leading to a nonzero total forward 

intensity (blue arrow). Alternatively, determining Kerker’s forward condition using the Mie 

coefficients requires a systematic comparison of both the angle and phase relationship between 

each pair of electric and magnetic-type harmonics. Though this is a tractable task for 𝑛𝑚𝑎𝑥 ≈ 3, 

it is still hard to say for certain that the system is exactly satisfying the Kerker forward condition 

without using a ruler and protractor.  
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Figure 3.4.1. Schematics of highly directional scattering/emission (row 1), log base 10 normalized azimuthally 

integrated far field polar intensity plots (row 2), and corresponding 𝐾𝑛-scaled Kerker (row 3) and Mie (row 4) 

coefficients as vectors in the complex plane. The first example (column 1) is of an exact Kerker scattering 

system composed of a 250nm radius magnetic sphere (𝜖 = 𝜇) excited by a 500nm wavelength plane wave. 

The second example (column 2) shows generalized backward Kerker emission achieved by near field coupling 

a 164nm TiO2 sphere to a dipole emitting at 374nm. The dipole is located 90nm below the bottom of the 

sphere and has a moment in the �̂�𝑦 direction. The third example (column 3) is of transverse Kerker scattering 

achieved in a 120nm Si sphere excited simultaneously by two dipoles, both emitting at 609nm. The dipoles are 

204nm above and below the sphere, respectively. Both dipoles have moments in the �̂�𝑦 direction. The final 

example (column 4) is of highly directional scattering from a photonic nanojet made from a 1200nm SiO2 

sphere excited by a plane wave with a 426nm wavelength. In all cases the sphere is centered at the origin and 

the region outside of the red dashed circle defines the domain of validity for the expansion. Coefficients of 
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the same type are connected head-to-tail and progressively increment from 𝑛 = 1 (tail at the origin) to 

𝑛 = 𝑛𝑚𝑎𝑥. 

 

The Kerker coefficients in the middle-left example show generalized backward Kerker behavior.  

This is evident by the coherent sum of the forward coefficients forming a closed loop, 

∑ 𝐾𝑛𝑐𝑛10
𝑓

𝑛 ≈ 0, and the coherent sum of the backward coefficients producing a nonzero open 

loop for the total backward intensity (green arrow). The arc in the path length of the backward 

coefficients as well as the loop of the forward coefficients indicate the presence of excess side 

lobes since the vectors are not strictly in the same direction. These side lobes are evident in the 

azimuthally integrated intensity. The Mie coefficients traverse a sporadic pattern in the complex 

plane. With 𝑛𝑚𝑎𝑥 ≈ 7 and no easily discernable interference relationship, these coefficients do 

not illuminate directional emission or properties of side lobes. Clearly the Mie coefficients are 

not the appropriate tool for this problem.  

 

The middle-right example shows transverse Kerker behavior as evident by both the forward and 

backward Kerker coefficients traversing a closed loop,  ∑ 𝐾𝑛𝑐𝑛10
𝑓

𝑛 ≈ 0 and ∑ 𝐾𝑛𝑐𝑛10
𝑏

𝑛 ≈ 0. 

Though the Mie coefficients do not follow a complicated pattern, it is not immediately evident 

that the coefficients lead to transverse Kerker behavior, compared to the Kerker coefficients.  

 

Finally, the right example shows highly forward directional scattering from the photonic nanojet, 

as evident by the open contours in the Kerker coefficients. Directionality is achieved through 

the interference of around 20 appreciable harmonics in each basis system. In the Kerker basis, 

the total forward arrow is substantially larger compared to the total backward arrow, indicating 

a strong preference for forward scattering. Furthermore, each coefficient has a similar 

magnitude. Therefore, there is no single harmonic dominating the side lobes. This is evident by 

the many similar sized side lobes seen in in the azimuthally integrated intensity. The electric and 

magnetic Mie coefficients follow a spiral pattern which indicates similar phase and magnitude 

behavior between the electric and magnetic-type coefficients. This pattern almost appears to 

satisfy Kerker’s condition. Though, as evident by the nonzero backward Kerker coefficients, this 

system is not Kerker scattering. Furthermore, discrepancies between the electric and magnetic-

type coefficients eventually cause the arrows of the two types to become out of synch. This 

makes the overall directionality harder to gauge. Finally, the Mie coefficients do nothing to 

illuminate the nature of side lobes.  

 

Besides viewing coefficients in the complex plane, intuition can also be developed by studying 

the analytic form of directional fields in the Kerker basis based on the properties defined in 
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section two. For example, equip with the Kerker basis, the two systems in the introduction 

can now be rewritten as  

 

 

 

where 𝑎, 𝑏, 𝑐 ∈ 𝕫+ ≪ ∞. Completely by inspection, the following can be concluded about the 

two systems: First, both systems are always forward dominant, regardless of the choice of 𝑎, 𝑏, 

or 𝑐. The forward-to-backward ratios are proportional to 
‖𝑎+𝑏+𝑐‖2

‖𝑎−𝑏‖2
 and 

‖𝑎+𝑏+𝑐‖2

‖𝑎+𝑏‖2
, respectively. 

Therefore, system 1 will always have the larger forward-to-backward ratio. Assuming 𝑎, 𝑏, and 

𝑐 have a similar value, three lobes in the range 휃 ∈ [0, 𝜋] or less are expected for both systems 

(two lobes in the forward hemisphere and the other lobe in the backward hemisphere). System 

2 has constructive backward interference, 𝑎 + 𝑏, which favors lobes near the exact backward 

direction. Alternatively, system 1 has destructive backward interference, 𝑎 − 𝑏, which favors 

pushing power away from 휃 = 𝜋 and into the sides. If either 𝑎, 𝑏, or 𝑐 are strongly dominant, 

then the system degenerates to more closely mimic the corresponding dominant Kerker 

harmonic. Side lobe predictions will change accordingly. Finally, a forward Kerker condition is 

clearly observed in both systems because 𝜰311
𝑏 = 0, regardless of the choice of 𝑎, 𝑏, or 𝑐. 

Though, neither system is fully forward Kerker as 𝜰111
𝑏  and 𝜰210

𝑏  are nonzero. System 1 has the 

potential to be generalized Kerker if 𝑎 = 𝑏 (suitably normalized). System 2 can only be 

generalized directional since 𝑎 and 𝑏 are constrained to the positive integers. We encourage the 

reader to return to the introduction and attempt to formulate these conclusions from the Mie 

framework. Examples of the two systems for different values of 𝑎, 𝑏, and 𝑐 are presented in 

the supplementary information.   

𝑆𝑦𝑠𝑡𝑒𝑚 1: 𝑎𝜰111
𝑓
+ 𝑏𝜰210

𝑓
+ 𝑐𝜰311

𝑓
+ 𝑎𝜰111

𝑏 − 𝑏𝜰210
𝑏

𝑆𝑦𝑠𝑡𝑒𝑚 2: 𝑎𝜰111
𝑓
+ 𝑏𝜰210

𝑓
+ 𝑐𝜰311

𝑓
+ 𝑎𝜰111

𝑏 + 𝑏𝜰210
𝑏 ,
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3.5 CONCLUSION 

 

We propose a linear transform to convert the atom-like vector spherical harmonics found in 

Mie theory to forward and backward directional vector harmonics and show the use of this 

method to understand directional scattering/emissive systems. The directional harmonics, 

termed the Kerker harmonics, have a simple far field expression governed primarily by the 

Kerker polar angle functions. These functions have a clear notion of primary and side lobes, 

weak coupling between forward and backward types, and coupling between same type 

harmonics controls directivity. The resulting azimuthally integrated and exact forward or 

backward intensity both have a simple analytic form which leads to intuitive definitions of 

Kerker, generalized Kerker, transverse Kerker, and highly directional scattering /emission as 

open and closed loop contours of Kerker coefficients in the complex plane. Total power flow 

is related to the arc length of these coefficients. This provides a simple definition for the 

condition of theoretically maximal directivity. Examples of a Kerker, generalized Kerker, 

transverse Kerker, and highly directional system are shown to be more conceptually intuitive in 

the Kerker basis compared to the Mie basis when viewed in the complex plane. These examples 

explore the use of this transform in both scattering and emissive systems ranging from sub-

wavelength to larger-than-wavelength size regimes (e.g., 20 appreciable harmonics).  
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3.6 APPENDIX A: EVEN AND ODD MIE VECTOR HARMONICS 

 

The Kerker transform relies on an interference between Mie harmonics with an explicit even 

and odd azimuthal dependence. This relationship is obscured in the Mie harmonics which rely 

on the complex exponential form of azimuthal dependence.  The even and odd Mie harmonics 

are 
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where 𝑚 ∈ [0, 𝑛] and the index subscript 0 = 𝑒 = 𝑒𝑣𝑒𝑛 and 1 = 𝑜 = 𝑜𝑑𝑑 is used for 

convenience when using a compact summation notation. The even and odd harmonics can be 

found from the complex exponential notation using the transform,  
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where the regular harmonics are found simply by replacing the radial dependence. Again,  
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RANDOM PARTICLE FILMS AS OPTICAL FILTERS 

Wray, P. R.; Paul, E. H.; Atwater, H. A., Optical Filters Made from Random Metasurfaces 
using Bayesian Optimization, Nanophotonics 2023. (accepted)  

 

 

ABSTRACT 

We theoretically investigate the ability to design optical filters from a single material and a single 

layer of randomly dispersed resonant dielectric particles, defining a random metasurface. Using 

a Bayesian and generalized Mie inverse-design approach, we design particle radii distributions 

based on Gaussian kernels that give rise to longpass, shortpass, bandpass, and bandstop spectral 

bands in the infrared. The optical response is shown to be directly related to electric and 

magnetic multipole scattering of the constituent particles and near field coupling. We discuss the 

effect of the particle size distribution and particle-particle coupling on filter design in uniformly 

random spatially dispersed systems lacking long-range order.  
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4.1 INTRODUCTION 

 

Filters designed from disordered metasurfaces may offer a platform to circumvent the Achilles 

heel of meticulous fabrication. This is because the approach is inherently tolerant to 

manufacturing error, leading to an increase in throughput and/or a reduced fabrication cost. 

Furthermore, disordered metasurfaces do not need to rely on multiple materials to achieve a 

filter response. This benefits applications operating in harsh environments, where issues of 

different thermal expansion coefficients, chemical stability, miscibility, compliance to 

mechanical stress, and different resistance to ionizing radiation between materials increases the 

complexity of filter design80–92. Engineered randomness has a long history of producing emergent 

phenomena. Historical examples include sub-wavelength scatterers, which catalyzed the field of 

metamaterials by producing effective media with constitutive parameters not seen in the bulk 

constituents18,93,94. Another example is resonant particle absorption and disorder-induced light 

trapping (e.g., Anderson localization) that has also shown to produce record-breaking broad-

band, angle, and polarization-invariant near-black-body absorbers. Furthermore, these systems 

are shown to be scalable and cost effective compared to ordered photonic counterparts95–99.  

 

Though the discussion above highlights a case for random metasurfaces, the study of disorder 

in the field is still an open subject of research. A primary difficulty is that strong light-matter 

interactions are often necessary in metasurfaces, and this can produce unruly particle-particle 

coupling effects when the spatial position of particles is not well controlled. It is also important 

to note that the systems proposed do not fall into the category of effective medium theories. In 

particular, low harmonic order (electric dipole), non-resonant, and negligible particle-particle 

coupling are all invalid assumptions in the proposed regime. In fact, it is exactly by leveraging 

higher harmonics, resonances, and particle-particle coupling that spectral filtering is achieved. A 

random metasurface therefore requires a robustness to (or appropriate tailoring by) random 

coupling effects of strongly interacting particles. Otherwise, there would be no emergent 

collective giving rise to meaningful reflection/transmission bands.  

 

In this manuscript we explore how longpass, shortpass, bandpass, and bandstop spectral features 

can emerge using only a single layer of completely randomly positioned and randomly sized 

particles that are all made from the same material. This represents an extreme of filter design 

where multiple material compatibilities and fabrication sensitivity are no longer a primary 

concern. This also represents a separation in the philosophy of traditional filters. Spectral 

properties are entirely controlled by probability distributions. For example, instead of optimizing 

the number of layers, materials, and thickness in a thin film, you optimize a particle distribution 

and packing fraction in a single layer. The parameters are found using Bayesian inverse design 
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and the results are studied theoretically to pinpoint the governing physics giving rise to the 

desired spectral response. Our framework, based on generalized multi-particle Mie theory, 

provides explicit information about the coupling between particles, which is often obscured in 

inverse design. Furthermore, the optimizer produces fabrication feasible systems that are 

motivated by well-known massively large-scale and cost-effective synthesis and deposition 

techniques.  

 

The primary goal of the manuscript is two-fold: (1) to present the feasibility of random 

metasurfaces (e.g., a single layer of randomly distributed particles) in designing optical filters and 

(2) to present a framework and analysis of the underlying physics giving rise to the filter response 

in order to motivate future directions and designs.  

 

The first section outlines the theoretical framework and inverse design approach used to derive 

the transmission, reflection, and absorption from the random metasurface. For brevity, we focus 

on the main concepts. Detailed derivations are in the supplementary information. The second 

section presents the result of the optimizer, showing the possibility to design the four canonical 

filter types: longpass, shortpass, bandpass, and bandstop all made from a single layer of particles 

and of the same material. From this, we outline how the theoretical approach provides insight 

into the role of the particle shape distribution and the effects of random particle coupling in the 

final filter response. We conclude with a summary of the results.  
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4.2 INVERSE DESIGN THROUGH BAYESIAN OPTIMIZATION 

 

The random metasurface problem is formalized as a single layer of randomly shaped scattering 

elements that are randomly dispersed in the x-y plane. The film is characterized by a particle 

shape distribution, 𝑃(𝑠), and the particles occupy the cross-sectional area filling fraction, 𝑓𝑓, in 

the plane. The optimization problem is 

 

𝑚𝑖𝑛
Ω={𝑃(𝑠),𝑓𝑓}

 ‖𝑇𝑖𝑑𝑒𝑎𝑙(𝜆) − 𝑇(𝜆)‖
2 + ‖𝑅𝑖𝑑𝑒𝑎𝑙(𝜆) − 𝑅(𝜆)‖

2

𝑠. 𝑡. ,
 0 ≤ 𝑃(𝑠) ≤ 1,

∫𝑃(𝑠)𝑑𝑠 = 1,

𝑠𝑚𝑖𝑛 ≤ 𝑠 ≤ 𝑠𝑚𝑎𝑥 ,
0 ≤ 𝑓𝑓 ≤ 𝑓𝑓𝑚𝑎𝑥 ,

 

 

4.2.1 

 

where 𝑇𝑖𝑑𝑒𝑎𝑙 and 𝑅𝑖𝑑𝑒𝑎𝑙 are the ideal (user defined) transmission and reflection response, 

respectively. 𝑓𝑓𝑚𝑎𝑥 is the upper bound of the particle area filling fraction. 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are 

the lower and upper bound of the possible particle radii, respectively. 𝜆 is the free space 

wavelength of the incident plane wave excitation. The first two constraints in equation 4.2.1 

enforce the definition of a probability distribution over particle radii. The third and fourth 

constraints serve to provide practical bounds on the search space. The minimum and maximum 

possible particle radii is set based on the particle size parameter, 𝑘𝑠 = (2𝜋/𝜆)𝑠, which 

nominally determines the set of possible modes supported in a particle. 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are 

constrained such that 0.1 ≤ 𝑘𝑠 ≤ 3. The maximum allowed filling fraction is 𝑓𝑓𝑚𝑎𝑥 = 60%, 

since higher filling fractions approach lattice packing, and we are concerned with random spatial 

distributions that do not exhibit long-range order. Otherwise, the only other constraint is that 

particles cannot overlap and must remain within a single layer. I.e., particles do not sit on top, 

above, or below of one another and cannot fuse together. Particles can (and often do) touch 

side to side and particle-particle coupling effects can be significant.  

 

Calculating the total transmission, 𝑇, reflection, 𝑅, and absorption, 𝐴, response of the random 

metasurface relies on three cornerstones that are expanded upon in the supplementary 

information. First, the scattered field formalism is used to explicitly describe how nanoscopic 

interactions construct emergent macroscopic (film-level) behavior. Second, each particle in the 

film is expanded into a generalized Mie basis. This allows the effect of particle shape and particle-

particle coupling to be represented as a tangible set of atom-like interactions. The third 
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cornerstone is to use Monte Carlo integration to solve the statistical nature of the more 

general infinite random film problem.  

 

In matrix notation, the Mie expansion of an arbitrary electric field is 𝑬 = 𝚿𝑐, where 𝚿 ∈ ℂ3×|𝑙| 

is a complex-valued matrix of Mie harmonics and 𝑐 ∈ ℂ|𝑙| is a vector of the basis (scattering) 

coefficients. 𝑙 = 𝑡, 𝑛,𝑚, 𝑝 is a unique index defined by the harmonic’s quantum polar, 𝑛 ∈ ℤ+, 

and azimuthal number, 𝑚 ∈ [0, 𝑛] ∪ ℤ+, as well as the harmonic type, 𝑡 (0 = electric-type, 1 = 

magnetic-type), and parity, 𝑝 (0 = even, 1 = odd). Correspondingly, |𝑙| is the size of the 

dimension of all possible harmonic orders necessary to describe the electromagnetic field. Using 

this method, the governing interaction equation for an arbitrary particle, 𝑎, embedded in a film 

of J particles is  

 

𝑐𝑎 − 𝕋𝑎(𝑠)∑ ℍ𝑎𝑏(𝒅𝑎𝑏)𝑐𝑏 
𝐽
𝑏≠𝑎 = 𝕋𝑎(𝑠)𝕁

𝑎0(𝒅𝑎0)𝑐𝑖𝑛𝑐. 4.2.2 

 

𝕋 ∈ ℂ|𝑙|×|𝑙| provides a mapping from the local field a particle experiences to the resulting 

scattered field the particle emits, 𝑐 = 𝕋𝑐𝑙𝑜𝑐. The scattered field is a result of the current 

distribution within the particle, that is responding to the external local field. 𝕋 encapsulates how 

particle properties such as size, shape, and material define scattering as a response to an arbitrary 

excitation. ℍ ∈ ℂ|𝑙|×|𝑙| is a translation operator that describes how a scattered field from particle 

𝑏 contributes to the local field onto particle 𝑎. 𝕁 ∈ ℂ|𝑙|×|𝑙| is a similar operator translating the 

incident plane wave from the origin to the location of particle 𝑎. Both of these operators are a 

function of the relative vector distance between particles, 𝒅𝑎𝑏 ∈ ℝ
3, or the particle’s distance 

to the origin, 𝒅𝑎0 ∈ ℝ
3. The exact solution to the J – particle coupling problem is found by 

writing equation 4.2.2 for every particle, then solving the system of J coupled equations.  

Repeating this process for different particle configurations constitutes the Monte Carlo scheme.  

 

In principle there is no closed form solution for the infinite random film problem, given an 

arbitrary joint shape and spatial distribution100–102. Hence, operations on random variables are 

solved through Monte Carlo. This allows generalized distributions to be studied by realizing 

them through computer generation.  At each iteration of our algorithm, we first generate 𝑁 

instances of a random film of nonoverlapping particles for each 𝑠 in 𝑃(𝑠).  This is done using a 

custom event-driven particle dynamics algorithm that packs particles to the specified fill fraction, 

then moves them randomly to remove artificial correlations as a result of the initial packing. The 

algorithm is designed to mimic the random motion of uncharged hard particles in a Langmuir-

Blodgett trough, which is a practical deposition tool to realizing such a film and holds potential 
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as a large-scale deposition technique103,104. Each iteration of the optimizer involves 

𝑆 × 𝑁 × Λ generalized Mie simulations. Here, 𝑆 is the discretization size of the shape 

distribution. 𝑁 is the number of sampled unique local fields a particle experiences. I.e., for each 

sampled particle with shape 𝑠, there are 𝑁  realizations of a unique photonic environment of 

neighboring particles. Λ is the total number of wavelengths considered. Simulations are in 

frequency-domain. The generalized Mie simulations are performed using a custom-built code, 

derived from SMUTHI105, for increased computation speed. It is also important to note that the 

method is complete and converges to an exact solution as the multipole order and the number 

and size of Monte Carlo samples increases. In particular, this approach captures the reflection 

and transmission from both the coherent and incoherent field. The latter is generally 

substantially harder to describe analytically and cannot be described by an effective medium 

theory.  

 

By recasting the random film problem to leverage the orthogonality of the Mie functions, it is 

possible to substantially increase the speed of electromagnetic calculations. For the optimizer, 

transmission, reflection, and absorption are defined as  

 

𝑇(𝜆) = 1 − 𝑅(𝜆) − 𝐴(𝜆)  

𝑅(𝜆) =
𝑓𝑓 𝔼[𝜎𝑠𝑐𝑎(𝜆,𝑟,𝑠)]

1+𝐹𝐵𝑅𝐴
  

𝐴(𝜆) = 𝑓𝑓 𝔼[𝜎𝑎𝑏𝑠(𝜆, 𝑟, 𝑠)]. 

4.2.3 

 

𝔼 is the expectation operator over the joint particle shape and position distribution. 

𝔼[𝜎𝑠𝑐𝑎(𝜆, 𝑟, 𝑠)] and 𝔼[𝜎𝑎𝑏𝑠(𝜆, 𝑟, 𝑠)] are the expected scattering and absorption efficiency of a 

particle within the film. 𝐹𝐵𝑅𝐴(𝜆) ≈
𝔼[𝜎𝑠𝑐𝑎(𝜃=0°,𝜆,𝑟,𝑠)]

𝔼[𝜎𝑠𝑐𝑎(𝜃=90°,𝜆,𝑟,𝑠)]
 is the ratio of the expected scattering in 

the forward, 휃 = 0°, and backward, 휃 = 90°, directions. This ratio leverages the degeneracy of 

the Mie harmonics at the poles. The advantage of equation 3 is computational speed. In 

particular, the 𝐹𝐵𝑅𝐴 reduces two lengthy hemispherical integrations over 𝑂(𝑙!) different 

multipole permutations to a calculation of 𝑂(𝑛2) that does not require a single numerical 

integration106. This change provides a considerable reduction in computational effort. The power 

balance relation for the random film is 𝔼[𝜎𝑒𝑥𝑡] =  𝔼[𝜎𝑎𝑏𝑠] + 𝔼[𝜎𝑠𝑐𝑎], where 𝔼[𝜎𝑒𝑥𝑡] is the 

measure of the power removed from the incident plane wave as a result of interference with the 

collective scattered field emanating from the random metasurface. Unlike isolated particle Mie 

theory, it is necessary to account for the interference between each particle’s scattered field. This 

is encapsulated in the scattering efficiency for each particle, 𝜎𝑠𝑐𝑎 = 𝜎𝑠𝑐𝑎−𝑖 + 𝜎𝑠𝑐𝑎−𝑑. 𝜎𝑠𝑐𝑎−𝑖 ∝

𝑐†𝑐 is a measure of the power scattered by each particle and 𝜎𝑠𝑐𝑎−𝑑 ∝ 𝑐𝑎
†∑ℍ𝑎𝑏𝑐𝑏 accounts for 
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the interference between scattered fields. † denotes the conjugate transpose operation. For 

historical reasons, 𝜎𝑠𝑐𝑎−𝑖 and 𝜎𝑠𝑐𝑎−𝑑 are termed the “independent” and “dependent” scattering 

efficiency.  

 

The key insight of equations 4.2.1 – 4.2.3, is that the film’s total reflection, transmission, and 

absorption is governed by the ensemble average of the directional scattering and the absorption 

efficiencies of the individual particles making up the film. These expected values are controlled 

by the particle shape, 𝑃(𝑠), and spatial position distribution, 𝑃(𝒓). The former nominally 

dictates the scattering modes a particle will support and is primarily controlled through 𝕋 . The 

latter defines the effect of spatial correlation in particle-particle coupling dynamics, which it 

primarily controlled through ℍ. Note that these two distributions are not uncorrelated as the 

shape distribution limits the possible particle spatial configurations since particles cannot 

overlap.  

 

Even with the computational benefits inherent to generalized Mie theory and equation 4.2.3, 

this method poses a computational challenge due to the many simulations necessary to reach 

convergence in both Monte Carlo and in optimization. To accelerate performance the Monte 

Carlo process (both the event-driven particle dynamics and electromagnetic calculation) is 

massively parallelized through a distributed programming scheme using Dask107. A graphical 

image of nanoparticle coupling giving rise to different far field scattering distributions of each 

particle and the optimization pipeline is shown in figure 4.2.1. All computationally heavy 

calculations are written in C to maximize computation speed. 

 

Besides analytic, algorithmic, and parallelization optimizations of the electromagnetic solver, it 

is also critical to minimize the number of function calls necessary for the optimizer to reach a 

satisfying filter performance. Bayesian optimization is a well-suited solution for this problem and 

the framework we adopt.  

 

Bayesian optimization is a global optimization technique that can minimize the number of 

evaluations of costly nondifferentiable and noisy objective functions with mixed constraints at 

moderate dimensions108. We use Bayesian optimization based on BoTorch109 with a Gaussian 

process prior and the expected improvement acquisition function. This combination gives 

cheap-to-evaluate surrogates, an analytic form of the acquisition function, and inherently 

provides a tradeoff between exploitation and exploration of the parameter space108. To enable a 

more efficient reuse of samples, the reflection and transmission curve of each evaluated filter is 

saved in a global dataset and the next sample is based on the totality of the shared data. This is 

because 𝑃(𝑠) and 𝑓𝑓 uniquely define the filter, which, for example, cannot simultaneously be a 
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good shortpass and longpass filter. Therefore, for example, the results from the longpass 

filter optimization helps increase the information available to the Bayesian prior for the shortpass 

optimizer. Each optimization utilizes its own objective but shares information about the 

evaluation points of all other running and past run results.  

  

 

 
 

Figure 4.2.1. Bayesian optimization procedure. (Left) Schematic of the distributed network used to simulate 

a random film and compute equations 7-12. The random film (RF) is characterized by a discretized size 

distribution and area fill fraction. The program first distributes the calculation for each unique particle size (S) 

and, for each of those, distributes the task of generating unique spatial distribution samples (n). Each spatial 

distribution then distributes the task of solving the electromagnetic problem of that sample for each desired 

wavelength. The results are then compiled. (Middle) Flow diagram of the Bayesian optimizer. Seed particle 

distributions and fill fractions are first simulated to construct a prior. From this, the optimal solution to the 

expected improvement function picks the next proposed sample point. Each sample is a discrete probability 

distribution of particle sizes and an area fill fraction. The sample is then simulated and the reflection and 

transmission result is stored in a global database. The optimizer then compiles all data in the global database 

and uses the totality of the data to update the prior. The process then iterates by again choosing the next 

sample point through the acquisition function on the updated prior. (Right) Best (minimum) objective function 

for the longpass (orange), shortpass (blue), bandpass (green), and bandstop (red) filter as a function of Bayesian 

optimizer iterations.     
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4.3 SINGLE LAYER PARTICLE FILTERS 

 

Figure 4.3.1 shows the resulting design of bandstop, longpass, shortpass, and bandpass spectral 

features in the infrared, using the approach outlined in section 4.2. Overall, low absorption loss 

filters can be achieved with stopbands ranging from 50% to over 90% and passbands from 40% 

to over 80%. In all cases, our result is compared to full-wave finite-difference time-domain 

(FDTD, dotted lines) simulations to highlight the accuracy of our framework. Both methods 

show excellent agreement, further validating the use of this method to property represent 

complex interparticle coupling dynamics in random systems.  

 

The filters are made completely out of a single layer of randomly placed germanium particles 

with optimized radii distributions (black dashed overlay line), and unique packing fractions, 

shown in the top right. In all cases the optimal radii distributions can be constructed from the 

sum of simple Gaussian distributions (colored solid lines). This supports the feasibility of 

designing such filters in experiment. The Gaussian distribution is the common default 

distribution found in many particle synthesis and size-filtering techniques110–113, so one can 

simply mix different batches of synthesized particles at the proper weight fraction to produce 

the optimal distribution.  

 

The spectral range was chosen so that the refractive index of germanium is approximately 

constant (휂 = 4.17 + 𝑖5 × 10−3). By choosing a region of high dielectric index and low 

material loss we show that each filter’s stopband is not a result of absorption, but instead a result 

of strong multiple scattering and interference effects. This is a fundamentally different approach 

compared to the small particle systems that are well described by effective media. For example, 

section 4.6 gives a comparison to the Maxwell-Garnett and Bruggeman mixing formulas, which 

show poor modeling performance.  

 

Since the framework utilizes the scattered field formalism, it is possible to decompose the filter 

response based on particle size in order to study the effect of the particle size distribution.  

Clearly, such an analysis is not possible in full-wave techniques that only record the total field. 

Figure 4.3.2 decomposes each filter’s reflection and transmission spectra based on the underlying 

Gaussian size distributions in figure 4.3.1. Figure 4.3.2 shows that the primary (largest, light blue) 

Gaussian is also the primary contribution to the overall filter response. This is sensible as our 

analytic derivation in the supplementals shows the filter response is linearly proportional to the 

shape distribution. The remaining Gaussian distributions, clustering close to the primary 

distribution, then act as higher order correction terms chosen by the optimizer to broaden and 

flatten pass/stopbands.  
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Figure 4.3.1. Transmission (black), reflection (blue), and absorption (red) response for the four particle filters. 

Solid lines are calculated using the generalized Mie method. Dotted lines are calculated using finite-difference 

time-domain (FDTD).  The ideal transmission is in dashed shaded black. For each filter, the upper right figure 

is the film’s particle size probability distribution and area fill fraction. The size distribution is decomposed into 

Gaussian distributions and the table for the Gaussian amplitudes (𝑎), mean value (𝜇), and standard deviation 

(𝜎) are shown in the corresponding table below the figure.  

 

Figure 4.3.2 also compares the filter response if particle-particle coupling effects were removed 

(dashed lines). The purpose of comparing to a non-physical scenario of filters made from 

noninteracting particles is to contrast how coupling alters the overall spectral response. This also 

highlights a benefit to the theoretical construction. Simulations assuming no particle coupling 

can easily be derived by eliminating the particle coupling operator, ℍ = 0, between particle pairs. 

Therefore, you can “turn on” and “turn off” particle coupling effects at will by including or 

removing the ℍ term, respectively. In figure 4.3.2, the uncoupled system produces a non-

physical total reflection and transmission spectra. This is expected as the ℍ = 0 assumption 

does not define a proper power balance relationship. The inaccuracy is best seen near particle 

resonances, where the electrical cross sections of individual particles are more likely to overlap. 

Recall, that physical particles cannot overlap. But nothing prevents electrical (e.g., scattering and 
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absorption) cross sections from overlapping. When coupling is not accounted for in the 

bookkeeping, then it is possible that the sum of all electrical cross sections from all particles 

becomes larger than the extent of the x – y plane. Clearly this is nonphysical as the extinction 

theorem outlines that the total particle system cannot extinguish more power than what is 

supplied by the incident plane wave. Correspondingly, these nonphysical regions in the 

uncoupled spectra highlight where net quenching must occur in order to maintain power 

balance. The quenching is a direct result of particle-particle coupling effects. Further detail on 

the role of particle coupling versus particle size can be found in section 4.5. 

 

 
 

Figure 4.3.2. Reflection (blue) and transmission (black) response of each particle filter decomposed to resolve 

the contributions from each Gaussian distribution making up the particle film. The Gaussian-resolved 

reflection and transmission are color coded according to the colors of the Gaussian fit in figure 4.3.1. Solid 

line curves are calculated using generalized Mie theory accounting for particle coupling. Dotted line curves are 

calculated assuming no particle coupling.  

 

Strictly speaking, the uncoupled assumption is accurate only in the limit of vanishing electrical 

cross sections and/or vanishing fill fraction. This is a common stipulation in effective medium 

theories that clearly does not apply in our case. With that said, even though the uncoupled 

predictions are not physical, they still predict well the spectral location of stopbands and 

passbands. This may provide valuable insight to future work in random metasurface 

optimization. First, uncoupled calculations are exceptionally faster and more memory efficient 

to calculate compared to coupled calculations. This is because particle coupling forms a large set 

of coupled linear equations that must be constructed and then solved. In future works, the 

optimizer could first use the uncoupled model to quickly rule out areas of the search space that 

clearly do not match the objective function. Bayesian optimization provides a clear theoretical 

interpretation of such a low-fidelity simulation as adding additional information to the Bayesian 
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prior. Furthermore, the nonphysical regions in the uncoupled spectra could be penalized, 

weighted, or smoothed to mimic the necessary net reduction in particle cross sections. This then 

gives a low fidelity surrogate model for coupling effects.  

 

Uncoupled simulations correctly predicting the location of passbands and stopbands implies a 

dominance in 𝔼[𝜎𝑠𝑐𝑎−𝑖] over 𝔼[𝜎𝑠𝑐𝑎−𝑑] in defining the spectral shape. This is sensible when 

the structure factor of the film lacks a strong coherence effect. Then 𝕋 can dominate over the 

role of ℍ. With that said, though the structure factor is not strongly coherent, particle coupling 

still plays an important role to maintain global power balance. To study how particle coupling is 

dependent on the film’s structure factor, figure 4.3.3 plots the statistics of 𝜎𝑠𝑐𝑎−𝑑 as a function 

of the radial distance, 𝜌, between particles. Recall that 𝜎𝑠𝑐𝑎−𝑑 is the portion of a particle’s 

scattering efficiency accounting for the interference with other scattered fields. The solid black 

lines in figure 4.3.3 plot the expectation of the dependent scattering efficiency, 𝔼[𝜎𝑠𝑐𝑎−𝑑]. The 

shaded region gives the standard deviation.  The statistics of 𝜎𝑠𝑐𝑎−𝑑 are shown at four 

representative spectral locations. Two locations are in the passband and two are in the stopband 

of each filter. In figure 4.3.3, the particle – particle pair correlation function, 𝑔(𝜌), for each filter 

is also shown in the upper right of each plot. This gives reference to the spatial structure factor 

of the film. In all cases, the radial distribution function resembles the Percus-Yevick equation 

for hard spheres. There is clear short-range order and correlation increases with increasing filling 

fraction. No long-range order exists. At large interparticle distances (𝑘𝜌 ≥ 10), 𝔼[𝜎𝑠𝑐𝑎−𝑑] 

decays with a spherical Bessel-like oscillation. This indicates uncorrelated interactions consistent 

with a lack of long-range order.  

 

In almost all cases the short-range dependent scattering efficiency has an overall deleterious 

effect evident by the dip near the minimal distance. This is consistent with the idea that power 

balance is maintained primarily by nearest neighbor energy stealing. For an individual particle, 

the local photonic environment can strongly vary, primarily due to the behavior of nearest 

neighbor particles. This is evident by the large standard deviations in power transfer at short 

distances. In all cases, when 𝕋 is resonant nearest neighbor coupling interactions are stronger 

and more varying. This supports our geometric interpretation. Quenching is a result of scattering 

cross sections (when larger than geometric cross sections) have a greater degree of mutual 

overlap at wavelengths satisfying resonant scattering conditions.  
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Figure 4.3.3. Average (black) contribution of the dependent scattering efficiency as a function of wavelength-

normalized distance from the observation particle. For each filter, the distance-resolved efficiency at four 

wavelengths are shown. Each wavelength is color coded and the color shaded region around the mean values 

gives the area within one standard deviation from the mean dependent scattering efficiency. In each figure, 

two wavelengths are in the passband and two are in the stopband. The upper right quadrant of each figure 

plots an example radial distribution function of the particle film based on the size distribution function and 

area fill fraction from figure 4.3.1.  

 

To study further the role 𝕋 plays in defining the filter response, figure 4.3.4 plots the 

independent scattering efficiency, 𝜎𝑠𝑐𝑎−𝑖 ∝ 𝕋
†𝕋. This defines the scattered power emanating 

directly from individual particles within the film. Since the Mie scattering harmonics represent 

fields as atom-like electric and magnetic-type multipoles, we decompose 𝜎𝑠𝑐𝑎−𝑖 into its various 

Mie harmonic contributions to further illuminate the contribution from each harmonic (left 

column). Furthermore, we also transform from the Mie harmonics into a Kerker harmonic basis 

and perform the same harmonic decomposition of 𝜎𝑠𝑐𝑎−𝑖 in terms of Kerker harmonics as well. 

Like figure 4.3.2, we also plot the result from filters made of uncoupled particles (dashed lines) 

so that we can contrast the two.  

 

The left column of figure 4.3.4 plots 𝜎𝑠𝑐𝑎−𝑖,𝑛𝑝
𝑡 , where 𝑛 is the polar quantum number, 𝑝 is the 

parity, and 𝑡 denotes an electric or magnetic-type multipole under the Mie basis. The sum over 

all quantum azimuthal numbers, 𝑚 ∈ [0, 𝑛], is performed since we are not concerned with 

azimuthal variations. Due to the azimuthal symmetry 𝑚 = 1  for the uncoupled approximation.  

In the coupled system, all integer values of 𝑚 can be populated due to particle coupling. 

Therefore, the 𝑚 summation is necessary and corresponds to an azimuthal integration of the 

scattering response. Multiple scattering also induces electric and magnetic-type multipoles of 

opposite parity to those expected by the polarization state of the external plane wave excitation. 

Therefore, cross-polarized scattering is another feature not seen in the uncoupled approximation 

(or in planar-film filters).  To clarify the cross polarized terms have a × superscript in the legend 

and are represented by dotted lines.  
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For all filters, the electric and magnetic-type dipoles are the primary harmonics driving the 

filter response. Strong reflections are then a result of strong backward scattering near the middle 

electric and magnetic dipole crossing point. This is analogous to the backward Kerker effect for 

random film systems106. The contribution of higher order harmonics is presented in the 

supplementary information.  

 

On average the coupled system’s scattering harmonics have the same spectral shape and location 

compared to uncoupled predictions. This again substantiates the result of figure 4.3.2 and 

indicates the role of 𝕋 in defining the scattering spectra for these systems. Resonant peaks are 

reduced as a result of interparticle coupling. The reduction of resonant peaks is clearly more 

pronounced when particles are packed at a higher fill fraction. The electric dipole resonance is 

shown to be more affected by interparticle coupling compared to the magnetic dipole resonance. 

This is sensible as the latter comes from a strong closed loop oscillation of weakly damped 

bound charges, which can be seen deep into the core of the particle. In contrast, the charge 

distribution of the electric dipole is instead distributed on the outer edges of the particle, making 

it more susceptible to changes by the external environment.   

 

In the shortpass and bandpass filter, the electric dipole resonance is reduced by more than half, 

lacks a well-defined peak, and the cross polarized harmonics are of near equal magnitude to the 

same-polarized harmonics. Such deviation of the scattering behavior compared to an uncoupled 

particle brings the question: If mode profile dictates the direction of scattered photons and the 

shortpass and bandpass coupled system are strongly different to their uncoupled analogy, why 

does figure 4.3.2 show they have similar spectral behavior?  

 

Though the Mie harmonics provide insight into the difference in robustness of electric and 

magnetic-type resonances as a result of particle coupling, these harmonics do not provide insight 

into the directionality of scattering. For sufficiently high-index and low-loss dielectrics, in the 

Mie size regime, directional scattering can be found at crossing points of the magnetic and 

electric harmonics. This effect, termed the Kerker effect, is strongly dependent on both the 

relative amplitude and phase of the interfering harmonics. Furthermore, cross polarization terms 

must also be considered in random systems106. Strictly speaking, directional scattering is the result 

of coupling between 𝑂(𝑛𝑚𝑝!) harmonic pairs because the orthogonality conditions of the Mie 

harmonics cannot be leveraged on the hemisphere. Furthermore, the analysis is of both 

amplitude and phase is necessary as directionality is a coherent interference phenomenon.  

 

The Kerker harmonics are a basis of highly directional forward and backward-type multipoles 

which are designed to better elucidate features related to the directionality of such scattering. 
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These harmonics can be constructed from a linear transform of the outward propagating 

(Hankel) Mie harmonics as,  

 

𝜰𝑛𝑚𝑝
𝑓 (𝒓) = (𝑖)𝑛 (𝜳𝑛𝑚𝑝

𝑀 (𝒓) + (−1)𝑝𝑖𝜳𝑛𝑚1−𝑝
𝐸 (𝒓))  

𝜰𝑛𝑚𝑝
𝑏 (𝒓) = (−1)(𝑛+𝑚+1)(𝑖)𝑛 (𝜳𝑛𝑚𝑝

𝑀 (𝒓) + (−1)1−𝑝𝑖𝜳𝑛𝑚1−𝑝
𝐸 (𝒓)), 

4.3.1 

 

where 𝑓 and 𝑏 denote the basis of forward and backward-type directional Kerker harmonics, 

respectively. 𝐸 and 𝑀 denote electric and magnetic-type Mie harmonics, respectively. 

Correspondingly, the Kerker scattering coefficients are related to the Mie coefficients through 

the transform,  

 

𝑐𝑛𝑚𝑝
𝑡 = 

1

2
(−1)𝑡(𝑛−𝑚−1)(−𝑖)𝑛(𝑐𝑛𝑚𝑝

𝑀 + (−1)1−𝑡−𝑝𝑖𝑐𝑛𝑚1−𝑝
𝐸 ), 4.3.2 

 

where 𝑡 ∈ {𝑓 = 0, 𝑏 = 1} denotes a forward or backward-type multipole, respectively. We 

append the 𝐸 and 𝑀 superscript to the electric and magnetic-type Mie coefficients to distinguish 

them from the Kerker coefficients.  Equations 4.3.1 and 4.3.2 define an element-wise transform 

where 𝜳𝑛𝑚𝑝
𝑡 𝑐𝑛𝑚𝑝

𝑡 ∈ ℂ3. 

 

A primary benefit of the Kerker basis relevant to our analysis is that directional scattering can 

be inferred from the forward and backward decomposition of the total scattering efficiency. I.e., 

𝜎𝑠𝑐𝑎−𝑖 = 𝜎𝑠𝑐𝑎−𝑖
𝑓

+ 𝜎𝑠𝑐𝑎−𝑖
𝑏 . This leverages the properties of the Kerker harmonics to simplify 

analysis regarding photon redirection.  

 

The right column of figure 4.3.4 plots the independent scattering efficiency decomposed into 

Kerker harmonics. Again, the sum over all azimuthal numbers is performed and cross 

polarization is referenced to the polarization of the external plane wave. Under the Kerker basis, 

both the first order forward and backward directional harmonic are predominant for all four 

filters. This is a result of the dominance of the dipole modes in the Mie basis. In all cases, the 

Kerker backward harmonic shows a strong contribution in each filter’s respective stopband. 

This is also the middle crossing point between the electric and magnetic dipole mode. In the 

stopband of the bandstop filter, the backward Kerker harmonic is dominant compared to the 

forward Kerker harmonic. This indicates preferential backward-dominant scattering in that 

region. Furthermore, both the bandstop and longpass filter have forward dominant scatting in 

their long-wavelength passbands.  
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Though, anomalous directional scatting is present in some filters, it is not the predominant 

factor in defining each filters performance. In fact, the stopband of the longpass, shortpass, and 

bandstop filter are all characterized by forward and backward harmonics having approximately 

the same scattering efficiency. No anomalous directional scattering is occurring in the stopband 

regions. This strongly contrasts the prediction of uncoupled particles, which attribute all 

stopbands to highly directional backward-dominant scattering. The question is then, why does 

the coupled system still have a stopband despite lacking appreciable backward dominated 

scattering? Furthermore, why does the uncoupled particle approximation still show a similar 

overall shape in figure 4.3.2, despite predicting strong directional scattering not seen in the 

coupled counterpart? 

 

They key insight is that the reflection is driven solely by backward particle scattering, which is 

proportional to 𝜎𝑠𝑐𝑎−𝑖
𝑏 . Therefore, from the point of view of the optimizer, it is not necessary 

to simultaneously tune 𝜎𝑠𝑐𝑎−𝑖
𝑓

 as an independent parameter. Instead, it is only necessary to 

ensure a strong backward harmonic in the stopband and a weak backward harmonic in the 

passband. The behavior of the forward scattering Kerker harmonic is taken care of by energy 

conservation. I.e., the extinction terms will suppress scattering in the transmission region when 

necessary. Therefore, thought the ratio between forward and backward harmonics is not 

preserved for all filters between the coupled and uncoupled systems, the location of 

increased/decreased backward scattering is preserved and this is the defining parameter. Thus, 

both systems predict a similar filter type.   
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Figure 4.3.4. Independent scattering efficiency of all four designed filters. The left column shows the 

contribution of the electric (orange) and magnetic (light blue) dipole harmonics to the scattering efficiency. 

The first order forward (black) and backward (blue) Kerker representation is shown in the corresponding 

figure to the right. In all cases solid lines denote to the independent efficiency arising from harmonics with 

parity aligned with the expected orientation according to the plane wave polarization. E.g., given a linearly 

polarized incident plane wave, the expected orientation is electric dipoles aligned with the incident electric field 

and magnetic dipoles are aligned with the incident magnetic field. Dotted lines are the contributions of 

harmonics excited in the cross-polarization orientation. E.g., electric dipoles aligned with the incident magnetic 

field and magnetic dipoles aligned with the incident electric field. Dashed lines plot the independent scattering 

efficiency assuming no multiple scattering contribution to the local field. I.e., uncoupled particles. Since the 

cross-polarization term is a direct result of the multiply scattered field, the uncoupled system has no cross-

polarization harmonics. For readability, the legend uses 〈∙〉 (= 𝐸[𝐸[∙]|𝑠]) to denote film-level efficiencies that 

incorporate particle coupling. This allows unbracketed terms to denote uncoupled film-level efficiencies.  



 

 

141 

4.4 CONCLUSION 

 

We outline a massively parallelizable Monte Carlo integration technique to solve the total 

transmission, reflection, and absorption response arising from a monolayer of randomly 

distributed and arbitrarily shaped particles at packing fractions which lack long range order. This 

method is based on the generalized Mie technique and fully accounts for multiparticle coupling, 

including nearfield interactions of highly Mie resonant particles supporting both electric and 

magnetic-type resonances. The approach shows great agreement with (massively large) random 

film simulations using finite-difference time-domain using a fraction of the corresponding 

computational time and resources. The method also provides unique insights into how the 

collective film response is driven by the statistical properties of the constituent particles within 

the film. This provides a link between global film response and parameters such as particle size 

distribution, which can be designed using an appropriate fabrication method.  

 

Using Bayesian optimization, we inversely design particle size probability distributions and 

packing fractions which give rise to the four fundamental filters (bandpass, shortpass, longpass, 

and bandstop) in the infrared. Furthermore, these filters are made from a single material and a 

single monolayer of randomly distributed Mie resonant particles, where the key design parameters 

are given by probability distributions. This represents a uniquely different approach to filter 

design compared to traditional methods such as thin films, metasurfaces, photonic crystals, or 

small particle mixtures relying on material differences between the host and inclusions.  

 

Given the well-defined theoretical framework our technique provides, we study the effect of 

both the particle distribution and packing fraction on individual particle scattering behavior, 

interparticle coupling, and how these parameters give rise to the overall filter response. We 

directly show that the multiply scattered field is appreciable only at nearest-neighbor distances 

where the particle radial distribution function is highly correlated. Particle-particle coupling is 

shown to primarily cause energy stealing between particles on average in order to obey energy 

conservation, even though individual particle clusters can vary greatly. Energy stealing is more 

pronounced when particles are at a scattering resonance and there is more mutual overlap in 

scattering cross sections. Despite strong interparticle coupling, uncoupled simulations give good 

predictions to the spectral location of the pass and stopbands. From a harmonic analysis we 

show that even though these systems predict different behavior on the nanoscopic (individual 

particle) level, resulting macroscopic behavior is similar enough to warrant use in the 

optimization procedure as a low-fidelity surrogate and that this approximation can be 

substantiated by theory. 
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4.5 ISOLATED VERSUS COUPLED ELECTRICAL CROSS SECTIONS 

 

Figures 4.3.2 – 4.3.4 in the main text highlight the role individual scattering of particles plays in 

filter design. This section expands on the analysis of the main text in this regard.  Figures 4.5.1 

– 4.5.4 plot the absorption and scattering profile of isolated particles and compares this to 

particles embedded in a random film, where the size distributions and correlation function is the 

same as the main text. The goal of this comparison is to see how random coupling alters the 

overall scattering and absorption efficiency of the particles within the film.  

 

The plots are both wavelength and particle size resolved and the color bar is normalized so that 

summing over all unique particle radii will return the total absorption and scattering efficiency 

of the film. To conceptually understand this normalization, recall that the total scattering and 

absorption efficiency of the film is the expected value of the efficiencies of the particles within 

the film. By the law of total expectation, the discretized expected efficiency can be written 

generically as 𝔼[𝜎] = ∑𝜎(𝑠)𝑃(𝑠), where 𝑠 is the unique particle shape, 𝜎(𝑠) is the expected 

efficiency for that particle shape (averaged over all positions), and 𝑃(𝑠) is the probability of 

observing shape 𝑠. The color bar is 𝜎(𝑠)𝑃(𝑠). 

 

Figures 4.5.1 – 4.5.4 show that a primary role of particle coupling is to smooth/blur the 

scattering resonance peaks of isolated particles in order to flatten and broaden the 

passband/stopbands. For example, in the shortpass filter, particle coupling smooths takes the 

isolated scattering peak near 7.3 um and smooths it across the 7 – 9 um spectral window. This 

creates the reliable and relatively flat stopband from 7.3 – 9 um seen in the figure 2 of the main 

text. The results of figure 4.5.1 further support the idea that the optimizer uses particle 

coupling as a tool to broaden/smooth otherwise narrowband isolated scattering resonances 

across the spectral regions of interest.



 

 

143 

 
Figure 4.5.1. Contribution of a random film’s total absorption (left column) and scattering (right column) 

efficiency as a function of the radius of particles within the film. The top row is calculated using uncoupled 

particles. Therefore, the sum of all particles can produce a total (film level) scattering and absorption efficiency 

that is not physical. Nonetheless, this row provides insight into the scattering and absorption behavior of the 

embedded particles when in a homogeneous environment. The bottom row gives the values when particles 

are coupled. This the sum of all particles efficiencies for this row does define a proper power balance relation.  
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Figure 4.5.2. Contribution of a random film’s total absorption (left column) and scattering (right column) 

efficiency as a function of the radius of particles within the film. The top row is calculated using uncoupled 

particles. Therefore, the sum of all particles can produce a total (film level) scattering and absorption efficiency 

that is not physical. Nonetheless, this row provides insight into the scattering and absorption behavior of the 

embedded particles when in a homogeneous environment. The bottom row gives the values when particles 

are coupled. This the sum of all particles efficiencies for this row does define a proper power balance relation.  
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Figure 4.5.3. Contribution of a random film’s total absorption (left column) and scattering (right column) 

efficiency as a function of the radius of particles within the film. The top row is calculated using uncoupled 

particles. Therefore, the sum of all particles can produce a total (film level) scattering and absorption efficiency 

that is not physical. Nonetheless, this row provides insight into the scattering and absorption behavior of the 

embedded particles when in a homogeneous environment. The bottom row gives the values when particles 

are coupled. This the sum of all particles efficiencies for this row does define a proper power balance relation.  
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Figure 4.5.4. Contribution of a random film’s total absorption (left column) and scattering (right column) 

efficiency as a function of the radius of particles within the film. The top row is calculated using uncoupled 

particles. Therefore, the sum of all particles can produce a total (film level) scattering and absorption efficiency 

that is not physical. Nonetheless, this row provides insight into the scattering and absorption behavior of the 

embedded particles when in a homogeneous environment. The bottom row gives the values when particles 

are coupled. This the sum of all particles efficiencies for this row does define a proper power balance relation.  
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4.6 COMPARISON TO QUASI-STATIC EFFECTIVE MEDIUMS 
 

Given the computational complexity of the method outlined, it is prudent to discuss how this 
method compares to simpler models. Figure 4.6.1 compares the spectra of the random film’s 
generated in the main text to their Maxwell-Garnett and Bruggeman counterparts. Thin film 
transmission matrix calculations are used to calculate the spectra of all effective media 
simulations. In this case, the film thickness for each effective medium calculation was defined 
by the mode diameter of the particle radii distribution. In all cases the mode (most likely) particle 
diameter is close to both the maximum and mean particle diameter. Changing the thickness 
between these three parameters did not have a significant effect on the resulting spectra. Filling 
fractions are chosen to be the same as the optimized filling fraction of the main text. It is clear 
from figure 4.6.1 that the Maxwell-Garnett and Bruggeman effective media do not accurately 
predict the true spectra of the particle filters. I.e., these models do not match the full-wave finite-
difference time-domain results or the Monte Carlo generalized Mie results. Furthermore, by 
comparison, the effective media predict much lower quality filters. In multiple cases the 
reflection and transmission spectra is predominantly flat throughout the spectral range. In these 
cases, there is no transition from a dominant reflection region to a dominant transmission region 
at all. 
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Figure 4.6.1. Comparison of particle filters made from randomly distributed Mie resonant particles confined 

to a single layer and filters made from analogous effective media based on the Maxwell-Garnett and 

Bruggeman approximations. The thickness and filling fraction of the effective medium models are determined 

by the optimizer distribution. The input parameters are: bandpass (thickness = 1256 nm, filling fraction = 

56%), longpass (thickness = 745 nm, filling fraction = 41%), shortpass (thickness = 1170 nm, filling fraction 

= 50%), bandstop (thickness = 890 nm, filling fraction = 26%). 
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S E C T I O N  2  

EFFECTIVE MEDIUMS:  

CLASSICAL THEORIES AND BEYOND 
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C h a p t e r  5   

THEORY OF EFFECTIVE MEDIUMS 

 

5.1 INTRODUCTION  
 

Though all matter consists of hierarchical levels of discrete objects, i.e., particle, molecule, atom, 

electron, nucleon, et cetera; the effective medium provides a method to describe the perceived 

continuum we experience. The process of blurring the discrete into the continuum is called 

homogenization. Once the interactions of a complex collective are homogenized, underlying 

rules need to be set that outline how the homogenized collective responds to external fields, 

forces, or other stimuli. These governing rules are called constitutive relations. Some are derived 

empirically through experiment; others can be derived from first principles. Clearly the theory 

of constitutive relations is of great importance. In may cases it provides the connection between 

the macro and nanoscopic. For example, in electromagnetism, constitutive relations can define 

how matter interacts with both fields and intensities, given the degree of disorder in the system.  

Following a common nomenclature in the electromagnetics community, constitutive relations 

for electromagnetic fields define an “effective medium.”  In situations where the nanoscopic 

cannot be directly observed, homogenization offer a model to infer the nanoscopic governing 

dynamics. When the nanoscopic can be directly observed and even controlled, then 

homogenization give a recipe to create emergent macroscopic behavior.  

 

In electromagnetism, effective mediums of a disordered system were one of the first frameworks 

to explore metamaterials.  In this context, the “material” observed was a homogenized 

representation of a more complex many-body interaction under the hood, where the incoherent 

intensity was negligible. Correspondingly, through proper design of nanoscopic dynamics 

homogenized “materials” were designed with coherent properties unseen in nature. Of course, 

in reality, all interactions at the nanoscopic scale uphold known physical principles.  It is just that 

we cannot directly observe the minute details, so we observe the emergent collective. Examples 

of coherent metamaterial-induced anomalous macroscopic behavior include gradient impedance 

and refractive indices114–119, optically induced magnetism38,120–123, a negative index of refraction124–

130, tailored anisotropy and hyperbolicity131–136, and more. Of course, metamaterials are not, to 

the best of my knowledge, a complete panacea for all physical restrictions. For example, 

governing properties such as conservation relations and causality cause overarching restrictions 
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onto the mathematical forms an effective media can take127,137–147. Variational bounds pose 

limits on the behavior of effective media given the extremes in spatial configurations148–151. This 

will be discussed in detail in section 5.4. 

 

Part one of this dissertation discussed homogenization of both the coherent and incoherent field 

in the context of random metasurfaces. Starting from Lipmann-Schwinger, both the coherent 

field and intensity relations are derived for complex distributions of particle disorder through a 

Monte Carlo scheme. Applications of this approach were then presented as case studies 

exploring anomalous behavior.  

 

In part two, homogenization is discussed beyond the confinement to two dimensions. Allowing 

randomness to now exist in a third dimension transitions the discussion from metasurfaces to 

metamaterials. This also brings considerably more complexity to rigorous analysis. Hence, part 

two places a strong emphasis on calculatable approximate theories (“mixing rules”) and their 

applications. Furthermore, emphasis is placed on systems that are primarily coherent. Incoherent 

theories can be studied from the starting point of the Bethe-Salpeter equations, but this is beyond 

scope. Similar to part one, the theory of coherent metamaterials will be outlined, including a 

Monte Carlo scheme that can be used to model beyond the other discussed regimes. 

Applications of these models are then presented as case studies exploring anomalous behavior 

and their applications.   
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5.2 DYSON AND THE SELF-ENERGY 
 

“In complexity, it is only simplicity that can be interesting.” 

 

- Steven Weinberg, Lake Views, 2012 

 

 

As discussed in section 1.8, the concept of order of scattering can play an important role in 

understanding the assumptions of effective medium theories. In this vein, Feynman diagrams, 

the Dyson equation, and the concept of self-energy provides an elegant and thorough ab initio 

derivation that connects all effective medium theories to approximations of order of scattering.  

 

Recall from section 1.8 the mean field is defined as the solution to equation 1.8.2,  

 

∫ 𝑑𝑃𝑈℧
(𝛻 × 𝛻 × �̃� − 𝑘2�̃� = 𝑈�̃�).  

 

The primary difficulty of this problem is that 𝔼[𝑈�̃�] ≠  𝔼[𝑈]𝔼[�̃�]. The subject of effective 

medium theories is in defining an effective potential, �̿�𝑒𝑓𝑓(𝒓, 𝒓
′),  such that 

 

𝔼[𝑈�̃�](𝒓) ≈ ∫𝑑𝒓′�̿�𝑒𝑓𝑓(𝒓, 𝒓
′) 𝔼[�̃�](𝒓′) = 𝕌𝑒𝑓𝑓𝔼[�̃�].  5.2.1 

 

Equation 5.2.1 introduces the non-local tensor,  �̿�𝑒𝑓𝑓(𝒓, 𝒓
′), which is commonly known as the 

“self-energy” or “mass operator” in many-body scattering theory. Note that, given the statistical 

properties of the true underlying potential as outlined in section 1.8, the effective potential will 

be translational invariant, �̿�𝑒𝑓𝑓(𝒓, 𝒓
′) = �̿�𝑒𝑓𝑓(𝒓 − 𝒓

′). Again, a double struck notation is used 

for operators of the form 𝔸(𝒙, 𝒙′) =  ∫ 𝑑𝒙′ �̿�(𝒙, 𝒙′). Brackets are used when necessary for 

clarity.  

 

Recall from section 1.3 that the electric field Green’s dyadic of a realized inhomogeneous 

potential, �̿�𝑒 , is defined as  

 

 
𝛻 × 𝛻 × �̿�𝑒(𝒓, 𝒓

′) − 𝑘2�̿�𝑒(𝒓, 𝒓
′) = 𝛿(𝒓 − 𝒓′) + 𝑈(𝒓)�̿�𝑒(𝒓, 𝒓

′),   
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and �̿�𝑒𝑜 is the electric dyadic to the homogenous system, 𝑈 = 0. The explicit form of this 

operator is defined in section 1.3, though it is beneficial to define it here as  

 

�̿�𝑒𝑜(𝒓 − 𝒓
′) = 𝑃𝑉�̿�𝑒𝑜(𝒓 − 𝒓

′) + �̿�𝛿(‖𝒓 − 𝒓′‖),  5.2.2 

 

where 𝑃𝑉�̿�𝑒𝑜is the principal value of the operator excluding an infinitesimal region centered at 

‖𝒓 − 𝒓′‖ = 0. �̿� is the depolarization dyadic defined by the form of the removed region. The 

Green’s solution to the inhomogeneous wave equation is,  

 

𝔾𝑒 = 𝔾𝑒𝑜 + 𝔾𝑒𝑜𝕌𝔾𝑒. 5.2.3 

 

Through introducing the transition operator, equation 5.2.3 can be written in Lippmann-

Schwinger form,  

 

𝔾𝑒 = 𝔾𝑒𝑜 + 𝔾𝑒𝑜𝕋𝔾𝑒𝑜  

𝕋 = 𝕌(𝕀 − 𝔾𝑒𝑜𝕌)
−1,  

5.2.4(a) 

5.2.4(b) 

 

where the transition operator, 𝕋, is of the entire cluster. This is an important step for calculating 

the coherent field as it isolates all randomness to 𝕋. The propagator on the right-hand side of 𝕋 

propagates the incident field to a deterministic anchor point in space. The transition matrix 𝕋 

then defines an incident-to-scattered field conversion that allows all multiple scattering in space 

to be accounted for and referenced to the anchor point. The propagator on the left-hand side 

of 𝕋 then propagates this scattered field from the known anchor point to the desired location 

of evaluation. Correspondingly, the Green’s operator for the coherent field can be found by 

taking the expectation of the total Green’s solution, 

 

𝔼[𝔾𝑒] = (𝕀 + 𝔾𝑒𝑜𝔼[𝕋])𝔾𝑒𝑜,  5.2.5 

 

where the right-hand side need only the expectation of 𝕋, which is an ensemble expectation of 

possible particle positions and types. 
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Recall from section 1.3 that for discrete inhomogeneities it is meaningful to apply the 

Lippmann-Schwinger procedure on a per particle basis. Correspondingly, the Lippmann-

Schwinger solution can be repackaged in Foldy-Lax form, 

 

𝔾𝑒 = 𝔾𝑒𝑜 + 𝔾𝑒𝑜 ∑ 𝕋𝑎𝔾𝑒𝑎
𝑁
𝑎   

𝔾𝑒𝑎 = 𝔾𝑒𝑜 + 𝔾𝑒𝑜 ∑ 𝕋𝑏𝔾𝑒𝑏
𝑁
𝑏≠𝑎   

𝕋𝑎 = 𝕌𝑎(𝕀 − 𝔾𝑒𝑜𝕌𝑎)
−1,  

5.2.6(a) 

5.2.6(b) 

5.2.6(c) 

 

where, 𝕋𝑎 and 𝔾𝑒𝑎  are the particle-specific transition and Green’s operator, respectively. The 

benefit of the Foldy-Lax form is that the transition operators for individual particles can be 

found separately, either through the extended boundary technique, full-wave simulations, or 

another method. The coherent field in Foldy-Lax form is  

 

𝔼[𝔾𝑒] = 𝔾𝑒𝑜 + 𝔾𝑒𝑜 ∑ 𝔼[𝕋𝑎𝔾𝑒𝑎]
𝑁
𝑎 = 𝔾𝑒𝑜 + 𝔾𝑒𝑜𝑁𝔼[𝕋𝑎𝔼[𝔾𝑒𝑎|𝑎]]  

𝔼[𝔾𝑒𝑎] = 𝔾𝑒𝑜 + 𝔾𝑒𝑜 ∑ 𝔼[𝕋𝑏𝔾𝑒𝑏]
𝑁
𝑏≠𝑎   

= 𝔾𝑒𝑜 + 𝔾𝑒𝑜(𝑁 − 1)𝔼[𝕋𝑏𝔼[𝔾𝑒𝑏|𝑎, 𝑏]].  

5.2.7(a) 

5.2.7(b) 

 

As discussed in section 1.8 and section 1.9, equation 5.2.7 produces an infinite hierarchy of 

conditional expectations, where 𝔼[𝕋𝑎𝔼[𝔾𝑒𝑎|𝑎]] is calculated from 𝔼[𝕋𝑏𝔼[𝔾𝑒𝑏|𝑎, 𝑏]], which 

is calculated from 𝔼[𝕋𝑐𝔼[𝔾𝑒𝑐|𝑎, 𝑏, 𝑐]], et cetera. Applying the same analysis as outlined in 

section 1.3, the cluster-level transition operator can be written as an order of scattering expansion 

of particle-level operators. This outlines how to construct 𝕋 as a process of multiple order of 

scattering events. The cluster-level transition operator for the coherent field is,  

 

𝔼[𝕋] = 𝔼[∑ 𝕋𝑎
𝑁
𝑎 ] + 𝔼[∑ ∑ 𝕋𝑎𝔾𝑒𝑜

𝑁
𝑏≠𝑎 𝕋𝑏

𝑁
𝑎 ] + ⋯  5.2.8 

 

Rewriting equation 5.2.5 to the mathematical form of equation 5.2.3, the Green’s operator for 

the coherent field takes the well-known form of a Dyson equation,  

 

𝔼[𝔾𝑒] = 𝔾𝑒𝑜 + 𝔾𝑒𝑜𝕌𝑒𝑓𝑓𝔼[𝔾𝑒]  

𝕌𝑒𝑓𝑓 = 𝔼[𝕋](𝕀 + 𝔾𝑒𝑜𝔼[𝕋])
−1.  

5.2.9(a) 

5.2.9(b) 

 

Comparing equation 5.2.9(a) to equation 5.2.3 it is clear that 𝕌𝑒𝑓𝑓 , defined by equation 5.2.9(b), 

is the procedure necessary to formally uphold 𝔼[𝑈�̃�](𝒓) = ∫𝑑𝒓′�̿�𝑒𝑓𝑓(𝒓, 𝒓
′) 𝔼[�̃�](𝒓′), hence 
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the 𝔼[𝑈�̃�] = 𝕌𝑒𝑓𝑓𝔼[�̃�] problem is formally solved. Throughout this dissertation, it is 

assumed that operators defined by a Neumann series are convergent in the operator norm so 

that the inverse is defined as,  

 

∑ 𝔸𝑗∞
𝒋 = (𝕀 − 𝔸)−1. 

 

Now that the effective potential (self-energy) is properly defined, the inhomogeneous wave 

equation for the coherent field is  

 

𝛻 × 𝛻 × 𝔼[�̿�𝑒] − 𝑘
2𝔼[�̿�𝑒] = 𝛿(𝒓 − 𝒓

′) + ∫𝑑𝒓′�̿�𝑒𝑓𝑓 𝔼[�̿�𝑒].   

 

At this stage it is useful to work in momentum space to avoid spatial convolutions with the 

nonlocal self-energy. The operators in their Fourier transformed form, 𝒓 → 𝒑 and 𝒓′ → 𝒑′, are 

 

ℱ𝒓 [ℱ𝒓′[𝕌𝑒𝑓𝑓(𝒓, 𝒓
′)]] = 𝕌𝑒𝑓𝑓(𝒑, 𝒑

′)  

ℱ𝒓[ℱ𝒓′[𝔼[𝔾𝑒](𝒓, 𝒓
′)]] = 𝔼[𝔾𝑒](𝒑, 𝒑

′). 
 

 

Since the systems under study are translationally invariant, the momentum is a conserved 

quantity, 

 

𝕌𝑒𝑓𝑓(𝒓, 𝒓
′) = 𝕌𝑒𝑓𝑓(𝒓 − 𝒓

′) ⟺ 𝕌𝑒𝑓𝑓(𝒑, 𝒑
′)𝛿(𝒑 − 𝒑′) = �̿�𝑒𝑓𝑓(𝒑)

𝔼[𝔾𝑒](𝒓, 𝒓
′) = 𝔼[𝔾𝑒](𝒓 − 𝒓

′) ⟺ 𝔼[𝔾𝑒](𝒑, 𝒑
′)𝛿(𝒑 − 𝒑′) = 𝔼[�̿�𝑒](𝒑),

   

 

and the Green’s function solution for the coherent field is,  

 

𝔼[�̿�𝑒](𝒑)  

= �̿�𝑒𝑜(𝒑) (�̿� − �̿�𝑒𝑜(𝒑)�̿�𝑒𝑓𝑓(𝒑))
−𝟏

  

= (𝑝2(�̿� − �̂�𝑝⨂�̂�𝑝) − 𝑘
2�̿� − �̿�𝑒𝑓𝑓(𝒑))

−1
 .  

5.2.10(a) 

5.2.10(b) 

 

Equation 5.2.10 brings a rich set of information about the coherent field, including a statistical 

generalization of band diagrams, density of states, coherence length, and the form of the 

coherent field in real space. Radiation modes of the system are determined by det[𝔼[�̿�𝑒]
−1
] =
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0. This comes from the general definition, �̿�𝑒
−1𝑬 = 𝑱, then finding the non-trivial solutions 

to the homogeneous equation, 𝑱 = 𝟎 → det[�̿�𝑒
−1] = 0. Inserting the homogeneous Green’s 

function,  

 

�̿�𝑒𝑜(𝒑) = (𝑝
2(�̿� − �̂�𝑝⨂�̂�𝑝) − 𝑘

2 �̿�)
−1

,  5.2.11 

 

into equation 5.2.10(a) gives 5.2.10(b). Furthermore, comparing the homogeneous Green’s 

function to the Green’s function of the coherent field makes clear the relation of the effective 

propagation constant and the self-energy. Disregarding rigor, the effective permittivity has the 

form,  

 

�̿�𝑒𝑓𝑓(𝒑) = �̿� + �̿�𝑒𝑓𝑓(𝒑)/𝑘
2. 5.2.12 

 

Again, the proper solution is found through the eigenvalue equation given by det[𝔼[�̿�𝑒]
−1
] =

0. It can now be rigorously stated that the complexity of the problem relies on how to estimate 

the expected multiple scattering behavior given by equations 5.2.9(b) and 5.2.8. Equation 5.2.10 

shows that the dispersion is generally different for parallel and perpendicular components as 

well as the direction of propagation. Clearly this allows for a diverse set of behaviors that are not 

represented in most effective medium theories. In fact, given that det[𝔼[�̿�𝑒]
−1
] = 0 is exact, 

there is no guarantee that it admits solutions, �̿�𝑒𝑓𝑓 , that are meaningfully consistent with a 

homogenized medium. Correspondingly, the self-energy not only describes the form of the 

coherent field propagator, but also the properties of the underlying material distribution 

necessary for an effective medium description to be meaningful.  

 

Clearly, the multiple scattering of causal components creates a causal effective medium response.  

Among the most important properties of the coherent Green’s function is its spectral function, 

−𝔗[𝔼[�̿�𝑒]], which is proportional to the density of states and should be non-negative. The 

solutions of �̿�𝑒𝑓𝑓  should then properly decay (possibly infinitesimally small) with propagation. 

The decay of the coherent field comes exclusively from 𝔗[�̿�𝑒𝑓𝑓], and occurs from both 

absorption and scattering. This gives the notion of a coherence length, ℓ𝑒𝑥𝑡
−1 = ℓ𝑠𝑐𝑎

−1 + ℓ𝑎𝑏𝑠
−1 , 

which is finite (possibly approaching infinity) even when all inhomogeneities are lossless. The 

coherence length is a characteristic distance for a random system and dictates the length scales 

where an effective medium description is meaningful. For example, in a scattering dominate 
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system, ℓ𝑒𝑥𝑡 ≈ ℓ𝑠𝑐𝑎, the coherence length is the distance where the coherent state depletes 

to the incoherent state. In three dimensions, 𝑘ℓ𝑠𝑐𝑎 ≤ 1 is a marker for the transition to 

localization according to the Ioffe-Regel criterion. Clearly finite coherence lengths mean the 

eigenmodes are at best quasi-radiation modes. The delta functions in the spectral function 

become broadened peaks. In this regard, suitable solutions can be found from the spectral 

function.  

 

The self-energy provides a formal solution to the effective medium problem. From the self-energy and the 

corresponding Green’s solution all properties of the coherent field can be defined.  
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5.3 A CLASS OF MIXING RULES: GARNETT, BRUGGEMAN, AND OTHERS 

 

“Craftsmen, as well as engineers, recognized that any averaging depended on what 

process or property was involved. People who worked with wood had no doubt that 

the fibrous grain structure was important.” 

 

- Marshall Stoneham, Forward to Effective Medium Theory, 1999 

 

 

The most established class of effective mediums are those that assume the effective medium is 

passive, linear, homogeneous, and isotropic. Furthermore, the scattering response is traditionally 

assumed to be electric dipole dominant, though generalizations will be discussed. This section 

outlines the assumptions imposed on the self-energy to derive the well-known approximations 

of individual scattering, Lorentz-Lorentz/Maxwell-Garnett152, Bruggeman18,153,154, and Gyorffy, 

Korringa, and Mills18,153,154. General assumptions for the self-energy applicable to all theories are 

discussed first. Then, the subtleties underpinning each approximation are outlined. In particular, 

the connection to the self-energy is used to show how the discussed approximations are special 

cases of more general approximations in condensed matter research. Namely, the Lorentz-

Lorentz/Maxwell-Garnett mixing rule is the first order term in the quasi-crystalline 

approximation18,153,154. Bruggeman’s work is an application of the individual scattering 

approximation under the coherent potential framework18,153,154. Gyorffy, Korringa, and Mills is 

an application of the quasi-crystalline approximation under the coherent potential 

framework153,154. The section finishes by showing that all of the discussed approximations are 

connected aa broader class, which can be described through a single equation153. This result is 

used extensively in the next chapter.  

 

A common hypothesis underpinning all mixing rules in this section is that the random media is 

statistically isotropic and that field variations are on scales larger than the size of the scatterers 

and their correlation lengths. Given the requirement of small scatterers, it is also generally 

assumed that scattering is electric dipole dominant. Inductive fields are negligible, and the 

effective medium does not have an effective magnetic component, 𝜇𝑒𝑓𝑓 = 1. Given these 

conditions, the self-energy is local (no 𝒑-dependence, as spatial dispersion implies nonlocality) 

and isotropic and  

 

�̿�𝑒𝑓𝑓 = (휀𝑒𝑓𝑓 − 1)𝑘
2�̿�,  5.3.1 
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where 휀𝑒𝑓𝑓  is the effective refractive index154,155. In this case, the coherent Green’s function is,  

 

𝔼[�̿�𝑒] = (�̿� +
1

𝑘𝑒𝑓𝑓
2 ∇ ⊗ ∇)

𝑒
𝑖𝑘𝑒𝑓𝑓|𝒓−𝒓

′|

4𝜋|𝒓−𝒓′|
,  5.3.2 

 

which exactly recovers the solution to a passive, linear, homogeneous, and isotropic medium of 

𝑘𝑒𝑓𝑓 .  

 

The electric dipole assumption is not ill founded when viewing the particle as a cavity. The 

quasistatic restriction limits 𝕋 to appreciably support only the lowest order (electric dipole) 

harmonic as is easily shown through Mie theory, which is applicable to particles of any shape in 

the vanishing size regime. As long as the local density of electromagnetic states does not contain 

strong high order harmonics that disproportionately outweigh the particle’s natural suppression 

of these excitations, on average, then all multiple scattering reduces to dipole-dipole coupling. 

This dramatically narrows the state space of multiple scattering. Note, as discussed in section 

1.9, a particular particle can experience high-order harmonic scattering. This is ok, as the 

condition is concerned only with the average behavior.  

 

For explicit detail on the derivations of the individual scattering, Lorentz-Lorentz/Maxwell-

Garnett, Bruggeman, and Gyorffy, Korringa, and Mills approximations, I recommend the book 

“Theory of microwave remote sensing,” by Tsang, Kong, and Shin. A forewarning, the system 

of numbering equations is absolutely maddening.  

 

 

Individual scattering approximation (ISA) 

 

The simplest effective medium is called the individual scattering approximation, which proposes 

to stop the cascade infinite conditional expectations through the assumption,  

 

𝔼[𝔾𝑒𝑎|𝑎] ≈ 𝔼[𝔾𝑒]. 5.3.3 

 

Physically this assumption means that that it does not matter the placement of other particles, 

the expected Green’s solution for each individual particle is the same. One simple example where 

this assumption can hold is in very sparse distributions. Then the local field of every particle is 

dominated by the incident field no matter the permutations in particle configurations. The ISA 
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is attributed to Foldy and is sometimes called Foldy’s approximation154. This terminology is 

avoided to ward off confusion with the Foldy-Lax form of multiple scattering. (What a good 

problem for Foldy to have!)  

 

If the particle’s type is not dependent on position, which is the assumption used throughout this 

dissertation, then under the ISA, 

 

𝔼[𝕋𝑎𝔼[𝔾𝑒𝑎|𝑎]] ≈
1

𝑉
𝔼[𝕋𝑎|𝒓𝑎 = 𝟎]𝔼[𝔾𝑒], 5.3.4 

 

where 𝔼[𝕋𝑎|𝒓𝑎 = 𝟎] is an expectation only of particle types assuming the particle is at the origin 

(more generally, the anchor point). Hence, 𝔼[𝕋𝑎|𝒓𝑎 = 𝟎] can be well calculated from a library 

of possible particle types. Equations 5.3.4 is the spirit of the result seen in section 1.9. The Foldy-

Lax interpretation under the ISA is  

 

𝔼[𝔾𝑒] = 𝔾𝑒𝑜 +
𝑁

𝑉
𝔾𝑒𝑜𝔼[𝕋𝑎|𝒓𝑎 = 𝟎]𝔼[𝔾𝑒],  5.3.5 

 

which gives exactly the Dyson equation with self-energy,  

 

𝕌𝑒𝑓𝑓
𝐼𝑆𝐴 =

𝑁

𝑉
𝔼[𝕋𝑎|𝒓𝑎 = 𝟎].  5.3.6 

 

Propagating solutions are then found from the eigenvalue problem, 

 

 

det [𝑝2(�̿� − �̂�𝑝⨂�̂�𝑝) − 𝑘
2 �̿� +

𝑁

𝑉
𝔼[�̿�𝑎|𝒓𝑎 = 𝟎]] = 0. 5.3.7 

 

The assumptions discussed at the beginning of this section, imply the particle transition operator 

needs to be diagonal and “on-shell,” 𝒑 ≈ 𝑘�̂�. For small enough particle, shape and material 

anisotropy can be ignored. Infinitesimally small particles behave like an infinitesimally small 

sphere. For such particles, the transition matrix is diagonal, on shell, and dominated by the Mie 

electric dipole harmonic as show by a power series expansion of the Mie solution,  
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𝑎1 = −𝑖 (
2

3
) ( 𝑠− ℎ

𝑠+2 ℎ 
) (𝑘𝑜𝑅)

3 +𝑂((𝑘𝑜𝑅)
5), 5.3.8 

 

where 𝑅 is the circumscribing radius of the particle and 휀𝑟 = 휀𝑠/휀ℎ is the ratio between the 

permittivity of the sphere, 휀𝑠, and the embedding host media, 휀ℎ. Under the electric dipole 

approximation, 𝕋𝑎 ≈ �̿�
−1 ∫𝑑𝒓′𝛼𝑎𝛿(𝒓 − 𝒓

′), where 𝛼𝑎 is the electric dipole polarizability and 

for a sphere �̿�−1 = 3𝑘2�̿�. The spherical cavity is explicitly chosen to maintain isotropy, 

assuming that the singular term would be dominant post integration. The conversion from the 

Mie harmonic coefficient to polarizability is 𝛼𝑒 = 6𝜋𝑖𝑎1/𝑘0
3. This allows a connection between 

the physical properties of the particle and the moment of the effective dipole it would produce. 

Clearly grace is being given between the conflict of “infinitesimally small” and remaining in the 

classical regime. Truly infinitesimally small means a quantum mechanical description of the 

dipole moment. Importantly, equation 5.3.8 and the spherical cavity satisfies the overarching 

requirements for the potential as outlined initially in this section. For very small particles the ISA 

effective permittivity is  

 

휀𝑒𝑓𝑓
𝐼𝑆𝐴 ≈ 휀ℎ (1 + ∑ 𝑓𝑓𝒯𝒯 ( 𝒯− ℎ

𝒯+2 ℎ 
)). 5.3.9 

 

Uses of the individual scattering approximation can be found in the well-known books 

“absorption and scattering of light by small particles,” by Bohren and Huffman, and in “light 

scattering by small particles,” by van de Hulst. It is clear that equation 5.3.7 can extended beyond 

equation 5.3.9. Though, this could evoke 휀𝑒𝑓𝑓 → �̿�𝑒𝑓𝑓(𝒑). For example, as discussed by 

Bohren, Huffman, and van de Hulst, higher order harmonics can create asymmetry of forward 

and backward scattering. Strong inductive currents found in optically induced magnetic 

resonances require either a direction-dependent refractive index or a reinterpretation of the 

effect using an effective permeability.  

 

 

Lorentz-Lorentz approximation (LLA) 

 

Lorentz improved the ISA in proper circumstances by instead evoking the quasi-crystalline 

approximation (QCA) and retaining the leading term. The key to the QCA is to approximate all 

correlations as products of pair-wise correlations, 𝑔2(𝒓1, 𝒓2). E.g., 𝑔3(𝒓1, 𝒓2, 𝒓3) ≈

𝑔2(𝒓1, 𝒓2)𝑔2(𝒓1, 𝒓3)𝑔2(𝒓2, 𝒓3) and so forth. The Dyson equation is then easily understood 

from the Feynman diagram.  
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Under the assumptions posed at the beginning of this section, the self-energy of the QCA is  

 

𝑈𝑒𝑓𝑓
𝑄𝐶 �̿� =

𝑁

𝑉
3𝑘2�̿�𝔼[𝛼𝑎]

�̿�−
𝑁

𝑉
𝔼[𝛼𝑎](�̿�+3𝑘2�̿� ∫ 𝑑𝒓𝑃𝑉�̿�𝑒𝑜(1−𝑔2(𝒓1−𝒓2)))

, 5.3.10 

 

where, the spherical cavity is again assumed on symmetry arguments. Taking the further 

assumption that the integral term is negligible recovers the Lorentz-Lorentz (LL) approximation 

of the self-energy,  

 

𝑈𝑒𝑓𝑓
𝐿𝐿 =

𝑁

𝑉
3𝑘2𝔼[𝛼𝑎]

1−
𝑁

𝑉
𝔼[𝛼𝑎]

, 5.3.11 

 

from the self-energy the Lorentz-Lorentz effective permittivity is 

 

𝑒𝑓𝑓
𝐿𝐿 −1

𝑒𝑓𝑓
𝐿𝐿 +2

≈ 𝔼[𝑓𝑓𝑎 (
𝑎− ℎ

𝑎+2 ℎ 
)]. 5.3.12 

 

Interestingly the Lorentz-Lorentz approximation can be derived directly from equation 5.2.8, 

under suitable assumption of packed electric dipoles. The key to this interpretation is to 

construct a system such that the transition operator and Green’s propagator have the same value 

at all sites. Then the Lorentz-Lorentz approximation actually incorporates all order of scattering 

terms under the dipole approximation as long as the dipoles are sufficiently close. At distances 

much smaller than the wavelength, the dominant term in the integral of the homogeneous 

Green’s function shown in equation 5.2.2 is ≈ �̿�𝛿(‖𝒓 − 𝒓′‖). For a system of packed identical 

electric dipoles, the order of scattering is   

 

𝔼[∑ 𝕋𝑎
𝑁
𝑎 ] + 𝔼[∑ ∑ 𝕋𝑎𝔾𝑒𝑜

𝑁
𝑏≠𝑎 𝕋𝑏

𝑁
𝑎 ] + 𝔼 [∑ ∑ ∑ 𝕋𝑎𝔾𝑒𝑜

𝑁
𝑐≠𝑎
𝑐≠𝑏

𝑁
𝑏≠𝑎 𝕋𝑏𝔾𝑒𝑜𝕋𝑐

𝑁
𝑎 ]…  

≈
𝑁

𝑉
𝛼�̿�−1 (1 +

𝑁

𝑉
𝛼 + (

𝑁

𝑉
𝛼)

2
+ (

𝑁

𝑉
𝛼)

3
+⋯).  

5.3.13 

 

 Equation 5.3.13 is a geometric series,  

 

𝑁

𝑉
𝛼�̿�−1∑ (

𝑁

𝑉
𝛼)

𝑗
𝑁
𝑗 =

𝑁

𝑉
𝛼�̿�−1

1−(
𝑁

𝑉
𝛼)
𝑁

1−(
𝑁

𝑉
𝛼)

𝑁→∞
𝛼<𝑉/𝑁
→    

𝑁

𝑉
𝛼

1−
𝑁

𝑉
𝛼
�̿�−1 = 𝕌𝑒𝑓𝑓

𝐿𝐿 .  5.3.14 
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Clearly this condition does not hold in general. The equivalence of the operators per particle 

means that every particle experiences the same local field, on ensemble average. 

Correspondingly, the accumulated effect of all order of scattering terms for this system is to 

completely smooth the local field across the sample. The accuracy of the Lorentz-Lorentz 

approximation is now understood as being dependent on how well the system upholds the 

geometric series representation. As particle-particle interactions deviate the error (Δ) in the 𝑗’th 

multiple scattering term is 𝑂(Δ𝑗).  

 

Furthermore, recall that convergence of the geometric series requires 𝛼 < 𝑉/𝑁. 

Correspondingly, two length scale conditions must be upheld in this interpretation. First, the 

distances between neighboring dipoles must be electrically small (the Green’s condition). 

Second, the distance between dipoles must be sufficiently large relative to the displacement 

distance of the charges forming the dipole moment (the geometric series condition). These 

seemingly competing conditions are reconciled by stating that the dipole volume should shrink 

faster than the packing density. For actual atoms in a material, these conditions are 

simultaneously satisfied. Neighboring atoms are certainly closer than the wavelength, though the 

actual filling fraction of the atoms is still primarily vacuum. Interestingly, the initial proposal of 

the Lorentz-Lorentz relation was in deriving the self-energy for an ideal cubic array of electric 

dipoles. Correspondingly, equation 5.3.14 works equally well for a packed array.  

 

 

Maxwell-Garnett approximation (MGA) 

 

In the current presentation there is no functional difference between the Maxwell-Garnett (MG) 

and Lorentz-Lorentz solutions. Though, traditionally the Lorentz-Lorentz picture is attributed 

up to the local field correction and Maxwell-Garnett then define the transition operator from 

the quasistatic Mie solution. At more moderate sizes still within the dipole regime, particle 

size/shape can contribute to the effective dipole moment. If correlations can still be assumed 

weak in the quasi-crystalline self-energy, then only the transition operator terms need to be 

modified. For a sphere, this is completely described by Mie’s result of the first electric harmonic 

coefficient, re equation 1.4.9(a),  

 

𝑎1 =
𝑗1(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗1(𝑘𝑠𝑅))−𝑗1(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅𝑗1(𝑘𝑅))

𝑗𝑛(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅ℎ1(𝑘𝑅))−ℎ1(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗1(𝑘𝑠𝑅))
.  

 

Correspondingly an effective dipole permeability can be similarly calculated using equation 

1.4.9(b), 
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𝑏1 =
𝑘2𝑗𝑛(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗𝑛(𝑘𝑠𝑅))−𝑘𝑠

2𝑗𝑛(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅𝑗𝑛(𝑘𝑅))

𝑘𝑠
2𝑗𝑛(𝑘𝑠𝑅)𝑑𝑘𝑅(𝑘𝑅ℎ𝑛(𝑘𝑅))−𝑘2ℎ𝑛(𝑘𝑅)𝑑𝑘𝑠𝑅(𝑘𝑠𝑅𝑗𝑛(𝑘𝑠𝑅))

 . 

 

For non-spherical particles in the dipole regime, an additional orientation dependence can exist 

requiring a more general dyadic scattering and �̿�−1 representation. For example, ellipsoidal 

particles have a different polarizability depending on the orientation of the exciting field relative 

to the principal axes of the ellipse. Such generalizations for simple geometric shapes have well-

known analytic forms and can be easily incorporated.  

 

 

Bruggeman approximation (BGA) 

 

The Bruggeman approximation takes a fundamentally different approach to defining the self-

energy. Instead of the background of space being the host, 𝜖, and using the true permittivity 

potential, 𝑈, you assume the background is 휀𝑒𝑓𝑓  (unknown) and 𝜖 is instead part of the potential. 

This is the coherent potential approximation. The new system will henceforth be called the 

“effective background system.” The homogeneous Green’s operator of the effective 

background system is 𝔾𝑒𝑓𝑓,𝑜 and the expected inhomogeneous Green’s solution is  

 

𝔼[�̌�] = 𝔾𝑒𝑓𝑓,𝑜 + 𝔾𝑒𝑓𝑓,𝑜𝔼[�̌�]𝔾𝑒𝑓𝑓,𝑜,  5.3.15 

 

where �̌� is the cluster transition matrix in the effective medium. Recall, the solution of interest 

is 𝔼[𝔾] = 𝔾𝑒𝑓𝑓 . Correspondingly the solution to the actual system can be found from the 

solution of the effective system by finding the condition where    

 

𝔼[�̌�] = 0.  5.3.16 

 

In the field of condensed matter, this is called the coherent potential approximation as the 

homogeneous Greens function explicitly includes the true effective potential, 𝕌𝑒𝑓𝑓  (the 

potential of the coherent field). Note that 𝕌𝑒𝑓𝑓  is not the self-energy of the effective background 

system. The effective system is defined by 𝔼[�̌�], not 𝔼[𝕋].  
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At first glance equation 5.3.16 does not appear to provide much insight as the problem. 𝔾𝑒𝑓𝑓  

is still unknown and in fact adds complication as the effective embedding is not necessarily 

lossless. Also, 𝔼[�̌�] is still dictated by all order of scattering terms,  

 

𝔼[∑ �̌�𝑎
𝑁
𝑎 ] + 𝔼[∑ ∑ �̌�𝑎𝔾𝑒𝑓𝑓

𝑁
𝑏≠𝑎 �̌�𝑏

𝑁
𝑎 ] +

𝔼 [∑ ∑ ∑ �̌�𝑎𝔾𝑒𝑓𝑓
𝑁
𝑐≠𝑎
𝑐≠𝑏

𝑁
𝑏≠𝑎 �̌�𝑏𝔾𝑒𝑓𝑓�̌�𝑐

𝑁
𝑎 ]… =  0, 

5.3.17 

 

now of the effective transition matrix for each particle, �̌�𝑎. The key is in the null requirement, 

which allows you to avoid solving equation 5.3.15, under proper conditions. It is possible that 

all multiple scattering terms in equation 5.3.17 are non-negligible yet still perfectly canceling. 

Though, from physical grounds, it is likely that the permittivity contrast between the 

inhomogeneities and the effective medium is small. Correspondingly, it is likely that the particles 

are weakly scattering in the effective system and multiple scattering terms are negligible. If this 

is true, then it is reasonable to evoke the individual scattering approximation for the effective 

background system. Correspondingly,  

 

𝔼[�̌�] ≈ 𝔼[∑ �̌�𝑎
𝑁
𝑎 ] =  0. 5.3.18 

 

Equation 5.3.18 is the primary result of the Bruggeman (coherent potential + individual 

scattering) approximation. The core idea is to map the initial problem to an analogous one where 

the individual scattering approximation is more acceptable to be evoked.  

 

Note that equation 5.2.12, which explicitly relates an effective permittivity to the self-energy is 

not useful as the self-energy of the effective background system is enforced to be zero. With 

that said, the effective permittivity can be found directly through equation 5.3.18. Using the Mie 

solution for the dipole polarizability of small sphere embedded in the effective medium the 

effective permittivity is  

 

𝔼[∑ �̌�𝑎
𝑁
𝑎 ] ≈ ∑ 𝑓𝑓𝒯

𝒯− 𝑒𝑓𝑓

𝒯+2 𝑒𝑓𝑓
𝒯 = 0, 5.3.19 

 

where the sum is over all material types, 𝒯, including the true background material, 𝜖. Similar to 

the individual scattering approximation, the mathematical form of the Bruggeman 

approximation is readily extendable to include higher order corrections to the dipole moment as 

well as higher order harmonic terms. Though, care should be taken as the individual scattering 
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approximation was evoked under the pretense of weak scattering, which should not hold 

when scattering includes many high order harmonics. With that said, other physical 

characteristics such as a sparse distribution can make the individual scattering approximation 

valid. So, the applicability of the theory when including multipoles depends on the underlying 

structure of the system. In general, the breakdown of this theory depends on the breakdown of 

the individual scattering approximation. Since the background is the unknown, 휀𝑒𝑓𝑓 , this poses 

a problem for the model when discussing resonances in 휀𝑒𝑓𝑓 . If the effective media contains 

strong resonances that are spectrally separated from the resonances of the constituent inclusions, 

a large permittivity contrast can occur, and weak multiple scattering may not be a valid 

assumption unless particles are well separated. Correspondingly, the Bruggeman approximation 

for dense particle systems is most likely to work well outside of resonant regimes where large 

permittivity fluctuations are not observed.  

 

Finally, it should be emphasized that the coherent potential is a general concept that can be 

applied in conjunction with a closure relation. The core idea of the coherent potential is that if 

the homogeneous background is changed, the scattering potential changes accordingly. The 

background is a free parameter to help solve the problem. From the general solution of the 

Dyson equation  

 

𝔼 [�̿̌�𝑒] (𝒑) = (�̿̌�𝑒𝑜
−1(𝒑) − �̿̌�𝑒𝑓𝑓(𝒑))

−1

, 5.3.20 

 

where, in general, the background defining �̿̌�𝑒𝑜 is arbitrarily defined. A good solution is �̿̌�𝑒𝑜 =

𝔼[�̿�𝑒] because this implies, �̿̌�𝑒𝑓𝑓(𝒑) = 0. The closure relations on �̿̌�𝑒𝑓𝑓  is then whatever 

approximation best fits the problem.  In the case of Bruggeman, �̿̌�𝑒𝑓𝑓
𝐵𝐺 =

𝑁

𝑉
𝔼 [�̿̌�𝑎|𝒓𝑎 = 𝟎], 

which is the ISA closure.  

 

 

Gyorffy, Korringa, and Mills approximation (GKMA) 

 

Gyorffy, Korringa, and Mills use the coherent potential approach to find and effective 

background where the quasi-crystalline approximation is more acceptable to be evoked. The 

coherent potential + quasi-crystalline potential Greens function is, 

 



 

 

167 

𝔼[�̿�𝑒](𝒑) = (�̿̌�𝑒𝑜
−1(𝒑) − �̿̌�𝑒𝑓𝑓

𝑄𝐶 (𝒑))
−1

, 5.3.21 

 

where �̿�𝑒,𝑒𝑓𝑓  is the homogeneous Green’s solution to the effective background system. After 

algebra and quasistatic assumptions154,156, the GKM effective medium for a two-phase mixture 

is  

 

휀𝑒𝑓𝑓
𝐺𝑀𝐾 = 휀ℎ +

3𝑓𝑓( 𝑎− ℎ) 𝑒𝑓𝑓
𝐺𝑀𝐾

3 𝑒𝑓𝑓
𝐺𝑀𝐾+( 𝑎− ℎ)(1−𝑓𝑓)

 . 5.3.22 

 

The derivation and generalization of equation 5.3.23 can be found in 154 and 156, including 

extensions to multiphase mixtures. Replacing 휀𝑒𝑓𝑓
𝐺𝑀𝐾 → 휀ℎ on the right-hand side recovers the 

Lorentz-Lorentz/Maxwell-Garnett relations. Correspondingly, the nonlinearity of 5.3.22 with 

respect to 휀𝑒𝑓𝑓
𝐺𝑀𝐾 is a distinctive feature of the coherent potential framework.  

 

 

Unifying the class of mixing rules 

 

The mixing rules discussed above provide 5 distinctly different ansatz for the behavior of the 

average local field. With these different assumptions at hand a large range of possible particle 

configurations can be modeled. The overarching requirement consistent to all 5 theories is that 

the coherent Green’s function takes the same form as the homogeneous Green’s function in a 

passive, linear, homogeneous, and isotropic medium of 𝑘𝑒𝑓𝑓 . Correspondingly, if there is good 

reason to believe this is true, then it is a good bet that one of the 5 discussed ansatz can model 

the effective medium well enough for practical applications. The goal is then to pick the right 

approximation for the job. 

 

Ari Sihvola showed that, for two-phase mixtures, the common quasistatic effective medium 

approximations are part of a unified class defined by the equation153,  

 

𝑒𝑓𝑓− ℎ

𝑒𝑓𝑓+2 ℎ+𝜈( 𝑒𝑓𝑓− ℎ)
= 𝑓𝑓 𝑖− ℎ

𝑖+2 ℎ+𝜈( 𝑒𝑓𝑓− ℎ)
.  5.3.23 

 

The dimensionless unification parameter 𝜈 ∈ ℝ ∩ [0,3], encapsulates how each approximation 

alters the self-energy. 𝜈 = 0 recovers the Maxwell-Garnett rule, 𝜈 = 1 recovers the Bruggeman 

rule, and 𝜈 = 3 recovers the Gyorffy, Korringa, and Mills rule. For dilute mixtures, there is little 



 

 

168 

difference in the chosen value of 𝜈 and all theories converge to the individual scattering 

approximation. The equivalence of the mixing rules for dilute mixtures is easily seen from a 

perturbation expansion of equation 5.3.24 with respect to the filling fraction,  

 

휀𝑒𝑓𝑓 = 휀ℎ + 3휀ℎ (
𝑖− ℎ

𝑖+2 ℎ
)𝑓𝑓 + 3휀ℎ (

𝑖− ℎ

𝑖+2 ℎ
)
2
(1 + 𝜈

𝑖− ℎ

𝑖+2 ℎ
) 𝑓𝑓2 +⋯.  5.3.24 

 

In equation 5.3.24, the dependence on the mixing rule, 𝜈, appears first 𝑂(𝑓𝑓2) and in all higher 

order terms after. This perturbation expansion makes clear that all the mixing rules are 

assumptions aimed at predicting higher-order corrections on the individual scattering 

approximation when the filling fraction increases. This is sensible as the contribution to multiple 

scattering becomes more predominant at larger filling fractions, hence the other order of 

scattering terms beyond single site scattering should be considered. This unified equation also 

allows for a way to model particle configurations that straddle between to approximations. 𝜈 =

1.5 can be understood as a local field behavior somewhere between Maxwell-Garnett and 

Bruggeman, for example. Though non-integer values of 𝜈 are not rigorously derived from an 

underlying assumption, the power series of equation 5.3.24 makes clear the effect of this now 

continuous transition from 𝜈 = 0 → 1 → 2 → 3. Correspondingly, equation 5.3.23 provides a 

powerful framework for modeling and design. This is especially true when pairing equation 

5.3.23 to the theoretical limits on the properties an effective medium may take.   

Five of the most established mixing rules are connected as being part of a broader class.  Connected through their 

common assumption on the self-energy, each mixing rule provides a different correction to higher order expansion 

terms for the local field. These corrections delegate each mixing rule as preferred given the context of the system.  
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5.4 VARIATIONAL BOUNDS 

 

The subject of effective mediums is vast. This is well expected given the degrees of freedom in 

light-matter interactions, the possible material arrangements, and the desire to produce more 

stringent and informative predictions. In the last section a unifying formula is discussed that can 

help define what effective medium is best suited for a system that exist in a grey area between 

different models. In this regard, it is also important to understand the theoretical bounds on the 

form an effective medium may take. This defines the upper and lower limit of the effective 

constitutive parameters based on general conservation principles and variational calculus. The 

bounds discussed in this section are those with direct application to works in this dissertation 

which involve the electric dipole regime and two-phase mixtures, {host = 휀ℎ,  inclusion= 휀𝑖}. 

To the best of my knowledge, the subject of bounds for more extended systems are still a 

debated subject of research and will be ignored.  

 

It is tempting to assume the effective permittivity is bounded by the limiting behavior of the 

underlying materials. Interestingly, this is not generally true, 

 

𝑚𝑖𝑛{ℜ[휀ℎ],ℜ[휀𝑖]} ≰  ℜ[휀𝑒𝑓𝑓] ≰ 𝑚𝑎𝑥{ℜ[휀ℎ], ℜ[휀𝑖]}

𝑚𝑖𝑛{𝔗[휀ℎ], 𝔗[휀𝑖]} ≰  𝔗[휀𝑒𝑓𝑓] ≰ 𝑚𝑎𝑥{𝔗[휀ℎ], 𝔗[휀𝑖]} .
  5.4.1 

 

The lack of bounds in equation 5.4.1 can be best understood from the necessity to uphold 

causality. For lossy materials, the expected value of multiple scattering can increase the overall 

absorption in the effective medium beyond that of any homogeneous bulk constituent. The 

increase in absorption also necessitates a stronger change in the real part of the effective 

permittivity to remain Kramers-Kronig consistent. From the behavior of the Hilbert transform, 

it becomes clear that upholding equation 5.4.1 would break causality under the correct 

circumstances. In a mixture of lossless materials equation 5.4.1 will hold, as long as the 

incoherent field is negligible. This is because there is no change in one-way power transfer.  

 

For lossy materials, absolute bounds for the effective permittivity were derived independently 

by both Bergman148 and Milton149 in 1980. The result is a generalization of the Wiener bounds157 

(introduced in 1912) to the complex plane and follows the same concept of bounds derived 

from series and parallel impedance networks. The Bergman-Milton (BM) bounds restrict all 

“traditional” effective mediums to have permittivity values which exist in the interior region 

enclosed by the two parametric curves,  

 



 

 

170 

휁(𝑓𝑓; 휀𝑖 , 휀ℎ) = (
𝑓𝑓
휀𝑖⁄ +

(1 − 𝑓𝑓)
휀ℎ⁄ )

−1

𝜉(𝑓𝑓; 휀𝑖 , 휀ℎ) = 𝑓𝑓휀𝑖 + (1 − 𝑓𝑓)휀ℎ,
   

5.4.2a 

5.4.2b 

 

in the complex plane. Equation 5.4.2a defines a circle in the complex plane which includes the 

origin. Equation 5.4.2b defines a line in the complex plane. Both are parameterized by the real-

valued filling factor, 𝑓𝑓 ∈ [0,1], of the inclusion. Importantly, the domain of validity, Ω, is the 

domain enclosed by the two curves that does not include the origin. Clearly this is sensible as 

휀 = 0 is nonphysical. Figure 5.4.1 gives examples of the BM bounds viewed as curves in the 

complex plane for composites of metallic and non-metallic mixtures. Figure 5.4.1 makes clear 

that any vector starting from the origin must cross the line before touching the arc. 

Correspondingly, the minima and maxima for the absolute value of the effective permittivity lie 

on the line and arc, respectively.  

 

From the work of Wiener, it is clear that equation 5.4.2 is analogous to the effective permittivity 

of a laminate thin film composed of sub-wavelength periodic repetitions of 휀𝑖 and 휀ℎ layers. 

Relative thicknesses of the layers are defined by the filling fraction. Note that in this case, 

expectations are taken over space as there is no notion of a distribution in this context. An 

incident electric field impinging normal or parallel to the layer surface then defines equation 

5.4.2a and b, respectively. This represents two diametrical extremes of material configurations 

with respect to the indecent field. Given the sub-wavelength nature of the layers (relative 

thicknesses defined by the filling fraction), the layer interactions can be viewed from a quasi-

static effective circuit analogy. Here each layer is given an associated resistance in series with a 

capacitance, termed an RC element. When the electric field is propagating normal to the layers 

the configuration is analogous to a series network of RC elements. An electric field propagating 

parallel to the layers is analogous to a network in parallel. For lossless permittivity, the networks 

are purely of capacitors. This analogy makes clear why inductances must be assumed negligible. 

Otherwise, in a lossless system, a capacitor and inductor network can define a resonance 

condition.  

 

A more stringent bound is set by Hashin and Shtrikman in 1962153,158, which has applications to 

random mixtures of spheres. The key concept of the Hashin-Shtrikman bound is that there 

should be no extinction of the coherent field when a coated spherical inclusion with core, 𝜺𝒊, 

and shell, 𝜺𝒉, is embedded in a homogeneous material, 𝜺𝒆𝒇𝒇. The condition of invisibility is 

independent of sphere size as long as the size is such that 𝑶((𝒌𝒃)𝟓) is negligible, where 𝒃 is 

the radius of the outer coating. Correspondingly, Hashin and Shtrikman show through rigorous 

derivation that the entire domain of homogeneous material, 𝜺𝒆𝒇𝒇, can be replaced by a jam 
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packing of spheres of shrinking size to all gaps. Since each sphere is inviable to the coherent 

field, the entire space is replaced by an inhomogeneous mixture of cores embedded in host shells 

without perturbing the coherent field. A schematic of the Hashin and Shtrikman thought 

experiment is shown in figure 5.4.1.  

 

 
 

Figure 5.4.1. Example of the Hashin and Shtrikman thought experiment. An effective medium is entirely 

replaced with coated particles. The particles varying in size to fill the entire space. Each particle satisfies the 

invisibility condition in the effective medium. Correspondingly, the media replaced by spheres should behave 

the same as the effective media. [Reprint with permission from Phys. Rev. E 99, 052141 (2019).] 

 

The result is exactly the Maxwell-Garnett formula, and the bounds are given by interchanging 

of the role of host and inclusion,  

 

휀𝑀𝐺(𝑓𝑓; 휀𝑎, 휀𝑏) ≤ 휀𝑒𝑓𝑓 ≤ 휀𝑀𝐺(𝑓𝑓; 휀𝑏 , 휀𝑎).  5.4.3 

 

Here 휀𝑀𝐺  is the Maxwell-Garnett effective permittivity. The lower bound is given when the 

larger permittivity is assumed to be the shell. The upper bound is when the larger permittivity is 

assumed to be the core. The Hashin-Shtrikman bound makes use of the asymmetry in the 

Maxwell-Garnett mixing rule to pose limits for spherical-type inclusions. Correspondingly, the 

Bruggeman mixing rule lies within the Hashin-Shtrikman bound. Formally equation 5.4.3 is 

derived given a variational approach in the quasi-static regime. Correspondingly, it is unclear to 

me if the bounds hold for higher order extensions of Maxwell-Garnett’s mixing rule. 

Nonetheless the result is a powerful tool for sufficiently sub-wavelength inclusions. 
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Given limited information about the system, the variational bounds confine the behavior of an effective 

medium. When applicable, they provide a powerful tool to understand the range of behavior that may be observed 

in measurement. 
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5.5 BEYOND QUASISTATIC 
 
The self-energy brought a rigorous framework to understand the most widely used effective 

medium theories. From this the form each mixing rule can be mapped to assumptions on the 

order of scattering behavior of the system or an analogous system. Given the coherent Green’s 

functions takes the form of a passive, linear, homogeneous, and isotropic media, well-defined 

approximations can be understood in terms of measurable variables such as particle size and 

filling fraction. With that said, higher order generalizations can be available given the overarching 

self-energy picture. In this section, an intuitive picture of the impact of extending the individual 

scattering, Maxwell-Garnett, and Bruggeman approximations to higher order multipole terms is 

discussed. In particular, this section views the generalizations from the framework of satisfying 

the extinction theorem. This provides intuition to the underlying assumptions of the mixing 

rules beyond the quasistatic regime.  

 

Consider an inhomogeneous volume that supports a propagating coherent field in the form of 

a plane wave. Let this inhomogeneous volume be replaced by its effective medium counterpart, 

except within a ball of radius 𝑏 at the origin, which still contains the inhomogeneities inside it. 

From the point of view of the coherent field propagating in this media, the ball should appear 

invisible in an ensemble average sense. Correspondingly, the expected extinction cross section 

of the ball of particles inside the effective medium must be  

 

𝔼[𝐶𝑒𝑥𝑡] = 0. 5.5.1 

 

Equation 5.5.1 is the core condition of an effective medium viewed in the embedded particle 

framework. Since the inclusion was chosen to be spherical, the scattered field of the 

inhomogeneous ball can be expanded in a basis of Mie vector harmonics. It is useful to connect 

the extinction condition to the transition operator, 𝕋, through the scattering dyadic. Recall,  

 

𝑬𝑠𝑐𝑎 = 𝔾𝑒𝑜𝕋𝑬𝑖𝑛𝑐.   

 

Performing the operator integrations, the scattered field in the far field limit is  

 

𝑬𝑠𝑐𝑎 =
𝑒𝑖𝑘𝑟

𝑟
 𝑬𝑠𝑐𝑎
∞ (𝑘�̂�) = (𝕀 − �̂�𝑝⨂�̂�𝑝)

𝑒𝑖𝑘𝑟

4𝜋𝑟
 �̿�(𝑘�̂�, 𝑘�̂�𝑖𝑛𝑐) ∙ 𝑬𝑖𝑛𝑐 ,  5.5.2 
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where �̂� is the angle subtended by �̂�𝑖𝑛𝑐  and �̂�. Correspondingly, the far field transition 

dyadic outlined in Chapter 1 is related to the more general transition operator by  

 

𝑬𝑠𝑐𝑎
∞ (𝑘�̂�) ∙ �̂�𝑖𝑛𝑐(�̂�𝒊𝒏𝒄) =

‖𝑬𝑖𝑛𝑐‖

4𝜋
(𝕀 − �̂�𝑝⨂�̂�𝑝)�̿�(𝑘�̂�, 𝑘�̂�𝒊𝒏𝒄) ∙ �̂�𝑖𝑛𝑐(�̂�𝒊𝒏𝒄), 5.5.3 

 

where, from Chapter 1, 𝑬𝑠𝑐𝑎
∞ (�̂�) =

1

𝑘
𝜳𝑓𝑎𝑟𝑐. It is important to note that equation 5.5.3 is an on-

shell approximation, where both 𝒑 and 𝒌𝑖𝑛𝑐  are of the same magnitude. Furthermore, equation 

5.5.3 assumes the validity of a far field representation in a background media defined by the 

effective media. Clearly this is not rigorously correct as the background can have loss. Though, 

usually there the effective medium representation is evoked when coherence lengths are 

sufficiently long. This is a justification behind the far field representation. Correspondingly, the 

condition for invisibility is 

 

𝔼[𝑬𝑠𝑐𝑎
∞ ∙ �̂�𝑖𝑛𝑐](휃 = 0) = ∑ √2𝑛 + 1𝔼[𝑐𝑛

𝑓
]𝑛 = 0, 5.5.4 

 

where the forward direction is governed by the forward Kerker coefficient, 𝑐𝑛
𝑓
. It is then the job 

of the effective medium theory to provide a model for 𝔼[𝑬𝑠𝑐𝑎
∞ ∙ �̂�𝑖𝑛𝑐]. By construction, all 

models of this form will satisfy equation 5.5.4. It is the behavior of the terms inside 

𝔼[𝑬𝑠𝑐𝑎
∞ ∙ �̂�𝑖𝑛𝑐] that dictate model accuracy. 

 

In the case of Bruggeman, the ball is filled with particles of material 1 with probability 𝑃1, 

material 2 with probability 𝑃2, and so forth. The probability of each material is a measurable 

quantity dictated by the filling factor, 𝑓𝑓, for that material. This is the same grouping procedure 

for calculating total expectation over particle types as found in section 1.8. The Bruggeman 

mixing rule then takes a generalized form,  

 

∑ 𝑓𝑓𝒯𝒯 𝔼[𝑬𝑠𝑐𝑎,𝒯
∞ ∙ �̂�𝑖𝑛𝑐](휃 = 0|휀𝑒𝑓𝑓) = 0, 5.5.5 

 

where 𝔼[𝑬𝑠𝑐𝑎,𝒯
∞ ∙ �̂�𝑖𝑛𝑐](휃 = 0|휀𝑒𝑓𝑓) is the forward scattering of a particle of type 𝒯 embedded 

in the effective medium under plane wave excitation. Equation 5.5.5 is a primary characteristic 

of Bruggeman’s theory beyond the quasistatic regime and has essentially the same form as 

equation 5.3.17, for the forward direction. In the limit of a vanishingly small and non-resonant 

inclusion, then  
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𝔼[𝑬𝑠𝑐𝑎,𝒯
∞ ∙ �̂�𝑖𝑛𝑐](휃 = 0|휀𝑒𝑓𝑓) ≈ −𝑖(𝑘𝑏)

3 𝒯− 𝑒𝑓𝑓

𝒯+2 𝑒𝑓𝑓
+ 𝑂((𝑘𝑏)5).  5.5.6 

 

Correspondingly, the traditional form of Bruggeman’s mixing rule is recovered,  

 

∑ 𝑓𝑓𝒯𝒯
𝒯− 𝑒𝑓𝑓

𝒯+2 𝑒𝑓𝑓
= 0.  5.5.7 

 

The assumption underlying Maxwell-Garnett’s theory is less straightforward. Garnett presumes 

a well-defined hierarchy of inclusion embedded in host. For a singly type inclusion, this hierarchy 

is enforced as a coated sphere embedded in the effective medium. The expected scattering 

amplitude in the forward direction takes the form of that from a coated sphere (CS) with a core 

filled with inclusion and an outer shell filled with the host medium. The filling factor, 𝑓𝑓 =

(𝑎 𝑏⁄ )3, of the inclusions define the ratio between the core radius, 𝑎, and outer shell radius, 𝑏. 

In the small sphere limit,  

 

𝔼[𝑬𝑠𝑐𝑎,𝒯
∞,𝐶𝑆 ∙ �̂�𝑖𝑛𝑐](휃 = 0|휀𝑒𝑓𝑓)  

= 𝑖(𝑘𝑏)3
( ℎ− 𝑒𝑓𝑓)( 𝑎+2 ℎ)+𝑓𝑓( 𝑎− ℎ)( 𝑒𝑓𝑓+2 ℎ)

( ℎ+2 𝑒𝑓𝑓)( 𝑎+2 ℎ)+𝑓𝑓(2 ℎ− 𝑒𝑓𝑓)( 𝑎−2 ℎ)
+ 𝑂((𝑘𝑏)5)  

5.5.8 

 

where 휀a and 휀h are the permittivity of the inclusion and host, respectively. Correspondingly, 

the traditional form of Maxwell-Garnett’s theory is recovered as a null condition of the 

numerator,  

 

𝑒𝑓𝑓− ℎ

𝑒𝑓𝑓−2 ℎ
= 𝑓𝑓 𝑎− ℎ

𝑎+2 ℎ
. 5.5.9 

 

The core-shell framework makes clear the well-known asymmetry in the role of host and 

inclusion that plagues Maxwell-Garnett’s theory. Clearly, even when 𝑓𝑓 = 0.5 switching the 

core and shell materials can still result in substantially different scattering properties. For more 

than one inclusion, it is not clear that the core-shell interpretation can be extended, though the 

asymmetry problem still remains. For an arbitrary number of inclusions, a similar procedure of 

assigning probabilities to inclusions and summing to calculate expectation can be used. In this 

case the scattered far field is with respect to the host and the effective permittivity is an 

“inclusion” with probability 1 that explicitly cancels the inclusion contributions,  
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𝔼[𝑬𝑠𝑐𝑎,𝑒𝑓𝑓
∞ ∙ �̂�𝑖𝑛𝑐](휃 = 0|휀ℎ) + ∑ 𝑓𝑓𝒯𝒯 𝔼[𝑬𝑠𝑐𝑎,𝒯

∞ ∙ �̂�𝑖𝑛𝑐](휃 = 0|휀ℎ) = 0.  5.5.10 

 

 

For scattering just outside of the quasistatic regime, where the coherent Green’s function is still expected to 

resemble the homogeneous solution, the extinction theorem provides an intuitive framework to define mixing 

rules. In particular the Bruggeman (coherent potential) and the Maxwell-Garnett (average transition matrix) 

assumptions can be readily generalized.  
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5.6 BEYOND THE KNOWN: COUPLING, RESONANCE, AND STRUCTURE 
 
Though section 5.5 shows that the canonical mixing rules can be generalized for higher order 
harmonic scattering, these generalizations still do not encompass the full space of the self-energy 

in generalized form, �̿�𝑒𝑓𝑓(𝒑). Particle distributions that are beyond the scope previously 

discussed are, of course, quite complicated to model. For example, section 1.8 discusses how 
correlation functions beyond pairwise are often not analytically defined. Though, just because 
these systems are hard to analytically describe does not mean they do not readily exist. For 
example, films/clusters characterized as a random fractal are natures go-to distribution when 
deposition/clustering kinetics are dominated by Brownian motion. This distribution represents 
an interesting system of study as the space filled with particles can be quite sparse. Nonetheless, 
the scale invariance property of the distribution and the fact that particles are guaranteed 
connected to at least one neighbor means application of the traditional theories are unlikely to 
hold. To address such systems, this dissertation again utilizes the power of the Monte Carlo 
approach to offload the complexity of accounting for resonances, strong particle-particle 
interactions, and non-trivial correlation functions. This is analogous to the procedure outlined 
in section 1.9, tailored now to the three-dimensional effective medium framework.  
 
The derivation of this effective medium theory starts from the fundamentals, namely the Monte 
Carlo expression of the coherent field outlined in equations 1.91-1.95. In particular the primary 
condition of importance is  
 

𝔼[�̃�𝑠𝑐𝑎,𝑎] ≈ 𝔼[𝜳(𝒓 − 𝒓𝑎)𝑒
𝑖𝒌𝑖𝑛𝑐∙𝒓𝒂]𝔼[𝑐𝑎

𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)]. 5.6.1 

 
Note that unlike the system studied in section 1.9, particles now stack on top one another. 

Correspondingly, the particle center is not confined to the 𝑥 − 𝑦 plane and 𝝆𝑎 → 𝒓𝑎 . To 

evaluate 𝔼[𝜳(𝒓 − 𝒓𝑎)𝑒
𝑖𝒌𝑖𝑛𝑐∙𝒓𝒂] the Mie harmonics are expanded into a basis of plane waves, 

as outlined in section 1.9. Given that there is no bias in the potential to place particle 𝑎 at a 

particular location, the probability of finding particle 𝑎 in any location is uniform over the 

volume comprising the particle film, 𝑃(𝒓𝑎) = 1 ∫𝑑
2𝒓⁄ . The condition of no bias takes some 

care in interpretation and does inherently limit the possible distributions for which this theory is 
valid. This will be further discussed in the next section. Similar to section 1.9 the expectation of 

the location of particle 𝑎 gives,  
 

𝔼[𝜳(𝒓 − 𝒓𝑎)𝑒
𝑖𝒌𝑖𝑛𝑐∙𝒓𝒂] → ℱ±[𝑃(𝒓𝑎)𝑒

𝑖𝒌𝑖𝑛𝑐∙𝒓𝑎] =
𝛿(𝒌∥−𝒌𝑖𝑛𝑐,∥)

∫ 𝑑2𝒓
{

𝑑 +
𝑠𝑖𝑛(|𝑘𝑧|𝑑)

|𝑘𝑧|
−   5.6.2 

 

where 𝑑 is the film thickness. Usually, the setup for the derivation of an effective medium 
assumes an infinite space. In this case the goal is opposite, and this will become clear throughout 

the derivation. Equation 5.6.2 shows that the translation invariance in the 𝑥 − 𝑦 plane enforces 
a momentum match between the component of the wave vector from the coherent field and 
incident field on the particle plane. The second term is a result of the finite thickness of the film, 
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which takes a different form when considering the coherent scattered field propagating in 

the transmission, +, and reflection, −, hemispheres. Correspondingly the coherent field is 
 

𝔼[�̃�𝑠𝑐𝑎,𝑎] ≈
1

∫𝑑2𝒓

1

cos𝜃𝑖𝑛𝑐
∑ 𝐸𝑐𝑜ℎ,𝑎

± �̂�𝑞(�̂�𝑖𝑛𝑐
± )𝑒𝑖𝒌𝑖𝑛𝑐

± ∙𝒓
𝑞 {

𝑑 +
𝑠𝑖𝑛(|𝑘𝑧|𝑑)

|𝑘𝑧|
−  5.6.3 

 

where 𝒌𝑖𝑛𝑐
± = 𝒌𝑖𝑛𝑐,∥ ± 𝑘𝑧 and 

 

𝐸𝑐𝑜ℎ,𝑎,𝑞
± =

2𝜋

𝑘2
(𝜳𝑓𝑎𝑟(�̂�𝑖𝑛𝑐

± ) ∙ �̂�𝑞(�̂�𝑖𝑛𝑐
±  )) 𝑐𝑎

𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎) {
𝑑 +

𝑠𝑖𝑛(|𝑘𝑧|𝑑)

|𝑘𝑧|
− . 5.6.4 

 
In analogy to section 1.6 the sum of all particles can be grouped by type then the number of 
particles of that type in order to write equation 5.6.4 in terms of experimentally measurable 
quantities such as fill fraction.  
 

𝔼[�̃�𝑠𝑐𝑎] ≈
𝑘𝑑

cos 𝜃𝑖𝑛𝑐
∑ 𝐸𝑐𝑜ℎ,𝑞

± �̂�𝑞(�̂�𝑖𝑛𝑐
± )𝑒𝑖𝒌𝑖𝑛𝑐

± ∙𝒓
𝑞   5.6.5 

 
where the coherent amplitude is 
 

𝐸𝑐𝑜ℎ,𝑞
± = ∑ 𝐸𝑐𝑜ℎ,𝑎,𝑞

±𝑁
𝑎   

= (𝜳𝑓𝑎𝑟(�̂�𝑖𝑛𝑐
± ) ∙ �̂�𝑞(�̂�𝑖𝑛𝑐

±  )) (∑ 𝛾𝒯𝑎𝑐𝑎
𝑀𝐶̅̅ ̅̅ ̅(𝒯𝑎)

|𝒯| ) {
1 +  

𝑠𝑖𝑛𝑐(|𝑘𝑧|𝑑) − .
  

5.6.6 

 

Equation 5.6.6 replaces the area weight factor, 𝑤𝒯𝑎, used in section 1.9 with a volumetric weight 

factor, 𝛾𝒯𝑎 =
2𝜋

𝑘3

𝑓𝑓𝒯𝑎
𝑉𝒯𝑎

, where 𝑓𝑓𝒯𝑎 and 𝑉𝒯𝑎 are the total filling factor and volume of type 𝒯𝑎 

particles. Equation 5.6.6 can be written in terms of the incident field as  
 

[
𝐸𝑠𝑐𝑎
𝑇𝐸±

𝐸𝑠𝑐𝑎
𝑇𝑀±] =

𝑘𝑑

cos𝜃𝑖𝑛𝑐
[
𝐸𝑐𝑜ℎ,𝑇𝐸
± 𝐸𝑐𝑜ℎ,𝑇𝐸

±

𝐸𝑐𝑜ℎ,𝑇𝑀
± 𝐸𝑐𝑜ℎ,𝑇𝑀

± ] [
𝐸𝑖𝑛𝑐
𝑇𝐸

𝐸𝑖𝑛𝑐
𝑇𝑀]

 
.  5.6.7 

 
To form an effective medium the problem now needs to be recast in terms of effective 
constitutive parameters. Following a similar framework to Bohren159, recall that the transmission 

through a slab at normal incidence is related to the incident field, 𝐸𝑡 = 𝑡𝐸𝑖𝑛𝑐 , through the 
amplitude transmission coefficient, 
 

𝑡 ≈ 𝑒𝑖𝑘(𝜂𝑒𝑓𝑓−1)𝑑 = 1 + 𝑖𝑘(휂𝑒𝑓𝑓 − 1)𝑑 − 𝑂 ((𝑘𝑑)
2(휂𝑒𝑓𝑓 − 1)

2
) . 5.6.8 
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The second equality in equation 5.6.8 being the Taylor series of the exponential to first order. 
Focusing on TE polarization at the transmission side of the slab interface the field equality would 
be  
 

1 + 𝑘𝑑𝐸𝑐𝑜ℎ,𝑇𝐸
+ = 1 + 𝑖𝑘(휂𝑒𝑓𝑓 − 1)𝑑 − 𝑂 ((𝑘𝑑)

2(휂𝑒𝑓𝑓 − 1)
2
) . 5.6.9 

 
The effective refractive index is then related to the coherent field amplitude as,  
 

1 − 휂𝑒𝑓𝑓 = 𝑖𝐸𝑐𝑜ℎ,𝑇𝐸
+ +𝑂 (𝑖(𝑘𝑑)(휂𝑒𝑓𝑓 − 1)

2
) . 5.6.10 

 
A similar procedure can be performed for the polarization conversion term. Furthermore, as 

outlined by Bohren and Huffman1, an effective refractive index relating 𝐸𝑐𝑜ℎ,𝑇𝐸
−  can be derived 

at the interface of the film and the reflection hemisphere. Unfortunately, the two refractive 

indices at the transmission and reflection interface are not equal unless 𝐸𝑐𝑜ℎ,𝑇𝐸
− = 𝐸𝑐𝑜ℎ,𝑇𝐸

+ . This 

exposes the primary flaw of the procedure defined by equations 5.6.8 – 5.6.10. It does not 
produce a single unified set of constitutive parameters to define both the upper and lower 
interface of the film. Indeed, this led Bohren to propose the necessity of two different 
independent quantities: an effective permittivity and an effective permeability. Including both 
terms, the asymmetry can be properly accounted for. Therefore, equations 5.6.8 – 5.6.10 serve 
only as an example as they are still instructive to show, to first order, that the effective refractive 

index at any depth in the film is ∝ 𝐸𝑐𝑜ℎ
± .  When 𝑘𝑧𝑑 ≪ 1, then 𝑠𝑖𝑛𝑐(𝑘𝑧𝑑) ≈ 1 and 𝐸𝑐𝑜ℎ

±  has 

no 𝑑-dependence. Importantly this identifies that, to first order, effective constitutive parameters 

do not change with thickness and the effective medium problem, 휀𝑒𝑓𝑓 , 𝜇𝑒𝑓𝑓 , can be transformed 

into an equivalent surface sheet problem, 휀𝑒𝑓𝑓,∥, 𝜇𝑒𝑓𝑓,∥. Recovery of the bulk is then simply 

found from the relation 휀𝑒𝑓𝑓,∥ → 휀𝑒𝑓𝑓 𝑑⁄  and 𝜇𝑒𝑓𝑓,∥ → 𝜇𝑒𝑓𝑓 𝑑⁄ .  

 
At this stage the derivation follows exactly the work of Barrera and Garcia-Valenzuela161. The 
core concept is that, in the limit that the effective medium is a sheet, the asymmetry between the 
transmitted and reflected scattered field relies on the introduction of an effective current density, 

𝑱𝑒𝑓𝑓 , and magnetization, 𝑴𝑒𝑓𝑓 , on the surface. Equating the effective currents to the 

corresponding fields, again as outlined in Barrera and Garcia-Valenzuela161, gives the effective 
permittivity and permeability,  
 

𝜖𝑒𝑓𝑓
𝑇𝐸 (휃𝑖) = 1 + 𝑖(𝔼[�̃�𝑇𝐸

+ (휃𝑖)] − tan
2(휃𝑖) 𝔼[�̃�𝑇𝐸

− (휃𝑖)])

𝜖𝑒𝑓𝑓
𝑇𝑀 (휃𝑖) = 1 +

𝑖

cos2(𝜃𝑖)
 𝔼[�̃�𝑇𝑀

− (휃𝑖)]

𝜇𝑒𝑓𝑓
𝑇𝐸 (휃𝑖) = 1 +

𝑖

cos2(𝜃𝑖)
 𝔼[�̃�𝑇𝐸

− (휃𝑖)]

𝜇𝑒𝑓𝑓
𝑇𝑀 (휃𝑖) = 1 + 𝑖(𝔼[�̃�𝑇𝑀

+ (휃𝑖)] − tan
2(휃𝑖) 𝔼[�̃�𝑇𝑀

− (휃𝑖)]),

  

5.6.11(a) 

5.6.11(b) 

5.6.11(c) 

5.6.11(d) 
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where 
 

𝔼 [�̃�𝑇𝑀
𝑇𝐸

± (휃𝑖)] ≈ {
∑ ∑ ∑ ∑ 𝛾𝒯𝑎𝑐𝑠𝑐𝑎,𝑛𝑚𝑝

𝑀𝐶,𝑇𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎)𝒮𝑛𝑚(1−𝑝)
± (휃𝑖)

1
𝑝=0

𝑛
𝑚=0

𝑁
𝑛=1

|𝒯|
𝒯𝑎=1

∑ ∑ ∑ ∑ 𝛾𝒯𝑎𝑐𝑠𝑐𝑎,𝑛𝑚𝑝
𝑀𝐶,𝑇𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎)𝒮𝑛𝑚𝑝

± (휃𝑖)
1
𝑝=0

𝑛
𝑚=0

𝑁
𝑛=1

|𝒯|
𝒯𝑎=1

  5.6.12 

 
and  
 

𝒮𝑛𝑚𝑝
± (휃𝑖) = 𝜏𝑛𝑚𝑝(0) ±  𝜏𝑛𝑚𝑝(𝜋 − 2휃𝑖).  5.6.13 

 
Equation 5.6.11 describes the effective permittivity and permeability in terms of expected 
susceptibilities that are incident angle and polarization resolved. For example, the effective 

electric susceptibility in TE is  �̃�𝑒𝑓𝑓,𝑒
𝑇𝐸 = 𝑖(𝔼[�̃�𝑇𝐸

+ (휃𝑖)] − tan
2(휃𝑖) 𝔼[�̃�𝑇𝐸

− (휃𝑖)]). All four of the 

effective susceptibilities are related to the Monte Carlo-derived properties of the underlying film 

through equation 5.6.12. The polar angle dependence, 𝒮𝑛𝑚𝑝
± (휃𝑖), is essential the Kerker forward 

and backward polar scattering function, without the additional phase terms. The task is now to 
find a suitable sampling scheme to achieve meaningful Monte Carlo estimates.   
 
Equation 5.6.11 can be written and a sample, order, and type resolved form, 
 

𝜖𝑒𝑓𝑓,𝑛𝑝
𝑇𝑀 (휃𝑖 ; 𝒯𝑎) =

1

2𝐿𝑁
+
𝑖𝛾𝒯𝑎
𝐿
∑ 𝑐𝑠𝑐𝑎,𝑛𝑚𝑝

𝑀𝐶,𝑇𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎)
𝕥𝑛𝑚(1−𝑝)
− (𝜃𝑖)

cos2(𝜃𝑖)
𝑛
𝑚=0   

𝜇𝑒𝑓𝑓,𝑛𝑝
𝑇𝐸 (휃𝑖 ; 𝒯𝑎) =

1

2𝐿𝑁
+
𝑖𝛾𝑙

𝐿
∑ 𝑐𝑠𝑐𝑎,𝑛𝑚𝑝

𝑀𝐶,𝑇𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎) 
𝕥𝑛𝑚𝑝
− (𝜃𝑖)

cos2(𝜃𝑖)
𝑛
𝑚=0   

𝜇𝑒𝑓𝑓,𝑛𝑝
𝑇𝑀 (휃𝑖 ; 𝒯𝑎)  

=
1

2𝐿𝑁
+
𝑖𝛾𝒯𝑎
𝐿
∑ 𝑐𝑠𝑐𝑎,𝑛𝑚𝑝

𝑀𝐶,𝑇𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎) (𝕥𝑛𝑚(1−𝑝)
+ (휃𝑖) − tan

2(휃𝑖) 𝕥𝑛𝑚(1−𝑝)
− (휃𝑖))

𝑛
𝑚=0    

𝜖𝑒𝑓𝑓,𝑛𝑝
𝑇𝐸 (휃𝑖 ; 𝒯𝑎)  

=
1

2𝐿𝑁
+
𝑖𝛾𝒯𝑎
𝐿
∑ 𝑐𝑠𝑐𝑎,𝑛𝑚𝑝

𝑀𝐶,𝑇𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝒯𝑎) (𝕥𝑛𝑚𝑝
+ (휃𝑖) − tan

2(휃𝑖) 𝕥𝑛𝑚𝑝
− (휃𝑖)) 

𝑛
𝑚=0 ,  

 

 

where the total value of the permittivity and permeability can be found through coherent 
summation. 
 

For systems that are not amenable to giving a well-defined analytic form of the self-energy, a Monte-Carlo 

approach can be used. This opens the space of possible systems where effective medium properties can be discussed 

and encapsulate aspects of such systems, such as non-locality.  
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5.7 A SAMPLING STRATEGY 
 
Similar to the Monte Carlo approach for modeling random metasurfaces, the validity of a Monte 

Carlo-based effective medium theory relies, in part, on the accuracy of simulating the behavior 

of the film distribution. For three dimensional films, the space of possible particle configurations 

is large. The work in this dissertation is focused on using equation 5.6.11 to model random 

fractal films. This is because the motivating technology, the nonthermal equilibrium dusty 

plasma synthesis method, can create fractal films under proper deposition conditions and these 

films are well-known to manifest emergent properties not achievable in other systems. In 

particular, optical phenomena can emerge that will not be observed in quasi-static effective 

mediums or in bulk material counterparts. In this regard, it is important to understand the 

governing properties of random fractals that make them amenable to a Monte Carlo-based 

effective medium theory and why such systems manifest emergent behavior.   

 

 

A Short Interlude on Random Fractals  

 

Fractal is the commonly used terminology for a set which, in some sense, has a self-similar 

structure. Self-similar meaning the whole has the same shape as one or more of the parts. 

Though this definition is broad, this dissertation is concerned with scale invariant self-similarity, 

meaning properties that do not change as you scale to smaller or larger size. Plainly speaking, 

something has a scale invariant property if you can cut off a part, zoom in, and you recover the 

property you started with. A common example of a scale invariant structure is a Koch snowflake. 

In a computer animation, you can infinitely zoom into any edge of the snowflake, and it will 

appear as if you are looping back to the start. Fractals are not relegated to purely mathematical 

objects. Figure 5.7.1 shows a close-up of Romanesco broccoli, which gives an example of scale 

invariance occurring in nature. Indeed, scale-invariant fractals are in fact all around us!  

 

Though fractals are easiest to understand in an ordered example, scale invariance can also be a 

property of the statistics of the system. In this case, when you zoom into a small part of a larger 

random system the statistical properties do not change. The underlying shape may be different 

from realization to realization, but the statistics are scale invariant. Interestingly, random fractals 

occur often in nature. An important example of random scale invariance is a stochastic Wiener 

process162,163. The first governing feature of this process is that the increment from state 𝑎 to 

state 𝑏 is independent of any knowledge of past decisions. I.e., the motion has no notion of a 

history propelling/biasing it to a particular next transition. Second, the governing statistics 

determining the transition from state 𝑎 to state 𝑏 is given by a Gaussian increment. I.e., the 

governing dynamics of the state change can be described by a collection of independent random 
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actions. Finally, the properties above should hold no matter how small or large the state 

increment is. These three governing properties constitute a recipe for self-similarity. Such a 

process may appear farcical to appear in nature, but this is not the case! Thanks to the law of 

large numbers, Gaussian behavior is dominant in many systems that have a large number of 

competing forces164. Take, for example, a snowflake falling from the sky. Gravity is propelling 

the snowflake downward. For clarity, assume the downward direction is the 𝑧 axis. In the 𝑥 − 𝑦 

directions the snowflake tumbles seemingly randomly. This is because the lateral movement is 

governed by a large and chaotic set of fluctuations from the wind, temperature variations, 

collisions with other snowflakes, and the seemingly random rotations of the snowflake that push 

it like a small kite. This chaotic 𝑥 − 𝑦 movement can be well approximated as a Gaussian 

random walk and, correspondingly, a Wiener-like process162,164,165. Another well-known and 

similar example is atoms/molecules moving in the atmosphere. Atoms such as carbon are so 

small that they float around in the atmosphere. Though strong winds may push them in a 

governing direction for some time, the remainder of their motion is primarily random and 

memoryless. Tiny fluctuations in local temperatures, air currents, and bouncing (or sticking) to 

other particles provides a seemingly statistically independent competition of external forces. 

When objects agglomerate by a Wiener-like process they form a scale invariant cluster. The 

dynamics of the motion dictates the statistical properties. It is important to note that the 

dynamics of the carbon atom and the snowflake are meaningfully different. This is because the 

snowflake has a deterministic downward motion (assuming it is heavy enough) whereas the 

carbon atom undergoes a true three-dimensional random walk. These differences manifest in 

the geometric structure of the cluster growth. 

 

 
 

Figure 5.7.1. Picture of Romanesco broccoli (during a particularly fun visit to Paris, France) as an example of 

scale-invariance. The entire broccoli (left) is made of spirally nodules. Each nodule (right) is made of spirally 

nodules. Each nodule of a nodule is also made of spirally nodules.  
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Interestingly, fractal clusters of compounds in the atmosphere plays an important role in 

estimating the effects of climate change. To understand this, as well as the motivations behind 

random fractals in this dissertation, the connection between scale invariance of the system and 

scale invariance of Maxwell’s equations needs to be discussed. In general, scale invariance has 

important implications in field theories as it describes characteristic properties of wave motion 

that can be witnessed at any length scale. In a homogeneous system, the wave equation for 

electromagnetism is scale invariant as long as the material properties do not change within the 

length scale. This is easily seen by replacing 𝒓 → 𝜉𝒓 and 𝑡 → 𝜉𝑡 and showing it creates no change 

in the underlying equation,  

 
 

𝛻2𝑬(𝒓, 𝑡) =
1

𝑣2
𝜕2𝑬(𝒓,𝑡)

𝜕𝑡2
..  

 

Maxwell’s equations are inherently scale-invariant. It is the underlying material properties, the 

size and shape-dependent configuration of materials and their wavelength-dependent response 

that breaks scale invariance. Correspondingly, if the material response does not change within a 

range of wavelengths and the material is organized in a scale invariant way, then within the range 

applicable to the wavelength range the system is scale invariant. Such a property can then be the 

catalyst for emergent phenomena as long as the scale invariance is of an interesting form.  

 

As a motivating example, let us return back to the case study of atmospheric carbon. Carbon 

has a broadband absorption spectrum across the entire visible regime. When carbon atoms 

conglomerate in the atmosphere, they form of a scale invariant random fractal. When the 

random fractal is large enough it is no longer approximated as a dipole to the incoming light and 

instead has a shape-dependent light-matter interaction166. Scale invariance implies that if there is 

a strong absorption resonance at high energy, e.g., 𝜆 = 200 nm, then a strong absorption 

resonance will be statistically guaranteed at all lower energies, e.g.,  𝜆 = 200 − 800 nm, up to 

the length where scale invariance is broken (the cluster size)167. There is great importance in this 

statistical implication. A collection of carbon atoms will have substantially stronger absorption 

in a random fractal configuration when compared to a non-scale invariant configuration! This is 

because a strong resonance in one region implies it everywhere! The power of this property in 

design is that one needs only to satisfy their desired condition in an isolated part and the whole 

will follow. Correspondingly, three-dimensional random fractals, which have both scale and 

rotational invariance can be used to make broadband, polarization, and angle invariant 

absorbers113,131,168. 
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The emergent absorption spectra seen in random fractals of carbon is not an arbitrary 

example. It was the inspiration for Chapter 7 of this dissertation. When atmospheric scientist 

sought to model light absorption in the atmosphere, the Bruggeman, Maxwell-Garnett, and 

similar approximations were compared to measurement. It was found that this class of effective 

mediums dramatically under predicted the measured absorption in the atmosphere to an 

unacceptable degree. From initial thought, this inaccuracy is perplexing. The atmosphere is 

sparsely filled with absorbing atoms/molecules in the wavelength range and surely each 

molecule/atom should behave like a point dipole. Under this reasoning, at face value, the 

atmosphere appears to be a perfect system to adhere to the mixing rules detailed in section 5.3. 

They key to the inaccuracy relies on the relative configuration of the constituents. Indeed, 

random fractals highlight the danger of translating assumptions of the local field to assumptions 

of the underlying distribution. This is because random fractals have an unusual collection of 

properties. They have an inherently low filling fraction, they do not have long-range correlation, 

and they can be composed of point-like electric dipoles162,167. Nonetheless, they can have strong 

particle-particle interactions due to large short-range correlation162,167. It is this unusual collection 

of properties that makes all the difference. Local clusters within the larger aggregate can support 

large topologically disconnected electromagnetic densities167,169,170. These large spatial 

fluctuations in the local field give rise to a terminology of “hot” (strong field) and “cold” (weak 

field) spots167,169,170. Clearly such a system does not actually uphold the true nature of the local 

field assumed by the Bruggeman, Maxwell-Garnett, and similar. With that said, the topological 

disconnectedness does enable an effective medium picture131,168,171,172. The key in this regard is to 

attempt to model the distinct local regions of similar behavior by an effective particle that then 

weakly interacts with its neighbor. Then the generalized individual scattering approximation can 

be evoked on the effective particles.  

 

 

Making Effective Particles 

 

In the context of particle deposition from a nonthermal equilibrium dusty plasma reactor, the 

random fractal structure can occur through agglomeration when particles are suspended in the 

plasma or at the time of deposition onto the substrate173,174. As discussed in the snowflake 

example, the kinetics inherent to both processes can be governed by memoryless random 

motion, but the ultimate fractal structure is different. This is because agglomeration inside the 

reactor allows for cluster growth in all three dimensions. Agglomeration upon deposition to the 

substrate grows the particle film strictly in height. An example of the underlying difference 

between the structure of such random fractals is shown in figure 5.7.2 and figure 5.7.3.  
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Exact modeling of the particle kinetics in the dusty plasma pipeline requires a complicated 

understanding of fluid dynamics and the role of characteristics parameters such as flow rate, 

plasma power, particle trapping mechanisms, et cetera. Such understandings are an active subject 

of research in the plasma physics community, necessitating large computer models, and beyond 

the scope of this dissertation. With that said, a sufficient history of work has shown that simple 

diffusion-limited aggregation (DLA) models based on Newtonian-like ballistics and Gaussian 

random motion can accurately describe the underlying fractal structure in simulation. 

Correspondingly, this dissertation adopts a simple diffusion-limited aggregation scheme based 

on particle kinetics of the form,  

 

Δ𝒓 = 𝒗Δ𝑡 + 𝑵(0, 𝜎2Δ𝑡)  5.7.1 

 

where Δ𝒓 = 𝒓(𝑡𝑛+1) − 𝒓(𝑡𝑛) is the movement of the particle from 𝒓(𝑡𝑛) to 𝒓(𝑡𝑛+1) over the 

time interval, Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, and 𝑛 ∈ ℤ ∪ [0,∞) is the simulation step number. 𝒗 is a free 

parameter ballistic velocity term proportional to the net drag force, according to Stokes law, as 

well as any other consistent bias force, such as gravity. All other local forces have no net average 

contribution are modeled as a zero mean Gaussian random vector, 𝑵 ∈ ℝ3. The variance of the 

Gaussian, 𝜎2, is another free parameter that controls the ratio of randomness to ballistic motion. 

When particles collide, the collision is either completely inelastic or elastic. This decision is 

determined by a stick probability,  

 

𝑃𝑠𝑡𝑖𝑐𝑘 = 𝛾𝑐𝑜𝑠(휃) + 𝛽.  5.7.2 

 

𝛾 is a free parameter determining the stick probability as a function of the angle of collision, 휃. 

This parameter is most important when 𝒗 is nonnegligible such as in simulations of particles 

depositing on substrates. If there is a net downward bias and particles hit at a grazing incidence, 

they would be unlikely to stick. This parameter prevents fractal film growth with unnatural 

looking 90-degree connections that would likely collapse to a more energy favorable orientation.  

𝛽 is another free parameter more important in three-dimensional clustering within the reactor. 

From the viewpoint of the particle all directions are closer to equivalent. Equation 5.7.1 and 

5.7.2 constitute the growth model. A particle is moved based on the ballistics and random 

motion component. The particle is then checked for a collision. If a collision occurs, a random 

number weighed by equation 5.7.2 determines bounce or agglomerate. The process then repeats. 

Figure 5.7.2 gives an example of particles deposited on a substrate. The free parameters are tuned 

until experimentally measured parameters such as filling fraction and surface roughness 
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sufficiently match measurement. In this regard, particle generation is not completely a 

predictive technique as the free parameters need to be set by experimental input.  

 

 
 

Figure 5.7.2. Example of scale invariant fractal growth on a substrate from dusty plasma synthesis deposition 

(left) and equivalent particle deposition model (right) using diffusion-limited aggregation. The upper left image 

shows low fill fraction, fractal-like, particle growth from diffusion dominated deposition of GaN particles. The 

lower left image shows a high filling fraction compact film deposited by ballistic dominated motion. Beside 

each image is a cross section of simulated particle deposition showing the ability to capture fractal-like and 

packed sphere configurations through tuning the free parameters in equations 5.7.1 and 5.7.2. The figure on 

the far right shows the collision angle defined in equation 5.7.2 as well as the flow diagram of the deposition 

algorithm.  

 

Fractal films grown through substrate deposition does not resemble a statistical spherical 

symmetry, so it is hard to determine how to partition the cluster into effective particles. In 

contrast, particle agglomeration dominated by three-dimensional clustering within the reactor at 

the time of growth offers a more amenable system to the effective particle framework. For 

example, the three-dimensional cluster has a well-defined minimally circumscribing ball and, 

correspondingly, a single collective transition matrix. Upon sufficient discussion and 

experimentation with collaborators it was found that a strong exit pressure from the plasma 

reactor can create near ballistic motion onto the substrate. Correspondingly, the scale-invariant 

properties are governed primarily by three-dimensional clustering within the reactor. Thought 

the particle deposition algorithm can model particles on substrates, the sampling of effective 

particles formed by three-dimensional clustering within the reactor is used exclusively in Chapter 

7.  
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Figure 5.7.3. Example of particle growth and model from inside a plasma reactor based on diffusion-limited 

aggregation. (Upper left) Closeup of an edge of large fractal cluster. (Lower left) Large fractal cluster. Both 

images are taken from Chapter 10 of this dissertation. Further detail can be found in [Li. Z., Wray P. R., et. al., 

ACS Omega 2020, 5 (38), 24754–24761]. (Right) Schematic of the particle growth model for mimicking three-

dimensional fractal growth in a plasma reactor. Particles appear randomly on the appearance boundary. They 

then move by random three-dimensional motion based on equation 5.7.1. If the particle crossed the rejection 

boundary it is assumed to have left the region never to appear again. Otherwise, the particle simulation 

continues until aggregation occurs within the minimum bonding sphere. The minimum bounding sphere and 

particle number help to enforce filling fraction in a statistical sense.  

 

The process of making effective particles makes clear the importance of being experiment 

informed. When clustering occurs in the reactor, each deposited cluster can be composed of 2, 

3, 4, or more particles. Correspondingly, sparse samples should be made where individual 

clusters can be imaged, and statistics can be formed. Though in a film, clusters can still stack on 

top one another. Measuring the film’s height, filling fraction, and roughness help to dictate the 

average compactness of the particle clusters and likelihood of stacking. This is especially 

important as measurement of isolated clusters may not be as accurate to particle packing once 

particles stack. In reality the free parameters are most likely accurate up to a range of values. The 

goal of direct measurement is to minimize the range. In this regard, the effective particle 

framework can be viewed as a predictive or characterization scheme. From the predictive 

viewpoint, the free parameters are estimated as single values, the model is run, and the effective 

medium model is formed. Simulating over a range of free parameters can then be used to inform 

error bounds on predictions. From the viewpoint of characterization, the same process is 

performed in a feedback loop where the free parameters are instead tuned to find the best match 

with experimental data. The gold standard in this regard is angle and polarization resolved 

reflection, transmission, and absorption measurements of both the coherent and incoherent 
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field. If the match is satisfying, then the value in the characterization approach is similar to 

that of ellipsometry for thin films. You can fine-tune values obtained through direct 

measurement techniques such as filling fraction as well as provide a discussion of the underlying 

electromagnetic behavior in the system giving rise to observed emergent behavior.  

 

Through a proper cluster growth model, effective particles exhibiting fractal-like behavior can be incorporated into 

an effective medium framework.   
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C h a p t e r  6   

PARTICLE FILMS FOR OPTIMAL RADIATIVE COOLING 

Wray, P.; Su, M.; Atwater, H. Design of Efficient Radiative Emission and Daytime Cooling 

Structures with Si3N4 and SiO2 Nanoparticle Laminate Films. Opt. Express 2020. 

https://doi.org/10.1364/OE.408845. 

 

 

ABSTRACT 

Research on radiative cooling has attracted recent widespread interest owing to the potential 

for low-cost passive structures to enable large-scale thermal energy management. Using a 

generalized effective medium theory, we theoretically show that two-layer films comprised of 

SiO2 and Si3N4 nanoparticle layers on an Ag back reflector exhibit superior radiative cooling 

compared to single-layer or two-layer dense solid films and can outperform other reported 

designs. The performance enhancement is a result of the ability to tune the nanoparticle fill 

fraction, which improves the spectral match between emissivity of this structure and the 

atmospheric transmission window. We also propose a standardized method for comparing the 

performance of radiative cooling structures reported by the research community. 
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6.1 INTRODUCTION 

 

Approximately forty percent of the world population lives in consistently hot regions, many 

of which have homes lacking air conditioning175–177. Rising standards of living and growing 

demand for improved public health and comfortable living conditions is projected to lead to 

a 450% increase in air conditioning from 2010 to 2050 worldwide, representing one of the 

largest contributors to worldwide energy consumption178–180. Furthermore, current air 

conditioning systems account for almost 700 million metric tons of CO2-equivalent emissions 

per year176. Seventy-four percent of these emissions are from electricity generation and 

approximately nineteen percent from refrigerant based hydrochlorofluorocarbons (HCFCs) 

which have a disproportionately large global warming impact relative to their mass176. These 

predictions highlight the importance of developing improved sustainable and environmentally 

friendly cooling technologies. Furthermore, a low cost and easily implemented passive cooling 

technology can promote early adoption in developing countries, reduce overall energy use, and 

lower greenhouse gas emissions. 

 

Cooling by radiative heat transfer from a terrestrial ambient to the cold ambient of space is a 

passive, sustainable solid-state technique to provide cooling without the need for external 

power or additional operating costs. Photonic structures which are both highly reflective in 

the solar spectrum (below 2.5 μm) and highly emissive in the infrared atmospheric 

transmission window (8 – 14 μm) can suppress solar heating and remove heat through infrared 

(IR) radiation to cool throughout the diurnal cycle. Radiative cooling structures are particularly 

applicable in regions with low humidity, where the atmosphere is most transparent, such as 

Mexico, northern and southern Africa, the Middle East, Australia, India, parts of North and 

South America, and areas of northern Asia176,181. The primary requirement of a radiative cooler 

is to provide enough cooling power at a specified temperature to more than offset its own 

parasitic heating, thus providing net cooling, and is constrained by the limited bandwidth of 

the infrared atmospheric transmission window and stringent reflectivity requirements in the 

solar spectrum. Recent designs for daytime radiative cooling structures to improve cooling 

performance include structures with glass nanoparticles embedded into a polymer film, layered 

thin films on back reflectors, and complex lithographically patterned structures such as many-

layered nanoarrays 182–193. Other passive cooling techniques – such as earth to air heat 

exchangers, evaporative coolers, and nocturnal convective coolers – focus on removing heat 

through a heat sink (ground, water, or, air respectively), but suffer from high initial costs, 

continual operating costs, and/or external power requirements194,195. 

 

Films composed of Rayleigh scattering nanoparticles can provide simple photonic designs for 

improving daytime cooling performance and are amenable to scalable manufacturing 196,197. By 
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tuning the nanoparticle fill fraction, air-material composites of this type can provide 

broadband impedance matching to free space and the ability to spectrally tune absorption 

resonances by changing the local (Lorentz) field18,152,198. Conversely, layered structures 

synthesized by thin film deposition can enable improved impedance matching to free space 

and resonance shifts through either graded index stacks, periodic layered structures, or 

intricate patterning199–202. For graded index and periodic structures, impedance matching is 

limited by the minimum practically achievable refractive index in the low index layers and the 

number of layers in the stack199. Furthermore, graded index and periodic layered structures are 

constrained by the limited portfolio of materials that can be used to achieve the stringent 

broadband reflection and emission requirements of a daytime radiative cooler 203. Use of 

patterned subwavelength-scale resonant or wavelength-scale diffractive photonic structures 

represents another approach to tune photonic properties but is limited by fabrication 

complexity for large-area low-cost structures203. In this paper, we theoretically show that 

nanoparticle films can circumvent the impedance matching and materials limits which 

constrain layered structures. Two-layer nanoparticle films can achieve radiative cooling 

performance comparable to or greater than others reported to date, based solely on tuning 

nanoparticle fill fraction and film thickness. 

 

Using a generalized effective medium theory, we show that simple two-layer nanoparticle films 

composed of separate layers of SiO2 and Si3N4 particles on a silver back reflector can 

outperform all dense solid laminate thin films and provide a cooling performance superior to 

those reported previously182–193. Using consistent solar, atmospheric, convective/conductive, 

and ambient temperature conditions across comparisons, we find that the radiative cooling 

performance of two-layer nanoparticle film designs exceeds many reports of radiative cooling 

designs in literature by up to 20 W/m2 and 25 W/m2 at operating temperatures of 290 K and 

280 K, respectively. Furthermore, optimized two-layer nanoparticle film designs have higher 

cooling power than optimized dense solid laminate thin films, regardless of which structure or 

composition is chosen. These results support the idea that random nanoparticle laminate films 

could provide a feasible alternative to dense solid thin film or patterned designs, provided 

scalable synthesis techniques can be identified. In this regard, plasma synthesis or ball milling 

could be considered as possible scalable deposition methods196,204.  
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6.2 DEFINING AN OPTIMAL RADIATIVE COOLER 

 

There are three important factors to consider when designing a daytime radiative cooling 

structure, which can be inferred from equation 6.5.1 – 6.5.6. First, the criterion for defining 

an optimal radiative cooling structure should be to maximize the structure’s net cooling power 

at a desired target operating temperature, called the “optimization temperature.” Second, the 

performance of a radiative cooling structure is fundamentally limited by the atmospheric 

emission spectrum. As such, the atmospheric emission spectrum of the target operating 

environment needs to be carefully considered. Third, to achieve cooling below ambient 

temperature, solar absorption and other forms of parasitic heating must be kept below a critical 

threshold. 

 

We can define the theoretical spectral emission of an optimal radiative cooling structure as 

 

𝑒𝑟(𝜆, 𝑇𝑟 , 𝑇𝑎, θ, α) = {
1, 𝐼𝐵(𝜆, 𝑇𝑟) > 𝐼𝐵(𝜆, 𝑇𝑎)𝑒𝑎(𝜆, 휃, 𝛼)
0, 𝑒𝑙𝑠𝑒

  6.2.1 

 

where 𝑒𝑟 is the emissivity of the structure, 𝑒𝑎 is the emissivity of the atmosphere, 𝜆 is the free 

space wavelength, 𝑇𝑟 is the structure’s temperature, 𝑇𝑎 is the ambient temperature, 휃 is the 

angle of emission, and 𝑎 is a variable encapsulating the conditions relating to the composition 

of the atmosphere205. 𝐼𝐵 is defined as the blackbody spectral radiance 

 

𝐼𝐵 =
2ℎ𝑐2

𝜆5
1

𝑒

ℎ𝑐
𝜆𝑘𝐵𝑇−1

  6.2.2 

 

where ℎ is Plank’s constant, 𝑘𝐵is the Boltzmann constant, and 𝑐 is the speed of light. Equation 

6.2.1 shows that the theoretical optimal cooling performance is a function of the temperature 

of the radiative cooling structure, ambient temperature, emission angle, and atmospheric 

composition. 

 

In regard to choosing the appropriate atmospheric emission spectrum, figure 6.2.1(a) shows 

the atmospheric transmission windows from the Gemini Observatory (low humidity level) and 

from the 1976 United States Standard (average humidity level)205. The spectra at the Gemini 

Observatory represents near ideal conditions where a radiative cooler with high emissivity in 

both the first (8 – 14 µm) and second (16 – 24 µm) atmospheric transmission windows could 

achieve the highest possible cooling power. However, it is shown in figure 6.2.1(a) that while 

two atmospheric transmission windows exist at very low humidity levels, the prevalence of 
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water molecules in the atmosphere greatly diminishes the contribution of the second 

atmospheric transmission window towards radiative cooling for most areas of the world 206. 

Consequently, practical radiative coolers in terrestrial applications should optimize emission 

only in the first atmospheric transmission window and over all angles. The 1976 United States 

Standard atmospheric emission spectrum was modeled using LOWTRAN7, an open-source 

software comparable to MODTRAN207–209. Figure 6.2.1(b) shows the 1976 United States 

Standard atmospheric emission spectra at 300 K with blackbodies of 300 K, 280 K, 260 K, 

and 240 K overlaid in the background206. From figure 6.2.1(b), we see that the optimal emission 

window as described in equation 6.2.1 for achieving maximum cooling power is denoted by 

the area of each blackbody that is not overlapped by the atmospheric emittance. This 

demonstrates the dependence of the optimal spectral emission window on the operating 

temperature. Figure 6.2.1(c) illustrates the radiative cooling power (𝑃𝑟) to operating 

temperature relationship for ideal radiative coolers as defined by Equation (1). Each solid 

curve is the radiative cooling power based on spectral emission windows optimized for 300 

K, 280 K, 260 K, and 240 K blackbodies minus the atmospheric heating (𝑃𝑎), at an ambient 

temperature of 300 K. From the solid curves in figure 6.2.1(c), we see that each optimal 

spectral emission window achieves a superior cooling power compared to its peers when 

operating at or near its optimization temperature. The dashed horizontal lines show the net-

zero power curves (𝑃𝑛𝑒𝑡 = 0) for different percentages of solar absorption (𝑃𝑠𝑢𝑛). From these 

dashed lines, we find that radiative cooling while operating below the ambient temperature of 

300 K is effectively impossible if parasitic solar absorption is higher than 10%. The dashed 

sloped lines show 𝑃𝑛𝑒𝑡 = 0 when considering different non-radiative heat transfer coefficients 

(𝑞), which account for convective and conductive heat transfer (𝑃𝑜𝑡ℎ𝑒𝑟). The overall 𝑃𝑛𝑒𝑡 = 0 

line is determined by a linear combination of the solar absorption and non-radiative heat 

transfer effects.  
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Figure 6.2.1. Conditions of optimal radiative cooling. (a) Atmospheric transmission spectra at low humidity 

taken from the Gemini Observatory and at average humidity taken from the 1976 U.S. Standard; (b) 

blackbody spectra at various temperatures (300 K, 280 K, 260 K, and 240 K) overlaid on the atmospheric 

emission spectrum from 1976 U.S. Standard at 300 K; (c) radiative cooling power density versus operating 

temperature relationship for the four theoretically optimal radiative cooling spectral emission windows 

defined from (b), each is optimized to provide superior cooling power at a specific optimization temperature 

under ambient conditions (300 K). The solid lines show radiative cooling power (𝑃𝑟) minus atmospheric 

heating (𝑃𝑎) versus operating temperature for each of the optimal radiative coolers. Solar absorption percent 

is given by the horizontal dashed lines. Losses from conduction and convection for various non-radiative 

heat transfer coefficients (𝑞), are marked with sloping dashed lines. The total net zero cooling power line is 

represented by a linear combination of the solar absorption line and non-radiative heat transfer coefficient 

line.  
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6.3 RADIATIVE COOLING IN NANOPARTICLE LAMINATE FILMS 

 

Using a generalized effective medium theory, we design different radiative cooling structures 

comprised of separate layers of SiO2 and Si3N4 nanoparticle films with air as the matrix 

medium. We find that two-layer nanoparticle films always outperform dense solid laminate 

thin films and are sufficient to achieve cooling performances greater than or similar to 

previously reported structures182–193. In our designs, SiO2 and Si3N4 were chosen as the emissive 

materials because of their strongly peaked absorption within the atmospheric transmission 

window. Specifically, in-phase and out-of-phase stretching of the Si–O bond is responsible for 

the strong absorption peak in SiO2 from 8 – 10 μm, and Si–N bond stretching is responsible 

for the broad absorption peak in Si3N4 from 9 – 15 μm210–213. In both cases the absorption 

coefficient for wavelengths between 0.25 – 5 μm can be made negligibly small. The generalized 

effective medium permittivity, considering a single type of inclusion, is given by: 

 

𝑒𝑓𝑓− 𝑒

2 𝑒+ 𝑒𝑓𝑓+𝜈( 𝑒𝑓𝑓− 𝑒)
= 𝑓𝑓 𝑖− 𝑒

2 𝑒+ 𝑖+𝜈( 𝑒𝑓𝑓− 𝑒)
  6.3.1 

 

where 휀𝑒 is the host permittivity (free space in this case), 휀𝑖 is the inclusion permittivity (SiO2 

or Si3N4), 𝑓𝑓 is the inclusion fill fraction, 휀𝑒𝑓𝑓  is the resulting effective permittivity, and 𝜈 is a 

continuous variable which encapsulates how the inclusion responds to the internal field. Using 

this framework, the Maxwell Garnett (MG) formula is recovered at 𝑣 =  0, Bruggeman at 𝑣 

= 2, and coherent potential (CP) at 𝑣 = 3214. Therefore, this generalized formula spans a set 

of effective medium theories and values of 𝑣 between the common theories can be viewed as 

a hybrid response in the internal field. For each structure designed, we span v to compare the 

structure’s cooling performance under each effective medium formula and hybrid parameters. 

As a representative example figure 6.3.1(a) – 6.3.1(e) show the real (𝑛) and complex (𝑘) 

refractive index for bulk SiO2 and Si3N4 as well as the effective 𝑛𝑒𝑓𝑓  and 𝑘𝑒𝑓𝑓  for laminate 

nanoparticle films of SiO2 or Si3N4 as a function of fill fraction under the Bruggeman 

formula214,215. Figure 6.3.1(a) – (b), (d) – (e) show that by tuning the nanoparticle fill fraction, 

we can reduce impedance mismatch between the nanoparticle film and free space. We can also 

spectrally shift the location of maximum 𝑘𝑒𝑓𝑓  of the material composite as a result of coupling 

between phonons and the internal field18,152,198. Figure 6.3.1(c) and (f) emphasize the effect of 

spectral shifting by normalizing the amplitude of 𝑘𝑒𝑓𝑓  for SiO2 and Si3N4 laminate nanoparticle 

films within the atmospheric transmission window, respectively. Both increased impedance 

matching, and spectral absorption resonance shifting are found to be consistent features no 

matter the choice of 𝑣. We note that SiO2 and Si3N4 nanoparticles with diameters of 50 nm or 

less satisfy the condition of Rayleigh scattering throughout the visible and IR wavelength 
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regime53. Under this condition, the effective medium theory given by equation 6.3.1 is 

valid18,152,198,216–220. Synthesis of nanoparticle films composed of nanoparticles of this size and 

smaller, and with sufficiently narrow size distributions and high uniformity, can be done via 

both dusty plasma synthesis and ball milling204,221–224. We set a 60% fill fraction as a realistic 

upper limit due to the theoretical limit of random sphere packing (62 – 64%)225,226. 

 

 
 

Figure 6.3.1. Effective permittivity versus inclusion filling fraction. (a), (b) 𝑛𝑒𝑓𝑓 and 𝑘𝑒𝑓𝑓 for SiO2 at 

various fill fractions with air as the matrix medium; (c) normalized 𝑘𝑒𝑓𝑓 for SiO2 within atmospheric 

transmission window demonstrating spectral shifting as a function of fill fraction; (d), (e) 𝑛𝑒𝑓𝑓 and 𝑘𝑒𝑓𝑓 for 

Si3N4 at various fill fractions with air as the matrix medium; (f) normalized 𝑘𝑒𝑓𝑓 for Si3N4 within the 

atmospheric transmission window demonstrating spectral shifting as a function of fill fraction. 

 

We also study the limits an effective permittivity for a random particle film can be, which is 

determined from the Hashin-Shtrikman (HK) bounds: 

 

휀𝑀𝐺 ≤ 휀𝑒𝑓𝑓 ≤ 휀𝑀𝐺−𝐶𝑜𝑚𝑝  6.3.2 

 

where the lower limit is given by the MG formula and the upper limit by the MG formula of 

the complementary structure in which the host and medium materials are transposed. Thus, 

equation 6.3.2 gives an estimate on the permittivity extrema we may encounter for nanoparticle 
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laminate films, and equation 6.3.2 provides the framework to model the behavior of these 

films under an entire class of effective medium theories within the HK bounds. From this 

framework, we can compare two-layer SiO2 and Si3N4 laminate nanoparticle films to dense 

solid thin film equivalents. 

 

Using transfer matrix calculations, we determine each structure’s wavelength, angle, and 

polarization-resolved absorption/emission profile, then calculate its net radiative cooling 

power (𝑃𝑛𝑒𝑡) as a function of operating temperature227,228. Optimal designs for each 

temperature regime were found by systematically varying each laminate nanoparticle layer 

thickness, fill fraction, material orientation (alternating the material of the top and bottom 

layers), and film type (laminate nanoparticle film or dense solid thin film) for all permutations 

of two-layer structures of SiO2 and Si3N4 on an Ag back reflector. As such, a total of 32 two-

layer radiative cooling structures were optimized. At each of four optimization temperature 

(300 K, 290 K, 280 K, 270 K), we optimized eight unique two-layer structures on a silver back 

reflector based on material order (SiO2 on Si3N4 or Si3N4 on SiO2) and film type (two thin film 

layers, thin film on laminate nanoparticle film, laminate nanoparticle film on thin film, and two 

laminate nanoparticle films). Figure 6.3.2(a) shows an example schematic of a radiative cooling 

structure comprised of two layers of laminate nanoparticle films on a silver back reflector. The 

specific design parameters (layer thickness, fill fraction) and radiative cooling powers for all 32 

optimized radiative cooling structures can be found in tables 6.6.1 – 6.6.18.  

 

Figure 6.3.2(b) shows the radiative cooling power of each of the 32 optimized two-layer 

radiative cooling structures under the Bruggeman mixing rule (𝑣 = 2). Each structure is shown 

at the operating temperature where their spectra has been optimized to give the most cooling 

power (optimization temperature). We assume an ambient of 300 K and account for solar 

absorption. No conduction or convection losses (𝑞 = 0) are shown as they would be common 

to each structure and are not an aspect of the photonic design. From figure 6.3.2(b), we see 

that optimized two-layer laminate nanoparticle films on a silver back reflector outperform 

optimized two-layer dense solid thin films at all optimization temperatures. The best 

performing two-layer laminate nanoparticle film structures show a 40% to 120% increase in 

radiative cooling power compared to the best performing two-layer dense solid thin film 

structures. The laminate nanoparticle films also demonstrate cooling at 270 K, which is 

unachievable in a dense solid thin film structure. Figure 6.3.2(c) shows the radiative cooling 

power of each of 32 optimized two-layer radiative cooling structures under the Maxwell 

Garnett mixing rule. From figure 6.3.2(c), we see that optimized two-layer laminate 

nanoparticle films on silver back reflector are still predicted to outperform optimized two-

layer dense solid thin films at all target temperatures, with increases of 30% and 109% in 
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radiative cooling power when using the Maxwell Garnett mixing rule. Using the design 

parameters for the best performing two-layer laminate nanoparticle film and its two-layer thin 

film analog at each optimization temperature, we show in figure 6.3.2(d) the radiative cooling 

power of the laminate nanoparticle films when calculated using different effective medium 

formulas (𝑣 = 0, 1, 2, 3). Results from the HK bounds and the optimal thin film design are 

also plotted. From figure 6.3.2(d) we see that laminate nanoparticle films have higher predicted 

radiative cooling powers than two-layer thin film structures of the same material at all 

operating temperatures regardless of the effective medium theory used. In all cases, the AM1.5 

solar spectrum was used, and the atmospheric transmittance data was taken from the 1976 

U.S. Standard using LOWTRAN7229, integrated over angle and wavelength for both 

polarizations, and the ambient temperature was 300 K. Non-radiative heat losses were not 

considered since these losses would be common since film thicknesses are negligible for heat 

capacitance, the losses can be and often are controlled by the design of an external box, and 

are not inherent to the photonic aspects of the design. This does not detract from the 

comparison. The angular, spectral, and polarization-resolved emissivity profiles for all two-

layer laminate nanoparticle film structures as calculated by both Bruggeman and Maxwell 

Garnett effective medium formulas can be found in figure 6.7.1 – 6.7.8. 

 

Figure 6.3.3 compares the cooling performance of the optimal two-layer laminate nanoparticle 

films from figure 6.3.2(a) under the Bruggeman mixing rule to structures that have been 

previously reported182–185,192. In order to provide a direct comparison, absorptivity/emissivity 

curves from previous reports are digitized and the radiative cooling performance is compared 

using the same AM1.5 solar spectrum and atmospheric absorption spectrum (the 1976 U.S. 

Standard)205. Furthermore, all calculations use an ambient of 300 K, and no non-radiative heat 

losses were considered. Therefore, the results should be interpreted as the relative average 

performance based on United States standards. Since multiple papers only report emissivity 

curves at normal incidence, all calculations assume the structure emits as a Lambertian surface 
182–185,192. We then perform the angular integration found in equation 6.5.2 – 6.5.4 under this 

assumption, allowing us to account for the angular dependence of the 1976 U.S. Standard 

atmospheric spectra. While the lack of angular information will alter the achievable cooling 

power, applying the approximation of Lambertian emittance allows for a consistent 

comparison between curves. Non-radiative heat losses were not considered since these losses 

are or can be controlled by the design of an external box and are not inherent to the photonic 

aspects of the design. Solar absorption is considered since it is part of the photonic design for 

daytime cooling. The results suggest that laminate nanoparticle film structures can provide 

cooling performance superior to other reported radiative cooling structures at temperatures 

below a 300 K ambient, many of which are achieved only through complex photonic designs.  
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Figure 6.3.2. Summary of radiative cooling performance. (a) Schematic of radiative cooler comprised of two 

layers of laminate nanoparticle films on a silver back reflector; (b) net radiative cooling power of all 32 optimal 

two-layer nanoparticle film, thin film, or nanoparticle and thin film composite structures of SiO2 and Si3N4 

operating at their optimization temperature calculated using the Bruggeman effective medium formula (𝑣 = 

2); (c) net radiative cooling power of all 32 optimal two-layer nanoparticle film, thin film, or nanoparticle and 

thin film composite structures of SiO2 and Si3N4 operating at their optimization temperature calculated using 

the Maxwell Garnett effective medium formula (𝑣 = 0); (d) net radiative cooling power versus optimization 

temperature for the optimal two-layer nanoparticle films calculated using different effective medium theories. 

The nanoparticle film structure performance is compared to the two-layer thin-film analog to demonstrate 

that superior radiative cooling power is predicted regardless of which effective medium formula is used. All 

figures assume an ambient temperature of 300 K and no conduction or convection losses (𝑞 = 0).  
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Figure 6.3.3. Comparison between various radiative structure performances from literature (solid) and 

proposed two-layer radiative cooling structures composed of SiO2 and Si3N4 laminate nanoparticle films on 

silver back reflector (dashed). Each dashed curve represents a unique two-layer radiative cooler optimized for 

a different operating temperature. Literature curves are obtained through digitization of published emissivity 

data at normal incidence, and it is assumed the emissivity is angle independent. This figure serves purely as a 

guide for visualizing the relative benefit of nanoparticle films in radiative cooling.  



 

 

201 

6.4 CONCLUSION 

 

We have demonstrated that SiO2 and Si3N4 two-layer nanoparticle laminate films can give rise 

to radiative cooling powers that are higher than the best dense solid thin film laminate designs 

using the same materials. This result is robust with respect to the effective medium theory 

employed for optimization. Furthermore, we show that simple two-layer nanoparticle 

structures are sufficient to achieve cooling performances exceeding that of previously reported 

designs. Cooling performance improvements ranging from 20 W/m2 to 25 W/m2 over 

previously reported designs are possible with two-layer laminate nanoparticle films at 

operating temperatures of 290 K and 280 K, respectively, and two-layer laminate nanoparticle 

films remain competitive with previously reported designs at 300 K. This work suggests that 

nanoparticle laminate films are a promising component for future simple, scalable, and 

effective daytime radiative cooling structures.  
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6.5 RADIATIVE COOLING THEORY 

 

Radiative cooling structures are designed to selectively emit radiation within the atmospheric 

transmission window, reflect the solar spectrum, and minimize conductive or convective 

heating losses. Formally this is expressed as a power balance  

 

𝑃𝑛𝑒𝑡 = 𝑃𝑟 − 𝑃𝑎 − 𝑃𝑠𝑢𝑛 − 𝑃𝑜𝑡ℎ𝑒𝑟,  6.5.1 

 

where 𝑃𝑛𝑒𝑡 is the net power leaving the structure, 𝑃𝑟 is the thermal power the structure emits, 

𝑃𝑎 is the thermal power emitted from the atmosphere that is absorbed by the radiative cooler, 

𝑃𝑠𝑢𝑛 is the solar power absorbed by the radiative cooler, and 𝑃𝑜𝑡ℎ𝑒𝑟 accounts for heating due 

to conduction or convection. To cool below room temperature, the structure must reflect the 

solar spectrum to prevent heat buildup and emit within the atmospheric transmission window 

to radiate its heat into outer space. The cooling power of a radiative cooler is defined by the 

amount of thermal radiation it emits per unit time and can be expressed as 

 

𝑃𝑟(𝑇) = 2𝜋𝐴 ∫ ∫ 𝐼𝐵(𝜆, 𝑇𝑟)𝑒𝑟(𝜆, 휃)
∞

0
sin 휃 cos 휃 𝑑𝜆𝑑휃

𝜋

2
0

,   6.5.2 

 

where 𝐴 is the structure area, 𝑒𝑟 is the emissivity of the radiative cooler and 𝐼𝐵 is the blackbody 

spectral radiance of the radiative cooler 

 

𝐼𝐵(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5
1

𝑒

ℎ𝑐
𝜆𝑘𝐵𝑇−1

,   6.5.3 

 

where 𝑇𝑟 is the structure’s temperature and 𝜆 is the emission wavelength. 

 

Under thermodynamic equilibrium, emissivity and absorptivity can be interchanged based on 

Kirchhoff’s law of radiation. Heating of the structure by absorbed atmospheric radiation is 

expressed as 

 

𝑃𝑎(𝑇) = 2𝜋𝐴 ∫ ∫ 𝐼𝐵(𝜆, 𝑇𝑎)𝑒𝑟(𝜆, 휃)𝑒𝑎(𝜆, 휃, 𝛼)
∞

0
sin 휃 cos 휃 𝑑𝜆𝑑휃

𝜋/2

0
,   6.5.4 
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where 𝑒𝑎 is the emissivity of the atmosphere, IB(𝜆, 𝑇𝑎) is the blackbody spectral radiance 

of the atmosphere at ambient temperature 𝑇𝑎, and 𝛼 is a variable encapsulating the conditions 

relating to the composition of the atmosphere [S. Jeon and J. Shin, Scientific Reports 10(1), 1-

7 (2020)]. The power absorption from direct solar radiation can be expressed as 

 

𝑃𝑠𝑢𝑛 = 𝐴∫ 𝐼𝑠𝑜𝑙𝑎𝑟𝑒𝑟𝑑𝜆
∞

0
,   6.5.5 

 

where 𝐼𝑠𝑜𝑙𝑎𝑟  is the AM1.5 solar spectrum. Finally, heating due to conduction and convection 

can be collectively expressed as 

 

𝑃𝑜𝑡ℎ𝑒𝑟 = 𝑞𝐴(𝑇𝑎 − 𝑇𝑟),   6.5.6 

 

where 𝑇𝑎 is the ambient temperature, 𝑇𝑟 is the temperature of the radiative cooler, and 𝑞 is 

the non-radiative heat coefficient from conductive and convective heat transfer through the 

air and surfaces in contact with the radiative cooler.  

 

Equations 6.5.1 – 6.5.6 outline three important facts for radiative cooling structure design. 

First, the criterion for an optimal cooling structure should be defined by its cooling power at 

a given operating temperature. This is because as the structure cools below the ambient 

temperature, the optimal spectral window to achieve maximum cooling power becomes a 

subset of the atmospheric window. Second, the performance limit for a cooling structure is 

fundamentally limited by the atmospheric emission spectrum. Third, to achieve net cooling 

performance, solar absorption and other forms of parasitic heating must be below a critical 

threshold.  
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6.6 TABLES OF COOLING POWER VERSUS TEMPERATURE 

 

T (K) P (W/m2) Si3N4 Thickness 
(nm) 

SiO2 Thickness (nm) 

300 52.39 200 1200 

290 30.65 100 1300 

280 12.02 100 1100 

270 -1.57 600 25 

 

Table 6.6.1. Cooling power versus temperature for Si3N4 on SiO2 (Film/Film) on Ag back reflector 

 

T (K) P (W/m2) Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

SiO2 Thickness 
(nm) 

300 63.76 3000 25 200 

290 41.25 2750 25 0 

280 22.83 2500 25 0 

270 8.01 2500 20 0 

 

Table 6.6.2. Cooling power versus temperature for Si3N4 on SiO2 (NP/Film) on Ag back reflector using 

the Bruggeman formula (𝑣 = 2) 

 

T (K) P (W/m2) Si3N4 Thickness 
(nm) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

300 64.00 200 2500 20 

290 37.01 100 2250 30 

280 15.82 100 2000 25 

270 -0.09 100 1700 20 

 

Table 6.6.3. Cooling power versus temperature for Si3N4 on SiO2 (Film/NP) on Ag back reflector using 

the Bruggeman formula (𝑣 = 2)  
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T 
(K) 

P 
(W/m2) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

300 67.60 1100 35 1800 25 

290 42.79 1600 25 1400 20 

280 23.10 2500 25 50 20 

270 8.10 2500 20 25 20 

 

Table 6.6.4. Cooling power versus temperature for Si3N4 on SiO2 (NP/NP) on Ag back reflector using 

the Bruggeman formula (𝑣 = 2) 

 

T (K) P (W/m2) SiO2 Thickness (nm) Si3N4 Thickness 
(nm) 

300 49.57 700 800 

290 28.28 800 600 

280 10.71 700 600 

270 -1.64 0 600 

 

Table 6.6.5. Cooling power versus temperature for SiO2 on Si3N4 (Film/Film) on Ag back reflector 

 

T (K) P (W/m2) SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

Si3N4 Thickness 
(nm) 

300 57.78 1700 35 900 

290 32.05 1600 35 800 

280 11.64 1400 25 700 

270 -1.64 0 - 600 

 

Table 6.6.?. (No spookiness!) Cooling power versus temperature for SiO2 on Si3N4 (NP/Film) on Ag 

back reflector using the Bruggeman formula (𝑣 = 2)  
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T (K) P (W/m2) SiO2 Thickness 
(nm) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

300 64.91 50 2750 30 

290 41.97 25 2750 25 

280 22.83 0 2500 25 

270 8.01 0 2500 20 

 

Table 6.6.7. Cooling power versus temperature for SiO2 on Si3N4 (Film/NP) on Ag back reflector using 

the Bruggeman formula (𝒗 = 2) 

 

T 
(K) 

P 
(W/m2) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

300 69.43 900 20 2250 35 

290 44.38 700 20 2250 30 

280 23.58 200 20 2500 25 

270 8.01 0 - 2500 20 

 

Table 6.6.8. Cooling power versus temperature for SiO2 on Si3N4 (NP/NP) on Ag back reflector using the 

Bruggeman formula (𝑣 = 2) 

 

T (K) P (W/m2) Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

SiO2 Thickness 
(nm) 

300 56.82 3000 25 200 

290 37.89 2750 25 0 

280 21.33 2500 25 0 

270 8.38 2500 20 0 

 

Table 6.6.9. Cooling power versus temperature for Si3N4 on SiO2 (NP/Film) on Ag back reflector using 

Maxwell Garnett formula (𝑣 = 0)  
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T (K) P (W/m2) Si3N4 Thickness 
(nm) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

300 60.94 200 2500 20 

290 34.88 100 2250 30 

280 15.54 100 2000 25 

270 0.59 100 1700 20 

 

Table 6.6.10. Cooling power versus temperature for Si3N4 on SiO2 (Film/NP) on Ag back reflector using 

Maxwell Garnett formula (𝑣 = 0) 

 

T 
(K) 

P 
(W/m2) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

300 60.41 1100 35 1800 25 

290 38.12 1600 25 1400 20 

280 21.95 2500 25 50 20 

270 7.22 2500 20 25 20 

 

Table 6.6.11. Cooling power versus optimization temperature for Si3N4 on SiO2 (NP/NP) on Ag back 

reflector using Maxwell Garnett formula (𝑣 = 0) 

 

T (K) P (W/m2) SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

Si3N4 Thickness 
(nm) 

300 53.47 1700 35 900 

290 29.39 1600 35 800 

280 10.99 1400 25 700 

270 -1.64 0 - 600 

 

Table 6.6.12. Cooling power versus temperature for SiO2 on Si3N4 (NP/Film) on Ag back reflector using 

Maxwell Garnett formula (𝑣 = 0)  
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T (K) P (W/m2) SiO2 Thickness 
(nm) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

300 58.78 50 2750 30 

290 37.49 25 2750 25 

280 21.33 0 2500 25 

270 6.99 0 2500 20 

 

Table 6.6.13. Cooling power versus temperature for SiO2 on Si3N4 (Film/NP) on Ag back reflector using 

Maxwell Garnett formula (𝒗 = 0) 

 

T 
(K) 

P 
(W/m2) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

300 64.05 900 20 2250 35 

290 40.64 700 20 2250 30 

280 22.34 200 20 2500 25 

270 6.99 0 - 2500 20 

 

Table 6.6.14. Cooling power versus temperature for SiO2 on Si3N4 (NP/NP) on Ag back reflector using 

Maxwell Garnett formula (𝑣 = 0) 

 

T 
(K) 

P 
(W/m2) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

300 57.17 900 20 2250 35 

290 31.51 700 20 2250 30 

280 9.18 200 20 2500 25 

 

Table 6.6.15. Cooling power versus temperature for SiO2 on Si3N4 (NP/NP) on Ag back reflector using 

complementary Maxwell Garnett formula (𝑣 = 0)  
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T 
(K) 

P 
(W/m2) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

300 69.55 900 20 2250 35 

290 44.81 700 20 2250 30 

280 24.28 200 20 2500 25 

 

Table 6.6.16. Cooling power versus temperature for SiO2 on Si3N4 (NP/NP) on Ag back reflector using 

a generalized formula (𝑣 = 1) 

 

T 
(K) 

P 
(W/m2) 

SiO2 Thickness 
(nm) 

SiO2 Fill 
Fraction (%) 

Si3N4 Thickness 
(nm) 

Si3N4 Fill 
Fraction (%) 

300 67.18 900 20 2250 35 

290 42.11 700 20 2250 30 

280 21.42 200 20 2500 25 

 

Table 6.6.17. Cooling power versus temperature for SiO2 on Si3N4 (NP/NP) on Ag back reflector using 

Coherent Potential formula (𝑣 = 3) 

 

v P 
(W/m2) 

Si3N4 
Thickness 

(nm) 

Si3N4 Fill 
Fraction (%) 

SiO2 
Thickness 

(nm) 

SiO2 Fill 
Fraction (%) 

0 7.22 2500 20 25 20 

0 (complement) -5.45 2500 20 25 20 

1 8.35 2500 20 25 20 

3 6.86 2500 20 25 20 

 

Table 6.6.18. Cooling power at T = 270 K for Si3N4 on SiO2 (NP/NP) on Ag back reflector using different 

effective medium formulas  
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6.7 ANGLE AND POLARIZATION RESOLVED EMISSIVITY 

 

 
 

Figure 6.7.1. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer laminate nanoparticle film radiative cooling structure optimized for 270 K at an ambient 

temperature of 300 K. Radiative cooling structure composed of Si3N4 (NP) on SiO2 (NP) on Ag back 

reflector. 

 

 

 

Figure 6.7.2. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer laminate nanoparticle film radiative cooling structure optimized for 280 K at an ambient 

temperature of 300 K. Radiative cooling structure composed of SiO2 (NP) on Si3N4 (NP) on Ag back 

reflector. 
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Figure 6.7.3. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer laminate nanoparticle film radiative cooling structure optimized for 290 K at an ambient 

temperature of 300 K. Radiative cooling structure composed of SiO2 (NP) on Si3N4 (NP) on Ag back 

reflector. 

 

 

 

Figure 6.7.4. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer laminate nanoparticle film radiative cooling structure optimized for 300 K at an ambient 

temperature of 300 K. Radiative cooling structure composed of SiO2 (NP) on Si3N4 (NP) on Ag back 

reflector.  
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Figure 6.7.5. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer dense solid thin film radiative cooling structure optimized for 270 K at an ambient temperature 

of 300 K. Radiative cooling structure composed of Si3N4 (Film) on SiO2 (Film) on Ag back reflector. 

 

 
 

Figure 6.7.6. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer dense solid thin film radiative cooling structure optimized for 280 K at an ambient temperature 

of 300 K. Radiative cooling structure composed of Si3N4 (Film) on SiO2 (Film) on Ag back reflector.  
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Figure 6.7.7. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer dense solid thin film radiative cooling structure optimized for 290 K at an ambient temperature 

of 300 K. Radiative cooling structure composed of Si3N4 (Film) on SiO2 (Film) on Ag back reflector. 

 

 
 

Figure 6.7.8. Spectral and angular resolved p-polarization (left) and s-polarization (right) emissivity profile 

for 2-layer dense solid thin film radiative cooling structure optimized for 300 K at an ambient temperature 

of 300 K. Radiative cooling structure composed of Si3N4 (Film) on SiO2 (Film) on Ag back reflector. 
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6.8 EMISSIVITY FROM RELEVANT LITERATURE REPORTS 

 

 
 

Figure 6.8.1. Digitized emissivity curve from a multilayer radiative cooler composed of seven alternating 

layers of HfO2 and SiO2. [From Raman et al., Nature 515(7528), 540 (2014).] 

 

 

Figure 6.8.2. Digitized emissivity curve from a 2-layer 2D photonic crystal of SiC and quartz. [From 

Rephaeli et al., Nano Letters 13(4), 1457-1461 (2013).]  
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Figure 6.8.3. Digitized emissivity curve from a polymer-coated fused silica mirror. [From Kou et al., ACS 

Photonics 4(3), 626-630 (2017).] 

 

 

Figure 6.8.4. Digitized emissivity curve from a glass-polymer hybrid metamaterial. [From Zhai et al., Science 

355(6329), 1062-1066 (2017).] 
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Figure 6.8.5. Digitized emissivity curve from nanoparticle-based double layer cooling structure on a black 

substrate. [From Bao et al., Solar Energy Materials and Solar Cells 168, 78-84 (2017).] 

 

 

 

Figure 6.8.6. Digitized emissivity curve from nanoparticle-based double layer cooling structure on an 

aluminum substrate. [From Bao et al., Solar Energy Materials and Solar Cells 168, 78-84 (2017).] 
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C h a p t e r  7   

BROADBAND, OMNIDIRECTIONAL, AND POLARIZATION 

INVARIANT ABSORBERS 

Wray, P. R. †; Eslamisaray, M. A. †; Nelson, G. M.; Ilic, O.; Kortshagen, U. R.; Atwater, H. A. 

Broadband, Angle- and Polarization-Invariant Antireflective and Absorbing Films by a Scalable 

Synthesis of Monodisperse Silicon Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14 (20), 

23624–23636. https://pubs.acs.org/doi/10.1021/acsami.2c03263 

 (†P.R.W. and M.A.E. contributed equally) 

 

ABSTRACT 

Optically-induced magnetic resonances (OMRs) are highly tunable scattering states that cannot 

be reproduced in systems which only support electric resonances; such as in metals, lossy, or 

low-index materials. Despite offering unique scattering and coupling behavior, the study of 

OMRs in thin films has been limited by synthesis and simulation constraints. We report on the 

absorption and scattering response of OMR-based thin films composed of monodisperse 

crystalline silicon nanoparticles synthesized using a scalable nonthermal plasma growth 

technique and tractable simulation framework. The synthesis is solvent and ligand free, ensuring 

minimal contamination, and crystalline particles form with high yield and a narrow size 

distribution at close to room temperature. Using a scalable high throughput deposition method, 

we deposit random particle films, without the need of a solid host matrix, showing near complete 

blackbody absorption at the collective OMR. This is achieved using 70% less material than an 

optimized antireflective-coated crystalline silicon thin film. The film exhibits strongly directional 

forward scattering with very low reflectivity, thus giving rise to angle- and polarization-

insensitive antireflection properties across the visible spectrum. We find that while commonly 

used effective medium models cannot capture the optical response, a modified effective medium 

accounting for multipole resonances and interparticle coupling shows excellent agreement with 

experiment. The effective permittivity and permeability are written in a mode and cluster 

resolved form, providing useful insight into how individual resonances and nanoparticle clusters 

affect the overall film response. Electric and magnetic-mode coupling show dramatically 

different behavior, resulting in uniquely different spectral broadening. 

 

 

Reprinted with permission from ACS Appl. Mater. Interfaces 2022, 14, 20, 23624–23636. Copyright 2022 American 

Chemical Society.  

https://pubs.acs.org/doi/10.1021/acsami.2c03263


 

 

218 

7.1 INTRODUCTION 

The Maxwell-Garnett and Bruggeman theories show that through the proper mixture of 

vanishingly small uncoupled particles, an inhomogeneous medium could give rise to optical 

phenomena not seen in homogeneous single-phase media230. Particle mixtures of this type 

spawned some of the first examples of metamaterials231, whose paradigm envision 

subwavelength, resonant -but independent and uncoupled-scatterers. For densely packed 

nanoparticles, there is a much broader set of emergent phenomena that occurs in coupled Mie 

resonant particles. Multiple works have shown that designing in this boarder space is indeed 

fruitful182,232–234. For example, optically-induced electric resonances (OERs) excited by localized 

surface plasmons have shown rich resonant and coupling behavior in deeply sub-wavelength 

metallic particles235,236. The resulting confined local fields and sensitivity to particle size and shape 

further broadened the scope of applications, such as in the fields of energy, sensing, and more237–

240. More recently, researchers have recognized the potential of optically-induced magnetic 

resonances (OMRs), which are supported in sub-wavelength low-loss and high-index dielectric 

particles that enable access to scattering and absorption states not achievable in other particles, 

such as metals or low-index materials241,29,27,106,47,242,243,23. Correspondingly, crystalline 

semiconductors are target materials for producing OMRs in the visible and in particular, 

crystalline silicon (c-Si). The OMR arises from the creation of a strong circulating field within the 

core of the particle and can have a large quality factor.  This resonance is spectrally tunable by 

particle size, exists in low-loss spectral regions, and has distinctly different behavior compared 

to OERs244–260. Therefore, OMRs offer the potential to further the applications of particle 

mixtures by expanding the state space and material library for achieving emergent phenomena. 

Despite the unique properties, most experimental research on OMR particles has been limited 

to single particle characterization or nanostructures synthesized by top-down lithographic 

techniques249–253. This is due to a synthesis bottleneck arising from constraints in synthesizing 

crystalline semiconductor nanoparticles in the OMR regime (around 80 nm diameter). 

Furthermore, theoretical considerations of particle mixtures have largely neglected the existence 

of OMRs, which causes non-negligible inaccuracies in previously reported theories due to the 

strong resonant features and unique coupling behavior of the OMR152,214,230,261,262.  

 

To explore further the potential of nanoparticle based effective media, we must advance our 

conceptual framework for the scattering and absorption response of nanoparticle films to allow 

for the features of OMRs. To address this, we report the synthesis and optical scattering and 

absorption characteristics of an angle and polarization-invariant resonant nanoparticle-based 

film reliant on the OMRs found in appropriately sized c-Si nanoparticles. The nanoparticles are 

fabricated using a dusty plasma synthesis technique capable of making highly monodispersed c-

Si particles. By coupling a simple and scalable spray deposition method to the plasma 
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nanoparticle synthesis, a fractal-like random film is formed in an air host matrix, which is 

particularly suited for making strong absorbers using little material131,167,169,171,263,264. To understand 

the resulting emergent behavior, we develop an effective medium theory which accounts for 

both the fractal-like film deposition and a complete representation of the coupled particle 

resonance characteristics. The OMR nanoparticle film scattering properties are shown to be 

dramatically different compared to both conventional planar film counterparts and predictions 

from classical effective medium theories. 

 

Nonthermal plasmas are widely used for synthesis of covalently bonded groups IV and III-V 

semiconducting nanocrystals owing to their nonequilibrium environment which enables the 

nucleation, growth, and crystallization of high melting point materials from gas phase precursors 

at room temperature197,265–269. While in the plasma, particles above a certain minimum size are 

negatively charged270–272, which suppresses particle agglomeration273,274. Upon exiting the plasma, 

particles can be accelerated through a nozzle to form thin films via impaction onto a 

substrate275,276. The scalability of this single step, ligand-free, and high yield deposition technique 

has recently been demonstrated by Firth et al277. Nevertheless, the application of dusty plasmas 

has been limited to synthesis of small nanocrystals (mostly in a size range of 2 to 10 nm 

diameter), owing to the short residence time of particles in the plasma discharges. Bapat et al278. 

were the first to report the possibility of producing monodispersed Si nanocrystals of ~ 35 nm 

by operating the synthesis plasma in a regime where the particle residence time in the plasma is 

extended through electrostatic particle trapping. Once particles leave the trap, they travel 

through a plasma zone in which the plasma is filamentary constricted. We expand this work to 

a new size regime using the same discharge concept to produce resonant Si nanocrystals of over 

80 nm in diameter by the trapping mechanism and residence time. 

 

The impaction deposition method produces random fractal-like films where each particle is 

connected to at least one nearest neighbor in an air host matrix131,167,169,171,263,264. Particle clusters can 

exhibit strong near-field coupling, leading to substantially increased absorption and anti-

reflection, even in the limit of vanishing inclusion fill fraction131,167,169–171,263,264. Absorption at 

longer wavelengths comes as an added benefit to the creation of the shorter wavelength unit cell 

as long as the material and spatial statistical properties remain unchanged167. Therefore, the upper 

and lower spectral absorption limit is dictated by the inclusion (i.e., particle design) and cluster 

size, highlighting the desire to control both167.  

 

 In defining a homogenization scheme for such a film, it is important to account for particle 

effects traditionally assumed to be negligible, such as OMRs, and general higher-order 

excitations. Furthermore, the theory must account for properties unique to the fractal-like 

clusters which exhibit strong near-field coupling even at low fill fractions and lack long range 
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order171,172,219,279–282. This is exacerbated by the fact that OMR coupling is distinctly different 

from electric dipole coupling. Finally, it is also important to develop a theory which gives rise to 

a physical understanding of how these features shape the overall electromagnetic response. 

Parameter retrieval methods, such as S-parameter retrieval, can accurately model measured data 

but otherwise provides little physical insight283. We attempt to address these issues by 

formulating a parameter retrieval method based on the known physics of the constituent 

particles and deposition methods. The theory is built upon previous research relating particle 

multipoles to film-level effective induced electric and magnetic current densities284. However, 

their theory does not account for the coupling between OER particles, OMR particles, or 

between OERs and OMRs. Our primary contribution to expanding the homogenization 

approach is to propose a method to address this for the system stated above.  
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7.2 RESULTS AND DISCUSSION 

Si nanocrystals that support OMRs were synthesized with an average size of 81.6 nm and a 

standard deviation of 1.2 nm via a nonthermal plasma process as described in detail 

elsewhere278,285. A schematic of the flow-through reactor used in this study is shown in figure 

7.2.1a. The primary gas feed, a mixture of silane and argon, enters through the top of the 38 

mm-outer diameter glass reactor tube. A plasma is generated in the reactor tube by applying 200 

W of radio frequency (RF) power at 13.56 MHz through a copper ring electrode. At low silane 

flow rates and high RF powers, the plasma operates in a regime where the discharge is 

constricted. In this regime, the plasma consists of two regions: a diffuse region that extends a 

few centimeters upstream of the RF electrode, and a striated, high-luminosity plasma filament 

that rotates close to the wall of the tube between the RF electrode and the lower grounded metal 

flange. Previous laser scattering studies278 have shown that the particle formation begins in the 

diffuse plasma and particles are trapped in electrostatic potential traps formed upstream of the 

powered electrode. This trapping mechanism enables the growth of the initial amorphous 

nanoparticles to sizes as large as a few hundred nanometers. The filamentary plasma provides a 

significantly higher plasma density and thus sinters the particles by annealing them to 

temperatures much higher than the gas temperature resulting in formation of single crystals. 

Figure 7.2.1b shows a representative bright-field transmission electron microscope (TEM) image 

of a particle collected in the deposition chamber. The nanoparticle is nearly spherical, as 

suggested by the thickness fringes and can be verified by tilting the particles to different 

orientations. The particle is a single crystal as verified by the selected area diffraction pattern 

(figure 7.2.1c). Figure 7.2.1d represents the nanoparticles highly monodisperse size distribution, 

obtained by image analysis of over 500 nanoparticles collected on TEM grids. The average 

particle size could be adjusted via changing the argon flow rate and therefore the particle 

residence time in the plasma reactor. The particle diameters in this study (between 79 to 86 nm) 

correspond to OMR spectral peaks from 417 to 433 nm, respectively. The particle size averaged 

OMR spectral peak is 420 nm, according to Mie theory. The spectral deviation of the OMRs as 

a function of particle size is considered negligible with respect to the spectral broadening effects 

of particle coupling (more detail below). Therefore, particles from this reactor can be regarded 

as supporting comparatively the same OMR. Random films of OMR-supporting particles are 

formed immediately downstream of the synthesis reactor via impaction of the nanocrystals onto 

the substrate276,277. Using this technique, we deposited an approximately 550 nm thick, random 

film with a 30% volume fill fraction on a 1 mm thick soda-lime glass substrate for optical 

characterization. The deposition parameters provide an optical thickness that exhibits near 

blackbody behavior at the OMR, discussed below, without losing characteristic spectral features 

from an overly large optical depth. This is necessary for understanding the physics behind the 

nanoparticle film scattering response. Figure 7.2.1e shows a representative top-view (left) and 
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cross-sectional (right) scanning electron microscope (SEM) image of the film, showing a 

uniform coverage of particle clusters.  

 

 
Figure 7.2.1. Particle characteristics from the plasma reactor. (a) Schematic of the flow-through nonthermal 

plasma reactor showing the diffuse and filamentary discharge regions. (b) Representative bright-field TEM 

image of a single nanocrystal synthesized in the reactor.  (c) Electron diffraction pattern of a silicon nanocrystal 

aligned with the electron beam. (d) Size distribution of OMR supporting nanocrystals, showing an average 

diameter of 81.6 nm with a standard deviation of 1.2 nm. (e) Cross-sectional and top-down SEM image of the 

nanocrystal film deposited on glass with a fractal-like structure and an average thickness of 550 nm. 

 

To study the absorption and scattering response of this film, angle, polarization, and wavelength 

resolved reflection and transmission measurements of the film were taken using an Agilent Cary 

5000 UV-Vis-Nir with a Universal Measuring Attachment (UMA). Diffuse scattering was shown 

to be negligible (see the supplementary information for more detail), so absorption was 

calculated as 𝐴 = 1 − 𝑅 − 𝑇, where 𝑅,𝑇 are the reflection and the transmission of the film, 

respectively. Figure 7.2.2a shows the film polarization averaged transmission (black), reflection 

(blue), and absorption (red) spectra near normal incidence (6 degrees). The film shows a clear 

absorption peak of 96% at the size distribution averaged particle OMR (420 nm) accompanied 

by a broadened absorption tail emanating from the OMR and progressing out to longer 

wavelengths. Interestingly, the absorption broadening is almost exclusively due to interparticle 

coupling altering the behavior of electric dipoles while the magnetic dipoles remain 

comparatively unchanged. This effect is discussed in detail later in this section. For now, we 

compare the absorption response of the film to uncoupled particles simulated using the Mie 

solution for a particle suspended in free space. Simulated nanoparticle sizes are based on the size 
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distribution from figure 7.2.1d and the size distribution averaged absorption efficiency is 

then overlaid as a reference (dashed green). The uncoupled particle absorption is clearly peaked 

at the OMR which is also consistent with the film’s overall absorption peak. This supports the 

concept that the OMR remains intact in the particle film. The uncoupled particle absorption also 

shows substantially less spectral broadening at longer wavelengths with respect to the film. This 

supports the propensity for clusters to broaden absorption, which we later show is primarily an 

electric dipole effect. The film also has strikingly broadband antireflection everywhere below 

2.2% at near normal incidence. This indicates almost complete coupling of the incident field 

leading to absorption limited by optical depth. Interestingly the antireflection is achieved despite 

the strong interactions between particles and the incident field. This is in direct contrast to the 

predictions of the Maxwell-Garnett and Bruggeman formulas, which predict antireflection, due 

to a weak a interaction with the incident field. These results are further discussed when 

introducing the effective medium model later in this section.  

 

To understand how this film compares to an optimized thin film equivalent, figure 7.2.2b 

compares the absorption response of the measured particle film at normal incidence to that of 

a simulated dense homogeneous thin film stack that has been optimized using an antireflection 

(AR) layer to maximize absorption centered at 420nm. The thin film stack is composed of 

152nm thick silicon nitride (SiN) on top of 550nm c-Si on a 1mm glass substrate. We find that 

though the thin film stack can be optimized to mimic the absorption peak at 420nm, it cannot 

mimic the spectral broadening in absorption. Furthermore, the antireflection of the thin film 

stack is less broadband and overall, around 10x worse compared to the particle film when 

averaged over the measured spectral range. Figure 7.2.2c integrates the angle and polarization 

absorption response of both the measured particle film (solid red) and optimized thin film stack 

(dotted red). The overall absorption is then normalized to that of an ideal blackbody. Comparing 

the entire polarization, angle, and specular range, the particle film is over 38% more absorbing 

than a c-Si slab of the same thickness; even after enhancing the c-Si slab absorption by adding 

an optimized SiN coating on top. Furthermore, the enhanced performance in absorption of the 

particle film is accomplished using 70% less Si than the thin-film counterpart, does not require 

a top coating, and is overall 78% lighter compared to the thin film stack. 
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Figure 7.2.2. Comparison of the measured resonant nanoparticle film to an optimized homogeneous bulk 

thin film stack. (a) Measured transmission (black), reflection (blue), and absorption (red) response at normal 

incidence from a 550 nm thick particle film with a 30% volume fill fraction on 1 mm of soda-lime glass. The 

response is polarization averaged at an incident angle of 6 degrees. The green dashed curve and right y-axis 

plots the particle size averaged absorption efficiency of isolated c-Si particles in free-space, calculated using 

Mie theory. The average was weighted based on the particle size distribution given in figure 7.2.1d. (b) 

Comparison of the transmission (black), reflection (blue), and absorption (red) response at normal incidence 

from the measured particle film (solid lines) to a simulated bulk homogeneous thin film stack of 152nm SiN 

on 550nm cSi on 1mm of glass (botted lines). The bulk thin film stack was optimized to maximize absorption 

at 420nm. (c) Angle and polarization integrated absorption relative to a perfect absorbing blackbody of the 

measured particle film (solid, red) and the simulated optimized bulk homogeneous thin film stack (red, dashed). 

The red shaded area highlights the absorption enhancement achieved when transitioning from a thin film to 

resonant particle-based absorber. 

 

To understand the effect of polarization and angle dependence, figure 7.2.3 plots the measured 

angle, polarization, and wavelength resolved absorption, reflection, and transmission response 

of the particle film. Similar to a blackbody, figure 7.2.3a shows near complete absorption at the 

OMR with strong angle insensitivity up to angles of incidence as steep as 70 degrees and almost 

no change in behavior as a function of incident polarization. The top two plots in figure 7.2.3a 

show the angle integrated absorption of the nanoparticle film relative to a black body over the 

same angular and spectral range. At the OMR, the nanoparticle film absorption reaches 96% of 

the absorption of an ideal blackbody. Figure 7.2.3b shows the particle film has antireflective 

properties for both polarizations. The film also shows no well-defined Brewster angle and only 

slight polarization splitting at large incident angles. The particle film’s absorption is optical 

depth-limited throughout the measured spectral range, as evident by the fact that 𝑇 ≈ 1 − 𝐴 

(figure 7.2.2c).   
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Figure 7.2.3. Angle, wavelength, and polarization resolved absorption, reflection, and transmission response 

of a 550 nm thick c-Si OMR supporting particle film on top of a 1 mm thick soda-lime glass substrate.  (a) 

The bottom color maps show the film’s absorption response as a function of wavelength (x-axis), angle of 

incidence (y-axis) and s- (left) and p-polarization (right). The corresponding top figures are the angle integrated 

absorption of the respective bottom color map, normalized to an ideal black body. (b) The reflection response 

of the particle film for s- (top) and p-polarization (bottom). In both cases the angle integrated reflection relative 

to a perfect reflection is shown above the corresponding color map. (c) The film’s transmission response for 

s- (left) and p-polarization (right) with the angle integrated transmission relative to air shown above the 

respective color map. 

 

Given negligible scattering pathways, the film’s response can be described by a homogenized 

field coherent to the specular direction.  Thus, a properly chosen effective medium can be used 

to generate a valid description of the optical response through the transfer-matrix method. The 

goal of our proposed effective medium method is to accurately model the experimental data in 

figure 7.2.3 using known film properties from figure 7.2.1. Furthermore, the method is intended 

to provide insight into how particle coupling behavior dictates the film’s optical behavior. This 
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includes the effect of variations in local particle density, interparticle coupling, and the 

differences between electric and magnetic-type multipole coupling. Our approach generalizes 

the framework previously outlined284 to account for particle coupling and leverages the result 

that coupling effects in a fractal-like film are localized to clusters that are otherwise 

electromagnetically topologically disconnected167,263,264. Our overall concept is that coupled 

particles create effective particles, which then create effective media. Cluster distributions are 

first simulated using a Monte Carlo event-driven 3D particle aggregation model. The goal of this 

model is to accurately represent the particle packing behavior that characterizes the fractal-like 

aggregates generated using the spray method described above. This approach has been well 

studied for accurately modeling films of this type162,173,286. The particle sticking coefficient, which 

scales the probability a particle will stick to another particle when coming into contact, was 

determined by ensuring the average volume fill fraction of 100 sampled clusters, with the same 

radii distribution as shown in figure 7.2.1d, matched the experimental value of 30%. We found 

cluster sizes varying from 4 to 20 particles with equal probability provided a good fit to the 

experimental data and use the sampled cluster distribution to study how local variations in 

packing fraction and cluster size impacts the overall film response. Consistent with the definition 

that a homogenized field is the particle orientation averaged electromagnetic response of the 

film, our effective medium is ultimately determined by the Monte Carlo integration of samples 

to find the average of the electromagnetic response from each cluster. Therefore, the 

dependence on sample number can be quantified by the uncertainty in the sample mean and 

convergence to the true homogenized film is guaranteed.  The supplementary information 

shows 100 samples was sufficient to accurately reproduce the data in figure 7.2.3. Once clusters 

are generated, their electromagnetic response is simulated under plane wave excitation using the 

extended boundary technique; also known as the null-field method or generalized Mie 

theory105,259,287–289. Plane wave excitation is consistent with particle clusters being uncoupled284 

and is analogous to clusters interacting only with the incident excitation under the scattered field 

formalism. Using generalized Mie theory to solve the coupling problem allows for an exact 

solution, meaning all coupling effects within the cluster are properly represented287. This 

approach is analytical, provides an intuitive definition of particle-driven electromagnetic 

behavior as atom-like multipoles, and can be between one to two orders of magnitude 

computationally faster compared to full-wave techniques259,287,290–292. The overall electromagnetic 

response of a cluster is then transformed into a single expansion of multipoles that completely 

accounts for the collective behavior of all particles within the cluster, including interparticle 

coupling. Once transformed into a single expansion, the collective response can be viewed as 

coming from an “effective particle.” This provides a method of studying the overall cluster’s 

electromagnetic properties in terms of multipoles which are driven by the collective as opposed 

to single particle multipoles inside of the collective. Under this framework, we can study how 

individual particle resonances dictate the resulting collective behavior. The transform is done by 
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re-expanding the multipole solution of each individual particle in a cluster about the cluster 

center, using the addition theorem for spherical harmonics287,293. After each sampled cluster is 

written as an effective particle, the effective permittivity and permeability can be written, in terms 

of the effective particles, in a form that is parameterized by incident polarization (𝜈), cluster 

sample number (𝑙), cluster multipole order (𝑛), and cluster multipole type (magnetic, 𝑝 = 0, or 

electric, 𝑝 = 1). This is expressed in compact notation as  

 

𝜖𝑒𝑓𝑓,𝑙𝑛𝑝
𝑇𝐸 (휃𝑖) =

1

2𝐿𝑁
+
𝑖𝛾𝑙

𝐿
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where 𝑐𝑠𝑐𝑎,𝑛𝑚𝑝
𝜈  is the effective particle’s complex scattering coefficient,  𝐿 is the total number 

of samples, and 𝑁 is the largest multipole supported by the cluster. The incident field’s 

polarization is written explicitly where 𝜈 = 𝑇𝐸 denotes transverse-electric polarization and 𝜈 =

𝑇𝑀 denotes transverse-magnetic polarization. The angle of incidence is 휃𝑖. 𝛾𝑙 = 3𝑓𝑓𝑙 2𝑥𝑙
3⁄   is 

weight factor for the 𝑙’th effective particle, that is based on that cluster’s inclusion volume fill 

fraction (𝑓𝑓𝑙) and size parameter (𝑥𝑙 = 𝑘𝑟𝑙). Here, 𝑟𝑙 is the radius of the smallest circumscribing 

sphere encapsulating all particles in the cluster and 𝑘 =
2𝜋

𝜆
 is the free space wavenumber. 

Therefore, the weight factor can be used as a measure of a cluster’s geometric properties that 

also has relevance to the cluster electromagnetic response. The basis function, 𝕥𝑛𝑚𝑝
± (휃𝑖) =

𝜏𝑛𝑚𝑝(0) ± 𝜏𝑛𝑚𝑝(𝜋 − 2휃𝑖), is a superposition of the Mie polar angle functions, 𝜏𝑛𝑚𝑝(휃𝑖), and 

describes the angular dependence of the film permittivity and permeability based on an effective 

particle multipole mode order and type. The total effective permittivity and permeability can 

then be written by superposition as 𝜖𝑒𝑓𝑓
𝜈 =  ∑ ∑ ∑ 𝜖𝑒𝑓𝑓, 𝑙𝑛𝑝

𝜈
𝑝𝑛𝑙  and 

𝜇𝑒𝑓𝑓
𝜈 =  ∑ ∑ ∑ 𝜇𝑒𝑓𝑓, 𝑙𝑛𝑝

𝜈
𝑝𝑛𝑙 . Further detail about deriving the generalized Mie solution and the 

effective medium approach described above can be found in the supplementary information. 

The ability to linearly decompose the permittivity and permeability into components associated 

with cluster type, mode order, and mode type is a notable benefit of this method, providing a 

tractable approach for describing and understanding how these variables give rise to the overall 

response. Finally, the effective medium is used to simulate the particle film’s reflection, 

transmission, and absorption response using the transfer matrix method; accounting for non-

unity permeability.294  

 



 

 

228 

A schematic of how the effective medium is formed based on the method described above 

is shown in figure 7.2.4a. The modeled effective medium film was 550 nm thick on a 1 mm glass 

substrate. Thickness was determined from cross-sectional SEM images of the measured particle 

film. Figure 7.2.4b shows the angle, polarization, and wavelength resolved absorption of the 

simulated film. Comparing this to the measured data in figure 7.2.3a, strong agreement is seen 

indicating the ability to represent the response of the measured film under all input excitations. 

Corresponding plots for reflection and transmission are shown in the supplementary 

information and show agreement with experimental data in figures 7.2.3b and 7.2.3c, 

respectively. Figure 7.2.4c shows the resulting polarization averaged reflection, transmission, and 

absorption response from simulation (dashed) compared to the measured data (solid) at 6 

degrees incidence. We see good agreement throughout the entire spectral range showing the 

ability to properly represent both the OMR spectral peak and the resulting broadening emanating 

from that resonance. Reflection and transmission curves confirm an optical depth limited 

system. Figure 7.2.4d is a Brewster plot at the OMR demonstrating that the effective medium 

agrees with measurements, including the lack of a well-defined Brewster effect and minimal 

polarization splitting.  
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Figure 7.2.4. Comparison of the measured absorption, reflection, and transmission from figure 7.2.2 to the 

calculated response from the transfer matrix method, using the proposed cluster-based effective medium. (a) 

Pictorial description for calculating the effective medium by simulating particle clusters, then representing 

them as effective uncoupled particles in a random film. (b) An analogous color map to the one shown in figure 

7.2.2a, but for the simulated film’s response. (c) Polarization averaged absorption (red), reflection (blue), and 

transmission (black) spectral response at 6 degrees incidence of the simulated film (dashed) and measurement 

(solid). (d) Brewster plot of the absorption (red), reflection (blue), and transmission (black) response at the 

OMR resonance (𝜆 = 420 nm) for the simulated film (dashed) and measurement (solid). S- and p-polarization 

are denoted with a downward triangle and circle marker, respectively.  

 

To further understand how particle resonances and interparticle coupling dictate the effective 

medium response, figure 7.2.5 plots the effective permittivity and permeability at normal 

incidence. The constitutive parameters are then decomposed in terms of mode order and cluster 

weight. figure 7.2.5a shows that the particle film’s effective permittivity (blue) is primarily a result 

of the first-order electric dipole (ED) mode (orange) present in the effective particles, with a 

small contribution from all other terms (green). The spectral shape of the collective ED clearly 

shows that its spectra is sensitive to interparticle coupling. To show how the response is different 

compared to a uniform dispersion of uncoupled particles, we overlay the effective permittivity 

according to the original method (dashed black), which does not account for particle coupling.284 

The full width at half maximum of the imaginary part of the cluster-based effective permittivity 

encompasses 65% of the spectral range whereas the uniformly dispersed and uncoupled particle 
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case encompasses only 16% of the spectral range. The peak of the imaginary part in the 

cluster-based effective permittivity is also approximately half of the uncoupled counterpart, 

leading to broadband antireflection. This reduction is a direct consequence of energy balance. 

When coupling is neglected, the energy extracted from the incident field is non-physical and 

overcounted due to the assumption of nonoverlapping cross sections between particles. In 

reality the clustered film has significant overlapping cross sections and near-field coupling 

transfers the energy between particles259,295. Figure 7.2.5b shows that the particle film’s effective 

permeability (blue) is composed primarily of the first-order magnetic dipole (orange) with the 

contribution from other terms shown in green. The first-order magnetic dipole is an OMR 

excited in the sampled effective particles. This means the individual excitations of coherently-coupled 

particles within a cluster are working together to create a strong collective OMR. An illustration of 

this effect is shown on the right-hand side of figure 7.2.4a. We can interpret the circulating fields 

from the effective particles’ OMR as a circulating current density in the film creating an induced 

magnetization257,284. The permeability of uncoupled OMR particles is shown as a reference 

(dotted, black). Interparticle coupling creates a staggering 6-fold reduction in the peak imaginary 

permeability, compared to the uncoupled counterpart. This is primarily because the uncoupled 

particle has an OMR with an optical cross-section that is much larger than the particle’s 

geometric cross-section. To understand better how the collective ED is shaped through 

interparticle coupling, figure 7.2.5c decomposes the effective permittivity based on cluster 

weight factor. Three distinct regimes of spectral broadening are identified and shown to be 

associated with cluster size. The regimes are large clusters of 15 to 20 particles (𝛾𝑙 ≤ 4, orange), 

to mid-size clusters of 10 to 15 particles (4 < 𝛾𝑙 ≤ 7, green), to smaller clusters of 4 to 9 particles 

(𝛾𝑙 > 7, red). The small dense clusters most closely maintain the spectral features of uncoupled 

particles. Progressing to larger particle chains leads to absorption broadening and red shifting of 

the absorption resonance, as shown by the dashed black arrow. Figure 7.2.5d decomposes the 

effective permeability based on cluster weight factor, using the same three regimes as figure 

7.2.5c. We see the same trend of a reduced amplitude and red-shifted resonance with increasing 

cluster weight; though the effect is substantially less pronounced. This further affirms that OMR 

for each nanoparticle is robust to coupling-induced changes in spectral features.    
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Figure 7.2.5. Analysis of the simulated cluster-based effective relative permittivity and permeability as a 

function of mode order, 𝑛, and scale parameter, 𝛾. (a) Decomposition of the film’s effective permittivity (blue) 

into the contribution from the electric-dipole mode (pink) and all other modes (brown). The effective 

permittivity assuming uncoupled particles that are homogeneously dispersed in air (dotted, black) is overlaid 

for references. The black dashed arrow highlights spectral broadening when transitioning from an uncoupled 

particle film to a clustered film. (b) Decomposition of the film’s effective permeability (blue) into the 

contribution from the magnetic-dipole mode (pink) and all other modes (brown). The effective permeability 

assuming uncoupled particles (dotted, black) is overlaid for references. In both (a) and (b) cluster-based values 

are measured based on the left y-axis and uncoupled values are measured according to the right y-axis. The 

respective scales are different to compare spectral shape more clearly. (c) Decomposition of the film’s effective 

permittivity (blue) into the response from clusters with scale parameters above 7 (red), between 4 to 7 (green), 

and below 4 (orange). The black dashed arrow outlines the trend of absorption broadening and red-shifting as 

a function of decreasing scale parameter. (d) Decomposition of the film’s effective permeability based on the 

same scale parameter ranges as (c). In all cases, the imaginary part of the complex relative permittivity or 

permeability is the top figure. The real part is the bottom figure.  
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Next, we study how interparticle coupling alters the modal response of individual particles 

within the effective particles that make up the particle film. Figure 7.2.6 compares the magnitude 

of the magnetic and electric dipole modes of uncoupled particles (top left and right, respectively) 

to that of particles within the sampled clusters (bottom left and right, respectively). The modal 

response for an individual uncoupled particle was calculated using the Mie solution to a single 

particle suspended in free space and far away from any other inhomogeneity. As detailed above, 

the modal response of a particle in a sampled cluster is found using generalized Mie theory. The 

solution for each particle is then expanded about the cluster’s origin. This technique allows for 

an effective particle modal response to be described by the coherent superposition of the modes 

from the re-expanded individual particles making up the cluster. This enables a direct study on 

how each individual particle affects the effective particle response. In all cases, the mode 

magnitudes are shown as a function of wavelength on the x-axis and are ordered according to 

particle size on the y-axis. The color scale plots the mode magnitude normalized to the particle’s 

size parameter. The magnetic dipole mode in each coupled particle clearly maintains a similar 

spectral shape to the uncoupled counterpart with the same radius. When comparing the coupled 

and uncoupled responses, a similar trend can be seen in terms of spectral shift and average 

magnitude with increasing particle size. On the other hand, the electric dipole mode of each 

coupled particle is substantially altered by the effect of interparticle coupling on the single 

particle level. The spectral shape of the coupled electric dipole mode is substantially broadened 

with little resemblance to the uncoupled counterpart; showing no clear spectral trend as a 

function of particle size. The drastic difference between the electric and magnetic dipole modes 

as a result of interparticle coupling clearly shows models which only consider the film from the 

viewpoint of pure dipole expansion neglect how the dipoles are generated in the first place.   

 

In order to emphasize the accuracy of this model compared to other techniques, figure 7.2.7 

presents the effective medium calculations from the commonly used Maxwell-Garnett and 

Bruggeman effective medium theories. Figures 7.2.7a and 7.2.7c present the polarization, angle, 

and wavelength resolved absorption of the particle film calculated from the Maxwell-Garnett 

and Bruggeman effective medium theories, respectively. Though our experimental film 

invalidates the stated assumptions of these two theories (i.e., there is strong interparticle coupling 

of multipole resonant particles in the experimental film), their ease of use, prevalence in 

literature, and consistent track record of accurately modeling data warrants a comparison to 

justify the admittedly more complicated approach proposed in this manuscript. As evident in 

the figures 7.2.7a and 7.2.7c, instead of blackbody-like behavior as seen in the measurement 

results, the Bruggeman and Maxwell-Garnett theories predict little absorption and are instead 

mostly transparent (see the supplementary information). This is because these theories do not 

account for resonant behavior such as a strong OMR or interparticle coupling. This is further 

evident in the fact that neither theory accounts for a change in relative permeability that is 
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necessarily generated by an optically-induced magnetic response. Comparing the models to 

experiment, the relative difference in absorption is 180% (Bruggeman) and 680% (Maxwell-

Garnett), when considering all angles, polarization, and wavelengths. This is in stark contrast to 

the cluster-based method, which has a 6% relative difference in absorption when comparing to 

the experimental data. The relative difference is calculated using the formula, (experimental – 

simulation)/simulation. The Bruggeman and Maxwell-Garnett theories show no OMR 

absorption peak. Furthermore, both theories predict polarization splitting and a well-defined 

Brewster’s angle where the OMR should exist, despite neither phenomenon present in 

experiment at that wavelength (𝜆 = 420 nm). The polarization and angle dependence of the 

Maxwell-Garnett and Bruggeman theories are shown in the figures 7.2.7b and 7.2.7d, 

respectively. 

 

 
 

Figure 7.2.6. Comparison of uncoupled particles isolated in free space (top) magnetic-dipole (MD, left) and 

electric-dipole (ED, right) modes versus the same modes for particles in the simulated clusters (bottom), which 

are altered by interparticle coupling. In all cases, the x-axis is wavelength and the y-axis is particle diameter.  
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Figure 7.2.7. Angle, wavelength, and polarization resolved absorption response from a 550 nm thick effective 

medium on 1 mm soda-lime glass, calculated using the transfer matrix method. (a) Absorption response based 

on the particle film represented through the Maxwell-Garnett effective medium approach. (b) Brewster angle 

plot at 𝜆 = 420 nm of the measured reflection (solid blue), transmission (solid black) and absorption (solid 

red) response compared to the Maxwell-Garnett reflection (dashed blue), transmission (dashed black), and 

absorption (dashed red) response. The downward triangle and circle denote s- and p-polarization, respectively, 

(c) Absorption response based on the particle film represented through the Bruggeman effective medium 

approach. (d) Brewster angle plot at 𝜆 = 420 nm of the measured data compared to the Bruggeman effective 

medium. In both cases of the color maps, the angle (y-axis) and wavelength (x-axis) resolved absorption for s- 

(left) and p-polarization (right). The figure on top of each color map is the angle integrated absorption of the 

color map relative to an ideal black body.  
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7.3 CONCLUSION 

We have employed a dusty-plasma synthesis technique to make highly crystalline silicon 

nanoparticle films comprised of OMR particles. The process uses particle trapping and 

subsequent annealing in a high-density filamentary plasma and achieves highly monodisperse 

nanocrystals in the size range required to exhibit OMR. The particle size distribution is narrow 

enough such that all particles exhibit an average OMR at 420 nm with a negligible deviation 

compared to the spectral broadening from the electric dipole mode. Particles are then directly 

deposited onto a substrate from the reactor using a scalable spray method. The resulting particle 

film shows broadband angle and polarization independent antireflection across the visible 

spectrum as well as strong absorption emanating from the designed OMR. Since OMRs and 

near field coupling are neglected in traditional effective medium theories, we develop an 

analytical approach which accurately models the behavior of the experimental film. The model 

describes the film in terms of the scattering response of individual particles, and also gives an 

overall resulting effective permeability and permittivity. Furthermore, the effective constitutive 

parameters can be resolved by mode and cluster-type. We find the individual particle OMRs give 

rise to a collective OMR which, from the perspective of the film, can be viewed as a true 

magnetic response. Therefore, the film has a non-unity relative permeability despite being 

composed of non-magnetic materials. The collective OMR is slightly red shifted compared to 

uncoupled particles in free space, but the spectral shape is virtually unchanged by near field 

coupling. Studying coupling effects on the particle level shows the OMR in each particle is 

individually robust to interparticle coupling. In contrast, the electric resonance has substantial 

spectral broadening to longer wavelengths and is responsible for a majority of the absorption 

broadening within the film. Both resonances experience a reduction in amplitude on the particle-

level to satisfy energy balance, leading to broadband antireflection. Maxwell-Garnett and 

Bruggeman effective medium theories cannot accurately account for the film scattering 

response. Furthermore, accounting only for uncoupled particle resonances resulted in 

constitutive parameters that were roughly double the appropriate amplitude and had 49% less 

spectral broadening than necessary, measured by the full width at half maximum. This indicates 

that both near-field coupling and individual particle resonances need to be considered.  
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7.4 METHODS 

Nanoparticle synthesis. Silicon nanocrystals are synthesized in a continuous-flow, low-

pressure plasma reactor consisting of a quartz tube with an inner diameter of 3.5 cm and 20 cm 

long. Pure silane and argon enter through the top of the reactor with typical flow rates of 0.2 

and 7.5 standard cubic centimeters per minute (sccm), respectively, leading to a gas residence 

time in the plasma zone of about 2 s.  However, due to the electrostatic trapping of particles 

upstream of the ring electrode that was observed in ref. 278 the actual particle residence time in 

the reactor is expected to be longer. The electrostatic trapping requires that particles grow to a 

minimum threshold size before being removed from the trap by the gas flow, which causes a 

size filtering of the particles, leading to a narrow size distribution296. The plasma is excited by 

applying a nominal radiofrequency (RF) power of 200 W at 13.56 MHz to a ring electrode placed 

6.5 cm upstream of the lower flange, which serves as the ground electrode. Nanocrystals are 

extracted by the gas flow through a 12 × 0.064 mm slit-shaped orifice and injected into the 

deposition chamber. The typical pressure in the plasma reactor is 1.7 Torr while the deposition 

chamber downstream of the extraction orifice has a pressure of 80 mTorr. The nanocrystals are 

collected directly onto glass substrates located 1.5 cm beneath the orifice. To form homogeneous 

films, substrates are mounted on a stainless-steel pushrod setup and translated back and forth 

for 30 minutes. 

 

Transmission Electron Microscopy. TEM samples were collected on thin holey carbon 

coated Cu grids. Conventional TEM examination of the nanocrystals was carried out using an 

FEI Tecnai T12 operating at an accelerating voltage of 120 kV to obtain the particle distribution 

size. High-resolution imaging was performed using an FEI Talos F200x operating at an 

accelerating voltage of 200 kV. 

 

Scanning Electron Microscopy. The nanocrystal film thickness was approximated using cross 

sectional scanning electron microscopy. Specifically, an FEI Helios NanoLab G4 was used with 

an accelerating voltage of 2 kV. 

 

UV-Visible Spectroscopy. Angle and polarization-resolved absorption data from 350 nm to 

700 nm was acquired using Agilent Cary 5000 UV-Vis-Nir with the Universal Measuring 

Attachment (UMA). Samples were angled from 6 – 71 degrees in 5-degree increments with 

respect to normal incidence from the lamp source. For specular reflection, the detector was 

angled at 2x the sample angle measured clockwise from the lamp source. Spectral transmission 

measurements required only the change of the sample angle, and the detector did not move 

from 180 degrees from the incident light. All measurements were performed for both S and P 
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polarizations. The schematic of the UV-Vis measurement process is presented in the 

supplementary material. 

 

Fill fraction calculation. The mass of the sample was measured with a Cahn C-31 

Microbalance. Density of the thin film was calculated using the sample area (4.5 mm  10 mm), 

the measured film thickness from cross-sectional SEM (550 nm), and the mass of the nanocrystal 

film (17.4 micrograms). The volume fill fraction of the thin film (30%) was then determined as 

the ratio of the film density to bulk silicon density (2.329 g/cm3). 
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7.5 SUPPLEMENTARY FIGURES 

 
 

Figure 7.5.1. Angle, wavelength, and polarization resolved reflection and transmission response of a 550 nm 

thick c-Si particle film simulated using the cluster-based effective medium theory on top of a 1 mm soda-lime 

glass substrate.  (a) The bottom color maps show the film’s transmission response as a function of wavelength 

(x-axis), angle of incidence (y-axis) and s- (left) and p-polarization (right). The corresponding top figures are 

the angle integrated transmission relative to air. (b) The reflection response of the particle film for s- (left) and 

p-polarization (right). In both cases the angle integrated reflection relative to a perfect reflection is shown 

above the corresponding color map.  
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Figure 7.5.2. Angle, wavelength, and polarization resolved reflection and transmission response of a 550 nm 

thick c-Si particle film simulated using the Bruggeman effective medium theory on top of a 1 mm soda-lime 

glass substrate.  (a) The bottom color maps show the film’s transmission response as a function of wavelength 

(x-axis), angle of incidence (y-axis) and s- (left) and p-polarization (right). The corresponding top figures are 

the angle integrated transmission relative to air. (b) The reflection response of the particle film for s- (left) and 

p-polarization (right). In both cases the angle integrated reflection relative to a perfect reflection is shown 

above the corresponding color map.  
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Figure 7.5.3. Angle, wavelength, and polarization resolved reflection and transmission response of a 550 nm 

thick c-Si particle film simulated using the Maxwell-Garnett effective medium theory on top of a 1 mm soda-

lime glass substrate.  (a) The bottom color maps show the film’s transmission response as a function of 

wavelength (x-axis), angle of incidence (y-axis) and s- (left) and p-polarization (right). The corresponding top 

figures are the angle integrated transmission relative to air. (b) The reflection response of the particle film for 

s- (left) and p-polarization (right). In both cases the angle integrated reflection relative to a perfect reflection 

is shown above the corresponding color map.  

  



 

 

241 

 
 

Figure 7.5.4. Sample dependence of simulated film absorption. Film absorption was simulated 25 times, 

where each absorption calculation was based on 25 (blue), 50 (orange), or 75 (green) random cluster samples. 

The mean value is given by solid lines and overlay each other. The standard deviation is given by the shaded 

region around the mean value. The total 100 random cluster samples is shown in dashed red for reference. 

 

 

 

Figure 7.5.5. Diffuse normalized reflection comparison between experimental Si NC film and a clean silicon 

wafer, an expected specular reflection reference, showing good match at both polarizations. 
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Figure 7.5.6. Diffuse Normalized Transmission comparison between experimental Si NC film and bk7 glass 

slide, an expected specular transmission reference, showing good match at both polarizations. 

 

 
 

Figure 7.5.7. Transmission extinction ratio of polarization conversion in the measured sample at normal 

incidence. The light green and blue lines are the extinction spectra for s to p and p to s conversion, respectively. 

The dark green and dark blue lines are the filtered s to p and p to s spectra, respectively. Filtering was necessary 

because the combination of polarizer and sample absorption cause weak signals below 400nm.  
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C h a p t e r  8  

THEORY OF PARTICLE AND PARTICLE FILM MEASUREMENT  

 

8.1 INTRODUCTION  

 

When developing nanoparticle growth procedures, it is important to be able to characterize the 

product of the growth process. An inherent problem of nanoparticles and nanoparticle films is 

that their optical properties can be hard to accurately characterize. The transition from measured 

observable to governing underlying parameter(s) is usually not a simple process. Take, for 

example, the optical characterization of nanoparticle thin films. Constitutive parameters may be 

anisotropic and inhomogeneous. Absorption resonances are not a sole property of the 

underlying bulk material, but influenced by particle shape, multiple scattering, and the resulting 

local field. Characterization of the coherent and incoherent field may be necessary. In cases 

where effective medium theories apply, it is still important to characterize or prove negligible 

polarization conversion, depolarization, scattering, incident angle dependence, and resonance 

shifts based on particle structure and changes in the local field. In general, complex systems 

require careful analysis.  

 

This section discusses how to use optical measurement to understand resonant scattering and 

absorption properties in single particles and how to determine bulk material, filling fraction, and 

surface roughness information from densely packed nanoparticle films. Section 8.2 outlines the 

underlying limitations on dispersion that any linear, passive, and causal permittivity must uphold. 

This section also describes multiple models for characterizing polariton transitions, including 

ionic and molecular vibrations, interband transitions (semiconductors), phonons, and other 

collective excitations. Section 8.3 summarizes a measurement procedure for characterizing 

nanoparticle thin films and how to back out bulk material properties of the nanoparticles and 

characteristic properties of the film. Emphasis in this section is given to aspects of measurement 

not commonly seen in bulk homogeneous thin film measurement. Section 8.4 gives a method 

of single particle measurement, where anomalous absorption and scattering properties are 

analyzed using Beer’s law. Chapter 9 makes use of this theory to characterizes individual 

Huygens particles, throughout the visible spectral range. Chapter 10 uses the concepts developed 

for nanoparticle film measurement, to characterize the refractive index changes of 𝛼, 휃 and 𝛾 

phase alumina nanoparticle films. 
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8.2 CAUSALITY, KRAMERS, KRÖNIG, SUMS, AND SPRINGS 

 

“Every why hath a wherefore.” 

-William Shakespeare, The Comedy of Errors, 1594 

 

 

An overarching theme in this dissertation is understanding how to design the frequency response 

of engineered materials. In this regard it is important to understand the frequency response of 

the bulk material building blocks. Though a full description of such light-matter interactions 

requires quantum mechanics, much about the constitutive relations can be understood through 

fundamental constraints and spring models. This section provides a very brief outline of how to 

model linear, isotropic, homogeneous, and passive bulk materials as a collection of oscillators 

with parameters that can be obtained either through measurement or rigorous theory. A direct 

application of this section is in Chapter 10, where bulk material properties are derived from 

measurement of particle films satisfying effective medium requirements. The indirect application 

is to provide a more wholistic picture on fundamental constraints of the constitutive parameters.  

 

As outlined in Chapter 1, all bulk materials in this dissertation are  

 

• Linear: 𝑷 = �̿�(𝒓 − 𝒓′, 𝑡 − 𝑡′)𝑬,  

• Isotropic: �̿� → 𝜒�̿�, 

• Homogeneous: 𝜒(𝑟 − 𝑟′)𝛿(𝑟 − 𝑟′), 

• Passive: 𝔗[𝜒(𝜔)] > 0,  

• Causal: 𝜒(𝑡 ≤ 0) = 0. 

 

Since the constitutive relations of bulk materials can be viewed as a homogenization of atoms 

well in the mean field regime, the underlying consequences of linearity, isotropy, and 

homogeneity (spatial dispersion) detailed in part II apply. These constraints place limits on the 

material’s response to changes in the exciting field’s amplitude, polarization, and propagation 

direction. The requirement of passivity, also detailed in part II, is a constrain that interaction 

necessitates loss (possibly infinitesimally small). The final property to discuss is causality, 

meaning that the response does not occur before the excitation.  

 

Causality is easiest understood from a classical interpretation in the time domain. When an 

electromagnetic field impinges on a material the charges desire to orient themselves with respect 

to the field in an effort to equilibrate. This change in configuration occurs over a finite transition 

period. When the electromagnetic field is rapidly oscillating the charges are in a continual state 
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of catching up. The charges do not have information about the future, so they cannot predict 

the upcoming field movement to “get ahead” of the motion and meet the field exactly at time 

of arrival. The game of catch up is made worse given that the prior field behavior affects the 

current behavior of charges. Clearly if charges are being polarized in one direction and the field 

flips, the charges desire to flip accordingly. But they have already been set into motion in the 

opposite direction and covered some ground achieving that goal. This progress now needs to 

be undone. In this sense the charges are influenced by the past but not the future. This thought 

experiment also helps to understand charge behavior to fields at asymptotically high frequencies. 

If the field is alternating much faster than the response time, the charges have no ability to make 

progress in any direction. They become effectively “frozen” in place. Transparency at high 

energy is an important property to enable contour integrations in the complex plane. This can 

be formally shown to lead to the asymptotic frequency response, 

  

lim
𝜔→∞

ℜ[𝜒(𝜔)] = 𝑂 (
1

𝜔2
)  

lim
𝜔→∞

𝔗[𝜒(𝜔)] = 𝑂 (
1

𝜔3
).  

8.2.1 

 

Equation 8.2.1 comes from an expansion of 𝜒(𝑡 = 0+). Correspondingly, the mathematical 

form of the asymptotic response depends on the derivatives of 𝜒 at 𝑡 = 0+. It is worth noting 

that absolute time is irrelevant. What is relevant is the record of the events that have occurred 

prior to the current state. Finally, recall that electromagnetic fields obey superposition and so 

does the charge response. The described system falls under the category of linear time-invariant 

response theory. For such materials the susceptibility can be written as a temporal convolution,  

 

(𝜒 ∗ 𝑬)(𝑡) =  ∫ 𝑑𝑡′𝜒(𝑡 − 𝑡′)𝑬(𝑡′)
𝑡

−∞
, 8.2.2 

 

where the upper integration limit defines the lack of information of future events. Alternatively 

stated the susceptibility kernel is zero for negative arguments 𝜒(𝑡 ≤ 0) = 0. Such a kernel can 

be constructed as 𝜒(𝑡) = 𝜒𝑒𝑣𝑒𝑛(𝑡) + 𝑠𝑖𝑔𝑛(𝑡)𝜒𝑒𝑣𝑒𝑛(𝑡), were 𝜒𝑒𝑣𝑒𝑛  is an even function and 

𝜒𝑜𝑑𝑑 = 𝑠𝑖𝑔𝑛(𝑡)𝜒𝑒𝑣𝑒𝑛  is an odd function that exactly cancels the even function for 𝑡 ≤ 0. The 

Fourier transform of this decomposition is ℱ[𝜒](𝜔) =  ℜ[𝜒𝑒𝑣𝑒𝑛(𝜔)] + 𝑖𝔗[𝜒𝑒𝑣𝑒𝑛(𝜔)], with 

positive imaginary part for positive frequency, as dictated by passivity. The sign function, 

𝑠𝑖𝑔𝑛(𝑡), corresponds to a convolution of the Hilbert kernel in frequency space. The relation of 

the real and imaginary parts of the susceptibility are then summarized in frequency domain by 

the Kramers-Krönig relations,  
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ℜ[𝜒(𝜔)] =
2

𝜋
𝑃𝑉 ∫ 𝑑𝜔′ 𝜔′𝔗[𝜒(𝜔′)]/(𝜔′

2
− 𝜔2)

∞

0
  

𝔗[𝜒(𝜔)] =  −
2𝜔

𝜋
𝑃𝑉 ∫ 𝑑𝜔′ ℜ[𝜒(𝜔′)]/(𝜔′

2
−𝜔2)

∞

0
, 

8.2.3 

 

where the integration bounds and factor of 2 come from the fact that 𝜒(𝑡) is real, so 𝜒(−𝜔) =

𝜒∗(𝜔∗). The Kramers-Krönig relations define a connection between the real and imaginary 

parts of a linear, passive, and causal susceptibility kernel in frequency space. Alternatively stated,  

𝜒(𝑡) is finite for all 𝑡 and represents an analytic function in the upper half of the complex 

frequency plane. Many sum rules can be derived by asymptotic frequency integrals of the 

susceptibility, the Kramers-Krönig relations, and their higher moments. These rules play an 

important role in further defining fundamental relations between loss and dispersion of a 

material system. For example, the f-sum rule defines a zero-sum tradeoff, where increased loss 

in one spectral region necessitates a decrease in loss elsewhere, 

 

2

𝜋
∫ 𝜔
∞

0
𝔗[𝜒(𝜔)]𝑑𝜔 = 𝜔𝑝,  8.2.4 

 

where 𝜔𝑝 is the plasma frequency. Equation 8.2.4 relates the sum of all oscillator strengths across 

the entire spectra to a constant, which is dictated by the material. Lists of sum rules will not be 

discussed, as there are multiple, and they are material specific. In particular, behavior in the static 

limit, such as metals versus dielectrics can be an important distinction.  

 

In time domain the susceptibility kernel can be decomposed into a slow, 𝜒𝑠, and rapid, 𝜒𝑟, 

varying part, 

 

𝑫 = 휀𝑜𝑬+ (𝜒𝑟 ∗ 𝑬)(𝑡) + (𝜒𝑠 ∗ 𝑬)(𝑡) ≈ 휀∞𝑬 + (𝜒𝑠 ∗ 𝑬)(𝑡),  8.2.5 

 

where 휀∞ = 휀𝑜 + ∫ 𝜒𝑟(𝑡)𝑑𝑡
∞

0
. The introduction of the infinite permittivity, 휀∞, is valid when 

the time variation of the electromagnetic field is substantially slower compared to the response 

time of 𝜒𝑟. From the viewpoint of the slow changing electromagnetic field, 𝜒𝑟 appears 

effectively as an instantaneous response. Clearly the designation of “slow” and “rapid” parts are 

relative to the bandwidth of the incident excitation. The important point is that material 

oscillators far outside of the field’s bandwidth can be collectively encapsulated into a single 

constant. Therefore, oscillators need only be modeled explicitly if they correspond to light-

matter interactions within a meaningful bandwidth encompassing the field bandwidth. It is 

important to note that the meaningful bandwidth is usually wider than the excitation bandwidth. 
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This is because oscillator tails within the bandwidth are still meaningful. Some models 

explicitly abstract these tails as pole terms on either side of the bandwidth.  

 

To summarize, the susceptibility should be an analytic function in the upper half-plane with a 

non-negative imaginary part. This describes a Nevanlinna-Herglotz function, so any 

susceptibility tensor will be of Nevanlinna-Herglotz form. The Kramers-Krönig relations give 

the fundamental connection between the real and imaginary parts of the susceptibility. 

Therefore, Kramers-Krönig consistency is an important requirement in any model and can be 

used to derive dispersion in models that focus on only the real or imaginary part (absorption 

spectra is usually easier to experimentally measure). Furthermore, the Kramers-Krönig relations 

are important in deriving many sum rules, which further define relations between loss and 

dispersion. Oscillators well outside of the bandwidth converge to a static susceptibility term. 

Two poles outside of the bandwidth can also be used to model slowly decaying spectral tails that 

leak into the bandwidth of interest, when necessary. The remaining mathematical form of 

oscillators within the bandwidth are specific to the underlying physics of the light-matter 

interaction. In this regard, five models are discussed which have shown to match well with 

experiment, have theoretical interpretations, and have been used in this dissertation.  

 

 

Lorentz and the Spring Model 

 

Though most material models require a full quantum mechanical description, much of the 

underlying structure of the response function can be understood from a simple universal 

oscillator model. This allows for a discussion agnostic to the underlying mechanisms. Let the 

system under influence of the electromagnetic field be modeled as two charges connected by a 

spring. In a general sense, this model encapsulates the spirit of a very sub-wavelength collection 

of atoms that has damping and natural modes. The equation of motion is  

  

𝑑2𝒅

𝑑𝑡2
+ 𝛾

𝑑𝒅

𝑑𝑡
+𝜔𝑜

2𝒅 = −
𝑞

𝑚𝑒
𝑬(𝑡)

ℱ
→ 𝒅 = −

𝑞

𝑚
𝑬(𝑡)

𝜔𝑜
2−𝜔2−𝑖𝜔𝛾

,  8.2.6 

 

where 𝒅 is the displacement of the charges from equilibrium, 𝑚 is the mass, 𝑞 is the charge, 𝛾 

is the damping rate, 𝐾 is the spring constant, and 𝜔𝑜 = √𝐾 𝑚⁄  is the natural mode of the 

system. In the classical framework the dipole moment is 𝑷 = −𝑞𝒅(𝑁/𝑉) = 휀𝑜𝜒𝑠𝑬, where 

𝑁/𝑉 is the number density of charges within the volume. Correspondingly the permittivity is,  
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휀(𝜔) = 휀∞ + 휀𝑜
𝜔𝑝
2

𝜔𝑜
2−𝜔2−𝑖𝜔𝛾

,  8.2.7 

 

where 𝜔𝑝 = √𝑁𝑞2 𝑉휀𝑜𝑚⁄  is usually termed the plasma frequency. Equation 8.2.7 is called the 

Lorentz permittivity model. Importantly, inserting the Lorentz permittivity model into the 

Lorentz-Lorenz self-energy predicts another Lorentz permittivity model,  

 

𝑈𝑒𝑓𝑓
𝐿𝐿 → 휀(𝜔) = 휀∞

′ +
(𝜔𝑝

′ )
2

(𝜔𝑜
′ )
2
−𝜔2−𝑖𝛾𝜔

,  8.2.8 

 

where, 

 

휀∞
′ = 휀 + 𝑓𝑓

3 ( ∞− )

∞+2 −𝑓𝑓( ∞− )
  

𝜔𝑝
′ = √𝑓𝑓

3 𝜔𝑝

(1−𝑓𝑓) ∞+(2+𝑓𝑓)
  

𝜔𝑜
′ 2 = 𝜔𝑜

2 +
(1−𝑓𝑓)𝜔𝑝

2

(1−𝑓𝑓) ∞/ 𝑜+(2+𝑓𝑓) / 𝑜
. 

8.2.9(a) 

8.2.9(b) 

8.2.9(c) 

 

This speaks generally to the pervasiveness of the Lorentz oscillator. As discussed in part II, the 

Lorentz-Lorenz self-energy accounts for the order of scattering series, under the proper context. 

This is exactly the scenario of a collection of atoms. The Lorentz model is Kramers-Krönig 

consistent and is quite general to the description of many bulk materials, including ionic and 

molecular vibrations, interband transitions (semiconductors), phonons, and other collective 

excitations. The governing parameters (𝜔𝑝
2, 𝜔𝑜

2, 𝛾, 휀∞)  can be found through measurement or 

rigorous theory, depending on the context of the problem.  

 

 

Debye, a Special Case of Lorentz 

 

When the Lorentz oscillator is overdamped, 𝜔 ≪ 𝛾, it can be simplified to the Debye model,  

 

휀(𝜔) = 휀∞ + 휀𝑜
𝜔𝑝
2

𝜔𝑜
2−𝑖𝜔𝛾

,  8.2.10 

 

where convention is to assign the numerator Δ휀 = 휀(𝜔 = 0) − 휀∞ = 휀𝑜𝜔𝑝
2 𝜔𝑜

2⁄  and 

normalize the loss as 𝜏 = 𝛾 𝜔𝑜
2⁄ .  Here, 휀𝑠 =  휀(𝜔 = 0) is the very slow varying permittivity. 
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Similar to the Lorentz model, the Debye model is Kramers-Krönig consistent and inserting 

it into the Lorentz-Lorentz self-energy returns another Debye model,  

 

𝑈𝑒𝑓𝑓
𝐿𝐿 → 휀∞

′ + 𝑠
′− ∞

′

1+𝑖𝜔𝛾′
,  8.2.11 

 

where  

 

휀∞
′ = 휀 + 𝑓𝑓

3 ( ∞− )

∞+2 −𝑓𝑓( ∞− )
  

휀𝑠
′ = 휀 + 𝑓𝑓

3 ( 𝑠− )

𝑠+2 −𝑓𝑓( 𝑠− )
  

𝛾′ = 𝛾
(1−𝑓𝑓) ∞+(2+𝑓𝑓)

(1−𝑓𝑓) 𝑠+(2+𝑓𝑓)
. 

8.2.12(a) 

8.2.12(b) 

8.2.12(c) 

 

The Debye model is commonly used to describe the dielectric response of fluids with permanent 

electric dipole moment. This model is not used in this dissertation but is presented to give 

supporting evidence to the range of diversity of the Lorentz model.  

 

 

Drude, a Special Case of Lorentz 

 

When there is no restoring force on the charges, 𝐾 = 0, the Lorentz model becomes the Drude 

model,  

 

휀(𝜔) = 휀∞ − 휀𝑜
𝜔𝑝
2

𝜔2+𝑖𝜔𝛾
. 8.2.13 

 

This model is commonly used to describe the response of free charges, 𝑱 = 𝜎𝑬, such as in 

metals. At low frequencies,  

 

∇ × 𝑯 = −𝑖𝜔 (휀∞ +
𝑖𝜎

𝜔
)𝑬

𝜔→0
→  𝜎 = 𝑜𝜔𝑝

2

𝛾−𝑖𝜔
. 8.2.14 

 

The Drude model is Kramers-Krönig consistent. Though, inserting the Drude model into the 

Lorentz-Lorentz self-energy will return a Lorenz instead of another Drude model. This is 

sensible given the meaning of the Drude model and the assumptions of the Lorentz local-field. 
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The Drude model is for a free electron sea. I.e., a continual connection of conductors. The 

Lorentz-Lorentz local field does not provide this low frequency divergence.  

 

 

Gaussian Permittivity 

 

In amorphous solids, Lorentzian absorption features give way to Gaussian-like absorption. The 

absorption spectra can then be modeled from the imaginary part of the susceptibility given by  

 

𝔗[𝜒(𝜔)] =  𝐴𝑒
−(
𝜔−𝜔𝑜
𝛾
)
2

− 𝐴𝑒
−(
𝜔+𝜔𝑜
𝛾

)
2

, 8.2.15 

 

where 𝛾 (the standard deviation) plays the role of the spectral broadening of the absorption 

resonance, which is centered at 𝜔𝑜. The difference to two Gaussian functions enforces that the 

imaginary part is an odd function. The real part of the susceptibility is then found through the 

Kramers-Krönig relation.  

 

 

Voigt, a Lorentz + Gaussian 

 

In general, the degree of spectral broadening caused by Gaussian versus Lorentz features can be 

controlled through a Voigt function. This is a Lorentzian, 𝐿, convoluted with a Gaussian, 𝐺, in 

frequency space, 

 

𝔗[𝜒(𝜔)] = 𝔗[𝐺(𝜔; 𝛾, 𝐴)] ∗ 𝔗[𝐿(𝜔; 𝛾, 𝜔𝑝)]. 8.2.16 

 

The Voigt function offers a method to model bundled continuums of transitions that cannot be 

distinctly resolved. 

 

 

Superpositions of Oscillators 

 

Since the dipole moments obey superposition, the permittivity can be decomposed into a sum 

of oscillators. When optical transitions are clear and discrete, summations of oscillators are used. 

This fits well with the quantum mechanical picture of quantized transitions in states. When many 

states are packed into a continuous band, it may not be meaningful to resolve each transition. In 
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this case, convolutions such as the Voigt function or even a Gaussian oscillator can be used. 

The general permittivity model can be described as 

 

휀(𝜔 ∈ [𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥]) = 휀∞ + 휀𝑝𝑜𝑙𝑒,1 + 휀𝑝𝑜𝑙𝑒,2 + ∑ 휀𝑜𝑠𝑐,𝑛(𝜔)𝑛 ,  8.2.17 

 

where 𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥 define the bandwidth of interest. The summation is over arbitrary discrete 

oscillators, each of which may be a convolution representing a band of oscillators. The oscillator 

center frequency need not be in the bandwidth of interest. Two permittivity pole terms are 

explicitly shown as a reminder of potential spectral leakage. Since 𝑛 is a free parameter there is 

no restriction preventing overfitting. All oscillator parameters should have clear rationale for 

their values. Good practice is to first scour literature to find clear bounds of the known material 

transitions in the relevant bandwidth. Once these bounds are determined, the oscillator 

parameters can be tuned thorough an optimization problem seeking to fit the model to the 

experimental data. Any additional parameters used to better fit data should be on an as-needed 

basis, with clear justification, and used sparingly. In general, a model that can be clearly explained 

is better than one that is best fit.    

 

Causality and passivity limit the functional form of the frequency dependence of permittivity. In many cases, 

simple oscillator models work well to describe this dependence. The Kramers-Krönig relations and corresponding 

sum rules for the material offer a powerful tool to establish oscillator form and bounds.   
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8.3 PARTICLE FILM CHARACTERIZATION  
 
As discussed in the introduction, the optical characterization of nanoparticle thin films is 

certainly a harder problem compared to bulk homogeneous and isotropic thin films. This is 

because the characteristic parameters are meaningful in a statistical sense and may fluctuate at 

length scales larger than the wavelength. For example, some areas of the film can be more or 

less dense, resulting in different spatial correlations and local field behavior. Surface roughness 

can represent between 1 – 30% of the layer thickness depending on deposition parameters. In 

the case of dusty plasma synthesis, particle sizes are usually normal or log normal distributed. In 

some cases, the particles themselves may be porous and/or have varying material properties. 

For these reasons and others, it is necessary to characterize or prove negligible polarization 

conversion, depolarization, scattering, incident angle dependence, and resonance shifts based on 

particle structure and changes to the local field.  

 

 

Your Eye is a Measurement Device 

 

The first important step in optical characterization is your eye. In proper lighting conditions 

samples are surveyed for spatial consistency of deposition over a wide field of view. Spatially 

dependent color changes and clear diffraction fringes, sometimes best seen by tilting the sample, 

outline regions of strong wavelength-scale variations. Scattered color is seen upon direct 

illumination in an otherwise dark room. In many cases characterization by eye is all that is 

necessary to determine the failure of a sample. Clearly if you are attempting to make a blue filter 

and the film comes out red, the sample failed. If there are no regions of macroscopic consistency 

larger than the spot size of your measurement tool, the sample is likely a failure. With an intuition 

of the underlying physics and deposition conditions, quick observation of optical properties can 

provide a powerful feedback loop for particle growth and deposition. Even when the properties 

of interest are not in the visible regime, it is still worthwhile to develop an intuition of expected 

behavior in the visible.  

 

 

Normal Incidence Spectroscopy = Quick and Informative 

 

When the sample passes visual inspection, reflection, transmission, and absorption measurement 

at normal incidence provide a quick measurement of the underlying spectral features. The 

infrared region is able to homogenize larger scale variations, compared to the visible regime, so 

it can be a good spectral regime to start. Particles are more likely to behave as simple dipoles, 

particle films are more likely to satisfy effective medium models, and surfaces can appear less 
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rough. Rotation and vibration modes unique to the bulk material building block can serve as 

guideposts to characterize the underlying material constituents of the particles. It should be 

noted that all electromagnetic length scales are dependent on the refractive index. Strong 

phonon resonances shorten wavelengths. With that said, sub-wavelength particles in the visible 

are 10 – 100x smaller in the infrared. Clearly, the visible regime will interact more with smaller 

scale variations and material transitions that occur at higher energy. In the case of appreciable 

scattering, angle resolved or integrating sphere measurements can be used to decompose the 

scattering component. In general, structural properties obtained through infrared measurement 

will be more macroscopic in scale. This can help to create bounds that can then be fine-tuned 

from visible measurement. Underlying material behavior can also be obtained from absorption 

spectra with less need to decompose scattering components.  

 

 

Using the Mueller Matrix 

 

After the sample passes the eye test and has the desired spectral features at normal incidence, a 

full optical characterization is performed. A powerful tool in this regard is an ellipsometer, which 

can provide wavelength, angle, and polarization-resolved reflection and transmission spectra. 

With these measurements and a properly defined model, the inverse problem can be solved to 

backout parameters such as film thicknesses, surface roughness, and optical properties such as 

the complex refractive indices, including anisotropy, homogeneity, and more. An important 

feature of an ellipsometer is the ability to measure the sample’s Mueller matrix. The Mueller 

matrix relates input and output stokes vectors upon interaction with the sample. The stokes 

vectors directly characterize the observable optical intensity. Correspondently, the Mueller 

matrix contains the entire optical response of any sample in terms of measurable intensity.  This 

is in contrast to the Jones matrix and Jones vectors, that relate field quantities and are not directly 

amenable to measurement at infrared and optical frequencies. With that said, intensities 

calculated from the Jones matrix, are commonly used in homogeneous bulk thin film 

ellipsometry. The Jones-Mueller matrix is applicable to systems that retain fully coherent 

polarized light. I.e., Jones algebra does not describe light that is incoherent, depolarized, or 

partially polarized, which can often occur in nanoparticle films. With that said, Jones algebra is 

certainly important when coherent effective medium models apply. The approach taken in this 

dissertation is to first observe the full features of the Mueller matrix elements. From this much 

of the underlying behavior of the particle film can be understood, including if a Jones-Mueller 

representation is applicable. Spectroscopic Mueller matrix ellipsometry is covered in many 

textbooks. Furthermore, multiple companies exist that provide full-fledged products to measure 

the Mueller matrix.  Therefore, this section will not repeat that detail and instead compress the 

knowledge relevant to how to extract information from measurement results.  



 

 

255 

 

The Stokes vector, 𝑺 ∈ ℝ4, is defined as  

 

[

𝑆0
𝑆1
𝑆2
𝑆3

] ≡ [

𝐼
𝑄
𝑈
𝑉

] = [

𝐼
𝐼𝑥 − 𝐼𝑦

𝐼+45° − 𝐼−45°
𝐼𝑅 − 𝐼𝐿

]

 
 
 
 
,

  8.3.1 

 

where 𝐼 is a measured intensity value recorded from the detector and the 𝑥 − 𝑦 convention 

orients the sample’s outward normal in the positive 𝑧-direction. The first element, 𝑆0, is the total 

intensity. 𝑆1 is the intensity difference between horizontal and vertically polarized intensity. 𝑆2 

is the different between 45° and -45° polarized intensity, with respect to the 𝑥-axis. Finally, 𝑆3 

is the difference between right and left circular polarization. The 𝐼, 𝑄, 𝑈, 𝑉 notation is a common 

convention, given for completeness. The Mueller matrix, 𝕄 ∈ ℝ4×4, relates input to output 

Stokes vectors, 𝑺𝑜𝑢𝑡 = 𝕄𝑺𝑖𝑛. In general, every element of the output Stokes vector is 

dependent on the entire input Stokes vector and the entire corresponding row of the Mueller 

matrix. With that said, much about a sample can be understood from the individual Mueller 

matrix elements. Note that the Stokes vector and corresponding Mueller matrix can look 

different for reflection and transmission measurement.  

 

 
 

Figure 8.3.1. Mueller matrix in normalized form and color coded to depict elements relevant to depolarization 

(grey), diattenuation (blue), polarizance (green), retardance (orange), and s-p polarization conversion (inside 

red dash), and same type, e.g. x-linear to y-linear, polarization conversion (inside purple dash). 

 

 

Figure 8.3.1 shows the Mueller matrix grouped into categories relevant for analysis.  The grey 

top left, 𝑀11, describes the attenuation of an incident unpolarized beam after propagation (either 

reflection or transmission) through the sample. The remaining Mueller matrix is normalized to, 

𝑀11, so that all 𝑚𝑖𝑗 ∈ ℝ ∪ [−1,1]. The elements in the top blue row define diattenuation. This 

describes the amount of attenuation of one polarization state relative to its orthogonal 

counterpart. For example, 𝑚14 describes the difference in attenuation between right and left 
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circular polarization. The lower left green column describes polarizance. This is a measure 

of how unpolarized light will become polarized upon traveling though the sample. If 

∑ 𝑚𝑖1
4
𝑖=2 = 1, then the sample will completely polarize unpolarized light. The bottom right 

orange section defines the nine elements related to retardance between polarization states. These 

indicate how phase accumulation on different axes create a conversion between polarization 

“types.” For example, 𝑚24 defines how a circularly polarized input will result in a linearly 

polarized output. Correspondingly, the second row, 𝑚2,1−4 defines how any indecent polarized 

intensity will create a linearly polarized output.  𝑚21 being the special case of an unpolarized 

input. Another special case are the diagonal terms, 𝑚𝑖𝑖. These define polarization conversion 

between same type polarizations. For example, 𝑚22 = 1 means an x or y polarized input will 

stay x or y polarized at the output. In general, +1 diagonal terms mean polarization preservation 

whereas complete polarization conversion is a -1-diagonal term and a 0 diagonal is complete 

depolarization between the two types. For example, 𝑚44 = −1 means a left or right polarized 

input will result in right or left circular polarized output, respectively. 𝑚44 = 0 means there is 

no difference between the resulting right and left circular polarization. Another important 

conversion is between s- and p-polarization, defined by the upper left four elements in dashed 

red box.  

 

It is often the case that the Mueller matrix has redundant information and therefore a 

characteristic form. In this regard are symmetries, asymmetries, and zeroes of Mueller matrix 

elements are telling. The reflection Mueller matrix of an isotropic sample is,  

 

𝕄𝑟 = 𝑀11 [

1 −𝑁 0 0
−𝑁 1 0 0
0 0 𝐶 𝑆
0 0 −𝑆 𝐶

]. 

 

8.3.2 

For nondepolarizing samples, 𝑁, 𝐶, and 𝑆 are related to the standard ellipsometry amplitude, 

𝛹, and phase, Δ, parameters of  the complex p and s reflection ratio, 𝑟𝑝 𝑟𝑠⁄ = tan(𝛹) 𝑒𝑖Δ, by 

 

𝑁 = 𝑐𝑜𝑠(2𝛹), 

𝐶 = 𝑠𝑖𝑛(2𝛹)𝑐𝑜𝑠(𝛥), 

𝑆 = 𝑠𝑖𝑛(2𝛹)𝑠𝑖𝑛(𝛥), 

8.3.3 

 

and 𝑀11 =
1

2
(𝑟𝑝
2 + 𝑟𝑠

2). For non-depolarizing samples, all Mueller matrices have a 

corresponding Jones matrix and hence a Jones-Mueller representation. Depolarization then 

removes the mapping from Jones to Mueller matrices. With that said, it is common practice to 
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decompose the general Mueller matrix into a Jones-Muller and depolarizing component. If 

the depolarization effect is not too strong, then it is still meaningful to characterize the sample 

from its Jones-Mueller component. From this, the sample can be characterized as a product of 

elementary optical elements, where the Mueller matrices are be found from Jones matrices. In 

the case of depolarization, the degree of polarization can be defined as 𝑃2 = 𝑁2 + 𝐶2 + 𝑆2 ≤

1 and the percent depolarization as (1 − 𝑃2) × 100%. Many commercial analysis software’s 

will extract the depolarization such that 𝑁, 𝐶, and 𝑆 estimate that of  a non-depolarized sample,  

 

𝔼[𝕄𝑟] = 𝑀11 [

1 −𝑃𝑁 0 0
−𝑃𝑁 1 0 0
0 0 𝑃𝐶 𝑃𝑆
0 0 −𝑃𝑆 𝑃𝐶

]. 

 

8.3.4 

Equations 8.3.4 offers a method to use analytic material models to best fit measurement data of 

isotropic materials with depolarization.  

 

The characteristic form of equation 8.3.4 can be used to help determine if a sample is isotropic. 

Though care should be taken. If the symmetry axes of an anisotropic material happen to be 

aligned parallel or perpendicular to the plane of incidence, then the anisotropic sample will have 

a similar block diagonal structure as equation 8.3.4. In the presence of noise and/or 

depolarization, it may not be obvious that the sample is in fact anisotropic. One method to rule 

out forms of anisotropy is to measure the sample under different orientations, as the isotropic 

sample will remain block diagonal.  

 

In general, relating the Mueller matrix to constitutive parameters requires building an analytic 

model that reproduces the measured data. Again, the goal of  this section is not to reproduce 

details but provide intuition. Most ellipsometry software comes with a built-in model fitting tool.  

The important points are that nanoparticle samples can be depolarizing, and the Mueller matrix 

can characterize this. It is often the case that the Mueller matrix has redundant information, 

resulting in symmetries, asymmetries, and zeroes that can be used to identify the expected form 

of  the constitutive parameters. In particular, isotropic materials have a block diagonal reflection 

Mueller matrix, preserved upon reorientation of  the incident beam. Therefore, this structure of  

the Mueller matrix provides evidence to the validity of  using the effective medium models 

discussed in section 8.2. The remaining aspects are related to parameter setup and tuning.  
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Using all the Data  

 

Model fitting to Mueller matrix data is a powerful but implicit method to derive parameters such 

as particle filling fraction, film thicknesses, roughness layers, particle material quality (from 

oscillator models), and an underlying estimation of  the local field behavior (from the effective 

medium model). Upon optimization, the best fit parameters provide an analytic expression for 

the constitutive parameters and an estimate on the quality of  the fit. Since this method is implicit, 

there is generally no guarantee that the parameters are indeed physically correct. In this regard, 

it is important to constrain the optimization problem as much as possible through measurement.  

 

In this dissertation, the following methods were used to constrain the optimization problem. 

Film layer thicknesses are measured with cross sectional scanning electron microscopy (SEM). 

This is useful not only to determine clearly defined boundaries, but also to define regions of  

dense and sparse particle layers, such as a surface roughness top layer, or if  a graded index is 

necessary. Profilometry is used to cross validate total film thickness, determine large trends in 

height variation such as slanted films, and to estimate surface roughness. Particle shape and 

material quality are statistically determined through sparse particle samples on transmission 

electron microscopy (TEM) grids. From bright-field TEM, particle shape and size distributions 

are calculated. Scanning transmission electron microscopy (STEM) in conjunction with energy-

dispersive X-ray spectroscopy (EDX) gives elemental maps, useful in understanding material 

quality and distribution, including core-shells/oxide layers. Selected area electron diffraction 

(SAED) patterns are imaged to define crystalline structure in conjunction with high resolution 

TEM. Particle characterization help to inform the bulk material oscillator models for particles, 

if  multiphase effective medium mixtures should be used, and if  spherical, elliptical, core shell, 

or other effective polarizabilities are necessary. Visible and infrared normal incidence 

spectroscopy cross validate the consistency of  explicit individual particle measurements of  

material quality, by looking for known absorption resonances of  the constitutive 

elements/compounds over many particles. Slight variations of  resonance peaks may also 

highlight changes in the local field due to particle shape and packing. Particle filling fraction is 

estimated by subtractive nanoparticle weight measurements. Angle-resolved scattering or 

integrating sphere measurements are used to quantify the percentage and behavior of  the 

diffusely scattered field. In general, the explicit measurements discussed above are meaningful 

only in a statistical sense. This is, in part, why two independent measurement schemes are used 

when possible. E.g., SEM and profilometry, TEM and infrared spectroscopy. The explicit 

measurements set meaningful bounds to constrain the model fit problem. Once the bounds, the 

oscillator model, and effective medium model are chosen, the fill model is fit to Mueller matrix 

measurements across a wide range of  wavelengths and angles.  
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8.4 SINGLE PARTICLE CHARACTERIZATION 

 

An important step in designing metasurfaces and metamaterials with emergent optical properties 

is to certify that the nanoscopic constituents behave as expected. The gold standard for this is 

single particle measurement. But this is not always an easy task. First, the nanoparticle should be 

isolated and able to be found. This is easy when particles can be deterministically placed, a 

common feature of top-down fabrication. Though, in bottom-up processes satisfying this 

condition can be involved. Particle placement is not the only hurdle as fundamental signal-to-

noise ratio limitations exist. First, the ratio of spot size to particle area is typically on the order 

of 10-0.1%. Since extinction efficiencies are limited, the percentage of incident power converted 

to extinction should be expected to be small. Another approach is to abandon the idea of true 

single particle measurement in favor of measuring a collection of particles where single particle 

properties can be well estimated. This removes the fundamental signal-to-noise restrictions of 

single particle measurement by adding more signals (particles). For bottom-up processes a gold 

standard in this regard is particles sparsely suspended in solution. The collective is measured, 

and the Beer-Lambert law is used to back out single particle properties. This section outlines the 

Beer-Lambert measurement approach, which is used extensively in Chapter 9 to characterize 

single Huygens particles. 

 

Consider a system where particles are sparsely distributed in a liquid. Let the system be in near 

equilibrium so that fluctuations give rise to uniformly ergodic Brownian motion of the 

suspended particles. Furthermore, assume that particles do not agglomerate. Ergodic motion in 

three dimensions allows the ensemble distribution to be one of overlapping particles with 

uniform probability of occupying any volume element. Correspondingly, there are no 

meaningful correlations between particles and no net phase difference between scattered fields 

on the average. Given that particles are well separated, it can be assumed the local field is 

dominated by the incident field contribution. This situation is well within the regime of radiative 

transfer theory. If multiple scattering is weak and the thermal emission from the particles is well 

below the measurement wavelength, then the radiative transfer equation derives Beer’s law,  

  

𝐼(𝐿)

𝐼𝑜
=  𝑒

−∫𝜕𝑙 𝔼[𝐶𝑒𝑥𝑡𝔼[𝜌|𝒯]], 8.4.1 

 

where 𝔼[𝜌|𝒯] is the expected number density of particles of type, 𝒯. The outer expectation is 

the expected extinction cross-section over particle types, weighed by the corresponding number 

density for each type. In principle, 𝔼[𝐶𝑒𝑥𝑡𝔼[𝜌|𝒯]] is a function of both the incident beam’s 

pathlength, 𝑙, and cross-sectional area, 𝐴, since particles are discrete. In practice the illuminated 
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volume is made large enough that the addition or subtraction of edge particles does not 

define a substantial change in the transmittance. E.g., no binary transitions in transmittance. The 

variation in particles within the measurement time window is then generally small, with outer 

edge particles popping in and out of the volume at a near equal probability. Given a large enough 

spot size,   

 

𝔼[𝐶𝑒𝑥𝑡𝔼[𝜌|𝒯]] ≈ 𝑓𝑓
1

𝑉
∫𝑑𝑃(𝒯)𝐶𝑒𝑥𝑡(𝒯) , 8.4.2 

 

where 𝑓𝑓 is the volume filling fraction of particles in the solution and 𝑃(𝒯) is the probability 

distribution of particle types, which is a readily measurable variable using transmission electron 

microscopy or similar.  

 

Incorporating Nonidealities 

 

It is often the case that a portion of particles crash out (settle at the bottom) in the suspension. 

Clearly these particles should not be in the incident beam path. Therefore, crash out may cause 

an overestimate in volume fill fractions, when calculated from powder weight or similar prior to 

suspension. The primary variable of interest is type-resolved extinction. The volume filling 

fraction is a convenient scale factor that increases the signal-to-noise ratio. Correspondingly it 

would be nice to be able to normalize out filling fraction dependence upon final calculation.  

 

As discussed, noise is an unavoidable reality of measurement. Consider three optical 

measurements. One in the dark, 𝑆𝑑𝑎𝑟𝑘 , one with a cuvette of solution, 𝑆𝑠𝑜𝑙 , and one with cuvette 

of solution and particles, 𝑆𝑠𝑎𝑚 . The model for the signal received by these samples is 

 

𝑆𝑑𝑎𝑟𝑘 = 𝔼[�̃�𝑑𝑎𝑟𝑘] = 𝐵  

𝑆𝑠𝑜𝑙 = 𝔼[𝑆𝑠𝑜𝑙
† 𝑒−�̃�𝑠𝑜𝑙 + �̃�𝑠𝑜𝑙], 

𝑆𝑠𝑎𝑚 = 𝔼[𝑆𝑠𝑜𝑙
† 𝑒−(𝑓𝑓

𝐿

𝑉
∫𝑑𝑃(𝒯)𝐶𝑒𝑥𝑡(𝒯)+�̃�𝑠𝑎𝑚+�̃�𝑠𝑜𝑙) + �̃�𝑠𝑎𝑚].  

8.4.3 

 

All expectations are taken over time. �̃�~𝑁(𝐵, 𝜎) is a normally distributed random variable to 

model additive white noise. 𝑋~𝑁(0, 𝜎) is a normally distributed random variable for modeling 

multiplicative noise. An example of multiplicative noise in this context could be intensity 

fluctuations caused by floating contamination in the solution, ln(�̃�𝑠𝑜𝑙), or slight changes in 

particle density in time, ln(�̃�𝑠𝑎𝑚). The ideal signal that would be received by the detector from 
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an optical measurement of a single cuvette of solution is 𝑆𝑠𝑜𝑙
†

. This includes cuvette 

reflections and any minute loss in intensity from absorption in the solution. Then  

 

𝑆𝑠𝑎𝑚−𝑆𝑑𝑎𝑟𝑘

𝑆𝑠𝑜𝑙−𝑆𝑑𝑎𝑟𝑘
= 𝑒

−(
𝜎𝑠𝑎𝑚
2

2
+𝑓𝑓

𝐿

𝑉
∫𝑑𝑃(𝒯)𝐶𝑒𝑥𝑡(𝒯))

. 8.4.4 

 

If, as argued earlier, 
𝜎𝑠𝑎𝑚
2

2
≪ 𝑓𝑓

𝐿

𝑉
∫ 𝑑𝑃(𝒯)𝐶𝑒𝑥𝑡(𝒯), then  

 

− ln(
𝑆𝑠𝑎𝑚−𝑆𝑑𝑎𝑟𝑘
𝑆𝑠𝑜𝑙−𝑆𝑑𝑎𝑟𝑘

)

max
𝜆
(− 𝑙𝑛(

𝑆𝑠𝑎𝑚−𝑆𝑑𝑎𝑟𝑘
𝑆𝑠𝑜𝑙−𝑆𝑑𝑎𝑟𝑘

))
=

∫𝑑𝑃(𝒯)𝐶𝑒𝑥𝑡(𝒯)

max
𝜆
(∫ 𝑑𝑃(𝒯)𝐶𝑒𝑥𝑡(𝒯))

. 8.4.5 

 

Given that the particle distribution is known, equation 8.4.5 enables measurement variables to 

be equated explicitly to the extinction normalized by a constant scale factor, which is easy to 

compare with theoretical calculations.   
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ABSTRACT 

Optically Mie-resonant crystalline silicon nanoparticles are synthesized using a bottom-up 

nonthermal plasma process. Highly controllable particle sizes between 60 to 214 nm with 

standard deviations smaller than 5.4% are achieved via temporary trapping the nanoparticles 

inside a continuous-flow plasma reactor. The particle size is simply tuned by adjusting the 

precursor gas residence time. By dispersing the nanoparticles in deionized water, optical 

extinction measurements show stable colloidal solutions of  a metafluid, supporting both 

strong magnetic and electric dipole resonances in the visible. The spectral overlap of  these 

resonances is related to anomalous directional Kerker scattering. The extinction measurements 

show excellent agreement with Mie theory, indicating that the fabrication process is precise in 

maintaining a narrow deviation in size, shape, and material constraints for most samples. These 

particle characteristics are also independently verified via TEM analysis. This single-step gas-

phase process is capable of  synthesizing Mie-resonant nanoparticles of  different dielectric 

materials and directly depositing them on desired substrates. 

 

 

 

 

 

 

 

 

Reprinted with permission from Nano Lett. 2023, 23, 5, 1930–1937. Copyright 2022 American Chemical Society.  
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9.1 INTRODUCITON 

 
Crystalline semiconductors are an important material class to study light-matter interactions 

from scattering particles in the visible regime. Their continuum of  interband transitions 

separated by a clearly defined and properly sized bandgap can enable a distinctively large 

permittivity with comparatively little dissipative loss297–299. This offers material-driven benefits 

such as a high elastic scattering efficiency, strong field localization, and scattering states not 

accessible in systems of  a different material298–304. High scattering efficiency is a direct result 

of  inherently low absorption losses, which are particularly characteristic of  indirect-gap 

crystalline semiconductors. Furthermore, the scattered field of  dielectric particles is driven by 

displacement currents of  bound charges. This contrasts plasmonic scattering, which is driven 

by conduction currents of  free electrons and therefore susceptible to Ohmic losses305–307. The 

inherent lack of  nonradiative loss implies the possibility of  near unity radiative efficiency 

important in many applications, such as extracting light from quantum emitters308. Similar 

efficiency is seen in low-index and low-loss materials, such as insulators, though this is at the 

expense of  less field confinement, a reduced mode volume, and/or increased particle 

size139,298,309. Alternatively, the notably large refractive index of  semiconductors can produce a 

high scattering efficiency with strong field confinement, when contrasted with a low-index 

ambient.  

 

Interestingly, the combination of  both field confinement and low nonradiative losses can 

produce high quality factor (Q-factor) resonances, and this has been shown to result in unique 

highly directional scattering states310–313. For example, spherical high-index and low-loss 

dielectric particles can exhibit strong circulating displacement currents, which mimic magnetic 

multipoles, termed optically-induced magnetic resonances (OMRs). These artificial magnetic-

type atoms are of  interest in the metamaterial and metasurface community as they lead to a 

homogenized non-unity effective magnetic permeability at optical frequencies314–316. 

Furthermore, these often high-Q harmonics can interfere with broadband resonances 

resulting in anomalous highly directional scattering, exhibiting a Fano-like line shape, termed 

the Kerker effect300,301,317. Though magnetic multipoles exist in insulators, their Q-factors are 

usually too low to produce anomalous scattering, particularly backward Kerker scattering309. 

In metals, Ohmic losses damp circulating induction currents combatting the existence of  

magnetic-type multipoles altogether298. Such anomalous behavior in insulating or metallic 

systems therefore needs to offset the inherent shortcomings of  the material. This necessitates 

either a precisely structured exciting field, such as particles in a cleverly designed periodic 

lattice, particles with multiple layers of  different materials, or a properly designed particle 

shape, such as a metallic split-ring resonator318–323. In contrast, indirect bandgap crystalline 

semiconductors can have both strong electric and magnetic-type Mie resonances existing 
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simultaneously in a simple single sub-wavelength sphere, under plane-wave illumination324–

326. Furthermore, higher-order electric and magnetic-type Mie resonances can also exist 

simultaneously in the sub-wavelength particle, since the large particle permittivity shrinks the 

effective wavelength within the particle. Clearly, crystalline semiconductors offer a platform 

of  features desired in many fields of  photonics. In that regard, spherical crystalline silicon (c-

Si) particles are an ideal candidate for exploring such effects in the visible. Furthermore, c-Si 

particles may also integrate well with the modern Si-based technologies. 

 

Low-cost and scalable synthesis of  highly uniform crystalline high-index dielectric 

nanoparticles (NPs), as the building blocks of  metastructures and metafluids, has been a 

subject of  active research for over a decade, however producing ideal Si meta-atoms through 

bottom-up techniques still remains a challenge327. In the Mie-resonant regime, variations in 

particle size, shape, and material quality have a notable impact on the particle’s overall 

electromagnetic response. Several fabrication methods have been developed for the synthesis 

of  Si meta-atoms with different achievement levels over NP crystallinity, sphericity, purity, and 

density as well as scalability of  the technique. Femtosecond laser ablation of  bulk Si donor 

targets in air or liquid solvents312,324,328–330 has been widely used to generate nanodroplets of  

molten Si that form into polydisperse spherical NPs upon solidification. A more recent 

method of  laser-induced transfer326,331,332 allows the direct deposition of  the molten droplets 

onto receiver substrates with high positional accuracy necessary for the deposition of  ordered 

metamaterials. In these methods, NP size and degree of  crystallinity could be tuned by the 

laser energy and number of  pulses with good repeatability. However, the most successful laser-

induced methods require complex optical systems and inherently suffer from low throughput. 

Gas phase synthesis techniques enable the bottom-up production of  Si meta-atoms. As one 

of  the most promising techniques, chemical vapor deposition (CVD) can produce sub-

micrometer-sized Si particles through decomposition of  disilane or trisilane at elevated 

temperatures333–335. The as-synthesized particles are amorphous and porous; therefore, a post-

annealing process is required to obtain polycrystalline particles. Due to the larger size of  the 

particles, their polycrystallinity, and lack of  tunability over size distribution, CVD synthesized 

particles have higher potential in light scattering applications for near-IR rather than the visible 

spectral range. Recently, colloidal synthesis of  Mie-resonant Si NPs has been accomplished 

via grinding Si lumps with a blender into small-sized NPs336, or thermal disproportionation of  

SiO powder into Si and SiO2 before extracting the freestanding c-Si NPs by etching out the 

SiO2 matrix337,338. The resulting colloidal solutions are highly polydisperse and therefore, 

require several post-synthesis centrifugation processes for size-separation of  the Si NPs. 

Despite the scalability of  this techniques, they require several post-synthesis processes, and 

their Si NPs lack either the ideal size/shape uniformity or purity. 
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9.2 PLASMA SYNTHESIS OF SIZE-CONTROLLED CRYSTALLINE SILICON 

NANOPARTICLES 

 

Over the past two decades, nonthermal plasma synthesis has emerged as a competitive 

technology for the synthesis of  nanocrystals difficult or impossible to handle with other 

fabrication techniques. Nanocrystals of  covalently bonded group IV elements,339–341 noble and 

transition metals,342–345 and compound semiconducting materials346–350 are among the vast 

library of  materials successfully developed by this technology. Nonthermal plasma reactors 

provide a non-equilibrium environment wherein gaseous precursors, typically at room 

temperature, are dissociated via collisions with hot free electrons. The resulting reactive 

radicals and ions lead to particle nucleation, growth, and crystallization in the plasma discharge. 

This bottom-up process has excellent control over particle size and size distribution owing to 

the negative charge of  the NPs immersed in the plasma preventing particle agglomeration. 

Compared to their liquid-phase counterparts, nonthermal plasmas also benefit from a solvent- 

and ligand-free process resulting in highly pure nanocrystals in which the surface passivation 

could be controlled via precursor selection351 as well as in-flight functionalization.352,353 By 

connecting the nonthermal plasma reactors to an extraction orifice, a pressure difference is 

created which accelerates nanocrystals towards the low-pressure deposition chamber where 

they are collected on desired substrates. This single-step deposition technique enables the 

scalable collection of  crystalline particles in a powder form or as a thin film with tunable film 

thickness and porosity.354 

 

Despite all the promising advances, nonthermal plasmas have been long limited to synthesis 

of  small crystalline NPs, typically < 10 nm in diameter, due to the short residence time of  

NPs in plasma discharges. Bapat et al.355 expanded this limit to c-Si NPs of  35 nm by operating 

the plasma in a constricted filamentary regime wherein NPs were temporarily trapped inside 

the reactor. NP trapping is the result of  the competition of  different forces acting upon 

negatively charged particles, including electrostatic, thermophoretic, and drag forces. Such 

trapping mechanism acts as a filter allowing small NPs to grow to a critical size in the trapping 

zone before being de-trapped and collected. Recently, Wray et al.356 improved this process by 

optimizing the plasma conditions pushing the average particle diameter to 82 nm with a 

standard deviation of  1.2 nm. The random particle films of  these NPs exhibited an OMR 

resonant peak at 420 nm. In this study, we expand on the previous work on nonthermal 

plasmas operating in the constricted filamentary regime showing that the hybrid diffuse-

filamentary plasmas can produce monolithically c-Si NPs in a wide range of  diameters 

exhibiting strong scattering resonance with extinction peaks covering the entire visible range. 
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Hydrogen terminated c-Si NPs supporting OMRs were synthesized via decomposition of  

silane (SiH4) in a flow-through tube plasma reactor diagrammed in figure 9.2.1(a) and 

described in detail in the Supporting Information. The precursor dissociation and particle 

nucleation and growth begin in a low-density diffuse plasma region upstream of  the RF 

electrode. In this region, NPs are temporarily trapped and grow until they reach a critical size. 

To verify this trapping mechanism, a laser light scattering experiment was performed by 

shining a sheet of  laser light at 𝜆 = 532 nm through the top of  the reactor, for in situ detection 

of  trapped NPs. This procedure is further explained in the supporting information. Figure 

9.2.1(b) shows an image of  the discharge during normal operation taken by a high-speed 

camera. A strong green scattering signal is observed a few centimeters above the RF electrode 

close to the tube wall representing a high concentration of  NPs at this location. We define this 

region as the trapping zone. Once the desired NP size is reached, which is controlled by the 

gas flow rates as well as other plasma conditions, NPs are de-trapped and enter the high-

density filamentary region downstream of  the electrode. At this stage of  the reactor, NP 

temperature exceeds the gas temperature by several hundreds of  Kelvins, mainly due to 

electron-ion recombination at the particle surface, resulting in crystallization of  the NPs.355,357 

Finally, the now crystalline NPs travel through an extraction orifice and accelerate towards a 

high-vacuum deposition chamber, where they can be collected directly on the appropriate 

substrates for the desired application. Figure 9.2.1(c) shows a bright-field transmission electron 

microscope (TEM) image of  a NP sample with a mean diameter of  112 nm. The NPs are 

highly uniform and spherical with minimal defects. The difference in apparent contrast of  the 

NPs is due to their alignment with respect to the electron beam. Figure 9.2.1(d) shows a high-

resolution image of  a typical NP to better emphasize the near complete spherical shape. The 

crystallinity of  the NPs is verified by the selected area electron diffraction (SAED) pattern 

shown in Figure 9.2.1(e). Even though the focus of  this paper is on c-Si NPs, we also show 

the versatility of  the nonthermal plasma technique by synthesizing germanium and silicon-

germanium NPs in a similar size regime. Therefore, we show that by only changing the 

precursor gasses flowing into the reactor we can easily switch to synthesizing other dielectrics 

and even their alloys (refer to the supporting information for more details). 
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Figure 9.2.1. Particle shape and composition characteristics. (a) Schematic diagram of  the flow-through 

nonthermal plasma reactor operating in a constricted filamentary regime. ① Precursor injection into the 

reactor through a side ported flange. ② Low-density diffuse region, where silane dissociation and particle 

nucleation begin. ③ High-density filamentary region, where size selected particles crystalize, mainly due to 

electron-ion recombination heating mechanism. ④ NP extraction through the orifice and injection into 

the deposition chamber towards the substrates. (b) High-speed camera image of  the laser light scattering 

experiment showing the plasma discharge (violet) and particle trapping zone (green). (c, d) Representative 

bright-field TEM images of  c-Si NPs with a mean diameter of  112 nm. (e) SAED pattern of  randomly 

selected Si NPs showing the crystallinity of  NPs. (f) Select HAADF-STEM images of  a single Si NP after 

air exposure for one day. STEM-EDX elemental maps of  Si (red) and O (dark cyan) show a Si core 

surrounded by a thin oxide shell. 

 

Figure 9.2.2(a) shows six distinctly controlled c-Si NP size distributions produced using the 

nonthermal plasma reactor in figure 9.2.1(a). With mean diameters ranging from 60 to 214 

nm, these distributions represent an over two-fold size range produced simply by varying the 

precursor residence time in the plasma discharge. The standard deviation of  all samples is less 

than 5.4% of  their respective mean diameters, indicating nearly monodispersed samples. Prior 

studies have shown that NP size correlates linearly with the particle residence time for plasma 

reactors operating in the diffuse regime340. The particle residence time includes two factors: 1. 

the time it takes for particles to travel the length of  the reactor (i.e., the gas residence time), 

and 2. the time particles remain in the trapping zone. While the gas residence time can be easily 

determined, estimation of  the particle trapping time requires intricate experimental methods 

capable of  detecting individual particles in the reactor. Interestingly, recent Monte Carlo 

simulations of  particle trapping for sub 10 nm NPs have shown that even though considering 

particle trapping in the reactor results in the synthesis of  particles with larger sizes than the 

no trapping assumption, the average NP size is still linearly dependent on the gas residence 

time.358 In figure 9.2.2(b), we experimentally validate this result by controlling the NP diameter 

in the constricted mode plasmas via adjusting the gas residence time. Furthermore, we show 

the linear relation to gas residence time holds even for particle sizes over 10x the prior studies 
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by Monte Carlo. Therefore, NP sizes can be simply and linearly controlled in a wide size 

regime, despite the complex force balance in dusty plasmas. The gas residence time is defined 

as 𝑡𝑟𝑒𝑠 =
𝑃𝐴𝑐𝐿𝑝

𝑃0𝑄
, where 𝑃 is the pressure of  the reactor, 𝑃0 the standard pressure, 𝑄 the total 

gas flow rate, 𝐴𝑐  the cross-sectional area, and 𝐿𝑝 the length of  the plasma. In figure 9.2.2(b) 

we tuned this time between 2.2 - 7.2 seconds by adjusting the Ar flow rate and the orifice size 

while all other experimental conditions, including the silane flow rate, tube size, electrode 

position, and RF power were fixed. All experimental conditions used in this study are 

summarized in supporting information table 9.5.1. 

 

 
 

Figure 9.2.2. Particle optical characteristics. (a) Gaussian-fit particle size distributions as measured by TEM 

analysis of  hundreds of  particles for each sample. Each particle size distribution is color coded from purple 

(60 nm) to red (214 nm). The table shows each distribution mean particle diameter, standard deviation, and 

percent deviation from the mean value in parentheses, (b) Average diameters of  NPs as a function of  the 

gas residence time inside the plasma reactor. Error bars are the standard deviations obtained from the 

particle size distribution, (c) Photographs of  colloidal dispersions of  monodisperse c-Si NPs in DI water 

with NP size increasing from left to right. The cuvettes are illuminated with a white light from the bottom, 

(d) Measured (solid line) and simulated (dotted line) extinction spectra of  particles suspended in DI water, 

(e) Representative bright-field TEM images of  c-Si NPs with mean diameters ranging from 60 to 214 nm. 
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9.3 OPTICAL CHARACTERIZATION  

 

The H-terminated NPs undergo a self-limiting oxidation process upon exposure to air at 

ambient conditions resulting in the formation of  a thin (< 5 nm) oxide shell on the surface of  

the c-Si NPs359,360. This is seen in the high-angle annular-dark-field STEM (HAADF-STEM) 

images shown in figure 9.2.1(f). By dispersing the NPs in deionized (DI) water and sonicating 

the solution for 15 minutes, homogenized colloidal solutions are obtained. Figure 9.2.2(c) 

shows representative c-Si NPs suspended in a DI water solution under white light illumination. 

The samples, also referred to as metafluids, show a clear change in color across the visible 

spectrum, indicating that the size control is sufficient to produce strong and distinct Mie-

resonant scattering throughout the visible. The oxide layer on the c-Si NPs is too small to 

noticeably alter the resonant modes of  the NPs, especially given the low index contrast 

between water and SiO2. With that said, the native oxide layer at the NP surfaces does provide 

a negative surface potential336 which hinders NP agglomeration in the colloidal solution. We 

have found that this surface potential keeps the solution stable for many months, without the 

need for complex surface functionalization.  

 

In order to better characterize the unique scattering states of  these NP solutions, figure 

9.2.2(d) shows the result of  optical extinction measurements with simulated extinction spectra 

overlaid. The simulated spectra, obtained through Mie theory, are based on the measured 

diameter distribution in figure 9.2.2(a) and keep the same color convention, 60 nm (purple) to 

214 nm (red). Apart from the 214 nm sample, we see excellent agreement between 

measurement and theoretical predictions in both the spectral shape and strength of  the 

extinction. This further validates what was found in the single particle characterization in 

Figure 1; the nonthermal plasma process can produce, with high accuracy and specificity, 

pristine c-Si particles with near complete circular form. Size variations produced by this 

technique have standard deviations small enough that, from the electromagnetic point of  view, 

the particle size distributions are nearly equivalent to a delta function. (a comparison to 

theoretical predictions based on delta function distributions is shown in the supplementary 

information.) All curves are normalized as 𝑥/𝑚𝑎𝑥(𝑥) so that any potential differences in 

either spectral shape or oscillator strength between measurement and theory are preserved. 

Therefore, the striking spectral match is not simply a result of  normalizing to artificially match 

resonance peaks, but a result of  experimentally approaching near exact theoretical predictions. 

Both the procedure for measuring the extinction spectra and comparing measurements to 

simulation is described in the supplementary information.  

 

Figure 9.2.2(e) shows representative TEM images of  all samples with mean diameters ranging 

from 60 to 214 nm. All samples are highly monodispersed, nearly completely spherical, and, 
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apart from the 214 nm mean diameter sample which shows porous NPs, composed of  

fully dense c-Si. The reason behind the porosity of  the NPs in the 214 nm sample is still not 

well understood; however, we believe that it could be due to smaller temperature variations in 

larger NPs within the plasma discharge. Such temperature variations, during both the heating 

and cooling processes, are necessary for the formation of  single-crystalline highly dense 

spherical NPs357,361. More work is underway to improve the quality of  this sample by optimizing 

the plasma conditions, including the RF power, reactor pressure, and plasma volume. Once 

dispersed in water the pores of  the 214 nm NPs are filled with water, which has a lower 

refractive index than Si, resulting in a reduction in the effective refractive index of  the NPs. 

Therefore, in figure 9.2.2(d) we model these water inclusions in simulation as a Bruggeman 

effective index and find a 20% fill fraction of  water in c-Si to best fit the experimental data. 

All other simulated spectra assume pure c-Si particles. More detail on the 214 mean diameter 

sample is shown in the Supporting Information.  

 

Given the strong agreement between measurement and simulation, figure 9.3.1 (left) takes the 

theoretical extinction spectra based on the measured diameter distribution and decomposes it 

into scattering and absorption contributions. In all cases a strong OMR is observed. In 

particles around 60 nm in diameter a magnetic dipole resonance occurs at a wavelength of  375 

nm. This contributes primarily to an absorption dominated spectra as this wavelength is below 

the visible spectrum (380 - 800 nm) and within the lossy region of  silicon. Though even in a 

region of  appreciable loss, the large real refractive index of  c-Si enables the existence of  

OMRs. As particle size increases, both the electric and magnetic-type harmonics red-shift and 

the extinction spectra become scattering dominated. Correspondingly, the radiative efficiency 

increases. Figure 9.3.1 (right) shows the radiative efficiency of  each particle distribution. In 

each case, the average scattering efficiency for the spectral range starting from the peak of  the 

electric dipole resonance to the end of  the visible spectrum is reported with minimum and 

maximum values shown in parentheses. The results show efficiencies approaching 99%, even 

though particles are clearly strongly interacting. 
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Figure 9.3.1.  Comparison of  measurement to simulated spectra. (Left) Simulated extinction (solid line), 

scattering (dotted line), and absorption (dashed line) efficiency for all particle size distributions shown in 

figure 9.2.2(a). (Right) Wavelength-resolved radiative efficiency for each particle size distribution. In both 

figures, all curves are color coded by mean particle size, according to the size convention in figure 9.2.2(a). 

The average, maximum, and minimum radiative efficiency for each distribution is reported directly below 

the respective radiative efficiency curve in the right figure. These values are calculated in the spectral window 

starting from the electric dipole resonance to the end of  the visible spectra. 

 

According to Mie theory, the total scattering efficiency can be decomposed into electric 

(𝜎𝑠𝑐𝑎
𝐸  =

1

𝑥2
∑ ‖𝑐𝑛

𝐸‖𝑛
2
) and magnetic-type (𝜎𝑠𝑐𝑎

𝑀  =
1

𝑥2
∑ ‖𝑐𝑛

𝑀‖𝑛
2
) partial efficiencies, where 

𝑐𝑛
𝐸 and 𝑐𝑛

𝑀 are the electric and magnetic-type Mie coefficients of  polar order, 𝑛, and 𝑥 =

2𝜋𝑟/𝜆 is the size parameter of  a particle with radius, 𝑟, at wavelength 𝜆. The total efficiency 

is then 𝜎𝑠𝑐𝑎 = 𝜎𝑠𝑐𝑎
𝐸 + 𝜎𝑠𝑐𝑎

𝑀  . The right column of  figure 9.3.2 decomposes the scattering 

efficiency spectra from figure 9.3.1 into electric and magnetic type partial efficiencies to 

determine the fundamental atom-like oscillations that give rise to the scattering behavior. From 

this, we find that all particle sizes support a strong magnetic dipole resonance. Furthermore, 

particle sizes larger than 150 nm also support electric and magnetic quadrupoles resulting from 

the large and relatively lossless permittivity of  c-Si. The magnetic dipole resonances are shown 

to spectrally intersect with the tail of  the electric dipole response, a precursor to achieving 

Kerker scattering. To better understand the potential for anomalous directional scattering, the 

left column of  figure 9.3.2 decomposes the scattering spectra into a basis of  directional Kerker 

harmonics. For spherically symmetric objects under plane wave illumination the forward (𝑐𝑛
𝑓
) 
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and backward (𝑐𝑛
𝑏) directional Kerker scattering coefficients are related to the Mie 

scattering coefficients through the transform, 𝑐𝑛
𝑓
=
(−𝑖)𝑛

2
(𝑐𝑛
𝑀 − 𝑖𝑐𝑛

𝐸)  and 𝑐𝑛
𝑏 = −

(𝑖)𝑛

2
(𝑐𝑛
𝑀 +

𝑖𝑐𝑛
𝐸). The Kerker expansion maintains almost all of  the properties which popularized Mie 

theory, while also providing a simpler analytic and conceptual framework for understanding 

directional scattering. Some of  the advantages the Kerker expansion provides include weak 

coupling between forward and backward-type harmonics, clear notions of  directionality and 

side lobes for each harmonic, and interference between same type harmonics relating to 

changes in directivity. Under the Kerker expansion, the scattered intensity in the exact forward 

direction, 𝐼(휃 = 0) =
𝜋

2𝑍𝑘2
 ‖ ∑ √(2𝑛 + 1)𝑐𝑛

𝑓
𝑛 ‖2, is dependent only on the forward Kerker 

coefficients, where 𝑍 is the impedance of  the host media. Likewise, the intensity in the exact 

backward direction, 𝐼(휃 = 𝜋) =
𝜋

2𝑍𝑘2
‖∑ √(2𝑛 + 1)𝑐𝑛

𝑏
𝑛 ‖2, depends only on the backward 

Kerker coefficients. Furthermore, the total scattering efficiency can be decomposed into 

forward and backward partial powers, 𝜎𝑠𝑐𝑎 = 𝜎𝑠𝑐𝑎
𝑓
+ 𝜎𝑠𝑐𝑎

𝑏 , where 𝜎𝑠𝑐𝑎
𝑓
 =

1

𝑥2
∑ ‖𝑐𝑛

𝑓
‖𝑛

2
 and 

𝜎𝑠𝑐𝑎
𝑏  =

1

𝑥2
∑ ‖𝑐𝑛

𝑓
‖𝑛

2
. The left column of  figure 9.3.2 shows that, in all size distributions, there 

exists a spectral region characterized by anomalous directional scattering. The region near the 

lowest energy electric and magnetic dipole crossing, shows suppressed backward coefficients 

and strong forward Kerker peaks. At the middle electric and magnetic crossing point shows 

the peak in the first order backward scattering coefficient. In both the 60 nm and 80 nm 

average diameter samples, we see a clear region of  dominant backward Kerker coefficients, 

indicating anomalous backward scattering in these samples. Second order Kerker coefficients 

are also seen in particle sizes larger than 150 nm. 
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Figure 9.3.2. Harmonic decomposition of  scattering efficiency. (Left) Decomposition of  simulated 

scattering efficiency in terms of  first (black) and second order (teal) forward (solid-dot line) and first 

(brown) and second order (pink) backward (dashed line) directional Kerker harmonics. (Right) 

Decomposition of  simulated scattering efficiency in terms of  first (black) and second order (teal) electric 

(solid-double dot line) and first (brown) and second order (pink) magnetic-type (dotted line) Mie harmonics. 

In both figures, the scattering spectra of  each particle size distribution is color coded according to figure 

9.2.2.  
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9.4 CONCLUSION 

 

We have demonstrated the bottom-up synthesis of  highly spherical pure crystalline silicon 

nanoparticles in the optically Mie-resonant regime, using nonthermal plasmas. Particle mean 

diameter is controlled between 60 to 214 nm, and all samples have shown extremely narrow 

size distributions of  less than 5.4% of  their respective mean diameters. Such control in particle 

size in this size regime stems from operating the plasma in a constricted filamentary regime 

wherein NPs are trapped in a low-density plasma region due to the balance of  different forces 

acting upon them. This trapping mechanism acts as a filter allowing particles to grow beyond 

the size regime achievable in diffuse plasmas of  the same reactor length. After reaching a 

critical size, particles are released into a high-density discharge, where they crystalize. 

Nanoparticle size is shown to have a linear relationship with the total gas residence time in the 

reactor. Optical extinction measurements of  NPs in water show excellent agreement with Mie 

theory predictions, further verifying pristine control in particle shape and material quality. 

Furthermore, extinction measurements show these particles exhibit both electric and 

magnetic-type Mie resonances in the visible regime giving rise to anomalous highly directional 

Kerker scattering. A strong magnetic dipole is seen in all samples. This is only possible due to 

the high degree of  crystallinity of  the particles which allows for strong circular currents to 

exist within each particle. At present, particles with a 214 nm diameter or above exhibit a 

porous structure. We believe it is possible to improve the quality of  these particles by 

optimizing the plasma conditions, including the RF power, reactor pressure, and plasma 

volume. Finally, we have demonstrated that this single-step synthesis technique could be 

extended to other dielectric materials by simply changing the precursor gasses flowing into the 

reactor. 
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9.5 METHODS AND SUPPLEMENTARY INFORMATION 

 

Nanoparticle synthesis. Crystalline silicon (c-Si) nanoparticles (NPs) are synthesized using a 

continuous-flow nonthermal plasma reactor. The reactor consists of a 20 cm long quartz tube 

with an outer-diameter of 38 mm and an inner-diameter of 35 mm, connected to grounded 

Ultra-Torr vacuum fittings at both ends. The primary gas feed, a mixture of argon (Ar) and 0.21 

standard cubic centimeters per minute (sccm) of pure silane (SiH4), is injected into the reactor 

through the top sideported flange. A plasma is generated by applying 200 W of radiofrequency 

(RF) power at 13.56 MHz through a copper ring electrode placed on the outside of the tube, 6.5 

cm above the lower grounded fitting. A slit-shaped orifice, 12 mm in length and adjustable in 

width, is placed at the bottom of the reactor. This adjustable orifice provides an additional 

mechanism for controlling the pressure of the reactor without changing the gas flow rates. It 

also creates a considerable pressure difference between the synthesis reactor and the deposition 

chamber. Therefore, upon exiting the reactor, particles are accelerated through this extraction 

orifice and impacted onto desired substrates. To control the NP size, the Ar flow rate was 

adjusted between 5.5-15 sccm and the orifice width was set between 0.03-0.1 mm to achieve 

reactor pressures between 1.7-3.1 Torr. All other experimental conditions, as explained in detail 

above, are held constant for all samples. 

 

Laser Light Scattering. A laser light scattering (LLS) experiment was performed for in situ 

investigation of particle trapping in the reactor with a constricted capacitive discharge. A sheet 

of laser light was generated by passing a 500 mW, 532 nm laser beam through a plano-concave 

lens. The laser sheet was directed axially along the length of the discharge through a glass 

viewport mounted on top of the reactor tube. Scattered light was collected at ~90° to the laser 

sheet using a high-speed camera (Chronos 2.1 from Kron Technologies). A short exposure time 

of 1 ms was chosen to suppress the background emission from the diffuse plasma region and 

capture the fast-rotating high intensity plasma filament in the constricted plasma region. 

 

Transmission Electron Microscopy. TEM samples were collected on thin carbon coated 

copper grids and analyzed using a Thermo Scientific Talos F200X scanning transmission 

electron microscope (STEM) equipped with a Super-X energy-dispersive X-ray (EDX) detector 

operating at an accelerating voltage of 200 kV. For each sample, the effective diameters of 300 

particles were obtained using ImageJ in order to fit the Gaussian size distributions shown in the 

text. Spatially resolved STEM-EDX maps were collected with an acquisition time of 10 minutes, 

a dwell time of 100 μs/pixel, and drift correction after every frame. The K-edges of O, Si, and 

Ge were background-subtracted and integrated to produce the elemental maps. 
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Ultraviolet-visible (UV-Vis) Spectroscopy. The optical UV-Vis extinction spectra of 

different size NPs dispersed in DI water (𝑆𝑠𝑎𝑚𝑝𝑙𝑒 ) was obtained using an Agilent Cary 5000 

UV-Vis-Nir spectrometer. The transmission data of the colloidal solutions in quartz cuvettes 

with a path length of 1 cm was recorded over the wavelength range of 350-800 nm. A cuvette 

filled with DI water was used as a reference (𝑆𝑟𝑒𝑓) and a dark measurement was used to 

determine instrumentation bias (𝑆𝑏𝑖𝑎𝑠). Transmission measurements are then defined as 

𝑇𝑚𝑒𝑎𝑠 = (𝑆𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑆𝑏𝑖𝑎𝑠)/(𝑆𝑟𝑒𝑓 − 𝑆𝑏𝑖𝑎𝑠). 

 

Numerical Modeling. Optical extinction efficiencies (𝜎𝑒𝑥𝑡) of c-Si NPs in water were 

calculated using Mie theory according to the NP diameter distributions shown in figure 9.2.2(a). 

Each particle diameter distribution was converted to a discrete distribution, 𝑃(𝑖), based on 25 

distinct diameters linearly spaced between 𝜇 ± 3𝜎, where 𝜇 is the distribution mean value and 

𝜎 is the standard deviation. With 25 distinct sample points, the maximum diameter spacing 

between 𝑖 and 𝑖 + 1 was less than 2 nm and 99.7% of all possible particle sizes was accounted 

for in each distribution. The transmittance is then 𝑇 = 𝑒−𝑓𝑓∫𝜕𝑙 ∑ 𝑤𝑖𝜎𝑒𝑥𝑡,𝑖𝑖 , where 𝑓𝑓 is the total 

volume fill fraction of particles suspended in the cuvette, the integral is over the optical path 

length, and the summation is over the discretized particles sizes, 𝑖. 𝑤𝑖 =
𝐴𝑖𝑃(𝑖)

∑ 𝑉𝑖𝑃(𝑖)𝑖
 is the weight 

factor where 𝐴𝑖 and 𝑉𝑖 are the cross-sectional area and volume of particle 𝑖, respectively.  

Therefore, 𝑙𝑛(𝑇) = −
𝑓𝑓𝐿

∑ 𝑉𝑖𝑃(𝑖)𝑖
∑ 𝐴𝑖𝜎𝑒𝑥𝑡,𝑖𝑖 , where ∫ 𝜕𝑙 = 𝐿 under the ergodic motion 

assumption. To compare with measurement, we perform the normalization, 
∑ 𝐴𝑖𝜎𝑒𝑥𝑡,𝑖𝑖

max(∑ 𝐴𝑖𝜎𝑒𝑥𝑡,𝑖𝑖 )
 =

−ln(𝑇𝑚𝑒𝑎𝑠)

max(− ln(𝑇𝑚𝑒𝑎𝑠))
, which removes uncertainty in variables such as the fill fraction, which may vary 

between samples. 

 

Plasma conditions for the synthesis of size-controlled c-Si NPs. In this study, the NP size 

is tuned by adjusting the gas residence time via changing the flow rate of the carrier gas, Ar, as 

well as the orifice size, which in turn controls the reactor pressure. Table 9.5.1 summarizes the 

NP sizes obtained in this study and the process conditions used for their synthesis. All other 

synthesis conditions as well as the reactor setup are held constant for all samples and can be 

found in the methods. 
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NP diameter 
average ± standard 

deviation [nm] 

Orifice width 
[mm] 

Ar flow rate 
[sccm] 

Reactor Pressure 
[Torr] 

Gas residence 
time [s] 

60 ± 2.2 0.10 15 2.2 2.2 

81 ± 4.4 0.07 7.5 1.7 3.4 

112 ± 4.7 0.05 8.4 2.4 4.3 

129 ± 4.9 0.04 8.5 2.6 4.7 

154 ± 5.7 0.03 8.5 3.1 5.6 

214 ± 7.6 0.03 5.5 2.6 7.2 

 

Table 9.5.1. Summary of the process conditions used for the synthesis of c-Si NPs with different diameters, 

including the orifice width, Ar flow rate, reactor pressure, and gas residence time. 
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Plasma synthesis of high-index NPs other than Si. Successful synthesis of optically Mie-

resonant c-Si NPs in a wide range of diameters with extremely small standard deviations using 

nonthermal plasma processes is shown in the text. This synthesis technique is extremely versatile 

in producing NPs of other high-index materials. Here, we report the synthesis of germanium 

(Ge) and silicon-germanium (SiGe) NPs in the subwavelength size regime. The plasma 

conditions are similar to that of the 112 nm mean diameter c-Si sample, as presented in Table 

9.5.1, except for the precursor gasses. Si, Ge, and SiGe NPs are produced using 0.21 sccm of 

silane, 0.21 sccm of germane, and a mixture of 0.12 sccm of silane and 0.12 sccm of germane, 

respectively. Figure 9.5.1 shows representative TEM and HAADF-STEM images of  these 

particles. It is clearly seen that Ge and SiGe NPs are also nearly spherical and monodispersed. 

As a result of  using similar recipes for their synthesis, all particles have comparable sizes with 

mean diameters of  112 nm, 106 nm, and 103 nm for Si, Ge, and SiGe NPs, respectively. 

 

 
 

Figure 9.5.1. Representative bright-field TEM and select HAADF-STEM images of  plasma synthesized (a) 

Si, (b) Ge, and (c) SiGe NPs, with similar average diameters, after air exposure. 
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Non-idealities of Si NPs of the 214 nm mean diameter sample. All NPs examined in 

this study are fully dense and nearly spherical with minimal defects, as shown in figure 9.2.1(e), 

except for the sample with average diameter of 214 nm. This sample contains NPs that are not 

completely spherical and contain several defects such as pores and rough surfaces, as shown in 

figure 9.5.1(a). The HAADF image of a typical NP (figure 9.5.1 (b)) reveals apparent contrast 

differences within the NP due to the porous nature of the particle. This is further verified by 

SEM analysis of a single NP in this size regime (figure 9.5.1(d)), clearly showing holes within the 

NP. Once exposed to air, the surface of such pores is oxidized, resulting in variations in the 

concentration of elemental O in the STEM-EDX elemental map shown in figure 9.5.1(c). As 

discussed in the text, the formation of such non-idealities in larger particles could be due to their 

smaller temperature variations during the heating and cooling processes in the plasma discharge. 

These defects could potentially be alleviated by further optimizing the process conditions, such 

as employing higher RF powers. 

       

 

 

 

Figure 9.5.2. (a) TEM, (b) HAADF, (c) STEM-EDX elemental map, and (d) SEM images of  a typical porous 

Si NP of  the sample with average diameter of  214 nm. The SEM sample is coated with 10 nm gold before 

imaging, resulting in a rough texture on the surface of  the NP. 
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Comparison of extinction measurements to extinction from a delta function 

distribution. To show the impact of the finite standard deviations in the particle size 

distribution on the optical extinction, figure 9.5.3 plots the theoretical extinction of delta 

function size distributions centered at the mean diameter for each sample and compares this to 

the results from figure 9.5.2(d) in the main text. 

 

Figure 9.5.3. Extinction spectra of  all samples. The measured extinction is the solid line. The simulated 

extinction based on the measured size distribution is the dotted line. The simulated extinction based on a single 

particle size (i.e., a delta function distribution at the mean value of  the particle diameter) is the dashed line. All 

colors match the color designation to the samples in figure 9.5.2(a).  
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ABSTRACT 

Aluminum oxide, both in amorphous and crystalline forms, is a widely used inorganic ceramic 

material due to its chemical and structural properties. In this work, we synthesized amorphous 

aluminum oxide nanoparticles using a capacitively coupled nonthermal plasma utilizing 

trimethylaluminum and oxygen as precursors and studied their crystallization and phase 

transformation behavior through post-synthetic annealing. The use of two reactor geometries 

resulted in amorphous aluminum oxide nanoparticles with similar compositions but different 

sizes. Size tuning of these nanoparticles was achieved by varying the reactor pressure to produce 

amorphous aluminum oxide nanoparticles ranging from 6 nm to 22 nm.  During post-synthetic 

annealing, amorphous nanoparticles began to crystallize at 800°C, forming crystalline θ and γ 

phase alumina. Their phase transformation behavior was found to be size dependent in that 

small 6 nm amorphous particles transformed to form phase pure α-Al2O3 at 1100°C, while large 

11 nm particles remained in the θ and γ phases. This phenomenon is attributed to the fast rate 

of densification and neck formation in small amorphous aluminum oxide particles.  

 
 
 
 
 
 
 
 
 
 
Reprinted with permission from ACS Omega 2020, 5, 38, 24754–24761. Copyright 2022 American Chemical 

Society.  
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10.1 INTRODUCTION 

 

Aluminum oxide (Al2O3), commonly known as alumina, is one of the most widely used inorganic 

ceramic materials due to its superior thermal, chemical, and structural properties. Alumina can 

exist in both amorphous and crystalline forms. Amorphous alumina is considered to be an 

excellent candidate for anodic materials, gate insulators in transistors, protective coatings, and 

catalysts362–366. Various methods have been employed to synthesize amorphous alumina 

nanoparticles, which include sol-gel processing367,368, solution combustion369–373, precipitation374–

376, ultrasonic treatment of porous anodic alumina membranes,377 energetic pulsed laser 

ablation378,  and tragacanth gel synthesis379.  

 

The structure of amorphous alumina has been studied extensively and found to be comprised 

of a network of AlO4 tetrahedra, AlO5 polyhedra, and small fractions of AlO6  octahedra380–385. 

Solid-state386 Al nuclear magnetic resonance (NMR) studies revealed that the existence of a 

significant fraction of  AlO5 polyhedra, where Al3+ ions are penta-coordinated with oxygen ions, 

creates disorder and hinders the crystallization and growth of crystalline alumina phases387. Thus, 

high temperatures (~800 °C) are required for the transformation of amorphous to crystalline 

alumina nanoparticles388. This process involves a structural rearrangement reaction converting 

AlO5 polyhedra into AlO4 and AlO6.                 

 

Phase transformation of amorphous to crystalline alumina nanoparticles can greatly depend on 

several parameters such as synthetic route, heating rate, grain size, and chemical composition. 

Crystalline alumina can exist in various metastable crystalline phases (χ, η, δ, κ, θ, γ, ρ)386,389,390 and 

corundum or α-alumina is identified as the most thermodynamically stable phase in bulk form. 

The typical phase transformation sequence in crystalline alumina can be depicted as γ → δ → θ 

→ α-Al2O3 
388 . The transformation of γ-Al2O3 (density 𝜌 = 3.56 g/cm-3) to α-Al2O3 (𝜌 = 3.98 

g/cm-3) is accompanied by a volume reduction of about 10% and proceeds through a meta-

phase of θ-Al2O3
391. Typically, the final transformation to α-Al2O3 requires higher annealing 

temperature around 1100 °C388. With superior hardness, low friction, unique heat transfer 

properties, and excellent wear resistance, α-Al2O3 plays a critical role in the production of 

advanced ceramic materials and as a core and filler material for nanocomposites392–394. γ-Al2O3 

nanoparticles themselves also exhibit excellent catalytic properties due to their surface acidity 

and high surface area395. 

 

In this work, we synthesized amorphous alumina nanoparticles by a nonthermal plasma 

approach and studied their crystallization and phase transformation behavior during post-

synthetic annealing. Nonthermal plasma synthesis has shown the potential to produce a variety 

of nanoparticles with high purity and narrow size distributions, and the library of nanoparticle 
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materials has been expanded from group-IV semiconductors to metal oxides and metal 

sulfides197,224,267,348,396–398. Furthermore, nanoparticles made by this method can be directly 

deposited into particle films with densities ranging from 20% to 60%276,277. The as-deposited 

aluminum oxide nanoparticles are annealed at 600 – 1100°C for the investigation of their phase 

transformation behavior.  
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10.2 SYNTHESIS OF AMORPHOUS ALUMINA NANOPARTICLES  

 

 
 

Figure 10.2.1. Characterization of AlOx nanoparticles synthesized from type A and type B reactors at p=3.8 

Torr: (a) θ–2θ mode out-of-plane XRD patterns of the as-synthesized AlOx nanoparticles from type A and 

type B reactors; (b) XPS survey scan of AlOx nanoparticles from type A and type B reactors. (c) Typical FTIR 

spectra of AlOx samples from type A and type B reactors, with major absorption peaks featuring Al−O, 

−COO-, −CH3, and −OH. 

 

Amorphous alumina (AlOx) nanoparticles were synthesized using the two reactor geometries 

shown in the experimental section. Figure 10.2.1a shows the XRD spectra of as-synthesized 

AlOx nanoparticle samples from both type A and B reactors at p = 3.8 Torr. The absence of 

definitive peaks in XRD suggests that as-synthesized AlOx nanoparticles are amorphous. As 

shown in a previous study, amorphous alumina nanoparticles are thermodynamically more stable 

with the lowest surface energy compared to θ- and α phase polymorphs at large surface areas399.  

 

XPS and FTIR measurements were performed to evaluate the surface and atomic composition 

of AlOx nanoparticles from both reactor configurations (figures 10.2.1b and 10.2.1c). For both 

samples, the main peaks in XPS correspond to O 1s, C 1s, and Al 2p at 530, 284, and 73 eV, 

respectively. This confirms the elemental composition in AlOx nanoparticles. Carbon 

incorporation (5 – 10 at%) is commonly observed when TMA is used as the aluminum source 

due to strong Al−C bonds400–402. The carbon content can be partly due to contamination in air, 

as samples are shortly exposed to air during the transfer but can also originate from the methyl 

groups in TMA. Atomic percentage ratios of Al to O are around 1:3 for both A and B type 

reactor samples, with carbon percentages around 10%–15%. The atomic ratios are in general 

not affected by the plasma power used for synthesis (figure 10.6.1). High-resolution XPS spectra 

were analyzed to gain insight into the composition of both types of AlOx nanoparticle samples 

(figure 10.6.2). The binding energy of the Al 2p peak at ∼74.6 eV corresponds to Al−O bonding 

in alumina403,404. The O 1s peak at ∼531.5 eV can be resolved into two individual peaks 

representing O2– and OH– 404–406. FTIR spectra for samples from both reactor types reveal 
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absorption bands related to hydroxyl (−OH), alkyl (C−H), (C−O), and aluminum species 

(Al−O and Al−O−Al). The peak around ~670 cm-1 and the shoulder located around ~860 cm-

1 correspond to the Al–O stretching vibrations in five-fold coordinated AlO5 and four-fold 

coordinated AlO4, respectively. Features from AlO6 stretching vibrations could also be present, 

which according to the literature lie in the 400–650 cm-1 spectral range and overlap with Al–O 

stretching vibrations and oscillations in AlO4 and AlO5
400,407,408.  

 

Statistics of AlOx nanoparticle size was determined using transmission electron microscopy 

(TEM). At p = 3.8 Torr, the average size of AlOx nanoparticles from type A and type B reactors 

are 11 ± 3 nm and 6 ± 1 nm, respectively. The different particle sizes can be explained by the 

different plasma densities at the point of TMA injection. Nanoparticle growth in plasmas 

proceeds through the nucleation of clusters, many of which are initially neutral273. These clusters 

quickly coagulate to form nanoparticles, leading to a reduction of the overall concentration of 

clusters and particles. When the cluster/nanoparticle density has dropped to the level of the ion 

density in the plasma, there are sufficient electrons to charge most particles negatively and 

suppress further coagulation273. In the type B reactor, the TMA precursor is injected into a higher 

density plasma zone compared to the type A reactor, where the precursor is injected into a less 

dense plasma afterglow. Coagulation in the type B reactor is therefore suppressed at smaller 

particle sizes, corresponding to higher particle concentrations, compared to the type A reactor.  

For each type of reactor, size tuning of AlOx nanoparticles can be achieved by varying the reactor 

pressure. This changes the particle residence time in the plasma, and therefore tunes the time of 

surface growth. TEM images of as-synthesized AlOx nanoparticles from type A and B reactors 

under three sets of reactor pressures are shown in figure 10.2.2. At each pressure, the type B 

reactor produces smaller particles than the type A reactor. For both reactor configurations, the 

mean particle size increases with increasing pressure. At 3.8 and 5.2 Torr, AlOx nanoparticles 

from both reactors are aggregated but nearly spherical in shape and have relatively narrow size 

distributions (figure 10.6.3). At the relatively high pressure of 7.5 Torr, AlOx nanoparticles 

exhibit a bimodal size distribution with both small and large irregular nanoparticles present. 
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Figure 10.2.2. TEM images of AlOx nanoparticles synthesized from type A (a)–(c) and type B (d)–(f) reactors 

at pressures of 3.8 Torr, 5.2 Torr and 7.5 Torr with mean sizes and standard deviations. 

 

We estimated the process yield of each type of reactor setup by measuring the weight of the 

AlOx nanoparticle powders collected at p = 3.8 Torr for 10 minutes. With a fixed substrate 

position, samples collected from both types of reactor setups were piles of white powders (figure 

10.6.4). The sample weights from the type A and B reactor were 3.2 mg and 7.0 mg, respectively. 

This corresponds to yields of 19.2 mg/hour and 42.0 mg/hour. The current production rates 

are limited by the TMA and oxygen flow rates due to safety considerations.  
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Figure 10.2.3. Cross-sectional SEM images of AlOx nanoparticle laminate films synthesized from type A (a) 

and type B reactors (b). A correction factor of 1/cos(38°) is applied in the y-axis to account for the tilt of the 

setup with respect to the SEM Everhart-Thornley Detector (ETD). 

 

We deposited AlOx nanoparticle films by rastering a substrate beneath the reactor output orifice 

to study the optical properties of AlOx nanoparticle films. The films were deposited with 240 

raster passes and examined by scanning electron microscopy (SEM) and Mueller matrix 

measurements. The thickness of the AlOx nanoparticle films were measured to be 7.1 ± 1.1 μm 

and 9.1± 0.9 μm for type A and type B reactors, respectively. Characteristic cross-sectional SEM 

images of the nanoparticle films are shown in figure 10.2.3.  



 

 

288 

 
Figure 10.2.4. Real and imaginary parts of the complex AlOx nanoparticle film’s permittivity found in the type 

A reactor (a,b) and type B reactor (c,d), respectively.  

 

Mueller matrix measurements, which allow for the characterization of anisotropic-depolarizing 

samples, including cross-polarization, were performed to extract the effective (homogenized) 

complex permittivity of the particle films. The measurements were also used to determine the 

complex permittivity of the corresponding AlOx nanoparticles. In both type A and B films, no 

polarization conversion from p-polarized to s-polarized or vice versa was present. The Mueller 

matrix data showed only noise for elements mm13, mm31, mm22, mm23, mm32, mm41, and mm42. 

Furthermore, mm12 = mm21. This block diagonal structure of the Mueller matrix indicates that 

the type A and B samples can be treated as macroscopically isotropic409–411. Therefore, the 

effective permittivity of each sample can be represented by a wavelength dependent scalar. The 

nanoparticle films were best homogenized using the Bruggeman mixing formula. This formula 

has been shown to consistently produce an effective permittivity that accurately models 

nanoparticle films, including anisotropic-depolarizing effects151,152,219,412–414. Maxwell-Garnett and 

linear mixing formulas were also explored, but less accurately modeled the measured data. The 

permittivity of the individual nanoparticles were modeled using Gaussian oscillators, to represent 

amorphous phonon resonances, while satisfying the Kramers-Kronig relations. For the type A 

film, a sample thickness of 7.75 μm and a particle fill fraction of 22.3% provided the best fit to 
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the optical interference patterns in a nearly lossless region of the amorphous alumina film 

between 4000 – 6250 cm-1. For the type B film, a thickness of 9.23 μm and fill fraction of 19.4% 

provided the best fit. Further detail about Bruggeman homogenization and the corresponding 

Gaussian oscillator model, including tables for the oscillator parameters, can be found in the 

supplementary information. Figure 10.2.4 shows the reconstructed imaginary part of the particle 

permittivity. Strong oscillators in the 300 – 700 cm-1 spectral range correspond to AlO4, AlO5 

and AlO6 stretching vibrational modes. These values corroborate our results from FTIR as well 

as literature400,407,408,413. Similar to our findings from XPS and FTIR, the reconstructed permittivity 

shows that the particles from both types of reactors have similar chemical composition. The 

depolarization constant for type A and B reactor films was 0.261 ± 0.005 and 0.407 ± 0.006, 

respectively. This indicates predominantly scattering of spherical like inclusions post deposition. 

All of the above characterizations reveal that particles from type A and type B reactors have 

similar compositions but different sizes.  
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10.3 CRYSTALLIZATION OF AMORPHOUS ALUMINA NANOPARTICLES  

 

In a nonthermal plasma, crystallization of nanoparticles can occur through the heat generated 

by the recombination of electrons and ions on the nanoparticle surfaces415,416. Here the as-

produced AlOx nanoparticles have amorphous structures, indicating that particle heating from 

the nonthermal plasma is not sufficient to induce crystallization. Post-synthetic annealing of 

powder samples of amorphous alumina nanoparticles was explored to induce nanoparticle 

crystallization and subsequent phase transformation to networks of crystalline alumina 

nanoparticles. 

 

 
 

Figure 10.3.1. XRD patterns of the post-synthesis annealed AlOx nanoparticles from (a) type A and (b) type 

B reactors, with annealing temperatures ranging from 400 °C to 1000 °C and an annealing time of 18 h.  

 

To study the crystallization and phase transformation behavior of powder samples of 

amorphous AlOx nanoparticles, a pile of AlOx nanoparticles was collected and annealed in a 

Thermo Scientific Lindberg Blue furnace at temperatures ranging from 400–1100 °C in the 

atmosphere. Samples collected in this manner are expected to have porosities > 80% and consist 

of loose agglomerates of nanoparticles276. some of the agglomerates may have already been 

formed in the gas phase before deposition. The typical temperature ramp rate was ∼50 °C/min. 

Since the properties of powder samples of small AlOx nanoparticles are of primary interest, we 

explored the crystallization behavior of samples synthesized at 3.8 Torr from type A and B 

reactors, respectively. Phase transformation of amorphous alumina typically proceeds through 

the amorphous-to-γ and γ-to-α phase transitions417,418, or with an additional transition to the θ-

phase between the transformation from the γ- to α- phase419, before reaching the 

thermodynamically stable α-phase. Our observations reveal that powder samples of AlOx 

nanoparticles from both types of reactors begin to crystallize at 800 °C producing a mixture of 
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θ- and γ-phases, as shown in figure 10.3.1a and 10.3.1b. The crystallization temperature is 

consistent with that from the literature370,399. 

 

 
 

Figure 10.3.2. XRD patterns of the post-heated AlOx nanoparticles from (a) type A and (b) type B. Both 

samples were annealed at 1100°C for 18 h. The bottom columns in both graphs show the reference profile of 

γ-, θ-, and α-phase aluminum oxides. 

 

As the annealing temperature increased up to 1100 °C, we observed that the powder samples of 

AlOx nanoparticles from the type A and B reactors form different crystalline phases (figure 

10.3.2). The samples of larger AlOx nanoparticles from the type A reactor form a mixture of θ- 

and γ-phase at 1100 °C whereas the samples of smaller AlOx nanoparticles from the type B 

reactor form a mixture of θ- and α-phases. Time of post-synthetic annealing also affects phase 

transformation of the type B reactor AlOx nanoparticle powders. When the annealing time 

increased up to 40 h, type B AlOx nanoparticle powders form particle networks of phase pure 

α-Al2O3 nanocrystals (figure 10.3.3).  
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Figure 10.3.3. XRD and TEM of particles. (a) XRD pattern of type B AlOx nanoparticles heated at 1100°C 

for 18 h and 40h; TEM images of (b) AlOx nanoparticles annealed at 1100 °C for 18 h and (c) AlOx 

nanoparticles annealed at 1100 °C for 40 h. 

 

This transformation is also accompanied with a significant crystal growth. The mean crystallite 

sizes of crystalline alumina particles after 18 h annealing were estimated using Scherrer fittings.  

Annealing for 18 h of ~6 nm AlOx nanoparticle powders at 1100 °C resulted in a particle 

network consisting of a mixture of ~30 nm θ-Al2O3 and >100 nm α-Al2O3 particles (figure 

10.6.5). Samples of phase pure α-Al2O3 particles obtained after 40 h are also estimated to be 

comprised of nanocrystals larger than 100 nm. The crystalline grain sizes are confirmed by TEM 

images (figure 10.3.3b and 10.3.3c). It is interesting to observe that the powders of larger AlOx 

nanoparticles from the type A reactor never exhibit α-Al2O3 phase even with longer annealing 

times. 

 

As the powder samples of AlOx nanoparticles from both types of reactors have similar 

composition, we postulated that the difference in their phase transformation behavior is likely 

due to the different sizes of their as-synthesized constituent particles. To test this assumption, 

we investigated the phase transformation behavior of powder samples of the large AlOx particles 

with mean sizes around 11 and 15 nm synthesized in the type B reactor with higher reactor 

pressures. XRD patterns taken after 18 h of annealing time reveal that powders of smaller ~6 

nm AlOx nanoparticles form α-phase Al2O3 along with θ-Al2O3, while powders of larger ~11 and 

~15 nm AlOx nanoparticles only forms θ-Al2O3 and do not exhibit any α-phase features (figure 

10.6.6). These observations support our assumption that powders of initially smaller size AlOx 

nanoparticles have a higher tendency to transform to the α-phase after annealing.  
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It has been pointed out that necking and densification of particles starts to occur when 

annealing amorphous AlOx nanoparticles, forming nanoporous structures before 

crystallization399,420,421. It is likely that during the annealing, the rate of densification and neck 

formation is faster in powder samples of smaller particles compared to larger particles, as the 

neck growth is dominated by mass transport and is thus enhanced in smaller size particles422. 

The fact that powder densification can be promoted by a decrease of particle sizes has also been 

observed in other nanoparticle systems423. After neck growth, the big, interconnected structures 

tend to transform to α-phase Al2O3 as temperature further increases, as it is the 

thermodynamically stable phase for bulk Al2O3.  
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10.4 CONCLUSION  

 

Amorphous alumina nanoparticles with average sizes ranging from 6 nm to 22 nm were 

successfully synthesized using a nonthermal plasma approach with two different reactor 

geometries with typical yields of 19 mg/hour and 42 mg/hour, respectively. Infrared Mueller 

matrix measurements indicated the optical properties of the nanoparticle film could be modeled 

by a homogenized effective refractive index. The homogenized refractive index of the particle 

film was shown to be accurately represented using the Bruggeman effective medium model. 

Based on this model, particle fill fractions were estimated to be around 20% for both type A and 

type B reactors.  Furthermore, the refractive index of the amorphous alumina nanoparticles were 

modeled using Gaussian oscillators, showing clear AlO4, AlO5, AlO6, and Al−OH spectral peaks, 

matching reports in literature. Post-thermal annealing of powder samples of AlOx particles from 

both types of reactors led to crystallization, forming a mixture of θ- and γ phases at 800 °C. 

While powder samples of small AlOx nanoparticles with average diameters of ~ 6 nm were 

transformed into phase pure α-Al2O3 upon annealing at 1100°C. Powder samples of larger AlOx 

nanoparticles never formed α-Al2O3.  
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10.5 METHODS 

 

For the synthesis of amorphous alumina (AlOx) nanoparticles via nonthermal plasma, 

trimethylaluminum (TMA) and oxygen (O2) gas were used as precursors, with argon as the 

carrier gas. In the plasma region, TMA is decomposed via electron impact or radical abstraction 

reactions, forming reactive metal atoms or partially decomposed TMA fragments. The reactive 

species can subsequently react with oxygen atoms to form Al2O3
424. We considered the following 

chemical equation to control appropriate flow rates: 

 

2Al(CH3)3 + 12O2  →  Al2O3 + 6CO2 + 9H2O. 

 

Based on the stoichiometric molar ratio of TMA and oxygen (TMA:O2 = 1:6), over six times 

more oxygen than TMA should be fed for complete oxidation of TMA to Al2O3 and other 

reaction products (CO2 and H2O). We chose an excess oxygen flow rate of 6 standard cubic 

centimeters per minute (sccm) compared with a TMA flow rate of 0.2 sccm. 

 

 
Figure 10.5.1. Schematic of the two types of nonthermal plasma reactors used for AlOx nanoparticle synthesis 

and film deposition. 

 

A schematic of the two types of reactors used in this work is shown in figure 10.5.1. AlOx 

nanoparticles were synthesized in a nonthermal, low pressure flow-through reactor equipped 

with a 13.56 MHz radio-frequency (RF) capacitively-coupled plasma source similar to that used 

in refs. 348,396. Because two precursors can spontaneously react with each other to produce 

uncontrolled products425, we injected both precursor species separately into the plasma for 
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dissociation to occur in the plasma zone. There are two strategies that have been 

demonstrated before for the successful synthesis of metal oxide nanoparticles348,396.  In the first 

method, denoted as type A, O2 diluted in Ar gas was injected from the top inlet of the reactor 

and flowed through the region where RF power was applied. Meanwhile, 0.2 sccm of TMA 

vapor with 6 sccm of Ar gas was injected from a sidearm tube into the downstream region of 

the Ar/O2 plasma. In this afterglow zone, AlOx nanoparticles nucleated and grew. In the second 

method, denoted as type B, the TMA vapor diluted in Ar was injected through an inlet tube that 

extended into the main reactor chamber, while O2 gas diluted with Ar gas was passed through a 

sidearm tube and into the space around the upper injection tube. The ring electrodes were placed 

such that plasma initiated about 1 cm above the end of the top injection tube and the discharge 

extended downstream of the tube end in order to dissociate TMA and O2 precursors individually 

before they mix in the main reactor chamber. As-synthesized AlOx nanoparticles in both 

configurations were collected on silicon wafers through a slit-shaped orifice where supersonic 

nanoparticle impaction produced a curtain of nanoparticles traveling at high speeds276. For each 

type of reactor, three pressure conditions were studied by using three different orifice sizes (0.3, 

0.4, 0.5 mm × 8 mm) while keeping the gas flow rates constant.  

 

For optical characterization, nanoparticle films were deposited by using the 0.5 mm × 8 mm 

orifice and passing a piece of Si wafer carrying a 300 nm Au film below the orifice with 240 

raster passes. The gas flow rates and upstream and downstream pressures are summarized in 

Table 10.5.1.  

 

 Gas Flow rate [sccm] 
𝑃𝑢𝑝 

[Torr] 

𝑃𝑑𝑜𝑤𝑛 

[Torr] 

Type A 

O2 diluted in Ar (O2/Ar) 6 (O2) / 60 (Ar) 

3.8 0.42 TMA vapor with Ar 

(TMA/Ar) 

0.2 (TMA) / 6 

(Ar) 

Type B 

O2 diluted in Ar 

(O2/Ar) 
6 (O2) / 60 (Ar) 

3.8 0.47 
TMA vapor with Ar 

(TMA/Ar) 

0.2 (TMA) / 6 

(Ar) 

 

Table 10.5.1. Summary of synthesis parameters used in this study. 

 

X-ray diffraction (XRD) was performed with a Bruker D8 Discover 2D X-ray diffractometer 

equipped with a Co Kα radiation point source. Instrument broadening was obtained by 

measuring a standard LaB6 crystal powder sample with the same scanning parameters (figure 

10.6.7). For XRD analysis, aluminum oxide nanoparticles were directly deposited onto Si wafers 
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to form a pile of powder. The XRD patterns were converted to the wavelength of a Cu 

source (𝜆 = 1.54 Å) for data analysis.  

 

Transmission Electron Microscope (TEM) images were taken from a Tecnai T12 microscope 

with an accelerating voltage of 120 kV. Nanoparticles were either directly deposited from the 

gas phase or drop-cast in a methanol dispersion on holey carbon TEM grids for imaging.  

 

Fourier-transform infrared spectroscopy (FTIR) was performed with a Bruker ALPHA FT-IR 

spectrometer using the attenuated total reflection (ATR) module in a nitrogen-filled glovebox. 

AlOx nanoparticles were dispersed in methanol and drop-cast onto the ATR crystal. 

Nanoparticles were allowed to dry before taking measurements.  

 

X-ray photoelectron spectroscopy (XPS) was performed with a PHI Versa Probe III XPS and 

UPS system. For XPS analysis, aluminum oxide nanoparticles were deposited onto Si wafers 

with 30 raster passes to form a film.  

 

Nanoparticle laminate film thicknesses were measured empirically by cross-sectioning the 

nanoparticle laminate films with a Ga focused ion beam (Ga-FIB) and imaging with a scanning 

electron microscope (FEI Nova 600 NanoLab DualBeam) at a 52° tilt. The cross-sectioning was 

performed in two steps: a regular cross-section (30 kV, 1 nA) approximately 2 µm in width was 

cut first followed by a cleaning cross-section (30 kV, 30 pA). The thickness of the cross-sections 

were measured with ImageJ with a correction factor of 1/cos(38°) in the y-axis to account for 

the tilt.  

 

To analyze the film optical properties, the first four columns of the angle- and wavelength-

resolved Mueller matrix were measured in reflection mode. Mueller matrix measurements were 

performed using an IR-VASE Mark II ellipsometer with an AutoRetarder from the J.A. 

Woollam Company. The configuration was polarizer-sample-compensator-analyzer (PSCA). 

The measurement spectral range extended from 250 to 5000 cm-1 with a resolution of 7.7 cm-1. 

The angular range was 40 to 70 degrees from the surface normal, with an angular resolution of 

5 degrees. Data was averaged over 400 measurements - five days of continuous measurement 

per sample under ambient conditions. Once the samples were measured, an oscillator model of 

the film permittivity was constructed using the software WVASE32 from J.A. Woollam. Model 

parameters such as film thickness and particle fill fraction were initialized based on the empirical 

measurement averages and constrained by three times the measurement standard deviations. 

Initial values for the particle oscillator model were taken from literature. All model parameters 

were simultaneously fitted using the full angle and wavelength-resolved Mueller matrix data. 
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10.6 SUPPORTING FIGURES 

 

 
Figure 10.6.1. Atomic concentration in samples from type B reactor obtained by XPS with power varying 

from 5 W to 40 W.  
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Figure 10.6.2. XPS high resolution spectra of Al 2p peak (a,b), O 1s peak (c,d) and C 1s peak (e,f) for AlOx 

nanoparticle samples from type A and type B reactors. The peak corresponding to adventitious carbon is 

shifted to 284.8 eV as a reference. 
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Figure 10.6.3. Size distributions corresponding to the TEM images in figures 10.2.3 (a) to (f). 

 

 

 

 
 

Figure 10.6.4. Photograph showing AlOx nanoparticles deposited from type A and type B reactors for same 

period of time. 
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Figure 10.6.5. Scherrer fittings of XRD patterns (λ = 1.54 Å) of AlOx nanoparticles from type B reactor after 

heating at 1100 ˚C for 18 h and for 40 h. To obtain size estimates for the 𝛼-phase and 휃-phase individually, 

we choose non-overlapping peaks from the two phases. For the 𝛼-phase, (113) peaks were fitted (a,b). For 휃-

phase, peaks around 30-34˚ (c) and 44-50˚ (d) were fitted. Instrumental broadening was accounted for by 

subtracting the FWHM of the nearest peak of the LaB6 standard sample, figure 10.6.1. In the Scherrer 

equation, a shape factor of 0.89 was used. As the widths of 𝛼-phase peaks are close to those of the LaB6 

standard sample indicating large crystallite sizes, a rough size estimate of >100 nm is quoted in the main text. 
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Figure 10.6.6. XRD patterns of samples from type B reactor for three nanoparticle sizes, obtained by varying 

the gas pressure, after annealing at 1100˚C for 18 hours. Only the smallest particles with about 6 nm size show 

the appearance of the 𝛼-phase. 

 

 

       
 

Figure 10.6.7. XRD pattern from a standard LaB6 sample taken using a Bruker D8 Discover 2D X-ray 

diffractometer. This pattern is used as a reference to correct for instrument broadening. 
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10.7 MODELING THE PERMITTIVITY OF AlOx NANOPARTICLE FILMS 

 

The film’s homogenized permittivity (휀𝑒𝑓𝑓) can be represented by a wavelength dependent 

scalar. We model 휀𝑒𝑓𝑓  using the Bruggeman mixing formula 

 

𝑓𝐴𝑙𝑂𝑥  
𝐴𝑙𝑂𝑥− 𝑒𝑓𝑓

𝑒𝑓𝑓+𝑘( 𝐴𝑙𝑂𝑥− 𝑒𝑓𝑓)
+  (1 − 𝑓𝐴𝑙𝑂𝑥)

𝑎𝑖𝑟− 𝑒𝑓𝑓

𝑒𝑓𝑓+𝑘( 𝑎𝑖𝑟− 𝑒𝑓𝑓)
= 0, 10.7.1 

 

where  휀𝐴𝑙𝑂𝑥 and 휀𝑎𝑖𝑟 are the permittivity of the nanoparticles and air, respectively; 𝑓𝐴𝑙𝑂𝑥 (=

22.3 ± 0.33% for type A and 19.4 ± 0.11% for type B) volume fill fraction of the AlOx 

nanoparticles; and 𝑘 (= 0.261 ± 0.005 for type A and 0.407 ± 0.006 for type B) is the 

depolarizing factor. 휀𝐴𝑙𝑂𝑥 is modeled as 

 

𝐴𝑙𝑂𝑥(𝐸)

𝑜
  = 휀∞ + 휀𝑝𝑜𝑙𝑒1 + 휀𝑝𝑜𝑙𝑒2 + ∑ 휀𝐺𝑎𝑢𝑠𝑠𝑛(𝐸)

11
𝑛=1 , 10.7.2 

 

where 휀𝑜 is the permittivity of free space and 휀∞ (= 3.09 ± 0.01 for type A and 2.97 ± 0.02 

for type B) is the infinite frequency permittivity. The complex part of the Gaussian oscillators 

(휀𝐺𝑎𝑢𝑠𝑠𝑛 = 휀1𝑛(𝐸) + 𝑖휀2𝑛(𝐸)) are given by 

 

휀2𝑛(𝐸) = 𝐴𝑛𝑒
−(
𝐸−𝐸𝑛
𝜎𝑛

)
2

− 𝐴𝑛𝑒
−(
𝐸+𝐸𝑛
𝜎𝑛

)
2

, 𝜎𝑛 =
𝐵𝑟𝑛

2√ln(2)
, 10.7.3 

 

where 𝐵𝑟𝑛 is the full-width at half-maximum, which accounts for spectral broadening. The real 

part of the permittivity is given by the Kramers-Kronig relation 

 

휀1𝑛(𝐸) =
2

𝜋
𝑃𝑉 ∫

𝜉 2𝑛(𝜉)

𝜉2−𝐸2
𝑑𝜉

∞

0
, 10.7.3 

 

where PV is the principle value. Table 10.7.1 and table 10.7.2 give the fit parameters of the 

Gaussian oscillators for the amorphous Al2O3 nanoparticle films from type A and type B 

reactors, respectively.  
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Type A Gaussian Oscillator Fit Literature Values 

Vibration Amplitude Broadening 

[cm-1] 

Frequency 

[cm-1] 

Frequency 

[cm-1] 

Ref. 

AlO6, AlO4 

Deformations 

1.0340 83.221 344.27 322−326 

 

400,408 

AlO6 

stretching 

4.6977 408.32 475.78 482−491 1 

AlO4 

stretching 

0.3357 107.70 851.46 902−880 407,408,413 

Al−OH 

sym/asym 

0.6933 341.47 1027.5 1072−1160  408,426 

H2O 

deform./vib. 

0.22815 92.908 1410.6  1375 1 

H−O−H 

bend 

0.31668 159.19 1535.8 1600 413 

−COO- 0.0783 74.000 1655.8 1300−1850 400 

 0.05905 1700.8 2355.7    

Al−OH 

stretching 

0.19133 618.98 3207.7 3250−3600 400,413 

O−H 

stretching 

0.20091 278.01 3429.0  3400-3600 400,408,426 

Al−OH 

stretching 

0.0719 162.00 3523.7 3250−3600 400,426 

 

Table 10.7.1. Gaussian oscillator parameters used to reconstruct the permittivity of nanoparticles from type 

A reactor. Phonon resonance type (first column), amplitude (second column), spectral broadening (third 

column) and resonant frequency (fourth column) of the Gaussian oscillators used to calculate the AlOx particle 

permittivity from Mueller matrix data. The fifth column gives the resonant frequency range expected from 

previous literature reports. Citations for the expected frequency range are in the sixth column.  
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Type B Gaussian Oscillator Fit Literature Values 

Vibration Amplitude Broadening 

[cm-1] 

Frequency 

[cm-1] 

Frequency 

[cm-1] 

Ref. 

AlO6, AlO4 

Deformations 

2.5049 109.52 318.72 322−326 

 

400,408 

AlO6 stretching 4.0194 320.53 531.22 482−491 408 

AlO4 stretching 0.4802 100.47 837.05 902−880 407,408,413 

Al−OH 

sym/asym 

0.78315 397.17 966.53 1072−1160   

H2O 

deformations/vi

brations 

0.26118 98.502 1403.0  1375 400,408 

H−O−H bend 0.37889 140.14 1520.6 1600 413 

−COO- 0.0780 74.000 1635.8 1300−1850 400 

 0.0759 1883.7 2237.9    

Al−OH 

stretching 

0.1738 559.78 3129.3 3250−3600 400,413 

O−H stretching 0.3324 304.69 3406.2  3400-3600  400,408,426 

Al−OH 

stretching 

0.1019 162.53 3607.7 3250−3600 400,413 

 

Table 10.7.2. Gaussian oscillator parameters used to reconstruct the permittivity of nanoparticles from type 

B reactor. Phonon resonance type (first column), amplitude (second column), spectral broadening (third 

column) and resonant frequency (fourth column) of the Gaussian oscillators used to calculate the AlOx particle 

permittivity from Mueller matrix data. The fifth column gives the resonant frequency range expected from 

previous literature reports. Citations for the expected frequency range are in the sixth column. 
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C h a p t e r  1 1  

CONCLUDING REMARKS 

“We have not succeeded in answering all our problems. The answers we have found only serve 

to raise a whole set of new questions. In some ways we feel we are as confused as ever, but we 

believe we are confused on a higher level and about more important things.” 

 

- Bernt Øksendal, Stochastic Differential Equations, 2003 

 

 

Following unprecedented advances in nanofabrication, much of modern day nanophononics is 

focused on the careful design of material heterogeneity to control nearly every aspect of light. 

Flat optics and metasurfaces push the limit of miniaturization, bringing with them a promise of 

compact complex lens systems in the palm of your hand. Freeform inverse design gives 

tantalizing claims of an unexplored and potentially fertile landscape where computer driven 

structures and topologies give record-breaking metrics. It is hard to tell the future of 

nanophotonics and where (or if) anything in this dissertation proves useful in the long run. With 

that said, it remains clear that there is a need for photonic devices at the scale of centimeters and 

at the scale of meters; and these regimes have different design constraints. The topics in this 

thesis have been motivated by the latter length scale. The overarching theme is to better 

understand the underlying mechanisms of emergent photonics behavior, when governing 

parameters are controlled only in the form of a probability distribution.  

 

In general, I feel an important and under-explored area of nanophotonics is characterizing 

robustness to error, disorder, and nonidealities. Clearly, there are many ways to design a 

nanophotonic system to accomplish the same goal. Therefore, the optimal design is not 

necessarily a metric of efficiency, but of robustness, cost, and scalability. Understanding 

robustness to error/disorder is then certainly significant to narrowing the design space and 

choosing the best solution. This may become even more important with freeform design. An 

example of robustness used often in this dissertation is the optically induced magnetic resonance. 

As was shown in Chapters 2, 4, 7, and 9, electric type resonances in silicon easily couple between 

particles resulting in a notably perturbed moment given random spatial distributions. In contrast, 

magnetic type resonances comparatively weakly couple and maintain better their isolated particle 

characteristics. Correspondingly, multiple examples are shown where tuning the size distribution 

shifts well-defined magnetic resonance peaks across a more chaotic electric-type background. 
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Classifying mechanisms by their “degree of robustness” could serve as a highly useful tool 

as more nanophotonic concepts transition from academia to industry.   

 

Much of this dissertation has focused on finding case examples of emergent phenomena and 

linking these to possible applications. In particular, examples are motivated by the features and 

constraints of nonthermal equilibrium dusty plasma synthesis. Though this is important for 

demonstrating feasibility and motivating both the photonics and plasma community, the scope 

is limited. For example, this dissertation places a large emphasis on particle design over 

correlation functions, as this directly maps to the current goals of our collaborators. Follow up 

academic work focusing on novel systems could explore more spatial distributions and 

correlation functions. Examples of disordered hyperuniformity and aperiodic tilings come to 

mind as interesting configurations for study. More advanced directional control of the 

incoherent field beyond the restriction of transmission or reflection hemispheres could also be 

studied. This may have an interesting impact on incoherent photonics, such as incoherent 

thermal and visible emitters.   

 

In regard to the electromagnetic program, much more work can be done. It would be nice to 

generalize the program to support a larger set of particle shapes. At present, much of the 

fundamentals to support this effort already exists. Though, in practice, this support adds 

computational time and memory. This is because arbitrary particle shapes can require larger 

transition matrices and matrices of different sizes. Also, care should be taken in regard to 

particles with overlapping minimally circumscribing spheres. Coupling between these particles 

requires care in the basis conversion. Substrate interactions are of primary importance. It would 

also be interesting to explore approximate analytic and quasi-analytic methods and benchmark 

these against rigorous calculations. Simpler models are not only more amenable to the general 

scientific community but can offer a quick framework for optimization. For example, Bayesian 

optimization can use lower fidelity surrogates as a method to develop prior information. The 

quasi-analytic theory discussed in part I provides an interesting framework for optimization 

because you can explicitly access operators such as the transition and translation matrix. In this 

way you can define the optimization problem based on quantities not directly accessible in full-

wave simulations. For example, you can explicitly define for the optimizer to maximize coupling 

between a magnetic-type dipole and an electric-type quadrupole. Or, for example, you can place 

particles at null points in the translation operator to reduce coupling effects. In general, I suspect 

this could offer a rich framework to design novel emergent phenomena while still maintaining 

an intuitive understanding of the underlying physics often lost in the optimization process.  
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Finally, if I have learned anything from stock market returns, it is that it is incredibly hard to 

predict the future. Maybe the best thing is to throw this work on a shelf, do something else, and 

never look back… 
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A p p e n d i x  A  

TIPS FOR THE NEXT GENERATION 

“It is called research because people searched and did not find. So, we re – search.”  

 

– Ray T. Chen, 2015 

 

 

The successful works in this dissertation are the fruit of years of failed endeavors, code bugs, 

and conceptual mistakes. This section highlights some main learning moments that may be 

useful to transfer to the next generation of “re – searchers.” 

 

The radiative cooling paper, discussed in Chapter 6 accompanies unpublished preliminary 

experimental measurements. These measurements were performed to validate that the 

traditional effective medium models discussed in Chapter 6 are acceptable models to describe 

the physical system. The measurement procedure is shown in figure A1. As discussed in Chapter 

8, extracting optical parameters in this thesis is done by implicit methods. Specifically, thin film 

and effective medium models are run and the inputs are tuned until the best match is found with 

experimental reflection, transmission, and absorption data. Again, as discussed in depth in 

Chapter 8, it is critical to constrain as much as possible the range of the independent variables 

that go into your models. This requires the use of multiple measurement tools, that each come 

with their own experimental nonidealities and uncertainty. Furthermore, transitioning between 

measurement tools introduces other inherent errors.  

 

• The optical spot does not measure the same area between reflection, transmission, 

and absorption measurements. My film shows a spectrum that is not physical!  

 

I found that semi-transparent substrates were a great solution to this problem. For example, 

silicon substrates can be used in the infrared region. Prior to this solution, I had one sample for 

reflection and one for transmission. Though this can maximize the signal-to-noise ratio of for 

each measurement, it is a complete and unreliable headache! Thickness, filling fraction, spatial 

uniformity, and material quality often change between samples. This is particularly true of 

random films deposited using reactors that are not of industry standards. Using semi-transparent 

substrates, I could often do reflection and transmission measurements without ever unmounting 

the sample. When the sample did need to be unmounted, clear markers can be made. 
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This method will reduce the signal-to-noise ratio (SNR) for each measurement. This is a very 

easy problem to solve. Just average more. In the visible spectra, I would average measurements 

for a couple of hours. In the infrared, I would average continually for upwards of a week (~7 

days).   

 

• How to maximize the SNR with semi-transparent samples. 

 

Model the measurement and the sample to find optimal conditions!  

 

I would start with the thin-film equations and permute parameters until I reached the maximal 

(theoretical) signal strengths. I would then request this sample from the collaborators. This 

requires a deep understanding of what the measurement tool is actually measuring. The great 

part about modeling your measurement is that you learn much more about the measurement.  

 

For example, ellipsometry works best near Brewster’s angle. If you suspect that the Bruggeman 

model is likely to work, use this to vary film thickness, filling fraction, and substrate material to 

maximize the difference between s- and p-polarization. I simultaneously optimized SNR for all 

proposed measurements and found used the sample parameters that was the overall best. I was 

then very demanding on the film sample quality from my collaborators…. I thank Dr. Himashi 

deeply for putting up with this.  

 

•  Infrared ellipsometry takes forever and my sample wasn’t even good. How do I 

prevent this? 

 

Start with normal incidence FTIR. Much can be learned from this alone. Only do infrared 

ellipsometry as an absolute last step before any destructive techniques. 

 

•  The particles are like fluffy soot. They easily wipe off the substrate! 

 

You can easily ruin a dusty plasma particle sample. First, have the collaborators deposit on 

substrates with wide margins. Second, use multiple layers of tape on the edges of the sample. 

This creates a thickness barrier on the edges of the sample to prevent brushing/scratching when 

measuring.  

 

Use the ability to wipe to your advantage! I use a razor blade to scrape off all but a region of the 

most uniform area that is proportional to the spot size. This helps to ensure measurements of 
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the same area. If you are substantially off center, you will know. You measure notably less 

particles.  

 

•  Use double polished wafers.  

 

To be honest, this may be a superstition on my part. Usually, you want to roughen the back side 

of a wafer to outcouple Fresnel reflections within the substrate. For random particle films, this 

roughness may be on the order of the thickness of the random film or one of the film layers. 

Additional incoherent Fresnel reflections from a double side polished substrate is easy to model. 

A backside layer looking like a secondary random film may not be.  

 

•  Spend 80 – 90% of your time measuring gold standards.  

 

The number 1 novice mistake is turning on a measurement device and directly measuring your 

sample. Do not do this. Many bad measurements look like feasible measurements. Many bad 

measurements even look like good results. 

 

A good measurement is 80 – 90% of your time measuring gold standards. Tune the optics, check 

lamp power, validate reproducible results, et cetera. Practice the procedure to remind your 

muscles of the motions so the entire process flows naturally. This may feel like a waste of time. 

It is not. The novice will try to measure directly in the hope of saving time. They will then spend 

the next 3 weeks trying to understand the “weirdness” in their measurement. At best they spend 

the entire day trying to figure out what went wrong. Just go ahead and dedicate the entire day to 

a single measurement up front. Make round 4+ hours or more dedicated to measuring 

references, processing the data, and ensuring a good match. (I automated the data processing 

part for this reason.)  

 

•  Making high quality SiO2 and Si3N4 nanoparticle films 

 

Much work has gone into making silicon dioxide and silicon nitride particle films with minimal 

solar abortion and strong infrared absorption. The majority of details in this regard should be 

addressed by Dr. Himashi Adaraarachchi, who fabricated the particles. Magel Su also took 

over the experiments of this project form me. He may have additional knowledge.  The 

primary lesson we learned is that we were extensively unsuccessful in developing high quality 

films by deposition silicon nanoparticles then annealing in an oxygen or nitrogen environment. 

Attached are examples of the annealing results. After some time, Dr. Himashi Adaraarachchi 

concluded the best approach was to synthesize the particle directly in the plasma chamber. A 



 

 

342 

primary reason for this is that the underlying layer system could not withstand the annealing 

process. This may not preclude the use of annealing altogether. But it introduces complications 

with any underlying fabrication post deposition of particles.  

 

It should be noted that high quality silicon nitride nanoparticle films turned out to be a quite 

hard endeavor for our collaborators. The silicon nitride properties would vary often between 

samples under similar deposition conditions.  

 

 
 

Figure A1. Example of silicon nanoparticles deposited on an Ag substrate and annealed at 

800C for 1 hour.  

 

Below is a miscellaneous list of common problems I encountered when developing and using 

electromagnetic models. 

 

• Parallelization and distributed computing are not panaceas. 

 

I was thoroughly impressed with the speed and memory improvements that can be obtained by 

optimizing sequential portions of code. In particular, I could achieve on the order of 100 – 1000x 

speed improvements before ever adding an additional processor! In truth, most code is poorly 

written for computational performance. For example, your Python code may rely heavily on 

nested for loops, even though Python is well known for being notoriously slow for such a task. 

In this case, vectorization or custom submodules written in C could improve your code’s 

performance well beyond the number of cores you have available! Furthermore, this benefit 

comes with none of the additional complexity inherent to parallelization. In summary, do not 

just throw cores at the problem… 

 

In many cases, effective parallelization is not as simple as writing sequential code, then 

implementing this on multiple workers. Proper parallelization is its own subject of study and 

should be accounted for at the beginning of algorithm design. Below is a list of questions you 

should answer before writing a parallel program, 
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- What is the expected improvement? 

I have wasted valuable time parallelizing code with little speed benefits and ballooning 

complexity. Look before you leap. Some programs are embarrassingly parallel, meaning 

the entire computational scheme is parallelizable. Finite-difference time-domain is an 

example of such a scheme. Though, this is not the common scenario. A quick method 

to determine if parallelization is worth your time is to do a back of the napkin calculation 

using Amdahl’s Law. This states that the computational benefit of parallelizing your code 

is 1/(𝑓 +
1−𝑓

𝑛
), were 𝑓 is the fraction of the code that is strictly sequential and 𝑛 is the 

number of available processors. This formula is assumes no computational overhead. 

More generally, the computation time for parallelized code is  

 

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =  𝑆(𝑥) +
𝑃(𝑥)

𝑛
+ 𝐶(𝑥, 𝑛), 

 

where 𝑥 is the size of the problem, 𝑆 is the portion of the code that is strictly sequential, 

𝑃 is the portion that can be parallized, and 𝐶 is the communication overhead as a result 

of parallelization.  

 

- How granular should I be and does this require load balancing? 

Parallelization requires overhead. Deciding on the granularity is important. Work must 

be distributed in appropriately sized chunks. If the chunks are too granular, the overhead 

of parallelization becomes the computational bottleneck. Correspondingly, load 

balancing is important. If the chunks are not properly distributed, the code is as slow as 

the slowest chunk. More sophisticated protocols can be used to poll workers and 

dynamically load balance. Clearly, this comes at an increased overhead cost, but is great 

for tasks with variable demands. In my own projects, I found load balancing was critical 

in distributed computing. DASK was a great software in this regard.  

 

  

- How will memory management affect results? 

If is important to ask if the workers operate on shared or independent memory. This 

has implications on both communication overhead and synchronization. Memory 

allocation/deallocation can necessitate synchronization between workers depending on 

how the code is written. Python uses garbage collection to manage memory 

automatically. Though this is good for fast prototyping, it can create a headache for 

parallelization. An important consequence is the global interpreter lock (GIL).  I 
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recommend reading more about the GIL. In particular you should read how the GIL 

limits multithreading.  

  

 

- Should I use OpenMP or MPI? 

A message passing interface (MPI) enables the control of both data distribution and 

process synchronization, across both single and multiple nodes.  

 

For example, parallelization requires overhead. Deciding on the granularity is important. Work 

must be distributed in appropriately sized chunks. If the chunks are too granular, the overhead 

of parallelization becomes the computational bottleneck. Correspondingly, load balancing is 

important. If the chunks are not properly distributed, the code is as slow as the slowest chunk. 

More sophisticated protocols can be used to poll workers and dynamically load balance. Clearly, 

this comes at an increased overhead cost, but is great for tasks with variable demands. In my 

own projects, I found load balancing was critical in distributed computing. DASK was a great 

software in this regard. Memory allocation is also a critical (and perhaps subtle) aspect of 

parallelization, especially for Python programs. Memory allocation/deallocation can necessitate 

synchronization between workers depending on how the code is written. Python uses garbage 

collection to manage memory automatically. Though this is good for fast prototyping, it can 

create a headache for parallelization. An important consequence is the global interpreter lock 

(GIL).  I recommend reading more about the GIL. In particular you should read how the GIL 

limits multithreading.   

 

• Profile your code!  

 

Code is as slow as its slowest part. Focus on that. I was initially unaware of how long it took to 

calculate Clebsch-Gordon coefficients. Correspondingly, I spent a long time optimizing the 

wrong sections of code.  

 

• Avoid numerical integration whenever you can.  

 

The problem with numerical integration of continuous variables is that the dimension is in 

principle infinite. Sharp features and/or high frequency oscillations can quickly become a 

computation and memory bottleneck. Nonlinear sampling may be needed.  

 

Whenever you are faced with a numerical integration, check if someone has mapped the solution 

of that integral into an equivalent series or recursive solution. If so, it is entirely possible they did 
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this for computational reasons. Check the research papers. It is likely worth your effort to 

implement. The series to solve may look scary and ugly. Recursion may feel abstract to you. That 

is ok.  

 

• Follow coding standards and protocols. 

 

Many (especially Ph.D. students) learn programing on the job. The resulting code is practical, 

but often not best practice. Standards and protocols are vital for keeping order, especially in a 

large open-source environment.  

 

“A universal convention supplies all of maintainability, clarity, consistency, and a foundation for 
good programming habits too. What it doesn’t do is insist that you follow it against your will. 
That’s Python!” 

- Tim Peters on comp.lang.python, 2001-06-16 

Even if you do not plan to share your code openly, you will still greatly benefit by conforming 

to standards as it will prevent you from dealing with a huge list of code bugs. The Python 

Enhancement Protocols (https://peps.python.org/pep-0000/) are the gold-standard for writing 

acceptable Python code. In particular PEP 8 defines the style guide for python code. If you are 

combining C and Python, when you will benefit greatly by following the PEP 7 standards. PEP 

257 defines the standard for code documentation. Code is read much more often than it is 

written. Document your code! Most compilers can generate shell docstrings automatically.  

 

https://peps.python.org/pep-0000/
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