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ABSTRACT

The quantum two-level system, or “qubit,” is a simple platform that nonetheless dis-
plays fundamentally non-trivial quantum behavior. The rare-earth magnet LiHoF4

is a natural physical representation of a system of coupled qubits. With its uncom-
monly high crystal anisotropy, LiHoF4 can be mapped to the problem of the Ising
model in a transverse field. However, while this Ising approximation can quantita-
tively predict much of the equilibrium behavior, quantum corrections, originating
from off-diagonal terms in the dipolar interaction that generate quantum fluctuations,
are crucial in driving non-equilibrium dynamics when subject to an external drive.
Furthermore, quenched disorder can be introduced through chemical substitution,
which, through the dipolar interaction, generates spatially random pinning fields, as
well as internal transverse fields, which drive quantum fluctuations. Noise measure-
ments on the disordered ferromagnet LiHo0.65Y0.35F4 show critical behavior, whose
statistics are driven from the underlying pinning distribution, while measurements
on LiHo0.40Y0.60F4 display non-critical behavior that can only be attributed to quan-
tum co-tunneling processes. This is the first demonstration of crackling noise in a
ferromagnet in the purely quantum regime. Furthermore, pump-probe susceptibil-
ity measurements on the decoupled cluster glass show the system being driven out
of equilibrium with astonishingly weak drives, due to resonant transitions arising
from off-diagonal dipolar terms 𝜎𝑧

𝑖
𝜎𝑥
𝑗
. Non-linear sample response is observable

in inelastic Raman scattering measurements, and these spin clusters also exhibit
asymmetric Fano resonances with high Q-factors of ∼ 105. Quantum interference
effects can be tuned to fully decouple one of the dressed states from the others,
rendering the sample transparent to the drive. This is analogous to optical systems
that display electromagnetically-induced transparency, but at 100 Hz frequencies!
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𝑧
2 as the dominant dipole-dipole in-

teraction at low temperatures. Quantum corrections, led by the terms
∼ 𝐽𝑥1𝐽

𝑧
2, 𝐽

𝑧
1𝐽
𝑥
2 are strongly suppressed by the crystal field but crucial

for the understanding of hole burning in driven LiHoxY1-xF4 samples.
(b) The terms 𝐽𝑥1𝐽

𝑧
2, ... are not compatible with the Ising symmetry.

They lift the Ising degeneracy and introduce small level splittings
𝜖1,2 between two quasi-degenerate eigenstates in the LiHoxY1-xF4

dimer. (c) Breaking the Ising symmetry also introduces small but
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〈
𝛼

�� (𝐽𝑧1 + 𝐽𝑧2) �� 𝛽〉 between
different dimer eigenstates |𝛼⟩, |𝛽⟩. (d), (e) Quantitative analysis
of the level spacings (d) and transition matrix elements (e) from ex-
act diagonalization of a LiHoxY1-xF4 dimer described by H (2) in
Eq. (2.10) with relative orientation ®𝑟12 = Δ𝑟min(sin 𝜃, 0, cos 𝜃) [with
𝐿𝛼𝛽 (𝜃) ≡ 𝐿𝛼𝛽 (𝜃) (®𝑟12)]. The energies are compared to an equivalent
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3
, 3𝜋

16 , the states |3⟩ and |2⟩, |4⟩
are degenerate. For some 𝜃, there is one "dark" state (dashed line)
corresponding to an Ising singlet, which does not couple to the other
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C h a p t e r 1

LIHOXY1-XF4 AS A MODEL QUANTUM ISING SYSTEM

1.1 The Quantum Two-Level System (TLS) and the Ising Model
The quantum two-level system (TLS), also known as a qubit, is perhaps one of the
simplest theoretical objects in quantum mechanics that still displays non-classical
behavior. The quantum TLS is a powerful model, both because it is easily un-
derstandable compared to other systems, and because it has the potential to model
arbitrary quantum problems through expanding the Hilbert space by coupling mul-
tiple qubits together. In this introductory section, I will discuss the basis of the
quantum TLS, as well as the Ising model, in which qubits are coupled together.
These observations underlie the choice of experimental system for my thesis, a
physical realization of the Ising model in transverse field, and provide the back-
ground considerations in the data accumulation and analysis, and highlight where
the physical realization departs from ideality.

The state vectors for the TLS Hamiltonian live in a two-dimensional Hilbert space,
where any pure quantum state |𝜓⟩ can be expressed as a linear combination of two
orthogonal states 𝜓 = 𝑐𝛼 |𝛼⟩ + 𝑐𝛽 |𝛽⟩, where 𝑐𝛼, 𝑐𝛽 are complex coefficients whose
absolute squared magnitudes sum to one |𝑐𝛼 |2 + |𝑐𝛽 |2 = 1, and |𝛼⟩ , |𝛽⟩ are the
two basis vectors. Since any 2x2 Hermitian matrix can be expanded as a linear
combination of the three Pauli matrices, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 and the identity matrix (which
I will denote as 𝜎0), this means that any Hamiltonian within this two-dimensional
Hilbert space can be mapped to:

HTLS =
∑︁

𝜇=0,𝑥,𝑦,𝑧
𝐶𝜇𝜎

𝜇, (1.1)

where {𝐶𝜇} are real scalar coefficients. If one considers this Hamiltonian in the
basis |↑⟩ , |↓⟩ that is diagonal in𝜎𝑧, one can separate these four terms into: a constant
energy offset 𝐶0𝜎

0 that can be subtracted without affecting the system dynamics, a
diagonal term𝐶𝑧𝜎

𝑧, and two off-diagonal terms𝐶𝑥,𝑦𝜎𝑥,𝑦. Without loss of generality,
one can rotate into a frame in which 𝐶𝑦 = 0, and be left with the single-particle
Hamiltonian for an Ising spin in a transverse field:
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H (1) = −|𝜇 |ℎ𝑧𝜎𝑧 − Γ𝜎𝑥 , (1.2)

where |𝜇 |ℎ𝑧𝜎𝑧 can be thought of as an energy splitting due to the Zeeman interaction
of a magnetic dipole with moment |𝜇 | and field ℎ𝑧, and Γ𝜎𝑥 induces a tunnel splitting
between the two Ising states |↑⟩ , |↓⟩. In the Ising basis, the Zeeman splitting changes
the relative rate of complex phase accumulation between the two Ising states with
frequency∼ |𝜇 |ℎ𝑧, and the tunneling splitting induces quantum fluctuations between
the two states with rate∼ Γ. Colloquially, one can think of this problem as a spin-1/2
particle in a longitudinal field with interaction strength −|𝜇 |ℎ𝑧, and a transverse field
with interaction strength Γ, and so I will use to denote a longitudinal interaction,
𝑧 ↔∥, and to denote a transverse interaction, 𝑥 ↔⊥, interchangeably.

A many-body Hamiltonian can be constructed by taking a sum of the independent
single-particle Hamitonians H (1)

𝑖
and two-spin interaction terms H𝑖 𝑗

Htot =
∑︁
𝑖

H (1)
𝑖

+
∑︁
𝑖 𝑗

H𝑖 𝑗 , (1.3)

where H𝑖 𝑗 represents the interaction term between spins 𝑖 and 𝑗 . Just as observables
for the single particle Hamiltonian can be expanded as a linear combination of the
𝜎𝜇 matrices (including 𝜎0 as the identity matrix), two-spin interaction terms can be
represented as linear combinations of the product terms 𝜎𝜇𝜎𝜈, giving the general
form:

H𝑖 𝑗 =
∑︁
𝑖 𝑗

∑︁
𝜇,𝜈=0,𝑥,𝑦,𝑧

𝑉𝑖 𝑗𝜎
𝜇

𝑖
𝜎𝜈𝑗 , (1.4)

where 𝑉 𝜇𝜈
𝑖 𝑗

sets the strength of the interaction for each term. Inserting the single-
particle Hamiltonian from before, ones arrives at the most general form of the
transverse field Ising model:

Htot = −
∑︁
𝑖

|𝜇𝑖 |ℎ𝑧𝑖𝜎
𝑧
𝑖
−

∑︁
𝑖

Γ𝑖𝜎
𝑥
𝑖 +

∑︁
𝑖 𝑗

H𝑖 𝑗 , (1.5)

where I have let the magnetic moment 𝜇𝑖, the longitudinal field ℎ𝑖 and the transverse
field Γ𝑖 vary from site to site. While 𝜇𝑖 in real systems will be a function of the
local magnetic field ®ℎ(®𝑟𝑖), if it does not vary much, this can be approximated by a
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constant magnetic moment 𝜇𝑖 → 𝜇. Furthermore, in the lab, a uniform magnetic
field is frequently applied via external magnets, and it is convenient to split each term
into a spatially uniform term, and a spatially varying term. While spatially-varying
external fields are generally weak in the experimental setting, they are nonetheless
useful to consider theoretically, since interaction terms in the Hamiltonian can be
approximated in the semi-classical limit of a classical moment sourcing a classical
field onto a quantum spin. In this case, the spatially-varying term becomes a
very complicated object that depends on the instantaneous state of each spin, so it is
usually replaced by a stochastic variable drawing from some underlying distribution–
usually a Gaussian with fixed variance for ease of computation. One can construct
a random-field type Hamiltonian:

Htot = −|𝜇 |
∑︁
𝑖

(ℎ𝑧0 + ℎ
𝑧
𝑖
)𝜎𝑧

𝑖
−

∑︁
𝑖

(Γ0 + Γ𝑖)𝜎𝑥𝑖 +
∑︁
𝑖 𝑗

H𝑖 𝑗 , (1.6)

where ℎ𝑧0, Γ0 are spatially invariant constants, and ℎ𝑧
𝑖
, Γ𝑖 are site-dependent random

variables drawn from a fixed underlying distribution. One quantitative way of
introducing disorder into a system is through increasing the variance of the random
field terms ℎ𝑧

𝑖
, Γ𝑖.

In principle, while all interaction terms ∼ 𝜎
𝜇

𝑖
𝜎𝜈
𝑗

are allowed in H𝑖 𝑗 , there are
often some assumptions made theoretically about which terms are non-negligible.
In particular, the term 𝑉 𝑧𝑧

𝑖 𝑗
𝜎𝑧
𝑖
𝜎𝑧
𝑗

corresponds to the classical interaction between
two Ising spins (lying along the 𝑧 axis), and is often the only term considered.
Furthermore, 𝑉 𝜇𝜈

𝑖 𝑗
is frequently approximated as short-range, where 𝑉 𝜇𝜈

𝑖 𝑗
≠ 0 if and

only if spins 𝑖 and 𝑗 are nearest-neighbors. With both of these approximations,
along with the assumption that Γ𝑖 = 0, one arrives at the traditional random field
Ising model (RFIM):

HRFIM = −|𝜇 |
∑︁
𝑖

(ℎ𝑧0 + ℎ
𝑧
𝑖
)𝜎𝑧

𝑖
−

∑︁
𝑖

Γ𝜎𝑥𝑖 +
∑︁
𝑖 𝑗

H 𝑧𝑧
𝑖 𝑗
𝜎𝑧
𝑖
𝜎𝑧
𝑗
. (1.7)

While this model is simplified from any real physical case, it nonetheless exhibits a
remarkable display of quantum phenomena, as having non-commuting terms 𝜎𝑧, 𝜎𝑥

generates quantum fluctuations, while the interaction term H𝑖 𝑗 generates quantum
entanglement. I will use the RFIM as a base point to understand the LiHoxY1-xF4

system, and specifically point out where it falls short and quantum corrections are
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needed (specifically, off-diagonal interaction terms ∼ 𝜎𝑧
𝑖
𝜎𝑥
𝑗

and ∼ 𝜎𝑧
𝑖
𝜎0
𝑗

come into
play).

1.2 The LiHoF4 Single Ion Hamiltonian
LiHoF4 is an electrically-insulating compound whose magnetic properties are almost
entirely determined by the unpaired 4 𝑓 electrons of the Ho3+ ion. These unpaired
electrons do not pair off into a singlet state, but rather into a composite, finite
moment. Unlike the 𝑠 and 𝑑-shell electrons which can conduct electricity through
de-localized Bloch states, the 𝑓 -shell electrons are strongly localized, and act as
localized moments on a lattice.

The dominant terms in the Ho3+ electronic Hamiltonian are exchange and Coulomb
interactions, as the 4 𝑓 states are so tightly confined. The Ho3+ ion has 10 4 𝑓
electrons, each with its own spin 𝑠𝑖 and orbital angular momentum 𝑙𝑖. The strong
exchange and Coulomb interactions hybridize all of these particles into one com-
posite spin 𝑆 =

∑
𝑖 𝑠𝑖 and orbital angular momentum 𝐿 =

∑
𝑖 𝑙𝑖. For LiHoF4 , the

ground state multiplet 2𝑆+1𝐿𝐽 is given by Hund’s rules, which gives a 𝐽 = 8 ground
state multiplet with 17-fold degeneracy.

This 17-fold degenerate ground state multiplet is split due to interactions with the
electric fields from neighboring ions, through a “crystal field” term Hcf in the
Hamiltonian. While Hcf is difficult to calculate from first principles, its form can
be simplified through discarding all terms that do not obey the underlying crystal
symmetry. In the case of LiHoF4 , there is a tetragonal scheelite crystal structure
with space group 𝐼41/𝑎.

One can expand the crystal field potential in a multipole expansion, and recast this in
terms of the Stevens operators, which consist of linear combinations of the operators
𝐽𝑧, 𝐽+, 𝐽−, 𝐽2. I refer the reader to [40] for a derivation of these Stevens operators.

In the case of LiHoF4, the crystal field Hamiltonian is given by

Hcf =
∑︁
𝑙=2,4,6

𝐵0
𝑙 O

0
𝑙

∑︁
𝑙=4,6

(𝐵4
𝑙 (𝑐)O

4
𝑙 (𝑐) + 𝐵

0
𝑙 (𝑠)O

4
6 (𝑠)) (1.8)

with corresponding Stevens operators O𝑚
𝑙
(𝑐/𝑠) defined according to [40]. While

there are many measurements of the crystal field parameters from ac magnetic
susceptibility [8, 40], optical scattering [18, 36], and EPR [67], I will use the
parameters from the neutron scattering measurements of [61].
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Figure 1.1: Level diagram of the 𝐽 = 8 manifold degeneracy lifted by Hcf. There is
an ∼ 11 K gap to the first excited state, giving rise to a two-dimensional low-energy
effective Hamiltonian.

Diagonalizing this Hamiltonian, one finds a ground state doublet with an∼ 11 K gap
to the first excited state. I plot the energy levels in Figure 1.1. The second excited
state is > 10 K above the first excited state as well. This means that at temperatures
≪ 10 K, the single-ion Hamiltonian is well approximated by a lower-dimensional
effective Hamiltonian whose Hilbert space corresponds to the subspace of the full
Hcf spanned by the two degenerate ground states. Since this Hilbert space is two-
dimensional, one can naturally map the problem onto the problem of a spin-1/2
particle.

It turns out that Hcf is highly anisotropic, and consequently each of the ground states
has an expectation value of its total angular momentum ®𝐽 completely aligned along
the 𝑧 axis (crystallographic 𝑐). In other words, ⟨𝐽𝑥⟩ ≈ ⟨𝐽𝑦⟩ ≈ 0. Furthermore, both
states have equal and opposite 𝑧-components of their angular momenta, with ⟨𝐽𝑧⟩ ≈
±5.51. Intuitively, this corresponds to a classical Ising spin, with renormalized
moment 𝑔∥ = 2𝑔𝐿 ⟨↑ | 𝐽𝑧 | ↑⟩, where 𝑔𝐿 = 5/4 is the Landé g-factor, and one can
denote the two states |↑⟩ and |↓⟩. I plot visualizations of these states as projected
onto the 𝐽𝑧 eigenbasis. I plot in Figure 1.2 a visualization of the two ground
states projected onto the 𝐽𝑧 eigenbasis. This strong of a crystal anisotropy is
rarely found in nature, and can be quantified as the ratio of the two 𝑔-factors:
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Figure 1.2: Visualization of the electronic ground state doublet of Hcf in zero
external field, with |↑⟩ in a and |↓⟩ in b. Shown are the coefficients of each state
when projected onto the 𝐽𝑧 eigenbasis, with the real part in blue, imaginary part in
red, and absolute square magnitude in black. |↑⟩ is approximately 2/3 occupation
of |𝑚𝐽 = 7⟩ and 1/3 occupation of |𝑚𝐽 = 3⟩ with an approximate 𝜋 phase between
them, giving rise to a state with ⟨𝐽𝑧⟩ ≈ 5.51 and ⟨𝐽𝑥⟩ ≈ ⟨𝐽𝑦⟩ ≈ 0.
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𝑔∥/𝑔⊥ = 13.8/0.74 = 18.6 [12].

Following Chakraborty [17], one can make what is known as the “Ising approxima-
tion”, in which all of the 17-dimensional 𝐽𝜇 operators corresponding to the physical
observables are mapped to linear combinations of Ising variables 𝜎𝜇 acting upon
the subspace spanned by the ground state doublet. One can write

𝐽𝜇 =
∑︁

𝜈=0,𝑥,𝑦,𝑧
𝐶𝜇𝜈𝜎

𝜈, (1.9)

where each coefficient𝐶𝜇𝜈 is also a function of the applied magnetic field. However,
while this will renormalize the mapping for different external field strengths, for
experimentally-accessible field values the gap to the first excited state remains
sufficiently large that the spins maintain their two-state nature, making the Ising
approximation justified for all field values.

If one takes the Zeeman interaction and projects it down to the Ising subspace, one
is left with the Hamiltonian

HZeeman = 𝑔𝐿𝜇𝐵

∑︁
𝜇

𝐵𝜇𝐽𝜇 → 𝑔𝐿𝜇𝐵

∑︁
𝜇𝜈

𝐶𝜇𝜈𝐵
𝜇𝜎𝜈 . (1.10)

However, only some of these terms are finite, and in order to see the dominant effects,
one can gain an intuitive understanding through examining the effects of longitudinal
and transverse fields on the spin. First, if a longitudinal field is applied, there is
a simple Zeeman splitting of the levels, whose splitting is linearly proportional to
the external field. I plot in Figure 1.3 the dependence of the ground state doublet
energies on a longitudinal field, showing that it behaves identically to a classical
Ising spin with a renormalized moment 𝜇Ising = 6.88𝜇𝐵 = 4.61 K/T.

The dependence on transverse field is more complicated. I plot in Figure 1.4 the
doublet levels as a function of external transverse field. The effect of the transverse
field can be split into two parts: one that changes the average energy of both of
the states 𝐸cm(𝐵𝑥), and one that induces a tunnel splitting Δ(𝐵𝑥) between the two.
This splitting is responsible for quantum fluctuations, and arises from quantum
mechanically mixing the excited crystal field states with the ground state doublet.
For transverse fields ≤ 1 T, both of these are well approximated by a quadratic form
with 𝐸cm(𝐵𝑥) = −5.35mK(𝐵𝑥/𝑘𝐺)2 and Δ(𝐵𝑥) = 2.67mK(𝐵𝑥/𝑘𝐺)2.
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Figure 1.3: Dependence of the ground state doublet energies on a longitudinal field,
showing behavior identical to a classical Ising spin with a renormalized moment
𝜇Ising = 6.88𝜇𝐵 = 4.61 K/T.

Figure 1.4: Dependence of the ground state doublet energies on a transverse
field. The transverse field both lowers the average energy 𝐸cm(𝐵𝑥) and in-
duces a tunnel splitting Δ(𝐵𝑥) that, for fields ≤ 1 T is well approximated by
𝐸cm(𝐵𝑥) = −5.35mK(𝐵𝑥/𝑘𝐺)2 and Δ(𝐵𝑥) = 2.67mK(𝐵𝑥/𝑘𝐺)2.
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Now I consider a spin in a fixed transverse field and a varying longitudinal field. For
high longitudinal fields, the Zeeman splitting is much greater than the tunnel splitting
𝐸Zeeman(𝐵𝑧) ≫ Δ(𝐵𝑥), and the eigenstates are essentially the Ising eigenstates
|↑⟩ , |↓⟩, whose energy splitting is linear in the longitudinal field. However, as the
longitudinal field is decreased and the spin comes into resonance, there is an avoided
level crossing as the eigenstates are now quantum superpositions of the two original
Ising states. In this regime, where 𝐸Zeeman(𝐵𝑧) ≤ Δ(𝐵𝑥), the system is in resonance,
and will tunnel between states with a rate given by Fermi’s golden rule Γ ∼ Δ(𝐵𝑥).

1.3 Spin-Spin Interactions and the Dipolar Coupling
The individual spins in LiHoF4 interact primarily through the magnetic dipolar
interaction–a long-range anisotropic interaction that generates quantum entangle-
ment between spins. I now consider the dipolar interaction term,

H𝑖 𝑗 =
𝜇0𝑔

2
𝐿
𝜇2
𝐵

4𝜋
𝐿𝜇𝜈 (®𝑟𝑖 𝑗 )𝐽𝜇𝑖 𝐽

𝜈
𝑗 , (1.11)

between electronic spins 𝐽𝑖 and 𝐽 𝑗 . 𝜇0 = 4𝜋10−7 N
A2 is the permeability of free space,

𝜇𝐵 = 2
3

K
T the Bohr magneton, 𝑔𝐿 = 5/4 the Landé g-factor, and dipole-dipole matrix

element 𝐿𝜇𝜈 (®𝑟𝑖 𝑗 ) =
𝛿𝜇𝜈 |®𝑟 |2−3𝑟𝜇𝑟𝜈

|®𝑟 |5 evaluated at relative coordinate ®𝑟 = ®𝑟𝑖 𝑗 = ®𝑟𝑖 − ®𝑟 𝑗 .

LiHoF4 has a body-centered tetragonal crystal structure with lattice constants 𝑎 =

5.175 and 𝑐 = 10.75 and four Ho3+ ions per unit cell [37, 51]. In terms of the unit
cell coordinates (𝑎, 𝑎, 𝑐), their positions are at (0, 1

2 ,
3
4 ), (0, 0,

1
2 ), (

1
2 , 0,

1
4 ), (

1
2 ,

1
2 , 0).

This amounts to a minimal distance of Δ𝑟min ≈ 3.73 between two Ho3+ ions. The
corresponding magnetic interaction energy is 𝐴dip = 18.5 mK.

If one maps the physical spin variables to the Ising spin-1/2 variables 𝐽𝜇
𝑖

→∑
𝜈 𝐶𝜇𝜈𝜎

𝜈
𝑖
, the interaction term gets mapped to

𝐽
𝜇

𝑖
𝐽𝜈𝑗 →

∑︁
𝛼𝛽

𝐶𝜇𝛼𝜎
𝛼
𝑖 𝐶𝜈𝛽𝜎

𝛽

𝑗
, (1.12)

with 4 × 4 = 16 different terms due to the different combinations of Ising spin
operators, and with each coefficient 𝐶𝜇𝜈 being a function of the external magnetic
field. However, due to the crystal anisotropy, not all terms have the same magnitude,
and this expression can be approximated by dropping the weakest terms. Through
numerical diagonalization, one can find that the largest effective interaction term is
𝐽𝑧
𝑖
𝐽𝑧
𝑗
∼ 𝐶2

𝑧𝑧𝜎
𝑧
𝑖
𝜎𝑧
𝑗
, which is larger than any other interaction term by two orders of
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Figure 1.5: Crystal structure of LiHoF4 with Ho3+ ions as the large pink spheres.

magnitude for the entire range of experimental fields, and so, within ∼ 1% accuracy,
the dipolar interaction can be well approximated by the Ising interaction,

H Ising
𝑖 𝑗

=
𝜇0𝑔

2
𝐿
𝜇2
𝐵

4𝜋
𝐿𝑧𝑧 (®𝑟𝑖 𝑗 )𝐶2

𝑧𝑧𝜎
𝑧
𝑖
𝜎𝑧
𝑗
, (1.13)

that gives the interaction energy between two classical Ising moments. While
this Ising approximation to the dipolar interaction captures much of the qualitative
behavior of the phase diagram for LiHoF4 , some phenomena can only be explained
by going past this Ising approximation, and using off-diagonal terms in the dipolar
interaction. In particular, the term ∼ 𝐽𝑧

𝑖
𝐽𝑥
𝑗

can be intuitively understood as one spin
𝐽𝑧
𝑖

sourcing a classical transverse field 𝐵𝑥 on spin 𝑗 , which has a term ∼ 𝐶𝑧𝑧𝐶0𝑥𝜎
𝑧
𝑖

that lowers the energy of spin 𝑗 , and ∼ 𝐶𝑧𝑧𝐶𝑥𝑥𝜎𝑧𝑖 𝜎𝑥𝑗 that induces a tunnel splitting
(and thus quantum fluctuations) on spin 𝑗 . The former already has been proven
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necessary in quantitatively matching Monte Carlo calculations of the phase diagram
to experiment [28], while I will show in a later chapter that the latter term is important
in resonant cluster excitations.

The dipole-dipole interaction 𝐿𝜇𝜈 (®𝑟𝑖 𝑗 ) has two interesting properties, which dra-
matically complicate system dynamics. First, the interaction strength 𝐿 (®𝑟𝑖 𝑗 ) dies as
∼ 1

|®𝑟 |3 , and is thus long-range. If one integrates the dipolar interaction over a sphere
with radius 𝑅, since the area of a spherical shell scales as ∼ 𝑅2, the integral diverges
logarithmically as

∫ 𝑅

0 𝑑𝑟 1
𝑟
∼ log 𝑅, and the dynamics of any single spin depends not

only its neighboring spins, but on all of the spins within the crystal. Alternatively,
this means that the full many-body system will have eigenstates at many different
excitation energies covering many orders of magnitude.

Furthermore, the dipolar interaction is anisotropic in nature, with ferromagnetic
(𝐽 < 0) coupling when the two spins lie along the Ising axis, and antiferromagnetic
(𝐽 > 0) when spins lie in the plane. Because of this, the dipolar interaction can lead
to frustration, in which the system has many nearly-degenerate ground states since
local spin configurations cannot satisfy all favorable Ising couplings simultaneously.

1.4 Disorder and the LiHoxY1-xF4 Phase Diagram
Below the Curie temperature 𝑇𝑐 ≈ 1.53 K, LiHoF4 orders ferromagnetically due
to the dipolar interaction between spins [23]. While the full spherical dipolar
sum is antiferromagnetic, LiHoF4 nonetheless self-organizes into long needle-like
ferromagnetic domains, as observable in scanning Hall probe measurements taken
from [43] and plotted in Figure 1.6, and magneto-optic images taken from [52].
The ∼ 𝜇m size maximizes the ferromagnetic axial dipolar coupling, and has a
branching structure at higher fields, in which smaller shallow domains are formed
within existing domains spanning the length of the sample.

This ferromagnetic order can be broken either with thermal fluctuations, or by
introducing quantum fluctuations through the application of an external transverse
field. At 𝑇 = 0, there is a quantum critical point at 𝐵𝑥 ≈ 4.9 T. The 𝐻⊥-𝑇
phase diagram is plotted in Figure 1.8. While LiHoF4 behaves like a mean-field
ferromagnet (dashed line in Figure 1.8) at higher temperatures, as 𝑇 < 500 mK,
the phase boundary departs from the purely electronic mean-field value upward to
a higher transverse field. This increased critical transverse field arises from the
hyperfine interaction between electronic and nuclear spins, which effectively locks
nuclear and electronic spins together, giving an effective renormalized moment.
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Figure 1.6: Scanning Hall probe image of LiHoF4 domains taken from [43], taken
on the 𝑎-𝑐 plane of the sample at 𝑇 = 25 mK.

Figure 1.7: Magnetooptic images of LiHoF4 domains taken from [52] with a lon-
gitudinal field of 0.7 T and a temperature of 1.3 K with image focused at: a the
top surface, b half the sample thickness, c 3/4 of the sample thickness, and d the
bottom surface. The images show continuous needle-like domains throughout the
entire sample, as well as smaller branching domains that do not penetrate the bulk.
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This is reflected by a mean-field calculation including the hyperfine interaction
(solid line in Figure 1.8).

Figure 1.8: Phase diagram of LiHoF4 as computed from susceptibility measurements
from [12] showing the ferromagnetic (FM) to paramagnetic (PM) transition, with
a quantum critical point at 𝐵𝑥 ≈ 4.9 T and a classical critical point at the Curie
temperature 𝑇𝑐 ≈ 1.53 K. Filled circles are the experimental phase boundary, the
dashed line is a mean-field theory solution using only the electronic spin degrees
of freedom, and the solid line is a full mean-field theory incorporating the nuclear
hyperfine interaction.

The LiReF4 family has the convenient property that its bonding chemical properties
are relatively independent of the choice of rare-earth ion Re. Because of this, one can
chemically substitute some fraction 1 − 𝑥 of the Ho3+ ions with non-magnetic Y3+

ions, which do not carry an electronic moment. This gives the diluted compound
LiHoxY1-xF4 , which has quenched spatial disorder that can be represented by the
site-diluted Ising model (SDIM), in which each spin variable 𝜎𝜇

𝑖
→ 𝜖𝑖𝜎

𝜇

𝑖
now

carries an occupation number 𝜖𝑖 ∈ {0, 1} depending on whether the site is occupied
by a Ho3+ (𝜖𝑖 = 1) or a Y3+ (𝜖𝑖 = 0).

For modest dilutions 𝑥 ≥ 0.5, the primary effect of the dilution is to re-scale the
dipolar interaction strength. As the chemical concentration goes down, the Ho3+

ions become farther and farther apart, and the average dipolar interaction |𝑉dip | ∼ 𝑥
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Figure 1.9: Phase diagram of LiHoxY1-xF4 at zero transverse field as a function of
Ho3+ concentration 𝑥 and temperature 𝑇 taken from [60]. For 𝑥 > 0.5 the system
behaves as a mean-field ferromagnet with Curie temperature 𝑇𝑐 ∼ 𝑥 scaling linearly
with 𝑥. For lower concentrations 𝑥 < 0.3, LiHoxY1-xF4 undergoes a spin glass
transition, and at even lower concentrations and the appropriate thermal boundary
conditions, LiHo0.045Y0.955F4 enters a “decoupled cluster glass” phase denoted by
the arrow.

scales linearly with the Ho3+ concentration 𝑥. I reproduce the 𝑇-𝑥 phase diagram
for the diluted LiHoxY1-xF4 from [60] in Figure 1.9.

However, the quenched disorder from chemical dilution has more profound effects
than simply renormalizing the dipolar interaction strength. For the pure compound
LiHoF4 , the crystal symmetry can cancel out the dipolar contribution on any spin
from its nearest neighbors. When considering the local environment on a single spin,
disorder has the effect of increasing the distribution in local fields, both longitudinal
and transverse, that any given spin experiences. Translated into our Ising model,
this can result in site-dependent random fields which can induce either random field
pinning (for local fields) or increased quantum fluctuations (for transverse fields

In the ferromagnetic state, the emergent effective low-energy degrees of freedom
for LiHoxY1-xF4 are the boundaries between ferromagnetic domains of opposite
sign, known as domain walls. If a longitudinal field is applied to the ferromagnet,
domains aligned with the field will tend to grow, while anti-aligned domains will
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tend to shrink, which can be mapped to the motion of a domain wall. While a rigid
planar wall is an idealization, and any real domain wall will have finite elasticity,
and hence a finite roughness, for dipolar-coupled ferromagnets, the long-range
nature of the dipolar-interaction tends to produce long, flat domain walls. This is
experimentally confirmed from the domain images of [43, 52] in the case of the pure
sample LiHoF4 , but remains an open question for the domain wall structure for
the disordered ferromagnet LiHoxY1-xF4 . However, even though the domain wall
is more complicated than a simple one-dimensional particle moving linearly, the
dynamics are nonetheless described by a domain wall moving in a random potential
sourced by random longitudinal fields. In chapter 3 I will examine measurements
performed to probe the motion of these domain walls in the disordered ferromagnet
LiHoxY1-xF4 .

For lower concentrations 𝑥 < 0.5, these effects become important, and LiHoxY1-xF4

departs from mean-field ferromagnetic behavior, with a suppressed 𝑇𝑐 (𝑥 < 0.5) <
𝑥𝑇𝑐 (𝑥 = 1) compared to the mean-field prediction. At low enough concentrations
and temperatures, LiHoxY1-xF4 enters a spin-glass phase, in which the system does
not develop any long-range order, but whose dynamics progressively freeze out at
lower and lower temperatures and become non-ergodic.

At even lower concentrations 𝑥 = 0.045, the system dynamics become strongly de-
pendent on the thermal heat-sinking [64]. When put in direct contact with strongly
heat-sunk sapphire rods, the sample can dissipate energy through interactions be-
tween the sample phonons and the sapphire rods. This sets an effective phonon
linewidth Γ, which changes the rate of dissipative, incoherent spin flips due to
phonon scattering. Alternatively, if the sapphire rods are pulled apart from direct
contact, the sample can only exchange energy with a Hysol epoxy form, whose
polymer structure significantly reduces its thermal conductivity in comparison to
the sapphire, thus reducing Γ, and consequently, dissipation rates. An illustration
of these two heat-sinking configurations are reproduced in Figure 1.10.

In these two heat-sinking regimes, the difference in behavior can be seen in Figure
1.11, reproduced from [64], which shows the temperature dependence on the imag-
inary susceptibility for different sets of data in different heat-sinking configurations.
The left panel of 1.11 shows the frequency 𝑓𝑝 at which 𝜒′′( 𝑓 ) is a maximum as
a function of inverse temperature. For higher temperatures, all samples follow the
same thermally-activated Arrhenius form, while at lower temperatures some samples
depart from Arrhenius, as the weak dissipation prevents the LiHoxY1-xF4 phonon
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Figure 1.10: Schematic of the two heat-sinking configurations. The sample (pink
cuboid) sits within a Hysol epoxy form (cylinder), and is either put in direct contact
with sapphire rods that are connected to the heat bath through copper wire (left) or
teflon spacers are added to pull the sapphire rods away from direct contact (right).
Figure reproduced from [64].

Figure 1.11: Effects of thermal boundary conditions on LiHo0.045Y0.955F4 . (Left)
Peak frequency of imaginary susceptibility as a function of inverse temperature for
the two configurations in Figure 1.12, compared with values published in [35, 59].
For weakly-coupled samples, the peak frequency departs from Arrhenius behavior
below a certain temperature. (Right) Lineshapes of the imaginary susceptibility
under different thermal conditions for the same peak frequency. Measurements in
the weakly coupled thermal configuration show low-frequency spectral narrowing
not observed in the connected configuration. Figure reproduced from [64].
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bath from equilibrating with its environment, and it establishes a finite temperature
gradient between the crystal and its environment, with the more weakly heat-sunk
samples departing from Arrhenius at higher temperatures. On the right panel, at low
enough temperatures, the weakly heat-sunk samples display spectral narrowing on
the low-frequency end not typically seen in spin glasses. Furthermore, the width of
the peak in 𝜒′′ narrows below 1.14 decades, the width predicted by Debye relaxation
of a single time constant, indicating that the system cannot be described purely in
terms of bulk relaxation processes. Instead, one can understand the weakly-coupled
regime as a “de-coupled cluster glass”, in which local spin clusters freeze together,
and interact only weakly with neighboring spin clusters. I illustrate this in Figure
1.12. The left panel shows a glassy network of coupled spins in the strongly-coupled
regime, while the right panel illustrates isolated spin clusters that are weakly-coupled
together.

Figure 1.12: Cartoon of spin configurations in the two heat-sinking regimes. The
left panel shows a glassy network of coupled spins in the strongly-coupled regime,
while the right panel illustrates isolated spin clusters that are weakly-coupled. Figure
reproduced from [64].

1.5 Dissipation and the Magnetoelastic Coupling
In order to study the dynamics of a system under an external drive field, one
needs some estimate on the environmental induced dissipation, i.e., the dissipative
transition rates 𝛾𝛼→𝛽 between two quantum states |𝛼⟩ , |𝛽⟩. The major source
of dissipation for the magnetic moments in LiHoxY1-xF4 is the coupling of the
Ho3+ ions to lattice vibrations, i.e., phonons. In order to estimate the associated
dissipation rates, I consider acoustic, Debye type low energy phonon modes, which
are described by a wave vector ®𝑘 , dispersion 𝜔®𝑘 = 𝑐 | ®𝑘 |, Debye frequency 𝜔𝐷 , and



18

Debye temperature Θ𝐷 .

Each phonon mode has a linewidth Γ, which describes the rate at which the mode
exchanges energy with other phonons and the environment. Due to weak phonon-
phonon interactions, the linewidth is dominated by the coupling of the sample to the
environment. In recent experiments [64, 70], it has been pointed out that having a
weak sample-environment coupling is crucial for the observation of hole burning and
antiglass dynamics in driven LiHoxY1-xF4 . Here, I consider the lattice-environment
coupling in terms of an effective phonon linewidth. Such a linewidth will set the
lower bound for the magnetic dissipation rates and enable or disable the emergence
of a Fano resonance. This yields a phenomenological explanation for the presence
or absence of hole burning in several LiHoxY1-xF4 experiments.

Acoustic phonons in the Debye model are described by the Hamiltonian

H𝐷 =
∑︁

®𝑘,𝑐 | ®𝑘 |<𝜔𝐷

𝑐 | ®𝑘 |𝑏†®𝑘𝑏®𝑘 (1.14)

with bosonic ladder operators 𝑏†®𝑘 , 𝑏®𝑘 at momentum ®𝑘 . The linear coupling between
the phonons and the magnetic states is typically of the form

Hmag-ph =
∑︁
𝛼,𝛽,®𝑘

𝑔𝛼𝛽 ( ®𝑘) (𝑏†®𝑘 + 𝑏®𝑘 ) ( |𝛼⟩ ⟨𝛽 | + |𝛽⟩ ⟨𝛼 |) (1.15)

with coupling matrix elements 𝑔𝛼𝛽 ( ®𝑘) between different eigenstates |𝛼⟩ , |𝛽⟩ of the
magnetic Hamiltonian.

The transition rate 𝛾𝛼→𝛽 between two magnetic states |𝛼⟩ → |𝛽⟩ with energy
difference 𝐸𝛼𝛽 ≡ 𝐸𝛼 − 𝐸𝛽 can be estimated by Fermi’s golden rule. It yields an
energy-dependent decay rate 𝛾𝛼𝛽 = 𝛾(𝐸𝛼𝛽) = 𝛾(𝐸) with

𝛾(𝐸) = −𝑖
∑︁
®𝑘

|𝑔(𝐸, ®𝑘) |2
(

𝑛®𝑘

𝐸 + 𝑖0+ + 𝑐 | ®𝑘 |
+

𝑛®𝑘 + 1

𝐸 + 𝑖0+ − 𝑐 | ®𝑘 |

)
= |𝑔(𝐸) |2(𝑛𝐵 ( |𝐸 |) + 𝛿sign(𝐸),1)𝜌ph( |𝐸 |).

(1.16)

Here 𝑛𝐵 ( |𝐸 |) is the Bose-Einstein distribution at temperature 𝑇 and energy |𝐸 |,
𝜌ph( |𝐸 |) is the phonon density of states, and |𝑔(𝐸) |2 ≡ 𝑔𝛼𝛽 (𝑐 | ®𝑘 | = 𝐸𝛼𝛽.
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For energy differences 𝐸 ≪ 𝑘𝐵𝑇 , the Bose function shows the typical 1
𝐸

-divergence
𝑛𝐵 ( |𝐸 |) ≈ 𝑘𝐵𝑇

|𝐸 | ≫ 1. For acoustic phonons at low energies, 𝑔( |𝐸 |) = 𝑔0
√︁
|𝐸 |, which

yields 𝛾(𝐸) ≈ 𝑔2
0𝑘𝐵𝑇𝜌ph( |𝐸 |) = 𝛾𝐷

𝑇𝜌ph ( |𝐸 |)
Θ𝐷𝜌ph (𝜔𝐷) , where 𝛾𝐷 is the decay rate at the

Debye frequency. For a linear dispersion with linewidth Γ, the density of states in
𝑑 = 3 dimensions is well approximated by 𝜌ph( |𝐸 |) = 𝜌0𝐸

2 for 𝐸 ≫
√
Γ𝜔𝐷 and a

constant 𝜌ph( |𝐸 |) = 𝜌0ΓΩ𝐷 for 𝐸 ≪
√
Γ𝜔𝐷 . In both cases the dissipation rate will

be linearly proportional to temperature 𝛾 ∼ 𝑇 , but for small energies the dissipation
will be constant in energy and linear in the phonon linewidth 𝛾 ∼ Γ, while for large
energies it will scale quadratically with energy 𝛾 ∼ 𝐸2

This allows for the dissipation rate at a fixed energy to be tuned in one of two ways.
First, decreasing the temperature will decrease the dissipation. Second, if the energy
is small enough, a constant floor can be set on the dissipation rate if the phonon
linewidth is large enough compared to the phonon energy. This can be exploited in
order to drive the system into a non-linear regime with energy scales that seem too
weak upon first glance, and will be expanded upon in later chapters.

1.6 Conclusion
In this chapter, I have described the quantum two-level system, and how the rare-
earth magnet LiHoxY1-xF4 can be naturally mapped onto a quantum Ising system.
LiHoxY1-xF4 has an exotic phase diagram, with ground state behavior ranging from
de-coupled spin clusters, to glassy relaxation, to long-range ferromagnetic ordering.
However, while much of the ground state behavior can be determined through the
use of the transverse field Ising model, off-diagonal terms in the dipolar interaction
∼ 𝑉 𝑧𝑥𝐽𝑧

𝑖
𝐽𝑥
𝑗

can give rise to new phenomena when looking at driven systems.

The rest of this thesis is divided into three chapters, with one chapter covering
measurements made on the de-coupled cluster glass LiHo0.045Y0.955F4 (in the
weakly-coupled regime), the second covering measurements made on the disordered
ferromagnets LiHo0.65Y0.35F4 and LiHo0.40Y0.60F4 , and the final chapter providing
a summary and prospects for future experiments.

In Chapter 2, I will show how off-diagonal terms in the dipolar interaction break the
Ising symmetry of the crystal, and allow an ac magnetic field parallel to the Ising axis
to drive the system into a non-linear response regime, dominated by resonant excita-
tions of cluster levels in dilute LiHo0.045Y0.955F4 . I will discuss a spin dimer model
that is capable of capturing the observed phenomena, including quantum interfer-
ence (observed as asymmetric Fano resonances) and electromagnetically-induced



20

transparency (EIT), in which the interference between the excitation pathways com-
pletely destructively interferes and renders the sample transparent to the AC drive
field.

In Chapter 3, I will show how noise measurements in the disordered ferromagnets
LiHo0.65Y0.35F4 can reveal the underlying free-energy surface determined by ran-
dom field pinning, and how that affects the domain wall dynamics. Furthermore,
I will show non-critical behavior in noise measurements on LiHo0.40Y0.60F4 , and
argue that this non-critical behavior is a sign of novel quantum behavior, in which
multiple macroscopic avalanches are nucleated by co-tunneling processes.

In the final chapter, I will delineate the major findings and their implications for
future work.
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C h a p t e r 2

NON-LINEAR SPECTROSCOPY OF HIGH-Q SPIN CLUSTERS

This chapter describes experimental pump-probe spectroscopy measurements of
LiHo0.045Y0.955F4 , in the “de-coupled cluster glass” phase (where weak heat-
sinking to a thermal reservoir amplifies quantum effects). The dynamics depart
from collective relaxation and must be described by a set of weakly-coupled spin
clusters, each with its own unique eigenstates depending on the spatial positions of
the spins which set the dipolar interaction. While linear dynamics can be interest-
ing, it is known that driving systems into a non-linear response regime can result in
exotic phenomena, where self-interactions become important.

For this reason, I turn to a set of pump-probe susceptibility measurements, in which
a strong ac magnetic “pump” field drives the system into a non-linear regime, and
a weaker ac magnetic “probe” field is used to interrogate the dynamics at other
frequencies. This chapter begins with a brief theoretical review on generalized
system susceptibilities, highlighting the importance of non-linear terms in the Taylor
expansion of the susceptibility, and the difference between non-linearities arising
from equilibrium vs non-equilibrium behavior.

These experiments can be described by analogy to traditional optical spectroscopy,
but here applied to a many-body system in which there is a magnetic dipole tran-
sition as opposed to an electric dipole transition, and the relevant photon energies
are of order ∼ 100 Hz (∼ 1 nK, 10−12𝑒V). Given a sufficiently strong external drive
and sufficiently sharp phonon linewidth, the system can be driven out of equilib-
rium, where exotic phenomena such as non-linear susceptibility, tunable quantum
interference, and electromagnetically-induced transparency (EIT) are observed.

2.1 Generalized Non-Linear Susceptibility
When a magnetic field is applied to LiHoF4 , the system responds by changing its
own magnetization. Ignoring the spatial fluctuations of the sample and focusing
on just the spatially-averaged bulk response, one finds that after waiting for initial
transients to die down, if the external field ®𝐻 is small enough, the bulk magnetization
®𝑀 will be approximately linear with respect to that field
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𝑀𝛼 = 𝜒
(1)
𝛼𝛽
𝐻𝛽 (2.1)

where 𝜒(1) is the linear susceptibility of the sample.

If, however, the external field is large enough, this linear approximation breaks
down, and higher order terms in the susceptibility expansion must be included.

𝑀𝛼 = 𝜒
(1)
𝛼𝛽
𝐻𝛽 + 𝜒(2)

𝛼𝛽𝜇
𝐻𝛽𝐻𝜇 + 𝜒(3)

𝛼𝛽𝜇𝜈
𝐻𝛽𝐻𝜇𝐻𝜈 + ... (2.2)

In practice, systems frequently obey certain symmetry constraints, limiting which
non-linear susceptibility terms 𝜒(𝑛) are non-zero. In the Ising system LiHoF4 , the
Z-2 inversion symmetry of the spins forbids all even susceptibility terms, making
the smallest order non-linear term 𝜒(3) . For simplicity’s sake, I will now assume that
all spatial indices are the 𝑧-axis, i.e. I will focus on the longitudinal magnetization
of the sample due to purely longitudinal fields and drop the implicit spatial indices,
even though in principle there are other terms that generate spatially orthogonal
responses to different field directions. In the specific case this becomes

𝑀 (𝑡) =
∞∑︁
𝑖=1

𝑀 (𝑖) (𝑡) =
∞∑︁
𝑖=1

𝜒(𝑖)𝐻𝑖 (𝑡) (2.3)

with the implicit assumption that 𝑀 is the component of the magnetization along the
𝑧-axis, and 𝐻 is assumed to lie along the 𝑧-axis as well. One can Fourier transform
both the magnetization and external fields:

𝑀 (𝜔) =
∫
R
𝑑𝑡𝑒−𝑖𝜔𝑡𝑀 (𝑡)

𝐻 (𝜔) =
∫
R
𝑑𝑡𝑒−𝑖𝜔𝑡𝐻 (𝑡)

(2.4)

with reverse Fourier transforms

𝑀 (𝑡) =
∫
R

𝑑𝜔

2𝜋
𝑒𝑖𝜔𝑡𝑀 (𝜔)

𝐻 (𝑡) =
∫
R

𝑑𝜔

2𝜋
𝑒𝑖𝜔𝑡𝐻 (𝜔).

(2.5)
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While the linear response of the system only contains the spectral components that
are present in the time-dependent drive field, the non-linear response naturally will
mix frequencies and give rise to harmonics and sidebands in the full system response.

Furthermore, real systems are not instantaneous, and in general the system state will
not depend solely on the instantaneous value of the external field, but also on the his-
tory of the external drive at previous times. One can replace the static susceptibilities
𝜒(𝑖) with a time-dependent susceptibilities 𝜒(𝑖) (𝜏). This time-dependent response
gives rise to dispersion, in which the susceptibility becomes frequency-dependent
in the Fourier domain. The new history dependent response is given by

𝑀 (1) (𝑡) = 𝜒(1) (𝜔)𝐻 (𝜔)

𝑀 (3) (𝑡) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
𝑑𝜏1𝑑𝜏2𝑑𝜏3𝜒

(3) (𝜏1, 𝜏2, 𝜏3)

×𝐻 (𝑡 − 𝜏1)𝐻 (𝑡 − 𝜏2)𝐻 (𝑡 − 𝜏3)

(2.6)

with corresponding Fourier transforms

𝑀 (1) (𝜔) =
∫ ∞

0
𝑑𝜏𝜒(1) (𝜏)𝐻 (𝑡 − 𝜏)

𝑀 (3) (𝜔) =
∫
R

∫
R

∫
R
𝑑𝜔1𝑑𝜔2𝑑𝜔3𝜒

(3) (𝜔1, 𝜔2, 𝜔3)

×𝐻 (𝜔1)𝐻 (𝜔2)𝐻 (𝜔3)𝛿(𝜔 − 𝜔1 − 𝜔2 − 𝜔3).

(2.7)

While the linear term only has non-zero spectral components at the driving fre-
quencies, the first non-linear term 𝑀 (3) ∼ 𝜒(3) responds not only at the driving
frequencies {𝜔𝑖}, but at new frequencies given by mixing the drive spectral com-
ponents. If non-linearities are strong enough, their signature can be observed in the
system response as higher harmonics of the drive frequencies, as well as sidebands
if the system is driven with more than one tone.

In a two-tone pump-probe experiment, one can think of non-linearities as cross-terms
between the two driving fields. While these non-linearities are unmistakably observ-
able as spectral sidebands, the non-linearities will also affect the system response
at the probe frequency. While there is a linear response 𝑀 (1) (𝜔𝑝) ∼ 𝜒(1) (𝜔𝑝) at
the probe frequency 𝜔𝑝, the non-linear term 𝑀 (3) (𝜔𝑝) = 𝜒(3) (𝜔𝑝, 𝜔𝑑 ,−𝜔𝑑) also
has a non-zero response at the probe frequency. Because of this, in addition to the
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obvious effects of non-linearities away from the probe frequency, there will be more
subtle effects at the probe frequency that are not as immediately distinguishable
from traditional linear effects. To see these effects, it is necessary to sweep the
probe frequency across the pump frequency and observe the system response as a
function of the detuning between the two frequencies.

While the above remains a general formulation for a system response that obeys
causality, a specific solution for this linear susceptibility for the quantum many-
body problem was discovered by Ryogo Kubo in 1957 [44], and is given by the
Kubo formula, in which the dynamics are solved perturbatively:

⟨𝑀 (𝑡)⟩ = ⟨𝑀⟩0 −
𝑖

ℏ

∫ 𝑡

𝑡0

𝑑𝑡′ ⟨[𝑀 (𝑡), 𝑉 (𝑡′)]⟩0 , (2.8)

where 𝑀 (𝑡) is the system bulk magnetization, 𝑉 (𝑡) is the interaction energy of
the external perturbation, and the brackets ⟨⟩0 denote an equilibrium average with
respect to the unperturbed Hamiltonian H0. This linear response only involves the
zeroth order eigenfunctions of the unperturbed system, and is only dependent on the
thermal states of the system, and not any non-equilibrium states. When the pump is
not sufficiently strong and close enough to resonance with the probe field, the effect
of the pump at the probe frequency is negligible, and the Kubo formula applies.
However, with a strong enough pump and small enough detuning, the system enters
a non-linear regime, and one must go past simple linear perturbation theory, and
consider a picture that permits cross terms between the two time-dependent external
fields.

One must quantify the field scales to enter the non-linear regime. For traditional
AMO systems, one can usually estimate the drive strengths needed to enter a non-
linear regime based on typical microscopic field scales in the problem [34]. For
electric dipole transitions, this back-of-the-envelope estimate corresponds to typical
electric fields within an atom, so it stands to reason that a reasonable non-linear field
scale in the magnetic case would correspond to typical demagnetization fields within
the lattice. However, the nearest-neighbor dipolar field is on the order of hundreds
of Oe, while one can observe non-linear dynamics with a drive field several orders
of magntiude smaller, on the order of hundreds of mOe. Indeed, the relevant energy
scale is not the demagnetization field scale, but rather the decoherence rate due to (in
LiHoxY1-xF4 ) dissipative transitions mediated by phonons. In this way, the thermal
boundary conditions are of crucial importance, because the phonon linewidth sets
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the low-energy dissipation rates, which, in turn, determine whether the system can
be driven into a non-linear regime.

2.2 Experimental Procedure
The susceptibility of the sample was measured using a custom high-purity (OFHC)
Copper susceptometer designed and machined in-house, shown in Figure 2.1. The
sample was mounted in the susceptometer, which was then mounted on the cold-
finger of a Helium dilution refrigerator. While the susceptometer itself was machined
out of copper, insulating coil forms were machined out of Hysol epoxy, which housed
the sample. Furthermore, a uniform static transverse field was applied using an 8T
superconducting solenoid sitting outside of the vacuum can. A time-dependent
magnetic field was applied by driving a smaller solenoid in the susceptometer with
an AC voltage, and a 1 kΩ current-limiting resistor to limit frequency-dependence
in the driving field. The time derivative of the sample bulk magnetization was
measured using another inductive coil nested inside of the drive solenoid, and a
matching pair of coils was made and wired out-of-phase to null out the effect of the
driving field itself and isolate the sample response. To do pump-probe spectroscopy,
only a simple voltage summing amplifier is needed to add two sine waves at different
frequencies simultaneously. For these measurements, the stronger pump field was of
order ∼ 0.5 Oe, while the probe field was more than an order of magnitude smaller
at 0.02 Oe. The pump frequency was fixed at a frequency ∼ 100 Hz, while the probe
frequency was scanned around the pump frequency to determine the frequency
response.

Due to the extremely narrow separation between the pump and probe frequencies
(∼ 1 mHz), disentangling the responses required the development of a two-stage
lock-in technique, where the combined response is passed into a commercial lock-in
amplifier tuned to the probe frequency, and the resulting output was sampled by a
computer and passed through a software lock-in detector tuned toΔ 𝑓 = 𝑓pump− 𝑓probe.
Due to Nyquist sampling criteria, all data reported here were sampled for a minimum
time of 2/Δ 𝑓 .

2.3 Raman Scattering of a Non-Linear Magnetic Crystal
One of the clear signatures of the non-linear response of a system is frequency-
mixing. If a medium is driven with discrete spectral components defined by fre-
quencies {𝜔input}, practically all systems will have linear response at those same
driving frequencies, if non-linearities are strong enough, there will be additional re-
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Figure 2.1: Photograph of the in-house built vector susceptometer made out of
high-purity (OFHC) Copper, and coil-forms machine out of Hysol epoxy. a The
fully-assembled susceptometer with accompanying coils. b In-house wrapped coils
for vector susceptometry.

sponses at some frequencies {𝜔output} ∉ {𝜔input}. In the case of these measurements,
this means searching for sidebands of the pump and probe frequencies.

In the case of these measurements, in which the sample was driven with two
sinewaves with almost the same frequency, a signature of the non-linear contri-
bution 𝜒(3) can be found as sidebands in the spectral response. There will be
contributions from 𝜒(3) at frequencies {𝜔𝑝 − Δ𝜔, 𝜔𝑝, 𝜔𝑑 , 𝜔𝑑 + Δ𝜔}. Since the
linear term 𝜒(1) has terms at frequencies {𝜔𝑝, 𝜔𝑑}, distinguishing the non-linear
from the linear responses at those frequencies is difficult. However, since the linear
response does not have any terms at {𝜔𝑝 − Δ𝜔, 𝜔𝑑 + Δ𝜔}, any system response at
those frequencies is a definitive indication of non-linear system response.

In these specific measurements, the data were collected by first mixing down the
system response by 𝜔𝑝 with a commercial lock-in amplifier, so the non-linear signal
at 𝜔𝑝 − Δ𝜔 was mixed down to −Δ𝜔, which is not easily distinguishable from the
signal at +Δ𝜔 from the drive. The spectral component at𝜔𝑛𝑙 ≡ 𝜔𝑝+2Δ𝜔 = 𝜔𝑑+Δ𝜔,
however, gets mixed down to 2Δ𝜔, which cannot possibly come from any linear
sample response, making it a convenient signal to look for non-linearities. An
illustration of the spectral components is given in Figure 2.2. This corresponds to
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Figure 2.2: Spectral components of the system response including non-linearities.
a Illustration of the emergence of a spectral sideband at frequency 𝜔𝑛𝑙 = 𝜔𝑝 + 2Δ𝜔
due to the non-linear susceptibility 𝜒(3) . b Illustration of level diagram showing
two-photon process that generates photons at 𝜔𝑛𝑙 by converting two photons with
energy 𝜔𝑑 (purple) into one photon with energy 𝜔𝑝 (red) and another with energy
𝜔𝑛𝑙 (green).

anti-Stokes Raman scattering–an inelastic scattering process that converts incoming
photons into photons at a higher energy if 𝜔𝑝 < 𝜔𝑑 , and Stokes scattering that
down-converts photons to a lower energy if 𝜔𝑝 > 𝜔𝑑 .

To pull out these non-linearities, after the down-mixed signal from the lock-in
output was fed into a software fitting routine, the residuals clearly show spectral
components at 2Δ𝜔, as is shown in Figure 2.3. No phase information was recorded
in these measurements, as a fully phase-coherent measurement would need to keep
track of not only the phase of the probe field (represented by the local oscillator of
the lock-in amplifier), but the phase of the pump field, which was not recorded.

Measuring non-linearities through frequency-mixing (in this case, Raman scatter-
ing) is a more convenient way of confirming non-linear response over the traditional
method, which is to directly measure the system response as a function of the drive
strength, and to extract the coefficients of the Taylor expansion of the response
curve, since varying the drive strength has the unfortunate consequence of adding
more heat into the system, so true temperature-independent system non-linearities
must be disentangled from the effect of sample heating. By keeping the system at a
constant drive power, the heating effect from the drive is de-coupled from the system
response.

If non-linearities are measured, it must be confirmed that the effects are due to
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Figure 2.3: The down-mixed (by local oscillator with frequency𝜔𝑝 signal is fitted in
software to a sine wave with frequency Δ𝜔. The 𝜒(3) signal at laboratory frequency
𝜔𝑛𝑙 is represented as a down-mixed signal at 2Δ𝜔 left over in the residuals.

non-linearities in the sample, and not due to non-linearities in the measurement
chain. Fortunately, this method of susceptometry measures the response of an
empty reference coil with the same measurement chain, so signals that are present
only in the sample coil and not in the reference coil are a clear indication that the
measurements are due to the sample itself.

I plot in Figure 2.4 the measured sample power at frequency 𝜔𝑛𝑙 for different values
of the probe frequency 𝑓𝑝 = 𝑓𝑑 + 𝑑𝑓 as the pump frequency 𝑓𝑝 = 𝜔𝑝/2𝜋, pump
amplitude ℎpump, DC transverse field 𝐻⊥, and temperature 𝑇 are kept constant. The
sample clearly responds at 𝜔𝑛𝑙 in both the longitudinal and transverse channels,
while the empty reference coil has no signal, indicating that the effect is truly due to
sample non-linearities, and ruling out any amplifier non-linearities. In addition, the
non-linear response behaves as one expects intuitively as a function of the detuning.
While there is not enough data to quantitatively discern the exact shape of the
non-linear response, there is clearly some linewidth in which the sample exhibits
non-linear behavior, and, within this regime, the magnitude of the response increases
as the detuning gets closer to zero.

At a fixed detuning of Δ 𝑓 = 1 mHz, I plot the temperature dependence of both
the linear 𝜒(1) response at frequency 𝜔𝑝, as well as the non-linear response 𝜒(3) at
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Figure 2.4: The measured sample power at the non-linear response frequency 𝜔𝑛𝑙
for different values of the probe frequency 𝑓𝑝 = 𝑓𝑑 + 𝑑𝑓 as the pump frequency
𝑓𝑝 = 𝜔𝑝/2𝜋, pump amplitude ℎpump, DC transverse field 𝐻⊥, and temperature 𝑇
are kept constant. The absence of any response in the empty coil indicates that the
effect is truly due to sample non-linearities, ruling out any effects from the amplifier
chain.

Figure 2.5: Dependence of the non-linear signal at 𝜔𝑛𝑙 on the detuning Δ 𝑓 =

𝑓𝑝 − 𝑓𝑑 at a series of temperatures. While all have similar linewidths at which there
is appreciable non-linear response, their amplitude decreases as the temperature
increases.
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Figure 2.6: Comparison of the linear (𝜒(1)) and non-linear (𝜒(3)) responses as a
function of temperature for a fixed pump amplitude, frequency, and DC transverse
field. Each data set is fitted to an exponential decay of the form |𝜒(𝑖) |2 ∼ 𝑒−𝑇/𝐸𝐵 ,
where 𝐸𝐵 (𝜒(1)) = 113 mK and 𝐸𝐵 (𝜒(3)) = 143 mK.

frequency 𝜔𝑛𝑙 in Figure 2.6. Both responses fit an exponential decay of the form
|𝜒(𝑖) |2 ∼ 𝑒−𝑇/𝐸𝐵 , where 𝐸𝐵 (𝜒(1)) = 113 mK and 𝐸𝐵 (𝜒(3)) = 143 mK. While the
precise origin of this temperature dependence remains unknown, it is clear that
thermal fluctuations are very important in suppressing the non-linear response of
the sample.

Turning now to the dependence on a static magnetic field transverse to the Ising
spin axis, I plot in Figure 2.7 the dependence at fixed pump amplitude, pump
frequency, and temperature of the non-linear response 𝜒(3) (𝜔𝑑 , 𝜔𝑑 ,−𝜔𝑝) for both
the longitudinal (𝜒∥) and transverse (𝜒⊥) channels. Both responses follow the
same functional form with different normalization constants, indicating that both
responses are different spatial projections of the same underlying dynamics. While
there is a general decreasing trend with increasing transverse field, there exists an
exceptional point at 𝐻⊥ = 3 kOe where the response drops dramatically.

I discuss below a plausible microscopic origin of these non-linearities, as well as
another set of measurements that reveal that the non-linear response of the sample
originates from coherent excitation of spin clusters, as well as quantum interference
between multiple excitation pathways of the discrete levels.
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Figure 2.7: Dependence of the non-linear susceptibility 𝜒(3) on a static transverse
field. Both the longitudinal response 𝜒(3)∥ (𝜔𝑑 , 𝜔𝑑 ,−𝜔𝑝) ≡ 𝜒

(3)
𝑧𝑧𝑧𝑧 (𝜔𝑑 , 𝜔𝑑 ,−𝜔𝑝) and

the transverse response 𝜒(3)⊥ (𝜔𝑑 , 𝜔𝑑 ,−𝜔𝑝) ≡ 𝜒
(3)
𝑥𝑧𝑧𝑧 (𝜔𝑑 , 𝜔𝑑 ,−𝜔𝑝) follow the same

functional form with different normalization constants indicating that both responses
are different spatial projections of the same underlying dynamics.

2.4 Quantum Corrections to the Ising Approximation of Spin Dimers
In this section, I introduce the theory behind the spin cluster picture of LiHoxY1-xF4

, and more specifically how including quantum corrections to the Ising approxima-
tion can make LiHo0.045Y0.955F4 a platform for quantum optics experiments with
effective photon frequencies in the audio band (∼ 100 Hz).

A key signature of the antiglass behavior is “spectral hole burning”, i.e., the obser-
vation of a Fano resonance in the magnetic susceptibility 𝜒(𝜔) in a LiHoxY1-xF4

sample, which is strongly driven by a time-dependent magnetic field [35, 70]. Fano
resonances are commonly a signature of quantum interference. In LiHoxY1-xF4 ,
the resonances are observable at surprisingly small drive frequencies𝜔𝑑 ≈ 2𝜋×200
Hz and probe frequency detuninngs 𝜔𝑝 − 𝜔𝑑 ≈ 2𝜋 × 1 mHz. Furthermore, they
can be tuned through the application of a transverse magnetic field. They occur
if the LiHoxY1-xF4 sample is well isolated from its environment and vanish if the
coupling to the environment is increased.

The magnetic moments in LiHoxY1-xF4 form a complicated, disordered, and strongly
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interacting many-body problem, which is hard to address theoretically even in the
simplified Ising approximation [3, 11]. What is especially puzzling in the hole
burning experiments [70] is the presence of several, strongly separated energy
scales and the apparent sensitivity of hole burning to all of them. The dipole-dipole
interaction between two neighboring moments is of order Δ𝑉 ∼ 500 mK and falls
off with a distance as ∼ 1/𝑟3. The LiHoxY1-xF4 sample is held at a temperature
of 𝑇 ∼ 100𝑚𝐾 . The sample is driven by an oscillating magnetic field with Rabi
frequency Ω𝑑 ≈ 2𝜇K, a drive frequency which corresponds to 𝜔𝑑 ≈ 60 nK, and its
response is probed at a detuning 𝜔𝑝 − 𝜔𝑑 ≈ 0.6 pK.

In this work, I start from a microscopic description of LiHoxY1-xF4 , incorporating
the full magnetic dipole-dipole interaction and the crystal field for the 𝐽 = 8 angular
momentum state of each Ho3+ ion. Using exact diagonalization, I will show that the
observation of Fano resonances can be explained on a qualitative level already for
a single pair of Ho3+ ions. The resonances appear as a consequence of interference
between two quasi-degenerate excitation pathways, corresponding to a pair of quasi-
degenerate quantum states, which can be coupled by applying an external, oscillating
magnetic field.

In order to generalize this observation to more realistic samples with 𝑛 ≥ 10 mag-
netic degrees of freedom, I derive a toy model of effective spin-1

2 degrees of freedom,
which captures the main ingredients for the observation of hole burning and reduces
to the LiHoxY1-xF4 Hamiltonian at low energies and for few magnetic moments. Ex-
ploring the dynamics of small samples shows that an external, oscillating magnetic
field addresses only a small fraction of the many-body Hilbert space for a given set
of driving parameters. The predicted magnetic susceptibility 𝜒(𝜔) displays several
spectral holes, which can be explained in terms of quasi-degenerate many-body exci-
tation pathways, and which match qualitatively well with the experimental findings
and energy scales. Within this simplified model, one can understand the origin and
the importance of the different energy scales and, in addition, can explain why the
Fano resonance is only observed in the limit of very small coupling between the
sample and the environment.

In the Ising approximation, each magnetic moment reduces to an Ising spin 𝐽𝛼
𝑖
=

𝛿𝛼,𝑧𝐶𝑧𝑧𝜎
𝑧
𝑖

[10, 63, 76], whose orientation is described by the Pauli matrix 𝜎𝑧. Under
this transformation, the full electronic Hamiltonian reduces to H →HIsing with
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Figure 2.8: A magnetic dimer is the simplest unit from which hole burning in
LiHoxY1-xF4 can be understood. (a) It is formed by two 𝐽 = 8 magnetic moments,
which interact with the material’s crystal field and experience a mutual dipole-
dipole force. The crystal field forces each magnetic moment to align along the 𝑧
axis and features an Ising-type ground state manifold associated with spin up and
down. This singles out the Ising contribution ∼ 𝐽𝑧1𝐽

𝑧
2 as the dominant dipole-dipole

interaction at low temperatures. Quantum corrections, led by the terms ∼ 𝐽𝑥1𝐽
𝑧
2, 𝐽

𝑧
1𝐽
𝑥
2

are strongly suppressed by the crystal field but crucial for the understanding of hole
burning in driven LiHoxY1-xF4 samples. (b) The terms 𝐽𝑥1𝐽

𝑧
2, ... are not compatible

with the Ising symmetry. They lift the Ising degeneracy and introduce small level
splittings 𝜖1,2 between two quasi-degenerate eigenstates in the LiHoxY1-xF4 dimer.
(c) Breaking the Ising symmetry also introduces small but nonzero transition matrix
elements 𝜇𝛼𝛽 =

〈
𝛼

�� (𝐽𝑧1 + 𝐽𝑧2) �� 𝛽〉 between different dimer eigenstates |𝛼⟩, |𝛽⟩. (d),
(e) Quantitative analysis of the level spacings (d) and transition matrix elements (e)
from exact diagonalization of a LiHoxY1-xF4 dimer described by H (2) in Eq. (2.10)
with relative orientation ®𝑟12 = Δ𝑟min(sin 𝜃, 0, cos 𝜃) [with 𝐿𝛼𝛽 (𝜃) ≡ 𝐿𝛼𝛽 (𝜃) (®𝑟12)].
The energies are compared to an equivalent Ising dimer, described by Eq. (2.11).
The colors in (e) match with the illustration in (c). At 𝜃 = arccos 1√

3
, 3𝜋

16 , the states
|3⟩ and |2⟩, |4⟩ are degenerate. For some 𝜃, there is one “dark” state (dashed line)
corresponding to an Ising singlet, which does not couple to the other states via 𝐽𝑧.
The quasi-degenerate partner of the dark state, however, weakly couples to both
states of the remaining quasi-degenerate pair. I refer to the particular form of 𝜇𝛼𝛽
in (c), (e), i.e., the coupling of a quasi-degenerate pair of states to an energetically
well separated state, as a “Λ scheme”. It is the basic building block for hole burning
in driven LiHoxY1-xF4 .
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HIsing =
𝐴dip𝐶

2
𝑧𝑧

2

∑︁
𝑖≠ 𝑗

𝜎𝑧
𝑖
𝜎𝑧
𝑗
𝐿𝑧𝑧 (𝑅𝑖 𝑗 ). (2.9)

Here 𝐴dip = 18.5 mK is the interaction energy, 𝐶𝑧𝑧 ≈ 5.51 is the effective renormal-
ized magnetic moment along the Ising axis, and 𝑅𝑖 𝑗 is the dimensionless distance
between spin 𝑖 and spin 𝑗 in units ofΔ𝑟min.

The full electronic Hamiltonian in the 17-dimensional 𝐽 = 8 Hilbert space can
be well approximated by the Ising Hamiltonian (2.9) for LiHo0.045Y0.955F4 if the
dissipation rates, corresponding to dephasing and incoherent flips of the magnetic
moments, are larger than the energy level splittings between quasi-degenerate states.
In this case, dissipation dominates over coherent dynamics and the dynamics look
effectively classical, i.e., Ising-like. This statement will be made more quantitative
below by showing that the hole burning, associated to the antiglass dynamics, can
be explained on the basis of the 𝐽 = 8 Hamiltonian without performing the Ising
approximation.

In order to point out the importance of quantum effects in the LiHoxY1-xF4 Hamil-
tonian for 𝑥 ≤ 0.05, I compare the low energy physics of the full Hamiltonian H
with the effective Hamiltonian over the truncated Hilbert space HIsing for small spin
clusters of 𝑛 = 2, 3 magnetic moments and refer to 𝑛 = 2, 3 as a dimer, trimer setup.
Quantum corrections are caused by the off-diagonal dipole-dipole interactions 𝐽𝑧

𝑖
𝐽𝑥
𝑗

and 𝐽𝑥
𝑖
𝐽𝑥
𝑗
, which induce virtual transitions out of the crystal field’s ground state

manifold. The large angular momentum 𝐽 = 8 yields significant transition matrix
elements for states far above the ∼ 10 K gap of the first excited state. Although
the corrections resulting from these transitions remain perturbative, a large fraction
of the excited states have to be taken into account for a correct description of the
quantum corrections. In order to be free of approximations, I choose n positions
for the Ho3+ atoms and diagonalize the 17𝑛 × 17𝑛 Hamiltonian H with crystal field
parameters taken from [61]. The precise form of the crystal field Hamiltonian for
LiHoxY1-xF4 is discussed in Chapter 1.

First, I consider a dimer setup of two Ho3+ ions with 𝐽 = 8. which experience the
crystal field and mutual dipole-dipole interactions. The Hamiltonian of the two ions
𝑖 = 1, 2, which are separated by a vector ®𝑅12 (in units of Δ𝑟min), is

H (2) = Hcf( ®𝐽1) + Hcf( ®𝐽2) + 𝐴dip
∑︁

𝛼,𝛽=𝑥,𝑦,𝑧

𝐿𝛼𝛽 (®𝑟12)𝐽𝛼1 𝐽
𝛽

2 (2.10)



35

with 𝐿𝛼𝛽 (®𝑟12) =
𝛿𝛼𝛽 | ®𝑅 |2−3𝑟𝛼𝑟𝛽

| ®𝑅 |5
as the dipole-dipole matrix element between ions

with relative displacement ®𝑟12. The corresponding Ising Hamiltonian is obtained by
projecting onto the ground state doublets of Hcf( ®𝐽1,2) and is given by

H (2)
Ising = 𝐴dip𝐶

2
𝑧𝑧𝐿

𝑧𝑧 (®𝑟12). (2.11)

It has eigenenergies ±𝐸Ising = ±|𝐴dip𝐶
2
𝑧𝑧𝐿

𝛼𝛽 (®𝑟12) |, each of which is twofold degen-
erate.

In general, the dipole-dipole interaction in Eq. (2.11) does not feature a compatible
Z2 symmetry and thus breaks the ground state degeneracy of the crystal field Hamil-
tonian. This introduces splitting energies 𝜖1,2 as illustrated in Fig 2.8b. I introduce
the projector 𝑃(𝑛) , which projects onto the 2𝑛 states of lowest energy of 𝐻 (𝑛) . For
each dimer eigenbasis one finds

𝑃(2)𝐻 (2)𝑃(2) = 2diag(Δ + 𝜖2,Δ, 𝜖1, 0) (2.12)

and

𝐻
(2)
Ising = 2diag(𝐸Ising, 𝐸Ising, 0, 0). (2.13)

Away from the special point 𝐿𝑧𝑧 ( ®𝑅0) = 0, where the ’classical Ising’ interaction
vanishes, the modifications of the eigenvalues of 𝑃(2)𝐻 (2)𝑃(2) compared to 𝐻 (2)

Ising

seem relatively small, i.e., 𝜖1,2
Δ

,
���Δ−𝐸Ising
𝐸Ising

��� ∼ 10−3 − 10−4 for | ®𝑅 | = 1, see Fig. 2.8d.

For | ®𝑅 | > 1, one finds an accurate scaling estimate:

[ 𝜖1,2
Δ

]
| ®𝑅 |>1

≈
[ 𝜖1,2
Δ

]
| ®𝑅 |=1

1
| ®𝑅 |3

. (2.14)

This anticipates that the corrections of 𝑃(2)H (2)𝑃(2) compared to H (2)
Ising can be

understood in terms of second-order perturbation theory. The eigenvalues of the
dipole matrix 𝐽𝛼1 𝐽

𝛽

2 can, however, become very large. Using second order Brillouin-
Wigner perturbation theory [53] in the eigenbasis of Hcf( ®𝐽1) +Hcf( ®𝐽2), convergence
towards 𝑃(2)H (2)𝑃(2) requires the inclusion of more than 𝑁 = 100 of the 172 = 289
eigenstates. This makes it difficult to express the eigenstates of 𝑃(2)H (2)𝑃(2) in the
Ising basis analytically.
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A second modification caused by using H (2) instead of H (2)
Ising is that the total 𝑧 axis

magnetization 𝐽𝑧tot = 𝐽
𝑧
1 + 𝐽

𝑧
2 is no longer diagonal in the basis of energy eigenstates.

For the Ising Hamiltonian, 𝐽𝑧
𝑖
∼ 𝜎𝑧

𝑖
and [𝜎𝑧

𝑖
,HIsing] = 0 and 𝐽tot, HIsing can be

diagonal in the same basis. In contrast, all diagonal matrix elements of 𝐽𝑧tot vanish
in the eigenbasis of H. I define the matrix elements of the total magnetic moment
in the 𝑧 direction between eigenstates |𝛼⟩, |𝛽⟩

𝜇𝛼𝛽 =
〈
𝛼

�� 𝐽𝑧tot
�� 𝛽〉 = ∑︁

𝑖

〈
𝛼

�� 𝐽𝑧
𝑖

�� 𝛽〉 (2.15)

For Ising eigenstates, 𝜇𝛼𝛽 ∼ 𝛿𝛼𝛽, while for LiHoxY1-xF4 clusters 𝜇𝛼𝛽 ∼ (1 − 𝛿𝛼𝛽).
The absolute values |𝜇𝛼𝛽 | for the dimer setup are shown in Fig. 2.8e.

For noncommuting [𝐽𝑧tot,H] ≠ 0, an oscillating magnetic drive field ℎ(𝑡) =

ℎ𝑑 cos(𝜔𝑑𝑡) in the 𝑧 direction, which is described by the Hamiltonian

𝛿H(𝑡) = ℎ𝑑 cos(𝜔𝑑𝑡)𝜇𝐵𝜇0𝐽
𝑧
tot, (2.16)

induces transitions between different energy eigenstates |𝛼⟩ → |𝛽⟩. The transition
rates are proportional to |𝜇𝛼𝛽 | (see Fig. 2.8e), and the corresponding level schemes
for the dimer setup are illustrated in Fig. 2.8c. The transition matrix |𝜇𝛼𝛽 |, which
couples a quasi-degenerate pair of states to another energetically well separated
state, has the shape of a (inverse) Λ and is referred to as a “Λ scheme.” As will
be discussed, it features similar dynamics to driven three-level systems in quantum
optics, where Λ schemes of this shape are common. The Λ scheme is the basic
building block for the understanding of hole burning in LiHoxY1-xF4 and will be
analyzed in detail in the following sections.

Adding more magnetic moments to the cluster either enhances or suppresses correc-
tions to the Ising approximation and may lead to more involved coupling matrices
𝜇𝛼𝛽. Refer to [15] for a detailed derivation, but it can be shown that both the addition
of more Ho3+ moments, as well as the addition of the hyperfine interaction, still
result in the accumulation of relatively isolated truncated Hilbert spaces consisting
of effective Λ schemes.
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2.5 Magnetic Susceptibility and Fano Resonances of Strongly-Driven Spin
Dimers

The Λ schemes found in magnetic dimers in Figure 2.8c are common candidates for
the observation of interference between different excitation pathways and Fano reso-
nances [34, 48]. In this section, I discuss the mechanism of destructive interference,
which leads to a Fano resonance in the magnetic susceptibility, for an idealized Λ

scheme. The Λ scheme itself is illustrated in Figure 2.9. It consists of three quantum
states |1, 2, 3⟩, which are driven by two external fields. The |2⟩ → |3⟩ transition is
driven by a time-dependent driving field and the |1⟩ → |3⟩ transition is driven by a
time-dependent probe field. The measured time-dependent magnetic susceptibility
will be proportional to the coherences |3⟩ ⟨2|, |3⟩ ⟨1|. Their dynamics do not depend
on whether the Λ scheme is regular or inverted and, without loss of generality, I
discuss an inverted scheme. The generalization to the situation of many magnetic
moments can be found in [15].

The ideal Λ scheme consists of three levels |𝑙⟩, 𝑙 ∈ {1, 2, 3} corresponding, e.g., to
three different dimer eigenstates, as shown in Figure 2.9c. An oscillating external
magnetic field with Rabi frequency Ω𝑑 and drive frequency 𝜔𝑑 drives the |2⟩ → |3⟩
transition with a detuning 𝜂 = 𝜔𝑑 − 𝐸23 from resonance. At the same time, an
oscillating probe field with Rabi frequency Ω𝑝 and drive frequency 𝜔𝑝 probes
the |1⟩ → 3 transition with detuning 𝜈 + 𝜂 = 𝜔𝑝 − 𝐸13 from resonance. In
addition, incoherent transitions are induced by the coupling of the states to a phonon
continuum. The corresponding rates for the (anti-) Stokes 𝛾3→1,2 (𝛾1,2→3) are
modeled and estimated in [15].

The time-dependent Hamiltonian for this Λ scheme is:

HΛ(𝑡) = 𝐸13 |1⟩ ⟨1|+𝐸23 |2⟩ ⟨2|+Ω𝑑 cos(𝜔𝑑𝑡) ( |2⟩ ⟨3|+h.c.)+Ω𝑝 cos(𝜔𝑝𝑡) ( |1⟩ ⟨3|+h.c.),
(2.17)

with 𝐸13, 𝐸23 > 0. Assuming small Rabi frequencies, Ω𝑑,𝑝 ≤ 𝜔𝑑,𝑝, one can perform
a rotating wave approximation (RWA), i.e., transform theHΛ(𝑡) into a frame rotating
with the drive and pump fields and discard all counterrotating terms ∼ 2𝜔𝑑,𝑝. The
corresponding unitary transformation is𝑈 (𝑡) = exp[𝑖𝑡 (𝜔𝑝 |1⟩ ⟨1| +𝜔𝑑 |2⟩ ⟨2|)] and
the transformed Hamiltonian is:
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Figure 2.9: Illustration of an idealized, driven Λ scheme, which is realized in an
antiferromagnetic Ho3+ dimer subject to time-dependent magnetic drive and probe
fields in the 𝑧 direction. The inset shows a corresponding dimer transition matrix 𝜇𝛼𝛽
extracted from Figure 2.8c. The drive, probe fields oscillate with frequencies𝜔𝑑 ,𝜔𝑝,
and the strength of the couplings is described by the Rabi frequenciesΩ𝑑 , Ω𝑝, which
are proportional to the corresponding coupling matrix elements and the strength of
the magnetic drive, probe fields ℎ𝑑 , ℎ𝑝, i.e., Ω𝑑 ∼ ℎ𝑑𝜇13, Ω𝑝 ∼ ℎ𝑝𝜇23. The
drive scheme also includes dissipative transitions with rates 𝛾𝛼→𝛽, corresponding
to Stokes (↑) and anti-Stokes (↓) transitions, which stem from the coupling of the
magnetic moments to a low-temperature phonon continuum. Adjusting the detuning
𝜂, 𝜈 + 𝜂 of the drive and probe field from the energy differences 𝐸13, 𝐸23 in the
Λ scheme enables a Fano resonance, i.e., hole burning, in the linear susceptibility
𝜒(1) . Note: this illustration represents an idealization. In reality, both the drive
and probe fields contribute to 𝜇13 and 𝜇23 at the same time. In linear response to
the probe field ℎ𝑝, however, the measured signal is very well approximated by Λ

schemes linear in ℎ𝑑 . The fuller picture can be described by a drive scheme with
(𝜔𝑑 , ℎ𝑑) → (𝜔𝑝, ℎ𝑝).

H̃Λ = 𝑈†(𝑡)HΛ(𝑡)𝑈 (𝑡) − 𝑖𝑈†(𝑡)𝜕𝑡𝑈 (𝑡)RWA

=
Ω𝑑

2
( |3⟩ ⟨2| + |2⟩ ⟨3|) +

Ω𝑝

2
( |3⟩ ⟨1| + |1⟩ ⟨3|)

+𝜈 |2⟩ ⟨2| + (𝜈 + 𝜂) |3⟩ ⟨3| .

(2.18)

In the last step, a constant energy shift was added H̃Λ → H̃Λ + (𝜈 + 𝜂), which does
not change the dynamics.

In order to account for the dissipation, I use a density matrix description of the
magnetic system. The density matrix
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�̂� =
∑︁

𝛼,𝛽∈{1,2,3}
𝜌𝛼𝛽 |𝛼⟩ ⟨𝛽 | (2.19)

is Hermitian 𝜌𝛼𝛽 = 𝜌∗
𝛼𝛽

and has unit trace
∑
𝛼 𝜌𝛼𝛼 = 1. Its time evolution is

described by a quantum master equation in Lindblad form [13]:

𝜕𝑡 �̂� = 𝑖[ �̂�, H̃Λ] +
∑︁
𝛼=1,2

(L𝛼→3 + L3→𝛼) �̂�. (2.20)

The second term describes dissipative transitions via the superoperators L𝛼𝛽 which
act linearly on �̂�,

L𝛼→𝛽 �̂� = 𝛾𝛼→𝛽 ( |𝛽⟩ ⟨𝛼 | �̂� | 𝛼⟩ ⟨𝛽 | − 1
2
{|𝛼⟩ ⟨𝛼 | , �̂�}). (2.21)

The linear response to the probe field ∼ Ω𝑝 is obtained from the stationary state
(𝜕𝑡 �̂� = 0) of Eq. (2.21). To simplify notation, I assume one common rate 𝛾 ≡ 𝛾𝛼→𝛽

for all dissipative processes. This is justified for 𝑘𝐵𝑇 > 𝐸13, 𝐸23. One finds

𝜌11 ≈ 𝜌22 =
1 − 𝜌33

2
(2.22)

𝜌21 =
Ω𝑑𝜌31 −Ω𝑝𝜌23

2(𝑖𝛾 − 𝜈) (2.23)

𝜌23 =
Ω𝑑 (3𝜌33 − 1)

4𝜂 + 6𝑖𝛾
(2.24)

𝜌31 =
𝑖𝛾 − 𝜈 + Ω2

𝑑

4𝜂+6𝑖𝛾

Ω2
𝑑
− (𝑖𝛾 − 𝜈) (6𝑖𝛾 − 4(𝜂 + 𝜈))

Ω𝑝 (3𝜌22 − 1). (2.25)

The time-dependent expectation of an arbitrary, time independent operator Ô in the
rotating frame is

〈
Ô

〉
(𝑡) = Tr(𝑈†(𝑡) �̂�𝑈 (𝑡)Ô) =

∑︁
𝛼,𝛽

(𝑈†(𝑡) �̂�𝑈 (𝑡))𝛼,𝛽O𝛽𝛼 . (2.26)
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Figure 2.10: Spectral hole (Fano resonance) in the susceptibility 𝜒(𝜔𝑝) obtained
in linear response in Ω𝑝 from the Λ scheme in Figure 2.9 (repeated in inset). Both
the real (𝜒′, red bold line) and the imaginary part (𝜒′′, grey dotted line) display an
asymmetric lineshape, indicating a Fano resonance close to the resonance condition
𝜔𝑝 − 𝜔𝑑 ≈ 𝐸13 − 𝐸23. The dimensionless parameters for this figure are 𝛾 = 0.1,
Ω𝑑 = 4, 𝜔𝑑 = 18, 𝐸23 = 20.4, 𝐸13 = 19.4. The dependence of the strength 𝐹,
spectral width 𝑤, and position 𝜈𝑝 of the signal on the drive parameters can be found
in [15].

If the response is evaluated at the probe frequency 𝜔𝑝, only terms proportional to
𝜌13, 𝜌31 ∼ 𝑒±𝑖𝜔𝑝𝑡 contribute to Eq. (2.26). This yields the linear response of the
generic operator Ô

lim𝜔𝑝→0

𝜕

〈
Ô

〉
𝜔𝑝

𝜕Ω𝑝

=
𝑂13(𝑖𝛾 − 𝜈 +

Ω2
𝑑

4𝜂+6𝑖𝛾 )
Ω2
𝑑
− (𝑖𝛾 − 𝜈) (6𝑖𝛾 − 4(𝜂 + 𝜈))

(3𝜌22 − 1). (2.27)

For the specific choice of Ô = |1⟩ ⟨3| + |3⟩ ⟨1|, i.e., measuring the operator to which

the probe field is coupled,
𝜕⟨Ô⟩𝜔𝑝

𝜕Ω𝑝
≡ 𝜒O (𝜔𝑝) is the susceptibility.

The real and imaginary parts of the susceptibility 𝜒 = 𝜒′ + 𝑖𝜒′′ are shown in Figure
2.10 for a suitable set of parameters. They display a pronounced Fano resonance,
i.e., a spectral hole, whose strength depends on the dissipation rate 𝛾 and the Rabi
frequency of the drive Ω𝑑 . For weak driving Ω𝑑 → 0, the signal reduces to the
expected Lorentzian, 𝜒′′(𝜔𝑝) = 6𝛾

36𝛾2+16(𝜔𝑝−𝐸2
13)

, with a peak ∼ 1
6𝛾 at 𝜔𝑝 = 𝐸13.
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2.6 Fano Resonances in Pump-Probe Spectroscopy of LiHo0.045Y0.955F4

The first thing to consider is the dependence of the Fano resonances on thermal
fluctuations. I plot in Figure 2.11 the imaginary part of the susceptibility at frequency
𝑓probe = 𝑓pump+Δ 𝑓 at identical test conditions (temperature, external DC field, time-
dependent pump field) except for the thermal boundary conditions. In the strong
heat-sinking regime, the sample was pressed firmly against a sapphire plate that was
strongly thermally coupled to the cold-finger of the Helium dilution refrigerator. In
the weak regime, the sapphire was pulled out of contact with the sample, and the
bulk of the cooling came from physical contact with a Hysol epoxy coil form. As
can clearly be seen in Figure 2.11, the Fano resonance is only observable in the
weak heat-sinking regime where isolation from the thermal bath protects quantum
interference pathways.

Figure 2.11: Plot of the imaginary susceptibility 𝜒′′ as a function of the detuning
of the probe away from the pump Δ 𝑓 = 𝑓probe − 𝑓pump for two heat sinking regimes.
Note that the weak coupling regime clearly exhibits an asymmetric Fano resonance
while the strong coupling regime does not.

By comparing the integrated area of the resonant response with the area of the entire
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linear response spectrum, I estimate that the fraction of spins bound in clusters
resonant at the chosen drive frequency is of order 2 × 10−6 of the entire sample. As
the temperature is increased, the amplitude of the resonant response drops and the
resonance appears to broaden, with the response suppressed to 8% of its original
amplitude at 𝑇 = 500 mK and to below the noise floor of the measurement at 700
mK. Given that the overall linear susceptibility of LiHo0.045Y0.955F4 has a strong
temperature dependence, the thermal evolution of the resonant response can be seen
more clearly by normalizing it to the linear response at each temperature (determined
by measuring 𝜒′′(Δ 𝑓 = 30mHz)). I show in Fig. 2.12b spectra obtained at a series
of temperatures, normalized, and then combined into a surface plot where color and
height now represent the absorption for a given Δ 𝑓 and 𝑇 . The broadening of the
resonance with increasing temperature emerges clearly in this visualization and I
examine it quantitatively in Fig. 2.14c by looking at the evolution of the linewidth
in the fits to the Fano form:

𝜒′′(Δ 𝑓 ) = 𝐴
( 𝑞Γ2 + Δ 𝑓 )2

Δ 𝑓 2 + Γ2

2

, (2.28)

where Γ is the linewidth of the resonance and 𝑞, known as the Fano parameter,
characterizes the interference between the different transition pathways. The mHz
scale low-temperature limit of the linewidth suggests that the coupling between
the clusters and the background spin bath is weak, and hence that the system can
be considered in the framework of a two-level system in weak contact with the
environment rather than a continuous relaxation process. Quantum states with
splittings substantially smaller than nominal bath temperatures are very common in
solids and liquids, and indeed form the basis for various resonance (e.g., nuclear
magnetic resonance (NMR)) spectroscopies, many of which rely on non-equilibrium
quantum-state preparation. Reduced bath coupling during cool-down increases the
𝑇1 and 𝑇2 times associated with such quantum states, and hence makes a description
of the magnetic response of the system due to a set of independent multilevel quantum
systems more appropriate than a picture based on classical, thermal diffusion.

When a multilevel quantum description applies for a fixed bath coupling (which
extracts heat) and ac driving field (which inserts heat), an equilibrium with a set
of fixed state occupancies will characterize the system, and to first order that equi-
librium can be described by a fixed effective temperature. On the other hand,
the non-equilibrium dynamics are dominated by small multilevel systems describ-
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Figure 2.12: Linear absorption spectra of LiHoxY1-xF4 as a function of temperature.
a Measured absorption in the presence of a 0.3 Oe pump field at 𝑓pump = 202 Hz and
zero transverse field using a probe field with 20 mOe amplitude. Curves are fits to
Fano resonance forms, Eq. 2.28 in the text. The points at 𝑓 = 𝑓pump (open symbols)
are omitted from the fits (see text for details). b Absorption normalized with respect
to the response at Δ 𝑓 = 30 mHz as a function of frequency and temperature. Color
and z position both indicate normalized absorption. c Linewidth of the resonance,
as determined from fitting to the Fano model, vs. temperature 𝑇 . Line is a fit to an
intrinsic linewidth of 1.7 mHz plus exponential thermal broadening with Δ = 740
mK . d Fano parameter 𝑞 vs. temperature, showing the suppression of coupling to
the bath at the lowest 𝑇 . Lines are guides to the eye.
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able in terms of some generalized Bloch equation, exactly as is the case, e.g., for
NMR performed even at room temperature, and are therefore quantum mechanical.
The linewidth increases exponentially with 𝑇 , consistent with a thermally activated
process with a gap Δ = 740 mK, which is an energy well below the 9.4 K first
excited crystal-field state energy but of the same order as the nearest-neighbor spin
couplings.

It should be noted that the free-induction relaxation time of ∼ 10 − 30 s observed
previously [35] is substantially shorter than the ∼ 500 − 1000 s of the inverse
linewidth of the hole uncovered in the driven pump-probe measurements. This
follows because the free-induction decay was measured for relaxation after the
strong ac drive field was turned off, whereas the linewidth here is measured in the
far more weakly driven linear regime.

I now examine the effects of various tuning parameters on the cluster response,
specifically the pump amplitude 𝐻pump and the static transverse field 𝐻⊥., showing
the measured susceptibility spectra in Figures 2.13 and 2.14, and derived quantities
in Figures 2.15 and 2.16. First I explore in figures 2.13 and 2.15 the effects of
changing the amplitude of the pump field. Most important is the change in the
sign of the Fano 𝑞: for the largest drive field (0.5 Oe), the low- and high-frequency
responses are enhanced and suppressed, respectively, opposite to what is seen for
the lower drive field. The zero crossing of 𝑞 occurs at a critical ℎpump = 0.45 Oe
(Fig. 2.15a). The data point at the pump frequency where pump and probe-derived
signals cannot be distinguished are ignored for the Fano fits, because they represent
the response of the highly excited (pumped) clusters and not the perturbatively mixed
clusters with other resonant frequencies.

Figures 2.15b,c reveal clear distinctions between 𝜒drive, the total signal at 𝑓pump, and
𝜒Fano, the linear Fano contribution calculated from evaluation at 𝑓 = 𝑓pump of the
fitted Fano form to data at 𝑓 ≠ 𝑓pump. First, 𝜒′drive goes through a maximum at the
zero crossing of 𝑞 (Fig. 2.15c), whereas 𝜒′Fano undergoes a decrease that looks like
a rounded step. Second, when I plot the phases 𝜙 = tan−1 𝜒′′/𝜒′ (Fig. 2.15b), one
finds that although both 𝜒drive and 𝜒Fano have phase shifts that are smaller at high
ℎpump, the latter actually has a zero near the zero of 𝑞. In other words, for small
linear perturbations, the Fano response is dissipationless in the limit 𝑓 → 𝑓pump.
This result follows from Eq. (2.28), which gives 𝜙 = 𝜙(𝑞) = tan−1 𝑞2

1−𝑞2 , a functional
form that is superposed over the experimental results in Fig. 2.15b. The absence of
dissipation in the Fano response that describes the linear continuum at 𝑞 = 0 means
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Figure 2.13: Linear absorption as a function of pump amplitude at 𝑇 = 110 mK
for a 202 Hz pump. a,b Measured imaginary and real susceptibilities (points), and
fits to a Fano resonance form as a function of pump amplitude at zero transverse
field. Increasing the pump amplitude tunes the resonant behavior, at the cost of
increased decoherence. c Normalized absorption as a function of frequency and
pump amplitude. Color and z position both indicate normalized absorption.
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Figure 2.14: Linear absorption as a function of transverse field at 𝑇 = 110 mK
for a 202 Hz pump. a,b Measured imaginary and real susceptibilities (points) and
fits to a Fano resonance as a function of transverse field for a fixed 0.3 Oe pump.
Transverse field-induced quantum tunneling tunes the resonant behavior without
a corresponding increase in decoherence. c Normalized absorption as a function
of frequency and transverse field. Color and z position both indicate normalized
absorption.
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that hole burning is actually complete at the drive frequency: there is no continuum
contribution to 𝜒′′, which remains unaffected by the drive in the limit 𝑓 → 𝑓pump.
Significantly, the absence of dissipation coincident with the 𝑞 = 0 crossing indicates
that the clusters cannot be excited between their ground and excited states by the
external drive.

Varying the ac pump amplitude accesses different mixtures of the states of the
localized clusters. The additional power applied to the drive solenoid also results in
eddy-current-induced heating of the copper susceptometer mount and hence some
degree of conductive heating of the sample despite the low thermal conductivity
Hysol epoxy coil form holding the sample inside the susceptometer. This, as well
as dissipation within the sample itself, gives rise to a higher effective temperature,
with a concomitant loss of coherence. The decoherence of the resonant excitation is
reflected by a measurable increase in the linewidth Γ, whose temperature-dependent
evolution can be traced readily in Fig. 2.12c. Over the range of pump amplitudes
shown in Fig. 2.13, the resonance linewidth increases from 1.1 to 1.8 mHz (Fig.
2.15d, equivalent to ∼ 50 mK of direct thermal heating. Even while heating is
clearly present, the linewidths remain negligible on the scale of the drive frequency,
allowing the coherent superpositions of multiple excitation pathways. Their relative
signs change at a critical longitudinal pump field of 0.45 Oe, thus yielding the zero
crossing of 𝑞, one of the main results of this experiment.

I now take advantage of one of the key features of the LiHoxY1-xF4 family–the
ability to tune the microscopic Hamiltonian by applying a magnetic field transverse
to the Ising axis, thereby quantum-mechanically mixing the single ion and cluster
eigenstates [17, 83] via different matrix elements than does the ac longitudinal field.
Again, application of a transverse field induces a crossover (Fig. 2.14) at a well-
defined field of 𝐻⊥ = 3.5 kOe [68], similar to that seen earlier as a function of pump
amplitude (Fig. 2.13). I also plot in Fig. 2.16a the transverse field dependence
of the Fano parameter 𝑞. This parameter changes linearly with 𝐻⊥ over most of
the experimental range, showing that the external transverse field not only changes
the energies of different states but also tunes the interference between the multiple
excitation pathways. In particular, at the 𝐻⊥ = 3.5 kOe crossover field, 𝑞 vanishes.
At the same time, as also seen when ℎpump was varied to obtain a zero crossing
of 𝑞, there is a quadratic zero in the phase for 𝜒Fano( 𝑓pump) (Fig. 2.16b) and a
maximum in 𝜒′drive (Fig. 2.16c), both of which coincide with the zero of 𝑞 and can
be roughly described by the function 𝜙(𝑞). The simultaneous vanishing of 𝑞 and
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Figure 2.15: Evolution of resonant behavior as a function of pump amplitude at
𝑇 = 0.11 K and 𝐻⊥ = 0 for a 202 Hz pump. a Fano parameter 𝑞 vs. drive amplitude
showing a continuous evolution including a smooth crossing through zero. Dashed
line is a guide to the eye. b Evolution of the phase of the complex susceptibility at
𝑓 = 𝑓pump for the non-linear (open symbols) and linear (filled symbols) responses.
The zero crossings of 𝑞 are associated with a local minimum in the dissipation,
and a corresponding minimum in the phase shift of the linear probe response as
the probe frequency approaches the pump frequency. 𝜙(𝑞) = tan−1

(
𝑞2

1−𝑞2

)
(blue

dotted curve) follows from Eq. (2.28) in the text. c Real susceptibility 𝜒′ measured
directly at 𝑓 = 𝑓pump (open symbols) and determined by extrapolating the fitted Fano
resonance to 𝑓 = 𝑓pump (filled symbols), showing the contrast in behavior between
the non-linear and linear responses, respectively. d Fano linewidth Γ vs. ac drive
ℎpump. Increasing the drive amplitude broadens the linewidth as heat is pumped into
the system and hence reduces the oscillator 𝑄.
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Figure 2.16: Evolution of resonant behavior as a function of transverse field at 𝑇 =
0.11 K for a 202 Hz/0.3 Oe pump. a Fano parameter 𝑞 vs. transverse field showing
a continuous evolution including a smooth crossing through zero. Dashed line is a
guide to the eye. b Evolution of the phase of the complex susceptibility at 𝑓 = 𝑓pump
for the non-linear (open symbols) and linear (filled symbols) responses. As with
the pump dependence shown in Fig. 5, the zero-crossing of 𝑞 is associated with a
vanishing of the dissipation in the linear response with the same functional form,
demonstrating universal behavior from two disparate tuning parameters. c Real
susceptibility 𝜒′ measured directly at 𝑓 = 𝑓pump (open symbols) and determined
by extrapolating the fitted Fano resonance to 𝑓 = 𝑓pump (filled symbols), showing a
small but apparent distinction in the evolution of the non-linear and linear responses.
d Fano linewidth Γ vs. transverse field. In contrast to the behavior as a function of
ℎpump, increasing 𝐻⊥ does not change the linewidth.
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the phase (and hence the dissipation) opens the possibility for the static transverse
field to be used to decouple the localized cluster excitations from the external ac
field. In contrast to what was seen for the ℎpump scan with 𝐻⊥ = 0, 𝜒′drive and
𝜒′Fano are nearly indistinguishable at 𝑓pump. Another contrast, anticipated from the
previous paragraph and visible in the comparison of Figs. 2.15d and 2.16d is that
the linewidth is, to within error, 𝐻⊥ independent. The essentially constant behavior
of the linewidth is a strong indication that the evolution due to the transverse-field-
induced quantum fluctuations is fundamentally different from the purely classical
behavior seen as a function of increasing temperature.

Figure 2.17: Evolution of the Fano 𝑞 at constant 𝑇 and ℎpump as a function of 𝐻⊥
for two different pump frequencies. The field at which there is zero-crossing in the
Fano 𝑞 depends on pump frequency for the two transverse field scans.

While one might be tempted to associate the 𝐻⊥ = 3.5 kOe field scale as a universal
zero-crossing in the Fano 𝑞 since it corresponds with known level-crossings in
the single-ion electronuclear Hamiltonian, the 𝑞 = 0 crossing moves to different
transverse fields at different pump frequencies as seen in Figure 2.17, suggesting
that the interference effects result from more subtle phase-shifts in the transition
pathways due to the precise eigenstates of the cluster in question. As different
clusters are sampled by changing drive frequencies, their dependence on transverse
field and pump amplitude changes due the exact structure of that individual cluster.

2.7 Inferring Dissipation Rates from Experimental Data
In order to determine relevant energy scales and dissipation rates, experimental data
from a series of temperatures was fitted to a single Λ scheme. Without loss of
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generality, I use the fitting function:

(𝜒(𝛿𝜔) + 𝛽) 𝛼 =

|𝜇13 |2(𝑖𝛾 − 𝜈 +
𝐻2

𝑑
|𝜇23 |2

4𝜂+6𝑖𝛾 )
𝐻2
𝑑
|𝜇23 |2 − (𝑖𝛾 − 𝜈) (6𝑖𝛾 − 4(𝜂 + 𝜈))

+
|𝜇23 |2(𝑖𝛾 + 𝜈 + 2𝛿𝜔 + 𝐻2

𝑑
|𝜇13 |2

4(𝜂+𝜈+𝛿𝜔)+6𝑖𝛾 )
𝐻2
𝑑
|𝜇13 |2 − (𝑖𝛾 + 𝜈 + 2𝛿𝜔) (6𝑖𝛾 − 4(𝜂 + 𝛿𝜔))

.

(2.29)

The parameters 𝛼 and 𝛽 are added in order to take into account the experimen-
tal measurement procedure, in which the asymptotic behavior (at large detunings
𝛿𝜔) of the Fano signal is normalized and isolated from a temperature-dependent
background signal. The dissipation rates are modeled to increase linearly with tem-
perature 𝛾 = 𝛾0𝑇 and insert 𝜈 = 𝛿𝜔 − 𝜖 , 𝜂 = 𝜔𝑑 − Δ. The energies 𝜖,Δ again
correspond to the quasi-degenerate, quantum energy splitting and the Ising level
splitting, respectively. The drive field amplitude 𝐻𝑑 = 5.7 MHz corresponds to
ℎ𝑑 = 0.3 Oe.

The comparison between the theoretical fit and the experimental data is shown in
figure 2.18. It shows very good agreement between experiment and the prediction
from a single Λ scheme. All curves share the same transition matrix elements
𝜇13 = 2.3× 10−5, 𝜇23 = 7.1× 10−6, energy levels 𝜖 = 22 mHz, 𝜔𝑝 −Δ = 21.4 mHz,
and a linearly increasing decay rate 𝛾 = 0.48 mHz × 𝑇

150mK . The parameters 𝛼, 𝛽
display a non-linear temperature dependence with 𝛼 = (247, 244, 212, 168, 116)
and 𝛽 = (5, 3.8, 2.7, 1.8, 1.1) for the temperatures 𝑇 = (150, 200, 250, 300, 350)
mK. The monotonic decrease of these values with temperature is likely to be caused
by the general decrease in the measured signal for the susceptibility for increasing
temperatures.

2.8 Conclusion
One of the more remarkable features of the de-coupled cluster glass LiHo0.045Y0.955F4

is that it displays non-linearities at energy scales that seem unintuitive. I conclude
by connecting both of the non-linear measurements, the inelastic Raman measure-
ments and the asymmetric Fano resonances, and their interpretations with respect
to optical analogues.

The relevant energy scales in these susceptibility measurements consist of a tem-
perature 𝑇 ∼ 100 mK, a nearest-neighbor dipolar interaction energy |𝑉dip | ∼ 500
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Figure 2.18: Comparing experimental data for the imaginary part of the magnetic
susceptibility from a LiHoxY1-xF4 sample with 𝑥 = 0.045 and theoretical predictions
from a single Λ scheme yields very good agreement. The experimental data is
represented by markers (circles, diamonds, and squares) and was taken for varying
probe field detuning 𝛿𝜔 = 𝜔𝑝 − 𝜔𝑑 ∈ 2𝜋 × [−5, 5] mHz. The temperature of the
sample varies from curve to curve, ranging from 𝑇 = 150 mK to 𝑇 = 350 mK.
The lines are predictions for a single Λ scheme with transition matrix elements
𝜇13 = 2.3× 10−5, 𝜇23 = 7.1× 10−6, energy levels 𝜖 = 22 mHz, 𝜔𝑝 −Δ = 21.4 mHz,
and a linearly increasing decay rate 𝛾 = 0.48 mHz × 𝑇

150mK . The parameters 𝛼, 𝛽
display a non-linear temperature dependence with 𝛼 = (247, 244, 212, 168, 116)
and 𝛽 = (5, 3.8, 2.7, 1.8, 1.1) for the temperatures 𝑇 = (150, 200, 250, 300, 350)
mK. The comparison demonstrates that the experimentally observed signal is very
well explained already on the basis of a single Λ scheme, and with energy levels
and transition matrix elements that agree well with predictions for small magnetic
clusters in LiHoxY1-xF4 . The linear temperature dependence of the dissipation rate
is in agreement with acoustic phonons at very small energy differences ∼ 𝜔𝑑 .
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mK, an effective laser frequency of 𝜔𝑝 ∼ 100 nK, and a resonance linewidth of
𝛿𝜔 ∼ 1 pK. With a strong Ising moment |𝜇 | ≈ 6.88𝜇𝐵, a naïve estimate for the
Rabi frequency of a ∼ 0.3 G drive field would yield Ω𝑝 ∼ 2𝜇K. Since the field is
aligned along the 𝑧 axis, if one simply uses the Ising approximation, the commutator
[𝐵𝑧,HIsing] = 0 vanishes, and the system always remains in an instantaneous Ising
eigenstate, and no transitions between states can be driven. However, if one includes
off-diagonal terms in the dipolar interaction 𝑉 𝑧𝑥

𝑖 𝑗
∼ 𝜎𝑧

𝑖
𝜎𝑥
𝑗
, the Z2 Ising symmetry is

broken, and a longitudinal magnetic field ℎ𝑧 can be transformed into a term ∼ 𝜎𝑥

which induces quantum fluctuations between states. Since these off-diagonal terms
are weak, the matrix elements ⟨𝛼 | 𝑔𝐿𝜇𝐵ℎ𝑧𝐽𝑧 | 𝛽⟩ are small, drastically suppressing
the effective Rabi frequency. Since these overlaps are small, the system can be
driven back into a regime in which the rotating wave approximation is still valid
Ω𝑝,𝑑 < 𝜔𝑝,𝑑 .

The dominant source of dissipation comes from phonon scattering, in which in-
coherent spin flips are driven via lattice vibrations. If one decouples the system
phonon bath from its environment, one can tune the LiHoxY1-xF4 phonon linewidth
Γ, which is the dominant competing term in the Hamiltonian. The energy splittings
(∼ 100 nK) are small compared to the environmental bath temperature (∼ 100 mK),
putting these cluster excitations in the infinite temperature regime. However, even
though bath temperatures are high, if the coupling between the bath and the system
is weakened sufficiently, the system will not equilibrate, and the relevant energy
scale for entering non-linear behavior becomes the dissipation rate due to phonon-
scattering, which for low energies is set by the phonon linewidth Γ. Because of
this, LiHo0.045Y0.955F4 can be driven into a non-linear response regime with much
smaller fields (∼ 0.3 G) than would be predicted from typical internal fields (∼ 100
G) or temperature scales (∼ 100 mK). The reported susceptibility measurements can
be understood in the context of optical experiments, with the exception that instead of
electric-dipole transitons this system undergoes magnetic-dipole transitions, albeit
at effective photon energies of ∼ 10−12 eV.

First, non-linear behavior is confirmed via inelastic Raman-scattering measure-
ments, in which spectral sidebands are formed when a system is driven with two
tones. This non-linear behavior ∼ 𝜒(3) is exponentially-suppressed with temper-
ature, as is the linear response ∼ 𝜒(1) with a similar energy constant ∼ 100 mK.
Next, I examine the non-linear behavior through the sample response at the probe
frequency.
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Figure 2.19: An illustration of the two different level schemes of the dressed states
for a spin cluster. a A traditional V-scheme. b at the exceptional points where the
Fano asymmetry parameter 𝑞 vanishes, one of the three states de-couples from the
other two, and the two nearly-degenerate states are sorted into a “bright” state that
is coupled with the 3rd state, and a “dark” state that is un-coupled from either of the
other two.

Using a spin dimer model, one naturally recovers so-called Λ- or V-schemes, in
which a 3-state system has one state coupled to a nearly-degenerate pair of states.
If this system is driven into a non-equilibrium state (characterized by non-zero off-
diagonal elements in the density matrix), there is naturally quantum interference
between the two excitation pathways. This interference can be tuned via various
macroscopic variables (ℎ𝑑 , 𝐻⊥, 𝑇), which is observable as an asymmetric Fano
resonance in the susceptibility. At special points in phase space (ℎ𝑑 , 𝐻⊥, 𝑇) where
the Fano asymmetry parameter 𝑞 = 0, there is complete destructive interference
between both of the excitation pathways, and the sample becomes transparent to the
drive field.

A useful alternative description of this phenomena where 𝑞 = 0 can be made
via reference to the optical phenomenon known as electromagnetically-induced
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transparency (EIT). The destructive interference in the cluster basis can be described
through “dressed states,” where one describes the states in the rotating laser frame.
In this frame, one of the states in the Λ-scheme decouples from the others. Because
of this, the dissipation associated with the imaginary susceptibiliy vanishes. I
illustrate the two regimes in Figure 2.19.
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C h a p t e r 3

DOMAIN WALL MOTION AND NOISE MEASUREMENTS IN A
FERROMAGNET

I now turn to a set of experiments that measured the domain wall dynamics of
LiHoxY1-xF4 in a regime (temperature 𝑇 , external transverse field 𝐻⊥, doping
concentration 𝑥) in which the sample exhibits long range ferromagnetic order. These
dynamics were probed using measurements of the bulk magnetization as a sample
was driven through many hysteresis loops. I organize this chapter by starting with
a discussion of domain walls and disorder in the system. I further describe the
experimental procedure used to both acquire and analyze Barkhausen noise data. I
show and discuss the shape of the magnetization curves for two samples of different
Ho concentrations (𝑥 = 0.40, 0.65). I then provide an analysis of Barkhausen
noise in the 𝑥 = 0.65 sample following traditional critical approaches, explain how
the data compare to various theoretical models, and demonstrate how lineshape
analysis reveals underlying drag effects. Finally, I move to the 𝑥 = 0.40 sample, and
discuss how observed non-critical behavior in the data gives evidence for quantum
correlations in macroscopic avalanches.

3.1 Domain Walls and Ferromagnetism
If an external magnetic field is applied parallel to the Ising axis of a ferromagnet,
the sample will respond by polarizing its magnetization along the field direction.
For small fields this effect is approximately linear, while at large fields the sample
saturates at some value that can have dependence on external variables such as
temperature. For soft ferromagnets, if a sample is ramped from saturation in one
direction |↓⟩ to saturation in the opposite direction |↑⟩, the sample response happens
in approximately three stages. First, new |↑⟩ domains will be nucleated within
large existing |↓⟩ domains. After enough new |↑⟩ domains are nucleated, they will
expand (and consequently |↓⟩ domains will contract) which I describe as motion
of the domain wall motion [41]. Wall motion is responsible for the bulk of the
magnetization reversal, as it is energetically favored in comparison to the cost of
nucleating a new domain, which involves breaking the couplings between all of its
nearest neighbors. Finally, close to |↑⟩ saturation, old |↓⟩ domains will be annihilated
as they shrink to zero volume.
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Even if one ignores domain creation/annihilation processes, the full domain wall
problem is incredibly complex, as a fully quantum treatment of the problem involves
accounting for multi-particle entanglement between a large number of quantum
Ising spins, even before one considers environmental couplings that complicate the
problem.

However, while an exact treatment of the quantum domain wall problem remains
outside the scope of this experimental thesis, one can frequently make measure-
ments in a regime in which the exact microscopic details are averaged over and/or
rendered unimportant, and the statistical behavior of one’s sample depends solely
on more fundamental properties such as effective dimensionalities and whether the
interactions in the problem are long or short range. This was the initial motivation
for measuring Barkhausen noise in LiHoxY1-xF4 . For more detailed theoreti-
cal treatments of quantum domain wall tunneling, I refer the reader to references:
[19, 29, 74, 75].

Barkhausen noise measurement techniques have existed for over 100 years [6], and a
litany of ferromagnetic materials have been characterized using this technique. With
sufficiently strong disorder, as a ferromagnet is ramped through a hystereis loop via
an external magnetic field parallel with the Ising axis, the bulk magnetization does
not evolve smoothly, but rather displays a set of discrete jumps as domain walls that
are pinned in place by some random pinning potential overcome the pinning and
violently snap forward [32]. The statistics in the jumps in magnetization, also known
as Barkhausen events, and their correlations, can reveal underlying properties of the
sample.

Barkhausen noise is in fact a subset of a more general type of noise in disordered
systems–crackling noise, which arises when a system responds through discrete
impulsive events over a broad range of sizes. Many systems, including sheared
foams [79], fluids in porous media [20], vortex avalanches in superconductors [33],
magnetic skyrmions [26], cascading disruptions of power grids [62], and even meme
propagation on social media networks [38, 39].

In this chapter, I will discuss measurements using the same century-old Barkhausen
technique on another soft, disordered ferromagnet like many before it, but with a few
novel properties that expand the class of magnets characterized by the Barkhausen
technique. First, LiHoxY1-xF4 is an electrical insulator [7], and therefore has no
dissipation due to eddy currents. Second, the magnetic moments in LiHoxY1-xF4 are
quantum Ising spins, whose dynamics depart from classical behavior when quantum
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fluctuations are sufficiently strong.

3.2 Experimental Procedure
In this section, I discuss the experimental procedure used to measure the Barkhausen
noise in LiHoxY1-xF4 .

The bulk magnetization was measured using two methods of transduction–a slow
(∼ 1 Hz) measurement of the DC magnetization made by a Hall sensor placed on
the sample edge, and a faster (∼ 1 MHz) measurement of the time-derivative of the
bulk magnetization made by using an inductive copper pickup coil wrapped around
the center of the sample. While the measurements of the 𝑥 = 0.65 sample were
conducted using an air-spaced coil, a more rigid mount was needed for measurements
in a transverse field. Because of the large moments of the rare-earth Ho3+ ions, an
external field transverse to the Ising axis will not only induce quantum fluctuations
between individual spin states, but also produce a macroscopic torque on the entire
sample. Without a tightly-fitted mount, the transverse field produced enough torque
to shatter the sample.

A new PEEK coil form was machined with a tightly-fitted square pocket to hold
the (4x4x8)mm3 cuboid sample, and a single-layer coil with 100 turns was wrapped
around this coil form. Both pickup coils are shown in Figure 3.1. While some signal
was sacrificed due to the decreased effective coil filling factor, this PEEK mount
was rigid enough to prevent sample destruction under a strong transverse field. A
100-turn inductive pickup coil was wrapped around the center of the sample to
measure the time-derivative of the bulk magnetization, and the coil assembly was
mounted on the high-purity copper cold-finger of a Helium dilution refrigerator
to reach milliKelvin temperatures. External magnetic fields were applied using a
superconducting 6T/2T vector magnet, with the longitudinal field ramped between
saturation fields ±4 kOe, with a sweep rate 𝑑𝐻∥/𝑑𝑡 = 11.1 Oe/s in the adiabatic
limit. I checked that I was in the adiabatic limit by comparing results at ramp rates
from 1.1 Oe/s to 11.1 Oe/s. For the 𝑥 = 0.65 sample, no field was applied transverse
to the Ising axis. In the 𝑥 = 0.40 sample, however, an external transverse field was
applied ranging from 0 Oe to 200 Oe. I will discuss in a later section why higher
transverse fields were not used.

The raw signal was boosted to detectable levels via a two-stage amplification tech-
nique. A superconductive-shielded high-frequency cryogenic transformer (CMR-
Direct LTT-h), connected to the mixing chamber of the dilution refrigerator, ampli-
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Figure 3.1: Coils used for Barkhausen noise measurements. a air-spaced coil used
for 𝑥 = 0.65 sample without a transverse field. b PEEK coil form used for 𝑥 = 0.40
sample with a finite transverse field.
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Figure 3.2: Schematic of experimental setup. An inductive pickup coil is wound
around the crystal of LiHo0.40Y0.60F4 inside an insulating PEEK coil form. The as-
sembly is mounted on the Cu cold finger of a helium dilution refrigerator equipped
with a 6 T/2 T superconducting vector magnet. The induced voltage signal is
amplified first by a cryogenic broadband transformer amplifier, and then at room
temperature by a low-noise transistor preamplifler, and finally digitized by a stream-
ing oscilloscope. Inset: Photograph of sample and pickup coil assembly.

fied the differential pickup coil signal by a factor of 100 for the 𝑥 = 0.65 sample, and
by a factor of 10 for the 𝑥 = 0.40 sample. The lower gain was chosen to extended
the measurement bandwidth of the transformer amplifier past 100 kHz. In order to
achieve a flat spectral response a resistor was placed to balance the transformer input
and output impedences. Furthermore, in order to reduce noise, a metal film resistor
was selected for the 15 kΩ resistor needed to match the transformer input and output
impedences and mounted to the mixing chamber of the dilution refrigerator to lower
its Johnson noise.

A battery-powered low noise preamplifier (Stanford Research SR560) outside the
cryostat provided additional gain. The amplified voltage was digitized with a 16-bit
250 kHz digitizer (National Instruments NI-6211) for the 𝑥 = 0.65 sample, and a
16-bit 5 MHz oscilloscipe (Picoscope 4262) for the 𝑥 = 0.40 sample.

For each hysteresis loop, a continuous stream of data was acquired corresponding
to a time-trace of the induced pickup coil voltage, digitized at 125 kHz (𝑥 = 0.65)
or 1 MHz (𝑥 = 0.40), binned in files of length ∼ 1 s each. Given that at most ∼ 100



61

events were detected per loop, several hundred loops were needed to acquire enough
events from which to draw any reasonable statistical inferences. Since each loop
took ∼ 10s of minutes to ramp between ± ∼ 10 kOe at a rate of ∼ 10 Oe/s, the
data consists of several weeks worth of continuous 1 MHz sampling, resulting in
Terabytes of raw data. In order to process this amount of data, an automated routine
was needed for event detection and extraction. This procedure is detailed in this
section.

First, a noise floor was defined by fitting the distribution of voltage values to a
Gaussian. Since detectable events were sparse (∼ 100 events of duration< 1 ms each
per ∼ 10 min hysteresis loop), the large voltage values corresponding to avalanche
signal did not appreciably affect the fitting of the noise distribution. The background
instrumental noise distribution was then characterized using the calculated standard
deviation and mean. This DC offset was subtracted off from the raw data, and
a voltage threshold was established where the absolute value of the signal was
greater than 3.5𝜎, where 𝜎 is the standard deviation of the Gaussian-distributed
instrumental white voltage noise. Whenever the measured voltage was above this
threshold for >4 consecutive points, the extraction program would register this as
an event, and store this clipped waveform, with the ends of the clipped time series
defined by a linear extrapolation below the noise floor. The edge extrapolation was
tested with various fitting routines and the results were found to be largely insensitive
to small changes in regression routines.

The analysis I performed on these extracted events largely consisted of doing one
of two things: projecting every event onto a scalar metric, such as total duration,
area, etc. and looking at the relative frequencies and/or cross-correlations of these
metrics and their dependence on external parameters such as temperature or external
transverse field, and lineshape analysis, in which the temporal profile of each event
was projected onto a regular mesh through interpolation and normalization, and the
resulting normalized lineshapes binned, averaged, and compared to each other.

While not possible with this data set due to how sparse the events were, I note
that there is another interesting way of analyzing the data with large enough signal,
which is to calculate full two-point time correlators in the voltage over an entire
hysteresis loop [78], and compare them to theoretical predictions using functional
renormalization group (FRG) calculations [46].
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Figure 3.3: A sample event as detected by extraction algorithm. The event threshold
is set as the dashed blue line, the raw data is in grey, and the extracted event is in
red.

3.3 Hysteresis and Magnetization Loops of Cuboid Samples with 𝑥 = 0.65
and 𝑥 = 0.40

In this section I plot and discuss the magnetization curves and their temperature
dependence from both ferromagnetic samples (𝑥 = 0.40 and 𝑥 = 0.65). The crystals
have the same aspect ratio, and thus shape-dependent demagnetization factor.

One convolving factor in Barkhausen analysis comes from having a finite field ramp
rate. While predictions of critical behavior are made in the limit of infinitely slow
driving, there should be a regime in which the driving is effectively adiabatic. In a
Landau-Zeener formulation, one can quantify the driving rate as the time-derivative
of the Zeeman energy splitting in the two Ising levels as the external field is ramped.
The ramp rate used in these experiments was 𝑑𝐻 ∥/𝑑𝑡 = 11.1 Oe/s, resulting in a
rate of change of splittting 𝑑 (𝐸2 − 𝐸1)/𝑑𝑡 = 10.23 mK/s. This makes our 11.1 Oe/s
ramp rate adiabatic if the strength of the quantum fluctuations from off-diagonal
matrix elements in the Hamiltonian are greater than 0.716 𝜇K. While the tunneling
calculation is complicated by the strong hyperfine coupling of the electronic spins
to the Ho3+ nucleus, it is probable that the average random local transverse field on
each spin is great enough such that 11.1 Oe/s is slow enough to be in the adiabatic
regime.

The magnetization curves of both samples are plotted in Figure 3.4. Both samples
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Figure 3.4: The magnetization loops at different temperatures for a: the 𝑥 = 0.65
sample and b: 𝑥 = 0.40 sample.

display the same characteristics of a soft ferromagnet–a narrow hysteresis loop
with low coercivity with a low-field quasi-linear regime, plateauing at a saturation
magnetization at higher external longitudinal field. This “softness” of the magnet
is frequently found in dipolar-coupled ferromagnets such as LiHoxY1-xF4 [41]. As
discussed in the beginning of this section, the magnetization evolution process over
a full hystersis loop for these soft ferromagnets occurs by two separate processes:
domain creation/annihilation that occurs at high fields near saturation, and domain
wall motion, where a pair of domains shrinking/growing is mapped from the spin
problem to its dual–the motion of the boundary between the two domains.

It is not surprising that there is temperature dependence in the saturation magnetiza-
tion, as the saturation magnetization is a measure of the thermodynamics equilibrium
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population and size distribution of oppositely-oriented domains, which is determined
by a tradeoff between the magnetostatic energy due to the interaction of the domain
with the external field, the magnetostatic energy in the demagnetization field, and
the entropy gained due to multiple domain configurations. As can be seen in Figure
3.4, both samples reach a decreased saturation magnetization at higher temperatures,
which matches what you would expect from thermally-populated domains oriented
anti-parallel to the field direction.

However, in contrast to the temperature dependence in the high-field regime, the low-
field, quasi-linear regime of the hysteresis loop is entirely temperature independent
up to 0.95 of the Curie Temperature 𝑇𝑐, which rules out thermal activation as the
dominant activation mechanism–leaving only quantum tunneling mechanisms as
possibilities.

It should be noted that the behavior of these cuboid samples differ from other
measurements reported in the literature, most notably [69]. In particular, as the
temperature was raised in the 𝑥 = 0.44 sample in [69] close to 𝑇𝑐, the loop narrowed
dramatically, from a width of around 100-200 Oe, to a width of less than a few
Oe. The dramatic difference in temperature dependence between the two samples is
attributed to the shape-dependent demagnetization factor, since my measurements
were in cuboid samples with an aspect ratio of 1x1x2, while the sample in [69] was
a needle. The more flattened geometry increases the distribution of random fields
in the sample due to the combination of the anisotropic dipolar interaction and the
quenched disorder from site dilution.

I will emphasize here that the effect of disorder in LiHoxY1-xF4 is non-trivial; the
dipolar interaction has all terms ∼ 𝜎

𝜇

𝑖
𝜎𝜈
𝑗

with 𝜇, 𝜈 ∈ {0, 𝑥, 𝑦, 𝑧}. The first term
∼ 𝐶2

𝑧𝑧𝜎
𝑧
𝑖
𝜎𝑧
𝑗

results in a random longitudinal field that raises or lowers the effective
field needed to induce a spin flip. The second term ∼ 𝐶𝑧𝑧𝐶𝑥𝜎𝑧𝑖 mixes the tilted spin
polarization in the transverse direction into an effective random longitudinal field.
Finally, the third term ∼ 𝐶𝑧𝑧𝐶𝑥𝑥𝜎𝑧𝑖 𝜎𝑥𝑗 induces quantum fluctuations on one spin due
to the dipolar field from the Ising source.

With strong enough random longitudinal fields, thermal fluctuations are not strong
enough to overcome the wall pinning, and the domain wall motion is dominated
by quantum, rather than thermal, fluctuations. The temperature independence of
the quasi-linear portions of the magnetization loops for the cuboid 𝑥 = 0.65 and
𝑥 = 0.40 samples are the result of domain walls whose motion is dominated by
quantum tunneling. I note that this tunneling is broken up into many independent
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tunneling events, rather than one fully coherent macroscopic tunneling event. While
the tunneling of small sections of domain wall is a complicated theoretical problem
from first principles, one can instead measure correlations between tunneling events,
whose statistics are governed by spatial correlations in the domain wall pinning
potential due to random longitudinal fields.

3.4 Power Law Fits and Lineshape Analysis of Barkhausen Noise in LiHo0.65Y0.35F4

Systems near criticality exhibit scaling relations and power law behavior between
various quantities in each system, and the exponents corresponding to these scaling
relations help elucidate the underlying mechanisms and universality class for a
particular system. For LiHo0.65Y0.35F4 , Barkhausen events were extracted from
measurements of many hysteresis loops, and each extracted event was mapped to a
scalar metric–usually a normalized n-th moment of the event lineshape. In Figure
3.5 I plot 1-dimensional histograms of the probability distribution function (PDF)
for each of the following metrics: duration (𝑇 = 𝑡 𝑓 − 𝑡𝑖), area (𝑆 =

∫ 𝑡 𝑓

𝑡𝑖
𝑑𝑡′𝑉 (𝑡′)),

energy (𝐸 =
∫ 𝑡 𝑓

𝑡𝑖
𝑑𝑡′𝑉2(𝑡′)). While not a PDF for a scalar event metric, the power

spectral density is also included in Figure 3.5, as it displays approximate power
law behavior over a limited regime. Critical exponents were extracted by fitting the
data in the region that exhibited power law behavior. I excluded the low and high
tails of the data because of limitations in the instrumentation signal-to-noise, which
artificially precludes small events from being detected, as well as a well-known
phenomenological large-event cutoff due to demagnetization effects.

The power law forms are given as follows: a) energy (𝑃(𝐸) ∼ 𝐸 [(𝜏−1)/(2−𝜎𝜈𝑧)+1]),
b) area (𝑃(𝑆) ∼ 𝑆−𝜏), c) power spectral density (𝑆(𝜔) ∼ 𝜔−1/𝜎𝜈𝑧), d) duration
(𝑃(𝑇) ∼ 𝑇−𝛼). The numerical values of the fitted exponent are found to be: a)
[(𝜏 − 1)/(2 − 𝜎𝜈𝑧) + 1] = 1.7 ± 0.1, b) 𝜏 = 1.7 ± 0.2, c) 1/𝜎𝜈𝑧 = 1.7 ± 0.1, and d)
𝛼 = 1.8 ± 0.2.

There are many models used to simulate Barkhausen noise in a disordered ferromag-
net that can be subdivided broadly into two categories: random energy models in
which the bulk magnetization is mapped onto an effective domain wall coordinate,
whose equation of motion is given by a Langevin equation, and spin models that start
from the microscopics of a problem and are generally either numerically simulated
[65] or solved using renormalization group methods to calculate critical exponents
in scaling law behavior [24]. The following disordered spin Hamiltonians have been
studied in the literature [80]. The first is is the random field Ising model (RFIM)
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Figure 3.5: Histograms of various metrics in Barkhausen noise for a 1x1x2 cuboid
sample of LiHo0.65Y0.35F4 . a Energy 𝐸 with fitted power law exponent [(𝜏−1)/(2−
𝜎𝜈𝑧) + 1] = 1.7 ± 0.1 and Area 𝑆 with fitted power law exponent 𝜏 = 1.7 ± 0.2. b
Power spectral density 𝑆(𝜔) with fitted power law exponent 1/𝜎𝜈𝑧 = 1.7 ± 0.1 and
Duration 𝑇 with fitted power law exponent 𝛼 = 1.8 ± 0.2.
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in which the disorder is represented as a spatially-random longitudinal field on each
site, giving rise to the RFIM Hamiltonian:

HRFIM = −𝐽
∑︁
𝑖, 𝑗

𝑠𝑖𝑠 𝑗 − ℎ
∑︁
𝑖

𝑠𝑖 −
∑︁
𝑖

ℎ𝑖𝑠𝑖, (3.1)

where 𝑠𝑖 is the spin variable as site 𝑖, 𝐽 is the nearest-neighbor spin-spin coupling
strength, ℎ is the external longitudinal field, and ℎ𝑖 is a site-dependent random field.
The disorder can also be represented as a random coupling strength 𝐽𝑖 𝑗 between
spins in the random bond Ising model (RBIM):

HRBIM = −
∑︁
𝑖, 𝑗

𝐽𝑖 𝑗 𝑠𝑖𝑠 𝑗 − ℎ
∑︁
𝑖

𝑠𝑖 . (3.2)

An equivalent representation is the site diluted Ising model (SDIM), in which spins
are randomly either occupied (𝑐𝑖 = 1) or unoccupied (𝑐𝑖 = 0), with Hamiltonian:

HSDIM = −𝐽
∑︁
𝑖, 𝑗

𝑐𝑖𝑐 𝑗 𝑠𝑖𝑠 𝑗 − ℎ
∑︁
𝑖

𝑠𝑖 . (3.3)

Finally, the random anisotropy Ising model deals with domains with random anisotropy
axes, which is not relevant to LiHoxY1-xF4 , but given below where each ®𝑛𝑖 is a ran-
dom unit vector giving the local anisotropy axis, with associated Hamiltonian

HRAIM = −𝐽
∑︁
𝑖, 𝑗

𝑠𝑖𝑠 𝑗 ®𝑛𝑖 · ®𝑛 𝑗 − ®ℎ ·
∑︁
𝑖

𝑠𝑖 ®𝑛𝑖 . (3.4)

While all of these models have been simulated numerically, only the RFIM has
been studied in detail. As the strength of the disorder (the variance of the random
field ℎ𝑖) is tuned, the system undergoes a continuous phase transition, that is best
understood under renormalization group theory [24]. Originally a technique used
to study how coupling strengths change at different length/energy scales in quantum
field theories [82], the renormalization group discusses how the effective equations
of motion for the system evolve when measurements are made at different length
scales. The procedure involves iteratively coarse graining the system–integrating
small length/high momentum degrees of freedom and renormalizing the coupling
strengths between the remaining effective degrees of freedom [82]. As the system
is progressively more and more coarse grained, the characteristic avalanche length
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scale either flows towards infinity for small disorder or towards zero for strong
disorder [57]. Separating these regimes is an unstable fixed point at which the phase
transition occurs. At this critical value of disorder, the system loses all length scales,
and displays self-similarity, with fractal avalanches at all length scales.

According to the RFIM, power laws in the data manifest simply because of proximity
to a disorder-driven phase transition [57]. At first it may seem surprising that any
power laws would be predicted, since the sample disorder was not carefully chosen
to be perfectly fine tuned to the critical spin concentration, but the nature of the phase
transition is that it has a large critical region, so that power laws are present over large
regimes even for disorder significantly away from the critical value [57]. Given that
power laws are seen for only one decade in the experimental data, it is possible that
simple proximity to a critical point could be the source of the underlying criticality
and resulting power laws, assuming that the disorder for the 𝑥 = 0.40, 0.65 samples
is greater than the critical disorder.

Beyond spin models one can also model the domain wall dynamics using a domain
wall de-pinning model. In this model the system is recast to a continuum model
in which the dynamics of a two-dimensional elastic interface are solved for in a
highly-damped regime [31]. Since high dissipation is assumed, the domain wall
motion can be modeled as a random walk, and a Fokker-Planck equation of motion
can be derived from the Hamiltonian [2]. Criticality results from the fact that
demagnetization fields act as a restoring force, which keep the effective force on the
domain wall close to the critical de-pinning force [84]. This self-organized criticality
does not arise from proximity to a phase transition, but because dynamical effects
self-stabilize the system and naturally drive it towards a critical point. This model
can be solved using formal renormalization group calculations, and scaling laws can
be derived in two cases: with and without long-range interactions [31]. For the case
with long-range dipolar forces, I recover mean-field behavior, and the calculation
agrees with the celebrated ABBM model [2], in which power laws result from spatial
correlations in the disorder.

Although the reported exponents 𝛼 and 𝜏 do not fall exactly onto the theoretical
exponent values for either of the usual universality classes seen in Barkhausen noise
experiments (𝛼 = 2.0, 𝜏 = 1.5 for the long-range domain wall depinning universality
class, and 𝛼 = 1.5, 𝜏 = 1.27 for the short-range domain wall depinning class), to
within error bars, the exponent relationship 𝛼−1

𝜏−1 = 1
𝜎𝜈𝑧

characteristic of avalanches
holds [31]. Finite size effects, small scaling regimes, disorder, and other effects
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Figure 3.6: Bivariate histograms of event probability vs area and duration at 𝑇=80
mK and 600 mK, showing an approximately linear relationship with no well-defined
crossover. Lines are best-fit power laws (offset for clarity).

are known to skew the measured values for the scaling exponents compared to
the theoretical values extracted through finite size scaling and simulations of large
systems [58]. The exponent values extracted here do in fact fall within the range
of exponent values that have been quoted in the literature for other experiments
that belong to the long range depinning universality class or the random field Ising
model (RFIM) universality class for Barkhausen noise in disordered magnets [66],
for which simulations [58] predict 𝜏 = 1.6 and 1/𝜎𝜈𝑧 = 1.75, and 𝛼 = 2 and
([(𝜏−1)/(2−𝜎𝜈𝑧) +1] = 1.42). Future studies of the history dependence along the
lines of Ref. [16] could help narrow down the underlying universality class further.

I plot in Fig. 3.6 the occurrence rate of avalanche events as a function of event
area and duration, and fit each bivariate histogram to a power law. I find that the
data is consistent with a power law exponent of 1 across the entire distribution at
all T. It is likely that this exponent for the entire range includes strings of tempo-
rally overlapping avalanches, possibly through thermally triggered “aftershocks” of
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Figure 3.7: Voltage time series showing a long-duration event with an opposing-
polarity precursor stage.

avalanches. Such overlaps of avalanches are known to produce size versus dura-
tion exponents around 1 [81]. Alternatively, I note that the event distribution at
80 mK appears to segregate into three visually-distinct regimes; if the power law
fit is constrained to the central section (spanning 160 to 500 𝜇s), I obtain a value
of 1/𝜎𝜈𝑧 = 1.5 ± 0.1 This suggests the possibility that the central regime may be
the true avalanche scaling regime, but the limited range over which this behavior
occurs prevents us from making a more definitive statement. The additional number
of events associated with the crossover into this possible scaling regime is also
visible in the duration probability histograms in Fig 3.5b as a small “bump” above
the trend lines for the bins around 200 𝜇s. Applying an external transverse field
and thereby inducing quantum fluctuations potentially could broaden this postulated
scaling regime, allowing for a more robust analysis.

As illustrated in Fig. 3.7, a small fraction of the observed events are preceded by a
smaller precursor feature of opposite sign. Some spins actually reverse against the
direction of the local magnetic field immediately prior to the more typical domain
reversal event where spins realign to point along the magnetic field. Such a counter-
intuitive effect is possible due to the dipole nature of the interspin coupling in
LiHoxY1-xF4 , where for some relative orientations the dipole coupling can be anti-
ferromagnetic. Temporary reconfigurations of the spins to oppose the magnetic field
can be energetically favorable locally, and hence enable a reverse-polarity switching
event. Analogous behavior has been observed in plastic deformation of sheared
materials, where local pinning sites similarly can distort the free energy landscape
and allow for seemingly “uphill” motion. [56, 77] Numerical simulations of domain-
wall motion in disordered perpendicular-anisotropy thin films [42] likewise have
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observed a small fraction of reverse-polarity events. The occurrence probability of
these precursor events is strongly temperature dependent, with approximately 5%
of the 80 mK events showing a precursor, decreasing to 1% at 250 mK and less than
0.1% at 500 mK and above where thermal fluctuations dominate.

3.5 Dissipation and Lineshape Asymmetry in LiHo0.65Y0.35F4

While models of closed dynamics for domain walls yield symmetric average line-
shapes, it has been known that dissipative effects can cause lineshape asymmetries
for many physical systems including fluid flow in disordered nanoporous materi-
als [21], dislocation avalanches in metallic microcrystals [73], and creep rupture
in heterogenous materials [25]. In bulk metallic ferromagnets, the origin of these
drag effects has been ascribed typically to eddy-current back-action. However,
LiHo0.65Y0.35F4 , which is electrically insulating, cannot sustain eddy currents, so
one must look beyond conductivity-related mechanisms in order to explain the ob-
served drag. Furthermore, the typical modeling of drag in spin dynamics via the
Landau-Lifshitz-Gilbert (LLG) equation does not directly apply here due to the
𝑆 = 1/2 Ising nature of the spins, which precludes the spin-precession dynamics
that underly the LLG approach. While there is a low equilibrium phonon density
since measurement temperatures are approximately three orders of magnitude lower
than the Debye temperature Θ𝐷 = 560 K for the Li(Ho,Y)F4 family [1], it is known
that a strong thermal coupling between the Li(Ho,Y)F4 crystal phonons and an
external heat bath can set a floor on the effective phonon density of states (DOS),
and therefore the low energy dissipation rates [15]. It has been shown in previous
experiments on LiHoxY1-xF4 that domain-pinning arising from random fields, due
to the quenched disorder from the dilution of the ho3+ ions by Y3+ ions, widens the
hysteresis loop, which corresponds to greater dissipation of energy [69]. There is
limited work on the phonon-coupling in LiHoxY1-xF4 [9], and the exact nature of
how random fields affect the spin-lattice coupling is still an open question.

I show in Fig. 3.8a and b scaled curves as a function of temperature for short (<150
𝜇s) and long (>500 𝜇s) time events, respectively. Following the approach in Ref.
[14], I construct the scaled curves by first normalizing the time axis for each event by
its individual duration, normalizing the voltage such that the total integrated area is
equal to 1, and finally averaging the voltage as a function of normalized time across
all events for a given temperature and duration bin. Despite the absence of eddy
currents in insulating LiHo0.65Y0.35F4 , clear early-time asymmetries characterize
a number of the curves in both time bins, indicating the presence of alternative



72

Figure 3.8: Evolution of lineshape as a function of temperature and event duration,
showing the onset of drag effects. (a,b) Average scaled event shape vs. scaled
duration (see text for details on averaging and scaling process) for short (<150 𝜇s)
and long (>500 𝜇s) events, respectively. Dashed line is a fit at T = 700 mK to the
ABBM model incorporating shape demagnetization and a phenomenological skew
term. [85]
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sources for drag effects. I also include in Fig. 3.8b a fit of the 700 mK data to the
ABBM model incorporating both demagnetization effects and a phenomenological
linear skew term [85]. This ABBM-based model only accurately fits the observed
data for long events at high temperature, with noticeably different shapes appearing
in the short-time, low-temperature limit. These deviations point to a crossover to a
different set of domain dynamics and consequent change In universality class away
from mean-field [27, 45].

The evolution of the asymmetry in the scaled lineshapes can be described quantita-
tively by calculating a normalized skewness [85] for the scaled lineshapes at each
temperature/duration bin. For short events (<150 𝜇s), the skewness was essentially
constant as a function of temperature, equal to 0.46 ± 0.01 for all temperatures
between 80 and 700 mK. By contrast, for longer events (>500 𝜇s), the skewness
decreases monotonically with increasing temperature, from 0.42 at 80 mK to a
much more symmetric 0.18 at 700 mK. The overall trend is for longer events at high
temperatures to tend towards lower skewness, similar to what has been observed
in Barkhausen measurements on metallic ferromagnets [22, 85], but opposite to
the behavior of non-magnetic crackling noise systems such as yield transitions in
sheared amorphous solids [49], granular media [5], and earthquakes [50].

The shorter duration events shown in Fig. 3.8a demonstrate only a weak dependence
of average skewness on temperature. The long duration events of Fig. 3.8b,
however, see approximately a factor of two decrease in skewness at 600 and 700 mK
compared to the same duration bins at low temperature, indicating that drag effects
are becoming proportionally less important in the dynamics of those events. While
the short events correspond to individual domain reversals whose dynamics are
dominated by the drag-inducing microscopic pinning landscape, the longer events
represent a linked cascade of reversals more strongly dependent on the strength of
thermal fluctuations, which overcome local pinning mechanisms.

3.6 Beyond Criticality: Quantum Co-Nucleation of Domain Wall Pairs in
LiHo0.40Y0.60F4

The same Barkhausen noise measurements were repeated on the 𝑥 = 0.40 sample.
While the shapes of the magnetization loops were qualitatively identical, the statistics
of the fast avalanche events were drastically different than those of the 𝑥 = 0.65
sample. In particular, the data appear to not only depart from criticality, but to
exhibit two distinct domain activation mechanisms.
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Figure 3.9: Frequency of total number of observed Barkhausen events per hysteresis
loop for low (blue, 90 mK) and high (red, 580 mK) temperatures for a range of
transverse fields.

I note that the only events that I am able to observe correspond to the largest
avalanches. The detectable avalanches range in size from ≈ 2 × 10−10 Wb →
6× 10−9 Wb, corresponding to avalanches containing a number of spins 𝑁 between
1.5 × 1015 and 4.5 × 1016 spins. The change in the macroscopic magnetization
over the full hysteresis loop (Fig. 3.4b) is actually dominated by the multiplicity
of smaller domain flips below our noise floor, with the change in magnetization
due to the measured large events contributing anywhere from ∼ 0.01% (at 𝐻⊥ = 0)
to ∼ 0.1% (at 𝐻⊥ = 200 Oe) of the total change in magnetization of the entire
sample over the full loop. All events were observed in a narrow region between
150 Oe ≤ 𝐻∥ ≤ 200 Oe) while ramping up, and at the equivalent negative field
while ramping down (marked by arrows in Fig. 3.4b). By contrast to previous
susceptibility measurements [14] that measured only the domain walls with weakest
pinning, in this experiment I measure only the most strongly-pinned domain walls.

While traditional Barkhausen analysis consists of deducing the underlying univer-
sality class by means of extracting the critical exponents through power law fits of
event statistics [57, 84] or by using lineshape analysis to learn about underlying
dissipative or demagnetization effects [30, 55, 71, 85], this is not appropriate here
because our data do not display the standard power laws characteristic of universal-
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ity. Instead, one observes two distinct classes of events, presumably corresponding
to two different domain-wall activation mechanisms, that show remarkably different
dependences on applied transverse fields. The dependence on transverse of the total
number of events is shown in Figure 3.9

The non-critical behavior is most easily observed by comparing the two-dimensional
histograms plotting the cross-correlation between event duration (𝑇) and area (𝑆 =∫ 𝑇
0 𝑉𝑑𝑡) for the most extreme temperatures (90 mK and 580 mK) and transverse

fields (0 Oe and 200 Oe). As seen in Fig. 3.10a, the events separate into two
distinguishable classes at low fields: one class that I label as “independent” that
approximately spans a power law with an exponent of ≈ 1.1 (close to the power
of 1 indicative of avalanches [55]) over approximately one decade of duration, and
the second that I designate “cooperative” (highlighted by the red oval in Fig. 3.10a
that appears as an approximately Gaussian cluster over a more limited range of
durations with higher areas for any given duration than events in the “independent”
class. Furthermore, while the frequency of the “independent” events decreases
only modestly with transverse field, the “cooperative” events are suppressed almost
completely with a 200 Oe transverse field. I have plotted one sample event in each
class in Fig. 3.10b, both marked by arrows on the 2d histograms in Fig. 3.10a, with
the “cooperative” event in red and the “independent” event in orange.

In the following discussion, I discuss the possible origins of these two activation
mechanisms, as well as phenomenologically explain why such a small 200 Oe trans-
verse field could suppress the “cooperative” events starting from the microscopic
Hamiltonian.

First, I deduce that both activation mechanisms are quantum mechanical in nature.
Like the magnetization curves within the linear regime, the event statistics show
the same temperature independence, demonstrating that within these experimental
parameters, the sample is deep within the quantum regime, where the dynamics are
governed by quantum tunneling, rather than thermal activation, of spins.

Given that both activation mechanisms are due to quantum tunneling (rather than
one being quantum and the other thermal), it is not immediately obvious how
there could be two different tunneling mechanisms, why they would have such
dramatically different transverse field dependence, or how such a small 200 Oe field
could suppress markedly either class of events.

Given this challenge, it is necessary to go beyond the theoretical picture of a single
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Figure 3.10: Classes of events. a 2D histograms of event area (y-axis, 𝑉 · 𝑠) vs
event duration (x-axis, 𝑠) for low/high temperatures and transverse fields. b Sample
events of each class: “independent” event in orange, and “cooperative” event in red
as indicated by the colored arrows in a.
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independent wall tunneling and consider the interaction between walls. In so doing,
one can recover a phenomenological model in which the two different activation
mechanisms correspond, on one hand, to walls tunneling independently of each
other and, on the other, to cooperative tunneling of pairs of walls. Co-tunneling of
domain walls is strongly affected by the application of an external transverse field
much smaller than the fields required to induce single-spin tunneling.

I consider a model in which a single plane wall, or an adjacent pair of walls, can
displace themselves through the system. For a more detailed treatment, I refer the
reader to the supplemental information of [72].

Even without disorder (for 𝑥 = 1), the walls are pinned by a lattice periodic potential.
Wall displacement then occurs by the nucleation of plaquettes of a displaced wall
(Fig. 3.11a). This occurs by tunneling through a barrier created by the line tension
in the plaquette periphery and the tunneling is driven by an applied longitudinal
field. Plaquettes can nucleate at different parts of a wall, as well as on top of each
other; they are the 2-dimensional lattice version of quantum bubble nucleation [54].

In addition to the independent tunneling processes of a single plaquette, there are
co-tunneling processes involving the dipolar interaction between two plaquettes.
The interaction term between two plaquettes, Δ𝑈12, as a function of the radius of
each plaquette, 𝑅𝑖, is given by:

Δ𝑈12 = − 𝜇0

𝑟3
12
(𝑔𝜇𝐵𝜋)2

[
3
( ®̃𝐽1 · ®𝑟12) ( ®̃𝐽2 · ®𝑟12)

𝑟2
12

− ®̃𝐽1 · ®̃𝐽2

]
𝑅2

1𝑅
2
2

𝑎4
0

(3.5)

where ®̃𝐽𝑖 is the spin per Ho ion in each plaquette and ®𝑟12 is the separation between
plaquettes. If this interaction term is attractive (Δ𝑈12 < 0), then the configuration
energy will be minimized by having the radii of both plaquettes (𝑅1, 𝑅2) growing
together. In this picture, attractive interactions between plaquettes on different
domain walls can cause co-tunneling processes in which nucleation of one plaquette
lowers the energy barrier for nucleation of the other. By contrast, if the interaction
term is repulsive (Δ𝑈12 > 0), then these co-tunneling processes are suppressed,
and the energetically favored tunneling paths consist of each plaquette growing
independently of the other.

The sign of this interaction depends on the relative orientation and polarization
of the two plaquettes. If one assumes that the plaquettes are opposite each other,
and that their polarizations lie along the x-axis, the interaction simplifies to being
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a

b c

d e

Figure 3.11: Domain wall configurations and interaction potentials. a Schematic
of a Bloch domain wall with a single “plaquette” structure. Grid denotes locations
of individual spins. b,d Vertical grey arrows designate the bulk magnetization di-
rection within a domain along the Ising axis, while the red/blue arrows designate
the transverse polarizations within a Bloch wall. The green curved arrows illustrate
the demagnetization fields. The tunneling potentials c,e are a function of the radii
of the two interacting plaquettes, 𝑅1 and 𝑅2, coupled via the dipolar interaction.
b Staggered polarizations of the domain walls at zero transverse field with corre-
sponding attractive interaction in c causing 𝑅1 and 𝑅2 to grow together (as indicated
by the tunneling paths shown in white). d All walls polarized in the same direction
due to the transverse field, with the corresponding repulsive interaction in e, cause
plaquettes to grow independently from one another, as indicated by the tunneling
paths shown in white.
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attractive when the polarizations are aligned and being repulsive when they are anti-
aligned. Hence, the polarizations of domain walls affect the tunneling dynamics by
giving rise to cooperative tunneling of pairs of plaquettes on adjacent domain walls
when their polarizations are anti-aligned, in addition to the standard independent
tunneling processes of single plaquettes.

While the application of an external longitudinal field simply reduces the height of
the tunneling barrier, accelerating plaquette nucleation and domain wall tunneling,
application of a sufficiently strong transverse field will act to orient polarizations
of all the walls to be parallel to the applied field. While the spatial extent of
the measured avalanches is not known, the large number of spins involved in an
avalanche (∼ 1015–1016) guarantees that the wall area will be large. Furthermore,
since the Zeeman energy of the wall scales as the number of spins within the wall,
the polarizations of these large sections of domain wall will be highly susceptible
to even a modest transverse field. Thus, while a 200 Oe transverse field is much
less than the single-ion tunneling field scale (∼ 20 kOe)[63], or the quantum phase
transition (QPT) field scale (∼ 12 kOe)[69], it is large enough to appreciably polarize
most domain walls in the same direction, thereby changing the statistics of the co-
tunneling processes. I illustrate these two wall configurations in Fig. 3.11, with the
wall polarizations staggered in zero transverse field in panel b, and the configuration
with all walls polarized in the same direction in a finite transverse field in panel d.

When the external field is zero, the wall polarizations are random, giving rise
to both aligned and anti-aligned domain wall configurations. Consequently, at
zero field, co-tunneling processes will be possible due to the attractive interaction
between the anti-aligned domain walls. When a finite transverse field is applied,
however, all the walls polarize in the same direction, making all of the interactions
between walls repulsive, and consequently suppressing the co-tunneling processes.
I plot the corresponding tunneling potentials in Fig. 3.11c,e for the domain wall
configurations in panels (b,d). (c) illustrates the attractive interaction due to the
staggered polarizations of Bloch walls in zero field; (e) illustrates the repulsive
interaction due to all wall polarizations being aligned along the external transverse
field direction.

I emphasize that, while all domain wall motion is governed primarily through
quantum tunneling of small plaquettes, large events consisting of 1015 spins are
avalanches of many plaquette tunneling events triggering one another–not single
coherent macroscopic tunneling events. Co-tunneling processes do not cause entire
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walls to tunnel together, but they can cause simultaneous quantum nucleation of two
plaquettes on adjacent walls at once, affecting the avalanche statistics through an
introduction of a second avalanche activation mechanism.

One can consider what the predicted theoretical difference in the data would be
if the sample were in the high-temperature classical regime, as opposed to the
low-temperature quantum regime. It is useful to differentiate between the low-
dimensional representations of macroscopic avalanche events (usually scalar metrics
such as duration, integrated area, etc.), which measure an average over many spins,
and the finer dynamics of how microscopic sections of domain wall are activated,
and subsequently propagate. Since the avalanches measured in this work are so
large (∼ 1015 spins), the fast microscopic dynamics of individual spin flips will not
be visible on the measurement timescale. In contrast, the basic size distribution of
avalanches gives information about the spatial pinning potential, as each avalanche
can be understood as a quasi-instantaneous (relative to the adiabatic drive) event
which begins with a domain wall pinned in one site and ends with it pinned in
another site.

There is a natural competition between the linear applied external potential (via
the longitudinal field) and a restoring force due to demagnetization effects, as
demagnetization fields are proportional to the bulk magnetization (in a simple
spatially-uniform approximation). This means that stronger pinning will require
a larger applied field to overcome, which in turn must be counter-balanced by a
larger demagnetization force, resulting from a larger volume of flipped spins, and
thus a larger avalanche. Because of this, the avalanche size distribution (which
correlates with other event metrics) is primarily affected by the spatial distribution
of the random pinning potential caused by the interplay of the long-range anisotropic
dipolar interaction and spatial quenched disorder from chemical dilution.

Thermal fluctuations serve to excite domain walls over the pinning potential barrier
at a weaker applied field than would otherwise be necessary—resulting in a smaller
avalanche than would occur without fluctuations. However, increasing quantum
fluctuations would also accomplish the same effect of activating domain wall mo-
tion “early”, and could look the same as in the classical case. For this reason I
emphasize that the argument that LiHo0.40Y0.60F4 is in the quantum regime stems
from the fact that both measurements (DC hall magnetometry, and 1 MHz digitized
temporal events) are completely temperature-independent across all measurement
temperatures, within the quasi-linear portion of the hysteresis loop corresponding
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to domain wall motion (and not domain creation/annihilation).

Whether the observed data is described as “quantum” or “classical” is frequently a
matter of perspective (such as whether magnetism in solids can be ever be considered
“classical” due to the quantum spin-1/2 nature of electrons), I would still argue
that the Barkhausen events corresponding to pairs of domain walls nucleated by
cooperative quantum tunneling is inexplicable by any traditional explanation, and
therefore unambiguously a quantum phenomenon.

3.7 Conclusion
In this chapter I discussed bulk magnetic measurements that I made on LiHoxY1-xF4

within the ferromagnetic ground state. When subjected to an external magnetic field
along the Ising spin axis, a ferromagnet will respond by relaxing to a new equilibrium
magnetization with an increased number of spins aligned with the field until the
sample reaches saturation at a strong enough external field. In the low external field
regime, these dynamics are dominated by the motion of domain walls separating
the boundaries between domains of opposite magnetization. If the wall motion
is uncorrelated between walls, the scalar coordinate of sample bulk magnetization
|𝑀 𝑧 | can be interpreted as a particle in a random walk, where the underlying random
pinning potential is due to the quenched sample disorder.

I first showed the avalanche statistics on one sample that exhibited approximate
power laws over about one decade of logarithmic bin size. I compared the measured
exponents to those predicted by both the short- and long-range domain wall depin-
ning models and show that while they do not exactly match either model (consistent
with measurements in the literature), the data still satisfy a self-consistency relation
characteristic of avalanches. I then looked at the averaged event lineshape over
different duration bins at multiple temperatures. The first observation is that the
events still display the asymmetry characteristic of drag/dissipative effects even in
the presence of an optical bandgap, which drives LiHoxY1-xF4 into an insulating
phase that does not support eddy currents. Since the literature generally [22, 85]
attributes dissipation to eddy currents, this represents an important counter example
of a sample that displays drag even without eddy currents. This is not, however, in
contradiction with previous work, as signatures of drag should not depend on the
exact microscopic source of the dissipation–whether the source is from coupling
to conduction electrons or coupling to lattice vibrations. It was also observed that
shortest events (< 150𝜇s) retained their asymmetry even at elevated temperatures
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while the longest events (< 500𝜇s) became more symmetric at higher temperatures
with increased thermal fluctuations.

I then turned to measurements made on a different dipole concentration crystal
that did not display typical critical behavior. In these measurements I showed
the existence of two distinguishable classes of avalanche events, which I denote
“independent” and “cooperative”. I argue that, from the temperature and field
dependence of these two event classes, both event classes correspond to quantum
tunneling activation, but the “cooperative” events are caused by co-tunneling events
on multiple walls, while the “independent” events are caused by tunneling events of
independent domain walls. I showed that the application of an external transverse
field much smaller than any tunneling energy scale in the microscopic Hamiltonian
can almost completely suppress the occurrence of the “cooperative” events, while
only modestly decreasing the frequency of the “independent” events. The transverse
field biases the transverse polarizations of each Bloch wall, determining whether
the wall-wall interaction is attractive and supports co-tunneling, or repulsive and
suppresses co-tunneling events.
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C h a p t e r 4

CONCLUSION

I conclude by summarizing my thesis, as well as expanding upon avenues of future
work.

This thesis was dedicated to studying the dynamics of LiHoxY1-xF4 as a model
quantum Ising system. I started by discussing the quantum two-level system, and
how the Ising model is useful for describing a many-body system of coupled qubits.
I first derived the two-dimensional low-energy effective Hamiltonian for the com-
posite electronic moment of a single Ho3+ ion, which displays remarkable easy-axis
anisotropy with a ratio of 𝑔∥/𝑔⊥ = 13.8/0.74 = 18.6, making LiHoF4 a model Ising
magnet. I discussed the dipolar interaction between spins, pointing out the impor-
tance of the long-range, anisotropic nature of the coupling, as well as the importance
of quantum corrections to the spin-spin interaction arising from off-diagonal terms
∼ 𝑉 𝑧𝑥 . Quenched disorder can be introduced into the system through chemical
substitution of non-magnetic Y3+ ions in place of the magnetic Ho3+ ions, which
affects the phase diagram of LiHoxY1-xF4 . Depending on the Ho3+ concentration
𝑥, the ground state behavior of LiHoxY1-xF4 can be tuned from its single particle
tunneling behavior [4], to renormalized spin clusters [35, 70], to glassy relaxation
[59, 60, 64], to propagation of elastic two-dimensional domain walls moving within
a random potential [71, 72], to extended coherent electronuclear modes [47]. In this
thesis I focused on two classes of experiments–one done in the de-coupled cluster
regime, and another in the ferromagnetic regime.

Starting with the weakly-coupled spin clusters in LiHo0.045Y0.955F4 , I reported
pump-probe susceptibility measurements with a sufficiently strong pump/sufficiently
weak dissipation to drive the system into a non-linear regime, driven by magnetic-
dipole transitions arising from off-diagonal dipolar terms ∼ 𝜎𝑧

𝑖
𝜎𝑥
𝑗
. I demonstrated

the non-linear behavior through frequency-mixing inelastic Raman-scattering mea-
surements in the 100 Hz frequency regime. Furthermore, I show how “linear
response” measurements made at the probe frequency show non-linear interfer-
ence behavior, in which quantum interference between multiple excitation pathways
occurs, and can be tuned into a regime with complete destructive interference,
rendering the sample transparent to the incident radiation.
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These cluster experiments are inherently difficult, because each instantiation depends
on the cooldown and thermal boundary conditions, and so different cooldowns with
identical experimental parameters ℎ𝑝, 𝑓𝑝, 𝐻⊥ exhibit different fit parameters for
the Fano resonances, or sometimes no Fano resonances at all. This complicates
the application of LiHo0.045Y0.955F4 for practical quantum computation purposes,
but there still remains promise in manipulating the long lifetimes of these high-
Q excitations and probing the fundamental physics of decoherence. In particular,
tuning these spin clusters to the 𝑞 = 0 regime gives promise for long-lived excitations
that can be coherently manipulated, and even possibly used for spin-echo type
experiments.

I then transitioned to a set of Barkhausen noise measurements on the disordered fer-
romagnets, LiHo0.65Y0.35F4 and LiHo0.40Y0.60F4 , in which the domain wall dynam-
ics were probed in response to an adiabatic longitudinal driving field. The statistics
of the collected Barkhausen events can reveal the underlying free-energy land-
scape and universality class through scaling analyses. Furthermore, I showed how
LiHo0.40Y0.60F4 exhibits temperature-independent, non-critical behavior, which
can only be explained through quantum co-tunneling mechanisms.

Whether LiHoxY1-xF4 exhibits critical behavior remains an open question. While
approximate power-law behavior was shown across approximately one decade for
LiHo0.65Y0.35F4 , further measurements on different concentrations would shed light
on whether the source of criticality comes from proximity to a critical point, and
whether a precise choice of chemical dilution 𝑥 would extend the critical behavior.
Similarly, measurements on samples with low dilution show promise for “infinite
avalanche” behavior, in which the system exhibits a percolation transition. Finally,
while domain images exist for the pure compound LiHoF4 , imaging of the disor-
dered compound LiHoxY1-xF4 are sorely needed. The tunneling dynamics are very
sensitive to the exact structure of the domain walls, and this would shed light on the
underlying random field distributions which are needed to quantitatively calculate
tunneling rates.
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