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ABSTRACT

Vibration management is important for the survivability of structures. The re-
sponse of a structure under vibration is dependent upon interaction between the
excitation environment and the properties of the structure. If the input excitation
cannot be adjusted, then the structure must be engineered to survive. One approach
to engineering structures to reduce vibration response is through damping, which
is achieved by adding damping devices or materials to covert kinetic energy into
heat, where removing energy from the system reduces the amplitude of response.
There are a variety of existing vibration damping concepts and techniques, however,
conventional methods of these approaches are subject to limitations such as com-
promising stiffness for increased damping and performance that is excitation profile

dependent.

This research proposes a novel, passive vibration damping concept which is mo-
tivated by recent deployable structures for space that use coiling as a packaging
architecture. The proposed concept, referred to as wound roll damping, is a friction-
based damping scheme for coiled structures, where the structure is wound around
a mandrel with tension that allows interlayer slip during vibration. The friction
between slipping layers provides an energy dissipation mechanism, which reduces
the overall level of response. The concept was developed with the challenges of
mitigating spacecraft launch vibration and the limitations of conventional damping

techniques in mind.

Understanding of the working principle and performance of this damping concept
is achieved using a combination of experiments, analysis, and FEA. A method for
determining the locations of slip within a wound roll under vibration is presented.
This consists of modeling the interlayer friction forces, using analytical expressions
for the stress fields that arise during tension winding of wound rolls, and comparing
these values against loading estimates obtained from analysis and FEA. The locations
of slip for wound rolls supported by a cantilevered mandrel with bending vibration

modes are towards the root of the wound roll structure, near the inner layers.

Experimental studies that demonstrate the performance and properties of this damp-
ing concept are presented in this work. A wound roll test sample is subjected to a
range of excitation profiles including: sine sweep, sine dwell, random, and shock

with varying levels of sample winding tension and excitation amplitude. Using



vi

these experiments, this concept is demonstrated to not be subject to the limitations
of conventional damping schemes. This scheme is observed to be capable of sig-
nificantly increasing the overall stiffness while providing elevated damping levels,
with a performance that is tunable with winding tension, independent of excitation
profile, and scales with excitation amplitude. The locations of slip are observed to

be consistent with predictions from FEA and analysis.

Two approaches to simulate and model the wound roll damper are developed to both
better understand the physical mechanism of this concept and provide analysis tools.
The first method is an FEA model, consisting of the base vibration of concentric
shells and solids that have frictional contact interactions. The second method is a
2-DoF reduced order model that simulates the frictional contact between two mass-
spring-damper systems. Both methods are demonstrated to have good correlation

with experimental measurements.

A majority of this work demonstrates the performance of this concept, using both
experiments and simulation at lab scales. This work also presents simulation studies
that demonstrate the viability of this concept at realistic scales. Using simulations
scaled to recent coilable space structures, both implemented and proposed, the
wound roll damping concept is demonstrated to provide significant stiffness and

damping.
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Chapter 1

INTRODUCTION

1.1 Importance of Vibration Mitigation: Case Studies of Engineering Failures
and Disasters
Vibration management is crucial for the survival and longevity of structures. Ne-
glecting this aspect can have severe ramifications, as evidenced by several infamous
engineering failures across a wide spectrum of applications, ranging from terrestrial
structures to aerospace systems (Fig. [I.I). Vibration induced failures can mani-
fest in various ways. The loading spectrum can contain frequencies that excite a
resonant mode of the structure, or structure-environment interactions can result in
self-oscillation. These conditions can lead to dynamic amplification, where the
structure’s response exceeds material limits (Fig. [[.Ta). Even in cases where the
instantaneous failure limit is not reached, repetitive motion can induce vibration
fatigue (Fig. [[.1b), local contact welding or wear (Fig.[I.Ic], or unexpected system
interactions, which can confuse sensors and inadvertently trigger unintended states
(Fig.[L.1d] Fig.[I.Te). These examples underscore the critical significance of effec-
tively managing the interaction between structures and their loading environments.
If the loading conditions cannot be reduced or adjusted, the structure needs to be

engineered to survive by mitigating the vibration response.

1.2 Vibration Mitigation Approaches
There are two primary approaches for designing structures to reduce vibration
response. The result of each approach can be demonstrated using the transmissibility

of a 1-DoF mass-spring-damper (m, k, /) system, as shown in Fig.

The first approach involves modifying the structure’s stiffness with the goal of
moving the system response away from forcing. With the stiffness modification
approach, vibration response reduction can be achieved by either stiffness reduction
or by stiffness increase (Fig.[I.2a). A common technique that employs the stiffness
reduction technique is base isolation, where the system stiffness is intentionally
reduced to shift the resonant frequency lower, resulting in attenuation at frequencies

higher than the new resonant frequency.

Alternatively, increasing stiffness reduces deformation under a given load, thereby



(a) Tacoma Narrows Bridge: wind-induced
self oscillation amplified until supporting
cables failed, resulting in bridge collapse

[113].
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(c) Galileo Orbiter: lubricants worn away
during transport vibration resulted in an-
tenna deployment failure [E]]
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