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ABSTRACT

In this thesis, I present a multifaceted exploration of various aspects of deforma-
tion and stress in the Earth’s lithosphere using a variety of methods in a range of
tectonic environments. I begin by examining the evolution of a young subduction
zone through a combination of gravity modeling and seismological observations.
Chapter 2 details the development a linear 3-D gravity inversion method capable of
modelling complex geological regions such as subduction margins. Our procedure
inverts satellite gravity to determine the best-fitting differential densities of spatially
discretized subsurface prisms in a least-squares sense. We use a Bayesian approach
to incorporate both data error and prior constraints based on seismic reflection and
refraction data. Based on these data, Gaussian priors are applied to the appropriate
model parameters as absolute equality constraints. To stabilize the inversion and
provide relative equality constraints on the parameters, we utilize a combination
of first and second order Tikhonov regularization, which enforces smoothness in
the horizontal direction between seismically constrained regions, while allowing
for sharper contacts in the vertical. We apply this method to the nascent Puysegur
Trench, south of New Zealand, where oceanic lithosphere of the Australian Plate
has under-thrust Puysegur Ridge and Solander Basin on the Pacific Plate since the
Miocene. These models provide insight into the density contrasts, Moho depth,
and crustal thickness in the region. The final model has a mean standard deviation
on the model parameters of about 17 kg/m−3, and a mean absolute error on the
predicted gravity of about 3.9 mGal, demonstrating the success of this method for
even complex density distributions like those present at subduction zones. The
posterior density distribution versus seismic velocity is diagnostic of compositional
and structural changes and shows a thin sliver of oceanic crust emplaced between
the nascent thrust and the strike slip Puysegur Fault. However, the northern end of
the Puysegur Ridge, at the Snares Zone, is predominantly buoyant continental crust,
despite its subsidence with respect to the rest of the ridge. These features highlight
the mechanical changes unfolding during subduction initiation.

Chapter 3 explores the earthquake interevent time distribution. Earthquakes are
commonly assumed to result from a stationary Poisson (SIP) process. We reassess
the validity of this assumption using the Quake Template Matching (QTM) catalog
and the relocated SCSN catalog (HYS) for Southern California. We analyze the
interevent time (IET) distribution and the Schuster spectra after declustering with
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the Zaliapin and Ben-Zion (2013) method. Both catalogs exhibit fat-tails on the IET
distribution, deviating from the expected exponential distribution. The Schuster
spectra of the catalogs are also inconsistent with an SIP process. The QTM catalog
shows a statistically significant seasonal signal and a drift in the Schuster probability
at long periods, likely due to increased seismicity following the 2010 El Mayor-
Cucapah earthquake. This increase is also evident in the yearly IET distributions of
the catalog. In contrast, the HYS Schuster spectrum does not show seasonality, but
the yearly IET distributions exhibit a decrease in seismicity rate over the duration of
the catalog, likely due to seismic network upgrades around 1990. We use synthetic
catalogs to test the origin and significance of the observed deviations from the
Poisson model. Variations in the QTM annual seismicity rate, around 5.6%, are too
small to generate a noticeable departure from an exponential distribution, and the
SIP model can not be rejected at the 5% significance level. The synthetic catalogs
also suggest the fat-tail is an artefact of incomplete declustering. Overall, variations
in the IET distribution for southern California are probably the result of both 1)
incomplete declustering and location uncertainty, and 2) transient non-stationarity
of the background rate from viscoelastic effects of large earthquakes. However, the
stationary Poisson model appears adequate for describing background seismicity at
the scale of Southern California and the decadal time scale of the QTM catalog.

Chapters 4 and 5 cover the primary focus of this thesis, exploring the influence of
long-wavelength loading on the stress field of continental interiors and intraplate
seismicity. The continental interior of eastern North America in particular has hosted
many significant historical earthquakes and is undergoing both glacial isostatic
adjustment (GIA) and long-wavelength subsidence due to the sinking of the Farallon
slab. The regional seismicity concentrates within ancient failed rift arms and other
paleo-tectonic structures, which can act as weak zones in the crust where stress
accumulates. Within some of these zones, focal mechanism stress inversion shows
significant rotational deviation of the maximum horizontal stress (𝑆𝐻𝑚𝑎𝑥) direction
from the regional NE-SW trend, which may be explained by long-wavelength stress
perturbations in the presence of lithospheric weakness. We focus on two sources of
intraplate stress perturbation and seismicity and test the hypotheses that 1) mantle-
flow induced epeirogenic subsidence and 2) GIA contribute to intraplate seismicity
in eastern North America via reactivation of pre-existing faults.

For the slab loading component of this work, we use high-resolution global, spherical
finite-element flow models with CitcomS. To capture realistic temperature fields and
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the Farallon slab, we convert seismic tomography models to temperature using a min-
eralogically constrained depth-dependent scaling factor. We utilize laterally variable
temperature-dependent viscosities, upon which we superimpose low-viscosity plate
boundary weak zones, as well as lithospheric intraplate weak zones at the loca-
tions of failed rifts and other inherited structures in eastern North America. We
parameterize the Farallon slab in terms of its buoyancy to determine the degree to
which the flow induced by the sinking slab contributes to intraplate stress. Using
the modeled stress tensors from instantaneous flow calculations, we compute 𝑆𝐻𝑚𝑎𝑥 ,
the stress magnitudes, and the Coulomb failure stress on mapped faults in several
major seismic zones. Slab sinking drives localized mantle flow beneath the central-
eastern U.S., leading to a stress amplification of 100-150 MPa across the region
that peaks over the New Madrid Seismic Zone. This stress amplification introduces
a pronounced continent-wide clockwise rotation of the predicted 𝑆𝐻𝑚𝑎𝑥 direction,
reaching as much as ∼20° in some seismic zones, particularly when lithospheric
weak zones are included. In the New Madrid, Central Virginia, Charlevoix, and
Lower Saint Lawrence Seismic Zones, the presence of weak zones loaded by the
Farallon slab at depth can explain the pattern of clockwise rotation of the observed
focal mechanism derived 𝑆𝐻𝑚𝑎𝑥 relative to the regional borehole derived 𝑆𝐻𝑚𝑎𝑥 as
reported in previous studies. However, misfits on 𝑆𝐻𝑚𝑎𝑥 within many of the major
seismic zones suggest other sources of stress are needed to properly reproduce the
observed stress trends in some areas. We also find that in order for pre-existing
lithospheric weak zones to exert appreciable control on intraplate stress under the
influence of mantle flow, they must be shallow/sub-crustal and in contact with the
crust. These stress perturbations and rotations ultimately bring faults in the NMSZ,
the Western Quebec Seismic Zone (WQSZ), and the Lower Saint Lawrence and
Charlevoix Seismic Zones closer to failure. In particular, inclusion of the Farallon
slab and weak zones produces positive Coulomb failure stresses on some key faults
associated with major historical earthquakes, including the Reelfoot Fault in the
NMSZ and the Timiskaming fault in the WQSZ. Fault instability is even more likely
when assuming weaker faults with lower coefficients of friction.

For the glacial unloading component of this work, we use the global, spherical finite
element code CitcomSVE, which models dynamic deformation of a viscoelastic
and incompressible planetary mantle in response to surface loading. We supply
CitcomSVE with the same seismically constrained viscosity structures computed in
the CitcomS models, including those with weak zones, and load the Earth model
with the ICE-6G ice history. We perform the same suite of simulations and stress
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analyses as in the mantle loading problem, using the stress tensor output of the
corresponding CitcomS model as the tectonic background stress. We compare the
mantle flow and GIA induced stresses, with focus on the present day extant glacially
derived stress field. GIA induced stress perturbations are small (∼10 MPa), even
in the presence of lithospheric weak zones. GIA induced 𝑆𝐻𝑚𝑎𝑥 alone exhibits a
transition from clockwise to counterclockwise rotation moving northeast across the
continent. We find that only by inclusion of the mantle flow derived background
stress can we reproduce the continental scale clockwise stress rotation observed in
stress data, suggesting the effect of mantle loading is more important for explaining
these observations than is GIA. In the NMSZ, GIA helps promote stability on the
Reelfoot Fault, in opposition to mantle flow, while promoting instability on more
non-optimally oriented faults. GIA also helps localize higher Coulomb failure
stress within the Charlevoix Seismic Zone and the western half of the WQSZ.
In the WQSZ and LSLRS, GIA stress perturbations are large enough that even
with only a small reduction in the coefficient of friction, faults that are not likely
to fail under the background tectonic and geodynamic stresses alone could slip.
Further investigation of the sensitivity of GIA stress to different 3D and 1D viscosity
structures and the change in GIA stress with time since deglaciation is warranted
to better understand how GIA affects intraplate seismicity. Ultimately, constraining
how mantle flow and GIA affect stress and deformation in the presence of laterally
variable viscosity is integral to quantifying how long-wavelength loading may alter
the spatial distribution of seismic hazard.
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C h a p t e r 1

INTRODUCTION

*Portions of the material described or presented in this chapter were previously
published in:

Gurnis, M., H. Van Avendonk, S. P. Gulick, J. Stock, R. Sutherland, Hightower, E.,
B. Shuck, J. Patel, E. Williams, D. Kardell, E. Herzig, B. Idini, K. Graham, J. Es-
tep, and L. Carrington (2019). “Incipient subduction at the contact with stretched
continental crust: The Puysegur Trench”. In: Earth and Planetary Science Letters
520.1, pp. 212–219. doi: 10.1016/j.epsl.2019.05.044.

Hightower, E., M. Gurnis, and H. van Avendonk (2020). “A Bayesian 3D Linear
Gravity Inversion for Complex Density Distributions: Application to the Puysegur
Subduction System”. In: Geophysical Journal International 223, pp. 1899–1918.
doi: 10.1093/gji/ggaa425.

Shuck, B., S. P. Gulick, H. J. Van Avendonk, M. Gurnis, R. Sutherland, J. Stock,
and Hightower, E. (2022). “Stress transition from horizontal to vertical forces
during subduction initiation”. In: Nature Geoscience 15.2, pp. 149–155. doi:
https://doi.org/10.1038/s41561-021-00880-4.

Understanding the structure and deformation of the Earth’s lithosphere across differ-
ent temporal and spatial scales is critical to understanding a wide range of geological
phenomena, from the formation of new tectonic plate boundaries to earthquakes to
past and future sea-level rise. Lithospheric deformation is a product of the state
of stress within the lithosphere. This state of stress results from a combination of
far-field tectonic forcing (i.e., ridge push-slab pull), mantle flow, and lithospheric
buoyancy forces arising from lateral variations in density, crustal thickness, and
topography (Zoback and Zoback, 2007). To first order, the lithospheric stress field
is uniform with depth and over broad length scales of up to thousands of kilometers
(Zoback and Zoback, 2007). Such coherent stress patterns can be interpreted with
respect to long-wavelength lithospheric processes and reflect the balance of forces
operating on and within plates and driving plate motions. However, superimposed
upon these first order stress provinces are smaller scale stress patterns resulting from
local geological or tectonic conditions, such as lithospheric flexure under surface
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loading, lateral strength variations, or density contrasts (Zoback and Zoback, 2007).
In fact, lithospheric heterogeneity can be as important as plate driving forces in gov-
erning the stress state within tectonic plates (Humphreys and Coblentz, 2007), and
in particular, pre-existing lithospheric or crustal weaknesses play an important role
in governing both active tectonic and intraplate deformation and stress. Ultimately,
it is the stress, via its magnitude and orientation, that determines the type of defor-
mation and the style of faulting observed within the lithosphere. An understanding
of the state, sources, and evolution of lithospheric stress is thus an informative tool
by which we can both better assess earthquake hazard and garner a comprehen-
sive understanding of tectonic processes. In this thesis, I present a multifaceted
exploration of various aspects of deformation and stress in the Earth’s lithosphere
using a variety of methods in a range of tectonic environments, from nascent plate
boundaries just being born to the ancient cratons of continental interiors.

I begin by examining the evolution of a nascent subduction zone through a combi-
nation of gravity modeling and seismological observations. Because the balance of
forces on plates is altered by the formation of new subduction zones, understanding
the process of subduction initiation is key to characterizing the dynamics of plate
motions and the forces that drive and resist those motions. Of particular interest
are the state of stress operating throughout the initiation process, which is typically
poorly recorded in well-developed arcs, and the material properties of the plate inter-
face and adjacent plates that enable subduction initiation (Gurnis et al., 2019). The
transition from forced to self-sustaining subduction, when the negative buoyancy of
the downgoing oceanic plate exceeds the resistive force associated with fault friction
and plate bending (Toth and Gurnis, 1998), has also been a major unknown in past
studies of subduction initiation. To address these questions, I collaborated with a
team to investigate the Puysegur Subduction Zone south of New Zealand — a young
subduction margin at the intermediate stage of transitioning to a self-sustaining state
(Gurnis et al., 2019). Different sections of the Puysegur margin are theorized to
represent forced and self-sustaining stages of subduction, but prior to our work,
adequate seismic reflection and modeling of the crustal structure did not yet exist for
this region. Puysegur has the advantage of being a small subduction zone with a well
known plate kinematic history before and during subduction initiation, making it
accessible for studying the initiation process and for constructing a regional gravity
inverse model at a relatively high resolution.
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The Puysegur-Fiordland subduction zone lies between the northern end of the Mac-
quarie Ridge Complex (MRC) and the southern tip of South Island, New Zealand.
Present day plate motion is predominantly dextral strike-slip, with highly oblique
subduction of the Australian Plate (AUS) northeastwards beneath the Pacific Plate
(PAC) at the Puysegur Ridge and Fiordland (Figure 2.3a; DeMets et al. (2010)
and Sutherland (1995)). Over the course of its evolution, the Puysegur margin
has evolved from spreading ridge to strike-slip plate boundary to subduction zone
(Lebrun et al., 2003; Sutherland, 1995), evidenced by the curvilinear fracture zones
that merge along the MRC and are prominent in the gravity field and bathymetry.
Oblique convergence led to subduction beneath Fiordland starting around 16-10 Ma,
beneath the northern extent of the Puysegur segment about 11-8 Ma, and beneath
the southernmost extent of the Puysegur Ridge within the last several million years
(Sutherland et al., 2006; Lebrun et al., 2003). Puysegur Ridge possesses distinctive,
high amplitude gravity anomalies, which prior to this work had poorly constrained
structural and compositional interpretations and which have implications for the
dynamic processes and mechanical changes unfolding during subduction initiation.
The MRC is characterized by long and narrow bathymetric and gravitational highs
and lows along strike (Figure 2.3b). The southern part of Puysegur Ridge exhibits
a 100 to 150 mGal gravity high adjacent to the −100 to −150 mGal gravity low of
the trench. In contrast, a significant −150 mGal gravity low exists over the north-
ern Puysegur Ridge, a region known as the Snares Zone (Figure 2.3; Gurnis et al.
(2019) and Hightower et al. (2020)). This region is of particular interest in our study
because it has subsided with respect to the rest of Puysegur Ridge by nearly 2 km
(Collot et al., 1995). If composed of buoyant crust, ridge subsidence in this location
has implications for the subduction initiation process and the force balance on the
system. The gravity modeling presented in Chapter 2 addresses both this question
of the ridge buoyancy and helps stitch together the information obtained seismically
to provide a more complete 3D picture of the structures and rock types in the region.

The crustal structure and tectonics related to the above kinematic history were
investigated in detail with seismic reflection, seismic refraction, and bathymetric
mapping during the South Island Subduction Initiation Experiment (SISIE) (Gurnis
et al., 2019) — a marine geophysical survey in February-March 2018 aboard the R/V
Marcus G. Langseth conducted by researchers at Caltech, the University of Texas,
and the University of Wellington, New Zealand. We collected 1252 km of multichan-
nel seismic reflection data and two trench perpendicular ocean-bottom seismometer
(OBS) seismic refraction profiles, as well as multi-beam swath bathymetry, all of
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which were essential not only for our direct interpretation of the margin’s structure
and geology but also as prior constraints on the subsequent gravity modeling.

In Chapter 2, I detail the development of a linear 3-D gravity inversion method
applicable to geologically complex regions such as subduction margins. The pro-
cedure inverts satellite gravity data, in this case from the Sandwell et al. (2019)
free-air gravity map for the Puysegur region, to determine the best-fitting differen-
tial densities of spatially discretized subsurface prisms in a least-squares sense. We
use a Bayesian approach to incorporate both data error and prior constraints based
on the seismic reflection and refraction data from the SISIE expedition. These
seismic profiles capture key structural boundaries, including sediment interfaces,
the Moho, and the décollement between the subducting and overriding plate, which
are used to constrain regions of different density within the gravity model. Based
on these data, Gaussian priors are applied to the appropriate model parameters as
absolute equality constraints. To stabilize the inversion and provide relative equality
constraints on the parameters, we utilize a combination of first and second order
Tikhonov regularization, which enforces smoothness in the horizontal direction be-
tween seismically constrained regions, while allowing for sharper contacts in the
vertical. These models provide insight into the density contrasts, Moho depth, and
crustal thickness across and along the Puysegur margin. The final model has a
mean standard deviation on the predicted densities of about 17 kg m−3 and a mean
absolute error on the predicted gravity of about 3.9 mGal, demonstrating the success
of the method for even spatially complex density distributions like those present at
subduction zones.

The posterior density distribution versus seismic velocity is diagnostic of compo-
sitional and structural changes. Along the strike of the Puysegur margin, we infer
a thick crustal root composed of predominantly buoyant continental crust below
the topographically depressed (and subsided) Snares Zones. Along the southern
boundary, the crust is thin but bathymetrically shallow; to the north, the crust is
thick but bathymetrically deep. This provides strong evidence for dynamic uplift
in the south, reversing to a strong pull force from the Puysegur slab in the north.
When the seismic velocities and MCS images are combined with seismic-velocity
density relations from the gravity inversion, we also infer the existence of a sliver of
oceanic crust emplaced between the nascent thrust and strike slip Puysegur Fault, in
contrast to the broadly continental Puysegur Ridge (Hightower et al., 2020; Shuck
et al., 2021). The eastern side of the Puysegur Ridge is a continental block and
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experienced far less stretching than the Solander Basin. This suggests that subduc-
tion nucleated adjacent to the boundary between the oceanic crust of the Australian
Plate and a crustal block on the Pacific Plate and later jumped outboard onto the
Australian Plate (Shuck et al., 2021).

Both the gravity modeling and seismic analysis reveal the significant role that
continental crust plays in the evolution of the plate boundary (Gurnis et al., 2019;
Hightower et al., 2020). Puysegur had formerly been viewed as an example of
induced subduction initiation through transpression along a former spreading center
and fracture zone system involving only oceanic crust (Collot et al., 1995; Gurnis
et al., 2004). Our results demonstrate that the overriding plate is in fact block-faulted
and extended continental crust, providing a density contrast between the converging
plates that helps enable subduction initiation (Leng and Gurnis, 2015; Gurnis et al.,
2019). This density difference is modeled to have reached its maximum around 15
Ma, consistent with the inferred age of subduction initiation at 15-12 Ma (Sutherland
et al., 2006).

The imaged fault geometry along the Puysegur margin also highlights the role in-
herited structures play in the process of subduction initiation and the evolution of
the state of stress throughout that process. The Tauru Fault zone (TFZ) is the most
prominent structure imaged in the survey, which was active during the rifting stage
around 45-35 Ma and later reactivated as a major fold-and-thrust system during
subduction initiation around 16 Ma (Shuck et al., 2022). Identification of similar
transitions between normal, reverse, and mixed fault movements record the spatial
and temporal evolution of stress along the margin. The timing of initial reacti-
vation of structures as reverse faults indicative of compressional stresses becomes
younger moving north to south along the margin, indicating southward propagation
of subduction initiation. Extension and subsidence, evidenced by normal faulting,
again follow compression at most locations, except in the very south where uplift
is ongoing (Figure 1.1). The age of subduction initiation in each locality (16 Ma
beneath northern Puysegur and 5 Ma at southern Puysegur), based on plate mo-
tions and unfolding of the subducted slab (Sutherland et al., 2006), corresponds to
the onset of reverse activity in the upper plate. This phase of compression lasts
approximately 8 Myr before relaxation, extension, and subsidence begin, marking
the local transition to self-sustaining subduction, which implies 8 Myr is the time
needed to weaken the young subduction interface and for the slab to bend into the
upper mantle where it can begin undergoing metamorphism (Shuck et al., 2022).
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Figure 1.1: Stress evolution along the Puysegur margin from Shuck et al. (2022). Stress states are
inferred from periods of normal, reverse, mixed, and quiescent tectonic activity at faults TFZ (Tauru
Fault Zone), S3N, S3S, S1. For reference to the location and seismically inferred throw of the faults,
the reader is referred to Shuck et al. (2022). The magnitude of the stress is qualitatively inferred from
the relative amount of fault throw and the intensity of deformation at each location. Colored vertical
lines represent chronostratigraphic horizons from Shuck et al. (2021) and Patel et al. (2020). The
present day gravity residual trace, Δ𝑔residual, was extracted from the free-air gravity anomaly along
Puysegur Ridge, removed of its mean. Where Δ𝑔residual is negative, Puysegur Ridge is actively being
pulled down (i.e., the Snares Zone) and where positive, the ridge is actively being pushed up under
horizontal compression. The duration of compression and lag time until the onset of extension are
consistent with horizontally forced subduction initiation.

Having revealed that Puysegur subduction initiated with oceanic crust adjacent
to continental, there remain no confirmed examples of subduction initiation at an
ocean-ocean boundary (Gurnis et al., 2019). Moreover, there is also evidence that the
Izu-Bonin-Marianas subduction zone initiated at a relict Mesozoic island arc (Leng
and Gurnis, 2015) rather than by juxtaposition of segments of normal oceanic crust
differing in age (e.g., Stern and Bloomer (1992)), and even the Tonga-Kermadec
system likely originated at the site of an earlier subduction boundary (Sutherland
et al., 2010; Sutherland et al., 2020). Likewise, the decrease in duration of the
compressive phase from north to south along the Puysegur margin (Figure 1.1)
suggests a reduction in initial resistance if adjacent subduction initiation is already
underway, owing to an already weakened plate interface (Shuck et al., 2022). These
examples and conditions of subduction initiation all serve to highlight the important
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role that inherited tectonic structures and pre-existing zones of weakness have on
plate boundary evolution and tectonic development.

One of the most important datasets available for deciphering the state of stress
both at Puysegur and within the lithosphere globally is earthquakes themselves.
The majority of the world’s stress estimates come from focal mechanism stress
inversion (Zoback and Zoback, 2007; Heidbach et al., 2018), which solves for the
orientations of the principal stresses and the relative stress magnitude from a set
of earthquake focal mechanism solutions (Michael, 1987; Gephart and Forsyth,
1984). Earthquakes provide a wealth of information about stress state, tectonics,
and obviously seismic hazard. One of the biggest questions in seismology and
seismic hazard analysis is, when is the next big one going to hit? While earthquakes
cannot be predicted, much effort has been devoted to better characterizing the
occurrence time of earthquakes and assessing the possibility of periodicity. An
accurate characterization of earthquake timing is critical for seismic risk evaluation
because the distribution of the interevent times of earthquakes directly influences
probabilistic seismic hazard assessments.

In Chapter 3, we shift from deformation at nascent plate margins to focusing on
the earthquake interevent time distribution at an established plate boundary. Earth-
quakes are commonly assumed to result from a stationary Poisson (SIP) process. We
reassess the validity of this assumption using the Quake Template Matching (QTM)
catalog and the relocated SCSN catalog (HYS) for Southern California. We ana-
lyze the interevent time (IET) distribution and the Schuster spectra, which identifies
periodicity in the seismicity rate, after declustering with the Zaliapin and Ben-Zion
(2013) method. Both catalogs exhibit fat-tails on the IET distribution, deviating
from the expected exponential trend, though deviation is more prominent on the
HYS catalog. The Schuster spectra of the catalogs are also inconsistent with an SIP
process. The QTM catalog shows a statistically significant seasonal signal and a
drift in the Schuster probability at long periods, likely due to increased seismicity
following the 2010 El Mayor-Cucapah earthquake beyond the duration and extent
of a typical aftershock sequence, as would be removed by the declustering. This
increase is also evident in the yearly IET distributions of the catalog. In contrast, the
HYS Schuster spectrum does not show any notable seasonality. Non-stationarity is
evident, however, and the yearly IET distributions exhibit a decrease in seismicity
rate over the duration of the catalog, likely due to seismic network upgrades around
1990. We use synthetic catalogs to test the origin and significance of the observed
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deviations from the Poisson model. Variations in the QTM annual seismicity rate,
around 5.6%, are too small to generate a noticeable departure from an exponential
distribution, and the SIP model can not be rejected at the 5% significance level. The
synthetic catalogs also suggest the fat-tail is an artefact of incomplete declustering.
Overall, the variations in IET distribution for southern California are probably the
result of both 1) incomplete declustering and location uncertainty, and 2) transient
non-stationarity of the background rate from viscoelastic effects after large earth-
quakes. However, the stationary Poisson model appears adequate for describing
background seismicity at the scale of Southern California and the decadal time scale
of the QTM catalog.

Seismicity and deformation at plate boundaries present a significant seismic haz-
ard to many populated areas throughout the world, and as such, are well-studied.
However, large and damaging earthquakes can also occur far from tectonic plate
boundaries within the interiors of continents (i.e., intraplate seismicity). From seis-
micity at active plate boundaries in Chapter 3 and the role of inherited structures at
subduction margins in Chapter 2, we transition to the primary focus of this thesis,
investigating the deformation of the intraplate lithosphere and the role of pre-existing
weaknesses in promoting intraplate seismicity when subjected to long-wavelength
sources of stress. Intraplate seismicity is an enigmatic phenomenon potentially
resulting from a combination of geodynamic processes and surface loading, with
contribution from far-field tectonic forces and pre–existing structures. The con-
tinental interior of eastern North America is one of the best regions for studying
the interplay between geodynamics and intraplate seismicity, as it has hosted many
significant historical earthquakes and is undergoing both long wavelength dynamic
subsidence and modern day glacial isostatic adjustment (GIA). Despite the stability
of the North American interior, which experiences only about 2 mm/yr of hori-
zontal motion according to GPS data (Stein and Sella, 2002), earthquake shaking
can potentially be more hazardous compared to that on plate margins, as the stable
continental lithosphere can transmit seismic energy more efficiently (Stein, 2007).

Historic records of major earthquakes in eastern North America date back to at
least 1638 (Figure 4.1a), with most seismicity occurring within clearly defined
seismic zones. Of these zones, the New Madrid, Central Virginia, Charleston South
Carolina, Eastern Tennessee, Northern Appalachian, Western Quebec, Charlevoix,
and Lower St. Lawrence River Valley Seismic Zones have experienced destructive
earthquakes in recorded history, ranging from M 5 to greater than M 7. These include
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the famous 1811-1812 New Madrid earthquakes (Figs. 4.1a), which were felt as
far away as Ottawa, Canada, caused widespread liquefaction, and even temporarily
reversed the flow of the Mississippi River (Johnston and Schweig, 1996). While
the largest of these events may have been as high as M 8 (Johnston and Schweig,
1996), more recent estimates suggest the magnitudes were more likely around M
7 (Hough et al., 2000; Stein, 2007). While an intraplate earthquake of magnitude
greater than or equal 7 is expected to occur anywhere along the Atlantic margin
only every few 1000 years (Brink et al., 2009) and within New Madrid every 550-
1100 years (Schweig and Ellis, 1994), earthquake hazard remains significant for the
central-eastern United States (CEUS) due to limited earthquake preparedness.

Seismicity in eastern North America tends to concentrate within old aulacogens
(failed rifts) or other tectonically inherited structures that can act as weak zones in
the crust where stress accumulates (Sykes, 1978; Mazzotti and Townend, 2010; Hurd
and Zoback, 2012). These aulacogens and seismic zones are associated with the
Proterozoic Iapetan rifted margin and its various failed rift arms (Baird et al., 2010;
Withjack et al., 1998) or the Mesozoic rift basins of the extended Atlantic margin
(Withjack et al., 1998; Mazzotti and Townend, 2010). Earthquakes and stresses
also concentrate in zones of thinner lithosphere around the margin of the North
American cratonic lithosphere (Li et al., 2007). Focal mechanism stress inversion
shows an increasingly compressive stress regime from the south-central U.S. to
southeast Canada (Hurd and Zoback, 2012) with a predominantly NE-SW oriented
regional maximum horizontal compressive stress direction (Heidbach et al., 2018).
However, some seismic zones exhibit a statistically significant clockwise rotational
deviation of the seismically derived maximum horizontal stress (𝑆𝐻𝑚𝑎𝑥) direction
from the regional borehole derived 𝑆𝐻𝑚𝑎𝑥 orientation (Mazzotti and Townend, 2010;
Hurd and Zoback, 2012), suggesting multiple stress regimes. Suggested sources
of such stress rotations and the associated intraplate seismicity include complex
fault intersections (Talwani, 1988; Talwani, 1999; Gangopadhyay and Talwani,
2007), crustal density anomalies, gravitational potential energy forces (Levandowski
et al., 2017), and flexure under local loads (Stein et al., 1989). However, the
consistency of these stress rotations between seismic zones separated by distances
of up to 1500 km cannot be explained by such mechanisms and instead suggests
a common long-wavelength source of stress perturbation (Mazzotti and Townend,
2010). Longer wavelength mechanisms include dynamic subsidence, lithospheric
flexure, and glacial isostatic adjustment. While these processes typically only
induce stress perturbations on the order of 10s of MPa, they may result in stress



10

amplifications by a factor of 5-10 in the presence of a lithospheric weak zone
(Grollimund and Zoback, 2001; Mazzotti and Townend, 2010). Thus, under the right
conditions, long-wavelength loads may concentrate stresses and lead to intraplate
seismicity.

The possible connections between intraplate seismicity and large-scale continen-
tal uplift or the sinking of continental platforms (i.e., epeirogeny) remain elusive.
Earlier work has demonstrated that sinking slabs, in both regions of active and an-
cient subduction, create mantle downwelling that exert tractions on the overlying
lithosphere, resulting in dynamic subsidence (Hager, 1984; Mitrovica et al., 1989;
Gurnis, 1992; Yang et al., 2016; Forte et al., 2010). Initially, the sinking slab stag-
nates at the 660 km discontinuity due to the viscosity jump and the phase transition
between ringwoodite and bridgmanite (Billen, 2008). The negative buoyancy of the
accumulated mass is eventually great enough to break through the boundary and
continue sinking, initiating a process called slab avalanche, which causes substantial
downward asthenospheric flow (Christensen and Yuen, 1984; Tackley et al., 1993;
Yang et al., 2016; Yang et al., 2018). Dynamic subsidence has been inferred in east-
ern North America from Cenozoic shorelines (Spasojevic et al., 2008), under which
the remnant Farallon slab lies between 410 and 1700 km depth (Ren et al., 2007;
Lu et al., 2019). The presence of the slab beneath the 660 km discontinuity is evi-
dence of potential slab avalanche, as are models of mantle flow localized beneath the
NMSZ (Forte et al., 2007). Questions remain as to how this flow-induced continental
subsidence affects stress in the lithosphere. While this epeirogenic movement may
not cause notable folding or faulting (Gurnis, 1992), it may reactivate pre-existing
faults.

In Chapter 4, we use high-resolution geodynamic flow models to explore the hy-
pothesis that mantle flow induced epeirogenic motion and stress perturbation due to
the sinking of the Farallon slab contributes to intraplate seismicity in eastern North
America via the reactivation of pre-existing faults. To incorporate realistic mantle
and lithospheric thermal structure and the negative buoyancy of the Farallon slab,
we use geologically and seismically constrained thermal input in our models. This
allows us to naturally incorporate plate driving forces due to the thermal buoyancy
of the oceanic lithosphere, as well as the effect of variable lithospheric thickness.
We parameterize the Farallon slab in terms of its buoyancy to determine the degree
to which the flow induced by the sinking slab contributes to intraplate stress. Unlike
most previous studies on the effect of mantle flow on intraplate stress, we explic-
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itly impose low viscosity crustal and/or lithospheric weak-zones demarcated by the
aulacogens and paleo-rifted margins of eastern North America. Using the mantle
convection code CitcomS, we compute the instantaneous flow field and associated
stress tensor, with which we calculate the 𝑆𝐻𝑚𝑎𝑥 direction and deviatoric stress in the
crust to determine how stress patterns change in cases of different slab-buoyancies
and in the presence of weak-zones. We compare our modeled stresses to those of
the World Stress Map (WSM) (Heidbach et al., 2018) and other sources (e.g. Maz-
zotti and Townend (2010)) and analyze the stress patterns within specific seismic
zones. We assess the likelihood of intraplate fault reactivation under these different
conditions by computing the Coulomb stress on known faults in several seismic
zones.

In addition to loading from the Farallon slab, eastern North America is also the site
of ongoing glacial isostatic adjustment (GIA). GIA is the viscoelastic response of
the solid earth to the disappearance of major ice sheets following the last glacial
maximum (LGM) about 21-26 thousand years ago. At timescales appropriate for
post-glacial rebound, the Earth responds to loads viscoelastically (Cathles, 1975;
Peltier, 1974), meaning that even after the ice load is gone, there is a time delay to
the uplift of the Earth to its pre-glaciation level. During the last glacial maximum,
the Laurentide ice sheet covered most of North America, with the thickest ice cover
(as much as 3-5 km) positioned at Hudson Bay (Peltier et al., 2015; Lambeck et
al., 2017), the site of the largest modern day rebound rates (Sella et al., 2007). It
has long been suggested that stresses induced by glacial isostatic adjustment (GIA)
may be responsible for many of the anomalous intraplate earthquakes of eastern
North America (Wu and Hasegawa, 1996; Wu and Johnston, 2000; Grollimund and
Zoback, 2001; Wu and Mazzotti, 2007; Mazzotti and Townend, 2010).

During glaciation, the weight of the ice sheet creates an additional vertical stress in
the lithosphere, and the flexure of the lithosphere under the load generates horizontal
bending stresses. These additional vertical and horizontal stresses increase all three
principal stresses. In terms of Mohr Coulomb failure theory, during glaciation, the
weight of the ice-sheet acts to stabilize faults and suppress fault movement (Johnston,
1987; Wu and Hasegawa, 1996; Steffen et al., 2014a). When the ice-sheet melts,
the vertical stress from the load decreases, but the GIA induced horizontal stresses
do not decrease as quickly because of the viscoelastic nature of the lithosphere and
the upward migration of stress from mantle relaxation. Thus, after deglaciation,
the vertical stress disappears but the horizontal stress remains, which increases the
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differential stress, bringing faults closer to failure (Steffen et al., 2014a). Like slab
loading, GIA is also a long-wavelength source of stress that in the presence of local
lithospheric weak zones could potentially explain the observed stress rotations in
seismic zones across eastern North America (Mazzotti and Townend, 2010). Wu
and Mazzotti (2007) indeed find that GIA stresses can produce clockwise rotation
of the 𝑆𝐻𝑚𝑎𝑥 direction in the crust above a lithospheric weak zone, and depth-
dependent stress rotations in the Charlevoix seismic zone are argued to arise from
GIA stress perturbations as well (Verdecchia et al., 2022). Previous GIA models have
also demonstrated the influence of GIA induced stresses on both fault reactivation
potential and stress orientations in eastern Canada (Wu and Hasegawa, 1996; Wu,
1997) and even in New Madrid (Wu and Johnston, 2000).

In Chapter 5, we explore the hypothesis that glacial isostatic adjustment promotes
intraplate seismicity in eastern North America via perturbation to the intraplate
stress field and reactivation of pre-existing faults. We develop high resolution global
models of the solid earth response to glacial loading and unloading with CitcomSVE
(Zhong et al., 2022), a spherical finite-element viscoelastic GIA code built from
CitcomS that implements the sea level equation and the ice-loading history of ICE-
6G (Peltier et al., 2015) for a fully 3D or 1D Earth viscosity structure. The models use
a viscosity structure based on the seismically and geologically constrained thermal
structure implemented in the mantle flow models with CitcomS, presented in Chapter
4. Like in the CitcomS models, we test how local-scale, low-viscosity lithospheric
weak zones emplaced at the locations of the geologically mapped aulacogens and
other structures affect the stress field under loading from GIA. Focusing on the
present day GIA induced stresses, we calculate the stress tensor, with which we
compute the 𝑆𝐻𝑚𝑎𝑥 direction, the deviatoric stress magnitude, and the Coulomb
stress on known faults. We compare our results to stresses of the WSM (Heidbach
et al., 2018) and to those obtained from mantle flow models in Chapter 4 using the
same Earth structure.

Investigations into the connection between broad–scale subsidence or uplift and
faulting and seismicity can improve how we quantify and assess seismic hazard
in intraplate regions, and in some cases are already informing such models. The
Canadian seismic hazard model (Adams and Halchuk, 2003; Adams, 2019), for ex-
ample, has adopted a geodynamic approach to characterizing the spatial distribution
of intraplate seismicity that assumes large earthquakes may occur anywhere along
the paleotectonic zones encompassing the Late Proterozoic-Cambrian Iapetan rifts



13

and aulacogens (Mazzotti, 2007a). Modeling stress perturbations due to surface
loading may also improve our understanding of lithospheric deformation and earth-
quake hazard in tectonically active regions, such as California, where drought has
led to isostatic uplift that can impact regional stresses and seismicity (Johnson et al.,
2017b; Johnson et al., 2017a; Kreemer and Zaliapin, 2018; Craig et al., 2017).
Lithospheric flexure in response to other surface processes, such as glacial rebound
and sea level rise, can potentially impact local and regional stress fields, especially
near crustal weak zones and along coastlines, thereby altering the spatial distribution
of seismic hazard in the near future. A more thorough understanding of how such
long-wavelength loads affect intraplate stress, deformation, and seismicity at the
regional and local level is thus important for developing resilient infrastructure and
better seismic risk assessment.
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C h a p t e r 2

A BAYESIAN 3D LINEAR GRAVITY INVERSION FOR
COMPLEX DENSITY DISTRIBUTIONS: APPLICATION TO

THE PUYSEGUR SUBDUCTION SYSTEM

Hightower, E., M. Gurnis, and H. van Avendonk (2020). “A Bayesian 3D Linear
Gravity Inversion for Complex Density Distributions: Application to the Puysegur
Subduction System”. In: Geophysical Journal International 223, pp. 1899–1918.
doi: 10.1093/gji/ggaa425.

2.1 Introduction
Inverse methods have become increasingly popular for addressing a number of
problems in earth science, particularly subsurface mapping. Gravity inversion, for
determining either the densities or depths of bodies of known density in the Earth,
has been an established method of mapping the Earth’s heterogeneities for some
time, though often with emphasis on the nonlinear approach. In non-linear gravity
inversion, the densities and density contrasts of the subsurface bodies are assumed
to be known and one solves for the geometry of the source, usually in terms of
depth to a particular interface. These inversions include either methods operating
in the spatial domain (Medeiros and Silva, 1996; Camacho et al., 2011; Prutkin
and Casten, 2009) or those operating in the wavenumber domain (Oldenburg, 1974;
Parker, 1972; Parker, 1995; Chappell and Kusznir, 2008; Cowie and Kusznir, 2012;
Bai et al., 2014). However, despite the Fourier method being one of the classical
approaches to gravity inversion, wavenumber methods are often less effective in
recovering a fully 3D solution with multiple sources and complex geometry (Bear
et al., 1995; Geng et al., 2019).

With the linear method, the unknowns are the densities of a discretized array of
subsurface rectangular prisms and iteration is not required in order to reach model
convergence, except in the case of testing variations in model regularization or other
constraints. Solving for the 3D density distribution also indirectly solves for the
depth to key interfaces, such as the Moho, because we can interpret such boundaries
from sharp transitions in density. While linear gravity inversion is an established
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method (Bear et al., 1995; Li and Oldenburg, 1998; Silva et al., 2001; Silva Dias
et al., 2009; Barnoud et al., 2016; Welford et al., 2018; Geng et al., 2019), many of
the studies employing it only do so for relatively simple geological geometries, such
as a single sedimentary basin, mafic intrusion, or volcanic feature (Silva et al., 2001;
Medeiros and Silva, 1996; Barnoud et al., 2016). Successful application of this
method to crustal scale studies and tectonic margins, with variable approaches to
the implementation, also exist (Welford et al., 2010; Welford et al., 2018; Geng et al.,
2019), but few have applied this method to subduction zones. Subduction margins
possess a complicated juxtaposition of structure and rock types and significant and
sometimes sharp lateral variations in density, as opposed to passive continental
margins, which often exhibit a more gradual change in structure and rock type that
is more easily handled by smoothed inversions. We construct a 3D linear gravity
inversion for an active subduction zone, demonstrating the successful application
of this method to more complex density distributions and bolstering the validity of
this method and its use in tectonic applications.

Inversion has the advantage of providing statistical feedback on solution quality.
Specifically, within a Bayesian framework, the objective is to determine the posterior
distribution of a set of parameters given prior distributions and likelihood functions
that describe how the data relate to those unknown parameters (Tarantola, 2005;
Aster et al., 2013; De La Varga and Wellmann, 2016; Wellmann et al., 2018). The
Bayesian approach is particularly useful for geophysical inverse problems, which are
in principle ill-posed because they are inherently non-unique. For example, gravity
data cannot distinguish between a narrow density anomaly at depth or a wider source
near the surface (Li and Oldenburg, 1998; Geng et al., 2019; Welford et al., 2018).
Consequently, one must introduce constraints and a priori information in order to
transform them into well-posed problems. With the Bayesian formulation, we can
account for both error in the data and error in our prior information to reduce how
that error may be carried over into the final model, and we can quantify the error
on our final solution via the covariance and resolution operators. The Bayesian
approach we use here offers improvements over traditional gravity inversion and
modeling techniques, where one usually removes the effect of the topography and
the Moho and analyzes the residual. Such an approach requires assuming constant
layer densities when in fact those densities are often unknowns, and it requires
assuming a known Moho depth that has to manually and iteratively be adjusted by
the user. This makes it difficult to fully incorporate lateral changes in density. The
Bayesian approach is more flexible and capable of handling complex 3D geometries
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because it allows us to constrain where the boundary is most likely to be based on
seismic data and what the densities are most likely to be, while allowing both to
vary in accord with the gravity data, the final boundary location being dependent
on the differential density. As such, we are able to draw conclusions about the 3D
density distribution in a tectonic setting that would otherwise not be as apparent
with traditional forward or inverse gravity methods that require harder constraints
or restrictions.

There are a number of common constraints widely used in gravity inversion, includ-
ing inequality constraints, which specify the lower and upper bounds of parameter
estimates; absolute proximity constraints, which specify that model parameters must
be close to a specified value, based on geologic information at particular points; and
relative equality constraints, which specify that the spatial variation of the model
parameter values must be smooth (Silva et al., 2001). Absolute proximity con-
straints are rarely used alone because there is often not enough prior information
available to constrain all model parameters. An exception would be the minimum
Euclidean norm, or similarly zeroth order Tikhonov regularization, which requires
all parameter estimates to be as close as possible to null values. This type of regular-
ization is biased towards a solution with minimum density and tends to concentrate
mass anomalies toward the surface, which is not entirely physical or useful for our
interpretation of the subsurface.

Minimum structure inversion, however, is a commonly used method (Last and
Kubik, 1983; Farquharson, 2008; Li and Oldenburg, 1998), utilized by codes such
as GRAV3D (Li and Oldenburg, 1998). To overcome the inherent insensitivity
of gravity to depth and thus the tendency for the inversion to concentrate mass
near the surface, these methods often apply a depth weighting (Li and Oldenburg,
1998). Applying absolute proximity constraints and inequality constraints to specific
regions of the model, however, overcomes the need for a depth weighting (Geng
et al., 2019; Welford et al., 2018). While traditional inverse methods do allow for the
adjustment of smoothing parameters, bounds on densities, and variable weighting,
they usually do so under hard constraints on predefined boundaries where the density
is allowed to vary but the geometry of the boundary remains unchanged (Li and
Oldenburg, 1998; Welford et al., 2018). In contrast, the probabilistic approach
offers more flexibility. Previous comparisons between such probabilistic methods
and approaches such as those used by GRAV3D (Welford et al., 2018) highlight these
distinctions as well, and we refer the reader to these sources for a more in depth
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comparison. These comparisons show that while each method has its advantages
and disadvantages, a probabilistic approach using sparse seismic Moho constraints
may not always lead to better results, particularly when there are significant lateral
variations in crustal thickness and composition, as it tends to concentrate more
unreasonable densities into different parts of the model to compensate (Welford
et al., 2018). In contrast to previous applications of this probabilistic method
(Welford et al., 2018; Geng et al., 2019; Barnoud et al., 2016), our approach directly
incorporates constraints on the interface depths and on composition via the mapping
of seismic velocities to density, not only at the locations of sparse depth to Moho
constraints from seismic lines, but interpolated throughout the model domain and
weighted according to the spatial extent of the prior data. We also propagate the error
on the seismic velocities into the density prior to ensure that the densities obtained
vary within a range that is consistent with the error in the seismic velocities and
that the seismic data does not too strongly dominate the final model obtained by the
inversion, such that it remains predominantly resolved by the gravity. Moreover, the
Bayesian approach allows us to directly evaluate the error and statistical validity of
our results in a way that does not assume the seismic data is the full truth.

Due to the non-uniqueness of gravity, however, even with absolute proximity con-
straints, some sort of smoothing or stabilizing functional is needed to produce a
meaningful solution. This can come in the form of relative equality constraints
such as either first or second order Tikhonov regularization, which spatially mini-
mize the first or second derivative of the physical property, respectively. Relative
equality constraints by themselves have a tendency to produce a blurred but still
valuable model of the density anomalies (Portniaguine and Zhdanov, 1999; Silva
et al., 2001). However, when combined with absolute equality constraints, this
inversion technique is often able to produce accurate representations of the source
geometry and density (Silva et al., 2001; Medeiros and Silva, 1996). As such, our
method employs a combination of absolute and relative equality constraints in the
form of Gaussian priors based on existing geophysical data and a combination of
first and second order Tikhonov regularization.

There is distinction in the literature between traditional regularization methods
and proper Bayesian approaches to inverse problems. Traditionally, regularization
modifies the function relating the data to the source of its signal, in an effort to
eliminate the unstable problem by replacing it with a similar stable one. This often
involves a penalty on the inversion that guarantees a unique solution (Calvetti and
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Somersalo, 2018). The Bayesian approach, on the other hand, by modeling the
solution as a random variable, allows one to use the exact function relating the data
to its source and offers the flexibility of obtaining multiple reasonable solutions,
as the final posterior model is in fact a probability distribution. However, the non-
uniqueness of gravity inversion in particular requires some form of regularization.
The regularization method that best bridges the classical deterministic theory and
the Bayesian approach is Tikhonov regularization because instead of modifying the
model function, it solves a minimization problem (Calvetti and Somersalo, 2018).
In that sense, Tikhonov regularization is essentially a smoothness prior and can be
implemented within a probabilistic framework, allowing the inversion problem to
remain Bayesian even though it involves regularization.

2.2 Methods
2.2.1 Calculation of Forward Gravity
We model the subsurface density and structure of a defined region and its associated
effect on the gravity by discretizing the subsurface into a finite number of rectangular
blocks. The gravitational attraction of each rectangular prism is calculated and then
summed to compute the gravity field. The gravitational attraction of a homogeneous
right rectangular prism relative to an observation point on the surface is given as in
Turcotte and Schubert (2014) as

Δ𝑔 = ΓΔ𝜌

2∑︁
𝑖=1

2∑︁
𝑗=1

2∑︁
𝑘=1

𝜇𝑖 𝑗 𝑘 [Δ𝑧𝑘𝑎𝑟𝑐𝑡𝑎𝑛
(
Δ𝑥𝑖Δ𝑦𝑖

Δ𝑧𝑘𝑅𝑖 𝑗 𝑘

)
− Δ𝑥𝑖𝑙𝑛(𝑅𝑖 𝑗 𝑘 + Δ𝑦 𝑗 ) − Δ𝑦 𝑗 𝑙𝑛(𝑅𝑖 𝑗 𝑘 + Δ𝑥𝑖)] (2.1)

whereΔ𝑥𝑖 = (𝑥𝑖−𝑥𝑝),Δ𝑦 𝑗 = (𝑦 𝑗−𝑦𝑝),Δ𝑧𝑘 = (𝑧𝑘−𝑧𝑝), and 𝜇𝑖 𝑗 𝑘 = (−1)𝑖 (−1) 𝑗 (−1)𝑘 .
Δ𝜌 is the density contrast of the prism, and Γ is the universal gravitational constant.
𝑥𝑝, 𝑦𝑝, and 𝑧𝑝 are the coordinates of the measurement point, and 𝑥𝑖, 𝑦 𝑗 , and 𝑧𝑘

are the coordinates of the corners of the prism, where (𝑖, 𝑗 , 𝑘) = (1, 2). 𝑅𝑖 𝑗 𝑘 is
the distance from the measurement point to a corner at 𝑥𝑖, 𝑦 𝑗 , 𝑧𝑘 and is given by
𝑅𝑖 𝑗 𝑘 = (Δ𝑥2

𝑖
+ Δ𝑦2

𝑗
+ Δ𝑧2

𝑘
)1/2.

The sum defines the geometry of the prism relative to the observation point and can
be extended to the case of multiple prisms, such that each prism in the domain has
a single geometry coefficient for each gravity observation point. We invert gravity
data at N observation points to obtain the best fitting estimate of the densities of
M subsurface prisms, or M model parameters. Equation 2.1 then results in an N x
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M matrix G that describes the geometry of each prism relative to each observation
point times Γ. The gravity anomaly at any observation point due to the combined
attraction of all the prisms is the product of this matrix and 𝚫𝜌, which is an M x 1
vector containing the differential density of each prism, expressed as

𝚫g = G𝚫𝜌. (2.2)

2.2.2 Linear Least Squares Inversion
We adopt the method for linear least squares inversion as given in Aster et al. (2013)
and Tarantola (2005). For N data points and M model parameters, where 𝑔𝑖 (m) is
the model prediction of the 𝑖𝑡ℎ datum (the Δ has been omitted for clarity), the least
squares misfit is:

𝐹 (m) = 1
2

𝑁∑︁
𝑖=1

(𝑑𝑖 − 𝑔𝑖 (m))2. (2.3)

For a linear model such as that given in Equation 2.2, the model derivative is
independent of the model parameters, and our prediction can be written directly as
Gm. The Gauss-Newton solution of the model parameters that minimizes the least
squares misfit in Equation 2.3 is thus:

m = (G𝑇G)−1G𝑇 (d). (2.4)

The data d are the observed gravity anomaly values, and the model parameters to be
estimated are the differential densities of each discretized block in the subsurface.

We accommodate data errors and prior constraints on the model parameters in the
inversion via a Bayesian approach. Bayes theorem states that the probability of the
model parameters, given the data, is proportional to the product of 1) the probability
of producing those data with the model and 2) the probability of the model itself.

𝑃(m|d) ∝ 𝑃(d|m)𝑃(m) (2.5)

𝑃(m) is a prior that we use to restrict the model parameters to certain values given
our existing geological knowledge.

In including the data error in the least squares solution, we make the key simplifying
assumption that the data are independent. In the case of gravity, we are incorporating
the relative attraction of both adjacent and distal blocks of mass, and if the data are
gridded with some form of interpolation, then they are arguably not truly indepen-
dent. However, given the complexity of the problem and its physical geometry, the
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interdependence of the data is difficult to quantify and the simplifying assumption
that the data are independent is sufficient to perform the inversion. We assume each
data point can be represented by a Gaussian distribution with known error such that
we can define a new least squares misfit:

𝐹 (m) = 1
2

𝑁∑︁
𝑖=1

(
𝑑𝑖 − 𝑔𝑖 (m)

𝜎𝑑𝑖

)2
, (2.6)

where we are now minimizing the difference between the known and predicted
gravity, given the error in the gravity data. From Bayes Theorem, minimizing this
new misfit 𝐹 (m) is equivalent to maximizing 𝑃(m|d). To incorporate the data
error into the model parameter solution, we define a diagonal and symmetric weight
matrix Cd with the data variance on the diagonal. The solution becomes:

m = (G𝑇Cd
−1G)−1G𝑇Cd

−1d. (2.7)

2.2.3 Tikhonov Regularization
Linear least squares, even when using the generalized inverse or the truncated gener-
alized inverse to handle small singular values, is often insufficient for many inverse
problems due to non-uniqueness and instability, especially for high-dimensional
problems. Thus, a form of regularization must be applied. We employ a combina-
tion of first and second order Tikhonov regularization, which stabilizes the inversion
and acts as a relative equality constraint on the values of the model parameters. First
order Tikhonov regularization minimizes the square of the first spatial derivative
of the model parameters (i.e., the gradient), thus serving to flatten the solution.
Second order Tikhonov minimizes the square of the second spatial derivative of
the model parameters (i.e., the curvature) and hence smooths the solution. Zeroth
order Tikhonov, on the other hand, favors models that are small and is identical to
applying a Gaussian prior with a mean of zero and minimizing the square of the
model parameter values themselves.

As Tikhonov regularization is equivalent to applying a prior that enforces either
small values, flatness, or smoothness, we can derive the regularized solution by
adjusting the misfit equation to reflect the additional minimization of the model
parameters or their first or second derivatives.

𝐹 (m) = 1
2
(d − Gm)𝑇Cd

−1(d − Gm) + 𝜆2(Lm)𝑇 (Lm)
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L is either the identity matrix, a first derivative finite difference operator, or a second
derivative finite difference operator for zeroth, first, or second order Tikhonov regu-
larization, respectively. 𝜆 is a constant controlling the strength of the regularization.
As the misfit remains exactly quadratic with the addition of the Tikhonov regular-
ization term, the inverse problem remains linear, and the weighted and regularized
linear least squares solution becomes

m = (G𝑇Cd
−1G + 𝜆2L𝑇L)−1G𝑇Cd

−1d. (2.8)

For three-dimensional models, first and second order Tikhonov are implemented us-
ing the sums of the finite-difference approximations to the first or second derivatives
in each direction, respectively. Because the discretization of the grid can be different
in the x, y, and z directions, we apply three different regularizations, with associated
constants 𝛼 for the x-, 𝛽 for the y-, and 𝜁 for the z-direction. The derivation of the
Tikhonov regularization matrices is given in Appendix A. For three-dimensions, the
weighted Tikhonov regularized solution is

m = (G𝑇Cd
−1G + 𝛼2Lx

𝑇Lx + 𝛽2Ly
𝑇Ly + 𝜁2Lz

𝑇Lz)−1(G𝑇Cd
−1d). (2.9)

Without a flatness constraint in the far-field, abrupt density changes at the edges of
the model domain result in a classical gravity edge effect. Consequently, to ensure
mathematical stability, we impose an infinite edge boundary condition, which allows
the gravity to smoothly continue off the edges of the model area. We accomplish
this condition by padding the domain with edge prisms that are sufficiently long that
they extend far beyond the edge of the gravity grid (on the order of 1000 km for the
regional problem with which we test the method). We also enforce this condition
during the inversion by using first order Tikhonov regularization with a strong
regularization coefficient to minimize the difference between the edge parameters
and the adjacent values so that their predicted densities are the same. Thus, we
apply different orders and strengths of Tikhonov regularization to the edges and the
interior of the model simultaneously. The interior of the model has second order
Tikhonov imposed in the horizontal directions to allow for smooth continuity of
density bodies in the subsurface, and first order Tikhonov is applied in the vertical
direction, as it is better equipped to allow for sharp contacts between layers of rock,
while strong first order is applied on the boundary.

As before, this variable order Tikhonov regularization can be achieved by redefining
the misfit equation, where separate L matrices apply different weights to different
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sets of model parameters and different directions. The full Tikhonov regularized
solution, with boundary conditions applied, is

m = (G𝑇Cd
−1G + L)−1(G𝑇Cd

−1d), (2.10)

where

L = 𝛼2Lx
𝑇Lx + 𝛽2Ly

𝑇Ly + 𝜁2Lz
𝑇Lz + 𝑏2Bx

𝑇Bx + 𝑏2By
𝑇By. (2.11)

b is the weight of the first order Tikhonov regularization applied to the boundary
condition. Bx and By are the regularization matrices that apply the boundary
conditions in the x and y directions, respectively.

2.2.4 Priors
Meaningful solutions consistent with existing geological knowledge are obtained by
applying absolute equality constraints as Gaussian priors. In this approach, each
parameter is forced to be close to a mean value but is allowed to vary within a
specified range. Different regions of the model domain can have different priors
depending on 1) what we suspect the densities of the rocks in those areas are, and
2) how confident we are in those values based on their location relative to the other
data we have. The prior on each parameter is given by the Gaussian probability
density function

𝑃(𝑚𝑘 ) =
1

𝜎𝑝
√

2𝜋
𝑒𝑥𝑝(− 1

2𝜎2
𝑝

(𝑚𝑘 − 𝜇𝑝)2), (2.12)

where 𝑚𝑘 is the estimated model parameter value, 𝜇𝑝 is the expected value of that
model parameter based on our prior information, and 𝜎𝑝 is the standard deviation
of the prior for that parameter.

As with the data error and Tikhonov regularization, we define a new misfit by adding
the exponential component of the Gaussian prior to the existing misfit,

𝐹 (m) = 1
2
(d − Gm)𝑇Cd

−1(d − Gm) + 𝛼2(Lm)𝑇 (Lm)

+ 1
2
(𝜇p − m)𝑇Cp

−1(𝜇p − m). (2.13)

Defining the prior covariance operator Cp as an M x M diagonal matrix with the
variance of the prior on the diagonal, we arrive at the final data weighted, Tikhonov
regularized solution with prior constraints

m = (G𝑇Cd
−1G + L + Cp

−1)−1(G𝑇Cd
−1d + Cp

−1𝜇), (2.14)
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where L is defined as in Equation (2.11). This is the final solution vector used in
our inversion. The row or column number of the elements along the diagonal of Cp

correspond to the index number of that model parameter. Likewise, 𝜇 is an M x 1
vector for which each element corresponds to the density of single prism. To apply
different priors to different model parameters, one need only use the coordinates
of the model parameter centroids within the desired region to find the appropriate
model parameter index and apply a value to that element. If an element on the
diagonal of Cp

−1 is zero, then no prior is applied to that model parameter.

2.2.5 Quantifying Error
A key advantage of a Bayesian approach is that it allows us to statistically evaluate
the solution, via the posterior covariance matrix C of the model parameters and the
resolution matrix R. The covariance matrix is defined as the inverse of the Hessian:

C = (G𝑇Cd
−1G + L + Cp

−1)−1. (2.15)

Here the values of m estimated by the inversion are the center-points of the posterior
Gaussian, and the diagonal values of the covariance matrix C are their associated
variances.

The resolution matrix is determined from the covariance matrix (Tarantola, 2005):

R = I − CCp
−1, (2.16)

where I is the identity matrix. If the resolution matrix equals the identity matrix,
the model is fully resolved by the data. This particular formulation of the resolu-
tion operator primarily allows us to distinguish between those parameters that are
resolved by inversion of the gravity data and those that are resolved by the prior.
Mathematically, this can be written as:

𝑡𝑟 (I) = 𝑡𝑟 (R) + 𝑡𝑟 (CCp
−1), (2.17)

meaning the total number of model parameters is the sum of the number of pa-
rameters resolved by the data and the number of parameters resolved by the prior
information (Tarantola, 2005). Higher resolution (values closer to 1) means those
parameter values have mostly been determined by the inversion - in other words,
we have learned something from the gravity that we did not know a priori. On the
other hand, low resolution (values closer to 0) means the values of those parameters
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are almost entirely attributed to the prior. This is the case for regions of the model
where the prior is very strong, i.e., a very small prior variance.

Ultimately, solution quality is based on the mean absolute error of the gravity and the
mean standard deviation of the model parameters as determined from the diagonal
of the covariance matrix, as well as visual inspection of the model to determine
its geological reasonability. Even with relative and absolute equality constraints,
gravity inversion remains non-unique and there are a number of model solutions
that could fit the data. It is possible to obtain a solution that minimizes the misfit as
required but that still appears geologically unreasonable and must be disregarded as
the most likely posterior distribution of densities. However, the regularization and
priors ensure enough stability in the model that with the appropriate regularization
parameters 𝛼, 𝛽, and 𝜁 , the model obtained is geologically sound and in line with
our standing geophysical knowledge.

2.3 Synthetic Tests
Estimating optimal regularization parameters is difficult for gravity inversion. We
use an iterative technique on a series of synthetic tests to determine 𝛼 and 𝜁 values
that produce 1) the best fit between the predicted and observed gravity, and 2) the
most geologically reasonable solution, which for the synthetic models, is a nearly
complete recovery of the known density distribution. We conduct these synthetic
tests on a simplified lower resolution model of a subduction system. In all synthetic
tests, we construct a density model, compute the forward gravity as given by Equation
2.1 and add Gaussian noise to the gravity using a similar standard deviation to that
of the data set we will later use (about 1.7 mGal). We invert this gravity for a
range of Tikhonov regularization parameters and orders, with or without priors on
specific sets of model parameters, while attempting to recover the known density
distribution and judging the stability of the inversion.

The performance of the inversion when used with first and second order Tikhonov
is tested using a simplified synthetic 3D model of a subduction zone (depicted in
representative cross-sections in the bottom row of Figs. 2.1 and 2.2). We test
various combinations of the horizontal regularization coefficient 𝛼 and the vertical
regularization coefficient 𝜁 for the cases of only first order Tikhonov, only second
order Tikhonov, and a combination of second order in the horizontal and first order
in the vertical. For each of these cases, we test four additional classes of constraints:
no priors, priors enforced only on parameters within the water column, priors
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enforced only on parameters within the water and crustal layers, and finally priors
on all parameters, including the mantle. The prism size is about 17.5 km in the x-
direction, 22.5 km in the y-direction, and increases from about 206 m to 2060 m from
shallow to deeper depths in the z-direction. The 𝛼 and 𝜁 values tested range from
10−3 to 108. There are a total of 10,648 model parameters and 22,500 data points,
yielding an over-determined system. The synthetic density model is constructed
with a seawater density of 1027 kg/m3, oceanic crustal density of 2900 kg/m3,
sediment density of 2300 kg/m3, continental crustal density of 2700 kg/m3, and
mantle density of 3300 kg/m3. We define differential density, Δ𝜌, by subtracting
the lateral average of each layer from the true density of each prism in that layer.
The prior densities, when applied, match those differential densities. The standard
deviation of the priors, when applied, are 5 kg/m3 for seawater, 80 kg/m3 for the
sedimentary and crustal rocks, and 100 kg/m3 for the mantle.

The results for these synthetic tests are summarized in Figs. A.1-A.4, which show
gridded results for each combination of 𝛼 and 𝜁 in panels corresponding to the or-
der(s) of Tikhonov regularization used (panel rows) and the set of priors used (panel
columns). Gray regions demarcate 𝛼 and 𝜁 combinations where the regularization
strength is too low to produce stable results. The minimum of each test for both the
mean absolute error (MAE) on the gravity and the MAE on the model parameters
is plotted in each of these figures as well. Fig. A.1 depicts the MAE between the
true gravity field of the synthetic model and the gravity predicted by the recovered
density distribution. Changes in the gravity misfit are much more dependent on
the order of regularization than they are on the presence of a prior. For first order
Tikhonov alone, the misfit increases dramatically above 𝛼 values of 104 because the
model becomes too flat to correctly reproduce the shorter wavelength variations in
the gravity field. For second order Tikhonov, stability is achieved at 𝜁 values of 102

in cases with limited priors, above which the gravity error remains reasonably low
until 𝛼 values of about 107. For the combination of first and second order Tikhonov,
the error remains reasonably low until an 𝛼 value of 107 and between 𝜁 values of
10−1 and 103. The lowest error on the gravity amongst all the tests is about 1.29
mGal, which is less than the noise level of 1.7 mGal, and occurs for the case of first
order Tikhonov with no priors for 𝛼 = 100 and 𝜁 = 10−1. The lowest gravity error
occurs for the case of no priors because without priors the model is allowed to take
whatever shape it must, subject to the smoothness constraint, to fit the data, again
highlighting the inherent non-uniqueness of the gravity.
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Figure 2.1: Representative cross-section in the x-direction of the synthetic inversion results for
𝛼, 𝜁 combinations that produce some of the lowest errors for their respective order of Tikhonov
regularization, as determined by comparing the test results depicted in Figures A.1-A.4. Row 1:
gravity profiles for each of the three cases depicted in the panels below. Dark blue line: true gravity
produced by the synthetic model, with noise; gray line: gravity from inversion using only first order
Tikhonov; light blue line: gravity from inversion using only second order Tikhonov; orange line:
gravity from inversion using second order Tikhonov in the horizontal and first order in the vertical.
Row 2: cross-sections of the density model recovered from using only first order Tikhonov with
𝛼 = 101 and 𝜁 = 10−1 for the cases of no priors, priors only on the ocean water parameters, priors
on the ocean and crustal parameters, and priors on all parameters. Row 3: cross-sections of the
density model recovered from using only second order Tikhonov with 𝛼 = 106 and 𝜁 = 103 for each
of the different prior cases. Row 4: cross-sections of the density model recovered from using a
combination of first and second order Tikhonov with 𝛼 = 105 and 𝜁 = 100 for each of the different
prior cases. Row 5: cross-section of true synthetic density model for comparison.

However, to achieve a geologically reasonable model, priors must be applied. For
the case of enforcing a prior on all parameters, the minimum gravity error is still
only 1.36 mGal, so the fit to the gravity data is not compromised by adding priors,
while the fit to the true density model is dramatically improved. Fig. A.2 illus-
trates the MAE between the predicted model parameter values and the true model
parameter values of the known density model. For most combinations of different
regularization orders and priors, too small of an 𝛼 or 𝜁 value and the regularization is
not strong enough to provide a smooth and continuous density distribution, yielding
nonphysical fluctuations in the density values (Figs. 2.1 and 2.2, columns 1 and 2).
Alternative cross sections with results using different regularization strengths are
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Figure 2.2: Representative cross-section in the y-direction of the synthetic inversion results for 𝛼
and 𝜁 combinations that produced some of the lowest errors for their respective order of Tikhonov
regularization, as determined by comparing the test results depicted in Figures A.1-A.4. Row 1:
gravity profiles for each of the three cases depicted in the panels below. Dark blue line: true gravity
produced by the synthetic model, with noise; gray line: gravity from inversion using only first order
Tikhonov; light blue line: gravity from inversion using only second order Tikhonov; orange line:
gravity from inversion using second order Tikhonov in the horizontal and first order in the vertical.
Row 2: cross-sections of the density model recovered from using only first order Tikhonov with
𝛼 = 101 and 𝜁 = 10−1 for the cases of no priors, priors only on the ocean water parameters, priors
on the ocean and crustal parameters, and priors on all parameters. Row 3: cross-sections of the
density model recovered from using only second order Tikhonov with 𝛼 = 106 and 𝜁 = 103 for each
of the different prior cases. Row 4: cross-sections of the density model recovered from using a
combination of first and second order Tikhonov with 𝛼 = 105 and 𝜁 = 100 for each of the different
prior cases. Row 5: cross-section of true synthetic density model for comparison.

shown in supplementary Figs. A.5 and A.6. For 𝛼 values that are too large, the solu-
tion smooths over any density variations almost entirely. For cases with no priors or
limited priors, the misfit decreases with increasing 𝜁 , but for cases with more priors,
the misfit begins to increase again with larger 𝜁 values after achieving its minimum.
However, the misfit decreases overall as we apply more priors throughout the model
domain, starting with the ocean. Though the results from applying a prior only to
the ocean do not look dramatically improved over the case of no priors, in practice,
the prior on the ocean is one of the most important constraints because it is the most
certain. It eliminates any need for the model to determine where the seafloor is and
forces the inversion to put higher densities in the crust and mantle where they belong.
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This is evident in the cross-sections in Figs. 2.1 and 2.2. The minimum absolute
error on the model parameters amongst all tests is approximately 10.1 kg/m3 and
occurs when using priors on all parameters and 𝛼 = 101, 𝛼 = 104, and 𝛼 = 104, and
𝜁 = 10−3, 𝜁 = 101, and 𝜁 = 10−1 for first, second, and combination-first-and-second
Tikhonov, respectively.

Comparing the MAE of the model parameters, given the known density distribution,
to the standard deviation of the model parameters as determined from the diagonal of
the covariance matrix (Fig. A.3) allows us to determine how the covariance matrix
reflects uncertainty in the presence of a priori model constraints. For all cases except
that of second order Tikhonov with no priors, the posterior standard deviation on
the model parameters decreases with increasing 𝛼 and 𝜁 and is consistently lowest
for the case where priors are enforced on all model parameters. For the 𝛼 and 𝜁
values where the MAE on the model parameters was lowest (red square in Fig. A.2,
lower right panel), the mean posterior standard deviation on the model parameters
is comparatively 56.3 kg/m3, a value that, while higher, is still reasonably within a
range necessary to distinguish one rock layer from another. The standard deviation
from the covariance matrix continuously decreases with increasing regularization,
while the MAE starts to increase after some minimum when priors are applied,
because unlike with the MAE, the minimization in the gradient or curvature between
the model parameters enforced by the Tikhonov regularization tends to dominate
the definition of the covariance matrix. As the weight of regularization increases,
the Tikhonov component of the misfit equation (Equation 2.13) is reduced, and as
such, the posterior covariance is reduced as well. Too large of an 𝛼 or 𝜁 value can
cause over-smoothing of the model parameters, and as such the standard deviation
of the posterior solution is not always as accurate an estimator of the error on
the model parameters away from the "correct" density distribution as the MAE is.
However, because we do not know the correct density distribution in a study with
real data, as we do in the synthetic tests, we can only use the 𝛼 and 𝜁 combination
of the minimum MAE from the synthetic models as a proxy for what the ideal
regularization coefficients must be in order to produce the best geological model.
The covariance matrix still provides information on how well the model parameters
are estimated, but we should expect errors as high as around 50 − 60 kg/m3 to be
indicative of a good model because we do not want to fully minimize the Tikhonov
component.
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We can also use the resolution matrix R to quantify how much we have actually
learned about the subsurface density structure from inverting the gravity data, as
opposed to what we already knew from our prior. The mean resolution of all the
model parameters for each of the tests is depicted for each combination of 𝛼 and
𝜁 in Fig. A.4. The resolution should be interpreted as the fraction of that model
parameter estimate that can be attributed to the inversion of the gravity data itself, as
opposed to the prior. Resolution values close to 1 mean the model is well resolved by
the gravity, not the prior. Hence, the tests for the case of no priors have a resolution
of 1 because those models are resolved entirely by the gravity. Resolution values
close to 0 mean the model is mostly resolved by the prior information alone and not
the gravity: i.e., the gravity inversion did not tell us anything we did not already
know from the prior. In this way, a resolution of 0 does not necessarily mean the
values of the model parameters are wrong in a geologic sense, just that the inversion
was not useful. In some regions of the model, such as the ocean layer, where we
know the density, it is desirable to have low resolution values because we want these
regions to be entirely constrained by the prior and not affected by the inversion. As
such there is a clear relationship between the MAE on the model parameters and
the resolution: lower 𝜎𝑝 (i.e., a stronger prior) correlates with lower resolution and
hence lower MAE on the model parameters. Going from the case of no priors to
that of priors on all parameters, we can clearly see that the dependence on the prior
increases for a greater number of 𝛼, 𝜁 combinations as expected (Fig. A.4). We
can also see that the more or the stronger priors we apply, the less regularization is
needed to produce a stable and reasonable model (Fig. A.5).

Ideally, we are trying to obtain a model that both best fits the gravity and matches the
prior data and so we neither want a model that is entirely determined by the gravity
nor entirely determined by the prior. Thus, a very high resolution is not necessarily
ideal. Rather, we would expect resolution to increase with distance from the locations
where we have prior constraints, exhibiting a spatial dependence. Therefore, a
mean resolution somewhere in the middle may be considered reasonable, which is
consistent with𝛼 and 𝜁 values in the range of 104−5×106 and 10−1−101, respectively
(Fig. A.4), as well as the best 𝛼 and 𝜁 values as determined by the MAE on the
model parameters (Fig. A.2). As an example, representative cross sections of the 3D
model results, using 𝛼 = 101 and 𝜁 = 10−1 for first order, 𝛼 = 106 and 𝜁 = 103 for
second order, and 𝛼 = 105 and 𝜁 = 100 for combination first and second order, are
shown in Figs. 2.1 and 2.2. Similarly, representative cross-sections of the 3D model
domain using 𝛼 and 𝜁 values that produced the lowest MAE on the model parameters
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for each of the different combinations of regularization order and priors are shown
in Figs. A.5 and A.6. The top panel shows the predicted gravity profile produced
by each of the models against the true gravity calculated from the known density
model. The subsequent three rows depict the resulting models for first, second,
and combination first and second order Tikhonov, respectively. The bottom panel
illustrates the corresponding cross-section of the true synthetic density model that
we are trying to recover in each of these inversions, for comparison. Different 𝛼, 𝜁
pairs are ideal for different orders of Tikhonov regularization. Higher regularization
constants are needed for second order Tikhonov; those same coefficients would, on
the other hand, over-smooth the first order models.

For these combinations of 𝛼 and 𝜁 , the accuracy of the resulting density models
changes drastically across the different applied priors. However, the gravity signal for
each model is essentially the same and matches the true gravity well, with an MAE of
only about 1.3 to 1.4 mGal for each case, demonstrating the effective non-uniqueness
of the gravity (Figs. 2.1 and 2.2, Row 1). Thus, priors are necessary to improve the
model. When priors are applied to all parameters, all three regularization options
recover the known density model, though at higher values of 𝛼, combination first and
second order Tikhonov is better at recovering the density distribution. Ultimately,
the recovered model is more sensitive to changes in 𝜁 than in 𝛼, and for low values
of 𝛼, first order regularization appears sufficient. However, across all tests, the
combination of first and second order Tikhonov consistently produced the most stable
results and was the most successful at recovering the known density distribution.
Moreover, increasing the resolution of the subsurface model (i.e., adding more
model parameters) tends to require increasing the regularization strength, so the
combination first and second order Tikhonov is more stable for larger models, as
first order becomes too strong, flattening out the model completely, at large 𝛼 values.

Even without any priors, some semblance of the structure is recovered for the
example in Fig. A.5 when using first order regularization, though with such using
high 𝛼 values, structure is better recovered when using the first and second order
combination. For first and second order, there is often an unrealistic degree of
fluctuation in the density values for the case of no priors and priors only on the ocean
(Figs. 2.1 and 2.2). Different combinations of the 𝛼 and 𝜁 values can yield similarly
satisfactory models, but based on the above results for the MAE on the gravity and
model parameters and the covariance and resolution matrices, and considering the
increase in model resolution for the regional study, using a combination of first and
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second order Tikhonov with 𝛼 = 105 or 𝛼 = 106 and 𝜁 = 100 with priors of varying
certainty on all parameters produces the best results. These are the values that will
be applied to the subsequent regional case study of the Puysegur region offshore
southern New Zealand.

2.4 Application to the Puysegur Region
Gravity inversion of an active tectonic margin is challenging because of the com-
plicated structures and source geometries and the sharp lateral changes in density
across the boundary. Those very compositional contrasts across and along such
an active margin play a large role in governing the tectonic processes taking place.
Because dynamic processes often dominate the gravity field and influence local
topography, gravity modeling at these locations can shed light on important aspects
of subduction (Toth and Gurnis, 1998; Krien and Fleitout, 2008). The Puysegur
subduction zone is an attractive test case for subduction initiation in particular be-
cause of its young age and the transition from developed subduction in the north
to incipient underthrusting in the south (Gurnis et al., 2019; Gurnis et al., 2004).
As such, the margin provides a progressive snapshot of the subduction initiation
process along strike. Puysegur also exhibits unusual gravity anomalies, the origin
of which can inform us about the regional dynamics and motivates detailed study of
Puysegur with a gravity inversion.

2.4.1 Regional Setting
The Puysegur-Fiordland subduction zone lies at the northern end of the Macquarie
Ridge Complex (MRC) and the southern tip of South Island, New Zealand. Present
day plate motion is predominantly dextral strike-slip, with highly oblique subduc-
tion of the Australian Plate (AUS) northeastwards beneath the Pacific Plate (PAC) at
the Puysegur Ridge and Fiordland (Fig. 2.3a; DeMets et al. (2010) and Sutherland
(1995)). The Puysegur margin has evolved from a spreading ridge into a subduction
zone. Spreading along the PAC-AUS margin began approximately 45 Ma, then
became increasingly oblique as the AUS-PAC Euler pole migrated to the southeast
during the Miocene, eventually rotating into a strike-slip plate boundary (Lebrun
et al., 2003; Sutherland, 1995). This evolution is evident in the curvilinear frac-
ture zones that merge along the MRC and are prominent in the gravity field and
bathymetry. Oblique convergence led to subduction beneath the Fiordland bound-
ary starting around 16-10 Ma, beneath the northern extent of the Puysegur segment
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about 11-8 Ma, and beneath the southernmost extent of the Puysegur Ridge within
the last several million years (Sutherland et al., 2006; Lebrun et al., 2003).

The crustal structure and tectonics related to the above kinematic history were inves-
tigated in detail with seismic reflection, seismic refraction, and bathymetric mapping
during the recent South Island Subduction Initiation Experiment (SISIE) (Gurnis
et al., 2019). Puysegur has the advantage of being a small subduction zone with a
well known plate kinematic history before and during subduction initiation, making
it accessible for studying the process of subduction initiation and for constructing a
regional gravity inverse model at a relatively high resolution.

The margin possesses distinctive, high amplitude gravity anomalies, which as of
yet have poorly constrained structural and compositional interpretations and which
have implications for the dynamic processes taking place in the region. The MRC
is characterized by long and narrow bathymetric and gravitational highs and lows
along strike (Fig. 2.3B). The southern part of Puysegur Ridge is characterized by a
100 to 150 mGal gravity high adjacent to the −100 to −150 mGal gravity low of the
trench. In contrast, a significant approximately −150 mGal gravity low exists over
the northern Puysegur Ridge, a region known as the Snares Zone (Fig. 2.3; Gurnis
et al. (2019)). This region is of particular interest in our gravity inversion because
it has subsided with respect to the rest of Puysegur Ridge by nearly 2 km (Collot
et al., 1995). If composed of buoyant crust, this subsidence has implications for
the subduction initiation process and the force balance on the system. In addition
to addressing questions about these anomalies, gravity modeling can help stitch
together the information obtained seismically to provide a more complete 3D picture
of the structures and rock types in the region.

2.4.2 Prior Geophysical Constraints
Prior constraints on a gravity inversion can come from a number of geophysical data,
including seismic, bathymetric, borehole data and more. For the investigation of
the Puysegur subduction system, we utilize bathymetric and seismic data collected
from the SISIE marine geophysical expedition (Gurnis et al., 2019; Shuck et al.,
2021), as well as sediment thickness estimates from the NOAA sediment thickness
database (Straume et al., 2019), to constrain the gravity inversion. These data
include the regional NIWA bathymetry grid (Mitchell et al., 2012), horizons picked
from seismic reflection profiles, and seismic velocity models constructed from ocean
bottom seismometer (OBS) seismic refraction analysis (Gurnis et al., 2019; Shuck
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Figure 2.3: Puysegur survey area. A. Puysegur survey area, outlined by the black rectangle.
The Macquarie Ridge Complex is the long, narrow gravity high/low feature running between the
Australian (AUS) and Pacific (PAC) plates from the Hjort Trench (HT) in the south to the Puysegur
Trench (PT) in the north. eTR is the extinct Tasman Ridge. Base map is free-air gravity (Sandwell
et al., 2019). B. Bathymetry of Puysegur region from the NIWA grid (Mitchell et al., 2012). Solid
blue lines are MCS lines. Triangles represent the locations of OBS. SISIE-1 and SISIE-2 are
combined OBS and MCS lines. Black dashed line outlines the Snares Zone (SZ) bathymetric low.
RR: Resolution Ridge; Sol: Solander Island; PB: Puysegur Bank; PR: Puysegur Ridge; and PT:
Puysegur Trench. Red arrows are the modern relative plate motion (DeMets et al., 2010) of the AUS
plate with respect to the PAC. C. Satellite free-air gravity for the Puysegur study region from the
Sandwell et al. (2019) global marine gravity grid, v. 29.1. Labels, seismic lines, and plate motion
vectors are the same as in A and B. The grid of black dots are the locations of the gravity data points
used in the inversion.
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et al., 2021). The NIWA grid is based only on shiptrack multibeam data and not
calculated from the gravity like the global bathymetry datasets. This ensures the
prior remains independent of the gravity data.

The seismic velocity models were constructed using a tomographic inversion of
marine seismic refraction data gathered during the SISIE cruise. A total of 43
short-period OBSs were deployed on two east-west transects across the Puysegur
Trench (Fig. 2.3a). The wide–angle seismic data records show reflected and
refracted arrivals that help constrain the seismic velocities, depth to basement,
and Moho of both the Australian and Pacific Plates. We correlated arrival times
between neighboring stations to identify refracted and reflected phases and checked
the reciprocity on opposite source-receiver pairs. The average maximum source-
receiver offset at which we observed seismic refractions was 80 km. We assigned
travel-time uncertainties between 40 and 150 ms to account for noise on wide-angle
data. We applied a regularized tomographic inversion of the wide-angle travel times
to image the seismic velocities of the crust and uppermost mantle along the two
transects (Van Avendonk et al., 2004). The resulting seismic velocity models for
SISIE-1 and SISIE-2 have an rms data misfit of 90 ms and 80 ms, respectively,
which is comparable to the assigned data errors.

The 2-D seismic velocity images along SISIE-1 and SISIE-2 show the nature of the
oceanic crust of the incoming AUS plate and the crustal structure of the overriding
Puysegur Ridge and Solander Basin (Fig. 2.4). In the deeper parts of the basin,
the top of basement was constrained by wide-angle seismic refractions. However,
we determined the depth to basement from multichannel seismic reflection images
(Shuck et al., 2021) where the sediment cover was thin. We were able to determine
the Moho depth outboard of the trench on the AUS plate and beneath the Solander
Basin. However, the thickness of Puysegur Ridge is not well resolved from the OBS
refraction data alone because the observed wide-angle refractions did not turn to
such depths near the plate boundary. The gravity model can thus help constrain
the thickness of the crust at the ridge. Nevertheless, Moho depths as determined
from the seismic velocity models (deeper bold gray line in Fig. 2.4) are included
in our prior. Like the other horizons, the Moho is not a ‘hard’ constraint but rather
a probabilistic constraint on where the top of mantle is most likely to be. This
flexibility is a reflection of the fact that there is uncertainty in the seismic data,
and the Bayesian method means we do not have to take it completely at face value.
The seismic velocities along SISIE-1 and SISIE-2 (Fig. 2.4) confirm that relatively
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Figure 2.4: Seismic velocity models used in the prior. A, C. Seismic velocity profiles for OBS
lines SISIE-2 and SISIE-1, respectively. Gray lines are the sediment-basement contact and Moho
interpretations. White dots are the locations of OBS. Dark shaded area is where the model has
unreliable resolution. B, D. Standard deviation of the seismic velocities based on seismic ray tracing
for OBS lines SISIE-2 and SISIE-1, respectively. Black regions indicate areas with unreliable
velocities. White dots are the locations of OBS and their corresponding numbers.

thin oceanic crust of the AUS plate has higher seismic velocities than the rifted
continental crust of the PAC plate (Gurnis et al., 2019). Consequently, there should
be a substantial density contrast across the margin that should be evident in the
gravity. The composition of Puysegur Ridge appears predominantly continental as
well, though this is questionable and a point of interest for the gravity inversion.

Based on the seismic velocities, we can constrain the thickness of the incoming
AUS plate to be about 7 km, with isolated pockets of sediment, usually less than
500 m in thickness. Due to the spatial resolution of the gravity model, sediment
on the AUS plate usually does not appear in the model except in places where it
is relatively thick. The seismic reflection profiles reveal that sediment thickness
in the Solander Basin is as thick as 6 km in places, averaging about 2-3 km for
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the majority of the basin (Shuck et al., 2021). Between our seismic lines, we also
constrain the top of basement using the NOAA global sediment thickness database
(Straume et al., 2019). The Snares Zone on the northern end of Puysegur Ridge is
filled with up to 1 km of sediment, and both the layering observed in the seismic
reflection profiles and the low seismic velocities on the western half of Puysegur
Ridge suggest it is composed of deformed sediments, more than 10 km in width and
3 km in depth. However, below about 5.5 km depth, the seismic reflection data are
inconclusive as to whether the accretionary wedge consists of sedimentary rock or
crystalline basement (Gurnis et al., 2019); the gravity inversion can shed light on
the compositions of these rocks.

The decollement between the overriding and subducting plates is visible on the
seismic reflection images from SISIE-1 and SISIE-2 (Gurnis et al., 2019; Shuck
et al., 2021). This horizon is used to constrain the top of the slab in the prior. The
vertical, strike-slip Puysegur fault that cuts through the middle of the Snares Zone
also appears to be present in the seismic reflection profiles (Shuck et al., 2021).
While this fault is not included in the prior information directly, its presence could
explain potential density differences observed in the final model.

We invert the Sandwell et al. (2019) global 1 min marine gravity grid, v. 29.1, for
the region within the black grid in Fig. 2.3b, which for the Puysegur region has a
standard error of about 1.7-2 mGal (Sandwell et al., 2013; Sandwell et al., 2019).
We include horizons that represent the seafloor, the sediment-basement contact, and
the interpreted Moho from the velocity models (Fig. 2.4). Seismic velocities along
the profile lines were converted to density using the empirical Nafe-Drake equation
(Ludwig et al., 1970; Brocher, 2005). Those densities were then extrapolated from
the 2D SISIE transects to each model parameter using a 3D interpolation scheme.
Likewise, surfaces for the horizons are interpolated from the scattered data points
of the 2D seismic data and the basement as determined from sediment thickness.
For certain regions of the model, the prisms that fall between certain surfaces are
assigned a specific prior. For example, prisms that fall between the AUS basement
and Moho are given a prior oceanic crustal density of 2900 kg/m3 and prisms
below the interpreted seismic Moho on the PAC plate are assigned a prior density of
3300 kg/m3, as the estimated seismic velocity in the models falls below an acceptable
resolution below about 15 km depth. Otherwise, the prior densities used are those
obtained directly from the velocity conversion.
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For the prior, we have the highest degree of certainty on the densities of the prisms
that lie along our seismic lines. We estimated the local standard deviation in the
seismic velocity model with a forward ray–tracing test. The uncertainty assigned
to the model was the range in seismic velocity perturbations that would not raise
the travel–time misfit more than 5 ms. These errors are for blocks of 10 km by 4
km. The lowest error is approximately 0.05 km/s and the highest is approximately
0.35 km/s. These standard deviations of the velocities are mapped into density
using standard error propagation methods and the Nafe-Drake relationship. We 3D
interpolate these density errors to the locations of the prism centroids, which then
serve as the starting values for the standard deviations on the prior. Certainty on the
parameter values decreases from the initial value as we move away from the seismic
lines, which we implement in the model by using a higher standard deviation farther
from the lines, allowing the gravity to dominate the resulting density values in areas
where we do not have seismic data. This is accomplished with a 3D nearest neighbor
algorithm that calculates the distance each prism centroid is from its closest data
point. The standard deviation determined from propagation of error is then weighted
via a smoothly varying functional - exponential decay of the increasing form - of
nearest neighbor distance from the seismic and bathymetric data points. In this way,
our prior includes both the error on the initial velocity model and the uncertainty due
to spatial separation from our prior information. Horizontal slices of the spatially
variable prior uncertainty mapped into 3D space are shown in (Fig. 2.5). The
Tikhonov regularization then ensures the model retains a smooth solution laterally,
so values everywhere are to some degree constrained by those along the seismic
lines. The degree to which the solution values are the result of the prior data or the
gravity inversion itself can be visualized in the resolution matrix. The majority of
the model domain is determined by gravity data and thus not overly biased by the
prior information, except in places where we want it to be, such as in the ocean layer.

Ultimately, the final model has 64,000 model parameters with a horizontal resolution
of about 9 km and a vertically increasing resolution of about 110 m to 1130 m. We
invert 92,953 gravity data points from the marine gravity grid, using a horizontal
second order Tikhonov regularization coefficient of 5× 106 and a vertical first order
Tikhonov regularization coefficient of 100. We include priors on all parameters,
though with spatially varying standard deviation as described above.
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Figure 2.5: Variation of the standard deviation of the prior in 3D space. Because the prior has a
higher certainty along the trajectory of the seismic lines, the standard deviation is lowest along the
survey lines, and increases exponentially away from the lines and their respective horizons and away
from the sea floor. The ocean layer is essentially fixed by the bathymetry and thus has the lowest
prior error.

2.4.3 Results
We predict the gravity field from the final density model and compare it to the
observed gravity, as well as the residual between the two (Fig. 2.6). The mean
absolute error on the gravity produced from the final model is about 3.9 mGals,
which is less than 2% of the maximum anomaly in the study area (220 mGal).
All the prominent features of the satellite gravity are well-recovered, including the
prominent lows in the Snares Zone and the trench and the gravity high over the
southern portion of Puysegur Ridge. Some of the finer features in the gravity are not
fully recovered due to model resolution. The highest errors on the gravity, as shown
by the residual, are mostly concentrated over areas with the largest gravity anomalies
and where there is a sharp change in bathymetry, such as over the Puysegur Ridge
and the edge of the Campbell Plateau. This is likely due to the trade-off between the
regularization trying to smooth features laterally and the inversion trying to match
these sharp changes in the gravity and bathymetry. Nevertheless, the highest error
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on the gravity is only 33.5 mGal, which on the scale of the major anomalies in the
study area is still minor.

The model results for the 3D density distribution are presented in representative
cross-sections in Figs. 2.7, 2.8, and 2.9, with the prior density distribution and
posterior standard deviation plotted for comparison. The resolution and covariance
matrices also illustrate the 3D distribution of error in the posterior model (Fig.
2.10). The full resolution matrix exhibits a sharp diagonal with elements close to
one, demonstrating that the model parameters are well resolved by the inversion.
Looking at only the diagonal components, on the other hand, where each element of
the diagonal represents the resolution of a particular model parameter as determined
by the gravity, gives us a better sense of how the resolution varies throughout the
model domain. As each element is associated with a particular parameter, we can
map the diagonal of R into 3D space (Fig 2.10A). This 3D resolution illustrates which
parameters are resolved mostly by the gravity and which are not. The resolution is
almost zero in the ocean layer because those parameters are determined entirely by
the prior and thus are not resolved by the gravity. The resolution of parameters along
the seismic lines is also lower because these parameters are weighted more by the
prior. The resolution matrix shows an increase in the degree to which parameters
are resolved by the gravity with depth.

However, barring the degree to which the parameters are determined by the prior,
there is a fall off in the certainty of the solution with depth, as evident from the
posterior covariance matrix, the square root of the diagonal of which is also mapped
into 3D space and visualized in Figure 2.10B. This shows the spatial distribution of
the standard deviation of the posterior estimate of m. The mean standard deviation
on the model parameters as determined from the diagonal of the covariance matrix
for the entire model is 17 kg/m3. There is a fall-off in accuracy with depth, ranging
from about 10 − 15 kg/m3 in the shallow crust along the seismic lines to about
30 kg/m3 on average in the deepest layer. The maximum model parameter standard
error is 68 kg/m3, concentrated at the bottom and at the edges of the model, where
there is less coverage by the gravity data and less constraint by the prior.

The most notable features of the final density model are the densities and structures
of the Snares Zone and along Puysegur Ridge. The inversion requires a low density
body beneath the central and eastern portion of the Snares Zone, extending to about
18-20 km depth (Fig. 2.7 and 2.9) and is mostly consistent with the prior velocity
models. However, the western half of Puysegur Ridge, below about 5.5 km depth, is
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Figure 2.6: Gravity results for the final model. A. Observed gravity field as extracted from the
Sandwell et al. (2019) gravity grid, v 29.1. Black lines are the locations of cross-sections shown
in Figs. 2.7, 2.8, and 2.9. B. Gravity predicted from the final density model determined by the
inversion. C. Residual gravity between the observed and predicted gravity grids, calculated as the
absolute difference between each point on the grid.
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Figure 2.7: East-west cross section of the final 3D density model for line a-a’ in Fig. 2.6, roughly
parallel to seismic line SISIE-2. A. Gravity profiles for the density cross-section. Solid line is the
observed gravity; dashed line is the predicted gravity from the final model slice shown in panel B;
dashed-dotted line is the gravity from only the prior density model (panel C). B. Predicted density
distribution from the gravity inversion. C. Prior density distribution used to constrain the gravity
inversion. D. Posterior standard deviation of the density of each prism shown in the cross-section,
as determined from the posterior covariance matrix. Colorbar is saturated at 35 kg/m3. B and D
together represent the posterior distribution for the model parameters shown in this cross-section.

consistently higher density than predicted from the velocity models. The southern
cross section (Fig. 2.8), on the other hand, shows an elevated mantle beneath the
Puysegur Ridge, more–so than suggested by the velocity prior. In all cases, we are
mostly unable to resolve a slab structure, despite its presence in the prior.

To get a broad sense of the density and crustal variations within the final model,
as well as how they compare to the prior and the seismic velocities, we look at the
posterior densities of each prism versus their respective𝑉𝑝 values used to determine
the prior (Fig. 2.11). The points are colored by the block of the model in which
they reside, as determined by interpolating surfaces between the horizons on the
seismic reflection lines from the SISIE survey. Based on these surfaces, prisms
are either in the sediments (gray points), the AUS plate crust (blue points), or the
PAC plate crust (burnt orange points); prisms within the mantle are not shown
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Figure 2.8: East-west cross section of the final 3D density model for line b-b‘ in Fig. 2.6, roughly
parallel to seismic line SISIE-1. A. Gravity profiles for the density cross-section. Solid line is the
observed gravity; dashed line is the predicted gravity from the final model slice shown in panel B;
dashed-dotted line is the gravity from only the prior density model (panel C). B. Predicted density
distribution from the gravity inversion. C. Prior density distribution used to constrain the gravity
inversion. D. Posterior standard deviation of the density of each prism shown in the cross-section,
as determined from the posterior covariance matrix. Colorbar is saturated at 35 kg/m3. B and D
together represent the posterior distribution for the model parameters shown in this cross-section.

for clarity. There is scatter even in the prior data points because only the prisms
lying along the seismic lines were converted directly with the Nafe-Drake equation;
the other prism densities are then 3D interpolated. The scatter is greatest within
sedimentary units where rocks can vary over a relatively large range of densities and
where there is substantial shallow structural complexity from the velocity models
for the interpolation to accommodate. To more clearly illustrate the variation in
structure along the ridge, we also determine the Moho depth from the density model,
interpreted at the points where the density first exceeds 3200 kg/m3 (Fig. 2.12B).
We also compute the crustal thickness (Fig. 2.12C) by subtracting the bathymetry
(Fig. 2.12A) from the Moho. The crust is notably thicker beneath the Snares Zone,
about 18 km thick, than it is beneath the southern part of Puysegur Ridge, where
it is as thin as 7-8 km. The Moho shallows to around 10-12 km depth under the
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Figure 2.9: North-south cross-section of the final 3D density model for line c-c‘ in Fig. 2.6, roughly
parallel to the Puysegur Ridge. A. Gravity profiles for the density cross-section. Solid line is the
observed gravity; dashed line is the predicted gravity from the final model slice shown in panel B;
dashed-dotted line is the gravity from only the prior density model (panel C). B. Predicted density
distribution from the gravity inversion. C. Prior density distribution used to constrain the gravity
inversion. D. Posterior standard deviation of the density of each prism shown in the cross-section,
as determined from the posterior covariance matrix. Colorbar is saturated at 35 kg/m3. B and D
together represent the posterior distribution for the model parameters shown in this cross-section.

southern part of the Solander Basin and deepens to about 18 km in the northern part
of the Basin, and even further to 23 km or greater beneath the Campbell Plateau.

2.5 Discussion
The method of linear 3D gravity inversion can be applied not only to simple, local
scale structural geometries, but also complex density distributions across active plate
margins. The Bayesian method allows for direct inclusion of existing geophysical
data as priors and statistical feedback on the quality of the final model. Due to the
non-uniqueness of gravity, which is clearly demonstrated by the relative insensitivity
of the predicted gravity to changes in the prior (Figs. 2.1 and 2.2), the final model
is ultimately dependent on the prior and the strength of the regularization.
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Figure 2.10: 3D mapped resolution and covariance matrices. A. Diagonal of the resolution matrix
mapped into 3D space. Slices are shown at depths of 1, 9, 17, and 25 km. The resolution represents
the fraction of each model parameter value that is resolved by the gravity as opposed to the prior
information. B. Posterior standard deviation of the model parameters (square root of the diagonal
of the covariance matrix) mapped into 3D space. Slice depths are the same as in A. Colorbar is
saturated at 35 kg/m3.
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Figure 2.11: Density vs. 𝑉𝑝 relative
to the Nafe-Drake equation (black line).
A. Density vs. 𝑉𝑝 for the prisms in
the prior. Densities were calculated
from 𝑉𝑝 using the Nafe-Drake equa-
tion (black-line) along the seismic lines;
the remaining prism centroid densities
were 3D interpolated from those points,
producing the observed scatter. The
prior for the oceanic crust was set to
2900 kg/m3 instead of using values di-
rectly from the equation (blue circles).
B. Posterior density from the inversion
model vs. 𝑉𝑝 for each prism centroid.
Prisms in the mantle have been omitted
for clarity. Colors and their correspond-
ing 2𝜎 error ellipses represent different
regions of the model as defined by the
structural horizons in the prior. Dotted
ellipse represents the shift in the den-
sity prediction resulting from low tem-
perature conditions and dashed ellipse
represents the shift due to high tem-
perature conditions, as calculated from
the MinVel predictions in C. Similar el-
lipses can be computed for the other
crustal blocks, but in all cases, the ef-
fect is negligible, so they have been
omitted for clarity. Colors are as in
A. C. Comparison of Brocher (2005)
density predictions (filled symbols) to
MinVel density predictions (open sym-
bols) for low (surface) temperature con-
ditions (blue symbols) and hotter (25
km depth) temperature conditions (red
symbols) for characteristic rock types
present in the model domain. Carbon-
ate and pelagic sediment compositions
are estimated from values in Li and
Schoonmaker (2003) and Patel et al.
(2020). Composition of Fiordland Or-
thogneiss, taken to represent regional
continental crustal rock, is from Brad-
shaw (1990). Composition of MORB
and harzburgitic mantle is from Hacker
et al. (2003).
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Figure 2.12: A. Bathymetry for the Puysegur study area used in the computation of crustal thickness.
PB: Puysegur Bank; SZ: Snares Zone; CP: Campbell Plateau; PR: Puysegur Ridge; and SB: Solander
Basin. B. Moho depth interpreted from the 3D density model at the points where the density first
exceeds 3200 kg/m3. C. Crustal thickness for the Puysegur study area calculated by subtracting the
bathymetry from the Moho depth and overlain on the bathymetric surface. The crustal volume is
filled to the base of the crust using the Moho surface in B. Text labels are as in A.

The synthetic tests demonstrate how the resulting models are often more sensitive
to changes in regularization than they are the geophysical prior. The 3D resolution
matrix likewise shows how different parameters are determined more by the prior
than by the gravity or vice versa. The Tikhonov regularization is a smoothness
prior and goes into the definition of the resolution matrix (Eq. 2.16), so when
a parameter has a low resolution, the inversion is more strongly constrained by
the existing geophysical information and the smoothness requirement than by the
gravity. Differentiating the degree to which that parameter is determined by the
geophysical prior versus the regularization is more difficult. Nevertheless, the
majority of the model domain is resolved predominantly by the gravity data. Only
within the ocean layers and along the shallow portion of the seismic lines does the
prior dominate the posterior solution, demonstrating that in the regions where we
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do not have seismic coverage, and to some extent in the regions where we do, we
have learned something from the gravity.

Ultimately, the goal of obtaining a realistic density model from the inversion is to
place constraints on the composition of key features and structures that control sub-
duction and subduction initiation regionally. As the composition of Puysegur Ridge
and the origin of the Snares Zone are key motivators for the gravity inversion and for
understanding subduction initiation, these regions are highlighted in the comparison
of the posterior densities to seismic velocities in Fig. 2.11. Prisms corresponding
to the western and eastern halves of Puysegur Ridge at the Snares Zone are shown
by pink and maroon points, respectively. The western half of the ridge plots in two
distinct regions, a cluster lying predominantly between 2700 kg/m3 and 2900 kg/m3

and a cluster lying below 2100 kg/m3, the latter of which corresponds to the sedi-
mentary units within the shallow portion of the Snares Zone bathymetric depression
and the accreted sedimentary portion of the western half of the ridge (Figure 2.11,
red-orange points), which is also clearly visible on the seismic reflection images
from SISIE-2 (Shuck et al., 2021).

The difference between the western and eastern halves of Puysegur Ridge at the
Snares Zone is notable, with the western half averaging around 2803 kg/m3 and
the eastern half averaging around 2750 kg/m3, the difference of which is more than
three times as much as the mean standard deviation of the prisms within the Snares
Zone, about 15.1 kg/m3 (Fig. 2.10). This is especially significant in light of the
difference between the final density model and the prior. The prior densities for the
Puysegur Ridge at the Snares Zone, particularly for the western half, average around
2500−2700 kg/m3 and are consistent with a continental crustal interpretation (Figs.
2.7C and 2.11A). However, the gravity consistently requires the presence of a higher
density body of around 2700−3100 kg/m3 on the western half of Puysegur Ridge in
order to fit the observed gravity signal (Fig. 2.7). These densities, however, are not
inconsistent with the velocity models because highly fractured or deformed rock can
have a much lower seismic velocity while still maintaining a high density, so what
the seismic velocity models seem to indicate is deformed sediment or continental
crust, could in fact be fractured oceanic crustal rock (Barton, 1986). We postulate
that basement rock of the western half of Puysegur Ridge is compositionally distinct
from that of the east and is most likely a sliver of oceanic crust that has been
emplaced laterally against the continental crust of the eastern half via the strike slip
motion of the Puysegur Fault, which runs through the Snares Zone. This inference
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is also consistent with the seismic interpretations in Shuck et al. (2021) and Shuck
et al. (2022).

The under-prediction of the densities on the western half of Puysegur Ridge by the
seismic velocities via the Nafe-Drake curve and the large amount of scatter in the
posterior densities relative to that curve put limitations on the degree to which the
Nafe-Drake relationship can be used to predict densities without further information,
as has been noted by previous authors (Barton, 1986). The Nafe-Drake equation,
though valid for velocities between 1.5 km/s and 8.5 km/s, was based empirically
on continental crustal data from California (Ludwig et al., 1970; Brocher, 2005)
and as such may not be accurate for oceanic crust. However, a comparison between
the Nafe-Drake predictions of Brocher (2005) and theoretical seismic velocity and
density predictions from mineral physics calculations using the MinVel Subduction
Factory Toolbox (Abers and Hacker, 2016; Sowers and Boyd, 2019) reveal that
differences between the two predictions are less than 1% on average, though can
be as high as 37% for specific rock types (Sowers and Boyd, 2019). There is
also the question of whether thermal effects may impact the accuracy of the Nafe-
Drake prediction and the model density estimates. However, an analysis of the
possible perturbations to the velocity and density estimates of the Brocher (2005)
relationship under a hot geotherm calculated using the MinVel toolbox, using the
half-space cooling model with a plate age of 25 Ma for rocks in oceanic regimes
and a typical continental geotherm with a conservatively high surface heat flux of
120 mW/m2 for continental regimes, demonstrate that elevated temperature has a
negligible impact on the Nafe-Drake predictions relative to the range of densities
in our model domain (Fig. 2.11 B,C). The rock compositions used in this analysis
include basalt (Hacker et al., 2003), harzburgitic mantle (Hacker et al., 2003),
Fiordland orthogneiss (Bradshaw, 1990), and a combination of pelagic clays and
biogenic ooze (Li and Schoonmaker, 2003; Patel et al., 2020). The absolute densities
estimated for each of these rock types differ insubstantially between low (surface)
and warm (25 km depth) temperatures, and the velocity and density both change in
accord with one another with that change in temperature, such that the predictive
relationship between them remains the same (Fig. 2.11 C, (Sowers and Boyd,
2019)). Puysegur itself is also not a notably hot subduction zone; despite the young
age of the subduction front, the crust that is being subducted is not particularly
young, spreading in the Tasman Sea having ceased around 53 Ma, though spreading
in Emerald Basin south of the study area continued until around 10-20 Ma (Lebrun
et al., 2003). Thus, we find it is not necessary to incorporate any thermal effect
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into our model and that the Nafe-Drake relationship is a reasonable one in light of
any possible thermal perturbations and its performance relative to mineral physics
estimates.

Some of the differences in density between the prior and posterior also likely arise
from error in the 3D interpolation scheme, but the difference in densities between
the two even across the Snares Zone, where we have direct seismic data, suggests
a significance in the under-prediction of many of the posterior densities by the
Nafe-Drake equation. However, this does not invalidate its use as a prior, but rather
highlights the advantage of using it in the context of a Bayesian approach. Rather
than using seismic velocity as the only indication of a rock’s density, we use it as a
guide for the rock’s possible density and weight that estimate of density accordingly.
As such, the Bayesian approach allows for a more reasonable and flexible use of a
common velocity-density relationship that otherwise, by itself, may be erroneous in
its estimation of rock type.

For this reason, the gravity inversion is an invaluable supplement to our seismic
study in estimating rock compositions and structure and in particular to spatially
filling the gaps between where we have seismic information. Gravity at short
wavelength strongly reflects topography (or bathymetry) (Sandwell et al., 2014;
Turcotte and Schubert, 2014); however, if the bathymetry fully is constrained in the
inversion and cannot by itself reproduce the gravity signal, then perturbations to the
gravity must be coming from other sources, namely lateral density variations that
may be governed by Moho geometry. As such, the shape of the interpreted Moho
(Fig. 2.12B) strongly mirrors the gravity. Traditional gravity modeling techniques
avoid this by removing the signal from the Moho/the isostatic effect and looking at
the residual (Oldenburg, 1974; Bai et al., 2014). However, this assumes constant
densities in the respective layers and sometimes a fixed interface. Because we do not
explicitly impose such assumptions with the Bayesian inverse approach, but rather
constrain the 3D densities and hence the structure probabilistically, the resulting
Moho, though it does mirror the gravity, is likely a good approximation to the true
Moho. Taking the southern line, SISIE-1, as an example, ultimately to match the
gravity high over the ridge, there can be either 1) an elevated Moho or 2) anomalously
high densities in the crust. In the absence of fixing either of these, the algorithm
has no knowledge about which is the correct choice to fit the gravity, and the easiest
way to fit the gravity is to create a density distribution increasing in depth with a
shape mirroring that of the gravity. This is why inclusion of the Bayesian priors is
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so important. We can see the effect of the prior versus that of the gravity beneath
the Campbell Plateau in Fig. 2.8 B, where there is smearing at the base of the crust
relative to the prior in C. The gravity in combination with the regularization wants
to put the Moho higher to smoothly mirror the gravity signal. The prior, on the
other hand, pulls the Moho down, but not so much so that the predicted gravity is
depressed. As we can see in Fig. 2.8 A, the gravity from only the prior is too low
to match the observations. This means that, given the inclusion of the prior, the
combination of density and structure returned by the gravity inversion is probably
the most reasonable estimate of the true structure. In other words, it is the most
likely combination of 1) adjusting the Moho depth, and 2) adjusting the density that
can be obtained in light of our existing knowledge. It is the Bayesian approach that
allows us to do this so effectively. It also means, given we have applied a strong
prior along this transect, the fact that the gravity still pulls the Moho up under the
Ridge despite the constraint is all the more significant and suggests this is not just
an artefact of reflecting the shape of the gravity.

This large gravity high over the southern portion of Puysegur Ridge cannot be
explained solely by the bathymetry and requires a mass excess (Fig. 2.8). Simi-
larly, the large gravity low over the Snares Zone also cannot be reproduced by the
bathymetry alone, and hence requires a mass deficit to produce the observed gravity
(Fig. 2.7). In other words, the density profiles and Moho and crustal thickness
maps demonstrate there is relatively shallow mantle beneath the southern Puysegur
Ridge and unusually thick crust beneath the Snares Zone; unusual in that the region
is bathymetrically low, yet predominantly composed of buoyant continental crust,
except for the very western side as previously discussed. The Solander Basin, which
is composed of rifted continental margin crust, evidenced by both the seismic data
(Gurnis et al., 2019; Shuck et al., 2021) and the densities, progressively thins to
the south, where the basin experienced more extension during the rifting phase in
the Eocene to Oligocene prior to the development of the strike-slip and subduction
margin (Lebrun et al., 2003). Based on the crustal thickness results as estimated
from the gravity, we estimate the continent-ocean transition in the southern Solander
Basin to be around 50◦S or even further south of the model domain, which is roughly
consistent with Shuck et al. (2021).

Another notable feature of the inversion results is the inability to resolve a slab
structure, despite its presence in the prior and the seismically observable décollement
between the two plates on seismic reflection data. The absence of descending crust in
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the final density model is likely due to the obliquity of subduction. A seismic Benioff
zone extending to 150 km depth puts the slab northwards of the gravity study area,
beneath Fiordland (Sutherland et al., 2006; Eberhart-Phillips and Reyners, 2001).
It is also possible that while the slab is present, it is not required to recover the
local scale gravity signal, which is dominated by the bathymetry and shallow crustal
structure.

2.6 Conclusions
The inversion technique presented inverts gravity data for 3D density distributions
within a Bayesian framework without the need for iteration and with the direct in-
corporation of prior geophysical constraints. Previous applications of linear gravity
inversion, as opposed to the commonly used non-linear and wavenumber domain
methods, have predominantly been for geometrically and structurally simpler density
anomalies, though have also successfully been applied to crustal scale and tectonic
studies. We have demonstrated this method can also be successfully applied to
more geologically complex regions with significant lateral variations in density and
structure by applying it to an active subduction zone.

The resulting density models provide a more complete picture of the subsurface,
filling in the gaps between where there is seismic data and allowing us to estimate
the Moho depth and crustal thickness. The crustal thickness and density models
reveal the presence of buoyant, yet subsided, continental crust beneath the central
and eastern portions of the Puysegur Ridge at the Snares Zone, whereas the western
half of the ridge is most likely a sliver of oceanic crust. In contrast, an elevated
mantle underlies the southern portion of Puysegur Ridge. The features observed
in the Snares Zone and along the Ridge have implications for the structures and
rock compositions that control subduction initiation and the changing state of stress
during the initiation process, and they support the idea that the margin is transitioning
to a state of self-sustaining subduction in the north. These results will allow us to
make further calculations of the regional stress and effective topography that can be
used to constrain geodynamic models that are the target of future research.
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C h a p t e r 3

REVISITING THE POISSON PROCESS ASSUMPTION FOR
BACKGROUND SEISMICITY IN SOUTHERN CALIFORNIA

USING THE QTM CATALOG

3.1 Introduction
The characterization of the spatio-temporal patterns of earthquake occurrence is
important for understanding earthquake physics and is a necessary step in seis-
mic hazard assessment (e.g., Vere-Jones, 1995; Zaliapin and Ben-Zion, 2013). A
common view is that any earthquake catalog can be decomposed into background
seismicity, consisting of independent events, and clusters, consisting of dependent
events. Such a bimodal decomposition emerges naturally from non-parametric
analysis of earthquake catalogs (Zaliapin et al., 2008; Marsan and Lengliné, 2008).
Following Cornell (1968), the background seismicity is generally considered to
result from a Poisson process, which describes points located randomly in space
and time according to a single parameter, known as the rate or intensity (Daley
and Vere-Jones, 2003). The rate of a Poisson process representing earthquakes can
either be stationary (homogeneous) or variable (inhomogeneous) in space and time.
To avoid confusion, we use ‘(non-)stationarity’ to characterize the process in time,
and ‘(in)homogeneity’ to characterize the process in space. Earthquakes are often
considered to be a time-stationary and space-inhomogeneous Poisson (SIP) process
(Vere-Jones, 1995; Zaliapin and Ben-Zion, 2013). Space inhomogeneity clearly
derives from the fact that earthquakes are not random in space but concentrate along
major tectonic plate boundaries and regional faults (Zaliapin and Ben-Zion, 2013)
or, equivalently, in zones of high strain rate (Stevens and Avouac, 2021). The time-
stationary aspect describes earthquakes as a sequence of independent events that
occur randomly in time, except for those associated with aftershock sequences or
other seismological phenomena such as swarms. The SIP process seems to provide
a good first order model of earthquake statistics at the regional scale (e.g., Stevens
and Avouac, 2021; Petersen et al., 2020).

The Poisson assumption stems largely from the work of Gardner and Knopoff
(1974), who claimed that the seismicity in Southern California is Poissonian once
aftershocks are removed. Their approach was to detect and remove aftershocks
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from a catalog with the expectation that the remaining set of events was a stationary
Poisson point field (Gardner and Knopoff, 1974). This led to a tradition in statistical
seismology to test declustering against a stationary process, or against the idea that
a catalog isn’t truly declustered unless the remaining events are Poissonian. The fact
that the Gardner and Knopoff declustering method ignores space and is insensitive to
seismicity rate fluctuations has been recognized as a potential source of bias (Luen
and Stark, 2012). Despite the fact that a number of studies have challenged the
assumptions and procedures used in this approach to declustering (Luen and Stark,
2012; Maurer et al., 2020), seismic hazard studies commonly use the Gardner and
Knopoff declustering method (Petersen et al., 2020). The implicit assumption of a
stationary Poisson process in this method may make the forecasts that depend on it
prone to error (Maurer et al., 2020).

In heuristic models, dependent events are generally modelled as aftershock se-
quences governed by an Omori-type decay of the seismicity rate with time and
a power-law decay with distance from the mainshock. This is the case of the
epidemic-type aftershock sequence model (ETAS) (Ogata, 1999), which has been
shown to produce very realistic synthetic earthquake catalogs (e.g., Field et al.,
2017). The physics-based earthquake simulator RSQSIM (Richards-Dinger and
Dieterich, 2012) was also designed to produce such a bimodal representation of
seismicity and has been found to fit observations well (Shaw et al., 2018). However,
real seismicity catalogs or synthetic catalogs produced using physics-based models
can depart from this bimodal representation (Luen and Stark, 2012; Kuehn et al.,
2008; Pollitz and Cattania, 2017). Background seismicity might not be stationary
due to viscoelastic relaxation associated with the larger events in a given area. This
has been observed for example in Southern California, where the background seis-
micity seems to have been modulated by viscoelastic relaxation following the five
M > 6.5 earthquakes that have occurred since 1981 (Pollitz and Cattania, 2017), in
particular the M 7.2 El Mayor-Cucapah earthquake of 2010 (Gualandi et al., 2020)
(Figure 3.1). The elastic rebound theory and static stress transfer among faults can
also lead to quasi-periodicity and synchronization of seismicity not consistent with
the hypothesis of a stationary Poisson process (Kuehn et al., 2008; Zöller, 2018;
Griffin et al., 2020; Matthews et al., 2002). Departure from Poissonian behavior can
also result from synchronization driven by external forcing such as seasonal hydro-
logical loading (Bettinelli et al., 2008; Craig et al., 2017; Johnson et al., 2020), a
phenomenon often observed in California (Amos et al., 2014; Kreemer and Zaliapin,
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2018). Some authors have even found evidence for synchronization of seismicity at
the global scale (Bendick and Mencin, 2020).

In this study, we analyze the temporal pattern of seismicity in Southern California to
test whether it includes a background seismicity mode consistent with a stationary
Poisson process, as initially argued by Gardner and Knopoff (1974). We use the
updated version of the Hauksson, Yang, and Shearer (HYS) SCSN relocated catalog
for Southern California (Hauksson et al., 2012), covering a period from 1981 to 2018,
and the newer quake template matching (QTM) catalog for Southern California (Ross
et al., 2019) (see Data and Resources), which covers a 10 year time period from
2008 to 2017 and boasts a particularly low magnitude of completeness of about 0.3
(Figure 3.1). The large volume of data in the QTM catalog, approximately 900,000
earthquakes, and the shorter period covered make it particularly suitable for such an
analysis. The QTM catalog is a valuable resource in this regard, and thus far, other
than the Trugman and Ross (2019) foreshock analysis, not much work has been done
on the statistics of the QTM catalog. The seismic network has also not changed over
that period of time, so it can be assumed that the magnitude of completeness has not
changed over that time either, which otherwise might introduce artefacts that can bias
the distribution towards appearing non-stationary or non-Poissonian. We resort to a
non-parametric decomposition of the seismicity catalog into background mainshock
events and clusters following the method of Zaliapin et al. (2008) and Zaliapin
and Ben-Zion (2013), which unlike other declustering methods, does not seek a
Poisson distribution in the declustered catalog and accounts for both foreshocks and
aftershocks. We analyze the interevent time distributions of the mainshock events
to test if they are exponentially distributed, as is expected for a Poisson process
(Molchan, 2005; Hainzl et al., 2006). We also use the Schuster spectrum method
(Ader and Avouac, 2013) to test the quality of the declustering, as well as to test for
non-stationarity and the possible synchronization of seismicity.

3.2 Interevent Time Distribution in the Full and Declustered QTM and HYS
Catalogs

The interevent time (IET) distribution of earthquakes provides a powerful means
to characterize temporal correlation in earthquake time series, where interevent
times are calculated as the time between consecutive events (Δ𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1) in the
catalog. If the background seismicity in Southern California is consistent with a
stationary Poisson process, the interevent times of mainshock events should follow an
exponential distribution (Eq. B.1, B.3). When using complete catalogs, including
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Figure 3.1: Seismicity map of California, showing the locations of earthquakes from the Quake
Template Matching (QTM) catalog (Ross et al., 2019) and the relocated SCSN (HYS) catalog from
Hauksson et al. (2012) and Lin et al. (2007). Stars mark the locations of earthquakes greater than
M 6.5 since 1981 through 2018. Black lines are Quaternary faults. Black arrow is the MORVEL
Pacific plate motion, relative to North America, from DeMets et al. (2010).

foreshocks and aftershocks, interevent times are generally observed to follow a
gamma distribution (Eq. B.5) (Corral, 2004; Davidsen and Kwiatek, 2013; Hainzl
et al., 2006). The exponential distribution is in fact just a special case of the gamma
distribution. A gamma distribution is expected to result from the superposition
of background seismicity obeying a stationary Poisson process and Omori-type
sequences of aftershocks (Molchan, 2005) or events triggered using an ETAS model
accounting for both aftershocks and foreshocks (Hainzl et al., 2006), and as such,
is often more suited to non-declustered catalogs. In this case, the coefficient 1/𝛽
(Eq. B.6) is argued to quantify the fraction of mainshocks (Molchan, 2005; Hainzl
et al., 2006). Both the non-declustered HYS and QTM catalogs are compared with
the best-fitting gamma distribution and exhibit good overall fits (Figure 3.2). The
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mainshock fractions as estimated from the gamma distribution are about 29% and
46% for the HYS and QTM catalogs, respectively. The HYS catalog deviates from
the gamma distribution at the highest interevent times, showing a ’fat tail’ that
leads to the rejection of the gamma distribution for this catalog (Figure 3.2 a). By
contrast, the fit with the QTM catalog is more compelling. The IET distributions
of the non-declustered catalogs deviate strongly from the exponential distribution,
exhibiting a huge fat tail, as would be expected when aftershocks are present in the
catalog (Figure 3.2 c-d). Deviations from the gamma distribution suggest that the
background seismicity in the HYS catalog, and possibly in the QTM catalog as well,
is not consistent with a stationary Poisson process. It is therefore probable that the
fit with a gamma distribution does not yield a very reliable estimate of the fraction
of mainshocks forming the background seismicity. Investigating that possibility
further requires extracting the background seismicity from the catalogs.

We identify and remove aftershocks and foreshocks from the catalogs using the
declustering algorithm of Zaliapin and Ben-Zion (2013). The approach identifies
the potential parent event of each earthquake based on its distance in time and
space from other earthquakes, measured with the Baiesi and Paczuski metric (Eq.
B.8) (Baiesi and Paczuski, 2004). This metric depends on the earthquake time,
the distance between earthquake hypocenters or epicenters, the magnitude of the
possible parent, and the fractal dimension of the earthquake hypocenter distribution,
which is typically about 1.6. This distance is split into its space and time components
and normalized by the parent magnitude (Eq. B.9). With this approach, the
earthquakes are separated into two distinct populations (Figure 3.3). The first mode,
where events are close together in space and time, consists of clustered events,
and the second mode, where events are farther away in space and time, consists of
background events with no parents. In each cluster, only the event with maximum
magnitude is selected so that both foreshocks and aftershocks are removed. A key
advantage of this approach is that it does not remove aftershocks or foreshocks on
the assumption that the remaining field should be Poissonian, as was assumed by
Gardner and Knopoff (1974), which makes it a better method for identifying clusters
and analyzing the statistics of the remaining point field. The mainshock fraction
derived from declustering the HYS catalog is 36%, a value inconsistent with the 29%
mainshock fraction obtained from taking 1/𝛽 of the best-fitting gamma distribution,
using a logic that assumes that the background seismicity is Poisson and stationary.
The mainshock fraction derived from declustering the QTM catalog is 30%, even
more inconsistent with the value of 46% obtained from the best-fitting gamma
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Figure 3.2: Comparison of the earthquake IET for the HYS (a,c,e) and QTM (b,d,f) catalogs for
Southern California. (a,b) show the fit of non-declustered catalogs to a gamma distribution. (c,d)
show the fit of non-declustered catalogs to an exponential distribution (i.e., Poisson process). (e,f)
show the fit of declustered catalogs to an exponential distribution. The IETs of each panel are
normalized relative to their respective mean interevent time, 𝑡0. Only IETs from earthquakes above
the respective magnitude of completeness, M𝑐, for each catalog are plotted. The p-value represents
the probability that the data come from a gamma or Poisson distribution, respectively.
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distribution. This highlights the importance of not assuming a stationary Poisson
distribution in the declustering process.
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Figure 3.3: Declustering results for the QTM catalog (a-b) and the HYS catalog (c-d). (a,c) Nearest
neighbor histogram for all events in the catalog, showing a bi-modal distribution between clustered
events and mainshocks. (b,d) Space-time density for all events in the catalog. The lower bright
horizontal mode represents the clustered events (foreshocks and aftershocks), and the higher mode
represents the background events. For the QTM catalog, the white line that separates the clustered and
background modes is selected visually and given by log10𝑅 + log10𝑇 = −4, and for the HYS catalog,
the line separating the modes is given by log10𝑅 + log10𝑇 = −5. The proportion of mainshocks vs.
clustered events in the QTM catalog is roughly 30% and 70%, respectively, and for the HYS catalog
is roughly 36% and 64%, respectively.

If background events do follow a Poisson process, then the interevent times follow
the exponential distribution (Eq. B.3), which depends solely on the mean interevent
time 𝑡𝑜. For the QTM catalog, we first select all events with magnitude larger than
the reported magnitude of completeness of 0.3 (Ross et al., 2019). The declustered
catalog seems fairly consistent with the exponential distribution despite the fat tail
at higher interevent times (Figure 3.2f). The magnitude-frequency distribution
of earthquakes in the QTM catalog actually departs from the Gutenberg-Richter
distribution for magnitudes smaller than about 2 (Figure 3.4a). This is probably
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due to the fact that the detection threshold of the template matching procedure
is inhomogeneous in space. It is probably as low as 0.3 in the vicinity of the
earthquakes used as templates and closer to M 2 elsewhere. Importantly for our
analysis, this inhomogeneity does not affect the IET distribution since the Poisson
test does not require the magnitude of completeness to be uniform in space. A subset
of independent events resulting from a Poisson process will still be a Poisson process,
albeit characterized by a lower rate. To verify this point, we tested the Poisson model
for different cutoff magnitudes and found no sign of any systematic effect (Figure
3.5). The magnitude of completeness of the declustered QTM catalog is about 2
(Figure 3.4a), and the cumulative number of earthquakes with time in the declustered
QTM catalog mostly follows a straight line, indicative of a stationary Poisson process
(Figure 3.4b). The magnitude of completeness of the HYS catalog is estimated to
be about 2.5 (Zaliapin and Ben-Zion, 2015) (Figure 3.4c). The declustered catalog
is inconsistent with the exponential distribution due the prominent fat tail at higher
interevent times (Figure 3.2e).

The analyses of the HYS and QTM catalogs thus seem to yield somewhat con-
tradictory results. From Figure 3.2 c-f, it is clear that the data of both exhibit a
tail, deviating from the Poisson model at higher interevent times, though that of the
HYS catalog is significantly larger than that of the QTM catalog, especially in the
declustered case (Figure 3.2 e-f). The tails observed in the declustered catalogs are
similar in shape to those in the non-declustered set, though not as prominent (note
the difference in interevent time range on the abscissa). This raises the question
of whether the fat tail is simply due to the presence of remaining aftershocks in
the declustered catalogs, as aftershocks are inherently a non-stationary process. A
non-stationary background rate would also lead to a departure from the exponential
distribution. We test the deviation from the Poisson model to determine its statisti-
cal significance, and later test the effect of including aftershocks using a synthetic
catalog.

3.3 Schuster Tests of the Declustered QTM and HYS Catalogs
The Schuster test was originally designed to test for possible periodicity in earth-
quake occurrence due to solid earth tides (Schuster, 1897; Heaton, 1975). In
practice, the test is based on a random walk that starts at the beginning of the catalog
and steps in the radial direction each time there is an earthquake. If at the end of
one cycle, the path returns to the starting point, then it is indeed a random walk,
which would be consistent with an SIP process. However, if at the end of one cycle,
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Figure 3.4: Gutenberg-Richter relation and cumulative number of earthquakes with time for the
non-declustered vs declustered catalogs. (a) Gutenberg-Richter (GR) relation, determined using
the maximum likelihood method, for both the non-declustered (dashed-dotted line and crosses) and
declustered (solid line and points) QTM catalog. For the non-declustered catalog, the reported
magnitude of completeness (M𝑐) is 0.3, and the b-value is 0.66. For the declustered catalog,
M𝑐 = 2.0, and the b-value = 0.82. (b) Cumulative number of earthquakes with time in both the full
(black line) and declustered (gray line) QTM catalogs. Mainshock count is scaled by 5 to increase
visibility of changes in slope. The QTM mainshocks mostly follow a straight line, indicative of a
stationary Poisson process. (c) GR relation for the non-declustered and declustered HYS catalogs.
For both the non-declustered and declustered catalogs, M𝑐 = 2.5, and the b-value = 0.98. (d)
Cumulative number of events with time in the full and declustered HYS catalogs. Mainshock count
is again scaled by 5 to increase visibility of the change in slope around 1990.

it has not returned to where it started, then there is some probability that the shift
may not be random and there is instead periodicity to the events. The probability
that the walk is random is determined based on the radial distance from the start
point to the end point and is represented by the dashed circles shown in Figure 3.6
b. The sizes of the random walk circles themselves correlate with the seismicity
rate, with larger circles indicating a higher rate. Because the null-hypothesis is that
the seismicity results from a uniform random process, this test allows for evaluating



61

0 5 10 15
10

0

10
2

10
4

C
u
m

u
la

ti
v
e
 C

o
u
n
t

M
min

= 0.3

p-value = 0.94

t
0
 = 0.036

(a)

0 5 10 15
10

0

10
2

10
4

M
min

= 1

p-value = 0.0002

t
0
 = 0.081

(b)

0 5 10 15
10

0

10
2

C
u
m

u
la

ti
v
e
 C

o
u
n
t

M
min

= 2

p-value = 1.3e-07

t
0
 = 0.41

(c)

0 5 10 15
10

0

10
2

M
min

= 3

p-value = 0.22

t
0
 = 2.9

(d)

0 5 10 15

Interevent Time (t/t
0
)

10
0

10
1

10
2

C
u
m

u
la

ti
v
e
 C

o
u
n
t

M
min

= 4

p-value = 0.52

t
0
 = 25

(e)

0 5 10 15

Interevent Time (t/t
0
)

10
0

10
1

M
min

= 5

p-value = 0.68

t
0
 = 2e+02

(f)

Catalog Data

Synthetic Data

Poisson Model

1 sigma

2 sigma

Figure 3.5: Cumulative distribution of interevent times for the QTM data (dark line) versus 100
exponentially distributed synthetic data sets (light grey lines) and the Poisson model (bold straight
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whether the seismicity results from a stationary Poisson process. To do so, we gen-
erate a ’Schuster spectrum’ (Ader and Avouac, 2013), which shows the probability
that the events are from a uniform random process and therefore do not correlate
with some periodic perturbation. This measured p-value is compared with the ex-
pected p-value for a Poisson process (Figure 3.6a). Thus, any real periodicity, due
to tidal forcing or some other periodic source of earthquake triggering, will result in
Schuster p-values lower than the expected value. However, a low Schuster p-value
does not necessarily imply that the seismicity rate is in fact periodic at the given
period (Ader and Avouac, 2013). Either way, for the purposes of our study, a low
Schuster p-value does tell us if the interevent times are consistent or inconsistent
with a stationary Poisson process, whether it be due to periodicity, clustering, or
otherwise.

The Schuster spectrum for the QTM catalog reveals two pronounced characteristics.
The first is a strong periodicity at exactly one year, corresponding to a seasonal
annual signal. The other is the drift of points moving above the 95% and 99%
confidence lines starting at a period of a few months, meaning there is a significant
probability that these points are not just due to chance. A drift in the Schuster
probabilities such as this is usually indicative not of periodicity, but of a transient
period of accelerated seismicity. The shortest period at which the drift is observed
quantifies the duration of that period. In our case, the drift starts at a period
larger than about one month. Such a transient period of seismicity could be due
to remaining aftershocks or earthquake swarms for example. Thus, there is strong
indication from the Schuster spectrum that the deviation from the Poisson model
that we see in the interevent times is at least in part due to the presence of remaining
clusters in the declustered catalog. The low p-value at one year, however, is clearly
not related to this drift and shows a true seasonal variation consistent with previous
studies (Amos et al., 2014; Johnson et al., 2020; Kreemer and Zaliapin, 2018).

The random walk of the Schuster test (Figure 3.6b) allows for visualizing the two
contributions to the low p-value observed at one year. For each year, from 2008
to the end of 2017, the QTM catalog migrates away from its starting point, as
shown by the colored points in Figure 3.6b. The chance that this walk is random
as a result of a stationary Poisson process is much less than 0.001%. Each year
yields a nearly circular random walk of similar radius, indicating a generally small
departure from a constant seismicity rate. There is, however, a slightly larger rate of
seismicity in the summer, peaking at the end of July, which results in a systematic
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Figure 3.6: Schuster tests for the QTM (a-b) and HYS (c-d) catalogs. (a) Schuster spectrum for
the declustered QTM catalog. The period-dependent expected-value line represents the expected
minimum Schuster p-value, below which events are consistent with a uniform random process.
The 95% and 99% confidence levels correspond to 5% and 1% of the minimum expected values,
respectively. Points above these lines have a significant probability not to be due to chance. Dashed
lines indicate tidal, half annual and annual periods. There is a notable seasonal periodicity at 1 year,
and the drift in the data indicates non-stationarity beginning at times of a few months, likely due to
aftershocks. (b) Schuster random walk for the QTM catalog at a period of 1 year. Colored points
correspond to the end point of each walk. Dashed circles denote the distance from the start point at
which the probability that the walk is random drops to 1% or 0.001%. The migration of the end points
with each year indicates annual periodicity. The random-walk circle sizes, and thus seismicity rate,
are roughly the same from year to year. (c) Schuster spectrum for the declustered HYS catalog. There
is no detectable periodicity at 1 year, but the drift in the data indicates non-stationarity beginning on
the order of about a year, possibly due to aftershocks. (d) Schuster random walk for the HYS catalog
at a period of 1 year. There is no significant migration of the end points with each year (all lie within
the 1% circle), but the size of the random-walk is highly variable, indicating non-stationarity.
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migration of similar amplitude each year. In addition to this clear seasonality, we
note a substantially larger gap between 2010 and 2011. The annual loop during that
year shows increased seismicity starting in April at approximately the time of the
Cucapah-El Mayor earthquake and lasting for a few months.

We perform the same Schuster analysis as detailed above on the HYS catalog as well
(Figure 3.6 c-d). Like for the QTM catalog, we observe a drift to low p-values at
periods larger than a few months, which suggests non-stationarity of the earthquake
rate. Again however, whether this non-stationarity is in the background rate itself
or due to aftershocks in the catalog is not obvious. Unlike the QTM catalog, there
is no clear seasonal periodicity at one year, and we see no significant migration of
the end points in the yearly random walk. For each cycle, the probability that the
endpoint location is still the product of a random walk is greater than 1% (Figure
3.6d). The plot however shows considerable variation of the size of the annual loops,
suggesting that the non-stationarity of the process is not due to a single transient
period of increased seismicity, as was the case for the QTM catalog. Based on the
QTM Schuster spectra though, we see two factors contributing to the departure from
the hypothesis of a stationary Poisson process, one being the seasonal variations of
seismicity and the other being a transient increase of the rate of mainshocks in 2010.
The HYS catalog also suggests apparent variations of the background seismicity
rate. However, the test does not show whether the apparent non-stationarity of the
background rate in both catalogs is true or due to remaining aftershocks.

3.4 Testing for Variations of the Background Seismicity Rate
The largest event in the QTM catalog is the April 2010 M 7.2 El Mayor-Cucapah
earthquake in Mexico, the aftershock activity for which clearly shows up in the
cumulative number of events with time in the non-declustered catalog (Figure 3.4b).
The declustered QTM catalog shows only a slight increase in the number of events
after the 2010 earthquake that may influence the resulting IET distribution. Afterslip
and viscoelastic relaxation can induce time dependent stress variations in the crust
that are reflected in the temporal behavior of aftershock occurrence and the seismic
cycle (Gualandi et al., 2020), and could be a source of non-stationarity in the
earthquake occurrence rate. To test for non-stationarity due to this event and in
the QTM catalog more broadly, we cut the catalog before and after the El Mayor-
Cucapah event to analyze the IET distribution separately for the time periods Jan
2008 to Dec 2009 and Jan 2011 to Dec 2017, omitting the year 2010 entirely.
The results reveal that the period prior to the earthquake had a lower earthquake
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occurrence rate, with a mean IET of about 𝑡0 = 0.0367 days, while the time period
after the earthquake had a mean IET of about 𝑡0 = 0.0361 days (Figure 3.7a). The
two IET distributions for the two periods are likewise different as they have slightly
different Poisson parameters (Figure 3.7b). However, individually both sets of the
catalog still follow an exponential distribution and appear to be stationary.
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Figure 3.7: IET distributions of the QTM and HYS catalogs split before and after historical changes
in the earthquake rate. (a) Cumulative number of events with time and (b) the interevent time
distribution from the QTM catalog for events before (Jan. 2008 – Dec. 2009; black line) and after
(Jan 2011 – Dec. 2017; gray line) the 2010 El Mayor Cucapah M 7.3 earthquake in Mexico, omitting
the year 2010. Dashed lines in (b) are the Poisson models for each subset of the catalog and solid
lines are the QTM data. (c) Cumulative number of events with time and (d) the interevent time
distribution from the HYS catalog for events before (Jan. 1981 – Dec. 1989; black line) and after
(Jan. 1990 – Dec.2017; gray line) 1990, where there is a notable change in the mean earthquake rate.
Dashed lines in (d) are the Poisson models for each subset of the catalog and solid lines are the HYS
data.

To further investigate non-stationarity, we also examine earthquake occurrences for
each year in the catalog individually, to see if the earthquake rate, or equivalently the
mean interevent time, is changing systematically year to year. Figure 3.8 illustrates
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(a) the number of events with time for each year in the catalog plotted separately
against days in the year, and (b) the IET distributions for each individual year. All
of the years, except 2010, have roughly the same mean IET, averaging about 0.0357
days. Only that of 2010, with an IET of 0.0304 days, is significantly different
from the others, falling more than two standard deviations lower than the mean
IET across all years (Figure 3.8c). This drop in mean interevent time, meaning
a higher earthquake occurrence rate, coincides with the El Mayor-Cucapah event,
suggesting there are still a number of remaining aftershocks and/or an increase of
the background seismicity following the El Mayor-Cucapah earthquake. Likewise,
the individual IET distributions of each year more-or-less collapse onto a single
exponential distribution and their variation is within that expected for the Poisson
model, as discussed below. The only distribution that notably differs is that of 2010
(Figure 3.8b). These results suggest that the slight tail on the IET distribution of
the QTM catalog is a signature of temporary non-stationarity due to the presence
of remaining aftershocks in the declustered catalog. The lower mean IET of 2010
when included in the whole catalog acts to skew the associated Poisson model to the
left, giving the appearance of a fat-tail. Non-stationarity, however, does not appear
to be long-lived past the end of the aftershock sequence, as the mean IET returns
to its pre-El Mayor-Cucapah value. Note that the large size of the catalog allows
for detecting very small changes of the background seismicity rate of only a few
percent.

The 2010 event is also present in the HYS catalog, but the other large events that
could affect the seismicity rate and IET distribution in this catalog are the Landers
1992 and Hector Mine 1999 earthquakes. However, in the non-declustered catalog,
the seismicity rate, and hence the slope of the number of events with time in Figure
3.4d, changes instead at around 1990. To investigate the effect of this change on the
IET distribution, we cut the catalog before and after 1990. The catalog subsets then
yield relatively straight cumulative events with time curves (Figure 3.7c), possibly
suggesting stationarity. However, their corresponding IET distributions (Figure
3.7d) both still exhibit significant fat tails, though with a stronger one on the period
from 1981-1989.

Breaking the HYS catalog down into yearly subsets reveals a much more pronounced
change in the seismicity rate with time, as was also suggested by the random-walk
paths in the Schuster test (Figure 3.6d). There is a systematic shift in the number
of events with time over the years of the catalog, from higher rates of earthquake
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Figure 3.8: Interevent time results for the QTM catalog split between each consecutive year to
examine temporal variations in the earthquake occurrence rate. (a) Total number of events with time
within each separate year against days in the year. Shading represents the year. The slope of 2010
notably differs from those of the other years. (b) Interevent time distribution for each of the individual
years. Each year other than 2010 collapses onto more or less the same distribution. (c) Change in the
mean interevent time with year. 2010 exhibits a significant reduction in mean interevent time outside
the 2𝜎 bound due to the abundance of events in the aftermath of the El Mayor-Cucapah quake.

occurrence in the 1980s to generally lower rates in the 2000s (Figure 3.9a). This
is inversely seen in the general increase in the mean IET over the length of the
catalog (Figure 3.9c), which likewise affects the associated IET distribution (Figure
3.9b). When each year is considered individually, the deviation of the data from
the exponential curve is not significant, as was also the case for the QTM catalog,
but taken together, the mean produced by the entire catalog does not produce a
model that is an accurate representation of the earthquake interevent times due to
the non-stationarity in the rate.

Unlike the QTM catalog, the change in the earthquake rate for the HYS catalog
does not directly correlate with any particular year and actually happens before
the Landers and Hector Mine earthquakes, suggesting that non-stationarity may be
a more long-lived characteristic of the background seismicity rather than a result
of the presence of aftershocks from any one large quake. However, the lower
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Figure 3.9: Interevent time results for the HYS catalog split between each consecutive year to examine
temporal variations in the earthquake occurrence rate. (a) Total number of events with time within
each separate year against days in the year. Shading represents year. There is a systematic decrease
in the seismicity rate over the course of the catalog. (b) Interevent time distribution for each of the
individual years. The shift in mean interevent time is again evident in the data. (c) Change in the
mean interevent time as a function of year. There is a long-term increase in the mean interevent time
of the catalog, pointing to non-stationarity in the seismicity rate.

completeness of this catalog compared to the QTM could create artefacts of non-
stationarity, especially considering that the magnitude of completeness has likely
decreased with time as the detection capability of the network improved. That effect
alone, if we were using a magnitude of completeness lower than the value in the
early 1990s, could have resulted in an apparent increase of the seismicity rate. This
is actually opposite to what we observe, however.

The overall apparent decrease in the earthquake rate since the early 1990s may in fact
be an artifact due to improved location uncertainties resulting from the increased
density of seismic stations (Ben-Zion and Zaliapin, 2020). Zaliapin and Ben-
Zion (2015) demonstrate that reducing location errors results in statistically smaller
distances between parent and offspring events, which means a larger proportion of
events will be identified as clustered after the locations are improved, starting in the
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early 1990s (Ben-Zion and Zaliapin, 2020). If more events are identified as clustered
for the later years in the catalog, then this could artificially result in fewer mainshocks
per year, and hence a lower apparent seismicity rate, as seen in the later half of the
HYS catalog. If fewer events are identified as aftershocks in the period before 1991
due to location error, then the likelihood that some of those aftershocks will remain
in the catalog after declustering is higher. This means a higher proportion of events
with shorter interevent times than there would have been had they been identified as
aftershocks, which skews the mean interevent time, and equivalently increases the
seismicity rate of the catalog, leading to a fat tail. This could explain why the tail
of the catalog subset for the period prior to 1990 is substantially larger than that of
the later subset of the catalog (Figure 3.7d). As the location error decreases and the
number of events in the catalog increases, as in the case of the QTM catalog, the
earthquake IET distribution should approach the exponential distribution.

3.5 Analysis of Synthetic Catalogs
We further analyze the interevent time distribution by using synthetic catalogs to
test the significance of the deviation from the Poisson model, to test the degree to
which the fat tail of the IET distribution is a declustering artifact or due to temporal
changes in the background seismicity rate, and to validate the procedure used to
extract the background events.

3.5.1 Hypothesis Testing with Synthetic Interevent Times
In order to test the statistical significance of the deviation from the Poisson model,
we first generate a set of 100 synthetic IET sequences, distributed according to
an exponential distribution with the same mean interoccurrence time as the QTM
data. The standard deviation of the synthetic data tends to increase with greater
interevent times, so for each IET, we calculate the mean of the count over all 100
tests, then calculate the associated standard deviation, 𝜎𝑠, of the synthetic data from
the expected value (the count predicted by the Poisson model) at that particular
interevent time. We then plot the predicted count from the Poisson model ± 𝜎𝑠

to determine whether the tail of the data significantly falls outside the one or two
standard deviation bound and thus to test the hypothesis that the interevent times of
the QTM catalog are consistent with an exponential distribution. Figure 3.5 shows
the 100 synthetic distributions plotted along with the QTM catalog data, the Poisson
model, and the standard deviations of the synthetic data relative to the Poisson model
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for six different minimum magnitude cutoffs. The tail of the QTM data, for the most
part, clearly does not lie outside the tails of the synthetic data sets.

To verify this, we calculate the p-value using a standard chi-squared goodness of
fit test for the QTM data with the null hypothesis that the interevent times of the
catalog data are from an exponential distribution. The chi-squared test yields high
p-values for all the M𝑚𝑖𝑛 tested except for M𝑚𝑖𝑛 = 1, 2 (Figure 3.5), such that for most
magnitude windows, there is at least a 22% chance that the count of the interevent
times in the QTM data exceeds that predicted by the Poisson model and still comes
from an exponential distribution. Thus, in most cases, there is not enough evidence
to reject the Poisson model for the QTM earthquake IET distribution at the 5%
significance level. In the cases of M𝑚𝑖𝑛 = 1, 2, however, the p-value is very low
(2e-4 and 1.3e-7, respectively), meaning the Poisson hypothesis can be rejected for
these particular magnitude cutoffs, even though the deviation is not visually extreme.
The reason why the Poisson model can be rejected for some magnitude cutoffs may
possibly be due to random error, but is most likely a result of incomplete declustering
and/or non-stationarity of the earthquake occurrences, as examined above with the
Schuster spectrum and the annualized IET distributions. The seasonal variation of
seismicity detected with the Schuster test seems to have no detectable effect on the
IET distribution, and this source of non-stationarity cannot be detected easily based
on the departure from the exponential distribution expected for a stationary Poisson
process.

3.5.2 Testing the Effect of Non-Stationarity and Aftershocks with Full Syn-
thetic Catalogs

With the previous analyses (Figures 3.6 – 3.9), there is already strong indication that
it is merely the presence of aftershocks that has the strongest effect on the Poisso-
nian (or non-Poissonian) nature of the catalog, but deviations from stationarity in
the background rate, as shown in Figures 3.8 and 3.9, may play a role as well. To
determine whether non-stationarity alone or incomplete declustering is responsible
for the observed fat tail, we generate full synthetic catalogs using a simple-type
aftershock sequence model (STAS). We generate non-stationary Poissonian dis-
tributed mainshocks using the same annualized 𝑡0 as in the QTM and HYS catalogs.
Magnitudes are distributed according to the Gutenberg-Richter law, and aftershock
sequences for each earthquake are generated according to the modified Omori’s Law
(see supplementary material for details on the generation of the synthetic catalogs).
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We create a total of 50 synthetic catalogs for each of the HYS and QTM based
mainshock sequences.

We determine the cumulative distributions of the IETs in the same way as before,
for both the mainshocks alone (Figure 3.10 a-b) and for the full catalog separately
(Figure 3.10 c-d). The IET distributions of the mainshocks alone are plotted against
the Poisson model obtained using the mean 𝑡0 of the HYS or QTM catalogs, re-
spectively, and the IET distributions of the full catalog simulations are plotted with
the Poisson model calculated using the mean 𝑡0 of that simulation, including the
aftershocks. We compare the two distributions to see if the trends previously seen
in the IET CDF of the QTM and HYS data are characteristic of the presence of
aftershocks.

Comparing the CDF of the IETs of the synthetic mainshock catalogs, where events
are known to come from a Poisson distribution, albeit a non-stationary one, reveals
the effect that the magnitude of the non-stationarity has on the IET distribution. The
mainshock IET distributions (Figure 3.10 a-b) mostly follow the Poisson model as
expected, even with the non-stationarity. Most of the deviation is well within the
expected error for synthetic data, as discussed above based on Figure 3.5. Only
for the non-stationary case using the 𝑡0 of the HYS data is there a more significant
tail on the distribution, where the lower standard deviation bound of the synthetic
data is actually just above the Poisson model (Figure 3.10a). This suggests that
non-stationarity may indeed contribute to the observed tail on the mainshock data.
Non-stationarity does not have as strong an effect for the QTM-based synthetic
catalog as it does for the HYS-based synthetics, but the variation in 𝑡𝑜 in the
HYS catalog is also an order of magnitude larger than in the QTM, suggesting the
variability in the earthquake rate must be above a certain level before it can actually
have an effect on the IET distribution.

The IET distributions and the associated Poisson models for the entire catalog with
aftershocks, on the other hand, are strikingly different and reveal the effect that
the presence of aftershocks has on the IET distribution (Figure 3.10 c-d). When
the mean interevent time used in the exponential model is calculated from the
interevent times of the full catalog, the resulting model is extremely skewed due to
the overabundance of lower magnitude events with shorter interevent times, reducing
the overall mean 𝑡0. This generates the appearance of a large fat tail in the data.
Indeed the synthetic data for the complete catalogs always tails-off to the right (thin
light gray lines in Figure 3.10 c-d) relative to their respective Poisson models (dark
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Figure 3.10: IET distributions of 50 synthetic catalogs for: (a) Mainshocks generated using the non-
stationary annualized 𝑡0’s from the HYS catalog (light gray lines), plotted against the corresponding
Poisson model using the mean IET of the whole HYS catalog. (b) Same as (a) but using the non-
stationary annualized 𝑡0’s from the QTM catalog. (c) Full synthetic catalogs with aftershocks using
the HYS-based mainshocks in (a), with the corresponding Poisson models for each simulation. (d)
Same as (c) but using the QTM-based mainshocks in (b). (e) Synthetic mainshocks recovered from
declustering the HYS-based synthetic catalogs (dark lines) for simulations that have at least one M
> 7 earthquake, versus the true synthetic mainshock distributions for those same simulations (light
gray lines) and the known Poisson model, as in (a). (f) Same as (e) but for the QTM-based synthetic
catalogs.
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thick lines) for all simulations, as expected. This same deviation is what we observe
in the undeclustered catalogs, as well as to some extent in the declustered ones.

To test whether the observed tail is an artefact of remaining aftershocks after declus-
tering, we decluster the synthetic simulations that contain at least one M > 7 earth-
quake using the Zaliapin and Ben-Zion (2013) algorithm. This yields 6 declustered
catalogs from the simulations based off the HYS data and 4 declustered catalogs from
the simulations based off the QTM data. (See supplementary material Figures S1-
S10 for results of the synthetic catalog generation and declustering.) The interevent
time distributions for the recovered mainshocks obtained from the declustering are
shown in Figure 3.10 (e-f) against the distributions for the true synthetic mainshocks
for those same simulations and the known Poisson model for the mainshocks as in
Figure 3.10 (a-b). For most of the simulations, the Zaliapin and Ben-Zion (2013)
declustering predicts the correct proportion of mainshocks to within about 3.8% on
average. However, the interevent time distributions of the recovered mainshocks
always exhibit a slight fat tail. To determine whether this deviation is significant,
given the existing deviation in the synthetic mainshocks, we again perform a basic
chi-squared goodness of fit test as was done on the real data. For the HYS-based
synthetic catalog, only two cases out of the six that were declustered were significant
enough to reject the Poisson model, but for the QTM-based synthetic catalog, the
deviations of all but one of the four declustered simulations were significant enough
to reject the Poisson hypothesis. This suggests that in the case of the HYS catalog,
aftershocks remaining in the catalog after declustering are not the primary cause of
the deviation, but rather the non-stationarity itself, since, as was mentioned above,
the variation in the earthquake rate of the HYS catalog is greater than that of the
QTM catalog. In the case of the QTM catalog on the other hand, the presence of
remaining aftershocks in the declustered catalog, even if only a small amount, is
enough create a significant fat tail. The synthetic catalogs presented here demon-
strate that the fat tail on the earthquake IET distribution is in part due to background
non-stationarity, but is also largely an artefact of the presence of aftershocks.

3.6 Discussion
Analysis of the earthquake interevent time distribution of the QTM and HYS cata-
logs for Southern California reveals that earthquakes do appear to follow a Poisson
process, albeit with temporary variability in the earthquake occurrence rate. Com-
parison of the QTM data to synthetic interevent times generated according to an
exponential distribution (Figure 3.5) shows that the fat tail of the data does not
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significantly lie outside the expected error for the interevent times of a stationary
Poisson process for most magnitude cutoffs. Nevertheless, there are cases where the
deviation of the data beyond the spread of the synthetic error is statistically signifi-
cant and for which the Poisson model can be rejected. Moreover, the Schuster tests
and annualized analysis of the catalogs show evidence of non-stationarity and/or the
influence of aftershocks that warrant an explanation of the deviation. Overall, there
are a number of sources that can explain the fat tail, all of which likely contribute to
the IET distribution of the catalog.

The first is the limited number of events and the completeness of the catalog. There
is greater error at longer interevent times, and even more so when we look at only
larger magnitudes because those earthquakes have longer interevent times just by the
nature of the Gutenberg-Richter relationship. This spread is the result of numerical
error from having only a finite number of events, since to truly generate a Poissonian
distributed set of data one cannot specify the number of events a priori, as it would
technically lead to a violation of the independent scattering property of Poisson
processes (Daley and Vere-Jones, 2003). If we had an infinite number of events,
or at least a really long and/or totally complete catalog, then those data sets would
collapse onto the exponential distribution expected for a Poisson process, but we are
limited both in our simulated data and in the real data by a finite number of events.
This is, however, why the tail on the QTM catalog is less significant than in other
catalogs - it is simply a more complete catalog. This highlights the importance
of using a more robust and complete catalog when performing any analysis of
earthquake occurrences in time. Nevertheless, the question stands: is the deviation
of the data from the Poisson model consistent with the numerical deviation we
expect due to a limited number of events, or it is more so and thus attributable to
some physical process intrinsic to the seismic cycle itself?

From most of the results of the synthetic interevent times in Figure 3.5, our results
indicate that the deviation is not beyond what is expected from numerical error
and that the QTM earthquakes do indeed follow a Poisson process. However, it is
worth noting that the tail on the catalogs is always above the exponential line, while
the exponentially distributed synthetic data varies equally both above and below the
model. Thus, although the QTM data, for instance, usually does not exceed the error
we would expect for the exponential distribution, the fact that it is uni-directional in
its deviation implies that the tail we do observe is in fact not random. This is also
supported by the Schuster spectrum. Moreover, the size and completeness of the
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QTM catalog allows for tracking rather small temporal variations in the background
seismicity rate, which are on the order of about 5% at the annual scale for all
of southern California. The existence of this variability is significant because it
hearkens back to debates about the estimated foreshock fraction. When assuming
a stationary Poisson process, up to 70% of mainshocks may appear to be preceded
by statistically significant foreshock sequences (Trugman and Ross, 2019), but
when taking into account fluctuations in the background seismicity rate, Ende and
Ampuero (2020) argue that the presence of a foreshock sequence is often just due to
random chance and that the percentage of mainshocks preceded by true foreshock
sequences is closer to 10-20%. The existence of variability in the background rate
as determined from the QTM catalog supports the argument that the Trugman and
Ross (2019) foreshock percentage is likely overestimated. This of course assumes
that our selection of mainshocks is in fact accurate and robust to sources of non-
stationarity. There are limits to any declustering method, but the synthetic catalogs
demonstrate that the Zaliapin and Ben-Zion (2013) algorithm predicts the correct
fraction of mainshocks to within 3.8% error on average, and it is, in principle, not
biased towards a Poisson distribution. However, the synthetic catalog simulations
also demonstrate that the QTM fluctuations in seismicity rate alone are not enough
to push the synthetic data to the right of the exponential (Figure 3.10b). In a more
limited catalog, however, or one with more significant variability in 𝑡0, such as the
HYS, in which the annual temporal variation is on the order of about 28%, the tail
begins to emerge (Figure 3.10a). Of course, the variability is dependent on the size
of the catalog: with more events, we would expect the variability to decrease, which
is why the QTM catalog provides a more robust estimate of any true background
variability. Nevertheless, from the results of the Schuster tests and the synthetics,
we argue that the tail is not a random deviation due to a limited number of events
in the catalogs but is a result of real characteristics of the catalog. However, such
characteristics likely reflect incomplete declustering or changes in the quality and
density of both the seismic network and seismic data rather than any underlying
geophysical process.

In the QTM catalog, changes in 𝑡0 and the interevent time distribution correlate with
2010, and as such, the tail in this catalog is most likely an artefact of remaining
aftershocks from the El Mayor-Cucapah sequence in the declustered catalog. Recent
work has shown that post-seismic deformation due to the 2010 El Mayor-Cucapah
event has persisted for an extended period of time (Gualandi et al., 2020). The work
of Gualandi et al. (2020), which used variational Bayesian Independent Component
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Analysis to examine the El Mayor-Cucapah aftershock sequence in both the spatial
and temporal near- and far-field, revealed that viscoelastic relaxation affected the
seismicity rate across a region several times the fault rupture length and for seven
years after the mainshock. The anomalously large space and time length scales of the
aftershocks from the mainshocks enabled by the viscoelastic response may explain
why such aftershocks were not identified and removed in the declustering. It may
be argued that they are not proper aftershocks since they were not triggered directly
by the co-seismic stresses. Cutting the QTM catalog into periods before and after
2010 indeed shows a slight change in the mean earthquake occurrence rate between
the two time periods (Figure 3.7 a-b). Thus, the effect of the Earth’s viscoelastic
response to an earthquake on the seismic cycle and the IET distribution are grounds
for considering non-stationarity or time-dependent distributions when constructing
hazard models, at least within the relaxation time period after an event. However,
examining the IET distribution of each year in the catalog individually reveals that
the mean IET returns to its pre-event mean value within about a year or so after the
2010 earthquake, demonstrating that the events within different time windows are
still Poisson distributed and that the catalog at large may be considered stationary.

Changes in 𝑡0 in the HYS catalog on the other hand are not associated with any
particular earthquake. However, the apparent non-stationarity in the HYS catalog
also likely results from excess aftershocks in the declustered catalog due to the
dependency of aftershock detection on improvements in the seismic network, start-
ing in the 1990s, as discussed above. This possible sensitivity of changes in the
earthquake rate to improvements in location errors highlights the importance of the
spatio-temporal scale considered when modeling the earthquake IET distribution.
At the scale of all of Southern California, fluctuations in the mean interevent time
due to forcing factors or localized memory effects are likely averaged out, resulting in
an SIP process, as seen broadly in the QTM catalog. At a more local scale, however,
such as that directly affected by the post-seismic effects of the El Mayor-Cucapah
earthquake, the seismic rate variations may not be insignificant, as evidenced both in
the seismicity itself and in geodetic data (Gualandi et al., 2020). This is particularly
true in light of work from Ben-Zion and Zaliapin (2020) demonstrating progressive
localization of seismicity in the 1-2 years before large mainshocks, in particular the
Landers, Hector Mine, and El Mayor Cucapah earthquakes, as a result of local-
ization and intensification of rock damage by the preceding background seismicity.
This also has the effect of creating a real and/or apparent decreasing intensity of the
background seismicity (Ben-Zion and Zaliapin, 2020), consistent with an increasing
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𝑡0, as observed in the HYS catalog. Our study focuses specifically on the temporal
distribution of earthquakes, but given the connection between temporally varying
spatial localization of seismicity and changes in the seismicity rate, use or analysis
of the earthquake IET distribution should in the future incorporate both the spatial
and temporal structure of earthquake occurrence, especially as it relates to informing
seismic hazard.

While the deviation of the QTM earthquake interevent time distribution is for the
most part insignificant, it is real and not random, though limitations in the size of a
catalog do contribute to the size of the tail. However, our results reveal that the fat
tail observed on the IET distribution is a reflection of transient non-stationarity in
the seismicity rate due to either 1) excess aftershocks remaining in the declustered
catalog, possibly due to changes in the seismic network, and/or 2) viscoelastic effects
in the aftermath of large events. Such non-stationarity becomes more important at
the local level and over shorter timescales. Ultimately, seismic hazard assessment
needs to address potential risk from earthquakes at a local scale, from place to
place, where it directly impacts people and infrastructure. At the scale of all of
southern California, however, a stationary Poisson process is still a sufficient model
for representing earthquake occurrences at the decadal time scale and spatial scale
of the QTM catalog.

Data and Resources

Earthquake data from the relocated SCSN catalog from Hauksson et al. (2012)
(HYS catalog) is available from the Southern California Earthquake Data Center
(SCEDC): https://scedc. caltech.edu/data/alt-2011-dd-hauksson-yang-shearer.html
(last accessed Feb. 17th, 2021). The QTM catalog for Southern California is
also available from the SCEDC: https://scedc.caltech.edu/da- ta/qtm-catalog.html
(last accessed Feb. 10th, 2021). Appendix B contains equations and details on
the declustering algorithm and the generation of the synthetic catalogs, as well as
figures showing the GR distribution, cumulative events with time, magnitude with
time, and the declustering results for each synthetic catalog containing at least one
M > 7 earthquake.
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C h a p t e r 4

GEODYNAMIC CONTROLS ON INTRAPLATE SEISMICITY IN
EASTERN NORTH AMERICA I: THE INFLUENCE OF MANTLE

LOADING FROM THE FARALLON SLAB

*A version of this chapter has been submitted for publication as:

Hightower, E., Gurnis, M. and Mao, W. "Influence of Farallon Slab Loading on
Intraplate Stress and Seismicity in Eastern North America in the Presence of
Pre-existing Weak Zones". [Submitted].

4.1 Introduction
Intraplate seismicity is an enigmatic phenomenon not directly associated with plate
boundary tectonics, potentially resulting from a combination of geodynamic pro-
cesses and surface loading, with contribution from far-field tectonic forces and
pre–existing structures. The continental interior of eastern North America is one
of the best regions for studying the interplay between geodynamics and intraplate
seismicity, as it has hosted many significant historical earthquakes and is undergoing
both modern day glacial isostatic adjustment (GIA) (Wu and Hasegawa, 1996; Wu
and Johnston, 2000; Grollimund and Zoback, 2001) and long-wavelength dynamic
subsidence (Spasojevic et al., 2008; Forte et al., 2010). Despite the stability of the
North American interior, which experiences only about 2 mm/yr of horizontal mo-
tion according to GPS data (Stein and Sella, 2002), earthquake shaking is potentially
more hazardous compared to that on plate margins, as the stable continental litho-
sphere can transmit seismic energy more efficiently, and peak ground acceleration
may be almost twice that of plate boundary zones for a given earthquake magnitude
(Stein, 2007).

Historic records of major earthquakes in eastern North America date back to at
least 1638 (Figure 4.1 a), with most seismicity occurring within clearly defined
seismic zones (Figure 4.1 b). Of these zones, the New Madrid, Central Virginia,
Charleston South Carolina, Eastern Tennessee, Northern Appalachian, Western
Quebec, Charlevoix, and St. Lawrence River Valley Seismic Zones have experi-
enced destructive earthquakes in recorded history, most notably the 1811-1812 New
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Madrid earthquakes. The largest of these events may have been as high as M 8,
but more likely around M 7 (Hough et al., 2000; Stein, 2007). These and other
significant events ranging from M 5 to M 7 are depicted in Figure 4.1a and listed in
Table 4.1. While an intraplate earthquake of magnitude greater than or equal to M 7
is expected to occur anywhere along the Atlantic margin only every few 1000 years
(Brink et al., 2009), earthquake hazard remains significant for the central-eastern
United States (CEUS) due to limited earthquake preparedness.

Major Historical Earthquakes in Eastern North America
Year Magnitude Location
1638 6.5 Central New Hampshire
1663 7 Charlevoix, Quebec
1732 6.3 Montreal, Quebec
1755 5.9 Cape Ann, Massachusetts
1811-1812 7.3-8 New Madrid
1882 6.6 Fort Collins
1886 7.0 Charleston, South Carolina
1897 5.6 Giles County, Virginia
1925 6.3 St. Lawrence River Valley, Quebec
1929 7.2 Grand Banks, Newfoundland
1935 6.2 Timiskaming, Canada
1971 5.5 Labrador Sea
1978 6.1 North Atlantic
1982 5.7 New Brunswick
1989 6 Ungava, Canada
2011 5.8 Mineral, Virginia

Table 4.1: Major historical earthquakes greater than M 5.5 in Eastern North America since 1600.
Data from the USGS ANSS Comprehensive Earthquake Catalog (ComCat), queried on Feb. 8th,
2021.

Hypotheses for the drivers of intraplate seismicity include gravitational body forces
(Levandowski et al., 2017; Levandowski et al., 2018), far-field tectonic stresses
(Humphreys and Coblentz, 2007), prolonged viscoelastic relaxation in the aftermath
of large events (Kenner and Segall, 2000; Kenner and Simons, 2005), hydrologic
and seasonal loading (Craig et al., 2017), glacial rebound (Grollimund and Zoback,
2000; Grollimund and Zoback, 2001; Wu and Johnston, 2000; Wu and Mazzotti,
2007), and mantle flow (Forte et al., 2007; Saxena et al., 2021). Across these
different factors, intraplate seismicity exhibits common characteristics, including
correlation with paleotectonic structures, the apparent lack of any significant recent
deformation on existing structures or faults, and low intraplate strain rates (Mazzotti,
2007a). Globally, about two-thirds of continental intraplate earthquakes occur
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Figure 4.1: Regional setting. a) Historical seismicity in eastern North America. Large blue circles
are significant historical intraplate earthquakes of M ≥ 5.5. Black dots are background seismicity of
M ≥ 3 from the USGS-ANSS Comprehensive Earthquake Catalog. Indigo polygons are geologically
mapped ancient aulacogens from Whitmeyer and Karlstrom (2007). b) Stress field (𝑆𝐻𝑚𝑎𝑥) of
eastern North America from the World Stress Map Database (WSM) (Heidbach et al., 2018), colored
by faulting style. Black dots are background seismicity as in (a). Black ellipses outline major named
seismic zones.

within Mesozoic or older crustal extensional structures, such as rifted margins,
aulacogens (failed rift arms), and extensional basins (Johnston et al., 1994; Mazzotti,
2007a), which can act as weak zones in the crust where stress accumulates.

Likewise, seismicity in eastern North America tends to concentrate within these an-
cient aulacogens (Sykes, 1978; Hurd and Zoback, 2012). The New Madrid Seismic
Zone (NMSZ) (Reelfoot Rift) and Western Quebec Seismic Zone (WQSZ) (Ottawa-
Bonnecherè Graben) are associated with Proterozoic (700-550 Ma) Iapetus failed
rift arms (Baird et al., 2010). The Lower St. Lawrence, Charlevoix, Montreal, and
Eastern Tennessee Seismic Zones are associated with the Iapetus rifted margin itself
(Mazzotti and Townend, 2010), and the Northern Appalachian, Central Virginia,
and Charleston Seismic Zones are spatially correlated with Mesozoic rift basins of
the extended Atlantic margin (Withjack et al., 1998; Mazzotti and Townend, 2010),
as well as other inherited tectonic structures. Earthquakes and modeled stresses
also concentrate in zones of thinner lithosphere around the margin of the North
American craton (Li et al., 2007), where it transitions to the Grenville province and
the rifted margin. Even more enigmatic is that there is little association between the
earthquake locations and active faults, despite the correlation between seismicity
and these inherited structures. This is due in part to poorly located hypocenters and
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limited data on historic events but may also be due to the intrinsically low strain
rates characteristic of intraplate regions (Mazzotti, 2007a). For example, earthquake
statistics alone may predict a few kilometers of total seismic deformation over the
last million years (Mazzotti and Adams, 2005), but seismic reflection surveys of the
Charlevoix and New Madrid Seismic Zones indicate total accumulated deformation
on particular structures to be no more than a few tens of meters (Lamontagne and
Ranalli, 1996; Schweig and Ellis, 1994; Van Arsdale, 2000). Such low strain rates,
typically on the order of 10−9 yr−1 or less based on GPS (Mazzotti and Adams,
2005; Mazzotti et al., 2005; Calais et al., 2006), do not, however, rule out the
possibility of future large earthquakes (Kenner and Segall, 2000).

Mechanical models from Kenner and Segall (2000) demonstrate that relaxation of
local lithospheric weak zones can transfer stress to the upper crust and trigger slip on
faults, resulting in an earthquake sequence that continues until the weak zone fully
relaxes, which can be prolonged by cyclic stress transfer from co- and post-seismic
slip reloading the lower crust (Kenner and Segall, 2000; Kenner and Simons, 2005;
Dicaprio et al., 2008). Such weak zone relaxation and stress cycling can trigger
earthquake sequences with large slip events every 500-1000 years with shear strain
rates on the order of 10−7 yr−1 to 10−9 yr−1 for high stress intraplate regions
and 1.8 × 10−8 yr−1 to 5.5 × 10−9 yr−1 for lower stress regions, despite surface
deformation rates often having been below the GPS detection threshold (Kenner and
Segall, 2000).

Likewise, mechanical modeling of the 1811–1812 New Madrid earthquakes has
revealed that intraplate seismic zones tend to stay in a stress shadow for hundreds
to even thousands of years after large events, owing to the difficulty of full stress
restoration due to the strength of the ambient crust and low regional strain rates (Li
et al., 2007; Stein and Liu, 2009). Such findings imply seismicity in this region may
be non-stationary, with mainshocks clustered in time (Kenner and Simons, 2005;
Dicaprio et al., 2008; Stein and Liu, 2009). This would suggest the New Madrid
earthquakes of 1811–1812 and the ensuing seismicity are transient in nature and that
seismic hazard in the mid-continent may be overestimated (Newman et al., 1999).
This idea is supported in part by paleoseismic evidence demonstrating an elevated
slip rate on the Reelfoot Fault during the two most recent major earthquake cycles
(Van Arsdale, 2000). However, paleoseismicity also records a Holocene slip rate
that is four orders of magnitude greater than that in the Cretaceous and Cenozoic and
a slip rate as high as 4.4 mm/yr over the last 2400 years alone (Van Arsdale, 2000).
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The increase in slip rates over the past several thousand years may be tied to uplift
from Laurentide deglaciation. Likewise, paleoseismological and geodetic evidence
suggestive of recurrence times anywhere between 400 – 1100 years in combination
with the lack of accumulated deformation on faults suggests places like the NMSZ
may have become active recently and that the seismic zone itself is only a couple
tens of thousands of years old (Schweig and Ellis, 1994). In general, intraplate
earthquakes tend to be episodic and clustered (Stein and Liu, 2009), and seismicity
may migrate between similar structures due to long-term deformation (Stein, 2007).
This migration and the reactivation of particular structures may result from regional
stress changes due to GIA (Wu and Johnston, 2000; Mazzotti et al., 2005; Steffen
et al., 2014a), epeirogenic subsidence (Spasojevic et al., 2008), or even denudation
and erosion (Craig et al., 2017; Calais et al., 2010). In light of the possibility of stress
cycling, however, one must consider whether hazard is highest where seismicity has
recently been concentrated or uniform within regions with similar structures.

Another common explanation for intraplate seismicity is the role of gravitational
potential energy (GPE), where lateral lithospheric density and topography variations
lead to regions of high deviatoric stress. Some geodynamic models find that while
GPE tends to play a lesser role than mantle tractions in governing lithospheric
stresses and plate velocities, both are necessary to accurately reproduce the observed
stress data and plate motions (Ghosh et al., 2009; Ghosh et al., 2013). With respect
to seismicity, Levandowski et al. (2017) found that for the Great Plains region
of North America body forces control the state of stress and style of earthquakes
without influence from mantle flow or need for pre-existing crustal weaknesses.
Ghosh et al. (2013), on the other hand, find that weak zones at plate boundaries are
necessary for determining the style of stress. Other studies argue for more persistent
sources of stress that are concentrated by local structures (Levandowski et al., 2018;
Heidbach et al., 2018), since the significant variability and local deviations within
some of the seismic zones in the eastern U.S. are generally inconsistent with the
continental-scale stress field that would be predicted for far-field tectonic forcing
alone (Levandowski et al., 2018; Mazzotti and Townend, 2010).

In fact, focal mechanism stress inversion shows an increasingly compressive stress
regime from the south-central U.S. to southeast Canada (Hurd and Zoback, 2012).
While these focal mechanisms are mostly in agreement with the regional NE-SW ori-
ented stress field, some aulacogens exhibit rotational deviation, suggesting multiple
stress regimes (Hurd and Zoback, 2012; Mazzotti and Townend, 2010; Verdecchia
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et al., 2022). Within the Central Virginia, Lower St. Lawrence, and Charlevoix seis-
mic zones, there is as much as a 30-50° statistically significant clockwise rotation of
the seismically derived direction of maximum horizontal compressive stress (𝑆𝐻𝑚𝑎𝑥)
relative to the regional borehole-derived 𝑆𝐻𝑚𝑎𝑥 orientation (Mazzotti and Townend,
2010). Significant depth-dependent rotations of up to 40-60° are observed within the
Charlevoix Seismic Zone as well, which are argued to result from a combination of
weak fault zone crust and post-glacial rebound stress (Verdecchia et al., 2022). Sim-
ilar but slightly smaller rotations are observed in the Northern Appalachian and New
Madrid Seismic Zones. These stress rotations occur over distances of up to 1500
km and require stress perturbations at mid-seismogenic depths of at least 160–250
MPa (Mazzotti and Townend, 2010). Potential sources of these stress rotations and
the associated seismicity include complex fault intersections (Talwani, 1988; Tal-
wani, 1999; Gangopadhyay and Talwani, 2007), crustal density anomalies and GPE
forces (Levandowski et al., 2017; Ghosh et al., 2009), and flexure under local loads
(Stein et al., 1989). These sources, however, cannot explain the consistency of stress
rotations over spatial scales of 100s-1000s of km (Mazzotti and Townend, 2010).
On the other hand, long-wavelength sources like dynamic topography, lithospheric
flexure, and GIA, which typically only induce stress perturbations on the order of
10-100 MPa, may result in stress amplifications by a factor of 5-10 in the presence
of a lithospheric “weak-zone” (Grollimund and Zoback, 2001; Wu and Mazzotti,
2007). Thus, under the right conditions, long–wavelength vertical movements may
perturb the intraplate stress field, leading to seismic activity in an otherwise stable
continental interior.

While some argue lithospheric mantle heterogeneity alone is the primary control
on intraplate seismicity (Saxena et al., 2021; Levandowski et al., 2017; Zhan et al.,
2016), there is cause for considering the role of epeirogeny in augmenting stress
in these regions. Assuming a low-viscosity sub-lithospheric upper mantle, mantle
flow due to the sinking of the Farallon slab can create significant surface depres-
sion (Forte et al., 2010) and localize bending stresses within the NMSZ possibly
capable of triggering earthquakes (Forte et al., 2007). Zhan et al. (2016) point
out that crustal or lithospheric loading resulting from displacements in a mantle
low-velocity zone would likely be insignificant under far-field stresses alone, but
could be catalyzed to a significant degree by unloading processes like GIA or even
changes in drainage networks. Strain rates associated with intraplate seismicity are
also on the same order of magnitude as, or even slightly smaller than, those of
post-glacial rebound (Mazzotti and Adams, 2005; Calais et al., 2006; Stein, 2007).
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Mechanical models from Mazzotti (2007a) suggest that a weak low-viscosity layer
in the presence of regional strain consistent with that of GIA can load an upper-crust
fault system and amplify the surface velocity gradient, improving the fit to GPS data
for the St. Lawrence Valley. Other authors have also found GIA to be a significant
driver of seismicity in the St. Lawrence River Valley (James and Bent, 1994; Wu
and Hasegawa, 1996) and the NMSZ (Wu and Johnston, 2000; Grollimund and
Zoback, 2001). Additionally, just as annual periodicity of seismicity in California
reflects a seasonal modulation of the earthquake rate (Chapter 3, Figure 3.6), obser-
vations of the correlation between micro-earthquakes in the NMSZ and annual and
multi-annual hydrologic loading cycles in the Mississippi embayment demonstrate
that long-wavelength changes in continental water-storage can produce observable
crustal deformation and modulate the regional seismicity (Craig et al., 2017). Such
observations highlight the degree to which small changes in loading from long-
wavelength processes can promote localization and enhancement of crustal stresses
that impact seismicity rates.

Saxena et al. (2021) assess how both GPE and mantle flow from an inferred
lithospheric drip influence stress and seismicity in eastern North America using
tomography-constrained regional geodynamic models with a heterogeneous mantle
lithosphere. Their results suggest that upper mantle flow alone, without litho-
spheric heterogeneity, is not sufficient to reproduce the observed intraplate stress
field (Saxena et al., 2021). However, while their predicted 𝑆𝐻𝑚𝑎𝑥 directions are
locally consistent with some data (e.g., Levandowski et al., 2018), they are broadly
inconsistent with the general southwest-northeast trending 𝑆𝐻𝑚𝑎𝑥 from the World
Stress Map (Heidbach et al., 2018) (Fig. 4.1b), and their predicted regional stress
regime is opposite to that obtained from focal mechanism stress inversion across
the CEUS and parts of Canada (e.g., Hurd and Zoback, 2012). Saxena et al. (2021)
attribute such mismatches to the absence of long wavelength compressive tectonic
stresses or spatially limited crustal weak zones in their models. In contrast, Zhan
et al. (2016) investigated the role of pre–existing weakness in their models of the
NMSZ by altering the mechanical properties within the ancient rifts and testing dif-
ferent degrees of mantle heterogeneity. They find that a large low-viscosity mantle
region beneath the NMSZ can reload the layer above it, concentrating stresses in
the upper mantle through displacement. The strength of the lower crust enables
elevated stresses to transmit to the base of the ancient rift, potentially reactivating
faults.
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These studies highlight the importance of local weak zones in controlling intraplate
seismicity, as stresses from tectonics, topography, or density contrasts are typically
too small to trigger intraplate failure on their own. The integrated strength of a
lithospheric section under a cold geotherm like that of eastern North America is
estimated to be 5-10 times larger than plate driving forces (Mazzotti, 2007a). Thus,
because cratons are too cold and stable to deform easily, even localized weak-zones
may require very low viscosities in the lower crust and/or upper mantle (1019 Pa s or
less) to achieve seismic strain rates. Such weakness can be due to either conditions
that reduce the strength and viscosity of the entire lithosphere, such as elevated heat
flow, or conditions that allow for high stress and strain rates in a weak deforming layer
that loads the brittle upper crust. A weak zone may also result from the presence of
a mechanically weak crust, such as a wet quartz-diorite with low effective viscosity,
even under a cold geotherm; high pore fluid pressure; or an exceptionally weak fault
zone with low-friction fault gouge material (Mazzotti, 2007a).

Despite the work reported to date, the possible connections between intraplate seis-
micity and large-scale continental uplift or the sinking of continental platforms (i.e.,
epeirogeny) remain elusive. Geodynamic modeling has demonstrated that sinking
slabs, in regions of both active and ancient subduction, create mantle downwelling
that generates tractions within the overlying lithosphere, resulting in dynamic sub-
sidence (Hager, 1984; Mitrovica et al., 1989; Gurnis, 1992; Yang et al., 2016; Forte
et al., 2010). Initially, sinking slabs can stagnate at the 660 km discontinuity due
to the viscosity jump and the phase transition between ringwoodite and bridgman-
ite (Billen, 2008). The negative buoyancy of the accumulated mass is eventually
great enough to break through the boundary and continue sinking, initiating a pro-
cess called slab avalanche, which causes substantial downward asthenospheric flow
(Christensen and Yuen, 1984; Tackley et al., 1993; Yang et al., 2016; Yang et al.,
2018). Dynamic subsidence has been inferred in eastern North America from Ceno-
zoic shorelines (Spasojevic et al., 2008), under which the remnant Farallon slab lies
between 410 and 2200 km depth (Ren et al., 2007; Lu et al., 2019). The presence
of the slab predominantly beneath the 660 km discontinuity implies possible slab
avalanche, as do models of mantle flow localized beneath the eastern U.S. (Forte et
al., 2007), but questions remain as to how this flow-induced continental subsidence
affects stress in the lithosphere. Moreover, the increasing degree of stress rotation
moving northeastwards into the Canadian margin is consistent with increasingly
compressive stress regimes and stress rotations observed above deep slabs far inland
of the trench, such as in Sundaland (Yang and Gurnis, 2016; Yang et al., 2018).
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While this epeirogenic movement may not cause notable folding or faulting (Gurnis,
1992), it may reactivate pre-existing faults.

We explore the hypothesis that mantle flow caused by the sinking of the Farallon
slab contributes to intraplate seismicity in eastern North America via perturbation
to the stress field and reactivation of pre-existing faults. We develop high-resolution
global geodynamic flow models with CitcomS (Zhong et al., 2000; Tan et al., 2006;
Moresi et al., 2014), a spherical finite-element thermochemical mantle convection
code. The models use an initial thermal structure constrained by seismic tomogra-
phy and geology to accurately reflect lithospheric and mantle structure, adequately
capture the Farallon slab at depth, and reproduce observed plate motions. As we
are interested in the current state of stress, we calculate the instantaneous flow field
and associated stress tensor, with which we compute the 𝑆𝐻𝑚𝑎𝑥 direction and the
deviatoric stress in the crust and lithosphere. We evaluate our results against the
stresses in the World Stress Map Database (Heidbach et al., 2018) and Mazzotti and
Townend (2010). Our work improves upon previous investigations of this topic by
1) using global rather than regional scale convection models that naturally incorpo-
rate far-field tectonic forcing, 2) purposefully testing the impact of the Farallon slab
on the stress field by parameterizing its negative buoyancy, 3) explicitly including
local-scale, low-viscosity lithospheric weak-zones at the locations of the geologi-
cally mapped aulacogens, and 4) quantifying the likelihood of fault reactivation by
resolving the modeled Coulomb stress onto mapped faults within the seismic zones
of eastern North America.

4.2 Geological Background and Regional Setting
New Madrid Seismic Zone

The NMSZ is predominantly associated with the Reelfoot Rift — part of a sys-
tem of intracratonic faults that resulted from late-stage crustal extension during and
following the breakup of super-continent Rodinia and the opening of the Iapetus
ocean (Thomas and Powell, 2017). At its northeast end, it merges with the eastward
trending Rough Creek Graben, which serves as a sinistral strike-slip offset between
the Reelfoot Rift and the Rome Trough (Figure 4.1). However, despite the fact
that earthquakes mainly occur within the rift, most appear to have little systematic
relationship to the known graben-boundary faults (Thomas and Powell, 2017). The
basement of the NMSZ has been deformed by a combination of extensional fractur-
ing within a releasing bend between the Reelfoot and Rough Creek grabens during
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Iapetan rifting and contraction of those previously extended basement rocks within
the Reelfoot Rift, which reactivated extensional faults in the Appalachian-Ouachita
orogeny during the assembly of Pangea (Thomas and Powell, 2017). Such repeated
deformation and reactivation could result in a weakened basement at lower crustal
depths that concentrates seismicity in the NMSZ. However, the high-velocity lower
crust, often interpreted as a mafic pillow, beneath the NMSZ is inconsistent with a
weakened low-viscosity rheology at these depths.

Rather, low-velocity zones are identified in the upper mantle beneath the NMSZ,
extending from the base of the crust to as deep as 300 km (Thomas and Powell,
2017; Nyamwandha et al., 2016; Chen et al., 2016). Moreover, Zhan et al. (2016)
demonstrate in regional lithospheric models of the NMSZ that the differential stress
needed to explain the observed seismicity requires a combination of weak rift, strong
lower crust, and low-viscosity upper mantle, and that without the weak rift zone,
the differential stress is elevated but broadly distributed rather than localized. The
passage of a mantle plume is also often used to explain the crustal structure and
associated concentration of seismicity in the NMSZ (Chu et al., 2013). Chen et al.
(2016) conclude a combination of thermal variations, compositional heterogeneity,
and water content are needed to explain the observed variations in seismic velocity
beneath the NMSZ and the Illinois Basin, since a small increase in temperature
alone would not be enough to create a large strength difference between the rift and
surrounding region, but both increased iron content and hydration in addition to
temperature will sufficiently weaken olivine. Rifting would have introduced iron,
water, and basalt into the host peridotite of the region, refertilizing the lithospheric
mantle and reducing its seismic velocities. The partial melting and mafic material
that intruded the lower crust can explain the high velocity layer at the base of the
crust below the Moho and above ∼ 70 km. The weakening of olivine from hydration
and greater iron content would result in a low-viscosity weak zone in the upper
mantle beneath the rift, which by creeping faster than surrounding areas can transfer
stress and load the crust (Thomas and Powell, 2017; Kenner and Segall, 2000).

Eastern Tennessee and Central Virginia Seismic Zones

Unlike the NMSZ, the Eastern Tennessee Seismic Zone (ETSZ) is not associated
with an aulacogen or other rift arm but instead with the New York-Alabama (NY-
AL) magnetic lineament. This structure formed as a sinistral continental transform
fault between proto-Laurentia and Amazonia during the assembly of supercontinent
Rodinia and the Grenville orogeny (Thomas and Powell, 2017). Seismic anisotropy
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from SKS shear wave splitting indicate a strong shearing component parallel to the
lineament (Thomas and Powell, 2017; Wagner et al., 2012; Long et al., 2016). A
prominent low velocity zone exists in the basement beneath the ETSZ at depths of
5-25 km, consistent with a sheared crust (Powell et al., 2014). Sheared crust is often
accompanied by soft phyllosilicate minerals such as talc, phlogopite, and antigorite,
particularly if deformed in the presence of hydration (Chen et al., 2016). Such
minerals are inherently weak and lower in viscosity due to their layered structure and
exhibit significantly reduced shear strengths. In eastern Tennessee, this sheared crust
is interpreted to be a weak zone bounded by en echelon conjugate shears and normal
faults beneath the NY-AL lineament (Thomas and Powell, 2017). Magnetotelluric
(MT) imaging of this region (Murphy and Egbert, 2017) also reveals a contrast
in lithospheric electrical properties between the Appalachian highlands and the
Piedmont and Coastal Plain lowlands to the east; the former, near the ETSZ, is
underlain by more conductive crustal and mantle material between 25 and 55 km
depth, which can be interpreted as a viscosity contrast between the two domains
ranging anywhere from 1 to 6 orders of magnitude (Murphy and Egbert, 2017;
Murphy et al., 2019). The NY-AL lineament itself is a narrow feature, at most
25-50 km wide (Thomas and Powell, 2017). The deeper portion of this potential
low viscosity structure, as indicated by the MT data, however, ranges from 25 to 125
km wide (Murphy and Egbert, 2017). For this reason, we represent the weak zone
associated with the ETSZ by a roughly 50-100 km wide low-viscosity zone between
15 and 50 km depth, with narrower widths at shallower depths, which allows us to
capture at least 2 elements width in our models.

MT imaging has also captured the lithospheric structure to the north of the ETSZ
in the vicinity of the Rome Trough and the Central Virginia Seismic Zone (CVSZ).
Highly conductive asthenosphere beneath the central Appalachians imaged by the
MAGIC array (Long et al., 2020; Evans et al., 2019) reveals thin lithosphere on the
order of 80 km thick. Regions of high conductivity extend from 80 to 200+ km depth
across the entire width of the Appalachian Mountain chain, the position of which is
consistent with earlier shear velocity models that show a pronounced 300 km wide
low velocity zone extending from the base of the lithosphere to near 660 km, known
as the Central Appalachian Anomaly (CAA) (Schmandt and Lin, 2014). Such an
anomaly could be caused by extensive hydration of the mantle due to fluids derived
from the relict Farallon slab, which would lower mantle viscosity. Beneath the
Rome Trough, conductivity is sufficiently high to be consistent with some degree
of partial melt and hence lower viscosity (Evans et al., 2019). Conductive solid
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phases, such as sulphides and graphite indicative of metasedimentary shear fabrics
developed during continental suturing, surround this region of possible partial melt
and are consistent with those imaged by seismic reflection profiling across the
Grenville province and across the ETSZ (Culotta et al., 1990). Thus, we include a
low viscosity weak zone between 80 and 200 km depth parallel to the Rome Tough
and approximately 400-600 km in width.

Lower Saint Lawrence River, Charlevoix, and Western Quebec Seismic Zones

The Lower Saint Lawrence Rift System (LSLRS) as a whole contains all of the Lower
Saint Lawrence Rift, the Ottawa-Bonnechere Graben, and the Saguenay Graben, as
well as the Western Quebec, Charlevoix, and Lower Saint Lawrence Seismic Zones
(Figure 4.1). The latter is confined to the northernmost end of the LSLRS. Within this
seismic zone and throughout the LSLRS, earthquakes predominantly occur within
the Precambrian Shield between depths of 5 to 25 km on steeply dipping normal
faults that were formed during the opening of the Iapetus Ocean (Lamontagne and
Ranalli, 2014). There is evidence of strong decoupling between the Appalachians
and Canadian Shield along the Logan Line (Castonguay et al., 2010), and the
Appalachians are for the most part aseismic, with earthquakes occurring beneath the
Appalachian Nappes and within the Precambrian Shield (Lamontagne and Ranalli,
2014). The Lower Saint Lawrence Seismic Zone (LSLSZ) is the least seismically
active of those in the LSLRS.

The Charlevoix Seismic Zone (CXSZ), on the other hand, has the highest seismic
hazard of continental eastern Canada (Lamontagne and Ranalli, 2014). In the
CXSZ, earthquakes cluster along or between the mapped Iapetan rift faults of the
St. Lawrence Rift (Lamontagne and Brouillette, 2022), but the CXSZ is also the
site of an ancient impact structure. It has been suggested that this comparatively
weak damaged volume has lower elastic moduli that influence the stability of the
rift faults that intersect it, promoting a localization of low level seismicity within
the crater and larger events near the perimeter and outside the crater (Baird et al.,
2010; Thomas and Powell, 2017; Lamontagne and Brouillette, 2022). The rift faults
themselves are believed to have lower Mohr-Coulomb frictional strength (Baird et
al., 2010), meaning the predominant source of weakness may lie in the crust, not
the mantle. The effect of post-glacial rebound on the near surface ancient rift faults
may be amplified by a weaker crust with low frictional strength and semi-brittle
rheology (Verdecchia et al., 2022). Moreover, the CXSZ exhibits depth-dependent
crustal stress rotation and strength variations, primarily in the middle crust between
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13-26 km depth (Verdecchia et al., 2022). The seismicity itself ranges from 0-26 km
depth, with the largest stress rotations occurring between 12 and 16 km, yielding a
total clockwise rotation of about 30° between shallow and deeper focal mechanisms
(Verdecchia et al., 2022). The largest stress rotation from the regional borehole
direction (up to 60°) is at mid-crustal depths between 20-26 km. Similar clockwise
rotations of 44°-49° are reported for the LSLSZ north of the CXSZ (Verdecchia
et al., 2022).

The Western Quebec Seismic Zone (WQSZ) is likewise associated with Precam-
brian to early Paleozoic Iapetan rift arms and aulacogens, specifically the Ottawa-
Bonnechere and Timiskaming Grabens, which are characterized by both NW-SE
and NE-SW striking, steeply dipping faults (Rimando and Peace, 2021). The ma-
jority of earthquakes in the WQSZ occur at 8-18 km depth and follow a linear
NW-SE trend slightly adjacent but parallel to the Ottawa-Bonnechere Graben (Fig-
ure 4.1). In addition to aulacogens, it has been suggested that the passage of the
Great Meteor Hotspot during the Mesozoic or an extension of the New England
Seamount Chain track, whose path aligns with the orientation of the WQSZ, en-
abled thermo-mechanical weakening of ancient faults and shear zones and emplaced
strength contrasts between felsic rocks and mafic intrusions in the mid-crust (Sykes,
1978; Ma and Eaton, 2007). The hotspot theory is supported in part by lithospheric
velocity anomalies at around 200 km depth (Ma and Eaton, 2007), but there is no
surface geological expression of a hotspot (Lamontagne and Ranalli, 2014). The
WQSZ also exhibits thinner crust than the surrounding Grenville Province, which
typically ranges from 30-48 km thick (Ma and Eaton, 2007). Despite local struc-
tural complexities that no doubt play a role in controlling seismicity throughout the
LSLRS, the ancient rift itself likely provides a source of lower crustal or upper man-
tle weakness. In our models, we position weak zones at the locations of the LSLRS
and its rift arms within and below the lower crust into the top of the lithospheric
mantle, between 25 and 75 km depth.

4.3 Geodynamic Modeling in CitcomS
We use the 3D spherical shell finite-element mantle convection code CitcomS to
solve the conservation equations of mass and momentum (Zhong et al., 2000; Tan
et al., 2006; Zhong et al., 2008; Moresi et al., 2014). Under the Boussinesq
approximation for an incompressible fluid, the conservation equations are:

∇ · ®𝑢 = 0 (4.1)
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−∇𝑝 + ∇ · (𝜂 ¤𝜖) + (𝛿𝜌𝑔0 + 𝜌0𝛿𝑔)ê𝑟 = 0 (4.2)

where ®𝑢 is the velocity in the non-rotating mantle reference frame; ¤𝜖 is the strain-rate;
p is the dynamic pressure; 𝜂, 𝜌0, and 𝑔0 are mantle viscosity, density, and gravita-
tional acceleration, respectively; ê𝑟 is the unit vector in the radial direction. 𝛿𝑔 is a
perturbation to radial gravitational acceleration that if implemented would represent
the effect of self-gravitation (see Chapter 5), and 𝛿𝜌 represents perturbations to
density, which can arise from both thermal expansion and composition.

𝛿𝜌 = 𝜌0𝛼(𝑇 − 𝑇𝑟) + 𝛿𝜌𝑐ℎ𝐶 (4.3)

Here, 𝛼 is the coefficient of thermal expansion, 𝑇 is the temperature at a given point,
𝑇𝑟 is the radial profile of adiabatic temperature or the mean temperature at a given
layer, 𝐶 is the composition field variable representing compositional and/or rheo-
logical heterogeneity and is either 0 or 1, and 𝛿𝜌𝑐ℎ is the density difference between
different compositions, which is ultimately implemented non-dimensionally using
the buoyancy number (Eq. 4.7). It is these density perturbations that give rise to
mantle flow.

The stress field in which we are interested arises from these buoyancy forces and is
determined by the first two terms in Eq. 4.2. The stress, 𝜎, is inherently dependent
on changes in viscosity, 𝜂, and strain-rate, ¤𝜀, through the constitutive relationship

𝜎 = 2𝜂 ¤𝜀 (4.4)

𝜎 = 2𝜂
(
𝜕𝑣𝑖

𝜕𝑥 𝑗
+
𝜕𝑣 𝑗

𝜕𝑥𝑖

)
, (4.5)

and thus — by the definition of strain rate — on the gradients in the velocity of the
flow. A dense mass anomaly at depth (e.g., the Farallon slab) will sink and excite
downward flow. The presence of the thick high viscosity cratonic lithosphere can
also obstruct horizontal asthenospheric flow, driving it downwards (Paul et al., 2023).
Such diversion of the flow amplifies the vertical velocity component, meaning the
horizontal gradient of the vertical velocity increases approaching the primary source
of the downwelling, be it the Farallon slab or the edge of the continent. The increase
in this velocity gradient, and thus strain-rate, would induce high tractions on the
lithosphere in these regions, resulting in high stress, particularly when scaled by
the high viscosity of the lithosphere. Likewise, the presence of intra-lithospheric
weak zones induces velocity gradients between the surrounding rigid high viscosity
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lithosphere and the faster flowing material within the weak zone, which lead to
tractions on the overlying crust. Thus, the presence of lateral gradients in viscosity
are key to controlling changes in the strength of the flow that ultimately govern the
magnitude and pattern of stress.

Within CitcomS, these equations of motion are solved non-dimensionally and the
buoyancy is thus scaled by the Rayleigh number, 𝑅𝑎 (Eq. 4.6), which controls the
vigor of convection. In CitcomS, the equations are non-dimensionalized using the
full planetary radius 𝑅 instead of the convective layer thickness, so the Rayleigh
number is defined using the Earth’s radius. 𝜂𝑜 is the reference viscosity, 𝜅 is the
thermal diffusivity, and Δ𝑇 is the temperature drop from the surface to the CMB and
is the constant used to non-dimensionalize the temperature field. 𝐵 is the buoyancy
ratio (Eq. 4.7), which gives the relative strength between compositional and thermal
buoyancy.

𝑅𝑎 =
𝛼𝜌0𝑔0Δ𝑇𝑅

3

𝜅𝜂0
(4.6)

𝐵 =
Δ𝜌

𝛼𝜌0Δ𝑇
(4.7)

CitcomS solves equations 4.1 and 4.2 in a fully global spherical shell geometry with
non-dimensional (i.e., scaled by planetary radius) inner and outer radii of 𝑟𝑏 = 0.55
and 𝑟𝑡 = 1, respectively. Free-slip boundary conditions and thermal boundary
conditions of 0 and 1 (non-dimensional temperature) are applied at the top and
bottom boundaries, respectively. Realistic Earth parameters are used for other
dimensionalization constants and are given in Table 4.2. To solve the equations of
motion, specification of an initial temperature field is required, which we constrain
by seismic tomography (Section 4.4.2).

CitcomS has robust solvers that incorporate temperature, pressure, and composition
dependent variable viscosity, allowing us to compute temperature dependent viscos-
ity directly from our tomography–constrained thermal input (Zhong et al., 2000).
In these models, temperature-dependent viscosity is given in non-dimensional form
as:

𝜂(𝑇, 𝑟) = 𝜂𝑐𝜂𝑟 (𝑟)exp[𝐸 (𝑇𝑜 − 𝑇)] (4.8)

where 𝜂𝑟 (𝑟) is the depth-dependent viscosity prefactor, 𝐸 is the non-dimensional
activation energy that controls the strength of the temperature-dependence of the
viscosity, 𝑇𝑜 is the temperature at which the viscosity equals 1 in the model and is
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set to be that of the upper mantle, and 𝜂𝑐 is an optional spatially dependent pre-
factor that allows for assigning regions of higher viscosity lithosphere or localized
weak zones. The mantle is radially stratified in viscosity, with 𝜂𝑟 defining an
average lithospheric layer (0-100 km), the asthenosphere (100-300 km), the upper
mantle (300-670 km), and the lower mantle (670-2870 km). The actual lithosphere,
however, is prescribed using the 𝜂𝑐 prefactor in order to accommodate laterally
variable lithospheric thickness and only apply excess viscosity to those regions of
rigid lithosphere that require it, which allows us to better capture regions of thin and
thick lithosphere, such as near mid-ocean ridges or under cratonic roots, respectively.

Dimensional Constants and Model Parameters
Parameters Symbol Value
Earth’s radius 𝑅 6371 km
Mantle thickness ℎ 2870 km
Mantle density 𝜌0 3340 kg/m3

Gravitational acceleration 𝑔 9.81 m/s2

Thermal expansivity 𝛼 3 x 10−5 K−1

Core-Mantle Boundary Temperature 𝑇𝐶𝑀𝐵 4000 K
Upper Mantle Temperature 𝑇𝑜 0.41
Reference temperature difference Δ𝑇 3727 K
Thermal diffusivity 𝜅 10−6 m2/s
Specific heat 𝐶𝑝 1250 J/(K mol)
Reference viscosity 𝜂0 1021 Pa s
Rayleigh number 𝑅𝑎 9.4733 x 108

Activation energy 𝐸 375; 250 KJ/mol

Table 4.2: Dimensional Constants and Model Parameters. Those values separated by a semi-colon
indicate values for the upper mantle and lower mantle, respectively.

Global models allow us to fully capture the effect of Farallon slab–driven mantle
flow beneath eastern North America and naturally incorporate far-field stresses
associated with plate tectonics via use of the plate cooling model. This also accounts
for the effect of subduction and changes in lithospheric thickness and composition
associated with the ocean–continent boundary (Humphreys and Coblentz, 2007;
Saxena et al., 2023). We can explicitly account for the forces exerted by ridges
and slabs by using the thermal plate model of the oceanic lithosphere (Turcotte and
Schubert, 2014), as well as a slab thermal structure constrained by the Slab2.0 model
(Hayes et al., 2018) and constructed using the age of the plate at the trench and the
convergence velocity such that temperatures consistent with the plate cooling model
are propagated down the depth of the slab (Rudi et al., 2022; Hu et al., 2022).
Plate margins are included as narrow low-viscosity zones, the locations of which
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are based on the plate margins from Seton et al. (2012). The geometry of the plate
boundary weak zones along the subduction interfaces are also constrained by the
slab dip and depth from Slab2.0 (Hayes et al., 2018), making them self-consistent
with the slab model from Rudi et al. (2022). Using a global model also avoids
numerical issues that can arise due to return flow on the artificial bounding walls of
a regional domain.

CitcomS makes use of a full multi-grid solver to efficiently solve the discretized
matrix equations. The spherical domain is divided into 12 caps, each of which are
further divided into 𝑁 × 𝑁 × 𝑁 nearly equal area elements (in map view) over the
surface of the sphere. The code has excellent strong scaling on parallel computers
up to thousands of processors (Zhong et al., 2008). In order to resolve the narrow
rift structures that serve as weak-zones, we need spatial resolutions on the order of
at least 50 km. We use resolutions of 257 × 257 × 257 elements per cap, which is
a ∼ 25 km horizontal resolution. With radial grid refinement, we can achieve 1 km
vertical resolution in the shallowest layers, which is essential for resolving crustal and
lithospheric boundaries and for adequately incorporating the effect of gravitational
potential energy differences from the crustal density field. Our calculations are
performed on the NSF ACCESS HPC clusters Stampede2 at the Texas Advanced
Computing Center (TACC) and Anvil at Purdue University using 16 nodes and 768
processors per run. Typical compute times per simulation are about 8-12 hours and
are highly dependent on the viscosity structure, which can span up to six orders of
magnitude.

4.4 Data and Methods for Model Input
In order to incorporate realistic mantle and lithospheric thermal structure and the
negative buoyancy of the Farallon slab, we use geologically and seismically con-
strained thermal input in our models. This allows us to naturally incorporate plate
driving forces due to the thermal buoyancy of the oceanic lithosphere, as well as the
effect of variable lithospheric thickness. We parameterize the Farallon slab in terms
of its buoyancy to determine the degree to which the flow induced by the sinking slab
contributes to intraplate stress. We explicitly include low viscosity crustal and/or
lithospheric weak-zones demarcated by the aulacogens and paleo-rifted structures
of eastern North America. Using CitcomS, we compute the instantaneous flow field
and associated stress tensor, the 𝑆𝐻𝑚𝑎𝑥 direction, deviatoric stress, and strain rate
in the crust and lithosphere to determine how stress patterns change in the presence
of different slab-buoyancies and different weak-zone viscosities. We compare our
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modeled stresses to those of the WSM (Figure 4.1b) and analyze the stress patterns
within specific seismic zones, as well as models with and without the effect of GPE.
We assess whether these conditions are likely to favor fault reactivation by calculat-
ing the Coulomb stress for known faults in the NMSZ, WQSZ, and LSLSZ/CXSZ.

4.4.1 Lithospheric Thermal Structure
The lithospheric thermal input is constructed from a composite of continental and
oceanic models. For the continents, we use the Artemieva (2006) TC1 thermal
model of the continental lithosphere, which is constrained primarily by heat flow
data, as well as xenolith geotherms and electrical conductivity data, and for which the
lithosphere-asthenosphere boundary (LAB) depth is defined as the 1300°C isotherm.
For the oceanic lithosphere, we use the global seafloor age grid from Seton et al.
(2020) to first calculate the oceanic plate thickness and then to calculate the oceanic
lithospheric temperature as a function of depth according to the plate cooling model
(Turcotte and Schubert, 2014). The plate cooling calculation is performed using
1300°C as the basal temperature of the plate for consistency with the Artemieva
(2006) model. From this we obtain both a combined temperature model for the
lithosphere and a combined LAB depth, above which we can apply a rigid litho-
sphere. Figure 4.2 illustrates the aforementioned data-sets used and the procedure
for constructing the lithospheric thermal input.

4.4.2 Seismically Constrained Mantle Thermal Structure
Temperature anomalies create lateral changes in buoyancy that drive mantle flow.
The thermal structure of mantle convection models is often constrained by seismic
tomography, assuming the seismic anomalies are thermal in origin. It is com-
mon to simply scale the velocity to an effective temperature, a method that several
studies have used to constrain the temperature and density structure of the mantle
beneath eastern North America (Liu et al., 2008; Spasojevic et al., 2009). The more
rigorous approach is to use the full anharmonic and anelastic components of the
seismic wave-speed equations and the appropriate elastic moduli values constrained
by mineral physics experimental data or theoretical values for a given composition
(Karato, 1993; Goes et al., 2000; Cammarano et al., 2003; Goes, 2002; Cammarano
and Guerri, 2017). The importance of anelasticity — the viscoelastic behaviour
at seismic frequency — in the interpretation of seismic velocities was first demon-
strated by Karato (1993). Properly accounting for anelasticity is essential because
it significantly reduces the sensitivity of shear velocity to temperature, especially
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Figure 4.2: Data-sets used to construct the lithospheric thermal structure used in our geodynamic
models. We use the seafloor age grid from Seton et al. (2020) (upper left panel) to compute the oceanic
plate thickness (upper right panel) and temperature (middle right panel, 20 km depth) according to
the plate cooling model. We combine the oceanic plate thermal model with the continental thermal
model of Artemieva (2006) (middle left panel, 80 km depth). A slice of the combined temperature
model at 80 km depth is shown in the bottom right panel, and the combined LAB depth, which
corresponds to the 1300°C isotherm, is shown in the bottom left panel.

in very hot regions near the solidus. This means temperature anomalies associated
with low velocity anomalies in the mantle are significantly smaller than they would
be if considering anharmonic effects alone (Karato, 1993; Cammarano and Guerri,
2017). Anelasticity also makes the temperature derivative of velocity strongly tem-
perature dependent and hence the conversion of velocity into temperature non-linear
(Goes et al., 2000).
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With the latter method, compositional effects can largely be neglected in the upper
mantle, with uncertainties on estimated temperatures ranging from ±100 K in the
upper mantle to ±250 K in the shallow lower mantle (Cammarano et al., 2003).
In the upper mantle, many studies (Goes et al., 2000; Goes, 2002; Cammarano
et al., 2003) invert the absolute seismic velocity for absolute temperatures. Despite
being non-linear, with a single datum (seismic velocity) and a single model pa-
rameter (temperature), an inversion scheme can be rather fast and computationally
inexpensive. However, due to the limited resolution of seismic tomography, the
increase in compositional influence on seismic velocity with depth, and the uncer-
tainty on the physical properties of deep mantle minerals (Cammarano et al., 2003),
inversion tends to become unstable for the lower mantle and drastically over-predict
temperatures in the deep earth. Because of this, we adopt the approach of scaling
the velocities to temperature using a numerically derived depth dependent scaling
factor that, like the inversion technique, incorporates the effect of anelasticity.

Seismic velocity including both anharmonic and anelastic terms is given by

𝑉 (𝑃,𝑇, 𝑍, 𝜔) = 𝑉𝑎𝑛ℎ (𝑃,𝑇, 𝑋)
[
1 − 𝑄−1(𝜔,𝑇)

2tan(𝜋𝑎/2)

]
, (4.9)

where the anharmonic component, 𝑉𝑎𝑛ℎ, is 𝑉𝑝 or 𝑉𝑠 (Eq. 4.10), and the anelastic
component is the term in brackets. Q is the seismic quality factor - the inverse of
the seismic attenuation. 𝑄 is thought to be weakly frequency dependent, where 𝜔𝑎

controls the frequency dependence of attenuation (Eq. 4.11) and 𝑎 typically ranges
from 0.1 to 0.3 (Karato, 1993; Cammarano et al., 2003; Cammarano and Guerri,
2017).

𝑉𝑝 =

√︄
𝐾 + 4𝜇/3

𝜌
(4.10)

𝑉𝑠 =

√︂
𝜇

𝜌

Q is defined differently for p- and s-waves and is primarily dependent on the 𝑎
parameter and the activation enthalpy, 𝐻:

𝑄𝜇 = 𝑄𝑆 = 𝐴𝜔
𝑎exp(𝑎𝐻/𝑅𝑇) (4.11)

𝑄𝑃 = (1 − 𝐿)𝑄−1
𝐾 + 𝐿𝑄−1

𝜇 (4.12)

𝐿 = (4/3) (𝑉𝑆/𝑉𝑃)2. (4.13)
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The scaling factor of velocity to temperature is typically given as the inverse of the
derivative of the natural log of velocity with respect to temperature (Eq. 4.14),

𝛿𝑇 =

(
𝜕ln𝑉
𝜕𝑇

)−1
𝛿𝑉

𝑉
, (4.14)

where 𝑉 is either 𝑉𝑝 or 𝑉𝑠. The derivation of 𝜕ln𝑉/𝜕𝑇 is given in Appendix C.1,
yielding:

𝜕ln(𝑉)
𝜕𝑇

=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[
𝑎𝐻

𝑅𝑇2
𝑄−1

2tan(𝜋𝑎/2)

]
. (4.15)

The first term is the derivative of the anharmonic seismic wave-speed with respect to
temperature and is computed as in Eq. 4.16, given that bulk modulus, shear modulus,
and density are each a function of temperature (see derivation in Appendix C.1).

𝜕ln(𝑉𝑜)
𝜕𝑇

=
1

2 < 𝜌 > 𝑉2
𝑜

[
𝜕 < 𝑀 >

𝜕𝑇
−𝑉2

𝑜

𝜕 < 𝜌 >

𝜕𝑇

]
, (4.16)

where < 𝑀 > and < 𝜌 > are the Voigt-Reuss-Hill averaged elastic moduli and
density, where 𝑀 is either 𝐾 + 4𝜇/3 for P-waves or 𝜇 for S-waves, and 𝑉𝑜 is either
𝑉𝑆 or 𝑉𝑃, as in Eq 4.9.

We use BurnMan (Myhill et al., 2021; Cottaar et al., 2014), a mineral physics
toolbox, to calculate the elastic moduli and density at different temperatures and
pressures. We use a pyrolitic composition based on that of Frost (2008) consisting
of 56% forsterite, 13% pyrope garnet, 14% clinopyroxene, and 17% orthopyroxene
in the upper mantle; 28% wadsleyite, 28% ringwoodite, 40% majorite, and 4% ca-
perovskite in the transition zone; and 80% Mg-perovskite, 7% Ca-perovskite, and
13% magnesiowustite in the lower mantle. Pressure and density are computed on the
basis of PREM (Dziewonski and Anderson, 1981). BurnMan constructs a composite
of these minerals for each defined layer, the elastic properties of which are com-
puted using a Voigt-Reuss-Hill averaging scheme and the mineralogical database of
Stixrude and Lithgow-Bertelloni (2011), which assumes a Mie-Grueneiesen-Debye
equation of state with third order finite strain expansion for the shear modulus.
Temperature derivatives of the elastic moduli are numerically calculated at different
depths using BurnMan’s K, G, and 𝜌 values over a range of temperatures at constant
pressure (Figure C.1).

There are a number of different Q models that can be used in the anelastic term in
Eq 4.15, either purely seismic Q models (Anderson and Hart, 1978; Dziewonski
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and Anderson, 1981) or Q calculated from mineral physics experimental data and
calibrated to fit seismic observations (Sobolev et al., 1996; Goes et al., 2000; Cam-
marano et al., 2003). As Q is dependent on a number of factors, calculating Q per
Eq. 4.11 requires knowledge of the activation enthalpy and frequency dependence
of attenuation. We use the SL8 Q model of Anderson and Hart (1978), a precursor
to PREM, as in Steinberger and Calderwood (2006) (Figure C.2b). From this Q
model, we calculate the corresponding activation enthalpy profile (Figure C.2) to
use in the expansion of the temperature derivative of velocity. We use 𝑎 = 0.17
and 𝐴 = 0.056 in the upper mantle and 𝑎 = 0.15 and 𝐴 = 3.6 in the lower mantle,
which yields similar profiles to those used in models Q5 and Q7 in Cammarano et al.
(2003) and Steinberger and Calderwood (2006). The SL8 Q-model of Anderson
and Hart (1978) also produces temperature estimates from 𝑉𝑝 and 𝑉𝑠 that correlate
well, as shown in the close to 1-to-1 trend in Figure C.3, suggesting a thermal origin
to the anomalies and consistent with the finding that temperatures obtained from P
and S waves separately agree well when anelasticity is included (Goes et al., 2000).

With𝑄, 𝐻, 𝑎, and the derivatives of the moduli computed in BurnMan, we calculate
depth dependent scaling factors for converting seismic velocity to temperature (Eq.
4.14) (Figure 4.3b). The computed 𝜕ln(𝑉)/𝜕𝑇 values agree well with those of
Steinberger and Calderwood (2006), and the magnitude of the scaling factors is on
the order of those used by Spasojevic et al. (2009) and Liu et al. (2008), who find
that a scaling of about 2x103°C/km/s produces flow models consistent with plate
motions, stratigraphy, and the history of Farallon subduction beneath North America
since the Late Cretaceous.

For the global mantle tomography, we use the TX2019 slab model from Lu et al.
(2019). By including a priori 3D slab structure defined by seismicity, this model
addresses shortcomings in using seismic tomography to infer density or thermal
anomalies that arise from discrepancies between detailed studies of slabs and global
tomography models (Lu et al., 2019). In this model, slab locations are defined a
priori by seismicity on a 0.1° x 0.1° grid (Lu et al., 2019). The Farallon slab is
identifiable as an elongate high S-wave velocity anomaly in both P and S between
600–2200 km in the mid-lower mantle (Lu et al., 2019; Ren et al., 2007) (Fig. 4.4).
P-wave anomalies are determined relative to AK135, and S-wave anomalies are rel-
ative to TNA-SNA. We first convert all velocity anomalies to absolute velocity using
their respective reference profiles, then recompute 𝛿𝑉𝑝,𝑠 with respect to PREM for
consistency with the above derived scaling factors. The velocity anomaly at each
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Figure 4.3: Seismic velocity to temperature scaling factors and estimated temperature profiles. a) Vp
(dark blue) and Vs (teal) used to construct the scaling factors, predicted from BurnMan for the given
composition and consistent with PREM. Shading covers the range of velocities in the TX2019 (Lu
et al., 2019) model at a given depth. b) Derivative of the log of viscosity with respect to temperature
for the Q models of PREM, QSL8 (Anderson and Hart, 1978), Q5 and Q7 (Cammarano et al., 2003),
as discussed in the text. Color for Vp and Vs as in (a). c) The scale factor used to convert the
velocity anomalies to temperature anomalies: inverse of the temperature derivative of the natural
log of velocity, normalized by the mean radial velocity at that depth. Colors for Vp and Vs as in (a);
line-styles as in (b). d) Resulting temperatures from the velocity to temperature conversion. Black
line: geotherm (Steinberger and Calderwood, 2006). Colored shading: full range of temperatures
predicted from the velocities of the TX2019 model at a given depth after temperature anomalies are
added to the geotherm.

point in the model is multiplied by the scaling factor corresponding to its depth to
yield a temperature anomaly for that point. Temperatures are determined from 𝑉𝑃

and 𝑉𝑆 separately and then averaged to get the final temperature anomaly. Absolute
temperatures are determined by adding the calculated temperature anomalies to the
mantle geotherm (Figure 4.3d). Below tomographic resolution, there is a trade-off
between seismic anomaly resolution and grid spacing, which results in a non-unique
estimate of absolute seismic velocity and an underestimation of effective temper-
ature (Spasojevic et al., 2009). However, because geodynamic models are driven
by thermal gradients and changes in buoyancy, exact knowledge of the absolute
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temperature is not critical to our set up and the differential temperature computed
by scaling the seismic anomalies is sufficient to constrain the thermal buoyancy and
flow in the mantle beneath North America.

Figure 4.4: Vertical slices of 3D seismic velocity structure and corresponding mantle thermal
structure. Left) Vertical slices of the TX2019 (Lu et al., 2019) velocity field for both 𝑑𝑉𝑠 and 𝑑𝑉𝑝

along two transects. Profile A-A′ trends SW-NE across eastern North America and passes through
the New Madrid Seismic Zone (marked by the orange inverted triangle) and the Western Quebec and
Charlevoix Seismic Zones (red inverted triangle). Profile B-B′ trends W-E across the US and passes
through the New Madrid Seismic Zone. Right) Vertical slices along the same two transects of the
effective temperature field (𝛿𝑇) calculated from the velocity anomalies. Locations of the seismic
zones are marked as in the velocity plots; the Farallon slab stands out as an elongate cold thermal
anomaly.
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The central-eastern North American lithosphere is dominated by high velocities,
whereas the eastern Appalachians are characterized by largely average to low ve-
locities, including two strong localized low velocity anomalies in the northeast Ap-
palachians at around 100 km depth (Schmandt and Lin, 2014; Boyce et al., 2019).
The high velocities of the North American shield terminate abruptly against the
Grenville Front to the east, beyond which low velocities dominate in the Grenville
Province. Lithospheric thickness is not observed to vary greatly in this region,
but there are some abrupt variations from north to south, which are consistent
with previous seismic studies of the LAB in eastern North America (Hopper and
Fischer, 2018; Artemieva, 2006). These sharp variations could be explained by
metasomatic processes that modified the lithospheric mantle composition during
subduction along the Laurentian margin (Boyce et al., 2019) and which could have
played a role in weakening the crust and lithosphere. This is consistent with the
fact that crustal earthquakes in the northern Grenville Province tend to concentrate
away from Archean lithosphere and more towards the Appalachian Front and are
pervasive throughout the younger altered lithosphere of the Grenville Province in
the south (Boyce et al., 2019).

4.4.3 Combined Temperature and Viscosity Input for CitcomS
The lithospheric thermal model (Figure 4.2) is ultimately combined with the tem-
peratures obtained from the tomography. The two models are combined by means
of a depth-weighted average following a hyperbolic tangent function in order to
ensure a smooth temperature field and eliminate any artefacts that may result from
local mismatches in the temperature estimates. The lithosphere is weighted 100%
down to 50 km, which is the starting depth of the tomography model. The weight
on the lithosphere model then varies smoothly from about 80% at 50 km depth to
near 0% at 240 km depth. Below this, the model is based on the tomography. In or-
der to adequately reproduce plate motions, we also superimpose cold slabs over the
background tomographic temperature model using the slab geometries from Slab2.0
(Hayes et al., 2018) and slab temperatures from the slab thermal models used in
Rudi et al. (2022) and Hu et al. (2022). Temperatures are non-dimensionalized for
input to CitcomS assuming a core-mantle boundary (CMB) temperature of 4000 K.

Viscosities are computed directly from the temperature field within CitcomS fol-
lowing Eq. 4.8 and then multiplied by an appropriate pre-factor depending on their
radius or their location within the lithosphere, as in the case of applying a high
viscosity lithosphere, intraplate weak zones, or weak plate boundaries. The radial
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profiles of temperature and viscosity are shown in Figure 4.5 along with the full range
of temperature and viscosity in each layer and the 2𝜎 spread of the values in that
layer. The viscosity profile used in Citcom, with its respective layer-dependent pre-
factors, is shown along with other viscosity profiles from the literature commonly
used in or derived from GIA analysis for comparison (Figure 4.5b).

Figure 4.5: Radial temperature and viscosity profiles for models in CitcomS. a) Radial temperature
profile for the thermal model used in CitcomS; includes both the seismically derived mantle tem-
peratures and lithospheric temperature from the plate cooling model and Artemieva (2006). Light
grey shaded region covers the full range of temperature found at a particular depth. The deep extent
of very cold temperatures is due to the presence of cold slabs that penetrate deep into the mantle.
The teal green band marks the 2𝜎 spread of the temperatures at a given depth, containing 98% of
the values, and the dark blue band marks the inter-quartile range. The black line is the geotherm as
used in the velocity to temperature conversion, from Steinberger and Calderwood (2006). b) Radial
viscosity profiles for different models. Dark teal line marks the average radial viscosity structure
used in CitcomS, as computed from the temperature model on the left. The teal green shading is
likewise the 2𝜎 range of viscosity, and the gray shading covers the full range of viscosity values
found at a given depth. Solid black line is the radial viscosity structure for an alternative CitcomS
rheology. Dotted black line is the VM5a viscosity profile of Peltier et al. (2015); dashed-dotted black
line is the seismically derived viscosity profile used in CitcomSVE in the GIA work of Paulson et al.
(2005); and the dashed black line is the viscosity profile from Steinberger and Calderwood (2006)
that best reproduces observed plate velocities. The right-hand y-axis shows the depth-dependent
pre-factors applied to the temperature-dependent viscosity for the 4-layers distinguished by the dark
blue lines.
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4.4.4 Weak Zones
We emplace weak zones in the crust and/or lithosphere at the locations of the geolog-
ically mapped aulacogens or seismically inferred low velocity zones of weakness.
This is done by specifying a viscosity pre-factor applied at nodal points that fall
within the bounds of the aulacogens. Weak zones are placed at an appropriate depth
for each seismic zone, based on local seismic and geologic evidence, the details of
which are given in Section 4.2. To summarize, beneath the NMSZ, we emplace
a weak zone in the upper mantle between 70 and 150 km along the extent of the
Reelfoot Rift as mapped in Figure 4.1a. In the ETSZ, we emplace a 50-100 km wide
weak zone along the NY-AL lineament between 15 and 50 km depth. A bit farther
north, along the Rome Trough, we emplace an approximately 500 km wide weak
zone between 80-200 km depth. Along the entirety of the LSLRS and its associated
rift-arms, we emplace a weak zone at the base of the crust between 25 and 75 km
depth. While the viscosities of these weak zones likely differ based on their different
conditions of formation, we uniformly reduce the viscosity by a factor of 1e4 in all
weak zones for simplicity. We also test a case where all weak zones are considered
to be shallow and sub-crustal, placed between 25-75 km depth.

4.4.5 Parameterization of Farallon Slab Buoyancy
The Farallon slab is a significant low temperature anomaly in the mantle beneath
eastern North America; it lies mostly between 750 and 2200 km depth and is believed
to be up to 400 km thick in places (Sun et al., 2017). This structure and its negative
buoyancy have the potential to induce strong flow in the mantle beneath eastern North
America and exert a significant influence on the intraplate stress field. However,
buoyancy from the thermal anomaly alone may be overestimated, as compositional
buoyancy within the ancient slab may counteract the thermally derived density.
There is reason to suspect the Farallon slab contains some degree of chemical
buoyancy. Its long history of flat-slab subduction under western and central North
America during the Laramide Orogeny and time frame of the Cretaceous interior
Seaway and the passage of the conjugates to the Hess and Shatksy Rises (Sun et al.,
2017) — buoyant oceanic plateaus inferred to have been attached to the Farallon
plate — indicate the presence of compositional buoyancy. This means the buoyancy
of the Farallon slab and its associated effect on the North American lithosphere must
be parameterized and explored to better understand the effect this structure and the
flow it generates have on intraplate stress and seismicity.
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We explore this effect by changing the buoyancy of the slab. The two extremes of the
range of scenarios are 1) the case derived entirely from the tomography in which the
slab retains its full negative thermal buoyancy (0% of the buoyancy ratio), and 2) the
case where the slab anomaly is entirely neutralized by applying a buoyancy ratio that
completely counteracts the thermal buoyancy (100 % of the buoyancy ratio). Figure
4.6 shows a representative longitudinal profile through the effective temperature
field (temperature minus the radial mean) at 35° N and the corresponding profile
of buoyancy ratio derived from these effective temperatures. We identify the slab
anomaly as that portion of the slab where the temperature anomaly exceeds the 1𝜎
variation of the temperatures at that depth and apply the neutralizing buoyancy ratio
only within that portion (i.e., within the filled portion of the temperature profiles
in Figure 4.6a). The second half of this figure likewise shows the buoyancy ratios
as applied only to that region for different percentages of the full buoyancy ratio
required to neutralize the whole slab anomaly.

Using the same method of calculating the buoyancy ratio from the temperature field,
we also apply a neutralizing buoyancy to both the continental lithosphere and the
large-low-shear-velocity-provinces (LLSVPs) in the lower mantle. The continental
lithosphere, particularly very thick, old cratons and continental keels, are cold and
hence thermally dense; however, cratonic stability over geologic time necessitates
a chemically buoyant tectosphere depleted in basaltic components that balances the
mass increase due to cold temperatures (Jordan, 1988; Shapiro et al., 1999; Forte and
Perry, 2000). Indeed, in models without positive buoyancy applied to the continental
lithosphere, the keels start to sink, dramatically altering the global flow field. In a
similar fashion, the LLSVPs, while hot and hence thermally buoyancy, are believed
to be chemically dense and thus neutrally buoyant stable piles at the bottom of the
mantle (Ishii and Tromp, 1999; Ballmer et al., 2016; Lau et al., 2017; Vilella et al.,
2021). Representative depth slices of the temperature and chemical buoyancy ratio,
as applied to the lithosphere, LLSVPs, and Farallon slab, are depicted in Figure 4.7.
In all models, we apply the full buoyancy ratio required to neutralize the sinking
and rising of the lithosphere and LLSVPs, respectively.

4.4.6 Gravitational Potential Energy from Density and Topography
Gravitational potential energy (GPE) differences arising from lateral variations in
density and topography can give rise to variations in deviatoric stress that may
help load faults within continental interiors and lead to intraplate seismicity (Ghosh
et al., 2009; Ghosh et al., 2013). In order to account for the effect of GPE in our
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Figure 4.6: Effective temperature and buoyancy ratio profiles across eastern North America. a)
(Left) Longitudinal effective temperature profiles in Kelvin at 35° latitude across the United States
showing the temperature anomaly associated with the Farallon slab at different depths. Filled dark
blue regions indicate the portion of the slab to which we apply the buoyancy ratio and where the
negative temperature anomaly exceeds the 1𝜎 variation of temperature at that depth. Dashed gray
line marks the 1𝜎 level. Solid gray line marks the zero level (mean effective temperature). b) (Right)
Buoyancy ratios computed from the effective temperature field for the same profiles in (a). The
darkest line that mirrors the effective temperature profile is the buoyancy ratio that would be needed
to completely neutralize the effective temperature shown to the left, for reference. The truncated
curves show the buoyancy ratio only where we apply it to the designated slab region as shown by the
filled area to the left. Different line colors show the resulting curves for different percentages of the
full buoyancy ratio: 0 (no buoyancy ratio applied), 20, 40, 60, 80, and 100 (fully neutralized Farallon
slab).

dynamic models, we need to incorporate variable crustal density and topography
into CitcomS. The topography requires special consideration. CitcomS uses a flat
surface and does not allow the user to input variable topography on a free surface.
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Figure 4.7: Depth slices of the thermal and compositional buoyancy ratio fields input to CitcomS.
Left) Representative slices of the temperature field used in CitcomS at 50, 150, 910, 1510, and 2760
km depth. Right) The corresponding buoyancy ratio computed from the temperature anomalies for
representative slices of the lithosphere (50 and 150 km depth), the Farallon slab (910 and 1510 km
depth), and the LLSVPs (1510 and 2760 km).
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We account for the topographic contribution to the stress field by constructing an
effective density model that conserves GPE. In doing so, we essentially flatten the
topography into a 1 km thick layer at the surface by computing the topography’s
equivalent density and adding it to that layer; that is, we add a density excess to the
top layer such that the GPE computed from the original model with topography is
equivalent to the GPE computed from the model with no topography. This effective
density can be converted to a buoyancy ratio that can be input into CitcomS.

The GPE is the vertically integrated vertical stress, and takes the form:

𝐺𝑃𝐸 = 𝜎𝑧𝑧 =

∫ 𝐿

−ℎ
𝜌(𝑧)𝑔(𝐿 − 𝑧)𝑑𝑧. (4.17)

𝐿 is a constant reference level and −ℎ is the topographic height, which may vary
for each point on the globe. 𝜌(𝑧) is the density at a given depth 𝑧, and 𝑔 is the
gravitational acceleration.

We calculate GPE using the crustal density model CRUST1.0 (Laske et al., 2013),
which includes topography and sediments. The CRUST1.0 data-set consists of
densities and layer-top depths for different crustal and sedimentary layers, as well
as the Moho, which we discretize onto a 3D mesh at 1 km resolution in the vertical
direction. We numerically compute GPE from the grid by calculating 𝜎𝑧𝑧 for each
layer and iteratively summing down to the reference level at 𝐿 = 100 km (Eq. 4.18).
Numerically, GPE can be written as:

𝜎𝑧𝑧 =

𝑛∑︁
𝑖=1

(𝐿 − 𝑧𝑖)𝜌𝑖𝑔Δℎ𝑖, (4.18)

where 𝑧𝑖 is taken to be the depth of the midpoint of the layer; 𝜌𝑖 is the density of
that layer as determined from CRUST1.0; Δℎ𝑖 is the thickness of that layer, which
is a constant 1 km for all layers; 𝐿 is the reference level of 100 km depth; and 𝑛 is
the number of layers (𝑛 = 100). Below the Moho and down to the reference level,
we use a constant mantle density of 3300 kg/m3. The resulting total GPE is similar
to that calculated in Ghosh et al. (2009) and Ghosh et al. (2013).

To create a model with “flattened topography” and crustal density that can be used
within CitcomS, we first compute a density grid that accounts for the mass of the
topography. From the known topographic contribution to the GPE (𝐺𝑃𝐸𝑇 ), we
compute the excess density that needs to be added to the top layer of the flattened
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model (Eq. 4.19), such that the resulting GPE is equivalent to that from a model
that includes topography (see derivation in Appendix C.2).

𝜌𝑇 =
𝐺𝑃𝐸𝑇

(𝐿 − 0.5 ∗ Δℎ)𝑔Δℎ (4.19)

We can compute 𝐺𝑃𝐸𝑇 directly from our density grid, and Δℎ is the depth to the
base of the first layer of elements in our 3D grid (1 km).

4.5 Calculation of 𝑆𝐻𝑚𝑎𝑥 and Coulomb Stress
CitcomS outputs the viscosity, temperature, and velocity fields, as well as the full
stress and strain-rate tensors for each nodal point in the global domain. From the
stress tensor, we compute the second invariant of the deviatoric stress (Eq. C.50).
With this, we investigate how the stress magnitude changes at the continental scale
and within different seismic zones between models with and without influence from
the Farallon slab and between models with and without low viscosity weak zones.

From the stress tensor, we also compute the principal stresses, their directions, and
the direction of maximum horizontal compressive stress (𝑆𝐻𝑚𝑎𝑥) following Lund
and Townend (2007) (Appendix C.3). Since principal stress magnitudes cannot
be determined from most stress measurements in typical settings, most stress data
consists of only a four-parameter subset of the stress tensor components, which
includes the principal directions and relative stress magnitude, a quantity typically
defined as 𝑅 = (𝜎1 − 𝜎2)/(𝜎1 − 𝜎3) (Lund and Townend, 2007). Thus, calculation
of the 𝑆𝐻𝑚𝑎𝑥 directions from the modeled stress tensors is necessary for properly
comparing our results to stress data. Accurate calculation of 𝑆𝐻𝑚𝑎𝑥 , as opposed
to using the pure principal stress directions, is also important because when none
of the three principal stress directions are truly vertical, 𝑆𝐻𝑚𝑎𝑥 does not simply
coincide with the largest subhorizontal stress, though it may be an adequate proxy.
However, in our predicted stresses, 𝑆𝐻𝑚𝑎𝑥 , 𝑆𝐻𝑚𝑖𝑛, and 𝑆𝑉 almost always coincide
with the principal stresses at crustal depths. We compare estimates of the 𝑆𝐻𝑚𝑎𝑥
direction with those of the World Stress Map (Heidbach et al., 2018) and other
focal mechanism stress inversions (Mazzotti and Townend, 2010; Hurd and Zoback,
2012).

Before calculating 𝑆𝐻𝑚𝑎𝑥 or resolving the stress onto faults, we also add back the
lithostatic pressure. In CitcomS, the deviatoric stress tensor is computed from the
deviatoric strain rate, to which the dynamic pressure is then added. The dynamic
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pressure, however, is the pressure arising from the flow itself, not the overburden
pressure of the overlying rock. Inclusion of the lithostatic pressure is not necessary
for the determination of 𝑆𝐻𝑚𝑎𝑥 and does not affect the orientation of the principal
stresses. However, it does affect the magnitude of the principal stresses and the mag-
nitude of the normal stress resolved on any given fault plane. Accurately computing
such normal stress is essential for computing the Coulomb failure stress on a fault;
without the lithostatic component, Coulomb stresses are greatly overestimated. We
compute the lithostatic pressure assuming a mean continental crustal density of 2700
kg/m3. For consistency with the theory of the critically stressed crust (Townend
and Zoback, 2000; Zoback and Townend, 2001; Zoback et al., 2002), the lithostatic
pressure is counteracted by the pore-fluid pressure exerted by water and other fluids
in the crust such that optimally oriented faults are always on the verge of slipping.
Without this reduction in normal stress, lithostatic pressure is such that at seismo-
genic depths all faults are always completely within the stable regime with respect
to the Coulomb failure criterion. To account for the effect of pore fluid, we use a
pore fluid factor of 0.6 (see Appendix C.3), which is consistent with intermediate
values previously used for conditions of fault slip in intraplate regions like Canada
(Zoback, 1992; Rimando and Peace, 2021).

To better clarify the degree to which Farallon slab–induced mantle flow and/or
intraplate weak zones impact the potential for fault reactivation in intraplate settings,
we must determine whether such stresses are sufficient in both magnitude and
orientation to bring intraplate faults closer to failure. The most commonly used
criterion for determining whether there will be slip on a fault is the Coulomb Failure
Criterion (CFC) (King et al., 1994), defined by the shear and normal stress on the
failure plane, the pore pressure, the coefficient of friction, and the cohesion of the
rock (Eq. 4.20). The criterion states that when the shear stress on a fault exceeds a
certain threshold, failure may occur, possibly initiating an earthquake (King et al.,
1994). The Coulomb failure stress (CFS) is the difference between the shear stress
on a given fault and the failure threshold (Eq. 4.21), where positive Coulomb failure
stresses indicate unstable faults (i.e., likely to slip) and negative Coulomb failure
stresses indicate stable faults (i.e., unlikely to slip). As is common practice for pre-
existing faults, we take the cohesion C to be zero, as it is usually only considered
when dealing with newly forming faults where the rock actually needs to break.
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CFC ≡ 𝜏𝐹 = 𝜇𝜎𝑛 + 𝐶 (4.20)

𝜎𝐶𝐹𝑆 = 𝜏 − (𝜇𝜎𝑛 + 𝐶) (4.21)

Because CFS is calculated from the shear and normal stress resolved on an actual
fault plane, it is highly dependent on the orientation of that fault (e.g., its strike and
dip) with respect to the orientation of the stress tensor. Thus, to assess how faults
in intraplate settings might respond to the stress states produced by the models, it is
essential to analyze the Coulomb failure stress on realistic faults within the different
seismic zones. Using fault orientation data and our computed stress tensors, we
compute the CFS on faults (Appendix C.3) in the NMSZ, WQSZ, and CXSZ/LSLSZ.

4.6 Results
Two main suites of models were computed to explore the influence of low viscosity
weak zones on the intraplate stress field of eastern North America: one with the full
expression of the Farallon slab in the thermal field as resolved from seismic tomog-
raphy and the other with the Farallon slab neutralized by means of the buoyancy
ratio. The parameters of these models are summarized in Table 4.3. Within each of
these sets, we test a case without weak zones; two cases with weak zones, one with
the weak zones at different depths depending on geophysical constraints for their
respective locations and one with all weak zones placed at the same depth between
25-75 km; and a case without weak zones but in which we have incorporated the
effect of GPE due to crustal density and topography variations. In all cases with
weak zones, weak zone viscosity is reduced by a factor of 1e4. Globally, to first
order, the velocity field predicted by CitcomS for each of our models is consistent
with global plate motions and strain rates match observed values from the Global
Strain Rate Map (Kreemer et al., 2014) to within 8-10% error on average. In mod-
els with the Farallon slab, strain rate within continental eastern North America are
on the order of 1 × 10−9 to 1 × 10−8 yr−1, and the percent error of the log of the
second invariant of deviatoric strain rate between the modeled values and those of
Kreemer et al. (2018) is generally less than 10% but can be as high as 20% in the
central-eastern U.S. (Figure C.4 a,c,e). In models without the Farallon slab, strain
rate is slightly lower, with isolate patches in the central-eastern U.S. reaching 15%
error, but the majority of error remains broadly less than 10% (Figure C.4 b,d,f).
The 𝑆𝐻𝑚𝑎𝑥 directions derived from the CitcomS stress tensors reproduce first order
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stress provinces globally, including the general NE 𝑆𝐻𝑚𝑎𝑥 orientation across eastern
North America and the radial pattern of stress orientations in China.

Model Cases
Model No. Farallon BR % GPE WZ 𝜂 Prefactor WZ depth
A0 0 N 1 –
A1 0 N 0.0001 variable
A1b 0 N 0.0001 25-75 km
A0G 0 Y 1 –
B0 100 N 1 –
B1 100 N 0.0001 variable
B1b 100 N 0.0001 25-75 km
B0G 100 Y 1 –

Table 4.3: Parameters tested in the different model cases. Models prepended with an A have the full
Farallon slab as resolved from seismic tomography. Models prepended with a B have the Farallon
slab entirely neutralized by the buoyancy ratio (i.e., Farallon BR 100%). GPE indicates whether the
effect of GPE as derived from the Crust1.0 model was included. WZ 𝜂 prefactor is the viscosity
reduction applied to the intraplate weak zones. WZ depth is either variable in accord with the
geophysically inferred depths of different structures as discussed in the text or is constant between
25 and 75 km depth.

We begin by comparing the modeled 𝑆𝐻𝑚𝑎𝑥 orientations to those of the WSM for
different cases (Figure 4.8). Panel (a) in Figure 4.8 shows the orientation of the
modeled 𝑆𝐻𝑚𝑎𝑥 for model A0 with the Farallon slab and no weak zones, colored by
the absolute misfit to the observed 𝑆𝐻𝑚𝑎𝑥 , where the maximum misfit is 90°. Across
all models, the majority of misfits throughout eastern North America are less than 25°
but vary spatially. Misfits are lowest in the central-eastern and north-eastern U.S. in
the vicinity of eastern Tennessee and the Rome Trough and up through the Northern
Appalachians. Strong fits are also observed in New Madrid and the Canadian
seismic zones. The largest misfits are generally isolated to individual points and
are not unexpected given the uniformity of the modeled stress field compared to the
shorter wavelength spatial variability in the observed 𝑆𝐻𝑚𝑎𝑥 directions, even across
small areas.

The presence or lack of either weak zones or the Farallon slab introduces perturba-
tions to the modeled 𝑆𝐻𝑚𝑎𝑥 direction and its misfit to the observed data (Figure 4.8
b-d). Including intraplate weak zones only, without the Farallon slab, decreases the
misfit by less than one degree on average within the major seismic zones, except in
New Madrid where it decreases by about 3° (Figure C.5). On the other hand, the
inclusion of the Farallon slab alone, without weak zones, changes the 𝑆𝐻𝑚𝑎𝑥 misfit
by up to ±20° (Figure 4.8 c,d). Specifically, the fit improves by ∼ 11° in the NMSZ,
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Figure 4.8: Changes in misfit between observed and modeled 𝑆𝐻𝑚𝑎𝑥 orientations at 10 km depth.
a) 𝑆𝐻𝑚𝑎𝑥 orientations of model A0 colored by misfit (|modeled − observed|) to the observed stress
orientations from the WSM of Heidbach et al. (2018) (light gray lines). b) Difference in the 𝑆𝐻𝑚𝑎𝑥

misfit between model A1 and model A0 (i.e., models with the Farallon slab, but with vs. without
weak zones). c) Difference in 𝑆𝐻𝑚𝑎𝑥 misfit between model A0 and B0 (i.e., models without weak
zones, but with vs. without the Farallon slab). d) Difference in 𝑆𝐻𝑚𝑎𝑥 misfit between model A1 and
model B1 (i.e., between the case with both Farallon and weak zones and the case with weak zones
but no Farallon.

∼ 17° in CVSZ, ∼ 13° in the WQSZ, ∼ 5° in the CXSZ, and ∼ 13° in the LSLSZ.
However, fit worsens by about 8° in the ETSZ and South Carolina and by as much
as 15° along the Rome Trough (Figure C.5). Inclusion of both weak zones and the
Farallon slab results in further misfit reductions in the NMSZ, CVSZ, LSLSZ, and
both on and offshore Nova Scotia, but only by up to 8°. It is important to note that
while the Farallon slab has a notable impact on 𝑆𝐻𝑚𝑎𝑥 orientation, the very small
change induced by the inclusion of weak zones, generally less than ±5°, is largely
insignificant with respect to the local 90% confidence intervals of the WSM data,
which for a single seismic zone can often span as much as 25°, with the smallest
interval being 8° (Figure C.5).
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Overall, the presence of the Farallon slab more accurately reproduces the observed
stress field both regionally and in each of the seismic zones, barring the ETSZ. This
is not surprising since the Farallon slab is known to exist at depth in the mantle
and will therefore have some effect on the stress field. What is more interesting
is the direction of rotation induced by the slab effect and the additional small
changes induced by weak zones in the presence of the slab’s influence. Under only
tectonic background forcing, 𝑆𝐻𝑚𝑎𝑥 directions follow the regional NE-SW trend,
but inclusion of the Farallon slab causes a continent wide clockwise rotation of the
𝑆𝐻𝑚𝑎𝑥 direction of about 10-15° (Figure 4.9 c). This rotation becomes even greater
in the presence of weak zones, ranging from an extra couple of degrees in New
Madrid to more than 5° along the Appalachian front, from the ETSZ all the way up
through the LSLR (Figure 4.9 b,d). However, weak zones induce counterclockwise
rotations in the western part of the WQSZ and in northern New England, as well as
on and offshore Nova Scotia (Figure 4.9 b). In models with the full Farallon slab,
weak zones induce the largest clockwise stress rotations in the Central Virginia,
Charlevoix, and Lower Saint Lawrence Seismic Zones (Figure 4.10).

While changes in the 𝑆𝐻𝑚𝑎𝑥 direction between the different cases are subtle, changes
in stress magnitude are substantial. At long-wavelength, the Farallon slab induces
a high amplitude stress anomaly across the central-eastern U.S., the peak of which
coincides with the vicinity of the NMSZ and the nearby ETSZ. This peak in stress
is all but eliminated in the case without the influence of the Farallon slab (dark blue
lines in Figure 4.11 a,b). In both cases with and without the Farallon slab, a small
peak in stress at around 1300 km from the center of profile B-B’ in Figure 4.11a
likely reflects the effect of the density and viscosity change at the continent-ocean
transition. Without the Farallon slab, mantle flow beneath eastern North America
and hence the traction imparted to the base of the lithosphere is greatly reduced
(Figure 4.11 e,f), resulting in stress magnitudes on the order of 50 to 100 MPa (dark
blue lines in Figure 4.11 a,b) and stress perturbations from the inclusion of weak
zones on the order of 5-20 MPa (Figure 4.12). However, when the full expression of
the Farallon slab is included (light blue lines in Figure 4.11 a,b and panels c,d), stress
magnitudes jump considerably to 200-250 MPa. Most notably, stress perturbations
within the WQSZ, LSLSZ, CXSZ, and ETSZ seismic zones due to the inclusion
of shallow weak zones in the presence of mantle flow (Figure 4.12) are as much as
70-100 MPa – nearly 50 MPa more than the case of including weak zones alone
(Figure 4.12 b).



115

Figure 4.9: Rotation in 𝑆𝐻𝑚𝑎𝑥 orientation between cases with vs. without weak zones and/or Farallon
loading at 10 km depth. a) 𝑆𝐻𝑚𝑎𝑥 orientations of model A0 colored by misfit as in Figure 4.8. b)
𝑆𝐻𝑚𝑎𝑥 rotation between models A1 and A0 (i.e., effect of including weak zones in models with the
Farallon slab). Positive values indicate clockwise rotation; negative values indicate counterclockwise
rotation. c) 𝑆𝐻𝑚𝑎𝑥 rotation between models A0 and B0 (i.e., effect of including the Farallon alone,
without weak zones). d) 𝑆𝐻𝑚𝑎𝑥 rotation between model A1 and model B0 (i.e., combined effect of
including both Farallon and weak zones). e) 𝑆𝐻𝑚𝑎𝑥 rotation between model A0 and A0G (i.e., effect
of including GPE in models with Farallon but no weak zones). f) 𝑆𝐻𝑚𝑎𝑥 rotation between model B0
and B0G (i.e., effect of including GPE in models with neither Farallon nor weak zones).

Stress magnitudes also exhibit a strong dependence on weak zone depth. Models
A1 and B1 contained weak zones emplaced at different depths based on where local
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Figure 4.10: 𝑆𝐻𝑚𝑎𝑥 orientations in different seismic zones. Gray: polar histogram of the local
𝑆𝐻𝑚𝑎𝑥 orientations from the WSM, binned every 10°. Light orange colors: regional borehole (BH)
derived mean 𝑆𝐻𝑚𝑎𝑥 and 90% CI from Mazzotti and Townend (2010). Reddish colors: local focal
mechanism (FM) derived mean 𝑆𝐻𝑚𝑎𝑥 and 90% CI from Mazzotti and Townend (2010) (see legend).
Value of the mean BH and FM 𝑆𝐻𝑚𝑎𝑥 are labeled on the theta axis for each seismic zone. Light
blue lines: local mean 𝑆𝐻𝑚𝑎𝑥 from models with the Farallon slab (A0, A1, A1b, A0G). Dark blue
lines: local mean 𝑆𝐻𝑚𝑎𝑥 from models with a neutralized slab (B0, B1, B1b, B0G). Line-styles
differ for different weak zone cases (see legend). NMSZ: New Madrid Seismic Zone, ETSZ: Eastern
Tennessee Seismic Zone, CVSZ: Central Virginia Seismic Zone, WQSZ: Western Quebec Seismic
Zones, CXSZ: Charlevoix Seismic Zone, LSLSZ: Lower Saint Lawrence Seismic Zone.
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Figure 4.11: Stress, strain, and viscosity profiles. a) 2𝑛𝑑 invariant of deviatoric stress at 10 km depth
along track B-B′ as in Figure 4.4, traversing W-E across the U.S. and through the NMSZ and ETSZ.
Light blue lines: models in set A (i.e., with Farallon slab); dark blue lines: models in set B (i.e.,
neutralized Farallon slab). Solid lines: no weak zones (models A0 and B0). Thick dashed lines:
weak zones at variable depths depending on seismic zone (models A1 and B1). Dashed-dotted lines:
weak zones all at 25-75 km depth (models A1b and B1b). Dotted lines: with GPE but no weak zones
(models A0G and B0G). b) Stress magnitude as in (a) but along track A-A′ as shown in Figure 4.4,
traversing SW-NE across the U.S. and Canada and through the NMSZ, WQSZ, and LSLRS. c, d) 2𝑛𝑑
invariant of deviatoric strain rate at 50 km depth along tracks B-B′ and A-A′, respectively. Lines as
in (a,b). e, f) Viscosity profiles at 50 km depth along tracks B-B′ and A-A′, respectively. Line-styles
as in (a,b). g, h) Vertical slices of the viscosity field along tracks B-B′ and A-A′, respectively, for
models with the Farallon slab; black arrows show velocity field. Locations of the seismic zones
along the profile are marked as in (a,b). i, j) Viscosity slices and velocity field as in (g,h) but for
models with a neutralized Farallon slab.

geophysical data suggests a weak zone may be present (Section 4.2). In this case,
the weak zones in the vicinity of New Madrid and the Rome Trough/West Virginia
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Figure 4.12: Deviatoric stress magnitude for eastern North America for different model cases. a)
2𝑛𝑑 Invariant of deviatoric stress for model A1 with both Farallon and weak zones placed at variable
depths. b) Stress perturbation from including weak zones in models with the Farallon slab (i.e.,
between models A1 and A0). c) Stress perturbation from the Farallon slab alone, without weak
zones (i.e., between models A0 and B0). d) Combined stress perturbation from including both
the Farallon and weak zones (i.e., between models A1 and B0). e) Stress perturbation induced by
GPE for models with the Farallon, but no weak zones (i.e., between models A0 and A0G). f) Stress
perturbation induced by GPE for models with neither the Farallon nor weak zones (i.e., between
models B0 and B0G).

are deeper than those in eastern Tennessee and southeast Canada. As such, they are
farther removed from the crustal depths at which we assess the stress magnitudes
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(10-15 km) and thus have a weaker and more diffuse effect on loading the overlying
crust. In models where all weak zones are assumed to be near the base of the
crust and extending into the upper mantle, between 25 and 75 km depth, stress
perturbations in New Madrid become the largest of any of the seismic zones (Figure
4.11).

We also assessed the impact of incorporating gravitational potential energy (GPE)
differences arising from lateral variations in crustal density and topography (models
A0G and B0G). Incorporating GPE actually reduces the overall stress in the conti-
nental interior for both cases with and without the Farallon slab (Figure 4.12 e,f and
dotted lines in Figure 4.11 a,b) and introduces more high frequency variability in
the stress field than we are able to recover from the long-wavelength loading alone.
Neither model A0G nor model B0G have weak zones, but interestingly, they both
exhibit a small peak in stress at the location of the NMSZ. This peak is equally
pronounced in both models with and without the Farallon slab, and is even greater
in amplitude than the stress perturbation caused by the inclusion of a deeper upper
mantle weak zone. Peaks in stress from the inclusion of GPE are not observed in the
WQSZ or CXSZ/LSLSZ (Figure 4.11 b). Inclusion of GPE alone without influence
from the Farallon slab also increases 𝑆𝐻𝑚𝑎𝑥 misfits by on average 5°, except in the
NMSZ, where is decreases by a couple degrees. On the other hand, including GPE
in the presence of Farallon loading reduces misfits by ∼8° in the Canadian seismic
zones, ∼13° in New Madrid, and as much as ∼20° in Central Virginia relative to the
WSM data (Figure C.5).

While differences in stress magnitude between the different model cases demon-
strate the pronounced influence of the slab and weak zones, whether those stress
perturbations are such that they increase the likelihood of seismicity in eastern North
America is dependent on the local fault geometry. To assess the likelihood of fault
reactivation for each of the different cases, we resolve Coulomb failure stress on
actual faults in the NMSZ, WQSZ, and CXSZ/LSLSZ (Figures 4.13, 4.14, and
4.15). Coulomb failure stress is computed for all faults given their strike and dip and
the stress tensors along that fault; Mohr circles are drawn relative to the Coulomb
failure criteria for specific faults associated with known major historical earthquakes
or nearby populated cities.

In the NMSZ, faults are assumed to be vertical unless otherwise indicated. While
most faults in the NMSZ are steeply dipping, between 70-90°, yielding low Coulomb
stress values and thus stable faults, the Reelfoot Fault dips between 30-44° (Csontos
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Figure 4.13: Mohr circles (main plot) and Coulomb failure stress (map inset) for faults in the
NMSZ calculated using 𝜇 = 0.6. Fault locations from Thompson et al. (2020). Fault strike and
dip information for the Axial Fault (strike=46°, dip=90°), the New Madrid North Fault (strike=29°,
dip=72°), the Risco Fault (strike=92°, dip=82°), and the North Reelfoot Fault (strike=167°, dip=30°)
are from Csontos and Van Arsdale (2008). Faults with unknown dip are assumed to have a dip of
90°. Mohr circles are drawn for these New Madrid faults, using the fault’s strike and dip and the
stress tensor at the location of the corresponding star on the map. Star colors correspond to Mohr
circle colors. Star locations for the three northernmost stars correspond to the most likely epicenters
of the 1811-1812 earthquake sequence (Delano et al., 2021). The cloud of points on each Mohr
circle represent the shear vs. normal stress for all possible stress tensors in the inset region given that
fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for 𝜇 = 0.6; gray line is
for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a) Results from model A0 (with Farallon, no weak
zones). (b) Results from model A1 (with Farallon, with weak zones). (c) Results from model B0 (no
Farallon, no weak zones). (d) Results from model B1 (no Farallon, with weak zones).

and Van Arsdale, 2008), placing it in an optimal orientation to be reactivated as a
thrust fault in the local stress field. This fault indeed happens to be the site of one
of the earthquake epicenters in the 1811-1812 earthquake sequence (Delano et al.,
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2021). The Reelfoot Fault is also the only fault to exhibit positive Coulomb stress
values in each of our models (Figure 4.13), indicating a higher likelihood of fault
reactivation. Similarly, the New Madrid North Fault also shows higher Coulomb
stress, though still in the stable regime, and is also the site of one of the historical
earthquakes. The NNW striking Joiner Ridge fault (orange star in Figure 4.13),
which intersects the Axial Fault, has an unconstrained dip and thus was assigned a
dip of 90°. However, this fault is identified as a thrust fault. If one were to assume a
dip between 30-45° as in the case of the Reelfoot Fault, this fault would also exhibit
high Coulomb stresses, and is in the vicinity of the remaining historical event just
to the north on the Axial Fault (light brown star in Figure 4.13). While the vertical
Axial Fault itself is not optimally oriented and exhibits low Coulomb stress, the
intersection of a nearby reverse fault on which high Coulomb stress is localized
could explain the occurrence of a major earthquake in this location (Talwani, 1988;
Talwani, 1999).

The modeled stress state yields results consistent with expectations from the local
rupture history, but more interesting are the differences in Coulomb stress we observe
between the different models. For non-optimally oriented vertical faults, there is not
a pronounced change between different cases, but for the more optimally oriented
Reelfoot and New Madrid North Faults, there is an obvious difference. Inclusion of
the Farallon slab pushes the Reelfoot Fault farther into the unstable regime by about
75-100 MPa and the New Madrid North Fault by about 10-20 MPa. In both cases
with and without the Farallon slab, the inclusion of the weak zone does not have a
notable effect, and shifts most faults farther from failure, except for the Reelfoot and
New Madrid North Faults, which remain largely unchanged. This smaller effect is
likely due to the deeper depth of the weak zone.

Changes between models are much more pronounced in the WQSZ (Figure 4.14).
Without the Farallon slab and without weak zones (Figure 4.14 c), all faults are
stable with respect to the Mohr-Coulomb failure criterion assuming a coefficient
of friction of 0.4 – 0.6 and fault dips of 56°, consistent with steeply dipping rift-
bounding normal faults for the region (Bent et al., 2003; Rimando and Peace,
2021). The dips of the Timiskaming fault (black star in Figure 4.14) and nearby
parallel faults are 45° based on Bent (1996). Assuming a 𝜇 = 0.6, including weak
zones without the Farallon slab brings most faults closer to failure (Figure 4.14 d),
though still within the stable regime, with the largest changes occurring in and to the
northeast of Montreal. If faults are weaker (𝜇 ≈ 0.4), many faults would just pass
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into the unstable regime, including the four plotted as Mohr circles. Similar to the
NMSZ, influence of the Farallon slab brings all faults closer to failure by at least 15-
25 MPa, but only a few faults exhibit high Coulomb stress above the failure criterion
— a change on the order of 75-100 MPa. These faults all have similar orientations
and dips and include the fault on which the 1935 M 6.1 Timiskaming earthquake
occurred, as well as the nearby Cross Lake, Montreal River, and Latchford Faults.
The Mohr circle for this location is solidly within the unstable regime for every stress
tensor orientation in the map area. The other plotted Mohr circles, though stable
for a 𝜇 of 0.6, would likewise fall in the unstable regime for a slightly weaker fault
with 𝜇 of even just 0.55 (Figure C.6). Inclusion of shallow upper mantle/sub-crustal
weak zones noticeably shifts faults in the western half of the WQSZ closer to failure
by up to 25 MPa, including some that are less optimally oriented.

The LSLRS, including the CXSZ, is the only region for which we do not recover any
positive Coulomb stress values for faults associated with major historical earthquakes
if using 𝜇 = 0.6. Most faults in the LSLRS strike NE-SW, similar to the regional
𝑆𝐻𝑚𝑎𝑥 orientation and thus are not optimally oriented for thrust reactivation in such
a setting. Interestingly, for 𝜇 = 0.6, the inclusion of the Farallon slab by itself pushes
faults farther from failure. This is because even though the differential stress on the
faults increases (i.e., the radius of the Mohr circle expands), the total normal stress
on the fault also increases, pushing the Mohr circle to the right along the abscissa,
thus increasing its distance from the failure criterion. Nevertheless, similar to the
WQSZ, if one were to assume weaker faults with a 𝜇 of 0.4 or less, many of the faults,
including those associated with the major historical earthquakes, would be solidly
within the unstable regime. With a 𝜇 of even 0.5, most faults would be unstable by
5-10 MPa (Figure C.7). The inclusion of weak zones brings faults closer to failure
by ∼15 MPa in the CXSZ and as much as 20 MPa towards the south near Montreal.
For models without the Farallon slab, weak zones increase the Coulomb stress on
most faults by ∼10-15 MPa.

4.7 Discussion
Using mantle flow models to compute the stress field of eastern North America,
we have assessed the influence of Farallon slab buoyancy and weak zones on the
likelihood of fault reactivation in intraplate seismic zones. Between end member
cases of a fully realized negatively buoyant Farallon slab as inferred from seismic
tomography (model set A) and that of a neutrally buoyant Farallon slab (model
set B), our models reveal a long-wavelength stress amplification of up to 100-
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Figure 4.14: Mohr circles (main plot) and Coulomb failure stress (map inset) for faults in the WQSZ
calculated using 𝜇 = 0.6. Fault locations from Rimando and Peace (2021) and Lamontagne et al.
(2020). Fault strikes approximated using the best fitting great circle through the lineation. Unless
otherwise specified, fault dips were assumed to be 56° (Bent et al., 2003; Rimando and Peace, 2021).
Dip of the fault associated with the Timiskaming 1935 earthquake (black star) and nearby faults are
from Bent (1996) (strike=146°, dip=45°). Mohr circles are drawn for four faults, using the stress
tensor at the location of the corresponding star on the map: The Timiskaming fault of the M 6.1
1935 earthquake, the Rapide-du-Cheval Blanc Fault near the epicenter of the M 6.3 1732 Montreal
earthquake, the Lachute Fault (NE of Ottawa), and the Coulonge Fault (NW of Ottawa). Earthquake
locations from Bent (2022) and Bent et al. (2003). Star colors correspond to Mohr circle colors. The
cloud of points on each Mohr circle represent all possible stress tensors in the inset region given that
fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for 𝜇 = 0.6; gray line is
for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a) Results from model A0 (with Farallon, no weak
zones). (b) Results from model A1 (with Farallon, with weak zones). (c) Results from model B0 (no
Farallon, no weak zones). (d) Results from model B1 (no Farallon, with weak zones).

150 MPa induced by the presence of the slab (Figures 4.12, 4.11), as well as a
generally compressive stress state within the continent. To understand the origins
of this stress pattern, we examine the change in viscosity and strain rate at the
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Figure 4.15: Mohr circles (main plot) and Coulomb failure stress (map inset) for faults in the LSLRS,
including the CXSZ, calculated using 𝜇 = 0.6. Fault strikes approximated for each fault location
using the best fitting great circle through the lineation. Fault dips assumed to be 53°, consistent with
the values of steeply dipping rift bounding normal faults for the LSLRS as reported by Bent et al.
(2003) and Bent (1992). Mohr circles are drawn for the three faults closest to the epicenters of the
1663 M 7.0 and 1925 M 6.2 Charlevoix earthquakes and the M 6.3 1732 Montreal earthquake, using
the fault’s strike and dip and the stress tensor at the location of the corresponding star on the map.
Star colors correspond to Mohr circle colors. Earthquake locations from Bent (2022). The cloud of
points on each Mohr circle represent the shear vs. normal stress for all possible stress tensors in the
inset region given that fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for
𝜇 = 0.6; gray line for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a) Results from model A0 (with
Farallon, no weak zones). (b) Results from model A1 (with Farallon, with weak zones). (c) Results
from model B0 (no Farallon, no weak zones). (d) Results from model B1 (no Farallon, with weak
zones).

depth of the lithospheric weak zones (Figure 4.11 c-f). The buoyancy force of the
Farallon slab drives localized mantle flow beneath the central eastern US, consistent
with previous findings (Forte et al., 2007). This downward flow (Figure 4.11 g,
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h) means an amplified gradient in the vertical velocity in the mantle overlying the
downwelling. Because the lithosphere and underlying mantle are viscously coupled,
the downward flow in the mantle, excites a downward deflection of the overlying
lithosphere. This deflection is small due to the high viscosity of the lithosphere, but
even such small horizontal gradients in the vertical velocity are enough to produce
a broad low amplitude increase in the strain rate across the continent (Figure 4.11
c, d) compared to the flatter profile in the case with no Farallon slab. While subtle,
these higher strain rates, when scaled by the very large viscosity of the lithosphere,
result in a strong stress amplification over the central eastern US (Figure 4.11 a,
b). The peak of this long-wavelength stress perturbation centers over the New
Madrid Seismic Zone. In Western Quebec and the Lower Saint Lawrence Rift,
stress perturbations from the presence of the slab are similarly on the order of 100
MPa.

Superimposed on this broad stress high are peaks in stress due to the inclusion of
weak zones. The sharp lateral viscosity gradients imposed by such weak zones
lead to faster flow and higher strain rates within the weak zones, which likewise are
viscously coupled to the surrounding rigid lithosphere and crust and impart tractions
in these areas. Scaled by the very low viscosity of the weak zones, this leads to
low stresses within the weak zones themselves, but the tractions in the overlying
crust, scaled by the higher viscosity of the crustal lithosphere, lead to high stresses
localized above the weak zones (Figure 4.11 a,b). The stress perturbations are higher
in the models with the Farallon slab because the buoyancy force of the slab excites
more flow in these low viscosity regions. Stress perturbations arising from weak
zones in the presence of the sinking slab are enhanced by up to 70 MPa more so
than in the cases with no slab. Without the Farallon, weak zone stress perturbations
are only on the order of 5-15 MPa, suggesting crustal loading from displacements
in a mantle low-viscosity zone are relatively small under far-field tectonic stresses
alone, consistent with the findings of Zhan et al. (2016).

However, the magnitude of these weak zone stress perturbations is also dependent
on the depth of the weak zone. Deeper weak zones such as those beneath New
Madrid in models A1 and B1 yield stress perturbations at seismogenic depths of
only about 10 MPa compared to sub-crustal weak zones such as those in models A1b
and B1b, which yield stress perturbations on the order of 75 MPa. This is because
the shallower weak zones impart tractions directly to the base of the crust, but the
tractions imparted by the deeper weak zones will decay in magnitude with distance
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from the weak zone. Thus, we find that for weak zones to exert an appreciable
influence on intraplate stress at seismogenic depths, they must be shallow, extending
from lower crustal to mid-lithospheric depths and ideally coupled to the crust itself,
even when in the presence of full loading from the Farallon slab.

The significance of shallow versus deeper weak zones is even more apparent when
including the effect of GPE. While neither model A0G nor B0G have weak zones,
both exhibit stress perturbations in the NMSZ on the order of 20-30 MPa. The
perturbation is even similar in amplitude or greater than the stress perturbation
caused by the deeper-set weak zone of models A1 or B1. This suggests that for
the NMSZ, crustal density variations alone could be enough to locally enhance
stresses and promote seismicity on pre-existing faults, as has been suggested by
other authors (Ghosh et al., 2009; Levandowski et al., 2017). Such a significant
density variation could arise from the possible presence of mafic under-plating
or high density intrusions originating from the formation of the Reelfoot Rift or
the passage of an ancient hotspot (Chu et al., 2013) and is supported in part by the
observed seismic structure beneath the NMSZ (Chen et al., 2014; Chen et al., 2016).
The small peak in stress at around 1300 km from the center of profile B-B′ in Figure
4.11a is also more prominent in the models with GPE, reflecting the influence of
density and lithospheric viscosity changes at the continent-ocean transition. This
is also evident in the viscosity profile at 50 km depth (Figure 4.11 e), where a
slight increase in the viscosity gradient at that point leads to slightly higher strains
and the small peak in the stress magnitude along the passive margin. While small
(∼10 MPa), such a stress perturbation in combination with weak zones or structures
associated with Mesozoic rift basins along the eastern seaboard could help bring
coastal and offshore faults closer to failure. Within the Canadian seismic zones, on
the other hand, GPE induces a positive stress perturbation when not loaded by the
Farallon slab, in which case the Northern Appalachian and eastern Canadian region
show elevated stress magnitudes. GPE combined with low-viscosity weak zones
would likely induce even larger stress perturbations. Overall, while the effect of GPE
alone is not insignificant, particularly for the NMSZ, the stress perturbations arising
from shallow low-viscosity weak zones are more in line with values necessary to
reproduce observed stress patterns and enhance stress on faults. In fact, other than
in the NMSZ, GPE introduces a counterclockwise rotation of 𝑆𝐻𝑚𝑎𝑥 in contrast to
that observed across eastern North America (Mazzotti and Townend, 2010).
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Stress rotations within seismic zones across eastern North America are often consid-
ered indicative of long wavelength forcing beyond just tectonic background stress.
Mazzotti and Townend (2010) observe 30-50° clockwise rotations of the local fo-
cal mechanism derived 𝑆𝐻𝑚𝑎𝑥 direction from the regional borehole derived 𝑆𝐻𝑚𝑎𝑥
direction within several seismic zones in eastern North America. They argue that
the consistency of such stress rotations observed in seismic zones separated by large
distances, such as the LSLRS and parts of the central-eastern U.S, suggests a com-
mon mechanism. The borehole and seismically derived 𝑆𝐻𝑚𝑎𝑥 orientations from
Mazzotti and Townend (2010) and their 90% confidence intervals are plotted for six
seismic zones in Figure 4.10 along with the mean 𝑆𝐻𝑚𝑎𝑥 within each seismic zone
for each of our models. In all cases except the ETSZ, the clockwise rotation in stress
induced by the influence of the Farallon slab shifts the 𝑆𝐻𝑚𝑎𝑥 direction more in line
with the observed seismically inferred 𝑆𝐻𝑚𝑎𝑥 . This change is even more pronounced
for cases with both the slab and weak zones, and in the case of the CVSZ and the
CXSZ, shifts the 𝑆𝐻𝑚𝑎𝑥 direction from the confidence band of the regional borehole
value into that of the seismically derived values. The Charlevoix and Lower Saint
Lawrence Seismic Zones have the largest weak zone induced 𝑆𝐻𝑚𝑎𝑥 rotations of
∼35° and ∼25°, respectively, and the rotation for the CXSZ places 𝑆𝐻𝑚𝑎𝑥 within
a few degrees of the observed value. However, the structural complexities due to
the Charlevoix impact crater, as well as variations in 𝑆𝐻𝑚𝑎𝑥 orientations derived
from microseismicity with the CXSZ (Baird et al., 2010), suggest that local stress
perturbation may be just as responsible for the anomalous seismicity in this area as
is any regional stress perturbation. Nevertheless, the influence of slab loading is
shown to induce a clockwise rotation on the intraplate stress field, and the presence
of shallow weak zones enhances the magnitude of that stress rotation in line with
the observed rotations in some seismic zones.

The New Madrid, Central Virginia, and the Lower Saint Lawrence River Seismic
Zones, however, would still require larger rotations to shift 𝑆𝐻𝑚𝑎𝑥 into the seismically
inferred CI band. The observed rotations require stress perturbations on the order of
160-250 MPa, assuming a high friction crust (Mazzotti and Townend, 2010). In our
models, the inclusion of zones 1e4 times weaker than the surrounding lithosphere
induces stress perturbations on the order of 130 MPa in the presence of slab loading
relative to a case with no Farallon loading, yielding total stress magnitudes of 200-
250 MPa over the central-eastern U.S. For the NMSZ, only the model with shallow
weak zones gets close to the observed 𝑆𝐻𝑚𝑎𝑥 direction of either the Mazzotti and
Townend (2010) or the WSM data, suggesting slightly higher stress perturbations
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may be required to reach the magnitudes of the observed rotations. This may
be achieved by an even shallower or weaker weak zone or by additional sources
of stress, such as GIA or local complexities in the faulting that may help further
amplify stresses. For example, Wu and Mazzotti (2007) observe clockwise rotation
of GIA stresses in the crust above lithospheric weak zones, and GIA induced 𝑆𝐻𝑚𝑎𝑥
alone is nearly E-W in the central-eastern U.S. (Chapter 5).

The rotations induced by the slab and weak zones are important because they
orient the stress tensor into a position more favorable for reactivating faults in
some of the seismic zones. In the LSLRS and parts of the WQSZ, the majority
of faults strike SW-NE in line with the regional 𝑆𝐻𝑚𝑎𝑥 direction, making them
non-optimally oriented for reactivation. When 𝑆𝐻𝑚𝑎𝑥 rotates into a more E-W
orientation, however, these ancient rift bounding faults become more favorably
oriented, potentially promoting slip. Even with the rotations we observe (Figure
4.10) however, Coulomb stresses on these faults are still relatively low (Figure 4.15)
assuming a 𝜇 of 0.6. However, even a small reduction in the coefficient of friction,
as little as 0.1, would promote instability on these faults in the modeled stress field
(Figure C.7). A 𝜇 = 0.5 in the case of both weak zones and the Farallon loading,
for example, pushes the majority of faults in the LSLRS into the unstable regime
by about 5-10 MPa. Even without the weak zone, one of the faults closest to the
proposed epicenter of the 1732 Montreal earthquake exhibits positive Coulomb
stress values. Higher friction values of 𝜇 ≥ 0.6 are typical of intraplate crust
as a whole (Townend and Zoback, 2000; Zoback et al., 2002), but locally within
pre-existing crustal weak zones, friction may be much lower. In Charlevoix, for
example, relationships between seismicity and geological structures suggest the
main rift faults of the LSLRS may have abnormally low friction values, as small
𝜇 ≈ 0.1, or abnormally high pore fluid pressure (Baird et al., 2010). While such
a low value is unlikely, the middle/lower crust in this region is estimated to have a
friction coefficient of around 0.5 ± 0.07 based on a joint focal mechanism inversion
of events within the CXSZ (Verdecchia et al., 2022). Thus, even just a slightly
smaller friction coefficient would allow for faults to reach instability under slab
loading without the need for such anomalously weak faults. A reduction by only
0.05 in the coefficient of friction would likewise place many faults in the western
half of the WQSZ squarely within the unstable regime relative to the Mohr-Coulomb
failure criterion (Figure C.6).
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Even with 𝜇 ≥ 0.6 the likelihood of failure on the Timiskaming fault is clearly
resolved in the cases of Farallon loading. Likewise, instability on the Reelfoot
Fault associated with the 1811–1812 NMSZ sequence is also apparent in all cases.
What these two faults have in common is their optimal orientation for slip within
even the background stress field, demonstrating unsurprisingly that the existing fault
orientation is a dominant control on its likelihood of reactivation in an intraplate
setting. The inclusion of the Farallon slab and/or weak zones, on the other hand,
does perturb the magnitudes of stresses in such a way that it brings these faults
further into the unstable regime, increasing Coulomb stress on the order of 75-
100 MPa (Figures 4.13 and 4.15). More importantly, assuming weak faults, it can
also bring non-optimally oriented faults to failure or closer to failure, as in the
case of the WQSZ and the CXSZ/LSLSZ (Figures C.6 and C.7). In this case, the
southwest portion of the LSLRS is more strongly affected by the Farallon slab than
the Charlevoix, reflecting the greater influence of the slab towards the center of
eastern North America, where the majority of the Farallon’s mass is located beneath
the central-eastern U.S. and the NMSZ (Figure 4.11).

Not all seismic zones show improved 𝑆𝐻𝑚𝑎𝑥 fits or elevated stresses due to the
Farallon or weak zones. In the ETSZ and in the vicinity of the Rome Trough and the
Northern Appalachians, the inclusion of weak zones actually reduces the fit to the
stress data, rotating it too much relative to the observed local 𝑆𝐻𝑚𝑎𝑥 . This suggests
that despite the prominence of a high conductivity and low seismic velocity zone
in this region (Evans et al., 2019; Schmandt and Lin, 2014), corresponding low
viscosities are not essential for reproducing the observed stress field. On the other
hand, the ETSZ is one of the few seismic zones for which GPE actually improved the
𝑆𝐻𝑚𝑎𝑥 fit. The strong shallow density contrast across the NY-AL lineament evident
in magnetic data (Thomas and Powell, 2017) suggests lateral buoyancy effects are
likely significant in this region. Another peculiarity worth mentioning is that most
of the seismicity in the WQSZ is actually concentrated northeast of the old rift, not
within the aulacogen itself, yet most of the known faults, including those for which
we perform a CFS analysis (Figure 4.14), are along the Ottawa-Bonnechere Graben.
This would either suggest that the most active faults in this area have simply not been
mapped or that the weak zone loading the crust is not bounded by the ancient rift
faults but instead located slightly to the northeast, along the suggested position of
an ancient transform fault (Sykes, 1978) or the passage of the Great Meteor hotspot
(Ma and Eaton, 2007). In either case, if we were to shift the sub-crustal weak zone
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of Western Quebec slightly to the northeast, we would likely see similar patterns
and similar stress magnitude perturbations as those of the current results.

While the substantial influence of the Farallon slab and local weak zones on the
intraplate stress field is evident, there are still many local sources of stress perturba-
tions and other factors driving intraplate seismicity to consider. One consideration
is the actual viscosity of the weak zones. We only test the presence of weak zones
by considering the end member cases of no weak zones versus weak zones with a
viscosity of 1e–4 relative to the surrounding lithosphere. However, the viscosities
of these different weak zones, if present, are likely to vary, possibly by orders of
magnitude. There is also likely some trade-off between the impact of the viscosity
reduction on the stress perturbations versus the impact of the weak zone depth.
Depth is better constrained than viscosity due to the availability of geophysical data,
but this trade off still requires further investigation. The other major consideration
and one of the most critical is that we do not account for the previous stress history
of the fault. In our models, all faults are virtual faults, meaning no physical fault
surface is included in the model; rather, the calculated stress tensors at a particular
location are applied to a set of faults after the fact to determine there influence on
the behavior of a fault of a particular orientation. Were faults present in the model
itself, their presence would affect the stress distribution (Wu et al., 2021; Steffen
et al., 2014b). Most importantly, the rupture history of the fault, which we do not
explicitly model, will affect the local change in CFS and the likelihood and location
of future earthquakes (Stein, 1999). This is especially true in light of the long-lived
aftershock sequences and temporal clustering that are typical of intraplate settings
(Stein and Liu, 2009; Dicaprio et al., 2008). The current models are limited in both
the resolutions we are able to obtain and the purely viscous rheological formulation
of CitcomS. Future models should seek to incorporate true faults, but would require
higher lateral spatial resolutions more suited to a regional scale model and elasticity
within the crust to properly capture brittle failure.

4.8 Conclusions
Using the geodynamics code CitcomS, we model the influence of mantle flow in-
duced by the sinking of the Farallon slab on the intraplate stress field of eastern
North America. Slab sinking drives localized mantle flow beneath the central-
eastern U.S., leading to a stress amplification of 100-150 MPa across the region that
peaks over the New Madrid Seismic Zone. This stress amplification introduces a
pronounced continent-wide clockwise rotation of the predicted 𝑆𝐻𝑚𝑎𝑥 direction by



131

as much as ∼20° in some places. This rotation is enhanced when lithospheric weak
zones are included at the locations of ancient aulacogens and other pre-existing
structures and improves the fit to the observed seismic 𝑆𝐻𝑚𝑎𝑥 direction within most
seismic zones. The presence of weak zones loaded by the Farallon slab at depth
can also explain the pattern of clockwise rotation of the observed focal mechanism
derived 𝑆𝐻𝑚𝑎𝑥 direction relative to the regional borehole derived 𝑆𝐻𝑚𝑎𝑥 as reported
by Mazzotti and Townend (2010) in the New Madrid, Central Virginia, Charlevoix,
and Lower Saint Lawrence Seismic Zones. However, larger stress perturbations are
required to fully reproduce the observed degree of stress rotation in most of the
seismic zones, except Charlevoix, suggesting the need for weaker weak zones or
another source of stress such as glacial isostatic adjustment. The magnitude of the
modeled stress perturbations are also dependent on the depth of the weak zones,
which have a reduced influence on crustal stresses with greater depth. Thus, in order
for pre-existing lithospheric weak zones to exert appreciable control on intraplate
stress under the influence of mantle flow, they must be shallow/sub-crustal and in
contact with the crust. However, even with shallower weak zones, many of the stress
perturbations and rotations between the different models are quite small. Given the
many mechanisms giving rise to intraplate stress and the uncertainty on geodynamic
model inputs, including the tomography itself, the velocity to temperature conver-
sion, the assumed viscosity law, and the slab parameterization, one may argue that
the differences between the models are insignificant, particularly when compared to
the spread of the 𝑆𝐻𝑚𝑎𝑥 data within a single seismic zone. While future work should
seek to better quantify the impact of the errors of the inputs, our models nevertheless
demonstrate the substantial influence of the Farallon slab on intraplate stress.

Moreover, even small changes in stress are ultimately important because they place
𝑆𝐻𝑚𝑎𝑥 into a position that may be more favorably oriented to reactivate faults,
depending on the fault geometry. Even without weak zones, influence of mantle
flow from the Farallon slab is enough to explain fault instability at the locations of
some significant historical earthquakes, such as the Reelfoot Fault in New Madrid
— the site of one of the 1811-1812 M 7-8 earthquakes — and the Timiskaming
Fault in Western Quebec, on which the 1935 M 6.2 earthquake occurred. Across
all seismic zones, the inclusion of weak zones brings the majority of faults closer
to failure. However, fault orientation and fault weakness remain key controls on
their reactivation potential. Weaker faults (𝜇 ≤ 0.4) in the NMSZ would not be
enough to reactivate them unless optimally oriented, but weak faults (𝜇 ≤ 0.5)
could explain fault reactivation in the WQSZ and CXSZ in the modeled stress field.
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Many previous studies have argued that lithospheric mantle heterogeneity alone
is the primary control on intraplate seismicity (Saxena et al., 2021; Levandowski
et al., 2017; Zhan et al., 2016). Such heterogeneity in mantle viscosity controls the
spatial variability of the velocity gradients by diverting flow to lower viscosity areas,
so mantle heterogeneity remains an important factor, but the Farallon slab has the
effect of augmenting the magnitude of those gradients, which ultimately helps move
many faults closer to failure. Thus, while lithospheric mantle heterogeneity may
govern the spatial distribution of intraplate stress, epeirogenic processes are largely
responsible for the magnitudes of stress required to reactivate some intraplate faults
and to explain continent-wide stress rotations.
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C h a p t e r 5

GEODYNAMIC CONTROLS ON INTRAPLATE SEISMICITY IN
EASTERN NORTH AMERICA II: THE INFLUENCE OF

GLACIAL ISOSTATIC ADJUSTMENT

5.1 Introduction
The continental interior of eastern North America has been host to many major his-
torical earthquakes despite the stability of the craton and the lack of active tectonics
(Figure 4.1, Table 4.1). Such intraplate earthquakes occur within defined seismic
zones (Figure 4.1) and like other intraplate earthquakes worldwide tend to corre-
late with Mesozoic or older crustal extensional structures, such as rifted margins,
aulacogens, and extensional basins (Johnston et al., 1994; Mazzotti, 2007b), which
may act as weak zones in the crust where stress accumulates (Sykes, 1978; Hurd and
Zoback, 2012). The New Madrid Seismic Zone (NMSZ) (Reelfoot Rift) and Western
Quebec (Ottawa-Bonnecherè Graben) Seismic Zone (WQSZ) are associated with
Proterozoic Iapetus failed rift arms (700-550 Ma) (Baird et al., 2010). The Lower
St. Lawrence (LSLSZ), Charlevoix (CXSZ), Montreal, and Eastern Tennessee Seis-
mic Zones (ETSZ) are associated with the Iapetus rifted margin itself (Mazzotti
and Townend, 2010), and the Northern Appalachian, Central Virginia (CVSZ), and
Charleston seismic zones are spatially correlated with Mesozoic rift basins of the
extended Atlantic margin (Withjack et al., 1998; Mazzotti and Townend, 2010),
as well as other inherited tectonic structures. Earthquakes and modeled stresses
also concentrate in zones of thinner lithosphere around the margin of the North
American continental lithosphere (Li et al., 2007). While such intraplate seismicity
may result from a number of different processes, including far-field tectonic forcing,
gravitational potential energy differences, and mantle flow (see Chapter 4), it has
long been suggested that stresses induced by glacial isostatic adjustment (GIA) may
be responsible for these anomalous earthquakes (Wu and Hasegawa, 1996; Wu and
Johnston, 2000; Grollimund and Zoback, 2001; Wu and Mazzotti, 2007; Mazzotti
and Townend, 2010).

Glacial isostatic adjustment is the response of the solid earth to the disappearance of
major ice sheets following the last glacial maximum (LGM) about 21-26 thousand
years ago. At timescales appropriate for post-glacial rebound, the Earth responds
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to loads viscoelastically (Cathles, 1975; Peltier, 1974), meaning that even after the
ice load is gone, there is a time delay of the uplift of the Earth to its pre-glaciation
level. GIA continues in the present day, with GPS observable maximum uplift rates
of >10 mm/yr (Sella et al., 2007; Lidberg et al., 2010) near the former centers of the
Laurentide ice-sheet in North America and the Fennoscandian ice-sheet in northern
Europe. During the last glacial maximum, the Laurentide ice sheet covered most
of North America, with the thickest ice cover (as much as 3-5 km) positioned at
Hudson Bay (Peltier et al., 2015; Lambeck et al., 2017), the site of the largest modern
day rebound rates. The southern extent of the former ice-margin during the LGM
reached as far south as southern Illinois and as far east as offshore Maine and Nova
Scotia (Dyke et al., 2002; Peltier et al., 2015; Dalton et al., 2020). The ice-sheet
melted rapidly between 10-12 ka, and deglaciation was nearly complete by ∼7-8 ka
(Dalton et al., 2020).

During glaciation, the weight of the ice sheet creates an additional vertical stress in
the lithosphere, and the flexure of the lithosphere under the load generates horizontal
bending stresses. These additional vertical and horizontal stresses increase all three
principal stresses. In terms of Mohr Coulomb failure theory (Appendix C.3) for a
compressive background stress regime, this stress increase pushes the Mohr circle in
the positive direction along the normal stress axis, away from the failure threshold.
In other words, during glaciation, the weight of the ice-sheet acts to stabilize faults
and suppress fault movement (Johnston, 1987; Wu and Hasegawa, 1996; Steffen
et al., 2014a). When the ice-sheet melts, the vertical stress from the load decreases,
but the GIA induced horizontal stresses do not decrease as quickly because of the
viscoelastic nature of the lithosphere and the upward migration of stress from mantle
relaxation. Thus, after deglaciation, the vertical stress disappears but the horizontal
stress remains, which increases the differential stress, both expanding the Mohr
circle radius and shifting it back in the negative direction along the normal stress
axis, bringing it closer to the failure criterion (Steffen et al., 2014a).

The magnitudes of glacial rebound stresses are also dependent on the wavelength
of the load relative to the thickness of the lithosphere and are largest for ice sheets
with diameters on the order of a couple hundred km rather than continental-scale
ice-sheets like the Laurentide (Johnston et al., 1998). However, while the Laurentide
itself was of large spatial extent, lobes extending from its southern margin, such as
those that covered New York and Massachusetts or extended south of the Great Lakes
(Dalton et al., 2020), were of much smaller wavelength and thus may have been more
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effective at perturbing stress magnitudes in areas of interest regarding the patterns
of intraplate seismicity. Nevertheless, the largest confirmed glacially induced fault
offset, about 100m, is located in the Canadian Arctic at the Laurentian margin (Dyke
et al., 1991). Most glacially reactivated faults, however, are located in the northern
Lapland Province of Sweden, Finland, and Norway at the ancient margins of the
much smaller Fennoscandian ice sheet (Steffen et al., 2021), consistent with the
findings of Johnston et al. (1998). As with many of the faults in eastern North
America, especially within the Canadian seismic zones, glacially triggered faults
are often steeply dipping normal faults reactivated with a thrust sense of motion, but
reactivation under GIA stress perturbations is likely only possible for a coefficient
of friction less than 0.4 (Steffen et al., 2014a).

Using a spherical, self-gravitating viscoelastic Earth model, Wu and Johnston (2000)
found that GIA is capable of triggering paleo-earthquakes within the Charlevoix
Seismic Zone and even in the Wabash Valley, Indiana north of the NMSZ. Within
the NMSZ, they find that faults do pass the instability threshold within the last
200 years, consistent with the timing of the 1811-1812 New Madrid earthquakes.
However, the magnitude by which the stresses exceed that threshold are very small
and are therefore believed unlikely to have triggered the M 7-8 earthquakes of that
sequence. This is due to the fact that GIA induced stresses decay rapidly away
from the former ice margin (Wu and Johnston, 2000) but also with time after initial
deglaciation, as faults are likely to be most unstable immediately following the
removal of the load (Steffen et al., 2020; Wu and Hasegawa, 1996), around 8-9
ka. Nevertheless, paleoseismicity in the NMSZ records a Holocene slip rate four
orders of magnitude greater than that in the Cretaceous or earlier in the Cenozoic
and a slip rate as high as 4.4 mm/yr over the last 2400 years alone, which may be
tied to crustal motion from Laurentide deglaciation (Van Arsdale, 2000). Likewise,
paleoseismological and geodetic evidence suggestive of recurrence times anywhere
between 400 – 1100 years in combination with the lack of accumulated deformation
on faults suggests places like the NMSZ became active recently and that the seismic
zone itself is only a couple tens of thousands of years old (Schweig and Ellis, 1994),
suggesting New Madrid seismicity could be a glacially controlled phenomenon.

However, paleoseismic evidence suggestive of an elevated slip rate on the Reelfoot
Fault during the last two major earthquake cycles (Van Arsdale, 2000) is also
consistent with idea that the New Madrid sequence was a rare one-off event, and
that modern seismicity may be a transient clustering of mainshock earthquake
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activity in response to viscoelastic relaxation after those major earthquakes (Kenner
and Segall, 2000; Kenner and Simons, 2005). Such a prolonged viscoelastic decay
of seismicity rate beyond what is expected for a typical aftershock sequence is
not unheard of for large earthquakes, such as, for example, the elevated seismicity
rates observed after the 2010 El-Mayor Cucapah event in Mexico (Gualandi et al.
(2020), e.g., Chapter 3), and long aftershock sequences are more typical of intraplate
environments (Stein and Liu, 2009). Nevertheless, such transient seismicity would
likely require relaxation of a local lithospheric weak zone that cyclically transfers
coseismic stress to the upper crust and triggers slip on faults until the weak zone
fully relaxes (Kenner and Segall, 2000). Thus, the presence of a pre-existing weak
zone remains a key ingredient to the generation of intraplate earthquakes. This
hypothesis begs the question, however, of what loaded the weak zone in the first
place. One may consider a mechanism whereby external forcing by GIA gradually
loads the weak zone since deglaciation, eventually leading to a large earthquake
later on that then continues to load the crust locally due to cyclic stress transfer
(Brandes et al., 2015). Such a delay in seismicity is also possible considering that
intraplate seismic zones tend to stay in a stress shadow for 100s-1000s of years after
large events, owing to the difficulty of full stress restoration due to the strength of
the ambient crust and low regional strain rates (Stein, 2007; Stein and Liu, 2009).

Lithospheric weak zones in combination with glacial unloading have also been pro-
posed to explain both the magnitude and orientation of perturbations to the observed
stress field. Focal mechanism stress inversion shows some aulacogens in eastern
North America exhibit rotational deviation from the regional NE-SW maximum
horizontal compressive stress (𝑆𝐻𝑚𝑎𝑥) direction (Hurd and Zoback, 2012; Mazzotti
and Townend, 2010). In the Central Virginia, Lower St. Lawrence, and Charlevoix
Seismic Zones, there is as much as a 30-50° statistically significant clockwise ro-
tation of the seismically derived 𝑆𝐻𝑚𝑎𝑥 direction relative to the regional borehole
derived 𝑆𝐻𝑚𝑎𝑥 direction (Mazzotti and Townend, 2010), and depth-dependent stress
rotations of up to 40-60° are observed in the Charlevoix seismic zone (Verdecchia
et al., 2022). It has been argued that the consistency of these rotations across seis-
mic zones separated by 1000s of kilometers requires a common mechanism, which
suggests a long-wavelength source of loading like GIA. GIA stresses show a strong
spatial coherence over 1000s of kilometers but are typically only on the order of 10s
of MPa (Wu and Hasegawa, 1996; Wu et al., 2021). The observed stress rotations,
on the other hand, require perturbations at mid-seismogenic depths on the order of
at least 160-250 MPa (Mazzotti and Townend, 2010). However, the presence of a
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low viscosity lithospheric weak zone may amplify GIA stress magnitudes by a factor
of 5-10 compared to homogeneous lithosphere (Grollimund and Zoback, 2001; Wu
and Mazzotti, 2007) and could produce clockwise rotations of post-glacial rebound
stresses in the crust above the weak zone (Wu and Mazzotti, 2007). Inclusion of
such weak zones has also yielded better fits to both modeled stress and strain data
in the St. Lawrence River Valley (Mazzotti et al., 2005).

We explore the hypothesis that glacial isostatic adjustment promotes intraplate seis-
micity in eastern North America via perturbation to the intraplate stress field and
reactivation of pre-existing faults. We develop high resolution global models of
the solid earth response to glacial loading and unloading with CitcomSVE (Zhong
et al., 2022), a spherical finite-element viscoelastic GIA code that implements the
sea level equation and ice-loading history of ICE-6G (Peltier et al., 2015) for a fully
3D or 1D Earth viscosity structure. The models use a viscosity structure based on
the seismically and geologically constrained thermal structure implemented in the
mantle flow models with CitcomS (see Chapter 4). Like in the CitcomS models,
we include local-scale, low-viscosity lithospheric weak zones at the locations of
the geologically mapped aulacogens (Whitmeyer and Karlstrom, 2007) and other
tectonically inherited structures. We calculate the stress tensor, with which we com-
pute the 𝑆𝐻𝑚𝑎𝑥 direction, the deviatoric stress magnitude, and the Coulomb stress
on known faults. We compare our results for the present day to stresses of the World
Stress Map (Heidbach et al., 2018) and to those obtained from mantle flow models
using the same Earth structure (Chapter 4).

5.2 GIA Modeling with CitcomSVE
The two key components of any GIA model are knowledge of global ice-history
change, including ice-volume, its extent, and the shape of the ocean, and the rheology
of the solid Earth, which governs how the Earth responds to the weight of the
changing ice and ocean load. Studies into the viscosity of the Earth’s mantle began
with Haskell (1935) and continued with investigations into GIA in the early works
of Cathles (1975), Peltier (1974), and Farrell and Clark (1976). Since then GIA
modeling has evolved to include the effects of sea-level change (Milne and Mitrovica,
1998; Milne et al., 1999), Earth rotation (Wu and Peltier, 1984; Han and Wahr, 1989;
Mitrovica et al., 1994; Milne and Mitrovica, 1998; Mitrovica et al., 2001), and 3D
earth viscosity structure (Kaufmann et al., 2005; Wang and Wu, 2006; Paulson
et al., 2005; A et al., 2013; Wal et al., 2015; Li et al., 2020; Bagge et al., 2021).
GIA models can employ a number of different numerical approaches, including the
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pseudo-spectral approach (Mitrovica and Peltier, 1991; Mitrovica et al., 1994; Wu
and Wal, 2003; Mitrovica and Milne, 2003; Kendall et al., 2005; Spada and Stocchi,
2007), finite element methods (Zhong et al., 2003; Paulson et al., 2005; Lund,
2005; Wang and Wu, 2006; Dal Forno et al., 2012; A et al., 2013; Zhong et al.,
2022), spectral-finite element methods (Martinec, 2000; Tanaka et al., 2011), and
finite volume methods (Latychev et al., 2005). Numerical methods such as finite-
elements have the advantage of being able to incorporate fully 3D Earth structure
spanning several orders of magnitude of variation in lateral viscosity (Lund, 2005;
Zhong et al., 2015). It is ultimately the lateral gradients in viscosity that give rise to
gradients in the velocity field that lead to the stress perturbations in the lithosphere
in which we are interested (see Chapter 4). Thus, it is essential to utilize fully 3D
viscosity structure, rather than compare the stress fields arising from different local
1D viscosity structures.

With respect to glacially induced faulting, most models to date assume a flat-Earth
and thus cannot account for the ocean load by means of the sea level equation (Wu
and Hasegawa, 1996; Steffen et al., 2021), or they make use of a spectral approach
(Wu and Johnston, 2000) that cannot accommodate 3D viscosity. To our knowledge
only one previous study on GIA induced seismicity has been published using a
spherical finite-element GIA model formulation (Craig et al., 2016; Steffen et al.,
2021). Sphericity of the model is important for large diameter loads, such as the
Laurentide, especially when considering areas farther from the ice margin, as in the
central-eastern United States (Wu and Johnston, 1998), and it has the advantage of
incorporating the effect of ocean loading and the distal effects of Fennoscandian and
Antarctic glaciations.

We model the impact of GIA on intraplate stress using the fully spherical finite
element code CitcomSVE, which models dynamic deformation of a viscoelastic
and incompressible planetary mantle in response to surface loading (Zhong et al.,
2003; Zhong et al., 2022). CitcomSVE was built from the widely used purely
viscous geodynamics finite-element code CitcomS (Zhong et al., 2003; Zhong et
al., 2000; Zhong et al., 2008) by implementing viscoelastic deformation within a
Lagrangian formulation compatible with either linear or non-linear viscosity (Kang
et al., 2022). The code has been extensively benchmarked for time-dependent
loading on the surface of a viscoelastic mantle, using both single harmonic loading
and the ICE-6G ice-history model (Bellas et al., 2020; A et al., 2013; Paulson
et al., 2005; Zhong et al., 2003; Zhong et al., 2022), as well as tidal loading on



139

either an elastic (Zhong et al., 2012) or viscoelastic (Zhong et al., 2022) mantle. By
comparing surface loading, tidal loading, and ice loading model predictions to semi-
analytic solutions (A et al., 2013; Han and Wahr, 1995; Paulson et al., 2005), the
code has demonstrated successful prediction of deformation rates, displacements,
and relative sea level changes (Zhong et al., 2022).

CitcomSVE solves the equations for load induced deformation derived from the laws
of conservation of mass and momentum and of gravitation for an incompressible
self-gravitating, viscoelastic mantle (Maxwell body) overlying an inviscid fluid core
(Zhong et al., 2003; Zhong et al., 2022):

∇ · �̄� = 0 (5.1)

∇ · ¯̄𝜎 + 𝜌0∇𝜙 − ∇(�̄� · 𝜌0𝑔𝑟)−𝜌𝐸1 𝑔 + 𝜌0∇𝑉𝑎 = 0 (5.2)

∇2𝜙 = −4𝜋𝐺𝜌𝐸1 , (5.3)

where �̄� is the displacement vector (𝑢𝑟 being displacement in the radial direction);
𝜙 is the perturbation to the gravitational potential due to deformation; 𝑉𝑎 is the
applied potential, when applicable; ¯̄𝜎 is the stress tensor; 𝜌0 is the unperturbed
mantle density; 𝑔 is the gravitational acceleration; 𝜌𝐸1 = −�̄� · ∇𝜌0 is the Eulerian
density perturbation for an incompressible medium; and G is the gravitational
constant. Poisson’s equation (Eq. 5.3) states that the density distribution determines
the gravitational potential and acceleration. The notion of a self-gravitating Earth
arises from the fact that when deforming stresses are applied, movement of masses
alters the local gravity and its potential but such that Poisson’s equation remains
satisfied (Wu et al., 2021). The applied deformation gives rise to strain 𝜀𝑖 𝑗 and
stress 𝜎𝑖 𝑗 in addition to the perturbed density, all of which must together satisfy
conservation of momentum (Eq. 5.2). The terms of this equation, from left-to-
right, are the divergence of the stress, the perturbed gravity field (i.e., self-gravity),
the advection of the pre-stress, and the buoyancy force from the local perturbation.

Zero-shear force boundary conditions are applied at the surface and core-mantle
boundary (CMB) such that both can deform dynamically. With the incompressibility
assumption, the three primary sources of mass anomalies are surface topography
(i.e., radial displacement), CMB topography, and the surface loads themselves. The
surface boundary condition is

𝜎𝑖 𝑗𝑛 𝑗 = −𝜎0𝑛𝑖, for 𝑟 = 𝑟𝑠, (5.4)
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representing the pressure loads at the surface (𝜎0) from GIA as a function of time
and space.

With a Maxwell rheology, the total deformation is the sum of the elastic and viscous
strains:

𝜀𝑖 𝑗 = 𝜀
𝑒
𝑖 𝑗 + 𝜀𝑣𝑖 𝑗 =

1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
. (5.5)

𝜀𝑒
𝑖 𝑗

and ¤𝜀𝑣
𝑖 𝑗

are the elastic strain tensor and viscous strain rate tensor, respectively:

𝜀𝑒𝑖 𝑗 =
1

2𝜇
(𝜎𝑖 𝑗 + 𝑃𝛿𝑖 𝑗 ) (5.6)

¤𝜀𝑣𝑖 𝑗 =
1

2𝜂
(𝜎𝑖 𝑗 + 𝑃𝛿𝑖 𝑗 ). (5.7)

𝑃 is the dynamic pressure, 𝛿𝑖 𝑗 is the Kronecker delta, 𝜇 is the shear modulus, and 𝜂
is the viscosity. The resulting rheological equation is the sum of the time derivatives
of equations 5.6 and 5.7:

𝜎𝑖 𝑗 +
𝜂

𝜇
¤𝜎𝑖 𝑗 = −

(
𝑃 + 𝜂

𝜇
¤𝑃
)
𝛿𝑖 𝑗 + 2𝜂 ¤𝜀𝑖 𝑗 . (5.8)

Because the deformation is time-dependent due to viscoelasticity, the rheologi-
cal equations are discretized in time via an incremental displacement formulation
(Zhong et al., 2003; Zhong et al., 2022) such that the stress tensor at time 𝑡 includes
a pre-stress term accounting for the stresses at the previous timestep:

𝜎𝑛𝑖 𝑗 = −𝑃𝑛𝛿𝑖 𝑗 + 2𝜂Δ𝜀𝑛𝑖 𝑗 + 𝑓 𝜏Pre
𝑖 𝑗 . (5.9)

The pre-stress is the deviatoric stress at timestep 𝑛−1 (𝜏pre
𝑖 𝑗

= 𝜏𝑛−1
𝑖 𝑗

= 𝜎𝑛−1
𝑖 𝑗

+𝑃𝑛−1𝛿𝑖 𝑗 ).
𝜂 = 𝜂/(𝛼 + Δ𝑡), 𝑓 = (𝛼 − Δ𝑡/2)/(𝛼 + Δ𝑡/2), and 𝛼 = 𝜂/𝜇 is the Maxwell time. It
is this advection of the pre-stress term in Eq. 5.2 that provides the restoring force of
isostasy in the fluid that enables post-glacial rebound (Wu, 1992; Wu et al., 2021).
The stress tensor at a given timestep can in theory be computed from Equation 5.9
after solving for the incremental displacement and effective pressure. However, to
avoid needing to calculate dynamic pressure from the effective pressure, only the
deviatoric stress 𝜏𝑖 𝑗 is computed (Equation 5.10).

𝜏𝑛𝑖 𝑗 = 𝜎
𝑛
𝑖 𝑗 + 𝑃𝑛𝛿𝑖 𝑗 = 2𝜂Δ𝜀𝑛𝑖 𝑗 + 𝑓 𝜏

pre
𝑖 𝑗

(5.10)
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To accurately model GIA, it is important to account for mass exchange and mass
redistribution between continental ice and water in the oceans. As such, CitcomSVE
fully implements the sea level equation (Eq. 5.11) (Farrell and Clark, 1976), which
gives the change in the height of the ocean load since the onset of glaciation (𝐿0):

𝐿0(𝜃, 𝜙, 𝑡) = [𝑁 (𝜃, 𝜙, 𝑡) −𝑈 (𝜃, 𝜙, 𝑡) + 𝑐(𝑡)]𝑂 (𝜃, 𝜙, 𝑡) (5.11)

𝑐(𝑡) = 1
𝐴0

[
− 𝑀ice(𝑡)

𝜌𝑤
−
∫

(𝑁 −𝑈)𝑂𝑑𝑆
]

(5.12)

The ocean load is a function of the GIA-related geoid anomaly (𝑁) and radial
displacement (𝑈), an ocean function (𝑂 (𝜃, 𝜙, 𝑡)) that describes the distribution of
ocean versus land (1 for ocean and 0 for land), and the barystatic sea level (𝑐(𝑡),
Eq. 5.12), which is a function of the mass of the ice (𝑀ice), the density of water
(𝜌𝑤), and the geoid anomalies and radial displacements integrated over the area of
the oceans (𝐴0). The mass of the ice is calculated for a given ice-history model.
While the ocean load is dependent on the incremental displacement and the geoid, it
also directly impacts them through the equation of motion and Poisson’s equation.
CitcomSVE handles this interdependence through an iterative scheme applied at
every time-step, which solves for displacements, gravitational potential, and the sea
level height changes self-consistently. With self-gravitation, the code also accounts
for the contribution from the gravitational attraction of seawater to the mass of the
ice (Austermann and Mitrovica, 2015; Zhong et al., 2008).

CitcomSVE takes either a 1D or 3D viscosity structure as input, along with an
incrementally defined ice loading history (Eq. 5.9). Poisson’s equation for the
gravitational potential anomaly is solved in the spherical harmonic domain, while
displacements are solved on the finite element grid. Upon solving the GIA problem,
the program outputs cumulative topography; incremental radial, latitudinal, and
longitudinal displacements; and total and incremental gravitational potential at the
surface nodal points of the finite element grid; it outputs the second invariant of
deviatoric stress and the viscosity for every nodal point in the 3D domain. We added
the ability to output all six components of the deviatoric stress tensor for use in our
stress analysis.

The ability to impose 3D viscosity structure in our GIA models is key. Glacial
rebound at the margins of formerly glaciated areas tends to be sensitive to variations
in lithospheric thickness (Zhong et al., 2003; Latychev et al., 2005), suggesting
that the effect of GIA on stress perturbations may be enhanced when coupled with
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lateral variations in the depth of the lithosphere-asthenosphere boundary (LAB)
and lithospheric viscosity. Wu and Mazzotti (2007) have also shown that narrow
ductile zones cutting through the full lithosphere have a larger effect on GIA induced
deformation than a single mantle weak layer alone. As with our mantle flow models,
when assessing the impact of GIA on the intraplate stress field, we likewise consider
lateral variations in lithospheric thickness via 3D viscosity structure and how weak-
zones may locally amplify stress perturbations (Mazzotti and Townend, 2010; Wu
and Mazzotti, 2007). We employ the same geologic and geophysical constraints on
the weak-zones as we do using CitcomS (Section 5.3.3).

5.3 Input Ice-Load and Viscosity Structures
5.3.1 Ice Loading History
Several ice-models exist that are often employed in GIA modeling (Peltier et al.,
2015; Simon et al., 2016; Lambeck et al., 2017; Simon and Riva, 2020), the most
widely used of which and that which we use in our models is the ICE-6G ice
history model of Peltier et al. (2015). GIA models essentially seek to solve the Sea
Level Equation (Farrell and Clark, 1976; Mitrovica and Milne, 2003), which gives
the variations in sea level with respect to the continuously deforming solid Earth
through application of glacial isostatic adjustment, given an assumed history of land
ice thickness variation and a radial viscoelastic model (Stuhne and Peltier, 2015).
ICE-6G solves an inverse problem that predicts the land ice thickness variations and
radial viscosity structure based on observations of relative sea level histories and
geodetic measurements of the present-day vertical and horizontal motion (Peltier
et al., 2015; Stuhne and Peltier, 2015). In ICE-6G, model predictions of the time
rate of change of the gravitational field are independently corroborated with time–
dependent gravity from GRACE (Peltier et al., 2015). ICE-6G is perhaps the most
widely used glaciation model for North America, and CitcomSVE is configured
and benchmarked to take the ICE-6G ice thickness history as input (Zhong et al.,
2022). However, because the VM5a rheological profile (Peltier et al., 2015) and
the predictions of the ICE-6G model are explicitly coupled, one must be careful to
maintain reasonable consistency between assumptions on viscosity used in the ice
model and in the geodynamic models.

5.3.2 Seismically and Geologically Constrained Thermal Structure
Temperature dependent viscosity is computed within the CitcomS framework of
our mantle flow calculations. Within those models, lithospheric thermal structure
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is constructed from a composite of continental and oceanic models, where for the
continents we use the Artemieva (2006) TC1 thermal model, and in the oceans, we
use the global seafloor age grid of Seton et al. (2020) and the plate cooling model
to calculate oceanic lithospheric temperature (Chapter 4, Section 4.4.2). Mantle
temperatures are determined by means of a depth-dependent seismic velocity to
temperature scaling of the Lu et al. (2019) global P- and S- wave seismic tomography
model that incorporates the effect of anelasticity and mineralogical composition
(Chapter 4, Section 4.4.2 and Appendix C.1). Viscosities are computed directly
from these temperature fields within CitcomS according to Eq. 4.8 and where
appropriate are multiplied by a pre-factor depending on their radius or location within
the lithosphere (e.g., for applying low viscosity plate-boundaries or intraplate weak
zones). The radial average of the viscosity used in CitcomS, with its respective layer-
dependent pre-factors, is shown in Figure 4.5 along with other viscosity profiles from
the literature used in or derived from GIA analysis, such as VM5a, for comparison.
These thermally derived 3D viscosity structures are then used directly as input to
CitcomSVE.

5.3.3 Intraplate weak zones
We emplace low viscosity weak zones in the crust and/or lithosphere at the locations
of the geologically mapped aulacogens or seismically inferred low velocity zones
of weakness. Weak zones are placed at an appropriate depth for each seismic zone,
based on local seismic and geologic evidence, the details of which are given in
Section 4.2. Based on the depth of low velocity zones imaged in the upper mantle
beneath the New Madrid Seismic Zone (Thomas and Powell, 2017; Chen et al.,
2016; Nyamwandha et al., 2016; Chen et al., 2014), we emplace a lithospheric weak
zone between 70 and 150 km along the extent of the Reelfoot Rift, as mapped in
Figure 4.1a. Based on both seismic (Thomas and Powell, 2017; Powell et al., 2014;
Wagner et al., 2012; Long et al., 2016) and magnetotelluric imaging (Murphy and
Egbert, 2017; Murphy et al., 2019), in the Eastern Tennessee Seismic Zone we
emplace a 50-100 km wide weak zone between 15 and 50 km depth along the NY-
AL lineament, which was an ancient sinistral transform fault during the formation
of supercontinent Rodinia and which exhibits characteristics of weak sheared crust
(Thomas and Powell, 2017; Chen et al., 2016). Likewise, based on magnetotelluric
(Evans et al., 2019; Long et al., 2020) and seismic imaging (Schmandt and Lin,
2014), farther to the north along the Rome Trough, we emplace an approximately
500 km wide weak zone between 80-200 km depth. For the Canadian seismic zones,
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we emplace a weak zone at the base of the crust between 25 and 75 km depth along
the entirety of the LSLRS and its associated rift-arms, consistent with the presence
of weak ancient rift faults and possible weakening due to the passage of the Great
Meteor Hotspot through the WQSZ (Sykes, 1978; Ma and Eaton, 2007) and from
the Charlevoix Impact Crater (Baird et al., 2010; Lamontagne and Brouillette, 2022)
in the CXSZ. While the viscosities of the intraplate weak zones likely differ based
on their different geology and conditions of formation, we impose uniform viscosity
reductions for all weak zones for simplicity. We also consider a case where all weak
zones are considered to be shallow and sub-crustal and placed at 25-75 km depth.

5.4 Calculation of 𝑆𝐻𝑚𝑎𝑥 and Coulomb Stress
Several approaches exist for determining whether GIA induced stresses may reac-
tivate faults. These include the commonly used fault stability margin (FSM) (Wu
and Hasegawa, 1996; Wu and Johnston, 2000) and the Coulomb failure stress (CFS)
(Steffen et al., 2020; Steffen et al., 2021). As in our mantle flow models, we use the
CFS, the advantage of which compared to the FSM is its dependence on the shear
and normal stresses, which are functions of the strike and dip of a fault. This allows
for the use of realistic fault geometries, either optimally or non-optimally oriented,
within a three-dimensional stress setting (Steffen et al., 2021; Steffen et al., 2014a;
Steffen et al., 2014c; Steffen et al., 2014b). Within our GIA models, all faults are
virtual faults, meaning no physical fault surface is included in the model and the
fault’s presence therefore does not affect the stress distribution (Wu et al., 2021).
Rather, the stress tensors calculated by our model are applied to a set of faults after
the fact to determine their influence on the behavior of those faults.

The total stress acting on these faults is composed of the GIA induced stresses,
the tectonic background stress, and the overburden stress. Thus, before analyzing
fault stability, we have to add back both the tectonic background stress and the
lithostatic pressure, as well as the weight of the ice that is present for any given
timestep. Lithostatic pressure is computed as in Appendix C.3 using an average
crustal density of 2700 kg/m3 and a pore fluid factor of 0.6. Pore fluid pressure
is not well studied on glacial timescales (Steffen et al., 2014a) and is thus often
neglected in analyses of GIA induced CFS. While there is evidence to suggest pore
fluid pressure changes over the course of a glacial cycle (Grollimund and Zoback,
2000; Zhang et al., 2018), for consistency with our mantle flow models, we assume
it to be constant and use the same values as in the lithostatic pressures applied to the
CitcomS models. Similarly, for the tectonic background stress, which is assumed
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to be constant over a glacial cycle, we use the stress field predicted from the mantle
flow models for the corresponding viscosity fields used in our GIA models. Thus,
our tectonic background stress includes both a tectonic and dynamic effect and the
modeled GIA stresses can be considered a perturbation to this stress field.

5.5 Results
The set of models testing the influence of GIA on the North American stress field
parallel those testing the influence of Farallon slab loading (Chapter 4) and use the
same viscosity structures. The first model (GIA-A0) uses the 3D viscosity structure
of model A0 in Chapter 4, which does not have any weak zones; the second (GIA-
A1) uses the viscosity structure of model A1 in Chapter 4, which has weak zones
placed at different depths depending on geophysical constraints for their respective
locations; the third (GIA-A1b) uses the viscosity structure of model A1b in Chapter
4, which has weak zones placed at the same depth between 25-75 km; and the fourth
(GIA-1D-3Davg) and fifth (GIA-1D-VM5a) models use a 1D viscosity structure
from either the radial mean of the 3D viscosity structure of model GIA-A0 or VM5a
(Peltier et al., 2015), respectively. Like in the mantle flow models, in all cases with
weak zones, weak zone viscosities are a factor of 1000 times less viscous than the
surrounding lithosphere.

𝑆𝐻𝑚𝑎𝑥 orientations induced solely by GIA stress are shown in Figure 5.1 a,b, which
in comparison to Figure 5.1 c,d reveal the importance of including tectonic back-
ground stress. The 𝑆𝐻𝑚𝑎𝑥 directions in eastern North America exhibit a rotational
pattern around the margin of the former Laurentide ice-sheet, with near E-W orien-
tations in Texas and the central-eastern U.S. near New Madrid transitioning to N-NE
orientations in southeast Canada. The inclusion of weak zones at the locations of the
aulacogens or other structures leads to small improvements in the fit of the 𝑆𝐻𝑚𝑎𝑥
direction in the central eastern U.S. but a reduction in the fit throughout much of the
Charlevoix and Lower Saint Lawrence Seismic Zones (Figure 5.1 b). The addition
of the tectonic background stress leads to an improvement in the fit throughout most
of eastern North America, by as much as 20° in some places. The tectonic stress
dominates such that the overall fit of the regional stress field is largely the same as
that predicted through mantle flow. But even without the tectonic background stress,
the majority of misfits across eastern North American are still less than ∼ 28°.

There is a progressively counterclockwise stress rotation due to GIA moving north-
eastwards across eastern North America (Figure 5.2). This gradation is even stronger
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Figure 5.1: Changes in misfit between observed and modeled 𝑆𝐻𝑚𝑎𝑥 for different GIA models using
different viscosity input. a) 𝑆𝐻𝑚𝑎𝑥 orientations induced by GIA only (i.e., no tectonic background
stress) from model GIA-A0 colored by misfit (|modeled - observed|) to the observed stress orientations
from the WSM of Heidbach et al. (2018) (light gray lines). b) Difference in the 𝑆𝐻𝑚𝑎𝑥 misfit between
model GIA-A1 and model GIA-A0 (i.e., between models with vs. without weak zones) for GIA only.
c) Difference in 𝑆𝐻𝑚𝑎𝑥 misfit between model GIA-A0 + tectonic background stress and model GIA-
A0 with GIA only. d) Difference in 𝑆𝐻𝑚𝑎𝑥 misfit between model GIA-A1 + tectonic background
stress and model GIA-A0 with GIA only.

when assuming a 1D viscosity profile (Figure 5.2 c). In this case, the rotations in-
duced by GIA are mostly dependent on the ice-loading history, as there are no lateral
viscosity variations to introduce strength contrasts in the lithosphere. The inclusion
of weak zones at either variable depths (Figure 5.2 b) or the constant 25-75 km
(Figure 5.2 c) results in subtle clockwise stress rotations in New Madrid and Eastern
Tennessee, as well as parts of the Northern Appalachians and Western Quebec, while
even stronger counter-clockwise rotations are observed in the LSLSZ. However, the
rotations induced by GIA, with or without weak zones, are very small and at most
within ±5°. Thus, the spatial variations in stress orientations caused by GIA at the
present day are insignificant compared to the observed variation of 𝑆𝐻𝑚𝑎𝑥 in the
WSM, which can often vary by as much as 25° within a single seismic zone. Nev-
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ertheless, the subtle transition from clockwise to counterclockwise rotation across
eastern North American predicted by the GIA stresses alone produces a style of
faulting at the present day that mirrors that observed from focal mechanism stress
inversion, transitioning from predominantly strike-slip and normal faulting in the
central-eastern U.S. to thrust faulting in southeastern Canada, as measured by the
𝐴𝜙 parameter (Hurd and Zoback, 2012).

Figure 5.2: Rotation in 𝑆𝐻𝑚𝑎𝑥 induced by GIA for different viscosity inputs relative to tectonic
background stress. a) Rotation in 𝑆𝐻𝑚𝑎𝑥 orientation induced by GIA using 3D viscosity with no
weak zones present (i.e., between model GIA-A0 with tectonic background stress and model A0).
Observed stress orientations from the WSM of Heidbach et al. (2018) are shown in the background as
light gray lines. b) Rotation in 𝑆𝐻𝑚𝑎𝑥 induced by GIA in the presence of weak zones (i.e., between
model GIA-A1 with tectonic background stress and model A1). c) Rotation in 𝑆𝐻𝑚𝑎𝑥 induced by GIA
assuming a 1D viscosity structure (i.e., between model GIA-1D-3Davg with tectonic background
stress and model A0). d) Rotation in 𝑆𝐻𝑚𝑎𝑥 induced by GIA using 3D viscosity with weak zones
all at depths of 25-75 km (i.e., between model GIA-A1b with tectonic background stress and model
GIA-A1b.

The magnitudes of the stress perturbations associated with these rotations range
from 5-15 MPa, with the highest deviatoric stress magnitudes centered over Hudson
Bay, the site of the fastest present day uplift. Two pockets of high stress are situated
over northern Virginia and Nova Scotia, separated by a region of little to almost
no GIA induced deviatoric stress (Figure 5.3 c). The effect of 3D viscosity versus
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1D viscosity is pronounced, however. Lithospheric variability introduces elevated
deviatoric stress in Eastern Tennessee, western New York and Pennsylvania, New
Hampshire and Vermont, and over the entirety of the LSLR, which exhibits some of
the largest stress perturbations (Figure 5.3 e). Within GIA models with 3D viscosity,
weak zones introduce an additional stress perturbation of only 2-5 MPa, with the
strongest effects on stress magnitude concentrated closer to the former ice-margin.
The highest stress perturbations are located along the northwest margin of the LSLR,
specifically along the boundary of the weak zone, rather than immediately above
the weak zone (Figure 5.3 d,f), which is also where ancient rift-bounding faults are
likely to be present. Interestingly, the presence of weak zones actually results in a
stress drop in the vicinity of the most seismically active part of the Western Quebec
Seismic Zone, though its north-westernmost end does exhibit higher stresses. Stress
perturbations in New Madrid and Eastern Tennessee are only on the order of 2 MPa,
though are slightly higher in New Madrid when the weak zone is placed at 25-75
km rather than deeper in the mantle lithosphere. Strong peaks in stresses are also
present at the PA-NA plate boundary (Figure 5.3 a) due to the inclusion of low
viscosity plate boundary weak zones.

While small, the stress rotations and magnitude perturbations that are invoked by
GIA still have implications for fault stability in eastern North America. As in
Chapter 4, the potential for fault reactivation in the New Madrid, Western Quebec,
and Lower Saint Lawrence and Charlevoix Seismic Zones is explored by means of
the Coulomb failure stress (CFS) in Figures 5.4, 5.5, and 5.6, respectively. Instead
of the absolute CFS, we plot the change in CFS between the GIA models and their
corresponding tectonic and dynamic background stress as calculated with CitcomS
to highlight the degree to which GIA shifts faults closer to or farther from failure.
In this case, a positive change in Coulomb failure stress, like a positive CFS, means
a more unstable fault or at least a move towards instability, and a negative change
means more stable or a move towards stability. Mohr circles are still plotted at
the same fault locations used in Chapter 4 using the full shear and normal stresses
resolved on that fault.

In the NMSZ, the pattern of fault stability that GIA affects is opposite to that
predicted from the mantle flow models shows in Figure 4.13. The addition of
GIA shifts all SW-NE oriented faults within the NMSZ closer to failure. Those
oriented NW-SE, including the Reelfoot Fault, actually move farther from failure,
in contrast to the results of the mantle flow models, in which the Reelfoot Fault
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Figure 5.3: GIA induced stress magnitudes. a) Profiles of the second invariant of deviatoric stress
from GIA only along line B-B’ for 3D viscosity input (light green lines) with no weak zones (solid
line), weak zones at different depths (dashed line), weak zones at 25-75 km depth (dashed-dotted
line), and 1D viscosity input (dark blue lines) from the radial average of model GIA-A0 (thick line)
and from VM5a (thin line). New Madrid Seismic Zone (NMSZ) and Eastern Tennessee Seismic
Zone (ETSZ) are labeled accordingly. Profile positions are labeled in panel (c); same transect as in
Figures 4.4 and 4.11 in Chapter 4. Note: length of the profile is longer than map area (see Chapter 4,
Figure 4.4 orthographic panel). b) Profiles of stress magnitude from GIA along line A-A’. Lines as in
(a). New Madrid Seismic Zones (NMSZ), Western Quebec Seismic Zone (WQSZ) and Charlevoix
Seismic Zone (CXSZ) are labeled accordingly. c) Map of GIA induced deviatoric stress magnitude
for model GIA-A0 (3D viscosity but no weak zones). d) Perturbation to the stress in (c) by including
weak zones (i.e., difference between models GIA-A1 and GIA-A0). d) Stress perturbation induced
by the inclusion of 3D viscosity (i.e., difference between models GIA-A0 and GIA-1D-3Davg). f)
Perturbation to the stress in (c) by placing all weak zones at 25-75 km depth (i.e., difference between
models GIA-A1b and GIA-A0).
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was the only fault to exhibit positive, and therefore unstable, CFS conditions. This
flip in the observed pattern is a direct result of the slight clockwise rotation of the
𝑆𝐻𝑚𝑎𝑥 direction in the NMSZ towards a more E-W direction under the influence
of GIA. Such an orientation places the region’s strike-slip faults in a more optimal
position to be reactivated. Changes in CFS brought about by GIA are subtle, at
most about 5 MPa – not enough to fully stabilize or destabilize a fault in terms of
the total Coulomb failure stress, as distances between the resolved shear stress and
the failure criterion can still be upwards of ±100 MPa – but the changes do highlight
the patterns of relative fault stability promoted by GIA that under different tectonic
background stress regimes may bring a fault closer to failure. Changes in CFS are
greatest overall in the case of shallower weak zones (Figure 5.4 c), and changes in
CFS are both the least pronounced and the most stabilizing in the case of 1D GIA
(Figure 5.4 d).

The changes in CFS are more variable in the Western Quebec Seismic Zone, which
only exhibits higher stress perturbations towards its northwest end. In the case of 3D
GIA without weak zones, GIA stresses lead to an increase in CFS by 0.5 to 1.5 MPa
on faults that already breach the instability regime due to loading from the Farallon
slab (Figure 4.14 a). Small changes (∼ 0.5 MPa) are observed on other WQSZ faults,
but only those in the western half come closer to failure. The inclusion of shallow
weak zones results in positive changes in CFS, upwards of 3-4 MPa on most faults
in the western half, while those in the eastern half move towards stability. The 1D
GIA model produces little to no change in the CFS on WQSZ faults, highlighting
the role of lateral heterogeneities in governing the stress changes within this seismic
zone rather than the ice history alone.

However, within the LSLSZ and CXSZ, even the 1D GIA model leads to notable
increases in Coulomb failure stress by as much as 5 MPa (Figure 5.6 d). The
lithosphere is thinner in the 1D models, and without lateral variability in the LAB
depth, there is no thick craton under North America. Thus, for locations closer
to the craton, such as the LSLR, the difference in deformation in response to
the ice-load between the 3D and 1D cases will be enhanced, with the 1D model
promoting a stronger response. Similar CFS changes are observed in the CXSZ for
3D GIA models with weak zones (Figure 5.6 b,c), which bring almost the entirety
of the LSLRS faults closer to failure. The effects, however, are most pronounced
specifically within the CXSZ rather than the Montreal Seismic Zone farther to the
southwest, consistent with the concentration of seismicity in this part of the LSLRS
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Figure 5.4: Mohr circles (main plot) and change in Coulomb failure stress (map inset) for faults
in the NMSZ between models with GIA and the corresponding models without GIA presented in
Chapter 4, calculated using 𝜇 = 0.6. Fault locations from Thompson et al. (2020). Fault strike and
dip information for the Axial Fault (strike=46°, dip=90°), the New Madrid North Fault (strike=29°,
dip=72°), the Risco Fault (strike=92°, dip=82°), and the North Reelfoot Fault (strike=167°, dip=30°)
are from Csontos and Van Arsdale (2008). Faults with unknown dip are assumed to have a dip of
90°. Mohr circles are drawn for New Madrid faults at the locations of the stars on the map using
the fault’s strike and dip and the stress tensor at that location. Star colors correspond to Mohr circle
colors. Star locations for the three northernmost stars correspond to the most likely epicenters of
the 1811-1812 earthquake sequence (Delano et al., 2021). The cloud of points on each Mohr circle
represent the shear vs. normal stress for all possible stress tensors in the inset region given that
fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for 𝜇 = 0.6; gray line is
for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a) Results from model GIA-A0 (no weak zones).
(b) Results from model GIA-A1 (weak zones at variable depths). (c) Results from model GIA-A1b
(weak zones between 25-75 km depth). (d) Results from model GIA-1D-3Davg (radial viscosity, no
weak zones).

compared to others. Again, while the changes in CFS are small relative to the
absolute CFS plotted in Figure 4.15, for the case of the LSLRS, changes are large
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Figure 5.5: Mohr circles (main plot) and change in Coulomb failure stress (map inset) for faults in the
WQSZ between models with GIA and the corresponding models without GIA presented in Chapter
4, calculated using 𝜇 = 0.6. Fault locations from Rimando and Peace (2021) and Lamontagne et al.
(2020). Fault strikes approximated using the best fitting great circle through the lineation. Unless
otherwise specified, fault dips were assumed to be 56° (Bent et al., 2003; Rimando and Peace, 2021).
Dip of the fault associated with the Timiskaming 1935 earthquake (black star) and nearby faults are
from Bent (1996) (strike=146°, dip=45°). Mohr circles are drawn for four faults, using the stress
tensor at the location of the corresponding star on the map: The Timiskaming fault of the M 6.1
1935 earthquake, the Rapide-du-Cheval Blanc Fault near the epicenter of the M 6.3 1732 Montreal
earthquake, the Lachute Fault (NE of Ottawa), and the Coulonge Fault (NW of Ottawa). Earthquake
locations from Bent (2022) and Bent et al. (2003). Star colors correspond to Mohr circle colors. The
cloud of points on each Mohr circle represent all possible stress tensors in the inset region given that
fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for 𝜇 = 0.6; gray line is
for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a) Results from model GIA-A0 (no weak zones).
(b) Results from model GIA-A1 (weak zones at variable depths). (c) Results from model GIA-A1b
(weak zones between 25-75 km depth). (d) Results from model GIA-1D-3Davg (radial viscosity, no
weak zones).
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enough on some faults that coupled with even a very small reduction in the fault
friction, faults that were stable in the case of only the tectonic and mantle flow
induced stress would become unstable.

Figure 5.6: Mohr circles (main plot) and change in Coulomb failure stress (map inset) for faults in
the LSLRS, including the CXSZ, between models with GIA and those without presented in Chapter
4, calculated using 𝜇 = 0.6. Fault strikes approximated for each fault location using the best fitting
great circle through the lineation. Fault dips assumed to be 53°, consistent with the values of steeply
dipping rift bounding normal faults for the LSLRS as reported by Bent et al. (2003) and Bent (1992).
Mohr circles are drawn for the three faults closest to the epicenters of the 1663 M 7.0 and 1925 M
6.2 Charlevoix earthquakes and the M 6.3 1732 Montreal earthquake, using the fault’s strike and dip
and the stress tensor at the location of the corresponding star on the map. Star colors correspond
to Mohr circle colors. Earthquake locations from Bent (2022). The cloud of points on each Mohr
circle represent the shear vs. normal stress for all possible stress tensors in the inset region given
that fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for 𝜇 = 0.6; gray line
for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a) Results from model GIA-A0 (no weak zones).
(b) Results from model GIA-A1 (weak zones at variable depths). (c) Results from model GIA-A1b
(weak zones between 25-75 km depth). (d) Results from model GIA-1D-3Davg (radial viscosity, no
weak zones).
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5.6 Discussion
While glacially induced faulting is commonly investigated by means of the CFS or
FSM, few previous studies have explicitly studied 𝑆𝐻𝑚𝑎𝑥 orientations resulting from
GIA or the CFS resolved onto known faults, rather than assuming optimally oriented
faults. The circular pattern of 𝑆𝐻𝑚𝑎𝑥 orientations predicted by GIA stresses alone
(Figure 5.1) is similar to that predicted by Wu (1997) when using a lower mantle
viscosity of either 1e22 Pa s or of 1.6e21 Pa s in combination with a reduced upper
mantle viscosity. These values are on par with the lower mantle viscosities used in
our models. With this pattern, stresses predicted only from GIA do not adequately
reproduce the NE-SW uniformity of the eastern North American stress field. When
the tectonic background stress, as computed from model A0 (see Chapter 4), is
added to the GIA stress, the stress field strongly resembles that predicted by the
mantle flow models because the strength of the background stress dominates the
stress orientations relative to the GIA induced stresses.

The significance of the tectonic background stress magnitude is unsurprising in
light of previous GIA stress analyses, which find that if the tectonic differential
stress magnitude is larger than 10 MPa, the temporal stress rotations induced by
GIA are quite small, typically less than 10° (Wu, 1997). The tectonic background
stress obtained from our mantle flow models is much larger than 10 MPa, and
as such dominates the GIA stress field. Wu (1997) argues that in order for GIA
to successfully explain the uniformity of the contemporary stress field and the
inferred large stress rotations in Canada since post-glacial times, tectonic stress
must be in the range of 4-10 MPa. However, the tectonic stress field itself can
also explain the uniformity of the observed stress field. In either case, inclusion of
tectonic background stress is necessary to accurately calculate the potential for fault
reactivation via the Coulomb failure stress. While the magnitude of the tectonic
background stress is uncertain and debatable, tectonic stress magnitudes tend to
have little effect on the pattern of fault instability so long as they are larger than 20
MPa (Wu and Hasegawa, 1996).

At present day, GIA stresses induced by the former Laurentide deglaciation in the
presence of 3D viscosity variations exert a relatively minor influence on stress
magnitudes and orientations in eastern North America, relative to the tectonic
background stress field. However, the subtle stress rotations within some seismic
zones do bring some faults closer to failure by upwards of 5 MPa. Clockwise
stress rotations in the central-eastern U.S. heighten stresses on unfavorably oriented
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strike-slip faults while reducing the likelihood of failure on favorably oriented thrust
faults. Slight counter-clockwise rotations of the 𝑆𝐻𝑚𝑎𝑥 direction in the LSLRS on
the other hand help promote higher Coulomb failure stresses on faults in the CXSZ.
However, while such stress orientations would increase the likelihood of seismicity
in these areas, they do have higher misfits compared to the observed 𝑆𝐻𝑚𝑎𝑥 direction,
in some places by as much as the maximum of 90°. The counterclockwise rotations
of GIA stresses observed above weak zones in eastern Canada are also contrary to
suggestions from other authors that GIA may be responsible for the clockwise stress
rotations observed in the Canadian seismic zones (Mazzotti and Townend, 2010;
Verdecchia et al., 2022). Only with the inclusion of the tectonic background stress
are clockwise stress rotations observed over all weak zones, an effect of the mantle
loading, as demonstrated in Chapter 4, rather than the GIA.

The magnitudes of the GIA stress perturbations correlate with both the geometry
of the former ice sheet and the lateral heterogeneities in the lithosphere. Use of
3D viscosity structure causes higher stresses localized over parts of Pennsylvania
and Northern Virginia and over New Hampshire and Vermont (Figure 5.3 e). These
two stress highs, particularly the northeastern one, correlate with the Central Ap-
palachian Anomaly (CAA) and the Northern Appalachian Anomaly, respectively, as
identified in seismic tomography around 200 km depth (Schmandt and Lin, 2014).
These low velocity anomalies translate to higher temperatures and therefore lower
viscosities that excite higher stresses under loading and unloading from GIA. The
higher stresses in the vicinity of the Mid-Continent Rift, on the other hand, are
likely associated with the Lake-Michigan, Saginaw, and Huron-Erie Ice Lobes that
protruded from the southern margin of the Laurentide Ice Sheet between ∼17 and
15 ka (Dalton et al., 2020).

While the ICE-6G model is widely used within the GIA community, care must be
taken when interpreting the results of models using ICE-6G and different viscosity
structures. The lateral ice extent in the ICE-6G model is primarily constrained by
geologic data delineating the location of the ice-margin at different times; what the
glaciological evidence cannot tell us on its own, however, is the thickness of the
ice over the course of the glacial cycle. The ice-thickness (e.g., the magnitude of
the ice-load) in combination with the viscosity of the Earth determines how much
the Earth’s surface will deflect in response to that load, so the ice-thickness can be
determined from how much the Earth has deformed and how much rebound remains
at the centers of the former ice-sheet. This is the basis of the classical Haskell
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constraint (Haskell, 1935), by which we know the viscosity of the upper mantle.
The ICE-6G model is built by varying the ice thickness with spatial constraints from
glaciology and varying the radial viscosity structure to arrive at a combination of
the two that best reproduces the present day uplift rates and gravity signatures of the
formerly glaciated regions. This means that the ice-thickness history that we use
is intrinsically tied to the viscosity structure used to derive it; deviations from that
viscosity structure are not calibrated to this ice-history. By using ICE-6G, we are
assuming that the ice-history is still valid in spite of those deviations.

This is a large assumption to make and indeed the stress magnitudes and patterns
obtained using the radial average of our 3D viscosity model are quite different
from those of VM5a, yet for the present study, we use our chosen viscosity profile
and/or its 3D equivalent for the sake of consistency and comparison with our mantle
flow models. Ideally, one would make use of an ice-history model based only on
geological and glacialogical evidence and not tied to any particular Earth structure,
but such a history of ice-thickness does not exist for the reasons given above.
However, some ice models do try to minimize the assumption of particular viscosity
structures. For example, the D1 model of Simon et al. (2017) offers a Bayesian
approach where the inversion of geodetic data on vertical motion and gravity change
is constrained with a priori GIA models, such as those of ICE-5G (Peltier, 2004) or
Laur16 (Simon et al., 2016). Because this prior is an average of predictions from
over 150 GIA model combinations, it avoids bias towards or dependency on any
one underlying earth structure (Simon and Riva, 2020). Ultimately, consideration
of alternative ice models (e.g., Lambeck et al. (2017)) would allow for constraining
the sensitivity of glacially induced intraplate stress to changes in ice history.

Quantifying the sensitivity of the intraplate stress field to changes in viscosity
structure is equally as important. The differences between GIA stresses obtained
using VM5a versus our 3D radial average are shown in Figure 4.5 b. Overall, the
stress magnitudes resulting from the VM5a Earth structure are lower than those of
our 3D averaged viscosity by a couple of MPa. The viscosity of both our lithosphere
and asthenosphere is slightly lower than in VM5a, exciting a larger response to
the ice loading and larger stress magnitudes. Such lower viscosities also allow the
lithosphere to deform more easily at shorter wavelengths in response to local-scale
variations in ice-thickness, leading to sharper variability in the stress profile through
the Canadian seismic zones versus that of VM5a (Figure 5.3 b). The stress low
over the WQSZ may result from changes in the ice margin geometry as it passed
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through the LSLRS between 11.5 to 10.5 ka, during which time the edge of the ice
sheet lingered along the northwestern margin of the Lower Saint Lawrence River
but had already retreated from the southeast portion of Western Quebec. The VM5a
model on the other hand produces a broad stress high over both the WQSZ and the
CXSZ/LSLSZ. As such, use of different viscosity structure has implications for the
change in Coulomb stress on the faults in this area.

To develop a clearer picture of just how glaciation changes stress magnitudes and
the orientation of 𝑆𝐻𝑚𝑎𝑥 under different viscosity conditions, it would be prudent
to first model the stress field testing only 1D viscosity structures. Wu (1997) has
explored such models using several 1D viscosity profiles, finding that contemporary
and past GIA stress orientations during the last 9 kyr are sensitive to mantle viscosity
and specifically require smaller lower-mantle viscosities on the order of 1e21 rather
than 1e22. This contradicts, however, evidence of a jump in viscosity, or at least a
gradual increase, in the lower mantle from both other GIA analyses (e.g., Spada et al.
(1991), Lambeck et al. (2017), and Caron et al. (2018)) and geodynamics (Mitrovica
and Forte, 2004; Steinberger and Calderwood, 2006; Billen, 2008). A higher lower
mantle viscosity also means longer rebound times and hence higher present day
stresses since the stresses imparted during glaciation remain longer post-glaciation
(Spada et al., 1991; Wu, 1997). The models presented in this work have a lower
mantle viscosity closer to 1e22 Pa s and thus exhibit larger GIA stresses.

Because there are few studies that actively investigate the 𝑆𝐻𝑚𝑎𝑥 directions produced
by GIA, it would be informative to re-analyze the approach of Wu (1997) with the
newer CitcomSVE for the sake of a direct comparison to previous results that assume
a flat earth (Wu and Hasegawa, 1996; Wu, 1997). The flat-earth approximation is
commonly used for GIA stress and faulting analyses and is argued to be acceptable
even for loads as large as the Laurentide owing to the fact that ignoring self-
gravitation partially compensates the neglect of sphericity (Amelung and Wolf,
1994; Wu and Johnston, 1998). However, this condition is only valid within the
ice margin and does not hold at distances farther from the ice margin, such as
New Madrid (Wu and Johnston, 2000; Wu et al., 2021). Thus, sphericity remains
important for assessing the impact of GIA on stresses in eastern North America as a
whole and also enables implementation of sea level loading via the sea level equation,
which the flat-earth model does not. Such work will be the subject of future research,
as will a more rigorous examination of the effect of 3D viscosity on intraplate stress.
From the differences between the 1D and 3D GIA models presented in Figures
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5.3–5.6, it is clear that stress perturbations are controlled by lateral variations in
viscosity just as much as or more so than changes in ice-thickness.

Additionally, while of interest as an explanation for intraplate seismicity in eastern
North America, GIA also generates stress perturbations elsewhere in North America
and globally. Using weak plate boundaries, some of the largest peaks in GIA related
deviatoric stress actually occur on the PA-NA plate boundary in California. We also
observe heightened stresses along the Queen Charlotte fault in Western Canada and
up through Alaska. Unlike the eastern half of Canada and the U.S., these regions
lie along active plate boundaries. While tectonics no doubt dominate the stress
field and seismicity in these areas, Rollins et al. (2021) demonstrate how GIA can
modulate the state of stress on major faults in southeast Alaska, which is actively
experiencing rapid uplift rates due to contemporary glacial melting. The role of GIA
in perturbing the state of stress even in plate boundary settings thus requires more
study. However, to properly assess the role of GIA on faulting in plate-boundary
zones one would need to account for the rupture history of individual faults, which
are currently not considered with the use of virtual faults in the CitcomSVE models
presented here. Some studies have explicitly incorporated faults into finite element
GIA models, but these models are usually only regional in scale and again assume
a flat Earth (Steffen et al., 2014b; Wu et al., 2021).

5.7 Conclusions
Using the spherical viscoelastic surface loading finite-element code CitcomSVE,
we model the influence of glacial isostatic adjustment on the intraplate stress field of
eastern North America both with and without the presence of low viscosity intraplate
weak zones. While GIA induces a subtle clockwise rotation in central-eastern
North America and within the New Madrid Seismic Zone, it actually produces a
counterclockwise rotation in the Canadian seismic zones, contrary to suggestions
from previous authors that GIA may be responsible for clockwise stress rotations
observed between regional borehole and focal mechanism derived 𝑆𝐻𝑚𝑎𝑥 (Mazzotti
and Townend, 2010). Only by including the tectonic background stress do we
predict clockwise stress rotations consistent with the observations, suggesting the
effect of mantle loading is more important for explaining these observations than is
GIA. In the NMSZ, GIA helps promote stability on the Reelfoot Fault, in opposition
to mantle flow, while promoting instability on more non-optimally oriented faults.
However, the GIA stress perturbations to magnitude and direction do move faults
in the Canadian seismic zones closer to failure, including the Timiskaming Fault
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and other western WQSZ faults. In particular, GIA helps localize higher Coulomb
failure stress within the Charlevoix Seismic Zone. In general, weak zones loaded
by GIA elevate the change in Coulomb failure stress by several MPa, and in the
case of the WQSZ and LSLRS, the perturbations are large enough that even with
only a small reduction in the coefficient of friction, faults that are not likely to fail
under the background tectonic and geodynamic stresses alone could slip. However,
alternate viscosity structures, both radially and laterally, have been shown to impact
the orientation and magnitude of GIA induced 𝑆𝐻𝑚𝑎𝑥 (Spada et al., 1991; Wu,
1997). To fully assess how GIA may rotate 𝑆𝐻𝑚𝑎𝑥 and elevate CFS in these seismic
zones, further investigation into how changes in 1D and 3D viscosity structure affect
GIA stresses is warranted. Moreover, modeling the change in stress with time since
deglaciation will shed light on how the spatial distribution and character of GIA
stress has evolved over the last several thousand years. Such future work will allow
for better assessment of the rate of GIA stress relaxation given different viscosity
structures and whether the patterns of intraplate seismicity and known instances of
glacially induced faulting favor any particular viscosity structure.
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C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

To better understand the nature and evolution of stress within the lithosphere and
crust, this thesis has explored a variety of different geophysical topics, ranging from
tectonics and statistical seismology to geodynamics and glacial cycles. In Chapter
2, I used gravity inverse methods to reveal the importance of inherited structures and
lateral density contrasts for subduction initiation along the Puysegur Margin, which
along with seismic observations helps inform us about the stress changes unfolding
during this important tectonic process. In Chapter 3, I transitioned to an exploration
of the earthquake interevent time distribution in Southern California, which reveals
a significant seasonal periodicity to the annual seismicity rate, demonstrating how
surface processes can influence the occurrence of earthquakes on sub-annual to
annual timescales. In Chapter 4, I moved from plate boundaries to continental
interiors, where I detailed the importance of deep mantle dynamics, in particular
the Farallon slab, on controlling the orientation and magnitude of stress within the
eastern North American lithosphere and heightening the potential for intraplate fault
reactivation. The buoyancy force of the Farallon slab excites significant mantle flow
and tractions on the lithosphere that are shown to explain some of the continent
wide clockwise rotations in 𝑆𝐻𝑚𝑎𝑥 observed by previous authors. The force of
the slab, in combination with the presence of low viscosity intraplate weakzones
shifts some faults in major seismic zones closer to failure or even beyond the failure
criterion, including some associated with major historical earthquakes. In Chapter 5,
I switched from mantle loading to surface loading and demonstrated the influence of
glacial isostatic adjustment (GIA) on perturbing stress in the intraplate lithosphere.
The influence of GIA is small compared to that of the mantle loading, but GIA
stress perturbations do help shift some faults closer to failure, particularly within
the Charlevoix Seismic Zone, while helping to stabilize others.

Ultimately, this research highlights the important role of mantle dynamics on crustal
processes, connecting the deep Earth to the shallow, and has implications for our
understanding of intraplate seismicity elsewhere on Earth as well. A similar study,
using the same methods and input data, with only minor modifications, could be
performed for Central Europe or Central China, both of which experience significant
intraplate earthquakes (Brandes et al., 2015; Mazzotti et al., 2020; Qingyun et al.,
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2021). GIA’s role in promoting intraplate seismicity is also particularly relevant
for Northern Europe due to the Fennoscandian deglaciation and is the subject of
much active research (Brandes et al., 2015). The study of GIA overall is a rapidly
developing field with many facets and important implications for both the solid Earth
and the hydro- and cryospheres. These include not just glacially induced faulting
but also more general considerations of land uplift, ice-sheet-solid-Earth coupling
and the role GIA plays in contemporary ice mass loss due to climate change, the
signal GIA imposes in geodetic data, and the influence of GIA on surface water
mass balance and the spatial variability of future sea level rise. As such, future
research will involve a continuation of the GIA component of this work.

6.1 Crustal Loading from GIA and Sea Level Change
The GIA results presented in this thesis focus predominantly on the present day
for the sake of comparison with the results obtained from the mantle loading in
Chapter 4. However, the likelihood of glacially induced faulting is predicted to be
at a maximum soon after the end of deglaciation (Wu and Hasegawa, 1996; Steffen
et al., 2020). To better assess how GIA impacts fault reactivation within the seismic
zones of eastern North America over the course of a glacial cycle, we require higher
temporal resolutions of the CitcomSVE output. Such models will be computed
to explore the change in Coulomb failure stress with time at specific locations, as
is commonly pursued in studies of glacially induced faulting (Steffen et al., 2020;
Wu et al., 2021). While not the focus of the current work, stress and seismicity
in response to GIA elsewhere in North America are worth exploring as well. The
models presented here reveal elevated GIA stresses in the vicinity of the Queen
Charlotte Fault in western Canada and Alaska and even along the San Andreas plate
boundary. While tectonics no doubt dominate the stress field and seismicity in these
areas, Rollins et al. (2021) demonstrate how GIA can modulate the state of stress
on major faults in southeast Alaska, which is experiencing rapid uplift rates due to
contemporary melting of glaciers. The role of GIA in perturbing the state of stress
even in plate boundary settings thus requires more study. A similar case may be
made for other regions experiencing modern day ice loss and ensuing rebound, such
as Greenland and Antarctica. While these areas are not heavily populated, glacially
induced faulting remains a seismic hazard, and fault offset, when coastal, can even
impact relative sea level (RSL) change and RSL data (Steffen et al., 2020).

Sea level change itself also represents a possible source of crustal stress perturbation
via changes in ocean loading, which has the potential to impact many highly popu-
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lated coastal areas. Like with GIA modeling, we can use CitcomSVE to investigate
ocean loading along continental margins. Luttrell and Sandwell (2010) demon-
strate that sea level rise since the last glacial maximum (LGM) has induced bending
stresses on global coastlines and can effectively reduce the magnitude of normal
stress and perceptibly weaken onshore coastal faults, promoting failure. Specifi-
cally, onshore coastal transform faults will tend to be weaker during periods of high
sea level, leading to a more rapid seismic cycle. While changes in the Coulomb stress
accumulation rate were found to be about 100 times smaller than tectonic loading
on plate boundary faults, the influence of plate bending on coastal stresses is likely
observable in regions with a lower tectonic loading rate, implying the effect of sea
level loading in tectonically quiescent settings, such as passive continental margins
like eastern North America, may be more pronounced (Luttrell and Sandwell, 2010;
Neves et al., 2015). Existing studies focus predominantly on the impact of sea level
rise on active plate boundaries and assume a constant thickness elastic plate over a
fluid low viscosity viscoelastic half-space. A more focused examination of the effect
of sea level loading on passive margins, incorporating more realistic lithospheric
thickness and mantle viscosity variations, will further clarify the extent to which
sea level rise perturbs crustal stresses along coastlines. This is critical because the
strongest sea level loading occurs were the gradients in lithospheric strength are
greatest, and the flexural response to ocean loading is principally determined by the
elastic plate thickness at the edge of the load, i.e., the coastline (Neves et al., 2015).

Previous work on sea level induced stresses off the coast of the Carolinas indeed
predicts an increase in the maximum shear stress at seismogenic depths following
120 m of sea level rise since the LGM, with failure promoted on nearshore faults
(Brothers et al., 2013; Neves et al., 2015). Similar patterns are observed along the
entirety of the mid-Atlantic margin and the Iberian margin, where the narrow conti-
nental shelf and relatively low elastic plate thickness promote rupture of basement
faults within 80-100 km of the coast (Brothers et al., 2013). While anthropogenic
sea level rise is projected to be only about a meter by 2100 and 5-6 meters by 2300
(Oppenheimer et al., 2019), certain regions may be particularly prone to inundation
depending on the local coastline morphology. Locally enhanced inundation may
sufficiently perturb crustal stresses in the near future. Nearshore fault rupture can
also trigger large submarine landslides, which in turn may pose a tsunami hazard
to the eastern seaboard (Brothers et al., 2013; Brink et al., 2009). However, many
existing studies (Luttrell and Sandwell, 2010; Brothers et al., 2013) do not account
for ice mass unloading. Simultaneously modeling the coupled effect of GIA and
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loading from sea-level rise in the presence of lithospheric weak zones is critical to
accurately predicting the resulting change in Coulomb stress at continental margins.
Glacial removal in addition to sea level high-stand is expected to increase activity
on onshore faults even more so than sea level loading alone (Luttrell and Sandwell,
2010). With a better understanding of the contributions from different drivers of in-
traplate and coastal stress changes and how those changes impact fault reactivation,
we may begin to construct predictive models of the stress changes induced by future
accelerating sea level rise.

Even the combined effect of slab loading and GIA on lithospheric deformation is
potentially a very relevant problem for contemporary ice mass loss and GIA in
Antarctica. Between 117 and 30 Ma, the Phoenix Plate subducted beneath the coast
of what is today the Antarctic Peninsula, resulting in a back-arc rift system that today
makes up the West Antarctic lithosphere (Artemieva and Thybo, 2020; Lloyd et al.,
2019). Extensive lithospheric thinning and mantle hydration resulting from past
subduction is thought to have lowered the viscosity of the West Antarctic mantle by
as much as three orders of magnitude (Ivins et al., 2023; Wiens et al., 2023). This
alone has implications for the relaxation times of GIA in the region, but the possible
presence of the Phoenix slab in the mantle beneath West Antarctica and the Antarctic
Peninsula (Lloyd et al., 2019) may also have considerable influence on present day
Antarctic topography and mantle flow that could feedback into the GIA response.
Any dynamic subsidence attributed to the pull of a relict slab counteracting the uplift
induced by GIA has implications for the response of the West-Antarctic lithosphere,
and in turn, the stability of the ice that sits upon it. Just as one considers the
balance between slab pull and plate resistive forces that govern plate motions and
subduction initiation, one might consider the balance of forces between GIA and
long-wavelength continental subsidence driven by mantle dynamics.

6.2 Influence of 3D Earth Viscosity Structure on GIA and Implications for
GRACE Estimates of Global Water Mass Balance

The displacement of the solid Earth due to GIA is essentially a change in the Earths’
mass distribution, resulting in a change in gravitational potential and thus in the
observed gravity field. Temporal changes in the Earth’s gravity field, as measured
by the Gravity Recovery and Climate Experiment (GRACE) satellites, are one of the
primary means by which one can determine changes in surface water mass balance
due to both seasonal cycles and long-term climate change, including cryospheric
evolution and sea-level rise, but these data record a combination of hydro- and
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cryospheric mass changes as well as solid-Earth deformation arising from past and
present surface loading. GIA has long been problematic for GRACE interpretation
due to the large time-varying signal that post-glacial rebound introduces to gravity
data (Wahr et al., 1998). Isolating the signal of surface mass balance (SMB) change
from that of the solid Earth requires data constrained models of GIA.

GIA models used for gravity corrections typically use a viscoelastic Earth model
with 1D radially symmetric viscosity. However, as discussed in Chapters 4 and
5, Earth’s viscosity varies laterally as a function of temperature and composition,
and the assumption of 1D viscosity has been acknowledged as an oversimplification
since the advent of the GRACE mission (Wahr et al., 1998; Wang and Wu, 2006). In
fact, the primary factor causing significant differences in ocean mass inferred from
GRACE is the choice of GIA model (Chambers et al., 2010). Differences in radial
1D Earth structure and uncertainties in ice sheet history can yield a spread of up to 1.4
mm/yr in the estimates of the GIA contribution (Tamisiea, 2011), and uncertainty
on lower mantle viscosity alone is large enough to undermine the inference of
secular changes in oceanography and hydrology at long wavelengths (Wahr et al.,
1998; Métivier et al., 2016). An uncertainty of even 1 mm/yr in GIA models
can significantly limit the usefulness of GRACE for inferring ocean mass trends
(Chambers et al., 2010). Additionally, the solid-Earth response to contemporary
mass loss is rarely considered in the determination of surface mass changes from
GRACE (Ivins et al., 2011), but may be significant for both the interpretation of
gravity data and the dynamics and stabilization of ice sheets (Larour et al., 2019).
Isolating this contemporary GIA signal in time-variable gravity data is increasingly
important as the GRACE(-FO) mission extends beyond 20 years.

Differences between GIA models and GIA model misfits can arise from the viscosity
model used, uncertainties in the ice loading history (Spada et al., 2006), and the
treatment of polar wander (Adhikari et al., 2018; Chambers et al., 2010). However,
the most significant differences arise from the solid-Earth model, especially between
models using 1D radial viscosity with constant lithospheric thickness and those
using 3D viscosity and variable lithospheric thickness (Li et al., 2020; Wal et al.,
2015; Latychev et al., 2005; Spada et al., 2006). Studies of GIA model sensitivity
to 3D Earth structure reveal 1D models have difficulty reproducing the rebound
and relative sea level (RSL) predictions of 3D models to better than 10%, namely
because GIA is sensitive to both local viscosity at the observation point and the
viscosity under the load itself (Paulson et al., 2005; A et al., 2013; Bagge et al.,
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2021). Because 1D viscosity profiles derived from GNSS observations of glacial
rebound most closely resemble the viscosity beneath the load instead of a global
average, such viscosity structure is not appropriate for corrections to global GRACE
data (Paulson et al., 2005; Powell et al., 2022). Lithospheric thickness and lower-
mantle viscosity alone may have a larger effect on GIA misfits than a heterogeneous
upper mantle due to mutual cancellation of the effect of lateral variations globally
(Spada et al., 2006). However, lateral heterogeneity is more influential on regional
scales (Kaufmann et al., 2005; Li et al., 2020), particularly in Antarctica, where
upper mantle viscosities can vary by 2-3 orders of magnitude (Wal et al., 2015;
Powell et al., 2022). Using a 1D earth model in such regions does not adequately
capture fast relaxing deformation, resulting in an overall underestimation of GIA
uncertainties (Caron et al., 2018).

GIA impacts GRACE more so than other means of measuring the global oceans (e.g.,
altimetry) because the mass change associated with GIA results from radial flow in
the solid Earth. Despite the small magnitude of GIA uplift, the larger density of rock
means the size of the GIA contribution is equivalent to the expected gravitational
variation due to water fluxes in the ocean; even small solid-Earth height variations
will produce significantly larger apparent changes in equivalent water thickness
(EWT) (Tamisiea, 2011). Before present-day ice-mass and sea-level changes can
be inferred, GRACE gravity measurements, which are obtained from the satellite
motion by solving for the difference in gravity from an initial model in a non-linear
least squares sense, must be corrected for GIA. The a priori model against which the
gravitational potential anomalies are measured includes the gravitational effects of
the solid Earth and GIA. Thus, the residual differences reflect not only the processes
of interest that are not modeled in the background, such as hydrology or ice sheet
mass changes, but also processes erroneously modeled in the background (Zlotnicki
et al., 2012). It is furthermore assumed in the interpretation of GRACE data
that monthly changes in gravitational attraction are produced primarily by lateral
movement of water within and among the hydrosphere and cryosphere (Zlotnicki
et al., 2012). Thus, it is paramount that GIA corrections used in the background
model are as accurately constrained as possible to avoid propagation of error into
the quantities of interest (Caron et al., 2018). Ultimately, these GIA corrections
directly affect the ability to properly quantify and understand climatic processes
such as contemporary ice mass loss and sea-level rise, coastal subsidence, ocean
and surface mass transport, and Earth’s energy budget.
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The GIA correction is produced either by forward modeling the GIA contribution
(A et al., 2013; Wal et al., 2015) or by inverting for the GIA signal from GRACE,
GPS, and satellite altimetry data (Rietbroek et al., 2016; Wu et al., 2020). The latter
approach remains very uncertain because of reference frame drift, limited knowledge
of glacier ice compaction, striping error in the reduced level-2 and level-3 GRACE
data, and inhomogeneous spatiotemporal coverage of altimetry data (Wal et al.,
2015). GIA forward models constrained by a host of independently determined
data sets, such as historic sea-level indicators; geomorphological, geological, and
glaciological constraints on ice history; and knowledge of Earth structure are the
most straightforward and standard way of accounting for the GIA signal (Ivins et al.,
2023). The level-3 GRACE mass grids distributed to the scientific community are
also corrected with such forward GIA models. However, the corrections applied in
standard GRACE processing still assume a 1D viscosity structure, yielding secular
global values of around -1.17 mm/yr (A et al., 2013; Uebbing et al., 2019). The
GIA correction is of particular concern for Antarctica, where the estimated mean
GIA contribution to mass change is on the order of 56 Gt/yr – as large as the error
in the overall ice mass trend for the continent (-109 ± 56 Gt/yr) (IMBIE, 2018).
The magnitude of the GIA contribution also differs by as much as 44 Gt/yr between
models with 3D structure and those without (IMBIE, 2018) and greatly affects
the SMB trend of glaciated regions. GIA model uncertainties propagate directly
into uncertainties of the estimated ice loss (Caron et al., 2018), which has major
implications for the accuracy of future sea level rise estimates.

In my post-graduate research, I will work to quantify the impact of 3D lateral
variations in Earth’s rheology on 1) the GIA signal in time-variable gravity as
measured by GRACE, 2) contemporary solid-Earth uplift generated by ice mass
loss in Greenland and Antarctica, and 3) projections of sea level rise associated
with these processes, with the ultimate goal of providing updated GIA corrections
for GRACE that account for 3D viscosity. With insights from geodynamic models
such as those presented in Chapter 4 and knowledge of mantle rheology, we will
parameterize 3D viscosity structures constrained by modern high resolution seismic
tomography models.

We can explore four main controls on the Earth model: 1) the tomography model
itself, 2) the conversion of seismic velocities to temperature, 3) the form of the Ar-
rhenius law controlling the temperature dependence of viscosity, and 4) the viscosity
of the lithosphere and asthenosphere and presence, or lack, of weak plate bound-
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aries. Globally, the choice of tomography model is likely to have relatively little
impact, but regionally, high resolution tomography can image fine scale structure
that may influence both long-term GIA and contemporary elastic response to ice-
loss from specific glaciers or ice-shelves. Uncertainty on the conversion of seismic
velocities to temperature will require exploration and optimization of mineralogical
assumptions on mantle composition. The temperature to viscosity conversion is
key, in particular the form of the viscosity law, the activation energy, and the vis-
cosity pre-factor. In addition, plate boundaries on the order of 1/10𝑡ℎ the viscosity
of the upper mantle are rarely included in GIA models but can perturb horizontal
rates by up to 1-2 mm/yr and strengthen the signal of Laurentide deglaciation in
Europe (Latychev et al., 2005; Klemann et al., 2008). We will test the impact of
such weak zones, as well as the impact of non-Newtonian viscosity through the role
of stress-dependence (Kang et al., 2022; Ivins et al., 2023). Through my work in
this thesis using both CitcomS and CitcomSVE, I have established a workflow for
both the inversion and scaling of seismic velocities to temperature, as well as the
viscosity calculations (e.g., Chapter 4) that can be used for this research.

Using CitcomSVE (Zhong et al., 2022) (see Chapter 5), we will model the impact
of such 3D heterogeneous viscosity structure on the GIA response. In addition to
stress, CitcomSVE self-consistently computes displacements, gravitational poten-
tial, and sea level height changes and accounts for both the effect of polar wander
on the degree-2, order-1 harmonics (Zhong et al., 2022) and the effect of any hemi-
spherically asymmetric load distribution on degree-1 displacement (Paulson et al.,
2005; A et al., 2013). Outputs also include spherical harmonic expansions of dis-
placements and gravitational potential up to a specified degree and order (Zhong
et al., 2022). With its applications to GIA and integration with ICE-6G (Peltier
et al., 2015), CitcomSVE can be considered a continuation of the GIA commu-
nity’s ongoing benchmark effort (Spada et al., 2011; Martinec et al., 2018). In its
earlier form, 3D GIA models from CitcomSVE (Paulson et al., 2005) have been
used to provide reconciled monthly time series of global mean ocean mass (A et al.,
2013; Uebbing et al., 2019). With recent updates to handle more complicated 3D
heterogeneous viscosity structure and scalability to massively parallel computers
with greater than 6000 CPUs (Zhong et al., 2022), CitcomSVE has the potential to
provide improved, more geophysically constrained and higher resolution solutions
of the GIA correction needed for GRACE. Consideration of compressibility in GIA
models is also currently of great interest to the GIA community and a benchmark
effort on this front is beginning to take shape (Erik Ivins, personal communication,
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via Rebekka Steffen). The compressible version of CitcomSVE (A et al., 2013)
is also currently being updated for greater parallelization and should be available
within the time frame of this work (Zhong, personal communication).

We will test the sensitivity of GIA model predictions to both 3D and 1D viscosity
structure using the aforementioned models by building upon the Bayesian approach
in Caron et al. (2018), which quantified the uncertainty of 1D GIA models through an
exploration of the parameters controlling GIA using GPS and RSL data (Caron et al.,
2018). This will allow us to statistically characterize the plausible range of 3D Earth
models appropriate for GRACE corrections as well as their uncertainties. These
models with be parameterized by the seismic velocity to temperature scaling; the
activation energy and prefactor of the Arrhenius relation; the lithospheric viscosity;
the viscosity contrasts between the upper mantle, transition zone, and lower mantle;
and the viscosity of plate boundaries, as well as the ice loading history. Modeled
uplift rates, RSL, and gravitational potential can be directly compared with GIA
observables such as GPS uplift rates, paleo-sea-level indicators, and gravity change
from GRACE. From the modeled incremental gravitational potential, combinations
of the Stokes coefficients, and the time increment used in the model, we can compute
changes in geoid height and rates of gravity anomaly change. We will quantify the
spatial patterns and amplitudes at which spatial heterogeneity in viscosity affects the
gravity signals. We can difference the apparent GIA surface mass equivalent between
different models to assess the sensitivity of the inferred hydro- and cryospheric
surface mass rates in GRACE data to any particular viscosity structure. This
is especially important for Antarctica, where the spatial pattern of gravity rates
is markedly different between 3D and 1D models (Wal et al., 2015). Likewise,
preliminary runs with CitcomSVE comparing simple models with 1D versus 3D
mantle viscosity reveal notable differences at the global scale. Uplift and geoid
rates predicted using a 3D mantle viscosity are much larger (upwards of 14 mm/yr
at Hudson Bay) than those using a 1D viscosity profile (∼ 8 mm/yr). Geoid rates
differ mostly over West Antarctica, Patagonia, and Fennoscandia.

Rigorous statistical treatment of the GIA impact on GRACE allows for identifying
and rooting out the sources and scales of biases in the SMB trends of both Greenland
and Antarctica. For example, the amplitude of the SMB trend on the vast East
Antarctic Ice Sheet (EAIS) is small and positive (+5 Gt/yr) but has the largest
spread in both GRACE and altimetry data. Consequently, because the GIA signal
is relatively large, if the GIA correction is even slightly off, it can bias the entire
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SMB of the ice-sheet in the wrong direction (IMBIE, 2018). However, use of 3D
structure may reduce the residuals on SMB as measured by GRACE and altimetry,
and no one has yet modeled the effect of low viscosity zones on the EAIS. Moreover,
GIA can bias mass trend estimates if it includes a transient signal associated with
recent ice-sheet change within the past few millennia – a problem we can address
with higher temporal resolution in GIA models.

Surface loading affects time scales ranging from those of GIA (10,000s of years) to
Anthropocene ice mass and sea-level change (100s of years). This work will focus
on GIA solutions stemming from both loading since the last inter-glacial and over
the past 170 years, including the satellite era. As such, we will explore decadal time
scale computations in CitcomSVE. CitcomSVE currently performs best in terms
of computational speed and accuracy with time-steps of 100 to 250 years, though
errors between semi-analytic solutions (Han and Wahr, 1995; A et al., 2013) and
predicted displacements and rates are generally insensitive to temporal resolution
(Zhong et al., 2022). Errors are, however, smaller for cases with higher spatial
resolution (less than 0.2% for spherical harmonic degree 𝑙 < 10 and less than 2%
for 𝑙 < 23) and mostly originate from relatively short wavelengths (𝑙 > 15) (Zhong
et al., 2022). Resolutions in CitcomSVE, up to about 25 km laterally, are adequate
to resolve the GIA process globally and provide corrections for GRACE data, which
at most achieves resolutions of ∼ 300 km (Zlotnicki et al., 2012; Tapley et al., 2019).
Nevertheless, 1 km-scale resolution is required to accurately capture the coupling of
solid-Earth deformation and ice in fast ungrounding regions of marine-terminating
ice-sheets (Cuzzone et al., 2019). Additionally, since different ocean kernels can
introduce differences of up to 0.3 mm/yr equivalent sea level change (Chambers
et al., 2010), higher resolutions are needed to fully capture the geometry of ocean
basins and coastlines. Assessing convergence methods for higher resolutions in
CitcomSVE is essential for modeling contemporary solid-Earth response to mass
changes, but even at lower resolutions, this work can still inform the implementation
of 3D structure in km-scale coupled ice-solid-Earth models in ISSM.

While many 3D GIA models are constrained by seismic data and include laterally
variable lithospheric thickness, heterogeneous viscosity (Paulson et al., 2005; A
et al., 2013; Wal et al., 2015; Li et al., 2020; Bagge et al., 2021; Powell et al., 2022),
and plate boundary weak zones (Latychev et al., 2005; Klemann et al., 2008), these
characteristics of a 3D Earth have not yet been integrated with any fidelity into
GIA corrections for GRACE estimates of surface mass change on a global scale.
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This work will focus on providing GRACE science analyses with improved GIA
predictions based on fully-3D Earth models using multi-disciplinary data, including
paleo-sea-level indicators, tide-gauge data, GPS crustal motions, and gravimetry
and altimetry. We will use newer higher resolution regional seismic models, par-
ticularly for North America and Antarctica, in concert with global tomography to
parameterize 3D Earth structure and analyze its influence on gravity, equivalent
water height, and RSL estimates using CitcomSVE. We anticipate 3D and 1D GIA
solutions and their impact on gravity and SMB as inferred from GRACE to differ
substantially, especially at regional scales in places like the Western Antarctic Ice
Sheet and Patagonia. This research will result in three primary scientific products
that are useful to both NASA and the geoscience and hydro/cryoscience commu-
nities. 1) We will develop new GIA corrections for constructing level-3 GRACE
products using 3D Earth rheology. 2) Our results will benefit the joint inversion of
altimetry and GRACE data for the computation of well constrained mascons, par-
ticularly in areas with low SMB signal amplitude like the EAIS. 3) With modeled
GIA uplift, we can deliver maps of vertical land motion time series that can directly
support GNSS time series analysis. The improvements derived from rigorously
constrained 3D GIA corrections will lead to more robust capability for all future
gravity missions and inform reassessment of global water mass balance and sea level
rise projections for the 21st century as inferred from GRACE.

Building upon the work presented in this thesis, the above proposed GIA modeling
is an integral part of the framework with which we can determine the past, present,
and future viscoelastic time-varying response of the solid Earth and has implications
for climate relevant mass changes, sea level rise, and associated hazards, such as
coastal subsidence (Larour et al., 2017), flooding, and perturbation to crustal stresses
(Brothers et al., 2013). Likewise, geodynamic modeling more broadly can help
constrain seismic hazard models via a more realistic understanding of intraplate
seismicity, especially in light of how modern day climatic and sea level changes
may regionally impact crustal stresses, earthquake hazard, and liquefaction risk in
highly populated coastal areas. Ultimately, a refined understanding of the driving
mechanisms of intraplate seismic events will enhance earthquake engineering and
preparedness initiatives.
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A p p e n d i x A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Tikhonov Regularization
Tikhonov regularization is implemented using different regularization matrices for
each of the x, y, and z directions. For first order Tikhonov regularization and the
one-dimensional case, the finite difference approximation to the first derivative is

𝜕𝑚𝑘

𝜕𝑥
=

1
Δ𝑥

(−𝑚𝑘 + 𝑚𝑘+1), (A.1)

which can be represented in the form of an upper bi-diagonal matrix operator L1
acting on a vector of the spatially discretized model parameters. The result is an
M-1 x M matrix.

𝜕𝑚𝑘

𝜕𝑥
=

1
Δ𝑥


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

. . . 0
0 · · · 0 −1 1



𝑚1

𝑚2
...

𝑚𝑘


(A.2)

Because the discretization can vary within the 𝑥, 𝑦, and 𝑧 directions, the L matrices
are unique for each of those directions and Δ𝑥, Δ𝑦, or Δ𝑧 may vary for each adjacent
pair of model parameters being regularized. When this is the case, the 1/Δ𝑥 term is
brought inside L.

For second order Tikhonov regularization and for the one-dimensional case, the
finite difference approximation to the second derivative is

𝜕2𝑚𝑘

𝜕𝑥2 =
1

Δ𝑥2 (𝑚𝑘−1 − 2𝑚𝑘 + 𝑚𝑘+1), (A.3)

which can likewise be represented in the form of an upper tri-diagonal matrix
operator L2 acting on a vector of the model parameters, where L2 is an M-2 x M
matrix.

𝜕2𝑚𝑘

𝜕𝑥2 =
1

Δ𝑥2


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1



𝑚1

𝑚2
...

𝑚𝑘


(A.4)
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The second derivative finite difference operator can be written in terms of the first
derivative finite difference approximation as

𝜕2𝑚𝑘

𝜕𝑥2 =
1
𝛿𝑥 𝑗

(
𝜕𝑚𝑘+1

𝜕𝑥𝑖+1
− 𝜕𝑚𝑘

𝜕𝑥𝑖

)
=

1
𝛿𝑥 𝑗

(
−𝑚𝑘 + 𝑚𝑘+1

Δ𝑥𝑖+1
−
(
−𝑚𝑘−1 + 𝑚𝑘

Δ𝑥𝑖

))
. (A.5)

The L2 matrix is thus calculated from the L1 matrix for the x and y directions. For
the z-direction, we use only first order Tikhonov regularization.

A.2 Synthetic Tests for BayGrav3D Inversion of a Subduction Zone
Here we present the results from each of the synthetic tests. For each metric shown in
Figures A.1-A.4, the combinations of Tikhonov order and priors tested are organized
into panels. Rows correspond to the order(s) of Tikhonov tested and columns to the
combination of priors used. Each of the figures also shows the 𝛼, 𝜁 combination that
gives the lowest mean absolute error on the gravity and the lowest mean absolute
error on the model parameters as compared to the true model for comparison.
Discussion of these results is provided in the main text of the paper. We also show
additional cross-sections of the model results for different combinations of 𝛼 and
𝜁 and different orientations to illustrate how the quality of the final model changes
with different regularization strengths across the different tests and how the model
changes lateral in both the x and y directions.
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Figure A.1: Mean absolute error between the gravity from the true density model and that predicted
by the inversion for each combination of 𝛼 and 𝜁 , which are labeled for every other value. Panel rows
represent either first or second order Tikhonov regularization or a combination of the two. Panel
columns represent, from left to right, inversion with no priors, inversion with priors only on prisms
that fall within the ocean, inversion with priors on prisms in the ocean and crustal rocks, and inversion
with priors on all prisms, including the mantle. Red circles mark the 𝛼,𝜁 combination corresponding
to the minimum MAE on the gravity; red squares mark the 𝛼,𝜁 combination corresponding to the
minimum MAE on the model parameters relative to the true model. Colorbar is saturated at 25
mGal. Gray regions correspond to 𝛼,𝜁 combinations that yield unstable or unreasonable results.
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Figure A.2: Mean absolute error between the predicted model parameter values and the known
model parameter values from the synthetic model for each combination of 𝛼 and 𝜁 , which are labeled
for every other value. Panel rows represent either first or second order Tikhonov regularization or
a combination of the two. Panel columns represent, from left to right, inversion with no priors,
inversion with priors only on prisms that fall within the ocean, inversion with priors on prisms in the
ocean and crustal rocks, and inversion with priors on all prisms, including the mantle. Red circles
mark the 𝛼,𝜁 combination corresponding to the minimum MAE on the gravity; red squares mark the
𝛼,𝜁 combination corresponding to the minimum MAE on the model parameters relative to the true
model. Colorbar is saturated at 800 kg/m3. Gray regions correspond to 𝛼,𝜁 combinations that yield
unstable or unreasonable results.
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Figure A.3: Mean standard deviation on the model parameters as determined from the diagonal
of the covariance matrix C for each combination of 𝛼 and 𝜁 , which are labeled for every other
value. Panel rows represent either first or second order Tikhonov regularization or a combination
of the two. Panel columns represent, from left to right, inversion with no priors, inversion with
priors only on prisms that fall within the ocean, inversion with priors on prisms in the ocean and
crustal rocks, and inversion with priors on all prisms, including the mantle. Red circles mark the
𝛼,𝜁 combination corresponding to the minimum MAE on the gravity; red squares mark the 𝛼,𝜁
combination corresponding to the minimum MAE on the model parameters relative to the true
model. Colorbar is saturated at 800 kg/m3. Gray regions correspond to 𝛼,𝜁 combinations that yield
unstable or unreasonable results.
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Figure A.4: Mean resolution of the model parameters as determined from the diagonal of the
resolution matrix R for each combination of 𝛼 and 𝜁 , which are labeled for every other value. Panel
rows represent either first or second order Tikhonov regularization or a combination of the two. Panel
columns represent, from left to right, inversion with no priors, inversion with priors only on prisms
that fall within the ocean, inversion with priors on prisms in the ocean and crustal rocks, and inversion
with priors on all prisms, including the mantle. Red circles mark the 𝛼,𝜁 combination corresponding
to the minimum MAE on the gravity; red squares mark the 𝛼,𝜁 combination corresponding to the
minimum MAE on the model parameters relative to the true model. Gray regions correspond to
𝛼,𝜁 combinations that yield unstable or unreasonable results. Lower resolution means that model
parameters are determined more by the prior than they are the gravity data itself. Resolution values
of 1 or near 1 mean model parameter values are resolved more by the gravity data than the prior.
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Figure A.5: Representative cross section in the x-direction of the 3D inversion results for the 𝛼
and 𝜁 combinations that produced the minimum MAE on the model parameters for each of the
regularization order and prior combinations, as determined from the test results depicted in Figs.
A.1-A.4. Row 1: gravity profiles for each of the three cases depicted in the panels below. Dark blue
line: true gravity produced by the synthetic model, with noise; gray line: gravity from inversion
using only first order Tikhonov; light blue line: gravity from inversion using only second order
Tikhonov; orange line: gravity from inversion using second order Tikhonov in the horizontal and
first order in the vertical. Row 2: cross-sections of the density model recovered from using only
first order Tikhonov for the cases of no priors, priors only on the ocean water parameters, priors on
the ocean and crustal parameters, and priors on all parameters, each with their respective minimum
model parameter MAE 𝛼, 𝜁 combinations. Row 3: cross-sections of the density model recovered
from using only second order Tikhonov for each of the different prior cases. Row 4: cross-sections
of the density model recovered from using a combination of first and second order Tikhonov for each
of the different prior cases. Row 5: cross-section of true synthetic density model for comparison.
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Figure A.6: Representative cross-section in the y-direction of the inversion results for 𝛼 and 𝜁

combinations that produced the minimum MAE on the model parameters for each of the regularization
order and prior combinations, as determined by comparing the test results depicted in Figures A.1-
A.4. Row 1: gravity profiles for each of the three cases depicted in the panels below. Dark blue line:
true gravity produced by the synthetic model, with noise; gray line: gravity from inversion using
only first order Tikhonov; light blue line: gravity from inversion using only second order Tikhonov;
orange line: gravity from inversion using second order Tikhonov in the horizontal and first order
in the vertical. Row 2: cross-sections of the density model recovered from using only first order
Tikhonov for the cases of no priors, priors only on the ocean water parameters, priors on the ocean
and crustal parameters, and priors on all parameters, each with their respective minimum model
parameter MAE 𝛼, 𝜁 combinations. Row 3: cross-sections of the density model recovered from
using only second order Tikhonov for each of the different prior cases. Row 4: cross-sections of the
density model recovered from using a combination of first and second order Tikhonov for each of
the different prior cases. Row 5: cross-section of true synthetic density model for comparison.
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A p p e n d i x B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 Probability Distributions for Earthquake Interevent Times
The Poisson probability distribution gives the probability of observing 𝑛 events in a
period of time 𝑡 and is given by:

𝑃𝑛 (𝑡) =
(𝜆𝑡)𝑛
𝑛!

𝑒−𝜆𝑡 . (B.1)

The distribution of the interevent times is the probability that the waiting time, or
interval time, is less than some t, and follows the exponential distribution. This
probability is the cumulative distribution function (CDF) of the interevent times:
𝑃(≤ 𝑡) = 1 − 𝑃(> 𝑡) = 𝐶𝐷𝐹 (𝑡). The probability that t is greater than T, on
the other hand, is equivalent to the probability that there are no events in time T:
𝑃(𝑡 > 𝑇) = 𝑃(𝑛 = 0). This is just the Poisson distribution for n = 0,

𝑃(> 𝑡) = 𝑃0(𝑡) =
(𝜆𝑡)0

0!
𝑒−𝜆𝑡 = 𝑒−𝜆𝑡 . (B.2)

Thus, the CDF of the interevent times is simply:

𝐶𝐷𝐹 (𝑡) = 𝑃(≤ 𝑡) = 1 − 𝑒−𝜆𝑡

= 1 − 𝑒−𝑡/𝑡𝑜 . (B.3)

𝜆 is the mean occurrence rate (i.e., the Poisson parameter) and can also be written
as 1/𝑡𝑜, where 𝑡𝑜 is the mean interevent time.

The derivative of the CDF gives the probability distribution of obtaining a particular
interevent time for randomly distributed independent events with a given rate:

𝑃𝐷𝐹 = 𝑃(𝑡) = 𝜆𝑒−𝜆𝑡

=
𝑒−𝑡/𝑡𝑜

𝑡𝑜
. (B.4)

The Gamma distribution, as used in Figure 3.2, has a probability density function
defined as:

𝑃(𝜏) = 𝛽−𝛾𝜏𝛾−1𝑒−𝜏/𝛽

Γ(𝛾) , (B.5)
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where 𝜏 is the normalized interevent time (obtained by multiplying the interevent
time with the earthquake rate), 𝛾 is the shape parameter, 𝛽 is the mean interevent time
(or 1/𝜆, the background earthquake rate), and Γ(𝛾) is the gamma function. The ratio
of independent events over the total number of events, i.e., the mainshock fraction,
is often represented by the shape parameter 𝛾, which in the case of normalizing the
interevent times, is equivalent to 1/𝛽 (Hainzl et al., 2006; Molchan, 2005).

𝛽 = 𝜎2
𝜏 /𝜏 = 𝜎2

𝜏 (B.6)

𝛾 = 𝜏/𝛽 = 1/𝛽 (B.7)

B.2 Equations Used in Declustering of Earthquake Catalogs
The following equations are taken from Zaliapin and Ben-Zion (2013) and are used
in the declustering algorithm to classify events as either foreshocks, mainshocks, or
aftershocks. The distance between earthquake 𝑖 (the parent earthquake) and 𝑗 (the
event being considered) is given by:

𝜂𝑖 𝑗 =


𝑡𝑖 𝑗 (𝑟𝑖 𝑗 )𝑑 𝑓 10−𝑏𝑚, 𝑡𝑖 𝑗 > 0

∞, 𝑡𝑖 𝑗 ≤ 0
(B.8)

where 𝑡𝑖 𝑗 = 𝑡 𝑗 − 𝑡𝑖 is the inter-occurrence time in years; 𝑟𝑖 𝑗 ≥ 0 is the spatial distance
between earthquake hypocenters (or epicenters when depth is ignored) in km; 𝑑 𝑓
is the fractal dimension of the earthquake hypocenter distribution, which is often
taken to be around 1.6; 𝑏 is the b-value of the catalog being declustered; and 𝑚𝑖 is
the magnitude of the parent event.

The scalar distance 𝜂 is best represented in terms of its space and time components,
normalized by the magnitude of the parent event (Zaliapin and Ben-Zion, 2013;
Zaliapin et al., 2008):

𝑇𝑖 𝑗 = 𝑡𝑖 𝑗10−𝑞𝑏𝑚 (B.9)

𝑅𝑖 𝑗 = (𝑟𝑖 𝑗 )𝑑𝑓 10−(1−𝑞)𝑏𝑚

𝜂𝑖 𝑗 = 𝑇𝑖 𝑗𝑅𝑖 𝑗 (B.10)

log10𝜂𝑖 𝑗 = log10𝑇𝑖 𝑗 + log10𝑅𝑖 𝑗 .

The nearest neighbor distance for a given event 𝑗 is then defined as the minimal
distance among 𝜂𝑖 𝑗 for all earlier events 𝑖 in the catalog, and the event 𝑖 that corre-
sponds to that nearest-neighbor distance is the nearest neighbor, i.e., the parent, of
event 𝑗 . Further details of the declustering based on these equations are given in
Zaliapin et al. (2008) and Zaliapin and Ben-Zion (2013).
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B.3 Generation of Synthetic Earthquake Catalogs
The following material provides details on the generation of the synthetic catalogs
and figures illustrating the Gutenberg-Richter distributions, aftershock sequences,
and declustering results for the synthetic catalogs discussed in Chapter 3, Section
3.5.2.

Earthquake magnitudes are randomly generated according to the Gutenberg-Richter
distribution, using the inverse transform method, which takes uniformly sampled
random numbers and transforms them such that they take on the desired proba-
bility distribution given a known cumulative distribution function. The CDF of
the Gutenberg-Richter distribution (i.e., the probability that an earthquake has a
magnitude less than or equal to a given value) is:

𝐹 (𝑚) = 1 − 10−𝑏(𝑚−𝑀𝑐) , (B.11)

where 𝑀𝑐 is the magnitude of completeness, b is the slope of the GR distribution,
and m is the magnitude, here treated as a random variable. To perform the inverse
transform sampling, we set m equal to 𝐹−1(𝑢) and 𝐹 (𝐹−1(𝑢)) equal to 𝑢, where u
is a vector of uniformly distributed random numbers between 0 and 1. Solving for
𝐹−1(𝑢) then gives us a sequence of magnitudes distributed according to the GR law:

𝑚 = 𝐹−1(𝑢) = 𝑀𝑐 −
1
𝑏
𝑙𝑜𝑔10(1 − 𝑢). (B.12)

Earthquake magnitudes are generated using a minimum magnitude of 2 and a b-
value of 1. Figures B.1 – B.10 panels (a) and (b) show the GR distribution and the
earthquake sequence with time for each of the synthetic catalogs with at least one
M > 7 earthquake.

The locations of the mainshocks are randomly generated according to a uniform
distribution and depth is ignored, as we are only interesting in the timing of the
events. Thus, we do not account for spatial details like fault geometry in the
locations of the earthquakes, although a joint space-time analysis accounting for
spatial non-homogeneity of real seismicity may shed light on other peculiarities of
the interevent time distribution.

The interevent times of the mainshock events in the synthetic catalog are generated
according to an exponential distribution for the non-stationary case with 𝑡0 equal
to the yearly varying mean interevent times for either the QTM or HYS catalogs.
In the case of the QTM-based synthetics, the 𝑡0 values are scaled up by a factor of
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10. This scales down the overall earthquake rate and reduces the total number of
mainshocks in order to make the synthetic catalogs a more reasonable size to work
with. The timings of the events are then calculated from the cumulative sum of
the interevent times. The cumulative number of mainshocks with time is shown by
the gray line in Figures B.1 – B.10 panel (b). The cumulative distribution of the
synthetic mainshock interevent times is determined as described previously, in the
main text and in the appendix.

From these mainshocks, aftershocks are simulated using a simple-type aftershock
sequence model (STAS), where each earthquake in the mainshock catalog generates
its own aftershock sequence, as opposed to an epidemic-type aftershock sequence
model, which allows every earthquake, including aftershocks, to generate their own
aftershocks (Hainzl et al., 2006). The timing of aftershocks follows a non-stationary
Poisson function, where the aftershock rate induced by an earthquake of magnitude
𝑀𝑖 that occurred at time 𝑡𝑖 is given by the modified Omori’s law, (Hainzl et al.,
2006) (Eq. B.13). 𝐾, 𝛼, 𝑐, and 𝑝 are constant for all earthquakes of a given area,
and are chosen in accordance with the values in Hainzl et al. (2006) and Hainzl et
al. (2008). K is calculated as a function of (𝑛, 𝛼, 𝑏, 𝑐, 𝑝, 𝑀𝑚𝑖𝑛, 𝑀𝑚𝑎𝑥) (Eq. B.14).

𝜆𝑖 (𝑡) =
𝐾

(𝑐 + 𝑡 − 𝑡𝑖)𝑝
10𝛼(𝑀𝑖−𝑀𝑐) (B.13)

𝐾 =
𝑛(𝑏𝑎 − 𝛼) (𝑝 − 1) (1 − 10−𝑏𝑎 (𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛))

𝑏𝑎𝑐
(1−𝑝) (1 − 10𝛼(𝑀𝑖−𝑀𝑚𝑖𝑛)

(B.14)

n, the branching parameter of the ETAS model, is set to 0.95. 𝛼 is the aftershock
productivity, which is set to the higher end value of 1.1. 𝑏𝑎 is the slope of the GR
distribution for a particular aftershock sequence and is set to 1 for simplicity. c is the
onset time of aftershock activity and usually ranges from 1 minute to 1 hour. p is the
decay rate and is set to 1.1. 𝑀𝑚𝑖𝑛 is set to 2, though in reality aftershock magnitudes
may be a lot smaller. We limit it to 2 to reduce the number of aftershocks and make
the catalog a more reasonable size to work with. 𝑀𝑚𝑎𝑥 is the mainshock magnitude,
so that no aftershock can have a magnitude greater than that of the mainshock.

Aftershock magnitudes are assigned according to the Gutenberg-Richter distribu-
tion, since aftershocks, like mainshocks, are known to follow the GR law. Aftershock
locations are randomly generated according to a Cauchy distribution, as aftershock
locations are often modeled according to an isotropic power law or the Cauchy
distribution (Hainzl et al., 2006), which simulates a similar dispersion of aftershock
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locations. The simulation produces a reasonable aftershock sequence, as seen in
Figures B.1 – B.10 panel (c), which shows earthquake magnitudes with time and
the characteristic aftershock decay in magnitude after the largest events. Figures
B.1 – B.10 panel (b) likewise show the strong jump in earthquake activity following
the larger mainshocks, compared to the mostly straight line that only the mainshock
sequence produces.

We simulate 50 synthetic catalogs using the time-varying 𝑡0 from the HYS catalog
and 50 synthetic catalogs using the time-varying 𝑡0 from the QTM catalog (Figure
10). Of the 50 synthetic catalogs for each case, we decluster those that have at least
one M > 7 earthquake: 4 catalogs for the QTM based synthetics (Figure B.1–B.4)
and 6 catalogs for the HYS based synthetics (Figures B.5–B.10). In the synthetic
catalogs there are consistently more mainshocks than there are aftershocks, mostly
due to the limitations on aftershock productivity in the setup of the synthetic catalogs
and the use of only a STAS instead of a full ETAS model. The bi-modal nature
of the clustered modes that sometimes shows up in the space-time density and
histograms of the declustering is a result of there being only a few, usually no more
than two, if any, larger events in the catalog, whose aftershock sequences dominate.
In a real earthquake catalog, on the other hand, there would likely be many more
aftershocks, due to aftershocks of aftershocks, and more complex behavior that
would act to fill in the space between the two main clustered peaks, eliminating
the bi-modal appearance. This is not of concern to our study, however, since we
are only interested in the extraction of the mainshocks and not in the nature of the
aftershock distributions themselves. Sharp edges that may appear on the clustered
modes in the space-time density plots are the results of there being hard boundaries
on the edges of the area in which we uniformly generate aftershock locations and
at the end of the synthetic catalog in time. The interevent time distributions of the
synthetic catalogs, both before and after declustering, are presented and discussed
in the main text.
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Figure B.1: 1st full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 3.3% error.
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Figure B.2: 2nd full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 4.6% error.
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Figure B.3: 3rd full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 4.2% error.
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Figure B.4: 4th full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 5% error.
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Figure B.5: 1st full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 4.5% error.
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Figure B.6: 2nd full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 4.7% error.
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Figure B.7: 3rd full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 4.7% error.
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Figure B.8: 4th full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 2.3% error.
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Figure B.9: 5th full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 3.9% error.
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Figure B.10: 6th full synthetic catalog with mainshock times based on the non-stationary 𝑡0 of the
QTM catalog and at least one M > 7 earthquake. (a) GR distribution for synthetic mainshocks.
(b) Cumulative number of events with time, in 1000s, for mainshocks (light grey line) and the full
catalog with aftershocks (black line). (c) Magnitudes with time, showing characteristic aftershock
decay after large events. Black dots are mainshocks and grey dots are aftershocks. (d-e) Histogram
and space-time density plot of the background and clustered modes obtained from the Zaliapin and
Ben-Zion declustering, which predicts the correct proportion of mainshock events relative to the
known mainshock fraction, with 0.7% error.
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A p p e n d i x C

SUPPLEMENTARY MATERIAL FOR CHAPTERS 4 AND 5

C.1 Derivation of the Scaling Factor of Seismic Velocity to Temperature
Seismic velocity including both anharmonic and anelastic terms is given by

𝑉 (𝑃,𝑇, 𝑍, 𝜔) = 𝑉𝑎𝑛ℎ (𝑃,𝑇, 𝑋)
[
1 − 𝑄−1(𝜔,𝑇)

2tan(𝜋𝑎/2)

]
, (C.1)

where the anharmonic component, 𝑉𝑎𝑛ℎ, is 𝑉𝑝 or 𝑉𝑠 (Eq. C.2), and the anelastic
component is the term in brackets. Q is the seismic quality factor - the inverse of
the seismic attenuation. 𝑄 is thought to be weakly frequency dependent, where 𝜔𝑎

controls the frequency dependence of attenuation and 𝑎 typically ranges from 0.1 to
0.3 (Karato, 1993; Cammarano et al., 2003; Cammarano and Guerri, 2017).

𝑉𝑝 =

√︄
𝐾 + 4𝜇/3

𝜌
(C.2)

𝑉𝑠 =

√︂
𝜇

𝜌

𝑄 is defined differently for P- and S-waves and is primarily dependent on the 𝑎
parameter and the activation enthalpy, 𝐻:

𝑄𝜇 = 𝑄𝑆 = 𝐴𝜔
𝑎exp(𝑎𝐻/𝑅𝑇) (C.3)

𝑄𝑃 = (1 − 𝐿)𝑄−1
𝐾 + 𝐿𝑄−1

𝜇 (C.4)

𝐿 = (4/3) (𝑉𝑆/𝑉𝑃)2. (C.5)

The scaling factor of velocity to temperature is typically given as the inverse of the
natural log of velocity with respect to temperature (Eq. C.6),

𝛿𝑇 =

(
𝜕ln𝑉
𝜕𝑇

)−1
𝛿𝑉

𝑉
, (C.6)
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where 𝑉 is either 𝑉𝑝 or 𝑉𝑠. The derivation of 𝜕ln𝑉/𝜕𝑇 is as follows.

ln(𝑉) = ln(𝑉𝑜) + ln
[
1 − 𝑄−1

2tan(𝜋𝑎/2

]
𝜕ln(𝑉)
𝜕𝑇

=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[
1 − (𝐴𝜔𝑎exp(𝑎𝐻/𝑅𝑇))−1

2tan(𝜋𝑎/2)

]−1 [
𝑎𝐻𝐴𝜔𝑎exp(𝑎𝐻/𝑅𝑇)

(𝐴𝜔𝑎exp(𝑎𝐻/𝑅𝑇))22tan(𝜋𝑎/2)𝑅𝑇2

]
=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[
1 − 𝑄−1

2tan(𝜋𝑎/2)

]−1 [
𝑎𝐻𝑄−1

2tan(𝜋𝑎/2)𝑅𝑇2

]
=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[
2tan(𝜋𝑎/2) −𝑄−1

2tan(𝜋𝑎/2)

]−1 [
𝑎𝐻𝑄−1

2tan(𝜋𝑎/2)𝑅𝑇2

]
=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[

2tan(𝜋𝑎/2)
2tan(𝜋𝑎/2) −𝑄−1

] [
𝑎𝐻𝑄−1

2tan(𝜋𝑎/2)𝑅𝑇2

]
=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[
𝑎𝐻

𝑅𝑇2
𝑄−1

2tan(𝜋𝑎/2) −𝑄−1

]
=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[
𝑎𝐻

𝑅𝑇2
1( 2tan(𝜋𝑎/2)

𝑄−1 − 1
) ]

Assuming 𝑄−1 << 1 as in Karato (1993), the first term in the denominator will be
>> 1, so we drop the 1 for simplicity, which leaves us with:

𝜕ln(𝑉)
𝜕𝑇

=
𝜕ln(𝑉𝑜)
𝜕𝑇

−
[
𝑎𝐻

𝑅𝑇2
𝑄−1

2tan(𝜋𝑎/2)

]
. (C.7)

The first term is the derivative of the anharmonic seismic wave-speed with respect to
temperature and is computed as follows, given that the bulk modulus, shear modulus,
and density are each a function of temperature.

𝜕ln(𝑉𝑝)
𝜕𝑇

=
𝜕

𝜕𝑇

[
ln
(
𝐾 + 4𝜇/3

𝜌

) 1
2
]

=
𝜕

𝜕𝑇

[
1
2

(
ln(𝐾 + 4𝜇/3) − ln(𝜌)

)]
=

1
2

[
1

𝐾 + 4𝜇/3

(
𝜕𝐾

𝜕𝑇
+ 4

3
𝜕𝜇

𝜕𝑇

)
− 1
𝜌

𝜕𝜌

𝜕𝑇

]
=

1
2

1
𝐾 + 4𝜇/3

[
𝜕𝐾

𝜕𝑇
+ 4

3
𝜕𝜇

𝜕𝑇
− 𝐾 + 4𝜇/3

𝜌

𝜕𝜌

𝜕𝑇

]
=

1
2𝜌𝑉2

𝑝

[
𝜕𝐾

𝜕𝑇
+ 4

3
𝜕𝜇

𝜕𝑇
−𝑉2

𝑝

𝜕𝜌

𝜕𝑇

]
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𝜕ln(𝑉𝑠)
𝜕𝑇

=
𝜕

𝜕𝑇

[
ln
(
𝜇

𝜌

) 1
2
]

=
𝜕

𝜕𝑇

[
1
2

(
ln(𝜇) − ln(𝜌)

)]
=

1
2

[
1
𝜇

(
𝜕𝜇

𝜕𝑇

)
− 1
𝜌

𝜕𝜌

𝜕𝑇

]
=

1
2𝜇

[
𝜕𝜇

𝜕𝑇
− 𝜇

𝜌

𝜕𝜌

𝜕𝑇

]
=

1
2𝜌𝑉2

𝑠

[
𝜕𝜇

𝜕𝑇
−𝑉2

𝑠

𝜕𝜌

𝜕𝑇

]
We can summarize these two derivatives as

𝜕ln(𝑉𝑜)
𝜕𝑇

=
1

2 < 𝜌 > 𝑉2
𝑜

[
𝜕 < 𝑀 >

𝜕𝑇
−𝑉2

𝑜

𝜕 < 𝜌 >

𝜕𝑇

]
, (C.8)

where < 𝑀 > and < 𝜌 > are the Voigt-Reuss-Hill averaged elastic moduli and
density, where 𝑀 is either 𝐾 + 4𝜇/3 for P-waves or 𝜇 for S-waves, and 𝑉𝑜 is either
𝑉𝑆 or 𝑉𝑃.

Converting𝑉𝑝 and𝑉𝑠 to temperature separately allows for independently comparing
the temperature estimates from the two wave types and hence verifying the thermal
origin of the velocity anomalies. A significant lack of correlation between the
estimates obtained from P- and S-waves would indicate a non-thermal origin of the
anomalies, but temperatures obtained from P- and S- wave velocity models tend
to agree well when anelasticity it included (Goes et al., 2000). The SL8 Q-model
of Anderson and Hart (1978) produces temperature estimates from Vp and Vs that
agree well, as shown in the close to 1-to-1 trend in Figure C.3.

C.2 Gravitational Potential Energy from Density and Topography
C.2.1 Deriving Gravitational Potential Energy
Gravitational potential energy (GPE) differences arising from lateral variations in
density and topography can give rise to variations in deviatoric stress that may
help load faults within continental interiors and lead to intraplate seismicity (Ghosh
et al., 2009; Ghosh et al., 2013). In order to account for the effect of GPE in our
dynamic models, we need to incorporate variable crustal density and topography into
CitcomS. The crustal density field will come from CRUST1.0 (Laske et al., 2013).
The topography, on the other hand, requires special consideration. CitcomS uses a
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Figure C.1: Depth-dependent bulk and shear moduli and their temperature derivatives used in the
velocity to temperature conversion. a) Bulk and shear moduli as a function of depth computed using
BurnMan for pressures from PREM and the mineral composition given in the text. b) Density as
a function of depth. c) Temperature derivatives of bulk and shear moduli with depth used in the
calculation of the velocity temperature derivative. d) Temperature derivative of density with depth
used in the calculation of the velocity temperature derivative.

flat surface and does not allow the user to input variable topography on a free surface.
Thus, we account for the topographic contribution to the stress field by constructing
an effective density model that conserves GPE. In doing so, we essentially flatten
the topography into a 1 km thick layer at the surface by computing the topography’s
equivalent density and adding it to that layer; that is, we add a density excess to the
top layer such that the GPE computed from the original model with topography is
equivalent to the GPE computed from the model with no topography. This effective
density can be converted to a buoyancy ratio that can be input into CitcomS.

We begin by explaining the concept of GPE and deriving its equation. GPE is the
vertically integrated vertical stress down to some reference level, usually 100 km
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Figure C.2: Depth dependent activation enthalpy and Q models used in the velocity to temperature
conversion. a) Activation enthalpy with depth for PREM (Dziewonski and Anderson, 1981) and
QSL8 (Anderson and Hart, 1978), assuming 𝑎 = 0.17 and 𝐴 = 0.056 in the upper mantle and
𝑎 = 0.15 and 𝐴 = 3.6 in the lower mantle, and models Q5 and Q7 from Cammarano et al. (2003),
except the latter uses 𝑎 as in the curves for PREM and QSL8. In Cammarano et al. (2003) and
Cammarano and Guerri (2017), 𝑎 = 0.2. We use slightly lower values as they yeild a better fit to the
seismic Q models; our prefactor 𝐴 is the same as in Cammarano et al. (2003). b) Seismic quality
factor Q for shear waves as a function of depth for PREM and QSL8 and Q calculated from the
models Q5 and Q7.

depth, an average depth for the base of the lithosphere (Ghosh et al., 2009). To
derive GPE, we can start with a simplified momentum equation

∇ · σ + 𝜌f = 0. (C.9)

With GPE, we are only interested in the vertical gravitational force, so instead of the
full divergence of the stress tensor and the full 3-component force vector, we can
write:

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
+ 𝜌𝑔𝑖 = 0 (C.10)

𝜕𝜎𝑧𝑥

𝜕𝑥
+
𝜕𝜎𝑧𝑦

𝜕𝑦
+ 𝜕𝜎𝑧𝑧

𝜕𝑧
= −𝜌𝑔𝑧 . (C.11)

This equation states that the gradients in the vertical stress are balanced by the force
of gravity per unit volume. The GPE is the depth integrated vertical stress from a
surface of variable topography down to a common-depth reference level L. Thus,
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Figure C.3: Temperature computed from Vp versus temperature computed from Vs. The black line
shows the 1-to-1 linear relation expected for velocity anomalies of thermal origin and for which
temperature estimates include anelasticity. Of the models explored, the QSL8 model of Anderson
and Hart (1978) (orange dots) shows the best agreement between Vs and Vp based temperature
estimates.

we can compute depth integrals of the force balance equations down to L.∫ 𝐿

−ℎ

[
𝜕𝜎𝑧𝑥

𝜕𝑥
+
𝜕𝜎𝑧𝑦

𝜕𝑦
+ 𝜕𝜎𝑧𝑧

𝜕𝑧

]
𝑑𝑧 = −

∫ 𝐿

−ℎ
𝜌𝑔𝑧𝑑𝑧 (C.12)∫ 𝐿

−ℎ

𝜕𝜎𝑧𝑥

𝜕𝑥
𝑑𝑧︸         ︷︷         ︸

x term

+
∫ 𝐿

−ℎ

𝜕𝜎𝑧𝑦

𝜕𝑦
𝑑𝑧︸         ︷︷         ︸

y term

+
∫ 𝐿

−ℎ

𝜕𝜎𝑧𝑧

𝜕𝑧
𝑑𝑧︸         ︷︷         ︸

z term

= −
∫ 𝐿

−ℎ
𝜌𝑔𝑧𝑑𝑧 (C.13)

Here, we will use the thin sheet approximation to simplify the equations. This ap-
proximation states that because the horizontal dimensions over which deformation
is occurring far exceed the thickness of the lithosphere, we can consider the litho-
sphere as a thin viscous sheet and solve for the depth averaged deviatoric stresses.
This assumes that the gradients in the shear tractions (i.e., the gradients in 𝜎𝑥𝑧 and
𝜎𝑦𝑧 at the base of the plate are negligibly small compared to the force of gravity
acting on density. Thus, the x- and y-term in Eq. C.13 drop out, leaving us with an
expression in terms of only the vertical stresses and forces:∫ 𝐿

−ℎ

𝜕𝜎𝑧𝑧

𝜕𝑧
𝑑𝑧 =

𝜕

𝜕𝑧

∫ 𝐿

−ℎ
𝜎𝑧𝑧𝑑𝑧 = −

∫ 𝐿

−ℎ
𝜌𝑔𝑧𝑑𝑧. (C.14)
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For the arbitrary case where L is just any depth z, we can write this by replacing 𝑧
with a dummy variable 𝑧′.

𝜎𝑧𝑧 (𝑧) = −
∫ 𝑧

−ℎ
𝜌(𝑧′)𝑔𝑑𝑧′ (C.15)

To check our intuition, if 𝜌 is constant, then we have

𝜎𝑧𝑧 = −
∫ 𝑧

−ℎ
𝜌(𝑧′)𝑔𝑑𝑧′ = −𝜌𝑔𝑧′|𝑧−ℎ = −𝜌𝑔(𝑧 + ℎ) = −𝜌𝑔𝐻

giving 𝜎𝑧𝑧 = 𝑃 = −𝜌𝑔𝐻, where H is the thickness of a column of crust. This is the
same basic equation we use for isostasy.

The GPE is the vertically integrated vertical stress, so we have an equation of the
form:

𝐺𝑃𝐸 = 𝜎𝑧𝑧 =

∫ 𝐿

−ℎ
𝜎𝑧𝑧𝑑𝑧 = −

∫ 𝐿

−ℎ

∫ 𝑧

−ℎ
𝜌(𝑧′)𝑔𝑑𝑧′𝑑𝑧. (C.16)

To solve for GPE, we need to integrate downwards to the reference level L from
each depth z. To do this, we need to flip the order of integration, which means the
bounds of integration change as follows:

For 𝑑𝑧′ : −ℎ ≤ 𝑧′ ≤ 𝑧 → −ℎ ≤ 𝑧′ ≤ 𝐿

For 𝑑𝑧 : −ℎ ≤ 𝑧 ≤ 𝐿 → 𝑧′ ≤ 𝑧 ≤ 𝐿.

This yields:

𝐺𝑃𝐸 = 𝜎𝑧𝑧 = −
∫ 𝐿

−ℎ

∫ 𝐿

𝑧′
𝜌(𝑧)𝑔𝑑𝑧𝑑𝑧′. (C.17)

We can integrate the inner integral to get GPE as a function of depth 𝑧′ and reference
level L. 𝜌 is a function of 𝑧, but because this will be solved numerically and 𝑧 is just
a dummy variable for depth that is physically identical to 𝑧′, the integral of 𝜌(𝑧) is
likewise a density that is function of 𝑧′, 𝜌(𝑧′):

𝜎𝑧𝑧 =

∫ 𝐿

−ℎ
[𝜌(𝑧)𝑔𝑧]𝐿𝑧′ 𝑑𝑧′

𝜎𝑧𝑧 =

∫ 𝐿

−ℎ
𝜌(𝑧′)𝑔(𝐿 − 𝑧′)𝑑𝑧′. (C.18)

𝑧′ is just depth, anywhere down to L, so we can drop the primes for clarity to get our
final GPE equation.

𝐺𝑃𝐸 = 𝜎𝑧𝑧 =

∫ 𝐿

−ℎ
𝜌(𝑧)𝑔(𝐿 − 𝑧)𝑑𝑧 (C.19)
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In this final equation, 𝐿 is a constant reference level, and −ℎ is the topographic
height, which may vary for each point on the globe. 𝜌(𝑧) is the density at a given
depth 𝑧, and 𝑔 is the gravitational acceleration.

C.2.2 Calculating GPE, Effective Density, and Buoyancy from CRUST1.0
We calculate GPE using the crustal density model CRUST1.0 (Laske et al., 2013),
a 1-degree density model of the Earth’s crust including topography and sediments.
The CRUST1.0 data-set consists of densities and layer-top depths for different crustal
and sedimentary layers, as well as the Moho, which we discretize onto a 3D mesh
at 1 km resolution in the vertical direction. We numerically compute GPE from the
grid by calculating 𝜎𝑧𝑧 for each layer and iteratively summing down to the reference
level at 𝐿 = 100 km (Eq. C.20). Numerically, GPE can be written as:

𝜎𝑧𝑧 =

𝑛∑︁
𝑖=1

(𝐿 − 𝑧𝑖)𝜌𝑖𝑔Δℎ𝑖, (C.20)

where 𝑧𝑖 is taken to be the depth of the midpoint of the layer; 𝜌𝑖 is the density of
that layer as determined from CRUST1.0; Δℎ𝑖 is the thickness of that layer, which
is a constant 1 km for all layers; 𝐿 is the reference level of 100 km depth; and 𝑛 is
the number of layers (𝑛 = 100). Below the Moho and down to the reference level,
we use a constant mantle density of 3300 kg/m3. The resulting total GPE is similar
to that calculated in Ghosh et al. (2009) and Ghosh et al. (2013).

To create a model with “flattened topography” and crustal density that can be used
within CitcomS, we must first compute a density grid that accounts for the mass
of the topography. From the known topographic contribution to the GPE, we can
compute the excess density that needs to be added to the top layer of the flattened
model, such that the resulting GPE is equivalent to that from a model that includes
topography. The GPE can be split up to compute this, such that

𝐺𝑃𝐸 =

∫ 𝐿

−ℎ
(𝐿 − 𝑧)𝜌(𝑧)𝑔𝑑𝑧 =

∫ 0

−ℎ
(𝐿 − 𝑧)𝜌(𝑧)𝑔𝑑𝑧 +

∫ 𝐿

0
(𝐿 − 𝑧)𝜌(𝑧)𝑔𝑑𝑧, (C.21)

where the contribution from topography can be defined as

𝐺𝑃𝐸𝑇 =

∫ 0

−ℎ
(𝐿 − 𝑧)𝜌(𝑧)𝑔𝑑𝑧. (C.22)

We wish to account for GPE𝑇 in the first layer of our density model. This means
finding a density adjustment that we add to the current density model, such that the
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resulting total GPE when integrated from 0 to L is the same as previously when
integrated from -h to L. Thus we must solve an equation of the following form for
𝜌𝑇 .

𝐺𝑃𝐸𝑇 =

∫ 0

−ℎ
(𝐿 − 𝑧)𝜌(𝑧)𝑔𝑑𝑧 =

∫ Δℎ

0
(𝐿 − 𝑧)𝜌𝑇𝑔𝑑𝑧, (C.23)

where Δℎ is the depth to the base of the first layer of elements in our 3D grid. Since
we are only adding the density adjustment to the first layer in our 3D grid, this
numerically becomes:

𝐺𝑃𝐸𝑇 =

∫ 0

−ℎ
(𝐿 − 𝑧)𝜌(𝑧)𝑔𝑑𝑧 = (𝐿 − 0.5 ∗ Δℎ)𝜌𝑇𝑔Δℎ, (C.24)

where 𝜌𝑇 is the excess density that we need in order conserve GPE.

𝜌𝑇 =
𝐺𝑃𝐸𝑇

(𝐿 − 0.5 ∗ Δℎ)𝑔Δℎ . (C.25)

We can compute 𝐺𝑃𝐸𝑇 directly from our density grid and Δℎ is a constant 1 km.
Adding 𝜌𝑇 to the top layer of the density model and recomputing GPE as before
yields the equivalent GPE.

C.3 Calculation of Principal Stresses and 𝑆𝐻𝑚𝑎𝑥
C.3.1 Conventions and Coordinate Systems for the CitcomS Stress Output
CitcomS outputs the components 𝜎𝜃𝜃 , 𝜎𝜙𝜙, 𝜎𝑟𝑟 , 𝜎𝜃𝜙, 𝜎𝜃𝑟 , and 𝜎𝜙𝑟 , which form the
symmetric Cauchy Stress Tensor.

σ =


𝜎𝜃𝜃 𝜎𝜃𝜙 𝜎𝜃𝑟

𝜎𝜃𝜙 𝜎𝜙𝜙 𝜎𝜙𝑟

𝜎𝜃𝑟 𝜎𝜙𝑟 𝜎𝑟𝑟

 (C.26)

This stress tensor is for a specific point on the Earth’s surface, which serves as the
origin point for a geographical coordinate system about that point. We will call this
initial coordinate system C for Citcom. CitcomS is a spherical code and thus defines
its mesh coordinates in terms of colatitude 𝜃 (x), longitude 𝜙 (y), and radius 𝑟 (z).
That is, the stress tensors are output in a south-east-up-positive (SEU) right-handed
coordinate system. Thus, before we compute the principal stresses and 𝑆𝐻𝑚𝑎𝑥 we
need to transform the stress tensor into a north-east-down-positive (NED) coordinate
system for consistency with traditional methods. This can be achieved by simply
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rotating the stress tensor about the y (or easterly) axis using the rotation matrix (Eq.
C.27).

T =


cosΘ 0 sinΘ

0 1 0
−sinΘ 0 cosΘ

 (C.27)

To switch north to positive 𝑥 and down to positive 𝑧, we simply rotate the stress
tensor by Θ = 𝜋.

σ̂ = TσT 𝑇 =


𝜎𝜃𝜃 −𝜎𝜃𝜙 𝜎𝜃𝑟

−𝜎𝜃𝜙 𝜎𝜙𝜙 −𝜎𝜙𝑟
𝜎𝜃𝑟 −𝜎𝜙𝑟 𝜎𝑟𝑟

 (C.28)

σ̂ is now the stress tensor for a point on Earth’s surface (or at some given depth)
that serves as the origin point for the traditional geographical coordinate system G
with basis vectors ĝ1 = (1, 0, 0), ĝ2 = (0, 1, 0), and ĝ3 = (0, 0, 1).

Before continuing, we must also add back the lithostatic pressure. In CitcomS, the
deviatoric stress tensor is computed from the deviatoric strain rate; the dynamic
pressure is then added back. The dynamic pressure, however, is the pressure arising
from the flow itself, not the overburden pressure of the overlying rock. Inclusion
of the lithostatic pressure is not necessary for the determination of 𝑆𝐻𝑚𝑎𝑥 and does
not affect the orientation of 𝑆𝐻𝑚𝑎𝑥 . However, it does affect the magnitude of the
principal stresses and hence affects the magnitude of the normal stress resolved on
any given fault plane. Accurately computing such normal stress is essential for
computing the Coulomb failure stress on a fault; without the lithostatic component,
Coulomb stresses are greatly overestimated. We compute the lithostatic pressure
assuming a mean continental crustal density of 2700 kg/m3. For consistency with
the theory of the critically stressed crust (Townend and Zoback, 2000; Zoback et al.,
2002), the lithostatic pressure is counteracted by the pore-fluid pressure exerted by
water and other fluids in the crust so that differential stress values are such that
optimally oriented faults are on the verge of slipping. Without this reduction in
normal stress, lithostatic pressure is high enough that at seismogenic depths all
faults are completely within the stable regime with respect to the Coulomb failure
criterion. Thus, we calculate our lithostatic pressure as

𝑃𝑙𝑖𝑡ℎ = (1 − 𝜆)𝜌𝑔𝑧, (C.29)

where 𝜆 is the pore-fluid factor and 𝑧 is the depth of the nodal layer. We use a 𝜆 of
0.6, which is consistent with values previously used for conditions of fault slip in
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intraplate regions like Canada (Zoback, 1992; Rimando and Peace, 2021). The full
stress tensor then becomes

σ̂𝑇 = σ̂ − 𝑃𝑙𝑖𝑡ℎ𝛿𝑖 𝑗 . (C.30)

Note that we subtract the lithostatic pressure. This is in keeping with the negative-
in-compression convention assumed by CitcomS, which is consistent with the fluid
mechanics convention and therefore appropriate for a mantle convection code. How-
ever, for calculating 𝑆𝐻𝑚𝑎𝑥 and analyzing the Coulomb stress on faults, we want to
use the rock mechanics convention of positive-in-compression. To do so, we multi-
ply the stress tensor by -1. Thus, our final stress tensor with which we perform the
following calculations is

σ̂+
𝑇 =


−𝜎𝜃𝜃 + 𝑃𝑙𝑖𝑡ℎ 𝜎𝜃𝜙 −𝜎𝜃𝑟

𝜎𝜃𝜙 −𝜎𝜙𝜙 + 𝑃𝑙𝑖𝑡ℎ 𝜎𝜙𝑟

−𝜎𝜃𝑟 𝜎𝜙𝑟 −𝜎𝑟𝑟 + 𝑃𝑙𝑖𝑡ℎ

 . (C.31)

C.3.2 Computing 𝑆𝐻𝑚𝑎𝑥
To compute 𝑆𝐻𝑚𝑎𝑥 , we first solve the eigenvalue problem to get the principal stresses
(𝜎1, 𝜎2, 𝜎3) and their directions (ŝ1 = (𝑠1𝑁 , 𝑠1𝐸 , 𝑠1𝑍 ), ŝ2 = (𝑠2𝑁 , 𝑠2𝐸 , 𝑠2𝑍 ), and ŝ3 =

(𝑠3𝑁 , 𝑠3𝐸 , 𝑠3𝑍 ). This is done for each of our stress tensors using the standard python
Numpy linear algebra eigenvalue solver. Let S be the principal stress coordinate
system where the shear stresses vanish and the stress tensor is diagonal with the
eigenvalues on the diagonal. We get such a representation by diagonalizing the
stress tensor using the eigenvectors as a transformation matrix:

A =


ŝ1 · ĝ1 ŝ1 · ĝ2 ŝ1 · ĝ3

ŝ2 · ĝ1 ŝ2 · ĝ2 ŝ2 · ĝ3

ŝ3 · ĝ1 ŝ3 · ĝ2 ŝ3 · ĝ3

 =

𝑠1𝑁 𝑠1𝐸 𝑠1𝑍

𝑠2𝑁 𝑠2𝐸 𝑠2𝑍

𝑠3𝑁 𝑠3𝐸 𝑠3𝑍

 , (C.32)

leading to the stress tensor in the principal stress coordinate system

S = (A𝑇 )−1σ̂+
𝑇A

𝑇 =


𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

 . (C.33)

To determine 𝑆𝐻𝑚𝑎𝑥 , we first define an arbitrary vertical plane in the geographic coor-
dinate system G using its unit normal vector: n̂G = (𝑛𝑁 , 𝑛𝐸 , 𝑛𝑍 ) = (cos𝛼, sin𝛼, 0),
where 𝛼 is the normal’s azimuthal angle measured clockwise from north. n̂G is the
direction of horizontal stress and its azimuth 𝛼 is the 𝑆𝐻𝑚𝑎𝑥 orientation that we seek
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to find. n̂G must first be represented in the principal stress coordinate system by
means of the transformation matrix A:

n̂S = An̂G =


𝑠1𝑁𝑛𝑁 + 𝑠1𝐸𝑛𝐸

𝑠2𝑁𝑛𝑁 + 𝑠2𝐸𝑛𝐸

𝑠3𝑁𝑛𝑁 + 𝑠3𝐸𝑛𝐸

 . (C.34)

Thus, with both the normal vector and the stress tensor now in the principal stress
coordinate system, the normal stress acting on the arbitrary vertical plane of interest
is

s𝑛 = (n̂𝑇SSn̂S)n̂S
= [𝜎1(𝑠1𝑁𝑛𝑁 + 𝑠1𝐸𝑛𝐸 )2 + 𝜎2(𝑠2𝑁𝑛𝑁 + 𝑠2𝐸𝑛𝐸 )2 + 𝜎3(𝑠3𝑁𝑛𝑁 + 𝑠3𝐸𝑛𝐸 )2]n̂S
= 𝑆𝑛n̂S, (C.35)

where 𝑆𝑛 is the 𝑆𝐻𝑚𝑎𝑥 magnitude.

To find the direction of the maximum horizontal stress, we differentiate the mag-
nitude 𝑆𝑛 with respect to 𝛼, and setting equal to zero, solve for 𝛼. This gives
us

𝜕𝑆𝑛

𝜕𝛼
= [𝜎1(𝑠2

1𝐸 − 𝑠2
1𝑁 ) + 𝜎2(𝑠2

2𝐸 − 𝑠2
2𝑁 ) + 𝜎3(𝑠2

3𝐸 − 𝑠2
3𝑁 )]sin2𝛼 (C.36)

+ 2[𝜎1𝑠1𝑁 𝑠1𝐸 + 𝜎2𝑠2𝑁 𝑠2𝐸 + 𝜎3𝑠3𝑁 𝑠3𝐸 ]cos2𝛼

tan2𝛼 =
2(𝜎1𝑠1𝑁 𝑠1𝐸 + 𝜎2𝑠2𝑁 𝑠2𝐸 + 𝜎3𝑠3𝑁 𝑠3𝐸 )

𝜎1(𝑠2
1𝑁 − 𝑠2

1𝐸 ) + 𝜎2(𝑠2
2𝑁 − 𝑠2

2𝐸 ) + 𝜎3(𝑠2
3𝑁 − 𝑠2

3𝐸 )
. (C.37)

The second derivative determines whether 𝛼 yields the minimum or maximum
horizontal stress.

𝜕2𝑆𝑛

𝜕𝛼2 = 2[𝜎1(𝑠2
1𝐸 − 𝑠2

1𝑁 ) + 𝜎2(𝑠2
2𝐸 − 𝑠2

2𝑁 ) + 𝜎3(𝑠2
3𝐸 − 𝑠2

3𝑁 )]cos2𝛼 (C.38)

− 4[𝜎1𝑠1𝑁 𝑠1𝐸 + 𝜎2𝑠2𝑁 𝑠2𝐸 + 𝜎3𝑠3𝑁 𝑠3𝐸 ]sin2𝛼

𝑆𝐻 =


𝛼 if 𝑆𝑛 (𝛼) is a max

𝛼 + 𝜋
2 if 𝑆𝑛 (𝛼) is a min

(C.39)

With 𝑆𝐻𝑚𝑎𝑥 computed from our modeled stress tensors, we compare our results
directly to those of the World Stress Map database (Heidbach et al., 2018) both
across eastern North America (Figure 4.8) and for specific seismic zones (Figure
C.5).
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C.3.3 Coulomb Failure Stress
In order to assess how faults in intraplate settings might respond to these stresses, and
in particular how those responses differ between cases with full Farallon negative-
buoyancy and cases with reduced Farallon negative-buoyancy and between cases
with and without low viscosity weakzones, we analyze the Coulomb failure stress
on realistic faults within the different seismic zones. The Coulomb Failure Criterion
states that when the shear stress on a fault exceeds a certain threshold, failure may
occur, possibly initiating an earthquake. The Coulomb failure stress is defined as
the shear stress minus the normal stress scaled by the friction coefficient (Eq. C.40).
The normal stress here also assumes a certain pore fluid pressure that we have
already accounted for in the stress tensor. The cohesion C is usually taken to be
zero for pre-existing faults, as it is usually only considered when dealing with newly
forming faults where the rock actually needs to break.

𝜎𝐶𝐹𝑆 = 𝜏 − (𝜇𝜎𝑛 + 𝐶) (C.40)

One can calculate Coulomb failure stress in 2-dimensions by using the principal
stresses 𝜎1 and 𝜎3 and assuming a fault oriented at some angle 𝜃 to 𝜎1 (Eq. C.41).
For the case of optimally oriented faults, which maximize the Coulomb stress on
the failure plane and which are oriented at 𝛽 = tan−1(1/𝜇)/2, the Coulomb failure
stress is

𝜎𝐶𝐹𝑆 = 𝜏𝛽 − 𝜇(𝜎𝛽 − 𝑝)

𝜎𝐶𝐹𝑆 =
1
2
(𝜎1 − 𝜎3) (sin2𝛽 − 𝜇cos2𝛽) − 1

2
𝜇(𝜎1 + 𝜎3) + 𝜇𝑝, (C.41)

where 𝜏𝛽 is the shear stress on the optimal failure plane, 𝜎𝛽 is the normal stress on
that plane, p is the pore fluid pressure, 𝜇 is the coefficient of friction, and 𝜎1 and 𝜎3

are the maximum and minimum principal stresses, respectively.

However, a more thorough treatment is to simply resolve the full stress tensor on a
fault of known orientation rather than assuming an optimally oriented one. Knowing
the strike and dip of a fault plane, one can compute the shear and normal stress on
that plane from the full stress tensor. To do so, one must first define the strike, dip,
and normal vectors of the fault, each of which are functions of only the known strike
and dip:

𝑓𝑠 =


𝑐𝑜𝑠(𝑠)
𝑠𝑖𝑛(𝑠)

0

 , 𝑓𝑑 =

−𝑠𝑖𝑛(𝑠)𝑐𝑜𝑠(𝑑)
𝑐𝑜𝑠(𝑠)𝑐𝑜𝑠(𝑑)

𝑠𝑖𝑛(𝑑)

 , 𝑓𝑛 =

−𝑠𝑖𝑛(𝑠)𝑠𝑖𝑛(𝑑)
𝑐𝑜𝑠(𝑠)𝑠𝑖𝑛(𝑑)
−𝑐𝑜𝑠(𝑑)

 . (C.42)
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With these vectors, we can compute the traction vector acting on the fault plane:

t = σ̂+
𝑇f𝑛. (C.43)

The total normal stress on the plane of the fault is then:

𝜎𝑛 = t · f𝑛. (C.44)

The shear stress on the plane of the fault can be decomposed in the dip and strike
directions:

𝜏𝑑 = t · f𝑑 (C.45)

𝜏𝑠 = t · n𝑠 . (C.46)

The total shear stress is then:
𝜏 =

√︃
𝜏2
𝑑
+ 𝜏2

𝑠 . (C.47)

The Coulomb Failure Criterion (CFC) is given by

𝐶𝐹𝐶 = 𝜇𝜎𝑛 + 𝐶, (C.48)

where we will set 𝐶 = 0 as we are concerned only with the potential for seismicity
on pre-existing faults.

In addition to assessing 𝑆𝐻𝑚𝑎𝑥 and Coulomb stress on faults, we also compute the
2nd invariant of the deviatoric stress (Eq. C.50) and deviatoric strain rate (Eq.
C.49) to assess the magnitudes of these quantities and in particular how the stress
magnitude changes between models with and without the Farallon slab and models
with and without low viscosity weakzones.

¤𝜖𝐼 𝐼 =
√︂

1
2
¤𝜖2
𝑖 𝑗
=

√︂
1
2
( ¤𝜖2
𝑥𝑥 + ¤𝜖2

𝑦𝑦 + ¤𝜖2
𝑧𝑧) + ¤𝜖2

𝑥𝑦 + ¤𝜖2
𝑥𝑧 + ¤𝜖2

𝑦𝑧 (C.49)

𝜎𝐼 𝐼 =

√︂
1
2
𝜎2
𝑖 𝑗
=

√︂
1
2
(𝜎2

𝑥𝑥 + 𝜎2
𝑦𝑦 + 𝜎2

𝑧𝑧) + 𝜎2
𝑥𝑦 + 𝜎2

𝑥𝑧 + 𝜎2
𝑦𝑧 (C.50)
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Figure C.4: Observed vs. modeled strain rates. a, b) Geodetic 2𝑛𝑑 invariant of the deviatoric strain
rate from Kreemer et al. (2014) for plate boundary regions and Kreemer et al. (2018) for intraplate
North America. c) 2𝑛𝑑 invariant of the deviatoric strain rate from Model A0 with the full expression
of the negative buoyancy of the Farallon slab. d) 2𝑛𝑑 invariant of the deviatoric strain rate from
Model B0 with the neutralized Farallon slab. e) Percent error of the log of the 2𝑛𝑑 invariant of the
deviatoric strain rate between Model A0 and the geodetic strain rates (e.g., the percent error on the
order of magnitude of the strain rate). f) Same as in (e) but for Model B0.
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Figure C.5: 𝑆𝐻𝑚𝑎𝑥 orientations in different seismic zones. Gray: polar histogram of the local 𝑆𝐻𝑚𝑎𝑥

orientations from the WSM, binned every 10°. Orange colors: 𝑆𝐻𝑚𝑎𝑥 statistics from the WSM data
(see legend). Mean WSM 𝑆𝐻𝑚𝑎𝑥 in each zone is labeled on the theta axis. Light blue lines: local
𝑆𝐻𝑚𝑎𝑥 from models with the Farallon slab (A0, A1, A1b, A0G). Dark blue lines: local 𝑆𝐻𝑚𝑎𝑥 from
models with a neutralized slab (B0, B1, B1b, B0G). Line-styles differ for different weakzone cases
(see legend). NMSZ: New Madrid Seismic Zone, ETSZ: Eastern Tennessee Seismic Zone, CVSZ:
Central Virginia Seismic Zone, WQSZ: Western Quebec Seismic Zones, CXSZ: Charlevoix Seismic
Zone, LSLSZ: Lower Saint Lawrence Seismic Zone.
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Figure C.6: Mohr circles (main plot) and Coulomb failure stress (map inset) for faults in the WQSZ,
calculated assuming a 𝜇 = 0.55. Fault locations from Rimando and Peace (2021) and Lamontagne
et al. (2020). Fault strikes approximated using the best fitting great circle through the lineation.
Unless otherwise specified, fault dips were assumed to be 56° (Bent et al., 2003; Rimando and Peace,
2021). Dip of the fault associated with the Timiskaming 1935 earthquake (black star) and nearby
faults are from Bent (1996) (strike=146°, dip=45°). Mohr circles are drawn for four faults, using the
stress tensor at the location of the corresponding star on the map: The Timiskaming fault of the M
6.1 1935 earthquake, the Rapide-du-Cheval Blanc Fault near the location of the M 6.3 1732 Montreal
earthquake, the Lachute Fault (NE of Ottawa), and the Coulonge Fault (NW of Ottawa). Earthquake
locations from Bent (2022) and Bent et al. (2003). Star colors correspond to Mohr circle colors.
The cloud of points on each Mohr circle represent all possible stress tensors in the inset region given
that fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for 𝜇 = 0.6; gray
line is for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a) Results from model A0 (with Farallon, no
weakzones). (b) Results from model A1 (with Farallon, with weakzones). (c) Results from model
B0 (no Farallon, no weakzones). (d) Results from model B1 (no Farallon, with weakzones).
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Figure C.7: Mohr circles (main plot) and Coulomb failure stress (map inset) for faults in the LSLRS,
including the CXSZ, calculated assuming a 𝜇 = 0.5. Fault strikes approximated for each fault location
using the best fitting great circle through the lineation. Fault dips assumed to be 53°, consistent with
the values of steeply dipping rift bounding normal faults for the LSLRS as reported by Bent et al.
(2003) and Bent (1992). Mohr circles are drawn for the three faults closest to the epicenters of the
1663 M 7.0 and 1925 M 6.2 Charlevoix earthquakes and the M 6.3 1732 Montreal earthquake, using
the fault’s strike and dip and the stress tensor at the location of the corresponding star on the map.
Star colors correspond to Mohr circle colors. Earthquake locations from Bent (2022). The cloud of
points on each Mohr circle represent the shear vs. normal stress for all possible stress tensors in the
inset region given that fault’s geometry. Black straight line is the Mohr-Coulomb failure criterion for
𝜇 = 0.6; dashed black line is for 𝜇 = 0.5; gray line for 𝜇 = 0.4; and light-gray line is for 𝜇 = 0.2. (a)
Results from model A0 (with Farallon, no weakzones). (b) Results from model A1 (with Farallon,
with weakzones). (c) Results from model B0 (no Farallon, no weakzones). (d) Results from model
B1 (no Farallon, with weakzones).
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Figure C.8: Profiles of the second invariant of deviatoric stress magnitude induced by GIA for
different times, pre-, syn-, and post-glaciation. Time in years before present is labeled in the upper
right hand corner of each panel. Profiles are presented for models with 3D viscosity input (light
green lines) with no weakzones (solid line; model GIA-A0), weakzones at different depths (dashed
line; model GIA-A1), weakzones at 25-75 km depth (dashed-dotted line; model GIA-A1b), and
1D viscosity input (dark blue lines) from the radial average of model GIA-A0 (thick line; model
GIA-1D-3Davg) and VM5a (thin line; model GIA-1D-VM5a). a,c,e,g,i) Stress profiles along line
B-B’ (see Figure 5.3 in the main text of Chapter 5 and Figure 4.4, orthographic panel in Chapter
4). New Madrid Seismic Zone (NMSZ) and Eastern Tennessee Seismic Zone (ETSZ) are labeled
accordingly. b,d,f,h,j) Stress profiles along line A-A’ (again, see main text). NMSZ, Western Quebec
Seismic Zone (WQSZ) and Charlevoix Seismic Zone (CXSZ) are labeled accordingly.


