
AI for Scientists: Accelerating Discovery Through
Knowledge, Data, and Learning

Thesis by
Jennifer J. Sun

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Defended September 15, 2023

ii

© 2024

Jennifer J. Sun
ORCID: 0000-0002-0906-6589

All rights reserved

iii

ACKNOWLEDGEMENTS

Thanks to everyone.

I am deeply grateful to my co-advisors, Pietro Perona and Yisong Yue. I really
appreciate the opportunity. Thank you for your guidance and support.

I would also like to thank my committee members, Ann Kennedy, Swarat Chaudhuri,
and Katie Bouman. I have learned lots from working together.

I have also had the luck to meet many wonderful collaborators (across many places)
in this process – I hope for many more years of discussions and learning together.

I would also like to thank the members of the Perona Lab and the Yue Crew for their
support and encouragement.

I am grateful to the NSERC, Amazon, and the Kortschak Scholars Program for
contributing towards the funding for my PhD.

Finally, I would like to thank my family and friends for their love and support
throughout this journey. Without them, this thesis would not be possible. Thanks
to my parents Debo Sun and Qinghong Li, as well as boyfriend, fiance, husband
August Mawn.

iv

ABSTRACT

With rapidly growing amounts of experimental data, machine learning is increas-
ingly crucial for automating scientific data analysis. However, many real-world
workflows demand expert-in-the-loop attention and require models that not only
interface with data, but also with experts and domain knowledge. My research
develops full stack solutions that enable scientists to scalably extract insights from
diverse and messy experimental data with minimal supervision. My approaches
learn from both data and expert knowledge, while exploiting the right level of do-
main knowledge for generalization. This thesis presents progress towards developing
automated scientist-in-the-loop solutions, including methods that automatically dis-
cover meaningful structure from data such as self-supervised keypoints from videos
of diverse behaving organisms. We will then discuss methods that use these in-
terpretable structures to inject domain knowledge into the learning process, such
as guiding representation learning using symbolic programs of behavioral features
computed from keypoints. This work is the result of close collaborations with do-
main experts, such as behavioral neuroscientists, in order to identify bottlenecks
and integrate these methods in real-world workflows. My aim is to enable AI that
collaborates with scientists to accelerate the scientific process.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Jennifer J. Sun, Markus Marks, Andrew Ulmer, Dipam Chakraborty, Brian
Geuther, Edward Hayes, Heng Jia, Vivek Kumar, Zachary Partridge, Alice
Robie, Catherine E. Schretter, et al. “MABe22: A Multi-Species Multi-Task
Benchmark for Learned Representations of Behavior.” In: International
Conference on Machine Learning (2023). url: https://arxiv.org/
pdf/2207.10553.pdf.
J.J.S. participated in designing the project, developing the methods, running
the experiments, and writing the manuscript.

[2] Jennifer J. Sun*, Lili Karashchuk*, Amil Dravid*, Serim Ryou, Sonia Fer-
eidooni, John C Tuthill, Aggelos Katsaggelos, Bingni W Brunton, Georgia
Gkioxari, Ann Kennedy, et al. “BKinD-3D: Self-Supervised 3D Keypoint
Discovery from Multi-View Videos.” In: (2023), pp. 9001–9010. url:
https://arxiv.org/pdf/2212.07401.pdf.
J.J.S. participated in designing the project, developing the methods, run-
ning the experiments, and writing the manuscript.

[3] Ting Liu*, Jennifer J. Sun*, Long Zhao, Jiaping Zhao, Liangzhe Yuan,
Yuxiao Wang, Liang-Chieh Chen, Florian Schroff, and Hartwig Adam.
“View-Invariant, Occlusion-Robust Probabilistic Embedding for Human
Pose.” In: International Journal of Computer Vision 130.1 (2022), pp. 111–
135. url: https://arxiv.org/pdf/2010.13321.pdf.
J.J.S. participated in designing the project, developing the methods, running
the experiments, and writing the manuscript.

[4] Jennifer J. Sun*, Megan Tjandrasuwita*, Atharva Sehgal*, Armando Solar-
Lezama, Swarat Chaudhuri, Yisong Yue, and Omar Costilla-Reyes. “Neu-
rosymbolic Programming for Science.” In: AI for Science Workshop at
Neural Information Processing Systems (NeurIPS) (2022). url: https:
//arxiv.org/pdf/2210.05050.pdf.
J.J.S. participated in defining the perspective paper, reviewing relevant
literature, and writing the manuscript.

[5] Jennifer J. Sun*, Serim Ryou*, Roni H. Goldshmid, Brandon Weissbourd,
John O. Dabiri, David J. Anderson, Ann Kennedy, Yisong Yue, and Pietro
Perona. “Self-Supervised Keypoint Discovery in Behavioral Videos.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022), pp. 2171–2180. url: https://arxiv.org/
pdf/2112.05121.pdf.
J.J.S. participated in designing the project, developing the methods, running
the experiments, and writing the manuscript.

[6] Albert Tseng, Jennifer J. Sun, and Yisong Yue. “Automatic Synthesis of Di-
verse Weak Supervision Sources for Behavior Analysis.” In: Proceedings

https://arxiv.org/pdf/2207.10553.pdf
https://arxiv.org/pdf/2207.10553.pdf
https://arxiv.org/pdf/2212.07401.pdf
https://arxiv.org/pdf/2010.13321.pdf
https://arxiv.org/pdf/2210.05050.pdf
https://arxiv.org/pdf/2210.05050.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2112.05121.pdf

vi

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022), pp. 2211–2220. url: https://arxiv.org/pdf/2111.
15186.pdf.
J.J.S. mentored A. T. through this project, and participated in designing
the project and methods, and writing the manuscript.

[7] Eric Zhan*, Jennifer J. Sun*, Ann Kennedy, Yisong Yue, and Swarat
Chaudhuri. “Unsupervised Learning of Neurosymbolic Encoders.” In:
Transactions on Machine Learning Research (2022). url: https : / /
arxiv.org/pdf/2107.13132.pdf.
J.J.S. participated in designing the project, developing the methods, run-
ning the experiments, and writing the manuscript.

[8] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.
J.J.S. participated in designing the project, developing the methods, run-
ning the experiments, and writing the manuscript.

[9] Megan Tjandrasuwita, Jennifer J. Sun, Ann Kennedy, Swarat Chaudhuri,
and Yisong Yue. “Interpreting Expert Annotation Differences in Animal
Behavior.” In: CV4Animals Workshop at the Conference on Computer
Vision and Pattern Recognition (CVPR) (2021). url: https://arxiv.
org/pdf/2106.06114.pdf.
J.J.S. mentored M. T. through this project, and participated in designing
the project and methods, and writing the manuscript.

[10] Ameesh Shah*, Eric Zhan*, Jennifer J. Sun, Abhinav Verma, Yisong Yue,
and Swarat Chaudhuri. “Learning Differentiable Programs with Admis-
sible Neural Heuristics.” In: Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), pp. 4940–4952. url: https://arxiv.
org/pdf/2007.12101.pdf.
J.J.S. participated in project discussions, developing a part of the DSL,
running the experiments, and writing the manuscript.

[11] Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, and Ting Liu. “View-Invariant Probabilistic Embedding for Hu-
man Pose.” In: European Conference on Computer Vision (ECCV) (2020),
pp. 53–70. url: https://arxiv.org/pdf/1912.01001.pdf.
J.J.S. participated in designing the project, developing the methods, run-
ning the experiments, and writing the manuscript.

https://arxiv.org/pdf/2111.15186.pdf
https://arxiv.org/pdf/2111.15186.pdf
https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2011.13917.pdf
https://arxiv.org/pdf/2106.06114.pdf
https://arxiv.org/pdf/2106.06114.pdf
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/1912.01001.pdf

vii

CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Contents . vi
List of Figures . ix
List of Tables . xii

I Introduction 1
Chapter I: AI for Scientists . 2

1.1 Themes . 5
Chapter II: Thesis Organization . 10

II Representation & Structural Discovery from Real-World
Data 13

Chapter III: Overview . 14
Chapter IV: Discovering Keypoints in 2D and 3D 18

4.1 Introduction . 19
4.2 Related Work . 20
4.3 2D Keypoint Discovery . 22
4.4 Experiments for 2D . 26
4.5 3D Keypoint Discovery . 33
4.6 Experiments for 3D . 39

Chapter V: Pose Representations . 50
5.1 Introduction . 51
5.2 Related Work . 52
5.3 View-Invariant Probabilistic Embeddings 54
5.4 Experiments . 58
5.5 Extensions to Temporal Embeddings 64

Chapter VI: Benchmarking Representation Learning 72
6.1 Introduction . 73
6.2 Related Work . 75
6.3 Dataset Design and Collection . 78
6.4 Benchmarking and Methods . 81
6.5 Experiments . 82

Chapter VII: Neurosymbolic Representations 93
7.1 Introduction . 94
7.2 Background . 95

viii

7.3 Neurosymbolic Encoders . 97
7.4 Experiments . 103
7.5 Discussion . 110

III Integrating Symbolic Domain Knowledge with Learning 116
Chapter VIII: Overview . 117
Chapter IX: Task Programming . 120

9.1 Introduction . 121
9.2 Related Work . 123
9.3 Method . 125
9.4 Experiments . 130

Chapter X: Program Learning . 140
10.1 Introduction . 141
10.2 Problem Formulation . 142
10.3 Program Learning using Near . 145
10.4 Experiments . 149
10.5 Interpreting Annotation Differences 155

Chapter XI: Synthesizing Supervision Sources 165
11.1 Introduction . 166
11.2 Related Work . 168
11.3 Methods . 169
11.4 Experiments . 174

Chapter XII: Neurosymbolic Programming for Science 183
12.1 Introduction . 184
12.2 Neurosymbolic Programming Techniques 186
12.3 Opportunities and Challenges at the Intersection of Neurosymbolic

Learning and Science . 188
12.4 Discussion . 195

IVConclusion 200
Chapter XIII: Discussion and Future Work 201

ix

LIST OF FIGURES

Number Page
1.1 Hierarchical behavioral organization of the three-spined stickleback

based on [18]. 2
2.1 This thesis will present developing AI for scientists in two main parts 10
3.1 We will discuss methods that learn from video data and expert knowl-

edge to discover structure and interpretable quantitative representa-
tions of animal behavior. 14

4.1 Keypoint Discovery Overview . 18
4.2 2D Keypoint Discovery (BKinD) 22
4.3 Extracting Features from Keypoint Discovery Model 25
4.4 Comparison of BKinD Keypoint Discovery with Existing Methods . 28
4.5 Keypoint data efficiency on MARS-Pose. 30
4.6 Qualitative Results of BKinD . 31
4.7 Self-supervised 3D keypoint discovery Overview 33
4.8 BKinD-3D: 3D keypoint discovery using 3D volume bottleneck. . . . 35
4.9 Qualitative results for 3D keypoint discovery on Human3.6M. 43

4.10 Qualitative results for 3D keypoint discovery on Rat7M. 43
5.1 We embed 2D poses such that our embeddings are view-invariant and

probabilistic. 50
5.2 Overview of Pr-VIPE model training and inference. 54
5.3 Visualization of pose retrieval results 61
5.4 Video alignment results using pose embeddings 64
5.5 Temporal Pr-VIPE model architecture 65
6.1 We benchmark behavior representations consisting of animal inter-

actions in laboratory experiments. 72
6.2 Summary of tasks and actions in our dataset. 77
7.1 Space of Neurosymbolic Models . 93
7.2 Learning Neurosymbolic Encoders: Sketch of Algorithm 97
7.3 Our DSL for sequential domains, similar to the one used in NEAR

(Shah et al., 2020) . 103
7.4 Synthetic dataset experiments for Neurosymbolic Encoders. 105

x

7.5 Learned programs on CalMS21. The subscripts represents the learned
weights (in brackets) and biases (after the brackets) for the affine
transformation followed by the bias. 106

7.6 Applying symbolic encoders for self-supervision. 110
8.1 Example of a neurosymbolic program for mice investigation. 117
9.1 Overview of task programming . 120
9.2 Task Programming and Data Annotation for Classifier Training. . . . 124
9.3 TREBA Training and Inference Pipelines. 125
9.4 Data Efficiency for Supervised Classification. 132
9.5 Varying Programmed Tasks. 134
9.6 Pre-Training Data Variations. 135

10.1 Overview of program learning for studying human annotation differ-
ences . 140

10.2 Grammar of DSL for sequence classification. 143
10.3 Synthesized program classifying a “sniff” action between two mice

in the CRIM13 dataset. 144
10.4 Synthesized program classifying the ballhandler for basketball. . . . 145
10.5 An example of program learning formulated as graph search. 146
10.6 Median minimum path cost to a goal node found at a given time . . . 153
10.7 Effect of structural cost on program accuracy. 153
10.8 Synthesized depth 2 program classifying a “sniff” action between two

mice in the CRIM13 dataset. 155
10.9 Synthesized depth 8 program classifying a “sniff” action between two

mice in the CRIM13 dataset. 155
10.10 Performance of Models Trained on 100% Training Data. 158
10.11 Comparing models for two annotators. 159
10.12 Data Efficiency on Behavior Sequence Classification. 160
10.13 Visualization of our learned filters in Bento [24]. 160
11.1 We present AutoSWAP, a framework for automatically synthesizing

diverse sets of task-level labeling functions (LFs). 165
11.2 Domain experts provide domain-level labeling functions, such as the

ones above for the fly domain. Some domain-level LFs (𝜆1, 𝜆2) label
for specific tasks (and would be considered task-level LFs on their
own), while others (𝜆3) return features. 169

11.3 A complete program and its tree representation. 171

xi

11.4 AutoSWAP Active Learning Experiments. 178
11.5 AutoSWAP Weak Supervision Experiments. 178
12.1 Synergy between the scientific and neurosymbolic programming

workflow. 183
12.2 Space of neurosymbolic programming models in behavior analysis. . 186
12.3 Functionalities of MARS and Bento [2] in the behavior analysis

pipeline. 195

xii

LIST OF TABLES

Number Page
4.1 Behavior Classification Results on CalMS21 29
4.2 Behavior Classification Results on Fly. 29
4.3 Comparison with state-of-the-art methods for landmark prediction

on Simplified Human 3.6M. 31
4.4 Comparison of our work with representative related work for 3D pose

using multi-view training. 35
4.5 Comparing BKinD-3D performance with related work on Human3.6M. 42
4.6 Comparison with 3D keypoint discovery methods on Rat7M. 43
5.1 Comparison of cross-view pose retrieval results Hit@𝑘 (%) on H3.6M

and 3DHP with chest-level cameras and all cameras. ∗ indicates that
normalization and Procrustes alignment are performed on query-
index pairs. 60

5.2 Comparison of action recognition results on Penn Action. 63
5.3 Comparison of video alignment results on Penn Action. 63
5.4 Comparison of cross-view pose sequence retrieval results Hit@𝑘

(%) on H3.6M and 3DHP. All the models in the table use camera
augmentation. The “Dim.” column refers to the total dimensionality
of the embeddings. 65

6.1 Comparison with commonly used, public video and trajectory datasets. 75
6.2 Evaluating self-supervised video representation learning methods . . 83
6.3 Effect of masking strategy on MAE performance 84
6.4 Effect of 𝜌 on BYOL performance 84
6.5 Benchmarking the community-contributed methods 85
7.1 Evaluating clusters from baseline and our neurosymbolic encoders

on human-annotated labels. 107
7.2 Effect of varying DSLs on CalMS21 for neurosymbolic encoders. . . 108
7.3 Effect of encoding DSL features into baselines. 109
9.1 Behavior Attributes used in Task Programming. 127
9.2 Decoder Error Reductions. 134

10.1 Mean accuracy, F1-score, and program depth of learned programs . . 152

Part I

Introduction

1

2

C h a p t e r 1

AI FOR SCIENTISTS

Scientific discoveries have fundamentally changed how we understand the world.
These discoveries are built upon observations and experiments, as well as human
interpretation to distill data into collective shared insights. The field of ethology is
one such example, where observations of moving animals in their environment is
distilled into knowledge about the function, evolution, causal, and ontology of their
behavior [18]. Ethology has its roots in the work of Konrad Lorenz, Karl von Frisch,
and Nikolaas Tinbergen, who were awarded the 1973 Nobel Prize in Physiology /
Medicine for their contributions.

Figure 1.1: Hierarchical behavioral organization of the three-spined stickleback
based on [18].

Since these foundational works in the mid-1900s, there has been an increasing
movement to quantify animal behavior at greater scales. Traditionally, animal be-
havior has been translated by human observers into qualitative written descriptions.
Following works had human observers who scored incidents of specific behaviors
based on expert-defined criteria, using tools such as pencil, paper, and stopwatches;
and more recent works have enabled users to score behaviors on computers using
keystrokes [1]. Today, the widespread availability of recording equipment and data

3

storage have enabled the creation of large repositories of behavioral data across
fields such as pharmacology, neuroscience, and ecology. For example, when neu-
roscientists study the brain circuitry that regulates animal behavior, one experiment
can generate hundreds of hours of videos [14].

While scientific datasets have grown dramatically thanks to technology and au-
tomation, human attention has not. Expert attention is still needed to define and
categorize actions from these large amounts of videos of behaving animals — 24
hours of recorded videos can take an expert 100 hours to annotate. Manual an-
notation and analysis is impractical, and automation is increasingly necessary. An
automated system that collaborates with scientists to scale their attention to study
experimental data at scale have tremendous potential to accelerate the scientific
process. We envision a system that could automatically transform large-scale ex-
perimental observations into human-readable knowledge as in Figure 1.1, without
requiring years of expert time and laborious effort.

Potential of AI in science

In the past few years, rapid developments in machine learning (ML) and computer
vision (CV) methods have demonstrated the potential for automating a wide range of
tasks previously performed exclusively by humans. Today, these models detect and
classify a wide range of objects from image data [19, 6]; enable anyone to generate
images and videos from text input [11, 13]; converse with users in natural language,
and even could generate new programs [4, 3]. The field has seen significant progress
recently, with models now capable of matching or exceeding human performance
on many tasks. These new developments have been broadly described as artificial
intelligence (AI).

Despite significant progress in AI, many scientific data analysis workflows still rely
on human attention – the vision for an AI scientist that automatically learns from
data sources around the world to accelerate scientific discovery has not yet been
realized. While AI has had significant impacts in fields that rely on computational
modeling, such as protein folding and physics simulations, a majority of scientific
inquiries do not easily lend themselves to clean mathematical modeling [12, 5, 21],
and experts need to work with machines to apply their judgement in order to develop
new insights and theory from data and experiments [9, 10, 8].

In this thesis, we will discuss the following questions towards building AI for
scientists: (1) What are the biggest challenges from scientific data analysis that

4

motivates new AI development? (2) How do we build AI that’s useful to scientists?
(3) What are future steps to connect the AI and science research communities? To
ground our discussion, let us look at some specific cases in behavior analysis to
understand the challenges in analyzing scientific data.

Existing Challenges

Challenge 1: Nonhomogeneous data. Scientific data is highly diverse and is always
evolving. For example, in behavioral neuroscience, each lab studies a different subset
of behaviors, with different definitions, using different experimental designs. This
poses a challenge for our data-hungry models: when a scientist wants to perform a
new experiment or study a new behavior, we need to first ask them to annotate tens
or even hundreds of thousands of frames of data to train the model. This process
is expensive and time-consuming, and the results of the automated system would
still need to be manually verified in many cases. As a result, in practice, many labs
are still manually annotating all of their data. To address this challenge, we need to
develop more data efficient models or models that do not require human annotation
to extract useful information.

Challenge 2: Unknown labels. Scientists may not be able to immediately identify
what is interesting in new experimental data. Instead, they may need to repeatedly
explore the data to find patterns and trends that are significant. This process of
iterating over the data is often essential for scientists to discover new insights. For
example, when neuroscientists record naturalistic behavior in new experimental
settings, it is not always clear which behavioral change might be the result of
the experimental intervention or simply due to random variation. We need ML
workflows that support rapid iteration and can be adapted to the needs of different
scientists — the typical one-shot supervised training process is not always suitable
for scientific research.

Challenge 3: Interpretability. Scientists need to be able to trust the results of
their models and interpret either the model itself or its outputs. For example, a lab
may know exactly which behavior they want to study, and have enough annotated
data to train a model, but this is not enough because they also need to be able
to explain the distinctive features of each behavior or understand the mechanisms
behind a behavior. For example, when studying the gait of a mouse, the lab
may be interested in understanding how the animal’s gait is affected by different
experimental conditions (e.g., pharmacological interventions). In this case, it would

5

not be enough to train a black box model that simply outputs a binary label that
the gait is “stable” or “unstable.” Instead, the model needs to be interpretable
enough to help scientists understand the differences between gaits. This includes
understanding the features that are associated with different gaits, how these features
change over time, and how they are affected by different interventions. Through this,
scientists can better predict how gait might change in response to new interventions
and ultimately connect behavioral changes to biological mechanisms.

Due to these challenges, many existing models and frameworks work well for specific
experiments and conditions, but are often difficult to share across labs (even for labs
studying the same model organisms). These pipelines are often tailored to the
specific data and methods used during development, and need to be re-trained or
re-designed in new settings (for example, moving recording from top view to side
view camera to capture new behaviors can require retraining multiple models in
existing pipelines). Typically, the only way to share the results of these analyses
is to publish them in a paper. However, this does not allow other labs to easily
reproduce the analyses or to use the models for their own experiments.

To advance the field, we need to develop models that can be shared across labs, are
interpretable to scientists in different labs, and generalize to diverse domain-specific
data. Now is the time to work on these challenges, as there is increasing pressure
from the community and funding agencies for labs to open source their datasets,
which has led to the creation of large-scale open source repositories [20]. These
repositories contain heterogeneous datasets across labs, which can be used to train
and evaluate generalizable models. At the same time, AI development is moving
towards foundation models [2] that have the potential to generalize to a variety
of downstream tasks with zero/few-shot performance. My work in developing
AI for scientists grounds AI development in scientific challenges with real-world
stakeholders, as well as help scientists process large-scale heterogeneous datasets
to extract insights. My goal is to build towards an AI ecosystem that works across
scientific domains to accelerate discovery.

1.1 Themes
How do we build AI that is useful to scientists? This thesis focuses on scientific
data analysis1, where we want to automatically extract insights from large-scale

1There are a number of other steps in the scientific process, such as hypothesis design, data
collection, or running simulations, which is not the focus of this work.

6

experimental data. However, there are a number of challenges to working with
scientific data as we outlined above.

To tackle these challenges, I aim to develop models that work together with scien-
tists to extract insights from data, by automatically converting data into symbolically
interpretable representations. These representations enable scientists to bidirection-
ally interact with the system, both to inject domain knowledge and to efficiently
extract insights. For example, in the case of animal behavior analysis, the raw
data consists of videos of animal behavior. The insight that we want to extract is
the frame-by-frame label of the animal’s behavior. The symbolically interpretable
representations could be a set of sparse keypoint locations that track semantically
meaningful body parts on the animals. These keypoint locations allow experts to
inject domain knowledge into the system (for example, through hand-crafted fea-
tures such as distance, speed, acceleration), and also be used to correlate with other
measurements such as neural recordings.

There are a few themes in my approach:

Grounding algorithm development in real-world workflows. ML models are
crucial in scaling analysis in science, and at the same time, scientists pose new and
fascinating questions for ML researchers. For example, how to develop models that
can be trained and shared across entire communities, where each scientist carries
out idiosyncratic experiments?; What is the best way to combine symbolic domain
knowledge with data to produce interpretable models and theories? These chal-
lenges from real-world settings motivates new algorithms, and prevents overfitting
to datasets curated for ML and CV. I approach the algorithm development process
by closely collaborating with scientists to understand the bottlenecks and challenges
in their workflow, and translating these challenges to computational ones. This
process involves understanding the task that experts need to perform, the data to
analyze, the current approach, and the resources available for model development
and deployment. In my work, I have focused on behavior analysis as a domain, but
many of our work applies to other expert-in-the-loop workflows, such as analyzing
EKG data for cardiology.

Efficiently use scientists’ efforts. In the ideal case, our tools would require min-
imal effort from scientists to extract maximum insight from data. To use existing
tools [7], labs require time and resources to setup computation, annotate data, train
new models, and deploy these models. In this workflow, we can reduce expert effort
required through more data-efficient models, or models that automatically discov-

7

ers useful structure from data. Moving forward, AI systems (such as foundation
models) that could be deployed to analyze scientific data with zero-shot or few-
shot performance has the potential to further reduce expert effort. These systems
could potentially interact with experts through natural language to efficiently encode
domain knowledge (instead of through time-consuming data annotation).

Leveraging the right domain knowledge to generalize. We would like to build
algorithms that work well for specific labs, but at the same time, also generalizes to
different experimental setups and tasks. The methods I study in this thesis encode
varying levels of domain knowledge to achieve this. Neurosymbolic learning is one
type of approach I have explored for encoding domain knowledge, which integrates
symbolic knowledge from scientists with the flexibility of neural networks. In this
framework, scientists can express prior knowledge into the design of a domain-
specific language (DSL), and use neurosymbolic program synthesis to discover
these programs. Another way that we explore this theme is by making appropriate
assumptions on properties of the experimental data. For example, by observing that
almost all behavioral videos are recorded from stationary cameras, we can design a
simple self-supervised loss that discovers keypoints from videos of a wide range of
organisms [17].

Datasets and Benchmarks. Representative real-world datasets and benchmarks
are crucial for model development and for quantitatively evaluating progress. These
datasets need to be high fidelity for scientists, but also scalable for evaluation during
model development. This thesis will present progress on the first set of datasets and
benchmarks in ML for behavioral neuroscience [15, 16], towards a systematic way
to measure progress in behavior analysis. Notably, one limitation of standardized
benchmarking is that the community may overfit on certain tasks; on the other
hand, fragmenting the community across different datasets makes methods difficult
to compare quantatitively. One approach I take is to evaluate new methods both on
datasets central to the ML & CV community to compare with existing methods, as
well as on lab-specific data to measure performance on real-world tasks. Moving
forward, maintaining a live and versioned ML for behavior benchmark could enable
to community to contribute lab-specific data, and also enable evaluation on more
standardized splits.

8

References

[1] David J. Anderson and Pietro Perona. “Toward a Science of Computational
Ethology.” In: Neuron 84.1 (2014), pp. 18–31.

[2] Rishi Bommasani et al. “On the Opportunities and Risks of Foundation
Models.” In: arXiv preprint arXiv:2108.07258 (2021).

[3] Xi Chen et al. “Pali: A Jointly-Scaled Multilingual Language-Image Model.”
In: arXiv preprint arXiv:2209.06794 (2022).

[4] Jacob Devlin et al. “BERT: Pre-Training of Deep Bidirectional Transform-
ers for Language Understanding.” In: arXiv preprint arXiv:1810.04805
(2018).

[5] Jared Diamond. “Soft Sciences Are Often Harder Than Hard Sciences.”
In: Discover 8.8 (1987), pp. 34–39.

[6] Kaiming He et al. “Mask R-CNN.” In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 2017, pp. 2961–2969.

[7] Kevin Luxem*, Jennifer J. Sun*, Sean P. Bradley, Keerthi Krishnan, Talmo
D. Pereira, Eric A. Yttri, Jan Zimmermann, and Mark Laubach. “Open-
Source Tools for Behavioral Video Analysis: Setup, Methods, and Devel-
opment.” In: eLife (2023).

[8] Michael Muthukrishna and Joseph Henrich. “A Problem in Theory.” In:
Nature Human Behaviour 3.3 (2019), pp. 221–229.

[9] Paul Nurse et al. “Biology Must Generate Ideas as Well as Data.” In: Nature
597.7876 (2021), pp. 305–305.

[10] Clare Press, Daniel Yon, and Cecilia Heyes. “Building Better Theories.”
In: Current Biology 32.1 (2022), R13–R17.

[11] Aditya Ramesh et al. “Hierarchical Text-Conditional Image Generation
with CLIP Latents.” In: arXiv preprint arXiv:2204.06125 1.2 (2022), p. 3.

[12] Michael C. Reed. “Why is Mathematical Biology so Hard.” In: Notices of
the AMS 51.3 (2004), pp. 338–342.

[13] Chitwan Saharia et al. “Photorealistic Text-To-Image Diffusion Models
with Deep Language Understanding.” In: Advances in Neural Information
Processing Systems 35 (2022), pp. 36479–36494.

[14] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

9

[15] Jennifer J. Sun, Markus Marks, Andrew Ulmer, Dipam Chakraborty, Brian
Geuther, Edward Hayes, Heng Jia, Vivek Kumar, Zachary Partridge, Alice
Robie, Catherine E. Schretter, et al. “MABe22: A Multi-Species Multi-Task
Benchmark for Learned Representations of Behavior.” In: International
Conference on Machine Learning (2023). url: https://arxiv.org/
pdf/2207.10553.pdf.

[16] Jennifer J. Sun, Tomomi Karigo, Dipam Chakraborty, Sharada Mohanty,
Benjamin Wild, Quan Sun, Chen Chen, David Anderson, Pietro Per-
ona, et al. “The Multi-Agent Behavior Dataset: Mouse Dyadic Social
Interactions.” In: Conference on Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track (2021).

[17] Jennifer J. Sun*, Serim Ryou*, Roni H. Goldshmid, Brandon Weissbourd,
John O. Dabiri, David J. Anderson, Ann Kennedy, Yisong Yue, and Pietro
Perona. “Self-Supervised Keypoint Discovery in Behavioral Videos.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022), pp. 2171–2180. url: https://arxiv.org/
pdf/2112.05121.pdf.

[18] Nikolaas Tinbergen. The Study of Instinct. Clarendon Press/Oxford Uni-
versity Press, 1951.

[19] Grant Van Horn et al. “The iNaturalist Species Classification and Detection
Dataset.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 8769–8778.

[20] Hollie White et al. “The Dryad Data Repository: A Singapore Frame-
work Metadata Architecture in a DSpace Environment.” In: Dublin Core
Conference. 2008, pp. 157–162.

[21] Eric F. Wolstenholme. “Qualitative vs Quantitative Modelling: The Evolv-
ing Balance.” In: Journal of the Operational Research Society 50.4 (1999),
pp. 422–428.

https://arxiv.org/pdf/2207.10553.pdf
https://arxiv.org/pdf/2207.10553.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2112.05121.pdf

10

C h a p t e r 2

THESIS ORGANIZATION

Figure 2.1: This thesis will present developing AI for scientists in two main parts:
Part II focuses on extracting representations from raw data, and Part III focuses
on transforming these representations to insight by integrating symbolic domain
knowledge. In the concluding section (Part IV), we will discuss how these systems
could be connected end-to-end.

Part II: Representation & Structural Discovery from Real-World Data

Part II will focus on methods that transform data to lower-dimensional represen-
tations and structures that improves performance for downstream analysis. These
methods are generally learned in a self-supervised way, such that we do not require
human annotations which are generally expensive to obtain on scientific datasets.

In Chapter 4, we discuss methods for keypoint discovery from video data that works
directly on a range of organisms, from mice, to flies, to humans. Our method
discovers locations that encode information to reconstruct agent movements. We
show that this idea works in 2D on monocular videos, as well as in 3D on multi-view
videos. In Chapter 5, we study pose representations, and in particular, how to map
a set of 2D keypoints to representations that are invariant of camera viewpoints.
These pose embeddings are applicable in a range of tasks, including cross-view
action recognition, pose retrieval, and video alignment. Evaluation representations

11

is crucial for comparison, and Chapter 6 proposes a new dataset from biology
experiments to evaluate behavioral representations. Our dataset is collected across
three organisms, and is based on a set of experimentally-defined downstream tasks.
We transition towards a discussion of neurosymbolic methods in Chapter 7, which
focuses on our work of combining variational autoencoders with neurosymbolic
methods. The result is a representation that contains both symbolic components
(generated through a DSL) and neural components.

Part III: Integrating Symbolic Domain Knowledge with Learning

Part III will focus on methods that learns from both data and domain knowledge
to improve data efficiency and model interpretability. These methods are generally
part of the neurosymbolic learning movement, which aims to integrate symbolic
knowledge from scientists with the flexibility of neural networks.

In Chapter 9, we study task programming, a framework to unify self-supervision
from data and programmatic supervision from domain experts for representation
learning. Results demonstrate that our framework reduces annotated data require-
ments by up to 90% compared to previous methods. The programs in Chapter 9
are hand-crafted by experts, and Chapter 10 discusses NEAR, a method that learns
programs automatically from the data and a DSL. NEAR uses neural heuristics to
guide the process of learning both the architecture and parameters of differentiable
programs. We discuss how program learning can result in inherently interpretable
models compared to neural networks. We study how program learning further im-
proves data efficiency in Chapter 11, where these synthesized programs can be used
as sources of weak supervision. In addition to weak supervision, we also explore
program synthesis and active learning. Chapter 12 is a perspective paper on the
opportunities and challenges in neurosymbolic learning and science. Our discussion
is grounded in the behavior analysis domain, and we outline the potential for future
work at this intersection.

Part IV: Conclusion

Finally, we will conclude with a discussion of future works on interactivity and
expert-in-the-loop systems in science, extending our framework to other domains,
and further connecting the science and AI research communities. The development
of these frameworks requires a collaborative process between ML researchers and
labs with diverse domain knowledge, experimental setups, and data. Through this

12

process, my research lays the groundwork towards a general scientist-in-the-loop
framework that learns from expert knowledge and experimental data across domains.
This framework has the potential to unify analysis efforts and share insights broadly
across science.

Part II

Representation & Structural
Discovery from Real-World Data

13

14

C h a p t e r 3

OVERVIEW

Scientific inquiries rely on semantically-meaningful structure extracted from raw
data. For example, insights on the relationship between brain and behavior are
based on body parts (keypoints) or behavioral categories [2] computed from raw
video (Figure 2). However, scientists find manual data annotation of these struc-
tures to be time-consuming and tedious, and are asking for algorithms that reveal
structures and features in raw data to guide their intepretation. My approach devel-
ops methods that automatically discover these structures, leveraging properties of
experimental data not well-explored in ML, such as known capture conditions [5],
spatiotemporal relationships [6], or connections between data streams [4].

Data Structure / RepresentationDomain Knowledge Interpretation

Structural
Discovery

Learning +
Knowledge

Facing Angle

Speed

Iterative

AccelerationSelect(
MorletFilter())

Mouse Aggression:

Figure 3.1: We will discuss methods that learn from video data and expert knowl-
edge to discover structure and interpretable quantitative representations of animal
behavior.

My work studies new methods for self-supervised learning and representation learn-
ing on experimental data. In this process, we ultimately need to make assumptions
on our data and desired representations. There are a few ways that we encode prior
knowledge in order to discover useful representations:

• The design of the model architecture: The model architecture is crucial,
since it affects the embedding dimensionality, its structure, and properties (for
example, CNNs assume translational equivariance). The model architecture
need to take into account structure of the data, downstream tasks, as well as
amount of available data. There is often a tradeoff between the size of the
hypothesis space represented by the model, to the amount of data needed to
train the model. Techniques such as transfer learning and fine-tuning could
help reduce these requirements.

15

• The design of loss functions: The loss function is another important choice
in representation learning — the model is trained to optimize this function.
Besides the architecture, we can also use the loss function to encourage the
model to learn useful representations (for example, using contrastive loss to
learn invariances). Typically, models will only be able to reach local minima
and may not always be able to converge. There is often a tradeoff between the
complexity of the loss function, to how easy the model is to optimize.

• The design of datasets: The data that the model is trained and evaluated
on is another way to encode prior knowledge. This data is often split into
train, validation, and test. Out of these splits, it is crucial that the test
dataset be designed to be representative of the real-world task where the
model will be deployed. For training data, synthetic data and other types
of data augmentation are commonly used to artificially increase the size of
the training data. The training data encodes prior knowledge into the model
since the loss function is optimized on this dataset, and often any biases in the
training data is passed onto the model.

In general, not only has my work improved data efficiency of existing categories [4, 3,
1, 8], I have also developed methods for discovering meaningful representations [6,
7]. These representations benefit a range of downstream tasks, such as [4] which
improves the performance of pose retrieval, video alignment, and action recognition;
and [6] for imputing missing brain recordings for neural decoding in neuroscience,
thus enabling new experimental design.

Each chapter in this part covers a different flavor of representation learning:

• Chapter 4: We develop a new loss function that leverages properties from ex-
perimental data (animal behavioral videos) alongside a geometric bottleneck
in the model to discover 2D and 3D keypoints.

• Chapter 5: We learn a view-invariant representation of 2D pose data by using
a loss that encourages the model to map 2D poses with similar 3D poses closer
together in the representation space, and different 3D poses further apart.

• Chapter 6: We evaluate trajectory and video representations of animal behav-
ior on a suite of downstream tasks, from both experimentally-derived labels
as well as human annotations.

16

• Chapter 7: We explore the variational autoencoder method alongisde a neu-
rosymbolic encoder, to learn both a symbolic and neural representation in an
unsupervised way.

References

[1] Ting Liu*, Jennifer J. Sun*, Long Zhao, Jiaping Zhao, Liangzhe Yuan,
Yuxiao Wang, Liang-Chieh Chen, Florian Schroff, and Hartwig Adam.
“View-Invariant, Occlusion-Robust Probabilistic Embedding for Human
Pose.” In: International Journal of Computer Vision 130.1 (2022), pp. 111–
135. url: https://arxiv.org/pdf/2010.13321.pdf.

[2] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[3] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

[4] Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, and Ting Liu. “View-Invariant Probabilistic Embedding for Hu-
man Pose.” In: European Conference on Computer Vision (ECCV) (2020),
pp. 53–70. url: https://arxiv.org/pdf/1912.01001.pdf.

[5] Jennifer J. Sun*, Serim Ryou*, Roni H. Goldshmid, Brandon Weissbourd,
John O. Dabiri, David J. Anderson, Ann Kennedy, Yisong Yue, and Pietro
Perona. “Self-Supervised Keypoint Discovery in Behavioral Videos.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022), pp. 2171–2180. url: https://arxiv.org/
pdf/2112.05121.pdf.

[6] Sabera Talukder*, Jennifer J. Sun*, Matthew Leonard, Bingni W. Brunton,
and Yisong Yue. “Deep Neural Imputation: A Framework for Recovering
Incomplete Brain Recordings.” In: Learning from Time Series for Health
Workshop at Neural Information Processing Systems (NeurIPS) (2022).

[7] Eric Zhan*, Jennifer J. Sun*, Ann Kennedy, Yisong Yue, and Swarat
Chaudhuri. “Unsupervised Learning of Neurosymbolic Encoders.” In:
Transactions on Machine Learning Research (2022). url: https : / /
arxiv.org/pdf/2107.13132.pdf.

[8] Long Zhao, Yuxiao Wang, Jiaping Zhao, Liangzhe Yuan, Jennifer J. Sun,
Florian Schroff, Hartwig Adam, Xi Peng, Dimitris Metaxas, and Ting

https://arxiv.org/pdf/2010.13321.pdf
https://arxiv.org/pdf/2011.13917.pdf
https://arxiv.org/pdf/1912.01001.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2107.13132.pdf

17

Liu. “Learning View-Disentangled Human Pose Representation by Con-
trastive Cross-View Mutual Information Maximization.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021), pp. 12793–12802.

18

C h a p t e r 4

DISCOVERING KEYPOINTS IN 2D AND 3D

Figure 4.1: We propose a method to discover keypoints from behavioral videos
without the need for manual keypoint or bounding box annotations.

This chapter is mainly based on the following papers:

[1] Jennifer J. Sun*, Lili Karashchuk*, Amil Dravid*, Serim Ryou, Sonia Fer-
eidooni, John C Tuthill, Aggelos Katsaggelos, Bingni W Brunton, Georgia
Gkioxari, Ann Kennedy, et al. “BKinD-3D: Self-Supervised 3D Keypoint
Discovery from Multi-View Videos.” In: (2023), pp. 9001–9010. url:
https://arxiv.org/pdf/2212.07401.pdf.

[2] Jennifer J. Sun*, Serim Ryou*, Roni H. Goldshmid, Brandon Weissbourd,
John O. Dabiri, David J. Anderson, Ann Kennedy, Yisong Yue, and Pietro
Perona. “Self-Supervised Keypoint Discovery in Behavioral Videos.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022), pp. 2171–2180. url: https://arxiv.org/
pdf/2112.05121.pdf.

Abstract. We propose a method for learning the posture and structure of agents from
unlabelled behavioral videos. Starting from the observation that behaving agents
are generally the main sources of movement in behavioral videos, our method, Be-
havioral Keypoint Discovery (B-KinD), uses an encoder-decoder architecture with
a geometric bottleneck to reconstruct the spatiotemporal difference between video
frames. By focusing only on regions of movement, our approach works directly on

https://arxiv.org/pdf/2212.07401.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2112.05121.pdf

19

input videos without requiring manual annotations. Experiments on a variety of
agent types (mouse, fly, human, jellyfish, and trees) demonstrate the generality of our
approach and reveal that our discovered keypoints represent semantically meaning-
ful body parts, which achieve state-of-the-art performance on keypoint regression
among self-supervised methods. Additionally, B-KinD achieve comparable perfor-
mance to supervised keypoints on downstream tasks, such as behavior classification,
suggesting that our method can dramatically reduce model training costs vis-a-vis
supervised methods.

4.1 Introduction
Automatic recognition of object structure, for example in the form of keypoints and
skeletons, enables models to capture the essence of the geometry and movements
of objects. Such structural representations are more invariant to background, light-
ing, and other nuisance variables and are much lower-dimensional than raw pixel
values, making them good intermediates for downstream tasks, such as behavior
classification [3, 17, 53], video alignment [59, 35], and physics-based modeling [6,
55].

However, obtaining annotations to train supervised pose detectors can be expen-
sive, especially for applications in behavior analysis. For example, in behavioral
neuroscience [45], datasets are typically small and lab-specific, and the training of
a custom supervised keypoint detector presents a significant bottleneck in terms of
cost and effort. Additionally, once trained, supervised detectors often do not gen-
eralize well to new agents with different structures without new supervision. The
goal of our work is to enable keypoint discovery on new videos without manual
supervision, in order to facilitate behavior analysis on novel settings and different
agents.

Recent unsupervised/self-supervised methods have made great progress in keypoint
discovery [28, 29, 71], but these methods are generally not designed for behavioral
videos. In particular, existing methods do not address the case of multiple and/or
non-centered agents, and often require inputs as cropped bounding boxes around
the object of interest, which would require an additional detector module to run on
real-world videos. Furthermore, these methods do not exploit relevant structural
properties in behavioral videos (e.g., the camera and the background are typically
stationary, as observed in many real-world behavioral datasets [53, 17, 4, 38, 45,
30]).

20

To address these challenges, the key to our approach is to discover keypoints based
on reconstructing the spatiotemporal difference between video frames. Inspired by
previous works based on image reconstruction [29, 50], we use an encoder-decoder
setup to encode input frames into a geometric bottleneck, and train the model for
reconstruction. We then use spatiotemporal difference as a novel reconstruction
target for keypoint discovery, instead of single image reconstruction. Our method
enables the model to focus on discovering keypoints on the behaving agents, which
are generally the only source of motion in behavioral videos.

Our self-supervised approach, Behavioral Keypoint Discovery (B-KinD), works
without manual supervision across diverse organisms (Figure 3.1). Results show
that our discovered keypoints achieve state-of-the-art performance on downstream
tasks among other self-supervised keypoint discovery methods. We demonstrate
the performance of our keypoints on behavior classification [58], keypoint regres-
sion [29], and physics-based modeling [6]. Thus, our method has the potential
for transformative impact in behavior analysis: first, one may discover keypoints
from behavioral videos for new settings and organisms; second, unlike methods that
predict behavior directly from video, our low-dimensional keypoints are semanti-
cally meaningful so that users can directly compute behavioral features; finally, our
method can be applied to videos without the need for manual annotations.

Contributions
1. Self-supervised method for discovering keypoints from real-world behavioral
videos, based on spatiotemporal difference reconstruction.
2. Experiments across a range of organisms (mice, flies, human, jellyfish, and
tree) demonstrating the generality of the method and showing that the discovered
keypoints are semantically meaningful.
3. Quantitative benchmarking on downstream behavior analysis tasks showing
performance that is comparable to supervised keypoints.

4.2 Related Work
Analyzing Behavioral Videos
Video data collected for behavioral experiments often consists of moving agents
recorded from stationary cameras [1, 17, 4, 43, 14, 30]. These behavioral videos
contain different model organisms studied by researchers, such as fruit flies [17,
32, 3] and mice [23, 53, 30]. From these recorded video data, there has been an
increasing effort to automatically estimate poses of agents and classify behavior [32,

21

23, 18, 16, 53].

Pose estimation models that were developed for behavioral videos [40, 20, 53, 46]
require human annotations of anatomically defined keypoints, which are expensive
and time-consuming to obtain. In addition to the cost, not all data can be crowd-
sourced due to the sensitive nature of some experiments. Furthermore, organisms
that are translucent (jellyfish) or with complex shapes (tree) can be difficult for
non-expert humans to annotate. Our goal is to enable keypoint discovery on videos
for behavior analysis, without the need for manual annotations.

Keypoint Estimation
Keypoint estimation models aim to localize a predefined set of keypoints from
visual data, and many works in this area focus on human pose. With the success of
fully convolutional neural networks [54], recent methods [42, 70, 11, 63] employ
encoder-decoder networks by predicting high-resolution outputs encoded with 2D
Gaussian heatmaps representing each part. To improve model performance, [42,
70, 63] propose an iterative refinement approach, [11, 49] design efficient learning
signals, and [12, 68] exploit multi-resolution information. Similar to these works,
we also use 2D Gaussian heatmaps to represent parts as keypoints, but instead
of using human-defined keypoints, we aim to discover keypoints from video data
without manual supervision.

Unsupervised Part Discovery
Though keypoints provide a useful tool for behavior analysis, collecting annotations
is time-consuming and labor-intensive especially for new domains that have not
been previously studied. Unsupervised keypoint discovery [29, 71, 28] has been
proposed to reduce keypoint annotation effort and there have been many promising
results on centered and/or aligned objects, such as facial images and humans with
an upright pose. These methods train and evaluate on images where the object of
interest is centered in an input bounding box. Most of the approaches [71, 29, 36]
use an autoencoder-based architecture to disentangle the appearance and geometry
representation for the image reconstruction task. Our setup is similar in that we also
use an encoder-decoder architecture, but crucially, we reconstruct spatiotemporal
difference between video frames, instead of the full image as in previous works.
We found that this enables our discovered keypoints to track semantically-consistent
parts without manual supervision, requiring neither keypoints nor bounding boxes.

There are also works for parts discovery that employ other types of supervision [28,

22

Figure 4.2: BKinD, an approach for keypoint discovery from spatiotemporal differ-
ence reconstruction. 𝐼𝑡 and 𝐼𝑡+𝑇 are video frames at time 𝑡 and 𝑡 + 𝑇 . Both frame 𝐼𝑡
and frame 𝐼𝑡+𝑇 are fed to an appearance encoder Φ and a pose decoder Ψ. Given the
appearance feature from 𝐼𝑡 and geometry features from both 𝐼𝑡 and 𝐼𝑡+𝑇 (Sec 4.3),
our model reconstructs the spatiotemporal difference (Sec 4.3) computed from two
frames using the reconstruction decoder 𝜓.

52, 50]. For example, [50] proposed a weakly-supervised approach using class
label to discriminate parts to handle viewpoint changes, [28] incorporated pose
prior obtained from unpaired data from different datasets in the same domain,
and [52] proposed a template-based geometry bottleneck based on a pre-defined
2D Gaussian-shaped template. Different from these approaches, our method does
not require any supervision beyond the behavioral videos. We chose to focus on
this setting since other supervisory sources are not readily available for emerging
domains (for example, jellyfish, trees).

4.3 2D Keypoint Discovery
The goal of BKinD (Figure 4.2) is to discover semantically meaningful keypoints
in behavioral videos of diverse organisms without manual supervision. We use an
encoder-decoder setup similar to previous methods [29, 50], but instead of image
reconstruction, here we study a novel reconstruction target based on spatiotemporal
difference. In behavioral videos, the camera is generally fixed with respect to the
world, such that the background is largely stationary and the agents (e. g. mice mov-
ing in an enclosure) are the only source of motion. Thus spatiotemporal differences
provide a strong cue to infer location and movements of agents.

Self-supervised keypoint discovery setup
Given a behavioral video, our work aims to reconstruct regions of motion between
a reference frame 𝐼𝑡 (the video frame at time 𝑡) and a future frame 𝐼𝑡+𝑇 (the video
frame 𝑇 timesteps later, for some set value of 𝑇 .) We accomplish this by extracting

23

appearance features from frame 𝐼𝑡 and keypoint locations (“geometry features”) from
both frames 𝐼𝑡 and 𝐼𝑡+𝑇 (Figure 4.2). In contrast, previous works [29, 36, 28, 50, 52]
use appearance features from 𝐼𝑡 and geometry features from 𝐼𝑡+𝑇 to reconstruct the
full image 𝐼𝑡+𝑇 (instead of difference between 𝐼𝑡 and 𝐼𝑡+𝑇).

We use an encoder-decoder architecture, with shared appearance encoder Φ, geom-
etry decoder Ψ, and reconstruction decoder 𝜓. During training, the pair of frames
𝐼𝑡 and 𝐼𝑡+𝑇 are fed to the appearance encoder Φ to generate appearance features,
and those features are then fed into the geometry decoder Ψ to generate geometry
features. In our approach, the reference frame 𝐼𝑡 is used to generate both appearance
and geometry representations, and the future frame 𝐼𝑡+𝑇 is only used to generate a
geometry representation. The appearance feature ℎ𝑡𝑎 for frame 𝐼𝑡 are defined simply
as the output of Φ: ℎ𝑡𝑎 = Φ(𝐼𝑡).

The pose decoder Ψ outputs 𝐾 raw heatmaps X𝑖 ∈ R2, then applies a spatial softmax
operation on each heatmap channel. Given the extracted 𝑝𝑖 = (𝑢𝑖, 𝑣𝑖) locations for
𝑖 = {1, . . . , 𝐾} keypoints from the spatial softmax, we define the geometry features
ℎ𝑡𝑔 to be a concatenation of 2D Gaussians centered at (𝑢𝑖, 𝑣𝑖) with variance 𝜎.

Finally, the concatenation of the appearance feature ℎ𝑡𝑎 and the geometry features
ℎ𝑡𝑔 and ℎ𝑡+𝑇𝑔 is fed to the decoder 𝜓 to reconstruct the learning objective 𝑆 discussed
in the next section: 𝑆 = 𝜓(ℎ𝑡𝑎, ℎ𝑡𝑔, ℎ𝑡+𝑇𝑔).

Learning formulation
Spatiotemporal difference. Our method works with different types of spatiotem-
poral differences as reconstruction targets. For example:

1. Structural Similarity Index Measure (SSIM) [69]. This is a method for measuring
the perceived quality of the two images based on luminance, contrast, and structure
features. To compute our reconstruction target based on SSIM, we apply the SSIM
measure locally on corresponding patches between 𝐼𝑡 and 𝐼𝑡+𝑇 to build a similarity
map between frames. Then we compute dissimilarity by taking the negation of the
similarity map.

2. Frame differences. When the video background is static with little noise, simple
frame differences, such as absolute difference (𝑆 |𝑑 | = |𝐼𝑡+𝑇 − 𝐼𝑡 |) or raw difference
(𝑆𝑑 = 𝐼𝑡+𝑇 − 𝐼𝑡), can also be directly applied as a reconstruction target.

Reconstruction loss. We apply perceptual loss [31] for reconstructing the spa-
tiotemporal difference 𝑆. Perceptual loss compares the L2 distance between the

24

features computed from VGG network 𝜙 [56]. The reconstruction 𝑆 and the target
𝑆 are fed to VGG network, and mean squared error is applied to the features from
the intermediate convolutional blocks:

L𝑟𝑒𝑐𝑜𝑛 =
𝜙(𝑆(𝐼𝑡 , 𝐼𝑡+𝑇)) − 𝜙(𝑆(𝐼𝑡 , 𝐼𝑡+𝑇))2 . (4.1)

Rotation equivariance loss. In cases where agents can move in many directions
(e.g., mice filmed from above can translate and rotate freely), we would like our
keypoints to remain semantically consistent. We enforce rotation-equivariance in
the discovered keypoints by rotating the image with different angles and imposing
that the predicted keypoints should move correspondingly. We apply the rotation
equivariance loss (similar to the deformation equivariance in [64]) on the generated
heatmap.

Given reference image 𝐼 and the corresponding geometry bottleneck ℎ𝑔, we rotate
the geometry bottleneck to generate pseudo labels ℎ𝑅°

𝑔 for rotated input images
𝐼𝑅° with degree 𝑅 = {90°, 180°, 270°}. We apply mean squared error between the
predicted geometry bottlenecks ℎ̂𝑔 from the rotated images and the generated pseudo
labels ℎ𝑔:

L𝑟 =
ℎ𝑅°

𝑔 − ℎ̂𝑔 (𝐼𝑅°)

2 . (4.2)

Separation loss. Empirical results show that rotation equivariance encourages the
discovered keypoints to converge at the center of the image. We apply separation loss
to encourage the keypoints to encode unique coordinates, and prevent the discovered
keypoints from being centered at the image coordinates [71]. The separation loss is
defined as follows:

L𝑠 =
∑︁
𝑖≠ 𝑗

exp

(
−(𝑝𝑖 − 𝑝 𝑗)2

2𝜎2
𝑠

)
. (4.3)

Final objective. Our final loss function is composed of three parts: reconstruction
loss L𝑟𝑒𝑐𝑜𝑛, rotation equivariance loss L𝑟 , and separation loss L𝑠:

L = L𝑟𝑒𝑐𝑜𝑛 + 1𝑒𝑝𝑜𝑐ℎ>𝑛 (𝑤𝑟L𝑟 + 𝑤𝑠L𝑠). (4.4)

We adopt curriculum learning [2] and apply L𝑟 and L𝑠 once the keypoints are
consistently discovered from the semantic parts of the target instance.

Feature extraction for behavior analysis

Following standard approaches [53, 4, 23], we use the discovered keypoints from
BKinD as input to a behavior quantification module: either supervised classifiers or

25

+

Figure 4.3: Extracting information from the raw heatmap (Section 4.3): the confi-
dence scores and the covariance matrices are computed from normalized heatmaps.
Note that the features are computed for all 𝑥, 𝑦 coordinates. We visualize the zoomed
area around the target instance for illustrative purposes.

a physics-based model. Note that this is a separate process from keypoint discovery;
we feed discovered geometry information into a downstream model.

In addition to discovered keypoints, we extracted additional features from the raw
heatmap (Figure 4.3) to be used as input to our downstream modules. For instance,
we found that the confidence and the shape information from the of the network
prediction of keypoint location was informative. When a target part is well localized,
our keypoint discovery network produces a heatmap with a single high peak with
low variance; conversely, when a target part is occluded, the raw heatmap contains a
blurred shape with lower peak value. This “confidence” score (heatmap peak value)
is also a good indicator for whether keypoints are discovered on the background
(blurred over the background with low confidence) or tracking anatomical body
parts (peaked with high confidence), visualized in Supplementary materials of [62].
The shape of a computed heatmap can also reflect shape information of the target
(e.g., stretching).

Given a raw heatmap X𝑘 for part 𝑘 , the confidence score is obtained by choosing the
maximum value from the heatmap, and the shape information is obtained by com-
puting the covariance matrix from the heatmap. Figure 4.3 visualizes the features
we extract from the raw heatmaps. Using the normalized heatmap as the probability
distribution, additional geometric features are computed:

26

𝜎2
𝑥 (X𝑘) =

∑︁
𝑖 𝑗

(𝑥𝑖 − 𝑢𝑘)2X𝑘 (𝑖, 𝑗),

𝜎2
𝑦 (X𝑘) =

∑︁
𝑖 𝑗

(𝑦 𝑗 − 𝑣𝑘)2X𝑘 (𝑖, 𝑗), (4.5)

𝜎2
𝑥𝑦 (X𝑘) =

∑︁
𝑖 𝑗

(𝑥𝑖 − 𝑢𝑘) (𝑦 𝑗 − 𝑣𝑘)X𝑘 (𝑖, 𝑗).

4.4 Experiments for 2D
We demonstrate that B-KinD is able to discover consistent keypoints in real-world
behavioral videos across a range of organisms. We evaluate our keypoints on
downstream tasks for behavior classification and pose regression, then illustrate
additional applications of our keypoints.

Datasets
CalMS21. CalMS21 [58] is a large-scale dataset for behavior analysis consisting of
videos and trajectory data from a pair of interacting mice. Every frame is annotated
by an expert for three behaviors: sniff, attack, mount. There are 507k frames in
the train split, and 262k frames in the test split (video frame: 1024 × 570, mouse:
approx 150 × 50). We use only the train split on videos without miniscope cable to
train B-KinD. Following [58], the downstream behavior classifier is trained on the
entire training split, and performance is evaluated on the test split.

MARS-Pose. This dataset consists of a set of videos with similar recording con-
ditions to the CalMS21 dataset. We use a subset of the MARS pose dataset [53]
with keypoints from manual annotations to evaluate the ability of our model to pre-
dict human-annotated keypoints, with {10, 50, 100, 500} images for train and 1.5k
images for test.

Fly vs. Fly. These videos consists of interactions between a pair of flies, annotated
per frame by domain experts. We use the Aggression videos from the Fly vs. Fly
dataset [17], with the train and test split having 1229k and 322k frames, respectively
(video frame: 144 × 144, fly: approximately 30 × 10). Similar to [57], we evaluate
on behaviors of interest with more than 1000 frames in the training set (lunge, wing
threat, tussle).

Human3.6M. Human3.6M [24] is a large-scale motion capture dataset, which
consists of 3.6 million human poses and images from 4 viewpoints. To quantitatively
measure the pose regression performance against baselines, we use the Simplified

27

Human3.6M dataset, which consists of 800k training and 90k testing images with 6
activities in which the human body is mostly upright. We follow the same evaluation
protocol from [71] to use subjects 1, 5, 6, 7, and 8 for training and 9 and 11 for
testing. We note that each subject has different appearance and clothing.

Jellyfish. The jellyfish data is an in-house video dataset containing 30k frames of
recorded swimming jellyfish (video frame: 928 × 1158, jellyfish: approximately
50 pix in diameter). We use this dataset to qualitatively test the performance of
B-KinD on a new organism, and apply our keypoints to detect the pulsing motion
of the jellyfish.

Vegetation. This is an in-house dataset acquired over several weeks using a drone
to record the motion of swaying trees. The dataset consists of videos of an oak
tree and corresponding wind speeds recorded using an anemometer, with a total of
2.41M video frames (video frame: 512 × 512, oak tree: varies, approximately 1

4 of
the frame). We evaluate this dataset using a physics-based model [6] that relates the
visually observed oscillations to the average wind speeds.

Training and evaluation procedure
We train B-KinD using the full objective in Section 4.3. During training, we
rescale images to 256 × 256 and use 𝑇 of around 0.2 seconds, except Human3.6M,
where we use 128 × 128. Unless otherwise specified, all experiments are ran
with all keypoints discovered from B-KinD with SSIM reconstruction and with 10
keypoints for mouse, fly, and jellyfish, 16 keypoints for Human3.6M, 15 keypoints
for Vegetation. We train on the train split of each dataset as specified, except for
jellyfish and vegetation, where we use the entire dataset. Additional details are in
the Supplementary materials of [62].

After training the keypoint discovery model, we extract the keypoints and use it for
different evaluations based on the labels available in the dataset: behavior classifica-
tion (CalMS21, Fly), keypoint regression (MARS-Pose, Human), and physics-based
modeling (Vegetation).

For keypoint regression, similar to previous works [29, 28], we compare our re-
gression with a fully supervised 1-stack hourglass network [42]. We evaluate
keypoint regression on Simplified Human 3.6M by using a linear regressor without
a bias term, following the same evaluation setup from previous works [71, 36]. On
MARS-Pose, we train our model in a semi-supervised fashion with 10, 50, 100, 500
supervised keypoints to test data efficiency. For behavior classification, we evaluate

28

Figure 4.4: Comparison with existing methods [29], full image, bounding box, and
SSIM reconstruction (ours). “Jakab et al. ” [29] and “full image” results are based
on full image reconstruction. “White mouse bounding box” and “black mouse
bounding box” show the results when the cropped bounding boxes were fed to the
network for image reconstruction.

on CalMS21 and Fly, using available frame-level behavior annotations. To train be-
havior classifiers, we use the specified train split of each dataset. For CalMS21 and
Fly, we train the 1D Convolutional Network benchmark model provided by [58] us-
ing B-KinD keypoints. We evaluate using mean average precision (MAP) weighted
equally over all behaviors of interest.

Behavior classification results

CalMS21 Behavior Classification. We evaluate the effectiveness of B-KinD for
behavior classification (Table 4.1). Compared to supervised keypoints trained for
this task, our keypoints (without manual supervision) is comparable when using
both pose and confidence as input. Compared to other self-supervised methods,
even those that use bounding boxes, our discovered keypoints on the full image
generally achieve better performance.

Keypoints discovered with image reconstruction, similar to baselines [29, 50] cannot
track the agents well without using bounding box information (Figure 4.4) and does
not perform well for behavior classification (Table 4.1). When we provide bounding
box information to the model based on image reconstruction, the performance is
significantly improved, but this model does not perform as well as B-KinD keypoints
from spatiotemporal difference reconstruction.

For the per-class performance (see the Supplementary materials of [62]), the biggest
gap exists between B-KinD and MARS on the “attack” behavior. This is likely

29

CalMS21 Pose Conf Cov MAP

Fully supervised

MARS † [53]
✓ .856 ± .010
✓ ✓ .874 ± .003
✓ ✓ ✓ .880 ± .005

Self-supervised
Jakab et al. [29] ✓ .186 ± .008

Image Recon.
✓ .182 ± .007
✓ ✓ .184 ± .006
✓ ✓ ✓ .165 ± .012

Image Recon. bbox†
✓ .819 ± .008
✓ ✓ .812 ± .006
✓ ✓ ✓ .812 ± .010

Ours
✓ .814 ± .007
✓ ✓ .857 ± .005
✓ ✓ ✓ .852 ± .013

Table 4.1: Behavior Classification Results on CalMS21. “Ours” represents classi-
fiers using input keypoints from our discovered keypoints. “conf” represents using
the confidence score, and “cov” represents values from the covariance matrix of
the heatmap. † refers to models that require bounding box inputs before keypoint
estimation. Mean and std dev from 5 classifier runs are shown.

Fly MAP

Hand-crafted features
FlyTracker [17] .809 ± .013
Self-supervised + generic features
Image Recon. .500 ± .024
Image Recon. bbox† .750 ± .020
Ours .727 ± .022

Table 4.2: Behavior Classification Results on Fly. “FlyTracker” represents classifiers
using hand-crafted inputs from [17]. The self-supervised keypoints all use the
same “generic features” computed on all keypoints: speed, acceleration, distance,
and angle. † refers to models that require bounding box inputs before keypoint
estimation. Mean and std dev from 5 classifier runs are shown.

because during attack, the mice are moving quickly, and there exists a lot of motion
blur and occlusion which is difficult to track without supervision. However, once we
extract more information from the heatmap, through computing keypoint confidence,
our keypoints perform comparably to MARS.

Fly Behavior Classification. The FlyTracker [17] uses hand-crafted features com-
puted from the image, such as contrast, as well as features from tracked fly body
parts, such as wing angle or distance between flies. Using discovered keypoints,

30

101 102

Number Training Samples

10 1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Er
ro

r (
1

- P
CK

)

Keypoint Data Efficiency (PCK at 0.5cm)
Supervised (b)
Supervised (w)
Semi-supervised (b)
Semi-supervised (w)

Figure 4.5: Keypoint data efficiency on MARS-Pose. The supervised model is
based on [53] using stacked hourglass [42], while the semi-supervised model uses
both our self-supervised loss and supervision. PCK is computed at 0.5𝑐𝑚 threshold,
averaged across nose, ears, and tail keypoints, over 3 runs. “b” and “w” indicates
the black and white mouse, respectively.

we compute comparable features without assuming keypoint identity, by computing
speed and acceleration of every keypoint, distance between every pair, and angle be-
tween every triplet. For all self-supervised methods, we use keypoints, confidence,
and covariance for behavior classification. Results demonstrate that while there is
a small gap in performance to the supervised estimator, our discovered keypoints
perform much better than image reconstruction, and is comparable to models that
require bounding box inputs (Table 4.2).

Pose regression results

MARS Pose Regression. We evaluate the pose estimation performance of our
method in the setting where some human annotated keypoints exist (Figure 4.5).
For this experiment, we train B-KinD in a semi-supervised fashion, where the
loss is a sum of both our keypoint discovery objective (Section 4.3) as well as
standard keypoint estimation objectives based on MSE [53]. For both black and
white mouse, when using our keypoint discovery objective in a semi-supervised
way during training, we are able to track keypoints more accurately compared to
the supervised method [53] alone. We note that the performance of both methods
converge at around 500 annotated examples.

Simplified Human 3.6M Pose Regression. To compare with existing keypoint
discovery methods, we evaluate our discovered keypoints on Simplified Human3.6M
(a standard benchmarking dataset) by regressing to annotated keypoints (Table 4.3).

31

Simplified H36M all wait pose greet direct discuss walk

Fully supervised:
Newell [42] 2.16 1.88 1.92 2.15 1.62 1.88 2.21

Self-supervised + unpaired labels
Jakab [28]‡ 2.73 2.66 2.27 2.73 2.35 2.35 4.00

Self-supervised + template
Schmidtke [52] 3.31 3.51 3.28 3.50 3.03 2.97 3.55

Self-supervised + regression
Thewlis [64] 7.51 7.54 8.56 7.26 6.47 7.93 5.40
Zhang [71] 4.14 5.01 4.61 4.76 4.45 4.91 4.61
Lorenz [36] 2.79 – – – – – –

Ours (best) 2.44 2.50 2.22 2.47 2.22 2.77 2.50
Ours (mean) 2.53 2.58 2.31 2.56 2.34 2.83 2.58
Ours (std) .056 .047 .062 .048 .066 .048 .063

Table 4.3: Comparison with state-of-the-art methods for landmark prediction on
Simplified Human 3.6M. The error is in %-MSE normalized by image size. All
methods predict 16 keypoints except for [28]‡, which uses 32 keypoints for training
a prior model from the Human 3.6M dataset. B-Kind results are computed from 5
runs.

Figure 4.6: Qualitative Results of BKinD. Qualitative results for BKinD trained on
CalMS21 (mouse), Fly vs. Fly (fly), Human3.6M (human), Jellyfish and Vegetation
(tree). Additional visualizations are in the Supplementary materials of [62].

Though our method is directly applicable to full images, we train the discovery model
using cropped bounding box for a fair comparison with baselines, which all use
cropped bounding boxes centered on the subject. Compared to both self-supervised
+ prior information and self-supervised + regression, our method shows state-of-
the-art performance on the keypoint regression task, suggesting spatiotemporal
difference is an effective reconstruction target for keypoint discovery.

32

Additional applications

We show qualitative performance and demonstrate additional downstream tasks
using our discovered keypoints, on pulse detection for Jellyfish and on wind speed
regression for Vegetation.

Qualitative Results. Qualitative results (Figure 4.6) demonstrates that BKinD is
able to track some body parts consistently, such as the nose of both mice and
keypoints along the spine; the body and wings of the flies; the mouth and gonads of
the jellyfish; and points on the arms and legs of the human. For visualization only,
we show only keypoints discovered with high confidence values (Section 4.3); for
all other experiments, we use all discovered keypoints.

Pulse Detection. Jellyfish swimming is among the most energetically efficient
forms of transport, and its control and mechanics are studied in hydrodynamics
research [13]. Of key interest is the relationship between body plan and swim pulse
frequency across diverse jellyfish species. By computing distance between B-KinD
keypoints, we are able to extract a frequency spectrogram to study jellyfish pulsing,
with a visible band at the swimming frequency (Supplementary materials of [62]).
This provides a way to automatically annotate swimming behavior, which could
be quickly applied to video from multiple species to characterize the relationship
between swimming dynamics and body plan.

Wind Speed Modeling. Measuring local wind speed is useful for tasks such as
tracking air pollution and weather forecasting [5]. Oscillations of trees encode
information on wind conditions, and as such, videos of moving trees could function
as wind speed sensors [5, 6]. Using the Vegetation dataset, we evaluate the ability
of our keypoints to predict wind speed using a physics-based model [6]. This model
defines the relationship between the mean wind speed and the structural oscillations
of the tree, and requires tracking these oscillations from video, which was previously
done manually. We show that B-KinD can accomplish this task automatically. Using
our keypoints, we are able to regress the measured ground truth wind speed with
an 𝑅2 = 0.79, suggesting there is a good agreement between the proportionality
assumption from [6] and the experimental results using the keypoint discovery
model.

Limitations. One issue we did not explore in detail, and which will require further
work, is keypoint discovery for agents that may be partially or completely occluded

33

Self-Supervised 2D DiscoverySelf-Supervised 3D from 2D

Multi-view video

2D pose
(single or multi-view)

3D pose 2D poseImages or videos

Previous Self-Supervised Keypoints

Self-Supervised 3D Keypoint Discovery (Ours)

3D pose

Figure 4.7: Self-supervised 3D keypoint discovery. Previous work studying self-
supervised keypoints either requires 2D supervision for 3D pose estimation or
focuses on 2D keypoint discovery (such as in our previous sections). We propose
methods for discovering 3D keypoints directly from multi-view videos of different
organisms, such as human and rats, without 2D or 3D supervision. The 3D keypoint
discovery examples demonstrate the results from our method.

at some point during observation, including self-occlusion. Additionally, similar
to other keypoint discovery models [71, 36, 52], we observe left/right swapping of
some body parts, such as the legs in a walking human. One approach that might
overcome these issues would be to extend our model to discover the 3D structure
of the organism, for instance by using data from multiple cameras. Despite these
challenges, our model performs comparably to supervised keypoints for behavior
classification.

4.5 3D Keypoint Discovery
All animals behave in 3D, and analyzing 3D posture and movement is crucial for
a variety of applications, including the study of biomechanics, motor control, and
behavior [37]. However, annotations for supervised training of 3D pose estimators
are expensive and time-consuming to obtain, especially for studying diverse animal
species and varying experimental contexts. Self-supervised keypoint discovery has
demonstrated tremendous potential in discovering 2D keypoints from video [29, 28,
62], without the need for manual annotations. These models have not been well-
explored in 3D, which is more challenging compared to 2D due to depth ambiguities,
a larger search space, and the need to incorporate geometric constraints. Our goal is
to enable 3D keypoint discovery of humans and animals from synchronized multi-

34

view videos, without 2D or 3D supervision.

The key to our approach, which we call Behavioral Keypoint Discovery in 3D
(BKinD-3D), is to encode self-supervised learning signals from videos across mul-
tiple views into a single 3D geometric bottleneck. We leverage the spatiotemporal
difference reconstruction loss from our previous section and use multi-view recon-
struction to train an encoder-decoder architecture. Our method does not use any
bounding boxes or keypoint annotations as supervision. Critically, we impose links
between our discovered keypoints to discover connectivity across points. In other
words, keypoints on the same parts of the body are connected, so that we are able to
enforce joint length constraints in 3D. To show that our model is applicable across
multiple settings, we demonstrate our approach on multi-view videos from different
organisms.

Related Work in 3D Pose Estimation
There has been a large body of work studying 3D human pose estimation from images
or videos, as reviewed in [51, 67], with recent works also focusing on 3D animal
poses [15, 37, 19, 33, 21]. Most of these methods are fully supervised from visual
data [26, 60, 10], with some models perform lifting starting from 2D poses [39, 8,
44, 47]. We focus our discussion on multi-view 3D pose estimation methods, but
all of these models require either 3D or 2D supervision during training. This 2D
supervision is typically in the form of pre-trained 2D detectors [34], or ground truth
2D poses [65]. In comparison, our method uses multi-view videos to discover 3D
keypoints without 2D or 3D supervision.

Methods more closely related to our work are those that also leverage multi-view
structure to estimate 3D pose (Table 4.4). [26] proposed a supervised method
that uses learnable triangulation to aggregate 2D information across views to 3D.
Here we study similar approaches for representing 3D information, but using self-
supervision instead of supervised 3D annotations. Other methods in this space
propose training methods such as enforcing consistency of predicted poses across
views [48], regression to 3D pose estimated from epipolar geometry of multi-view
2D [34], constraining 3D poses to project to realistic 2D pose [9], or estimates
camera parameters using detected and ground truth 2D poses [65]. While we also
leverage multi-view information, our goal is different from the work above, in that
our approach aims to discover 3D poses without 2D or 3D supervision, given camera
parameters.

35

Method 3D sup. 2D sup. camera params data type

Isakov et al. [26]
✓ ✓

intrinsics realDANNCE [15] extrinsics
Rhodin et al. [48] ✓ optional intrinsics real
Anipose [33] × ✓

intrinsics realDeepFly3D [21] extrinsics
EpipolarPose [34] × ✓ optional realCanonPose [66]
MetaPose [65] × ✓ × real

Keypoint3D [7] × × intrinsics simulationextrinsics

Ours (3D discovery) × × intrinsics realextrinsics

Table 4.4: Comparison of our work with representative related work for 3D pose
using multi-view training. Previous works require either 3D or 2D supervision, or
simulated environments to train jointly with reinforcement learning. Our method
addresses a gap in discovering 3D keypoints from real videos without 2D or 3D
supervision.

View 1 View M

Time
t

Time
t+k

…

…

…

View 1

View M
…

Multi-view Input

Multi-view
Spatiotemporal Difference

3D volume at t

3D volume at t+k

Reconstruction
DecoderProjected Edges

View Aggregation Projection & Reconstruction

View 1 camera

View M camera

Encoder Pose Decoder
Appearance Features

Figure 4.8: BKinD-3D: 3D keypoint discovery using 3D volume bottleneck. We
start from input multi-view videos with known camera parameters, then unproject
feature maps from geometric encoders into 3D volumes for timestamps 𝑡 and 𝑡 + 𝑘 .
We next aggregate 3D points from volumes into a single edge map at each timestamp,
and use edges as input to the decoder alongside appearance features at time 𝑡. The
model is trained using multi-view spatiotemporal difference reconstruction.

Method
Our method (BKinD-3D, Figure 4.8) uses multi-view spatiotemporal reconstruction
to train an encoder-decoder architecture with 2D information aggregated to a 3D
volumetric heatmap. Projections from the 3D heatmap in the form of agent skeletons
are then used to reconstruct movement, represented by spatiotemporal difference, in
each view.

Problem Setup. Given behavioral videos captured from 𝑀 synchronized camera

36

views, with known camera projection matrix 𝑃(𝑖) for each camera 𝑖 ∈ {1...𝑀}, we
aim to discover a set of 𝐽 3D keypoints𝑈𝑡 ∈ R𝐽×3 on a single behaving agent, at each
timestamp 𝑡. We assume access to camera projection matrices so that our model
discovers 3D keypoints in the global coordinate frame.

During training, our model uses two timestamps in the video 𝑡 and 𝑡 + 𝑘 to compute
the spatiotemporal difference in each view as the reconstruction target. In other
words, for each camera view 𝑖, our training starts with a frame 𝐼 (𝑖)𝑡 and a future
frame 𝐼 (𝑖)

𝑡+𝑘 . During inference, only a single timestamp is required: once the model
is trained, the model only needs 𝐼 (𝑖)𝑡 for each camera view 𝑖.

In our model setup, the appearance encoderΦ, geometry decoder Ψ, and reconstruc-
tion decoder 𝜓 are shared across views and timestamps (in our previous section [62],
these networks are shared across timestamps, but only a single view is addressed).
The appearance encoder Φ is used to generate appearance features, which are de-
coded into 2D heatmaps by the geometry decoder Ψ. These 2D heatmaps are then
aggregated across views to form a 3D volumetric bottleneck (Section 4.5), which is
processed by a volume-to-volume network 𝜌. We compute the 3D keypoints using
spatial softmax on the 3D volume. Then, we project these keypoints to 2D, com-
pute edges between points, and output these edges into the reconstruction decoder 𝜓
(Section 4.5) for training. The reconstruction decoder 𝜓 is only used during training,
and not required for inference.
Feature Encoding. To start, we first compute appearance features from frame pairs
𝐼
(𝑖)
𝑡 and 𝐼 (𝑖)

𝑡+𝑘 using the appearance encoder Φ: Φ(𝐼 (𝑖)𝑡) and Φ(𝐼 (𝑖)
𝑡+𝑘). These appear-

ance features are then fed into the geometry decoder Ψ to generate 2D heatmaps
Ψ(Φ(𝐼 (𝑖)𝑡)) = 𝐻

(𝑖)
𝑡 and 𝐻 (𝑖)

𝑡+𝑘 . Each 2D heatmap has 𝐶 channels, where 𝐻 (𝑖)𝑡,𝑐 repre-
sents channel 𝑐 of 𝐻 (𝑖)𝑡 .

View Aggregation using Volumetric Model. To aggregate information across
views, we unproject our 2D heatmaps to a 3D volumetric bottleneck. We perform
view aggregation separately across timestamps 𝑡 and 𝑡 + 𝑘 .

We aggregate 2D heatmaps into a 3D volume similar to [26], which used previously
for supervised 3D human pose estimation. One important difference is that in the
supervised setting, an 𝐿×𝐿×𝐿 sized volume is drawn around the human pelvis, with
𝐿 being around twice the size of a person. As we perform keypoint discovery, we do
not have information on the location or size of the agent. Instead, we initialize our
volume with 𝐿 representing the maximum size of the space/room for the behaving
agent.

37

This process aggregates 2D heatmaps 𝐻 (𝑖)𝑡,𝑐 for cameras 𝑖 ∈ {1...𝑀} and channels
𝑐 ∈ {1...𝐶} to 3D keypoints𝑈𝑡 , for timestamp 𝑡. Our volume is first discretized into
voxels 𝑉𝑐𝑜𝑜𝑟𝑑𝑠 ∈ R𝐵×𝐵×𝐵×3, where 𝐵 represents the number of distinct coordinates
in each dimension. Each voxel corresponds to a global 3D coordinate. These 3D
coordinates are projected to a 2D plane using the projection matrices in each camera
view 𝑖: 𝑉 (𝑖)

𝑝𝑟𝑜 𝑗
= 𝑃(𝑖)𝑉𝑐𝑜𝑜𝑟𝑑𝑠. A volume𝑉 (𝑖)𝑐 is then created and filled for each camera

view 𝑖 and each channel 𝑐 using bilinear sampling [27] from the corresponding 2D
heatmap: 𝑉 (𝑖)𝑐 = 𝐻

(𝑖)
𝑡,𝑐 {𝑉

(𝑖)
𝑝𝑟𝑜 𝑗
}, where {·} denotes bilinear sampling.

We then aggregate these 𝑉 (𝑖)𝑐 across views for each channel 𝑐 using a softmax
approach [26]:

𝑉
𝑎𝑔𝑔
𝑐 =

∑︁
𝑖

exp(𝑉 (𝑖)𝑐)∑
𝑗 exp(𝑉 (𝑗)𝑐)

⊙ 𝑉 (𝑖)𝑐 .

𝑉𝑎𝑔𝑔 is then mapped to 3D heatmaps corresponding to each joint using a volumetric
convolutional network [41] 𝜌: 𝑉𝑎𝑔𝑔∗ = 𝜌(𝑉𝑎𝑔𝑔). We compute the 3D spatial softmax
over the volume, for each channel 𝑗 of 𝑉𝑎𝑔𝑔∗

𝑗
, 𝑗 ∈ {1...𝐽}, to obtain the 3D keypoint

locations 𝑈𝑡 for timestamp t, as in [26]. In many supervised works, the keypoint
locations 𝑈𝑡 are optimized to match to ground truth 3D poses; however, we aim to
discover 3D keypoints, and train our network by using𝑈𝑡 to decode spatiotemporal
difference across views.

Projection and Reconstruction. In this step, we project the discovered 3D key-
points to a 2D representation in each view using camera parameters. For training,
2D representations in timestamps 𝑡 and 𝑡 + 𝑘 are used as input to the reconstruction
decoder 𝜓. We train the 3D keypoints 𝑈𝑡 at each timestamp 𝑡 using multi-view
spatiotemporal difference reconstruction. The target spatiotemporal difference is
computed using the 2D image pair 𝐼 (𝑖)𝑡 and 𝐼 (𝑖)

𝑡+𝑘 at each view 𝑖.

First, we project the 3D keypoints using camera projection matrices into 2D key-
points 𝑢(𝑖)𝑡 = 𝑃(𝑖)𝑈𝑡 . We create an edge representation for each view for each
timestamp, which enables us to discover connections between points and enforce
3D joint length constraints. For each keypoint pair 𝑢(𝑖)𝑡,𝑚 and 𝑢(𝑖)𝑡,𝑛, we draw a differ-
entiable edge map as a Gaussian along the line connecting them, similar to [22]:

𝐸
(𝑖)
𝑡,(𝑚,𝑛) (p) = exp(𝑑 (𝑖)𝑚,𝑛 (p)2/𝜎2),

where 𝜎 controls the line thickness and 𝑑𝑚,𝑛 (p) (𝑖) is the distance between pixel p
and the line connecting 𝑢(𝑖)𝑡,𝑚 and 𝑢(𝑖)𝑡,𝑛. We then aggregate the edge heatmaps at each
timestamp using a set of learned weights 𝑤𝑚,𝑛 for each edge, where 𝑤𝑚,𝑛 is shared
across all timestamps and all views. An edge is active and connects two points if

38

𝑤𝑚,𝑛 > 0, otherwise the points are not connected. Finally, we aggregate all edge
heatmaps using the max across all edge pairs [22]:

𝐸
(𝑖)
𝑡 (p) = max

𝑚,𝑛
𝑤𝑚,𝑛𝐸𝑡,(𝑚,𝑛) (𝑖) (p).

In our framework, for each view 𝑖, the decoder 𝜓 uses the edge maps 𝐸 (𝑖)𝑡 and
𝐸
(𝑖)
𝑡+𝑘 as well as the appearance feature Φ(𝐼 (𝑖)𝑡) for reconstructing the spatiotemporal

difference across each view. The ground truth spatiotemporal difference is computed
from the original images 𝑆(𝐼 (𝑖)𝑡 , 𝐼

(𝑖)
𝑡+𝑘). The reconstruction from the model is 𝑆 =

𝜓(𝐸 (𝑖)𝑡 , 𝐸
(𝑖)
𝑡+𝑘 ,Φ(𝐼

(𝑖)
𝑡)), through the 3D volumetric bottleneck in order to discover

informative 3D keypoints for reconstructing agent movement.

Learning Formulation
The entire training pipeline (Figure 4.8) is differentiable, and we train the model end-
to-end. We note that our model is only given multi-view video and corresponding
camera parameters, without keypoint or bounding box supervision.

Multi-View Reconstruction Loss. Our multi-view spatiotemporal difference re-
construction is based on the single-view spatiotemporal difference described in the
previous section on 2D keypoint discovery. We use SSIM as a reconstruction target
and we compute a similarity map using local SSIM on corresponding patches be-
tween 𝐼 (𝑖)𝑡 and 𝐼 (𝑖)

𝑡+𝑘 . This similarity map is negated to obtain the dissimilarity map
used as the target: 𝑆(𝐼 (𝑖)𝑡 , 𝐼

(𝑖)
𝑡+𝑘).

We use perceptual loss [31] in each view between the target 𝑆 and the reconstruc-
tion 𝑆. This loss computes the L2 distance between features of the target and
reconstruction computed from the VGG network 𝜙 [56]:

L (𝑖)𝑟𝑒𝑐𝑜𝑛 =
𝜙(𝑆(𝐼 (𝑖)𝑡 , 𝐼 (𝑖)𝑡+𝑇)) − 𝜙(𝑆(𝐼 (𝑖)𝑡 , 𝐼 (𝑖)𝑡+𝑇))2

. (4.6)

The error is computed by comparing features from intermediate convolutional blocks
of the network. Our final perceptual loss is summed over each view L𝑟𝑒𝑐𝑜𝑛 =∑
𝑖 L
(𝑖)
𝑟𝑒𝑐𝑜𝑛.

Learned Length Constraint. Since many animals have a rigid skeletal structure,
we encourage that the length of active edges (𝑤𝑚,𝑛 > 0 for point pairs 𝑚 and 𝑛) are
consistent across samples. We do not assume that these lengths and connections are
known, such as previous work [65]; rather, they are learned during training. We do
this by maintaining a running average of the length of all active edges 𝑙𝑎𝑣𝑔(𝑚,𝑛) , and
minimizing the difference between the average length and each sample 𝑙𝑚,𝑛:

L𝑙𝑒𝑛𝑔𝑡ℎ =
∑︁
𝑚

∑︁
𝑛

1𝑤𝑚,𝑛>0
𝑙𝑎𝑣𝑔(𝑚,𝑛) − 𝑙𝑚,𝑛2 . (4.7)

39

During training, we update 𝑙𝑎𝑣𝑔(𝑚,𝑛) using an exponential running average and 𝑤𝑚,𝑛
indicating edge weights for every pair is learned. Both of these parameters are shared
across all viewpoints and timestamps. Notably, the length constraint is only applied
to active edges, since there are many point pairs without rigid connections (e.g.,
elbow to feet), while we want to enforce this constraint only for rigid connections
(e.g., elbow to wrist).

Separation Loss. To encourage unique keypoints to be discovered, we apply
separation loss to our 3D keypoints, which has been previously studied in 2D [71,
62]. On a set of 3D keypoints 𝑈𝑖𝑡 , where 𝑖 is the index of a keypoint and 𝑡 is the
time, the separation loss is:

L𝑠 =
∑︁
𝑖≠ 𝑗

exp

(
−(𝑈𝑖𝑡 −𝑈 𝑗 𝑡)2

2𝜎2
𝑠

)
, (4.8)

where 𝜎𝑠 is a hyperparameter that controls the strength of separation.

Training Objective. Our full training objective is the sum of the multi-view
spatiotemporal reconstruction loss L𝑟𝑒𝑐𝑜𝑛, learned length constraints L𝑙𝑒𝑛𝑔𝑡ℎ, and
separation loss L𝑠:

L = L𝑟𝑒𝑐𝑜𝑛 + 1𝑒𝑝𝑜𝑐ℎ>𝑒 (𝜔𝑟L𝑙𝑒𝑛𝑔𝑡ℎ + 𝜔𝑠L𝑠). (4.9)

Our model is trained using curriculum learning [2]. We only apply L𝑙𝑒𝑛𝑔𝑡ℎ and L𝑠
when the keypoints are more consistent, after 𝑒 epochs of training using reconstruc-
tion loss.

4.6 Experiments for 3D
We demonstrate BKinD-3D using real-world behavioral videos, using a human
dataset and a recently released large-scale rat dataset (Section 7.4). We evaluate our
discovered keypoints using a standard linear regression protocol based on previous
works for 2D keypoint discovery [29, 62] (also described in Section 4.6).

Datasets
We demonstrate our method by evaluating it on two representative datasets: Human
3.6M and Rat7M. The datasets have different environments and focus on subjects of
different sizes, with humans being about 1700mm tall and rats about 250mm long.

Human3.6M. We evaluate our method on Human3.6M to compare to recent works
in self-supervised 3D from 2D [65]. Human3.6M [24] is a large-scale motion
capture dataset with videos from 4 viewpoints. We follow the standard evaluation
protocol [26, 34] to use subjects 1, 5, 6, 7, and 8 for training and 9 and 11 for

40

testing. Our test set matches the set specified in [65] using every 16th frame (8516
test frame sets). Notably, unlike baselines such as [26], our method does not require
any pre-processing with 2D bounding box annotations but rather is directly applied
to the full image frame.

Rat7M. We also evaluate our method on Rat7M [15], a 3D pose dataset of rats
moving in a behavioral arena. This dataset most closely matches the expected use
case for our method, which is a dataset of non-human animal behavior in a static
environment. Rat7M consists videos from 6 viewpoints captured at 1328×1048
resolution and 120Hz, along with ground truth annotations obtained from marker-
based tracking. We train on subjects 1, 2, 3, 4, and test on subject 5, as in [15]. We
train and evaluate on every 240th frame of each video (3083 train, 1934 test frame
sets).

Model Comparisons
We compare our method with three main categories of baselines: supervised 3D
pose estimation methods (for example, [26]), 3D pose estimation methods from 2D
supervision (for example, [65]), and a 3D keypoint discovery method developed for
control in simulation [7]. A more detailed comparison of methods in this space is in
Table 4.4. For baselines with model variations, we use evaluation results from the
version that is the closest to our model (multi-view inference, and camera parameters
during inference). We note that all previous methods require additional 3D or 2D
supervision, or jointly training a reinforcement learning policy in simulation [7],
which we do not require for 3D keypoint discovery in real videos. Another notable
difference is that previous methods typically pre-process video frames using detected
or ground truth 2D bounding boxes [26], while our method does not require this
pre-processing step.

Since 3D keypoint discovery has not been thoroughly explored, we additionally
study methods in this area using multi-view 2D discovery and triangulation (Tri-
ang.+Reproj.), and multi-view 2D discovery with a depth map estimates (Depth
Map), in addition to our volumetric approach (Section 4.5, BKinD-3D). For multi-
view 2D discovery and triangulation, we use BKinD [62] (the work from our
previous section) to discover 2D keypoints in each view, and perform triangulation
using camera parameters to obtain 3D keypoints. We then project the 3D keypoints
for multi-view reconstruction. We add an additional loss on the reprojection error
to learn keypoints consistent across multiple views. For the depth map approach,
in each camera view, we estimate 2D heatmaps corresponding to each keypoint

41

alongside a view-specific depthmap estimate. The final 3D keypoints are then com-
puted from a confidence-weighted average of each view’s estimated 3D keypoint
coordinates (from the per-view 2D heatmaps and depth estimates). More details on
each method are in the supplementary materials of [61].

Training and Evaluation Procedure

We train our volumetric approach using the full objective (Eq 4.9). We scale images
to 256 × 256 for training, with a frame gap of 0.4s for Human3.6M and 0.66s for
Rat7M. We use a maximum volume size of 7500mm for Human3.6M and 1000mm
for Rat7M. The results are computed for all 3D keypoint discovery methods with
15 keypoints unless otherwise specified. We train using videos from the train split
with camera parameters provided by each dataset.

We evaluate our 3D keypoint discovery through keypoint regression based on similar
methods from 2D, using a linear regressor without a bias term [62, 29, 71]. For
this regression step, we extract our discovered 3D keypoints from a frozen network,
and learn a linear regressor to map our discovered keypoints to the provided 3D
keypoints in each of the training sets. We then perform evaluation on regressed
keypoints on the test set.

For metrics, we compute Mean Per Joint Position Error (MPJPE) in line with pre-
vious works in 3D pose estimation [26, 25], which is the L2 distance between the
regressed and ground truth 3D poses, accounting for the mean shift between the
regressed and ground truth points. To compare to methods that require addition
alignment before MPJPE computation (e.g., [65] which does not use camera param-
eters during inference), we also compute Procrustes aligned MPJPE (PMPJPE) [65,
34, 25]. PMPJPE applies the optimal rigid alignment to the predicted and ground
truth 3D poses before metric computation.

Results
We evaluate our discovered keypoints quantitatively using keypoint regression on
Human3.6M (Table 4.5) and Rat7M (Table 4.6). Over both datasets with diverse
organisms, our approach generally outperforms all other fully self-supervised 3D
keypoint discovery approaches. Additionally, among all the approaches we de-
veloped for 3D keypoint discovery, BKinD-3D using the volumetric bottleneck
performs the best overall. Results demonstrate that BKinD-3D is directly applicable
to discover 3D keypoints on novel model organisms, potentially very different in
appearance or size, without 2D or 3D supervision.

42

Method Supervision PMPJPE ↓ MPJPE ↓
Supervised 3D

Anipose [33] 2D only - 33
Rhodin et al. [48] 3D/2D 52 67
Isakov et al. [26] 3D/2D - 21

Supervised 2D + self-supervised 3D
CanonPose [66] 2D 53 74
EpipolarPose [34] 2D 67 77
Iqbal et al. [25] 2D 55 69
MetaPose [65] 2D 32 -

3D Discovery + Regression
Keypoint3D [7] × 168 368
Ours:

Triang+reproj × 134 241
Depth Map × 122 161
BKinD-3D × 105 125

Table 4.5: Comparing performance with related work on Human3.6M. We note that
previous approaches typically require additional 2D or 3D supervision, whereas our
model discovers 3D keypoints directly from multi-view video. The 3D keypoint
discovery models are evaluated using a linear regression protocol (Section 4.6).

Notably, on Human3.6M, Keypoint3D [7], developed for control of simulated
videos, does not work well in our setting with real videos, and qualitative results
demonstrate that this method was not able to discover keypoints that tracked the
agent (supplementary materials of [61]).

Qualitative results. We find that the discovered points and skeletons are reason-
able and look similar to the ground truth annotations for Human3.6M (Figure 4.9)
and Rat7M (Figure 4.10). Furthermore, we find that a volumetric model with 30
keypoints learns a more detailed human skeleton representation than a model with
15 keypoints. For example, the model with 30 keypoints is able to track both legs,
while the 15 keypoint model only tracks 1 leg; however, both models miss the knees.
Importantly, our model discovers the skeleton in global coordinates, and is able to
track the agent as they move around the space. More examples are in supplementary
materials of [61].

While there exists a gap in terms of quantitative metrics between supervised meth-
ods and self-supervised 3D keypoint discovery, supervised methods require users
to invest time and resources for annotations. In comparison, our method can be
deployed out-of-the-box on new datasets and experiments with multi-view cameras.

43

Projected 3D keypoints Ground truth Ours (15 kpts) Ours (30 kpts)

Figure 4.9: Qualitative results for 3D keypoint discovery on Human3.6M. Repre-
sentative samples of 3D keypoints discovered from BKinD-3D without regression
or alignment for 15 and 30 total discovered keypoints. We visualize all keypoints
that are connected using the learned edge weights, and the projected 3D keypoints
in the leftmost column are from the keypoint model with 30 discovered keypoints.

Projected 3D keypoints Ground truth Ours Projected 3D keypoints Ground truth Ours

Figure 4.10: Qualitative results for 3D keypoint discovery on Rat7M. Represen-
tative samples of 3D keypoints discovered from BKinD-3D without regression or
alignment. We visualize all connected keypoints using the learned edge weights and
visualize the first 4 cameras (out of 6 cameras) in Rat7M for projected 3D keypoints.

Method Supervision PMPJPE ↓ MPJPE ↓
Supervised 3D

DANNCE [15] 3D 11 -
3D Discovery + Regression

Ours:
Triang+reproj × 21 108
Depth Map × 27 56
BKinD-3D × 24 76

Table 4.6: Comparison with 3D keypoint discovery methods on Rat7M. Results
from the top three 3D keypoint discovery methods on Rat7M. The 3D keypoint
discovery models are evaluated using a linear regression protocol (Section 4.6).

44

Our approach has closed the gap substantially to supervised methods compared to
previous work, without requiring time-consuming 2D or 3D annotations. Qual-
itative results demonstrate that our approach is able to discover structure across
diverse model organisms, providing a method for accelerating the study of organism
movements in 3D.

Downstream Analysis. To further evaluate our keypoint discovery method, we
use BKinD-3D keypoints as input to a 1D convolutional neural network (previously
used in [58]) to predict action labels on Human3.6M. Notably, we found that our
keypoints performs similarly to ground truth 3D points for action recognition, where
Top 5 accuracy is 64.8% (GT), 61.0% (15 kpts), and 64.9% (30 kpts) (supplementary
material of [61]).

References

[1] David J. Anderson and Pietro Perona. “Toward a Science of Computational
Ethology.” In: Neuron 84.1 (2014), pp. 18–31.

[2] Yoshua Bengio et al. “Curriculum Learning.” In: International Conference
on Machine Learning (ICML). 2009.

[3] Kristin Branson et al. “High-Throughput Ethomics in Large Groups of
Drosophila.” In: Nature Methods 6.6 (2009), pp. 451–457.

[4] Xavier P. Burgos-Artizzu et al. “Social Behavior Recognition in Continu-
ous Video.” In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2012, pp. 1322–1329.

[5] Jennifer Cardona, Michael Howland, and John Dabiri. “Seeing the Wind:
Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent
Neural Network.” In: Advances in Neural Information Processing Systems.
Ed. by Hanna Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[6] Jennifer L. Cardona and John O. Dabiri. “Wind Speed Inference from
Environmental Flow-Structure Interactions, Part 2: Leveraging Unsteady
Kinematics.” In: arXiv preprint arXiv:2107.09784 (2021).

[7] Boyuan Chen, Pieter Abbeel, and Deepak Pathak. “Unsupervised Learning
of Visual 3D Keypoints for Control.” In: International Conference on
Machine Learning. PMLR. 2021, pp. 1539–1549.

[8] Ching-Hang Chen and Deva Ramanan. “3D Human Pose Estimation = 2D
Pose Estimation + Matching.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 7035–7043.

[9] Ching-Hang Chen et al. “Unsupervised 3D Pose Estimation with Geometric
Self-Supervision.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 5714–5724.

45

[10] Long Chen et al. “Cross-View Tracking for Multi-Human 3D Pose Estima-
tion at Over 100 FPS.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 3279–3288.

[11] Yilun Chen et al. “Cascaded Pyramid Network for Multi-Person Pose
Estimation.” In: Computing Research Repository abs/1711.07319 (2017).

[12] Bowen Cheng et al. “HigherHRNet: Scale-Aware Representation Learning
for Bottom-Up Human Pose Estimation.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June
2020.

[13] John H. Costello et al. “The Hydrodynamics of Jellyfish Swimming.” In:
Annual Review of Marine Science 13 (2021), pp. 375–396.

[14] Heiko Dankert et al. “Automated Monitoring and Analysis of Social Be-
havior in Drosophila.” In: Nature Methods 6.4 (2009), pp. 297–303.

[15] Timothy W. Dunn et al. “Geometric Deep Learning Enables 3D Kinematic
Profiling Across Species and Environments.” In: Nature Methods 18.5
(2021), pp. 564–573.

[16] S. E. Roian Egnor and Kristin Branson. “Computational Analysis of Be-
havior.” In: Annual Review of Neuroscience 39 (2016), pp. 217–236.

[17] Eyrun Eyjolfsdottir et al. “Detecting Social Actions of Fruit Flies.” In:
European Conference on Computer Vision. Springer. 2014, pp. 772–787.

[18] Eyrun Eyjolfsdottir et al. “Learning Recurrent Representations for Hier-
archical Behavior Modeling.” In: International Conference on Learning
Representations (2017).

[19] Adam Gosztolai et al. “LiftPose3D: A Deep Learning-Based Approach for
Transforming Two-Dimensional to Three-Dimensional Poses in Labora-
tory Animals.” In: Nature Methods 18.8 (2021), pp. 975–981.

[20] Jacob M. Graving et al. “DeepPoseKit, a Software Toolkit for Fast and
Robust Animal Pose Estimation Using Deep Learning.” In: eLife 8 (2019),
e47994.

[21] Semih Günel et al. “DeepFly3D: A Deep Learning-Based Approach for 3D
Limb and Appendage Tracking in Tethered, Adult Drosophila.” In: eLife
8 (Oct. 2019). Ed. by Timothy O’Leary, Ronald L Calabrese, and Josh W
Shaevitz, e48571. issn: 2050-084X. doi: 10.7554/eLife.48571.

[22] Xingzhe He, Bastian Wandt, and Helge Rhodin. “AutoLink: Self-Supervised
Learning of Human Skeletons and Object Outlines by Linking Keypoints.”
In: arXiv preprint arXiv:2205.10636 (2022).

https://doi.org/10.7554/eLife.48571

46

[23] Weizhe Hong et al. “Automated Measurement of Mouse Social Behav-
iors Using Depth Sensing, Video Tracking, and Machine Learning.” In:
Proceedings of the National Academy of Sciences 112.38 (2015), E5351–
E5360.

[24] Catalin Ionescu et al. “Human3.6M: Large Scale Datasets and Predic-
tive Methods for 3D Human Sensing in Natural Environments.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 36.7 (2013),
pp. 1325–1339.

[25] Umar Iqbal, Pavlo Molchanov, and Jan Kautz. “Weakly-Supervised 3D
Human Pose Learning via Multi-View Images in the Wild.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 5243–5252.

[26] Karim Iskakov et al. “Learnable Triangulation of Human Pose.” In: The
IEEE International Conference on Computer Vision (ICCV). 2019.

[27] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial Trans-
former Networks.” In: Advances in Neural Information Processing Systems
28 (2015).

[28] Tomas Jakab et al. “Self-Supervised Learning of Interpretable Keypoints
from Unlabelled Videos.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 8787–897.

[29] Tomas Jakab et al. “Unsupervised Learning of Object Landmarks Through
Conditional Image Generation.” In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). 2018.

[30] Hueihan Jhuang et al. “Automated Home-Cage Behavioural Phenotyping
of Mice.” In: Nature Communications 1.1 (2010), pp. 1–10.

[31] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual Losses for
Real-Time Style Transfer and Super-Resolution.” In: European Conference
on Computer Vision. 2016.

[32] Mayank Kabra et al. “JAABA: Interactive Machine Learning for Automatic
Annotation of Animal Behavior.” In: Nature Methods 10.1 (2013), p. 64.

[33] Pierre Karashchuk et al. “Anipose: A Toolkit for Robust Markerless 3D
Pose Estimation.” In: Cell Reports 36.13 (2021), p. 109730.

[34] Muhammed. Kocabas, Salih Karagoz, and Emre Akbas. “Self-Supervised
Learning of 3D Human Pose Using Multi-View Geometry.” In: The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[35] Jingyuan Liu et al. “Normalized Human Pose Features for Human Ac-
tion Video Alignment.” In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 11521–11531.

47

[36] Dominik Lorenz et al. “Unsupervised Part-Based Disentangling of Object
Shape and Appearance.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019.

[37] Jesse D. Marshall et al. “Leaving Flatland: Advances in 3D Behavioral
Measurement.” In: Current Opinion in Neurobiology 73 (2022), p. 102522.

[38] Julian Marstaller, Frederic Tausch, and Simon Stock. “DeepBees: Building
and Scaling Convolutional Neuronal Nets for Fast and Large-Scale Visual
Monitoring of Bee Hives.” In: Proceedings of the IEEE International
Conference on Computer Vision Workshops. 2019, pp. 0-0.

[39] Julieta Martinez et al. “A Simple Yet Effective Baseline for 3D Human
Pose Estimation.” In: International Conference on Computer Vision. 2017.

[40] Alexander Mathis et al. “DeepLabCut: Markerless Pose Estimation of User-
Defined Body Parts with Deep Learning.” In: Nature Neuroscience (2018).
url: https://www.nature.com/articles/s41593-018-0209-y.

[41] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. “V2V-PoseNet:
Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose
Estimation from a Single Depth Map.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, pp. 5079–
5088.

[42] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked Hourglass Net-
works for Human Pose Estimation.” In: Proceedings of the European Con-
ference on Computer Vision (ECCV). 2016.

[43] Simon R.O. Nilsson et al. “Simple Behavioral Analysis (SimBA)–an Open
Source Toolkit for Computer Classification of Complex Social Behaviors
in Experimental Animals.” In: BioRxiv (2020).

[44] Dario Pavllo et al. “3D Human Pose Estimation in Video with Temporal
Convolutions and Semi-Supervised Training.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 7753–
7762.

[45] Talmo D. Pereira, Joshua W. Shaevitz, and Mala Murthy. “Quantifying
Behavior to Understand the Brain.” In: Nature Neuroscience 23.12 (2020),
pp. 1537–1549.

[46] Talmo D. Pereira et al. “SLEAP: Multi-Animal Pose Tracking.” In: BioRxiv
(2020).

[47] Mir Imtiaz Hossain Rayat and James J. Little. “Exploiting Temporal Infor-
mation for 3D Human Pose Estimation.” In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 68–84.

[48] Helge Rhodin et al. “Learning Monocular 3D Human Pose Estimation
from Multi-View Images.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 8437–8446.

https://www.nature.com/articles/s41593-018-0209-y

48

[49] Serim Ryou, Seong-Gyun Jeong, and Pietro Perona. “Anchor Loss: Mod-
ulating Loss Scale Based on Prediction Difficulty.” In: The IEEE Interna-
tional Conference on Computer Vision (ICCV). Oct. 2019.

[50] Serim Ryou and Pietro Perona. “Weakly Supervised Keypoint Discovery.”
In: Computing Research Repository abs/2109.13423 (2021). url: https:
//arxiv.org/abs/2109.13423.

[51] Nikolaos Sarafianos et al. “3D Human Pose Estimation: A Review of the
Literature and Analysis of Covariates.” In: Computer Vision and Image
Understanding 152 (2016), pp. 1–20.

[52] Luca Schmidtke et al. “Unsupervised Human Pose Estimation Through
Transforming Shape Templates.” In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer
Vision Foundation / IEEE, 2021, pp. 2484–2494.

[53] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[54] Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully Convolutional
Networks for Semantic Segmentation.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 39.4 (2017), pp. 640–651.

[55] Brian M. de Silva et al. “Discovery of Physics from Data: Universal Laws
and Discrepancies.” In: Frontiers in Artificial Intelligence 3 (2020), p. 25.

[56] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition.” In: Computing Research Repos-
itory abs/1409.1556 (2014).

[57] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

[58] Jennifer J. Sun, Tomomi Karigo, Dipam Chakraborty, Sharada Mohanty,
Benjamin Wild, Quan Sun, Chen Chen, David Anderson, Pietro Per-
ona, et al. “The Multi-Agent Behavior Dataset: Mouse Dyadic Social
Interactions.” In: Conference on Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track (2021).

[59] Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, and Ting Liu. “View-Invariant Probabilistic Embedding for Hu-
man Pose.” In: European Conference on Computer Vision (ECCV) (2020),
pp. 53–70. url: https://arxiv.org/pdf/1912.01001.pdf.

https://arxiv.org/abs/2109.13423
https://arxiv.org/abs/2109.13423
https://arxiv.org/pdf/2011.13917.pdf
https://arxiv.org/pdf/1912.01001.pdf

49

[60] Xiao Sun et al. “Integral Human Pose Regression.” In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 529–545.

[61] Jennifer J. Sun*, Lili Karashchuk*, Amil Dravid*, Serim Ryou, Sonia Fer-
eidooni, John C Tuthill, Aggelos Katsaggelos, Bingni W Brunton, Georgia
Gkioxari, Ann Kennedy, et al. “BKinD-3D: Self-Supervised 3D Keypoint
Discovery from Multi-View Videos.” In: (2023), pp. 9001–9010. url:
https://arxiv.org/pdf/2212.07401.pdf.

[62] Jennifer J. Sun*, Serim Ryou*, Roni H. Goldshmid, Brandon Weissbourd,
John O. Dabiri, David J. Anderson, Ann Kennedy, Yisong Yue, and Pietro
Perona. “Self-Supervised Keypoint Discovery in Behavioral Videos.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022), pp. 2171–2180. url: https://arxiv.org/
pdf/2112.05121.pdf.

[63] Wei Tang, Pei Yu, and Ying Wu. “Deeply Learned Compositional Models
for Human Pose Estimation.” In: The European Conference on Computer
Vision (ECCV). Sept. 2018.

[64] James Thewlis, Hakan Bilen, and Andrea Vedaldi. “Unsupervised Learning
of Object Landmarks by Factorized Spatial Embeddings.” In: The IEEE
International Conference on Computer Vision (ICCV). Oct. 2017.

[65] Ben Usman et al. “MetaPose: Fast 3D Pose from Multiple Views without 3D
Supervision.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022, pp. 6759–6770.

[66] Bastian Wandt et al. “CanonPose: Self-Supervised Monocular 3D Human
Pose Estimation in the Wild.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, pp. 13294–13304.

[67] Jinbao Wang et al. “Deep 3D Human Pose Estimation: A Review.” In:
Computer Vision and Image Understanding 210 (2021), p. 103225.

[68] Jingdong Wang et al. “Deep High-Resolution Representation Learning
for Visual Recognition.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43 (2021), pp. 3349–3364.

[69] Zhou Wang et al. “Image Quality Assessment: From Error Visibility to
Structural Similarity.” In: IEEE Transactions on Image Processing 13.4
(2004), pp. 600–612.

[70] Shih-En Wei et al. “Convolutional Pose Machines.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

[71] Yuting Zhang et al. “Unsupervised Discovery of Object Landmarks as
Structural Representations.” In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. 2018. doi: 10.1109/CVPR.2018.00285.

https://arxiv.org/pdf/2212.07401.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://doi.org/10.1109/CVPR.2018.00285

50

C h a p t e r 5

POSE REPRESENTATIONS

3D 2D
View 1

2D
View 2

(a) View-Invariant Pose Embeddings
(VIPE).

3D 2D
View 1

2D
View 2

(b) Probabilistic View-Invariant Pose
Embeddings (Pr-VIPE).

Figure 5.1: We embed 2D poses such that our embeddings are (a) view-invariant
(2D projections of similar 3D poses are embedded close) and (b) probabilistic
(embeddings are distributions that cover different 3D poses projecting to the same
input 2D pose).

This chapter is mainly based on the following papers:

[1] Ting Liu*, Jennifer J. Sun*, Long Zhao, Jiaping Zhao, Liangzhe Yuan,
Yuxiao Wang, Liang-Chieh Chen, Florian Schroff, and Hartwig Adam.
“View-Invariant, Occlusion-Robust Probabilistic Embedding for Human
Pose.” In: International Journal of Computer Vision 130.1 (2022), pp. 111–
135. url: https://arxiv.org/pdf/2010.13321.pdf.

[2] Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, and Ting Liu. “View-Invariant Probabilistic Embedding for Hu-
man Pose.” In: European Conference on Computer Vision (ECCV) (2020),
pp. 53–70. url: https://arxiv.org/pdf/1912.01001.pdf.

Abstract. Depictions of similar human body configurations can vary with changing
viewpoints. Using only 2D information, we would like to enable vision algorithms
to recognize similarity in human body poses across multiple views. This ability is
useful for analyzing body movements and human behaviors in images and videos. In
this paper, we propose an approach for learning a compact view-invariant embedding
space from 2D joint keypoints alone, without explicitly predicting 3D poses. Since
2D poses are projected from 3D space, they have an inherent ambiguity, which is
difficult to represent through a deterministic mapping. Hence, we use probabilistic

https://arxiv.org/pdf/2010.13321.pdf
https://arxiv.org/pdf/1912.01001.pdf

51

embeddings to model this input uncertainty. Experimental results show that our
embedding model achieves higher accuracy when retrieving similar poses across
different camera views, in comparison with 2D-to-3D pose lifting models. We also
demonstrate the effectiveness of applying our embeddings to view-invariant action
recognition and video alignment. Our code is available at https://github.com/
google-research/google-research/tree/master/poem.

5.1 Introduction
When we represent three-dimensional (3D) human bodies in two dimensions (2D),
the same human pose can appear different across camera views. There can be
significant visual variations from a change in viewpoint due to changing relative
depth of body parts and self-occlusions. Despite these variations, humans have the
ability to recognize similar 3D human body poses in images and videos. This ability
is useful for computer vision tasks where changing viewpoints should not change
the labels of the task. We explore how we can embed 2D visual information of
human poses to be consistent across camera views. We show that these embeddings
are useful for tasks such as view-invariant pose retrieval, action recognition, and
video alignment.

Inspired by 2D-to-3D lifting models [33], we learn view invariant embeddings
directly from 2D pose keypoints. As illustrated in Fig. 5.1, we explore whether
view invariance of human bodies can be achieved from 2D poses alone, without
predicting 3D pose. Typically, embedding models are trained from images using
deep metric learning techniques [36, 14, 8]. However, images with similar human
poses can appear different because of changing viewpoints, subjects, backgrounds,
clothing, etc. As a result, it can be difficult to understand errors in the embedding
space from a specific factor of variation. Furthermore, multi-view image datasets
for human poses are difficult to capture in the wild with 3D groundtruth annotations.
In contrast, our method leverages existing 2D keypoint detectors: using 2D key-
points as inputs allows the embedding model to focus on learning view invariance.
Our 2D keypoint embeddings can be trained using datasets in lab environments,
while having the model generalize to in-the-wild data. Additionally, we can easily
augment training data by synthesizing multi-view 2D poses from 3D poses through
perspective projection.

Another aspect we address is input uncertainty. The input to our embedding model
is 2D human pose, which has an inherent ambiguity. Many valid 3D poses can

https://github.com/google-research/google-research/tree/master/poem
https://github.com/google-research/google-research/tree/master/poem

52

project to the same or very similar 2D pose [1]. This input uncertainty is difficult
to represent using deterministic mappings to the embedding space (point embed-
dings) [38, 24]. Our embedding space consists of probabilistic embeddings based
on multivariate Gaussians, as shown in Fig. 5.1b. We show that the learned vari-
ance from our method correlates with input 2D ambiguities. We call our approach
Pr-VIPE for Probabilistic View-Invariant Pose Embeddings. The non-probabilistic,
point embedding formulation will be referred to as VIPE.

We show that our embedding is applicable to subsequent vision tasks such as pose
retrieval [36, 21], video alignment [11], and action recognition [62, 18]. One direct
application is pose-based image retrieval. Our embedding enables users to search
images by fine-grained pose, such as jumping with hands up, riding bike with one
hand waving, and many other actions that are potentially difficult to pre-define. The
importance of this application is further highlighted by works such as [36, 21].
Compared with using 3D keypoints with alignment for retrieval, our embedding
enables efficient similarity comparisons in Euclidean space.

Contributions. Our main contribution is the method for learning an embedding
space where 2D pose embedding distances correspond to their similarities in absolute
3D pose space. We also develop a probabilistic formulation that captures 2D pose
ambiguity. We use cross-view pose retrieval to evaluate the view-invariant property:
given a monocular pose image, we retrieve the same pose from different views
without using camera parameters. Our results suggest 2D poses are sufficient to
achieve view invariance without image context, and we do not have to predict 3D
pose coordinates to achieve this. We also demonstrate the use of our embeddings
for action recognition and video alignment.

5.2 Related Work
Metric Learning
We are working to understand similarity in human poses across views. Most works
that aim to capture similarity between inputs generally apply techniques from metric
learning. Objectives such as contrastive loss (based on pair matching) [4, 12, 38]
and triplet loss (based on tuple ranking) [58, 51, 59, 13] are often used to push
together/pull apart similar/dissimilar examples in embedding space. The number
of possible training tuples increases exponentially with respect to the number of
samples in the tuple, and not all combinations are equally informative. To find
informative training tuples, various mining strategies are proposed [51, 60, 39, 13].

53

In particular, semi-hard triplet mining has been widely used [51, 60, 43]. This mining
method finds negative examples that are fairly hard as to be informative but not too
hard for the model. The hardness of a negative sample is based on its embedding
distance to the anchor. Commonly, this distance is the Euclidean distance [58, 59,
51, 13], but any differentiable distance function could be applied [13]. [16, 19]
show that alternative distance metrics also work for image and object retrieval.

In our work, we learn a mapping from Euclidean embedding distance to a proba-
bilistic similarity score. This probabilistic similarity captures closeness in 3D pose
space from 2D poses. Our work is inspired by the mapping used in soft contrastive
loss [38] for learning from an occluded N-digit MNIST dataset.

Most of the papers discussed above involve deterministically mapping inputs to
point embeddings. There are works that also map inputs to probabilistic em-
beddings. Probabilistic embeddings have been used to model specificity of word
embeddings [57], uncertainty in graph representations [3], and input uncertainty
due to occlusion [38]. We will apply probabilistic embeddings to address inherent
ambiguities in 2D pose due to 3D-to-2D projection.

Human Pose Estimation
3D human poses in a global coordinate frame are view-invariant, since images across
views are mapped to the same 3D pose. However, as mentioned by [33], it is difficult
to infer the 3D pose in an arbitrary global frame since any changes to the frame
does not change the input data. Many approaches work with poses in the camera
coordinate system [33, 6, 44, 47, 64, 54, 48, 55, 7], where the pose description
changes based on viewpoint. While our work focuses on images with a single
person, there are other works focusing on describing poses of multiple people [50].

Our approach is similar in setup to existing 3D lifting pose estimators [33, 6, 44, 47,
9] in terms of using 2D pose keypoints as input. The difference is that lifting models
are trained to regress to 3D pose keypoints, while our model is trained using metric
learning and outputs an embedding distribution. Some recent works also use multi-
view datasets to predict 3D poses in the global coordinate frame [45, 26, 20, 49, 56].
Our work differs from these methods with our goal (view-invariant embeddings),
task (cross-view pose retrieval), and approach (metric learning). Another work on
pose retrieval [36] embeds images with similar 2D poses in the same view close
together. Our method focuses on learning view invariance, and we also differ
from [36] in method (probabilistic embeddings).

54

Retrieval,
Action Recognition,
Video Alignment,
...

Training Pipeline

Inference Pipeline

Figure 5.2: Overview of Pr-VIPE model training and inference. Our model takes
keypoint input from a single 2D pose (detected from images and/or projected from
3D poses) and predicts embedding distributions. Three losses are applied during
training.

View Invariance and Object Retrieval
When we capture a 3D scene in 2D as images or videos, changing the viewpoint
often does not change other properties of the scene. The ability to recognize visual
similarities across viewpoints is helpful for a variety of vision tasks, such as motion
analysis [23, 22], tracking [40], vehicle and human re-identification [8, 63], object
classification and retrieval [27, 15, 14], and action recognition [46, 29, 61, 28].

Some of these works focus on metric learning for object retrieval. Their learned
embedding spaces place different views of the same object class close together. Our
work on human pose retrieval differs in a few ways. Our labels are continuous 3D
poses, whereas in object recognition tasks, each embedding is associated with a
discrete class label. Furthermore, we embed 2D poses, while these works embed
images. Our approach allows us to investigate the impact of input 2D uncertainty
with probabilistic embeddings and explore confidence measures to cross-view pose
retrieval. We hope that our work provides a novel perspective on view invariance
for human poses.

5.3 View-Invariant Probabilistic Embeddings
The training and inference framework of Pr-VIPE is illustrated in Fig. 5.2. Our
goal is to embed 2D poses such that distances in the embedding space correspond
to similarities of their corresponding absolute 3D poses in Euclidean space. We
achieve this view invariance property through our triplet ratio loss (Section 5.3),

55

which pushes together/pull apart 2D poses corresponding to similar/dissimilar 3D
poses. The positive pairwise loss (Section 5.3) is applied to increase the matching
probability of similar poses. Finally, the Gaussian prior loss (Section 5.3) helps
regularize embedding magnitude and variance.

Matching Definition
The 3D pose space is continuous, and two 3D poses can be trivially different without
being identical. We define two 3D poses to be matching if they are visually similar
regardless of viewpoint. Given two sets of 3D keypoints (y𝑖, y 𝑗), we define a
matching indicator function

𝑚𝑖 𝑗 =

1, if NP-MPJPE(y𝑖, y 𝑗) ⩽ 𝜅

0, otherwise,
(5.1)

where 𝜅 controls visual similarity between matching poses. Here, we use mean per
joint position error (MPJPE) [17] between the two sets of 3D pose keypoints as a
proxy to quantify their visual similarity. Before computing MPJPE, we normalize
the 3D poses and apply Procrustes alignment between them. The reason is that
we want our model to be view-invariant and to disregard rotation, translation, or
scale differences between 3D poses. We refer to this normalized, Procrustes aligned
MPJPE as NP-MPJPE.

Triplet Ratio Loss
The triplet ratio loss aims to embed 2D poses based on the matching indicator
function (5.1). Let 𝑛 be the dimension of the input 2D pose keypoints x, and 𝑑
be the dimension of the output embedding. We would like to learn a mapping
𝑓 : R𝑛 → R𝑑 , such that 𝐷 (z𝑖, z 𝑗) < 𝐷 (z𝑖, z 𝑗 ′),∀𝑚𝑖 𝑗 > 𝑚𝑖 𝑗 ′ , where z = 𝑓 (x), and
𝐷 (z𝑖, z 𝑗) is an embedding space distance measure.

For a pair of input 2D poses (x𝑖,x 𝑗), we define 𝑝(𝑚 |x𝑖,x 𝑗) to be the probability
that their corresponding 3D poses (y𝑖, y 𝑗) match, that is, they are visually similar.
While it is difficult to define this probability directly, we propose to assign its
values by estimating 𝑝(𝑚 |z𝑖, z 𝑗) via metric learning. We know that if two 3D
poses are identical, then 𝑝(𝑚 |x𝑖,x 𝑗) = 1, and if two 3D poses are sufficiently
different, 𝑝(𝑚 |x𝑖,x 𝑗) should be small. For any given input triplet (x𝑖,x𝑖+ ,x𝑖−)
with 𝑚𝑖,𝑖+ > 𝑚𝑖,𝑖− , we want

𝑝(𝑚 |z𝑖, z𝑖+)
𝑝(𝑚 |z𝑖, z𝑖−)

⩾ 𝛽, (5.2)

where 𝛽 > 1 represents the ratio of the matching probability of a similar 3D pose
pair to that of a dissimilar pair. Applying negative logarithm to both sides, we have

56

(− log 𝑝(𝑚 |z𝑖, z𝑖+)) − (− log 𝑝(𝑚 |z𝑖, z𝑖−)) ⩽ − log 𝛽. (5.3)

Notice that the model can be trained to satisfy this with the triplet loss frame-
work [51]. Given batch size 𝑁 , we define triplet ratio loss Lratio as

Lratio =

𝑁∑︁
𝑖=1

max(0, 𝐷𝑚 (z𝑖, z𝑖+) − 𝐷𝑚 (z𝑖, z𝑖−) + 𝛼)), (5.4)

with distance kernel 𝐷𝑚 (z𝑖, z 𝑗) = − log 𝑝(𝑚 |z𝑖, z 𝑗) and margin 𝛼 = log 𝛽. To form
a triplet (x𝑖,x𝑖+ ,x𝑖−), we set the anchor x𝑖 and positive x𝑖+ to be projected from the
same 3D pose and perform online semi-hard negative mining [51] to find x𝑖− .

It remains for us to compute matching probability using our embeddings. To
compute 𝑝(𝑚 |z𝑖, z 𝑗), we use the formulation proposed by [38]:

𝑝(𝑚 |z𝑖, z 𝑗) = 𝜎(−𝑎 | |z𝑖 − z 𝑗 | |2 + 𝑏), (5.5)

where 𝜎 is a sigmoid function, and the trainable scalar parameters 𝑎 > 0 and 𝑏 ∈ R
calibrate embedding distances to probabilistic similarity.

Positive Pairwise Loss
The positive pairs in our triplets have identical 3D poses. We would like them to
have high matching probabilities, which can be encouraged by adding the positive
pairwise loss

Lpositive =

𝑁∑︁
𝑖=1
− log 𝑝(𝑚 |z𝑖, z𝑖+). (5.6)

The combination of Lratio and Lpositive can be applied to training point embedding
models, which we refer to as VIPE in this paper.

Probabilistic Embeddings
In this section, we discuss the extension of VIPE to the probabilistic formulation
Pr-VIPE. The inputs to our model, 2D pose keypoints, are inherently ambiguous,
and there are many valid 3D poses projecting to similar 2D poses [1]. This input
uncertainty can be difficult to model using point embeddings [24, 38]. We investigate
representing this uncertainty using distributions in the embedding space by mapping
2D poses to probabilistic embeddings: x→ 𝑝(z |x). Similar to [38], we extend the
input matching probability (5.5) to using probabilistic embeddings as 𝑝(𝑚 |x𝑖,x 𝑗) =∫
𝑝(𝑚 |z𝑖, z 𝑗)𝑝(z𝑖 |x𝑖)𝑝(z 𝑗 |x 𝑗)dz𝑖dz 𝑗 , which can be approximated using Monte-

Carlo sampling with 𝐾 samples drawn from each distribution as

𝑝(𝑚 |x𝑖,x 𝑗) ≈
1
𝐾2

𝐾∑︁
𝑘1=1

𝐾∑︁
𝑘2=1

𝑝(𝑚 |z (𝑘1)
𝑖

, z (𝑘2)
𝑗
). (5.7)

We model 𝑝(z |x) as a 𝑑-dimensional Gaussian with a diagonal covariance matrix.

57

The model outputs mean 𝜇(x) ∈ R𝑑 and covariance Σ(x) ∈ R𝑑 with shared base
network and different output layers. We use the reparameterization trick [25] during
sampling.

In order to prevent variance from collapsing to zero and to regularize embedding
mean magnitudes, we place a unit Gaussian prior on our embeddings with KL
divergence by adding the Gaussian prior loss

Lprior =

𝑁∑︁
𝑖=1

𝐷KL(N (𝜇(x𝑖), Σ(x𝑖)) ∥ N (0, I)). (5.8)

Inference. At inference time, our model takes a single 2D pose (either from detection
or projection) and outputs the mean and the variance of the embedding Gaussian
distribution.

Camera Augmentation
Our triplets can be made of detected and/or projected 2D keypoints as shown in
Fig. 5.2. When we train only with detected 2D keypoints, we are constrained to
the camera views in training images. To reduce overfitting to these camera views,
we perform camera augmentation by generating triplets using detected keypoints
alongside projected 2D keypoints at random views.

To form triplets using multi-view image pairs, we use detected 2D keypoints from
different views as anchor-positive pairs. To use projected 2D keypoints, we perform
two random rotations to a normalized input 3D pose to generate two 2D poses from
different views for anchor/positive. Camera augmentation is then performed by
using a mixture of detected and projected 2D keypoints. We find that training using
camera augmentation can help our models learn to generalize better to unseen views
(Section 5.4).

Implementation Details
We normalize 3D poses similar to [7], and we perform instance normalization to 2D
poses. The backbone network architecture for our model is based on [33]. We use
𝑑 = 16 as a good trade-off between embedding size and accuracy. To weigh different
losses, we use 𝑤ratio = 1, 𝑤positive = 0.005, and 𝑤prior = 0.001. We choose 𝛽 = 2 for
the triplet ratio loss margin and 𝐾 = 20 for the number of samples. The matching
NP-MPJPE threshold is 𝜅 = 0.1 for all training and evaluation. Our approach does
not rely on a particular 2D keypoint detector, and we use PersonLab [41] for our
experiments. For random rotation in camera augmentation, we uniformly sample
azimuth angle between ±180◦, elevation between ±30◦, and roll between ±30◦. Our

58

implementation is in TensorFlow, and all the models are trained with CPUs. More
details and ablation studies on hyperparamters are provided in the supplementary
materials of [53].

5.4 Experiments
We demonstrate the performance of our model through pose retrieval across different
camera views (Section 5.4). We further show our embeddings can be directly applied
to downstream tasks, such as action recognition (Section 5.4) and video alignment
(Section 5.4), without any additional training.

Datasets
For all the experiments in this paper, we only train on a subset of the Human3.6M [17]
dataset. For pose retrieval experiments, we validate on the Human3.6M hold-out set
and test on another dataset (MPI-INF-3DHP [34]), which is unseen during training
and free from parameter tuning. We also present qualitative results on MPII Human
Pose [2], for which 3D groundtruth is not available. Additionally, we directly use
our embeddings for action recognition and sequence alignment on Penn Action [62].

Human3.6M (H3.6M) H3.6M is a large human pose dataset recorded from 4 chest
level cameras with 3D pose groundtruth. We follow the standard protocol [33]:
train on Subject 1, 5, 6, 7, and 8, and hold out Subject 9 and 11 for validation. For
evaluation, we remove near-duplicate 3D poses within 0.02 NP-MPJPE, resulting in
a total of 10910 evaluation frames per camera. This process is camera-consistent,
meaning if a frame is selected under one camera, it is selected under all cameras, so
that the perfect retrieval result is possible.

MPI-INF-3DHP (3DHP) 3DHP is a more recent human pose dataset that con-
tains 14 diverse camera views and scenarios, covering more pose variations than
H3.6M [34]. We use 11 cameras from this dataset and exclude the 3 cameras with
overhead views. Similar to H3.6M, we remove near-duplicate 3D poses, resulting
in 6824 frames per camera. We use all 8 subjects from the train split of 3DHP. This
dataset is only used for testing.

MPII Human Pose (2DHP) This dataset is commonly used in 2D pose estimation,
containing 25K images from YouTube videos. Since groundtruth 3D poses are not
available, we show qualitative results on this dataset.

Penn Action This dataset contains 2326 trimmed videos for 15 pose-based actions
from different views. We follow the standard protocol [37] for our action classifica-

59

tion and video alignment experiments.

View-Invariant Pose Retrieval
Given multi-view human pose datasets, we query using detected 2D keypoints from
one camera view and find the nearest neighbors in the embedding space from a
different camera view. We iterate through all camera pairs in the dataset as query
and index. Results averaged across all cameras pairs are reported.
Evaluation Procedure. We report Hit@𝑘 with 𝑘 = 1, 10, and 20 on pose retrievals,
which is the percentage of top-𝑘 retrieved poses that have at least one accurate
retrieval. A retrieval is considered accurate if the 3D groundtruth from the retrieved
pose satisfies the matching function (5.1) with 𝜅 = 0.1.

Baseline Approaches. We compare Pr-VIPE with 2D-to-3D lifting models [33]
and 𝐿2-VIPE. 𝐿2-VIPE outputs 𝐿2-normalized point embeddings, and is trained
with the squared 𝐿2 distance kernel, similar to [51].

For fair comparison, we use the same backbone network architecture for all the
models. Notably, this architecture [33] has been tuned for lifting tasks on H3.6M.
Since the estimated 3D poses in camera coordinates are not view-invariant, we apply
normalization and Procrustes alignment to align the estimated 3D poses between
index and query for retrieval. In comparison, our embeddings do not require any
alignment or other post-processing during retrieval.

For Pr-VIPE, we retrieve poses using nearest neighbors in the embedding space
with respect to the sampled matching probability (5.7), which we refer to as retrival
confidence. We present the results on the VIPE models with and without camera
augmentation. We applied similar camera augmentation to the lifting model, but
did not see improvement in performance. We also show the results of pose retrieval
using aligned 2D keypoints only. The poor performance of using input 2D keypoints
for retrieval from different views confirms the fact that models must learn view
invariance from inputs for this task.

Quantitative Results

From Table 5.1, we see that Pr-VIPE (with augmentation) outperforms all the base-
lines for H3.6M and 3DHP. The H3.6M results shown are on the hold-out set, and
3DHP is unseen during training, with more diverse poses and views. When we use
all the cameras from 3DHP, we evaluate the generalization ability of models to new
poses and new views. When we evaluate using only the 5 chest-level cameras from

60

Dataset H3.6M 3DHP (Chest) 3DHP (All)
𝑘 1 10 20 1 10 20 1 10 20

2D keypoints* 28.7 47.1 50.9 5.20 14.0 17.2 9.80 21.6 25.5
3D lifting* 69.0 89.7 92.7 24.9 54.4 62.4 24.6 53.2 61.3
𝐿2-VIPE 73.5 94.2 96.6 23.8 56.7 66.5 18.7 46.3 55.7

𝐿2-VIPE (w/ aug.) 70.4 91.8 94.5 24.9 55.4 63.6 23.7 53.0 61.4
Pr-VIPE 76.2 95.6 97.7 25.4 59.3 69.3 19.9 49.1 58.8

Pr-VIPE (w/ aug.) 73.7 93.9 96.3 28.3 62.3 71.4 26.4 58.6 67.9

Table 5.1: Comparison of cross-view pose retrieval results Hit@𝑘 (%) on H3.6M
and 3DHP with chest-level cameras and all cameras. ∗ indicates that normalization
and Procrustes alignment are performed on query-index pairs.

3DHP, where the views are more similar to the training set in H3.6M, we mainly
evaluate for generalization to new poses. When we evaluate using only the 5 chest-
level cameras from 3DHP, the views are more similar to H3.6M, and generalization
to new poses becomes more important. Our model is robust to the choice of 𝛽 and
the number of samples 𝐾 (analysis in supplementary materials of [53]).

Table 5.1 shows that Pr-VIPE without camera augmentation is able to perform better
than the baselines for H3.6M and 3DHP (chest-level cameras). This shows that Pr-
VIPE is able to generalize as well as other baseline methods to new poses. However,
for 3DHP (all cameras), the performance for Pr-VIPE without augmentation is worse
compared with chest-level cameras. This observation indicates that when trained
on chest-level cameras only, Pr-VIPE does not generalize as well to new views. The
same results can be observed for 𝐿2-VIPE between chest-level and all cameras. In
contrast, the 3D lifting models are able to generalize better to new views with the
help of additional Procrustes alignment, which requires expensive SVD computation
for every index-query pair.

We further apply camera augmentation to training the Pr-VIPE and the 𝐿2-VIPE
model. Note that this step does not require camera parameters or additional
groundtruth. The results in Table 5.1 on Pr-VIPE show that the augmentation im-
proves performance for 3DHP (all cameras) by 6% to 9%. This step also increases
chest-level camera accuracy slightly. For 𝐿2-VIPE, we can observe a similar in-
crease on all views. Camera augmentation reduces accuracy on H3.6M for both
models. This is likely because augmentation reduces overfitting to the training
camera views. By performing camera augmentation, Pr-VIPE is able to generalize
better to new poses and new views.

61

𝐶 = 0.960 𝐸 = 0.001 𝐶 = 0.993 𝐸 = 0.098 𝐶 = 0.983 𝐸 = 0.172

𝐶 = 0.651 𝐸 = 0.055 𝐶 = 0.774 𝐸 = 0.082 𝐶 = 0.426 𝐸 = 0.230

𝐶 = 0.629 𝐸 = 0.151 𝐶 = 0.969 𝐸 = 0.034 𝐶 = 0.808 𝐸 = 0.471

𝐶 = 0.963 𝐶 = 0.599 𝐶 = 0.914

𝐶 = 0.957 𝐶 = 0.987 𝐶 = 0.877

Figure 5.3: Visualization of pose retrieval results. The first row is from H3.6M; the
second and the third row are from 3DHP; the last two rows are using queries from
H3.6M to retrieve from 2DHP. On each row, we show the query pose on the left for
each image pair and the top-1 retrieval using the Pr-VIPE model (w/ aug.) on the
right. We display retrieval confidences (“𝐶”) and top-1 NP-MPJPEs (“𝐸”, if 3D
pose groundtruth is available).

Qualitative Results

Fig. 5.3 shows qualitative retrieval results using Pr-VIPE. As shown in the first row,
the retrieval confidence of the model is generally high for H3.6M. This indicates
that the retrieved poses are close to their queries in the embedding space. Errors in
2D keypoint detection can lead to retrieval errors as shown by the rightmost pair. In
the second and third rows, the retrieval confidence is lower for 3DHP. This is likely
because there are new poses and views unseen during training, which has the nearest
neighbor slightly further away in the embedding space. We see that the model can
generalize to new views as the images are taken at different camera elevations from
H3.6M. Interestingly, the rightmost pair on row 2 shows that the model can retrieve

62

poses with large differences in roll angle, which is not present in the training set.
The rightmost pair on row 3 shows an example of a large NP-MPJPE error due to
mis-detection of the left leg in the index pose.

We show qualitative results using queries from the H3.6M hold-out set to retrieve
from 2DHP in the last two rows of Fig. 5.3. The results on these in-the-wild images
indicate that as long as the 2D keypoint detector works reliably, our model is able
to retrieve poses across views and subjects. More qualitative results are provided in
the supplementary materials of [53].

Downstream Tasks
We show that our pose embedding can be directly applied to pose-based downstream
tasks using simple algorithms. We compare the performance of Pr-VIPE (only
trained on H3.6M, with no additional training) on the Penn Action dataset against
other approaches specifically trained for each task on the target dataset. In all the
following experiments in this section, we compute our Pr-VIPE embeddings on
single video frames and use the negative logarithm of the matching probability (5.7)
as the distance between two frames. Then we apply temporal averaging within an
atrous kernel of size 7 and rate 3 around the two center frames and use this averaged
distance as the frame matching distance. Given the matching distance, we use
standard dynamic time warping (DTW) algorithm to align two action sequences by
minimizing the sum of frame matching distances. We further use the averaged frame
matching distance from the alignment as the distance between two video sequences.

Action Recognition

We evaluate our embeddings for action recognition using nearest neighbor search
with the sequence distance described above. Provided person bounding boxes in
each frame, we estimate 2D pose keypoints using [42]. On Penn Action, we use the
standard train/test split [37]. Using all the testing videos as queries, we conduct two
experiments: (1) we use all training videos as index to evaluate overall performance
and compare with state-of-the-art methods, and (2) we use training videos only
under one view as index and evaluate the effectiveness of our embeddings in terms
of view-invariance. For this second experiment, actions with zero or only one
sample under the index view are ignored, and accuracy is averaged over different
views.

From Table 5.2 we can see that without any training on the target domain or using
image context information, our embeddings can achieve highly competitive results

63

Methods Input Accuracy (%)RGB Flow Pose

Nie et al. [37] ✓ ✓ 85.5
Iqbal et al. [18] ✓ 79.0
Cao et al. [5] ✓ ✓ 95.3

✓ ✓ 98.1
Du et al. [10] ✓ ✓ ✓ 97.4
Liu et al. [30] ✓ ✓ 91.4

Luvizon et al. [32] ✓ ✓ 98.7
Ours ✓ 97.5

Ours (1-view index) ✓ 92.1

Table 5.2: Comparison of action recognition results on Penn Action.

Methods Kendall’s Tau

SaL [35] 0.6336
TCN [52] 0.7353
TCC [11] 0.7328
TCC + SaL [11] 0.7286
TCC + TCN [11] 0.7672
Ours 0.7476
Ours (same-view only) 0.7521
Ours (different-view only) 0.7607

Table 5.3: Comparison of video alignment results on Penn Action.

on pose-based action classification, outperforming the existing best baseline that
only uses pose input and even some other methods that rely on image context or
optical flow. As shown in the last row in Table 5.2, our embeddings can be used
to classify actions from different views using index samples from only one single
view with relatively high accuracy, which further demonstrates the advantages of
our view-invariant embeddings.

Video Alignment

Our embeddings can be used to align human action videos from different views
using DTW algorithm as described earlier in Section 5.4. We measure the alignment
quality of our embeddings quantitatively using Kendall’s Tau [11], which reflects
how well an embedding model can be applied to align unseen sequences if we use
nearest neighbor in the embedding space to match frames for video pairs. A value
of 1 corresponds to perfect alignment. We also test the view-invariant properties of
our embeddings by evaluating Kendall’s Tau on aligning videos pairs from the same
view, and aligning pairs with different views.

In Table 5.3, we compare our results with other video embedding baselines that
are trained for the alignment task on Penn Action, from which we observe that

64

Figure 5.4: Video alignment results using Pr-VIPE. The orange dots correspond to
the visualized frames, and the blue line segments illustrate the frame alignment.

Pr-VIPE performs better than all the method that use a single type of loss. While Pr-
VIPE is slightly worse than the combined TCC+TCN loss, our embeddings are able
to achieve this without being explicitly trained for this task or taking advantage of
image context. In the last two rows of Table 5.3, we show the results from evaluating
video pairs only from the same or different views. We can see that our embedding
achieves consistently high performance regardless of whether the aligned video pair
is from the same or different views, which demonstrate its view-invariant property.
In Fig. 5.4, we show action video synchronization results from different views using
Pr-VIPE. We provide more synchronized videos for all actions in the supplementary
materials of [53].

5.5 Extensions to Temporal Embeddings
For understanding actions, sequences of human poses are usually required as they
provide important temporal information. In this section, we further extend the
Pr-VIPE framework to temporal domain, namely Temporal Pr-VIPE, to explicitly
handle sequential inputs. Instead of embedding a single 2D pose, we embed a 2D
pose sequence with the view-invariance and probabilistic properties of Pr-VIPE.

The input to our Temporal Pr-VIPE is a sequence of 2D poses from 𝑇 temporally-
ordered frames. Atrous sampling is used with a rate based on the video frame
rate. We then apply the full Pr-VIPE objective to train an embedding model for
2D pose sequences. To compare whether a pair of pose sequences are similar, we
compute the NP-MPJPEs of the 3D poses between each of their corresponding frame
pairs and threshold on the maximum pairwise NP-MPJPE. We also apply camera
augmentation, similar to the Pr-VIPE training, by applying a random camera view
to a subset of sequences within each batch during training.

65

Residual
FC Block 1

P
ose 1

Residual
FC Block 2

Residual
FC Block 1

P
ose 2

Residual
FC Block 2

Residual
FC Block 1

P
ose T

Residual
FC Block 2

Residual
FC Block 3

Linear 1
Linear 2

E
m

bedding
m

ean
E

m
bedding

variance

...

||

Figure 5.5: Temporal Pr-VIPE model architecture. The green circle represents
vector concatenation.

Dataset Dim. H3.6M 3DHP (Chest) 3DHP (All)
𝑘 1 5 10 20 1 5 10 20 1 5 10 20

Pr-VIPE (stacking 8D) 56 70.3 85.4 89.8 93.1 41.9 60.6 67.8 74.7 38.9 56.9 64.3 71.3
Pr-VIPE (stacking 16D) 112 78.7 91.1 94.3 96.6 48.9 67.4 74.3 80.5 45.0 63.2 70.2 76.8
Pr-VIPE (stacking 32D) 224 80.8 92.8 95.8 97.7 50.4 69.3 76.2 82.4 47.0 65.4 72.4 78.9
Temporal Pr-VIPE (16D) 16 72.2 87.9 91.9 94.9 39.5 60.8 68.7 75.7 36.8 57.8 65.9 73.2
Temporal Pr-VIPE (32D) 32 80.0 92.1 95.0 97.1 49.2 69.1 75.7 81.3 46.7 66.4 73.3 79.3
Temporal Pr-VIPE (56D) 56 80.4 92.3 95.1 97.1 50.4 70.1 76.4 82.0 47.7 67.2 73.9 79.8

Table 5.4: Comparison of cross-view pose sequence retrieval results Hit@𝑘 (%)
on H3.6M and 3DHP. All the models in the table use camera augmentation. The
“Dim.” column refers to the total dimensionality of the embeddings.

We adopt a mid-fusion style network model architecture. Each 2D pose from the
input sequence is fed into a network with two residual FC blocks [33], and the output
features are concatenated and fed to a third residual FC block followed by linear
heads for final predictions, as shown in Fig. 5.5. More details on the implementation
can be found in [31].

Temporal Experiments
We evaluate our Temporal Pr-VIPE models for cross-view pose sequence retrieval.
Similar to cross-view pose retrieval, this task targets evaluating temporal embedding
quality in terms of retrieving pose sequences to match a query sequence from a
different camera view.

Evaluation Procedure. Given two pose sequences of the same length, we first
compute the NP-MPJPE between each corresponding pose pair from both sequences.
Then the maximum of these pairwise NP-MPJPEs is defined as the NP-MPJPE
between the two sequences. We choose maximum here to reflect our requirement
for the two sequences to be strictly close at all timestamps.

For each query sequence, we retrieve its 𝑘 nearest neighbor sequences from an index
set based on their embedding distances. Then the sequence NP-MPJPE between

66

each query and retrieval pair is thresholded to determine whether each retrieval is
a correct match. Similar to the single-frame pose retrieval task, we evaluate on the
H3.6M and the 3DHP dataset. We iterate through all camera pairs in each dataset
as query and index, and report averaged results across all such camera pairs.

We compare our Temporal Pr-VIPE result with baseline methods that stack single-
frame embeddings within the same frame window into higher dimensional embed-
dings for retrieval distance computation. As we shall show in Section 5.5, simple
stacking is an effective way of combining frame-level embeddings for sequence
retrieval. However, it comes with a major drawback of high embedding dimen-
sions, which can be prohibitive for large-scale applications. In this experiment,
we demonstrate that with Temporal Pr-VIPE, we are able to achieve competitive
retrieval performance with a much smaller embedding dimension.

Quantitative Results. From Table 5.4, we see that using Temporal Pr-VIPE, we
are able to achieve competitive results with a much lower embedding dimension.
Specifically, our 32D temporal Pr-VIPE outperforms stacking 7 8D single-frame
embeddings (total 56D) by a large margin. It also achieves slightly better perfor-
mance compared to stacking 7 16D embeddings (total 112D), with fewer than one
third of the embedding dimensions. We observe a similar trend across both H3.6M
and 3DHP (unseen test set with new poses and new views), suggesting that both
models have similar generalization abilities to new poses and new views. When
we vary the number of dimensions for temporal Pr-VIPE, we note that at least 32D
embeddings is needed to achieve comparable performance to stacking 16D Pr-VIPE
(total 112D), and at least 56D embeddings is needed to achieve comparable perfor-
mance to stacking 32D Pr-VIPE (total 224D). Additionally, we note that when the
output dimensions are comparable, at total 56D, Temporal Pr-VIPE performs much
better than stacking 7 8D Pr-VIPE.

Pr-VIPE has a simple architecture and can be potentially applied to other domains,
such as hand pose or other generic object pose recognition. With this work, we hope
to encourage further explorations into approaching pose related problems from an
embedding perspective, especially where recognizing 3D similarity is central to the
problem.

67

References

[1] Ijaz Akhter and Michael J. Black. “Pose-Conditioned Joint Angle Limits
for 3D Human Pose Reconstruction.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2015.

[2] Mykhaylo Andriluka et al. “2D Human Pose Estimation: New Benchmark
and State of the Art Analysis.” In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2014.

[3] Aleksandar Bojchevski and Stephan Günnemann. “Deep Gaussian Em-
bedding of Graphs: Unsupervised Inductive Learning via Ranking.” In:
International Conference on Learning Representations. 2018.

[4] Jane Bromley et al. “Signature Verification Using a “Siamese” Time Delay
Neural Network.” In: Advances in Neural Information Processing Systems.
1994.

[5] Congqi Cao et al. “Body Joint Guided 3-D Deep Convolutional Descrip-
tors for Action Recognition.” In: IEEE Transactions on Cybernetics 48.3
(2017), pp. 1095–1108.

[6] Ching-Hang Chen and Deva Ramanan. “3D Human Pose Estimation = 2D
Pose Estimation + Matching.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 7035–7043.

[7] Ching-Hang Chen et al. “Unsupervised 3D Pose Estimation with Geometric
Self-Supervision.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 5714–5724.

[8] Ruihang Chu et al. “Vehicle Re-Identification with Viewpoint-Aware Met-
ric Learning.” In: International Conference on Computer Vision. 2019.

[9] Dylan Drover et al. “Can 3D Pose Be Learned from 2D Projections Alone?”
In: European Conference on Computer Vision. 2018.

[10] Wenbin Du, Yali Wang, and Yu Qiao. “RPAN: An End-to-End Recurrent
Pose-Attention Network for Action Recognition in Videos.” In: Interna-
tional Conference on Computer Vision (ICCV). 2017.

[11] Debidatta Dwibedi et al. “Temporal Cycle-Consistency Learning.” In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019.

[12] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality Reduction
by Learning an Invariant Mapping.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2006.

[13] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In Defense of the
Triplet Loss for Person Re-Identification.” In: arXiv:1703.07737 (2017).

68

[14] Chih-Hui Ho et al. “PIEs: Pose Invariant Embeddings.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 12377–12386.

[15] Wenze Hu and Song-Chun Zhu. “Learning a Probabilistic Model Mixing
3D and 2D Primitives for View Invariant Object Recognition.” In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2010.

[16] Chen Huang, Chen Change Loy, and Xiaoou Tang. “Local Similarity-
Aware Deep Feature Embedding.” In: Advances in Neural Information
Processing Systems. 2016.

[17] Catalin Ionescu et al. “Human3.6M: Large Scale Datasets and Predic-
tive Methods for 3D Human Sensing in Natural Environments.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 36.7 (2013),
pp. 1325–1339.

[18] Umar Iqbal, Martin Garbade, and Juergen Gall. “Pose for Action–Action
for Pose.” In: The IEEE Conference on Automatic Face and Gesture Recog-
nition (FG). 2017.

[19] Ahmet Iscen et al. “Mining on Manifolds: Metric Learning Without La-
bels.” In: The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2018.

[20] Karim Iskakov et al. “Learnable Triangulation of Human Pose.” In: The
IEEE International Conference on Computer Vision (ICCV). 2019.

[21] Nataraj Jammalamadaka et al. “Video Retrieval by Mimicking Poses.” In:
ACM International Conference on Multimedia Retrieval (ICMR). 2012.

[22] Xiaofei Ji and Honghai Liu. “Advances in View-Invariant Human Mo-
tion Analysis: A Review.” In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 40.1 (2009), pp. 13–24.

[23] Xiaofei Ji et al. “Visual-Based View-Invariant Human Motion Analysis: A
Review.” In: International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems. Springer. 2008, pp. 741–748.

[24] Alex. Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” In: Advances in Neural Information
Processing Systems. 2017.

[25] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.”
In: International Conference on Learning Representations. 2014.

[26] Muhammed. Kocabas, Salih Karagoz, and Emre Akbas. “Self-Supervised
Learning of 3D Human Pose Using Multi-View Geometry.” In: The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

69

[27] Yann. LeCun, Fu Jie Huang, Leon Bottou, et al. “Learning Methods for
Generic Object Recognition with Invariance to Pose and Lighting.” In:
The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2004.

[28] Junnan. Li et al. “Unsupervised Learning of View-Invariant Action Repre-
sentations.” In: Advances in Neural Information Processing Systems. 2018.

[29] Jian Liu, Naveed Akhtar, and Mian Ajmal. “Viewpoint Invariant Action
Recognition Using RGB-D Videos.” In: IEEE Access 6 (2018), pp. 70061–
70071.

[30] Mengyuan Liu and Junsong Yuan. “Recognizing Human Actions as the
Evolution of Pose Estimation Maps.” In: The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2018.

[31] Ting Liu*, Jennifer J. Sun*, Long Zhao, Jiaping Zhao, Liangzhe Yuan,
Yuxiao Wang, Liang-Chieh Chen, Florian Schroff, and Hartwig Adam.
“View-Invariant, Occlusion-Robust Probabilistic Embedding for Human
Pose.” In: International Journal of Computer Vision 130.1 (2022), pp. 111–
135. url: https://arxiv.org/pdf/2010.13321.pdf.

[32] Diogo C. Luvizon, Hedi Tabia, and David Picard. “Multi-Task Deep Learn-
ing for Real-Time 3D Human Pose Estimation and Action Recognition.”
In: arXiv:1912.08077 (2019).

[33] Julieta Martinez et al. “A Simple Yet Effective Baseline for 3D Human
Pose Estimation.” In: International Conference on Computer Vision. 2017.

[34] Dushyant Mehta et al. “Monocular 3D Human Pose Estimation in the Wild
Using Improved CNN Supervision.” In: International Conference on 3D
Vision. 2017.

[35] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. “Shuffle and Learn:
Unsupervised Learning Using Temporal Order Verification.” In: European
Conference on Computer Vision. 2016.

[36] Greg Mori et al. “Pose Embeddings: A Deep Architecture for Learning to
Match Human Poses.” In: arXiv:1507.00302 (2015).

[37] Bruce Xiaohan Nie, Caiming Xiong, and Song-Chun Zhu. “Joint Action
Recognition and Pose Estimation from Video.” In: The IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2015.

[38] Seong Joon Oh et al. “Modeling Uncertainty with Hedged Instance Embed-
ding.” In: International Conference on Learning Representations (2019).

[39] Song Hyun Oh et al. “Deep Metric Learning via Lifted Structured Fea-
ture Embedding.” In: The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2016.

https://arxiv.org/pdf/2010.13321.pdf

70

[40] Eng-Jon Ong et al. “Viewpoint Invariant Exemplar-Based 3D Human
Tracking.” In: Computer Vision and Image Understanding 104.2-3 (2006),
pp. 178–189.

[41] George Papandreou et al. “PersonLab: Person Pose Estimation and In-
stance Segmentation with a Bottom-Up, Part-Based, Geometric Embed-
ding Model.” In: European Conference on Computer Vision. 2018.

[42] George Papandreou et al. “Towards Accurate Multi-Person Pose Estimation
in the Wild.” In: The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2017.

[43] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. “Deep Face
Recognition.” In: BMVC. 2015.

[44] Dario Pavllo et al. “3D Human Pose Estimation in Video with Temporal
Convolutions and Semi-Supervised Training.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 7753–
7762.

[45] Haibo Qiu et al. “Cross View Fusion for 3D Human Pose Estimation.” In:
International Conference on Computer Vision. 2019.

[46] Cen Rao and Mubarak Shah. “View-Invariance in Action Recognition.” In:
Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001. Vol. 2. IEEE. 2001, pp. II–II.

[47] Mir Imtiaz Hossain Rayat and James J. Little. “Exploiting Temporal Infor-
mation for 3D Human Pose Estimation.” In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 68–84.

[48] Helge Rhodin, Mathieu Salzmann, and Pascal Fua. “Unsupervised Geometry-
Aware Representation for 3D Human Pose Estimation.” In: Proceedings
of the European Conference on Computer Vision (ECCV). 2018, pp. 750–
767.

[49] Helge Rhodin et al. “Learning Monocular 3D Human Pose Estimation
from Multi-View Images.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 8437–8446.

[50] Helge Rhodin et al. “Neural Scene Decomposition for Multi-Person Motion
Capture.” In: The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019.

[51] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A
Unified Embedding for Face Recognition and Clustering.” In: The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2015.

[52] Pierre Sermanet et al. “Time-Contrastive Networks: Self-Supervised Learn-
ing from Video.” In: IEEE International Conference on Robotics and Au-
tomation. 2018.

71

[53] Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, and Ting Liu. “View-Invariant Probabilistic Embedding for Hu-
man Pose.” In: European Conference on Computer Vision (ECCV) (2020),
pp. 53–70. url: https://arxiv.org/pdf/1912.01001.pdf.

[54] Xiao Sun et al. “Integral Human Pose Regression.” In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 529–545.

[55] Bugra Tekin et al. “Learning to Fuse 2D and 3D Image Cues for Monoc-
ular Body Pose Estimation.” In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 3941–3950.

[56] Denis Tome et al. “Rethinking Pose in 3D: Multi-Stage Refinement and Re-
covery for Markerless Motion Capture.” In: 2018 International Conference
on 3D Vision (3DV). IEEE. 2018, pp. 474–483.

[57] Luke Vilnis and Andrew McCallum. “Word Representations via Gaussian
Embedding.” In: International Conference on Learning Representations.
2015.

[58] Jiang Wang et al. “Learning Fine-Grained Image Similarity with Deep
Ranking.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2014.

[59] Paul Wohlhart and Vincent Lepetit. “Learning Descriptors for Object
Recognition and 3D Pose Estimation.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2015.

[60] Chao-Yuan Wu et al. “Sampling Matters in Deep Embedding Learning.”
In: International Conference on Computer Vision (ICCV). 2017.

[61] Lu Xia, Chia-Chih Chen, and Jake K. Aggarwal. “View Invariant Human
Action Recognition using Histograms of 3D Joints.” In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Work-
shops. 2012.

[62] Weiyu Zhang, Menglong Zhu, and Konstantinos G. Derpanis. “From
Actemes to Action: A Strongly-Supervised Representation for Detailed
Action Understanding.” In: International Conference on Computer Vision
(ICCV). 2013.

[63] Liang Zheng et al. “Pose-Invariant Embedding for Deep Person Re-Identification.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2019).

[64] Xingyi Zhou et al. “Towards 3D Human Pose Estimation in the Wild: A
Weakly-Supervised Approach.” In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 398–407.

https://arxiv.org/pdf/1912.01001.pdf

72

C h a p t e r 6

BENCHMARKING REPRESENTATION LEARNING

Animal Interaction Datasets (Ours)

Mouse Triplet
(Video)
8 tasks

Fruit Fly Group
(Trajectory)

50 tasks

Chase

Strain Light Cycle

Huddle

…

…

Experimental
context tasks

Frame-by-frame
Expert-annotated
behaviors

Beetle Interactions
(Video)

14 tasks

Broad Task Types from Scientific Experiments

Previous Video Datasets
Human Action Recognition Animal Action Recognition

Shaking Hands (Kuehne et al. 2011) Eating (Ng. et al., 2022)

Figure 6.1: MABe22 consists of animal interactions in laboratory experiments.
We propose a dataset to benchmark representation learning methods that focus on
multi-agent behavior. Our benchmark includes a large video and trajectory library
depicting interactions of mice, beetles, ants, and fruit flies alongside a large suite
of downstream tasks to measure representation quality. Tasks differ across model
organisms and include the classification of experimental conditions (e.g., species
strain, light cycle, optogenetic activations, interaction duration) as well as expert-
annotated actions (e.g., chase, huddle, and sniffs for mice).

This chapter is mainly based on the following paper:

[1] Jennifer J. Sun, Markus Marks, Andrew Ulmer, Dipam Chakraborty, Brian
Geuther, Edward Hayes, Heng Jia, Vivek Kumar, Zachary Partridge, Alice
Robie, Catherine E. Schretter, et al. “MABe22: A Multi-Species Multi-Task
Benchmark for Learned Representations of Behavior.” In: International
Conference on Machine Learning (2023). url: https://arxiv.org/
pdf/2207.10553.pdf.

https://arxiv.org/pdf/2207.10553.pdf
https://arxiv.org/pdf/2207.10553.pdf

73

Abstract. We introduce MABe22, a large-scale, multi-agent video and trajectory
benchmark to assess the quality of learned behavior representations. This dataset is
collected from a variety of biology experiments, and includes triplets of interacting
mice (4.7 million frames video+pose tracking data, 10 million frames pose only),
symbiotic beetle-ant interactions (10 million frames video data), and groups of
interacting flies (4.4 million frames of pose tracking data). Accompanying these
data, we introduce a panel of real-life downstream analysis tasks to assess the
quality of learned representations by evaluating how well they preserve information
about the experimental conditions (e.g., strain, time of day, optogenetic stimulation)
and animal behavior. We test multiple state-of-the-art self-supervised video and
trajectory representation learning methods to demonstrate the use of our benchmark,
revealing that methods developed using human action datasets do not fully translate
to animal datasets. We hope that our benchmark and dataset encourage a broader
exploration of behavior representation learning methods across species and settings.

6.1 Introduction
The study of interacting agents is important for a range of scientific and engineer-
ing applications, from designing safer autonomous vehicles [10], to understanding
player behavior in virtual worlds [27], to uncovering the biological underpinnings
of neurological disorders [54, 68]. Across disciplines, there is a need for new tech-
niques to characterize the structure of multi-agent behavior with greater precision,
sensitivity, and detail. Traditionally, behavior analysis models are trained with full
supervision [7, 28, 5], which subjects users to a heavy burden of video annotation.
Efforts to learn behavioral representations without manual annotation [3, 67, 29,
58] promise to bypass this labor bottleneck, but are difficult to evaluate systemat-
ically. To support the development of learned behavioral representations, and to
better evaluate their performance, we need benchmark datasets for behavior. These
benchmarks should cover a broad range of experimental conditions, to avoid over-
fitting on the statistics of a particular dataset. Furthermore, when representations
are learned without supervision, there is no obvious metric to evaluate the quality
of the representation. Yet, a metric is needed for quantitative comparisons. These
two challenges inspired our work.

We have collected and curated a large dataset and benchmark from biology exper-
iments for evaluating learned representations of social behavior (Figure 6.1). We
chose to focus on videos of laboratory animals for several reasons:

74

• Animal behavioral experiments are collected against a uniform uninformative
background, such as [54, 15, 49], and thus behavior classifiers are forced to focus
on the dynamic and pictorial cues of the action. In contrast, video of human
behavior, e.g., actions in different sports, are usually pictorially informative,
meaning that the action itself can be classified from the appearance of a single or
a few frames rather than considering motion over long periods of time.

• Animal behavior is often recorded under various experimental manipulations that
impact the behavior (Figure 6.1). Identifying those experimental manipulations
provides an objective task that may be used to evaluate the quality of a represen-
tation. This complements evaluation based on reproducing human annotations of
behavior, which have shorter temporal structure but can be subjective [2].

• The biologists who provided us with videos of their experiments are engaged in
analyzing specific aspects of the animals’ behavior. Using a given representation
to automate their analysis provides us with an objective performance criterion that
is defined outside the field of Computer Vision. Evaluation methods based on
downstream tasks, i.e., tasks where the representation is used to analyze specific
aspects of the signal, have been used in other domains, e.g., for evaluating visual
representations [63] or neural mechanistic models [53].

• Our dataset is from real-world neuroscience and evolutionary biology experiments,
and progress on this dataset will enable biologists to use the representations
generated to study how behavior changes as a function of other experimental
variables.

We make three contributions: 1. A large and richly annotated video and trajectory
dataset, Multi-Agent Behavior 2022 (MABe22), of social behavior in three species:
laboratory mice (Mus musculus) triplets, rove beetles (Sceptobius lativentris) paired
with their symbiotic host species or with other beetles, and vinegar flies (Drosophila
melanogaster). 2. A large and diverse set of downstream evaluation tasks based on
the classification of experimental conditions (optogenetic activation, animal strain,
time-of-day) and expert-annotated behavior labels. 3. A baseline benchmark of
state-of-the-art self-supervised video and trajectory representation learning, as well
as community-contributed methods solicited from an open challenge. To the best of
our knowledge, our dataset is the first to provide non-annotation-based downstream
tasks from scientific experiments for representation evaluation (Table 6.1).

https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022

75

Dataset Number of Annotation Action Downstream Sizespecies frequency classes tasks

Kinetics400 [33] 1 (human) clip 400 x 306k clips
HMDB [39] 1 (human) clip 51 x 6776 clips
UCF [56] 1 (human) clip 101 x 13320 clips
Animal Kingdom [47] 850 frame 140 x 4.5M frames

CalMS21 [59] 1 frame 7 x 1M frames
+6M unlabelled

Fly vs. Fly [15] 1 frame 10 x 1.5M frames
CRIM13 [7] 1 frame 13 x 8M frames

Our Dataset 4 frame 16 56 15M frames video +
from experiments 14M frames traj

Table 6.1: Comparison with commonly used, public video and trajectory datasets.
While existing datasets can be used for behavioral representation learning, the
downstream evaluation focuses on a single type of task (detection and classification
of human-annotated actions) or a single species. Our benchmark introduces a rich
set of downstream analysis tasks that we obtain from scientific experiments on
multiple species.

6.2 Related Work
Related Animal Datasets. The goal of the MABe22 dataset is to benchmark repre-
sentation learning models for behavior analysis using data from biology experiments.
There are several existing datasets for studying animal social behavior, including
CRIM13 [7], Fly vs. Fly [15], and CalMS21 [59]. These datasets contain video
or pose data from interacting animals, as well as human-annotated behavior labels
(Table 6.1); they all focus on a single species and setting. AnimalKingdom [47] is
another recent animal behavior dataset that includes social and nonsocial behavior
from multiple species, but is focused on human annotation-based action recognition
only. Our dataset is unique in that it defines a range of downstream tasks for each
organism; these tasks are motivated by scientific experiments, with the goal of to
driving scientific discovery in biology.

Related Human Datasets. While animal video datasets remain comparatively rate,
there are many video datasets designed for work in human action recognition. Hu-
man datasets typically have very different visual characteristics from animal datasets.
Most notably, many human datasets that are used to benchmark self-supervised video
representation learning, such as Kinetics [33], UCF101 [56] and HMDB51 [39],
contain “spatially heavy” visual information that informs downstream action clas-
sification — that is, different actions have different backgrounds. Because of these
differences in the visual appearance, agents’ actions can be partly distinguished by
these visual features alone, without models having to learn any temporal features

76

of the agents’ behavior. In contrast, our animal videos are all acquired against a
stationary, neutral background, forcing models to use the temporal structure of the
data to distinguish between actions.

Related Problems in Multi-Agent Behavior. While our dataset is composed of
multi-agent data from biology, there are also multi-agent behavior datasets from
other domains, such as from autonomous driving [10, 61], sports analytics [69,
13], and video games [51, 22]. These datasets often focus on forecasting, motion
planning, and reinforcement learning, whereas our dataset is used for tasks from
scientific applications, such as distinguishing animal strains via observed behaviors.

Work in Animal Behavior Analysis. In biology and neuroscience, computational
models of behavior have the potential to significantly reduce human data annotation
efforts, and to provide more detailed descriptions of the behavior in question [2,
49]. Automated characterizations of animal behavior have been used to study the
relationship between neural activity and behavior [42], to characterize behavioral
differences between species and between different strains within a species [26], and
to quantify the effect of functional or pharmacological perturbations [50, 68]. The
input to these models may be video [5] or trajectory data [58, 54].

Supervised behavior models have been trained to identify human-defined behaviors-
of-interest [28, 54, 43, 32], often using frame-by-frame behavior annotations from
domain experts. Another body of work discovers behaviors without human annota-
tions, using unsupervised and self-supervised methods [3, 67, 29, 41, 8] that learn
the latent structure of behavioral data. The learned representation may be continu-
ous [58], or discrete, such as when discovering behavior motifs [3, 67, 29]. There
currently does not exist a unified behavioral representation learning dataset that can
compare these models across a broad range of behavior analysis settings. Here, we
propose MABe 2022 for evaluating the performance of these representation learning
methods.

Work in Representation Learning. Representation learning for visual [19, 11, 48,
38, 23] and trajectory data [58, 70] has been applied to a variety of tasks, such as for
image classification [11], speech recognition [48], and behavior classification [58].
In these works, many different unsupervised / self-supervised methods have been
developed, employing various pretext tasks to pre-train a model, such as classifying
image rotations [19], predicting future observations [48], contrastive learning with
image augmentations [11], and decoding programmatic attributes [58]. The quality
of learned representations is often evaluated on downstream tasks.

77

Mouse Triplet

Experimental Context Manually annotated behaviorsSpecies

time of day mouse strain

lightsexperiment day chase huddle face sni� anal sni�

Ant Beetle

grooming exploring idleinteractor type duration

Fly

neuronal subpopulations

optogenetic
manipulation

thermogenetic
manipulation aggression courtship chase

Figure 6.2: Summary of tasks and actions in our dataset. Our dataset includes three
different species: mice, beetles with an intractor (an ant or other another beetle),
and flies. The mouse dataset has both video and trajectory available, the beetle
dataset is video-based, and the fly dataset is trajectory based. Classification of
experimental conditions is used as a performance metric (examples depicted on the
left for each dataset). Additionally, we collected conventionally expert-annotated
actions (examples depicted on the right for each dataset), with frame-by-frame labels,
e.g., as “chase”, “huddle”, “face sniff”, and “anogenital sniff” for mice. Overall,
there are 72 behavior analysis tasks: 8 for mice, 14 for beetles and 50 for flies.

Behavioral Representation Learning. For behavior analysis, applications of repre-
sentation learning include discovering behavior motifs [3, 67, 29, 41], identifying
internal states [8], and improving sample-efficiency of supervised classifiers [58].
These works use methods such as variational autoencoders [34], autoregressive
hidden Markov models [67], and Uniform Manifold Approximation and Projection
(UMAP) [45] to characterize the latent structure of behavior. Notably, many groups
have proposed methods for unsupervised behavior discovery [3, 36, 67, 41, 29,
44]. These works use different methods to model the temporal structure of behav-
ior, including wavelet transforms [3], autoregressive hidden Markov models [67],
and recurrent NNs [41], as well as different methods for segmenting behavior,
such as Gaussian mixture models [29], k-means clustering [41], and watershed
transforms [3]. Our goal is to develop a standardized dataset for evaluating these
methods on a common set of behavior analysis tasks.

78

6.3 Dataset Design and Collection
We designed and curated MABe22, a multi-agent behavior dataset for the purpose
of studying behavioral representation learning. Our dataset consists of data from
multiple model organisms in neuroscience/biology: mice, beetles, and flies. For
each dataset, we constructed a collection of tasks based on real-world scientific
applications, including determining the experimental context of the organisms and
capturing expert-annotated behaviors. There are 72 tasks in total: 8 for mice, 14
for beetles, and 50 for flies. For the purpose of establishing a benchmark, we define
a “good” learned representation of animal behavior that can decode biologically
meaningful hidden labels as well as annotations by experts. Some tasks apply to all
frames of the recording (strain of mice), but not all tasks are apply to all frames (
sniffing, since experts may annotate only a subset of the videos). More details are
available in the datasheet for our dataset in [57].

The mouse dataset (Section 6.3) consists of 2614 clips of video and trajectory data
(1 minute each at 30 Hz) curated from longer videos of a triplet of interacting mice
over multiple recording days. The video and trajectory datasets are from the same
clips, and the mice are tracked using [55]. We additionally release a larger set of
5336 clips of trajectory data for evaluating community-contributed methods. The
beetle dataset (Section 6.3) consists of 11536 clips of video (30 seconds each at 30
Hz) curated from paired interactions of rove beetles (Sceptobius lativentris) with
intact or manipulated members of their symbiotic host species, the velvety tree ant
(Liometopum occidentale), or with other beetle species. The fly dataset (Section 6.3)
consists of 968 clips of trajectory data (30-second clips at 150 Hz) of groups of 8-11
interacting flies, tracked using [31].

Mouse Triplets
Data Description. The mouse dataset consists of a set of videos and trajectories

from three interacting mice, recorded from an overhead camera in an open field
arena measuring 52cm x 52cm, with a grate located at the northern wall of the arena
giving access to food and water. Animals were introduced to the arena one by one
over the first ten minutes of recording and were recorded continuously for four days
at a framerate of 30 Hz and a camera resolution of 800 x 800 pixels. Illumination
was provided by an overhead light on a 24-hour reverse light cycle (lights off during
the day and on at night); mice are nocturnal and thus are most active during the
dark. Behavior was recorded using an IR-pass filter so that light status could not
be detected by the eye in the recorded videos. Animals’ posture was tracked using

79

a pose estimation model [55] based on HRNet [60] with an identity embedding
network to track long-term identity.

Tasks. Representations of the mouse dataset are evaluated on 8 tasks that capture
information about animals’ genetic background, environment, and expert-annotated
behaviors. These tasks were selected based on their relevance to common scientific
applications such as identifying the behavioral effects of differences in animals’
genetic backgrounds or experimenter-imposed changes in their environment. We
examined capacity of learned representations to determine animal strain, as well
as environmental factors such as whether room lights were on or off (a proxy
for day/night cycles, which modulate animal behavior). We also included two
tasks to predict the day of the trajectory relative to the start of recording (animal
behavior changes across days as they habituate to a new environment [37]), and the
time of day of the trajectory (animal behavior changes over the course of a day,
driven by circadian rhythms). A learned representation of behavior should also be
rich enough to recapitulate human-produced labels of animals’ moment-to-moment
actions. Therefore our evaluation tasks include the detection of expert-annotated
behaviors: huddling, chasing, face sniffing, and anogenital sniffing. A detailed
description of the tasks is listed in [57].

Beetle Interactions
Dataset description. The beetle dataset consists of a rove beetle (Sceptobius

lativentris) interacting one-on-one with its host ant (Liometopum occidentale), ma-
nipulated host ant (e.g., with pheromones stripped off) or with other insects (e.g., a
nitidulid beetle). The original experiment consisted of two-hour interaction trials,
from which we extracted a collection of 30-second clips. These recordings were
made in 8-well behavioral interaction chambers (2cm diameter circles) in the dark
and illuminated with inferred lights from the side/top. A top-mounted machine vi-
sion camera sensitive to IR light monitored the two-hour behavioral trials at 60 Hz.
For this dataset, individual circular wells were cropped/parsed from the multi-well
video and saved at 800x800 resolution with downsampling to 30 Hz.

Tasks. The beetle dataset includes tasks based on environmental conditions as
well as expert-annotated behaviors. Labels for environmental conditions include
the interactor type (the species of insect the rove beetle interacts with, and any
experimental manipulations applied) as well as how long into the two-hour assay
the observed clip occurred. The interactors represent a range of cue types, from the

80

host organism with which the beetle should interact extensively to other insects that
the beetle will likely ignore. We also provide expert annotations for six behaviors
across the seven different types of one-on-one interactions. Generating a meaningful
representation that extracts information of interest about the different behaviors
adopted by the beetle in response to these disparate cues is crucial for insight into
how species interact in nature. Details about the interaction tasks are described
in [57].

Fly Groups
Data Description. The fly dataset consists of trajectories of groups of 8 to 11

vinegar flies (Drosophila melanogaster) interacting in a 5cm-diameter dish. The
trajectories were derived from 96 videos of length 50k-75k frames, collected at
1024x1024 pixels and 150 frames per second. The flies’ bodies and wings were
tracked using FlyTracker [15], and landmarks on the body were tracked using the
Animal Part Tracker (APT) [31] producing a total of 19 keypoints per tracked animal.

As the brain controls behavior, a good representation of behavior should change with
neural activity. Thanks to its tractable genetics, precise neural activity manipulations
are straightforward in Drosophila. We thus chose to perform experiments using
optogenetic (light-activated neural activity via Chrimson) [35] and thermogenetic
(heat activated, via TrpA) [50] activation of selected sets of neurons. We chose
neurons (and the associated GAL4 lines) previously identified as controlling social
behaviors, including courtship, avoidance [50], and female aggression [52]. For
thermogenetic experiments, neural activation is constant and continuous for the
entire video. Our optogenetic experiments consisted of activation for short periods
of time at weak and strong intensities interspersed with periods of no activation. We
combined these neural manipulations with genetic mutations and rearing conditions.
Specifically, we selected populations of flies with the norpA mutation, which induces
blindness [4], and either raised groups of flies together or separated by sex.

Tasks. The representations of the fly dataset are evaluated on a set of 50 tasks. Many
of these tasks differentiate which populations of neurons are activated and how they
are activated. For example, Task 5 indicates the activation of courtship neurons
targeted by the R71G01 GAL4 line in groups of 5 male and 5 female flies. Task 31
compares how neurons were activated – it compares strong and weak activation of
aIPg neurons, which regulate female aggression. Besides neural activation, tasks
also differentiate flies based on sex, how the flies were raised, which strain they

81

are from, and genetic mutations. A full list of tasks and the types of flies used are
in [57].

Besides biological differences, we also include tasks based on manual annotations
of the flies’ behavior for the following social behaviors: any aggressive behavior
toward another fly, chasing another fly, any courtship behavior toward another fly,
high fencing, wing extension, and wing flick. We annotated behaviors sparsely
across all videos with human experts using JAABA [32], with the goal of including
annotations in a wide variety of flies and videos.

6.4 Benchmarking and Methods
We study how well behavioral representations generated by state-of-the-art self-
supervised video representation learning methods are suited for decoding our hidden
downstream biological tasks and human annotations (Section 6.4). We also solicit
community-contributed methods for video and trajectory representation learning
through an open competition (Section 6.4). The representation learned by the
models is a mapping from each video frame/trajectory entry to a lower dimensional
vector of fixed size. Here, we assume the evaluation tasks are hidden during
representation learning. We then use this representation of the data to train a linear
model to classify or regress to target values of the hidden downstream task, see
supplementary materials of [57] for more details.

Self-supervised Video Representation Learning
Self-supervised video representation learning methods rely on designing pretext

tasks that make use of prior knowledge about spatial and temporal information
in videos to design pretext tasks such as temporal coherence [20], temporal order-
ing [46], the motion of an object [1], future prediction [65]. Contrastive learning [11,
25] has been used for learning good visual representations for instance discrimina-
tion. Another line of work has been introducing methods that solely rely on positive
samples [21, 9]. In a recent comparison, the video version of Bootstrap Your Own
Latent (BYOL) [21] has been shown to perform very well on the classic human
benchmarks [16], with increased performance for an increased number of positive
samples.

Masked Visual Modeling. Transformers [64] set the state-of-the-art across many AI
fields, bridging language and vision models. Inspired by pretext tasks for language
transformer models, such as masking in BERT [14], [24] recently introduced the
Masked Auto-Encoder (MAE) for images, an effective pre-training method, by which

82

an image is split into patches, and about 70 percent of the patches are masked. Based
on the remaining patches, the task for the transformer is to reconstruct the masked
patches. [17, 62] extended this framework to video, demonstrating transformers
can be effectively pre-trained by masking 90 percent of the spatio-temporal volume.
MaskFeat [66] showed that using HOG features [12] as reconstruction targets of
masked patches is an effective pre-text task.

Community-Contributed Methods
In addition to studying state-of-the-art methods, our benchmarking efforts include
community-contributed methods from an open competition. Our competition was
hosted in two stages, where stage 1 consisted of the trajectory datasets from mouse
and fly, and stage 2 consisted of video datasets from mouse and beetle. The test sets
were private during the competition phase, and are now released as part of MABe22.
We obtained around 1500 submissions in total at the end of the competition, and
we summarize the top-performing method for the mouse, fly, and beetle datasets
from this process for both video and trajectory data, with details for all methods in
supplementary material of [57].

6.5 Experiments
We perform a large set of experiments to evaluate the performance of representa-
tion learning methods on MABe 2022 (Sections 6.5, 6.5). As video representation
methods are more common, we focus on state-of-the-art video representation learn-
ing methods in this section. We additionally compare both community contributed
video and trajectory representation learning methods. For each video representation
learning method, we perform an ablation study on the key hyperparameter for the
respective method and its effect on downstream task performance (Sections 6.5, 6.5),
as well as pre-training on human datasets (Section 6.5). Finally, we present results
from community-contributed methods on all datasets (Section 6.5), with additional
results for the trajectory methods in supplementary material of [57].

Evaluation Procedure
From an input sequence of video/trajectory data of N frames (𝑁 = 1800 for

mice and 4500 for flies), we evaluate models that produce learned representations
of size 𝑁 × 𝐷, where 𝐷 is the dimensionality of the representations. For video
representation learning models, we use 𝐷 = 128. For trajectory methods, we use
𝐷 = 128 for mice and 𝐷 = 256 for flies. We then use these feature vectors or

https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022

83

Mouse Triplets Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors↑

𝜌BYOL (R-50 (Slow) 8x8) [16] .0152 .0913 .9997 .9701 0.1832
Maskfeat (MViTv2-S 16x4) [66] .0393 .0948 .9925 .7309 0.1627
MAE (ViT-B 16x4) [17] .0102 .0816 1.0000 .9758 0.2309
(pretrained) 𝜌BYOL (R-50 (Slow) 8x8) .0176 .0910 .9994 .7967 0.2688
(pretrained) Maskfeat (MViTv2-S 16x4) .0456 .0889 .9998 .7892 0.1896
(pretrained) MAE (ViT-B 16x4) .0218 .0925 1.0000 .9391 0.2301

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

𝜌BYOL (R-50 (Slow) 8x8) [16] .0257 .9999 .6178 .6457
Maskfeat (MViTv2-S 16x4) [66] .0291 1.0000 .6212 .6574
MAE (ViT-B 16x4) [17] .0283 1.0000 .6444 .6874
(pretrained) 𝜌BYOL (R-50 (Slow) 8x8) .0300 .9981 .6967 .7334
(pretrained) Maskfeat (MViTv2-S 16x4) .0297 .9999 .6057 .6463
(pretrained) MAE (ViT-B 16x4) .0300 .9999 .6879 .7077

Table 6.2: Evaluating self-supervised video representation learning methods. We
evaluate representation learning performance using the linear evaluation protocol
on downstream biologically relevant tasks. (pretrained) indicates pre-training on
Kinetics400. ↓ indicates MSE and ↑ indicates F1 score. Mouse manual behaviors
consist of chase, huddle, face sniff, anal sniff. Beetle manual behaviors consist of
grooming, exploring, and idle, either for self (beetle) only or with the interactor.
The best-performing model is in bold.

embeddings as inputs for a linear model that is used to classify/regress the hidden
task. We use linear least squares with l2 regularized (Ridge) classification/regression
as model and F1/mean-squared-error (MSE) as evaluation metrics (See more details
in supplementary of [57]).

We evaluate a set of state-of-the-art video representation learning methods on MABe
2022, including Masked Autoencoder (MAE) [17] with a ViT-B backbone [64],
MaskFeat [66] with a MViTv2-S backbone [40] and 𝜌BYOL [16] with a SlowFast
backbone (Slow pathway 8x8) [18]. We trained each method on our mice and beetle
data, respectively, as well as used backbones pre-trained on human kinetics 400
[33].

Video Representation Results
We compare the performance of video representation learning methods on the

mouse and beetle video datasets (Table 6.2). We find that the pre-trained 𝜌BYOL
(R-50 (Slow Pathway) 8x8 model performs best for all action recognition tasks
(Manuel Behaviors). For all other downstream tasks training, a ViT-B 16x4 Masked
Autoencoder (MAE) that is not pre-trained on Kinetics400 generally performs the
best. This top performing MAE architecture uses spatio-temporal agnostic masking,

84

Mice Triplet Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors↑

MAE Frame .0239 .0886 1.000 .9525 .2020
MAE Cube .0102 .0816 1.000 .9758 .2309
MAE Tube .0072 .0835 1.000 .9846 .2249

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

MAE Frame .0301 .9999 .6169 .6497
MAE Cube .0283 1.0000 .6444 .6874
MAE Tube .0285 1.0000 .5802 .6351

Table 6.3: Effect of masking strategy on MAE [17] performance. We evaluate
different masking strategies (spatiotemporal random/cube, temporal/tube and spa-
tial/frame) on the video datasets of MABe2022. For the mouse dataset cube/tube
masking perform best, whereas for the beetle dataset cube/frame masking perform
best. ↓ indicates MSE and ↑ indicates F1 score. The best-performing model is in
bold.

Mice Triplet Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors↑

2BYOL .0298 .0882 .9994 .9588 .1929
3BYOL .0225 .0906 .9983 .9492 .1733
4BYOL .0152 .0913 .9997 .9701 .1771

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

2BYOL .0237 1.0000 .5943 .6498
3BYOL .0246 1.0000 .6249 .6549
4BYOL .0257 .9999 .6178 .6457

Table 6.4: Effect of 𝜌 on BYOL [16] performance. We evaluated the effect of
the number of randomly sampled positives for 𝜌BYOL. We find that for beetle 3
positive samples consistently have the best performance, while for mice, either 2 or
4 positives perform best depending on the task. ↓ indicates MSE and ↑ indicates F1
score. The best-performing model is in bold.

which likely performs well due to the observation that our datasets have very different
spatio-temporal dynamics from each other and even more so from human datasets.
We further discuss this in Section 6.5. We notice that the model that performs best
for human annotated behaviors does not necessarily perform best for our downstream
tasks that are based on experimental conditions. This indicates that models that pick
up features that are most relevant for human perception and behavior definitions
may not necessarily be the most informative features for other tasks.

85

Mice Triplet Exp. Time of Strain Lights Manual
Day ↓ Day ↓ ↑ ↑ Behaviors ↑

BEiT + Hand-crafting .0093 .0926 1.0000 .9471 .2603
Vision Ensemble .0441 .0922 .9832 .8048 .2750
Multimodal MoCo/SimCLR .0394 .0912 .9902 .7780 .2355
Trajectory-BERT .0932 .0996 .7202 .6729 .2379

Ant Beetle Duration Interactor Manual Manual
↓ Type ↑ Behaviors ↑ Behaviors (same) ↑

BEiT + Hand-crafting .0277 .9977 .6761 .7179
Vision Ensemble .0295 .9636 .6277 .6695
Multimodal MoCo/SimCLR .0262 .9998 .7299 .7577

Fly Group Fly Stimulation, Stimulation, Line Female Manual
Type ↑ Control ↑ Aggression ↑ Category ↑ vs. Male ↑ Behaviors ↑

Trajectory-Perceiver .394 .418 .513 .573 .982 .197
Trajectory-GPT .363 .515 .500 .557 .873 .246

Table 6.5: Benchmarking the community-contributed methods. The bestcommunity-contributed methods perform on par or better with self-supervised video
representation learning methods. For mice we also have a trajectory-based method
to compare to the video-based methods directly. We find that the trajectory-based
method generally does not perform as well as the video-based methods on the mouse
dataset. For fly task groups, “Fly type” corresponds to tasks 1 to 11, “Stimulation
Control” is tasks 12 to 21, “Stimulation Aggression” is tasks 22 to 36, “Line Cat-
egory” is tasks 37 to 43, and “Manual Behaviors” is tasks 45 to 50 in “Descrption
of fly tasks” in supplementary material of [57]. ↓ indicates MSE and ↑ indicates F1
score. The best-performing model is in bold.

Effect of Masking Strategy
We explore how different masking strategies (spatiotemporal random/cube, tem-

poral/tube and spatial/frame from MAE [17]) affect downstream task performance
(Table 6.3), and we use best performing masking ratios used in MAE. We find that
contrary to [17, 62], where performances for spatio-temporally agnostic masking
(cube) and temporal masking (tube) are very similar to each other, our performance
depends on the dataset (mouse or beetle). For the mouse dataset, cube/tube masking
have the best overall performance, while for the beetle dataset, cube performs best
overall. Overall the differences in performance are also bigger than in [17, 62].
This difference in performance for different masking strategies is likely due to the
different spatio-temporal structure of the data, i.e., if the data is more “temporal
heavy” or more “spatial heavy.”

Effect of 𝜌 on BYOL
We performed 𝜌BYOL [16] with multiple values of 𝜌, i.e., the number of temporal
clips sampled as positives (Table 6.4). In [16], a larger number of 𝜌 steadily increases

86

downstream task performance. This is not true for our datasets, where for mice a
value of 2 performs best for 2 tasks and a value of 4 for 2 other tasks. For the beetle
dataset, 3 positive samples achieve the best BYOL performance. This is likely to
the temporally random sampling of positives for BYOL. This is likely due to the
temporally agnostic sampling method for the clips resulting in positives that are of
different actions (as the actions of the animals can change rapidly over temporally
close frames). Further research is needed on how the temporal sampling strategy
for positives needs to be adjusted for temporally heavy datasets.

Transfer Learning from Kinetics400
We evaluated how 𝜌BYOL, Maskfeat, and MAE perform when pre-trained on

kinetics400 [33] (Table 6.2). We find that MAE and Maskfeat training on MABe22
generally performs better than using the pre-trained models. Interestingly, for
𝜌BYOL we find the opposite, in that the pre-trained model on Kinetics400 actually
performs stronger than counterpart trained on MABe22. Surprisingly, for action
recognition, it performed stronger than any of the other models for both mice and
beetle data. These results suggest that for action recognition, transfer learning from
human datasets to animal datasets is possible to a degree.

Community-Contributed Methods Results
We compare community-contributed methods across all datasets in MABe22 (Ta-
ble 6.5). The best-performing community methods employ large pre-trained vision
models, variations of contrastive learning [11, 25], trajectory data as additional
inputs and hand-crafted features (See supplementary material of [57]). Usually,
these features are then concatenated and PCA is performed to produce vectors
with the embedding dimension. For the mouse dataset, we also compared the top
trajectory-based method to the video-based methods on the same data subset. While
the performance of the trajectory model for behavior classification is similar to the
third-best video-based model, the performance on all other downstream tasks is
worse. This is likely due to the loss of visual features after transforming the video
frames to sparse keypoint locations. An interesting direction for future work would
be to explore how these modalities can be best combined. For the fly dataset (which
consists of trajectory data only), we find that using a Perceiver model [30] trained
on a masked modeling task works best (See supplementary material of [57]). The
second best method is using a GPT [6]-like architecture that generates embeddings
from the recurrent trajectory data of all agents. This method is trained using a

87

prediction pretext task.

In general, we find that performance is comparable between community-contributed
methods to state-of-the-art video representation learning methods evaluated in Sec-
tion 6.5. We note that community methods did perform better at learning manual
behaviors. This may be due to the hand-crafted features used in the community-
contributed methods, which has been shown to be effective at encoding domain
knowledge for behavior analysis [58].

Discussion
Overall, we find that methods that perform best on human datasets may not perform
the best on our animal datasets. This is likely because human action datasets contain
extraneous visual information, whereas our animal datasets minimize these visual
cues (consistent backgrounds) and thus behavioral representations need to focus
on spatio-temporal information. This highlights a crucial shortcoming of current
benchmarks, which may be pushing the community to develop methods that do not
focus on the spatio-temporal nature of behavior. We hope to encourage evaluation of
representation learning methods on a broader range of settings beyond human videos
and annotations, in order to facilitate development of new methods for representation
learning and behavior analysis.

References

[1] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. “Learning to See by
Moving.” In: Proceedings of the IEEE international conference on com-
puter vision. 2015, pp. 37–45.

[2] David J. Anderson and Pietro Perona. “Toward a Science of Computational
Ethology.” In: Neuron 84.1 (2014), pp. 18–31.

[3] Gordon J. Berman et al. “Mapping the Stereotyped Behaviour of Freely
Moving Fruit Flies.” In: Journal of the Royal Society Interface 11.99
(2014), p. 20140672.

[4] Brian Thomas Bloomquist et al. “Isolation of a Putative Phospholipase C
Gene of Drosophila, norpA, and its role in Phototransduction.” In: Cell
54.5 (1988), pp. 723–733.

[5] James P. Bohnslav et al. “DeepEthogram, a Machine Learning Pipeline for
Supervised Behavior Classification from Raw Pixels.” In: eLife 10 (2021),
e63377.

88

[6] Tom B. Brown et al. “Language Models Are Few-Shot Learners.” In:
Advances in Neural Information Processing Systems 33 (2020), pp. 1877–
1901.

[7] Xavier P. Burgos-Artizzu et al. “Social Behavior Recognition in Continu-
ous Video.” In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2012, pp. 1322–1329.

[8] Adam J. Calhoun, Jonathan W. Pillow, and Mala Murthy. “Unsupervised
Identification of the Internal States that Shape Natural Behavior.” In: Nature
neuroscience 22.12 (2019), pp. 2040–2049.

[9] Mathilde Caron et al. “Unsupervised Learning of Visual Features by Con-
trasting Cluster Assignments.” In: Advances in Neural Information Pro-
cessing Systems 33 (2020), pp. 9912–9924.

[10] Ming-Fang Chang et al. “Argoverse: 3D Tracking and Forecasting with
Rich Maps.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 8748–8757.

[11] Ting Chen et al. “A Simple Framework for Contrastive Learning of Vi-
sual Representations.” In: International Conference on Machine Learning
(2020).

[12] Navneet Dalal and Bill Triggs. “Histograms of Oriented Gradients for Hu-
man Detection.” In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). Vol. 1. IEEE. 2005, pp. 886–
893.

[13] Tom Decroos, Jan Van Haaren, and Jesse Davis. “Automatic Discovery
of Tactics in Spatio-Temporal Soccer Match Data.” In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2018, pp. 223–232.

[14] Jacob Devlin et al. “BERT: Pre-Training of Deep Bidirectional Transform-
ers for Language Understanding.” In: arXiv preprint arXiv:1810.04805
(2018).

[15] Eyrun Eyjolfsdottir et al. “Detecting Social Actions of Fruit Flies.” In:
European Conference on Computer Vision. Springer. 2014, pp. 772–787.

[16] Christoph Feichtenhofer et al. “A Large-Scale Study on Unsupervised Spa-
tiotemporal Representation Learning.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 3299–
3309.

[17] Christoph Feichtenhofer et al. “Masked Autoencoders As Spatiotemporal
Learners.” In: arXiv preprint arXiv:2205.09113 (2022).

[18] Willem E. Frankenhuis, Karthik Panchanathan, and Andrew G. Barto.
“Enriching Behavioral Ecology with Reinforcement Learning Methods.”
In: Behavioural Processes 161 (2019), pp. 94–100.

89

[19] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised Rep-
resentation Learning by Predicting Image Rotations.” In: ICLR (2018).

[20] Ross Goroshin et al. “Unsupervised Learning of Spatiotemporally Coher-
ent Metrics.” In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 4086–4093.

[21] Jean-Bastien Grill et al. “Bootstrap Your Own Latent: A New Approach to
Self-Supervised Learning.” In: Advances in Neural Information Processing
Systems 33 (2020), pp. 21271–21284.

[22] William H Guss et al. “MineRL: A Large-Scale Dataset of Minecraft
Demonstrations.” In: arXiv preprint arXiv:1907.13440 (2019).

[23] Tengda Han, Weidi Xie, and Andrew Zisserman. “Video Representation
Learning by Dense Predictive Coding.” In: Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops. 2019.

[24] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 16000–16009.

[25] Kaiming He et al. “Momentum Contrast for Unsupervised Visual Rep-
resentation Learning.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 9729–9738.

[26] Dami’an G. Hern’andez et al. “A Framework for Studying Behavioral
Evolution by Reconstructing Ancestral Repertoires.” In: arXiv preprint
arXiv:2007.09689 (2020).

[27] Katja Hofmann. “Minecraft as AI Playground and Laboratory.” In: Pro-
ceedings of the Annual Symposium on Computer-Human Interaction in
Play. 2019, pp. 1–1.

[28] Weizhe Hong et al. “Automated Measurement of Mouse Social Behav-
iors Using Depth Sensing, Video Tracking, and Machine Learning.” In:
Proceedings of the National Academy of Sciences 112.38 (2015), E5351–
E5360.

[29] Alexander I. Hsu and Eric A. Yttri. “B-SOiD: An Open Source Unsu-
pervised Algorithm for Discovery of Spontaneous Behaviors.” In: bioRxiv
(2020), p. 770271.

[30] Andrew Jaegle et al. “Perceiver IO: A General Architecture for Structured
Inputs and Outputs.” In: arXiv preprint arXiv:2107.14795 (2021).

[31] Mayank Kabra et al. APT: Animal Part Tracker v0.3.4. Version v0.3.4. Mar.
2022. doi: 10.5281/zenodo.6366082. url: https://doi.org/10.
5281/zenodo.6366082.

[32] Mayank Kabra et al. “JAABA: Interactive Machine Learning for Automatic
Annotation of Animal Behavior.” In: Nature Methods 10.1 (2013), p. 64.

https://doi.org/10.5281/zenodo.6366082
https://doi.org/10.5281/zenodo.6366082
https://doi.org/10.5281/zenodo.6366082

90

[33] Will Kay et al. “The Kinetics Human Action Video Dataset.” In: arXiv
preprint arXiv:1705.06950 (2017).

[34] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.”
In: International Conference on Learning Representations. 2014.

[35] Nathan C. Klapoetke et al. “Independent Optical Excitation of Distinct
Neural Populations.” In: Nature Methods 11.3 (2014), pp. 338–346.

[36] Ugne Klibaite et al. “An Unsupervised Method for Quantifying the Behav-
ior of Paired Animals.” In: Physical Biology 14.1 (2017), p. 015006.

[37] Ugne Klibaite et al. “Deep Phenotyping Reveals Movement Phenotypes in
Mouse Neurodevelopmental Models.” In: Molecular Autism 13.1 (2022),
pp. 1–18.

[38] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting Self-
Supervised Visual Representation Learning.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 1920–
1929.

[39] Hildegard Kuehne et al. “HMDB: A Large Video Database for Human
Motion Recognition.” In: 2011 International Conference on Computer
Vision. IEEE. 2011, pp. 2556–2563.

[40] Yanghao Li et al. “MViTv2: Improved Multiscale Vision Transformers for
Classification and Detection.” In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2022, pp. 4804–4814.

[41] Kevin Luxem et al. “Identifying Behavioral Structure from Deep Varia-
tional Embeddings of Animal Motion.” In: bioRxiv (2020).

[42] Jeffrey E. Markowitz et al. “The Striatum Organizes 3D Behavior via
Moment-to-Moment Action Selection.” In: Cell 174.1 (2018), pp. 44–58.

[43] Markus Marks et al. “Deep-Learning-Based Identification, Tracking, Pose
Estimation, and Behavior Classification of Interacting Primates and Mice
in Complex Environments.” In: Nature Machine Intelligence 4.4 (2022),
pp. 331–340.

[44] João C. Marques et al. “Structure of the Zebrafish Locomotor Repertoire
Revealed with Unsupervised Behavioral Clustering.” In: Current Biology
28.2 (2018), pp. 181–195.

[45] Leland McInnes, John Healy, and James Melville. “UMAP: Uniform Man-
ifold Approximation and Projection for Dimension Reduction.” In: arXiv
preprint arXiv:1802.03426 (2018).

[46] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. “Shuffle and Learn:
Unsupervised Learning Using Temporal Order Verification.” In: European
Conference on Computer Vision. 2016.

91

[47] Xun Long Ng et al. “Animal Kingdom: A Large and Diverse Dataset
for Animal Behavior Understanding.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 19023–
19034.

[48] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation Learn-
ing with Contrastive Predictive Coding.” In: arXiv preprint arXiv:1807.03748
(2018).

[49] Talmo D. Pereira, Joshua W. Shaevitz, and Mala Murthy. “Quantifying
Behavior to Understand the Brain.” In: Nature Neuroscience 23.12 (2020),
pp. 1537–1549.

[50] Alice A. Robie et al. “Mapping the Neural Substrates of Behavior.” In:
Cell 170.2 (2017), pp. 393–406.

[51] Mikayel Samvelyan et al. “The StarCraft Multi-Agent Challenge.” In: arXiv
preprint arXiv:1902.04043 (2019).

[52] Catherine E. Schretter et al. “Cell Types and Neuronal Circuitry Underlying
Female Aggression in Drosophila.” In: eLife 9 (2020), e58942.

[53] Martin Schrimpf et al. “Integrative Benchmarking to Advance Neurally
Mechanistic Models of Human Intelligence.” In: Neuron (2020). url:
https://www.cell.com/neuron/fulltext/S0896- 6273(20)
30605-X.

[54] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[55] Keith Sheppard et al. “Stride-level Analysis of Mouse Open Field Behavior
using Deep-learning-based Pose Estimation.” In: Cell Reports (2022).

[56] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A
Dataset of 101 Human Actions Classes from Videos in the Wild.” In: arXiv
preprint arXiv:1212.0402 (2012).

[57] Jennifer J. Sun, Markus Marks, Andrew Ulmer, Dipam Chakraborty, Brian
Geuther, Edward Hayes, Heng Jia, Vivek Kumar, Zachary Partridge, Alice
Robie, Catherine E. Schretter, et al. “MABe22: A Multi-Species Multi-Task
Benchmark for Learned Representations of Behavior.” In: International
Conference on Machine Learning (2023). url: https://arxiv.org/
pdf/2207.10553.pdf.

[58] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-

https://www.cell.com/neuron/fulltext/S0896-6273(20)30605-X
https://www.cell.com/neuron/fulltext/S0896-6273(20)30605-X
https://arxiv.org/pdf/2207.10553.pdf
https://arxiv.org/pdf/2207.10553.pdf

92

puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

[59] Jennifer J. Sun, Tomomi Karigo, Dipam Chakraborty, Sharada Mohanty,
Benjamin Wild, Quan Sun, Chen Chen, David Anderson, Pietro Per-
ona, et al. “The Multi-Agent Behavior Dataset: Mouse Dyadic Social
Interactions.” In: Conference on Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track (2021).

[60] Ke Sun et al. “Deep High-Resolution Representation Learning for Hu-
man Pose Estimation.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 5693–5703.

[61] Pei Sun et al. “Scalability in Perception for Autonomous Driving: Waymo
Open Dataset.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 2446–2454.

[62] Zhan Tong et al. “VideoMAE: Masked Autoencoders Are Data-Efficient
Learners for Self-Supervised Video Pre-Training.” In: arXiv preprint arXiv:2203.12602
(2022).

[63] Grant Van Horn et al. “Benchmarking Representation Learning for Natural
World Image Collections.” In: Computer Vision and Pattern Recognition.
2021.

[64] Ashish Vaswani et al. “Attention Is All You Need.” In: Advances in Neural
Information Processing Systems 30 (2017).

[65] Jacob Walker et al. “An Uncertain Future: Forecasting from Static Images
Using Variational Autoencoders.” In: European Conference on Computer
Vision. Springer. 2016, pp. 835–851.

[66] Chen Wei et al. “Masked Feature Prediction for Self-Supervised Visual
Pre-Training.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022, pp. 14668–14678.

[67] Alexander B. Wiltschko et al. “Mapping Sub-Second Structure in Mouse
Behavior.” In: Neuron 88.6 (2015), pp. 1121–1135.

[68] Alexander B. Wiltschko et al. “Revealing the Structure of Pharmacobehav-
ioral Space Through Motion Sequencing.” In: Nature Neuroscience 23.11
(2020), pp. 1433–1443.

[69] Yisong Yue et al. “Learning Fine-Grained Spatial Models for Dynamic
Sports Play Prediction.” In: 2014 IEEE International Conference on Data
Mining. IEEE. 2014, pp. 670–679.

[70] Eric Zhan*, Jennifer J. Sun*, Ann Kennedy, Yisong Yue, and Swarat
Chaudhuri. “Unsupervised Learning of Neurosymbolic Encoders.” In:
Transactions on Machine Learning Research (2022). url: https : / /
arxiv.org/pdf/2107.13132.pdf.

https://arxiv.org/pdf/2011.13917.pdf
https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2107.13132.pdf

93

C h a p t e r 7

NEUROSYMBOLIC REPRESENTATIONS

Figure 7.1: Overview of the space of neurosymbolic models.

This chapter is mainly based on the following paper:

[1] Eric Zhan*, Jennifer J. Sun*, Ann Kennedy, Yisong Yue, and Swarat
Chaudhuri. “Unsupervised Learning of Neurosymbolic Encoders.” In:
Transactions on Machine Learning Research (2022). url: https : / /
arxiv.org/pdf/2107.13132.pdf.

Abstract. We present a framework for the unsupervised learning of neurosymbolic
encoders, which are encoders obtained by composing neural networks with symbolic
programs from a domain-specific language. Our framework naturally incorporates
symbolic expert knowledge into the learning process, which leads to more inter-
pretable and factorized latent representations compared to fully neural encoders.
We integrate modern program synthesis techniques with the variational autoencod-
ing (VAE) framework, in order to learn a neurosymbolic encoder in conjunction
with a standard decoder. The programmatic descriptions from our encoders can
benefit many analysis workflows, such as in behavior modeling where interpreting

https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2107.13132.pdf

94

agent actions and movements is important. We evaluate our method on learning
latent representations for real-world trajectory data from animal biology and sports
analytics. We show that our approach offers significantly better separation of mean-
ingful categories than standard VAEs and leads to practical gains on downstream
analysis tasks, such as for behavior classification.

7.1 Introduction
Advances in unsupervised learning have enabled the discovery of latent structures
in data from a variety of domains, such as image data [13], sound recordings [7],
and tracking data [28]. For instance, a common approach is to use encoder-
decoder frameworks, such as variational autoencoders (VAEs) [24], to identify a
low-dimensional latent representation from the raw data that could contain disen-
tangled factors of variation [13] or semantically meaningful clusters [28]. Such
approaches typically employ complex mappings based on neural networks, and ex-
plaining how the model assigns inputs to latent representations can be challenging
[46].

In this paper, we introduce unsupervised neurosymbolic representation learning,
which allows part of a representation to be computed using symbolic encoder
programs written in a predefined domain-specific language (DSL). (The rest of the
representation is computed using a neural network.) The use of such neurosymbolic
encoders can offer two key benefits over purely neural approach. First, since a DSL
reflects structured domain knowledge, neurosymbolic encoders can often produce
representations that are human-interpretable [42, 36]. Second, as observed in
studies that used hand-crafted programmatic encoders [43], these representations
can potentially be more factorized or well-separated into meaningful categories than
purely neural representations.

Our learning algorithm is grounded in the VAE framework [24, 30] and aims to
discover a neurosymbolic encoder coupled with a standard neural decoder.1 A key
challenge here is that the space of programs in a DSL is combinatorial. We tackle
this problem by assuming programs to be differentiable and by tightly integrating
standard VAE training with modern program synthesis methods [8, 36]. We further
show how to incorporate ideas from adversarial information factorization [10] and
enforcing capacity constraints [5, 13] in order to mitigate issues such as posterior
and index collapse in the learned representation.

1Some prior work have studied the complementary problem of learning (neuro-)symbolic de-
coders (e.g,. [ellis2017learning, 15]).

95

Programmatic descriptions from neurosymbolic encoders are especially useful in
behavior analysis [35, 37], where domain experts routinely interpret clusters of be-
haviors as part of an analysis workflow. Accordingly, our experimental evaluation
focuses on this setting. By integrating domain knowledge using program synthe-
sis, we demonstrate that our clusters are inherently interpretable and better aligned
with human-annotated labels across multiple behavior analysis datasets. To validate
the end-to-end practicality for analysis workflows, we integrate our automatically
learned programs into a state-of-the-art behavior analysis framework, Task Pro-
gramming [37], that typically relies on expert-crafted programs, and demonstrate
competitive performance using our automatically synthesized programs.

To summarize, our contributions are:

• We propose a neurosymbolic approach to representation learning, in which
part of the latent representation is produced by an interpretable encoder pro-
gram, while the rest is computed using a neural network.

• We realize the approach via a learning algorithm that combines VAE training
and program synthesis.

• We show that our approach can significantly outperform purely neural en-
coders in extracting semantically meaningful representations of behavior, as
measured by standard unsupervised metrics.

• We further explore the flexibility of our approach, by showing that perfor-
mance can be robust across different DSL designs by domain experts.

• We showcase the practicality of our approach on downstream tasks, by incor-
porating our approach into a state-of-the-art self-supervised learning approach
for behavior analysis [37].

7.2 Background
Variational Autoencoders
We build on VAEs [24, 30], a latent variable modeling framework shown to learn
effective latent representations (also called encodings/embeddings) [17, 47, 26] and
can capture the generative process [31, 40, 43]. VAEs introduce a latent variable
z, an encoder 𝑞𝜙, a decoder 𝑝𝜃 , and a prior distribution 𝑝 on z. 𝜙 and 𝜃 are the
parameters of the 𝑞 and 𝑝, respectively, often instantiated with neural networks.

96

The learning objective is to maximize the evidence lower bound (ELBO) of the data
log-likelihood:

ELBO := E𝑞𝜙 (z|x)
[
log 𝑝𝜃 (x|z)

]
−𝐷𝐾𝐿

(
𝑞𝜙 (z|x) | |𝑝(z)

)
≤ log 𝑝(x). (7.1)

The first term in Eq. 7.1 is the log-density assigned to the data, while the second
term is the KL-divergence between the prior and approximate posterior of z. Latent
representations z are often continuous and modeled with a Gaussian prior, but z can
be modeled to contain discrete dimensions as well [25, 19, 13]. Our experiments
are focused on behavioral tracking data in the form of trajectories, and so in practice
we utilize a trajectory variant of VAEs [33, 43, 37], described in Section 7.3.

One challenge with VAEs (and deep encoder-decoder models in general) is that
while the model is expressive, it is often difficult to interpret what is encoded in the
latent representation z. Common approaches include taking traversals in the latent
space and visualizing the resulting generations [5], or post-processing the latent
variables using techniques such as clustering [28]. Such techniques are post-hoc
and thus cannot guide (in an interpretable way) the encoder to be biased towards a
family of structures. Some recent work have studied how to impose structure in the
form of graphical models or dynamics in the latent space [21, 12], and our work
can be thought of as a first step towards imposing structure in the form of symbolic
knowledge encoded in a domain specific programming language.

Synthesis of Differentiable Programs
Our approach utilizes recent work on the synthesis of differentiable programs [8, 36,
41], where one learns both the discrete structure of the symbolic program (analogous
to the architecture of a neural network) as well as the differentiable parameters within
that structure. Our formulation closely follows that of [36]. We use a domain-specific
programming language (DSL), generated with a context-free grammar (see Figure
10.2 for an example). A program is represented as a pair (𝛼, 𝜓), where 𝛼 is a
discrete program architecture and 𝜓 are its real-valued parameters. We denote P as
the space of symbolic programs (i.e., programs with complete architectures). The
semantics of a program (𝛼, 𝜓) is given by a function [[𝛼]] (𝑥, 𝜓) that is guaranteed
to be differentiable in both 𝑥 and 𝜓.

Like [36], we pose the problem of learning differentiable programs as search through
a directed program graph G. The graph G models the top-down construction of
program architectures 𝛼 through the repeated firing of rules of the DSL grammar,
starting with an empty architecture 𝛼0 (represented by the “start” nonterminal of the

97

Input

Neural
Encoder

Symbolic Encoder:
Fully neural to start

Neural
Decoder

Reconstructed
Input Input

Symbolic Encoder:
Program depth + 1

Input

Neural
Encoder

Fully symbolic

Neural
Decoder

Reconstructed
Input

Step 1: Optimize with fixed

Step 2: Update symbolic encoder Repeat steps 1 & 2 until is fully symbolic,
Optimize with complete

Figure 7.2: Learning Neurosymbolic Encoders: Sketch of Algorithm 1 (Section 7.3).
The symbolic encoder is initially fully neural. We alternate between VAE training
with the program architecture fixed (Step 1 as in Eq. 7.2), and supervised program
learning to increase the depth of the program by 1 (Step 2 as in Eq. 7.3). Once
we reach a symbolic program, we train the model one last time to learn all the
parameters. The color (in terms of lightness) of the symbolic encoder corresponds
to the encoder becoming more symbolic over time.

grammar). The leaf nodes of G represent programs with complete architectures (no
nonterminals). Thus,P is the set of programs in the leaf nodes ofG. The other nodes
in G contain programs with partial architectures (has at least one nonterminal). We
interpret a program in a non-leaf node as being neurosymbolic, by viewing its
nonterminals as representing neural networks with free parameters. The root node
in G is the empty architecture 𝛼0, interpreted as a fully neural program. An edge
(𝛼, 𝛼′) exists in G if one can obtain 𝛼′ from 𝛼 by applying a rule in the DSL that
replaces a nonterminal in 𝛼.

Program synthesis in this problem setting equates to searching through G to find the
optimal complete program architecture, and then learning corresponding parameters
𝜓, i.e., to find the optimal (𝛼, 𝜓) that minimizes a combination of standard training
loss (e.g., classification error) and structural loss (preferring “simpler” 𝛼’s). [36]
evaluate multiple strategies for solving this problem and finds informed search using
admissible neural heuristics to be the most efficient strategy (see appendix of [44]).
Consequently, we adopt this algorithm for our program synthesis task.

7.3 Neurosymbolic Encoders

The structure of our neurosymbolic encoder is shown in the right diagram of Figure
7.2. The latent representation z = [z𝜙, z(𝛼,𝜓)] is partitioned into neurally encoded
z𝜙 and programmatically encoded z(𝛼,𝜓) . This approach boasts several advantages:

• The symbolic component of the latent representation is programmatically
interpretable.

98

• The neural component can encode any residual information not captured by the
program, which maintains the model’s capacity compared to deep encoders
(see synthetic experiment in Section 7.4).

• By incorporating a modular design, we can leverage state-of-the-art learn-
ing algorithms for both differentiable encoder-decoder training and program
synthesis.

We denote 𝑞𝜙 and 𝑞 (𝛼,𝜓) as the neural and symbolic encoders, respectively (see
Figure 7.2), where z𝜙 ∼ 𝑞𝜙 (·|x) and z(𝛼,𝜓) ∼ 𝑞 (𝛼,𝜓) (·|x). 𝑞𝜙 is instantiated with
a neural network, but 𝑞 (𝛼,𝜓) is a differentiable program with architecture 𝛼 and
parameters 𝜓 in some program space P defined by a DSL. Given an unlabeled
training set of x’s, our neurosymbolic-VAE (ns-vae) learning objective becomes:

max
𝜙,(𝛼,𝜓),𝜃

Lns-vae(𝜙, 𝛼, 𝜓, 𝜃)

= max
𝜙,(𝛼,𝜓),𝜃

E
𝑞𝜙 (z𝜙 |x)𝑞 (𝛼,𝜓) (z(𝛼,𝜓) |x)

[
log 𝑝𝜃 (x|z𝜙, z(𝛼,𝜓))︸ ︷︷ ︸

reconstruction loss

]
− 𝐷𝐾𝐿

(
𝑞𝜙 (z𝜙 |x) | |𝑝(z𝜙)

)︸ ︷︷ ︸
regularization for neural latent

−𝐷𝐾𝐿

(
𝑞 (𝛼,𝜓) (z(𝛼,𝜓) |x) | |𝑝(z(𝛼,𝜓))

)︸ ︷︷ ︸
regularization for symbolic latent

.

(7.2)
Compared to the standard VAE objective in Eq. 7.1 for a single neural encoder,
Eq. 7.2 has separate KL-divergence terms for the neural and programmatic encoders.

Learning Algorithm

The challenge with solving for Eq. 7.2 is that while (𝜙, 𝜓, 𝜃) can be optimized via
back-propagation with 𝛼 fixed, optimizing for 𝛼 is a discrete optimization problem.
Since it is difficult to jointly optimize over both continuous and discrete spaces, we
take an iterative, alternating optimization approach. We start with a fully neural
program (one with empty architecture 𝛼0 as described in Section 7.2) trained using
standard differentiable optimization (Figure 7.2, Step 1). We then gradually make
it more symbolic (Figure 7.2, Step 2) by finding a program that is a child of the
current program in G (more symbolic by construction of G) that outputs as similar
to the current latent representations as possible:

min
𝛼′:(𝛼,𝛼′)∈G, 𝜓′

Lsupervised
(
𝑞 (𝛼,𝜓) (x), 𝑞 (𝛼′,𝜓′) (x)

)
, (7.3)

which can be viewed as a form of distillation (from less symbolic to more symbolic
programs) via matching the input/output behavior. We solve Eq. 7.3 by enumerating

99

over all child programs of the current search tree and selecting the best one, which
is similar to one iteration of iteratively-deepened depth-first search in [36] (more
details in Section 7.3). We alternate between optimizing Eq. 7.2 and Eq. 7.3 until we
obtain a complete program. Algorithm 1 outlines this procedure and is guaranteed
to terminate if G is finite by specifying a maximum program depth.

We chose this optimization procedure for two reasons. First, it maximally lever-
ages state-of-the-art tools in both differentiable latent variable modeling (VAE-style
training) and supervised program synthesis (for distillation), leading to tractable al-
gorithm design. Second, this procedure never makes a drastic change to the program
architecture, leading to relatively stable learning behavior across iterations.

Algorithm 1 Learning a neurosymbolic encoder
1: Input: program space P, program graph G
2: initialize 𝜙, 𝜓, 𝜃, 𝛼 = 𝛼0 (empty architecture)
3: while 𝛼 is not complete do
4: 𝜙, 𝜓, 𝜃 ← optimize Eq. 7.2 with 𝛼 fixed
5: (𝛼, 𝜓) ← optimize Eq. 7.3
6: 𝜙, 𝜓, 𝜃 ← optimize Eq. 7.2 with complete 𝛼
7: Return: encoder {𝑞𝜙, 𝑞 (𝛼,𝜓) }

Algorithm 2 Learning a neurosymbolic encoder
with 𝑘 programs
1: Input: program space P, program graph G, 𝑘
2: for 𝑖 = 1..𝑘 do
3: fix programs {𝑞 (𝛼1,𝜓1) , . . . , 𝑞 (𝛼𝑖−1,𝜓𝑖−1) }
4: execute Algorithm 1 to learn 𝑞 (𝛼𝑖 ,𝜓𝑖)
5: remove 𝑞 (𝛼𝑖 ,𝜓𝑖) from P to avoid redundancies
6: Return: encoder {𝑞𝜙, 𝑞 (𝛼1,𝜓1) , . . . , 𝑞 (𝛼𝑘 ,𝜓𝑘) }

Program Synthesis via NEAR
Our strategy for solving Eq. 7.3 utilizes the setup in [36], also described more in
Chapter 10 of this thesis. We summarize the key points below.

Program graph G. [36], described further in Chapter 10 of this thesis, learns
programs in a supervised learning setting that minimizes a structural cost 𝑠 (deeper
programs are more costly) and a prediction error 𝜁 :

(𝛼∗, 𝜓∗) = arg min
(𝛼,𝜓)

(𝑠(𝛼) + 𝜁 (𝛼, 𝜓)). (7.4)

100

[36] construct a program graph G such that solving Eq. 7.4 equates to finding a
leaf node with the minimum path cost on G. Our problem definition in Eq. 7.3 is
very similar so we utilize the same program graph. The difference is that our labels
are not ground-truth but rather the labels assigned by the current neurosymbolic
encoder.

Neural heuristic ℎ. [36] solve Eq. 7.4 by introducing a heuristic as a neural
admissible relaxation (NEAR for short). Leveraging a fully differentiable DSL,
they use neural networks to fill in for nonterminals in programs and show that the
performance of such neurosymbolic programs are underestimates of the total path
costs of descendent leaf nodes and thus, can be used as an admissible heuristic.
This allows them to integrate their heuristic with several graph search algorithms,
of which they adopt A* search and iteratively-deepened depth-first-search with
branch-and-bound (IDS-BB). We use IDS-BB in our work.

IDS-BB. The full algorithm for IDS-BB is described in Algorithm 2 in [36]. In our
work, this reduces to the following:

1. For the current program, we enumerate its children in G.

2. We compute the heuristic for each child in G by replacing any nonterminals
with neural networks.

3. We commit to the most promising child (with respect to the heuristic) and
update the program, which can be viewed as one iteration of the full IDS-BB
algorithm.

One key difference is that the original IDS-BB algorithm maintains a frontier ordered
by the best heuristics encountered so far. However, our label distributions can change
between iterations (since the symbolic component of the encoder is updated and thus,
so are the labels it assigns), which invalidates the heuristics computed from previous
iterations. This leaves a very interesting direction for future work.

Learning Multiple Programs
The interpretability of latent representations induced by symbolic encoders 𝑞 (𝛼,𝜓)
ultimately depends on the DSL. For instance, a program that encodes to one of ten
classes may not be very interpretable if it involves a matrix multiplication within the
program. Instead, we learn binary programs that encode sequences into one of two
classes (using binary cross-entropy for Lsupervised, a uniform prior on 2-dimensional

101

z(𝛼,𝜓) , and Gumbel-Softmax [20] to sample z(𝛼,𝜓) from the posterior). Figures
7.5a & 7.5b depict learned binary programs that encode mice trajectories and their
interpretations.

To encode more than two classes, we simply learn multiple binary programs by ex-
tending Eq. 7.2 to sum overLsupervised for 𝑘 symbolic programs {𝑞 (𝛼1,𝜓1) , . . . , 𝑞 (𝛼𝑘 ,𝜓𝑘)}
and corresponding latent representations {z(𝛼1,𝜓1) , . . . , z(𝛼𝑘 ,𝜓𝑘)}. This results in 2𝑘

classes and a solution space that now scales exponentially (e.g., |P |𝑘). Algorithm
2 outlines our greedy solution that reuses Algorithm 1 by iteratively learning one
symbolic program at a time. We leave the exploration of more sophisticated search
methods as future work.

Dealing with Posterior and Index Collapse
Deep latent variable models, especially those with discrete latent variables, are
notoriously prone to both posterior [3, 9, 31] and index [22] collapse. Since our
algorithms optimize for such models repeatedly, they can be susceptible to these
failure modes. Below, we summarize two strategies that we found to work well in
our setting.2

Adversarial information factorization. Index collapse is the phenomenon in
which all data is encoded into one class, resulting in a discrete latent variable z(𝛼,𝜓)
that is effectively meaningless. Creswell et al. [10] counteracts index collapse by
introducing an adversarial network 𝐴𝜔 and maximizing the adversarial loss below
to ensure that the adversary 𝐴𝜔 cannot successfully predict z(𝛼,𝜓) from z𝜙.

max
𝜙,(𝛼,𝜓),𝜃

Lfac(𝜙, 𝛼, 𝜓, 𝜃)

= max
𝜙,(𝛼,𝜓),𝜃

E
𝑞𝜙 (z𝜙 |x)𝑞 (𝛼,𝜓) (z(𝛼,𝜓) |x)

[
log 𝑝𝜃 (x|z𝜙, z(𝛼,𝜓)) +min

𝜔
Ladv

(
𝐴𝜔 (z𝜙), z(𝛼,𝜓)

)︸ ︷︷ ︸
adversary

]
− 𝐷𝐾𝐿

(
𝑞𝜙 (z𝜙 |x) | |𝑝(z𝜙)

)
− 𝐷𝐾𝐿

(
𝑞 (𝛼,𝜓) (z(𝛼,𝜓) |x) | |𝑝(z(𝛼,𝜓))

)
(7.5)

Channel capacity constraint. Posterior collapse is the phenomenon in which the
posterior trivially matches the prior exactly (a KL-divergence of 0) but the latent
variables are unused by the decoder. [5] and [13] instead force the KL-divergence
terms to match capacities 𝐶𝜙 and 𝐶(𝛼,𝜓) , which are hyperparameter (see appendix
of [44]). Since the KL-divergence is an upper bound on the mutual information

2There are many approaches available for tackling both these issues, but we emphasize that
these contributions are orthogonal to ours; as techniques for preventing posterior and index collapse
improve, so will the robustness of our algorithm.

102

between latent variables and the data [23, 13], this encourages the latent variables
to encode information and aims to prevent posterior collapse.

max
𝜙, (𝛼,𝜓) , 𝜃

Lcap(𝜙, 𝛼, 𝜓, 𝜃)

= max
𝜙, (𝛼,𝜓) , 𝜃

E
𝑞𝜙 (z𝜙 |x)𝑞(𝛼,𝜓) (z(𝛼,𝜓) |x)

[
log 𝑝𝜃 (x|z𝜙, z(𝛼,𝜓))

]
− 𝛾𝜙 |𝐷𝐾𝐿

(
𝑞𝜙 (z𝜙 |x) | |𝑝(z𝜙)

)
− 𝐶𝜙 |

− 𝛾(𝛼,𝜓) |𝐷𝐾𝐿
(
𝑞 (𝛼,𝜓) (z(𝛼,𝜓) |x) | |𝑝(z(𝛼,𝜓))

)
− 𝐶(𝛼,𝜓) |

(7.6)

In our algorithms, we augment our initial objective in Eq. 7.2 with Eq. 7.5 and
Eq. 7.6:

max
𝜙,(𝛼,𝜓),𝜃

Lns-vae(𝜙, 𝛼, 𝜓, 𝜃) + 𝜆facLfac(𝜙, 𝛼, 𝜓, 𝜃) + 𝜆capLcap(𝜙, 𝛼, 𝜓, 𝜃), (7.7)

where 𝜆fac = 𝜆cap = 1 in our experiments.

Instantiation for Sequential Domains
The objective in Eq. 7.2 describes a general problem that is applicable to any domain.
In our experiments, we focus on sequential trajectory data. Trajectory data is often
used in scientific applications where interpretability is desirable, such as behavior
discovery [28, 18]. The ability to easily explain the learned latent representation
using programs can help domain experts better understand the structure in their data.
Trajectory data is also often relatively low dimensional, which helps experts encode
domain knowledge into the DSL more easily [36, 37, 43].

In this domain, x is a trajectory of length 𝑇 : x = {𝑥1, . . . , 𝑥𝑇 }. We then factorize
the log-density in Eq. 7.2 as a product of conditional probabilities:

log 𝑝𝜃 (x|z𝜙, z(𝛼,𝜓)) =
𝑇∑︁
𝑡=1

log 𝑝𝜃 (𝑥𝑡 |𝑥<𝑡 , z𝜙, z(𝛼,𝜓)). (7.8)

When 𝑞𝜙 and 𝑝𝜃 are instantiated with recurrent neural networks (RNN), the model
is more commonly known as a trajectory-VAE (TVAE) [33].

As the symbolic encoder 𝑞 (𝛼,𝜓) maps sequences to vectors, we adopt a DSL (Figure
10.2) previously used for sequence classification [36]. Our DSL is purely functional
and contains both basic algebraic operations and parameterized library functions.
Domain experts can easily augment the DSL with their own functions, such as se-
lection functions that select subsets of features that they deem potentially important.
We ensure that all programs in our DSL are differentiable by utilizing a smooth ap-
proximation of the if-then-else construct [36]. Figures 7.5a & 7.5b depict example
programs.

103

𝛼 ::= 𝑥 | ⊕(𝛼1, . . . , 𝛼𝑘) | ⊕𝜃 (𝛼1, . . . , 𝛼𝑘)
if 𝛼1 then 𝛼2 else 𝛼3 | sel𝑆 𝑥 | mapaverage (fun 𝑥1.𝛼1) 𝑥

Figure 7.3: Our DSL for sequential domains, similar to the one used in [36]. 𝑥, ⊕, and
⊕𝜃 represent inputs, basic algebraic operations, and parameterized library functions,
respectively. fun 𝑥.𝑒(𝑥) represents a function that evaluates an expression 𝑒(𝑥) over
the input 𝑥. sel𝑆 selects a subset 𝑆 of the dimensions of the input 𝑥. mapaverage 𝑔 𝑥
applies the function 𝑔 to every element of the sequence 𝑥 and returns the average of
the results. We employ a differentiable approximation of the if-then-else construct.

7.4 Experiments
We take a multi-faceted approach to evaluate our unsupervised learning approach
using synthetic data and real-world data from animal behavior and sports analytics.
We also show the end-to-end practicality of our programs by applying them to a
downstream behavior classification framework. Our research questions are:

• Q1: Are the clusters created with our programs meaningful? (Sec-
tion 7.4). We evaluate this aspect both qualitatively and quantitatively by
comparing with the truth generative process on synthetic datasets, as well as
by comparing to human annotated labels on real-world datasets.

• Q2: How sensitive is our approach to different DSL choices? (Section 7.4).
We compare programs learned in our framework from three different DSLs
designed by three domain experts for studying animal behavior. The three
DSLs (DSL 1, DSL 2, DSL 3) mainly differ in the behavioral features chosen
by experts, and are described in the appendix of [44].

• Q3: Are the programs useful for downstream tasks? (Section 7.4). Ulti-
mately, the practicality of these methods must be validated by their usefulness
in downstream tasks such as those used in scientific analyses. We apply
our unsupervised programs to a behavior classification framework called task
programming [37]. This framework uses hand-crafted programs for self-
supervision, which we replace with our automatically learned programs.

Experimental Setup
Datasets

We summarize the datasets used in our experiments, and provide full details in the
appendix of [44].

104

Synthetic. We generate synthetic trajectories by sampling initial positions and
velocities from a Gaussian distribution and introducing 2 ground-truth factors of
variation as large external forces in the positive/negative x/y directions that affect
velocity, totaling to 4 discrete classes. Velocities are sampled and fixed for the entire
trajectory, but we also sample small Gaussian noise at each timestep. We generate
10k/2k/2k trajectories of length 25 for train/validation/test. Figure 7.4a shows 50
trajectories from the training set. This dataset is useful because we can evaluate
whether our algorithm can learn programs that match the ground-truth factors of
variation (such ground-truth information is not available in real-world datasets).

CalMS21. Our primary real-world dataset is the CalMS21 dataset [38], containing
trajectories of socially interacting mice captured for neuroscience experiments. Each
frame contains 7 tracked keypoints for each of two mice. The dataset has one
set of unlabeled tracking data, which we use to train our neurosymbolic encoder,
and another set annotated with 4 labels at each frame by human experts (frame-
level behaviors), which we use to evaluate our programs. These labels consists
of three behaviors-of-interest between mice (attack, mount, investigation), and a
label corresponding to all other behaviors (other), with a more detailed description
in [38]. Specifically, our evaluation uses labels from the test split of the CalMS21
classification task. We have 231k/52k/262k trajectories of length 21 for train/val/test.
The features in our DSL are selected by a domain expert based on the attributes
from Segalin et al. [35].

Basketball. We use the same basketball dataset as in [36] and [43] that tracks
professional basketball players. Each trajectory is of length 25 over 8 seconds and
contains the 𝑥𝑦-positions of 10 players. We split trajectories by grouping offensive
and defensive players (5 each), effectively doubling the dataset size. We evaluate our
algorithm and the baselines with respect to the labels of offensive/defensive players.
Our DSL includes additional domain features like player speed and distance-to-
basket. In total, we have 177k/31k/27k trajectories for train/val/test.

Quantitative Evaluation Setup

The quantitative evaluations are used to compare our neurosymbolic encoders with
baseline unsupervised learning methods on the real-world datasets.

Baselines. We compare our model containing a neurosymbolic encoder against
other approaches based on VAEs. In particular, we compare against JointVAE [13],
which also has both discrete and continuous latent representations, and can be

105

(a) 50 synthetic trajectories

1[>6.34] [
selFinalXPosition 𝑥]

1[>8.99] [
selFinalYPosition 𝑥]

(b) learned programs

(c) z𝜙, 0 programs (d) z𝜙, 1 program (e) z𝜙, 2 programs
Figure 7.4: Synthetic dataset experiments. (a) Trajectories in synthetic training set.
Initial/final positions are indicated in green/blue. Red lines delineate ground-truth
classes, based on final positions. (b) 𝑘 = 2 learned binary programs using our
algorithm. The first program (top) thresholds the final x-position while the second
program (bottom) thresholds the final y-position. (c, d, e) Neural latent variables
reduced to 2 dimensions. Top/bottom rows are colored by final x/y-positions,
respectively (green/yellow is positive/negative). (c) Clusters in TVAE neural latent
space correspond to 4 ground-truth classes. (d) After learning the first program,
the neural latent space contains clusters only based on the final y-position. (e)
After learning the second program, all 4 ground-truth classes have been extracted
as programs and the remaining neural latent space contains no clear clustering.

viewed as a fully neural version of our neurosymbolic encoder. Other baselines
include VAE, VAE with K-means loss [29, 28], and Beta-VAE [5]. These models
have a fully neural encoder and learn continuous latent representations, which we
can then use to produce clusters with K-means clustering [27]. We additionally
compare against VQ-VAEs [31], which produce discrete latent clusters. We use the
TVAE version of all baselines (details included in the appendix of [44]).

106

1[>−7]

mapaverage (fun 𝑥𝑡 .

multiply (ResidentSpeedAffine[−6.3];−8.3(𝑥𝑡),
NoseTailDistAffine[.04];−9.1(𝑥𝑡)) 𝑥

(a) Program learned using CalMS21 DSL 1, resulting NMI 0.428. Since speed is positive,
the first term is always negative. One cluster thus generally consists of trajectories where
the mice are further apart, such that the second term is positive, and the negative product is
less than the threshold. The other cluster generally occurs when the mice are close together,
the second term is negative, and the product will be positive.

1[>−5.7]

mapaverage (fun 𝑥𝑡 .
add (ResidentAxisRatioAffine[−8.0];−7.1(𝑥𝑡),

BoundingBoxIOUAffine[−16.6];5.9(𝑥𝑡)) 𝑥

(b) Program learned using CalMS21 DSL 2, resulting NMI 0.320. The axis ratio is the
ratio of major axis length and minor axis length of an ellipse fitted to the mouse keypoints.
The second term measures the bounding box overlap between mice, and is zero when the
mice are far apart. It follows that one cluster generally contains trajectories when the mice
has larger bounding box overlaps or if the resident axis ratio is large. The other cluster thus
contains trajectories where the mice bounding boxes do not overlap, and resident body is
compact.

Figure 7.5: Learned programs on CalMS21. The subscripts represents the learned
weights (in brackets) and biases (after the brackets) for the affine transformation
followed by the bias.

Metrics. Unlike in the synthetic setting, we do not have ground truth programs
in the real-world datasets. We thus evaluate our programs quantitatively using (1)
standard cluster metrics relative to human-defined labels, and (2) average precision
for behavior classification when integrating our programs into downstream tasks.
For cluster metrics, we use Purity [34], Normalized Mutual Information (NMI)
[45], and Rand Index (RI) [32]. We report the median of three runs. More details,
including the standard deviation and the ELBO, are in the appendix.

Q1: Are the clusters created with our programs meaningful?
Synthetic dataset experiments. Our synthetic dataset consists of trajectory data
with 4 ground truth classes, corresponding to positive/negative x/y directions. The
goal is to learn symbolic programs that capture the ground-truth classes, while
leaving the neural latent space to capture any residual information, such as the
random initial velocity. We visualize the 2 dimensions of the neural latent space of
a TVAE along with 0, 1, and 2 learned programs in Figures 7.4c, 7.4d & 7.4e. The
initial neural latent space of the TVAE contains 4 clusters corresponding to the 4
ground-truth classes in Figure 7.4c. After our algorithm learns the first program that

107

Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

Random assignment .597 .000 .536 .500 .000 .500
TVAE .598 .089 .564 .501 .001 .500

TVAE+KMeans loss .605 .118 .573 .501 .001 .500
JointVAE .597 .019 .537 .560 .034 .507
VQ-TVAE .601 .124 .588 .572 .016 .511
Beta-TVAE .616 .115 .589 .565 .013 .509

Ours (1 program) .706 .423 .694 .596 .027 .518
Ours (2 programs) .725 .320 .648 .561 .033 .507
Ours (3 programs) .756 .314 .633 .584 .022 .514

Table 7.1: Evaluating clusters from baseline and our neurosymbolic encoders on
human-annotated labels. Median purity, NMI, and RI on CalMS21 and Basketball
compared to human-annotated labels (3 runs). Experiment hyperparameters are
included in the appendix.

thresholds the final x-position, the resulting latent space in Figure 7.4d captures the
other factor of variation as 2 clusters corresponding to the final y-positions. Lastly,
when our algorithm learns a second program that thresholds the final y-position, the
resulting latent space in Figure 7.4e no longer contains any clear clustering, showing
that our approach has successfully extracted the 4 ground-truth classes.

Real-world datasets experiments. We compare clusters produced by our neu-
rosymbolic encoder with fully neural autoencoding baselines (Table 7.1), measured
against human-annotated behaviors. For CalMS21, we observe that our method
consistently outperforms the baselines in all three cluster metrics. We note that
purity increases as the number of programs (thus clusters) increase, while NMI and
RI decrease. This implies our method with two clusters best correspond to CalMS21
behaviors, but the other clusters found by our method may still be useful for domain
experts. For Basketball, our method improves slightly with respect to purity, but is
overall comparable with the baselines.

Qualitative interpretation of our clusters. We further study the programs and
clusters produced by our algorithm for the CalMS21 dataset, through a qualitative
study with a behavioral neuroscientist. Here, the behavioral neuroscientist ana-
lyzes the programmatic clusters produced from the symbolic representation of our
neurosymbolic encoder for one, two, and three programs, resulting in two, four,
and eight clusters, respectively. The CalMS21 dataset is originally manually anno-
tated with 4 classes corresponding to “attack,” “investigation” (sniff), “mount,” and
“other” labels. “Other” corresponds to when no behaviors-of-interest is occurring,

108

Model CalMS21 (DSL 1) CalMS21 (DSL 2) CalMS21 (DSL 3)
Purity NMI RI Purity NMI RI Purity NMI RI

Ours (1 program) .706 .423 .694 .689 .364 .681 .649 .325 .616
Ours (2 programs) .725 .320 .648 .715 .359 .673 .664 .324 .634

Table 7.2: Effect of varying DSLs on CalMS21 for neurosymbolic encoders. Median
purity, NMI, and RI on CalMS21 of our algorithms with DSLs selected by three
domain experts compared to human-annotated labels (3 runs). DSL1 corresponds
to Table 7.1.

and is typically when the mice are not interacting.

In the single program case, our programs correspond to two discovered clusters.
These clusters were classified by domain experts as referring to (1) when the mice
are interacting and (2) when there are no interactions. They noted that this is based
on distance between the mice, which is consistent with our program (Figure 7.5a)
using distance between nose of resident and tail of intruder. For two programs,
there are a total of four discovered clusters, with two clusters each corresponding to
no interaction and interaction. For the interaction clusters, the domain expert was
further able to identify sniff tail behavior as one of the clusters. In this case, the
programs found were based on intruder head body angle, resident nose and intruder
tail distance, and resident nose and intruder nose distance. The domain expert found
the three program case to be more difficult to interpret, but was able to identify
clusters corresponding to sniff tail, resident exploration, interaction facing the same
direction (for example, mounting), and interaction facing opposite directions (for
example, face-to-face sniffing).

Q2: How sensitive is our approach to the DSL?
Choice of DSL. To study the effect of DSL choices, we worked with three domain
experts to construct three different DSLs used to learn our programmatic represen-
tations. These DSLs contained 8 to 10 different behavioral features for studying
mouse social behavior on CalMS21, in addition to common sequential operations
(Figure 10.2). A full list of features selected by domain experts are in the appendix.

While there is some variability, our approach consistently outperforms the baselines
that contain fully neural encoders for all three DSLs (Table 7.2). Comparing some
learned programs from two DSLs (Figures 7.5a, 7.5b), both contain a term that
correlates with whether the mice are interacting (distance and bounding box overlap),
and another term that correlates with resident speed (mice tends to be more stretched

109

Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

TVAE .598 .089 .564 .501 .001 .500
TVAE (w/ features) .597 .103 .570 .565 .012 .508

VQ-TVAE .601 .124 .588 .571 .016 .511
VQ-TVAE (w/ features) .608 .114 .601 .525 .002 .501

Beta-TVAE .616 .115 .589 .566 .013 .509
Beta-TVAE (w/ features) .612 .096 .571 .563 .011 .508

Table 7.3: Effect of encoding DSL features into baselines. Median purity, NMI,
and RI on CalMS21 and Basketball compared to human-annotated labels (3 runs)
for baseline with trajectory inputs only, and baseline with trajectory features added.

when they are moving quickly).

DSL features as input. Lastly, we experiment with using the same DSL features
introduced by domain experts as additional features for input trajectories instead
(Table 7.3). For both CalMS21 and Basketball, the baselines using the additional
features have comparable performance to using input trajectory data alone. In con-
trast, by using the features more explicitly as part of the DSL in our neurosymbolic
encoders, we are able to produce clusters with a better separation between behavior
classes based on cluster metrics (see Table 7.1).

Q3: Are the programs useful for downstream tasks?
We apply our programs to frame-level behavior classification [35, 14, 6], where the
goal is to automatically quantify behavior based on expert annotations. We are mo-
tivated by the observation that manual behavior annotation is time-consuming and
expensive [2], often being a bottleneck in the analysis workflow. Our unsupervised
programs have the potential to reduce annotation effort and help accelerate behav-
ioral studies, through the task programming framework. Task programming [37]
uses hand-crafted programs as self-supervision to improve behavior classification
data efficiency; however, hand designing programs still requires human effort. Here,
we show that unsupervised programs learned using our neurosymbolic encoders per-
forms comparably to expert-designed programs on CalMS21.

We integrate the learned programs from our neurosymbolic encoder into the task
programming framework (i.e., use them as a source of self-supervision instead of
the expert-crafted programs), and compare to the classification performance using
expert programs (Figure 7.6). The classification performance is computed using

110

10 2 10 1 100

Training Data Fraction (Log Scale)

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1
2.2 × 10 1
2.4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

Task Programming with Program Variations

Features
Features
 + TREBA
 (10 expert progs)
Features
 + TREBA
 (ours, 1 prog)
Features
 + TREBA
 (ours, 2 progs)

Figure 7.6: Applying symbolic encoders for self-supervision. “Features” is baseline
w/o self-supervision. “TREBA” is a self-supervised approach in the Task Program-
ming paradigm [37], using either expert-crafted programs or our symbolic encoders
as the weak-supervision rules. The shaded region is std dev over 9 repeats. The
std dev for our approach (not shown) is comparable. Based on [37], the error is
computed using 1.0 −Mean Average Precision.

Mean Average Precision on the behaviors-of-interest in CalMS21 (attack, investi-
gation, mount). Using only one program found using our approach, we are able
to achieve comparable performance to 10 expert-written programs on the behav-
ior classification task studied in [37]. Importantly, we note that we automatically
learned the self-supervision tasks from a DSL, instead of hand-crafting them as
in [37]. This demonstrates that programs found by our approach can be applied
effectively to downstream behavior analysis tasks such as task programming.

7.5 Discussion

We present a novel approach for unsupervised learning of neurosymbolic encoders.
Our approach integrates the VAE framework with program synthesis and results in a
learned representation with both neural and symbolic components. Experiments on
trajectory data from behavior analysis demonstrate that our programmatic descrip-
tions of the latent space result in more meaningful clusters relative to human-defined
behaviors, compared to purely neural encoders. Additionally, we show the prac-
ticality of our approach by applying our learned programs to achieve comparable
performance to expert-constructed tasks in a self-supervised learning approach for
behavior classification.

Problem Scope. We explore unsupervised learning of neurosymbolic encoders for
the first time, and here, our neurosymbolic encoders tackle domains consisting of
lower dimensional spatiotemporal data. These types of domains covers a wide range
of application areas, from behavioral data (animal behavior and sports analytics

111

in our experiments), to control systems for rigid-body systems, to biomarkers or
socioeconomic markers. In many of these domains, there are existing domain
expertise that can be leveraged to create the DSL for our neurosymbolic encoders.
For example, we use the behavioral features from [35] in our work. One direct
application of learning semantically meaningful programs is that it can be used to
improve learning pipelines, such as task programming, as we have demonstrated.

Limitations. One limitation of our current approach is scalability of the program
search process. While our program search is parallelizable, such that learning addi-
tional programs would not incur significant additional time, the symbolic encoder
update does increase the runtime over a purely neural solution. Here, we have
explored our approach on settings where shorter programs are beneficial. Future
work have the potential to further expand the applications of these models to larger,
more complex systems. Furthermore, our approach requires programs that are dif-
ferentiable with respect to its parameters. We note that there are increasingly more
differentiable DSLs, such as [36, 11, 41, 16, 4], and there are commonly-adopted
ways to make differentiable approximations to more established non-differentiable
DSLs (for example, in [36], the authors use a smooth differentiable approximation
of the non-differentiable if-then-else statement). These common challenges in using
neurosymbolic learning in science is further discussed in [39] in Chapter 12 of this
thesis.

Future Directions. There are many future directions to explore for neurosymbolic
encoders based on our work. Scalability is one important area as discussed above.
Another direction is to extend this work to other domains such as image and text data,
in order to learn interpretable symbolic latent representations. Neurosymbolic en-
coders on images would require a DSL for pixel data as well as architecture changes,
such as using convolutional VAEs. Furthermore, one can improve upon our greedy
approach in Algorithm 2 for finding the optimal set of symbolic programs, e.g.,
by performing local coordinate ascent in program space, similar to algorithms for
large-scale neighborhood search [1]. Lastly, while practically-oriented extensions
of VAEs such as our own have yielded great practical benefit, they often lead to
sub-optimal results from a pure likelihood (or ELBO) perspective. One final direc-
tion is to rigorously formulate a learning objective from the ground up that formally
encapsulates practically-oriented extensions of VAEs.

112

References

[1] Ravindra K. Ahuja et al. “A Survey of Very Large-Scale Neighborhood
Search Techniques.” In: Discrete Applied Mathematics 123.1-3 (2002),
pp. 75–102.

[2] David J. Anderson and Pietro Perona. “Toward a Science of Computational
Ethology.” In: Neuron 84.1 (2014), pp. 18–31.

[3] Samuel R. Bowman et al. “Generating Sentences from a Continuous
Space.” In: arXiv preprint arXiv:1511.06349 (2015).

[4] Rudy R. Bunel et al. “Adaptive Neural Compilation.” In: Advances in
Neural Information Processing Systems 29 (2016).

[5] Christopher P. Burgess et al. “Understanding Disentanglement in 𝛽-VAE.”
In: Neural Information Processing Systems Disentanglement Workshop.
2017.

[6] Xavier P. Burgos-Artizzu et al. “Social Behavior Recognition in Continu-
ous Video.” In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2012, pp. 1322–1329.

[7] Adam J. Calhoun, Jonathan W. Pillow, and Mala Murthy. “Unsupervised
Identification of the Internal States that Shape Natural Behavior.” In: Nature
neuroscience 22.12 (2019), pp. 2040–2049.

[8] Swarat Chaudhuri et al. “Neurosymbolic Programming.” In: Foundations
and Trends® in Programming Languages 7.3 (2021), pp. 158–243.

[9] Xi Chen et al. “Variational Lossy Autoencoder.” In: arXiv preprint arXiv:1611.02731
(2016).

[10] Antonia Creswell et al. “Adversarial Information Factorization.” In: arXiv
preprint arXiv:1711.05175 (2017).

[11] Guofeng Cui and He Zhu. “Differentiable Synthesis of Program Architec-
tures.” In: Advances in Neural Information Processing Systems 34 (2021),
pp. 11123–11135.

[12] Zhiwei Deng et al. “Factorized Variational Autoencoders for Modeling
Audience Reactions to Movies.” In: IEEE Conference on Computer Vision
and Pattern Recognition. 2017.

[13] Emilien Dupont. “Learning Disentangled Joint Continuous and Discrete
Representations.” In: Advances in Neural Information Processing Systems.
2018.

[14] Eyrun Eyjolfsdottir et al. “Learning Recurrent Representations for Hier-
archical Behavior Modeling.” In: International Conference on Learning
Representations (2017).

113

[15] Reuben Feinman and Brenden M. Lake. “Learning Task-General Repre-
sentations with Generative Neuro-Symbolic Modeling.” In: International
Conference on Learning Representations. 2020.

[16] Alexander L. Gaunt et al. “Terpret: A Probabilistic Programming Language
for Program Induction.” In: arXiv preprint arXiv:1608.04428 (2016).

[17] Irina Higgins et al. “Beta-VAE: Learning Basic Visual Concepts with
a Constrained Variational Framework.” In: International Conference on
Learning Representations. 2016.

[18] Alexander I. Hsu and Eric A. Yttri. “B-SOiD: An Open Source Unsu-
pervised Algorithm for Discovery of Spontaneous Behaviors.” In: bioRxiv
(2020), p. 770271.

[19] Zhiting Hu et al. “Toward Controlled Generation of Text.” In: International
Conference on Machine Learning. 2017.

[20] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameterization
with Gumbel-Softmax.” In: arXiv preprint arXiv:1611.01144 (2017).

[21] Matthew J. Johnson et al. “Composing Graphical Models with Neural
Networks for Structured Representations and Fast Inference.” In: Advances
in Neural Information Processing Systems. 2016.

[22] Lukasz Kaiser et al. “Fast Decoding in Sequence Models Using Discrete
Latent Variables.” In: International Conference on Machine Learning.
2018.

[23] Hyunjik Kim and Andriy Mnih. “Disentangling by Factorising.” In: Inter-
national Conference on Machine Learning. 2018.

[24] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.”
In: International Conference on Learning Representations. 2014.

[25] Diederik P. Kingma et al. “Semi-Supervised Learning with Deep Genera-
tive Models.” In: arXiv preprint arXiv:1406.5298 (2014).

[26] Yingzhen Li and Stephan Mandt. “Disentangled Sequential Autoencoder.”
In: International Conference on Machine Learning. 2018.

[27] Stuart Lloyd. “Least Squares Quantization in PCM.” In: IEEE Transactions
on Information Theory 28.2 (1982), pp. 129–137.

[28] Kevin Luxem et al. “Identifying Behavioral Structure from Deep Varia-
tional Embeddings of Animal Motion.” In: bioRxiv (2020).

[29] Qianli Ma et al. “Learning Representations for Time Series Clustering.” In:
Advances in Neural Information Processing Systems 32 (2019), pp. 3781–
3791.

[30] Andriy Mnih and Karol Gregor. “Neural Variational Inference and Learn-
ing in Belief Networks.” In: International Conference on Machine Learn-
ing. 2014.

114

[31] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural
Discrete Representation Learning.” In: Advances in Neural Information
Processing Systems. 2017.

[32] William M. Rand. “Objective Criteria for the Evaluation of Clustering
Methods.” In: Journal of the American Statistical Association 66.336
(1971), pp. 846–850.

[33] John Co-Reyes et al. “Self-Consistent Trajectory Autoencoder: Hierarchi-
cal Reinforcement Learning with Trajectory Embeddings.” In: Interna-
tional Conference on Machine Learning. 2018.

[34] Hinrich Schütze, Christopher D. Manning, and Prabhakar Raghavan. In-
troduction to Information Retrieval. Vol. 39. Cambridge University Press
Cambridge, 2008.

[35] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[36] Ameesh Shah*, Eric Zhan*, Jennifer J. Sun, Abhinav Verma, Yisong Yue,
and Swarat Chaudhuri. “Learning Differentiable Programs with Admis-
sible Neural Heuristics.” In: Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), pp. 4940–4952. url: https://arxiv.
org/pdf/2007.12101.pdf.

[37] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

[38] Jennifer J. Sun, Tomomi Karigo, Dipam Chakraborty, Sharada Mohanty,
Benjamin Wild, Quan Sun, Chen Chen, David Anderson, Pietro Per-
ona, et al. “The Multi-Agent Behavior Dataset: Mouse Dyadic Social
Interactions.” In: Conference on Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track (2021).

[39] Jennifer J. Sun*, Megan Tjandrasuwita*, Atharva Sehgal*, Armando Solar-
Lezama, Swarat Chaudhuri, Yisong Yue, and Omar Costilla-Reyes. “Neu-
rosymbolic Programming for Science.” In: AI for Science Workshop at
Neural Information Processing Systems (NeurIPS) (2022). url: https:
//arxiv.org/pdf/2210.05050.pdf.

[40] Arash Vahdat and Jan Kautz. “Nvae: A Deep Hierarchical Variational
Autoencoder.” In: Advances in Neural Information Processing Systems.
2020.

https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2011.13917.pdf
https://arxiv.org/pdf/2210.05050.pdf
https://arxiv.org/pdf/2210.05050.pdf

115

[41] Lazar Valkov et al. “Houdini: Lifelong Learning as Program Synthesis.”
In: Advances in neural information processing systems. 2018.

[42] Abhinav Verma et al. “Programmatically interpretable reinforcement learn-
ing.” In: International Conference on Machine Learning. 2018.

[43] Eric Zhan et al. “Learning Calibratable Policies using Programmatic Style-
Consistency.” In: International Conference on Machine Learning. 2020.

[44] Eric Zhan*, Jennifer J. Sun*, Ann Kennedy, Yisong Yue, and Swarat
Chaudhuri. “Unsupervised Learning of Neurosymbolic Encoders.” In:
Transactions on Machine Learning Research (2022). url: https : / /
arxiv.org/pdf/2107.13132.pdf.

[45] Hui Zhang et al. “Unsupervised Feature Extraction for Time Series Clus-
tering Using Orthogonal Wavelet Transform.” In: Informatica 30.3 (2006).

[46] Yu Zhang et al. “A Survey on Neural Network Interpretability.” In: arXiv
preprint arXiv:2012.14261 (2020).

[47] Shengjia Zhao, Jiaming Song, and Stefano Ermon. “Learning Hierarchi-
cal Features from Generative Models.” In: International Conference on
Machine Learning. 2017.

https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2107.13132.pdf

Part III

Integrating Symbolic Domain
Knowledge with Learning

116

117

C h a p t e r 8

OVERVIEW

The standard supervised learning paradigm requires cleanly pre-defined labels and
large amounts of annotations, both of which are difficult or impossible to satisfy
for many scientific inquiries. To tackle this, we develop frameworks that learn
from scientists to directly incorporate existing domain knowledge into the model
(for example, [1]) as well as iteratively improve knowledge formulations from data
(for example, [3]). New algorithmic designs are needed to incorporate such struc-
tured knowledge. My approach is to develop neurosymbolic learning methods that
integrate symbolic knowledge from scientists with the flexibility of neural networks.

Figure 8.1: Example of a neurosymbolic program for mice investigation.

My work combines neural and symbolic components in ways that reveal new proper-
ties for neurosymbolic models as well as improve scientific workflows. In particular,
we explore the spectrum between:

• Symbolic models: These models typically encode explicit rules or knowledge
on the data (for example, a scientist may hand-craft a hypothesis on the data in
a general programming language). These models are often used in domains
where the underlying knowledge is well-understood, such as logic or physics
equations. However, symbolic models can be difficult to scale to complex
problems and noisy datasets. Techniques for finding symbolic models include
symbolic regression and program synthesis.

118

• Neurosymbolic models: Neurosymbolic models are models that combine neu-
ral networks with symbolic representations. They can learn from data in a way
that is similar to neural networks, but encode symbolic domain knowledge.
We explore a few ways to combine these modules; from symbolically-guided
training of neural networks, to using neural heuristics for more efficient search
of neurosymbolic and symbolic architectures.

• Neural models: These models are the most common in driving recent devel-
opments in machine learning and deep learning. Neural networks typically
have a large set of parameters, very high representation power, and are often
used in domains where the underlying knowledge is not well-understood (for
example, language modeling or computer vision). However, neural networks
can be difficult to interpret and explain. Works in interpretable ML either
focuses on post-hoc explanations, or learning inherently interpretable models.
Our work is more closely related to the latter.

Towards a general neurosymbolic framework, my work has studied algorithms using
neural relaxations to improve the scalability of differentiable program search [1] as
well as frameworks that connect symbolic programs and weak supervision to im-
prove data efficiency [3]. In addition, we found that integrating symbolic knowledge
also benefits structure discovery, as neurosymbolic models learn more meaningful
categories than neural networks alone [4]. I further highlighted opportunities at the
intersection of neurosymbolic models and science in a recent perspective paper [2]
for the ML community.

The works in this chapter consists of:

• Chapter 9: We guide the training of neural networks using symbolic domain
knowledge encoded as programs, to learn more data-efficient representations
of behavior.

• Chapter 10: We learn differentiable programs more efficiently, by using neural
heuristics to guide the search over the space of symbolic program architectures.

• Chapter 11: We synthesize programs from small amounts of data, and use
these programs to automatically supervise neural networks through active
learning and weak supervision.

119

• Chapter 12: We provide a perspective paper on the opportunities and chal-
lenges towards a deeper integration of neurosymbolic methods and science,
focused on behavior analysis.

References

[1] Ameesh Shah*, Eric Zhan*, Jennifer J. Sun, Abhinav Verma, Yisong Yue,
and Swarat Chaudhuri. “Learning Differentiable Programs with Admis-
sible Neural Heuristics.” In: Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), pp. 4940–4952. url: https://arxiv.
org/pdf/2007.12101.pdf.

[2] Jennifer J. Sun*, Megan Tjandrasuwita*, Atharva Sehgal*, Armando Solar-
Lezama, Swarat Chaudhuri, Yisong Yue, and Omar Costilla-Reyes. “Neu-
rosymbolic Programming for Science.” In: AI for Science Workshop at
Neural Information Processing Systems (NeurIPS) (2022). url: https:
//arxiv.org/pdf/2210.05050.pdf.

[3] Albert Tseng, Jennifer J. Sun, and Yisong Yue. “Automatic Synthesis of Di-
verse Weak Supervision Sources for Behavior Analysis.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022), pp. 2211–2220. url: https://arxiv.org/pdf/2111.
15186.pdf.

[4] Eric Zhan*, Jennifer J. Sun*, Ann Kennedy, Yisong Yue, and Swarat
Chaudhuri. “Unsupervised Learning of Neurosymbolic Encoders.” In:
Transactions on Machine Learning Research (2022). url: https : / /
arxiv.org/pdf/2107.13132.pdf.

https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2210.05050.pdf
https://arxiv.org/pdf/2210.05050.pdf
https://arxiv.org/pdf/2111.15186.pdf
https://arxiv.org/pdf/2111.15186.pdf
https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2107.13132.pdf

120

C h a p t e r 9

TASK PROGRAMMING

1. Record videos and extract tracking data.

2. Apply behavior classifier for scalability.

Human Annotation

Base Classifier
80k annotations

Classifier B
80k annotations +

10 programs

Classifier A
781k annotations

+701k
annotations

+10
programs

Base Classifier
80k annotations

Base Classifier
80k annotations

Classifier A
781k annotations

Classifier B
80k annotations +

10 programs

Classifier
A

Classifier
B

Base
Classifier

Figure 9.1: Overview of task programming. Part 1: A typical behavior study starts
with extraction of tracking data from videos. We show 7 keypoints for each mouse,
and draw the trajectory of the nose keypoint. Part 2: Domain experts can either do
data annotation (Classifier A) or task programming (Classifier B) to reduce classifier
error. The middle panel shows annotated frames at 30Hz. Colors in the bottom plot
represent interpolated performance based on classifier error at the circular markers.
The size of the marker represents the error variance.

This chapter is mainly based on the following paper:

[1] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

https://arxiv.org/pdf/2011.13917.pdf

121

Abstract. Specialized domain knowledge is often necessary to accurately annotate
training sets for in-depth analysis, but can be burdensome and time-consuming to
acquire from domain experts. This issue arises prominently in automated behavior
analysis, in which agent movements or actions of interest are detected from video
tracking data. To reduce annotation effort, we present TREBA: a method to learn
annotation-sample efficient trajectory embedding for behavior analysis, based on
multi-task self-supervised learning. The tasks in our method can be efficiently
engineered by domain experts through a process we call “task programming”, which
uses programs to explicitly encode structured knowledge from domain experts. Total
domain expert effort can be reduced by exchanging data annotation time for the
construction of a small number of programmed tasks. We evaluate this trade-off
using data from behavioral neuroscience, in which specialized domain knowledge is
used to identify behaviors. We present experimental results in three datasets across
two domains: mice and fruit flies. Using embeddings from TREBA, we reduce
annotation burden by up to a factor of 10 without compromising accuracy compared
to state-of-the-art features. Our results thus suggest that task programming and
self-supervision can be an effective way to reduce annotation effort for domain
experts.

9.1 Introduction
Behavioral analysis of one or more agents is a core element in diverse fields of re-
search, including biology [36, 25], autonomous driving [6, 40], sports analytics [43,
45], and video games [19, 3]. In a typical experimental workflow, the location and
pose of agents is first extracted from each frame of a behavior video, and then labels
for experimenter-defined behaviors of interest are applied on a frame-by-frame basis
based on the pose and movements of the agents. In addition to reducing human
effort, automated quantification of behavior can lead to more objective, precise, and
scalable measurements compared to manual annotation [1, 9]. However, training
behavior detection models can be data intensive and manual behavior annotation of-
ten requires specialized domain knowledge and high-frequency temporal labels. As
a result, this process of generating training datasets is time-consuming and effort-
intensive for experts. Therefore, methods to reduce annotation effort by domain
experts are needed to accelerate behavioral studies.

We study alternative ways for domain experts to improve classifier accuracy be-
yond simply increasing the sheer volume of annotations. In particular, we propose a
framework that unifies: (1) self-supervised representation learning, and (2) encoding

122

explicit structured knowledge on trajectory data using expert-defined programs. Do-
main experts can construct these programs efficiently because keypoint trajectories
in each frame are typically low dimensional, and experts can already hand-design
effective features for trajectory data [36, 27]. To best leverage this structured expert
knowledge, we develop a framework to learn trajectory representations based on
multi-task self-supervised learning, which has not been well-explored for trajectory
data.

Our Approach. Our framework, Trajectory Embedding for Behavior Analysis
(TREBA), learns trajectory representations through trajectory generation alongside
a set of decoder tasks based on expert-engineered programs. These programs are
created by domain experts through a process we call task programming, inspired
by the data programming paradigm [32]. Task programming is a process by which
domain experts identify trajectory attributes relevant to the behaviors of interest
under study, write programs, and apply those programs to inform representation
learning (Section 9.3). This flexibility in decoder tasks allows our framework to
be applicable to a variety of agents and behaviors studied across diverse fields of
research.

Expert Effort Tradeoffs. Since task programming will typically require a domain
expert’s time, we study the tradeoff between doing task programming and data
annotation. We compare behavior classification performance with different amounts
of annotated training data and programmed tasks. For example, for the domain
illustrated in Figure 9.1, domain experts can reduce error by 13% relative to the base
classifier by annotating 701k additional frames, or they can reduce error by 16%
by learning a representation using 10 programmed tasks in our framework. Our
approach allows experts to trade a large number of annotations for a small number
of programmed tasks.

We study our approach across two domains in behavioral neuroscience, namely
mouse and fly behavior. We chose this setting because it requires specialized domain
knowledge for data annotation, and data efficiency is important for domain experts.
Furthermore, decoder tasks in our framework can be efficiently programmed by
experts based on simple functions describing trajectory attributes for identifying
behaviors of interest. For example, for mouse social behaviors such as attack [36],
important behavior attributes include the speed of each mouse and distance between
mice. The corresponding task could then be to decode these attributes from the
learned representations.

123

To summarize our contributions:

• We introduce task programming as an efficient way for domain experts to
reduce annotation effort and encode structural knowledge. We develop a
novel method to learn an annotation-sample efficient trajectory representation
using self-supervision and programmatic supervision.

• We study the effect of task programming, data annotation, and different de-
coder losses on behavior classifier performance.

• We demonstrate these representations on three datasets in two domains, show-
ing that our method can lead to a 10× annotation reduction for mice, and 2×
for flies.

9.2 Related Work
Behavior Modeling. Behavior modeling using trajectory data is studied across a
variety of fields [25, 6, 40, 43, 19, 3]. In particular, there is an increasing effort
to automatically detect and classify behavior from trajectory data [22, 1, 14, 26,
12]. Our experiments are based on behavior classification datasets from behavioral
neuroscience [13, 4, 36], a field where specialized domain knowledge is important
for identifying behaviors of interest.

The behavior analysis pipeline generally consists of the following steps: (1) tracking
the pose of agents, (2) computing pose-based features, and (3) training behavior
classifiers [4, 20, 36, 27]. To address step 1, there are many existing pose estimation
models [13, 26, 17]. In our work, we leverage two existing pose models, [36] for
mice and [13] for flies, to produce trajectory data. In steps 2 and 3 of the typical
behavior analysis pipeline, hand-designed trajectory features are computed from the
animals’ pose, and classifiers are trained to predict behaviors of interest in a fully
supervised fashion [4, 20, 13, 36]. Training fully supervised behavior classifiers
requires time-consuming annotations by domain experts [1]. Instead, our proposed
approach enables domain experts to trade time-consuming annotation work for task
programming with representation learning.

Another group of work uses unsupervised methods to discover new motifs and
behaviors [21, 42, 2, 25, 5]. Our work focuses on the more common case where
domain experts already know what types of actions they would like to study in
an experiment. We aim to improve the data-efficiency of learning expert-defined
behaviors.

124

Task Programming

Examine trajectory data Select behavior attributes Write programs

dist_nose(x1, y1, x2, y2):
 x_diff = x2 - x1
 y_diff = y2 - y1
 dist = norm(x_diff, y_diff)

Domain Expert

Add decoder task
Annotate frame-level

 behavior

Classifier
Training

Feature
Extraction

Model
Training

Data Annotation

Mount OtherSniffDistance

Speed

Figure 9.2: Task Programming and Data Annotation for Classifier Training. Do-
main experts can choose between doing task programming and/or data annotation.
Task programming is the process for domain experts to engineer decoder tasks for
representation learning. The programs enable learning of annotation-sample effi-
cient trajectory features to improve performance instead of additional annotations.

Representation Learning. Visual representation learning has made great progress
in effective representations for images and videos [16, 15, 7, 28, 24, 18, 38]. Self-
supervised signals are often used to train this visual representation, such as learning
relative positions of image patches [10], predicting image rotations [15], predicting
future patches [28], and contrastive learning on augmented images [7]. Compared
to visual data, trajectory data is significantly lower dimensional in each frame, and
techniques from visual representation learning often cannot be applied directly. For
example, while we can create image patches that represent the same visual class,
it is difficult to select a partial set of keypoints that represent the same behavior.
Our framework builds upon these approaches to learn effective representations for
behavioral data.

We investigate different decoder tasks in order to learn an effective behavior repre-
sentation. One decoder task that we investigate is self-decoding: the reconstruction
of input trajectories using generative modeling. Generative modeling has previously
been applied to learn representations for visual data [46, 38, 28] and language mod-
eling [30]; for trajectory data, we use imitation learning [41, 44, 45] to train our
trajectory representation. The other tasks in our multi-task self-supervised learning
framework are created by domain experts using task programming (Section 9.3).
This idea of using a human-provided function as part of training has been studied for
training set creation [32, 31], and controllable trajectory generation [45]. Our work
explores these additional decoder tasks to further improve the learned representation
over the generative loss alone.

125

Train

Trajectory
Data

Trajectory
Encoder

Embedding Trajectory
Decoder

For each timestamp t

State at time t State
Prediction

Generated
Trajectory

Trajectory
Recon. Loss For each program

Attribute Decoder

Representation Decoder

Attribute
Decoding

Loss

Contrastive
Loss

Attribute
Consistency

 Loss

Inference

Trajectory
Data

Trajectory
Encoder

Embedding Downstream Model
(ex: Behavior Classifier)

Figure 9.3: TREBA Training and Inference Pipelines. During training, we use
trajectory self-decoding and the programmed decoder tasks to train the trajectory
encoder. The learned representation is used for downstream tasks such as behavior
classification.

Multi-Task Self-Supervised Learning. We jointly optimize a family of self-
supervised tasks in an encoder-decoder setup, making this work an example of
multi-task self-supervised learning. Multi-task self-supervised learning has been
applied to other domains such as visual data [11, 24], accelerometer recordings [35],
audio [33] and multi-modal inputs [37, 29]. Generally in each of these domains,
tasks are defined ahead of time, as is the case for tasks such as frame reconstruction,
colorization, finding relative position of image patches, and video-audio alignment.
Most of these tasks are designed for image or video data, and cannot be applied
directly to trajectory data. To construct tasks for trajectory representation learning,
we propose that domain experts can use task programming to engineer decoder tasks
and encode structural knowledge.

9.3 Method
We introduce Trajectory Embedding for Behavior Analysis (TREBA), a method to
learn an annotation-sample efficient trajectory representation using self-supervision
and auxiliary decoder tasks engineered by domain experts. Figure 9.2 provides
an overview of the expert’s role. In our framework, domain experts replace (a
significant amount of) time-consuming manual annotation with the construction of
a small number of programmed tasks, reducing total expert effort. Each task places
an additional constraint on the learned trajectory embedding.

TREBA uses the expert-programmed tasks based on a multi-task self-supervised
learning approach, outlined in Figure 9.3. To learn task-relevant low-dimensional
representations of pose trajectories, we train a network jointly on (1) reconstruction

126

of the input trajectory (Section 9.3) and (2) expert-programmed decoder tasks (Sec-
tion 9.3). The learned representation can then be used as input to behavior modeling
tasks, such as behavior classification.

Trajectory Representations
Let D be a set of 𝑁 unlabelled trajectories. Each trajectory 𝜏 is a sequence of

states 𝜏 = {(𝑠𝑡)}𝑇𝑡=1, where the state 𝑠𝑖 at timestep 𝑖 corresponds to the location or
pose of the agents at that timestep. In this study, we divide trajectories from longer
recordings into segments of length 𝑇 , but in general trajectory length can vary. For
multiple agents, the keypoints of each agent is stacked at each timestep.

Before we introduce our expert-programmed tasks, we will use trajectory recon-
struction as an initial self-supervised task. Given a history of agent states, we would
like our model to predict the next state. This task is usually studied with sequential
generative models. We used trajectory variational autoencoders (TVAEs) [34, 45]
to embed the input trajectory using an RNN encoder, 𝑞𝜙, and an RNN decoder, 𝑝𝜃 ,
to predict the next state. The TVAE loss is:

Ltvae = E𝑞𝜙

[𝑇∑︁
𝑡=1
− log(𝑝𝜃 (𝑠𝑡+1 |𝑠𝑡 , z))

]
+ 𝐷𝐾𝐿 (𝑞𝜙 (z|𝜏) | |𝑝𝜃 (z)). (9.1)

We use a prior distribution 𝑝𝜃 (z) on z to regularize the learned embeddings; in this
study, our prior is the unit Gaussian. By optimizing for the TVAE loss only, we
learn an unsupervised version of TREBA. When performing subsequent behavior
modeling tasks such as classification, we use the embedding mean, z𝜇.

Task Programming
Task programming is the process by which domain experts create decoder tasks for

trajectory self-supervised learning. This process consists of selecting attributes from
trajectory data, writing programs, and creating decoder tasks based on the programs
(Figure 9.2). Here, domain experts are people with specialized knowledge for
studying behavior, such as neuroscientists or sports analysts.

To start, domain experts identify attributes from trajectory data relevant to the
behaviors of interest under study. Behavior attributes capture information that is
likely relevant to agent behavior, but is not explicitly included in the trajectory states
{(𝑠𝑡)}𝑇𝑡=1. These attributes represent structured knowledge that domain experts
are implicitly or explicitly considering for behavior analysis, such as the distance
between two agents, agent velocity, or the relative positioning of agent body parts.

127
Domain Behavior Attributes
Mouse Facing Angle Mouse 1 and 2, Speed Mouse 1 and 2

Nose-Nose Distance, Nose-Tail Distance,
Head-Body Angle Mouse 1 and 2
Nose Movement Mouse 1 and 2

Fly Speed Fly 1 and 2, Fly-Fly Distance
Angular Speed Fly 1 and 2, Facing Angle Fly 1 and 2

Min and Max Wing Angles Fly 1 and 2
Major/Minor Axis Ratio Fly 1 and 2

Table 9.1: Behavior Attributes used in Task Programming. We base our pro-
grammed tasks in our experiments on these behavior attributes from domain experts
in each domain.

Next, domain experts write a program to compute these attributes on trajectory
data, which can be done with existing tools such as MARS [36] or SimBA [27].
Algorithm 3 shows a sample program from the mouse social behavior domain, for
measuring the “facing angle” between a pair of interacting mice. Each program can
be used to construct decoder tasks for self-supervised learning (Section 9.3).

Algorithm 3 Sample Program for Facing Angle
Input: centroid of mouse 1 (𝑥1, 𝑦1), centroid of mouse 2
(𝑥2, 𝑦2), heading of mouse 1 (𝜙1)
𝑥diff = 𝑥2 − 𝑥1
𝑦diff = 𝑦2 − 𝑦1
𝜃 = arctan(𝑦diff, 𝑥diff)
Return 𝜃 − 𝜙1

Our framework is inspired by the data programming paradigm [32], which applies
programs to training set creation. In comparison, our framework uses task pro-
gramming to unify expert-engineered programs, which encode structured expert
knowledge, with representation learning.

Working with domain experts in behavioral neuroscience, we created a set of pro-
grams to use in studying our approach. The selected programs are a subset of
behavior attributes in [36] (for mouse datasets) and a subset of behavior attributes in
[13] (for fly datasets). We list the programs used in Table 9.1, and see more details
about the programs in the Supplementary Material of [39].

Learning Algorithm
We develop a method to incorporate the programs from domain experts as additional
learning signals for TREBA. We consider the following three approaches: (1)

128

enforcing attribute consistency in generated trajectories (Section 9.3), (2) performing
attribute decoding directly (Section 9.3), (3) applying contrastive loss based on
program supervision (Section 9.3). Each of these methods applies a different loss
on the low-dimensional representation z of trajectory 𝜏. Any combinations of these
decoding tasks can be combined with self-decoding from Section 9.3 to inform the
trajectory embedding z.

Attribute Consistency

Let 𝜆 be a set of 𝑀 domain-expert-designed functions measuring agent behavior
attributes, such as agent velocity or facing angle. Recall that each𝜆 𝑗 , 𝑗 = 1...𝑀 takes
as input a trajectory 𝜏, and returns some expert-designed attribute 𝜆 𝑗 (𝜏) computed
from that trajectory. For 𝜆 𝑗 designed for a single frame, we apply the function to
the center frame of 𝜏. Attribute consistency aims to maintain the same behavior
attribute labels for the generated trajectory as the original. Let 𝜏 be the trajectory
generated by the TVAE given the same initial condition as 𝜏 and encoding z.The
attribute consistency loss is:

Lattr = E𝜏∼D

[𝑀∑︁
𝑗=1

1(𝜆 𝑗 (𝜏) ≠ 𝜆 𝑗 (𝜏))
]
. (9.2)

Here, we show the loss for categorical 𝜆 𝑗 , but in general, 𝜆 𝑗 can be continuous
and any loss measuring differences between 𝜆 𝑗 (𝜏) and 𝜆 𝑗 (𝜏) applies, such as mean
squared error. We do not require 𝜆 to always be differentiable, and we use the
differentiable approximation introduced in [45] to handle non-differentiable 𝜆.

Attribute Decoding

Another option is to decode each attribute 𝜆 𝑗 (𝜏) directly from the learned repre-
sentation z. Here we apply a shallow decoder 𝑓 to the learned representation, with
decoding loss:

Ldecode = E𝜏∼D

[𝑀∑︁
𝑗=1

1(𝑓 (𝑞𝜙 (z𝜇 |𝜏)) ≠ 𝜆 𝑗 (𝜏))
]
. (9.3)

Similar to Eq. (9.2), we show the loss for categorical 𝜆 𝑗 , however any type of 𝜆 may
be used.

Contrastive Loss

Lastly, the programmed tasks can be used to supervise contrastive learning of our
representation. For a trajectory 𝜏𝑖, and for each 𝜆 𝑗 , positive examples are those

129

trajectories with the same attribute class under 𝜆 𝑗 . For 𝜆 𝑗 with continuous outputs,
we create a discretized �̂� 𝑗 in which we apply fixed thresholds to divide the output
space into classes. For our work, we apply two thresholds for each program such
that our classes are approximately equal in size.

We apply a shallow decoder 𝑔 to the learned representation, and let g = 𝑔(𝑞𝜙 (z𝜇 |𝜏))
represent the decoded representation. We then apply the contrastive loss:

Lcntr. =

𝐵∑︁
𝑖=1

𝑀∑︁
𝑗=1

[
−1

𝑁𝑝𝑜𝑠(𝑖, 𝑗)

𝐵∑︁
𝑘=1

1𝑖≠𝑘 · 1𝜆 𝑗 (𝜏𝑖)=𝜆 𝑗 (𝜏𝑘)

· log
exp(g𝑖 · g𝑘/𝑡)∑𝑁

𝑙=1 1𝑖≠𝑙 · exp(g𝑖 · g𝑙/𝑡)

]
,

(9.4)

where 𝐵 is the batch size, 𝑁𝑝𝑜𝑠(𝑖, 𝑗) is the number of positive matches for 𝜏𝑖 with 𝜆 𝑗 ,
and 𝑡 > 0 is a scalar temperature parameter. Our form of contrastive loss supervised
by task programming is similar to the contrastive loss in [23] supervised by human
annotations. A benefit of task programming is that the supervision from programs
can be quickly and scalably applied to unlabelled datasets, as compared to expert
supervision which can be time-consuming. We note that the unsupervised version
of this contrastive loss is studied in [7], based on previous works such as [28].

Data Augmentation

We can perform data augmentation on trajectory data based on our expert-provided
programs. Given the set of all possible augmentations, we define Λ to be the
subset of augmentations that are attribute-preserving: that is, for all 𝜆 𝑗 in the set of
programs, 𝜆 𝑗 (𝜏) = 𝜆 𝑗 (Λ𝑚 (𝜏)) for some augmentation Λ𝑚 ∈ Λ. An example of a
valid augmentation in the mouse domain is reflection of the trajectory data.

All losses presented above can be extended with data augmentation, by replacing 𝜏
with Λ𝑚 (𝜏) in losses. For contrastive loss, adding data augmentation corresponds
to extending the batch size to 2𝐵, with 𝐵 samples from the original and augmented
trajectories.

The augmentations we use in our experiments are reflections, rotations, translations,
and a small Gaussian noise on the keypoints (mouse data only). In practice, we add
the loss for each decoder with and without data augmentation.

130

9.4 Experiments
Datasets
We work with datasets from behavioral neuroscience, where there are large-scale,
expert-annotated datasets from scientific experiments. We study behavior for the
laboratory mouse and the fruit fly, two of the most common model organisms in
behavioral neuroscience. For each organism, we first train TREBA using large
unannotated datasets: for the mouse domain we use an in-house dataset comprised
of approximately 100 hours of recorded diadic social interactions (Mouse100),
while for the fly domain we use the Fly vs. Fly dataset [13] without annotations.

After pre-training TREBA, we evaluate the suitability of our trajectory represen-
tation for supervised behavior classification (classifying frame-level behaviors on
continuous trajectory data), on three additional datasets:

MARS. The MARS dataset [36] is a recently released mouse social behavior dataset
collected in the same conditions as Mouse100. The dataset is annotated by neuro-
biologists on a frame-by-frame basis for three behaviors: sniff, attack, and mount.
We use the provided train, validation, and test split (781k, 352k, and 184k frames,
respectively). Trajectories are extracted by the MARS tracker [36].

CRIM13. CRIM13 [4] is a second mouse social behavior dataset manually anno-
tated on a frame-by-frame basis by experts. To extract trajectories, we use a version
of the the MARS tracker [36] fine-tuned on pose annotations on CRIM13. We
select a subset of videos from which trajectories can be reliably detected for a train,
validation and test split of 407k, 96k, and 142k frames, respectively. We evaluated
classifier performance on the same three behaviors as MARS (sniff, attack, mount).

CRIM13 is a useful test of the robustness of TREBA trained on Mouse100, as the
recording conditions in CRIM13 (image resolution 640×480, frame rate 25Hz, and
non-centered cage location) are different from those of Mouse100 (image resolution
1024 × 570, frame rate 30Hz, and centered cage location).

Fly vs. Fly (Fly). We use the Aggression and Courtship videos from the Fly
dataset [13]. These videos record interactions between a pair of flies annotated
on a frame-by-frame basis for social behaviors by domain experts. Our train,
validation and test split has 1067k, 162k, 322k frames, respectively. We use the
trajectories tracked by [13] and evaluate on all behaviors with more than 1000 frames
of annotations in the full training set (lunge, wing threat, tussle, wing extension,
circle, copulation).

131

Training and Evaluation Procedure
We use the attribute consistency loss (Section 9.3) and contrastive loss (Section 9.3)
to train TREBA using programs. With the same programs, we find that different loss
combinations result in similar performance, and that the combination of consistency
and contrastive losses performs the best overall. The results for all loss combinations
are provided in the Supplementary Material of [39].

For the datasets in the mouse domain (MARS and CRIM13) we train TREBA on
Mouse100, with 10 programs provided by mouse behavior domain experts. For the
Fly dataset, we train TREBA on the training split of Fly without annotations, with
13 programs provided by fly behavior domain experts. The full list is in Table 9.1.
We then use the trained encoder, with pre-trained frozen weights, as a trajectory
feature extractor over 𝑇 = 21 frames, where the representation for each frame is
computed using ten frames before and after the current frame.

We evaluate our classifiers, with and without TREBA features, using Mean Average
Precision (MAP). We compute the mean over behaviors of interest with equal
weighting. Our classifiers are shallow fully-connected neural networks on the input
features. To determine the relationship between classifier performance and training
set size, we sub-sample the training data by randomly sampling trajectories (with
lengths of 100 frames) to achieve a desired fraction of the training set size. Sampling
was performed to achieve a similar class distribution as the full training set. We train
each classifier nine times over three different random selections of the training data
for each training fraction (1%, 2%, 5%, 10%, 25%, 50%, 75%, 100%). Additional
implementation details are in the Supplementary Material of [39].

Main Results

We evaluate the data efficiency of our representation for supervised behavior clas-
sification, by training a classifier to predict behavior labels given both our learned
representation and one of either (1) raw keypoints or (2) domain-specific features
designed by experts. The TREBA+keypoints evaluation allows us to test the ef-
fectiveness of our representation without other hand-designed features, while the
TREBA+features evaluation is closer to most potential use cases. The domain-
specific features for mice are the trajectory features from [36] and features for flies
are the trajectory features from [4]. The input features are a superset of the programs
we use in Table 9.1.

132

8×10 2
10 1

3×10 1

5×10 1

7×10 1

9×10 1

Er
ro

r (
Lo

g
Sc

al
e)

A1. MARS Keypoints Data Efficiency
Keypoints
Keypoints + TREBA

B1. CRIM13 Keypoints Data Efficiency C1. Fly Keypoints Data Efficiency

10 2 10 1 100

Training Data Fraction (Log Scale)
8×10 2

10 1

3×10 1

5×10 1

7×10 1

9×10 1

Er
ro

r (
Lo

g
Sc

al
e)

A2. MARS Features Data Efficiency
Features
Features + TREBA

10 2 10 1 100

Training Data Fraction (Log Scale)

B2. CRIM13 Features Data Efficiency

10 2 10 1 100

Training Data Fraction (Log Scale)

C2. Fly Features Data Efficiency

Figure 9.4: Data Efficiency for Supervised Classification. Training data fraction
vs. classifier error on MARS (left), CRIM13 (middle) and fly (right). The blue
lines represent performance with baseline keypoints and features, and the orange
lines are with TREBA. The shaded regions correspond to the classifier standard
deviation over nine repeats. The gray dotted line marks the best observed classifier
performance when trained on the baseline features (using the full training set). Note
the log scale on both the x and y axes.

Our representation is able to improve the data efficiency for both keypoints and
domain-specific features, over all evaluated amounts of training data availability
(Figure 10.6). We discuss each dataset below:

MARS. Our representation significantly improves classification performance over
keypoints alone (Figure 10.6 A1). We achieve the same performance as the full
baseline training using only between 1% and 2% of the data. While this result
is partially because our representation contains temporal information, we can also
observe a significant increase in data efficiency in A2 compared to domain-specific
features, which also contains temporal features. Classifiers using TREBA has the
same performance as the full baseline training set with around 5% ∼ 10% of data
(i.e., 10× ∼ 20× improved annotation efficiency).

CRIM13. We test the transfer learning ability of our representation on CRIM13, a
dataset with different image properties than Mouse100, the training set of TREBA.
Our representation achieves the same performance as the baseline training with
keypoints using around 5% to 10% of the training data (Figure 10.6 B1). With
domain-specific features, TREBA uses 50% of the data annotation to have the same

133

performance as the full training baseline (i.e., 2× improved annotation efficiency).
Our representation is able to generalize to a different dataset of the same organism.

Fly. When using keypoints only, our representation requires 10% of the data
(Figure 10.6 C1) and for features, our representation requires 50% of the data
(Figure 10.6 C2) to achieve the same performance as full baseline training. This
corresponds to 2× improved annotation efficiency.

Model Ablations
We perform the following model ablations to better characterize our approach. In
this section, percentage error reduction relative to baseline is averaged over all
training fractions. Additional results are in the Supplementary Material of [39].

Varying Programmed Tasks. We test the performance of TREBA trained with
each single program provided by the domain experts in Table 9.1, and the average,
best, and worst performance is visualized in Figure 9.5. On average, representations
learned from a single program is better than using features alone, but using all
provided programs further improves performance.

For a single program, there could be a large variation in performance depending
on the selected program (Figure 9.5). While the best performing single program is
close in classifier MAP to using all programs, the worst performing program may
increase error, as in MARS and CRIM13. We further tested the performance using
more programs.

In the mouse domain, we found that with three randomly selected programs, the
variation between runs is much smaller compared to single programs (Supplemen-
tary Material of [39]). With three programs, we achieve comparable average error
reduction from baseline features to using all programs (MARS: 14.6% error reduc-
tion for 3 programs vs. 15.3% for all, CRIM13: 9.2% for 3 programs vs. 9.5%
for all). For the fly domain, we found that we needed seven programs to achieve
comparable performance (20.7% for 7 programs vs. 21.2% for all).

Varying Decoder Losses. When the programmed tasks are fixed, decoder losses
with different combinations of consistency (Section 9.3), decoding (Section 9.3), and
contrastive (Section 9.3) loss are similar in performance (Supplementary Material
of [39]). Additionally, we evaluate the TREBA framework without programmed
tasks, with decoder tasks using trajectory generation and unsupervised contrastive
loss. While self-supervised representations are also effective at reducing baseline
error, we achieve the best classifier performance using TREBA with programmed

134

10 2 10 1 100

Training Data Fraction (Log Scale)

10 1

3×10 1

5×10 1

2 × 10 1

4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

MARS Features with Program Variations
Features
Features + TREBA (1 program)
Features + TREBA (10 programs)

10 2 10 1 100

Training Data Fraction (Log Scale)

CRIM13 Features with Program Variations

10 2 10 1 100

Training Data Fraction (Log Scale)

Fly Features with Program Variations

Figure 9.5: Varying Programmed Tasks. Effect of varying number of programmed
tasks on classifier data efficiency. The shaded region corresponds to the best and
worst classifiers trained using a single programmed task from Table 9.1. The grey
dotted line corresponds to the value where the baseline features achieve the best
performance (using the full training set).

Keypoint Error Reduction (%)
Decoder Loss MARS CRIM13 Fly

TVAE 52.2 ± 4.0 34.7 ± 1.5 15.4 ± 2.1
TVAE+ 52.6 ± 3.9 37.4 ± 2.4 20.9 ± 1.7Unsup. Contrast
TVAE+

55.1± 3.0 41.1± 2.1 33.7± 1.2Contrast+Consist
Features Error Reduction (%)

Decoder Loss MARS CRIM13 Fly
TVAE 13.7 ± 1.8 8.2 ± 4.6 11.7 ± 4.7

TVAE+ 14.3 ± 2.2 8.9 ± 4.1 16.1 ± 1.7Unsup. Contrast
TVAE+

15.3± 2.1 9.5± 3.8 21.2± 4.5Contrast+Consist

Table 9.2: Decoder Error Reductions. Percentage error reduction relative to baseline
keypoints and domain-specific features for training with different decoder losses for
TREBA. The average is taken over all evaluated training fractions.

tasks (Table 9.2). Furthermore, we found that training trajectory representations
without self-decoding, using the contrastive loss from [7, 8], resulted in less effective
representations for classification (Supplementary Material of [39]).

Data Augmentation. We removed the losses using the data augmentation described
in Section 9.3, and found that performance was slightly lower for all datasets than
with augmentation. In particular, adding data augmentation decreases error by
1.2% on MARS, 2.5% on CRIM13, and 5.3% on Fly compared to without data
augmentation.

Pre-Training Variations The results shown for MARS was obtained with pre-
training TREBA on Mouse100, a large in-house mouse dataset with the same image
properties as MARS. Figure 9.6 demonstrates the effect of varying TREBA training

135

2 × 10 1

3 × 10 1

4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

MARS Keypoints with Pre-Training Variations
Keypoints + TVAE (MARS)
Keypoints + TVAE (Mouse100)
Keypoints + Programs (MARS)
Keypoints + Programs (Mouse100)

10 2 10 1 100

Training Data Fraction (Log Scale)

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1

2.2 × 10 1

2.4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

MARS Features with Pre-Training Variations
Features + TVAE (MARS)
Features + TVAE (Mouse100)
Features + Programs (MARS)
Features + Programs (Mouse100)

Figure 9.6: Pre-Training Data Variations. Effect of varying pre-training data on
classifier data efficiency for the MARS dataset. “TVAE” corresponds to training
TREBA with TVAE losses only, and “Programs” corresponds to training with all
programs.

data amount with TVAE only and with programs. For both keypoints and features,
we observe that TVAE (MARS) has the largest error. We see that error can be
decreased by either adding more data (features + TVAE (Mouse100) with 3.9%
decrease) or adding task programming (features + Programs (MARS) with 4.4%
decrease). Adding both more data and task programming results in an average
decrease of 5.7% error relative to TVAE (MARS) and the lowest average error.

Our experiments highlight, and quantify, the tradeoff between task programming
and data annotation. The choice of which is more effective will depend on the cost of
annotation and the level of expert understanding in identifying behavior attributes.
Directions in creating tools to facilitate program creation and data annotation will
help further accelerate behavioral studies.

References

[1] David J. Anderson and Pietro Perona. “Toward a Science of Computational
Ethology.” In: Neuron 84.1 (2014), pp. 18–31.

136

[2] Gordon J. Berman et al. “Mapping the Stereotyped Behaviour of Freely
Moving Fruit Flies.” In: Journal of the Royal Society Interface 11.99
(2014), p. 20140672.

[3] Brian Broll et al. “Customizing Scripted Bots: Sample-Efficient Imitation
Learning for Human-Like Behavior in Minecraft.” In: AAMAS Workshop
on Adaptive and Learning Agents. 2019.

[4] Xavier P. Burgos-Artizzu et al. “Social Behavior Recognition in Continu-
ous Video.” In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2012, pp. 1322–1329.

[5] Adam J. Calhoun, Jonathan W. Pillow, and Mala Murthy. “Unsupervised
Identification of the Internal States that Shape Natural Behavior.” In: Nature
neuroscience 22.12 (2019), pp. 2040–2049.

[6] Ming-Fang Chang et al. “Argoverse: 3D Tracking and Forecasting with
Rich Maps.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 8748–8757.

[7] Ting Chen et al. “A Simple Framework for Contrastive Learning of Vi-
sual Representations.” In: International Conference on Machine Learning
(2020).

[8] Ting Chen et al. “Big Self-Supervised Models Are Strong Semi-Supervised
Learners.” In: arXiv preprint arXiv:2006.10029 (2020).

[9] Anthony I. Dell et al. “Automated Image-Based Tracking and Its Applica-
tion in Ecology.” In: Trends in Ecology & Evolution 29.7 (2014), pp. 417–
428.

[10] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. “Unsupervised Visual
Representation Learning by Context Prediction.” In: Proceedings of the
IEEE International Conference on Computer Vision. 2015, pp. 1422–1430.

[11] Carl Doersch and Andrew Zisserman. “Multi-Task Self-Supervised Vi-
sual Learning.” In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 2051–2060.

[12] S. E. Roian Egnor and Kristin Branson. “Computational Analysis of Be-
havior.” In: Annual Review of Neuroscience 39 (2016), pp. 217–236.

[13] Eyrun Eyjolfsdottir et al. “Detecting Social Actions of Fruit Flies.” In:
European Conference on Computer Vision. Springer. 2014, pp. 772–787.

[14] Eyrun Eyjolfsdottir et al. “Learning Recurrent Representations for Hier-
archical Behavior Modeling.” In: International Conference on Learning
Representations (2017).

[15] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised Rep-
resentation Learning by Predicting Image Rotations.” In: ICLR (2018).

137

[16] Priya Goyal et al. “Scaling and Benchmarking Self-Supervised Visual
Representation Learning.” In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2019, pp. 6391–6400.

[17] Jacob M. Graving et al. “DeepPoseKit, a Software Toolkit for Fast and
Robust Animal Pose Estimation Using Deep Learning.” In: eLife 8 (2019),
e47994.

[18] Tengda Han, Weidi Xie, and Andrew Zisserman. “Video Representation
Learning by Dense Predictive Coding.” In: Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops. 2019.

[19] Katja Hofmann. “Minecraft as AI Playground and Laboratory.” In: Pro-
ceedings of the Annual Symposium on Computer-Human Interaction in
Play. 2019, pp. 1–1.

[20] Weizhe Hong et al. “Automated Measurement of Mouse Social Behav-
iors Using Depth Sensing, Video Tracking, and Machine Learning.” In:
Proceedings of the National Academy of Sciences 112.38 (2015), E5351–
E5360.

[21] Alexander I. Hsu and Eric A. Yttri. “B-SOiD: An Open Source Unsu-
pervised Algorithm for Discovery of Spontaneous Behaviors.” In: bioRxiv
(2020), p. 770271.

[22] Mayank Kabra et al. “JAABA: Interactive Machine Learning for Automatic
Annotation of Animal Behavior.” In: Nature Methods 10.1 (2013), p. 64.

[23] Prannay Khosla et al. “Supervised Contrastive Learning.” In: arXiv preprint
arXiv:2004.11362 (2020).

[24] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting Self-
Supervised Visual Representation Learning.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 1920–
1929.

[25] Kevin Luxem et al. “Identifying Behavioral Structure from Deep Varia-
tional Embeddings of Animal Motion.” In: bioRxiv (2020).

[26] Alexander Mathis et al. “DeepLabCut: Markerless Pose Estimation of User-
defined Body Parts with Deep Learning.” In: Nature neuroscience 21.9
(2018), pp. 1281–1289.

[27] Simon R.O. Nilsson et al. “Simple Behavioral Analysis (SimBA)–an Open
Source Toolkit for Computer Classification of Complex Social Behaviors
in Experimental Animals.” In: BioRxiv (2020).

[28] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation Learn-
ing with Contrastive Predictive Coding.” In: arXiv preprint arXiv:1807.03748
(2018).

138

[29] AJ Piergiovanni, Anelia Angelova, and Michael S. Ryoo. “Evolving Losses
for Unsupervised Video Representation Learning.” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 133–142.

[30] Alec Radford et al. Improving Language Understanding by Generative
Pre-Training. 2018.

[31] Alexander Ratner et al. “Snorkel: Rapid Training Data Creation with Weak
Supervision.” In: Proceedings of the VLDB Endowment. International
Conference on Very Large Data Bases. Vol. 11. 3. NIH Public Access.
2017, p. 269.

[32] Alexander J. Ratner et al. “Data Programming: Creating Large Training
Sets, Quickly.” In: Advances in Neural Information Processing Systems.
2016, pp. 3567–3575.

[33] Mirco Ravanelli et al. “Multi-Task Self-Supervised Learning for Robust
Speech Recognition.” In: ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020,
pp. 6989–6993.

[34] John Co-Reyes et al. “Self-Consistent Trajectory Autoencoder: Hierarchi-
cal Reinforcement Learning with Trajectory Embeddings.” In: Interna-
tional Conference on Machine Learning. 2018.

[35] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. “Multi-Task Self-Supervised
Learning for Human Activity Detection.” In: Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 3.2 (2019),
pp. 1–30.

[36] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[37] Abhinav Shukla, Stavros Petridis, and Maja Pantic. “Does Visual Self-
Supervision Improve Learning of Speech Representations?” In: arXiv
preprint arXiv:2005.01400 (2020).

[38] Chen Sun et al. “VideoBERT: A Joint Model for Video and Language
Representation Learning.” In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2019, pp. 7464–7473.

[39] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

https://arxiv.org/pdf/2011.13917.pdf

139

[40] Pei Sun et al. “Scalability in Perception for Autonomous Driving: Waymo
Open Dataset.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 2446–2454.

[41] Ziyu Wang et al. “Robust Imitation of Diverse Behaviors.” In: Advances
in Neural Information Processing Systems. 2017, pp. 5320–5329.

[42] Alexander B. Wiltschko et al. “Mapping Sub-Second Structure in Mouse
Behavior.” In: Neuron 88.6 (2015), pp. 1121–1135.

[43] Raymond A. Yeh et al. “Diverse Generation for Multi-Agent Sports Games.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 4610–4619.

[44] Eric Zhan et al. “Generating Multi-Agent Trajectories Using Programmatic
Weak Supervision.” In: International Conference on Learning Represen-
tations (2019).

[45] Eric Zhan et al. “Learning Calibratable Policies Using Programmatic Style-
Consistency.” In: International Conference on Machine Learning (2020).

[46] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks.” In: Computer Vision (ICCV), 2017
IEEE International Conference on. 2017.

140

C h a p t e r 10

PROGRAM LEARNING

Program
Synthesis

Trajectory
Data

Annotator 1

Annotator 2

Annotator 3

Temporal
Filter

Program

Behavior labels per frame
[Attack, Other]

Program
Synthesis

Program
Synthesis

Inputs Outputs

Filter
 weight

Filter
 weight

Filter
 weight

Frame #

AccelerationSelect(
MorletFilter())

AccelerationSelect(
MorletFilter())

SpeedSelect(
MorletFilter())

Figure 10.1: Overview of program learning for studying human annotation differ-
ences. Given trajectory data and behavior labels, we use program synthesis to learn
a programmatic description with temporal filters. These programs can be used to
compare differences across annotators.

This chapter is mainly based on the following papers:

[1] Ameesh Shah*, Eric Zhan*, Jennifer J. Sun, Abhinav Verma, Yisong Yue,
and Swarat Chaudhuri. “Learning Differentiable Programs with Admis-
sible Neural Heuristics.” In: Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), pp. 4940–4952. url: https://arxiv.
org/pdf/2007.12101.pdf.

[2] Megan Tjandrasuwita, Jennifer J. Sun, Ann Kennedy, Swarat Chaudhuri,
and Yisong Yue. “Interpreting Expert Annotation Differences in Animal
Behavior.” In: CV4Animals Workshop at the Conference on Computer
Vision and Pattern Recognition (CVPR) (2021). url: https://arxiv.
org/pdf/2106.06114.pdf.

Abstract. We study the problem of learning differentiable functions expressed
as programs in a domain-specific language. Such programmatic models can offer
benefits such as composability and interpretability; however, learning them requires
optimizing over a combinatorial space of program “architectures.” We frame this
optimization problem as a search in a weighted graph whose paths encode top-down

https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2106.06114.pdf
https://arxiv.org/pdf/2106.06114.pdf

141

derivations of program syntax. Our key innovation is to view various classes of neu-
ral networks as continuous relaxations over the space of programs, which can then
be used to complete any partial program. This relaxed program is differentiable and
can be trained end-to-end, and the resulting training loss is an approximately admis-
sible heuristic that can guide the combinatorial search. We instantiate our approach
on top of the A∗ algorithm and an iteratively deepened branch-and-bound search,
and use these algorithms to learn programmatic classifiers in three sequence classi-
fication tasks. Our experiments show that the algorithms outperform state-of-the-art
methods for program learning, and that they discover programmatic classifiers that
yield natural interpretations and achieve competitive accuracy.

10.1 Introduction
An emerging body of work advocates program synthesis as an approach to machine
learning. The methods here learn functions represented as programs in symbolic,
domain-specific languages (DSLs) [6, 7, 35, 29, 32, 31]. Such symbolic models have
a number of appeals: they can be more interpretable than neural models, they use
the inductive bias embodied in the DSL to learn reliably, and they use compositional
language primitives to transfer knowledge across tasks.

In this chapter, we study how to learn differentiable programs, which use structured,
symbolic primitives to compose a set of parameterized, differentiable modules.
Differentiable programs have recently attracted much interest due to their ability
to leverage the complementary advantages of programming language abstractions
and differentiable learning. For example, recent work has used such programs to
compactly describe modular neural networks that operate over rich, recursive data
types [29].

To learn a differentiable program, one needs to induce the program’s “architecture”
while simultaneously optimizing the parameters of the program’s modules. This
co-design task is difficult because the space of architectures is combinatorial and
explodes rapidly. Prior work has approached this challenge using methods such as
greedy enumeration, Monte Carlo sampling, Monte Carlo tree search, and evolution-
ary algorithms [32, 29, 8]. However, such approaches can often be expensive, due
to not fully exploiting the structure of the underlying combinatorial search problem.

We show that the differentiability of programs opens up a new line of attack on this
search problem. A standard strategy for combinatorial optimization is to exploit
(ideally fairly tight) continuous relaxations of the search space [21, 4, 34, 27, 17,

142

1, 31]. Optimization in the relaxed space is typically easier and can efficiently
guide search algorithms towards good or optimal solutions. In the case of program
learning, we propose to use various classes of neural networks as relaxations of
partial programs. We frame our problem as searching a graph, in which nodes
encode program architectures with missing expressions, and paths encode top-down
program derivations. For each partial architecture 𝑢 encountered during this search,
the relaxation amounts to substituting the unknown part of 𝑢 with a neural network
with free parameters. Because programs are differentiable, this network can be
trained on the problem’s end-to-end loss. If the space of neural networks is an
(approximate) proper relaxation of the space of programs (and training identifies
a near-optimum neural network), then the training loss for the relaxation can be
viewed as an (approximately) admissible heuristic.

We instantiate our approach, called Near (abbreviation for Neural Admissible
Relaxation), on top of two informed search algorithms: A∗ and an iteratively
deepened depth-first search that uses a heuristic to direct branching as well as
branch-and-bound pruning (Ids-bb). We evaluate the algorithms in the task of
learning programmatic classifiers in three behavior classification applications. We
show that the algorithms substantially outperform state-of-the-art methods for pro-
gram learning, and can learn classifier programs that bear natural interpretations
and are close to neural models in accuracy.

Contributions. First, we identify a tool — heuristics obtained by training neural re-
laxations of programs — for accelerating combinatorial searches over differentiable
programs. So far as we know, this is the first approach to exploit the differentiability
of a programming language in program synthesis. Second, we instantiate this idea
using two classic search algorithms. Third, we present promising experimental
results in three sequence classification applications.

10.2 Problem Formulation
We view a program in our domain-specific language (DSL) as a pair (𝛼, 𝜃), where
𝛼 is a discrete (program) architecture and 𝜃 is a vector of real-valued parameters.
The architecture 𝛼 is generated using a context-free grammar [14]. The grammar
consists of a set of rules 𝑋 → 𝜎1 . . . 𝜎𝑘 , where 𝑋 is a nonterminal and𝜎1, . . . , 𝜎𝑘 are
either nonterminals or terminals. A nonterminal stands for a missing subexpression;
a terminal is a symbol that can actually appear in a program’s code. The grammar

143

𝛼 ::= 𝑥 | 𝑐 | ⊕(𝛼1, . . . , 𝛼𝑘) | ⊕𝜃 (𝛼1, . . . , 𝛼𝑘) | if 𝛼1 then 𝛼2 else 𝛼3 | sel𝑆 𝑥
map (fun 𝑥1.𝛼1) 𝑥 | fold (fun 𝑥1.𝛼1) 𝑐 𝑥 | mapprefix (fun 𝑥1.𝛼1) 𝑥

Figure 10.2: Grammar of DSL for sequence classification. Here, 𝑥, 𝑐, ⊕, and
⊕𝜃 represent inputs, constants, basic algebraic operations, and parameterized
library functions, respectively. fun 𝑥.𝑒(𝑥) represents an anonymous function
that evaluates an expression 𝑒(𝑥) over the input 𝑥. sel𝑆 returns a vector consisting
of a subset 𝑆 of the dimensions of an input 𝑥.

starts with an initial nonterminal, then iteratively applies the rules to produce a
series of partial architectures: sentences made from one or more nonterminals and
zero or more terminals. The process continues until there are no nonterminals left,
i.e., we have a complete architecture.

The semantics of the architecture𝛼 is given by a function [[𝛼]] (𝑥, 𝜃), defined by rules
that are fixed for the DSL. We require this function to be differentiable in 𝜃. Also,
we define a structural cost for architectures. Let each rule 𝑟 in the DSL grammar
have a non-negative real cost 𝑠(𝑟). The structural cost of 𝛼 is 𝑠(𝛼) = ∑

𝑟∈R(𝛼) 𝑠(𝑟),
where R(𝛼) is the multiset of rules used to create 𝛼. Intuitively, architectures with
lower structural cost are simpler are more human-interpretable.

To define our learning problem, we assume an unknown distribution 𝐷 (𝑥, 𝑦)
over inputs 𝑥 and labels 𝑦, and consider the prediction error function 𝜁 (𝛼, 𝜃) =
E(𝑥,𝑦)∼𝐷 [1([[𝛼]] (𝑥, 𝜃) ≠ 𝑦)], where 1 is the indicator function. Our goal is to
find an architecturally simple program with low prediction error, i.e., to solve the
optimization problem:

(𝛼∗, 𝜃∗) = arg min
(𝛼,𝜃)

(𝑠(𝛼) + 𝜁 (𝛼, 𝜃)). (10.1)

Program Learning for Sequence Classification. Program learning is applicable
in many settings; we specifically study it in the sequence classification context.
Now we sketch our DSL for this domain. Like many others DSLs for program
synthesis [10, 2, 29], our DSL is purely functional. The language has the following
characteristics:

• Programs in the DSL operate over two data types: real vectors and sequences of
real vectors. We assume a simple type system that makes sure that these types are
used consistently.

• Programs use a set of fixed algebraic operations ⊕ as well as a “library” of differen-
tiable, parameterized functions ⊕𝜃 . Because we are motivated by interpretability,

144

map (fun 𝑥𝑡 .
if DistAffine[.0217];−.2785(𝑥𝑡)
then AccAffine[−.0007,.0055,.0051,−.0025];3.7426(𝑥𝑡)
else DistAffine[−.2143];1.822) (𝑥𝑡)) 𝑥

Figure 10.3: Synthesized program classifying a “sniff” action between two mice
in the CRIM13 dataset. DistAffine and AccAffine are functions that first select
the parts of the input that represent distance and acceleration measurements,
respectively, and then apply affine transformations to the resulting vectors. In
the parameters (subscripts) of these functions, the brackets contain the weight
vectors for the affine transformation, and the succeeding values are the biases.
The program achieves an accuracy of 0.87 (vs. 0.89 for RNN baseline) and can
be interpreted as follows: if the distance between two mice is small, they are
doing a “sniff” (large bias in else clause). Otherwise, they are doing a “sniff” if
the difference between their accelerations is small.

the library used in our current implementation only contains affine transforma-
tions. In principle, it could be extended to include other kinds of functions as
well.

• Programs use a set of higher-order combinators to recurse over sequences. In par-
ticular, we allow the standard map and fold combinators. To compactly express
sequence-to-sequence functions, we also allow a special mapprefix combina-
tor. Let 𝑔 be a function that maps sequences to vectors. For a sequence 𝑥,
mapprefix(𝑔, 𝑥) equals the sequence ⟨𝑔(𝑥 [1:1]), 𝑔(𝑥 [1:2]), . . . , 𝑔(𝑥 [1:𝑛])⟩, where
𝑥 [1:𝑖] is the 𝑖-th prefix of 𝑥.

• Programs can use a conditional branching construct. However, to avoid disconti-
nuities, we interpret this construct in terms of a smooth approximation:
[[if 𝛼1 > 0 then 𝛼2 else 𝛼3]] (𝑥, (𝜃1, 𝜃2, 𝜃3))

= 𝜎(𝛽 · [[𝛼1]] (𝑥, 𝜃1)) · [[𝛼2]] (𝑥, 𝜃2) + (1 − 𝜎(𝛽 · [[𝛼1]] (𝑥, 𝜃1))) · [[𝛼3]] (𝑥, 𝜃3).
(10.2)

Here, 𝜎 is the sigmoid function and 𝛽 is a temperature hyperparameter. As 𝛽→ 0,
this approximation approaches the usual if-then-else construct.

Figure 10.2 summarizes our DSL in the standard Backus-Naur form [33]. Figures
10.3 and 10.4 show two programs synthesized by our learning procedure using our
DSL with libraries of domain-specific affine transformations (see the supplementary

145

map (fun 𝑥𝑡 .
multiply(add(OffenseAffine(xt),BallAffine(xt)),

add(OffenseAffine(xt),BallAffine(xt))) 𝑥

Figure 10.4: Synthesized program classifying the ballhandler for basketball.
OffenseAffine() and BallAffine() are parameterized affine transformations over
the XY-coordinates of the offensive players and the ball (see the appendix for
full parameters). multiply and add are computed element-wise. The program
structure can be interpreted as computing the Euclidean norm/distance between
the offensive players and the ball and suggests that this quantity can be important
for determining the ballhandler. On a set of learned parameters (not shown),
this program achieves an accuracy of 0.905 (vs. 0.945 for an RNN baseline).

material of [26]). Both programs offer an interpretation in their respective domains,
while offering respectable performance against an RNN baseline.

10.3 Program Learning using Near
We formulate our program learning problem as a form of graph search. The search
derives program architectures top-down: it begins with the empty architecture,
generates a series of partial architectures following the DSL grammar, and terminates
when a complete architecture is derived.

In more detail, we imagine a graph G in which:

• The node set consists of all partial and complete architectures permissible in the
DSL.

• The source node 𝑢0 is the empty architecture. Each complete architecture 𝛼 is a
goal node.

• Edges are directed and capture single-step applications of rules of the DSL. Edges
can be divided into: (i) internal edges (𝑢, 𝑢′) between partial architectures 𝑢
and 𝑢′, and (ii) goal edges (𝑢, 𝛼) between partial architecture 𝑢 and complete
architecture 𝛼. An internal edge (𝑢, 𝑢′) exists if one can obtain 𝑢′ by substituting
a nonterminal in 𝑢 following a rule of the DSL. A goal edge (𝑢, 𝛼) exists if we
can complete 𝑢 into 𝛼 by applying a rule of the DSL.

• The cost of an internal edge (𝑢, 𝑢′) is given by the structural cost 𝑠(𝑟), where
𝑟 is the rule used to construct 𝑢′ from 𝑢. The cost of a goal edge (𝑢, 𝛼) is

146

𝑠(𝑟) + 𝜁 (𝛼, 𝜃∗), where 𝜃∗ = arg min𝜃 𝜁 (𝛼, 𝜃) and 𝑟 is the rule used to construct 𝛼
from 𝑢.

A path in the graph G is defined as usual, as a sequence of nodes 𝑢1, . . . , 𝑢𝑘 such
that there is an edge (𝑢𝑖, 𝑢𝑖+1) for each 𝑖 ∈ {1, . . . , 𝑘 − 1}. The cost of a path is the
sum of the costs of these edges. Our goal is to discover a least-cost path from the
source 𝑢0 to some goal node 𝛼∗. Then by construction of our edge costs, 𝛼∗ is an
optimal solution to our learning problem in Eq. Eq. 10.1.

Neural Relaxations as Admissible Heuristics

Figure 10.5: An example of program
learning formulated as graph search.
Structural costs are in red, heuristic val-
ues in black, prediction errors 𝜁 in blue,
O refers to a nonterminal in a partial ar-
chitecture, and the path to a goal node
returned by A*-Near search is in teal.

The main challenge in our search prob-
lem is that our goal edges contain rich
cost information, but this information
is only accessible when a path has been
explored until the end. A heuristic func-
tion ℎ(𝑢) that can predict the value of
choices made at nodes 𝑢 encountered
early in the search can help with this
difficulty. If such a heuristic is admissi-
ble — i.e., underestimates the cost-to-go
— it enables the use of informed search
strategies such as A∗ and branch-and-
bound while guaranteeing optimal so-
lutions. Our Near approach (abbrevia-
tion for Neural Admissible Relaxation)
uses neural approximations of spaces of
programs to construct a heuristic that is
𝜖-close to being admissible.

Let a completion of a partial archi-
tecture 𝑢 be a (complete) architecture
𝑢[𝛼1, . . . , 𝛼𝑘] obtained by replacing the nonterminals in 𝑢 by suitably typed archi-
tectures 𝛼𝑖. Let 𝜃𝑢 be the parameters of 𝑢 and 𝜃 be parameters of the 𝛼𝑖-s. The
cost-to-go at 𝑢 is given by:

𝐽 (𝑢) = min
𝛼1,...,𝛼𝑘 ,𝜃𝑢,𝜃

((𝑠(𝑢[𝛼1, . . . , 𝛼𝑘] − 𝑠(𝑢)) + 𝜁 (𝑢[𝛼1, . . . , 𝛼𝑘], (𝜃𝑢, 𝜃)) (10.3)

where the structural cost 𝑠(𝑢) is the sum of the costs of the grammatical rules used
to construct 𝑢.

147

To compute a heuristic cost ℎ(𝑢) for a partial architecture 𝑢 encountered during
search, we substitute the nonterminals in 𝑢 with neural networks parameterized by
𝜔. These networks are type-correct — for example, if a nonterminal is supposed
to generate subexpressions whose inputs are sequences, then the neural network
used in its place is recurrent. We show an example of Near used in a program
learning-graph search formulation in Figure 10.5.

We view the neurosymbolic programs resulting from this substitution as tuples
(𝑢, (𝜃𝑢, 𝜔)). We define a semantics for such programs by extending our DSL’s
semantics, and lift the function 𝜁 to assign costs 𝜁 (𝑢, (𝜃𝑢, 𝜔)) to such programs.
The heuristic cost for 𝑢 is now given by:

ℎ(𝑢) = min
𝑤,𝜃

𝜁 (𝑢, (𝜃𝑢, 𝜔)). (10.4)

As 𝜁 (𝑢, (𝜃𝑢, 𝜔)) is differentiable in 𝜔 and 𝜃𝑢, we can compute ℎ(𝑢) using gradient
descent.

𝜖-Admissibility. In practice, the neural networks that we use may only form an
approximate relaxation of the space of completions and parameters of architectures;
also, the training of these networks may not reach global optima. To account for
these errors, we consider an approximate notion of admissibility. Many such notions
have been considered in the past [13, 21, 28]; here, we follow a definition used by
Harris [13]. For a fixed constant 𝜖 > 0, let an 𝜖-admissible heuristic be a function
ℎ∗(𝑢) over architectures such that ℎ∗(𝑢) ≤ 𝐽 (𝑢) + 𝜖 for all 𝑢. Now consider any
completion 𝑢[𝛼1, . . . , 𝛼𝑘] of an architecture 𝑢. As neural networks with adequate
capacity are universal function approximators, there exist parameters 𝜔∗ for our
neurosymbolic program such that for all 𝑢, 𝛼1, . . . , 𝛼𝑘 , 𝜃𝑢, and 𝜃:

𝜁 (𝑢, (𝜃𝑢, 𝜔∗)) ≤ 𝜁 (𝑢[𝛼1, . . . , 𝛼𝑘], (𝜃𝑢, 𝜃)) + 𝜖 . (10.5)

Because edges in our search graph have non-negative costs, 𝑠(𝑢) ≤ 𝑠(𝑢[𝛼1, . . . , 𝛼𝑘]),
implying:
ℎ(𝑢) ≤ min

𝛼1,...,𝛼𝑘 ,𝜃𝑢,𝜃
𝜁 (𝑢[𝛼1, . . . , 𝛼𝑘], (𝜃𝑢, 𝜃)) + 𝜖

≤ min
𝛼1,...,𝛼𝑘 ,𝜃𝑢,𝜃

𝜁 (𝑢[𝛼1, . . . , 𝛼𝑘], (𝜃𝑢, 𝜃)) + (𝑠(𝑢[𝛼1, . . . , 𝛼𝑘]) − 𝑠(𝑢)) + 𝜖 = 𝐽 (𝑢) + 𝜖 .
(10.6)

In other words, ℎ(𝑢) is 𝜖-admissible.

Empirical Considerations. We have formulated our learning problem in terms
of the true prediction error 𝜁 (𝛼, 𝜃). In practice, we must use statistical estimates

148

of this error. Following standard practice, we use an empirical validation error
to choose architectures, and an empirical training error is used to choose module
parameters. This means that in practice, the cost of a goal edge (𝑢, 𝛼) in our graph
is 𝜁 val(𝛼, arg min𝜃 𝜁 train(𝛼, 𝜃)).

One complication here is that our neural heuristics encode both the completions of
an architecture and the parameters of these completions. Training a heuristic on
either the training loss or the validation loss will introduce an additional error. Using
standard generalization bounds, we can argue that for adequately large training and
validation sets, this error is bounded (with probability arbitrarily close to 1) in either
case, and that our heuristic is 𝜖-admissible with high probability in spite of this
error.

Integrating Near with Graph Search Algorithms

Algorithm 4 A* Search
1: Input: Graph G with source 𝑢0
2: 𝑆 := {𝑢0}; 𝑓 (𝑢0) := ∞
3: while 𝑆 ≠ ∅ do
4: 𝑣 := arg min𝑢∈𝑆 𝑓 (𝑢)
5: 𝑆 := 𝑆 \ {𝑣}
6: if 𝑣 is a goal node then
7: return 𝑣, 𝑓𝑣
8: else
9: for child 𝑢 of 𝑣 do

10: Compute 𝑔(𝑢), ℎ(𝑢), 𝑓 (𝑢)
11: 𝑆 := 𝑆 ∪ {𝑢}

The Near approach can be used in conjunction with any heuristic search algo-
rithm [23] over architectures. Specifically, we have integrated Near with two
classic graph search algorithms: A∗ [21] (Algorithm 4) and an iteratively deepened
depth-first search with branch-and-bound pruning (Ids-bb) (see Appendix of [26]
for more details). Both algorithms maintain a search frontier by computing an
𝑓 -score for each node: 𝑓 (𝑢) = 𝑔(𝑢) + ℎ(𝑢), where 𝑔(𝑢) is the incurred path cost
from the source node 𝑢0 to the current node 𝑢, and ℎ(𝑢) is a heuristic estimate of the
cost-to-go from node 𝑢. Additionally, Ids-bb prunes nodes from the frontier that
have a higher 𝑓 -score than the minimum path cost to a goal node found so far.

𝜖-Optimality. An important property of a search algorithm is optimality: when
multiple solutions exist, the algorithm finds an optimal solution. Both A∗ and Ids-

149

bb are optimal given admissible heuristics. An argument by Harris [13] shows that
under heuristics that are 𝜖-admissible in our sense, the algorithms return solutions
that at most an additive constant 𝜖 away from the optimal solution. Let 𝐶∗ denote
the optimal path cost in our graph G, and let ℎ(𝑢) be an 𝜖-admissible heuristic (Eq.
Eq. 10.6). Suppose Ids-bb or A∗ returns a goal node 𝛼𝐺 that does not have the
optimal path cost 𝐶∗. Then there must exist a node 𝑢𝑂 on the frontier that lies along
the optimal path and has yet to be expanded. This lets us establish an upper bound
on the path cost of 𝛼𝐺 :

𝑔(𝛼𝐺) = 𝑓 (𝛼𝐺) ≤ 𝑓 (𝑢𝑂) = 𝑔(𝑢𝑂) + ℎ(𝑢𝑂) ≤ 𝑔(𝑢𝑂) + 𝐽 (𝑢𝑂) + 𝜖 ≤ 𝐶∗ + 𝜖 .
(10.7)

This line of reasoning can also be extended to the Branch-and-Bound component
of the Near-guided Ids-bb algorithm. Consider encountering a goal node during
search that sets the branch-and-bound upper threshold to be a cost 𝐶. In the
remainder of search, some node 𝑢𝑝 with an 𝑓 -cost greater than 𝐶 is pruned, and the
optimal path from 𝑢𝑝 to a goal node will not be searched. Assuming the heuristic
function ℎ is 𝜖-admissible, we can set a lower bound on the optimal path cost from
𝑢𝑝, 𝑓 (𝑢∗𝑝), to be 𝐶 − 𝜖 by the following:

𝑓 (𝑢∗𝑝) = 𝑔(𝑢𝑝) + 𝐽 (𝑢𝑝) ≥ 𝑓 (𝑢𝑝) = 𝑔(𝑢𝑝) + ℎ(𝑢𝑝) + 𝜖 > 𝐶 = 𝑔(𝑢𝑝) + ℎ(𝑢𝑝) > 𝐶 − 𝜖 .
(10.8)

Thus, the Ids-bb algorithm will find goal paths are at worst an additive factor of 𝜖
more than any pruned goal path.

10.4 Experiments
Datasets for Sequence Classification
For all datasets below, we augment the base DSL in Figure 10.2 with domain-
specific library functions that include 1) learned affine transformations over a subset
of features, and 2) sliding window feature-averaging functions. Full details, such
as structural cost functions used and any pre/post-processing, are provided in the
appendix.

CRIM13. The CRIM13 dataset [3] contains trajectories for a pair of mice engaging
in social behaviors, annotated for different actions per frame by behavior experts; we
aim to learn programs for classifying actions at each frame for fixed-size trajectories.
Each frame is represented by a 19-dimensional feature vector: 4 features capture

150

the 𝑥𝑦-positions of the mice, and the remaining 15 features are derived from the
positions, such as velocities and distance between mice. We learn programs for two
actions that can be identified the tracking features: “sniff” and “other” (“other” is
used when there is no behavior of interest occurring). We cut every 100 frames
as a trajectory, and in total we have 12404 training, 3077 validation, and 2953 test
trajectories.

Fly-vs.-Fly. We use the Aggression and Boy-meets-Boy datasets within the Fly-vs.-
Fly environment that tracks a pair of fruit flies and their actions as they interact in
different contexts [9]. We aim to learn programs that classify trajectories as one of 7
possible actions displaying aggressive, threatening, and nonthreatening behaviors.
The length of trajectories can range from 1 to over 10000 frames, but we segment the
data into trajectories with a maximum length of 300 for computational efficiency.
The average length of a trajectory in our training set is 42.06 frames. We have 5339
training, 594 validation, and 1048 test trajectories.

Basketball. We use a subset of the basketball dataset from [36] that tracks the
movements of professional basketball players. Each trajectory is of length 25 and
contains the 𝑥𝑦-positions of 5 offensive players, 5 defensive players, and the ball
(22 features per frame). We aim to learn programs that can predict which offensive
player has the ball (the "ballhandler”) or whether the ball is being passed. In total,
we have 18,000 trajectories for training, 2801 for validation, and 2693 for test.

Overview of Baseline Program Learning Strategies
We compare our Near-guided graph search algorithms, A*-Near and Ids-bb-
Near, with four baseline program learning strategies: 1) top-down enumeration, 2)
Monte-Carlo sampling, 3) Monte-Carlo tree search, and 4) a genetic algorithm. We
also compare the performance of these program learning algorithms with an RNN
baseline (1-layer LSTM).

Top-down enumeration. We synthesize and evaluate complete programs in order
of increasing complexity measured using the structural cost 𝑠(𝛼). This strategy is
widely employed in program learning contexts [29, 32, 31] and is provably complete.
Since our graphG grows infinitely, our implementation is akin to breadth-first search
up to a specified depth.

Monte-Carlo (MC) sampling. Starting from the source node 𝑢0, we sample com-
plete programs by sampling rules (edges) with probabilities proportional to their
structural costs 𝑠(𝑟). The next node chosen along a path has the best average per-

151

formance of samples that descended from that node. We repeat the procedure until
we reach a goal node and return the best program found among all samples.

152

CRIM13-sniff CRIM13-other Fly-vs.-Fly Bball-ballhandler
Acc. F1 Depth Acc. F1 Depth Acc. F1 Depth Acc. F1 Depth

Enum. .851 .221 3 .707 .762 2 .819 .863 2 .844 .857 6.3
MC .843 .281 7 .630 .715 1 .833 .852 4 .841 .853 6
MCTS .745 .338 8.7 .666 .749 1 .817 .857 4.7 .711 .729 8
Genetic .829 .181 1.7 .727 .768 3 .850 .868 6 .843 .853 6.7
Ids-bb-Near .829 .446 6 .729 .768 1.3 .876 .892 4 .889 .903 8
A*-Near .821 .369 6 .706 .764 2.7 .872 .885 4 .906 .918 8
RNN .889 .481 - .756 .785 - .963 .964 - .945 .950 -

Table 10.1: Mean accuracy, F1-score, and program depth of learned programs
(3 trials). Programs found using our Near algorithms consistently achieve better
F1-score than baselines and match more closely to the RNN’s performance. Our
algorithms are also able to search and find programs of much greater depth than the
baselines. Experiment hyperparameters are included in the appendix of [26].

Monte-Carlo tree search (MCTS). Starting from the source node 𝑢0, we traverse
the graph until we reach a complete program using the UCT selection criteria [16],
where the value of a node is inversely proportional to the cost of its children.1 In the
backpropagation step we update the value of all nodes along the path. After some
iterations, we choose the next node in the path with the highest value. We repeat the
procedure until we reach a goal node and return the best program found.

Genetic algorithm. We follow the formulation in Valkov et al. [29]. In our genetic
algorithm, crossover, selection, and mutation operations evolve a population of
programs over a number of generations until a predetermined number of programs
have been trained. The crossover and mutation operations only occur when the
resulting program is guaranteed to be type-safe.

For all baseline algorithms, as well as A*-Near and Ids-bb-Near, model parameters
(𝜃) were learned with the training set, whereas program architectures (𝛼) were
evaluated using the performance on the validation set. Additionally, all baselines
(including Near algorithms) used F1-score error as the evaluation objective 𝜁

by which programs were chosen. To account for class imbalances, F1-scoring is
commonly used as an evaluation metric in behavioral classification domains, such
as those considered in our work [9, 3]. Our full implementation is available in [25].

1MCTS with this node value definition will visit shallow programs more frequently than MC
sampling.

153

Figure 10.6: Median minimum path cost to a goal node found at a given time, across
3 trials (for trials that terminate first, we extend the plots so the median remains
monotonic). A*-Near (blue) and Ids-bb-Near (green) will often find a goal node
with a smaller path cost, or find one of similar performance but much faster.

(a) CRIM13-sniff (b) Bball-ballhandler

Figure 10.7: As we
increase 𝜆 in Eq.
Eq. 10.9, we observe
that A*-Near will learn
programs with decreas-
ing program depth and
also decreasing F1-
score. This highlights
that we can use 𝜆 to
control the trade-off
between structural cost
and performance.

Experimental Results
Performance of learned programs. Table 10.1 shows the performance results on
the test sets of our program learning algorithms, averaged over 3 seeds. The same
structural cost function 𝑠(𝛼) is used for all algorithms, but can vary across domains
(see Appendix). Our Near-guided search algorithms consistently outperform other
baselines in F1-score while accuracy is comparable (note that our 𝜁 does not include
accuracy). Furthermore, Near-guided search algorithms are capable are finding
deeper and more complex programs that can offer non-trivial interpretations, such
as the ones shown in Figures 10.3 and 10.4. Lastly, we verify that our learned
programs are comparable with highly expressive RNNs, and see that there is at most
a 10% drop in F1-score when using Near-guided search algorithms with our DSL.

Efficiency of Near-guided graph search. Figure 10.6 tracks the progress of each
program learning algorithm during search by following the median best path cost

154

(Eq. 10.1) at a given time across 3 independent trials. For times where only 2 trials
are active (i.e., one trial had already terminated), we report the average. Algorithms
for each domain were run on the same machine to ensure consistency, and each
non-Near baseline was set up such to have at least as much time as our Near-
guided algorithms for their search procedures (see Appendix). We observe that
Near-guided search algorithms are able to find low-cost solutions more efficiently
than existing baselines, while maintaining an overall shorter running time.

Cost-performance trade-off. We can also consider a modification of our objective
in Eq. Eq. 10.1 that allows us to use a hyperparameter 𝜆 to control the trade-off
between structural cost (a proxy for interpretability) and performance:

(𝛼∗, 𝜃∗) = arg min
(𝛼,𝜃)

(𝜆 · 𝑠(𝛼) + 𝜁 (𝛼, 𝜃)). (10.9)

To visualize this trade-off, we run A*-Near with the modified objective Eq. Eq. 10.9
for various values of 𝜆. Note that 𝜆 = 1 is equivalent to our experiments in Table
10.1. Figure 10.7 shows that for the Basketball and CRIM13 datasets, as we increase
𝜆, which puts more weight on the structural cost, the resulting programs found
by A*-Near search have decreasing F1-scores but are also more shallow. This
confirms our expectations that we can control the trade-off between structural cost
and performance, which allows users of Near-guided search algorithms to adjust to
their preferences. Unlike the other two experimental domains, the most performant
programs learned in Fly-vs.-Fly were relatively shallow, so we omitted this domain
as the trade-off showed little change in program depth.

We illustrate the implications of this tradeoff on interpretability using the depth-2
program in Figure 10.8 and the depth-8 program in Figure 10.9, both synthesized
for the same task of detecting a “sniff” action in the CRIM13 dataset. The depth-2
program says that a “sniff” occurs if the intruder mouse is close to the right side of
the cage and both mice are near the bottom of the cage, and can be seen to apply
a position bias (regarding the location of the action) on the action. This program
is simple, due to the large weight on the structural cost, and has a low F1-score.
In contrast, the deeper program in Figure 10.9 has performance comparable to an
RNN but is more difficult to interpret. Our interpretation of this program is that it
evaluates the likelihood of “sniff” by applying a position bias, then using the velocity
of the mice if the mice are close together and not moving fast, and using distance
between the mice otherwise.

155

mapprefix (fun 𝑥𝑡 .SlidingWindowAverage(PositionAffine(𝑥𝑡))) 𝑥

Figure 10.8: Synthesized depth 2 program classifying a “sniff” action between
two mice in the CRIM13 dataset. The sliding window average is over the last
10 frames. The program achieves F1 score of 0.22 (vs. 0.48 for RNN baseline).
This program is synthesized using 𝜆 = 8.

map (fun 𝑥𝑡 . add(PositionAffine(𝑥𝑡),
if (add(VelocityAffine(𝑥𝑡), DistAffine(𝑥𝑡)) > 0)
then VelocityAffine(𝑥𝑡) else DistAffine(𝑥𝑡))) 𝑥

Figure 10.9: Synthesized depth 8 program classifying a “sniff” action between
two mice in the CRIM13 dataset. The program achieves F1 score of 0.46 (vs.
0.48 for RNN baseline). This program is synthesized using 𝜆 = 1.

10.5 Interpreting Annotation Differences
Supervised algorithms for animal behavior quantification have become a powerful
tool for characterizing the structure of behavior and its regulation by genes and the
brain [15, 20]. However, different individuals perceive and describe the world in
different ways, and this can create significant inter-annotator and inter-lab differ-
ences in the behavioral annotations used to construct such supervised classifiers.
Annotator variability has been observed in animal behavior studies, even among
experts studying the same behaviors [18, 24]. To improve reproducibility and anno-
tator consensus in behavioral experiments, we propose a method for automatically
generating interpretations of human behavior annotations.

Existing behavior classification models are typically black-box models trained to
reproduce human annotations. While these models can achieve high accuracy in
the hands of individual labs, it is difficult to interpret differences between models
or training sets produced by different individuals [24, 20]. Previous studies have
proposed methods for post-hoc interpretation of trained models [19, 22], but the
large number of dimensions and parameters in modern machine learning models
can make it difficult to understand how annotators use specific features to annotate
behavior.

To overcome these limitations, we use program synthesis to generate programmatic
descriptions from behavior annotations, which can be interpreted without the need

156

for post-hoc analysis. Program synthesis learns symbolic models from domain-
specific languages [30, 35, 26, 7]. We introduce a domain-specific language for
behavior classification, which includes learnable temporal filters and feature selec-
tions to identify behaviorally relevant features of animal movement. We incorporate
our setup into an existing program synthesis method [26], described earlier in this
Section, to jointly search through the combinatorially large space of program archi-
tectures and optimize parameters. Our approach produces a program with temporal
filters for modeling expert annotations, which domain experts qualitatively found to
be interpretable for behavior analysis.

Approach using Learnable Temporal Filters
We develop a DSL from which program synthesis methods can find interpretable
programs, based on the Morlet wavelet [11, 12]. To learn temporal information, our
DSL includes a Morlet Filter operation that maps a sequence of vectors to a single
vector by taking a weighted sum of the input sequence. The Morlet Filter, denoted
by 𝜓, first does a one-to-one mapping between frames 1, . . . , 𝑛 in the sliding window
to values 𝑥1, . . . , 𝑥𝑛, where 𝑥𝑖 ∈ [−𝜋, 𝜋] ∀𝑖 = 1, . . . , 𝑛. 𝜓 is then evaluated at each
𝑥𝑖 and is defined as:

𝜓(𝑥; 𝑠, 𝑤) = 𝑒−0.5
(

𝑥
(𝑠/𝑤)

)2

cos(𝑤𝑥),
where 𝑥 ∈ [−𝜋, 𝜋] .

The Morlet Filter is parameterized by 𝑠, 𝑤, where𝑤 determines the width of the filter
and 𝑠 controls the wavelet frequency. In our experiments, we use a generalization
of the symmetric Morlet Filter by allowing the form of the Morlet Filter to differ
between the frames preceding and following the predicted frame. Specifically, the
left (preceding) Morlet Filter is parameterized by 𝑠1, 𝑤1 whereas the right (following)
is parameterized by 𝑠2, 𝑤2, resulting in the asymmetric Morlet Filter that we include
in our DSL.

Our DSL also includes affine transformations of the following form, where 𝑊 is a
matrix of weights, 𝑥 is a feature vector, and 𝑏 is a learned bias:

𝑇 (𝑥) = 𝑊𝑇𝑥 [𝑖1, . . . , 𝑖𝑛] + 𝑏.
Given a full feature vector 𝑥, the transformation selects a subset of features at indices
𝑖1, . . . , 𝑖𝑛 and applies a simple linear layer to the feature subset. For the purpose of
interpretability, we limit 𝑛 to be 1 or 2, i.e., the transformations either select a single
feature, or the two same features for the resident and intruder mice.

157

Within our DSL, the Morlet Filter operation is differentiable with respect to pa-
rameters 𝑠, 𝑤, allowing the shape of the filter to be discovered through gradient
optimization. Similarly, the weights and bias 𝑊, 𝑏 of each affine transformation 𝑇
are amenable to gradient descent.

Disjunctions. Our DSL allows disjunctions of two or more Morlet Filter operations.
The output of a complete Morlet Filter program (the Morlet Filter applied to a
sequence of feature vectors, followed by an affine transformation) is a logit. A
disjunction combines the predictions of each filter by summing up the outputted
logits. In order to reduce variability in the programs found by the disjunction, we
perform separate runs of NEAR to find each filter in the disjunction. Once a filter
in the disjunction is found, its weights are frozen when discovering the structure
and optimizing the parameters of the subsequent filters. This encourages each
subsequent filter to explain variance in the dataset that has not been captured by the
previous filters.

Experiments to Compare Annotations
Dataset. We use a subset of the MARS [24] dataset for studying annotator vari-
ability, which consists of ten 10-minute videos at 30Hz of socially interacting mice
from a standard resident-intruder assay. These videos are independently annotated
for three behaviors of interest by each of nine domain experts. As input, we use a
subset of domain-specific features from the MARS dataset: 1) for both mice, we
compute head-body angle, body axis ratio, speed, acceleration, tangential velocity,
social angle, 2) across mice, we compute area ellipse ratio, whether resident is
facing intruder, and minimum distance of resident nose to intruder body. Here, we
consider two binary classification tasks: interact vs. no-interact, and aggression
vs. no-aggression. Interaction is defined as frames on which one mouse is sniffing,
attacking, or mounting the other; aggression is defined as periods of high-intensity
biting, chasing, or grappling.

Evaluation Procedure
We compare the performance of our discovered programs with the following base-
lines: 1) Decision Trees, a popular choice for both performance and interpretability;
2) 1D Convolutional Neural Networks, a black-box model that is well-suited for
processing temporal signals.

Decision Trees (DT). Decision trees are constructed by finding yes/no questions that
split the data into the most homogeneous groups. We implement DTs using XGBoost

158

Figure 10.10: Performance of Models Trained on 100% Training Data. Bars
reflect mean F1 score of each model when trained and tested separately on each of
the nine annotators in the MARS dataset.

[5], a popular framework for training tree ensembles, and test tree classifiers of
varying complexity. As input to the decision trees, we pass handcrafted temporal
features, produced by convolving our 15 behavior features or their first or second
derivatives with a Gaussian filter with standard deviations of 8, 30, or 120 frames
This produced 135 total features: 15 original features * 3 derivative orders (0, 1,
and 2) * 3 filter widths.

1D Convolutional Networks (1D Conv). In a similar manner to a Morlet Filter, a
1D convolutional neural network produces a weighted sum of a given sequence of
vectors- however unlike the Morlet Filter, weights are not constrained to have any
specific temporal structure. The 1D Conv Net learns a set of weights to convolve
with each input feature over time, and the logits from all features are summed for
the output predictions.

Evaluation Details. We defined a window of +/- 5 seconds centered about the frame
for which behavior was to be predicted, and extracted features of animal poses within
this window. We then downsampled data from 30Hz to 6Hz, producing vectors of
length 61 for each of the 15 features.

We evaluated all models using the F1-score, defined as the harmonic mean of
Precision and Recall. We selected 6 videos for training (106k frames), 2 for val-

159

Program Filters Decision Trees 1D Conv Net

Program Filters Decision Trees 1D Conv Net

Figure 10.11: Comparing models for two annotators. Each row represents the
visualized model trained on aggression vs. nonaggression annotations for one
annotator. Left: The program filters are from the learned disjunctions, and shows the
weight applied at each timestamp for normalized trajectory features from program
synthesis. Center: Depth 1 decision tree with branches. Right: Neural network
weights on a subset of input features, matching each annotator’s disjunction features.

idation (40k frames), and 2 for test (39k frames). To compare data efficiency, we
sub-sampled the training data by randomly sampling trajectories of 1000 frames
to achieve desired fractions of the training set size. The sampling also retained a
similar class distribution as the full training set. For every data fraction (1%, 10%,
50%), we create three different random samples and train all models three times for
each sample. The results are reported on the average across these nine repeats, and
across the nine annotators.

Results
Accuracy. Synthesized programs with a disjunction of two filters achieve the highest
F1 score for detection of interaction, and are comparable to the Decision Tree (DT)
for detection of aggression (Figure 10.10). Programs with a single filter had slightly
lower F1 scores compared to the disjunction. For the DTs, the single depth 1 DT is
much simpler than 10 depth 5 DTs. Single DT performs better on aggression, which
implies that thresholding on one feature is able to classify aggression accurately and
the deeper DT is more prone to overfitting. On the other hand, a more complex DT
is needed to perform better on interaction.

In terms of data efficiency, disjunctions also remain the highest performing model
on interact vs. other (Figure 10.12). On aggression, disjunctions are comparable
to the single depth 1 DT. Because of increased model complexity, the 1D Conv

160

Figure 10.12: Data Efficiency on Behavior Sequence Classification. F1-score
averaged across annotators vs. training data fraction on the aggression vs. non-
aggression task (left) and interact vs. other task (right).

Figure 10.13: Visualization of our learned filters in Bento [24].

Net is generally less data efficient compared to our model. We verified that the
variance in performance of both disjunctions and Morlet Filters are either less than
or comparable to variance found in the baseline models.

Interpretability. We next visualized our models and baselines (Figure 10.11). All
three models include some aspect of temporal filtering of the data, however we argue
that visualization and interpretation of this filtering is clearest for the disjunctions.
The Conv Net filters appear as noisy versions of the disjunction filters, but without
the disjunction filters as reference it is difficult for a domain expert to discern their
structure. Filtering in the decision tree is implicit (in the names of the features
used), and interpreting the numerical thresholds and leaf values is challenging. In
contrast, the smoothness of the disjunction filters makes them easy to read, and their
asymmetry around the predicted frame allows them to produce a variety of temporal
structures. For domain experts to visualize our model more easily, we also added
support for visualization of our trained models and their output within Bento [24]
(Figure 10.13).

161

References

[1] Amitava Bagchi and Ambuj Mahanti. “Admissible Heuristic Search in
AND/OR Graphs.” In: Theoretical Computer Science 24.2 (1983), pp. 207–
219.

[2] Matej Balog et al. “DeepCoder: Learning to Write Programs.” In: 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. 2017.

[3] Xavier P. Burgos-Artizzu et al. “Social Behavior Recognition in Continu-
ous Video.” In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2012, pp. 1322–1329.

[4] Eugene Charniak and Saadia M. Husain. A New Admissible Heuristic for
Minimal-Cost Proofs. Brown University, Department of Computer Science,
1991.

[5] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System.” In: Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. 2016, pp. 785–794.

[6] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. “Sampling for
Bayesian Program Learning.” In: Advances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain. Ed. by Daniel D. Lee et
al. 2016, pp. 1289–1297. url: http://papers.nips.cc/paper/6082-
sampling-for-bayesian-program-learning.

[7] Kevin Ellis et al. “Learning to Infer Graphics Programs from Hand-Drawn
Images.” In: Advances in Neural Information Processing Systems. 2018,
pp. 6059–6068.

[8] Kevin Ellis et al. “Write, Execute, Assess: Program Synthesis with a
REPL.” In: Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wal-
lach et al. 2019, pp. 9165–9174. url: http://papers.nips.cc/paper/
9116-write-execute-assess-program-synthesis-with-a-repl.

[9] Eyrun Eyjolfsdottir et al. “Detecting Social Actions of Fruit Flies.” In:
European Conference on Computer Vision. Springer. 2014, pp. 772–787.

[10] John K. Feser, Swarat Chaudhuri, and Isil Dillig. “Synthesizing Data Struc-
ture Transformations from Input-Output Examples.” In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015. 2015, pp. 229–239.
doi: 10.1145/2737924.2737977. url: https://doi.org/10.1145/
2737924.2737977.

http://papers.nips.cc/paper/6082-sampling-for-bayesian-program-learning
http://papers.nips.cc/paper/6082-sampling-for-bayesian-program-learning
http://papers.nips.cc/paper/9116-write-execute-assess-program-synthesis-with-a-repl
http://papers.nips.cc/paper/9116-write-execute-assess-program-synthesis-with-a-repl
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977

162

[11] Dennis Gabor. “Theory of Communication.” In: Journal of the Institution
of Electrical Engineers-Part III: Radio and Communication Engineering
93.26 (1946), pp. 429–441.

[12] Alexandre Grossmann, Richard Kronland-Martinet, and Jean Morlet. “Read-
ing and Understanding Continuous Wavelet Transforms.” In: Wavelets.
Springer, 1990, pp. 2–20.

[13] Larry R. Harris. “The Heuristic Search Under Conditions of Error.” In:
Artificial Intelligence 5.3 (1974), pp. 217–234.

[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation, 3rd Edition. Pearson
International Edition. Addison-Wesley, 2007. isbn: 978-0-321-47617-3.

[15] Mayank Kabra et al. “JAABA: Interactive Machine Learning for Automatic
Annotation of Animal Behavior.” In: Nature Methods 10.1 (2013), p. 64.

[16] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Plan-
ning.” In: European conference on machine learning. Springer. 2006,
pp. 282–293.

[17] Richard E. Korf. “Recent Progress in the Design and Analysis of Admis-
sible Heuristic Functions.” In: International Symposium on Abstraction,
Reformulation, and Approximation. Springer. 2000, pp. 45–55.

[18] Xubo Leng et al. “Quantitative Comparison of Drosophila Behavior An-
notations by Human Observers and a Machine Learning Algorithm.” In:
bioRxiv (2020).

[19] Scott M. Lundberg and Su-In Lee. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc.,
2017, pp. 4765–4774. url: http://papers.nips.cc/paper/7062-a-
unified-approach-to-interpreting-model-predictions.pdf.

[20] Simon R.O. Nilsson et al. “Simple Behavioral Analysis (SimBA)–an Open
Source Toolkit for Computer Classification of Complex Social Behaviors
in Experimental Animals.” In: BioRxiv (2020).

[21] Judea Pearl. “Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving.” In: Addison Wesley (1984).

[22] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should
I Trust You?" Explaining the Predictions of Any Classifier.” In: ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 2016, pp. 1135–1144.

[23] Stuart Russell and Peter Norvig. “Artificial Intelligence: A Modern Ap-
proach.” In: (2002).

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

163

[24] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[25] Ameesh Shah, Eric Zhan, and Jennifer Sun. NEAR Code Repository.
https://github.com/trishullab/near. 2020.

[26] Ameesh Shah*, Eric Zhan*, Jennifer J. Sun, Abhinav Verma, Yisong Yue,
and Swarat Chaudhuri. “Learning Differentiable Programs with Admis-
sible Neural Heuristics.” In: Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), pp. 4940–4952. url: https://arxiv.
org/pdf/2007.12101.pdf.

[27] David Sontag et al. “Tightening LP Relaxations for MAP Using Mes-
sage Passing.” In: International Conference on Artificial Intelligence and
Statistics (AISTATS). 2012.

[28] Richard Anthony Valenzano et al. “Using Alternative Suboptimality Bounds
in Heuristic Search.” In: Twenty-Third International Conference on Auto-
mated Planning and Scheduling. 2013.

[29] Lazar Valkov et al. “HOUDINI: Lifelong Learning as Program Synthesis.”
In: Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada. 2018, pp. 8701–8712. url: http:
//papers.nips.cc/paper/8086-houdini-lifelong-learning-
as-program-synthesis.

[30] Lazar Valkov et al. “Houdini: Lifelong Learning as Program Synthesis.”
In: Advances in neural information processing systems. 2018.

[31] Abhinav Verma et al. “Imitation-Projected Programmatic Reinforcement
Learning.” In: Advances in Neural Information Processing Systems (NeurIPS).
2019.

[32] Abhinav Verma et al. “Programmatically Interpretable Reinforcement Learn-
ing.” In: International Conference on Machine Learning. 2018, pp. 5052–
5061.

[33] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, 1993.

[34] Jing Xiang and Seyoung Kim. “A* Lasso for Learning a Sparse Bayesian
Network Structure for Continuous Variables.” In: Advances in Neural In-
formation Processing Systems 26: 27th Annual Conference on Neural In-
formation Processing Systems 2013. Proceedings of a meeting held De-
cember 5-8, 2013, Lake Tahoe, Nevada, United States. Ed. by Christopher
J. C. Burges et al. 2013, pp. 2418–2426. url: http://papers.nips.

https://github.com/trishullab/near
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2007.12101.pdf
http://papers.nips.cc/paper/8086-houdini-lifelong-learning-as-program-synthesis
http://papers.nips.cc/paper/8086-houdini-lifelong-learning-as-program-synthesis
http://papers.nips.cc/paper/8086-houdini-lifelong-learning-as-program-synthesis
http://papers.nips.cc/paper/5174-a-lasso-for-learning-a-sparse-bayesian-network-structure-for-continuous-variables
http://papers.nips.cc/paper/5174-a-lasso-for-learning-a-sparse-bayesian-network-structure-for-continuous-variables

164

cc/paper/5174-a-lasso-for-learning-a-sparse-bayesian-
network-structure-for-continuous-variables.

[35] Halley Young, Osbert Bastani, and Mayur Naik. “Learning Neurosymbolic
Generative Models via Program Synthesis.” In: International Conference
on Machine Learning (ICML). 2019.

[36] Yisong Yue et al. “Learning Fine-Grained Spatial Models for Dynamic
Sports Play Prediction.” In: 2014 IEEE International Conference on Data
Mining. IEEE. 2014, pp. 670–679.

http://papers.nips.cc/paper/5174-a-lasso-for-learning-a-sparse-bayesian-network-structure-for-continuous-variables
http://papers.nips.cc/paper/5174-a-lasso-for-learning-a-sparse-bayesian-network-structure-for-continuous-variables
http://papers.nips.cc/paper/5174-a-lasso-for-learning-a-sparse-bayesian-network-structure-for-continuous-variables
http://papers.nips.cc/paper/5174-a-lasso-for-learning-a-sparse-bayesian-network-structure-for-continuous-variables

165

C h a p t e r 11

SYNTHESIZING SUPERVISION SOURCES

Figure 11.1: We present AutoSWAP, a framework for automatically synthesizing
diverse sets of task-level labeling functions (LFs) with a small labeled dataset and
domain knowledge encoded in domain-level LFs and a DSL. AutoSWAP signifi-
cantly reduces labeler effort by automating LF generation.

This chapter is mainly based on the following paper:

[1] Albert Tseng, Jennifer J. Sun, and Yisong Yue. “Automatic Synthesis of Di-
verse Weak Supervision Sources for Behavior Analysis.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022), pp. 2211–2220. url: https://arxiv.org/pdf/2111.
15186.pdf.

Abstract. Obtaining annotations for large training sets is expensive, especially in
settings where domain knowledge is required, such as behavior analysis. Weak
supervision has been studied to reduce annotation costs by using weak labels from
task-specific labeling functions (LFs) to augment ground truth labels. However,
domain experts still need to hand-craft different LFs for different tasks, limiting

https://arxiv.org/pdf/2111.15186.pdf
https://arxiv.org/pdf/2111.15186.pdf

166

scalability. To reduce expert effort, we present AutoSWAP: a framework for auto-
matically synthesizing data-efficient task-level LFs. The key to our approach is to
efficiently represent expert knowledge in a reusable domain-specific language and
more general domain-level LFs, with which we use state-of-the-art program synthe-
sis techniques and a small labeled dataset to generate task-level LFs. Additionally,
we propose a novel structural diversity cost that allows for efficient synthesis of
diverse sets of LFs, further improving AutoSWAP’s performance. We evaluate
AutoSWAP in three behavior analysis domains and demonstrate that AutoSWAP
outperforms existing approaches using only a fraction of the data. Our results
suggest that AutoSWAP is an effective way to automatically generate LFs that can
significantly reduce expert effort for behavior analysis.

11.1 Introduction
In recent years, machine learning has enabled the study of large-scale datasets in
many behavior analysis domains, such as neuroscience [22, 26], sports analytics [35,
29], and motion forecasting [7]. However, obtaining labeled data to train models can
be difficult and costly, especially when domain expertise is required for annotation,
such as for many behavior analysis tasks [22]. One way to reduce annotation
cost is through weak supervision, which uses noisy, task-level heuristic “labeling
functions” (LFs) to weakly label data. LFs for a specific task (task-level LFs) are
supplied by domain experts, and are applied to obtain a set of weak labels. Weakly
labeled data can then be used in downstream settings, such as active learning [4]
and self-training [15].

While weak supervision has worked well in a wide range of settings [21, 4, 10],
it has not been well-explored for behavior analysis tasks. For one, the requirement
that LFs must provide labels and not, for example, features prevents more general
domain knowledge from being used [20] (e.g., the behavioral features in [12, 22]).
Furthermore, new LFs must be hand-crafted by domain experts for new tasks (such
as new behaviors to study), limiting the scalability of manual weak supervision [31].
To address these challenges, we study efficient domain knowledge representations
and develop automated weak supervision methods towards reducing annotation
bottlenecks in behavior analysis settings.

Our Approach. We propose AutoSWAP (Automatic Synthesized WeAk SuPervision),
a data-efficient framework for automatically generating task-level LFs using a novel
diverse program synthesis formulation. As depicted in Figure 11.1, experts provide

167

a domain-specific language (DSL) and domain-level LFs (LFs specific to a domain
of tasks) for a given domain, such as mouse behaviors or vehicle motion planning.
For each task to be studied in that domain, experts provide a small labeled dataset to
specify the task, and AutoSWAP returns a set of structurally diverse task-level LFs
that can be used in weakly supervised frameworks. The domain-level LFs (Figure
11.2) provide fine-grained, label-space agnostic “atomic instructions,” while the
DSL contains abstract structural domain knowledge for composing the more general
domain-level LFs into task-level LFs (Figure 11.3). The novel diversity cost enables
AutoSWAP to generate structurally diverse LFs, which we and others empirically
show outperform structurally homogeneous LFs in downstream tasks [31].

To the best of our knowledge, we are the first to demonstrate the effectiveness of
program synthesis for automated LF generation. Existing works for generating LFs
include iteratively selecting LFs by repeatedly querying experts for feedback [5] and
training exponentially many simple heuristics models [31], which have limitations in
scalability and tractability. In contrast, our approach represents domain knowledge
in a DSL and domain-level LFs, which can then be used to automatically synthesize
LFs for arbitrary tasks in a domain with our diverse program synthesizer.

We evaluate our approach in three behavior analysis domains with both sequential
and nonsequential data: mouse [26], fly [12], and basketball player [34] behaviors.
In these domains, data collection is expensive and new tasks frequently emerge,
highlighting the importance of scalability. The datasets we use are based on agent
trajectories, which provide low-dimensional inputs for easily creating domain-level
LFs. We show that with existing expert defined domain-level LFs from [22, 12]
and a simple DSL, AutoSWAP is capable of synthesizing high quality LFs with
very little labeled data. These LFs outperform LFs from existing automatic weak
supervision methods [31] and offer a data efficient approach to reducing domain
expert effort.

Contributions

• We propose AutoSWAP, which combines program synthesis with weak su-
pervision to scalably and efficiently generate labeling functions.

• We propose a novel program-structural diversity cost that enables AutoSWAP to
directly synthesize diverse sets of labeling functions, which we empirically
show are more data efficient than purely optimal sets.

168

• We evaluate AutoSWAP in multiple behavior analysis domains and down-
stream tasks, and show that AutoSWAP is capable of significantly improving
data efficiency and reducing expert cost.

11.2 Related Work

Behavior Analysis. In many domains, such as behavioral neuroscience [22, 17],
sports analytics [34, 35], and traffic modeling [9], agent pose and location trajectory
data is used for behavior analysis. This data is usually extracted from recorded
videos using detectors and pose estimators; for example, we use trajectories from
[22], [12], and StatsPerform for our mouse, fly, and basketball datasets, respectively.

To accurately analyze this data for complex behaviors, frame-level behavior labels
from domain experts are usually needed. However, annotating large datasets is time-
consuming and monotonous [1], motivating methods for label-efficient modeling.
For example, self-supervised learning [25] and unsupervised behavior discovery
methods [3, 17, 6] aim to learn efficient behavior representations and discover new
behaviors, respectively. Our work is complementary to these methods in that this
is not a comparison between weak supervision and self-supervision. Rather, we
evaluate the merits of our synthesized LFs in the context of weak supervision for
learning expert-defined behaviors.

Weak Supervision. Weak supervision with LFs was introduced in the context of
data programming [21]. Since then, LFs have been applied in a variety of settings,
including for active learning [18, 4] and self-training [15] tasks. Our work is
complementary to these works in that we automatically learn LFs that can be used
as inputs to existing weakly supervised frameworks. We note that we are not the
first to propose learning LFs from a small amount of training data. For example,
IWS iteratively proposes rules and queries domain experts in a large-scale feedback
loop [5]. More similar to our work, SNUBA [31] trains heuristics models, but
does so without domain knowledge and has runtime exponential in the number of
features. To the best of our knowledge, we are the first to apply program synthesis
to this problem, and our framework outperforms existing model-based methods for
learning LFs.

Program Synthesis. Traditionally, programming by example has been used to
synthesize programs from a DSL that respect hard constraints on input/output ex-
amples [24, 13]. In recent years, a growing number of works have studied synthe-

169

lambda_1 − whether fly is attacking target
def is_attacking (fly , tgt):

f2t_angle = atan ((tgt .y − fly .y) / (tgt .x − fly .x))
rel_angle = | fly . abs_angle − f2t_angle |
return fly .speed > 2 and rel_angle < 0.1

lambda_2 − ratio of fly wingspan
def wing_ratio (fly , tgt):

return quantize (fly .wing_x / fly .wing_y, 4)

lambda_3 − fly speed relative to target speed
def relative_speed (fly , tgt):

return | fly .speed | / | tgt .speed |

Figure 11.2: Domain experts provide domain-level labeling functions, such as the
ones above for the fly domain. Some domain-level LFs (𝜆1, 𝜆2) label for specific
tasks (and would be considered task-level LFs on their own), while others (𝜆3) return
features.

sizing programs with soft constraints, such as minimizing a loss function [23, 11,
19, 30]. This relaxed form of program synthesis has been applied to a number of
different domains including web information extraction [8], image structure anal-
ysis [ellis2017learning], and learning interpretable agent policies [32]. Of these
works, algorithms that learn differentiable programs, such as [23], have shown great
promise in being able to efficiently and simultaneously optimize program architec-
tures and parameters. Here, we use concepts from differentiable program synthesis
algorithms to synthesize diverse sets of LFs.

11.3 Methods
We introduce AutoSWAP, a framework for automatically generating diverse sets

of task-level LFs. In our framework, domain experts provide a set of domain-level
LFs and a DSL of useful relations. For each task to be studied, specified with a
small labeled dataset, task-level LFs are automatically generated by the AutoSWAP
diverse program synthesizer. These LFs can then be used in downstream applications
involving weak supervision. In the following sections, we provide a background of
key components in AutoSWAP (Section 11.3), detail the framework (Section 11.3),
and describe example downstream applications (Section 11.3).

Background
Domain-level Labeling Functions. In weak supervision, users provide a set of
task-level hand-crafted heuristics called labeling functions (LFs). LFs can be noisy
and abstain from labeling, but LFs must output in downstream task’s label space

170

Y. We relax this requirement in AutoSWAP by allowing domain experts to provide
domain-level LFs (Figure 11.2). These LFs do not have to output in Y, which
reduces LF creation overhead and allows for more expressive LFs. This also allows
us to reuse LFs across multiple tasks within the same domain, aiding scalability.

Domain Specific Languages. Domain specific languages (DSLs) define the allow-
able submodules and structures in synthesized programs, and are a key component
of program synthesis algorithms. Many recent works have adopted purely functional
DSLs [23], where DSL items are functions that output to the input space of other
DSL items or the final output space. In AutoSWAP, domain experts provide a purely
functional DSL with program structures that may be useful in generated LFs. We
show empirically that even using a very simple DSL in AutoSWAP can result in
significant reductions in expert effort.

Differentiable Program Synthesis via Neural Completions and Guided Search.
Our program synthesis formulation is based on NEAR, which finds 𝜖-optimal dif-
ferentiable programs using admissible search heuristics [14, 23]. While NEAR is
one instantiation of AutoSWAP, our diverse synthesis formulation (Section 11.3)
is theoretically compatible with any search-based synthesizer. Here, the DSL D
is a context-free grammar with differentiable variables. Programs are defined by a
program architecture 𝛼 in the context-free language of D,CFLD , and a set of real
parameters 𝜃, and are denoted by [[𝛼]] (𝑥, 𝜃) : X → Y. Synthesizing a program
that is optimal w.r.t. a cost function 𝐹 and dataset (𝑋,𝑌) ∈ (X,Y) is equivalent to

(𝛼∗, 𝜃∗) = arg min
𝛼,𝜃

𝐹 ([[𝛼]] (𝑋, 𝜃), 𝑌). (11.1)

To find (𝛼∗, 𝜃∗), we search over CFLD . This search space is a tree G, where the
root node is an empty architecture, interior nodes are incomplete architectures (ar-
chitectures with unknown components), and leaf nodes are complete architectures.
Edges in G represent single productions from D between two architectures. We
bound the search tree by limiting the search depth to𝑚 and “completing” incomplete
architectures by substituting unknown components with neural networks (“neural
completions”).

Since neural completions are differentiable, the minimum cost-to-go (CTG) w.r.t. 𝐹
of a neural completion can be computed by optimizing the neural completion’s
parameters. Furthermore, this minimum CTG of a neural completion is an 𝜖-
admissible heuristic[14] for the true CTG of the corresponding incomplete archi-
tecture (proof in [23]). This allows us to use informed search algorithms on G to

171

Figure 11.3: A complete program and its tree representation. Each ‘?’ represents
one child node function. The depicted program is an actual AutoSWAP LF for the
“lunge vs. no behavior” in the Fly domain. The program can be interpreted as “If
the linear speed between the flies is small, classify the angular domain-level LFs
of the flies. Otherwise, classify the product of transformations of the linear speed
and positional domain-level LFs.” Note the parameters (red) are not included in the
structural diversity cost.

find 𝜖-optimal solutions to Equation 11.1.

AutoSWAP
Synthesizing Diverse Sets of Programs. Diverse sets of LFs have been shown to
improve data efficiency relative to purely optimal sets in downstream applications
of weak supervision [31]. This is partly due to diverse sets having improved
label coverage (fewer data points where all LFs abstain) [31], and from having more
learning signals for the downstream model [27]. The program synthesizer in Section
11.3 can be run repeatedly to obtain a set of purely optimal LFs, but there is no
guarantee that the set will be diverse. Here, we introduce a structural diversity cost
and admissible heuristic that allows for direct synthesis of diverse sets of programs
using informed search algorithms. We empirically show that using the diversity cost
improves performance, corroborating [31]’s observations.

Consider a complete program 𝑃, which is a composition of variables in D. By
construction of G, we can convert 𝑃 to a tree 𝑇𝑃 where each node is a variable in
𝑃 and a node’s children are its input variables (Figure 11.3). Then, given a set of
complete programs P and a complete program 𝑃, we define the structural cost 𝐶𝑃,P
of 𝑃 relative to P as:

1
𝐶𝑃,P

= 𝑞

(1
∥P∥

∑︁
𝑃′∈P
ZSS(𝑇𝑃, 𝑇𝑃′)

)
, (11.2)

where 𝑞 : R→ R is a user defined monotonically increasing function and ZSS is the

172

Zhang-Shasha tree edit distance (TED) [36]. Essentially, programs with a higher
average TED to the elements of P incur a lower diversity cost.

Since this structural cost is not defined for incomplete programs or neural comple-
tions, 𝐶𝑃,P cannot be used in informed search algorithms. However, the following
admissible heuristic 𝐻𝑃𝐼 ,P for incomplete programs 𝑃𝐼 allows us to create a set of
diverse programs by iteratively synthesizing programs and adding them to P.

Lemma 11.3.1. Let 𝑃𝐼 be an incomplete program and 𝑇𝑃𝐼 be the tree of its known
variables. 𝑇𝑃𝐼 is guaranteed to exist by construction of G. Define 𝐻𝑃𝐼 ,P as:

𝑈𝑃𝐼 ,𝑃′ = 𝑚 − ∥𝑃𝐼 ∥ + ZSS(𝑇𝑃𝐼 , 𝑇𝑃′),
1

𝐻𝑃𝐼 ,P
= 𝑞

(1
∥𝑃∥

∑︁
𝑃′∈P

𝑈𝑃𝐼 ,𝑃′
)
,

where ∥𝑃𝐼 ∥ is the number of known variables in 𝑃𝐼 . 𝐻𝑃𝐼 ,P is an admissible heuristic
for the CTG from 𝑃𝐼 in G.

Proof. Consider 𝑈𝑃𝐼 ,𝑃′ . 𝑚 − ∥𝑃𝐼 ∥ is an upper bound on the TED between 𝑇𝑃𝐼 and
the tree of any complete descendant 𝑃∗ of 𝑃𝐼 in G. From the triangle inequality,

𝑈𝑃𝐼 ,𝑃′ = 𝑚 − ∥𝑃𝐼 ∥ + ZSS(𝑇𝑃𝐼 , 𝑇𝑃′)
≥ ZSS(𝑇𝑃𝐼 , 𝑇𝑃∗) + ZSS(𝑇𝑃𝐼 , 𝑇𝑃′)
≥ ZSS(𝑇𝑃∗ , 𝑇𝑃′).

Then, as TEDs are nonnegative, 𝑚 ≥ ∥𝑃𝐼 ∥, and 𝑞 is nondecreasing, 𝐻𝑃𝐼 ,P ≤ 𝐶𝑃∗,P .
Thus, 𝐻 a admissible heuristic for the structural CTG from 𝑃𝐼 . □

AutoSWAP Framework. AutoSWAP uses program synthesis to automate signifi-
cant parts of the weak supervision pipeline and reduce domain expert effort. Domain
experts provide a set of domain-level LFs Λ𝑚 = {𝜆𝑖 : X → Y𝑖}, a purely functional
DSL D, and a small labeled dataset (𝑋,𝑌) ∈ (X,Y) to specify tasks within the
domain. In order to use Λ𝑚 when synthesizing programs with D, all 𝜆𝑖 must be
added toD. This can be done either by implementing each 𝜆𝑖 with operations from
D, or precomputing and selecting Λ𝑚 (𝑋) as input features inD; we do the latter in
our experiments. WithD, AutoSWAP runs the diverse program synthesis algorithm
𝑛 times to generate a set Λ of 𝑛 LFs. Λ can then be used in downstream tasks, such
as in weak supervision label models to generate weak labels. See Algorithm 5 for a
detailed description of AutoSWAP.

173

Algorithm 5 AutoSWAP.
Input: Λ𝑚, D, labeled dataset 𝐷𝐿 , # LFs 𝑛
Output: task-level LFs Λ
D ← Combine Λ𝑀 and D
P ← ∅
while ∥P∥ ≤ 𝑛 do

Synthesize 𝑃 with D, 𝐷𝐿 ,P
P ← P ∪ {𝑃}

Λ← P, return Λ.

Downstream Tasks
We describe two downstream tasks in which weak labels can be used. These
examples, which our experiments are based on, are just a subset of the many weakly
supervised learning frameworks in existence such as ASTRA [15].

Active Learning. Active learning is a paradigm where the learning algorithm can
selectively query for new data to be labeled. Here, we use labels from task-level
LFs as additional features for a downstream classifier. The downstream classifier’s
predictions are used to select data for labeling. To evaluate generated LFs in active
learning settings, we consider the performance of downstream classifiers at multiple
data amounts. Given a sorted list 𝐴 of data amounts, at each amount we generate
new LFs, train a downstream classifier, and select data points for labeling to form
the next batch. An exact description of our active learning setup for AutoSWAP can
be found in Algorithm 6.

Algorithm 6 AutoSWAP for Active Learning.
Input: Λ𝑚,D, 𝑛, unlabeled 𝑋𝑈 , 𝐴.
Sort 𝐴 in increasing order.
Randomly select 𝐴1 points 𝑋𝐿 from 𝑋𝑈 .
𝑋𝑈 ← 𝑋𝑈 \ 𝑋𝐿
𝑌𝐿 ← Obtain labels for 𝑋𝐿 .
for 𝑖 = 1, ..., ∥𝐴∥ − 1 do

Λ𝑖 ← AutoSWAP(Λ𝑚,D, (𝑋𝐿 , 𝑌𝐿), 𝑛).
𝑋 ′
𝐿
←

[
𝑋𝐿 Λ𝑖 (𝑋𝐿)

]
Train downstream classifier 𝐶𝑖 with (𝑋 ′

𝐿
, 𝑌𝐿).

Select 𝐴𝑖+1 − 𝐴𝑖 points 𝑋 ′
𝐿

using max entropy uncertainty
sampling.

𝑋𝑈 ← 𝑋𝑈 \ 𝑋 ′𝐿
𝑋𝐿 ← 𝑋𝐿 ∪ 𝑋 ′𝐿
𝑌𝐿 ← 𝑌𝐿 ∪ {Obtain labels for 𝑋 ′

𝐿
}

174

Weak Supervision. Weak supervision frameworks generally depend on a generative
label model weakly label unlabeled samples. Using no ground truth labels, the
generative model produces probabilistic estimates (“weak labels”) for the true labels
𝑌𝑈 of an unlabeled set 𝑋𝑈 by modeling the LF outputs Λ(𝑋𝑈). Weakly labeled data
can then be used to augment labeled datasets in downstream tasks.

To evaluate AutoSWAP in weak supervision settings, we start with a small labeled
dataset 𝐷𝐿 and a list of unlabeled data amounts 𝐴. LFs are generated using the
small labeled dataset and abstain using the method in [31]. Then, weak labels are
generated from these LFs for all unlabeled data using the generative model. For each
data amount 𝐴𝑖 ∈ 𝐴, a random set 𝐷𝑃𝐿 of 𝐴𝑖 weakly labeled data points is selected
and the performance of a downstream classifier is measured using the training set
𝐷𝐿 ∪ 𝐷𝑃𝐿 . An exact description of our weak supervision setup is in Algorithm 7.

Algorithm 7 AutoSWAP for Weak Supervision.
Input: Λ𝑚,D, 𝑛, Labeled (𝑋𝐿 , 𝑌𝐿), Unlabeled 𝑋𝑈 , 𝐴.
Λ← AutoSWAP(Λ𝑚,D, (𝑋𝐿 , 𝑌𝐿), 𝑛).
Λ← Abstain(Λ) [31]
Sort 𝐴 in increasing order.
for 𝑖 = 1, ..., ∥𝐴∥ do

Randomly select 𝐴𝑖 points 𝑋𝑃 from 𝑋𝑈 .
𝑋 ′
𝐿
← 𝑋𝐿 ∪ 𝑋𝑃

𝑌 ′
𝐿
← 𝑌𝐿 ∪ Λ(𝑋𝑃)

Train downstream classifier 𝐶𝑖 with (𝑋 ′
𝐿
, 𝑌 ′
𝐿
).

11.4 Experiments
We evaluate AutoSWAP in multiple real world behavior analysis domains, and show
that our framework outperforms existing LF generation methods in weak supervision
and active learning settings. Since researchers often study multiple behaviors in a
domain [22, 12], we consider each behavior its own task.

Datasets
We use datasets from behavioral neuroscience (mouse and fly behaviors) as well as
sports analytics (basketball player trajectories). These datasets include rare behav-
iors, multi-behavior tasks, and sequential data, making them good representations
of real-world behavior analysis tasks. Each dataset contains a train, validation, and
test split; the validation split is only used for model checkpoint selection.

175

Fly vs. Fly (Fly). The fly dataset [12] contains frame-level annotations of videos
of interactions between two fruit flies. Our train, validation, and test sets contain
552k, 20k, and 166k frames. We use fly trajectories tracked by FlyTracker [12]
and evaluate on 6 behaviors: lunge, wing threat, tussle, wing extension, circle,
copulation. This is a multi-label dataset and we report the mean Average Precision
(mAP) over binary classification tasks for each behavior. All behaviors except for
copulation are rare; lunge, wing threat, and tussle occur in < 5% of frames, and
wing extension and circle occur in < 1% of frames. The domain-level LFs for this
dataset are based on features from [12].

CalMS21 (Mouse). The CalMS21 dataset [26] consists of frame-level pose and
behavior annotations from videos of interactions between pairs of mice. We use
data from Task 1 (532k train, 20k validation, 119k test) and evaluate on a set of 3
behaviors: attack, investigation, and mount. These behaviors are mutually exclusive
and we report the mAP over these classes. We use a subset of the features in [22]
as domain-level LFs for this dataset.

Basketball. The Basketball dataset, also used in [34, 23, 35], contains sequences of
basketball player trajectories from Stats Perform (18k train, 1k validation, 2.7k test).
Labels for which offense player (5 total) had the ball for the majority of the sequence
were extracted with [2]. We perform sequential classification in downstream tasks,
and report the mAP over each offense player vs. the other 4. Our domain-level
LFs include player acceleration, velocity, and position among others. We exclude
information about the ball position in the domain-level LFs and data features to
focus on analyzing player behaviors.

Baselines
We compare AutoSWAP to two main baselines: student networks from student-
teacher training and decision trees from SNUBA [31]. We show that AutoSWAP
outperforms both in data efficiency, requiring a fraction of the data to achieve or
exceed performance parity. For both baselines, domain-level LFs are incorporated
as input features to evaluate the effectiveness of AutoSWAP and not the domain-level
LFs themselves. We do not compare against IWS [5], as IWS is a human-in-the-loop
LF generation system. We also do not compare against ASTRA [15], as ASTRA is
a weak supervision framework for using task-level LFs in self training. However,
ASTRA can be used as a downstream task for AutoSWAP.

176

Student Networks Student-teacher training (from knowledge distillation[33]) has
been used successfully in self-training. We adopt the concept of student networks by
training models with similar capacity as the downstream classifier to serve as LFs.
In weak supervision experiments, these student LFs and the label model (Equation
11.3) serve as a teacher model for the downstream classifier.

Decision Trees and SNUBA Decision trees have been shown to be good LFs [31]
and offer some degree of interpretability. The SNUBA framework [31] generates
a diverse set of decision tree LFs by training 2𝑘 − 1 decision trees over all feature
subsets and then pruning trees based on a diversity and performance metric, where
𝑘 is the feature dimension ofX. Clearly, this is intractable for large 𝑘 , which is often
the case for behavior analysis tasks. Furthermore, SNUBA does not use domain
knowledge, instead relying on the complete set of decision trees for data efficiency.
In relation to SNUBA, AutoSWAP can be viewed as an scalable alternative to the
synthesizer and pruner stages.

Training Setup
Our experimental setup consists of two stages: obtaining LFs, and evaluating gener-
ated LFs in downstream tasks. Our downstream tasks include active learning, where
LFs are used to select data for labeling, and weak supervision, where LFs generate
pseudolabels for unlabeled data points.

Obtaining labeling functions

Synthesized Programs via AutoSWAP. For each domain, we use a simple DSL
that includes add, multiply, fold, and differentiable if-then-else (ITE) structures
among others. We synthesize programs with our diverse program synthesizer and
A∗ search. Our cost function is the sum of the 𝐹1 cost from [23] and our diversity
cost 𝐶𝑃,P . We set 𝑞(𝑥) to 𝑥2 and 𝑚 to log2 ∥Λ𝑚 ∥. Program parameters are trained
with weighted cross entropy loss. More information about the exact DSL used is in
the Supplementary Materials of [28].

Student Networks. We use neural networks for frame classification tasks and
LSTMs for scene classification tasks. To induce diversity in the learned student
networks, we take inspiration from [33] and randomly set the size of each layer so
the “expected” student network is of similar capacity as the downstream classifier.
All student networks are trained using weighted cross entropy loss.

177

Decision Trees. We fit decision trees using Gini impurity as the split criteria. We
limit the depth of decision trees to log2 𝑘 , so the number of nodes is 𝑂 (𝑘). We
select diverse sets of decision trees by pruning a superset of trees based on coverage
and performance, similar to how SNUBA does[31]. However, unlike SNUBA, we
group our features when generating the superset, as training 2𝑘 − 1 decision trees is
intractable with our datasets.

Downstream Tasks

We use 3 LFs in our main experiments. Experiments with more LFs (5, 7) are in
the Supplementary Materials of [28].

Active Learning. As previous described, we evaluate the performance of Au-
toSWAP at multiple data amounts, selecting additional labeled data with active
learning at each amount (Algorithm 6). We use max-entropy uncertainty sampling
on downstream classifier outputs to select points for labeling [16]. We use {1000,
2000, 3500, 5000, 7500, 12500, 25000, 50000} frames for the fly and mouse datasets
and {500, 1000, 1500, 2000, 3000, 4000, 5000} sequences for the basketball dataset.

Weak Supervision. In our weak supervision experiments, we use factor graph
model proposed in [21, 20].

𝑝𝜃 (𝑌𝑈 ,Λ) = 𝑍−1
𝜃 exp

(∥𝑋𝑈 ∥∑︁
𝑖=1

𝜃𝑇𝜙𝑖 (Λ(𝑋𝑈𝑖), 𝑌𝑈𝑖)
)
. (11.3)

Here, LF accuracies are modeled by factor 𝜙𝐴𝑐𝑐
𝑖, 𝑗
(Λ, 𝑌𝑈) = 1{Λ 𝑗 (𝑋𝑈𝑖) = 𝑌𝑈𝑖 }, and

the proportion of data the LF labels is modeled by 𝜙𝐿𝑎𝑏
𝑖, 𝑗
(Λ, 𝑌𝑈) = 1{Λ 𝑗 (𝑋𝑈𝑖) ≠ ∅}.

For the labeled dataset, we use 2000 frames for the fly and mouse datasets, and
500 sequences for the basketball dataset. Our unlabeled data amounts are set to
{1×, 2×, 3×, 4×, 5×} the number of labeled points.

Data Efficiency Results
Active Learning. AutoSWAP LFs are far more data efficient than baseline methods
across all datasets, indicating that AutoSWAP is effective in reducing label cost in
active learning settings (Figure 11.4). This difference is especially pronounced in
the Mouse dataset, where AutoSWAP achieves parity with decision tree LFs with
roughly 30× less data. In the Fly dataset, AutoSWAP is consistently ∼ 4×more data
efficient than the baselines, and no baseline is able to reach performance parity with
AutoSWAP by 50000 samples (9.1% of the entire Fly dataset). We observe a similar
trend in the Basketball dataset, with AutoSWAP being ∼ 2× as data efficient. We

178

Figure 11.4: AutoSWAP Active Learning Experiments. Each line represents the
mean of 5 random seeds for an automatic labeling function method. The shaded
region is the standard error of the seeds. As can be seen, AutoSWAP matches or
outperforms all baseline methods using only a fraction of the data. Note that all
plots are on log-log scales.

Figure 11.5: AutoSWAP Weak Supervision Experiments. Each line represents
the mean of 5 random seeds for an automatic labeling function method. The
shaded region is the standard error of the seeds. The gray line shows performance
when ground truth labels are used as weak labels. Although it may seem odd that
AutoSWAP outperforms ground truth labels in the Mouse dataset, weak labels have
been observed to outperform ground truth labels in other works [15]. Note that all
plots are on log-log scales.

also observe an improvement in data efficiency even when using random sampling,
and note that uncertainty sampling widens the gap between AutoSWAP and the
baselines.

While AutoSWAP LFs themselves do not necessarily perform better than baseline
LFs when evaluated on their own (see the Supplementary Materials of [28]), they
do provide a stronger learning signal for downstream classifiers than the baselines.
These data efficiency differences can be attributed in part the structural domain
knowledge encoded in the DSL, as the domain-level LFs themselves perform signif-
icantly worse. For example, a AutoSWAP LF classifying “lunge vs. no behavior”

179

for the Fly dataset can be seen in Figure 11.3, and the structure of this program
cannot be easily approximated with a decision tree or a neural network.

Weak Supervision. Similar to our active learning experiments, we observe that
AutoSWAP is more data efficient than the baselines in weak supervision settings
(Figure 11.5). We note that the ground truth labels are not a baseline in this setting,
as they are essentially an “optimal” case where the weak labels match the ground
truth labels.

On the Fly dataset, AutoSWAP generally performs better than both baselines, and
on the Mouse and Basketball datasets, no baseline is able to match the performance
of AutoSWAP LFs at any evaluated amount of annotated data. AutoSWAP is even
able to outperform the ground truth labels in the Mouse dataset at some levels of
annotated data, which indicates that the learned LFs are especially informative.
Finally, we observe that AutoSWAP generally improves with more weakly labeled
data points, which is useful as there is no expert annotation cost to using more
weakly labeled data points.

References

[1] David J. Anderson and Pietro Perona. “Toward a Science of Computational
Ethology.” In: Neuron 84.1 (2014), pp. 18–31.

[2] Jenna Wiens Armand McQueen and John Guttag. “Automatically Rec-
ognizing On-ball Screens.” In: MIT Sloan Sports Analytics Conference.
2014.

[3] Gordon J. Berman et al. “Mapping the Stereotyped Behaviour of Freely
Moving Fruit Flies.” In: Journal of the Royal Society Interface 11.99
(2014), p. 20140672.

[4] Samantha Biegel et al. “Active WeaSuL: Improving Weak Supervision
with Active Learning.” In: arXiv preprint arXiv:2104.14847 (2021).

[5] Benedikt Boecking et al. “Interactive Weak Supervision: Learning Useful
Heuristics for Data Labeling.” In: International Conference on Learning
Representations. 2021. url: https://openreview.net/forum?id=
IDFQI9OY6K.

[6] Adam J. Calhoun, Jonathan W. Pillow, and Mala Murthy. “Unsupervised
Identification of the Internal States that Shape Natural Behavior.” In: Nature
neuroscience 22.12 (2019), pp. 2040–2049.

[7] Ming-Fang Chang et al. “Argoverse: 3D Tracking and Forecasting with
Rich Maps.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 8748–8757.

https://openreview.net/forum?id=IDFQI9OY6K
https://openreview.net/forum?id=IDFQI9OY6K

180

[8] Qiaochu Chen et al. “Web Question Answering with Neurosymbolic Pro-
gram Synthesis.” In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 2021,
pp. 328–343.

[9] James Colyar and John Halkias. “US Highway 101 Dataset.” In: Federal
Highway Administration (FHWA), Tech. Rep. FHWA-HRT-07-030 (2007).

[10] Jared A. Dunnmon et al. “Cross-Modal Data Programming Enables Rapid
Medical Machine Learning.” In: Patterns 1.2 (2020), p. 100019. issn:
2666-3899. doi: https://doi.org/10.1016/j.patter.2020.
100019. url:https://www.sciencedirect.com/science/article/
pii/S2666389920300192.

[11] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. “Unsupervised
Learning by Program Synthesis.” In: (2015).

[12] Eyrun Eyjolfsdottir et al. “Detecting Social Actions of Fruit Flies.” In:
European Conference on Computer Vision. Springer. 2014, pp. 772–787.

[13] John K. Feser, Swarat Chaudhuri, and Isil Dillig. “Synthesizing Data Struc-
ture Transformations from Input-Output Examples.” In: ACM SIGPLAN
Notices 50.6 (2015), pp. 229–239.

[14] Larry R. Harris. “The Heuristic Search Under Conditions of Error.” In:
Artif. Intell. 5 (1974), pp. 217–234.

[15] Giannis Karamanolakis et al. “Self-Training with Weak Supervision.” In:
NAACL 2021. NAACL 2021, May 2021. url: https://www.microsoft.
com / en - us / research / publication / self - training - weak -
supervision-astra/.

[16] David Lewis et al. “Heterogeneous Uncertainty Sampling for Supervised
Learning.” In: (Dec. 1996).

[17] Kevin Luxem et al. “Identifying Behavioral Structure from Deep Varia-
tional Embeddings of Animal Motion.” In: bioRxiv (2020).

[18] Mona Nashaat et al. “Hybridization of Active Learning and Data Program-
ming for Labeling Large Industrial Datasets.” In: 2018 IEEE International
Conference on Big Data (Big Data). IEEE. 2018, pp. 46–55.

[19] Emilio Parisotto et al. “Neuro-Symbolic Program Synthesis.” In: arXiv
preprint arXiv:1611.01855 (2016).

[20] Alexander Ratner et al. “Training Complex Models with Multi-Task Weak
Supervision.” In: Proceedings of the AAAI Conference on Artificial In-
telligence 33.01 (July 2019), pp. 4763–4771. doi: 10 . 1609 / aaai .
v33i01 .33014763. url: https :/ /ojs .aaai .org / index. php/
AAAI/article/view/4403.

https://doi.org/https://doi.org/10.1016/j.patter.2020.100019
https://doi.org/https://doi.org/10.1016/j.patter.2020.100019
https://www.sciencedirect.com/science/article/pii/S2666389920300192
https://www.sciencedirect.com/science/article/pii/S2666389920300192
https://www.microsoft.com/en-us/research/publication/self-training-weak-supervision-astra/
https://www.microsoft.com/en-us/research/publication/self-training-weak-supervision-astra/
https://www.microsoft.com/en-us/research/publication/self-training-weak-supervision-astra/
https://doi.org/10.1609/aaai.v33i01.33014763
https://doi.org/10.1609/aaai.v33i01.33014763
https://ojs.aaai.org/index.php/AAAI/article/view/4403
https://ojs.aaai.org/index.php/AAAI/article/view/4403

181

[21] Alexander J. Ratner et al. “Data Programming: Creating Large Training
Sets, Quickly.” In: Advances in Neural Information Processing Systems.
2016, pp. 3567–3575.

[22] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[23] Ameesh Shah*, Eric Zhan*, Jennifer J. Sun, Abhinav Verma, Yisong Yue,
and Swarat Chaudhuri. “Learning Differentiable Programs with Admis-
sible Neural Heuristics.” In: Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), pp. 4940–4952. url: https://arxiv.
org/pdf/2007.12101.pdf.

[24] Armando Solar-Lezama et al. “Combinatorial Sketching for Finite Pro-
grams.” In: Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 2006,
pp. 404–415.

[25] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

[26] Jennifer J. Sun, Tomomi Karigo, Dipam Chakraborty, Sharada Mohanty,
Benjamin Wild, Quan Sun, Chen Chen, David Anderson, Pietro Per-
ona, et al. “The Multi-Agent Behavior Dataset: Mouse Dyadic Social
Interactions.” In: Conference on Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track (2021).

[27] Tao Sun and Zhi-Hua Zhou. “Structural Diversity for Decision Tree En-
semble Learning.” In: Frontiers of Computer Science 12 (Feb. 2018). doi:
10.1007/s11704-018-7151-8.

[28] Albert Tseng, Jennifer J. Sun, and Yisong Yue. “Automatic Synthesis of Di-
verse Weak Supervision Sources for Behavior Analysis.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022), pp. 2211–2220. url: https://arxiv.org/pdf/2111.
15186.pdf.

[29] Karl Tuyls et al. “Game Plan: What AI can do for Football, and What
Football can do for AI.” In: Journal of Artificial Intelligence Research 71
(2021), pp. 41–88.

[30] Lazar Valkov et al. “Houdini: Lifelong Learning as Program Synthesis.”
In: Advances in neural information processing systems. 2018.

https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2011.13917.pdf
https://doi.org/10.1007/s11704-018-7151-8
https://arxiv.org/pdf/2111.15186.pdf
https://arxiv.org/pdf/2111.15186.pdf

182

[31] Paroma Varma and Christopher Ré. “Snuba: Automating Weak Supervi-
sion to Label Training Data.” In: Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases. Vol. 12. 3. NIH Public
Access. 2018, p. 223.

[32] Abhinav Verma et al. “Programmatically interpretable reinforcement learn-
ing.” In: International Conference on Machine Learning. 2018.

[33] Qizhe Xie et al. Self-training with Noisy Student Improves ImageNet Clas-
sification. 2020. arXiv: 1911.04252 [cs.LG].

[34] Yisong Yue et al. “Learning Fine-Grained Spatial Models for Dynamic
Sports Play Prediction.” In: 2014 IEEE International Conference on Data
Mining. IEEE. 2014, pp. 670–679.

[35] Eric Zhan et al. “Generating Multi-Agent Trajectories Using Programmatic
Weak Supervision.” In: International Conference on Learning Represen-
tations (2019).

[36] Kaizhong Zhang and Dennis Shasha. “Simple Fast Algorithms for the
Editing Distance Between Trees and Related Problems.” In: SIAM Journal
on Computing 18 (Dec. 1989), pp. 1245–1262. doi: 10.1137/0218082.

https://arxiv.org/abs/1911.04252
https://doi.org/10.1137/0218082

183

C h a p t e r 12

NEUROSYMBOLIC PROGRAMMING FOR SCIENCE

Choose
Research
Question

Scientific Process

Generate
Hypothesis

Experimental
Setup /
Data Collection

Analysis Interpretation Report to
Community

NP Lifecycle

Data Curation
(Sec 3.1)

Encoding Domain
Knowledge

(Sec 3.2)

NP Model
Training

(Sec 3.3; 3.4)

Evaluation &
Interpretability

(Sec 3.5; Sec 3.6)

Deployment
(Sec 3.7)

Iterative

Iterative

Domain
Knowledge

World

Figure 12.1: Synergy between the scientific and neurosymbolic programming work-
flow.

This chapter is mainly based on the following paper:

[1] Jennifer J. Sun*, Megan Tjandrasuwita*, Atharva Sehgal*, Armando Solar-
Lezama, Swarat Chaudhuri, Yisong Yue, and Omar Costilla-Reyes. “Neu-
rosymbolic Programming for Science.” In: AI for Science Workshop at
Neural Information Processing Systems (NeurIPS) (2022). url: https:
//arxiv.org/pdf/2210.05050.pdf.

Abstract. Neurosymbolic Programming (NP) techniques have the potential to accel-
erate scientific discovery. These models combine neural and symbolic components
to learn complex patterns and representations from data, using high-level concepts
or known constraints. NP techniques can interface with symbolic domain knowl-
edge from scientists, such as prior knowledge and experimental context, to produce
interpretable outputs. We identify opportunities and challenges between current NP
models and scientific workflows, with real-world examples from behavior analysis
in science: to enable the use of NP broadly for workflows across the natural and
social sciences.

https://arxiv.org/pdf/2210.05050.pdf
https://arxiv.org/pdf/2210.05050.pdf

184

12.1 Introduction
One of the grand challenges in the artificial intelligence and scientific communities
is to find an AI scientist: an artificial agent that can automatically design, test,
and infer scientific hypotheses from data. This application poses several distinct
challenges for existing learning techniques because of the need to ensure that new
theories are consistent with prior scientific knowledge, as well as to enable scientists
to reason about the implications of new hypotheses and experimental designs.

The distinct requirements of scientific discovery have pushed the community to
explore expressive yet symbolically interpretable techniques such as symbolic re-
gression [4], interpretable machine learning [37, 9, 19, 25], as well as program
synthesis [21, 11]. These techniques have helped the community make significant
progress in a number of applications, such as those discussed in [16] and [30], but
we are still far from solving the grand challenge.

We focus on the opportunities and challenges behind an important class of learning
techniques based on Neurosymbolic Programming (NP) [3]. These techniques
combine neural and symbolic reasoning to build expressive models that incorporate
prior expert knowledge and strong constraints on model behavior and structure. NP
is capable of producing symbolic representations of theories that can be analyzed
and manipulated to answer rich counterfactuals.

NP empowers a new line of attack on the grand AI scientist challenge: represent
scientific hypotheses as programs in a Domain Specific Language (DSL) and use
neurosymbolic program synthesis to automatically discover these programs (Figure
12.1). Users can incorporate complex prior knowledge (e.g., known features and
constraints) into the design of the DSL. The NP learning algorithms can then follow
classic scientific reasoning principles to find predictive programs. Also, models
learned this way are often similar to code that human domain experts write during
manual scientific modeling. Collectively, these characteristics enable a transparent
and interactive process where an AI system and a human expert collaborate on
evidence-based reasoning and the discovery of new scientific facts.

Here, we use behavior analysis as a concrete, illustrative example. We start with
an introduction to NP (Section 12.2), then outline challenges and opportunities for
future research (Section 12.3).

Behavior analysis as running example. We chose behavior analysis as an example
use case for several reasons. Behavioral data is spatiotemporal, which is a common

185

data type across the sciences. Correspondingly, underlying challenges are shared
in other domains, from monitoring vital signs to modeling physical systems, to
studying the dynamics of chemical reactions. Additionally, behavioral data illustrate
common challenges with scientific data. These datasets often contain rare behaviors
with noisy and imperfect data and can vary significantly in relevant time scales
(e.g., milliseconds vs hours). Datasets also vary across labs, organisms/systems,
and experimental setups. Finally, automatic behavior quantification is becoming
increasingly crucial in many fields, such as neuroscience, ecology, biology, and
healthcare. As computational behavior analysis and neurosymbolic learning are
both developing research areas, there are many exciting opportunities to explore at
their intersection.

Background on behavior analysis. An important objective of behavior analysis
is to quantify behavior from video using continuous or discrete representations.
We focus on the case of animal behavior analysis in science [1, 7], where there
are diverse organisms and naturalistic behaviors. A common approach is first to
perform animal pose tracking from video [24, 28], then categorize behaviors of
interest from animal pose [31] (as discussed later in Figure 12.3). From an NP
perspective, this approach can be viewed as learning a symbolically interpretable
intermediate representation (tracked keypoints).

Existing challenges in behavior analysis. Similar to other scientific fields, data
collection and annotation are expensive for behavioral experiments. Analyzing data
is also time-consuming and expensive since specialized domain expertise is required
for identifying behaviors of interest and extracting knowledge. Models need to
interface efficiently with scientists and data at both the inputs and outputs from the
scientific process (Figure 12.1). For NP models, leveraging domain expertise in the
form of behavioral attributes has been demonstrated to improve data efficiency [34]
and interpretability [35].

There is a variety of domain expertise that requires new algorithmic designs to
integrate into the NP workflow, such as experimental context, existing ethograms,
and scientific spatiotemporal constraints.

Incorporating such domain knowledge has the potential to enable NP models to
be more robust to noisy and imperfect data, and enable new scientific inquiries
that were too expensive to study previously. Furthermore, when black-box models
are used for studying behavior, it is difficult to diagnose errors and explain model
outputs [29]. NP models have the potential to produce symbolic descriptions of

186

behavior (see examples in Chapter 10), which enables experts to connect model
interpretations with other parts of the behavior analysis workflow, e.g., describing
behavioral differences across different strains of mice. Finally, to enable the use
of NP models in real-world science workflows, these models must be scalable and
produce robustly reproducible interpretations.

12.2 Neurosymbolic Programming Techniques
Neurosymbolic programs incorporate latent representations from neural networks
and symbols that explicitly capture pre-existing human knowledge, and connect
these elements using rich architectures that mirror classic models of computation.
The programs, assumed to belong to a DSL, are learned using a combination of
gradient-based optimization, probabilistic methods, and symbolic techniques.

Anatomy of a Neurosymbolic Program. In general, a neurosymbolic program
comprises its discrete architecture and continuous parameters (see examples in
Chapter 10). For example, programs can comprise of logical symbolic operations
such as “if” statements, as well as functions with continuous parameters. The
architecture includes all the discrete symbolic choices that form the structure of
the program (such as whether to have an “if” statement and where to place it
relative to other operations), and “programming” this architecture is analogous to
architecture design in neural networks (e.g., whether to use convolutions, recurrent
units, attention, etc.).

Space of Neurosymbolic Programs. The range of NP methods varies in the degree
to which they use neural versus symbolic reasoning (Figure 12.2). The two ends of
the spectrum correspond to purely neural (a 1D convolutional network) and purely
symbolic (a human-written program) models, respectively. The techniques close

def is_attacking(fly, tgt):
 f2t_angle = atan((tgt.y-fly.y) / (tgt.x - fly.x))
 rel_angle = |fly.abs_angle - f2t_angle|
 return fly.speed > 2 and rel_angle < 0.1

Neural Symbolic

Black-box,
many parameters

Interpretable via visualizations,
few parameters

Interpretable,
no parameters

Interpretable via visualizations,
few parameters (symbolic),
many parameters (neural)

Properties

Visualization

Name 1D Convolutional Network Neurosymbolic Encoder Differentiable Program Human-written Program

Symbolic

Neural

Input

Encoding

Feature Weights

Ch
an

ne
l 1

Ch
an

ne
l 2

Figure 12.2: Space of neurosymbolic programming models in behavior analysis,
including purely neural (left), purely symbolic (right), and neurosymbolic (two in
middle)

187

to the center are neurosymbolic: the model in the center-left is a neurosymbolic
encoder [41], while the model in the center-right is a program with differentiable
parameters for behavior analysis [35]. From a definitional perspective, purely neural
and purely symbolic programs can be considered special cases of neurosymbolic
programs, although we typically do not refer to those as neurosymbolic programs
for practical purposes.

To illustrate the strengths and weaknesses of each model in Figure 12.2, assume that
we have a scientific hypothesis to test on a dataset. On the right side, the fully sym-
bolic model would involve an expert-written program that encodes the hypothesis in
a general programming language. This program requires no learnable parameters, is
fully interpretable and, if needed, can be iteratively improved. However, this method
is also brittle, and the program must be engineered to handle all the dynamics of the
dataset. This is intractable for models with complex dynamics. On the left side, the
purely neural model would model the hypothesis directly using the dataset. Such
models fit well to the dataset but offer limited interpretability and control over the
generated hypothesis, which can make them prone to overfitting and limit general-
ization. In the middle, neurosymbolic approaches offer a mixture of both neural and
symbolic components, and if designed well can inherit both the flexibility of neural
networks as well as the structured semantics of symbolic models.

Desiderata for Effective Neurosymbolic Programming. There are two main
requirements for effective neurosymbolic programming: having a good DSL, and
scalable learning algorithms. The DSL effectively corresponds to the component
building blocks from which one can construct a neurosymbolic architecture, and
is one of the primary ways that experts inject domain knowledge (i.e., inductive
bias) into the learning process. Learning has two aspects: 1) searching for the
best neurosymbolic architecture, and 2) optimizing the parameters within a fixed
architecture. The former is is analogous to neural architecture search [12], and the
latter is analogous to standard parameter optimization in deep learning. We discuss
these issues in detail in Section 12.3, and conclude this section with a discussion
on differentiable programs that enable differentiable parameter optimization within
discrete symbolic architectures.

Differentiable programs. A differentiable program for a programming language
is defined as a composition of functions such that the parameters of the function
are differentiable. A differentiable program follows the syntax defined by a DSL
which can consist of parametric functions (multi-layered perceptrons, linear trans-

188

formations), algebraic functions (add, multiply), and programming languages
higher-order functions (map, fold). Furthermore, the composition of these differ-
entiable functions is also differentiable through the chain rule. This property enables
resulting programs to be fully differentiable.

NP programs may be difficult to interpret by domain experts [35] focuses on
explaining the difference in behavior expert annotations. They replace generic
higher-order functions over recursive data structures, e.g., map and fold, with a
differentiable temporal filter operation, the Morlet Filter. The filter models temporal
information in a highly data-efficient manner and can be interpreted as a human’s
impulse response to a given behavioral feature for classification.

12.3 Opportunities and Challenges at the Intersection of Neurosymbolic Learn-
ing and Science

We have defined and outlined benefits of the NP framework. However, gaps remain
between current NP approaches and practical use cases in science (Figure 12.1).
We draw attention to these challenges to encourage the research community to
collaborate in the development of new NP methods to increase the synergy with
scientific workflows to accelerate scientific discovery.

Dealing with raw, noisy, and imperfect data
Data found in scientific domains provides an opportunity to study NP models with
imperfect data in real-world conditions, such as with missing data, experiment noise,
and distribution shifts. By incorporating prior knowledge and known constraints in
NP models, they have the potential to perform well in the presence of imperfect data.
For example, for behavior analysis, neurosymbolic models can automatically learn
weak labels from a small amount of annotated examples and apply these trained
models to generate weak supervision for a full dataset [36].

These types of imperfect data exist throughout science: missing data in neural
recordings due to hardware issues, noise in pose estimators for tracking animal
movements, and distribution shifts. An additional source of noise in data is the con-
siderable variability that exists in the labeling generation process, such as annotator
subjectivity and ambiguity in category definitions. Furthermore, scientists are often
interested in studying rare categories, such as behaviors that may occur in less than
1% of a dataset. NP research [32, 6] leverages the flexibility of neural networks
with symbolic domain knowledge; however, there remain challenges in improving
model scalability that we have outlined in this section.

189

Structural discovery. In many scientific workflows, meaningful categories, and
structures in raw data may not be clear ahead of time and requires unsupervised
or self-supervised learning from data. For example, there are many tools for dis-
covering new behavior categories from data without expert supervision [27]. Zhan*
et al. [41] demonstrated that integrating domain knowledge in an NP workflow
results in more meaningful discovered categories compared to fully neural meth-
ods. In addition to the algorithmic challenges discussed in previous sections, future
research work needs to be robust to variations in experimental noise and produce
interpretations of discovered structures in the data that are useful in the context of
science.

Distribution Shifts. Distribution shifts are common in real-world applications [20].
For typical black-box machine learning models, it is difficult to diagnose and address
these errors. NP approaches generally learn interpretable and modular programs,
which have the promise to tackle this challenge. For example, in behavior analysis,
when the physical behavioral area changes in size, the relative size of mice also
changes. This causes errors in behavior classifiers trained in a previously known
area, but NP programs can be scaled accordingly to adjust to the new task.

Encoding and Learning Domain Knowledge
The success of NP techniques often depends on how a DSL is defined. However,
it is not always clear how to handcraft domain-specific components that work best
in a scientific context, and this can be a time-consuming process. Library learning
proposes algorithms that consolidate common patterns in successful programs and
add them iteratively to the current DSL, enabling the program search to discover
high-performing programs with little effort.

Library learning for science. In behavior analysis, humans are capable of writ-
ing short programs that can improve model learning, such as by designing features
and heuristics [31, 36, 13]. However, these programs are greatly limited by their
simplicity and may not capture complex behavior. Library learning has the po-
tential to augment human feature design, by synthesizing interpretable programs
and inducing high-level DSLs, given low-level, generic primitives. For example,
Dreamcoder [10] is a library learning system that has been applied to physics equa-
tion discovery. Library learning has also been studied for generative modeling in
molecular chemistry [18], which was demonstrated to be able to handle data-limited
settings often found in science.

190

Challenges of library learning for science. In general, it is unclear how library
learning can scale to more complex real-world data scientific domains, such as
behavior analysis, which often consists of thousands of video frames with noisy
data. In addition, it is highly expensive to collect behavior annotations across up to
hundreds of behaviors, which is needed to perform traditional library learning. In
contrast, current library learning methods have been applied to contexts where each
task consists of a few examples, not exceeding hundreds of data points. In addition,
the labels are noiseless, as opposed to real-world situations found in behavior analysis
[23, 31].

Another challenge is that domain experts still need to interpret solutions generated
by the NP library learning system. One promising approach leverages natural
language to impose a stronger prior on the program search and the library learning
[40], resulting in a more human-interpretable DSL. Additionally, building a smooth
interface between expertise in science, program synthesis, neural networks, and
probabilistic library learning methods, found in NP, would likely require significant
engineering and research efforts (Section 12.3).

Representing informal scientific theories. There is a vast body of knowledge that
has been accumulated throughout the span of a given scientific field. Such informal
knowledge may not be explicitly represented as a DSL; for instance, behavioral
neuroscientists have collected ethograms [14], or natural language descriptions of
the functions of species-specific behavior. Other examples include causal relations
between phenomena or interventions in an experimental setting. Past work has
proposed logical languages capable of representing intuitive theories of causalities
[15]. However, capturing all informal and formal knowledge with a single DSL and
searching over this space of programs would likely be intractable. Rather, ongoing
research in NP focuses on identifying the domain knowledge relevant to a specific
subset of scientific problems and distilling such theories into a DSL.

Scalability challenge
From an optimization standpoint, compared to conventional deep learning, the main
additional challenge is searching over program architectures. Architecture search is
challenging in general and typically leads to combinatorial discrete search space.

Inductive synthesis. A large body of works on program synthesis has focused on
inductive synthesis, or synthesizing programs from examples [22, 17, 8]. While such
a goal is on the surface similar to performing machine learning (ML) with programs

191

as models, a key difference is that ML approaches depend on defining a clear
space of models (i.e., neural networks, support vector machines, decision trees) and
generalizing to unseen data. In contrast, much work in inductive synthesis considers
an arbitrary space of programs and spends significant effort on sample engineering,
treating them as noiseless specifications. As a result, inductive synthesis scales
poorly with an increase in program length and number of examples.

Scaling NP in science. To tackle scalability in science, models need to handle
large and potentially noisy datasets, high-dimensional input space, and a variety of
analysis tasks. Recently, NP research [32, 6] propose frameworks that scale to large
datasets given an expressive DSL. These works are instantiated in behavior analysis:
learning programs on temporal trajectory data to reproduce expert annotations of
behavior that contain noisy labels, similar to other scientific data. These works
tackle the challenge of discovering programs with parameters, which can be directly
optimized through popular gradient optimization techniques. While NP methods
provide a means of scaling inductive synthesis to scientific datasets, these techniques
often involve combining a discrete search over an exponential space of programs
with continuous optimization.

Challenges for enabling scalability. Scaling up program synthesis for neurosym-
bolic programming is an active field of research. For instance, differentiable program
synthesis methods [6] have studied the tradeoff between computation and memory,
with heuristics to mitigate memory usage. However, training fully neural models
on a GPU is often more efficient than training NP models, which requires searching
through an exponentially ample space of symbolic architectures on a CPU. Further-
more, scalability has not been broadly explored for different types of scientific data,
such as video recordings, which are much higher dimensional than trajectory data.
Finally, the effectiveness of program synthesis may still be limited by the expres-
sivity of a DSL, which requires experts to spend time encoding domain knowledge,
such as expert-designed behavior attributes [33] and temporal filters [35] (further
discussed in Section 12.3).

Scalability challenges also arise in other work on symbolic regression and inter-
pretable machine learning. For instance, [5] aims to learn exact mathematical
relationships between variables by searching a space of mathematical expressions.
As another example, Ustun and Rudin [37] aim to learn optimized risk scores
within the same modeling language used by clinicians, which leads to an NP-hard
optimization problem that they solve using integer programming techniques.

192

Challenges of optimization of discrete and continuous space in neurosymbolic
programs
NP relies on techniques from symbolic program synthesis to facilitate interpretable
and verifiable searches over the scientific hypothesis space. However, programs
are inherently symbolic, owing to their roots in mathematical logic. This makes
modeling phenomena in the continuous domain challenging without modifying the
way we interpret programs.

For instance, consider a simple program that is modeled by an if-then-else state-
ment (if condition do expr1 else do expr2). The possible behaviors of
condition are partitioned into two sets — True (1) or False (0). These sets eval-
uate to either expr1 or expr2, respectively. However, an NP approach requires
reasoning to be differentiable over a gradient of possibilities. Discrete programs
are inaccurate models for these applications. Specifically, in behavior classification,
modeling the “attack” action using a symbolic if-then-else expression would parti-
tion the mouse’s aggression into a binary set: either always attacking or not attacking
at all. What makes more sense is to model “attacking” as a binomial distribution.
This requires relaxing our symbolic if-then-else to account for a continuous gradient
of probabilities from 0% to 100%.

Continuous relaxations. We approach the continuous program optimization prob-
lem of the symbolic domain by changing the semantics of the programming lan-
guage. Specifically, work on Smooth Interpretation [2] rewrites discrete functions
using their closest smooth mathematical functions. Consecutively, an if-then-else
statement would be rewritten as a hyperbolic tangent function with a high tem-
perature. This smoothening is not restricted to a one-dimensional input space
and specialized functions. In general, in higher dimensions, we can use Gaus-
sian smoothing to smooth discontinuities. Such relaxations, in conjunction with
other program analysis tools, allow gradient descent-based optimizers to converge
to optimal programmatic models.

Continuous relaxations enable an approximate interface between neural networks
and programming languages, which are essential in the NP framework. For example,
in Houdini [38], continuous relaxations enabled the construction of a functional
programming language that admits neural networks and higher-order functions. This
construction facilitated the high-level transfer of learned concepts across tasks in a
lifelong learning setting. In NEAR [32], the interface between neural networks and
differentiable programs allowed for measuring the performance of partial programs.

193

This proved to be an 𝜖−admissible heuristic for synthesizing differentiable programs
in the behavior analysis setting.

Smooth Interpretation allows positing a differentiable approximation for a non-
differentiable program. This approximation error introduces a tradeoff between
the output precision and optimal trainability of the model. Specifically, under-
approximating the non-differentiable components might increase the precision of
the differentiable program at the cost of retaining discontinuities in the optimization
landscape and converging to a suboptimal model, and vice-versa.

Evaluating Interpretability
The main goal of interpretability is to obtain insights that are understandable and ac-
tionable to humans and to assist scientists in their analysis workflow. The following
are commonly described properties of explanations found in machine learning [26],
that have the potential to improve the interpretability and evaluation of NP work-
flows: Compactness or sparsity: Sparsity generally corresponds to some notion
of smallness measurement (a few features or a few parameters); Completeness: To
measure if the explanation includes all the relevant elements, higher-level concepts
needed; Stability: To measure the extent that there are explanations similar for
similar input; Actionability: To allow focusing on only aspects of the model that
the user might be able to intervene on; Modularity: Explanation can be broken
down into understandable parts. To study interpretability of NP models for sci-
ence, we need datasets and benchmarks to quantify these different dimensions of
interpretability across scientific contexts, which is currently an open problem.

Cross-Domain Benchmarking
While many individual fields of science have seen some successes through NP,
consolidating underlying generalizable and cross-cutting insights remains another
significant open challenge for the scientific and machine learning communities.
Towards this, we propose to build initial benchmarks around low-dimensional spa-
tiotemporal data, a setting where NP methods have demonstrated potential [32, 39].
We believe that there are several benefits to gain from developing an NP benchmark
for the ML and scientific communities: (1) systematic improvements across broad
scientific use cases, (2) comprehensive model evaluations, instead of in domain-
specific dimensions, (3) increased awareness of important scientific applications
that have not received as much attention from the ML community.

194

Challenges of benchmarking NP for science. Interpreting programmatic struc-
tures requires expert domain knowledge, which can be expensive and time-consuming
to obtain. In behavior analysis, evaluating learned programmatic structures requires
interactions with experts in the behavioral science community. This imposes a major
bottleneck on evaluating outputs. A standardized benchmark will make it easier for
the community to convene and interact with a panel of experts. We believe that
developing a benchmark for NP pipelines is integral to moving the NP field forward.

The space of NP models is broad. Each algorithm presents a unique methodology for
encoding expert knowledge into the NP lifecycle. This requires comparing models
on multiple evaluation metrics. However, not all NP algorithms can be systematically
evaluated on the same set of metrics. For instance, certain classes of models use
stochastic search to discover the programmatic structure and the programs found by
such an approach may not be reproducible. Additionally, NP models might exhibit
properties that do not have concrete evaluation metrics. For instance, classes of
NP algorithms that exhibit robust reproducibility. That is, the model’s outputs are
reproducible with small perturbations to the input data. However, to the best of our
knowledge, defining such a metric quantitatively and objectively remains an open
challenge.

The hardware requirements for learning neural representations and symbolic func-
tions are orthogonal. Neural network training is GPU intensive, while program
synthesis is CPU intensive. This increases the cost of computation and imposes
a barrier to entry for aspiring NP researchers. NP benchmarks need to take the
efficiency and performance of training and inference into account.

Cross-Domain Analysis Tools for Scientists
Importance of tools in science. User-friendly tools are important for facilitating
the integration of ML models in real-world science workflows but have not been
well-explored for NP approaches. For example, numerous tools, based on statistical
analysis and ML, have been developed to interface with scientists and facilitate
behavior analysis from videos in Pereira, Shaevitz, and Murthy [27]. These tools
assist with much of the computational pipeline for behavior classification as outlined
in Figure 12.3, and will often provide visual interfaces that visualize relevant raw
data such as video, with model outputs, such as pose data and behavior [31]. En-
abling similar tools for NP approaches has the potential to benefit existing scientific
workflows. For instance, integrating NEAR into a visual interface could provide

195

Figure 12.3: Functionalities of MARS and Bento [31] in the behavior analysis
pipeline.

scientists with a user-friendly way of generating differentiable programs and means
of understanding the programs from NP pipelines. The parameters associated with
programmatic primitives are likely to have a much more human interpretation [35]
than those found in black-box neural networks.

Challenges of building NP tools. Domain expertise in science varies in structure,
from behavioral attributes to visual or textual descriptions, to known dynamics of
movement, to knowledge graphs, and generally differs across labs and domains.
Furthermore, to measure progress, user evaluations are needed that could offer
quantitative or qualitative evidence in NP workflows. Taking the first steps to
realize and evaluate the effectiveness of NP algorithms through a human-computer
interaction approach may not only improve the scientific pipeline but also yield new
algorithmic directions on combining NP with more traditional human-in-the-loop
methods, such as active learning.

12.4 Discussion
Neurosymbolic programming offers the promise to accelerate scientific discovery
and optimize scientific discovery end-to-end. The benefits are in its ability to incor-
porate prior knowledge and the symbolic nature of the solutions, essential scientific
workflows. However, challenges still remain in scalability and optimization stability
of these approaches, comprehensive evaluations, and deployment in the form of
tools. In this Chapter, we have demonstrated the opportunities and challenges of
neurosymbolic programming in a concrete scientific application, behavior analysis.
A key promise of neurosymbolic programming is to provide a set of unifying prin-
ciples in interpretable machine learning and prior scientific literature. We invite the

196

science and computer science communities to adopt these methods in their scientific
workflow and to contribute to the research to advance NP techniques for science due
to the unique benefit to these communities.

References

[1] David J. Anderson and Pietro Perona. “Toward a Science of Computational
Ethology.” In: Neuron 84.1 (2014), pp. 18–31.

[2] Swarat Chaudhuri and Armando Solar-Lezama. “Smooth Interpretation.”
In: ACM Sigplan Notices 45.6 (2010), pp. 279–291.

[3] Swarat Chaudhuri et al. “Neurosymbolic Programming.” In: Foundations
and Trends® in Programming Languages 7.3 (2021), pp. 158–243.

[4] Miles Cranmer. PySR: Fast & Parallelized Symbolic Regression in Python/Ju-
lia. 2020.

[5] Miles Cranmer et al. “Discovering Symbolic Models from Deep Learning
with Inductive Biases.” In: Advances in Neural Information Processing
Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 17429–17442. (Visited
on 09/27/2022).

[6] Guofeng Cui and He Zhu. “Differentiable Synthesis of Program Architec-
tures.” In: Advances in Neural Information Processing Systems 34 (2021),
pp. 11123–11135.

[7] Sandeep Robert Datta et al. “Computational Neuroethology: A Call to
Action.” In: Neuron 104.1 (2019), pp. 11–24.

[8] Jacob Devlin et al. “RobustFill: Neural Program Learning under Noisy
I/O.” en. In: Proceedings of the 34th International Conference on Machine
Learning. ISSN: 2640-3498. PMLR, July 2017, pp. 990–998. (Visited on
09/26/2022).

[9] Finale Doshi-Velez and Been Kim. “Towards a Rigorous Science of Inter-
pretable Machine Learning.” In: arXiv preprint arXiv:1702.08608 (2017).

[10] Kevin Ellis et al. “DreamCoder: Growing Generalizable, Interpretable
Knowledge With Wake-Sleep Bayesian Program Learning.” In: arXiv
preprint arXiv:2006.08381 (2020).

[11] Kevin Ellis et al. “Synthesizing Theories of Human Language with Bayesian
Program Induction.” In: Nature Communications 13.1 (2022), pp. 1–13.

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural Archi-
tecture Search: A Survey.” In: The Journal of Machine Learning Research
20.1 (2019), pp. 1997–2017.

[13] Eyrun Eyjolfsdottir et al. “Detecting Social Actions of Fruit Flies.” In:
European Conference on Computer Vision. Springer. 2014, pp. 772–787.

197

[14] Joseph Garner. Mouse Ethogram – Stanford School of Medicine. en-US.
url: https://mousebehavior.org/ (visited on 11/04/2022).

[15] Noah D. Goodman, Tomer D. Ullman, and Joshua B. Tenenbaum. “Learn-
ing a Theory of Causality.” eng. In: Psychological Review 118.1 (Jan.
2011), pp. 110–119. issn: 1939-1471. doi: 10.1037/a0021336.

[16] Nastacia L. Goodwin et al. “Toward the Explainability, Transparency, and
Universality of Machine Learning for Behavioral Classification in Neuro-
science.” In: Current Opinion in Neurobiology 73 (2022), p. 102544.

[17] Sumit Gulwani. “Automating String Processing in Spreadsheets using
Input-Output Examples.” In: PoPL’11, January 26-28, 2011, Austin, Texas,
USA. Jan. 2011.

[18] Minghao Guo et al. “Data-Efficient Graph Grammar Learning for Molec-
ular Generation.” In: International Conference on Learning Representa-
tions. 2021.

[19] Jon Kleinberg et al. “Human Decisions and Machine Predictions.” In: The
Quarterly Journal of Economics 133.1 (2018), pp. 237–293.

[20] Pang Wei Koh et al. “WILDS: A Benchmark of In-the-Wild Distribution
Shifts.” In: International Conference on Machine Learning. PMLR. 2021,
pp. 5637–5664.

[21] Ali Sinan Koksal et al. “Synthesis of Biological Models from Mutation
Experiments.” In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. 2013, pp. 469–482.

[22] Tessa A. Lau and Daniel S. Weld. “Programming by Demonstration: An
Inductive Learning Formulation.” In: Proceedings of the 4th International
Conference on Intelligent User Interfaces. 1998, pp. 145–152.

[23] Xubo Leng et al. “Quantifying Influence of Human Choice on the Auto-
mated Detection of Drosophila Behavior by a Supervised Machine Learn-
ing Algorithm.” In: PLoS ONE 15.12 (Dec. 2020), e0241696. issn: 1932-
6203. doi: 10.1371/journal.pone.0241696. (Visited on 09/20/2022).

[24] Alexander Mathis et al. “DeepLabCut: Markerless Pose Estimation of User-
Defined Body Parts with Deep Learning.” In: Nature Neuroscience (2018).
url: https://www.nature.com/articles/s41593-018-0209-y.

[25] Thomas McGrath et al. “Acquisition of Chess Knowledge in AlphaZero.”
In: arXiv preprint arXiv:2111.09259 (2021).

[26] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT
Press, 2023.

[27] Talmo D. Pereira, Joshua W. Shaevitz, and Mala Murthy. “Quantifying
Behavior to Understand the Brain.” In: Nature Neuroscience 23.12 (2020),
pp. 1537–1549.

https://mousebehavior.org/
https://doi.org/10.1037/a0021336
https://doi.org/10.1371/journal.pone.0241696
https://www.nature.com/articles/s41593-018-0209-y

198

[28] Talmo D. Pereira et al. “SLEAP: A Deep Learning System for Multi-Animal
Pose Tracking.” In: Nature Methods 19.4 (2022), pp. 486–495.

[29] Cynthia Rudin. “Stop Explaining Black Box Machine Learning Models for
High Stakes Decisions and Use Interpretable Models Instead.” In: Nature
Machine Intelligence 1.5 (2019), pp. 206–215.

[30] Nicolae Sapoval et al. “Current Progress and Open Challenges for Applying
Deep Learning Across the Biosciences.” In: Nature Communications 13.1
(2022), pp. 1–12.

[31] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Ze-
likowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson, and Ann
Kennedy. “The Mouse Action Recognition System (MARS) Software
Pipeline for Automated Analysis of Social Behaviors in Mice.” In: eLife
10 (2021), e63720.

[32] Ameesh Shah*, Eric Zhan*, Jennifer J. Sun, Abhinav Verma, Yisong Yue,
and Swarat Chaudhuri. “Learning Differentiable Programs with Admis-
sible Neural Heuristics.” In: Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), pp. 4940–4952. url: https://arxiv.
org/pdf/2007.12101.pdf.

[33] Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue,
and Pietro Perona. “Task Programming: Learning Data Efficient Behavior
Representations.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 2876–2885. url:
https://arxiv.org/pdf/2011.13917.pdf.

[34] Jennifer J. Sun*, Serim Ryou*, Roni H. Goldshmid, Brandon Weissbourd,
John O. Dabiri, David J. Anderson, Ann Kennedy, Yisong Yue, and Pietro
Perona. “Self-Supervised Keypoint Discovery in Behavioral Videos.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022), pp. 2171–2180. url: https://arxiv.org/
pdf/2112.05121.pdf.

[35] Megan Tjandrasuwita, Jennifer J. Sun, Ann Kennedy, Swarat Chaudhuri,
and Yisong Yue. “Interpreting Expert Annotation Differences in Animal
Behavior.” In: CV4Animals Workshop at the Conference on Computer
Vision and Pattern Recognition (CVPR) (2021). url: https://arxiv.
org/pdf/2106.06114.pdf.

[36] Albert Tseng, Jennifer J. Sun, and Yisong Yue. “Automatic Synthesis of Di-
verse Weak Supervision Sources for Behavior Analysis.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022), pp. 2211–2220. url: https://arxiv.org/pdf/2111.
15186.pdf.

https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2007.12101.pdf
https://arxiv.org/pdf/2011.13917.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2112.05121.pdf
https://arxiv.org/pdf/2106.06114.pdf
https://arxiv.org/pdf/2106.06114.pdf
https://arxiv.org/pdf/2111.15186.pdf
https://arxiv.org/pdf/2111.15186.pdf

199

[37] Berk Ustun and Cynthia Rudin. “Optimized Risk Scores.” In: Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2017, pp. 1125–1134.

[38] Lazar Valkov et al. “Houdini: Lifelong Learning as Program Synthesis.”
In: Advances in neural information processing systems. 2018.

[39] Abhinav Verma et al. “Programmatically interpretable reinforcement learn-
ing.” In: International Conference on Machine Learning. 2018.

[40] Catherine Wong et al. “Leveraging Language to Learn Program Abstrac-
tions and Search Heuristics.” In: International Conference on Machine
Learning. PMLR. 2021, pp. 11193–11204.

[41] Eric Zhan*, Jennifer J. Sun*, Ann Kennedy, Yisong Yue, and Swarat
Chaudhuri. “Unsupervised Learning of Neurosymbolic Encoders.” In:
Transactions on Machine Learning Research (2022). url: https : / /
arxiv.org/pdf/2107.13132.pdf.

https://arxiv.org/pdf/2107.13132.pdf
https://arxiv.org/pdf/2107.13132.pdf

Part IV

Conclusion

200

201

C h a p t e r 13

DISCUSSION AND FUTURE WORK

The development of AI for scientists requires a collaborative process between ML
researchers and labs with diverse domain knowledge, experimental setups, and data.
Through this process, my research lays the groundwork towards a general scientist-
in-the-loop framework that learns from expert knowledge and experimental data
across domains. This framework has the potential to unify analysis efforts and share
insights broadly across science. My current work has began to study how workflows
in fields such as behavioral neuroscience motivates the design of AI systems, as well
as how these systems could benefit the workflow of scientists. Many open questions
still remain: What is the most efficient way to encode domain knowledge into AI
systems? How to build benchmarks and tools that are broadly applicable in the
sciences? How to close the development-deployment loop between AI and science
research communities. Towards this, future directions to explore include:

Enabling richer scientist-AI interactions. New methods and algorithms moti-
vates new modes of interaction. Current developments has already led to multiple
ways for scientists to interact with AI systems, such as through data annotation or
task programming as we discussed earlier in this thesis. However, in these cases,
scientists generally define everything about the task, and the model is simply repro-
ducing human observations and annotations. Neurosymbolic models offer another
layer of interaction with users through interpretability. Scientists have the potential
to interpret these model directly to gain more insight into the phenomenon they
are studying. For example, we have found that compared to neural networks, neu-
rosymbolic methods result in qualitatively more interpretable features and patterns
for studying mice behavior [4]. In addition, despite being much simpler and having
fewer parameters, we found that learned programs performed comparably to the
neural network in terms of accuracy.

The development of large language models (LLMs) and foundation models (FMs)
has opened up new avenues for accelerating scientist-AI collaborations. These
models can learn from vast amounts of data and generate insights that would be
difficult or impossible for humans to obtain on their own. However, there is remains a
gap between the general knowledge encoded by LLMs and the more domain-specific

202

knowledge that scientists have in their experiments. The challenges are that scientists
study diverse data modalities, such as infrared recordings, fluorescent imaging, or
neural recordings of different parts of the brain, and often rare phenomenon where
we do not have a lot of existing data. This makes it difficult to deploy LLMs
and FMs out-of-the-box in these domain-specific experimental setups. There are
exciting open questions on the extent to which LLMs can be deployed in domain-
specific experimental setups and how much data we would need to fine-tune these
models on new experiments. Our goal is to develop new methods to bridge the gap
between general and domain-specific knowledge, so that scientists can leverage the
power of LLMs and FMs to accelerate their research.

Expanding neurosymbolic modeling to new domains. The methods discussed in
this thesis have been primarily applied to the modeling of human and animal be-
havior. However, these methods are also applicable to other types of spatiotemporal
data, such as electrocardiogram (ECG) data. As an early exploration, we are working
with cardiologists to learn interpretable neurosymbolic programs from ECG data to
study different heart conditions. Our approach is to first define a space of programs
by identifying interpretable ECG features. We then use learned temporal filters
and compositions to synthesize these programs, using similar learning algorithms
to those developed earlier for behavior.

Across scientific domains, knowledge is encoded in many forms, including math-
ematical equations, natural language, and knowledge graphs. We would like to
build neurosymbolic methods that enable AI systems to ingest different types of
knowledge. For example, a knowledge graph could be used to encode the relation-
ships between genes in biomedical data analysis. However, these organized forms
of knowledge do not exist everywhere. For example, there is no knowledge graph
that comprehensively encodes prior results and theories in behavioral neuroscience.
This is a challenge because it can be difficult for scientists to query for relevant
knowledge or design new experiments. Therefore, in addition to developing new
methods, we also need to work with the scientific community to study new ways to
encode prior knowledge.

Building AI for the scientific process. The scientific process is an iterative process
that involves hypothesis design, data collection, data analysis, interpretation, and
communication to the community. We focused our discussion in this thesis on data
analysis, but AI has the potential to impact all steps in the scientific process, from
hypothesis design to sharing results. My goal is to build towards an AI ecosystem

203

that can help scientists end-to-end through the scientific process. This system would
need to be able to work with diverse data sources, collaborate with scientists to
interpret results, and integrate new scientific advances.

Ultimately, for ML to achieve its full impact in science, we need to close the loop
between model development and evolving real-world challenges from scientists.
Currently, many benchmarks in ML and tools in science are focused on a sin-
gle analysis task or domain but many computational challenges are shared more
broadly [1, 3]. We need broad and joint efforts from the community, in order to de-
velop diverse cross-domain datasets and benchmarks, as well as build cross-domain
tools to translate CVML models to real-world use cases. Tackling these challenges
does not only require new ML methods, but also requires community effort to realize
the potential of ML in the sciences. I will continue to work with researchers across
communities and build towards a unified scientist-in-the-loop system that enables
sharing of data and insights for all scientists.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Contents
	List of Figures
	List of Tables
	Introduction
	AI for Scientists
	Themes

	Thesis Organization

	Representation & Structural Discovery from Real-World Data
	Overview
	Discovering Keypoints in 2D and 3D
	Introduction
	Related Work
	2D Keypoint Discovery
	Experiments for 2D
	3D Keypoint Discovery
	Experiments for 3D

	Pose Representations
	Introduction
	Related Work
	View-Invariant Probabilistic Embeddings
	Experiments
	Extensions to Temporal Embeddings

	Benchmarking Representation Learning
	Introduction
	Related Work
	Dataset Design and Collection
	Benchmarking and Methods
	Experiments

	Neurosymbolic Representations
	Introduction
	Background
	Neurosymbolic Encoders
	Experiments
	Discussion

	 Integrating Symbolic Domain Knowledge with Learning
	Overview
	Task Programming
	Introduction
	Related Work
	Method
	Experiments

	Program Learning
	Introduction
	Problem Formulation
	 Program Learning using Near
	Experiments
	Interpreting Annotation Differences

	Synthesizing Supervision Sources
	Introduction
	Related Work
	Methods
	Experiments

	Neurosymbolic Programming for Science
	Introduction
	Neurosymbolic Programming Techniques
	Opportunities and Challenges at the Intersection of Neurosymbolic Learning and Science
	Discussion

	Conclusion
	Discussion and Future Work

