
A Greedy Algorithm for Tolerating Defective
Crosspoints in NanoPLA Design

Thesis by

Helia Naeimi

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2005

(Submitted May 11, 2005)

c© 2005

Helia Naeimi

All Rights Reserved

ii

Acknowledgements

I would like to thank all the people who made this work possible by their valuable advice and support. First

I like to thank my adviser, Professor André DeHon for his constant help and support in my research and his

encouragement for me.

I would also like to thank Amir F. Dana for all the valuable discussions and conversations we had about

this research and his constructive feedback. I also received valuable feedback from Michael DeLorimier,

Nachiket Kapre and Michael Wrighton, which helped me to improve this presentation.

This research was funded in part by the DARPA Moletronics program under grant ONR N00014-01-0651

and N00014-04-1-0591.

iii

Abstract

Recent developments suggest both plausible fabrication techniques and viable architectures for building

sublithographic Programmable Logic Arrays using molecular-scale wires and switches. Designs at this scale

will see much higher defect rates than in conventional lithography. However, these defects need not be an

impediment to programmable logic design at this scale.

We introduce a strategy for tolerating defective crosspoints in PLA architecture. We develop a linear-

time, greedy algorithm for mapping PLA logic around crosspoint defects. The mapping algorithm matches

the PLA logic to the defect configuration of each device.

We note that P-term fanin must be bounded to guarantee low overhead mapping and develop analyt-

ical guidelines for bounding fanin. We further quantify analytical and empirical mapping overhead rates.

Including fanin bounding, our greedy mapping algorithm maps a large set of benchmark designs with 13%

average overhead for random junction defect rates as high as 20%.

iv

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Related Works . 2

1.2 Overview . 2

2 Substrate 4

2.1 NanoWires . 4

2.2 Programmable Crosspoints . 5

2.3 Nonprogrammable Restoring Crosspoints . 7

2.4 Addressing Nanowires From Lithographic Scale Wires . 7

3 Architecture Model 9

3.1 Conventional PLA Architecture . 9

3.2 NanoPLA Architecture . 10

3.2.1 Logic Array . 12

3.2.2 Buffer/Inverter Array . 13

4 Defect Model 14

4.1 Breaks . 14

4.2 Defective Crosspoints . 14

5 Problem Statement 17

5.1 Overview . 17

5.2 Challenge . 18

5.3 Idea . 20

5.4 Formal Problem Statement . 20

v

6 Algorithm 22

6.1 Graph Construction . 22

6.2 Exact Algorithm . 23

6.3 Why do we want to improve the Running Time? . 24

6.4 Greedy Heuristic Algorithm . 24

6.5 Stochastic Approach . 25

7 Analysis 27

7.1 Running Time Complexity . 27

7.2 Area Overhead Estimation . 28

8 Fanin Bounding 30

8.1 Bounding Procedure . 33

9 Experimental Results 35

9.1 Running Time . 35

9.2 Area Overhead . 38

10 Summary 47

Bibliography 48

vi

Chapter 1

Introduction

Recent work shows how to build nanoscale Programmable Logic Arrays (nanoPLAs) using the bottom-up

synthesis techniques being developed by physical chemists [1] [2] [3] [4]. With these bottom-up techniques,

it is possible to build features (e.g. wires and programmable junctions) without relying on lithography.

This provides a path to sublithographic feature sizes (e.g. 3nm diameter nanowires have already been

demonstrated). As such, these techniques provide a path to continue the advance of field-programmable

technology beyond the end of the traditional, lithographic roadmap (e.g. [5]). These techniques may also

make it possible to achieve small feature field-programmable devices without the full expense of the finest

line lithographic processing.

Nonetheless, nanoscale features, both in the sublithographic and lithographic arenas, come with a new

set of challenges. Notably, as devices become smaller, they are constructed from fewer and fewer atoms and

molecules. Since individual atoms behave statistically, this means we have higher variance in the shape and

makeup of our devices, and a higher likelihood that devices are simply unusable. Designs at this scale must

be defect tolerant. This, and other aspects of sublithographic assembly techniques, suggest that all devices

we build at these scales will be reconfigurable.

Hewlett-Packard has recently demonstrated an 8×8 crossbar using molecular switches at the crosspoints

[3]. In the HP crossbar, they observed that 85% of the crosspoint junctions were programmable (15% were

defective). The HP crossbar is an early laboratory prototype, and we expect these defect rates to decrease.

Nonetheless, we are unlikely to achieve 100% crosspoint yield at this scale using these kinds of bottom-up,

statistical fabrication techniques. If we have a 100×100 crosspoint array and randomly distributed faults,

essentially every row and every column will contain a defective junction. Even at a 95% crosspoint junction

yield rate, we will likely find at most one row or column which has no crosspoint defects.

From the above paragraph its clear that we need a mapping algorithm that works properly in the presence

of defect junctions. In the following section we introduce some of the previous work that has been done in

the area of the defect-tolerant mapping for nanotechnology devices.

1

1.1 Related Works

Lee et al. [6] have demonstrated a technique to program the HP memory array architecture [3], when there

is a random distribution of defects over the junctions. The memory architecture consists of 2n × 2n array,

used as memory and two 2n × 2n arrays, used as a multiplexer and a demultiplexer to read and write to

memory. They assume that there are spare nanowires so that the design will be defect tolerant.

In their approach first they find a 2k×2k defect-free array for memory (k < n). Next they try to program

the 2k× 2k multiplexer and demultiplexer allowing defects in the junctions. In order to program the arrays

to multiplexer and demultiplexer, a specific program will be mapped to the arrays. In order to program an

array each of the nanowires in the array will be programmed to a specific logic. They try to find a matching

from the nanowires logic to the physical nanowires, such that the defective junctions are bypassed. They

use a similar approach as we do here (Chapter 5). First they construct a graph from physical nanowires and

nanowire logic. Then they find a matching from the nodes of a graph that represents nanowires logic to the

physical nanowires. They demonstrate their result for different memory sizes (k= 5, 6, 7, 8, and 9) and for

different defect rates as high as 20%.

Another work has been done by Snider et al. [4]. They have demonstrated a defect-tolerant programmable

logic crossbar. The crossbar architecture consists of two programmable P-FET and N-FET arrays, and

two programmable switch arrays. They assume a random distribution of defects in the arrays, with the

defect rates from 0% to 20%. The maximum fanin size is also an input parameter of their approach. The

experimental results are done on a single application with the maximum fanin sizes of 4, 6, 8 and 10. The

programming is done using a pruned exhaustive search algorithm.

1.2 Overview

In this work, we show how we can use programmable crosspoint arrays which have defective crosspoint

junctions in the construction of nanoPLAs. With the techniques in this paper, we show that arrays with a

20% crosspoint defect rate are still usable with modest (13% including fanin bounding) overhead. That is,

despite the fact that no rows or columns are free of defective junctions, we can still make use of more than

87% of the nanowires.

Due to the high defect rate, the number of defected junctions per array can be very large. In order to

make use of the defective array by bypassing the defective junctions, this defect mapping must be applied

on a per-array basis. That is, each nanoPLA will have a unique fault pattern. Since nanoPLAs are a few

microns tall and 10–20 microns wide [2], we can easily have millions of these nanoPLAs on a modest die.

Consequently, it is important that we minimize the time required to map around defects. To this end,

we introduce a linear-time, greedy mapping algorithm for assigning logical P-terms to physical nanowires

2

avoiding defective junctions in a fabricated nanoPLA.

Novel contributions of this work include:

• Formulation of defective crosspoint mapping problem for nanoPLAs

• Introduction of simple, greedy algorithm for linear-time mapping around defects

• Analytical identification of bounds on P-term fanin driven by array size and fault rate

• Analytical estimates and empirical characterization of mapping times

• Empirical and analytical characterization of mapping overhead for our proposed algorithm

In the next chapter, we review the emerging, bottom-up fabrication techniques for nanowires and cross-

points (Sections 2.1 and 2.2). The architectural building blocks for restoration will be described in Section 2.3.

The architectural description of the address decoder to address the nanowires at the nanoscale pitch from

lithographic scale wires comes in Section 2.4. We then review the conventional PLA architecture along with

the nanoPLA architecture (Section 3.1 and Section 3.2). In Chapter 4, we introduce our defect model which

are breaks and defective junctions. In this chapter we talk about the origin of the defects and a possible

strategy to detect them.

Chapter 5 formulates the problem and introduce the basic idea for the solution. It include an overview

on programming a logic plane. It also covers the challenges of programming while trying to bypass defective

junctions. The mapping problem is formally stated as a bipartite graph matching problem. The logical

program of nanowires are the nodes of one side of the bipartite graph and each physical nanowire (with its

specific defect configuration) represents a node in the other side of the graph.

Chapter 6 reviews exact algorithms to solve the identified mapping problem and develops our linear-time

heuristic algorithms. We even improve the mapping time of the algorithm further by exploiting a stochastic

approach.

In Chapter 7, we analyze the algorithms based on expected case behavior for the running time and area

overhead estimation. To improve the running time and area overhead we derive bounds on the size of the

input fanin in Chapter 8. Chapter 9 provides experimental results which ground and confirm the analysis.

3

Chapter 2

Substrate

This section provides an overview of the nanotechnology substrates and some of the technology processes.

2.1 NanoWires

One-dimensional nanostructures, such as semiconductor nanowires are promising building blocks for nanoscale

device applications. Different fabrication processes for synthesizing nanowires have been demonstrated. Two

of them will be briefly explained in this section.

A method for synthesis of semiconductor nanowires has been developed using nanocluster catalysts of

gold. This method deposits nanowire materials on the gold nanocluster catalysts. The deposition happens

only through the gold nanocluster catalyst and that is how nanowires grow in one direction. This method is

used to grow nanowires in one direction by Vapor-Liquid-Solid (VLS) growth process [7]. The diameter of

the nanowires can be controlled at the nanometer scale by the diameter of the gold particles. By controlling

the mix of elements in the environment during growth, semiconducting nanowires can be doped to control

their electrical properties [8]. The doping profile along the length of a nanowire can be controlled by varying

the dopant level in the growth environment over time [9]; as a result, our control over growth rate allows

us to control the physical dimensions of these features down to almost atomic precision.

Having VLS grown semiconductor nanowires as a core, a doped silicon (e.g. boron doped, p-Si) or

an insulator (e.g. silicon dioxide) shell can be grown by homogeneous Chemical Vapor Deposition CVD

[10]. This approach grows nanowires in radial directions. CVD approach coupled with VLS has more

precise control over the fabrication and doping to synthesize higher quality electronic materials than previous

methods [11]. Nanowires with 20nm thickness have been fabricated with this process with diameter variation

of ±4nm among 50 nanowires [11].

The doping profile controlled along the radius of these nanowires is used to control spacing between

conductors and between gated wires and control wires [10] [12].

4

Conduction through doped nanowires can be controlled via an electrical field like Field-Effect Transistors

(FETs) [13]. This property lets us build the restoring array as will be described in Section 2.3.

Techniques have been demonstrated to align a set of nanowires into a single orientation, close pack them,

and transfer them onto a surface [13] [12]. This step can be repeated and rotated by 90 degrees so that we

get multiple layers of nanowires [13] [12] such as crossed nanowires for building a crossbar array or memory

core.

The other successful fabrication technique is imprint lithography. Nanowires with sub-10nm feature size

can be made using imprint lithography [14]. This new technique has high throughput and low cost. Imprint

lithography includes little damages to sensitive circuit components, including active molecules, which are

used in making programmable crosspoints (Section 2.2). Chen et al. have developed an inexpensive process

to fabricate nanoscale devices and circuits utilizing imprint lithography, shown in [15].

A technique for fabricating aligned metal nanowires through a one-step deposition process without sub-

sequent etching or lift-off is demonstrated in [16]. Their technique uses Molecular Beam Epitaxy (MBE)

to create physical template for nanowire patterning (Figure 2.1). The template is a selectively etched

GaAs/AlGaAs superlattice (Figure 2.1 step A). The wires are defined by evaporating metal directly onto

the GaAs layers of the superlattice after selective removal of the AlGaAs to create voids between the GaAs

layers (Figure 2.1 step C). By depositing the metal solely on the GaAs layers (Figure 2.1 step B), the wire

width is defined by the thickness of the GaAs layers and the separation width by AlGaAs layers. Transfer

of the metal nanowires to a silicon wafer is performed by contacting the metal-coated template to a silicon

oxide surface with subsequent heating process (Figure 2.1 step D). Wires deposited with this technique were

uniform and continuous over 2 to 3mm length, with very few defects. The highest density nanowire patterns

fabricated is 20 Platinum 8nm nanowires at a pitch of 16nm. They show no visible defects (break or short)

over stretches greater than 100µm. These metal nanowires can be translated into semiconductor nanowires

by further processing.

2.2 Programmable Crosspoints

Over the past few years, many technologies have been demonstrated for molecular-scale memories. So far,

they all seem to have:

1. Resistance which changes significantly between ON and OFF states

2. The ability to be made rectifying

3. The ability to turn the device ON or OFF by applying a voltage differential across the junction.

UCLA and HP have demonstrated a number of molecules which exhibit hysteresis [17] [18]. HP has

demonstrated an 8×8 programmable crossbar made from one of these molecules [3]. The basic structure of

5

Etch

AlGaAsGaAs

Final
State

A B

C
D

E

Figure 2.1: The imprint lithography process steps (Pictures modeled after [16]).

this device is a monolayer of the [2]rotaxane molecules sandwiched between two nanowires. The formation

of the junction at each crosspoint acts as a reversible and nonvolatile switch. The ON and OFF resistance

of their switch is < 5× 108 Ω and > 4× 109 Ω respectively [3].

A positive voltage of 3.5V to 7V would turn the switch ON, and a negative voltage of -3.5V to -7V would

switch it OFF. A voltage with magnitude less than 3.5V would not change the resistance state [3].

The I-V characteristic of the ON-OFF state of the same programmable molecules is demonstrated in [15].

The molecular devices usually show a very high initial resistance (> 108Ω when measured at V=0.2V) as

fabricated. This initial high resistance state is stable for |V | < 2V . Exceeding these voltage limits usually

causes an irreversible transition to a smaller resistance. The initial resistance can be as high as 6.1× 108Ω,

but after sweeping the voltage bias cycle from 0 to +5V, the resistance subsequently dropped to 4.3× 105Ω.

After this step, the device becomes a reversible switch with lower cycling voltages from 0 to ±2V. After the

initial step the molecular device is set in the OFF state, the I-V characteristic measured at ±0.2V shows a

resistance of 8.1 × 106Ω. A positive voltage bias cycle between 0 to 2V is next applied to the device, and

turns it ON. The resistance in this ON state is 4.8× 105Ω. A subsequent negative voltage bias cycle from 0

to -2V brings the device to the OFF state again with resistance of 9.2× 106Ω.

This ON/OFF switching cycles are repeatable. However the ratio of the ON/OFF resistance decreases

after 40 switching cycle.

6

2.3 Nonprogrammable Restoring Crosspoints

With diodes alone we cannot invert signals which will be necessary to realize universal logic. Further,

whenever an input is used by multiple outputs, diode junctions divide the current among the outputs; this

cannot continue through arbitrary stages as it will eventually not be possible to distinguish the divided

current from the leakage current of an OFF crosspoint. The diode junction may further provide a voltage

drop at every crosspoint such that the maximum output high voltage drops at every stage.

The limitations of diode logic is overcome by inserting rectifying field-effect stages between diode stages [2].

As noted above, a doped nanowire can be gated like a Field-Effect Transistor. If the input field allows con-

duction, the nanowire will allow a source voltage to flow through the gated junction; otherwise conduction

is cut off and the output is isolated, through a high impedance junction, from the supply. When we place

a field-effect buffer or inverter on the output of a diode OR nanowire, the entire OR stage is capacitively

loaded rather than resistively loaded.

The OR stage simply needs to charge up its output which provides the field for the field-effect based

restoration stage. When the field is high enough (low enough for p-type nanowires) to enable conduction in

the field-effect stage, the nanowire will allow the source voltage to drive its output. The field-effect stage

provides isolation as there is no current flow between the diode stage and the field-effect stage output. It

has been shown that nanowire field effects have good enough thresholds that we can get gain and logic level

restoration with these stages [19].

2.4 Addressing Nanowires From Lithographic Scale Wires

The preceding technologies allow us to pack nanowires at a tight pitch into crossbars with programmable

crosspoints at their junctions. The pitch of the nanowires can be much smaller than our lithographic

patterning. The crosspoint programmability will be used to configure logic functions into these nanoscale

devices. In order to make this possible, a way to selectively place a defined voltage on a single row and

column wire is necessary to set the state of the crosspoint. By constructing nanowires with doping profiles

on their ends, using the techniques of Section 2.1 [9] [19], each nanowire can have an address (See left end

of Figure 3.2). The dimensions of the address bit control regions can be set to the lithographic pitch so that

a set of crossed, lithographic wires can be used to address a single nanowire. If all the nanowires along one

dimension of an array have suitably different codes, we can get unique nanowire addressability and effectively

implement a demultiplexer between a small number of lithographic wires and a large number of nanowires.

It cannot be controlled exactly which nanowire codes appear in a single array or how they are aligned, but if

nanowires are randomly selected from a sufficiently large code space, with very high probability (over 99%)

they will have unique codes. The addresses do not have to be entirely unique for this application; allowing

7

a little redundancy will allow us to use a tighter code space. The basic stochastic addressing scheme is

developed in detail in [19]. Calculations allowing redundancy are summarized in [20].

8

Chapter 3

Architecture Model

In this Chapter we briefly explain the nanoPLA architecture introduced in [2]. For better understanding

of nanoPLA architecture, we will first show the architecture of conventional PLA and then move on to the

nanoPLA architecture.

3.1 Conventional PLA Architecture

The Programmable Logic Array (PLA) is one of the first programmable hardware devices [21]. A PLA

computes the sum of product function of the input signals. It has a very simple and regular architecture

(Figure 3.1).

The PLA consists of two programmable NOR planes. The inputs of the device enter the first plane (AND

plane) and produce the PRODUCT terms in the sum of product functions. The PRODUCT terms are called

P-terms for short. The P-terms enter the second plane (OR plane) and generate the output signals.

Both AND and OR planes are programmable. The programmability is the result of the programmable

junctions. Each junction is made of an NMOS transistor whose gate is controlled by a fuse or SRAM (enlarged

part in Figure 3.1). If an input signal is part of a P-term function in the AND plane, the control SRAM or

fuse will stay connected and if it is not part of the P-term function the SRAM or fuse will disconnect the

input. The P-terms are pulled up weakly with a static load. If one of the inputs of the P-term is high it

pulls down the P-term with the NMOS transistor at its junction (Figure 3.1).

The OR plane is implemented exactly as the AND plane, and it can be programmed the same way as

AND plane. The inputs of the OR plane are the P-terms and its outputs are the primary outputs of the

design.

Note that the AND plane actually implements AND functions of the inverted inputs rather than the

original inputs. So by DeMorgan’s law it is basically a NOR function. But as the inputs are available both

in inverted and original form, the AND function can be implemented using the inverted inputs.

9

The OR plane implements the NOR function of P-terms, in the same way as the AND plane. However

the inverter at the final outputs, make the overall function of the plane, an OR function.

AND plane OR plane

Inputs Outputs

P-terms

Closed
junction

Open
Junction

Closed
junction

Figure 3.1: PLA Architecture

3.2 NanoPLA Architecture

The nanoPLA architecture described here is the architecture suggested in [2]. NanoPLAs, like conventional

PLAs, consist of two programmable NOR planes. Figure 3.2 illustrates the two NOR planes of the nanoPLA.

The first NOR plane is comparable to the AND plane in the conventional PLA architecture and the sec-

ond NOR plane is comparable to its OR plane. Each NOR plane consists of two arrays: logic array and

buffer/inverter array (Figure 3.2). The primary inputs enter the buffer/inverter array of the first NOR

plane, then enter to the logic array of the same plane. The signals at this stage are the OR function of the

buffered/inverted input signals. The OR functions enter the second NOR plane. They pass through the

buffer/inverter array and then enter the logic array.

10

Inverter
array

Buffer
array

NOR
plane

Logic array

Lithographic
scale wires

Inverter
arrayLithographic to

sublithographic
decoder

Lightly doped
control region

Logic
array

Figure 3.2: NanoPLA Architecture introduced in [2].

11

If the mapped logic is a 2-level logic then the primary outputs are ready at this stage. For more than

2-level logic, for example a 4-level logic, the outputs of the second NOR plane rotates back to the first NOR

plane and then pass through the first and second plane one more time to produce the primary outputs. More

information on how multi-level logic can be implemented on a limited number of NOR plane nanoPLA can

be found in [2].

3.2.1 Logic Array

The logic array is the programmable part of each NOR plane. Its junctions are the bistable crosspoints

described in Section 2.2. If the input nanowires of the array (the red vertical nanowires in Figure 3.2) are

P-type doped and the output nanowires (the green vertical ones in Figure 3.2) are N-type doped then a closed

crosspoint is a PN junction and each output nanowire implements the wired-OR function of its inputs. This

is the reason we call them OR-term nanowires.

---Inputs--

Output

P

P

P

N

GND

Output--

Inputs--

(a) (b)

Figure 3.3: Implementation of an OR function with diodes. The output line is weakly pulled down, therefore a high
signal from any of the inputs can pull it up.

The output of each OR-term is pulled down weakly. If any of the inputs is high, then it pulls up the

OR-term output. Figure 3.3 shows how each of these OR-term is implemented. Figure 3.3(a) shows the

circuit view of an OR-term and 3.3(b) shows a wire connections similar to Figure 3.2.

If an input participates in an OR function, the junction of that input and the OR-term nanowire repre-

senting that function will be programmed “closed”; and it will be left “open” when the input is not in the

OR function. The junctions are initially in the “open” state. To program a nanoPLA some of the logic array

junctions need to be programmed “closed”. To program a junction “closed” or back to “open” high voltages

will be applied to nanowires crossing the junction (See Section 2.2). The decoders explained in Section 2.4

will be used to select the two nanowires crossing the junction individually.

12

3.2.2 Buffer/Inverter Array

The second part of the NOR plane is the buffer/inverter array. The buffer/inverter array restores the input

signals using the restoring, nonprogrammable junctions (Section 2.3). The OR-term signals or the primary

inputs can be selectively inverted or buffered in this array.

The inputs of the buffer/inverter array are the OR-term nanowires or the primary input nanowires, and

its outputs are the restored signals. The restored signals have either the original polarity or the inverted

polarity. Consequently the input signals to the logic array is either buffered or inverted. The polarity of

the outputs of the buffer/inverter array will be determined at fabrication time. Some of the signals are only

buffered some are only inverted and some are both buffered and inverted [2].

Our mapping algorithm is designed for the architecture described in this chapter. However this algorithm

is mostly focus on the logic array and changes in the rest of the architecture does not effect it. For example

our mapping algorithm is applicable to the architecture of [22] despite the architectural differences between

[22] and [2].

13

Chapter 4

Defect Model

In this section we discuss possible defects in the nanoPLAs, and the defect model used in this work. The

procedure to discover these defects will also be explained. The two more probable defects that we focus on

here are:

1. Breaks in nanowires

2. Defects in programmable crosspoints

4.1 Breaks

The broken nanowires can be easily detected with the procedure suggested in [2]. By applying a voltage

to only one nanowire through the decoder, one can read the value form the other end and determine if the

nanowire conducts across its length. The horizontal nanowires can be tested by applying a voltage through

the decoder from one end and read back the value from the other end. To test the vertical nanowires the

high voltage is applied to a horizontal nanowire through the decoder, then the signal controls a vertical

nanowire current through the FET-like restoring junction of the buffer/inverter array. The value of the

vertical nanowire can be read from the other end. More detailed information about testing for broken wires

can be found in [2].

According to their results, the time required to test the nanowires of each array is linear in the code

space size of the stochastic address decoder. After detecting the broken nanowires as explained above, the

only source of defects will be defective programmable crosspoints.

4.2 Defective Crosspoints

Defects in programmable crosspoints are due to the structure of the junctions. As explained in Section 2.2, the

structure of a programmable crosspoint is a sandwich of bistable molecules, between two layers of nanowires.

In each crosspoint there are only a few molecules. Nanowires with 40nm diameter used in [3], have the cross

14

sectional area of 1600nm2. According to their data ∼ 1100 programmable molecules can be placed in the

cross section. Now if the nanowires of width 8nm, demonstrated in [16], are used, then the cross sectional

area will be 64nm2 which is 1
25 of the first cross sectional area. So scaling the number of molecules in the

cross section with 1
25 yields only about 44 molecules.

The programmability of a crosspoint comes from the bistable attribute of the molecules located in the

cross sectional area. If there are too few molecules at the crosspoint then the junction may never be able to

be programmed “closed”, or the “close” state may not have low enough resistance.

Let P be the probability that there is a single molecule on a unit of area (as small as a molecule area). The

probability distribution function of the number of molecules on a cross sectional area of 44 times molecule

area is: (
44
x

)
P x(1− P)44−x (4.1)

Where x is the number of molecules in the cross sectional area. The green curve in Figure 4.1 illustrates this

distribution function and the red curve illustrates its Cumulative Distribution Function with P = 0.8.

Let Nmin be the minimum number of molecules which must be in the cross section so that the junction is

programmable. Assuming Nmin = 32 (the black line), then the probability that a junction is programmable

is about 0.85. The value of P and Nmin need to be defined by the physical parameter of the technology.

We abstract this into a simple crosspoint defect model. Crosspoints will be in one of two states:

• programmable – crosspoint can be programmed into both “closed” and “open” state. In the “closed”

state the junction provides sufficiently low resistance to serve as an input to an OR function. In the “open”

state the junction provides sufficient isolation that it does not act as an input to the OR function.

• non-programmable – crosspoint cannot be programmed into an adequate “closed” state, but can be set

into a suitable “open” state. The crosspoint may fail to be programmable because there are not enough

programmable molecules at the crosspoint. Consequently the “closed” state provides higher resistance

than the designed threshold chosen for correct operation and timing of the PLA.

The programmability of a crosspoint can be checked by programming it to the closed state and reading

back the results in the way explained in Section 2.2.

Crosspoints which cannot be programmed into a suitable “open” state will result in the entire horizontal

and vertical nanowires being unusable. We treat these as nanowire defects rather than junction defects. Based

on the physical model suggested above and discussion with physical scientists, we expect these defects which

“short” horizontal and vertical nanowires to be much less likely and, consequently, believe it is reasonable

to treat them as wire defects.

15

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

C
u
m
u
l
a
t
i
v
e

D
i
s
t
r
i
b
u
t
i
o
n

F
u
n
c
t
i
o
n

 Number of Molecules

 Molecule Distribution in a Cross Sectional Area

0 5 10 15 20 25 30 35 40 45
0

0.04

0.08

0.12

0.16

0.2

P
r
o
b
a
b
i
l
i
t
y

D
i
s
t
r
i
b
u
t
i
o
n

F
u
n
c
t
i
o
n

Figure 4.1: The number of molecule in a cross sectional area distribution function. The green curve is the probability
distribution function and the red curve is the cumulative distribution function. The black line denotes the target
minimum number of necessary molecules in the junction, 32. With P = 0.8, the Programmability Probability yields
about 0.85.

16

Chapter 5

Problem Statement

In this section we first provide an overview of programming a nanoPLA. Then we discuss the challenges

that programming may face due to defective crosspoints. We introduce the idea to overcome the problems

of programming a defective nanowire array later in this section, and the formal problem statement comes at

the end.

5.1 Overview

To implement a specific circuit on a nanoPLA, we program up the logic arrays. This means that each OR

function of a design will be mapped to an OR-term nanowire. As mentioned in Section 3.2 the programmable

part of the nanoPLA is the logic array. So for the rest of this paper we mainly focus on the logic array.

For clarity, we define the following terms. The logical inputs are the set of inputs to the OR functions.

The logical inputs includes the primary inputs of the nanoPLA and the intermediate signals that are the

outputs of the other NOR plane and rotate through the nanoPLA. In each OR function the set of logical

inputs that participate in the OR function is called ON-inputs and those that do not participate are called

OFF-inputs.

Henceforth we assume that the input nanowires of logic arrays are previously assigned to the logical inputs,

and the order of the logical inputs is preserved. This assumption lets us use the same programming process

for all the inputs whether they are primary inputs or intermediate signals. The intermediate signals are the

OR-terms of the previous logic array and they may already be assigned and fixed. So in our programming

operation, for simplicity, we assumed that all of the inputs are previously assigned to the logic inputs and

are fixed. Figure 5.1 shows a logic array with logical inputs and OR-term nanowires.

To map each OR function to an OR-term nanowire, the crosspoints of the OR-term nanowire and the

corresponding inputs of the OR function are programmed “closed”, and crosspoints of OFF-inputs are left

“open”. Figure 5.2 shows an example of mapping 4 OR functions to a logic array. The logical inputs a to e

17

are assigned to input nanowires H1 to H5, respectively. In the cases like Figure 5.1 where there is no defect

in the array, each OR function can be mapped to any nanowires. Figure 5.2 shows mapping OR functions

f1 to f4 to nanowires V 1 to V 4 respectively.

H1 H2 H3 H4 H5

V4

V5

V1

V2

V3

Inputs

OR- term

a b c d e

Figure 5.1: This is a logic array of a nanoPLA. The physical inputs are named H1, H2, ..., H5, and the
physical OR-term nanowires are named V1, V2, ...,V5. The logical inputs a to e are assigned to the physical
inputs H1 to H5.

5.2 Challenge

Logic arrays may contain some defective junctions that cannot be programmed closed, as described in

Chapter 4. An OR function can be assigned to a physical OR-term nanowire if and only if each of the ON-

inputs of the OR function has a corresponding programmable junction on the physical OR-term nanowire.

For example if a logic array of a nanoPLA has defective junctions as marked in Figure 5.3, then the OR

function f1 = a + b + c + e cannot be assigned to nanowires w1 anymore because of the defect in junction

(w1, c). It cannot be assigned to nanowire w2 either because of the defective junctions (w2, c) and (w2, e).

However it can be assigned successfully to nanowires w3, w4, and w5. Although the nanowires w1 cannot

implement the OR function f1 = a + b + c + e it is still useful for some other OR functions, for example

f4 = d + e.

As the example reveals, in spite of having defective junctions in a nanowire, some OR functions can be

successfully mapped to that nanowire. The challenge is to find an assignment of the OR functions to the

18

H1 H2 H3 H4 H5

V4

V5

V1

V2

V3

Inputs

OR- term

a b c d e

f1 = a + b + c + e
f2 = a + c + e
f3 = b + c
f4 = d + e

(a) (b)

Figure 5.2: (a) OR functions f1 to f4 are mapped to OR-term nanowires V1 to V4 respectively. (b) OR
functions with logical inputs a, b, c, d, and e.

W 1

W
2

W
3

W 4

W 5

a b c d e

Defective
junction

Figure 5.3: A logic array with defective(non-programmable) junctions.

19

w
1
 f
1

w
5

w
4

w
3

w
2

f
2

f
4

f
3

w
1

w
5

w
4

w
3

w
2

f
1

f
2

f
4

f
3

(a) (b)

Figure 5.4: (a) The graph corresponding to OR-term nanowire of Figure 5.3 and OR-functions of Fig-
ure 5.2(b). (b) One possible matching assignment.

OR-term nanowires. Our key question is: How do we perform this assignment with small number of spare

nanowires and in small running time?

5.3 Idea

In each OR function there are always some OFF-inputs, i.e. some of the junctions will always be left open. If

there is a nanowire with defective junctions only at a subset of those positions, then this defective nanowire

can be successfully assigned to the OR function.

Let F be the set of all the OR functions and W be the set of physical OR-term nanowires. The problem

is finding an assignment of OR functions to the nanowires. This problem can be formally stated as finding a

bipartite graph matching from the set F , the set of OR functions, to the set W , the set of physical nanowires.

This will be described in more details in Section 5.4.

5.4 Formal Problem Statement

Let f0, f1, ..., f|F |−1 be the set of OR functions, F , and w0, w1, ..., w|W |−1 be the set of OR-term nanowires,

W . If the number of inputs is N , then each OR function fi ∈ F is defined as:

fi = (Ii,0, Ii,1, ..., Ii,N−1),where:

20

Ii,j =

 0 if input j is an OFF-input of fi

1 if input j is an ON-input of fi

Similarly the defect configuration of each nanowire wi ∈ W can be defined as below:

wi = (Ji,0, Ji,1, ..., Ji,N−1),where:

Ji,j =

 0 if crosspoint corresponding to input j is non-programmable

1 if crosspoint corresponding to input j is programmable

Now we define a bipartite graph G(F,W,E), where F and W are the set of nodes as defined above. For

every OR function fi in F and nanowire wj in W , (fi, wj) ∈ E if and only if:

∀
0≤k≤N−1

(Ii,k ≤ Jj,k) (5.1)

Formal Definition of Bipartite Matching

In a bipartite graph G(V1, V2, E), the set M ⊂ E is a matching from V1 to V2 if and only if the

following conditions hold:

∀
u∈V1

there is exactly one v ∈ V2, s.t.(u, v) ∈ M.

and

∀
v∈V2

there is at most one u ∈ V1, s.t(u, v) ∈ M.

Here V1 = F , V2 = W and E is as defined above. Every matching of size |F | on this bipartite graph is

a valid assignment of the OR functions to the OR-term nanowires, because it finds an assignment for all of

the OR functions in F and to each of them a distinct nanowire in W is assigned.

Figure 5.4(a) shows the bipartite graph G(F,W,E). Set F is the set of OR functions in Figure 5.2(b),

and set W is the set of defective nanowires from the logic array of Figure 5.3. Different matching assignment

can be found in this graph. Figure 5.4(b) shows one possible matching.

21

Chapter 6

Algorithm

This section starts by showing how the bipartite graph G(F,W,E) is constructed. It introduces possible

exact algorithms that can solve the matching problem. Later we show how greedy heuristic algorithms can

also be useful, and how the time complexity can be improved by stochastic approaches, while the quality of

the results are close to exact approaches. The experimental results for the quality of the stochastic approach

come later in Section 9.2.

In the time complexity explained henceforth there will be two kind of operations:

• The computing operations

• The programming and testing operations

The programming and testing operations are the operations to program a crosspoint and to read back the

value. The computing operations are the operations taken to perform an algorithm. As the amount of time

to perform each of the above operation is very different, for each time complexity we will identify which type

of operation we are counting. E.g. if it takes O(N) computing operations, it will be written as O(N)c and

if it is O(N) programming and testing operations, it will be written as O(N)pt.

6.1 Graph Construction

To build the graph G(F,W,E) the first step is to find the nodes in each one of the sets F and W . Each OR

function in the design is a node in F . Marking ON and OFF inputs of each OR function, i.e. finding the

values of Ii,k for all the OR function fi ∈ F and all the inputs k, 0 ≤ k ≤ N−1, takes O(|F | ·N)c operations.

To find the nodes of W , which is the set of all unbroken nanowires, one should check the programmability

of all the junctions of each OR-term nanowire, i.e. setting the values of Jj,k for all the OR-term nanowires

wj ∈ W and all the input nanowires k, 0 ≤ k ≤ N − 1, This takes O(N · |W |)pt operations.

The next step is to find the set of edges, E. To make the set E, the condition (5.1) will be checked for each

pair of (fi, wj). Checking it once takes O(N)c, and checking it over all of the pairs takes O(N · |F | · |W |)c.

22

So the total time complexity of the graph construction is O(N · |F | · |W |)c + O(N · |W |)pt.

6.2 Exact Algorithm

If the size of the maximum matching is less than |F |, then there is one or more OR functions fi ∈ F that has

no OR-term nanowire assigned to it. This means the design cannot be mapped to the physical nanoPLA.

For now assume that W is large enough so that there exists a maximum matching of size |F |. Later in

Chapter 7 we calculate how large W should be in practice.

There are a number of exact algorithms to solve the maximum bipartite matching problem. Such as the

algorithm based on Ford-Fulkerson maximum flow network algorithm [23] with time complexity O (|V | · |E|)c.

Hopcroft and Karp found a faster algorithm in 1973 with time complexity O
(√

|V | · |E|
)

c
[24]. Later Alt

et al. [25] introduced an algorithm which is an improved version of Hopcroft-Karp, with time complexity

O
(
|V |1.5

√
|E|

log |V |

)
c
.

In this section we calculate the time complexity of the last exact algorithm, which is the fastest one among

the exact algorithms, in the design parameters, |F | and |W |. Let PJ be the probability that a junction is

programmable, and ci is the number of ON-inputs in the OR function fi. Henceforth we assume that PJ is

an independent identically distributed (iid) variable. Therefore probability that (fi, wj) ∈ E is PJ
ci . This

is the probability that the OR function fi can be assigned to the output nanowire wj ; which means each

of the ci ON-inputs have a corresponding programmable junction in wj . Multiplying it with the number of

nanowires, |W |, gives the expected number of nanowires that fi can be mapped to. In other word it is the

expected node degree of fi in the graph. Therefore the expected value of the node degree of fi ∈ F can be

written as:

E(D(fi)) = |W | · PJ
ci (6.1)

Consequently the expected value for the number of edges, |E|, is

|F |−1∑
i=0

|W | · PJ
ci = O(|F | · |W |)

Based on that, the best exact algorithm and graph construction takes

O

(
(|F |+ |W |)1.5

√
|F | · |W |

log (|F |+ |W |)

)
c

+ O (N · |F | · |W |)c + O (N · |W |)pt

To reduce the total time complexity, it is not enough to reduce the matching time complexity. Note that

23

if |F | ≈ |W | ≈ N then the exact algorithm has time complexity of:

O

(
N2.5

(log N)0.5

)
c

(6.2)

verses the construction time complexity of

O(N3)c + o(N2)pt (6.3)

So to get any improvement it is more critical to reduce the graph construction time than the matching time.

6.3 Why do we want to improve the Running Time?

As mentioned earlier in Section 4.2 the defect probability can be very high, e.g. 80% defect rate is quite

possible. With this defect rate in a 100 × 100 array we expect at least one defect per row or column. This

shows that the number of programmable junctions common between two different array can be very small.

So one-time mapping algorithm for all different arrays with different defect configurations may not be a

possible solution. Now that we need to do per array based mapping, the running time of the algorithm will

matter. In the next section we show how a heuristic approach reduces the total time complexity by reducing

the matching time and eliminating the need to build the graph.

6.4 Greedy Heuristic Algorithm

There are heuristic algorithms that, with high probability, and small time complexity find the maximum

matching. A general heuristic algorithm will be like the code in Figure 6.1.

1 While F is not empty
2 Choose a node fi ∈ F
3 While (fi is not matched) & (W has not-visited-by-fi vertex)
4 Choose a node wj ∈ W
5 If (fi, wj) ∈ E
6 Mark(fi, wj) as match,
7 Remove fi from F and wj from W
8 Else
9 Set wj visited-by-fi

10 EndWhile
11 EndWhile

Figure 6.1: The general strategy for heuristic algorithm.

24

1 While F is not empty
2 Choose a least degree node fi ∈ F
3 While (fi is not matched) & (W has not-visited-by-fi vertex)
4 Choose randomly a node wj ∈ W
5 If (fi, wj) ∈ E
6 Mark(fi, wj) as match,
7 Remove fi from F and wj from W
8 Else
9 Set wj visited-by-fi

10 EndWhile
11 EndWhile

Figure 6.2: The framework of the heuristic algorithm used in this work.

We distinguish the different heuristic algorithms by the way they choose the nodes in lines 2 and 4 of

Figure 6.1. One way is to choose both f and w randomly. Another way is to choose each of them in decreasing

order of node degree. A combination of the above is another option. We obtain our best results by choosing

the least degree f from F and choosing w randomly (Figure 6.2). This algorithm has the potential to run

faster than the exact algorithms on average, but as the time complexity of building the graph remains:

O(N · |F | · |W |)c + O(N · |W |)pt (6.4)

the total time complexity is still high.

6.5 Stochastic Approach

Here we show how we can eliminate the need to actually build the graph G(F,W,E) in order to improve the

time complexity. There are two points in the algorithm of Figure 6.2 that are dependent on the graph:

1. Line 2: When we choose fi’s based on their degrees; we need to sort them first, and to do that we need

to have the graph constructed.

2. Line 5: It checks for the matching condition, by checking the existence of the edge (f, w).

Instead of ordering nodes in F based on their degree, the nodes can be ordered base on their expected value of

their degree. The expected value of degree of fi, as calculated in Equation (6.1), is (PJ
ci · |W |). The ordering

of F based on the value of (PJ
ci · |W |) is the same as ordering it based on the value of ci. Consequently we

can sort the set of OR function only based on the number of their ON-inputs rather than their degree in the

graph.

This is intuitively true, because the OR functions with larger fanin, ci, are harder to map, so we try to

map them first.

25

To test the condition of line 5 of Figure 6.2, in the case that there is no graph, we need to program and

test every single nanowire that is picked up to be assigned to each OR function fi. The time complexity of

programming and testing is O(ci), the fanin size of the OR function, for each OR function fi. (Note that

in order to have time complexity of O(ci) instead of O(N) the Ii,k’s need to be stored efficiently(sparsely).)

Hence by paying this cost; there is no longer a need to build the graph G(F,W,E), the total time complexity

is only due to the matching algorithm. Figure 6.3 shows the pseudocode for this algorithm.

1 Sort the elements in F in decreasing order of ci

2 While F is not empty
3 Choose the first fi ∈ F
4 While (fi is not matched) & (W has not-visited-by-fi vertex)
5 Choose a random wj ∈ W
6 If (∀

Ii,k=1
k, (Jj,k == 1)) * try programming all the

ci’s crosspoints*\
7 Mark(fi, wj) as match,
8 Remove fi from F and wj from W
9 Else
10 Set wj visited-by-fi

11 EndWhile
12 EndWhile

Figure 6.3: This algorithm chooses the OR function nodes in decreasing order of the size of their ON input
set and the nanowires node randomly.

26

Chapter 7

Analysis

In this Chapter we compute the running time complexity of the greedy algorithm both in worst case and in

average case. We also estimate the area overhead for the average case.

7.1 Running Time Complexity

We first compute the worst-case time complexity. The sorting operation in line 1 takes (|F | log(|F |)) (Later

we show how this can be implemented in linear time using radix sort). As explained above, line 6 of the

algorithm in Figure 6.3 takes O(ci)pt running time. The maximum number of iterations of the line 4 loop is

the total number of unmatched nanowires which is W − i. This makes the time complexity of mapping the

(i− 1)th OR function:

(W − i) · ci (7.1)

The line 2 loop runs exactly for F iterations in order to map each of the OR functions. So the total time

complexity in the worst-case is:

O (|F | log(|F |))c + O

i=|F |−1∑
i=0

((|W | − i) · ci)


pt

(7.2)

Let cM be the maximum of ci’s, then the above equation can be written as:

O (|F | log(|F |))c + O (|F | · |W | · cM)pt (7.3)

In Chapter 8 we show how to bound the size of cM to a constant factor. Considering this the time complexity

improves from:

O

((
(F + W)1.5

√
FW

log F + W

)
+ (F ·W ·N)

)
c

+ O(N · |W |)pt (7.4)

27

of the exact algorithm, to O (|F | log(|F |))c + O (F ·W)pt of our greedy approach. Now if |F | ≈ |W | ≈ N

then the improvement is from

O

(
N2.5

(log N)0.5 + (N)3
)

c

+ O
(
N2
)
pt

(7.5)

of the exact algorithm plus the graph construction to O(N log(N))c + O(N2)pt of the greedy algorithm.

On average the number of iterations will be smaller than this. Let mi be the number of iterations that

it takes to find a match for each OR function fi. The expected value of the number of matching for fi in mi

nanowires is:

E(Number of matching in mi) = mi · P ci

J (7.6)

Therefore the size of the mi for which the expected value is 1 is:

E(Number of matching in mi) = mi · P ci

J = 1

⇒ mi = P−ci

J (7.7)

So the average number of iterations of the inner loop is P−ci

J for each fi; and hence the total time complexity

in the average case is:

O (|F | log(|F |))c + O

i=|F |−1∑
i=0

(
P−ci

J · ci

)
pt

(7.8)

and replacing ci’s with cM :

O (|F | log(|F |))c + O
(
|F | ·

(
P−cM

J · cM

))
pt

= O (|F | log(|F |))c + O (|F |)pt (7.9)

If the value of cM is small, which it is in most of the cases, then the programming and testing time complexity

is basically linear with the value of |F |. This can be observed from the experimental results in Figure 9.1.

Note that when the programmability of a junction is tested in our heuristic algorithm the information will be

stored for further references. So one junction will not be tested multiple times. Therefore the total number

of Program and Test operations are much less than
∑i=|F |−1

i=0

(
P−ci

J · ci

)
.

7.2 Area Overhead Estimation

Here we compute how large W , number of nanowires, should be for each design so that it can be success-

fully mapped to the physical nanoPLA. When matching the ith OR function we have |W | − i unmatched

nanowires. Applying Equation 6.1, the expected number of nanowires that OR function fi can be matched

to is P−ci
j · (|W | − i). This value need to be at least one. Therefore applying this for all the F OR-functions

28

defines the following lower bound on the size of W .

∀
0≤i≤|F |−1

((|W | − i) · P ci

J ≥ 1) ⇒ ∀
0≤i≤|F |−1

(
|W | ≥ P−ci

J + i
)

(7.10)

We can also derive tighter lower bound on the size of |W |. Let Pfi−mapped be the probability of successfully

assigning fi to a nanowire. Remember that in our algorithm the set of nanowires that fi can choose from,

is of size (|W | − i). Therefore

Pfi−mapped = 1− (1− PJ
ci)|W |−i (7.11)

Hence the probability of successfully mapping all the OR functions is:

|F |−1∏
i=0

(
1− (1− PJ

ci)|W |−i
)

(7.12)

Let Y be the yield of mapping designs to nanoPLA. Then the following inequality gives another lower bound

on the size of W :

|F |−1∏
i=0

(
1− (1− PJ

ci)|W |−i
)

> Y (7.13)

This bound shows the tradeoff between yield Y and the area overhead (|W |
|F |). Expecting higher yield

results in larger area overhead. In next section we show how the value of |W |
|F | can be reduced by bounding

the size of ci.

29

Chapter 8

Fanin Bounding

In this section we show how the running time complexity and area overhead of the mapping can be improved

by bounding the size of ci’s (number of ON input). We show the effect of bounding the size of ci’s by an

example from the IWLS93 benchmark set [26]. In this example |F | = 1186, cM = 772 and PJ = 0.95.

The lower bound on |W | for mapping a single nanowire with ci = cM = 772 can be calculated by applying

Equation (7.10):

(0.95)−772 ≤ W ⇒ 1017 ≤ W

This result is obviously undesirable. We can improve this result by exploiting decomposition. For example

this nanowire can be decomposed into 8 nanowires, such that 7 of them have ci = 100, and 1 has ci = 72.

Then the lower bound on |W | to map all of these nanowires by applying Equation (7.10) is:

max
(

∀
0≤i≤6

(
(0.95)−100 + i

)
,
(
(0.95)−72 + 7

))
≤ W

⇒ 173 ≤ W

Although fanin bounding increases the number of OR functions, the actual area overhead after mapping

will be much smaller.

Bounding the fanin also improves the running time dramatically. Here we show how it improves the

running time of the previous example. Based on the algorithm (Figure 6.3) the OR function with the largest

ci will be mapped first. In the unbounded case the largest ci is 772. Applying Equation (7.1) and (7.7)

results in the following number of programming and testing operations, on average, to only map the first

OR function (PJ is assumed 0.95.).

P−cM

J · cM ⇒ 0.95−772 × 772 ≈ 1020 (8.1)

Now if this OR function is divided into 8 OR functions, as suggested in the previous example, 7 of the OR

30

functions with c = 100 and the last with c = 72, then the total time complexity to map these 8 OR functions

is:
i=6∑
i=0

(
(0.95)−100

)
× 100 +

(
(0.95)−72 × 72

)
≈ 130, 000

The comparison of this number with the unbounded fanin OR function case shows great improvement.

Figure 8.1 shows what fraction of the OR functions in each design need to be divided to smaller fanin

OR functions if the size of |W | is desired to be |F | or 1000× |F |. The x-axis in this graph is the number of

OR functions in each design, i.e. |F |. Columns of points on the x-axis is dedicated to the OR functions of

a single design with |F | equal to the value of x at that point. For example the highlighted points show the

OR functions of a design with |F | = 1186. The y-value of each point is the ci size of that OR function. The

curves show the estimation in Equation (7.10) of the maximum size of ci when |W | = |F | or |W | = 1000×|F |.

Considering Equation (7.10), if 0% area overhead is desired (|W | = |F |) in average, then:

P−cM

J ≤ |F | ⇒ cM ≤ − logPJ
|F | (8.2)

Similarly the lower bounds for ci’s related to the case when |W | = 1000× |F | will be:

− logPJ
(1, 000× |F |)

For example all the OR functions of the design with highlighted yellow diamonds have ci’s below the maxi-

mum ci related to the case |W | = |F |, except two points.

These curves show that even with very large |W |/|F | of 1000, some OR functions cannot be mapped and

therefore the decomposition is inevitable.

From the graphs of Figure 8.1 we can observe that the number of OR functions with large ON input set

is relatively small (the diamonds above the curves). Hence we only need to decompose a few OR functions

to get a large benefit in area overhead and running time.

The facts that large-fanin OR functions take very long running time and large area overhead in mapping

along with the fact that the number of these OR functions are relatively small suggest we should bound the

fanin size. Bounding the size of cM with − logPJ
|F | yields the ratio of 1 for |W |/|F | on average (The F here

is the number of OR functions after bounding).

The algorithm of Figure 6.3 takes O(|F | log(|F |))c due to the time complexity of the sorting the OR

functions in line 1 and the rest of the algorithm takes linear time. After bounding the fanin, the value of cM

is limited to a constant factor, so the sorting algorithm of line 1 can be replaced by Radix Sort algorithm [23].

This brings the time complexity of the computing operations of the mapping algorithm down to linear time.

This section showed how to bound the size of the fanin so that on the average case the area overhead

31

will be zero (Equation (8.2)). As this estimation is true for the average cases there will be some cases that

the fanin needs to be bounded more tightly so that the desired area overhead will be achieved. To fix this

bounding per design we dynamically make the bound tighter until the desired area overhead is achieved. So

instead of using Equation (8.2) we use the following Equation:

cM ≤ − logPJ

(
|F |
i

)
Where it starts with i = 1, and if the bounding was not tight enough (larger area overhead than what

is desired) then i will be incremented by 1. This allows us to pay more area overhead for fanin bounding

in order to save more area for mapping. Chapter 9 shows the experimental results and they reveal that in

most cases i = 1.

Bound on maximum size of Fanin (c)

1186
1

10

100

1000

10000

1 10 100 1000 10000
Number of OR functions (|F|)

C

c

0% Overhead

1000% Overhead

Figure 8.1: This graph shows all the ci’s of the OR functions of each design. Each curve shows the maximum
size of c for each design, so that it satisfies a certain area overhead. The OR functions above the curves need
to be bounded.

32

8.1 Bounding Procedure

Bounding the large-fanin OR functions means we break the OR function to the number of OR function with

smaller ci size.

Figure 8.2 shows how an OR function with c=8 will be decomposed into OR functions with c ≤ 3. In

Figure 8.2(a) the OR function on nanowire A in logic array 1 has c=8. It gets buffered in the buffer array 1

and makes input B to the logic array 2. The signal B is in the ON input set of two OR functions in the logic

array 2, C and D. As cM is set to be 3, the OR function A will be divided into 3 OR functions A1, A2 and

A3 in logic array 1. They are OR-ed together in logic array 2 and make signal E. The logic of this signal

is the same as logic of the original A OR function. Now that the signal A is ready at buffer array 2 rather

than 1 we could shift C and D OR function from the logic array 2 to the next array of the buffer array 2

which is logic array 1. But here for simplicity we keep all of the other OR functions in their own place, and

rotate the OR function E which implements the value of OR function A to logic array 1 and then to buffer

array 1, which was its original position. This adds two logic level delay to the OR function A. If the size of

ON inputs of signal E was more than cM then the decomposition process would be repeated for signal E.

Therefore for an OR function with c ON inputs, the decomposition process happens logcM
(c) times.

33

Logic array 1Buffer array 1

A

D

C

B

Buffer array 2Logic array 2

(a)

Buffer array 2Logic array 2

A1

B

D

C

A2

A3

A

E

Logic array 1Buffer array 1

(b)

Figure 8.2: (a) The original design, (b) The design with c value bounded by cM = 3.

34

Chapter 9

Experimental Results

The mapping simulation is tested over three different benchmarks:

1. Selected elements of datapath.

2. Small examples form IWLS93 benchmark suit [26].

3. PLA book examples [27].

The total number of benchmarks is 358 designs and each design has 2 logic arrays. The designs have

been first synthesized to multilevel logic and then rotated through two NOR planes of a nanoPLA [2].

The defective junctions are distributed randomly over any array. We assumed that the probability of

programmability of each junction is an iid random variable, called PJ . We ran our mapping algorithm on

the benchmark sets for different values of PJ = 0.8, 0.85, 0.90 and 0.95.

In order to get a valid average result, we ran our algorithm 100 times on each benchmark and averaged

the results.

9.1 Running Time

Figure 9.1 shows a graph that estimates the total number of iteration to map each design. The graph shows

the estimation both for bounded c and unbounded c cases. It also shows the simulation results for bounded

c. The value of the x-axis is the number of OR functions in the original designs and not the number of OR

functions after bounding the c size. The average number of iterations for each OR function is P−ci

J , so the

total number of iterations in the average case is:

O

i=|F |−1∑
i=0

P−ci

J

 (9.1)

35

Total number of iterations

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000
Number of OR-functions (|F|)

N
um

be
r o

f i
te

ra
tio

ns

Estimation w/ out bound

Estimation w/ bounded c

Simulation w/ bounded c

Figure 9.1: In this graph PJ = 0.95. It shows the total number of iterations of the algorithm to map the
whole design. There are two curves showing the estimated number of iterations for designs with no bound on
size of c and design with bounded c size. There is also a curve showing the simulation results with bounded
c size. The value of c is bounded by (− logPJ

|F |).

36

This yields the total time complexity of

O

i=|F |−1∑
i=0

(
P−ci

J · ci

) (9.2)

Figure 9.1 plots the Equation (9.1) with the value of |F | both for bounded c and unbounded c cases,

along with the number of iteration from the simulation results.

Number of Program and Test Operations

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000

OR functions (|F|)

N
um

be
r o

f P
ro

gr
am

 a
nd

 T
es

t
O

pe
ra

tio
ns

PJ=0.80

PJ=0.85

PJ=0.90

PJ=0.95

|F|x|C_M|

Figure 9.2: This graph plots the number of Program and Test operations for the exact algorithm (|F | · |cM |)
and for the stochastic greedy algorithm for different programmability probability (|PJ |).

Figure 9.2 plots the number of Program and Test operations for the exact algorithm (|F | · |cM |) and for

the stochastic greedy algorithm for different programmability probability (|PJ |).

This exactly follows the average case analysis in Section 7.1. The analysis suggests that the running time

37

will be a linear function of the number of OR functions (|F |), which is supported here by the simulation

results in Figure 9.2.

Note that the graph is plotted in log-log scales. As both of the axes are in log scales and the line slope

is about 1 then the normal graphs will have the linear curve. The jumps on top of the linear shape is due to

the designs with a few OR functions and large c.

The time complexity is improved by about two orders of magnitude (the difference of the green points

from the rest of the points).

9.2 Area Overhead

Chapter 8 shows how to bound the size of the fanin so that in the average case the area overhead will be

zero (Equation (8.2)). It also shows how to improve the bound specifically for each design using the below

equation:

cM ≤ − logPJ

|F |
i

(9.3)

Figure 9.3, 9.4 and 9.5 plot the simulation results for the area overhead. The mapping has been done 100

times for each design and the average value of the result for each design is stored. In cases that there are

multiple designs with the same number of OR functions, (|F |), the average value of these design is shown.

The bounding overhead, the mapping overhead and the total overhead curves are respectively plotted in

Figure 9.3, 9.4 and 9.5. The total area overhead is the result of multiplying the bounding overhead and

mapping overhead.

Figure 9.6 shows the average area overhead ratio over all the benchmark set designs. Bounding the fanin

scales the number of OR functions by an average factor of 1.11 for a defect rate of 0.20. An additional factor

of 1.02 in overhead is applied after physically mapping these OR functions onto nanowires, for the same

defect rate. The total area overhead is the product of these two overheads, which equals 1.13.

Table 9.1 shows the value of fanin bounding for different programmability probability (PJ) values. The

cM values of this table calculated specifically for each benchmark and averaged over 100 times running (The

table entries are the floor of the average result). The experimental results show that in most cases (more

than 98%) the value of i is equal to 1 (Table 9.2).

Finally we compare the area overhead of this greedy algorithm with an exact bipartite matching algorithm.

The bipartite matching algorithm is based on the network maximum flow algorithm of Ford-Fulkerson, and

has running time complexity of O(E · V) when E is the number of edges of the graph and V is the number

of vertices. The comparison is done on a 4× 4 multiplier that is implemented in 4-level logic and has been

rotated in two planes. The first plane has 66 inputs and 697 OR functions and the other one has 697 inputs

and 25 OR functions. The simulations are done for different values of PJ . In Figure 9.7 area overhead of

38

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 11 21 31 41 51 61 73 83 96 107
120
134
148
162
184
222
251
276
323
453
571
858

0.8
0.85
0.9
0.95

Average of (|bounded_c OR function|)/(|F|)

OR Function(|F|)

Pj

Figure 9.3: The area overhead due to bounding the fanin size is plotted for four different Programmability
probability (PJ).

39

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1 11 21 31 41 51 61 73 83 96 107
120
134
148
162
184
222
251
276
323
453
571
858

0.8
0.85
0.9
0.95

Average of |W|/(bounded_c OR Function)

OR Function(|F|)

Pj

Figure 9.4: The area overhead due to mapping the bounded fanin OR functions is plotted for four different
Programmability probability (PJ).

40

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 11 21 31 41 51 61 73 83 96 107
120
134
148
162
184
222
251
276
323
453
571
858

0.8
0.85
0.9
0.95

Average of Total Overhead

OR Function(|F|)

Pj

Figure 9.5: The total area overhead is plotted for four different Programmability probability (PJ).

41

Fanin Bound (cM)
|F | PJ = 0.8 PJ = 0.85 PJ = 0.9 PJ = 0.95
1 2 2 2 2
5 7 9 16 32
10 11 14 21 44
15 12 17 26 53
20 14 19 29 59
25 14 19 30 60
30 16 21 33 67
40 17 23 36 72
50 18 25 38 77
60 18 24 38 80
70 20 27 41 83
80 20 27 42 86
90 21 28 43 88
100 20 29 44 90
120 22 30 46 94
141 23 31 47 97
150 23 31 48 98
200 23 32 50 104
300 22 31 50 108
401 22 34 53 112
504 28 39 60 122
611 29 40 61 126
750 29 40 63 130
869 25 35 55 118
1159 32 44 67 138
1298 33 45 69 140
2625 29 40 63 136
6425 40 54 84 171

Table 9.1: Fanin bounding value for different programmability probability (cM).

i Percentage

1 98.01%
2 1.66%
3 0.20%
4 0.04%
6 0.08%

Table 9.2: This table shows that most of the time (more than 98%) the value of i in Equation (9.3) is equal
to 1.

42

Bounding and Mapping Overhead

1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14

0.8 0.85 0.9 0.95
Programmability Probability

O
ve

rh
ea

d
in

 th
e

N
um

be
r o

f
N

an
ow

ire
s

Bounding OH
Mapping OH
Total OH

Figure 9.6: Bounding OH is the average area overhead ratio of |F boundedc| over |F |, and Mapping OH is
the ratio of |W boundedc| over |F |. The ratio of the final number of nanowires over the original number of
OR functions is the product of the previous two ratios.

43

Exact and Greedy algorithm

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00

0.50 0.60 0.70 0.80 0.90 1.00
Programmability Probability (PJ)

A
re

a
O

ve
rh

ea
d

1st Plane, Greedy
1st Plane, Exact
1st Plane OH of breaking
2nd Plane, Greedy
2nd Plane Exact
2nd Plane OH of breaking

Figure 9.7: This figure compares the area overhead of an exact algorithm with our greedy algorithm for a
4× 4 multiplier.

44

Exact and Greedy Algorithm Ratio

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Programmability probability (PJ)

Th
e

A
re

a
R

at
io

 o
f G

re
ed

y
A

lg
or

ith
m

 o
ve

r E
xa

ct
 A

lg
or

ith
m

1st Plane

2nd Plane

Figure 9.8: Ratio of the size of |W | of greedy algorithm over exact algorithm: |Wgreedy|
|Wexact| .

45

each of the planes is plotted for both greedy and exact algorithm. The area overhead due to breaking the

large c OR functions to smaller c OR function is plotted, too.

In Figure 9.8 the ratio of the total area of the greedy algorithm over the total area of the exact algorithm

is plotted. The area ratios are below 2 for the first plane, and 1.23 for the second plane even for defect

probability as large as 20%. For low enough defect probability (below 20%) the area overhead of greedy

algorithm to exact algorithm is 0% for the first plane and is below 20% for the second plane.

46

Chapter 10

Summary

A plausible architecture for nanoPLA design is suggested in [2]. The nanowires width can be built down to

3nm, making the active device area as small as 9nm2. The defect rate of different fabrication processes is

unknown but expected to be on the order of a few defects per 100 junctions. This suggests searching for an

efficient programming operation that tolerates the defective devices.

Furthermore this programming operation must be fast. The reason is that due to the small size of the

nanoPLAs, plenty of them can be placed on a chip and as the defect rate is high each nanoPLA will have

a unique fault pattern. Therefore the defect mapping must be applied on each array separately and this

suggests having a fast mapping algorithm.

In this work we compare the exact matching algorithm with a suggested greedy algorithm. Assuming

that |F | ≈ |W | ≈ N , the time complexity of our algorithm is, O(N) program and test operations and O(N)

computing operations, while the time complexity of the exact algorithm plus graph construction is O(N2)

program and test operations and O(N3) computing operations.

We also showed that it is necessary to bound the fanin size in order to achieve reasonable running time

and area overhead for matching. Including bounding the fanin and mapping, our algorithm can tolerate

defect rates as high as 20% with an average overhead factor of less than 13%.

47

Bibliography

[1] S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Molecular Electronics,” in

ISCA, June 2001, pp. 178–189.

[2] A. DeHon and M. J. Wilson, “Nanowire-Based Sublithographic Programmable Logic Arrays,” in FPGA,

February 2004, pp. 123–132.

[3] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F.

Stoddart, and R. S. Williams, “Nanoscale Molecular-Switch Crossbar Circuits,” Nanotechnology, vol. 14,

pp. 462–468, 2003.

[4] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like Logic in Defective, Nanoscale Crossbars,” Nan-

otechnology, vol. 15, pp. 881–891, June 2004.

[5] “International Technology Roadmap for Semiconductors,” <http://public.itrs.net/>, 2003.

[6] M.-H. Lee, Y. K. Kim, and Y.-H. Choi, “A Defect-Tolerant Memory Architecture for Molecular Elec-

tronics,” IEEE Transactions on Nanotechnology, vol. 3, pp. 152–157, March 2004.

[7] X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Advanced

Materials, vol. 12, no. 4, pp. 298–302, 2000.

[8] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,”

Journal of Physical Chemistry B, vol. 104, no. 22, pp. 5213–5216, June 8 2000.

[9] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of Nanowire Super-

lattice Structures for Nanoscale Photonics and Electronics,” Nature, vol. 415, pp. 617–620, February 7

2002.

[10] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial Core-Shell and Core-Multi-Shell

Nanowire Heterostructures,” Nature, vol. 420, pp. 57–61, 2002.

48

http://www.cs.cmu.edu/~seth/papers/isca01.pdf
http://www.cs.caltech.edu/research/ic/abstracts/nanopla_fpga2004.html
http://public.itrs.net/

[11] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, and C. M. Leiber, “Growth and Transport properties

of complementary germanium nanowire field-effect transistors,” Applied Physics Letters, vol. 84, pp.

4176–4178, May 2004.

[12] D. Whang, S. Jin, and C. M. Lieber, “Nanolithography Using Hierarchically Assembled Nanowire

Masks,” Nanoletters, vol. 3, no. 7, pp. 951–954, July 9 2003.

[13] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber, “Logic Gates and Computation

from Assembled Nanowire Building Blocks,” Science, vol. 294, pp. 1313–1317, 2001.

[14] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,”

Science, vol. 272, pp. 85–87, 1996.

[15] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F.

Stoddart, D. L. Olynick, and E. Anderson, “Nanoscale Molecular-Switch Devices Fabricated by Imprint

Lithography,” Applied Physics Letters, vol. 82, no. 10, pp. 1610–1612, 2003.

[16] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-

Density Nanowire Lattices and Circuits,” Science, vol. 300, pp. 112–115, April 4 2003.

[17] C. Collier, G. Mattersteig, E. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo, J. Stoddart, and

J. Heath, “A [2]Catenane-Based Solid State Reconfigurable Switch,” Science, vol. 289, pp. 1172–1175,

2000.

[18] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddard, P. J. Kuekes, R. S. Williams,

and J. R. Heath, “Electronically Configurable Molecular-Based Logic Gates,” Science, vol. 285, pp.

391–394, 1999.

[19] A. DeHon, P. Lincoln, and J. Savage, “Stochastic Assembly of Sublithographic Nanoscale Interfaces,”

IEEE Transactions on Nanotechnology, vol. 2, no. 3, pp. 165–174, 2003.

[20] A. DeHon, “Law of Large Numbers System Design,” in Nano, Quantum and Molecular Computing:

Implications to High Level Design and Validation, S. K. Shukla and R. I. Bahar, Eds. Kluwer, 2004,

ch. 7, pp. 213–241.

[21] C. Mead and L. Conway, Introduction to VLSI Systems. Addison-Wesley, 1980.

[22] A. DeHon, “Design of Programmable Interconnect for Sublithographic Programmable Logic Arrays,”

in FPGA, February 2005, pp. 127–137.

[23] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. MIT Press, 1990.

49

http://www.cs.caltech.edu/research/ic/abstracts/nanodecode_tnano2003.html
http://www.cs.caltech.edu/research/ic/abstracts/inanopla_fpga2005.html

[24] J. E. Hopcroft and R. M. Karp, “An n2.5 Algorithm for Maximum Matching in Bipartite Graphs,”

SIAM Journal on Computing, vol. 2, no. 4, pp. 225–231, 1973.

[25] H. Alt, N. Blum, K. Mehlhorn, and M. Paul, “Computing a maximum cardinality matching in a bipartite

graph in time O(n1.5
√

m/ log (n)),” Inf. Process. Lett., vol. 37, no. 4, pp. 237–240, 1991.

[26] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0,” online <http://www.cbl.ncsu.edu/pub/

Benchmark dirs/LGSynth93/doc/iwls93.ps>, May 1993.

[27] U. C. Group, “Espresso Examples,” Online <ftp://ic.eecs.berkeley.edu/pub/Espresso/

espresso-book-examples.tar.gz>, June 1993.

50

http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/doc/iwls93.ps
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/doc/iwls93.ps
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/doc/iwls93.ps
ftp://ic.eecs.berkeley.edu/pub/Espresso/espresso-book-examples.tar.gz
ftp://ic.eecs.berkeley.edu/pub/Espresso/espresso-book-examples.tar.gz

	Acknowledgements
	Abstract
	Introduction
	Related Works
	Overview

	Substrate
	NanoWires
	Programmable Crosspoints
	Nonprogrammable Restoring Crosspoints
	Addressing Nanowires From Lithographic Scale Wires

	Architecture Model
	Conventional PLA Architecture
	NanoPLA Architecture
	Logic Array
	Buffer/Inverter Array

	Defect Model
	Breaks
	Defective Crosspoints

	Problem Statement
	Overview
	Challenge
	Idea
	Formal Problem Statement

	Algorithm
	Graph Construction
	Exact Algorithm
	Why do we want to improve the Running Time?
	Greedy Heuristic Algorithm
	Stochastic Approach

	Analysis
	Running Time Complexity
	Area Overhead Estimation

	Fanin Bounding
	Bounding Procedure

	Experimental Results
	Running Time
	Area Overhead

	Summary
	Bibliography

