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ABSTRACT

The hadronic yields from proton-Aluminum collisions
into a 455‘/4sr-% beam centered at O’have been measured
at a laboratory proton energy of 300 Gev and secondary

momenta of 95, 120, 145 and 170 Gev/c.
x
ar
p + A1 J k* | + anything (l)
The pion and kaon component of the hadron beam
provided, through decay, a dichromatic beam of neutrinos
used in the study of neutrino interactions at 38 and 108
Gev, The measured neutrino total cross sections have

(u»)t

been found o have an energy dependence consistent
with a linear rise in cross section with increasing
neutrino energy for both neutrino and antineutrino beams,
Knowledge of the slope‘of this linear rise is imperative
in order to compare the cross section data with current
models, The experiment described in this thesis provided
the beam flux normalization necessary to measuré the
slope absolutely,

Using the data from this experiment we have also
been able to make a study of the inclusive production
of hadrons from an Aluminum target., An inclusive

interaction is one in which only a single pariicle is

detected after the initial interaction, The undetected
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particles are all grouped under ‘anything' in equation (1)

The total hadron flux in this beam was measured with
an ionization chamber, and particle ratios were extracted
from Cerenkov counter pressure curves, The Cerenkov
counter used in this experiment was novel at the time of
its use, At high energies, Cerenkov counters must be long
in order to have an efficiency close to 100%. For this
experiment, our counter would have had to be about
180 feet long in order to be 95% efficient. Instead of
constructing such a long counter, we used a 6 foot
counter, The efficiency was low (typically less than 20%)
but the efficiency is a geometrical effect and therefore
the same for all particles producing Cerenkov light at
the same angle, Thus, while particle fluxes are not
reliably measured with this counter, particle ratios may
be obtained, Both of these devices (ionization chamber
and Cerenkov counter) were situated 400 m, from the
production target,

The results and conclusions of this experiment
fall into the two above mentioned categories: the study
of neutrino interactions and the study of inclusive
hadron production from Aluminum with a 300 Gev proton
beam,

The measured neutrino and antineutrino total cross

sections have an energy dependence consistent with a
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linear rise, In parton models 'QLe sum of the slopes
of these cross sections provide a measurement of the
mean-square charge of the constituents of the nucleon,
Our measurement gives a value <q2> = 0,27 ¥ 0.05
for this mean-square charge, The simplest quark model
gives <q2> = 5/18 = 0,28,

Parton models employing V-A scattering from spin %
constituents predict that the ratio of the slopes
(antineutrino/neutrino) is equal to 1/3. Deviation from
a ratio of 1/3 is a measure of the antiquark (antiparton)
component in the nucleon, We measure a slope ratio equal
to 0,33 < 0,08, The results of our measurements of the
normalized neutrino and antineutrino total cross sections
therefore are consistent with the predictlions of a model
employing fractionally charged spin 3 constituents
and little antiquark component,

The study of the inclusive production of hadrons
is interesting as a test of theoretical models of hadron
production and also as a test of the more general model
of hadronic scaling,

The most comprehensive model of high energy hadron
production 1s the Thermodynamic Model of Hagedorn and
Ranft(.g‘w)()omparing our data with the predictions of this
model, we find consistency in some momentum regions

and discrepancies as large as a factor 2 in other
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momentum regions, \
Q
In a simple model of hadronic scaling, one assumes
that cross sections can be parameterized using the

scaling variables x and P :

A°C - E

A (m §, (P 59)
3od AR

©

= beam energy
= longitudinal momentum
= /e,
= transverse momentum( )
14
SACQ)n'exp (=P /200 Mev/c)
f,(x) is then energy-independent. To test this

o = B B

predicted energy independence, we have extracted f1(x)
from our data and compared it to the f, (x) extracted
from similar data at 19 2 Gev, We find aoreement to 307
for the production of'1r and protons, For V( the
300 Gev f1(x) is consistently larger than the 19,2 Gev
f1(x) by as much as a factor 3,

Therefore, over the momentum region covered in
this experiment, one can predict our results from

scaling almost as reliably as the Thermodynamic Model,
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I. Introduction

This thesis 1is a study of the reaction:
t

. qr; (
p + A1l 5 w + anything ‘)
f)
from a 12" Aluminum target at a beam energy of 300 Gev,
The experiment was conducted at the Fermilab synchrotron,
The hadrons were produced in the forward direction into
a beam with a momentum bite of = 16,5% and an overall
acceptance of 455}Asr-%. The beam was constructed in
order to provide the dichromatic source of high energy
neutrinos from Tr and K decay used in the study of
neutrino interactions, The flux of neutrinos was
determined by measurement of the hadron flux., This
experiment measured the total hadron flux with an
ionization chamber and the differential flux with a
low efficiency Freon-13 differential Cerenkov counter,
In Chapter II we will describe the characterlistics

of the hadron beam used in this experiment., The hadrons
accepted by this beam were allowed to travel 345 meters
in a decay pipe at partial vacuum before being absorbed
in a beam dump, This drift space allowed for hadron
decay. The decay mode which interested us was T 9 /M\’
and “G%/ﬁkv because these decays provided the dichromatic

neutrino beam used in our study of neutrino interactions,
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Not all the pions and kaons decayed, For example, at a
hadrc.)n energy of 120 Gev 5.0% of the pions and20.1% of
the kaons decayed through this mode, The target for
these neutrinos was 160 tons of steel, Even with such
a massive target, the probability of a neutrino
interaction was typically 10'9. Therefore, we wanted a
hadron beam with as large an acceptance as possible
without cémpromising the dichromaticity of the beam,
The acceptance of our beam (455}xsr-%) iiii§out five
orders of magnitude larger than a typical beam used to
provide hadrons with sharp momentum definition,

The hadronic ratios in thls beam were measured at
the end of the 345 meter decay pipe with a Freon=-13
Cerenkov counter, Chapter III describes the experimental
setup used to define the hadron beam at this location
and the procedure used to identify the different hadron
components in the beam, In an earlier attempt to analyze
the hadron composition of the beam, the Cerenkov counter
was placed at the upstream end of the decay pipe, In
this configuration the beam stop for the primary proton
beam was only 25 meters upstream of the Cerenkov counter,
This beam stop acted as a secondary source of hadrons,
These secondary hadrons increased our accidental rates
and reduced the signal-to-noise ratio, Since this

background was unfocused, we decided to move the
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Cerenkov counter downstream so as to get a cleaner
sample of hadrons produced in the 12" target,
The maximum efficiency that a Cerenkov counter can

have and still separate plons and kaons is given by:

Euax = 1 - EXP {—kl- (MQ;?;\} (2)

L = length of counter
Aﬁ_: constant determined by light
collection efficiency, bandpass
of photocathode, quantum efficiency,
ete,
mﬂK = mass of kaon
14W = mass of pion
1) = hadron momentum
At high energy the efficiency is reduced unless the
length of the counter grows like p2. A Cerenkov counter
operating in a 100 Gev hadron beam must be about N
feet long in order to be 95% efficient. In a 200 Gev
beam the length must increase to 4§ feet, However, if
one inserts a light-absorbing iris in front of the
photocathode so that the plon Cerenkov light cannot
reach the photocathode past kaon threshold, the
resulting pressure curve can be integrated to yield
particle ratios without the necessity of high efficiency
or even knowledge of the efficiency. This is the

approach we took, using a six foot Cerenkov counter
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with efficiency typically less than 20%. This
measurement was then complemented by & measurement of
the overall hadron flux using an ionization chamber,
This approach was novel at the time of this experiment
and it proved successful, In Chapter IV we describe 1in
detail the characteristics‘of our 1ow‘efficiency
Cerenkov counter,

When conducting the neutrino experiment with this
beam, we always ran with the highest possible'flux of
incident protons, Intensities were as high as 5 x 1012
protons per accelerator cycle, In order to measure
particle ratios with the Cerenkov counter we needed to
reduce the intensity to less than 1010 protons per pulse,
Lower intensities would have been desirable , but they
were impossible te achieve, An electrostatic septum
was used to shave off a small fraction of the extracted
proton beam for use in our beam line, This method could
reduce the beam intensity by at most a factor 100,
Reduction of the intensity inside the main ring made
the beam position monitors in the ring useless,

As a result of this high intensity, accidental
rates in our counter telescope were non-negligible and
we were forced to apply an accidental subtraction to
the data, This subtraction did not remove all of the

background from the data sample, In Chapter III we
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describe various technigues(veto counters, shower
counters, hadron calorimeter, pulse height discrimination,
etc.) utilized to increase the signal-to-noise ratio.
In Chapter V we discuss corrections made on the pressure
curves themselves, in particular the subtraction of
backgrounds still present in the pressure curves,

The pressure curves contain more information than
just particle ratios, They also provide several checks
on our measuring technique. For example, the efficlency
of the counter must vary with pressure,ﬁ) y 1n a

well~-defined way:
Efficiency = 1 - exp(-kIP) (3)

where k is a constant, Moreover, the overall integral

of the entiré curve provides a relative measure of the
quantum efficiency of the Cerenkov counter phototube,
Angular misalignment of the counter and the cutoff angle
provided by the light-absorbing iris may also be
extracted from the curves, These checks are described

in Chapter VI,

Our measurements did not provide only particle
ratios in the beam but also absolute flux, A description
of the technique used to measure these fluxes is
contained in Chapter VII,

The results and conclusions of this experiment
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fall into two categories: the study of inclusive hadron
production from Aluminum with a 300 Gev proton beam,
and the study of high energy neutrino interactions.
An inclusive interaction is one in which only a single
particle is detected after the initial interaction.
The undetected particles are all grouped under
'anything' in equation (1),

There is considerable interest in the inclusive
production of hadrons at high energy that goes beyond
the standard yield measurements accompanying the birth
of a new accelerator (in our case, the Fermilab
synchrotron), Comprehensive discussions may be found
in the 1iterature.u_2)Emamples of attempts to
parameterize or predict high energy behavior are found
in the models of Cocconi, Koester, and Perkins,

) (6-¢) Q]
Trilling?‘ Sanford-Wang, Benecke et al,, )and

Hagedorn—Ranft(.g4°I)[ndependent of production mechanism,
the common thread running through most of these models
is the idea of 'scaling',

We are speaking here of 'hadronic scaling', also
called 'Feynman scaling' or 'longitudinal scaling',
This kind of scaling concerns itself with the momentum
distribution of final state hadrons produced in

hadronic collisions, In Feynman's radiation picture

1K
of hadronic scaliné the interacting hadrons in the



T
initial state are plctured in the center of mass frame
as Lorentz contracted spheres (discs) which at the time
of collision act as a stationary radiative source with
a disc shape, The longitudinal momentum distribution
of the radiated hadrons is the Fourler transform of
the spatial distribution of sources inside this disc,
If the only effect of é change in the energy of the
initial particles is to contract this source, then the
width of the momentum distribution grows like the energy
of the initlal particles, but the shape is the same
when plotted as a function of x= QE‘ /{_5- where

Tﬁ = longlitudinal momentum of produced
hadron in the center of mass frame

E = total energy of system in the
center of mass frame

Lorentz contraction does not occur for the transverse
momentum,Ti s, 50 the variables used to describe
inclusive hadronic production in a scaling model are
X and Ti

The expressions for the cross sections in scaling
models may be written in different ways to emphasize
various features:

a) AR /P radiation similar to Bremsstrahlung

¥(m,;\ _ PP
dodﬁ \(m‘ﬂ’ . H;,) )
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b) Lorentz Invariance
3
E£F . }4,R) q
a*p
c) Laboratory Yields

T . E, fnR) ©)

g(ﬁj{\: universal scaling function

T: = longitudinal hadron momentum

=
il

transverse hadron momentum
€, = beam energy
4 =TRIE,

There is a second type of scaling which 1is not
purely hadronic, This type is called 'deep inelastic
scaling' or 'transverse scaling' and is concerned with
the interactions between leptons and hadrons, The
processes studled are those which are deeply inelastic,
i.e. involve small impact parameters., The lepton is
used as a probe of the substructure of the nucleon,

It has been founézslhat these lnclusive deep-inelastic
lepton-hadron interactions can be described in terms
of the scaling variable

_ 2Amv/@* (7)

mass of proton

= energy transfer from lepton
to hadron

= four-momentum transfer

w
™M
\%

1
Q
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Without scaling the processes would depend upon both
v and Q2 snot just their ratio, In this thesis we do
not consider this type of scaling,

The most comprehensive model of high energy hadron
production is the Thermodynamic Model of Hagedorn and
Ranft, This model'incorporates the geﬁerél features of
hadronic'scaling and, in addition, specifies the shape
of the momentum distribution of produced hadrons.

We outline the characteristics of this model in
Chapter VIII,

In Chapter IX we discuss the data from the point of
view of absolute yields and particle ratios, The results
are compared with lower energy data in order to reach
a conclusion concerning the validity of hadronic
scaling, The results are also compared with the
predictions of the Thermodynamic Model,

The neutrino total cross section measurement would
not have been possible without the normalization
provided by this experiment, In Chapter X we discuss
the results of our measurement of this cross section,

Finally, in Chapter XI we make suggestions for

possible improvements in the experimental method,
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II, Description of Hadron and Neutrino Beams

A, Description of Hadron Beam

The secondary hadron beam used in this experiment
1s a simple defocus~bend=focus-bend system designed to
provide momentum analysis, vertical and horizontal
point-to-parallel focusing, and momentum recombination,
A lenslike representation of the beam is shown in
fig. 2.1

In the thin lens approximation to this optical
system, quadrupoles are characterized simply by a
focal length, f, and dipoles by a bend angle,{).
Using this thin lens approximation and accompanying
lens diagrams, we will show how the beam accomplishes
its objectives: vertical and horizontal point-to-
parallel focusing, and momentum recombination,

The vertical focusing action of the quadrupoles
is depicted in fig,2.2, Quadrupole OFT defocuses in
such a way that all the rays emanating from the target
appear to have originated from a ppint a distance
D;:p-'/(l«l-:;i) in front of OFT. Quadrupole ODT then
forms a paféllel beam from these diverging rays if it
has a focal length, f,, equal to Z;+-12 + 13. This
constraint for vertical point to parallel focusing is

summarized by:
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Vertical point-to-parallel focusing

| + L Qz +Q3-¥1 + 1, =0 (8\

"'. £. 'y

The horizontal focusing action of the quadrupole

doublet is shown in fig,Z.3. Behaving like a convex lens,
quadrupole OFT forms an image'of the target at a
distance 1, 4'13 +»Z;. Before the image is formed, the
rays are intercepted by ODT and the image is moved to
infinity, i.e., a parallel beam, This is accomplished
only if f,, the focal length of ODT is equal to :EL
This constraint may be written:
Horizontal point-to-parallel focusing
l"ﬂ.g:—' bl o4 +h, =0 (4)
'

In fig,2.| we see that the incident proton beam

strikes the target with a 6 mr., inclination with respect
to the horizontal, This feature was imposed on the beam
in order to reduce low energy neutrino contamination

of our high energy neutrino beam, It will be discussed
later,

Because of this orientation of the incident beam,
the two dipole bends are unequal, The first bend, [
deflects the beam down 12 mr, and the second bend, 2!
returns the beam to the horizontal with a weaker bend
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of 6 mr, Without the quadrupole ODT, this would leave
the beam with a net dispersion of 0.06 mr/%, e.g. &

ray with a momentum 10% larger than the central momentum
would be inclined by +0.6 mr, after leaving this beam,
By placing ODT strategically between the dipoles

(see fig.2.4), the combination of OPT-A and ODT behave
like an equivalent dipole with a 6 mr, bend, The bend
introduced by OPT-A is equal toe, bP/ﬁ where B‘ = 12 mr,
and AP/‘P. is the fractional deviation from the central
momentum, ODT introduces a bend in the opposite
direction equal to® °,%. 93/.‘!1 . If the difference in
these two bends equals 3,_013{: where ‘91 = 6 nr,, we can
achieve a parallel beam in spite of the unequal bends,
This condition is simply:

Momentum Recombination

% 1-h (10)
D, .

Most of the beam elements are actually comprised

of more than one physical magnet., These are labeled
1,2,.. where appropriate in the ray traces for a point
target (figsZ,S.Z.b).

Having discussed the optical objectives of this
beam, we now consider quantitatively the parameters
describing its capabilities, These parameters (first-

order transfer matrix elements) are listed in Table Z'
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The purpose of the angular collimators OCTAT and
0CTAB (see fig, 2.1 ) is to provide vertical angular
collimation of this beam, The incident proton beam has
a finite spot size, so there is not a one-to-one
correlation between angle at the target and angle at the
collimator, Furthermore, the defocusing action of OFT
magnifies the production angle of particles leaving the
target, These two effects combine to yileld a positione
angle correlation at the collimator of 1,33 cm/mr and
a magnification equal to 1,6, The spot size was typically
¥ 1,5 mm while the vertical angular acceptance extended
from -1,25 mr to +2,5 mr, A 1,5 mr ray, therefore,
reaches the angular collimator at 2 cm % 0.24 cm,

At the momentum slit, OCTP, the dispersion is
0.23 cm/%, but the magnification is 3,65 and the position-
angle correlation is 4,22 cm/mr, Fig, 2.7 shows the
resulting position-momentum correlation for our beanm,
Using a narrow momentum slit is not sufficient to insure
sharp momentum definition, This lack of momentum
definition at the momentum slit results from the lack of
an intermediate point focus at the position of the slit,
An intermediate focus requires a longer beam and we were
constrained by space limitations when the beam was
constructed,

Fig. Z.g shows the correlation between momentum



14
and vertical position at the angular collimators,
OCTAT and OCTAB. The high momentum tail on the momentum
distribution can be eliminated by collimating from below
with OCTAB (see fig. 2.8 ), Collimation from above will
not narrow the momentum aéceptance and it will
unnecessarily reduce the flux, Momentum distributions
for various settings of OCTAB are shown in figs. Z.9
through.z.ll. We chose to run the experliment with
collimator settings: OCTAT = +13", OCTAB = =3", This
leads to 2 momentum acceptance of x 16.5% (RMS),

Collimating in this asymmetric fashion affects not
only the magnitude of the acceptance of the beam, but
also the midpoint of the vertical angular acceptance,
Fig, Z.13 shows that collimating with the bottom half
of the collimator, OCTAB, alone indeed results in a
larger overall acceptance than symmetric collimation
(OCTAB = =-0CTAT), The midpoint of the angular acceptance
however is now 0,25 mr,

While this beam was designed to achieve point-to-
parallel focusing in both vertical and horizontal
planes, finite spot size at the target does lead to
angular divergence at the exit from the beam, In
Table A.| we see a vertical angular divergence equal
to =0,24 mr/cm and a horizontal angular divergence

equal to =-2,92 mr/cm. This difference of more than



15
an order of magnitude in the angular divergences can be
2 Pt
understood by studying figs. 2./4 2nd Z.19 , Each of
these lens systems can be described by a single
equlvalent convex lens, The focal length of the

equivalent lens, f is given by:

eq?

-_'_ + (ll+!3) 4 L Vertical focussing

L
'P‘Z ":. 'F. '?1 -‘:?- ()

| + (Qz-tﬂa) __L

— Horizontal focussing

1.
[ e ¥ 12\

and the target 1s positioned a distance feq in front of
the equivalent lens, The closer the target is to the
lens, the greater the angular divergence will be for
rays originating off-center at the target. In fact,

the angular divergence is proportional to 1/feq. One
can graphically show the gqualitative difference between
our horizontal focusing and vertical focusing. In

fig, Z.14 the solid 1ine represents a typical vertical
trajectory for a particle originating off-center in

the target, If we extrapolate the initial trajectory

of the particle (before entering the beam), the point
at which this extrapolated trajectory intersects the

exit trajectory is the position of the equivalent convex

lens, For vertical focusing the equivalent lens 1is
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downstream of the second quadrupole. In fig, Ztl5'

we show a typlilcal horizontal trajectofy for a particle
originating off-center in the target. If we extrapolate
both the entrance trajectory and exit trajectory, the
point of intersection is the position of the equivalent
convex lens, For horizontal focusing, the equivalent
lens is close to the first quadrupole,

Thus, the different order of the quadrupoles
(defocus=focus for vertical, and focus-defocus for
horizontal) leads to the vastly different positions
of the equivalent lenses, For vertical focusing, the
equivalent lens is far from the target and the angular
divergence is small, For horizontal focusing, the
equivalent lens is olbse to the target and the angular
divergence is larger by more than a factor 10, The
choice to defocus first in the vertical direction was
motivated by the fact that the dipole gaps in our beam
were 5" high by 1 1/4" wide., Defocusing in the vertical
means focusing in the horizontal direction, and this
cholce increased our angular acceptance,

In Table 2.2 we summarize the parameters describing
the acceptance of this beam, In figs. Z.lb tarough 2.1§
histograms show the shape of the acceptance functions
for this beam, Figs. Z.1Q through Z2.22show the profile

and angular divergence of the beam at the position of
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the Cerenkov counter. In figs., £.2Dand 2.24 we show
the correlation between momentum and position of the
beam at the Cerenkov counter,

If our beam were amenable to description by firste
orderIOptics alone, all acceptance distributions would
be symmetric, The lack of symmetry in the distributions
is due to second-order effects, 1.e. chromatic aberrations.
These aberrations occur in both quadrupoles and dipoles,
In quadrupoles the focal length is not independent of
momentum, but rather is proportional to momentum,
In dipoles, the bend angle is not simply 19-@%; where
f) equals the bend in the central trajectory:'but rather
the bend angle is given byﬁ%/{l-ﬁ%ﬁ) o« By design
our beam had large angular and momentgﬁ acceptances, and

the chromatic aberrations therefore skewed the acceptance

distributions visibly,

B, Description of Neutrino Beam

The hadrons produced in the Aluminum target and
accepted by our 455‘/Asr-% beam served as the source
of the dichromatic neutrino beam through the decay modes
T 0V andaY{duY . In view of the small cross section

-36 cme/nucleon

for neutrino interactions (about 10
for our experiment), our ijective was to produce as

many hadrons as poésible. The large acceptance of our
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beam serves well in this regard, but we needed also to
maximize the number of hadrons produced in the target,
i.e, maximize the probability of interaction for an
incident proton, Too short a target results 1n a small
probability for interaction, Too long a target will
absorb most of the produced hadrons before they leave
the target., The probability of interaction with

subsequent eécape from the target is given approximately

by:
d Probability = (L/X) e‘(P/X) (13)

L

target length
X

collision length

This probability is maximized when L = X and it achieves
a value between 30% and 40% depending on the material
used, We used approximately one collision length (12")
of Aluminum to maximize the hadron flux,

The hadrons produced in the target do not walt
until they reach the decay region (the 345 m, following
the beam) before they decay. They begin decaying
immediately; some decay before the beam can select their
charge and momentum, These early decays result in
neutrinos with energles ranging from 30 Mev up to
almost the incident beam energy (in our case, 300 Gev),
They clearly do not constitute a neutrino beam with a
well-defined energy,

In order to prevent these neutrinos from early decay
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from entering our neutrino-detecting apparatus 875 m.
downstream, we oriented the optical axls of our beam
so that for the most part it was inclined from the
horizontal (see fig, 2.l ). The proton beam struck the
target with a + 6 mr inclination. The first bend
directed the beam to = 6 mr and only after the last
6 mr bend was the beam returned to the horizontal,

The hadrons decaying in the 345 m, decay pipe
thus became the predominant source of neutrinos, The
probability of decay into a neutrino is given by:

Probability = 1 = exp(=345/4\) (14)
N=pecT |
m

m = meson mass
p = meson momentum
¢l = 7.8 m. for plons

5.56 m, for kaons

At a hadron energy of 120 Gev,3.0% of the pions
decay into neutrinos and207% of the kaons decay into
neutrinos,

The selection of only the high energy neutrinos
from these decays was accomplished geometrically.
Fig. 3%95’shows qualitatively the correlation between
the angle and energy of the neutrinos resulting from
W and K decay, Our apparatus subtends a small angle

({1 nr) when viewed from the decay region. Neutrinos
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travelling at angles greater than about 1 mr, do not
strike our apparatus. This angular cutoff (shown in the
dashed line in fig.Z.Zs) eliminates low energy neutrinos,
resulting in a double-huﬁped (dichromatic) energy
spectrum of neutrinos strikiné our apparafus. The maximum
neutrino energy resulting from pion decay is 43% of the
plon energy. The maximum neutrino energy resulting from
kaon decay is 96% of the kaon energy.

Neutrino interactions in our apparatus were ldentified
by the presence of a produced muon and observable energy
from a shower of hadrons, When observed in this way,
we measured the sum of the muon and hadron energies with
about 25% resolution and reconstructed the energy spectrum
of incident neutrinos, This reconstructed spectrum is

shown in fig, 2.2b with the desired two peak structure,



21

III, Data Taking Procedure

Particle ratios in this beam were determined by
use of a low efficiency Freon-13 Cerenkov counter
(described in Chapter IV) in conjunction with a
beam-defining telescope of scintillation counters
(see figs. 3.1 and 3.2 ). Freon-13 was chosen as the
gas to be used in this counter because its index of
refraction increases more rapidly with pressure than
do the indices of other common Cerenkov counter gases,
The Freon-13 index increases 60% more rapidly than CO,,
more than twice as rapidly as Ny, and 20 times as
rapidly as Helium, This enabled us to detect particles
with momenta as low as 25 Gev/c without raising the
gas pressure above one atmosphere,

The entire detection array was situated 345 m,
downstream of the hadron beam (described in Chapter II)
and immediately behind a 20 foot steel beam collimator,
The collimator allowed passage of a 4" by 4" beam,

The objectives of this array of detectors were
twofold: to define the hadron component of the beam
(eliminating muons, electrons, photons and neutrinos)
without introducing biases for or against any
particular type of hadron, and to separate the hadronic
components of the beam using the veloclty selection of

the Cerenkov counter, The amount of Cerenkov light
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produced by a particle passing through the Cerenkov

(20
counter depends upon the particle velocity as follows: )
{
Amount of light ~ | - 2t (‘5)
np
VY~ = particle velocity

¢ speed of 1light

p =Y

24Y index of refraction
of the gas

The primary definition of the hadron beam was
achieved by demanding a coincidence in the three
scintillation counters Bl, B2, and B3, The distance
between B! and B3 was about 70 feet, Each of these
counters measured 3" by 3",

Due to the presence of the 4" by 4" steel
collimator, it was anticipated thét hadfons scraping
off the side of the collimator might produce accompanying
prarticleswhich could either trigger the system or
produce Cerenkov light, To avoid this error, we
positioned veto counters, Vi and V2, around Bl, See
fig.3.2.° This arrangement would geometrically remove
about 95% of this spurious type of event, During the
running we compared the data with and without vetoes
and found no appreciable difference,

The presence of the veto counters reduced the

effective dimensions of Bl to 2 7/8" by 2 7/8",., The
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profile of the beam was measured at the position of B1 and
found to extend vertically from -6" to +6" and horizon-
tally from -7" to +7". This is consistent with the Monte
Carlo vertical profile shown in fig. 2,21, but somewhat
narrower than the Monte Carlo horizontal profile shown in
fig. 2,22, Thus, we sampled only a portion of the beam at
the Cerenkov counter, Monte Carlo calculations using
Hagedorn-Ranft particle distributions (see Chapter VIII)
concluded that we sampled the central 55% of our beam,

Figs, 2,23 and 2,24 show that there is a correlation
between particle momentum and position at the Cerenkov
counter, This is due to the chromatic aberrations in the
beam, discussed in Chapter II. Because of this correlation
particle fluxes and ratios were expected to vary slightly
with lateral position in the beam, This bias, brought about
by the undersized counters, requires correction, This
correction will be discussed in Chapter V,

The light pipes on counters Bl, B2, B3, V1 and V2
were air light pipes with Aluminum foil interiors,
Plastic 1light pipes were not used because particles
passing through the plastic produce Cerenxov light,
Air 1ight pipes insured that we were observing a
2 7/8" x 2 7/8" beam, Scintillation counters with air
light pipes cannot take advantage of total internal

reflection in plastic and, therefore, have lower
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lighticollection efficiencies than counters with
plastic light pipes. To compensate for this lower
light collection efficiency, counter Bl had two light
pipes, one on either side, and was viewed by two photo-
tubes,

In a further attempt to avold circumstances where
two pérticles traversed the Cerenkov counter at the
same time (within a time resolution of about 5 ns,)
we vetoed the trigger whenever the pulse height in
elther B1 or B2 was greater than twice minimum-ionizing,
In addition, counter B2 was preceded by three radiation
lengths of lead in order to discriminate against electrons
and photons in the beam, The three radiétion lengths
of lead also discriminated against knock-on electrons
with energy greater than 30 Mev produced upstream of B2,
Discriminating against electrons and photons in the beam
introduces no biases against the hadron component,
Discrimination against knock-ons is not entirely
wlthout bias, While mesons and protons produce low
energy knock-ons with the same probability, a proton is
much more likely than a meson to produce a knock-on
in the forward direction!QQ)Fortunately the probability
of forward-going knock-on production by a proton is low,
about 10~° /Gev/(gn/cm?), This veto, then, affects all

hadrons equally within the statistics of our measurements,
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The effect of the Bl veto, which vetoes on twlce

minimum-ionizing pulse heights without lead, was
negligible, The B2 veto, incorporating the lead,
reduced the signal by about 25%. This vetoing of
electrons 1s desirable becausedthéy produce Cerenkov
light in the same pressure interval as pions, The
vetoing technique, furthermore, does not bias our
measurement of hadronic ratios,

The dipoles 1WO-1 and 1W0-2 (see fig., 3.l ) are
part of the existing Fermilab muon beam, For our
purposes, they functioned as sweeping maghets. Since
our beam is momentum-selected (and not mass-selected),
the sweeping action of these magnets affected all
hadronic components equally., These magnets remove from
our beam all particles with momentum less than 22% of
the beam-selected momentum,

The counters SH1-SH5 (see fig, 3.| ) were
separated by 6" of steel between adjacent counters,
Fach of these counters measured 14" high by 10" wide
and, unlike the beam-defining and veto counters, they
utilized plastic light pipes, The purpose of this
arrangement (5 counters and 24" of steel) was to
eliminate muons from the beam, Muons do not lose very
much eﬁergy when passing through the steel, Their

typical loss is 1,5 Mev/(gm/cm?), Hadroms, on the
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other hand, interact strongly and produce a shower of
hadrons cascading through the array, The gain on the
phototubes for SHI=SH5 was set with the‘steel removed,
It was adjusted such that minimum-ionizing particles
produced a 3 mV signal in each counter, The experiment
was run with the steel replaced and the 51gnals from the
five counters were summed, Muons produced a typical

15 mV signal in this sum, whereas hadrons produced
signals as much as 100 times larger, Muon rejection

was estimated to be close to 100% efficient, Assuming
that pion and kaon decay in the 345 m, decay pipe is

the dominant source of muons, we expect a)A/ﬁ' ratio
typically less than 15%, 93% muon rejection is sufficient
to reduce this muon contamination to 1% of the pion
signal,

A radiation length in steel is about 1.8 cm,
Photons and electrons in the beam, therefore, either
give large summed pulse heights like hadrons, or else
are totally absorbed and never reach B3,

The above discussion of rationale and procedure
for defining the hadron beam is summarized in the
logilc diagram of fig.5.5 The definition of a hadron
in the beam was a BEAM = B1eB2¢B3eSH.T coincidence.,
The type of hadron was identified by FLUX = CeBEAM,

i.e, the coincidence of BEAM with a puise from the
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Cerenkov counter,. The details of the Cerenkov counter
operation are discussed in Chapter IV,

Early running made it apparent that accldentals
and spurious coincidences in the FLUX = E-BEAM signal
were to be the largest source of érror in the pressure
curves, Uncorrelated accidentals were monitored by
delaying the é signal by an integral number of R-F
spacings (18,93 ns spacing). This accidental rate was
then subtracted from the raw signal, The subtraction
was always substantial, at times compfising almost
90% of the raw signal, The size of the subtraction
was, in part, due to the high intensity of the incident
proton beam, always greater than 109 protons/pulse,

It was 1mpossible to operate either the accelerator
or the external beam lines at a lower intensity,

The subtraction of these uncorrelated accidentals
did not entirely remove the background from underneath
the pressure curves, There remained both a background
at zero pressure and a background rising with pressure,
These backgrounds were studied and subtracted in the
curve fitting stage of the analysis. They will be
discussed in Chapter V,

Since this counter was not operated as a
threshold counter, we did not need to know the exact

pressure at the position of any data point, However,
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it was imperative to insure that the pressure increment
between points was a constant differential, This
requirement was satisfied by the use of a constant
volume=constant pressure gas 1line to add uniform
quantities of Freon=13 to the counter volume using a
remotely operated solenoid switch (see fig, 3.H ).

Using the notation in fig, 3.4 ’ the change in pressure,
ZP-, per f£ill is:

YP =P _l:_/\[ (16)

where bV/v ~ 10-3 for our Cerenkov counter and gas line,
The volume of our gas line could be varied by
using three solenoid valves, any one of which could
define the end of the line, These three sections were
calibrated against two separate pressure gauges,
Pressure curves were thus taken by the sequential
addition of constant amounts of gas and measurement of

Cerenkov efficiency for each new pressure,
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IV, Details of Cerenkov Counter Operation

The particulars of the hadron beam (i.e. focusing
‘and dispersive properties, acceptance, chromatic
aberrations etc.) have been described in a previous
section, In this section we describe in detail the
technique implemented in the yield measurements of
forward-going hadrons,

Particle differentiation is accomplished by means
of a Freon-13 gas Cerenkov countefldesigned to have low
efficiency, The optics of this counter are shown in
fig.H.l. The photocathode of the Cerenkov counter
phototube is placed 80" from the parabolic mirror
(measured along a ray which reflects off the 45°mirror).
The focal 1ength,4:, of the mirror, of course, is also
80". This optical arrangement was chosen because of the
fact that Cerenkov light, emitted along the path of a
particle passing through the counter, is focused into a
zero-wldth ring of light at a distance ¥ from the mirror,
The above statement is true independent of the angle
and/or position of the trajectory. In fig.H.Z consider
the cone of light emitted from point )(oat angle gb
The reflected light behaves as though it emanates at
angle ¢.
behind the mirror. The relationship between Xoand X,Z.

.-._)_(x_"ﬁc from a virtual source a distance XL

can be found in the lensmakers equation:
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=§X,
e ()

The reflected 1ight also has a circular cross section
and, at a distance'¥ from the mirror, the radius of this

e fe % 4 )R E T4

Independent mﬁXo, i.e. 2ll Cerenkov light from all (_2)
points on the particle's trajectory is in this ring,
The center of the ring at the focal length is not the
same for all trajectories, If the trajectory makes an
angle A with respect to the axis of symmetry, the center
of the ring is displaced by an amount o(-? at the focal
length, However, 1t is easy to show that the Cerenkov
light is still focused into a concentric ring if the
particle's trajectory is off-axis but parallel to the
axis of symmetry.

In order to understand further the behavior of this
counter, we need to make an estimate of its efficiency.
The total number of photons,PJ , emitted in the

(20)
wavelength intervall[, 'h] gnd in = dstancs 4 18 siven by

odl{ }Sm ¢ (19)
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(21)
The quantum efficiency of an RGA-8850 phototube is
approximately 0,25 between ’\' = 2BOOA and ’I\ 5000 Fl
If we assume 75% light collection efficiency, V(, and a
flight path,y , of 70", we can calculate the mean number

of photoelectrons,“ , as a function of Cerenkov angle ¢

5 < zradate {1 Ysitp = 004 ¢ [
-ZnosﬂGlK{ﬂ‘ 7\351”¢ 0 (fo\{]

Q. = quantum efficiency = 0.25

KK = light collection efficiency = 0.75
A = radiating length = 70"

R = 1/137

A, = 2800 E

7\1= 5000 5

The efficiency of the counter is then given by:

n=1-€" = n- zg 0.024 $*- 0.00029 §
@1)

The estimate of 75% 1light collection efficiency is based
on the following., The Cerenkov light is reflected from
two mirrors, both of which have a Beryllium-Aluminum
alloy coating., Consulting fig."‘,3 , one finds an average
reflectionocoefficient of about 90% in the range
2800-5000 A, The 1ight must also pass through two quartz
windows: one separating the gas volume from the phototube

and one on the face of the phototube. The quartz window
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on the entrance face of the counter has a quarter-wave
coating of MgF2 which attempts to eliminate reflection.
See fig.‘LH for reflectivity versus index of refraction
of the coating, However, the exit face still has only
96% transmission., The window on the phototube causes
the 1ight to suffer 4% loss at both entrance and exit,
Consequently:
Collection Efficiency = (.9)(.9)(.96)(.96)(.96) = 0.75
From fig.#.§ we see that if the Cerenkov angle is
limited to a small value,7l rises almost linearly
with d)l

If we write the index of refraction of the gas in
the form?\=|+€“7 where"’::;pressure in atmospheres and
€ = 0.00075 atn™' for Freon-13 (CO1F5), then

¢’=:Zi§“>-'r17ﬁpt CQQ)

mass of particle traversing the counter

=
1

P = particle momentum

1.8 ¢ has a linear dependence on the pressure, iP
Hence, for small enough Cerenkov angles, the counter
efficiency is proportional toiP"iPo where ]Eis the

threshold pressure and is given by:
2
]E = threshold pressure = M /ZCPI ! 3)3

Furthermore, if we establish a cutoff angle by inserting
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2 light-absorbing iris as in fig.,H. |, we find that the
pressure difference between threshold and cutoff,
&'P:’ﬂi-iz is independent of elther the particle or its
momentum, This pressure difference depends only on the

index of refraction of the gas and the cutoff angle:

NE Y (B4)

Hence, for a monoenergetic beam of pions, kaons, and
protons, and low efficiency, we end up with the ideal
Cerenkov pressure curve of fig.Y.b. Bach of the
triangular curves has the same width baseline, and
particle ratios may be obtained by comparing peak values,
integrals, or slopes.

In view of the fact that the width of an individual
pressure curve is independent of momentum, and the fact
that the threshold varies asrqt/PL; it is important to
decrease the irils opening with increasing momentum, lest
two neighboring curves begin to overlap. Figs.4T-4]||
show the regions of usefullnéss for five different iris
sizes, The filled-in regions represent the pressure
interval within which the designated particle will
produce observable Cerenkov light at the given momentum,

In actual practice the situation is not as simple
as the above would imply. We have already seen that an

angular divergence (or, equivalently, an angular
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misalignment in the Cerenkov counter) moves the ring

of Cerenkov light so that 1ts center no longer lies on

the symmetry axis of the irls, This, of course, smears

out the cutoff, The shape of the pressure curves resulting
from angular misalignment is shown in fig.4.[2. The |
effect is geometrical and does not depend on the mass

of the particle involved, One can show that

the pressure curve resulting from this misalignment has

the functional form:
£(¢) ~ sin*¢ for b+a £, (ai;
~ SN __AgetAN {Zd’l(ﬁtﬂx) (91 o&") ¢ @@
IEIRRSTNY L oo o9
for b+ 7D,

4) = CerenkoVv angle
{Z.= cutoff angle
oA = misalignment angle

In first order for a point target, this beam focuses
point to parallel, Finite spot size and the inherent
chromatic aberrations compromise this feature and lead
to a beam with a small angular divergence at the exit
from the train, See figs,?.142anda.20 Because of this,
meticulous alignment of the counter is not enough to
guarantee the triangular shape of the pressure curves,
In general the curves will resemble the shapes shown

in the lower half of fig.4|2.

An immediate consequence of this change in shape
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is the effect upon the integral of the pressure curve,
For the same particle yield, the integral 1lncreases
with increasing misalignment, Hence we must apply a
correction factor to regain the 'no misalignment'
integral, This correction factor is shown in fig."‘.'3
as a function of misalignment angle for various iris
apertures, Fortunately, the misalignment correction does
not depend upon what particle goes through the counter,
so the correction can be ignored if one 1s interested
only in the ratios of particle yields,

Recall that the pressure threshold for particle
detection is given by:

4
M
m

f)

and the width of a curve is given by:

aP=2. [ze (9)

fz' = cutoff angle

Thus, the change in threshold due to a change in the

M'/zep (21

particle mass

index of refraction = |+€IP

particle momentum

momentum 1is Dﬂ::ﬂt _D_;-,E . For a beam with a finite
momentum bite, tie smearing of the curve is given to
first order by:
o -0B - 2N ZP
ATP Pt P

(29)

|
2
%
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Obviously the proton curve is severely smeared in most
cases, while the pion curve rema;ns'relatively _
- insensitive to this effect, Figs., 4.14 through 4.16
show pressure curve shapes resulting from an assumed
triangular momentum distribution. Despite the radical
nature of this distortion, the integrals of these
pressure curves are independent of the amount of

smearing,
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V. Integration of Pressure Curves and
Extraction of Particle Ratios

The raw data from the Cerenkov counter pressure
curves are shown in figs, 5:| through-Si'o with the kaon
contribution to the curve magnified, Because of the
large momentum acceptance of this beam (% 16.5%)
particle ratios could znot be gleaned from pressure
curves by either the slope or peak-value methods, These
methods apply only to ideal Cerenkov curves (see fig, ‘f.lg)
with triangular shape, Therefore, the ratios were
abstracted from the pressure curves by the integral
method, We have stated in a previous section (Chapter IV)
that the ratio of the integral of one particle's curve
to another's is a direct measure of the particle ratios
independent of beam divergence, counter misalignment,
and momentum bite, Therefore, particle ratios are
theoretically easy to measure by integration, Two
features of the data persuaded us to extend the analysis
to include curve fitting of the pion and kaon curves,
These features are: 1) the non-negligible background,
and 2) the overlap of signal from neighboring portions
of the curve,

We have mentioned before (in Chapter III) that
the uncorrelated accidental background represented,
at times, 90% of the raw signal from the Cerenkov

counter, Some background remained even after the
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subtraction of this uncorrelated background. The size

and shape of the remaining background are consistent
with the size and shape of backgrounds resulting from
knock=-on electrons and scattered Cerenkov light,

We shall discuss these backgrounds in the following

pages,

A, Extraction of Integrals from Negative Cerenkov Curves

Magnified views of the Cerenkov curves for
negatively charged particles (figs. 5.1 through 5th)
indicate a background with a zero offset and a linear
rise with pressure, If the same background mechanism
is operative for all four curves, the background
functional form must be universal, The 'efficiency' of
the Cerenkov counter at vacuum level for the four curves

is shown belows

Energy Vacuum Level 'Efficiency' Iris Setting Iris Area

-95 (.495%0,0389)x10™2 3,395 mr.  1.493 cm®
-120 (.471%0,0435)x10™ 2,583 mr.  0.865 cm?
145 (.515%0,0453)x10™° 2,161 mwr, 0,606 cu®
=170 (.500%0,0500)x10™> 2,424 mr, 0,762 cm®

The mean of these four values is:
Mean Vacuum Level 'Efficiency' = (.4941’-'0.022)x10"3

and the four values are consistent-with a constant
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value for the vacuum level efficiency,

The existence and ialue of the background at
vacuum level can be explained by delta rays (knock-on
electrons) produced by hadrons as they pass through
the 1/8" Aluminum entrance window to the Cerenkov
counter; The probability of hadrons producing delta

(29)

rays 1is:

Probability = 0.15 me (o::,)z per gn/cn? (30)

Me = mass of electron
El

We are considering here delta rays which are

energy of delta ray

produced in the Aluminum window and are directed
toward the quartz window separating the interior of
the Cerenkov counter from the light-tight box housing
the Cerenkov counter phototube, These delta rays will
have energy between 0,19 Mev and 0,57 Mev, We use the
larger value (0,57 Mev) to calculate a lower estimate
on the probability of producing such knock-ons, The
probability, P, is:

AP - 0.236
L =_Yeor 3l
dE'dx  HeV-qm/ em (31)
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where dE,= 0.375 Mev
and dx = 0,857 grams of Aluminum

The solid angle subtended by the window and the
correction for absorption and multiple scattering in the
Aluminum introduce a correction factor of approximately
0,004, Combining all the factors we arrive at a
probability for producing a knock-on which strikes the
quartz window equal to 3.0 X 10"4. These knock-ons
produce Cerenkov light in the quartz window at an angle
of approximately 480 and the quartz window becomes an
efficient detector of delta rays, both because of the
large Cerenkov angle and becuse of its proximity to the
phototube,

Thus, delta ray production predicts a vacuum level
efficiency of approximately 3.0 x 10_4. This is very
close to the vacuum level efficiencies observed for
both positive and negative beans,

When gas is added to the counter, the back ground
rises linearly, proportional to the amount of gas in
the counter, i,e, proportional to the pressure. The

slope of this background is not the same for all curves,

However, the ratio of the slope to the iris area is a

constant, Thus, we have found the empirical rule that
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the pressure dependent background rises linearly with
pressure and quadratically with cutoff angle., One
functional form fits all the negative curves,
These considerations lead to a universal background

for the negative curves:

Background 'Efficiency' = 4,9454 x 1074 4 5.3546 x 1O'3ﬂjﬁz
ﬁ’: pressure in matm,
f%_: cutoff angle in mr,

This background is shown in figs. 5.1 through 5.4.

In order to demonstrate in a more straightforward
manner that the pressure-dependent background
contribution is proportional to the iris area, we
measured the efficiency of the counter for a variety
of iris openings in pressure ranges where signal to
background ratio was small, The results of these
measurements are shown in fig, 5.11 and the data clearly
support a background with a linear dependence on
iris area,

After subtracting the background from the data,
the curves were fit using the functional forms described
in Chapter IV and a Hagedorn-Ranft Monte Carlo momentum
distribution. These fits are shown in figs, 5.12

through 5.19 and the values of the integrals are



42

listed in Table 5.1

In the fit of the plon curve at 95 Gev (fig. 5.IL)
there 1s a small portion of the curve at the'very end
of the falling edge that is not accounted for by the
fit, This extra tail comes from the angular divergence
in the beam, It is found in all of the pion curve fits
and it represents less than 1% of the total integral,
Its contribution was included in calculating the

integrals,

B. Extraction of Integrals from Positive Cerenkov Curves

The vacuum level efficiencles for the positive

Cerenkov curves are listed below:

Eneregy Vacuum Level 'Efficiency’

+95 (3.775%1.07) x 10~%
+1201 (3.725%,932) x 10~%
+1201IT (1.51 2,631) x 10~%
+120TI1I (2,92 %,464) x 10™%
+145 (0.5 *1.58) x 10~%

4

+170 (2,04 2,678) x 10~
The mean of these six values is:
Mean Vacuum Level ‘'Efficiency' = (2.412io.291)x10'4
We have already shown in section A of this chapter

that this vacuum level background can be understood
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semi-quantitatively in terms of delta rays, The variation
in vacuum level background for the positive curves does
not rule out delta rays, In fig, 5.2«0 the points
labelled 'data' are the vacuum level efficiencies for
the positive cﬁrves. None of these points is any more
than 1% standard deviations removed from the average

4. It 1s expected that the average

value of 2,412 x 10~
value of the vacuum level efficlency for the positive
curves be lower than the corresponding value for
negative curves because the quantum efficiency of the
phototube used for the positive curves was lower than
the quantum efficiency of the phototube used for the
negative curves by about a factor 2,36, This change in
quantum efficlency is discussed in Chapter VI,

Nonetheless, in order to ascertain the error
introduced by the uncertainty in this constant
background, three independent methods were used to
‘predict' the value of this background from the rest
of the data,

Method #1: The low pressure section of the pion
curve (before cutoff) has a shape which depends only on
the momentum distribution of the pions and the index of
refraction of the gas, Using a simple parameterization
of this distribution (Monte Carlo acceptance folded into
exponential yields with one adjustable parameter) one

z
can obtain & minimum- ). fit which predicts the
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background level, The predictions from this mefhod are
shown in fig, 5.20

Method #2: Rather than parameterizing the momentum
distribution, we used Hagedorn-Ranft predictions for
the spectrum, Once again, the ’Lb -minimization then
predicts a background. (see fig 5.20)

Method #3: Once the cutoff and misalignment angles
have been esfablished from the pion fit, the shape of
the kaon curve depends only on background and
normalization, Xf'-minimization for the kaon fit leads
to a new prediction for the constant background level,

This uncertainty in the constant background level
is the largest source of error in the positive integrals,

The parameterization of that portion of the
background which rises linearly with pressure can be
achieved by restudying the negative Cerenkov curves,

If we try the same parameterization that was used for
the negative curves, it produces a background much too
large, even at the same pressure where it was measured
for the negative curves, However, in the case of the
negatives, the beam population was dominated by plons,
It was, therefore, impossible to conclude whether

the pressure-dependent background was produced by the
entire beam (e.g. scintillation) or by the pions only

(e.ge scattered Cerenkov light)., Both of these sources
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increase linearly with pressure,

If we assume that the background is due to
scattered Cerenkov light, then there are three contri-
butions to this background,‘n',y< and proton Cerenkov
light, each with its own threshold. To parameterize
each of these contributions we use the parameterization
for the negative curves multiplied by the appropriate

particle fractions, i.e,

CE bM+£ {TP—’P'S 9, 8. x 65448 xioo (32

L=l

“D = pressure in matm,

“%L = pressure threshold for particle 1
i=1 W™
=2 W

1=5p

= cutoff angle

o
I

xi = fraction of particle i in the beam
The most 1likely obstacle capable of scattering

Cerenkov light from the path determined by the optics

is the quartz window separating the interior of the

Cerenkov counter' from the light-tight box surrounding

the phototube, Recent tests have shown that this

window does indeed scatter light., Thus the quartz window

becomes the offender for both the pressure-independent

and the pressure-dependent backgrounds, Since the path

to this window relies upon reflection from the 45°
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mirror, there should be a geometrical cutoff to the
background when the Cerenkov cone is larger than the
mirror, This occurs at about 14,5 mr, Using the above
three part background with geometrical cutoff, we
arrived at the background subtraction shown in
figs. 5.8 through 85.10, With the resulting backgrounde
subtracted data, we fitted the curves for the pion and
kaon integrals, and simply integrated the larger
proton curve, The fits are shown in figs, §5.21 through
8.1 and the values of the integrals are listed in
Table 5,1,

The integrals of the pressure curves require the
application of several correction factors before they
represent the measure of particle ratios 1in our beam,

The counters used to define the beam were smaller
than the actual beam (they sampled about 55% of the
beam), Since the yields of pions, kaons, and protons
do not have the same momentum dependence, and since
our beam had chromatic aberrations (momentum-dependent
aberrations), the particle ratios have a small dependence
on lateral position in the beam, Table 572- shows the
factor to be applied to the measured ratios in order to
achieve the ratios for the entire beam, This table is
the result of a Monte Carlo analysis of our beam
assuming Hagedorn-Ranft momentum and angular

distributions,
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In order to test the validity of this calculated
correction for the lateral dependence of particle
ratios, we raised the pressure in the Cerenkov counter
until we achieved maximum detection efficliency for
120 Gev pilons, We then swept the beam vertically in
order to measure variations in the pion fraction as a
function of vertical position of the beam, This variation
in pion fraction is shown as a function of the height
of the beam centroid in fig, 6.'51, The solid line is the
Monte Carlo prediction for the expeéted variation in
pion fraction, Our calculated correction is consistent
with this measurement,

Since our detection apparatus was located 400 m,
from the target, a non-negligible fraction of the plons
and kaons decayed in flight, The correction for this
decay is largest for 95 Gev/c hadrons where 43% of the
kaons and 7.2% of the pions decay, This standard
correction was also applied to the data,

The resulting particle ratios are listed in
Table 9.3
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YI. Further Checks on the Measuring Technique

The shape of a plon Cerenkov curve between
threshold and geometrical cutoff is a direct measure
of the Cerenkov angle dependence of the efficiency of
the counter, Fig.é.' shows such a curve taken with'“r
at 170 Gev with a large (6.25 mr,) cutoff, This energy
was chosen because the K contribution under the pion
curve is small (K/,.zo.o7 ). A log plot of the efficiency
(fig. &2 ) shows a) the efficiency of the counter is less
than the calculation of sectionIV and b) there is a
deviation from the expected exponential behavior of
the efficiency. The lower efficlency is perhaps not
surprising in view of the optimistic values used in the
calculation, but it was, in fact, raised to its
expected value by replacing the phototube, The reduced
efficiency at large Cerenkov angles 1s most probably
due to a variation in photocathode quantum efficiency
with position of the Cerenkov ring on the photocathode,
Note that in the region where we took data{ﬁzéﬂOnw% the
efficiency does indeed have a strictly exponential
behavior,

In order to have remote control of the cutoff angle
and the ability to fully close the iris, we utilized a
biplanar leaf iris driven by a stepping motor. (Single

plane leaf irises cannot be fully closed). The position
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of the driving gears was monitored with a potentiometer,
A vernier measurement of iris opening versus
potentiometer reading is shown in fig.éﬂ5. The results
of the flitted pion curves show a somewhat larger
opening than measured mechanically, but still with a
linear dependence on potentiometer reading,

The shape of a pion Cerenkov pressure curve is
given by formula (34). The integral of this curve
depends on the cutoff angle,{z s and the misalignment
angle, R , as per figurefp Y. We call this integral

the 'Geometrical Efficiency', G.

G-\ (9 dP (32)
::7l€“>-1737&;' (2H)

= pressure
= particle mass

= particle momentum

393 e

index of refraction = |+€IP

The measured integral of the pion curve is given by:
\TdP- arf;C (5)

Cl = quantum efficiency

= a constant depending on factors
such as length of radiator,
band pass of photocathode,
mirror reflectivity, etc,
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S—"z fraction of pions in the beam
C, = geometrical efficiency
Since Cerenkov curves for kaons and protons are
composed of overlapping curves of the type described

by formula (2L) the same arguments hold for them and

we have: S‘p"dP = QK%‘,C (30)
\kdP = a¥hiC 6]
| PaP= AKEG (>8)

Adding the three contributions:

X {T+K+P} ATP = AX i;‘,ﬂ.‘.gk‘.gp‘g G (29)
~—

: 1.0
Since the geometrical efficiency is known once 'BQ and X

are gleaned from the pion curve, we can measure the

relative quantum efficiencies for the various curves:

Q. = relative quantum efficlency = & {Tﬁ»Ki’P} AIP (/'IO)
[€

These relative quantum efficiencles are shown in fig, 65

There is a clear jump between rums 6 and 7. An
examination of the misalignment angle for the same
runs also shows a jump between runs 6 and 7. Between
runs 6 and 7 we changed phototubes from an RCA 8850

to a C31000M, a tube with & broader frequency pass and

higher quantum efficiency. In the process of doing so
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we obviously moved the counter by about 140 microns.

The misalignment angle (before bumping) is seen
to be about 0,4 mr. The angular divergence of the beam
at the position of the Cerenkov counter has an RMS
value of about 0.32 mr, In addition, our counter
alignment technique was expected to be accurate to
about 0.25 mr, These two sources are clearly consistent

with the average value of 0.4 mr,
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VII, Absolute Flux Measurements

In addition to the measurement of hadron ratios
made with the Cerenkov counter, a measurement of the
absolute flux of hadrons was also made with an
ionization chamber (SIC) situated 10 feet upstrean
of the Cerenkov counter, The ionization chamber could
not discriminate against muons, so we need new variables
to describe the makeup of the beam as the SIC saw it,
Let:

; = fraction of pions in the hadron part of the
L] beam at the Cerenkov counter

SK = like fraction of kaons

*P = like fraction of protons

$f+¥R+¥P=' | U“\

* = fraction of plons in the total beam
Ls (including muons) at the Cerenkov counter

*K = like fraction of kaons
S' = like fraction of protons

;' = like fraction of muons

rfeehirlu= 1 )

])W = ratio of pions at target to pions at
Cerenkov counter (decay correction)

D, = ratio of kaons at target to kaons at
Cerenkov counter

X

Using these variables, we find the following relationships:
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=
]

by (43)
4 s’w-Dn- Ly ¥KDK * ¥F

' 'gk
s—h “'1' Df + ‘?K.Dn ¥ g?

§
P (49/\
g g’f Dn’ i ":KDK + ":?

W LA R W )
/ gtrbf* g’kbu ¥ 'gp

The SIC was calibrated using a 200 Gev proton beam

(A

-+
(1)

Ho)

from the NAL synchrotron, Consequently, all ionization
measurements have the units 'equivalent 200 Gev protons',
The actual ionization as a function of particle and
energy is shown in fig.r7.|

If we define:

N = number of equivalent 200 Gev protons

N

actual number of particles passing
through the SIC

}3- ratio of ionization by particle i
A to ionization by a 200 Gev proton

then:

N = (47)

";1;9« +¥%:PK +$i:(b? +'¥#’PM
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The number of particle i produced at the target
is then:

/
N.={ DN He)
& & A
The results of these SIC measurements are shown in

table 7.1
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VIII, Thermodynamic Model of Hadron Production

The main ideas involved in the Thermodynamic
Model of Particle Production have been discussed in
the 11terature(.8—w)We shall describe briefly here some
of the more important features,

The Thermodynamic Model is an extension of the
two-fireball model(’gto a continuum of fireballs.. It
is a bootstrap model in the sense that:

A fireball is:

a statistical equilibrium (hadronic blackbody

radiation) of undetermined numbers of all

kinds of fireballs, each of which, in turn,
is considered to bej

The multiplicity of fireballs within a fireball,

W(n.C), is given by: -
' W(Y\ 2) 7\ C“ ("fq)
R(E) —> 17\( ) (5)

€900
energy density of decaying fireball

£

A = parameter used to vary this
distribution if necessary because
of conservation laws

¢, - lGeY/V (51)
Y, = 4TCLY (53)

Since there is a. continuum of fireballs, they need

a velocity distribution, Instead of using the velocity,
Jb y &s a parameter, the model uses 7\ s
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A= sicn (p) &-1 (5)
4
}5 = fireball velocity
;% = initial proton velocity
N
b= 1 NepE

7\ is then the ratio of local kinetic energy density

to incoming kinetic energy density, There are two

velocity functions:

F(’/\\ for newly created particles
E (ﬂ) for through-going particles
Fach of the fireballs is a system of an indefinite
number of particles, resonances, and other fireballs
in equilibrium at temperature, T, where T is chosen
such that (E(T)) = the energy of the fireball, The
expression for (E(T)) will be given later,
The one-particle momentum spectrum for a particle
of mass, m, participating in this system is: |
{n(ﬁ,ﬂ d’p = copsT{ExP[Yﬁ-P=+m‘/T] +] 43'3‘ (5H)

i.e, isotropic with Planck Blackbody Radiation law,
In order to calculate (E(T)> for a fireball, we
need the mass distribution of available particles,

resonances, and fireballs, This is postulated to be:
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g(m\ x__ 5 e (55°)
(M:'-l-m"‘) 4
O% =2,63 x 104 Mev
T, = 160 Mev
M. = 500 Mev

This form fits onto the known mass distribution below
1200 Mev,

Integrating over F in equation (54), one finds:
O —w/
CEM) =S FenT) gtm e T dm 52)

where .V(i\'T) is a well-behaved function, In order for
this integral to be non-divergent, |, = 160 Mev

= 1,86 x 1012 °K must be a limiting universal highest
temperature, At this temperature, the addition of energy
to a fireball results in more particles, not in more
kinetic energy.

The only two functions which are left unpredicted
by this model are F(’/\\ and E(’/\\ . Using experimental
data between 12 and 30 Gev, 1t was found that energy-
independent forms could be used to reproduce all

measured spectra in this region, These forms are:
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aN

Fn) = L (I-0) e 6
N
-b7 -c (I-
fm =) (-a)e rane (5%)
0
where a=5,6
b=20.8
c=2.4
d=7.1

The Hagedorn-Ranft extrapolations to higher energies
rely upon this assumption of energy independence for
FMY ana E(A) . It should be mentioned that this
energy-independence for F(’i\\ andFo('h\ is equivalent
to the hypothesis of limiting fragmentation and
Feynman's use of x=P/E and P,in a scaling model.

This equivalence is shown in ref,.lb.

Before reviewing the first experimental tests
of the Hagedorn-Ranft model , it is important to mention
those difficulties which were anticipated.

The first difficulty is the kinematic cutoff,

The theory is thermodynamical and has exponential
distributions extending to infinity., Near kinematic
cutoff the thermodynamics of the situation is 1less
important than phase space restrictions. This cutoff

was initially put in arbitrarily, and it was expected
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to need revision,

The second difficulty lies in the bootstrap
characteristic of the model, In order to facilitate
calculations, the final particles were assumed to come
from the first fireballs rather than from a concatenation
of fireballs., This resulted in an inability to predict
particle multiplicities or absolute normalization,

The forms of the spectra are, therefore, more reliable
than the normalization,

The first test of the model was made against
19,2 Gev data from CER_N{"nand 35, 43, 52 and 70 Gev data
from Serpukhm(rl.?-m)l’he fits obtained for'IT*, k' and proton
spectra at 19,2 Gev were reasonably good without
read justment of the model., The predicted fits for
Kjﬁu‘ and1%/i' at 70 Gev were off by a factor 2
below x=0,.,7 and the disagreement was even worse above
x=0,7. The model needed adjustment in order to gain
consistency. The prediction for the absolute yields
of Tf., however, were still high by a factor 5,

The only way to readjust the model was to introduce
an energy-dependent F(ﬂh. This was not done for
(at least) the following two reasons: 1) the experimental
errors are = 50%, and 2) If F('i\) were reduced by a
factor 5, the integral of the T spectra (i.e. m

multiplicity) would be less than the known multiplicity
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at 30 Gev,
The latest versions of the Thermodynamic Spectra
(the versions which we use for comparison to our data)
are contained in ref. 9. The plots are shown in figs.
9.1 through¥.band the input parameters to the computer

(30)
program SPUKJ are shown in Table 3. |
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IX, Discussion of Data

A, Yields from this beam

The results of our measurements of hadron
production from 300 Gev protons on a 12" Aluminum
target are shown in figs. 9.1 and §.2 . These plots
show the number of hadrons produced per incident proton
and accepted by our beam as a function of x:

X =:Ta/wzo

Tﬁ = longitudinal momentum of hadron

E° = beam energy
Measurement of these yields involved the implementation
of three separate measuring devices: a secondary emission
monitor (SEM) monitoring the flux of incident protons,
the already-mentioned SIC measuring hadron flux, and
the Freon-13 Cerenkov counter for particle differentiation,
Foll irradiation calibration of the SEM gave agreement
to 3%. The SIC was calibrated with a 200 Gev proton
beam and showed a stability of 6.3%. The errors on the
Cerenkov counter pressure curves are listed in Table é{l
These errors include statistical fluctuations but are
dominated by the indeterminacy of the background
subtraction, We have applied both an empty target
subtraction and decay correction to these yields,

Empty target subtractions were small: less than 4%
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for positive hadron beams, and less than 2% for negative
hadron beams, The decay correction is calculable from
known particle lifetimes and the distance from the
Aluminum target to the Cerenkov counter.»The largest
decay correction necessary occurred for 95 Gev/c
hadrons, At this momentum, 43% of the kaons and 7.2%
of the pilons decayed in flight,

It is important to note that these are yield
measurenents for our beam and not differential cross
sections, Our beam has a large calculated acceptance
(455 }Lsr-%) and utilized a thick target (12" Aluminum),
Measurement of differential cross sections requires
knowledge of this beam acceptance, The acceptance has

been calculated but not measured,

B, Particle Ratios

Figures 0{5 through 48 show the particle ratios
in the beam, These ratios do not depend upon SEM or
SIC measurements, but only upon the Cerenkov counter
integrals, the finite-sized counter correction, and the
decay correction, For comparison in figs, ‘7.3 through
q,g we have shown in the so0lid line the prediction
resulting from folding Hagedorn-Ranft distributions
into the calculated aocéptance of our beam, At this

point we will mention only that there 1s not complete
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agreement between the predictions and the data, We will
go into more detail later,

Figures 9.4 through 9.l show our particle ratios
plotted along with the ISR results (p-p interactions)oZJ
and the results of the measurement of 3,6 mr, hadron
production from Berylliugit%he ISR results are all at
Fi = 200 Mev/c,>where‘EL is the transverse momentum of
the produced hadron, Our datahave maximal flux at
ﬁ = 1,35 mr, In each case {p/n.‘l" K/“," KZ,*} the seven
sets of data are in agreement to about a factor 2,

The T/ ratio rises almost exponentially. The ¥/n~
ratlo 1s consistent with a constant, while the Y\*'/‘\T"'
ratio shows a tendency to rise,

In making this comparison, we have compared data
at six different energies from three different targets
and very different transverse momenta, The major effect
of thick targets (Aluminum and Beryllium) is to increase
the'"ﬁﬁ? ratio over the ratio obtained from a proton
target. This increase results from the fact that protons
are more likely than pions to be reabsorbed in the
targets. Rough calculations using a 24 mb total cross
section for pion reabsorption and a 40 mb cross section
for protons indicates that the?fvﬁJ ratio from a thick
target may be as much as 75% higher than the ratio from

a proton target, The discrepancy is probably not this



64

large, however, because about 25% of the protons
scatter elastically and are not removed from the beam,

For 100 Gev/c hadrons, the ISR results were taken
at‘EL = 200 Mev/c, Our measurements sampled a beam with
e mean transverse momentum of 135 Mev/c, and the 3.6 mr
data from Beryllium were taken at Ta, = 360 Mev/c,
13:d1stribﬁtions are expected to be roughly exponential
with(Pi) for pions = 320 Mev/c; for kaons (P‘L) = 425 Mev/c
and for protons (?_L) = 500 Mev/c., These values of <P.L7
also have an x dependence, Thus, experiments conducted
at differing values of T?L are expected to give
dissimilar results for particle ratios., In the case
of the experiments we are considering, the results
could differ by as much as a factor 2,

The factor 2 disagreement which we find in these
ratios is thus consistent with thick target and

transverse momentum corrections,

C. Corrections necessary for further analysis

In order to extend our analysis to include a
simple test of scaling and a comparison with the
Hagedorn-Ranft Thermodynamic Model, we need to make
a correction for thick target absorption,

Figure § |1 shows the relative flux per incident

proton as a function of target thickness for a +120 Gev
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hadron beam, We have fitted the curve with the functional

form: FLUX ~ ,L‘_ e" /X | 05\
X

target length
X

interaction length

The fit results in X= 17,8" and a correction factor 0,344
(Loes 34.4% of the incident protons produce observable
hadrons), The fit is relatively insensitive to the
choice of interaction length, Using X= 12,9", we obtain
a correction factor 0,367, In applying this correction
we have assumed that it is both energy and particle
independent. The energy independence is most likely a
good assumption since total cross sections are constant
in the range 95 Gev to 170 Gev (the range of our
measurements), but the particle independence is
questionable; especially for protons, Our measurement
is actually an average of the correction for mesons

and protons in the beam, The error in this assumption
may be as large as 30%.

D, Test of hadronic scaling with an Aluminum target
between 19,2 Gev and 300 Gev

(14
Using the data of Allaby et al, for 12,5 mr,
production of hadrons from Aluminum at 19.2 Gev incident

proton energy, we have made a simple test of scaling,
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)

We assume that the cross section has the functional form:

Aﬁ: - E, £(n § (B (59)
F E. = beam energy
A =;T:/‘Eo

and that _‘t(ﬂ_\ ~ BXP (-T‘}, /ZOO.S ((90)
We may then plot the 'universal' function f(x) measured
by these two experiments (the Ailaby experimeﬁt and
the one described in this thesis). In order to do this
it was necessary to use the thick target correction for
our beam, The correction for differing Fi_ was typically
less than 15%,

Figures 9.1 through 9.177 show the f£(x) determinations
with a solid line drawn through the Allaby data, The
horizontal error bars on our data merely point out the
large momentum acceptance of our beam, They do not
represent the error in the mean momentum, This
comparison requires knowledge not only of the acceptance
of our beam, but also of the momentum and angular
distributions of the produced hadrons, These quantities
were calculated for our beam using a Monte Carlo analysis
with input from the Thermodynamic Model. The vertical
errors represent only the statistical and systematic
inaccuracies,

-

The f(x) discrepancy for I is never greater than
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30 %o The WT* agreement is even better, Our experiment
shows a systematically higher yield of both K-and K+
than realized at 19,2 Gev, The proton data are in
agreement, Given the indeterminacles both in the data
and the method of comparison, one is free to say only
that kaon fluxes have not yet reached a scaling plateau
at 19,2 Gev,

The invariant cross sections at the ISR have also
been compared to lower energy datauj)with'a center of
mass energy equal to 6,8 Gev, This comparison is shown

in figs, 91§ through9.23 . The horizontal axis is the

rapidity, y, of the observed particle in the lab:

o Ji!lm E"‘;:\ (61)

Tt = center of mass longitudinal
momentum of observed particle

center of mass energy of
observed particle

In these variables:

A = 2R [s L2)

E = total center of mass energy

What is most clear from these figures is that K and p
production in p-p interactions has not reached the
scaling region at 6,8 Gev,

Thus, our conclusions regarding hadronic scaling

on Aluminum are essentially the same as those reached
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for p-p scaling from lower energy to ISR energies,

E, Comparison with the Thermodynamic Model

We have compared our yields and the yields at
3,6 nu!ZZ)(Baker et al,) with the predictions from the
Thermodynamic Mode{gﬁokbr these beams, In figs, 9.24
through 94.28 we plot the ratio, R, of the measured
ylelds to the predicted yields for the two experiments,
The line R=1 indicates agreement between experiment
and prediction,

Over the range of secondary momenta covered, the
Qf+ yields from the two experiments deviate from
prediction in the same way, i.,e, both sets of data
points lie on the same R(x) curve, Furthermore, the
yields from both eXperimenfs agree with the predictions
to within 25%,

The Kt yields from the Baker experiment are lower
than predicted but agree to better than 25% with the
prediction, Below a secondary momentum of 145 Gev/c
our K¥ yields also agree to within 25%, but they are
higher than predicted, Above 145 Gev/c, our X* yields
may be higher than predicted by as much as a factor 2,
but the error bars are large (the 170 Gev/c point 1is
only an upper limit) and the 145 Gev/c point is only
14 standard deviations from the R=1 agreement line,
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It is known that proton ylelds rise with increasing
secondary momentumgw) Both our data and the Baker data
show this rise, The Baker dataare consistent (within
2 standard deviations) with the Hagedorn-Ranft
prediction for the 3.6 mr beam, but our data show &
different functional dependence than the Thermodynamic
Model., At 95 Gev/c secondary momentum, our yields are
higher than the prediction by a factof 2, while at
170 Gev/c our ylelds are 15% lower than predicted,
although statistically consistent,

The‘ﬁ:’yields from both experiments are unquestionably
lower than predicted by nearly a factor 2 over the
entire momentum range covered,

our K~ yields, like our K’ yields, agree with the
Hagedorn-Ranft predictions to within 30% below a
secondary momentum of 145 Gev/c and show a tendency
to rise above prediction for momenta above 145 Gev/c,

At the highest momentum measured, 170 Gev/c, the measured
yield is twice the predicted yleld and is almost three
standard deviations removed from agreement, The Baker

K data at 3,6 mr, are consistent with Hagedorn-Ranft
predictions for their beam except at 70 Gev/c, where the
yield is only 60% of the predicted value,

Thus, we find that for(iTt and proton production,

the scaling predictions (section D of this chapter)
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are more reliable than the predictions of the

t
Thermodynamic Model. For ¥ , the Hagedorn-Ranft Model
is more reliable than our scaling attempt to predict

our yields,
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Xoe Measurement of Neutrino Total Cross Section

The measurement of hadron fluxes and ratios
described above provided the normalization (i.e,
measurement of neutrino flux) necessary in order to
conduct the measurement of the neutrino total cross
sections at 38 Gev and 108 Gev,

The neutrino-detecting apparatus is situated
930 meters from the primary Aluminum target. This
distance is comprised of a 55 m, beam (described in
Chapter II), 345 m, of decay pipe, and 530 m, of A
muon shiéiding. The 1,5 m, by 1.5 m, target consists
of 160 tons of steel interspersed with scintillation
counters (used as a sampling calorimeter) and spark
chambers (to follow the muon trajectory). A 5 foot
diameter iron-core magnet, several spark chamber
arrays, and trigger counters follow the target,

See fig, 0.l We detect reactions of the type:

Vi + N > 4 + HADRONS (b3)
Vot N5 u* + HADRORS (oH)

The apparatus was triggered on either of the
following conditions: (1) a muon traversing the magnet,
as indicated by a signal in a scintillation counter
located downstream of this magnet, or (2) energy
deposition in the sampling oalorimeter'greater than

that typical of a 6 Gev hadronic interaction,
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The cross section may be calculated from the
-
Vor = — L (&3)
FB €

rT\ = total number of observed interacting
neutrinos with measured final muon
energy

relation:

€ = efficiency for detection of final
muon

F = total number of incident neutrinos
D = 3.087 x 10°7 nucleons/cm2
See Table |0.l for the values of these quantities along
with the systematic and statistical errors,
The efficiency of the apparatus for detecting
final state muons was obtained from a Monte Carlo

program using the quark model relations:

BN e (1. a, (=] FoR Va (0)
dntdy

o R [0y ¢ (] PR G )

(23)

Previous neutrino data give:
_t.25
av < a? - 0.00 - ll)

After correcting for efficiency, the muon angular

distributions were compared with equations (kL) and (&67)

f."‘ = 4, 5

We found good agreement with ay=0.1_+ a# =0.20 "
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For a,:a; we have an average Qvg av_ - 0-'7—.:5

Using this average value and its error in the Monte
Carlo program, we obtained the best value for the
efficiency, € s, and the associated systematic error,
(OG/GSS\{S

The total number of observed events, T s has an
assoclated error resulting from Polsson statistics,
(Ar/r\STAT’ and also a systeﬁatic error, The systematic
error,(bT/r)ss.{s, comes from the uncertainty involved
In the separation of pion neutrinos from kaon neutrinos,
Pig, 1.26 demonstrates this overlap between the \)IT and
VK components,

The flux of neutrinos, F , has a negligible
statistical error (fluxes are of the order 1011 neutrinos),
but it is subject to systematic error,(bF/F)ssts, from
two sources: stability of the ion chamber (SIC) and
uncertainties in the Cerenkov counter pressure curve
integrals, The ionization chamber demonstrated a
stability of 2 6,3% as a function of hadron beam
steering, The systematic errors on the pressure curves
are shown in Table 5[

Our beam was not devold of hadrons when the target
was removed, Hadrons produced in the beam dump for the
incident proton beam are surmised to constitute the

ma jority of this 'empty target' contribution, The
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subtraction is small: 3,9% for the neutrino beam, and
1,6% for the antineutrino beam, These subtractions are
expected to be dissimilar in view of the dissimilarity
in beam dumping for positive and negative beams,

Fig, |0.L shows the cross sections measured in this
experiment with statistical errors extending to the
inner horizontal error bars, The estimated systematic
errors have been added in quadrature; the total errors

are drawn to the outer horizontal bars, If we writes

Tpr=oE B in CEY (69)

the best fits are: of, = 0.%93 Lo.I 515“0}1\‘/&;‘(

oAz =0.28%0085 mB”Gm"/GeY
The data points are quite consistent with this assumed
linear relationship intersecting the origin, Fig., (0.3
shows on a logarithmic scale the existing data on the
neutrino total cross section,

This measurement of the total neutrino and
antineutrino cross sections is an important test of
quark and parton models:

1) In a model with spin # quarks and V-A coupling,
d?/dy = ‘3L We measure:

O(V/dv = 0.%3 £t 0.08
See fig, 10.4
2) The quark/antiquark ratio in the nucleus is

given in these models by:
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_g_ = 0.3 {_33:_;7_- %

We measure:

= 0.0 £ 009

o |§3l

3) In parton models the mean-square-charge of

the nuclear constituents is given by:

30
(%z) = &F,_ (x) dnx (éq)
-1 {"‘v*"‘;‘}
n HC*M
where S‘{ (¥) &K = 0.15 £ 0,02 is the integral of the
(3

structure function measured in e-d scattering, The

simplest quark model gives (27.) = 5/18 = 0,28,
Averaging the data from this experiment, we obtain for
E ) 30 Gev:
<%7-) =0.2") ¥006

See figs. [0.4 and 10.5

In summary, the neutrino and antineutrino
cross sectlions measured in this experiment are found
to have slopes consistent with a simple quark model

with 1little or no antiquark component,
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XI, . Suggested Changes and Improvement for
Further Experiments of this type

The précticality of the use of a low efficiency
Cerenkov counter in a high momentum beam has been
demonstrated in this experiment, Clearly, the experiment
would have been ‘cleaner' if the resulting pressure
curves more closély resembled the ideal curve of
figure 4,6, We shall discuss first the factors possibly
influencing the background under these curves and
offer suggestions for improvement:

A) The vacuum level background is not due to light
from within the counter, but rather to some other
mechanism, such as knock-ons, Reducing the thickness
of the entrance window reduces the probability of
producing knock-ons, Our entrance window had approximately
a 143" diameter. If we reduce the diameter to 4", the
thickness can be decreased by about a factor 3,6,

B) The knock-ons could produce the vacuum level
background by producing Cerenkov light in the quartz
window between the interior of the Cerenkov counter and
the phototube, or in the glass window of the phototube,
Moving the phototube farther away from the quartz
window and farther away from the beam would decrease
background produced by either of these mechanisms,

C) In our experiment we used only a lower-level

discriminator on the Cerenkov counter signal, The use
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of an upper-level discriminator and/or pulse height
analysis is an effective way of vetoing signals arising
from large angle Cerenkov radiation in glass,

D) As mentioned before, the quartz window is known
to scatter light which could be respomnsible for the
pressure-dependent background, As with point B), this
effect depends upon the solid angle subtended by the
phototube, Moving the phototube farther away from the
window would reduce this background,.

In conjunction with attempts to remove the
background, one should also be prepared to deal with
existing background by curve fitting., We offer the
following suggestions for improved curve fitting:

E) Due to the overlapping of neighboring portions
of the Cerenkov curves, the background/signal ratio
was high only at vacuum level and past the proton peak,
Use of smaller iris settings would have exposed
background contributions only between plons and kaons
and between kaons and protons, This added information
would be an obvious asset in parameterizing the
background,

F) The acceptance of the beam was calculated,
but not measured, Exact knowledge of the momentum
acceptance and angular divergence, combined with exact

(interferometric) knowledge of the pressure, completely



78
determines everything about a pressure curve except
normalization of the peaks, One then has only two
effective parameters for use in curve fitting, i.e.
normalization and background level,

G) In our experiment the misalignment angle plus
angular divergence was megsured with the falling
portion of the pion curve, Even though the effect of
misalignment upon the pressure curve is understood,
it is an unnecessary nuisance and can be removed if
the pitch and yaw of the Cerenkov counter are remotely
controlled, One then operates on the falling edge
of the pion curve and iterates the orientation to
maximize the rate of fall of the curve,

H) The detailed fitting of any portion of the
pressure curve depends upon an exact knowledge of the
optics and geometry of the counter, A clean angular
cutoff 1s best accomplished by using a fixed-radius
circular aperture instead of a leaf-type (polygonal)

biplaner iris, which 1s really two apertures 1n seriles,
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Table 2,1

Transfer Matrix Elements Describing Hadron Beam

vertical position (cm)

q
1

[ ] >
y = vertical angle (mr)

x = horizontal position (cm)
: A

= horizontal angle (mr)

>
<
1]

% deviation from central momentum

o subscript refers to coordinates at target

At Angular Collimator (OCTAT and OCTAB)

Yy =16 575 + 103370

At Momentum S1it (OCTP)
y = 3065 yo + 4022 yo + 0023 bP/Po

At exit from beam
= =0,24 Yo

Me o
|

= -2.92 Xo
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Table 2,2

Beam Parameters

Horizontal Angular Acceptance = % 1,5 mr (HWHM)

Vertical Angular Acceptance = % 1,25 mr (HWHM)
Momentum Acceptance = = 16,5% (RMS) |

Full Acceptance = 720‘}ksr-% k

Acceptance with OCTAB set to =3" = 455 /\sr-%
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Table 5.1
Integrals of pressure curves
Energy (Gev) s K P
+95 1.71x10™% 2,174 |1.79x10™° 6.59%|2.59x10~% 8.0%
#1201 |2.96x1075 1.72%|3.61x107% 10.7%|7.92x107° 7.0%
#1201 |3.25x107° 2,20% |4.03x107% 12,5%|7.72x107 7.0%
+120T1T |5.25x10™° 1.70% |6.78x1076 4.25% [1.28x10™* 7.0%
+145 1.42x107° 2,40% |2.31x107C 27.2%|5.97x107° 10.%
+170 4,77%107% 2.80% | £9.21x10~7 2,82x107° 10.%
-95 9.07x10™* 0.37% [5.79x107° 5.92%
-120 3.01;:10"1‘L 0,96% 1.81x107° 7.07%
145 1.50x10™% 0,59% |6.86x107° 14.6%
-170 9.45x10~% 0.56% |4.28x10™° 16.2%

All integrals are in units:

Fractional efficiency-atmospheres

Errors quoted are one standard deviation
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Table §.,2

Correction factor for small counters

Energy (Gev) Pt W K
%5 1,0872 1,0108 11,0108
120 1,0972 1,004  1,0284
145 1,0873 0,984  1,0555

170 1,0673 0.,9958 1,088
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Table 5 -3

Particle ratios at Aluminum production target

W/

Energy (Gev)
=95
-120
-145
=170
+95
+1201
+1201I1I
+1201I11
+145
+170

0.1093
0,0945
0,0694
0.0676
0.1757
0.1830
0.1862
0.1939
0.2242
£ 0,2580

(5.92%)
(7.07%)
(14.6%)
(16.2%)
(6.94%)
(10.8%)
(12.7%)
(4.57%)
(27.3%)
(2.83%)

/P

0,6548
043629
0,4084
0,3968
0.2312
0.1660

Errors quoted are one standard deviation

(8.30%)
(7.20%)
(7.35%)
(7.20%)
(10.3%)
(10.4%)
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(Gev

+95
+120
+145
+170

-95
-120
-145
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Table '7. I

Number of hadrons produced on 12" Aluminum target

?y

per incident 300 Gev proton

W K P
2,40x10™> (8.83%)|3.90x10™* (11.0%) [3.65x107° (11,7%)
2.15x1o‘3 (8.60%) 3.94x1o'4 (13.8%) 5.45x1o'3 (11.0%)
1.99x10™> (9.00%)| 4.45%107% (28.3%) |8.62x10™> (13.1%)
1.80x10'3 (9.00%)| & 4.56x10"% 1.10x10™° (13.0%)
9.58x10~% (8.60%)|1.00x10=% (11.3%)
7.44x1o‘4 (8,60%) 6.70%10™° (11,0%)
5.92x10™* (8,60%)| 3.90x10™> (16.9%)
4.18x10™% (8.60%)| 2. 7121075 (18.2%)

Errors quoted are one standard deviation




Input parameters to computer program SPUKJ
used to calculate Thermodynamic Spectra

Parameter
A1l
A2
A3
A4
A5
A6
AT
A8
A9
A10
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Table §.1I

w W ar* K’ P
2.2866 0.0 1.815 2,768  1.815
0.5 0.0 3,224 4,952 3,224
0.0 5.4345 5,150 0,0 5,150
0.0 0.5 0.0 0.0 0,182
4,9604  4,9604 16,07 0.0 16,07
0.4874 0.0 4,427 0.0 4,427
0.572  0.572  0.8281 0.0 0.8281
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0



Parameters used

Table 'O ‘

in cross section calculation

—— M\tjan . (é&) T (A_T) (A’E) Fx1loll (AE) : UE(;; poctat Act:otal
Particle | (Gev) ¢/sys (events) T /sys| \'T /stat|meutrinos) \F /sys [(10™°°cm?)
t 38 .326 .066 233.6 .073 .061 7.77 .13 29.9 1.8 5.2
k" 107 454 .052 102.8 .078 ©.092 .74 .16 98.6 9.1 20.4
a 38 .529 . 164 97.6 .049 .097 | 5.02 .11 11.9 1.2 2.7
K~ 102 647 «125 10.9 .181 .29 .24 .18 22.9 6.6 9.3

L8
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OPT-A and OPT-B = Serially-powered
bending magnets

ODT - Vertically focusing quadrupole

5.38 m,

= first bend = 12 mr,

= gecond bend = 6 mr,

00TP - Momentum-selecting slit

Figure 2.1 Thin lens equivalent of hadron: beam
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VERTICAL RAY TRACE -

Figure '9«5 Vertical ray trace of hadron beam
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