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ABSTRACT

The daily variation in the absorption of sumnlight by the
atmosphere provides the forcing for thermal tides. In this thesis the
response of the Venus atmosphere as a function of height and latitude to
the diurnal and semidiurnal components of the forcing is calculated
using a linearized primitive equation model. We specify the atmospheric
mean state using data from the Pioneer Venus probes and orbiter, and
solve for the first order tidal perturbation. Our forcing function is
based on data returned by the solar flux radiometer on the Pioneer Venus
sounder probe. The perturbation variables are discretized horizontally
by spherical harmonics and vertically by finite elements. A semi-
implicit time—-stepping algorithm is used.

The model results for Venus thermal tides are in agreement with
the solar-fixed component of diurnal and semidiurnal brightness
temperature fluctuations determined from Pioneer Venus orbiter infrared
radiometer(OIR)data..Contrary to the prediction of classical tidal
theory, the observed semidiurnal brightness temperature maxima occur
before the forcing maxima from about 60 to 80 km. In the model, this
phase lead is due to a long vertical wavelength (~30 km) from the cloud
tops to 80 km. Also, the data unexpectedly show that the semidiurnal
amplitude is larger than the diurnal over much of the region observed,
even though the diurnal forcing is about twice as great. The model’s
diurnal temperature amplitude is larger than that observed in the
brightness temperature. However, convolution with the OIR weighting

functions results in model brightness temperature amplitudes which are
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as small as the observed values because the vertical wavelength of the
dié?nal tide is shorter than the width of the weighting functions.

The success of the model increases our confidence in our
knowledge of the mean state of the Venus atmosphere and provides us with
the opportunity to determine the importance of enmergy and angular
momentum transport by the tides. The zonally averaged vertically
integrated tidal energy flux is significant compared to the zonally
averaged imbalance in incoming solar radiation and outgoing infrared
radiation from equatorial to mid-latitudes. However, the tides do not
in general tend to reduce the imbalance by transporting heat poleward.
The mean meridional circulation drivem by this imbalance and the tidal
energy flux comnsists of stacked direct and indirect Hadley cells. The
angular momentum transport is upward and poleward in the direct cells.
Since the transport is not upward at all altitudes, some otherprocesses
must be involved in maintaining the large shear in the mean zonal wind.
The vertical transport by the tides is small compared to that of the
mean circulation. However, the tides do transport a significant amount

of angular momentum equatorward from mid-latitudes.
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CHAPTER 1
INTRODUCTION

1.1 Thermal Tides and the Venus Atmosphere

Atmospheric thermal tides are planetary scale waves forced by
the variation in absorption of solar radiation from day to night. In
order to determine their vertical and horizontal structure correctly,
the mean thermal and dynamic state of the atmosphere must be known as
well as the absorption of solar radiation as a function of height and
solar zenith angle. Data from ground-based observations, the Mariner 10
fly-by, the Venera spacecraft, and the Pioneer Venus orbiter and probes
have provided our considerable but still incomplete knowledge of these
parameters for Venus. In this thesis, a model is developed which uses
these data to calculate the vertical and horizontal structure of Venus
atmospheric thermal tides. The mean state of the atmosphere is
adjusted, within the range allowed by the data, until the calculated
tidal structure is consistent with available data on the tides. The
tidal data consist of the diurnal and semidiurnal amplitude and phase of
the brightness temperatures observed by the Pioneer Venus orbiter
infrared radiometer and by ground-based observations. From this
structure an estimate is made of the contributions of the tides to the
transport of energy from the equator to the pole and to the maintenance
of the shear in the mean retrograde zonal wind.

The dominant feature of Venus atmospheric dynamics is the
variation of the mean zonal wind with height. Near the surface the

atmosphere corotates with the solid planet which has a sidereal period



of 243 days, while at the cloud tops, about 65 km above the surface, the
atmosphere rotates with approximately a 4 day period. The direction of
the rotation throughout the atmosphere is retrograde. How this global
atmospheric super—rotation is maintained is the major unsolved question
in the study of the Venus atmosphere general circulation. In the
absence of some process which supplies retrograde angular momentum to
the upper atmosphere, frictional drag would decrease the mean shear
until the atmosphere corotated with the planmet at all altitudes. This
process consists of some combination of the mean meridional circulation
and atmospheric eddies (Schubert, 1982). Eddies are motions whose
average with respect to time and longitude is zero; thermal tides are a
type of eddy.

On Venus, as on the Earth, the solar energy absorbed near the
equator, averaged with respect to longitude, is greater than the emnergy
lost by infrared radiation to space (Tomasko et al., 1980b). At the
poles the opposite is true. Thus, on a global scale, the atmospheric
circulation must transport energy from the equator to the pole. On
Venus this transport is most likely accomplished by a mean meridional
circulation of the Hadley cell type (Schubert, 1982). However, eddies,
including the tides, may also transport significant amounts of emnergy
across latitude circles.

All types of atmospheric eddies on Venus should be considered
in terms of their angular momentum and energy transports to determine
their significance on a global scale. There are many types besides the
tides which may be important. Some of these are reviewed below.

On the Earth the temperature gradient between the equator and
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the poles drives unstable baroclinic waves which are the dominant eddies
at terrestrial mid-latitudes. The baroclinic waves tend to reduce the
temperature gradient by tramsporting heat poleward. On Venus the
criteria for baroclinic instability are met only in a thin layer in the
clouds (Young, 1981). 1Imn this layer baroclinic waves may be important,
but whether they transport significant amounts of emergy and momentum is
unknown.

If the vertical temperature gradient exceeds the adiabatic lapse
rate then the atmosphere is unstable to convection which efficiently
transports heat vertically. Cellular structures present in Pioneer
Venus and Mariner 10 ultraviolet pictures indicate that comnvection is
probably present near Venus’ cloud tops, particularly near the subsolar
point(Murray et al., 1974; Rossow et al., 1980).

Barotropic instability may occur in the presence of strong
latitudinal shear in the mean zonal angular velocity. The cloud top
winds on Venus seem to oscillate between a state of barotropic stability
and instability. During the Pioneer Venus primary and extended missions
the atmosphere was at £imes in nearly solid body rotation while at other
times an unstable midlatitude jet was present (Rossow et al., 1980;
Rossow and Kinsella, 1982), When the jet becomes unstable it may be
destroyed by barotropic eddies which redistribute angular momentum but
not heat. However, these eddies have not yet been observed.

There is a good deal of evidence for stable waves or eddies on
Venus. In ultraviolet pictures of the planmet the dominant dark
horizontal 'Y’ pattern is a planetary scale wave which propagates with a

phase speed close to the 4—day atmospheric rotation at the cloud tops
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and is longitudinal wavenumber 1 (Dolfus, 1975; Murray et al., 1974;
Belton et al., 1976; Rossow et al., 1980). It has been suggested by
Covey (1982) that this wave is a preferential response of the atmosphere
at this wavenumber and frequency. Forcing could exist over a broad
range of frequencies due to convection near the subsolar point, small
scale shear instability in the zonal flow, or turbulence arising from
the breaking of small scale gravity waves.

Bow shaped features and circumequatorial belts seen in the UV
pictures are probably also examples of wave activity (Murray et al.,
1974; Rossow et al., 1980). These features are localized in a small
region and only intermittently present. The turbulence inferred to be
present in the statically stable regions above and below the clouds from
radio scintillation measurements is possibly due to small scale gravity
waves (Woo et al., 1980). These waves could be important if they
exhibit some coherence on a global scale.

Inadequate information hinders the determination of the energy
and momentum transports by the eddies described above. The presence of
eddies driven by baroclinic and barotropic instabilities has only been
suggested by theory. The presence of stable waves has been determined,
but usually there is insufficient data to calculate the magnitude of the
energy and momentum transported by them.

The situation for the thermal tides is somewhat better. We use
the data on the forcing and the mean state of the atmosphere to
calculate the tidal perturbations in temperature and wind velocity. We
require the model results to be consistent with the available tidal

data. From the perturbations we calculate the transports of emergy and



angular momentum.

Since the tides are forced by longitudinal instead of
latitudinal variations in solar energy absorption, the direction of
their latitudinal energy transport is not necessarily poleward. If the
magnitude of the tidal transport is comparable to the imbalance in solar
and infrared energy fluxes, then the tidal transport cannot be ignored
regardless of its direction.

The tides may contribute to the maintenance of the atmospheric
super—-rotation by transporting angular momentum upward in the mean, thus
offsetting downward transport due to friction. Upward transport exists
at all altitudes and latitudes where there is a positive correlation
between the tidal perturbation in the upward vertical velocity and the
tidal perturbation in the retrograde zonal wind. The tides may also
supply angular momentum to the atmosphere by means of the solar
gravitational torque on the semidiurnal tidal perturbatiom in
atmospheric mass (Gold and Soter, 1971). We have not determined the
solar torque. It is proportional to the surface pressure oscillation
which is sensitive to the forcing and thermal structure near the ground.
These parameters are not well known at low altitudes. In this thesis we
assume the maintenance of the zonal wind shear requires upward transport
of angular momentum. However, if the solar torque is significant and in
the proper direction, this may not be necessary at all altitudes.

As mentioned earlier, Hadley cells may be important in
transporting emergy from the equator to the poles. Vertical and
latitudinal shear in the mean zonal wind may be created by these cells

because along with energy they transport angular momentum. A Hadley



cell transports zonal angular momentum upward because rising motions
occur at the equator where the angular momentum is greater than at the
poles where sinking motions occur. Hadley cells also transport angular
momentum poleward, so a process which balances this latitudinal
transport is required to prevent equatorial deceleration of the mean
zonal wind. It has been proposed that in the Venus atmosphere there are
Hadley cells near the ground and in the cloud layer, separated by an
indirect cell in a stable layer below the clouds (Kalnay de Rivas, 1973,
1975; Schubert et al., 1980; Rossow, 1983; Schubert, 1982). Some
observational evidence, that is, poleward winds at the cloud tops,
supports the presence of the cloud layer Hadley cell (Limaye and Suomi,
1981; Rossow et al., 1980).

In this thesis we have calculated the mean meridional
circulation forced by the latitudinal radiative imbalance neglecting
eddy energy transport except for that due to the tides. The latitudinal
tidal energy transport is significant compared to the radiative
imbalance, but does not in general tend to offset it. The tides
transport energy from mid-latitudes towards the equator and poles. Our
calculations of the mean meridional circulation are basically consistent
with the stacked Hadley cell circulation described above. The angular
momentum transport in the direct Hadley cells is upward and poleward.
However, some other process must transport angular momentum upward in
the region of the indirect cell. The vertical transport of angular
momentum by the tides is of variable sign with altitude. Thus, the
tides do not provide the missing link. However, the tides do tramnsport

a significant amount of angular momentum equatorward from mid-latitudes,



so they may be important in balancing the poleward transport by the

Hadley cells.
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1.2 Thermal Tides on the Terrestrial Planets

A very thorough review of the data relevant to earth thermal
tides is given in Chapman and Lindzen (1970). Most of the data consist
of time series of the values of meteorological variables taken at ground
level. Measurements of surface pressure are the most commonly analyzed
to determine tidal components. Wind and temperature data have been
analyzed at some localities. In the equatorial region the tidal signal
is immediately apparent in the pressure record as shown in Figure 1.1 at
Batavia. There is a semidiurnal oscillation with peak—-to-peak amplitude
of about 2 mb., The amplitude and phase of this oscillation is
remarkably steady with time. The amplitude of the diurmal oscillation
is about half as great. At mid-latitudes the pressure variatiomn is
dominated by large scale weather systems which have a period of several
days. For example, see the curve for Potsdam in Figure 1.1, However,
by harmonic analysis the tidal components can be determined. The semi-
diurnal pressure variation has peak—-to—peak amplitude of about 1 mb and,
again, the diurnal variation is less by a factor of two. Since the
diurnal component of the variation in solar radiation is about twice as
great as the semidiurnal, and the surface temperature follows this
pattern, the relative amplitudes in the pressure variation are just
about opposite to that expected.

The first attempt to explain this phenomenon was made by Lord
Kelvin (1882) who suggested that the semidiurnal period was close to
resonance with & free oscillation of the atmosphere. This theory could
not be proved or disproved until the vertical temperature profile was

more accurately known. It wasn’t until the 1950’s that measurements by



5 6 7 8 9
760 mm
i ALNANAN A
\/ BATAVIA 756
AN M —
N\ POTSDAM < L
AN 7
AN 7
- 4 740
/

Fig. 1.1 - Surface pressure variations at Batavia (6°S) and Potsdam (52°
N) during November 1919, Data from Bartels (1928). This

figure is from Chapman and Lindzen (1970).
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rockets proved that the resonance theory was false. Up until that time
the only thermal forcing considered for the tides was upward eddy
conduction of heat from the ground. The calculated semidiurnal pressure
response to this forcing was much less than observed. When it became
clear that the response could not be enhanced by resomance, other
sources of excitation were investigated. It was found that absorption
of radiation in the atmosphere could explain the semidiurnal pressure
variation. Omne—-third of the response is due to absorption by water
vapor near the ground (Siebert, 1961), and the other two-thirds is due
to absorption by ozone near 50 km (Butler and Small, 1963; Lindzen,
1968). The calculated phase agrees well with that observed. Since the
diurnal forcing due to atmopsheric absorption is larger than the semi-
diurnal, the problem of the relative amplitudes remained. Lindzen
(1967) showed that most of the diurnal forcing goes into a trapped
oscillation which cannot propagate away from the region of excitation.
He also showed, as suggested by Butler and Small (1963), that the main
propagating diurnal wave has a very short wavelength and is subject to
destructive interference when the forcing extends over a thick layer as
is the case with ozomne. Thus, very little of the diurnal response
reaches the ground.

Chapman and Lindzen (1970) also review work done on determining
the tidal fields above the ground. The main sources of data are balloon
soundings up to 30 km, rocket soundings from 30 to 60 km, and tracking
of meteor trails at 80-115 km. These data are limited, but tidal
components of the meridional wind have been estimated at various sites.

The diurnal oscillation grows with height until it is the major
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dynamical feature in the upper atmosphere. Lindzen’s calculations agree
with the observed diurnal amplitude and phase up to about 100 km. The
large diurnal response is due to the effects of local heating and an
upward propagating wave excited by the water vapor absorption which
occurs in a thin layer.

On Mars the forcing for thermal tides depends on the variable
opacity of the atmosphere. When the atmosphere is clear, most of the
incoming solar radiation reaches the ground; there is very little
absorption in the atmosphere. During a global dust storm the atmosphere
absorbs more radiation, thus raising the level of the forcing. This
elevated forcing is analogous to that caused by the ozome layer on the
Earth (Zurek, 1980).

Data on Martian thermal tides consist of the diurnal and
semidiurnal components of the surface pressure oscillation at the two
Viking landing sites. When the atmosphere is clear, the diurnal and
semidiurnal amplitudes ﬁre nearly the same; however, during global dust
storms the semidiurnal oscillation is dominant at the Lander 1 site
(Leovy and Zurek, 1979). Raising the level of the forcing and
increasing the depth of the layer over which it occurs has the same
effect on Mars of suppressing the diurnal surface pressure variation as
it has on the Earth (Zurek, 1981). The semidiurnal oscillation is
weaker at the Lander 2 site due to the superposition of latitudinal
modes with equal but opposite amplitudes (Zurek, 1981). During the
global dust storms both the diurnal and semidiurnal tides are enhanced
relative to the clear atmosphere case. In fact, the tidal surface winds

may be strong enough to play a role in sustaining the storms by raising
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dust from the surface (Zurek, 1976).

Because of the large amplitude of Martian topography, horizontal
variations in the mean surface pressure cannot be neglected if a quanti-
tatively accurate solution for Martian tides is desired (Zurek, 1976).
The topography also distorts the tidal forcing field in a clear
atmosphere because the forcing per unit mass is larger over high
elevations.

On Venus, data on the tides comes from infrared remote sensing
of temperatures at the cloud tops and above. Ground-based observatiorns
of thermal emission from the clouds indicate a semidiurnal brightness
temperature oscillation larger than the diurnal (Diner et al., 1982).
The semidiurnal maxima occur in the morning and post-sunset quadrants.
The Pioneer Venus orbiter infrared radiometer (OIR) confirms the ground-
based observations and provides information on the vertical structure up
to 100 km above the surface (Taylor et al., 1980; Elson, 1982). Exzcept
in the highest channel of the radiometer, the semidiurnal tide is
larger, and its phase varies slowly with height.

On Venus, most of the absorption of solar energy takes place in
the clouds, so the forcing region is above the aground and extended in
height, just as on the Earth and on Mars during global dust storms.
According to our calculations, the diurnal tide has a shorter vertical
wavelength than the semidiurnal., The combination of the forcing
distribution and the short diurnal wavelength appear to play a role in
attenuating the diurnal tide. However, a much stronger effect is dume to
a bias in the measurements towards longer vertical scales. We find that

the model diurnal tidal temperature amplitude is greater than or equal
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to the semidiurnal in the region observed by the OIR. However, after
convolving the model temperatures with the OIR weighting functions we
arrive at model brightness temperature amplitudes which are consistent
with the observed values. The weighting functions are wider than the
diurnal wavelength so much cancellation occurs. The model also
accurately predicts the phase of the semidiurnal brightness temperature
variation. The phase does not change rapidly with height because of the
long semidiurnal vertical wavelength (~ 30 km). Above 90 km the tide in
the model is damped so that the phase in both the diurnal and
semidiurnal tide does not change with height. Thus, convolving the
model temperature with the highest OIR weighting function results in
model brightness temperature amplitudes where the diurnal is larger than
the semidiurnal, which agrees with the data.

The amplitude and phase of the semidiurnal surface pressure
oscillation is of special interest on Venus because it determines the
solar gravitational torque on the atmosphere. This torque may act to
accelerate the atmospheric rotation and/or maintain the rotation of the
planet (Gold and Soter, 1971; Dobrovolskis, 1978). Our results are
consistent with Dobrovolskis’ in that we find that the surface pressure
oscillation generated by the heating in the clouds is smaller than that
generated by local heating at the ground, even though the cloud level
heating is about 30 times greater. This is contrary to the case on
Earth and Mars where an elevated forcing region enhances the surface
pressure semidiurnal tidal response. The reason this enhancement does
not occur on Venus may have to do with the difference in diurnal period

between the upper and lower atmosphere (Dobrovolskis, 1976; Ingersoll
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and Dobrovolskis, 1978). We have not been able to accurately determine
the magnitude of the torque on the atmosphere because the solution near

the ground is ill constrained, as discussed in the previous section.
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1.3 Summary of Methods and Organization

On the Earth the tidal problem is separable in height and
latitude because the atmosphere is assumed to rotate uniformly with
height. The latitude structure may be determined analytically and the
vertical structure by solving an ordinary differential equation. On
Venus the tidal problem is nonseparable because the shear in the mean
zonal wind cannot be neglected.

To solve for Venus thermal tides, we have developed a linearized
primitive equation model based on the nonlinear general circulation
model of Staniforth and Daley (1977). To linearize, each variable in
the nonlinear model is expressed as a sum of a zeroth order basic state
term and a first order tidal perturbation. Second order terms are then
neglected. The basic state terms must be specified as input parameters
and represent the average of each variable with respect to time and
longitude. The tidal pérturbations are expanded in terms of spherical
harmonics. The vertical coordinate is discretized using a finite
element formulation. The equations are discretized in time using a
semi—-implicit algorithm. To solve for the tidal structure we begin with
arbitrary initial conditions and integrate in time. The free modes
excited by the initial conditions are suppressed by allowing the
amplitude of the forcing to increase with time. The time dependence of
the forced solution is proportiomnal to that of the forcing, so it
increases relative to the free modes. The integration continues until
the free modes are negligible.

The development of the model and convergence scheme is discussed

more fully in Chapter 2. Also in Chapter 2 we test the model by
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reproducing the terrestrial tidal solution. The full model is too
expensive to run for many cases so we have also developed a simpler
gravity wave model to obtain an approximate solution for the vertical
structure of the tides. The assumptions made in developing the gravity
wave model are discussed in Chapter 2. Finally, in Chapter 2 the
conservation of energy in the model is comnsidered.

In Chapter 3 we discuss the basic state of the Venus atmosphere
and the tidal forcing, and in Chapter 4, the results of the tidal
calculations. The sources of data for the basic state are the Pioneer
Venus orbiter and probes, the Mariner 10 fly-by, the Venera spacecraft,
and ground-based observations. The model input is required to be
consistent with these data while the model output must agree with the
observations of the tides made by the Pioneer Venus OIR and by ground-
based observations. Since our basic state and forcing provide input and
output which satisfy these requirements, our confidence in their
validity in actually representing average conditions is increased. The
tides are a global sc;le phenomenon which would not be accurately
modeled if the basic state were contaminated by anomalous local or
temporal perturbations. In Chapter 4 we discuss the agreement of the
calculation with available tidal data, the adequacy of the spatial
resolution and convergence, the sensitivity to the basic state and
forcing parameters, and the calculation of energy and angular momentum

fluxes by the tides and the mean meridional circulation.



17

CHAPTER TWO
NUMERICAL MODELING OF ATMOSPHERIC THERMAL TIDES
2.1 Introduction

In this chapter we describe the development of our numerical
model. The purpose of this model is to calculate the response of the
atmosphere to periodic forcing. In the case of atmospheric tides the
forcing is due to the longitudinal variation in absorption of sunlight.
The response is governed by the equations of motion, the thermodymamic
equation, and the continuity equation. In the most general form
currently used in meteorology, these equations are called the primitive
equations., In deriving the primitive equations it is assumed that the
atmosphere is a perfect gas, that it is always in local thermodynamic
equilibrium, that it is thin compared to the radius of the planet, and
that the hydrostatic approximation holds. It is also assumed that the
planet is a sphere. For the purpose of calculating atmospheric tides we
make one further very important assumption: we express all tidal fields
as small perturbations from a basic or mean state which is steady in
time and independent of longitude. When we neglect all terms which are
second order or higher in the perturbations, the equations become
linear., Therefore, we call our model a linearized primitive equation
(LPE) model.

Several further assumptions which are valid for the Earth, but
not for Venus, lead to a set of equations which are separable in height
and latitude. The equation for the latitudinal structure can then be
solved analytically, and the solution for the vertical structure only

requires integrating an ordinary differential equation. Topography can
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be ignored on both planets, However, the key assumption in obtaining
separability is that the basic flow comsists only of a zonal wind which
is constant with height. On Venus we still assume that the mean
meridional wind is zero, but the mean zonal wind varies from near 0 m/s
at the ground to about 100 m/s in the clouds. This differential
rotation cannot be ignored. Thus, we need a three—dimensional numerical
model to solve correctly for Venus thermal tides. The three dimensions
are height, latitude, and time.

In Section 2.2 we describe our primitive equation model which is
based on the model of Staniforth and Daley (1977). We discuss the
linearization, the numerical procedures, treatment of the boundary
conditions, the time—-stepping algorithm, the convergence scheme, and
other relevant topics. Sections 2.2.1 through 2.2.4 are a straight-
forward application of Staniforth and Daley (1977) to the tidal problem.
Section 2.2.5 is a major departure from Staniforth and Daley (1977) and
gives a method of finding the forced tidal solution starting from
arbitrary initial conditions. We then show in Section 2.3 that our
model can reproduce the classical solution for Earth tides. In section
2.4, we present our two-dimensional equivalent gravity wave model which
we use to solve for the approximate vertical structure. The gravity
wave model is useful for running large numbers of cases cheaply. VWe
have used it extensively in testing our numerical algorithm for solving
for the vertical structure and in sensitivity studies. The sensitivity
studies are presented in a later chapter. Finally, in section 2.5 we

discuss the performance of our model in terms of energy comservationm.
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2.2 The Linearized Primitive Equation Model
221 Basic Equations and Linearization

The primitive equation model of Staniforth and Daley (1977),
referred to hereafter as SD, is discretized using finite elements in the
vertical dimension and spherical harmonics in the horizontal. Both
these discretization methods are Galerkin, i.e., dependent variables are
represented as sums over spatial basis functions. In Galerkin methods
the error introduced by discretization is orthogonal to the basis
functions. Thus, nonlinear computational instability cannot arise from
the spatial grid, at least (Staniforth and Daley, 1977). The time
discretization is not Galerkin, but it is semi-implicit which means that
certain terms are evaluated implicitly, i.e., as a mean of their values
at the past and future time steps instead of at the present time step.
The terms which are evaluated implicitly are those which control the
propagation of gravity waves. This has the effect of stabilizing the
model with respect to short period gravity waves so that a longer time
step may be taken (Robert et al., 1972),

Following SD we start with the primitive equations in sigma
coordinates. The vertical coordinate is ¢ = p/ps, where p is pressure
and Py is the surface pressure. In sigma coordinates the ground is at
c =1 allowing the boundary condition there to be easily imposed in an
accurate form. The price for simplifying the boundary condition is paid
in the appearance of numerous terms involving q = 1In Pg- The equations

are:
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e = -ve L +OV]I-%F x (RT3qg + 6V ) (2.1)
. (2.2)
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- >
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o, = =— BT (2.5)

A

-
where t = time, V = horizontal velocity vector, k = unit vertical

vector, R = gas constant, cp = specific heat at constant pressure,
Yy = static stability = RT/cpc - 8T/d0, 6 = vertical motion in sigma
coordinates, and f = the Coriolis parameter. A subscript means

differentiation with respect to that variable. The primary depend-

A - -
ent variables are ([ =k *° v x V = vertical component of vorticity,

D =$3 3 = horizontal divergence, T = temperature, q = 1n 0 and ¢ =
geopotential. Equatiomns (2.1) and (2.2) are the equations of motion,
(2.3) is the thermodynamic equation, (2.4) is the continuity equation,
and (2.5) is the hydrostatic equation. We use the equations of motion
in their vorticity and divergence forms because these are more suited to
a spectral, i.e., spherical harmonic, representation and to a semi-
implicit time—stepping algorithm (Hoskins and Simmons, 1975). We follow
SD for several more steps before linearizing.

Equations (2.1)-(2.5) as they stand are not well-posed since we

have five dependent variables : (, D, T, &, and &, which are functioms

of latitude, longitude, and o, plus q which is a function of latitude
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and longitude only. However, we now introduce the vertical boundary

conditions

6=0 at =1 and o =0 . (2.6)

These can be used to derive a diagnostic equation for . First, we

define for any function, F,
F® = /! Fdo; F = §° = [} Fao .
By integrating the continuity equation, (2.4), from 0 to o and applying

the lower boundary condition we obtain:

" A A :)-o- > =% 3
¢ = -oqy + D” - D+V’ *vg-V " Vg .

Next we integrate (2.4) from O to 1 and apply the boundary conditions to

obtain
g =D-V - Va (2.7)
which we use to eliminate q¢ in the expression for o.
Thus,
>

A 3 = G :*G
6 =(c-1)(D+V *°9q) + D% +V® * vq . (2.8)

Since ®is unbounded as o - 0, it is inconvenient to use it in
the numerical model, We therefore use the hydrostatic equation, (2.5),

to eliminate 8. We also introduce a new variable

A

W=-J3Dde = D° - D (2.9)
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Thus,
D = - 8W/do . (2.10)
By differentiating (2.2) with respect to o we obtain
(2.11)

oW

sot = -0 (k¥ x ((+ £) V-7 + (RIVq + 6V - 2(V2/2)},

-RV2T

This differentiation raises the order of the system of equations in the
vertical dimension so another boundary condition is required. This
condition will just be the undifferentiated form, i.e. (2.2), imposed at
the lower boundary.

Ve also rewrite (2.3) and (2.7) in terms of W:

> > % > - 5 ->
T, = -V.VT + &y + (RT/cp)(W +V*® Vg-V * vq) (2.12)
q =W -V ' ¥q (2.13)

where WS = 'Io=1’ Thus, the prognostic equations to be used are (2.1),
(2.11), (2.12), and (2.i3). As a final step before linearization, we
bring the terms to be treated implicitly to the left—hand side of the
equations and make some more definitioms. (2.14)-(2.17) are the

nonlinear equations solved by SD.

¢ =6 (2.14)
+ RV2(T - oT"q) = of (2.15)
Voot ¢l/ = olis .
® L
T, —oTgqy ~ Yy W=7 (2.16)

q - ¥ =K (2.17)
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where

@
[

-V L+ OVI - & ¢V x (RIVg + V)

H=-k*VxI(g+ V] +7* (RT - T") yg + &V,) + v2(v2/2)

> > -> >
T =oTyV * Vg -V VI+dy- (W-oW) y* + [R(T - 'r')/cp] WS
+ (RI/e))(V * Tg - V * Vo)
3 >
K=-V " Vgq

In the above T‘(c) = the global mean temperature profile and
Y.(G) = the global mean static stability profile.

To linearize we express all dependent variables as a sum of a
zeroth-order basic state component plus a first-order perturbation. For

example,
T(s, A, 6, t) =T (o) + Ty(o, A) + T'(c, X, 6, t)

where A is latitude and 4 is longitude. To be consistent with SD we
have broken up our basic state temperature into a global mean profile,
T‘(c), and a latitudinally varying component, T;(o,A).
For the zonal wind, which is parallel to latitude circles, u, we
have
u = a cos AQ(o,A) + u’(o, A, 6, t)
where 2 is the basic state rotation and a is the radius of the planet.
If the atmosphere is in solid body rotation at each level, @ will be a

function of 0 only., This is the case in our standard basic state. The
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basic state meridional wind, which is parallel to meridians, is zero so
v=v'(oc, A, 6, t) .

From these expressions for u and v we see that

1 )
T, e
p*=v - V' = — [a cos A0] = 0
a cos A 96
where a superscript * denotes a basic state quantity. Thus, W. = 0.
-1 ]
A >
However, C‘ =k * Vx 3‘ = — (coszlﬂ) .
cos A OA

All horizontal derivatives will be taken in spherical coordinates as
above. A mean surface pressure which varies with latitude represents
zonally averaged topography. Recall that q = lnps. Thus, we allow q‘
to depend on A in our gemeral model development, although our standard
basic state has constant q‘. From the above basic state expressions and
equation (2.8) it follows that é* =o0.

The linearized equations are obtained by substituting expres-
sions for the basic state plus perturbation quantities into the
equations and keeping only terms which are first order in the perturba-
tions., These terms contain a perturbation quantity either by itself,
multiplied by a basic state quantity, or multiplied by a constant.
Terms which contain multiplications of two or more perturbation
quantities are neglected. Terms that only involve the basic state are
assumed to balance. Only equation (2.15) contains basic state terms.
The equation which is derived by balancing the basic state terms in
(2.15) is called the thermal wind equation for cyclostrophic balance.

It can be used in determining the basic state as described in Chapter 3.
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The terms on the left-hand side of (2.14)-(2.17) are already
linear, so the main work in linearization comes in finding G’, H', J',

and K'. VWe obtain

ac’ . voa o, RIT,; 1 agq’
6" =-0— - (" + D - —— (*+£)+—
CT) a A a2 9 cos A 36
&®
R 9T’ aq 1 2 a0
) + — (o Rd —— )
a“ cos A 96 OA cos A OA do
’
’ ® [} u a ‘ 1 a [ 2
H =-(0 +f) g +—— ( +¢£)+ — (. cos” AQD)
a dA cos A OA
’ .'
, ., ROT g was
+RT1Vq + — — — 4+ — — + V" u a cos AR
a2 3 8n 9o 96
1 d , "
4+ ————— — (RT cos A dq /8))
a2 cos A OA
1 A' ?
, L. 0a oV dq v T, oT
T =eftl — 4Ty, —— - — — -2 —+3 (v +7
9 a o0A a oA a0
RT . '
: N e T . 9a
- (W -o¥W )y -—D + (2 - Q) —
s o aé
R(T* + 1)) (v - %)) ag*
+
cp a oA
, L0 9 e
x s n_+——— °
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In the linearized equations we include, as first—-order quantities, the
thermal forcing, Q', and dissipation in the form of Rayleigh friction
and Newtonian cooling. The forcing and dissipation terms are not
included in SD, but since we require them, we will carry them through

the rest of the derivation. The linearized equations are:

Ce* C/wg=6 (2.18)
1] ’ 1
Woot + 0 (Ng/Tp) & + B2 (T - “T; q) = 05; (2.19)
! s ! ’ s ! ¢ _ ! ’ ’
T, —oT  q + T /tN - oT; q /tN -y W =7 +0Q (2.20)
’ s' ’
qt -V =K (2.21)

where tp and Ty are the time constants of Rayleigh friction and
Newtonian cooling, respectively.

These dissipation terms are used to form a sponge layer in the
upper atmosphere which absorbs upward propagating energy. The sponge
layer is necessary because the boundary condition o =0 at 6 = 0, when
applied in the numerical model, causes spurious reflection of upward
propagating waves off the upper boundary. In fact, due to the vertical
discretization, it has the same effect as a rigid 1id at a finite value
of 0 (Lindzen et al., 1968; Kirkwood and Derome, 1977). In models of
the earth's troposphere a rigid 1id boundary condition is usually
adequate because the jump in static stability at the tropopause forms a
natural '1id’. Disturbances in the troposphere propagate only weakly
into the stratosphere. Venus atmospheric structure is quite different,
and waves there may be able to freely propagate upward until damped by
nonlinear processes. A rigid 1id is inappropriate for the earth’s

astratosphere as well.
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2:2.2 Discretization im Time:

We are now ready to time discretize (2.18) - (2.21). For the

implicit terms we use the notation

Fleiag * Flioae

2

Ft -

for any function F. At is the time step. We evaluate time derivatives

by a centered difference. Thus,

Fliae = Flioae

2At

The time discretized equations are

At (2.22)
(1+—) Tt =gl *+AtGl
‘R
- 2 (Tt * -t
o [(1+—) W1 ,+RAt (T* - oT; q°)
*R
= oW ol ae + AtoH |, (2.23)
At
(1 + —)(Tt - oT; g*) - 4" Wt
*N
&
= (T - oT, @)l s + At 0+ @I, (2.24)
-t =L
at - At v =aql,_,, + At Kl (2.25)

where we have dropped the primes on the first—order quantities.
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A simple example suffices to show why it is necessary to treat

the dissipation terms implicitly. Consider the equation
F, +F/r = 0
Discretized explicitly this equation becomes

FIt+At - Flt-At 'Flt

(2.26)
2At T

Assume & solution of the form F = Foe-Xt where A may be complex. Let A

= AR + ilI. For a stable numerical solution we need lR > 0. TUpon

At

substitution of Foe— into (2.26) we obtain

sinh(AAt) = At/x

or
(2.27)

At
sinh(AgAt) cos(lIAt) = — , cosh(lRAt) sin(xIAt) =0
T

Since cosh x > 0 for all x, we must have Ay = nn/At to satisfy the
second part of (2.27). When n is odd, cos(AjAt) = -1. Then sin h(AgAt)
= —-At/t, which implies AR < 0. Thus, unstable solutions exist for the
explicit discretization and will be excited by any numerical mnoise. On
the other hand, if we discretize implicitly, we obtain

Fleeae = Fleoas -F*

2At T
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Assuming F = F e M ye derive

o

tanh AAt = At/<

or
(2.28)
sinh(ZXRAt) At sin(ZlIAt)
= e— » = o
cosh(ZIRAt) + cos(ZAIAt) T cosh(ZxRAt) + cos(ZXIAt)

To satisfy the second part of (2.28), Ay = nn/2At. In this case Ap will
be positive for any n. Although our system of equations is more compli-
cated than this example, the dissipation terms will still be unstable if
evaluated explicitly. A similar argument shows that the other implicit
terms in (2.22)-(2.25) stabilize short period gravity waves.
2.2.3 Horizontal Discretizatiom

We will now formulate our horizontal discretization in terms of

>
spherical harmonics. Let F’' be any perturbation variable except V'.

Then
N 1
F'(o, A, 6, t) = ) Folo,t) Yo(%,6) o (2.29)
n=m
where
- imé
Yﬁ(x,é) = P‘l';(x) e

Pﬁ is the Legendre function of order m and degree n. The dependence on
longitude is a simple sinusoid with zonal wavenumber m. This longitude
dependence is particularly convenient for the tidal problem since the

diurnal fields have m = 1, the semidiurnal, m =2, etc. Since we have
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linearized about a basic state with no longitudinal dependence, compo-
nents with different zonal wavenumber will not interact. Therefore, we
may solve separately for the various tidal components, which enables us
to reduce the horizontal dependence to a single sum over n, as in
(2.29), instead of a double sum over m and n. This increases our
computational efficiency. Note that we may now use the relations
-n(n + 1)
Fy = imF' ; V2F' = :E: —_— K

n 32

u' and v' may also be expressed in terms of spherical harmonics, but the

expansions include terms with horizontal derivatives.

, a  N_/im(3W_/30) (1 - sin®A) aP®
o= Pg +Z,
cos A n=m\ n(n + 1) n(n + 1) cos A dA
, a N ilC‘ (awn/ao) (1 - sinzl) dP§>
. - - a
cos A n=m n(n + 1) n(n + 1) cos A da

If we represent all first—order terms in (2.22)-(2.25) in terms
of spherical harmonics, first of all we see that we may cancel out eimé
since it appears in every term. If we then multiply (2.22)-(2.25) by P:’
and integrate over the sphere we will obtain, by the orthogonality of
Legendre functions, a separate system of equations for each n. In what
follows, only subscript o denotes differentiation; other subscripts are

constants introduced during discretization.

At
t -
(1+—) T = Coleae *+ At Gl (2.30)

TR
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At R n(n + 1) " % o
ol (1+—) (W) 1 _-RAt . ( T - oT, q; )
TR a
= o(Wo) ol aq * Ato(H) 1, (2.31)
At . .
(1+—) (TE-or]qt)-1" W
N
&
w T = oy gy Meie + A0 T, + 001 (2.32)
- —st
0, At Vo =g |, + At K|, (2.33)

The problem is not completely separated, however, since at each

time step Gn' Hn, Jn’ and Kn must be evaluated. These terms involve

interactions of the perturbations with the basic state. Through these
interactions, modes of different n are coupled. The procedure for
J

calculating Gn’ H and Kn is as follows: evaluate all necessary

n’ a’
perturbations on a Gaussian grid in sin A; this involves performing the
sum in (2.29) for eaqh variable. At each grid point multiply the
perturbations by the appropriate basic state quantities; multiply by Pﬁ
for each n; do a Gaussian integration over sin A to obtain Gn' Hn, etc.
If a sufficient number of grid points are used, the integration over
sin A will be exact. When n is large, this method is more efficient
than representing the basic state quantities in terms of the Pﬁ and
calculating the interactions from a full correlation matrix.

At each time step, for each n, we must solve (2.30)-(2.33). The
problem reduces to an elliptic boundary value problem in W:. By

eliminating ( T: - cT; i: ) from (2.31) and (2.32) we obtain
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(2.34)
Ry'  (At)?
[(1 + At/ep) (VD) - — a(n + 11 ¥ = L
a“ (1 + At/-cN)
where
R (J_ + ) At
L, = At [(Hn)a+— 2t % n(n + 1)]It
32 [+ (1 + At/fN)
At 1 R %
+ [(wn)ca +n2(n+1) —mM8M—— — — (T, — oT, qn)]lt—At

(1 + At/ty) o a2

2.2.4 Vertical Discretization:

The above problem will be solved using one—-dimensional finite
elements in a procedure similar to that used by SD in the nonlinear
problem. In finite elements the variables are represented in terms of
locally defined basis functions., We will use Chi@peau basis functions
which are piece-wise linear. The form is illustrated in Figure 2.1,
One of these basis functions is centered on each grid point or node.

Let ei(c) be the basis function centered on node i. Then
(¢ - °i—1)/(°i - o6;1) for o, 4 i ° ﬁ o;
el(a) = | (6541 = 0)/ (o549 — 03) for oy o <ogyg

0 otherwise

]

S
and, for example, W: ; (Wﬁ)i el(¢). NVPTS is the number of
1=
vertical points. oy = 0 and SNVPTS = 1.

At the lower boundary there is a half basis function extending

upward into the domain. The upper boundary is difficult to treat
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Figure 2.1 Piece-wise linear Chpeau basis function as presented in
Staniforth and Daley (1976).
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realistically since the governing equations are not valid as ¢->0. SD
solve this problem by omitting the half basis function which would
extend downward into the domain from the upper boundary. All the
variables, except W, are then undefined at the upper boundary. Their
values there are not required, however. All we need is the boundary

condition on W which follows from equation (2.9).
¥(0) =0 Thus, (W ); = 0 for all n.

This is automatically satisfied by putting el = 0. We follow this
procedure, but in our case since the upper boundary is deep in the
sponge layer, a realistic treatment of the boundardy condition is not
crucial.

In terms of the basis functions (2.34) becomes

Ry  (at)?

DML + At/ (WE el(o)) (1 - a(n + 1) ¥ ei(o)
% a2 (1 + At/Ty)

=L; el(o)) (2.35)

where we have dropped the subscript n. To obtain a solution for the
WE, we multiply (2.35) by ed (o) for all j and integrate from o =0 to
o = 1. The result is (NVPTS-1) linear equations in (NVPTS-1) unknowns.
For each j there will be a contribution from the sum in (2.35) only from
the terms i = j - 1, j, j + 1, giving us a tridiagonal system. This
sparseness of interactions occurs because each basis function only
overlaps with its nearest mneighbors.

To make the procedure clearer let us examine the first term in

(2.35):



For all j, fl [ D Well ool o

(1]
L
Integration by parts gives
vt 1 . J_1 i 3
For all j, (— eJ) I - Zﬁ. e. eJ do
3o =0 T 0 °°
Evaluating the integrals and assuming Ac = 6; ~ 041 is constant for all

i, we can write the second term as a tridiagonal matrix:

- —
0 0 0 W N
5 =1 2 =i .
5 o =1 2 =1 L
Ac . " . -
_Q L] ¥ é
1 2 -1 ¥\vPTS
=1 13 J
— - -

In a similar fashion we form matrices from the other terms in (2.35),
evaluating the appropriate integrals to determine the matrix elements.
The boundary term obtained from the integration by parts is
evaluated using the boundary conditions previously described. At the
upper boundary we have el(o) =0, while at the lower boundary we use a

discretized form of (2.2). VWritten in terms of W this becomes

(Wt = w_|

2 (%t . —t
. ene * At (al, +v* @+ rT O, .

For the case of no topography V2%t = 0. We use (2.25) to eliminate Et.

Then,

RT
t 2 t -
Wolo—q + (AL) —:5 a(n +1) W __; =M
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where

RT
M= (Wlype + AtHl, - At a(n + 1) — (el py + ARl DIy
a

If we combine all the matrices from the left hand side of (2.35)

and call the resulting matrix'§: we obtain

f h e 3 = 3 )

LK 0 (0 0

s | W , B 0 ts 0

ol + (At)2 — a(n + 1) ; = -A Lo + .
. a & o .

.t t. L] L]

ngvPTSJ -.¥WNVPTS/, : J

Lyvets
-\ A \ J

which may be solved for ﬁi by Gaussian elimination. The elements of A
are given by f% el ej do.

wi|t+At is then easily obtained from wilt—At and Wg. The up-
dated values of the other wvariables, Ci|t+At’ Ti|t+At’ and q|t+At‘ can
now be obtained from equations (2.30), (2.32), and (2.33) evaluated at
each vertical point and each Legendre mode. Recall that the subscript n
has been suppressed.

Actually, in the model we do not require Ac to be constant. VWe
also break L up into various terms in order to treat derivatives and the
vertical dependence of some coefficients more accurately.

2.2,5 Method of Solutiom:

The discussion of our gemeral numerical model is now complete.
Next we apply the model to the specific problem of thermal tides. Since
we have a time-stepping model, we need to supply initial conditions,

apply the appropriate forcing, and, after integrating forward in time,
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arrive at the forced solution. We can’t assume that we know very much
about the solution, so we must be able to find the forced solution
starting from arbitrary initial conditions. Unfortunately, the initial
conditions will excite the free modes of the system, some of which may
have as large an amplitude as the forced solution, and some of which may
even be unstable. Unstable free modes can either arise from actual
physical instabilities or from instabilities in the numerical algorithm.
(Unstable numerical modes can exist as long as there are explicit
terms.) Consider the case where either unstable modes don't exist or
their growth rates are much longer than our time integration. The
problem of separating the forced solution from the stable free modes
still must be solved.

Our first step is to transform to a reference frame in which the
tides are steady in time. This is a solar—-fixed reference frame, i.e.,
the line from the center of the sun to the center of Venus is fixed in
this frame. As shown in Figure 2.2, the longitude coordinate, 6,
measures local time instead of longitude fixed with respect to the
planet.

In this reference frame the forced tidal solution has no time
dependence, while all the free modes oscillate with some finite fre-
quency. Of course, there is one exception — a free mode with the tidal
frequency might exist. Then we would be forcing at a resonance, and a
very large tidal amplitude would result. However, we have found no
evidence of a resonance in our solutionms.

The oscillatory part of the solution can be removed in several

ways. Perhaps the most obvious method would be to do a running time
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To Sun ¢

Venus

Figure 2.2 Measurement of ¢4, the longitude in a solar fixed reference
frame. Venus is viewed from above the north pole; the
planet rotates in the direction of increasing 4.



average. The averaged amplitude of the oscillations would be inversely
proportional to the length of the record, while the steady part would
remain constant. However, to avoid aliasing between low frequency free
modes and the steady solution, the time integration would have to be at
least as long as the period of the lowest frequency mode. Since free
modes with very long periods are present, this method requires an
unreasonably long time integration. Another alternative would be to
damp the free modes by applying large amounts of dissipation at the
beginning of the time integration. If the dissipation was then
decreased slowly and smoothly, so as not to re—excite the free modes,
the undamped, forced solution would slowly emerge. This method was used
by Madala et al. (1975) in a numerical model for Earth thermal tides.
However, we found that the decrease in dissipation had to be so slow
that, again, the time integration was unreasonably long. The problems
with both these methods seem to be due to the complexity of the Venus
basic state which generates an unruly set of free modes. The simple
basic states used for the earth tend to result in better behavior.
Fortunately, we found a method which works, Instead of trying
to decrease the amplitude of the free modes, we increase the amplitude
of the forced solution as a function of time. This is accomplished by
increasing the forcing algebraically in time; the forced response
increases proportionately. Since the free modes are only present due to
excitation by the initial conditions, they are unaffected by the
forcing, and their ampltiundes remain constant. We have found that an

increase in the forcing which is quadratic in time is sufficient. The
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forced response grows rapidly emough so that the free modes are
insignificant in comparison after a reasonable number of time-steps.
We can illustrate how this method works in a simple system.
Consider the equation
du
— + iwu = F
at
wvhere F is a constant forcing. The forced, or particular, solution is

up = F/iw. There is only one free, or homogeneous, mode in the system,

ot

namely, ug = Ae~ 1 where A is a free parameter. If we arbitrarily

apply the initial condition u = 0 at t = 0 then
u(t) = Flieo (1 - ¢~ i0t)
which will never converge to F/iw. Now consider the equation

av
— + iov = Ft
it

The particular solution is v_ = (F/iw)t - F/w? while Vg = Ae"ivt 4

p

before. With the same initial condition, v =0 at t = 0, we obtain

F 1
v(t) = — (t - — (1 - o d0t)) |
iw iw
As t + », v/t approaches F/iw, the desired forced solution. When the
forcing increases linearly, the amplitude of the free mode in v/t is

proportional to 1/t. The method of time averaging described above gives

exactly the same result if the averaging is continuous in time.
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However, if the above example is done using a discrete time dependence,
and the averaging is also donme discretely, then increasing the forcing
gives faster convergence.

Forcing proportional to more rapidly increasing functions of

time may be used. For example:

ov
— + iov = Ft2
ot
If
v=0at t =0,
then
5 2 2 .
v/t? = Fliot? (t2 - — ¢t - — Ul = o iuty)
iw )

The stronger decay in the free mode is offset by the presence of the
term 2F/iwt which, although it doesn’t oscillate, slows down the
convergence. In this simple example little, if anything, is gained by

2

using a t“ increase. However, in our model where many free modes of

different frequencies are present, a t2

increase in the forcing results
in a smoother, more rapid convergence than a linmear increase.

For each computer run of the model, initial conditions are
required at t = 0 and at t = -At in equations (2.22) - (2.25). The
initial conditions we choose are simply to set all perturbation vari-
ables equal to zero at these times. For consistency the same initial
conditions are used for every runmn,

A test of the validity of our model in a tidal problem is

presented in the next section. We solve for the tidal fields on the

earth and compare our results to the classical solution.
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2.3 Terrestrial Thermal Tides

The major features of Earth thermal tides can be modeled using
classical tidal theory. In the classical theory the equations are
separable in height and latitude, and the solution is comparatively easy
to obtain, The classical theory is derived from the linearized primi-
tive equations by making some simplifying assumptions. Intermnal
dissipation and topography are ignored, and the basic flow of the
atmosphere with respect to the solid planet is set equal to zero. The
other basic state variables are functions only of height.

— In our model setting the basic flow equal to zero is equivalent
to setting @, the basic state rotation, equal to 2ﬂ/IzD where QD is the
length of a solar day. 0 is not zero because we have transformed to a
solar-fixed reference frame. This is different from most meteorological
models where the reference frame rotates with the planet. The terms in
our model involving @ are identically the same as those involving
f =202 sin A, the Coriolis parameter, in a rotating frame. Actually,
since our frame still rotates with the motion of the planet around the
sun, we should retain a Coriolis term, fy = 20y sin A, where ﬂy = 2n/Py.
Py is the length of the year. On a rapidly rotating planet like the
earth where the day is much less than the year, fy gay be neglected. VWe
will retain fy when modeling Venus tides.

We have modeled the earth’s diurnal thermal tide using the same
basic state and forcing functions as Lindzen (1967), so that our results

may be compared to those he obtained using the classical theory. The

diurnal tide is modeled using an isothermal atmosphere with T" = 260 K.
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The other non-zero basic state quantities required are the static
o . * * g
stability, y = RT /cpa, and § =2 Q sin A. In this run we ignored

the dependence of c¢_ on pressure. Since only the latitudinal gradient

p
of the surface pressure enters the equations, the value of q‘ need not
be specified. The altitude and latitude dependence of the forcing
functions is shown in Figure 2.3, The analytic form of these functionms
is given in Lindzen (1971).

The rest of the model parameters are chosen to provide adequate
resolution and convergence. The computer rum to calculate the diurnal
tide had 100 vertical points equally spaced in —lnc from -lnc = 0 to 13,
41 more points spaced twice as far apart from —1no =13 to 24, plus the
point at 6 = 0 for a total of 142 vertical points. The upper boundary
of the resolved region was at 183 km. The break in grid spacing was at
101 km. We degraded the resolution above this level to save on computer
time. The change in grid spacing does not seem to have affected the
results. We used 20 Legendre functions including both those symmetric
and asymmetric with respect to the equator and 23 points in the Gaussian
latitude grid from equator to pole. The time step was 1 hour, and the
number of time steps was 600. For this run we used a linear increase in

the forcing. For the sponge layer we set TR=TN= To° where Ty ™ 1.2 x

o
107 years. In the lower atmosphere the dissipation will be
negligible. At 140 km, t = 43 days while at 180 km, T =5 hrs. Thus,
the dissipation becomes really large only in the top few levels.

Our results are compared to Lindzen's (1967) calculations inmn

Figures 2.4-2.15, The diurnal tide shows a great deal of vertical and

horizontal structure which is reproduced by our model. We are



44

>
T VvV T

T T
1ok Tdrive) =VI(Z)-HI(8)
+V2(2)-H2(8)

La 1 s 13
®

™
Semidiurnal

80

1
H2 (deg K) (Diurnal )
o

[@]
N
!

v2

>3

5 60 -0.2..4 L : 1 } 1 + } :-

: = .8 T
3 g Ho32 _
g 40 g "o.' 4.024 §
< >y oe o6 2
20 g7 J.008 &

- 02+ -

x (o]
-02F
0] 05 1.0 1.5 N | L1 | [ B |

-80 -40 (0] 40 80
Latitude (deq)
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(1970).
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Figure 2.4 Amplitude of v, for the diurnal terrestrial thermal tide
at 15°, The solid curve is the analytic model of Lindzen
(1967). The data points are from the LPE model.
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The data points are from the LPE model.
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Figure 2.6 Same as Fig. 2.4 for u.
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Figure 2.8 Amplitude of v' for the diurnal terrestrial thermal tide
at 45°, The solid curve is the analytic model of Lindzen
(1967). The data points are from the LPE model.
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Figure 2.9 Phase of v' for the diurmnal terrestrial thermal tide at
45°, The solid curve is the analytic model of Lindzen
(1967). The data points are from the LPE model.
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Figure 2.12 Amplitude of v' for the diurnal terrestrial thermal tide
at 75°. The solid curve is the analytic model of Lindzen
(1967). The data points are from the LPE model.
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Figure 2.13 Phase of v' for the diurnal terrestrial thermal tide at
75°. The solid curve is the analytic model of Lindzen
(1967). The data points are from the LPE model.
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encouraged by the excellent agreement in the phase at all latitudes.
The major discrepancy between our model and Lindzen’s is our smaller
amplitude above about 80 km at low to mid-latitudes. Our amplitudes may
be small due to lack of comvergence or the effect of the sponge layer.
At low latitudes the diurnal tide propagates with a wavelength
of about 20 km as shown in Figures 2.5 and 2.7. For comparison, a
downward propagating wave with a constant wavelength in kilometers, A,

would have the form Aei2Tz/A + imd

where ¢ measures local time in
radians from noon. Since m =1, the hour of maximum amplitude would
be h ., = (= (2rz/1X) + ) * 12 hrs/n where h is measured from local

midnight, Thus a plot of hna as a function of z would just be a line

x
of constant slope. Since the range of h is only a day, in such a plot
we could break the line and shift it back 24 hours every time it reached
the hour plotted on the z axis. The plot would then look very similar
to Figures 2.5 and 2.7 except that the phase lines would be perfectly
straight and parallel. The wavelength can be determined bi measuring
the vertical spacing between lines. The phase propagation for this wave
is downward which implies upward enmergy propagation (Holtom, 1972). VWe
shall refer to waves whose energy propagation is upward as 'upward
propagating.’

As shown in Figures 2.13 and 2.15 the phase at 75° latitude is
constant with height. Thus, at high latitudes the diurnal tide does not
propagate vertically. It is possible to show that om a rotating plane

waves will not propagate vertically if their frequency is less than

twice the rotation rate (Eckart, 1960). This result apparently holds
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approximately for a rotating sphere although it hasn’t been theoreti-
cally derived (Chapman and Lindzen, 1970). In the case of a sphere it
predicts that the frequency of the wave must be greater than twice the
vertical component of the rotation vector for propagation. The fre-
quency of the diurnal tide is @ so, neglecting the difference between
the solar and sidereal day, the diurnal tide should not propagate
poleward of 30° if this theory holds. Since there is some propagation
at 45° (Figures 2.9 and 2.11) the extrapolation to a sphere isn’t
completely valid, but qualitatively the diurnal tide progates at low
latitudes and is trapped at high latitudes as predicted. Since the
frequency of the semidiurnal tide is 20 it will propagate at all
latitudes.

Our results for the semidiurnal tide in the meridional velocity
are shown in Figures 2,16-2.19. The solid curve is the classical result
from Chapman and Lindzen (1970). The temperature profile for this run
is shown in Figure 2.20. The semidiurnal tide is more semsitive to the
temperature profile so an isothermal atmosphere is not adequate to model
it correctly. The forcing functions are the same as those used in the
diurnal case with the amplitude appropriately adjusted. The computer
run had 72 vertical points, half the resolution of the diurnal case.
The upper boundary of the resolved region was at 195 km. We used 14
Legendre functions and 17 Gaussian grid points. The time step was half
an hour, and the total number of time steps was 800. The forcing was
increased linearly with time. The sponge layer was the same as that

used for the diurnal case.
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Figure 2,17 Same as Fig. 2,16 for v at 30°,
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Figure 2.18 Same as Fig. 2.16 for v' at 50°.
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Figure 2.20 Mean temperature profile used in the LPE model for the
terrestrial semidiurnal tide. Below 100 km this profile
coincides with the standard equatorial profile used in
Chapman and Lindzen (1970) for calculating the semidiurnal
tide.
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Our model agrees more closely with the classical theory for the
semidiurnal case than for the diurnal case. This probably is at least
partly due to the lack of structure in the semidiurnal tide. The phase
plots seem to indicate that it is trapped, although as mentioned above,
it should propagate everywhere. In fact, the main semidiurnal mode has
a wavelength of about 150 km. Because of this long wavelength, the
excitation due to ozome is mnearly in phase at each level over the 40 km
layer where it is important. This accounts for the large semidiurnal
response., Since the level of forcing is well off the ground, between
this level and the ground a standing wave will be set up. There are
equal upward and downward propagating compoments in a standing wave so
the phase will be constant, giving the appearance of a trapped oscilla-
tion. The 180° phase shift at 30 km is just a node in the standing
wave. Above the forced layer the wave will propagate upward. This can
be seen in the figures above 80 km.

As mentioned earlier in this section, the diurnal tide has a
wavelengih of less than 40 km so the ozone excitation is subject to
destructive interference. Because of this, the water vapor absorptiom
near the ground is the most important forcing for the diurnal tide.
Thus, the propagating diurnal mode seen at low latitudes propagates
upward from the ground. The standing wave due to the ozone heating is
present, but masked because of its small amplitude.

The subject of terrestrial thermal tides was introduced in this
section mainly to show how well our results agree with the classical

theory. However, the discussion of the nature of the earth’'s tides was
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included in order to make some aspects of tidal solutions more under-
standable. In the next section the discussion of our gravity wave model
also gives us the opportunity to introduce some important features of

thermal tides.



66

2.4 The Gravity Vave Model

Tides belong to a class of atmospheric waves called gravity
waves. For these waves the buoyancy associated with adiabatic vertical
displacements in a stable atmosphere is the restoring force (Holton,
1972). On a sphere, rotation provides an additional restoring force.
However, many characteristics of tides can be investigated using simple
gravity wave systems. In this section we will show how the linmearized
primitive equations can be simplified to represent gravity waves and
will relate the simplified equations to tides.

The gravity wave system we will study is two-dimensional in
space. The dependence of the perturbations on the horizontal
coordinate, x, is assumed to be eikX yhere k is constant. We will still
use ¢ as the vertical coordinate. The response as a function of ¢ is
the solution we seek. To represent tides in this two-dimensional
system, we identify x with the zonal direction so that the eikx

imd in the tides. However, the latitude

dependence corresponds to e
dependence of the tides must be ignored. This is a serious omission,
but there is a fudge factor which may be included that will allow us to
solve for the vertical structure exactly when the original tidal
equations are separable and will give us an approximate solution when
they are not.

The gravity wave equations can be derived from equations (2.18)-
(2.21). Ve will use Cartesian instead of spherical coordinates with
8/0x + ik and 9/9y -+ 0. The basic state consists of the zonal wind, u.,

and the static stability, 1'. both of which may depend on height. The

basic state temperature is required only at the ground. u‘ is related
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to Q by n. = a cos AR. VWe will usually use the equatorial value of u‘.

As in the tidal problem, we specify u' such that the waves are steady in

our reference frame, and £ = 0.

With these assumptions we may rewrite equations (2.18)-(2.21);

’

c = 0 (2.36)
F) 1 5 . .
o [(—+—) W1 - B* (T - oToq)
dat TR
’ Y ® [
= o (ikd L iku Wu ) - (2.37)
d L ’ s ¢ & !
(—+ —) (T - cch ) - YW
]
ot ™
= -iku’ (T - oTeq)
] ’ ’ L ] RT. 3 ’
+dy - (W -oWS )y +— (ik (u -8 )q ) + Q' (2.38)
°p
dq’ ; .
— - W =-iku g (2.39)
ot

To solve these equations numerically we follow the procedures
outlined in section 2.2 for vertical discretization, time-stepping,
initialization, and obtaining the forced solution. Of course, we omit
the steps having to do with the spherical harmonic expansion.

The nature of gravity waves can be understood by solving these
equations analytically in some simple cases. For example, we put u‘ and

T‘ both equal to constants. Since 7‘ = RT‘/cpc - T;. for an isothermal
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atmosphere y‘a is a constant. Let § = 7‘5. We will solve for the free
mode so Q' = 0, We also put the dissipation terms equal to zero. In
order to obtain a more general result, we do not specify the steady

ivt

reference frame. The time dependence is assumed to be e where v is a

constant frequency. The equations become:

. 8 L. 2 ro * _
(iv + iku ) oW - Rk® (T oTq') =0 (2.40)
] ’ $ ! s ’
(iv + iku )(T - o'} ) - — W =0 (2.41)
o
(iv + iku') ¢ = W8 (2.42)

The definition of ¢ and ﬁ‘ were used to eliminate the terms on
the right hand side of (2.41).

We eliminate the quantity T =~ cT;q' from (2.40) and (2.41) to
obtain

_ %2 ' ;2 -
(v + h} )“ o You Rk v 0

Compare this equation to (2.34). The terms on the left have the

same vertical dependence.

It is convenient to define a new variable ; = —-1lnoc and rewrite

the above equation in terms of ;:

SR

14 ¢ ’

¥ + + V=0 (2.43)

V.
V2 | (x* + v/x )2
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The solution to this equation is of the form

’

W= W, e §2 [etioy) (ivt + ikx

where o = (SR/(u’ + v/K)? - 1/4 )1/2 |

The relative amounts of W, and W_ would be determined by the
boundary conditions. If Vv, k, and w are positive then the wave with
the plus sign has downward phase propagation and upward energy
propagation (Holton, 1972),

In this simple case the wavelength is constant with respect to
3/. Even when S and u” are functions of height, the wavelength tends
to vary more slowly as a function of(y than as a function of 6. In
fact, we often use the above dispersion relation to estimate w even when
S and u‘ are not constant, and the results are fairly accurate. Thus,
in our numerical modeling we use grids which are evenly spaced in -lnc
to obtain the most even resolution possible. We also usually plot our
results against -1lno.

The ampl:tude of W'decays exponentially as eiﬁvz while T'and
u'grow exponentially with height as q?yz. This behavior is also seen
in the tides, although modified by the complexities of the basic state
and the forcing. Therefore, we usually plot tidal amplitudes on a log
scale.

The relationship of tides to gravity waves can be seen by
examining the vertical structure equation which results when the tidal
problem is separable, i.e., when @ is constant. This equation is derived
in Chapman and Lindzen (1970); the derivation will not be repeated here.

The vertical structure equation in terms of W is
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2
a® W dw, s
+ +

13} %y (20)2

where ¥ = z anyo ®§ () 01‘6. and ®: satisfies F(@:) = -s: ®: where F

v =0 (2.44)

» |

is Laplace’'s tidal operator. In the separable problem the horizontal
dependence is naturally expressed in terms of ®§. the eigenfunctions of
F, which are called Hough functionms. Laplace’s tidal operator depends
on the zonal wavenumber, m, and the ratio of the solar to the sidereal
day, as well as latitude, so e: will also depend on m and on this ratio.
The solutions of (2.44) obviously have the same form as the
solutions of (2.43). If we put v = 0 and u® = a0, then the dispersion
relation which results from (2.44) is the same as for the gravity waves
with the addition of the 22/4 factor. If we include this factor in
equation (2.37) as follows:
9 1

£ 2
o((— + —) Wa) s ~ Rk
it TN

’

(T - cT;q')

~ |

= o(iké u) - ike" W) |
then, setting ot = all, we can use our gravity wave program to solve for
the vertical structure associated with any Hough mode. The inclusion of
the factor ezl4 should be thought of as a modification of the value of

k2.

This k2 came from the horizontal Laplacian. Multiplying it by eg/4
has the effect of correctly including the latitudinal derivative for a
given Hough mode.

When u" depends on height, strictly speaking, sﬁ does not exist.

However, in order to investigate Venus tides we define an 82 which

depends on height. Lindzen (1970) gives a value of 32 for the lowest
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diurnal and semidiurnal Hough modes for the Venus rotation rate. We use
these values at the ground, assuming the mean zonal wind is zero there.
In the clouds the atmosphere rotates with a four day period which is
rapid enough so that the Earth value of eﬁ should be valid. s? for
Earth and Venus rotation rates are given in Table 2.1 for m=1 and m=2.
With the values for these two rotation rates we define a linear
dependence of e? on v’ for m=1 and m=2. The only way to test this
method is to compare results from the gravity wave model to the full
model., We have found that the gravity wave results reproduce the
general features of the full model solution at low latitudes. The
gravity wave solution is not valid at high latitudes because it approxi-
mates the vertical structure of the lowest 'Hough mode’ which has a low
amplitude in the polar region., The gravity wave results will be

presented in Chapter 4.



1

TABLE 2.1

€7 FOR EARTH AND VENUS ROTATION RATES

SIDEREAL DAY SOLAR DAY e} =)
Earth 24 hours 24 hours 127.53 11.16
Venus 247 days 117 days 2.13 2.04
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2.5 Comservation of Emergy

An important characteristic of a dynamical model like ours is
its performance in comserving energy. The rate of change of the total
perturbation energy, i.e., the kinetic, internal, and gravitational
potential energies integrated over the whole atmosphere, should be equal
to the rate at which energy is gained or lost by the system. The
equation relating these terms is called the energy conservation or
energy balance equation. Perturbation emergy is gained from the forcing
and is lost by dissipation. Perturbation energy may also be gained from
or lost to the basic state. This conversion does not violate the
assumption that the basic state is constant at zeroth order because the
perturbation energy is a second order quantity.

A spurious growth of emergy may occur in a numerical model whose
spatial discretization is Galerkin because of the presence of explicit
terms in the time discretization. The case of the explicit damping term
discussed in Section 2.2 demonstrates this growth. In the presence of a
numerical instability, the properly time—discretized terms in the energy
equation would still balance, but the rate of change of energy would be
unphysical. Physical instabilities may also be present and would cause
an exponential growth of energy. Since we are looking for a stable,
forced solution, these instabilities are also undesirable. Fortunately,
since the forcing increases quadratically in our model, we know that the

4 for large t. Thus,

perturbation enmergy, E, should be proportional to t
by calculating the rate of change of emergy, AE/At, and comparing it to

the predicted value, 4E/t, we can determine how close the entire system
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is to convergence. For small t, AEAtwill differ from 4E/t because of
the importance of free modes and the term in the solutionm which is
linear in time. (See the discussion of convergence near the end of
Section 2.2.) AE/At should approach 4E/t as t increases if numerical or
physical instabilities are not present.

The equation for the comservation of emergy for the full model
is very complicated, especially in its discretized form, because of the
presence of numerous basic state/perturbation conversion terms and the
dependence of the solution on latitude. In this section the energy
conservation equation for the gravity wave problem will be derived and
discussed. It includes all the major features of the full model’'s
energy balance. An analytic expression for the emergy balance will be
derived first. A discretized treatment will follow. Hopefully, this
discussion of the energy will lead to a clearer understanding of the
numerical model.

In the gravity wave problem av'/aa is given by iku'. Therefore,
———|—-——|2 is equal to the perturbation kinetic energy per unit mass
averaged with respect to x due to horizontal motionms. For a column of

atmosphere of unit area this component of the energy would be

w1 ¥ 1 p, W
———|——-|2 pdz = |—-—|2 do .
0 2k% a0 0 2gk2 dc

There is no x dependence. The rate of change of this quantity can be
derived from equation (2.37) by multiplying by <W'>/x% and integrating
over 6. Angulsr brackets denote complex conjugate. This notation is

used to avoid confusion with the use of 'y’ for basic state quantities.
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The energy form of (2.37) is

b, (1| , 8o , 8 1aW R > ar*
Re — > * N3 — (= ) ~ (T' -6 — q')
gk ] ot odo dc tp Ooc Y do

o9 ot , oW
=<KW > — (ik6 — - iku —) do .
do do do

Integration by parts of the terms containing second derivatives with

respect to o yields

p | (1 1 8 oW 1 9% , o8 aw 1 9w
Re —° S b o e i = [ S e e b ]

gk2 [ Jo 23t 80 tp 9o 3t 3 Tty o
1R 1 9wy aut LA
+ S — <KW > n do = s ( ik6 — - iku |—1[%) do
0 o 0 do do do
, , o’ , oW
- | W O(ikd — - ik —) )| 4
do do
’ ’ aT‘
where M =T - 6 — q'. The boundary terms may be simplified by using

do
the undifferentiated form of (2.37):

’

9 oW 1 W . oW , du' .
i ) e e b R — — TRy —— = =k BT g
at do TR do do do

and the continuity equation:
99’

W' = — + iku'q
at
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Then the boundary terms become

a<qg’> K2Rl _; alq 12

Re {(xzn'r‘q') P
ot

A ’
+ iku <q ) =
2 it

The advection term has no real part. Likewise, the advection term in

the main expression has no real part. Finally,

p | (11 8 s’ ., K2RT'lo=1 alq |2 11 av

— s - —1—12%+ +I —]—12 40

gk? | Jo 2 8t ac g at 0o%tp 9o
1 2, 1, aw)> a’

+ Ri; — <KW > N do - Re s iks — do =0 (2.45)
0 o 0 doc Jo

The first two terms are the rate of change, for a column of unit area,
of the perturbation kinetic energy and the part of the perturbation
potential energy due to surface pressure changes,respectively, both
averaged with respect to x. The third term represents kinetic energy
lost to dissipation by Rayleigh friction. The fourth term is a
conversion from kinetic to thermal perturbation energy. The last term
represents a conversion from perturbation to mean energy or vice versa
depending on the sign of the integral.

A similar derivation will comvert (2.38) to an equation for the
rate of change of perturbation thermal energy. The appropriate quantity
to multiply by to get an enmergy per unit mass is R(n'>/y.c. n' is the
temperature on constant pressure surfaces. Besides the fact this
quantity has the correct units, it is exactly the quantity needed to

multiply the term Y.W' to obtain a conversion term which will cancel the
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one in equation (2.45)., These terms must cancel because the overall
rate of change of perturbation emergy should not be affected by
conversions between kinetic and thermal perturbation emergy. For the

thermal energy balance equation we obtain

Pg 11 R & , 1 R R,
— Re s - —In' 2+ — —n"12 - - <> ¥
['4 0 2 y o ot TNY O c

(2.46)
c Yo

The first term is the rate of change of thermal perturbation energy.
The second term represents energy lost to dissipation by Newtonian
cooling. The third term is the conversion term discussed above. The
fourth term represents a conversion between perturbation and mean
energy. This term was derived from the terms on the left side of (2.38)
using the definition of é’ and y’. The final term is the energy
supplied to the system by the forcing. The total perturbation energy
balance results from.adding (2.45) and (2.46). There is no term
involving the rate of change of ;' because of the hydrostatic
assumption., In other words, kinetic energy due to vertical motion is
negligible compared with that due to horizontal motion.

The finite element method of vertical discretization is easily
nodifged for energy calculations. For example, consider the term
9 v pg 1 a (1 oW
— (—) which in the energy balance equation becomes —— — ——-s |———12

at do? gk? 2 3t Jo 8o
do. To vertically discretize this term we express W in terms of the
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, NVPTS .
triangutar Chipeau basis functions: Vv = z: Wie1 (o). The W, are
i=1
the values of Wat the vertical grid points. To obtain the emergy in a

column of atmosphere we need to evaluate the integral

1 /NVPTS  del S ded
S E v. — | & W;> — )do
0\ i=1 9c/ \ j=1 do

which may be written

NVPTS 1 /NVPTS  del) aed ;
2. Wy S 2, Wy — | — ¢
i=1

0 do do

The term in brackets is exactly the same as the vertically discretized
[4

form of 62W/802 used in the solution of the differential equation and

can be written as

-1 2 -1 W1 if Ao is constant.

=1 2 ~1 LD)

[
.
.

Ao . . . .
-1 2 -1 .
<4 4 ¥nvers
Pg T
If the above matrix is called D, then the energy is just — <§>" D ¥,
gk
where ¥ is a column vector of the W, and (E)T is the transpose of the
Dy 1 9
complex conjugate of §. The rate of change of the energy is —(; — —
gk? 2 at

<« T DW.
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To do the discretized energy balance correctly the equations
must also be discretized in time as they are to obtain the numerical

solution. Thus, we have

d At 2 %Wl _,, a oW 8 , o’
— ) W~ T 4 ik At — fu —) |y + At ik — (3" —)I,
do TR do do dc do do do
At
- —Rr2ft=0 (2.47)
[+
and
At
- ~ A 0‘
(1 +—) it - nlt-At - At " W - 4 ik At q't (ou® - 2% +3%)
N
*nl
tik At w Nle ¢ -Atal, =0 (2.48)

-t
To solve this system of equations we eliminate N from equation (2.47).

This yields:
) At oWY\ a%wl._,, 8 oW a , o'
— [+ =) - ‘ + ik At — (u —)l, + &t ik — (6 —)],
dc TR do 862 do dc do do
(At)? Rx? y‘wt
- -L=20 (2.49)
1+ %3) c
N
where 2
At Rk 3
L=———nl,_p¢ - ik At o nl +
At
(1 + —)o
N

A0
7‘ ik At qlt(cm.I -4 -u )+ At Qlt)
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To obtein the gravity wave solution (2.49) is vertically discretized by
the finite element method and solved for i? If we multiply the verti-

Ps

cally discretized form of (2.49) by — <Et)T and take the real part, we
gk

will obtain the correct discretized enmergy balance equation analggous to

1 Rk
(2.45). Notice that the conversion term analogous to_ Re S — 4
(At)? Rk 0
do is made up of two parts, one from Y Wt and one
(1 + At/fN)O'
from L. These two terms must be treated in such a way that they will

cancel the conversion term in the thermal energy equation or spurious

energy will be introduced into the system. The first term in discre-

Ps ot.T o wt 3 .2
tized‘fgrm would be —— <¥">" G Y where the elements of G are R(At)C k
0 y eled do gk2 - -
. Since ' is the dependent variable, the factor
1 (1 + At/Ty)o
*
v

(1 + At/tN)c

must be included in the matrix, G.

All the terms involving #' in (2.49) must be written as a matrix
with known elements times ﬁ? Since the L term also contributes to the
conversion term, for consistency it must be discretized as G Q where

(1 + At/tN)O' L

Ai = s« /;°
\ r2an? ¢t /1
Then the conversioh term in the kinetic energy balance equation becomes
Ps _ _ (1 + At/zy)
— AHT ¢ @+ ) with W+ A = fE - al :
gk At 7‘

The conversion term in the discretized thermal energy balance

T
equation must have exactly the same form, p Mty + At/tN)

o)
=
zw
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Since equation (2.48) does not contain derivatives with respect
to o, it is vertically discretized simply by evaluating it at each grid
point. Each term can be thought of as a column vector. To form the
energy balance equation we divide (2.48) through by y‘ At and multiply
Pg << _t (1 + At/'cn))T

by — nb G. The conversion terms will cancel, and the
gk

&
2/%/ -
other terms will have the correct units.

From the above discussion it is clear that the finite element
discretization is closely related to the enmergy balance equationms. For
the momentum equation we need only multiply by the proper vector to
obtain an expression for the time rate of change of the perturbation

. " : : . ; ; Ps =t.T =t
kinetic energy which in discretized form is _;E X R (¥ - Y/t—At)'
If the energy balance is not considered, a cirtain amount of leeway is
allowed in the form of the discretized L term. The simplest
discretization of this term is é L where the elements of é are Sl ei ei
do. This discretization would not conserve energy because the L germ is
part of the kinetic to thermal emergy conversion term, It must be
treated in such a way that the sum of it plus the y‘ %' term cancels the
conversion term in the thermal energy balance equation. The simple
discretization was used in some preliminary runs and, as might be
expected, it was unstable. The discretized form of the equation for the
time rate of change of temperature which is analogous to the ome used to
solve for the time rate of change of W is G x (2.48). When this_equa-

. o P —t bk & Sy
tion is multiplied by the proper vector, i.e. — (<{n°"> —————— |, the

*
SN (At)y,
conversion term will exactly balance the one in the kinetic energy
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equation. Since each term in equation (2.48) gets multiplied by G,it
is unnecessary to actually carry out this multiplication in the numeri-
cal solution. Equation (2.48) may be evaluated at the grid points.
From the energy balance equation we see why explicit terms may
cause trouble in the form of an unphysical growth of energy. Comnsider
1 d ‘BW
the term due to advection: Re {W> ik — (v —) do. This term did

0 do do
not contribute to the analytic energy balance because it had no real

p
part. In discretized form however, we obtain Re ———s<it>T ¢ Elt where

1 - del ael gk
the elements of C are ik At

X

u —— —— do. This term will have a
0 doc do
real part because wt # Wlt except in the special cases where W is
constant or linear in time. A feedback effect is possible where a small
contribution to the energy from this term causes the solution to grow so
that at the next time step the contribution from this term is larger.
The energy balance for the full model is very similar to that of
the gravity wave model. The treatment of the conversion terms is
exactly the same. Since for the full model v # 0, there is a
contribution from |v'|2 to the time rate of change of kinetic energy,
and since the basic state can depend on latitude there are numerous

perturbation/basic state conversion terms imvolving latitudinal

derivatives of the basic state.
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CHAPTER 3
THE BASIC STATE OF THE VENUS ATHMOSPHERE AND TIDAL FORCING
3.1 Introduction

Many areas of planetary science have been transformed by a
rapidly expanding data base in recent years, and the study of Venus
thermal tides is no exception. Before the Pioneer Venus mission
speculations about the tides were poorly constrained due to insufficient
knowledge of the mean state of the atmosphere, uncertainties about the
sources of excitation, and lack of measurements of the tides themselves.
However, by the time of the present study, these drawbacks bhad
diminished to the point that it was a challenge to find both model
inputs and outputs compatible with the data.

In this chapter we discuss the basic or mean state of the Venus
atmosphere and the tidal forcing fn;ctions. The basic state is the
dynamical and thermal state of the atmosphere averaged with respect to
time and longitude. In defining the basic state, forcing functions, and
other model parameters, we make extensive use of Pioneer Venus data.
Prior to Pioneer Venus, the Venus atmosphere was studied by ground-based
observers, the Mariner 10 fly-by, and the Venera probes. Although these
provided many useful observations, the Pioneer Venus data set is more
complete and well documented. Also, the Pioneer Venus mission has
provided a focus for Venus research for the past several years, so it is
natural to wuse the data from this mission as our main source and
incorporate other observations only as necessary.

Pioneer Venus, of course, did not provide a complete picture of
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the Venus atmosphere. To actually determine the mean state in the lower
atmosphere, a long time series of observations would be required at many
locations on the planet and at many levels in the atmosphere. The four
Pioneer Venus probes provided only an instantaneous view at four
locations. However, since there are many similarities from probe to
probe, using the probe measurements to determine a basic state is not
unreasonable. Measurements from the Pioneer Venus orbiter help
determine the basic state in the upper atmosphere. The orbiter
measurements give more complete global coverage over a longer time
period than the probes, but in general have poorer vertical resolution.
There are a few areas where data are almost completely lacking. For
example, the zonal wind above the cloud tops has not been directly
measured. When model parameters cannot be reliably determined from the
data, we choose values which optimize the fit of our computed tidal
amplitudes and phases above 70 km to the orbiting infrared radiometer
(OIR) tidal data and are consistent with simple models and/or physical
intuition.

To specify the basic state we need the zonal mean rotation rate,
Q(o,A), the global mean static stability, y*(co), the surface pressure,
Pg» and the global mean temperature at some level in the atmosphere.
From these quantities we can derive the other necessary basic state
quantities., The mnext two sections deal with y*(c) and Q(o,A) and the
quantities derived from them. We also must specify the dissipation time
constants, Tp and N In the final section of the chapter, the forcing

functions are be discussed.
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3.2 The Static Stability

The static stability of the atmosphere is an important parameter
in determining the vertical structure of thermal tides as shown in the
discussion of gravity waves in section 2.4. Our stability parameter
is ¢y = RT/cpc - 38T/do. The stability is broken up into a global mean

and a latitudinally varying part:

v(o,A) = y*(o) + y{(c,})

Y, is derived from the thermal wind equation of cyclostrophic balance
and is discussed in the next section. The thermal wind equation relates
latitudinal temperature gradients to the vertical shear in the mean
zonal wind. Y*¥ is based on temperature profiles from several Pioneer
Venus experiments. Although the raw data are in the form of
temperatures, the static stability is the model input. The global mean
temperature profile, T*(o), is calculated numerically from y*(s). Since
the model is more sensitive to the value of y* than the value of T*,
calculating y* numerically from T* would introduce more inaccuracies.
From the ground up to 56 km the stability profile is based on
measurements made by the atmospheric structure experiment on Pioneer
Venus (Sieff et al., 1980). In this experiment simultaneous measure-
ments were made of temperature and pressure as each probe descended.
Altitude was determined from the hydrostatic approximation, and the

stability was calculated in the form T (z) =T  + dT/dz where Iy is the

a

adiabatic lapse rate for a non—ideal gas and z is height in kilometers.
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Figure 3.1 Static stability of the atmosphere between 28 and 65 km at
the Pioneer Venus probe sites. = ~T, # dT/dz where
I', is the adiabatic lapse rate. This figure is taken from
Schubert et al. (1980). T is based on calculations done by
Sieff et al. (1980).



87

TABLE 3.1

MEASUREMENTS OF STATIC STABILITY
FROM

THE PIONEER VENUS PROBES®

= I, # dT/dz in K/km

Average of

Altitude, km Sounder Day Night North four probes
35 1.3 0.9 0.4 1.2 1.0
40 2.7 1.9 3.3 2.1 2.5
42 3.4 2.8 3.3 3.5 3.3
44 4.7 3.1 2.9 3.7 3.6
46 2.7 4.0 3.0 1,5 2.8
48 0.3 2.7 22 1.9 1.8
50 2.2 1.3 0.8 1.0 1.3
52 0.3 0.2 1.0 -0.4 0.3
54 -0.1 -0.5 -0.4 -0.2 -0.3
56 2.0 -0.7 0.1 0.0 0.4
58 7.3 4.0 4.2 0.3 4.0

*Probe data are from Figure 12 of Schubert et al. (1980). (Figure 3.6
of this thesis.)
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The results from 30 to 60 km are shown in Figure 3.1. The major
features seen in the stability profiles of all four probes are:
increasing stability above 55 km, an adiabatic region around 55 km, a
peak in the stability at 43 km, and decreasing stability below 43 km.
To render the data in these profiles useful for our model, values were
read off the curves at closely spaced levels, and average values were
determined. The probe and average values are given in Table 3.1. The
average values are linearly interpolated in z between the given levels
to give T (z) in this region. This profile requires a slight
modification before it <can be used as model input because mnegative
static stabilities cause instabilities in the model. Therefore at 54 km
the value -0.3 K/km is replaced by 0.1 K/km.

The static stability calculated from the probe data below 30 km
is shown in Figure 3.2, The temperature sensors on all the probes
failed at about 13 km so the stability below that level could not be
determined. Below 30 km the lapse rate is close to adiabatic, except
that the 1lowest points show a stable trend. Temperature data from
Venera 9 and 10 (Avduevskii et al., 1976) and from the Pioneer Venus
small probe net flux radiometer (SNFR) experiment (Suomi et al., 1979)
support the existence of a deep stable layer. However, the SNFR
temperature sensors also failed at 13 km, The Venera 10 profile
returned to adiabatic below 5 km, so the stable region, if it exists,
may not extend to the surface. Since theoretical models of the
radiative and dynamical state of the deep atmosphere predict an
adiabatic profile (Pollack et al., 1980; Stome, 1974), the presence of a

stable 1layer is difficult to explain, In our model we have chosen to
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Figure 3.2 Static stability of the atmosphere between about 14 and 30

km at the Pioneer Venus probe sites. The curves are from
cubic spline fits to the measured temperature profiles
while the points are from graphical estimates of the lapse
rate. This figure is from Schubert et al. (1980).
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keep a {ow value of the stability, I = 0.05 K/km, below 30 km. It is
more convenient to use a low value of the stability since low stability
makes the model converge faster, The effects of the value of the static
stability near the ground were investigated using the gravity wave
model. They were found to be small in the upper atmosphere. These
results are discussed in Chapter 4.

The choice of the stability profile from 55 km to 100 km is of
critical importance because the OIR measurements of the tides were made
in this region. Temperature profiles from several sources are available
above 58 km, from which values for the static stability can be
estimated.

The temperature and pressure sensors on the atmospheric
structure experiment were not deployed until the probes reached about 65
km altitude. However, above this level temperature profiles were
obtained from deceleration and trajectory information (Seiff et al.,
1980). These profiles are tabulated in Table VIII of Seiff et al.
(1980) for three of the four probes. We used these data to calculate
dT/dz for the day and sounder probes. Our values for [ (z) are shown in
Figures 3.3 and 3.4. The adiabatic lapse rate for an ideal gas, I _ =

a

g/c_, was used; this is valid at high altitudes. To get some idea of

p
the validity of our lapse rates, T (z) was calculated in a similar
fashion from the sensor data from the day and sounder probes which are
given in Table III of Seiff et al. (1980). Our method is obviously more

noisy than that shown in Figure 3.1, but the profile has the correct

shape. The average profile given in Table 3.1 is shown for comparison.
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The solid curve is an estimate of the static stability, [ =
Fa + dT/dz in degrees/km, of the atmosphere from the day
probe temperature profile tabulated in Sieff et al. (1980).
The dashed curve is the average profile in Table 3.1 from
30 to 60 km and follows T = 0.05 K/km below 30 km. The
agreement of the dashed and solid curves shows the validity
of the estimated stability. Above 60 km, this estimate is
used to help determine the basis state I.
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Figure 3.4 Same as Fig. 3.3 for the sounder probe temperature profile
tabulated by Sieff et al. (1980).
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Above 60 km most of the oscillations are probably noise, but there are
two major features which are seen in both probes. At about 70 km there
is a narrow peak of very high stability. Since an isothermal region has
a of about 12 K/km, this peak indicates the presence of a temperature
inversion. The other feature is a broad minimum in the stability
centered at about 80 km.

The temperature inversion has been extensively studied by Kliore
and Patel (1980) using temperature profiles obtained from Pioneer Venus
radio occultations. These profiles cover the 1 bar to 1 mbar region of
the atmosphere, i.e., from 50 to 85 km altitude. As latitude increases
the inversion becomes deeper, broader, and is centered lower in the
atmosphere. We have not obtained the static stability from the radio
occultation profiles, but have used them to confirm that the inversion
is part of the mean state of the atmosphere. The latitude dependence of
the inversion has not been included in our model.

Our final source of information about the static stability above
58 km is OIR retrieved temperature profiles. The OIR measures the
radiances in 5 infrared channels. The radiances, the weighting
functions for each channel, and a model for the effect of clouds are
used in a deconvolution program to obtain a temperature profile.
Zonally averaged retrieved temperature profiles (L. Elson and F. Taylor,
written communication, 1982) were used to estimate [ (z) for 10°
latitude bins centered at 15°, 45°, and 75° as shown in Figure 3.5. 1Imn
these profiles the minimum at 80 km appears very similar to that seen in
the probe data. Since these profiles represent averages over many

observations taken at different times and places, this minimum is
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Figure 3.5 I' (z) calculated from OIR zonally averaged retrieved

temperature profiles provided by L. Elson and F. Taylor
(written communication, 1982), 10° latitude bins were used
in the zonal average. The dotted curve is for 10°-20°, the
solid curve for 40°-50°, and the dashed curve for 70°-80°.
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probably a feature of the basic state. The inversion peak does not show
up very prominently in these profiles probably due to lack of vertical
resolution.

All the data described above were taken into consideration in
constructing our basic state profile of T (z) shown in Figure 3.6.
Below 56 km this profile is the average profile given in Table 3.1
except for the positive stability at 54 km. The stable trend in the
lowest 18 km has not been included. Above 56 km the exact values were
chosen to give the best agreement with the OIR tidal data. There is a
peak in the stability at 70 km and a minimum at 80 km as the data
indicate. The narrow inversion layer was omitted since our vertical
resolution is insufficient to resolve it. Above 90 km the model
atmosphere is isothermal with T* = 170 K. The day and north probe
deceleration data show large amplitude temperature waves in this region,
but these are likely to be eddies and not representative of the basic
state. The average value of the temperature for these probes and the
sounder probe is about 170 K.

The static stability input to the model is of the form I (z) =
g/cp + 9T*/0z. I'(z) is piecewise linear as shown in Figure 3.6. At
each o level of the model z(c) is obtained from the probe data and I' (o)

is then specified. T*(c) is derived by writing I (o) in the form

T (o)

g/cp -(g/RT*) 8T*/d(1no)

where we have used the hydrostatic equation dp/dz = -pg/RT. Thus
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T*(c) 1nc
dT* R RT
— = (— - — ) d(lno) (3.1)
T* e B

170 K 1no, 2

op

where Utop is the top of the resolved region of the atmosphere in the
model. R = Rg/u where R8 is the universal gas constant and p is the
mean molecular weight of the Venus atmosphere. The model atmopshere
composition is 96% C02 and 4% N, (Hoffman et al.,, 1980). The
gravitational acceleration, g, is 887 cm/secz.

Since the specific heat per unit mass, Cps is a function of
pressure and temperature the integral in (3.1) cannot be done directly,
but must be solved iteratively for a consistent profile of T* and Cpe
The pressure at each level, p(c), is easily obtained provided the basic
state surface pressure is known. We use a value of 92.1 bars based on
extrapolation of Pionmeer Venus probe data to the surface (Sieff et al.,
1980). A temperature profile based on day probe data is then used to
obtain an initial guess for cp(T,p). Values for Cp/R, where Cp is the
molar specific heat, are taken from the tables of Hilsenrath et al,
(1955). These tables cover a pressure range of 0.01 atm to 100 atm and
a temperature range of 200 K to 800 K for both C02 and N2. A two
dimensional linear interpolation of the values given in the tables is
used to obtain the molar specific heat for both gases for the required
temperatures and pressures. In the upper atmosphere where the
temperature and pressure lie outside the range of the tables, the value

for the lowest temperature and pressure given is used. The values for
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the two gases are combined linearly:

Using the initial guess for cp(c), T*(c) is calculated from
equation (3.1). A new profile,cp(c),is then obtained from the tables
using T*(c) and the integral is re—evaluated. This process is repeated
until the temperature at all levels changes by less than 0.1 K from one

iteration to the next. Finally, y* is derived from T by
Y = RT*/cpo - dT*/38c = RT*[/go .

Profiles for y*, T#*, and ¢_ are shown in Figures 3.7, 3.8, and 3.9.

p
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Figure 3.6 The basic state profile T (z) to be used in all model
calculations unless otherwise noted.
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102

3.3 Thg Zonal Vind

The vertical profile of the mean zonal wind is the other major
factor in determining the structure of the thermal tides. Our basic
state zonal wind profile from the ground up to 60 km is based on the
results of the Pioneer Venus differential long baseline interferometry
(DLBI) experiment (Counselman et al.,, 1980). DLBI profiles for the four
probes are shown in Figure 3,10, On Venus, due to the retrograde
rotation of the atmosphere, a westward zonal wind is defined to be
positive. Note that the profiles for the day and night probes are
almost identical. These two probes entered at about the same latitude,
30°S, but separated by 100° in longitude. Thus, the similarity in the
profiles is considered to be evidence for a lack of major 1longitudinal
variations in the zonal wind below 60 km. The sounder probe profile is
similar in shape to the day and night profiles but has higher velocities
throughout the region. The difference in velocity is nearly consistent
with a state of solid body rotation at each height between the sounder
probe at 4°N and the day and night probes at 30°S. These three profiles
are characterized by alternating regions of high and low shear. The
north probe profile is quite different. The velocities measured at the
north probe location, 60°N, are higher at most altitudes than predicted
by solid body rotation and the shear increases smoothly from the ground
up to 60 km. Our basic state is in solid body rotation and below 60 km
is based on the day, night, and sounder measurements. This may have
some effect on the validity of our solution in the polar region. The
sensitivity of the solution to the zonal wind profile will be

investigated in Chapter 4 using the gravity wave program.
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the DLBI experiment for each of the Pioneer Venus probes.
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these profiles
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(1980).
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Wind velocity profiles obtained by Doppler tracking of Venera 8,
9, 10,  and 12 are compared to the Pioneer Venus DLBI profiles by
Schubert et al. (1980). The Venera profiles show a much larger degree
of variability and may indicate spatial or temporal changes in the zonal
wind.

Above 60 km there are no in situ measurements of wind velocity
in the Venus atmosphere. However, there is considerable evidence for
equatorial winds on the order of 100 m/s at the cloud top level of about
65 km. Measurements taken by tracking small scale cloud features in
Pioneer Venus and Mariner 10 ultraviolet images (Rossow et al., 1980;
Limaye and Suomi, 1981) give equatorial winds of about 95 m/s. During
the Pioneer Venus primary mission the atmosphere at the cloud tops was
nearly in solid body rotation to the 1limit of the measurements from 60°
S to 40 ° N, but at the time of the Mariner 10 encounter there was a
prominent midlatitude jet in each hemisphere. Images taken during the
Pioneer Venus extended mission indicate that jets of varying strengths
appear and disappear with a time scale of several months and may be
present in both, either, or neither hemisphere (Rossow and Kinsella,
1982). It is unclear which situation is more typical of the circula-
tion. Since the OIR tidal results were obtained during the primary
mission, the fact that solid body rotation is assumed in our model
should 1lead to consistent model results at least up to 50° 1latitude.
Ground-based observations made by measuring Doppler shifts of spectral
lines (Traub and Carelton, 1975) and by heterodyne techniques (Betz et
al., 1976, 1977) both support the existence of high retrograde =zomnal

winds at the cloud tops.
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It has not been determined how far above the cloud tops the
rapid winds extend or what peak value is reached. Our tidal model is
quite sensitive to both these parameters. By assuming cyclostrophic
balance we can relate latitudinal temperature gradients to vertical
shear in the zonal wind (Schubert et al., 1980). Above 70 km
temperature measurements made by the OIR and the probes indicate that
temperature increases poleward on constant pressure surfaces (Taylor et
al., 1980). According to cyclostrophic balance, this implies that the
zonal wind will decrease with height. However, the vertical scale of
the decrease and the extreme values reached are not well determined,
because the mean zonal wind at 70 km is required as a boundary
condition,

There is some evidence for non—zero retrograde zonal winds in
the atmosphere at about 150 km which is reviewed in Schubert et al.
(1980). However, this is above the region of applicability for our
tidal model.

Our nominal basic state equatorial zonal wind profile is shown
in Figure 3.11, Above 60 km the profile is designed to provide a good
fit to the OIR tidal data, keeping in mind that the wind should decrease
above 70 km. Below 60 km a smoothed version of the day/night/sounder
type profile is used. The smoothing and increased shear in the lowest
10 km were necessary to avoid instabilities in the model. The
atmosphere is assumed to be in solid body rotation at each level, i.e.,
u* = acosAQ(oc) . (o) is the actual parameter required by the model.
Note that in Figure 3.11 the value of u®* is not zero at the ground and

does not fall to zero in the upper atmosphere. At these levels the
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Figure 3.11 The basic state profile of the zonal wind ¥ (z). A
positive value indicates a westward, i.e., retrograde,
rotation. This profile will be used in all model
calculations unless otherwise noted.
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atmosphere is at rest with respect to the planet, but in the solar-fixed
reference frame, 2, and thus u®*, include a term due to the rotation of
Venus.

Once 2(c) has been determined at each vertical level in the
model, the latitudinally varying part of the mean temperature is deter—
mined from the thermal wind equation. Because Venus rotates so slowly,
the thermal wind equation is based on cyclostrophic rather than
geostrophic balance (Leovy, 1973). The equation can be derived from
equation (2.15). 1In Chapter 2 equation (2.15) was linearized by
expressing the variables as sums of a zeroth order basic state term and
a first order perturbation term and keeping only first order terms.

Assuming that the zeroth order terms balance leads to:

R 0 aTl a 1 d
———— — [ cosA — ] =0 — { — [ cosh (g * + fy ) acosAQ 1 +
a2 cosi 9\ a dc  acosh 9
1 d d a2 coszk92
— ——[cosA—( )11} (3.2)
a2 cosA 9A oA 2
where C* = 2sinAQ and fy = 2sinka. Qy = - 2n/(225 earth days), the

rate of revolution of Venus around the sun. Since we have defined
retrograde rotation to be positive, Qy is negataive., Simplifying the

above expression gives
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' 2
R arl 0(Q + Qy)
— —— = GCOSAsinA —

0 (3.3)
a2 oA dc

This is the thermal wind equation. Strictly speaking, it should only be
applied where @ is large. Using the requirement that the hemispheric
average of Tl be zero, equation (3.3) may be integrated to yield

2a2 e 1 cos?a

Ty(e,A) = — o(Q + Qy) — (- -
R dc 3 2

) . (3.4)

This equation is used in the model to calculate Tl' The value of Ti is
calculated and stored at every o-level and every latitude on the
Gaussian grid.

T, is used to obtain the latitudinally varying part of the
static stability, Y1: Recall that

R (1" + 1)) a(T* + Tp)
y( oA ) = =

cp(p, T‘ + Tl) ‘o do

.
y‘(a) is the horizontal average of y. The expression used for <y (o),

rT* aT"

7‘(6) = -

*
cp(p,T )o dc

is now seen to be an approximation good to first order in the expansion
dc
L

® P N
Cp(p, T + Tl) = Cp(p, T ) +—;-'; 'T‘ Tl R

Since p does not vary rapidly with T, the error introduced by this
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approximation is less than 1 % of y*, By definition,

® *
J aT
& R (T + Tl) RT

Yy=Y-7v = - - - _
CP(P: T +Ty) ¢ cp(p, TJi*e dc

1

In order for the model to be stable, y must be greater than zero
at every (o,A) grid point, If y is found to be less than zero at any
point, either the profile of y. or Q must be changed. Regions

82 *
where —— is large and/or y is small are the most 1likely to give
trouble?o These conditions occur in the cloud layer from 50 to 55 km and
in the lowest 30 km of the atmosphere. In order to keep y greater than
zero, the profile of £ in these regions has been smoothed so that the
shear is more uniform than indicated by the day, night, and sounder
profiles. However, even with ——EE—— constant in the lowest 17 km vy is
3(1no)

negative. If y* was increased in this region, the rate of convergence
would be much slower.  Therefore, cyclostrophic balance is not used to
obtain T1 below 17 km, Instead, Tl is assigned values such that y is
zero at the pole and increases towards the equator. When cyclostrophic
balance breaks down, as it may well do when Q is small, the validity of
linearization is in doubt since the imbalance in the zeroth order terms
may be as large as terms in the first order equation. However, the
solution near the ground is also in doubt because of uncertainty in the
forcing and basic state. Obtaining convergence is also a problem,.
Fortunately, the response near the ground does not significantly affect
the upper levels as will be shown in section (4.5).

The profile of & is also used to obtain the basic state

vorticity at each (o,A) grid point. This is simply
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C‘(a) = 2 ginA(o)

when @ does not depend on A.
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3.4 The Sponge Layer

Dissipation was added to the upper levels of our model to absord
upward propagating waves. Without this ’sponge layer' reflections off
the upper boundary would be a serious problem. The form of our dissipa-
tion terms is very simple as shown in equations (2.18)-(2.21). They
give rise, in the absence of other effects, to an exponential decay in
any perturbation from the basic state. This form of the damping in the
momentum equation is called Rayleigh friction and in the heat equation
is called Newtonian cooling.

The physical basis for Newtonian cooling in the upper atmosphere
is the damping of temperature perturbations by emission of infrared
radiation which escapes to space. Since radiation escapes more readily
from the upper levels of the atmosphere, the time required to damp a
given perturbation will decrease as the pressure decreases as long as
local thermodynamic eQuilibrium is maintained. A justification for
using Newtonian cooling to approximate the cooling—-to—space process is
given by Pollack and Young (1975). They assumed that the mean state of
the upper atmosphere was radiative equilibrium and used a radiative
transfer model to calculate the net infrared flux due to arbitrary
temperature perturbations, AT, Then, at every level they solved Q =
AT/tN for Ty where Q includes the net infrared and solar flux. TNy Vvas
not semnsitive to the value of AT, so they concluded that using this form
of damping with <ty independent of temperature is not a bad
approximation.

The results of several investigations into the infrared

radiative cooling are presented in Figure 3.12. In each of these
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3.12 The radiative time constant, N’ from various sources as
described in the text. The solid curve is based on the
results of Pollack and Young (1975), the dashed curve on
Dickinson (1972), and the dotted and dash/dot curve on D.
Crisp (written communication, 1981),
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investigations a detailed model of the radiative properties of the
atmosphere was constructed and used to derive the time comstant in the
Newtonian cooling approximation. In the model by Dickinson (1972) omly
cooling due to 15 um bands of CO, was included, but the calculation was
extremely detailed. This model is most likely valid above the clouds
where the results of water vapor and aerosols may be neglected. Pollack
and Young (1975) included the effects of water vapor and aerosols
although, of course, the results depend on their model of cloud
structure. In the 1lower atmosphere, where the mean state of the
atmosphere is mnot radiative equilibrium, AT was set equal to the
difference between a convectively adjusted profile and the radiative
equilibrium profile. Since this AT is constant, it naturally leads to a
constant N’ but what this means for the damping of perturbations is
unclear, The values of ™N derived for the 1lower atmosphere are
extremely long compared to tidal time scales which indicates that there
is mnegligible radiative damping of the tides in this region. The
profiles provided by D.. Crisp (personal communication, 1981) are for a
C0,-only model and a COy-plus—cloud model.

Our nominal profile for ™ is shown in Figure 3.13. It follows
Dickinson's curve from 80-100 km and an extrapolation of his curve above
that. Below 60 km our curve follows Pollack and Young'’s model. Between
60 and 80 we smoothly conmect the two regioms; the result lies along
Crisp’'s COy-only curve. Thus, the damping may be stromger in the cloud
region than our profile indicates, and there may be structure in that
region that we have mneglected. However, the effect of a factor of two

or 1less in Ty at these levels is not expected to be significant since
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Figure 3.13 The profiles of the Newtonian cooling and Rayleigh friction
time constants which will be used in all model calculations
unless otherwise noted.
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the solution at these levels is dominated by a propagating wave.

Also shown in Figure 3.13 is the nominal profile of <tp, the
Rayleigh friction time constant. Since the profile of TR has not been
well constrained by models or observations, we have simply chosen TR™C.
The sensitivity of the results to the constant of proportionality will
be evalmated using the gravity wave model in section 4.5. Damping of
momentum perturbations may not be very well approximated by Rayleigh
friction, but including a higher order parameterization such as a

diffusion term would unacceptably increase the complexity of the

calculation,
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3.5 Tidal Forcing

The forcing for our model is derived from the daily variation in
heating due to absorption of solar radiation. Most of the absorption
takes place in the upper cloud region between 60 and 70 km. Data on
this absorption was obtained by the Pioneer Venus Large (or Sounder)
Probe Solar Flux Radiometer (LSFR) (Tomasko et al., 1980a). The LSFR
measured the net flux in the spectral region 0.4-1.8 from 65 km to
the surface at a solar zenith angle of 65.7°. A model was constructed
by Tomasko et al. (1980a) to estimate the globally averaged bolometric
net flux from the data as shown in Figure 3.14. The results were
extrapolated to the top of the atmosphere by the dashed curve. The
heating rate at each level is proportional to the vertical derivative of
the net flux. We assume that all the absorbed radiative energy goes
directly into thermal energy.

Above the levels at which the LSFR operated, theoretical results
predict large heating rates due to absorption of near infrared radiation
by CO, (Figure 3.15) (Dickinson, 1972). Since the heating rate peaks at
400°/day. this absorption provides a significant tidal forcing.
Although the heating rates are large, the amount of energy absorbed is
quite small due to the low density at these altitudes.

The forcing as a function of time is resolved into a net heating
and a variable component which has a zero daily mean. There is also a
net cooling due to infrared radiation to space. The infrared cooling is
assumed to have negligible daily variation. The globally averaged

net solar heating and infrared cooling should balance unless there is a
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ALTITUDE (KM)—

The lower curve is the bolometric, globally averaged, net
solar flux according to the nominal model of Tomasko et
al, (1980a). The solid triangles are based on measurements
in the LSFR 0.4-1.0 pym spectral channel, while the diamonds
are based on the 0.4-1,0 pm and 1.0-1.8uym channels
combined. The upper curve and the open triangles are the
largest possible offset of the nominal model due to
calibration errors. The solid and open circles represent
intermediate calibration errors. The net flux above 65 km
is modeled by Tomasko et al. (1980a) as the dashed curve
and crosses. This figure is from Tomasko et al. (1980a).
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Dickinson (1972),
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significant heat source in the interior of Venus or a secular warming or
cooling of the atmosphere. The globally averaged thermal flux from the
planet, based on OIR data, is 153 +13 W/m2, while the amount of sunlight
absorbed is 132 +13 W/m2, based on a Bond albedo of 0.80 +.02, also
measured by the OIR (Tomasko et al., 1980b). The measurements agree
within the error bars. In the model the globally averaged incoming
solar flux, which determines the amplitude of the daily variation, is
based on these measurements. 122 W/m2 is absorbed in the clouds and 5.5
W/m®? is absorbed higher in the atmosphere by CO, in the near infrared.
17 W/m? is absorbed at the ground (Tomasko et al., 1980a).

The forcing in the model is provided by the term Q'in the heat
equation (2.20); its units are degrees * sec”l., The flux in W/m? is

related to Q' as follows:

1072 F  -g F

ey dz CpPs do

where F'is in W/mz, z is in km, and the other terms are in cgs units.
’
F is the total flux minus the zonal mean flux. The total flux is a

function of the solar zenith angle, Gs, and is approximated in this work

by



F(c,8,) = y *
0 » es > n/2
where F(o) is the global mean flux and C, is a normalization
factor. C,= 2(n + 1). Substituting cos 6, = cos © cos 4, where © and

§ are latitude and longitude, and determining the Fourier components of
the 6 dependence gives

@

F(c,8,) = F(o) C, cos® © 2. Cmeimé
m=—o

r
F is given by the same expression minus the m = 0 term. The sum of the

Iml = 1 terms gives the diurnal component of the flux, the Iml = 2 terms

give the semidiurnal component, etc.

n/2
1 .
Ly B S cosB 6 eiMbyy
2n
-n/2

An n of 1.6 gives the best fit to the values of Tomasko et al.
(1980a) for relation between the globally averaged flux and the flux at
the sounder site from the ground up to 65 km. This value for n is not
based on data, but on a model of the scattering properties of the
atmosphere. This is unavoidable since only one probe has measured the
net flux as a function of height. At the ground, where the net flux is
approximately equal to the downward flux if the surface albedo is low, n
may be estimated by comparing the Pioneer Venus and Venera probe data as

is done by Tomasko et al. (1980b). This gives n = 1.7, nearly in
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agreement with the model. High in the atmosphere n should decrease
until the flux becomes independent of solar zenith angle. However,
since the level at which n = 0 is not well constrained, in our model n =
1.6 at all levels.

The vertical dependence of the absorption in the clouds measured
by the LSFR was fit to an analytic expression for use in the model. The

formula chosen was

aF C
do (1 + c/co)r

C, o and r are free parameters. The corresponding heating rate is

ol
nearly constant high in the atmosphere, decreases rapidly below the
clouds, and is nearly zero in the lower atmosphere. Since the data are
in terms of F (Figure 3.14), the above expression was integrated to
yield

Co

AF =F(o) - F(o) = ——— [1-(1+a/lo) %11
-r+l

The parameters C, o and r were determined by a brute force nonlinear

o’
least squares fit to AF. The LSFR values for F and AF are given in
Table 3.2 along with the best fit analytic AF, For the best case
C = -.902145 x 10°, o, = .122096 X 1072, and r = 1.9.

A net flux of 17 W/m? at z = 0 is. absorbed by the ground
(Tomakso, et al., 1980a). This absorption will heat the surface which

will, in turn, heat the atmosphere in contact with it. The heat will

then be distributed over the lower atmosphere by convection, radiationm,



122

TABLE 3.2

SOLAR FLUX, F, and AF = F(95) - F(z) in ¥V/m?

Altitude, km . F from LSFR° . AF from LSFR . AF from model
0 17 125 122
5 17 125 122

10 17 125 122
15 17 125 122
20 18 124 121
25 23 119 121
30 26 116 120
35 29 113 119
40 32 110 117
45 33 109 113
50 33 109 107
55 38 104 917
60 59 83 71
65 100 42 51
70 118 24 25
75 128 14 11
80 136 6 4
85 140 2 1
90 142 0 0
95 142 0 0

*LSFR data are from Figure 17 of Tomasko et al. (1980). (Figure 3.14 of
this thesis)
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and/or conduction. This heat will also contribute to the tidal forcing.

Unfortugately, not enough is known about the state of the lower
atmosphere to constrain its distribution very well. We have studied its
effect in various cases in the gravity wave program. If the stability
near the ground is low, as in our nominal basic state, the propagation
of the tidal disturbance into the upper layers is weak. Also, if the
heating is confined to the lowest level in the model, the tidal response
falls off rapidly with height independent of the stability. Thus, the
heating at the ground has been omitted under the assumption that it
would not affect the solution at the clouds and above. However, this
heating is important locally so our solution is incomplete in the lowest
layers.

Another important component in the tidal forcing is due to
absorption of solar near—-infrared radiation by C02. According to
Dickinson (1972) the heating rate due to this absorption has the
vertical dependence shown in Figure 3.15. It reaches a peak of about
400K/day at 120 km and appears to fall off exponentially above and below
that. However, assuming that the fall off is exponential over the
entire atmosphere leads to a total absorption of 3600 W/mZ! Since the
actual absorption must be much less than this, a better representation
for the vertical dependence is

oF ~{1F-F 1id 12
Ce

do

where 55 is in -1lnc units; 3!0 is -1lnoc at 120 km. If C =

-3.54 x 105 W/m2, then the heating rate is 400 K/day at 120 km. Values
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of 3.1 for d and 1.5 for n were chosen to give a good fit to the curve
in Figure 3.15 below 120 km and to give a total absorption of about

5W/m2.
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CHAPTER 4

RESULTS OF THE VENUS TIDAL CALCULATIONS
4.1 Introduction

The most important results of our model for Venus atmospheric
thermal tides are an explanation of the unusual aspects of the Pioneer
Venus orbiter infrared radiometer (OIR) tidal data and an estimate of
the effects of the tides on the mean state of the atmosphere.

The ability of the model to reproduce the OIR tidal amplitudes
and phases, which is discussed in Section 4.2, increases our confidence
in the validity of the model input parameters described in the previous
chapter and in the validity of the model itself. Most of the input
parameters for the basic state, forcing, and damping were based on
temporally and spatially limited data or theoretical models. Since the
tides are a global scale phenomenon, the success of the model gives
support to the assumptions that the model inputs are not significantly
affected by transient or local perturbations and that the models also
adequately represent globally averaged conditions., Since studies other
than ours rely on thesé assumptions, independent work which supports
their validity is important.

The output of the model can be used to understand some aspects
of the OIR tidal data which could not be easily explained by classical
tidal theory. This is interesting and important because the model
calculations reveal the true nature of Venus thermal tides, which was
not at all evident in the OIR data. The puzzling OIR results, which are
described in Section 4.2, arose because of the low vertical resolution

of the experiment. Its resolution is low due to the 10 km width of the
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weighting functions. Our model calculations have much higher vertical
resolution, which when degraded to the OIR level, reproduce the OIR
results: At the end of Section 4.2 our results are checked for
consistency with data from other Pioneer Venus experiments.

In Section 4.3 we discuss the sensitivity of the OIR weighting
functions to changes in the cloud properties. The weighting functions
of the two lowest OIR channels are affected by the height distribution
of cloud particles. The cloud properties are not well constrained by
observations. A good fit of our model results to the OIR data is
obtained with a cloud in the mid range of those allowed by the observa-—
tions. However, the fit is not unique since other combinations of cloud
properties also give good results.

The agreement of the model solution and the OIR data is
meaningful only if the convergence and spatial resolution of the model
are adequate. In Section 4.4 an evaluation of these model properties is
presented. Several areas of weakness exist, but in gemeral the model is
numerically sound.

The important question of the model’s sensitivity to ckanges in
the input parameters is discussed in Section 4.5. The sensitivity
study was done primarily using the gravity wave model. It is shown that
the results of the gravity wave model and the full model are analogous
for the same input parameters. The general properties of the tidal
fields are unaffected by large changes in the input parameters, but the
details of the solutions are often quite sensitive.

The ultimate goal of this research was to ascertain whether the

tides make a significant contribution to maintaining the basic state of
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the atmosphere. Since our model is linear, to first order the tides
have no mean affect. However, second order transports of energy and
momentuﬁ can be calculated from the tidal perturbations. These results
are presented in Section 4.6, The tidal transports compete for
dominance with those due to eddies other than the tides and the mean
meridional circulation. The net effect of all these together must be to
maintain the high zonal winds against friction and to keep the
latitudinal temperature gradient small. The other eddies, of course,
have been omitted in this study. However, we have solved for the net
effect of the tides and the mean meridional circulation. The mean
meridional circulation is forced mainly by the latitudinal gradient in
the mean solar heating, but is modified by the presence of the tides.
Our calculations show that the magnitude of the zonal angular momentum
flux due to the tides is several times larger than that due to dissipa-—
tion. The dissipative term was based on several estimates of the eddy
viscosity. Even though the magnitude of the tidal terms is certainly
large enough for them to have an effect on the mean zonal wind, the
profile of the tidal accelerations with height is not such that it
transports momentum into the core of the jet as required. The same is
true of the accelerations due to the mean circulation, althougk these
calculations are very uncertain., Thus, it seems likely that other
eddies play an important role in maintaining the rapid rotation of the
atmosphere, although the tides and the mean circulation cannot be

neglected.
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4.2 Comparison of Model Tides with Observations

A determination of the solar fixed component of the variable
brightne;s temperature has been obtained from the Pioneer Venus OIR data
by Taylor et al. (1980) and Elson (1982), In this section, after a
brief discussion of the OIR instrument data analysis, a comparison of
this determination with the model results for the solar thermal tides is
presented. The vertical dependence of the OIR tidal amplitudes and
phases is explained in light of the model results., Finally, our model
results are compared with other relevant data sets.

4.2.1 The OIR Data:

The OIR measures the brightness temperature in five infrared
spectral channels. The spectral passbands of these channels are in
parts of the spectrum with different amounts of absorption due to C02 SO
that each channel samples a different altitude range. The tidal signal
in the OIR data is determined by Fourier analyzing the brightness
temperatures with respect to solar-fixed longitude. The results are the
diurnal and semidiurnal amplitudes and phases as a function of latitude
with some information about the vertical dependence. These results were
obtained by Taylor et al. (1980) for a preliminary data set and by Elson
(1982) for the final, much larger, data set.

The channels for which tidal data are available are channels 2-5
and the 'high sieve’ component of channel 1. The weighting functions
for these channels, which represent the sensitivity of the detectors as
a function of altitude, are shown in Fig. 4.1. Channels 2-4 are located
within the 667 cm L (15 pum) band of CO, and are about 10 em 1 wide.

They are sensitive to the altitude range 70-90 km with weighting
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Figure 4.1 Weighting functions used to obtain model brightness

temperatures in the OIR channels. A table of weighting
function values was provided by L. Elson (persomnal
communication, 1982),
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function widths such that each channel measures the mean temperature in
a 10 km layer. The weighting function of the lowest channel in this
group, channel 4, is somewhat affected by cloud opacity. In channels 2
and 3 only 002 opacity is important. Channel 5 is located in a window
of low C02 absorption at 11.5 pm and is sensitive to temperatures near
the cloud tops. The channel 5 weighting function depends on the height
of optical depth unity of the cloud particles and on the scale height of
the cloud particles. The weighting function for the 'high sieve’ compo-
nent of channel 1 (which will be referred to simply as channel 1) peaks
at about 100 km.

Elson (1982) Fourier analyzed the brightness temperatures from
channels 2-5 into diurnal and semidinrnal amplitudes and phases vs.
latitude. These recent results are more reliable than those in Taylor
et al. (1980) becanse the final data set included more observations and
had improved geometry. The data were averaged over 1° 1atitude bins,
but were Fourier analyzed without binning in longitude. Limb darkening
effects were removed by an empirical polynomial technique. The results
for channel 1 in Taylor et al. (1980) were obtained by averaging the
data in 500 km square bins before Fourier analysis of the channel 1
brightness temperatures. Limb darkening effects were not removed.
Therefore the results for channel 1 must be considered more uncertain.

The OIR tidal results for channels 2-5 (Elson, 1982) are shown
in Figs. 4.2-4.9. These figures contain plots of brightness temperature
amplitude and phase versus latitude for both the diurnal and semidiurnal
tide. Curves from the nominal tidal model of this thesis are shown

also. In Tables 4.1-4.4 observed and model values for amplitude and
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phase of the brightness temperature variation are given at two latitudes
for a quantitative comparison. In the tables and plots phase is given
in terms of the time of maximum temperature. These times are local
solar times on Venus. An 'hour' is 1/24 of the distance around the
planet. Since the rotation rate varies with height, the time interval
of an 'hour’ of local time will also vary with height. Semidiurnal
maxima occur twice a day so the phases are conveniently given in the
tables in terms of an ordinary 12-hour clock. Diurnal phases are given
in terms of a 24-hour clock.

4.2.2 Model Brightness Temperatures:

The model brightness temperatures were obtained by first calcu-
lating infrared radiances at the appropriate frequency for each channel
from the model temperature, T* (o) + T;(o,A) + T%c,x,d). T%c, A, @)
consists of the diurnal and semidiurnal tidal temperature perturbation.
For each channel the radiance at a given latitude and longitude was
convolved with the weighting function, and the result was converted to a
brightne;s temperature. Then, at each latitude the brightness
temperature as a function of 4 was Fourier analyzed to give the diurnal
and semidiurnal amplitude and phase. It is necessary to perform this
Fourier analysis because the radiance is a nonlinear function of the
temperature. The weighting functions used are shown in Fig. 4.1 (Taylor
et al., 1980; Elson, written communication, 1982). The weighting
functions for channels 4 and 5 were calculated for a cloud that reaches
optical depth unity at 100 mb (about 65 km) with a cloud scale height of

0.4 times the gas scale height.
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TABLE 4.1

SENIDIURNAL TIDE AT THE EQUATOR

AMPLITUDE, DEG PHASE, HOUR OF MAX
HEIGHT OIR MODEL OIR MODEL
1 100 km 6.0 4.9 12:00 11:58
2 90 km 4.0 3.5 1:40 12:27
3 80 km 3.7 4.4 7:40 5:54
4 70 km 2.5 3.1 9:00 9:16
5 cloud 2.6 3.3 10:00 10:00

tops
TABLE 4.2
SENIDIURNAL TIDE AT 40°

AMPLITUDE, DEG PHASE, HOUR OF MAX
HEIGHT OIR MODEL OIR MODEL
1 100 km 3.7 3.0 1:00 11:57
2 90 km 2.9 1.5 1:40 12:29
3 80 km 2.6 1.2 6:15 6:11
4 70 km 1.5 N 9:15 8:49
5 cloud 1.2 T 10:00 9:26

tops
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TABLE 4.3

DIURNAL TIDE AT THE EQUATOR

AMPLITUDE, DEG PHASE, HOUR OF MAX
BEIGHT OIR MODEL OIR MODEL
1 100 km 10.0 17 .4 10:00 11:59
2 90 km 1.0 2.0 6:00 9:48
3 80 km 1.5 1.3 15:00 17:36
4 70 km 1.3 0.7 16:00 16:34
5 cloud 0.5 0.7 14:00 15:00

tops
TABLE 4.4
DIURNAL TIDE AT 40°

AMPLITUDE, DEG PHASE, HOUR OF MAX
HEIGHT OIR MODEL OIR MODEL
1 100 km 8.0 12.8 10:00 11:59
2 90 km 2.3 1.9 7:15 8:16
3 80 km 1.1 1.0 22:45 17:44
4 70 km 1.2 1.2 17:00 18:14
5 cloud 0.9 1.1 14:15 18:39

tops
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From Figs. 4.2-4.9 it may be noted that the agreement between

the model and the data is best between the equator and about 50°
latitudé. Poleward of 50° there is a tendency for there to be more
structure in the data than in the model. Since the nominal model was
run with only the three lowest order terms in the Legendre expansion,
this is mnot too surprizing. There is probably also latitudinal
dependence in the mean zonal wind and temperature profiles that was not
included in the model. Even with these restrictions, however, in many
cases the model curves show a general trend which is consistent with the
data at higher latitudes. See, for example, the diurnal amplitude in
channels 4 and 5 (Figs. 4.8 and 4.9) and the semidiurnal phase in
channel 2 (Fig. 4.2). It is probable that fine tuning model parameters
and inclusion of additional latitudinal structure in the basic state and
tidal fields would result in closer agreement between the model and the
data. However, the expense of the computing time required for such a
study is prohibitive, and the data does not warramt it. First,
parameters of the basic state and solar forcing are somewhat uncertain,
Second, although it is‘difficult to determine error bars for the data,
near the equator the amplitudes are probably accurate to within omne or
two degrees, and the phase is good to an hour or two (Elson, personal
communication, 1982). The accuracy is better in the polar regions
because of better OIR coverage., Thirdly, the OIR weighting functions
are uncertain, especially in channels 4 and 5, so the brightness
temperatures derived from the model are equally uncertain.

Perhaps the best argument for not striving to achieve the best

possible agreement with the data is the fact that the actual tidal
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profiles are not as sensitive to the input parameters as the brightness
temperature amplitudes and phases derived from them. As shown in
Section ’4.5, changes in the basic state and solar forcing which do not
alter the tidal solution significantly may have a relatively large
effect on the brightness temperature amplitude and phase. Therefore,
the conclusions we draw about the significance of tides in the Venus
atmosphere are not likely to be affected by the changes in the input
parameters which would be required to match the data exactly.

The tidal temperatures calculated by the model are shown in
Figs. 4.10-4.13., Diurnal and semidiurnal amplitudes and phases are
plotted at the equator and 40°, These tidal temperatures are from the
same case used to calculate the model brightness temperature amplitudes
and phases shown in Figs. 4.2-4.9 and Tables 4.1-4.4. The points on the
figures give the values at each level of the vertical grid, thus giving
a rough idea of the adequacy of the vertical resolution. The grid
points are equally spaced in -1n o. A summary of the numerical
parameters in the nominal model is given in Table 4.5. The basic state
was described in Chapte.r 3.

4.2.3 Semidiurnal Temperature Variationms:

The amplitude and phase of the semidiurnal tidal temperature
perturbations revealed in Figs. 4.10 and 4.11 could not be determined
from the information in Tables 4.1 and 4.2 alone. In fact, the nature
of the brightness temperature perturbations in the 5 OIR channels led to
some very puzzling interpretations. Since the phase does not change
much in the lowest 3 channels, it was thought that the tide did not

propagate in this region (Taylor et al, 1980). There are four
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TABLE 4.5
DIURNAL SEMIDIURNAL

NUMBER OF VERTICAL POINTS 218 110
TOP OF RESOLVED REGION 18 18

(IN -1no)
NUMBER OF TERMS IN LEGENDRE 3 3

EXPANSION
NUMBER OF POINTS IN 7 7

GAUSSIAN LATITUDE GRID
TIME STEP 14400sec. 7200 sec.
NUMBER OF TIME STEPS 1200 1600
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situations which lead to a non-propagating solution: the trapping of the
response due to the frequency being less than twice the vertical compo-
nent of the rotation vector, trapping due to the frequency being greater
than the Brunt-Vaisala frequency, the suppression of propagation by
damping, or the presence of a standing wave. We discuss these
possibilities below.

As discussed in the section on terrestrial thermal tides in
Chapter 2, the condition that the frequency be more than ZQRsink for
propagation to be possible is an extrapolation from a theory derived for
a rotating plane (Eckart, 1960). The semidiurnal tide meets this fre-
quency requirement at all latitudes and therefore should not be trapped,
but if it were trapped, the maximum temperature would occur at 3:00 AM
and 3:00 PM, following the peak heating, instead of 7:40 to 10:00 AM
and PM as seen in the data. In the atmosphere at the cloud tops and
above, the static stability is quite high, so there is no doubt that the
tidal frequency is less than the Brunt-Vaisala frequency.

If radiative damping were the dominant restoring force, then in
terms of Newtonian cooling, T'/tN =Q, so the phase of the temperature
perturbation would track forcing at all levels. Thus, for the semi-
diurnal tide the maximum temperature would occur at noon and midnight,
which disagrees with the data. It is unlikely that radiative damping is
the dominant force anyway, since if the models for the radiative time
constant reviewed in Chapter 3 are correct, then TN varies from 5 to 40
earth days between 80 and 65 km. Since the atmosphere rotates with a
period of about 4 days in this region, radiative damping may not be

negligible, but it is probably not the most important effect. If
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viscous damping is the dominant force, the situation is more
complicated, but in terms of Rayleigh friction, if Tp decreases with
height,‘as in the model, the phase of T' will once again track the
forcing.

In the case of a standing wave, the phase could have the correct
value. However, to create a standing wave in this region, the major
source of forcing must be located above 80 km. From the measurements
made by the solar flux radiometer, it is clear that most of the
radiation is absorbed in the clouds. The near—-infrared absorption by
CO,, which peaks at 120 km, should set up a standing wave between this
level and the ground, but its presence is masked by the response to the
much larger forcing below.

The resolution of these difficulties can be seen in Figs. 4.10
and 4.11, Above 55 km there is an upward propagating wave. In the
region sampled by channels 3-5 the wavelength is quite long, about 30
km, so that the phase does not change much from one channel to the next.
In the clouds around 55 km there is a thin layer where the wave does not
propagate due to low static stability. In this layer the terms
involving y‘ in the thermodynamic equation are negligible, so the zonal

advection and the forcing nearly balance:
L
imQT = Q
! 3 .
The phase of T lags the phase of Q by n/2 so the semidiurnal

maxima of temperature are at 3:00 AM and 3:00 PM. The combination of

the phase being fixed at 3:00 at 55 km and the long wavelength above
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that level leads to the post-dawn and post—-sunset maxima seen in the
three lowest OIR channels. Between 80 and 90 km the wavelength
decreases due to increasing stability and decreasing zonal wind. (The
dependence of the wavelength on these parameters can be qualitatively
determined from the dispersion relation for gravity waves. See
equation (2.43).) This decrease causes a large phase shift to occur
between channels 2 and 3. The channel 2 weighting function actually
gives most weight to the points near 85 km, resulting in a phase near
12:00.

Above 90 km the model response is damped which causes the phase
to be near 12:00 as discussed above. In the OIR data the channel 1
semidiurnal phase varies from 12:00 to 1:00 between 0° and 40°.
Obviously, if the wave continued to propagate above 90 km, the phase in
channel 1 could still come out to be near 12:00, but the damped model is
preferred because the predicted amplitude is close to the OIR amplitude.
In an undamped upward propagating gravity-type wave, the amplitude

increases proportional to 6—1/2

» which would lead to too large an
amplitude in channel 1. Also, the wave cannot propagate upward
indefinitely since energy cannot be transported to infinity dynamically.
At some point the energy must be converted to heat and radiated to
space. We have modeled this process by the damping terms. It was
originally intended that the ’'sponge layer’ should become effective at a
level far above those of interest. However, the theoretical values of
the radiative Newtonian time constant, TN, are short compared to 1/2n

times the tidal periods at altitudes above 90 km. Moreover, our model

results agree with the amplitude and phase of the OIR data when these TN
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values are used. Thus, we conclude that the tides are heavily damped
above 90 km.
4.2.4 Diurnal Temperature Variations — Amplitude:

The diurnal tide, like the semidiurmnal, could not be understood
from the OIR measurements alone. The major mystery for the diurnal tide
is the observed amplitudes in channels 2-5 which are smaller than the
observed semidiurnal amplitudes from the equator to 50°, This phenomenon
is reproduced by the model brightness temperatures. See Figs. 4.2-4.9
and Tables 4.1-4.4, The relatively low diurnal brightness temperature
amplitude is mysterious because there are two factors which tend to make
the diurnal temperature amplitude larger. First, recall from Chapter 3
that the amplitude of the forcing for a given longitudinal wavenumber,

n
m, is proportional to I /Zcos g eimd dé. For n = 1.6, C1/C2 =

n/2
1.864. Second, for thermally forced gravity-type waves the amplitude of

5 is inversely proportional to the frequency. The diurnal frequency,
Q, is half the semidinrﬁal frequency, 29. Thus, the diurnal amplitude
would exceed the semidiurnal by a factor of ~3.7 if the frequency and
the forcing amplitude were the only contributing factors.

From the model temperature amplitudes shown in Figs. 4.12 and
4.13 it is clear that the diurnal amplitude of the model temperature
perturbation is larger than the amplitude of the model brightmness
temperature perturbation. Also, the model diurnal and semidiurnal
temperature amplitudes are not in the above ratio over most of the
altitude range covered by the OIR. In fact at the equator they are

nearly equal from 60 to 80 km. Thus, the problem of the diurnal

brightness temperature amplitudes has been broken down into two separate
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questions: 1. Why are the diurnal amplitudes of the model brightness

tempera{ures less than those of the model temperatures from which they
were calculated? 2. Why isn't the ratio of the model temperature
amplitudes equal to ~3.7?

The answer to the first question is straightforward. As shown
in Figs. 4.12 and 4.13, the diurnal tide is characterized by an upward
propagating wave between 60 and 90 km. The semidiurnal tide also
propagates in this region, but with a much longer wavelength. The
wavelength of the diurnal tide is about 7 km. Since the width of the
OIR weighting functions is between 5 and 10 km, the convolution of the
model temperatures and the weighting functions performed to calculate
the model brightness temperatures in the OIR channels results in a
significant amount of cancellation. A simple example of this effect is
obtained by considering a cosine wave with constant amplitude and a
normalized Gaussian weighting function. The resulting 'brightness

temperature’ is proportional to
@
a2 12 2
(2a/ym) % e 2% cos bz dz = D /42

which decreases monotonically as b increases or a decreases. The actual
case is mnot as simple because it involves the radiance instead of the
temperature itself and empirically determined weighting functions, but
the principle is the same. At the equator where the diurnal and
semidiurnal amplitudes of the model temperature perturbations are nearly
the same, the diurnal amplitude of the model brightness temperature is

less because the diurnal tide has a shorter wavelength.
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As latitude increases, the diurnal brightness temperature
amplitude increases relative to the semidiurnal until finally they cross
as can be seen in Figs. 4.2-4,9, The crossover occurs at a lower
latitude in the model than in the data, another probable consequence of
our simple latitude dependence. Even at mid-latitudes, however, the
diurnal brightness temperature amplitude in channels 3-5 is only about 1
K while our model predicts a temperature oscillation between 60 and 80
km with an amplitude of about 10 K. Note that if the ~1 K diurnal
amplitude in the OIR brightness temperature is real and if the model
wavelength of ~7 km is correct, then the actual diurnal temperature
oscillation on Venus must have an amplitude of about 10 K at equatorial
and mid-latitudes.

The answer to the second question is not so unambiguous. It
seems likely that the diurnal response is somewhat suppressed for the
same reason the terrestrial diurnal tide is weak. Since the forcing is
spread out over more than a diurnal wavelength, destructive interference
takes place between waves excited at different levels., The semidiurnal
wavelength is longer, so the atmosphere tends to respond more coherently
to the forcing at this frequency. On the earth the wavelength of the
main semidiurnal mode is much longer, about 200 km, so this effect is
very strong. On Venus the semidiurnal wavelength in the region of the
forcing is about 30 km, four times the diurnal wavelength, which might
be enough to equalize the response at the two frequencies.

The above discussion may put the question of the relative

amplitudes to rest, but it raises the question of the relative vertical
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wavelengths. Why is the wavelength of the semidiurnal tide about four
times tﬁe wavelength of the diurnal tide? The dispersion relation for
two dimensional gravity waves derived in Chapter 2 (equation 2.43)
predicts that the vertical wavelength for the diurnal and semidiurnal
tides should be the same. For a gravity wave the vertical wavelength
depends only on the static stability and the phase speed and not on the
frequency. Since the gravity wave theory is inadequate, the difference
in wavelength must come about because of the meridional structure of the
tides. This dependence is illustrated by the separable tidal equationms
where the eigenvalue for each meridional eigenfunction or Hough mode
determines the vertical wavelength. These eigenvalues have been
calculated for the earth, but knowing what they are does not insure
understanding why they differ. A simple derivation will help. Consider
an atmosphere on a horizontal x-y plane with a constant velocity in the
x direction. Let the atmosphere be isothermal, Then the linearized

divergence and heat equations (2.19 and 2.20) reduce to

2

9°W
(iku‘ + ivV) ¢ —

862

RvZ T'

Y ’

* ’
vy W (iku + iv) T

At this point in the gravity wave case we assumed that the solution had
’ : ’
no y dependence. Now let W « eilY, where 1 is constant, so thatv® W

- (k2 + 12) W'. The solution for the vertical structure is then W'(c)

W,ol/2

-—

s ; ’ *
e ti0lno  yp.re  the dispersion relation for W is R(oy )
® Z ®
(u k +V) 2 (wz + =) oy is a constant. This dispersion
4
relation is the same as the ome for gravity waves except for the factor

(x2 + 12)
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2 Let v=0, u = all, and k = 2nm/a to obtain a ’'tidal’ equivalent
gravity wave as before. Then

o Vi+ @p?-1/4

0)2 \/1 + (n2)2/4 = 1/4

where n =1 a/2n. If n; 2 n,/2, then w; > w, which implies that the
diurnal wavelength will be shorter. This simple case cannot be expected
to accurately predict the ratio of the diurnal to the semidiurnal wave-
length, but since both are dominated by the low Legendre modes (ny=
n2), qualitatively one expects the diurnal wavelength to be shorter.
Since only the three lowest modes were included in the model, it might
be suspected that this result is an artifact of the low horizontal
resolution. It will be shown in the next section that the resolution is
adequate.

4.2.5 Diurnal Temperature Variations — Phase:

The diurnal phases do not require a lengthy discussion like the
diurnal amplitudes. Overall, the agreement between the model and the
OIR is quite good for the diurnal phases (see Tables 4.3 and 4.4). VWhen
comparing discrepancies in the diurnal phase to those in the
semidiurnal, remember to take At/p where At is the difference between
the model and the OIR and p is the period. A one hour discrepancy in
the diurnal phase is the same as a half hour discrepancy inm the
semidiurnal., The diurnal agreement is remarkable because all the fine
adjustments of the basic state and weighting functions were made to
optimize the fit to the semidiurnal amplitudes and phases. No special

effort was made to fit the diurnal results. Thus, the good agreement
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between'the model and the OIR for the diurnal amplitudes and phases may
be considered an independent check of the validity of the model, unless
the agreement is fortuitous.

The agreement in the diurnal phase is surprizing because the
dirunal wavelength is so short. Since the phase is varying so rapidly
with height, the phase of the brightness temperature is expected to be
very sensitive to any changes in the patterns seen in Figs. 4.12 and
4.13. Small changes in the basic state could affect the variation of
phase with height enough to cause a significant change in the phase of
the brightness temperature. The phase of the brightness temperature
would also be sensitive to a variation in the cloud properties which
would alter the weighting functions of channels 4 and 5.

Evidence that the diurnal phase is difficult to determine
accurately is given by Diner et al. (1982). This paper reviews all the
ground-based observations of solar-locked components in the infrared
emission and compares them to the OIR results. The ground-based
observations are in the 11 pm region so they can be compared to the
OIR's channel 5. They cover solar longitudes not observed by the OIR in
the equatorial region, specifically in the pre—-dawn and aftermoon
quadrants. The semidiurnal amplitude and phase and the diurmnal
amplitude determined from the entire data set agree well with those
based on the OIR channel 5 data alone. However, the diurnal maximum
determined from the entire data set is at about 4:00 AM local time,
whereas the OIR diurnal maximum in channel 5 is at 2:15 PM. Diner et

al. (1982) interpret this discrepancy as being due to inadequate
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longitudinal coverage by the OIR., This is certainly possible and,
indeed, is the most probable explanation. However, it is also possible
that the discrepancy is caused by the different spectral passbands of
the ground-based and spacecraft observations. The different spectral
passbands will cause the weighting functions to differ. Because of the
short diurnal wavelength caution should be exercized in comparing
results from instruments with different weighting functions.

4,2,.6 Channel 1 Results:

The results for channel 1 were not included in the above
discussion because they do not fit the pattern seem in the other
channels. In channel 1 the diurnal amplitude is larger than the semi-
diurnal at equatorial to mid-latitudes (Taylor et al., 1980). According
to our model this occurs because the response is damped in the region of
the channel 1 weighting function. Since the phase is constant near noon
in both the diurnal and semidiurnal components, there are no inter-—
ference effects, and the model temperature amplitude is observed in the
model brightness temperature. The 10:00 diurnal phase seen in the OIR
(Tables 4.3 and 4.4) is a minor problem. As mentioned earlier in
Section 4.2,1, the channel 1 results are not as reliable as the other
channels, so an error of two hours is possible. The discrepancy between
the model and OIR diurnal amplitude could also be explained by the poor
quality of the channel 1 results. Varying the amount of damping will
change the diurnal amplitude, but not independent of the semidiurnal

amplitude.
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4.2.7 Other Pioneer Venus Observations:

‘'Of the instruments on Pioneer Venus, only the OIR obtained a
data set of 1large enough spatial and temporal extent to detect tidal
oscillations in the Venus atmosphere. However, we can at least check to
see if our tidal results are consistent with other more limited data
sets. For example, see Figs. 4.14-4,16. These figures show the model
temperature profiles, including T‘, Tl’ and Tz at the probe sites. The
perturbation temperature, T'. includes both the diurnal and semidiurnal
components. The oscillations between 60 and 90 km are the manifestation
of the solar tide. The short vertical wavelength indicates that the
diurnal tide is most prominent. These profiles may be compared to those
obtained by Seiff et al. (1980) from the atmospheric structure
experiment on the Pionmeer Venus probes. The probe data show some
waviness in the region 60-90 km, but for the day and north probes the
tidal oscillation, if present, is obscured by noise. The predicted
oscillation at the sounder probe site is large enough to have been
detected, but the observed sounder probe profile is the smoothest of
all the probes. The tidal signal may have been lost due to low
resolution. The data in this region was obtained from the probe
decelerations and has a vertical resolution of about 3 km. Seiff et al.
(1980) also note that only waves with vertical wavelengths greater than
7.5 km are to be considered real. Smaller scale oscillations are due to
measurement noise. Thus, the diurnal tide is on the borderline of
detectability by this experiment, and most of its amplitude may have

been smoothed out.
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MODEL TEMPERATURE PROFILE
AT THE SOUNDER PROBE SITE
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Figure 4.14 The model temperature profile at the sounder probe site
including the basic state and the tidal perturbation.
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Figure 4.15 The model temperature profile at the day probe site
including the basic state and the tidal perturbation.
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MODEL TEMPERATURE PROFILE
AT THE NORTH PROBE SITE
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Figure 4.16 The model temperature profile at the north probe site
including the basic state and the tidal perturbation.
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In the observed day and north probe profiles there is an
oscillaéjon with an amplitude of about 100 K above 110 km. According to
our model, this oscillation cannot be due to thermal tides because the
tides are damped in this region. This large oscillation may be some
other type of eddy disturbance or may be a feature of the mean state.

The temperature profiles of the Venus stratosphere obtained by
radio occultations have a vertical resolution of about 1 km determined
by the Fresnel size (Woo et al., 1980). Kliore and Patel (1980, 1982)
have published numerous profiles ranging from equatorial to polar
latitudes. The altitude range covered by these profiles is 50 to 80 km.
Most of the profiles show wavelike structure between 60 to 80 km. The
most prominent wavelength seems to be around 5 km, somewhat shorter than
the 7 km predicted for the diurnal tide. The observed amplitude is
comparable to the model amplitude in Figs. 4.14-4.,16 at mid and high
latitudes but is smaller at low latitudes. In fact, the observed
amplitudes increase at higher latitudes, a trend which is the reverse of
that seen in the model. Whether or not these oscillations in the radio
occultation profiles are solar locked disturbances cannot be determined
from the small number of profiles available. However, the model
predicts that a more sizeable oscillation should be seen at low
latitudes.

Finally, we may compare our tidal meridional velocities to those
measured by the Pioneer Venus DLBI experiment (Counselman et al., 1980).
The measured meridional velocities are much smaller than the zonal
velocities above the lowest 5 km of the atmosphere. The meridional

velocity is due to a combination of eddy motions, including tides, and a
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mean circulation, presumably of the Hadley cell type (Schubert et al.,
1980). Since it cannot be determined if the measured velocities are due
to the tides, all that can be done is to make sure that tidal velocities
are less than or equal to the measured velocities over most of the
atmosphere. A comparison of the tidal model and probe profiles of the
meridional velocity is given in Fig. 4.17. From this figure it can be
seen that the amplitude of the tidal model velocities, which includes
the diurnal and semidiurnal contributions, is not inconsistent with the
measured velocities. In fact, the tides may be responsible for some of
the structure seen in the data above 40 km. The wavelengths are nearly

the same, but the variation of phase with height often does not agree.
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Figure 4.17a The meridional component of the wind at the Pioneer Venus
probe sites from the DLBI experiment (Counselman et al.,
1980). This figure is from Schubert et al. (1980).
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Figure 4.17b The model tidal perturbation in the meridional wind at
each of the Pioneer Venus probe sites. The scale of the
axes is the same as in Fig. 4.17a.
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4.3 "eighting Functions and Cloud Parameters

Tt is easy to imagine that changing various input parameters
would have some effect on the model output. However, it is also
possible to change the model brightness temperatures for channels 4 and
5 by changing the weighting functions independent of any model
parameters. These channels are affected by the presence of clouds whose
structure can be characterized by H,, the ratio of the cloud scale
height to the gas scale height, and ) the pressure at which optical
depth unity is reached. P is uncertain by a least a hundred millibars
(Elson, personal communication, 1982), and Hc is somewhere between 0.1
and 1.0 (Diner et al., 1982)., Our nominal case is Hc = 0.4 and Do = 100
mb.

In a sense, uncertainties in the OIR weighting functions are a
problem for the OIR experiment team. However, since these uncertainties
affect the fit between our tidal model and the OIR data, we discuss them
at some length below.:

The effects of varying Hc and p.are shown in Tables 4.6 and 4.7
for the semidiurnal tide at the equator and 40°. As expected, channel 5
is more sensitive to changes in the cloud parameters than channel 4
since it is a 'window' channel designed to measure cloud top
temperature, If Hc is kept constant and P is increased, the weighting
functions will peak lower in the atmosphere. From Figs. 4.10 and 4.11
one can predict that the effects of lowering the weighting functions
will be to decrease the amplitude and shift the phase towards noon. The

first four entries in Tables 4.6 and 4.7 show these effects. The phase
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TABLE 4.6

SENSITIVITY TO CLOUD PARAMETERS: SENIDIURNAL TIDE AT THE EQUATOR

CHANNEL 4 CHANNEL 5

B, P (mbar) Amplitude Phase Amplitude Phase
0.4 50 4.3 8:26 4.9 8:29

0.4 100 3.1 9:16 3.3 10:00

0.4 200 2.5 9:29 1.8 11:12

0.4 300 2.3 9:35 1.0 11:11

0.85 100 2.9 8:34 2.6 8:43

0.85 200 2.6 9:06 1.6 9553

0.15 50 4.4 8:55 5.2 9:15

0.15 100 2.8 9:35 3.0 10:55
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TABLE 4.7

SENSITIVITY TO CLOUD PARAMETERS: SEMIDIURNAL TIDE AT 40°

CHANNEL 4 CHANNEL 5
o P (mbar) Amplitude Phase Amplitude Phase
.4 50 0.9 8:15 0.9 8:26
.4 100 0.7 8:49 0.7 9:26
.4 200 0.6 9:08 0.6 10:39
.4 300 0.6 9:15 0.4 11:23
.85 100 0.7 8:17 0.7 8:27
.85 200 0.7 8:47 0.5 9:40
15 50 0.7 8:23 0.7 8:47

.15 100 0.7 9:01 0.8 9:59
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in channel 5 at the equator was the determining factor in choosing B =
100 mb from this sequence. The effects of increasing Hc are shown in
the next two entries. Increasing H, while p, is constant broadens the
weighting function and raises its peak altitude. Broadening the
weighting function causes more cancellation to occur since the
convolution includes a larger fraction of a wavelength., However,
raising the weighting function gives more weight to levels with larger
amplitudes. These two effects nearly balance so increasing Hc to 0.85
does mnot change the amplitude very much. The maxima occur earlier, as
expected, when the weighting function is raised. The agreement with the
OIR data for Pe = 200 mb and Hc = 0.85 is as good as in the nominal
case., Thus, there is no unique best fit case. Hc = 0.4 was chosen for
the nominal case because it is an intermediate value. Two cases of
clouds with sharp upper boundaries are included in Table 4.6 and 4.7 for
comparison,

The weighting functions used to calculate the results in Tables
4.1-4.4, 4.6 and 4.7 assumed a viewing angle of the instrument from the
nadir of 35° The OIR data used in the determination of the tides
covered the range 0° to 69.5° (Taylor et al., 1980); 35° was chosen as a
representative value. The effect of changing the viewing angle to 0° is
shown in Table 4.8. The effect is essentially mnegligible.

In calculating model brightness temperatures it has been assumed
that the weighting functions and, thus, Hc and p, are constant in space
and time. If this were true, the OIR channels 4 and 5 would be

sensitive only to temperature differences on constant pressure surfaces.

Actually, Pe is thought to increase towards the pole and to be
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TABLE 4.8 - SENSITIVITY TO VIEWING ANGLE

Viewing Angle = 35° Viewing Angle = 0°
Amplitude Phase Amplitude Phase

wmh WwWwN Do W v AW

w b W

SEMTDIURNAL TIDE AT THE EQUATOR

3.5 12:27 3.5 12:43
4.4 5:54 4.3 6:03
3.1 9:16 3.0 9:24
3.3 10:00 3.1 10:09
SEMIDIURNAL TIDE AT 40°
1.5 12:29 1.6 12:46
1.2 6:11 1.2 6:20
0.7 8:49 0.7 8:57
0.7 9:26 0.7 9:36
DIURNAL TIDE AT THE EQUATOR
2.0 9:48 1.8 9:56
1.3 17:36 1.3 17:37
0.7 16:34 0.7 16:37
0.7 15:00 0.8 15:35
DIURNAL TIDE AT 40°
1.9 8:16 1.8 8:10
1.0 17:44 1.0 17:46
1.2 18:14 3.4 18:13
1.1 18:39 1.0 18:33
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particularly high in the collar region (Elson, 1982; Diner et al.,
1982). However, since the basic state in the polar regiom is not
adequately represented in the model, it is at least comsistent to
neglect the latitude dependence of the weighting functionms.

It is also probable that Hc and P, vary randomly due to
atmospheric disturbances with different time and space scales than the
tides. These fluctuations will shift the weighting functions for
channels 4 and 5 up and down, causing a spread in brightness temperature
at constant solar longitude. These disturbances will also probably have
temperature perturbations on constant pressure surfaces associated with
them. The effect on the tidal results should be small if emough
observations are made at each solar—-fixed longitude to statistically
determine the mean brightness temperature. If there are longitude
regions which were poorly observed, or if there are disturbances with
time scales comparable to the observing period of the OIR (2.5 months),
then some error may be present in the results due to aliasing. The
error in the observed tidal amplitudes is estimated to be less than a
degree in the polar regions, but increases to a few degrees near the
equator due to umneven coverage by the OIR (Elson, personal
communication, 1982)., However, the relative diurnal and semidiurnal
amplitudes observed near the equator are reliable. It is more difficult
to determine the error bars on the observed tidal phase. Errors in the
range of an hour or so are likely near the equator.

A more serious problem can occur if variatioms in Hc and p, are
correlated with the tidal perturbations. There are several cases to

consider. If the c;oud particles move with the gas velocity, and the
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upper boundary of the cloud is very sharp (Hc << 1), then the tidal
vertical velocity will cause the cloud and, thus, the weighting
functions for channels 4 and 5 to shift up and down (Diner et al.,
1982). The semidiurnal amplitude of the vertical velocity, w, mnear the
cloud tops at the equator is about 1.8 cm/sec. If Azc is the shift in
the height of the cloud, then

a(Azc)

Q —— = 1.8 cm/sec ° cos(24 + éw)
L)

where dw is the phase of w and £ is the mean rotation rate of the

atmosphere. From the above expression
Az, = (1.8 cm/sec/2Q) * (sin 26 + 6.) = 0.5 km * sin(26 + 4_)

The basic state temperature lapse rate at this level is such that in 0.5
km, the temperature changes by 1.7 K. In this case a change of roughly
this magnitude would be observed in the channel 5 brightness
temperature. Thus, fhere could be a semidiurnal brightness temperature
perturbation in chanﬁel S due to vertical motion of the cloud with an
amplitude about half of that shown in Table 4.1. The value in Table 4.1
was calculated from the model temperature oscillation at comnstant
pressure. The amplitude of the ferturbation due to vertical motion
would be less in channel 4 since the weighting function for this channel
is not entirely determined by cloud opacity.

The sharp cloud case described above is the worst case in the
sense that it results in the largest amplitude due to vertical motioms.

Consider the case where H, = 1, i.e., the cloud particles are uniformly
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mixed in the gas. Then, an oscillating vertical velocity will have no
effect on the weighting functions because the distribution of the <cloud
particles with respect to pressure remains unchanged. In this case the
random fluctuations discussed above would also have no effect on the
weighting functions.

It is also possible, if the cloud boundary is sharp, that the
pressure at the boundary remains constant in spite of vertical motioms
(Diner et al., 1982). The cloud particles would not be entrained in the
gas flow. This could occur if the particles evaporated almost
immediately wupon being raised above a certain level. However, rapid
evaporation is unlikely because particle lifetimes at the cloud tops are
on the order of months (Toon et al., 1979; Knollenburg et al., 1980).
It is also unlikely that settling causes any relative motion of the
particles with respect to the gas since the Stokes fall velocity of 1 um
cloud particles at the cloud tops is less than .1 cm/sec (Young, 1975),
negligible when compared to the 1.8 cm/sec calculated above. Since the
atmosphere at the cloud tops is stably stratified, it is also unlikely
that small scale turbulent mixing determines the cloud top level.

From the above discussion it is clear that the assumption that
the vertical motionms associated with the tides do not affect the
measured brightness temperatures in channels 4 and 5 is comsistent omnly
with diffuse models for the cloud top. Comparisons of our model results
with the OIR do not contribute much to constraining the value of H..
Our results are certainly consistent with Hc.i(L4, and Hc could be as
great as 0.85.

The diurnal results in channels 4 and 5 are expected to show a
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dependence on the cloud parameters similar to the semidiurnal. The
diurnal phase may be more semsitive to changes in the weighting
functions because of its more rapid change with height. This effect can
be seen in Tables 4.9 and 4.10. These tables give the diurnal amplitude
and phase in channels 4 and 5 for the same values of Hc and P, discussed
previously for the semidiurnal tide. At the equator, chamnges in P,
result in at least twice as big a change At/p in the diurnal phase as in
the semidiurnal. This is not true at 40°, but at 40° the semidiurnal
phase does not vary smoothly with height in the region of the channel 4

and 5 weighting functions.



-180

TABLE 4.9

SENSITIVITY TO CLOUD PARAMETERS: DIURNAL TIDE AT THE EQUATOR

CHANNEL 4 CHANNEL 5
B p, (mbar) Amplitude  Phase Amplitude Phase
0.4 50 | 1.0 19:47 1.3 20:10
0.4 100 0.7 16:34 0.7 15:00
0.4 200 0.8 17:35 0.7 20:09
0.4 300 0.8 17:52 0.2 22:08
0.85 100 0.8 17:40 0.8 17:45
0.85 200 0.8 17:40 0.6 18:29
0.15 50 1.2 23:53 2,2 0:27

0.15 100 1.0 15:46 1.9 15:00
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TABLE 4.10

DIURNAL TIDE AT 40°

CHANNEL 4 CHANNEL 5
H, p, (mbar) Amplitude Phase Amplitude Phase
0.4 50 1,3 17:18 1.2 16:49
0.4 100 1.2 18:14 1.1 18:39
0.4 200 1.1 17:52 1.0 17:03
0.4 300 1.0 17:47 1.1 17:48
0.85 100 1.1 17:54 1.1 17:52
0.85 200 1:1 17:53 1.0 17:43
0.15 50 1.9 16:51 2.2 16:12
0.15 100 1.0 18:41 0.6 20:57
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4.4 Convergence and Spatial Resolution

In this section the model’'s reliability is considered from a
numerical point of view. Although the agreement of the model with the
OIR data is good evidence for the validity of the model, the convergence
and the spatial resolution should be evaluated by changing model
parameters such as the number of time steps, the number of vertical
points, and the number of Legendre modes. The large amount of computer
time required to run the model prevented us from obtaining more than a
few cases, but these cases demonstrate the adequacy of the convergence
and the spatial resolutiom.

The amount of computer time required was mnot the only obstacle
which prevented us from running the model out to many thousands of time
steps. Unfortunately, there is an instability present in the lower
atmosphere. However, the growth rate i; slow enough that the model is
nearly converged before the instability becomes important. The behavior
of the instability for different values of the model parameters
indicates that it is probably of physical origin. It seems to be
generated in the low static stability region near the groumnd. It is
possible that it is related to shear instability. At the equator Ri,
the Richardson number, is less than ome in the lowest two scale heights
and is less than 0.25 in a marrow layer mear the top of the second scale
height. At these heights the static stability decreases with increasing
latitude, so Ri will decrease towsrds the pole. Ri < 0.25 is often
sufficient for instability. Determining the exact mnature of this
instability is a top priority in further work with this model as applied

to Venus.
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The convergence can be evaluated by comparing the solution at
the final time step to the solution at an earlier time step. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>